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Chapter 1

Introduction

We are surrounded by data. Information that can be encoded, compressed
and manipulated in many ways. As human beings, we trust our five senses,
that allow us to experience the world and communicate. Since our birth,
the amount of data that every day we can acquire is impressive and such a
richness reflects the complexity of humankind in arts, technology, etc. How
did this mechanism evolved through centuries? We can assert for sure that
as long as progress goes ahead, the ability of humans to get useful infor-
mation from the surrounding world has increased exponentially. Fundamen-
tal discoveries arisen from the observation of nature speed up this process.
But observation is not only a task that involve human senses, it has been
enormously enhanced with the help of artificial senses. Think about how
the telescope allowed Galileo to give birth to observational astronomy and
microscope was fundamental for Louis Pasteur for putting foundations to
microbiology field. In the 20th century Quantum Physics revolutionized the
concept of “measure” while the advent of computers and the consequent
progress in AI showed how large amounts of data can contain some sort of
“intelligence” themselves. Machines learn and generate a superimposed layer
of reality.
How data generated by humans and machines are related today? To give an
answer we will present three projects where we considered data fundamental
in creating solid connections between what we intend as “Reality” and what
has emerged definitively in the last two years as its extension, the “Virtuali-
ty”. Such context of Mixed Reality will be our playground.

This document is organized as follows:
Chapter 2: The Mixed Reality Paradigm will give an introduction to the Vir-
tuality Continuum, the concept in which Virtual and Augmented Reality lie.
We will see how the Reality and the Virtuality are two extremes more and
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6 CHAPTER 1. INTRODUCTION

more connected as long as data increase. The next chapters are dedicated
to three applicative examples of such an ideal space where Reality and Vir-
tuality can co-exist: Chapter 3: A BCI Application: BRAVO will present
BRAVO, an e-learning tool based on the user’s brain activity recorded by
a single channel EEG headset, its architecture and the evaluation results;
Chapter 4: Capturing reality: Augmented Graphics will give an overview of
the object detection task and how is currently managed. As a fast and cheap
alternative to sophisticated training-based algorithms, we will introduce Aug-
mented Graphics, a framework particularly suitable for mobile applications.
We will describe how it works and the evaluation results with two datasets
of images; Chapter 5: Motion Sensing in Virtual Reality: GLOVR, will de-
scribe a wearable hand controller designed for Virtual Reality environments.
It uses inertial sensors to offer directional controls and recognize gestures and
it features a microphone for implementing a natural language service, a solu-
tion that expands the opportunities to interact with external voice-assisted
applications. In Chapter 6: Conclusions we will summarize some of the most
significant results obtained by our research and will guess the future trends
in Human-Computer Interfaces and Mixed Reality environments.



Chapter 2

The Mixed Reality paradigm

The definition of Mixed Reality was given for the first time in 1994, as
“anywhere between the extrema of the virtuality continuum” [Milgram and
Kishino, 1994], where Virtuality Continuum refers to earlier definitions of
Mediated Reality, coined by Steve Mann in his pioneering research in wear-
able computing [Mann and Fung, 2001].

Virtuality Reality

VR

AR

Mixed Reality

Figure 2.1: The Virtuality Continuum line that goes from Virtuality to Re-
ality and back. Virtual Reality (VR) and Augmented Reality (AR) are the
main technologies involved in this revolution.

Where Virtuality and Reality are different? In terms of human senses,
so far the most evident distinction lied in visual experience. In Reality what
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8 CHAPTER 2. THE MIXED REALITY PARADIGM

Figure 2.2: The evolution of Steve Mann’s work through two decades of
pioneering in wearable computing.

we see is what we get from the surrounding environment by means of our
visual system, while Virtuality is what commonly is considered as digital
computer-generated graphics where depth perception and perspective rules
are simulated in a flat space given by one or more displays. Audio sources
can be generated by computers, and they occupy the Hearing sense as long
as they dominate on the surrounding ambient sound. Also, Touch simulation
have been proposed in several research projects with the challenge of deliver
a intuitive sense of tactile feedback like with CyberGrasp [G. Nikolakis, 2004]
or other recent solutions [Cameron et al., 2011]. Thus, if we restrict the hu-
man senses to just the common five ones (actually it’s a matter of debate in
scientific community), only three of five, better to say two and a half over
five1, are simulated.

Figure 2.3: A comparison of VR graphical level of rendering in the 1993 and
in 2015.

As long as the quality of visual and audio output reach higher levels
year after year, in terms both of resolution and realism, the feedback that

1Consider that Artificial Touch does not offer yet a realistic user experience.
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can be acquired from the user is continuously increasing as well. Since the
introduction of sensors in mass market, user data acquisition has involved
dramatically an elevated amount of devices, faster, cheaper, smaller, more
accurate, able to record “knowledge” from the real world and the users and
convert in digital information.
How to manage such a huge amount of bits? Parallelism, Heterogeneous
Computing, Cloud Computing, are just a few concepts that have arisen in
the last decade and represent the ground level architecture that gave signif-
icance to Machine Learning and all the data-related fields. Since any data
science is based on the information that is found on nature or is computer-
generated, and subsequently any user experience in digital world is influenced
by some sort of outputs given by processed data, the fundamental question
that goes through the chapters of this document is:

What is the role of data in the Mixed Reality continuum?

In first experiments of VR, users faced some issues that appeared insur-
mountable at that time: low resolution environments, headsets with a limited
field of view, a significant latency. In latest generation of VR, devices are
ubiquitous, users can ideally play scenarios in any place: at home, on metro,
at school, on an airplane, giving origin of unexpected user experiences that
are enriched by the data acquired from biosignals, gestures, tracking.
In AR, the combination of real and virtual images has challenged researchers
and engineers back since the 1960’s [Rekimoto and Nagao, 1995] [Thomas,
2012] and [Billinghurst et al., 2015].

Figure 2.4: The “Sword of Damocles”, the first Head-Mounted Display by I.
Sutherland and D.Sproull [Sutherland, 1968].
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Thus, did the concept of reality change through decades of technologic
progress? We don’t think it did. But, without going to any philosophical
discussion, we can say for sure that the amount of information that is shared
between Reality and Virtuality in the Virtuality Continuum line has changed
drastically.
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VR and AR in Google Search over years

virtual reality
augmented reality

Figure 2.5: Trends in “virtual reality” and “augmented reality” terms in
Google Trends [Google, 2016]. The index ranges from 0 to 100 where “100”
stands for the maximum normalized value of popularity in Google searches.

The information that is acquired from the Reality by means of sensors
and then is encoded digitally in data is partially transmitted in Virtuality.
Conversely, what the users can do in Virtuality can influence their real expe-
rience, creating a Virtuality Continuum Feedback. Let us do some examples:

• In a VR game, player’s performance can be significantly influenced by
motion sickness issues due to the graphics latency. The psychophysio-
logical effects of navigation in VR can be recorded as changes in EEG,
ECG and EMG activity [Kim et al., 2001] and used as a correction
factor for reducing cybersickness;

• children can transform their colorful hand drawn creations into digitally
animated models and play with them [Magnenat et al., 2015];

• real-time control of three-dimensional avatars is an important topic in
the context of computer games and significantly gets information from
the human movements [Lee et al., 2002]
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In the following, we will discuss three examples of “mutual influence” between
real and virtual environment and how Virtuality is “feed” by the amount
of data acquired by sensors that provide a digital perspective of the real
world, while human senses and then Reality receive continuous feedback from
the virtual world. The three applications have been designed for different
systems, from mobile devices to desktop, according to the goals that we have
planned to reach, but ideally are portable on any modern mobile/desktop
platform.

• BRAVO [Marchesi and Riccò, 2013b] is a e-learning mobile application
that records EEG brain activity in order to change the learning path
according to user’s attention and stress levels. As learning task can in-
volve any sort of contents, we developed a user interface that integrates
textual contents, images and 3d models, in order to guarantee an high
engagement. After a first design approach, we performed some evalu-
ation tests with public audience and then we have a proposed a new
solution, based on Computerized Adaptive Testing; BRAVO was not
designed as a VR/AR application in strict sense, but its exploration of
3d models can be easily ported to AR. Furthermore, brain activity is
exploited passively, user doesn’t have “to think about what he/she is
thinking”, and thus it reinforces the idea of virtual worlds and digital
contents influenced by human senses;

• Augmented Graphics (AG) [Marchesi and Riccò, 2013a] is an object
recognition framework based on moment invariants theory. Differently
from the training-based recognition methods, AG runs an elaborated
shape matching process to detect a sample object in the real environ-
ment. Once done, the recognized object can be exported and super-
impose digital graphics in external applications, realizing the so called
Augmented Virtuality concept;

• GLOVR [Marchesi and Riccò, 2016] is a wearable hand controller that
integrates inertial sensors and a microphone to extend user interaction
outside the VR environment and combine them in a robust multimodal
input. While playing with a VR scene, the user can send voice messages
with natural language and a gesture recognition system let the avatar
do actions.
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Chapter 3

BCI Learning: BRAVO

Education is undergoing a large transformation due to the fast evolution
of digital technologies, providing new tools for both teachers and students.
Learning Managing Systems have been introduced in primary schools as well
as in university courses, while the dramatic increase of internet connections
allows Massive Open Online Courses (MOOC) to grow, some of which are
supported by interactive and social networking technologies [Coursera, 2016].
In this scenario, Brain-Computer Interfaces can play a significant role [Ni-
jholt et al., 2008] in education, as they can provide useful information about
student’s attention and motivation [Rebolledo-Mendez et al., 2010] and en-
hance the learning curve according to the emotional information classified.
On the other hand, mobile devices, such as tablets and smartphones, are
widely recognized as suitable complements of conventional learning tools,
because of their widespread utilization and their extremely powerful inter-
faces. In this context BRAVO (Brain Virtual Operator) has been designed as
a system for content visualization in a mobile e-learning application. BRAVO
makes use of the brain activity acquired by the BCI (particularly, attention
and meditation levels). This permits to know which parts of the content are
most difficult for the user, so as to propose them in the most appropriate
form, in a different way or with a reduced or deeper level of difficulty. Al-
though primarily dedicated to educational purposes, the system can be easily
adapted to other applications , such as any interactive experiences where a
lack of attention expressed by the user can be a significant issue to be solved.

13



14 CHAPTER 3. BCI LEARNING: BRAVO

3.1 Brain-Computer Interfaces for interactive

and immersive experiences

In the last two decades Brain-Computer Interfaces (BCI) became a popular
research topic thanks to the progress in computers and electronic equipments
and the increased understanding of brain functionality [Wolpaw et al., 2002].
BCI research showed novelty on finding alternative ways for people with dis-
abilities to communicate and physically interact, but since the first attempts
it was clear the need to create a set of controlled conditions that ensure safe
and reliable tests in various contexts. Various ideas of what an “immersive”
environment can improve the brain learning have been proposed. The work
of Lecuyer and others [Lecuyer et al., 2008] suggested some paths in research
on BCI and VR, proposing BCI as a substitute of common hand controllers
and gamepads, but also as an input that change the VR content, according to
the user’s brain activity. Other works demonstrated how three-dimensional
virtual environments guarantee better user’s response than 2D ones [Leeb
et al., 2007].
A field where BCI found wide application in terms of “immersivity” has
been that one of serious games [Liarokapis et al., 2014]. Researchers aim
to exploit EEG activity to “fully control an avatar” and “examine the reac-
tion of users while playing the game” [Liarokapis et al., 2013], and many of
them using simple dry electrode headsets that are suitable for testing with
a large number of players [Yoon et al., 2013]. Single EEG channel devices
are partially responsible for the rising popularity of BCI in general audi-
ence [Crowley et al., 2010] but they show some significant limits in terms of
the accuracy with which cognitive processes like attention can be measured.
However, they have been subject of several BCI-based mobile applications
as well [Coulton et al., 2011]. We will see how BCI on mobile will be the
context where we decided to design BRAVO.
Furthermore, how the right source of attention can be recognized and selected
in an environment full of “noise”? In these terms any efficient immersive ex-
perience aims to generate an environment where the user’s engagement can
lie. The gaze point is where the user is looking at. In a VR environment,
under the assumption that the gaze point is directed to the attention source,
various visual attention models have been proposed, by means of eye tracking
systems [Courgeon et al., 2014] or avoiding them [Lee et al., 2009] [Hillaire
et al., 2012].
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3.1.1 BCI-based Learning Systems

Brain-Computer Interfaces appeared as a promising candidate in measuring
attention and cognitive effort, thanks to the considerable progress in cap-
turing EEG signals with less or non-intrusive solutions. Attention is the
cognitive process that most clearly can be an indicator of the learning pro-
cess and its efficacy [Rebolledo-Mendez et al., 2010]. Most of the classifica-
tion methods for recognizing cognitive patterns are based on Support Vector
Machines (SVM)1that give better results [Liu et al., 2013] than kNN classi-
fication [Li et al., 2011]. Other methods like Hidden Markov Model (HMM)
were used to infer engagement in students [Beal et al., 2007]. Not only EEG,
also functional magnetic Resonance Imaging (fMRI) equipments have been
exploited [Anderson et al., 2011].
Research on adaptive systems have suggested that the estimate of attention
(or engagement) and workload from EEG performs well in giving prediction
on learning progress. Galan and Beal used a 9 sensor EEG headset to ac-
quire signals then processed to produce classification of mental states, such as
Engagement, Distraction, Drowsiness and Cognitive Workload, that allowed
to predict problem outcomes sensibly better than chance [Cirett Galán and
Beal, 2012].

