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Abstract

In this thesis it is shown the development, implementation and numerical
solution of several computational fluid dynamics models for the study of liq-
uid metal flows. The work is organized in two main parts in which different
modeling techniques are analyzed. These two parts are introduced by a brief
chapter on the finite element methods and on the computational platform
developed during the Ph.D. studies which have been the basis for the imple-
mentation and numerical solution of all the developed mathematical models.

In the first part, turbulence modeling based on Reynolds Averaged Navier
Stokes equations is considered for the study of turbulent heat transfer in
liquid metal flows. A new four parameter turbulence model is introduced and
validated in two different k-ε and k-ω formulations. Several results in four
geometries interesting for the fast nuclear reactor field are reported in order
to assess and prove the feasibility of this model for the study of turbulent
heat transfer in liquid metal flows.

In the second part the adjoint optimal control theory is introduced. Some
numerical cases are presented by solving the optimality system with state and
adjoint variables. The first application is a temperature boundary optimal
control in which an improved way of setting boundary conditions in weak
form has been developed. The second application is a distributed optimal
control problem for the RANS system. Numerical simulations in two and
three dimensions have been carried on for this type of applications and are
reported in the final chapter.
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Introduction

The study of computational methods for solving numerical approximation of
partial differential equations dates back in the second half of the last cen-
tury, when finite differences solvers have first been implemented in computers
to solve simple differential equations. Since then the use of computational
methods steadily increased among universities and companies with the grow-
ing computational power. At the present time, simulation and modeling are
commonly used by physicist, mathematicians and engineers with applications
ranging from the understanding of basic physical phenomena, to the study of
complex equation properties, to design and optimization of engineering de-
vices. The high computational power available nowadays allows to improve
and study accurately complex systems that a few years ago could only be
studied with experimental tests on prototypes. It is easy to understand that
in the future, simulation of physical systems will become always more im-
portant for engineering design, biomedical applications and basic scientific
research. However many problems remain open and there is still a strong
need of models to overcome the complexity of the real engineering problems.

One of the main issues in computational fluid-dynamics is the presence
of turbulence in the vast majority of simulated flows. With few exceptions
in some narrow application fields, nearly all the flows in nature and engi-
neering are turbulent. It is well known that the Navier-Stokes system of
equations can reproduce the onset of turbulence as instabilities on the flow
due to the non-linear advection term. Turbulent fields are characterized by
random fluctuations of the variables around an average value. The intensity
and frequency of these fluctuations can vary a lot depending on the specific
flow and physical properties of the fluid. To properly account for all the
instabilities in the flow it is necessary to compute the fluid flow with a mesh
size that can resolve the scales of the smallest eddies, namely the Kolmogorov
scales. At these scales the energy of the fluid flow is dissipated into heat by
the molecular viscosity of the fluid. The Kolmogorov length scale is

η =

(
ν3

ε

)1/4
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4 Introduction

where ν is the molecular kinematic viscosity of the fluid and ε is the average
rate of dissipation of turbulence kinetic energy. This length scale can vary
much among different flows and in different flowing regions. For example, in
an atmospheric flow where the large eddies have length scales on the order
of kilometers the Kolmogorov scale is around 1 millimeter. This example
suggests that with current available computational resources and also in the
near future it will not be possible to resolve numerically all the turbulent flow
important details. Direct Numerical Simulation (DNS) of turbulent flows are
becoming important and may be employed to study simple and low Reynolds
number flows with the purpose to better understand the physical processes
involved in the development of turbulence and of flow instabilities.

Many methods have been developed to address the turbulence simulation
in fluid flows. A very popular one in engineering is the use of a turbulence
model based on Reynolds Averaged Navier-Stokes (RANS) closure. In these
models the fields of Navier-Stokes system are split into fluctuating and steady
parts and then an averaging process is performed on the equations. The
resulting system is solved for the averaged fields and turbulence is taken into
account by introducing average tensor quantities which are functions of the
fluctuating fields. Another method which is considered for the solution of
turbulent flows is the Large Eddy Simulation. In this approach a sub-grid
model is used and the numerical mesh needs to be fine enough to resolve the
flow large eddies. The smallest eddies are considered to be independent on
the flow so that they can be modeled in the same way for any geometry and
type of flow. In recent years the use of hybrid RANS-LES models started
to grow in order to improve the accuracy of the firsts and enhancing the
applicability of the last ones.

