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Introduction

A thin-walled beam can be de�ned as a slender beam composed by

several plates or shells connected together at their common edges:

the plate thickness is assumed to be much smaller than the other

representative dimensions of the cross-section, which, in turn, are

small with respect to the beam length. Thin-walled beams enables

to form freely the cross-section and, thus, maximize the mechani-

cal properties of the material. Therefore, they have been used in

sport and automotive industry, aerospace and civil engineering. A

snowboard, a ski or poles can be mentioned as an example, as well

as the crane girders, the structural components of automobiles, air-

craft fuselages and wings, supporting structures of walls and roofs of

large halls and warehouses. Thin-walled structural elements have

several advantages, such as simple manufacturing technology, di-

mensional diversity and an optimized use of mechanical properties

of the material due to ad hoc design of the cross-section, which also

implies a low strength/weight ratio. On the other hand, due to their

geometrical characteristics, thin-walled beams have a complex me-

chanical behaviour. In fact, such structures may operate in complex

loading environment where combined axial, bending, shearing and

xvii



xviii Chapter 0. Introduction

torsional loads, as well as cross-section distortions and local e�ects,

are present. Such complex mechanical behaviour requires the devel-

opment of an ad hoc analysis tools, both of theoretical, numerical

and practical/design type. Some recent developments about these

issues are presented in this thesis. In the following, the main topics

discussed in the thesis are summarized, together with their framing

into the state-of-the-art.

In the �rst chapter of the thesis the fabrication methods and the

peculiarities of both cold-formed steel and composite thin-walled

beams are outlined, together with a brief description of their use

and history. After this introduction to the subject, some of the most

relevant models formulated for thin-walled beams are introduced.

As it is well known, classical beam models like Eulero-Bernoulli

and Timoshenko models are not suitable for describing the com-

plex kinematic of thin-walled members, and the theory of Vlasov

[1], based on a description of the cross-section warping related to

a non-uniform distribution of torsional rotation, was the �rst ap-

proach to the modeling of thin-walled beams. From this original

model, considerable work has been done over the decades to en-

hance and extend the Vlasov theory by di�erent methods, such as

the incorporation of higher-order parameters in the displacement

�eld. For example, Vlasov theory was the inspiring model for Kang

and Yoo [2] who developed a model to study large displacement be-

haviour in curved beams. Other interesting contributions are those

of Kim [3], Wilson [4] and Stavridis [5] that studied the vibration

D. Melchionda PhD Thesis



Chapter 0. Introduction xix

and stability of thin-walled pro�les. These are some examples of

contributions aimed at enhancing and extending the Vlasov theory.

However, these formulations mantain the basic Vlasov hypotheses

like (i) the rigid cross-section in its own plane and (ii) the null shear

deformability. About the second of these, Capurso [6, 7] extended

the model of Vlasov to include the shear deformation over the cross-

section midline by generalizing the description of warping. Then,

the concept of generalized warping functions has been used further

by many authors: Savoia [8, 9], Bauchau [10], De Lorenzis and La

Tegola [11], Ferradi and Cespedes [12]. Other interesting contribu-

tions regarding the inclusion of shear deformability on Vlasov-like

beam models for vibration and stability analysis are the works of

Piovan [13], Gendy and Saleeb [14], and Kim [15]. However, beam

models based on the kinematics of Vlasov fail to take into account

the e�ects of cross-section distortion and local in-plane deformation

of the walls. Much e�ort has been spent by many authors to solve

this weakness. Carrera [16] developed the Carrera Uni�ed For-

mulation (CUF) that provides, using an asymptotic method, two-

dimensional (plate and shell) theories and one-dimensional (beam)

theories able to take into account section distortions. Recently, Ge-

noese et al. [17, 18] developed a generalized beam model splitting

the 3D elasticity problem into a 2D discrete cross-section analysis

and a variable parametrization along the beam axis including clas-

sical and high-order deformation modes. It is also worth to note

the Finite Strip Method (FSM) and the Constrained Finite Strip

D. Melchionda PhD Thesis



xx Chapter 0. Introduction

Method [19], a semi-analytical procedure that stands in between

the classical Rayleigh-Rits method and a Finite Element Method

(FEM) solution able to take into account enriched warping descrip-

tion and in-plane section deformations.

In this context, the Generalized Beam Theory (GBT), originally

proposed by Schardt [20, 21] in the 1980s, has been proven to be

an e�ective way to consistently account for cross-section distor-

tion along with the classical beam kinematics in a comprehensive

fashion, by expressing the deformation of the member as the super-

position of a series of cross-sectional modes (which are known be-

forehand) multiplied by unknown functions depending on the beam

axial coordinate. Following the work of Schardt, many authors have

contributed to the improvement of the GBT by extending it beyond

its original formulation for open unbranched cross-sections [22, 23]

and by adding nonlinear e�ects for the analysis of buckling prob-

lems [24, 25] or by presenting new formulations for the dynamic

analysis of open-section members subjected to initial perturbations

or acting loads [26]. Another interesting development on GBT is an

improved beam element based on semi-analytical solutions [27]. Re-

cently, the application of the GBT to analyze cold-formed roof sys-

tems has been presented in [28, 29], an e�ective equilibrium-based

procedure for the reconstruction of the three-dimensional stresses

in GBT members in [30], the discussion of analogies between the

GBT and the constrained FSM in [31] and [32] and the analogies

between the GBT and the Generalized Eigenvectors method in [33].
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A formulation of the GBT for the elastic-plastic analyses of thin-

walled members experiencing arbitrary deformations and made of

non-linear materials has been developed in [34, 35] and used for the

modal decomposition of equilibrium/collapse con�gurations in the

context of an inelastic member analysis [36]. Moreover, a GBT-

based method capable of identifying the modal participation of

the fundamental deformation modes from a general buckling mode

determined by using the FEM has been presented by Nedelcu in

[37] for elements without holes and in [38] for perforated members.

Following an opposite way, Casafont used the GBT to constraint

FEM shell models [39]. The GBT has also been studied in case

of variable cross-section members [40, 41]. Moreover, the selec-

tion of the cross-section deformation modes (usually referred to as

cross-section analysis) has received extensive attention in the re-

search community over the years. On this regard, in the spirit of

the semi-variational method, an interesting approach that reverses

the classical methodology of GBT cross-section analysis has been

proposed in [42, 43].

Much attention has also been devoted to the shear deforma-

bility. Silvestre and Camotim [44]-[45] were the �rst to remove the

Vlasov constraint of null shear deformation in the GBT, considering

a constant warping displacement over the wall thickness. However

it leads to a null shear strain between the direction of the beam

axis and that orthogonal to the wall midline, not allowing an exact

recovery of classical shear deformable beam theories. Recently, in
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[46, 47], a new formulation of the GBT that coherently accounts

for shear deformation has been presented. Guaranteeing a coher-

ent matching between bending and shear strains components of the

beam, the new formulation allows to clearly identify the classical

degrees of freedom of the beam. This target is reached by introduc-

ing the shear deformation along the wall thickness direction besides

that along the wall midline. The cross-section analysis procedure

is now based on a unique modal decomposition for both �exural

and shear modes, posing the attention on the mechanical interpre-

tation of the deformation parameters in modal space. This new

GBT formulation is adopted in the present work and described in

the second chapter.

As well as many other structural models, the GBT-based beam

model can be viewed as a one-dimensional model deduced from

a parent three-dimensional one by the introduction a kinematic

ansatz. Of course, depending on the kinematic ansatz, this can

lead to a poor (or even null) representation of the three-dimensional

strain components over the cross-section (i.e. in the co-dimension

of the model) and, in turn, to an over-sti�ening which limits the

predictive capabilities of the beam model. Such behaviour has been

well documented by Silva et al. in various papers, see for example

[48�50]. In particular, in [48], it has been shown that the buckling

load in some cases can be dramatically overestimated (up to 300%),

by using improperly derived GBT �nite elements. Indeed, this is a

typical problem of structural models with constrained kinematics
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and it is usually dealt with by properly adjusting the constitutive

relationship. A remarkable example of this strategy is represented

by shear correction factors usually employed in Timoshenko beams

and in shear-deformable plate models. In the case of non-standard

beam models, such an approach leads to some drawbacks. In partic-

ular, the value of such coe�cients depends on the stress distribution

on the cross-section so that, on one side, their value is problem de-

pendent and, on the other, it might change from section to section.

Also in GBT based models the problem is tackled by modifying

the constitutive relations, by adopting a di�erent treatment for the

membrane part of the strain �eld (pertaining to the cross-section

midline) and for the bending one (outside the cross-section mid-

line). Moreover, in this respect, it should be noticed that in the

GBT literature, this di�erent treatment is carried out in a non-

univocal way for isotropic and orthotropic beams. As it can be

easily argued, the arbitrary adoption of two di�erent constitutive

relations for the membrane and the bending parts is not desirable.

In fact, this way of proceeding on one side does not give a clear in-

sight on the physical meaning of such an approach and, on the other

side, it might lead to non-univocal choices if the displacement �eld

is enriched or laminated beams considered. In order to overcome

these di�culties, following the ideas presented in [51], an approach

able to automatically identify constitutive relations consistent with

the adopted kinematic hypotheses is presented in the third chapter

of this work. In the proposed approach, constitutive relations are
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obtained via complementary energy and there is no distinction be-

tween membrane and bending parts, nor isotropic and orthotropic

materials. Indeed, the di�erent treatment of the membrane and

bending parts, as well as the alternative approach presented in the

third chapter of this thesis, su�ces to overcome the over-sti�ening

problems in the case of isotropic material, but does not in that of

orthotropic material. In this case, in fact, due to the coupling intro-

duced by the constitutive relationship it is necessary to ensure the

coherence between the representations over the cross-section of the

stress and strain components which, through energetic equivalence,

contribute to the de�nition of the cross-section sti�ness matrix. In

this thesis, this idea is formalized in a rigorous analysis by means

of the concept of consistency. This concept was early introduced

by Prathap and his co-workers (see [52] and the references therein)

with regards to the assumed displacement �nite element model in

constrained media elasticity. They showed that consistency o�ers

a conceptual scheme to delineate some well-known de�ciencies of

the assumed displacement approach and suggests the way to con-

struct variationally correct procedures to overcome these shortcom-

ings [53, 54]. Later, the same concept was successfully extended to

coupled problems [55�57] and used as formal basis to develop an

integrated procedure to recover consistent stresses for displacement

based �nite elements [58]. The e�ectiveness of the arguments ex-

posed are illustrated on some numerical examples.

From the numerical point of view, the solution of the GBT equa-
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tions is typically obtained resorting to the �nite element method.

In particular, the standard assumed displacement (compatible) ap-

proach is usually followed. On the other hand, it is well known that

mixed/hybrid stress approaches can yield higher performance and,

in particular, higher accuracy in the stress evaluation. Mixed/hybrid

stress approaches have been successfully used for the analysis of

beams (see, for example, [59, 60]) as well as of plates (see, for ex-

ample, [61, 62]). In the fourth chapter of the thesis, following the

ideas presented in [63], a 2-node �exibility-based GBT �nite ele-

ment is developed. The element formulation is based on the hybrid

complementary energy functional, involving nodal displacements

and equilibrating stresses within each element as independent vari-

ables. Assumed stresses can be discontinuous at the element bound-

aries and the stress parameters can be eliminated at the element

level. Thus, the resultant discrete equations take the simple form of

standard assumed displacement elements. As it is well known, the

choice of the stress approximation is a crucial issue in developing re-

liable assumed stress �nite elements. Here this is pursued based on

a rational approach. Firstly, analytical solutions of the GBT equa-

tions referred to some particular cases are derived. Then, these are

used to set-up the initial element stress approximation, assumed as

an appropriate uncoupled expansion based on the stresses associ-

ated to the analytical solutions. Finally, stresses are constrained

to satisfy the equilibrium equations pointwise. Of course, assumed

stresses depend on the number of modes used to describe the kine-
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matics of the GBT beam. However, this is automatically accounted

for. Regarding the displacements, as anticipated, the element for-

mulation involves only nodal displacements, hence no displacement

approximation within the element is required. The displacement in

the interior of the element is recovered a posteriori, interpolating

nodal values by shape functions based on the same analytical so-

lutions used to derive the stress approximation. The performance

of the proposed element is tested on several numerical examples,

involving beams under di�erent loading conditions. Numerical re-

sults show that the element exhibits high accuracy in the evaluation

of both displacements and generalized stresses. The reference solu-

tion is accurately predicted using very rough meshes, often one or

two �nite elements.

In the �eld of Civil Engineering, thin-walled beams are usually

made by cold-forming of steel laminates. From a practical point

of view, thin-walled cold-formed pro�les are commonly classi�ed as

Class 4 in the current standards [64�68]. The design of Class 4

members is more complex with respect to the design of their hot-

rolled counterparts, and this probably still nowadays impedes an

even more large usage of these pro�les. Designing against local and

lateral-torsional buckling (the latter is here named �global buck-

ling�) is a task well covered by reliable methods available in many

international codes. Designing against distortional buckling can be

more complicated, and rules provided by codes (for instance EC3

[65]) are not always applicable. The structural theory, or the numer-
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ical tool, adopted for performing the linear buckling analysis deeply

in�uences the design approach. In the �fth chapter, following the

main steps presented in [69], a new design approach based on the

EC3 �general method� (point 6.3.4 of [65]), is presented. This ap-

proach is named Embedded Stability Analysis (ESA) to underline

the fact that embeds a stability analysis of the members to be veri-

�ed. In particular, the stability analysis is based on the GBT, that

allows to coherently consider distortional buckling together with

local and global ones. The ESA approach is compared with current

EC3 design methods and, in order to highlight its peculiarities, the

results of an extensive numerical campaign are shown.

When dealing with buckling, an important issue that must be

considered is that actual buckling curves are always conditioned

by the erosion of ideal buckling curves. In case of compact sec-

tions the erosion is due to the imperfections, while for thin-walled

members, supplementary erosion is induced by the phenomenon

of coupled instabilities [70, 71], that represent a characteristic of

thin-walled steel members in compression or bending. This ero-

sion, as remarked by Gioncu [72], enables to classify the interaction

types, which range from weak class to very strong class interaction.

Obviously, an appropriate framing of each type of coupled instabil-

ity into the relevant class is very important because the methods

of analysis used for design have to be di�erent from one class to

another. In case of weak or moderate interaction, structural reli-

ability will be provided by simply using safety coe�cients, while
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in case of strong or very strong interaction, special methods are

needed. In [73] Dubina summarized the main coupled instability

case which may appear within the bar members. Then, based on

the concept of Erosion of Critical Bifurcation Load (ECBL), Du-

bina proposed an approach to evaluate the ultimate strength in

local/distortional-global interactive buckling. This approach en-

ables to use the Ayrton-Perry format of European buckling curves

[64, 72�74] to calibrate appropriate buckling curves for any kind of

interactive local/distortional-global buckling. In the spirit of [75],

in the sixth chapter of the thesis, the GBT is used to �nd the in-

teraction points of buckling modes and, based on that, to evaluate

the erosion coe�cient and propose a modi�ed version of the ECBL

approach. In particular, some pallet rack uprights in compression

are analysed. The analysis consists in two steps. In the �rst step,

the instability mode interaction points and their related imperfec-

tions are identi�ed using GBT bifurcation analyses. In the second

step, imperfection factors associated to the modi�ed version of the

ECBL approach are calculated in terms of the erosion coe�cients

computed in the �rst step. The buckling curves related to the mod-

i�ed and classic ECBL approaches are thus obtained and compared

with experimental results [76, 77]. The comparison shows that the

modi�ed ECBL approach is in very good agreement with experi-

mental results, while results from the classical ECBL approach are

not always on the safe side.
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Chapter 1

Mechanics of thin-walled members

Abstract

In this chapter, thin-walled members like cold-formed and composite pro�les,

which are the main thin-walled beam products of interest of this work, are

presented. A brief description of their use, history, and fabrication methods is

outlined along with the peculiarities of these members. A theoretical frame-

work is outlined, decribing some of the most important analysis tools for the

modelling of these members, with special attention being paid to beam mod-

els. The �nite strip method is also brie�y presented as a numerical option

commonly used in this kind of analysis.

1.1 Cold-formed members

During the 20th century and early 21st century the progress of

structural engineering has led to an increased use of structural ele-

ments characterized by a lower strength/weight ratio. Thin walled

cold-formed members play an important role in this framework.

1
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The improvement of the production technologies, the increasing of

the materials strength and the development of speci�c design codes

are the actors that are driving the development of these elements.

Previously, the use of cold-formed members was con�ned in well de-

limited industrial contexts where the weight savings was the most

relevant research way, such as in aeronautical, rail and automotive

industries. Currently these elements are used in civil engineering

and can be produced in steel or aluminum.

Winter [78], was one of the �rst pioneers in the study of the cold-

formed members. Through a systematic research he pointed out the

advantages of using the cold-forming techniques, optimizing roof-

ing systems and leading in general to a wider use of cold-formed

members in the �eld of industrial buildings.

Cold-formed members can be subdivided in two main categories:

• individual structural elements (monodimensional elements);

• panels and decks (bidimensional elements).

With reference to the �rst category, Fig. 1.1 shows some cold-

formed cross-sections typically used in frame structures. The most

common shapes are C-sections, Z-sections, angles, I sections, T and

tubular sections. Usually the cold-formed section heights vary from

50 to 300mm, and the thicknesses between 1.0 and 7.0mm. In some

cases, the height can reach 500mm and thickness 15mm. These sec-

tions are widely used as secondary structural elements for buildings
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1.2 COLD-FORMED STEEL SECTIONS 
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 Cold-formed structural members can be classified into two major 
types: 

- Individual structural framing members; 
- Panels and decks. 

 Individual structural members (bar members) obtained from so called 
“long products” include: 

- single open sections, shown in Figure 1.2a; 
- open built-up sections (Figure 1.2b); 
- closed built-up sections (Figure 1.2c). 

 

 
a) Single open sections 

 

     
                         b) Open built-up sections                   c) Closed built-up sections 

Figure 1.2 – Typical forms of sections for cold-formed structural members 
 
 Usually, the depth of cold-formed sections for bar members ranges 
from 50 – 70 mm to 350 – 400 mm, with thickness from about 0.5 mm to 6 
mm. Figure 1.3 shows, as an example, some series of lipped channel and 
“sigma” sections (www.kingspanstructural.com/multibeam/ – Multibeam 
products). 

Figure 1.1: Most common cold-formed cross-sections [79].

like purlins and girts for roo�ng and lateral walls (Fig. 1.2) and

also as primary structural elements (Fig. 1.3). The second main

(a) (b)

Figure 1.2: Z and C sections used as: a) purlins; b) girts.

category includes all cold-formed applications about the building

envelope, for example like roo�ng panels (Fig. 1.4). The heigth of

these elements ranges between 35 to 200mm with thickness rang-

ing between 0.5 to 2mm. Also in this case there is large variety of

section typologies (Fig. 1.5) with very interesting applications in
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Figure 1.3: Cold-formed sections used as primary structural elements.

decking solutions like composite concrete steel structures, Fig. 1.6.

1. INTRODUCTION TO COLD-FORMED STEEL DESIGN 
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a) 

175

1.6mm
1.8mm
2.4mm

65mm              65mm        70mm   70mm                95mm       70mm                  65mm
      95mm

205

1.6mm
1.8mm
2.4mm

220

2.0mm
2.7mm

250

1.8mm
2.4mm

270

2.4mm

300

2.7mm

350

3.2mm

 

b) 

1.30mm
1.45mm
1.55mm
1.70mm

145 x 60mm        175 x 60mm                   205 x 60mm          235 x 60mm            265 x 60mm

1.40mm
1.50mm
1.60mm
1.70mm
2.00mm

1.45mm
1.55mm
1.65mm
1.80mm
1.90mm
2.00mm

1.70mm
1.90mm
2.00mm
2.30mm

1.80mm
2.00mm
2.25mm
2.55mm
3.00mm

 
Figure 1.3 – Multibeam sections: a) Lipped Channels; b) Σ sections 

 
 Panels and decks are made from profiled sheets and linear trays 
(cassettes) as shown in Figure 1.4. The depth of panels usually ranges from 
20 to 200 mm, while thickness is from 0.4 to 1.5 mm. 
 

 
Figure 1.4 – Profiled sheets and linear trays 

Figure 1.4: Pro�led sheets and linear trays [79].

Figure 1.5: Cold-formed roo�ng panels.

Manufacturing

Cold-formed members are produced starting from coated or un-

coated hot-rolled or cold-rolled �at strips or coils. The sectional
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Figure 1.6: Composite concrete steel structure.

shape is obtained by two processing methods:

• roll forming;

• folding and press braking.

The process of cold-rolling, shown in Fig. 1.7-1.8. The �nal cross-

section is obtained from a planar metal sheet by a folding operation

using a series of rotating rolls placed along an production line. The

number of rollers depends on the complexity of the sectional shape,

the thickness and the strength of the sheet. Usually these pro-

duction lines are equipped with a cutting machine that "cuts" the

element to the required length and a welder, useful to weld the op-

posing edges of the strip before �nal rolling into a closed shape. In

case of simple cross-section shapes and limited number of required

elements it is convenient to use the hydraulic bending process (Fig.