3.2 BRAVO

BRAVO starts from the results given by two previous projects: Mobie, a
graphical tool for creating interactive videos where the story was influenced
by the user’s brain activity [Marchesi et al., 2011], and NEU, an virtual
environment editor, where each element (characters, illumination, game me-
chanics) took in account the trend of the user’s attention for changing over
time [Marchesi, 2012]. Both researches were conducted by means of a one-
channel EEG headset, that compared with other sophisticated multichannel
devices, showed its advantages in terms of usability, thanks to the placement
of pre-amplified dry electrodes instead of gel-based ones typical of lab setup.

1Briefly, SVMs aim to find a hyperplane that separate the data points of different
classes with the maximum distance.
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Figure 3.1: Mindwave: the single-channel EEG headset under test.

BRAVO has been design primarily for e-learning purposes. For this rea-
son at first version was developed as a client application of Moodle, a open
source tool for creating courses, lectures and assignments through customiz-
able modules [Moodle, 2016] [Jin, 2012]. A Moodle course works as follows:

• A teacher adds resources and activities for their students, varying from
a single page to a complex set of tasks where learning progress is tracked
in a number of ways and indicators: progress bars, checklists, engage-
ment analytics report, individual learning plans, course status trackers;

• The students enrolled in a course can have grades, submit assignments
and can also be added to groups if tasks to assign need to be differen-
tiated.

Moodle architecture appeared limited in terms of real-time capabilities and
mobile implementation. BRAVO extends Moodle features and allows work-
ing with any kind of contents, though particularly suitable for those sit-
uations that need interactive and navigable presentation, because of their
higher level of engagement. A critical point for the effectiveness of the sys-
tem is the correct estimate of the students interest and motivation. To this
purpose, touchable interfaces and mobile devices can help in better tracking
the user activity. Consequently, BRAVO features many elements of gamifi-
cation, such as progress bars, flags and scores as they appear immediately
familiar to the audience [Deterding et al., 2011]. In practice, with BRAVO
the learning process can be monitored in real-time by means of the BCI, in
order to customize the contents to the student’s learning curve.

3.2.1 Design Architecture and Sw/Hw Implementa-
tion

BRAVO has been conceived as a client/server application for mobile devices.
Data are requested dynamically according to the assessment and the current
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brain activity, acquired by the BCI.

Lesson

Course

UI

Lesson

Lesson

Lesson

EEG

Content

Images

Figure 3.2: BRAVO server/client. Contents are the result of a data selection
based on the brain activity.

As one of the primary goals was to obtain a portable learning tool, at
first glance some specifications were considered as important features:

• a mobile device connected to the web for downloading the media con-
tents from a server;

• a wireless EEG headset connected to the mobile device via Bluetooth;

• a server that stores all the information taken from the BCI and the
learning process.

For testing BRAVO, Neurosky’s Mindwave headset has been chosen, because
of its ease of use with mobile systems. Despite its simplicity as BCI, Neu-
rosky technology has been implemented in several consumer applications and
research projects [Folcher et al., 2014] as well as previous experiments in mea-
suring students’ attention while reading [Mostow et al., 2011].
BRAVO acquires high-level brain patterns every second, in the form of At-
tention and Meditation levels, in a range 0-100, by means of a Neurosky’s
algorithm called eSense, implemented in the ThinkGear chip. After a very
short setup, the device starts detecting EEG 0.5-100Hz brain spectrum with
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a frequency up to 512Hz, from which it calculates attention and meditation
levels every second [Rebolledo-Mendez et al., 2009]. Basically, that values
are in relationship with alpha and beta and gamma waves.

0 10 20 30 40 50 60 70 80 90 100

time [s]

0

10

20

30

40

50

60

70

80

90

eSense Attention and Meditation levels Meditation
Attention

Figure 3.3: A recorded session of Attention and Meditation levels.

At this stage, we preferred to work with the eSense algorithm, instead
of analyze EEG data, because we wanted to focus more on the design of
the tool and how the user should interact properly with his/her own EEG
signals. The attention and meditation levels acquired look enough accurate
for our study and give enough information on how the user evolves. How
the learning contents can vary depending of the user’s brain activity is not
trivial. For example, a detected low attention level may suggest the presence
of difficulties with previous parts of the learning program, or a temporary
lack of interest in it. Thus, such parts may be repeated or an easier approach
to the topic may be proposed in order to go ahead in the study session and
get attention. On the contrary, well-focused students are stimulated to work
harder and reach higher learning results at the end. In BRAVO contents
are showed with variable complexity according to an Ability Level(AL), that
increases/decreases once the last sequence of brain levels has been processed.
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3.2.2 A Cultural Heritage Demo

First demo was based on an extension of the capabilities of Moodle, in order
to offer interactive courses for single users or groups of students. The topic
of the course was “Historical Monuments in Bologna” and we choose seven
famous places rich of History and Art to represent our city. To generate more
engagement, together with simple text and images, we implemented also a
3d view that showed the monument as a 3d textured model, kindly offered
by CINECA.
Each monument offers a series of Hot Spots, interactive points of interest that
show the levels of ability reached by the user for each content. Once a user
touches the Hot Spot, the content related to the point of interested is loaded
on the screen, according to the Ability Level estimated by BRAVO in it (see
Fig. 3.4).

Lesson

EEG

Hot Spots

Content

Images

Figure 3.4: BRAVO GUI. On the left: the selection menu. On the right:
the content view, on top the BCI Bar shows the EEG spectrum and the
Attention and Meditation levels; centered, the content is a 3D model used
to navigate through the Hotspots, each of them show the levels the user has
reached so far.
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3.2.3 Single Mode

In Single Mode users study and do their assignments alone, without the col-
laboration of others. Such a continuous feedback has been initially exploited
with the introduction of a Threshold Approach(TA).

Threshold Approach

Both A and M levels have been divided in four intervals, according to Neu-
rosky’s guidelines, and the median calculated in the last n seconds is taken
in account. Median value has been preferred to mean because is more robust
to the presence of outliers that occur in brain signals.

60-80

40-60

0-40

60-80

40-60

0-40

80-100 80-100

Figure 3.5: Categories for eSense attention and meditation levels.

TA assumes that the probability of acquiring a certain ability reflects
directly the brain activity measured by the headset and is directly dependent
on the values recorded in attention and meditation:

P (θi) = fi(A,M) (3.1)

where fi depends on the specific item. For instance, examinees who are good
in math calculus need low attention and show high levels of meditation while
they try to solve math problems, whereas from low ability levels usually
we expect more mental effort and stress (that is, lower meditation levels).
In other tasks the attention needed to pass the assignment or, in any case,
“record” properly the content, can be different. Thus, TA works as following
(Fig. 3.6):

1. A lesson made of textual and media contents is loaded;

2. while the user is going through the lesson, A and M are recorded;
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3. once the user stops or if he/she interacts with other elements in the
interface, the task is stopped;

4. TA calculates median values of A and M and compares them to the
threshold, updating the complexity of the argument according to the
AL reached by the user in the lesson under study. If A(M) > 40 the
user is promoted to the upper level, if A(M) > 60 he/she promoted to
the upper level with bonus = 1 and if A(M) > 80 with a bonus = 2.
Conversely, for A(M) < 40 and A(M) < 20 the bonus is decreased by
1 or 2. The “bonus” is an additional term to set the new AL that takes
into account how far the median is from average;

5. bonus and AL are updated and then the content according on them.

Consider the following example: bonus = 2, AL = 3. The assignment is
stopped and A < 40. In this case it is expected that the user’s Ability
Level has to decremented by 1, but the bonus can balance the decrement
of AL up to its maximum value. In this case after the bonus application:
bonus = 0, AL = 3.

Start Lesson

is Active?

yes

Read Brain Levels

no

Calculate Median (A,M)

A,M > threshold?

Increase bonus Decrease bonus

noyes

Update Ability

Update bonus

Update Content

Figure 3.6: Diagram of flux of BRAVO threshold algorithm.
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Content 1 Images 1

BCI

Content 1 Images 1
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BCI

Content 1
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Content 1

Content 2

Content 3
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Images 2

Images 3

3768

6459
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Figure 3.7: An example of single mode with median level approach.Top Left :
the lesson starts with basic textual content and images.Top Right : high
meditation level adds visual contents while low attention level keeps textual
contents at the same complexity. Bottom Left : a deeper focus on the content
is followed by an addition in textual content, as well as the insertion of new
images. Bottom Right : an average level of attention causes an increment of
content. In this case, because of a progress bonus.

3.3 Evaluation

As we assume that the learning process is enhanced by means of a neuro-
feedback, tests on lab and with public audience has been executed.

3.3.1 A first Qualitative Test

A first test was made in a Cultural Heritage event (ArcheoVirtual 2012) with
the help of 28 participants (15 male, 13 female) from different countries in
Europe, with an age in the range 16-48 (mean 29.29). Such range, even if it is
wide, it groups people with an age that is considered as producing a similar
“adult” EEG activity and, consequently, similar cognitive processes [Kell-
away, 1990]. All the participants didn’t have any previous experience with
BRAVO. Asking their occupation was important to identify any possible re-
lationship between the level of knowledge reached as function of the brain
activity.
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Figure 3.8: The occupation of BRAVO testers:

From Fig. 3.8 approximately one third of the testers consider him/herself
an expert in Cultural Heritage (CH), thus we can guess should be relevant
in some way. Large majority of the testers were very confident with tablets
(46.43%) and interactive technologies. For the evaluation, they had to wear
the EEG headset and navigate one of the CH contents proposed in a iPad
tablet for a time comprised between 5 and 10 minutes, an interval of time
that we considered adequate for a public event. Users chose one of the seven
monuments from the list, selected a hot spot on the 3D model and then
started reading from the simplest content to to the higher, according to their
Ability Level they reached. During the recording session, their brain levels
real-time graphs were hidden, in order to limit the sources of attention in the
tablet screen.
After the session, a balanced Likert scale test on a 7 point agreement has
been proposed with the following 12 opinions about the overall experience
with BRAVO (See Table 3.1): ArcheoVirtual organizers elaborated three
other scales, in a range from -3 to 3: Perspicuity (mean = 1.54), Efficiency
(mean = 1.36) and Stimulation (mean = 1.05), showing the positive impact
of BRAVO as a new possible interactive learning experience.
Five additional multiple choice questions was asked, whereas functions we
intended:

1. Navigation on list of monuments

2. Selection of Hot Spots of the monument

3. Fruition of text and images

4. Visualization on demand of the brain levels in real-time

For Q1 the 96.45% of the users found all functions “useful and interesting”
while just 3.57% (one person) judged some functions “unnecessary”. For Q2
the 80.77% considered all functions available and for Q3 the 57.14% thought
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Survey Statements
not understandable understandable
organized cluttered
motivating demotivating
inefficient efficient
complicated easy
boring exciting
clear confusing
fast slow
not interesting interesting
easy to learn difficult to learn
valuable inferior
impractical practical

Table 3.1: The survey proposed to all the participants after the session with
BRAVO. The Likert scale goes from 1 to 7.

Survey Statements
Q1 What do you think about the func-

tions of BRAVO?
Q2 Was every function available that

you wish to have?
Q3 What do you think about the han-

dling of BRAVO?
Q4 What do you think about the time

it took to use it?
Q5 What do you think about your ex-

perience with BRAVO?

Table 3.2: General impressions about BRAVO asked to the ArcheoVirtual
testers.
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about BRAVO handling as “easy to use from the beginning” whereas the
35.71% “first hard, then easy”. Time spent (Q4) was considered “adequate”
for the 89.29%. The whole experience (Q5) was rated “totally new” for the
78.57%.
We analyzed the recorded brain levels for all the 28 participants together with
the qualitative feedback. Three of the participants didn’t provide relevant
answers and have been excluded.
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Figure 3.9: The median values recorded are normally distributed.

