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Aim of the thesis 

Serogroup B Neisseria meningitidis (MenB) is the cause of an acute, potentially 

severe infection, known as invasive meningococcal disease (IMD) with two peaks in disease 

incidence occurring among adolescents and young adults 16 to 21 years of age. Bexsero is 

the first genome-derived vaccine against MenB, and it has recently been approved in >35 

countries worldwide. Neisserial adhesin A (NadA), a meningococcal trimeric autotransporter 

adhesin (TAA) that acts in adhesion to, and invasion of, host epithelial cells, is one of the 

three protein antigens included in Bexsero. The main aim of this work was to obtain detailed 

insights into the structure of NadA variant 3 (NadAv3), the vaccine variant, and into the 

molecular mechanisms governing its transcriptional regulation by NadR (Neisseria adhesin A 

Regulator). The amount of NadA exposed on the meningococcal surface influences the 

antibody-mediated serum bactericidal response measured in vitro, which in turn correlates 

with protection in immunized subjects. A deep understanding of nadA expression is therefore 

important, otherwise the contribution of NadA to vaccine-induced protection against 

meningococcal disease may be underestimated. The abundance of surface-exposed NadA is 

regulated by the ligand-responsive transcriptional repressor NadR. The functional, 

biochemical and high-resolution structural characterization of NadR is presented in the first 

part of the thesis (Part One). These studies provide detailed insights into how small molecule 

ligands, such as hydroxyphenylacetate derivatives, found in relevant host niches, modulate 

the structure and activity of NadR, by ‘conformational selection’ of inactive forms. These 

findings shed light on the regulation of a key virulence factor and vaccine antigen of this 

important human pathogen.  

In the second part of the thesis (Part Two), strategies involving both protein 

engineering and crystal manipulation to increase the likelihood of solving the crystal structure 

of NadAv3 are described. The first approach was the rational design of new constructs of 

NadAv3, based on the recently solved crystal structure of a close sequence variant 

(NadAv5). Then, a comprehensive set of biochemical, biophysical and structural techniques 

were applied to investigate all the generated NadAv3 constructs, aiming to faithfully 

represent its natural trimeric status, essential for reliable structural, functional and epitope 

mapping studies. The well-characterized trimeric NadAv3 constructs represented a set of 

high quality reagents which were validated as probes for functional studies and as a platform 

for continued attempts for protein crystallization. Mutagenesis studies and screenings to 

identify a new crystal form of NadAv3 were performed to improve crystal quality, ultimately 

allowing the collection of several high quality X-ray diffraction data sets; structure 

determination is ongoing. The atomic resolution structure of NadAv3 will help to understand 

its biological role as both an adhesin and a vaccine antigen. For example, the high resolution 

structure will enable epitope mapping studies using human antibodies and thus permit a 
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deeper understanding of the molecular determinants of antibody binding and protective 

epitopes. In addition, it will help to understand the molecular basis of host-pathogen 

interactions mediated by specific human cell receptors.  
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Reverse Vaccinology and Structural Vaccinology 

Genomics tools and the exponentially growing number of bacterial genome 

sequencing projects have changed the landscape of modern biology providing new 

opportunities for vaccine development. The complete genome of a bacterium represents a 

large reservoir of genes encoding for potential antigens that can be selected and tested as 

vaccine candidates. Therefore, potentially surface-exposed proteins can be identified in a 

reverse manner, starting from the genome rather than from the microorganism. This 

approach has been termed Reverse Vaccinology (RV) [1]. Bioinformatics algorithms are 

used to select open reading frames (ORFs) encoding putative surface-exposed or secreted 

proteins, which are potentially recognized by antibody and can therefore considered as 

vaccine antigens. The identification of such surface proteins is based on specific properties 

including the presence of signal peptide sequences, membrane spanning regions, lipoprotein 

signature, and motifs such as LPXTG sortase attachment sites. Sequence homology 

analyses can additionally help the antigen identification process, comparing homology both 

to known virulence factors or protective antigens from other pathogens and to human 

proteins to avoid autoimmune problems [2]. The candidate surface antigens are therefore 

produced as recombinant proteins and tested for their immunogenicity in a relevant animal 

model in order to evaluate their potential as vaccine candidates. The reverse vaccinology 

approach has been strengthened by the development of proteomic techniques to identify 

vaccine candidates against bacterial infections [3-5]. In the proteomics approach to bacterial 

vaccine development the surface-located or secreted bacterial proteins are first separated 

using two-dimensional (2-D) electrophoresis gel, followed by digestion of each protein into its 

peptide fragments using a specific protease (e.g. trypsin). The molecular mass of each 

proteolytic digested fragment is then accurately measured using matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [6, 7]. Finally, the 

generated peptide mass fingerprint is used as an input to allow a database search of 

predicted masses coming from the digestion of a list of known proteins. If a protein sequence 

in the reference list does not match the experimental values, the peptide can be identified 

using tandem mass spectrometry, which provides sequence information on the proteolytic 

peptides [8]. The effectiveness of the 2-D gel-based platform integrating surface and 

immune-proteomics analysis was demonstrated by the identification of major meningococcal 

vaccine antigens [9]. After identification of potential candidates by RV, their testing is 

facilitated by use of high-throughput screenings for protective immunity and correlation of 

protection. Combining proteomics with serological analysis is another useful refinement for 

identifying potential vaccine candidates [8]. 

In addition,  systematic transcriptomic and proteomic gene expression analysis can 

support RV in the identification of gene-level responses, which are correlated with protection 
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in vivo and then facilitating the rational design of a hypothetical vaccine candidate [10]. 

These strategies could help vaccine design for pathogens for which vaccines are not yet 

available, as well as parasites and viruses.  

Once candidates have been identified further potential issues have to be solved 

before they can be used in a vaccine formulation. For instance, the surface antigens 

identified are not always abundant, and immune evasion strategies set up by the micro-

organism can impact their potential. One of the most frequent examples is the sequence 

variation of surface antigens across circulating strains. From a more practical viewpoint, the 

selected antigens may show low stability when expressed as recombinant proteins. 

Structural vaccinology (SV) can represent the solution for many of these issues [11]. In a 

process analogous to structure-based drug design of small-molecule pharmaceuticals, where 

lead candidate inhibitory molecules are rationally-optimized in structure-guided manner, 

structural information on antigens and their protective epitopes can also be instrumental 

during the optimization phases.  

Notable applications of structural vaccinology in the field of bacterial protein antigens 

include (i) characterization of the immune response through epitope mapping to provide 

insights into the molecular features recognized by the host immune response upon infection 

by the pathogen or following immunization. Epitope mapping experiments produce 

information about the immunogenic regions of the protein, showing which parts of a surface-

bound antigen are exposed and therefore accessible to antibodies. Another important 

application for structural vaccinology is (ii) the possibility to improve the biochemical stability, 

and homogeneity of a candidate, stabilizing the folding and reducing degradation and 

tendency to aggregate. It is also possible (iii) to engineer a protein antigen in order to 

overcome limits imposed by sequence variability. SV can drive the design of chimeric 

antigens that display epitopes from multiple proteins to elicit an immune response with wider 

specificity. Overall, a structurally re-designed molecule can become an antigen with 

increased immunogenicity, and efficacy. A successful SV approach will also facilitate scale 

up, and generate an antigen that can be more easily produced, more homogeneous and 

stable over time. In summary, SV can use knowledge of biochemical, biophysical, structural, 

immunological & functional properties of biomolecules to benefit vaccine development, 

encompassing several steps of the process starting from antigen selection up to vaccine 

approval.  

An example of how a structure-based approach has already been used in a 

preclinical vaccine design program is provided by a combination of NMR spectroscopy and 

X-ray crystallography to obtain structural insights of the immunodominant domain of 

GNA1870, a protective antigen of N. meningitidis identified by RV.  The epitopes of 
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bactericidal antibodies against several meningococcal strain variants were mapped onto the 

NMR structure of GNA1870, providing the basis for the rational design of an engineered form 

of GNA1870 containing several cross-protective, B cell epitopes. A protein domain is defined 

as an independent unit that can have an independent function in a single-domain protein or 

can contribute to the function of a multidomain protein in cooperation with other domains 

[12]. The new GNA1870 antigen had a conserved backbone that carried an engineered 

surface containing specificities for all three variant groups, demonstrating that the structure-

based design of an engineered antigen is an efficient way to generate a broadly protective 

antigen [13]. 

 

The Serogroup B Meningococcus Vaccine 

The concept of reverse vaccinology was developed and applied for the first time to 

N. meningitidis serogroup B (MenB). N. meningitidis is the major cause of meningitis and 

sepsis, two devastating diseases that can kill children and young adults within hours, despite 

the availability of effective antibiotics. N. meningitidis is a Gram-negative bacterium that 

colonizes asymptomatically the upper nasopharynx of about 5–15% of the human population, 

establishing a commensal relationship between the host and the bacterium that fails or 

becomes dysfunctional in case of disease [14]. This condition represents the only known  

reservoir for meningococcal infection but may also contribute to establishing host immunity 

[15]. For unknown factors dependent on both the host and pathogen, the meningococcus can 

invade the pharyngeal mucosal epithelium and disseminate into the bloodstream causing 

septicaemia or cross the blood-brain barrier and enter the cerebrospinal fluid, causing 

meningitis. Although reasons leading to the bacterial invasion are not well known, 

environmental factors that damage the nasopharyngeal mucosa, together with the lack of a 

protective immune response could increase the incidence of invasive meningococcal 

disease. N. meningitidis can be classified in 13 serogroups on the basis of the chemical 

composition of the capsule polysaccharide, five of which (A, B, C, W-135 and Y) are 

responsible for more than 95 % of total cases of invasive disease. Vaccines against 

serogroups A, C, W-135 and Y were developed in the 1960s by using the purified capsular 

polysaccharide as antigen. At the turn of the century, improved second-generation, 

conjugated vaccines were introduced, where the polysaccharide components were linked to 

a carrier protein, and which provide effective protection in all age groups [16]. However, the 

chemical composition of the polysaccharide of serogroup B, which resembles a molecule 

present in human tissues, makes a polysaccharide-based vaccine poorly immunogenic and a 

possible cause of autoimmunity. In the last 40 years much effort has been directed to the 

identification of meningococcus B protein antigens as the basis of new vaccines. However, 
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the high variability of these proteins among the different MenB strains represents a serious 

obstacle to the production of a globally effective anti-MenB vaccine [15]. Reverse 

vaccinology has therefore proven to be a rapid and reliable approach to identifying vaccine 

candidates. The three most immunogenic antigens on the basis of their ability to induce 

bactericidal activity or in vivo passive protection were selected to be used in a 

multicomponent vaccine. They were NHBA [17], fHbp [18, 19], and NadA [20, 21]. Two other 

antigens (named GNA2091 and GNA1030) were also selected. To further enhance their 

immunogenicity and facilitate large-scale manufacturing of the vaccine components, four of 

the selected antigens were combined into two fusion proteins so that the resulting protein 

vaccine contained three recombinant proteins. The antigen NHBA was fused to GNA1030 

while GNA2091 was fused to fHbp. NadA was included as a single antigen as it did not 

perform well when fused to a partner [22-24].  

 

N. meningitidis colonization and invasion 

Colonization of the upper respiratory mucosal surfaces by N. meningitidis is the first 

step in the establishment of a human carrier state and invasive meningococcal disease 

(Figure 1).  

 

Figure 1. Stages in the pathogenesis of meningococcus. N. meningitidis may be 
acquired through the inhalation of respiratory droplets. The organism establishes 
intimate contact with non-ciliated mucosal epithelial cells of the upper respiratory 
tract, where it may enter the cells briefly before migrating back to the apical 
surfaces of the cells for transmission to a new host. Asymptomatic carriage is 
common in healthy adults in which bacteria that enter the body by crossing the 
epithelial barrier are eliminated. In susceptible individuals, once inside the blood, 
N. meningitidis may survive, multiply rapidly and disseminate throughout the 
body and the brain. Meningococcal passage across the brain vascular endothelium 
(or the epithelium of the choroid plexus) may then occur, resulting in infection of 
the meninges and the cerebrospinal fluid [25, 26]. 
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Initial contact of meningococci with nasopharyngeal epithelial cells is mediated by 

Type IV pili, the host receptor for which may be the I-domain of integrin α chains or possibly 

CD46 [27].  At this level, the downregulation of the capsule may activate attachment [26], 

allowing meningococci a closer adherence to the host epithelial cells. It results in the 

formation of cortical plaques and leads to the recruitment of factors ultimately responsible for 

the formation and extension of epithelial cell pseudopodia that engulf the meningococcus. 

Intimate association is mediated by interaction of the bacterial opacity proteins, Opa and 

Opc, with CD66/CEACAMs and integrins, respectively, on the surface of the epithelial cell 

and is one trigger of meningococcal internalization [28]. The next steps of meningococcal 

internalization, intracellular survival and transcytosis through the basolateral tissues and 

dissemination into the bloodstream are less well studied [15]. 

 

Meningococcal virulence factors and adhesins 

The virulence of N. meningitidis is influenced by multiple factors, including both 

genetic mechanisms, allowing the bacteria to vary its phenotype and adapt to the host, and 

iron sequestration mechanisms. Additionally, meningococci express multiple molecules 

acting as endotoxin, secreted factors or surface proteins, located in different compartments 

of the menincococcal cell membrane, which interact with host cellular molecules. The key 

structures at the interface between the meningococcus and the host are the polysaccharide 

capsule and/or lipopolysaccharide (LPS) that may shield bacterial surfaces from the host 

innate and adaptive immune effector mechanisms, and the protruding surface proteins that 

are known as pili [26]. Pili are filamentous structures consisting of protein subunits that 

extend from the bacterial surface, and these seem to be the main players in the initiation of 

the interaction between meningococcus and the host cell [29, 30]. Pili facilitate adhesion to 

host tissues, further aided by the outer membrane adhesins Opa and Opc. The opacity 

proteins (Opa and Opc) are integral outer membrane proteins that mediate pathogen-host 

interaction adhering to and invading epithelial and endothelial cells. Both bind the heparan 

sulphate proteoglycans and sialic acids [31, 32]  but they also display a degree of receptor 

specificity [32]. 

Numerous additional minor adhesins are generally expressed at low levels during in 

vitro growth but may be important in in vivo infections. Neisseria hia homologue A (NhhA) 

mediates low levels of adhesion to epithelial cells, to heparan sulphate proteoglycans 

(HspGs) and to laminin [33]. Adhesion penetration protein (App) regulates interactions 

between the bacteria and the host tissue by mediating adhesion during the early stages of 

colonization, before it is autocleaved. At later stages, App autocleavage may allow bacterial 

detachment, therefore facilitating bacterial spread [34]. Meningococcal serine protease A 
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(MspA) expressed by several but not all virulent Neisseria strains mediates binding to both 

epithelial and endothelial cells and to elicit the production of bactericidal antibodies [35]. 

Multiple adhesin family (Maf) is a family of glycolipid adhesins characterised first for the 

gonococcus that may play a role in Opa-independent invasion [36]. Neisserial adhesin A 

(NadA) is a member of the trimeric autotransporter adhesins (TAAs) belonging to the Oca 

(oligomeric coiled-coil adhesin) family and is involved in adhesion and invasion of N. 

meningitidis [20, 21].  

The regulation of NadA is part of this study and is discussed in Part One of this 

thesis, while the strategies towards a crystal structure of the NadA variant 3 will be described 

in Part Two. 