1.9) or press braking (Fig. 1.10). The machines useful to apply

these methods are composed by a mobile part and a �xed one. On

the �xed part it is possible to apply the molds with the desired

shapes.
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1.2.2 Manufacturing 

Cold-formed members are normally manufactured by one of two 
processes. These are: 

- Roll forming; 
- Folding and press braking. 

Roll forming consists of feeding a continuous steel strip through a 
series of opposing rolls to progressively deform the steel plastically to form 
the desired shape. Each pair of rolls produces a fixed amount of deformation 
in a sequence of type shown in Figure 1.7a. Each pair of opposing rolls is 
called a stage as shown in Figure 1.7. In general, the more complex the cross 
sectional shape, the greater the number of stages required. In the case of 
cold-formed rectangular hollow sections, the rolls initially form the section 
into a circular section and a weld is applied between the opposing edges of 
the strip before final rolling (called sizing) into a square or rectangular 
shape. 
 

 START 

Flat sheet Finished 
section 

1                               2                              3                            4                             5                                6

 
Stages in forming simple section 

 
Roller shapes at each stage 

   6 6
  5 5

                 4     4
        3   3
   2 2

1   1

 
Profile at each stage 

Figure 1.7 – Stages in roll forming a simple section (Rhodes, 1991) 

1                               2                              3                            4                             5                               6

Figure 1.7: Stages in roll forming a single section [80].

Figure 1.8: Industrial roll forming lines.

1. INTRODUCTION TO COLD-FORMED STEEL DESIGN 
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Figures 1.8 (a and b) shows two industrial roll forming lines for long 
products profiles and sheeting, respectively. 

A significant limitation of roll forming is the time taken to change 
rolls for a different size sections. Consequently, adjustable rolls are often 
used which allows a rapid change to a different section width or depth. 
 

 
Figure 1.8 – Industrial roll forming lines 

 
Folding is the simplest process, in which specimens of short lengths, 

and of simple geometry are produced from a sheet of material by folding a 
series of bends (see Figure 1.9). This process has very limited application. 
 

1    2    

3    4    
Figure 1.9 – Forming of folding 

 
Press braking is more widely used, and a greater variety of cross 

sectional forms can be produced by this process. Here a section is formed 
from a length of strip by pressing the strip between shaped dies to form the 
profile shape (see Figure 1.10). Usually each bend is formed separately. The 

Figure 1.9: Forming of folding [79].
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set up of a typical brake press is illustrated in Figure 1.11. This process also 
has limitations on the profiled geometry which can be formed and, often 
more importantly, on the lengths of sections which can be produced. Press 
braking is normally restricted to sections of length less than 5 m although 
press brakes capable of producing 8 m long members are in use in industry. 

Roll forming is usually used to produce sections where very large 
quantities of a given shape are required. The initial tooling costs are high but 
the subsequent labour cost is low. Brake pressing is normally used for low 
volume production where a variety of shapes are required and the roll 
forming costs cannot be justified. 
 

 

a) b) 
 
 
 
 
 
 

c)                          d) 
 
 
 
 
 
     e)   f) 

 
Figure 1.10 – Forming steps in press braking process 

 

 
Figure 1.11 – Industrial brake press 

(a)

(b)

Figure 1.10: Press braking process: a) Forming steps [79]; b) Industrial brake

press.

Residual stresses

The varying stretching forces acting in the manufacturing processes

of cold-formed steel section induce a particular characteristic in the

�nal product, the residual stresses. These processes cause a chang-

ing of the strain-stress curve of the steel. In particular there is

an increase of yield strength and sometimes also an increse of the

ultimate strength in the corners composing the cross-section. The

increase of yield strength is due to strain hardening and depends

on the type of steel. The increase of ultimate strength is related

to strain aging with a decrease of ductility. The residual stresses

of cold-formed pro�les are mainly of �exural type with respect to

hot-rolled ones where the residual stresses, due to hot-rolling manu-

facturing processes, are mainly of membranal type. This behaviour

is shown in Fig. 1.11. It is important to consider the in�uence
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(„floarea” reziduală) 

Figura 7. Exemplu de tensiuni reziduale de încovoiere măsurate la un profil de tip C prin 
decuparea incompletă a fâşiilor (Bivolaru, 1993) 

 
 Distribuţia tensiunilor reziduale pe grosimea profilului este prezentată în figura 8. Valorile 
tensiunilor reziduale se exprimă cel mai bine ca procent din limita de curgere %fy. 
 

-

+

-+ =

+

-
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flexural membranar
exterior

interior

 
Figura 8. Definirea tensiunilor reziduale de încovoiere şi membranare pe grosimea elementului 

 
Sfaturi practice pentru măsurarea tensiunilor reziduale de încovoiere 
 Lăţimea fâşiilor se va alege egală cu 10 mm, funcţie de dimensiunile profilului şi pentru a 
obţine o mai bună reprezentare a tensiunilor reziduale pe conturul secţiunii. Lungimea acestora 
va fi de 150mm până la 200mm pentru profilele cu grosimi relativ mici, respectiv 20mm până la 
30mm pentru profile cu grosimi t > 4.0 mm. 
 Se recomandă ca tăierea în fâşii să se efectueze cu ajutorul unui ferestrău mecanic, cu 
viteză moderată şi cu răcire continuă, pentru a evita o încălzire prea mare a profilului şi 
introducere de tensiuni suplimentare. De asemenea, colţurile se vor tăia la 45º după bisectoarea 
unghiului. 
 Pentru măsurare este mai uşor să se decupeze în întregime fâşiile, dar să se stabilească cu 
mare atenţie faţa exterioară şi cea interioara a fâşiilor. Dacă se utilizează metoda decupării 
incomplete, se poate obţine o reprezentare directă şi sugestivă a tensiunilor reziduale de 
încovoiere – floarea reziduală (vezi figura 7). 
 
3.3 Măsurarea tensiunilor reziduale de încovoiere la profile metalice formate la rece cu 

secţiune de tip U şi Ω 
 
 În figura 9 se exemplifică împărţirea secţiunii transversale în fâşii pentru încercările de 
tracţiune şi pentru determinare tensiunilor reziduale, pentru profilul UC5S1/2. După cum s-a 

 112

Figure 1.11: Evidence of �exural residual stresses in a lipped channel cold-

formed steel section [81].

of residual stresses specially when a nonlinear analysis has to be

performed.

1.2 Composite members

Since the early dawn of civilization the research of more resistent

and lighter materials has always fascinated mankind. The use of

composite materials fully answers to this request. A structural com-

posite is a material system consisting of two or more phases on a

macroscopic scale, whose mechanical performance and properties

are designed to be superior to those of the costituent materials act-

ing independently. The constituent materials of a composite are the

reinforcement, usually discontinuous, sti� and strong and a matrix,

weaker than the reinforcement and continuos. It is important to un-

derline the hystorical milestones related to the development of these

materials. A big improvement in composite materials is addressed
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to the time of World War II, when �berglass polymer matrix com-

posites started to be used and studied. It had large applications

in the 1950s with missiles and, after the invention of high-strength

carbon �bers in the 1960s, the composite materials were used to

build aircraft components from 1968. Starting in the late 1970s, af-

ter the development of Kevlar (or aramid) �bers (Dupont) in 1973,

the application of composites expanded widely to the marine, auto-

motive and biomedical industries. The 1990s, thanks to composite

materials price dropping, marked a big expansion also in civil en-

gineering (Fig. 1.12) with a large application in pedestrian bridges

(Fig. 1.13a) and speci�c infractructural buildings (Fig. 1.13b).

Manufacturing

The manufacturing process is one of the most important steps in

the application of composite materials. The manufacturing method

has to be selected in conjunction with the material selection and

structural design in a uni�ed process. From this uni�ed process

depends the properties of the �nal product. A large number of

fabrication methods are in use today like autoclave, vacuum bag

and compression molding, �lament winding, �ber placement, injec-

tion molding, pultrusion and resin transfer molding (RTM). Some

of them are brea�y explained in the following.
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(a)

(b)

Figure 1.12: Examples of composite beams (www.dragonplate.com).

(a) (b)

Figure 1.13: a) FRP pedestrian bridge in Lleida, Spain; b) Aerofoil-powered

generator (Hans Hillewaert).
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Autoclave molding

The autoclave molding process is used for fabrication of high-performance

composites like in military, aerospace and infrastructure applica-

tions. This process use the material in "prepreg" form (Fig. 1.14)

where the matrix and the reinforcement are combined in a layer of

parallel or woven �bers preimpregnated with resin. The material

Resins are usually thermosets such as epoxies, although recently
prepregs made of vinyl ester resins have also been available. The par-
tially cured resin has about 30% of the crosslinks already formed. With
the incorporation of fibers (such as carbon, glass or Kevlar at about 60%
by volume), prepregs are flexible sheets of fibers about 150 mm thick.
This is similar to a sheet of wallpaper except that it is sticky on both sides.
Figure 4.4 shows a roll and a sheet of the carbon/epoxy prepreg.

145Autoclave Processing

FIGURE 4.4 A roll and a sheet of carbon/epoxy prepreg.

FIGURE 4.3 Schematic of a prepregging machine.
Figure 1.14: Schematic of prepregging machine.

in prepreg form is cutted, oriented as desired and stacked to form

a layup. The �nal layer goes in a vacuum bag (Fig. 1.15) which

is placed into an autoclave (Fig. 1.16) where the materials (usu-

ally thermoset ones) require temperature and pressure on the order

of 175◦C and 600kPa. The main advantage of this process is the

ability to process a large variety of materials with an excellent di-

mensional stability of �nished product but limiting the production

to well de�ned maximum dimensions.
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2.5.2.6. Placement of Vacuum Bag

The final layer that goes on top of the whole assembly is the vacuum
bag. A hole is made in the vacuum bag to incorporate the vacuum valve.
It is then sealed. The vacuum bag is used to compact the bed of prepregs,
and also to aid in the removal of volatiles that may be produced during
the curing process. Vacuum is kept on at all times during the autoclaving
process.

The assembly of all layers is shown in Figure 4.9. The whole lay-up
assembly is then placed inside the autoclave for curing. For making a
small laminate such as that of coupons for testing, a plate of about 300
mm × 300 mm may be used and the whole assembly may not be too
large or too heavy. However, the manufacturing of a large structure
such as parts of a wing of an aircraft with dimensions on the order of
tens of meters can require a whole bagging assembly (including the
tool) of several tons in weight. The handling of such an assembly re-
quires careful planning.

2.6. Curing and Consolidation of the Part

The resin in the stack of layers of composite in the bag mentioned in
the previous section is a viscous liquid. This resin needs to be trans-
formed into a solid to make a useful composite, which requires heat to ac-
tivate the chemical reaction between the molecules (as discussed in
Chapter 2). During this transformation of the resin, it is important to as-
sure that the fibers maintain their orientation and that no resin rich area or

156 HAND LAMINATING AND THE AUTOCLAVE PROCESSING OF COMPOSITES

FIGURE 4.9 Assembly of the bagged composite.

Figure 1.15: Assembly of prepreg bagged composite.

Figure 1.2(a) shows a pressure vessel made of composite materials us-
ing the combination of hand-lay-up and filament winding processes.
Composite pressure vessels are light weight and can contain pressures
higher than those contained by metallic vessels. These components are
made using the filament winding process [Figure 1.2(b)]. Figure 1.2(c)
shows a photograph of a filament winding machine. The filament wind-
ing process will be discussed in detail in Chapter 5.

5Examples of Products Made Using Different Manufacturing Techniques

FIGURE 1.1(c) Photograph of an autoclave (courtesy of ASC Ltd.).

FIGURE 1.2(a) Composite pressure vessel made by combination of hand-lay-up and
filament winding.

Figure 1.16: Aerospace autoclave.
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Filament winding

Filament winding process is usually applied to make composite

pressure vessels, storage tanks, pipes. It ensures excellent strength-

to-weight ratio and consists in winding a preimpregnated or resin

coated (under tension) reinforcement around a rotating mandrel

(Fig. 1.17). It can be applied only on products having surfaces

revolutions. This process guarantees a good uniformity of resin

distribution in �nished parts.

Figure 1.17: Schematic of �lament winding process (www.nuplex.com).

Pultrusion

Fig. 1.18 shows a representation of the four steps required in a

pultrusion process. In this process the �bers are routed through

a series of guides (step 1) and impregnated with a thermosetting

resin (step 2). Then the �bers are pulled through a heated die

(step 3) where the resin �ows and wets the �bers. The resin, in this

step, cures and the �ber/resin system became solid. Finally the

composite is pulled by a puller and cutted (step 4). The pultrusion

D. Melchionda PhD Thesis
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process does not provide �exibility (only simple shapes production)

and uniformity of product control and automation but ensures high

output.

Figure 1.18: Schematic of pultrusion process (www.nuplex.com).

1.3 Modeling framework

When the torsional rigidity of a beam is very small, as happens

in thin-walled open cross-sections, buckling may take place with a

rotation of the cross-section around a longitudinal axis and it may

be accompained by de�ection in one or both the principal planes

of inertia. These kind of instabilities appear for load values which

are much below the lower of the two Eulerian critical loads and are

known as torsional instability and �exural-torsional instability. In

this cases it is important to handle the problem with a beam model

able to catch the torsional behavior. The model of Vlasov [1] in the

1940s, also known as the Theory of the Sectorial Area, is charac-

terized by a kinematics that comprises a warping function that de-

scribes the non-uniform torsion along the beam axis. Vlasov theory

has been enriched by the e�orts of many authors. Timoshenko and

D. Melchionda PhD Thesis
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(a) Global buckling (b) Distortional buckling

(c) Local buckling

Figure 1.19: Buckling modes

Gere [82] described the stability of thin-walled beams under di�er-

ent loading conditions. Murray [83] applied the theory to standard

design practices and Wilson et al. [4] and Kim et al. [3] worked

on the stability of thin-walled pro�les. However, despite the impor-

tance of the Vlasov theory, it has some limitations: the cross-section

is considered to be perfectly rigid in its own plane, the shear strains

in the middle surface of the wall are neglected, and the transverse

normal stresses in the walls are ignored along with normal stresses

tangent to the midsurface of the wall. These limitations may lead

to an incomplete mechanical description of thin-walled beams that

can be the reason of a not correct prediction of the thin-walled

beams behavior. In fact, thin-walled beams are essentially folded

plates and, above the �exural and torsional behaviors, can be sub-
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jected to cross-sectional in-plane deformations like distortions and

local e�ects along with richer out-of-plane deformations (see Fig.

1.19) and all these kinematic phenomena can appear in a coupled

manner. Some interesting beam models, already introduced, over-

come the limits of Vlasov theory. In particular, the Capurso beam

theory, Garcea's generalized beam model and CUF, due to their

particular characteristics, deserve to be mentioned and brie�y de-

scribed. Of course the Generalized Beam Theory belongs in this

set and will be extensively exposed in the next chapter.

Capurso beam theory

The Capurso Beam Theory, introduced by Michele Capurso in the

1960s [6], consists in a generalization of the cross-section's degree of

freedom concept. Capurso, starting from the Vlasov beam theory,

added a series of warping functions over the cross-section describing

all the possible shapes in which the cross-section could warp and

manteining the six classical degree of freedom of a Vlasov beam:

axial displacement, displacements and rotations over the two main

axes of inertia and non-uniform torsion. This description also elim-

inates the assumption of null shear strains in the middle surface of

the wall. The Capurso beam is one of the �rst instances of a modal

description of the mechanics of thin-walled beams over the theory

of Vlasov. In fact, since each new warping function added to the

kinematic description is weighed depending on the beam loading,

the Capurso beam theory can be de�ned as a modal theory. The
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model of Capurso remains valid today and it has been extended to

transversely isotropic materials and applied to the analysis of pul-

truded �ber-reinforced polymer (FRP) thin-walled beams [84][11].

However this theory lacks in considering the cross-section distor-

tion, not allowing the description of in-plane deformations of the

cross-section and local phenomena. This kinemetic constraint lim-

its it's application to beams with distributed shear diaphragms but

with a free to warp sections.

Garcea's generalized beam model

Garcea and his co-workers developed a beam model [85], [17], [18],

[86] obtained by splitting the 3D elasticity problem into a 2D dis-

crete cross-section analysis (Generalized Eigenvectors method), see

Fig. 1.20, and a variable parametrization along the beam axis.

It is achieved using a semi-analytical formulation. This formula-

tion leads to a set of di�erential equations along the beam and

is characterized by a group of generalized eigenvectors associated

to null eigenvalues, extending the classical de Saint Venant solu-

tion to generic anisotropic beams. This kind of model can also

include high-order deformation modes, obtained as end-tip e�ects.

The �nite element is obtained by considering a mixed, stress and

displacement, Hellinger-Reissner variational formulation, together

with the implicit co-rotational method in order to handle large dis-

placements and �nite rotations [87], [88]. Recently, Garcea also

proposed a simpli�ed version of the model, using a compatible dis-
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2.4. Rewriting the central solution: the strain energy and
the stress interpolation

The deformative part of the central solution dc½s� can be
rewritten as

dc½s� ¼Q cαc½s� ð19Þ
where

Q c ¼ ½dðEÞ
2 dðF2Þ

3 dðF3Þ
3 dðTÞ

2 dðF2Þ
4 dðF3Þ

4 �
αT
c ¼ ½αðEÞ αðF2Þ

3 αðF3Þ
3 αðTÞ αðF2Þ

4 αðF3Þ
4 � ð20Þ

and

αðβÞ ¼ aðβÞ2 ; αðαÞ
3 ¼ aðαÞ3 þsaðαÞ4 ; αðαÞ

4 ¼ aðαÞ4

From Eqs. (7) and (19), the stress becomes

rc ¼ϒc½x�αc½s� ð21Þ
with ϒc½x� ¼ CLε½x�Q c .

The generalized variables αc can then be obtained from the
resultant forces N ½s� and moments M½s� on the generic section s:

N ½s� ¼
Z
Ω
s; M½s� ¼

Z
Ω
Wxs ð22Þ

where Wx ¼ spinðxÞ denotes the spin matrix associated with x.
Recalling the stress splitting in Eq. (5) s¼ STr and introducing
vector tc ¼ fN ; Mg, we obtain

tc½s� ¼ Rcαc½s� where Rc ¼
Z
Ω
STϒc

� �
;

Z
Ω
WxS

Tϒc

� �� �
: ð23Þ

From the inversion of the 6�6 matrix Rc we obtain αc ¼ R�1
c tc

that introduced in Eq. (21) furnishes the stress in terms of the
resultant components in tc:

rc½s; x� ¼Ψc½x�tc½s� ¼ΨN ½x�N ½s�þΨM½x�M½s� ð24Þ
with Ψc½x� ¼ ½ΨN ΨM � and ΨN , ΨM satisfying the following
relations:Z
Ω
STΨN ¼

Z
Ω
WxS

TΨM ¼ I;
Z
Ω
WxS

TΨN ¼
Z
Ω
STΨM ¼ 0 ð25Þ

The complementary form of the strain energy density becomes

ψ ½s� ¼ 1
2

Z
Ω
rTcC

�1
rc ¼ 1

2t
T
c ½s�Hcctc½s� ð26Þ

3

Fig. 3. Channel-shaped shear wall core with an end torque.

Fig. 4. C-section: first 3 additional modes used.

A. Genoese et al. / Thin-Walled Structures 74 (2014) 85–103 89

Figure 1.20: C-section: �rst 3 additional modes [17].

placement description, in order to compare the generalized beam

model with the GBT [33]. The cross-section analysis is performed

without simplifying assumptions such as plane stress and kirchho�

hypothesis. Consequently it is applicable to both thin-walled and

thick-walled sections and it gives the possibility to handle problems

where the 3D stresses are relevant. In this model the cross-section

analysis returns naturally hierarchic modes but lacks in strain cri-

teria useful to discard speci�c components. It could be useful to

avoid locking problems and perform targeted analyses.

CUF: Carrera Uni�ed Formulation

The CUF, proposed by Carrera [16], provides one-dimensional (beam)

and also two-dimensional (plate and shell) high-order structural

models. About the beam model, called CUF 1D, the displacement
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�elds are expressed over the cross-section in terms of basis functions

whose forms and orders are arbitrary. CUF 1D reproduces results

that are usually provided by 3D elements, and can be subdivided

in two model classes: the Taylor-Expansion class (TE) and the

Lagrange-Expansion class (LE). TE class exploit N -order Taylor-

like polynomials to de�ne the displacement �eld above the cross-

section with N as a free parameter of the formulation. It can be

de�ned as a one-dimensional model with Nth-order displacement

�eld. LE class is based on Lagrange-like polynomials to discretize

the cross-section displacement �eld, having only pure displacement

variables. It can be de�ned as a one-dimensional model with a

surface-based geometry and pure displacement variable. Fig. 1.21

and 1.22 summarize the TE and LE modelling approach. Both

1D Models with Physical Volume/Surface-Based Geometry (LE) 151

9.1 Physical Volume/Surface Approach

Finite element analyses (FEAs) are typically conducted on structural models whose geometries
are derived from CAD tools. CAD and FEA representations of the geometry may differ
significantly and the proper FE modelling of a CAD-based structure is a critical and lengthy
task which can also affect the accuracy of the results.