Within the questions proposed, we selected a subset of four Likert scales,
corrected to the same increasing scale 0−7: boring/exciting,clear/confusing,easy
to learn/difficult to learn,not interesting/interesting. For each tester, the sum
of the four scales represents what we called an Experience Score(ES). Assum-
ing ES as an index of the learning experience, our hypothesis was: the higher
the ES the higher the brain levels recorded during the “learning” session.
From each participant we calculated the median and the correlation coeffi-
cients between ES and the attention (A) and meditation (M) levels. From
Fig. 3.10 we see ES can be considered in relationship with A and M (that
are not correlated each other) for most of the participants.
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Figure 3.10: The Experience Score calculated among 25 participants in the
range 4-28.

From the correlation coefficient matrix for A:

CC1 = 1.0000 0.6804
0.6804 1.0000

(3.2)

while for M:
CC2 = 1.0000 0.7345

0.7345 1.0000
(3.3)

and the p−value < 0.05 for both, we identify them as significant correlations
between the interest expressed in the experiment and the attention recorded
from the brain activity.

3.3.2 Discussion

From the tests taken with public audience we realized how interactive sys-
tems can potentially enhance the learning process. A significant correlation
between the brain signals and the user experience show how the A and M
levels can give further information about how much the user will learn pro-
ficiently, starting from the assumption that “high focus and low stress” is a
pre-condition of a productive learning session. However, testing in a public
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environment pointed out one of the intrinsic limits of Brain-Computer In-
terfaces: how the different “targets of attention” can be distinguished each
other? In a public environment people that talk, noises and sounds at dis-
tance, displays, moving objects, all can contribute to the overall attention in
time. With this concern in mind we strongly considered to take advantage
of “gamification” elements to help the user to keep focused.
We designed Threshold Approach with the goal to give a solution that im-
prove the overall user experience by means of the interpretation of two cog-
nitive processes, attention and meditation, under the assumption that such
advantage could be a benefit for the user’s learning curve, that fits a cus-
tomizable content selection.
In the following section we will see how to implement the information ac-
quired from the brain activity to a traditional Computerized Adaptive Testing
methodology.

3.4 Computer-based assessment

In the following section will be introduced Adaptive Testing as one of the key
elements that characterized the further design of BRAVO. The first individual
tests were introduced by Alfred Binet (1857-1911), a French psychologist and
educator that classified the test items according to their level of difficulty. Its
adaptive form took in account also the personal data such as the age of the
examinee. The advent of computers was fundamental for the development of
more complex psychometric models, such as the Two-Stage Adaptive Testing
or the Stratified Adaptive Test [Weiss, 1985]. Around 1950’s, in contrast to
the Classical Test Theory, it appeared the Item Response Theory (IRT, also
know as Latent Trait Theory), thanks to the work of Frederic M. Lord [Lord,
1980]. In a IRT-based test each item is not equally difficult. To do so,
IRT assumes that all items are locally independent and the response of an
examinee can be modeled by a Item Response Function:

P (θi) = ci +
1− ci

1 + exp(−ai(θi − bi))
(3.4)

Where θi are the abilities of the examinee that are to be measured. ai is the
discrimination vector. It measures the variation from the low probability to
the high probability region. With a good ai the probability that a low ability
examinee answers correctly is low where the probability for a high ability one
is high. bi is the item difficulty, whereas ci represents the “guess”, that is the
probability that a low ability examinee gives a correct answer.
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Figure 3.11: The sigmoid curve for a few items. ci = 0 (guess).

3.4.1 Computerized Adaptive Testing

Among the implementations of IRT, the Computerized Adaptive Testing
(CAT) methodology is the most popular [Reckase, 1974]. CAT is an iterative
algorithm that aims to maximize the precision of the exam according to the
current estimate of the examinee’s ability. Typically a CAT test performs
better for testers with high or low levels of abilities and gives high precision
with a lower amount of questions. CAT is based on an Item Bank, that
is, a set of items (larger than the maximum number of items for a test)
that customize the test depending of the tester responses. From that, a
starting point has to be choose in two different ways: i) considering some
prior information about the examinee or ii) without any prior information and
assuming an average ability and therefore items of medium difficulty [Parshall
et al., 2012].
The goal of each CAT iteration is to measure the examinee’s ability according
to the current item. This is achieved by Maximum Likelihood or Bayesian
methods. Particularly the latter ones, that assume a prior knowledge of the
ability, are considered more robust [Segall, 1996]:
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f(θ|u) = L(u|θ)f(θ)

f(u)
(3.5)

where u is the vector of the examinee’s answers, f(u) is the marginal
probability of u and f(θ) is the prior distribution of the ability and L is the
likelihood function. The item that maximizes the information with theta is
selected [WEISS and KINGSBURY, 1984]. The concept of “information” can
be Local or Global [Piton-Gonçalves and Alúısio, 2012] and its definition is
related to the concept of the precision with which a parameter is estimated.
Following the Fisher’s Information definition [Cam and Yang, 2000] we can
introduce the Item Information Function as2:

IIF =
1

varianceθ
(3.6)

CAT algorithm runs until a stopping criterion is satisfied because one of the
following targets has been reached:

i. the available items in the item bank

ii. A determined number of items

iii. The target accuracy needed to prove the examinee ability

iv. A lower threshold in ability

In CAT every item is selected with the goal to maximize the ability θi How
the brain activity can jointly affects the parameters of an item response?

A novel design: CAT based logistic Approach

Johns and Wolf proposed an Item Response Theory model with the applica-
tion of HMM to infer student’s motivation, based on three behavioral states:
motivated, unmotivated-guess and unmotivated-hint [Johns and Woolf, 2006].
We have seen how in Threshold Approach we assumed that the probability
to reach a determined ability can be predicted in some way from the brain
activity levels. A second approach that we followed with BRAVO was to
consider attention and meditation as parameters of a logistic function, in
analogy of what happens with CAT methodologies:

P (θi) =
1

1 + exp(−ai(θi − bi))
(3.7)

2For a dichotomous response in a 1PL I(θ) = P (θ)(1− P (θ)).
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That with the explicit contribution of A and M levels gives:

P (θ|B) = P (B|θ) P (θ)

P (B)
, B = f(A,M) (3.8)

where P (B|θ) is the probability of a brain activity B given θ, according to
the Bayesian’s Rule. According to this, BRAVO acts as a “predictor”: it
aims to predicts the results (that is, the item difficulty level) that a CAT
algorithm should give, adding the contribution of the user’s brain activity,
that it is assumed to be representative of the capability to answers correctly
to an assignment (see Fig. 3.13).
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Figure 3.12: A dichotomous CAT test administration. The algorithm tends
to converge to an ability level with less items than a non-adaptive test.
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Figure 3.13: CAT corrected by BRAVO by means of the attention level
can yield to better predictions than that ones achieved by the “traditional”
version.

A basic CAT can benefit of the additional information given by the brain
activity in terms of attention and meditation levels. The following tentative
Neuro Computerized Adaptive Testing (NCAT) is proposed:

Algorithm 1 A NCAT algorithm

1: while Reading brain activity do
2: repeat
3: Select item from the bank as function of the ability θ, I(θ)
4: Show item to the examinee
5: Update ability θ as function of the last response
6: Update ability θ as function of the brain activity, θ = f(A,M)
7: until Criterion termination is met
8: end while
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Basically we expect that low meditation with a determined θ will decrease
the probability to answer correctly to I(θ) whereas a high meditation or high
attention can be symptoms of a correct response. In fact, our hypothesis
is that a significantly high brain levels recorded in the act to answer to a
item can potentially increase the probability of answer correctly also the
future item. Thus, our guess is that a slightly higher level of ability θ can be
suggested for the next question.
Summarizing, our design proposal suggests four alternatives, given θI and
θII the increments in ability due respectively to the correct answer and the
brain activity hypothesis.

Brain Activity
Prediction

Answer Update

V V θ ← θ + θI + θII
V F θ ← θ + θI − θII
F V θ ← θ − θI + θII
F F θ ← θ − θI − θII

Table 3.3: The possible alternatives in our Neuro-CAT design.

3.5 A possible Collaborative Mode Approach

In Single Mode the item difficulty was partially inferred from the brain activ-
ity of a single user. Despite the fact the online assessment is individual, it is
interesting to understand how assignments can be solved collaboratively and
how to model such a group modality. Let us assume a group of four students.
Each student’s ability score is based on the responses to an assignment. Ev-
ery student receives the same items3 with the fundamental difference that
has to solve them collaboratively, thus the final group score will be based
on the sum of the just one response for each item. The students have two
practical ways to decide the responses:

i. each student solves a fraction of the test separately

ii. for every item all the students compare their tentative results and decide
together which is the most probable response

For both cases we need to assume that all the students previously acquired
the same level of ability / knowledge. On the contrary, students with low

3What we expect from a Classical Test Theory [Novick, 1966].
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levels of ability could affect negatively the total score. As we consider the
acquired ability a function of the brain activity, as in (3.7), thus the study
group can guess from monitoring the brain activity if one of the students will
have some difficulty to give a valid response. In this case, a “quick” solution
may be to weigh each student’s contribution (ii) or redistribute items already
assigned to the students that show a higher ability (i).

very 

low A

high A high A

low A

Figure 3.14: BRAVO Collaborative Mode: the student at the bottom right
shows low levels of attention and meditation. The two students at the top
can help him to solve his part of assignment.

3.6 Future Work

We introduced a new learning system that exploited brain signals to pre-
dict user’s learning performance and customize the content to offer, with
the goal to maximize the learning task efficiency. Starting from previous
works in BCIs applied to education, and in Computerized Adaptive Test-
ing, we designed two different approaches that add content generality to the
prior research, since it is applicable to various forms of contents and learning
methodologies. Then, we tested a first approach, demonstrating how engage-
ment can be recognized in the brain levels acquired by a simple EEG headset
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in use.
Several applications aim to give more data, exploiting inputs other than brain
signals to classify user’s attention, as merging eye tracking data [Ghiani et al.,
2015]. However, we think that the next generation of EEG headsets with dry
electrodes will allow to run reliable tests outside the “lab setup”, offering a
wider range of cognitive patterns to be classified on mobile devices via cloud
services [Castellani et al., 2014]. In this context, we will be able to design
concrete solutions for optimizing the learning process in terms of the user’s
brain performance.



Chapter 4

Capturing reality: Augmented
Graphics

Conventionally, in Augmented Reality (AR) a real environment is enriched
by means of virtual graphical elements. On the contrary, in Augmented
Virtuality (AV) a virtual scene is mixed with objects or people taken from
the reality [Hughes et al., 2005]. The potential superposition of real actors
to a mixed environment has been extensively explored [Charles, 2004] and
interfaces between virtuality and reality have been investigated [Koleva et al.,
2000]. Moreover, Computer Vision algorithms have been applied to MR in
gaming [Hammond, 2008], where images acquired by a camera were analyzed
to recognize objects able to interact with the game elements. Smartphones
are ideal for enjoying a fictional narration augmented by real objects 1) taken
by the embedded camera, 2) analyzed by image processing algorithms and
then eventually 3) placed in the virtual scene. All the steps are executed in
the same portable device in all kind of environments.

4.1 The object recognition problem

Object recognition is a popular topic in Computer Vision and research in
that field has tested several solutions for multiclass recognition and face de-
tection problems. Particularly the first one, it is strongly dependent from the
huge amount of data needed to train the system: ImageNet is made by more
than 14 million images organized according to the WordNet hierarchy [Deng
et al., 2009].
In the field, a wide variety of scenarios can be solved focusing only on the
shape of the object to find, based on the presence of a number of keypoints
and theirs spatial configuration. In this case the most critical task to be

35
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solved is the correspondence between the sample and the test keypoints. Cor-
respondence is usually solved by means of descriptors, like in SIFT [Lowe,
2004], in Shape Contexts [Belongie et al., 2002] or in Geometrical Blur [Berg
and Malik, 2001]. In geometric hashing [Lamdan et al., 1990], a vote model
is implemented, but no concrete correspondence is given. Decision trees
have been used for disciminating between different spatial configurations [Ge-
man et al., 1997]. Shape classification has been performed using the inner-
distance [Ling and Jacobs, 2007], edge-based features [Mikolajczyk et al.,
2003], Low Distortion correspondences [Berg et al., 2005] or Content-based
image retrieval algorithms [Lillo et al., 2010]. With Curvature Scale Space
the contours are sectioned in convex and concave curvatures by means of a
multi-scale analysis [Mokhtarian et al., 1996].
Shape recognition is generally categorized into contour-based and region-
based descriptors [Bober, 2001]. The first are extracted by the object bound-
aries and eventually divided into segments, called primitives. Region-based
descriptors, conversely, take in account the internal information of an object.
In this way, they can describe complex objects discriminating by the internal
data. Sketch recognition can be considered a similar problem, it has been
studied extensively in the past and several solutions have been proposed,
most of them focused on specific domains. Ladder [Hammond and Davis,
2007] was a sketch description language where the user had to write a sketch
grammar for each new domain. From the origin version by 2003 other ver-
sions such as PaleoSketch [Paulson and Hammond, 2008] were released. A
Query-adaptive Shape Topic model was proposed by Sun [Sun et al., 2012]
for applications such as sketch tagging, image tagging and sketch-based im-
age search.