 

Transcriptional regulators 

During infection, N. meningitdis can invade diverse sites within the human host, which 

represent different niches with respect to nutrients, environmental factors and competing 

microorganisms. Therefore it is subjected to constant selective pressures, and its ability to 

rapidly adapt its metabolism and cellular composition to environmental changes is essential 

for its survival [37]. Bacteria have two major and complementary mechanisms for adapting to 

changes in their environment: changing their genotype (genome plasticity) or altering gene 

expression, both leading to phenotypic variations. The differential expression of potential 

virulence factors depends largely on the activity of transcriptional regulators, whose activity 

plays an important role for example in the infection process of N. meningitidis. Relatively few 

transcriptional regulators are found in the pathogenic Neisseriae [38]; 36 putative regulators 

in N. meningitidis (strain MC58) and 34 in N. gonorrhoeae (strain FA1090), compared to the 

free-living E. coli, which harbours more than 200 transcriptional regulators. The paucity in 

transcriptional regulators may possibly be related to the restricted ecological niche of the 

Neisseria spp. which are human-adapted pathogens for which there is no other known 

reservoir. Until now, only few of the predicted 36 transcriptional regulators in N. meningitidis 

MC58 have been characterized. Two of the transcriptional regulators in N. meningitidis are 

members of the MarR family and are encoded by the genes NMB1585 and NMB1843. The 

structure of the transcription factor NMB1585 has been solved, but its physiological role has 

not been characterized and therefore the identity of any natural ligand(s) that may modulate 

its activity is unknown [39]. The product of the NMB1843 gene is the Neisserial adhesin 

Regulator (NadR) - a MarR-family  transcriptional regulator of 16.6 kDa per monomer and it 

has been demonstrated to repress expression of the meningococcal adhesin NadA [40, 41]. 

NadR is the subject of an extensive structural and biophysical characterization in this thesis 

and will be discussed below in detail (Part One).  
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Several MarR-family transcriptional regulators have previously been identified and 

described for their activity.  In meningococcus: the ferric uptake regulator (Fur) is involved in 

the response to iron [42-44] and has even been shown to indirectly control gene expression 

through small regulatory RNA molecules [40, 45]; Zur is the second Fur-like regulator that 

responds specifically to Zn2+ and controls Zn2+- uptake by regulating a TonB receptor that 

functions in high affinity Zn2+ acquisition [46]. Adaptation to oxygen-limited conditions as 

encountered during infection of the human host is mediated by the transcriptional activator 

FNR (Fumarate and Nitrate Reductase regulator), whose DNA-binding ability is stabilized in 

the presence of oxygen [47, 48]. Upon conditions of oxygen limitation, this regulator enables 

the meningococci to survive by switching to enhanced sugar fermentation and expression of 

a denitrification pathway, utilizing nitrite instead of oxygen as a respiratory substrate [49]. 

NsrR acts as a repressor of a regulon of genes which responds to nitric oxide [50, 51]. The 

LysR-type regulator CrgA is upregulated upon contact with human epithelial cells [52];  it acts 

as a repressor of transcription of its own gene and as an activator of transcription of the 

mdaB gene [53]. NMB0573 (annotated as AsnC) is a global regulator controlling the 

response to poor nutrient conditions, which are perceived by binding of this regulator to 

leucine and methionine, two amino acids representing general nutrient abundance [54].  

Although extensive transcriptional regulation is expected to accompany both the 

survival and the infection process of N. meningitidis, limited information about transcriptional 

regulation is available. Only a few of the predicted regulators have been characterized and 

the regulons of even fewer have been deeply studied, including those involved in the 

adaptation of meningococcus to iron and oxygen limitation and response to nitric oxide. 

 

Genome plasticity and Phase variation 

In order to adapt to changing microenvironments and avoid the host immune 

defences, the meningococcus possesses mechanisms for rapid genome variation and 

diversification. The genome plasticity is promoted by spontaneous mutational mechanisms. 

These events originate either from local genomic changes caused by repeat sequences, 

phase and antigenic variation, recombination and horizontal gene transfer, or globally from 

mutated alleles. Repeat sequence elements facilitate the duplication or deletion of regions of 

the genome, as well as recombination, and thereby establish small and large alterations. The 

addition and deletion of repeat units lead to the molecular mechanism of phase variation in 

Neisseria, most often owing to slipped-strand mispairing (SSM). The presence of repeat units 

causes a slippage of the synthesis strand over the template strand during replication that 

leads to the addition or the deletion of units in the newly synthesised strand [55]. The number 

of repeats can influence translation or transcription by introducing frameshift mutations or 
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changing critical promoter spacing, resulting in high frequency on-off switching or modulation 

of the level of expression of genes usually associated with surface-exposed antigens [56-59]. 

In meningococcus a considerably high quantity of phase-variable genes have been identified 

in which phase variation is used to alter surface-exposed molecules such as outer-

membrane proteins PorA, Opc, Opa, pili and specific adhesins, as well as LPS and capsule 

[55, 60, 61]. In particular, the expression of NadA is phase variable and a tetranucleotide 

tract (TAAA) located upstream of the nadA gene promoter has been demonstrated to control 

this phenomenon, through an altered sigma-factor binding [40]. Whole-genome-sequence 

analyses have largely confirmed the importance of varying surface-exposed antigens for 

allowing bacterial commensals and pathogens to evade the immune system of their host and 

to adapt to changeable environments.  

 

Concluding remarks 

Host-pathogen interaction is a dynamic process that can lead to different outcomes 

such as an equilibrium known as commensalism or the establishment of a disease. The 

factors that lead N. meningitidis to establish the infection, switching from commensal to 

pathogenic are still poorly understood. For these reasons, a better understanding of the 

causes and mechanism that mediate the expression of proteins involved in the interaction 

with host tissues is needed, both for predicting the effectiveness of a vaccine which contains 

these proteins and for characterizing at the molecular level novel strategies of bacterial 

populations to changing host environments.  N. meningitidis has to change gene expression 

repertoire in order to adapt and survive in the different tissues during an infection of the 

human host.  At the same time the bacteria escape the host immune response, which targets 

mostly the same structures used by the meningococcus to interact with the host, by surface 

structure expression variability and redundancy. A multi-disciplinary approach based on 

molecular genetics, biochemical, biophysical and structural analyses, will provide molecular 

knowledge of the transcriptional regulation of antigen expression. 
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Abstract 

Neisseria adhesin A (NadA) is present on the meningococcal surface and contributes 

to adhesion to and invasion of human cells. NadA is also one of three recombinant antigens 

in the Bexsero vaccine, approved in 2012 by the European Medicines Agency (EMA), which 

protects against serogroup B meningococcus. The amount of NadA on the bacterial surface 

influences the antibody-mediated serum bactericidal response measured in vitro. It is 

therefore important to understand the mechanisms which regulate nadA expression levels, 

which are predominantly controlled by the transcriptional regulator NadR (Neisseria adhesin 

A Regulator) both in vitro and in vivo, otherwise the real contribution of NadA to vaccine-

induced protection against meningococcal meningitis may be underestimated. NadR binds 

the nadA promoter and represses gene transcription. In the presence of 4-

hydroxyphenylacetate (4-HPA), a catabolite present in human saliva both under physiological 

conditions and during bacterial infection, the binding of NadR to the nadA promoter is 

attenuated and nadA expression is induced. NadR also mediates ligand-dependent 

regulation of many other meningococcal genes, for example the highly-conserved multiple 

adhesin family (maf) genes, which encode proteins emerging with important roles in host-

pathogen interactions, immune evasion and niche adaptation. To gain insights into the 

regulation of NadR mediated by 4-HPA, the work presented here combined X-ray 

crystallographic, biochemical, and mutagenesis studies. In particular, two new crystal 

structures of ligand-free and ligand-bound NadR revealed (i) the molecular basis of 

‘conformational selection’ by which one molecule of 4-HPA binds and stabilizes dimeric 

NadR in a conformation apparently unsuitable for DNA-binding, (ii) molecular explanations 

for the binding specificities of different hydroxyphenylacetate ligands, including 3Cl,4-HPA 

which is produced during inflammation, (iii) the presence of a leucine residue essential for 

dimerization and conserved in many MarR family proteins, and (iv) four residues (His7, Ser9, 

Asn11 and Phe25), which are involved in binding 4-HPA, and were confirmed in vitro to have 

key roles in the regulatory mechanism in bacteria. Overall, this study deepens our molecular 

understanding of the sophisticated regulatory mechanisms of the expression of nadA and 

other genes governed by NadR, dependent on interactions with niche-specific signal 

molecules that may play important roles during meningococcal pathogenesis. 
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The Neisserial adhesin Regulator (NadR) 

Previous studies revealed that nadA expression levels are mainly regulated by the 

Neisseria adhesin A Regulator (NadR) [41]. Although additional factors influence nadA 

expression, the attention was focused on the regulation by NadR, the major mediator of 

nadA phase variable expression [62, 63]. Studies of NadR also have broader implications, 

since a genome-wide analysis of MenB wild-type and nadR knock-out strains revealed that 

NadR influences the regulation of >30 genes, including maf genes, from the multiple adhesin 

family [64]. These genes encode a wide variety of proteins connected to many biological 

processes contributing to bacterial survival, adaptation in the host niche, colonization and 

invasion [65, 66]. NadR binds the nadA promoter and represses gene transcription [63]. 

NadR binds nadA on three different operators (OpI, OpII and OpIII) [64]. The DNA-binding 

activity of NadR is attenuated in vitro upon addition of various hydroxyphenylacetate (HPA) 

derivatives, including 4-HPA. 4-HPA is a small molecule derived from mammalian aromatic 

amino acid catabolism and released in human saliva, where it has been detected at 

micromolar concentration [67]. In the presence of 4-HPA, NadR is unable to bind the nadA 

promoter and nadA gene expression is induced [63, 64]. In vivo, the presence of 4-HPA in 

the host niche of N. meningitidis serves as an inducer of NadA production, thereby promoting 

bacterial adhesion to host cells [64]. Further, it was recently reported that 3Cl,4-HPA, 

produced during inflammation, is another inducer of nadA expression [68]. However, the 

molecular mechanism explaining how this transcriptional regulator interacts with 4-HPA or its 

derivatives and modulates their DNA-binding affinities accordingly has remained unresolved. 

The structural analysis of NadR was attempted in order to illustrate precisely how this protein 

recognizes and binds 4-HPA and to provide the structural basis for the attenuated DNA 

binding of NadR upon its interaction with 4-HPA. 

 

The MarR family of transcriptional regulators 

NadR belongs to the MarR (Multiple Antibiotic Resistance Regulator) family, a group 

of ligand-responsive transcriptional regulators ubiquitous in bacteria and archaea. MarR 

family proteins can promote survival in the presence of antibiotics, toxic chemicals, organic 

solvents or reactive oxygen species [69, 70] and can regulate virulence factor expression 

[71]. MarR homologues can act either as transcriptional repressors or as activators [72]. To 

date, >50 MarR family structures are known, revealing a conserved fold of six α-helices (H) 

and a two-stranded antiparallel -sheet (B) in the topology: H1-H2-H3-H4-B1-B2-H5-H6. The 

DNA-binding domains are ascribed to the superfamily of winged helix proteins, containing α-

helices 3 and 4, comprise the helix-turn-helix motif, and the -sheet is called the wing. Helix 

4 is termed the recognition helix, as in other HTHs where it binds the DNA major groove. The 
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α-helices 1, 5 and 6 are involved in dimerisation, as most MarR-like transcription regulators 

form dimers. Further, a few examples have been obtained in complexes with target DNA 

ligands. For example, the structure of the Bacillus subtilis OhrR-ohrA complex revealed the 

chimeric nature of the wHTH motif and a double-helix DNA binding element, both of which 

are proposed to be utilized by the entire MarR family to bind cognate DNA [73]. A molecular 

understanding of their ligand-dependent regulatory mechanisms is still limited, often 

hampered by lack of identification of their ligands. A potentially interesting exception comes 

from the ligand-free and salicylate-bound forms of the Methanobacterium 

thermoautotrophicum protein MTH313 which revealed that two salicylate molecules bind to 

one MTH313 dimer and induce large conformational changes, apparently sufficient to 

prevent DNA binding [74]. However, the homologous archeal Sulfolobus tokodaii protein 

ST1710 presented essentially the same structure in ligand-free and salicylate-bound forms, 

apparently contrasting the mechanism proposed for MTH313 [75]. Despite these apparent 

differences, MTH313 and ST1710 bind salicylate in approximately the same site, between 

their dimerization and DNA-binding domains. However, it is unknown whether salicylate is a 

relevant in vivo ligand of either of these two proteins, which share ~20% sequence identity 

with NadR, rendering unclear the interpretation of these findings regarding the regulatory 

mechanisms of NadR or other MarR family proteins [72]. Other two MarR family homologues 

TcaR and SAR2349 from Staphylococcus epidermidis and Staphylococcus aureus, 

respectively, have been crystallized in the presence of salicylate and antibiotics. In the 

structure of TcaR complexed with salicylate, multiple binding site where found, one of which 

(SAL-1) overlaps with the binding site seen in MTH313 [76]. The structures of SAR2349–

antibiotic complexes reveals that the binding of antibiotics change the angle between the 

dimerization domains, inducing conformational changes within the wHTH motifs that 

interferes with binding to DNA [77].  

  



21 
 

Experimental procedures 

Bacterial strains, culture conditions and mutant generation. In this study 

N. meningitidis MC58 wild type strain and related mutant derivatives were used. The MC58 

isolate was kindly provided by Professor E. Richard Moxon, University of Oxford, UK, and 

was previously submitted to the Meningococcal Reference Laboratory, Manchester, UK [78]. 

Strains were routinely cultured, stocked, and transformed as previously described [64]. The 

preparation of the expression construct enabling production of soluble NadR (Uniprot code 

Q7DD70) with an N-terminal His-tag followed by a thrombin cleavage site and NadR 

residues M1-S146 was described previously [79]. Site-directed mutagenesis was performed 

using two 2 couples of mutagenic primers containing the desired mutation to amplify pET15b 

containing several NMB1843 variants. In short, 1 to 10 ng of plasmid template were amplified 

using Kapa HiFi DNA polymerase (Kapa Biosystems) and the following cycling conditions: 

98°C for 5 min, 15 amplification cycles (of 98°C for 30 s, 60°C for 30 s, 72°C for 6 min) 

followed by a final extension of 10 min at 72°C. Residual template DNA was digested by 

30 min incubation with FastDigest DpnI (Thermo Scientific) at 37°C and 1 µl of this reaction 

was used for transforming competent E. coli DH5α. 

 

Strains or plasmid Relevant characteristics 

E. coli strains  

DH5α supE44 lacU169 (w80lacZDM15) hsdR17 recA1 endA1 gyrA96 
thi-1 relA1 

Plasmids  

pET15b-1843 pET15b derivative for expression of recombinant NMB1843, 
AmpR 

pET15b-PDD0 

 

pET15b derivative for expression of recombinant NMB1843 
containing an H7A mutation, AmpR 

pET15b-PDD1 

 

pET15b derivative for expression of recombinant NMB1843 
containing an S9A mutation, AmpR 

pET15b-PDD2 

 

pET15b derivative for expression of recombinant NMB1843 
containing an N11A mutation, AmpR 

pET15b-PDD3 

 

pET15b derivative for expression of recombinant NMB1843 
containing an Y115A mutation, AmpR 

pET15b-PDD4 

 

pET15b derivative for expression of recombinant NMB1843 
containing an K126A mutation, AmpR 

pET15b-PDD5 

 

pET15b derivative for expression of recombinant NMB1843 
containing L130K and L133K mutations, AmpR 

pET15b-PDD6 

 

pET15b derivative for expression of recombinant NMB1843 
containing K126A, L130K and L133K mutations, AmpR 

pET15b-PDD7 

 

pET15b derivative for expression of recombinant NMB1843 
containing N11A, D112A, R114A and Y115A mutations, AmpR 

pET15b-PDD8 

 

pET15b derivative for expression of recombinant NMB1843 
containing an L130K mutation, AmpR 

pET15b-PDD9 

 

pET15b derivative for expression of recombinant NMB1843 
containing an L133K mutation, AmpR 
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Protein production and purification. The NadR expression constructs (wild-type or 

mutant clones) were transformed into E. coli BL21 (DE3) cells and were grown as 500mL 

culture volumes in 2L shake flasks at 37°C in Luria-Bertani (LB) medium supplemented with 

100µg/mL ampicillin, until an OD600 of 0.5 was reached. Target protein production was 

induced by the addition of 1mM IPTG followed by incubation with shaking overnight at 21°C. 