There are two main aspects that should be carefully considered in a CAD–FEA scenario:

1. The FE discretization is, by definition, a process that leads to a modified geometry of a
structure. Mesh refinements or higher-order shape functions are typical remedies to this
problem (see also Section 1.2).

2. Many structural elements (e.g. beams, plates and shells) require the definition of reference
surfaces or axes where these elements and the problem unknowns lie. The definition of
reference surfaces/axes is particularly critical when 3D CAD geometries are provided. This
difficulty increases if FEA is, for instance, used to conduct the topological optimization of
the geometry of a structure.

The present 1D FE formulation offers significant advantages related to the second point
listed above, as LE elements can deal directly with the 3D geometry given by a CAD
model.

Figure 9.1 shows the typical steps required to implement a 1D beam element, where
both classical (EBBT, TBT) and refined (TE) models are considered. Starting from the 3D

Reference axis

Beam node

DOFs: generalized displacements
defined on the reference axis

Beam element

3D Geometry from CAD

TE Modelling

Computational Model

Figure 9.1 Geometrical considerations of the TE modelling approach, where a line is used to model
the entire 3D volumeFigure 1.21: TE modelling approach [16].

model classes account for warping and distortional phenomena, de-
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152 FE Analysis of Structures Through Unified Formulation

Beam element
Beam node
Lagrange node above the first beam
node cross-section
Lagrange node above the second beam
node cross-section
DOFs: pure displacements of each Lagrange
node (3 DOFs per Lagrange node)

Lagrange nodes can be placed above
the physical surface of the structure

3D Geometry from CAD

LE Modelling

Computational Model

Figure 9.2 Geometrical considerations of the LE modelling approach, where the lines and nodes lie
on the external surface of the physical body

geometry of the structure, an axis is defined and used to create the FE discretization. The
problem unknowns are defined along this axis. The geometrical characteristics of the cross-
section are retained by means of the surface integration of the expansion functions within
the FE matrices. This process can be particularly critical when multiple CAD–FEA iterative
processes are required (e.g. in an optimization problem) since it can be difficult to redefine a
3D geometry starting from a 1D FE model. Figure 9.2 shows the LE modelling approach. In
this case, the cross-section nodes can be directly located along the surface contour of the 3D
structure. This implies that the FE unknowns lie above the physical surface of the structure.
The definition of reference surfaces or axes is not required and a 3D CAD geometry can
be used directly for the FEA. In other words, a 1D FE can be used for a 3D geometrical
description. This important feature makes LE models extremely attractive for:

1. easily creating FE models derived from 3D CAD;
2. improving the CAD–FEA coupling capabilities in an iterative design scenario.

Figure 9.3 presents a summary of the main differences between the different modelling
approaches described above.

Figure 1.22: LE modelling approach [16].

tecting 3D-like results with low computational cost. Depending on

the application, TE class or LE class model can be properly used

[89], [90]. However in CUF a modal decomposition, able to select

and classify speci�c mechanical behaviours, is not provided. More-

over in LE class model, although these elements can deal directly

with the 3D geometry given by a CAD model, it is not possible to

apply "classical" beam boundary conditions, showing a solid-like

geometrical setting.

The Finite Strip Method

The FEM is the most powerful and versatile tool to evaluate the

solutions in structural analysis. However in many cases, where the

geometry and the boundary conditions are regular (like in most

cases related to the thin-walled beams), the accurate results com-
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1. Introduction

Thin-walled cold-formed steel members enjoy a relatively com-
plicated stability response for typical geometries and loading. As a
result, specialized tools for studying this stability response have been
developed and advanced. One of the most successful of these tools
has been the Finite Strip Method (FSM). In particular, the signature
curve for member stability analysis popularized by Hancock [1] has
provided the organizing thrust of today's member design: global,
distortional, and local(-plate) buckling based on the signature curve.

In recent years, an additional tool: Generalized Beam Theory (GBT)
has shown that the buckling deformations may be formally treated in
a modal nature that mechanically separates global, distortional, local,
and other modes [2]. This formal separation is integral to GBT, and
allows measurement of modal participation. By extracting the
mechanical assumptions that lead to the separation one may extend
the definitions to other methods. In particular, this insight lead to the
development of the constrained FSM (cFSM), which imbues FSM with
the same ability as GBT, in terms of the separation of the deformations.
In fact, the methods have been compared and shown to be nearly
coincident in their end result [3–5].

This paper is a modified and significantly extended version of
the paper presented at the CIMS2012 conference [6]. The paper
provides a review of fundamental developments in cFSM as well
as research results that are closely related and/or made possible
by cFSM. This review focuses on the last three years, though older
results are referenced and briefly presented if germane to under-
standing the latest results.

The paper begins, in Section 2, with a summary of the
constrained finite strip method (cFSM). The method is built-up
from the simplest case (simply supported ends) then extended to
general end boundary conditions. Ongoing research in the basic
assumptions and the definition of the modes is also summarized.
Section 3 of the paper provides a summary of efforts to apply cFSM
in a variety of design, optimization, and modal identification
problems. The design efforts focus on the use of cFSM to automate
the identification of modes for use in cold-formed steel member
design. This process is further generalized in the examination
of shape optimization of cold-formed steel members. The last topic
in Section 3 focuses on the use of cFSM base functions for
modal identification in shell finite element method (FEM)
models. Specifically local, distortional, and global classifications
are provided for elastic buckling, geometrically nonlinear, and
full nonlinear collapse analysis of shell FEM models. Finally, in

Section 4 a series of research results are discussed that are not
directly linked to, but unquestionably initiated by, the constraining
technique of cFSM, including nascent efforts in the constrained
finite element method (cFEM).

2. The constrained finite strip method

2.1. Classic FSM

The finite strip method leverages the longitudinal regularity of
many thin-walledmembers to dramatically decrease the problem size.
Members are discretized into longitudinal strips per Fig. 1. Within a
strip, local displacement fields u, v, and w are discretized as follows:

u¼ ∑
q

m ¼ 1

ð1� x
bÞ x

b

h i u1½m�
u2½m�

( )
Y ½m�;

v¼ ∑
q

m ¼ 1

ð1� x
bÞ x

b

h i v1½m�
v2½m�

( )
Y 0
½m�

a
μ m½ �

ð1Þ

w¼ ∑
q

m ¼ 1

1� 3x2

b2 þ 2x3

b3
x 1� 2x

b þ x2

b2

� �
3x2

b2
� 2x3

b3
x x2

b2
� x

b

� �� � w1½m�
θ1½m�
w2½m�
θ2½m�

8>>>><
>>>>:

9>>>>=
>>>>;
Y ½m�

ð2Þ
where the longitudinal shape function is

Y ½m� ¼ sinðmπy=aÞ ð3Þ

the strip degrees of freedom (DOF): ui[m], vi[m],wi[m], θi[m] are indicated
for the first term (m¼1) of the simply supported (SS) end boundary
condition in Fig. 1. Unlike FEMDOF, FSM DOF always occur at the same

Fig. 1. Finite strip discretization, strip DOF, and notation.

Z. Li et al. / Thin-Walled Structures 81 (2014) 2–18 3

Figure 1.23: Finite strip discretization, strip DOFs.

ing from a full �nite element analysis have a high computational

cost. In this �eld, the Finite Strip Method (FSM) [91] is an alter-

native method useful to reduce the computational e�ort ensuring

accurate results in case of regular geometry and regular boundary

conditions, taking into accout not only the enriched warping de-

scription present in the Capurso theory but also the distortion of

the cross-section and local e�ects. FSM is a semi-analytical pro-

cedure that stands in between the classical Rayleigh-Ritz method

and a FEM solution. It uses a separation of variables, in a simi-

lar way to that of Kantorovich [92], between the axial and cross-

sectional directions. The beam is divided in strips, adjacent among

themselves (Fig. 1.23), characterized by (i) a set of displacement

functions acting in the direction parallel to the beam axis and (ii)

a set of displacement functions over the cross-section. In the more

recent versions of FSM, spline functions are used as displacement

functions. This sort of discretization leads to a solving system of

equations characterized by less unknowns than a FEM approach.
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Since each strip is considered to be under a plane stress state and

based on the Kirchho� thin plate theory, the FSM allows to take

into account not only the enriched warping description present in

the Capurso theory, but also the distortion of the cross-section and

local e�ects. However, the family of solutions obtained is di�cult

to classify into meaningful modes, so most current applications of

the FSM introduce speci�c mechanical criteria to separate the dis-

placement �eld into distinct subspaces. These mechanical criteria,

directly motivated by the GBT [31], form the basis of the so-called

Constrained Finite Strip Method (cFSM) that allows to separate

the displacement �eld into distinct subspaces, allowing to di�eren-

tiate global, distortional and local behaviors. The cFSM has been

successfully used by Shafer to analyze cold-formed steel members

[19]. However, some cons should be highlighted like (i) the impos-

sibility to impose boundary conditions over the member and (ii),

despite the use of speci�c mechanica criteria (cFSM), the modes

coming from the analysis haven't a clear mechanical meaning, lead-

ing to an incorrect stress recovery.
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Chapter 2

The shear deformable Generalized

Beam Theory

Abstract

In this chapter, an overview of the evolution of the shear deformable Gener-

alized Beam Theory (GBT) is presented. The starting point is the original

GBT formulation proposed by Shardt. This formulation, assuming Vlasov's

hypothesis, neglects shear deformability along the midline of the cross-section.

Camotim and Silvestre, in order to remove Vlasov's hypothesis, proposed a

revised version of GBT kinematics introducing shear deformability in a similar

way as in the theory of Capurso. Anyway this solution didn't solve the prob-

lem of a non-perfect coherence between bending and shear strain components.

A new GBT formulation proposed by de Miranda et al. [46, 47] solved the

problem allowing to estabilish a clear relationship between the results of the

GBT and those of the classical beam theories. This improved kinematics is

extensively discussed in this chapter and used in the following of the thesis.

This chapter is organized as follows. After a brief overview of

23



24 Chapter 2. The shear deformable Generalized Beam Theory

the original GBT formulation proposed by Schardt [20, 21] and of

the revised version of Camotim and Silvestre [44, 45] given in Sec-

tion 2.1, the kinematics of the new GBT formulation proposed in

[47] is presented in Section 2.2 and the complete formulation of the

GBT for the �exural deformation modes in Section 2.3. Finally, the

new GBT formulation for nonlinear warping modes is presented in

Section 2.4.

2.1 Shear deformable Generalized Beam The-

ory: from the original formulation to the last

developments

The GBT is a beam theory with enriched kinematics where the

hypothesis of rigid cross-section is removed, allowing cross-section

in-plane distortions. This theory was proposed by Shardt in 1980s

[20, 21].

The GBT can be viewed as a one-dimensional theory deduced

from a parent three-dimensional theory basing on some kinemat-

ical ansatzs. In particular, the displacement �eld of the beam is

assumed as a linear combination of prede�ned cross-section defor-

mation modes multiplied by generalized displacements that depend

on the beam axial coordinate. In the original GBT [20, 21], the fol-

lowing displacement �eld is assumed for the generic i-th wall of the
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Figure 2.1: Thin-walled cross-section.

cross-section (see Fig. 2.1):

dn(n, s, z, t) = ψ(s)v(z, t), (2.1)

ds(n, s, z, t) = [µ(s)− n∂sψ(s)] v(z, t), (2.2)

dz(n, s, z, t) = [ϕ(s)− nψ(s)] ∂zv(z, t), (2.3)

where dn is the displacement orthogonal to the wall midline, ds is

the displacement tangent to the wall midline, dz is the displacement

in the beam axial direction, ψ, µ and ϕ are row matrices collecting

the assumed cross-section deformation modes (depending only on

s and n), and v is a vector that collect the unknown kinematic

parameters (depending only on abscissa z and time t). Moreover,

∂s and ∂z denote the derivative with respect to the s coordinate and

to the z coordinate, respectively. In the following, the term natural

nodes is used to refer to the vertices of the cross-section midline,

while internal nodes to intermediate points along the wall midline,

as shown in Fig. 2.1. The original GBT formulation engender null

shear strain γzs according with the theory of Vlasov.

Silvestre and Camotim [44, 45] were the �rst to account for shear
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26 Chapter 2. The shear deformable Generalized Beam Theory

deformation by removing the Vlasov constraint. To this purpose,

they added further modes ϕs, called shear modes, that involve non-

null warping together with null in-plane displacement. This leads

to the following kinematics [48, 93�95]:

dn(n, s, z, t) = ψ(s)v(z, t), (2.4)

ds(n, s, z, t) = [µ(s)− n∂sψ(s)] v(z, t), (2.5)

dz(n, s, z, t) = [ϕ(s)− nψ(s)] ∂zv(z, t) +ϕs(s)δ(z, t), (2.6)

where a term is added in the expression of the warping displace-

ment dz. It is worth to note that modes ϕs introduce non-linear

variation of the warping displacement along the wall midline, but

assume constant warping displacement along the wall thickness.

These modes are formally analogous to those proposed by Capurso

[6, 7]. Adding ϕs shear modes results in relaxing the Vlasov con-

straint of null shear strain γzs along the midline of the cross-section.

Anyway, due to the constant warping displacement along the wall

thickness, they lead to null shear strain γzn between the direction of

the beam axis and that orthogonal to the wall midline. This engen-

der a non-perfect coherence between the bending and shear strain

components of the beam. Fig. 2.2 shows that, due to the null

γzn, the shear component in the classical shear deformable GBT

exhibits a mismatch through the wall thickness with the bending

strain component of the beam. This implies to use an ad hoc modal

decomposition procedure for shear modes, di�erent from the �exu-

ral one and classical shear deformable beam theories are not recov-
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Figure 2.2: Sketch of the main di�erence between classical shear deformable

GBT and the present formulation: (a) undeformed elementary beam, (b) bend-

ing strain component, (c) corresponding shear strain component in the classi-

cal GBT, (d) corresponding shear strain component in the Timoshenko beam

theory and in the present theory.

ered exactly. Due to the lack of cross-section rotations as degrees of

freedom it is not possible to readily apply corotational approaches

[87, 88, 96], limiting the developing of geometrically nonlinear for-

mulations.

Recently, de Miranda et al. [46] proposed a revised Generalized

Beam Theory kinematics correctly accounting for shear deforma-

tion. In particular it introduces the variability of the warping dis-

placement along the wall thickness besides that along the wall mid-

line engendering non-null shear strains γzn and γzs. This formula-

tion guarantees that the bending and the shear strain components

of the beam match through the wall thickness too. The following

expressions are assumed for the displacement �eld of the i-th wall

D. Melchionda PhD Thesis



28 Chapter 2. The shear deformable Generalized Beam Theory

(Fig. 2.1):

dn(n, s, z, t) = ψ(s)v(z, t), (2.7)

ds(n, s, z, t) = [µ(s)− n∂sψ(s)] v(z, t), (2.8)

dz(n, s, z, t) = [ϕ(s)− nψ(s)] [∂zv(z, t) + δ(z, t)] +ϕh(s)δh(z, t).

(2.9)

Shear deformation is introduced by two types of shear modes: ba-

sic shear modes and additional shear modes. Basic shear modes,

related to δ kinematic parameters, are in the same number of �exu-

ral ones. The classical shear strain components of the Timoshenko

beam theory are recovered: the cross-section out-of-plane rotation

does not coincide anymore with the derivative of the transverse

displacement. The additional shear modes, related to δh kinematic

parameters, are not essential to run a GBT analysis but can be

introduced to further enrich the sole warping description along the

wall direction. These additional shear modes coincide with those

originally introduced by Silvestre and Camotim. It is worth to

note that a reviewed form of the cross-section analysis procedure

is devised for this kinematics [46]. It is based on a unique modal

decomposition for �exural and shear modes. It is then possible to

clearly separate the single �exural and shear contributions and to

recover classical beam degrees of freedom and, as special cases, the

standard beam theories.

In order to allow to estabilish a clear relationship between the GBT

results and those of the classical beam thories, the GBT presented

by de Miranda et al. [46] is reformulated by introducing di�erent

D. Melchionda PhD Thesis



Chapter 2. The shear deformable Generalized Beam Theory 29

de�nitions of the kinematic parameters and of the generalized defor-

mations as proposed in [47]. This new formulation, more attractive

for current engineering applications, is presented in the next Section

and it will be used as basis for the following developments.

2.2 Shear deformable Generalized Beam The-

ory: kinematics

The following displacement �eld is assumed for the generic i-th wall

of the cross-section (Fig. 2.1):

dn(s, z, t) = ψ(s)v(z, t), (2.10)

ds(n, s, z, t) = ξ(s, n)v(z, t), (2.11)

dz(n, s, z, t) = ω(s, n)w(z, t), (2.12)

where ψ, ξ and ω are row matrices collecting the assumed cross-

section deformation modes (depending only on s and n), and v

and w are vectors that collect the unknown kinematic parameters

(depending only on z and t). In accordance with the hypothesis

that the generic wall behaves as a Kirchho� plate, cross-section

deformation modes ξ and ω are assumed to depend linearly on n

in the form:

ξ(n, s) = µ(s)− n∂sψ(s), ω(n, s) = ϕ(s)− nψ(s), (2.13)

where µ and ϕ are prede�ned shape functions. It can be easily veri-

�ed that, by a suitable rede�nition of the generalized displacements

w, the above kinematics coincides with that reported in (2.7)-(2.9)
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30 Chapter 2. The shear deformable Generalized Beam Theory

(in absence of additional shear modes ϕh) and proposed in [46].

Equations (2.10)-(2.12) can be recast in the following matrix form:

d(n, s, z, t) = U(s, n)u(z, t), (2.14)

where:

d =


dn

ds

dz

 , U =


ψ 0

ξ 0

0 ω

 , u =

 v

w

 . (2.15)

Strains can be computed from Eqs. (2.10)-(2.13) by means of the

three-dimensional compatibility equations yielding εnn = 0, γsn =

0 and:

ε(n, s, z, t) = E(s, n)e(z, t), (2.16)

where

ε =


εss

εzz

γzs

γzn

 , (2.17)

E =


∂sξ 0 0 0

0 ω 0 0

0 0 −2n∂sψ + ∂sϕ+ µ 1
2(µ− ∂sϕ)

0 0 0 ψ

 ,
(2.18)

and e is the vector collecting the independent z-�elds governing the

strain components, hereinafter denoted as generalized deformation

parameters:

eT =
[
αT χT βT γT

]
, (2.19)
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α = v, χ = ∂zw, β =
1

2
(∂zv + w), γ = ∂zv −w. (2.20)

As it can be noted, the strains components comprise terms not

depending on n and terms proportional to n. In the following, the

former will be called "membrane" part of the strain and denoted

by λ, and the latter will be called "bending" part and denoted by

χ. Finally, combining Eqs. (2.19) and (2.20) leads to the following

generalized displacement-deformation relationship:

e = Du, (2.21)

u =

 v

w

 , D = Im ⊗ L, L =


1 0

0 ∂z

1
2∂z

1
2

∂z −1

 ,

where Im is the m-order unit matrix being m the number of the

deformation modes, and symbol ⊗ denotes the Kronecker prod-

uct. According to Eq. (2.21), the di�erential operator D can be

interpreted as the compatibility operator of the beam model. In-

deed, it is worth to note that parameters e are not free from cross-

section rigid-body motions. Even if similar, the above kinematics

di�ers from that presented in [46] for some speci�c aspects that it

is worth to remark here. The most evident di�erence lies in the

di�erent choice of the kinematic parameters. In particular, in the

present formulation they do not include any derivatives, while in

[46], as well as in the classical GBT, ∂zv is included between the

kinematic parameters. This leads to a beam compatibility opera-
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tor, Eq. (2.21), involving only �rst-order derivatives in the axial

direction and not also second-order ones like in [46] and in the

classical GBT. This is somehow similar to what happens passing

from the Euler-Bernoulli to the Timoshenko beam theory and, as

it is well known, can have important consequences if �nite element

modelling, or other numerical modelling, has to be developed. An-

other issue regards the de�nition of the generalized deformation

parameters given in Eq. (2.20), di�erent form that used in [46].

This choice allows for a clear identi�cation of the relationship be-

tween the present generalized deformations parameters and those

of classical and non-classical beam theories [47]. However, notwith-

standing the remarked di�erences, the selection of the cross-section

deformation modes and the modal decomposition procedure of the

present formulation follow the same path outlined in [46].