4.2 Moment Invariants theory

The goal of image recognition is to generate robust image patterns, based
on descriptors that should have invariance properties, despite the fact that
images are typically corrupted by noise, deformations and occlusions. Local
descriptors [Mikolajczyk and Schmid, 2005] have proven successfully in ap-
plications such as object recognition [Ferrari et al., 2006], data mining [Sivic
and Zisserman, 2003], face and texture analysis [Hadid et al., 2014], image
categorization [Mele et al., 2006]. Among them, moment invariants are ex-
tensively used for feature extraction in a wide range of imaging applications.
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Moments in Computer Vision are related to the pixel intensity, as follows:

mji =
∑
x,y

(array(x, y) · xj · yi) (4.1)

A particular combination of moments is the Mass Center, given by x =
m10

m00
, y = m01

m00
, that represents a centroid of the geometry (see Fig. 4.1).

Figure 4.1: Centroids (red circles) calculated for basic shapes refer to the
“spatial” center of mass.

For our context we are interested in Normalized Central Moments, in the
form:

ηji =
µji

m
i+j
2

+1

00

(4.2)

The moments and the related invariants have been originated from the theory
of algebraic invariants by David Hilbert in the 19th century [Hilbert, 1994],
but was only Hu [Hu, 1962] in 1962 that introduced the famous seven moment
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invariants:

I1 = η20 + η02

I2 = (η20 − η02)2 + 4η211
I3 = (η30 − 3η12)

2 + (3η21 − η03)2

I4 = (η30η12)
2 + (η21 + η03)

2

I5 = (η30 − 3η12)[(η30 + η12)
2 − (η21 + η03)

2]+

4η11(η30 + η12)(η21 + η203]

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]+

4η11(η30 + η12)(η21 + η03)

I7 = (3η21 − η−3)(η3− + η12)[(η30 + η12)
2−

3(η21 + η03)
2]− (η30 − 3η12)(η21 + η03)

[3(η30 + η12)
2 − (η21 + η03)

2]

(4.3)

Moment invariants have been proved to be invariants to the image scale, ro-
tation with the assumption of images considered with infinite resolution and
noise-free. Furthermore, projective moment invariants exist in a form of in-
finite series of moments with positive and negative indices [Suk and Flusser,
2004]. In case of digital images the moment invariants may vary with image
geometric transformation and introduce error. Quantitative analysis of such
a error have been provided and it has been showed how the fluctuation in mo-
ment invariants can be decreased with image spatial resolution [Huang and
Leng, 2010] . Hu’s Moments have been compared with other invariants, like
Fourier Descriptors [Chen et al., 2004] that take in account the pixels along
the image contours and need less spatial resolution. It has been proved that
moment-base recognition systems performances are compromised in case of
object symmetry. For example, all odd-order moments of a center-symmetric
object are equal to zero. A new set of invariants robust to symmetry was
introduced by Flusser and Suk [Flusser and Suk, 2006]. We will see how with
AG we found an alternative multi-level solution for the symmetry problem.
The idea of using moment invariants as a way to measure similarities between
shapes have found in the past decades several implementations, [Dudani
et al., 1977] [Yuan and Hui, 2008], using Artificial Neural Networks [Wahi
et al., 2012] or SVM for classification of object and non-object data [Nigam
et al., 2013]. The shape or the contour of an object is a good basis for invari-
ant recognition, then the massive explotation of contours detection for that
purpose [Sluzek, 1994] [Wei and Wu, 2013]. Furthermore, the identification
of a signature for 3D shape has been investigated as well [Osada et al., 2002].
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4.3 Object Detection

AG assumes that a comparison between two images can be performed only
if some objects have been recognized in both sample and target. Similar ob-
jects should have similar distribution of geometric features, such as centroids,
which have to be robust to transformations and slight changes in perspective.
Applications like games or educational tools for kids can take advantage of
image recognition algorithms that don’t rely only on accuracy and generality
in detect an object, but also on similarity classification.
The concept of similarity is ambiguous: when two objects can be considered
similar?. We will see how AG allows to set a threshold in order to limit the
amount of false positives.
Furthermore, AG aims to recognize objects without any previous training
process, limiting the learning step to a single template sampling. Of course
this constraint let some challenges arise:

1. Object coverage: the need of recognition a wide variety of different
objects, usually classifiable in categories.

2. Intra-category shape variation: the system has to take in account the
diversity of shapes that can represent the same object.

3. Inter-category shape ambiguity: shapes that represent different objects
can be very similar the system can be ”cheated” and generate false
positives (or negatives).

Intra-Category variation Inter-Category similarity

Figure 4.2: AG has been designed to give a solutions to two main challenges:
recognize shapes that represent the same object and distinct between shapes
that are not similar enough.

To do so, AG extracts image contours from a sample image and then compare
the acquired data structure to that one extracted from the captured image
in real-time, as showed in Fig. 4.3
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Figure 4.3: AG works as follows:

4.3.1 Pre-process image

An image is taken (generally from the camera) and divided by means of the
Rule of Thirds. The Region of Interest(RoI) is the central part of it and it
is supposed to be the area where the object to find is centered. Our RoI
intuitive considerations have been confirmed by experimental results, as in
Fig. 4.4.

The first step is the palette conversion from color to grayscale. In fact
color information is not taken in account for contour extraction and thus
a grayscale image (one channel) can be processed easily in the subsequent
Image Filtering operations. For each pixel location (x, y) in a source image
of size m× n pixels, its k2 − 1, k ≤ m,n neighbors are used to compute the
resultant pixel at the same location and they are weighted in a way that
represents the kernel of the filtering operation. The resulting image has the
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Figure 4.4: RoI in a video streaming analysis [Quang Minh Khiem et al.,
2010]. Brighter areas are that ones mostly observed.

same size of the source image and it is given by the convolution of the source
with the kernel:

dst(x, y) = k ∗ src(x, y) (4.4)

Among the filters, we are interested in that ones that can reduce noise. A
first option is the Gaussian Blur, a low-pass filter that applies a 2D Gaussian
smoothing kernel such as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.5)

An example is seen in Fig. 4.5.

Figure 4.5: Application of a gaussian filter with σ = 4.

The second option is given by a couple of morphological operations: Di-
lation and Erosion. Morphology is the common term for operations that
process images based on shapes. Morphological operations apply a structur-
ing element to an input image m×n, creating a destination image of the same
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size. The value of each pixel in the output image is based on a comparison
of the corresponding pixel in the input image with a subset of its neighbors,
selected by a specific shape. Dilation adds pixels to the boundaries of objects
in an image, while Erosion removes pixels on object boundaries. The num-
ber of pixels added or removed from the objects in an image depends on the
size and shape of the structuring element used to process the image. In the
morphological dilation and erosion operations, the state of any given pixel
in the output image is determined by applying a rule to the corresponding
pixel and its neighbors in the input image. In Erosion each output pixel get
the minimum value of the pixels inside the kernel. It follows the reduction of
intensity of the high value pixels (closer to white color) and the output image
tends to be darker. In Dilation it happens the opposite, with each output
pixel that get the maximum values among the neighbors, and the resulting
image tends to be brighter.

Figure 4.6: Erosion and Dilation operators applied to a shape.

For a further reduction of the unnecessary image data, a Binary Threshold
operation is applied. If the pixel in a grayscale image are in the range 0-255,
the thresholding operation can be expressed as:

dst(x, y) =

{
255 if src(x, y) > threshold

0 otherwise
(4.6)

Thus, each pixel can get only two possible values: 0 and 255 (black or
white) Fig. 4.7. Binary Threshold step shows clearly one fundamental re-
quest for a suitable object detection with AG: Object and background have
to be distinguishable. Shadow Removal is a fundamental image processing
task that has been investigated extensively [Finlayson et al., 2006]. From
RGB color space analysis [Baba and Asada, 2003] to algorithms optimized
by using SUSAN operators [Zhang et al., 2014], several methods have been
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Figure 4.7: Application of a a Binary Threshold.

proposed as solutions that aim to recognize in the image the changes in pixels
due to the illumination. In AG the problem of removing shadows has been
partially solved with the opening operation, that allows to reduce the inten-
sity of the pixels covered by shadows. For better results, a variable threshold
approach has been adopted.

4.3.2 Find contours

Contour Detection is the next step that AG takes. The task is accomplished
by OpenCV Suzuki’s algorithm implementation [Suzuki and be, 1985].
findContours function retrieve contours from the binary image and store
them as vectors of points. A hierarchy structure retains information about
the image topology. “For each i-th contour contours[i], the elements
hierarchy[i][0],..., hierarchy[i][3] are set to 0-based indices in con-
tours of the next and previous contours at the same hierarchical level, the
first child contour and the parent contour, respectively. If for the contour
i there are no next, previous, parent, or nested contours, the corresponding
elements of hierarchy[i] will be negative” [Bradski, 2000].
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Figure 4.8: A scheme of the topological structural analysis in Suzuki’s algo-
rithm.

findContours function allows to organize contours hierarchically or not.
The two options yield in very different results, according to how much the
object is centered in the frame. The number of contours given by Suzuki’s
algorithm is highly variable, among the factors that influence it, frame size
is critical. We will see better the weight of each factor.

4.3.3 Process Contours

Once the contours have been found, a two-steps approximation phase is
needed to reduce the redundancy of keypoints or the presence of outliers:

1. Convex Hull. The convex hull of a set of points S is the intersection of
all convex sets that contain S. For N points p1, ..., pN , the convex hull
C is then given by the following expression:

C ≡

{
N∑
j=1

λipj : λj ≥ 0 for all j and
N∑
j=1

λj = 1

}
(4.7)

OpenCV implements Sklansky’s algorithm [Sklansky, 1982], that has a
complexity of O(N logN), it is particularly designed for 2D polygons
and is simpler than other Convex Hull algorithms such as Gift wrap-
ping [Jarvis, 1973], Graham [Graham, 1972] and Chan [Chan, 1996].
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Figure 4.9: Convex hull of a set of points.

2. Ramer-Douglas-Peucker. Given a curve with several points (and thus
line segments) we need to approximate it with a fewer points set, ac-
cording to a maximum distance between the original curve and the sim-
plified one. Ramer-Douglas-Peucker (RDP)algorithm uses the Haus-
dorff Distance1 to generate a subset of points taken from the original
curve (see Fig.4.10) [Ramer, 1972] [Douglas and Peucker, 1973].

1Basically, the Hausdorff Distance is the greatest of all the distances from a point in
one set to the closest point in the other set:
dH(X,Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈Xd(x, y)}
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Figure 4.10: A curve approximated to a 9-points set by the RDP algorithm.
In most realistic cases RDP complexity is O(n log n)) but its worst-case com-
plexity is O(n2).

4.3.4 Keypoints Extraction

AG performances are strictly related to how the contours are recognized.
From complex objects, made by elaborated textures for instance, we can
expect much more contours than simpler ones such as, a flat, well designed,
smartphone. In AG we focused on the recognition of three types of objects:

1. Simple Real. That is, objects with flat colors and simple shapes.

2. Complex Real. That ones with textured colors and multi-shaped geom-
etry.

3. Hand Drawn. Objects that are already hand drawn as contours, but
they need to be converted in a set of points.

We will see how the three types of objects will give different results. To
maximize the object recognition process, two modes have been implemented:

i. Monocontour. Recognition task is based on the external contour of the
object. Typical use is for objects taken from pictures and video stream-
ing;

ii. Multicontour. Recognition takes in account also the internal contours of
the object. It is ideal for hand drawn objects.
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Feature Descriptors are vectors in image recognition task that allow to or-
ganize the information that identify an image. Because in SURF and SIFT
their construction was computationally demanding, other descriptors showed
better performance: BRIEF [Calonder et al., 2010] used simple binary tests
between pixels in a smoothed image patch but was sensitive to in-plane rota-
tion, issue solved by ORB [Rublee et al., 2011]. AKAZE [Alcantarilla et al.,
2013] exploits the benefits of nonlinear scale spaces. In AG the function of
feature descriptors is fulfilled by the centroids, that are extracted from the
contour as follows:

Algorithm 2 AG Centroids extraction

1: CalculateCentroid(Cntr)
2: Cntr1← BisectHorizontally(Cntr) +BisectV ertically(Cntr)
3: for eachCntr1inCntr1 do
4: Cntr2← BisectHorizontally(Cntr1) +BisectV ertically(Cntr1)
5: for eachCntr2inCntr2 do
6: CalculateCentroid(Cntr2)
7: end for
8: end for

The centroids are distributed mostly in the contour, as in Fig. 4.11:

Figure 4.11: An object and its centroids.
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4.3.5 Shape Matching

The comparison between the sample object and the frame object is based on
the Cosine Similarity (CS) measure2. CS measures the cosine of the angle
between two vectors. As:

a · b = ‖a‖‖b‖ cos θ (4.8)

it yields:

cos(θ) =
a · b
‖a‖‖b‖

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(4.9)

where in our case centroids are the components ai and bi. In AG we intro-
duced a threshold that can limit the presence of false positives. We observed
that for high values (> 95%) the algorithm detects the sample object with
high accuracy, but limited in terms of orientation, scale and position. For
lower values, the algorithm is more robust to object transformation and can
compare positively also object that are similar. Shape similarity gives in-
teresting results when sample objects are compared applied to hand drawn
objects, as we see in Fig. 4.12, moment invariant properties allow to match
different representations of the same object.

