
ALMA MATER STUDIORUM — UNIVERSITÀ DI BOLOGNA

DISI - Dipartimento di Informatica: Scienza e Ingegneria
Dottorato in Informatica

Ciclo XXVIII
Settore Concorsuale: 09/H1

Settore Disciplinare: ING-INF/05

COORDINATION ISSUES
IN COMPLEX SOCIO-TECHNICAL SYSTEMS:

SELF-ORGANISATION OF KNOWLEDGE IN MoK

Candidato

Dott. Ing. STEFANO MARIANI

Supervisore

Chiar.mo Prof. Ing. ANDREA OMICINI

Tutor

Chiar.mo Prof. Ing. ANDREA OMICINI

Coordinatore

Chiar.mo Prof. Ing. PAOLO CIACCIA

FINAL EXAMINATION YEAR 2016

iii

To my beloved wife, Alice
To our beloved daughter, Asia

Acknowledgements

This thesis belongs not only to me, but also to all the researchers and
professionals I had the pleasure to work with during this three-years effort.

I wish to thank Prof. Andrea Omicini for his supervision during my
PhD: he is a constant and endless source of invaluably precious suggestions,
criticism, and inspiration, as well as a wonderful person to share random
thoughts with. A special mention goes to Prof. Di Marzo-Serugendo and
Prof. Yee-King, the reviews whose comments helped in shaping the final
version of this thesis, and to Prof. Michela Milano, Prof. Fabio Vitali, and
Prof. Enrico Denti, the members of my internal committee which evaluated
progress of the PhD research efforts.

I wish to thank Prof. Mirko Viroli and Prof. Alessandro Ricci for sharing
with me many enlightening discussions, as well as a many launch breaks:
they may be unaware of this, but their research work has always been a
reference for me. I wish to thank Danilo Pianini, Sara Montagna, and
Andrea Santi for the wonderful time we had in the APICe lab, and for
all the precious discussions we shared. A special mention goes to Roberta
Calegari for being so efficient in fixing tuProlog issues for the benefit of
TuCSoN.

I wish to thank Prof. Schahram Dustdar, Prof. Hong-Linh Truong, Geor-
giana Copil, and all the distributed systems group of TU Wien, for hosting
me during my period abroad: I learnt many things by working with them,
and gained a broader perspective on my own work. A special mention goes
to Alessio Gambi for making me feel at home while there.

I wish to thank all the brilliant students I had the pleasure to super-
vise for their thesis and graduate projects, from whom I have learnt as
much as I have taught. A special mention goes to Michele Pratiffi, Mat-
tia Occhiuto, Giulio Crestani, Gianluca Spadazzi, Giacomo Dradi, Luca
Santonastasi, Matteo Fattori, Matteo Francia, Giovanni Ciatto, Michele
Bombardi, Lorenzo Forcellini Reffi.

iv

Last, but not least, I owe everything I have to my family: my wife Alice
constantly supports me and helps me in every single important decision,
and our daughter Asia has been fundamental to refresh my energies when
the work to do was just too much. My parents, too, always supported me,
and constantly demonstrated their care and pride about my research work,
while my brother has been always available for taking a break from work.

Stefano Mariani, March 30, 2016

Contents

1 About this Thesis 1
1.1 Organisation of Chapters . 2
1.2 List of Publications . 5

I Coordination Issues in Complex Socio-technical Systems 9

2 Coordination Issues in Self-organising Systems 13
2.1 Where all began: Linda . 13
2.2 Leveraging Stochasticity . 14

2.2.1 SwarmLinda . 15
2.3 Leveraging Programmability . 16

2.3.1 ReSpecT . 16
2.4 Putting all together . 18

2.4.1 Biochemical Tuple Spaces . 18
2.4.2 SAPERE . 19

2.5 Remarks & Outlook . 21

3 Re-thinking Stochastic, Programmable Coordination 23
3.1 Chemical Reactions as Coordination Laws 23

3.1.1 Self-organisation Patterns . 24
3.1.2 Custom Kinetic Rates . 26
3.1.3 Discussion of Results . 43

3.2 Uniform Primitives as Coordination Primitives 44
3.2.1 Related Approaches . 44
3.2.2 Informal Definition . 47
3.2.3 Informal Expressiveness . 50
3.2.4 Discussion of Results . 59

3.3 Formal Expressiveness of Uniform Primitives 59
3.3.1 Formal Definition of Uniform Primitives 60
3.3.2 From Modular Embedding to PME 62

v

3.3.3 Relative Expressiveness Results . 69
3.3.4 Similar Approaches . 70

3.4 Remarks & Outlook . 71

4 Coordination Issues in Situated Pervasive Systems 73
4.1 The Quest toward Situatedness in MAS . 73

4.1.1 Review of Meta-models . 74
4.1.2 Review of Architectures . 78
4.1.3 A Reference Architecture . 83

4.2 Environmental Situatedness in TuCSoN . 87
4.2.1 Architectural Overview . 87
4.2.2 Flow of Interactions . 90
4.2.3 Implementation Methodology . 99
4.2.4 Discussion of Results . 107
4.2.5 Related Work . 107

4.3 Spatial Situatedness in TuCSoN . 110
4.3.1 Space-aware Coordination Media 111
4.3.2 Space-aware Extension to ReSpecT 113
4.3.3 Expressiveness Showcase . 118
4.3.4 Discussion of Results . 122

4.4 Remarks & Outlook . 123

5 Coordination Issues in Knowledge-Intensive Socio-Technical Systems 125
5.1 Socio-Technical Systems & Knowledge-Intensive Environments 125

5.1.1 Challenges of Socio-Technical Systems 125
5.1.2 Challenges of Knowledge-Intensive Environments 126
5.1.3 Research Roadmap . 128

5.2 From Activity Theory to Behavioural Implicit Communication 129
5.2.1 Activity Theory for Multi-Agent Systems 129
5.2.2 Stigmergy and Cognitive Stigmergy 131
5.2.3 Behavioural Implicit Communication 133
5.2.4 Toward Computational Smart Environments 136

5.3 Behavioural Implicit Communication in Real-world STS 138
5.3.1 Survey of Actions . 138
5.3.2 Factorisation of Common Actions 143

5.4 Remarks & Outlook . 146

II Self-organisation of Knowledge in MoK 149

6 The M olecules of K nowledge Model 153
6.1 Core Abstractions . 154

vi

6.2 Focus on Reactions . 160
6.2.1 Formal Description . 160
6.2.2 Evaluation . 165

6.3 Focus on Interactions . 178
6.3.1 From Users’ Actions to MoK Perturbations 178
6.3.2 Early Evaluation: Citizen Journalism 182

6.4 Focus on Similarity . 188
6.4.1 Viable Approaches . 189
6.4.2 Experiments . 191

7 The M olecules of K nowledge Technology 197
7.1 Prototype on TuCSoN . 197

7.1.1 Main Abstractions . 198
7.1.2 The Chemical Engine Logic . 200
7.1.3 Spotlight on Engine Implementation 204
7.1.4 Early Evaluation: MoK -News . 205

7.2 MoK Ecosystem . 214
7.2.1 Information Harvesting Layer . 216
7.2.2 Networking & Communication Layer 217

III Conclusion & Outlook 223

8 Conclusion 225

9 Outlook 227

Bibliography 229

vii

viii

Chapter 1

About this Thesis

Knowledge-Intensive Environments (KIE) are workplaces in which sustainability of the
organisation long-term goals is influenced by, if not even dependant on, the evolution
of the knowledge embodied within the organisation itself [Bha01]. Being knowledge an
organised combination of data, procedures, and operations, continuously interacting and
evolving according to human users practice and (learnt) experience, KIE are usually
computationally supported by Socio-Technical Systems (STS), that is, systems in which
cognitive and social interaction is mediated by information technology, rather than by the
natural world alone [Whi06].

The modern IT landscape is increasingly pervaded by these kind of systems, mostly
due to the astonishing amount of data available nowadays, and to the unprecedented
participation of end users in the applications they use everyday—think about, e.g., social
networks, crowdsourcing platforms, online collaboration tools, and the like.

By definition, both KIE and STS are heavily interaction-centred, thus, they inevitably
need to deal with coordination issues to harness the intricacies of run-time dependencies
between the data and the agents (either software or human) participating the system
[MC94]. However, engineering effective coordination is far from trivial, mostly due to a
few peculiarities of KIE and STS: unpredictability of human behaviour, scalability of the
technological infrastructure, size of the amount of data, information, and knowledge to
handle, pace of knowledge production and consumption.

For these reasons, this thesis approaches the issue of engineering knowledge-intensive
STS from a coordination perspective, dealing with the aforementioned issues at the infras-
tructural level. The goal is to enable and promote user-driven self-organisation of knowl-
edge, by leveraging self-organising coordination mechanisms, an architecture for situated
pervasive systems, and a cognitive model of social action. Accordingly, the contribution
of this thesis may be conveniently articulated as follows:

• Chapter 2 briefly reviews the literature about self-organising coordination

• Chapter 3 describes the approach to coordination in self-organising systems, dealing

1

CHAPTER 1. ABOUT THIS THESIS

with the well-known local vs. global issue by engineering coordination laws as artifi-
cial chemical reactions. Simulations illustrate the potentiality of the approach, while
a formal definition of the coordination primitives exploited as basic implementation
bricks completes the analysis—along with a study of their expressiveness

• Chapter 4 provides a distributed, situated architecture for coordination in perva-
sive Multi-Agent Systems (MAS), supporting engineering of the aforementioned
coordination laws, implemented by deeply extending and refactoring an existing
coordination infrastructure. The coordination language exploited by the infrastruc-
ture is accordingly extended so has to handle the novel abstractions, enabling and
promoting situated coordination

• Chapter 5 studies the Behavioural Implicit Communication (BIC) model of social
action, bringing its abstractions and mechanisms into the (chemical-inspired, situ-
ated) computational framework, so as to leverage the concept of tacit messages to
enable user-driven coordination

• Chapter 6 describes the M olecules of K nowledge model (MoK) for self-organisation
of knowledge in knowledge-intensive STS

• Chapter 7 discusses the MoK technology, describing both a prototype middleware
and a complete eco-system currently under development

Chapters are further arranged in two parts: Part I includes chapters 2 to 5, Part II
chapters 6 and 7. This reflects the complementary nature of the research works presented
in Part I w.r.t. the MoK model described in Part II.

There, in fact, (i) the chemical-inspired approach to self-organising coordination is
the reference framework used to implement MoK coordination laws as artificial chemi-
cal reactions, (ii) the situated architecture for pervasive MAS provides the runtime for
execution of MoK coordination laws, while the situated language is exploited to imple-
ment MoK artificial chemical reactions, and (iii) BIC principles drive the self-organising
coordination process according to users interactions.

1.1 Organisation of Chapters

The thesis is organised in three parts:

Part I describes the three complementary research contributions necessary to conceptu-
ally ground the MoK model, and design & implement MoK infrastructure

Part II describes the MoK model and technology

Part III concludes the thesis providing final remarks and a glimpse of what could be
done next

2

CHAPTER 1. ABOUT THIS THESIS

Here follows a thorough description of the Chapters within each Part.

Part I

Part I starts with Chapter 2, providing a brief review of the literature regarding tuple-
based coordination for self-organising systems, focussed on the models and technologies
which mostly influenced the thesis.

Then, Chapter 3 describes the approach to self-organising coordination:

Section 3.1 presents an interpretation of chemical-inspired coordination relying on cus-
tom kinetic rates in place of the law of mass action for artificial chemical reactions
implementing coordination laws

Section 3.2 presents uniform coordination primitives, that is, a probabilistic extension
to Linda coordination primitives, as basic mechanisms on which chemical-inspired
coordination laws can be implemented, showcasing its expressiveness informally

Section 3.3 completes uniform primitives study of expressiveness, but from the formal
perspective of language embedding

Section 3.4 provides remarks on how the research work just presented contributes to
the MoK model, and how it can be further advanced

Chapter 4 is dedicated to the issue of situatedness in pervasive systems, thus, describes
the approach to deal with it:

Section 4.1 reviews the literature to frame the issue from an historical perspective,
analysing the evolution of the meta-models and architectures proposed during time,
then describes the proposed architecture along with its meta-model

Section 4.2 elaborates on how the architecture supports environmental situatedness
from the infrastructural point of view

Section 4.3 elaborates on how the architecture supports spatial situatedness from the
linguistic point of view

Section 4.4 provides remarks on how the research work just presented contributes to
the MoK model, and how it can be further advanced

Finally, Chapter 5 discusses how it is possible to take advantage of some of the peculiar
traits of knowledge-intensive STS to promote coordination driven by users interactions:

Section 5.1 presents the main challenges of such a kind of systems, and how they can
be dealt with from a coordination perspective

3

CHAPTER 1. ABOUT THIS THESIS

Section 5.2 briefly reviews the research efforts which tried to integrate socio-cognitive
theories of actions within a computational framework for designing MAS

Section 5.3 reports on a survey of the (inter-)actions means provided by a few real-world
STS, to connect the aforementioned theories of action with the real world

Section 5.4 provides remarks on how the research work just presented contributes to
the MoK model, and how it can be further advanced

Part II

Part II starts with Chapter 6, which thoroughly describes the MoK model for self-
organisation in knowledge-intensive STS:

Section 6.1 presents the core abstractions which the model revolves around

Section 6.2 thoroughly describes MoK reactions, what they are meant for, how they
work, and also reports on their early evaluation through simulations

Section 6.3 thoroughly describes the interaction model of MoK , that is, how users’
interactions affect the coordination process

Section 6.4 presents some early investigations on the issue of measuring similarity be-
tween pieces of information, for the sake of promoting semantic-driven coordination

Then, Chapter 7 describes the MoK technology:

Section 7.1 describes an early prototype of the MoK middleware running on top of the
TuCSoN infrastructure, and implemented in the ReSpecT language, also reporting
on an early evaluation through deployment within a news management scenario

Section 7.2 instead, reports on an ongoing effort to implement a full-fledged MoK
ecosystem, encompassing also functionalities such as information harvesting, knowl-
edge discovery, persistency, and the like

Part III

Part III concludes the thesis, by providing final remarks on the whole body of work, and
outlining a research roadmap for further works, on each of the research contributions
brought by the thesis.

4

CHAPTER 1. ABOUT THIS THESIS

1.2 List of Publications

Here follows a comprehensive list of the publications which directly contributed to the
body of work presented in this thesis, authored, or co-authored, by the same author of
this thesis:

chapter 3

• Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco L. DeAngelis, Giovanna Di Marzo Serugendo, Simon Dobson, Jose Luis
Fernandez-Marquez, Alois Ferscha, Marco Mamei, Stefano Mariani, Ambra
Molesini, Sara Montagna, Jussi Nieminen, Danilo Pianini, Matteo Risoldi, Al-
berto Rosi, Graeme Stevenson, Mirko Viroli, and Juan Ye. Developing per-
vasive multi-agent systems with nature-inspired coordination. Pervasive and
Mobile Computing, 17:236–252, February 2015. Special Issue “10 years of Per-
vasive Computing” In Honor of Chatschik Bisdikian

• Stefano Mariani. On the “local-to-global” issue in self-organisation: Chemical
reactions with custom kinetic rates. In Eighth IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014,
Eighth IEEE International Conference on Self-Adaptive and Self-Organizing
Systems Workshops, SASOW 2014, pages 61 – 67, London, UK, September
2014. IEEE. Best student paper award

• Stefano Mariani. Parameter engineering vs. parameter tuning: the case of bio-
chemical coordination in MoK. In Matteo Baldoni, Cristina Baroglio, Federico
Bergenti, and Alfredo Garro, editors, From Objects to Agents, volume 1099 of
CEUR Workshop Proceedings, pages 16–23, Turin, Italy, 2–3 December 2013.
Sun SITE Central Europe, RWTH Aachen University. XIV Workshop (WOA
2013). Workshop Notes

• Stefano Mariani and Andrea Omicini. Coordination mechanisms for the mod-
elling and simulation of stochastic systems: The case of uniform primitives.
SCS M&S Magazine, IV:6–25, December 2014. Special Issue on “Agents and
Multi-Agent Systems: From Objects to Agents”

• Stefano Mariani and Andrea Omicini. Probabilistic embedding: Experiments
with tuple-based probabilistic languages. In 28th ACM Symposium on Applied
Computing (SAC 2013), pages 1380–1382, Coimbra, Portugal, 18–22 March
2013. Poster Paper

• Stefano Mariani and Andrea Omicini. Probabilistic modular embedding for
stochastic coordinated systems. In Christine Julien and Rocco De Nicola,
editors, Coordination Models and Languages, volume 7890 of LNCS, pages 151–
165. Springer, 2013. 15th International Conference (COORDINATION 2013),
Florence, Italy, 3–6 June 2013. Proceedings

5

CHAPTER 1. ABOUT THIS THESIS

chapter 4

• Andrea Omicini and Stefano Mariani. Coordination for situated MAS: To-
wards an event-driven architecture. In Daniel Moldt and Heiko Rölke, editors,
International Workshop on Petri Nets and Software Engineering (PNSE’13),
volume 989 of CEUR Workshop Proceedings, pages 17–22. Sun SITE Central
Europe, RWTH Aachen University, 6 August 2013

• Stefano Mariani and Andrea Omicini. Coordinating activities and change:
An event-driven architecture for situated MAS. Engineering Applications of
Artificial Intelligence, 41:298–309, May 2015. Special Section on Agent-oriented
Methods for Engineering Complex Distributed Systems

• Stefano Mariani and Andrea Omicini. TuCSoN coordination for MAS situat-
edness: Towards a methodology. In Corrado Santoro and Federico Bergenti,
editors, WOA 2014 – XV Workshop Nazionale “Dagli Oggetti agli Agenti”,
volume 1260 of CEUR Workshop Proceedings, pages 62–71, Catania, Italy, 24–
26 September 2014. Sun SITE Central Europe, RWTH Aachen University

• Stefano Mariani and Andrea Omicini. Coordination in situated systems: Engi-
neering mas environment in TuCSoN. In Giancarlo Fortino, Giuseppe Di Fatta,
Wenfeng Li, Sergio Ochoa, Alfredo Cuzzocrea, and Mukaddim Pathan, editors,
Internet and Distributed Computing Systems, volume 8729 of Lecture Notes in
Computer Science, pages 99–110. Springer International Publishing, Septem-
ber 2014. 7th International Conference on Internet and Distributed Computing
Systems (IDCS 2014), Calabria, Italy, 22-24 September 2014, Proceedings

• Stefano Mariani and Andrea Omicini. Space-aware coordination in ReSpecT.
In Matteo Baldoni, Cristina Baroglio, Federico Bergenti, and Alfredo Garro,
editors, From Objects to Agents, volume 1099 of CEUR Workshop Proceedings,
pages 1–7, Turin, Italy, 2–3 December 2013. Sun SITE Central Europe, RWTH
Aachen University. XIV Workshop (WOA 2013). Workshop Notes

• Stefano Mariani and Andrea Omicini. Promoting space-aware coordination:
ReSpecT as a spatial-computing virtual machine. In Spatial Computing Work-
shop (SCW 2013), AAMAS 2013, Saint Paul, Minnesota, USA, May 2013

chapters 5, 6, 7

• Stefano Mariani and Andrea Omicini. Molecules of Knowledge: Self-organisation
in knowledge-intensive environments. In Giancarlo Fortino, Costin Bădică,
Michele Malgeri, and Rainer Unland, editors, Intelligent Distributed Computing
VI, volume 446 of Studies in Computational Intelligence, pages 17–22. Springer,
2013

• Stefano Mariani and Andrea Omicini. Self-organising news management: The
Molecules of Knowledge approach. In Jeremy Pitt, editor, Self-Adaptive and

6

CHAPTER 1. ABOUT THIS THESIS

Self-Organizing Systems Workshops (SASOW), pages 235–240. IEEE CS, 2012.
2012 IEEE Sixth International Conference (SASOW 2012), Lyon, France, 10-
14 September 2012. Proceedings

• Stefano Mariani and Andrea Omicini. MoK: Stigmergy meets chemistry to
exploit social actions for coordination purposes. In Harko Verhagen, Pablo
Noriega, Tina Balke, and Marina de Vos, editors, Social Coordination: Princi-
ples, Artefacts and Theories (SOCIAL.PATH), pages 50–57, AISB Convention
2013, University of Exeter, UK, 3–5 April 2013. The Society for the Study of
Artificial Intelligence and the Simulation of Behaviour

• Stefano Mariani and Andrea Omicini. Anticipatory coordination in socio-
technical knowledge-intensive environments: Behavioural implicit communica-
tion in MoK. In Marco Gavanelli, Evelina Lamma, and Fabrizio Riguzzi, ed-
itors, AI*IA 2015, Advances in Artificial Intelligence, volume 9336 of Lecture
Notes in Computer Science, chapter 8, pages 102–115. Springer International
Publishing, 23–25 September 2015. XIVth International Conference of the
Italian Association for Artificial Intelligence, Ferrara, Italy, September 23–25,
2015, Proceedings

7

CHAPTER 1. ABOUT THIS THESIS

8

Part I

Coordination Issues in
Complex Socio-technical Systems

9

In the first part of this thesis the engineering challenges posed by three different but
related kinds of complex systems are discussed from a coordination models & technologies
perspective, then a novel approach to deal with each of them is presented. In particular,
the focus is on self-organising (Chapters 2-3), situated pervasive systems (Chapter 4),
finally knowledge-intensive socio-technical ones (Chapter 5).

Each contribution is a necessary ingredient for building the M olecules of K nowledge
model described in Part II of this thesis, namely: the approach to deal with self-organisation
through uniform primitives and artificial chemical reactions with custom-defined kinetic
rates (Chapter 3) is the ground upon which MoK reactions are conceived and designed;
the situated architecture and language presented in Chapter 4 is used to implement the
prototype of the MoK middleware on TuCSoN coordination infrastructure, using the ex-
tended ReSpecT language; the theory of behavioural implicit communication discussed in
Chapter 5, in particular, the notion of tacit message, is used as the conceptual ground upon
which to conceive and design MoK user-centred self-organisation mechanisms—enzymes,
traces, and perturbation actions in particular.

11

12

Chapter 2

Coordination Issues in
Self-organising Systems

In this chapter is provided an overview of those approaches to self-organising coordination
(Section 2.2, Section 2.3, Section 2.4) which directly motivated, inspired, and influenced
the approach to coordination in self-organising systems proposed (Chapter 3). A brief
argumentation on why the approaches are all tuple-based, and on which benefits this
brings [RCD01], is provided as a preparatory background, describing the seminal Linda
model [Gel85] which almost all the presented approaches are built on top of (Section 2.1)—
including the one proposed.

2.1 Where all began: Linda

Linda [Gel85] has been proposed as a distributed programming language exploiting the
notion of generative communication—introduced in the same paper. Nevertheless, it is
suddenly recognised by Gelernter himself as a full-fledged computational model whose
implications would go beyond distributed communication. In fact, Linda is nowadays
mostly referred to as a coordination model [Cia96], rather than merely a distributed
programming language.

The Linda language consists of three primitives: out, in, rd. Respectively, they
allow processes to produce, consume, and observe tuples stored in a tuple space. Tuples
are named, ordered collections of heterogenous, typed values and/or variables—usually,
tuples containing some variables are called templates (or, anti-tuples). A tuple space is
the abstract computational environment in which Linda programs are executed, thus, it
includes tuples as well as processes using Linda primitives.

The semantics of Linda primitives is what makes the Linda language particularly
suitable to be used as a coordination model: whereas the out primitive always puts a tuple

13

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

in the tuple space1, in and rd attempt to get one—respectively, withdrawing it or not. In
fact, if a tuple matching the variables (possibly) used in the in or rd primitive is found,
that tuple is returned and the caller process may continue execution; otherwise, the caller
process is suspended until a matching tuple becomes available. This execution semantics
is often referred to as Linda suspensive semantics, and is one of its distinguishing features
enabling coordination policies to be programmed solely on top of the Linda language.

What enables this semantics is the primary contribution of Gelernter’s paper, that is,
generative communication. In generative communication, the data items communicated
– that is, the tuples – live independently w.r.t. their producers, since they are (possibly,
persistently) stored by the tuple space. This also enables uncoupling in space and time:
in fact, sender (receiver) processes need not to know when and where receivers (senders)
will be executing in order to successfully communicate.

The last distinguishing feature of the Linda model is the associative access to data. In
fact, interacting processes need not to know the address where a tuple is stored to access
it: they simply have to know their name and content—even partially thanks to variables.
This enables a third form of uncoupling: reference uncoupling (called communication
orthogonality in [Gel85]), both w.r.t. tuples and to senders/receivers.

Linda appears well-suited for supporting coordination in systems featuring, e.g.: (i)
distribution, by relying on multiple tuple spaces installed on networked hosts; (ii) open-
ness, thanks to its uncoupling facilities; (iii) incomplete information, handled by associa-
tive access. Knowledge-intensive Socio-Technical Systems (STS) enjoy all these features,
nevertheless have many more which cannot be dealt with effectively by Linda as it is; in
particular, uncertainty and unpredictability, and the need for adaptiveness.

For this reason, the following sections briefly review some coordination models and
infrastructures, either inspired to Linda or implementing Linda in interesting ways, all
having in common the goal of dealing with the aforementioned shortcomings—some by
looking at natural metaphors for implementation, some by extending the model.

2.2 Leveraging Stochasticity

A natural solution to account for unpredictability and uncertainty is to embrace stochas-
ticity by tolerating probabilistic rather than deterministic computations and decision
making. Among the many existing stochastic approaches to coordination reviewed – e.g.,
digital pheromones [PBS02], biochemical tuple spaces [VC09], SAPERE [ZCF+11], prob-
abilistic pi-calculus [HP01], stochastic Klaim [DNLKM06] – the focus is on describing
the one which proven to be particularly influential for this thesis: SwarmLinda [TM04].

1In his paper Gelernter does not further specifies out semantics. Much more recently, [BGZ00] distin-
guishes two admissible semantics regarding actual tuple insertion in the tuple space w.r.t. to the producer
process, deeply affecting the computational expressiveness of the Linda model. In the following, is always
assumed the ordered semantics of out primitive—as well as of any other insertion primitive which could
be mentioned.

14

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

2.2.1 SwarmLinda

SwarmLinda [TM04] is the proposal of a scalable implementation of the Linda model
based on swarm intelligence techniques, drawing inspiration from ant colonies [Par97].

One can understand the world of SwarmLinda as a terrain (network of tuple spaces)
in which ants (tuple templates) search for food (tuples), leaving pheromone trails upon
successful matches, indicating the likelihood that further matches for that template are
available. Ants look for food in the proximity of the anthill (the caller process); when
found, the food is brought to the anthill2 and a trail is left so that other ants can know
where the food is. The digital ants behave according to the following rules:

1. spread the scent of the caller process in the node it is interacting with and its
neighbourhood, to represent the anthill

2. check for a matching tuple: if a match is found, return to the anthill leaving scent
for the template matched at each step (tuple space traversed); if no match is found,
check the 1-hop neighbourhood for traces of the desired scent

3. if no desired scent is found, randomly choose a neighbour space to continue search

4. if a desired scent is found, move one step toward that scent and start over

The key to scalability lies in the local nature of ants perceptions: they carry out lo-
cal searches solely, and inquire direct neighbours only. Furthermore, probabilistic non-
determinism – necessary for supporting adaptiveness and fault-tolerance [TM04] – is
achieved by adding a small random factor to each scent: this enables paths other that the
one with the strongest scent to be chosen.

This results in the emergence of application specific paths between tuple producers and
consumers. Moreover, given that scents are volatile thanks to an evaporation mechanism,
the paths found can dynamically adapt to changes in the system—e.g., when consumers
or producers join, leave or move, or in case of failures in nodes hosting tuple spaces.

Besides tuples searching, ant colonies inspiration is also used to partition tuple spaces
dynamically, that is, in brood sorting [Par97]. In nature, ants are able to sort different
kinds of things kept in the anthill such as food, larvae, eggs, etc., and do so in spite of
the amount of each type, thus being very scalable. In SwarmLinda, tuples are the things
to sort and the ant is the active process representing an out, thus:

1. upon execution of an out, start visiting the nodes

2. observe the kind of tuples the nodes store, that is, the template they match

3. store the tuple in the node if nearby nodes store tuples matching the same template,
considering a small random factor

2The ants know the way back to the anthill because (i) they have a short memory of the last few steps
they took and (i) the anthill has a distinctive scent.

15

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

4. if nearby nodes do not contain similar tuples, randomly choose whether to drop or
continue to carry the tuple to another node

To guarantee convergence to meaningful partitions, certain conditions must be satisfied:
(i) for each time the process decides not to store the tuple, the random factor will tend
to ε ≈ 0 so as to increase the chance of storing the tuple in next steps; (ii) the likelihood
of locally storing the tuple is calculated probabilistically, based on the kinds of objects
in the ant’s memory, that is, if most of them are similar to the one being carried, the
likelihood to deposit the tuple increases.

Summing up, SwarmLinda is a nature-inspired implementation of the Linda model,
accounting for uncertainty and unpredictability – e.g., of tuples’ location and of agents’
interactions – by embracing probability in the mechanisms supporting tuples searching
and storage. Adaptiveness is enabled in turn, by leveraging stochasticity in both resource-
to-consumer paths formation and tuples partitioning.

2.3 Leveraging Programmability

As far as adaptiveness is a main concern, a natural solution to support it is to allow
some degree of programmability of the coordination machinery, e.g., allowing interacting
agents to change the coordination laws, or even the coordination medium to change them
itself. Among the many existing approaches to programmable coordination reviewed –
e.g., TOTA [MZ09], MARS [CLZ00], LGI [MU00] – the focus is on describing the one
which proven to be particularly influential for this thesis: ReSpecT [Omi07].

2.3.1 ReSpecT

ReSpecT (Reaction Specification Tuples) is a logic-based language for the coordination of
complex software systems [Omi07]. ReSpecT promotes a coordination model providing
tuple centres [OD01b] as programmable, general-purpose coordination media [Cia96]. The
behaviour of ReSpecT tuple centres is programmed through the ReSpecT first-order logic
language.

A tuple centre is a tuple space enhanced with the possibility to program its behaviour
in response to interactions. First of all, coordinated entities (ReSpecT agents, henceforth,
or simply agents) can operate on a ReSpecT tuple centre in the same way as on a standard
Linda tuple space: by exchanging tuples – which are first-order logic terms, in the case
of ReSpecT – through a simple set of coordination primitives. Accordingly, a tuple centre
enjoys all the many features of a tuple space mentioned in Section 2.1, that is, generative
communication, associative access, and suspensive semantics.

Then, while the basic tuple centre model is independent of the type of tuple, ReSpecT
tuple centres adopt logic tuples – both tuples and tuple templates are essentially Prolog
facts – and logic unification is used as the tuple-matching mechanism. Since the overall

16

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

content of a tuple centre is a multi-set of logic facts, it has a twofold interpretation as
either a collection of messages, or a (logic) theory of communication among agents, thus
promoting in principle forms of reasoning about communication.

Finally, a tuple centre is a programmable tuple space, so as to add programmability
of the coordination medium as a new dimension of coordination. While the behaviour of
a tuple space in response to interaction events is fixed – so, the effects of coordination
primitives are fixed –, the behaviour of a tuple centre can be tailored to the system needs
by defining a set of specification tuples, or reactions, which determine how a tuple centre
should react to incoming / outgoing events. While the basic tuple centre model is not
bound to any specific language to define reactions, ReSpecT tuple centres are obviously
programmed through the ReSpecT logic-based specification language.

The ReSpecT coordination language is a logic-based language for the specification of
the behaviour of tuple centres. As a behaviour specification language, ReSpecT (i) enables
the definition of computations within a tuple centre, called reactions, and (ii) makes it
possible to associate reactions to events occurring in a tuple centre. So, ReSpecT has both
a declarative and a procedural part. As a specification language, it allows events to be
declaratively associated to reactions by means of specific logic tuples, called specification
tuples, whose form is reaction(E ,R).

In short, given a event Ev , a specification tuple reaction(E ,R) associates a reaction Rθ
to Ev if θ = mgu(E,Ev)—where mgu is the most general unifier, in Prolog terminology.
As a reaction language, ReSpecT enables reactions to be procedurally defined in terms
of sequences of logic reaction goals, each one either succeeding or failing. A reaction as
a whole succeeds if all its reaction goals succeed, and fails otherwise. Each reaction is
executed sequentially with a transactional semantics : so, a failed reaction has no effect
on the state of a tuple centre.

All the reactions triggered by an event are executed before serving any other event: so,
agents perceive the result of serving the event and executing all the associated reactions
altogether as a single transition of the tuple centre state. As a result, the effect of
a coordination primitive on a tuple centre can be made as complex as needed by the
coordination requirements of a system.

Generally speaking, since ReSpecT has been shown to be Turing-equivalent [DNO98],
any computable coordination law could be in principle encapsulated into a ReSpecT tuple
centre. This is why ReSpecT can be assumed as a general-purpose core language for
coordination: a language that could be used to represent and enact policies and rules
(laws) for coordination systems of any sort.

Summing up, ReSpecT is a coordination language supporting programmability of co-
ordination primitives and laws, allowing run-time modifications of the semantics of prim-
itives, as well as run-time adjustment of coordination laws, thus enabling and promoting
adaptiveness of the overall coordination logic.

17

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

2.4 Putting all together

It appears natural to combine the aforementioned approaches into a single, comprehensive
and coherent approach leveraging both stochasticity and programmability of the coordina-
tion machinery, so as to better cope with adaptiveness and unpredictability/uncertainty.
The following sections report on the two most promising approaches reviewed, which
also influenced the coordination approach proposed in Chapter 3, as well as the overall
contribution of this thesis: biochemical tuple spaces [VC09] and SAPERE [ZOA+15].

2.4.1 Biochemical Tuple Spaces

Biochemical Tuple Spaces (henceforth BTS) are a stochastic, chemical-inspired extension
of Linda tuple spaces first, then of the whole Linda model [VC09]. Chemical inspira-
tion stems mainly from two considerations: on the one hand, coordination models are
increasingly required to tackle self-* properties as inherent systemic properties, rather
than peculiar aspects of individual coordinated components [ZV08]; on the other hand,
among the many plausible natural metaphors available, the chemical one appears partic-
ularly interesting for the complexity of the stochastic behaviours it enables, despite the
simplicity of its foundation [VCO09].

The essential idea behind the BTS model is to equip each tuple with a concentration
value, seen as a measure of the pertinency/activity of the tuple: the higher it is, the
more likely and frequently the tuple will influence system coordination. Concentration of
tuples is dynamic, and evolves driven by programmable chemical-like rules installed into
the tuple space, affecting concentrations over time exactly as chemical substances evolve
within chemical solutions [Gil77].

Accordingly, primitive out now injects a given concentration of a tuple, possibly in-
creasing the concentration of identical tuples already in the space. Primitive in either
entirely removes a tuple, if no concentration is specified, or decreases the concentration of
an existing tuple of the given amount. Primitive rd just reads tuples instead of removing
them. Also the matching function µ changes w.r.t. Linda, so as to return 0 if tuple τ
does not match template τ ′, 1 if they completely match, and any value in between to
represent partial matching.

From an infrastructural standpoint, a BTS-coordinated system is a set of tuple spaces
networked in some topological structure, defining the neighbourhood of each space. Inter-
action between tuple spaces is mediated by a chemical-like law that fires some tuples to a
tuple space in the neighbourhood picked probabilistically. Links () between tuple spaces
(σ and σ′) allow tuples movement according to a markovian rate r, representing the aver-

age movement frequency: σ
r
 σ′. Markovian rates follow the argument of [Gil77] stating

that chemical reactions can be simulated as Continuous-Time Markov Chains (CTMC)3

3Actually, the BTS model is an hybrid CTMC/DTMC model, since instantaneous transitions are
allowed; please, refer to [VC09] for a thorough explanation.

18

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

[Car08], and are also exploited for both primitives and chemical laws execution.
As regards execution of chemical-like reactions, expressed as rewriting rules of the

form [Ti
r−→ To] – meaning reactants Ti should be transformed into products To with a

markovian rate r –, the following is worth noticing:

• in the general case where a tuple set T is found that is not equal to Ti, but it rather
matches Ti, {T/Ti} could provide more solutions

• being one transition allowed for each different solution of substitutions {Ti/T}, one
is to be chosen probabilistically depending on the matching function

• accordingly, the actual markovian rate of reaction execution is given by µ(Ti, T) ∗
G(r, T, T |S), which computes the transition rate according to Gillespie’s algorithm
[Gil77]

The G(·, ·, ·) function is r ∗ count(T, T |S), where function count(T, S) counts how many
different combinations of tuples in T actually occur in S, namely:

count(o, S) = 1, count(τ〈n〉 ⊕ T, τ〈m〉 ⊕ S) =
m(m− 1) . . . (m− n+ 1)

n!
∗ count(T, S)

Summing up, the rate of execution is influenced by three factors: its intrinsic markovian
rate r, the matching function µ, the relative concentration of involved reactants G.

As regards Linda primitives extension, BTS operations semantics states that:

• primitive out is pretty much similar to Linda out

• primitive rd reads a matching tuple with greater concentration than the one spec-
ified, where the likelihood of choosing a particular tuple among the matching ones
depends on the ratio between concentrations of τ ′ and τ—namely, the higher the
concentration of a tuple, the more it is likely to read it

• primitive in functioning is identical to rd but for the destructive semantics

In conclusion, the BTS model promotes self-organisation in multi-agent systems by lever-
aging a (bio-)chemical metaphor to extend the Linda model toward a fully stochastic
and programmable coordination model.

2.4.2 SAPERE

SAPERE (Self-aware Pervasive Service Ecosystems) [ZCF+11] was a EU STREP Project
funded within the EU 7 FP4. SAPERE takes as ground the Linda model, then follows the
pioneer work of approaches like ReSpecT [Omi07] regarding supporting programmability
of coordination laws, but taking a different stance inspired to the laws of nature observed

4FP7-ICT-2009.8.5: Self-awareness in Autonomic Systems.

19

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

in natural ecosystems, to promote self-organisation of services in pervasive computing
scenarios. SAPERE is inspired to the Biochemical Tuple Space model presented in Sub-
section 2.4.1, although with some notable differences—e.g., the chemical concentration
mechanisms exactly mimicking chemical dynamics is not mandatory in SAPERE.

SAPERE considers modelling and architecting a pervasive service environment as a
non-layered spatial substrate, made up of networked SAPERE nodes, laid above the
actual network infrastructure. This substrate embeds the basic laws of nature (Eco-Laws
in SAPERE terminology) that rule the activities of the system.

Users can access the ecology in a decentralised way to consume and produce data
and services. Any individual (e.g., devices, users, software services) has an associated
semantic representation inside the ecosystem called Live Semantic Annotation (LSA).
LSA are handled as living, dynamic entities, capable of reflecting the current situation
and context of the component they describe. LSA my be used to encapsulate data relevant
to the ecology, reify events, act as observable interfaces of components, and ultimately be
the basis for enforcing semantic and self-aware forms of dynamic interaction—both for
service aggregation/composition and for data/knowledge management.

Eco-laws define the basic policies to rule sorts of virtual chemical reactions among
LSA, thus enforcing dynamic concept-based (e.g., semantic and goal-oriented) networking,
composition, and coordination of data and services in the ecosystem, to establish bonds
between entities, produce new LSA, and diffuse LSA in the network world.

More specifically, each SAPERE node embeds a so-called LSA-space, in which self-
adaptive coordination mechanisms take place so as to mediate the interaction between
components. Whenever a component approaches a node, its own LSA is automatically
injected into the LSA-space of that node, making the component part of that space and
of its local coordination dynamics.

LSA are semantic annotations with same expressiveness as standard frameworks like
RDF. An LSA pattern P is essentially an LSA with some variables in place of some values
– similarly to Linda templates –, and an LSA L is said to match the pattern P if there
exists a substitution of variables to values that applied to P gives L. Differently from
Linda, the matching mechanism here is semantic and fuzzy [NOV11].

Besides the LSA-space, each node embeds the set of eco-laws ruling the activities of
the ecosystem. An eco-law is of the kind P1 + . . . + Pn

r−→ P ′1 + . . . + P ′m where: (i) the
left-hand side (reagents) specifies patterns that should match the LSA L1, . . . , Ln to be
extracted from the space; (ii) the right-hand side (products) specifies patterns of LSA
which are to be inserted back in the space; and (iii) rate expression r is a numerical
positive value indicating the average frequency at which the eco-law is to be fired.

In other words, SAPERE models execution of the eco-laws as a CTMC (Continuous
Time Markov Chain) transition with Markovian rate r. An eco-law is applied as follows:
(i) iteratively, one reagent pattern Pi is non-deterministically extracted from the eco-law,
a matching LSA Li is found, and the resulting substitution is applied to the remainder
of the eco-law; (ii) when (and if) iteration is over, products form the set of LSA to be

20

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

inserted back in the space. As far as topology is concerned, the framework imposes that
an eco-law applies to LSA belonging to the same space, and constrains products to be
inserted in that space or in a neighbouring one (to realise space-space interaction).

Summing up, the SAPERE project proposed a model, a middleware, and a method-
ology for the engineering of pervasive services ecosystems, in which the stochasticity of
interactions and computations, the programmability of the coordination laws, and aspects
related to semantic matching and context awareness are of prominent relevance to enable
and promote self-organisation and adaptiveness.

2.5 Remarks & Outlook

All the models and technologies presented in this chapter influences the whole thesis, not
only the way in which the M olecules of K nowledge model is conceived and designed.

Linda is taken as the reference model for designing data-driven, fully uncoupled co-
ordination mechanisms. The whole chemical-inspired machinery described in Section 1
of next chapter is rooted on a tuple space based setting, with tuples playing the role of
chemicals and tuple spaces of chemical solutions. Uniform primitives presented in Sec-
tion 2 of next chapter are a specialisation of Linda primitives, born to overcome some
limitations of the original model.

The infrastructure refactored and extended in Chapter 4, along with its language, is
tuple based. Within MoK , besides information items to be managed, also users actions,
as well as their side-effects, are represented as tuples in a tuple space based setting.

From SwarmLinda is taken the idea of using pheromone-based coordination to cluster
tuples and find optimal routing paths between who searches for a tuple and who owns
it—although this feature is included in MoK ecosystem only, and still under development
(see Section 7.2 in Chapter 7).

Among the many differences w.r.t. the approach just described is the fact that the
approach proposed in this thesis delegates pheromone handling to the infrastructure, in
the form of chemical-inspired coordination laws, whereas SwarmLinda relies on dedicated
processes. Also, in SwarmLinda tuple clustering is driven by tuples structure and content
solely, while MoK also considers semantic aspects as well as the epistemic nature of users
interactions—to some extent.

ReSpecT is the language used to implement the chemical machinery necessary to deploy
the artificial chemical reactions described in Section 1 of next chapter, as well as the
chemical reactions themselves. It is also the language used to program tuple centres
within the TuCSoN infrastructure, thus the language extended as part of the research
contribution described in Chapter 4.

Finally, the MoK prototype on TuCSoN infrastructure is implemented as a combi-
nation of Java (the language used to implement TuCSoN) and ReSpecT, with the latter
dedicated, in particular, to implement MoK reactions and MoK compartments’ chemical

21

CHAPTER 2. COORDINATION ISSUES IN SELF-ORGANISING SYSTEMS

engine (see Section 7.1).
The chemical metaphor behind MoK is similar to the Biochemical Tuple Spaces (BTS)

model, although with some notable difference. Similarities encompasses tuple spaces being
seen as chemical solutions simulators, coordination laws being modelled as chemical reac-
tions, the notion of concentration to resemble tuples relevance, Linda matching function
being revisited to also consider partial matching (potentially, semantic, too) and influence
reactions application rate.

Despite the many similarities, there are substantial differences to be pointed out,
affecting, e.g., expressiveness of the model. In MoK compartments are still chemical
solutions simulators, but reactions are not obliged to follow the law of mass action, that
is, to have a perfect match with how chemical solutions evolve in the natural world. This
holds true also for the approach to chemical inspired coordination presented in Section
1 of next chapter. Also, in MoK the pool of reactions driving system evolution is fixed:
although reactions may be tuned, no reactions may be disabled, nor new ones added to the
system. Communication among compartments is not stochastic, but only probabilistic
– that is, timing aspects are not modelled – and primitives at agents disposal have the
usual Linda semantics—no stochasticity here, too.

The SAPERE project, too, similarly to the BTS model, influenced of the MoK model
and the whole stance to coordination taken in this thesis: actually, the two models are
born in the same context and almost at the same time, and for a one-year research grant
the author of this thesis worked on both at the same time. SAPERE in turn, is deeply
rooted in the BTS model, too, so many of the similarities seen among BTS and the work
in this thesis still hold, as well as many of the differences.

One of the most notable differences lies on the target scenario of the models: SAPERE
is mostly conceived for engineering self-organisation within pervasive service-oriented ar-
chitectures, while MoK targets the issue of information and knowledge management in
STS. In SAPERE, any service component interacts with others through programmable
eco-laws involving their representative LSA. LSA are meant to reflect at anytime the
state of the corresponding service component, enabling others to observe certain portions
of it, so as to promote some form of awareness. In MoK , instead, nothing similar exists:
interacting agents are not statically represented, but their actions within the system are
dynamically reified and exploited for the benefit of the coordination process.

22

Chapter 3

Re-thinking Stochastic,
Programmable Coordination

In this chapter a novel approach to coordination in self-organising systems is described,
which re-thinks the basis of chemically inspired coordination, both from the engineering
standpoint of coordination laws and primitives design, and from the scientific standpoint
of relative linguistic expressiveness.

Accordingly, firstly the well-known local vs. global issue in self-organising systems is
dealt with by engineering coordination laws as artificial chemical reactions with cus-
tom kinetic rates (Section 3.1), then, the impact of uniform coordination primitives
on self-organising systems is discussed, experiments on their applicability are reported
(Section 3.2), their semantics is defined, and their linguistic expressiveness studied (Sec-
tion 3.3).

3.1 Chemical Reactions as Coordination Laws

A foremost issue while engineering self-organising systems is the local vs. global issue:
how to link the local mechanisms, through which the components of the system interact,
to the emergent, global behaviour exhibited by the system as a whole [BB06].

Existing approaches to face the issue are based on simulation [GVO06], parameter
tuning [GVO09], (approximate) model checking [CV13], or bio-inspired design patterns
[FMMSM+12]. Simulation investigates the behaviour of the system prior to real-world
deployment; parameter tuning helps improving the performance (according to whatever
definition) of the single mechanisms; (approximate) model checking enables formal veri-
fication of expected global behaviours; design patterns assist programmers in deploying
the correct self-organising solutions according to the problem to solve.

Nevertheless, these approaches may be not enough, especially if used separately: simu-
lation may not be able to accurately reproduce real world contingencies; parameter tuning

23

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

may lead to sub-optimal settings; model checking may be impractical for the complexity
of the problem at hand; design patterns give no guarantees about quality of solutions.

For these reasons, an integrated approach to deal with the local vs. global issue in
self-organising systems is proposed: (i) rely on design patterns to design the local mech-
anisms by implementing them as artificial chemical reactions ; (ii) go beyond the law of
mass action [Car08] by engineering custom kinetic rates reflecting the emergent, global
behaviour desired; (iii) simulate-then-tune loop to adjust the dynamics of the (artificial)
chemical system obtained so as to achieve the emergent, global behaviour desired.

This body of work is used as the ground upon which the custom kinetic rates of the
chemical-like coordination laws in the MoK model discussed in Part II of this thesis are
designed—in particular, see Section 2 of Chapter 6.

3.1.1 Self-organisation Patterns

Among the possible approaches to face the local vs. global issue, one is to rely on bio-
inspired design patterns. As the name suggests, the concept is similar to design patterns
in OO programming: recurrent solutions to recurrent problems are modelled and encapsu-
lated as architectural best practices to promote design reuse—and code reuse, ultimately.
As explicitly stated in [FMMSM+12] (e.g., Fig. 4 therein), patterns are often decompos-
able into atomic, non further decomposable patterns: the focus is precisely on these.

Thus, a survey of the state-of-art literature regarding design patterns and basic mech-
anisms enabling self-organisation has been undertaken – considering [Nag04, DWH07,
FMSM12, FMDMSA11, TRDMS11, VCMZ11] –, which led to identification of the fol-
lowing set of basic patterns—in what follows, the term “information” is used, but can be
replaced with “process”, “component”, anything which can be subject of self-organisation:

decay the decay pattern (aka evaporation, or cleaning) destroys information. Usu-
ally, it destroys a finite amount of information as time passes (e.g., evaporation
of pheromone scent)

feed the feed pattern (aka reinforcement) increases information relevance. Usually, this
means increasing information quantity (e.g., pheromone deposit over other pheromone)

activation/inhibition the activation pattern changes information status depending on
external stimuli—the same holds for the dual inhibition pattern. Usually, this means
some sort of stimulus triggers some sort of response (e.g., neurones activation in the
brain), possibly changing some of the information attributes

aggregation the aggregation pattern fuses information together. Fusion can be filtering
(e.g., new info replaces old), merging (e.g., related news synthesised into a single
story), composing (e.g., building a list from separate values), transforming (e.g.,
summing, averaging, etc.), etc.

24

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

diffusion the diffusion pattern (aka spreading, or propagation) moves information within
a topology. Diffusion can destroy moved information, resembling some sort of mi-
gration, or not, resembling replication

repulsion/attraction the repulsion pattern drifts apart information—dually, attraction
approaches information instead. Usually, repulsion considers topological informa-
tion to spread information fairly

Each of these patterns1 is modelled as a chemical reaction, then engineered in different
ways so as to obtain different global behaviours, finally simulated with the BioPEPA tool,
presented in next paragraph, to show the effects of custom rates on the emergent, global
self-organising behaviour obtained.

On simulation Among the existing frameworks and tools allowing simulation of chem-
ical reactions, either born in biochemistry [AAS06] or in the multi-agent systems commu-
nity [MAC+07], BioPEPA2 [CH09] is used.

BioPEPA [CH09] is a language and tool for the simulation of biochemical processes.
It is based on PEPA [GH94], a process algebra aimed at performance analysis, extended
to deal with the typical features of biochemical networks, such as stoichiometry, compart-
ments and kinetic laws. The most appealing features of BioPEPA are:

• the possibility to define custom kinetic laws by designing functional rate expressions

• the possibility to define stoichiometry (how many molecules of a given kind partic-
ipate) and role played by the species (reactant, product, enzyme, etc.) involved a
given reaction

• the possibility to define topologies of compartments among which reactants may
move

• its theoretical roots in CTMC semantics [Her02]—behind any BioPEPA specification
lies a stochastic labelled transition system modeling a CTMC

Rate expressions are defined as mathematical functions involving reactants concentrations
(denoted with the reactant name and dynamically computed at run-time) and supporting:

• mathematical operators, e.g., exp and log functions

• built-in common kinetic laws, e.g., the law of mass action (denoted with the keyword
fMA)

• time dependency through variable time, increasing according to the current simu-
lation time step

1Except repulsion/attraction, that has been left-out since it can be engineered on top of diffusion.
2Eclipse plugin at http://groups.inf.ed.ac.uk/pepa/update/ update site.

25

http://groups.inf.ed.ac.uk/pepa/update/

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

In summary, BioPEPA allows to: model self-organisation primitives as chemical reactions,
simulate them using different stochastic simulation algorithms – the choice is Gillespie’s
algorithm [Gil77] –, tune rates according to simulation results.

3.1.2 Custom Kinetic Rates

The self-organisation patterns listed in Subsection 3.1.1 are now modelled as artificial
chemical reactions representing the local mechanisms, then encoded in the BioPEPA
language to finally simulate the emergent, global behaviour achievable. While doing so,
custom kinetic rates are engineered in different ways, and BioPEPA plots resulting from
simulations are compared to highlight how changes in the local mechanisms affect the
global behaviour.

Technical notes on experiments Each of the following experiments is performed
using the Gillespie stochastic simulation algorithm provided by BioPEPA. Each of the
following plots is directly generated from BioPEPA as a result of the correspondent ex-
periment, consisting of 100 Gillespie runs.

Nothing changes from run to run, they are necessary due to the stochastic aspects
embedded in the simulation algorithm, and aims at showing more regular trends—it
should be noticed, however, that single runs plots are really similar. In each chart, the
x-axis plots the time steps of the simulation, whereas the y-axis plots the concentration
level of the reactants expressed as units of molecules.

The codebase tracking the BioPEPA specifications used in the examples is publicly
available under LGPL license at http://bitbucket.org/smariani/mok-biopepa.

Decay The decay pattern can be represented as an artificial chemical reaction as follows:

data
rdecay−−−→ ⊥

meaning that a certain unit of data disappears at a pace given by rdecay—this is the local
mechanism. The reaction can be encoded in BioPEPA as follows:

1 DECAY_CONSTANT = 0.5;

2 r_decay = [fMA(DECAY_CONSTANT)]; // kinetic rate

3 data = (r_decay , 1) <<; // chemical reaction

meaning that species data participates in decay chemical reaction as a reactant (<<),
thus being consumed, with stoichiometry 1, thus one unit of data is involved. The rate
(r decay) follows the usual law of mass action (fMA) [Car08].

Simulations of the above BioPEPA specification lead to the plots depicted in Fig-
ure 3.1, showing the global behaviour achieved—that is, the behaviour of the whole pop-
ulation of data items.

As shown, implementing the decay self-organisation pattern (the local mechanism) as
an artificial chemical reaction with a kinetic rate following the law of mass action, leads

26

http://bitbucket.org/smariani/mok-biopepa

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.1: Decay chemical reaction with usual law of mass action rate [Mar14]. In the middle
plot the rate constant is decreased w.r.t. the top plot (from 0.5 to 0.005), thus time needed to
complete decay increases accordingly (from 100 simulation steps of top plot to 1, 000 steps of
middle plot). In the bottom plot data quantity is increased w.r.t. previous plots (from 1, 000
units to 10, 000) but decay time remains the same (still 1, 000 time steps).

27

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

to a fast-then-slow decay (the emergent, global behaviour), which is independent of the
quantity of data to decay (compare middle plot to bottom plot), and whose timing can
be tuned by changing the rate constant (compare top plot to middle plot).

But: what if the aforementioned trend is not the best to suit the needs of the appli-
cation at hand? What if the self-organising system should display a different trend, e.g.,
an opposite slow-then-fast decay? Maybe also sensitive to the quantity of information to
decay? A time-dependant custom kinetic rate can be enconded as follows:

1 DECAY_CONSTANT = 0.5;

2 r_decay = [fMA(DECAY_CONSTANT) + H(data) * time/data];

3 data = (r_decay , 1) <<;

where time is the BioPEPA variable tracking simulation time steps and H(·) is the Heav-
iside step function3, whose value is 0 for negative arguments and 1 for positive ones (0
arguments are usually associated to 0)—useful to avoid meaningless negative rates.

Simulations of the above custom kinetic rate are depicted in Figure 3.2. As shown,
decay has now a completely different trend w.r.t. the plain fMA-driven rate of Figure 3.1:
actually, the opposite, slow-then-fast trend. Furthermore, whereas decreasing the rate
constant still leads to a delay in decay completion (compare top plot with middle plot),
changing the quantity of data to decay now affects decay time proportionally (compare
middle plot to bottom plot).

The reason for this behaviour twist lies in the new factors added to the kinetic rate
expression: direct proportionality to time and inverse proportionality to data. Thus, while
time passes decay slows down, whereas while quantity of data to decay decreases decay
becomes faster. It should be noted that, in order to keep independency of data quantity,
factor 1

data
can be removed from the rate expression.

This demonstrates the extreme flexibility and accurate controllability that custom
kinetic rates provide to engineers of self-organising systems: adding/removing factors to
the local mechanism (the reaction manipulating each data item) leads to a well-defined
change in the emergent, global behaviour achieved (the evolution of the whole population
of data items), tackling the local vs. global issue.

Discussing why it could be useful to switch from the trend depicted in Figure 3.1 to
that of Figure 3.2 in a real-world application is out of the scope of this section, and is
done, although in a more specific scenario, in Part II of this thesis—specifically, in Section
2 of Chapter 6. Nevertheless, giving some clues is undoubtedly useful.

Imagine to exploit self-organisation patterns in, e.g., an information management ap-
plication, in which novel data can be produced and consumed anytime, without knowing
when a given piece of information may become interesting for some of the co-workers.
There, shifting to the slow-then-fast trend exhibited by the custom, time-dependant ki-
netic rate is better.

The reason is that, exactly because it is not known in advance when information
will become relevant, it is unreasonable to decay it as soon as it is put in the shared

3http://en.wikipedia.org/wiki/Heaviside_step_function

28

http://en.wikipedia.org/wiki/Heaviside_step_function

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.2: Decay chemical reaction with custom kinetic rate [Mar14]. In the middle plot the
rate constant is decreased w.r.t. the top plot (from 0.5 to 0.005), thus time needed to complete
decay increases accordingly (from ≈ 700 simulation steps of top plot to over 1, 000 steps of
middle plot). In the bottom plot data quantity is increased w.r.t. previous plots (from 1, 000
units to 10, 000) and decay time increases proportionally (over 10, 000 time steps).