2.2.1 Deformation modes

In the following, the term natural nodes is used to refer to the ver-

tices of the cross-section midline, while internal nodes to intermedi-

ate points along the wall midline, as shown in Fig. 2.1. Deformation

modes are subdivided in �exural-shear modes and nonlinear warp-

ing modes. Flexural-shear modes are governed by parameters v and

w and are subdivided into fundamental �exural-shear modes (FFS),

based on natural nodes, and local �exural-shear modes (LFS), based

on internal nodes. Both the fundamental and local �exural-shear

modes are the same as those of the original GBT and are summa-
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rized in Fig. 2.3. As it can be easily veri�ed, fundamental �exural-
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Figure 2.3: Deformation modes. (a) Out-of-plane displacement for fundamen-

tal �exural-shear: piecewise linear ϕ; (b) in-plane displacement for fundamen-

tal �exural-shear: µ = −∂sϕ and cubic ψ; (c) in-plane displacement for local

�exural-shear: cubic ψ (with null µ and ϕ); (d) out-of-plane displacement for

nonlinear warping: piecewise linear ϕ (with null µ and ψ).

shear modes engender null λss and χzn and piecewise constant (i.e.

constant on each wall) λzs along the section midline. In particular,

matrix E for these modes takes the following form:

E =


−n∂ssψ 0 0 0

0 ω 0 0

0 0 − n2∂sψ − ∂sϕ

0 0 0 ψ

 . (2.22)
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Nonlinear warping modes (NLW) can be introduced to enrich the

sole warping description along the wall direction. They coincide

with those originally introduced by Silvestre and Camotim [44][45]

and are typical of beam theories with enriched warping description

such as that of Capurso [6][7]. These modes are ruled by parameters

w and summarized in Fig. 2.3. These modes engender εss = γzn =

0 and matrix E takes the following form:

E =


0 0 0 0

0 ϕ 0 0

0 0 ∂sϕ − 1
2∂sϕ

0 0 0 0

 . (2.23)

2.3 Flexural formulation

In this section, the formulation of the GBT for �exural-shear modes

is presented. In the following, all the expressions are given for

fundamental �exural-shear modes. The corresponding expressions

for local �exural-shear modes can be obtained by simply putting

µ = ϕ = 0.

2.3.1 Generalized stresses and forces

The generalized stresses s are de�ned as the work-conjugates of the

generalized deformations e according to the following work equiva-

lence condition: ∫
A

σTε dA = sTe, (2.24)
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where σ =
[
σss σzz τzs τzn

]T

is the vector collecting the three-

dimensional stress components. Using Eq. (2.16), the above condi-

tion yields:

s =

∫
A

ETσ dA, (2.25)

being A the area of the cross-section of the beam. As observed in

the previous section, parameters e are not free from cross-section

rigid-body motions. Of course, the s parameters corresponding to

such modes are meaningless. Assuming sT =
[

ST MT TT VT

]
and substituting Eq. (2.22) in Eq. (2.25), the following expressions

for the components of s are obtained:

S = −
∫
A

n∂ssψ
TσssdA, (2.26)

M =

∫
A

ωTσzzdA, (2.27)

T = −
∫
A

2n∂sψ
TτzsdA, (2.28)

V = −
∫
A

(∂sϕ
Tτzs +ψTτzn)dA = −

∫
A

5ω |n=0 τzdA, (2.29)

with τT
z =

[
τzs τzn

]
. In the same fashion of the generalized

stresses, the generalized forces are de�ned as the work-conjugates

of the kinematic parameters u. Denoting by bT =
[
bn, bs, bz

]
the vector collecting the bulk loads applied on the i-th wall, the

generalized bulk forces f (b) are de�ned as:

f (b) =

∫
A

UTb dA. (2.30)

Using Eq. (2.15), the above equation can be rewritten as:

f (b)
v = −

∫
l

5ω |n=0 ·qin ds−
∫
l

∂sψ
Tms ds, (2.31)
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f (b)
w =

∫
l

ϕTqz ds+

∫
l

ψTmz ds, (2.32)

being f (b)T =
[

f
(b)T
v f

(b)T
w

]
, l the cross-section midline length, and

qT
in =

[
qs qn

]
, qz, ms and mz the thickness resultants (see Fig.

2.4):

qz =

∫
h

bzdn, qs =

∫
h

bsdn, qn =

∫
h

bndn, (2.33)

mz = −
∫
h

nbzdn, ms =

∫
h

nbsdn, (2.34)

with h denoting the thickness of the wall. As it can be noted, f
(b)
v

denotes the generalized forces associated to bulk loads acting in the

plane of the cross-section, bs and bn, and f
(b)
w the generalized forces

associated to bz. The generalized surface forces f (p) are de�ned

x

q

n

qs

qz

ms

s

qn

mz

G

y
s

Figure 2.4: Wall thickness resultants of bulk loads.

following the same path outlined for f (b). In particular, it can be

easily veri�ed that they can be written as:

f (p)
v = −

∫
l

5ω |n=0 (p
(+)
in + p

(−)
in )ds−

∫
l

∂sψ
T

(
p

(+)
s − p(−)

s

2

)
hds,

f (p)
w =

∫
l

ϕT(p(+)
z + p(−)

z )ds+

∫
l

ψT

(
p

(+)
z − p(−)

z

2

)
hds, (2.35)
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being f (p)T =
[

f
(p)T
v f

(p)T
w

]
, and pT

in =
[
ps pn

]
and pz the

loads on the bottom and top faces of the walls, identi�ed with the

superscript (+) or (−) according to the sign of n on said surfaces.

Finally, the generalized forces fT =
[

fT
v fT

w

]
are obtained as sum

of the bulk and surface generalized forces:

fv = f (b)
v + f (p)

v , fw = f (b)
w + f (p)

w . (2.36)

2.3.2 Generalized inertia forces

Generalized inertia forces f (i)can be written as:

f (i) = −mü, (2.37)

where a superposed dot denotes the time derivative and m is the

generalized inertia matrix, de�ned according to the following kinetic

energy equivalence condition:

1

2

∫
A

ρḋTḋ dA =
1

2

∫
A

u̇Tmu̇ dA. (2.38)

Substituting Eq. (2.15) in Eq. (2.38) and integrating over the wall

thickness yield:

m =

∫
A

ρUTU dA =

 mv 0

0 mw

 , (2.39)

where

mv =

∫
A

ρ
(
ψTψ+ ξTξ

)
dA

=

∫
l

ρ

(
h∇ω|2n=0 +

h3

12
∂sψ

T∂sψ

)
ds, (2.40)

mw =

∫
A

ρωTω dA =

∫
l

ρ

(
hϕTϕ+

h3

12
ψTψ

)
ds. (2.41)
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2.3.3 Dynamic equilibrium equations

Invoking the D'Alembert form of the Principle of Virtual Work, it

is possible to write the dynamic equilibrium equations in the form:

D∗s = f −mü, (2.42)

where D∗ is the equilibrium operator, D∗ = Im ⊗ L∗, being L∗

the di�erential operator adjoint to L. Expressing s, f and m in

terms of their components, the equilibrium equations (2.42) take

the form:

S− 1

2
∂zT− ∂zV − fv + mvv̈ = 0, (2.43)

−∂zM +
1

2
T−V − fw + mwẅ = 0. (2.44)

Moreover, the same variational framework yields also the following

boundary conditions:

M = ±W̄ or w = w̄,

T
2 + V = ±Q̄ or v = v̄,

(2.45)

where a superposed bar denotes a quantity assigned on the extreme

bases. In particular, in the above equations the following de�nitions

have been introduced:

W̄ =

∫
A

ωtzdA, Q̄ =

∫
A

(ψtn − ∂sϕts)dA−
∫
A

n∂sψtsdA,

(2.46)

where ts, tn and tz are the surface forces applied on the extreme

bases of the beam, in direction s, n and z, respectively. It is worth

to note that the second boundary condition involve the quantity

T
2 +V that, as discussed in [47], leads to the total twisting moment.
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2.3.4 Constitutive law

The material is assumed linearly elastic and isotropic. Since the

beam model is based on a kinematic ansatz that leads to internal

constraints it tends to be oversti�. In the framework of the classic

GBT, a typical way to address this problem is to properly adjust the

constitutive equations. In particular, the following form is usually

assumed:

σ = Cλλ+ Cχχ (2.47)

where

Cλ =


E 0 0 0

0 E 0 0

0 0 G 0

0 0 0 G

 , Cχ =


Ē νĒ 0 0

νĒ Ē 0 0

0 0 G 0

0 0 0 G

 ,
(2.48)

and λ and χ are the vectors collecting, respectively, the membrane

and the bending parts of the strain components. Also, E is the

Young's modulus, G the shear modulus and Ē = E/(1− ν2) being

ν the Poisson coe�cient. It should be noted that the same result

could be obtained by assuming the same biaxial constitutive law

for both the membrane and bending part and, then, assuming null

the Poisson coe�cient for the membrane part. Indeed, alternative

proposals can be found in the literature. For example, in [97] a

uniaxial constitutive law is assumed for both the membrane and

bending parts, so neglecting any coupling of axial and transverse

strain, and the plate type elasticity modulus Ē is used in the trans-
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verse direction.

The cross-section sti�ness matrix C (that is the constitutive

law of the beam model) can be derived by the following work-

equivalence condition∫
A

[λ+ χ]T
[
Cλλ+ nCχχ

]
dA = eTCe, (2.49)

and takes the form

C =


C

(f)
S C

(f)
SM 0 0

C
(f)
SM C

(f)
M 0 0

0 0 C
(f)
T 0

0 0 0 C
(f)
V

 , (2.50)

where:

C
(f)
S = E

∫
A

n2∂ssψ
T∂ssψdA, (2.51)

C
(f)
SM = νĒ

∫
A

n2∂ssψ
TψdA, (2.52)

C
(f)
M =

∫
A

(Ēn2ψTψ + EϕTϕ) dA = E

∫
A

ω̄Tω̄dA, (2.53)

C
(f)
T = 4G

∫
A

n2∂sψ
T∂sψdA = G

t3

3

∫
l

∂sψ
T∂sψds, (2.54)

C
(f)
V = G

∫
A

(5ωT |n=0 5ω |n=0)dA (2.55)

= G

∫
A

(∂sϕ
T∂sϕ+ψTψ)dA, (2.56)

and

ω̄ = ϕ− n
√
Ē

E
ψ. (2.57)

2.3.5 Modal transformation

In general, the various submatrices composing the cross-sti�ness

matrix C are full, so determining an high coupling among the gen-
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eralized deformation parameters and, hence, in the �nal governing

equations. In addition, the mechanical meaning of the generalized

deformation parameters is not at all obvious and, in particular, the

classical parameters of standard beam theories cannot be clearly

distinguished. However, a modal transformation is su�cient to gain

a partial uncoupling among the generalized parameters and, what

is most important, to shed light on their mechanical meaning. The

new basis is termed as modal base and the transformation as modal

decomposition. Hereinafter, whenever a generic matrix/vector "·"

is expressed in the modal space, the symbol "̂·" is used. In the

modal space, matrices Ĉ
(f)
S and Ĉ

(f)
M are diagonal and can be writ-

ten as:

{
Ĉ

(f)
S

}
ii

= ĒΛi,
{

Ĉ
(f)
M

}
ii

= EIi, (2.58)

where Λi =
∫
A n

2∂ssψi dA, Ii =
∫
A ω̄

2
i dA.

To �x the ideas, in Fig. 2.5 the displacements corresponding to the

six fundamental �exural modes of a C-shaped cross-section after the

modal decomposition are shown. It can be seen how the classical

generalized deformations of a Vlasov beam are recovered, such as

axial extension (mode 1), major and minor axis bending (mode

2 and 3), and twisting rotation about the shear centre (mode 4).

Mode 5 and 6 are typical GBT higher-order �exural deformations

involving section distortion. The interested reader can refer to [46]

for further details on the modal decomposition procedure.
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2.4 Nonlinear warping formulation

In this section, the GBT formulation for nonlinear warping defor-

mation modes is presented. Recalling the expression of matrix E

for nonlinear warping deformation modes, Eq. (2.23), and following

the same path outlined in Section 2.3 for the �exural formulation,

it can be easily veri�ed that, for the nonlinear warping modes, the

generalized stresses read as:

M =

∫
A

ϕTσzzdA, (2.59)

T =

∫
A

∂sϕ
TτzsdA, (2.60)

V =− 1

2

∫
A

∂sϕ
TτzsdA, (2.61)

and the cross-section sti�ness matrix as:

C =


0 0 0 0

0 C
(w)
M 0 0

0 0 C
(w)
T C

(w)
TV

0 0 C
(w)
TV C

(w)
V

 , (2.62)

being

C
(w)
M =E

∫
A

ϕTϕdA, (2.63)

C
(w)
T =G

∫
A

∂sϕ
T∂sϕ, (2.64)

C
(w)
V =

G

4

∫
A

∂sϕ
T∂sϕdA, (2.65)

C
(w)
TV =− G

2

∫
A

∂sϕ
T∂sϕdA. (2.66)

Of course, if both the �exural-shear and the nonlinear warping

deformation modes are considered, then the cross-section sti�ness
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matrix should be obtained by superposing those of Eqs. (2.50) and

(2.62) and adding the coupling terms between the two classes of

modes (that can be evaluated using the same arguments employed

to obtain the other terms). This case is not reported here for the

sake of brevity. The modal decomposition procedure follows the

same lines of that given in [46].
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Figure 2.5: C cross-section: in- and out-of-plane displacements corresponding

to the six fundamental �exural modes after modal decomposition.
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Chapter 3

Constitutive relations and

consistency

Abstract

This chapter focuses on the constitutive assumptions, both for the isotropic

and orthotropic cases, and consistency in the framework of the Generalized

Beam Theory. In particular, following the ideas presented in [51], a novel ap-

proach based on energetic arguments is discussed. Moreover, the concept of

consistency of a GBT-based model is established and a consistency analysis

is shown. This yields a formal rational basis to investigate the e�ects of the

various families of cross-section deformation modes in terms of predictive capa-

bilities of the GBT model. Some numerical examples illustrate the arguments

exposed in this chapter.

This chapter is organized as follows. In Section 3.1, in view of

further developments, the GBT strain �eld is rewritten by split-

ting it into the membrane and bending parts. The GBT kinematic

constraints are discussed in section 3.2, while Sections 3.3 and 3.4

45



46 Chapter 3. Constitutive relations and consistency

are devoted to the development of a novel approach able to au-

tomatically select appropriate constitutive relations in accordance

with the GBT kinematics and of the consistency analysis. Some

numerical examples (Section 3.5) close this chaper.

3.1 Strain �eld

Start from the strain �eld presented in Eq. (2.16) (considering for

simplicity the static case) and rewrite the equation splitting it into

a membrane part, not depending on n and denoted by λ, and a

bending part, depending on n and denoted by χ. This leads to

ε = λ+ nχ, (3.1)

where

λ =


λzz

λss

λzs

λzn

 = Eλe, χ =


χzz

χss

χzs

χzn

 = Eχe, (3.2)

being

Eλ =


0 φ 0 0

∂sµ 0 0 0

0 0 µ+ ∂sφ
1
2 (µ− ∂sφ)

0 0 0 ψ

 , Eχ =


0 −ψ 0 0

−∂ssψ 0 0 0

0 0 −2∂sφ 0

0 0 0 0

 .
(3.3)

Using Eq. (3.1), Eq. (2.24) (integrated over n) takes the form:

eTs =

∫
s

(
λTn + χTm

)
ds, (3.4)
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where n and m collect the plate-like stress resultants:

n =


nzz

nss

nzs

nzn

 =

∫
n


σzz

σss

τzs

τzn

dn, m =


mzz

mss

mzs

mzn

 =

∫
n

n


σzz

σss

τzs

τzn

 dn.

(3.5)

Assuming the constitutive relation for λ and χ given by Eq.

(2.47), the relationship de�ning the cross-section sti�ness matrix

takes the form:

eTCe =

∫
s

[
λTCλλ+ χTCχχ

]
ds, (3.6)

being

Cλ =

∫
n

Cλ dn, Cχ =

∫
n

n2Cχ dn. (3.7)

Comparing Eqs. (3.4), (2.49) and (3.6), it is then possible to rec-

ognize the classical plate constitutive relations as

n = Cλλ, m = Cχχ. (3.8)

3.2 Kinematic constraints

The particular mode functions described above induce a series of

constraints on the beam kinematics. In particular, it can be easily

veri�ed that FFS and LFS modes engender null λss and χzn and

piecewise constant (i.e. constant on each wall) λzs along the sec-

tion midline. Moreover, NLW modes engender εss = γzn = 0. In
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addition to this, χzn, εnn and γsn are always null stemming from

the displacement �eld of the GBT formulation. From these consid-

erations, we can de�ne three distinct types of kinematic constraint

present in the GBT:

Type 1 - The �rst type of constraint is that in which a certain

strain component is completely null (i.e. both the membrane

and the bending part are null). This is the case for εnn and

γsn.

Type 2 - The second kind of constraint is characterized by

only one part of a strain component being null, either the

membrane part or the bending one. This is the case for λss

and χzn.

Type 3 - In this case, no part of the strain component is null,

but its representation over the generic wall is poor. This is

the case for λzs which can only be constant over s when using

FFS modes only.

Considering the aforementioned constraints, the most general

form of the plate-like deformations λ and χ is

λ =


λzz

0

λzs

λzn

 , χ =


χzz

χss

χzs

0

 . (3.9)

It should be noticed that, in order to enrich the beam kinematic

and allow non-null λss, modes accounting for wall extension could
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be introduced [44]. Nevertheless, such family of modes is only sel-

dom adopted in the GBT literature and technical use, so that it is

not considered in the following developments for simplicity.

3.3 A new approach for constitutive relations

The internal constraints described in the previous section render

the GBT model over-sti� as usual in kinematically-based models.

The usual solution to avoid such e�ect, at least for constraints of

Type 1 and 2, is to adjust constitutive relations.

In this section, the approaches currently used to de�ne constitu-

tive relations for GBT-based models for isotropic and orthotropic

cases are recalled and a new approach presented.

3.3.1 Classical approaches

As anticipated in the previous chapter, in the isotropic case, it is

common practice in the GBT literature using two di�erent consti-

tutive relations for membrane and bending strains. In particular,

a mono-axial constitutive relation is used for the membrane part

while a plane-stress constitutive relation is used for the bending

part, see Eq. (2.48).

In the orthotropic case, such an approach is usually not followed.

In fact, in such case, constitutive relations are obtained by assum-

ing for both, membrane and bending parts, the same plane-stress

constitutive relationship [48]. In particular, �rstly the plane-stress
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constitutive relation is transformed from the material reference sys-

tem to the wall one (see Fig. 3.1), leading to constitutive matrices

whose topology is

Cλ = Cχ =


C11 C12 C13 0

C12 C22 C23 0

C13 C23 C33 0

0 0 0 C44

 , (3.10)

where, due to the presence of the non-null terms C12, C13 and C23

stress components σzz, σss and τzs are fully coupled. Then, two

approaches can be found in the GBT literature in order to cor-

rect such constitutive relation aiming at accounting for restraints

of Type 1 and Type 2. In particular, Silva et al. in [48] introduced

the following distinction:

Model A - It consists in neglecting the product between the

Poisson constants in the derivation of the plane stress consti-

tutive matrix. Although used in the GBT literature, it has

been found to lead to non-satisfactory results in the case of

non-aligned orthotropic materials (overestimation of buckling

loads up to 300% [48]).

Model B - It has been also applied to Vlasov-like beam mod-

els (see [98�100]) and assumes that the membrane transversal

extensions λss are free, which corresponds to adopting plate

constitutive relations associated [35] with a null normal stress

resultant in the transverse direction.
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Independently of the material behaviour, that is in both the

isotropic and orthotropic cases, once constitutive relations for the

stress components σ have been introduced, the cross-section sti�-

ness matrix C is derived as described in Section 3.1.

Figure 3.1: Orthotropic case: material (x1, x2, x3) and wall (z, s, n) reference

systems.

3.3.2 An alternative uni�ed approach

As already stated, the adoption of two di�erent constitutive rela-

tions for the membrane and the bending parts is not desirable. In

the following, an approach, able to automatically identify constitu-

tive relations consistent with the adopted kinematic hypotheses, is

presented.

Using the same format presented in Eq. (3.1), it is possible to

assume a stress �eld representation which mirrors the strain com-

ponents induced by the kinematic constraints. It is then possible

to write

σ =
n

t
+ n

m

j
, (3.11)

where t is the wall thickness, j = t3/12 is its inertia with respect
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to the wall midline, and zero and non-zero terms in n and m are

selected according to Eq. (3.9), that is

n =


nzz

0

nzs

nzn

 , m =


mzz

mss

mzs

0

 . (3.12)

In this way, a perfect duality between stress and strain �eld

is established. It is then possible to calculate the complementary

energy per unit area of the wall mid-surface associated to such stress

�eld:

Ψ(z, s) =
1

2

∫
n

σT(z, s, n)Hσ(z, s, n) dn, (3.13)

where H is the compliance matrix of the material (isotropic or or-

thotropic). By introducing Eq. (3.11) into (3.13) it is possible to

write the complementary energy in terms of the plate-like stresses

n and m. The complementary energy can then be di�erentiated

with respect to n and m to obtain their corresponding membrane

strain and curvature terms

λjk =
dΨ

dnjk
, χjk =

dΨ

dmjk
, (3.14)

and, thus, leading to the identi�cation of the following constitutive

relations

λ = Hλn, χ = Hχm. (3.15)

Then, these relations are inverted in order to calculate Cλ and

Cχ, adopted for the evaluation of the cross-section sti�ness matrix
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as reported in Eq. (2.49). It can be easily veri�ed that such an

approach leads to the assumption given by Eq. (2.48) for isotropic

materials while, for orthotropic materials, leads to the Model B

presented in Section 3.3.1.

3.4 Consistency

The over-sti�ening of the GBT beam model due to the internal

constraints of Type 1 and Type 2 can be cured by constructing the

constitutive relations following the approach described in the pre-

vious section. Also constraints of Type 3 produce an over-sti�ening

of the model, so leading to a decrease in the model accuracy, but

its treatment is di�erent from the one used for Type 1 and 2.

