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Abstract 

In the last decades, a worldwide interest in research was focused on human-

machine interaction. In particular, a growing attention was placed on robotic 

rehabilitation devices. Recently, a prototype of a hand exoskeleton for post-

stroke rehabilitation purpose was proposed by the Group of Robotics, 

Automation and Articular Biomechanics (GRAB) at the Department of 

Industrial Engineering, University of Bologna. The prototype comprises five 

planar 1 Degree-of-Freedom (DoF) mechanisms (one per finger) globally 

actuated by two DC motors. The first motor simultaneously actuate the 

flexion/extension motion of the index, the middle, the ring and the little finger, 

whereas the second motor only actuates the flexion/extension motion of the 

thumb. Each finger mechanism is directly connected with the human finger by 

Velcro
®
 strips at the level of each finger phalange (except for the first phalange 

of the thumb), in addition a further strip connects the device to the human palm, 

thus a total of fifteen human-machine connections are needed to fasten the 

device to the patient hand. The moving link of the thumb mechanism is actuated 

by a spatial RSSR mechanism whose frame link geometry must be ad hoc 

regulated every time the device is fitted on a new patient hand. In other words, 

the frame link geometry of the RSSR mechanism changes according to the 

patient hand size. 

In this dissertation, some problems arose from the study of the hand 

exoskeleton prototype proposed by the GRAB are tackled with the aim to solve 

them in order to design a new version of the device. 

The first problem regards the high number of human-machine connections 

needed to fasten the device to the patient hand. This problem was overcome by 

proposing a new planar 1-DoF finger mechanism based on a Stephenson type 
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chain that permits to lower the total number of human-machine connections 

from fifteen to only six. The synthesis of this finger mechanism is reported and 

several simulations, with the aim to evaluate the behavior of the finger 

mechanism once fitted on hands having different sizes, are conducted. 

The second problem regards the need to synthesize the RSSR mechanism in 

order to guarantee the optimal motion and force transmission to the thumb 

mechanism once the hand exoskeleton is fitted to a new patient, i.e. for different 

frame link geometries of the RSSR mechanism. From this second problem, a 

novel synthesis procedure for the optimal motion and force transmission of a 

RSSR mechanism characterized by having a fixed link length of the floating 

links and variable frame link geometry is presented. The synthesis procedure is 

firstly presented in a general way, and then applied to the particular case of the 

hand exoskeleton device here studied. Results show that an optimal RSSR 

mechanism can be found for a small range of frame link geometries and thus 

several considerations for a compromise solution are discussed. 

The third problem regards the need to have a reliable model of the human hand 

in order to best design the overall device. The first step toward a model of the 

human hand is to model each finger as a serial manipulator and to assume that 

the flexion/extension motion of two adjacent bones of the finger can be 

modelled as a rotation about a revolute axis. Given this interest, two novel axes 

identification techniques are here presented. These techniques are based on the 

Burmester theory (i.e., a theory generally used for the synthesis of 

mechanisms), which is here used in an original way to identify an axis of 

rotation. Experimental tests, devoted to measure in vivo the spatial motion of 

the human fingers, are conducted and the relative motion between adjacent 

bones of the human finger is obtained. Finally, the axes identification 

techniques are applied and the results are discussed. 

This dissertation reports different solutions for the modelling and design of a 

new version of the hand exoskeleton proposed by the GRAB, but it is worth 

noting that the problems here tackled and the solutions found are of general 

interest, thus going beyond the scope of this thesis. 



 

 

Chapter 1 

Introduction and objectives of the thesis 

 

1.1 Post-stroke rehabilitation: hand exoskeletons 

In Italy stroke affects about 200,000 people per year and it is the leading cause 

of disability and the third leading cause of mortality (Consoli et al., 2010). The 

35% of the persons affected by stroke suffers from brain-damage-related 

disabilities e.g. lack of control of the arm and/or the hand. Traditional 

rehabilitation with a therapist is nowadays the more common way to 

rehabilitate stroke patients. The results obtained from the rehabilitation therapy 

are better and better if the rehabilitation training is more intensive and 

continuous in time (Heo et al., 2012). However traditional rehabilitation 

requires manual interaction of the therapist with the patient, consequently 

raising times and costs. These drawbacks, in addition to the lack of quantitative 

evaluations of patient improvements during the rehabilitation process, make the 

traditional rehabilitation approach not completely satisfying and successful. In 

the last decades, robotic rehabilitation gained a great interest as a useful tool to 

assist therapists during the rehabilitation of stroke patients (Chang and Kim, 

2013). The possibility to provide repetitive trainings, to assist-as-needed the 

patients (Marchal-Crespo and Reinkensmeyer, 2009) during exercises and to 

quantitatively evaluate the improvements reached by the patients during the 

rehabilitation therapy represents the main advantages of the robotic 
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rehabilitation. Nowadays, exoskeletons can be efficiently used as rehabilitation 

systems. In this dissertation the focus is on hand exoskeleton rehabilitation 

systems, also known as active ortheses. Recently, many prototypes of hand 

exoskeletons have been proposed in the literature (Mozaffari et al., 2011; Heo 

et al., 2012). From the literature it is clear that the solutions proposed to guide 

the motion of each finger are the most varied. Many solutions exploit the use of 

mechanisms coupled to the human fingers to guide the motion of the fingers 

themselves. Usually, the adopted mechanisms have more than 1 degree-of-

freedom (DoF) then they use more than one actuator to guide the motion of 

each finger, resulting in complex and bulky multi-DoF hand exoskeletons 

which consequently increase the final cost of the devices. Several authors have 

pursued different design strategies proposing hand exoskeletons with simple 

architectures and a lower number of actuators. In particular, we highlight the 

hand device of the Gentle-G (Loureiro and Harwin, 2007) that uses one actuator 

for the thumb and two actuators for the four finger together, the robot proposed 

by Masia et al. (2007) that allows finger and thumb extension to be controlled 

by the same single DoF, the HWARD (Takahashi et al., 2008) that has one 

actuator for the four fingers together, the active hand orthosis proposed by 

Rosati et al. (2009) that uses a 1-DoF four bar linkage mechanism that actuate 

the four fingers together. In addition, Wolbrecht et al. (2011) proposed an eight-

link 1-DoF mechanism designed for finger rehabilitation, and Yihun et al. 

(2012) proposed a six-link spatial 1-DoF mechanism designed for the thumb 

motion guidance. Finally, two recent papers (Troncossi et al., 2012; Mozaffari 

et al., 2013) proposed a hand exoskeleton that comprises a 1-DoF planar 

mechanism for each finger using one actuator for the thumb motion guidance 

and another actuator for the simultaneous motion guidance of the four fingers 

together. In the following Section a deep focus on this last hand exoskeleton is 

reported. 

 

1.2 The Bologna Hand Orthoses (BHO) 

Recently, a prototype of a hand exoskeleton (Troncossi et al, 2012; Mozaffari 

and Troncossi, 2013; and Mozaffari, 2013) called Bologna Hand Orthoses 

(BHO hereinafter) was proposed by the Group of Robotics, Automation and 

Articular Biomechanics (GRAB) at the Department of Industrial Engineering, 
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University of Bologna. In this section a description of this device was reported 

with the aim to: (i) give a briefly description of the design specifications who 

guided the whole project, and (ii) to highlight some practical considerations on 

the final prototype useful for a future version of such a prototype itself. From 

these considerations arose three different problems, reported in Chapters 2, 3 

and 4 respectively, whose solution represent the core of the work reported in 

this dissertation. 

1.2.1 Design specifications of the BHO project 

Precise design specifications guided the overall project of the BHO, and are 

here briefly summarized. First of all, the intended application of the hand 

exoskeleton is to rehabilitate the human hand motion capability of post-stroke 

patients. In particular, the device is intended to be used for an assist-as-needed 

rehabilitation protocol thanks to witch both the following patient ability: the 

flexion/extension of each finger and the power grasping of cylindrical objects, 

have to be rehabilitated. The main high-level design choice is to design a two 

degree-of-actuation device, i.e. a device equipped with two independent 

actuators. In particular one actuator is intended to actuate the flexion/extension 

simultaneous motion of the four fingers together, whereas the second actuator is 

intended for the flexion/extension motion of the thumb. The movement of each 

human finger is driven by a one Degree-of-Freedom (DoF) planar mechanism 

(called finger mechanism hereinafter) fixed to the finger itself, whereas the 

opposition/anteposition of the thumb is adjusted manually. The 

abduction/adduction of each finger is disregarded. Each finger mechanism, and 

in general the whole device, is fixed above the hand in such a way as to 

guarantee the interaction of the human hand with the cylindrical objects have to 

be grasped. Since the device is devoted to rehabilitation purpose, the safe of the 

patient is mandatory, thus mechanical brakes to limit the flexion/extension of 

each finger must be considered. Finally, high-resolution encoders must be 

embedded in the device in order to implement a closed-loop control in 

operation of the hand exoskeleton. 

1.2.2 Description of the BHO prototype 

In this section the built prototype of the BHO is here briefly presented.  

Figure 1.1 shows a CAD view of the BHO, whereas Figure 1.2 shows two 
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pictures of the built prototype. The device is mainly composed by five planar 

mechanisms, one per finger globally actuated by two electrical DC motors. 

The mechanisms that guide the motion of the four fingers (index, middle, ring 

and little), labelled as FMs in Figure 1.1, are based on the same kinematic 

architecture: they comprise 12 links interconnected by 16 revolute joints. As 

regards the thumb, it was decided to keep the first phalange as fix, thus the 

thumb mechanism (labelled as TM) comprises just 8 links and 11 revolute 

joints. For both the 12-link and the 8-link mechanisms, the human phalanges 

and the anatomical articulations are part of the mechanism. 

Each mechanism is placed above the human finger and it is connected to the 

finger itself by Velcro
®
 strings at the level of each human phalange. As regard 

the actuation, the first motor (labelled as M1), drives the four FMs 

simultaneously. The moving link of each FM is fixed to the shaft S, and the 

power flow comes from the motor M1 to the shaft S (and thus to the FMs) 

through the gear G1. The second actuator (labelled as M2), drives the TM. The 

motion transmission from M2 to the moving link of the TM is achieved by using 

a 1-DoF spatial four bar linkage, also known as RSSR mechanism, where R and 

FMs

RSSR 

mechanism

4R2P 

passive 

mechanism

S EF M1 M2

R

R
S

S

G2

G1

TM

 

Figure 1.1 CAD view of the BHO. 
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S stand for revolute and spherical kinematic pair respectively. The moving link 

of the RSSR mechanism is driven by the gear G2 (which is connected to the 

actuator M2), whereas the follower link of the RSSR is connected to the moving 

link of the TM. The two DC motors, mounted on a rigid frame (labelled as EF) 

placed on the back side of the hand, are fastened to the hand by a single 

Velcro
®
 string. Thus, a total of 15 Velcro

®
 connections (i.e. 12 connections for 

the FMs, 2 connections for the TM and 1 connection for the EF) are needed to 

fasten the exoskeleton to the patient hand. 

As stated in the design specification, it was decided to keep the first 

phalange of the human thumb fixed in a given pose. As a consequence, the 

motion plane of the thumb mechanism doesn’t change during the 

flexion/extension motion-in-operation of the thumb. In general, the motion 

plane of the thumb mechanism must be properly regulated according to the 

patient hand anthropometric geometry. In order to choose the better motion 

plane, a 4R2P (where R and P stand for revolute and prismatic joint 

respectively) 6-DoFs mechanism with passive joints was used. The 6-DoFs 

passive mechanism is fixed to both the frame (EF) of the exoskeleton and to the 

first phalange of the thumb. The configuration of the 4R2P mechanism can be 

manually adjusted and fixed during the fitting procedure of the hand 

exoskeleton to the patient hand. The frame link of the RSSR mechanism 

coincides with the 4R2P mechanism. As a result, if the geometry of the 4R2P 

passive mechanism have to be adjusted during the fitting procedure, the frame 

link of the RSSR mechanism consequently change, and in general the kinematic 

     

Figure 1.2 The BHO built prototype. 
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motion transmission characteristics of the RSSR mechanism move away from 

the optimal operating conditions. The link length of the coupler link of the 

RSSR mechanism, i.e. the connecting rod between the two spherical joints, can 

be manually regulated in order to provide the optimal motion and force 

transmissibility for different patients. 

1.2.3 Design challenges arising from the BHO prototype 

Several test conducted on the built prototype (Mozaffari, 2013; Loconsole et al., 

2013; Leonardis et al., 2015) show that the BHO fully satisfies all the 

requirements imposed by the design specifications. The final prototype was low 

weight, powerful and satisfactorily guides the motion of each finger for the 

power grasping tasks. In the following, several considerations arising from the 

study of the final prototype are reported with the aim to highlight some 

challenging problems to be solved for a future version of the BHO device. 

The first consideration regards the high number of human-machine 

connections. From the practical point of view, to fasten 15 Velcro
®
 strings to 

the patient hand is quite complicated and a time consuming procedure. In this 

perspective, a possible improvement of the BHO may be to reduce the number 

of human-machine connections. Maintaining the same strategies adopted for the 

BHO, i.e. to guide each finger by a planar mechanism, the challenge is to find a 

new mechanism that need of a fewer number of human-machine connections 

per finger. This problem is treated in the Chapter 2. 

The second consideration arises from the need to adjust both the 4R2P 

geometry and the coupler link length. Once again, from the practical point of 

view, this double-regulation procedure is time consuming and it is difficult to 

find the best coupler link length as well. As a result, a non-optimal motion and 

force transmission of the RSSR mechanism to the thumb mechanism may 

occur. In this perspective, a possible improvement may be to reduce the number 

of regulation needed in the fitting procedure. In particular, the best choice may 

be to maintain the passive regulation of the 4R2P mechanism disregarding the 

RSSR coupler link length regulation. The problem thus reduces to synthesize an 

RSSR mechanism characterized by the fact that the motion and force 

transmission quality must be optimal for all the possible frame link geometries 

arising from the 4R2P regulation. This problem is treated in the Chapter 3. 

