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Abstract 
 

Disorders of the somatosensory system causing neuropathic pain (NP) are common in people. In 

small animals medicine, this condition remains underestimated  probably due to the lack of 

standardized assessment methods and  studies focused on the description of structures  playing a 

key role in developing  and maintaining neuropathic pain, such as dorsal root ganglia (DRG).  

 

Hence, the aims of the present research project, structured in three different studies, were:  

a) investigate the possible effects of the reduction in radicular blood flow on the vascular 

density, ganglionic and endoneurial ischemia and shift in neuronal metabolism, in fifteen 

L7-DRG from a total of eight dogs suffering from painful compressed spinal L7 nerve roots 

(NRs) and DRG;  

b) perform a preliminary characterization of the expression of substance P, calcitonin gene-

related peptide, calbindin D-28k, neuronal nitric oxide synthase and the colocalization of 

those molecules in lumbosacral DRG neurons of three neurologically normal dogs;  

c) Investigate the prevalence, risk factors and owners’ perception of their pets quality of life 

of the Phantom Complex (PC) in a client-owned population of 107 dogs with limb 

amputation through an online survey. 

 

Main results were: 

a) Our findings highlight a significant neuronal distress in compressed DRG. Despite the 

similarity of vascular density between controls and compressed L7-DRG, we found a  

significant increased in neuronal immunoreactivity for hypoxia-related markers and for 

markers related to glycolytic cellular metabolism. 

b)   The wide variability of CGRP-, SP-, CALB-, and nNOS-immunoreactivity among different 

species was confirmed. Further studies are required in order to better define the 

characterization of those markers in canine DRG. 

c) Our study demonstrates for the first time the presence of PC.Significant risk factors 

associated with the frequency of post-amputation pain episodes are duration of pain 

before amputation and time between diagnosis and amputation. 
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Introduction 
 
 

Neuropathic pain (NP) is defined as a type of chronic and maladaptive pain arising as 

direct consequence of a lesion (or a disease) affecting the nervous system. 

Independently from the origin of the lesion, pathologic neuropathic mechanisms 

may expand to involve both peripheral and central nervous structures, including the 

dorsal root ganglia, which play a key role in triggering and maintaining the “spinal 

central sensitization”.  

 

Despite different animal models have been intensively used to investigate the 

mechanisms involved in the development of neuropathic pain, currently there is a 

lack of studies focused on the expression, distribution, and immunocytochemical 

characterization of pain-related molecules in dorsal root ganglia of healthy dogs.  

 

In human medicine, a recent study on neuropathic pain, found a prevalence ranging 

from 7% to 8%. 1, 2 Different standardised screening tools, such as PainDETECT, ID-

Pain and DN4, have been developed to identify and classify neuropathic pain on the 

basis of patient-reported verbal descriptors of pain modalities.3-7 Nevertheless, the 

diagnosis of neuropathic pain remains difficult and its real prevalence may still be 

considered underestimated. The clinical value of the screening tools consists in the 

possibility to better identify patients with neuropathic pain, in order to permit an 

appropriate pharmacological approach. However, despite many pharmacological 

treatments available, the unsuccessful management of neuropathic pain still 

represents the majority of cases.8 

 

In veterinary medicine, during the past 10 years, pain has been a common topic for 

many studies.9-14  Most of these papers were focused on pain management and, 
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actually, there is still a relevant lack of studies centered primarily on neuropathic 

pain.  

 

Different conditions may cause neuropathic pain in dogs as in humans. One of the 

best known in the dog is represented by the Degenerative Lumbosacral Stenosis 

(DLSS),  named “Lumbar Canal Stenosis” (LCS) in human medicine.  

DLSS is caused by a complex of causes, including possible instability of the area,  

protrusion of the degenerated  L7-S1 intervertebral disc, proliferation of the soft 

tissue surrounding the cauda equina, sacral osteochondrosis and vascular 

compromise of the spinal nerves, leading to the stenosis of the vertebral canal and 

compression of the cauda equina, nerve roots and dorsal root ganglia (this latter 

called “Neuro-Foraminal Stenosis” [NFS)]), in a relevant percentage of affected 

dogs.15, 16  

In human beings, the most common consequence is the development of 

neuropathic pain, reported in 37% to 64.7% of patients affected by LCS.17 

Although the direct contribution of vascular dysfunction to the development of 

neuropathic pain has not been fully clarified, evidence of microvascular disturbances 

has been reported in human and animal models of nerve compression, suggesting a 

correlation between the mechanical compression of the nerve roots and  dorsal root 

ganglia and the haemodynamic factors.18-21 However, the evidence of ischemia and 

changes of the vascular density in the affected nerve roots and dorsal root ganglia of 

patients with natural nerve root compression remains to be proven. 

 

In human beings, a well known syndrome related to neuropathic pain is the 

Phantom Complex (PC).22-24 The PC includes three different elements: a) Phantom 

Limb Pain (PLP) which is defined as painful sensations referred to the absent limb; b) 

Phantom Limb Sensation (PLS) as any sensation in the absent limb, except pain; c) 

Stump Pain (SP) defined as pain localized in the stump.22-24 
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These elements often coexist in each patient and may be difficult to separate. 

PLP is reported to occur in about 60 to 80% of patients within the first 2 years after 

amputation and persists during the whole life in up to 10% of the affected 

population.25-27 

Despite PC may occur in veterinary patients, there are no focused studies in dogs 

and cats. The few reports published on amputated animals focused on the 

biomechanical adaptation of dogs and owners’ satisfaction, without investigating 

the presence and characteristics of PC. 

 

Hence, the present research project was focused on three different aspects of 

neuropathic pain in dogs: 

 

1) The preliminary description and characterization of the expression of 

substance P (SP), calcitonin gene-related peptide (CGRP), calbindin D-28k (CB), 

neuronal nitric oxide synthase (nNOS) and the colocalization of those 

molecules in lumbosacral spinal ganglia (SG) neurons of dogs without 

pathologies related to the nervous system; 

 

2) The investigation of the possible effects of the reduction in radicular blood 

flow on the vascular density, ganglionic and endoneurial ischemia and shift in 

neuronal metabolism, leading to  neuronal dysfunction, in naturally 

compressed spinal L7 nerve roots and dorsal root ganglia (DRG) in  a canine 

model of DLSS. To challenge this hypotesis we evaluated the ganglionic 

vascular density by antifactor VIII-related antibodies (factor VIII) and the 

presence of hypoxia through the expression of hypoxia-related markes as the 

Neuroglobin (NGB), the Carbonic Anhydrase-IX (CA-IX), and the Vascular 

Endothelial Growth Factor (VEGF). Furthermore, we investigated the lactic 
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stress by assessing the expression pattern of Monocarboxylate Transporter-1 

(MCT-1) and -4 (MCT-4). 

 
 

3) The assessment of the prevalence, risk factors and owners’ perception of their 

pets quality of life associated to Phantom Complex in a client-owned 

population of dogs with limb amputation through an online survey. 
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Marker expression suggests complex metabolic stress in 

compressed canine L7 root ganglia 

 

 

 

Introduction 

 

 

The term Lumbar Canal Stenosis (LCS) refers to any type of narrowing of the 

spinal canal, nerve root canals or intervertebral foramina by surrounding bone and 

soft tissues.1-3 In human medicine, the LCS is a common disease, affecting from 21% 

to nearly 100% of persons over age 60.4 LCS may involve central and/or lateral 

structures, compressing the conus medullaris and/or spinal nerve roots (NRs) and 

dorsal root ganglia (DRG), eventually resulting in a Neuro-Foraminal Stenosis 

(NFS).1,2 The number of patients with LCS and NFS complaining of low back pain, 

lower extremity pain and/or numbness and neurogenic intermittent claudication 

has increased yearly, with the prevalence in humans ranging from 18.9% to 29.7%.2,5  

In dogs, Degenerative Lumbosacral Stenosis (DLSS) largely resembles human 

LCS. DLSS refers to a degenerative disorder that is multifactorial origin. In DLSS, the 

intervertebral disc (IVD) degeneration and bony and soft tissue proliferations 

contribute to spinal stenosis, cauda equina compression and NFS in 68% of dogs.6,7 

The clinical signs of DLSS in dogs have been well documented, with a high 

resemblance with those reported in humans. The most commons comprise pelvic 

limb lameness, hyperesthesia of the lumbosacral area or pelvic limbs, sensory and 

motor disturbances and urinary or fecal incontinence.6-9  
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In humans, as in dogs, the most common consequence of LCS/DLSS is the 

development of a chronic neuropathic pain (NP), which affects 37% to 64.7% of 

human patients suffering from low back pain.10 Whereas, dogs affected by DLSS 

revealed signs of caudal lumbar pain from 68.6% to 97.7%.11,12  

NP is defined as a type of chronic and maladaptive pain arising as direct 

consequence of a lesion or a disease of the nervous system. Independently of the 

origin of the lesion, neuropathic mechanisms may involve peripheral and central 

nervous structures, such as the DRG.  

Several experimental studies in vivo and in vitro have focused on NRs and DRG 

compression, so far. The results showed nerve fiber deformation, intraganglionic 

edema with increase endoneurial pressure, changes in nerve root microcirculation, 

break down of blood-nerve barrier, demyelination, myelinated axon loss, Wallerian 

degeneration,  inflammatory reactions and cell death.13-17 These type of alterations 

appear not to be confined to the site of compression only, but also extend to 

extrafocal areas and in particular the DRG.18-20 One of the explanations for the 

extension of changes would be a circulatory compromise with impact on nerve root 

physiology and metabolism. 

In previous studies, it was shown that dogs under iatrogenic spinal NRs 

compression  developed a reduction of 50-60% of the radicular blood flow. The 

blood flow remained diminished for a critical period even after the compression had 

been removed.2 In an experimental rat study, authors correlated the vascular supply 

to an increased expression of Vascular Endothelial Growth Factor (VEGF) after 

application of mechanical compression to the DRG.21 VEGF seems to be an 

important trigger for angiogenesis and vascular permeability as consequence to 

hypoxia.21 In a preceding investigation we were able to demonstrate structural 

vascular abnormalities in dogs with NRs compression.22 Furthermore, a recent study 

in mice showed that a traumatic nerve injury resulting in painful peripheral 
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neuropathy can lead to a vascular abnormalities and subsequent endoneurial 

hypoxia.18  

All these studies suggest a correlation between the mechanical compression 

of NRs, DRG changes and the haemodynamic factors. However, the evidence of 

ischemia and changes to the vascular density in affected nerve roots of patients with 

natural nerve root compression remains to be proven. 

On top of numerous valuable experimental models of nerve root 

compression, the disease development in dogs suffering from spinal NRs 

entrapment may more closely resemble human cases of rhizopathic sciatica, 

suggesting  the possibility of employing canine DLSS as translational platform.  

Hence, the aim of this study was to elucidate the contribution of vascular 

compromise and its metabolic consequences to neuropathic pain in canine nerve 

root compression. A better understanding of the pathophysiology of compressed 

NRs and DRG in the dog allows for development of better taylored causal 

treatments of NP in these animals and their human counterpart. 
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Materials and Methods 

 

 

Ethics Statement  

 

This study was performed on archived nerve root biopsies and autoptic samples 

submitted for histological evaluation of compressive radiculopathy and possible 

differentials.  