29

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

collaboration space: it is better to start with a slow decay so as to give co-workers the
opportunity to find the information, then, only if after a while nobody manifested interest,
the decay process can be safely quickened to get rid of (potentially) useless information.

Feed The feed pattern for self-organisation can be represented as an artificial chemical
reaction as follows:

data + food
rfeed−−→ data + data

meaning that if food is present then data can be increased at a pace given by rfeed—the
local mechanism. The reaction can be encoded in BioPEPA as follows, if the law of mass
action only should influence the kinetic rate:

1 FEED_CONSTANT = 0.5;

2 r_feed = [fMA(FEED_CONSTANT)];

3 // same rate name ==> same chemical reaction

4 data = (r_feed, 1) >>; // product (1 unit produced)

5 food = (r_feed, 1) <<; // reactant (1 unit consumed)

Or as follows, if a time-dependant kinetic rate is preferred (only changes are reported):

r_feed = [fMA(FEED_CONSTANT) + H(food) * time/food];

Simulations focussing on the above BioPEPA specifications lead to the plots depicted in
Figure 3.3. As shown, similarly to what happened in the case of decay, shifting to a custom
kinetic rate twists the global behaviour achieved, that is, the growing trend exhibited by
the whole population of data items: basically, with the usual law of mass action increase
is fast-then-slow, whereas for the time

food
-dependant rate, the trend is the opposite.

But, conversely to decay, acting on the rate constant or on the quantity of data to feed
has the same effect both in the case of the fMA-driven kinetic rate and for the custom
one: a lower rate leads to a slower feeding process, whereas a higher quantity of data does
not affect time taken to complete the process.

The reason for this difference at the level of emergent behaviour – that is, the change in
the population dynamics –, can be once again explained in terms of the local mechanisms
level—changing the reaction rate: whereas for the custom decay proportionality of the
kinetic rate was to data, for the custom feed primitive proportionality is to food .

Once again, the global behaviour can be directly put in a causal relationship with the
local mechanisms.

Activation/Inhibition The activation pattern can be represented as an artificial chem-
ical reaction as follows:

data + on
ractivation−−−−−→ on + data on

meaning that if on is present then data becomes data on, due to activation, at a pace
given by ractivation—the local mechanism. The dual inhibition pattern is similar:

30

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.3: Feed chemical reaction with fMA-only (top plot) and custom kinetic rate (middle
and bottom plots) [Mar14]. fMA-only rate is sensitive to rate constant change and to data
quantity likewise decay; custom kinetic rate, too (bottom plot has twice the data of middle plot
but saturation time is the same), due to its inverse proportionality to food , not data. Changing
food affects saturation time of both rate expressions.

31

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

data + off
rinhibition−−−−−→ off + data off

Since also the trends exhibited by the two complementary patterns are dual, the focus is on
either one: activation. The corresponding reaction is then encoded in BioPEPA according
to three different kinetic rates – usual fMA-only, data on-dependant and data-dependant
–, as follows:

1 ACTIVATION_CONSTANT = 0.5;

2 r_activation = [fMA (ACTIVATION_CONSTANT)];

3 data = (r_activation, 1) <<;

4 on = (r_activation, 1) (+); // activator enzyme (not consumed)

5 data_on = (r_activation, 1) >>;

6 // inhibition ==> replace (+) with (-)

r_activation = [fMA (ACTIVATION_CONSTANT) +

H(data) * time/data_on];

r_activation = [fMA (ACTIVATION_CONSTANT) +

H(data) * time/data];

Simulations of the above BioPEPA specifications are depicted, respectively, in Figure 3.4,
Figure 3.5, and Figure 3.6. As shown, three different emergent, global behaviours arise,
that is, the dynamics exhibited by the whole population of data and data on items, both
in terms of the exhibited trend and regarding how involved parameters affect it.

First of all, Figure 3.4 shows that a fMA-driven activation reaction is dependant on
the rate constant as well as on the quantity of the activator enzyme (on), but not on the
quantity of the reactant to activate (data). This is in contrast to what happened for the
feed pattern, in which changing the reactant (food) affected the time taken to complete
the feeding process.

It should be noted that comparison is between food and data, not with on as could
be done intuitively. The reason is that, although food and on play a similar role in
the artificial chemical reaction, that is, that of activators, they have a different chemical
nature: food is a reactant, being consumed by the reaction, whereas on is an enzyme, not
altered by it. This difference is taken into account by the simulation algorithm provided
by BioPEPA, and affects the outcome of the simulation accordingly.

In Figure 3.5, not only the emergent, global behaviour changes, but also sensitivity
to the parameters involved in kinetic rate computation: dependency on the quantity of
the activator enzyme is lost (on), while direct proportionality to the quantity of data
undergoing the activation process is experienced.

This is the first time that a product of the artificial chemical reaction in process is put
in its kinetic rate computation. This is something impossible to find in chemistry as it is
in the natural world, but something to take advantage of in artificial chemical reactions.
As a side note, this is the true power of custom kinetic rates: to be free from the natural
world’s constraints.

Finally, as far as Figure 3.6 is concerned, whereas the trend is completely different
from both previous plots, sensitivity to parameters is the same as that of Figure 3.5:
independency of the enzyme, direct proportionality to data.

32

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.4: Activation chemical reaction with usual law of mass action rate [Mar14]. In the
middle plot the activator enzyme quantity (on) is twice that of the top plot, causing a faster
activation process (almost time step 6 in top plot, around time step 3 in middle plot). In the
bottom plot data quantity is twice that of the other plots, but activation time is the same as that
of top plot: thus, conversely w.r.t. reactant food in the feed pattern, the quantity of reactant
data here does not affect timing. Acting on the rate constant speeds up or slows down the
process as usual.

33

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.5: Activation chemical reaction with time and data on -dependant kinetic rate [Mar14].
Besides the exhibited trend being completely different w.r.t. that of Figure 3.4, also sensitivity
to parameters changes: increasing the activator enzyme quantity no longer affects the activation
process time (middle plot has twice on than top plot, but crossing time step is still ≈ 600),
whereas increasing the quantity of data to activate does (bottom plot has twice data than top
plot, thus time taken until the crossing point increases to ≈ 1050). Acting on the rate constant
speeds up or slows down the process as usual.

34

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.6: Activation chemical reaction with time and data -dependant kinetic rate [Mar14].
Whereas the emergent, global behaviour achieved is different from both previous ones, sensitivity
to parameters is the same as for that in Figure 3.5: increasing the activator enzyme quantity
does not affect the activation process time (middle plot has twice on than top plot, but crossing
time step is still ≈ 560), whereas increasing the quantity of data to activate does (bottom plot
has twice data than top plot, thus time taken until the crossing point increases to over 1100).
Acting on the rate constant speeds up or slows down the process as usual.

35

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

It should be noted that direct proportionality is w.r.t. time taken to complete the
activation process, not to the kinetic rate dynamically computed. In fact, being data the
denominator of the rate expression, starting the process with a higher value implies term
time is divided by a greater number, thus the factor added to the fMA factor is smaller,
likewise the whole kinetic rate.

Furthermore, denominator data is slowly decreasing due to conversion to data on,
while time is increasing: this leads to a numerator increasing and a denominator decreas-
ing, which explains the faster activation after some time has passed.

Aggregation The aggregation pattern for self-organisation can be represented as an
artificial chemical reaction as follows:

part1 + part2 raggregation−−−−−−→ whole

meaning that if both parts composing a whole are available, those parts (part1 and part2)
should be consumed to produce whole, at a pace given by raggregation—the local mechanism.

Aggregation reaction can then be encoded in BioPEPA according to three different
kinetic rates – usual fMA-only, time and 1

whole
dependency, time and 1

part1
dependency

(part2 will be identical) –, as follows:

1 AGGREGATION_CONSTANT = 0.0005;

2 r_aggregation = [fMA (AGGREGATION_CONSTANT)];

3 part1 = (r_aggregation, 1) <<;

4 part2 = (r_aggregation, 1) <<;

5 whole = (r_aggregation, 1) >>;

r_aggregation = [fMA (AGGREGATION_CONSTANT) +

H(part1) * H(part2) * time/whole];

r_aggregation = [fMA (AGGREGATION_CONSTANT) +

H(part1) * H(part2) * time/part1];

Simulations of the above custom kinetic rates under different settings are depicted, re-
spectively, in Figure 3.7, Figure 3.8, and Figure 3.9. As shown, the exhibited trends are
almost identical to those of the activation pattern; nevertheless, sensitivity to reactant
change is not always in line with those results.

Figure 3.7 shows the same trend as Figure 3.4, but the effect of increasing (decreasing)
quantity of reactant data is counter-intuitive: while in Figure 3.4 timing was independent
of data, and in subsequent plots of Figure 3.5 and Figure 3.6 dependency had the form
of a direct proportionality, here increasing (decreasing) data decreases (increases) time
taken to aggregate parts into whole. This is the first time that inverse proportionality of
time w.r.t. the quantity of the reactant involved in the reaction is experienced.

As far as Figure 3.8 and Figure 3.9 are concerned, both the exhibited trend and the
local mechanisms’ parameters effect on the emergent, global behaviour achieved is the
same as that of Figure 3.5 and Figure 3.6, respectively.

36

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.7: Aggregation chemical reaction with usual law of mass action rate [Mar14]. In the
middle plot the two reactants part1 and part2 are half w.r.t. the top plot, causing a slower
aggregation process (time step 2 in top plot, time step 4 in middle plot). In the bottom plot
instead, their quantity is twice that of the top plot (2000 units), thus aggregation time faster
(half time w.r.t. top plot). Acting on the rate constant speeds up or slows down the process as
usual.

37

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.8: Aggregation chemical reaction with time
whole -dependant kinetic rate [Mar14]. Besides

the emergent, global trend exhibited, also sensitivity to parameters is very different w.r.t. Fig-
ure 3.7: now increasing the reactants quantity (bottom plot has twice parts than middle plot)
increases time taken to complete aggregation (from slightly more than 550 time steps in middle
plot, to almost 1050 in bottom plot). Instead, acting on the rate constant speeds up or slows
down the process as usual (top plot has rate constant 0.5 with crossing point at ≈ 390 time
steps, whereas middle plot rate constant is 0.005 thus crossing point gets delayed to over 550
time steps).

38

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.9: Aggregation chemical reaction with time
part1

-dependant kinetic rate [Mar14]. Although
the behaviour shown is yet again different from both previous ones, parameters of the local
mechanism (the aggregation reaction) have the same effect on the emergent, self-organising
behaviour achieved, as described for Figure 3.8. In particular, middle plot has a slower rate
than top plot, thus time scale almost doubles, and bottom plot has twice parts than middle
plot, thus, again, time scale almost doubles.

39

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

This is another consequence of the nice controllability property of custom kinetic rates
in artificial chemical reactions: being the role played by whole in the aggregation pattern
the same as that played by data on in activation – that is, products of the reaction – as
well as the role played by part1 and part2 in aggregation the same as that played by data
in activation – that is, reactants – it is reasonable to expect for them both the same global
behaviour to emerge and the same sensitivity to parameters.

Diffusion The diffusion pattern for self-organisation can be represented as an artificial
chemical reaction as follows:

datac′
rdiffusion−−−−→ datac′′ | datac′′′

meaning that one piece of data is withdrawn from compartment c′ and put into either
compartment c′′ or c′′′, chosen probabilistically4, at a pace given by rdiffusion—the local
mechanism.

Diffusion reaction can be encoded in BioPEPA according, e.g., to the following kinetic
rates – usual fMA, equal-distribution driven by source compartment, dual to fMA, and
equal-distribution driven by destination compartment –, as follows:

1 // topology definition (c2<---c1--->c3)

2 location c1 : size = 1, type = compartment;

3 location c2 : size = 1, type = compartment;

4 location c3 : size = 1, type = compartment;

5
6 diff_const = 0.0005;

7 // usual fMA

8 r_diffusion = [fMA (diff_const)];

9 data = (r_diffusion[c1->c2], 1) (.) data + (r_diffusion[c1->c3], 1) (.) data;

// equal -distribution driven by source compartment

r_diffusion = [fMA (diff_const) * (data@c1 - data@c2)];

// dual to fMA

r_diffusion = [fMA (diff_const) * (data@c2 + 1)];

// equal -distribution driven by destination compartment

r_diffusion = [fMA (diff_const) * H(data@c1 - data@c2) * (data@c2 + 1)];

Simulations of the above custom kinetic rates are depicted in Figure 3.10 and Figure 3.11.
As shown, the fMA kinetic rate (Figure 3.10, top) exhibits a fast-then-slow global

(emergent) trend, where data from its origin compartment is eventually depleted. The
equal-distribution custom rate, instead, (Figure 3.10, bottom) does not deplete the con-
centration of data in its origin compartment, but asymptotically tends to balance the
distribution of data items among the neighbouring compartments.

It should be noted that this emergent behaviour is driven by the source compart-
ment in the sense that the process is faster the more data is concentrated in the origin
compartment—in fact, it is fast-then-slow.

4How the destination compartment is chosen is not relevant here.

40

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.10: At the top, usual fMA diffusion. At the bottom, equal-distribution driven
by source compartment.

41

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.11: At the top, the exhibited trend is dual w.r.t. the fMA one. At the bottom, the
exhibited trend is dual w.r.t. the one with equal distribution, and driven by concentration
of data in the source compartment concentration.

42

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

In Figure 3.11, at the bottom, the same (almost) uniform distribution is achieved with
the dual trend – that is, slow-then-fast – where what drives the emergent process is the
concentration of data items in the destination compartment.

Finally, Figure 3.11, at the top, shows the dual trend w.r.t. to the fMA-only one (seen
in Figure 3.10, top), that is, a slow-then-fast global behaviour.

3.1.3 Discussion of Results

In this section, it has been shown that simply imitating nature as is may be not the
optimal approach while engineering nature-inspired self-organising systems. Indeed, once
a suitable natural metaphor is found, system designers should ask themselves if the natural
system’s parameters are the optimal ones also for the artificial system they aim to build.

If it is not the case, they should clearly state which goals their system is pursuing,
then detect, preferably within the system itself, which parameters better suit their needs
as well as which (if any) functional dependencies between parameters better cope with
the problem their system aims to solve.

Accordingly, presented a novel approach in dealing with the local vs. global issue in
engineering self-organising systems was presented, composed of three ingredients: model
self-organisation primitives as artificial chemical reactions, design custom kinetic rates,
adjust rates’ parameters according to the emergent, global behaviour desired.

In particular, w.r.t. to the latter ingredient,it has been shown that the law of mass
action [Car08] may be not enough to effectively engineer kinetic rates for biochemical
coordination, and how the factors chosen for the custom kinetic rate expressions as well
as the value of the parameters involved have a well-defined, controllable effect on the
global behaviour achieved. This is made possible by adoption of the chemical reaction
metaphor to implement self-organisation primitives, and helps facing the local vs. global
issue—ultimately leading to a better engineering of self-organising behaviours.

The work starts with a rather simple observation: the fact that a given natural system
– in this case, chemical solutions – works properly by relying on a given set of parameters
– e.g., concentration, rate, stoichiometry, etc. –, each of which having a given set of
functional dependencies with others – e.g., the law of mass action –, does not necessarily
mean that the same sets of parameters and functional dependencies will work for an
artificial system drawing inspiration from the natural one.

Similar considerations can be done for other natural metaphors: most notably, the
ant colony optimisation approach to distributed optimisation, in which the original ant
colony metaphor is indeed just a metaphor, not the actual implementation [DB10].

In order to do so, many experiments were done: (i) which are the desiderata for
the self-organising system behaviour is defined, (ii) rates are engineered by designing
functional dependencies likely to pursue the chosen goal, (iii) a pure parameter tuning
stage is included to fine-tune the system behaviour (when needed). All of this has been
done one reaction (aka coordination law) at a time, thus one functional rate at a time,

43

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

incrementally accumulated until composing the whole self-organising system behaviour.

3.2 Uniform Primitives as Coordination Primitives

A foremost feature common to all the tuple-based coordination models mentioned in
Chapter 1 is non-determinism, stemming from their roots in the Linda model [Gel85].
Linda features don’t know non-determinism in the access to tuples in tuple spaces, han-
dled with a don’t care approach: (i) a tuple space is a multiset of tuples where multiple
tuples possibly match a given template; (ii) which tuple among the matching ones is
actually retrieved by a getter operation (e.g., in, rd) can be neither specified nor pre-
dicted (don’t know); (iii) nonetheless, the coordinated system is designed so as to keep on
working safely whichever is the matching tuple returned (don’t care).

The latter assumption requires that when a process uses a template matching multiple
tuples, which specific tuple is actually retrieved is not relevant for that process. This is not
the case, however, in many of today adaptive and self-organising systems, where processes
may need to implement stochastic behaviours – like “most of the time do this” – which
obviously do not cope well with don’t know non-determinism [OV11].

For instance, all the nature-inspired models and systems emerged in the last decade –
such as chemical, biochemical, stigmergic, and field-based – are examples of the broad class
of self-organising systems that precisely require such a sort of behaviour [Omi13a], which
by no means can be enabled by the canonical Linda model and its direct derivatives.

To this end, in the following uniform coordination primitives (uin, urd) – first men-
tioned in [GVCO07] – are discussed, as the specialisation of Linda getter primitives
featuring probabilistic non-determinism instead of don’t know non-determinism.

Roughly speaking, uniform primitives make it possible to both specify and (statis-
tically) predict the probability to retrieve one specific tuple in a multiset of matching
ones, thus making it possible to statistically control non-deterministic systems. This
simple mechanism extends the reach of tuple-based coordination towards nature-inspired
systems, allowing, e.g., coordination-based simulation of complex stochastic behaviours.

It should be noted that uniform primitives are the basic mechanism upon which the
MoK middleware prototype discussed in Part II of this thesis is designed, in particular,
as regards artificial chemical reactions scheduling, and reactants consumption.

3.2.1 Related Approaches

In [POS13], the authors adopt a simulation approach based on biochemical tuple spaces
[VC09]. Technically, biochemical tuple spaces are built as ReSpecT tuple centres [OD01b],
distributed across the TuCSoN coordination infrastructure [OZ99]. Tuples are logic-based
tuples, while biochemical laws are implemented as ReSpecT specification tuples, so that
they can be inserted, modified, and removed from the biochemical compartment (the
tuple centre) via ReSpecT coordination primitives.

44

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

A chemical solution simulator is successfully built as a ReSpecT tuple centre, pro-
grammed to implement the Gillespie’s algorithm for exact chemical solutions simulation
[Gil77]. Then, the Ras-mitogen-activated protein kinase (MAPK) signaling pathway is
simulated, but uniform primitives are not exploited: thus, e.g., the peculiar feature of
probabilistic, concentration-driven selection of reactants is lacking. In Subsection 3.2.3
the implementation is re-designed on top of uniform primitives, to demonstrate their im-
pact on system behaviour in spite of their simplicity—namely, real probabilistic selection
of reactants based on an approximation of concentration values.

The idea of engineering nature-inspired self-organising systems attracted many re-
searchers in the last decade: [Nag04, MMTZ06, GVCO07, DWH07] all proposed either
bio-inspired coordination primitives or full-fledged design patterns aimed at easing the
understanding and engineering of nature-inspired computational systems.

However, a step beyond primitives and patterns definition is taken in [FMMSM+12],
by classifying patterns into layers, and by describing the relationships between patterns
in different layers, so as to effectively outline a pattern composition schema suitable to be
reused in different scenarios. Figure 3.12 below depicts the aforementioned layers:

basic patterns repulsion, evaporation, aggregation, and spreading, are interpreted as
the most primitive nature-inspired patterns which all other patterns should be pro-
grammed upon, according to the composition represented by the arrows (dashed for
optional composition, solid for mandatory)

composed patterns digital pheromone, gradients, and gossip, are in the middle layer,
because (i) being programmable as a composition of other patterns, they cannot be
basic, and (ii) being exploitable to engineer other patterns by composition, they are
not high level either

high level patterns flocking, foraging, quorum sensing, chemotaxis, and morphogene-

and that may be sensed by the Agents using the sensors

provided by the Hosts.

In this paper, we regard a system as composed of
Agents, Infrastructure, Infrastructural Agents, Hosts, and

Environment. The behaviour of Agents and Infrastructural

Agents is defined by a set of rules (hereafter referred to as
transition rules), while Hosts are defined by the interface

they provide.

4 Design patterns as part of methodologies for self-
organising systems

Current methodologies for self-organising systems (Puvi-

ani et al. 2012) follow the typical phases of software
engineering methodologies: requirements, analysis, design,

implementation, verification and test. Even though these

methodologies all put focus on different aspects, they each
accommodate a specific design phase where interaction

mechanisms are identified, modelled, refined and possibly

simulated. Consequently, self-organising design patterns
are best exploited during the design phase of a chosen

methodology.

The design patterns come into play during the design
phase, which we propose to split into three distinct steps

(Fig. 3): (1) the choice of design patterns is made during an
early phase of design. Self-organising design patterns serve

to identify the problem to solve as well as to determine the

appropriate solution to bring to the problem. In particular,
they help determining the boundaries of each problem and

its corresponding solution provided by the pattern; (2)

during a refined phase, actual entities and their dynamics
are defined. The patterns’ dynamics serve to refine the

model and to identify the entities and their precise inter-

actions, individual responsibilities and to anticipate the
emergent behavior; (3) finally, during the simulation step,

the patterns implementation description will serve to

establish implementation details in relation with the
underlying computational model. These three steps can be

iterated in a loop in order to progressively refine or review

the model. An important issue with self-organising mech-
anisms concerns the parameters tuning. Patterns come with

a description of the main parameters involved in the pattern

and their effect on the resulting behavior. The simulation
phase is then crucial for determining the parameters values.

5 Design patterns’ catalogue

To create the patterns’ catalogue, we analysed the inter-

relations among the self-organising mechanisms for engi-

neering self-systems existing in the literature, in order to
understand how they work and to facilitate their adaptation

or extension to tackle new problems. The classification

process started by selecting those high-level mechanisms
that are well-known in the literature and have been applied

successfully to different self-* systems. By analysing their

behaviours, we identified common lower-level mechanisms,
some of them basic (atomic) and other composed of basic

ones. As a result, we classified the patterns into three layers.

The basic mechanisms that can be used individually or in
composition to form more complex patterns are at the bottom

layer. At the middle layer, there are the mechanisms formed

by combinations of the bottom layer mechanisms. The top
layer contains higher-level patterns that show different ways

to exploit the basic and composed mechanisms.

Figure 4 shows the different design patterns collected in
the catalogue and their relations. The arrows indicate how the

patterns are composed. A dashed arrow indicates that it is

optional (e.g. the Gradient Pattern can use evaporation, but
the evaporation is not necessary to implement gradients).

This classification aims at listing existing mechanisms

from the literature, identifying their own boundaries (i.e.
when one mechanism stops, and when another starts), their

inter-relations and the recurrent problem they solve. For

example, Gossip has been applied to many works in dif-
ferent ways, but all implementations share the fact that

Analysis

Design

Implementation

Verification
Test

Requirements

Early Design
Phase

Refined
Design Phase

Simulation

Design Pattern Choice
Transition rules

Environment

Computational model

Methodology

Design Phase Design Patterns

Fig. 3 Design patterns within the design phase of SO methodologies

H
ig

h
Le

ve
l

 P
at

te
rn

s

C
om

po
se

d
Pa

tte
rn

s

Ba
si

c
Pa

tte
rn

s

ForagingFlocking

GossipDigital Pheromone

MorphogenesisQuorum Sensing

Evaporation AggregationRepulsion

Gradients

Chemotaxis

Spreading

Fig. 4 Patterns and their relationships

J. L. Fernandez-Marquez et al.

123

Figure 3.12: Patterns layering and relationships (image taken from [FMMSM+12]).

45

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

sis, are all defined as high-level patterns: thus, as patterns directly usable at the
application level, e.g., to implement self-organising coordination policies

In Subsection 3.2.3 it is shown how uniform primitives could play a fundamental role in
implementing digital pheromones and foraging.

Uniform primitives are used in [CVG09] as a tool for solving a specific coordination
problem, called collective sort. In [VC09] similar primitives are presented and formally
defined to forge the biochemical tuple space notion.

The main difference w.r.t. the approach with uniform primitives is that: (i) they rely
on tuples multiplicity to model probability, leaving Linda tuples’ structure untouched,
(ii) they are executed as Linda getter primitives, whereas in [VC09] they are executed
according to a stochastic rate.

Differentiation To the best of the author knowledge, probabilistic extensions to Linda
follow two main approaches [DPHW05]:

• data-driven, where the quantitative information required to model probability is
associated with the data items (the tuples) in the form of weights, then the match-
ing mechanism is extended so as to take into account weights—transforming them
into probabilities by normalisation. This approach is adopted, e.g., in ProbLinCa

[BGLZ05], the probabilistic version of a Linda-based process calculus

• scheduler-driven, where quantitative information is added to the processes using
special probabilistic schedulers, ascribing different probabilities to different active
processes—independently of the tuples involved. This is the approach taken by, e.g.,
[DPHW04], to define a probabilistic extension of the Klaim model named pKlaim

Instead, the approach just described belongs to a third, novel category, called interaction-
driven, where probabilistic behaviour is (i) associated to communication primitives – thus,
neither to processes (or schedulers), nor to tuples – and (ii) enacted during the interaction
between a process and the coordination medium—that is, solely through primitives.

In fact, whereas ProbLinCa requires the modification of the tuple structure and the
matching mechanism so as to support probabilistic operations, and pKlaim requires
special, probabilistic schedulers for processes, uniform primitives extend Linda by spe-
cialising standard Linda primitives, without changing neither the tuple structure nor the
scheduling policy.

Furthermore, uniform primitives could be used to emulate both approaches: tuple
weights could be reified by their multiplicity in the space, whereas probabilistic scheduling
could be obtained by properly synchronising processes upon probabilistic consumption of
shared tuples.

Moreover, uniform coordination primitives could be used in place of Linda standard
ones without affecting the model, simply refining don’t care non-determinism as proba-

46

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

bilistic non-determinism: as a result, all the expressiveness results and all the applications
based on the canonical Linda model would still hold.

More complex coordination models exist where uniform primitives could potentially
play a key role in providing the probabilistic mechanisms required for the engineering of
stochastic systems like adaptive and self-organising ones.

StoKlaim [DNLKM06] is an extension to Klaim where process actions are equipped
with rates affecting execution probability, and execution delays as well—that is, time
needed to carry out an action. By reifying action rates as tuples in the space, with
multiplicity proportional to rates, uniform-reading tuples would allow action execution to
be probabilistically scheduled à la StoKlaim. Furthermore, delays could be emulated,
too, by uniform-reading a set of time tuples, where a higher value corresponds to a lower
action rate.

In SAPERE [ZCF+11], tuples are managed through eco-laws, which are a sort of
chemical-like rules, scheduled according to their rates. Hence, uniform primitives could
play in SAPERE the same role as in StoKlaim—once eco-laws are reified as tuples with
a multiplicity proportional to execution rate. Furthermore, from the pool of all the tuples
which can participate in a eco-law, the ones actually consumed by the law – as chemical
reactants – are selected probabilistically. Once again, this kind of behaviour could be
enabled by uniform consumption of reactant tuples in eco-laws.

Figure 3.13 below summarises the main differences between uniform primitives and
the other aforementioned primitives.

3.2.2 Informal Definition

Linda getter primitives, that is, data-retrieval primitives in and rd, are shared by all
tuple-based coordination models, and provide them with don’t know non-determinism:
when one or more tuples in a tuple space match a given template, any of the matching

Figure 3.13: Comparison of probabilistic coordination models [MO14b].

47

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

tuples can be non-deterministically returned.

Therefore, in a single getter operation, only a point-wise property affects tuple retrieval:
that is, the conformance of a tuple to the template, independently of the spatial context—
namely, the other tuples in the same space.

Furthermore, in a sequence of getter operations, don’t know non-determinism makes
any prediction of the overall behaviour impossible: e.g., reading one thousand times with
the same template in a tuple space with ten matching tuples could possibly lead to retrieve
the same tuple all times, or one hundred times each, or whatever admissible combination
one could think of—no prediction possible, according to the model.

Again, then, only a point-wise property can be ensured even in time: that is, only the
mere compliance to the model of each individual operation in the sequence.

Uniform primitives instead, enrich tuple-based coordination models with the ability
of performing operations that ensure global system properties instead of point-wise ones,
both in space and in time.

More precisely, uniform primitives replace don’t know non-determinism with proba-
bilistic non-determinism to situate a primitive invocation in space – the tuple actually
retrieved depends on the other tuples in the space – and to predict its behaviour in
time—statistically, the distribution of the tuples retrieved will tend to be uniform.

The main motivation behind the formal definition and expressiveness study of uni-
form primitives, is that of introducing a simple yet expressive probabilistic mechanism in
tuple-based coordination: simple enough to work as a specialisation of standard Linda
operations, expressive enough to allow modelling of the most relevant probabilistic be-
haviours exhibited by nature-inspired complex computational systems.

Whereas expressiveness is discussed in Section 4, simplicity is achieved by defining
uniform primitives as specialised versions of standard Linda primitives: so, first of all,
uin and urd are compliant with the standard semantics of in and rd.

In the same way as in and rd, uin and urd ask tuple spaces for one tuple match-
ing a given template, possibly suspend when no matching tuple is available, and finally
return a matching tuple chosen non-deterministically when one or more matching tuples
are available in the tuple space. As a straightforward consequence, any tuple-based co-
ordination system using in and rd would also work by exploiting instead uin and urd,
respectively—and any process using in and rd could adopt uin and urd instead without
any further change.

On the other hand, the nature of the specialisation lays precisely in the way in which
a tuple is non-deterministically chosen among the (possibly) many tuples matching the
template. While in standard Linda the choice is performed based on don’t know non-
determinism, uniform primitives exploit instead probabilistic non-determinism with uni-
form distribution. So, if a standard getter primitive requires a tuple with template T ,
and m tuples t1, . . . , tm matching T are in the tuple space when the request is executed,
any tuple ti∈1...m could be retrieved, but nothing more could be said—no other assertion
is possible about the result of the getter operation.

48

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Instead, when a uniform getter primitive requires a tuple with a template T , and m
tuples t1, . . . , tm matching T are available in the tuple space when the request is served,
one assertion is possible about the result of the getter operation: each of the m matching
tuples t1, . . . , tm has exactly the same probability 1

m
to be returned. So, for instance, if 2

colour(blue) and 3 colour(red) tuples occur in the tuple space when a urd(colour(X))

is executed, the probability of the tuple retrieved to be colour(blue) or colour(red) is
exactly 40% or 60%, respectively.

Operationally, uniform primitives behave as follows. When executed, a uniform prim-
itive takes a snapshot of the tuple space, freezing its state at a certain point in time—and
space, being a single tuple space the target of basic Linda primitives. The snapshot is
then exploited to assign a probability value pi ∈ [0, 1] to any tuple ti∈1...n in the space—
where n is the number of tuples in the space. There, non-matching tuples have value
p = 0, matching tuples have value p = 1

m
(where m ≤ n is the number of matching

tuples), and the sum of probability values is
∑

i∈1...n pi = 1. The matching tuple returned
is statistically chosen based on the probability values computed.

As a consequence, whereas standard getter primitives exhibit point-wise properties
only, uniform primitives feature global properties, both in space and time.

In terms of spatial context, in fact, standard getter primitives return a matching
tuple independently of the other tuples currently in the same space—so, they are context
unaware. Instead, uniform getter primitives return matching tuples based on the overall
state of the tuple space—so, their behavior is context aware.

In terms of time, too, sequences of standard getter operations feature no meaningful
properties. Instead, by definition, sequences of uniform getter operations tend to globally
exhibit a uniform distribution over time. So, for instance, performing N urd(colour(X))

operations over a tuple space containing 10 colour(white) and 100 colour(black) tuples,
would lead to a sequence of returned tuples which, while growing, tends to contain 10
times more colour(black) tuples than colour(white) ones.

In principle, the snapshot behaviour above described may be computationally expen-
sive, and potentially represent an implementation bottleneck: given the tuple space target
of the uniform primitive, the set of matching tuples should be found, then each different
matching tuple should be counted, finally one of those matching tuples chosen proba-
bilistically. Furthermore, in the meanwhile no other primitive can be served by the tuple
space, according to Linda semantics.

Nevertheless, many techniques can be used to effectively deal with the issue: for in-
stance, (i) using suitable data structures—e.g., an hashmap to conveniently store together
identical copies of the same tuple; (ii) distributing tuples among several networked tuple
spaces, so as to lower the load of tuples to snapshot for each one; (iii) tracking the number
of tuples internally, so as to avoid counting.

Figure 3.14 below compares execution semantics and expected usage of uniform prim-
itives w.r.t. Linda primitives—out is left out because its semantics is unchanged.

49

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Figure 3.14: Comparison of Linda and uLinda primitives [MO14b].

3.2.3 Informal Expressiveness

In [BGLZ05] the authors demonstrate that Linda-based languages cannot implement
probabilistic models: a Linda process calculus, although Turing-complete, is not expres-
sive enough to express probabilistic choice.

Since formally asserting a gap in expressiveness does not necessarily make it easy to
fully appreciate how much this can make the difference when programming, e.g., adaptive
and self-organising systems, in the remainder of this section a few examples are discussed,
showing which kind of behaviours are straightforwardly enabled by uniform primitives.

Load balancing Two service providers are both offering the same service to clients
through proper advertising tuples. The first is slower than the second, that is, it needs
more time to process a request—modelling differences in, e.g., computational power.

Their working cycle is simple: a worker thread gets requests from a shared tuple space,
then puts them in the bounded queue of the master thread (the actual service provider).
The master thread continuously queries the queue looking for requests to serve: when one
is found, it is served, then the master emits another advertising tuple; if none is found,
the master does something else, then re-queries the queue—no advertising.

Decoupling enforced by the queue is useful to model the fact that service providers
should not block on the space waiting for incoming requests, so as to be free of performing
other jobs in the meanwhile—e.g., reporting, resource clean-up, etc. The queue is bounded
to model, e.g., memory constraints.

It should be noted that this toy scenario is a simplified version of a multi-client/multi-
server deployment that is quite common in web applications, distributed computing,
service-oriented architectures, etc.

In this setting, clients (whose Java code is listed in Figure 3.15) search for available
services first via rd primitive (Figure 3.16), then via urd (Figure 3.17) 5.

By using the rd primitive, clients blindly commit to the actual implementation of
the Linda model currently at hand. For instance, Figure 3.16 gives some hints about

5All charts values are the average of several runs of the scenario—e.g., value plotted at time step 60
is the average of the number of requests observable at time step 60 in a number of runs (actually, 100).

50

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Mariani and Omicini

4 EXPRESSIVENESS

In (Bravetti et al. 2005), authors demonstrate that LINDA-based languages cannot implement probabilistic
models: a LINDA process calculus, although Turing-complete, is not expressive enough to express proba-
bilistic choice. In the specific case of uniform primitives, the gain of expressiveness is proven in Mariani
and Omicini (2013c), where uniform primitives are formally proven to be strictly more expressive than
standard LINDA coordination primitives by exploiting Probabilistic Modular Embedding (PME) (Mariani
and Omicini 2013d), an extension to modular embedding (De Boer and Palamidessi 1994), which is ex-
plicitly meant to capture the expressiveness of probabilistic systems.
 Since formally asserting a gap in expressiveness does not necessarily make it easy for the reader to
fully appreciate how much this can make the difference when programming, e.g., adaptive and self-
organising systems, in the remainder of this section we discuss a few examples showing which kind of
behaviours are enabled by uniform primitives.

4.1 Load Balancing
In order to better explain what a “core mechanism” enabling self-organising coordination actually is –
that is, a minimal construct able (alone) to impact the observable properties of a coordinated system – we
discuss the following simple scenario: two service providers are both offering the same service to clients
through proper “advertising tuples”; the first is slower than the second, that is, it needs more time to pro-
cess a request—thus capturing differences in, e.g., computational power.
 Their working cycle is quite simple: a worker thread gets requests from a shared tuple space, then
puts them in the bounded queue of the master thread (the actual service provider). The master thread con-
tinuously queries the queue looking for requests to serve: when one is found, it is served, then the master
emits another advertising tuple; if none is found, the master does something else, then re-queries the
queue—no advertising is done. The decoupling enforced by the queue is useful to model the fact that ser-
vice providers should not block on the space waiting for incoming requests, so as to be free of performing
other jobs meanwhile—e.g. reporting, resource clean-up, etc. The queue is bounded to model, e.g.,
memory constraints. It should be noticed that such a toy scenario is a simplified version of a multi-
client/multi-server pattern that is quite common in web applications, distributed computing, service-
oriented computing, etc. The pattern is here made as simple as possible in order to ease understanding by
focussing solely on the benefits brought by the adoption of uniform primitives, with no loss in generali-
ty—in fact, the same behaviours in the simplified scenario could be obtained in the aforementioned real-
world scenarios.
 In this setting, clients (whose Java code is listed in Figure 2) search for available services first via rd
primitive (Figure 3), then via urd (Figure 4). All charts values are not single runs of the scenario, but av-
erage values resulting from several runs—e.g., value plotted at time step 60 is not that of a single run, but
the average of the number of requests observable at time step 60 of a number of runs (actually, 30).

Figure 2: Java code for clients looking for services.

Figure 3.15: Java code of clients looking for services [MO14b].

Mariani and Omicini

By using the rd primitive we blindly commit to the actual implementation of the LINDA model currently
at hand. For instance, Figure 3 gives some hint about the implementation used for our scenario—the
TuCSoN coordination middleware (Omicini and Zambonelli 1999): since provider 1 is almost unused,
we understand that rd is implemented as a FIFO queue, always matching the first tuple among many
ones—provider 2 advertising tuple, in this case. The point here is that such a prediction was not possible
before actually running the scenarios, and with no information on the actual LINDA implementation used.

Figure 3: Clients using rd primitive: service provider 1 is under-exploited.

By using primitive urd instead (Figure 4), we know – and can predict – how much each service provider
will be exploited by clients: since we know by design that after successfully serving a request a provider
emits an advertising tuple, and that such tuples are those looked for by clients, we know that the faster
provider will produce more tuples, hence it will be more frequently found than the slower one. Figure 4
charts, in fact, show how the system of competing service providers self-organises by splitting incoming
requests. Furthermore, such a split is not statically designed or superimposed, but results by emergence
from a number of run-time factors, such as clients interactions, service providers computational load,
computational power, and memory. It should also be noticed that such a form of load balancing is not the
only benefit gained when using urd over rd: actually, the urd scenario successfully serves ≈1600 re-

Figure 3.16: Clients using rd primitive: service provider 1 is under-exploited [MO14b].

51

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

the implementation used in this scenario—the TuCSoN coordination middleware [OZ99]:
since provider 1 is almost unused, it may be inferred that rd is implemented as a FIFO
queue, always matching the first tuple among many ones—provider 2 advertising tuple,
in this case. The point here is that prediction is not possible before actually deploying
the system, and with no information on the actual Linda implementation used.

By using primitive urd instead (Figure 3.17), it is known – and predictable – how much
each service provider will be exploited by clients: since it is known by design that after
successfully serving a request a provider emits an advertising tuple, and that tuples are
those looked up by clients, it is known that the faster provider will produce more tuples,
hence it will be more frequently found, than the slower one.

Figure 3.17, in fact, shows how competing service providers self-organise by sharing in-

Mariani and Omicini

quests – distributed among providers 1 and 2 according to uniform primitive semantics – losing ≈600,
whereas the rd scenario serves successfully ≈1250 – leaving provider 1 unused – losing over 2500.
 Although quite simple, the load balancing toy scenario just described can be interpreted as an exam-
ple of a sort of complex systems exhibiting adaptive and self-* features – such as SAPERE (Zambonelli
et al. 2011) and MoK (Mariani, and Omicini 2013c) – where probabilistic mechanisms and feedback
loops altogether make self-organisation appear by emergence. Furthermore, even more traditional real-
world scenarios – such as the aforementioned service-oriented and distributed ones –, could benefit from
uniform primitives features to increase throughput, reliability, availability and efficiency, as demonstrated
by Figures 3 and 4.

Figure 4: Clients using urd primitive: a certain degree of fairness is guaranteed, based on self-
organisation.

4.2 Pheromone-based coordination

In pheromone-based coordination, used by ants to find optimal paths – as well as by many ant-inspired
computational systems, such as network routing algorithms (Dorigo and Stützle 2004) and autonomous
unmanned vehicles (Parunak, Brueckner, and Sauter 2002) – each agent basically wanders randomly
through a network of locations until it finds a pheromone trail, which the agent is likely to follow based
on the trail strength.

Figure 3.17: Clients using urd primitive: a certain degree of fairness is guaranteed, based
on self-organisation [MO14b].

52

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

coming requests. Furthermore, this behaviour is not statically designed or superimposed,
but results by emergence from a number of run-time factors, such as clients interactions,
service providers computational load, computational power, and memory.

It should also be noted that this form of load balancing is not the only benefit gained
when using urd: actually, the urd scenario successfully serves ≈ 1600 requests – dis-
tributed among providers 1 and 2 – losing ≈ 600, whereas the rd scenario serves success-
fully ≈ 1250 – leaving provider 1 unused – losing over 2500.

Although quite simple, the load balancing scenario just described can be taken as an
example of that kind of complex systems where probabilistic mechanisms and feedback
loops altogether make self-organisation appear by emergence [Omi13a].

Furthermore, even more traditional real-world scenarios – such as the aforementioned
service-oriented and distributed ones –, could benefit from uniform primitives features to
increase throughput, reliability, availability, and efficiency, as demonstrated by Figure 3.16
and Figure 3.17.

Pheromone-based coordination In pheromone-based coordination, used by ants to
find optimal paths – as well as by many ant-inspired computational systems, such as net-
work routing algorithms [DS04] and autonomous unmanned vehicles [PBS02] – each agent
basically wanders randomly through a network of locations until it finds a pheromone trail,
which the agent is likely to follow based on the trail strength.

Here, aspects such as pheromone release, scent, and evaporation are not relevant:
instead, the above mentioned requirements of randomness and likelihood are, on the
one hand, essential for pheromone-based coordination, while, on the other hand, require
uniform primitives to be designed using a tuple-based coordination model.

In particular, consider a network of n nodes representing places pi, with i = 1 . . . n,
through which ant agents walk. The default tuple space in node pi contains at least
one neighbour tuple n(p j) for each neighbour node pj. The neighbourhood relation is
symmetric—so, if node pi and pj are neighbours, tuple space pi contains tuple n(p j)

and tuple space pj contains tuple n(p i). Pheromone deposit in nodes is modelled by the
insertion of a new tuple n(p i) in every neighbour node pj.

It should be noted that the described setting is common to a plethora of scenarios
in computer science: essentially, any problem that can be represented by a graph-based
structure. For instance, in the field of computer networks management, the following
experiment could be taken as a reference for building much more complex applications,
aimed at, e.g., routing of message packets, finding optimal paths from a source node to a
destination one, reconfiguration of links between hubs, etc.

Engineering solutions to this kind of problems by using uniform primitives, instead of
classical Linda operations, would bring all the benefits of self-organisation highlighted in
the following discussion.

In the scenario just depicted, ants wandering through places and ants following trails
can both be easily modelled using uniform primitives: ant agents just need to look locally

53

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

for neighbour tuples through a urd(n(P)). If no pheromone trail is detected nearby, every
neighbour place is represented by a single tuple, so all neighbour places have the same
probability to be chosen—leading to random wandering of ants.

In case some of the neighbours contain a detectable trail, the corresponding neighbour
tuple occurs more than once in the local tuple space: so, by using uniform primitives, the
tuple corresponding to a neighbour place with a pheromone trail has a greater probability
to be chosen than others.

The experiment was conducted in a toy scenario involving digital ants and pheromones
programmed in ReSpecT [OD01a] upon the TuCSoN coordination middleware [OZ99]. The
experiment involves ten digital ants starting from the anthill with the goal of finding food,
and follows the canonical assumptions of ant systems [DS04].

So, at the beginning, any path has the same probability of being chosen, thus modelling
random walking of ants in absence of pheromone. As ants begin to wander around, they
eventually find food, and release pheromone on their path while coming back home. As a
consequence, the shortest path finally gets most pheromone since using it takes less time
w.r.t. any other path.

Pheromones as well as connections between tuple centres are modelled as described
above, with neighbour tuples: the more neighbour tuples of a certain type, the more likely
ants will move to that neighbour tuple centre next.

Figure 3.18 below depicts a few screenshots of the experiment: there, five distributed
tuple centres (the large boxes) model a topology connecting the anthill to a food source:
the leftmost path is longer – modelled as a 2-hop step – whereas the rightmost is shorter.
The green spray-like effect on paths (black lines) models the strength of the pheromone
scent: the greater and greener the path, the more pheromone on it.

By plotting pheromones strength evolution over time, Figure 3.19 shows how expecta-
tions about digital ants behaviour are met: in fact, despite starting from the situation in
which any path is equiprobable (the amount of pheromones on either path is the same),
the system eventually detects the shortest path, which becomes the most exploited—and
contains in fact more pheromone units. In the Java code describing the behaviour of
ants (Figure 3.20), in particular in method smellPheromone() (line 10), the usage of the
uniform primitive urd is visible on line 27, whereas line 29 shows the tuple template
given as its argument, that is, n(NBR): at runtime, NBR unifies with a TuCSoN tuple centre
identifier, making it possible for the ant to move there.

Quite obviously, the idea here is not just showing a new way to model ant-like systems.
Instead, the example above is meant to point out how a non-trivial behaviour – that is,
dynamically solving a shortest path problem – can be achieved by simply substituting
uniform primitives to traditional Linda getter primitives—which instead would not allow
the system to work as required. Furthermore, the solution is adaptive, fully distributed,
based upon local information solely – thus, it appears by emergence – and robust against
topology changes—a ReSpecT specification implementing evaporation was used.

These are the main reasons why similar algorithms inspired by ants behaviour are so

54

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION
Mariani and Omicini

Figure 5: Digital ants search food (“TC-food” box) wandering randomly from their anthill (“TC-anthill”
box). By urd-ing digital pheromones left while carrying food, digital ants stochastically find the optimal
path toward the food source—numbers next to tuple centre names denote the “pheromone strength”, that
is, the number of n(P) tuples.

Figure 5 above depicts a few screenshots of our experiment: there, five distributed tuple centers (the large
boxes) model a topology connecting the anthill to a food source: the leftmost path is longer – modelled as
a “2-hop” step – whereas the rightmost is shorter. The green “spray-like” effect on paths (black lines)
models the strength of the pheromone scent: the greater and greener the path, the more pheromones on it.
 By plotting pheromones strength evolution over time, Figure 6 below shows how our expectations
about digital ants behavior are met: in fact, despite starting from the situation in which any path is equi-
probable (the amount of pheromones on the shortest path is the same as on the longest path), eventually
the system detects the shortest path, which becomes the most exploited—and contains in fact more pher-
omone units.

Figure 3.18: Ants search food (“TC-food” box) wandering randomly from their anthill
(“TC-anthill” box). By urd-ing digital pheromones left while carrying food, ants stochas-
tically find the optimal path toward the food source [MO14b]—numbers next to tuple
centre names denote pheromone strength, that is, the number of n(NBR) tuples.

popular in computer science, e.g., in the computer networks management field: a simple
yet expressive probabilistic mechanism alone – here, uniform primitives – is able to impact
the output of the algorithm, as well as to support new features.

In other words, given a non-deterministic, distributed routing algorithm based on
classical Linda operations, a simple shift of calls from in and rd to uin and urd can
dramatically impact both the output and the non-functional properties of the algorithm—
e.g., robustness to topology change, adaptiveness to run-time bottlenecks formation, etc.

55

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION
Mariani and Omicini

Figure 6: Pheromone strength over time. Descending phase corresponds to evaporation of pheromones
due to food depletion.

In the Java code describing the behaviour of ants (Figure 7), in particular in method smellPhero-
mone() (line 10), the usage of the uniform primitive urd is visible on line 27, whereas line 29 shows
the tuple template given as its argument, that is, n(NBR): at runtime, NBR unifies with a TuCSoN tuple
centre identifier, making it possible for the ant to move there. Quite obviously, the idea here is not just
showing a new way to model ant-like systems. Instead, the example above is meant to point out how a
non-trivial behaviour – that is, dynamically solving a shortest path problem – can be achieved by simply
substituting uniform primitives to traditional LINDA getter primitives—which instead would not allow the
system to work as required. Furthermore, the solution is adaptive, fully distributed, and based upon local
information solely – thus, it appears by emergence – and robust against topology changes—a ReSpecT
specification implementing evaporation was used, similar to that implementing MoK decay reaction de-
scribed in Subsection 4.4. These are the main reasons why similar algorithms inspired by ants behaviour
are so popular in computer science, e.g. in the computer networks management field: a simple yet expres-
sive probabilistic mechanism alone – here, uniform primitives – is able to impact the output of the algo-
rithm, as well as to support new features. In other words, given a non-deterministic, distributed routing
algorithm based on classical LINDA operations, a simply shift of calls from in and rd to uin and urd
can dramatically impact both the output and the non-functional properties of the algorithm—e.g., robust-
ness to topology change, adaptiveness to run-time bottlenecks formation, etc.
 It should be noticed that, w.r.t. the classification represented by Figure 1 in Section 2, the coordina-
tion between ants and the environment (especially, the feedback loop created by ants depositing phero-
mone and evaporation depleting it) actually implements some of the patterns defined by Fernandez-
Marquez et al. (2013). In particular: (i) the Digital Pheromone composite pattern and the Foraging high-
level pattern, but also, to some extent, (ii) the Gradient pattern (by interpreting pheromone trails as ant-
steering gradients) and the Chemotaxis (by interpreting pheromone trails as carriers of ants, driving them
from the anthill to the food source and back).

Figure 3.19: Pheromone strength over time [MO14b]. Descending phase corresponds to
evaporation of pheromones due to food depletion.

Mariani and Omicini

Figure 7: Java code for ants.

4.3 Gillespie’s chemical solution simulation algorithm

A number of extensions to tuple-based coordination models exploits programmability of tuple spaces
(Denti, Natali and Omicini 1997): there, while the tuple space interface is left unchanged (coordination
primitives are the usual LINDA ones), the tuple space behavior in response to coordination events can be
programmed so as to embed coordination laws. Such an approach is adopted by LGI (Minsky and Un-
gureanu 2000), MARS (Cabri, Leonardi and Zambonelli 2000), TuCSoN (Omicini and Zambonelli 1999)
among the many. For instance, the TuCSoN coordination model provides ReSpecT (Omicini 2006) as a
Turing-powerful language for programming TuCSoN tuple centres, therefore allowing tuple spaces to
embed any computable coordination law. In particular, ReSpecT coordination is obtained by means of
reactions, that is, logic-based computational activities – triggered in response to coordination events –
which include, among the operations available, the basic LINDA primitives.

However, Turing equivalence within a coordination medium is still not enough to embed probabilistic
behaviours in tuple centres: uniform primitives are required. This can be seen by building a “chemical so-
lution dynamics simulator” based on Gillespie’s well-known stochastic algorithm (Gillespie 1977) upon a
TuCSoN tuple centre programmed in ReSpecT. The simulator depends on the availability of uniform
primitives in ReSpecT—that is, available for use within ReSpecT reactions.
 Given: (i) a multi-set of chemical laws of the form law(RTs,Rate,RTs'), where

RTs, RTs' ::= ⊥ | RT | RT, RTs
and RT is a template for chemical reactants and products; and (ii) a multi set of reactants of the form re-
actant(R,C), representing concentration C for reactant R; then, Gillespie’s chemical solution simula-
tion algorithm could be summarised by the following steps—to be executed in loop:

Figure 3.20: Java code for ants [MO14b].

56

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

It should be noted that, w.r.t. the classification represented by Figure 3.12 in Subsec-
tion 4.2.5, coordination between ants and the environment, especially, the feedback loop
created by ants depositing pheromone and evaporation depleting it, actually implements
some of the patterns therein defined [FMMSM+12].

In particular: (i) the digital pheromone composite pattern and the foraging high-level
pattern, but also, to some extent, (ii) the gradient pattern, by interpreting pheromone
trails as ant-steering gradients, and the chemotaxis, by interpreting pheromone trails as
carriers of ants, driving them from the anthill to the food source and back.

Gillespie’s chemical solution simulation algorithm A number of extensions to
tuple-based coordination models exploit programmability of tuple spaces [DNO97]: there,
while the tuple space interface is left unchanged (coordination primitives are the usual
Linda ones), the tuple space behavior in response to coordination events can be pro-
grammed so as to embed coordination laws.

The approach is adopted by LGI [MU00], MARS [CLZ00], TuCSoN [OZ99] among
the many. For instance, the TuCSoN coordination model provides ReSpecT [Omi07] as
a Turing-complete language for programming TuCSoN tuple centres, therefore allowing
tuple spaces to embed any computable coordination law.

In particular, ReSpecT coordination is obtained by means of reactions, that is, logic-
based computational activities – triggered in response to coordination events – which
include, among the operations available, the basic Linda primitives.

However, Turing equivalence within a coordination medium is still not enough to
embed probabilistic behaviours in tuple centres: uniform primitives are required. This
can be seen by building a chemical solution dynamics simulator based on Gillespie’s well-
known stochastic algorithm [Gil77] upon a TuCSoN tuple centre programmed in ReSpecT.
The simulator depends on the availability of uniform primitives in ReSpecT—that is,
available for use within ReSpecT reactions.

Given: (i) a multi-set of chemical laws of the form law(RTs ,Rate ,RTs ′), where RTs,

RTs ′ ::= ⊥ | RT | RT, RTs and RT is a template for chemical reactants and products; and
(ii) a multi set of reactants of the form reactant(R,C), representing concentration C for
reactant R; then, Gillespie’s chemical solution simulation algorithm could be summarised
by the following steps—to be executed in loop:

1. collect only the triggerable laws, that is, those for which at least one R for each
RT exists, then, for each of them, consider any possible combination of µ(R, RT) –
where µ is a given matching function – and define actual laws

2. for each actual law, compute its effective rate ERate as the product between the
given Rate and each Ri’s concentration Ci = |Ri|∑

j |Rj |
(using ReSpecT, the value could

be automatically kept up-to-date)

57

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

3. compute the corresponding law execution probability as pi = ERatei∑
j ERatej

, according to

which one law is selected for execution with a probabilistic choice

All steps but the third are easily computed using standard ReSpecT—namely, no uniform
primitives are needed. In particular, actual laws can be represented as logic tuples of
the form actual(IL,OL) – where IL, OL represent reactants and products, respectively
– whose multiplicity in the space should be kept as desired to represent its execution
probability. What cannot be done without uniform primitives is last part of step 3: there,
in fact, a urd(actual(IL,OL)) is to be used so as to probabilistically select the chemical
law to be executed.

As shown by the ReSpecT code snippet listed in Figure 3.21, using a uniform primi-
tive (line 17) to probabilistically sample the space of chemical laws allows step 3 of the
Gillespie simulation algorithm to be faithfully implemented. In particular, given that step
2 inserts in the tuple centre a number of actual law tuples proportional to the effective
rate determined in steps 1− 2 – so that higher rates correspond to higher multiplicity of
tuples – then predicate choose/2 effectively selects for execution the most probable law,
since, according to uniform primitives semantics, the higher the multiplicity of a tuple,
the higher the probability it will be selected for matching.

Enhancing the ReSpecT language with uniform primitives makes it possible for a TuC-
SoN tuple centre to work as a biochemical tuple space [VC09], thus, to play a key role in
the design of complex computational systems, such as adaptive and self-organising ones.
In particular, by replacing the implementation of Gillespie’s chemical solution simulation
algorithm of [POS13] with the uniform primitive-based one sketched in Figure 3.21, the
probabilistic, concentration-driven mechanism for the selection of reactants to be con-

Mariani and Omicini

1. collect only the triggerable laws – that is, those for which at least one R for each RT exists –, for

each of them, consider any possible combination of µ(R, RT) – where µ is a given matching func-
tion – and define actual laws;

2. for each actual law, compute its effective rate ERate as the product between the given Rate and
each Ri’s concentration Ci = | Ri | / ∑j| Rj | —using ReSpecT, such value could be automatically
kept up-to-date;

3. compute the corresponding law execution probability as pi = ERatei / ∑j ERatej, according to
which one law is selected for execution with a probabilistic choice.

All steps but the third are easily computed using standard ReSpecT—namely, no uniform primitives are
needed. In particular, actual laws can be represented as logic tuples of the form actual(IL,OL) –
where IL, OL represent reactants and products, respectively – whose cardinality should be kept as re-
quired to represent its execution probability. What cannot be done without uniform primitives is last part
of step 3: there, in fact, a urd(actual(IL,OL)) is to be used so as to probabilistically select the
chemical law to be executed.

Figure 8: Snippet of ReSpecT code implementing Gillespie’s algorithm.