Figure 4.12: An object can be drawn and then compared positively with the
original one.

4.3.6 Create Mask

A matching object is returned by the findObjects method in two ways:

1. with all the original image;

2Cosine Similarity measure is largely used in text mining : a document is characteri-
zed by a vector where the value of each dimension represents the number of times a
term appears in the document. Cosine similarity then gives the “distance” between two
documents, as a measure of similarity between their subject.
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2. masked with an alpha channel, as in Fig. 4.13.

Figure 4.13: Object extraction by masking.

The diagram of flux in Fig.4.14 lists the basic steps of AG pre-processing
and comparison, while Fig. 4.15 shows how an object can be “extracted”
from reality to be used in virtual environments.

Load Image

Resize Image
Threshold

Any Object?

Find Contours

no
yes

Compare

Process ContoursOpening

Gaussian Blur

Figure 4.14: The operations necessary for processing each image and compare
it with the sample.

Figure 4.15: The sequence of operations for extracting an object.
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4.4 Implementation

AG has been implemented in mobile demos targeted for children in pre-school
and school age. Object recognition ability continues to develop through
the years, emerging in infancy, when kids perceive simple shapes to child-
hood, when neuroimaging research revealed the first traits of an adult abili-
ty [Nishimura and Behrmann, 2009].

Figure 4.16: A mobile game for teaching art to kids by drawing the works
of famous artists. In this image, “Cat and Bird” by Paul Klee (1928) can
be reproduced by means of a series of levels where kids have to draw details
of the painting. If their drawing looks enough similar to the original, they
jump to the next level.

Figure 4.17: Moments invariants allow to compare objects under rotation,
scale, translation and slight perspective transformations, while shape match-
ing is enough robust to match different representation of the same object. In
the example, a smartphone is detected in different orientation and also when
is hand drawn.
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4.5 Evaluation

AG has been tested by means of an image set partially based on Caltech101 [Fei-
Fei et al., 2007] and custom images, in total 215 images where the objects
to be recognized was centered. Tests have been made on mobile (iPad 4th
Generation with iOS 7-8-9) and desktop systems (i5 and i7 Intel processors).
No particular parallelism optimization has been given to speed up the AG
algorithm. Embedded cameras (iOS) or external web cams (PC) worked at a
frame rate between 10 and 29 fps. Evaluation of AG has been done according
two different benchmarks:

1. Intra-Category, that is, the AG performances within the same category
of objects

2. Inter-Category, how AG performs comparing sample and frame images
taken from different categories.

Given the following measures:

Accuracy = 100× TruePositives+ TrueNegatives

TotalCompared

Precision = 100× TruePositives

TruePositives+ FalsePositives

PositiveRate = 100× TruePositives+ FalsePositives

TotalCompared

RecognitionRate =
Precision× PositiveRate

100
(4.10)

In Intra-Category testing, Positive Rate is far from the results that can be
achieved with classification methods. However, we compared the Recognition
Rate and the Positive Rate as a measure of how often objects found in the
target images are wrongly recognized as similar to the sample object. As you
can see from Fig. 4.18, the contribution of false positives is really low, except
for Binocular category.
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RecognitionRate

Positive Rate

Figure 4.18: Intra-category results for some categories taken in account.

In Inter-Category evaluation, we were interested to measure how often
an object of a category can be “confused” with another category, so we
introduced the True Negative Rate(TNR) as follows:

TrueNegativeRate = 100× TrueNegatives

TrueNegatives+ FalsePositives
(4.11)

A low TNR means a high probability to be classified as a similar object, that
is, they are “misunderstood”. From Fig. 4.19 we see that there are categories
of objects that can be wrongly classified with a probability of more than 30%.
Such result, that we interpreted as a measure of the similarity between two
objects that belong to different categories, it is something we are interested
to exploit.

Figure 4.19: Inter-category results for some categories taken in account.
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4.5.1 Discussion

The evaluation made on a first set of images showed that the presence of
false positives is really low in intra-category, as we can see from Fig. 4.18.
The blue and red bars are almost the same. An exception is the binocular
object that is correctly recognized only for the 13,33%. It means that when
something is identified as an object, with its contour developed around the
center, almost certainly will be recognized positively. For the inter-category
test, we found a 25.76% of probability on average to recognize an object as
being part of the wrong category. This result, although it seems elevated,
it is what we exploit as a feature for extend object recognition to similar
objects that belong to different categories.
It is important to remember that AG is not tracking images. At the first
stage, the algorithm results are still affected by camera noise and there are
no descriptors as in SIFT, ORB, BREAK, etc. for tracking the object by
means of the image features. The peculiarity of this approach doesn’t permit
to compare AG with other tracking systems, like PTAM [Klein and Murray,
2009].

4.6 Future Work

AG was designed with mobile devices in mind, as an alternative to more
sophisticated object recognition algorithms that need a training set. Deep
Neural Networks perform better than any other in image classification but
the training process need an accurate choice of the proper features to create
the model and are not immune to side effects [Nguyen et al., 2014], as seen
in Fig. 4.20.

Figure 4.20: Two examples of a “fooled” Deep Neural Network. On the
left, a couple of school buses: the second image has been modified on a
detail, imperceptible to human eye, but significant enough for the net to
don’t classify it as a “school bus”. On the right: two abstract images that
are classified with high confidence as “school bus”.



54 CHAPTER 4. CAPTURING REALITY: AUGMENTED GRAPHICS

The AG approach is different, it considers the “similarity” between dif-
ferent objects as a result that we can use exploit as well, in some way. For
this reason the tests we made had to take in account the ambiguity of the
concept of similarity. AG looks suitable for applications that doesn’t need
the highest accuracy on the market but a quick setup. As AG needs just one
sample and doesn’t use any training set, it is particularly suitable for mobile
devices and has encountered the interest of gaming and educational commu-
nity that consider kids as a an appropriate audience, and AG as a creative
support for their exploration of shapes, colors and geometries similarities.
AG finds its ideal continuation in 3 dimensions. How moments invariants
and contours analysis can be extended to 3d is the next challenge.



Chapter 5

Hand Motion in Virtual
Reality: GLOVR

Virtual Reality (VR) and Augmented Reality (AR) are deeply changing the
game industry, introducing new engaging ways to interact and play. The
virtual worlds are, in turn, celebrating a new age for computer graphics and
storytelling. Furthermore, VR and AR are finding important applications
outside the world of gaming and they look promising in movies, training,
marketing and advertising. Consequently a new generation of hardware and
software tools for both VR and AR have entered to marketplace, while many
others are constantly under development [Lee et al., 2015].
However, despite the rapid technical progress in headset, display and head
tracking [LaValle et al., 2014], the navigation in virtual worlds remains prob-
lematic. Mouse, joysticks and keyboards are still the most popular con-
trol devices, but they constrain the user to the desk area. Gamepads pro-
vide more freedom, but they severely limit the interaction with the virtual
objects. Furthermore, all these devices gives occasionally rise to counter-
intuitive movements of the user in the virtual environment, producing very
fastidious reactions, when not real sickness.
In addition, no reliable solution has yet been proposed to allow interacting
with the real world during a VR session without pausing or stopping the
application. For instance, while at present the average playing time in VR is
still limited, mainly because of the motion sickness, future applications will
last much longer, with the need of tools allowing fast interaction with not
VR applications during VR sessions. GLOVR has been designed in front of
these challenges, as a hand controller that allow users to play and communi-
cate within VR environments in a very natural way, namely using gestures,
distinguished in classified and instant, and natural language. We will see
how GLOVR works in more details.

55
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5.1 Related Work

The huge success of 3D user interface technologies in game industry since
Nintendo Wii has revolutionized how people play, spreading the game cul-
ture to a wider audience made of “casual” gamers [Verplaetse, 1996]. The
main reason has to be attributed to the introduction of a natural interac-
tion interface, based on the inertial sensors integrated in the game controller
(Wiimote). Since Wiimote, every control system took into account the im-
portance of an easy-to-use interaction, which can let people reproduce the
actions they do in reality (singing, hitting objects, running, etc.). Several
studies have been made about the benefits of these systems (gesture con-
trols, stereoscopic 3D, head trackers), either considering the user interfaces
in isolation or taking in account the mutual influence in the gaming experi-
ence [Kulshreshth and LaViola, 2015].
Hand gesture recognition is an important topic of the field of natural inter-
faces, that has been proposed in several contexts, from education to rehabil-
itation, from games to live music performances.
According with the most popular approaches, while tracking systems made
with depth sensors can process frames and detect three-dimensional hand
shapes in the environment, inertial and bend sensors track accurate move-
ments in local coordinates [Sharp et al., 2015, Sutton, 2013]. New radar-based
technologies, like Google’s Project Soli, look promising.
In both solutions the hand and/or fingers positions are recorded in a small
interval of frames and classified to predict the most probable hand gestures.
The most used classification methods (Hidden Markov Models, Neural Net-
works), can discriminate between static and dynamic gesture recognition [Ra-
biner, 1989, Xu et al., 2012, Hasan and Abdul-Kareem, 2014].
The success of wearable devices has interested different areas, from sports
and wellness to gaming. The availability of accurate inertial sensors and the
intensive research on pattern recognition methods have given the conditions
for developers to create applications that track personal data and promise
to improve the lifestyle and the daily habits of users. Despite the popularity
of such devices, in the game industry the diffusion of wearable controllers is
still not commercially significant. However, a visible interest has always been
present in the intersection between games and personal training, rehabilita-
tion or education [Xing et al., 2009, Vasudevan et al., 2015]. The idea of a
hand glove as a game controller is not new, of course, and has been considered
a fascinating technology since the 80’s [Zimmerman et al., 1987]. However,
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so far the wearable hand solutions have not encountered the acclaim of a
huge audience, although the appealing design often reminds science fiction
movies and cyberpunk imaginary.

5.2 Overview

GLOVR is composed by a PCB hosting:

1. a microcontroller;

2. a 9-axis Inertial Measurement Unit (IMU) with accelerometer, gyro-
scope and magnetometer sensors;

3. an analogue microphone.

and connected to a PC via Bluetooth or USB (Fig. 5.1).

VR headset

player

GLOVR

external device

desk

pc

Figure 5.1: A GLOVR setup.

The system is packaged into a small box attached to a textile glove that
can be worn indistinctly on both right and left hands (see Figure 5.2).

In order to guarantee high usability, the fingers have been excluded from
gesture recognition (also making the glove much more practical to wear for
longer sessions). On the other hand, capturing only palm movements has
been assumed sufficient for satisfactory interactions with most applications.
GLOVR communicates with the pc via Bluetooth. Once the raw data have
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Figure 5.2: The GLOVR device.

been preprocessed by a Data Handler, it sends its results to an Action Man-
ager that translates classified gestures and instant controls in game actions
and runs the speech recognition service (see Figure 5.3) according to the mes-
sages the controller receives from the microphone. The libraries developed
for GLOVR have been implemented in Unity as a package, and so is also our
3D User Interface, that shows the current state of the hand controller.

VR headset

9-axis 

MPU

dsPIC

Mic

Action Manager

NLP Service

Data Handler

PC

Figure 5.3: The GLOVR architecture: all the data are sent to a Data Handler
that detects the instant controls and classifies the hand gestures. If a Mic
Activation is triggered, it send a request to the Natural Language Processing
Service connected to Wit.ai. All the directions and classified hand gestures
are communicated to the Action Manager that translate them in character
playing actions.
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5.2.1 Design Architecture

Let us see GLOVR design with more detail. Data Handler receives pre-
processed packets from the GLOVR firmware and distinguish them in voice
sequences to send to the NLP service and movement data for the Action
Manager (Fig. 5.4).