In the framework of RANS modeling the turbulent heat flux qθ is usually
computed by mean of an eddy thermal diffusivity as

qθ = −αt∇T .

By defining the turbulent Prandtl number Prt = νt/αt, where νt is the
eddy viscosity, and assigning a constant value to Prt it is straightforward to
compute the turbulent heat flux from the above definition. Unfortunately
the hypothesis of a constant turbulent Prandtl number relies on a similarity
between the dynamical and thermal turbulence which does not hold for fluids
with low-Prandtl number, as it is shown later. In this thesis it is reported the
development and validation of a four parameter turbulence model for liquid
metal flows that takes into account dissimilarities between the dynamical and
thermal time scales of turbulence. This is necessary because liquid metals are
characterized by a high thermal conductivity and low viscosity, thus resulting
in a very low Prandtl number.
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Liquid metal flows have also the property of being responsive to electro-
magnetic fields. In theory a liquid metal flow could be controlled from the
environment by applying electromagnetic forces on the fluid, as it is done
in plasma technologies for nuclear fusion. With this approach different ob-
jectives could be obtained such as a deviation of the flow towards a chosen
direction. However, the effects of a force applied on a complex fluid flow
could be difficult to predict and understand. In particular this is true when
complex objectives such as re-laminarization or increase in the heat exchange
are chosen. The use of adjoint optimal control theory to treat these prob-
lems could lead to great improvements in the design and optimization of
engineering devices. This technique can be used also in the design of heat
exchanger or mixer when a certain temperature needs to be obtained in a
certain region of the domain. In these cases it is usually possible to apply
heat fluxes on the walls or to inject fluid with a certain temperature in some
parts of the domain. These are typical problems to be solved through in-
verse or adjoint techniques. This thesis contains a brief summary of adjoint
optimal control theory, which is used to solve some design problems such as
the ones described above. In particular we focus on thermal and dynamical
problems by studying a boundary optimal control for the energy equation
and a distributed optimal control for the RANS system.

The thesis is divided in two main parts dealing with the two main sub-
jects just described. The first part is devoted to turbulent heat transfer
computations in heavy liquid metal flows by assessing the turbulence mod-
eling needed in this problem. In the second part we study adjoint optimal
control problems for the energy equation and for the RANS system closed
with a two-equation turbulence model.
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Chapter 1

Mathematical and finite
elements notation

In this work advanced Computational Fluid Dynamics models are studied to
analyze liquid metal flows and heat transfer. These models have been devel-
oped in the framework of a computational platform in which the numerical
algorithms obtained with a Finite Element Method discretization have been
implemented.

The Finite Element Method is a powerful tool used to solve numerically
boundary value problems based on Partial Differential Equations. By apply-
ing this method to a continuous boundary value problem on a defined domain
it is possible to obtain a system of algebraic equations that, once solved, gives
an approximated solution to the continuous problem over a finite number of
degrees of freedom. This class of numerical methods has been used first
to solve structural mechanics problems and then gradually they have been
employed in all the fields where mathematical models are based on PDEs,
such as heat transfer, fluid-dynamics, diffusion-reaction problems, and many
others. The Finite Element Methods are based on a solid mathematical back-
ground, for a comprehensive review on this subject the interested reader is
referred to [20, 39, 51, 85, 115, 116, 117].

In this Chapter we aim at giving some basic notations about the Finite
Element Methods. In the first Section of this Chapter we give a brief descrip-
tion of the computational platform that is being developed in our research
group. This platform is based on finite element solvers and it allows the cou-
pling with external codes to solve multi-scale and multi-physics problems.
External codes are used when the solver cannot be developed inside the plat-
form or it is better to use well tested software like one-dimensional system
codes for nuclear power plant design. In the second Section some notations
about function spaces are given. In the third Section the weak form of the

7
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energy and Navier-Stokes system of equations are derived. In the fourth
Section some Lagrangian Finite Elements are described together with their
shape functions and in the last Section a few considerations on the numerical
errors arising in the finite element discretization process are given.

