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Preface 
 

The global biomass of tuna species has been halved over the past half century by industrial 

fisheries but yielding considerable human benefits. Annually, fisheries catch around 10-15% of 

tunas and the global demand is still increasing as well as the trajectories of fishing mortality of 

most populations, even though they vary widely across species, oceans, biogeography, life history 

strategies and level of exploitation (Juan-Jordá et al 2011; 2015). Although the effort of the tuna 

Regional Fishery Management Organizations (tRFMOs) for developing more realistic stock 

dynamics models, the stock assessment of these species is mostly based on fisheries-dependent 

catch data, which have the potential for bias due to lack of reporting of catch and/or effort and 

variations in the distribution of tuna species that may cause changes in the interaction rates with 

individual fisheries (Collette et al., 2011). Moreover, data on basic biological parameters necessary 

for accurate stock assessments are often poorly known and widely neglected, thus also affecting 

the accuracy of the assessments and the possibility to develop more realist stock management 

and conservation strategies.  

For instance, despite the relevance in resolving the population dynamics and structure of tuna and 

tuna-like species, their genetic population structure is not well resolved yet, with several studies 

leading to discordant lines of evidence (i.e. Laconcha et al., 2015; Riccioni et al., 2010). This is 

particularly true for yellowfin tuna, Thunnus albacares (YFT), whose population structure is still 

surrounded by uncertainties both at the global and local scale (Ely et al., 2005; Dammanagoda et 

al., 2008; Pecoraro et al., 2016; Grewe et al., 2015). Fishery-independent data are essential for a 

better understanding fish stock productivity and resistance to environmental changes and 

fisheries. However, the productivity is currently misestimated by the use of the spawning stock 

biomass (SSB) as a proxy for stock reproductive potential (Kell et al., 2015). In fact, this parameter 

assumes that fecundity is only related to the mass-at-age of the sexually mature portion of the 

population irrespective of the demographic composition of adults, without taking in account a 

variety of fundamental attributes, such as the relationship between the fish size and the 

reproductive potential (De Lara et al., 2007). 

Within such context, there is a clear need to improve the realism about YFT stock assessment 

through the collection and incorporation of more fishery-indipendent data for implementing 

effective management and conservation strategies. 



Research objectives 
 
The rationale of this Ph.D. project was identified by prioritizing key issues as objectives for 

contributing to the conservation of YFT and helping to develop a more realistic stock assessment 

and sustainable management of this species. Specifically the project’s objectives were to: 1) 

comprehensively understand and ascertain the current state of knowledge on YFT at the global 

scale, identifying future research priorities needed for better assisting its management; 2) assess 

the YFT genetic population structure using a traditional genetic approach (e.g. microsatellite 

markers); 3) examine the applicability of 2b-RAD genotyping technique for future investigations in 

this highly migratory species; 4) investigate the YFT global population structure using this 

Genotyping-By-Sequencing (GBS) technique; and 5) evaluate the existence of any maternal effect 

that can affect the reproductive patterns and dynamics of YFT females, linking such phenotypic 

traits to the genomic variation assessed. 

Funding for this joint Doctoral Research Program was provided by ANCIT and by the EMOTION 

project (ANR JSV7 007 01). 

 
In order to delineate future research priorities for establishing a more realistic YFT stock 

assessment and management, key-existing information about YFT biology, ecology, stock status 

and stock structure were reviewed in Chapter 1. In this Chapter current mismatches between 

species’ biology/ecology and the management strategies were also widely discussed, pointing out 

those factors that are still delaying and negatively affecting the development of an effective 

conservation and management strategy. For instance, the mismanagement is the major risk of 

ignoring the structure of YFT populations, which must be properly assessed with all the scientific 

and technological tools available, in order to avoid any potential extinction risk of over-harvested 

populations, especially at the local scale. According to the importance of characterizing YFT 

populations, in Chapter 2 the global genetic population structure was investigated over the entire 

species distribution, employing a panel of microsatellite markers. The results obtained confirmed 

the discordant patterns of differentiation and the high degree of uncertainty that still 

characterizes the global population structure, which might be a direct consequence of the limited 

genetic resolution of classical molecular markers. On the contrary, the access to more powerful 

and cost effective genetic tools (e.g. Next Generation Sequencing technologies) would represent 

the first step for resolving YFT population structure at both local and global scale. In this context, 

the applicability and the potential of 2b-RAD technique for investigating population genetic 



structure in this non-model, large pelagic and highly migratory fish species were tested and 

assessed in Chapter 3. After having evaluated the efficiency and usefulness of 2b-RAD technique, 

in Chapter 4 a large dataset of high quality 2b-RAD markers was generated. Based on the SNP 

markers discovered, the global YFT population structure was assessed, revealing a higher level of 

population structure, especially at the intra-oceanic scale, than assumed by the current tRFMOs’ 

management. 

Finally, in Chapter 5 the reproductive patterns of the Atlantic YFT spawning females were 

examined in relation to their size, energy allocation strategy and genotypic profiles for evaluating 

the maternal effect hypothesis in this marine fish species. In this Chapter a deep reflection about 

the inappropriateness of the spawning stock biomass (SSB) to measure the stock productivity was 

also undertaken. 
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1.1 Introduction 

Tunas and their relatives (family Scombridae) count 51 species of tunas, Spanish mackerels, 

bonitos and mackerels. Tunas are highly mobile pelagic fishes characterized by a widespread 

distribution and a wide range of life-history attributes (Juan-Jordá et al., 2013). For centuries 

fisheries have targeted tunas and tuna-like species, maintaining a continuously growing trend 

since the early 1950s over the subsequent decades, resulting in a total annual catch exceeding 6 

million metric tons in the last decade (FAO 2014). The global status assessment of tunas suggests 

that stocks of tropical tunas are close to maximum sustainable yield levels while long-living high 

value species such as Atlantic bluefin tuna (ABFT; Thunnus thynnus) have been subjected to 

overfishing (Collette et al., 2011; Juan-Jordá et al., 2011; 2013). 

The monitoring and management of populations of tuna and their relatives are under the 

jurisdiction of five tuna Regional Fisheries Management Organizations (tRFMOs), namely the Inter-

American Tropical Tuna Commission for the Eastern Pacific (IATTC, http://www.iattc.org), the 

Western-Central Pacific Fisheries Commission (WCPFC, http://www.wcpfc.int), the International 

Commission for the Conservation of Atlantic Tunas (ICCAT, http://www.iccat.int), the Indian Ocean 

Tuna Commission (IOTC, http://www.iotc.org), and the Commission for the Conservation of the 

Southern Bluefin Tuna (CCSBT, http://www.ccsbt.org). The primary goal of tRFMOs is to maintain 

the stocks of each tuna and tuna-like species at levels allowing the maximum sustainable yields. 

Tuna management and conservation strategies rely on a large range of regulations such as catch 

quotas, time-area closures and fishing capacity limit (Aranda et al., 2012; Hillary et al., 2015), 

which are mostly derived from annual or multi-annual stock assessments (for details see Juan-

Jordá et al., 2011). 

Currently, the stock management boundaries employed by tRFMOs are essentially defined as large 

areas that generally cover the whole RFMOs' competence range, occasionally split into a few sub- 

discrete stocks separate by general geographic boundaries, such as North vs. South or East vs. 

West (http://iccat.int/Data/ICCATMaps2011.pdf). The rationale of such stock delimitation is 

generally rooted in the statistical area boundaries historically defined for statistical data collection, 

combined with expert judgment (Fromentin and Powers, 2005). It is indeed traditional practice for 

fisheries managers to define as stock units those fishes that occur in a specified area at a specified 

time, reflecting practical management necessities with little regard to information on biological 



 
 

5 

stock structure and genetic integrity (Carvalho and Hauser, 1995; Ward, 2000). For this reason, 

mismatches between species’ biology and/or ecology and the realized management strategies 

frequently occur, since managers need to include a variety of partly conflicting factors in their 

management strategy, such as biological, economic, social or even political factors (Reiss et al., 

2009). Underestimating the appropriate spatial management scale for tunas and their relatives, in 

relation to their spatial heterogeneity and biology, can lead to a reduction of productivity, stability 

of tuna populations as well as of their ability to adapt and respond to environmental variation and 

fishing pressures (Reusch et al., 2005; Worm et al., 2006, Mace and Purvis, 2008). 

Among the principal commercially valuable tuna and tuna-like species, yellowfin tuna (Thunnus 

albacares, YFT) constitutes the second largest tuna fishery worldwide, representing about one 

fourth of all tuna fished commercially (around 1.6 million metric tons; ISSF 2015). From the 1950s 

YFT catches increased constantly until the early 2000s, since then they have started declining or 

maintained at the same level. Despite substantial global interest around YFT stocks and the 

significant decrease of its catches in various regions during recent years, there are few and 

fragmentary information about the biology and ecology of this species and, especially, about its 

stock structure in different oceans with different conclusions published in the literature (Ely et al., 

2005; Pecoraro et al., 2016).  

This review aims to bring together key-existing information about YFT biology, ecology, stock 

status and structure in order to comprehensively understand and ascertain the current state of 

knowledge on yellowfin tuna at the global scale, providing valuable information for assisting stock 

assessment and sustainable management of this globally important tuna species. 

 

1.2 Systematics and taxonomy  

Yellowfin tuna was for the first time taxonomically described by Bonnaterre in 1788, under the 

name of Scomber albacares. Many other synonyms have been used for naming this species, until 

1953 when Ginsburg named it as Thunnus albacares. YFT is one of the eight nominal species of the 

genus Thunnus (Collette et al., 2001) and specifically it belongs to the tropical Neothunnus 

subgenus which includes T. albacares, T. tongol and T. atlanticus and it is separated 

morphologically and genetically from the more cold-tolerant Thunnus subgenus constituted by T. 

thynnus, T. maccoyii, T. alalunga, T. obesus, although there is some discussion on which group 



 
 

6 

locate T. obesus (Collette and Nauen 1983; Collette 1978). Such systematic subdivision reflects 

differences in morphological and physiological traits and for example, species of Neothunnus 

subgenus have both central- and lateral-body heat exchangers, which instead are absent in the 

cold-water species. Moreover, the three tropical species of the yellowfin group do not present 

striations on the ventral surface of the liver and no vascular retia mirabilia are present on the 

dorsal surface (Collette et al., 2001). 

As outlined by Collette and Nauen (1983), YFT has a fusiform and elongate body that becomes 

deepest under its first dorsal fin, tapering towards the caudal peduncle, which is, in turn, slim and 

includes three sets of bony keels. In some large individuals the second dorsal and anal fins are very 

long, becoming over 20% of fork length, and seven to ten dorsal and ventral finlets are present 

behind them. The pectoral fins are moderately long and they usually reach the base of the second 

dorsal fin. The swim bladder is present only in anterior half of body cavity and it can be deflated or 

slightly inflated. The body has a metallic dark blue changing through silvery white on belly and 

lower side, crossed by many faint vertical interrupted lines. The lateral parts of the body are 

crossed by longitudinal lines, alternated with rows of dots. A bright yellow band and a lateral blue 

streak bordering the dark dorsal area stretch from the eye to the caudal peduncle. Yellow 

highlights also typically characterize dorsal and anal fins in adults (Fig.1.1). 

 

 
 Fig 1.1_Yellowfin tuna (Thunnus albacares). Pierre Opic©  
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1.3 Ecology and biology 

1.3.1 Distribution, habitat and behaviour 

Yellowfin tuna have a cosmopolitan and warm-temperate distribution in tropical and sub-tropical 

waters of the Pacific, Atlantic and Indian Oceans, spending most of their time either in the surface 

mixed layer or in the top of the thermocline with a temperature ranging from 18 to 31 °C 

(Reygondeau et al., 2012). 

Sea water temperature is one of the main factor affecting YFT habitat utilization (Schaefer et al., 

2007). YFT inhabit the top of the water column, using their reduced endothermic and heat-

conservation strategies to raise tissue temperatures a few degrees up the water sea temperature 

(Block et al., 1997). YFT spend only a small fraction of total time at temperature in waters colder 

than 8°C because of limitations of their heart functions (Brill and Lutcavage, 2001). Indeed, their 

heart is not supplied with a circulatory counter-current heat exchanger and it receives coronary 

blood from the gills at ambient water temperature (Brill and Bushnell, 2001). Therefore, the 

thermal sensitivity of the heart at ambient water temperature might limit YFT ecological niche 

(Galli et al., 2009), with low temperature that may cause bradycardia and an associated reduction 

in cardiac output. 

YFT are indicated to be a stenothermal species, and their temperature tolerance is determined by 

temperature differences relative to the SST rather than by absolute temperature itself. Hence, 

they do not have the thermoregulatory physiological capacity to stay for prolonged periods below 

the mixed layer as other tuna species do (Brill and Bushnell, 2001). Rapid deep dives have been 

also recorded occasionally in YFT (Block et al., 1997). The coldest temperature reached with a 

single dive (around 1 minute to 300 m) by a YFT sonically tracked was 7°C (Block et al., 1997), but 

with pop-up satellite archival tags were recorded deeper dives (984 m) at colder temperatures (5.4 

°C) than with other tagging technologies (Dagorn et al., 2006; Hoolihan et al., 2014). Besides, 

Schaefer et al., (2009, 2011) recorded in the Eastern Pacific Ocean some dives at 1,600 m depth as 

well as some repetitive bounce-diving behaviour during the day to depths of 200–400 m depth. 

Although temperature is the main factor that limits YFT movements, some other factors can affect 

its vertical distribution. For instance, their fast growth rate and high fecundity require oxygen 

delivery rates higher than those rates required for routine metabolic functions (Hoolihan et al., 

2014). Therefore YFT, as well as other large pelagics, remains in water layers to find adequate 

levels of dissolved oxygen (the oxygen minimum layer), for maintaining these functions (Hoolihan 
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et al., 2014). The YFT habitat utilization is also strongly influenced by the presence of high prey 

density (Schaefer et al., 2007). In the North-Eastern, Central and Western Pacific it was 

demonstrated that the high levels of prey density were responsible of the YFT high degree of 

residency in proximity of those areas (Itano and Holland, 2000; Schaefer et al., 2007; Sibert and 

Hampton, 2003). Within this context, YFT preference in spending most of the time in warm waters 

is also related to the high mean concentration of phytoplankton biomass that concentrates 

epipelagic prey in euphotic surface waters (Reygondeau et al., 2011). The high concentrations of 

forage organisms, detected by YFT eyesight (Reygondeau et al., 2011), in the vicinity of islands and 

seamounts is also the main reason of the higher abundance in those areas as compared with in the 

surrounding oceanic waters (Schaefer et al., 2007). These seasonal oceanographic features 

strongly influence YFT populations, therefore understanding their effects is a fundamental step 

toward ecosystem-based management of fisheries, which has become a standard approach in 

management policies (Link et al., 2014). 

 

1.3.2  Age, Growth and Mortality 

Yellowfin tuna can grow to a maximum size of 205 cm fork length (FL) and 194 kg of weight (ISSF 

2013). The estimation of YFT age and growth is a challenge comparing to other temperate pelagic 

species, for three main reasons: (i) otoliths are less marked because of tropical habitat chemical 

and physical conditions, (ii) reproduction occurs all year round, (iii) otoliths' preparation and 

analysis is a time-consuming process and many biases and uncertainties (e.g., miscounting 

increments can lead to errors in age estimations) can occur during the analysis (Sardenne et al., 

2015). 

Different ageing procedures have been used for determining YFT tuna growth curve, such as: 1) 

modal progressions in length-frequency distributions from commercial catches or scientific 

monitoring (Fonteneau, 1980; Gascuel et al., 1992; Le Guen and Sakagawa, 1973; Moore, 1951); 2) 

direct aging of a fish from periodic deposits in calcified structures, such as scales (Yabuta et al., 

1960), dorsal spines (Lessa and Duarte Neto, 2004) and otoliths (Stéquert et al., 1996); 3) 

estimation of growth over a specific range of time, from mark-recapture experiments (Bard, 1984; 

Bard et al., 1991); 4) analyses of tag-recapture in combination with otoliths data (Dortel et al., 

2013; Eveson et al., 2015; Hallier et al., 2005). 

YFT growth was firstly modeled with the Von Bertalanffy model (1938) which assumes a linear 

decrease in growth rate over the lifespan of a fish, based on modal progressions and juveniles 
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tagging studies (Yang et al., 1969; Le Guen and Sakagawa, 1973). However, growth studies 

conducted over the last decades support a two-stanza growth model with a significant change in 

the growth rate between juveniles and adults (Sardenne et al., 2015). According to this model, 

there are two growing phases: 1) a first phase in which young YFT show a slow growth rate, 

around 2.1 cm per month-1, until when individuals reach 56-70 cm FL (Dortel et al., 2013; 

Lumineau, 2002; Marsac, 1991; Marsac and Lablache, 1985); 2) a second phase, in which YFT grow 

faster (4.1 cm.month-1), until reaching a FL of around 145 cm with a decreasing of the growing 

rate, after that size, around 0.01 cm.month-1 (Dortel et al., 2013). The two-stanzas model could be 

physiologically explained by using the different metabolic requirements in relation to fish size, the 

development of the swim bladder and their reproduction. Lumineau (2002) indicated that larger 

individuals have a relatively lower metabolic rate than small individuals and specifically the 

development of the gas bladder likely reduces drastically the energy required to swim. In fact, the 

swim bladder grows allometrically in YFT and it does not contain gas until the fish reaches 50-60 

cm FL. This implies a higher energetic availability for growing faster up. Moreover, the 

development of the gas bladder associated with the increase in size allows YFT to move deeper, 

increasing their capability to catch preys (Lehodey and Leroy, 1999). Even if, the two-stanza 

growth pattern has been confirmed for YFT in different oceans (Fonteneau and Hallier, 2015), no 

conclusive evidences on their growth model have been obtained yet, due to the lack of age 

validation studies and the difficulties associated with tracking YFT cohorts over time because of 

their extended spawning period (Dortel et al., 2013). 

Sexual dimorphism has been also highlighted in YFT in terms of growth rate in length and weight. 

For instance, Pacific YFT young females are larger than males of the same age, but after reaching 

about 120 cm FL (around 4 years old) males become larger than females (Shih et al., 2014). These 

results also corroborated those reported by Stéquert et al., (1996) for the YFT inhabiting the Indian 

Ocean and they indicated a size discrepancy among sexes, with males larger than females at three 

(male: 120.4cm FL; female: 118cm FL) and four years (male: 146.5 cm FL; female: 142.2 cm FL). 

Besides, it was observed a rapid decline in the percentage of females with a predominance of 

males at around 145-155 cm FL (Zhu et al., 2008; Zudaire et al., 2013a). 

This higher natural mortality rate (M) in females with FL > 130 cm than in midsized individuals 

(Hampton and Fournier, 2001) might be due to the high energetic demand for spawning in YFT 

females (Schaefer, 1996), which represents the most metabolically demanding activity in their 

lives, occurring over multiple-spawning seasons. 
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Moreover, M or total mortality (Z) during YFT larval stage is due primarily to starvation and 

predation, and estimate of total mortality rate (Z d −1) during the larval stage has been assessed 

from declines in abundance over time (Hampton, 2000). Lang et al., (1994) estimated a Z of 0.33 

d−1 in YFT larvae, which may be also related to feeding and nutrition during the first development 

phases. However, the current available information indicate that mortality of tunas during the 

juvenile phase is largely a function of size or age rather than species or habitat, highlighting 

therefore, that YFT natural mortality during the first year of life is probably within the range 

reported for other tunas (Hampton 2000; Fonteneau and Pallares, 2005). 

 

1.3.3 Reproduction  

Yellowfin tuna is an iteroparous, gonochoristic and oviparous fish species, without displaying 

sexual dimorphism in the external morphology. Fertilization of eggs occurs externally and there is 

not parental care during hatching. Oocytes development pattern in YFT ovaries has been described 

as asynchronous (Schaefer, 1998; 2001; Zudaire et al., 2013a), and the fecundity regulation 

strategy is indeterminate (Zudaire et al., 2013a). The oocyte development and recruitment at the 

ovary is continuous during the whole spawning season, with an overlapping between oocyte 

recruitment and spawning events (Schaefer, 1998; Zudaire et al., 2013a). Females have a 

protracted spawning period (i.e., multiple batch spawner) in which mature eggs are released into 

the sea in multiple batches throughout the reproductive season (Itano, 2000; Schaefer, 1998; 

2001; Zudaire et al., 2013a). Spawning activity has been described to occur mainly at night, 

between 21:00 and 03:30 h (McPherson, 1991; Schaefer, 1996) or in the early hours of the 

morning (Itano, 2000), with SST > 24°C (Schaefer, 1998). However, spawning in captivity took place 

earlier, from 13:30 to 21:30h, showing a direct relationship between the spawning diel activity and 

the water temperature; i.e. when water temperature increased, spawning occurred later in the 

day (Margulies et al., 2007). According to these authors, the variation on the spawning diel activity 

is related to hatching and egg-stage duration, which are inversely related to water temperature. 

The observed pattern might be an adaptive trait for increasing the chance of survival of newly 

hatched yellowfin larvae. 

Fecundity in YFT was estimated to be between 1.6 and 3.1 million oocytes per batch (Batch 

Fecundity (BF)) in different Oceans (Table 1.1), and the relative batch fecundity (BFrel) between 55 

and 74 oocytes per gram of body weight depending on the study. The inter- and intra-population 

fecundity variability detected in these studies seem to be affected by the geographic location and 
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environmental conditions (Schaefer, 2001). However, other factors, such as energy acquisition 

from feeding during the spawning season, play important roles in the oocyte development and, 

thus, in fecundity (Itano, 2000; Margulies et al., 2007; Zudaire et al., 2015). YFT females can spawn 

with a frequency of around 1.52 days (McPherson, 1991; Schaefer, 2001) over large areas of the 

tropical zone throughout the year (Itano, 2000; Stéquert et al., 2001). 

 

Table 1.1_Batch fecundity (BF) and the relative batch fecundity (BFrel) estimates for YFT. Values are expressed in 
millions for BF and in oocytes per gram of gonad-free weight for BFrel. For each estimate the minimum and 

maximum values are also reported. 

Studies Areas BF BFrel 
Schaefer, 1996 Eastern Pacific Ocean 1.57 (0.5-3.5) 68.0 (36.0-99.7) 

Schaefer, 1998 Eastern Pacific Ocean 2.5 (0.1-8.0) 67.3 (4.9-174.0) 

Itano, 2000 Western-Central Pacific Ocean 2.16 (0.4-10.6) 54.7 (31.9-147.1) 

Sun et al., 2005 Western-Central Pacific Ocean 2.71 (0.9-4.7) 62.1 (31.0-98.0) 

Zudaire et al., 2013 Western Indian Ocean 3.1 (0.3-6.9) 74.4 (9.2-180.8) 

Diaha et al., 2015 Eastern Atlantic Ocean 2.91 (0.6-7.5) 54.39 (12.7-125.6) 

 

Sex-ratio analysis showed differences in the proportion of male and female YFT related to size in 

all oceans. Similar to other tuna species (Thunnus thynnus: Clay, 1991), males YFT predominate 

among large-size individuals (Capisano, 1991; Schaefer, 1998). For instance, in the Indian Ocean 

males become dominant at 145-154 cm FL (Nootmorn et al., 2005; Zhu et al., 2008; Zudaire et al., 

2013). In contrast, a dominance of females was observed at sizes from 115 to 130 cm FL 

(Nootmorn, 2005; Zudaire et al., 2013). 

The size-related variation of the sex-ratio could be the consequence of differences in the growth 

rate, and/or sex-dependent natural and fishing mortalities (Fonteneau, 2002; Timochina and 

Romanov, 1991). Moreover, the size at which females YFT reach maturity, becoming capable of 

reproducing, varies among oceans. This size was identified at 102 cm FL in the Indian Ocean 

(Zudaire, 2013b), at 108 cm in the Western Pacific Ocean (McPherson, 1991), at 92 cm in the 

Eastern Pacific (Schaefer, 1998), and at 104 cm for the equatorial Western Pacific (Itano, 2000). 

The size and/or age at which the 50% of the population (L50) gets mature is an essential life history 

trait (Schaefer, 2001) and females and males YFT exhibited differences at L50 (92 and 69 cm FL, 

respectively; Schaefer, 1998). 

Nevertheless, the lack of a standardization of the criteria and methods makes any comparison 

between and within oceans difficult (Itano, 2000; Schaefer, 2001). YFT populations reached 
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maturity later in the Central-Western than in the Eastern Pacific Ocean, and this may be related to 

the minor primary productivity of western waters (Schafer 1998; Sun et al., 2005). It also seems 

that there may be a delay in YFT maturity at higher latitudes related to the lower SSTs (Itano, 

2000). Although YFT females with advanced vitellogenic oocytes were considered mature in the L50 

studies presented here, this observation could overestimate this parameter, because maturing 

individuals (i.e. individuals with cortical alveolar stage oocyte, CA) are classified as immature 

(Zudaire et al., 2013b). This stage represents the earliest evidence of oocyte maturation (Brown-

Peterson et al., 2011), and females with ovaries in CA stage should be considered for maturity 

estimates (Lowerre-Barbieri et al., 2011). Following this recommendation Zudaire et al., (2013b), 

estimated L50 at 75 cm FL in the Indian YFT sampled in western part.  

Conversely to females YFT, few and fragmented information are available about the male 

reproductive biology, representing a limit for the assessment and management of YFT worldwide. 

Moreover, there is an evident gap of knowledge on chromosome and karyotype features for a 

better understanding of the YFT reproductive biology. The current state of knowledge indicates 

that there are not morphologically differentiated sex chromosomes in this species as in general for 

the genus Thunnus (Soares et al., 2013; Ratty et al.,1986).  

 

1.3.4 Feeding and energetic investment 

Thunnus albacares is a non-selective, opportunistic predator, feeding upon a great variety of prey 

species, such as crustaceans, fish, cephalopod, and gelatinous organism (Potier et al., 2004). Prey 

preference refers to the nomeid Cubiceps pauciradiatus, the swimming crab Charibdis smithii, and 

the Indian endemic species of stomatopod Natosquilla investigatoris (Potier et al., 2004; Potier et 

al., 2007; Romanov et al., 2009; Zudaire et al., 2015). The diet composition of YFT seems to be 

related to the fish size (Ménard et al., 2006; Graham et al., 2007; Zudaire et al., 2015), with an 

ontogenic feeding shift from euphasiids and planktonic prey in small individuals (<40 cm) to fish 

species in larger specimens (>50cm) (Maldeniya, 1996). This shift might be related to the size-

increasing endothermic capability (i.e. system for conserving the heat in muscle, viscera and 

brain), which is functional to the independence of the YFT from thermal constraints, allowing a 

wide feeding vertical behaviour (Graham et al., 2007). Prey availability also affects both YFT 

distribution (Potier et al., 2007; Bertrand et al., 2002) and feeding success in the epipelagic 

environment, where prey are patchily distributed (Krosmeyer and Dewar, 2001). 
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Even though YFT is a day-feeder (Maldeniya, 1996) with higher activity during the dawn and sunset 

(Júnior et al., 2003), feeding in the night-time was also reported (Olson and Boggs, 1986). The 

mean daily ratio for YFT was estimated at about 2.8-4.5% of the body weight and YFT are able to 

acquire this ratio only in 30 minutes of feeding (Olson and Bogg, 1986). This mean daily ratio 

seems to increase with size until 60-70 cm FL, after that it starts declining (Maldeniya, 1996). As 

described above, the decrease of the mean daily ratio is mainly linked to the higher metabolic rate 

in small fish than in the larger ones (Lumineau, 2002). 

Yellowfin tuna, similar to other tuna species, is considered an “energy speculator” due to its high 

rates of energy turnover in a nutrient poor environment as the open-ocean (Korsmeyer et al., 

1996). Little is known about the energy allocation strategy developed by YFT to cope with high 

demand of its rapid growth, early maturation and high reproductive output (Schaefer, 1998; 2001; 

Juan-Jorda et al.,2013). The reproductive processes require a high amount of energy, which is 

mainly provided by the catabolism of lipids and their constituent fatty acids, which represent the 

main energetic resources in fishes (Tocher, 2003). Lipids are also transferred via serum as 

vitellogenin proteins and very low-density lipoproteins to be deposited as yolk reserves in the 

oocytes (Sargent, 1995; Zudaire et al., 2014). 

In YFT ovaries, it has been described a prevalence of neutral lipids over the polar lipids during 

ovary maturation (Zudaire et al., 2014). Instead both neutral and polar lipids are involved as 

endogenous energetic resources in embryogenesis and larvae development (Ortega and 

Mourente, 2010). YFT has shown a low capacity of energy storage in tissues during reproduction, 

having very low lipid contents in gonads in comparison with other tunas (Zudaire et al., 2014). This 

low accumulation of energy during reproduction speaks in favour of considering YFT an income-

capital breeder. Since he energy stored is not enough to balance the energetic cost of 

reproduction, YFT also finance the high spawning activity by feeding prey during the spawning 

period (Zudaire et al., 2015). Species that feed during ovarian maturation acquired a great amount 

of dietary lipids for oocyte development (Johnson, 2009), and the energy incorporated can 

influence both the reproductive investment and the way in which the stored energy is employed 

to sustain the energetic demand (Aristzabal, 2007). This strategy of storing energy before 

reproduction was confirmed by the lipid composition in the liver where triacyglycerols and 

phospholipids are mainly accumulated (Zudaire et al., 2014). 

Although the relationship between relative fecundity and body weight in YFT females is still 

unclear and specifically if larger females, having more energetic resources available, invest 
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consequently more energy for reproduction than smaller females. Obviously, the energetic cost of 

spawning differs between females and males, with a higher energetic investment in eggs (around 

1.06% of body wet weight for a single spawning) than in sperms (Schaefer, 1996; 1998). 

 

1.3.5 Early-life stages 

The featuring of YFT early life stages come from the different scientific programs developed in the 

last decades (i.e. the Achotines Laboratory in Panama) to induce spawning and to rear individuals 

in captivity (Margulies et al., 2007). It has been demonstrated that YFT larvae during the yolk-sac 

stage are totally dependent on the favourable biological and physical conditions of the water 

column for survival, such as water temperature and dissolved oxygen, until their development for 

feeding is completed (Margulies et al., 2001). Sea water temperature mostly controls the duration 

of this developing stage, the distribution and occurrence of YFT larvae and the duration of the 

ingestion, metabolic and subsequent growth and mortality rates (Boehlert and Mundy, 1993; 

Sabatés et al., 2007; Margulies et al., 2007; Wexler et al., 2001). The YFT larvae are mostly found, 

in all oceans, at SST ≥ 24°C and at depths less than 50 m within the mixed layer (Wexler et al., 

2007, 2011). The physiological thermal window for yolk-sac and first-feeding YFT larvae ranges 

between 21°C and 33°C (Wexler et al., 2011).  

Limiting physical conditions (e.g. low dissolved oxygen levels, low water temperatures) negatively 

influence the vertical and horizontal distribution of YFT larvae and, thereby, their spatial and 

temporal overlap with food and predators, which might negatively affect their survival (Blaxter, 

1991). In addition, the sea water density controls the development of larval swim bladder and the 

ontogenetic changes in its density, which in turn controls their capability to migrate vertically 

within the water column (Wexler et al., 2011). The fully functional development of their swim 

bladder in larvae may occur at a similar period as in Pacific bluefin tuna (Thunnus orientalis) larvae 

(around 7-10 days of hatching; Takashi et al., 2006). 

Morphologically, YFT larvae can be identified by the presence of a single black pigment under the 

chin and a lack of pigment on the tail. In profile, the eye is under the line of the body axis. Instead, 

YTF post-larvae and small juveniles are very similar to those of their related species, making their 

morphological discrimination very difficult. This has promoted a number of studies aiming at the 

molecular identification of tuna larvae species based on molecular protocols (Hyde et al., 2005; 

Richardson et al., 2006; Paine et al., 2008; Viñas et al., 2009; Puncher et al., 2015a; 2015b). In 

fact, the proper identification of fish eggs and larvae can provide crucial information (i.e. 
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spawning seasons and locations, spawning stock biomass (SSB) and recruitment trends) for 

improving and validating stock assessment models, which are often distorted by fishery-based 

data (Kuparinen et al., 2014). 

 

1.4 Fishery 

1.4.1 Catches by fisheries 

 
The global annual YFT catches amount to more than 1.6 million metric tons (using the 2009-2013 

average; http://iss-foundation.org/about-tuna/status-of-the-stocks/), placing this species within 

the top ten positions in the ranking of marine species harvested worldwide. YFT support diverse 

commercial fisheries throughout their distributions, ranging from large-scale industrial to small-

scale artisanal fisheries in tropical and subtropical areas (Davies et al., 2014). The YFT catches, as 

well as its size-selectivity, change greatly in accordance to the different fishing methods employed. 

Globally, purse seining (PS) is the main fishery targeting YFT and it is leading in the Eastern Pacific 

Ocean (EPO), whose amount (95.9%) is much higher than in the other fishing areas (61% in 2012 in 

the Western Central Pacific Ocean (WCPO); 68% in 2010 in the Atlantic Ocean (AO), and 35% in 

2013 in the Indian Ocean (IO); Fig. 1.2). 
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Fig.1.2_ Spatial distribution of global catch of yellowfin tuna by fishing gear over the last decades.  

 

Tuna PS has undergone significant evolution since its inception, representing now one of the most 

modern and powerful fishing fleets in the world (Gaertner and Pallarés, 2002; Miyake, 2005). As it 

begun in EPO, PS fisheries used groups of dolphins pods predominantly of the spotted dolphin, 

Stenella attenuata, spinner dolphin, S. longirostris, and common dolphin, Delphinus delphis, to 

detect YFT schools, exploiting their propensity to be associated together. Scott et al., (2012) 

demonstrated that this association is not based on feeding advantages but mainly in reducing the 

risk of predation by forming large and mixed-species groups. The result of those so called "dolphin 

sets" was the by-catch of hundreds of thousands dolphins between 1960 and 1970. After that 

period, the growing public concerns led to the creation of the U.S. Marine Mammal Protection Act 

in 1972. In the next decades, alternative PS fishing strategies were developed worldwide. 