 

 

  

Stereological Assesment  

 

Image analysis and quantification of vascular density were evaluated by a single 

rater blinded for the origin of the sample using new-Computed Assisted Stereology 

Toolbox software (new-CAST™, Visopharm, Horsholm, Denmark) connected to a light 

microscope equipped with a motorized XY stage, after immunohistochemical 

labelling for von Willebrand factor (factor VIII).  

Using new-CAST, series of DRG sections were outlined at low magnification (4x 

objective). Subsequently, the outlined DRG section was divided in fields and, using 

an higher magnification (100x objective), the total area fraction of every field was 

assessed using a double crosses grid that overlapped every field. 

The double crosses grid was composed by a first order of 10x10 crosses (100 

crosses/field) and by a second order of 25x25 crosses (2.500 crosses/field) with a 

1:25 ratio between first and second order crosses. 

For the first order crosses were counted those hitting neither the DRG nor the 

perineurium (a) and those hitting only the perineurium (b), obtaining the number of 
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first order crosses hitting the DRG and perineurium (c = 100-b). For the second order 

crosses were counted those hitting the blood vessels in the DRG and perineurium (d) 

and those hitting only the blood vessels in the perineurium (e), obtaining the 

number of second order crosses hitting the blood vessels in DRG without 

perineurium (f = d-e), the number of second order crosses hitting the DRG and 

perineurium (g = c*25), the number of second order crosses hitting the perineurium 

(h = b*25) and the number of second order crosses hitting the DRG (i = g-h) . 

Finally, the calculated parameters were: the volume fraction  of the blood vessels in 

the DRG and perineurium  (Vv(vessels/DRG with perineurium)) (d/g), the volume fraction of the 

blood vessels in the DRG without counting the blood vessels in the perineurium 

(Vv(vessels/DRG without perineurium)) (f/i), and the volume fraction of the blood vessels in the 

perineurium (Vv(vessels/perineurium)) (e/h). 

 

 

 

Tissue Sampling 

 

L7 DRG were sampled from dogs with history of lumbosacral pain due to NFS 

confirmed by magnetic resonance imaging as described elsewhere.6 Clinical 

assessment and MRI reading were carried out by veterinary neurology and imaging 

specialists. Further DRG, routinely harvested during postmortem examination (PME) 

of age- and breed-matched dogs without clinical evidence of back and limb pain or 

neurological deficits and with autoptic exclusion of lumbosacral pathologies and 

hind limb orthopaedic disorders were chosen as controls. Autopsy in these dogs was 

requested for purposes unrelated to the aims of this study.  

Wedge shaped nerve roots/DRG biopsies were collected from NFS patients during 

foraminotomy surgery. 
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 In dogs subjected to PME, the spinal cord and associated nerve roots, including the 

DRG, were removed in toto after dissection of the epaxial and paraxial musculature, 

extensive laminectomy, removal of transverse processes and the crista iliaca and 

desmotomy of ligamentous nerve root attachments.23  

The tissues were immediately transferred in 10% neutral-buffered formalin for 24 

hours. Fixed DRG were trimmed transversely with a razor blade into slices of 1 mm 

thickness. This study in particular concentrated on the aequatorial level of 

postmortem DRG and on serial transverse sections of wedge biopsies. These were 

postfixed in formalin for another 12 h and underwent subsequent processing by an 

automatic histoprocessor (TP 1020 Leica Instruments, Nussloch, Germany) running 

on a specific program for nervous tissue as described elsewhere.24  After completing 

the cycle the tissues were embedded in paraffin (Paraplast Plus®, Leica Biosystems, 

St. Louis, Mo., USA), sectioned at 5 µm slice thickness and mounted on positively 

charged amino-propyl-ethoxy-silane-coated slides (Star Frost Adhesive, Engelbrecht 

Medizin- und Labortechnik, Edermunde, Germany). 

Prior to histological and immunohistochemical staining, the sections underwent a 

standard dewaxing protocol employing xylene treatment followed by a decreasing 

alcohol series and washes with distilled water and phosphate-buffered saline (PBS; 

pH 7.4) (Factor VIII, VEGF, NGB, CA-IX) or 0.1% Triton X-100 (MCT-1, MCT-4). 

 

 

 

Histological Investigations 

 

All L7-DRG underwent a routine histopathological examination with regards to 

ganglionic pathology, employing sections stained with haematoxylin and eosin (HE) 

and Picrosirius Red-Alcian Blue staining. In addition to general algorithms for 

prevertebral ganglia pathology (Fix 2000) there was a special focus on vascular 
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density, vessel wall morphology, lumen-wall ratio and course and orientation of the 

vessels.  All investigations were conducted using Axioplan light microscope (Zeiss, 

Germany). 

 

 

 

Immunohistochemistry 

 

Optimal antibody concentrations and pretreatments were established for the 

respective tissue in a pilot investigation (data not shown). To enhance 

immunoreactivity, dedicated sections were pretreated as illustrated in the Table 1. 

Endogenous peroxidase activity was blocked using 3 ml of 30% hydrogen peroxide in 

100 ml methanol for Factor VIII, VEGF, NGB and CA-IX and using 10 ml of 30% 

hydrogen peroxide in 90 ml methanol for MCT-1 and MCT-4. The incubation was 

carried out for 30 minutes, with subsequent washing steps in PBS (Factor VIII, VEGF, 

NGB, CA-IX) or in PBS + 0.1% Triton X-100 (PBS-T) (MCT-1, MCT-4) for 15 minutes 

each. After blocking with 2.5% normal horse serum (ImmPRESS™ HRP anti-rabbit IgG 

Polymer Detection Kit, Vector Laboratories, Burlingame, California, USA) applied for 

20 minutes at room temperature, the slides were incubated with the primary 

antibodies (Table 1) in a humidified chamber at 4°C for 18 hours. Incubation was 

followed by repeated rinses in PBS (Factor VIII, VEGF, NGB, CA-IX) or PBS-T (MCT-1, 

MCT-4) with a final immersion for 15 minutes followed by incubation with the 

polymer (ImmPRESS™ HRP anti-rabbit IgG Polymer Detection Kit, Vector 

Laboratories, Burlingame, California, USA) in a humidified chamber at room 

temperature for 30 minutes. After repeated washes by PBS or PBS-T to remove the 

unbound secondary antibodies, sections were covered with 3,3’-diaminobenzidine 

(DAB) chromagen according to the manifacturer’s protocol (Vector Laboratories 
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Burlingame, California, USA). The sections were counterstained with hematoxylin 

and coverslipped routinely using a xylene-based mounting medium. 

 

 

 

Data collection 

 

Sections were evaluated using Axioplan light microscope (Zeiss, Germany) at either 

x100 or x200 optical resolution. DRG cells (neurons and satellite cells) and blood 

vessels were scored according to the intensity of their cytoplasmic staining, using a 

5-tiered scale (0 to 4). Scores were given as follows: 0 = immunonegative, 1 = very 

mild staining, 2 = mild staining, 3 = moderate staining, 4 = extensive staining. 

Furthermore, a value was given to the satellite cells stain following the overall 

percentage of immunopositivity (0: <5%; 1: 5-25%; 2: 25-50%; 3: 50-75%; 4: >75%). 

Medial, adventitial or endothelial immunopositivity and location of stained blood 

vessels (endoneurium, perineurium or epineurium) were evaluated. 

All data were fed into Microsoft Excel® and PAST® software for statistical analysis. As 

for the stereological analysis, the investigator was blinded for the origin of the 

tissues.  
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Statistical analysis 

 

The distribution characteristics of the values were checked for each linear 

parameter by Shapiro-Wilk test and normal probability plotting. Association 

between categorical variables was assessed with chi-squared test or Fisher’s exact 

test. Normal data were compared by Student’s t test and Z test. Non normal data 

were compared by Mann-Whitney’s test. P values ≤ 0.05 were considered 

significant. 
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Results 

 

 

Tissue collection and histopathology 

 

Fifteen L7-DRG were harvested from a total of eight dogs suffering from painful NFS 

(NFS-L7-DRG) and compared to L7-DRG from five non-affected dogs (NA-L7-DRG).  

Histopathology showed a panel of vascular abnormalities comprising 

disproportionately thick arterial walls in 7/15 L7-DRG (46.6%), microvascular 

endothelial prominence in 4/15 L7-DRG (26.6%) and phlebectasia of capsular veins 

in 2/15 L7-DRG (13.3%). In 11/15 L7-DRG (73.3%) the perineurium was fibrotically 

enlarged. 

 

 

 

Stereological findings 

 

A mean of 26 ±13.2 fields for each slide in controls and 24±14 fields for each slide in 

NFS-L7-DRG were observed.  

In controls and NFS-L7-DRG, the volume fraction of: a)the blood vessels in the DRG 

and perineurium  (Vv(vessels/DRG with perineurium)), b) the blood vessels in the DRG without 

counting the blood vessels in the perineurium (Vv(vessels/DRG without perineurium)) and c) the 

blood vessels in the perineurium (Vv(vessels/perineurium)) were, respectively, a) 

0.028±0.007 and 0.036±0.015; b)  0.026±0.006 and 0.036±0.016; c) 0.043±0.017 and 

0.036±0.029.  No significantly differences were seen between the two groups (Table 

2). 
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Marker expression 

 

 

Expression of VEGF 

 

Independent of the similarity of vascular density, there were significant differences 

regarding VEGF expression. 

 In controls, a total of 3.702 neurons were counted and 792 expressed VEGF-IP, 

which represent the 21.3% of neurons (Figure 1). The expression levels were mostly 

very mild (grade 1: 11.5%) and mild (grade 2: 16.8%) (Figure 2). 

 

In NFS-L7-DRG, a total number of 3.960 neurons was evaluated, 2.106  (53%) of 

which stained immunopositive for VEGF. The expression pattern was somatic and 

diffusely occupied the entire perikaryon, with a mild axoplasmic staining (Figure 3 

B). Furthermore, 9/15 (60%) showed a distribution pattern localized in the 

subcapsular zone (data not shown). 

The immunopositivity (IP) was significantly increased in NFS-L7-DRG neurons 

compared to the NA (p<0.01) (Figure 1), as the former showed more moderate 

(grade 3: p=0.02) and extensive labeled neurons  (grade 4: p<0.001) (Figure 2). 

 

In addition to the neurons, also satellite cells showed a significant increase  of IP 

(p=0.03) and there were a significant more mild (grade 2: p<0.001), moderate (grade 

3: p<0.001) and extensive immunolabeling (grade 4: p<0.001) (Figure 4). 

Concerning the vascular expression, a NFS-associated increase of medial and 

endothelial VEGF expression was observed in both endoneurial (p=0.007) and 

perineurial (p=0.01) blood vessels (Figure 5). 
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Expression of NGB 

 

In the control group, a total of 3.126 neurons were counted and 2.572 (82.2%) 

showed NGB-IP (Figure 6). The expression levels were mostly very mild (grade 1: 

38.2%) and mild (grade 2:42.7%) (Figure 7).   