(For production of the SeMet derivative form of NadR, essentially the same procedure was 

followed, but using the E. coli B834 strain grown in a modified M9 minimal medium 

supplemented with 40mg/L L-selenomethionine). Cells were harvested by centrifugation 

(6400g, 30 min, 4°C), resuspended in 20mM HEPES pH 8.0, 300mM NaCl, 20mM imidazole, 

and were lysed by sonication (Qsonica Q700). Cell lysates were clarified by centrifugation at 

2800g for 30 min, and the supernatant was filtered using a 0.22µm membrane (Corning filter 

system) prior to protein purification. 

NadR was purified by affinity chromatography using an AKTA purifier (GE 

Healthcare). All steps were performed at room temperature (18-26°C), unless stated 

otherwise. The filtered supernatant was loaded onto an Ni-NTA resin (5mL column, GE 

Healthcare), and NadR was eluted using 4 steps of imidazole at 20, 30, 50 and 250mM 

concentration, at a flow rate of 5mL/min. Eluted fractions were examined by reducing and 

denaturing SDS-PAGE analysis. Fractions containing NadR were identified by a band 

migrating at ~17kDa, and were pooled. The N-terminal 6-His tag was removed enzymatically 

using the Thrombin CleanCleave Kit (Sigma-Aldrich). Subsequently, the sample was 

reloaded on the Ni-NTA resin to capture the free His tag (or unprocessed tagged protein), 

thus allowing elution in the column flow-through of tagless NadR protein, which was used in 

all subsequent studies. The NadR sample was concentrated and loaded onto a HiLoad 

Superdex 75 (16/60) preparative size-exclusion chromatography (SEC) column equilibrated 

in buffer containing 20mM HEPES pH 8.0, 150mM NaCl, at a flow-rate of 1mL/min. NadR 

protein was collected and the final yield of purified protein obtained from 0.5L growth medium 

was approximately 8mg (~2mg protein per g wet biomass). Samples were used immediately 

for crystallization or analytical experiments, or were frozen for storage at -20°C. 

Size-exclusion high-performance liquid chromatography (SE-HPLC) coupled 

with Multi-angle laser light scattering (MALLS). SE-HPLC was used to assess the purity 

and the apparent molecular weight of the recombinant wild-type NadR sample alone or 

containing a 200-fold molar excess of 4-HPA and of the mutated NadR samples. SE-HPLC 

experiments were performed by loading 20μl of each sample at a concentration of ~ 50μM on 

an analytical size exclusion TSK Super SW3000 column of 4 μm particle size and 250Å pore 

size (Tosoh), with a separation range suitable for globular proteins of 10 to 500 kDa. 

Samples were eluted isocratically in 0.1M NaH2PO4, 0.4M (NH4)2SO4 buffer at pH 6.0, 

experiments were performed at room temperature (18-26°C).  
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MALLS analyses were performed in order to determine the absolute molecular mass 

of NadR alone or in the presence of 4-HPA. MALLS analyses were performed online with 

SE-HPLC, using a Dawn TREOS MALLS detector (Wyatt Corp., Santa Barbara, CA, USA) 

and an incident laser wavelength of 658 nm. The intensity of the scattered light was 

measured at 3 angles simultaneously. Data elaboration was performed using the Astra V 

software (Wyatt) to determine the weighted-average absolute molecular mass (MW), the 

polydispersity index (MW/Mn) and homogeneity (Mz/Mn) for each oligomer present in 

solution. Normalization of the MALLS detectors was performed in each analytical session by 

use of bovine serum albumin. 

Differential Scanning Calorimetry (DSC). The thermal stability of NadR proteins 

was assessed by DSC using a MicroCal VP-Capillary DSC instrument (GE Healthcare). 

NadR samples were prepared at a protein concentration of 0.5mg/mL (~30M) in buffer 

containing 20mM Hepes, 300mM NaCl, pH 7.4, with or without 6mM HPA or salicylate. The 

DSC temperature scan ranged from 10°C to 110°C, with a thermal ramping rate of 200°C per 

hour and a 4 second filter period. Data were analyzed by subtraction of the reference data for 

a sample containing buffer only, using the Origin 7 software. All experiments were performed 

in duplicate, and mean values of the melting temperature (Tm) were determined. 

Surface plasmon resonance (SPR). Determination of equilibrium dissociation 

constant, KD: Surface plasmon resonance binding analyses were performed using a Biacore 

T200 instrument (GE Healthcare) equilibrated at 25 °C. The ligand (NadR) was covalently 

immobilized by amine-coupling on a CM-5 sensor chip (GE Healthcare), using 20 µg/mL 

purified protein in 10 mM sodium acetate buffer pH 5, injected at 10 µl/min for 120 s until 

~9000 response units (RU) were captured. A high level of ligand immobilization was required 

due to the small size of the analytes. An unmodified surface was used as the reference 

channel. Titrations with analytes (HPAs or salicylate) were performed with a flow-rate of 30 

µl/min, injecting the compounds in a concentration range of 10 µM to 20 mM, using filtered 

running buffer containing Phosphate Buffered Saline (PBS) with 0.05 % Tween-20, pH 7.4. 

Following each injection, sensor chip surfaces were regenerated with a 30-second injection 

of 10 mM Glycine pH 2.5. Each titration series contained 20 analyte injections and was 

performed in triplicate. Titration experiments with long injection phases (> 15 mins) were 

used to enable steady-state analyses. Data were analyzed using the BIAcore T200 

evaluation software and the steady-state affinity model. A buffer injection was subtracted 

from each curve, and reference sensorgrams were subtracted from experimental 

sensorgrams to yield curves representing specific binding. The equilibrium dissociation 

constant, KD, was determined from the plot of RUeq against analyte concentration, as 

described previously [80].  
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Determination of binding stoichiometry: From each plot of RUeq against analyte 

concentration, obtained from triplicate experiments, the Rmax value (maximum analyte binding 

capacity of the surface) was extrapolated from the experimental. Stoichiometry was 

calculated using the molecular weight of dimeric NadR as ligand molecule (MW ligand) and the 

molecular weights of the HPA analyte molecules (MWanalyte), and the following equation: 

 

𝐒𝐭𝐨𝐢𝐜𝐡𝐢𝐨𝐦𝐞𝐭𝐫𝐲 =
𝐑 𝑚𝑎𝑥 ×  𝐌𝐖 𝑙𝑖𝑔𝑎𝑛𝑑

𝐌𝐖 𝑎𝑛𝑎𝑙𝑦𝑡𝑒 ×  𝐑 𝑙𝑖𝑔𝑎𝑛𝑑
  

 

where Rligand is recorded directly from the sensorgram during ligand immobilization prior to the 

titration series, as described previously [81]). The stoichiometry derived therefore 

represented the number of HPA molecules bound to one dimeric NadR protein. 

Crystallization of NadR in the presence or absence of 4-HPA. Purified NadR was 

concentrated to 2.7 mg/mL using a centrifugal concentration device (Amicon Ultra-15 

Centrifugal Filter Unit with Ultracel-10 membrane with cut-off size 10kDa; Millipore) running 

at 600 g in a bench top centrifuge (Thermo Scientific IEC CL40R) refrigerated at 2-8°C. More 

concentrated samples were found to induce precipitation of the protein. To prepare holo-

NadR samples, HPA ligands were added at a 200-fold molar excess prior to the centrifugal 

concentration step, and this ratio of protein:ligand concentration was maintained. The 

concentrated holo- or apo-NadR was subjected to crystallization trials performed in 96-well 

low-profile Intelli-Plates (Art Robbins) or 96-well low-profile Greiner crystallization plates, 

using a nanodroplet sitting-drop vapour-diffusion format and mixing equal volumes (200nL) of 

protein samples and crystallization buffers using a Gryphon robot (Art Robbins). 

Crystallization trays were incubated at 20º C. Crystals of apo-NadR were obtained at 20ºC in 

50 % PEG 3350 and 0.13 M di-Ammonium hydrogen citrate, whereas crystals of SeMet–

NadR in complex with 4-HPA grew at 20ºC in condition H4 of the Morpheus screen 

(Molecular Dimensions), which contains 37.5% of the pre-mixed precipitant stock 

MPD_P1K_PEG 3350, buffer system 1 and 0.1 M amino acids, at a pH 6.5. All crystals were 

mounted in cryo-loops using 10% ethylene glycol or 10% glycerol as cryo-protectant before 

cooling to 100 K for data collection. 

X-ray diffraction data collection and structure determination. X-ray diffraction 

data from crystals of apo-NadR and SeMet–NadR/4-HPA were collected on beamline PXII-

X10SA of the Swiss Light Source (SLS) at the Paul Scherrer Institut (PSI), Villigen, 

Switzerland. All diffraction data were processed in-house with XDS [82] and programs from 

the CCP4 suite [83]. Crystals of apo-NadR and 4-HPA-bound SeMet-NadR belonged to 
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space group P 43 21 2 (see Table 2). Apo-NadR crystals contained four protein molecules in 

the asymmetric unit (Matthews coefficient 2.25 Å3·Da−1, for a solvent content of 45 %), while 

crystals of SeMet–NadR/4-HPA contained two protein molecules in the asymmetric unit 

(Matthews coefficient 1.98 Å3·Da−1, for a solvent content of 38 %). In solving the holo-NadR 

structure, an initial and marginal molecular replacement (MR) solution was obtained using as 

template search model the crystal structure of the transcriptional regulator PA4135 (PBD 

entry 2FBI), the closest structurally-characterized homologue, with which NadR shares ~54% 

sequence identity. This solution was combined with SAD data to aid identification of two 

selenium sites in NadR, using autosol in phenix [84] and this allowed generation of high-

quality electron density maps that were used to build and refine the structure of the complex. 

Electron densities were clearly observed for almost the entire dimeric holo-NadR protein, 

except for residues 88-90 of chain B, which lie in an exposed region of the winged-helix motif 

often found to be disordered in MarR family structures. The crystal structure of apo-NadR 

was subsequently solved by MR in Phaser [85] at 2.7 Å, using the final refined model of 

SeMet-NadR/4-HPA as the search model. For apo-NadR, electron densities were clearly 

observed for almost the entire protein, although residues 84-91 of chains A, C, and D, and 

residues 84-90 of chain B lacked densities suggesting local disorder or flexibility. Both 

structures were refined and rebuilt using phenix [84] and Coot [86], and structural validation 

was performed using Molprobity [87]. Data collection and refinement statistics are reported in 

Table 2. Atomic coordinates of the two NadR structures have been deposited in the Protein 

Data Bank, with entry codes 5aip (NadR bound to 4-HPA) and 5aiq (apo-NadR). All 

crystallographic software was remotely compiled, installed and maintained by SBGrid [88]. 
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Results 

NadR is dimeric and is stabilized by specific hydroxyphenylacetate ligands. 

Recombinant NadR was produced in E. coli using an expression construct prepared 

from the nadR gene of the N. meningitidis serogroup B strain MC58. Standard 

chromatographic techniques were used to purify NadR (see Materials and Methods). In 

analytical size-exclusion high-performance liquid chromatography (SE-HPLC) experiments 

coupled with multi-angle laser light scattering (MALLS) analyses, NadR presented a single 

species ≥ 97% pure with an absolute molecular mass of 35 kDa (Figure 1.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Size-exclusion high-performance liquid chromatography profile. SE-HPLC was used to 
assess the purity and the apparent molecular weight of the recombinant wild-type (WT) NadR 
sample alone (panel A) or containing a 200-fold molar excess of 4-HPA (panel B). The NadR 

monomer concentration was approximately 50M, and the 4-HPA concentration was approximately 
10mM. Data are plotted as Absorbance Units (mAU) at 280nm wavelength, against retention time in 
minutes. The elution time for the peak at maximum absorbance is indicated in each panel. Analysis 
by integration of the peaks (peak boundaries were defined as indicated by the red triangles), 
revealed that the NadR sample was ≥ 97% pure. In both cases, the protein eluted with a retention 
time (~ 22.5 minutes) indicative of a dimer (~ 35kDa), determined by calibration of the column using 
standard molecular weight markers (Bio-rad, cat. no. 151-1901). Notably, the retention time was not 
significantly changed by the presence of the ligand. 

 

These data showed that NadR was dimeric in solution, since the theoretical molecular 

mass of the NadR dimer is 33.73 kDa. Subsequently, SE-HPLC/MALLS analyses of NadR 
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were performed in the presence 4-HPA, revealing that there were no changes in oligomeric 

state upon addition of the ligand (Figure 1.2). 

 

 

 

Figure 1.2. Multi-angle laser light scattering. MALLS analyses were performed in order to determine 
the absolute molecular mass of NadR alone (panel A) or in the presence of 4-HPA (panel B). The 
curves plotted correspond to Absorbance Units (mAU) at 280nm wavelength (green), light scattering 
(red), and refractive index (blue). The elution peak maxima were at 17.5 minutes and the numerical 
data obtained for absolute molecular mass and polydispersity are shown below each image. In both 
cases, the MALLS data clearly indicated a single monodisperse species of absolute molecular mass ~ 
37.5 kDa, corresponding to the dimeric form of NadR. (The numbers ‘1’ at the bottom of the 
gradient-shaded slice identify the beginning and end of each fraction-1, used for the MALLS analyses 

 

The thermal stability of NadR was examined using differential scanning calorimetry 

(DSC). Since ligand-binding can increase protein stability [89], it was also investigated the 

effect of various HPAs on the melting temperature (Tm) of NadR . As a control of specificity it 

was tested a salicylate, a ligand of MarR proteins reported to increase the Tm of ST1710 and 

MTH313 by approximately 3°C and 9°C, respectively [74]. In the absence of ligand, the Tm of 

apo-NadR was 67.3 ± 0.1°C. An increased thermal stability was induced by 4-HPA (ΔTm 

~ 3°C) and, to a lesser extent, by 3-HPA (ΔTm ~ 2°C) (Figure 1.3). Interestingly, NadR 

displayed the greatest increase in thermal stability upon addition of 3Cl,4-HPA (ΔTm ~ 4°C) 

and was unaffected by salicylate. 
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Figure 1.3. Binding and thermostabilization of NadR by small molecule ligands. (A) Molecular 
structures of salicylate and the hydroxyphenylacetates tested. (B) DSC profiles are colored as 
follows: apo-NadR (pink), NadR+salicylate (blue), NadR+3-HPA (orange), NadR+4-HPA (green), 
NadR+3Cl,4-HPA (brown). 

 

NadR displays distinct binding affinities for hydroxyphenylacetate ligands 

To further investigate the binding of HPAs to NadR, surface plasmon resonance 

(SPR) was used. The SPR sensorgrams displayed very fast association and dissociation 

events typical of small molecule ligands, thus prohibiting a detailed kinetic study. However, 

steady-state SPR analyses of the NadR-HPA interactions readily allowed determination of 

the equilibrium dissociation constants (KD). KD values of interaction of ligands with NadR are 

reported in Table 1.1, showing that 3Cl,4-HPA was the tightest binder, and thus matched the 

ranking of ligand-induced Tm increases observed in the DSC experiments. Although these KD 

values indicate relatively weak interactions, they are similar to the values determined for the 

MarR/salicylate interaction (KD~1mM) [90] and the MTH313/salicylate interaction (KD 2-3mM) 

[74], and are approximately 20-fold tighter than the ST1710/salicylate interaction (KD ~20mM) 

[75]. 

Ligand ∆Tm (°C) KD (mM) 

Salicylate 0 - 

3-HPA 2.7 2.7 ± 0.1 

4-HPA 3.3 1.5 ± 0.1 

3Cl,4-HPA 3.9 1.1 ± 0.1 

 

Table 1.1. Thermal stabilization (∆Tm) and dissociation constants (KD) of the NadR/ligand 
interactions. 
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Crystal structures of holo-NadR and apo-NadR 

To fully characterize the NadR/HPA interactions, the crystal structures of ligand-

bound (holo) and ligand-free (apo) NadR was determined. First, NadR was crystallized (a 

selenomethionine (SeMet)-labelled form) in the presence of a 200-fold molar excess of 4-

HPA. The structure of the NadR/4-HPA complex was determined at 2.3 Å resolution using a 

combination of the single-wavelength anomalous dispersion (SAD) and molecular 

replacement (MR) methods, and was refined to Rwork/Rfree values of 20.9/26.0 % (Table 1.2).  