Nowadays, PS fishery, which typically targets fish ranging from 40 to 140 cm FL, is performed with 

two different fishing modes (except in the eastern Pacific where dolphin sets are also common), 

harvesting YFT of different size: i) fishing on free-swimming schools (FSC; unassociated sets) and ii) 

fishing around floating objects (associated sets). Fishing on FSC, YFT of large (over 140 cm) or 

intermediate size (120 to 135 cm) are mainly caught on mixed or pure sets. On the contrary, 
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fishing on floating objects, which globally account around 40% of the catches of tropical tunas, 

mainly takes skipjack Katsuwonus pelamis (75%) and juveniles of yellowfin (16%) and bigeye 

Thunnus obesus (9%) tunas, with regional and seasonal variation in the species composition 

(Dagorn et al., 2012). 

The term floating objects contains two types of fishing items: 1) Fish Aggregating Devices (FADs); 

and 2) the natural floating objects (Logs). Logs are often in areas with high load of nutrients in the 

sea (e.g. abundant river discharges), where they are moved by currents toward offshore waters. 

Instead FADs are built and deployed by fishermen. Since the early 1990s, the use of FADs for 

fishing has grown exponentially in the PS tuna fisheries (Scott and Lopez, 2014) because it 

considerably increased the catchability of tunas. On average, fishing sets around floating objects 

displayed higher success rates (90%) than those made on free swimming schools (50%) (Fonteneau 

et al., 2000; Miyake et al., 2010; Fonteneau et al., 2013). 

The second largest YFT fishery is represented by longlining (LL), which mainly targets adult YFT. 

The fleets that mainly contribute to the global longline commercial catches are those from Japan, 

Republic of Korea and Taiwan and the largest amounts of catches are made in the equatorial 

Indonesian and Mexican waters of the Pacific Ocean (FAO 2014). 

Although several mitigation measures have been proposed to effectively reduce the bycatch rate 

during fishing procedures (e.g. technical improvements of the fishing gear), during fishing 

procedures PS-FAD and LL fisheries still brought high by-catch levels (Amandè et al., 2010; Gilman 

et al., 2006) and many concerns have been raised on their impacts on the conservation of marine 

biodiversity (Gilman et al., 2011). For these reasons, it is recently growing the request for the 

replacement of these two fishing methods with the low-impact pole-and-line fishery, which 

however requires a high amount of live baits for catching mainly tuna juveniles. In general, the 

artisanal fishing gears have a special importance in catching YFT in Indian Ocean differently from 

the other oceans, where they take about 30-40% of the total catches (ca. 140,000–160,000 mt). 

Among the different artisanal fishing gears, gillnets are the most used, with a total catch of ca. 

50,000 mt and a maximum of 170,000 mt reached in 2012. 

 

1.4.2 Catches by Oceans 

Since the 1960s the YFT catches increased until the early 1990s, when they have seemed to have 

levelled off at 1 to 1.6 million metric tons (mt) worldwide, representing now around the 27% of 
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total tuna catches worldwide (http://iss-foundation.org/about-tuna/status-of-the-stocks/). 

However, the trends and amounts of their catches vary among oceans (Fig. 1.3).  

 

 
Fig. 1.3_ Catches of yellowfin tuna in the Eastern Pacific Ocean (EPO), Atlantic Ocean (AO), Indian Ocean (IO) and 

Western Pacific Ocean over the last decades. 
 

In the AO, YFT are caught in tropical and sub-tropical waters, between 45°N and 40°S. Catches 

started increasing very quickly since the 1950s due to the rapid growth of the large-scale Asian LL 

fishery. YFT catches were the largest amount in this ocean until the 1990s, reaching a peak of 

192,114 mt. Since then YFT catches started declining, probably due to decrease of the fishing 

pressure (Majkosky, 2007), and YFT has been replaced at the leading position by skipjack tuna. 

However, since 2011 catches has remained at similar levels of 100,000 mt. 

The total annual YFT catches in IO increased significantly from 30,000 to 70,000 mt from mid-

1950s to the early- 1980s with a predominance of the activities of longline and gillnet vessels. 

Thereafter, with the arrival of the European purse seiners YFT catches further increased, reaching 

over 400,000 mt in 1993 and fluctuating around that level until 2002. The YFT catches increased 

from 2003 to 2006 with an average annual amount of catches around 480,000 mt with a peak over 

525,000 mt in 2004. After that period catches decreased noticeably, dropping down in the recent 
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years in areas off Somalia, Kenya and Tanzania as a consequence of the effect of piracy in the 

Western IO (IOTC-2013-SC16-ES04). The piracy activities have modified the normal fishing 

operations of the purse seiners and lead to a decrease in catch rates and effort in the Northwest 

of Indian Ocean (Herrera et al., 2013). However, catches increased again in 2013 and 2014 

(430,000 mt; IOTC 2015). 

YFT catches have increased in the whole PO from late 1950s, with two important increases in the 

late 1960s and the mid- to late 1980s. Until the late 1960s the catches were roughly at the same 

level in the eastern and western part of the Pacific Ocean. This situation changed at the end of 

1970s. In 2013 the eastern catches were around 222,500 mt, with an increase of 6% from 2012, 

and with a higher proportion of YFT catches during El Niño years and lower during La Niña years. 

The bulk of YFT catches in the Eastern Pacific Ocean is taken by purse-seine sets on associated sets 

with dolphins and in unassociated schools (IATTC Stock Assessment Report 14). The Central-

Western Pacific Ocean represents the main worldwide fishing area with more than one-quarter of 

YFT catches harvested at the global scale (ISSF 2013). The annual YFT catches in the Western-

Central Pacific Ocean increased exponentially from the 1970 (100,000 mt) until now (550,000 mt), 

with a catch peak of 650,000 mt in 2008 (Davies et al., 2014). 

 

1.5 Movement and stock structure 

1.5.1 Tagging studies 

 

Mark-recapture studies with identification tags (“conventional tagging”) and the most recent 

electronic tagging studies have enhanced our current understanding of T. albacares movements 

and stock structure. However, the comprehension of YFT spatial stock structure is extremely hard 

to be fathomed, being influenced by many biotic and abiotic factors, such as geographic features, 

oceanographic processes and prey concentration. 

YFT is able to undertake long-distance horizontal migrations with the highest mobility observed in 

the Atlantic Ocean, covering an average of 1574 nautical miles per month. The only case of 

transatlantic movements observed for this species was described for 45 individuals tagged (18,210 

in total) by anglers off the east coast of the USA (Bard and Hervé, 1994), which were recovered in 

the Gulf of Guinea. The size of these individuals ranged from 40 to 135 cm FL and their time at 
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liberty was between 18 months and almost 10 years, traveling an average of 4,100 nautical miles 

from their tagging sites (Fontaneau and Hallier, 2015). This migration pattern was probably linked 

to their homing migration from the western to the eastern side of the Atlantic Ocean. In fact, 

Zagaglia et al., (2004) observed that YFT juveniles were swimming along African coastal waters in 

the Gulf of Guinea until they reach the pre-adult stage (between 60 and 80 cm and ages between 

1.5 and 2 years). Generally, after that, they started moving from the eastern to western part of the 

Atlantic Ocean for feeding and then they returned to the eastern part for spawning, when they 

reached a size of approximately 110 cm FL and about 3 years of age (Zagaglia et al., 2004). These 

migration patterns, having biological meanings, are indicated as advective. Comparing to the 

Atlantic specimens, higher degree of fidelity to their release positions and more restricted 

movements have been indicated in the WCPO (Itano and Holland, 2000; Sibert and Hampton, 

2003) as well as in the EPO (Schaefer et al., 2007; 2011). For instance, in the EPO a persistent 

seasonal cycle was suggested in the movements between central and northern Baja California, 

with northward movements occurring during summer and southward movements occurring 

during winter (Schaefer et al., 2007; 2011). Whereas, in the Indian Ocean the results obtained 

about YFT mixing patterns were less clear than in the other oceans, as reconstructed by the Indian 

Ocean Tuna Tagging Programme (IOTTP; 20052009), and specifically its main phase, the Regional 

Tuna Tagging Project-Indian Ocean (RTTP-IO)). Most of the data of this tagging program came from 

the western equatorial region and a high proportion (>20%) of the tag releases occurred in the 

second and third quarters of 2006 (IOTC 2008; Langley and Million, 2012). Tagged individuals were 

assumed to be homogeneously distributed throughout the yellowfin population at the regional 

levels, showing evidence of incomplete mixing a year after their release within the Western Indian 

Ocean (Langley and Million, 2012). However, these results are consistent with the notion that the 

Indian Ocean basin probably supports a single well-mixed YFT population (IOTC-2013-WPTT15-13). 

Although tagging results provided evidences about the potential of YFT to undertake large 

movements, with an average distance travelled estimate of 710 nautical miles, they exclude any 

assumption about complete mixing over large regional areas (Schaefer et al., 2011), thus indicating 

that this species exhibits high level of structuring and site fidelity within each Ocean (Sibert and 

Hampton, 2003; Schaefer et al., 2009; 2011; Langley and Million, 2012; WCPFC-SC9-2013/ SA-IP-

11). 

 



 
 

21 

1.5.2  Genetic population structure studies 

Yellowfin tuna display life-history traits (LHT), such as their high dispersal capability, spawning 

patterns and large population sizes, which counteract evolutionary forces driving to population 

differentiation, favouring those conditions under which panmixia could exist. According to their 

life-history characteristics, which do not have a direct impact on gene flow but certainly play a role 

in neutralizing the effects of forces driving to divergence among populations, it is therefore quite 

logical to imagine that these species should exhibit a little intra-specific genetic population 

structuring (Ward, 2000). Nevertheless, YFT population structure is intensely conditioned by 

environmental constraints (i.e. sea surface temperature, salinity, ocean fronts, currents, 

bathymetry etc.) which affect their connectivity and dispersal capability. Moreover, as for other 

tuna and tuna-like species, climatic changes and paleoceanographic conditions could have 

promoted vicariance, population size fluctuations, and secondary contact of previously allopatric 

populations, influencing the patterns of genetic differentiation and geographic distribution of 

lineages within the species (Alvarado Bremer et al., 2005). 

The rapid growth of the number of research studies that investigated the genetic population 

structure of yellowfin tuna reflects the increasing interest and applicability of genetics focused on 

the fishery management of tuna and tuna-like species in the past six decades. In fact, since 1960’s 

the investigation of the complex tuna and tuna-like population structure started considering the 

use of genetic markers, with a sharp growth experienced by the number of related peer-reviewed 

articles over the past 50 years (Fig. 1.4). Specifically, since the mid-nineties the number of studies 

on the genetic population structure of tuna and tuna-like species has almost quadrupled, mainly 

due to the augmented availability of genetic tools and ever increasing awareness of the worth of 

genetic data into the stock assessment for management purposes. 
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Fig. 1.4_Number of peer-reviewed articles by ten years group published since the 1960 about tuna and tuna-like 
species genetic population structure. Source: Web of Science and Science Direct ((TITLE: (tuna*) and TITLE: (tuna-like 

species*) and TOPIC: (population structure*) TIME SPAN (all years*). 
 

Since the mid-80s the mitochondrial DNA (mtDNA) has been the first type of molecular marker 

largely used to identify the population structure of tuna and tuna-like species, according to its 

facility to be isolated and the availability of universal primers to amplify several mtDNA genes but 

also due to some of its features, such as its simple mode of transmission avoiding recombination, 

high mutation rate, maternally inherited and capacity to reveal evolutionary processes (Graves et 

al., 1984; Hauser and Ward, 1998). In the first period, the mitochondrial genome was analyzed by 

using Restricted Fragment Length Polymorphisms (RFLPs) but since the discovery of the 

Polymerase chain reaction (PCR), researchers have directly amplified and sequenced specific gene 

regions (Graves and McDowell, 2003). Consequently, over the past 30 years, there has been 

observed an ever-increasing of the number of studies on tuna and tuna-like population structure 

employing mtDNA as molecular marker, reaching their peak in the middle of the twenty-first 

century (Fig. 1.5). 
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Fig. 1.5_ Number of peer-reviewed articles, employing the different molecular markers, by 10 years group 
published since the 1960 about tuna and tuna-like species genetic population structure. Source: Web of Science and 
Science Direct ((TITLE: (tuna*) and TITLE: (tuna-like species*) and TOPIC: (population structure*) and TIME SPAN (all 

years*). 
 

In spite of the biological and economic relevance of this species, its genetic population structure is 

currently still poorly understood and not yet well resolved, with several studies leading to 

discordant evidences at the intra or inter-oceanic level (Table 1.2). 
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Table 1.2_ YFT population genetic studies, using traditional molecular markers, between and within RFMOs using 
different methods: (1: allozymes; 2: mtDNA; 3: microsatellites; 4: other). Symbols (x: significant differentiation; - : 

absence of differentiation; ^: not analyzed). 

 

The first genetic attempt to delineate YFT stock structure date back to Suzuki (1962), employing 

TG2 blood group antigens in samples of the Pacific and the Indian Oceans, without showing any 

sign of differentiation between both locations. This first work demonstrated the serology’s 

unsuitableness as a tool for detecting tuna and tuna-like stocks. The analysis of the protein 

electrophoretic variation (i.e. allozymes) was the next molecular markers employed for revealing 

YFT stock structure, thanks to their relative ease of application and speed of screening programs. 

Using this molecular tool, for instance Sharp (1978) indicated the first signals of genetic 

differentiation between one Western Pacific and two Eastern Pacific YFT populations using the 

Glucose Phosphate Isomerase (GPI) locus. This result was corroborated by Ward et al., (1994), who 

detected significant heterogeneity at GPI-F* allozyme locus. Nevertheless, this pattern of 

differentiation was not confirmed by the examination of the whole mitochondria DNA (mtDNA) of 

the Pacific yellowfin tuna using a RFLP approach (Scoles and Graves, 1993; Ward et al., 1994). The 

lack of spatial differentiation in these two studies could be related to the small size of the analyzed 

samples (20 samples from each of five locations of Pacific Ocean and one sample from Atlantic 

Ocean) and to the only two restriction enzymes employed (BclI and EcoRI), or to the inability of 

this protocol to detect enough variation at the nucleotide level. Ward et al., (1997) underlined the 

possible presence of four YFT stocks (Atlantic Ocean, Indian Ocean, W-C Pacific and E Pacific 

Source Method_1 Method_2 Between 
RFMOs 

Within 
RFMOs 

Suzuky, (1962) 4   - - 
Sharp, (1978) 1   x - 

Scoles and Graves, (1993) 2   - - 
Ward et al., (1994) 1 2 x - 
Ward et al., (1997) 1 2 x - 

Chow et al., (IOTC 2000) 2   - - 
Nishida et al., (IOTC 2001) 4   ^ - 

Applayerd et al., (2001) 3   - - 
Ely et al., (2005) 2   - - 

Díaz-Jaimes and Uribe-Alcocer, (2006) 3   ^ x 
Dammanagoda et al., (2008) 2  ^ x 

Wu et al., (2010) 2   - - 
Kunal et al., (2013) 2   ^ x 

Li et al., (2015) 2  ^ x 
Aguila et al., (2015) 3  ^ x 

Pecoraro et al., (see Chapter 2) 3   - - 
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Ocean) employing allozyme and mtDNA RFLP markers. However later studies, employing different 

markers (microsatellites, PCR-sequencing of the mtDNA control region and PCR-RFLP of the ATCO 

segment) have confirmed the presence of one panmictic population across the different oceans 

and RFMOs (Appleyard et al., 2001; Nishida et al., 2001; Ely et al., 2005). These studies suggested 

that the Cape of Good Hope might not represent a geographical barrier to gene flow for YFT 

populations, as it does for bigeye tuna (Alvarado-Bremer et al., 1998; Chow et al., 2000a; Martinez 

et al., 2006; Chiang et al., 2008) as well as for other tuna and tuna-like species (i.e. blue marlin: 

Finnerty and Block, 1992; Graves and McDowell, 1995; swordfish: Alvarado Bremer et al., 1996; 

Chow et al., 1997; Chow and Takeyama, 2000; sailfish: Graves and McDowell, 1995). 

Other studies also failed to find signals of genetic differentiation between Indian and Pacific 

samples and between westernmost and easternmost Indian samples, employing mtDNA and 

nuclear markers (Wu et al., 2010; Chow et al., 2000b; Nishida et al., 2001). These studies validated 

the possibility to have a single large panmictic population worldwide. The lower levels of genetic 

differentiation for YFT stocks among oceans than other tuna and tuna-like species, although in 

contrast with its distribution pattern, are probably linked to its large population size, which might 

be associated with high levels of standing genetic variation (Ward et al., 1994; Ely et al., 2005). 

This hypothesis has also been supported by our findings. We analysed 5 geographical samples 

employing 6 microsatellite loci recently isolated for YFT (Antoni et al., 2014) and 6 microsatellite 

loci isolated for Thunnus maccoyi (Dr. P. Grewe, personal communication). The obtained results 

showed very low and not significant levels of genetic differentiation at both intra- and inter-

oceanic level among Atlantic, Indian and Pacific Oceans (for details see Chapter 2). 

On the contrary, some recent studies have suggested the possibility to face with YFT population 

structure at a much smaller scale in basins of the Indian and Pacific Oceans than what assumed in 

its assessment and management process so far (Díaz-Jaimes and Uribe-Alcocer, 2006; 

Dammannagoda et al., 2008, Kunal et al., 2013; Li et al., 2015; Aguila et al., 2015). For instance, 

the analysis of 7 SSR loci showed a significant differentiation between the northern and the 

southern region in the Eastern Pacific YFT (FCT = 0.016; P = 0.011) but no significant differences 

among samples from the same area (FSC = 0.0017; P = 0.315) (Díaz-Jaimes and Uribe-Alcocer, 

2006). These results coincide with those obtained with tagging studies for individuals from the 

North-Eastern Pacific and speaking in favor of the site fidelity behavior (Schaefer et al., 2007; 

2011). Moreover, possible existence of different stocks has been detected both within the Central 



 
 

26 

Pacific Ocean, using the mtDNA COI gene sequences  (Li et al., 2015) and between Central and 

Western Pacific Ocean employing 10 microsatellite loci (Aguila et al., 2015). 

In the north-western Indian Ocean, Dammannagoda et al., (2008), revealed the possible presence 

of three genetically discrete YFT sub-populations (N=285), detecting significant genetic 

differentiation among sites using both the mitochondrial ATPase 6 and 8 regions (498 bp) (Φst = 

0.1285, P <0.001) and at two microsatellite loci (Fst = 0.0164, P <0.001 and Fst = 0.0064, P <0.001). 

The hypothesis of presence of different stocks in the northern part of the Indian Ocean was 

corroborated by Kunal et al., (2013), detecting the presence of at least three YFT genetic stocks in 

Indian waters by analyzing the sequence of mtDNA D-loop. The presence of different stocks 

revealed in these studies might be also explained here by a site fidelity to different spawning areas 

of YFT within the Indian Ocean, with the main spawning grounds west of 75°E and secondary 

spawning grounds exist off Sri Lanka and the Mozambique Channel and in the eastern Indian 

Ocean off Australia (IOTC 2015). 

The high degree of differentiation gathered at these small geographical scales has raised many 

doubts about the actual YFT population structure, which may have wide-ranging implications for 

local management, underlining the necessity to investigate deeper the population structure of this 

species within and between each ocean. In this context, the access to more powerful and cost 

effective genetic tools (e.g. next generation sequencing technologies) would represent the first 

step for resolving the YFT stock structure at both local and global scale. 

 

1.5.3  Sampling strategies and the misidentification issue between juveniles 

The discrepancy in the genetic results obtained for yellowfin tuna might not be linked to the type 

and number of genetic markers employed only but also to the sampling design considered in the 

different studies. In fact, in order to identify proper management units for such highly migratory 

species, an intensive sampling effort should be performed to enable comprehensive assessment of 

the population structure. The first main factor to take into account is the sample size (Viñas et al., 

2011). It is typically considered of around 50 individuals for population genetic studies so as to 

limit the sampling noise when estimating the genetic distance among samples (Nei, 1987). For 

instance, the sampling of few individuals, which are close relatives, have been resulted in the 

overestimation of population divergence and lead to misinterpretation of meaningful population 

structure (Allendorf and Phelps, 1981; Waples, 1998). 
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Since tuna and tuna-like species are able to perform long-distance migrations (Block and Stevens, 

2001), a sampling focused only on adults or sub-adults in a specific area might lead to gather a 

group of individuals originated from different spawning areas, nullifying any possibilities to find 

out signals of genetic population structure. By contrast, the collection of larvae and of young-of-

the year (i.e. post-larval and early-stage juvenile) characterized by limited ability to swim and as 

such to be caught close to their spawning areas is expected to increase the likelihood to analyse 

specimens that better reflect the genetic composition of the spawning populations (Carlsson et al., 

2007). 

However, post-larval and early-stage juveniles are morphologically similar among many tuna and 

tuna-like species, especially within the same genus (Robertson et al., 2007) and their identification 

requires elevated taxonomic skills. Species misidentification at post-larval and early-stage juveniles 

could be also caused by geographical variation in their morphological features (Chow and Inoue, 

1993). The use of morphological characters (i.e. body shape, pigments, characteristics of the fins, 

etc.) are deceptive when for instance individuals are frozen or exposed to other processes (i.e. 

canning, filleting), which make the species identification almost impossible (Itano, 2000). This is 

particularly true for small-sized bigeye and yellowfin tuna, which are caught together in the FAD-

based purse-seine fishery. Although there are some external and internal characteristics that allow 

discrimination between them, these morphological differences are almost imperceptible when the 

specimens are below a certain size (<40 cm FL), vanishing the utility of these characters. 

Discriminating between the juveniles of the two species is essential to provide more accurate data 

about their recruitment trends as well as population structuring, spawning season and location. 

Many different protocols based on molecular markers have been used to help in assessing with 

the very challenging discrimination between YFT and BET due to their low evolutionary distances, 

which might confound the results if a marker with a low genetic variability is employed. For 

discriminating properly between them, the mtDNA Control Region has been indicated as a robust 

marker, in association with the liver morphology test (Pedrosa-Gerasmio et al., 2012), as well as 

the nuclear genetic marker ITS1 (first internal transcribed spacer of the nuclear rDNA genes; Viñas 

and Tudela, 2009). Besides, the use of the ATCO gene region (the flanking region between ATPase 

and cytochrome oxidase subunit III genes; Chow and Inoue, 1993), using restriction endonucleases 

or nucleotide sequence analysis, was verified as one of the most performing marker in 

discriminating between these two species. Moreover, Michelini et al., (2007) demonstrated the 
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utility of the multiplex-based PCR as a rapid molecular instrument for discriminating between 

different tuna species. 

 

1.5.4 Future perspectives for genetic studies 

The previous section on genetic structure points out one central question: " Why are there 

conflicting evidences about genetic patterns of this species both at the local and global scale?". 

The more logical answer may be linked to the fact that YFT display combinations of life history 

traits (e.g. high fecundity, large population sizes, etc.) that make detecting patterns of genetic 

differentiation among population samples very difficult (Ely et al., 2005; Juan-Jordá et al., 2013; 

Pecoraro et al., 2016). These dispersal patterns together with the fact that YFT population genetic 

studies, focusing on a relatively small number molecular markers distributed in a limited portion of 

the genome (Appleyard et al., 2001; Díaz-Jaimes and Uribe-Alcocer, 2006), have led to inadequate 

results for testing and validating the appropriateness of the current stock structure for assessment 

and management adopted by each tRFMO (Pecoraro et al., 2016). The limits of these approaches 

are underlined by the fact that genes are not islands but they are part of a genomic community, 

combined both by physical closeness on chromosomes and by various evolutionary processes 

(Bonin, 2008). In this context, the advent of NGS technologies and the consequent decreasing of 

high-throughput sequencing cost have opened new possibility of identifying thousands of co-

dominant single nucleotide polymorphisms (SNPs) at a genome-wide scale (Davey et al., 2011), 

increasing the power of genetics to discriminate weakly differentiated YFT populations (Grewe et 

al., 2015; Pecoraro et al., 2016). The NGS approaches have thus provided a better representation 

of the species´ genomes, allowing to distinguish between neutral evolutionary processes and 

those influenced by selection. Therefore, there is an urgent need to switch from genetics to 

genomics for defining proper management units in highly migratory species (Grewe et al., 2015). 

The need for adopting a genome-wide perspective for disentangling YFT population structure is 

corroborated by the evidence about the presence of genetically distinct populations at ocean 

basin-scale using SNP markers (Grewe et al., 2015; Pecoraro et al., 2016). Pecoraro et al., (2016) 

preliminarily pointed out YFT population structure among Atlantic, Indian and Pacific oceans (FST 

=0.0273; P-value < 0.01), demonstrating the efficiency of 2b-RAD genotyping technique (Wang et 

al., 2012) in assessing genetic divergence in a marine fish with high dispersal potential. Whereas, 

Grewe et al., (2015) firstly confirmed the presence of two populations between the Eastern and 

Western Pacific basins but, after having discovered a panel of 18 SNPs putatively under positive 



 
 

29 

selection, they also underlined the level of structure within the western samples, i.e. Coral Sea and 

Tokelau. 

These results demonstrated the potential of genomic approaches but also the need to have a 

representative sampling design, especially at local scale, for detecting population structuring in 

highly pelagic species. On the other hand, they suggested the need of redefining YFT conservation 

units in the Pacific Ocean that should be assessed and, potentially, managed independently 

(Grewe et al., 2015), even if interannual stability of the genetic structure should be verified. This 

study also demonstrates the need to carry out finer scale population structure studies, employing 

outlier loci putatively under selection. In fact, for species with high migration rate and large 

population size, just multiplying the amount of neutral markers detected could be not enough, 

with the main consequence of failing to reveal the current level of demographic connectivity, 

especially at the local scale (Gagnaire et al., 2015; Hauser and Carvalho, 2008). 

Another future research priority is represented by the estimation of the effective population size 

(Ne), using both temporal or single-sample estimators (Palstra and Fraser, 2012), which 

determines the genetic properties of a population (Hauser et al., 2002). The Ne plays a central role 

in defining how demographically, environmentally or genetically stochastic events can affect the 

species' persistence and fitness (Palstra and Fraser, 2012). In marine fishes, this is particularly true 

because Ne is generally much lower than the adult census size (N) in natural populations (Palstra 

and Ruzzante, 2008). 

Populations of millions of individual fish may be dependent to an effective population size of only 

hundreds or thousands individuals (Hauser et al., 2002). Therefore, there is an evident need to 

determine the Ne in YFT populations in order to understand how fishery and environmental 

changes are influencing the genetic diversity and thus Ne, foreseeing possible short- and long-term 

evolutionary scenarios. 

Despite the importance of this parameter for populations’ conservation, it has never been 

estimated for YFT populations. Based on the lack of these parameters, the genomic approach 

represents life-blood for the conservation of this species, increasing the precision and accuracy of 

Ne estimation by genotyping hundreds to thousands of neutral loci in numerous individuals. In 

fact, the high number of loci examined will increase the accuracy of Ne estimates, facilitating the 

identification and exclusion of outlier loci which cause biased estimates of this parameter 

(Allendorf et al., 2010). Consequently, a casualness of these information would represent a loss of 

an important perspective in our attempt to match assessment with true biological boundaries. 
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1.6 Current status and management  

Yellowfin tuna is listed as Near Threatened (IUCN 2011), and it has been considered to be divided 

in 4 stocks, which are separately and independently managed and assessed by the 4 major RFMOs: 

ICCAT in the Atlantic, IOTC in the Indian Ocean, IATTC in the Eastern Pacific Ocean and the WCPFC 

in the Central and Western Pacific Ocean. The current status of each stock is based on the last 

stock assessment carried out by the scientific bodies of each commission, with the main objective 

to estimate population parameters, such as time series of recruitment, biomass and fishing 

mortality, in relation to biological reference points, which indicate the status of the stock in 

function of the fishing impacts. Thus, the status of each stock is summarized in Table 1.3, using 

reference points, such as the ratios of stock biomass to the biomass at maximum sustainable yield 

(SBlatest/SBMSY but also SBcurrent/SBMSY) and fishing mortality to the fishing mortality at MSY 

(Fcurrent/FMSY). 
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Table 1.3_ For each of the four RFMOs, there are reported the total amounts of catches in metric tons (Recent 
catch), the average of the total amount of catches in the last five years before the last stock assessment (5-yr catch 
(mt)), the Maximum Sustainable Year (MSY), the reference points for the Fishing Mortality (F/FMSY). 

 Estimate Years Note 
WCPFC    

Recent catch (mt) 599 2014 7%>2013 
5-yr catch (mt) 565 2010-14  

MSY 586.00 2008-11  
F/FMSY 0.72 (0.58-0.90) 2008-11 F<FMSY 
B/BMSY 1.24 (1.05-1.51) 2012 B>BMSY 

IATTC     
Recent catch (mt) 243 2014 5%>2013 

5-yr catch (mt) 232 2012-2014  
MSY 275.00 2012-2014  

F/FMSY 0.86 2012-2014 F<FMSY 
B/BMSY 0.99 Start of 2015 B≤BMSY 

ICCAT    
Recent catch (mt) 104 2014 3%>2013 

5-yr catch (mt) 106 2010-2014  
MSY 145 (114-155) 2010  

F/FMSY 0.86(0.68-1.40) 2010 F<FMSY 
B/BMSY 0.96 (0.61-1.12) 2010 B<BMSY 

IOTC    
Recent catch (mt) 430 2014 6%>2013 

5-yr catch (mt) 373 2010-2014  
MSY 421 (114-155) 2014  

F/FMSY 1.34 (1.02-1.67) 2014 F>FMSY 
B/BMSY 0.66 (0.58-0.74) 2014 B<BMSY 

 

YFT stock assessment in the Eastern Pacific Ocean (EPO) performed by IATTC has the longest 

history than any other tuna species. In the most recent YFT stock assessment carried out in the 

EPO (IATTC Stock Assessment Report 15), as in the previous one, an integrated statistical age-

structured stock assessment model was used, indicating the YFT population has experienced two, 

or possibly three, different recruitment productivity regimes (1975-1982, 1983-2002, and 2003-

2012). This model is based on the statement of a single YFT stock in the EPO. However, the high 

regional fidelity for this species assessed by tagging studies together with the geographic variation 

in its phenotypic and genotypic characteristics revealed in some studies, advise the possibility to 

have multiple stocks in the EPO and throughout the Pacific Ocean. Moreover, this hypothesis is in 

agreement with the fact that longline catch-per-unit-of-effort (CPUE) trends change within this 

area. The model indicates the existence of a stock-recruit relationship with a rather variable 

recruitment, which was reflected in a change of the biomass levels. In the last assessment 

conducted in 2015, the recent YFT spawning biomass ratio (SBR; 2011- 2013) was estimated to be 

0.26 at the beginning of 2015 slightly below the MSY level (0.27), which indicated a sharp decline 

in spawning biomass after 2009, probably due to the higher fishing mortality of middle-aged YFT, 
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followed by an increase in 2012 to above the level corresponding to the MSY (IATTC Stock 

Assessment Report 15). Recent biomass is larger than BMSY and fishing mortality is below FMSY. 

Lastly, the MSY was stable for the entire assessment period (1975-2014), while the overall level of 

fishing effort changed in respect to the MSY level (IATTC 2015). 

A more recent history has the YFT stock assessment in the Western-Central Pacific Ocean (WCPO, 

west of 150°W), in which the first assessment was conducted in 1999 and they were repeated 

annually until 2007 (Hampton et al., 2004; 2005 and 2006; Langley et al., 2009; 2011). YFT is 

considered to constitute a single stock within the WCPO (Hampton and Fournier, 2001). The 

methodology used for the stock assessment is based on a length-based, age-structured model 

(MULTIFAN-CL modelling software), which provides an integrated method for estimating catch age 

composition, growth parameters, mortality rate, recruitment and other parameters from time 

series of fishery catches, effort and length frequency data (Hampton and Fournier, 2001; Davies et 

al., 2014). The results of the last stock assessment in 2014 (Davies et al., 2014) are roughly similar 

to those in 2011, with the same magnitude order of spawning biomass (999,000 mt and 845,000 

mt, respectively), and estimates of Fcurrent/FMSY (around 0.7), but with moderately lower 

spawning biomass (1.24 and 1.30, respectively). 

In the Atlantic Ocean the last assessment of YFT was conducted in 2011, employing a both age-

structured (VPA) model and a non-equilibrium production model (ASPIC), based on the available 

catch data from 2010. The results of the age structured analysis indicated that the MSY (~144,600 

mt) may be lower than that estimated in the past due to the shift of the fishing selectivity through 

smaller fish. Stock biomass was estimated to be below BMSY and, thus, the stock has been 

considered to be overfished. However, fishing mortality was estimated to be below FMSY and, thus, 

overfishing was not occurring. The Standing Committee on Research and Statistics (SCRS) 

recommended to reduce F of small YFT to increase the long-term sustainable yield. 

The most alarming situation concerns the status of the YFT stock in Indian Ocean, which was 

determined to be overfished and subject to overfishing during the last assessment (IOTC 2015). 

The low level of stock biomass in 2014 is in agreement with the long-term decline in the primary 

stock abundance indices (longline CPUE indices) due to the increase in longline, gillnet, handline 

and purse seine efforts and associated catches in recent years. Catches passed from 266,848 mt 

landed in 2009 to 430,327 mt in 2014. Subsequently, F exceeds the FMSY, and consequently the SSB 

in 2014 was around the 23% (21–36%) of the unfished levels and 66% (58–74%) of the level which 

can support MSY.  
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1.7 Conclusions and directions for future research priorities 

Yellowfin tuna are multi-billion dollar common resources, and with the increasing fishing pressure 

over the past 20 years, there is a growing need to make some progresses in the definition of its 

stock structure for a proper and sustainable management. In fact, our overview indicates that YFT 

fishery management is not based on the biological structure outlined by tagging and genetic 

studies, which have indicated a more structured population than typically assumed in the 

assessment and management process. Therefore, there is a need for establishing more accurate 

and realistic population boundaries for this species, incorporating multi-approach fishery 

independent data as those from population genomics, tag-recapture or chemical tags in otoliths. 