The final consideration arises from the need to have a reliable mathematical 
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model of the hand motion in order to predict the configuration assumed by each 

finger around the cylinder to grasp. Generally speaking, a model is useful for 

the optimal synthesis of each finger mechanism and for the study of the 

synchronized motion of the fingers around the cylinder to grasp. As a first step 

toward a model of the human hand was to model each finger as a serial 

manipulator and to assume that the flexion/extension motion of two adjacent 

bones of each finger can be modelled as a rotation about a revolute axis. In this 

perspective, two novel joint axes identification techniques based on the 

Burmester theory were presented. The Burmester theory is generally used for 

the synthesis of mechanisms, but it is here used in an original way to identify an 

axis of rotation. This problem is treated in the Chapter 4. 

 

 

 

 

  



 

 



 

 

Chapter 2 

Design of a new finger exoskeleton for a lower number of 

human-machine connections 

 

2.1 Introduction 

As stated in Chapter 1, the final goal of the research activity conducted by the 

Group of Robotics, Automation and Articular Biomechanics (GRAB), is to 

design a new hand exoskeleton for rehabilitation purposes, which could 

possibly represent a good trade-off among simplicity, functionality and cost. In 

particular, the rehabilitation target is to drive the motion of the human finger in 

order to execute a classical post stroke rehabilitation task: the power grasping of 

cylindrical objects. This particular task was chosen as a reference task because 

rehabilitation of power grasping is, in general, one of the main manipulation 

ability that stroke patients need to recover first. To achieve this goal, several 

preliminary choices have to be taken into account by the designer. In (Troncossi 

et al, 2012a-b) a systematic analysis of the principles ruling the design process 

of hand exoskeletons is reported. Generally speaking, the design of a hand 

exoskeleton must face a wide range of choices, such as: the solution used for 

the motion guidance of each finger, the number of actuators, the motion 

transmission system, the control scheme, etc. The best possible device has 

probably not been invented yet and a trade-off must be found. In Mozaffari and 

Troncossi (2013) is shown that a good trade-off could be found by adopting the 

following strategies: (i) the use of a 1-DoF mechanism to guide the motion of 
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each finger, (ii) to place the mechanism above the finger in order to avoid 

interferences between the hand exoskeleton and the cylinder to grasp (iii) the 

use of two actuators only, one to actuate the thumb motion and the other one to 

actuate the four finger simultaneously. As a final result the hand exoskeleton 

device should be a good compromise among simplicity, functionality and costs. 

The BHO device (recalled in Section 1.2) was built according to this particular 

design philosophy and the resulting prototype fully satisfies the expectations 

(Mozaffari, 2013; Leonardis et al., 2015).  

In Section 1.2 of this dissertation, some considerations on the final BHO 

prototype were reported with the aim to highlight some new challenging 

problems to be tackled for a future version of the BHO. Particularly interesting 

for the aim of this Chapter is the consideration regarding the high number of 

human-machine connections needed to fasten the BHO to the patient hand. In 

order to tackle this problem, a new solution to reduce the number of human-

machine connections is here presented. The proposed solution is to adopt a new 

mechanism for the finger guidance of the five fingers. In particular, this Chapter 

deals with the design of a 1 DoF Stephenson type mechanism (i.e. a 6-link 

mechanism) for a finger exoskeleton. The finger exoskeleton, fastened to the 

second phalange of the human finger and to the palm, guides the 

flexion/extension motion of the finger while generating desired grasping 

trajectories. Preliminary results and a 3D printed prototype of the proposed 

finger exoskeleton are reported. The results obtained showed that the proposed 

finger exoskeleton can be successfully adopted for the motion guidance of the 

fingers of a hand exoskeleton; moreover, since for the 6-link mechanism only 

one human-machine connection per finger is necessary, in case the actual 12-

link mechanism used for the BHO will be replaced by the 6-link mechanism 

here studied, the total number of human-machine connections drops to five, i.e. 

one per finger. 

 

2.2 Design of the new finger exoskeleton 

The design of the finger exoskeleton is reported in this Section; it is divided in 

three steps, the first step concerns the choice of a hand grasping model, the 

second step concerns the choice of the mechanism used to guide the motion of 

the finger, whereas the third step concerns the synthesis of the selected 
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mechanism. 

2.2.1 The grasping model 

According to a conventional model, the human hand has 20 DoFs (Kapandji, 

1982; Buchholz et al., 1992). Each finger is usually modelled as a 4-DoF serial 

manipulator. The first DoF exploits the abduction/adduction motion of the first 

phalanx with respect to the hand metacarpus, whereas the other three DoFs 

exploit the flexion/extension motion of the three phalanges of each finger. As 

universally accepted, a simplification of the complex motion of the hand is to 

consider the three flexion/extension revolute axis as parallel lines (Buchholz 

and Armstrong 1992; Bullock et al., 2012). In this Chapter a grasping model 

inspired to the one proposed in Burton et al (2011) is used. In Buchholz et al 

(1992) the model of the human hand is obtained by considering the phalanges 

as rigid links and the relative motion of two adjacent phalanges is considered as 

a rotation about an axis passing through the MCP, the PIP and the DIP human 

joints respectively. The MCP joint is the metacarpal joint, i.e. the joint among 

the metacarpal phalange of the hand and the first phalanx of the finger, whereas 

the PIP (DIP) joint is the joint among the first (second) phalange and the second 

MCPPIPDIP

Length (L)
W

id
th

 (
W

)

Ow

l0

l1
l2l3

z

y

 

Figure 2.1 The hand model in Buchholz et al (1992). 
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Table 2.1 Average hand lengths (L) and hand width (W) of an European male, taken 

from Pheasant (2003). 

Percentile L (mm) W (mm) 

5
th

 173 78 

50
th

 189 87 

95
th

 205 95 

 

(third) phalange. See Appendix A for further details. With reference to Figure 

2.1 (according to Buchholz et al, 1992) the length li, i = 0,..,3, of each finger 

phalanx and the position of each human joint (MCP, PIP and DIP) can be 

correlated to the length (L) and to the width (W) of the human hand. The 

position of each human joint (MCP, PIP and DIP) is given with respect to the 

system of coordinates (with axes x, y, z and origin Ow) fixed to the wrist, Figure 

2.1. In Table 2.1 average values, taken from Pheasant (2003), of L and W of 

European males and corresponding to the 5
th 

percentile, 50
th

 percentile and 95
th

 

percentile are reported. The hand model used in this Chapter for the grasping of 

a cylindrical object of diameter d is reported in Figure 2.2.  

The model considers a planar motion of the human finger, neglects the 

abduction/adduction of the first phalange of the finger and considers the contact 

Cc

l0

a2

a3

a4

MCP

PIP

DIP

l1

l2

l3

a5

a1
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Figure 2.2 The hand model used. 
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between the finger and the cylinder to grasp occurring at the MCP, PIP and DIP 

human joints and at the fingertip (Burton and Vaidyanathan, 2011). It provides 

the configuration of the human finger, i.e. the flexion angles 
h
βi (i = 1, 2, 3) 

where the superscript h refers to the hand model. The contact among the human 

joints and the cylinder to grasp is modelled as circles whose diameter coincides 

with the width of the human joint, placed in contact with the surface of the 

cylinder. With reference to Figure 2.2, a1 is the distance from the centre of the 

wrist and the cylinder to grasp measured along the direction identified by the 

vector OwCc, where Cc is the trace of the axis of the cylinder in the plane 

defined by the xy axis of the wrist, whereas ai (i = 2,..,5) are the radii of the 

contact circles. According to Burton et al. (2011), the grasping model assumes 

a5 = a4 / 2 as a good approximation of the fingertip contact. To the author’s 

knowledge, average measures of the human joints width are not reported in the 

literature. Thus, we measured the human joints of the index finger of ten people 

of average age of 32 years old. In Table 2.2, the mean values (m) and the 

standard deviation (sd) of the measured human joints are reported. We define as 

slim finger, a finger having the joints width ai equal to ia = m - sd , similarly 

we define as medium finger and large finger fingers having the joint widths 

equal to ia = m  and ia = m sd  respectively.  

2.2.2 The proposed mechanism for the finger guidance 

The feasibility study of a planar 1-DoF mechanism, whose topology is 

conceived as suitable for all the fingers is the target of this first design step.  

Some basic considerations for the synthesis of the targeted 1-DoF planar 

mechanism can be done, starting from the Grubler’s formula for planar 

mechanisms: 

Table 2.2. The anthropometric data measured. Measures reported in mm. 

 a1 a2 a3 a4 

m 70.9 17.3 12.5 27.3 

sd 4.79 1.56 1.17 2.35 
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 3 1 2 21 2l n c c     (2.1) 

where l is the number of DoFs of the mechanism, n is the number of links and 

c1 and c2 are the number of lower pairs (revolute and prismatic joints) and 

higher pairs (cam-follower type joints) respectively. Usually, cam-follower type 

joints are not adopted in hand exoskeletons for many reasons, e.g. complex 

design of a bilateral constraint, likelihood of high friction forces, etc. 

Considering mechanisms with lower pairs only and assuming  1l  , the 

mechanism topologies exploiting this features are reported in Table 2.3. 

In this Chapter the focus is on the six-link mechanisms. Planar six-link 

mechanisms comprise seven links and six revolute joints and have two well-

Table 2.3. Mechanism topology to exploit 1-DoF planar motion with lower pairs. 

n 4 6 8 10 12 … 

c1 4 7 10 13 16 … 

 

 

Figure 2.3 The finger exoskeleton based on a Stephenson III mechanism. 
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known topologically distinct configurations, called the Watt and the Stephenson 

six-bar chains.  

Depending on which link is considered as the frame link, the Watt and the 

Stephenson chain yields to the Watt I, Watt II, Stephenson I, Stephenson II and 

Stephenson III linkages respectively. In this study, the Stephenson III 

mechanism was selected as a possible candidate for the motion guidance of the 

human finger. In Figure 2.3, the resulting exoskeleton based on this mechanism 

is reported. The first and the second phalanges are considered as parts of the 

mechanism, in particular link 5 of the mechanism comprises the second 

phalanx, whereas link 1 comprises the palm. The link 1 is the frame link, 

whereas link 2 is the moving link. The exoskeleton couples the 

flexion/extension movements of the first two phalanges through a number of 

poses (i.e., positions and orientations) corresponding to the grasp of a number 

of different cylindrical objects, and entails a natural motion of the finger along 

the grasping trajectory. The third phalange is free, i.e. its motion is not guided. 

The six-link mechanism is composed by two loops as shown in Figure 2.4.  

The closure equations of the Stephenson mechanism are: 
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Figure 2.4 The Stephenson mechanism. 
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2

   


    

2 3 3 2

2 1 1

O D DE EO O O 0

O D DC CG GO O O 0
 (2.2) 

By manipulating Equations (2.2), relationships between the phalanges 

configuration angles β1, β2 and the input angle θ2 are obtained. These equations 

are not reported for the sake of conciseness. The mechanism singularity occurs 

when the links described by the vectors CG and GO1, and the links described 

by the vectors DE and EO3 are aligned. The synthesis problem here to tackle is 

to find the mechanism capable to guide the human phalanges so as they reach 

positions compatible with the selected power-grasping task while avoiding 

singularities of the mechanism during the grasping trajectory. 

2.2.3 The dimensional synthesis 

A numerical procedure is used to find a solution x, namely a vector containing 

the link lengths ˈr1,ˈˈr1, r2, ˈr3, ˈˈr3, ˈˈˈr3, r4, ˈr5 and ˈˈr5 by solving a constrained 

minimization problem specified as follows:  

 
 

min such that cf
 


  b b

c x 0
x

l x u
  (2.3) 

where the function fc(x), defined in details below, is the cost function that must 

be minimized; the vector c(x), also defined in details below, contains the 

constraints of the problem; the vectors lb and ub contain the lower and upper 

bounds of the solution vector x, respectively. The function fc(x) is defined as 

follows. Being the lengths li, i = 0,..,3, corresponding to the hand sizes reported 

in Table 2.1 and for a medium finger size of the finger, six finger configuration 

are considered. In particular five finger configurations corresponding to the 

grasp of five different cylindrical objects of diameters d, equals to 50, 60, 70, 

80, 90 mm, respectively, and another configuration corresponding to the finger 

fully-extended are considered. For a generic vector x and considering a rotation 

of the moving angle θ2 from 0 to 2π, the actual values 
a
β1, 

a
β2 are computed and 

the cost function is defined for each one of the six configurations for which 

1 1

a h   , thus the cost function fc(x) is: 
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 
 

2
6

2, 2,

1 6

a h

i i

c

i

f


  
x  (2.4) 

where the index i = 1,..,6 refers to the six targeted finger configurations; the 

superscript a is referred to the actual mechanism; whereas the superscript h is 

referred to the hand grasping model. The vector c(x) is defined as: 

  1 1

2 2

s s

s s

   
  

  
c x  (2.5) 

where sk , k = 1,2, are the values of the angle between the two links described 

by the vectors CG and GO1 and the vectors DE and EO3 respectively, whereas 

sk  are the maximum threshold values of the angle sk . To keep   c x 0  

means to avoid the mechanism singularities through all the desired trajectory. 

The optimization, performed by using a Genetic algorithm implemented in 

Matlab
®
, was done for the three hand lengths reported in Table 2.1, thus three 

different Stephenson mechanisms were found. 

 

2.3 Simulations: result and discussions 

Several simulations on the synthesized mechanism were conducted. The aim of 

the simulations is to evaluate the kinematic and the kinetostatic behaviour of the 

three exoskeletons found when they are used to guide the motion of a finger 

having a generic size. Considering a linear interpolation of the three hand sizes 

reported in Table 2.1 thirty one different hand sizes were extrapolated, 

moreover for each resulting hand size the index finger is considered to have 

slim, medium and large size, thus finally ninety three different index fingers are 

considered for these simulations. For the kinetostatic analysis of the 

mechanisms the force needed to grasp a cylinder is modeled as a force equal to 

F = 15 N applied in the middle of the second phalange and having direction 

perpendicular to the phalange itself. The counter torque M applied to the 

moving link 2 and the MCP and the PIP joint reaction forces, here called RMCP 

and RPIP respectively, are computed. The angular error ei, i = 1,..,6, that 

occurred in reaching each of the six prescribed finger configurations is 
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computed. The error ei is defined as 
2, 2,

a h

i i ie      for the configuration 

where 
1 1

a h   . Moreover, the total angular error etot in reaching all the six 

prescribed finger configurations is defined as 
6

2, 2,

1

a h

tot i i

i

e


    , where the 

index i (i = 1,..,6) refers to the six configurations that the finger must reach. 