As shown by the ReSpecT code snippet listed above (Figure 8), using a uniform primitive (line 17) to
probabilistically sample the space of chemical laws allows step 3 of the Gillespie simulation algorithm to
be implemented. In particular, given that step 2 inserts in the tuple centre a number of “actual law tuples”
proportional to the effective rate determined in steps 1-2 – so that higher rates correspond to higher multi-
plicity of tuples – then predicate choose/2 effectively selects for execution the most probable law,
since, according to uniform primitives semantics, the higher the multiplicity of a tuple, the higher the
probability it will be selected for matching.
 Enhancing the ReSpecT language with uniform primitives makes it possible for a TuCSoN tuple
centre to work as a biochemical tuple space (Viroli and Casadei 2009)—thus, to play a key role in the de-
sign of complex computational systems, such as adaptive and self-organising ones. In particular, by re-
placing the implementation of Gillespie’s chemical solution simulation algorithm of González Pérez,
Omicini, and Sbaraglia (2013) with the uniform primitive-based one sketched in Figure 8, the probabilis-
tic, concentration-driven mechanism for the selection of reactants to be consumed in reactions can be ef-
fectively – and easily – implemented—thus leading to a more “accurate” simulation, better following Gil-
lespie’s algorithm. It should be noticed that building accurate chemical-like mechanisms in a distributed

Figure 3.21: Snippet of ReSpecT code implementing Gillespie’s algorithm [MO14b].

58

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

sumed in reactions can be effectively and easily implemented—leading to a more accurate
simulation, more faithfully following Gillespie’s algorithm.

It should be noted that building accurate chemical-like mechanisms in a distributed
setting – like the tuple-based one here proposed – is interesting not just for the obvious
benefits it can bring to the computational chemistry community – which is focussed, e.g.,
on reliable simulation of biochemical networks and intra-cellular pathways – but also for
its impact on the engineering of nature-inspired self-organising systems.

A chemical-like middleware is well suited for supporting self-* features, e.g., self-
configuration, self-management, self-healing, self-optimisation, etc., and to inject these
features in many different computational scenarios, such as pervasive systems [ZCF+11],
service-oriented architectures [VC09], and distributed algorithms [CVG09].

3.2.4 Discussion of Results

In this section uniform primitives were discussed, as well as their potential of impacting
self-organising systems modelling and simulation. Starting from the central role of interac-
tion in self-organising systems and, consequently, the foremost importance of coordination,
the limits of purely non-deterministic approaches such as Linda were recognised, and the
benefits brought by specialising Linda primitives as probabilistic primitives following a
uniform distribution were shown—namely, uniform primitives.

Accordingly, a number of different examples were proposed and analysed to showcase
the possible implications of uniform primitives on the observable behaviour of different
self-organising coordinated systems.

In particular: how uniform primitives can directly enrich systems with self-organising
behaviours, such as the self-optimisation provided by load balancing ; how uniform prim-
itives can play a central role in nature-inspired systems engineering and simulation, by
modelling ant-like agents random walks and foraging ; how uniform primitives can improve
a chemical solution simulator based on Gillespie’s algorithm.

Altogether, the results and examples suggest that uniform primitives can play the
role of the fundamental mechanisms required to faithfully model, simulate, and design
self-organising systems.

3.3 Formal Expressiveness of Uniform Primitives

A core issue for computer science since the early days, expressiveness of computational
languages is still essential nowadays, in particular for coordination languages, which, by
focussing on interaction, deal with the most relevant source of complexity in computational
systems [Weg97].

Unsurprisingly, the area of coordination models and languages has produced a long
stream of ideas and results on the subject, both adopting/adapting traditional approaches

59

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

– such as Turing equivalence for coordination languages [DNO98, BGZ00] – and inventing
its own original techniques [WG03].

Comparing languages based on either their structural properties or the observable
behaviour of the systems built upon them is seemingly a good way to classify their ex-
pressiveness. Among the many available approaches, the notion of modular embedding
[dBP94], refinement of Shapiro’s embedding [Sha91], is particularly effective in capturing
the expressiveness of concurrent and coordination languages.

However, the emergence of classes of systems featuring new sorts of behaviours –
pervasive, adaptive, self-organising systems [OV11, Omi13b] – is pushing computational
languages beyond their previous limits, and asks for new models and techniques to observe,
model and, measure their expressiveness. In particular, modular embedding fails in telling
probabilistic languages apart from non-probabilistic ones.

3.3.1 Formal Definition of Uniform Primitives

To define the semantics of (getter) uniform primitives, a simplified version of the process-
algebraic framework in [Bra08] is exploited, dropping multi-level priority probabilities.

Therein, the proposed formalism aims at dealing with the issue of open transition
systems specification, requiring quantitative information to be attached to synchronisation
actions at run-time—that is, based on the environment state during the computation.

The idea is that of partially closing labelled transition systems via a process-algebraic
closure operator (↑), which associates quantitative values – e.g., probabilities – to ad-
missible transition actions based upon a set of handles defined in an application-specific
manner, dictating which quantity should be attached to which action. More precisely:

1. actions labelling open transitions are equipped with handles

2. the operator ↑ is exploited to compose a system to a specification G, associating at
run-time each handle to a given value—e.g., a value ∈ N

3. quantitative informations with which to equip actions – e.g., probabilities ∈ [0, 1]
summing up to 1 – are computed from handle values for each enabled action, possibly
based on the action context (environment)

4. quantitatively-labelled actions turn an open transition into a reduction, which then
executes according to the quantitative information

Here, closure operator ↑, handles h, and closure term G, are exploited as follows:

• handles coupled to actions (open transition labels) represent tuple templates asso-
ciated to corresponding primitives

• handles listed in restriction term G represent tuples offered (as synchronisation
items) by the tuple space

60

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

• restriction term G associates handles (tuples) to their weight in the tuple space

• restriction operator ↑ (i) matches admissible synchronisations between processes and
the tuple space, cutting out unavailable actions, and (ii) computes their associated
probability distribution based upon handle-associated values

It is worth to note that closure operator ↑ could be seen as following the statistical
interpretation of a uniform primitive: it takes a snapshot of the tuple space state –
matching, step (i) – then samples it probabilistically—sampling, step (ii).

Semantics of uin (uniform consumption) Three transition rules define the opera-
tional semantics of the uin primitive for uniform consumption:

Synch-C open transition representing the request for process-space synchronisation upon
template T , which leads to the snapshot:

uin(T).P | 〈t1, .., tn〉
T−→ uin(T).P | 〈t1, .., tn〉 ↑ {(t1, v1), .., (tn, vn)}

where vi=1..n = µ(T, ti), and µ(·, ·) is the standard matching function of Linda,
hence ∀i, vi ::= 1 | 0

Close-C closed unlabelled transition (reduction) representing the internal computation
assigning probabilities to synchronisation items (uniform distribution computation):

uin(T).P | 〈t1, .., tn〉 ↑ {(t1, v1), .., (tn, vn)} ↪→ uin(T).P | 〈t1, .., tn〉 ↑ {(t1, p1), .., (tn, pn)}

where pj =
vj∑n
i=1 vi

is the absolute probability of retrieving tuple tj, with j = 1..n

Exec-C open transition representing the probabilistic response to the requested synchro-
nisation (the sampling):

uin(T).P | 〈t1, .., tn〉 ↑ {.., (tj, pj), ..}
tj−→pj P [tj/T] | 〈t1, .., tn〉\tj

where [·/·] represents term substitution in process P continuation, and \ is multiset
difference, expressing removal of tuple tj from the tuple space

Semantics of urd (uniform reading) As for standard Linda getter primitives, the
only difference between uniform reading (urd) and uniform consumption (uin) is the
non-destructive semantics of the reading primitive urd. This is reflected by Exec-R
open transition:

Exec-R he same as Exec-C, except for the fact that it does not remove matching tuple

urd(T).P | 〈t1, .., tn〉 ↑ {.., (tj, pj), ..}
tj−→pj P [tj/T] | 〈t1, .., tn〉

whereas other transitions are left unchanged.

61

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Reduction example As an example, in the following system state

uin(T).P | 〈ta, ta, tb, tc〉

where µ(T, tx) holds for x = a, b, c, the following synchronisation transitions are enabled:

(a) uin(T).P | 〈ta, ta, tb, tc〉 ta−→0.5 P [ta/T] | 〈ta, tb, tc〉

(b) uin(T).P | 〈ta, ta, tb, tc〉 tb−→0.25 P [tb/T] | 〈ta, ta, tc〉

(c) uin(T).P | 〈ta, ta, tb, tc〉 tc−→0.25 P [tc/T] | 〈ta, ta, tb〉

For instance, if transition (a) wins the probabilistic selection, then the system evolves
according to the following trace—simplified by summing up cardinalities and probabilities
in order to enhance readability:

uin(T).P | 〈ta, ta, tb, tc〉
T−→

uin(T).P | 〈ta, ta, tb, tc〉 ↑ {(ta, 2), (tb, 1), (tc, 1)}
↪→

uin(T).P | 〈ta, ta, tb, tc〉 ↑ {(ta, 1
2
), (tb, 1

4
), (tc, 1

4
)}

ta−→ 1
2

P [ta/T] | 〈ta, tb, tc〉

3.3.2 From Modular Embedding to PME

Sequential and modular embedding The informal definition of embedding assumes
that a language could be easily and equivalently translated in another one. “Easily” is
usually interpreted as “without the need for a global reorganisation of the program”;
whereas “equivalently” typically means “without affecting the program’s observable be-
haviour”, according to some well-defined observation criteria—usually to be specified for
the application at hand.

This intuitive definition was formalised by Shapiro [Sha91] for sequential languages.
Given two languages L,L′, their program sets ProgL, P rogL′ , and the powersets of their
observable behaviours Obs ,Obs ′, assumption is that two observation criteria Ψ,Ψ′ hold:

Ψ : ProgL → Obs Ψ′ : ProgL′ → Obs ′

Then, L embeds L′ (written L � L′) iff there exist a compiler C : ProgL′ → ProgL and
a decoder D : Obs → Obs ′ such that for every program W ∈ L′

D(Ψ[C(W)]) = Ψ′[W]

62

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Subsequently, De Boer and Palamidessi [dBP94] argued the definition to be too weak
to be applied proficiently, because any pair of Turing-complete languages would embed
each other. Moreover, concurrent languages need at least (i) a novel notion of termination
w.r.t. sequential ones, so as to handle deadlock and computation failure, and (ii) a different
definition for the compiler, so as to consider also a priori unknown run-time interactions
between concurrent processes.

Following their intuitions, De Boer and Palamidessi proposed a novel definition of
embedding for which C and D should satisfy three properties:

independent observation elements O ∈ Obs are sets representing all the possible out-
comes of all the possible computations of a given system, hence they will be typically
observed independently one from the other—since they are different systems. Thus,
D can be defined to be elementwise, that is:

∀O ∈ Obs : D(O) = {d(o) | o ∈ O} (for some d)

compositionality of C in a concurrent setting, it is difficult to predict the behaviour of
all the processes in the environment, due to run-time non-deterministic interactions.
Therefore, it is reasonable to require compositionality of the compiler C both w.r.t.
the parallel composition operator (||) and to the exclusive choice (+). Formally:

C(A ||′ B) = C(A) || C(B) and C(A +′ B) = C(A) + C(B)

for every pair of programs A,B ∈ L′, where ′ denotes symbols of L′

deadlock invariance unlike sequential languages, where only successful computations
do matter – basically because unsuccessful ones could be supposed to backtrack –, in
a concurrent setting it is needed to consider at least deadlocks, interpreting failure
as a special case of deadlock, which should then be preserved by the decoder D:

∀O ∈ Obs , ∀o ∈ O : tm ′(Dd(o)) = tm(o)

where tm and tm ′ refer to termination modes of L and L′ respectively

If an embedding satisfies all the three properties above, then it is called modular. In
the following, symbol � is used for this notion embedding, since it is assumed to be the
default reference embedding.

63

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

Expressiveness of modular embedding Suppose the following uLinda process P –
that is, a process using uniform specialisation of Linda primitives – and Linda process
Q are acting on tuple space S:

P = uin(T).∅+ uin(T).urdp(T
′).∅ Q = in(T).∅+ in(T).rd(T ′).∅

S = 〈tl[20], tr[10]〉

where: T is a Linda template matching both tuples tl and tr, T
′ matches tr solely,

and square brackets denote the multiplicity of each tuple. Suppose also that both pro-
cesses have the following non-deterministic branching policy: branch left if consumption
primitive (uin and in) returns tl, branch right if consumption primitive returns tr—as
subscript suggests.

From the modular observable behaviour viewpoint exploited in modular embedding
(ME), P and Q are not distinguishable. In fact, according to any observation function Ψ
defined based on [dBP94], Ψ[P] = Ψ[Q], that is, P and Q can reach the same final states:

Ψ[P] = (success, 〈tr[10]〉) or (deadlock, 〈tl[20]〉)
Ψ[Q] = (success, 〈tr[10]〉) or (deadlock, 〈tl[20]〉)

The main point here is that while P and Q are qualitatively equivalent, they are not
quantitatively equivalent. Notwithstanding, by no means ME can distinguish between
their behaviours: since ME cannot tell apart the probabilistic information conveyed by,
e.g., a uLinda primitive w.r.t. a Linda one.

For the don’t know non-deterministic process Q, no probability value is available that
could measure the chance to reach one state over the other, hence ME does not capture
this property—quite obviously, since it is not meant to.

In fact, a two-way modular encoding can be trivially established between the two
languages used above – say, uLinda (out, urd, uin) vs. Linda (out, rd, in) – by defining
compilers C as

CLinda =

out 7−→ out

rd 7−→ urd

in 7−→ uin

CuLinda =

out 7−→ out

urd 7−→ rd

uin 7−→ in

and letting decoder D be compliant to the concurrent notion of observables given in
[dBP94]. Given C and D, it can be stated that uLinda (modularly) embeds Linda and
also that Linda (modularly) embeds uLinda, hence they are (observational) equivalent
(≡Ψ). Formally:

uLinda � Linda ∧ Linda � uLinda =⇒ uLinda ≡Ψ Linda

However, process P becomes a probabilistic process due to the weighted-probability feature
of urd, hence a probabilistic measure for P behaviour would be potentially available:

64

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

however, it is not captured by ME. In the above example, for instance, such an additional
bit of information would make it possible to assess that “one state is twice as probable
than the other”. This is exactly the purpose of probabilistic modular embedding (PME),
defined in the remainder of this section.

Probabilistic setting requirements In order to define the notion of probabilistic mod-
ular embedding (PME), is is needed to elaborate on the informal definition of embedding,
thus giving a precise characterisation to both the words “easily” and “equivalently”.

Although the definition of “easily” given in [dBP94] could be rather satisfactory in
general, it is preferable to strengthen its meaning by narrowing its scope to asynchronous
coordination languages and calculi: without limiting the generality of the approach, this
allows to make precise assumptions on the structure of programs.

A process can be said to be easily mappable into another if it requires:

1. no extra-computations to mimic complex coordination operators

2. no extra-coordinators (neither coordinated processes nor coordination medium) to
handle suspensive semantics

3. no unbounded extra-interactions to perform additional coordination

Requirement 1 ensures absence of internal protocols in-between process-medium inter-
actions, to emulate complex interaction primitives or behaviours—e.g., inp probabilistic
selection simulated by processes drawing random numbers.

Requirement 2 avoids proliferation of processes and media while translating a program
into another, constraining mappings to have the same number of processes and media.

The last requirement complements the first in ensuring absence of complex interaction
patterns to mimic complex coordination operators, such as the in all global primitive
as a composition of multiple inp (in predicative version)—which could be obtained by
forbidding unbounded replication and recursion algebraic operators in compiler C.

Altogether, the three requirements above represent a necessary constraint since the
goal here is to focus precisely on coordination expressiveness, that is, on the sole expres-
siveness of coordination primitives, while abstracting away from the algorithmic expres-
siveness of processes and media.

The refined notion of “equivalently” is a bit more involved due to the very nature
of a probabilistic process, that is, its intrinsic randomness. The notions of observable
behaviour and termination are affected by randomness, thus they need to be re-casted in
the probabilistic setting.

Probabilistic processes, in fact, have their actions conditioned by probabilities, hence
their observable transitions between reachable states are probabilistic, too—so, their exe-
cution is possible but never guaranteed. Therefore, also final states are reached by chance
only, following a certain probability path, hence termination, too, should be equipped with
its own associated probability—also in case of deadlock.

65

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

In order to address the above issues, PME improves ME by making the following
properties about observable behaviour and termination available:

probabilistic observation observable actions performed by processes – e.g., uLinda
coordination primitives – should be associated with their execution probability. The
aforementioned probability should depend on their run-time context, that is, syn-
chronisation opportunities offered by the coordination medium. Then, compiler
C should preserve transition probabilities and properly aggregate them along any
probabilistic trace—that is, a sequence of probabilistic actions

probabilistic termination final states of processes and media should be first defined as
those states for which all outgoing transitions have probability 0. Then, they should
be refined with a probabilistic reachability value, that is, the probability of reaching
that state from a given initial one. Finally, decoder D should preserve probabilities
and determine how to compute them

Probabilistic observation A single probabilistic observable transition step, deriving
from the synchronisation between a uLinda process and a uLinda space – e.g., by using
a uin –, can be formally defined, according to Subsection 3.3.2, as follows:

uin(T).P | 〈t1[w1], .., tn[wn]〉 µ(T,tj)−−−−→pj P [tj/T] | 〈t1[w1], .., tn[wn]〉\tj
where operator µ(T, t) denotes Linda matching function, symbol [·/·] stands for template
substitution in process continuation, and operator \ represents multiset difference, there
expressing removal of tuple tj from the tuple space.

By expanding the observable transition in its embedded reduction steps – that is,
non-observable, silent transitions – the probabilistic semantics can precisely characterised,
thanks to the ↑ operator:

uin(T).P | 〈t1[w1], .., tn[wn]〉
T−→

uin(T).P | 〈t1[w1], .., tn[wn]〉 ↑ {(t1, w1), .., (tn, wn)}
↪→

uin(T).P | 〈t1[w1], .., tn[wn]〉 ↑ {(t1, p1), .., (tj, pj), .., (tn, pn)}
tj−→pj

P [tj/T] | 〈t1[w1], .., tn[wn]〉\tj
where pj =

wj∑n
i=1 wi

is the absolute probability of retrieving tuple tj (with j = 1..n)

assuming for the sake of simplicity that all tuples match template T .
The ↑ operator implicitly enforces a re-normalisation of probabilities based on available

synchronisations offered by the tuple space – that is, which tuples in the space match the
given template –, in the spirit of PCCS restriction operator used in [VSS95] for the
generative model of probabilistic processes. For instance, given the following probabilistic
process P acting on uLinda space S

66

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

P = 1
6
uin(T).P + 1

2
uin(T).P + 1

3
urd(T).P

S = 〈tl[w], tr[w]〉

where template T matches with both tuples tl, tr, it can be observed that an experiment
uin could succeed with probability 2

3
= 1

6
+ 1

2
, and that urd could do so with probability

1
3
. Furthermore, suppose the branching choice after experiment inp to depend upon the

consumed tuple.Then, the aforementioned re-normalisation can be seen by computing the
probability to branch left (tl is returned), which is 0.25, and that of branching right (tr
is returned), which is instead 0.75.

This addresses the first issue of probabilistic observation: observable actions are de-
fined as all those actions requiring synchronisation with the medium. Then, they are
equipped with a probability of execution driven by available run-time synchronisation
opportunities, and normalised according to the generative model interpretation enforced
by ↑. Formally, the probabilistic observation function (Θ), mapping a process (W) into
observables, is defined as follows:

Θ[W] =
{

(ρ,W [µ̄]) | (W, 〈σ〉) −→∗ (ρ,W [µ̄])
}

where ρ is a probability value ∈ [0, 1], µ̄ is a sequence of actual synchronisations – e.g.,
µ̄ = µ(T1, t1), . . . , µ(Tn, tn) – and σ is the space state—e.g., σ = t1, . . . , tn.

The definition is partial in the sense that it is only known how to compute ρ for single-
step transitions – that is, according to the ↑-dependent generative semantics –, in fact,
it tells nothing about how to compute ρ also for observable traces—that is, for sequences
of observable actions. Nothing more than standard probability theory is needed here,
stating that [Dra67]:

• the cumulative probability of a sequence – that is, a list separated by symbol ‘·’ –
of probabilistic actions is the product of the probabilities of actions

• the cumulative probability of a choice – that is, a list separated by symbol ‘+’ – of
probabilistic actions is the sum of the probabilities of actions

Formally, sequence probability aggregation function (ν̄) and choice probability aggregation
function (ν+), mapping multiple probability values to a single one, are defined as:

ν̄ : W × 〈σ〉 7→ ρ where ρ =
∏n

j=0{pj | (pj, µ¯̀) ∈ Θ[W = ¯̀.W ′])}
ν+ : W × 〈σ〉 7→ ρ where ρ =

∑n
j=0{pj | (pj, µ`+) ∈ Θ[W = `+.W ′])}

where ¯̀ is a sequence of synchronisation actions – e.g., ¯̀ = uin(T1).urd(T2). . . . – and
`+ is a choice between synchronisation actions—e.g., ¯̀+ = uin(T1) + urd(T2) + By
properly composing aggregation functions, it is possible to compute Θ[W] for any process
W and for any transition sequence −→∗.

An example may help clarifying the above definitions. Consider the following process
P and space S (sequence operator has priority w.r.t. choice):

67

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

P = uin(T).
(
urd(T ′).P ′ + urd(T ′).P ′′

)
+ uin(T).P ′

S = 〈tl1[40], tl2[30], tr1[20], tr2[10]〉

where template T may match either tl1 or tr1 whereas T ′ may match either tl2 or tr2—
and branching structure is based on returned tuple as usual, that is, tl1,tl2 for left, tr1,tr2
for right. Applying function Θ to process P could lead to the following observable states :

Θ[P] = (0.5, P ′[µ(T, tl1), µ(T ′, tl2)])

Θ[P] = (0.16̄, P ′′[µ(T, tl1), µ(T ′, tr2)])

Θ[P] = (0.3̄, P ′[µ(T, tr1)])

According to Θ, and using both aggregation functions ν̄ and ν+, it can be stated that
process P will eventually behave like P ′ – although with different substitutions – with a
probability of ' 0.83, and like P ′′ with a probability of ' 0.17.

As a last note, one may consider that sequence probability aggregation function ν̄
asymptotically tends to 0 as the length of the sequence l̄ tends to infinity. This is un-
avoidable according to the basic probability theory framework adopted throughout this
paper. One way to fix this aspect could be that of considering only the prefix sequence
executed in loop by a process, then to associate that process not with the probability of n
iterations of the loop, but with the probability of the looping prefix sequence solely—that
is, with only 1 iteration of the loop.

Probabilistic termination In order to define probabilistic termination, the classical
notion of termination should be adapted to the probabilistic setting. For this purpose,
ending states are defined as all those states for which either no more transitions are
possible or all outgoing transitions have probability 0 to occur.

Other than that, termination states can be enumerated as usual [dBP94] to be τ =
success, failure, deadlock, plus the undefined state, which could be useful to distin-
guish absorbing states – that is, those states for which the probability of performing a
self-loop transition is 1 – from deadlocks. Furthermore, termination states have to be
equipped with a probabilistic reachability value.

Formally, the reachability value ρ⊥ and the probabilistic termination state function Φ
are defined as follows:

Φ[W] =
{

(ρ⊥, τ) | (W, 〈σ〉) −→∗⊥ (ρ⊥, τ)
}

where subscript ⊥ denotes a sequence of finite transitions leading to termination τ . By
comparing this function with the observation function Θ, it can be noted that Φ abstracts
away from computation traces, that is, it does not keep track of synchronisations, hence
substitutions, in term W [µ̄], focussing solely on termination states τ . However, when
computing the value of ρ⊥, the same aggregation functions ν̄ and ν+ have to be used.

For instance, recalling process P used to test observation function Θ, changing space
S configuration as follows:

68

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

P = uin(T).
(
urd(T ′).P ′ + urd(T ′).P ′′

)
+ uin(T).P ′

S = 〈tl1[40], tr1[20]〉

where P ′ ≡ P ′′ = ∅ so as to reach termination, the application of the probabilistic termi-
nation state function just defined leads to the following observable termination states :

Φ[P] = (0.6̄, deadlock) ∨ Φ[P] = (0.3̄, success)

In particular, P deadlocks with probability 2
3

if tuple tl1 is consumed, whereas succeeds
with probability 1

3
if tuple tr1 is consumed in its stead.

It should be noted that here absorbing states cause no harm for the sequence prob-
ability aggregation function ν̄, since the probability value aggregated until reaching the
absorbing state will be from now on always multiplied by 1—in the very end, making each
iteration of the self-loop indistinguishable from the others.

3.3.3 Relative Expressiveness Results

uLinda vs. Linda Recall the two processes P and Q acting on space S introduced in
the example of Subsection 3.3.2:

P = uin(T).∅+ uin(T).urd(T ′).∅ Q = in(T).∅+ in(T).rd(T ′).∅
S = 〈tl[20], tr[10]〉

Embedding observation is now repeated under the assumptions of PME. As expected, the
behaviour of process P can now be distinguished from that of process Q. In fact, applying
function Φ to both P and Q leads to:

Φ[P] = (0.6̄, success) or (0.3̄, deadlock)

Φ[Q] = (•, success) or (•, deadlock)

where symbol • denotes absence of information.
Therefore, only a one-way encoding can be now established between the languages –

again, uLinda (out, urd, uin) vs. Linda (out, rd, in) – by defining compiler CLinda as

CLinda =

out 7−→ out

rd 7−→ urd

in 7−→ uin

and making decoder D rely on observation function Θ and termination function Φ. Then,
it can be stated that uLinda probabilistically embeds (�p) Linda—but not the other way
around. Formally, according to PME:

uLinda �p Linda ∧ Linda 6�p uLinda =⇒ uLinda 6≡p Linda

In the end, PME succeeds in telling uLinda apart from Linda (classifying uLinda as
more expressive than Linda), whereas ME fails.

69

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

3.3.4 Similar Approaches

To the best of the author knowledge, no other research extends the work by De Boer
and Palamidessi [dBP94] towards a probabilistic setting with a focus on coordination
languages, in the same way as no other work tries to connect the concept of linguistic
embedding with any of the probability models defined in [VSS95].

In [BLY01], the authors try to answer questions such as how to formalise probabilistic
transition system, and how to extend non-probabilistic process algebras operators to the
probabilistic setting. In particular, they focus on reactive models of probability – hence,
models where pure non-determinism and probability coexist – and provide the notions
of probabilistic bisimulation, probabilistic simulation (the asymmetric version of bisimula-
tion), and probabilistic testing preorders (testing-based observation of equivalence), again
applied to PCCS.

Although targeted to the PCCS reactive model, their work is related to the one here
described in the attempt to find a way to compare the relative expressiveness of different
probabilistic languages. On the other hand, the approach described is quite different
because it adopts a linguistic embedding perspective rather than a process bisimulation
viewpoint. Whereas probabilistic bisimulation can prove the observational equivalence of
different probabilistic models, it cannot detect which is the most expressive among them.

However, it cannot be excluded that a two-way probabilistic embedding relation-
ship may correspond to a probabilistic bisimulation according to [BLY01] definition of
bisimulation—at least for reactive models.

In [BDPW02] the notion of linear embedding is introduced. Starting from the definition
of ME in [dBP94], the authors aim at quantifying how much a language embeds another
one, that is, how much a given language is more expressive than another. To do so, they (i)
take linear vector spaces as a semantic domain for a subset of Linda-like languages – that
is, considering tell, get, ask, nask primitives –; (ii) define an observation criteria
associating to each program a linear algebra operator acting on the aforementioned vector
spaces; then (iii) quantify the difference in expressive power by computing the dimension
of the linear algebras associated to each language.

Although the possibility to quantify the relative expressive power of a set of languages
is appealing, the work in [BDPW02] do consider neither probabilistic languages nor prob-
abilistic processes, hence cannot be directly compared to the one described here. However,
it still remains an interesting path to follow for further developments of the probabilistic
embedding here proposed.

Last but not least, in [DPHW03] the authors apply the Probabilistic Abstract Inter-
pretation (PAI) theory and its techniques to probabilistic transition systems, in order to
formally define the notion of approximate process equivalence—that is, two probabilis-
tic processes are equivalent up to an error ε. As in [BDPW02], Di Pierro, Hankin, and
Wiklicky adopt linear algebras to represent some semantical domain, but they consider
probabilistic transition systems instead of deterministic ones. Therefore, they allow ma-

70

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

trices representing algebraic operators to specify probability values v ∈ [0, 1] instead of
binary values b = 0 | 1.

Then, by using the PAI framework and drawing inspiration from statistical testing
approaches, they define the notion of ε-bisimilarity, which allows the minimum number
of tests needed to accept the bisimilarity relation between two processes to be quantified
with a given confidence. By examining this value, a quantitative idea of the statistical
distance between two given sets of (processes) admissible behaviours can be inferred.

Although quite different from the work here described, theirs can be considered never-
theless as another opportunity for further improvement of PME: for instance, an enhanced
version of PME may be able to detect some notion of approximate process equivalence.

3.4 Remarks & Outlook

The material presented in this chapter is at the very core of the M olecules of K nowledge
model described in Part II of this thesis. In particular:

• some of the bio-inspired basic patterns extensively discussed in Section 3.1 are
used to implement MoK reactions—e.g., decay, aggregation, and diffusion for their
homonym reactions, and feed for reinforcement

• the whole approach to artificial chemical reactions engineering is extremely valuable
for identifying the core set of MoK reactions, as well as their kinetic rates

• uniform primitives are exploited to implement the MoK prototype on TuCSoN,
as described in Section 7.1 of Chapter 7, both as regards the chemical machinery
working as MoK compartment, and MoK reactions themselves

Next chapter is strongly related, too, being the infrastructure and language there described
conceived and designed to better support the approach here described to engineering self-
organising coordination, within pervasive computing scenarios.

Nevertheless, there is still much work which can be done to further advance the field
of chemical-inspired self-organising coordination, e.g.:

• as basic patterns may be composed into higher level patterns depicted in Figure 3.12,
it is interesting to investigate if their encodings into artificial chemical reactions may
be similarly composed, to obtain the same higher level patterns; then, it is interesting
to undertake simulations to see which degree of controllability composite patterns
exhibit, e.g., w.r.t. the tuning of the custom kinetic rates of the basic patterns they
are built on top of

• also, studying the interplay between different artificial chemical reactions coexisting
in the same coordination space is undoubtedly something worth doing, to under-
stand, e.g., if the whole approach is composable or not, and if not, which kind of

71

CHAPTER 3. RE-THINKING STOCHASTIC PROGRAMMABLE COORDINATION

issues arise from composition—it should be noted that a similar study has been
done for those patterns used to implement MoK reactions (see Subsection 6.2.2)

• as far as uniform primitives are concerned, an interesting further work is to gener-
alise the probabilistic distribution exploited, possibly allowing application-specific
distributions to be dynamically provided

• besides, a very interesting effort would be that of further investigating formally the
expressiveness leap provided by uniform primitives, e.g., trying to build a correlation
with the hierarchy of probability models described in [VSS95]

72

Chapter 4

Coordination Issues in
Situated Pervasive Systems

In this chapter a novel approach to coordination in situated Multi-Agent Systems (MAS) is
described, by proposing a meta-model for situated MAS engineering, and an architecture
for the design of shared space -based middleware for situated coordination. Accordingly, a
review of the TuCSoN architecture is done, and an extension to the ReSpecT coordination
language provided so as to deal with situatedness-related issues directly at the level of
the coordination language.

Thus, in what follows a review of meta-models and architectures is performed from
an historical perspective, discussing their evolution, to propose the reference meta-model
and abstract architecture (Section 4.1); then, instantiation of the proposed architecture on
the TuCSoN middleware is described, discussing the methodology it implicitly suggests
to situated MAS designers, and focussing on the issue of environmental situatedness
(Section 4.2); finally, spatial situatedness is focussed, discussing the proposed extension
to the ReSpecT language (Section 4.3).

4.1 The Quest toward Situatedness in MAS

Nowadays, activities in computational systems are typically modelled by means of agents
in MAS. Modelling activities through agents basically means representing actions along
with their motivations—namely, the goals that determine and explain the agent’s course
of actions [Cas12]. Handling dependencies among activities in MAS is in essence a coor-
dination problem [MC94].

Accordingly, coordination models are the most suitable conceptual tools to harness
complexity in MAS [COZ00]. Through the notion of social action [Cas98], dependencies
are modelled in MAS in terms of agent societies, in turn represented computationally by
means of coordination artefacts [ORV+04a], also called coordination media [Cia96].

73

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

However, agents and societies are not the only main bricks for MAS: environment is
an essential abstraction for MAS modelling and engineering [WOO07], which needs to
be suitably represented, and related to agents. This is the core of the notion of situated
action, as the realisation that coordinated, social, intelligent action arises from strict
interaction with the environment, rather than from rational practical reasoning [Suc87].

The need for situatedness of agents and MAS is often translated into the requirement
of being sensitive to environment change [FM96]. This basically means dependency, again:
so, agent activity should be affected by environment change.

In all, this means that (i) things happen in a MAS because of either agent activities or
environment change – the only two sources of events in MAS –, (ii) complexity arises from
both agent-agent and agent-environment dependencies—roughly speaking, from both so-
cial and situated interaction. Also, this suggests that coordination – in charge of managing
dependencies [MC94] – could be used to deal with both forms of dependencies in a uni-
form way; so, also, that coordination artefacts could be exploited to handle both social
and situated interaction [OM13].

Accordingly, an agent-oriented, event-driven architecture for situated pervasive sys-
tems is proposed, that exploits coordination to handle both social and situated inter-
action. By focussing on situatedness, is first observed the evolution of the notion of
environment in MAS meta-models (Subsection 4.1.1), then the approach to situatedness
by some well-known agent frameworks (Subsection 4.1.2) is explored. The proposed archi-
tecture is presented and detailed (Subsection 4.1.3), then implemented within the TuCSoN
middleware for MAS coordination [OZ99] in next section (Section 4.2).

4.1.1 Review of Meta-models

A linear account of the evolution of the concepts and ideas within any field of human
knowledge is likely to be at the same time artificial and essential. Artificial, in that
evolution of concepts is actually never linear, so that for instance several contrasting
ideas typically coexist altogether at the same time on the same subject in the same field.
Essential, in that understanding history of ideas typically requires some linearisation, for
instance when trying to explain the emergence of new concepts, or, to foresee the next
steps of their evolution.

In this section a short linear account of the evolution of agent-oriented meta-models
along the years is provided, by focussing on the abstractions adopted to address the issues
of situatedness and coordination in MAS engineering.

Activities by agents While the essential role of the environment was made clear since
the early days of research on MAS [FM96] – mostly based on the work on reactive agents
[Bro86, DM91] –, all the focus then was on activities, with no abstractions devoted to
model either environment change or dependencies. Figure 4.1 roughly depicts the corre-
sponding (implicit) meta-model. There, first of all, agents’ only means of interaction is by

74

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.1: MAS meta-model in the early days of MAS history: only activities are explic-
itly accounted, modelled as agents, and the only way to handle their mutual dependencies
is essentially by plain communication [MO15b].

messages exchange. This means that inter-agent dependencies are basically dealt with via
inter-agent communication, handling all coordination issues at the individual level—using
the so-called subjective approach to coordination [Sch01, OO03]. Furthermore, no spe-
cific abstraction is devoted to environment engineering [WOO07]: every agent is basically
supposed to directly deal with environment resources, thus providing no specific support
to agent-environment interaction.

So, on the one hand, the only thing that makes things happen in a MAS are activities,
modelled through agents. On the other hand, any sort of situatedness requires ad-hoc
solutions – such as bridges to lower-level languages –, with no general-purpose abstraction
to directly support environment engineering.

Environment change by agents When the notion of environment was not yet recog-
nised as a first-class MAS abstraction – as the one of agent – but as a sort of technical
missing link between agent technology and real-world applications, the easiest approach
to environment modelling in MAS was quite obvious: environment resources or proper-
ties are represented and manipulated by environment agents, acting as wrappers—as in
[CM01], for instance.

75

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.2: MAS environment recognised as a technical issue in MAS design: environment
activities are delegated to wrapper environment agents; both coordination and situated-
ness are correspondingly reduced to message-passing issues [MO15b].

Thus, no novel, specific abstraction is provided for capturing environment change: sim-
ply, the agent abstraction is somehow abused, exploiting autonomy just to reproduce
unpredictable behaviour. Correspondingly, situatedness is (poorly) handled merely as
inter-agent communication.

Figure 4.2 depicts the corresponding MAS scenario: a software layer of environment
agents is built upon the lower level of environment resources—the one of low-level lan-
guages and legacy API. In this way, situatedness of proper agents (those on the left side
of Figure 4.2) is just a consequence of their communication with their reactive siblings
(those within the “Layer 1” frame). As far as dependencies are concerned, nothing new
happens: agents in a MAS are still a bunch of threads exchanging messages, and the
reach of subjective coordination is extended to cover all dependencies among activities,
including agent-environment interactions.

Coordination for social dependencies Since MAS became the reference paradigm
for complex computational systems [OZ04], direct inter-agent communication turned out
to be a feeble solution for handling non-trivial dependencies. The recognition that an
interaction space exists in MAS, and is a primary source of complexity, made the need of
specific abstractions emerge, devoted to the management of social interaction.

76

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Along this line – as depicted in Figure 4.3 – the importance of governing the interac-
tion space outside the agents was recognised, and the shift towards objective coordination
began [Sch01, OO03], that is, coordination provided to agents as a service [VO06], rather
than cooperatively built by agent themselves through communication protocols. Starting
from the simplest attempts, such as inter-agent communication protocols and individual
agent mailboxes, a number of general-purpose coordination models were defined [OZKT01]
– such as TuCSoN [OZ99], Lime [PMR99], and MARS [CLZ00] –, allowing MAS engineers
to manage MAS interaction space via coordination artefacts—handling social dependen-
cies by ruling agent-agent interaction [COZ00].

However, no specific attention is still devoted here to the interaction with MAS envi-
ronment, since environment representation lacks suitable abstractions supporting agent-
environment dependencies. Thus, even though clearly a coordination issue, situatedness
here is still conceived as a separated problem independent of coordination, and conse-
quently managed just at the technology level—that is, according to the custom solutions
provided by the MAS development framework at hand.

Figure 4.3: The existence of an interaction space outside the agents is recognised, requiring
suitable abstractions to be modelled and governed; agent-environment interactions are not
considered as part of the space [MO15b].

77

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.4: The fundamental role of situated coordination in supporting situatedness in
MAS is recognised: thus, a uniform, coherent, and comprehensive situated coordination
service is provided to promote a system-level view of MAS coordination [MO15b].

Coordination for all dependencies As soon as situatedness is considered as a proper
coordination issue, since it deals with agent-environment interaction, the chance of a uni-
form meta-model emerges, which could handle both social and situated dependencies
in a coherent way. This is for instance the view promoted by the TuCSoN architec-
ture [MO13h], where ReSpecT tuple centres work as coordination artefacts handling both
agent-agent and agent-environment interaction [MO13a].

The corresponding meta-model is depicted in Figure 4.4 above, where also interac-
tion with MAS environment is considered to be part of the MAS interaction space –
now, a situated coordination space –, promoting a view of MAS in which all dependen-
cies are uniformly handled by coordination abstractions [MO13h]. In this scenario, the
property of being situated can be interpreted both at the individual agent level and at
the overall system level, as a property belonging to the whole coordinated MAS—since
agent-environment interaction can be handled both at the individual and at the social
level by coordination artefacts [ORV+04a].

4.1.2 Review of Architectures

Agent-oriented programming frameworks bring agent abstractions to life, by reifying agent
(meta-)models, and making them available to MAS engineers. It is then easy to un-

78

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

derstand how the conceptual evolution devised in Subsection 4.1.1 has led to different
frameworks for MAS development over the years.

Accordingly, in this section agent-oriented architectures are focussed, as they are
adopted by some well-known agent-oriented programming frameworks, and a discussion
about how they address the issues of situatedness and coordination in the engineering of
MAS is provided. In particular, three MAS development frameworks are analysed, that
is, Jade, Jason, and CArtAgO, chosen for their relevance and wide-spread adoption, as
well as for their belonging to different periods of MAS research.

Activities, dependencies, environment change in Jade Jade (Java Agent DEvel-
opment framework)1 [BPR99] is a Java-based framework providing an API and a run-time
middleware to develop and deploy agent-based applications in compliance with FIPA2

standards for MAS. Generally speaking, Jade most notable features are: transparent
message-passing based on FIPA ACL (agent communication language), white and yellow
pages services, support for strong mobility, and built-in FIPA protocols.

The most relevant architectural components of the Jade middleware are:

agents Jade agents are Java objects executed by a single thread of control. The ability
to pursue different goals at the same time is provided by Jade behaviour model :
each agent has a set of behaviours (again, Java objects) representing task-achieving
jobs, which are executed by a non-preemptive round-robin scheduler internal to
the agent (thus hidden to Jade programmers). The only means agents have to
communicate (and coordinate) is by exchanging FIPA ACL messages

ACC the Agent Communication Channel is the run-time facility in charge of asyn-
chronous delivery of messages: each agent has its own mailbox, and is notified
upon reception of any message, whereas if and when to process the message is left
to the agent’s own deliberation—for the sake of preserving its autonomy

FIPA protocols Jade supports FIPA standard communication protocols (built on top
of ACC services) by providing built-in behaviours that the programmer extends by
specifying what to do in each step of the protocol: upon reception of the expected
message according to the protocol state, the proper callback method is automatically
called by Jade run-time

This short middleware description is enough to relate Jade to the pictures in Subsec-
tion 4.1.1: (i) agents are the abstractions to handle activities in Jade; (ii) Jade provides
no specific environment abstraction, so that Jade agents have to be used to capture en-
vironment change, too; and (iii) the only Jade abstraction to handle dependencies is the
FIPA protocol, governing agent-agent communication.

1http://jade.tilab.com/
2http://www.fipa.org/

79

http://jade.tilab.com/
http://www.fipa.org/

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Accordingly, Figure 4.5 relates Jade architectural model with the meta-model of
Figure 4.3, emphasising how Jade agents are abused to represent environment properties
and resources.

As a result, the implicit Jade coordination model is somehow a hybrid one, borrowing
from both subjective and objective coordination: on the one hand, most is charged upon
subjective coordination, since coordination is based on protocols, and protocols are im-
plemented as agent behaviours; on the other hand, the fact that protocols are behaviour
– hence, Java objects different from agents – makes it possible to separate to some extent
the coordination (social) logic (indeed, inside the protocols) from the agent (individual)
logic (inside non-protocol agents’ behaviours).

Also, as depicted in Figure 4.5, situatedness in Jade is merely handled as an inter-
agent communication issue.

Figure 4.5: In Jade, the only abstraction given to handle dependencies is that of protocol,
whereas no specific abstraction exists for the environment; agent-agent interaction can
be governed by FIPA communication protocols, and situatedness is achieved through
environment agents [MO15b]—that is, agents deployed ad-hoc to model the environment
and represent its change.

80

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Activities, dependencies, environment change in Jason Jason3 [BHW07] is both
a programming language, an agent development framework, and a run-time system. As
a language, it implements a dialect of AgentSpeak [Rao96]; as a development framework,
it comes with an API to design agents and MAS; as a run-time system, it provides
the infrastructure needed to execute a MAS—in a non-distributed setting; to enable
distribution, an integration with Jade exists.

Although Jason is entirely programmed in Java, it features BDI agents, so that a
higher-level language (the Jason language) is used to program Jason agents using BDI
architectural abstractions. Jason natively supports the notion of MAS environment and
situatedness: in particular, Jason agents are said to be situated in an environment since
they can sense it through sensors, and act upon it through actuators. Jason sensors and
actuators have to be implemented directly using Java—along with all the environment
resources needed to model the MAS environment.

As a result, Jason architectural components that are worth to be mentioned here are:

agents Jason agents are BDI architectures whose reasoning cycle encompasses environ-
ment perception, beliefs update, message exchange, plan selection/execution, action.
Different plans can be executed concurrently as expected by a goal-directed agent ar-
chitecture. Jason agents can also interact (i) directly by sharing goals/plans/beliefs
(again via messages) as well as (i) indirectly by acting upon the environment—
knowing that other agents will perceive any environment change

messages by exploiting message passing, Jason agents can exchange data structures
belonging to the BDI architecture, such as goals, plans, and beliefs. Neither explicit
protocols nor specific abstractions to objectively govern the interaction space are
provided by Jason

environment unlike Jade, Jason supports the environment as a first-class abstraction
in MAS modelling, by automatically updating agent beliefs based upon perception,
and by providing an environment layer offering an acting API. Nevertheless, the
environment layer has to be programmed in Java, since no high-level, specific archi-
tectural component is provided by Jason

events somehow hidden inside Jason agent architecture, the notion of event is what
drives agent internal reasoner: almost everything is an event in Jason, from be-
liefs addition/removal to plan triggering. However, events are internal to agents—
Subsection 4.1.3 describes the (possibly more general) notion of event

Figure 4.6 depicts how the Jason architectural model can be mapped upon the architec-
ture in Figure 4.2: the environment layer is simply based on Java, with no higher-level
abstraction provided, furthermore no explicit abstraction to govern the interaction space
is given neither—other than message passing and goal/plan/beliefs sharing.

3http://jason.sourceforge.net/

81

http://jason.sourceforge.net/

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.6: In Jason, there is no abstraction for the interaction space whereas a (limited)
layer of abstraction for the environment is given through Java objects. Social dependencies
are mostly governed by goal/plan/beliefs sharing, whereas situatedness is achieved through
a Java-programmed environment layer featuring individual agents’ (simulated) sensors
and actuators [MO15b].

Thus, Jason coordination model is in principle a subjective one, since agents themselves
are in charge of properly coordinate: however, coordination may occur either directly, by
means of message passing, or indirectly, that is, mediated by environment perception and
action, as in stigmergy-coordinated MAS [Omi12].

Situatedness is still a feature belonging to individual agents, but, unlike Jade, it
is achieved through the environment abstractions of sensors (→ perception) and actua-
tors (→ action)—although no specialised architectural component is given except for an
abstract Java class.

Activities, dependencies, environment change in CArtAgO CArtAgO4 [RVO07] is
a Java-based framework and infrastructure based on the A&A (agents & artefacts) meta-
model [ORV08]. The A&A meta-model introduces artefacts as the tools that agents use to
enhance their own capabilities, for achieving their own goals [OPRV09]—as human beings
do with their tools [Nar96]. So, artefacts can be used to (computationally) represent any
kind of environmental resource within a MAS in a uniform way: from sensors to actuators,
from databases to legacy OO applications, from real-world objects to virtual blackboards.

4http://cartago.apice.unibo.it

82

http://cartago.apice.unibo.it

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Given its focus on artefact design, implementation, and run-time support, rather than
on agent development, CArtAgO is designed so as to be as much orthogonal as possible
w.r.t. the agent-platform. Nevertheless, Java bridges exist, e.g., towards both Jade and
Jason. Correspondingly, CArtAgO main architectural components are:

artefacts artefacts are the basic bricks in the A&A meta-model, then the basic bricks
in the CArtAgO framework, too. Technically, CArtAgO artefacts are Java objects
equipped with Java annotations, exploited by CArtAgO run-time infrastructure to
recognise available operations (aka effectors) and generate observable events (aka
perceptions). Thus, artefacts are the tools for MAS designers to properly model and
implement the portion of the environment agents can control / should deal with

workspaces workspaces play the role of the topological containers for agents and arte-
facts, representing the agent working environments. In particular, since every agent
and every artefact are always associated to a workspace in CArtAgO, workspaces can
be used to define the scope of event generation/perception for agents and artefacts

agent bodies by exposing effectors API and enabling perception of environment (artefact-
generated) events (through sensors), CArtAgO agent bodies are the architectural
components enabling agent interaction with artefacts—thus, in the very end, situ-
atedness, at least from the individual agent viewpoint. Technically, agent bodies
work as Java bridges towards existing agent platforms, such as Jade and Jason

observable events while implementing artefacts, CArtAgO programmers can define events
to be generated in response to specific operation invocations as well as observ-
able states to monitor for changes—generating events as soon as the state changes.
Events can then be captured by sensors linked to agent bodies, either proactively
got by agent minds, or automatically dispatched to the agents explicitly focussing
on the artefact source of the event

Figure 4.7 below depicts the aforementioned architectural components along with their
mutual relationships. In summary, CArtAgO handles situated interaction by providing
artefacts as a means to mediate agents interaction with their environment—via agent
bodies. As far as coordination is concerned, neither built-in services nor abstractions are
given specifically for that purpose: coordination could be then achieved only by means
of ad-hoc-designed social artefacts—e.g., by implementing a channel, a mailbox, a shared
blackboard as a coordination artefact.

4.1.3 A Reference Architecture

A well-founded software architecture relies on a well-defined meta-model, that is, the set
of concepts and abstractions the architecture is grounded on. Besides setting the archi-
tecture within a sound conceptual framework, this makes it possible to place the proposed

83

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.7: In CArtAgO, MAS environment is modelled through artefacts. Thus, sit-
uatedness is the consequence of artefacts use/observation by agent bodies. As regards
interactions, artefacts can be used as well, even though they are not explicitly devoted to
coordination [MO15b].

architecture within the historical perspective taken in Subsection 4.1.1, in particular, by
mapping the architecture onto the meta-model depicted in Figure 4.4.

Meta-model In the widespread acceptation of MAS nowadays, agents, environment
and societies are the three fundamental abstractions around which MAS should be mod-
elled and engineered [ORV+04a]. While the meta-model still adopts those three abstrac-
tions as its reference conceptual framework, there are three core concepts that motivate
the architecture, which the meta-model should account for:

activities goal-directed/oriented proceedings resulting into actions of any sort, which
make things happen within a MAS; through actions, activities in a MAS are social
[Cas98] and situated [Suc87]

environment change the (possibly unpredictable) variations in the properties or struc-
ture of the world surrounding a MAS that affect it in any way; variations do not
express any specific goal, either because this does not exist, or because it has / can
not be modelled in the MAS

84

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

dependencies in any non-trivial MAS, activities depend on other activities (social depen-
dencies), and on environment change (situated dependencies); thus, dependencies
both motivate and cause interaction—both social and situated interaction

The core notion that links the architecture to the meta-model is the one of event :

events despite their intrinsic diversity, actions and environment change constitute alto-
gether the only sources of dynamics in a MAS—what makes everything happen; in
order to provide a uniform view of MAS dynamics, and a simpler modelling of social
and situated dependencies, both actions and environment changes are represented
here as events

Architecture The proposed event-driven architecture for MAS is depicted in Figure 4.8,
and is made of the following components:

agents agents are the autonomous entities in charge of the (goal-directed/oriented, so-
cial, and situated) activities, that is, undertaking the course of actions aimed at
achieving their own goal. Agents are characterised by their own goals, and artic-
ulate their activities in term of actions. Actions affects either other agents or the

Figure 4.8: Boundary artefacts take care of events in the proposed event-driven architec-
ture [MO15b]: they are in charge of mapping activities as well as changes onto events,
to be uniformly handled by the coordination artefacts within the MAS —responsible for
handling dependencies of any sort.

85

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

environment, leading to social (agent-agent) and situated (agent-environment) in-
teractions. Agents in a MAS are in principle heterogeneous and unpredictable: either
by design or by necessity—as in the case of open MAS

environment resources while the notion of environment is quite a hazy one, dealing
with MAS makes it possible here to model it as populated by many items, here
called resources, capable of interacting in some way with a computational system.
Resources encapsulate the properties of the environment that are of interest for
the agents in a MAS; as such, they are the instruments by which agent actions
affect environment properties, and the sources of (possibly unpredictable) changes
of the environment surrounding the MAS. Also environment resources in a MAS are
heterogeneous and unpredictable: the variety and dynamics of resources accounts
for the diversity and dynamics of MAS environment

boundary artefacts heterogeneity of agents and of resources, along with their dissimilar
nature, might lead to theoretical and practical problems when dealing with social
and situated dependencies. In order to represent all the sources of change in a
MAS in a uniform way, without neglecting specificity, a mediating architectural
abstraction is first of all required. This is in fact the role of boundary artefacts as
the architectural components representing agents as well as environmental resources
within the MAS. As such, they work as an interface between the agent (or, the
environmental resource) and the MAS interaction space, mapping agents’ activities
and environment changes into events, dispatching them to the coordination artefacts,
collecting the outcomes of dependency resolution (coordination), then dispatching
outcomes back to agents and environmental resources

coordination artefacts coordination artefacts are the components in charge of dealing
with dependencies in MAS—both social and situated dependencies. As both agents
and resources are represented by boundary artefacts within a MAS, coordination
artefacts actually work by handling dependencies between events representing agent
activities and environment changes in a uniform way. Thus, dependencies are han-
dled by managing interaction among agents (social coordination) and between agents
and environmental resources (situated coordination)

events first of all, boundary artefacts generate external events, as the data structures
reifying agent activities and environment changes. Then, coordination artefacts
generate internal events, which represent MAS internal activity, related to the man-
agement of both social and situated interaction. As coordination artefacts handle
events in order to manage dependencies, boundary artefacts translate events com-
ing from coordination artefacts that target either agents or environment resources,
thus taking care of heterogeneity of agents and resources. Correspondingly, every
event records all the information potentially relevant to coordination, such as its

86

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

cause (either the agent action or the environment change), spatio-temporal data
(when it happened and where), the source and the target entities involved (agents,
environment, coordination artefacts), and so on

Summing up, in the abstract architecture depicted by Figure 4.8 (i) agents and environ-
mental resources interact through boundary artefacts, (ii) mapping agent activities and
environment changes into events, (iii) which are then handled by coordination artefacts.

4.2 Environmental Situatedness in TuCSoN

In this section a discussion about how the TuCSoN coordination infrastructure deals with
situatedness related issues is provided, from the architectural standpoint, focussing on
situatedness w.r.t. the MAS environment, by implementing the reference architecture
outlined. In particular, Subsection 4.2.1 describes the architectural components support-
ing situatedness in TuCSoN, then Subsection 4.2.2 thoroughly describes the interaction
flow among the aforementioned components while enforcing situated coordination, finally
Subsection 4.2.3 details how to implement situated coordination in TuCSoN and ReSpecT
on a demonstrative use case.

4.2.1 Architectural Overview

TuCSoN represents quite a consistent example of implementation of the proposed event-
driven architecture. In fact, TuCSoN main architectural abstractions (as well as run-time
components) are—as depicted in Figure 4.9 below:

agents any computational entity choosing the TuCSoN coordination services [VO06] to
interact with a TuCSoN-coordinated MAS is a TuCSoN agent. This choice, when ad-
missible, is modelled by assigning an ACC (see below) to the agent, which mediates
its interaction with the MAS. Agents actions result into coordination operations, in
principle targeting the coordination media (tuple centres), actually handled by the
associated ACC

probes environmental resources in TuCSoN are called probes. They are uniformly dealt
with either as sources of perceptions (like sensors) or targets of actions (like actu-
ators)—or even both. Actions over probes are called situated operations, and are
operated by transducers (see below): in fact, as for agents, probes do not directly
interact with the MAS, but through transducer mediation

ACC Agent Coordination Contexts [Omi02] are TuCSoN boundary artefacts devoted to
agents. ACCs both enable and constraint agents interaction capabilities by expos-
ing an API including only the admissible coordination operations—according, e.g.,
to the agent role in the MAS [VOR07]. In particular, ACCs map coordination

87

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.9: In TuCSoN, both social (agent-agent) and situated (agent-environment) in-
teraction is mediated by ReSpecT tuple centres [MO15b]. The unifying abstractions in
TuCSoN are ACC and transducers (as boundary artefacts), the TuCSoN event model, and
the ReSpecT tuple centres (as coordination artefacts).

operations into events, dispatch them to the coordination medium, wait for the out-
come of dependency resolution (that is, coordination), then send back to the agent
the operation results. ACCs are also fundamental to guarantee and preserve agent
autonomy [Omi02]: while the agent is free to choose its course of actions, its associ-
ated ACC translates the corresponding events into the MAS interaction space only
in case they comply with the agent role, and the state of its interaction [VOR07]

transducers analogously to ACC for agents, TuCSoN transducers [CO09] are the bound-
ary artefacts geared toward probes. Each probe is assigned a transducer, which is
specialised to handle events from that probe, and to act on probes through situated
operations. So, in particular, transducers translate probes property changes into
events, which are modelled through the same general event model used for agents’
operations—thus leading to a uniform MAS interaction / coordination space

events TuCSoN adopts and generalises the ReSpecT event model, depicted in Table 4.1,
representing in a uniform way both events from agents actions and events from

88

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

〈Event〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= (〈Activity〉 | 〈Change〉) , 〈Source〉 , 〈Target〉 , 〈Time〉 , 〈Space:Place〉
〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈CoordArtefactId〉 | 〈EnvResId〉 | ⊥

〈Evaluation〉 ::= ⊥ | {〈Result〉}

Table 4.1: ReSpecT situated event model [MO15b].