Otherwise, the main risk of ignoring the appropriate population structure would be the local 

overexploitation and the failure in achieving objectives related to YFT conservation and optimal 

economic use in those areas where a mismatch between management units and population 

structure is undeniable. Thus, the spatial population structure and its temporal stability, within the 

separated spawning grounds and the areas where populations are mixed, provided by those 

multidisciplinary studies has to be integrated into the management strategy of each RFMO in 

order to ensure a sustainable fishery of this valuable natural and economic resource. This review 

also underlines the great importance of inserting other important biological information into the 

stock assessment of this species, for developing more realistic population dynamics models and 

for developing effective fishery management strategies. For instance, the productivity of YFT 

stocks has to take in account a variety of fundamental attributes, such as the onset of maturity, 

fecundity, atresia, duration of reproductive season, daily spawning behaviour and spawning 

fraction (Murua et al., 2003). Otherwise, if YFT productivity is only measured by the estimation of 

the SSB, which is based on the assumption that fecundity is only related to the mass-at-age of the 

sexually mature portion of the population irrespective of the demographic composition of adults 

(Murawski et al., 2001; Kell et al., 2015), there is an evident risk to overestimate populations’ 

productivity and consequently their resistance to fisheries and environmental changes. 

Moreover, crucial progresses are needed in the improvement of data collection and the 

adaptation of reference points (limit and target) and the Harvest Control Rules (HCRs), which have 

to take into account each aspect of the biology of this species. In particular, the adaptation of 

HCRs, which are a set of well-defined management actions in response to changes in the stock 

status with respect to target and limit reference points, is a crucial aspect of modern fisheries 
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management. They have to be identified and adopted by the four RFMOs in order to manage YFT 

stocks in a way that does not depend on long negotiations that end up almost always in a weak 

consensus. All tuna RFMOs need to adopt stock-specific limit and target reference points and HCRs 

to avoid over-fishing and to rebuild depleted stocks. Although relevant frameworks for the 

development of reference points and harvest control rules have been already developed within 

Commission documents, such as CMM 2014-06 (WCPFC), Resolution 13/10 (IOTC) and 

Recommendation 11-13 (ICCAT), the adoption of measures is slow and most of the work is 

conducted at the scientific level without a formal mandate from the Commissions. In fact, at 

present there are no explicit statements on how to achieve targets or to avoid limits, which might 

reflect Commission HCRs. RFMOs have also to adopt the Management Strategy Evaluation (MSE), 

to support stock assessments and management advice and to obtain some understanding of 

relative benefits and risks in adopting HCRs under a series of simulated plausible scenarios. But 

also in this case the level of integration of MSE activities in management differs among RFMOs and 

generally these management procedures are mainly developed and integrated at the scientific 

level without gathering any feedback from stakeholders and commissioners. 

In the near future, more effort has to be put in improving the interaction and dialogue among 

researchers, stakeholders and policy-makers specifically in regards to the setting of objectives 

given at any particular harvest strategy. This is particularly important because improvements in 

scientific research alone are not enough for improvements in long-term management of YFT.
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Section.1 preludes the next three chapters, which aim to:  
 
Chapter 2) investigate the global YFT population structure using a panel of 14 microsatellite loci 

recently isolated for Thunnus albacares and for Thunnus maccoyi; 

Chapter 3) assess the 2b-RAD genotyping technique (Wang et al., 2012) in providing reliable 

genomic data to analyze the genetic diversity and differentiation patterns of this highly pelagic 

species; 

Chapter 4) reveal the YFT genomics population structure across its entire distribution range, using 

genome-wide single-nucleotide polymorphisms (SNPs). 

 

The main goal of this section is to report those phases shared among the three next Chapters (i.e. 

sampling design, DNA extraction) in order to avoid redundancy, which of course would decrease 

the readability of each specific Chapter. 

 

2.1  Sampling design 

A sampling design, unheard-of for YFT population structure studies, was realized at the global 

scale (between- and within-ocean) in order to assess stock boundaries and stock units, covering 

the entire species distribution range (Fig. 2.1). 

 

 

Fig. 2.1_Location of Thunnus albacares geographical population samples analyzed in this study. Sample codes are 
given as in Table 2.1. 
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This sampling design relied upon a variety of sampling sources: (i) boarding of collaborator 

members on fishing vessels, (ii) collaborations with other research projects including scientific 

campaigns-at-sea, and (iii) sampling at port of unloading and at tuna canneries. The 

complementarity of these approaches has ensured the safe running of the project. A total of 500 

juveniles YFT from ten geographic population samples were collected with exact information 

about their fishing locations during 2013 and 2014 (Table 2.1). I am aware that a multi-annual 

sampling to generate temporal replicates from the same areas is necessary to test and validate the 

population structure detected. However, due to the global scale of sampling required a great 

effort across oceans and institutions and the relatively limited time allowed for the genetic and 

genomic analyses to be accomplished within the three-years Doctoral program, I have targeted a 

spatial sampling with a unique temporal replicate. This represents a caveat that should be taken 

into account when results will be obtained and discussed. Skeletal muscle or finclip specimens 

were collected from individual YFT and fixed in 96% ethanol or in DMSO/EDTA/saturated sodium 

chloride (DESS). Specimens were stored at 4°C for few weeks and at -20° C for several months until 

DNA extraction. The targets of the sampling were YFT juveniles ranged in size from 35 to 55 cm FL. 

Targeting juveniles YFT increases the likelihood to catch them close to their spawning areas, due 

to their reduced capability of long distance migrations. 



 
 

Table 2.1_The table summarizes the sampling location, sample code, the coordinates, number of individuals, the tissue sample, the fishing gear used per each geographic 
population sample. 

 
Location Sample 

code 
Latitude Longitude N. of 

individuals 
Tissue Fishing gear Provider Institute 

 
W Atlantic Ocean 31_1 28.44 -88.22 50 fin clip Hook and line Jay Roocker Texas A&M University 

 
E Atlantic Ocean 34_1 -11.13 11.61 50 fin clip Purse seiner Carlo Pecoraro UNIBO 

E Atlantic Ocean 34_2 -2.14 -16.12 50 fin clip Purse seiner Carlo Pecoraro Unibo 

W Atlantic Ocean 41_1 11.14 -65.3 50 muscle Bait boat Freddy Arocha Instituto Oceanográfico de 
Venezuela 

 
W Indian Ocean 51_1 -11.47 42.38 50 fin clip Purse seiner Nathalie Bodin IRD 

W Indian Ocean 51_2 1.02 49.97 50 fin clip Purse seiner Nathalie Bodin IRD 

WC Pacific Ocean 71_1 -4.64 154.05 50 fin clip Pole and line Bruno Leroy Secretariat of the Pacific 
Community 

WC Pacific Ocean 71_2 -3.4 166.36 50 fin clip Purse seiner Jeff Muir Hawaii University/ISSF 

E Pacific Ocean 77_1 24.5 -113.25 50 muscle Purse seiner Sofía Ortega Institute Politécnico 
National Maxico City 

E Pacific Ocean 77_2 28.86 -116.06 50 muscle Purse seiner Sofía Ortega Institute Politécnico 
National Maxico City 
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2.2 DNA extraction 

From each individual the total genomic DNA (gDNA) was extracted from approximately 20 mg of 

tissue using the commercial Invisorb® Spin Tissue Mini Kit (Invitek, STRATEC Biomedical, 

Germany). Tissue samples were lysed, adding 400 μL of Lysis Buffer G and 40 μL of Proteinase K, in 

a thermomixer overnight at 50°C. After lysate centrifugation for 2 min at 11.000 rpm, the 

supernatant was transferred into a new tube, adding 40 μL of RNAse (10 mg/ml) and 200 μL of 

Binding Buffer A. The lysate was then transferred onto an Invisorb Spin Filter to absorb the gDNA 

into its membrane, discarding the filtrate containing possible contaminants. In order to efficiently 

remove any remaining contaminants and enzyme inhibitor, two washing steps with 500 μL of 

Wash Buffer were performed. In addition, for eliminating any trace of ethanol, the filtrate was 

firstly centrifuged for 4 min at 14.000 rpm and then left at room temperature for 1 h. Lastly, the 

Spin Filter was placed into a 1.5 mL Receiver Tube and added with 80 μL of pre-warmed Elution 

Buffer to increase the final extracted gDNA volume. The eluted DNA was incubated at room 

temperature for 3 min and centrifuged for 1 min at 11.000 rpm, discarding the Spin Filter at the 

end. For each sample, the concentration (ng/µL) and purity of the genomic DNA extracted were 

quantified by both a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA) and a Qubit 2.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). This procedure ensured to work with high quality samples and comparable 

DNA concentration. 

 

2.3 Genetic species identification of yellowfin tuna juveniles 

Given that juvenile YFT, especially those with FL < 40 cm, are very similar morphologically with 

bigeye tuna (BET) juveniles (Pedrosa-Gerasmio et al., 2012), and we did not know personally the 

sampling provider in the Central-Western Pacific Ocean (sample code = 71-2-Y), each individual 

from that area was specifically identified using the mitochondrial DNA segment flanking ATPase 

and cytochrome oxidase subunit III genes (ATCO region; Chow and Inoue, 1993). Sixty-six 

specimens from that area were selected for genetic analysis and compared with five BET sampled 

in the Eastern Atlantic Ocean by trained researchers. Moreover, two homologous YFT sequences 
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(Acc. N. KM055398.1 and AF115278.1), one of BET (Acc. N. AF115274.1) and one of skipjack 

(Katsuwonus pelamis; SKJ; Acc. N. GU256527.1, used as outgroup) were retrieved from the 

GenBank (www.ncbi.nlm.nih.gov/genbank). 

The primers used in this study were from Chow and Inoue (1993): L8562 (5’-

CTTCGACCAATTTATGAGCCC-3’) and H9432 (5’-GCCATATCGTAGCCCTTTTTG-3’). 

The PCR amplification was carried out by a 50 μL reaction mixture; 1x GoTaq Flexi Buffer 

(Promega) 1.5 mM MgCl2, 0.4mM dNTPs, 1M each primer, 2 U of Taq Dna Polymerase 

(Promega), 4 μL (~20 ng) of DNA template. The reaction mixture was pre-heated at 94°C for 2 

minutes followed by 35 cycles of amplification (93°C for 1 min, 52-57,8°C for 1 min and 72°C for 45 

sec) with a final extension at 72°C for 

8 min (Fig. 2.2). 

The ATCO sequences obtained from 

Macrogen Europe (Amsterdam, 

Netherlands) were edited and 

aligned with the ClustalW algorithm 

implemented in the software 

MEGA6 (Tamura et al., 2013) and 

trimmed to 827 bp.  

 

The sequences obtained in this study were homologous with those retrieved from GenBank, 

allowing the species identification of each individual. We reconstructed a Neighbour-Joining tree 

(Fig. 2.3) based on the Tamura-Nei distances. Such phylogenetic tree clearly discriminated 

individual sequences in the YFT and BET clusters with very high bootstrap support (95% and 99% 

for YFT and BET clades, respectively). 

 

 
Fig. 2.2. PCR cycling conditions for ATCO amplification 
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Figure 2.3. Neighbour-Joining tree based on the ATCO sequences (827 bp) obtained in this study and retrieved from 
GenBank. The Tamura-Nei (1993) distance method was used and bootstrap analysis, based on 1,000 re-samplings, 

was carried out. 
 

Our results confirmed and supported the use of the ATCO sequence marker to specifically identify  

and discriminate between YFT and BET and the complete correspondence between the molecular 

and morphological identification of the specimens. 
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YFT population structure 
inferred from microsatellite loci 
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3.1 Introduction 

The definition of proper management units is crucial for a sustainable exploitation of fish stocks 

(Cadrin et al., 2014). However, fish management units are traditionally based on territorial 

jurisdictions (Reiss et al., 2009) and the same definition of “stock” reflects practical administrative 

necessities rather than biological realities. This management approach trivializes the complex 

biological and ecological processes involved in shaping the population dynamics and structure 

(Cuéllar-Pinzón et al., 2015). The major risk of ignoring the proper population structure is the 

resource mismanagement, which could have potential negative effects on the biological capacity 

of fish populations to adapt to changing environmental conditions and, thereby, to recover from 

over-exploitation (Worm et al., 2006). In such a context, it is crucial to properly assess the fish 

stock status with all available scientific and technological tools, in order to avoid any potential 

extinction risk of over-harvested populations (Antoniou and Magoulas, 2014). 

The application of genetics to fisheries management has increased over the past six decades 

(Waples et al., 2008), together with the concerns about the potential genetic changes in harvested 

marine fish induced by their exploitation (Laikre and Ryman, 1996; Law, 2007; Allendorf et al., 

2008; Palkovacs, 2011). Since the 1970s the continuous development of new molecular techniques 

has improved our capability to investigate useful DNA variations, providing new insights into the 

spatial dynamics, migratory movements and population structure of marine exploited species, in 

order to address critical conservation and fisheries management issues, such as stock structure 

and population demography (Hauser and Carvalho, 2008). However, the great contribution that 

genetic studies might lead to fish stock management is counterbalanced by some methodological 

limits in the capability of detecting significant heterogeneity among populations. In marine fishes, 

population differentiation through genetic drift is generally weak (Hauser and Carvalho, 2008), and 

very low degree of genetic differentiation represents a role rather than an exception (Ward et al., 

1995; Ward, 2000). A common measure for describing the distribution of genetic diversity within a 

species are the fixation indices (Figure 3.1), first defined by Wright (1951). 
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The lower degree of genetic 

differentiation of marine species 

than freshwater or anadromous 

species (Ward, 2000) was 

demonstrated in 57 marine fish 

species, in which the mean and 

median FST values were of 0.062 

and 0.02, respectively (Waples, 

1998). These levels of genetic 

differentiation are certainly expected to be lower, at least within each oceanic basin, in highly 

migratory species, such as YFT (Ward, 2000). 

Regarding the different genetic markers employed for revealing population structure in marine 

fish species, microsatellites have become the marker of choice in the last decade, according to the 

high polymorphism. These markers are highly variable and are characterized by short tandemly 

repeated di-, tri-, or tetra-nucleotide sequences of 1–6 bp, which have a characteristic mutational 

behaviour (Kelkar et al., 2010). They have a high allelic diversity and are widely distributed across 

the nuclear genomes of eukaryotes (Bhargava and Fuentes, 2010). The repetitive elements are 

typically composed by 2-4 nucleotides (DeWoody and Avise, 2000) and the dinucleotide repeats -

GT- and -CA- are considered the most common microsatellites in vertebrates (Zardoya and Mayer, 

1996). Moreover, these markers are characterized by a relative ease of transfer between closely 

related species (Guichoux et al., 2011). The high rate of variation in microsatellite is explained by 

the strand slippage (slipped strand mispairing) during DNA replication and unequal crossing-over 

during recombination, which is manifested by a change of repeat unit(s) (Levinson and Gutman, 

1987). The stepwise mutation model (SMM), in which each mutational event is reflected by the 

addition or the loss of a single repeat unit, is the most applicable theoretical description of the 

microsatellite mutation process (Slatkin, 1995). The direct consequence of SMM is the higher 

homoplasy for microsatellites, because of their allele size constraints and high mutation rates 

(Estoup et al., 2002), compared to other markers, which is often cited as a significant drawback in 

the use of microsatellites as genetic markers (Estoup et al., 2002). Briefly, homoplasy occurs when 

two individuals with different ancestries at a locus mutate to the same allele and become identical 

only in state, and not by descent. Moreover, because microsatellites are exclusively genotyped by 

amplicon length variation, extra causes of homoplasy, that would otherwise be detectable by 

 

Figure 3.1. The fixation indices used to estimate the differentiation of 
populations (FST), inbreeding within sub-populations (FIS), and genetic 

diversity of an entire species (FIT). 
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direct sequencing, need to be considered (Putman and Carbone, 2014). Another common issue in 

using microsatellite loci is represented by the presence of null alleles, which are variation in the 

nucleotide sequences of flanking regions that may prevent the primer annealing to template DNA 

during amplification of the microsatellite locus by PCR. As consequence, the heterozygote will 

show a homozygote profile, while the homozygote, for the null allele, will not produce any 

amplicon. 

To date, there are only few published microsatellites studies on YFT stock structure and most of 

them were focused on the Pacific Ocean. In the first work, Appleyard et al., (2001) used five 

dinucleotide microsatellite loci for investigating the YFT population structure within the Pacific 

Ocean, indicating the total absence of genetic differentiation between the eastern and the 

western samples. Later, Dìaz-Jaimes and Uribe-Alcocer (2006), focusing only on the population 

structure in the Eastern Pacific Ocean, employed seven microsatellite markers. Although their 

results suggested the existence of discrete northern and southern populations separated by the 

equator, the authors cautioned, however, that this spatial differentiation could be just related to 

the temporal variation or to the non-random sampling (Diaz-Jaimes and Uribe-Alcocer, 2006). 

More recently, significant genetic differentiation was detected between central and western 

Pacific samples (FST = 0.034; p value = 0.016) using nine microsatellite loci (Aguila et al., 2015) and 

in the north-western part around Sri Lanka (Dammannagoda et al., 2008), employing three 

microsatellite loci together with the mitochondrial ATPase. 

Given the importance of the proper characterization of the genetic population structure and the 

paucity of published microsatellite studies on YFT, especially at wide geographical scale, in this 

Chapter YFT global population structure was inferred from a panel of microsatellite loci. 

 

3.2 Materials and methods 

3.2.1 Microsatellites loci and genotyping 

In this study we used 14 microsatellite loci and 163 individuals from five geographic population 

samples (Fig. 3.2 and Table 3.1).  



 
 

61 

 

Fig. 3.2. Location of Thunnus albacares geographical population samples analyzed in this study.  
 

 

Table 3.1_The table summarizes the corresponding sample codes and the number of individuals analysed 
 per sample.  

Sampling location Sample code N° of individuals 

WC Pacific Ocean 71_2 30 

E Pacific Ocean 77_2 37 

E Atlantic Ocean 34_2 33 

W Atlantic Ocean 41_1 32 

W Indian Ocean 51_2 31 

 

These samples were genotyped at the University of Bologna (GenoDream laboratory) using eight 

species-specific markers recently isolated for YFT by Antoni et al., (2014) and at CSIRO (Marine and 

Atmospheric Research; Hobart, Australia) using other six loci isolated for Thunnus maccoyii 

(Southern Bluefin tuna; SBT; Peter Grewe, personal communication). Among the different loci 

published by Antoni et al., (2014), we chose those with the same annealing temperature in order 

to perform multiplex amplifications with the QIAGEN Multiplex kit. The forward primer of each 

locus was labeled with a fluorescent probe for allowing the simultaneous electrophoretic run of 

more fragments in the same capillary of the automatic sequencer. These different fluorophore-

labelled primers were chosen depending on their different fragments' size. Two multiplex 

reactions with four loci each (Multiplex 1 and Multiplex 2; Table 3.2) were optimized, after 

performing the preliminary optimization of PCR conditions with a few individuals. 
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For each reaction, 2 μL of DNA were amplified in a 10 μL final volume with the following 

concentrations: Master mix Quiagen 1X and primers Forward and Reverse 0.20 μM each. 

The Master mix contains also pre-optimized concentrations of HotStarTaq DNA Polymerase, 

MgCl2, dNTPs and Polymerase buffer. PCR amplifications were carried out in a T-Gradient 

thermocycler (Biometra) and the same temperature profile was used for all of the loci. Following 

Qiagen’s guidelines the thermal profile consisted of: 1) an initial heat activation step at 95 °C for 

15 minutes; 2) 35 cycles (denaturation: 94°C for 30 seconds, annealing: 62°C for 90 seconds, 

extension: 72°C for 90 seconds); 3) final extension: 72 °C for 10 minutes. 

The success of the PCR reactions was verified by 1.8% agarose gel electrophoresis (0.5X TAE (20 

mM Tris, 10 mM acetic acid, 0.5 mM EDTA, pH 8)), at 3 V/cm for 30 minutes. 

The fragment analysis was performed by a commercial provider (Macrogen Inc, Seoul, Korea), 

using the GS-500LIZ size standard. The data obtained were analyzed by using the software PEAK 

SCANNER 1.0 (Applied Biosystems). 

 

Table 3.2. Microsatellite panel: Locus: name of the locus; Repeat: motif repeat; Primer sequence: sequence 
composition; AT: Annealing temperature; Label: sample labeling dyes. 
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3.2.2 Allele calling (binning) 

The next step consisted in assigning an integer, or bin, to the alleles observed according to their 

length in base pairs (bp). In order to optimize the binning phase and to obtain reliable binned 

values from the raw dataset, we used the software TANDEM (Matschiner and Salzburger, 2009). 

This software operates through an algorithm that fills a gap of the microsatellite workflow by 

rounding allele sizes to valid integers, depending on the microsatellite repeat units. The module 

repeat was manually established on the basis of loci motifs. For the other six microsatellite loci 

isolated for SBT, allele calling and the binning were carried out at CSIRO using the software 

GeneMapper 4. Finally, the two datasets were integrated for analyzing the genetic differentiation 

between and within geographic samples. 

 

3.2.3 Data analysis 

Prior to the genetic differentiation analyses, MICROCHECKER ver. 2.2.3 (van Oosterhout et al., 

2004) was used to identify scoring errors as null alleles, stutter and large allele drop-out. After this 

quality check, the dataset was imported (in txt format) into the software GENETIX 4.05.2 (Belkhir 

et al., 1996) to create the input file for the software FSTAT (Goudet, 2001). Using this software, it 

was possible to estimate the overall genetic diversity, mean number of alleles per locus (A), 

observed heterozygosity (Ho) and expected heterozygosity (He) per each locus and population, 

mean and single-population estimation of allelic richness per locus, and inbreeding coefficient (FIS) 

for each population. The probabilities of Hardy-Weinberg equilibrium for each locus within each 

population were estimated using the exact probability test, by using the software GENEPOP (on 

line version 4.2; Raymond and Rousset, 1995; Rousset, F., 2008). Moreover, Jackknifing over loci 

(GENETIX 4.05.2) was carried out for examining single-locus effects of all microsatellites loci, using 

the Weir & Cockerham’s F-statistics estimators. Pairwise FST estimates and analysis of molecular 

variance (AMOVA), with 20,000 permutations and a significance level of 0,01, were obtained by 

using the software ARLEQUIN 3.5.1.2 (Excoffier and Lischer, 2010). 

STRUCTURE software (v2.3.4; Pritchard et al., 2000; Hubisz et al., 2009), which employs a Bayesian 

model-based clustering algorithm, was used to further investigate the population structure, 

without making any a priori assumptions on the possible existence of different populations, and to 

estimate the extent of admixture by individuals and populations. The determination of the most 

likely number of homogenous population (K) and the estimation of the posterior probability 
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represent two fundamental steps for the correct setting of STRUCTURE algorithm. K value is based 

on the best adaptation of the genotypic data under the conditions of minimizing divergence from 

Hardy-Weinberg equilibrium and minimal degree of linkage disequilibrium. The posterior 

probability depends on the likelihood that each individual’s genotype belongs to each defined 

cluster. On the y-axis of the resulting barplot is described the membership percentage value for 

each individual to a given cluster. This analysis was carried out assuming an admixture ancestry 

model with the geographical origin of samples as prior information (LOCPRIOR models), associated 

with a correlated allele frequencies model. For each simulation of K (1-12), ten independent 

replicates were run, setting a burn-in period of 50,000 iterations and 100,000 iterations for the 

MCMC. The assessment of the number of cluster K was inferred using Evanno’s Δk and Pritchard’s 

average log probability methods (Pritchard et al., 2000; Evanno et al., 2005), both implemented in 

the STRUCTURE HARVESTER v.0.6.93 web application (Earl and Von Holdt, 2012). 

 

3.3 Results 

The results of the MICROCHECKER analysis indicated the presence of null alleles in samples 71-2-Y 

(at loci YT12, YT29, YT84), 77-2-Y (at loci YT12, YT84), 34-2-Y (at loci YT12 and YT84), 41-1-Y (at loci 

YT12, YT29 and YT84) and 51-2-Y (at loci YT12 and YT84). However, no stuttering problems or large 

dropout were detected as summarized in Table 3.3. 



 
 

65 

Table 3.3_MICROCHECKER Scoring errors test: NA= Null allele presence, ST= Stuttering LD= Large Allele Dropout. 

SCORING ERRORS 71-2  77-2  34-2  41-1  51-2  

YT4 0 0 0 0 0 

YT87 0 0 0 0 0 

YT111 0 0 0 0 0 

YT29 NA 0 0 NA 0 

YT92 0 0 0 0 0 

YT121 0 0 0 0 0 

YT84 NA NA NA NA NA 

YT12 NA NA NA NA NA 

D235 0 0 0 0 0 

3D4 0 0 0 0 0 

D4D6 0 0 0 0 0 

D10 0 0 0 0 0 

D12 0 0 0 0 0 

D211 0 0 0 0 0 

 

Since the presence of null alleles in all samples, the loci YT12 and YT84 were removed from the 

dataset before going further with the analyses. The resulting dataset consisted of 163 individuals 

and 12 loci, which were all polymorphic. Locus YTD211 (Fig. 3.3) showed the lowest number of 

alleles (8) while YT111 the highest (26).  
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Fig. 3.3_Plots of: 1) sample size; 2) number of alleles per locus; 3) number of alleles per sample. 

In order to compare different samples with different size, we calculate the allelic richness (Ar), 

which provides a measure of the number of alleles standardized to smaller sample size in our 

dataset (Table 3.4). All five geographic samples analyzed have a similar mean number of alleles per 

locus, ranging from 16.66 (34-2-Y) to 17.58 (51-2-Y) and a mean value of allele richness ranging 

from 15.78 (34-2-Y) to 16.86 (51-2-Y). 
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Table 3.4_Number of alleles (An) on the left compared with Allelic richness (Ar) on the right per each locus per each 
population sample. 

An 71-2-Y 77-2-Y 34-2-Y 41-1-Y 51-2-Y Ar 71-2-Y 77-2-Y 34-2-Y 41-1-Y 51-2-Y 

YT4 15 18 16 17 15 YT4 14.65 16.38 15.20 16.28 14.44 

YT87 10 11 12 10 12 YT87 9.77 10.10 11.20 9.90 11.20 

YT111 19 24 24 21 25 YT111 18.48 21.09 22.34 19.76 23.40 

YT29 17 18 15 16 18 YT29 16.76 16.19 14.49 15.75 17.18 

YT92 11 11 7 10 10 YT92 10.30 9.74 6.64 9.22 9.71 

YT121 23 22 23 24 23 YT121 22.14 19.51 21.78 22.26 22.13 

D235 18 15 16 18 16 D235 17.48 14.16 15.32 17.35 15.44 

3D4 11 10 10 12 12 3D4 10.58 9.17 9.42 12.00 11.81 

D4D6 23 24 24 21 21 D4D6 22.43 21.88 22.55 21.00 20.36 

D10 26 28 25 25 27 D10 26.00 24.86 23.35 23.77 25.66 

D12 18 17 16 18 20 D12 17.51 15.63 15.61 17.82 19.17 

D211 10 12 12 11 12 D211 9.89 11.32 11.39 10.71 11.85 

 

The mean observed heterozygosity ranged from 0.82 (71-2-Y) to 0.88 (41-1-Y) instead the lower 

Ho value (0.60) was detected at loci YT87 and 3D4 in sample 71-2-Y, while the highest value (1.00) 

was identified at locus D4D6 in sample 41-1-Y. After Bonferroni correction, deviations from HWE 

were detected only at locus YT4 (in sample 41-1-Y) and at locus D12 (in sample 77-2-Y) (Appendix 

3.2). The Jackknife test showed that all of the loci have similar F statistics values, confirming their 

reliability for this study (Table 3.5).  
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Table 3.5_Jackknife statistics analysis used for variance and bias estimation: FIS; FIT; FST. 
Jackknife FIS FIT FST 

YT4 0.03036 0.03093 0.00059 

YT87 0.03388 0.03478 0.00093 

YT111 0.02949 0.02997 0.0005 

YT29 0.02997 0.03006 0.00009 

YT92 0.03273 0.03348 0.00078 

YT121 0.03288 0.03418 0.00135 

D235 0.03314 0.03458 0.00149 

3D4 0.02653 0.02809 0.0016 

D4D6 0.03035 0.03145 0.00113 

D10 0.03244 0.03345 0.00104 

D12 0.02471 0.02592 0.00125 

D211 0.03186 0.03287 0.00104 

Mean (±SD) 0.03076 (±0.008) 0.03171 (±0.008) 0.00098 (±0.001) 

 

Pairwise Fst analysis did not reveal any significant divergence among population samples (FST = 

0.00076, P value > 0.05) (Table 3.6). In fact, as pointed out by the analysis of molecular variance 

(AMOVA; Table 3.7) more than 99% of the variation was explained within samples. 
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Table 3.6_Pairwise FST values calculated among population samples of yellowfin tuna are reported (below diagonal) 
with their associated P-values (below diagonal). NS: not significant. 

 71-2-Y 77-2-Y 34-2-Y 41-1-Y 51-2-Y 

71-2-Y * NS NS NS NS 

77-2-Y 0.00066 * NS NS NS 

34-2-Y 0.00134 -0.00038 * NS NS 

41-1-Y 0.00107 -0.00024 -0.00302 * NS 

51-2-Y 0.00032 0.00012 0.00111 0.00372 * 

 

Table 3.7_AMOVA statistical analysis. 

Source of variation Variation (%) Fixation index Pvalue 

Between Oceans 0.20 0.00076 0.43657 

Within Oceans -0.12 -0.00121 0.80546 

Within samples 99.92 0.00198 0.43657 

 

YFT population structure was further investigated running the software STRUCTURE (Table 3.8). 
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Table 3.8_STRUCTURE HARVESTER summary. 

K Reps MeanLnP(K) Stdev LnP(K) Ln'(K) |Ln''(K)| ΔK 

1 10 -10282.9400 1.8338 - - - 

2 10 -10291.8600 14.5011 -8.920000 295.520000 20.379090 

3 10 -10596.3000 181.1186 -304.440000 318.320000 1.757523 

4 10 -10582.4200 269.5946 13.880000 357.860000 1.327400 

5 10 -10926.4000 558.5932 -343.980000 123.600000 0.221270 

6 10 -11146.7800 1078.4448 -220.380000 30.940000 0.028689 

7 10 -11398.1000 440.7671 -251.320000 853.680000 1.936805 

8 10 -12503.1000 929.5943 -1105.000000 1099.560000 1.182839 

9 10 -12508.5400 1086.1228 -5.440000 357.760000 0.329392 

10 10 -12871.7400 1830.7899 -363.200000 1161.140000 0.634229 

11 10 -12073.8000 730.3310 797.940000 1405.200000 1.924059 

12 10 -12681.0600 1215.6994 -607.260000 - - 

 

The number of clusters (K) that best fit our data was inferred with the Pritchard method (Pritchard 

et al., 2000). This approach analyzes LnP(K) trends (the logarithm of the probability of the data 

given K), identifying the possible K value as the nearest value to the “plateau” (Fig. 3.4). In fact, if 

several values of K give similar estimates of LnP(K), the smallest seems to be the most real. Any 

“plateau” was detected in our analysis, suggesting the lack of samples differentiation (Fig. 3.4). 
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Figure 3.4. LnP(K) and Evanno’s absolut ΔK graph graphs. 

 

According to Evanno et al., (2005) the likely number of K populations can also be inferred by 

correlating the second rates of change of LnP” (K) with K (ΔK). This method seems to show a clear 

peak at the true value of K. In Fig. 3.4 ΔK values are compared to the K value obtained in this 

study, which indicated a maximum ΔK value at K=2. However, this result is not consistent with the 

previous LnP(K) assessment, representing a not realistic picture of YFT population structure 

revealed in the present study. In fact, as clearly shown in the resulting barplot, at K=2 it does not 

correspond any structuring between YFT samples (Fig.3.5). 
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Fig. 3.5_ Estimated membership fraction of individuals from the five sampling areas. 

 

3.4 Discussion and conclusions 

In this study the global genetic population structure of YFT was inferred from microsatellite loci. 

All the population samples considered in this study showed a high genetic diversity, with mean 

observed and expected heterozygosity per locus and per population equivalent to 0.854 and 

0.882, respectively. All markers were polymorphic with the mean number of alleles per locus and 

per population of 17.08. Significant deviations from Hardy-Weinberg equilibrium expectations 

(after Bonferroni correction) were detected at locus YFT4 in the sample 41-1-Y and at locus D12 in 

the sample 77-2-Y. 

Our results showed almost null and not significant levels of genetic differentiation at both intra- 

and inter-oceanic levels, indicating a not significant rate of differentiation between YFT samples 

collected from the three oceanic basins and supporting the presence of one panmictic population 

worldwide. The absence of genetic differentiation, especially between Atlantic and Indo-Pacific 

Oceans, is in contrast with the distribution patterns identified in other tuna and tuna-like species, 

for which the Cape of Good Hope represents a potential genetic point break, causing significant 
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genetic drift. For instance, this pattern has been underlined in BET Thunnus obesus (Alvarado-

Bremer et al., 1998; Chow et al., 2000; Martinez et al., 2006; Chiang et al., 2008) as well as in 

Makaira nigricans (Finnerty and Block, 1992; Graves and McDowell, 1995), Xiphias gladius 

(Alvarado Bremer et al., 1996; Chow et al., 1997; Chow and Takeyama, 2000), Istiophorus albicans 

(Graves and McDowell, 1995) and Thunnus alalunga (Chow and Ushiyama, 1995). However, the 

genetic differentiation between Atlantic and Indo-Pacific Oceans could reflect inter-oceanic 

migrations occurred in the past as underlined by the presence of “Pacific” mitochondrial DNA 

clades in Atlantic sub-populations of many tuna species (Alvarado-Bremer et al., 1998). 

Our results have confirmed the patterns of homogeneity previously revealed in other studies (Ely 

et al., 2005; Appleyard et al., 2001), suggesting that the lack of genetic differentiation at both 

intra- and inter-oceanic levels could be related to a higher gene flow in YFT comparing to other 

pelagic species. Such issue also reflects a large effective population size (Ne). However, this 

hypothesis has not been confirmed by any studies so far. 

A second possible explanation of the absence of genetic differentiation observed here, could be 

associated to the more recent time, compared to other pelagic species, since YFT population 

expansion began. Doing so, the separation time among populations was not enough to make them 

reproductively isolated. This alternative explanation was rejected by Ely et al., (2005), according to 

the calculation of YFT expansion for the hypervariable control region I (CR-I). The authors, 

considering a conservative mutation rate of 4.9% per million years, a generation time of 3.5 years 

and the tau value of 8.52, assumed that the YFT expansion started about 522,000 years ago. Using 
the same mutation rate, the authors suggested that a similar or even shorter time for other 

species, such as Xiphias gladius or Thunnus thynnus, was enough to explain their genetic 

differentiation between Atlantic and Mediterranean populations. So even this second hypothesis 

can be rejected for explaining the homogeneity revealed among oceans. 