Each one of the ninety three mechanisms tested is considered as useful for the 

motion guidance of the finger, if: each errors ei ≤ 10°, the error etot ≤ 30° (i.e. an 

average acceptable angular error of 5° for each one of the six configurations is 

admitted), and the maximum magnitude of the reaction forces RMCP and RPIP are 

less than 50 N. These thresholds were set by the authors as deemed common 

sense values. 

Results of the simulations are summarized in Table 2.4, whereas in Figure 2.5 

the total angular error etot is reported with respect to the different hand sizes 

considered. 

The finger exoskeletons found by considering the hand size corresponding to 

the 5
th

, 50
th

 and 95
th

 percentile can be satisfactorily used for six, nine and three 

hands respectively. Results suggest that the synthesized finger exoskeletons can 

be used mainly for hand sizes close to the hand for which they are found.  

However, the results are good considering that in general the mechanisms 

usually achieve good performances just for the reference task to which they are 

designed and small changes in the link lengths could provide low performances.  

A 3D printed prototype of the finger exoskeleton was built, Figure 2.6. 

The link lengths of the prototype correspond to the link lengths of the 

mechanism found for a hand size corresponding to the 50
th

 percentile. 

Table 2.4. Results of the simulations. 

Percentile 5
th

 50
th

 95
th

 

W x L [mm] 173x78 189x87 205x95 

etot [°] 29.2° 29.4° 17° 

ei [°] 8.3° 6.8° 3.6° 

max(RMCP,RPIP) [N] 13.8 15.6 28.5 

satisfying test 6 / 93 9 / 93 3 / 93 
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Preliminary qualitative tests of such a prototype showed, as expected, a very 

good behaviour of the exoskeleton for hand sizes close to the 50
th

 percentile. 

In order to improve the number of hand sizes to which the exoskeleton 

can be fit, other simulations were conducted.  

The possibility to use adjustable link length is investigated. In particular, 

interesting results were found by admitting to adjust the position of the revolute 

joint centered in the point C along a direction parallel to the second phalange 

(i.e. to adjust the length ˈr5).  

Results of the simulations, summarized in Table 2.5 and reported in Figure 2.7, 

showed that the finger exoskeletons found by considering the hand size 

corresponding to the 5
th

 , 50
th

 and 95
th

 percentile can be satisfactorily used for 

twenty seven, forty five and fifteen hands respectively. Results showed that by 

admitting to adjust the link length ˈr5, the synthesized finger exoskeletons can 
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Figure 2.5 Errors etot for the different hand sizes tested. Blue lines refer to the slim 

fingers, green lines refer to the medium finger, whereas red lines refer to large finger. 

Table 2.5 Results of the simulations for an adjustable length ˈr5. 

Percentile 5
th

  50
th

  95
th

  

W x L [mm] 173x78 189x87 205x95 

etot [°] 24.1° 23.2° 15.5° 

ei [°] 9.6° 9.6° 7.7° 

max(RMCP,RPIP) [N] 15.9 16 35.2 

adjustable length [mm] -1.2 ÷ 7.2 -5.6 ÷ 8 -3.7 ÷ 1 

acceptable cases 27 / 93 45 / 93 15 / 93 
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be used for an extend range of hand sizes, in particular the most interesting 

results are obtained for the mechanism corresponding to the 50
th

 percentile hand 

sizes.  

Finally, other four mechanisms to guide the motion of finger having size 

corresponding to the 50
th

 percentile were synthesized and analysed. The results 

of the simulations are reported in Table 2.6 and revealed that a mechanism 
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Figure 2.7. Errors etot for the different hand sizes tested considering as adjustable the 

position of the revolute joint identified by the point C. Blue lines refer to the slim 

fingers, green lines refer to the medium finger, whereas red lines refer to large finger. 

 

Figure 2.6 A 3D printed preliminary prototype of the proposed finger exoskeleton. 



A NEW MECHANISM FOR THE FINGER GUIDANCE  33 

 

 

designed for an hand having L = 187.9 mm and W = 86.4 mm could be 

satisfactorily used on a large number of hands by admitting a reasonable 

variability of the link ˈr5. 

 

 

 

  

Table 2.6 Results of the simulations considering the use of an adjustable link length.  

Percentile - - 50
th
 - - 

W x L [mm] 186.6x85.8 187.9x86.4 189x87 190.06x87.5 191.1x88.06 

ei [°] 9.3° 9.9° 9.6° 9.5° 9.7° 

etot [°] 27.7° 23.1° 23.2° 27.2° 25.1° 

max(RMCP,RPIP) [N] 14.5 17.9 16 23.2 17.1 

adjustable length [mm] -7 ÷ 7.8 -5.6 ÷ 6.9 -5.6 ÷ 8 -4.2 ÷ 7.3 -5.5 ÷ 4.5 

acceptable cases 51 / 93 48 / 93 45 / 93 42 / 93 45 / 93 

 



 

 



 

 

Chapter 3 

Dimensional synthesis of the RSSR mechanism for the 

optimal transmission of motion and forces to the thumb 

mechanism 

 

3.1 Introduction 

Recently, our research group built a new hand exoskeleton called Bologna 

Hand Orthoses (BHO) for the robotic rehabilitation of post-stroke patients. In 

Chapter 1, the design specifications that guided the overall project in addition to 

a brief description of the final prototype were reported. Moreover, some 

considerations on the final prototype were discussed with the aim to highlight 

some challenging problems to be solved for a future version of the device. 

Particularly interesting for the aim of this Chapter is the problem regarding the 

motion transmission to the thumb. 

The design philosophy adopted to build the BHO, is to keep fix the first 

phalange of the thumb, and to guide the flexion/extension motion of both the 

second and third phalanges only. In particular, the flexion/extension of the 

thumb is guided by a planar mechanism placed above the finger; the mechanism 

comprises 8 links and 11 revolute joints, and both the human phalanges and the 

anatomical articulations are part of the mechanism. Generally speaking, to fix 

the pose of the first phalange of the thumb means to fix the plane of motion of 

the thumb with respect to the four fingers. Thus, for the BHO, the plane of 

motion of the thumb mechanism doesn’t change during the flexion/extension 
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motion-in-operation of the thumb. The therapist, during the fitting procedure of 

the BHO to the patient hand, must choose the appropriate pose of the first 

phalange of the thumb, namely the appropriate pose of the plane of motion of 

the thumb mechanism, according to the natural patient hand anthropometric 

geometry. In order to choose the best plane of motion, a passive mechanism 

(i.e. a mechanism with passive joints) was used (see Chapter 1 for further 

details). The passive mechanism comprises four revolute and two prismatic 

joints, thus it is a 4R2P mechanism. The configuration of the 4R2P passive 

mechanism can be manually adjusted and fixed during the fitting procedure of 

the hand exoskeleton to the patient hand. The motion is transmitted from the 

DC motor to the moving link of the thumb mechanism by the use of a RSSR 

mechanism. The frame link of the RSSR mechanism coincides with the 4R2P 

mechanism. As a result, since the geometry of the 4R2P passive mechanism 

must be regulated during the fitting procedure, the frame link of the RSSR 

consequently changes. In general, to change the geometry of a mechanism 

means to change its performances in terms of motion and force transmission 

characteristics; in order to avoid this problem, the link length of the coupler link 

of the RSSR mechanism used in the BHO (i.e. the connecting rod between the 

two spherical joints) can be ad hoc regulated in order to provide the optimal 

motion and force transmissibility for different patients. However, from the 

practical point of view, it results quite difficult to properly set the link length of 

the coupler link, with the risk, in general, that the motion and force transmission 

characteristics of the RSSR mechanism move away from the optimal operating 

conditions. A possible improvement of the existing solution can be obtained by 

simplifying the fitting procedure. Given this interest, the idea is to avoid the 

adaptability of the coupler link of the RSSR mechanism, thus defining a new 

RSSR mechanism capable to transmit as-best the motion and forces to the 

thumb mechanism for a given range of frame link geometries (thus 

corresponding to different hand patient geometries). 

This Chapter deals with the dimensional synthesis of a RSSR mechanism 

characterized by having fixed link lengths of the floating links, while ensuring 

the optimal motion and force transmission characteristics for different frame 

link geometries. The synthesis procedure is firstly presented in a general way, 

and then applied to the BHO hand exoskeleton. 
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3.2 The RSSR mechanism 

3.2.1 State of the art of the RSSR mechanism synthesis 

The RSSR mechanism is one of the most popular mechanisms typically used to 

transmit motion and forces between two shafts with skew axes (called input and 

output axes hereinafter). 

The synthesis of the RSSR mechanism for the optimal rotatability and/or 

optimal transmission of motion and forces has been extensively studied in the 

literature, and different synthesis procedures have been proposed. Since the 

optimization of the force transmission guarantees a better functioning of the 

mechanism (Balli and Chand, 2002), many authors presented original synthesis 

procedures exploiting the definition of indices whose measure assesses both the 

quality of motion and force transmission (Balli and Chand, 2002; Sutherland 

and Roth, 1973; Sutherland, 1981; Tsai and Lee, 1994; Chen and Angeles, 

2007). Remarkable works deal with the mobility analysis of the RSSR 

mechanism (Nolle, 1969; Kazerounian and Solecki, 1993), the synthesis of 

fully rotatable RSSR linkage with transmission angle control (Gupta and 

Kazerounian, 1983; Alizade and Sandor, 1985; Rastegar and Tu, 1992; Soylu 

and Kanberoglu, 1993), the transmission optimization of the RSSR mechanism 

with a given rocker swing angle, a corresponding crank rotation and the 

optimum force transmission (Söylemez and Freudenstein, 1982; Söylemez, 

1993; Soylu, 1993), the optimum path generation synthesis (Alizade et al., 

1976; Sancibrian et al., 2007), the synthesis based on a given time ratio (Balaji 

Rao and Lakshminarayana, 1984), and the RSSR mechanism with partially 

constant transmission angle (Şaka, 1996). As regards the measure of both the 

quality of motion and force transmission of mechanisms, several indices are 

available in the literature. An extended literature review is reported by Balli and 

Chand (2002). Sutherland and Roth (1973) introduced the Transmission Index 

(TI) as an indicator of the quality of motion transmission for single loop spatial 

mechanisms. The value of TI depends only on both mechanism geometry and 

configuration, whereas no information on forces and torques acting on each 
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joint is required to define TI. However, optimizing TI means maximizing the 

mechanism performances of both motion and force transmission (Sutherland 

and Roth, 1973; Sutherland, 1981). 

3.2.2 Basic kinematic equations 

The spatial RSSR mechanism has four binary links: the driving link is coupled 

to the frame and to the coupler through a revolute and a spherical pair 

respectively; the coupler is then connected to the follower by a spherical pair, 

and the follower is connected to the frame through a revolute pair. Disregarding 

the rotation of the coupler about the axis defined by the two spherical pair 

centres, the mechanism has one degree of freedom. It converts a rotation about 

one axis into a rotation about a second axis, generally skew in space, with a 

variable transmission ratio. Depending on the link geometry, the linkage can be 

of three types: drag-link, crank-and-rocker or double-rocker (see Nolle, 1969 

for further details). 

For any given frame link geometry, the parameters needed to define the 
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Figure 3.1 The RSSR spatial mechanism. 
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mechanism geometry, the transmission ratio τ and the Transmission Index TI 

are reported below. 

With reference to Figure 3.1, two right hand Cartesian coordinate systems S0 

(with axes x0, y0 and z0 and origin O0) and S1 (with axes x1, y1 and z1 and origin 

O1) fixed to the frame of the RSSR mechanism are defined. The axis z0 of S0 

coincides with the input axis of the RSSR mechanism, whereas the axis z1 of S1 

coincides with the output axis of the mechanism. The axes x0, y0 and x1, y1 are 

arbitrarily oriented. The origin O0 (O1) of S0 (S1) is on the intersection of the 

input (output) axis with the plane containing the centre A (B) of the spherical 

joint and orthogonal to the input (output) axis. The relative pose of S1 with 

respect to S0 is given by a 4x4 matrix M01, generally written in the form: 

 
11 12 13 01

0
21 22 23 01

01

31 32 33 010 1

0 0 0 1

s s s x

s s s y
M

s s s z

 
 

     
  
 
 

01 1 0S O O
 (3.1) 

where the 3x1 vector 
0
(O1 - O0) collects the coordinates  01 01 01x  y  z  of the 

origin O1 measured in S0, whereas the 3x3 matrix S01 represents the relative 

orientation of S1 with respect to S0. A well-known parameterization of the 3x3 

matrix S01 makes use of the three Euler angles. In this Chapter, the angles z , 

y  
and x  are the Euler angles corresponding to three rotations performed 

about the moving axes z, y, x, respectively, to move S1 from S0 to its actual 

orientation. 

The moving link lengths are defined as follows: 

 r1 = |(A - O0)|, driving link (link 1) length, i.e. the distance of point A 

from the input axis; 

 r2 = |(B - A)|, coupler link (link 2) length, i.e. the distance between 

points A and B; 

 r3 = |(B - O1)|, follower link (link 3) length, i.e. the distance of point B 

from the output axis; 

The input and output link angles are defined as follows: 

 θ1, input link angle measured about z0 according to the right-hand rule 

from the axis x0 to the vector (A - O0); 
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 θ3, output link angle measured about z1 according to the right-hand rule 

from the axis x1 to the vector (B - O1). 

The equation that relates the rotation of the input and output shafts of the RSSR 

mechanism can be obtained by the following constraint equation: 

    2

2 0
T

r    A B A B  (3.2) 

Expanding (3.2) and rearranging the terms leads to the mechanism 

displacement equation: 

3 3d cos esin f  

 

(3.3) 

where 

   

   

3 11 01 1 1 21 01 3 1 3 1 3 31 01

3 12 01 1 1 3 22 01 1 1 3 32 01

2 2 2 2 2 2

2 3 01 01 01 1 1 01 1 01 1 1

2 2 2

2 2 2

2 2

d r s x r cos s y r r r sin r s z

e r s x r cos r s y r sin r s z

f r r z y z r r x cos y r sin

 

 

 

    

    

       

  

By substituting trigonometric identities into the general displacement equation 

(3), the relationship between 1  and 3  is: 

3
2 2

atan acos
e f

d d e


  
    

   
 (3.4) 

The plus or minus sign refers to the two different modes to assemble an RSSR 

mechanism for a given 1 . 