 
NadR SeMet + 4-HPA 
(SAD peak) (PDB code 5aip) 

NadR apo-form 
(PDB code 5aiq) 

 

Data collection 

  

Wavelength (Å) 0.9792 1.0 
Beamline SLS (PXII-X10SA) SLS (PXII-X10SA) 

Resolution range (Å) 39.2 - 2.3 48.2 - 2.7 
Space group P 43 21 2 P 43 21 2 

Unit cell  75.3, 75.3, 91.8 69.4, 69.4, 253.8 

Total reflections 291132 (41090) 225521 (35809) 

Unique reflections 12320 (1773) 17700 (2780) 
Multiplicity 23.6 (23.2) 12.7 (12.8) 

Completeness (%) 100.0 (100.00) 99.9 (99.7) 

Mean I/sigma(I) 25.5 (9.0) 22.6 (3.8) 
Wilson B-factor 23.9 49.1 

Rsym* 10.9 (39.4) 11.4 (77.6) 

Rmeas** 11.3 11.8 

 

Refinement 

  

Rwork
♯ 20.9 21.7 

Rfree
♯♯ 26.0 27.2 

Number of atoms 

  Non-hydrogen atoms       

 

2263 

 

4163 

  Macromolecules 2207 4144 
  Ligands 11 0 

  Water 45 19 

Protein residues 275 521 
RMS(bonds) 0.008 0.003 

RMS(angles) 1.09 0.823 

Ramachandran (%)§   
 Favored 100 98.4 

 Outliers 0 0 

Clashscore 5.0 3.9 
Average B-factor   

  Macromolecules 34.8 53.3 
  Ligands 32.9 - 

  Solvent 37.3 (H2O) 29.0 (H2O) 

 

 

Statistics for the highest-resolution shell are shown in parentheses. 
*    Rsym = Σhkl Σi |Ii(hkl) - <I(hkl)>| / Σhkl Σi Ii(hkl) 
** Rmeas = redundancy-independent (multiplicity-weighted) Rmerge as reported from AIMLESS [91]. 
♯   Rwork = Σ||F(obs)|- |F(calc)||/Σ|F(obs)| 
♯♯ Rfree = as for Rwork, calculated for 5.0% of the total reflections, chosen at random, and omitted from refinement. 
§ Figures from Molprobity [87]. 

 

Table 1.2. Data collection and refinement statistics for NadR structures. 

 

X-ray crystallography was selected as the method-of-choice, due to its well-known 

capacity to provide high-resolution information about protein-small molecule interactions. 
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NMR spectroscopy was a possible alternative structural technique, but since a number of 

MarR family proteins had been previously crystallized, it was considered likely that the 

crystallographic approach would have a reasonable probability-of-success. In contrast, the 

NadR protein dimer was considered too small to be tractable by the recently-emerging 

electron cryomicroscopy techniques, which are better suited for larger macromolecules [92] 

Despite numerous attempts, it was not possible to obtain high-quality crystals of 

NadR complexed with 3Cl,4-HPA, 3,4-HPA, 3-HPA or DNA targets. However, it was possible 

to crystallize apo-NadR, and the structure was determined at 2.7 Å resolution by MR using 

the NadR/4-HPA complex as the search model. The apo-NadR structure was refined to 

Rwork/Rfree values of 19.1/26.8 % (Table 1.2). 

The asymmetric unit of the NadR/4-HPA crystals (holo-NadR) contained one NadR 

homodimer, while the apo-NadR crystals contained two homodimers. In the apo-NadR 

crystals, the two homodimers are related by a rotation of ~90º; the observed association of 

the two dimers was presumably an effect of crystal packing, since the interface between the 

two homodimers is small (< 550 Å2 of buried surface area), and is not predicted to be 

physiologically relevant by the PISA software [93]. Moreover, our SE-HPLC/MALLS analyses 

revealed that in solution NadR is dimeric, and previous studies using native mass 

spectrometry (MS) also revealed dimers and not tetramers [94]. 

The holo-NadR homodimer shows a dimerization interface mostly involving the top of 

its triangular form, while the two DNA-binding domains are located at the base The overall 

structure of NadR shows triangular dimensions of ~50 × 65 × 50 Å and a large homodimer 

interface burying a total surface area ~ 4800 Å2 (Figure 1.4). 

 

 
Figure 1.4. The crystal structure of NadR in complex with 4-HPA. (A) The holo NadR homodimer is 
depicted in green and blue for chains A and B respectively, while yellow sticks depict the 4-HPA 
ligand. Secondary structures are labelled for chain B only. (B) Orientation as in panel A, showing the 
secondary structure elements of NadR protein. Red dashes in panels A and B show hypothetical 
positions of chain B residues 88-90 that were not modeled due to lack of electron density.  



31 
 

Each NadR monomer consists of six α-helices and two short β-strands, with helices 

α1, α5, and α6 forming the dimerization interface. Helices α3 and α4 form a helix-turn-helix 

motif, followed by the “wing motif” comprised of two short antiparallel β-strands (β1-β2). 

These secondary structure elements constitute the winged helix-turn-helix (wHTH) DNA-

binding domain and, together with the dimeric organization, are the hallmarks of MarR family 

structures [72]. 

 

The holo-NadR structure presents only one occupied ligand-binding pocket 

As already shown in Figure1.4, the NadR/4-HPA structure revealed the ligand-binding 

site nestled between the dimerization and DNA-binding domains. High-quality electron 

density maps allowed clear identification of the bound 4-HPA ligand, which showed a 

different position and orientation compared to salicylate complexed with MTH313 and 

ST1710 [74, 75] (see Discussion). The binding pocket was almost entirely filled by 4-HPA 

and one water molecule, although there also remained a small tunnel 2-4Å in diameter and 

5-6Å long leading from the pocket (proximal to the 4-hydroxyl position) to the protein surface. 

The tunnel was lined with rather hydrophobic amino acids, and did not contain water 

molecules. Most unexpectedly, only one monomer of the NadR homodimer contained 4-HPA 

in the binding pocket, whereas the corresponding pocket position of the other monomer was 

unoccupied by ligand. 

Inspection of the protein-ligand interaction network revealed no bonds from NadR 

backbone NH or CO groups to the ligand, but several key side chain mediated hydrogen (H)-

bonds and ionic interactions, most notably between the carboxylate group of 4-HPA and 

Ser9 (chain A), and Trp39, Arg43 and Tyr115 of chain B (Figure 1.5A). At the other end of 

the ligand, the 4-hydroxyl group was proximal to H-bond donors in the side chains of Asn11 

(chain A) and Asp36 (chain B), although these were positioned at slightly greater distances 

(3.6-4.3 Å) than those atoms contacting the carboxylate group. There was also one water 

molecule observed in the pocket, bound by the carboxylate group and the side chains of 

Ser9 and Asn11 from chain A. 
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Figure 1.5. Atomic details of the NadR/4-HPA interaction. (A) View of the binding pocket showing 
side chain sticks for all interactions between NadR and 4-HPA. Green and blue ribbons depict NadR 
chains A and B, respectively. 4-HPA is shown in yellow sticks, with oxygen atoms in red. A water 
molecule is shown by the red sphere. A list of the interacting atoms and bond distances is provided 
in Table 3. Side chains mediating hydrophobic interactions are shown in orange. The yellow sphere 
on the 4-HPA phenyl ring shows the 3-position at which the chloro group of 3Cl,4-HPA could be 
readily accommodated. B) 4-HPA is sandwiched by NadR, as shown by the surface representation of 
residues that line the binding pocket. ‘Ceiling’ residues are colored orange, ‘floor’ residues are 
colored blue (chain B) or green (chain A). 

 

In addition to the H-bonds involving the carboxylate and hydroxyl groups of 4-HPA, 

binding of the phenyl moiety appeared to be stabilized by van der Waals’ interactions 

involving the hydrophobic side chain atoms of Arg18 (via the Cβ, Cγ, Cδ methylene groups), 

Leu21, Met22, Phe25, Leu29 and Val111 of chain B (Figure 1.5A). In particular, the phenyl 

ring of Phe25 was positioned parallel to the phenyl ring of 4-HPA, potentially forming - 

parallel-displaced stacking interactions. Interestingly, NadR residues in the 4-HPA binding 

pocket effectively created a polar ‘floor’ and a hydrophobic ‘ceiling’, which house the ligand 

(Figure 1.5B). The polar floor is made of residues both from chain A and chain B of the 

homodimer, while the ceiling is made of residues from chain B only (Figure 1.5B). 

Collectively, this mixed network of polar and hydrophobic interactions endows NadR with a 

strong recognition pattern for HPAs, with additional medium-range interactions potentially 

established to the hydroxyl group at the 4-position. 

 

Analysis of the pockets reveals the molecular basis for asymmetry and stoichiometry 

The lack of a second 4-HPA molecule in the homodimer suggested negative co-

operativity, a phenomenon previously described for the MTH313/salicylate interaction [74] 

and for other MarR family proteins [72]. To understand the molecular basis of asymmetry in 

NadR, the ligand-free monomer (chain A) was superposed onto the ligand-occupied 

monomer (chain B). Overall, the superposition revealed a high degree of structural similarity 

    A                                                                    B 
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(Cα root mean square deviation (rmsd) of 1.5Å), though on closer inspection a rotational 

difference of ~9 degrees of helix α6 was observed, suggesting that 4-HPA induced a slight 

conformational change (Figure 1.6A) 

 

             

Figure 1.6.  Structural differences between the two monomers of holo-NadR. (A) Aligned monomers 
of the holo-NadR structure, revealing that the major overall difference is the ~9 degree shift in the 
position of helix α6 (chain A: green; chain B: blue). (B) A closer comparison of the binding pockets 
shows that in the ligand-free monomer chain A (green) residues M22, F25 and R43 adopt ‘inward’ 
positions (highlighted by arrows) that would prevent binding of 4-HPA due to clashes with the 4-
hydroxyl group, the phenyl ring and the carboxylate group, respectively. (Both panels (A) and (B) are 
rotated compared to Figure 1.5). 

 

However, since residues of helix α6 were not directly involved in ligand binding, an 

explanation for the lack of 4-HPA in monomer A did not emerge by analyzing only the 

backbone atom positions suggesting that a more complex series of allosteric events may 

occur. Indeed, it was noted interesting differences in the side chains of Met22, Phe25 and 

Arg43, which in monomer B are used to contact the ligand while in monomer A they partially 

occupied the pocket and collectively reduced its volume significantly. Specifically, upon 

analysis with the CASTp software [95], the pocket in chain B containing the 4-HPA exhibited 

a total volume of 368Å3, while the pocket in chain A was occupied by side chains and was 

divided into three much smaller pockets, each with volumes < 50Å3, evidently rendering 

chain A unfavorable for ligand binding. Most notably, atomic clashes between the ligand and 

the side chains of Met22, Phe25 and Arg43 (chain A) would occur if 4-HPA were present in 

the monomer A pocket (Figure 1.6B). Subsequently, analyses of the pockets in apo-NadR 

revealed that in the absence of ligand the long Arg43 side chain was always in the open 

‘outward’ position compatible with binding to the 4-HPA carboxylate group. In contrast, the 

apo-form Met22 and Phe25 residues were still encroaching the spaces of the 4-hydroxyl 

group and the phenyl ring of the ligand, respectively (Figure 1.6B). The ‘outward’ position of 

A                                                               B 
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Arg43 generated an open apo-form pocket with volume approximately 380Å3. Taken 

together, these observations suggest that Arg43 is a major determinant of ligand binding, 

and that its ‘inward’ position inhibits the binding of 4-HPA to the empty pocket of holo-NadR. 

To support the crystallographic data, the binding stoichiometry was investigated using 

solution-based techniques. However, studies based on tryptophan fluorescence were 

confounded by the fluorescence of the HPA ligands, and isothermal titration calorimetry (ITC) 

was unfeasible due to the need for very high concentrations of NadR in the ITC chamber 

(due to the relatively low affinity), which exceeded the solubility limits of the protein. 

However, it was possible to calculate the binding stoichiometry of the NadR-HPA interactions 

using an SPR-based approach. In SPR, the signal measured is proportional to the total 

molecular mass proximal to the sensor surface; consequently, if the molecular weights of the 

interactors are known, then the stoichiometry of the resulting complex can be determined 

[81]. This approach relies on the assumption that the captured protein (‘the ligand’, according 

to SPR conventions) is 100 % active and freely-accessible to potential interactors (‘the 

analytes’). This assumption is likely valid for this pair of interactors, for two main reasons. 

Firstly, NadR is expected to be covalently immobilized on the sensor chip as a dimer in 

random orientations, since it is a stable dimer in solution and has sixteen lysines well-

distributed around its surface, all able to act as potential sites for amine coupling to the chip, 

and none of which are close to the ligand-binding pocket. Secondly, the HPA analytes are all 

very small (MW 150-170) and therefore are expected to be able to diffuse readily into all 

potential binding sites, irrespective of the random orientations of the immobilized NadR 

dimers on the chip. The stoichiometry of the NadR-HPA interactions was determined using 

Equation 1 (see Materials and Methods), and revealed stoichiometries of 1.13 for 4-HPA, 

1.02 for 3-HPA, and 1.21 for 3Cl,4-HPA, strongly suggesting that one NadR dimer bound to 1 

HPA analyte molecule. 

 

Apo-NadR structures reveal conformational flexibility 

After determination of the holo-NadR structure, the structure of apo-NadR was 

determined. The apo-NadR structure contained two homodimers in the asymmetric unit 

(chains A+B and chains C+D), which upon superposition revealed a few minor differences 

and an rmsd of 1.55Å. Similarly, superpositions of the holo-homodimer onto each of the apo-

homodimers resulted in rmsd values of 1.29Å and 1.31Å, again showing some slight overall 

differences between the homodimer pairs. The slightly larger difference between the two 

apo-homodimers, rather than between apo- and holo-homodimers, indicated that apo-NadR 

possesses a notable degree of conformational flexibility. The overall structural similarity but 
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with inherent plasticity of MarR proteins was observed previously upon comparison of the 

OhrR, MarR, MexR and SarR structures [96]. 

 

4-HPA stabilizes concerted conformational changes in NadR that prevent DNA-binding 

To further investigate the conformational rearrangements of NadR, local structural 

alignments were performed using a subset of residues in the DNA-binding helix. By selecting 

and aligning residues Arg64-Ala77 of one α4 helix from each homodimer, superposition of 

the holo-homodimer onto the two apo-homodimers revealed differences in the monomer 

conformations of each structure (Figure1.7A). While one monomer from each structure was 

closely superimposable (compare green and cyan cartoons, Figure1.7A), the second 

monomer displayed quite large differences, especially in the DNA-binding helix 4 which 

shifted by as much as 6Å (Figure1.7B). Accordingly, helix α4 was also found to be one of the 

most dynamic regions of NadR in previous HDX-MS analyses [94]. 

 

 

Figure 1.7. Structural comparison of holo- and apo-NadR and modelling of interactions with DNA. (A) 
The holo-homodimer structure is shown as green and blue cartoons, for chain A and B, respectively, 
while the two homodimers of apo-NadR are both cyan and pale blue for chains A and B, respectively. 
The three homodimers (chains AB holo, AB apo, and CD apo) were overlaid by structural alignment 
of all heavy atoms in residues R64-A77 (shown in red, with side chain sticks) of chains A holo, A apo, 
and C apo, belonging to helix α4 (left). The α4 helices aligned closely, Cα rmsd 0.2Å for 14 residues. 
(B) The relative positions of the α4 helices of the 4-HPA-bound holo homodimer chain B (blue), and 
of apo homodimers AB and CD (showing chains B and D) in pale blue. Dashes indicate the Ala77 Cα 
atoms, in the most highly shifted region of the ‘non-fixed’ α4 helix.  