〈Activity〉 ::= 〈Operation〉 | 〈Situation〉
〈Operation〉 ::= out(〈Tuple〉) | (in | rd | no | inp | rdp | nop | . . .) (〈Template〉 [, 〈Term〉])
〈Situation〉 ::= env(〈Key〉 , 〈Value〉)
〈Change〉 ::= env(〈Key〉 , 〈Value〉) | time(〈Time〉) | from(〈Space〉 , 〈Place〉) |

to(〈Space〉 , 〈Place〉)

Table 4.2: ReSpecT triggering events [MO15b].

changes in the environment—as further explained by Table 4.2. Events are the
connectors of the architecture, the run-time data structure reifying any relevant
information about the activity or change that generated the events themselves. In
particular, TuCSoN events record: the immediate and primary cause of the event
[RVO08], its outcome, who is the source of the event, who is its target, when and
where the event was generated. Thus, the spatio-temporal fabric is always accounted
for by any TuCSoN event. Being based on the ReSpecT event model, TuCSoN events
are fully inspectable by ReSpecT reactions, hence seamlessly integrated with the
tuple centre programmable machinery: this means that the coordination medium
– in the case of TuCSoN, ReSpecT tuple centres – is able to perform computations
over MAS events

tuple centres ReSpecT tuple centres [OD01b] are the TuCSoN architectural component
working as the coordination artefacts. They are run by the TuCSoN middleware
to rule and decouple (in control, reference, space and time) dependencies between
agents’ activities as well as environment changes—in other words, both social as well
as situated interactions [OM13]. By adopting ReSpecT tuple centres, TuCSoN relies
on (i) the ReSpecT language to program coordination laws, and (ii) the ReSpecT
situated event model to implement events

As depicted in Figure 4.9, TuCSoN tackles the issues of coordination and situatedness in
open MAS with a uniform and coherent set of abstractions and architectural components:

89

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

ACC and transducers represent coordinated entities (agents as well as the environment) in
the MAS, and translate activities and changes coming from them in a common event model
(ReSpecT situated event model), while tuple centres coordinate both social dependencies
as well as situated dependencies by allowing the management of events to be programmed
using a situatedness-aware coordination language.

As a result, by implementing the event-driven architecture, TuCSoN promotes both
objective coordination and situatedness at the MAS level.

4.2.2 Flow of Interactions

Agent side The agent side of a TuCSoN-coordinated MAS is basically represented
by the run-time relationships between agents, ACC, and tuple centres. First of all, as
depicted in Figure 4.10, TuCSoN agents have to acquire an ACC before issuing any sort
of coordination operation towards the TuCSoN infrastructure. They do so by asking the
TuCSoN middleware to release an ACC. Whether an ACC is actually released, and which
one among those available5 is dynamically determined by the TuCSoN middleware itself,
based upon the agent request and its role inside the MAS [VOR07].

Once a TuCSoN agent obtains an ACC, all its interactions are mediated by the ACC
itself. In particular, as depicted in Figure 4.11, in the case a coordination operation is
requested through a synchronous invocation:

1. first of all (messages 2 − 2.1.2), the target tuple centre associated to the ACC is
dynamically instantiated by the TuCSoN run-time infrastructure, and its network
address given to the ACC for further reference

5See the TuCSoN official guide at http://www.slideshare.net/andreaomicini/

the-tucson-coordination-model-technology-a-guide.

Figure 4.10: ACC acquisition by TuCSoN agents [MO14c]. Nothing can be done by an
agent with the TuCSoN middleware prior to ACC acquisition.

90

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide
http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.11: Synchronous operation invocation [MO14c]. The control flow is released back
to the agent only when the operation result is available—thus, only when the coordination
process ends.

2. then (message 2.2), the ACC takes charge of building the corresponding event and
of dispatching it to the tuple centre target of the interaction

3. finally (messages 2.2.1 − 2.2.2.1), the ACC is notified when the outcome of the
coordination operation requested is available – after a proper coordination stage,
possibly involving other events from other entities – so that it can send the operation
result back to the agent

Only the coordination operation request from the agent to its ACC is a synchronous
method call : any other interaction is asynchronous as well as event-driven. This is neces-
sary in every open and distributed scenario, and enables uncoupling in control, reference,
space, and time. Nevertheless, in this scenario – synchronous operation invocation – the
control flow of the caller agent is retained by the ACC as long as the operation result is
not available (message 2.2.2.1).

Conversely, Figure 4.12 depicts the asynchronous invocation scenario: the only dif-
ference w.r.t. the synchronous one lays in the fact that the control flow is given back
to the caller agent as soon as the corresponding event is dispatched to the target tuple
centre (messages 3.3− 3.4). The actual result of the requested coordination operation is

91

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.12: Asynchronous operation invocation [MO14c]. The control flow is released
back to the agent as soon as the event related to the request is generated and dispatched
by the ACC.

dispatched to the agent as soon as it becomes available, asynchronously (message 3.3.2.1).
TuCSoN lets client agents choose which semantics to use for their coordination operations
invocation, either synchronous or asynchronous, so as to preserve their autonomy.

As a side note, the scenario depicted in Figure 4.12 assumes that the target tuple centre
is already up and running – e.g., as a consequence of a previous operation invocation –
thus, the TuCSoN node simply retrieves its reference, and passes it to the ACC.

Whenever an agent no longer needs TuCSoN coordination services, it should release
its ACC back to TuCSoN middleware, which promptly destroys it in order to prevent
resources leakage—as depicted in Figure 4.13.

It should be noted that there is no way to re-acquire an already-released ACC – e.g.,
to restore interactions history –, since whenever an ACC is requested a new one is created
and assigned. Since ACC are used to represent and identify agents within a TuCSoN-
coordinated MAS, an agent obtaining an ACC multiple times is recognised every time as
a new agent by the TuCSoN middleware.

Summing up, designers of agents exploiting TuCSoN should make their agents: (i)
acquire an ACC; (ii) choose the invocation semantics for each coordination operation
they perform, and (iii) expect operations result to be available accordingly; (iv) release
their ACC when TuCSoN services are no longer needed—at agents shutdown TuCSoN
automatically releases orphan ACCs.

92

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.13: ACC release by TuCSoN agents [MO14c]. Nothing can be done by an agent
with the TuCSoN middleware after ACC release.

Environment side On the environment side of the TuCSoN architecture, agents and
ACCs are replaced by probes and transducers, respectively. Thus, first of all, probes
should register to the TuCSoN middleware in order to get their transducer and interact—
as depicted by Figure 4.14 below. After probe registration, any interaction resulting from
environmental property change affecting the MAS is mediated by the transducer.

Figure 4.15 depicts the interaction among TuCSoN run-time entities in the case of a
sensor probe, thus a sensor transducer, whereas Figure 4.16 shows the case of an actu-
ator probe. By comparing the two pictures, the flow of interactions is almost the same,
except for the first invocation, which depends on the nature of the probe—either sensor
(Figure 4.15) or actuator (Figure 4.16).

In particular, a perception by a sensor probe works as follows:

1. first of all (messages 2− 2.1.2), the target tuple centre associated to the transducer
is dynamically instantiated by the TuCSoN run-time infrastructure, and its network
address passed to the transducer for further reference

Figure 4.14: Probes registration and transducers association. No events can be perceived
nor actions undertaken on a probe prior to transducer association [MO14c].

93

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.15: Sensor probe interaction [MO14c]. The control flow returns to the probe
as soon as the environmental event is generated and dispatched by the transducer, thus,
everything happens asynchronously.

Figure 4.16: Actuator probe interaction [MO14c]. Again, everything happens asyn-
chronously.

94

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.17: Probe deregistration [MO14c]. Nothing can be either sensed or effected
by the MAS upon the deregistered probe, since the mediating transducer is no longer
running.

2. then (message 2.2), the transducer builds the event corresponding to the perception
operation, and dispatches it to the tuple centre target of the interaction

3. finally (messages 2.2.1 − 2.2.2), the tuple centre enacts the coordination process
triggered by the event (if any), properly dispatching its outcome

As far as probe interaction is concerned, there is no distinction between synchronous
or asynchronous semantics. In fact, being representations of environmental resources,
probes are not supposed to expect any feedback from the MAS: they simply cause /
undergo changes that are relevant to the MAS. For this reason, the semantics of situation
operations invocation on probes is always asynchronous. As depicted in Figure 4.15
and Figure 4.16 in fact, the control flow is always returned to the probe as soon as the
corresponding event is generated.

When a probe is no longer needed, it should be deregistered from TuCSoN, which sub-
sequently destroys the associated transducer—as depicted in Figure 4.17 above. Wrapping
up, TuCSoN situatedness services require MAS designers to: (i) always register probes
causing their transducer instantiation; (ii) be aware that environmental events are always
generated asynchronously; (iv) deregister probes when they are no longer needed—no
automatic deregistration is performed by the TuCSoN middleware.

Between agents and environment: situated coordination Putting together the
agent and the environment side of the TuCSoN event-driven architecture, Figure 4.18
and Figure 4.19 depict the synchronous interaction of an agent with a sensor, and the
asynchronous interaction of an agent with an actuator, respectively.
By inspecting the whole interaction sequence, one could see how (i) TuCSoN ACC and
transducers play a central role in supporting distribution and uncoupling of agents and
probes within the MAS, and (ii) how TuCSoN tuple centres and the ReSpecT language
are fundamental to support situated objective coordination [Sch01, OO03].

95

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.18: Synchronous situation operation querying a sensor [MO14c]. ReSpecT plays
a fundamental role in binding both the agent coordination operation to its corresponding
situation operation (annotation in step 1.1.1) and the probe response back to the agent
original request (annotation in step 1.1.2.3.1).

In particular, in Figure 4.18 the agent is issuing a synchronous coordination operation
request involving a given tuple (sense(temp(T)))—message 1.

After event dispatching (all the dynamic instantiation interactions have been left out
for the sake of clarity), the tuple centre target of the operation reacts to invocation by
triggering the ReSpecT reaction in annotation 1.1.1, which generates a situated event
(step 1.1.2) aimed at executing a situation operation (getEnv(temp, T)) on the probe
(sensor)6. The transducer associated to the tuple centre and responsible for the target
probe intercepts the event and takes care of actually executing the operation on the probe
(message 1.1.2.1). The sensor probe reply (message 1.1.2.2) generates a sequence of events
propagations terminating in the response to the original coordination operation issued by
the agent (message 1.1.2.3.2.1).

It is worth noticing the role of the tuple centre in supporting situatedness: in fact,
step 1.1.2.3.1 properly reacts to the completion of situation operation getEnv(temp,

T) by the sensor probe, emitting exactly the tuple originally requested by the agent
(sense(temp(T))).

6Primitive getEnv(temp, T) is an alias for env(temp, T), making explicit that the operation is meant
to perceive something from the environment.

96

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.19: Asynchronous situation operation commanding an actuator [MO14c]. As
in Figure 4.18, ReSpecT role in enabling situatedness is visible in annotations 2.1.1 and
2.1.2.3.1.

In Figure 4.19 the sequence of interactions as well as the annotations are very similar
to those in Figure 4.18. In particular, annotation 2.1.1 shows how the ReSpecT reac-
tion triggering event matches the event raised as a consequence of agent coordination
operation request (act(temp(T))), while annotation 2.1.2.3.1 highlights how the tuple
centre maps the situation operation outcome (setEnv(temp, T))7 in the original tuple
(act(temp(T))) through a proper ReSpecT reaction. The only differences w.r.t. Fig-
ure 4.18 are the asynchronous invocation semantics used by the agent and the actuator
nature of the interacting probe—thus, messages 2.1.2.1 and 2.1.2.2.

In summary, ReSpecT is fundamental to program TuCSoN tuple centres so as to cor-
rectly bind coordination operations with situation operations – while preserving inter-
acting entities’ autonomy –, ultimately supporting agent-environment interactions, thus,
situatedness, in distributed, open MAS.

Implicit methodology: explanatory example In this section TuCSoN is deployed
within a smart home scenario, with the aim of sketching the methodology implicitly sug-
gested by TuCSoN when engineering situated coordination. In particular, a discussion

7Primitive setEnv(temp, T) is an alias for env(temp, T), making explicit that the operation is meant
to affect something in the environment.

97

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

about how requirement analysis, solution modelling, & solution design can be under-
taken with the TuCSoN approach and its architecture is provided—implementation of a
restricted scenario is left for next section (Subsection 4.2.3).

Imagine many different smart appliances (e.g., smart fridge, smart thermostat, smart
lights, smart A/C, etc.) scattered in an indoor environment (e.g., a flat). Either inhab-
itants have an Android smartphone or a desktop PC is available in the environment (or
even both): this ensures the TuCSoN middleware can be running, being the JVM its only
requirement. Some kind of connection is available at least between each appliance and the
smartphone/desktop—appliances may also be connected together to improve distribution
thus resilience, although not strictly necessary.

Inhabitants want the smart home system to self-manage toward a given goal (e.g.,
always optimise power consumption) according to their preferences (e.g., prefer turning
on fans rather than switching A/C on), while keeping the capability to control it de-
spite self-management, when desired (e.g., “I want frozen beers now, forget about power
consumption!”).

Starting from requirement analysis, the core desiderata of the proposed scenario is,
essentially, that environmental resources (e.g., the A/C, the fridge, etc.) should be able
to adapt to environment change (e.g., temperature drops, food depletion, etc.) as well as
users’ actions (e.g., “I’m coming home late, order pizza”), striving to achieve a system
goal (e.g., optimise inhabitants comfort) while accounting for each user’s desires.

According to the TuCSoN meta-model as described in Subsection 4.1.3, this can be
interpreted as follows:

• users continuously and unpredictably perform their daily activities . . .

• . . . which may depend on the environment being in a certain enabler state (e.g.,
food must be available to enable cooking dinner), as well as may both impact and
be affected by the environment. . .

• . . . causing some change to happen (e.g., “since I’ll be late, delay lights turning on”,
“there is no food, thus I must go to the grocery shop”)

Once recognised that activities and environment change both make events happen, thus
managing dependencies between activities and change ultimately resort to managing
events, a perfect and complete match with TuCSoN reference meta-model is achieved.

As far as the design phase of the software engineering methodology is concerned, once
the problem at hand (smart home appliances coordination) has being re-interpreted in
light of the TuCSoN meta-model, TuCSoN architecture provides all the necessary compo-
nents to design a solution. Thus:

• users activities are generated by agents, making it possible to also ascribe goals to
actions, and mediated by ACCs, enabling and constraining interactions according
to the system goals

98

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

• changes in the environment are generated by probes and mediated by transducers,
enabling uniform representation of properties despite appliances heterogeneity

• activities and change (thus ACCs and transducers) generate events as their own
representation within the situated MAS coordinated by TuCSoN, which are then
managed by tuple centres suitably programmed with adaptable coordination laws

Consequently: agents are deployed to users’ personal devices (smartphone/desktop pc),
probes are deployed to home appliances, ACCs and transducers are deployed either on-
board along with agents and probes, respectively (e.g., on the smartphone), or remotely
(e.g., on the desktop), tuple centres are deployed again either on board or remotely, all
performing activities and enacting/undergoing changes generating events, automatically
handled by TuCSoN according to the designed coordination laws.

It should be noted that a similar scenario has been depicted in [Den14], although much
more thoroughly. There, TuCSoN is taken as the underlying infrastructure on top of which
the Butlers Architecture for smart home management is deployed. In particular, agents
are used therein to model environmental resources as well (e.g., home appliances), whereas
the proposed approach would have modelled them as probes, thus handled (coordinated)
within the MAS by transducers.

Benefits of doing so are not limited to a cleaner architecture and separation of con-
cerns, but also include smaller computational load (transducers are simpler than full-
fledged agents), better run-time adaptiveness (replacing a transducer is much simpler
than replacing an agent), improved management of heterogeneity (despite probes API
differences, transducers map any event to a common event model).

4.2.3 Implementation Methodology

In this section it is discussed how to implement probes and transducers, how to make
the TuCSoN middleware aware of them, and how to program TuCSoN tuple centres to in-
spect and manipulate TuCSoN situatedness-related events, ultimately engineering situated
coordination.

Generally speaking, implementing situated coordination within a MAS using TuCSoN,
amounts to deal with the following tasks:

1. implementing the probes—sensor probes and actuator probes. Typically, this does
not require implementing, e.g., the software drivers for the resources: designers can
simply wrap existing drivers in a Java class interacting with TuCSoN transducers,
implementing the ISimpleProbe Java interface (Figure 4.20)

2. implementing the transducers associated to the sensor and actuator probes, by ex-
tending the TuCSoN AbstractTransducer Java class (Figure 4.22)

99

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.20: Interface to be implemented by probes [MO14a].

3. interacting with the transducer manager singleton entity (Figure 4.25) to request
its services, which is responsible for probes and transducers association in TuCSoN.
The transducer manager listens to incoming requests for probes (de)registration
and transducers (de)association, booting and setting up the two sibling sides of the
transducer—the node and probe sides

4. programming TuCSoN tuple centres with ReSpecT in order to implement the coor-
dination policies that ensure situated coordination of the MAS

As a running example, the scenario implemented within TuCSoN latest distribution8, in
package alice.tucson.examples.situatedness, is taken as a reference: its simplicity
allows to clearly describe design and implementation issues without losing generality.

There, a situated, intelligent thermostat (Thermostat.java) is in charge of keep-
ing a room temperature between 18 and 22 degrees. To this end, it interacts with a
sensor (ActualSensor.java) and an actuator (ActualActuator.java): the former is
queried by the thermostat to perceive the temperature, whereas the latter is prompted to
change the temperature upon need. Both the sensor and the actuator, as probes, inter-
face with the MAS (which, in this simple case, is represented by the thermostat TuCSoN
agent alone) through one transducer each (respectively, SensorTransducer.java and
ActuatorTransducer.java).

According to the TuCSoN approach, in order to promote distribution of the appli-
cation logic, the transducers and the thermostat are associated each with their own tu-
ple centre (tempTc for the thermostat agent, sensorTc for the sensor transducer and
actuatorTc for the actuator transducer), suitably programmed through ReSpecT reac-
tions (sensorSpec.rsp for the sensor transducer and actuatorSpec.rsp for the actuator
transducer) that handle the specific interaction with the MAS.

Finally, the core logic of the application is implemented in Thermostat Java class.
Task 1 just requires MAS designers to implement the five methods of the ISimpleProbe

interface (Figure 4.20 below) as a non-abstract Java class (Figure 4.21)—classes ActualSensor.java
and ActualActuator.java:

getIdentifier retrieving this probe ID

8TuCSoN-1.12.0.0301, available at http://tucson.unibo.it.

100

http://tucson.unibo.it

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

getTransducer retrieving this probe associated transducer—if any

setTransducer to associate an existing transducer to this probe

readValue to perceive the resource—mandatory for sensors

writeValue to act on the resource—mandatory for actuators

Whereas the probe ID is assigned by the programmer at construction time, its association
with the transducer occurs dynamically at run-time—hence the setTransducer method
is usually called by the TuCSoN middleware. To operate on the probe, the methods
readValue and/or writeValue (depending on whether the probe can behave as a sensor,
an actuator, or both) should implement the logic required to interact with the actual
probe—either a simulated environmental resource, or a real-world object. By completing
task 1, the probe side of the transducer is partially implemented.

Since the transducer logic is fixed – in particular, capturing events from both probes
and tuple centres – an abstract Java class is provided for extension by the TuCSoN middle-
ware for task 2: AbstractTransducer implementing TransducerStandardInterface—
as depicted in Figure 4.22. Therefore, only two methods have to be implemented:

getEnv to sense an environmental property change—usually, implemented by transduc-
ers assigned to sensors

1 @Override

2 public boolean readValue(final String key) {

3 // field ’tid’ stores transducer ’s id

4 if (this.tid == null) {

5 // no transducer associated yet!

6 return false;

7 }

8 // field ’transducer ’ stores transducer ’s reference

9 if (this.transducer == null) {

10 this.transducer = TransducersManager.INSTANCE.getTransducer(

11 this.tid.getAgentName ()

12);

13 }

14 try {

15 // probe’s interaction logic

16 ...

17 this.transducer.notifyEnvEvent(

18 key , value , AbstractTransducer.GET_MODE // sensor

19);

20 ...

21 return true;

22 } catch (...) {

23 return false;

24 }

25 }

Figure 4.21: Stripped-down version of the code from ActualSensor.java [MO14a].
Method writeValue in ActualActuator class is similar, thus not reported here.

101

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

setEnv to effect an environmental property change—usually, implemented by transduc-
ers assigned to actuators

Both methods are automatically called by the TuCSoN middleware whenever an event gen-
erated by an environmental property change is raised either by the associated probe (the
notifyEnvEvent method in TransducerStandardInterface—see Figure 4.22) or by the
associated tuple centre (the notifyOutput method in TransducerStandardInterface

automatically called by the TuCSoN middleware in response to ReSpecT primitives such
as getEnv—see Figure 4.27).

The aforementioned methods have to be implemented so as to actually dispatch to
the probes the command to either sense an environmental property (method getEnv) or
change it (method setEnv)—the simplest possible implementation is shown in Figure 4.23
below in the actuator case.

Figure 4.24 sums up the dependencies existing between transducers and probes.
Tasks 1, 2 complete the implementation of the transducer probe side, also automati-

cally achieving part of the transducer node side. Once both probes and transducers are
implemented, MAS designers should exploit TuCSoN services in order to register them
and to associate them through the transducer manager, which exposes the following API
(Figure 4.25 below):

createTransducer to create a new transducer associated to the given probe and bound
to the given tuple centre

addProbe to attach a probe to a given transducer

Figure 4.22: Class to be extended by custom transducers and its interface [MO14a].

102

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

1 @Override

2 public boolean setEnv(final String key , final int value) {

3 boolean success = true;

4 // field ’probes ’ stores this transducer ’s probes

5 final Object [] keySet = this.probes.keySet (). toArray ();

6 ISimpleProbe p;

7 for (final Object element : keySet) {

8 p = (ISimpleProbe) this.probes.get(element);

9 // try to effect the property change

10 if (!p.writeValue(key , value)) {

11 success = false;

12 break;

13 }

14 }

15 return success;

16 }

Figure 4.23: Stripped-down version of the code from ActuatorTransducer.java

[MO14a]. Method getEnv in SensorTransducer class is similar, thus not reported here.

removeProbe to detach a probe from its transducer

getTransducer to retrieve a transducer’s reference given its id

stopTransducer to destroy a given transducer

These methods are usually exploited by the agent in charge of configuring the MAS—
e.g., the Thermostat class. It is worth noting that in order to enable dynamic and

Figure 4.24: Dependencies among transducers and probes [MO14a]. Transducers dis-
patch to probes the requests to undertake the situation actions issued by agents
(AbstractTransducer methods in red font), whereas probes rely on transducers to notify
the outcome of a situation operation back to agents (ISimpleProbe methods in red font).

103

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.25: The transducer manager [MO14a].

distributed addition/removal of transducers and probes, as well as dynamic change of
their associations, all the services are also available via TuCSoN coordination operations.

In particular, TuCSoN agents may benefit of transducer manager services also by
emitting special tuples in the built-in ’$ENV’ tuple centre, available in any TuCSoN
node—the syntax of tuples can be found in TuCSoN official guide9. This is, e.g., the
choice of the Thermostat class as shown in Figure 4.26 below, which establishes the
communication channel between the transducer probe side and its node side sibling.

A tuple centre is the coordination medium programmed to effectively enable situated
interactions between agents and transducers. Thus, the last development task MAS de-

9http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide.

1 public static void main(final String [] args) {

2 ...

3 final TucsonTupleCentreId configTc =

4 new TucsonTupleCentreId("’$ENV’", Thermostat.DEFAULT_HOST ,

5 Thermostat.DEFAULT_PORT);

6 ...

7 // tuple reifying createTransducer method call

8 final LogicTuple sensorTuple = new LogicTuple(

9 "createTransducerSensor",

10 new TupleArgument(sensorTc.toTerm ()), // the transducer ’s tuple centre

11 new Value(// the class implementing it

12 "alice.tucson.examples.situatedness.SensorTransducer"),

13 new Value("sensorTransducer"),

14 new Value(// the class implementing its probe

15 "alice.tucson.examples.situatedness.ActualSensor"),

16 new Value("sensor"));

17 acc.out(configTc , sensorTuple , null);

18 ...

Figure 4.26: Stripped-down version of code from Thermostat.java [MO14a]. Insertion
in ’$ENV’ tuple centre of the tuple built in lines 9 − 17 is equivalent to calling method
crateTransducer. Nevertheless, this allows the exploitation of the services of a given
TuCSoN node from a remote location—in fact, configTc may store the id of a remote
tuple centre, deployed on another node of the network w.r.t. the caller.

104

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

signers have to undertake so as to correctly exploit TuCSoN situated coordination services
is to connect the agents and the environment – technically, the probes – by means of the
TuCSoN tuple centres, programmed via the ReSpecT language. In fact, as described in
Subsection 4.1.3, agents and probes – or better, ACC and transducers – do not directly
interact: all the interactions happen through coordination operations provided by the
TuCSoN middleware—in particular, by TuCSoN tuple centres.

Therefore, focussing on situation operations, whenever agents need to interact with a
probe, they perform a coordination operation on the tuple centre bound to the transducer
responsible for that probe. This is what makes it possible to reify situation operations
into ReSpecT events, which are to be managed by ReSpecT reactions—and thus govern
the overall event-driven MAS [OM13].

In the case owhermostat scenario, taking into account the situated interaction with the
sensor (ActualSensor.java), the ReSpecT specification tuples in Figure 4.27 below have
to be put in the tuple centre associated to the sensor transducer (’sensorTc’, bound to
TransducerSensor.java which is responsible for ’sensor’ probe). Although the code
shown in Figure 4.27 is taken from the specific example, the ReSpecT program is general,
since it implements a pattern that is valid for any situated interaction:

• reaction 1 − 5 maps agents coordination operations requests (external events) into
situation operations commands (internal events)

• reaction 6− 10 maps situation operation replies (from probes, external events) into
coordination operations outcomes (internal events)

By completing task 4 through ReSpecT reactions, MAS designers explicitly exploit the
ReSpecT event model – in particular triggering events listed in Table 4.2 on page 89 –
to support situatedness, binding together events coming from the agent through its ACC
with events going toward the environment through its transducer (Figure 4.27, reaction
1− 5)—and, dually, from the environment to the agents (Figure 4.27, reaction 6− 10).

1 reaction(

2 in(sense(temp(T))), // agent request

3 (operation, invocation),

4 sensor@localhost :20504 ? getEnv(temp, T) // perception request

5).

6 reaction(

7 getEnv(temp, T), // perception reply

8 (from_env, completion), // environment filter

9 out(sense(temp(T)))

10).

Figure 4.27: Stripped-down version of the code from sensorSpec.rsp [MO14a]. ’sensor’
is the probe ID of the probe target of the situation operation request: the id of its trans-
ducers is automatically retrieved by TuCSoN middleware at run-time, hence transducer
mediation is transparent to the ReSpecT programmer.

105

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Technically, this last step in MAS design using TuCSoN links the node side of ACC
with the node side of transducers, enacting the very notion of situatedness. The last code
snippet in Figure 4.28 is meant to show how the application logic – the thermostat aimed
at keeping temperature between LOW and HIGH thresholds – is linked to the situatedness
machinery—sensor and actuator probes as well as their transducers.

In particular, line 10 shows TuCSoN coordination operation invocation causing Re-
SpecT reactions in Figure 4.27 to trigger, leading to stimulate ActualSensor through
its transducer SensorTransducer—transparently to the designer of the application logic.
Conversely, line 27 shows how Thermostat interacts with ActualActuator (through its
transducer ActuatorTransducer) to properly command the needed temperature adjust-
ments (again, transparently).

The same sort of transparency is provided to ReSpecT programmers, as they have no
need to know the internal machinery of probes but just transducer API, and to probes
programmers, since they deal with ISimpleProbe and TransducerStandardInterface

API solely. This supports and promotes a clear separation of concerns : application logic
(agent) programmers, coordination (ReSpecT) programmers, and environment (probes
and transducers) programmers each may focus on their task, just relying on others ad-
hering to TuCSoN API.

1 /* Start perception -reason -action loop */

2 LogicTuple template;

3 ITucsonOperation op;

4 int temp;

5 LogicTuple action = null;

6 for (int i = 0; i < Thermostat.ITERS; i++) {

7 /* Perception */

8 template = LogicTuple.parse("sense(temp(_))");

9 op = acc.in(sensorTc , template , null); // see line 2 in Figure 4.27

10 if (op.isResultSuccess ()) {

11 temp = op.getLogicTupleResult (). getArg (0). getArg (0). intValue ();

12 /* Reason */

13 if ((temp >= Thermostat.LOW) && (temp <= Thermostat.HIGH)) {

14 continue;

15 } else if (temp < Thermostat.LOW) {

16 action = LogicTuple.parse("act(temp(" + ++temp + "))");

17 } else if (temp > Thermostat.HIGH) {

18 action = LogicTuple.parse("act(temp(" + --temp + "))");

19 }

20 /* Action */

21 // ’act’ ReSpecT reactions are similar to those in Figure 4.27

22 acc.out(actuatorTc , action , null);

23 }

24 }

Figure 4.28: Stripped-down version of the code from Thermostat.java [MO14a].
It should be noted that the thermostat interacts solely with TuCSoN tuple centres,
being transducers (thus probes) interactions transparently delegated to the TuCSoN
middleware—through the ReSpecT reactions in Figure 4.27.

106

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

4.2.4 Discussion of Results

The need for situatedness in multi agent systems (MAS) deployed within pervasive com-
puting scenarios is often translated into the requirement of being sensitive to environment
change [FM96], possibly affecting the environment in turn. This requirement lays at the
core of the notion of situated action – complementing that of social action [Cas98] –, as
those actions arising from strict interaction with the environment [Suc87].

This leads to recognise dependencies among agents and the environment as a funda-
mental source of complexity within a MAS—the other being dependencies between agents’
activities [MC94]. Therefore, coordination – as the discipline of managing dependencies
[MC94] – could be used to deal with both social and situated interaction, by exploiting
coordination artefacts for handling both social and situated dependencies [OM13].

Accordingly, in this section a novel situated coordination approach has been described,
promoted by the TuCSoN model and technology for agent coordination [OZ99], to handle
situatedness in MAS as a coordination issue. In particular, description covered which
support TuCSoN provides to MAS programmers in each macro-stage of a typical software
engineering process applied to a MAS: the abstractions available for the requirement
analysis (Subsection 4.1.3), the run-time architecture to refer to during the design phase
(Subsection 4.2.1 and Subsection 4.2.2), the API provided to support implementation of
the concept of situated coordination (Subsection 4.2.3).

The solutions adopted by the TuCSoN technology to deal with the issues of engineer-
ing situated MAS within pervasive computing context have also been highlighted: in
particular, the need to rely on mediating abstractions such as ACC, transducers, and
tuple centres as the means to uncouple individual components (agents and probes) inter-
actions, along with the need for an asynchronous event-driven communication model to
correctly deal with the most common issues of system distribution.

4.2.5 Related Work

By considering the technologies described in Subsection 4.1.2, one can easily see how they
could be read as progressively improving the way in which MAS deal with environment
modelling and situatedness.

The first one, Jade, provides more or less nothing on the environment side, being
focussed on supporting agents with a set of services, mostly dedicated to communication,
mobility and interoperability. On the coordination side, Jade adopts ACL messages
as the data structure to exchange and FIPA protocols as the only means to manage
(social) dependencies—thus, in a subjective way. Thus, situated dependencies should be
managed without a specific abstraction, by falling back to agents and message passing
re-use (or abuse). This can be seen also by considering the (implicit) meta-model behind
Jade, that of Figure 4.3, which somehow recognises the existence of an interaction space
between agents, but fails short in taking also MAS environment into account.

107

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

It should be noted that an integration between Jade and TuCSoN has been proposed
in [ORV+04b], allowing Jade to benefit of TuCSoN coordination services. In principle,
this allows Jade to also benefit of all the architectural components provided by TuCSoN—
thus, ultimately, to benefit of the proposed architecture. Nevertheless, the aforementioned
integration is not worth to be considered here for a few reasons.

First of all, back in 2004, when [ORV+04b] was published, transducers were not yet
existing, being them defined first in 2009, when [CO09] was published: thus, no dedicated
abstraction (boundary artefact) nor architectural component (the transducer itself) was
provided specifically to deal with environment resources of any sort.

Second, [ORV+04b] had the specific goal of enabling seamless integration of subjective
and objective coordination approaches, thus the focus of the paper was on interpreting
agents actions over coordination artefacts (only) as physical acts, according to the FIPA
standard implemented by Jade: thus, no other kinds of actions (e.g., situated actions)
were considered.

Lastly, the fundamental role played by the event abstraction as the glue supporting
a uniform interpretation of both social and situated actions (activities and environment
change) was not recognised.

When considering Jason, environment modelling improves thanks to an explicit Java
environment layer, which enables agents to sense perceptions (mapped into beliefs) and
to act on effectors (mapped into Jason internal actions). Furthermore, the notion of event
as the central abstraction around which the whole agent inner reasoning cycle as well as
its perception-action loop should revolve is recognised in Jason.

Nevertheless, something is still missing on the coordination side: Jason features noth-
ing more than message passing and plans/goals sharing, thus leaving coordination issues
to agents themselves. For these reasons, Jason (implicit) meta-model corresponds to the
one depicted in Figure 4.2, although Jason support to situatedness is better w.r.t. Jade.

Finally, CArtAgO is the technology whose architecture is clearly the closest to ours, as
proposed in Subsection 4.1.3—hence, to the TuCSoN architecture, too. To some extent,
in fact, the following mapping could be attempted: CArtAgO artefacts are explicitly
conceived to model and implement environmental resources (in some sense, the union
of probes and transducers, in TuCSoN); agent bodies could be classified as (sorts of)
boundary artefacts (they may also resemble TuCSoN ACCs and transducers) although
the latter concept is much more generally applicable; CArtAgO observable events are one
of the possible implementations of the event abstraction (as TuCSoN events are based
on ReSpecT event model). Also, CArtAgO artefacts could as well be used to implement
coordination artefacts, e.g., TuCSoN tuple centres.

Nevertheless, the mapping is actually quite imprecise as well as somewhat unnatu-
ral. Focussing, for instance, on CArtAgO implementation of the event abstraction, the
difference is quite evident: CArtAgO observable events are bound to the artefact they
come from, as a means to check the outcome of agents situated actions and to reactively
respond to environment stimuli—hence they reify only situated dependencies; whereas

108

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

events in TuCSoN are the reification of whatever happens within the MAS—hence social
dependencies, too.

A much more general difference lies in the artefact abstraction itself: whereas CArtAgO
allows MAS designers to program any kind of artefact they need according to any sort
of interaction model they decide to ascribe to the artefact (e.g., depending on wether
it is a social or situated artefact), TuCSoN provides a fixed set of artefacts – that is,
ACCs, transducers and tuple centres – which are both (i) each responsible for a general
aspect of MAS situated coordination – ACCs for activities, transducers for environment
changes, tuple centres for social and situated coordination – and (ii) actually specialisable
depending on the MAS at hand—e.g., although exposing the same API, transducers
behaviour can be specialised according to the nature of the resource they model.

This leads to a fundamental difference w.r.t. uniformity : in a CArtAgO-coordinated
MAS, artefacts can be heterogeneous both in exposed APIs and in semantics, whereas in
a TuCSoN-coordinated MAS, ACCs, transducers, and tuple centres have a well-defined
semantics which remains coherent regardless of the actual specialisation required.

Furthermore, CArtAgO observable events are created by the artefact they belong to in
a custom way, that is, by storing the information MAS designers believe to be useful at
design time. In TuCSoN instead, the event model used by, e.g., transducers is always the
same – actually, ReSpecT event model – regardless of the environmental resource nature
or the MAS deployment scenario.

Among the works not considered in Subsection 4.1.2, at least the following three are
worth to be mentioned here: the SADE [DMY+09] and ELDA [FGMR10] development
frameworks, as well as the iCore european project [VGS+13].

SADE is a development environment for the engineering of self-adaptive MAS. Ac-
knowledging the role played by the environment in MAS, authors adopt the event abstrac-
tion to design a self-adaptation mechanism based on the organisation metaphor—similar
to the concept of society. In particular, environmental events are notified to agents ac-
cording to a publish/subscribe architecture, possibly triggering a change of role—leading
to a change of behaviour.

Nevertheless, the environment abstraction is not realised to its full extent. In fact,
environmental events are generated by other agents, playing the role of wrappers of that
part of the environment which should be observable to the MAS.

Furthermore, situatedness support is limited, since the only fields describing an event
in [DMY+09] are: (i) its type, which can refer to a change in agents’ state, behaviour,
role, or offered services; (ii) its source (the agent who generated it); and (iii) a set of
constraints whose function is not clearly explained—at least in [DMY+09].

In ELDA [FGMR10], the event abstraction is adopted to design a lightweight agent
model—indeed, ELDA. In particular, any ELDA agent is a single-threaded autonomous
entity interacting through asynchronous events, whose behaviour is expressed reactively in
response to incoming events. Although ELDA does not natively support any environment
abstraction, it has been extended to support the PACO model abstractions [HJD07],

109

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

splitting MAS into four parts: agents, environment, interactions, and organisation.

Nevertheless, the extension seemingly accounts for agents’ position only, and the only
agent-environment interaction is due to a monitor agent – again, a wrapper – which
continuously monitor the environment and the agents’ state, triggering events when some
pre-conditions are met.

The Cognitive Management Framework for the Internet of Things (IoT) [VGS+13],
proposed in the iCore european project, aims at developing a framework able to abstract
away from the technological heterogeneity of nowadays devices while improving context-
awareness. Among its proposals, a three-layered architecture is conceived to face the
above challenges: the lowest layer is meant to collect Virtual Representations (VOs) of
real-world objects; the mid-layer to aggregate representations in Cognitive Mashups of
VOs according to the way in which they collaborate to offer higher-level functionalities;
the top layer is the service-oriented layer providing users and stakeholders with the APIs
bridging the gap between application and IoT resources.

This three layered-architecture – in particular the mid-layer promoting and support-
ing IoT resources service-oriented aggregation – somehow stresses the need to tackle
situatedness-related issues as coordination ones.

4.3 Spatial Situatedness in TuCSoN

MAS deployed in pervasive computing scenarios are stressing more and more the require-
ments for coordination middleware [ZCF+11]. In particular, the availability of a plethora
of mobile devices, with motion sensors and motion coprocessors, is pushing forward the
need for space-awareness of computations and systems: awareness of the spatial context
is often essential to establish which tasks to perform, which goals to achieve, and how.

More generally, spatial issues are fundamental in many sorts of complex software
systems, including intelligent, multi-agent, adaptive, and self-organising ones [BMS11]. In
most of the application scenarios where situatedness plays an essential role, coordination
is required to be space aware.

This is implicitly recognised by a number of proposals in the coordination field trying
to embody spatial mechanisms and constructs into the coordination languages – such as
TOTA [MZ09], στ-Linda [VPB12], GeoLinda [PCBB07], and SAPERE [ZCF+11] –
which, however, are mostly tailored around specific application scenarios.

For the sake of generality then, in this section the aim is to devise out the basic mecha-
nisms and constructs required to generally enable and promote space-aware coordination.

Along this line, the general notion of space-aware coordination medium is introduced
(Subsection 4.3.1), then it is shown how the ReSpecT coordination media and language can
be extended so as to support space-aware coordination (Subsection 4.3.2). After sketching
the semantics of the spatial extension, Subsection 4.3.3 showcases space-aware ReSpecT
potentialities by dealing with a benchmark problem in the filed of spatial computing :

110

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

implementing the “T program” [BDU+12].

4.3.1 Space-aware Coordination Media

Spatial coordination requires spatial situatedness and awareness of the coordination me-
dia, which translates in a number of technical requirements.

Situatedness First of all, situatedness requires that a space-aware coordination abstrac-
tion should at any time be associated to an absolute positioning, both physical (i.e., the
position in space of the computational device where the medium is being executed on) and
virtual (i.e. the network node on which the abstraction is executed). If not a must-have,
geographical positioning is also desirable, and quite a cheap requirement, too, given the
widespread availability of mapping services nowadays.

More generally, this concerns both position and motion – every sort of motion –,
which in principle include speed, acceleration, and all variations in the space-time fabric,
also depending on the nature of space. In fact, software abstractions may move along a
virtual space – typically, the network – which is usually discrete, whereas physical devices
(robots, mobile devices) move through a physical space, which is mostly continuous ;
software abstractions, however, may also be hosted by mobile physical devices, and share
their motion. As a result, a coordination abstraction may move through either a physical,
continuous space, (e.g., “I am in a given position of a tridimensional physical space”) or
a virtual, discrete space (e.g., “I am on a given network node”).

Physical positioning could be either absolute (e.g., “I am currently at latitude X, longi-
tude Y, altitude Z”), geographical (“I am in via Sacchi 3, Cesena, Italy”), or organisational
(“I am in Room 5 of the DISI, site of Cesena”). Absolute positioning is often available in
the days of mobile devices, usually through GPS services—which, coupled with mapping
services, typically provide geographical positioning, too.

Virtual positioning is available as a network service, and might be also labelled as
either absolute (in terms of IP address, for instance) or relative (as a domain/subdomain
localisation via DNS). Organisational location should be instead defined application- or
middleware-level, and related to either absolute or virtual positioning.

Furthermore, a notion of locality may be available, so as to enable the local vs. global
dynamics typically featured by complex distributed systems such as pervasive ones. Lo-
cality could be strictly bound to positioning, but not necessarily so: being in the same
location is not always the same as being in the same position.

Awareness The main requirement of spatial awareness is that the ontology of a space-
aware coordination medium should contain some notion of space. This means, first of all,
that the position of the coordination medium should be available to the coordination laws
it contains in order to make them capable of reasoning about space, that is, to implement
space-aware coordination laws. So, generally speaking, a range of predicates / functions

111

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

should be provided to access spatial information associated to any event occurring in
the coordination medium (e.g., where the action causing the event took place, where the
coordination medium is currently executing), and to perform simple computations over
spatial information.

Also, space has to be embedded into the working cycle of the coordination medium:
the event model should include spatial events, which affect coordination by triggering some
space-related computation within the coordination abstraction. In fact, associating spatial
information to events is not enough: space-related laws like “when at home, switch on the
lights” cannot be expressed only by referring to actions performed, but require instead a
specialised notion of spatial event (such as “I am at home”) to be triggered.

So, a spatial event should be generated within a coordination medium, conceptually
corresponding to changes in space—so, related to motion, such as starting from / arriving
to a place. Spatial events should then be captured by the coordination medium, and
used to activate space-aware coordination laws, within the normal working cycle of the
coordination abstraction.

Spatial tuple centres Tuple centres are introduced in TuCSoN10 [OZ99] as coordi-
nation media meant at encapsulating any computable coordination policy within the
coordination abstraction. Technically, a tuple centre is a programmable tuple space, i.e.,
a tuple space whose behaviour in response to events can be programmed so as to specify
and enact any coordination policy [OD01b, Omi07]. Tuple centres can then be thought
as general-purpose coordination abstractions, which can be suitably forged to provide
specific coordination services.

In the same way as timed tuple centres empower tuple centres with the ability of
embodying timed coordination laws [ORV05], spatial tuple centres extend tuple centres
so as to address the spatial issues outlined in previous subsection.

First of all, the location of a tuple centre is obtained through the notion of current
place, which could be, for instance, the absolute position in space of the computational
device where the coordination medium is being executed on, or the domain name of the
TuCSoN node hosting the tuple centre, or the location on the map. Then, motion is
conceptually represented by two sorts of spatial events: moving from a starting place,
and stopping at an arrival place—in any sort of space / place.

With respect to the formal model defined in [CO09], this is achieved by extending the
input queue of the environment events to become the multiset SitE of time, environment,
and spatial events, handled as input events by the situation transition (−→s)—as shortly
discussed at the end of Subsection 4.3.2.

Whenever some motion of any sorts occurs (such as the physical device starting / stop-
ping, or the node identifier changes), a spatial event is generated, and put in the multiset
SitE of the tuple centre, to be handled by the situation transition. Then, analogously

10http://tucson.unibo.it

112

http://tucson.unibo.it

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

to operation, situation, and time events, it is possible to specify reactions triggered by
spatial events—the so-called spatial reactions.

Spatial reactions follow the same semantics of other reactions: once triggered, they are
placed in the triggered-reaction set and then executed, atomically, in a non-deterministic
order. As a result, a spatial tuple centre can be programmed to react to the motion either
in physical or in virtual space, so as to enforce space-aware coordination policies.

Finally, a simple notion of locality is provided by the TuCSoN node abstraction: when
coordination primitives are invoked without any node specification, they are handled as
implicitly referring to the local interaction space hosted by the node; when a node identifier
is instead associated to the invocation, then the primitive explicitly refers to the global
interaction space [OZ99].

4.3.2 Space-aware Extension to ReSpecT

ReSpecT tuple centres are based on first-order logic (FOL). FOL is adopted both for the
communication language (logic tuples), and for the behaviour specification language (Re-
SpecT) [OD01a]. Basically, reactions in ReSpecT are defined as Prolog-like facts (reaction
specification tuples) of the form

reaction(Activity , Guards , Goals)

A reaction specification tuple specifies the list of the operations (Goals) to be executed
when a given event occurs (called triggering event, caused by an Activity) and some
conditions on the event hold (Guards evaluate to true). These operations make it possible
to insert / read / remove tuples from the tuple space and the specification space of the
tuple centre, but also to observe the properties of the triggering event, as well as to
invoke operations over other coordination media. The core syntax of ReSpecT is shown
in Table 4.3 below.

According to the abstract model described in Subsection 4.3.1, the ReSpecT language
is extended to address spatial issues (i) by introducing some spatial predicates to get
information about the spatial properties of both the tuple centre and the triggering event,
and (ii) by making it possible to specify reactions to the occurrence of spatial events. The
extension to the ReSpecT language is shown in Table 4.4.

Spatial observation predicates In particular, the following observation predicates are
introduced for getting spatial properties of triggering events within ReSpecT reactions:11

• current place(@S ,?P) succeeds if P unifies with the position of the node which the
tuple centre belongs to

11A Prolog-like notation is adopted for describing the modality of arguments: + is used for specifying
input argument, - output argument, ? input/output argument, @ input argument which must be fully
instantiated.

113

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

〈Program〉 ::= {〈Specification〉 .}
〈Specification〉 ::= reaction(〈Activity〉 [, 〈Guards〉] , 〈Reactions〉)
〈Activity〉 ::= 〈Operation〉 | 〈Situation〉
〈Operation〉 ::= out(〈Tuple〉) | (in | rd | no | inp | rdp | nop)

(〈Template〉 [, 〈Term〉])
〈Situation〉 ::= time(〈Time〉) | env(〈Key〉 , 〈Value〉)
〈Guards〉 ::= 〈Guard〉 | (〈Guard〉 {, 〈Guard〉})
〈Guard〉 ::= request | response | success | failure | endo | exo |

intra | inter | from agent | to agent | from tc | to tc |
before(〈Time〉) | after(〈Time〉) | from env | to env

〈Reactions〉 ::= 〈Reaction〉 | (〈Reaction〉 {, 〈Reaction〉})
〈Reaction〉 ::= [〈TupleCentre〉 | 〈EnvRes〉 ?] 〈Operation〉 |

env(〈Key〉 , 〈Value〉) |
〈Observation〉 | 〈Computation〉 | (〈Reaction〉 ; 〈Reaction〉)

〈Observation〉 ::= 〈Selector〉 〈Focus〉
〈Selector〉 ::= current | event | start
〈Focus〉 ::= (activity | source | target) (〈Term〉) | time(〈Term〉)

Table 4.3: ReSpecT Syntax: Core [MO13g]—no forgeability, bulk, uniform predicates.

• event place(@S ,?P) succeeds if P unifies with the position of the node where the
triggering event was originated

• start place(@S ,?P) succeeds if P unifies with the position of the node where the
event chain that led to the triggering event was originated

where the node position can be specified either as its absolute physical position (S =ph),
its IP number (S =ip), its domain name (S =dns), its geographical location (S =map) – as
typically defined by mapping services like Google Maps –, or its organisational position
(S =org)—that is, a location within an organisation-defined virtual topology.

As an example, the execution of the reaction specification tuple
reaction(

in(q(X)),

(operation, completion),

(

current place(ph,DevPos),

114

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

〈Specification〉 ::= reaction(〈Activity〉 | 〈Change〉 [, 〈Guards〉] , 〈Reactions〉)
〈Situation〉 ::= env(〈Key〉 , 〈Value〉) |
〈Change〉 ::= env(〈Key〉 , 〈Value〉) | time(〈Time〉)

from(〈Space〉 , 〈Place〉) | to(〈Space〉 , 〈Place〉)
〈Guard〉 ::= request | response | success | failure | endo | exo |

intra | inter | from agent | to agent | from tc | to tc |
before(〈Time〉) | after(〈Time〉) | from env | to env |
at(〈Space〉 , 〈Place〉) | near(〈Space〉 , 〈Place〉 , 〈Radius〉)

〈Focus〉 ::= (activity | source | target) (〈Term〉) | time(〈Term〉) |
place(〈Space〉 , 〈Term〉)

〈Space〉 ::= ph | ip | dns | map | org

Table 4.4: Spatial extensions to ReSpecT [MO13g]—only the definitions introduced /
affected by the spatial extension are shown.

event place(ph,AgentPos),

out(in log(AgentPos,DevPos,q(X)))

)

).

inserts a tuple (in log/3) with spatial information each time a TuCSoN agent retrieves a
tuple of the form q() from the tuple centre, actually implementing a spatial log, to track
absolute positions of both the querying agent and the device hosting the tuple centre.

Spatial guard predicates Also, the following guard predicates are introduced to select
reactions to be triggered based on spatial event properties:

• at(@S ,@P) succeeds when the tuple centre is currently executing at the position P ,
specified according to S

• near(@S ,@P ,@R) succeeds when the tuple centre is executing at the position included
in the spatial region with centre P and radius R , specified according to S

So, for instance, near(dns,’apice.unibo.it’,2) succeeds when the tuple centre is cur-
rently executing on a device whose second-level domain is .unibo.it.

Spatial event descriptors Reactions to spatial events are specified similarly to ordi-
nary reactions, by introducing the following new event descriptors:

115

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

• from(?S ,?P) matches a spatial event raised when the device hosting the tuple centre
starts moving from position P , specified according to S

• to(?S ,?P) matches a spatial event raised when the device hosting the tuple centre
stops moving and reaches position P , specified according to S

As a result, the following are admissible reaction specification tuples dealing with spatial
events:
reaction(from(?Space ,?Place), Guards , Goals).

reaction(to(?Space ,?Place), Guards , Goals).

As a simple example, consider the following specification tuples (wherever Guards is omit-
ted, it is by default true):
reaction(from(ph,StartP),

(current time(StartT)

out(start log(StartP,StartT)))).

reaction(to(ph,ArrP),

(current time(ArrT)

out(stop log(ArrP,ArrT)))).

reaction(out(stop log(ArrP,ArrT)),

(internal, completion),

(in(start log(StartP,StartT))

in(stop log(ArrP,ArrT))

out(m log(StartP,ArrP,StartT,ArrT)))).

which altogether record a simple physical motion log, including start / arrival time and
position. In fact, the first reaction stores information about the beginning of a physical
motion in a start log/2 tuple, the second the end of the motion in a stop log/2 tuple,
whereas the last removes both sort of tuples and records their data altogether in a m log/4

tuple, representing the essential information about the whole trajectory of the mobile
device hosting the tuple centre.

Semantics The basic ReSpecT semantics was first introduced in [OD01a], then ex-
tended towards time-aware coordination in [ORV05], re-shaped to support the notion of
coordination artefact in [Omi07], finally enhanced with situatedness in [CO09]—which
represents the reference semantics for ReSpecT until now.

In order to formalise the semantics for the space-aware extension of ReSpecT, two are
the main changes with respect to [CO09]. First of all, a new, generalised event model
should be defined to include both spatial events, and spatial information for any sort
of event. Then, the environment transition, already handling both time and general
environment events, should be extended to include spatial events—so as to handle the
full spectrum of situatedness-related events. All other required extensions (such as the
formalisation of each spatial construct’s semantics) are technically simple, and trivially
extend tables in [CO09].

116

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

The first fundamental extension to the event model is depicted in Table 4.4: a new
sort of spatial 〈Activity〉 is introduced. In particular, the notion of 〈Situation〉 is extended
with the two spatial activities from(〈Space〉 〈Place〉), to(〈Space〉 〈Place〉), reflecting the
initial and final stages of a motion trajectory, respectively—in whatever sort of space.

However, spatial extension of the event model cannot be limited to introducing spatial
activities: another issue is represented by spatial qualification of events, that is, in short,
making all ReSpecT events featuring spatial properties—in the same way as temporal
properties were introduced for all ReSpecT events in [ORV05]. This is represented by
the 〈Place〉 property featured by 〈Cause〉 – and 〈StartCause〉, of course –, as shown in
Table 4.5 below, where the extended ReSpecT event model is depicted.

Essentially, all ReSpecT events are in principle qualified with both time and space properties—
the latter one defined as the position (in whichever sort of space) where the (initial) cause
of the event takes place. Of course, properties may be actually defined or not at execution
time, depending on the facility available when the event is generated.

For instance, if absolute physical positioning is made available by the hosting device,
and the device is currently in location P when an event is generated, the coordination
middleware associates P to the event as its physical location—which otherwise would be
set to undefined.

According to [CO09], the operational semantics of a ReSpecT tuple centre is expressed
by a transition system over a state represented by a labelled triple OpE ,SitE〈Tu,Re,Op〉OutE

n

(abstracting away from the specification tuples Σ, which are not of interest here). In
particular, Tu is the multiset of the ordinary tuples in the tuple centre; Re is the multiset
of the triggered reactions waiting to be executed; Op is the multiset of the requests waiting
for a response; OpE is the multiset of incoming 〈Operation〉 events; SitE is the multiset
of incoming 〈Situation〉 events, including time, spatial, and general environment events;
OutE is the outgoing event multiset; n is the local tuple centre time.

OutE is automatically emptied by emitting the outgoing events, with no need for

〈Event〉 ::= 〈StartCause〉 , 〈Cause〉 , 〈Evaluation〉
〈StartCause〉 , 〈Cause〉 ::= 〈Activity〉 , 〈Source〉 , 〈Target〉 , 〈Time〉 ,

〈Space:Place〉
〈Source〉 , 〈Target〉 ::= 〈AgentId〉 | 〈TCId〉 | 〈EnvResId〉 | ⊥

〈Evaluation〉 ::= ⊥ | {〈Result〉}
〈Place〉 ::= 〈GPSCoordinates〉 , 〈IPAddress〉 , 〈DomainName〉 ,

〈MapLocation〉 , 〈VirtualPosition〉

Table 4.5: Extending ReSpecT events with space [MO13g].

117

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

special transitions. In the same way, OpE and SitE are automatically extended whenever
a new incoming (either operation or situation) event enters a tuple centre—again, no
special transitions are needed for incoming events. In particular, SitE is added new
environment events by the associated transducers [CO09], new time events by the passing
of time [ORV05], and – in the spatial extension of ReSpecT presented here – also new
spatial events whenever some sort of motion takes place.

So, as described in [CO09], the behaviour of a ReSpecT tuple centre is modelled by
a transition system composed of four different transitions: reaction (−→r), situation
(−→s), operation (−→o), log (−→l). Quite intuitively, spatial events are handled – in the
same way as time and environment events – by the situation transition, which triggers
ReSpecT reactions in response to spatial events. As a result, the situation transition is the
fundamental (and now finally complete) ReSpecT machinery supporting situatedness in
the full acceptation of the term—that is, suitably handling reactiveness of the coordination
abstraction to time, space, and general environment events.

4.3.3 Expressiveness Showcase

In [BDU+12], a layered architecture for devices running spatial computing programs is
described, which helps bridging the gap between the hardware and Spatial Computing
Languages (SCL):

physical platform the lowest level in the hierarchy, identifying the medium upon which
the computation actually executes—e.g., a smartphone, a drone with a whole set of
sensors and actuators, even a virtual device in the case of a simulation

system management typically the OS layer, abstracting away from physical details,
(hopefully) providing all the low-level drivers needed by spatial applications—e.g.,
for a GPS module, or a motion engine

abstract device the top abstraction level exposing the basic API for SCL—e.g., a clock
service, GPS coordinates tracking, and the like

Independently of the layer of abstraction at which a given SCL can be placed, as well
as of the kind of ADM it implements, three classes of operators are required to reach
maximal expressiveness and computational power—the sort of spatial Turing equivalence
discussed in [Bea10]:

measure space transforming spatial properties into computable information—e.g., dis-
tances, angles, areas

manipulate space translating information into some modification of the spatial prop-
erties of the device—e.g., turning wheels to face a given direction, slowing down the
motion engine

118

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

Figure 4.29: T-Program run from [BDU+12], implemented using the Proto language
[VBC11].

compute besides usual computation, any kind of spatial-pointwise operation, e.g., an
interaction, or a non-spatial sensor or actuator operation—e.g., a light sensor

A fourth class (physical evolution) looks more like a sort of assumption over the (possi-
bly autonomous) dynamics a given program/device can rely upon—e.g., the existence of
actuators responding to the program/device commands, or the independent motion of a
colony of cells.