 

In NFS-L7-DRG, a total of 3.819 neurons were counted. Of those, 3.437 (89.4%) 

showed NGB-IP (Figure 6). The expression pattern of NGB was observed diffusely in 

the cytoplasm, with a mild axoplasmic staining (Figure 8 B). Occasionally, a mild 

nuclear expression was observed. 

Direct comparison of the two groups did not show a significant difference in the 

proportion of NGB expressing cells (p=0.15) (Figure 6) however, NFS-L7-DRG 

neurons more frequently reached moderate expression levels (25.1%) compared to 

controls (1.4%) (grade 3: p<0.001) (Figure7). 

 

Compared to controls, in NFS-L7-DRG, satellite cells showed a significant more mild 

(grade 2: p<0.001) and moderate labelling (grade 3: p<0.001) (Figure 9) but without 

difference in the proportion of IP (p=0.02). 

Concerning the vascular expression of NGB, no differences were seen in endoneurial 

(p=0.4) and perineurial (p=0.6) blood vessels expression between NFS-L7-DRG and 

controls. 
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Expression of CA-IX 

 

In NA-L7-DRG, a total of 3.345 neurons were counted and 1.765 (52.7%) showed CA-

IX-IP (Figure 10). The expression levels were mostly very mild (grade 1: 17.4%) and 

mild (grade 2: 27.5%) (Figure 11). 

 

In NFS-L7-DRG, a total of 4.450 neurons were counted. Of those, 4.058 were IP for 

CA-IX, which represent the 91.15% (Figure 10). The expression pattern for CA-IX was 

cytoplasmic and diffusely occupied the entire perikaryon with a moderate 

axoplasmic staining (Figure 12 B).  

Compared with controls, NFS-L7-DRG showed an overall significant increase of 

neuronal IP (p<0.01) (Figure 10). Furthermore, NFS-L7-DRG showed an higher 

moderate (grade 3: p<0.001) and extensive neuronal immunolabeling (grade 4: 

p<0.001) (Figure 11). 

 

In addition to the neurons, also the satellite cells in NFS-L7-DRG showed a significant 

increase of IP (p=0.02). Furthermore, a significant more moderate (grade 3: p<0.001) 

and extensive (grade 4: p<0.001) satellite cells labeling was observed (Figure 13). 

 

An increased medial and endothelial CA-IX expression of perineurial (p=0.005) blood 

vessels was observed in NFS-L7-DRG (data not shown). 
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Expression of MCT-1 

 

In controls, a total of 4.104 neurons were counted. Of those, 520 (12.6%) showed 

MCT-1 IP (Figure 14). The expression levels were mostly very mild (grade 1: 7.3%) 

and mild (grade 2: 4%) (Figure 15). 

 

In NFS-L7-DRG,a  total of 2.966 neurons were MCT-1 immunopositive, which 

represent the 70.6% of all counted neurons (n = 4.199) (Figure 14). The expression 

pattern for MCT-1 was diffuse cytoplasmic witha moderate axoplasmic staining 

(Figure 16 B). 

Compared to controls, NFS-L7-DRG neurons showed a significant proportion of MCT-

1 IP (p<0.001) (Figure 14). Direct comparison of intensity grades between NFS-L7-

DRG and controls showed a substantially higher proportion of mild (grade 2: 

p<0.001), moderate (grade 3: p<0.001) and extensive (grade 4: p<0.01) neuronal 

labeling (Figure 15). 

 

Satellite cells in NFS-L7-DRG showed a significantly higher proportion of  IP in 

comparison to controls (p=0.02) including increases in mild (grade 2: p<0.001), 

moderate (grade 3: p<0.001) and extensive (grade 4: p<0.001) satellite cells 

immunolabeling (Figure 16). 

 

Furthermore, a significant increase of adventitial MCT-1 expression of endoneurial 

blood vessels was observed in NFS-L7-DRG (p=0.005) (Figure 17). 
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Expression of MCT-4 

 

 In controls, a total of 4.222 neurons were counted. Of those, 1.182 (27.9%) were 

MCT-4 IP (Figure 18). The expression levels were mostly very mild (grade 1: 9.8%), 

mild (grade 2: 10%) and moderate (grade 3: 6.6%) (Figure 19). 

 

In NFS-L7-DRG, a total of 4.179 neurons were MCT-4 immunopositive, which 

represent the 83.9% of the total counted neurons (n = 4.979) (Figure 18). The 

expression pattern for the MCT-4 was somatic and diffusely occupied the 

perykarion, with a mild axoplasmic staining (Figure 20 B). In scattered neurons, a 

pointed cytoplasmic staining was seen (data not shown). 

Despite controls, NFS-L7-DRG showed an increased neuronal IP (p<0.001) (Figure 

18). Furthermore, direct comparison between the two groups showed a significant 

increased in mild (grade 2: p=0.01), moderate (grade 3: p<0.001) and extensive 

(grade 4: p<0.001) neuronal immunolabeling in NFS-L7-DRG (figure 19). 

 

Satellite cells of NFS-L7-DRG were significantly IP compared to controls (p<0.05) 

with increased  mild (grade 2: p<0.001) and moderate (grade 3: p<0.001) labeling 

(Figure 21). 

 

A significant increased medial MCT-4 expression of endoneurial (p=0.02) and 

perineurial (p=0.03) blood vessels was seen (Figure 22). 
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Discussion 

 

 

Previous studies have shown that the DRG plays a key role in generation of 

low back pain and sciatica in patients suffering from recruudescent pain in disc 

herniation and LCS.25-28 Following peripheral and central injuries, cellular and 

molecular changes occur in the DRG, including proliferation of satellite glial cells and 

invasion by macrophages.25,29-31  

Although the direct contribution of vascular dysfunction to NP has not been 

fully explored, evidence of microvascular disturbances has been reported in both 

humans suffering NP and in NP animal models.18,32,33 Furthermore, in vivo studies 

showed that a direct compression of the DRG results in reorganization of their 

vascular architecture, providing the structural conditions for changes in the 

microenvironment that alter the DRG neuron physiology and may induce NP.18,26 

Similarly, a vascular remodelling within the DRG can be hypothesised to occur due 

to farther proximal NRs compression in an L7-NFS setting. 

To identify possible changes to DRG vascularity, we evaluated the endoneurial 

density of blood vessels in DRG from L7-NFS-affected dogs using stereological 

algorithms. Thus, an increase in the ganglionic vascular density would be indicative 

of a neoangiogenesis in entrapped NRs. On unbiased investigation, however, no 

alterations to the microvascular supply of DRG in L7-NFS could be established. This 

basically reflects the emperical impression of normal vascularity on routine sections. 

On the other hand this not necessarily reflects normal perfusion. 

Histological inspection of endoneurial arteries showed changes to the arterial 

wall thickness in 46.6% of entrapped NRs. This may be indicative of an increased 

arterial perfusion pressure, required to overcome increased endoneurial vascular 

resistance in compressed roots. Notably, the VEGF signal was most severe in the 
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subcapsular aspects of the DRG. As the centre of the roots is supplied by the central 

radicular artery, it may be assumed that nerve root compression may interfere with 

the transcapsular supply by obliteration of small penetrating arteries. Alternatively 

and very likely, there is also a compression of epiradicular veins with reduction of 

the venous outflow from the endoneurium. This way, congestive endoneurial 

oedema may trigger the observed fibroplasia in compressed roots and the vascular 

resistance would be elevated, leading to the above described arterial changes.  

Credence to a malperfusion concept indirectly is given by increased expression of 

neuronal stress markers as VEGF, NGB and CA-IX. 

VEGF, as well as NGB and CA-IX are some of defined hypoxia-related markers, 

since they are associated to the oxygen status of the tissues.34-41 Those factors are 

up-regulated by the Hypoxia-Inducible Factor 1-α (HIF-1α), which is a transcription 

factor with the subunit α that is sensitive to oxigen. Upon activation in hypoxic 

conditions, HIF-1α binds to the Hypoxia Responsive Elements (HRE) promoting the 

transcription of numerous genes, including VEGF, NGB and CA-IX.38  Despite the 

relation between HIF-1α and hypoxia, HIF-1α is rapidly degraded in the presence of 

oxygen and its quantification as chronic hypoxia-related assay remains 

questionable.38,42 Thus, the mesurement of VEGF, NGB and CA-IX, in which the 

increased expression has been already demonstrated in chronic hypoxic conditions, 

represent a more reilable investigation.43-45 

VEGF enhances vascular permeability and represents a neurotropic factor, 

promoting neuronal regeneration and reducing neurodegeneration.46-48 Several in 

vitro and in vivo studies have documented effects of ischemia and hypoxia on the 

expression of VEGF.49 For example, a comparison of transient and permanent 

Middle Cerebral Artery (MCA) occlusion in rat showed elevations of VEGF levels in 

neurons and astrocytes, which were detectable at 1-3 days and were generally more 

prominent after permanent MCA occlusion.50 Furthermore, in a different rat model 

called “global cerebral ischemia”, which is often likened to the hypoxic-ischemic 
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encephalopathy following cardiac arrest in humans, showed VEGF mRNA induction 

within hours in neurons and within days in astrocytes.51 

Since, in our study, nearly 53% of DRG neurons showed increased VEGF 

immunoreactivity, it can be concluded to be indicative as  hypoxic stress marker in 

L7-NFS-affected DRG.  

Despite the percentage of NGB-expressing neurons was not different between 

affected and controls, the higher grade 3 immunoreactivity in L7-NFS-DRG is 

indicative for a local increase of neuronal NGB. Under physiological conditions all, or 

at least most neurons of the central nervous system, express a low NGB 

concentration.52 Neuronal NGB is a stress-inducible protein and the primary 

functions are to store and transport oxygen.53 Under hypoxia and ischaemic 

conditions, NGB expression is up-regulated, confering preotection against oxidative 

stress.52,54 Those features may explain the overall IP in both affected and controls 

and, on the other hand, the increased intensity of NGB expression in L7-NFS-

affected-DRG is indicative of adaptive survival mechanism to hypoxic conditions 

through increased neuronal oxygen binding capacity. The nuclear NGB localization, 

observed in scattered neurons, is a finding not previously described. A previous in 

vitro study published by Geuens et al. (2003) showed a nuclear localization of the 

cytoglobin, which is a member of the globin family as well as the NGB.55 The nuclear 

localization of NGB in few neurons remain an aspect to be elucidated and may 

suggest new possible functions. 

CA-IX is a transmembrane enzyme which is involved in the respiratiory gas 

exchanged and acid-base balance mantaining the intracellular and lowering the 

extracellular pH. Usually it is only limitedly present in normal tissues and its 

expression increases during hypoxia.56 Hypoxia stimulates a distinctive set of cellular 

adaptative processes that include extracellular acidosis and a shift to glycolytic 

metabolism.57 Thus, the averall L7-NSA-DRG neuronal immunopositivity for CA-IX is 

again indicative for hypoxic condition and established extracellular acidosis.  
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On the other hand, a reversed pH gradient affects ion fluxes. Both MCT-1 and MCT-4 

can mediate lactate export, as well as import, resulting in an upregulation in hypoxic 

conditions.57 An increasing in vitro and in vivo studies suggested that lactate 

represents the major neuronal aerobic energy substrate for tissue surviving an 

ischemic/hypoxic insult and for the recovery of synaptic function, showing a further 

neuroprotective function.58-60 Hence, the increased expression of neuronal CA-IX 

and MCT-1 and -4 are indicative of hypoxia and related glycolytic metabolism  and 

are up-regulated to prevent intracellular acidosis. 