A third and more consistent explanation of lack of genetic differentiation at the global scale, in 

contrast with the results of some recent studies (Dammanagoda et al., 2008; Kunal et al., 2013; Li 

et al., 2015; Pecoraro et al., 2016; Grewe et al., 2015), may be linked to the inadequate resolution 

power of the markers used in the present study. In fact, although Antoni et al., (2014) stated that 

their six markers employed here are reliable for forthcoming YFT conservation studies, our results 

pointed out their inefficiency in detecting possible genetic differentiation among geographic 

population samples at the global scale. Even though, in this study we confirmed the relative ease 

of transfer of microsatellite loci between closely related species, especially within the genus 
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Thunnus, however the same discussion about the markers’ inefficiency can be extended to the 

other six markers, recently isolated and still unpublished for Southern Bluefin tuna by P. Grewe at 

CSIRO. 

In conclusion, our results cannot reject the null hypothesis of the existence of only one panmictic 

population at the global scale. According to the contrasting information gathered from other 

studies so far, there is a need to develop appropriate and non-neutral (adaptive) DNA markers (i.e. 

SNPs) to investigate YFT population structure both at the local and also at the global scale. In fact, 

a major hazard of assuming global and local panmixia, due to the markers’ inability in pointing out 

possible genetic differentiation, is the over-exploitation of some populations with profound 

implications for their management and conservation. 
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Appendix 2.1  
Allelic frequencies of the 12 microsatellites analyzed 

LOCUS Geographic samples 
 

71-2-Y 77-2-Y 34-2-Y 41-1-Y 51-2-Y 

  
YT4      
(N) 30 37 33 32 31 

Allele      
200    0.0313 0.0161 
202  0.0405 0.0152 0.0156  
206  0.0135  0.0156  
208  0.0135   0.0161 
210 0.1667 0.1757 0.1061 0.2188 0.2419 
212 0.0833 0.0946 0.0606 0.0313 0.1129 
214 0.0333 0.0135   0.0484 
216 0.1 0.0541 0.0758 0.0625 0.0484 
218 0.0333 0.0405 0.1364 0.0781 0.0323 
220 0.2 0.1892 0.0909 0.125 0.1452 
222 0.1167 0.027 0.0303 0.0625 0.0645 
224 0.0167 0.0541 0.0152 0.0313 0.1129 
226 0.0833 0.0405 0.1212 0.0156 0.0645 
228  0.0676 0.0152 0.0469 0.0161 
230 0.0167 0.0135 0.0606 0.0313 0.0323 
232 0.0333 0.027 0.0606 0.0469  
234 0.0333 0.0946 0.1212 0.125 0.0161 
236  0.0135  0.0469 0.0323 
238 0.0333 0.027 0.0455   
242    0.0156  
244 0.0333  0.0152   
246   0.0303   
250 0.0167     

      
YT87      
(N) 30 37 33 32 31 

Allele      
269 0.65 0.5135 0.5606 0.5156 0.5484 
273  0.0676 0.0455 0.0313 0.0484 
277 0.05 0.0676 0.0758 0.0469 0.129 
281 0.05 0.0405 0.0152  0.0323 
285 0.0833 0.0541 0.0455 0.0625 0.0323 
289 0.0167 0.0811 0.0909 0.1406 0.0161 
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293 0.0333 0.0135  0.0313 0.0161 
295     0.0161 
297 0.0333 0.1081 0.0606 0.0313 0.1129 
301 0.0333  0.0303 0.0625 0.0161 
305 0.0333 0.027 0.0152 0.0469  
309   0.0152   
313  0.0135 0.0152  0.0161 
317  0.0135  0.0313  
321 0.0167     
325   0.0303   
329     0.0161 

      
YT111      

(N) 30 37 33 32 31 
Allele      
144 0.0333     
156    0.0156  
158  0.027 0.0303   
160  0.027    
162 0.05  0.0152 0.0469  
164   0.0303 0.0156 0.0645 
166 0.0167 0.0405 0.0152 0.0469 0.0161 
168 0.05 0.027 0.0303 0.0156  
170 0.0667 0.1081 0.0606 0.0469 0.1129 
172  0.0405 0.0758 0.0313  
174 0.0667 0.0811 0.0152 0.0625 0.0806 
176 0.0833 0.1351 0.1818 0.1719 0.0645 
178 0.1167 0.0811 0.0303 0.1719 0.0645 
180 0.0667 0.0135 0.0606 0.0156 0.0161 
182 0.0167 0.027 0.0152   
184  0.0135 0.0455  0.0161 
186 0.0667 0.0135 0.0303 0.0313 0.0323 
188 0.05 0.1081 0.0455 0.0313 0.0484 
190 0.0667 0.0135  0.0156 0.0806 
192 0.0167 0.027 0.0606 0.0938 0.0161 
194 0.1167 0.0135 0.0455 0.0625 0.0323 
196  0.0811 0.0303 0.0313 0.0161 
198   0.0606 0.0156 0.0645 
200 0.05 0.027 0.0606 0.0313 0.0806 
202 0.0333 0.0405 0.0152 0.0313 0.0484 
204    0.0156  
206 0.0167 0.0135    
208     0.0161 
212   0.0152  0.0161 
214  0.0135    
216  0.0135    
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218     0.0161 
222     0.0161 
224     0.0161 
226  0.0135    
228     0.0161 
238   0.0152   
260 0.0167     
262   0.0152   
264     0.0161 
268     0.0323 

      
YT29      
(N) 30 37 33 28 31 

Allele      
161    0.0179  
163    0.0714  
165  0.0135    
167  0.0135    
171 0.0333     
173    0.0179  
177 0.0667 0.0405 0.0303 0.0179 0.0484 
179 0.05 0.1081 0.2273 0.3214 0.0806 
185 0.1167 0.1081 0.1212 0.0357 0.2097 
187     0.0161 
189 0.1 0.0541 0.0909 0.0714 0.0806 
191 0.0333 0.0541   0.0161 
193 0.0667 0.027 0.0303 0.0179 0.0161 
195 0.0333   0.0179  
197   0.0152  0.0161 
199 0.0667 0.0405 0.0455 0.0179 0.0323 
201 0.05 0.1081 0.0455 0.0714 0.0161 
203 0.0667 0.027 0.0303 0.0536 0.0323 
205 0.15 0.1622 0.1515 0.1071 0.129 
207 0.0667 0.1081 0.0455 0.1071 0.0806 
209 0.0333 0.0811 0.0455  0.0806 
211 0.0333 0.0135 0.0758 0.0357 0.0484 
213 0.0167  0.0303 0.0179 0.0323 
215 0.0167 0.0135   0.0484 
217  0.0135    
219   0.0152  0.0161 
223  0.0135    

      
YT92      
(N) 30 37 33 32 31 

Allele      
204 0.0167     
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206    0.0156  
208 0.0167   0.0156  
210 0.0167    0.0161 
212 0.0167    0.0484 
214 0.0167 0.0676 0.0909 0.1094 0.0161 
216 0.0167 0.0135 0.0152  0.0323 
218 0.4833 0.4595 0.4545 0.2656 0.4194 
220 0.2167 0.2838 0.2576 0.3125 0.2419 
222 0.0833 0.0405 0.0758 0.1094 0.0806 
224 0.1 0.0405 0.0909 0.125 0.0645 
226 0.0167 0.027    
228  0.027  0.0156 0.0323 
230  0.0135    
232  0.0135  0.0156  
234   0.0152  0.0484 
238  0.0135  0.0156  

      
YT121      

(N) 30 37 33 32 31 
Allele      
148 0.0167     
150     0.0323 
154 0.0167 0.027 0.0455 0.0313 0.0484 
156 0.0667 0.1351 0.0758 0.0313 0.0645 
158 0.0167 0.0405 0.0455 0.0313 0.0484 
160 0.0833 0.1216 0.0606 0.1406 0.0645 
162 0.1333 0.1351 0.0758 0.1406 0.1129 
164 0.0667 0.0541 0.0758 0.0781 0.0645 
166 0.0333 0.0405  0.0313 0.0806 
168 0.1333 0.0811 0.0758 0.125 0.0806 
170 0.0167 0.0541 0.0455 0.0313 0.0323 
172 0.0333  0.0152 0.0313  
174  0.027  0.0156  
176 0.0333  0.0303 0.0156 0.0161 
178 0.0167  0.0455 0.0156 0.0484 
180 0.0333 0.0541 0.0455 0.0156 0.0323 
182  0.027 0.0455 0.0156 0.0323 
184 0.05 0.0135 0.0758 0.0156 0.0161 
186 0.0333 0.0676 0.0455 0.0625 0.0161 
188 0.05 0.0135 0.0152 0.0313 0.0484 
190   0.0303  0.0484 
192   0.0606 0.0156 0.0161 
194  0.0135  0.0156  
198 0.05    0.0323 
200 0.0333 0.027  0.0156  
202 0.0333  0.0152 0.0313 0.0323 
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204   0.0152  0.0161 
206 0.0167 0.0135 0.0152 0.0469  
208 0.0167  0.0303   
210   0.0152   
212  0.0135    
214 0.0167 0.0135   0.0161 
216  0.0135  0.0156  
222  0.0135    

      
D235      
(N) 30 37 32 31 31 

Allele      
174    0.0161  
178   0.0469 0.0161 0.0323 
182 0.0167  0.0156 0.0161 0.0323 
186 0.0167   0.0161  
190 0.0333 0.0676 0.0781 0.0645 0.0806 
194 0.0667 0.0405 0.0313 0.0645 0.0645 
198 0.05 0.0541 0.1563 0.0645 0.0161 
202 0.05 0.0541 0.0313 0.0645 0.0806 
206 0.0667 0.0676 0.1094 0.0645 0.0968 
210 0.0667 0.0946 0.0469 0.0484 0.0645 
214 0.1333 0.0946 0.0781 0.1129 0.0645 
218 0.0667 0.0811 0.1094 0.0484 0.129 
222 0.1 0.1622 0.1094 0.129 0.1613 
226 0.1 0.0811 0.0781 0.0484 0.0968 
230 0.1 0.0946 0.0625 0.0806 0.0323 
234 0.0333 0.0676 0.0156 0.0645 0.0161 
238  0.0135 0.0156 0.0161  
242 0.05 0.0135 0.0156 0.0645  
246 0.0167     
250     0.0161 
254 0.0167 0.0135   0.0161 
262 0.0167     

      
3D4      
(N) 30 36 33 27 31 

Allele      
212   0.0152   
228 0.0167 0.0556 0.0606 0.0556 0.0484 
232 0.45 0.4167 0.4091 0.3704 0.371 
236 0.0667 0.0139 0.0909 0.0741 0.0645 
240 0.0333 0.0278 0.1061 0.1111 0.0806 
244 0.0167    0.0323 
248 0.1667 0.125 0.0758 0.0926 0.0645 
252 0.15 0.2361 0.1818 0.1667 0.1774 
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256 0.0333 0.0556 0.0303 0.0185 0.0484 
260  0.0417 0.0152 0.037 0.0323 
264 0.0167     
268     0.0323 
272 0.0167 0.0139 0.0152 0.0185 0.0323 
276     0.0161 
280    0.0185  
284    0.0185  
288 0.0333 0.0139    
292    0.0185  

      
D4D6      

(N) 29 37 33 27 30 
Allele      
310 0.0345  0.0152 0.0556 0.0167 
314 0.0172 0.027 0.0455 0.0185  
318 0.1034 0.0811 0.0909 0.0556  
322 0.069 0.0541 0.0455 0.037 0.0833 
326  0.027 0.0152  0.0167 
334 0.0172 0.0811 0.0758 0.037 0.0833 
338 0.069 0.0405 0.0152 0.037 0.0167 
342 0.0345 0.0541 0.0303 0.0741 0.05 
346 0.0345 0.0541 0.0606 0.037 0.05 
350 0.0517 0.027 0.0152 0.0556 0.0333 
354 0.0345  0.0152 0.0185 0.05 
358  0.0135 0.0455  0.05 
362 0.069  0.0303 0.0556  
366  0.0405 0.0303 0.0185 0.0167 
370 0.0345 0.0676 0.0758 0.0556 0.0333 
374 0.069  0.0303 0.037 0.05 
378 0.0172 0.027 0.0152  0.0167 
382 0.1034 0.0541 0.0303 0.0556  
386 0.0345 0.0541 0.0606 0.037 0.0833 
390 0.0172 0.1351 0.0909 0.0741 0.0333 
394 0.069 0.0405 0.0455 0.1111 0.1167 
398 0.0517 0.027 0.0606 0.0741 0.05 
402 0.0172 0.027 0.0455 0.037 0.1 
406 0.0172  0.0152 0.0185 0.0333 
410  0.0135    
418  0.0135    
422     0.0167 
434  0.0135    
438 0.0172     
450  0.0135    
490  0.0135    
498 0.0172     
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D10      
(N) 27 37 33 31 30 

Allele      
244   0.0152   
260     0.0167 
276 0.0185     
280 0.0185 0.0135    
292 0.0185     
296 0.0185 0.0135 0.0152 0.0161  
300  0.0135 0.0606 0.0484  
304 0.0556 0.027 0.0303  0.05 
308 0.0185 0.027 0.0303 0.0484 0.0333 
312  0.0405 0.0303 0.0645 0.0167 
316 0.037 0.0405 0.0455 0.0161 0.0333 
320 0.037 0.027 0.0606 0.0806 0.05 
324 0.0556 0.0676 0.0303 0.0645 0.0167 
328   0.0606 0.0161 0.05 
332 0.0185 0.0811 0.1061 0.0806 0.05 
336 0.0556 0.0676 0.0606 0.0161 0.1 
340 0.0185 0.0946 0.0303 0.0161 0.0167 
344 0.037 0.0405 0.0758 0.0323 0.0167 
348 0.037 0.027 0.0152 0.0161 0.0167 
352 0.0556 0.1081 0.0606 0.0645 0.0167 
356 0.037 0.0405 0.0606 0.0484 0.0833 
360 0.1111 0.0135 0.0303 0.0161 0.05 
364 0.0741 0.027 0.0455 0.0645 0.0833 
368 0.0741 0.027 0.0152 0.0645 0.0667 
372  0.0135 0.0152 0.0484 0.0667 
376 0.0185 0.0135 0.0606 0.0323 0.0333 
380  0.0135 0.0152 0.0484 0.0167 
384 0.0556 0.027  0.0323 0.0167 
388  0.027   0.0167 
392 0.0185  0.0152  0.0167 
396 0.037 0.0541    
400 0.037   0.0323  
404 0.0185 0.0135   0.0333 
408  0.027   0.0167 
412   0.0152   
416    0.0161  
420     0.0167 
424 0.0185   0.0161  
448  0.0135    

      
D12      
(N) 29 37 32 28 30 
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Allele      
248 0.0172    0 
292     0.0167 
316  0.0135    
320 0.0172 0.027   0.0333 
324  0.0541 0.0469 0.0714 0.05 
328    0.0179  
332 0.0345 0.027 0.0938 0.0179 0.0667 
336 0.0862 0.0676 0.0938 0.0893 0.0167 
340 0.069 0.0676 0.0625 0.0714 0.0167 
344 0.0517 0.0946 0.0781 0.1429 0.0167 
348 0.1034 0.1486 0.0625 0.1071 0.1 
352 0.1207 0.0676 0.1094 0.0536 0.1167 
356 0.1379 0.1351 0.1406 0.0714 0.0833 
360 0.1034 0.1486 0.0625 0.0714 0.15 
364 0.0862 0.027 0.0313 0.0714 0.0333 
368 0.0172 0.027 0.0313 0.0179 0.0833 
372 0.0345  0.0781 0.0357 0.0667 
376 0.0172 0.0541 0.0156 0.0179 0.05 
380 0.0172 0.0135 0.0469 0.0536 0.0333 
384 0.0517  0.0156 0.0357 0.0167 
388 0.0172   0.0179 0.0167 
392 0.0172   0.0357  
396     0.0167 
400  0.0135 0.0313   
408  0.0135   0.0167 

      
D211      
(N) 30 37 33 31 31 

Allele      
171   0.0152   
183 0.0167  0.0303 0.0161 0.0484 
187 0.0667 0.0135 0.0152 0.0323 0.0484 
191 0.1 0.0946 0.0606 0.0806 0.0806 
195 0.1167 0.2027 0.1515 0.129 0.0968 
199 0.1333 0.1351 0.1515 0.1935 0.1129 
203 0.1167 0.1351 0.2273 0.0806 0.129 
207 0.2333 0.0676 0.1364 0.1935 0.0968 
211 0.1167 0.1081 0.1212 0.1613 0.1935 
215 0.0667 0.0946 0.0455 0.0645 0.0806 
219 0.0333 0.0811 0.0303 0.0161 0.0645 
223  0.027 0.0152 0.0323 0.0161 
227  0.027   0.0323 
231 

 
 0.0135    



 
 

 

Appendix 2.2 
Genetic diversity estimates: Single-locus and mean values are given. N= number of samples analysed; Na= number of alleles; Ar= allelic 
richness; He (n.b) = expected non biased heterozygosity; Ho= observed heterozygosity; Fis= inbreeding coefficient. Bold and underlined 

values indicated a significant HW disequilibrium (P<0.05); Significance after sequential Bonferroni’s correction is described as follows: *P 
< 0.05; **P < 0.01. 
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0.87 

0.88 

12 

11.39 

1 

-0.01 

0.88 

0.87 

0.57 

0.01 

41_1 

31 

0.96 

0.97 

25 

23.77 

0.93 

0 

28 

0.94 

0.93 

18 

17.82 

0.86 

0.01 

31 

0.88 

0.84 

11 

10.71 

0.01 

0.04 

0.89 

0.88 

0.43 

0 

51_2 

30 

0.96 

0.97 

27 

25.66 

0.24 

0 

30 

0.94 

0.87 

20 

19.17 

0.15 

0.08 

31 

0.91 

0.9 

12 

11.85 

0.83 

0 

0.89 

0.86 

0.4 

0.04 
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Switching from genetics to 
genomics: 2b-RAD genotyping 

technique 
 
 
 

 
 



 
 

92 

Publication Note: 
This Chapter has been published in the journal “Marine Genomics”. doi: 

10.1016/j.margen.2015.12.002 
 

Title: Methodological assessment of 2b-RAD genotyping technique for population structure 
inferences in yellowfin tuna (Thunnus albacares) 
 
 

Authors: Carlo Pecoraroa,b*, Massimiliano Babbuccic, Adriana Villamora, Rafaella Franchc, Chiara 

Papettik, Bruno Leroyd, Sofia Ortega-Garciae, Jeff Muirf, Jay Rookerg, Freddy Arochah, Hilario 

Muruai, Iker Zudairej,b, Emmanuel Chassotb, Nathalie Bodinb, Fausto Tintia, Luca Bargellonic, Alessia 

Cariania 

 
Affiliations: 
a: University of Bologna, Dept. Biological, Geological and Environmental Sciences (BIGEA), Via 

Selmi 3, 40126 Bologna, Italy; 
b: Institut de Recherche pour le Développement (IRD), UMR MARBEC (IRD/Ifremer/UM2/CNRS) 

SFA, Fishing Port, BP570 Victoria, Seychelles; 
c: University of Padova, Comparative Biomedicine and Food Science, viale dell’Università 16, 

35020, Legnaro (PD), Italy;  
d: Secretariat of the Pacific Community, Oceanic Fishery Programme, BP D5, 98848 Noumea, New 

Caledonia; 
e: Instituto Politécnico Nacional-CICIMAR, Departamento de Pesquerias, Avenida IPN s/n, La Paz, 

BCS, Mexico; 
f: Pelagic Fisheries Research Program, University of Hawaii, Marine Science Building 312, Honolulu, 

Hawaii 96822, USA; 
g: Department of Marine Biology, Texas A&M University, 1001 Texas Clipper Road, Galveston, TX 

77553, USA; 
h: Instituto Oceanográfico de Venezuela, Universidad de Oriente, Avda. Universidad Cerro 

Colorado, Cumana 6101, Venezuela; 
i: AZTI, Marine Research Division, Herrera Kaia-Portualdea z/g, Pasaia, 20110 Gipuzkoa, Spain; 
j: Ikerbasque Fundazioa, Maria Diaz de Haro, 3-6°, Bilbao, 48013 Bizkaia, Spain; 
k: Section of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, 

Am Handelshafen 12, Bremerhaven 27570, Germany. 



 
 

93 

4.1 Introduction 

Yellowfin tuna (Thunnus albacares, YFT) has relevant biological and economic importance at the 

global scale, being an apex predator in oceanic ecosystem and representing the second largest 

tuna fishery worldwide (FIGIS, 2010-2015). Currently, YFT is managed in four distinct stocks under 

the jurisdiction of four independent Regional Fisheries Management Organizations (RFMOs). 

Although a proper fish stock management needs accurate knowledge on the stock structure and 

its genetic variation with respect to environmental and ecological conditions (Papetti et al., 2013), 

YFT genetic population structure has not been resolved yet. Different studies provided discordant 

patterns of YFT global-scale genetic differentiation (Ward et al., 1997; Ely et al., 2005; Appleyard et 

al., 2001), together with a genetic structuring detected at the regional level (Dammanagoda et al., 

2008; Kunal et al., 2013; Li et al., 2015). This discordance was likely due to the YFT life history traits 

(e.g. high fecundity, large population sizes), which make detecting patterns of genetic 

differentiation among population samples very difficult (Ely et al., 2005; Juan-Jordá et al., 2013). 

Moreover, population genetic studies reporting significant differences relied upon a relatively 

small number of molecular markers, hence, covering only a very limited portion of the genome 

(Appleyard et al., 2001; Díaz-Jaimes and Uribe-Alcocer, 2006). Failing to detect population 

structure, due to limited genetic resolution of classical markers, can potentially be misleading for 

management purposes, driving to local overfishing and severe stock decline (Ying et al., 2011). 
According to the uncertainty about both population structure and size of YFT stocks, there is an 

evident need for developing alternative approaches based on genomics, that allow screening a 

larger number of markers across the entire genome, including neutral and non-neutral loci. This 

might enable detecting YFT population structure, quantifying the extent of spatial demographic 

changes and discover imprints of local adaptation, which represent priority focus for implementing 

any effective management plan. 
The rapid advent of next-generation sequencing (NGS)-based genotyping methods has significantly 

improved our ability to analyse thousands of Single Nucleotide Polymorphism (SNP) markers 

across the entire genome, increasing the precision in detecting small genetic differentiation 

among geographical populations (Waples, 2008; Allendorf et al., 2010; Davey et al., 2011; Narum 

et al., 2013; Andrews and Luikart, 2014). Although SNPs are characterized by a low diversity due to 

the only four possible allelic states, this limitation is largely outweighed by their abundance, being 

as frequent as one SNP every few hundred base pairs (Morin et al., 2004; 2009). Moreover, SNPs 
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are becoming the marker of choice for many applications in population ecology, evolution and 

conservation genetics, having a high potential for genotyping efficiency, data quality and low-

scoring error rates, genome-wide coverage and analytical simplicity (Milano et al., 2014). 
Here, for the first time, we applied the 2b-RAD Genotyping-By-Sequencing (GBS) technique (Wang 

et al., 2012) for testing its potential for investigating population genetic structure in a non-model, 

large pelagic and highly migratory fish species. This novel genomic tool is based on sequencing 

reduced representation libraries produced by type IIB restriction endonucleases, which cleave 

genomic DNA upstream and downstream of their target site, generating tags of uniform length 

that are ideally suited for sequencing on existing NGS platforms (Wang et al., 2012). This method 

permits parallel and multiplexed sample sequencing of tag libraries for the rapid discovery of 

thousands of SNPs across the entire individuals' genome, with a very cost-effective procedure 

resulting in high genome coverage. The 2b-RAD method allows to screen in parallel almost every 

restriction site in the genome, whereas other GBS methods can only target a subset of total 

restriction sites to counterbalance loss of PCR amplification and sequencing efficiency due to large 

size of restriction fragments. This technique also allows fine-tuning the marker density by means 

of selective adapters in order to sequence fewer loci with higher coverage, for applications such as 

population genetics (Puritz et al., 2014; Andrews and Luikart, 2014). Given these attributes, the 

2b-RAD method has the potential to discriminate the existence of genetic differentiation with a 

high statistical power, generating genome-wide data for genetic structure analysis at different 

spatial scales for YFT populations. 
In this study, we: i) first examine the utility of Technical Replicates (TRs) for optimizing genotyping 

procedure, comparing the results obtained running the denovo_map.pl and the ref_map.pl 

programs in Stacks (Catchen et al., 2011; 2013); and ii) finally assess the applicability of 2b-RAD for 

future investigations in this highly migratory species. 
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4.2 Materials and methods 

4.2.1  Sampling design, libraries preparation and sequencing 

A total of 100 juvenile YFT (35-55 cm of fork length, FL) from Atlantic, Indian and Pacific geographic 

population samples (Table 4.1) were analysed, covering the entire species distribution (Fig. 4.1). 

 

Table 4.1_The table summarizes the sampling location, sample code and number of individual per each geographic 
population sample. 

Sampling location Sample code Number of individuals 

W Atlantic Ocean 31_1 10 

E Atlantic Ocean 34_1 10 

E Atlantic Ocean 34_2 10 

W Atlantic Ocean 41_1 10 

W Indian Ocean 51_1 10 

W Indian Ocean 51_2 10 

WC Pacific Ocean 71_1 10 

WC Pacific Ocean 71_2 10 

E Pacific Ocean 77_1 10 

E Pacific Ocean 77_2 10 

 

 

 
Fig. 4.1. Location of Thunnus albacares geographical population samples analyzed in this study. Sample codes are 

given as in Table 4.1. 
 

Genomic DNA (gDNA) was extracted from approximately 20 mg of tissue (skeletal muscle or 

finclip) using the commercial kit Invisorb® Spin Tissue Mini Kit (Invitek, STRATEC Biomedical, 
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Germany) as described in Section 1. Since high-quality gDNA is required in the 2b-RAD genotyping 

technique, its concentration and purity, in terms of ratios of absorbance at 260/230 nm and at 

260/280 nm, were quantified by both a NanoDrop ND-1000 spectrophotometer (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) and a Qubit 2.0 Fluorometer (Invitrogen, Thermo Fisher 

Scientific, Waltham, Massachusetts, USA). This procedure ensured to work with high quality 

samples and comparable DNA concentration. 

The 2b-RAD libraries were constructed for each individual following the protocol from Wang et al., 

(2012) with minor modifications (see below). To assess the robustness of the method and 

subsequent data analyses, three libraries were replicated (Technical Replicates, TRs) for two 

individuals (34_2_Y_2 and 77_2_Y_15) and two for an additional third specimen (51_1_Y_7). gDNA 

(300 ng) was digested with 2 U of the enzyme CspCI (New England Biolabs, NEB, Ipswich, 

Massachusetts, USA) for 1 h at 37°C. The digested DNA was ligated in a 25μL total volume reaction 

consisting of 0.4 μM for each of the two library-specific adaptors, 0.2 mM ATP (New England 

Biolabs, NEB, Ipswich, Massachusetts, USA) and 1 U T4 DNA ligase (SibEnzyme Ltd., Academ town, 

Siberia). To reduce marker density, one adaptor with fully degenerate 3’ overhangs NN and one 

with reduced 3’degeneracy NG were chosen. Sample-specific barcodes were designed with 

Barcode Generator (http://comailab.genomecenter.ucdavis.edu/index.php/Barcode_generator) 

and introduced by PCR with platform-specific barcode-bearing primers. 2b-RAD tags were 

amplified by PCR in two separate 25 μL-reactions, in order to minimize PCR amplification bias 

(Mastretta-Yanes et al., 2014). Each amplification consisted of 6.25 μL of ligated DNA, 0.5 μM each 

primer (P4 and P6-BC, Eurofins Genomics S.r.l, Italy), 0.2 μM each primer (P5 and P7, Eurofins 

Genomics), 0.3 mMdNTP (New England Biolabs, NEB, Ipswich, Massachusetts, USA), 1X Phusion HF 

buffer and 1 U TaqPhusion high-fidelity DNA polymerase (NEB). Cycling conditions were: 98°C for 

4min; 98 °C for 5 s, 60° C for 20 s, 72° C for 5 s for 14 cycles, 72°C for 5 min. The reduced number 

of amplification cycles (n=14) is crucial to produce a negligible amount of PCR amplification errors, 

comparing to those needed to reach the plateau phase. 
PCR products were purified with the SPRIselect purification kit (Beckman Coulter, Pasadena, 

California, USA), to exclude any high-molecular weight DNA remaining after the enzyme digestion 

and any incorrect constructs that may emerge during PCR amplification. The concentration of 

purified individual libraries was quantified using Qubit®ds DNA BR Assay Kit (Invitrogen–

ThermoFisher Scientific, MA, USA) and Mx3000P qPCR instrument, and the quality checked on an 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Individual libraries 
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were pooled into equimolar amounts and resulting pools’ quality was re-verified on Agilent 2100 

Bioanalyzer. Pooled libraries were sequenced on an Illumina HiSeq2500 platform with a 50 bp 

single-read module at the Genomix4Life S.r.l. facilities (Baronissi, Salerno, Italy), which also 

performed data demultiplexing. 
 

4.2.2 Technical Replicates analysis and optimization of genotyping procedure 

Demultiplexed reads were returned by the sequencing facility in Fastq format and their quality 

was checked by FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc/). After this, a 

custom-made Perl script was run for quality filtering and adaptors trimming of the reads, obtaining 

sequences of 34bp (Fasta files available at SRA Bioproject: PRJNA294940). Filtered reads were 

analyzed with the software Stacks v. 1.32 (Catchen et al., 2011; 2013), which allows genotype 

inference through the identification of SNP loci without a reference genome (denovo_map.pl 

program) or aligning reads against a reference genome (ref_map.pl program). Different settings 

were tested on the TRs dataset to fine-tune the de novo Stacks pipeline' parameters and to assess 

the consistency of results, in terms of total number of identified SNPs; the error rate calculated 

counting discordant genotypes between TRs and, among the concordant data, the percentage of 

heterozygous SNPs. Following the Stacks author guidelines, multiple combinations were 

considered for: a) the minimum number of identical reads necessary to call an allele (-m value set 

to: 5, 8, 10, 15); b) mismatches between reads within a locus (-M value set to: 2, 3, 4, 6); and c) 

mismatches among loci when comparing across individuals (-n value set to: 0, 2, 3, 4, 6). Only one 

parameter was varied at a time while keeping the others fixed. The default values for 

min_het_seqs and max_het_seqs were used. In addition, we compared the default and the 

bounded SNP calling models (--bound_high value set to: 0.05, 0.1, 0.15, 0.2, 0.5) to evaluate the 

percentage of heterozygous genotypes correctly assessed, in order to make the genotype calling 

between them as much concordant as possible. In the bounded SNP calling model, Stacks employs 

a multinomial-based likelihood model to identify SNPs and to estimate the maximum-likelihood 

value of the sequencing error rate ɛ at each nucleotide position, in order to proper call each 

possible genotype (for details see Catchen et al., 2011; 2013). 

The reads were also mapped against the genome of Thunnus orientalis (GenBank accession 

numbers BADN01000001-BADN01133062; Nakamura et al., 2013) using CLC Genomics Workbench 

v. 5.1 (CLC Bio) program. The following parameters settings were applied length fraction= 1.0 and 

similarity fraction= 0.9 (all remaining parameters as default), retaining only uniquely mapped 
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reads. Mapping results were exported in SAM format and were used as input files for 

refmap_map.pl in Stacks. To further evaluate the robustness of the approach a similar testing was 

performed on mapped data, using the same settings as for the denovo_map.pl for -m, -n and --

bound_high of the bounded SNP calling model. 
 

4.2.3 Preliminary analysis of YFT population structure  

Once identified the Stacks’ parameter set which minimized differences among TRs, the 

denovo_map.pl program was run on the entire YFT dataset (Table 1). Using the program 

populations available from Stacks software, different combinations of -p (4, 6, 9) and -r (0.4, 0.7, 

0.9) parameters were tested, in order to investigate changes in the number of SNPs obtained, and 

in the percentage of missing values among samples. Following these tests, we selected from the 

resulting catalogue of loci only those containing one bi-allelic SNP (-F snps_l=1 snps_u=2), and 

those values of -p and -r rendering the highest number of SNPs with the lowest percentage of 

missing data. 

In order to increase the sample size and to improve robustness of the genetic analyses, several 

grouping of the geographic samples were tested, especially due to their ocean basin distance, 

performing an analysis of molecular variance (AMOVA) with the software Arlequin 3.5.1.2 

(Excoffier and Lischer, 2010) with 10,000 permutations and p ≤ 0.01 significance level. 

Based on the SNPs dataset and AMOVA results obtained, FST estimates for pairwise comparison 

among pooled samples, were calculated with the software Arlequin 3.5.1.2 using the same 

settings as above. 
A preliminary assessment of YFT genetic structure was performed using the Discriminant Analysis 

of Principal Components (DAPC, Jombart et al., 2010) implemented in the R package Adegenet 

(Jombart, 2008, R version 3.1.2, R Development Core Team, 2014; http://www.r-project.org). The 

function find.clusters was used to identify the optimal number of clusters (k) that maximizes the 

variation between groups (Jombart et al., 2010). The cross-validation test was also carried out in 

order to validate the number of Principal Components (PCs) retained in the first transformation 

step of DAPC analysis, because a wrong choice of the number of PCs might negatively impact the 

DAPC results and produce unstable output due to over-parameterization. 
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4.3 Results and discussion 

A similar number of reads was obtained among TRs, before and after quality filtering (Table 4.2), 

which underlines the reliability of this technique in genotyping individuals. 

 

Table 4.2. Details on the technical replicates: acronym (Sample ID), Oceanic origin, genomic DNA concentration in 
ng/µL, library concentration in nm/µL, number of raw reads obtained, retained reads after quality filtering, and 

their corresponding percentage. 