As a reference benchmark to test the expressive power and the computational com-
pleteness of SCL, the “T-Program” is proposed in [BDU+12], consisting of the following
three stages, depicted in Figure 4.29 below in the case of the Proto language [VBC11]:
(i) cooperatively creating a local coordinate system; (ii) moving devices to create a “T-
shaped” structure; (iii) computing the centre of gravity of the structure and draw a ring
around it. Stage (i) requires the capability to measure the spatial context where the
program/device lives; stage (ii) requires the ability to manipulate the spatial proper-
ties of each device (thus relying also on the fourth category); stage (iii) requires both
computational capabilities and, again, measuring capabilities.

The spatial extension to ReSpecT just proposed meets all the requirements to success-
fully implement the above benchmark at the level of the ADM. In fact:

• a combination of three Observation Predicates is given to measure spatial properties:

– current place measuring where the tuple centre executing the current Re-
SpecT reaction is

– event place, start place measuring respectively where the direct cause and
start cause [Omi07] of the event triggering the current ReSpecT computation
took place

• given that the modification of spatial properties is necessarily bound to the facilities
provided by the host device, the manipulation requirement can be addressed by
situatedness-related constructs of ReSpecT:

119

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

– 〈EnvResId〉 ? env(〈Key〉, 〈Value〉) precisely meant to be used as an inter-
face to device actuators, allowing an agent to dispatch commands to a device
〈EnvResId〉 at the most appropriate level of abstraction—that is, as a part of
the environment managed through the coordination medium

• while the computing requirement is orthogonal w.r.t. the spatial dimension, some
predicates may be considered here as they ease the process of computing over spatial
information—in particular, guards:

– at(〈Place〉) triggers a reaction when the reacting tuple centre is at a given
location

– near(〈Place〉, 〈Radius〉) triggers a reaction when the reacting tuple centre is
near a given location

Finally, it should be noted that some constructs are left out, in particular those in
〈TCEvent〉. They belong to the aforementioned fourth class (physical evolution), since
they allow the Abstract Device – that is, the ReSpecT VM – to perceive motion events
generated either autonomously or on demand by the physical device hosting the VM.

Respectively, from(〈Place〉) is the spatial event generated by the ReSpecT VM when
the host tuple centre starts moving (leaving a location), whereas to(〈Place〉) is the spatial
event generated when it stops moving (approaching a location). These events are meant
to reify a change of state in the spatial dimension of computation: therefore, no events
have to be generated while the VM is staying still, since there is no state change to reify.

Now follows description of how space-aware ReSpecT can successfully implement the
T program benchmark.

Coordinate system Setting a local coordinate system basically amounts at (i) choosing
an origin node, (ii) making it spread a vector tuple to neighbours, then (recursively) (iii)
making them increment the vector, and (iv) forwarding it to neighbours. Thus, the
basic mechanism needed by the VM at the application level is neighbourhood spreading.
Assuming a physical neighbourhood relation is used, the following reactions – installed
on every node – achieve the goal [MO13f]:

1 // Check range then forward.

2 reaction(out(nbr_spread(msg(Msg),nbr(Dist),req(ID))),

3 (completion, success),

4 (no(req(ID)), out(req(ID)), // Avoid flooding

5 current_place(Me), event_place(Sender),

6 within(Me,Sender,Dist), // Prolog computation

7 out(msg(Msg)),

8 rd(nbrs(Nbrs)), // Neighbours list

9 out(forward(Msg,Dist,req(ID),Nbrs))

10)).

11 // Delete multicast request.

12 reaction(out(nbr_spread(msg(Msg),nbr(Dist),req(ID))),

13 (completion, success),

14 in(spread(msg(Msg),nbr(Dist),req(ID)))

15).

120

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

16 // Forward to every neighbour.

17 reaction(out(forward(Msg,Dist,req(ID),[H|T])), // Some Nbrs

18 (intra, completion),

19 (H ? out(spread(msg(Msg),nbr(Dist),req(ID))), // Forward

20 out(forward(Msg,Dist,req(ID),T)) // Iterate

21)).

22 // Delete iteration tuple.

23 reaction(out(forward(Msg,Dist,req(ID),Nbrs)),

24 (intra, completion),

25 in(forward(Msg,Dist,req(ID),Nbrs)) // Delete it anyway

26).

Reactions 2-10 and 12-15 manage spreading requests: the former checks if the incoming
request has been already served, gets reacting node position and sender node’s one, checks
if it’s in the desired range, and if so stores the tuple (Msg) then starts forwarding it; the
latter simply removes the request. Reactions 17-21 and 23-26 manage the forwarding
process, that is, iterate neighbours forwarding the spreading command. Neighbourhood
is set here at the VM level through a tuple nbrs([nbr 1,...,nbr N]), but could also be
set at the middleware level by using a coordination middleware such as TuCSoN [OZ99].

“T-shape” To arrange nodes (tuple centres) so as to form a T-shaped structure, it is
needed to (i) define spatial constraints representing the T (how much tall, fat, etc.), then
(ii) make every node move so as to satisfy them. Thus, the basic mechanism needed at
the VM level is motion monitoring and control [MO13f]:

1 // Compute motion vector then start moving.

2 reaction(out(move(Constraints)),

3 (completion, success),

4 (current_place(Here),current_time(Now),Check is Now +1000,

5 direction(Constraints,Here,Vec), // Prolog computation

6 out_s(

7 // Reaction 12-22

8),

9 engine ? env(mode,’on’), engine ? env(dir,Vec) // Start actuators

10)).

11 // Motion constraints monitoring.

12 reaction(time(Check),

13 internal,

14 (current_place(Here),

15 rd(move(Constraints)),

16 (check(Here,Constraints), // Prolog computation

17 engine ? env(mode,’off’)

18 ;

19 current_time(Now), Check is Now +1000,

20 out_s(

21 // Reaction 12-22

22)))).

23 // Arrival clean-up.

24 reaction(to(Dest),

25 internal,

26 in(move(Constraints))

27).

An interesting feature of ReSpecT is exploited in the code above. Besides reacting to a mo-
tion request by properly controlling actuators, Reaction 2-10 performs a meta-coordination

121

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

operation, by inserting a new coordination law in the tuple centre (Reaction 12-22), which
is responsible for arrival check.

Focal point To first compute the focal point (FC) of the T-shape, then draw a sphere
around it, two basic mechanisms are needed, both very similar to the neighbourhood
spreading previously shown—thus whose code is not reported to avoid redundancy: (i)
a bidirectional neighbourhood spreading to collect replies to sent messages – enabling to
aggregate all the node’s coordinates and counting them – and (ii) a spherical multicast
to draw the ring pattern.

The code for spherical multicast is almost identical to neighbourhood spreading, but
with a fundamental difference (besides the req(ID) test to avoid flooding), that is, the
use of observation predicate start place instead of event place. This replacement
(almost) alone stops the spreading process and completely change the spatial properties
of communication.

This is a notable example of the expressiveness of the language extension just de-
scribed.

4.3.4 Discussion of Results

In this section, how spatial situatedness can be provided to the application level by
enhancing the ReSpecT coordination language with spatial-related constructs enabling
space-awareness has been discussed. To demonstrate space-aware ReSpecT expressive-
ness, an implementation of the T program benchmark was provided, as defined in the
context of spatial computing languages, and specifically conceived to guarantee spatial
Turing-completeness of a language.

This focus on the language level of a coordination middleware, completes the proposed
approach to deal with situatedness-related issues in pervasive MAS, complementing the
architectural aspects discussed in Section 4.2.

As an aside, the proposed language extension is supported by the porting of the
TuCSoN infrastructure over the Android platform12, where it can benefit from therein
provided location services. Also, the extension makes it possible to rethink the actual
architecture of the Home Manager13 middleware for smart home appliances [DC15], del-
egating geolocation-related issues to the underlying TuCSoN infrastructure, instead of
relying on ad-hoc software agents.

12At the time of writing, the official release is not yet available, but the codebase under refinement is
available at http://bitbucket.org/smariani/tucsonandroid.

13http://apice.unibo.it/xwiki/bin/view/Products/HomeManager

122

http://bitbucket.org/smariani/tucsonandroid
http://apice.unibo.it/xwiki/bin/view/Products/HomeManager

CHAPTER 4. COORDINATION ISSUES IN SITUATED PERVASIVE SYSTEMS

4.4 Remarks & Outlook

The research work undertaken in this chapter is necessary to provide MoK with a well-
suited and well-grounded concrete platform to implement a first prototype, and to deploy
the prototype within early evaluation scenarios.

The situated architecture thoroughly described in Subsection 4.2.1 is necessary to pro-
vide MoK with the context-awareness needed by socio-technical systems, as discussed in
Section 5.2 of Chapter 5. Once social and situated interactions generate events according
to a situated event model, coordination services, as well as the application at hand, have
access to all the relevant information, either for the purpose of coordination, or for users
to improve their collaboration toward reaching their business goals.

Within MoK , e.g., through situated events reifying social and situated interaction,
users may become aware of each other activities, and take advantage of this awareness.
Furthermore, being all the interactions mediated by the environment, stigmergic and
observation-based coordination are enabled and promoted by default, providing thus all
the necessary ingredients for supporting the kind of user behaviour driven coordination
envisioned in MoK .

The language extension extensively described in Subsection 4.3.2 is necessary, too, for
two reasons at least. The first one, most obvious, is to enable the coordination laws to get
advantage of the situatedness of coordination-related events generated by the underlying
infrastructure. The second, possibly less apparent, is that of allowing adaptiveness of the
coordination laws to the ever-changing computational context within which social and
situated activities happen.

Thanks to ReSpecT programs capability to change themselves at run-time, any aspect
of the coordination laws installed within TuCSoN tuple centres may be re-programmed
anytime. In the case of the MoK prototype described in Section 7.1 of Chapter 7, this
means any facet of artificial chemical reactions, such as their rate, as well as of the chemical
engine resembling chemical compartments, may be changed by the middleware itself, in
face of, e.g., users’ interactions.

123

Chapter 5

Coordination Issues in
Knowledge-Intensive
Socio-Technical Systems

In this chapter a novel approach to coordination in knowledge-intensive Socio-Technical
Systems (STS) is skecthed, grounded on the cognitive theory of Behavioural Implicit
Communication (BIC).

Accordingly, firstly those challenges peculiar to either Knowledge-Intensive Environ-
ments (KIE) or STS, which mostly impact the issue of coordination, are discussed (Sec-
tion 5.1); then, some research works applying to computer-based Multi-Agent Systems
(MAS) principles borrowed from Activity Theory, (cognitive) stigmergy, and BIC are
briefly reviewed (Section 5.2); finally, the notion of perturbation action is introduced,
connected to BIC notion of tacit message, while sketching the basic idea behind the pro-
posed approach to self-organising coordination in STS (Section 5.3)—thoroughly detailed
in Part II of this thesis.

5.1 Socio-Technical Systems &

Knowledge-Intensive Environments

5.1.1 Challenges of Socio-Technical Systems

Socio-technical systems (STS) arise when cognitive and social interaction is mediated by
information technology rather than by the natural world [Whi06]. As such, STS include
non-technical elements such as people, processes, regulations, etc., which are inherent
parts of the system. Since social activity is fluid and nuanced, STS are technically difficult
to design properly – especially from a coordination perspective – and often awkward to
use [Ack00]. Also, a number of peculiarities, with related engineering challenges, have

125

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

been highlighted by various research works [Ack00]. Among the many:

• STS have emergent properties, which cannot be attributed to individual parts of the
system, depending on the relationships and dependencies between system compo-
nents. Given this complexity, the aforementioned properties can only be evaluated
once the system has been assembled and deployed, not at design time

• STS are often non-deterministic, that is, when presented with a specific input, they
may not always produce the same output. This happens because system behaviour
depends on human operators, and people do not always react in the same way to
the same situation

• people may use the STS in ways completely unpredictable from the designers stand-
point. In large-scale open networks like the Internet, users behaviour is uncontrolled,
so that very few assumptions can be made about it. In particular, it is almost im-
possible to globally foresee and influence the space of potential interactions. Most
probably, users, as well as software components, will behave in a self-interested fash-
ion, which may help to anticipate some of their actions, and may provide some clues
on how to design coordination strategies at the micro level [OO02]

• awareness, that is, knowing who is present, and peripheral awareness, namely mon-
itoring of others’ activity, are fundamental in STS [HS96], because visibility of in-
formation flow – thus observability of dependencies – enables learning and greater
efficiency [Hut95]—as well as observation-based coordination [PCF07]

• people not only adapt to their systems, they adapt their systems to their needs
(co-evolution) [Orl92, OBS96]

Failing to recognise one of the above facets of STS, thus neglecting to address the corre-
sponding issue, inevitably leads to a socio-technical gap in the STS, that is, a gap between
what the computational platform strive to provide, and what the users participating the
STS are expecting to have [Ack00].

It should be noted that all the mentioned peculiarities imply challenges which is
possible to approach from a coordination perspective, in particular, exploiting coordina-
tion techniques supporting programmable (to deal with unpredictability and adaptation,
mostly), self-organising (to account for emergence and non-determinism), situated (sup-
porting awareness) coordination.

Not by chance, this is exactly the approach to coordination discussed in chapters 2-3
(programmability & self-organisation) and 4 (situatedness).

5.1.2 Challenges of Knowledge-Intensive Environments

In general, data are considered as raw facts, information is regarded as an organised set
of data, and knowledge is perceived as meaningful information [Bha01]. In a dynamic

126

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

business environment, where an organisation faces unexpected and novel problems, a
computational platform can be used, at best, as an enabler to turn data into information,
but it is only through people – hence, considering the STS as a whole – that information
is interpreted and turned into knowledge.

Following [Bha01], Knowledge Management (KM) is a complex socio-technical process
encompassing knowledge creation, validation, distribution, presentation, and application,
each facet bringing along its own issues and computational challenges:

creation refers to the ability of an organisation to develop novel and useful information,
processes, best practices, solutions, etc. Knowledge creation is an emergent process
in which experimentation and pure chance play an important role. Providing the
means to undertake trial-and-error experiments, and to spot knowledge creation
opportunities, is a great computational challenge for a KM platform

validation refers to the extent to which a firm can reflect on knowledge and evaluate
its relevance, pertinency, and effectiveness for the existing organisational environ-
ment and business goals. Knowledge validation is a painstaking process of contin-
ually monitoring, evaluating, and refining the knowledge base to suit the existing,
potential, or foresee realities. As the realities change, so may arise the need to
convert parts of knowledge back into information, then data, which may finally
be discarded. Designing computational techniques seamlessly integrating with users
workflows, while transparently assisting them in all the stages involved in knowledge
validation, is far from trivial

distribution refers to the distribution of organisational knowledge in different locations,
embedded into different artefacts and procedures, and stored into different storage
media—which is challenging by itself. Furthermore, interactions between organi-
sational technologies, techniques, and people can have direct bearing on knowledge
distribution, introducing the need to deal with some degree of uncertainty – about,
e.g., where to find a relevant piece of information – and demanding for adaptation
techniques supporting continuous and autonomous knowledge re-distribution

presentation refers to each storage medium requiring its different means of knowledge
(re)presentation, thus, organisational members often find it difficult to re-configure,
re-combine, and integrate knowledge from these distinct and disparate sources.
Though organisational members may find the relevant pieces of information by or-
ganising data into separate databases, they will still find it difficult to integrate and
interpret information without a common representation

application refers to making knowledge more active for the firm in creating values.
The criteria for evaluating relevance of knowledge are not often readily apparent.
However, the technological platform could provide means of experimentation to
assess the potential of knowledge and readily exploit it

127

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

Two main strategies for KM are employed by early adopters of the principle [MAYA01],
striving to address the above challenges:

• the process-centred approach, which understands KM as a social, communication
based process. Here knowledge is closely tied to the person who developed it and is
shared mainly through person-to-person contacts. The main purpose of information
technology is then to enable people communicate knowledge, not to store it

• the product-centred approach, focussing on knowledge reification into documents,
then on their creation, storage, and reuse in computer-based corporate memories

Whatever the approach, the connections that KM software must facilitate are between
people as much as they are between people and information systems. In particular, the
software must support fruitful exchange of knowledge, and transformation from tacit to
explicit knowledge [MAYA01].

Yet again, the whole process of KM, in most if not all of its facets, can be approached
from a coordination perspective, where coordination policies and mechanisms may be ap-
plied not solely to the agents (either software or human) participating the management
process, but also to the raw data subject of the process. This way, data may become
organised information autonomously, guided by coordination mechanisms seamlessly in-
tegrating knowledge workers’ own workflows with the organisation long-term goals—e.g.,
creation, validation, and distribution, may be (partially) delegated to the coordination
infrastructure underlying the KM platform. In turn, knowledge workers may find knowl-
edge patterns more easily by having the KM platform (thus, the underlying coordination
mechanisms) assist them, by, e.g., presenting the right information at the right time in
the right place.

One possible way to do so, in the broad sense of taking coordination as the ground
upon which to build KM processes in STS, is outlined in the following subsection, as well
as the subject of the other sections of this chapter.

5.1.3 Research Roadmap

Among the issues just described, many can be tackled by exploiting existing coordination
abstractions and mechanisms. E.g., the need for awareness manifested by STS can be
directly supported through the notion of coordination artefacts, as provided by the A&A
meta-model for MAS [ROD03]—see Subsection 5.2.1. There, artefacts are computational
resources at agents’ disposal, featuring, among the many properties, observability of in-
teractions, which directly enables peripheral awareness. Also, malleability of artefacts,
that is, their ability to change behaviour dynamically, may be fruitfully exploited to sup-
port adaptation of the system’s provided functionalities, as well as of other non-functional
properties, according to users’ interactions and ever-changing needs.

It should be noted that KM processes may be engineered on top of coordination ab-
stractions and mechanisms. E.g., consider that both traditional approaches to KM, that

128

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

is, process-centred and product-centred, may be conveniently integrated through the no-
tion of artefact, too: coordination artefacts as enablers of people communication – for the
former approach – and resource artefacts as reification of (possibly implicit) knowledge—
for the latter. Issues of KM may be then readily delegated to artefacts, exploiting their
distinguishing features. In the case of knowledge distribution, e.g., the linkability feature
comes in hand [ORZ06], by allowing delegation of distribution of knowledge, as well as of
the computational load needed to make it accessible, to the KM platform.

Besides the A&A meta-model, other coordination-related mechanisms may deal with
the challenges described in previous section. E.g., stigmergic interaction [Par06] leads
to an emergent phenomenon of global coordination arising from local interactions which
tolerates quite well uncertainty of information and unpredictability of behaviour—besides
directly supporting peripheral awareness, if not on actions on their post-hoc traces.

For all these reasons, and many more that are detailed in dedicated paragraphs in
the following, next section reviews the aforementioned literature – that is, the A&A
meta-model and stigmergic interaction – and more, shaping the conceptual framework on
top of which the approach to user-driven coordination is built, as sketched in Section 5.3.
Besides this, the conceptual framework is exploited in the M olecules of K nowledge model
described in Part II of this thesis.

5.2 From Activity Theory to

Behavioural Implicit Communication

5.2.1 Activity Theory for Multi-Agent Systems

Activity Theory (AT) is a social psychological theory born in the context of Soviet Psychol-
ogy [V+78]. Nowadays, it is widely applied in computer science, especially in Computer
Supported Cooperative Work (CSCW) and Human Computer Interaction (HCI) [Nar96].
AT is a general framework for conceptualising human activities: according to AT, any
activity carried on by one or more participants (agents) of an organisation (MAS) cannot
be understood without considering the tools, or artefacts, enabling actions and mediating
interaction [ORV08].

Thus, on the one side, artefacts mediate interaction among individuals, as well as
between individuals and their environment; on the other side, artefacts represent that part
of the (computational) environment the individuals want/have to deal with. Artefacts
are not only physical, such as shelves, doors, phones, and whiteboards, but may also
be cognitive, such as operating procedures, heuristics, scripts, individual and collective
experience, or even both, such as operating manuals and computers.

Adopting AT as a conceptual framework for MAS leads to the fundamental recogni-
tion that agents are not the sole abstraction to design MAS: artefacts, too, are necessary
[ORV08]. As developed by Ricci et al. while defining the A&A meta-model for MAS

129

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

[ROD03], then, activity theory promotes the notion of coordination artefact to identify
those artefacts used specifically for coordination purpose. Along this line, coordination
artefacts represent a straightforward generalisation of the notion of coordination medium
[Cia96], coming from the fields of coordination models and languages—including abstrac-
tions like tuple spaces, channels, pheromone infrastructures [PBS02], among the many.

The A&A meta-model is characterised in terms of three basic abstractions [ORV08]:

agents representing pro-active components of the MAS, encapsulating the autonomous
execution of some kind of activities inside some sort of environment

artefacts representing reactive components of the MAS, intentionally constructed, shared,
manipulated and used by agents (or by the MAS designer), to support agents activi-
ties – either cooperatively or competitively – and/or MAS non-functional properties

workspaces as the computational containers of agents and artefacts, useful for defining
the topology of the environment, and providing a way to define a notion of locality

Agents From a computational viewpoint, autonomy means that agents encapsulate
(their thread of) control. So, agents never give up control, nor are controlled by any-
thing, unless they deliberate to do so, of course—“agents can say no”, according to Odell
[Ode02]. Only data (information, knowledge) crosses agent boundaries. As a result, the
interpretation of a MAS is that of a multiplicity of distinct loci of control, interacting
with each other by exchanging information [ORV08].

Literally, the etymology of the word “agent” – from Latin “agens” – means “the one
who acts”, thus, the agent notion should come equipped, by definition, with a notion of
action. Whatever the model, the notion of action is intrinsically connected to the notion
of change: an agent acts in order to change something, which, in the context of a MAS,
can be either another agent, or the environment [VHR+07, WOO07]. The only way to
directly affect another agent state is usually thought to be through direct information
exchange, that is, through a speech act—or communication action. Instead, change to
the MAS environment is more easily thought of as the result of physical actions—which
may be undertaken on a computational, or simulated environment, too, of course.

Any ground model of action is strictly coupled with the context where the action takes
place. In this sense, autonomous agents are essentially situated entities, since any agent
is strictly coupled with the environment where it lives and (inter)acts [ORV08].

Artefacts Artefacts, on the contrary, are not autonomous: since they are designed to
serve some purpose for agents, artefacts do not follow their own course of action. As such,
artefacts are (computationally) reactive, that is, they behave in response to agent use,
and their function just needs to emerge when they are used by an agent [ORV08].

Also, their function is expressed in terms of change to the environment, that is, what
the artefact actually does when used by an agent, which makes artefacts intrinsically

130

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

situated, too. Finally, since they are situated, artefacts are easy to be thought of as
reactive to changes in the environment.

Among the main properties of artefacts, one could list [ROV+07]: (i) inspectability
and controllability, that is, the capability of observing and controlling artefacts structure,
state and behaviour at run-time; (ii) malleability (or, forgeability), that is, the capability
of changing / adapting artefacts function at run-time, according to new requirements or
unpredictable events occurring in the open environment; and (iii) linkability, that is, the
capability of composing distinct artefacts at run-time as a form of service composition,
so as to scale up with complexity of the function to be provided.

Workspaces They conceptually contain agents and artefacts, and computationally pro-
vide MAS with a notion of locality – that is, agents and artefacts locally available in a
given computational node – useful to shape the MAS topology—in terms of neighbourhood
relations between workspaces. Besides this, definition of workspaces has been never fur-
ther detailed, basically because according to the A&A meta-model, anything interesting
inside a workspace has to be represented by a dedicated artefact.

In Subsection 5.2.3, the notion of smart environment introduced in [TCR+05] is dis-
cussed, and taken as a possible enhancement to the notion of A&A workspace, integrating
ingredients borrowed from AT, stigmergy, and BIC (all described in following sections).

Why AT? It is apparent how AT, and then the A&A meta-model, may prove extremely
useful as a reference framework for conceiving and designing the computational part of
a STS devoted to KM: agents are the goal-directed/-oriented, active components of the
system, such as human users and software agents, undertaking (epistemic) actions aimed
at reaching their own business goals; artefacts are the (computational) tools in their
hands, including those services devoted to KM and collaboration, as well as the documents
subject of the management process; workspaces are the working environments providing
the coordination services necessary to deal with the issues outlined in Section 5.1—e.g.,
programmability for adaptiveness & unpredictability, self-organisation for emergence &
non-determinism, observability for awareness, and so on.

5.2.2 Stigmergy and Cognitive Stigmergy

Stigmergy The notion of stigmergy generally refers to a set of coordination mechanisms
mediated by the environment [Omi12]. For instance, in ant colonies chemical substances
(pheromone) act as environment markers for specific social activities, and drive both the
individual and the social behaviour of ants. While the notion of stigmergy has undergone
a large number of generalisations / specialisations / extensions [Par06, ROV+07] w.r.t.
the original definition [Gra59], and even a larger number of implementations in systems
of many sorts, its main features are always the same. In short, stigmergic coordination
requires that:

131

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

• some interacting agents perform some action on the environment that leaves some
traces, or markers, which can then be perceived by other agents and affect their
subsequent behaviour

• all interactions among agents are mediated by the environment, through traces—like
ant’s pheromones

• emission of traces is generative [Gel85], thus once they are produced, traces’ life is
independent of the producer

• traces evolution over time depends on their relation with the environment—as in
the case of pheromone diffusion, aggregation, and evaporation in ant colonies

Such a sort of interaction among agents is what produces self-organisation: whereas it
occurs on a local basis, its effect is global in terms of the system’s global structures and
behaviours it originates, by emergence [SFH+03].

Cognitive stigmergy A number of relevant works in the field of cognitive sciences
point out the role of stigmergy as a fundamental coordination mechanism also in the
context of human societies and organisations [SZ01, SW04]. As noted in [ROV+07]:

• modifications to the environment (e.g., traces) are often amenable of an interpreta-
tion in the context of a shared, conventional system of signs

• the interacting agents feature cognitive abilities that can be used in stigmergy-based
interactions

Based on this, the notion of cognitive stigmergy is introduced in [ROV+07] as a first
generalisation of stigmergic coordination exploiting agent’s cognitive capabilities to enable
and promote self-organisation of social activities: when traces becomes signs, stigmergy
becomes cognitive stigmergy. There, self-organisation is based on signs amenable of a
symbolic interpretation, and involves intelligent agents, able to correctly interpret signs
in the environment, so as to react properly.

Under a cognitive perspective, the (working) environment in stigmergy can be inter-
preted as a set of shared, observable tools (artefacts), providing specific functionalities,
that are useful for agents while performing their individual work both for empowering
their capabilities and for sharing information—through the environment itself.

Thus, artefacts in cognitive stigmergy are aimed, first of all, at promoting awareness,
that is, making agents seamlessly aware of the work and practises of other agents, which
could in turn affect, either driving or improving, their own activities. Awareness is a key
aspect to support emergent forms of coordination, where there is no pre-established plan
defining exactly which are the dependencies and interactions among ongoing activities
[MC94] and how to manage them—on the contrary, the plan emerges along with the
activities themselves.

132

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

Why stigmergy? Stigmergy and cognitive stigmergy directly and efficiently support
both awareness and peripheral awareness in STS, be it by simply associating reactive
behaviours to changes in the shared working environment (e.g., in the form of traces
deposit) if non-intelligent agents are considered (e.g., simple software components), or by
true signification of signs (e.g., traces amenable of symbolic interpretation) undertaken
by intelligent agents (e.g., humans or BDI agents [Cas98]).

Besides awareness, it is apparent that stigmergic coordination is well suited for many
facets of KM in STS, e.g., (i) as far as knowledge creation is concerned, attaching traces of
past activities to managed information items may undoubtedly help further interpretation
by collaborative agents; (ii) for validation, traces of activities may be exploited by the
KM platform to autonomously spot stale, obsolete, wrong, or simply no longer relevant
information, then discard it; (iii) as far as distribution is concerned, the literature about
stigmergic coordination is full of examples of emergent spatial organisation of informa-
tion items or emergence of spatial patterns among ensembles of cooperating agents—see
[Par06] for some.

Finally, the connection between (cognitive) stigmergy and the A&A meta-model, thus
activity theory, too, is obviously represented by the definition of artefact as the means
to model and design computational environments within a MAS. Accordingly, (cognitive)
artefacts may be the targets of agents practical/epistemic actions, and may react to
actions by changing their own state – or that of linked artefacts – so as to reflect the
traces (interpreted as, e.g., side effects) of the undertaken actions.

5.2.3 Behavioural Implicit Communication

Behavioural Implicit Communication (BIC) is a cognitive theory of communication stem-
ming from the essential idea that usual, practical, even non-social behaviour can contextu-
ally be used as a message for communicating, and that behaviour can be communication
by itself, without any modification or any additional signal or mark [Cas06]. The adjec-
tive behavioural is because it is just simple, non-codified behaviour. Implicit, because, not
being specialised nor codified, its communicative character is unmarked, undisclosed, not
manifest. In other words, in BIC communication is just a use, and at most a destination,
not the shaping function [CC95].

On the contrary, communication actions are normally carried on by specialised be-
haviours (e.g., speech acts, and gestures). Therefore, a BIC action is a practical action
primarily aimed at reaching a practical goal, which may additionally be interpreted as
aimed at achieving a communicative goal, without any predetermined (conventional or
innate) specialised meaning.

BIC can be taken as a reference for different modalities of observation-based coordina-
tion [PCF07]. In [TCR+05] five are identified:

unilateral X intends to coordinate with Y by observing Y’s actions

133

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

bilateral the unilateral form of coordination but for both agents, so: X intends to co-
ordinate with Y by observing Y’s actions, and, viceversa, Y intends to coordinate
with X by observing X’s actions

unilateral-AW a unilateral form of coordination, improved with a first degree of aware-
ness : X intends to coordinate with Y by observing Y’s actions, and Y is aware of
it—that is, it knows to be observed

reciprocal a bilateral form of observation-based coordination with awareness of both the
involved agents: X intends to coordinate with Y by observing Y’s actions, being Y
aware of it, and Y intends to coordinate with X by observing X’s actions, being X
aware of it

mutual extends the reciprocal form by introducing the explicit awareness of each other
intention to coordinate (awareness2): X intends to coordinate with Y by observing
Y’s actions, being Y aware of it, Y intends to coordinate with X by observing X’s
actions, being X aware of it, and also X is aware of Y’s intention to coordinate,
while Y is aware of X’s intention to coordinate

BIC is necessary for mutual coordination, while it is possible and undoubtely useful in
the other forms of observation-based coordination.

It should be noted that stigmergy seems very similar to BIC. However, definition
of the former is unable to distinguish between the communication and the signification
processes. Put in other words, according to [TCR+05], one does not want to consider an
escaping prey as doing communicative actions to its predator, notwithstanding that the
effects of the first actions elicit and influence the actions of the latter.

Nevertheless, as in BIC, stigmergic communication does not exploit any specialised
communicative action, but just usual practical actions. Therefore, [TCR+05] considers
stigmergy as a subcategory of BIC, being communication via long term traces, physical
practical outcomes, useful environment modifications, which preserve their practical end,
but acquire a communicative function.

Under this perspective, stigmergy amounts to a special form of BIC where the ad-
dressee does not perceive the behaviour during its performance, but post-hoc traces and
outcomes of it.

Tacit messages Tacit messages are proposed, along with the notion of BIC, to describe
the messages a practical action (and its traces) may implicitly send to observers [CPT10]:

1. informing about the presence. “Agent A is here”. Since an action, an activity, a
practical behaviour (and its traces), is observable in the computational environ-
ment, any agent therein – as well as the environment itself – becomes aware of A
existence—and, possibly, contextual information such as A location. Think about
turning the lights on, when going out, in a room clearly visible from the outside. It

134

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

is a signal left for a potential intruder to persuade him that somebody is at home.
The light in itself has not a conventional meaning, but a possible inference that can
be drawn by observing it is exploited to send a deceiving message. In this case,
although the actual goal of the practical action is informative, the acting agent does
not really want to be understood as being communicating

2. informing about the intention. “Agent A plans to do action β”. If the agents’ work-
flow determines that action β follows action α, peers (as well as the environment)
observing A doing α may assume A next intention to be “do β”. Consider the
phenomenon of trust dynamics, where the fact that an agent trusts another one
increases the latter trustworthiness. The trusting agent may intentionally exploit
this process by, e.g., delegating to a subordinate agent a critical task: the trace is
an implicit signal of the intention to trust

3. informing about the ability. “A is able to do φi, i ∈ N”. Assuming actions φi, i ∈ N
have similar pre-conditions, agents (and the environment) observing A doing φi may
infer that A is also able to do φj 6=i, j ∈ N. In the context of supervised learning
(e.g., teacher-scholar relationship), each action (of the scholar) is also a message
to the supervisor (teacher), implicitly communicating improvements and acquired
abilities. For teamwork activities, the ability of agents to signal their own abilities
is a crucial message that can be used to speed up team formation

4. informing about the opportunity for action. “pi, i ∈ N is the set of pre-conditions for
doing α”. Agents observing A doing α may infer that pi, i ∈ N hold, thus, they may
take the opportunity to do α as soon as possible. Think about lines in, e.g., a post
office: they are evident signs informing about which are the active counters—which
are the condition for action. The queue line also informs about the fact that the
others are waiting to act, thus: the condition for acting is there, but not available
yet. Finally, the physical shape of the line also informs on who is the last person
waiting, back to whom the newcomer has to wait

5. informing about the accomplishment of an action. “A achieved S”. If S is the state
of affairs reachable as a consequence of doing action α, agents observing A doing
α may infer that A is now in state S. Consider a child showing her mother she is
eating a given food, or a psychiatric patient showing the nurse he is drinking his
drug. It is not the ability of eating or drinking that is relevant here, but that the
eating or drinking action is being accomplished. This kind of message is particularly
important in satisfaction of social commitments, expectations, obligations, and the
like

6. informing about the goal. “A has goal g”. By observing A doing action α, peers
of A may infer A’s goal to be g, e.g., because action α is part of a workflow aimed
at achieving g—likewise for the environment. In the context of a team sport, e.g.,

135

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

football, by kicking the ball in one direction (action), a player is communicating
with a team member to sprint in that precise direction (goal)

7. informing about the result. “Result R is available”. If peer agents know that action
α leads to result R, whenever agent A does α they can expect result R to be soon
available—in case action α completes successfully. Suppose that while doing the
dishes, a glass is dropped and breaks into pieces. You decide not to remove the
fragments in order to let your husband understand that, although he was convinced
that they were unbreakable glasses, this glass being struck, it breaks. A trace thus,
can be an implicit signal not only when it is the result of an action, but also a
consequence of abstaining from acting

The above categorisation is general enough to suit several different business domains and
practical actions. In fact, it is used in Subsection 5.3.2 to categorise tacit messages devised
out by analysing real-world STS.

Why BIC? BIC is taken as the reference framework for approaching the issue of coor-
dination in knowledge-intensive STS. The reason is that BIC provides a sound cognitive
and social model of action and interaction both w.r.t. to human agents and w.r.t. compu-
tational agents. Furthermore, as clarified in next section, BIC can be applied to compu-
tational environments as well, fully supporting environment-mediated, observation-based
coordination. Also, the interpretation of BIC referenced so far, that is, the one described
in [TCR+05], encompasses stigmergic coordination, too, as well as is deeply intertwined
with the notion of (cognitive) artefact [TCR+05].

As regards KM in STS, BIC is obviously well suited to improve existing approaches to
KM, be them process-centred or product-centred, partly due to its roots in activity theory
and stigmergy, partly thanks to its notion of non-manifest, non-codified communication,
reified by tacit messages. Furthermore, the notion of computational smart environment
discussed in next section, is directly enabled by BIC, and is a solid reference for the kind
of self-organising KM system envisioned in this thesis, and targeted by the M olecules of
K nowledge model described in Part II.

5.2.4 Toward Computational Smart Environments

The nature of a working environment (computational workspace) – which depends on the
tools (artefacts) shaping it – determines the effectiveness of the activities of the actors
(agents, users) that are immersed in it [TCR+05]. Then, the purpose of an activity is not
merely to change the environment in a way that (presumably) leads to goal satisfaction,
as typically assumed in the literature.

In general, people (software agents) undertake actions to save attention, memory and
computation; people recruit external elements to reduce their own cognitive (computa-
tional) effort by distributing load; and so on. This makes sense only if agents (either

136

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

software or humans) and their activities are conceived as situated [TCR+05], that is,
strongly coupled with their environment.

As a result, environment design should not merely be aimed at helping agents to
achieve their goals, but also to make other actions as easy as possible—such as epistemic,
and coordinative actions.

Also, [TCR+05] notices that cognitive processes exist in MAS that do not belong to
individual agents: the MAS environment may participate, too, by enabling and mediating
individual agent actions as well as social agent interaction, through the knowledge it
embeds either implicitly or explicitly. Thus, knowledge is distributed in the environment
and is encapsulated within cognitive artefacts, and the structure of the environment, as
well as of the knowledge it contains, affect the activities of agents within the MAS.

According to [SS00], “computer supported collaborative work (CSCW) seems to be
pursuing two diverging strategies”, leading to distinct trends in CSCW research: the
first, stemming from workflow management systems, tends to privilege automatisation of
coordination; the second, takes flexibility of interaction as its main goal. That is, the
former approach stresses the role of computational entities prescribing the rules of collab-
oration (like workflow engines), the latter mostly leverage on the intelligent coordination
capabilities of collaborative entities (like humans, or intelligent agents). So, there is a
gap between two strategies, that [SS00] proposes to close by dealing with two key issues:
mutual awareness and coordinative artefacts.

Mutual awareness means that actors of a collaboration activity affect and mutually
perceive others’ activities in the common field of work – the shared workspace – which
can (partially) reveal/conceal them. Mutual awareness is then the basis for opportunistic,
ad hoc alignment and improvisation, which ensures flexibility to collaborative activities.
Coordinative (or, coordination) artefacts instead, encapsulate those portions of the coor-
dination responsibilities that is better to automatise, e.g., for the sake of efficiency. So,
on the one hand, coordinative artefacts define and govern the space of the admissible
interaction, while, on the other hand, they do not impose a pre-defined course of actions
unnecessarily reducing flexibility (they do not work as commanders) [TCR+05].

BIC and (cognitive) stigmergy seem to provide the necessary mutual awareness envi-
sioned by [SS00], while (cognitive) coordination artefacts the required coordinative capa-
bilities. But in order for a computational work environment to fully support BIC-based
coordination, at least three different conditions have to hold [TCR+05]:

1. observability of practical actions and their traces must be a property of the en-
vironment where agents live. The environment can enable visibility of others, or
constrain it—in the same way that sunny or foggy days affect perception. It could
also enable agents to make themselves observable or hide their presence on purpose

2. agents should be able to understand and interpret (or to learn to react to) a practical
action. A usual practical action becomes then a (implicit) message when the acting
agent knows others are observing and will understand his behaviour

137

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

3. agents should be able to understand the effect that their actions have on others, so
as to begin acting in the usual way also/only to obtain a desired/expected reaction

Based on these requirements, two types of computational smart environment are defined
in [TCR+05]: common environment and shared environment.

Agents that live in a common environment (c-env) are agents whose actions and goals
interfere (positively or negatively), thus need coordination to manage this interference.
Agents can observe just the state of the environment and act on that basis, without having
access to the actions of their peers. Even a trace is seen as part of the environment and
not as a product of other agents. A general property of a c-env is that it enables agents
to modify the environment state while keeping track of it. A shared environment (s-env)
instead, is a particular case of a c-env that enables (i) different forms of observability of
each other action executions, as well as (ii) awareness of this observability.

It is exactly this kind of smart environment, leveraging BIC and (cognitive) stig-
mergy through coordination artefacts, that is envisioned in Part II of this thesis with
the M olecules of K nowledge model and technology for self-organisation of knowledge
in knowledge-intensive STS. There, shared workspaces act as active repositories of in-
formation, autonomously and continuously monitoring users’ activity with the aim of
exploiting their tacit messages and traces of actions so as to enable anticipatory coordi-
nation [PCF07], while assisting usual workflows related to KM by autonomously dealing
with some of the aforementioned facets of KM.

5.3 Behavioural Implicit Communication

in Real-world STS

In this section a survey of a few real-world STS, heterogeneous in goals, architecture,
and functionalities, is discussed, seeking for the practical (virtual) actions they provide
(Subsection 5.3.1). Then, in Subsection 5.3.2, the pool of actions the STS have in common,
that is, those actions having different names but the same (epistemic) goal, is devised
out, as well as the tacit messages the common actions may convey and the consequent
perturbation actions they may bring along.

The purpose of the section is to bridge the gap between theory and practice, showing
that BIC is not only a fancy cognitive theory, but a pervasive facet of everyday techno-
logical activities.

5.3.1 Survey of Actions

It should be noted that the following list is not comprehensive: for each STS covered by
the survey, the focus is solely on those actions which could more easily be interpreted in
epistemic terms, and which could be defined positive, in the sense of adding information

138

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

and connections, not removing them—e.g., the “post” action vs. the opposite, “delete
post” action. Also, features not available to the average user are ignored, e.g., companies,
groups, public pages and profiles, premium services.

As far as Facebook is concerned, actions considered are:

post publish something on Facebook wall, e.g., a text, an image, a video, or an hyperlink.
The published piece of information may be publicly visible, or its visibility can be
constrained with a fine granularity

like manifest interest in a piece of information, e.g., a post, a re-post, or a comment. It
should be noted that interest is usually positive, meaning that the user liking the
post (or a comment to a post) enjoys or agrees with the information, but could also
be negative, if the opposite is true, depending on the acting user habits and shared
conventions among his/her friends

comment comment a post with information, e.g., text, an image, a video, or hyperlinks

reply reply to a comment with another comment. The difference w.r.t. a comment, is
that the subject of a comment is a post, while the subject of a reply is a comment

share share someone else’s post, either with an additional comment, or as it is—the
source is automatically cited. The target audience is limited by the original post
visibility constraints

save store a post for later retrieval. The saved piece of information is placed in a special
section of a user workspace, and is periodically re-brought to user attention

tag friends explicitly bring to a given friend attention the piece of information he/she
is tagged in. As a consequence, an explicit notification is sent to the tagged friend

add friend include a given person in the list of friends, that is, the list of observable
people who can in turn observe the acting user. Observability potentially includes
anything visible on the activity registry each Facebook user has—fine grained visi-
bility details may be tuned at will

search search for any information, including posts, public pages, interest groups, people

As far as Twitter is concerned, actions considered are:

tweet post something to Twitter wall. Besides text, pictures, hyperlinks, and Facebook-
like items, also a poll can be published

re-tweet re-publish someone else’s tweet, either with an additional comment, or as it
is—the source is automatically cited

139

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

reply reply to a tweet with another tweet specifically directed to the author of the replied
tweet, and referring to the original tweet—the author is automatically tagged and
the source tweet included

favourite manifest interest in a tweet. Similarly to Facebook “like”, interest is usually
positive

share privately send the link to a tweet to a friend with a private message

follow include a given profile in the list of followed profiles, that is, the list of observable
profiles you get notifications from. Differently from Facebook friendship, Twitter
“following” relationship is not symmetric

search search for free terms, profiles, hashtags

As far as Google+ is concerned, actions considered are:

post post something on Google+ wall

share share someone else’s post, either with an additional comment, or as it is—the
source is automatically embedded in the new post

+1 manifest interest in a piece of information, e.g., a post or a comment. As for Facebook
and Twitter, usually a positive interest

comment comment a post with text, or hyperlinks

reply reply to a comment with another comment

add people add people to the network of friends, that is, the list of observable people
who can in turn observe the acting user

search search for people, profiles, communities, collections of information

As far as LinkedIN is concerned, actions considered are:

post post something on your LinkedIN profile, e.g., text, an hyperlink, a picture

suggest manifest interest in a piece of information, e.g., a post or a comment

comment comment a post with other information, e.g., text or hyperlinks

share share someone else’s post, either with and additional comment, or as it is—the
source is automatically cited

connect include a given person in the list of connections, that is, the list of observable
people who can in turn observe the acting user

140

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

search search for people, job offers, firms, groups, universities, posts, even personal mail

As far as Mendeley is concerned, actions considered are:

publish publish an already published paper. The paper becomes available in the acting
user’s profile, and searchable through Mendeley search facilities

post publish something on Mendeley news feed, e.g., text or hyperlinks

like manifest interest in a piece of information, e.g., a publication, or a post

comment comment a post with other information, e.g., text or hyperlinks

cite share someone else’s publication, either with an additional comment, or as it is,
while attributing authorship

download download the publication, if made available by the author

follow include a given author in the list of followed profiles, that is, the list of observable
authors you get notifications from. Similarly to Twitter following relationship, this
is not symmetric

search search for people, papers, or interest groups

As far as Academia.edu is concerned, actions considered are:

publish publish a paper, either already published, or new. The paper becomes available
in the acting user’s profile, and searchable through Academia.edu search facilities

bookmark store a publication in a special, public bookmarks section for later retrieval

download download the publication, if made available by the author, otherwise ask for
a private copy

follow include a given author in the list of followed profiles, that is, the list of observable
authors you get notifications from. As for Mendeley following relationship, this is
not symmetric

search search for papers, people, universities

As far as ResearchGate is concerned, actions considered are:

publish publish a piece of information, whose type can be dynamically designed. Sup-
ported publication types are, among the many, article, book, code, dataset, patent,
presentation, thesis, and so on. Published information becomes available from the
publisher profile, and searchable through ResearchGate search facilities

141

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

comment comment a published item with other information, e.g., text or hyperlinks

download download a given piece of information, if made available by the author, oth-
erwise ask for a private copy

follow follow an author, a publication, or a question. Regardless of the subject of the
follow action, the follower now gets updates regarding modifications of the followed
source of information—e.g., new publications from authors, new comments on pub-
lications, new answers to questions. The following relationship is not symmetric,
whatever are the involved entities

ask publish a question on your profile, which anybody can publicly answer to

answer publicly answer a published question

vote publicly up-vote or down-vote either a question or an answer

endorse publicly endorse a given skill of a given person

search search for people, publications, questions, job offers

As far as Storify is concerned, actions considered are:

add source add a source of information to your story. The admissible sources are, among
the many, other Storify elements, Twitter tweets and user profiles, Instagram1 posts
and users, YouTube videos, any Google search result, and many more

add content add content to your story, taken from one of the already added sources

comment story add comments to a specific content of a given story

publish story publish a story. From now on, the story can be publicly used a source of
information into other stories

like story manifest interest in a whole story

share story share someone else’s story

search stories search for stories based on free terms

follow include a given storyteller in the list of followed profiles, that is, the list of ob-
servable profiles you get notifications from. Like in the case of Twitter, the relation
is not symmetric

1http://www.instagram.com

142

http://www.instagram.com

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

5.3.2 Factorisation of Common Actions

Based on the extensive survey just described, a core set of common actions shared by
almost all the heterogeneous STS just described are indentified, whose goals, despite
their diversity, are almost identical—at the level of abstraction suggested by BIC theory:

share the share action encompasses posting novel information, sharing or citing someone
else’s posts, publishing papers or stories, asking questions, and so on. Namely, any
action whose effect is that of adding information to the system

mark the mark action encompasses liking a post, voting a question/answer, bookmarking
a publication, giving +1 to a post, and so on. Namely, any action whose effect is
that of marking information as relevant or not, qualitatively or quantitatively

annotate the annotate action encompasses, besides the obvious annotation to stories,
comments to existing posts, replies to comments, answers to questions. Namely,
any action whose effect is that of attaching a piece of information to an existing
information

connect the connect action encompasses adding friends, following people or sources of
information, and adding content and sources to stories. Namely, any action ex-
panding the network of relationships between a user and other users or sources of
information

harvest the harvest action encompasses all kinds of search actions, whatever their target
is. Namely, any action aimed at acquiring knowledge about either potential sources
of information or potentially relevant pieces of information

Tacit messages from actions Each of the common actions just devised out may
convey different tacit messages, depending on a number of factors, such as the context
within which the action occurred, the source and target of the action, and the degree of
mutual awareness the specific platform supports.

In the following, a few tacit messages are sketched for each action, so as to give the
reader a clue about how BIC may be used in real-world scenarios—tacit messages are
referred to using their numbers, as in Subsection 5.2.3.

share re-publishing or mentioning someone else’s information can convey, e.g., tacit mes-
sages 1, 3, 5. If X shares Y ’s information through action a, every other agent ob-
serving a becomes aware of existence and location of both X and Y (1). The fact
that X is sharing information I from source S lets X’s peers infer X can manipulate
S (3). If X shared I with Z, Z may infer, e.g., that X expects Z to somehow use
it (5)

143

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

mark marking as relevant a piece of information can convey, e.g., tacit messages 1, 4. If
the socio-technical platform lets X be aware of Y marking information I as relevant,
X may infer that Y exists (1). If Y marks as relevant I belonging to X, X may
infer that Y is interested in her work, perhaps seeking for collaborations (4)

annotate annotating a piece of information can convey, e.g., tacit messages 5, 6. Since X
annotated, e.g., Y ’s post, any agent observing X may infer she just finished reading
that post (5). Furthermore, by interpreting the content of the annotation, agents
peers of X may infer the motivation behind X’s annotation (6)

connect subscribing for updates regarding some piece of information or some user can
convey tacit messages 2, 4. Since X manifested interest in Y ’s work through sub-
scription, Y may infer X intention to use it somehow (2). Accordingly, Y may infer
the opportunity for, e.g., collaboration (4)

harvest performing a search query to retrieve information can convey, e.g., tacit messages
1, 2, 4—it should be noted, however, that which assumptions to make about a search
action heavily depends on which search criteria are supported. If X search query is
observable by peer agents, they can infer X existence and location (1). Also, they
can infer X goal to acquire knowledge related to its search query (2). Finally, along
the same line, they can take the chance to provide matching information (4)

Perturbation actions from tacit messages The last step still missing to bridge
the gap between theory and practice regarding BIC in real-world STS, is to answer the
question: how can a coordination middleware, underlying the socio-technical platform for
KM, take advantage of all the possible tacit messages, just ascribed to (inter-)actions, for
the benefit of the coordination process? The answer proposed in the following is: through
perturbation actions.

Perturbation actions are computational functions/processes changing the state of a
STS in response to users’ interactions, but transparently to them [MO15a]. Perturbation
actions exploit the implicit information conveyed by tacit messages, leveraging the mind-
reading and signification abilities ascribed to agents (either software or human), as well
as to the (smart) computational environment, with the aim of tuning the coordination
process so as to better support the ever-changing KM related needs of the socio-technical
platform, and its users.

Accordingly, perturbation actions may, e.g., (i) spread discovery messages informing
agents about the presence and location of others (tacit message presence), (ii) establish
privileged communication channels between frequently interacting agents (opportunity),
(iii) encourage/obstruct some desirable/dangerous interaction protocols or situated ac-
tions (intention, ability, goal), (iv) recommend to users novel, potentially interesting
information as soon as it is available (accomplishment, result).

144

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

Not by chance, perturbation actions are one essential abstraction of the M olecules of
K nowledge model, as described in Chapter 6 in Part II of this thesis, where their role
and how they work in a concrete middleware is thoroughly described. Here, the survey is
concluded by providing some clues about which possible perturbation actions may be put
to work by the aforementioned real-world socio-technical platforms, based on the devised
pool of common actions. However, what follows is a speculation on what could be possibly
done behind the scenes of these platforms, since for many of them no public disclosure of,
e.g., ranking algorithms is available.

share provided by Facebook, Twitter (retweet), G+, LinkedIN, Mendeley (post), Storify,
Academia.edu (publish), ResearchGate (publish), etc. It is likely to help the STS
platform, underlying the social network application, in

• suggesting novel connections, based on common interests

• ranking feeds in the newsfeed timeline, based on similarity

• tuning personalised advertising policies, based on posts topic

• recommending content (e.g., job offers, publications, news stories), based on
similarity

mark provided by Facebook (like), Twitter (like), G+ (+1), LinkedIN (suggest), Mende-
ley (like), Academia.edu (bookmark), ResearchGate (follow/download), Storify, etc.
It is likely to influence the STS similarly to what described above, with the addition
of enabling/strengthening notifications for the marked items

annotate provided by almost any STS, it is likely to help the STS platform by

• suggesting novel connections, based on shared annotations

• recommending content (e.g., job offers, publications, news stories), based on
annotated items

• enabling/strengthening notifications for the annotated items

connect provided by Facebook (add friend), Twitter (follow), G+ (add), LinkedIN,
Mendeley (follow), Academia.edu (follow), ResearchGate (follow), etc. It is likely
to help the STS platform by

• suggesting further connections

• activating/ranking feeds in the newsfeed timeline

• enabling/strengthening notifications for new/old connections

harvest provided by almost every social network, it is the epistemic action by its very
definition, thus may be exploited by the STS platform in a wide number of ways,
heavily depending on which are the searchable information items, and which are the
searching parameters. Among the many possible reactions:

145

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

• re-organise the knowledge graph internally used by the STS

• tune the algorithm providing suggestions

• improve personalised advertising policies

• suggest novel connections, based on search terms

• ranking feeds in the newsfeed timeline, based on search results

5.4 Remarks & Outlook

The material presented in this chapter is fundamental to the conception of the M olecules
of K nowledge model, and affects the whole thesis, too.

First of all, the A&A meta-model is the reference framework for thinking about MAS
modelling and engineering. The notion of coordination artefact as mediator of both social
and situated interaction within any distributed computational system is central not only
to MoK , but to the whole thesis—as witnessed by Chapter 4, in particular. The same
holds true for stigmergic coordination, either cognitive or not.

The whole approach to coordination in the data-driven way based on tuple spaces
encourages and directly supports adoption of environment mediated interaction, where
the environment is the network of tuple spaces itself.

Furthermore, the idea of interpreting the (computational) environment as an active
component of the system, able to autonomously perform actions (think about pheromone
diffusion, aggregation, and evaporation), is used not only in MoK , but also in the chemical
metaphor for self-organising coordination described in Chapter 2, where the environment
is a tuple space enriched with a pro-active behaviour—the simulation of a chemical solu-
tion dynamics.

Focussing the M olecules of K nowledge model in particular, besides the notions of
artefact, workspace, and stigmergic coordination being enabler for MoK technology, the
socio-cognitive theory of BIC is the “big deal”. BIC provides the conceptual framework
to knowledgeably fill a gap in current coordination models and languages theory and
practice, that is, the fact the coordination model obviously affects users’ interactions, but
there is no way to have users affect the coordination processes while performing their
usual activities. Furthermore, BIC provides the means to do so transparently to users, as
an implicit facet of their everyday (interaction) activities.

Being able to do a similar thing is of paramount importance, especially within the
context of knowledge-intensive STS. As already pointed out, mutual awareness (including
peripheral awareness, too), as well as the ability to delegate activities to coordinative
artefacts – according to [SS00] terminology – is the only path toward bridging the gap
between current approaches to KM.

For all these reasons, the M olecules of K nowledge model discussed in the upcoming
Part II is heavily centred around the notions of tacit message (traces in MoK) and

146

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

perturbation action—besides being obviously based on situatedness of interactions and
chemical-inspired self-organisation.

147

CHAPTER 5. COORDINATION ISSUES IN KNOWLEDGE-INTENSIVE STS

148

Part II

Self-organisation of Knowledge
in M olecules of K nowledge

149

In this second part of this thesis, the M olecules of K nowledge (MoK) model and tech-
nology for self-organisation of knowledge in knowledge-intensive socio-technical systems
is presented. MoK is the result of the integration of all the different, but complementary,
contributions presented so far, in Part I of this thesis.

In fact: (i) it is a self-organising biochemical coordination model, where coordination
laws are biochemical reactions, information items are molecules, and the agents to coor-
dinate are the chemists working with a “knowledge-based chemical solution”—Chapter
3; (ii) it has been prototyped as a middleware layer for knowledge management applica-
tions, by implementing it upon the TuCSoN coordination infrastructure, fully exploiting
its situated architecture, for distribution, and the ReSpecT language, for spatio-temporal
awareness and adaptiveness—Chapter 4; (iii) it integrates a socio-cognitive theory of
action and interaction since its very foundation, adopting the behavioural implicit com-
munication perspective over anticipatory coordination via tacit messages and stigmergic
coordination—Chapter 5.

151

Chapter 6

The M olecules of K nowledge Model

Nowadays, ICT systems have gone far beyond pure algorithmic, Turing Machine like com-
putation, as Turing himself anticipated long ago with o-machines and c-machines [Tur39],
and Wegner later highlighted [Weg97] with its equation “computation = algorithm + in-
teraction”. The question “how to manage interactions?” then, originated a whole research
landscape, branded coordination models and languages, which is specifically devoted to
figure out how to manage dependencies arising from interacting activities in systems of any
sort [MC94]. However, in recent years a plethora of novel open, pervasive, highly dynamic,
and mostly unpredictable systems, such as self-organising ones, have surged, presenting
brand new challenges demanding for innovative coordination approaches [OV11].