For the case of isotropic materials this problem is traditionally

dealt with by considering correction factors which take into account

the e�ect of the constraints by reducing the system sti�ness. These

are successfully applied to classical beam models but their extension

to non-classical ones is not always straightforward.

Furthermore, when orthotropic materials are considered, resort-

ing to the correction factors can be very complex and not always

e�ective since the constitutive relations are strongly coupled and it

is necessary to ensure the coherence, or rather consistency, between

the representations of the stress and strain components which, through

energetic equivalence, contribute to the de�nition of the cross-section

sti�ness matrix.

On this regard, consider Eq. (3.6), which de�nes the cross-
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section sti�ness matrix C. Notice that the integral on the r.h.s.

expresses the work done by the stresses Cλλ and Cχχ, coming

from the assumed deformation modes via the constitutive relation-

ships, on the corresponding strain components, λ and χ, related

to the assumed deformation modes. Then, only those stress terms

which actually do work participate in determining the cross-section

sti�ness matrix and, hence, the response of the GBT model. On the

other hand, those stress terms which do not work, if any, are not

sensed by the resulting cross-section sti�ness matrix. On this basis,

those stress terms which actually do work are de�ned as consistent,

and the condition which ensures that the whole stress actually does

work is the consistency condition. These energy arguments can

be formulated following a way similar to that proposed in [55�58].

The contributions to the work due to each stress and strain com-

ponent are considered separately and the consistency condition is

established as: each stress component should belong to the space

that the assumed deformation mode involves for the corresponding

strain component.

Of course, the lack of consistency diminishes the accuracy of the

GBT model predictions, since the solution re�ects only the consis-

tent part of the stress �eld. Moreover, it can be easily argued that

the more the representation bases of the stress/strain components

are poor, the more evident are the e�ects of the lack of consistency.

Let's now examine the representations of the various strain com-

ponents engendered by the di�erent families of the deformation
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modes and of the corresponding stress components obtained via

the constitutive relations. For the sake of generality, reference is

made to coupled constitutive matrices like that of the orthotropic

case (see Eq. (3.10)).

Table 3.1 collects the degree of the s variable in the polynomial

representation base of the various strain and stress components if

only FFS modes are used. On this regard, it should be observed

that, as already stated, only if the number of natural nodes, nn, is

higher than 4, then the FFS modes account for section distortion

and, hence, engender non-null χss on all he walls.

Comparing the �rst two columns in Tab. 3.1 clearly shows that

the consistency condition is violated three times, as highlighted in

the third column of the same table, so leading to a lack of con-

sistency. In particular, the lack of consistency originates from the

mismatch between the representation bases of the stress compo-

nents of nzs, mss and mzs and those of the corresponding strain

components, λzs, χss and χzs, respectively.

The above inconsistencies are expected to yields low accuracy

in all those problems where the inconsistent stress-strain compo-

nents play an important role. In particular, the inconsistency re-

lated to the membrane term λzs is expected to have highest im-

pact in problems dominated by the membrane part and, thus, in

shear-dominated problems. In the following, this inconsistency is

denoted as membrane inconsistency. On the other hand, the in-

consistency related to χss a�ects the bending part and is denoted
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FFS

Strain Stress Inc.

λzz linear nzz linear

λss null nss null

λzs constant nzs linear ×

λzn cubic nzn cubic

χzz cubic mzz cubic

χss

{
linear if nn > 4

null otherwise
mss cubic ×

χzs quadratic mzs cubic ×

χzn null mzn null

Table 3.1: FFS modes - Degree of the s variable in the polynomial represen-

tation of strain and stress components.

LFS NLW

λzz null λzz pw linear

λss null λss null

λzs null λzs pw constant

λzn null λzn null

χzz pw cubic χzz null

χss pw linear χss null

χzs pw quadratic χzs null

χzn null χzn null

Table 3.2: LFS and NLW modes - Degree of the s variable in the polynomial

representation of strain components. The symbol 'pw' indicates piecewise poly-

nomial representations.

in the following as bending inconsistency. Such last inconsistency

is expected to mainly impact problems characterized by signi�cant

section distortion. In particular, this inconsistency is expected to

cause the worst e�ects when nn = 4 since, in that case, there is

the maximum mismatch between the representation bases of the

stress component mss (cubic) and that of the strain component
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χss (null). The third inconsistency is related to the mismatch be-

tween χzs and mzs. Hence, it is expected to mainly a�ect problems

which involve signi�cant twisting of the beam walls. Nevertheless,

it should be noticed that, in this case, the inconsistency involves

stresses and strains whose polynomial representation base involves

relatively high order terms (cubic stress and quadratic strain) and,

therefore, such inconsistency is not expected to yield signi�cant

detriment of the model accuracy.

The modular nature of the GBT o�ers per sé the possibility to

cure such inconsistencies by resorting to the appropriate families of

deformation modes. On this regard, Tab. 3.2 reports the polyno-

mial representation degree for the strain components for both LFS

and NLW modes. By comparing Tabs. 3.1 and 3.2, it clearly ap-

pears that the adoption of LFS modes alleviates the bending incon-

sistency of FFS while the adoption of NLW alleviates the membrane

inconsistency of FFS. Indeed, it is observed that the inconsistency

is still present within the LFS and NLW mode families since, via

constitutive relations, their introduction further enrich the stress

�eld description too. Examining LFS, for example, the adoption of

LFS engenders piecewise cubicmss andmzs(see Tab. 3.2) while χss

is only piecewise linear and χzs piecewise quadratic. Nevertheless,

the energy associated to such inconsistent part of the stress �eld

is expected to be small and can be reduced by the re�nement of

internal nodes.

In the following, the exposed arguments are illustrated through
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some numerical examples.

3.5 Numerical examples

In order to highlight the the role played by the inconsistencies de-

scribed in Section 3.4 and shed some light on the role played by the

di�erent cross-section deformation modes, in this section, numerical

results obtained with the present GBT formulation are presented

and compared to those of �nite elements shell models solved with

the �nite element solver Code_Aster [101].

GBT Numerical results are obtained by a �nite element code,

named CAPS, developed at the Laboratory of Computational Me-

chanics, DICAM, University of Bologna (www.unibo.it/LAMC ).

Over the generic �nite element, v-parameters are approximated

by cubic polynomials, while w-parameters are approximated by

quadratic polynomials.

Figure 3.2: C-section cantilever beam.

In the numerical examples, a cantilever beam of length L =

600mm characterized by a C cross-section with lips is considered.
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The details of the cross-sections geometry are reported in Fig. 3.2.

The considered linear elastic orthotropic material is characterized

by the mechanical properties reported in Tab. 3.3. Various values

of the angle θ between the beam and the material reference systems

are considered.

E1 E2 E3 ν12 ν23 ν13 G12 G23 G13

1.7E5 3.3E4 5.2E3 0.036 0.171 0.25 9.4E3 3.3E3 8.3E3

Table 3.3: Mechanical properties of the adopted orthotropic material. Young

and shear moduli are expressed in MPa.

The numerical examples are run with four di�erent settings:

S1 - Only FFS modes are considered

S2 - FFS modes combined with LFS modes

S3 - FFS modes combined with NLW modes

S4 - All modes

Moreover, two sets of numerical simulations have been performed

in order to check the solution sensitivity to the number of internal

nodes for both LFS modes and NLW modes. Internal nodes have

been equally spaced and distributed on the beam cross-section with

two re�nement levels: a coarse one named C and a �ne one named

F . In particular, for each wall of the cross section, they correspond

to 0-1-3-1-0 and 3-7-23-7-3 internal nodes, respectively.

Results are presented in terms of total deformation energy, de-

noted as E , and y displacement at the free end, denoted as dy, in
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correspondence to the natural node 2 as reported in Fig. 3.2. For

the sake of clarity the percentage di�erence between the shell model

and the GBT results is also reported.

In order to highlight the e�ects of the lack of consistency dis-

cussed in Sec. 3.4, two loading conditions are considered as reported

in Fig. 3.3.

Figure 3.3: Loading conditions: (a) shearing load, (b) distortional load.

3.5.1 Example 1: Shearing load

The cantilever beam is subjected to a shearing load given by a

concentrated force at the free edge equal to p = 100 N in the

middle point of the vertical wall (see Fig. 3.3 (a)). In this case,

the beam behaviour is expected to be dominated by the membrane

contributions so that the example is used to highlight the e�ect of

the membrane type inconsistency reported in Section 3.4.

As it can be easily deduced by analysing Tab. 3.4, a strong

underestimation of the deformation energy and displacements is

observed when the material principal axes are rotated of about 30◦
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Deformation Energy [N ·mm]

θ Code_Aster S1 S2 S3 S4

E E % E % E % E %

0◦ C 2.9657 2.7186 8.69 2.7599 7.19 2.7550 7.37 2.7962 5.88

0◦ F 2.9657 - - 2.7981 5.82 2.7709 6.79 2.8503 3.97

30◦ C 7.2052 4.9386 37.33 5.0461 35.25 6.5572 9.42 6.7464 6.58

30◦ F 7.2052 - - 5.0846 24.65 6.7943 5.87 7.0644 1.97

60◦ C 11.1878 11.1027 0.76 11.1260 0.55 11.1669 0.19 11.1904 0.02

60◦ F 11.1878 - - 11.1741 0.18 11.1778 0.09 11.2500 0.55

90◦ C 10.7517 10.6207 1.23 10.6365 1.08 10.6611 0.91 10.6699 0.76

90◦ F 10.7517 - - 10.6611 0.90 10.6682 0.78 10.7086 0.40

Vertical displacement at nn 2 [mm]

θ Code_Aster S1 S2 S3 S4

dy dy % dy % dy % dy %

0◦ C -0.1022 -0.0977 4.47 -0.0988 3.45 -0.0990 3.15 -0.1001 2.14

0◦ F -0.1022 - - -0.0999 2.34 -0.0997 2.53 -0.1018 0.45

30◦ C -0.2205 -0.1517 37.02 -0.1531 36.08 -0.2057 6.97 -0.2092 5.30

30◦ F -0.2205 - - -0.1541 35.46 -0.2145 2.76 -0.2203 0.09

60◦ C -0.3661 -0.3658 0.09 -0.3665 0.09 -0.3680 0.52 -0.3687 0.71

60◦ F -0.3661 - - -0.3689 0.75 -0.3684 0.63 -0.3716 1.48

90◦ C -0.4125 -0.4099 0.63 -0.4106 0.47 -0.4110 0.36 -0.4117 0.20

90◦ F -0.4125 - - -0.4116 0.22 -0.4115 0.24 -0.4132 0.18

Table 3.4: Numerical results for Example 1.

with respect to the beam axes and only FFS modes (setting S1)

are adopted (di�erences of about 30% are observed). Adding LFS

modes (setting S2) does not yield substantial improvements. More-

over, no convergence toward the reference solution is observed by

increasing the number of internal nodes (i.e. passing from case 30◦C

to 30◦F ). On the contrary, when NLW modes are introduced, al-

ready in the coarse con�guration (C) a substantial improvement of

the solution accuracy is observed. This con�rms that the unreliable
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response of the S1 setting is due to the membrane inconsistency de-

scribed in Section 3.4, alleviated by the introduction of the NLW

modes. Moreover, by increasing the number of internal nodes, ac-

curacy is further increased. Finally, when the two mode families

and the �ne grid of internal nodes are considered simultaneously

(cases F with S4 settings), the solution is extremely close to the

reference obtained with the shell model.

The deformed shapes obtained with the GBT by using settings

S4 with the C re�nement are reported in Fig. 3.4 for various ma-

terial orientations.

a) b) 

d) c) 

Figure 3.4: Example 1 - Deformed con�gurations obtained with the GBT by

using settings S4 with re�nement C for various material orientations: (a) 0◦,

(b) 30◦, (c) 60◦, (b) 90◦.

D. Melchionda PhD Thesis



Chapter 3. Constitutive relations and consistency 63

3.5.2 Example 2: Distortional load

This example aims at highlighting the e�ects of the bending in-

consistency, which is typically triggered by the section distortion.

Hence, in this case, the loading is composed of two distortional

forces applied at the extreme natural nodes (see Fig. 3.3 (b)). Ta-

ble 3.5 collects the values of the deformation energy and of the

displacement for the various cases analyzed. As it can be noted,

also in this example, using only FFS modes (setting S1) leads to

considerable underestimation of the deformation energy and, conse-

quently, of the displacement. On the other hand, contrarily to what

has been observed in the previous example, now the introduction of

NLW modes does not lead to a major improvement of the solution

while the adoption of LFS modes leads to accurate results. This

con�rms that the unreliable response of the S1 settings is due to

the bending inconsistency described in Section 3.4, alleviated by

the introduction of the LFS modes. Finally, also in this case, the

deformed shapes obtained with the GBT by using settings S4 with

the C re�nement are reported for various material orientations (see

Fig. 3.5).
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Deformation energy [N ·mm]

θ Code_Aster S1 S2 S3 S4

E E % E % E % E %

0◦ C 69.1815 67.7087 2.15 68.7139 0.68 67.9256 1.83 68.9735 0.30

0◦ F 69.1815 - - 68.9597 0.32 68.0468 1.65 69.3676 0.27

30◦ C 48.9641 45.0218 8.39 47.7447 2.52 45.1214 8.17 47.8962 2.20

30◦ F 48.9641 - - 48.6315 0.67 45.4765 7.39 49.3561 0.80

60◦ C 38.5751 36.4477 5.67 38.2079 0.96 36.4787 5.59 38.2407 0.87

60◦ F 38.5751 - - 39.2144 1.64 36.5031 5.52 39.2798 1.81

90◦ C 30.5252 29.9076 2.04 30.4121 0.37 30.0016 1.73 30.5257 0.00

90◦ F 30.5252 - - 30.5208 0.01 30.0543 1.55 30.7005 0.57

Vertical displacement at nn 2 [mm]

θ Code_Aster S1 S2 S3 S4

dy dy % dy % dy % dy %

0◦ C -0.6906 -0.6771 1.98 -0.6871 0.50 -0.6793 1.66 -0.6897 0.13

0◦ F -0.6906 - - -0.6896 0.15 -0.6805 1.48 -0.6937 0.44

30◦ C -0.3650 -0.3451 5.63 -0.3686 0.97 -0.3373 7.89 -0.3595 1.53

30◦ F -0.3650 - - -0.3763 3.02 -0.3376 7.81 -0.3680 0.79

60◦ C -0.1104 -0.0920 18.16 -0.1055 4.57 -0.0918 18.34 -0.1053 4.70

60◦ F -0.1104 - - -0.1070 3.15 -0.0920 18.21 -0.1070 3.16

90◦ C -0.3042 -0.2990 1.72 -0.3041 0.06 -0.3000 1.41 -0.3005 0.31

90◦ F -0.3042 - - -0.3051 0.29 -0.3005 1.23 -0.3069 0.88

Table 3.5: Numerical results for Example 2.
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a) b) 

d) c) 

Figure 3.5: Example 2 - Deformed con�gurations obtained with the GBT by

using settings S4 with re�nement C for various material orientations: (a) 0◦,

(b) 30◦, (c) 60◦, (b) 90◦.
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Chapter 4

Flexibility-based GBT �nite

element

Abstract

In this chapter, following the ideas presented in [63], a new 2-node �nite el-

ement for the Generalized Beam Theory based on the hybrid complementary

energy functional is presented. It involves nodal displacements and equilibrat-

ing stresses within the element as independent variables. Assumed stresses

are rationally derived basing on the stresses associated to analytical solutions

of some particular cases. Displacements within the element are a posteriori

recovered by shape functions based on the same solutions. Numerical results

show the high performance of the �nite element: generalized displacements

and stresses are accurately predicted with very rough meshes, often using only

one or two �nite elements.

This chapter is organized as follows. Section 4.1 summarizes the

fundamentals equations of the GBT. In Section 4.2, the analytical

solution functions are presented. Section 4.3 is devoted to the de-
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scription of the variational framework, the representation assumed

for generalized stresses, the �nite element equations and the a pos-

teriori recovery of the generalized displacements. Finally, numerical

tests are presented in Section 4.4.

In this chapter, all the quantities are to be intended as expressed

in the modal base and the �rst four modes are denoted as classic

modes and the other mh = m−4 modes (beingm the total number

of modes) as higher-order modes.

4.1 Summary of the beam governing equations

Denote by L the length of the beam and decompose the domain of

the z-variable into an internal part, Ω =]0, L[, and a boundary part,

identi�ed by ∂Ω = ∂ΩN ∪ ∂ΩD = {0, L}, being ∂ΩN and ∂ΩD the

Neumann and Dirichelet boundaries, respectively (∂ΩN∩∂ΩD = ∅).

The compatibility and the equilibrium di�erential equations are

given in Ω respectively by Eq. (2.21) and by Eq. (2.42) that are

here reported for reader's convenience (reference is made to the

static case):

e = Du, (4.1)

u =

 v

w

 , D = Im ⊗ L, L =


1 0

0 ∂z

1
2∂z

1
2

∂z −1

 ,
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or equivalently

α = v, χ = ∂zw, β =
1

2
(∂zv + w), γ = ∂zv −w, (4.2)

D∗s = q (4.3)

or equivelently

S− 1

2
∂zT− ∂zV = qv, (4.4)

−∂zM +
1

2
T−V = qw. (4.5)

Moreover, the cross-section sti�ness matrix accounts for the lin-

ear relationship between s and e in Ω, that is the constitutive law

of the beam model:

s = Ce. (4.6)

The above �eld equations are completed by boundary conditions

that can be of Dirichelet or of Neumann type and read as [47]:

u = u on ∂ΩD, (4.7)

NTs = t on ∂ΩN , (4.8)

where

N = Im ⊗ n, n =


0 0

0 nz

1
2nz 0

nz 0

 , (4.9)
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nz is the unit outward normal on the extreme bases and a su-

perposed bar denotes a quantity assigned on the extreme bases.

Expressing u and s in terms of their components, the boundary

conditions (4.7) and (4.8) take the form:

v = v̄, w = w̄ on ∂ΩD, (4.10)

T
2 + V = ±Q̄, M = ±W̄ on ∂ΩN . (4.11)

4.2 Analytical solutions

Here, the analytical elastic solutions of some particular cases of the

GBT problem described in Section 4.1 are presented. Firstly, the

case of a cross-section with only the four classic modes is considered

and, then, the attention is focused on higher-order modes. In the

next section, the stresses associated to these analytical solutions are

used as a base to construct the divergence-free stress assumption.

Accordingly, no distributed loads are considered.

4.2.1 Classic modes

Consider the case of a cross-section with only four natural nodes

and, hence, with only classic deformation modes. As anticipated

in Section 2.3.5, in this case, in the modal space the present GBT

formulation coincides with the classic Vlasov beam theory enriched

with shear deformation. In particular, as shown in [47], generalized
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displacements can be written as:

uc =

 vc

wc

 , with vc =


vx

vy

ϑz

 , wc =


vz

ϑy

−ϑx

ωφ

 , (4.12)

where superscript c serves to emphasize that generalized displace-

ments and stresses are those of the classic beam theories. In the

above expressions, vx, vy and vz are the displacements of the shear

centre of the cross-section in the directions of the the principal in-

ertia axes of the cross-section and of the z-axis, respectively, ϑx

and ϑy are the cross-section rotations about the principal inertia

axes, ϑz is the in-plane cross-section rotation about the shear cen-

tre. Moreover, ωφ is the sum of the rate of twist about the shear

centre and of the torsional shear strain. Note that, as could be ex-

pected in a shear deformable beam, the cross-section rigid rotations

about the principal inertia axes, ϑx and ϑy, are kinematic param-

eters independent form the transverse displacements of the shear

centre along the principal inertia axes, vx and vy.