Sample ID Oceanic origin gDNA ng/µL Library nm/µL N° raw reads 
N° filtered 

reads 

% retained 

reads 

34_2_Y_2R1 Atlantic Ocean 333.80 185.38 2,276,239 1,772,927 78 % 

34_2_Y_2R2 Atlantic Ocean 333.80 207.83 2,672,917 1,914,181 72 % 

34_2_Y_2R3 Atlantic Ocean 333.80 197.03 2,309,039 1,805,181 78 % 

77_2_Y_15R1 Pacific Ocean 218.02 238.81 2,212,559 1,788,988 81 % 

77_2_Y_15R2 Pacific Ocean 218.02 240.53 2,292,834 1,850,871 81 % 

77_2_Y_15R3 Pacific Ocean 218.02 208.91 2,085,658 1,802,820 86 % 

51_1_Y_7R1 Indian Ocean 177.54 166.05 2,330,292 1,767,345 76 % 

51_1_Y_7R2 Indian Ocean 177.54 170.81 2,300,342 1,824,635 79% 

 

Among the different Stacks settings considered, the -m value was the parameter that most 

affected the genotyping results, in particular the number of detected SNPs. Sensitivity tests 

performed on the TRs showed a decrease in the number of SNPs, from 5,753 to 4,490, when 

increasing -m from 5 to 15 (Fig. 4.2 and Supplementary Material 1 for values with associated 

Standard Error). The percentage of error rate varied approximately from 1% to 5%, with a 

decreasing trend when increasing the –m values (Fig. 4.2 and Supplementary Material 1). The 

percentage of heterozygous SNPs remained constant with increasing -m values (Fig. 4.2 and 

Supplementary Material 1). 
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Fig. 4.2. Comparison between denovo_map.pl (Left panel) and ref_map.pl (Right panel) performance in terms of (a) 
number of SNPs (black dots) (b) error rate (red dots) and (c) percentage of heterozygous loci (blue dots), using 

different -m values. Each dot represents the average value among the three individual's TRs. The three y axes (n° 
SNPs/1000, % error rate, % Ho) are shared between the two plots. 

 

An increase in true heterozygous SNPs calls was observed using the bounded SNP calling model 

compared to the default SNP model and reducing the upper bound values, in agreement with the 

results obtained by Mastretta-Yanes et al., (2014). In fact, reducing the upper bound on the 

maximum-likelihood of ɛ decreases the possibility of calling a homozygote instead of a true 

heterozygous genotype (Catchen et al., 2013). The proper genotype calling was further checked 

for a sub-sample of the total reads obtained, in the Stacks web interface, verifying the sequences 

alignment and monitoring the genotyping inference when the results were exported. This 

procedure was repeated each time when changing the different model's upper bound values. 
By relaxing the number of mismatches within each locus (-n) and among loci (-M), an increase in 

the number of SNPs and error rate was observed (Table 4.3). 
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Table 4.3.- The effects of different -M values (2, 3, 4, 6; Left Table); and -n values (0, 2, 3, 4, 6; Right Table) on the: 1) 
number of SNPs obtained (SNPs/1000); (2) percentage of error rate; and (3) percentage of heterozygous loci). 

           ID 

Sample - M value SNPs/1000 %error rate % Ho 

ID 

Sample - n value SNPs/1000 %error rate % Ho 

34_2_Y_2 

2 5.02 (± 0.34) 3.02 (± 0.43) 21.32 (± 0.25) 

 

34_2_Y_2 

0 5.19 (± 0.13) 3.04 (± 0.27) 22.63 (± 0.31) 

3 5.27 (± 0.26) 3.08 (± 0.26) 23.70 (± 0.18) 

 

2 5.27 (± 0.26) 3.08 (± 0.26) 23.70 (± 0.18) 

4 5.35 (± 0.33) 3.43 (± 0.47) 23.72 (± 0.36) 

 

3 5.31(± 0.46) 3.25(± 0.18) 23.82 (± 0.34) 

6 5.37 (± 0.16) 3.57 (± 0.21) 22.98 (± 0.13) 

 

4 5.33 (± 0.28) 3.29(± 0.32) 23.84 (± 0.21) 

77_2_Y_15 

2 5.24(± 0.21) 2.14(± 0.12) 24.45(± 0.43) 

 

6 5.49 (± 0.13) 4.01 (± 0.34) 23.96 (± 0.27) 

3 5.37(± 0.14) 2.71(± 0.32) 27.00(± 0.34) 

 

77_2_Y_15 

0 5.24(± 0.21) 2.58(± 0.27) 26.98(± 0.15) 

4 5.43(± 0.37) 2.91(± 0.42) 27.02(± 0.21) 

 

2 5.37(± 0.14) 2.71(± 0.32) 27.00(± 0.34) 

6 5.50(± 0.26) 3.21(± 0.31) 27.12(± 0.38) 

 

3 5.42(± 0.17) 2.92(± 0.28) 27.04(± 0.16) 

51_1_Y_7 

2 5.23(± 0.43) 2.97(± 0.39) 26.31(± 0.45) 

 

4 5.51(± 0.37) 3.18(± 0.19) 27.15(± 0.07) 

3 5.52(± 0.12) 2.99(± 0.23) 26.42(± 0.07) 

 

6 5.59(± 0.45) 3.31(± 0.09) 27.22(± 0.22) 

4 5.56(± 0.25) 3.15(± 0.42) 27.02(± 0.13) 

 

51_1_Y_7 

0 5.41(± 0.04) 2.93(± 0.18) 25.97(± 0.39) 

6 5.86(± 0.48) 3.65(± 0.37) 27.31(± 0.57) 

 

2 5.52(± 0.12) 2.99(± 0.23) 26.42(± 0.07) 

      

3 5.54(± 0.45) 3.11(± 0.03) 26.45(± 0.13) 

      

4 5.63(± 0.45) 3.23(± 0.15) 26.48(± 0.26) 

      

6 5.67(± 0.31) 3.24(± 0.27) 26.68(± 0.19) 

 

Mapping 2b-RAD reads against the genome of T. orientalis allowed a high percentage of 

successfully mapped sequences (86.59%). The outputs obtained on the mapped data from TRs 

with the ref_map.pl program, confirmed the trends observed with the denovo_map.pl program 

(Fig. 4.2). However, the absolute number of SNPs was lower than that obtained with the 

denovo_map.pl program, likely due to the incompleteness of the reference genome used (the only 

Thunnus sp. genome available to date, Nakamura et al., 2013) and the phylogenetic distance 

between YFT and Thunnus orientalis. 
Aligning reads to the reference genome, before calling a locus, can filter out erroneous stacks 

generated by contaminants (e.g. bacteria) possibly present in very small amount in the starting 
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gDNA sample. Moreover, the error rate also showed a less evident decreasing pattern when 

increasing -m, confirming however a low error rate in the genotyping call (<5%). On the contrary, 

the percentage of heterozygous SNPs identified using T. orientalis genome as reference, showed a 

slight increase from 35.6% to 40.7%, when higher values of m where used (Fig. 4.2). 

Based on the number of SNPs identified with the two different approaches (with or without using 

the reference genome), the low error rates and the consistent percentage of heterozygous SNPs 

obtained among TRs, the denovo_map.pl program was run applying the following parameter 

settings -m= 8, -M = 3, -n = 2 and a bounded SNP calling model with an upper bound of 0.1 (all 

remaining Stacks settings as default), to obtain the final dataset (see Supplementary Material 2 for 

details about each individual). The AMOVA results (Supplementary Material 3) revealed that 

pooling samples into the three major oceanic regions produced the highest percentage of 

variation explained by groups subdivision (2.73% P-value <0.01) and at the same time very low and 

not significant differences were observed among populations within groups (0.97% P-value >0.01). 

Pooling YFT individuals in these three groups corresponding to the three oceans (Table 4.3), 

allowed to increase the sample size and to obtain more robust and reliable inferences of 

population structure. 

 

Table 4.3. Summary statistics of the three Thunnus albacares oceanic groups. The table reports: the sampling origin 
(location) the sample size (N° individuals), the mean number (millions) of raw reads with the associated standard 
error (SE), the corresponding mean number (millions) of filtered reads (with SE), the percentage of reads retained, 

the mean value of unique tags, polymorphic SNPs and number of SNPs found. 
Location N° 

individuals 

Raw reads 

(mln) 

Filtered reads 

(mln) 

% of reads 

retained 

Unique 

tags 

Polymorphic 

SNPs 

SNPs 

found 

Atlantic Ocean 40 3.80 (± 0.29) 3.09 (± 0.37) 80% 30,776 3,264 5,693 

Indian Ocean 20 3.98 (± 0.46) 2.91 (± 0.15) 79% 31,430 3,695 6,516 

Pacific Ocean 40 3.30 (± 0.26) 2.78 (± 0.24) 84% 31,573 3,363 5,906 

 

The optimization process combining different -r and -p parameters' values of the Stacks 

population module, led to -r = 0.7 and p = 6 as best middle ways between the number of SNPs and 

the percentage of missing values obtained (Table 4.4). 
 

 

 

 



 
 

103 

Table 4.4. Number of SNPs and percentage of missing value (NA %) obtained for the entire dataset according to the 
-r and -p parameters' values of the Stacks population program. 

 -p 

4 6 9 

SNPs NA % SNPs NA % SNPs NA % 

-r 

0.4 8,158 14.3 7,871 11.49 7,560 9.33 

0.7 7,049 9.33 6,772 6.3 6,430 4.69 

0.9 5,981 8.62 5,673 5.44 5,187 2.58 

 

 

This set of parameters produced a panel of 6,772 SNPs. Pairwise Fst distances, calculated with this 

dataset, were highly significant, suggesting genetic differences occurring among oceanic groups 

(Table 4.5). 
 

Table 4.5_Pairwise Fst values calculated among geographic pools (from Atlantic, Indian and Pacific Ocean) of 
yellowfin tuna are reported (below diagonal) with their associated P-values (below diagonal). Significant values 
after Bonferroni standard correction are in bold (nominal significant threshold α = 0.01). 
 Atlantic Indian Pacific 

Atlantic * <0.01 <0.01 

Indian 0.04736 * <0.01 

Pacific 0.02932 0.01714 * 

 

The DAPC confirmed the genetic differentiation among oceanic basins. The graph of the Bayesian 

Information Criterion (BIC) values for increasing values of the number of clusters (k) showed that 

k=3 corresponded to the lowest associated BIC value. In the data transformation step for PCA 

analysis, 30 principal components (PCs) were retained, accounting for approximately the 92% of 

the total genetic variability. The eigenvalues of the DAPC indicated that the first two components 

explained most of the variation. The resulting scatterplot (Fig. 4.3) showed three genetic clusters 

corresponding to Atlantic, Indian and Pacific YFT groups. Moreover, the cross-validation of DAPC 

performed on our dataset, indicated that the number of PCs associated to the highest mean 

success and lowest mean squared error corresponded to 35 PCs. This result supported our choice 

to retain 30 PCs during the dimension-reduction step of the DAPC. 
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Fig. 4.3. Scatterplot of the DAPC results identifying three genetic clusters of Thunnus albacares. 

 

These results are in agreement with previously observed signatures of genetic heterogeneity 

among oceans found by Ward et al., (1997) by means of significant allele frequency differences at 

the locus GPI-A (PGI-F). Although, this scenario necessarily needs to be confirmed by increasing 

the sample size, it validated 2b-RAD genotyping technique as a powerful tool to assess YFT genetic 

structure and diversity at the global scale. 
 

4.4  Conclusions 

This methodological study confirmed that TRs are useful for optimizing genotyping procedure and 

that they are crucial to reduce the amount of statistical error introduced in allele frequency 

estimation due to PCR artefacts. We unambiguously mapped the TRs' tags against the reference 

genome of T. orientalis with a high percentage of success (86,59%), in spite of the small size of 

fragments (Puritz et al., 2014), and the evolutionary distance between these two species. The 

methodological approach showed that the lack of a reference genome, although undesirable, does 

not evidently compromise the reproducibility and accuracy of the data obtained, underlying the 

consistence of the technique in genotyping individuals. We preliminarily demonstrated that 2b-

RAD is a promising tool to screen a large set of genomic loci in a marine high gene-flow species, 

underlying the inter-oceanic population genetic differentiation. Certainly, an increased sample size 
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is needed to address estimates of genetic differentiation among YFT population samples also at a 

smaller local geographic scale. 
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Supplementary Materials 

 
Supplementary Material 1- Comparison between denovo_map.pl (Left table) and ref_map.pl (Right table) 
performance in terms of: (1) number of SNPs obtained (SNPs/1000) with the associated standard error (SE); (2) 
error rate (SE); and (3) percentage of heterozygous loci (SE), using different -m values (5, 8, 10, 15). 
 

denovo_map.pl 

ID Sample mvalue SNPs/1000 error rate % Ho 

34_2_Y_2 

15 4.08 (± 0.19) 1.51(± 0.39) 22.13(± 0.37) 

10 4.50(± 0.14) 2.90(± 0.15) 23.12(± 0.15) 

8 5.27(± 0.26) 3.08(± 0.26) 23.70(± 0.18) 

5 5.92(± 0.13) 5.43(± 0.29) 21.12(± 0.27) 

77_2_Y_15 

15 4.65(± 0.32) 1.27(± 0.21) 25.23(± 0.24) 

10 5.13(± 0.15) 2.42(± 0.13) 26.10(± 0.11) 

8 5.37(± 0.14) 2.71(± 0.32) 27.00(± 0.34) 

5 5.63(± 0.29) 4.95(± 0.24) 24.61(± 0.31) 

51_1_Y_7 

15 4.74(± 0.27) 1.77(± 0.15) 23.23(± 0.23) 

10 5.22(± 0.29) 2.68(± 0.27) 25.31(± 0.14) 

8 5.52(± 0.12) 2.99(± 0.23) 26.42(± 0.07) 

5 5.71(± 0.09) 5.13(± 0.17) 23.21(± 0.12) 

 

Supplementary Material 2- Summary statistics of each Thunnus albacares individual. The table reports: the 
sampling origin (Ocean), the mean number (millions) of raw reads, the corresponding mean number (millions) of 
filtered reads, the percentage of reads retained, the mean value of unique tags, polymorphic SNPs and the number 
of SNPs found. 
 

ID Sample Ocean Raw reads Filtered reads Unique tags Polymorphic loci SNPs found 

T_31_1_Y_12 Atlantic  3105528 2563455 30838 3235 5699 

T_31_1_Y_13 Atlantic  5637152 4557441 33788 3402 5824 

T_31_1_Y_14 Atlantic  2644769 2285761 29602 3007 5260 

T_31_1_Y_15 Atlantic  3288097 2451980 30016 3107 5365 

T_31_1_Y_16 Atlantic  6336440 5450801 34926 3611 6249 

T_31_1_Y_23 Atlantic  3654650 3263003 31607 3314 5712 

T_31_1_Y_35 Atlantic  2721757 2521783 29673 3205 5565 

ref_map.pl 

ID Sample mvalue SNPs/1000 error rate % Ho 

34_2_Y_2 

15 2.89(± 0.26) 3.91(± 0.19) 39.00(± 0.33) 

10 3.21(± 0.23) 4.11(± 0.37) 37.11(± 0.41) 

8 4.08(± 0.14) 4.63(± 0.25) 36.98(± 0.25) 

5 4.18(± 0.16) 5.53(± 0.21) 33.10(± 0.24) 

77_2_Y_15 

15 3.35(± 0.08) 4.11(± 0.15) 41.00(± 0.15) 

10 3.54(± 0.13) 4.29(± 0.08) 40.00(± 0.18) 

8 3.99(± 0.25) 4.89(± 0.16) 39.80(± 0.23) 

5 4.27(± 0.28) 5.32(± 0.27) 37.40(± 0.16) 

51_1_Y_7 

15 3.30(± 0.15) 4.28(± 0.14) 42.11(± 0.09) 

10 3.42(± 0.27) 4.61(± 0.18) 40.50(± 0.22) 

8 3.94(± 0.33) 4.76(± 0.23) 39.21(± 0.12) 

5 4.13(± 0.28) 5.41(± 0.24) 36.32(± 0.11) 
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T_31_1_Y_39 Atlantic  2740004 2261642 29808 3215 5694 

T_31_1_Y_43 Atlantic  2603891 1676058 27211 2905 5223 

T_31_1_Y_34 Atlantic  2122040 985219 22810 3024 5248 

T_34_1_Y_13 Atlantic  3131345 2517429 31023 3344 5891 

T_34_1_Y_15 Atlantic  3347614 2590822 31639 3333 5867 

T_34_1_Y_16 Atlantic  3019207 2308602 30701 3338 5940 

T_34_1_Y_17 Atlantic  4386713 3073122 33114 3537 6198 

T_34_1_Y_28 Atlantic  6107652 5081470 37117 3964 6819 

T_34_1_Y_29 Atlantic  4130588 3147206 33245 3602 6162 

T_34_1_Y_3 Atlantic  2846057 2056458 29254 3092 5644 

T_34_1_Y_31 Atlantic  4025468 3185735 34137 3617 6281 

T_34_1_Y_35 Atlantic  2717490 2111695 30702 3255 5802 

T_34_1_Y_37 Atlantic  3145853 2203273 29257 2927 5185 

T_34_2_Y_10 Atlantic  4650572 3494452 15529 1347 2493 

T_34_2_Y_11 Atlantic  4032665 3227973 32985 3605 6243 

T_34_2_Y_14 Atlantic  3029896 2359699 20612 1991 3342 

T_34_2_Y_16 Atlantic  4998909 4301682 35583 3732 6550 

T_34_2_Y_17 Atlantic  4023014 3294257 32566 3449 5896 

T_34_2_Y_20 Atlantic  2376762 1948145 29748 3208 5647 

T_34_2_Y_21 Atlantic  4679065 4050647 35695 3752 6534 

T_34_2_Y_23 Atlantic  4300413 3598795 34985 3663 6322 

T_34_2_Y_27 Atlantic  3494322 2747041 31605 3358 5864 

T_34_2_Y_38 Atlantic  2469862 1839548 29513 3118 5454 

T_41_1_Y_13 Atlantic  2885225 2229266 29375 3148 5557 

T_41_1_Y_14 Atlantic  4112269 3887296 34064 3574 6042 

T_41_1_Y_18 Atlantic  3845104 3104426 32644 3423 5868 

T_41_1_Y_19 Atlantic  3750752 3150911 32874 3411 5912 



 
 

111 

T_41_1_Y_20 Atlantic  7135055 6366517 18207 2407 4535 

T_41_1_Y_27 Atlantic  5182575 4736811 35547 3742 6319 

T_41_1_Y_30 Atlantic  2463935 2048843 29966 3186 5569 

T_41_1_Y_31 Atlantic  3984362 3443014 33264 3422 5852 

T_41_1_Y_33 Atlantic  3405123 2981862 31292 3412 5969 

T_41_1_Y_36 Atlantic  4903957 4112642 34534 3599 6123 

T_51_1_Y_11 Indian 4197832 3271746 30808 3259 5746 

T_51_1_Y_12 Indian 5106469 3943972 32425 3204 5508 

T_51_1_Y_13 Indian 3807089 2659014 30458 3347 5782 

T_51_1_Y_15 Indian 5553686 4150067 33413 3463 5822 

T_51_1_Y_16 Indian 4224280 3640016 31420 3275 5564 

T_51_1_Y_19 Indian 3013892 2312388 30010 3178 5547 

T_51_1_Y_28 Indian 3210746 2295315 28312 2962 5234 

T_51_1_Y_3 Indian 2884006 2052075 29288 3368 6223 

T_51_1_Y_4 Indian 5210472 3911316 26135 2810 4962 

T_51_1_Y_5 Indian 2632718 1931146 28444 2763 4917 

T_51_2_Y_1 Indian 3522515 3040289 32751 3432 6043 

T_51_2_Y_10 Indian 6441211 6003918 31732 3619 6442 

T_51_2_Y_11 Indian 2641836 2141771 30187 3242 5766 

T_51_2_Y_27 Indian 2888780 2238918 29561 3295 5923 

T_51_2_Y_34 Indian 2543649 2073189 29620 3215 5718 

T_51_2_Y_44 Indian 3485004 2841056 35543 5501 9745 

T_51_2_Y_45 Indian 3135178 2553943 40053 8862 15727 

T_51_2_Y_46 Indian 2404384 1941743 29545 3300 5904 

T_51_2_Y_47 Indian 2260180 1850287 33939 3679 6280 

T_51_2_Y_50 Indian 3937595 3282788 34957 4138 7470 

T_71_1_Y_11 Pacific 3897551 3283367 33373 3534 5988 
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T_71_1_Y_12 Pacific 3394137 2893282 32166 3287 5842 

T_71_1_Y_13 Pacific 3604370 3047045 32116 3432 5895 

T_71_1_Y_14 Pacific 4000961 3396357 33478 3500 6093 

T_71_1_Y_16 Pacific 4727965 3962636 34144 3593 6179 

T_71_1_Y_18 Pacific 3818853 3285112 33031 3446 5970 

T_71_1_Y_2 Pacific 3440711 2874443 32188 3408 5963 

T_71_1_Y_21 Pacific 2508039 2155027 34264 4617 8628 

T_71_1_Y_22 Pacific 4044866 3428059 33271 3502 6084 

T_71_1_Y_23 Pacific 5676853 4942237 35273 3714 6391 

T_71_2_Y_15 Pacific 2656551 2123387 30040 3279 5745 

T_71_2_Y_17 Pacific 3377858 2825637 31733 3351 5814 

T_71_2_Y_2 Pacific 3159899 2710391 32016 3435 5923 

T_71_2_Y_24 Pacific 4837695 4034112 34695 3706 6474 

T_71_2_Y_25 Pacific 2863301 2313035 30574 3221 5797 

T_71_2_Y_26 Pacific 3121822 2545630 31697 3416 5977 

T_71_2_Y_27 Pacific 3391479 2748050 32031 3498 6099 

T_71_2_Y_29 Pacific 3345330 2801175 32150 3377 5895 

T_71_2_Y_30 Pacific 3719775 2980475 30729 3235 5603 

T_71_2_Y_31 Pacific 3951818 3299857 42885 4454 8100 

T_77_2_Y_11 Pacific 3618576 3216232 33632 3618 6333 

T_77_2_Y_17 Pacific 2403163 1914776 29096 3118 5607 

T_77_2_Y_18 Pacific 3866009 3386384 33704 3516 6125 

T_77_2_Y_19 Pacific 2806651 2363857 21917 2321 4269 

T_77_2_Y_2 Pacific 2780059 2340856 29617 3101 5546 

T_77_2_Y_20 Pacific 2549065 2108849 29540 3193 5573 

T_77_2_Y_27 Pacific 3398439 3004995 31710 3308 5713 

T_77_2_Y_28 Pacific 2919624 2420989 30259 3243 5710 
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T_77_2_Y_32 Pacific 4317852 3725254 33004 3452 6035 

T_77_2_Y_33 Pacific 4371397 3896432 33500 3513 5920 

T_77_1_Y_30 Pacific 5765636 5148952 35233 3706 6160 

T_77_1_Y_17 Pacific 2794243 2470957 31793 3342 5927 

T_77_1_Y_19 Pacific 2723470 2254595 29008 2990 5105 

T_77_1_Y_45 Pacific 2400483 2096522 30429 3239 5747 

T_77_1_Y_1 Pacific 2155938 1855371 29363 3100 5584 

T_77_1_Y_15 Pacific 2085535 1770279 29350 3182 5679 

T_77_1_Y_5 Pacific 1857567 1612989 27970 2936 5210 

T_77_1_Y_16 Pacific 2035715 1556718 28019 2930 5242 

T_77_1_Y_22 Pacific 1796311 1478481 27735 2953 5322 

T_77_1_Y_50 Pacific 1990282 1464790 26208 2779 4986 
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Supplementary Material 3- Results of the analysis of molecular variance (AMOVA), testing different grouping of the 
geographic samples: *1) #group1 (34_1, 34_2, 41_1, 31_1); #group2 (51_1 and 51_2); #group3 (71_1, 71_2, 77_1, 
77_2); *2) #group1 (34_2, 51_1, 31_1,  77_2); #group2 (71_1, 41_1); #group3 (71_2, 77_1, 34_1, 51_2); *3) #group1 
(31_1, 77_2, 51_2, 41_1); #group2 (34_2; 77_1); #group3 (71_2, 34_1, 71_1, 51_2); *4) #group1(34_1, 34_2, 41_1, 
31_1); #group2 (51_1, 51_2, 71_1, 71_2, 77_1, 77_2). 
 

*1 

Source  

of variation 

d.f. Sum of  

squares 

Variance  

components 

Percentage  

of variation 

--------------------------------------------------------------------------------------------------- 

Among groups 2 1815.099 2.50242 2.73 

P value <0.01 

Among populations within 

groups 

7 304.905 0.88479 0.97 

P value >0.01 

Within populations 704 30660.433 88.22814 96.3 

P value <0.01 

------------------------------------------------------------------------------------------------------------ 

Total 199 18036.935 91.61535   

 
*2 

Source 

of variation 

d.f. Sum of 

squares 

Variance 

components 

Percentage 

of variation 

--------------------------------------------------------------------------------------------------- 

Among groups 2 236.373 -0.47002 -0.52 

P value >0.01 

Among populations within 

groups 

7 1037.216 2.99888 3.3 

P value <0.01 

Within populations 190 16763.346 88.22814 97.21 

P value <0.01 

------------------------------------------------------------------------------------------------------------ 

Total 199 18036.935 90.757  
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*3 

Source  

of variation 

d.f. Sum of  

squares 

Variance  

components 

Percentage  

of variation 

--------------------------------------------------------------------------------------------------- 

Among groups 2 226.016 -0.57412 Va            -0.63 

P value <0.01 

Among populations within groups 7 1047.573 3.07290 Vb             3.39 

P value <0.01 

Within populations 190 16763.346 88.22814 Vc            97.25 

P value >0.01 

------------------------------------------------------------------------------------------------------------ 

Total 199 18036.935 90.72692   

 

 

*4 Source  

of variation 

d.f. Sum of  

squares 

Variance  

components 

Percentage  

of variation 

--------------------------------------------------------------------------------------------------- 

Among groups 1 344.227  2.37453 Va           2.58 

P value <0.01 

Among populations within groups 8 929.362 1.39798 Vb 1.52 

P value <0.01 

Within populations 190 16763.346 88.22814 Vc            95.9 

P value >0.01 

------------------------------------------------------------------------------------------------------------ 

Total 199 18036.935 90.72692   
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YFT population genomics  
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5.1 Introduction 

The fish stock assessment needs to be based on valid biological assumptions, otherwise 

management may fail to achieve goals of stock conservation and optimal economic use of fishery 

resources. The definition of proper management units is a crucial objective for developing proper 

conservation and management plans (Palsbøll et al., 2007), which need to take in consideration 

that even low levels of genetic structure can have significant conservation implications (Graves 

and McDowell, 2003). However, a very central query to apply genetic tools into fishery 

management is the evaluation of the proper level of divergence among populations in order to 

explain their separation in terms of management (Waples et al., 2008). In such a context, 

elucidating the genetic structure of marine fish populations with a high dispersal capacity and 

large effective population sizes, such as tuna and tuna-like species, remains a big challenge.  

In one of the last tropical tuna stock assessment in the Indian Ocean (IOTC-2013-WPTT15-13) it 

was stated: “if there are different sub-populations managed as a unique panmictic population, 

some of them could be locally over-exploited and management measures might be directed 

toward the wrong populations”. This sentence becomes particularly significant for yellowfin tuna 

(Thunnus albacares; YFT), whose population genetic structure is a riddle still unresolved with more 

doubts than certainties. In fact, the results obtained so far, using traditional molecular markers, 

have been inadequate for testing and validating the appropriateness of the current assessment 

and management strategy adopted by the four tuna Regional Fishery Management Organizations 

(tRFMOs; Pecoraro et al., 2016). Precious help to overcome this issue are represented by the 

advent of Next Generation Sequencing (NGS) technologies and by the consequent decreasing of 

high-throughput sequencing costs, which have opened the possibility to screen large panels of co-

dominant single nucleotide polymorphisms (SNPs) at a genome-wide scale (Davey et al., 2011), 

even in studies of non-model organisms, such as YFT (Grewe et al., 2015; Pecoraro et al., 2016). 

Being single base change in the DNA sequence (and often bi-allelic), SNPs are less polymorphic 

than microsatellite loci. However, their low resolution power, related to the low number of 

independent alleles, is outweighed by their abundance across the genome that makes them 

perfect for investigating the inheritance of genomic regions (Baird et al., 2008). Moreover, SNPs 

are commonly found within or adjacent to coding and regulatory regions of a genome, and so their 

allele frequencies may be influenced by selection. 
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NGS have made the Whole Genome Sequencing (WGS) of some marine fish species widely 

accessible but still prohibitively expensive with extreme intensive computational burden for most 

laboratories. In the near future, according to the continue development of sequencing technology 

and bioinformatic methods, WGS might become the main approach for ecological and 

conservation genomic studies (Bernardi et al., 2012; Wit and Palumbi, 2013). Although the 

availability of genomic resources for tuna and tuna-like species is expected to increase in the next 

years, nowadays the draft genome of Pacific bluefin tuna (Thunnus orientalis) (Genome size: 800 

Mb; Nakamura et al., 2013) is the only genomic resource available for these pelagic marine 

species. Besides, WGS are unnecessary for population structure studies, especially due to genome 

size and complexity in eukaryotes (Davey and Blaxter, 2010). Alternatively, genotyping-by-

sequencing (GBS) approaches have made population-scale sequencing possible at a fraction of the 

cost of WGS (Davey et al., 2011). These approaches that selectively target only a fraction of the 

genome (reduced representation library-RRL) followed by NGS analysis, represent an optimal 

trade-off for time- and cost-effective high-resolution molecular typing of a sizable set of strains 

(Narum et al., 2013), making possible to identify and score thousands of polymorphisms across the 

entire genome and to obtain genotypes for a large number of individuals directly from the 

sequences (Davey et al., 2011; Hemmer-Hansen et al., 2014). One of the most exploited GBS 

methods, in a broad range of eukaryotic species, is the Restriction site-Associated DNA sequencing 

(RAD-seq) genotyping method (Miller et al., 2007; Baird et al., 2008), which links enzymatic 

fragmentation of the genome with high throughput sequencing for scoring high coverage of 

homologous SNP loci. Briefly, this method reduces the genome complexity by focusing the 

sequencing on only the same subset of DNA regions adjacent to recognition sites of a single 

restriction endonuclease (a modification was implemented using also two restriction 

endonucleases; Peterson et al., 2012), across multiple individuals (widely discussed in Davey et al., 

2011), allowing efficient high-throughput identification of thousands of SNPs spread evenly 

throughout the genome, in model and non-model species. Therefore, RAD-seq represents a 

flexible, inexpensive and powerful tool for mapping and analyzing quantitative trait loci (Baird et 

al., 2008; Chutimanitsakun et al., 2011; Pujolar et al., 2013; Wang et al., 2013), adaptation 

(Hohenlohe et al., 2010) and phylogeography (Emerson et al., 2010). From the original RAD-seq 

technique, other methods have been developed, such as double digest RAD (ddRAD, Peterson et 

al., 2012), type IIB endonucleases RAD (2b-RAD, Wang et al., 2012) and ezRAD (Toonen et al., 

2013). Each method is certainly characterized by specific strengths and weaknesses (Puritz et al., 



 
 

120 

2014). Among the different RAD-seq approaches, in this work we employed 2b-RAD genotyping 

technique, as already extensively described in Chapter 3, according to its extreme protocol 

simplicity and cost-efficiency (Wang et al., 2012). In fact, 2b-RAD library preparation procedure 

involves consecutive addition of reagents to the same 96-well plate and there are not 

intermediate purification steps or need for special instrumentation beyond a PCR instrument and 

a standard agarose gel (Puritz et al., 2014). This protocol requires only 50-bp single-end Illumina 

sequencing and 2b-RAD tags are sequenced at both strands allowing also the use of strand bias as 

a quality filtering criteria. Moreover, according to goals of population genetic structure studies, it 

is possible to select a less amount of markers by means selective adaptors (Puritz et al., 2014). 

However, sometimes just multiplying the number of neutral loci might be not enough to assess 

correctly the population structure of these highly migratory marine species especially at the local 

scale (Gragnaire et al., 2015), representing a failure in assisting their management and stock 

assessment. On the contrary, the identification of candidate loci, which exhibit patterns of 

variation extremely divergent from the rest of the genome (hereafter referred to as ‘outlier’ loci; 

Luikart et al., 2003) might provide new opportunities for identifying reproductively isolated 

populations, upon which the current fisheries management practices should be based. 

The main objective of the present study was to assess how using many SNP markers derived from 

2b-RAD loci can contribute to disentangle YFT genetic structure and increase the assignment 

success of individuals to sites of origin within and between RFMOs. Subsequently, we 

concentrated on outlier loci and explored subsets of these markers loci to improve the resolution 

of population structure patterns of this pelagic fish species. 

 

5.2 Materials and Methods 

5.2.1 2b-RAD libraries preparation and sequencing 

A total of 500 juveniles YFT from ten geographic population samples (Fig. 5.1; Section.1) were 

analyzed, covering the entire species distribution. 
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Fig. 5.1. Location of Thunnus albacares geographical population samples analyzed in this study. Sample codes are 

given as in Table 1. 
 

The 2b-RAD libraries were constructed for each individual following the protocol from Wang et al., 

(2012) that is schematically illustrated in Figure 5.2 (see Chapter 3 for details). 

 

 

Minor modifications were 

introduced during library 

preparation in order to exclude 

samples with low concentration 

and suboptimal quality profile and 

minimize possible PCR artefacts. 

An important modification is 

represented by the greater 

digestion volume used comparing 

to that proposed in the original 

protocol (10 μL vs. 6 μL), keeping the same final concentration of buffer R (10X) and S-

adenosylmethionine (SAM; 150 µM). This modification was linked to the low quality of our DNA 

samples. In fact, in this way we were able to increase the efficiency of the reaction in two ways: 1) 

diluting potential inhibitors; 2) reducing potential pipetting error. 

The restriction endonuclease used for digesting the genomic DNA (gDNA) was CspCI, which has a 7 

bp recognition site (5'-CAA-GTGG-3' and its reverse complement 3'-GTT-CACC-5'; Fig. 5.3). CspCI 

cleaves DNA fragments twice to excise its recognition site, producing 34-36 base-pair fragment 

 
Figure 5.2. Different steps of 2b-RAD library preparation. 
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with 2-base 3´ overhangs. The cleavage position 

may shift of one base, depending on the DNA 

sequence context between the recognition site and 

the point of cleavage. 