Interestingly, satellite cells and blood vessels showed an overall 

immunoreactivity for those markers, compared to controls. These findings suggest a 

more connected network. In the DRG of adult animals, each nerve cell body is 

usually enveloped by its own satellite cell sheath, which is in turn completely 

surrounded by connective tissue.61 However, Pannese et al. (2003) highlighted how 

satellite cells racted to axonal injury of the neurons with which they were associated 

forming bridges, connecting previously separated perineuronal sheaths and forming 

new gap junctions with more extensive cell coupling.62 Thus, our findings may 

represent a further demonstration that satellite cells react to direct injury of the 

DRGs’ neurons with which they are associated. 

Although a cohort of previous studies showed the involvement of the vascular 

system in both human having neuropathic pain and in neuropathic pain animal 

models, very little is known about the role of the vascular dysfunction in the 

development and maintenance of chronic pain conditions.18,63,64 Evidence of 

microvascular disturbances has been reported in diabetes, nerve compression and 

traumatic models of painful neuropathy.32,64,65 Previous in vivo studies pointed out 

that ischemic conditions can lead to microcirculatory changes as thrombosis, 

capillary endothelial cell swelling, intersitial edema, oxidative stress with nerve 

fibers degeneration, as well as endoneurila fibrosis, increased lactate level and 

increased metabolic neuronal requirements.18,63 In those studies these findings were 
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related to spontaneous pain behaviuours and animals had benefits to hyperbaric 

oxygen and to administration of free radical scavengers.  

Thus, during hypoxia, microcirculatory changes established lead to fibrosis, 

enlargement of capillaries, further reduction in oxygenation and subsequent 

increase of metabolic comsumption, acidosis and reduction of N+/K+ ATPase levels 

and possible increase of neuronal excitability, contributing to the onset and 

maintenance of NP. 
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Conclusions 

 

 

These findings highlight a significant neuronal distress in NFS, that is likely to 

contribute to aberrant electral activity, neuronal drop out and persistence of NP.  

Furthermore, taken together, the DRG provide a large body of evidence to consider 

malperfusive events contributing to the amplification and proximodistal spread of 

degenerative NR changes in L7-NFS. Thus, restoration of vascular equilibrium could 

be an interesting target for disrupting the cascade of pathological events in 

compressed roots. 
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Figures and Tables 

 

Antisera Host species Serum code Dilution Source Pretreatment 

factor VIII rabbit 
polyclonal 

A0082 1:600 Dako, 
Glostrup, 
Denmark 

proteinase K (Ready-
to-use, Dako, 

Glostrup, Denmark) 
for 20 minutes 

VEGF rabbit 
polyclonal 

PAK0036 1:50 Linaris, 
Dossenheim, 

Germany 

0.1% trypsin (Sigma-
Aldrich, Saint Louis, 

Missouri, USA) at 
37°C for 20 minutes 

NGB rabbit 
polyclonal 

N7162 1:500 Sigma-Aldrich, 
Saint Louis, 

Missouri, USA 

citrate buffer 
solution at boiling 

temperature for 20 
minutes 

CA-IX rabbit 
polyclonal 

MBS616120 1:1000 MyBioSource, 
San Diego, 

California, USA 

citrate buffer 
solution at boiling 

temperature for 20 
minutes 

MCT-1 rabbit 
polyclonal 

AB3538P 1:200 Millipore, 
Temecula, 

California, USA 

no pretreatment was 
required (Cortes 

Campos et al., 2011) 

the ab was diluted in 
1% bovine serum 

albumin (BSA) 

MCT-4 rabbit 
polyclonal 

AB3316P 1:300 Millipore, 
Temecula, 

California, USA 

no pretreatment was 
required 

(Eilerstein et al., 
2014) 

the ab was diluted in 
1% bovine serum 

albumin (BSA) 

 

Table 1. Primary antibodies used in this study. 
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Volume fractions NA-L7-DRG NFS-L7-DRG P values 

(Vv(vessels/DRG with perineurium)) 0.028 ± 0.007 0.036 ± 0.015 p=0.3 

(Vv(vessels/DRG without perineurium)) 0.026 ± 0.006 0.036 ± 0.016 p=0.2 

(Vv(vessels/perineurium)) 0.043 ± 0.017 0.036 ± 0.029 p=0.5 

Table 2. Stereological assessment of vascular density in non-affected (NA) and 

painful Neuro-Foraminal Stenosis (NFS) affected dogs. 
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Figure 1. Bar chart showing the percentage of VEGF positive and negative neurons 

for non-affected (NA) and painful Neuro-Foraminal Stenosis (NFS) affected dogs. 

Significant differences (p<0.05) in positivity are highligthed by the asterisk. 

 

 

Figure 2. Bar charts showing the percentages of VEGF-immunopositive neurons 

expressing different levels of intensity in non-affected (NA) and painful Neuro-

Foraminal Stenosis (NFS) affected dogs. Significant differences (p<0.05) are 

highligthed by the asterisks. 
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Figure 3. Immunohistochemical staining for VEFG expression in DRG slides. 

Immunopositive ganglion neurons broadly exhibit three different grades of staining 

intensity: mild (2), moderate (3) and extensive (4). A: non-affected; B: painful Neuro-

Foraminal Stenosis (NFS) affected dogs. 0= negative; C= capsule. Chromagen: DAB. 

Scale bar= 45µm. 

 

 

 

Figure 4. Immunohistochemical staining for VEGF expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed a significant 

increase  of satellite cells- immunopositivity compared to non-affected dogs (A). 

Arrows indicate extensive (grade 4) intensity; arrowheads indicate negative satellite 

cells. Chromagen: DAB. Scale bar= 45µm. 
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Figure 5. Immunohistochemical staining for VEGF expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed an increase 

of medial and endothelial expression in blood vessels (arrow) compared to 

non-affected (A, arrowhead). Chromagen: DAB. Scale bar= 45µm. 
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Figure 6. Bar chart showing the percentage of NGB positive and negative neurons 

for non-affected (NA) and painful Neuro-Foraminal Stenosis (NFS) affected dogs.  

No difference in the percentage of NGB expressing neurons was seen. 

 

 

Figure 7. Bar charts showing the percentages of NGB-immunopositive neurons 

expressing different levels of intensity in non-affected (NA) and painful Neuro-

Foraminal Stenosis (NFS) affected dogs. Significant differences (p<0.05) are 

highligthed by the asterisks. 
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Figure 8. Immunohistochemical staining for NGB expression in DRG slides. 

Immunopositive ganglion neurons broadly exhibit two different grades of staining 

intensity: mild (2) and moderate (3). A: non-affected; B: painful Neuro-Foraminal 

Stenosis (NFS) affected dogs. C= capsule. Chromagen: DAB. Scale bar= 45µm. 

 

 

Figure 9. Immunohistochemical staining for NGB expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed an increased 

moderate saellite cells-immunopositivity compared to non-affected dogs (A). Arrows 

indicate moderate (grade 3) intensity; arrowhead indicate negative satellite cells. 

Chromagen: DAB. Scale bar= 45µm. 
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Figure 10. Bar chart showing the percentage of CA-IX positive and negative 

neurons for non-affected (NA) and painful Neuro-Foraminal Stenosis (NFS) affected 

dogs. Significant differences (p<0.05) in positivity are highligthed by the asterisk. 

 

 

Figure 11. Bar charts showing the percentages of CA-IX-immunopositive neurons 

expressing different levels of intensity in non-affected (NA) and painful Neuro-

Foraminal Stenosis (NFS) affected dogs. Significant differences (p<0.05) are 

highligthed by the asterisks. 
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Figure 12. Immunohistochemical staining for CA-IX expression in DRG slides. 

Immunopositive ganglion neurons broadly exhibit two different grades of staining 

intensity: moderate (3) and extensive (4). A: non-affected; B: painful Neuro-

Foraminal Stenosis (NFS) affected dogs. 0= negative ; C= capsule. Chromagen: DAB. 

Scale bar= 45µm. 

 

 

 

Figure 13. Immunohistochemical staining for CA-IX expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed a significant 

increase  of satellite cells- immunopositivity compared to non-affected dogs (A). 

Arrows indicate extensive (grade 4) intensity; arrowhead indicate negative satellite 

cells. Chromagen: DAB. Scale bar= 45µm. 
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Figure 14. Bar chart showing the percentage of MCT-1 positive and negative 

neurons for non-affected (NA) and painful Neuro-Foraminal Stenosis (NFS) affected 

dogs. Significant differences (p<0.05) in positivity are highligthed by the asterisk. 

 

 

 

 

Figure 15. Bar charts showing the percentages of MCT-1-immunopositive neurons 

expressing different levels of intensity in non-affected (NA) and painful Neuro-

Foraminal Stenosis (NFS) affected dogs. Significant differences (p<0.05) are 

highligthed by the asterisks. 
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Figure 16. Immunohistochemical staining for MCT-1 expression in DRG slides. 

Immunopositive ganglion neurons broadly exhibit two different grades of staining 

intensity: mild (2) and moderate (3). (NFS) affected dogs (B) showed a significant 

increase  of satellite cells- immunopositivity compared to non-affected dogs (A). 

Arrows indicate moderate (grade 3) intensity; arrowhead indicate negative satellite 

cells. A: non-affected; B: painful Neuro-Foraminal Stenosis (NFS) affected dogs.  

0= negative. Chromagen: DAB. Scale bar= 45µm. 

 

 

 

Figure 17. Immunohistochemical staining for MCT-1 expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed an increase of 

adventitial expression in blood vessels (arrow) compared to non-affected (A, 

arrowhead). Chromagen: DAB. Scale bar= 45µm. 
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Figure 18. Bar chart showing the percentage of MCT-4 positive and negative 

neurons for non-affected (NA) and painful Neuro-Foraminal Stenosis (NFS) affected 

dogs. Significant differences (p<0.05) in positivity are highligthed by the asterisk. 

 

 

Figure 19. Bar charts showing the percentages of MCT-4-immunopositive 

neurons expressing different levels of intensity in non-affected (NA) and 

painful Neuro-Foraminal Stenosis (NFS) affected dogs. Significant differences 

(p<0.05) are highligthed by the asterisks. 
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Figure 20. Immunohistochemical staining for MCT-4 expression in DRG slides. 

Immunopositive ganglion neurons broadly exhibit two different grades of staining 

intensity: moderate (3) and extensive (4). A: non-affected; B: painful Neuro-

Foraminal Stenosis (NFS) affected dogs. 0= negative ; C= capsule. Chromagen: DAB. 

Scale bar= 45µm. 

 

 

 

Figure 21. Immunohistochemical staining for MCT-4 expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed a significant 

increase  of satellite cells- immunopositivity compared to non-affected dogs (A). 

Arrows indicate extensive (grade 4) intensity; arrowhead indicate negative satellite 

cells. Chromagen: DAB. Scale bar= 45µm. 
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Figure 22. Immunohistochemical staining for MCT-4 expression in DRG slides. 