The transmission ratio τ, defined as the ratio between the angular velocities 
3  

and 
1  of the output and input shafts respectively, is given by: 

3 3 3

1 3 3

cos e' sin f '

d sin e co

'

s

d  

  


 
 


 (3.5) 

where 
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According to the definition of TI given by Söylemez and Freudenstein (1982) 

and referring to Figure 3.2, the Transmission Index TI of a linkage can be 

expressed as: 

2 21TI cos sin    

t

23

23

F

F  
(3.6) 

where, 

A B

O1

r2

r3

Output 

axis

F
 a

23

F
 
23

F
 r

23

F
 t

23

μ

α

x1

y1

z1

S1

 

Figure 3.2 Force transmission between the coupler and the output link of the RSSR 

mechanism. 
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F23 is the force exerted on the output link by the coupler that, ignoring friction, 

has the direction of the vector (B - A). The force F23 can be decomposed into 

three orthogonal components r

23
F , a

23
F  and t

23
F . r

23
F  is the force component 

exerted on the radial direction defined by the vector (B - O1), 
a

23
F  is the axial 

force component exerted on the direction of the output axis, while t

23
F  is the 

force component in the plane orthogonal to the output axis and tangent to the 

trajectory of point B. The forces r

23
F  and a

23
F  do not produce torque on the 

output shaft, whereas t

23
F  is responsible for the output torque. Angle µ is the 

angle between vectors (B - A) and (B - O1), angle α is the angle between t

23
F  

and the resultant of t

23
F  and r

23
F . The Transmission Index, variable between 0 

and 1, generally depends on the mechanism configuration, i.e. it is a function of 

the driving link angle θ1. A linkage configuration for which TI = 1 has the 

optimum force and motion transmission performances (Sutherland and Roth, 

1973). 

 

3.3 The proposed synthesis procedure 

To univocally describe the geometry of the RSSR mechanism, a set U1 of n 

geometry parameters is necessary. Let the set U1 be split into two subsets, U2 

and U3, comprising m (m<n) and (n–m) of the n geometry parameters 

respectively ( 3 1 
2

U U U  and 3 2U U , 
2 1

U U ). The elements of the 

sets U2 and U3 are here called design parameters and design variables 

respectively. The design parameters are usually considered as univocally 

assigned in the above mentioned synthesis problems, whereas the design 

variables are determined by the synthesis procedures. For example, in Söylemez 

and Freudenstein (1982), the design parameters are the parameters 
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corresponding to the frame link geometry, whereas the design variables are the 

moving link lengths of the resulting RSSR mechanism. A different problem can 

be considered if each element 2 ,iu , 1i ,..,m , of the set U2 is required to vary 

within a given range of values (bounded between the values 2 ,iu  and 2 ,iu ) rather 

than being assigned as a single value, thus m sets  2 2 2 2,i ,i ,i ,iu |u u ,u   2,iU ,

1i ,..,m , are consequently defined. This represents a new synthesis problem. 

In general, varying a design parameter means obtaining a different mechanism 

which has different functional performances as a consequence. Therefore 

imposing the m sets 
2,i

U  of the design parameters means obtaining an infinite 

number of U3 sets of the design variables, i.e. obtaining a set of different 

mechanisms which have again different functional performances as a 

consequence. The synthesis problem here tackled is to impose the sets 
2,i

U ,

1i ,..,m , of the design parameters and find the set of design variables that 

optimizes some objective function while satisfying at the same time constraints 

and technical specifications given by the designer, according to the problem 

under study. To guarantee the optimal force transmission performance for the 

resulting mechanism, the Transmission Index TI is here taken as the objective 

function. The particular synthesis problem here tackled is to find the design 

variables of the RSSR mechanism, aiming at the optimization of the force 

transmission, while satisfying the following constraints: definition of the design 

parameters and determination of the m sets 
2,i

U , prescription of the extreme 

angular position values for both the input and the output links, prescription of 

the upper and lower bounds of the transmission ratio and prescription of the 

upper and lower bounds of the value of the design variables. 

In the author’s opinion, an efficient solution of this problem is far from being 

straightforward, and an analytical solution of the problem is not feasible in 

general. 

3.3.1 The algorithm 

The problem is to find the design variables, i.e. to synthesize an RSSR 
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mechanism for m given sets 
i2,

U  of the design parameters ( 1i ,..,m ), where 

the design parameters are chosen as the six independent parameters x01, y01, z01, 

βx, βy, βz needed to define the 4x4 matrix M01 (hence m = 6). Each design 

parameter is here considered as variable within a given range of values. The 

design variables are the three link lengths r1, r2 and r3 of the moving links. As 

regards the input (output) link, the initial position angle 
10  (

30 ) and the swing 

angle 1  ( 3 ) are assigned by the designer. In addition, since severe 

constraints for this synthesis problem are imposed, tolerances on the reaching of 

the extreme position values for the output link are admitted. In particular, the 

angular position maximum errors 1  and 2  on the initial position angle 30 , 

and on the swing angle 3  respectively, are set by the designer. Similarly, the 

upper and lower bounds  MIN MAX, 
 

for the transmission ratio values are 

assigned by the designer. 

The aim of this study is the dimensional synthesis of the moving links of an 

RSSR mechanism, taking the optimization of the force transmission as the 

objective function, while respecting prescribed constraints (i) on the m given 

sets 
2,i

U  of the design parameters, (ii) on given angular position values for the 

input link, (iii) on given angular position values, and relative angular position 

maximum errors, for the output link, (iv) on the upper and lower limits for the 

transmission ratio, and finally (v) on the upper and lower limits for the value of 

the design variables of the resulting RSSR mechanism. 

A numerical procedure is used to find a solution x, namely a vector 

containing the three link lengths r1, r2 and r3, by solving a constrained 

minimization problem. From the given m sets i2,
U , N different sets kV , 

1k ,..,N ,  2, 2 2 1k i ,i ,iu |u ,i ,..,m  V U  are selected by the designer 

according to the specific application studied. The constrained minimization 

problem is specified as follows: 

 
  1

  such that  
k

c
x

k ,..,N
min f

  


  b b

c x 0
x

l x u  
(3.7) 

where the function  cf x , defined in detail below, is the cost function returning 

a scalar that must be minimized; the vectors  kc x , also defined in detail 
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below, are the constraint vectors, i.e. they are vectors whose components 

represent the constraints; the vectors  1 2 3 min min minr r r
b

l  and 

 1 2 3 max max maxr r r
b

u  contain the lower and upper bounds of the solution 

vector x, respectively. 

The cost function  cf x  and the constraint vectors  kc x  are defined as 

follows: for a generic vector x and for each 
kV ( 1k ,..,N ), considering a 

rotation of the driving link angle from 10  to 10 1  , the algorithm computes 

the values of the output link angle 3 , the transmission ratio  , and the 

Transmission Index TI. The cost function  cf x is defined as: 

    

1

1

1

p pN

c k

k

f max TI


 
   
 
x

 

(3.8) 

where the term  max 1- kTI is the maximum value of the complement to 1 of 

the Transmission Index, i.e. it represents the worst case in terms of motion 

transmission among the mechanism configurations. The scalar  1p ( )  can be 

set by the designer to emphasize the largest values of  1 kmax TI . The 

constraint vectors  kc x  are defined as: 

 
 

 

30 30 1

3 3 2

  k MA
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MIN k

k
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min
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c x

 
(3.9) 

where 30 ,i  and 30  are the actual and the reference initial position angles 

respectively, 3,k  and 3  
are the actual and the reference swing angles 

respectively, and finally  kmax   and  kmin   are the maximum and 

minimum values for the transmission ratio   respectively. 
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The optimization is performed by solving the minimization problem 

represented in Equation (3.7) in two steps, by using firstly a Genetic algorithm 

(the Matlab
®
 function ga), the solution is then refined by means of a quasi-

Newton algorithm (the Matlab
®
 function fmincon). Once the algorithm 

convergence is achieved, the optimization finds the solution vector 

 1 2 3r r rx  that minimizes the values of  cf x  and satisfies the imposed 

constraints, i.e.   0 1k k ,..,N  c x . 

 

3.4 Application of the synthesis procedure to the BHO 

The optimization algorithm is implemented and tested in a case study coming 

from the problem of designing an RSSR mechanism selected for the 

transmission of motion to the thumb of the BHO. With reference to Figure 3.1 

and Figure 3.2, the points A and B are the centres of the two spherical pairs, 

whereas the points O0 and O1 belong to the frame link of the RSSR mechanism. 

 

As explained in Chapter 1, the moving link of the RSSR mechanism is 

rigidly connected to the actuator (that is fastened to the hand backside) whereas 

O0

O1

A

B

 

Figure 3.3 The BHO hand exoskeleton. 
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the output shaft is rigidly connected to the driving link of the thumb mechanism 

(that is fastened to the metacarpal bone of the thumb). In this perspective, the 

six design parameters that describe the relative pose of the two shafts are 

strictly related to the patient’s anatomical geometry. For different patients the 

design parameters thus vary in certain ranges, corresponding to different frame 

link geometries of the RSSR mechanism. The synthesis task is therefore to find 

the design variables that provide the optimal transmission of torque for all 

patients. In the implementation of the problem, the thumb exoskeleton is fitted 

on a reference patient with a hand length of 190 mm and a hand width of 90 

mm. The hand length is measured from the distal crease of the wrist to the 

middle finger tip, whereas the hand width is measured across the back of the 

hand from the MCP joint of the index finger to the MCP joint of the little 

finger. The finger bones’ lengths are related to the hand length and width by 

means of coefficients proposed by Buchholz et al. (1992). The values of the 

design parameters are: 

      
0

1 0 01 01 01 26 83 65 92 12 08 mm
Tref Tref ref refx y z . . .    O O   

    35 0 10 5 115 5ref ref ref

x y z . . .          

where superscript ref refers to the reference patient. 

The need to fit the exoskeleton to different patient hands is taken into 

account by assuming that the origin O1 of the reference system S1 may vary in a 

cube of side 1 5mm   and centred in  
0

1 0

ref
O O , thus 1

01 01 2
refx x


  , 

1
01 01 2

refy y


   and 1
01 01 2

refz z


  . The side of the cube is discretized in 

21q   discrete values. As regards the orientation, for each new origin O1, 

22q   discrete values of a rotation 2 10  of the system S1 about its axis x1 

are considered. The rotations are taken as 2

2
ref

x x


   , 

ref

y y   and 

ref

z z  . Therefore 81N   sets kV  are selected. The variable 1  associated 

with the input link position is discretized in 360 values with a 1 degree step. 

The values of the other parameters are reported in Table 3.1. 

The sizes of the links are bounded within the following ranges: 
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 20 ≤ r1 ≤ 100  

 40 ≤ r2 ≤ 130  

 20 ≤ r3 ≤ 100  

where the values are given in mm. 

 

3.5 Results and discussions 

The algorithm requires a computational time of about 70 s in a personal 

computer with standard performance (Intel(R) Core(TM) i3-2120 CPU @ 3.3 

GHz) and provides the results reported in Table 3.2. 

A second run with 41q   and 42q   is done, thus 625N   sets kV  are 

selected. The algorithm requires a computational time of about 490 s and finds 

exactly the same solution previously obtained. The aim of this successive run is 

to check the reliability of the solution previously found. The value of 1 5mm 

and 2 10    are small with respect to the dimension of the whole mechanism; 

however, because of the severe constraints imposed by the practical problem 

the solution does not exist for greater values of 1  and 2 . For example, the 

algorithm does not find any solution for the values of 1 10mm  and 2 10   . 

The solution found for the values of 1 5mm  and 2 10    is quite good in 

terms of motion characteristics, considering that  minTI 0 482k
k

min TI .           

( 1k ,..,N ), thus meaning that in the worst case about 48.2% of the amplitude 

Table 3.2. Results of the simulation. 

 cf x  
1  [mm]r  2  [mm]r  3  [mm]r  

2.05 26.73 107.02 74.08 

 

Table 3.1 Numerical values of the input parameters. 

10  1  30   3 2    MIN  MAX  p 

0 90° 90° ± 9° 45° ± 4.5° 0 1 3 
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of the force transmitted from the coupler to the output shaft is usefully 

exploited to produce torque. The mean value of TI  is,

 meanTI mean 0 653k
k

TI .   which is rather a good performance. However, 

some applications could require minTI  to be larger than a minimum threshold. If 

minTI  is not satisfactory, some options can be considered: 

1) accept having a satisfactory solution only in a limited percentage of the 

whole frame link geometries. For instance, by referring to the presented results 

with 625N  , Table 3.3 reports the percentage e% of the 625 poses 

corresponding to the achievement of certain minimum values of minTI ; the 

corresponding mean value meanTI  is also reported. Results show that, for 

instance, if minTI 0 49.  is the minimum threshold, 98.56% of the 625 poses 

satisfies the requirement, with a corresponding mean value of meanTI 0 653. . If 

higher values are required, the percentage rapidly decreases: for required values 

of minTI
 
greater than 0.56, the percentage of acceptable mechanisms reaches 

minimum levels. 

2) Change the problem by admitting the use of adjustable mechanisms in order 

to obtain an acceptable value for minTI . The adjustable mechanisms have one or 

more links (typically the coupler link) with variable geometry. It is worth 

noting that the use of adjustable mechanisms does not increase the complexity 

of the problem. Indeed, the possibility to adjust, for example, the length of the 

coupler link when moving from one frame link geometry to another one can be 

considered as a new problem with the constraints more relaxed than in the 

problem investigated here. If all three lengths r1, r2 and r3 are assumed as 

adjustable, the problem would be to find an RSSR mechanism for each different 

Table 3.3 Percentage of frame link poses, e%, and mean values meanTI , corresponding 

to given minimum values of minTI  to be achieved. 

minTI   0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 

e% 98.56% 89.60% 74.72% 59.04% 43.36% 28.16% 12.96% 2.080% 

meanTI  0.653 0.656 0.660 0.663 0.668 0.672 0.678 0.688 
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set kV . 

It is worth noting that to verify the stability of the solution different runs 

were performed by changing the setup parameters of the algorithm (e.g. the 

number of discrete values for the input angle θ1, the number of generations and 

the initial population of the ga, etc.). The reliability of the numerical procedure 

is confirmed by the same results obtained for the different runs. 