 

 

In order to avoid possible amplification errors, the 2b-RAD tags amplification was split in two 

separate 25 μL-reactions, which were pooled together only at the end. In fact, being the PCR a 

random process, it is very unlikely that the same error will be repeated in the same position during 

the reaction. PCR products were loaded on a 2% agarose gel to confirm that their molecular 

weight was ~165 bp (Fig. 5.4). 

 

PCR products were 

purified with the 

SPRIselect purification 

kit (Beckman Coulter, 

Pasadena, California, 

USA) to exclude any 

high-molecular weight 

DNA remained after the enzyme digestion, and any incorrect constructs that may rise during PCR. 

The purification begins adding 1.5X of SPRIselect beads (85 μL) to the amplified solution. After 

removing the supernatant and washing with ethanol, the elution buffer was added. The eluted 

material was then transferred into a clean plate and the concentration of purified individual 

libraries was quantified both using Qubit®ds DNA BR Assay Kit (Invitrogen–ThermoFisher Scientific, 

MA, USA) and Mx3000P qPCR instrument. Finally, their quality was also checked on the Agilent 

2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Individual libraries were 

pooled into equimolar amounts, according to their unique sample specific barcode and the 

remaining steps were carried out on the pools, reducing the laboratory’s labor and costs. In fact, 

sample multiplexing allows to pool large number of libraries, which can be sequenced 

simultaneously during a single sequencing run. The unique index added to each sample during 

library preparation allows identifying and sorting them before data analysis. The resulting four 

 
Figure 5.3. CspCI’s recognition site. 

 
Figure 5.4. Gel electrophoresis of PCR products . 
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pools’ quality were re-verified on Agilent 2100 Bioanalyzer, before sending them for sequencing 

(Fig. 5.5). 

 

 

 
 

Fig.5.5_Bioanalyzer’s quality control results for the four pools. 
 

5.2.2 Sequencing and quality control 

The sequencing process was performed through an Illumina platform, which uses the Sequencing 

By Synthesis (SBS) technology that is one of the most successful and widely Next-Generation 

Sequencing (NGS) technology used so far. Illumina sequencing reagents support massively parallel 

sequencing using a method that detects single bases as they are incorporated into growing DNA 

strands. Illumina reads are normally 25-250 nucleotide long sequences produced by a reversible-

terminator cyclic reaction associated to base-specific colorimetric signals within the sequencing 

machine (Del Fabbro et al., 2013). Besides, SBS technology supports separated reads "single read" 

or paired-end reads runs. The main difference between the two runs is that with single read the 
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sequencing instrument reads the fragment from one end to the other one, instead in paired-end 

runs the instrument reads the fragment twice from both sides. A fluorescently labeled reversible 

terminator is imaged as each deoxynucleotide (dNTP) is added and then split to allow 

incorporation of the next base. Since all four reversible terminator-bound dNTPs are present 

during each sequencing cycle, natural competition minimizes incorporation bias. 

Pooled libraries were sequenced on an Illumina HiSeq2500 platform with a 50 bp single-read 

module at the Genomix4Life S.r.l. facilities (Baronissi, Salerno, Italy). The expected number of 

reads generated during the DNA sequencing reaction using an Illumina HiSeq2500 instrument was 

150,000,000 reads per lane. Two lanes were dedicated per each pool (filling an entire Illumina 

Genome Analyzer flowcell) in order to increase the number of reads obtained and the expected 

coverage per each library. The theoretical or expected coverage is the average number of times 

that each nucleotide is expected to be sequenced, considering a certain number of reads of a 

given length and assuming that reads are randomly distributed across the genome (Sims et al., 

2014). Instead the depth of coverage is referred to its redundancy (Sims et al., 2014). 

Data demultiplexing, which is the computational process by which reads are assigned to the 

proper sample according to their specific barcode, was also performed by the sequencing 

provider. It occurred during Bcl (files generated by Real Time analysis-RTA software, that performs 

primary analysis for Illumina's sequencing instruments) to Fastq processing. This step was 

performed with the script ConfigureBclToFastq.pl included in CASAVA package version 1.8.2, which 

is an internal Illumina software, allowing 0 mismatches in the index sequence. 

Demultiplexed data were returned in Fastq format, which includes quality scores in addition to the 

sequence itself. Fastq files contain four lines: 1) “@” and the sequence ID; 2) the sequence; 3) “+”; 

and 4) an ASCII-encoded quality number corresponding to a PHRED score (Q). These data were 

easily checked by using the FastQC software 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). This software provides a Quality Check 

(QC) report, which reveals any possible bias or problems in the raw data that may affect upstream 

the analysis. In fact, ignoring the existence of low quality base calls may in fact be disadvantageous 

for any NGS analysis (Del Fabbro et al., 2013). A custom-made Perl script was run to merge the 

sequences obtained from the two lanes and to perform the quality filtering of the reads and 

adaptors trimming. This script turned those reads with the restriction site in reverse complement 

and filtered out all of those ones that do not 100% match the restriction site. In the remaining 

reads the script removes adaptors and cuts every sequence before and after the restriction sites. 
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This procedure, without changing the original read dataset, allowed to eliminate only low quality 

regions of the sequence. 

 

5.2.3 STACKs analysis and optimization of genotyping procedure 

2b-RAD data were analyzed with the software Stacks v. 1.32 

(http://creskolab.uoregon.edu/stacks/), which is a computational pipeline implemented by 

component programs written in C++ and Perl and designed to work with any restriction enzyme–

based GBS data (Catchen et al., 2011; 2013). Stacks allows genotype inference through the 

identification of SNP loci without a reference genome (denovo_map.pl program) or aligning reads 

against a reference genome (ref_map.pl program). This software allows to work with thousands of 

individuals and incorporates a MySQL database and web front end to efficiently visualize, manage 

and modify the data. Data analysis consisted of different steps such as acquiring raw sequence 

data, filtering out low-quality reads, assembling or aligning reads, and inferring SNPs and 

genotypes (Catchen et al., 2013). 

The Stacks pipeline was run to perform the following processes: 

1) grouping data from each individual into loci, identifying polymorphic nucleotide sites (ustacks 

and pstacks); 

2) creating a catalogue of loci across individuals (cstacks); 

3) matching loci from each individual against the catalogue to determine the allelic state at each 

locus in each individual (sstacks); 

4) subjecting allelic states to population genetic statistics, exporting the results in formats usable 

for other software (i.e. Genepop, Structure). 

Each process is characterized by different challenges and uncertainties associated with the 

genomic attributes (i.e. number of loci identified, the degree of repetitive sequences throughout 

the genome, the level of polymorphism and divergence among populations) as well as with 

biological factors (i.e. quality of DNA and degree of sample multiplexing) that may interact with 

sequencing characteristics (Catchen et al., 2013). However, the Stacks' module "rxstacks" 

(associated with both denovo_map.pl and ref_map.pl programs) corrects the genotype data based 

on population-level inferences. For instance, a log likelihood is assigned to each locus in the 

population according to their coverage in terms of primary and secondary reads. This has the 

effect of removing loci with sequencing errors or error produced during PCR for certain types of 

loci, such as those with lots of short repeats. The expected result for non-repetitive genomic 
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regions is that a monomorphic locus will generate a single stack because the two sequences on the 

two homologous chromosomes are identical and thus indistinguishable. On the contrary, a 

polymorphic locus will produce two different stacks. Possible confounding cases can be limited by 

the use of Stacks parameters (See Chapter 3 for details about preliminary tests conducted on TRs). 

 

5.2.4 SNPs selection and genetic diversity analysis 

Since each de novo sample may bring a small amount of error into Stacks’ catalog of loci, working 

with hundreds of samples could bring lots of error in the catalog. For this reason and according to 

the promising results gathered with our technical replicates (Chapter 3), library’s reads were 

mapped against the Thunnus orientalis genome, filtering out possible erroneous SNPs from the 

catalog. The final analysis was carried out running the ref_map.pl program on the entire dataset, 

using the most reliable Stacks’ parameter identified on the mapped TRs (see Chapter 3 for more 

details). Using the Stacks module populations, which has a number of filtering parameters, from 

the resulting catalog of loci we selected only those containing (i) one bi-allelic SNP; (ii) scored in at 

least two geographic samples (-p); and (iii) represented in more than 60% of the individuals within 

each sample (-r). The resulting dataset was exported in a Genepop formatted file. 

Some quality filtering criteria were used to the resulting dataset in order to remove possible 

sequencing, genotyping errors and uninformative polymorphisms using the last version of the 

Rpackage Adegenet 2.0.1 (Jombart, 2008, R version 3.1.2, R Development Core Team, 2014; 

http://www.r-project.org). First, any putative SNP that failed to be genotyped in >80% of 

individuals was removed as well as any individuals that was not genotyped in >80% of loci. Then 

those loci with a minor allele frequency (MAF) lower than 1% in all samples were filtered out, 

using the new function minorAllele implemented in the last version of Adegenet 2.0.1 

(https://github.com/thibautjombart/adegenet). These polymorphisms are likely to be 

uninformative and they can distort signals of selection and drift in natural populations, biasing 

tests for selection (Roesti et al., 2012). We also conducted exact tests of Hardy-Weinberg 

equilibrium, using the function hw.test of the Rpackage Pegas (Paradis et al., 2015), removing loci 

that were out of equilibrium in 9 or 10 samples (P < 0.05). The dataset was then converted to the 

specific file formats required by the different software using PGD Spider (Lischer and Excoffier, 

2012) in order to perform the population structure analyses. 
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5.2.5 Population structure analyses 

 
The genetic diversity within samples in terms of observed (Ho) and expected heterozigosity (He) 

was calculated using the software Arlequin 3.5.1.2 (Excoffier and Lischer, 2010). Linkage 

disequilibrium (LD) between each pair of loci in each population was calculated using Genepop 

(1,000 iterations per batch for 100 batches; Raymond and Rousset, 1995). 

To get more insight into the genetic relationship and differentiation among all the geographical 

samples, we first estimated the FST values for pairwise comparison of all samples and then we 

performed the analysis of molecular variance (AMOVA) with Arlequin 3.5.1.2, using 20,000 

permutations and 0.01 significance as settings. 

Based on the SNPs dataset obtained, different multivariate analyses were performed using the 

Rpackage Adegenet 2.0.1 to assess the genetic structure. Firstly, we performed a Principal 

Component Analysis (PCA), which is the most common multivariate analysis used in genetics. On 

the genind object the allelic data (as frequencies) were extracted with the accessor tab and then 

using the function dudi.pca () we replaced missing values with mean values. After this step, we 

chose a number of principal components (PC) from the screeplot displayed (barplot of 

eigenvalues) that mostly explained the variance of our data. In fact, each eingenvalue represents 

the variance explained by each PC. Being more interested in the diversity among groups of 

individuals than in the total diversity of our data, we also performed a Discriminant Analysis of 

Principal Components (DAPC; Jombart et al., 2010). This method identifies an optimal number of 

genetic clusters that maximizes the variation among groups by running a k-means clustering 

algorithm. The first step is the transformation of the data through a PCA analysis, which has the 

major advantages of reducing the number of variables and speeding up the clustering algorithm. 

In addition, during this step all the PCs can be retained without losing information. Since the 

number of populations represented by our data was not a priori known, the find. clusters () 

function was used for running successive number of clusters (K)-means clustering of the 

individuals for K= 1:20, and identified the best supported number of clusters through comparison 

of the Bayesian Information Criterion (BIC) for the different values of K. The best value of K that 

maximizes the variation between groups is usually indicated by an elbow in the curve of BICs 

(Jombart et al., 2010). I also used table.value () function to build a contingency table and to check 

how the inferred groups matched with our geographical samples. After having found the best 

number of clusters that described the genetic variance of the data, we run a Discriminant Analysis 
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(DA) on the retained principal components using the dapc () function. The function displayed a 

similar graph of cumulated variance as in find.cluster (), but in this case we can choose the 

minimum number of components that maximizes the cumulative variance without losing too 

much information. Otherwise, the retention of too many components may make unstable the 

membership probabilities returned by the method. 

In order to avoid over-fitting, in this analysis 40 principal components (PCs) were retained during 

the data transformation step for PCA analysis (indicated to be the optimal number based on the 

optim.a.score () function), which accounted approximately for the 81% of the total variation in the 

data set. The cross-validation test is crucial because a wrong choice of the number of PCs might 

negatively impact the DAPC results and produce unstable output due to over-parameterization. 

Finally, after having chosen the best number of eigenvalues for the DA analysis, the DAPC results 

(DAPC scatterplots) were visualized graphically by using the scatter.dapc () function, adding some 

graphical possibilities to improve the display of the analysis. The function compoplot () function 

was also run to summarize the overall picture of the clusters’ composition obtained, categorizing 

samples with mean membership probability of >0.6 to one of the clusters as ‘pure’ sample. 

YFT population genetic structure was further assessed by using the software STRUCTURE v.2.3.4 

(Pritchard et al., 2000). STRUCTURE was run ten times at K=1-12, setting a burn-in period of 50,000 

iterations and 100,000 iterations for the MCMC. Correlated allele frequencies (Falush et al., 2003), 

admixture ancestry and sampling locations were assumed using the LOCPRIOR model. The most 

likely number of K was assessed using the DK statistics (Evanno et al., 2005) implemented in the 

online program STRUCTURE HARVESTER (Earl and von Holdt, 2012). This analysis was first 

performed at the global scale using the entire data set. Then, in order to investigate the 

population structure within each oceanic basin, the analysis was separately re-computed on the 

Atlantic, Pacific and Indian samples. Finally, the software CLUMPAK (Cluster Markov Packager 

Across K.; Kopelman et al., 2015) was used to determine the optimal assignment of clusters for the 

individuals analyzed. 

The software GENECLASS 2.0 (Piry et al., 2004) was employed to assign individuals to each 

population sample, according to the highest likelihood of their multilocus genotype. We employed 

the Bayesian approach described by Rannala and Mountain (1997) to evaluate whether a certain 

multilocus genotype could occur in one or several populations using the Monte-Carlo re-sampling 

algorithm described by Paetkau et al., (2004). The likelihood of individual genotypes from each 

sample locality was calculated by comparing individual genotypes to 10,000 simulated individuals 
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per locality. A random selection with the 75% of individuals was selected from each sample and 

pooled by the three geographic regions to serve as assignment references, while the other 25% 

was used as queries. 

 

5.2.6 Outlier loci detection analysis 

Finally, we searched for loci that showed divergent patterns of differentiation compared to neutral 

expectations, and therefore potentially affected by selection (outlier loci), using two different 

approaches. 

First, we used the software BAYESCAN 2.1 (Foll, 2012), a Bayesian approach that allows the 

estimation of the posterior probability of a given locus being under the effect of selection using 

differences in allele frequencies between populations (Foll, 2012). It is based on the multinomial-

Dirichlet model and assumes that allele frequencies among sub-populations are correlated 

through a common migrant gene pool, therefore allowing complex ecological scenarios to be 

modeled adequately (Foll, 2012). We ran Bayescan with 20 pilot runs of each 5000 iterations 

followed by an additional burn-in of 50 000 iterations and then 5000 samplings with a thinning 

interval of 10. Correcting for multiple testing, the program computes q-values based on the 

posterior probability for each locus. We defined as “outliers”, those loci with an alpha-value 

significantly >0 (i.e. with q-values smaller than 0.05). Instead those with an alpha-values 

significantly smaller than 0 were considered under balancing selection. The remaining loci were 

classified as neutral (Moore et al., 2014). 

Then, we used a hierarchical Fdist model (Excoffier et al., 2009) implemented in Arlequin 3.5 

(Excoffier and Lischer, 2010), to identify loci that maximize assignment to the sampling location of 

origin. Loci with significantly (at the 0.05 significance level) higher FCT or FST values were classified 

as outliers potentially under directional selection among groups. Instead loci with significantly 

lower FCT or FST values were classified as loci putatively under balancing selection, while all other 

ones were classified as putatively neutral loci (Moore et al., 2014). 

To assess how much the YFT population structure is driven by loci under selection, a DAPC analysis 

was performed with the subset of those loci detected as outliers using the two different 

approaches. 
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5.3 Results 

5.3.1 Sequencing and quality control 

The overall FastQC result pointed out from each QC report indicated a good quality of the libraries 

without spotting any problems originated either in the sequencing process or in the starting library 

material (i.e. contaminations, overrepresented sequences, adaptor sequence presence). In fact, all 

of our libraries had a quality value comprised between 28 and 40, locating them in the green 

portion of the graph (Fig. 5.6). 

 

 

Fig. 5.6_Quality scores of all nucleotides in the two samples sequenced. 

 

The fig. 5.6 represents the general trend of all nucleotides’ quality scores for all of the libraries 

sequenced; however negligible differences among them were detected. In general, a higher 

quality value was identified in the central portion of the graph, with a decrease moving towards 

the extremities as pointed out by the mean quality (blue line). 

This general qualitative pattern in the reads was also confirmed by the nucleotide composition 

graph (Fig. 5.7), which showed a clear decrease of their variability in correspondence of two 

specific positions: 1) at the CspCI restriction sites; and 2) at the extremities of the graph (i.e. 

adaptors’ position). 
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Fig. 5.7_ Graph showing variability of nucleotides in the read. 

 

After quality filtering and adaptors trimming, we obtained sequences of 34 bp and in average a 

total of 2,636,921 reads per each individual from each pool (Fig. 5.8). In average about the 20% of 

raw reads per pool were lost after the filtering and trimming step. After this process, eight 

individuals with less than 500,000 reads were removed from the dataset. 
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Fig. 5.8_ Number of raw reads obtained per each pool after sequencing and the corresponding number obtained 

after quality filtering. 
 
 
 

5.3.2 SNPs selection and genetic diversity analysis 

The ref_map.pl program was run on the resulting dataset obtained after the filtering process 

(Table 5.1). 

 

Table 5.1. Summary statistics of the 10 Thunnus albacares geographical population samples. The table reports: The 
samples code (ID), the sampling origin (location), the mean number (millions) of raw reads, the corresponding mean 
number (millions) of filtered reads, the percentage of reads retained, the mean value of unique tags (with SE), 
polymorphic SNPs and number of SNPs found with the associated standard error. Moreover, observed and 
expected heterozygosity per each geographical sample are reported. 

 

       ID code 
Sampling 

location 
        Raw reads Filtered reads  

% of reads 

retained 
Unique Tags 

Polymorphic 

Loci 
SNPs Found     Obs Het Exp  Het 

           31_1 W Atlantic 3312337 2526644 24.9  26885(± 0.42) 1824(± 0.03) 2080(± 0.03) 0.12 0.14 

           34_1 E Atlantic 3433692 2670318 34.1 23770(± 0.78) 1617(± 0.05) 1851(± 0.06) 0.10 0.13 

34_2 E Atlantic 3159125 2481523 23.5 26624(± 0.79) 1806(± 0.06) 2066(± 0.07) 0.13 0.14 

41_1 W Atlantic 3244529 2713851 17.8 26663(± 0.76) 1782(± 0.04) 2031(± 0.05) 0.14 0.16 

51_1 W Indian 3674435 2683577 27.8 27876(± 0.46) 2213(± 0.09) 2614(± 0.12) 0.14 0.19 

51_2 W Indian 4081030 3527438 14.5 30110(± 0.37) 2009(± 0.02) 2294(± 0.03) 0.12 0.13 

71_1 WC Pacific 3623456 3160638 13.2 27588(± 0.50) 1900(± 0.04) 2167(± 0.05) 0.10 0.12 

71_2 WC Pacific 2878098 2363162 19.1 23015(± 0.50) 1564(± 0.03) 1786(± 0.04) 0.12 0.13 

77_1 E Pacific 3328447 2950684 17.3 28110(± 0.31) 1909(± 0.06) 2094(± 0.04) 0.13 0.15 

77_2 E Pacific 2768277 2464614 18.2 24494(± 0.42) 1677(± 0.42) 1903(± 0.42) 0.12 0.13 

 
 

Using the Stacks’ module population, we exported a dataset of 370 individuals genotyped at 6,896 

loci. In the Stacks' output file together with each individual's genotype, the position of each SNP in 

the read was also reported, which made possible to verify that no SNPs were present at the 
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restriction sites as well as at the extremities, highlighting the good success of the filtering process 

(Fig. 5.9). 

 

 
Fig.5.9_SNPs’ number at every bp in the read. 

 
 

Removing putative SNPs that were genotyped in <80% of individuals and individuals that were 

genotyped in <80% of SNPs, we eliminated 542 loci and 13 individuals: seven individuals belonged 

to the population sample 41-1-Y, four to the population sample 77-1-Y, and two from the 

population sample 31-1-Y. After removing SNPs with minor allele frequency (MAF) <0.01, 1,443 

SNPs were retained. Significant deviations from Hardy–Weinberg equilibrium were observed in 

471 SNPs, which were also removed. The final filtered data set consisted of 357 individuals 

genotyped at 972 SNPs with a similar total number of alleles per locus among samples, 

independently from their sample size (Fig. 5.10). 

 
Fig. 5.10_Number of individuals and respective number of alleles per population sample. 
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The mean observed heterozygosity per variable SNP site was lower (0.10-0.14) than that expected 

(0.12-0.19) within each population sample (Summary statistics in Table 5.1). This pattern was 

clearly observed plotting the average observed and expected heterozygosities per each locus (Fig. 

5.11). 

 

 
Fig. 5.11_The average observed and expected heterozygosity per each locus. 

 

 
5.3.3 Assessment of the population structure  

 
Pairwise FST distances, being highly significant (P<0.01), indicated that genetic differentiation 

occurs among the three oceans. Instead panmixia was revealed within each oceanic basin (Table  

5.2). 
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Table 5.2_Pairwise FST values calculated among population samples of yellowfin tuna are reported (below diagonal) 
with their associated P-values (below diagonal). Significant values after Bonferroni standard correction are 

underlined (nominal significant threshold α = 0.01). NS: not significant. 
Pairwise FST values 

 1 2 3 4 5 6 7 8 9 10 

1 * NS NS NS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

2 0.01053 * NS NS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

3 0.01217 0.00780 * NS <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

4 0.00983 0.00903 0.00876 * <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

5 0.13639 0.11697 0.11648 0.12461 * NS <0.01 <0.01 <0.01 <0.01 

6 0.13077 0.11208 0.11166 0.11967 0.00078 * <0.01 <0.01 <0.01 <0.01 

7 0.08871 0.07493 0.07400 0.08012 0.03633 0.03985 * NS NS NS 

8 0.07722 0.06633 0.06629 0.06897 0.04159 0.04463 0.00221 * NS NS 

9 0.10268 0.08597 0.08493 0.09521 0.04080 0.04412 0.00571 0.00745 * NS 

10 0.10569 0.08820 0.08697 0.09749 0.04221 0.04535 0.00300 0.01165 0.00888 * 

 

These patterns of differentiation were also confirmed by the hierarchical AMOVA analysis, 

grouping the population samples per oceanic basin. The AMOVA results (Table 5.3) indicated that 

the 8.39 % of the total variation was explained by the oceanic groups subdivision (P-value <0.01) 

and at the same time not significant differences were observed among populations within groups 

(0.08% P-value >0.01). 

 
Table 5.3_AMOVA table of the spatial genetic variation of yellowfin tuna samples grouped per Oceanic basins. 

Source  
of variation 

Sum of  
squares 

Fixation  
indices 

Percentage 
of variation 

Pvalue 
 

Among groups 1912.937 FST: 0.08478 8.39699 <0.01 
       

Among populations within 
groups 

304.905 FSC: 0.00089 0.08112 >0.01 

       
Within populations 30660.433 FCT: 0.08397 91.52189 <0.01 

Total 33609.561    50.01571    

 

Principal Component Analysis (PCA) results confirmed the genetic heterogeneity among the 

geographic samples considered in the study (Fig. 5.12). PCA grouped individuals in clusters 

according to their populations of origin. 
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Fig.5.12_The genetic clusters, corresponding to the three oceanic groups, detected by PCA results. 

 

The presence of these three clusters was also confirmed by plotting the correspondence between 

inferred groups and the geographic population samples (Fig.5.13). 

 

 

The resulting scatterplot (Fig. 

5.14) of the DAPC analysis 

confirmed the inter-oceanic 

genetic differentiation among 

Atlantic, Indian and Pacific YFT 

populations. As shown in Fig. 

5.14, the elbow in the curve 

matches the smallest Bayesian 

Information Criterion (BIC), and 

clearly indicates the presence 

of three genetic clusters. 
 

 

 
Figure 5.13. Correspondence between inferred groups and population samples. 
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Fig. 5.14. Scatterplot of the DAPC results identifying three genetic clusters of Thunnus albacares. There are also 
graphically represented the number of PC retained during the data trasformation step and corresponding elbow of 

the BIC vs. number of clusters. 
 

 

Group membership of the DAPC analysis, which provides a membership probability of each 

individual for the different populations based on the retained discriminant functions, were used as 

indicators for underlining how consistent are the genetic clusters detected. The resulting 

compoplot (in a STRUCTURE-like way) based on the full data set (Fig. 5.15), 

 indicated that >90% of individuals showed posterior membership probability of >0.95 to one of 

the three clusters, confirming the reliability of the membership of individuals and groups. 

However, it indicated that there are three individuals of the Cluster 1 (Pacific) assigned to the 

Cluster 3 (Indian), and 5 individuals of the Cluster 3 assigned to the Cluster 1. Instead all of the 

individuals were properly and without margin of error assigned to the Atlantic (Cluster 2). 
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Fig. 5.15_Compoplot of the individuals’ membership probability analysis. Cluster 1:3: Pacific, Atlantic, Indian. 

 
 

According to the K statistics, the presence of three clusters (K=3) was also confirmed by the 

Cluster analysis based on the Bayesian algorithm performed by using the software STRUCTURE 

(Fig. 5.16). Instead any sign of differentiation was detected within each of the three clusters. 

 

 
 

Fig.5.16_ The three oceanic clusters (Atlantic, Indian and Pacific) detected by Structure and visualized by CLUMPAK. 
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Using the maximum likelihood method implemented in GeneClass2, 79 simulated genotypes out 

of 95 were correctly assigned (85.3%). Any genetic cluster had a percentage of assignment with a 

certainty of 99%. The rate of correct assignment was of 87.5% for the Atlantic individuals with 2 

and 3 individuals incorrectly assigned to the Indian and Pacific groups, respectively. For the 

individuals sampled in the Indian Ocean, the percentage of individuals correctly assigned was of 

the 85.72% with four individuals wrongly assigned to the other two Oceans, and finally the 

percentage of correct assignment was of 82.93% in the Pacific Ocean, in which the 17.07% of 

individuals was wrongly assigned to the Indian Ocean population (Fig. 5.17). 

 

 
Fig. 5.17_ Percentage of correctly assigned and unassigned individuals to each oceanic populations 

 

 

5.3.4 Outlier loci detection analysis 

In all analyses, BAYESCAN detected considerably more outliers than ARLEQUIN (often more than 

twice as many), but ARLEQUIN outliers were almost exclusively a subset of BAYESCAN outliers. 

Here, we describe only results on outliers identified by both methods. 

A total of 33 outlier loci were identified using the two different approaches (Table 5.4). All those 

loci have an alpha-value significantly higher than 0 and Q-values approximately of 0 in Bayescan 

and FST with a significant P value in Arlequin. 
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Table 5.4_Results of outlier detection with the software Arlequin and Bayescan. 
 

Locus 
Obs. Het. 

BP Obs FST FST P-value 1-FST quantile Locus prob log10(PO) qval alpha FST 

734 0.61 0.54 0.00 0.00 734 1.0000 1000.0 0.00 3.11 0.35 
486 0.56 0.50 0.00 0.00 486 1.0000 1000.0 0.00 3.23 0.37 
800 0.55 0.49 0.00 0.00 800 1.0000 1000.0 0.00 3.45 0.40 
584 0.12 0.41 0.00 0.00 584 1.0000 1000.0 0.00 2.32 0.23 
826 0.50 0.37 0.00 0.00 826 1.0000 1000.0 0.00 1.86 0.17 
373 0.57 0.35 0.00 0.00 373 1.0000 1000.0 0.00 2.14 0.21 
352 0.56 0.32 0.01 0.01 352 1.0000 1000.0 0.00 2.02 0.19 
582 0.09 0.31 0.00 0.00 582 1.0000 1000.0 0.00 2.03 0.20 
68 0.56 0.28 0.02 0.02 68 1.0000 1000.0 0.00 1.89 0.18 

263 0.49 0.28 0.00 0.00 263 1.0000 1000 0.00 3.29 0.17 
755 0.43 0.28 0.01 0.01 755 1.0000 1000.0 0.00 2.04 0.20 
306 0.52 0.26 0.02 0.02 306 1.0000 1000.0 0.00 2.00 0.19 
972 0.41 0.26 0.01 0.01 972 1.0000 1000.0 0.00 1.78 0.16 
55 0.52 0.26 0.02 0.02 55 1.0000 1000.0 0.00 1.79 0.16 

428 0.54 0.25 0.03 0.03 428 1.0000 1000.0 0.00 1.89 0.18 
246 0.32 0.24 0.02 0.02 246 1.0000 1000.0 0.00 2.11 0.20 
268 0.29 0.23 0.03 0.03 268 1.0000 1000.0 0.00 1.96 0.18 
854 0.40 0.23 0.03 0.03 854 1.0000 1000.0 0.00 1.67 0.15 
329 0.49 0.22 0.03 0.03 329 1.0000 1000.0 0.00 1.85 0.17 
440 0.48 0.22 0.03 0.03 440 1.0000 1000.0 0.00 1.96 0.19 
240 0.44 0.22 0.03 0.03 240 1.0000 1000.0 0.00 1.90 0.18 
146 0.37 0.21 0.04 0.05 146 1.0000 1000.0 0.00 1.89 0.18 
219 0.21 0.17 0.04 0.05 219 1.0000 1000.0 0.00 1.83 0.17 
601 0.15 0.17 0.02 0.02 601 1.0000 1000.0 0.00 1.97 0.19 
141 0.09 0.15 0.00 0.00 141 1.0000 1000.0 0.00 2.00 0.19 
202 0.08 0.14 0.00 0.00 202 0.9916 2.072 0.00 2.05 0.10 
837 0.07 0.12 0.00 0.00 837 1.0000 1000.0 0.00 1.86 0.17 
650 0.47 0.09 0.00 0.00 650 0.98876 1.9445 0.00 1.18 0.10 
635 0.11 0.08 0.00 0.00 635 1.0000 1000.0 0.00 1.50 0.16 
313 0.07 0.08 0.00 0.00 313 1.0000 1000.0 0.00 1.97 0.19 
251 0.04 0.06 0.00 0.00 251 1.0000 1000.0 0.00 1.87 0.08 
864 0.04 0.05 0.00 0.00 864 1.0000 1000.0 0.00 2.78 0.09 
346 0.12 0.04 0.00 0.00 346 1.0000 1000.0 0.00 1.75 0.11 

 
 
The pairwise FST coefficients using those loci potentially under selection for the three oceanic 

clusters were considerably higher than using the entire dataset. Besides using those outlier loci, 

significant FST were detected within the Atlantic and Pacific Oceans (ranging from 0,021 to 0,056) 

and specifically between the estern and astern part of each oceanic basin. The resulting 

scatterplot (Fig. 5.18) of the DAPC analysis confirmed the inter- and intra-oceanic genetic 

differentiation among Atlantic, Indian and Pacific YFT sub-populations. 
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Fig. 5.18. Scatterplot of the DAPC results identifying five genetic clusters of Thunnus albacares: WAO (Western 

Atlantic Ocean), EAO (Eastern Atlantic Ocean), WCPO (Western Central Pacific Ocean), EPO (Eastern Pacific Ocean) 
and IO (Indian Ocean). 

 

 

5.4 Discussion and Conclusions 

Here we provide the most exhaustive and complete work on the global population structure of 

yellowfin tuna employing a new genomic approach (2b-RAD genotyping technique) for discovering 

and at the same time genotyping thousands of SNP markers across hundreds of individuals. 

Although this genotyping technique was proven as a simple and flexible method for genome-wide 

genotyping (Wang et al., 2012; Guo et al., 2014; Pauletto et al., 2015; Dou et al., 2016), however it 

has never been used in published marine fish population structure studies so far. The 

trustworthiness of this approach lies in the fact that many quality checks are required during the 

library preparation and sequence data processing, in order to exclude samples with low 

concentration and suboptimal quality profile and to minimize possible PCR artefacts. In our study, 
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the reliability of this approach was further demonstrated by the comparable number of reads 

obtained after sequencing per each pool. In fact, the mean number of reads obtained from each 

individual of each pool was roughly higher than 2 million, providing a high depth of coverage per 

individual over all SNPs. The lower number of reads obtained from the pool 1 comparing to those 

obtained from the other three pools could be linked to different issues, such as the starting tissue 

quality/quantity, the barcodes used and the lower sequencing efficiency for the first two lanes. 

However, the removal of all those individuals with less than 500,000 reads have guaranteed to 

perform the subsequent analyses only on those individuals with a similar and sufficient mean 

coverage. The efficiency of this genomics approach was also demonstrated by the FastQC results, 

which underlined a similar quality pattern for all of our samples. Checking the quality of the 

samples with FastQC is a crucial step for identifying possible problems (i.e. contaminations, 

overrepresented sequences and presence of adaptors), before going further with the analyses. 

Moreover, by using barcodes adaptors, it was possible to pool together 98 libraries and to make 

2b-RAD library preparation simpler and faster than other GBS approaches, reducing also 

sequencing costs. 

An important finding of this study was the possibility to map with a high percentage of success 

(86,59%) our short 2b-RAD reads against the genome of Thunnus orientalis, which represents to 

date the only available genome for the genus Thunnus. In fact, using a reference genome it is 

always advisable for unmistakably mapping 2b-RAD SNPs, enhancing considerably their chance of 

being mapped unambiguously in the genome (Puritz et al., 2014). In doing so, we also demystified 

one of the biggest disadvantages of this technique, which is the expected impossibility to be used 

for building genome contigs and to be cross-mappable across large genetic distances when a 

reference genome is missing (Puritz et al., 2014). Running Stacks with a reference genome 

increases the accuracy in data processing (Catchen et al., 2013), reducing for instance possible 

false-positive SNP calls. Genotype biases were also avoided identifying and removing those loci 

and individuals which went beyond some conservative filtering criteria (see Material and Methods 

for more details). 