Action Manager

NLP Service

Data Handler

acc gyr mag q

mic

Gesture Recognizer (DTW)

voice

Instant Controls (SVM)

Kalman Filter

Madgwick’s Algorithm

Figure 5.4: Data Handler controls the flux of data between hardware and
software.

Directional and Instant Controls

As any common input device is a combination of buttons, levers, touch pads
and wheels and offers a universally set of actions and directions, our solution
had to efficiently reply them as a hand buttonless controller. In games, while
directions are usually mapped in a continuous range of values by means of
directional keys or digital/analogic sticks, actions are triggered by a combi-
nation of pressed button and directions. Thus for GLOVR it was necessary
to map all the directions in the 3D sphere of the rotations calculated by
the inertial sensors raw data. We opted for a supervised SVM implemen-
tation [Taranta II et al., 2015], that separates correctly the hand rotations
reserved to the directions with that ones deputed to instant gestures. Classifi-
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Figure 5.5: Some instant gestures.

cation tasks for instant directions and gestures, as well as gesture recognition,
run into the Data Handler (DH) software module. Its output, affected by
error generated by inertial sensors and classification inaccuracy, need to be
filtered in some way to reduce discontinuity in motion. For such reason a
Kalman filter [Kalman, 1960] has been implemented, which generates smooth
transitions between all the possible gestures and directions, a necessary con-
dition for navigating naturally in VR 1. The filtered data are then sent to
the Action Manager (AM), a module strongly integrated with the host pro-
gramming environment. For instance, in Unity AM is part of the C# scripts
that create the game. According with the data received, AM generates the
proper actions for the player’s character (see Fig. 5.6).

Action Manager

Gesture Recognizer (DTW) Instant Controls (SVM)

Application

Player Controller User Interface

GLOVR SDK

Mic

Figure 5.6:

1Kalman filter is an iterative two-steps algorithm that works as follows: starting from
a linear system with Gaussian errors, at first step it predicts a future state and once it
receives data, in the second step it corrects its prediction by means of the current state.
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Figure 5.7: The four 3d icons modeled for the User Interface. Top-Left : hand
model that appears when a gesture is being classified. Top-Right : arrow that
is visible when getting directions. Bottom-Left : the microphone model for
Natural Language System activation. Bottom-Right : the punch for hitting
the enemies.

Thus the Instant Controls are grouped in two: directions and actions 2:

• Backward/Forward. A vertical hand orientation moves backward/forward
with a speed dependent on the angle

• Left/Right.

• Jump. A smooth “pitch” rotation of the palm is translated in a jump.

• Mic Activation. Microphone is activated with the palm oriented hor-
izontally and kept close to the mouth giving a sort of “James Bond”
style position.

• Hit. An action is performed with a fast “punch” forward movement.

In GLOVR the instant gesture icon appears on bottom right of the VR view
as long as it was considered a suitable location on the Oculus screen view.
The correct implementation of a 2D/3D GUI in VR is still an open research
topic [Silva et al., 2014].

Gesture Recognition

GLOVR represents a simple and practical solution suitable for intuitive and
easy interaction with VR environment, that classifies static and dynamic
gestures in real-time. To achieve this, gesture recognition task in GLOVR
needed an algorithm able to handle 3D hand inputs of various length, that

2we will see how actions can be also performed by gesture recognition task, it is up to
the game designer to design how to map them.
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may be constituted by a sequence of movements that occur over a variable
interval of time. To this purpose we adopted a N-Dimensional Dynamic
Time Warping (ND-DTW) method that can compute similarities through
the concept of distance between two N -dimensional time-series [Gillian et al.,
2011]. DTW has been applied to several different fields, from database index-
ing [Ding et al., 2008] to handwritten recognition [Vuori et al., 2001], gesture
recognition [Héloir et al., 2006] and speech recognition [Vlachos et al., 2003].
DTW in one-dimension works as follows. Given two time-series, x = {x1, x2, ..., x|x|}
and y = {y1, y2, ..., y|y|} with lengths |x| and |x|, construct a warping path
w = {w1, w2, ..., w|w|} so that:

max{|x|, |y|} ≤ |w| < |x|+ |y| (5.1)

and the kth value of w is given by wk = (xi,yj). The minimum total warping
path is that one that minimizes the cost matrix C. Given:

DIST (i, j) =

√√√√ N∑
n=1

(in − jn)2 (5.2)

for N-dimensional time-series, the total distance across all N dimensions is
used to construct the cost matrix C. Training is made by creating a template
for each gesture that is going to be classified. In a class, templates are the
training samples that minimize the normalized total warping distance against
the other ones. Accordingly, a N-dimensional time-series X can be classified
as ”kth gesture” if, among all the templates, it minimizes the normalized
total warping distance between X and the kth template.
A critical aspect of ND-DTW is to set a proper threshold for each gesture
recognition, in order to reduce the risk of false positives during classification.
The problem, better know as gesture spotting is faced setting up the classi-
fication threshold for each template as the average total normalized warping
distance between all the couple of training examples, augmented by their
standard deviations.

The main advantages of this method are:

1. it works well for time-series of different length (see Fig. 5.8):
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Figure 5.8: The aligned input signals. The red original signal on the left
have been “warped” to fit the geometry and the length of the blue one.

2. it provides a measure of the distance between the data to be compared,
as in Fig. 5.9:
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Figure 5.9: The optimal path calculated by the DTW (the white line). The
goal of DTW is to minimize the distance between two signals.

3. it guarantees better accuracy with a smaller training set, in comparison
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with other methods such as Hidden Markov Models [Carmona and
Climent, 2012].

As for gesture classification, a set of 4 gestures (see Fig.5.10 has been
designed and tested in a variety of circumstances within the demos, each one
trained by a limited number (20) of 6-dimensional samples. As proven by the
previously mentioned research, the minimum number of training examples
that gives a minimum of 90% of accuracy is 12, thus we considered our setup
robust enough. A training phase generates a template and a threshold for
each gesture. Then, in operation, the distance between the acquired data and
each threshold is computed in real time to distinguish gestures corresponding
to the models from all the others, successfully solving the gesture spotting
problem. Along with such a recognition, GLOVR calculates also a Gesture
Strength (GS), suitable for applications where the intensity of a gesture has
to be taken in account (such as, for instance, in the case of an action game
where the player can hit an enemy with different levels of power).

Figure 5.10: The four gestures under test for GLOVR and their hand move-
ments.

Natural Language System

The more evident limits in natural language interaction are clearly in the
relationship between what a user says and the consequent action taken by the
computer. The difficulties in achieving this task can be essentially grouped
in three types:

• Speech recognition is compromised not only by audio quality but also
by wide differences (by age, sex, nationality, etc.) in voice and pro-
nunciation. Thus it is extremely hard to create a universal model that
cover all the targets.

• Understanding the user’s intent is a complex task that has to take in
account the intrinsic ambiguity of human language, that is, the same
utterance can have a different meaning for different users.
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• All natural language processing tasks need generous processing re-
sources, in practice still available only offline. This implies that on-
line voice assistant systems are subject to trade-off due to latency and
bandwith.

However, the progress in speech recognition and natural language pro-
cessing have moved tech companies and researchers of future opportunities
and applications. The success of personal voice assistants such as Apple’s
Siri, Microsoft’s Cortana or Google Now for scheduling, traffic navigation
or other simple management tasks is a clear indication of high interest in
developing “speech-controlled” systems. An increasing number of free-to-use
or licensed natural language services have been created, and now it is possi-
ble to develop applications embedding a speech recognition system in several
languages [API.ai, ].
In games, the exploitation of this type of interaction is still at an early stage
and it has already been commercialized in educational games for kids [ToyTalk,
]. Other wearable solutions have been experimented in rehabilitation, ex-
ploiting the potential advantage of the combination of motion capture and
speech recognition [Pereira et al., 2011]. Also, natural language interaction
looks promising particularly for use as a complement of other solutions in
order to increase functionality [Cheong et al., 2014, Zhu et al., 2014].
In GLOVR the microphone has been implemented in the palms and it’s ac-
tionable by means of a simple gesture. Although in VR a voice input could
be integrated in the headset or in front of the user, we found that a wearable
solution could cover several other contexts than VR where GLOVR can work
efficiently. Thus in GLOVR we aimed at realizing two kind of operations:

• Voice-activated tasks. The user sends voice requests that are recognized
as commands for the execution of specific tasks, such as, for example:
activation of messenger services, remote regulation of connected de-
vices.

• Gameplay. The user communicates inside the game with other charac-
ters or gives instructions to the game system (such as: switch of game
modes, dialogues with characters).

Speech recognition has been implemented using Wit.ai, a natural language
processing service that allows to turn speech and text into actionable data [Wit.ai,
2016]. Wit.ai recognizes user’s commands and retrieves data for the subse-
quent action after it has been trained. To do we need to define intents by
means of natural language expressions. Let us give an example:

1. we create a new intent set an alarm with just two expressions like “Set
an alarm tomorrow at 6:30am” and “Wake me up tomorrow at 7am”;
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2. we connect entities to the related parts of each expression as in Fig.5.11:

Figure 5.11: Connected device such as an alarm clock can receive commands
via natural language.

We can populate our natural language system with more elaborated intents
as set home temperature, based on expressions like “Set the temperature in
the living room at 19 degrees” or “Decrease the temperature in the bedroom
to 17 degrees”, and entities as:

Figure 5.12: A heater can be controller at distance by natural language
commands which set the temperature in the different rooms

Wit.ai offered a set of built-in entities that cover a wide variety of situ-
ations and needs: from wit/agenda entry that extrapolates agenda items
from text, to wit/email that detects email addresses, from wit/url that cap-
tures an URL address to wit/wikipedia search query that send queries to
Wikipedia. During a game session, a user’s request like “Say John Smith to
call me later” is in relationship with an intent like Send a message and the
entities contact and message body can be associated in it (see Figure 5.13).
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Figure 5.13: Mic Activation pose.

A scheme of the natural language implementation is given in Fig. 5.14.
The Action Manager receives the intent from the NLP service and send to
the Intent Listener, which runs via the GLOVR SDK and can connect the
client with external applications and devices.

5.2.2 Implementation

System Architecture

GLOVR hardware is composed by: a 16bit Microchip dsPIC33x microcon-
troller that processes the data, along with the IMU (InvenSense 9250) and the
a analogue microphone (Wolfson WM7120). All the circuitry is embedded
in a 1.57”x 1.18” PCB hosted in a 3d printed case, on top of a textile glove.
The device can transmit via Bluetooth or MicroUSB connection. Power is
supplied by a Li-Ion 3.7V 240mAh battery or via MicroUSB. Code runs
as an C-style API (for desktop apps and Unity) or a Node.js module (for
Javascript). The latter solution looked interesting for the raising diffusion of
VR web apps. Both are cross-platform and can run with limited hardware
resources.
Serial port connection has been implemented in two ways:

• A Java web server, that provides data communication for desktop and
web apps.

• A Unity package, that calls the API functions and allows a easy inte-
gration of GLOVR inside a game.
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Action Manager

NLP Service

Data Handler

voice

Application

GLOVR SDK

Living room

Heater

Alarm

Clock

Intent Listener

Figure 5.14: Scheme of the natural language interface. In our example con-
figuration, a heater placed in the living room and an alarm clock can be
controlled by voice commands sent from GLOVR.

Hand Movement

In our system, all the data about hand movements are acquired by a In-
venSense MPU-9250 9-axis device, featuring accelerometer, gyroscope and
compass. The 9-dimensional vector of motion data is acquired with a fre-
quency of 30Hz and pre-processed internally by the MPU by means of a
Kalman-based orientation filter developed by Sebastian Madgwick that fuses
raw data and returns an orientation quaternion3. Madgwick’s algorithm gets
as constants the sample frequency and a beta value, that tunes the response
of the algorithm to changes in sensors data. Every loop the update() func-
tion accepts as input parameters the raw data taken from the accelerome-

3Quaternions are members of a noncommutative algebra invented by W. Hamilton.
They can be represented as q = a+ bi+ cj + dk and briefly, they are preferred over Euler
Angles because are free of singularity issues and easier to handle in operations.
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ter, the gyroscope and the magnetometer. Madgwick’s algorithm was pre-
ferred over a common Kalman Filter because provide a comparable accuracy
and they are less expensive in terms of calculations, letting the MPU go
faster [Madgwick, 2010].