Painful Neuro-Foraminal Stenosis (NFS) affected dogs (B) showed an increase of 

medial expression in blood vessels (arrow) compared to non-affected 

(A, arrowhead). Chromagen: DAB. Scale bar= 45µm. 
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Neurochemical features of canine lumbar spinal ganglion 
neurons 

 
 

 

 

Introduction 

 

Neuropathic pain (NP) is a pathological, multifactorial acute or chronic pain 

state, generally accompanied by tissue injury, injured nerve fibers caused by 

disease, injury, or a lesion of the peripheral (PNS) or central nervous system (CNS).1 

Various mechanisms can initiate and upheld the NP, causing nervous system 

malfunction or directly by nervous system lesions.1 In painful neuropathic 

conditions, there is a spontaneous response to noxious and/or innocuous stimuli 

triggered by lesions to the somatosensory nervous system altering its structure and 

function. 1-3 Hence, the nerve fibers begin to misfire and send the wrong pain signals 

to various pain centers. Those changes in actual nerve function comprise the ectopic 

generation of action potentials, enabling disinhibition of synaptic transmission 

and/or loss of synaptic connectivity.1, 4  

Previous studies showed that following nerve injury, the electrical properties 

of peripheral and central neurons undergo changes. The excitability of primary 

afferents increases, as shown by marked enhancements in the level of ongoing 

spontaneous activity from afferent fibers.5-8 Studies focused on ectopic firing 

pointed out that those ectopic afferent discharges originate at the nerve injury site 

and in axotomized primary sensory neurons in the spinal ganglia (SG), which act 

triggering and maintaining spinal “central sensitization”.9-13 

The “central sensitization” is a  CNS condition which magnifies sensory input 

in multiple organ systems, increasing the overall sensitivity to future stimuli. The 
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increased sensitivity produces allodynia (a greater than normal response to 

nonpainful stimuli) and/or hyperalgesia (increased response to painful stimuli). 

Thus, the SG, containing the primary sensory neurons, play a key role in triggering 

and sustaining the NP.9,14,15 

SG contain the nociceptors’ cell bodies, Including those of other 

somatovisceral sensory receptors, such as neurons responsible for mechanoception, 

nociception, theroception and sensation of itch.16-18  Nociceptors comprise most of 

the subset of SG neurons that have small cell bodies and can be neurochemically 

subdivided into peptidergic and nonpeptidergic classes.17 Peptidergic nociceptors 

express neuropeptides, usually substance P (SP) and calcitonin gene-related peptide 

(CGRP) and project mainly, but not only,  to the lamina I of the spinal dorsal horn. 19 

The CGRP, a member of the calcitonin family of peptides, is produced in both 

peripheral and central neurons. This neuropeptide works as a powerful  vasodilator 

and can be involved in the transmission of pain. CGRP represents the best marker 

for the neuropeptidergic subpopulation, comprising mostly small neurons with 

unmyelinated axons (C fibers) and innervating mainly polymodal nociceptors. In this 

neuronal category also falls most of the SP- expressing SG cells. CGRP and SP are 

also expressed by a group of medium-sized cells with finely myelinated axons (Aδ 

fibres), most of which are nociceptors of the high-threshold mechanoreceptor 

type.19,20 The Substance P (SP) is an undecapeptide allocated in the peripheral and 

central nervous system. Previous studies showed the participation of SP in the 

transmission of pain and its upregulation following pain conditions.20 

The calbindin D-28k (CALB), a calcium-binding protein, is a well known marker of 

specific subpopulation of GABAergic neurons. CALB may perform distinct functions 

in the CNS and plays an active role in nociceptive sensory transmission.21  CALB has 

been demonstrated in SG, where is predominantly localized in large neurons whose 

peripheral processes innervate muscle spindles, representing a marker for muscular 

proprioception in the DRG.21 Within the CALB-immunoreactive distribution in the 
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spinal cord, this was predominant in the superficial dorsal horn.21 Recent 

immunohistochemical studies revealed that small distinct subsets of neurons in the 

SG and spinal cord are immunoreactive for neuronal nistric oxide synthase (nNOS). 

The Nitric Oxide Synthases (NOS) are a family of key enzimes in Nitric Oxide (NO) 

biosynthesis and comprise neuronal NOS (nNOS), endothelial NOS (eNOS) and 

inducible NOS (iNOS).  The nNOS has been shown to contribute to spinal nociceptive 

processing in several pain models. Previous studies demonstrated that the nNOS 

expression in the  spinal dorsal horn contributes to hyperalgesia induced by chronic 

compression of SG.22 

Despite different animal models have been intensively used to investigate the 

mechanisms involved in the development of neuropathic pain, there is a lack of 

studies focused on the expression, distribution, and immunocytochemical 

characterization of pain-related molecules in SG of healthy dogs. 

Hence,  the aim of this preliminary study was to describe and characterize the 

expression of CGRP, SP, CALB, nNOS and the colocalization of those molecules in 

lumbosacral SG neurons of dogs without pathologies related to the nervous system. 
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Materials and Methods 

 

 

Ethics Statement  

 

This study was performed on formalin-fixed canine DRG delivered to the necropsy 

service of our Department of Veterinary Medical Science of the University of 

Bologna (Italy) and therefore no approval from ethics committee was needed. 

 

 

 

Tissue sampling and preparation 

 

The investigation was conducted on post-mortem tissues from three non-

neurological dogs without lumbosacral pathologies, orthopaedic disorders and 

history of back or limb pain, delivered to the necropsy service of the Department of 

Veterinary Medical Sciences of the University of Bologna for diagnostic procedures 

unrelated to this study. The owners explicitly consented to the use of the tissues for 

scientific purposes related to the animal welfare. 

The tract of spinal cord from thoracic (T)13 to caudal (Ca)2 spinal segments, 

surrounded by the dural sac, was immediately exposed along its full lenght through 

a dorsal laminectomy. During the procedure, we carefully avoided cutting the spinal 

roots to ensure that the several spinal segments of and the collection of the SG 

could be accurately identified at a subsequent stage.  Segmental boundaries were 

localized by means of the the spinal roots and by counting them from the last 

thoracic spinal nerve located just caudal to the 14th rib. SG and spinal segments 

were fixed for 24 hours in 4% paraformaldehyde in phosphate buffer (0.1 M, pH 7.2) 

at 4°C. Tissues were subsequently rinsed overnight in phosphate-buffered saline 
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(PBS; 0.15 M NaCl in 0.01 M sodium phosphate buffer, pH 7.2) and stored at 4° in 

PBS containing 30% sucrose and sodium azide (0.1%). The following day, the tissues 

were transferred to a mixture of PBS-30% sucrose-azide and Optimal Cutting 

Temperature (OCT) compound (Sakura Finetek Europe, Alphen aan den Rijn, The 

Netherlands) at a ratio of 1:1 for an additional 24 hours before being ambedded in 

100% OCT in Cryomold (Sakura Finetek Europe). The sections were prepared by 

freezing the tissues in isopentane cooled in liquid nitrogen. Serial longitudinal 

sections (16 µm thick) of right L6 SG and corresponding spinal cord segments were 

cut on a cryostat and mounted on gelatin-coated slides. The sections (not 

coverslipped) were stored at -80°C, and selected for immunofluorescence. 

 

 

 

Immunofluorescence 

 

Double-labeling studies were performed by using the indirect immunofluorescence 

method. To reduce background staining, a high concentration (20%) of the 

appropriate normal serum was used in the preincubation stage and also in all 

antibodies solutions. Tissues were incubated in a solution containing 20% of normal 

serum and 1% of Bovine Serum Albumin (BSA) in PBS, for 1 hour, at room 

temperature (RT). Sections were then incubated overnight at 4°C in a humid 

chamber in a mixture of two primary antibodies (Table 1) diluted in  PBS with 

addition of 20% normal serum, 1% BSA and 1% Triton X-100. After washing in PBS (3 

X 10 minutes), the tissues were incubated for 1 hour at RT in a humid chamber in a 

mixture of two secondary antibodies (Table 2). The cryosections were then washed 

in PBS (3 X 10 minutes) and mounted in buffered glycerol, pH 8.6. 

For each animal at least 100 neurons for each marker used in each double-labeled 

combination were evauated and recorded. 
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To determine the proportions of each neuronal population  (SP, CGRP, CALB and 

nNOS) to the total ganglion neuronal population, the sections single-stained with 

each neuronal marker studied were counterstained with blue fluorescent Nissl stain 

solution (NeuroTrace, Molecular Probes, Eugene, OR, USA).  

 

 

 

Tissue Analysis 

 

Preparations were examined on a Zeiss Axioplan microscope (Axioplan 

epifluorescence microscope, Carl Zeiss, Oberkochen, Germany). The microscope was 

equipped with the appropriate filter cubes to distinguish between the 

fluorochromes employed: FITC and Alexa 488 (filter set with 450-490-nm excitation 

filter and 515-565-nm emission filter) and Alexa 594 (530-585-nm excitation filter). 

Images were recorded wwith a Polaroid DMC digital camera (Polaroid, Cambridge, 

MA) and DMC 2 software. Slight adjustements to contrast and brightness were 

made by using Adoobe (San Jose, CA) Photoshop CS, and the figure panels were 

prepared by using Corel Draw (Mountain View, Ottawa, Canada).  
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Results 

 

 

Immunofluorescence on SG  

 

T13-Ca2 spinal segments and SG were harvested from three dogs (mean age of 10 

years) without a history of neurological signs, pain, spinal disease or orthopedic 

disorders. Immunofluorescence was performed on to L6-SG and corresponding 

spinal cord segments in order to perform a preliminary study. 

Respect to the total neuronal population,CGRP-immunoreactive (IR) neurons were 

15.3 ± 8% (Figure 1A), SP-IR neurons were 3.3 ± 2.3% (Figure 1B; Figure 2B; Figure 

3B), CALB-IR neurons were 5.1 ± 2.4% (Figure 2A) and nNOS-IR neurons were 14.6 ± 

8.3% (Figure 3A) (Table 3). In two cases the SG neurons showed an high amount of 

lipofuscin (Figure 4B). 

 

About half of SP-IR neurons coexpressed CGRP immunoreactivity (44.4 ± 29.3%), 

whereas only 4.4 ± 3.3% of the CGRP-IR neurons were also SP-IR  (Figure 1D) (Tab 4). 

SP-IR neurons slightly coexpressed CALB immunoreactivity (11 ± 11%) and fewer 

CALB-IR neurons showed SP immunoreactivity (7.3 ± 7.3%) (Figure 2D) (Tab 4). 

SP-IR neurons also expressed nNOS immunoreactivity (45.5 ± 27.9 %), whereas 

nNOS-IR neurons coexpressing SP immunoreactivity were 17.9 ± 12.1% in L6 DRG 

(Figure 3D) (Tab 4). 
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Spinal cord staining 

 

To determine spinal cord lamination, we emloyed the NeuroTrace/SP double 

staining method. Nissl fluorescent staining seems to be the most reliable lamination 

marker (Lorenzo 2008).  