1.1 The FEM computational platform

The computational platform used and developed in this thesis is based on a
C++ main program that handles several external open source libraries. The
libmesh library is a C++ finite element library used in our computational
platform to generate and handle the numerical mesh and to refine it with
multiple levels [64]. The Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) is a C++ library for linear and non-linear algebra developed
using LASPack cores written in Fortran and other solvers. A key feature
of this library is its ability to handle parallel solutions of systems of equa-
tions with solvers designed to scale very well with the increasing number of
nodes by defining parallel vectors and matrices classes [12, 13, 14]. By using
OpenMPI parallel applications together with PETSc library we can solve
complex numerical problems with a high number of nodes [37]. The HDF5
suite comprises a data model, file format, API, library, and tools used to
handle large data sets in binary format. Using this data format it is possible
to save solutions on mesh composed of several nodes using a quantity of hard
disk memory that is order of magnitude smaller than the one required by
the simpler text file ASCII format [1]. By using the features of these open
source libraries the main program can solve very complex problems with fast
parallel computation and small memory requirements relying on PETSc and
HDF5.

The C++ main program is called FEMus which stands for Finite Element
MUltigrid Solver. This program is built with hierarchical C++ classes that
allow the user to develop its own application and assembly functions with-
out interfering with the main platform. Many users can work on the same
installation of FEMus and several solvers have been developed until now.
These includes a basic Laplacian solver, a transient diffusion-advection equa-
tion solver, two Navier-Stokes solvers that implement a fully coupled and a
penalty-projection algorithm, different solvers for two and four equation tur-
bulence models, a Fluid-Structure Interaction solver based on a monolithic
approach, a Volume of Fluid solver for multiphase flows and the two adjoint
optimal control algorithms as reported in Chapters 6 and 7. Since it is possi-
ble to couple without effort different physical solvers, this code is capable of
multi-physics solutions by coupling the solvers named above. Moreover the
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finite element solver is multigrid-based by using PETSc solvers as solution
kernels of single multigrid steps [11, 15, 19, 73]. The temperature and tur-
bulence model equations are discretized with standard Lagrangian quadratic
finite elements. For the Navier-Stokes equations we use Taylor-Hood finite
elements which are elements with linear shape functions to approximate the
pressure and quadratic shape functions to approximate the velocity, see the
spaces definition in Section 1.5. As it is reported in that Section, this is
necessary to fulfill the Inf-Sup condition (1.36).

The computational platform is being further developed to couple the so-
lution of FEMus solvers with external codes solutions. This has been accom-
plished through the use of MEDMEM libraries that are part of the SALOME
platform [22]. The aim of this project is to simulate multi-scale problems by
including dedicated software that has been developed by external groups like
the one-dimensional system codes for the simulation of nuclear power plant
loops. At the present time the system code Cathare is integrated in the plat-
form together with the neutronic codes Dragon-Donjon [2, 23]. The coupling
can be obtained through the boundary conditions or a volumetric force for
the CFD code while for system codes it is better to use a defective approach
by using a source term inside specific elements of the loop that simulate the
effects of the CFD simulation like pressure drops or heat generation or re-
moval. Multi-scale simulations could lead to great improvements in the study
and design of complex systems where some elements need to be simulated
with a high resolution CFD code because the one-point or one-dimensional
assumptions do not hold [25].

1.2 Function spaces

In this thesis we make use of some notations on functional spaces that are
briefly reported here. For a wide discussion on these spaces and their prop-
erties the reader is referred to [7, 20].

We define the space of integrable functions at the power n over the domain
Ω ⊂ Rd, where d is the space dimension of the domain, as

Ln(Ω) =

{
f :

∫
Ω

|f(x)|ndΩ <∞
}
. (1.1)

It can be easily proven that this space is a vector space, indeed given the
linearity of the integral operator the conditions

f + g ∈ Ln(Ω) , αf ∈ Ln(Ω) with f, g ∈ Ln(Ω) and α ∈ R , (1.2)
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are necessary and sufficient to define a vector space and are verified for Ln(Ω).
The space of continuous function over Ω is defined as C0(Ω) and the space
with continuous derivative until order k over Ω as Ck(Ω). We can define the
space of infinitely differentiable functions that are null on the boundary of Ω
as C∞0 (Ω) and we remark that all of these spaces are vector spaces.