Algorithm 3 Madgwick’s sensors fusion update() algorithm

1: g vec← (gyroX, gyroY, gyroZ)
2: a vec← (accX, accY, accZ)
3: m vec← (magX,magY,magZ)

Rate of change of quaternion from gyroscope
4: qDot = 0.5× f(q,g vec)

Normalise accelerometer measurement
5: recipNorm = invSqrt(a vec)
6: a vec× = recipNorm Normalise magnetometer measurement
7: recipNorm = invSqrt(m vec)
8: m vec× = recipNorm

Auxiliary variables to avoid repeated arithmetic
9: process auxiliary variables(m vec,q)

Reference direction of Earth’s magnetic field
10: update reference(m vec)

Gradient decent algorithm corrective step
11: s← process corrective step(a vec,m vec,q)
12: recipNorm = invSqrt(s)
13: s× = recipNorm

Apply feedback step
14: mathbfqDot− = beta× s

Integrate rate of change of quaternion to yield quaternion
15: q+ = qDot× (1.0/sampleFreq)

Normalise quaternion
16: recipNorm = invSqrt(q)
17: q× = recipNorm

From them, we calculate hand rotation angles roll φ, pitch θ and yaw ψ
with a small amount of noise and drift error with the following formulas:

φ = atan2(2(q0q1 + q2q3), 1− 2(q21 + q22))

θ = arcsin(2(q0q2 − q3q1))
ψ = atan2(2(q0q3 + q1q2), 1− 2(q22 + q23))

(5.3)

where q0, q1, q2, q3 are the quaternions calculated by Madgwick’s algorithm.
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Natural Language System

GLOVR acquires audio data thanks to a silicon MEMS analogue microphone,
a Wolfson WM7120, that features a high SNR 75dB and a 140µA of supply
current, producing a Pulse Density Modulated (PDM) audio stream. The mi-
crophone, located on top of the controller, is activated with an intuitive hand
gesture and used for voice command. As default, the allowed communication
length is 2-3 seconds, that represents a good trade-off between duration and
complexity of user’s requests. Wit.ai service has been implemented within
the Unity package. In 4 the main algorithm is listed and 5 summarizes the
key steps in processing the voice sample. Once speech is recorded by mi-
crophone, an http request is sent to the Wit.ai service that returns a data

structure made by the recognized text and an array of outcomes. Each item
reports the confidence with which the text has been matched to an intent

and the relative intents.

Algorithm 4 The natural language service main algorithm

1: token← access web service()
2: while current state update do
3: if speech.isRecorded then
4: process speech()
5: end if
6: end while

Algorithm 5 process speech() function

1: response← send http post request()
2: data← parse data(response)
3: if data.outcomes.intent != NULL then
4: do something(intent)
5: end if

data structure returns a JSON packet like this:

{

"msg_id" : "de7f215d-6aa8-4d48-8ce5-7fb8e7c56f3f",

"_text" : "move forward ten meters",

"outcomes" : [ {

"_text" : "move forward ten meters",

"confidence" : 0.453,

"intent" : "go_ahead",
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"entities" : {

"distance" : [ {

"type" : "value",

"value" : 10,

"unit" : "metre"

} ],

"on_off" : [ {

"value" : "on"

} ]

}

} ]

}

5.2.3 Evaluation

GLOVR has been tested on VR demos designed ad hoc, running on a Mac-
BookPro (Core i7 4578U,GT 750M graphics card, 16GB RAM). Oculus DK2
headset has been chosen as VR display but there are no restrictions for a
future use with the upcoming devices. First game scenarios have been made
with ThreeJS, a Javascript WebGL-based graphic library, that easily inter-
faces with Oculus and runs on all web browsers. GLOVR has demonstrated
to work properly with either Chrome and Safari web browsers, even though
the limitations in the VR frame rendering on WebGL were visible.
Then we focused on a single demo, Floating Islands, an action game where
the player explores a world made by three floating islands. The game was
fully developed in Unity, populated with characters and assets modeled with
Blender. The scene has been reduced in terms of polygons to assure the best
experience with Oculus, taking in account the limited performance of the
mobile graphics card in use for the evaluation. In the game, the three islands
have been populated by threatening animal enemies, from which the player
has to defend himself, otherwise he/she can loose power. The player can also
collect coins and can jump from an island to another one activating tricks
hidden in the scene.

All the interactions in Floating Islands are covered by the GLOVR con-
troller and can be casted in four groups:

• Movement Controls. The player can move in different directions, jump
and rotate.

• Action Controls. The player hits the enemies with a punch, whose the
strength is proportional to the force imposed by the hand.
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Figure 5.15: Two frames from Floating Islands demo.

Figure 5.16: “V” gesture recognition.

• Heads-Up Display (HUD) Controls. Start/pause game, show/hide sta-
tus, activate microphone.

• Gesture Controls. The player find in specific spots signals that suggest
which gesture has to do in order to enable a connection between the
islands.

We conducted our evaluation taking in account prior comprehensive research
on 3D user interfaces, that featured similar characteristics [Kulshreshth and
LaViola, 2015]. As for first comparison evaluation, we consider GLOVR
Controls (GC) and a pair of Keyboard and Mouse Controls (KMC). At first
glance KMC may appear an outdated configuration for VR environments.
Actually it has been choose among the alternatives as the most efficient for
emulating hand gestures, just typing selected keys and well known movements
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with the mouse. Thus, in KMC the directions are taken with the directional
keys and the character rotation with the mouse, as commonly implemented
in classic game controls. Microphone activation and triggering of “O” and
“V” gesture spots have been simulated with letter keys.
According to the design we proposed, we advanced the following hypotheses:

1. The user experience given by GLOVR is better than than playing with
KMC configuration.

2. The motion sickness in movements due to the rotation of the character’s
body in the virtual world is reduced.

3. Voice commands triggered by GLOVR controls won’t affect the game
performance.

4. The gaming performance, measured in terms of killed enemies and life-
time, is the same that we can aspect from a KMC configuration.

For the NL system we also measured the latency between the physical gesture
of Mic Activation and the response given by Wit.ai, provided as a simple
message on screen to prove the successful activation of the requested task.
The participants were invited by a random external acoustic signal to ask
two imperative sentences during the game session, related to some home
automation task that ideally can be executed while playing a VR game:

• Set the temperature in the bedroom to 24 degrees. It simulates a com-
mand sent to an connected air conditioning.

• Turn to day mode. It changes the light in the game scene, switching
from daylight to nightlight and vice versa.

We restricted the possible voice requests to a limited vocabulary. In fact, the
NL classification accuracy of Wit.ai was not considered “under test”.

5.2.4 Quantitative Method

For the evaluation of GLOVR we did a preliminary test with 12 participants
(10 males, 2 females) in the age 20-38. At first they were briefly trained on
the allowed control commands. All participants had prior experience with
Virtual Reality thus we focused the usability test only with a VR version of
Floating Islands, using with both GC and KMC configurations, and record-
ing quantitative and qualitative measures with and without the use of the



74 CHAPTER 5. HAND MOTION IN VIRTUAL REALITY: GLOVR

Figure 5.17: Mean number of killed enemies under different game condi-
tions. GC: GLOVR Controls, KMC: Keyboard and Mouse Controls, GC-NL:
GLOVR Controls with Natural Language activated, KMC-NL: Keyboard and
Mouse Controls with Natural Language activated.

NL system. Because the participants played two trials for each mode, the
total number of trials per participant was (GC + KMC) x (NL + not-NL) x
(Trial 1 + Trial 2) = 8. Each game had a maximum life time of 10 minutes.
Performance was measured by means of a Two-Way ANOVA with number
of killed enemies and life time as dependent variables. Testers killed more
enemies (F1,44 = 13.42, p < 0.001) with GLOVR (GC + not-NL configura-
tion, µ = 30.12, σ = 5.18) than with common controls (KMC + not-NL,
µ = 23.54, σ = 6.78). However, differences in number of killed enemies be-
tween NL and not-NL were not significant (F1,44 = 0.31, p = 0.58) . Also,
no interaction between Controls and Natural Language System was found
(F1,44 = 0.05, p = 0.81). As expected, the life time was not affected by
configurations (F1,44 = 0.11, p = 0.745), much less by the presence of a NL
system (F1,44 = 0, p = 0.9617) (see Figure 5.17 and 5.18). The trials
played with NL activated measured a mean response time of 2 seconds, that
gives a total interval of 4 seconds from player’s intent to triggering an action
for GC (mean latency = 3.88, σ = 0.12) and KMC (mean latency = 3.91,
σ = 0.13). As we expected the latency is dependent from the Wit.ai server,
thus no significant relationship with the game configurations was observed
(see Figure 5.19). Gesture recognition (GR) tasks were limited to the scene
locations where the player could jump to another island. Two gestures were
proposed, an “O” (or a circle) and a “V” . Measures confirmed an expected
accuracy around 90% (“O”, µ = 90.4, σ = 1.57, “V”, µ = 89.63, σ = 1.6)
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Figure 5.18: Mean time spent in a game session under the different conditions
taken in account.

Figure 5.19: Mean Latency measured from the microphone activation to the
response given by Wit.ai server.
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Figure 5.20: Classification accuracy measured for “O” and “V” gestures.

(see Figure 5.20).

5.2.5 Qualitative Method

After the trials, all the participants completed a 5 statements survey on a
5 point agreement Likert scale related to the overall game experience. We
excluded specific questions for Gesture Recognition and Natural Language
System features. The 5 questions were balanced to with an equal number of
positive and negative statements to reduce the problem of acquiescence bias
(see Table 5.1). The results of the survey confirmed the hypotheses: from
Q1, users agreed that the game performance (killed enemies, time spent in a
game session) was better, as reported by the measures. From Q2, we can say
that GLOVR is comfortably wearable, despite the fact that device under test
was just a “lab-made” prototype. A slightly positive opinion that GLOVR
can reduce motion sickness came from Q3, given the more natural way to
rotate the body of the character in the virtual world. Also, Q4 and Q5
feedbacks gave fairly positive opinions about the immersive experience and
the ability of GLOVR to control directions properly (see Figure 5.21).

5.2.6 Discussion

We conducted a preliminary test that aimed to confirm hypotheses we pre-
viously advanced about GLOVR controller. The game performance we mea-
sured was globally the same as with traditional controllers and the users
didn’t expressed particular concerns. However the game experience was
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Survey Statements
Q1 GLOVR performs better in terms of

killed enemies and life time.
Q2 You feel comfortable for all the game

session spent wearing GLOVR.
Q3 GLOVR controller seems reducing

motion sickness.
Q4 GLOVR gives a less immersive ex-

perience.
Q5 GLOVR provides a difficult control

of directions.

Table 5.1: The survey proposed to all the participants after the game session.
The Likert scale goes from 1 (strongly disagree) to 5 ( strongly agree).

Figure 5.21: Results taken by the post-game survey.
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judged more compelling and we guess that the main reason was the way
users can play (jumping or punching, above all) more naturally. Survey re-
sults reported also a slight reduction of motion sickness, compared to KMC
configuration. This result is just a first look in the cybersickness topic and of
course needs further investigation. Exhaustive descriptions of the phenom-
ena can be found in LaViola Jr. [LaViola, 2000] and Kolasinski [Kolasinski
et al., 1995] works.
Future comparison tests will be made with game controllers specifically de-
signed for VR applications as well as mixed configurations, that are theoreti-
cally possible, like GC + KMC or GC + GC (both hands).
Naturally, as in most VR applications, the connection between user’s move-
ments and consequent sickness represents an important aspect of our work.
From this point of view, differently from other peripherals that are “cali-
brated” with the user’s strength, GLOVR movements are strictly correlated
to the force applied by the player, with the consequence that cybersickness
is physiologically limited by the user him/herself while is playing.
The NL system implemented in GLOVR showed an average processing time
of four seconds from the voice command to the response. This interval of
time can be considered critical for taking immediate actions in games, but it
is reasonably suitable for categories and external applications which not re-
quire instant feedback (strategy, casual games, simulations). From measures
we cannot report any particular influence of the NL system in the overall
game performance. We hypothesized that GLOVR shouldn’t improve the
game performance in terms of killed enemies because of the familiarity of
GC + KMC compared to a wearable controller. On the contrary, some ben-
efits have been observed. We can guess that the reduced motion sickness
can be a significant factor for improving the quality of the game experience
and also the overall game performance. However, any consideration about
motion sickness need further and more appropriate tests.