 

However, structural comparisons revealed that the shift of holo-NadR helix α4 

induced by the presence of 4-HPA was also accompanied by several changes at the holo 

dimer interface, while such extensive structural differences were not observed in the apo 

dimer interfaces, particularly notable when comparing the α6 helices (Figure1.7A). In 

summary, compared to ligand-stabilized holo-NadR, apo-NadR displayed an intrinsic 

A                                                  B
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flexibility focused in the DNA-binding region. This was also evident in the greater disorder (i.e. 

less well-defined electron density) in the β1-β2 loops of the apo dimers (density for 16 

residues per dimer was missing) compared to the holo dimer (density for only 3 residues was 

missing). 

In holo-NadR, the distance separating the two DNA-binding α4 helices was 32 Å, 

while in apo-NadR it was 29 Å for homodimer AB, and 34 Å for homodimer CD. Thus, the 

apo-homodimer AB presented the DNA-binding helices in a conformation similar to that 

observed in the protein:DNA complex OhrR:ohrA from Bacillus subtilis [96] (Figure1.8A).  

 

 

Figure 1.8. Structural comparison of holo- and apo-NadR and modelling of interactions with DNA. (A) 
The holo- and the apo- NadR homodimer structures are shown and superimposed as already 
reported in Figure 1.7. (A) The double-stranded DNA molecule (grey cartoon) from the OhrR-ohrA 
complex is shown after superposition with NadR, to highlight the expected positions of the NadR α4 
helices in the B-DNA major grooves. The proteins share ~30% amino acid sequence identity. For 
clarity, only the α4 helices are shown in panels (A) and (B). (B) Upon comparison with the 
experimentally-determined OhrR:ohrA structure (grey), the α4 helix of holo-NadR (blue) is shifted 
~8Å out of the major groove. 

 

Interestingly, OhrR contacted ohrA across 22 base pairs (bp), and similarly the main 

NadR target sites identified in the nadA promoter (the operators Op I and Op II) were both 

shown to span 22 bp [63, 64]. Pairwise superpositions showed that the NadR apo-

homodimer AB was the most similar to OhrR (rmsd 2.6Å), while the holo-homodimer was the 

most divergent (rmsd 3.3Å) (Figure1.7A). Assuming the same overall DNA-binding 

mechanism is used by OhrR and NadR, the apo-homodimer AB was ideally pre-configured 

for DNA binding, while 4-HPA appeared to stabilize holo-NadR in a conformation poorly 

suited for DNA binding. When aligned with OhrR, the apo-homodimer CD presented another 

different intermediate conformation (rmsd 2.9Å), apparently not ideally pre-configured for 

DNA binding, but which in solution can presumably readily adopt the AB conformation due to 

the intrinsic flexibility described above. In addition to the different inter-helical translational 

distances, the 4 helices in the holo-NadR homodimer had also rotated, resulting in 

movement of α4 out of the major groove and preventing efficient DNA binding in the 

presence of 4-HPA (Figure1.8B). 

A                                                                                                               B
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A single conserved leucine residue (L130) is crucial for dimerization 

To study the architecture and stability of the NadR homodimer interface, a series of 

mutations were prepared, with the aim of disrupting the dimer interface. Due to the two-fold 

symmetry of the interface, each amino acid exchange disrupts twice a given dimer contact.  

The NadR dimer interface is formed by at least 32 residues, which establish 

numerous inter-chain salt bridges or hydrogen bonds, and many hydrophobic packing 

interactions (Figure1.9 A and B). To determine which residues were most important for 

dimerization, the interface in silico was studied and several residues were identified as 

potential mediators of key stabilizing interactions. Using site-directed mutagenesis, a panel of 

eight mutant NadR proteins was prepared (including mutations H7A, S9A, N11A, D112A, 

R114A, Y115A, K126A, L130K and L133K), sufficient to explore the entire dimer interface. 

The crystal structures presented here allowed a detailed structural analysis for the 

design of NadR mutants: 

 H7, S9, N11 are relevant residues establishing hydrogen bonds interactions both in 

4HPA binding pocket; 

 Y115 is main-chain interaction with N11 and side-chain with S9, removing it could 

abolish both potential contacts, between perpendicular helices; 

 location of the residue K126 suggests that this might be the main contributor to the 

interface, being on helix α6 and symmetrical; 

 K130 is located on helix α6 and mutated in  Lys to introduce a long charged residue 

in place of hydrophobic residues; 
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Figure 1.9 Analysis of the NadR dimer interface. (A) Both orientations show chain A, green backbone 
ribbon, colored red to highlight all locations involved in dimerization; namely, inter-chain salt 
bridges or hydrogen bonds involving Q4, S5, K6, H7, S9, I10, N11, I15, Q16, R18, D36, R43, A46, Q59, 
C61, Y104, D112, R114, Y115, D116, E119, K126, E136, E141, N145, and the hydrophobic packing 
interactions involving I10, I12, L14, I15, R18, Y115, I118, L130, L133, L134 and L137. Chain B, grey 
surface, is marked blue to highlight residues probed by site-directed mutagenesis (E136 only makes 
a salt bridge with K126, therefore it was sufficient to make the K126A mutation to assess the 
importance of this ionic interaction; the H7 position is labelled for monomer A, since electron 
density was lacking for monomer B). (B) A zoom into the environment of helix α6 to show how 
residue L130 chain B (blue side chain) is a focus of hydrophobic packing interactions with L130, L133, 
L134 and L137 of chain A (red side chains). (C) SE-HPLC analyses of all mutant forms of NadR are 
compared with the wild-type (WT) protein. The WT and most of the mutants show a single elution 
peak with an absorbance maximum at 17.5 min. Only the mutation L130K has a noteworthy effect 
on the oligomeric state, inducing a second peak with a longer retention time and a second peak 
maximum at 18.6 min. To a much lesser extent, the L133K mutation also appears to induce a 
‘shoulder’ to the main peak, suggesting very weak ability to disrupt the dimer. (D) SE-HPLC/MALLS 
analyses of the L130K mutant, shows 20% dimer and 80% monomer. The curves plotted correspond 
to Absorbance Units (mAU) at 280nm wavelength (green), light scattering (red), and refractive index 
(blue). 

 

Each mutant NadR protein was overexpressed in E. coli and was purified following 

the same IMAC protocol of NadR wild type protein. The physical effects of these mutations 

on the protein were analyzed by SEC-MALLS experiments, to determine whether the 

substitutions had disrupted the interface to form the desired monomeric forms of NadR or led 

to other structural changes. Almost all the mutants showed the same elution profile as the 

wild-type (WT) NadR protein. Only the L130K mutation induced a notable change in the 

oligomeric state of NadR (Figure1.9C). Further, in MALLS analyses, the L130K mutant 

displayed two distinct species in solution, approximately 80% being monomeric (a 19 kDa 

species), and only 20% retaining the typical native dimeric state (a 35 kDa species) 

(Figure1.9D), demonstrating that Leu130 is crucial for stable dimerization. It is notable that 

L130 is usually present as Leu, or an alternative bulky hydrophobic amino acid (e.g. Phe, 

Val), in many MarR family proteins, suggesting a conserved role in stabilizing the dimer 
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interface. In contrast, most of the other residues identified in the NadR dimer interface were 

poorly conserved in the MarR family.  
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Discussion 

NadA is a surface-exposed meningococcal protein contributing to pathogenesis, and 

is one of three main antigens present in the vaccine Bexsero [24]. A detailed understanding 

of the in vitro repression of nadA expression by the transcriptional regulator NadR is 

important because it impacts the prediction of vaccine coverage [68], since coverage is 

estimated using the meningococcal antigen typing system (MATS) through an assay that 

measures the abundance (and genetic variability) of NadA present in meningococcal strains 

[97]. The repressive activity of NadR can be relieved by hydroxyphenylacetate (HPA) ligands 

[68], and HDX-MS studies previously indicated that 4-HPA stabilizes dimeric NadR in a 

configuration incompatible with DNA binding [94]. Despite these and other studies [72], the 

molecular mechanisms by which ligands regulate MarR family proteins are relatively poorly 

understood and likely differ depending on the specific ligand. Given the importance of NadR-

mediated regulation of NadA levels in the contexts of meningococcal pathogenesis and 

vaccine-induced protection, a major aim of this thesis was to characterize NadR, and its 

interaction with ligands, at atomic resolution.  

Firstly, it was confirmed that NadR is dimeric in solution and demonstrated that it 

retains its dimeric state in the presence of 4-HPA, indicating that induction of a monomeric 

status is not the manner by which 4-HPA regulates NadR. These observations were in 

agreement with (i) a previous study of NadR performed using size-exclusion chromatography 

and mass spectrometry [94], and (ii) crystallographic studies showing that several MarR 

homologues are dimeric [72]. A structure-guided site-directed mutagenesis was used to 

identify an important conserved residue, Leu130, which stabilizes the NadR dimer interface, 

knowledge of which may also inform future studies to explore the regulatory mechanisms of 

other MarR family proteins. Secondly, the thermal stability and unfolding of NadR in the 

presence or absence of ligands was assessed. All DSC profiles showed a single peak (Tm > 

65°C), suggesting that a single unfolding event simultaneously disrupted the dimer and the 

monomer (though it cannot be entirely excluded that dimer-to-monomer dissociation 

occurred sooner with an undetectable signal). HPA ligands specifically increased the stability 

of NadR. The largest effects were induced by the naturally-occurring compounds 4-HPA and 

3Cl,4-HPA, which, in SPR assays, were found to bind NadR with KD values of 1.5mM and 

1.1mM, respectively. Although these NadR/HPA interactions appeared rather weak, their 

distinct affinities and specificities matched their in vitro effects [63, 68] and their biological 

relevance appears similar to previous proposals that certain small molecules in the millimolar 

concentration range may be broad inhibitors of MarR family proteins [69, 74]. Indeed, 4-HPA 

is found in human saliva [67] and 3Cl,4-HPA is produced during inflammatory processes [98], 

suggesting that these natural ligands might be encountered by N. meningitidis in the mucosa 

of the oropharynx during infections. It is also possible that NadR responds to currently 
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unidentified HPA analogues. Indeed, in the NadR/4-HPA complex there was a water 

molecule close to the carboxylate group and also a small unfilled tunnel ~5Å long, both 

factors suggesting that alternative larger ligands could occupy the pocket. It is conceivable 

that such putative ligands may establish different bonding networks and thereby have 

different allosteric effects, potentially binding in a 2:2 ratio, rather than the 1:2 ratio observed 

herein. The ability to respond to various ligands might enable NadR in vivo to orchestrate 

multiple response mechanisms and modulate expression of genes other than nadA. 

Ultimately, confirmation of the relevance of each ligand will require a deeper understanding 

of the available concentration in vivo in the host niche during bacterial colonization and 

inflammation.  

Here, the first crystal structures of apo-NadR and holo-NadR were determined, fully 

refined, and deposited with open-access in the Protein Data Bank (PDB). (Note: previously 

the only structural data available on NadR was presented in my undergraduate thesis, 

University of Palermo (2012). In holo-NadR, 4-HPA interacted with at least 11 polar and 

hydrophobic residues: Ser9, Asn11, (chain A), and Arg18, Leu21, Met22, Phe25, Leu29, 

Asp36, Trp39, Arg43, Val111 and Tyr115 (chain B). Several, but not all, of these interactions 

were predicted previously by homology modelling combined with ligand docking in silico [94]. 

More unexpectedly, only one molecule of 4-HPA was bound per NadR dimer. This 

stoichiometry in solution was confirmed using SPR methods. Our crystallographic 

observation of this ‘occupied vs unoccupied’ asymmetry in the NadR/4-HPA interaction is, to 

our knowledge, the first example of a non-antibiotic small molecule ligand reported for a 

MarR family protein. Structural analyses suggested that ‘inward’ side chain positions of 

Met22, Phe25 and Arg43 precluded binding of a second ligand molecule. Such a mechanism 

indicates negative cooperativity, which may enhance the ligand-responsiveness of NadR, as 

proposed previously for HucR [99] and MTH313 [74]. 

Comparisons of the NadR/4-HPA complex with available MarR family/salicylate 

complexes revealed that 4-HPA has a previously unobserved binding mode. Briefly, in the 

M. thermoautotrophicum MTH313 dimer, one molecule of salicylate binds in the pocket of 

each monomer, though with two rather different positions and orientations, only one of which 

(site-1) is thought to be biologically relevant [74]. In the S. tokodaii protein ST1710, salicylate 

binds to the same position in each monomer of the dimer, in a site equivalent to the putative 

biologically relevant site of MTH313 [75]. In TcaR, eight molecules of salicylate were found in 

different sites within and on the surface of the TcaR dimer [100]; and the related protein 

structure of SAR2349 revealed 6 salicylate binding sites per dimer [77]. In contrast, in NadR, 

only one molecule of 4-HPA binds per dimer, in a position distinctly different from the more 

relevant salicylate binding site of MTH313 and ST1710: translated by >10Å and with a 180° 

inverted orientation. 
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Interestingly, a crystal structure was previously reported for a functionally-

uncharacterized meningococcal homologue of NadR, termed NMB1585, which shares only 

16% sequence identity with NadR [101]. The two structures can be closely aligned (rmsd 

2.3 Å), but NMB1585 appears unsuited for binding HPAs. It can be speculated that MarR 

family members have evolved separately to engage distinct signaling molecules, thus 

enabling bacteria to use the overall conserved MarR scaffold to adapt and respond to diverse 

changing environmental conditions within their natural niches. Alternatively, it is possible that 

other MarR homologues have no extant functional binding pocket and thus may have lost the 

ability to respond to a ligand, acting instead as constitutive DNA-binding regulatory proteins. 

The apo-NadR structure revealed two dimers with slightly different conformations, 

most divergent in the DNA-binding domain. It is not unusual for a crystal structure to reveal 

multiple copies of the same protein in slightly different conformations, which are likely 

representative of the dynamic ensemble of molecular states naturally sampled by the 

molecule in solution and with only small energetic differences, as described previously for 

MexR [102] or more recently for the solute-binding protein FhuD2 [103, 104]. Further, the 

holo-NadR structure was overall slightly different from the two apo-NadR structures (rmsd 

values ~1.3Å), suggesting that the ligand selected and stabilized yet another conformation of 

NadR. These observations suggest that 4-HPA, and potentially other similar ligands, can 

shift the equilibrium in the molecular landscape, changing the energy barriers that separate 

active and inactive states, and stabilizing the specific conformation of NadR poorly suited to 

bind DNA. 

Comparisons of the apo- and holo-NadR structures revealed that the largest 

differences occurred in the DNA-binding helix α4. The shift of helix α4 in holo-NadR was also 

accompanied by rearrangements at the dimer interface, involving helices α1, α5, and α6, and 

this holo-form appeared poorly suited for DNA-binding when compared with the known 

OhrR:ohrA protein:DNA complex [96]. While some flexibility of helix α4 was also observed in 

the two apo-structures, concomitant changes in the dimer interfaces were not observed, 

possibly due to the absence of ligand. One of the two conformations of apo-NadR appeared 

ideally suited for DNA-binding. Overall, these analyses suggest that the apo-NadR dimer has 

a pre-existing equilibrium that samples a variety of conformations, only some of which are 

compatible with DNA binding. This intrinsically dynamic nature underlies the possibility for 

different conformations to inter-convert or to be preferentially selected by a regulatory ligand, 

as generally described in the ‘conformational selection’ model for protein-ligand interactions 

(the Monod-Wyman-Changeux model), rather than an ‘induced fit’ model (Koshland-

Nemethy-Filmer) [105]. The noted flexibility may also explain how NadR can adapt to bind 

various DNA target sequences [64] with slightly different structural features. Subsequently, 

upon ligand binding, holo-NadR adopts a structure less suited for DNA-binding and this 
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conformation is selected and stabilized by a network of protein-ligand interactions and 

concomitant rearrangements at the NadR holo dimer interface. In a similar but less extensive 

manner, the binding of two salicylate molecules to the M. thermoautotrophicum protein 

MTH313 appeared to induce large changes in the wHTH domain, which was associated with 

reduced DNA-binding activity [74]. 