In the spaces Ck(Ω) the derivative is defined in the strong form as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (1.3)

but we need a weak form of the derivatives in order to define the Sobolev
spaces. We define the first weak derivative f ′(x) for a function f(x) defined
over Ω as∫

Ω

f ′(x)ψ(x) dΩ = −
∫

Ω

f(x)ψ′(x) dΩ , ∀ψ(x) ∈ C∞0 (Ω) . (1.4)

This definition is a natural extension of the strong form for f(x) function
differentiable in the standard way, but it opens the possibility to define the
derivative also for other functions.

We can now define the space of differentiable functions in weak sense at
the order k over the domain Ω as

Hk(Ω) :=
{
f(x) ∈ L2(Ω) : f(x)l ∈ L2(Ω) with l = 1, 2, . . . , k

}
(1.5)

where f l(x) is the weak derivative of order l of the function f(x). These
spaces are called Sobolev spaces. It is easy to see from the definition that
H0(Ω) = L2(Ω).

A norm can be defined for a generic vector space V (Ω) as a functional
that couples a function f(x) ∈ V (Ω) with a real number. A norm must
satisfy the following properties

‖x‖ ≥ 0 , ∀ x ∈ V (Ω) and ‖x‖ = 0⇔ x = 0

‖αx‖ = α‖x‖ , ∀ x ∈ V (Ω) and α ∈ R
‖x+ y‖ ≤ ‖x‖+ ‖y‖ , ∀ x, y ∈ V (Ω) .

For Ln(Ω) the natural norm can be defined as

‖f(x)‖Ln =

(∫
Ω

f(x)ndΩ

) 1
n

, (1.6)

while for the norm in H1(Ω)

‖f(x)‖H1 =

(∫
Ω

(
f(x)2 + f(x)′2

)
dΩ

) 1
2

, (1.7)
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and so on for the other Sobolev spaces. A vector space endowed with the
metric induced by its norm is called a normed linear space. A complete
space V is defined as a metric space in which every Cauchy sequence {sj} of
elements of V has a limit sj → s ∈ V . A Banach space is a normed linear
space (V, ‖ · ‖) which is complete with respect to the metric induced by its
norm. It can be proven that the Sobolev spaces defined above are all Banach
spaces with respect to their natural norms.

A scalar product in a linear vector space V can be defined as a bilinear
symmetric form that couples two elements a(x), b(x) ∈ V (Ω) with a real
number

〈a(x), b(x)〉 : V (Ω)× V (Ω)→ R (1.8)

and with the following properties

〈a(x), a(x)〉 > 0 , ∀ a(x) 6= 0

〈a(x), b(x)〉 = 〈b(x), a(x)〉 , ∀ a(x), b(x) ∈ V (Ω)

〈αa(x) + b(x), c(x)〉 = α〈a(x), c(x)〉+ 〈b(x), c(x)〉 ,
∀ a(x), b(x), c(x) ∈ V (Ω) and α ∈ R .

It is easy to define a scalar product for the space L2(Ω) that satisfies these
properties as

〈f(x), g(x)〉L2 =

∫
Ω

f(x)g(x) dΩ , (1.9)

and for the space H1(Ω)

〈f(x), g(x)〉 =

∫
Ω

(f(x)g(x) + f(x)′g(x)′) dΩ . (1.10)

A norm can be generated naturally by the scalar product as

‖f(x)‖ = 〈f(x), f(x)〉
1
2 . (1.11)

A function space which is equipped with a scalar product and which is a Ba-
nach space with respect to the norm induced naturally by the scalar product
is called a Hilbert space. A Hilbert space has the important property that,
given a basis {ei}∞i=1 of the space H(Ω), any element of this space f ∈ H(Ω)
can be expressed as a convergent series

f =
∞∑
i=1

〈f, ei〉ei . (1.12)

Using the above definitions for the norm and scalar product of the spaces
L2(Ω) and Hk(Ω) it is easy to prove that these spaces are Hilbert spaces. We
can define also the dual space of Hk

0 (Ω) as H−k(Ω) and the trace space for
the functions in H1(Ω) by H1/2(Γ), where Γ = ∂Ω.