5.2.7 Future Work

GLOVR, has been developed and successfully tested but, as the whole area
of interest is evolving quickly, several enhancements can improve the user
experience. GLOVR acquires data from an IMU and a microphone and
allows the user to interact with the virtual world through gestures and natural
language commands. This latter type of control allows interact with external
applications during a VR game session, giving the user a more complete and
satisfactory experience, without compromising his/her engagement. In a
nutshell, we can summarize the key features and novelties of GLOVR as
following:
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1. GLOVR does not have any fingers and no fingers data are acquired.
Despite the absence of their correspondence on the virtual environment,
we opted for such a solution as a good compromise between wearability
and richness of data. In any case a future version of GLOVR will feature
also a tracking system in the way of Leap Motion and other trackers.
The user can wear GLOVR for a long time with limited welding on
the palm and without stress effects. Furthermore, he/she can handle
almost any real object (game plugs?) while wearing GLOVR, allowing
to import it in the virtual scene.

2. GLOVR acquires hand information by means of IMU sensors, thus it is
not affected by occlusion issues present in systems like Leap Motion or
Kinect or VR controllers such as Oculus Touch. Although the data are
limited to the palm, past controllers like Wii Remote have showed how
the palm controls can offer a compelling game experience and provide
robustness in data. It is evident that all computer vision-based tracking
suffer of occlusion issues and only a multicamera setup can guarantee
continuous tracking. In any case a IMU + Trackers combo could be
an interesting solution able to further enhance the user experience. It
is evident that the absence of any positional information for GLOVR
has to be compensated from other input devices. Particularly, Leap
Motion or similar depth sensor can be integrated and offer a complete
and more robust gesture recognition system. Further investigations will
be done in this way.

3. All the actions in demos are easily playable and they don’t need a
particular training. The idea is to give to GLOVR a set of simple hand
gestures that does not need any visual feedback for being reproduced
correctly.

4. GLOVR features an easily gesture activable microphone. We have not
seen so far significant examples of how to interact with external world
(messaging, home automation, etc.) in VR. GLOVR and its natural
language implementation represents an easy solution.

As for future work, the possibility to connect GLOVR with external home
automation devices will be investigated. The exploitation of gesture inter-
faces to control smart objects has been explored with variable success [Fleer
and Leichsenring, 2012] [Starner et al., 2000]. Natural Language solutions
that allow faster response and a wider range of domains (like Api.ai) are
under consideration. Furthermore, offline services have been taken in ac-
count. A first test was made with Pocket Sphinx, a offline version of CMU
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Sphinx, that gave poor results because of the very limited vocabulary of the
speech recognition system [Huggins-daines et al., 2006]. Although originally
designed for Virtual Reality game applications, GLOVR can work in a vari-
ety of contexts, such as training, marketing, simulations, home automation,
providing control outside VR as well. Future demos will be developed to
cover significant opportunities in such fields.
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Conclusions

As long as the technology involved in Human-Computer Interaction has
evolved, the mutual influence between Reality and Virtuality has become
stronger. Data appeared like the “substance” that feed both the extremes
of the Virtuality Continuum, making analog and digital worlds closer and
sometimes indistinguishable. We focused on the design and implementation
of technologies mostly related to entertainment and education, the areas
where the immersive experiences are familiar to a larger audience. However,
Mixed Reality found several promising applications in industrial and medical
fields as well, and recent results confirmed this trend. In the course of our
research we experimented some of the most recent Human-Computer Inter-
faces, as seen in details in Chapters 3,4 and 5.

6.1 Discussion

BRAVO started from the results achieved by previous research with con-
sumer Brain-Computer Interfaces, we developed a system for the fruition of
multimedia contents in a mobile device where the composition of text and im-
ages is based on the user’s brain activity. We designed different approaches,
at first considering only the threshold reached in attention and meditation
levels, then, according to a Computerized Adaptive Testing algorithm, we
implemented a probabilistic solution. Evaluation with different groups of
testers highlighted the potential for such technology in targeting more effec-
tively the proposed learning content. We still consider consumer BCI “at
early stage”, as the attention (and other cognitive processes) appear difficult
to be decomposed. Sources of attention in public places are so numerous
that it is really difficult to guess where the user pays attention.

81
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Augmented Graphics (AG) origins from the need of a fast object recognition
algorithm that could detect objects that are “similar” to the sample one.
Computer vision recognition tasks are mostly based on a machine learning
process that requires the acquisition of a dataset, the training of the recogni-
tion model according on it, and the classification of target images based on
the highest generalization achieved by the model. We saw how AG focused
on a very simplified model that consider only the distribution of features
in the sample object, taking in account moments invariants theory for de-
tecting such distribution on target objects. In these terms, AG accuracy
cannot be compared with Convolutional Neural Networks or other learning
approaches, because its goal is to group together any objects that “look
like”. This approach is finding interest in gaming and educational contexts
where the concept of “similarity” can be exploited and need to be light and
portable. For this reason AG has been implemented in different demos on
conferences and public events, showing solutions from interactive graphics
novels to mobile games for kids.
In Chapter 5 we discussed GLOVR, a wearable hand controller that we
judged a robust alternative to 3d tracking user interfaces, particularly suit-
able for Virtual Reality applications. It features an inertial unit that allows
a continuous hand pose estimation and a the application of a gesture recog-
nition system, a microphone for the implementation of a natural language
system for sending voice commands to execute external tasks or interacting
within the VR application.
Summarizing the main contributions, we saw with BRAVO how to exploit
the user’s brain activity as an additional information for customizing con-
tents, in a form that has not been explored before: an interactive system
outside the typical laboratory context for EEG analysis.
We designed Augmented Graphics with some important assumptions in what
we consider an “object”. Our approach, that cannot be considered a tracking
solution, performs discretely in terms of detection rate but looks promising
in what we expected it should do: recognize similar objects without any
training/classification system.
For GLOVR we focused on the design of a wearable controller that could
be useful not only for VR but also for other applications. Even if the glove
concept is not true, we think that we targeted some of the most interesting
aspects of VR controllers: high wearability, robustness on hand movement
acquisition, thanks to the IMU sensors, ease to use because it doesn’t need
any training, application in VR or not-VR contexts.
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6.2 Future Work

We already anticipated our future directions in the previous chapters, but
it is worth to spend a few other words in conclusion. Mixed Reality is “di-
mensionally” growing in terms of flux of information and it is more pervasive
day by day thanks to the diffusion of wearable technologies that moved Aug-
mented and Virtual Reality from the labs to the daily use. A world where we
are connected in both real and virtual nature looks closer than we thought
and the investments of technology industry in AR and VR show the strong
interest in creating hybrid experiences, where people are immersed in sce-
narios where they can meet each other virtually and create real networks.
In such context we are planning to develop new applications for the existing
devices and to design interfaces that further exploit the mutual influence be-
tween humans and machines. We think that the popularity of Head Mounted
Displays for VR and AR will make easy to implement widely other interfaces
that so far have been limited to researchers or tech supporters. For instance, a
Brain-Computer Interface could be easily integrated and useful for acquiring
information about the user’s status and his/her cybersickness. We are work-
ing on the first version of a EEG board that can be inserted in the Razer’s
OSVR headset. Depth cameras integrated in the HMDs can scan more and
more precisely and objects taken from the reality can be “exported” to the
virtual worlds. For this reason a natural progress for Augmented Graphics
would be the extension to the third dimension. Controllers for the Mixed
Reality have to be more natural, leaving behind traditional systems. To
achieve this, devices need to be robust on data. We think that an integra-
tion of GLOVR with positional trackers could improve significantly the user
experience. Furthermore, Natural Language services can provide tools for
creating vocal personal assistants with minimum efforts. Such field of inter-
est, so far a privilege of a few tech companies, will grow as long as Artificial
Intelligence is expanding its horizon of applications. For GLOVR but also
for other interfaces, we expect to make speech a smart controller itself.
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halgh, C. (2000). Traversable interfaces between real and virtual worlds. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’00, pages 233–240, New York, NY, USA. ACM.

[Kulshreshth and LaViola, 2015] Kulshreshth, A. and LaViola, Jr., J. J.
(2015). Exploring 3d user interface technologies for improving the gaming
experience. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages 125–134, New York, NY,
USA. ACM.

[Lamdan et al., 1990] Lamdan, Y., Schwartz, J. T., and Wolfson, H. (1990).
Affine invariant model-based object recognition. Robotics and Automation,
IEEE Transactions on, 6(5):578–589.

[LaValle et al., 2014] LaValle, S., Yershova, A., Katsev, M., and Antonov,
M. (2014). Head tracking for the oculus rift. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 187–194.



92 BIBLIOGRAPHY

[LaViola, 2000] LaViola, Jr., J. J. (2000). A discussion of cybersickness in
virtual environments. SIGCHI Bull., 32(1):47–56.

[Lecuyer et al., 2008] Lecuyer, A., Lotte, F., Reilly, R., Leeb, R., Hirose,
M., and Slater, M. (2008). Brain-computer interfaces, virtual reality, and
videogames. Computer, 41(10):66–72.

[Lee et al., 2002] Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and
Pollard, N. S. (2002). Interactive control of avatars animated with human
motion data. ACM Trans. Graph., 21(3):491–500.

[Lee et al., 2015] Lee, P.-W., Wang, H.-Y., Tung, Y.-C., Lin, J.-W., and
Valstar, A. (2015). Transection: Hand-based interaction for playing a
game within a virtual reality game. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’15, pages 73–76, New York, NY, USA. ACM.

[Lee et al., 2009] Lee, S., Jounghyun Kim, G., and Choi, S. (2009). Real-
time tracking of visually attended objects in virtual environments and its
application to lod. Visualization and Computer Graphics, IEEE Transac-
tions on, 15(1):6–19.

[Leeb et al., 2007] Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H.,
and Pfurtscheller, G. (2007). Brain-computer communication: Motivation,
aim, and impact of exploring a virtual apartment. Neural Systems and
Rehabilitation Engineering, IEEE Transactions on, 15(4):473–482.

[Li et al., 2011] Li, Y., Li, X., Ratcliffe, M., Liu, L., Qi, Y., and Liu, Q.
(2011). A real-time eeg-based bci system for attention recognition in ubiq-
uitous environment. In Proceedings of 2011 International Workshop on
Ubiquitous Affective Awareness and Intelligent Interaction, UAAII ’11,
pages 33–40, New York, NY, USA. ACM.

[Liarokapis et al., 2014] Liarokapis, F., Debattista, K., Vourvopoulos, A.,
Petridis, P., and Ene, A. (2014). Comparing interaction techniques for
serious games through brain?computer interfaces: A user perception eval-
uation study. Entertainment Computing, 5(4):391 – 399.

[Liarokapis et al., 2013] Liarokapis, F., Vourvopoulos, A., Ene, A., and
Petridis, P. (2013). Assessing brain-computer interfaces for controlling
serious games. In Games and Virtual Worlds for Serious Applications
(VS-GAMES), 2013 5th International Conference on, pages 1–4.



BIBLIOGRAPHY 93

[Lillo et al., 2010] Lillo, A. D., Motta, G., Thomas, K., and Storer, J. A.
(2010). Shape recognition, with applications to a passive assistant. In
Makedon, F., editor, PETRA, ACM International Conference Proceeding
Series. ACM.

[Ling and Jacobs, 2007] Ling, H. and Jacobs, D. W. (2007). Shape classifi-
cation using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell.,
29(2):286–299.

[Liu et al., 2013] Liu, N.-H., Chiang, C.-Y., and Chu, H.-C. (2013). Recog-
nizing the degree of human attention using eeg signals from mobile sensors.
Sensors, 13(8):10273.

[Lord, 1980] Lord, F. (1980). Applications of Item Response Theory to Prac-
tical Testing Problems. Erlbaum Associates.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–110.

[Madgwick, 2010] Madgwick, S. O. (2010). An efficient orientation filter for
inertial and inertial/magnetic sensor arrays. Report x-io and University of
Bristol (UK).

[Magnenat et al., 2015] Magnenat, S., Ngo, D. T., Zund, F., Ryffel, M.,
Noris, G., Rothlin, G., Marra, A., Nitti, M., Fua, P., Gross, M., and Sum-
ner, R. (2015). Live texturing of augmented reality characters from colored
drawings. Visualization and Computer Graphics, IEEE Transactions on,
21(11):1201–1210.

[Mann and Fung, 2001] Mann, S. and Fung, J. (2001). Videoorbits on eyetap
devices for deliberately diminished reality or altering the visual perception
of rigid planar patches of a real scene. In Proceedings of the Second IEEE
International Symposium on Mixed Reality, pages 48–55.

[Marchesi, 2012] Marchesi, M. (2012). Neu: How brain activity can change
an animated scene. In ACM SIGGRAPH 2012 Posters, SIGGRAPH ’12,
pages 75:1–75:1, New York, NY, USA. ACM.

[Marchesi et al., 2011] Marchesi, M., Farella, E., Riccò, B., and Guidazzoli,
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