 

 

Chapter 4 

Experimental measures and analysis of the spatial motion 

of the human fingers 

 

4.1 Introduction 

The aim of this Chapter is to measure and analyse the spatial motion of the 

human fingers. It was decided to put this Chapter at the end of the dissertation 

mainly because of the following two reasons: (i) from a chronological point of 

view, this problem was studied after the previous two Chapters because the 

need for a deeper study of the human hand has been proved to be necessary, and 

(ii) to emphasize that the results here reported have not been used in the 

previous Chapters. 

 

A universally accepted simplification of the human hand is to model each 

finger as a 4-DoFs serial manipulator. The first DoF exploits the 

abduction/adduction movement of the first phalanx with respect to the hand 

metacarpus (i.e. the motion in the frontal plane of the hand), whereas the other 

three DoFs exploit the flexion/extension movement of the three phalanges (i.e. 

a motion in the sagittal plane of the hand) of each finger. As universally 

accepted, a simplification of the complex motion of the hand is to consider the 

three flexion/extension revolute axis as parallel lines (Buchholz and Armstrong 

1992; Bullock et al., 2012). Because of this last assumption, and disregarding 
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the abduction/adduction of the first phalange, the motion of the finger can be 

modelled as a planar motion. Of course, these simplifications lead to a simple 

but not very realistic model of the motion of the three phalanges. An 

improvement toward a more realistic model of the human hand is to consider 

the motion of the finger as a spatial motion where each phalanx rotates around 

lines that are not parallel to each other, i.e. are represented by skew lines in 

space. Given this interest, in this Chapter the problem to calculate the axis of 

rotation that model as best the motion of each finger phalange is tackled.  

The axis identification procedures are used in several applications, such as 

the design and setting of prostheses, orthoses and exoskeletons, and the 

multibody modelling of human joints, e.g. lower limb and/or hand. Usually, the 

axis identification procedures need of the knowledge of the relative motion 

between of two bodies. Recently a new technique for the identification of these 

axes based on the theory of Burmester has been proposed in Sancisi et al. 

(2009). In this Chapter a refinement of this last technique is presented. 

In Section 4.2, two novel procedures to identify the axis of rotation of the 

phalanges are presented. In Section 4.3, the description of the experimental 

measures devoted to acquire the spatial motion of each finger bone is reported, 

whereas Section 4.4 is devoted to the elaboration of the acquired experimental 

data. Finally, Section 4.5 shows and discusses the results of the proposed axis 

identification procedures also compared with a more standard technique based 

on the computation of the finite helical axis. 

 

4.2 The proposed axis identification techniques 

4.2.1 The Burmester theory 

The Burmester theory is generally used for the synthesis of mechanisms 

(Burmester, 1877; Innocenti, 1995; Liao and McCarthy, 2001), but it is used 

here in an original way to identify an axis of rotation. The Burmester’s theory 

states that given seven relative poses of two rigid bodies, up to 20 pairs of 

points (one on the first body and the other one on the second body) preserves 

their distance at all the seven poses. These points are called Burmester’s points, 

BPs hereinafter. Particular degenerate solution of the Burmester problem can be 

achieved for special relative motions between the two rigid bodies. In 
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particular, a degenerate case is observed when the moving body (M) rotates 

about a fixed axis of the fixed body (F). In this case, all points of M do not 

change their distance from the points of F that lie on the rotation axis. From the 

mathematical point of view, the system of equations that describes the 

Burmester problem becomes singular, and the problem admits infinite 

solutions: the solution space for BPs on M coincides with the Cartesian space 

3
, whereas for the BPs on F it coincides with the line that represent the 

rotation axis. If the motion of M is only near to a rotation about a single fixed 

axis, the mathematical problem is definite and admits up to 20 solutions, as in 

the standard problem, but the BPs on F are nearly aligned in the neighbourhood 

of the rotation axis. The foregoing assumption is at the base of the axis 

identification procedure proposed in Sancisi et al. (2009). This procedure 

revealed a higher robustness to experimental inaccuracies, when compared to 

standard techniques based on mean and finite helical axis identification. In this 

Chapter, a refinement of this technique is proposed. In particular, when the 

moving body rotates about a fixed axis of the fixed body, the solution is 

twofold: the first solution, is the one above described, whereas the second is the 

symmetric one, thus the solution space for BPs on F coincides with the 

Cartesian space 
3
 and, for the BPs on M it coincides with the line that 

represent the rotation axis. 

In Figure 4.1 a graphical representation of this statement is shown, where Bi 

and Gi ( 20i  ) are the BPs belonging to F and M respectively, whereas a is the 

axis of rotation fixed to F. Other two possible solutions, a sub case of the latter 

two, are that the BPs ( B Gi i ) coincides and/or both lies on the rotation axis. 

As a consequence, in a general case, for each pair of points B Gi i  at least one 

point of the pair can lie on the rotation axis whereas the other one not necessary 

lie on it. Similarly to what explained above, if the motion of M is only near to a 

rotation about a single fixed axis just half of the BPs are nearly aligned in the 

neighbourhood of the rotation axis, i.e. for each pair B Gi i  just one point of 

the pair can lie near the rotation axis whereas the other one not necessary lie on 

it. Based on this assumption the Burmester theory can be used to identify a 

revolute-joint model. 
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4.2.2 The revolute-joint model 

A revolute-joint model essentially consists in two bodies constrained to rotate 

about a common axis of rotation, therefore the relative pose (position and 

orientation) of the two bodies is univocally identified by just one parameter i.e. 

the rotation θ about the common axis of rotation. Hereinafter the reference 

system associated to the first body is S1 with coordinate axes x1, y1, z1 and 

origin O1 whereas the reference system associated to the second body is S2 with 

coordinate axes x2, y2, z2 and origin O2. Generally speaking, an axis of rotation 

can be represented by a line in space, thus it is identified by its direction, 

represented by the unit vector n hereinafter, and by a point C on the line, 

represented by the position vector c hereinafter. A revolute-joint model can be 

viewed as two coincident lines, one in-built to S1 and the other one in-built to 

S2, yields collinear and with a prescribed relative translation   along the line 

itself.  

Gi

Bi

Bi

Gi

M

F

a  

Figure 4.1 A graphical representation of the two possible solutions of the Burmester 

problem in the case that the moving body M rotates about a fixed axis (a) of the fixed 

body F. The points Bi (Gi) are the BPs belonging to F (M). 
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With reference to Figure 4.2, n1 and n2 are the unit direction vectors of the two 

lines expressed in S1 and S2 respectively, c1 and c2 are the position vectors of 

the points C1 and C2 expressed in S1 and S2 respectively, whereas λ is the fixed 

distance between C1 and C2. Since n1 and n2 are vectors whose norm is unitary 

their components can be each expressed as a function of two independent 

parameters only, for instance the azimuth δ and the altitude η, y-z being the 

horizontal plane and z-axis the azimuth origin: 

1 2

1 1 1 2 2 2

1 1 2 2

sin sin

cos sin cos sin

cos cos cos cos

 

   

   

   
   

    
   
   

n n  (4.1) 

Furthermore, the position vectors c1 and c2 can be expressed in terms of the 

intersections of the same axis with the x-y reference plane, thus admitting the 

following representation: 

1 2

1 1 2 2

0 0

x x

y y

C C

C C

   
   

    
   
   

c c  (4.2) 

It follows that nine geometrical independent parameters are needed to describe 

c1

S1
C2

λ

θ

C1

S2

O2

O1

n1

n2

c2

 

Figure 4.2 The revolute-joint model. The lines with squared ends stand for rigid 

connection between the two objects connected by the line itself. 
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a revolute-joint model. The pose of S2 with respect to S1 can be expressed by a 

4x4 homogeneous moving matrix 
m

T  obtained as the product of three 4x4 

moving matrices: 

 
1

1 1 1 2 2 2

m

S G G G S G


T T T T  (4.3) 

The matrix TS1G1 (TS2G2) defines, with respect to S1 (S2), the pose of a reference 

system, here called SG1 (SG2), having the z-axis collinear to the common line 

identified by n1 (n2) and the origin defined by the position vector c1 (c2). The 

matrix TG1G2 translates of λ and rotates of the angle θ about the z-axis thus 

defining the relative pose of SG2 with respect to SG1. The matrix 
m

T can be 

written in the form 
0 1

m m

m
 

  
 

R p
Τ  where 

m
R  is the 3x3 orthonormal matrix 

for the transformation of vector components from S2 to S1, whereas 
m

p  is the 

position vector of the origin of S2 expressed in S1. The superscript m stands for 

“model”. 

4.2.3 The axis identification procedure 

In this Section, the axis identification procedure is explained. It is important to 

highlight that the motion (i.e. a sequence of spatial poses) of each body is 

assumed to be known (e.g. from experimental measurements), so that it is 

possible to perform the axis identification procedure by analysing the relative 

poses between the two bodies. Hereinafter we refer to these poses as the “target 

poses” and the superscript t will be used. 

Let S1 (S2) be the reference system associated to the fixed (moving) body F 

(M) and let 
t
Τ  the 4x4 homogeneous matrices that define the pose of S2 with 

respect to S1. The matrix 
t
Τ  can be written as 

0 1

t t

t
 

  
 

R p
Τ , where 

t
R  is the 

3x3 orthonormal matrix for the transformation of vector components from S2 to 

S1, whereas 
t

p  is the position vector of the origin of S2 expressed in S1. The 

relative motion between the two bodies is given as a set of n matrices t

iΤ , that is 

n vectors t

ip  and matrices t

iR , where 1i ,...,n  and in general 7n  . The BPs 

are computed by taking a set L of seven poses randomly chosen from the whole 

set of the n poses. In this perspective, the spatial Burmester problem is given 
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by: 

    
2

1 2 2 20t t

i j i j id , j L , i     b R g p  (4.4) 

Where 
 1

ib  is the position vector of the i-th point 
 1

Bi  belonging to F and 

represented in S1, 
 2

ig is the position vector of the i-th point 
 2

Gi  belonging to M 

and represented in S2, whereas di is the distance between 
 1

Bi  and 
 1

Gi  (where 

 1
Gi  is the point 

 2
Gi  represented in the system S1, see Innocenti, 1995 for more 

details) at the given pose. Thus 
 1

Bi  and 
 1

Gi  (or equivalently 
 2

Gi ) are the 

BPs. The solution of the Equation (4.4) can be computed both via numerical 

and via geometrical methods (Innocenti, 1995; Liao and McCarthy, 2001). In 

this Chapter the technique presented by Innocenti was implemented by using 

Maple
®
. To apply the axis identification procedure, N random combination kL  

(where 1k ,...,N ) must be defined and thus a number m of BPs, where in 

general  20m N  , can be obtained. 

Among all the m BPs, one may need to discard the so called “outlier points”. 

The outlier points are those pairs of points 
   1 1

B Gi i  whose distance from a 

first-attempt-axis exceed a prescribed threshold t . The first-attempt-axis may 

be found by approximating with a best-fitting line all the m BPs. For this 

purpose, the Theil-San linear regression technique (Siegel, 1982) was 

implemented because of its intrinsic robustness and independence by the 

presence of a great number (up to 50%) of outliers. The threshold t  must be set 

according to the experience of the designers. To foster understanding of the 

text, the number of BPs who remains after the outlier elimination procedure are 

always denoted as m. 

As stated above, just half of the m remaining BPs can lie on the searched 

axis, thus only 2m' m /  of the m BPs can be useful for the axis identification 

technicque, i.e. are more aligned in the neighbourhood of the searched optimal-

axis, whereas the other 2m /  BPs can be consequently discarded. In order to 

find the m'  more-aligned BPs, the following technique was used. 

First, take the points 
 1

Gi  expressed in S1, then choose a set of m'  BPs, taking 



58  MEASURE AND ANALYSIS OF THE MOTION OF THE HUMAN FINGERS 

just one point for each pair of points 
   1 1

B Gi i , and then approximate the set of 

the m'  points by a best-fitting line, then compute the actual distance of each 

point by the new line and finally compute the value of the function df  defined 

as the sum of the squared actual distances of each point 
   1 1

B Gi i  by the new 

line. The set of m'  points that minimize the function df  is the set of points that 

are more aligned along the searched optimal-axis. Theoretically, in order to find 

the optimal set of the m'  points among the m BPs that minimize the function df , 

all the possible combinations have to be computed. Practically, given m pairs of 

BPs, all the possible combinations K of the m'  points taken in pairs of two 

among all the m BPs, are 2m'K  , thus e.g. if 100m   then 50 152 10K    

consequently resulting computationally infeasible and/or inefficient to compute 

all the possible K combinations. Therefore, this procedure was implemented as 

a numerical optimization by means of the Matlab
®
 Genetic Algorithm Toolbox. 

In particular, the numerical optimization procedure aims to find the vector 

m'x  whose elements are defined as: 

 

 

1

1

0 if B is chosen
where 

1 if G is chosen

i

i

i

i 1,...,m'


 


x =  (4.5) 

Thus the optimization problem is defined as: 

dmin f
x

 (4.6) 

where the function df  is above defined. Once the vector x is found, the BPs that 

are more aligned along the searched optimal-axis were identified. The optimal-

axis identification procedure can now be split into two different techniques. The 

first technique aims to find only the fixed axis in-built to S1, called a1 

hereinafter , whereas the second technique aims to find in addition the moving 

axis in-built to S2, called a2 hereinafter, and the parameter  , thus completely 

defining the revolute-joint model. 

4.2.3.1 The first technique 

Once the vector x is found, let take the associated point cloud composed by all 

the pairs of points 
   1 1

B Gi i  and approximate it by a best-fitting line by means 
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of a linear regression technique (e.g. by a standard least-square technique). 

Since the points 
   1 1

B Gi i  are expressed in S1, the resulting axis a1 is a fixed 

axis in-built to S1. 

4.2.3.2 The second technique 

Once the vector x is found, let define the associated point cloud composed by 

the points 
 1

Bi (
 2

Gi ) and approximate it by a best-fitting line in order to find 

the axis a1 (a2) in-built to S1 (S2). In order to univocally define the revolute-joint 

model that best-fit all the target poses, a two-step procedure is here explained.  