12 Chapter 1. Mathematical and finite elements notation

1.3 Weak formulation

Partial differential equations are equations containing functions and their
derivatives of different orders that give local information on how these func-
tions are related. A typical example of a partial differential equation is the
heat transfer equation with a thermal source and the heat flux given by
Fourier law

∇ · (λ∇T ) +Q = 0 , (1.13)

where λ = λ(x) is the heat conductivity of the material, T = T (x) is the
temperature and Q = Q(x) is a given source term. This equation is valid
on every point of the domain of interest ∀x ∈ Ω and it requires λ(x) to be
at least differentiable once and T (x) to be at least differentiable twice, i.e.
λ(x) ∈ C1(Ω) and T (x) ∈ C2(Ω). We name this form of the equation strong
form.

The strong requirements on the smoothness of the solution and data
needed by this formulation make the solution of this equation not trivial
in several situations. For example this equation in strong form with the
requirements defined above cannot model the heat conduction in a domain
composed of two materials with different λ because on the interface between
the two materials the function λ(x) /∈ C1(Ω). A possible solution to this
problem is to split the domain in the two materials, solve the equation on
each domain and impose the continuity of the temperature and of the heat
fluxes on the interface. However every situation needs a different approach
and it becomes obvious to ask if this is the best formulation possible to obtain
the solution in interesting cases.

The weak formulation is an integral formulation of the partial differential
equation that allows to weak the hypothesis on the functions that are solution
to the PDE. It is obtained by multiplying the equation with a smooth test
function and then integrating over the whole domain. Using (1.13) as an
example we can multiply it with a test function φ ∈ H1(Ω) and integrate
over the whole domain Ω∫

Ω

∇ · (λ∇T )φ dΩ +

∫
Ω

QφdΩ = 0 . (1.14)

Of course this relation is true whichever test function we choose, so we write∫
Ω

∇ · (λ∇T )φ dΩ +

∫
Ω

QφdΩ = 0 ∀φ ∈ H1(Ω) . (1.15)

Now we can use the divergence theorem to rewrite the first integral as in an
integration by parts

−
∫

Ω

λ∇T ·∇φ dΩ+

∫
∂Ω

(λ∇T )·nφ dΓ+

∫
Ω

QφdΩ = 0 ∀φ ∈ H1(Ω) , (1.16)
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where ∂Ω is the boundary of the domain Ω and the vector n is the unit
normal to the surface ∂Ω. By doing so we see that the requirements on the
functions λ(x) and T (x) are less stringent. We see that λ(x) only needs to
be integrable over Ω and T (x) needs to be differentiable once, λ(x) ∈ L2(Ω)
and T (x) ∈ H1(Ω). In this setting the simple case of a non continuous
heat conductivity like in a domain composed of two materials is well de-
fined. Moreover we can see that an integral over the boundary of the domain
appears, and one can easily understand that this is related with the bound-
ary conditions of the problem. As a matter of fact, in a weak formulation
the boundary conditions are already incorporated in the integral equation
through two types of boundary conditions which are named natural or es-
sential. The natural boundary conditions are those which appear directly
in the equation, like in this case the definition of the heat flux through the
boundary of the domain which is a Neumann or Robin boundary condi-
tion. The essential boundary conditions are Dirichlet and are obtained by
assuming a proper space for the test functions φ. To better understand this
difference let us consider the boundary ∂Ω = Γn ∪Γd where Γn is the surface
where Neumann boundary conditions are imposed and Γd the surface where
Dirichlet boundary conditions are used,

λ∇T · n = −qw on Γn (1.17)

T = Tb on Γd . (1.18)

The surface integral in (1.16) can be split into∫
∂Ω

(λ∇T ) · nφ dΓ =

∫
Γn

(λ∇T ) · nφ dΓ +

∫
Γd

(λ∇T ) · nφ dΓ , (1.19)

where in the first term on the right hand side the heat flux is known to be
−qw. The second term is unknown but since we have a Dirichlet boundary
condition in here we can assume that the test functions are always zero on this
surface because we already know the solution to be T = Tb. The space of the
test functions thus becomes H1

Γd
(Ω) and this surface integral term vanishes.