SP-IR and CGRP-IR neurons showed the same distribution in spinal cord laminae 

(Figure 5). Particularly, SP- and CGRP-labeled fibers were localized predominantly in 

laminae I and II, with a moderate presence in lamina III and X, around the central 

canal (Figure 6A). Sattered and isolated neurons showed weekly SP-IR and CGRP-IR 

and were distribuited in deeper laminae (data not shown). 

CALB-IR neurons and fibers were distribuited throught lamina I, II and III (Figure 7A). 

In lamina I and II, many small neurones and fibers exhibited intense 

immunoreactivity for the CALB, forming a dense band upon the inner portion of 

lamina II (Figure 7A, 7C) 

nNOS-IR neurons were concentrated in lamina I-II (Figure 8A). A weak nNOS-IR was 

also observed in lamina X (Figure 6B). The overall expression of nNOS-IR neurons 

and fibers was weekly than SP, CGRP and CALB. 
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Discussion 

 

 

Before discussing the results obtained in this research, it is important to 

underline some technical limitations occurred during microscopical observation. In 

particular, the presence of lipofuscines in two of three of dogs enrolled in the study 

may have represented a problem in masking the IR of neurons. Lipofuscin is a 

brown-yellow, electron-dense, autofluorescent material that accumulates 

progressively over time in lysosomes of postmitotic cells such as neurons.23  The 

accumulation of lipofuscin in nervous tissue contribuites to the emission of 

fluorescence. As found in this study, previous researches in nervous tissue of the 

horse showed that autofluorescence due to lipofuscin pigment was generally limited 

to few cells and mainly to their edges.24 Despite it usually does not represent a 

critical point, it can make more difficult to objectively observe neuronal IR. 

The expression of  CGRP, SP, CALB and nNOS in SG neurons of different 

species was previously described.22, 25-31 The results obtained in this study indicate a 

lower percentage of CGRP- and SP-IR neurons, compared with those of other 

mammals.24, 26, 31 The percentage of CALB-IR neurons observed in L6 spinal segment 

was close to that found in the pig23. On the contrary, the percentage of nNOS-IR 

neurons was more than that observed in the pig25 but less than that reported in 

sheep and boar.24, 26 

Considering the colocalization, the percentages of SP-IR neurons coexpressing 

CGRP-IR are higher in the goat32 and rodents33 than in dog.  The same is for the 

percentages of CGRP-IR neurons coexpressing SP-IR. 32, 33 Similarly, the percentages 

of SP-IR neurons coexpressing CALB-IR is lower in goat 32 than in dog, but higher in 

rodents33  than in dog. However, the proportion of  CALB-IR neurons which 

colocalized SP-IR is higher in dog than in goat 32  and rodents.33 The percentages of 
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SP-IR neurons coexpressing nNOS-IR is lower in dog than in rodents 33 but is the 

same as that observed in sheep.26 Finally, the proportions of nitrergic  neurons 

expressing SP are lower in dog than in sheep 26 and rodents. 33 

Our results showed that canine SP, CGRP, CALB and nNOS labeled fibers at the 

same spinal cord level terminations as previously described. 21, 31, 34-38 

As previously described, CGRP-, SP-, CALB- and nNOS-IR in SG neurons show a 

wide variability among different species and SG levels, particularly from thoracic to 

lumbar segments. 22, 24-31  Furthermore, despite the considerable number of studies 

focused on the characterization and distribution of peptidergic neurons in DRG, 

there are few comparative studies launched on canine tissues. Sensory neurons in 

the SG, with their peripheral and central (spinal) projections, are the “gateway” for 

painful signals emanating from both somatic and visceral structures. In particular, SP 

and CGRP are synthesized by nociceptor neurons in the SG.30 These neuropeptides 

are important biochemical mediators in somatic pain pathways, which are 

evidenced by a significant alteration of their expression in spinal cord and SG after 

somatic stimulation.30 CALB, which is an intracellular calcium-binding protein, has 

been associated with excitatory neurons and its potential role in mediating 

neuropathic pain has been recently investigated. 39 Furthermore, the involvement of 

nNOS in neuropathic pain has been already investigated.40 nNOS regulates immune 

function, blood vessel dilatation as well as transmitter or modulator in the process 

of nociceptive stimuli.40 Peripheral nerve injury can cause the excessive expression 

of nNOS in the spinal dorsal horn neurons, and accompanied by hyperalgesia or 

even pain disorders.40 

Despite an extensive employing of rodents in neuropathic pain models has 

been observed in the last decades, few studies were focused on dogs as natural 

models of neuropathic pain. Further studies will be required in order to better 

define the characterization of those markers in canine SG. 
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Figures and Tables 

 

 

Antibody Host species Serum code Dilution Source 

CGRP rabbit C8198 1:5000 
Sigma-Aldrich, 
St. Louis, MO 

SP rat 10-515A 1:400 
Fitzgerald, 

Concord, MA 

CALB rabbit CB-38A 1:4000 
Swant, Maryl, 
Switzerland 

nNOS mouse sc-5302 1:100 
Santa Cruz 

Biotechnology, 
Santa Cruz, CA 

 

Table 1. Primary antibodies used in the study. 

 

 

 

Antibody Dilution Source 

Donkey anti-rat 
IgG Alexa 594 

1:50 Invitrogen, Carlsbad, CA 

Goat anti-rabbit IgG 
FITC 

1:300 
Calbiochem-Novabiochem, 

San Diego, CA 

Donkey anti-mouse 488 1:100 Biotium, Hayward, CA 

 

Table 2. Secondary antibodies used in the study. 
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Table 3. Percentages of neuronal markers of the total population of canine lumbar 

(L6) spinal ganglia. NeuroTrace (NT) was employed as a pan-neuronal marker. Data 
are mean ± standard deviation. The numbers of cells counted are in brackets. 

Counts were all performed on three animals. 
 

 

 

Colocalization of markers L6 

CGRP/SP 
SP/CGRP 

4.4 (0-11) (10 / 140) 
44.4 (0-100) (10 / 12) 

CALB/SP 
SP/CALB 

7.3 (0-22) (2 / 32) 
11 (0-33) (2 / 22) 

nNOS/SP 
SP/nNOS 

17.9 (0-41.2) (32 / 111) 
45.4 (0-96.2) (32 / 42) 

 

Table 4. Colocalization (percent) of markers in canine L6 spinal ganglia. The 

number of cells counted are in parenthesis. 

 

 

 

Marker L6 

CGRP/NT 15.3 ± 8.1 (140 / 855) 

SP/NT 3.3 ± 2.3 (76 / 2,033) 

CALB/NT 5.1 ± 2.4 (32 / 624) 

nNOS/NT 14.6 ± 8.3 (127 / 851) 
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Figure 1. CGRP (A) and SP (B) immunoreactivity in neuronal SG. 

D: NeuroTrace (NT) stain. E: merge of CGRP, SP and NT stain. 

The arrows indicate neurons labeled for CGRP (A), SP (B) or both (D); the stars 

indicate fibers labeled for CGRP (A), SP (B) or both (D). 
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Figure 2. CALB (A) and SP (B) immunoreactivity in neuronal SG. 

D: NeuroTrace (NT) stain. E: merge of CALB and SP stain. 

The arrows indicate neurons labeled for CALB (A), SP (B) or both (D). 
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Figure 3. nNOS (A) and SP (B) immunoreactivity in neuronal SG. 

D: NeuroTrace (NT) stain. E: merge of nNOS, SP and NT stain. 

The arrows indicate neurons labeled for nNOS (A), SP (B) or both (D). 
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Figure 4.  Autofluorescence of lipofuscin expressed in neurons (B) marked 

with NeuroTrace (A). 
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Figure 5. Spinal cord staining for CGRP (A; C) and SP (B; D). The arrows 

indicate the the markers distribution in lamina I and II. 
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Figure 6. Immunolabeling for SP (A) and nNOS (B) at the level of lamina X. 

The stars indicate the central canal. 
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Figure 7. Spinal cord staining for CALB (A) and SP (B). The arrows indicate the 

the CALB distribution in lamina I, II and III (A) and neuronal labeling (C).The 

arrow indicates SP-IR in lamina I and II (B). 
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Figure 8. Spinal cord staining for nNOS (A) and SP (B). 

The arrows indicate the the nNOS (A) and SP (B) distribution in lamina I and II. 
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Assessment of prevalence, quality of life and risk factors 

associated to Phantom Complex in a client-owned dog 

population after limb amputation 

 

 

 

Introduction 

 

 

Amputation of one or more body parts in human patients has (since long) 

been commonly associated to devious sensations arising from the missing body 

portion. First descriptions of this phenomen date back to 1536 when the french 

barber surgeon Ambroise Paré described it in soldiers in which he performed 

surgical amputations. This syndrome, nowadays called “Phantom Limb Pain” (PLP), is 

described as pain perceived in the body part that is no longer present.1, 2 PLP is 

reported to occur in about 60 to 80% of patients within the first 2 years after 

amputation and in up to 10% of patients PLP persists during life.3-5 Pain onset is 

dated early after amputation and several studies have shown that a range from 75% 

to 85% of PLP patients develops pain within the first few days after surgery.6, 7  

The PLP is part of a more complex syndrome, called “Phantom Complex” (PC), 

which includes the Phantom Limb Sensation (PLS), described as any sensation in the 

absent limb except pain, the Stump Pain (SP) as pain localized in the stump and the 

PLP. PLP could be confused or overlap with the common acute post-surgical pain or 

SP, which can be related to factors that may cause pain as infections or bone 

spurs.However, SP usually subsides with healing, whereas PLP persists in 5-10% of 

cases and may get worse with time.6 The pathophysiology of PLP, similarly to other 

manifestations of neuropathic pain, involves plastic changes of the general somatic 



80 

afferent pathways either affecting the peripheral nervous system, at the site of 

transected nerve, or the central nervous system, within spinal cord and 

somatosensory cerebral cortex, or most likely both simultaneously.6, 8 

Different studies have shown a correlation between the presence of PLP and 

risk factors such as  physical and psychological conditions, pre- and post-

amputations treatments and the role of pre-amputation pain in the development of 

long-term PLP.2, 3, 9  

Amputation of a limb is a commonly performed procedure in small animals, 

suggested for numerous reasons including unresectable neoplasia, severe fractures, 

ischaemic necrosis, osteomyelitis or myofascitis and severe disability due to 

unmanageable arthritis, paralysis or congenital deformity.10-12 Adaptation of dogs to 

the amputation of a limb, presence of risk factors associated to a poor quality of life 

and owners’ satisfaction have been the topic of several veterinary studies in the last 

years.10, 11, 13-16 However, none of those specifically investigated the occurrence of 

pain and pain related behaviours after amputation that could account for stump 

pain from neuropathic origin (neuroma) and/or PLP in veterinary patients. 