 

The first step 

The first step of the procedure aims to finds the n angles i  which leads 
2

m

,iS  

closest to 2

t

,iS  (where 1i ,..,N ) in terms only of rotation parameters. In Figure 

4.3 a picture representing the i-th pose of the systems 
2

t

,iS  and 
2

m

,iS  is reported. 

Let parameterize each rotation matrix m

iR  (that is t

iR ) by using three angles 

m m m

i i i, ,    (that is t t t

i i i, ,   ), thus  m m m m m

i i i i i, ,R R     and 

 t t t t t

i i i i i, ,R R    . Any parameterization for the orientation can be chosen. 

2

t

,iS

2

m

,iS

1S

1C

2C
1O

2Ot

,i

2Om

,i

iq

i



 

Figure 4.3 
2

*

,iS  is the moving-body system of the revolute-joint model, whereas 
2 ,iS  

is the moving-body system of the target motion. 
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The values of the n angles i  which leads 
2

m

,iS  closest to 
2

t

,iS   in terms of 

rotation parameters (i.e., m m m

i i i, ,    and t t t

i i i, ,   ),  can be obtained by finding 

the angle i  that guarantee that m t

i i   (or equivalently m t

i i   or m t

i i  ). 

The author's suggestion is to choose the orientation parameter   (that is   or 

 ) as the one that, among the three orientation parameters, has the grater 

angular excursion during the whole given motion. Once the n angles i  were 

found, the orientation of the system 
2

m

,iS , i.e. the matrices m

iR , is univocally 

determined. 

 

The second step 

The second step of the procedure aim to find the particular value   of the 

parameter   that guarantees a best fitting of all the systems 
2

m

,iS  to 
2

t

,iS   for 

1i ,..,N  in terms of position. It is worth noting that a translation along the 

common axis of rotation (i.e. the axis obtained putting collinear the two axes a1 

and a2) does not effects the orientation of the system 
2

m

,iS , but only its position 

with respect to S1. 

Let 
iq  be the position vector of the origin 

2Om

,i
 with respect to 

2Ot

,i
 expressed 

in S1, thus defined by the following equation: 

   2 2 1 1 2 2

m t m t

i ,i ,i i ,i     q o o c n R c o  (4.7) 

Where 
2

m

,io  (
2

t

,io ) is the position vector of the origin 
2Om

,i
 (

2Ot

,i
) expressed in S1. 

Let 
2

iq  be the square norm of the vector 
iq . Putting the derivative of 

2

i







q
 to 

zero will yield the following values of i : 

 1 2 1 1    where   1m t

i i i i i ,..,N       c R c p n v n  (4.8) 

The n values i  identify the translational parameters along the axis needed to 

minimize each length 
2

iq  between the origins of the systems 2

m

,iS  and 2

t

,iS . 

Since a unique value for   is necessary to univocally define the revolute-joint 

model, the following objective function (FO) can be minimized: 



MEASURE AND ANALYSIS OF THE MOTION OF THE HUMAN FINGERS  61 

 

 

2

1

1 N

i

i

FO
N 

  q  (4.9) 

The function FO expresses the mean value of the square norm of each  vector 

iq . The minimum of the Equation (4.9) with respect to   can be computed as: 

2 2

1 1

2

2

1

1 1 1

1

1 1

1

1 1
0

1 1 1

1 1
0

1

N N

i i

i i

N N N
i

i i

i i i

N N

i i

i i

N

i

i

min FO
N N

N N N

N N

N




 

  

 

 

  

 



  
    

  

     
               

      

 

 

  

 



q q

q
q v n

v n

 (4.10) 

Thus, the searched optimal value   of the parameter   is the mean value of 

the N values i  (where 1i ,..,N ) that minimize each length 
2

iq  between the 

origins of the systems 
2

m

,iS  and 
2

t

,iS . 

In conclusion, all the parameters needed to define the revolute-joint model, i.e. 

the parameters needed to define the two axes a1 and a2 and the parameter , are 

now determined. 

 

4.3 Experimental measures 

The aim of the experimental tests is to measure simultaneously the spatial 

motion of both one finger and the palm of the hand of a healthy subject. The 

three phalanges of the finger and the palm are here considered as rigid bodies. 

This last assumption is reasonable and universally accepted for finger bones 

(Buchholz et al., 1992; Bullock et al., 2012), whereas for the palm is usually 

accepted even if less reasonable with respect to the previous one. 

The motion of each bone is acquired by the use of the Vicon
®
 system, a well-

known stereo-photogrammetric device able to acquire the spatial motion of 
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passive markers, i.e. plastic sphere covered by a retro-reflective paint.  

Generally speaking, in order to define the spatial pose of a rigid body is 

sufficient to know the spatial position of three points belonging to the body 

itself. In this perspective, by using the Vicon
®
 system, it is sufficient to attach 

three passive markers to each bone in order to obtain informations on its spatial 

pose. Usually, the three markers are attached to a rigid support, called the 

tracker hereinafter, which is fixed to the moving bone. In particular, the Vicon
®

 

system can measure the spatial position of the centre of each marker at a given 

rate f (measured in Hz), thus the continuous motion of the markers (that is of 

the body) is discretized in a total number of frames N given by   N f T  , 

where T is the duration time (measured in seconds) of the experimental 

acquisition. 

In the following, the procedure used to measure the spatial motion of the hand 

is reported. 

4.3.1 Definition of the repere points 

Firstly, some “repere points” must be identified. The repere points are particular 

points of the human hand anatomy - that can be identified by direct palpation of 

the human finger - and that do not change their position during the motion of 

the finger itself. In Figure 4.4, the eleven repere points that must be identified 

7VA

6VA

9VA

8VA
10VA

11VA

5VA

1VA

2VA

3VA

4VA

 

Figure 4.4 The repere points to be identified. 
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are reported. The point 1VA  ( 2VA ) is located at the radial (ulnar) styloid process. 

The point 3VA  ( 4VA ) is located in the radio-ulnar plane at the point of greatest 

protrusion of the MCP joint of the second (fifth) finger.  

Moreover, the point 5VA  is located in the radio-ulnar plane at the fingertip of 

the middle finger. The points 6VA  and 7VA  ( 8VA  and 9VA ) are located in the 

radio-ulnar plane at half of the thickness of the first (second) phalange - 

measured in the sagittal plane - at the position where the thickness of the finger 

- measured in the coronal plane - is minimal. Similarly, the points 10VA  and 

11VA  are located in the radio-ulnar plane at half of the thickness of the third 

phalange - measured in the sagittal plane - immediately after perceived the 

prominence of the DIP joint.  

4.3.2 The trackers 

To each phalange and to the dorsal side of the hand, trackers supporting three 

passive markers of diameter 9 5 mmd .  each, are attached. In Figure 4.5, a 

picture showing the four trackers is reported. The Tracker 1, must be put 

approximately on the center of the dorsal side of the hand, and stick to the hand 

by using double-sided tape. The trackers 2-4 have a suitably shaped side ad hoc 

designed to be putted approximately in the middle of each finger phalange 

(further details in the following). In particular, the trackers have lateral holes 

Tracker 1Tracker 2Tracker 3Tracker 4
A passive 

marker

A repere 

point

 

Figure 4.5 The experimental setup. 
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useful to choose the right relative position of the tracker with respect to the 

phalange. The trackers must be put on the phalange in such a way that the 

repere points 6 11VA   lie approximately centred into the lateral holes. These last 

three trackers are stick to the finger phalange by double-side tape and are also 

fastened by plastic strips. 

4.3.3 Experimental measures by the Vicon® system 

The experimental measures are divided into two steps. The first step aims to 

acquire the repere points previously defined, whereas the second step aims to 

acquire the motion of the finger.  

The repere points are acquired by using the pointer shown in Figure 4.6a. 

The pointer is a rigid body with a long shape and a small spherical tip. Three 

markers are fixed to the pointer and the geometry of the pointer, i.e. the relative 

distance of the pointer tip and the three markers, is completely known. Thus, by 

acquiring the spatial position of the three markers, informations on the spatial 

position of the pointer tip can be obtained. 

The subject must rest the palm and the forearm in a prone position on a table, 

the middle finger must be aligned with the forearm. With reference to this static 

position of the hand, all the repere points must be acquired by touching with the 

pointer tip each repere point. 

  

a)                                                          b) 

Figure 4.6 a) Acquisition of the repere points by using the pointer. b) 

Acquisition of the full flexion motion of the finger. 
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Finally, the full flexion-extension motion of the finger (see Figure 4.6b) was 

acquired five times per each finger. The motion of the index, the middle and the 

ring finger of a healthy subjects was acquired. 

 

4.4 Elaboration of the experimental data 

The aim of this Section is to obtain the relative motion between two adjacent 

bones. In this Section, in order to explain the procedure by means of an 

example, the relative motion between the bone 1 (the wrist) and the bone 2 (the 

first phalange) is obtained. The relative motion between different bones can be 

easily obtained by generalizing the following procedure. 

With reference to Figure 4.6, 
LABS  is the Vicon

®
 reference system, 

1A ,iS  and 

2A ,iS  are the anatomical systems associated to the two bones, whereas 
1T ,iS  and 

2T ,iS  are the technical systems associated to the trackers fixed to the same 

bones. Moreover, 
1LAB T ,iT  (

2LAB T ,iT ) is the 4x4 homogeneous matrix that 

LABS

1A ,iS 2A ,iS

1T ,iS

2T ,iS

1LAB T ,iT

1 1T AT

2LAB T ,iT

2 2T AT

1 2A A ,iTbone 1 bone 2
 

Figure 4.7 The reference system and the transformation matrices needed to get the 

relative motion between the two bones. The trackers are not shown. The lines with 

squared ends represent a rigid connection between two elements. 



66  MEASURE AND ANALYSIS OF THE MOTION OF THE HUMAN FINGERS 

defines the actual pose of the system 
1T ,iS  (

2T ,iS ) with respect to 
LABS , whereas 

1 1T AT (
2 2T AT ) defines the pose of the system 

1A ,iS  (
2A ,iS ) with respect to 

1T ,iS    

(
2T ,iS ). Finally, 

1 2A A ,iT  defines the actual pose of the system 
2A ,iS  with respect 

to 
1A ,iS . The matrix 

1 2A A ,iT  can be obtained as: 

   
1

1 2 1 1 1 2 2 2A A ,i LAB T ,i T A LAB T ,i T A



    T T T T T  (4.11) 

Where  
1
 stand for the inverse of the matrix inside brackets. The subscript i 

refers to the i-th frame acquired by the Vicon
®

 system, thus 1i ,..,N  where N 

is the total number of frames acquired during the experimental test. It is worth 

noting that since the relative position from the trackers and the bones is 

supposed to be fixed during the finger motion, for the matrices 
1 1T AT  and 

2 2T AT  the subscript i does not appear. 

4.4.1 Definition of the technical systems 

The matrix 
1LAB T ,iT  can be written in the form 

 
1 1

1
1

LAB

LAB T ,i LAB T ,i
LAB T ,i

 


 
  
 

R p
T

0

where 
1LAB T ,iR is the 3x3 orthonormal rotation matrix for the transformation of 

the vector components from 
1T ,iS  to 

LABS ,  
1

LAB

LAB T ,ip  is the position vector of the 

origin of 
1T ,iS  written in 

LABS , whereas 0 is the 1x3 null vector. Let the points 

j ,iM  (where 1 2 3j , ,  and 1i ,..,N ) be the centres of the three markers 

attached to a generic tracker and let 
 LAB

j ,im  the position vectors of these points 

written in SLAB. It is worth noting that the components of the position vectors 

 LAB

j ,im  are the output of the Vicon
®
 system. To be lighter on the mathematical 

notation, an additional subscript that references the tracker was not added. 

Given the three vectors 
 LAB

j ,im  the vector 
 

1

LAB

LAB T ,ip  and the matrix 
1LAB T ,iR , i.e. 

the pose of the system 
1T ,iS  with respect to 

LABS , can be defined as follows. 

 
1

LAB

LAB T ,ip  can be defined as the position vector of the centroid of the points 
j ,iM , 

thus : 
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   
3

1

1

1

3

LAB LAB

LAB T ,i j ,i

j





 p m  (4.12) 

As regards the matrix 
1LAB T ,iR  it is worth noting that the columns of the 

rotation matrix are the unit vectors of the three coordinate axes of the system 

1T ,iS  written in 
LABS , thus: 

 

    
   

 

         
       

     

      

1 2

1

1 2

1 2 1 3

1

1 2 1 3

1 1 1

1 1 1 1

LAB LAB

,i ,iLAB

T ,i LAB LAB

,i ,i

LAB LAB LAB LAB

,i ,i ,i ,iLAB

T ,i LAB LAB LAB LAB

,i ,i ,i ,i

LAB LAB LAB

T ,i T ,i T ,i

LAB LAB LAB

LAB T ,i T ,i T ,i T ,i






  


 

 

 

m m
x

m m

m m m m
y

m m m m

z x y

R x y z

 

(4.13) 

Where  
1

LAB

T ,ix , 
 

1

LAB

T ,iy  and  
1

LAB

T ,iz  must be column vectors, whereas  stand for 

the norm of the vector inside brackets. The procedure here explained can be 

used also for the definition of the actual pose of the other technical systems 
Tj ,iS  

where 2 4j ,.., . 

4.4.2 Definition of the anatomical system of the wrist 

Similarly to matrix 
1LAB T ,iT , the matrix 

1 1T AT  can also be written in the form 

 1

1 1 1 1
1 1

1

T

T A T A
T A

 


 
  
 

R p
T

0
. The pose of the system 

1A ,iS  with respect to 
1T ,iS , can 

be obtained as follows. Firstly, once the 
1LAB T ,iT  is determined, the repere 

points 1 5V VA A  coordinates can be transformed from 
LABS  to the technical 

system 
1T ,iS , so that the vectors 

   
5

11

1

T

A

T

A vv  can be obtained. Then 
 1

1 1

T

T Ap  can 

be defined as the position vector of the centroid of the points 1VA  and 2VA , 

thus: 

 
   1

1 2

1
1

1 1
2

T

A

T

T
AT

A 
 v

p
v

 (4.14) 
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With reference to Figure 4.8, the plane   is the plane containing the points 

identified by the position vectors  1

1 1

T

T Ap ,  1

3

T

Av  and  1

4

T

Av . The point 5VA '  is the 

projection of the point 5VA  on the plane   and the vector  1

5

T

A 'v  expresses its 

position. Once again, the column of the matrix 1 1T AR  are the unit vectors of the 

three coordinate axes of the system 
1A ,iS  written in 1T ,iS , thus: 

 

         
       

 

    
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Once again, the vectors 
 1

1

T

A ,ix , 
 1

1

T

A ,iy  and 
 1

1

T

A ,iz  are column vectors. 