This condition is called essential because it involves the space where the test
functions are defined. On the other hand, the Neumann condition is called
natural because the term defined in the boundary condition appears directly
in the surface integral and can be substituted. The weak formulation thus
becomes∫

Ω

λ∇T · ∇φ dΩ +

∫
Γn

qw φ dΓ−
∫

Ω

QφdΩ = 0 ∀φ ∈ H1(Ω) . (1.20)

We report also the weak formulation of the Navier-Stokes equations since
it is used in every application of this thesis. In order to introduce these
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equations, consider three Hilbert spaces V (Ω), P (Ω) and W (Γ) and set

a(v,u) =

∫
Ω

∇v : ∇u dΩ , (1.21)

b(u, q) = −
∫

Ω

q∇ · u dΩ , (1.22)

c(v,u, s) =

∫
Ω

(v · ∇)u · s dΩ , (1.23)

for all u, v, s ∈ V (Ω) and q ∈ P (Ω) and define the Reynolds number as

Re =
ρUL

µ
, (1.24)

where ρ, U, L, µ denote the reference values for density, velocity, length and
dynamic viscosity, respectively. Given v0 ∈ W (Γ), we seek (v, p, t) ∈ V (Ω)×
P (Ω)× V −1(Ω) such that

1

Re
a(v,u) + c(v,v,u) + b(u, p) + (t,u) = 0 ∀u ∈ V (Ω) (1.25)

b(v, q) = 0 ∀q ∈ P (Ω) , (1.26)

where v = v0 on Γ and t is the stress boundary vector.
The weak formulations of the heat transfer (1.20) and Navier-Stokes (1.25-

1.26) problems have been written for functions in the infinite dimensional
spaces L2(Ω) and H1(Ω). It is very easy to obtain a numerical approximation
of these equations by replacing the infinite dimensional spaces with finite
dimensional ones that are subsets of the firsts. By properly choosing these
finite dimensional spaces one can obtain the finite element approximation of
the weak form of the equations. In this thesis we consider only the Petrov-
Galerkin method which assumes that both the unknown functions and the
test functions are chosen in the same spaces. Other methods are available
that suggest to use different approximation spaces for the unknown and the
test functions, but we focus on Petrov-Galerkin method since it is the simplest
and widely used approach among the finite element methods. In the next
Section we describe some Finite Elements that are widely used to obtain a
numerical approximation of PDEs weak forms.

1.4 Finite elements

The finite element methods rely on the definition of suitable finite dimen-
sional spaces for the numerical approximation of functions. This definition
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Figure 1.1: Linear shape functions for a one-dimensional EDGE2 element.

is in turn the definition of a basis for the function space. It is very com-
mon to assume that the basis functions have compact support, i.e. they are
defined as φi(x) = φi(x) if x ∈ Ωs ⊂ Ω and φi(x) = 0 if x /∈ Ωs. The
support is usually defined in a reference configuration Ω∗s. We define the
shape functions N i

j of order i related to j node of the reference element Ω∗s
as the restriction of the basis function on Ω∗s. We define finite element the
set of the reference support Ω∗s and shape functions N i

j defined over it. To
approximate any domain Ω with a set of Ω∗s, a coordinate transformation of
the type ts : Ω∗s → Ωs can be developed to obtain Ω = ∪sΩs = ∪st−1

s Ω∗s. By
doing so the definition of the finite element is completely disjointed from the
geometrical properties of the domain Ω while this information is kept by the
transformation ts which is defined for every geometry.

With these preliminary considerations it is easy to understand why the
definition of finite elements can be done without any information on the ge-
ometry that will be simulated and conversely why any geometry can be well
approximated by using the appropriate type of finite elements and a suitable
coordinate transformation. We briefly describe a few Lagrangian finite ele-
ments which are very commonly employed, but we remark that several other
finite elements have been developed with respect to the geometry and the
basis functions chosen [115, 116, 117].

The definition of piecewise constant basis functions is trivial in any di-
mension, φ∗i (x) = 1 if x ∈ Ω∗s, for any chosen Ω∗s. When piecewise constant
basis functions are used the method is called Discontinuous Galerkin method
which is a discretization very similar to the one obtained with finite volumes
techniques.

Consider a one-dimensional domain Ω = [0, 1] and a subdivision with N
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Figure 1.2: Quadratic shape functions for a one-dimensional EDGE3 ele-
ment.

intervals Ωi = [xi, xi+1] for i = 0, 1, . . . , N with x0 = 0 and xN = 1. A basis
for the space H1(Ω) can be obtained with linear Lagrangian polynomials as

φ1
i (x) =


x− xi−1

xi − xi+1

if x ∈ [xi−1, xi]

xi+1 − x
xi+1 − xi

if x ∈ [xi, xi+1]

0 otherwise .