Here two new crystal structures have been presented for the transcription factor, 

NadR, which regulates expression of the meningococcal surface protein and vaccine antigen 

NadA. Detailed structural analyses provided a molecular explanation for the ligand-

responsive regulation by NadR on the majority of the promoters of meningococcal genes 

regulated by NadR, including nadA [64]. Intriguingly, NadR exhibits a reversed regulatory 

mechanism on a second class of promoters, including mafA of the multiple adhesin family – 

i.e. NadR represses these genes in the presence but not absence of 4-HPA. The latter may 

influence the surface abundance or secretion of maf proteins, an emerging class of highly 

conserved meningococcal putative adhesins and toxins with many important roles [65, 66]. 

Future structure determination of the NadR protein bound to the NadR-regulated promotors 

(e.g. nadA or mafA operators) combined with biophysical analyses of the binding could lead 

to a comprehensive understanding of differential mechanism patterns of this transcriptional 

regulator. Studies of other known MarR-DNA complexes suggest that regulation of protein-

DNA binding could be mediated through conformational change either at protein level [73] or 

at the DNA binding lobe [106]. However, the molecular basis of NadR-DNA binding appears 

dependent on communication between two monomers through side chains position. 

Additional structural data could allow identification of the specific-sequence recognition 

elements that give rise to differential NadR-DNA regulation. The protein-DNA structure could 

also confirm the hypothesis of negative cooperativity for protein-ligand regulation systems. 

However, determining the crystal structure of protein–DNA complex by X-ray requires the 

preparation of stable and homogenous samples that results to be more challenging when it 

comes to handle the DNA. Prior crystallization or supporting it, it is also important to correctly 

identify the specific nucleotide sequence recognized by the protein and to well characterize 

the interaction between component, in terms of stoichiometry and affinity of the resulting 

complex, by several biophysical an biochemical experiments. Although X-ray crystallography 

can provide detailed information about binding site recognition [107, 108], it is also important 

to consider that crystallography provides only a static view of a protein–DNA complex [109]. 

A powerful tool that can be used to investigate protein–DNA recognition in the solution state 

and supports the crystallographic analyses is Nuclear Magnetic Resonance (NMR) 

spectroscopy. NMR data can be used to elucidate atomic-level conformational dynamics, but 

can be difficult and time-consuming [110-113]. The availability of a suitable protein-DNA 

complex for structural studies often hampers efforts in both techniques. 
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Two others possible routes to such a complex structure are (i) small angle X-ray 

(SAXS) analyses [114]; and (ii) cryo-electron microscopy (Cryo-EM) or, depending on the 

available information, fitting atomic structures of the individual protein subunits into a Cryo-

EM map of the assembly [92]. In the latter case, atomic structures of the protein-DNA 

complex are required. SAXS and X-ray diffraction are fundamentally similar [115]. SAXS 

analysis can be applied to flexible proteins that do not crystallize readily [116]. SAXS differs 

from X-ray crystallography in that it is applied to proteins in solution rather than crystals; thus, 

it can be applied to a much wider range of proteins in states more closely resembling their 

functional forms, but the information is rotationally averaged and so the resulting SAXS 

profile gives less structural information [117]. Cryo-electron microscopy is also gaining 

momentum and popularity in structural biology studies [118]. Advances in electron detectors 

and software for the processing of thousands of images or the correction of beam-induced 

motion are supporting this development facilitating the gaining of structural information at 

increasingly high resolution, even approaching the atomic level [119].  SAXS or cryo-EM in 

combination with X-ray crystallographic data can be very powerful for the analysis of 

multicomponent systems [120, 121]. 

The NadR-DNA complex represents a considerable opportunity for synergy between 

NMR spectroscopy, X-ray crystallography, and complementary structural determination 

techniques. A hybrid structural approach could take advantage of the most accessible 

aspects of each structural technique and may be widely applicable for structure complex 

determination. So, further work is required to investigate how the two different promoter 

types influence the ligand-responsiveness of NadR during bacterial infection and may 

provide insights into the regulatory mechanisms occurring during these host-pathogen 

interactions. 

Ultimately, knowledge of the ligand-dependent activity of NadR will continue to 

deepen our understanding of nadA expression levels, which influence meningococcal 

pathogenesis and vaccine-mediated protection. In that sense, it could be useful perform an 

extensive experimental or computational small molecule screening with large libraries of 

ligands to find others inhibitors, providing additional insights into transcriptional regulation 

mechanism  [122]. A variety of screening methodologies exist to identify molecules [123]: a 

general high throughput screening (HTS) involving the screening of a large compound library 

against the target protein [124]; a focused or knowledge-based screening based on selection 

from a smaller library of molecules that are likely to act on the target protein based on 

previous studies [125]. Both methodologies permit to rapidly identify out of a large library all 

active compounds against a particular protein target. Finally, the identified small molecules 

could be tested and validated through in vitro and in vivo experiments. Such screenings 

could generate data to develop a hypothesis that the small molecule-modulated NadA 
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expression inhibition or activation could result in meningococcal mechanisms for adapting to 

changes in their environment during infection.  
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New strategies towards a crystal structure of 
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Abstract  

Over the last five years, structural biology has emerged as a major tool supporting the 

rational design of novel vaccine antigens. In the vaccine research and development pipeline, 

where Reverse Vaccinology can be used to identify candidates for a protein-based vaccine 

against a specific pathogen, the structural information can be instrumental during the 

optimization phases. The structure-based approach, able to generate information on the 

overall antigen structure, becomes the driving force in the production of engineered antigens 

with improved immunological properties and biophysical attributes that facilitate 

manufacturing. 

Structural studies of one of the protein components of the Bexsero vaccine, the 

meningococcal NadA variant 3 (NadAv3) antigen, are described in part II of this thesis. The 

aim was to obtain the 3D crystal structure of NadAv3, in order to enable a deep 

characterization of its function and its role in eliciting the immune response. Several 

strategies to crystallize NadAv3 and solve its structure were followed. Firstly, new v3 

constructs of distinct C-terminal length were designed (Figure 2.3). This initial clone design 

was inspired by previous successful crystallographic work on NadA variant 5 (NadAv5), a 

variant that shares approximately 50% sequence identity with NadAv3. A comprehensive set 

of biochemical, biophysical and structural techniques were applied to investigate all the 

newly-generated NadAv3 constructs, leading towards samples with improved thermal 

stability for use in structural studies by X-ray crystallography. Initially, low quality crystals 

were obtained, and therefore mutagenesis studies were carried out to improve the diffraction 

quality of these crystals. Ultimately, crystals that diffracted reproducibly up to 2.2 Å resolution 

have been obtained and the structure determination process is ongoing. The atomic 

resolution structure of NadA will help to understand its biological role as both an adhesin and 

a vaccine antigen. Moreover, structural insights will enable a structural vaccinology approach 

for the design of a more broadly cross-protective antigen, as described previously for the 

highly variable meningococcal factor H binding protein (fHbp). In addition, the structure of 

NadA will expand our knowledge of the TAAs family. Finally, the new NadAv3 constructs 

have been used as ‘validated probes’ for various functional studies and epitope mapping 

experiments, contributing to the understanding of the role of NadA in the human immune 

response and endothelial receptor interactions.  
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The Neisseria meningitidis adhesin A (NadA) 

Several studies, carried out using different cell types, including epithelial cells, 

monocytes, macrophages, and monocyte-derived dendritic cells, have demonstrated the 

importance of NadA in bacterial adhesion. NadA has been shown to be involved in bacterial 

uptake in epithelial cells. For example, E. coli bacteria expressing NadA on the surface were 

shown to be internalized in Chang cells in a NadA-dependent fashion. In addition a deletion 

of the N-terminal globular domain of recombinant NadA abrogated the adhesive phenotype 

[20]. Additional studies revealed the regions of NadAv3 between amino acids 94 to 110 and 

109 to 121 as being involved in NadA-mediated cell-bacterium adhesion [126]. However, the 

precise mechanism of adhesion is unknown, and a specific human receptor has not yet been 

clearly identified.  

Further studies have shown that recombinant NadA binds to hsp90 in vitro and on the 

surface of monocytes [127]. In the proposed model, NadA binds to an unknown receptor, 

encounters hsp90 probably by lateral diffusion and then is recruited into a complex also 

comprising hsp70 and TLR4. This complex is inhibited by polymixin B, which interferes with 

NadA-hsp90 binding but not with NadA cell binding. The complex is also necessary for full 

monocyte stimulation and may be important to modulate or enhance the vaccine immune 

response. Furthermore NadA has been shown to interact with β-integrins on epithelial-like 

GE-11 and fibroblast-like 2-4-8 cells using flow cytometry. The direct binding data have been 

corroborated by blocking experiments with anti-human β1 monoclonal antibodies which have 

been described to compete with NadA for β-integrin binding [128]. Based on these studies, 

NadA appears to be a key determinant of meningococcal interactions with the human host at 

different stages of meningococcal infection. In addition it has recently been demonstrated by 

large scale protein microarray-based approach that NadA is able to bind to the human LOX-1 

(low-density oxidized lipoprotein lectin-like receptor 1) receptor. LOX-1 represented an 

interesting candidate for further validation since it is known to be involved in bacterial 

adhesion and invasion [129, 130], endotoxin-induced inflammation [131] and its deletion 

enhances bacterial clearance in a murine polymicrobial sepsis model [132].  

 

The TAA family –common structural organization 

NadA belongs to the trimeric autotransporter adhesion (TAA) family, a class of outer 

membrane adhesins present in Gram-negative bacteria. These obligate homotrimeric 

proteins are embedded in the outer membrane (OM) and act primarily as adhesins. Members 

of the TAA family can bind to diverse molecules, such as cell surface receptors, components 

of the extracellular matrix (ECM) such as collagen and laminin, and each other (i.e. they act 

as autoagglutinins). TAAs comprise a group of virulence-related proteins in Gram-negative 
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bacteria  [133], and they typically share a common modular organization that consists of an 

N-terminal “passenger” domain followed by a C-terminal translocation unit/membrane anchor 

(Figure 2.1).  

 

 

 

 

Figure 2.1. TAA Structural Organization. TAAs show a simple head-stalk-anchor organization. The 
head mediates host-specific binding properties, the stalk projects the head beyond the membrane, 
and the membrane anchor secretes both previous components while maintaining the protein bound 
to the outer membrane surface.  

 

The N-terminal part of the TAA, the passenger domain, is responsible for binding to 

specific host macromolecules. The highly conserved C-terminal domain, the translocation 

unit, transports the passenger across the outer membrane (OM) into the extracellular space. 

The β-barrel is the only part of the protein strictly conserved between family members in 

terms of sequence and structure. Bacteria have evolved a wide array of head domains, and 

the structural mismatch between the globular head domains and the fiber-like stalk domain 

requires the presence of an additional class of “neck” elements acting as connectors. These 

provide a smooth transition to and from the stalk. The coiled coils in TAAs are forced to be 

trimeric, and typical trimeric coiled coils are left-handed. The sequence motif encoding a 

coiled coil is composed of hydrophobic (H) residues separated by three and four polar (P) 

residues [(HPPHPPP)n≥ 3]: where the positions in the heptad repeat are designated 

abcdefg. The crossing angle between the helices in a coiled coil is close to zero, and the 

packing follows a “knobs-into-holes”  arrangement [134], where the knobs formed by 

hydrophobic residues in positions a and d pack into cavities formed by residues on a 

neighboring helix [135]. In TAAs, the three helices are wound in register around each other, 

so all of the residues are at the same height. Position a favours β-branched side-chains (Ile, 

Val, Thr), while residues in position d are closer together and so unbranched residues (Leu, 

Ala) are favoured [136]. The translocation process seems to be independent of any external 

source of free energy, such as adenosine triphosphate (ATP), ion gradients, or other 

proteins; hence the name autotransporter [137] . Overall, the available data suggest that 

folding, function and structure are very closely linked in TAAs. Nevertheless, the recently 

solved structure of NadAv5 showed features of a novel trimeric autotransporter adhesin that 

has no close homologs among other TAAs proteins present in the Protein Data Bank (PDB) 

[138]. Interestingly, NadA5 is made of a trimeric coiled-coil which includes both the apical N-

N C Head Stalk Anchor 

C - terminal  integral membrane  β - barrel N - terminal  Passenger 
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terminal region and the main stalk, with a peculiar sequence insertion which gives rise to 

wing-like structures without altering the coiled-coil geometry (Figure 2.2).  

 

Figure 2.2. Crystal structure of NadAv5. Crystal structure of NadA5 is shown as cartoons; the stalk 
(coiled coil region) is shown in blue and the wing-like insertions of the head domain are shown in 
green. 

 

NadA variants 

Nucleotide sequence analyses of nadA have shown that the gene is present in 

approximately 30% of N. meningitidis major disease-associated strains, and is associated 

mostly with strains belonging to three out of the four hypervirulent lineages [21, 139]. 

Updated sequence analyses of NadA indicate the presence of four variants clustering in 2 

groups: group I comprising protein variants NadAv1 and NadAv2/3, and group II including 

protein variants NadAv4/5 and NadAv6. NadAv1 and NadAv2/3 are the most represented 

and highly cross-protective (i.e. in mouse models, immunization using NadAv3 antigen elicits 

serum bactericidal activity ‘cross-protective’ against meningococcal strains with surface-

expression of NadAv1 and v2 [140]). NadAv4/5 is predominantly associated with carriage 

isolates and is poorly cross-reactive with variants 1 and 2/3. NadAv6 is closely related to 

NadAv4/5 and was originally described in one isolate belonging to the ST-11 complex [21, 

141, 142]. In the multi-component vaccine Bexsero, NadAv3 is present as a well-

characterized drug substance termed NadA∆351-405 [143], which is essentially a soluble 

trimeric ectodomain form that lacks the transmembrane anchor. However, to date, detailed 

structural information is available only on NadAv5 [138].  

N  

C 
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Experimental procedures 

NadA constructs cloning, expression and mutagenesis. The nadA gene 

fragments were PCR amplified from the serogroup B N. meningitidis strains 2996 (NadAv3) 

and M01-240320 (NadAv5) and were inserted into the pET-21b(+) vector (Novagen), as 

described previously [144]. The NadA expression constructs were cloned without the signal 

peptide and a C-terminal 6-His tag was inserted to facilitate protein purification. The 

sequence numbering used here refers to the full-length NadAv3 and NadAv5 proteins, 

UniProt accession numbers Q8KH85 and A0ELI2, respectively. PCR products encoding 

NadA fragments and point mutants  with a 6His tag at the C terminus were cloned using the 

polymerase incomplete primer extension cloning method (PIPE) method [145]. After 

sequencing, each plasmid was used to chemically transform E. coli BL21 (DE3) cells 

(Novagen) for protein production.  

NadA protein production and purification. Cells were grown following the 

manufacturer’s protocol using BioSilta medium that guarantees a minimum 5-fold increase in 

protein yield from EnPresso B Animal-free growth systems when compared to yields from 

typical LB medium. Cultures were aerated in 250ml shake flasks at 30°C for 30 h, and 

production of the NadA constructs was induced by the addition of 0.1mM IPTG (isopropyl β-

D-thiogalactopyranoside). After one day culture, cells were harvested by centrifugation and 

were suspended in 50 mM NaH2PO4, 300 mM NaCl (pH 8.0,) followed by mechanical 

disruption. Cell lysates were clarified by centrifugation at 30000 g for 30 min at 4°C, and the 

E. coli extract  supernatant was removed and filtered using a 0.22µm membrane (Corning 

filter system) prior to protein purification. The soluble cell extract was loaded on a HisTrap 

1 ml column (GE Healthcare). Proteins were eluted with 50 mM NaH2PO4, 250 mM NaCl, 

60 mM Imidazole pH 8.0. Only the NadAv5 constructs required an additional purification step 

with a Q HP anion exchange resin (GE Healthcare) after dialysis in 20 mM Tris-HCl pH 8.0. 