On one hand, in this study we have confirmed that the analysis of a large amount of molecular 

markers has the great advantage of increasing the resolution in detecting genetic differentiation 

among populations with large effective sizes and high migration rates (Waples, 1998). Our results, 

based on the entire dataset, revealed the existence of significant structuring among the three 

main oceanic basins, with the pairwise FST values calculated from genome-aligned markers ranging 
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from 0.036 to 0.136. The presence of these three populations was also confirmed and visualized 

by different multivariate and individual-based analyses (i.e. PCA, DAPC, STRUCTURE etc.), 

indicating limited gene flow and dispersal among the three oceans. These findings confirmed the 

suggestions on the YFT global genetic structure proposed by Ward et al., (1997), based on gene 

frequencies at a single polymorphic allozyme Locus GPI-A*, which advised to reject the null 

hypothesis of a single panmictic population worldwide (Ely et al., 2005). In fact, the significant 

genetic differentiation and the high rate of self-assignment assessed here (>80%), have shed light 

on the existence of at least three putatively isolated populations among the Atlantic, the Indian 

and the Pacific Oceans. 

On the other hand, we pointed out that within the Pacific and Atlantic Oceans just multiplying the 

number of neutral markers was not enough to reveal the proper level of structuring at the local 

scale (Gagnaire et al., 2015). In doing so, it was necessary to discovery a subset of outlier loci 

putatively under selection to delineate and separate locally adapted stocks within these two 

oceans. In fact, the effects of selection might influence much more the population structure than 

the genetic drift in species as YFT characterized by a large effective size and high dispersal 

capacity. This underlines how much useful are outlier SNPs for resolving fine-scale population 

connectivity, admixture, mixed stock analysis, and for identifying local adaptation for conservation 

and management purposes (Milano et al., 2014; Allendorf et al., 2010; Nielsen et al., 2009). 

Therefore, detecting outlier loci is essential to understand the YFT local adaptation’s mechanisms 

as they may be directly linked to gene regions associated with ecotype divergence over very 

recent (ecological) timescales (Russello et al., 2011). In such a context, biogeography and barriers 

to dispersal can play a crucial role in isolating reproductively YFT populations between and within 

the three oceans. On a large scale, the complete closure of the Isthmus of Panamà (IOP) dated to 

ca. 3.5 Myr (Coates and Obando 1996; Coates et al., 1992) and the closure of the Tethys seaway 

(Terminal Tethyan Event, TTE) (12–18 Myr) represent the two main physical barriers between the 

Indo-Pacific and the Atlantic realms. In opposition, the Atlantic and Indo-Pacific populations are 

still in contact through the Cape of Good Hope and their migrations are facilitated by the 

unidirectional flow of warm waters to the Southeast Atlantic carried along the west coast of Africa 

by the Agulhas current (Shannon et al., 1990). However, this gene flow was maybe interrupted 

during the peak of the major glacial periods, in which waters were significantly lower than today 

enhancing their genetic divergence. Other soft barriers might also take on relevant importance in 

creating and maintaining the genetic differentiation between and within oceans (Cowman and 
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Bellwood, 2013). Specifically, the East Pacific Barrier (EPB) seems to affect the dispersal capacity of 

several Indian and the Western Pacific marine species from the Eastern Pacific population. In 

addition, two incomplete barriers in both sides of the Indo-Australian Archipelago (IAA), might 

intervene in differentiating genetically Indian and Pacific populations as well as Western and 

Eastern Pacific populations. In addition, an important soft barrier in the Atlantic Ocean is 

represented by the Mid-Atlantic Barrier (MAB; the stretch of tropical ocean between equatorial 

America and Africa), which is a deep-ocean barrier and the main geographic barrier between the 

two sides of the tropical Atlantic Ocean (Fig. 5.19). MAB was generated by the formation of the 

Atlantic Ocean basin as Africa and South America separated over the past 85 Myr (Luiz et al., 

2012). 

 

 
Figure 5.19. Schematic diagram of world map identifying boundaries between regions (modified from Cowman and 

Bellwood 2013). 
 

However, the genetic separation detected in the present study can be linked to a wide variety of 

evolutionary and biological mechanisms apart from the local adaptation to specific environmental 

constraints, which of course interact among them to module and define the population structure 

of this biological and economic valuable species. The combination of those evolutionary and 

biological mechanisms seem to get the better of YFT high potential gene flow, making their 

populations reproductively isolated among the three oceans as well as between the western and 

eastern sides of the Atlantic and the Pacific basins. Instead the failure of finding differences within 

the Indian Ocean might be due to the limits of our sampling design, lacking of eastern samples. 

However, our results are in agreement with those obtained by the largest tagging program never 

realized in the Indian Ocean (IOTTP; 20052009), which indicated the possible presence of a single 

well-mixed YFT population in the entire basin. As underlined by the commission (IOTC–2015–
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SC18–ES04) future studies should focus efforts to areas of admixture at a much finer-scale here 

reported, by employing multidisciplinary approaches, including population genomic structure 

assessment together with other population identification methodologies. 

Our results are partially in contrast with those obtained by Grewe et al., (2015), which also 

detected two distinct populations within the Western Pacific Ocean (Coral Sea and Tokelau). This 

different result is mainly due to the geographic proximity of our population samples, which came 

from areas identified here as admixture zones within the eastern and western parts of each ocean.  

The genetic differentiation observed in this study, as already indicated in other pelagic species (i.e. 

swordfish) might also be linked to a strong natal fidelity, with admixture primarily confined to 

feeding grounds (Alvarado-Bremer et al., 2005). This homing behavior associated with many biotic 

and abiotic factors, such as geographic features, oceanographic processes, prey concentration, 

might also play an important role in shaping YFT population structure. Homing migration patterns 

in YFT have been also confirmed by some tagging studies. For instance, restricted movements and 

a high degree of fidelity were also indicated within the Central and Western Pacific (Itano and 

Holland, 2000; Sibert and Hampton, 2003), and within the Eastern Pacific (Schaefer et al., 2007; 

2011) excluding any assumption about complete mixing over large regional areas (Schaefer et al., 

2011). Furthermore, in the Atlantic it was observed that YFT juveniles move along African coastal 

waters in the Gulf of Guinea, which is their main spawning ground, until they reach the pre-adult 

stage. After that, they start swimming from the eastern to the western part of the Atlantic Ocean 

for feeding to return later to the eastern part (i.e. Gulf of Guinea) for spawning, when they reach 

110 cm FL and about 3 years of age (Zagaglia et al., 2004). However, there are still inadequate 

information about the migration patterns from the East to the West Atlantic for spawning reasons, 

that can speak in favor of two reproductively isolated populations in the Gulf of Guinea and Gulf of 

Mexico/southeastern Caribbean, respectively (Arocha, 2001). This east-west population division in 

the Atlantic Ocean, as pointed out by our results, supports a possible higher level of structuring 

than generally assumed. Those possible sub-populations should be taken into account by ICCAT, 

re-examining previous biological assumptions, in order to better understand YFT populations’ 

response to fishing, which can have different productivities and levels of fishing mortality 

experienced in the Gulf of Guinea and in the Gulf of Mexico/Caribbean Sea. 

. 
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6.1 Introduction 

Understanding the productivity and resilience for fish stocks, which define the level of fishing 

mortality (F) that they can tolerate and their ability to recover from a depleted state, is a crucial 

point to provide sound scientific advice for fisheries management (Morgan et al., 2009). However, 

the estimation of the productivity, which is based on the stock–recruit (S–R) relationship, is still a 

difficult challenge in the study of marine fish stock’s dynamics and management. This relationship 

is traditionally measured by the estimation of the spawning stock biomass (SSB) that is used as a 

proxy for the stock reproductive potential (SRP, Trippel, 1999; Tomkiewicz et al., 2003; Lowerre-

Barbieri et al., 2011). SBB implies that survival rates of offspring are independent from parental 

age, body size or condition (Cardinale and Arrhenius, 2000), and that total relative egg production 

per unit weight of adult stock is invariant over time (Morgan et al., 2009). Thus, SSB does not take 

into account a variety of fundamental attributes, such as the onset of maturity, fecundity, atresia, 

duration of reproductive season, daily spawning behaviour and spawning fraction (Murua et al., 

2003). Accurate knowledge of those reproductive characteristics that have a direct influence on 

the productivity and resilience of commercial, threatened and endangered fish species, such as 

tropical tunas, are fundamental components for developing effective and realistic fishery 

management and conservation strategies (Trippel, 1999; Morgan et al., 2009; Brown-Peterson et 

al., 2011). In such a context, many doubts have been raised about the appropriateness of SSB 

(Marshall et al., 1998; 2009), which therefore assumes that fecundity is only related to the mass-

at-age of the sexually mature portion of the stock irrespective of the demographic composition of 

adults (Murawski et al., 2001; Kell et al., 2015). The resulting supposition is that many small 

individuals will produce as many offspring as a few large individuals. On the contrary, there is an 

increasing consensus in fishery science that spawning stocks are composed by individuals with a 

different range of sizes and ages that may contribute differently to spawning and recruitment 

(Marshall et al., 1998; Scott et al., 1999¸ Kell et al., 2015). In addition, there is a general 

acknowledgement on the relevant impacts that maternal effects, which correspond to an increase 

in allocating reproductive resources for postnatal use with the females’ size (Berkeley et al., 2004), 

might have on fecundity and viability of eggs and larvae (Kjesbu et al., 1998; Scott et al., 1999; 

Trippel, 1999; Berkeley et al., 2004). The positive relationship between the mothers’ size/age and 

both the potential productivity and the survival rates of the recruits have been already 
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demonstrated for other fish species (Marshall et al., 1998; 1999; Cardinale and Arrhenius, 2000; 

Shelton et al., 2015; Berkeley et al., 2004; Bobko and Berkeley, 2004; Riveiro et al., 2004). 

Moreover, older and larger females, having a wider spatial and temporal window for spawning 

than smaller individuals, enhance the perspectives for their larvae to encounter advantageous 

conditions to survive (Birkeland and Dayton, 2005). In doing so, larger females should invest a 

higher amount of energy for reproduction than smaller fish and this energy is mainly provided by 

the metabolization of lipids and their constituent fatty acids, which represent the main energetic 

resources in fishes (Tocher, 2003). Fatty acids in fishes are the favorite source of metabolic energy 

in the form of ATP via mitochondrial β-oxidation (Sargent et al., 1995). Lipids can be divided into 

two main groups according to their chemical properties and functions: 1) neutral lipids (NLs); and 

2) polar lipids (PLs). PLs mainly correspond to the lipid class of phospholipids and to a lesser 

extend to the ketones and wax-esters. PLs are important constituents of membranes and they 

have an important role as precursors in eicosanoid metabolism (structural fat). Instead NLs serve 

primarily as a depot of lipids (depot fat) mainly used as an energy source (Henderson and Tocher, 

1987); they regrouped the lipid classes of triacylglycerols and sterols. 

Fatty acids, and particularly polyunsaturated fatty acids (PUFAs), are functionally essential for the 

reproduction in fish, influencing egg quality, spawning, hatching and survival of larvae (Sargent et 

al., 1989; 2002). PUFAs also intervene in regulating the production of eicosanoids (prostaglandins), 

steroid hormones and gonad development (Izquierdo et al., 2001). Hence, fatty acid composition 

in both NLs and PLs must be investigated for understanding fishes’ energetic investment for 

reproduction. The acquisition of lipids and their fatty acids by fishes is driven by the two main 

strategies of resource use for reproduction described so far (Alonso-Fernández and Sabórido-Rey, 

2012; Aristizabal, 2007): 1) capital breeders, who store the energy required before the onset of 

reproductive period; 2) income breeders, who acquire the energy required by feeding during 

reproduction. In the latter group, the fatty acid composition of the female gonad is greatly 

affected by the dietary fatty acid content, which, in turn, directly influences the egg quality in a 

short period of time (Izquierdo et al., 2001). However, the separation between these two 

strategies is not clear and there are shades of grey between them. An illustrative case is 

represented by yellowfin tuna (Thunnus albacares; YFT) that is described as an income-capital 

breeder (Zudaire et al., 2013b). YFT takes on the cost of reproduction both by feeding during the 

spawning period and using some energetic resources acquired before that. According to the 

operational difficulties (e.g. the sampling) in investigating these complex effects in wild and large 
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pelagic species, to date very few studies have been conducted to understand how the size of YFT 

females affects the fecundity (i.e. Zudaire et al., 2014), which is linked to many biotic and abiotic 

cues. It is also very important to understand if the development of a possible phenotype is just 

driven by the environment that the organism faces (“phenotypic plasticity”) or if there are genetic 

components that can play an important role in regulating these reproductive patterns as well as in 

the way in which YFT acquire energy for meeting the high energetic demands (McBride et al., 

2013). Understanding the genetic basis of those physiological and metabolic activities would 

provide new insights into the YFT reproductive success in relation to female’s size/age. Within this 

scenario, Genome-Wide Association Study (GWAS) permits to screen a very large number of genes 

simultaneously for understanding the genetic contribution to possible variations of the 

reproductive outputs and of the energy allocation strategy related to the females ‘size. In fact, in 

GWAS a group of individuals are phenotyped and then genotyped using a large number of single 

nucleotide polymorphisms (SNPs) in order to detect statistical association between genetic 

markers and the phenotypic traits of interest (Bush and Moore, 2012). GWAS explores the 

association of each SNP marker with the phenotypic trait of interest, making possible the 

identification of specific alleles associated with the trait. However, due to the large number of 

genetic markers, certain multiple testing corrections are required to reduce the increased 

probability of false positive findings. 

The investigation of the potential existence of maternal effects in YFT can help in better 

understanding the consequences of age truncation induced by removing individuals fish via fishing 

(i.e. industrial tuna longlining, sport fishing). Such studies can lead to taking in consideration 

possible length-based fishery regulations by tRFMOs in order to protect YFT stocks from 

overfishing and to meet ecological and social objectives. In fact, fisheries removing larger 

individuals can have a direct impact on the YFT productivity by: (i) reducing the time and changing 

spawning locations (Bobko and Berkeley 2004, Berkeley et al., 2004, Poisson et al., 2009); and (ii) 

decreasing the production and quality of eggs (Hutchings and Myers, 1993; Marteinsdottir and 

Steinarsson, 1998; Vallin and Nissling 2000; Berkeley et al., 2004; Birkeland and Dayton, 2005; 

Raventos and Planes, 2008). 

In this chapter, I investigated how the reproductive patterns and the spawning quality of the 

Atlantic YFT females are influenced by the fish size and thus by the possible variation in their 

energy allocation strategy. Additionally, I examined whether there is any genetic variation related 

to those “phenotypic” traits, using a GWAS approach. Given the fundamental importance to 



 
 

155 

evaluate the ubiquity of the relationship between fish size and offspring quality, this study can 

have important implications for verifying the potential for increased females’ productivity in the 

Atlantic Ocean, where YFT is still considered to consist of only one panmictic population for 

management purposes (Arocha, 2001; see Chapter 4 for details).  

 

6.2 Materials and Methods 

6.2.1 Fish sampling 

YFT were caught by purse-seine vessels in the Gulf of Guinea (Eastern Atlantic Ocean) from April 

2013 to January 2014 and sampled during their process at the cannery “Pêche et Froid” of Abidjan, 

Ivory Coast (Fig. 6.1). 

 
Fig. 6.1_Geographic origin of the yellowfin females sampled. Each dot indicates a fishing set. 

 

From each fish the fork length (FL; cm), the total fish weight (W; kg) and the gonad weight (GW ;g) 

were recorded, and a macroscopic maturity stage was assigned following the maturity reference 
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scale for yellowfin tuna (see Appendix 6.1). For the purpose of the present study, only spawning 

capable females (i.e., with late maturing or ripe ovaries) off the total number of females YFT, 

ranging in size from 125.8 to 154.5 cm FL (Fig. 6.2). 

 

 
Fig. 6.2_Number of YFT females collected at the cannery and caught by purse-seiner in the Gulf of Guinea (Eastern 

Atlantic Ocean) from April 2013 to January 2014. Females are gathered by 10 cm fork length (FL) size-group. 

 

For the 50 selected females, a cross section of the gonad of 4-5 cm was cut between the middle 

and end part of the right or left lobe and preserved in 4% buffered formaldehyde for reproductive 

analysis. In addition, a 2g sample of gonads was collected and stored frozen in a labeled Eppendorf 

for fatty acid analysis, and a 1g sample of white muscle was cut and placed in a labeled Eppendorf 

tube filled with 96% ethanol (with a tissue/ethanol volume ratio of 1:10) for genomics analysis. 

 

6.2.2 Reproductive analysis 

6.2.2.1  Histological analysis 

A cross section of ca. 1 cm of thickness was collected from the formaldehyde stored tissue and 

dehydrated in graded series of ethanol of increasing concentrations as described in Diaha et al., 

(2015). These dehydrated portions of the ovaries were embedded in paraffin and cut into sections 

of 5-6 µm in thickness with a microtome (MICROM, HM 350 S). The sections were stretched out in 

a bath with warm water (40°C) and subsequently gathered with glass slides properly labeled. After 
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24h the slides were stained with hematoxylin and eosin, using an automated Slide Stainer (Thermo 

Scientific™ Varistain™ 24-4). Once stained, the slides were mounted and then examined under a 

light microscope to be classified histologically following the criteria of Wallace and Selman (1981) 

and modified by Schaefer (1996; 1998). The histological analysis was performed at Azti tecnalia 

(Sukarrieta; Spain). Being characterized by an asynchronous ovarian development, each ovary was 

classified according to the most advanced oocyte stage present in the ovary (Murua and Motos, 

2006) applying the terminology proposed by Brown-Peterson et al., (2011), and established for YFT 

in Zudaire et al., (2013a): (i) immature phase (primary growth stage [PG]); (ii) developing phase 

(cortical alveolar [CA], primary vitellogenesis [Vtg1], and secondary vitellogenesis [Vtg2] stages); 

(iii) spawning-capable phase (tertiary vitellogenesis [Vtg3], germinal vesicle migration [GVM], and 

hydration stages[HYD]), and (iv) regenerating phase. For the purposes of this work, only the ovary 

in spawning-capable phase, containing oocytes in the stages Vtg3, GVM and HYD (i.e. the most 

advanced oocyte development stages) were selected (Fig. 6.3). 

 

 

Fig. 6.3_YFT ovary in actively spawning phase with the oocytes in the hydration stage. Oil droplets (od) are clearly 
evident and marked. Bar represents 50 μm 

 

Besides, atresia was not considered due to the brine conservation process used in the purse seine 

fleet that resulted in the break of the follicle wall and chorion, making not possible the accurate 

quantification of alpha-atresia (Zudaire et al., 2013a). 
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6.2.2.2 Oocyte size-frequency distribution 

A portion of the preserved ovary of 0.04 g (±0.0001 g) was collected and analysed for oocyte size-

frequency distribution at AZTI Technalia (San Sebastian, Spain). The sub-sample was placed into a 

filter with a mesh size of 125 µm and sprayed with high pressure water in order to separate the 

oocytes from the connective tissue. The separated oocytes were located in a gridded plate, 

photographed with a digital camera attached to the stereoscope, and analyzed with ImageJ free 

software (Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, 

http://rbs.info.nih.gov/ij/,1997-2012) to count and measure automatically all the oocytes of each 

sub-sample. The number of developing oocytes (NDO) was calculated between the minimum 

threshold of CA oocyte size (estimated at 120 µm; Zudaire et al., 2013b) and the Vtg3 stage. The 

separation between the oocytes in a developing stage from those belonging to the current batch 

(i.e. GVM or hydrated oocytes) was performed for each individual. The diameter of the developing 

oocytes and that of the oocytes forming the current batch were also calculated. 

 

6.2.2.3 Batch fecundity estimation 
 

The gravimetric method (Hunter et al., 1989) was used to estimate the batch fecundity (BF), which 

is the number of oocytes spawned per batch, for the selected ovaries at actively spawning phase 

without presence of new post-ovulatory follicles. This method consists of counting the total 

number of oocytes in the most advanced maturation stage (i.e. GVM or hydrated oocytes). For this 

purpose, three subsamples of 0.1 g (±0.01) were collected from each sample of formalin-

preserved ovary. Each sub-sample was placed on a slide and covered with 3-4 drops of glycerin 

(Schaefer, 1987) to make them translucent, simplifying their selection from the non-hydrated 

oocytes, that are relatively opaque, in order to be counted under the stereomicroscope. After 

having counted the total number of oocytes in the most advanced maturation stage, the BF was 

estimated as the weighted mean density of the three subsamples multiplied by the total weight of 

the ovary, applying a threshold of 10% as coefficient of variance (CV) among them. However, 

when the CV went beyond this threshold, more subsamples were taken in order to reach this 

value of CV. To estimate the relative batch fecundity (BFrel), the value of BF calculated was divided 

by the gonad-free weight of the fish. Analyses were performed at AZTI Technalia (San Sebastian, 

Spain). 
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6.2.3 Genomics analysis 

After having extracted the genomic DNA from each female (see Section.1), 2b-RAD libraries were 

prepared following the protocol from Wang et al., (2012) (see Chapter 3 and 4 for details). Two 

important modifications were carried out, with regard to the protocol used for the population 

structure study, in order to increase the number of reads obtained per each library: 1) the use of 

the restriction endonuclease AlfI (Thermo Fisher Scientific, Waltham, Massachusetts, USA); and 2) 

the use of both library-specific adaptors with fully degenerate cohesive ends (5ʹ-NN-3’). In fact, 

AlfI, which recognizes palindromic sequences, has more restriction recognition sites than CspCI, 

thus increasing the number of available sites for the two non-selective adaptors. Purified libraries 

were pooled together and sequenced on an Illumina HiSeq2500 platform, with a 50 bp single-read 

module at the Genomix4Life S.r.l. facilities (Baronissi, Salerno, Italy), dedicating two lanes to the 

pool. The sequencing provider performed also the data demultiplexing. Quality and adapters 

trimming of the sequence reads was performed by running a custom-made Perl script, obtaining 

34-bp fragments ready to be evaluated for SNPs presence in Stacks (Catchen et al., 2013). After 

having mapped the reads against the Thunnus orientalis’ genome (see details in Chapter 3), 

individual genotypes were constructed using the ref_map.pl Stacks pipeline by setting the 

following parameters: -m= 8, -n = 2 and a bounded SNP calling model with an upper bound of 0.1 

(all remaining Stacks settings as default). From the resulting catalog of loci, using the Stacks 

module populations, we only selected those that have just one bi-allelic SNP. The resulting SNP 

dataset (in a Genepop formatted file) was imported into the Rpackage Adegenet 2.0.1 (Jombart, 

2008, R version 3.1.2, R Development Core Team, 2014; http://www.r-project.org). Prior to 

association analyses, SNP markers were filtered for minor allele frequencies (MAF) of > 0.5, and 

call rate >0.9 (both at the individual and SNP level). Markers were also tested for deviations from 

Hardy Weinberg Equilibrium (HWE) expectations. Significance for HWE deviations was determined 

at the α = 0.05 level adjusted for multiple testing using a Bonferroni correction (Rice, 1989). The 

library preparation was performed at the University of Padova (Italy) while the bioinformatics 

analysis was performed at the University of Bologna. 
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6.2.4 Fatty acids analysis 

Fatty acids analysis was performed at INRA, UMR TOXALIM (Research Centre in Food Toxicology), 

in Toulouse (France) according to Bodin et al., (2014) and Sardenne et al., (2016). Firstly, each 2-g 

sample of gonads was subjected to cryogenic grinding by using a mixer mill, MM400 Retsch® 

(Verder, France), obtaining a homogenized powder. From this, a subsample (0.1±0.001g) was 

weighed under a nitrogen atmosphere and extracted following a Folch method (Folch et al., 1957). 

An aliquot of the sample extracted was additional separated by adsorption chromatography on a 

silica gel micro-column (Kieselgel 70 to 230 mesh, heated at 450°C and deactivated with 6% 

water). Neutral and Polar lipids were eluted with 10 ml chloroform: methanol mixture (98:2 v/v) 

and with 20 ml of methanol, respectively. After adding a known amount of C23:0 fatty acid as 

internal standard, each fraction was transmethylated at 100°C with 10 wt% boron trifluoride-

methanol (Metcalfe and Schmitz, 1961). The fatty acid methyl esters were analyzed on a TRACE 

1310 gas chromatograph equipped with an on-column injector and a flame-ionization detector 

(GC-FID, Thermo Scientific). Compounds were separated on a FAMEWAXTM column (30 m, 0.32 

mm internal diameter, Restek) using helium as carrier gas at a constant flow of 15 ml/min. The 

injector temperature was set at 225°C and the oven temperature was raised from 130°C to 245°C 

at 2°C/min after a stationary phase at 130°C for 1 min. Helium was used as the carrier gas at a 

constant flow of 15 ml/min. Peaks were identified by comparing sample retention times to those 

of commercial standard mixtures (Menhaden oil and Food Industry FAME Mix, Restek) with 

Xcalibur 2.2 software. Results were expressed in % as a relative abundance of total identified 

compounds in each lipid fraction. According to their degree of unsaturation (number of ethylenic 

or “double” bonds), fatty acids were grouped and estimated in saturated fatty acids (SFAs), mono- 

unsaturated fatty acids (MUFAs) and poly-unsaturated fatty acids (PUFAs). In addition, PUFAs, 

having more than one double bond present within the molecule, were further classified into two 

groups: omega-3 (n-3) and omega-6 (n-6). This classification is based on their chemical structure 

and specifically if their first double bond is located in 3 or 6 carbons from the methyl end of the 

molecule. 
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6.2.5 Multiple regression analysis 

For the 50 selected spawning capable females, the reproductive variables were correlated with 

the fish size through a linear regression analysis in R statistical software (R Development Core 

Team 2013). 

The reproductive variables, that resulted significantly correlated with the fish size, were selected 

as response variables for building a multivariate linear regression model in the R statistical 

software. In this model, the females’ fork length (FL) and the fatty acid profiles were used as 

explanatory variables: 

G ~ FL + FA1 + FA2 + ε 

Where: G is the reproductive output to explain, FL is the fish fork length, FA1 and FA2 are the fatty 

acids profiles from the neutral and polar fractions that explain a major part of the variability of G. ε 

are the residuals. 

A problem with multiple regression model is the multi-collinearity effects that occur when the 

predictor variables are too strongly correlated to each other, making the parameter estimates 

unstable and difficult to interpret. For this reason, the analysis was performed separately for each 

group of fatty acids (SFA, MUFA and PUFA). Moreover, the significant effects of PUFAs from PL and 

NL were firstly tested separately. Then, fatty acids from the two lipid fractions with a significant 

effect on the response variable were aggregated together in the model. However, the possible 

presence of multi-collinearity among explanatory variables was investigated through the use of 

variance inflation factors (vif) calculations. VIF was calculated using the function vif () in the R 

package car. 

 

6.2.6 Genome Wide Association Study (GWAS) 

 
The association between phenotype and genotype was examined by comparing allelic patterns 

between individuals and different phenotypic traits (Fig 6.4). 
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Fig. 6.4_Schematic representation of the association between the j-th SNPs and continuous phenotype traits. 

 

Statistical inference was performed using a linear regression model in R, analyzing all SNPs 

separately to assess the influence of each SNP on the given phenotype. In particular, denoting 

with “a” the minor allele and with “AA”, “Aa” and “aa” the three corresponding SNP genotypes, 

the following model was considered: 

 

y= β0+β1x1+ β2x2+ε 

-Data: 

 y: a continuous-valued phenotype  

 x1: Dummy variable for coding SNP genotype Aa at a given locus 

 x2: Dummy variable for coding SNP genotype aa at a given locus 

 

–Parameters  
 

 β0: intercept term (expected value for phenotype y for SNP genotype AA) 
 β1: differential effect for SNP genotype Aa 
 β2: differential effect for SNP genotype aa 
 ε: noise or the part of y that is not explained by the SNP x 

 
 

Association between SNP and phenotype was assessed by testing the following hyphotesis: H0: 

β1= β2=0, using an ANOVA F test. Due to the large number of genetic markers, corrections for 

multiple testing were performed using the positive false discovery rate (FDR) method (Benjamini 
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andYekutieli, 2001), in order to reduce the increased probability of false positive findings. We 

considered tests significant when the FDR was <5% (q< 0.05). 

From those SNPs significantly associated with the phenotypic traits, the consensus DNA sequences 

(contigs) were retrived from the genome of Thunnus orientalis. In order to annotate the contigs, 

BLASTx was run against a protein sequence database. Briefly, BLASTX, using a nucleotide query 

against a protein database, is able to reliably identify protein-coding regions within a DNA 

sequence if sufficient similarity exists between the translated query and an entry in the data-base. 

 

6.3 Results 

6.3.1 Reproductive analysis 

The Table 6.1 presents the main reproductive variables measured for each individual of the 50 

spawning capable YFT females. 

 

Table 6.1. Details on the reproductive output in Thunnus albacares females: acronym (Sample ID), fork length (FL) in 
cm, fish weight (W) in Kg, gonad weight (GW) in Kg, batch fecundity (BF) in millions of oocytes, relative batch 
fecundity (BFrel) in oocytes per gram of gonad-free weight, total number of developing oocytes (NDOtot) in millions 
and their mean diameter (NDOmn) in µm. In addition, mean value and standard deviation (SD) are provided per 
each variable. 

Sample ID FL W GW BF BFrel NDOtot NDOmn 

34-Y-ME-1 132 44 1.0 1.35 31.35 6.86 336.42 

34-Y-ME-3 136.6 48.8 1.1 3.23 67.66 6.88 284.25 

34-Y-ME-6 142.5 55.3 1.0 1.62 29.93 7.04 323.75 

34-Y-ME-7 139 51.4 0.7 2.40 47.87 9.61 280.65 

34-Y-ME-8 136.5 48.7 1.0 3.03 63.73 1.23 323.66 

34-Y-ME-9 139.8 52.2 1.1 1.34 26.22 7.50 321.73 

34-Y-ME-17 133 45 1.5 3.48 79.99 8.10 356.61 

34-Y-ME-18 149.5 63.8 1.5 5.34 86.66 2.02 294.20 

34-Y-ME-20 139 51.4 1.1 1.85 36.89 5.74 352.25 

34-Y-ME-21 135.3 47.1 2.2 1.88 41.28 3.45 334.54 

34-Y-ME-22 141.2 53.8 1.0 7.89 14.91 9.66 260.67 
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34-Y-ME-23 127.7 39.9 0.9 2.91 75.40 7.30 288.68 

34-Y-ME-24 145.5 58.8 1.2 2.96 51.46 1.02 289.41 

34-Y-ME-25 144 57.1 1.4 2.86 51.20 7.49 320.40 

34-Y-ME-26 146.2 59.7 0.9 1.45 24.78 7.94 320.07 

34-Y-ME-27 141 53.6 1.1 1.25 23.84 8.75 311.88 

34-Y-ME-28 139.8 52.2 1.3 3.00 59.20 7.11 346.92 

34-Y-ME-29 139.3 51.7 1.5 2.08 41.41 6.40 349.56 

34-Y-ME-33 154 69.7 1.4 3.27 47.92 1.28 294.47 

34-Y-ME-35 139.5 51.91 1.9 3.09 61.88 3.27 345.71 

34-Y-ME-36 139.9 52.35 2.0 2.84 56.45 1.31 315.33 

34-Y-ME-37 142.9 55.76 1.7 2.79 51.75 1.62 301.96 

34-Y-ME-39 138.1 50.37 1.3 2.20 44.69 3.32 327.14 

34-Y-ME-40 143.6 56.58 1.0 2.14 38.82 8.17 326.33 

34-Y-ME-45 147.1 60.79 1.0 4.52 76.70 1.42 283.95 

34-Y-ME-46 140.2 52.69 1.5 1.46 28.42 8.73 312.97 

34-Y-ME-47 141.5 54.15 1.0 4.67 88.92 1.98 317.70 

34-Y-ME-48 146.6 60.17 0.8 1.96 33.35 7.97 336.87 

34-Y-ME-50 146.7 60.29 1.0 1.71 28.77 5.00 290.83 

34-Y-ME-54 146 59.44 1.2 3.35 57.98 1.45 299.23 

34-Y-ME-55 144.2 57.29 1.6 4.48 79.65 6.18 350.62 

34-Y-ME-56 150.5 65.06 0.8 2.33 36.48 8.44 288.76 

34-Y-ME-58 130.5 42.56 1.8 1.88 45.04 6.94 261.67 

34-Y-ME-60 135.6 47.71 1.5 2.83 61.06 1.35 316.03 

34-Y-ME-61 137.3 49.51 0.7 2.54 52.50 8.04 316.15 

34-Y-ME-62 144 57.05 1.4 2.79 50.10 1.34 305.66 

34-Y-ME-63 146.5 60.05 1.2 3.60 61.70 1.39 337.75 

34-Y-ME-64 143.9 56.93 0.8 2.47 44.59 1.39 293.97 

34-Y-ME-65 141.1 53.7 1.6 3.89 74.62 1.41 306.52 

34-Y-ME-67 148.5 62.52 1.3 2.50 40.96 1.23 299.30 
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34-Y-ME-69 141.9 54.61 1.3 3.13 58.77 9.61 337.48 

34-Y-ME-70 150.5 65.06 1.6 2.36 37.10 1.00 290.64 

34-Y-ME-72 139.7 52.13 1.4 2.49 48.88 1.35 320.05 

34-Y-ME-77 128.8 40.93 1.1 1.96 48.96 6.12 316.10 

34-Y-ME-81 154.5 70.35 1.3 2.78 40.51 1.08 326.27 

34-Y-ME-82 125.8 38.16 1.3 1.37 36.62 5.46 301.68 

34-Y-ME-83 143.6 56.58 1.4 3.11 56.47 1.57 321.23 

34-Y-ME-84 138.4 50.7 1.7 2.36 48.23 1.77 327.44 

34-Y-ME-85 149.7 64.04 1.1 5.03 81.62 1.45 306.26 

34-Y-ME-86 151.8 66.75 2.3 2.54 38.78 5.84 250.44 

Mean (± SD) 141.6 (± 6.4) 54.6 (± 7.3) 1.29 (± 0.3) 2.66(±0.99) 50.2 (± 17.6) 1.00 (±0.4) 312.4 (± 24.3) 

 

The BF was estimated at 2.66±0.9 million oocytes and the BFrel at 50.2±17.6 oocytes per gram of 

gonad-free weight. None of those variables were significantly correlated (PNS) with the fish size. 