Laboratory animals receiving  mechanical injury of a peripheral nerve exhibit 

behavioral symptoms of neuropathic pain manifested as mechanical and thermal 

hyperalgesia or allodynia.17 Neuropathic pain, that is pain caused by a lesion or 

disease of the somatosensory system, is characterized by abnormal sensations that 

in a non-verbalizing patient migth be difficult to be clinically identified, delaying its 

treatment. Furthermore, PLS, SP and PLP often coexist and may be difficult to 

separate their presence in veterinary patients. In this vein, identification of specific 

symptoms, behaviour and clinical signs suggestive of PC in dogs would represent a 

useful tool for PC  screening and ideally for response measurement to appropriate 

neuropathic pain treatments. Hence, we screened a client-owned population of 

dogs with limb amputation through an online survey aimed to document PC  

prevalence, through the identification of symptoms and behaviours suggestive of 
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neuropathic pain, evaluation of risk factors associated to its occurence and owners’ 

perception of  the quality of life (QoL) of their three-legged pets. 

 

 

 

 

Matherials and Methods 

 

 

Project questionnaire design and description 

 

The questionnaire was designed on the basis of the clinical experience of veterinary 

specialists, the Helsinki Chronic Pain Index (HCPI) (hielm-bjorkmank 2009) and the 

German Pain Questionnaire for Childrens and Adolescents (DSF-KJ) 

(http://www.deutsches-kinderschmerzzentrum.de/fileadmin/media/PDF-

Dateien/englisch/parents_initial_3.0.pdf). The latter is a pediatric model for pain 

measurement, giving the indirect evaluation of pain from the owner´s perspective. 

A first draft of the questionnaire was initially evaluated by 2 members of ALGOVET 

(Italian group of veterinary algology), 2 board certified veterinary neurologists (GG 

and LM),  4 veterinary surgeons and a three-legged pet owner. Feedback regarding 

appropriateness of the questions as well as relevance of the clinical parameters 

considered was requested and the survey was modified accordingly. Ethics approval 

was granted by the University of Bologna Department of Veterinary Medical 

Sciences ethics committee (ID 664/2016).  

The questionnaire included three sections with a total of 75 questions. The first 

section consisted of 30 questions (26 closed-ended and 4 polar questions) 

concerning factual data that targeted presence, characterization and factors related 

to pain before amputation as well as reason for amputation, duration of disease 

http://www.deutsches-kinderschmerzzentrum.de/fileadmin/media/PDF-Dateien/englisch/parents_initial_3.0.pdf
http://www.deutsches-kinderschmerzzentrum.de/fileadmin/media/PDF-Dateien/englisch/parents_initial_3.0.pdf
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prior to amputation and use of specific treatments. The second section consisted of 

35 questions (33 closed-ended and 2 polar questions) aiming for detection of pain-

related behaviours after amputation that could account for abnormal painful 

sensations, risk factors usually associated to PLP in humans, post-surgical 

complications and therapies used to control post-amputation pain if present. This  

section included further questions referred to the degree of adaptation to 

amputation in terms of mobility, persistence of usual behaviour and/or attitude 

changes towards other animals or family members and the owner´s perception of 

their pets’ QoL. The last section consisted of 10 closed-ended questions that 

evaluated the owner’s satisfaction as caregiver of a three-legged pet and the 

evaluation of the effects of limb amputation from the perspective of family- and 

social life .  

Pain was characterized in terms of  prevalence, as pain observed by the owner 

before and after amputation; onset, as the time in which dogs started showing pain-

related behaviours;  frequency, as pain recorded episodes (several times per day, 

weekly, monthly or yearly) and type, as quality of pain described as persistent, 

waxing and waning or sudden and transient (referring to a 7-days pre- and a “typical 

month” post-amputation).  

Furthermore, pain onset before amputation and time between diagnosis and 

amputation were defined as the moment in which dogs started showing signs of 

pain and the time elapsed between the diagnosis of the underlying disease and 

amputation. 

With typical week after and typical month after, authors reffered to a standard time 

frame of one week or month during the post-amputation phase. 
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Recruitment of responders 

 

The questionnaire was presented via the online survey software and questionnaire 

tool SurveyMonkey (https://www.surveymonkey.com) from February to March 

2015. Advertisement of the study and enrollement of the cases was announced 

through the Facebook page and website of the three-legged dogs “tripawds’” 

owners community (https://www.facebook.com/tripawds; http://tripawds.com/) 

which were invited to participate to the survey 

(http://downloads.tripawds.com/2015/02/23/take-the-tripawd-phantom-limb-pain-

survey/). 

Inclusion criteria for survey participation comprised dogs that underwent surgical 

amputation of one limb, either proximal or distal, independentlyof the reason for 

amputation, and that had a minimum of three months follow-up after surgery. This 

3 months timeframe was considered an adequate period of time in order to 

discriminate between development of specific post-surgical pain and/or occurrence 

of  PLP in a non-verbalizing patient.  

Owners were free to decide whether to answer or not to all questions. Only 

complete questionnaires (at least 95% of questions answered) were included. Since 

a variable number of owners answered to each single question, in order to avoid 

discrepancies  we decided to report the results as percentages instead of numbers. 

Percentages are therefore related to the number of responders, which was slightly 

variable among questions. 

  

https://www.surveymonkey.com/
https://www.facebook.com/tripawds
http://downloads.tripawds.com/2015/02/23/take-the-tripawd-phantom-limb-pain-survey/
http://downloads.tripawds.com/2015/02/23/take-the-tripawd-phantom-limb-pain-survey/
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Statistical analysis 

 

All data were fed into Microsoft Excel® and PAST® software for statistical analysis. 

The distribution characteristics of the values were checked for each linear 

parameter by Shapiro-Wilk test and normal probability plotting. Categorical or 

ordinal data were described as percentages of the total. Association between 

categorical variables was assessed with chi-squared test or Fisher’s exact test. P 

values ≤ 0.05 were considered significant.  
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Results 

 

 

 

Descriptive data 

 

107 owners of 107 dogs participated to the study; 63% were purebred dogs 

including 32 breeds, with Golden Retriever (11%) and Labrador Retriever (9%) 

beeing most commonly represented (Figure 1); mean age at time of the survey of 

7.5 years (median 8 years, range 0.2-16 years). 69% were male dogs (39% neutered) 

and 31% female dogs (40% spayed). At the time of amputation 39% of dogs were 6 

to 10 years old, 31% were 1 to 5 years old, 21% were 1 year or less and 9% were 11 

to 15 years old. At the time of the study 79% were still alive. Large size dogs (over 25 

kg)  represented the majority  accounting for 59%, while medium size dogs (10-25 

kg)  acounted for 29% and small size dogs  (<10 kg) for 12%. 

The main reason (53%) for amputation was neoplasia (66% osteosarcoma, 11% soft 

tissue sarcoma, 7% peripheral nerve sheath tumour, 5% histiocytic sarcoma, 5% 

mast cell tumour, 2% fibrosarcoma, 2% chondrosarcoma, 2% lipoma), followed by 

trauma in 41% (70% irreparable fracture, 15% major soft tissue trauma, 10% 

gunshot, 5% spinal lesion), limb malformation in 3% and infection in 3% (Figure 2). In 

75% of dogs the entire limb was amputated while the remaing 25% underwent distal 

amputation (13% above the knee, 11% above the elbow, 1% below the elbow) 

(Figure 3). Of the 107 dogs, 61% underwent thoracic limb amputation, and 39% 

underwent pelvic limb amputation.  
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Pain before and after amputation 

 

According to the owners’ perception, pain was reported in 83% of dogs before 

surgery and in 85% of dogs after amputation; there was no significant differences in 

the prevalence of pain before and after amputation (p=0.6) (Figure 4). 

Onset of pain before amputation was described more than 1 month in 53% of dogs 

(68% of oncologic patients), whereas in 35%  pain was persent from 2 to 4 

weeksbefore ; 12% experienced pain 24 hours to 1 week prior to amputation. The 

onset of pain before surgery did not represent a risk factor for postsurgically pain 

development (p=0.09).  

However, the time of pain onset before amputation was significantly related to the 

frequency of pain afterwards, with a significantly higher frequency of pain episodes 

in dogs which showed an early onset of pain before the amputation (p<0.01) (Figure 

5). 

Regarding pain experience during recovery after surgery there was an overall steep 

decrement in pain prevalence over time, with 51% of dogs experiencing pain 

between 24 hours to 1 week after surgery, 19% between the second and fourth 

week, 9% between one and three months and 5% between three and six months 

(Figure 6). 

In 34% of dogs the time between diagnosis of the underlying disease and 

amputation ranged from 48 hours to 1 week,  and more than 1 month in 27% of 

dogs. The shorter the time gap between diagnosis and amputation, the lower was 

the frequency of pain episodes described after. However, no correlation was seen 

amongst the time between diagnosis and amputation and the prevalence of pain 

after amputation (p=0.6).  

Regarding the frequency of pre-amputation pain episodes, 57% of dogs experienced 

pain several times daily, 27% weekly, 12% monthly and 4% yearly. No differences 

were seen in the frequency reported after the amputation, with pain episodes 
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described likewise as several times daily in 57%, weekly in 22% , monthly in 14% and 

yearly in 7% of dogs (p=0.4) (Figure 7). 

During the 7 days prior to amputation, owners described the type of pain 

experienced by their pets as waxing and waning in 45%,  persistent in 40% and 

sudden and transient in 15% of dogs. A significant difference in pain phenotype was 

seen in a “typical month” after the amputation, where the type of pain was 

predominantly described as sudden and transient in 53% of dogs experiencing pain 

(p<0.01) (Figure 8). 

No breed, sex, weight  or reason for amputation were related to the prevalence of 

pain after the amputation (p>0.1). 

Complications after surgery occurred in 20% of cases, comprising infection (28%),  

pain (24%), swelling of the surgical wound (24%) and failure of the suture (24%) with 

95% of postoperative problems started during the first week after surgery. However, 

comparing this subpopulation with that of patients that did not experienced post 

surgical complications there is no significant difference in terms of prevalence of 

pain after the amputation (p>0.1). 

 

 

 

Therapies 

 

79% of dogs received medical treatment before amputation including the following: 

pain killers (28%), anti-inflammatory drugs (21%) and antibiotics (14%) (Figure 9). In  

46% of dogs these therapies were administered for more than 1 month. Medical 

treatment before amputation did not prevent the occurrence of pain in the post-

amputation period (p=0.3)  

After amputation, 91% of dogs received treatment for pain relief and 67% of owners 

felt the need to consult their veterinary surgeon because of pain. The most 
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frequently administered therapies were pain killers in 35% of dogs, followed by anti-

inflammatory drugs (30%) and gabapentin (14%) (Figure 10); in 39% of cases 

duration of therapies lasted between 2 to 4 weeks.  

When specifically asked about satisfaction in view of pain management, 26% of 

owners chose the option from “not satisfied” (1%) to “partially satisfied”(25%) in the 

post-amputation period, while 15% described pain control as unsatisfactory before 

surgery with a clear-cut drop to 1% of unsuccessful treatment after amputation. 

 

 

 

Manifestations related to the PC 

 

After 3 to 6 month from the amputation, dogs showed a reduced activity level (67%) 

and overall playfulness (46%), reduction in mood (44%), decreased participation in 

family life (31%), appetite loss (30%), sleeping reduction (21%) (Figure 11). 

Interaction with other animals was also impaired in terms of decreased friendliness 

with family pets (18%) and strange pets (26%) (Figure 11). 