4.4.3 Definition of the anatomical system of the phalange 

The matrix 
2 2T AT  can be written in the form 

 2

2 2 2 2
2 2

1

T

T A T A
T A

 


 
  
 

R p
T

0
. The 

pose of the system 
2A ,iS  with respect to 

2T ,iS , can be obtain as follows. Once 

1VA



2VA

3VA

4VA5VA

5VA '

1A ,iS

1OA,

1T ,iS

 

Figure 4.8 The anatomical system of the wrist. 
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the matrix 
2LAB T ,iT  is determined, the coordinates of the repere points 6VA  and 

7VA  from 
LABS  can be transformed to the technical system 

2T ,iS , and the 

vectors  2

6

T

Av  and  2

7

T

Av  can be obtained. With reference to Figure 4.9, let 

number the markers of the tracker fixed to the phalange in such a way that the 

marker M1 is the one placed on the top of the tracker (i.e. the one placed in the 

most distal position from the finger phalange) and determine the position vector 

 2

1

T
m .  2

2 2

T

T Ap  is the position vector of the centroid of the points 6VA  and 7VA , 

i.e.: 

 
   2

6 7

2
2

2 2
2

T

A

T

T
AT

A 
 v

p
v

 (4.16) 

Once again, the column of the matrix 2 2T AR  are the unit vectors of the three 

coordinate axes of the system 
2A ,iS  written in 2T ,iS , thus: 

2A ,iS
2OA

2OT

1M

2M 3M

2T ,iS
 2

1

T
m

finger 

phalange

 2

7

T

Av

7VA

6VA

 2

6

T

Av

 

Figure 4.9 The anatomical system of the first phalange. 
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Where, again,  2

2

T

Ax ,  2

2

T

Ay  and  2

2

T

Az  must be column vectors. The anatomical 

systems of the second and third phalange can be obtained similarly to the one 

obtained here for the first phalange. 

It is worth to highlight that the anatomical systems thus defined, are in good 

(but not full) agreement with the ISB standard recommendations (Wu et al., 

2005). Indeed, the anatomical systems proposed by the ISB standard 

recommendations need of the full knowledge of the human bones. However, the 

methodology here presented to define the anatomical systems permits to 

identify such systems quite accurately in terms of final pose, if compared to the 

one suggested by the ISB. 

4.4.4 The relative pose between two adjacent bones  

The matrix 

 1

1 2 1 2
1 2

1

A

A A ,i A A ,i
A A ,i

 


 
  
 

R p
T

0
 expresses the actual relative pose 

between two anatomical systems 1A ,iS  and 2A ,iS . The rotational matrix 1 2A A ,iR  

can be parameterized as a function of three angles i  , 
i  and i  as follows: 

1 2

i i i i i i i i i i i i

i i i i i

i i i i i i i i i i i i

A A ,i

c c s s s s c c s s c s

s c c c s

c s s s c s s c s c c c

           

    

           



    
 

  
     

R  (4.18) 

where c and s are the cosine and sine of the angle in subscript and i  , 
i  and 

i  are the actual flexion/extension, ab/adduction and intra/extra rotation angles 

of the first bone relatively to the second one, using the Grood-and-Suntay joint 
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coordinate system convention (Grood and Suntay, 1983). The subscript i, as 

usual, refers to the actual i-th frame of the acquisition. 

According to Grood-and-Suntay convention, the flexion/extension movement is 

a rotation about the z-axis of the system 1A ,iS  (flexion is positive), the 

intra/extra movement is a rotation about the y-axis of the system 2A ,iS  (external 

rotation is positive), whereas the ab/adduction movement is a rotation about a 

floating axis perpendicular to the previous ones (adduction is positive). 

Expression (4.18) can be applied for right hands, in order to use the Grood and 

Suntay convention for left hand the systems 1A ,iS  and 2A ,iS  have to be 

appropriately defined for left-hand bones according to Wu et al. (2005). 

 

During the experimental tests, the spatial motion of three fingers (the index, 

the middle and the ring) of the right hand of a healthy subject of 37 years old 

was acquired. The hand of the subject was 200 mm in length and 90 mm in 

width. 

As stated above, the full flexion motion of each finger was acquired for five 

times. For each acquisition, by using Equation (4.11), the relative motion 

between adjacent bones is obtained. As an example, in Figure 4.10, five graphs 

representing the pose parameters of the relative motion between the anatomical 

systems of the wrist and the first phalange of the index finger are reported. In 

particular, the three graphs on the left (from top to bottom) represent the three 

components of the position vector  1

1 2

A

A Ap , whereas the other two graphs 

represent the trend of the angle   (ab/adduction ) and the angle   (intra/extra). 

All graphs are represented as function of the flexion angle ( ). 

Each graph in Figure 4.10 reports six lines: five thin random coloured lines 

represent the five acquisitions, whereas the blue thick line represents the 

“average motion” and the standard deviation (vertical lines) of the five 

acquisitions. Similar graphs were obtained for the relative motion of adjacent 

bones of the three measured fingers. 
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4.5 Joint axes identification: results and discussions 

In this Section, the axes identification techniques of Section 4.2 in addition to 

the well-known helical axis identification technique are applied and discussed. 

The resulting average motion (Section 4.3) was taken as the “given motion” 

necessary to the application of the axes identification techniques. 

For the helical axis (HA) technique, the revolute joint model is identified by 

calculating the screw axis from the pose at the 33% and the pose at the 66% of 

the range of motion of the flexion angle, and by associating the resulting axis to 

the first one of the two chosen poses. For the Burmester 1° (B1) technique, the 

revolute joint model is completely defined by associating the resulting axis to 

the pose corresponding to the 33% of the flexion angle range of motion, 

 

Figure 4.10 The motion parameters for the relative motion between the wrist and the 

first phalange of the index finger. The thin random colored lines represent the five 

acquisitions. The blue thick line represents the average motion (computed considering 

the five acquisition), whereas vertical blue thick liners represents the standard 

deviation of the five acquisition. 
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whereas for the Burmester 2° (B2) technique, as explained in Section 4.2, the 

technique aim to find itself a complete revolute joint model. 

In Figure 4.11-13 the trends of the pose parameters of the given motion and 

of the revolute-joint-model motion are reported. The three graphs only refers to 

the relative motion between the bone 1 (the wrist) and the bone 2 (the first 

phalange) of the index finger. In particular Figure 4.11 refers to the results 

obtained by using the HA technique, Figure 4.12 shows the results found by 

using the B1 technique, whereas Figure 4.13 shows the results found by using 

the B2 technique. Once again, similar graphs were obtained for the relative 

motion of adjacent bones of the three measured fingers. 

In Table 4.1, the mean absolute errors computed for the three translational 

parameters and for the two rotational parameters between the experimental 

measure and the resulting model of the adjacent bones of the three fingers are 

reported.  

The results, in terms of mean absolute error, are in general very good. In 

particular, the values of the translational errors xe , 
ye  and ze  are very good for 

 

Figure 4.11 Pose parameters of the wrist and first phalange motion. Solid = 

experimental data; Dot = model. The model is identified by the HA technique. 
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both the HA and B1 techniques, whereas for the B2 technique the values are 

slightly greater. Similar considerations can be given for the two rotational errors 

e  and e . In general, better results are mainly obtained for the relative motion 

between the bone 1 and 2, and for the relative motion between bone 2 and 3, 

whereas the results for the relative motion between bones 3 and 4 are in general 

the worst. However, except for some cases (e.g. for the relative motion between 

bones 3 and 4 of the ring finger), the results are very good. 

It is worth noting that the results for both the HA and B1 techniques strongly 

depend on the choice of the pose to which the axis is associated. In particular, 

for the HA technique the choice to associate the axis to the pose at the 33% of 

the range of motion of the flexion angle, forces the error to be equal to zero in 

this particular pose, thus giving a great advantage (in terms of mean absolute 

error) to this technique with respect to the other two techniques base on the 

Burmester theory. Conversely, for the B2 technique the errors are greater but 

are pose-independent, thus are to be considered as the real-maximum errors 

committed by the revolute joint model. 

Moreover, it is worth noting that, while the B1 technique compute the axis 

in-built to the fixed body by using all the BPs, the B2 technique splits the BPs 

 

Figure 4.12 Pose parameters of the wrist and first phalange motion. Solid = 

experimental data; Dot = model. The model is identified by the B1 technique. 
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into two sub point cloud (one in-built to the fixed body and the other one in-

built to the moving body), thus each one of the two resulting axes is computed 

with a fewer number of points. A deep analysis of the results obtained by the 

B2 technique reveals that the main source of errors is probably mainly due to a 

non-correct identification of the axis fixed to the moving body. However, to the 

best of the author’s knowledge is not clear the origin of this problem. 

Finally, as regards the relative motion between bones 3 and 4, the computed 

BPs are in general not well distributed along an axis of rotations (as they are for 

the relative motion between bones 1-2 and bones 2-3), but they are more 

thicken about a point than aligned about an axis, thus having a negative impact 

on the identification of a single axis of rotation. 

 

  

Figure 4.13 Pose parameters of the wrist and first phalange motion. Solid = 

experimental data; Dot = model. The model is identified by the B2 technique. 
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Table 4.1 The computed errors for the HA, B1 and B2 techniques for the relative 

motion between all the adjacent bones of the three measured fingers.  The labels bone 

i-j refers to the result obtained for the relative motion between the bone i and the bone 

j. Outside the brackets the absolute mean error is reported, whereas inside brackets the 

standard deviation of the mean absolute error is reported. 

    mmxe   mmye   mmze   grade   grade  

in
d

ex
 f

in
g

er
 

b
o

n
es

 

1
-2

 

HA 0.244 (0.329) 0.263 (0.484) 0.471 (0.308) 0.372 (0.508) 0.969 (1.460) 

B1 0.249 (0.341) 0.278 (0.467) 0.471 (0.310) 0.340 (0.494) 0.944 (1.376) 

B2 0.595 (0.436) 3.549 (0.439) 0.554 (0.507) 2.253 (0.576) 2.024 (1.201) 

b
o

n
es

 

2
-3

 

HA 0.259 (0.237) 0.504 (0.468) 1.250 (0.932) 1.009 (1.285) 3.034 (4.428) 

B1 0.136 (0.104) 0.146 (0.191) 2.180 (1.517) 1.722 (2.021) 3.866 (3.311) 

B2 0.393 (0.249) 2.282 (0.112) 1.652 (0.698) 1.574 (1.279) 3.947 (3.711) 

b
o

n
es

 

3
-4

 

HA 2.732 (1.864) 0.238 (0.190) 3.391 (2.059) 3.211 (4.494) 1.717 (2.152) 

B1 0.816 (0.732) 0.585 (0.503) 4.380 (3.065) 2.403 (3.722) 3.488 (3.348) 

B2 2.339 (0.975) 4.237 (0.453) 2.606 (1.336) 4.579 (5.000) 7.389 (2.345) 

m
id

d
le

 f
in

g
er

 

b
o

n
es

 

1
-2

 

HA 0.268 (0.508) 0.507 (1.138) 0.691 (0.593) 1.592 (1.793) 0.435 (0.504) 

B1 0.705 (0.424) 0.649 (0.569) 0.462 (0.438) 1.922 (2.300) 0.778 (0.962) 

B2 0.896 (0.553) 1.503 (0.956) 0.291 (0.230) 11.835 (3.054) 8.571 (2.940) 

b
o

n
es

 

2
-3

 

HA 0.212 (0.162) 0.306 (0.282) 1.425 (1.066) 1.618 (2.561) 2.082 (2.586) 

B1 0.220 (0.210) 0.143 (0.159) 1.447 (0.928) 4.178 (4.382) 2.052 (1.924) 

B2 1.571 (0.730) 1.677 (0.242) 0.821 (0.569) 17.921 (1.835) 4.978 (5.370) 

b
o

n
es

 

3
-4

 

HA 0.226 (0.156) 0.547 (0.442) 1.663 (1.619) 5.356 (5.963) 2.341 (3.421) 

B1 0.471 (0.387) 0.393 (0.323) 1.692 (1.407) 5.447 (6.237) 2.426 (3.548) 

B2 0.931 (0.663) 0.260 (0.123) 1.494 (1.526) 17.739 (4.045) 18.813 (2.158) 

ri
n

g
 f

in
g

er
 

b
o

n
es

 

1
-2

 

HA 0.088 (0.083) 0.271 (0.295) 0.738 (0.448) 0.529 (0.670) 0.912 (1.237) 

B1 0.318 (0.239) 0.222 (0.290) 1.170 (0.736) 0.473 (0.608) 0.878 (0.980) 

B2 1.134 (0.545) 2.794 (0.282) 1.067 (0.702) 1.987 (0.609) 1.366 (0.996) 

b
o

n
es

 

2
-3

 

HA 0.232 (0.150) 0.863 (0.756) 1.364 (0.851) 1.375 (1.368) 1.480 (2.244) 

B1 0.165 (0.113) 0.214 (0.191) 1.459 (0.890) 1.178 (1.159) 1.045 (1.194) 

B2 2.305 (0.190) 0.566 (0.235) 1.504 (1.075) 7.031 (1.094) 2.482 (1.406) 

b
o

n
es

 

3
-4

 

HA 0.250 (0.199) 0.270 (0.208) 1.000 (0.686) 4.073 (4.023) 1.816 (2.195) 

B1 0.465 (0.359) 0.297 (0.274) 1.578 (1.123) 11.161 (13.231) 3.092 (1.815) 

B2 3.089 (0.675) 1.045 (0.671) 3.170 (1.071) 33.697 (9.784) 5.044 (4.802) 

 



 

 

Conclusion 

Recently, a prototype of a hand exoskeleton for post-stroke rehabilitation 

purpose, called Bologna Hand Orthoses (BHO), was proposed by the Group of 

Robotics, Automation and Articular Biomechanics (GRAB) at the Department 

of Industrial Engineering, University of Bologna. The BHO is mainly 

composed by two actuators, the first one simultaneously actuates the 

flexion/extension motion of the four fingers (the index, the middle, the ring and 

the little finger), whereas the second one actuates the flexion/extension motion 

of the thumb. Each finger is guided by a 1-DoF mechanism (a 12-link 

mechanism for the four fingers guidance, whereas an 8-link mechanism for the 

thumb guidance) directly coupled with the finger itself by Velcro
®
 strips at the 

level of each human finger phalange. The moving link of the thumb mechanism 

is actuated by a RSSR mechanism whose frame link geometry changes 

according to the patient hand size. 