Socio-Technical Systems (STS) and Knowledge-Intensive Environments (KIE) are
both blatant examples of such a sort of systems, being them conceived and designed
to combine business processes, technologies and people’s skills [Whi06] to store, handle,
and make accessible large repositories of information [Bha01].

Managing their interaction space is of paramount importance, for guaranteeing their
functionalities, as well as for providing desirable non-functional properties [SS00]—e.g.,
scalability, fault-tolerance, self-* properties in general. However, engineering coordina-
tion mechanisms and policies accordingly is far from trivial, mostly due to the peculiar
characteristics of the aforementioned systems highlighted in Chapter 5.

The data-driven approach to coordination [DPHW05], such as tuple space based mod-
els [Gel85], aims at coordinating interacting agents by properly managing access to in-
formation, rather than by directly commanding the parties about what to do, and when.
A similar approach seems very suitable for the above described knowledge-intensive STS,
where data, information, and then knowledge drive both the business goals of the or-
ganisation as a whole, as well as the everyday activities of the co-workers sharing the
computational platform in charge of knowledge management.

Therefore, a possibly novel research thread departs from the question: why to stick
viewing data as passive, “dead” things to run algorithms upon in the traditional I/O
paradigm? Why not to foster a novel interpretation of both knowledge management and

153

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

data-driven coordination in general, where data is alive, a living thing spontaneously and
continuously evolving so as to better serve the ever-changing needs of the organisation?

The M olecules of K nowledge model is precisely devoted to answer the question, pro-
viding a self-organising, user-centric approach to coordination for knowledge-intensive
STS.

Overview A MoK -coordinated system is a network of MoK compartments (informa-
tion containers), in which MoK seeds (sources of information) continuously and au-
tonomously inject MoK atoms (atomic information pieces).

MoK atoms may then aggregate into molecules (composite information chunks), dif-
fuse to neighbouring compartments, lose relevance as time flows, gain relevance upon
users interactions, or have their properties modified, as a consequence of user agents’
interactions.

These autonomous and decentralised processes are enacted by MoK reactions (the
coordination laws dictating how the system evolves), and are influenced by MoK enzymes
(reification of user agents’ actions) and by MoK traces (actions’ side effects).

Traces are transparently, and possibly unintentionally, left within the working envi-
ronment by MoK catalysts (users, either human or software agents) while performing
their activities.

6.1 Core Abstractions

The MoK model is built around the following abstractions.

Seeds As MoK sources of information, seeds are meant to represent any facet of a
source of information and to make available any information therein contained which
may be useful for the application at hand. Sources of information reified by seeds may
be legacy DBs, web pages, RSS channels, files on disk, sensor devices, and so on: namely
anything capable of generating raw data or (un)structured information.

Seeds generate information continuously and autonomously, that is: any data chunk is
produced by a seed multiple times, not once, at a rate depending on heterogeneous and dy-
namic contextual information—e.g., congestion of the MoK system, predicted relevance of
the information, users’ preferences, and so on; any data chunk is produced spontaneously
by the seed, with no need for external intervention—still allowed for agents willing to
influence atoms generation process.

Seeds may be formally defined as follows:

seed(Src ,Atoms)c, c ∈ <+

Src ::= URI

Atoms ::= atom ici | atom
i
ci
, Atoms , ci ∈ <+, i ∈ N

154

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

where: Src is meant to provide an always up-to-date reference to the original source of
information, wherever it is, and in whichever format it is persistently stored—e.g., the
URL of a web page, the absolute path of a file on disk, and so on; Atoms is the set of
atoms to be released into the compartment where the seed lives, each with its own initial
concentration value.

Atoms As MoK atomic unit of information, atoms are meant to represent any piece
of information which can be regarded as being atomic, that is, non further decomposable
in smaller chunks—the granularity of information is decidable either by agents manually
creating atoms, or by MoK itself automatically extracting atoms from seeds.

Accordingly, atoms may represent table cells of a relational DB, nodes in a graph DB,
document content or metadata in a document-oriented DB; hyperlinks of a web page,
feeds of an RSS channel, posts or comments in a blog; word, phrases, or paragraphs in an
article, and so on.

Atoms are continuously and autonomously injected by seeds into compartments, where
they become susceptible to MoK computational process—e.g., they can be aggregated
into more complex information heaps, exploited to inference novel knowledge, or shared
with other membrane-connected compartments.

Atoms may be formally defined as follows:

atom(src ,Content ,Meta-info)c, c ∈ <+

Content ::= raw information

Meta-info ::= (semantic) metadata

where: Content is the raw piece of atomic information the atom conveys – e.g., records
of a DB, comments of a blog, sentences of an article, and so on –, whereas Meta-info is
meant to store any kind of metadata, related to the atom’s content, supporting knowledge
inference & discovery—e.g., the DB schema the content must comply to, a set of synonyms
for a set of words, the categorisation of an article topic based on a dedicated ontology,
and so on.

Molecules As MoK composite unit of information, molecules are meant to repre-
sent any piece of information which cannot be regarded as being atomic. Accordingly,
molecules may represent table rows in a relational DB, sub-graphs in a graph DB, a col-
lection of documents in a document-oriented DB; hyperlinks chains in a web page, related
feeds of an RSS channel, posts with comments in a blog; similar words, related phrases,
or sections in an article, and so on.

As such, molecules are, in general, collections of semantically related atoms, where
the semantics underlying the aggregation process depends on the business domain of the
application at hand—e.g., for a citizen journalism IT platform, the driving force may be
the semantic similarity of news articles based on a given ontology.

155

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Molecules are continuously and autonomously generated by MoK computational pro-
cesses, to whom they are susceptible likewise atoms—still, agents, too, can manually
create, manipulate, and share molecules. Molecules may be formally defined as follows:

molecule(Atoms)c, c ∈ <+

Atoms ::= atom i | atom i, Atoms , i ∈ N

{Atoms | FM oK (atom i, atom j) = δ ≥ th}, i 6= j ∈ N, δ, th ∈ (0, 1] ∈ <

where the atoms aggregated by a molecule have to be, according to FM oK , sufficiently (δ)
semantically related – the threshold th defining “sufficiently” being necessarily applica-
tion specific –, and each atom within the molecule must be unique—it is meaningless to
aggregate identical atoms.

Compartments As MoK knowledge containers, compartments are the computational
abstraction in MoK , responsible for (i) handling the whole information lifecycle – from
storage to sharing, to knowledge inference – as well as its availability to agents, and
for (ii) scheduling and executing the processes manipulating information and supporting
knowledge inference, discovery, and sharing.

As such, compartments act as active repositories of knowledge, not merely storing
information persistently to make it available to agents upon need, but also autonomously
evolving information – possibly improving its quality and inferring novel knowledge –,
and pro-actively sharing information with other compartments—possibly moving it closer
to where it is needed more.

Compartments may be formally defined as follows:

JSeeds , Atoms , Molecules , Enzymes , Traces , Reactions ,�jK, j ∈ N

where brackets J·K denote the compartment, and symbol � denotes a membrane between
the defined compartment and others (iterated over by j).

Membranes As MoK interaction channels, membranes are the communication ab-
straction in MoK , as well as its topological abstraction.

On the one hand, membranes enable exchange of information between compartments;
on the other hand, by establishing 1 : 1 communication channels, membranes implicitly
define the notions of locality and neighbourhood in MoK . Locality, because they forbid
interaction between compartments which are not coupled by any membrane, thus confine
the computational processes therein. Neighbourhood, because they allow computational
processes to involve more than one compartment, given they are coupled by a membrane—
e.g., sharing of information necessarily involves a sending compartment and, at least, a
receiving compartment.

Membranes may be formally defined as follows:

156

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

J. . .Ki � J. . .Kj, i 6= j ∈ N

where symbol � denotes the membrane connecting compartments i and j.

Catalysts As MoK knowledge workers, catalysts represent within MoK the agents
– either software or humans – which need to undertake (epistemic) actions over the
information living within the MoK system, in order to achieve their business goals.

As a side effect of their activity, catalysts influence – intentionally or not – both (i) the
way in which MoK processes apply to information and knowledge, and (ii) information
properties—such as relevance and location. Influence is based on both (i) the epistemic
nature of the activity taking place – e.g., a “search” action vs. a “share” action –, and (ii)
contextual information regarding the action itself—e.g., which information is involved,
where it is, who is doing the action, when, and so on.

As long as the goal is that of improving information quality, promoting knowledge
inference and discovery, and supporting effective information sharing, any system property
and any information available to MoK may be affected—e.g., tuning processes working
rate, manipulating information content and location, and so on.

Catalysts may be formally defined as follows:

Catalyst ' (α † J. . .K).Catalyst

α ∈ {share(Reactant) | mark(Reactant) | annotate(Reactant) | connect(Reactant) |
harvest(Reactant)}

Reactant ::= seed | atom | molecule

where α denotes actions available to catalysts, and symbol † denotes application of the
action to a compartment—a catalyst behaviour is then modelled (') as the sequence of
actions she performs within different compartments.

Enzymes As MoK reification of actions, enzymes reify within MoK (i) the epistemic
nature of all the actions available to agents for information handling and knowledge
discovery, as well as (ii) any contextual information related to actions.

The former is vital to MoK because it enables adaptiveness, that is, the ability of MoK
computational processes to dynamically change their functioning according to what the
agents are doing—e.g., search queries for a given keyword may increase the frequency at
which related information is shared from neighbouring compartments.

The latter is fundamental because it enables situatedness & awareness, that is, the
ability of MoK to precisely characterise actions in space, time, and w.r.t. any other
property of the computational environment they are taking place within—e.g., who is
taking action, where (e.g., in which compartment), when, and so on.

Enzymes are automatically and transparently (to agents) produced by the compart-
ment where the action is taking place, which means (i) agents need to do nothing else

157

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

beyond their usual actions to generate enzymes – thus there is no cognitive/computa-
tional overhead for them –, and that it is not necessary for agents to be aware of enzymes
being released whenever they undertake actions—nevertheless, awareness may help them
gain better assistance from MoK , as discussed while introducing Behavioural Implicit
Communication (BIC) in Chapter 5.

Enzymes may be formally defined as follows:

enzyme(Species ,s species,Reactant ,Context)c, c, s ∈ <+

Species ::= share | mark | annotate | connect | harvest
Reactant ::= atom | molecule

Context ::= any contextual info

where: Species denotes the epistemic nature of the action the enzyme reifies, and con-
tributes to determine the perturbation action carrying out the influences of the action
on the MoK system—through traces, see below; sspecies depends on Species and denotes
the strength of the enzyme, that is, the magnitude of the relevance boost brought to the
semantically related atom or molecule; Context is meant to track any contextual infor-
mation regarding the action which may be useful for coordination purpose (e.g., time of
execution, outcome, previous & following action, etc.).

Traces As MoK reification of actions’ effects, traces reify within MoK any (side) effect
that any action could cause, that is, any modification to MoK computational environment,
which is due to the action but may not be its intentional primary effect. A category
of (side) effects of actions, particularly interesting for MoK , is that of tacit messages
[CPT10], thoroughly discussed in Chapter 5—and briefly recalled in Section 6.3.

Traces are automatically and transparently (to agents) produced by the compartment
where the action took place, similarly and consequently to enzymes. Together, enzymes
and traces enable anticipatory coordination in MoK —see Section 6.3.

Traces may be formally defined as follows:

trace(Msg ,Target)c, c ∈ <+

Msg ::= presence | intention | ability | opportunity | accomplishment | goal | result
Target ::= seed | atom | molecule | � | Reaction

where: Msg is the tacit message conveyed by the trace, depending on the corresponding
enzyme’s species and action context, and (possibly) modulating the way the trace affects
the system state—see Section 6.3 for details; Target is what could be affected by the
trace, depending on the generating enzyme species and reactant.

Along with Msg , any additional information regarding the tacit message may be stored
in a MoK trace – e.g., the acting agent location –, to be later retrieved by MoK reactions
– applying perturbation actions, in particular – when needed.

158

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Perturbations As MoK interactions’ side effects, perturbations are the computational
functions in charge of applying (application specific, custom defined) side effects of agents’
interactions with MoK , actually enacting the influence on information lifecycle – as well
as on knowledge inference, discovery and sharing – MoK agents may have.

Accordingly, perturbation actions may affect both (i) MoK autonomous processes
functioning – e.g., their application rate, their targets, and so on – and (ii) information
and system properties—e.g., content, location, relevance, and so on.

Perturbation actions are associated to MoK traces – deposited by enzymes, in turn –
and autonomously carried out by MoK compartments as soon as possible, which means,
when (i) the trace causing the perturbation is present in the compartment, and (ii) the
body of knowledge or the system property target of the perturbation is available for
manipulation.

Summing up, perturbation actions enact the influence of agents on the body of knowl-
edge in MoK , coherently w.r.t. the side effects of their interactions as represented by
traces, which are automatically generated from the original (epistemic) action as reified
by enzymes.

Perturbation actions may be formally defined as follows:

perturbation(P species,Target)

P species ::= attract | repulse | approach | drift-apart | strengthen | weaken | boost |
wane

Target ::= seed | atom | molecule | � | Reaction

where P species is the perturbation action caused by the trace, depending on the trace
tacit message and its target, as well as (indirectly) from the original enzyme species and
context—see Section 6.3 for details on correspondences.

Description of the meaning and purpose of each perturbation action is detailed in Sub-
section 6.3.1. Nevertheless, a brief overview is undoubtedly useful: attract perturbation
action brings information closer to where the original action took place (repulse does
the opposite); approach facilitates exchange of information between compartments (the
one where the action took place and the one where the trace ends up being, drift-apart
does the opposite); strengthen increases concentration of information (weaken does the
opposite); boost increases rate of a MoK reaction (wane does the opposite).

Reactions As MoK knowledge dynamics processes, reactions are the autonomous and
decentralised processes supporting (meta) information handling as well as knowledge in-
ference, discovery and sharing in MoK .

Autonomous, because reactions are scheduled and executed by MoK compartments
according to dynamic rate expressions – inspired by rate expressions of natural chem-
ical reactions –, which are meant to support awareness of the contextual information
which may affect reactions application. This in turn enables adaptiveness to the external
influences put by interacting agents.

159

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Decentralised, because MoK reactions may apply to seeds, atoms, molecules, as well as
enzymes and traces, depending on their nature and purpose, but anyway they only rely on
local information since they can only affect neighbouring compartments, at most—many
reactions are confined within a single compartment.

The rationale driving reactions application to seeds, atoms, etc. – that is, to which
specific seed, atom, etc. a given reaction is applied to – is similarity between the reactant
templates used in the left hand side of the reaction and the actual reactants available in
the reacting compartment.

The semantics underlying this similarity measure is business domain specific—e.g., in
the case of a IT platform for collaboration and sharing of papers between researchers,
documents similarity measures such as squared Euclidean distance, cosine similarity, and
relative entropy are all reasonable alternatives.

Details regarding the nature and purpose of each MoK reaction, as well as descrip-
tion of requirements for the similarity measure, are given in Section 6.2 and Section 6.4,
respectively. Reactions formalisation, too, follows in next section.

6.2 Focus on Reactions

In this section MoK reactions are thoroughly described. First, their structure and their
execution rate are formally defined (Subsection 6.2.1), then, a report on their evaluation
is provided, by simulating their interplay according to custom kinetic rates, using the
BioPEPA tool for chemical solutions simulation (Subsection 6.2.2). This also motivates
why that specific rate expressions have been chosen.

It should be noted that, to enhance readability and avoid redundancy, from the kinetic
rate expressions of each reaction has been omitted a multiplicative parameter h , meant
to represent a hook for tuning MoK reactions’ application rates—e.g., through MoK
perturbation reaction. This parameter is initially set to 1, thus does not affect the effective
rate of execution. Then, as the MoK system evolves, it may be either increased or
decreased so as to speed up or slow down the reaction rate upon need—e.g., due to
catalysts interactions.

6.2.1 Formal Description

As briefly described in Section 6.1, reactions are MoK autonomous and decentralised pro-
cesses supporting (meta) information handling as well as knowledge inference, discovery
and sharing—essentially, they determine the global behaviour of a MoK system, together
with agents’ interactions. On purpose, MoK features the following reactions.

Injection MoK injection reaction generates atoms from seeds, at a given rate, putting
them into the compartment where the seed is. Injection reaction may be formally defined

160

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

as follows:

seed(src ,Atoms)
rinj−−→ seed(src ,Atoms) + atom ic+ci , ∀atom ici ∈ Atoms

rinj = 1
1+time

∗ diff(]seed ,]atom)

where:

• superscript i denotes the i-th atom in the set of atoms Atoms—and, accordingly, its
concentration, denoted by subscript ci

•] is the operator returning concentration of its operand

• diff(·,·) is a function computing any one notion of difference between concentra-
tions (e.g., subtraction)

• time is the operator measuring the flow of time

In particular, given a seed able to generate a set of atoms, each of them is injected in
the local compartment, with its own concentration – adding up to the concentration of
identical atoms already present –, every 1

rinj
time steps1.

The dynamic rate expression of the injection reaction represents a trade-off between
two contrasting needs: on one hand, atoms should be perpetually injected into a MoK
system, since there is no reasonable way to know a-priori when some information will be
useful the most; on the other hand, it is desirable to avoid flooding the system without
any control on the quantity of atoms – thus the size of the knowledge base – in play.

Accordingly, rinj is designed to: (i) slower the injection process as time passes, thus
as the compartment likely becomes more and more congested, (ii) comply to a threshold
enforcing an upper bound on the concentration of injected atoms—as soon as saturation
is reached, the injection reaction stops until the atoms’ concentration lowers.

Aggregation MoK aggregation reaction ties together semantically related atoms into
molecules, or molecules into other molecules, at a given rate. Aggregation reaction may
be formally defined as follows:

Reactant ′ + Reactant ′′
ragg−−→ (Reactant ′ ⊕ Reactant ′′) + (Reactant ′ 	 Reactant ′′)

⊕ = {Reactants | FM oK (Reactant ′, Reactant ′′) = δ ≥ th}
	 = {Reactants | FM oK (Reactant ′, Reactant ′′) = δ < th}

}
δ, th ∈ (0, 1] ∈ <

Reactant ::= atom | molecule
Reactants ::= Atoms | Molecules

ragg = time

]Reactantlhs

1Approximately, due to the stochastic nature of the scheduling algorithm used by MoK compartments
to execute reactions, detailed in Section 7.1 of Chapter 7.

161

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

where:

• same apices (′) denote same reactants

• th is an arbitrary threshold, necessary to determine whether different information
pieces are sufficiently semantically related to be aggregated

• FM oK is the function computing semantic similarity in MoK , thoroughly described
in Section 6.4

• ⊕ is the operator returning the set of reactant obtained by extracting from the two
input sets only those reactants for which FM oK result is above (or equal to) the
threshold

• 	 is the operator returning the set of reactants obtained by extracting from the two
input sets only those reactants for which FM oK result is below the threshold—thus,
it is the dual operator of ⊕

• superscript lhs denotes the left-hand-side of the reaction—notation]Reactant lhs ,
therefore, counts the number of either one among reactants

and concentration values are not specified because they all equal 1. In particular, given
two molecules – or two atoms, or one atom and a molecule –, every 1

ragg
time steps they

are joined into a new one, binding together semantically related atoms while non-related
ones are released back into the reacting compartment.

The dynamic rate expression of the aggregation reaction is meant to enforce a direct
proportionality between the size of a molecule and the speed of aggregation: the bigger
a molecule is – that is, the more knowledge a molecule is conveying –, the faster it will
aggregate—that is, the more frequently it will attract other atoms/molecules.

Diffusion MoK diffusion reaction moves atoms, molecules, and traces among neigh-
bouring compartments, at a given rate. Diffusion reaction may be formally defined as
follows:

JReactants ′ ∪ Reactant Ki � JReactants ′′Kj
rdiff−−→ JReactants ′Ki �

JReactants ′′ ∪ Reactant Kj, i 6= j ∈ N

Reactant ::= atom | molecule | trace
Reactants ::= Atoms | Molecules | Traces

rdiff = d ∗ diff(J]Reactant Ki, J]Reactant Kj), d ∈ (0, 1] ∈ <

where:

• brackets J·K delimit compartments

162

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

• subscript i, j identify a specific compartment

• symbol � denotes membranes connecting compartments

• d is an arbitrary weight factor tuning diffusion strength

In particular, given two compartments connected by a membrane, a molecule, an atom, or
a trace, from either of the two, is removed and sent to the other – one unit of concentration
at a time –, at the rate given by rdiff dynamic rate expression.

The rate expression is meant to (i) provide an upper bound on diffusion, avoiding
unbounded proliferation of foreign information pieces in compartments which are not
their origin – here, diffusion asymptotically tends to balance distribution of reactants
in neighbouring compartments –, (ii) provide a hook to fine-tune the extent to which
reactants are diffused—here, only a fraction of the reactants are allowed to diffuse.

Decay MoK decay reaction decreases the concentration of atoms, molecules, enzymes
and traces as time flows. Decay reaction may be formally defined as follows:

Reactant c
rdec−−→ Reactant c−1, c ∈ <+

Reactant ::= atom | molecule | enzyme | trace

rdec =

{
fMA(aR) ∗ log(1+time), aR ∈ <+, Reactant \ trace
diff(][⇑trace],]trace) ∗ log(1+time)

where:

• fMA is the function implementing the law of mass action [Car08], that is, the math-
ematical model explaining and predicting the behaviour of solutions in dynamic
equilibrium2

• aR is the affinity constant needed by fMA—which, here, can be diverse for each
Reactant type and dynamically adapted

• symbol ⇑ denotes where a MoK abstraction comes from—in this case, it states that
][⇑Trace] is the concentration of the enzyme who generated the trace to decay

2The law states that the rate of an elementary reaction (rf) – a reaction that proceeds through only one
transition state, that is, one mechanistic step – is proportional (kf) to the product of the concentrations
of the participating molecules (R1, R2): rf = kf [R1][R2]. kf is called rate constant and, in chemistry, is
a function of participating molecules affinity.

163

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

In particular, given an atom, molecule, enzyme, or trace, its concentration is decreased
by 1 at the rate given by rdec dynamic rate expression.

This rate expression is designed by recognising that time dependency alone is not
enough for a meaningful decay behaviour: it would simply end-up slowing down the
saturation process provided by injection reaction.

Hence, logarithmic time dependency guarantees a smoother decay process while depen-
dency on reactants’ concentration makes the process asymptotically tend to homogenise
information relevance.

Reinforcement MoK reinforcement reaction increases the concentration of atoms and
molecules according to MoK agents’ interactions, at a given rate. Reinforcement reaction
is formally defined as follows:

enzyme(species ,s species,Reactant ,Context) + Reactant ′c
rreinf−−−→

enzyme(species ,s species,Reactant ,Context) + Reactant ′c+s, c, s ∈ <+

FM oK (Reactant , Reactant ′) = δ ≥ th, δ, th ∈ (0, 1] ∈ <

Reactant ::= atom | molecule

rreinf = diff(][⇑Reactant],]Reactant)

where, in this case, symbol ⇑ states that][⇑Reactant] is either the concentration of the
seed source of the atom to reinforce, or an average of the concentrations of the seeds
sources of the atoms aggregated by the molecule to reinforce.

In particular, given an enzyme and a semantically related atom or molecule, the con-
centration the reactant is increased according to enzyme’s specification, every 1

rreinf
time

steps.
The dynamic rate expression of the reinforcement reaction is meant to enforce situ-

atedness and awareness of the feedback MoK agents implicitly provide to MoK . Thus,
feedback should (i) be prompt, that is, rapidly and highly increase concentration despite
decay, (ii) be bounded, both in time and space—enzymes do not diffuse and reinforcement
does not consider neighbourhoods, (iii) depend on the nature of interactions, that is, on
enzymes’ epistemic nature (the species).

Deposit MoK deposit reaction generates traces from enzymes, at a given rate, putting
them into the compartment where the (inter-)action originally releasing the enzyme took
place. Deposit reaction may be formally defined as follows:

enzyme(species ,s ,Reactant ,Context)
rdep−−→

enzyme(species ,s ,Reactant ,Context) + trace(Msg ,Target)c+s

rdep = 1
1+time

∗ diff(]enzyme ,]trace)

164

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

In particular, given an enzyme of a certain species, thus able to generate that species
of traces, every 1

rdep
time steps s concentration of the trace is deposited in the local

compartment.
The dynamic rate expression of the deposit reaction is the same as that of the injection

reaction, thus represents the same trade-off between flooding and availability. Neverthe-
less, remember that seeds do not decay while enzymes do, thus, the run-time dynamics
of the two reactions may be considerably different.

Perturbation MoK perturbation reaction carries out the (side) effects of (interaction)
activities undertaken by MoK agents, at a given rate, considering the enzymes’ species
and traces’ tacit message. Perturbation reaction may be formally defined as follows:

trace(Msg ,Target) + Target ′
rpert−−→ †(perturbation(P species,Target), Target ′)

Target ::= seed | atom | molecule | � | Reaction
rpert ∝ (p species , Reactant

′, trace)

where:

• symbol † denotes application of perturbation action p species to Target ′

• symbol ∝ is the usual symbol denoting some kind of proportionality—in this case,
it states that the dynamic rate expression of perturbation reaction should be a
function of the perturbation action, of any property of the matching target, and of
any property of the trace itself

In particular, given a trace of a certain species and its target, the perturbation action
corresponding to that species is started, at the rate given by rpert dynamic rate expression.

This rate expression depends on the specific perturbation action the trace applies, in
relation to its species and tacit messages being conveyed. Nevertheless, it is likely to also
depend on the concentration of the trace and the target involved.

The autonomous computational process started by the perturbation action may affect
any property of the target involved – e.g., increasing/decreasing reactants’ concentration,
or changing their location in the neighbourhood –, as well as any property of the MoK
system—e.g., tuning rate expressions.

6.2.2 Evaluation

Simulation is widely recognised as a fundamental development and evaluation stage in the
process of designing and deploying both MAS as well as biochemical processes [MAC+07,
GVO06]. This is mostly due to the high number of system parameters needed, the huge
number of local interactions between components, the influence of randomness and prob-
ability on system evolution.

165

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

A number of different simulation tools capable of modeling biochemical-like processes
exist, either born in the biochemistry field (see [AAS06] for a survey) or in the Multi-
Agent Based Simulation research area (survey in [NM09]). Among the many, Alchemist
[PMV13], PRISM [KNP11], and BioPEPA [CH09] at least, are worth to be mentioned.

The choice fell on the latter for its appealing features – briefly described in following
paragraph – which perfectly suit the purpose of this section.

The BioPEPA tool BioPEPA [CH09] is a language for modeling and analysis of bio-
chemical processes. It is based on PEPA [GH94], a process algebra originally aimed at
performance analysis of software systems, extending it to deal with some features of bio-
chemical networks, such as stoichiometry and different kinds of kinetic laws—including
the law of mass action. The most appealing features of BioPEPA are:

• custom kinetic laws represented by means of functional rates

• definition of stoichiometry (how many molecules of a given kind participate) and
role played by the species (reactant, product, enzyme, . . .) in a given reaction

• theoretical roots in CTMC semantics—behind any BioPEPA specification lies a
stochastic labelled transition system modeling a CTMC

In BioPEPA, rate expressions are defined as mathematical equations involving reactants’
concentrations (denoted with the reactant name and dynamically computed at run-time)
and supporting mathematical operators (e.g., exp and log functions) as well as built-
in kinetic laws (e.g., the law of mass action, denoted with the keyword fMA) and time
dependency (through the variable time, changing value dynamically according to the
current simulation time step)3.

Technical notes on experiments Each of the following experiments has been per-
formed by using Gillespie’s stochastic simulation algorithm in 100 independent replica-
tions. Each of the following plots has been directly generated from BioPEPA as a result
of the correspondent experiment—hence, of the 100 Gillespie runs. In each chart, the
x-axis plots the time steps of the simulation, whereas the y-axis the concentration level
of the reactants expressed in units of molecules.

It should be noted that MoK deposit and perturbation reactions have been left out of
the following experiments. The motivation for ignoring the former is that it is identical to
injection, except it involves different reactants. For the latter, besides being necessarily
application-specific, it already takes part in the experiments of Subsection 6.3.2.

Differently from the experiments described in Section 3.12 in Part I of this thesis, here
one reaction at a time is incrementally added to the scenario to be simulated—whereas
in Section 3.1.2 each reaction has been studied in isolation. This allows evaluation of

3To learn more about BioPEPA syntax, please refer to [CH09].

166

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

(i) the interplay between the different reactions constituting the MoK model, and (ii)
the whole pool of MoK reactions altogether – as the last step –, to understand if the
global behaviour exhibited is an enabler for the kind of self-organising behaviour desired
in MoK .

Besides, the purpose of the experiments are different: in Chapter 3 the aim was
at motivating the proposed approach to self-organising coordination by showcasing the
expressiveness of custom kinetic rates for artificial chemical reactions, whereas here the
focus is on the M olecules of K nowledge model, with the aim of engineering custom kinetic
rates enabling the desired self-organising behaviour.

As a last note, the codebase tracking the BioPEPA specifications used in the ex-
amples is publicly available under LGPL license at http://bitbucket.org/smariani/

mok-biopepa.

Injection rate Injection reaction has been formalised in Subsection 6.2.1 as follows:

seed(src ,Atoms)
rinj−−→ seed(src ,Atoms) + atom ic+ci , ∀atom ici ∈ Atoms

rinj = 1
1+time

∗ diff(]seed ,]atom)

Two contrasting needs have been addressed: on one hand, atoms should be perpetually
injected into the MoK system, since there is no way to know a-priori when some informa-
tion will be useful; on the other hand, one would likely avoid flooding the system without
any control on how many atoms are in play. Thus, three options seem viable:

1. have injection rate decreasing as time passes

2. enforce some kind of saturation to stop injection

3. a combination of the two

Figure 6.1 below shows option (1) in blue, option (2) in yellow and option (3) in red.
The green dashed line plots the law of mass action rate, whereas horizontal lines are the
sources. Figure 6.2 shows the BioPEPA specification used.

Clearly, using the rate expression based on the law of mass action is out of question:
its behaviour follows none of MoK injection reaction desiderata. Once discarded also
option (1), whose trend is clearly too slow in reaching saturation, options (2) and (3) may
seem almost identical. Actually they are not:

• option (2) is saturation-driven only, thus if at some point in time atom sports will
suddenly decrease in concentration – e.g., due to agents consuming them – they will
go back to saturation-level as fast as possible, no matter how long their sources are
within the system

• option (3) instead, makes the saturation process time-dependant. In particular, the
longer source sports are within the system, the slower saturation will be

167

http://bitbucket.org/smariani/mok-biopepa
http://bitbucket.org/smariani/mok-biopepa

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.1: Comparison of kinetic rate expressions for atoms injection [Mar13b]. Hori-
zontal lines represent correspondent seeds’ concentration: purple dashed for option (1),
pink for option (2), orange for option (3), light-blue for option (4).

1 injE = [source_economics/atom_economics * (1 / (1 + time))]; // option (1)

2 injS = [source_sports - atom_sports]; // option (2)

3 injC = [(1 / (1 + time)) * (source_crime - atom_crime)]; // option (3)

4 injP = [fMA(0.05)]; // option (4)

Figure 6.2: The fMA keyword calls a built-in function to compute the law of mass action
[Mar13b]. Its only parameter is the rate constant. The fMA implicitly consider reactants
involved in the reaction exploiting its correspondent functional rate—for the full BioPEPA
specification, please refer to [Mar13a].

Choosing among the two essentially depends on how fast information loses relevance com-
pared to how frequently users are expected to interact with the system. Being knowledge-
intensive STS intrinsically fast-paced ones, for MoK option (3) is preferred.

Decay rate Decay reaction has been formalised in Subsection 6.2.1 as follows:

Reactant c
rdec−−→ Reactant c−1, c ∈ <+

168

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

rdec =

{
fMA(aR) ∗ log(1+time), aR ∈ <+, Reactant \ trace
diff(][⇑trace],]trace) ∗ log(1+time)

Decay is an effective way to resemble the relationship between information relevance and
time flow. In many application scenarios, in fact, information tend (on average) to lose
(potential) relevance as time passes by: journalistic news do so, academic papers do so,
posts in social network, fitness data, sensor streams, and so on. Furthermore, decay
enforces a kind of negative feedback which, together with the positive feedback provided
by MoK enzymes, enables the feedback loop peculiar of self-organising systems.

Nevertheless, time dependency alone seem not enough for a meaningful decay be-
haviour: by using, e.g., a fixed rate one would end-up simply slowing down the saturation
process provided by injection reaction. Hence, Figure 6.3 shows three different combi-
nations of time dependency and concentration dependency for MoK decay reaction—a
fourth one (yellow line), based on the law of mass action, is given for comparison purpose:

1. linear time dependency + relative concentration dependency (blue dashed line)

2. logarithmic time dependency + relative concentration dependency (red line)

3. linear time dependency + built-in law of mass action (green dashed line)

Figure 6.4 shows the BioPEPA specification used4. The law of mass action is unsatisfac-
tory, as well as option (1). Options (2) and (3) seem both viable instead.

The choice is mostly driven by how fast are the dynamics of the scenario in which
MoK has to be deployed, thus how fast information should lose relevance. Nevertheless,
it should be noted that option (3) has an additional parameter w.r.t. option (2): the law
of mass action rate constant. Even if the aforementioned parameter is made dynamic –
e.g., the ratio between sources and atoms concentrations as done in options (1), (2) – the
trend still would not match the desiderata for MoK decay reaction—compare with yellow
line of Figure 4 in [Mar13a]. Thus, the choice fell on option (2).

Aggregation rate Aggregation reaction has been formalised in Subsection 6.2.1 as
follows:

Reactant ′ + Reactant ′′
ragg−−→ (Reactant ′ ⊕ Reactant ′′) + (Reactant ′ 	 Reactant ′′)

ragg = time

]Reactantlhs

The main responsibility of the aggregation reaction is to cluster together similar informa-
tion atoms. While doing so, a fact should be considered: as time passes by, it is likely that
more and more atoms will be roaming compartments, thus, it is desirable to aggregate
more, so as to have different forms of more concise information5—for many reasons, such

4Actually, the Heaviside function has been also used to counter BioPEPA tolerance to negative rates,
which are meaningless—see [CH09].

5Aggregation may assume different forms, such as filtering, merging, fusing, etc.

169

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.3: Comparison of kinetic rate expressions for atoms decay [Mar13b]. Again,
horizontal lines represent correspondent seeds’ concentration: purple dashed for option
(1), orange for option (2), light-blue for option (3), pink for option (4).

1 decayE = [source_economics / atom_economics * // option (1)

2 time];

3 decayC = [source_crime / atom_crime * // option (2)

4 log(1+time)];

5 decayP = [fMA(0.05) * time]; // option (3)

6 decayS = [fMA(0.05)]; // option (4)

Figure 6.4: BioPEPA specification of rate expressions for MoK decay reaction [Mar13b].

as memory occupation.
It should be noted that molecules decay – although not implemented in the simula-

tion to ease plots comprehension –, and that non-similar atoms are released back into
the compartment during aggregation, thus it is unlikely for molecules to keep growing
endlessly—unless they are really exploited by catalysts.

Based on the above discussion, three options seem viable—a fourth one, based on fMA
solely, is considered for comparison purpose:

1. feature a direct proportionality w.r.t. time

2. combine direct proportionality w.r.t. time with inverse proportionality w.r.t. atoms,

170

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

so as to make the aggregation process slower when more and more atoms are
present—a motivation could be that these atoms may be relevant on their own,
since they are so many and not yet aggregated

3. combine direct proportionality w.r.t. time with inverse proportionality w.r.t. the
generated molecule, so as to speed up the aggregation process when molecules lose
relevance—a motivation could be that these molecules deserve a chance to be ex-
ploited by catalysts

Figure 6.5 shows the above described rate expressions on different time horizons (shorter
on the left, longer on the right).

Option (1) aggregates atoms so fast they are almost instantly depleted, and have no
chance to go nowhere near their saturation level (not depicted to ease readability of the
plot, but equal to previous simulations)—orange dotted line for molecules, red line for
atoms. Option (2) implements quite well the desiderata, being atoms kept slightly under
their saturation level, and being molecules produced slightly faster as time passes by—
pink dotted line for molecules, yellow line for atoms. Option (3) seems almost identical
to option (2) on a short time period, but in the long run (picture on the right) it exhibits
a more linear trend w.r.t. option (2)—light-blue line for molecules, dotted green line for
atoms. Option (4) is clearly out of question, in a way very similar to option (1)—purple
dotted line for molecules, blue dotted line for atoms.

Figure 6.5: Comparison of kinetic rate expressions for molecules aggregation.

171

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

1 aggC = [fMA(0.5) * time]; // option (1)

2 aggS = [fMA(0.5) * time/atom_sports]; // option (2)

3 aggP = [fMA(0.5) * time/molecule_politics]; // option(3)

4 aggE = [fMA(0.5)]; // option (4)

Figure 6.6: BioPEPA specification of rate expressions for MoK aggregation reaction.

Figure 6.6 above shows the BioPEPA specification used6. Once again the choice among
option (2) and (3) is mostly driven by the application-specific needs MoK should support.
According to the deployment scenarios envisioned for MoK , option (2) is preferred.

Reinforcement rate Reinforcement reaction has been formalised in Subsection 6.2.1
as follows:

enzyme(species ,s species,Reactant ,Context) + Reactant ′c
rreinf−−−→

enzyme(species ,s species,Reactant ,Context) + Reactant ′c+s, c, s ∈ <+

rreinf = diff(][⇑Reactant],]Reactant)

To properly engineer MoK reinforcement reaction rate, it should be kept in mind what
enzymes are meant for, that is, (i) representing a situated interest manifested by an
agent w.r.t. a piece of knowledge – an atom or a molecule – (ii) be exploited to reinforce
knowledge relevance within the system. The word “situated” means that reinforcement
should take into account the situatedness of agents (inter-)actions along a number of
dimensions: time, space, type—a “harvest” action, a “mark” action, etc. For these
reasons, MoK reinforcement reaction rate should:

• be prompt, that is, rapidly increase molecules concentration—despite decay

• be limited both in time and space, to resemble relevance relationship with situated-
ness of (inter-)actions

• depend on the (inter-)action type—e.g., a “mark” action could inject more enzymes
and/or reinforce atoms with greater stoichiometry w.r.t. a “harvest” action

Figure 6.7 clearly shows that the desiderata are fulfilled only by a reinforcement reaction
having a functional dependency on the ratio between the reinforced molecule’s concen-
tration and its source own—option (1) in Figure 6.8 below. Once again, sticking with
the law of mass action alone is out of question: option (2) – dashed blue line –, even if
adopting a dynamic rate constant, exhibits an exceedingly high and fast peak, option (3)
– red line –, using a fixed rate constant (as in the law of mass action typically is), almost
completely ignores the feedback—enzymes are too slowly consumed (orange line, plotting
enzymes concentration).

6Again, the Heaviside step function has been used to avoid negative rates.

172

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.7: Comparison of kinetic rate expressions for atoms reinforcement [Mar13b].
Lines worth to be considered are: the yellow one, plotting option (1), the dashed blue
one, plotting option (2), the red one, plotting option (3).

1 feedS = [(source_sports / atom_sports)]; // option (1)

2 feedE = [fMA (source_economics / atom_economics)]; // option (2)

3 feedC = [fMA(0.05)]; // option (3)

Figure 6.8: BioPEPA specification of rate expressions for MoK reinforcement reaction
[Mar13b].

Furthermore, Figure 6.9 shows how concentration and stoichiometry can influence MoK
reinforcement reaction behaviour, effectively modeling situatedness—in particular, w.r.t.
the type of (inter-)actions. In fact, in Figure 6.9 (i) the initial concentration of red
enzymes (red line) is doubled w.r.t. yellow enzymes (yellow line) in Figure 6.7: as a result,
the duration of the feedback is doubled as well; (ii) the stoichiometry of red atoms (red
line) in reinforcement reaction is doubled w.r.t. yellow atoms (yellow line) in Figure 6.7:
as a result, the intensity of the feedback is more than doubled.

Also, Figure 6.9 shows that (i) the opposite holds, too, that is, halving the initial con-
centration halves the duration of the feedback (yellow and blue lines); (ii) no interference
happens between concentration and stoichiometry parameters.

173

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.9: Enzymes concentration increment effect on reinforcement (on the left), and
atoms stoichiometry increment effect on reinforcement (on the right) [Mar13b].

Figure 6.10: MoK topology to experiment with diffusion reaction [Mar13b].

Diffusion rate Diffusion reaction has been formalised in Subsection 6.2.1 as follows:

JReactants ′ ∪ Reactant Ki � JReactants ′′Kj
rdiff−−→ JReactants ′Ki �

JReactants ′′ ∪ Reactant Kj, i 6= j ∈ N

rdiff = d ∗ diff(J]Reactant Ki, J]Reactant Kj), d ∈ (0, 1] ∈ <

The topology depicted in Figure 6.10 below is taken as a reference. Namely, four MoK
compartments are imagined to be connected one to each other, allowing any molecule to
move anywhere.

174

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.11: MoK diffusion reaction trend [Mar13b]. Yellow line plots concentration level
of atoms in their origin compartment (the orange horizontal line represents their source).

1 // diffusion weight

2 DW = 0.75;

3 // diffusion functional rates (a@x => a@y)

4 diffSE = [DW * as@sports - as@economics]; // blue line

5 diffSC = [DW/2 * as@sports - as@crime]; // red line

6 diffSP = [DW/3 * as@sports - as@politics]; // green line

Figure 6.12: BioPEPA specification for diffusion rates [Mar13b]. Notation r@c refers to
the concentration of reactant r in compartment c. Previous listings did not follow this
notation because there was only a single compartment.

The main desiderata for MoK diffusion reaction are similar to those of MoK injection:
on one hand, one would like to perpetually spread information around, because agents
working in other compartments may be interested in it; on the other hand, it is also
desirable to keep some degree of control about how much information is moved around.

Such a kind of degree of control can be achieved by reusing the concept of saturation,
as shown by Figure 6.11: in particular, it seems reasonable to allow only a fraction of
molecules to leave their origin compartment—see Figure 6.12. In practice, one can arbi-
trarily decrease/increase the saturation-level of the origin compartment in the destination

175

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

compartment. Furthermore, they are functionally related.
As a side note, diffusion reaction featuring the law of mass action is not depicted. The

motivation is that it exhibits an unexpected malfunctioning affecting also other reactions.
More on this interference problem in next section.

On the problem of interference between reactions All the experiments shown
have been conducted incrementally, that is, each MoK reaction has been added to the
BioPEPA specification one at a time. As reported in [Mar13a], when adding diffusion to
other MoK behaviours, BioPEPA plots highlighted some interference between reactions.
E.g., Figure 6.13 below depicts what happened when reinforcement has been added to
injection, decay and diffusion. A number of unexpected behaviours can be seen:

• first of all, desiderata for MoK reinforcement reaction are not met (dashed blue
line). In particular, it seems atoms cannot go beyond their original compartment
concentration level (yellow line)

• second, enzymes are not fully depleted (orange line)

• last but not least, other atoms are affected by a successful application of MoK rein-
forcement reaction (yellow, red and green lines): in particular, in the time interval
during which enzymes are consumed, all other trends experiment some fluctuations

Figure 6.13: MoK reinforcement reaction addition to injection, decay and diffusion
[Mar13b]. Not only enzymes are not fully depleted, but also undesirable and unexpected
interferences with other reactions are clearly highlighted.

176

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

1 FF = 2; // feed factor > 1

2 feedEC = [se@economics / (ae@crime * FF)]; // option (1) -revised

Figure 6.14: Adjusted BioPEPA specification of rate expressions for MoK reinforcement
reaction used together with MoK diffusion reaction [Mar13b].

Figure 6.15: Adjusted MoK reinforcement reaction: enzymes are now completely depleted
and other reactions no longer affected [Mar13b].

The reason at the root of all these issues is still unknown: being chemical-like reactions
scheduling essentially based on race conditions between the correspondent functional rates
– evaluated at a given point in time –, understanding what exactly happens within the
system at a given time step is not trivial at all—or even impossible, depending on the
debugging services the simulation tool adopted provides.

Nevertheless, the satisfactory BioPEPA specification shown in Figure 6.14 above has
been found. In particular, MoK reinforcement reaction rate has been added a feed factor
parameter, used to weight the influence of the atoms to be reinforced w.r.t. the concen-
tration of the corresponding source in the compartment the latter belongs to.

Figure 6.15 shows that desiderata are now met successfully, including the functional
dependencies on enzymes concentration and atoms stoichiometry shown in Figure 6.9.

177

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

6.3 Focus on Interactions

In this section how agents’ interactions are handled in MoK is thoroughly described.
After briefly recalling which actions taken as a reference in the modelling of STS, and
what tacit messages they may convey – from Chapter 5 –, a description of the relationships
between actions, enzymes’ species, traces’ messages, and perturbation actions is provided
(Subsection 6.3.1).

Then follows evaluation of the proposed approach by simulating a citizen journalism
scenario within which co-workers affect the spatial displacement of information items –
actually promoting clustering of semantically-related information without the need for any
semantic technology – simply by carrying out their usual activities of, e.g., information
harvesting (Subsection 6.3.2).

This way, it is possible to clarify how each single action can be interpreted by the MoK
model for the benefit of the coordination processes therein, and which kind of anticipative
action MoK may plan to take advantage of tacit messages brought by users’ actions.

6.3.1 From Users’ Actions to MoK Perturbations

Interaction, thus coordination of interactions, in MoK is interpreted from the socio-
cognitive perspective of BIC [CPT10], where communication does not occur through
any specialised signal, but through the practical behaviour observed by the recipient(s).
Then, actions themselves – along with their (side) effects – become the message, possibly
intentionally (implicitly) sent in order to obtain a desired reaction—either by the com-
putational environment where the action takes place, or by other agents who can observe
the action and/ its effects.

This perspective leads to the argument that self-organising coordination can be based
on the observation and interpretation of actions as wholes, that is, both the practical
behaviour and its (side) effects—rather than solely of their effects, or traces, on the
environment, as happens, e.g., for stigmergic coordination [Gra59].

Tacit messages have been already described in Chapter 5, along with the notion of
BIC. Here follows a brief recap:

1. informing about the presence. “Agent A is here”. Since an action, an activity, a
practical behaviour (and its traces), is observable in the computational environ-
ment, any agent therein – as well as the environment itself – becomes aware of A
existence—and, possibly, contextual information such as A location

2. informing about the intention. “Agent A plans to do action β”. If the agents’ work-
flow determines that action β follows action α, peers (as well as the environment)
observing A doing α may assume A next intention to be “do β”

3. informing about the ability. “A is able to do φi, i ∈ N”. Assuming actions φi, i ∈ N

178

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

have similar pre-conditions, agents (and the environment) observing A doing φi may
infer that A is also able to do φj 6=i, j ∈ N

4. informing about the opportunity for action. “pi, i ∈ N is the set of pre-conditions
for doing α”. Agents observing A doing α may infer that pi, i ∈ N hold, thus, they
may take the opportunity to do α as soon as possible

5. informing about the accomplishment of an action. “A achieved S”. If S is the state
of affairs reachable as a consequence of doing action α, agents observing A doing α
may infer that A is now in state S

6. informing about the goal. “A has goal g”. By observing A doing action α, peers of
A may infer A’s goal to be g, e.g., because action α is part of a workflow aimed at
achieving g—likewise for the environment

7. informing about the result. “Result R is available”. If peer agents know that action
α leads to result R, whenever agent A does α they can expect result R to be soon
available—in case action α completes successfully

Within MoK , the factorisation of common actions described in Chapter 5, along with the
discussion about the possible tacit messages and perturbation actions they may convey, is
exploited to define precise associations between MoK enzymes’ species, traces’ messages,
and perturbation actions. This enables to evaluate MoK behaviour in response to users
interactions in a more rigorous way, e.g., through simulations and demo deployments.

Accordingly, here follows the list of MoK actions outlined in Chapter 5, now completed
by a description of (i) the enzyme they (transparently) release within MoK , (ii), the traces
the enzyme may (autonomously) deposit within MoK , and (iii) the perturbation actions
these traces may bring along.

share the share action is reified by enzymes with Species = share. Then, depending
on the Context within which the action took place, share enzymes may deposit the
following different sorts of traces:

• presence traces, that is, traces having Msg = presence, indicating to MoK
presence, location, and any other available property of the acting agent

• ability traces, indicating to MoK the acting agent’s capabilities, both in
terms of what she can do, and of what she can perceive about others—e.g.,
what actions are available to her, on which targets, which of her traces other
catalysts are perceiving, etc.

• accomplishment traces, indicating to MoK which state of affairs the acting
agent may have reached upon successful completion of the action—e.g., which
information has been manipulated and how

179

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

which, according to (i) their species, (ii) the context within which the original
enzyme was released, and (iii) their Target , may lead to the following perturbation
actions:

• approach perturbations, that is, perturbation actions having P species = approach,
stemming from the presence tacit message (and indirectly on the share action),
aimed at bringing closer to each other the compartments of those agents in-
teracting more often with each other information items. “Closer” here means
“logically closer”, that is, interactions between compartments, and the users
working with them, are facilitated and promoted—e.g., diffusion rate is in-
creased. Nevertheless, it is possible to also imagine a more physical inter-
pretation, according to which, e.g., the involved compartments are physically
migrated in geographically closer hosts, so as to, e.g., lower the communication
latency

• attract perturbations, stemming from the ability tacit message, aimed at
bringing to the compartment where the action took place – thus, not necessarily
the one where the trace is at a given time, being traces able to diffuse whereas
enzymes cannot – information similar to the one target in the share action—
according to any notion of similarity implemented through function FM oK . The
opposite perturbation, repulse, may also be undertaken for those information
items recognised as being dissimilar to the shared information.

• boost/wane perturbations, stemming from the accomplishment tacit message,
aimed at increasing/decreasing the rate of MoK reactions so as to facilitate the
acting agent’s workflow—e.g., MoK reinforcement and decay reactions’ rates
may be respectively increased and decreased for information items similar to
those target of the original share action

mark the mark action is reified by enzymes with Species = mark. Then, depending
on the Context within which the action took place, mark enzymes may deposit the
following different sorts of traces:

• presence traces, that is, traces having Msg = presence

• opportunity traces, indicating to MoK that a new opportunity for action is
now available, enabled by the action just completed successfully—e.g., a col-
laboration between co-workers, exploitation of additional information, etc.

which, according to (i) their species, (ii) the context within which the original
enzyme was released, and (iii) their Target , may lead to the following perturbation
actions:

• approach perturbations, that is, perturbation actions having P species = approach,
stemming from the presence tacit message (and indirectly on the mark action)

180

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

• strengthen perturbations, stemming from the opportunity tacit message, aimed
at increasing relevance (concentration) of information semantically related to
the one target of the original mark action. If marking information is allowed
to bear a negative meaning – e.g., disliking information as opposed to liking –
the opposite perturbation action, that is, weaken, is to be considered

Besides, it should be noted that also attract and boost (or wane) perturbation
actions may be considered, stemming from the opportunity tacit message, based on
the Context of the original enzyme, and the Target of the trace

annotate the annotate action is reified by enzymes with Species = annotate. Then,
depending on the Context within which the action took place, annotate enzymes
may deposit the following different sorts of traces:

• accomplishment traces, that is, traces having Msg = accomplishment

• goal traces, indicating to MoK which could be the motivations behind the
acting agent’s behaviour, in terms of the state of affairs she aims to achieve in
the medium to long term

which, according to (i) their species, (ii) the context within which the original
enzyme was released, and (iii) their Target , may lead to the following perturbation
actions:

• boost/wane perturbations, that is, perturbation actions having P species = boost

/ wane, stemming from the accomplishment tacit message (and indirectly on
the annotate action)

• attract/repulse perturbations, stemming from the goal tacit message

Besides this, also strengthen (or weaken) perturbation actions may be considered,
stemming from both tacit messages, based on the Context of the original enzyme,
and the Target of the trace

connect the connect action is reified by enzymes with Species = connect. Then, de-
pending on the Context within which the action took place, connect enzymes may
deposit the following different sorts of traces:

• intention traces, that is, traces having Msg = intention, indicating to MoK
the immediate cause of agent’s action, in terms of the state of affairs she aims
to achieve in the short-term—right after the action completes

• opportunity traces

which, according to (i) their species, (ii) the context within which the original
enzyme was released, and (iii) their Target , may lead to the following perturbation
actions:

181

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

• approach perturbations, that is, perturbation actions having P species = approach,
stemming from the intention tacit message

• strengthen perturbations, stemming from the opportunity tacit message

Besides, also attract and boost (or wane) perturbation actions may be considered,
respectively stemming from the intention and opportunity tacit messages, based
on the Context of the original enzyme, and the Target of the trace

harvest the harvest action is reified by enzymes with Species = harvest. Then, de-
pending on the Context within which the action took place, harvest enzymes may
deposit the following different sorts of traces:

• presence traces, that is, traces having Msg = presence

• intention traces

• opportunity traces

which, according to (i) their species, (ii) the context within which the original
enzyme was released, and (iii) their Target , may lead to the following perturbation
actions:

• approach perturbations, that is, perturbation actions having P species = approach,
stemming from the intention tacit message

• attract perturbations, stemming from the intention tacit message

• strengthen perturbations, stemming from the opportunity tacit message

Besides this, it should be noted that the harvest action is the utmost epistemic
action, potentially conveying every sort of tacit message, thus enabling any sort
of inference leading to any sort of perturbation actions. Therefore, based on the
Context of the original enzyme, and the Target of the trace, any other perturbation
action may be considered.

In next section, some of the above described associations, thus the whole idea of BIC
driven coordination in the very end, is evaluated against a citizen journalism scenario,
where simulations of user agents’ interactions within a MoK -coordinated infrastructure
for news management are described, to showcase how enzymes, traces, and perturbation
actions may affect MoK coordination capabilities, therefore the system behaviour.

6.3.2 Early Evaluation: Citizen Journalism

In the following a simulation of a citizen journalism scenario is described, where users
share a MoK -coordinated IT platform for retrieving, assembling, and publishing news
stories.

182

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Users have personal devices (smartphones, tablets, laptops) running the MoK mid-
dleware, which they use to (i) search throughout the IT platform looking for relevant
information, (ii) modify, annotate, comment, etc. information so as to shape their own
news story, and finally (iii) release their story to the public, for both reading and re-use.

For a number of reasons – among which limiting bandwidth consumption, boosting
security, reducing communication latency, etc. – the extent to which a search action may
extend is limited by a (possibly logical, not physical) neighbourhood of compartments, that
is, those compartments connected by a membrane to the compartment where the search
action takes place—e.g., neighbourhood can be based on 1-hop network reachability.

While performing search actions, and in general while undertaking their usual business-
related activities, users release (transparently, possibly unintentionally) enzymes within
the compartment underlying the working space they are operating on, which in turns
deposit traces which start wandering across the network of compartments constituting
the news management IT platform—recall that traces are subject to diffusion whereas
enzymes are not.

Then, the MoK middleware exploits enzymes and traces to schedule perturbation
actions aimed at enacting some form of anticipatory coordination [PCF07]. In particular,
within the simulated scenario users perform harvest, mark, and share actions, which
deposit, respectively, intention, opportunity, and presence traces, ultimately causing
attract, strengthen, and boost perturbation actions—according to MoK terminology.

Thus, what happens in practice is that the MoK middleware exploit users’ (local)
interactions to improve the (global) spatial organisation of information: whenever users
implicitly manifest interest in a piece of information – through harvesting, marking, and
sharing actions – the MoK middleware interpret their intention to exploit information,
and the opportunity for others to exploit it as well, attracting similar information toward
the compartment where the action took place, increasing concentration of the information
target of the action, and boosting reinforcement and diffusion reactions accordingly.

Figure 6.16, Figure 6.17, and Figure 6.18 showcase how the emergent collective in-
telligence phenomena enabling anticipatory coordination is effectively supported by suit-
able BIC inspired abstractions and mechanisms—and, ultimately, by the M olecules of
K nowledge model as a whole.

The coordination infrastructure, in fact, does not know in advance the effectiveness of
its coordination activities in supporting users’ workflows: it only tries to react to users’
activities at its best, according to its own interpretation of users’ actions in epistemic
terms—e.g., through tacit messages. This is exactly what anticipatory coordination is:
the infrastructure tries to foresee the user coordination needs even before users do, with
the aim of satisfying them at best [MO15a].

The picture at the top, in Figure 6.16, shows the initial configuration: information
molecules (coloured dots) are randomly scattered throughout a grid of networked com-
partments (black squares)—light-blue little squares represent membranes between com-
partments, allowing diffusion. The picture at the bottom, in same figure, highlights two

183

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.16: Self-organising, adaptive anticipatory coordination [MO15a]. The simulation starts from
a situation in which atoms and molecules of information belonging to different topics (represented as
differently coloured dots) is randomly scattered across catalysts’ compartments (represented as black
squares, delimited by blue lines, and connected by membranes represented as light-blue patches)—top
figure. From time to time, users (catalysts) carry out harvest, mark, and share actions, releasing
homonym enzymes (represented as coloured flags) within the workspace they are working on—bottom
figure.