Combining Eqs. (2.21), (4.3), (4.6) and (4.12) is possible to

write the beam equilibrium equations in terms of generalized dis-

placements as:

−CM(1,1)
∂2
zvz (z) = 0, (4.13)

−CV(2,2)∂
2
zvx (z)− CV(2,4)∂

2
zϑz (z) + CV(2,2)∂zϑy (z) + CV(2,4)∂zωφ (z) = 0,

(4.14)
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−CV(3,3)∂
2
zvy (z)− CV(3,4)∂

2
zϑz (z) + CV(3,4)∂zωφ (z) + CV(3,3)∂zϑx (z) = 0,

(4.15)

−CV(2,4)∂
2
zvx (z)− CV(3,4)∂

2
zvy (z) +

(
−1/4CT(4,4) − CV(4,4)

)
∂2
zϑz (z) +

+
(
−1/4CT(4,4) + CV(4,4)

)
∂zωφ (z) +

+CV(2,4)∂zϑy (z) + CV(3,4)∂zϑx (z) = 0, (4.16)

−CM(2,2)
∂2
zϑy (z)− CV(2,2)∂zvx (z)− CV(2,4)∂zϑz (z) +

+CV(2,2)ϑy (z) + CV(2,4)ωφ (z) = 0, (4.17)

−CM(3,3)
∂2
zϑx (z)− CV(3,3)∂zvy (z)− CV(3,4)∂zϑz (z) +

+CV(3,4)ωφ (z) + CV(3,3)ϑx (z) = 0, (4.18)

−CM(4,4)
∂2
zωφ (z)− CV(2,4)∂zvx (z)− CV(3,4)∂zvy (z) +

+
(
1/4CT(4,4) − CV(4,4)

)
∂zϑz (z) +

+CV(4,4)ωφ (z) + CV(3,4)ϑx (z) + 1/4CT(4,4)ωφ (z) + CV(2,4)ϑy (z) = 0,

(4.19)

where C•(i,j) denotes the component (i, j) of the submatrix C• of

the cross-section sti�ness matrix. The solution of such system of

di�erential equations can be written as:

vx (z) =1/6 c3z
3 + 1/2 c4z

2 + (c7 a1 + c13 a2 + c3 a3 + c5) z + c6+

+ c11 a4e
−fz − c12 a4e

fz, (4.20)

vy (z) =1/6 c7z
3 + 1/2 c8z

2 − (c7 a5 − c13 a6 − c3 a7 − c9) z + c10+

− c11 a8e
−fz + c12 a8e

fz, (4.21)

ϑz (z) =c11 a9e
−fz − c12 a9e

fz − (c7 a10 + c13 a11 + c3 a12) z + c14

(4.22)

vz (z) =c1z + c2, (4.23)
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ϑy (z) =1/2 c3z
2 + c4z + c5, (4.24)

ϑx (z) =1/2 c7z
2 + c8z + c9, (4.25)

ωφ (z) =c11e
−fz + c12 efz + c13, (4.26)

where f and ai, i = 1, ..12, are constants depending on the coe�-

cients of the cross-section sti�ness matrix, while ci, i = 1, ..14, are

constants determined by the boundary conditions.

The expressions of coe�cients of Eqs. (4.20)-(4.26) are:

f =2

√
CT(4,4)b3

CM(4,4)
b2

(4.27)

a1 =4
CM(3,3)

CV(2,4)CV(3,4)
CV(2,2)b1

(4.28)

a2 =2
CT(4,4)CV(2,4)

b1
(4.29)

a3 =−
CM(2,2)

(
−4C2

V(2,4)
+ b1

)
CV(2,2)b1

(4.30)

a4 =− CV(2,4)

√
CT(4,4)CM(4,4)

b2b3
(4.31)

a5 =
CM(3,3)

(
−4C2

V(3,4)
+ b1

)
CV(2,2)b1

(4.32)

a6 =2
CT(4,4)CV(3,4)

b1
(4.33)

a7 =4
CM(2,2)

CV(2,4)CV(3,4)
CV(2,2)b1

(4.34)

a8 =CV(3,4)

√
CT(4,4)CM(4,4)

b2b3
(4.35)

a9 =1/2

√
CM(4,4)

CT(4,4)b2b3
(−8 b3 + b2) (4.36)
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a10 = 4
CM(3,3)

CV(3,4)
b1

(4.37)

a11 =
8 b3 + b1

b1
(4.38)

a12 = 4
CM(2,2)

CV(2,4)
b1

, (4.39)

with

b1 =CV(2,2)CT(4,4) − 4CV(2,2)CV(4,4) + 4C2
V(2,4)

+ 4C2
V(3,4)

, (4.40)

b2 =CV(2,2)CT(4,4) + 4CV(2,2)CV(4,4) − 4C2
V(2,4)
− 4C2

V(3,4)
, (4.41)

b3 =CV(2,2)CV(4,4) − C
2
V(2,4)
− C2

V(3,4)
. (4.42)

For later convenience, the above solution is rewritten as

ucT = Ppol3(z)cp + Pexp(z)ce, (4.43)

where

Ppol3(z) =
[
z3 z2 z 1

]
, Pexp(z) =

[
e−fz efz

]
,

(4.44)
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and

cp =


−1/6 c3 −1/6 c7 ...

−1/2 c4 −1/2 c8 ...

(−c7a1 − c13a2 − c3a3 − c5) (c7a5 − c13a6 − c3a7 − c9) ...

−c6 −c10 ...

... 0 0 0 0 0

... 0 0 −1/2 c3 −1/2 c7 0

... (c7a10 + c13a11 + c3a12) −c1 −c4 −c8 0

... −c14 −c2 −c5 −c9 −c13

 ,

(4.45)

ce =

 c11a4 −c11a8 c11a9 0 0 0 c11

−c12a4 c12a8 −c12a9 0 0 0 c12

 . (4.46)

Combining Eqs. (2.21), (4.6) and (4.43), the generalized stresses

associated to the above displacement analytical solution can be

easily derived.

4.2.2 Higher-order modes

Consider a cross-section with more than four natural nodes. In this

case, higher-order deformation modes, involving section distortion,

are present. Focus the attention on the generic higher-order mode

k and denote by uhk the vector collecting the generalized displace-

ments associated to this mode:

uhk =

 vk

wk

 . (4.47)
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Following the same path outlined for classic modes, it can be eas-

ily veri�ed that if the cross-section is doubly symmetric and if a

mono-axial constitutive law is used for both the membrane and

bending parts (i.e. C(B) = C(M)), then the governing equations of

the generic higher-order mode k are uncoupled from those of the

other modes and read as:(
−1

4
CT(k,k) − CV(k,k)

)
∂2
zvk (z) +

+

(
−1

4
CT(k,k) + CV(k,k)

)
∂zwk (z) + CS(k,k)

vk (z) = 0, (4.48)

−CM(k,k)
∂2
zwk (z) +

(
1

4
CT(k,k) − CV(k,k)

)
∂zvk (z) +

+

(
1

4
CT(k,k) + CV(k,k)

)
wk (z) = 0. (4.49)

The solution of such system can be written as:

vk (z) = chk1e
−αhk1z cos

(
αhk2z

)
+ chk2e

−αhk1z sin
(
αhk2z

)
+

+ chk3e
αhk1z cos

(
αhk2z

)
+ chk4e

αhk1z sin
(
αhk2z

)
, (4.50)

wk (z) = e−α
h
k1z cos

(
αhk2z

) (
−αhk1c

h
k1 + αhk2c

h
k2

)
+

+ e−α
h
k1z sin

(
αhk2z

) (
−αhk1c

h
k2 − αhk2c

h
k1

)
+

+ eα
h
k1z cos

(
αhk2z

) (
αhk1c

h
k3 + αhk2c

h
k4

)
+

+ eα
h
k1z sin

(
αhk2z

) (
αhk1c

h
k4 − αhk2c

h
k3

)
, (4.51)

where αhk1 and αhk2 are constants depending on the coe�cients of

the cross-section sti�ness matrix, while chki, i = 1, ..4, are constants

determined by the boundary conditions.

The expressions of coe�cients of Eqs. (4.50)-(4.51) are:

αhk1 = Re(fh), αhk2 = Im(fh), (4.52)
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fh = 1/2

√
−2 bhk1

(
bhk2 +

√(
bhk2

)2 − 4 bhk1b
h
k3

)
bhk1

, (4.53)

with

bhk1 =− 1/4CT(k,k) − CV(k,k), (4.54)

bhk2 =
CS(k,k)

CM(k,k)
+ CT(k,k)CV(k,k)

ĈM(k,k)

, (4.55)

bhk3 =− 1/4
CS(k,k)

(
CT(k,k) + 4CV(k,k)

)
CM(k,k)

. (4.56)

For later convenience, the above solution is rewritten as

uhT
k (z) = Qk(z)chk, (4.57)

where

Qk(z) =
[

e−α
h
k1z cos(αhk2z) e−α

h
k1z sin(αhk2z) eα

h
k1z cos(αhk2z) eα

h
k1z sin(αhk2z)

]
,

and

chk =


chk1

(
−chk1α

h
k1 + chk2α

h
k2

)
chk2

(
−chk2α

h
k1 − chk1α

h
k2

)
chk3

(
chk3α

h
k1 + chk4α

h
k2

)
chk4

(
chk4α

h
k1 + chk3α

h
k2

)

 . (4.58)

Analogously to the case of the classic modes, the generalized stresses

associated to this analytical solution can be easily derived by com-

bining Eqs. (2.21), (4.6) and (4.57).

4.3 Flexibility-based GBT �nite element

In this section, the attention is focused on constructing the 2-node

�exibility-based GBT �nite element. In particular, the variational
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framework, the representation assumed for generalized stresses, the

�nite element equations and the a posteriori recovery of the gener-

alized displacements along the beam axis are presented.

4.3.1 Variational framework

The domain Ω is partitioned in ne subdomains Ωe ⊂ Ω, such that

∪nee=1Ωe = Ω. The �exibility-based �nite element can be constructed

on the basis of the total complementary energy functional

ΠC =

ne∑
e=1

ΠC,e, (4.59)

ΠC,e = −1

2

∫
Ωe

sTC−1s dΩ + uT(NTs)
∣∣
(∂ΩD)e

, (4.60)

de�ned over the set of generalized stresses ful�lling a priori equi-

librium equations (4.4), (4.5), (4.11) and inter-element equilibrium

conditions. It can be easily veri�ed that the stationary conditions

of ΠC are the compatibility equations, Eqs. (2.21) and (4.10). If

the inter-element equilibrium conditions and Neumann boundary

conditions are relaxed, then ΠC transforms in the following hybrid

complementary energy functional:

ΠHY =

ne∑
e=1

ΠC,e +

ρint∑
i=1

u|T∂Ωi
[[NTs]]∂Ωi

, (4.61)

where ρint is the number of inter-element and Neumann bound-

aries, ∂Ωi is the i-th inter-element boundary and [[•]] denotes the

jump of • on ∂Ωi. The stationary conditions of the hybrid com-

plementary energy functional are Eqs. (2.21), (4.10), (4.11) and,

in addition, the inter-element equilibrium conditions on ∂Ωi. Note
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that in functional ΠHY displacement is de�ned only on the elements

boundary (at the nodes) where it acts as a Lagrangian multiplier

to enforce the Neumann boundary conditions and the inter-element

equilibrium conditions.

4.3.2 Assumed stresses

In this section, a strategy to select the generalized stresses approx-

imation in a rational way is presented. Stresses are approximated

independently on each element and should satisfy the equilibrium

equations pointwise within each element.

Consider a generic cross-section and write the generalized stresses

vector as:

s =

 sc

sh

 , (4.62)

where sc collects the generalized stresses associated to the �rst four

modes (classic modes) and sh those associated to the mh higher-

order modes. In particular, as shown in [47], sc collects the general-

ized stresses of the classic Vlasov beam theory enriched with shear

deformation and can be written as:

sc =

 scb

sct

 , with scb =



N

My

Mx

Vx

Vy


, sct =


B

T

Vφ

 , (4.63)

being N the axial force, Mx and My the bending moments about
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the principal inertia axes of the cross-section, Vx and Vy the shear-

ing forces in the directions of the principal inertia axes, B the bi-

moment á la Vlasov, T the St. Venant torsion and Vφ the warping

torsion. Moreover, sh can be written as

sh =



sh1
...

shk
...

shmh


with shk =


Sk

Mk

Tk

Vk

 , (4.64)

i.e. shk is the vector collecting the generalized stresses associated to

the higher-order mode k.

As usually done in developing hybrid-stress models [102, 103],

the element stresses approximation is initially assumed as an ap-

propriate uncoupled expansion and, then, is constrained to satisfy

equilibrium equations. Therefore, the generalized stresses are ini-

tially assumed as the following uncoupled expansion based on the

stresses associated to the analytical solutions developed in the pre-
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vious section:

scb

sct

sh1
...

shk
...

shmh


=



Pcb 0 0 · · · 0 · · · 0

0 Pct 0 · · · 0 · · · 0

0 0 Ph
1 · · · 0 · · · 0

... ... ... . . . ... . . . ...

0 0 0 · · · Ph
k · · · 0

... ... ... . . . ... . . . ...

0 0 0 · · · 0 · · · Ph
mh





βcb

βct

βh1
...

βhk
...

βhmh


,

(4.65)

where

Pcb = I5 ⊗Ppol2, (4.66)

Pct = I3 ⊗
[

Ppol2 Pexp Q1 · · · Qk · · · Qmh

]
, (4.67)

Ph
k = I4 ⊗

[
Ppol2 Pexp Q1 · · · Qk · · · Qmh

]
, (4.68)

with

Ppol2 =
[
z2 z 1

]
, (4.69)

and βcb, βct and βhk are the parameters, local to each element,

governing axial-bending, torsional and higher-order modes, respec-

tively. The next step is to constrain the initially assumed stresses,

Eq. (4.65), in order to satisfy the equilibrium equations pointwise.

Enforcing equilibrium (it is done in the absence of body forces)

partially couples the stress approximation (4.65), so reducing the

stress parameters. The resulting expressions for Pcb, Pct and Ph
k

are:
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• Classic generalized stresses:

Pcb =



1 0 0 0 0

0 1 −z 0 0

0 0 0 1 −z

0 0 1 0 0

0 0 0 0 1


, (4.70)

Pct =
[

Pct
pol Pct

exp Qct
1 · · · Qct

k · · · Qct
nh

]
, (4.71)

with

Pct
pol =


1 1/2 z −z −z2

0 1 0 −2 z

0 0 1 z

 , Pct
exp =


−2 efz

f 2 e−fz

f

−2 efz

f −2 e−fz

f

efz e−fz

 .
(4.72)

Qct
k =


mh
k1 mh

k2 ...

−αhk1m
h
k1 − αhk2m

h
k2 −αhk1m

h
k2 + αhk2m

h
k1 ...

1/2αhk1m
h
k1 + 1/2αhk2m

h
k2 1/2αhk1m

h
k2 − 1/2αhk2m

h
k1 ...

... mh
k3 mh

k4

... αhk1m
h
k3 − αhk2m

h
k4 αhk1m

h
k4 + αhk2m

h
k3

... 1/2αhk2m
h
k4 − 1/2αhk1m

h
k3 −1/2αhk2m

h
k3 − 1/2αhk1m

h
k4

 .
(4.73)

• Higher-order generalized stresses associated to mode k:

Ph
k =

[
Ph
pol Ph

exp Qh
1 · · · Qh

k · · · Qh
nh

]
, (4.74)

D. Melchionda PhD Thesis



Chapter 4. Flexibility-based GBT �nite element 83

with

Ph
pol =


0 0 1/2 0 1

1 1/2 z 1/4 z2 −z −1/2 z2

0 1 z 0 0

0 0 0 1 z

 , (4.75)

Ph
exp =


1/2 fefz −1/2 fe−fz fefz −fe−fz

1/2 efz

f −1/2 e−fz

f −efz

f
e−fz

f

efz e−fz 0 0

0 0 efz e−fz

 , (4.76)

Qh
k =


−1/2αhk1m

h
k1 − 1/2αhk2m

h
k2 −1/2αhk1m

h
k2 + 1/2αhk2m

h
k1 · · ·

−1/2
αh

k1m
h
k1−α

h
k2m

h
k2

αh
k1

2+αh
k2

2 −1/2
αh

k1m
h
k2+α

h
k2m

h
k1

αh
k1

2+αh
k2

2 · · ·

mh
k1 mh

k2 · · ·

0 0 · · ·

... 1/2αhk1m
h
k3 − 1/2αhk2m

h
k4 1/2αhk1m

h
k4 + 1/2αhk2m

h
k3 · · ·

... 1/2
αh

k1m
h
k3+α

h
k2m

h
k4

αh
k1

2+αh
k2

2 1/2
αh

k1m
h
k4−α

h
k2m

h
k3

αh
k1

2+αh
k2

2 · · ·

... mh
k3 mh

k4 · · ·

... 0 0 · · ·

· · · −αhk1mh
k1 − αhk2mh

k2 −αhk1mh
k2 + αhk2m

h
k1 ...

· · · αh
k1m

h
k1−α

h
k2m

h
k2

αh
k1

2+αh
k2

2

αh
k1m

h
k2+α

h
k2m

h
k1

αh
k1

2+αh
k2

2 ...

· · · 0 0 ...

· · · mh
k1 mh

k2 ...

· · · αhk1m
h
k3 − αhk2mh

k4 αhk1m
h
k4 + αhk2m

h
k3

· · · −α
h
k1m

h
k3+α

h
k2m

h
k4

αh
k1

2+αh
k2

2 −α
h
k1m

h
k4−α

h
k2m

h
k3

αh
k1

2+αh
k2

2

· · · 0 0

· · · mh
k3 mh

k4

 , (4.77)

mh
k1 = e−α

h
k1z cos

(
αhk2z

)
, mh

k2 = e−α
h
k1z sin

(
αhk2z

)
,

mh
k3 = eα

h
k1z cos

(
αhk2z

)
, mh

k4 = eα
h
k1z sin

(
αhk2z

)
. (4.78)
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For further convenience, the resultant stress approximation is

put in the compact form

s = Pβ. (4.79)

To take into account for the presence of body forces, a particular

solution of the equilibrium equations is added to the �nal stress

approximation, as usually done in hybrid stress models [104]. The

resulting expression reads as

s = Pβ + sp. (4.80)

4.3.3 Finite element equations

Here, basing on the hybrid complementary formulation and the

stress assumptions made in the previous section, the �nite element

equations are derived. Introducing the assumed stresses into the

hybrid complementary energy functional (4.61) referred to the sin-

gle element between nodes i and j, and making it stationary yield

the following discrete element equations: −H GT

G 0

 β

q

 =

 g

h

 , (4.81)

where qT =
[

uT
i uT

j

]
, being ui and uj the vectors of generalized

displacements associated respectively with element nodes i and j,

βT =
[
βcbT βctT βhT

k

]
, h and g are the terms due to the pre-

scribed loads and H and G are, respectively, the element �exibility

and the element equilibrium matrices.
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Parameters β can be condensed out and the following elemen-

tal equations involving only nodal generalized displacements are

obtained:

Kq = f . (4.82)

The de�nitions of matrices and vectors in Eqs. (4.81) and (4.82)

for the generic element between nodes i and j are:

H =

∫
Ωe

PTC−1P dΩ, G =

 (NTP)
∣∣
i

(NTP)
∣∣
j

 , (4.83)

g =

∫
Ωe

PTC−1sp dΩ, h =

 (NTsp)
∣∣
i

(NTsp)
∣∣
j

 , (4.84)

K = GH−1GT, f = h + GH−1g. (4.85)

As it can be observed, the elemental equations (4.82) are in the

standard format of assumed displacement �nite elements. There-

fore, the present element can be easily implemented into existing

�nite element codes.

4.3.4 Recovery of the generalized displacements along

beam axis

The hybrid complementary formulation does not require any as-

sumption regarding the representation of the generalized displace-

ments, since only their nodal values are involved. However, the ac-

curate evaluation of the displacements in the interior of the element

is often of importance. Indeed, the analytical solution functions

derived in Section 4.2 can be easily used for this scope. In fact,
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starting from Eqs. (4.20)-(4.26) for classic modes and from Eqs.

(4.50), (4.51) for higher-order modes and imposing suitable bound-

ary conditions (i.e. the typical boundary conditions associated to

shape functions: one generalized displacement equal to 1 and all

the others equal to 0), it is possible to derive shape functions by

which interpolate the nodal values, so obtaining the displacement

recovery along the beam axis.

4.4 Numerical tests

In this section, the performance of the described �exibility-based

GBT �nite element, hereinafter called GF, are numerically veri�ed

on some test problems and compared with that of a standard as-

sumed displacement (compatible) GBT �nite element, hereinafter

called GC. Moreover, for further comparison, the numerical results

in terms of displacements and strain energy predicted, on very �ne

meshes, by shell �nite element models solved with the �nite ele-

ment solver Code_Aster [101] are also included. Both GF and GC

elements are implemented in the CAPS �nite element code. In el-

ement GC, v- and w-parameters are approximated, respectively,

by cubic and quadratic Lagrangian shape functions, and the de-

grees of freedom related to internal nodes are condensed out at the

element level. On the same mesh, the computational cost of GC

and GF elements is comparable, with the element GF being slightly

more expensive (the di�erence in CPU time is about 15%). How-

ever, the better accuracy of the GF element o�sets in general the
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computational burden, as it is shown in the numerical tests that

follow. In all the tests, E = 2.1 × 105 MPa and ν = 0.3 are as-

sumed and the reference solutions are obtained using GC elements

on very �ne meshes. Moreover, as already stated, only fundamental

�exural-shear modes based on natural nodes are used.

Figure 4.1: Z-section cantilever beam: (a) geometry; (b) self-equilibrated load;

(c) torsional load.