With the future goal to build a new version of the BHO, in this dissertation 

three problems arising from this first prototype were tackled. In particular, the 

first problem regards the high number of human-machine connections needed to 

fasten the BHO to the patient hand, the second problem regards the synthesis of 

the RSSR mechanism in order to guarantee an optimal motion and force 

transmission to the thumb mechanism once the BHO is fitted to a new patient 

(i.e. for different frame link geometries of the RSSR mechanism), whereas the 

third problem regards the need to get a reliable model of the human hand.  

The first problem has led to propose a new finger 1-DoF mechanism (in 

particular, a 6-link mechanism based on a Stephenson chain type) for the finger 

guidance that permits to lower the total number of human-machine connections 

from fifteen to only six. The new 6-link finger mechanism was here synthesized 
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for the index finger only, but the same synthesis procedure can be used for the 

synthesis of mechanisms useful for the guidance of all the five fingers. 

Moreover, several 6-link mechanisms ad hoc designed for the motion guidance 

of different finger sizes were found. Finally, several simulations with the aim to 

evaluate the behavior of the exoskeletons once fit on hands having a generic 

size are conducted. The simulations reveal encouraging results suggesting that 

the proposed finger exoskeleton can be successfully adopted for the motion 

guidance of the fingers for a hand exoskeleton. 

As regards the second problem, a novel synthesis procedure for the optimal 

motion and force transmission of a RSSR mechanism was presented. The RSSR 

mechanism is characterized by having a fixed link length of the floating links 

and a variable frame link geometry. The proposed RSSR mechanism synthesis 

takes the optimization of the force transmission as an objective function. In 

addition, prescribed constraints on given extreme angular positions for both the 

moving and the follower links, on the upper and lower bounds for the 

transmission ratio, and on the upper and lower bounds for the floating link 

lengths values have to be satisfied. The synthesis problem, set as a constrained 

minimization problem, was solved numerically in two steps by means of a 

Genetic algorithm followed by a quasi-Newton algorithm. The synthesis 

procedure is firstly presented in a general way, and then applied to the RSSR 

mechanism of the BHO. The results show that an optimal RSSR mechanism 

can be found for a small range of frame link geometries and thus several 

considerations for a compromise solution were discussed. 

Regarding the third problem, as a first step toward the modelling of the 

human hand was to model each finger as a serial manipulator and to 

approximate the flexion/extension motion of two adjacent bones as a rotation 

about a revolute axis. In this perspective, novel joint axes identification 

techniques were presented. The novel techniques are based on the Burmester 

theory. The Burmester theory is generally used for the synthesis of 

mechanisms, but it is used here in an original way to identify an axis of 

rotation. From this study two different joint axes techniques were proposed and 

a comparison of this two techniques with a more standard technique based on 

the finite helical axis was presented. Experimental tests devoted to measure in 

vivo the spatial motion of the index, middle and ring finger of a healthy subject 

were conducted. From the experimental test the relative motion between 
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adjacent bones of the human finger were obtained and the three joint axes 

techniques were applied. The results were very good and show that the 

identified axes of rotation by means of the three techniques are in general a very 

good approximation of the experimentally measured motion. 

As a final remark, it is noteworthy that this dissertation reports different 

solutions for the modelling and design of a new version of the hand exoskeleton 

proposed by the GRAB, but it is worth noting that the problems here tackled 

and the solutions found are of general interest, thus going beyond the scope of 

this thesis. 
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Appendix A 

Human hand: anatomy and modelling 

In this Appendix, a very short description of the human hand anatomy and of 

kinematic models of the human hand is given in order to lay down the basic 

terminology useful for a better comprehension of the Thesis. 

Human hand anatomy 

Starting from the shoulder, the upper limb is composed by the arm, the forearm 

and by the hand. The hand is composed by the wrist, that represents the 

continuity with the forearm, the metacarpus and the five fingers. The fingers are 

the thumb, the index, the middle, the ring and finally the little finger. The arm is 

composed by one bone, the humerus, whereas the forearm is composed by two 

bones, namely the radius and the ulna, finally the hand is composed by twenty 

seven bones subdivided in three mainly groups: the carpus, the metacarpus and 

the phalanges. 

 

 

Figure A.1 The bones of the human hand. 
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Bones of the carpus 

The carpus is composed by eight bones arranged in two rows, Figure A.1. The 

bones of the more proximal row, i.e. the bones closest to the forearm, 

proceeding in the radio-ulnar direction (i.e. the medial-lateral direction) are the 

scaphoid, the lunate, the triquetrum and the pisiform, whereas the bones of the 

second row are the trapezium, the trapezoid, the capitate and the hamate. 

 

The scaphoid. It has three articular surfaces: one proximal for the contact with 

the radius, one distal for the contact with both the trapezium and the trapezoid 

and one medial for the upper contact with lunate and capitate. 

 

The lunate. It has three articular surfaces: one proximal for the contact with the 

radius, one distal for the contact with both the hamate and the capitate and one 

lateral for the contact with the triquetrum. 

 

The triquetrum. It has a proximal surface that is faced to the ulna and a distal 

surface for the contact with the hamate and the pisiform. 

 

The pisiform. It has an articular surfaces faced to the hamate. 

 

The trapezium. It has an articular surface for the contact with the capitate, a 

distal surface for the contact with the first metacarpal bone and finally a medial 

surface for the articulation with the second metacarpal bone. 

 

The trapezoid. It has an articular surface for the contact with the scaphoid, a 

distal surface for the contact with the second metacarpal bone, a lateral surface 

for the contact with the trapezium and a medial surface for the contact with the 

capitate. 

 

The capitate. It has a proximal surface for the contact with both the scaphoid 

and the lunate, a distal surface for the contact with the third metacarpal bone, a 

lateral surface for the contact with the trapezoid and a medial surface for the 

contact with the hamate.  

 

The hamate. It has a proximal surface for the contact with the lunate, a distal 

surface for the contact with both the fourth and the fifth metacarpal bones, a 

lateral surface for the contact with the capitate and finally a medial surface for 

the contact with the triquetrum. 
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The radius-carpus joint (or wrist joint) is a condyloid joint. Its shape resembles 

an ellipse and thus permits movement in two planes, whereas the carpus-

metacarpus joint is a synovial joint. 

 

Bones of the hand: metacarpus and phalanges 

The hand is composed by five metacarpal bones connected proximally with the 

carpus and distally with the phalanges of the fingers. 

The metacarpus. These are five long bones whose proximally part is called the 

base, the middle part called the shaft (diaphysis) whereas the distal part is called 

the head (epiphysis). The first metacarpal bone, at the base is placed in contact 

with the trapezium, whereas distally is placed in contact with the thumb. 

The base of the second metacarpal bone is in contact with both the trapezoid 

and the base of the third metacarpal bone. 

The third metacarpal bone is in contact with the capitate bone and laterally and 

medially with the second and the fourth metacarpal bones respectively.  

The fourth metacarpal bone is in contact with the hamate, the capitate and with 

both the third and the fifth metacarpal bones. 

The fifth metacarpal bone is in contact with the fourth metacarpal bone and 

with the hamate. 

 

The phalanges. These are three bones per finger, namely the proximal phalange, 

the medial phalange and the distal phalange, except for the thumb that had just 

two phalanges, i.e. the proximal and the distal one. As for the metacarpal bone, 

each phalange presents the base, the diaphysis and the distal epiphysis.  

Each base of each proximal phalange is in contact with the corresponding 

epiphysis of each metacarpal bone, whereas the base of each medial phalange is 

in contact with the distal epiphysis of the corresponding proximal phalange, 

finally the base of each distal phalange is in contact with the corresponding 

medial phalange. 

 

Each finger thus presents four bones connected through different joints, called 

from proximal to distal: carpometacarpal (CMC) joint, metacarpophalangeal 

(MCP) joint, proximal interphalangeal (PIP) joint and, distal interphalangeal 

(DIP) joint. The thumb, rather than the DIP and PIP joints only presents the 

interphalangeal (IP) joint, moreover, since the metacarpal bone of the thumb 

articulates with the trapezium, it is often equivalently referred to as the 

trapeziometacarpal (TM) joint instead of CMC joint. 

 

The muscles producing movement of the fingers are divided into extrinsic and 
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intrinsic based on the origin of the muscles. The extrinsic muscles originate 

primarily in the forearm, while the intrinsic muscles originate primarily in the 

hand. The extrinsic muscles are divided into flexors found primarily on the 

anterior forearm and extensors found primarily on the posterior forearm. Both 

set of muscles insert on carpal bones, metacarpal or phalanges. The intrinsic 

muscles are divided into three groups: the thenar, the hypothenar and the 

midpalmar muscle groups.  

In Figure A.2, a standard convention to describe the motion of the parts of the 

hand is illustrated. The intersection of the hand with the transverse, sagittal and 

coronal anatomical planes is shown, as well as the axes and rotation motions 

(referred to the three anatomical planes) are reported. The three main types of 

rotations are defined in terms of each of the three anatomical planes. 

 

Human hand modelling 

In the last decades, the human hand was studied for different purposes by 

hundreds of researchers, indeed in the literature there is a multitude of papers 

and books related to the hand. Certainly, the aim of this Section cannot be to 

provide a comprehensive review of all the works related to the human hand 

 

Figure A.2 Standard convention to describe the motion of the parts of the hand, taken 

from Bullock et al (2012). 
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modelling (perhaps, this is impossible), but rather to give the very basic 

elements useful for the next Chapters. 

 

The hand has been considered as five skeletal open chains of rigid bodies 

connected to the carpus through different joints which characterise the 

kinematic behaviour of the chains. The DIP, PIP and IP joints of the fingers are 

trochlear joints, capable only of flexion/extension movements (Kapandji, 1983; 

Bullock et al., 2012). These joints are usually modelled as one DoF joints, in 

particular are revolute joints connecting the adjacent bones. All the MCP joints 

are condylar joints, thus capable of flex/extension and ab/adduction 

movements. The thumb CMC joint is a saddle joint, thus capable of 

flex/extension and ab/adduction movements. Both the MCP and CMC joints are 

usually modelled as two DOF joints by defining two revolute axes connecting 

the adjacent bones. In Table A.1, the universally-accepted assumptions for the 

kinematic model of the human hand in addition to the range of motion (RoM) 

of each articular joint are summarized. For a review of the common 

assumptions on the kinematic model of the human hand, see Bullock et al. 

(2012). A key-paper for the hand modelling is the work presented in Buchholz 

et al. (1992), where the finger was modelled as a serial manipulator having four 

segments and three articular joints, namely the MCP, PIP and DIP joint for the 

four fingers and TM, MCP and IP joint for the thumb. The link lengths of the 

serial manipulator correspond to the distance between two adjacent joints and 

Buchholz gives the corresponding average values as function of two 

independent parameters, i.e. the length and width of the human hand. Buchholz 

thus introduced the concept of scalability of the hand, and consequently his 

results are extensively used in the literature to scale the proposed models to 

different hands sizes. In the last decades, several researchers proposed a variety 

of kinematic models, e.g. Buccholz and Armstrong (1992), Davidoff et al. 

(1993), Albrecht et al. (2003), Lee and Zhang (2005), Veber and Bajd (2006), 

Cerveri et al. (2007), Van Nierop et al. (2007), Rezzoug and Gorce (2008), 

Parasuraman and Yee (2009), Bae and Armstrong (2011), Cobos et al. (2010), 

Burton et al. (2010), Tsai et al. (2011), Gustus et al. (2012), Lenarcic et al. 

(2012), Malvezzi et al. (2015). For a comprehensive review of the state-of-the-

art of the human hand kinematic and biomechanics models let refers to the 

brilliant book of Leon et al. (2014). 
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Table A.1 Common assumptions for the kinematic model of the human hand. DoF 

stand for degree-of-freedom, whereas RoM stand for range-of-motion. 

 Joint Type of joint Model Range of motion (RoM) 

th
u

m
b

 

TM Saddle joint Two non-orthogonal and non-

coincident axes (2 DoFs).  

Also accepted the universal 

joint model. 

Flex/extension : 12 50    

Ab/adduction : 30 60    

 

MCP Condylar joint Two non-orthogonal and non-

coincident axes (2 DoFs).  

Also accepted the universal 

joint model. 

Flex/extension : 10 80    

Ab/adduction : 30 60    

 

IP Trochlear joint Revolute joint (1 DoF). Flex/extension : 15 80    

in
d

ex
 f

in
g

er
 

CMC Saddle joint Usually considered as fix. Flex/extension : 0  

MCP Condylar joint Universal joint (2 DoFs). Flex/extension : 0 90   

Ab/adduction : 15 42    

PIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 0 100   

DIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 10 90    

m
id

d
le

 f
in

g
er

 

CMC Saddle joint Usually considered as fix. Flex/extension : 0  

MCP Condylar joint Universal joint (2 DoFs). Flex/extension : 0 90   

Ab/adduction : 8 35    

PIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 0 100   

DIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 10 90    

ri
n

g
 f

in
g

er
 

CMC Saddle joint Usually considered as a 

revolute joint (1 DoF). 

Sometimes is  considered as 

fix. 

Flex/extension : 0 15   

MCP Condylar joint Universal joint (2 DoFs). Flex/extension : 0 90   

Ab/adduction : 20 14    

PIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 0 100   

DIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 20 90    

li
tt

le
 f

in
g

er
 

CMC Saddle joint Usually considered as a 

revolute joint (1 DoF). 

Sometimes is  considered as 

fix. 

Flex/extension : 0 30   

MCP Condylar joint Universal joint (2 DoFs). Flex/extension : 0 90   

Ab/adduction : 40 19    

PIP Trochlear joint Revolute joint (1 DoF). Flex/extension : 0 100   

DIP Trochlear joint Revolute joint (1 DoF). Flex/extension: 30 90    

 