Fractions containing NadA were identified by SDS-PAGE (12% gel) analysis and were 

further purified by preparative size-exclusion chromatography (HiLoad Superdex 75 (16/60), 

GE Healthcare) in buffer containing 20mM Tris-HCl, 150 mM NaCl, pH 8.0. All proteins were 

used immediately or frozen for storage at -20°C. Storage of NadA proteins for any length of 

time can pose stability problems. 

Size-exclusion high-performance liquid chromatography (SE-HPLC) coupled 

with Multi-angle laser light scattering (MALLS). Size-exclusion high-performance liquid 

chromatography (SE-HPLC), revealed a high level of purity and a lack of any aggregated 

species. SE-HPLC was performed at RT (18-26°C) on an analytical size exclusion TSK 

Super SW3000 column by loading 20μl of each sample at a concentration of ~ 40μM. 

Samples were eluted isocratically in 0.1M NaH2PO4, 0.4M (NH4)2SO4 buffer at pH 6.0. 
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Coupling SE-HPLC with Multi-angle laser light scattering (SE-HPLC/MALLS) NadA samples 

were analyzed for absolute molecular size in solution. Data analyses were carried out using 

Astra V software (Wyatt) to determine the weight-average molecular mass (MW) in Daltons 

and the polydispersity index (MW/Mn) for each oligomer present in solution. Normalization of 

the MALLS detectors was performed in each analytical session by use of bovine serum 

albumin. 

Differential Scanning Calorimetry (DSC). The thermal stability of NadA proteins 

was assessed by DSC using a MicroCal VP-Capillary DSC instrument (GE Healthcare). 

NadA samples were prepared at a protein concentration of 0.5mg/mL (~10μM) in PBS buffer. 

The DSC temperature scan ranged from 10°C to 110°C, with a thermal ramping rate of 

200°C per hour and a 4 second filter period. Data were analyzed by subtraction of the 

reference data for a sample containing buffer only, using the Origin 7 software. All 

experiments were performed in duplicate, and mean values of the melting temperature (Tm) 

were determined. 

Surface Plasmon Resonance (SPR). Surface plasmon resonance (SPR) was used 

to study the binding of NadAv3 constructs to several human and murine monoclonal 

antibodies (mAbs). All SPR experiments were performed using a Biacore T200 instrument at 

25 °C (GE Healthcare). For the single-cycle kinetics (SCK) experiments, which are well-

suited for the measurement of high affinity binding events, either a commercially available 

Mouse Antibody Capture Kit (GE Healthcare) or a Human Fab Capture kit (GE Healthcare) 

was used to covalently-immobilize respectively anti-mouse or anti-human IgG antibodies by 

amine coupling on a carboxymethylated dextran sensor chip (CM-5; GE Healthcare). A 

density level yielding ∼10,000 response units (RUs) was prepared for both immobilizations. 

The anti-mouse IgG was used then to capture ∼1200 RU murine mAb 6E3 while the anti-

human Fab (anti-huFab) IgG was used to capture also ∼1500 RU of the chimeric mAbs. 

Experimental running buffer contained 10 mM Hepes, 150 mM NaCl, 3mM EDTA, 0.05% 

(vol/vol) P20 surfactant, pH 7.4. For the determination of KD and kinetic parameters, a 

titration series of five consecutive injections of increasing analyte concentration (range 6.25-

100 nM; flow rate of 40 μL/min) followed by a single final surface regeneration step with 

buffer containing 10 mM glycine pH 1.7 (flow rate of 10 μL/min) was performed using the 

standard SCK method implemented by the Biacore T200 Control Software (GE Healthcare). 

Anti-mouse or anti-human antibody-coated surfaces without captured mAb were used as the 

reference channel. A blank injection of buffer only was subtracted from each curve and 

reference sensorgrams were subtracted from experimental sensorgrams to yield curves 

representing specific binding. The data shown are representative of at least two independent 

experiments. SPR data were analyzed using the Biacore T200 Evaluation software (GE 

Healthcare). Each sensorgram was fitted with the 1:1 Langmuir binding model, including a 
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term to account for potential mass transfer, to obtain the individual kon and koff kinetic 

constants; the individual values were then combined to derive the single averaged KD values 

reported. For the single injection experiments a sample for each protein tested was injected 

at a concentration of 200 nM over captured either murine or chimeric human IgGs. Surfaces 

were regenerated between injections with glycine pH 1.7 as described above. 

Crystallization of NadAv3 proteins and X-ray diffraction data collection. Purified 

NadAv3 proteins were concentrated between 10-42mg/mL, depending on the construct, 

using a centrifugal concentration device (Amicon Ultra-15 Centrifugal Filter Unit with Ultracel-

10 membrane with cut-off size 10kDa; Millipore) running at 600 g in a bench top centrifuge 

(Thermo Scientific IEC CL40R) refrigerated at 2-8°C. The concentrated NadAv3 proteins 

were subjected to crystallization trials performed in 96-well low-profile Intelli-Plates (Art 

Robbins) or 96-well low-profile Greiner crystallization plates, using a nanodroplet sitting-drop 

vapour-diffusion format and mixing equal volumes (200nL) of protein samples and 

crystallization buffers using a Gryphon robot (Art Robbins).  

Each sample was tested using 5 different commercially available screens, namely: 

JCSG, Morpheus and Structure (Molecular Dimension); PEGIon and Saltrx (Hampton 

Research). Crystallization trays were incubated at 20º C in the RockImager 182 (Formulatrix) 

incubator and imager. Crystals of NadAv324-170 that did not diffract x-rays were obtained at 

20ºC in condition B6 of JCSG-plus™ HT-96 screen (Molecular Dimensions Ltd), which 

contains 0.1M sodium phosphate citrate pH 4.2 (Buffer), 40 % (v/v) ethanol (Precipitant) and 

5 % (w/v) polyethylene glycol (PEG) 1K (Precipitant). Optimization of this initial crystallization 

condition yielded reproducible crystals by slightly lowering the concentration of ethanol and 

PEG 1K to 36.4 % (v/v) and 4.5 % (w/v), respectively. Substitution of ethanol by 2-Methyl-

2,4-pentanediol (MPD) allowed the generation of high quality crystals of NadAv324-170, 

NadAv324-170_A33I-I38L NadAv324-170_A33I-I38L-A39V that diffracted between 2.2 and 2.8 Å resolution. 

All crystals grew in 0.1M sodium phosphate citrate, pH 3.9, and 5 % (w/v) PEG 1K, and a 

range of MPD concentrations between 33.64 and 45.91 %v/v.  

X-ray data collection experiments are usually conducted at cryogenic temperatures 

(100K), in order to reduce radiation damage of the crystals induced by the X-rays. Thus, 

crystals must be first frozen (without ice formation and damage), and to do so these are 

soaked into so-called cryo-protectant solutions mixed with the crystallization reagent. 

However, crystals growing in certain conditions, including high alcohol or MPD as for the 

NadAv3 crystals described above, can be cryo-cooled without any addition of additives. 

Thus, prior of data collection crystals of NadA3 were mounted in cryo-loops without 

additional cryo-protectant and were cooled to 100 K in liquid nitrogen. 
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X-ray diffraction data from crystals of NadAv324-170, and NadAv324-170_A33I-I38L and 

NadAv324-170_A33I-I38L-A39V were collected on beamline ID23 and ID30A-3, respectively, of the 

European synchrotron radiation facility (ESRF), Grenoble, France.    
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Results 

Structure-based design: seeking the minimal N-terminal domain of NadAv3  

Extensive attempts to crystallize the soluble recombinant tagless NadAv3 vaccine construct 

(NadAv3351-405) [143], which includes the head and entire stalk domain, but which lacks the 

transmembrane anchor, were unsuccessful (unpublished results). Similarly, despite being 

available at much higher degrees of purity, previous efforts were also unsuccessful to 

crystallize C-terminally 6-His tagged forms of this full-length ectodomain protein (C-His 

NadAv324-342), or several C-terminally truncated constructs (spanning residues 24-293, 24-

284, 24-274 and 24-268) [138]. The inability to crystallize NadAv3 constructs may well be 

related to its relatively long stalk region (expected to be approximately 400Å long), which 

displayed inherent flexibility in negative-stain electron microscopy studies [138]. Typically, 

long flexible molecules are expected to be less likely to crystallize than more compact stable 

molecules. Therefore, various strategies, including the design of alternative NadA variants 

(NadAv4 and v5) to exploit slight variation in amino acidic composition, known to affect 

crystallizability, were previously employed. Reproducible diffraction-quality crystals were 

obtained only from a single variant 5 construct, NadAv524-220, allowing to solve the NadAv5 

structure by single anomalous dispersion (SAD) methods by soaking of the crystals with 

sodium iodide [138]. The work presented here describes new approaches implemented to 

aid crystallization of v3, using the v5 crystal structure to rationally-design new v3 constructs 

of distinct C-terminal length (Figure 2.3). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Domain organization and constructs of NadAv3. Each expression construct had a C-
terminal 6His tag (orange box) to enable affinity purification. The predicted domain organization and 
domain boundaries are shown schematically by white boxes. 
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 A first expression screen revealed that all the new NadAv3 constructs were expressed in 

soluble form in large amounts in E. coli. All the recombinant NadAv3 protein constructs 

spanning residues 24-89 to residue 24-181 were purified from the soluble cytoplasmic 

fraction. The procedure involves a first-step purification of the recombinant protein by 

immobilized metal ion affinity chromatography (IMAC) and a second step by size-exclusion 

chromatography (SEC), as described in Materials and methods. The corresponding proteins 

ran at the expected monomeric molecular mass in SDS 4-12% PAGE analyses performed 

under reducing and non-reducing denaturing conditions. The final sample purity was 

estimated as >95% in SE-HPLC analysis. The absolute molecular weight values of the 

proteins were calculated by MALLS analysis and the thermal stability was evaluated by DSC 

experiments. The extensive biophysical and biochemical analysis revealed that NadAv324-170 

is the shortest v3 construct that is well-folded, stable and fully trimeric (see Table 2.1):  

 

Construct 
SE-HPLC  

(Purity %) 
MALLS 

(Absolute MW) 

DSC 
(T

m, 
°C) 

NadAv3_24-89 99% monomer N/A 

NadAv3_24-103 99% monomer N/A 

NadAv3_24-121 

> 95 % 

98% monomer 
2% trimer 

32.8 

NadAv3_24-135 
92 % monomer 

8 % trimer 
31.5 

NadAv3_24-149 
70 % monomer 

30 % trimer 
37.5 

NadAv3_24-167 
60 % monomer 

40 % trimer 
38.6 

NadAv3_24-170 99% trimer 39.1 

NadAv3_24-174 

>95% 

trimer 39.8 

NadAv3_24-181 trimer 41.8 

 

Table 2.1. Biophysical and biochemical properties of NadAv3 constructs. Six constructs were 
observed to exist in a mixture of oligomeric states on SEC-MALLS. If a measureable trimeric 
molecular weight (MW) was observed, then this is indicated by the label “trimer”. If no trimeric MW 
was observed, then the percentage of oligomeric states of the two oligomeric species is provided. 
N/A, not applicable. The sample purity and the thermal stability of the constructs, evaluated by 
HPLC and DSC respectively, are listed 
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For each construct, the final purification yield was approximately 1mg of purified 

protein per 1gr wet biomass, obtaining a sufficiently pure amount of material to be used in at 

least five different commercial crystallization screen. Crystallization trials were performed for 

the three trimeric constructs: NadAv324-170, NadAv324-174, and NadAv324-181. 

 

Strategies towards the crystal structure of the NadAv324-170 construct  

Several approaches were followed in order to grow diffraction-grade protein crystals of 

NadAv3. Initial crystals of NadAv324-170 obtained in 0.1M sodium phosphate citrate pH 4.2, 

40%v/v ethanol and 5 %w/v PEG 1K (Conditions B6 of JCSG screen) did not diffract. Thus, 

optimization screenings were performed, slightly lowering the concentration of ethanol and 

PEG 1K to 36.4 %v/v and 4.5 %w/v, respectively. This approach allowed us to obtain crystals 

that were diffracting to a maximum resolution of 6Å.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Decision tree for optimization experiments. Several approaches can be taken when a hit 
condition is identified and these can be performed in conjunction with each other or separately. 
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The flow diagram illustrated in Figure 2.4 show the various steps towards crystallizing 

a protein and the options that were followed to overcome problems that were encountered. 

The most promising construct crystallized readily but generated low quality diffracting 

crystals. Next, different strategies were applied, ranging from protein to crystal manipulation, 

to improve diffraction quality of protein crystals.  

A) Protein engineering flow-path 

New protein constructs of NadAv3 were generated (a) that lacked putatively flexible regions, 

generating a set of shorter C-terminally truncated constructs (1a) that retain the trimeric 

conformation. Additional stabilized mutants (2a) were produced by adding a C- terminal 

GCN4 tag which was derived from a GCN4 leucine zipper to ensure trimerization [146], or a 

C-terminal foldon trimerization domain of phage T4 fibritin [147] to increase conformational 

stability (3a). These constructs were tested for increased thermal stability in DSC 

experiments (Figure 2.5).  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. DSC profiles of engineering NadA constructs. A symmetric peak with Tm~40°C (brown) 
shows that the NadAv324–170 is stably folded. Smaller peak was observed with similar Tm value for 
the  NadAv324-170 + foldon construct (light blue); a shifted peak with an increased Tm was observed 
for the  NadAv324-170 + GCN4 construct (yellow). 

 

B) Crystal manipulation flow-path 

In addition, crystal manipulation techniques (b) were followed, since crystals that 

grow from high concentrations of volatile alcohols are notoriously difficult to handle during 

mounting and flash-freezing procedures. Cryocooling is in fact successful only when done 

quickly, hence the term flash-freezing. Briefly, a crystal is manually ‘fished’ from the 

crystallization drop in which it grew (typical volume < 500 nanolitres) using a tiny nylon loop, 
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and is then rapidly transferred into liquid nitrogen or a gaseous cryostream at around 100K. 

The speed of flash freezing prevents formation of crystalline ice, which disrupts the crystal 

lattice and degrades the data quality. Specifically, these crystals had a tendency to move 

inside drops due to convection currents and droplet evaporation, and to dissolve when the 

drop containing the crystal was touched even without directly touching the crystal. Even the 

addition of a more concentrated solution directly on top of the crystallization drop was found 

not to be useful in helping with the handling of these crystals. Nevertheless, ultimately about 

100 different crystals obtained from that particular condition by numerous repeated efforts 

over the course of 2 years were screened, but did not yield useful diffraction data (max. 

resolution only about 6Å in one direction).   

Based on these observations, the in situ diffraction approach was attempted for X-ray 

analysis and performed directly in crystallization droplets within their original screening 

plates, without any manipulation of the crystals (1b) [146]. These experiments were 

conducted on beamline BM30 at ESRF (Grenoble, France). Unfortunately, this experiment 

did not yield diffraction data useful to determine the structure. Although this in situ approach 

is potentially useful in some cases, it has several limitations. Few diffraction images were 

collected, and by observing the low diffraction quality of in situ NadAv3 crystals, it was 

possible to infer that the crystals grown in ethanol were mostly of intrinsically poor quality (i.e. 

yielded diffraction only to low resolution), suggesting that the in situ method would not prove 

to be a fruitful approach, and that alternative crystal growth conditions were needed. 

Temperature can be a significant variable in biological macromolecule and small 

molecule crystallization [148] and it has been demonstrated that temperature induced 

crystallization could be a generally useful technique [149]. As an important parameter, the 

temperature of crystallization experiments was investigated, from 22°C to 4°C (2b) but the 

crystals that grew at 4°C did not diffract.  

Finally, the ethanol was substituted by less volatile alcohols, such as the 2-

methylpropane-1,3-diol (MPD). Remarkably, the use of MPD as precipitant readily yielded 

crystals, which provided a 2.2Å resolution native data set for NadAv324-170 firstly, and 

subsequently for two NadAv3 stabilized mutants. The diffraction pattern of NadAv324-170 

crystals, which can be seen as arrays of dots, is showed in Figure 2.6. The sharpness of the 

spots reflects the quality of the crystal organization; the pattern of spots (reflections) and the 

relative strength of each spot (intensities) can be used to determine the structure. The 

resulting reflections from a diffraction experiment arises from a complicated relation of the 

physics of the incoming photon wave interacting with each ordered lattice point in the 

analyzed protein crystal. 
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Figure 2.6. Diffraction image of Nadav324-170 crystal. 