Investigating the precence of possible PLP related behaviours in the timeframe 

comprised between 3 months to 1 year or more after the amputation; 35% of dogs 

showed muscular twitching at the level of the stump, 22% licked the stump, 19% 

expressed whimpers and 17% yelps, 16% were restlessness, 12% looked anxious, 

11% chewed the stump and 8% scratched the stump (Figure 12). 

Behavioural changes in terms of agression and withdrawal from interactions were 

described before and after the amputation. In particular, owners described episodes 

of aggression towards humans (12%) and animals (19%) and the tendency to 

prevent contacts with humans (17%) and animals (18%) in the pre-amputation 

phase. The same changes in behaviour were reported in the post-amputation phase 

regarding aggression towards humans and animals (13% and 17% respectively) and 
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prevention of human and animal contacts (15% and 22% respectively), without 

significantly differences between the two phases (p>0.1).  

Environmental and/or physical stress as judged by the owner was reported in 78% of 

dogs that experienced pain after amputation. Accessory symptoms that could 

possibly account for pain were reported in 26% of dogs in the post amputation 

period. In particular, owners described tiredness (27%), fast breathing (25%), and 

irritability (12%). Interestingly,, in the 24% of cases these symptoms were evident in 

a period ranging from 3 months to 1 year or more after amputation. Furthermore, 

during a “typical week after amputation”, defined as a standard week in the post-

amputation period,  47% of owners described pain vocalization even though most of 

these (68%) reported a frequency equal to “hardly never”.  

 

 

 

Quality of Life  

 

The degree of adaptation after amputation was described from good to very good in 

94% of dogs, without relation to which limb was removed, front or hind limb, and 

the level at which the amputation was performed. 72% of dogs moved adequately 

within the first week after the amputation.  Dogs that showed a better adaptation 

resulted to have lower chances to experience pain in a “typical month” (p=0.02) and 

adapted quickly (p=0.005). Reported movement restrictions in a “typical week” after 

the amputation were: difficulties in jumping (28%), moving after a major activity 

(21%), moving after a long rest (15%), rising from a lying position (13%), walking 

(6%) and galloping (5%).  
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Owners’ satisfaction and perspective 

 

After the amputation, 59% of owners reported an improvement in the quality of 

their relationship with their pets describing it as “better” and “much better” and in 

75% of cases the overall response of the family to the amputation was considered to 

be “very positive”. 

However, in the first month following amputation, 62% of owners felt their pet 

caused conflict with their work, education or daily activities, 52% felt a limited 

indipencence and 46% felt a limitation in their social life. Nevertheless, 89% of the 

interviewees did not regret the decision of amputation and 92% felt well informed 

by their veterinarian during the decision making process. 
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Discussion 

 

 

 

The present investigation is the first attempt to address the presence of 

neuropathic pain and clinical signs compatible with PC in a client-owned population 

of dogs that underwent amputation of one limb. Similarly to what previously 

described in human patients, pain was particularly common in the early post-

amputation phase with 51% of dogs experiencing pain in the time-frame comprised 

between 24 hours to 1 week after surgery.4, 7, 18-20 The onset of pain in humans is 

reported to appear with a high frequency during the first week after amputation and 

usually it subsides with healing of the surgical wound.6 However, in 5-10% of 

patients pain arising from the residual stump can persist beyond the stage of post-

surgical healing and may get worse with time, leading to the development of a 

burdening chronic pain.4, 6, 18, 21 In our study group, we observed a reduction of the 

incidence of pain over time likewise, with  9% experiencing pain at 1 to 3 months 

and 5% at 3 to 6 months follow up.7, 18, 19 These data are in accordance to previous 

human findings, suggesting that establishment of neuropathic pain in the residual 

limb may be delayed for months after surgical resection in the canine species. 

Investigation of neuropathic pain and PC (comprising PLP) in animals 

represents a clinical challenge. In human medicine, patients usually describe PLP as 

intermittent, burning, cramping and stinging pain.4, 18 These descriptions refer to 

either peripheral or central  abnormal neuronal firing responsible for the 

neuropathic component of PLP.6 Veterinary patients unfortunately can not 

verbalize, therefore information on abnormal painful sensations such as burning, 

tingling or electrical discharges of one part of the body as well as quality and 

intensity of pain can be easily missed despite careful behavioural observation. With 

this inherent limitation in mind we developed a set of behavioural observations that 
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could directly and  indirectly suggest perception of abnormal painful sensations, 

together with recording of their type and frequency before and after amputation of 

a limb. Manifestation of discomfort focused on the stump were consistently 

reported in the period comprised between 3 months and one year after amputation 

and featured muscular twitching in one third of the dogs, accompanied by episodes 

of incessant licking  or chewing  and scratching of the stump. Together with peculiar 

signs and increased attention towards the stump, more than the half of amputated 

dogs further displayed a clear overall change of their daily activities comprising 

reduction of physical activity and playfulness. Interestingly, also activity of daily life 

was perceived as changed by the owners with modification of the sleeping pattern 

and loss of appetite. Other aspects of a regular pet life were also affected, as  

decreased participation in family life and alteration in the mood. Behavioural 

changes were described both before and after amputation. Those changes were 

previously described in amputated dogs and varied from aggression, anxienty, 

descrease in dominance and lack of interest in other dogs.11 Similarly to the previous 

study, it was not possible to determine the reason for these changes in behaviour. 

However, these changes were described both before and after amputation and may 

reflect the presence and peristence of pain perception. Furthermore, the onset in 

some cases was reported to be from 3 months to 1 year or more after the 

amputation and this data, even if we can not rule out other causes, may reflect the 

occurrence of PLP.  

Negative impact of amputation on daily life has been reported in human 

patients likewise, where amputees’ QoL was poorer if compared to the general 

population.22 For these patients the biggest matter of complaint was  limitation in 

physical activities followed by low social acceptance.22, 23 

Pain after amputation, as perceived be the owner, was described as sudden and 

transient, disclosing yelps and whimpers that would most likely account for the 

acute character of bursts of abnormal neuronal firing giving credit to the hypothesis 
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of this pain being neuropathic in origin. Noteworthy, there was no difference of pain 

frequency before and after surgery. Dogs showing pain several times a day prior to 

amputation were likely to present with pain with the same frequency after. 

Furthermore, in the post amputation phase more than two thirds of the owners felt 

the need to seek for medical advice because of pain.  

Although the relationship between the significance of pre-amputation pain on 

post-amputation pain is still debated, several retrospective studies have pointed to 

the duration of pre-amputation pain longer than 1 month as a risk factors for 

development of chronic PLP.4, 9 Accordingly, dogs experiencing pain for more than 1 

month before amputation had a higher chance to develop daily episodes of pain 

after amputation. The shorter the time between diagnosis and amputation, the 

lower the frequency of post-amputation pain episodes.  Neuropathic pain is defined 

as pain caused by damage or disease affecting the somatosensory nervous system, 

hence it is not surprising that long lasting noxae may more likely produce peripheral 

and/or central sensitization of the sensory pathways and consequently pain. 

Previous studies in human medicine suggested that pre-amputation pain 

might play a role in PLP development24-26. For this reason, several authors tried to 

evaluate the effect of different therapies on to the outcome of amputated patients, 

but most of them showed that pain control before amputation does not prevent 

development of PLP.2, 24 Likewise we did not find any correlation between 

administration of analgesic therapies before amputation and the incidence of post-

amputation pain.   

A relationship between PLP and the aetiology of the amputation have been 

proposed by some authors6, 19  but their investigations failed to prove 

interdependency between primary disease and incidence of PLP. Accordingly, in our 

study the aetiology of amputation was not correlated to the occurrence of post 

surgical pain. Altogether these observations suggests that indipendently of the 
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cause of primary damage of the somatosensory pathway, PLP is a complex and 

slowly developing phenomenon that plunges its roots way head of amputation. 

As previously described10, post-surgical complications can occur in 20% of 

amputated dogs and cats. We found similar percentages of complications and the 

most commonly reported was infection of the surgical site  in the immediate post-

amputation phase. We did not however find any positive correlation with the 

occurence of pain after amputation and post-operative complications.  

Stress during the post amputation phase seems to play a role in the 

development of pain. A possible relation between stress, accessory symptoms and 

onset of pain episodes was reported in 24% of patients within the time frame from 3 

months to 1 year. This is in accordance with human studies in which psychological 

stress represents a risk factor for PLP occurence.24 

As previously described,11,15,16 dogs adapted very well to amputation in the 

94%, -independently fromwhich limb (thoracic or pelvic) was amputated  or at which 

level,  (dorsalor proximal) the amputation took place. Interestingly, the better and 

quicker the recovery of dogs, the lower the occurrence of post-amputation pain. 

Based on these observations, we can postulate that pain in the post-amputation 

phase can reduce the ability to adapt to walk on three legs and, therefore, pain 

detection and control should be considered a crucial goal in the recovery phase. 

The overall owners’ perception of QoL of their pets was satisfactory and more 

than a half of the interviewed further described an improvement in the quality of 

the relationship with their pet together with an overall positive response of the 

family to their three-legged pet. Within the first month after amputation owners felt 

limitations in their indipendence and conflict with everyday  activities that however 

appeared to be only transient, and 89% did not regret the decision of amputation. 

Our data demonstrate the presence of previously unreported signs and 

symptoms that may be interpreted as expression of PLP. This is particularly true for 

those dogs which experienced post-amputation pain after at least one month from 
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surgery. It is of great interest the owners’ recognition of behavioural and specific 

signs that may be reconducted to the presence of unpleasant  sensation due to 

abnormal and/or ectopic neuronal firing.  

While the distribution of frequency of pain episodes is almost identical in the 

pre- and post-amputation periods, the different type of pain experienced after the 

amputation may suggest evolution into neuropathic pain. 

Significant risk factors associated with the frequency of post-amputation pain 

episodes are duration of pain before amputation and time between diagnosis 

and amputation, confirming what is reported in human patients with PLP.4, 9 

 

 

 

 

Conclusions 

 

 

The present study, in the authors’ view, represents a first step towards providing 

new useful information in the recognition of  the presence of PLP, a condition to 

date never reported in dogs which and that requires adequate consideration in the 

clinical management of these patients. 
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Figures and Tables 

 

 

 

Figure 1. Percentages of dogs’ breed described in the study. 

 

 
Figure 2. Reasons for amputation 
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Figure 3. Levels of amputation. 

 

 

 

 

Figure 4. Percentages of dogs showing pain before (blue columns) and after (red 

columns) the amputation. 
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Figure 5.  Frequency of pain episodes after the amputation, in relation to the onset 

of pain before the amputation. 

 

 

 

 

Figure 6. Percentages of dosg showing pain in the post-amputation phase. 

Percentages are divided in four time frames. 
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Figure 7. Frequency of pain episodes before (blue columns) and after (red 

columns) the amputation. 

 

 

 

 

Figure 8. Type of pain perceived before (blue columns) and after (red columns) the 

amputation. 
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Figure 9. Therapies administered before the amputatio. 

 

 

 

 

Figure 10. Therapies administered after the amputation. 
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Figure 11. Activities reduced after 3 to 6 months from the amputation 

 

 

 

 

Figure 12. Manifestations related to PC after 3 months to 1 year from the 

amputation. 
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