On the contrary, the total number of developing oocytes and the gonad weight were significantly 

correlated with the size (P<0.01). The size had a significant effect on the increasing of both the 

total number of developing oocytes and gonad weight, explaining the 12% and 14.5 % of their 

variability, respectively. The mean gonad weight was 1275.9 grams, ranging from 655.5 to 2305.3 

grams. 

 

6.3.2 Genomics analysis 

The 2b-RAD reads were mapped against the genome of Thunnus orientalis with a percentage of 

success higher than 86%. The ref_map.pl program in Stacks was run on the resulting dataset 

obtained after the quality and adaptors trimming process (Table 6.2). After this process, in average 

the 86.3% of reads was retained with in total 21328 SNPs shared among the 50 females. However, 

only 7550 SNPs were retained for subsequent analyses, having a MAF > 0.5 and a percentage of 

missing value < 10%. 
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Table 6.2. Summary statistics of the 50 females of Thunnus albacares. The table reports: the identification code (ID), 
the number of raw reads and the corresponding number of filtered reads, the percentage of reads retained, the 

value of unique tags, polymorphic SNPs and number of loci found. 
ID code Raw reads Filtered 

reads 
% of reads 
retained 

Unique 
Stacks 

Polymorphic 
Loci 

SNPs Found 

34_Y_ME_1 5703894 4985821 87.4 138480 11924 14319 
34_Y_ME_17 4327318 3827215 88.4 130918 11272 13456 
34_Y_ME_18 8975762 7522896 83.8 146618 12541 15171 
34_Y_ME_20 7807073 7040062 90.2 143898 12265 14714 
34_Y_ME_21 4768136 4231495 88.7 139226 12101 14415 
34_Y_ME_22 4845506 4043267 83.4 132089 11464 13734 
34_Y_ME_23 12011988 10719107 89.2 149746 12816 15525 
34_Y_ME_24 11549711 9969565 86.3 149543 12791 15486 
34_Y_ME_25 12633549 11152477 88.3 151253 12973 15640 
34_Y_ME_26 11023917 10006567 90.8 148577 12725 15432 
34_Y_ME_27 8390702 7562676 90.1 144615 12524 14984 
34_Y_ME_28 6021472 4492771 74.6 136011 11773 14181 
34_Y_ME_29 10408741 9421842 90.5 148081 12387 15007 
34_Y_ME_3 12003058 10690603 89.1 149539 12710 15320 

34_Y_ME_33 7286778 5886898 80.8 129550 10925 13131 
34_Y_ME_35 10709811 9160480 85.5 147626 12602 15194 
34_Y_ME_36 6726475 5545731 82.4 139630 12063 14450 
34_Y_ME_37 7195260 6108528 84.9 141004 11982 14389 
34_Y_ME_39 7353003 5885137 80.0 142102 12309 14753 
34_Y_ME_40 3528834 3242053 91.9 124384 10788 12918 
34_Y_ME_45 4716812 4032780 85.5 147161 12748 15283 
34_Y_ME_46 6057862 5354723 88.4 138829 11918 14332 
34_Y_ME_47 6490810 5759821 88.7 138727 12081 14532 
34_Y_ME_48 5227023 4651060 89.0 133761 11673 13933 
34_Y_ME_50 6235471 5597685 89.8 138596 12046 14435 
34_Y_ME_54 7370027 6289860 85.3 144455 16971 20323 
34_Y_ME_55 8662128 7620591 88.0 143913 12514 15090 
34_Y_ME_56 5482506 4852604 88.5 133688 11489 13657 
34_Y_ME_58 8305781 7500946 90.3 142436 12241 14782 
34_Y_ME_6 8171016 6691975 81.9 144611 12533 15078 

34_Y_ME_60 4293580 3673621 85.6 128189 10988 13077 
34_Y_ME_61 5705199 4969654 87.1 135805 11776 14125 
34_Y_ME_62 5707467 4741143 83.1 136532 11798 14066 
34_Y_ME_63 3493863 2923497 83.7 121074 10658 12732 
34_Y_ME_64 11834977 9895634 83.6 151551 12990 15610 
34_Y_ME_65 7022455 6304615 89.8 139763 11964 14353 
34_Y_ME_67 4196849 3522322 83.9 126701 10979 13170 
34_Y_ME_69 5809394 5025519 86.5 137076 11994 14372 
34_Y_ME_7 6773079 6121034 90.4 139089 11736 14043 

34_Y_ME_70 5910715 5316666 89.9 136782 11718 14020 
34_Y_ME_72 10823702 9557720 88.3 147645 12732 15348 
34_Y_ME_77 10202748 9222457 90.4 147077 12860 15540 
34_Y_ME_8 6269692 5533403 88.3 140660 12125 14609 
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34_Y_ME_81 7519081 6427225 85.5 142405 12113 14562 
34_Y_ME_82 4667536 4118182 88.2 130378 11434 13717 
34_Y_ME_83 7605051 6061030 79.7 141737 12116 14533 
34_Y_ME_84 7430267 5885223 79.2 129606 11032 13325 
34_Y_ME_85 6773277 5523800 81.6 141399 12114 14507 
34_Y_ME_86 10211284 8737976 85.6 147751 12737 15315 
34_Y_ME_9 6724045 5703243 84.8 139295 12118 14459 

 

 

6.3.3 Fatty acids analysis 

Table 6.3 shows the overall fatty acid composition in the 50 YFT females’ ovary measured in Polar 

(PL) and Neutral lipid (NL) fractions. 

 

Table 6.3. Fatty acid composition in the neutral and polar lipid fractions of the YFT gonads. 

Fatty acid 
% of total FA in neutral lipid fraction 

(Mean ± SD.) 
% of total FA in polar lipid fraction 

(Mean ± SD.) 

C14:0 2.11±1.13 0.25±0.18 

C15:0 1.26±0.44 0.34±0.27 

C16:0 28.8±6.66 29.59±7.47 

C17:0 0.98±0.21 0.97±0.28 

C18:0 9.54±3.55 9.27±1.46 

C20:0 2.67±1.22 0.49±0.3 

C22:0 0.03±0.03 0.04±0.03 

C16:1n-7 5.85±1.36 1.14±0.43 

C17:1n-7 0.74±0.15 1.05±0.39 

C18:1n-9 10.54±2.04 8.52±1.22 

C18:1n-7 2.52±0.29 1.69±0.28 

C20:1n-9 0.66±0.2 0.33±0.18 

C22:1n-9 0.59±0.31 0.52±0.3 

C24:1n-9 0.09±0.1 0.08±0.06 

C18:3n-3 0.43±0.1 0.19±0.06 
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C18:4n-3 0.36±0.08 0.12±0.04 

C20:3n-3 0.04±0.04 0.03±0.02 

C20:4n-3 0.48±0.15 0.29±0.08 

C20:5n-3 (EPA) 4.12±0.66 5.81±1.45 

C22:5n-3 1.05±0.26 0.82±0.26 

C22:6n-3 (DHA) 20.91±5.4 25.87±6.25 

C18:2n-6 1.29±0.39 0.65±0.14 

C18:3n-6 0.4±0.18 0.17±0.06 

C20:2n-6 0.07±0.04 0.06±0.04 

C20:3n-6 0.21±0.11 0.16±0.13 

C20:4n-6 (AA) 2.1±0.43 5.24±0.94 

C22:5n-6 1.03±0.22 1.63±0.34 

Sum SFA 44.5±5.75 40.19±7.9 

Sum MUFA 20.77±2.87 12.8±1.66 

Sum PUFA 32.26±7.27 40.32±8.93 

Sum PUFA n-3 27.2±6.71 32.64±7.87 

Sum PUFA n-6 5.06±1.05 7.68±1.29 

 

In general, the fatty acid profile in NL showed a higher variation than in PL. For NL, SFA was the 

most abundant group (44.5%), while in PL the most abundant groups were SFA and PUFA (40.19% 

and 40.32%, respectively). Overall, NL contained a higher percentage of SFAs and MUFAs but a 

lower percentage of PUFAs than PL. However, for both lipid fractions, the three most abundant 

fatty acids in the gonads were C16:0 (palmitic acid), C22:6n-3 (docosahexaenoic acid, DHA) and 

C18:1n-9 for NL, and C16:0, DHA, C18:0 for PL. 

The fatty acid C16:0 was the most abundant SFA at both fractions (28.8% in NL vs 29.59% in PL), 

followed by C18:0 (stearic acid; 9.54% NL vs 9.27% PL). Regarding MUFAs, in both lipid fractions 

the most abundant fatty acid found was the C18:1n-9 with however a higher concentration in NL 

(ranged from 5.16 to 24.10%) than in PL (ranged from 7.72 to 17.58%). The primary source of total 

PUFAs found in gonads tissues were the namely n-3 fatty acids C20:5n-3 (Eicosapentaenoic acid; 
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EPA) and DHA. The arachidonic acid (AA; C20:4n–6) was the most abundant n-6 PUFA in our 

samples. 

 

6.3.4 Multiple regression analysis 

The gonad weight (Fig. 6.5) was chosen as explanatory variable for the multiple linear regression 

model, according to the fact that no fatty acids were significantly correlated (P value > 0.05) with 

the total number of developing oocytes. 

 

 

Fig. 6.6_Scatter plot of the gonad weight (GW, g) and the fork length (FL, cm) for the 50 females of yellowfin tuna. In 
red is displayed the regression line. 

 

In the polar lipids, any significant correlation was found among both SFA and MUFA groups, the 

gonad weight and the fish size. Instead, in the neutral lipids it was detected a significant effect of 

specific SFAs and MUFAs on the variability of the gonad weight. Specifically for SFAs, C17:0 and 
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C16:0 explained together around 33% of the variation of the gonad weight in relation to the fish 

size. Significant correlations (p-value<0.001) were also found with C18:1n-9 and C18:1n-7 

(MUFAs), which explained the 26% of the variance in the gonad weight. 

Contrarily, significant correlations were found with some combinations of PUFAs as well as with 

some omega-3: omega-6 ratios. For the polar fraction, a significant correlation (p-value<0.001) 

was detected considering as explanatory variables the sums of omega-3 (n3-PUFAs) and omega-6 

(n6-PUFAs), with an Adjusted r2 of 0.415. The regression coefficient was positive (Estimate: 3.92) 

for n3-PUFAs, while it was negative for n6-PUFAs (Estimate: -2.52). 

Exploring the effects of each PUFA of the polar fraction, it was discovered that among all the 

omega-3 and omega-6 fatty acids, only DHA (RC: 51.864), AA (RC: -389.214) and C18:2n-6 (RC: 

798.591) had a significant effect on the model (p-value<0.001), explaining together with the fork 

length around the 50% of the gonad weight variability (Adjusted R-squared: 0.5051). 

Adding in the model the specific interaction of those fatty acids with the fish size, the r2 was 

further increased (Adjusted R-squared: 0.5814; p-value<0.001). This result demonstrated that the 

female size enhances the opposite effect of these three fatty acids: underlining that the increase 

of the gonad weight in correspondence to the proportion of specific omega-3 and omega-6 will be 

higher in larger females. This pattern was also confirmed by the significant effect (pvaue<0.001) of 

the ratio n3-PUFAs over n6-PUFAs and the ratio EPA over AA, which explained respectively the 

29% and 24% of the increase of the gonad weight in relation to the mother size. 

Instead in the neutral fraction the only two PUFAs with a significant (p-value<0.001) and positive 

effect on the model were C20:4n-3 and C18:3n-6 (Adjusted R-squared: 0.37). These two PUFAs 

were added in the model (Table 6.4), together with the three significant PUFAs detected for the 

polar fraction (DHA, AA and C18:2n-3). 
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Table 6.4_Summarizing the regression coefficients of each predictor variable included in the model. The total 
Adjausted R-squared and the p-value are also reported. PL: polar lipid fraction; NL: neutral lipid fraction 

 Estimate Std. Error t value Pr(>|t|) vif 

(Intercept) 5.539 33.971 0.163 0.871271  
FL 20.779 5.618 3.699 0.000636 1.11 

C22:6n-3 PL 32.088 10.971 2.925 0.005591 4.22 

C20:4n-6 PL -321.181 65.992 -4.867 1.72E-05 3.49 

C18:2n-6 PL 298.436 336.535 0.887 0.380364 1.74 

C20:4n-3 NL 1016.626 336.109 3.025 0.004283 2.15 

C18:3n-6 NL 479.57 243.453 1.97 0.055634 1.24 

      
Adjusted R-squared: 0.5972     

p-value: 5.21E-08     
 

However, the effect of C18:2 n-6 was not significant (p-value>0.05) and hence it was removed 

from the model. Running the model with the other four fatty acids made possible to explain 

almost the 60% (Adjusted R-squared: 0.5993) of the variability of the gonad weight and all the 

explanatory variables considered had a significant effect on the model. In addition, adding in this 

model the interactions between PUFAs and the fish size allowed to further increase the 

percentage of variability explained (Adjusted R-squared: 0.6765). 

For all the considered models, VIF values were always lower than 10, thus suggesting the absence 

of severe multi-collinearity. 

 

6.3.5 Genome Wide Association Studies 

Any marker was significantly associated with the gonad weight, the fork length and fatty acids 

included in the multiple linear regression models. However different unique SNPs were 

significantly associated with different fatty acids of both polar and neutral lipid fractions (see 

details in the Appendix 6.2). The BLASTx results reported the predicted protein sequences for each 

of the contig’s sequence used as query with the corresponding level of similarity. However, 

specific functional genomics studies are needed to investigate the biological role that those 

protein-coding transcripts play in YFT. 
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6.4 Discussion and Conclusions 

Our results pointed out the shortcoming of BF and relBF as response variables for investigating the 

variation of the fecundity and energetic allocation in YFT females in relation to their size. The 

inefficiency of those variables for the purposes of the present study is linked to the way in which 

they are obtained that is strictly dependent on the fish size. In doing so, their use as response 

variable in the multiple regression model would nullify any possibility to hypothesize an increase 

of the reproductive success related to the mother size. 

On the contrary, here using the fish gonad weight, which is a good indicator of the individual 

reproductive effort, we demonstrated for the first time that within a YFT spawning stock, females 

allocate differently their available nutrient reserves and dietary resources for reproduction. This 

different energetic pattern is mainly related to their size. In fact, our results pointed out that 

larger YFT females with larger gonads not only have a greater body volume for holding eggs, but 

also they allocate a greater fraction of surplus energy to egg production than smaller ones. This 

higher energetic allocation will enhance the spawning quality, increasing the likelihood to produce 

higher-quality offspring that will augment, in turn, larvae survival chances through a decrease of 

development duration from embryogenesis to the first oral feeding (Fernández-Palacios et al., 

2011). The higher quality of ova lipid reserves in larger-size YFT females is highlighted by the 

higher concentration of certain polyunsaturated fatty acids (PUFAs) especially in Polar Lipids (PL). 

The high percentage of dietary PUFAs in PL underlines their importance for YFT reproductive 

processes (Tocher, 2003). In fact tunas, like other animals, cannot synthesize de novo omega-3 and 

omega-6 PUFAs, lacking of the appropriate fatty acid desaturase enzymes. Thus, the proportion of 

the different PUFAs in the gonads reflects the amount assumed by feeding. Balance in the diet of 

both PUFAs n-3 and n-6 is an essential point for optimizing fish reproductive success (Acharia et 

al., 2000). PUFAs in general, and omega-3 in particular, actively participate in gonad maturation, 

egg quality (Izquierdo et al., 2001) and larval growth of fish (Tulli and Tibaldi, 1997), regulating also 

the production of eicosanoid (prostaglandins), steroid hormones and gonad development 

(ovulation; Izquierdo et al., 2001). Our results indicated that larger females had a higher 

concentration of docosahexaenoic acid (C22:6n-3; DHA) but a lower concentration of arachidonic 

acid (C20:4n-6; AA), and linoleic acid (C18:2n-6). DHA is an essential fatty acid that fishes are not 

able to synthesize from the essential precursors alpha-linolenic acid (Riediger et al., 2009). It has a 

specific structural role in nervous tissue (Sargent et al., 1993) and higher supply of DHA available 
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after the start of feeding would support the rapid development of membrane systems (Tocher, 

2003). In NL it was observed a much higher level of DHA than EPA and their ratio increased with 

the female size. This result confirmed that usually tuna lipids, including triacyglycerols and 

phospholipids, have higher levels of DHA than EPA (Murase and Saito, 1996). 

Overall, it was detected a higher PUFAs n-3/n-6 ratio in PL than in NL of larger females. Our results 

showed that an increase of gonad weight in larger females corresponds also to a decrease of AA 

and a consequent increase of EPA/AA ratio. Higher levels of EPA/AA ratio, which is crucial for 

determining eicosanoid actions, have been associated with a superior resistance to infection in 

several marine and freshwater species (Sargent et al., 1995). Therefore, dietary intake of these 

fatty acids can assume a relevant importance in YFT reproduction, even if there are not 

information about the optimal intake of omega-3 to guarantee the spawning quality and 

reproductive success of this species. 

High levels of omega-3 in lipids and in particular of DHA and EPA are a prerogative of tuna species 

(Murase and Saito, 1996). For instance, in the Pacific Ocean YFT showed a total amount of n-3 

PUFAs approximately around 35% of total fatty acids with DHA alone accounting for between 25% 

and 30% (Sunarya et al., 1995). Although, the relatively high level of omega-3 measured in this 

study for YFT females seems to be an inherent characteristic of tuna species, however the higher 

amount of omega-3 in the gonads of larger females indicates a change in the energetic strategy of 

retaining/accumulating those fatty acids for reproduction in relation to the fish size (Tocher, 

2003). 

In NL, higher levels of the palmitic acid (16:0) and oleic acid (18:1n-9) were also found in gonads of 

larger mothers. These fatty acids have significant quantitative and qualitative roles in structural 

phospholipids (Bell and Dick, 1991) and they can be biosynthesized de novo by fish as well as by all 

known organisms (Sargent et al., 1989). 

Our results indicated a possible onthogenic shift in the energy allocation strategy of YFT females, 

highlighting that larger individuals allocate more energy for reproduction than smaller ones, 

increasing noticeably the spawning quality. On the contrary, smaller females invest more energetic 

resources for somatic growth than larger ones (Zudaire et al., 2014). These authors showed a 

negative relationship between the amount of total lipids in the muscle and the size of YFT females. 

Therefore, larger mothers will switch the energy allocation from somatic to gonadic growth for 

ensuring future reproductive opportunities (Wiegand et al., 2007). This size-related energetic 

allocation strategy might be linked to a much higher natural mortality rate (M) in females with a FL 
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> 130 cm than in midsized individuals (Hampton and Fournier, 2001). In doing so, larger females 

could allocate all their energetic resources for reproduction before dying in order to increase the 

offspring quality and fitness, thus promoting the survival of future generations. 

This study provided only a qualitative perspective of the maternal effect in YFT females, since it 

was not possible to show any increase of the production of oocytes per gram of gonad weight (i.e. 

relative batch fecundity) related with the mother size. However, the maternal effect could be 

interpreted, in terms of quantity, through the possibility to have a wider spatial and temporal 

window for spawning that certainly will increase the number of oocytes released during the all 

spawning season (Zudaire et al., 2014; Schaefer, 1998). 

Many doubts were raised here about the use of the spawning stock biomass (SSB) as a proxy of 

YFT stock reproductive potential by the tRFMOs. In fact, if a sustainable fishery is the desired 

outcome of the current management of YFT in the Atlantic Ocean, then it must take into account 

the reproductive importance of large females that may result essential for the stock rebuilding. It 

is also evident that additional demographic criterions, that account for the reproductive 

importance of larger and most experienced spawners, are needed to properly estimate the 

reproductive potential of YFT stocks. 

In such a context, we argue in favor of preserving such larger-size females to increase the stock 

productivity in the Atlantic Ocean (Berkeley et al., 2004; Birkeland and Dayton, 2005). Protecting 

those spawners (i.e. establishing no-take areas), which produce offspring of higher quality, would 

undoubtedly increase per capita reproductive output (Kaiser et al., 2007) and would provide an 

added bonus to YFT stocks, because the recruitment rates of the offspring should be congruently 

higher. Oppositely, increasing the mortality of larger and most experienced spawners through 

different fishing methods (i.e. tuna purse seiner and longline fisheries) might have potential 

negative consequences for YFT stocks, altering the time and the location of the spawning events 

and thus decreasing the production and quality of eggs released. Consequently, large YFT females 

have a crucial relative reproductive value (Grey and Law, 1987), which may intensely contribute to 

year class strength and surplus production under exploited conditions (Arlinghaus et al., 2010). 

Maintaining and protecting highly fecund large individuals can thus represent an efficient and 

reliable strategy for a sustainable management of YFT in the Atlantic Ocean. 

Instead, our GWAS failed to find genomic regions significantly associated with the gonad weight, 

the fish size and the different percentage of specific fatty acids that intervene in increasing the YFT 

spawning quality. These results pointed out that the energetic patterns related to the female’s size 
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in this pelagic species are not under the control of specific genomic regions. Although, the 

corrections for multiple testing were performed with the False Discovery Rate (FDR; pvalue<0.05), 

that is less conservative than a Bonferroni adjustment (Narum, 2006), however the small sample 

size hold the analysis so stringent that only the largest effects could be detected. Besides, the use 

of the draft genome of another tuna species could have left off parts of the genome in which are 

present SNPs involved in those energetic patterns. In summary, due to the complexity of these 

traits and the intrinsic limitation factors of our study, these results are not conclusive and future 

investigations with more samples are required in order to determine if there are candidate genes 

involved in regulating those reproductive and energetic processes. 

Future effort is also needed for analysing the fatty acids composition in somatic tissues, such as 

white muscle and liver, in order to understand how the energy is transferred from those tissues to 

the gonads during spawning events in relation to females’ size. These information are crucial to 

point out if the size-related fatty acids composition pattern observed in the gonads in YFT females 

is also confirmed by the dynamics of the somatic energy reserves during reproduction. 
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Appendix 6.1  

Maturity stage scale for visual examination of large pelagic gonads (source: IOTC-2015-
WPTT17-INO03). 

 

 



 
 

Appendix 6.2 

The table summerizes the contig’s ID whose sequence was used as query in BLAST, the fatty acid associated with the SNP, the expected value of the alignment (e-value), the 
overall quality of the alignment (score), the number of identical matches (nident), the name of the protein that is similar with our query and the scientific name of the species 

in which it was found. 
Contig Fatty acid e-value Score nident Species Protein 

BADN01037938.1 C15:0 NL 2.16e-80 498 111 Maylandia zebra PREDICTED: RNA-directed DNA polymerase from mobile element jockey-like 

BADN01077159.1 C15:0 NL 9.36e-123 489 101 Paralichthys olivaceus reverse transcriptase-like protein 

BADN01058733.1 C17:0 NL 4.89e-16 218 60 Neolamprologus brichardi PREDICTED: paired mesoderm homeobox protein 1-like 

BADN01010614.1 C18:0 NL 5.25e-44 323 66 Larimichthys crocea Zinc finger BED domain-containing protein 1 

BADN01020684.1 C18:0 NL 2.31e-26 312 57 Larimichthys crocea hypothetical protein EH28_14086 

BADN01088413.1 C18:0 NL 2.28e-08 169 32 Stegastes partitus PREDICTED: G-protein coupled receptor family C group 5 member C isoform X2 

BADN01091971.1 C18:0 NL 4.61e-35 262 45 Stegastes partitus PREDICTED: presequence protease, mitochondrial 

BADN01067369.1 C18:0 NL 1.30e-26 302 55 Tetraodon nigroviridis unnamed protein product 

BADN01020063.1 C18:0 PL 5.42e-32 362 114 Alpine marmot PREDICTED: ankyrin-1-like 

BADN01067004.1 C20:1w9 PL 9.21e-153 1287 322 Larimichthys crocea hypothetical protein EH28_08179 

BADN01023737.1 C20:1 w9 PL 0.0 1714 326 Larimichthys crocea Neuropeptide Y receptor type 2 

BADN01066581.1 C24:1w9 PL 4.10e-14 209 38 Larimichthys crocea Hypothetical protein EH28_23722 

BADN01045269.1 C24:1w9 PL 8.19e-58 325 76 Larimichthys crocea PREDICTED: zinc finger BED domain-containing protein 1-like 

BADN01022523.1 C18:3w3 PL 5.94e-41 296 65 Strongylocentrotus purpuratus PREDICTED: uncharacterized protein LOC592034 

BADN01068792.1 C15:0 PL 3.75e-54 478 84 Lycodichthys dearborni CR1-3 

BADN01077504.1 C15:0 PL 3.72e-12 193 37 Larimichthys crocea Potassium voltage-gated channel subfamily KQT member 1 

BADN01047352.1 C15:0 PL 2.46e-22 274 64 Larimichthys crocea Protein FAM150B 

BADN01071779.1 C15:0 PL 4.37e-120 941 223 Larimichthys crocea putative DNA repair and recombination protein RAD26-like protein 

BADN01038820.1 C15:0 PL 8.42e-51 180 32 Salmo salar ORF2 protein 

BADN01057259.1 C16:0 PL 5.42e-32 352 85 Oreochromis niloticus PREDICTED: RNA-directed DNA polymerase from mobile element jockey-like 

BADN01057259.1 SUM.SFA PL 5.42e-32 352 85 Oreochromis niloticus PREDICTED: RNA-directed DNA polymerase from mobile element jockey-like 



 
 

BADN01047352.1 C16:1w7 PL 2.46e-22 274 64 Larimichthys crocea Protein FAM150B 

BADN01045901.1 C16:1w7 PL 4.08e-38 426 76 Larimichthys crocea PREDICTED: cadherin-2 

BADN01036392.1 C24:1w9 PL 3.21e-47 484 97 Xenopus (Silurana) tropicalis PREDICTED: general transcription factor II-I repeat domain-containing protein 2-like 

BADN01047439.1 C24:1w9 PL 4.33e-16 219 45 Austrofundulus limnaeus PREDICTED: receptor activity-modifying protein 3-like isoform X2 [Austrofundulus 
limnaeus] 

BADN01043809.1 C24:1w9 PL 2.32e-13 200 42 Oncorhynchus mykiss unnamed protein product 

BADN01096355.1 C24:1w9 PL 8.04e-23 289 53 Larimichthys crocea PREDICTED: vasoactive intestinal polypeptide receptor 2 

BADN01003838.1 C24:1w9 PL 2.16e-80 498 111 Maylandia zebra PREDICTED: RNA-directed DNA polymerase from mobile element jockey-like 

BADN01044590.1 C24:1w9 PL 1.17e-34 377 69 Austrofundulus limnaeus PREDICTED: uncharacterized protein LOC106522257 

BADN01092270.1 C24:1w9 PL 1.72e-19 248 46 Salmo salar PREDICTED: arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1-
like, partial 

BADN01005310.1 C24:1w9 PL 1.71e-20 176 43 Oreochromis niloticus PREDICTED: uncharacterized protein LOC102077105 

BADN01034974.1 C24:1w9 PL 1.20e-37 392 90 Oryzias latipes PREDICTED: LOW QUALITY PROTEIN: uncharacterized protein LOC105355317, 
partial 

BADN01086105.1 C24:1w9 PL 2.11e-07 161 41 Anguilla japonica reverse transcriptase 

BADN01063047.1 C24:1w9 PL 9.38e-35 276 61 Notothenia coriiceps PREDICTED: zinc finger protein 346-like 

BADN01017698.1 C20:3w3 PL 3.52e-47 505 117 Oreochromis niloticus PREDICTED: integrin alpha-L-like isoform X2 

BADN01095731.1 C20:3w3 PL 2.67e-25 186 36 Larimichthys crocea Thiamine transporter 1 

BADN01022467.1 C20:3w6 PL 6.68e-55 351 77 Larimichthys crocea Retrovirus-related Pol polyprotein LINE-1 

BADN01073637.1 C20:3w6 PL 5.34e-47 296 63 Tetraodon nigroviridis unnamed protein product, partial 

BADN01054561.1 C20:3w6 PL 1.21e-33 359 76 Xenopus (Silurana) tropicalis PREDICTED: 41 kDa spicule matrix protein-like 

BADN01073809.1 C20:3w6 PL 5.51e-50 480 91 Xenopus (Silurana) tropicalis TPA: putative transposase 

BADN01014200.1 C20:3w6 PL 8.68e-11 194 41 Cyprinodon variegatus PREDICTED: uncharacterized protein LOC107091067 

BADN01068319.1 C20:3w6 PL 2.37e-12 207 40 Cricetulus griseus putative ubiquitin carboxyl-terminal hydrolase FAF-X isoform 2 

BADN01071796.1 C20:3w6 PL 2.39e-41 232 69 Lycodichthys dearborni CR1-3 

BADN01006921.1 C20:3w6 PL 8.43e-55 536 133 Oncorhynchus mykiss unnamed protein product 
BADN01073732.1 C20:3w6 PL 6.91e-53 510 165 Larimichthys crocea PREDICTED: protein naked cuticle homolog 2 isoform X1 

BADN01017707.1 C20:3w6 PL 1.17e-61 569 115 Larimichthys crocea PREDICTED: protein phosphatase 1 regulatory subunit 27-like 

BADN01062649.1 C20:3w6 PL 8.99e-13 201 36 Dicentrarchus labrax Noggin-2 

BADN01090510.1 C20:3w6 PL 6.58e-07 156 30 Clupea harengus PREDICTED: uncharacterized protein LOC105899288 



 
 

BADN01079351.1 C20:3w6 PL 1.46e-37 388 104 Tetraodon nigroviridis unnamed protein product, partial 

BADN01113927.1 C20:3w6 PL 2.22e-98 731 157 Pundamilia nyererei PREDICTED: LOW QUALITY PROTEIN: probable imidazolonepropionase 

BADN01057629.1 C20:3w6 2.07e-22 284 55 Larimichthys crocea PREDICTED: U1 small nuclear ribonucleoprotein 70 kDa 

BADN01023286.1 C20:3w6 1.05e-11 182 32 Tetraodon nigroviridis unnamed protein product 

BADN01036971.1 C20:3w6 1.57e-22 271 52 Neolamprologus brichardi PREDICTED: glutamate receptor ionotropic, kainate 4-like, partial 

BADN01042171.1 C20:3w6 1.73e-23 301 59 Stegastes partitus PREDICTED: anoctamin-4 

BADN01027793.1 C20:3w6 6.25e-122 1105 281 Larimichthys crocea PREDICTED: LOW QUALITY PROTEIN: potassium voltage-gated channel subfamily H 
member 5-like 

BADN01046024.1 C20:3w6 1.21e-47 287 56 Danio rerio PREDICTED: zinc finger BED domain-containing protein 4-like 
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Yellowfin tuna (Thunnus albacares; YFT) represents one of the most important seafood 

commodities in the world. Despite the substantial social and economic importance of YFT fisheries 

and the significant decrease of catches in various regions around the world (i.e. recently in Indian 

Ocean), there are still fragmented and controversial information regarding the ecology and biology 

of this important biological, natural and economic resource. In Chapter 1, all those aspects have 

been widely examined in depth for delineating the current state of knowledge and future research 

directions and improvements required for the governance of YFT in the tRFMOs. Even though a 

proper fish stock management needs accurate knowledge on the stock structure and its genetic 

variation, with respect to environmental and ecological conditions, it was emphasised that there 

are still more doubts than certainties about YFT genetic population structure both at the intra- and 

inter-oceanic level. Failing to detect population structure, due to limited genetic resolution of 

classical markers, can potentially be misleading for management purposes, driving to local 

overfishing and severe stock decline with profound implications for YFT management and 

conservation. 

This general pattern was confirmed in Chapter 2, in which our results, mainly due to the 

inadequate resolution power of the neutral markers employed, cannot reject the null hypothesis 

of the existence of only one panmictic population at the global scale. In such a context, there is an 

evident need for developing alternative approaches based on genomics, that allow screening a 

larger number of markers across the entire genome, including neutral and non-neutral loci. This 

might enable resolving YFT population structure, quantifying the extent of spatial demographic 

changes and discover imprints of local adaptation, which represent priority focus for implementing 

effective management plans. 

In Chapter 3, after having examined the utility of Technical Replicates (TRs) for optimizing 

genotyping procedure, I tested the potential of 2b-RAD genotyping approach in investigating YFT 

population genetic structure. Our results confirmed the great utility of TRs for optimizing 

genotyping procedure and even more importantly it was demonstrated the high potential of 2b-

RAD in screening a large set of genomic loci in a high gene-flow marine species. Besides, we 

discovered the possibility to unambiguously map the TRs' tags against the reference genome of T. 

orientalis with a high percentage of success (86,59%), in spite of the small size of fragments and 

the evolutionary distance between these two species. Although our results highlighted the great 

advantage of using a large amount of molecular markers to detect genetic differentiation among 
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YFT populations however those estimates needed to be addressed and confirmed increasing the 

spatial distribution and size of the geographical samples employed. 

This was the main objective of Chapter 4, in which the sample size of the samples employed was 

increased (N=500) as well as their spatial distribution, covering the entire species distribution. On 

the one hand, our results confirmed the existence of genetic structuring among the three main 

oceanic basins, with the pairwise FST values calculated from genome-aligned markers ranging from 

0.036 to 0.136. On the other hand, we pointed out that sometimes just multiplying the number of 

neutral markers is not enough to reveal the proper level of structuring that occurs in these highly 

migratory marine species. In fact, it was necessary to discover a subset of outlier loci putatively 

under selection to delineate and separate locally adapted sub-populations within the Atlantic and 

the Pacific Oceans (east-west division). Our results showed a higher level of structuring in the 

Atlantic Ocean than generally assumed by ICCAT. These sub-populations should be assessed and, 

potentially, managed independently, re-examining previous biological assumptions about the YFT 

productivity and resilience to the fishing pressures in this ocean. 

However, the stock productivity is traditionally measured by estimating the spawning stock 

biomass (SSB), which implies that the quality and thus the survival rates of offspring are 

independent from parental age, body size, or condition and that the total relative egg production 

per unit weight of adult stock is invariant over time. In Chapter 5, we raised many doubts about 

the use of SSB as a proxy of YFT reproductive potential. In fact, we emphasized for the first time 

that larger YFT females allocate a greater fraction of surplus energy to egg production than smaller 

ones, improving noticeably the spawning quality. This result shed light on the important 

contribution that larger and most experienced spawners have for the YFT productivity in the 

Atlantic Ocean.  

Within this scenario, it results evident that re-evaluating YFT population structure by means the 

use of genomic approaches and protecting highly fecund large females could thus represent 

effective strategies for managing YFT fishery in a more sustainable way. 
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