184

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.17: Self-organising, adaptive anticipatory coordination [MO15a]. As soon as enzymes are
released, MoK reinforcement reaction increases concentration of the information atoms and molecules
target of the original action—top figure. Then, intention, opportunity, and presence traces are
deposited. Traces are free to wander between neighbouring compartments, crossing membranes, so as to
apply their perturbation action potentially to any compartment in the network—bottom figure.

185

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.18: Self-organising, adaptive anticipatory coordination [MO15a]. In fact, clusters begin to ap-
pear – as an emergent phenomenon – thanks to the interplay between attract, strengthen, and boost
perturbations, both where the original action took place as well as in distant compartments, reached by
the traces, and storing compatible information—top figure. Whenever new actions are performed by
catalysts, the MoK infrastructure adaptively re-organises the spatial configuration of information so as
to better tackle the novel, now arising coordination needs—bottom figure.

186

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

compartments in which enzymes (coloured flags) have just been released, thus traces be-
gin to spawn and diffuse (coloured arrows): green enzymes in the bottom-left one, cyan
enzymes in the top-right one.

Colours represent semantic differences for different matches: red molecules match
green enzymes/traces, orange molecules match lime enzymes/traces, yellow molecules
match turquoise enzymes/traces, magenta molecules match cyan enzymes/traces, pink
molecules match sky blue enzymes/traces.

The picture at the top, in Figure 6.17, showcases that the expected clusters appear: red
molecules (brought by green traces’ perturbation action) have the highest concentration
in the bottom-left (highlighted) compartment, likewise magenta molecules (brought by
cyan traces) in the top-right one. The pictures from the one at the bottom of Figure 6.17
to those in Figure 6.18 showcase that clusters are transient, hence MoK coordinative
behaviour adaptive: they last as long as users’ action effects (enzymes and traces) last.

In fact, besides new clusters appearing (magenta molecules, top-left and yellow molecules,
bottom-right), the previous ones either disappear (magenta cluster, top-right) or are
replaced (orange cluster, bottom-left). This adaptiveness feature is confirmed by Fig-
ure 6.19, plotting the oscillatory trend of clustered (still) molecules and traces.

Also, the series of pictures just described highlights other desirable features of MoK ,
stemming from both its biochemical inspiration and BIC, respectively: locality and situ-
atedness (of both computations and interactions). In fact, as neighbouring compartments
can influence each other through diffusion, they can also act independently by, e.g., ag-
gregating different molecules.

Technical details Technical details of the experiment are as follows7: 100 MoK com-
partments are networked in a grid (4 neighbours per compartment, except border)—see
Figure 6.16; 2500 molecules, split in 5 non-overlapping semantic categories (representing
matching with different enzymes), are uniformly sampled then randomly scattered in the
grid—statistically, 500 molecules per category; 250 enzymes, split in the same categories,
are generated in 5 random compartments; enzymes’ categories are uniformly sampled in
batches consisting of 50 enzymes each, so that generated enzymes of a given category
are always multiple of 50; enzymes are generated periodically (every 250 time steps) and
subject to decay; 2 traces per enzyme are generated, coherently with enzymes’ category
and according to the same time interval; traces, too, are subject to decay, although at a
lower rate w.r.t. enzymes—due to their different purpose: represent long-term effects of
actions for the former, reify situated actions for the latter.

The simulations proceed as follows: molecules randomly diffuse among neighbouring
compartments; enzymes reify, e.g., a harvest action which successfully collects a set of

7Simulation tool used is NetLogo 5.0.5, available from http://ccl.northwestern.edu/netlogo/.
Videos of the simulations are available on YouTube (https://youtu.be/8ibkXdukTfk). Source code of
the simulations is to be released as a NetLogo model, available from http://ccl.northwestern.edu/

netlogo/models/community/.

187

http://ccl.northwestern.edu/netlogo/
https://youtu.be/8ibkXdukTfk
http://ccl.northwestern.edu/netlogo/models/community/
http://ccl.northwestern.edu/netlogo/models/community/

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.19: At the top, concentration of still molecules over time; at the bottom, con-
centration of traces over time [MO15a]. Still molecules represent molecules currently in
the right compartment—the one storing matching enzymes. The oscillatory trend is due
to periodic injection of enzymes (thus traces) which clears the still state of molecules.
The different colours correspond to the different molecules. Traces move molecules to the
right compartment through perturbations. The oscillatory trend is due to decay of traces
over time. The different colours correspond to the different traces.

molecules from the local compartment; enzymes stand still in the compartment where the
action took place until decay, depositing traces; traces, representing, e.g., tacit message
intention, randomly diffuse among neighbouring compartments until either (i) decay or
(ii) find a matching molecule to apply their perturbation action to; the perturbation
action, e.g., attract, makes the involved molecule diffuse toward the compartment where
the trace’s father enzyme belong.

6.4 Focus on Similarity

In Section 7.1.4 within the upcoming chapter, it is described how the M olecules of
K nowledge model is able, to some extent, to support semantic coordination patterns,
e.g., clustering of similar information, without any sort of semantic matchmaking, sim-

188

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

ilarity measures, ontology-based reasoning, or the like, but relying purely on epistemic
interpretation of users’ interactions.

Nevertheless, as apparent from the detailed description of MoK reactions machinery
given in Subsection 6.2.1, a FM oK function for measuring similarity is considered, and
likely to deeply impact the accuracy of the self-organising behaviours achievable by the
model. Although a definitive choice for FM oK function has not yet been made, being the
issue currently still under investigation, what follows reports on some early experiments
regarding application of text mining related techniques in a demo scenario of academic
papers clustering.

6.4.1 Viable Approaches

Measuring similarity between MoK atoms and molecules requires first of all to decide
which kind of content these MoK abstractions convey. In fact, measuring similarity be-
tween single words, sentences, or whole documents can be quite a different task, requiring
more or less pre-processing of the raw text being the source of information.

Text-based knowledge has been already identified as the kind of information MoK
aims at dealing with, thus what is missing is to decide the granularity of this text-based
knowledge, that is, namely, whether atoms will convey words and molecules sentences, or
atoms sentences and molecules collections of them – possibly even whole documents –, or
something else similar.

For the experiments described in Subsection 6.4.2, the choice is to put BIBTEX8 records
first – suitably edited to remove fields not useful for the purpose –, then abstracts, finally
full academic papers, into atoms, then to exploit MoK aggregation reaction to cluster
similar atoms into molecules.

It should be noted that hierarchical clustering may be achieved by clustering sim-
ilar molecules into the same compartment, whereas dissimilar molecules into different
compartments. Furthermore, depth of the hierarchy may be increased by recursively con-
sidering neighbourhoods of compartments, neighbourhoods of neighbourhoods, and so
on—however, such an interesting perspective is left for future investigation. As a side
note, it is interesting to recognise that this kind of topological clustering is similar to the
clustering approach based on self-organising maps [LHKK96].

The vast majority of similarity measures (or, correlation functions) are based on the
vector space representation of documents (or, more generally, text snippets), according
to which each document is represented by a vector where each cell stores a word of the
document and its weight inside the document. For the experiments in Subsection 6.4.2,
weights are computed based on [Leu01], which combines Okapi’s tf score [RWJ+95] and

8http://www.bibtex.org

189

http://www.bibtex.org

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

INQUERY’s normalised idf score [ACC+98]:

vi,j =
tf i,j

tf i,j + 0.5 + 1.5
doclenj

avgdoclen

·
log(colsize+0.5

docf i
)

log(colsize + 1)
(6.1)

where vi,j is the weight of i-th term within j-th document, tf i,j is the frequency of term i
in document j, docf i the number of documents in which term i is, doclenj the number of
terms in document j, avgdoclen the average of documents’ length.

The simplest method to measure similarity between text snippets is to count the
co-occurrences of words, that is, the number of words appearing in both snippets, and
possibly how many times, normalising the obtained value according to the length of the
text within the involved snippets.

A slightly more refined, and widely used, method is to rely on cosine similarity [Hua08]:

Sim(C1, C2) =

∑n
k=1 ci(tk) · cj(tk)√∑n

k=1 ci(tk)
2 ·
∑n

k=1 cj(tk)
2

(6.2)

where Ci = {ci(t1), . . . , cj(tn)} and Cj are the weight vectors of the documents to compare,
and tk represents the k-th word. Sim(C1, C2) ∈ [−1, 1], meaning that text snippets C1, C2

are identical (1), totally dissimilar (−1), unrelated (0), or anything in-between.
Another method, emphasising big differences in weights, is the mean squares difference

[HKBR99]:

d(Ci, Cj) =

∑n
k=1(ci(tk)− cj(tk))2

n

Yet another possibility, is to exploit euclidean distance [HNP05]:

dist(Ci, Cj) =

√√√√ n∑
k=1

| ci(tk)− cj(tk) |2

Furthermore, in [JS13], a concept-based similarity measure is proposed, considering three
different levels: sentences, whole documents, collections of documents. For each sentence
(or document, or corpus), part-of-speech tagging [Abn97] is used to semantically interpret
the content of the text, so as to define and assign concepts to that portion of text. The
authors introduce three novel measures of frequency:

• for sentences, the conceptual term frequency (ctf), that is, the number of occurrences
of a concept in that sentence

• for documents, the concept-based term frequency (tf), that is, the number of oc-
currences of a concept within the whole document

• for documents collections, the concept-based document frequency (df), that is, the
number of documents which contain the concept

190

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Based on these, as well as many other factors, a new similarity measure is defined [Abn97].
In the upcoming section, some of these similarity measures are put to test within a

demo scenario involving academic papers clustering.

6.4.2 Experiments

Prior to comparing efficacy and efficiency of the different similarity measures just de-
scribed, it is necessary to perform some pre-processing of the documents subject of
the experiments—that is, academic papers taken from APICe online repository9. Pre-
processing involves the most common steps of a typical text mining pipeline, such as text
extraction, tokenisation, stemming, part-of-speech tagging, and the like. The aim is to
obtain the aforementioned vector space representation.

In the following, only three out of the many more experiments performed are de-
scribed, being the most successful ones, both w.r.t. clustering results and to efficiency. In
particular, all the three experiments are based on full-text atoms, that is, atoms storing
a vector space representation of the whole text of the paper they represent.

However, the experiments actually performed considered every combination of text
snippet and similarity measure, that is, both BIBTEX atoms, abstract-based atoms, and
full-text based atoms, have been aggregated according to both the most basic similarity
measure, cosine similarity, mean squares difference, euclidean distance, and concept-based
similarity.

It should be noted that, being FM oK similarity measure exploited in MoK during sys-
tem operation, not in a pre-processing stage, the weighting formula (6.1) has been adjusted
to consider a bootstrap phase in which no other document is known, and to dynamically
change according to new documents (atoms) being put into MoK compartments.

Most basic measure In the first experiment, a very basic approach has been pursued,
that is:

• weight assignment is simply constant, that is, each term considered for measuring
similarity is assigned the constant weight 1

n
, where n is the number of terms in the

document—or, more generally, in the text snippet

• similarity measure – that is, FM oK – is simply based on weighted co-occurrences
of terms, that is, the more terms are in common between text snippets, the more
snippets are considered similar

• co-occurrences of terms is checked syntactically—no semantics involved here

The role of the clustering algorithm is obviously played by MoK aggregation reaction,
taking two atoms, checking their similarity, then merging them in a molecule if they are
similar enough—the cluster, either a novel one or one already existing.

9http://apice.unibo.it

191

http://apice.unibo.it

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.20: Clustering result for most basic similarity measure.

The reason to include this very basic approach into discussion of experiments stems
from the on-line character of the clustering process supported by MoK : being the aggrega-
tion reaction meant to continuously execute aggregations according to its dynamic rate,
it is crucial that weight assignment, co-occurrences check, and similarity measure, are
as efficient (barely speaking, fast) as possible—effectiveness is not substantial in MoK ,
due to its very nature. In this case, e.g., time taken to compute similarity for a single
comparison is the lowest experienced: just ≈ 8 ms.

Figure 6.20 above graphically depicts the clustering results obtained. There, coloured,
smaller balls are not atoms, but molecules, and light-blue, bigger balls are themselves
molecules, although aggregating other molecules. Each smaller molecule has a name,
roughly denoting the topic of the atoms (hence papers) it aggregates, as defined by ex-
perts in the field. The different colours roughly resemble similarity as computed by FM oK
function. Links between bigger molecules are another graphical representation of similar-
ity calculated by FM oK : linked molecules are similar enough to be considered somehow
connected (correlated), but not enough to be clustered together in a single molecule—
according to the application-specific threshold considered in Subsection 6.2.1.

Figure 6.20 clearly shows that MoK aggregation reaction has some success in finding
similarity patterns, even in the case of FM oK most basic implementation. E.g., although
no molecule includes all the papers tagged with the same topic by experts, no molecule

192

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.21: Clustering result for cosine similarity measure.

aggregates information belonging to different topics. Furthermore, similar information
aggregated by different molecules is anyway recognised to be similar by FM oK function—
a link lies between the different molecules.

Cosine similarity In this second experiment, the previous approach is refined as fol-
lows:

• weight assignment occurs according to (6.1)

• FM oK is based on cosine similarity, that is, on function (6.2)

• co-occurrences of terms is still checked syntactically

Figure 6.21 shows that the above refinements lead to an improvement in the clustering
results obtained by MoK aggregation reaction feature cosine similarity measure as FM oK .
In fact, now all the papers belonging to the same topic, according to experts evaluation,
are correctly assigned to the same cluster, that is, molecule, except for one molecule
consisting of 5 papers tagged with term ReSpecT (see compartment 5, purple molecule, on
the top left of the picture).

193

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Furthermore, inter-molecule similarity connections are now linking molecules clus-
tering papers belonging to different but strongly related topics, again according to ex-
perts evaluation, besides molecules aggregating papers belonging to the same topic—
those tagged with term GAIA, as in Figure 6.20. Namely, papers about SAPERE and MoK

have a strong similarity due to many terms, such as “chemical”, “coordination”, “self-
organisation”, appearing with similar weights in both documents—the same for CArtAgO

and ReSpecT papers, related by terms such as “coordination”, “artefact”, “environment”,
among the many.

However, here time taken to compute similarity for a single aggregation reaction ap-
plication is ≈ 18 ms—doubled w.r.t. experiment 1.

Concept-based similarity In this latter experiment, the refined approach is further
changed by:

• modifying the matching function checking co-occurrences of terms, which has been
extended so as to consider WordNet10-based synsets [MF98] in similarity measure—
that is, synonyms, meronyms, hyperonymy, etc

• modifying FM oK function implement the concept-based similarity measure defined
in [JS13]

Figure 6.22 shows no substantial improvement w.r.t. experiment 2, but only a different
molecules configuration, suggesting that adopting more complex approaches, such as as
concept-based similarity and synsets-based matching, may be not worth the investment
in computational complexity and execution time—depending on the application domain,
of course. In fact, consider this FM oK implementation takes ≈ 57 ms to perform a single
comparison, way more than both previous experiments—mostly due to WordNet lookup.

Nevertheless, it should be noted that the lack of improvement may be largely depend-
ing on the application domain where FM oK has been put to test: all the papers involved
in the experiment are from the computer science and engineering area, where synsets are
not so meaningful and scarcely represented within WordNet.

Technical notes Experiments have been run on an Intel Core i7-720QM (1.6 GHz,
6MB L3 cache) machine with 4GB of DDR3 RAM, using Sabayon-Linux kernel 3.9.11 64
bit. Java VisualVM11 has been used for profiling execution time, even in sub-processes.
Slightly more than a hundred papers have been considered, that is, all papers published
on APICe between 2010 and 2013. This apparently small number is motivated by the
fact that one should imagine to let MoK operate for a few hours, within a research
collaboration scenario, in which researchers from a few different research teams in the same
department share a MoK platform for retrieving potentially relevant scientific papers.

10http://wordnet.princeton.edu
11http://visualvm.java.net

194

http://wordnet.princeton.edu
http://visualvm.java.net

CHAPTER 6. THE M OLECULES OF K NOWLEDGE MODEL

Figure 6.22: Clustering result for concept-based similarity measure.

Discussion of results The purpose of the experiments just described is not that of
rigorously evaluating performance of the similarity measures, nor of the clustering capa-
bilities of MoK aggregation reaction. Instead, the aim of the section is that of assessing
feasibility of the chemical-inspired coordination-based approach to clustering promoted by
MoK —not only aggregation, but also the interplay between diffusion and reinforcement
support clustering within MoK , as seen in Subsection 6.3.2.

In particular, the aim is to show that some sort of semantic coordination patterns,
such as clustering of similar information, may be achieved successfully without resorting
to full-fledged semantic reasoning facilities—e.g., ontology-based entailment and the like.

The motivation behind this approach is that MoK is expected to be deployed within
knowledge-intensive socio-technical systems, that is, business environments within which
information is produced in massive amounts and at a very fast pace. Therefore, being ca-
pable of detecting and reifying similarity patterns as soon as new information is available,
may be crucial for the sustainability of the knowledge-management platform at hand.

Accordingly, the focus of the experiments has been about simplicity and efficiency of
the approach, rather than on correctness and efficacy.

195

Chapter 7

The M olecules of K nowledge
Technology

In this chapter an overview of the current state of MoK technology is provided, that is, a
report on the extent to which the MoK model has been actually implemented into a work-
ing system. Accordingly, Section 7.1 discusses the MoK prototype implemented on top
of the TuCSoN coordination infrastructure, whereas Section 7.2 describes an envisioned
full-fledged MoK ecosystem, whose building blocks are currently under development.

7.1 Prototype on TuCSoN

In this section a prototype implementation of the M olecules of K nowledge model upon
the TuCSoN coordination infrastructure [OZ99] is described, with an emphasis on the
middleware layer, thus on implementation of MoK compartments and their chemical-like
computational machinery.

In particular, TuCSoN is used to distribute across a network of connected devices
a number of MoK compartments, implemented as suitably programmed ReSpecT tuple
centres [Omi07]. There, information atoms and molecules are packaged into TuCSoN
first-order logic tuples and manipulated both by catalysts (TuCSoN agents) and MoK
reactions (ReSpecT specifications and chemical law tuples).

Accordingly, Subsection 7.1.1 overviews how MoK main abstractions are mapped on
TuCSoN and ReSpecT ones, while Subsection 7.1.2 briefly describes how MoK compart-
ments are implemented on top of ReSpecT tuple centres. Then, Subsection 7.1.3 further
details MoK compartment implementation, whereas Subsection 7.1.4 reports on early
evaluation of the prototype within a simulated citizen journalism scenario.

Motivation The TuCSoN infrastructure [OZ99] is an ideal candidate for the imple-
mentation of a MoK -like middleware, most of all thanks to (i) its situated architecture,

197

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

enabling definition of a topology of distinct, situated computational loci – thus, providing
a notion of locality, too –, and (ii) programmability of the ReSpecT tuple centres [Omi07]
it distributes over the network.

Doing so makes it possible to straightforwardly map MoK compartments to ReSpecT
tuple centres, suitably programmed so as to execute the Gillespie algorithm for stochastic
simulation of a chemical solution [Gil77]. These tuple centres are spread over a net-
work according to an application-specific topology, defined again in ReSpecT—ultimately
providing the notion of neighbourhood.

As a side note, in the following the ReSpecT implementation of the Gillespie algo-
rithm is referred to as “the chemical engine” (of a MoK compartment). Also, terms
“MoK reaction” and “chemical law” may be used interchangeably, being the latter the
implementation of the former within the prototype.

7.1.1 Main Abstractions

In the ReSpecT specification implementing MoK compartments’ chemical engine, three
are the main abstractions upon which the Gillespie simulation algorithm is based—thus
MoK model abstractions mapped to: reactants, chemical laws, neighbourhoods. Being
TuCSoN first-order logic tuples the only data structure ReSpecT can manipulate, each
abstraction is actually implemented as a different kind of tuple.

Reactants Each reactant is represented as a TuCSoN tuple with the following syntax:

reactant(Kind , Amount)

where term Kind is a placeholder for the actual reactant, and term Amount indicates its
quantity, resembling relevance—e.g., concentration or multiplicity. The term “reactant”
here is used to denote atoms, molecules, enzymes, traces, and also seeds.

Chemical laws The chemical laws exploited by the chemical engine to implement MoK
reactions are essentially of three sorts: ordinary, temporal, and instantaneous.

Ordinary laws are those whose scheduling is driven by a rate expression, determining
the likelihood they are actually executed, as well as time taken to complete execution.
Besides this, in order to be executed, they need the correct amount of reactants to be
present in the tuple centre where they are installed, at the time they are scheduled.

These laws are reified as TuCSoN tuples having the following structure:

law([Reactants] , Rate , [Products])

where:

• term Reactants represents the set of reactants necessary for the reaction to be
selected for scheduling, and consumed by the reaction if successfully applied

198

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

• term Rate is the rate expression of the reaction, that is, the (stochastic) likelihood
that a specific law is actually selected for execution among many competing ones

• term Products represents the set of reactants produced by the reaction as a result
of its successful execution

Temporal laws are those with no execution rate associated, but to be executed according
to a dynamically configurable time interval—still, if and only if all the necessary reactants
are available, in the right amount, when the period expires.

These laws are reified as TuCSoN tuples as follows:

timedLaw([Reactants] , Period , [Products])

where terms Reactants and Products retain their usual meaning, while term Period

indicates the time interval according to which the reaction should be executed.
Instantaneous laws are those having no associated rate or time interval, dictating their

scheduling. Instead, they are scheduled for execution as soon as the required reactants
are available within the tuple centre where they are installed.

Their representation as TuCSoN tuples is the same as other laws, provided term
Rate /Period is specified by the constant inf:

law([Reactants] , inf, [Products])

Neighbourhood The term “neighbourhood” denotes the set of tuple centres which
are reachable from a given tuple centre, according to an application-specific reachability
criterion.

Usual network-based reachability, in fact, is of no help in the context of a TuCSoN-
based middleware, because TuCSoN tuple centres can communicate with any other tuple
centre belonging to any other TuCSoN node, provided it has a known network address.
Thus, without some form of reachability constraint, any MoK compartment would be
able to interact with any other compartment within a given MoK system.

Accordingly, MoK administrators are free to define application-specific neighbour-
hoods through a special kind of tuple neighbour , to be put in a tuple centre for each
reachable tuple centre. The tuple is structured as follows:

neighbour(Id , Address , Port)

where:

• term Id represents the locally unique identifier of the MoK compartment in the
neighbourhood—equal to the name of the ReSpecT tuple centre acting as MoK
compartment

• term Address is the IP address of the TuCSoN node hosting the neighbour tuple
centre

199

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

• term Port is the TCP port number where the mentioned TuCSoN node is listening
to incoming requests

Once that neighbourhood relationships are defined, a special kind of tuple – or better, of
tuple wrap – is provided to indicate the chemical engine that the wrapped tuple has to
be sent to a (uniformly probabilistically chosen) neighbour: firing .

Firing tuples have the following structure:

firing(Reactant)

where Reactant is a placeholder for the actual reactant to be sent to the selected neighbour
among the pool of available ones.

7.1.2 The Chemical Engine Logic

The logic of the chemical engine implemented by ReSpecT specifications may be concep-
tually split in two distinct stages, to be iterated until no more triggerable laws can be
found:

1. selection of the chemical law to schedule for execution

a. match reactant templates against available reactants, to collect triggerable laws

b. compute effective rates for all the triggerable laws

c. randomly select a triggerable law, stochastically chosen according to the effec-
tive rates just computed

2. execution of the selected chemical law, following Gillespie algorithm for chemical
solution dynamics simulation [Gil77]

a. instantiate products

b. update reactants and products quantity in the space

c. enqueue firing reactants ready to be moved (if any)

d. update the state of the system—e.g., Gillespie exponential decay

Reactants matching (1.a) In step 1.a, the engine verifies, for each chemical law,
whether the required reactants are available within the local compartment, that is, whether
the local ReSpecT tuple centre contains at least one reactant tuple matching each of the re-
actant templates specified in each chemical law, with at least the desired amount. Then,
for each chemical law whose above condition is satisfied, the engine marks the law as
triggerable, that is, suitable to be scheduled and executed.

According to the MoK model, matching of reactant templates against actual reactants
should be based on the FM oK similarity function, so as to leverage some sort of semantic

200

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

capabilities. In this prototype implementation, however, FM oK is simply an improved
version of Prolog syntactical unification, considering also simple Java regular expressions
and WordNet synsets [MF98].

Also, according to the MoK model, the matching process should be influenced by
the relevance of reactants in the compartment, that is, by some value representing the
(relative) amount of a given reactant (w.r.t. all the other matching reactants available in
the compartment). This guarantees that the more relevant a given reactant is, the more
likely it will win matching.

Nevertheless, in this prototype implementation, relevance is approximated by multi-
plicity of the tuple representing the reactant, and matching consequently affected by this
multiplicity—still probabilistically1.

Effective rates (1.b) In step 1.b, the engine should compute the effective rate of MoK
triggerable reactions based on their nominal rate. The former is the rate as dynamically
computed according to the system state – e.g., reactants multiplicity –, actually driving
probabilistic selection of the chemical law to be executed. The latter is the rate expression
as defined within the chemical law implementing a MoK reaction.

According to the MoK model, the nominal rate of a reaction can be specified by an
arbitrary rate expression, so as to enable a wide range of stochastic emergent behaviours
by going beyond the usual law of mass action—as seen in Section 2 of Chapter 6.

Nevertheless, in this prototype implementation, nominal rates ar assumed to be contin-
uos values, which are then automatically multiplied for the product of the concentrations
of the reactants to be consumed. This way, rate expressions in the prototype are restricted
to be a simple parametrisation of the law of mass action [Car08], which can be adjusted
at run-time. Ultimately, this means the range of behaviours achievable by the prototype
is a subset of those obtainable with the MoK model—see, e.g., simulations in Section 2
of Chapter 6.

Law selection (1.c) In step 1.c, the chemical engine applies the Gillespie chemical solu-
tion dynamics simulation algorithm to choose the chemical law to schedule for execution
[Gil77].

Conceptually, selection and execution can be accomplished as a single process pro-
ceeding as follows:

• each triggerable law is conceptually associated to a timer, whose value is (uniformly)
probabilistically set at a random value between 0 and the inverse of the effective
rate of the reaction

• then, timers are started in parallel so that a critical race begins among the competing
chemical laws

1Probabilistic sampling of matching reactants is implemented on top of the uniform coordination
primitives described in Chapter 3.

201

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

• finally, the chemical law whose associated timer expires first, is executed with a
stochastic, exponentially distributed delay, based on the summation of the concen-
trations of all reactants considered

However, in the prototype, selection and execution are two distinct steps. While execution
is discussed below, selection proceeds as follows: based on the effective rates computed
as described above, the chemical engine (uniformly) probabilistically chooses a random
reaction to schedule for execution.

In this prototype, the role of timers is played by spawned activities, which are TuCSoN
implementation of Linda eval primitive [Gel85]—see the official TuCSoN documentation
for details2.

Products instantiation (2.a) In step 2.a, the products of the chemical law selected
for execution are instantiated based on the matching reactants actually sampled from
the MoK compartment. This means, if any product contained variables corresponding to
other variables specified in reactant templates, Prolog-based unification (and propagation)
ensures they now contains ground terms.

Accordingly, for each product specified in the scheduled reaction, the engine checks
whether it contains unbound variables; if so, the engine then iterates over reactants looking
for the corresponding variable, bound to an actual value; finally, forward propagation is
undertaken, to bind that value to the corresponding product variable.

According to the MoK model, a product may specify arbitrary expressions over reac-
tants as its own instantiation rules. This is necessary to, e.g., support complex forms of
information aggregation, such as filtering, merging, etc.

Nevertheless, in this prototype implementation, products are restricted to be com-
posed by Prolog values or variables, simple arithmetic expressions involving variables and
values, simple string operators such as concatenation or substitution (built-in in tuProlog
[DOR01], the Prolog engine exploited in TuCSoN), or simple list operations such as re-
placement and concatenation (again, built-in in tuProlog).

This way, a fair degree of expressiveness regarding products is provided, while the
implementation is kept simple, thus efficiency high.

Compartment update (2.b) In step 2.b, reactants and products are, respectively,
withdrawn from the compartment and injected into it, that is, the corresponding tu-
ples consumed and put, correspondingly, into the ReSpecT tuple centre acting as MoK
compartment.

This is done as a single atomic operation, despite implying multiple in and out Linda
operations, thanks to the transactional execution semantics of ReSpecT specifications
[DNO98].

2http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

202

http://www.slideshare.net/andreaomicini/the-tucson-coordination-model-technology-a-guide

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Firing queue (2.c) In step 2.c, the chemical engine prepares firing tuples for being
sent to a uniformly probabilistically chosen neighbour, among those compartments in the
neighbourhood of the one executing the reaction.

Namely, the TuCSoN tuples representing products of, e.g., a MoK diffusion reaction,
are wrapped as firing tuples, then put into a firing queue waiting for their target ReSpecT
tuple centre to be defined. Then, the ReSpecT program implementing the chemical engine
retrieves the set of application-specific neighbours, and randomly picks one according to
a uniform probability distribution3: this is the tuple centre receiving the firing tuple
currently at the top of the firing queue.

This step is executed solely in case the chemical law implementing MoK diffusion
reaction is the one being executed.

Engine update (2.d) In step 2.d, the engine takes care of updating its state, that is,
the state of the simulation according to Gillespie algorithm [Gil77]. Among the many op-
erations to be done, encompassing cleaning up temporary tuples, updating tuples tracking
systems properties, and the like, one deserves special attention: enforcement of reaction
execution delay. According to Gillespie in fact, besides the critical race among triggerable
reactions, also the execution step involves time accounting.

In particular, between actual execution of a reaction and the next scheduling step, a
Poisson-distributed time delay has to expire. The reason for doing this is to faithfully
emulate the physical nature of a chemical solution, enabling well-founded formal inves-
tigation of asymptotical convergence to a desired emergent behaviour—as done, e.g., in
Section 2 of Chapter 6.

Final remarks The whole chemical engine is implemented as a mixture of ReSpecT
reactions and Prolog predicates, and the codebase is publicly available under LGPL license
from TuCSoN repository in branch MoK-proto4—ReSpecT specification mok engine.rsp in
package alice.tucson.service.config.

The chemical engine may get stopped, e.g., to save computational resources, if, at
anytime, no more triggerable laws can be found in the compartment. This may happen,
e.g., because, for each chemical law, at least one reactant is missing, in the desired amount,
from the compartment. The engine resumes itself as soon as at least one chemical law
becomes triggerable, checking reactants availability condition anytime a reactant is put
into the compartment.

3Probabilistic selection of the neighbour, based on uniform distribution, is implemented on top of the
uniform primitives described in Chapter 3.

4http://bitbucket.org/smariani/tucson/branch/MoK-proto

203

http://bitbucket.org/smariani/tucson/branch/MoK-proto

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

7.1.3 Spotlight on Engine Implementation

In this section some details regarding ReSpecT implementation of the chemical engine
behind MoK compartments are provided.

MoK abstractions are mapped to TuCSoN tuples, so as to be conveniently handled by
ReSpecT specifications implementing MoK reactions. For instance, a MoK enzyme may
be represented by the following tuple:

reactant(enzyme(species(Sp),strength(St),reactant(R),context(Ctx)),C)

where:

• term Sp denotes the species of the enzyme

• St is the strength of the reinforcement brought by the enzyme, according to its
species

• R is the reactant actually targeted by the enzyme

• Ctx is meant to store any contextual information regarding the action reified by the
enzyme, potentially relevant for coordination purpose

• C is the concentration of the enzyme

Then, an enzyme may be exploited by MoK reinforcement reaction, which can be encoded
as a TuCSoN tuple as follows:

law([reactant(enzyme(Sp ,St ,R1 ,Ctx),C1),reactant(R2 ,C2)],

Rate ,
[reactant(enzyme(Sp ,St ,R1 ,Ctx),C1),reactant(R2 ,C2 + St)])

meaning that the relevance of reactant R2 matching the enzyme’s target R1 , according to
FM oK , is increased by St .

Another interesting example is that of the TuCSoN tuple implementing MoK decay
reaction:

law([reactant(R ,1)],Rate ,[])

meaning that 1 unit of concentration of reactant R is destroyed.

As a last example, consider MoK diffusion:

law([reactant(R ,C)],Rate ,[firing(reactant(R ,C))])

204

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

meaning that, at a pace given by Rate – whose effective value is computed at run-time –
an amount C of reactant R is made available for diffusion.

At this point, a legitimate question may arise: who takes care of selecting the com-
partment target of diffusion? How the choice is made?

Here is were ReSpecT comes to the rescue. The above tuples are nothing more that a
convenient way of representing MoK reactions within the TuCSoN framework, that is, as
first-order logic Prolog terms. Then, suitable ReSpecT specifications, besides those im-
plementing the chemical engine, takes care of interpreting and executing the computation
corresponding to this representation.

In the case of diffusion, e.g., an ad-hoc ReSpecT reaction probabilistically picks a
neighbour tuple, exploiting uniform primitives thoroughly described in Chapter 3, so as
to select the destination compartment based on a uniform probability distribution. Then,
it sends the firing tuple by relying on TuCSoN communication facilities.

Another example of the need for ReSpecT is while matching reactant templates, used
in the left-hand side of chemical laws, against the actual reactant tuples present in the
local tuple centre. There, in fact, matching is based on FM oK similarity measure, thus
tuProlog engine [DOR01] cannot be used as is.

Accordingly, then, suitable ReSpecT reactions are dedicated to perform FM oK -based
matching, by exploiting the already mentioned TuCSoN spawned activities. This way, the
kind of comparisons evaluated in Section 4 of Chapter 6 may be conveniently performed
in parallel.

In next section, an early evaluation of the MoK prototype so far described is presented.

7.1.4 Early Evaluation: MoK -News

While MoK is a general-purpose model for knowledge self-organisation, it can be tailored
on specialised application domains, by refining the notion of atom – which in turn impacts
the notion of molecule, too –, and suitably defining FM oK correlation function exploited
in MoK reactions. Since journalism and news management provide a prominent example
of a knowledge-intensive socio-technical system, it has been chosen as a case study for
MoK .

So, in the remainder of this section MoK is specialised for the news management case
study, starting from the standards for knowledge representation in the news management
domain, and moving towards the definition of the MoK -News model for self-organisation
of news.

Knowledge representation for news management The IPTC (International Press
Telecommunications Council5) is a consortium of the world major news agencies, news
publishers and news industry vendors. IPTC develops and maintains technical standards

5http://iptc.org

205

http://iptc.org

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

for improved news management—used, among the many, by the Italian ANSA, the Amer-
ican Thomson Reuters, and the English BBC. In order to specialise the MoK model and
make it domain-specific, two of the most relevant standards for news are taken as a ref-
erence for atoms refinement: NewsML6 and NITF 7.

NewsML is a news sharing format (or, tagging language) orthogonal w.r.t. media-
type, aimed at conveying not only the core news content, but also the data that describe
the content in an abstract way; namely, the metadata. In order to ease syntactical and
semantical interoperability, NewsML adopts XML as the first implementation language
for its standards, and maintains sets of controlled vocabularies, collectively branded as
NewsCodes8, to represent concepts describing and categorising news objects in a consistent
manner—similarly to what domain-specific ontologies do.

By standardising on NewsCodes, news deliverers can ensure a common understanding
of news content, as well as a large degree of interoperability between content from different
providers. Also, NewsML allows knowledge workers to shape their own vocabularies, by
defining concepts, and structuring them within proper knowledge containers.

NewsML provides journalists all the above features through four main abstractions:

news item it vehicles both the news’ content and its metadata, hence, information
reporting about what has just happened, as well as information about the news
lifecycle—who owns the copyright, the topics covered, the target audience, distri-
bution rights, etc.

concept item news are about events, persons, organisations, and the like. This infor-
mation is worth to be remembered – and referred to – along with the news content
to better identify, recognise, categorise it. Thus, a data structure collecting all this
worth-to-be-remembered information is needed: the concept item, indeed

package item it is meant to organise and convey a structured set of News Items—such
as “Top 10 news of the week” and the like

knowledge item it is a container for a whole taxonomy of Concept Items, acting like
an ontology, which enables distribution of basic knowledge about all the terms the
News Item refers to

Every element above is actually represented as an XML document (examples available at
http://www.iptc.org/std/NewsML-G2/): within it, a journalist can use all the NewsML
– and NITF, too – tags to enrich content and metadata of a news.

The News Industry Text Format, too, adopts XML to enrich the content of news
articles, supporting the identification and description of a number of features typical in
journalism, among which the most notable are:

6http://iptc.org/standards/newsml-g2/
7http://iptc.org/standards/nitf/
8http://iptc.org/standards/newscodes/

206

http://www.iptc.org/std/NewsML-G2/
http://iptc.org/standards/newsml-g2/
http://iptc.org/standards/nitf/
http://iptc.org/standards/newscodes/

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

who owns the copyright to the item, who may republish it, and who it is about

what subjects, organisations, and events it covers

when it happened, was reported, issued, and revised

where it was written, where the action took place, and where it may be released

why it is newsworthy, based on the editor analysis of the metadata

NewsML, in fact, provides no support to any form of inline tagging adding information
to the plain text, for instance, with the purpose of simplifying the work of a text mining
algorithm usable to automatically process the document.

Therefore, NITF and NewsML are complementary standards. In fact, they perfectly
combine to provide a comprehensive and coherent framework supporting management of
the whole news lifecycle: comprehensive, given that the latter cares about news overall
structure, including metadata, whereas the former focusses on their internal meaning, to
make it unambiguous; coherent, because they both exploit the same IPTC abstractions—
NITF makes usage of NewsCodes, too.

To give some hints about the capabilities of NITF, among its most used inline tags
there are:

• <person> wraps personal names, both living people and fictitious. It could contain
the <function> tag if the tagged person goes along with its public role

• <org> identifies organisational names. An inner tag (<orgid>) allows special codes
to be added, such as codes from the Standard Industry Classification9 list, or News-
Codes

• <location> identifies geographic locations and significant places. It contains either
mere text or structured information including <sublocation> , <city> , <region> ,
<state> , and <country>

• <event> should be limited to newsworthy events, that is, events that carry news
value for a journalist. Factors of news value are, for instance, significance, proximity,
prominence of the involved persons, consequences, unusualness, human interest,
timeliness

• <object.title> could tag anything that no other tag could wrap

NITF tags like the ones above (and many others) can be spread throughout the text of a
web document to better characterise its most relevant terms semantics.10

9http://www.sec.gov/info/edgar/siccodes.htm
10http://www.iptc.org/site/News_Exchange_Formats/NITF/Examples/.

207

http://www.sec.gov/info/edgar/siccodes.htm
http://www.iptc.org/site/News_Exchange_Formats/NITF/Examples/

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

MoK -News Once that news representation standards are understood, they can be used
with the aim of specialising the MoK model for the news management scenario.

There, journalists usually gain the knowledge they need to create news from diverse
and sparse sources of information. Assuming that sources provide journalists with the
required raw information already formatted according to the afore-mentioned IPTC stan-
dards – as in real-world news agencies typically happens – a simple yet effective mapping
between models can be devised out.

In fact, a MoK atom has a clear counterpart in NewsML and NITF standards, that is,
the tag : tags – along with their content – can easily be seen as the atoms that altogether
compose the news-substance of a news story. As a result, a MoK -coordinated news
management system would contain <newsItem> atoms, <person> atoms, <subject> atoms,
etc.—that is, virtually one kind of atom for each NewsML/NITF tag.

Accordingly, a generic MoK atom of the form atom(src ,Content ,Meta-info)c may
become a specialised MoK -News atom as follows:

atom(src,Content,sem(Tag, Catalog))c

where:

src ::= news source uri
Content ::= news content
Meta-info ::= sem(Tag ,Catalog)

Tag ::= NewsML tag | NITF tag
Catalog ::= NewsCode uri | ontology uri

Here, the content of an atom is mostly given by the pair <Content, Tag> , where Tag could
be either a metadata tag drawn from NewsML or an inline description tag taken from
NITF. The precise and unambiguous semantics of the news content (Content) can be
specified thanks to the Catalog information, which could be grounded in either NewsML
or NITF standards in the form of NewsCodes, or instead be referred to a custom ontology
defined by the journalist.

MoK molecules and reactions – actually, any other MoK abstraction – are both
syntactically and semantically affected by such a domain-specific mapping of the MoK
model. Here, in fact, molecules can be re-interpreted as ever-growing news stories, and
reactions as autonomous news manipulators. Technically (syntactically), this happens
because they are specified by non-terminal symbols whose productions are the terminal
symbols above instantiated.

Thus, e.g., MoK aggregation reaction can now be interpreted as relating pieces of dif-
ferent news stories based on semantical relationships, either between NewsML/NITF tags
or their tagged content. This semantic matchmaking capability may be straightforwardly
assigned to FM oK function, suitably extended beyond content-based similarity solely.

Reinforcement reaction now increases relevance of those news pieces which are more
frequently accessed, while, on the contrary, decay reaction makes obsolete, stale, or no

208

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

longer considered information fade away as time passes by—recall MoK seeds guarantee
later recovery, if needed.

Diffusion then, is responsible of moving news toward the potentially interested jour-
nalists, leading to both self-organisation and adaptation of the spatial configuration of
news pieces, within the network of MoK compartments used as news stories repositories.

Another fundamental aspect of the MoK model perfectly suits the news management
scenario: the notion of concentration. The concentration ct of a tuple t in a tuple space
TS is defined in MoK -News as the number]t of occurrences of the tuple over the number
]TS of tuples in TS : so, ct ::=]t

]TS
. The three most characterising facets of a news

are its novelty, relevance, and usefulness, that is, respectively: (i) how much new it is
if compared to the actual environment and to time passing, (ii) how interesting it is
perceived by other knowledge workers and target audience, and (iii) how useful it is to
anyone according to some criteria—e.g., economic revenues, or new know-how it could
provide. Concentration easily models all the three facets: the more a news – atom,
molecule – is fresh, interesting, and useful to someone, the greater its concentration will
be—hence, it will more frequently affect the dynamics of the MoK system, according to
the biochemical coordination metaphor implemented by MoK compartments.

The specialised MoK model just presented, called MoK -News, is evaluated against
the MoK prototype middleware described in Section 7.1. In next section, experimental
results are reported and discussed.

MoK -News experiments In what follows, NITF-tagged documents are exploited as
MoK seeds (thus the sources of information), injecting news pieces atoms in compart-
ments. There, some of the MoK -News model features are tested, as inherited from MoK .
In particular, atoms aggregation into molecules, and their propagation toward interested
news prosumers.

Atoms injection First of all, Figure 7.1 shows how atoms are injected by seeds into
their compartment through MoK injection reaction. It should be noted that the screen-
shot shows the triggerable laws with their effective rate, thus, chemical laws implementing
MoK reactions as they are after step 1.b of the simulation algorithm detailed in Subsec-
tion 7.1.2.

The point is that each piece of news can be injected with different rates – as in the
depicted scenario – and different concentrations, too, enabling attribution of different
relevance to different news atoms according to either prosumers’ preferences – in case of
manual extraction – or automated criteria—in case of text processing by, for instance,
ad-hoc NITF XML parsers.

Molecules generation Now, its is expected that molecules begin to self-assembly. Fig-
ure 7.2 shows exactly atoms aggregating into molecules, through a chemical law matching

209

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Figure 7.1: The set of triggerable laws for atoms injection, with their effective rate [MO12].

similar information pieces coming from different sources—the aim is thus to aggregate
different news stories talking about the same subject.

In particular, the depicted instantiation of the aggregation chemical law requires atoms to
have similar Content , Tag and Catalog fields, being FM oK function defined as described
in Subsection 7.1.2 as a slight extension to Prolog unification.

Smart migration Finally, Figure 7.3 and Figure 7.4 show how smart migration of news
pieces can be realised within MoK -News. The depicted scenario is quite simple: a gener-
ator MoK -News compartment stores a collection of different news sources – talking about
weather, baseball and finance – and diffuses them to the neighbour compartments “eco-
nomics” and “sports”—belonging to journalists/consumers interested to that particular
topic.

Despite diffusion being implemented to be equiprobable towards each neighbour com-
partment, every user tends to attract within her compartment the most appealing knowl-
edge chunks. What makes this emergent self-organisation phenomena happen is the

210

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Figure 7.2: Atoms aggregating into molecules [MO12].

(self-)balanced cooperation among two mechanisms typical of self-* systems: positive and
negative feedback.

Positive feedback is enacted by MoK reinforcement reaction, that, in this implementation,

211

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Figure 7.3: Atoms diffusing toward interested prosumers’ compartments [MO12]

takes an atom and the relative enzyme to produce two copy of the atom—thus increasing
concentration by 1. Negative feedback stems from MoK decay reaction, which destroys
1 unit of atoms and molecules concentration.

The result of the competition between opposite feedbacks, is the unstable equilibrium

212

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Figure 7.4: The stochastic equilibrium between diffusion, reinforcement and decay laws,
makes a smart diffusion pattern appear by emergence [MO13b].

depicted in Figure 7.4, where the peripheral compartments “economics” and “sports”
are mainly populated by compartment-related atoms – thanks to the positive feedback –
whereas wrong knowledge chunks concentrations are maintained relatively low thanks to
both decay and absence of enzymes.

As a last note, in the experiments enzyme injection as a consequence to user actions
is simulated by injection laws similar to those depicted in Figure 7.1.

213

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

7.2 MoK Ecosystem

Besides the MoK prototype implemented upon the TuCSoN infrastructure, a comprehen-
sive MoK ecosystem is currently under development11. The aim of this implementation
effort is that of providing of full-fledged platform comprising not only the MoK core mid-
dleware, as described so far, but also all the satellite capabilities MoK demands, such
as:

• automatic information retrieval and extraction

• automatic semantic enrichment and representation of unstructured text

• document-oriented persistent storage layer and graph-based in-memory representa-
tion layer

• networking facilities such as automatic discovery of compartments for dynamic re-
configuration of network topology, mechanisms for adaptive routing of information,
etc.

• automatic knowledge inference and discovery, either ontology-based or not

• suitable user interface assisting knowledge inference and discovery through BIC
inspired mechanisms in the spirit of [RJMK14]

For these reasons, the MoK ecosystem architecture depicted in Figure 7.5 below is envi-
sioned, made up of the following logical layers:

information harvesting providing searching facilities for information retrieval, as well
as text mining related techniques for information extraction—e.g., part of speech
tagging [Abn97]

knowledge representation & persistency devoted to knowledge representation for-
mats and languages, in particular, concerning technologies for building ubiquitous
knowledge bases on resource-constrained devices [RSDR11]. Also, memorisation
of data, information, and knowledge, is considered here, both persistent and in-
memory—e.g., document-oriented DB for persistent storage and on-memory graph
DB for run-time manipulation of MoK abstractions

networking & communication providing both low-level networking (discovery services,
heartbeat, point-to-point and multicast data transfer, etc.) and high-level commu-
nication services (gossiping, routing, etc.)

11Code publicly available under LGPL license at http://bitbucket.org/smariani/mok and http:

//bitbucket.org/smariani/mok-projects.

214

http://bitbucket.org/smariani/mok
http://bitbucket.org/smariani/mok-projects
http://bitbucket.org/smariani/mok-projects

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

Figure 7.5: MoK ecosystem architecture

self-organisation devoted to chemical-inspired self-organisation mechanisms (MoK re-
actions), semantics-related aspects (FM oK -based matching), as well as users’ inter-
actions exploitation (MoK perturbation actions)

user interaction providing to users the means to interact with the system, and to the
IT platform the ability of reifying them, promoting usage for coordination purposes

In the upcoming sections, an overview of two of the software modules implementing
the above layers is provided, which, although still under development, have reached the
“working prototype” state—the information harvesting layer and the networking and
communication layer.

Although the self-organisation layer exists in the state of a working prototype, it
will not be described because it offers the same functionalities of the chemical engine
implemented on top of TuCSoN in the context of the MoK middleware prototype described
in Section 7.1.

Implementation is different, namely not on top of TuCSoN, but the design rationale
is similar to the mentioned prototype: for each compartment, a chemical engine is in

215

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

charge of scheduling and executing MoK reactions. In particular, w.r.t. the prototype on
TuCSoN:

• reactants matching is based on FM oK , considering cosine similarity [Hua08], synsets
[MF98], and allowing reactant templates to specify regular expressions [Hab04]

• reaction rates are now mathematical expressions providing the required expressive-
ness for supporting the custom kinetic rates seen in Section 6.2 of Chapter 6

• firing of reactants now follows the API provided by the communication module
described in Subsection 7.2.2

7.2.1 Information Harvesting Layer

Two software modules are currently available as working prototypes, while still under de-
velopment, to offer the functionalities expected for this layer: the first one is a distributed
information retrieval system, comprising a very simple search engine and a web crawl-
ing module; the second is an information extraction component, composed by a Natural
Language Processing (NLP) service and a module for building MoK atoms.

Information retrieval system The first component of the information retrieval system
is a very simple custom search engine built on top of the Google Custom Search platform12.
The platform lets developers build their own custom search facilities by providing API
for, e.g., choosing which websites to search in, ranking results, etc.

Within the context of MoK ecosystem prototype, the Google service is used to provide
personalised search within the APICe website13. The choice is made to support deploy-
ment of MoK demos involving academic papers collaborative management. The search
service is nothing dissimilar to a normal Google search, except it only targets APICe
publications space.

The second component is a web crawler based on crawler4j library14, providing Java
API for implementing a multi-threaded crawler.

Crawling is quite straightforward: given a set of pages retrieved through a keyword-
based search by the above described custom search engine, the crawler starts processing
them in parallel with the aim of (i) downloading their textual content, and (ii) acquiring
further links to other pages containing the same keywords. Depth of the search may
be configured, as well as of other performance parameters, likewise the opportunity of
searching for synsets of the given keywords too, which is based on WordNet [MF98].

Since crawler4j library does not provide means to distributed crawlers over an infras-
tructure of networked hosts, a dedicated distribution layer has been implemented. A

12http://developers.google.com/custom-search/
13http://apice.unibo.it
14http://github.com/yasserg/crawler4j

216

http://developers.google.com/custom-search/
http://apice.unibo.it
http://github.com/yasserg/crawler4j

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

server component waits on a well-known network address for crawlers registration. As
soon as a custom search provides some results, the server components distributes the
retrieved pages to the registered crawlers. Then, crawlers begin to process pages, sending
to the server components the texts snippets and further links found—if related to the
original search query. Finally, the server component stores the received snippets in a
remote DB – for resilience reasons – and further dispatches the new links to the crawlers.

Information extraction system The first component of the information extraction
system is a NLP module implemented on top of the Apache OpenNLP library15. In
particular, two functionalities provided by the library are especially welcome for MoK :
part of speech (POS) tagging and named entity recognition.

Part of speech tagging is useful to give a first degree of semantics to snippets of text
by, e.g., recognising verbs, subjects of a dialogue, etc., based mostly on grammatical rules.
Named entity recognition, instead, is useful to give another bit of semantics to unstruc-
tured text, by locating and classifying elements of text based on pre-defined categories,
e.g., names of persons, organisations, locations, expressions of times, quantities, etc.

The component just described fetches text snippets from the information retrieval
system presented in previous paragraph—from the DB fed by the server component as
soon as crawlers finish processing. Then, it applies POS and named entity recognition
algorithms to feed the second component of this module: the MoK atoms builder.

As the name suggests, the component is in charge of (i) implementing the data struc-
ture representing MoK atoms, as well as (ii) the mechanisms automatically filling this
data structure based on information provided by both the NLP module – such as tagged
sentences – and the information retrieval component—e.g., the URL of the web page
where the text comes from.

The component as a whole is widely configurable to, e.g., generate different kinds of
atoms based on NLP outcomes—e.g. person atoms, organisation atoms, sentence atoms,
etc. Also, it can be trained to learn new tagging models for both POS and named entity
recognition.

Remark The experiments described in Section 6.4 in previous chapter have been imple-
mented by exploiting this module for retrieving scientific papers from the APICe online
repository.

7.2.2 Networking & Communication Layer

As for previous layer, two software modules are currently available as working prototypes,
while still under development, to offer the functionalities expected for this layer: the first
one is an asynchronous networking module meant to provide low-level API for both data

15http://opennlp.apache.org

217

http://opennlp.apache.org

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

transfer and network topology maintenance; the second one is an adaptive communication
module providing higher-level API meant to directly support MoK diffusion reaction
implementation.

Asynchronous network module The networking module is developed on top of the
Netty NIO framework 16 for channel-based, event-driven asynchronous communication.

As its name implies, Netty is an asynchronous communication framework based on
Java NIO framework, which promotes an event-driven approach to networking by provid-
ing the following main components:

channel actually carries out communications by providing API for opening, binding to,
connecting to, closing channels, as well as for reading from and writing data to
channels

channel handler interceptor of channel operations and events

event loop allows management of channel operations

Each channel is registered to one event loop, which processes all events from that channel
within a single thread. An event loop may serve multiple channels—one thread per each.
Changes in the state of channels, as well as events generated by channels are intercepted
by a dedicated channel handler.

MoK networking module is implemented on top of the above described abstractions,
to provide its own, higher-level ones. In particular:

compartment the main abstraction of the module, it is meant to represent the commu-
nication capabilities of MoK compartments – e.g., diffusion of atoms and molecules
– and to manage network-related properties of the compartment, which may change
at run-time—such as its network address, its neighbourhood, wether forwarding of
received packet is enabled or not, etc.

neighbourhoods compartments are grouped in neighbourhoods, which define the bound-
aries for MoK diffusion

membrane each compartment is associated to other in its neighbourhood by membranes,
actually enabling and taking care of diffusion of atoms and molecules. Also mem-
branes have application-specific properties to track, which may change at run-time—
e.g., diffusion likelihood, distance to connected compartments, etc.

A compartment should first of all join a MoK system to receive its neighbourhood in
the form of a set of membranes. Then, in order to communicate with the compartments
in its neighbourhood, it utilises the appropriate membranes, which provide methods for

16http://netty.io/index.html

218

http://netty.io/index.html

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

point-to-point, multicast, and broadcast data transfer. Each data transfer is marked by a
globally unique ID, enabling implementation of retransmission mechanisms, and necessary
to avoid flooding the network when compartments forward received atoms and molecules.

Each networking operation within the framework is asynchronous and follows a call-
back model, thus, any compartment invokes operations with a “fire-and-forget” semantics,
to be later notified upon their completion—either successful or not. Accordingly, noti-
fications for compartment joining the neighbourhood, reception of atoms and molecules,
failures, etc. are available.

The networking module also includes hotspot components, meant to support openness
of the MoK system, and network topology (re)configuration and maintenance. Hotspots
are passive components reachable on a well-known address, on which they listen to in-
coming connection requests by MoK compartments.

As soon as the request arrives, the hotspot computes the neighbourhood the newcomer
should be assigned to, based on the properties of the requesting compartment – e.g.,
its geographical location, average latency, application-specific preferences – and its own
configured policies for neighbourhood association. Then, it sends the neighbourhoods to
the joining compartment, and notifies the compartments therein about the newcomer.

It should be noted that joining the MoK system by contacting multiple hotspots is
perfectly fine, and enables complex topologies to be built, since each hotspots may have
different neighbourhood association policies and different partial views of the network.

Hotspots are also in charge of gracefully releasing connections when compartments
leave the MoK system, that is, of informing compartments in the neighbourhood about
the leaving one. However, even in the case of an abrupt disconnection, e.g. due to a crash,
the system is guaranteed to keep a consistent (partial) view over the network: as soon as
compartments attempt to communicate with the no longer available peer, disconnection
is detected and promptly communicated to the hotspot, which propagates information to
the interested compartments—those in the neighbourhood of the leaving one.

Besides handling join/leave of compartments, and topology-related aspects, hotspots
take no role in communication between compartments. In fact, after the join phase,
communication among compartments is completely p2p.

Adaptive communication module The communication module is developed on top
of the networking module just described, thus, exploits its abstractions and services to
provide direct support to MoK communication requirements. In particular, the module
provides an API to (i) carry out MoK diffusion – that is, sharing of atoms, molecules, or
traces between compartments in the same neighbourhood – according to a few different
modalities, and (ii) undertake search actions to seek for information within the whole
space of networked MoK compartments, despite the actual compartment where the action
takes place.

219

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

As regards the search action17, two modalities are supported:

• one takes as input parameter a set of keywords and searches matching information
by exploiting the FM oK function, here implemented as the cosine similarity mea-
sure [Hua08] extended to consider sysnsets [MF98]—many other parameters can be
specified, e.g., whether to restrict searching to the current neighbourhood

• one takes as input parameter an atom or a molecule, and searches information
matching that piece of information—still based on FM oK similarity measure

Whichever is the chosen modality, a few features are supported by the current implemen-
tation which are worth to be mentioned:

• whenever a compartment receives a search request, regardless of the fact it can
provide matching information or not, it tracks that the requesting compartment is
looking for information matching the given keywords / atom / molecule

• whenever the compartment where the search action took place receives a reply
from a remote compartment, within its neighbourhood or not18, it tracks that the
compartment has matching information (for that keywords / atom / molecule)

• whenever a compartment receives a search request, regardless of the fact it can
provide matching information or not, it forwards the request to its neighbours—
flooding is automatically avoided by the underlying networking module described
in previous paragraph

• replies to search actions imply movement of a fraction of the matching atoms and
molecules concentration, not their copy

As regards MoK diffusion, four modalities for transmitting information are currently
supported:

random the diffusing item (atom, molecules, or trace) is sent to a neighbour compart-
ment chosen at random, each compartment having the same probability

probabilistic the diffusing item is sent to a neighbour compartment chosen at ran-
dom, each compartment having a probability depending on properties of the mem-
brane connecting it to the sender compartment—e.g., their distance, according to
application-specific metrics

17It should be noted that this is not the kind of search for information sources (MoK seeds) described
in Subsection 7.2.1, but the harvest action modelling MoK catalysts behaviour (thus one of those
described in Section 6.3), aimed at acquiring information already present within the MoK ecosystem.