(1.27)

Note that with the definition (1.27) the basis function is equal to 1 on the
node xi and null outside the sub interval, so it has compact support. We
can define a reference 1−D element based on an interval in the variable
ξ ∈ [−1, 1]. As already explained with a transformation t−1 : Ωi → Ω∗i we can
transform any Ωi = [xi, xi+1] interval into the reference interval Ω∗i = [−1, 1].
This transformation can be defined with linear or quadratic polynomials, for
example.

The finite dimensional space X1
h(0, 1) can be defined as the function space

with (1.27) as basis functions,

X1
h(0, 1) =

{
f ∈ H1(0, 1) : f =

N−1∑
i=0

αiφ
1
i , αi ∈ R

}
, (1.28)

It can be proven that this space is a dense subset of H1(0, 1) and that for
N →∞ the space X1

h(0, 1)→ H1(0, 1). Given the reference element Ω∗i the
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Figure 1.3: Linear two-dimensional element QUAD4.
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Figure 1.4: Quadratic two-dimensional element QUAD9.

linear shape functions for this element are

N1
1 (ξ) =

1− ξ
2

(1.29)

N1
2 (ξ) =

1 + ξ

2
.

These shape functions are reported in Figure 1.1.
With the same subdivision in N intervals [xi, xi+1] for i = 0, 1, . . . , N we

can also define a basis with quadratic polynomials by considering even and
odd nodes as different. If i is even we get

φ2
i (x) =


(x− xi−1)(x− xi−2)

(xi − xi−1)(xi − xi−2)
if x ∈ [xi−2, xi]

(x− xi+1)(x− xi+2)

(xi − xi+1)(xi − xi+2)
if x ∈ [xi, xi+2]

0 otherwise

, (1.30)

and if i is odd

φ2
i (x) =


(x− xi−1)(x− xi+1)

(xi − xi−1)(xi − xi+1)
if x ∈ [xi−1, xi+1]

0 otherwise
. (1.31)



18 Chapter 1. Mathematical and finite elements notation

−1
0

1 −1

0

1−1

0

1

1

5

4

8

2

6

3

7

η

ξ

ζ

Figure 1.5: Linear three-dimensional element HEX8.

This basis function defines a finite dimensional space of quadratic functions
X2
h(0, 1) as

X2
h(0, 1) =

{
f ∈ H1(0, 1) : f =

N−1∑
i=0

αiφ
2
i , αi ∈ R

}
, (1.32)

which is also a dense subset of H1(0, 1). With this quadratic function basis
we define the element as composed of three nodes, Ωi = [xi, xi+2], and thus
we have three shape functions on every reference element Ω∗i ,

N2
1 (ξ) = −1− ξ

2
ξ

N2
2 (ξ) =

1 + ξ

2
ξ (1.33)

N2
3 (ξ) = (1− ξ)(1 + ξ) .

These shape functions are reported in Figure 1.2. The one-dimensional el-
ements with linear shape functions are called EDGE2 and are composed of
two nodes. The one-dimensional elements with quadratic shape functions are
called EDGE3 and have three nodes.

Using these basic one-dimensional elements and shape functions the multi-
dimensional square (two-dimensional) and hexahedron (three-dimensional)
elements can be easily constructed. We can define the linear square element
QUAD4. This element is defined in a reference domain with two coordinates,
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Figure 1.6: Quadratic three-dimensional element HEX27.
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Figure 1.7: Linear two-dimensional element TRI3.

ξ and η, and with four nodes, one for each vertex of the square, as reported
in Figure 1.3. This element can be generated by two EDGE2 elements con-
nected at the end and so the shape functions for this element can be defined
using the (1.29) as

N1
ij(ξ, η) = N1

i (ξ)N1
j (η) .

In a similar way the quadratic square element obtained by connecting three
EDGE3 elements is called QUAD9 and it is reported in Figure 1.4. The
quadratic shape functions for this element can be obtained in the same way
as the linear shape functions from the definition (1.33)

N2
ij(ξ, η) = N2

i (ξ)N2
j (η) .