4.4.1 Z-section cantilever beam

A lipped Z-section (6 natural nodes) cantilever beam subjected to

tip load is considered, see Fig. 4.1a. The cross-section deformation

modes are shown in Fig. 4.2. Two load cases are studied: self-

equilibrated load (Fig. 4.1b) and torsion (Fig. 4.1c). As regards the

self-equilibrated load, Figure 4.3 shows the beam deformed shapes
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Mode 1 Mode 2 Mode 3 Mode 4 

Mode 5 Mode 6 

Classic modes 

Higher-order modes 

Figure 4.2: Z-section cantilever beam: in-plane con�gurations of cross-section

deformation modes.

obtained using the proposed GF-element and the GC-element on a

one-element mesh, together with the reference solution. As it can

be noted, the proposed element captures very well the deformed

shape even if only one �nite element is used. On the contrary,

the beam deformation near the loaded section is not accurately

predicted by the GC-element. These observations are con�rmed by

Fig. 4.4, where the ȳ-displacement of natural node 1 of the cross-

section (see Fig. 4.1b) along the beam axis is shown: the solution

predicted by the proposed element accurately matches the reference

solution all over the axis using only one �nite element, while this

does not happen with the GC-element even if two �nite elements are

used. The high accuracy of the proposed element is con�rmed also
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(a) (b) (c) 

Figure 4.3: Z-section cantilever beam with self-equilibrated load - Deformed

shape: (a) reference solution; (b) GF-element (1 �nite element); (c) GC-

element (1 �nite element).

by Table 4.1, collecting the x- and y-displacement of natural node

1 of the end section (section A) and the strain energy of the beam,

obtained by the various models. Figures 4.5 and 4.6 show the non-

null components of the generalized stresses along the beam axis. In

particular, the classic generalized stresses are shown in Fig. 4.5 and

the higher-order ones in Fig. 4.6. Moreover, the generalized stresses

at section A are collected in Table 4.2. The very good performance

of the proposed element also in terms of stresses can be observed:

all the stress components are predicted with high accuracy using

only one �nite element. It is worth to note that, with the GC-

element, two �nite elements (having a computational cost that is

about the double of that of the one GF �nite element mesh) do

not su�ce to obtain a comparable accuracy. As regards the second

load case, that is the torsion load, the non-null generalized stresses

are shown in Figs. 4.7 and 4.8 and in Table 4.3. The excellent
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Figure 4.4: Z-section cantilever beam with self-equilibrated load: ȳ-

displacement of natural node 1.

Table 4.1: Z-section cantilever beam with self-equilibrated load. x̄- and ȳ-

displacement of natural node 1 at z/L = 1 and strain energy Φ of the beam.

GF (1 FE) GC (1 FE) GC (2 FE) 3D shell Ref. sol.

x̄-displ. [mm] 5.763 1.920 3.799 6.312 5.763

ȳ-displ. [mm] −5.841 −1.817 −3.809 −5.713 −5.841

Φ [Nmm] 1.160 · 104 0.737 · 104 0.761 · 104 1.203 · 104 1.160 · 104

performance of the proposed element can be observed.

4.4.2 Clamped-clamped rack-section beam

Consider the clamped-clamped beam shown in Fig. 4.9a. The

cross-section, typical of rack systems, has 15 natural nodes and

its deformation modes are shown in Fig. 4.10. The beam is sub-

jected to two point forces applied on the intermediate section A

(Fig. 4.9b). Figure 4.11 shows the deformed shape of the beam
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Figure 4.5: Z-section cantilever beam with self-equilibrated load - Classic gen-

eralized stresses: (a) B; (b) T ; (c) Vφ.
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Figure 4.6: Z-section cantilever beam with self-equlibrated load - Higher-order

generalized stresses associated to mode 6: (a) S6; (b) M6; (c) T6; (d) V6.

D. Melchionda PhD Thesis



Chapter 4. Flexibility-based GBT �nite element 93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

4

6

8

10

12

14

16

18

20
x 10

5

Normalized axial position [z/L]

B
 [

N
m

m
2
]

Ref. sol.

GC (1 FE)

GF (1 FE)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−700

−600

−500

−400

−300

−200

−100

Normalized axial position [z/L]

T
 [

N
m

m
]

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1000

−950

−900

−850

−800

−750

−700

−650

Normalized axial position [z/L]

V
φ
 [

N
m

m
]

(c)

Figure 4.7: Z-section cantilever beam with torsional load - Classic generalized

stresses: (a) B; (b) T ; (c) Vφ.
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Figure 4.8: Z-section cantilever beam with torsional load - Higher-order gen-

eralized stresses associated to mode 6: (a) S6; (b) M6; (c) T6; (d) V6.
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Table 4.2: Z-section cantilever beam with self-equilibrated load. Generalized

stresses at z/L = 1.

GF (1 FE) GC (1 FE) GC (2 FE) Ref. sol.

B [Nmm2] 0 6.006 · 105 16.535 · 105 0

T [Nmm] 31631.927 2002.711 10767.655 31418.327

Vφ [Nmm] −15816.963 −1001.355 −5383.828 −15709.163

S6 [N] −4.140 −1.327 −2.702 −4.120

M6 [Nmm2] 0 −195.886 −1501.724 0

T6 [Nmm] 100.106 7.444 35.482 99.503

V6 [Nmm] 278.075 88.855 53.414 278.377

obtained by the GF- and the GC-element using a mesh of three

�nite elements, together with the reference solution. In particular,

a zoom of the deformed shape near the loaded section is shown. It

can be noted that the proposed element captures very well the lo-

calized section distortion caused by the point loads. Inspecting the

graphs in Fig. 4.12, showing the y-displacement of natural node 1

of the cross-section along the beam axis, and Table 4.4, collecting

the x- and y-displacement of natural node 1 of section A together

with the strain energy of the beam, con�rms this observation. In

particular, the excellent agreement between the solution predicted

by the proposed element using only three �nite elements and the

reference solution can be noted. Figures 4.13-4.16 show the re-

sults in terms of the most signi�cant components of the generalized

stresses. Moreover, their values near the loaded section (section A)

are collected in Tables 4.5 and 4.6. The high performance of the

proposed element can be noted.
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Table 4.3: Z-section cantilever beam with torsional load. Generalized stresses

at z/L = 1.

GF (1 FE) GC (1 FE) Ref. sol.

B [Nmm2] 0 −1.288 · 105 0

T [Nmm] −611.231 −685.281 −612.359

Vφ [Nmm] −694.384 −657.360 −693.820

S6 [N] −1.113 · 10−2 −0.380 · 10−2 −1.108 · 10−2

M6 [Nmm2] 0 −0.605 0

T6 [Nmm] −0.611 −0.853 −0.615

V6 [Nmm] 0.306 −0.303 0.307

Table 4.4: Clamped-clamped rack-section beam. x- and y-displacement of

natural node 1 at z/L = 2/3 and strain energy Φ of the beam.

GF (3 FE) GC (3 FE) 3D shell Ref. sol.

x-displ. [mm] −0.729 −0.664 −0.738 −0.728

y-displ. [mm] −0.332 −0.268 −0.3319 −0.332

Φ [Nmm] 728.660 644.148 739.4642 728.170

4.4.3 Cantilever beam with non-conventional cross-section

The cantilever beam with non-conventional cross-section shown in

Fig. 4.17a is considered [105]. The cross-section deformation modes

are shown in Fig. 4.18. The end section (section A) and the middle

section (section B) of the beam are loaded by pin forces as shown

in Fig. 4.17b. Figure 4.19 shows the x̄-displacement of node 2

of the cross-section along the beam axis using two �nite elements,

and Table 4.7 collects the x- and y-displacement of natural node 2

of sections A and B together with the strain energy of the beam.

Moreover, the results in terms of the most signi�cative generalized
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Figure 4.9: Clamped-clamped rack-section beam: (a) geometry; (b) load ap-

plied at section A.

Table 4.5: Clamped-clamped rack-section beam. Classic generalized stresses

at z1 = 0.65L and z2 = 0.68L.

GF (3 FE) GC (3 FE) Ref. sol.

My [Nmm2] z = z1 5646.240 · 102 5645.833 · 102 5646.233 · 102

z = z2 5112.837 · 102 5112.542 · 102 5112.833 · 102

Vx [N] z = z1 519.941 520.001 519.941

z = z2 −1480.059 −1479.999 −1480.059

B [Nmm2] z = z1 −20.077 · 10−4 −19.812 · 10−4 −20.0860 · 10−4

z = z2 −18.278 · 10−4 −18.176 · 10−4 −18.287 · 10−4

T [Nmm] z = z1 −0.977 · 10−7 0.892 · 10−7 −1.052 · 10−7

z = z2 3.130 · 10−7 1.189 · 10−7 3.198 · 10−7

Vφ [Nmm] z = z1 −1.803 · 10−6 −1.894 · 10−6 −1.800 · 10−6

z = z2 5.149 · 10−6 5.249 · 10−6 5.146 · 10−6
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Mode 1 Mode 2 Mode 3 Mode 4 

Mode 5 Mode 6 Mode 7 

Classic modes 

Mode 8 

Mode 9 Mode 10 Mode 11 Mode 12 

Mode 13 Mode 14 Mode 15 

Higher-order modes 

Figure 4.10: Clamped-clamped rack-section beam: in-plane con�gurations of

cross-section deformation modes.
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(a) (b) (c) 

Figure 4.11: Clamped-clamped rack-section beam - Deformed shape: (a) ref-

erence solution; (b) GF-element (3 �nite elements); (c) GC-element (3 �nite

elements).
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Table 4.6: Clamped-clamped rack-section beam. Higher-order generalized

stresses at z1 = 0.65L and z2 = 0.68L.

GF (3 FE) GC (3 FE) Ref. sol.

S5 [N] z = z1 −4.352 · 10−2 −3.621 · 10−2 −4.3750 · 10−2

z = z2 −4.389 · 10−2 −3.606 · 10−2 −4.374 · 10−2

M5 [Nmm2] z = z1 1464.762 586.129 1458.090

z = z2 1464.896 469.029 1458.430

T5 [Nmm] z = z1 −1.118 0.131 −1.172

z = z2 1.128 −0.110 1.188

V5 [Nmm] z = z1 13.190 12.948 13.216

z = z2 −13.176 −13.097 −13.202

S9 [N] z = z1 −1.231 · 10−2 −0.799 · 10−2 −1.221 · 10−2

z = z2 −1.231 · 10−2 1.062 · 10−2 −1.221 · 10−2

M9 [Nmm2] z = z1 89.361 42.066 90.255

z = z2 89.361 63.108 90.276

T9 [Nmm] z = z1 0.511 0.064 0.470

z = z2 −0.543 −0.084 −0.504

V9 [Nmm] z = z1 1.332 1.390 1.361

z = z2 −1.351 −1.931 −1.378

S15 [N] z = z1 −0.751 −1.852 −0.695

z = z2 −0.746 −1.858 −0.695

M15 [Nmm2] z = z1 −108.287 32.513 −86.216

z = z2 −108.140 32.291 −86.221

T15 [Nmm] z = z1 32.169 2.121 32.894

z = z2 −32.354 −2.708 −33.283

V15 [Nmm] z = z1 10.788 82.964 11.001

z = z2 −10.872 −80.878 −11.196
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Figure 4.12: Clamped-clamped rack-section beam: y-displacement of natural

node 1.

Table 4.7: Cantilever beam with non-conventional cross-section. x̄- and ȳ-

displacement of natural node 2 and strain energy Φ of the beam.

GF (2 FE) GC (2 FE) 3D shell Ref. sol.

x̄-displ. [mm] Sec. A 0.815 0.988 0.831 0.815

Sec. B 0.076 −0.225 0.0492 0.076

ȳ-displ. [mm] Sec. A 22.396 22.167 22.384 22.396

Sec. B 2.801 3.235 2.816 2.801

Φ [Nmm] 1.685 · 104 1.628 · 104 1.740 · 104 1.685 · 104

stresses are reported in Figs. 4.20-4.22 and in Table 4.8. In all,

these results con�rm the high performance of the proposed element,

with excellent agreement between its predictions and the reference

solution, both in terms of displacements and stresses, despite only

two �nite elements are used.
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Table 4.8: Cantilever beam with non-conventional cross-section. Generalized

stresses at z/L = 1.

GF (2 FE) GC (2 FE) Ref. sol.

My [Nmm] −7.972 · 10−4 −802.286 0

Vx [N] −728.138 −728.138 −728.138

Mx [Nmm] −5.699 · 10−4 −555.699 0

Vy [N] −1862.825 −1862.825 −1862.825

B [Nmm2] 0.014 −3320.938 · 102 0

T [Nmm] −7262.933 −5934.822 −7271.793

Vφ [Nmm] 10389.927 9725.872 10394.357

S5 [N] −38.900 −38.814 −38.925

M5 [Nmm2] −5.905 · 10−3 −1438.670 · 102 0

T5 [Nmm] 1997.967 1768.138 1987.880

V5 [Nmm] 4421.333 4211.552 4426.377

S7 [N] 2.791 2.576 2.788

M7 [Nmm2] 8.798 · 10−4 1739.884 0

T7 [Nmm] −60.935 −51.441 −60.815

V7 [Nmm] −142.176 −91.185 −142.236
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Figure 4.13: Clamped-clamped rack-section beam - Classic generalized

stresses: (a) My; (b) Vx; (c) B; (d) T ; (e) Vφ.
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Figure 4.14: Clamped-clamped rack-section beam - Higher-order generalized

stresses associated to mode 5: (a) S5; (b) M5; (c) T5; (d) V5.
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Figure 4.15: Clamped-clamped rack-section beam - Higher-order generalized

stresses associated to mode 9: (a) S9; (b) M9; (c) T9; (d) V9.
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Figure 4.16: Clamped-clamped rack-section beam - Higher-order generalized

stresses associated to mode 15: (a) S15; (b) M15; (c) T15; (d) V15.
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Figure 4.17: Cantilever beam with non-conventional cross-section: (a) geome-

try; (b) loads applied at section A and section B.

Mode 1 Mode 2 Mode 3 Mode 4 

Classic modes 

Mode 5 Mode 6 Mode 7 

Higher-order modes 

Figure 4.18: Cantilever beam with non-conventional cross-section: in-plane

con�gurations of cross-section deformation modes.
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Figure 4.19: Cantilever beam with non-conventional cross-section: x̄-

displacement of natural node 2.
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Figure 4.20: Cantilever beam with non-conventional cross-section - Classic

generalized stresses: (a) My; (b) Vx; (c) Mx; (d) Vy; (e) B; (f) T ; (g) Vφ.
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Figure 4.21: Cantilever beam with non-conventional cross-section - Higher-

order generalized stresses associated to mode 5: (a) S5; (b) M5; (c) T5; (d)

V5.
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Figure 4.22: Cantilever beam with non-conventional cross-section - Higher-

order generalized stresses associated to mode 7: (a) S7; (b) M7; (c) T7; (d)

V7.
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Chapter 5

EuroCode3-compliant design

approach: ESA

Abstract

Following the idea early presented in [106] and more recently developed in

[69] in the framework of thin-walled members stability check, a EuroCode3

(EC3) compliant approach that coherently accounts for distortional buckling

is presented in this chapter. The approach, called Embedded Stability Analysis

(ESA), embeds a stability analysis based on the Generalized Beam Theory of

the members and is applicable in a simple and general way to the design

of thin-walled members with arbitrary cross-section in the presence of local,

global and distortional buckling with no limits about constraints and load

conditions. Some numerical results comparing the stability check by the ESA

approach and the EC3 are presented and discussed.

This chapter is organized as follows. After a brief overview on

the simpli�ed and general stability checks methods available in the

EC3 (Section 5.1.1), a new veri�cation approach, called Embedded
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Stability Analysis (ESA), is presented in Section 5.1.2. A compar-

ison between ESA approach and EC3 simpli�ed methods is shown

in Section 5.2.

5.1 Design of thin-walled pro�les according to

EC3

In many practical cases the standards provide simpli�ed formulas

that allow the designer to project against distortional buckling, but

are applicable in limited cases. For example, EC3 provides these

formulas in a procedure hereinafter named EC3 �simpli�ed method�

(point 5.5.3 of [64]). Moreover, to overcome the limitations of the

simpli�ed method, the EC3 provides also a �general method� of

design based on numerical analyses. In the following, these two

methods are brie�y illustrated.

5.1.1 EuroCode3 simpli�ed and general methods

EC3 simpli�ed method is an iterative procedure that, using the Ef-

fective Width Method (EWM) [64], considers the loss of e�ective-

ness for each plate in the cross-section in order to take into account

local buckling. Veri�cation against distortional buckling is then car-

ried out by reducing the e�ective area of �ange sti�eners using an

E�ective Thickness Method and the calculation can be developed

only after the evaluation of the e�ective quantities related to local
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buckling, in sequential order. EC3 simpli�ed method covers the

e�ect of distortional-global interaction by using the e�ective cross-

section for overall buckling strength checks. The work�ows that

characterize the evaluation of the e�ective quantities used in the

EC3 simpli�ed method are sketched in Fig. 5.1. Indeed, the e�ec-

tive cross-section quantities, used in the determination of the pro�le

resistance, are obtained by means of coe�cients that are provided

only for special cases. This limits the applicability of the method to

conventional boundary conditions. For example, it is not possible

to consider the presence of continuous elastic restraints, commonly

used in the modelling of purlin-roof panel interaction [29]. More-

over, if distortion phenomena are relevant and have to be taken into

consideration, the simpli�ed method is applicable only for limited

cross-section shapes (Z or C) and it may be awkward and di�cult

to apply.

The EC3 general method is based on the use of numerical analyses

and, more particularly, buckling analyses. In this case, the stability

check is as follows:
χop
(
λ̄op
)
αult,k

γM1
≥ 1 (5.1)

where χop is the resistance reduction factor, γM1 is a partial safety

factor, αult,k is the minimum ampli�er for the design loads to reach

the elastic critical resistance of the most critical cross-section (com-

monly evaluated using the EWM) and λ̄op =
√
αult,k/αcr,op is the

non-dimensional slenderness that describes the attitude of the el-

ement to buckle in the relevant buckling mode, being αcr,op the
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Figure 5.1: EC3 simpli�ed method: a) E�ective Width Method work�ow, b)

E�ective Thickness Method work�ow.
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minimum ampli�er for the design loads to reach the elastic critical

resistance of the structural component with regards to lateral or

lateral torsional buckling, considering distortional behaviour. In an

EC3 general method compliant approach, αcr,op would be calculated

with numerical analyses. To this purpose, the Constrained Finite

Strip Method (cFSM), used in the American standard and imple-

mented in CUFSM software [19], or three-dimensional �nite ele-

ment modelling performed by general purpose commercial software

could be used. On this regard, it is worth to note that cFSM has

not a general applicability because it does not allow generic cross-

sections or generic loads and restraints. On the other hand, the

use of three-dimensional �nite element models built with general

purpose commercial software allows to analyse general structural

systems. However, in this case there are non-negligible operational

di�culties related to the setup of the model and the interpretation

of the results. Moreover, they are not generally applicable to large

scale analyses because of their high computational cost. A further

possibility, compliant with the EC3 general method, is given by the

GBT, used in the ESA approach described in the following section.

5.1.2 ESA approach

The proposed ESA approach is developed along the same concep-

tual path of the EC3 general method, Eq. 5.1. As it is com-

mon in the engineering practice, in the ESA approach the stability

check is done on an equivalent system, obtained �extracting� the
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generic member to be veri�ed from the parent structure and apply-

ing proper loads and constraints, both at the ends or at interme-

diate sections. One of the original aspects that characterizes the

ESA approach consists in the evaluation of αcr,op. In fact, the min-

imum ampli�er αcr,op is evaluated numerically, by means of a linear

buckling analysis performed on a GBT-based �nite element model

of the equivalent system. In the GBT, the assumption of rigid in-

plane cross-sections is removed, so allowing to consider in a com-

prehensive fashion the di�erent instability phenomena, occurring

at di�erent wavelengths: local, distortional and global buckling.

Thanks to its modal nature, the GBT allows to easily restraint

modes related to distortional or local e�ects. Accordingly, using

the GBT, two possible evaluations of the parameter αcr,op can be

obtained, whether the distortional modes are present (αGBTcr,op ) or re-

strained (αGBTrcr,op ). Moreover, it is possible to de�ne the coe�cient

β̄ = αGBTcr,op /α
GBTr
cr,op , which can be seen as an indicator of the im-

portance of the section distortion. This parameter, not present in

standards, is a way to control the in�uence of distortional buckling

over the global behaviour of structural components: distortional

buckling become more relevant as β̄ becomes lower than 1. In

other words, it allows verifying, in a simple and intuitive manner,

the goodness of a design choice without performing more complex

calculations.

It is worth to mention that the described approach can handle com-

plex support conditions and, also, elastic continuous restraints. It
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is also clear, from the above considerations, that is not necessary

to de�ne any e�ective length of the structural element and there

are not limitations on the cross-section geometry (open, closed,

branched or unbranched). For illustrative purposes, consider the

C-section cantilever beam loaded by a concentrated moment M

at the free end shown in Fig. 5.2a. The comparison between the

two load ampli�ers αGBTcr,op and αGBTrcr,op for a C350x80x25x3 pro�le

(assuming M = 1) is shown in Fig. 5.2b. As it can be noted,

the e�ects of section distortion become relevant for beam lengths

L < 2000/2500mm.

5.2 Stability check: ESA vs EC3 simpli�ed method

Here, the results of a comparison between the stability check of the

proposed ESA approach and of the EC3 simpli�ed method, on a

large number of cases involving Class 4 steel cold-formed elements,

are presented. A C-section cantilever beam loaded by a concen-

trated moment at the free end, shown in Fig. 5.2a, has been cho-

sen as test case. 11 di�erent C-sections have been considered, with

web/�ange ratios from 3 to 5. Moreover, various beam lengths have

been considered in order to cover a wide range of longitudinal slen-

derness. Figs. 5.5-5.8 shows the buckling deformed shapes associ-

ated with the most representative results. In particular Figs. 5.5a,

5.6a, 5.7a, 5.8a show various distortional buckling modes, while

Figs. 5.5b, 5.6b, 5.7b, 5.8b show lateral-torsional buckling modes.