 

Statistics for data collection are shown in Table 2.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistics for the highest-resolution shell are shown in parentheses. 
*    Rsym = Σhkl Σi |Ii(hkl) - <I(hkl)>| / Σhkl Σi Ii(hkl) 
** Rmeas = redundancy-independent (multiplicity-weighted) Rmerge as reported from AIMLESS [91]. 
 

 

Table 2.2. Data collection statistics for Nadav3 24-170 . 

 

  

NadAv3 24-170 

 

 

Data collection 

 

 

Wavelength (Å) 

 

0.977 

Beamline ESRF(ID23-2) 

Resolution range (Å) 42.3 - 2.2 

Space group R 3 2 (Space group number 155) 

Cell dimensions 

       a, b, c (Å) 

       α, β, γ (°) 

 

40.02, 40.02, 762.48 

90, 90, 120 

Total reflections 114967 

Unique reflections 12055 

Multiplicity 9.5 (9) 

Completeness (%) 99.3 (96) 

Mean I/sigma(I) 18.6 (2.1) 

Wilson B-factor 64.9 

Rsym* 5.8 (89.5) 

Rmeas** 6.1 (94.9) 
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NadAv3 mutagenesis to promote crystallization 

As the overall quality of crystals of the C-term truncated NadAv3 constructs remained 

sub optimal and not suitable for further structural studies, it was decided to explore another 

method of protein engineering, namely mutagenesis, to mutate residues both in the head and 

in the stalk domain of NadA. Since an increased thermal stability is correlated with a higher 

protein tendency to crystallize [150], mutations were designed that might increase the Tm of 

NadAv324-170 construct (Tm is ~40°C). Note that the Tm of the successfully crystallized 

NadAv5 is ~ 60°C. A pairwise sequence alignment of NadAv3 vs NadAv5 and multiple 

sequence alignments of all NadA variants (1 to 5) were inspected in regions where the 

heptad repeats are not conserved. Analyses of the local environment of the potential 

mutagenesis sites were performed using a molecular graphics interface (Pymol: 

www.pymol.org) to evaluate the impact of mutations. Using this approach, nine novel 

constructs were designed (Figure 2.7). 

 

 

Figure 2.7. Mutagenesis for stabilizing sites in head (orange) and stalk (green) domains of the 
NadAv5 structure 

 

A33I 

T35K 

I38L 

A39V 

A41V 

 N100L

 T139N

 F135I

 T157V

http://www.pymol.org)/
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The aim of mutations was to increase thermal stability by improving the internal 

hydrophobic packing of the protein, as follows: 

a. Coiled coil domain single point mutants: 

i. Asn 100 (v3) vs Leu 99 (v5) 

ii. Thr 139 (v3) vs Asn 106 (v5) 

iii. Phe 153 (v3) vs Ile 120 (v5) 

iv. Thr 157 (v3) vs Val 124 (v5) 

The selected residues of NadAv3 were substituted by the equivalent residues of 

NadAv5, except for the v3 residue Thr 139 substituted by Leu (instead of Asn). Since the Asn 

is destabilizing at this position of TAA proteins, as shown by Hartmann et al. [151], 

hydrophobic Leu as in mutation Asn 100 (v3) vs Leu 99 (v5) appeared to be more favorable. 

b. Head domain single point mutants: 

i. Ala 33 (v3) vs Ile 33 (v5) 

ii. Thr 35 (v3) vs Lys 35 (v5) 

iii. Ile 38 (v3) vs Leu 38 (v5) 

iv. Ala 39 (v3) vs Val 39 (v5) 

v.         Ala 41 (v3) vs Val 41 (v5) 

 

The NadAv324-170 construct mutants were produced by site-direct mutagenesis, were 

expressed in E. coli and purified under identical conditions, as described in Materials and 

Methods. These constructs were screened for increased thermostability using differential 

scanning calorimetry (DSC). Interestingly, three single point mutations were found to stabilize 

the NadAv3 protein. The head mutations specifically increased the thermal stability of 

NadAv3, with the largest effects being induced by the A33I mutation for which it was 

observed the higher delta Tm value (Figure 2.8).  
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Figure 2.8. Thermostability of NadAv3 stabilized mutants. DSC profiles of wild type NadAv324-170 
protein (blue) and of three single point mutants for which an incremental of melting temperature 
(Tm) was observed.   

 

After identification of single stabilizing mutations, these were combined in two double 

mutants and in one triple mutant as shown in Table 2.3:  

 

 

 

 

Table 2.3. NadAv3 double and triple mutants. 

 

The production of stabilized constructs was scaled-up for production of >10mg quantities for 

crystallization experiments. As reported in the literature [152, 153], mutagenesis can be an 

effective tool to aid protein crystallization and may also yield dramatic improvements in 

crystal quality. Structural integrity of NadAv3 stabilized mutants was tested by the binding of 

two anti-NadA head domain monoclonal antibodies (mAbs). The two internally available 

mAbs were used as positive controls in SPR experiments. SPR sensorgrams of each 

NadAv3 mutant-mAb interactions are shown in Figure 2.9.  
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Figure2.9. SPR sensorgrams for binding of mAbs to NadAv324-170 and NadAv3 mutant forms. 

 

SPR measurements of ligand binding were performed on the NadAv324-170 and three 

Nadav3 mutant constructs (NadAv324-170_A33I+I38L, NadAv324-170_A33I+A39V and NadAv324-

170_A33I+I38L+A39V). Each of the two mAbs was captured on a specific sensor chip and tested for 

binding with each NadAv3 construct that were injected separately in the analyte flow at a 

range of concentrations.  

 

High-quality NadAv3 reagents for functional studies 

Designing several constructs of a single protein enabled the production of large 

quantities of stable proteins once the length of the coiled coil domain that ensured the 

trimeric conformation had been determined. The high-quality reagents generated by the 

structure-based design were validated for functional studies. In particular, the new NadAv3 

constructs containing the head and the neck domains (the trimeric NadAv324-170 and the 

monomeric NadAv324-89) and  ‘headless’ coiled coil constructs were useful for epitope 

mapping studies. As reported in Figure 2.10 different collaborations have been carried out in 

order (i) to define the crucial region of NadAv3 required for its interaction with the human 

LOX-1 receptor; (ii) to characterize  the murine mAb 6E3, able to recognize three cross-

protective NadA gene variants and the bactericidal mAb 33E8 specific for group I variants 
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[138, 154]; (iii) to map the epitopes of three murine mAbs elicited by immunization with MenA 

and MenW GMMA expressing NadA. All monoclonal antibodies and receptor bound a single 

epitope.  

 

 

 

 

 

 

 

 

 

Figure 2.10. Epitope mapping studies on NadAv3 protein.  The block cartoon images show the LOX1 
site (red) on the NadAv324-170 region; the Fab 33E8 (green) and the Fab 6E3 sites (orange) on the 
head and on the central region, respectively; the three murine mAbs sites (blue) on the stalk domain 
. I would suggest you delete ‘IVRP’ from the image. 

 

All the previously mentioned epitope mapping experiments were performed on 

different NadAv3 constructs using the Surface Plasmon Resonance (SPR) technology, 

except the evaluation of NadAv3/LOX-1 interaction, which was performed by biolayer 

interferometry (Octet QKe, ForteBio, Pall Instruments) experiments by an internal 

collaborator. In addition, SPR analysis was used to calculate and compare the kinetics of 

binding interactions between mAbs and NadAv3 antigen. Epitope mapping experiments 

using these reagents permitted a deeper understanding of the mechanism of NadA-mediated 

protection and its role in the interaction with host cells.  
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Discussion 

The long-term goal of this study is to determine the high-resolution structure of 

NadAv3, in order to provide biological and immunological insights into this vaccine antigen, 

and potentially to aid the design of an improved vaccine antigen. It was anticipated that this 

would be a challenging project, since numerous failed efforts had already been reported 

[138]. Therefore, the immediate goal targeted here was to generate a NadAv3 antigen 

construct of enhanced thermal stability that could be used as a preferential sample for 

crystallization trials. The desired protein construct was identified among more than 10 new 

differently-sized NadAv3 constructs, exploring C-terminal truncations, designed to have three 

fundamental chemical and structural properties: (1) reduced elongated protein shape, (2) 

decreased coiled-coil flexibility, (3) increased thermal stability. The recently solved NadAv5 

crystal structure [138] was used for the rational design of a new series of NadAv3 constructs. 

The domains and boundaries in which functional, trimeric and stable recombinant NadAv3 

constructs can be produced in large quantities were identified. A comprehensive set of 

biochemical and biophysical techniques were applied to investigate nine differently-sized v3 

constructs, exploring C-terminal truncations. The results revealed that all of the constructs 

could be expressed and purified with high quality, six of those were not stable and exist in a 

mixture of monomeric and trimeric states, and only three constructs (NadAv324-170, NadAv324-

174, and NadAv324-181) were stable and trimeric. Thus, the shortest stable trimeric construct of 

the NadAv3 protein was identified: the NadAv324-170 construct is the shortest construct that is 

well-folded and trimeric. 

It was established that the N-terminal head region alone is insufficient for stable 

trimerization, which requires additional C-terminal region for stable folding. Hence, it could 

conclude that to obtain stable NadAv3 trimeric fragments, the presence of an initial coiled-

coil region made at least of 80 residues is necessary. This conclusion was further 

strengthened by the increased stability of constructs containing higher number of residues of 

coiled coil domain compared with those lacking it, as shown by the results of the 

thermostability shift assay (Table 2.1). 

The NadAv324-170 construct displayed a moderate stability (Tm ~40°C, Figure 2.5), it is 

greatly overexpressed in bacteria, and easy to purify, but its immediate use as a 

crystallization target reproducibly generated low quality crystals. A total number of 100 

NadAv324-170 crystals were screened for diffraction, but this screen did not yield any complete 

datasets. To improve crystal diffraction quality, stabilized variants of NadAv324-170 were 

engineered. Using the sequence alignments of NadA variants and the known v5 structure, 

molecular graphics tools were used to identify the local environment of potential mutagenesis 

sites likely to contribute to increased stability. Hydrophobic residues in position d of the 
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heptad repeat in NadAv3 were mutated to Asn, in order to have Asn at position d layers in 

the NadA Coiled-Coil, as in NadAv5 [138]. Regions where the heptad repeats were not 

conserved were also inspected. For experimental testing, five single head mutations and four 

single coiled coil mutations were identified. Site-directed mutagenesis of the nadA gene was 

used to generate the designed mutants described above. Like NadAv3 wt protein, the 

mutated proteins were over-expressed in E. coli, and purified to >95% homogeneity using Ni-

affinity chromatography. All mutants were expressed at high levels and were soluble. The 

SEC-MALLS profile and the calculated MW of all the mutants are identical to those of NadA 

wt, suggesting that the mutations did not affect the tertiary structure.  

Protein stability was assessed by following the mutation-induced change of Tm in 

DSC experiments. Two additional two-point and three-point mutants that are combinations of 

successfully stabilizing single mutations from the initial experiment were also produced and 

selected for experimental characterization to assess increase in stabilization and used in 

crystallization trials. SPR measurements of mAbs binding were performed on the NadAv324-

170 and three Nadav3 mutant constructs.  The SPR responses (Figure 2.9) were used to 

calculate the binding affinities to assess the structural integrity of NadAv3 mutants and to 

compare the effects of each mutation on mAb binding specificity. Binding affinities measured 

for each mAb with the Nadav324-170 wt were very similar to those obtained from the binding 

assay of NadAv3 mutants. The similar behavior of NadAv3 mutants observed in the SPR 

data provided validation of the trimeric form and folding of the NadA mutants. A second 

approach involved appending the foldon or the GCN4 domain to the C terminus of the 

NadAv324-170. These variants were tested for increased thermal stability in DSC experiments 

(Figure 2.5).  Both of the trimerization domains did not have a dramatic effect on the thermal 

stability of the protein. Nevertheless, the NadA engineering constructs were used for 

crystallization experiments and, unfortunately, no strongly-diffracting crystals were obtained.  

The initial crystals of NadAv324-170 did not diffract. Subsequent optimization resulted in 

crystals of NadAv324-170 that diffracted to maximum resolution of 6 Å. A second crystal form 

obtained using a different precipitant agent (MPD) provided a 2.3 Å resolution native data 

set. In addition to the NadAv324-170 construct, two of the stabilized NadAv3 mutants 

(NadAv324-170_A33I+I38L and NadAv324-170_A33I+I38L+A39V) were successfully crystallized. A key step 

in the strategy was the substitution of the ethanol with a less volatile alcohol. This probably 

promoted a more ordered arrangement of the molecule in the crystals that diffracted between 

2.3 and 2.8 Å for the three constructs. In order to extract structural information from X-ray 

diffraction data, the recorded intensities must be supplemented by additional phase 

information. This introduces the crystallographic phase problem, which can be faced by a 

number of approaches [155]. One method is the molecular replacement (MR), which is 

based on the availability of an accurate homologous model of the crystallized 
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macromolecules that can be correctly placed in the asymmetric unit to obtain the initial phase 

[156-158]. Although the solved NadAv5 crystal structure shares ∼50% sequence identity to 

NadAv3 and represents a valid model, solving a coiled-coil protein structure can be very 

difficult with MR techniques [159, 160]. This is due to several factors that work in combination 

to hamper the phasing of these proteins [135, 161-163]. Specifically, the presence of 

translational non-crystallographic symmetry (tNCS) in the investigated NadAv3 crystals 

structure is an additional complicating factor for structure determination. In tNCS, two or 

more copies of a molecule are arranged in the same orientation in the asymmetric part of the 

unit cell, or of internal symmetry of the individual molecule [164]. This is common for coiled-

coil protein architecture [160]. Solution by MR in the presence of tNCS is not fully 

characterized and automated, and requires additional efforts.  

In addition to structural studies, the C-terminal NadAv3 truncated constructs 

represented a powerful set of high quality reagents (highly homogenous and pure samples, 

stable proteins and trimeric conformation as the full length proteins) and were subsequently 

useful for epitope mapping studies. A functional investigation of the LOX-1 binding site and of 

different mAb epitopes was performed in SPR experiments to fully characterize the 

interactions with the NadAv3 antigen. These well-characterized constructs can be used to 

facilitate validation of the reagents across various assay platforms.  

 

Concluding Remarks 

Methods for systematic identification of epitopes are needed for detailed 

characterization of antigens. The functional characterization of an antigen and its 

characterization by epitope mapping experiments are important goals of structural 

vaccinology, in order to selectively present the conserved immunogenic determinants of 

complex and variable antigens. Using high resolution structures, antigens can be designed to 

be more efficiently produced and stably stored than native molecules. The biophysical, 

biochemical, and genetic engineering technologies are essential tools for the structural 

vaccinology: firstly, it is important to study the native molecular architecture of an antigen and 

its neutralization determinants; then this knowledge can be used to modify the molecule and 

engineer new immunogens that are optimally designed for inclusion in protective vaccines. 

An efficient strategy to generate soluble, well-expressed, trimeric and stable NadA proteins is 

described. In addition, to enhance crystallization propensity stability of NadAv3, engineered 

stabilized NadAv3 constructs, that could be characterized antigenically and tested for 

immunogenicity in mice, were generated. Finally, structural information obtained from the 

crystal structures of NadAv324-170 and of the two NadAv3 stabilized constructs could be used 

to optimize protein and engineered NadAv3 antigens to make it more immunogenic. A new 
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generation of vaccines, including optimized antigens, could be even more broadly protective, 

practical, and affordable than those available today. The interplay among biophysical and 

structural characterization of vaccine antigen, design of an optimized vaccine antigen and its 

immunogenicity studies provides the basis for further optimization of meningococcal vaccine 

antigen. 
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