18In MoK , actions are reified into enzymes which release traces, that, in this case, are meant to spread
the search through neighbourhoods recursively.

220

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

broadcast the diffusing item is sent to all the compartments in the neighbourhood

focussed the diffusing item is sent to a specific compartment

Both diffusion and search generate gradients, which are used to route (i) search replies,
(ii) further search requests, and (iii) focussed diffusions. More in general, forwarding
of data packets is implemented on top of gradients dynamically created by the above
described actions, providing adaptive routing lists to every networked compartment.

Routing lists are data structures tracking compartments connecting a source compart-
ment to a destination compartment. Routing lists are incrementally and cooperatively
filled by the compartments themselves, which add their reference to the list prior to
passing it while forwarding data packets.

Routing lists may provide more alternatives to reach a given destination: strictly
worse alternatives are eliminated – e.g., those with more compartments to traverse –
whereas equivalent ones are chosen probabilistically, so as to support graceful degradation
of routing performance in case of topology changes—e.g., compartments disconnections
breaking a routing path.

Spreading of search requests is actually implemented on top of diffusion, where the
items diffused are not atoms nor molecules, but traces (deposited by the harvest enzyme,
in turn released by the homonym action).

All the features described so far, are meant to cooperatively support adaptive com-
munications within MoK . Compartments track each other requests to improve their
performance, e.g., by attracting information which is more frequently requested by neigh-
bour compartments. Complementarily, compartments track each other replies to improve
their efficiency, e.g., by autonomously switching diffusion modality to focussed if a com-
partment becomes recognised as being the best source for a given kind of information.

221

CHAPTER 7. THE M OLECULES OF K NOWLEDGE TECHNOLOGY

222

Part III

Conclusion & Outlook

223

Chapter 8

Conclusion

In this thesis, coordination issues posed by knowledge-intensive socio-technical systems
have been deeply analysed, and novel approaches to deal with them have been accordingly
proposed.

In particular, a chemical-inspired approach to coordination for self-organising systems
has been proposed and evaluated, which relies on artificial chemical reactions with custom
kinetic rates as coordination laws. An architectural and linguistic approach to coordina-
tion for situated pervasive systems has been proposed and thoroughly described, which
relies on a situated, distributed, programmable, and tuple-based coordination medium and
language to implement situated coordination laws. An approach to user-driven coordina-
tion for socio-technical systems has been proposed and described, inspired to behavioural
implicit communication, and relying on the notions of tacit message and perturbation
action to drive the coordination processes enacted by the coordination medium.

As a summation of the above proposals, the M olecules of K nowledge model and tech-
nology for self-organisation of knowledge in knowledge-intensive socio-technical systems
has been defined, designed, implemented, and evaluated.

The rationale driving the apparently distant research efforts above described has been
the following: engineering efficient and effective coordination for large-scale, data-intensive
systems with “humans in the loop” is a very difficult task, which should be approached
in a holistic way by considering both the model, the architecture, and the language level
of a potential computational solution. The choice to start the research work from nature-
inspired coordination models, in particular, chemical-inspired ones, is motivated by their
well-proven ability to deal with distribution, decentralisation, unpredictability, and scale
in a simple yet expressive way. Then, the need for a suitable coordination infrastructure
supporting chemical-inspired approaches naturally stems from such a choice, while the
need to readily account for users behaviour since the very foundation of the proposed
coordination framework stems from the kind of systems mainly targeted by this thesis—
that is, socio-technical ones.

Accordingly, the main contributions brought by this thesis to advance the field of

225

CHAPTER 8. CONCLUSION

coordination models, languages, and infrastructures, in the context of socio-technical
systems, are:

• a novel coordination model for decentralised, data-driven coordination, based on a
chemical metaphor for both representing and enacting coordination laws, and on
the behavioural implicit communication framework for steering the emergent self-
organisation toward the ever-changing users goals

• a novel infrastructure and language supporting design and implementation of the
aforementioned model, and in general of situated coordination policies within multi-
agent systems

• a novel software ecosystem providing not only the core coordination functional-
ities of the aforementioned model, but also those satellite services necessary for
a real-world deployment—such as information harvesting components, networking
services, storage.

226

Chapter 9

Outlook

In present IT systems, it is apparent the need for efficient and smart ways of preserving,
managing, and analysing the astonishing amount of raw data, derived information, and
high-level knowledge that any socio-technical system produces everyday.

Big data like approaches are more or less the state of art, mostly because they are good
in finding hidden patterns in the data they are fed with. Nevertheless, they mostly neglect
“humans in the loop”, being the role of human users confined to analysis of ready-to-use
results, produced by algorithms which are completely user-neutral and goal-independent.
They also require ever-increasing computational power to scale up with the complexity of
the problem at hand, which is something not all the organisations can afford.

For the above reasons, it may be appropriate to promote a paradigm shift toward
self-organisation of information and knowledge, where:

• user-driven adaptability of information mining and knowledge discovery activities
is the main concern to deal with, and the foremost goal to pursue

• techniques supporting the mentioned activities natively account for users goals, as
well as take advantage of the properties of the business domain at hand

• the overall performance seamlessly scales up and down naturally, as a result of
exploitation of local information and fully decentralised mechanisms, rather than of
post-hoc technical solutions

All the above is witnessed by the latest H2020 calls for proposals, increasingly demanding
citizen-inclusive policy making, governance participation, user-centric knowledge sharing
platforms, and the like—see, e.g., calls H2020-SC6-CO-CREATION-2016-2017, H2020-
EINFRA-2016-2017, and H2020-FETPROACT-2016-2017.

In particular, as far as the contributions of this thesis are concerned, many advance-
ments may still be made, and will certainly be the subject of the author’s future research
activity:

227

CHAPTER 9. OUTLOOK

• simulation of composite bio-inspired patterns is undoubtedly interesting, both to
evaluate their expressiveness, and to evaluate the extent to which artificial chemical
reactions are composable

• further formal investigation of uniform primitives expressiveness, too, is interesting
for better framing the relative expressiveness of probabilistic coordination languages

• improvement of MoK prototype on TuCSoN is already under development, in par-
ticular as far as the chemical engine is concerned

• instantiation of the MoK model within different business domains, as well as de-
ployment of MoK prototype therein surely helps in assessing its generality

• development of the missing parts of MoK ecosystem is already in process, and
represents a necessary ingredient for real-world deployment of the M olecules of
K nowledge technology

228

Bibliography

[AAS06] Rui Alves, Fernando Antunes, and Armindo Salvador. Tools for kinetic modeling
of biochemical networks. Nature biotechnology, 24(6):667–672, 2006.

[Abn97] S. Abney. Corpus-Based Methods in Language and Speech Processing, chapter
Part-of-Speech Tagging and Partial Parsing, pages 118–136. Springer Nether-
lands, Dordrecht, 1997.

[ACC+98] James Allan, Jamie Callan, W Bruce Croft, Lisa Ballesteros, Donald Byrd, Rus-
sell Swan, and Jinxi Xu. Inquery does battle with trec-6. NIST SPECIAL
PUBLICATION SP, pages 169–206, 1998.

[Ack00] Mark S Ackerman. The intellectual challenge of cscw: the gap between social re-
quirements and technical feasibility. Human–Computer Interaction, 15(2-3):179–
203, 2000.

[BB06] Jacob Beal and Jonathan Bachrach. Infrastructure for engineered emergence on
sensor/actuator networks. Intelligent Systems, IEEE, 21(2):10–19, 2006.

[BDPW02] Antonio Brogi, Alessandra Di Pierro, and Herbert Wiklicky. Linear embedding
for a quantitative comparison of language expressiveness. Electronic Notes in
Theoretical Computer Science, 59(3):207–237, 2002.

[BDU+12] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Or-
ganizing the aggregate: Languages for spatial computing. CoRR, abs/1202.5509,
2012.

[Bea10] Jacob Beal. A basis set of operators for space-time computations. In Proceedings
of the 2010 Fourth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshop (SASOW 2010), pages 91–97, Washington, DC,
USA, 2010. IEEE Computer Society.

[BGLZ05] Mario Bravetti, Roberto Gorrieri, Roberto Lucchi, and Gianluigi Zavattaro.
Quantitative information in the tuple space coordination model. Theoretical
Computer Science, 346(1):28–57, 23 November 2005.

229

BIBLIOGRAPHY

[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the expressiveness
of linda coordination primitives. Information and Computation, 156(1):90–121,
2000.

[Bha01] Ganesh D. Bhatt. Knowledge management in organizations: Examining the
interaction between technologies, techniques, and people. Journal of Knowledge
Management, 5(1):68–75, 2001.

[BHW07] Rafael H. Bordini, Jomi F. Hübner, and Michael J. Wooldridge. Programming
Multi-Agent Systems in AgentSpeak using Jason. John Wiley & Sons, Ltd, Oc-
tober 2007.

[BLY01] Jonsson Bengt, Kim G. Larsen, and Wang Yi. Probabilistic extensions of pro-
cess algebras. In Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors,
Handbook of Process Algebra, chapter 11, pages 685–710. Elsevier Science B.V.,
2001.

[BMS11] Jacob Beal, Olivier Michel, and Ulrik Pagh Schultz. Spatial computing: Dis-
tributed systems that take advantage of our geometric world. ACM Trans. Au-
ton. Adapt. Syst., 6(2):11:1–11:3, June 2011.

[BPR99] Fabio Luigi Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE–a FIPA-
compliant agent framework. In 4th International Conference and Exhibition
on the Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM-99), pages 97–108, London, UK, 19–21 April 1999. The Practical Appli-
cation Company Ltd.

[Bra08] Mario Bravetti. Expressing priorities and external probabilities in process alge-
bra via mixed open/closed systems. Electronic Notes in Theoretical Computer
Science, 194(2):31–57, 16 January 2008.

[Bro86] Rodney A. Brooks. Achieving artificial intelligence through building robots.
Technical Report AIM-899, Massachussets Institute of Technology (MIT), May
1986.

[Car08] Luca Cardelli. On process rate semantics. Theoretical computer science,
391(3):190–215, 2008.

[Cas98] Cristiano Castelfranchi. Modelling social action for AI agents. Artificial Intelli-
gence, 103(1-2):157–182, August 1998.

[Cas06] C Castlefranchi. From conversation to interaction via behavioral communication:
For a semiotic design of objects, environments, and behaviors. Theories and
practice in interaction design, pages 157–79, 2006.

230

BIBLIOGRAPHY

[Cas12] Cristiano Castelfranchi. Goals, the true center of cognition. In Fabio Paglieri,
Luca Tummolini, Rino Falcone, and Maria Miceli, editors, The Goals of Cogni-
tion. Essays in Honor of Cristiano Castelfranchi, volume 20 of Tributes, chap-
ter 41, pages 837–882. College Publications, London, December 2012.

[CC95] Rosaria Conte and Cristiano Castelfranchi, editors. Cognitive and Social Action.
Routledge, 1995.

[CH09] Federica Ciocchetta and Jane Hillston. Bio-PEPA: A framework for the mod-
elling and analysis of biological systems. Theoretical Computer Science, 410(33–
34):3065 – 3084, 2009. Concurrent Systems Biology: To Nadia Busi (1968–2007).

[Cia96] Paolo Ciancarini. Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302, June 1996.

[CLZ00] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents. IEEE Internet Com-
puting, 4(4):26–35, July/August 2000.

[CM01] Adam Cheyer and David Martin. The Open Agent Architecture. Autonomous
Agents and Multi-Agent Systems, 4(1-2):143–148, March 2001.

[CO09] Matteo Casadei and Andrea Omicini. Situated tuple centres in ReSpecT. In
Sung Y. Shin, Sascha Ossowski, Ronaldo Menezes, and Mirko Viroli, editors,
24th Annual ACM Symposium on Applied Computing (SAC 2009), volume III,
pages 1361–1368, Honolulu, Hawai’i, USA, 8–12 March 2009. ACM.

[COZ00] Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli. Multiagent system
engineering: The coordination viewpoint. In Nicholas R. Jennings and Yves
Lespérance, editors, Intelligent Agents VI. Agent Theories, Architectures, and
Languages, volume 1757 of LNAI, pages 250–259. Springer, 2000.

[CPT10] Cristiano Castelfranchi, Giovanni Pezzullo, and Luca Tummolini. Behavioral
implicit communication (BIC): Communicating with smart environments via our
practical behavior and its traces. International Journal of Ambient Computing
and Intelligence, 2(1):1–12, January–March 2010.

[CV13] Matteo Casadei and Mirko Viroli. Toward approximate stochastic model checking
of computational fields for pervasive computing systems. In Jeremy Pitt, editor,
Self-Adaptive and Self-Organizing Systems Workshops (SASOW), pages 199–204.
IEEE CS, April 2013. 2012 IEEE Sixth International Conference (SASOW 2012),
Lyon, France, 10-14 September 2012. Proceedings.

[CVG09] Matteo Casadei, Mirko Viroli, and Luca Gardelli. On the collective sort problem
for distributed tuple spaces. Science of Computer Programming, 74(9):702–722,
2009.

231

BIBLIOGRAPHY

[DB10] Marco Dorigo and Mauro Birattari. Ant colony optimization. In Claude Sammut
and GeoffreyI. Webb, editors, Encyclopedia of Machine Learning, pages 36–39.
Springer US, 2010.

[dBP94] Frank S. de Boer and Catiuscia Palamidessi. Embedding as a tool for language
comparison. Information and Computation, 108(1):128–157, 1994.

[DC15] Enrico Denti and Roberta Calegari. Butler-ising HomeManager: A pervasive
multi-agent system for home intelligence. In Stephane Loiseau, Joaquim Filipe,
Beatrice Duval, and Jaap Van Den Herik, editors, 7th International Conference
on Agents and Artificial Intelligence 2015 (ICAART 2015), pages 249–256, Lis-
bon, Portugal, 10–12 January 2015. SCITEPRESS – Science and Technology
Publications.

[Den14] Enrico Denti. Novel pervasive scenarios for home management: the butlers ar-
chitecture. SpringerPlus, 3(52):1–30, January 2014.

[DM91] Yves Demazeau and Jean-Pierre Müller. From reactive to intentional agents.
Decentralized A.I., 2:3–10, 1991.

[DMY+09] Menggao Dong, Xinjun Mao, Junwen Yin, Zhiming Chang, and Zhichang Qi.
Sade: A development environment for adaptive multi-agent systems. In Jung-Jin
Yang, Makoto Yokoo, Takayuki Ito, Zhi Jin, and Paul Scerri, editors, Principles
of Practice in Multi-Agent Systems, volume 5925 of Lecture Notes in Computer
Science, pages 516–524. Springer Berlin Heidelberg, 2009.

[DNLKM06] Rocco De Nicola, Diego Latella, Joost-Pieter Katoen, and Mieke Massink. StoK-
laim: A stochastic extension of Klaim. Technical Report 2006-TR-01, Istituto di
Scienza e Tecnologie dell’Informazione “Alessandro Faedo” (ISTI), 2006.

[DNO97] Enrico Denti, Antonio Natali, and Andrea Omicini. Programmable coordination
media. In David Garlan and Daniel Le Métayer, editors, Coordination Languages
and Models, volume 1282 of LNCS, pages 274–288. Springer-Verlag, 1997.

[DNO98] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expressive power of
a language for programming coordination media. In 1998 ACM Symposium on
Applied Computing (SAC’98), pages 169–177, Atlanta, GA, USA, 27 February –
1 March 1998. ACM.

[DOR01] Enrico Denti, Andrea Omicini, and Alessandro Ricci. tuProlog: A light-weight
Prolog for Internet applications and infrastructures. In I.V. Ramakrishnan, ed-
itor, Practical Aspects of Declarative Languages, volume 1990 of LNCS, pages
184–198. Springer, 2001. 3rd International Symposium (PADL 2001), Las Vegas,
NV, USA, 11–12 March 2001. Proceedings.

232

BIBLIOGRAPHY

[DPHW03] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Quantitative rela-
tions and approximate process equivalences. In Roberto M. Amadio and Denis
Lugiez, editors, CONCUR 2003, volume 2761 of Lecture Notes in Computer Sci-
ence, pages 498–512. Springer, 2003.

[DPHW04] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic
KLAIM. In Rocco De Nicola, Gian-Luigi Ferrari, and Greg Meredith, editors, Co-
ordination Models and Languages, volume 2949 of LNCS, pages 119–134. Springer
Berlin / Heidelberg, 2004.

[DPHW05] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic Linda-
based coordination languages. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, 3rd International Conference
on Formal Methods for Components and Objects (FMCO’04), volume 3657 of
LNCS, pages 120–140. Springer, Berlin, Heidelberg, 2005.

[Dra67] Alvin W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill
College, 1967.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, Cam-
bridge, MA, July 2004.

[DWH07] Tom De Wolf and Tom Holvoet. Design patterns for decentralised coordination
in self-organising emergent systems. In Engineering Self-Organising Systems,
pages 28–49. Springer, 2007.

[FGMR10] Giancarlo Fortino, Alfredo Garro, Samuele Mascillaro, and Wilma Russo. Using
event-driven lightweight DSC-based agents for MAS modelling. International
Journal of Agent-Oriented Software Engineering, 4(2):113–140, April 2010.

[FM96] Jacques Ferber and Jean-Pierre Müller. Influences and reaction: A model of
situated multiagent systems. In Mario Tokoro, editor, 2nd International Confer-
ence on Multi-Agent Systems (ICMAS-96), pages 72–79, Tokio, Japan, December
1996. AAAI Press.

[FMDMSA11] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, and Josep Lluis
Arcos. Infrastructureless spatial storage algorithms. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 6(2):15, 2011.

[FMMSM+12] JoseLuis Fernandez-Marquez, Giovanna Marzo Serugendo, Sara Montagna,
Mirko Viroli, and JosepLluis Arcos. Description and composition of bio-inspired
design patterns: a complete overview. Natural Computing, pages 1–25, 2012.

[FMSM12] Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, and Sara Mon-
tagna. Bio-core: Bio-inspired self-organising mechanisms core. In Bio-Inspired
Models of Networks, Information, and Computing Systems, volume 103 of Lecture

233

BIBLIOGRAPHY

Notes of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pages 59–72. Springer Berlin Heidelberg, 2012.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, January 1985.

[GH94] Stephen Gilmore and Jane Hillston. The PEPA workbench: A tool to support
a process algebra-based approach to performance modelling. In Günter Har-
ing and Gabriele Kotsis, editors, Computer Performance Evaluation Modelling
Techniques and Tools, volume 794 of Lecture Notes in Computer Science, pages
353–368. Springer Berlin Heidelberg, 1994.

[Gil77] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81(25):2340–2361, December 1977.

[Gra59] Pierre-Paul Grassé. La reconstruction du nid et les coordinations interindividu-
elles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie:
Essai d’interprétation du comportement des termites constructeurs. Insectes So-
ciaux, 6(1):41–80, March 1959.

[GVCO07] Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini. Designing
self-organising MAS environments: The collective sort case. In Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel, editors, Environments for MultiAgent
Systems III, volume 4389 of LNAI, pages 254–271. Springer, May 2007.

[GVO06] Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of simulations in
engineering self-organising MAS: The case of an intrusion detection system in
TuCSoN. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, David Hales, and
Franco Zambonelli, editors, Engineering Self-Organising Systems, volume 3910
of LNAI, pages 153–168. Springer, 2006. 3rd International Workshop (ESOA
2005), Utrecht, The Netherlands, 26 July 2005. Revised Selected Papers.

[GVO09] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Combining simulation and
formal tools for developing self-organizing MAS. In Adelinde M. Uhrmacher
and Danny Weyns, editors, Multi-Agent Systems: Simulation and Applications,
Computational Analysis, Synthesis, and Design of Dynamic Systems, chapter 5,
pages 133–165. CRC Press, June 2009.

[Hab04] Mehran Habibi. Java regular expressions: taming the java. util. regex engine.
Springer, 2004.

[Her02] Holger Hermanns. Interactive Markov chains: and the quest for quantified qual-
ity. Springer-Verlag, 2002.

234

BIBLIOGRAPHY

[HJD07] Kasper Hallenborg, Ask Just Jensen, and Yves Demazeau. Reactive agent mech-
anisms for manufacturing process control. In 2007 IEEE/WIC/ACM Interna-
tional Conferences on Web Intelligence and Intelligent Agent Technology Work-
shops (WI-IATW ’07), pages 399–403, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[HKBR99] Jonathan L Herlocker, Joseph A Konstan, Al Borchers, and John Riedl. An al-
gorithmic framework for performing collaborative filtering. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 230–237. ACM, 1999.

[HNP05] Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A brief survey of text
mining. In Ldv Forum, volume 20, pages 19–62, 2005.

[HP01] Oltea Mihaela Herescu and Catuscia Palamidessi. Probabilistic asynchronous
pi-calculus. CoRR, cs.PL/0109002, 2001.

[HS96] Scott E Hudson and Ian Smith. Techniques for addressing fundamental privacy
and disruption tradeoffs in awareness support systems. In Proceedings of the
1996 ACM conference on Computer supported cooperative work, pages 248–257.
ACM, 1996.

[Hua08] Anna Huang. Similarity measures for text document clustering. In Proceedings
of the sixth new zealand computer science research student conference (NZC-
SRSC2008), Christchurch, New Zealand, pages 49–56, 2008.

[Hut95] Edwin Hutchins. Cognition in the Wild. MIT press, 1995.

[JS13] Ms Aruna Jadhav and Subhash K Shinde. A concept based mining model for
nlp using text clustering. In International Journal of Engineering Research and
Technology, volume 2. ESRSA Publications, 2013.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), vol-
ume 6806 of LNCS, pages 585–591. Springer, 2011.

[Leu01] Anton Leuski. Evaluating document clustering for interactive information re-
trieval. In Proceedings of the tenth international conference on Information and
knowledge management, pages 33–40. ACM, 2001.

[LHKK96] Krista Lagus, Timo Honkela, Samuel Kaski, and Teuvo Kohonen. Self-organizing
maps of document collections: A new approach to interactive exploration. In
KDD, volume 96, pages 238–243, 1996.

235

BIBLIOGRAPHY

[MAC+07] Emanuela Merelli, Giuliano Armano, Nicola Cannata, Flavio Corradini, Mark
d’Inverno, Andreas Doms, Phillip Lord, Andrew Martin, Luciano Milanesi, Stef-
fen Möller, Michael Schroeder, and Michael Luck. Agents in bioinformatics,
computational and systems biology. Briefings in Bioinformatics, 8(1):45–59,
2007.

[Mar13a] Stefano Mariani. Analysis of the Molecules of Knowledge model with the
Bio-PEPA Eclipse plugin. AMS Acta Technical Report 3783, Alma Mater
Studiorum–Università di Bologna, Bologna, Italy, 20 September 2013.

[Mar13b] Stefano Mariani. Parameter engineering vs. parameter tuning: the case of bio-
chemical coordination in MoK. In Matteo Baldoni, Cristina Baroglio, Federico
Bergenti, and Alfredo Garro, editors, From Objects to Agents, volume 1099 of
CEUR Workshop Proceedings, pages 16–23, Turin, Italy, 2–3 December 2013.
Sun SITE Central Europe, RWTH Aachen University. XIV Workshop (WOA
2013). Workshop Notes.

[Mar14] Stefano Mariani. On the “local-to-global” issue in self-organisation: Chemical
reactions with custom kinetic rates. In Eighth IEEE International Conference
on Self-Adaptive and Self-Organizing Systems Workshops, SASOW 2014, Eighth
IEEE International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, SASOW 2014, pages 61 – 67, London, UK, September 2014. IEEE.
Best student paper award.

[MAYA01] Gregoris Mentzas, Dimitris Apostolou, Ronald Young, and Andreas Abecker.
Knowledge networking: a holistic solution for leveraging corporate knowledge.
Journal of knowledge management, 5(1):94–107, 2001.

[MC94] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordi-
nation. ACM Computing Surveys, 26(1):87–119, 1994.

[MF98] George Miller and Christiane Fellbaum. Wordnet: An electronic lexical database,
1998.

[MMTZ06] Marco Mamei, Ronaldo Menezes, Robert Tolksdorf, and Franco Zambonelli. Case
studies for self-organization in computer science. Journal of Systems Architec-
ture, 52(8):443–460, 2006.

[MO12] Stefano Mariani and Andrea Omicini. Self-organising news management: The
Molecules of Knowledge approach. In Jeremy Pitt, editor, Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), pages 235–240. IEEE CS, 2012.
2012 IEEE Sixth International Conference (SASOW 2012), Lyon, France, 10-
14 September 2012. Proceedings.

[MO13a] Stefano Mariani and Andrea Omicini. Event-driven programming for situated
MAS with ReSpecT tuple centres. In Matthias Klusch, Matthias Thimm, and

236

BIBLIOGRAPHY

Marcin Paprzycki, editors, Multiagent System Technologies, volume 8076 of
LNAI, pages 306–319. Springer, 2013. 11th German Conference (MATES 2013),
Koblenz, Germany, 16-20 September 2013. Proceedings.

[MO13b] Stefano Mariani and Andrea Omicini. MoK: Stigmergy meets chemistry to ex-
ploit social actions for coordination purposes. In Harko Verhagen, Pablo Nor-
iega, Tina Balke, and Marina de Vos, editors, Social Coordination: Principles,
Artefacts and Theories (SOCIAL.PATH), pages 50–57, AISB Convention 2013,
University of Exeter, UK, 3–5 April 2013. The Society for the Study of Artificial
Intelligence and the Simulation of Behaviour.

[MO13c] Stefano Mariani and Andrea Omicini. Molecules of Knowledge: Self-organisation
in knowledge-intensive environments. In Giancarlo Fortino, Costin Bădică,
Michele Malgeri, and Rainer Unland, editors, Intelligent Distributed Computing
VI, volume 446 of Studies in Computational Intelligence, pages 17–22. Springer,
2013.

[MO13d] Stefano Mariani and Andrea Omicini. Probabilistic embedding: Experiments
with tuple-based probabilistic languages. In 28th ACM Symposium on Applied
Computing (SAC 2013), pages 1380–1382, Coimbra, Portugal, 18–22 March 2013.
Poster Paper.

[MO13e] Stefano Mariani and Andrea Omicini. Probabilistic modular embedding for
stochastic coordinated systems. In Christine Julien and Rocco De Nicola, edi-
tors, Coordination Models and Languages, volume 7890 of LNCS, pages 151–165.
Springer, 2013. 15th International Conference (COORDINATION 2013), Flo-
rence, Italy, 3–6 June 2013. Proceedings.

[MO13f] Stefano Mariani and Andrea Omicini. Promoting space-aware coordination: Re-
SpecT as a spatial-computing virtual machine. In Spatial Computing Workshop
(SCW 2013), AAMAS 2013, Saint Paul, Minnesota, USA, May 2013.

[MO13g] Stefano Mariani and Andrea Omicini. Space-aware coordination in ReSpecT.
In Matteo Baldoni, Cristina Baroglio, Federico Bergenti, and Alfredo Garro,
editors, From Objects to Agents, volume 1099 of CEUR Workshop Proceedings,
pages 1–7, Turin, Italy, 2–3 December 2013. Sun SITE Central Europe, RWTH
Aachen University. XIV Workshop (WOA 2013). Workshop Notes.

[MO13h] Stefano Mariani and Andrea Omicini. TuCSoN on cloud: An event-driven ar-
chitecture for embodied / disembodied coordination. In Rocco Aversa, Joanna
Kolodzej, Jun Zhang, Flora Amato, and Giancarlo Fortino, editors, Algorithms
and Architectures for Parallel Processing, volume 8286 of LNCS, pages 285–294.
Springer International Publishing Switzerland, December 2013. 13th Interna-
tional Conference (ICA3PP-2013), Vietri sul Mare, Italy, 18-20 December 2013.
Proceedings, Part II.

237

BIBLIOGRAPHY

[MO14a] Stefano Mariani and Andrea Omicini. Coordination in situated systems: Engi-
neering mas environment in TuCSoN. In Giancarlo Fortino, Giuseppe Di Fatta,
Wenfeng Li, Sergio Ochoa, Alfredo Cuzzocrea, and Mukaddim Pathan, editors,
Internet and Distributed Computing Systems, volume 8729 of Lecture Notes in
Computer Science, pages 99–110. Springer International Publishing, September
2014. 7th International Conference on Internet and Distributed Computing Sys-
tems (IDCS 2014), Calabria, Italy, 22-24 September 2014, Proceedings.

[MO14b] Stefano Mariani and Andrea Omicini. Coordination mechanisms for the mod-
elling and simulation of stochastic systems: The case of uniform primitives. SCS
M&S Magazine, IV:6–25, December 2014. Special Issue on “Agents and Multi-
Agent Systems: From Objects to Agents”.

[MO14c] Stefano Mariani and Andrea Omicini. TuCSoN coordination for MAS situated-
ness: Towards a methodology. In Corrado Santoro and Federico Bergenti, editors,
WOA 2014 – XV Workshop Nazionale “Dagli Oggetti agli Agenti”, volume 1260
of CEUR Workshop Proceedings, pages 62–71, Catania, Italy, 24–26 September
2014. Sun SITE Central Europe, RWTH Aachen University.

[MO15a] Stefano Mariani and Andrea Omicini. Anticipatory coordination in socio-
technical knowledge-intensive environments: Behavioural implicit communica-
tion in MoK. In Marco Gavanelli, Evelina Lamma, and Fabrizio Riguzzi, editors,
AI*IA 2015, Advances in Artificial Intelligence, volume 9336 of Lecture Notes in
Computer Science, chapter 8, pages 102–115. Springer International Publishing,
23–25 September 2015. XIVth International Conference of the Italian Association
for Artificial Intelligence, Ferrara, Italy, September 23–25, 2015, Proceedings.

[MO15b] Stefano Mariani and Andrea Omicini. Coordinating activities and change: An
event-driven architecture for situated MAS. Engineering Applications of Ar-
tificial Intelligence, 41:298–309, May 2015. Special Section on Agent-oriented
Methods for Engineering Complex Distributed Systems.

[MU00] Naftaly H. Minsky and Victoria Ungureanu. Law-Governed interaction: A co-
ordination and control mechanism for heterogeneous distributed systems. ACM
Transactions on Software Engineering and Methodology (TOSEM), 9(3):273–305,
2000.

[MZ09] Marco Mamei and Franco Zambonelli. Programming pervasive and mobile com-
puting applications: The TOTA approach. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 18(4):15:1–15:56, July 2009.

[Nag04] Radhika Nagpal. A catalog of biologically-inspired primitives for engineering self-
organization. In Engineering Self-Organising Systems, pages 53–62. Springer,
2004.

[Nar96] B.A. Nardi. Context and Consciousness: Activity Theory and Human-computer
Interaction. MIT Press, 1996.

238

BIBLIOGRAPHY

[NM09] Cynthia Nikolai and Gregory Madey. Tools of the trade: A survey of various
agent based modeling platforms. Journal of Artificial Societies and Social Sim-
ulation, 12(2):2, 2009.

[NOV11] Elena Nardini, Andrea Omicini, and Mirko Viroli. Description spaces with fuzzi-
ness. In Mathew J. Palakal, Chih-Cheng Hung, William Chu, and W. Eric Wong,
editors, 26th Annual ACM Symposium on Applied Computing (SAC 2011), vol-
ume II: Artificial Intelligence & Agents, Information Systems, and Software De-
velopment, pages 869–876, Tunghai University, TaiChung, Taiwan, 21–25 March
2011. ACM.

[OBS96] Vicki L O’Day, Daniel G Bobrow, and Mark Shirley. The social-technical de-
sign circle. In Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pages 160–169. ACM, 1996.

[OD01a] Andrea Omicini and Enrico Denti. Formal ReSpecT. Electronic Notes in Theo-
retical Computer Science, 48:179–196, June 2001.

[OD01b] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres. Science
of Computer Programming, 41(3):277–294, November 2001.

[Ode02] James J. Odell. Objects and agents compared. Journal of Object Technology,
1(1):41–53, May–June 2002.

[OM13] Andrea Omicini and Stefano Mariani. Coordination for situated MAS: Towards
an event-driven architecture. In Daniel Moldt and Heiko Rölke, editors, Inter-
national Workshop on Petri Nets and Software Engineering (PNSE’13), volume
989 of CEUR Workshop Proceedings, pages 17–22. Sun SITE Central Europe,
RWTH Aachen University, 6 August 2013.

[Omi02] Andrea Omicini. Towards a notion of agent coordination context. In Dan C.
Marinescu and Craig Lee, editors, Process Coordination and Ubiquitous Com-
puting, chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA, October
2002.

[Omi07] Andrea Omicini. Formal ReSpecT in the A&A perspective. Electronic Notes in
Theoretical Computer Science, 175(2):97–117, June 2007.

[Omi12] Andrea Omicini. Agents writing on walls: Cognitive stigmergy and beyond. In
Fabio Paglieri, Luca Tummolini, Rino Falcone, and Maria Miceli, editors, The
Goals of Cognition. Essays in Honor of Cristiano Castelfranchi, volume 20 of
Tributes, chapter 29, pages 543–556. College Publications, London, December
2012.

[Omi13a] Andrea Omicini. Nature-inspired coordination for complex distributed systems.
In Intelligent Distributed Computing VI, pages 1–6. Springer, 2013.

239

BIBLIOGRAPHY

[Omi13b] Andrea Omicini. Nature-inspired coordination models: Current status, future
trends. ISRN Software Engineering, 2013, 2013.

[OO02] Sascha Ossowski and Andrea Omicini. Coordination knowledge engineering. The
Knowledge Engineering Review, 17(4):309–316, December 2002.

[OO03] Andrea Omicini and Sascha Ossowski. Objective versus subjective coordination
in the engineering of agent systems. In Matthias Klusch, Sonia Bergamaschi,
Peter Edwards, and Paolo Petta, editors, Intelligent Information Agents: An
AgentLink Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages
179–202. Springer, 2003.

[OPRV09] Andrea Omicini, Michele Piunti, Alessandro Ricci, and Mirko Viroli. Agents,
intelligence, and tools. In Max Bramer, editor, Artificial Intelligence: An Inter-
national Perspective, volume 5640 of LNAI: State-of-the-Art Survey, chapter 9,
pages 157–173. Springer, 2009.

[Orl92] Wanda J Orlikowski. The duality of technology: Rethinking the concept of
technology in organizations. Organization science, 3(3):398–427, 1992.

[ORV+04a] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Cristiano Castelfranchi, and
Luca Tummolini. Coordination artifacts: Environment-based coordination for
intelligent agents. In Nicholas R. Jennings, Carles Sierra, Liz Sonenberg,
and Milind Tambe, editors, 3rd international Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2004), volume 1, pages 286–293, New
York, USA, 19–23 July 2004. ACM.

[ORV+04b] Andrea Omicini, Alessandro Ricci, Mirko Viroli, Marco Cioffi, and Giovanni
Rimassa. Multi-agent infrastructures for objective and subjective coordination.
Applied Artificial Intelligence, 18(9-10):815–831, 2004.

[ORV05] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Time-aware coordination
in ReSpecT. In Jean-Marie Jacquet and Gian Pietro Picco, editors, Coordination
Models and Languages, volume 3454 of LNCS, pages 268–282. Springer-Verlag,
April 2005.

[ORV08] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456, December 2008.

[ORZ06] Andrea Omicini, Alessandro Ricci, and Nicola Zaghini. Distributed workflow
upon linkable coordination artifacts. In Paolo Ciancarini and Herbert Wiklicky,
editors, Coordination Models and Languages, volume 4038 of LNCS, pages 228–
246. Springer, June 2006.

240

BIBLIOGRAPHY

[OV11] Andrea Omicini and Mirko Viroli. Coordination models and languages: From
parallel computing to self-organisation. The Knowledge Engineering Review,
26(1):53–59, March 2011.

[OZ99] Andrea Omicini and Franco Zambonelli. Coordination for Internet applica-
tion development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
September 1999.

[OZ04] Andrea Omicini and Franco Zambonelli. MAS as complex systems: A view on the
role of declarative approaches. In João Alexandre Leite, Andrea Omicini, Leon
Sterling, and Paolo Torroni, editors, Declarative Agent Languages and Technolo-
gies, volume 2990 of LNAI, pages 1–17. Springer, May 2004. 1st International
Workshop (DALT 2003), Melbourne, Australia, 15 July 2003. Revised Selected
and Invited Papers.

[OZKT01] Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolksdorf, ed-
itors. Coordination of Internet Agents: Models, Technologies, and Applications.
Springer-Verlag, March 2001.

[Par97] H. Van Dyke Parunak. “Go to the ant”: Engineering principles from natural
agent systems. Annals of Operation Research, 75(0):69–101, January 1997. Spe-
cial Issue on Artificial Intelligence and Management Science.

[Par06] H. Van Dyke Parunak. A survey of environments and mechanisms for human-
human stigmergy. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel,
editors, Environments for Multi-Agent Systems II, volume 3830 of LNCS, pages
163–186. Springer, 2006.

[PBS02] H. Van Dyke Parunak, Sven Brueckner, and John Sauter. Digital pheromone
mechanisms for coordination of unmanned vehicles. In Cristiano Castelfranchi
and W. Lewis Johnson, editors, 1st International Joint Conference on Au-
tonomous Agents and Multiagent systems, volume 1, pages 449–450, New York,
NY, USA, 15–19 July 2002. ACM.

[PCBB07] Julien Pauty, Paul Couderc, Michel Banatre, and Yolande Berbers. Geo-Linda:
a geometry aware distributed tuple space. In Advanced Information Networking
and Applications, pages 370–377, 2007. 21st International Conference (AINA
’07), 21–23 May 2007, Niagara Falls, ON, CA. Proceedings.

[PCF07] Michele Piunti, Cristiano Castelfranchi, and Rino Falcone. Anticipatory coordi-
nation through action observation and behavior adaptation. In Proceedings of
AISB, 2007.

[PMR99] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. LIME: Linda
meets mobility. In 21st International Conference on Software Engineering
(ICSE’99), pages 368–377, New York, NY, USA, 16–22 May 1999. ACM Press.

241

BIBLIOGRAPHY

[PMV13] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation
of computational systems with Alchemist. Journal of Simulation, 2013.

[POS13] PP González Pérez, A Omicini, and M Sbaraglia. A biochemically inspired
coordination-based model for simulating intracellular signalling pathways. Jour-
nal of Simulation, 7(3):216–226, 2013.

[Rao96] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Walter Van de Velde and John W. Perram, editors, Agents Breaking
Away, volume 1038 of LNCS, pages 42–55. Springer, 1996. 7th European Work-
shop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96),
Eindhoven, The Netherlands, 22-25 January 1996, Proceedings.

[RCD01] Davide Rossi, Giacomo Cabri, and Enrico Denti. Tuple-based technologies for co-
ordination. In Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors, Coordination of Internet Agents: Models, Technologies, and
Applications, chapter 4, pages 83–109. Springer, January 2001.

[RJMK14] Tuukka Ruotsalo, Giulio Jacucci, Petri Myllymäki, and Samuel Kaski. Inter-
active intent modeling: Information discovery beyond search. Commun. ACM,
58(1):86–92, December 2014.

[ROD03] Alessandro Ricci, Andrea Omicini, and Enrico Denti. Activity Theory as a frame-
work for MAS coordination. In Paolo Petta, Robert Tolksdorf, and Franco Zam-
bonelli, editors, Engineering Societies in the Agents World III, volume 2577 of
LNCS, pages 96–110. Springer, April 2003. 3rd International Workshop (ESAW
2002), Madrid, Spain, 16–17 September 2002. Revised Papers.

[ROV+07] Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico Oliva.
Cognitive stigmergy: Towards a framework based on agents and artifacts. In
Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environments
for MultiAgent Systems III, volume 4389 of LNCS, pages 124–140. Springer, May
2007. 3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006.
Selected Revised and Invited Papers.

[RSDR11] Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio, and Domenico Rotondi.
Ubiquitous knowledge bases for the semantic web of things. In First Internet of
Things International Forum, nov 2011.

[RVO07] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: A framework for
prototyping artifact-based environments in MAS. In Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel, editors, Environments for MultiAgent Systems III,
volume 4389 of LNAI, pages 67–86. Springer, May 2007.

[RVO08] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. The A&A programming
model and technology for developing agent environments in MAS. In Mehdi

242

BIBLIOGRAPHY

Dastani, Amal El Fallah Seghrouchni, Alessandro Ricci, and Michael Winikoff,
editors, Programming Multi-Agent Systems, volume 4908 of LNCS, pages 89–106.
Springer, April 2008.

[RWJ+95] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-
Beaulieu, Mike Gatford, et al. Okapi at trec-3. NIST SPECIAL PUBLICATION
SP, 109:109, 1995.

[Sch01] Michael Schumacher. Objective Coordination in Multi-Agent System Engineering.
Design and Implementation, volume 2039 of LNCS. Springer, April 2001.

[SFH+03] Giovanna Di Marzo Serugendo, Noria Foukia, Salima Hassas, Anthony Kara-
georgos, Soraya Kouadri Mostéfaoui, Omer F Rana, Mihaela Ulieru, Paul Val-
ckenaers, and Chris Van Aart. Self-organisation: Paradigms and applications.
Springer, 2003.

[Sha91] Ehud Shapiro. Separating concurrent languages with categories of language em-
beddings. In 23rd Annual ACM Symposium on Theory of Computing (STOC’91),
pages 198–208, New York, NY, USA, 1991. ACM.

[SS00] C Simone and K Schmidt. Mind the gap! towards a unified view of
cscw. In Fourth International Conference on Design of Cooperative Systems
(COOP2000), Sophia-Antipolis (Fr), 2000.

[Suc87] Lucy A. Suchman. Situated actions. In Plans and Situated Actions: The Problem
of Human-Machine Communication, chapter 4, pages 49–67. Cambridge Univer-
sity Press, New York, NYU, USA, 1987.

[SW04] Kjeld Schmidt and Ina Wagner. Ordering systems: Coordinative practices and
artifacts in architectural design and planning. Computer Supported Cooperative
Work (CSCW), 13(5-6):349–408, 2004.

[SZ01] Tarja Susi and Tom Ziemke. Social cognition, artefacts, and stigmergy: A com-
parative analysis of theoretical frameworks for the understanding of artefact-
mediated collaborative activity. Cognitive Systems Research, 2(4):273–290, 2001.

[TCR+05] Luca Tummolini, Cristiano Castelfranchi, Alessandro Ricci, Mirko Viroli, and
Andrea Omicini. “Exhibitionists” and “voyeurs” do it better: A shared environ-
ment approach for flexible coordination with tacit messages. In Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel, editors, Environments for Multi-Agent
Systems, volume 3374 of LNAI, pages 215–231. Springer, February 2005.

[TM04] Robert Tolksdorf and Ronaldo Menezes. Using Swarm Intelligence in Linda Sys-
tems. In Andrea Omicini, Paolo Petta, and Jeremy Pitt, editors, Engineering
Societies in the Agents World IV, volume 3071 of LNCS, pages 49–65. Springer,
June 2004. 4th International Workshops (ESAW 2003), London, UK, 29-31 Oc-
tober 2003. Revised Selected and Invited Papers.

243

BIBLIOGRAPHY

[TRDMS11] A.-E. Tchao, M. Risoldi, and G. Di Marzo Serugendo. Modeling self-* sys-
tems using chemically-inspired composable patterns. In Self-Adaptive and Self-
Organizing Systems (SASO), 2011 Fifth IEEE International Conference on,
pages 109 –118, oct. 2011.

[Tur39] Alan Mathison Turing. Systems of logic based on ordinals. Proceedings of the
London Mathematical Society, 2(1):161–228, 1939.

[V+78] Lev Vigotsky et al. Mind in society, 1978.

[VBC11] Mirko Viroli, Jake Beal, and Matteo Casadei. Core operational semantics of
Proto. In Mathew J. Palakal, Chih-Cheng Hung, William Chu, and W. Eric
Wong, editors, 26th Annual ACM Symposium on Applied Computing (SAC
2011), volume II: Artificial Intelligence & Agents, Information Systems, and
Software Development, pages 1325–1332, Tunghai University, TaiChung, Tai-
wan, 21–25 March 2011. ACM.

[VC09] Mirko Viroli and Matteo Casadei. Biochemical tuple spaces for self-organising
coordination. In John Field and Vasco T. Vasconcelos, editors, Coordination
Languages and Models, volume 5521 of LNCS, pages 143–162. Springer, Lisbon,
Portugal, June 2009.

[VCMZ11] Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spatial
coordination of pervasive services through chemical-inspired tuple spaces. ACM
Transactions on Autonomous and Adaptive Systems, 6(2):14:1–14:24, June 2011.

[VCO09] Mirko Viroli, Matteo Casadei, and Andrea Omicini. A framework for modelling
and implementing self-organising coordination. In Sung Y. Shin, Sascha Os-
sowski, Ronaldo Menezes, and Mirko Viroli, editors, 24th Annual ACM Sympo-
sium on Applied Computing (SAC 2009), volume III, pages 1353–1360, Honolulu,
Hawai’i, USA, 8–12 March 2009. ACM.

[VGS+13] Panagiotis Vlacheas, Raffaele Giaffreda, Vera Stavroulaki, Dimitris Kelaidonis,
Vassilis Foteinos, George Poulios, Panagiotis Demestichas, Andrey Somov, Ab-
dur Rahim Biswas, and Klaus Moessner. Enabling smart cities through a cogni-
tive management framework for the Internet of things. IEEE Communications
Magazine, 51(6):102–111, 2013.

[VHR+07] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout, and Franco Zam-
bonelli. Infrastructures for the environment of multiagent systems. Autonomous
Agents and Multi-Agent Systems, 14(1):49–60, July 2007.

[VO06] Mirko Viroli and Andrea Omicini. Coordination as a service. Fundamenta In-
formaticae, 73(4):507–534, 2006. Special Issue: Best papers of FOCLASA 2002.

244

BIBLIOGRAPHY

[VOR07] Mirko Viroli, Andrea Omicini, and Alessandro Ricci. Infrastructure for RBAC-
MAS: An approach based on Agent Coordination Contexts. Applied Artificial
Intelligence: An International Journal, 21(4–5):443–467, April 2007. Special
Issue: State of Applications in AI Research from AI*IA 2005.

[VPB12] Mirko Viroli, Danilo Pianini, and Jacob Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In Marjan Sirjani, edi-
tor, Coordination Languages and Models, volume 7274 of LNCS, pages 212–229.
Springer-Verlag, June 2012.

[VSS95] Rob J. Vanglabbeek, Scott A. Smolka, and Bernhard Steffen. Reactive, genera-
tive, and stratified models of probabilistic processes. Information and Computa-
tion, 121(1):59–80, 1995.

[Weg97] Peter Wegner. Why interaction is more powerful than algorithms. Communica-
tions of the ACM, 40(5):80–91, May 1997.

[WG03] Peter Wegner and Dina Goldin. Computation beyond Turing machines. Com-
munications of the ACM, 46(4):100–102, April 2003.

[Whi06] Brian Whitworth. Socio-technical systems. Encyclopedia of human computer
interaction, pages 533–541, 2006.

[WOO07] Danny Weyns, Andrea Omicini, and James J. Odell. Environment as a first-
class abstraction in multi-agent systems. Autonomous Agents and Multi-Agent
Systems, 14(1):5–30, February 2007.

[ZCF+11] Franco Zambonelli, Gabriella Castelli, Laura Ferrari, Marco Mamei, Alberto
Rosi, Giovanna Di Marzo Serugendo, Matteo Risoldi, Akla-Esso Tchao, Simon
Dobson, Graeme Stevenson, Yuan Ye, Elena Nardini, Andrea Omicini, Sara
Montagna, Mirko Viroli, Alois Ferscha, Sascha Maschek, and Bernhard Wally.
Self-aware pervasive service ecosystems. Procedia Computer Science, 7:197–199,
December 2011.

[ZOA+15] Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco L. DeAngelis, Giovanna Di Marzo Serugendo, Simon Dobson, Jose Luis
Fernandez-Marquez, Alois Ferscha, Marco Mamei, Stefano Mariani, Ambra
Molesini, Sara Montagna, Jussi Nieminen, Danilo Pianini, Matteo Risoldi, Al-
berto Rosi, Graeme Stevenson, Mirko Viroli, and Juan Ye. Developing pervasive
multi-agent systems with nature-inspired coordination. Pervasive and Mobile
Computing, 17:236–252, February 2015. Special Issue “10 years of Pervasive
Computing” In Honor of Chatschik Bisdikian.

[ZV08] Franco Zambonelli and Mirko Viroli. Architecture and metaphors for eternally
adaptive service ecosystems. In Intelligent Distributed Computing, Systems and
Applications, volume 162/2008 of Studies in Computational Intelligence, pages

245

BIBLIOGRAPHY

23–32. Springer, September 2008. 2nd International Symposium on Intelligent
Distributed Computing (IDC 2008), Catania, Italy, 18–19 September 2008. Pro-
ceedings.

246

List of Figures

3.1 Decay Reaction, law of mass action . 27

3.2 Decay Reaction, custom kinetic rate . 29

3.3 Feed Reaction, comparison . 31

3.4 Activation Reaction, law of mass action . 33

3.5 Activation Reaction, custom kinetic rate 1 . 34

3.6 Activation Reaction, custom kinetic rate 2 . 35

3.7 Aggregation Reaction, law of mass action . 37

3.8 Aggregation Reaction, custom kinetic rate 1 . 38

3.9 Aggregation Reaction, custom kinetic rate 2 . 39

3.10 Diffusion Reaction, comparison of rates I . 41

3.11 Diffusion Reaction, comparison of rates II . 42

3.12 Bio-inspired Design Patterns . 45

3.13 Comparison of probabilistic coordination models 47

3.14 Comparison of Linda and uLinda primitives . 50

3.15 Load Balancing, client code . 51

3.16 Load Balancing, rd client load . 51

3.17 Load Balancing, urd client load . 52

3.18 Pheromone-based Coordination, digital ants . 55

3.19 Pheromone-based Coordination, pheromone . 56

3.20 Pheromone-based Coordination, ant code . 56

3.21 Gillespie, ReSpecT code . 58

4.1 MAS meta-model 1 . 75

4.2 MAS meta-model 2 . 76

4.3 MAS meta-model 3 . 77

4.4 MAS meta-model 4 . 78

4.5 MAS architecture, Jade . 80

4.6 MAS architecture, Jason . 82

4.7 MAS architecture, CArtAgO . 84

4.8 Reference Architecture for Situatedness in MAS 85

4.9 Situated Coordination in TuCSoN . 88

4.10 Situatedness, ACC acquisition . 90

4.11 Situatedness, synchronous invocation . 91

247

LIST OF FIGURES

4.12 Situatedness, asynchronous invocation . 92

4.13 Situatedness, ACC release . 93

4.14 Situatedness, probes & transducers . 93

4.15 Situatedness, sensor probe interaction . 94

4.16 Situatedness, actuator probe interaction . 94

4.17 Situatedness, probe deregistration . 95

4.18 Situatedness, sensor coordination . 96

4.19 Situatedness, actuator coordination . 97

4.20 Situatedness, probe interface . 100

4.21 Situatedness, sensor code . 101

4.22 Situatedness, transducer interface . 102

4.23 Situatedness, actuator code . 103

4.24 Situatedness, probe-transducer dependencies . 103

4.25 Situatedness, transducer manager . 104

4.26 Situatedness, business logic code 1 . 104

4.27 Situatedness, coordination logic code . 105

4.28 Situatedness, business logic code 2 . 106

4.29 T-Program benchmark . 119

6.1 Injection rate BioPEPA chart . 168

6.2 Injection rate BioPEPA code . 168

6.3 Decay rate BioPEPA chart . 170

6.4 Decay rate BioPEPA code . 170

6.5 Aggregation rate BioPEPA chart . 171

6.6 Aggregation rate BioPEPA code . 172

6.7 Comparison of kinetic rate expressions for atoms reinforcement 173

6.8 Reinforcement rate BioPEPA code . 173

6.9 Reinforcement rate BioPEPA chart: concentration & stoichiometry effect 174

6.10 Diffusion rate BioPEPA topology . 174

6.11 Diffusion rate BioPEPA chart . 175

6.12 Diffusion rate BioPEPA code . 175

6.13 Reinforcement + diffusion rates malfunctioning 176

6.14 Adjusted BioPEPA specification of rate expressions for MoK reinforcement reac-
tion used together with MoK diffusion reaction [Mar13b]. 177

6.15 Adjusted MoK reinforcement reaction: enzymes are now completely depleted and
other reactions no longer affected [Mar13b]. 177

6.16 Focus on Interactions: BIC-based anticipatory coordination I 184

6.17 Focus on Interactions: BIC-based anticipatory coordination II 185

6.18 Focus on Interactions: BIC-based anticipatory coordination III 186

6.19 Focus on Interactions: oscillatory trend . 188

6.20 FM oK based on most basic similarity . 192

6.21 FM oK based on cosine similarity . 193

6.22 FM oK based on concepts similarity . 195

248

LIST OF FIGURES

7.1 MoK prototype evaluation: injection . 210
7.2 MoK prototype evaluation: aggregation . 211
7.3 MoK prototype evaluation: diffusion screenshot 212
7.4 MoK prototype evaluation: diffusion charts . 213
7.5 MoK ecosystem architecture . 215

249

LIST OF FIGURES

250

List of Tables

4.1 ReSpecT situated event model [MO15b]. 89
4.2 ReSpecT triggering events [MO15b]. 89
4.3 ReSpecT Syntax: Core [MO13g]—no forgeability, bulk, uniform predicates. . . . 114
4.4 Spatial extensions to ReSpecT [MO13g]—only the definitions introduced / affected

by the spatial extension are shown. 115
4.5 Extending ReSpecT events with space [MO13g]. 117

251

	About this Thesis
	Organisation of Chapters
	List of Publications

	I Coordination Issues in Complex Socio-technical Systems
	Coordination Issues in Self-organising Systems
	Where all began: Linda
	Leveraging Stochasticity
	SwarmLinda

	Leveraging Programmability
	ReSpecT

	Putting all together
	Biochemical Tuple Spaces
	SAPERE

	Remarks & Outlook

	Re-thinking Stochastic, Programmable Coordination
	Chemical Reactions as Coordination Laws
	Self-organisation Patterns
	Custom Kinetic Rates
	Discussion of Results

	Uniform Primitives as Coordination Primitives
	Related Approaches
	Informal Definition
	Informal Expressiveness
	Discussion of Results

	Formal Expressiveness of Uniform Primitives
	Formal Definition of Uniform Primitives
	From Modular Embedding to PME
	Relative Expressiveness Results
	Similar Approaches

	Remarks & Outlook

	Coordination Issues in Situated Pervasive Systems
	The Quest toward Situatedness in MAS
	Review of Meta-models
	Review of Architectures
	A Reference Architecture

	Environmental Situatedness in TuCSoN
	Architectural Overview
	Flow of Interactions
	Implementation Methodology
	Discussion of Results
	Related Work

	Spatial Situatedness in TuCSoN
	Space-aware Coordination Media
	Space-aware Extension to ReSpecT
	Expressiveness Showcase
	Discussion of Results

	Remarks & Outlook

	Coordination Issues in Knowledge-Intensive Socio-Technical Systems
	Socio-Technical Systems & Knowledge-Intensive Environments
	Challenges of Socio-Technical Systems
	Challenges of Knowledge-Intensive Environments
	Research Roadmap

	From Activity Theory to Behavioural Implicit Communication
	Activity Theory for Multi-Agent Systems
	Stigmergy and Cognitive Stigmergy
	Behavioural Implicit Communication
	Toward Computational Smart Environments

	Behavioural Implicit Communication in Real-world STS
	Survey of Actions
	Factorisation of Common Actions

	Remarks & Outlook

	II Self-organisation of Knowledge in MoK
	The Molecules of Knowledge Model
	Core Abstractions
	Focus on Reactions
	Formal Description
	Evaluation

	Focus on Interactions
	From Users' Actions to MoK Perturbations
	Early Evaluation: Citizen Journalism

	Focus on Similarity
	Viable Approaches
	Experiments

	The Molecules of Knowledge Technology
	Prototype on TuCSoN
	Main Abstractions
	The Chemical Engine Logic
	Spotlight on Engine Implementation
	Early Evaluation: MoK-News

	MoK Ecosystem
	Information Harvesting Layer
	Networking & Communication Layer

	III Conclusion & Outlook
	Conclusion
	Outlook
	Bibliography