The results of the stability check, Eq. 5.1, expressed in terms of

D. Melchionda PhD Thesis



120 Chapter 5. EuroCode3-compliant design approach: ESA

  

 

h

b

t

c

z

y
G

x

z

M

L

y

(a)

 

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1000 1500 2000 2500 3000 3500 4000 4500 5000

B
u

c
k

li
n

g
 l

o
a

d
 [

N
m

m
]

Member length L [mm]

C350x80x25x3

GBT

opcr ,

GBTr

opcr ,

o
p

cr
,



(b)

Figure 5.2: Cantilever beam: a) geometry, load and boundary conditions; b)

αGBTcr,op , α
GBTr
cr,op comparison.
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the ratio ESA/EC3 are collected in Fig. 5.3. For all the cases, the

applied moment M is such that the EC3 stability check is equal to

1. As it can be noted, EC3 stability check is not always on the safe

side: about 32% checks (23 cases out of 70) are not veri�ed with

the ESA approach (gray boxes in Fig. 5.3). This highlights the

importance of properly considering distortional buckling. In fact,

for elements with length < 2000mm, i.e. with high web/�ange

section ratio, the EC3 simpli�ed method does not properly takes

into account for the distortional behavior and is not on the safety

side. The general checks trend shown in Fig. 5.3 is re�ected in the

pattern of Fig. 5.4 collecting parameter, so underlining the good

predictive capability of this coe�cient.

 

C-h*b*c*t [mm] 
Cantilever length [mm] 

1000 1500 2000 2500 3000 4000 5000 

C-400*80*30*3 0.50 0.56 0.71 0.86 0.90 0.91 0.92 

C-350*80*25*3 0.55 0.62 0.81 0.90 0.91 0.91 0.92 

C-300*70*20*2.5 0.54 0.65 0.88 0.93 0.93 0.93 0.94 

C-280*70*20*2.5 0.57 0.69 0.91 0.93 0.93 0.94 0.94 

C-260*70*20*2 0.52 0.61 0.85 0.95 0.95 0.95 0.95 

C-220*60*20*2 0.60 0.78 0.94 0.94 0.94 0.94 0.95 

C-200*60*20*2 0.63 0.82 0.94 0.94 0.94 0.94 0.95 

C-160*50*15*2 0.73 0.94 0.93 0.93 0.93 0.93 0.94 

C-150*50*15*2 0.75 0.94 0.93 0.93 0.93 0.93 0.94 

C-120*40*15*2 0.91 0.92 0.91 0.92 0.92 0.92 0.93 

 

Figure 5.3: ESA/EC3 stability check.
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C-h*b*c*t [mm] 
Cantilever length [mm] 

1000 1500 2000 2500 3000 4000 5000 

C-400*80*30*3 0.08 0.28 0.58 0.81 0.88 0.90 0.91 

C-350*80*25*3 0.09 0.34 0.70 0.86 0.89 0.90 0.91 

C-300*70*20*2.5 0.12 0.43 0.82 0.90 0.92 0.92 0.93 

C-280*70*20*2.5 0.13 0.46 0.85 0.91 0.92 0.92 0.93 

C-260*70*20*2 0.10 0.36 0.76 0.92 0.93 0.94 0.94 

C-220*60*20*2 0.17 0.61 0.90 0.93 0.93 0.94 0.94 

C-200*60*20*2 0.19 0.67 0.91 0.93 0.93 0.94 0.94 

C-160*50*15*2 0.34 0.89 0.91 0.92 0.92 0.93 0.93 

C-150*50*15*2 0.36 0.89 0.91 0.92 0.92 0.93 0.93 

C-120*40*15*2 0.73 0.89 0.90 0.91 0.92 0.92 0.92 

 

Figure 5.4: β̄ parameter.

 

(a)

 (b)

Figure 5.5: Buckling modes of C150x50x15x2 with length a) 500mm and b)

2000mm.
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(a)

 

(b)

Figure 5.6: Buckling modes of C220x60x20x2 with length a) 1000mm and b)

2500mm.
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(a)

 (b)

Figure 5.7: Buckling modes of C280x70x25x2.5 with length a) 1500mm and

b) 3000mm.
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 (a)

 

(b)

Figure 5.8: Buckling modes of C350x80x25x3 with length a) 1500mm and b)

3000mm.
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Chapter 6

GBT-based ECBL approach

Abstract

The Erosion of Critical Bifurcation Load (ECBL) approach is a practical tool

to characterize the instability behaviour of thin-walled cold-formed steel mem-

bers. In this framework, the GBT is used to �nd (1) the interaction point of

buckling modes and (2) the erosion of the critical bifurcation load referred to

this interactive buckling of two or more buckling modes associated with the

same critical load. In this sense a modi�ed version of the ECBL approach

is presented. Some numerical results involving pallet rack uprights in com-

pression are presented and compared with experimental ones, classical ECBL

approach and EN 1993-1-3.

This chapter is organized as follows. After a brief overview of

the conventional ECBL approach, a modi�ed ECBL approach is

presented in Section 6.1. In order to better explain the work�ow,

some numerical results related to pallet rack uprights in compres-

sion (RSB125x3.2 and RSB95x2.6) are shown in Section 6.2. In

particular, after evaluating the interaction points using the GBT
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(Section 6.2.1), the erosions and the ECBL buckling curves are

shown and compared in Section 6.2.2.

6.1 Erosion of Critical Bifurcation Load

Coupled instabilities represent a characteristic of thin-walled steel

members in compression or bending. The actual buckling curves

included in the design codes, i.e. EN 1993-1-3 [65], are based on

experimental tests carried out on hot-rolled sections. For the pur-

pose of practical use these curves have been adapted in order to

cover the stability design problems of thin-walled cold-formed steel

members. In case of compact sections the erosion is due to the

imperfections, while for thin-walled members, supplementary ero-

sion is induced by the phenomenon of coupled instabilities. Given

a member in compression, it is assumed that two simultaneous, in-

teracting buckling modes may occur (Fig. 6.1). If Nu is the critical

 

coupled mode

1  mode

interaction

crN

st2   mode
nd

geometrical governing
parameter

N

uN
 

Figure 6.1: Sketch of two mode interaction [71].
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ultimate load, and Ncr the ideal critical one, the following relation

may be written:

Nu = (1− ψ)Ncr, (6.1)

where ψ is the erosion factor, introduced as a measure of erosion of

critical load. Gioncu [72] classi�ed the interaction types by means

of this erosion factor, as follows:

• class I: weak interaction (W), ψ ≤ 0.1;

• class II: moderate interaction (M), 0.1 < ψ ≤ 0.3;

• class III: strong interaction (S), 0.3 < ψ ≤ 0.5;

• class IV: very strong interaction (VS), ψ > 0.5.

Obviously, an appropriate framing of each type of coupled instabil-

ity into the relevant class is very important because the methods of

analysis used for design have to be di�erent from one class to an-

other. In case of weak or moderate interaction, structural reliabil-

ity will be provided by simply using design code safety coe�cients,

while in case of strong or very strong interaction, special methods

are needed.

6.1.1 Classical ECBL approach

In [73], Dubina summarized the main coupled instability cases,

which may appear within the bar members. In particular, based

on the concept of Erosion of Critical Bifurcation Load (ECBL),

Dubina proposed an approach to evaluate the ultimate strength
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in local/distortional-global interactive buckling. This approach en-

ables to use the Ayrton-Perry format of European buckling curves

[72, 74] to calibrate appropriate buckling curves for any kind of in-

teractive local/distortional-global buckling.

To illustrate the ECBL approach, let consider Fig. 6.2 showing

the typical theoretical buckling curves of a thin-walled member in

compression (black curves) and the actual one (green curve).

In Fig. 6.2, curve G denotes the quantities associated to global

(L/D) 

(G) 

thint,

λint,th 

print,  

Cth 

Cpr 
th 

pr 

Epr 

Eth 

0 

)fA/(NN y  

L/D,pr G
0.5(N / N )   

th,D/LN  

pr,D/LN  

uN  

cr,D/L

λL/D,cr 

 

Figure 6.2: Interactive buckling model based on the ECBL approach.

buckling modes, while curve L/D those associated to local/distortional

ones. Moreover, N̄ is the dimensionless axial force (being N the

axial force and Afy the plastic strength of full cross-section) and λ̄

is the dimensionless slenderness (being NL/D,pr the smallest value

between the non-dimensional local or distortional critical buckling

load and the non-dimensional reduced section plastic resistance of

the member, and NG the critical global buckling load).
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As it can be noted, global mode (G) interacts with local/distortional

(L/D) one. The classical ECBL approach proposed by Dubina in

[73] to evaluate the ultimate strength in global-local/distortional in-

teractive buckling, hereinafter called ECBLpr, is based on the main

hypothesis that the erosion of the buckling load is most signi�cant

when the global buckling load is almost equal to the minimum value

of local/distortional one [70, 71]. In particular, in the ECBLpr the

�practical interaction point�, marked as Cpr in Fig. 6.2, is assumed

as the point where the erosion of the critical load, ψpr, is maximum.

The erosion can be expressed as follows:

ψpr = 1− N̄u/N̄L/D,pr (6.2)

where N̄u is the dimensionless ultimate load.

In the framework of the ECBLpr approach, the Ayrton-Perry for-

mula can be written as

(
N̄L/D,pr − N̄

) (
1− N̄ λ̄2

)
= αprN̄

(
λ̄− 0.2

)
(6.3)

where αpr is the imperfection factor. Substituting the coupling

point Epr in the above equation leads to

αpr =
ψ2
pr

1− ψpr

√
N̄L/D,pr

1− 0.2
√
N̄L/D,pr

. (6.4)

6.1.2 Modi�ed ECBL approach

Inspecting the graph in Fig. 6.2, It is also possible to identify the

�theoretical interaction point�, marked as Cth, corresponding to the
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intersection of the two buckling modes. Its related erosion ψth is:

ψth = 1− N̄u/N̄L/D,th (6.5)

Following the same path outlined above, a new version of the ECBL

approach, hereinafter called ECBLth, can be presented. It mainly

consists in using the theoretical erosion, ψth, instead of the practical

one, ψpr, to evaluate the buckling strength curves. The starting

point is still Eq. 6.3, but now it is solved considering the coupling

point Eth instead of Epr. The following new expression for the

imperfection factor, renamed αth, is obtained:

αth =
ψ2
th +

(
N̄L/D,pr
N̄L/D,th

− 1
)
ψth

1− ψth

√
N̄L/D,th

1− 0.2
√
N̄L/D,th

(6.6)

Figs. 6.3, 6.4 and 6.5 show the variation of αth depending on ψth,

N̄L/D,pr and N̄L/D,th. The results related to the application of the

ECBLth approach and the comparison with those coming from the

ECBLpr one are shown in the following.

6.2 Numerical results

In this section, the numerical results obtained for the rack-section-

members RSB125x3.2 and RSB95x2.6 in compression both with the

ECBLpr approach and the ECBLth one are shown and compared

with experimental results. Experimental results come from an ex-

tensive campaign [76, 77] carried out at the CEMSIG Research Cen-

ter (http://cemsig.ct.upt.ro/) within the Department of Steel

Structures and Structural Mechanics of the Politehnica University
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Figure 6.3: Variation of αth depending on ψth, N̄L/D,pr and N̄L/D,th.

of Timisoara. Also, for comparison, the curve obtained with EN

1993-1-3 [64] is included. The theoretical buckling curves and the

coupling points have been obtained using the GBT. The numerical

ultimate loads have been obtained with Geometrically and Mate-

rially Nonlinear Analysis with Imperfections included (GMNIA) us-

ing shell �nite elements implemented in the software ABAQUS/CAE

[107]. Material properties, assumed as in [76], are summarized in

table 6.1.

6.2.1 Interaction points

Figs. 6.6 and 6.7 show the theoretical buckling curves obtained

using GBT, respectively of the rack-section-members RSB125x3.2

and RSB95x2.6 both in compression with simple support-simple
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Figure 6.4: Variation of αth depending on ψth and N̄L/D,pr for a) N̄L/D,th = 0.1

b) N̄L/D,th = 1.0 c) N̄L/D,th = 2.0.
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Figure 6.5: Variation of αth depending on ψth and N̄L/D,th for a) N̄L/D,pr = 0.1

b) N̄L/D,pr = 0.5 c) N̄L/D,pr = 1.0.
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Table 6.1: Base material properties for studied sections (mean values).

Specimen Yield strength Young modulus Ultimate strength Elongation at[
N/mm2

] [
N/mm2

] [
N/mm2

]
maximum

load [%]

RSB95 461.41 207463.67 538.90 15.77

RSB125 465.18 202941.28 537.40 15.50

support boundary conditions. A distinction between Global-Local

(GL) and Global-Distortional (GD) interaction points is made. The

results show that the GD interaction points are characterized by

lower critical loads with respect to GL interaction points for both

cases. Accordingly, only the GD interaction points are considered

in the following.

6.2.2 Erosion of buckling strength and ECBL buckling

curves

As anticipated, in order to evaluate the ultimate load, GMNIA shell

�nite element analyses of the rack section members RSB125x3.2 and

RSB95x2.6 in compression have been carried out using ABAQUS.

In particular, rectangular 4-noded shell elements with reduced in-

tegration (S4R) have been used, with mesh size of about 5 mm

x 5 mm. Two types of geometrical imperfections have been con-

sidered: overall geometric imperfection, with maximum size at the

mid-length equal to 1/750 of column length (as proposed by ECCS

Recommendations [108]), and local/distortional imperfection ac-

cording to the Schafer and Peköz codi�cation [109]. Restraints
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Figure 6.6: Theoretical buckling curves for RSB125x3.2: a) GL and b) GD.
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Figure 6.7: Theoretical buckling curves for RSB95x2.6: a) GL and b) GD.
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have been set to reproduce the simple supported boundary condi-

tion with warping and section distortion restrained at both beam

ends. Only rotations about y-axis and z-axis were allowed on beam

ends, torsion being prevented. The lengths of the specimen, were

the lengths corresponding to (1) Cth interactive point to determine

the theoretical erosion, ψth and (2) Cpr interactive point to de-

termine the practical erosion, ψpr, as presented in Fig. 6.2. The

analyses have been conducted into two steps. The �rst step consists

in a GBT linear buckling analysis useful to �nd a buckling mode or

combination of buckling modes a�ne with the relevant imperfec-

tions. Two buckling analyses for each case were performed: the �rst

one using only classical global GBT modes to �nd a global imper-

fection shape and a second buckling analysis using only distortional

GBT modes to �nd a distortional imperfection shape. After impos-

ing the initial geometric imperfection, obtained as a scaled linear

combination of buckling modes from the previous step, a GMNIA

analysis with arc-length solver was performed to determine the ul-

timate load (Figs. 6.8, 6.9). The residual stresses, induced by

the cold-forming process, are not considered because they have no

signi�cant in�uence on the ultimate strength of the member [77].

Once the ultimate loads, and hence ψpr and ψth, have been evalu-

ated, the ECBL buckling curves have been obtained as described

in Section 6.1. Figs. 6.10(a) and 6.11(a) shows the theoretical

buckling curves obtained by the GBT, while the buckling curves

calculated with both the ECBLpr and the ECBLth approaches are
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shown in Fig. 6.10(b) and 6.11(b) and compared with the one ob-

tained using the design according to EN15512:2009 [110]. The very

good agreement between ECBLth and experimental results can be

observed. On the other hand, ECBLpr and EN15512 results are not

always on the safe side.
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Nu = 346.88kN

L = 1331.2mm

(a)

Nu = 283.6kN

L = 2245.3mm

(b)

Figure 6.8: Failure mode for RSB125x3.2 in a) Cth and b) Cpr.
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Nu = 240.28kN

L = 935.54mm

(a)

Nu = 215.62kN

L = 1302.0mm

(b)

Figure 6.9: Failure mode for RSB95x2.6 in a) Cth and b) Cpr.
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Figure 6.10: a) Theoretical buckling curves for RSB125x3.2 and b) buckling

strength curves for RSB125x3.2.
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Figure 6.11: a) Theoretical buckling curves for RSB95x2.6 and b) buckling

strength curves for RSB95x2.6.
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Conclusions

In the thin-walled beams, bending, torsion, cross-section distor-

tion and local e�ects act together in a coupled manner, leading to

a complex mechanical behavior. In order to face this problem it

is possible to use three-dimensional models or mono-dimensional

beam models. Mono-dimensional beam models are simplier to use

with respect to three-dimensional ones but it is necessary to look

over the classical beam theories, not capable to describe the whole

kinematics of thin-walled members, and consider more re�ned tools.

At the same time, easy usage and good predictive capabilities are

desired features of a tool available to the engineers in the every-

day design. In this �eld, the Generalized Beam Theory (GBT)

has been proven to account for section distortion and local e�ects

(identifying these deformations in well de�ned cross-section mode

families), along with classical beam kinematics, ensuring an easy

interpretation of the results with a low computational cost.

In this thesis, after a quick review of the well-known approaches

to describe the behavior of thin-walled members and an introduc-

tion to their mechanics (chapter 1), an overview on the evolution

of the shear deformable GBT has been presented (chapter 2). In
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particular, the attention has been focused on a recently proposed

GBT formulation that solves the problem of a non-perfect coher-

ence between bending and shear strain components and enables the

possibility to establish a clear relationship between the GBT results

and those of the classical beam theories. It is a crucial issue for a

correct theoretical positioning of the GBT within the framework of

the other existing beam theories as well as for the application of

the GBT in the current engineering practice. This GBT formula-

tion has been assumed as starting point for further developments

discussed in the thesis.

Within the outlined framework, a new approach able to provide

appropriate constitutive relations for GBT based beam models has

been presented (chapter 3). The approach starts from a systematic

classi�cation of the internal constraints introduced by the GBT for-

mulation and, basing on energetic arguments, is able to automati-

cally take into account the e�ect of the adopted kinematics, provid-

ing constitutive relations which mitigate the over-sti�ening of the

model due to the adopted kinematic ansatz. Furthermore, it has

been shown that the consistency between the stress and strain �elds

plays a crucial role in determining the performance of GBT mod-

els. In particular, such e�ect is proved to be particularly remarkable

when orthotropic materials are considered due to the strong cou-

plings induced by the constitutive relations. Adopting consistency

as a conceptual framework, a detailed study of the role played by

each of the cross-section deformation mode families, usually consid-
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ered in GBT formulations, has been carried out highlighting that

the use of all the mode families is needed in order to mitigate the

consistency defects intrinsic in the GBT. Numerical results con-

�rm the soundness of the approach by showing that inconsistent

stress/strain �elds lead to inaccurate results which can be predicted

and e�ciently improved within the proposed framework.

From the numerical point of view, the solution of the GBT equa-

tions is usually obtained resorting to the �nite element method.

With regard to this, a new 2-node �exibility-based GBT �nite el-

ement has been presented in chapter 4. The formulation is rather

simple and based on the hybrid complementary energy functional,

involving nodal generalized displacements and equilibrating gener-

alized stresses within each element. The stress approximation is ra-

tionally derived basing on analytical solutions of the GBT equations

of some particular cases. Displacements in the element interior are

a posteriori recovered using shape functions based the same analyt-

ical solutions and ruled by the standard nodal degrees of freedom.

The �nal set of �nite element equations has the typical format of

assumed displacement �nite elements. Hence, the element is easily

implementable into existing �nite element codes. Numerical results

on some test problems evidence its excellent predictive capability

for both displacements and stresses.

From a practical point of view, the thin-walled beams are usu-

ally made by cold-forming of steel laminates and commonly classi-

�ed as Class 4 members. These members must be designed against
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local/distortional buckling. In this framework, an approach for the

design of thin-walled members undergoing distortional buckling has

been presented in chapter 5. The proposed approach, called Em-

bedded Stability Analysis (ESA), allows to perform stability checks

on every type of thin-walled structural element, without limitations

on section type, constraints or loads. In fact, the GBT, on which

the proposed approach is based, allows to properly account for the

global and distortional instability and to coherently consider the

shear deformation of the elements, ful�lling all the speci�cations

required by the codes to the designer. Numerical results show how

the EuroCode3 simpli�ed procedure is not always on the safety

side, particularly when section distortion phenomena become rele-

vant. Hence, a synthetic parameter allowing the designer to evalu-

ate when it is more appropriate to consider the distortional e�ects

in Class 4 thin-walled pro�les stability checks has been provided.

Thin-walled members are also prone to the phenomenon of cou-

pled instabilities (for example, two simultaneous buckling modes

occur), inducing supplementary erosion of ideal buckling curves.

On this regard, in chapter 6, basing on the use of the GBT to

�nd the interaction points of simultaneous buckling modes and the

related imperfections, a modi�ed version of the Erosion of Criti-

cal Bifurcation Load (ECBL) approach has been discussed. The

proposed approach has been applied to steel rack-section members,

with RSB125x3.2 and RSB95x2.6 sections. Numerical results com-

ing from both the classical and the modi�ed ECBL approach have
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been compared with experimental ones, showing that the modi�ed

ECBL approach is in very good agreement with experimental re-

sults, while results from the classical ECBL approach are not always

on the safe side.
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