The hexahedron elements can be obtained starting from the one-dimensional
EDGE elements or from the two-dimensional QUAD elements. The shape
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Figure 1.9: Linear three-dimensional element TET4.

functions of these elements are obtained recursively from the (1.29) and
(1.33). By doing so the three-dimensional linear element HEX8 can be ob-
tained as depicted in Figure 1.5 with shape functions

N1
ijk(ξ, η, ζ) = N1

i (ξ)N1
j (η)N1

k (ζ) .

The three-dimensional quadratic element HEX27 is depicted in Figure 1.6
and it has the shape functions

N2
ijk(ξ, η, ζ) = N2

i (ξ)N2
j (η)N2

k (ζ) .

Another important set of elements is based on triangular shapes. This
type of elements can be more suitable to approximate complex and curved
domains with respect to the quadrilateral ones. The standard linear two-
dimensional triangular element is called TRI3 and it is depicted in Figure
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Figure 1.10: Quadratic three-dimensional element TET10.

1.7 with the three nodes at the vertices of the triangle. Usually the standard
Cartesian coordinate system is not used for this type of elements but a coor-
dinate system based on surfaces or volumes is preferred. Any point inside the
element is connected through straight lines with the vertices of the element.
The ratio between the surface or volume of each smaller element obtained
in this way and the total surface or volume is the triangular coordinate. In
two dimensions the first coordinate r is the one obtained using the surface of
the small triangle built on the vertical side of the main triangle, the second
s is obtained using the surface of the small triangle built on the horizontal
side of the main triangle and the third coordinate is computed as 1− r − s.
With this coordinate the node 1 of Figure 1.7 has coordinate (0, 0), node 2
is in (1, 0) and node 3 in (0, 1). The linear shape functions in this coordinate
system are therefore simply equal to the triangular coordinate,

N1
1 (r, s) = 1− r − s

N1
2 (r, s) = r

N1
3 (r, s) = s .

The quadratic two-dimensional triangular element has six nodes, it is called
TRI6 and it is depicted in Figure 1.8. One can understand that with this
element it is very easy to obtain grid refinements because by connecting the
middle side nodes one can obtain four new triangular elements TRI3 that
can be made quadratic TRI6 through a simple middle point refinement on
every side. The quadratic shape functions in triangular coordinates for this
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element are

N2
1 (r, s) = 2 (1− r − s) ((1− r − s)− 0.5)

N2
2 (r, s) = 2 r (r − 0.5)

N2
3 (r, s) = 2 s (s− 0.5)

N2
4 (r, s) = 4 r (1− r − s)

N2
5 (r, s) = 4 r s

N2
6 (r, s) = 4 s (1− r − s) .

To obtain the three dimensional tetrahedral elements the procedure is
exactly the same and the tetrahedral coordinate system is composed of three
variables based on volume ratios computation (p, q, t). The linear three di-
mensional element has four nodes, is called TET4 and is depicted in Fig-
ure 1.9. The nodes are collocated on the tetrahedral coordinate system as
1 : (0, 0, 0), 2 : (1, 0, 0), 3 : (0, 1, 0) and 4 : (0, 0, 1) and the linear shape
functions are simply

N1
1 (p, q, t) = 1− p− q − t

N1
2 (p, q, t) = p

N1
3 (p, q, t) = q

N1
4 (p, q, t) = t .

By looking at these very simple shape functions it is easy to understand why
this coordinate system has been chosen. Finally the quadratic three dimen-
sional tetrahedral elements has ten nodes, is called TET10 and is depicted
in Figure 1.10. This element has the same feature of element TRI6 to allow
for a very easy mesh refinement since the TET4 elements can be obtained
by connecting the middle side nodes. The quadratic shapes for this element
are

N2
1 (p, q, t) = (1− p− q − t) (2(1− p− q − t)− 1)

N2
2 (p, q, t) = p (2 p− 1)

N2
3 (p, q, t) = q (2 q − 1)

N2
4 (p, q, t) = t (2 t− 1)

N2
5 (p, q, t) = 4 p (1− p− q − t)

N2
6 (p, q, t) = 4 p q

N2
7 (p, q, t) = 4 q (1− p− q − t)

N2
8 (p, q, t) = 4 t (1− p− q − t)

N2
9 (p, q, t) = 4 p t

N2
10(p, q, t) = 4 q t .
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Other three-dimensional elements can be build combining the elements
we have described. For example the linear pyramidal element is composed
of a QUAD4 as basis and four TRI3 elements as vertical faces. To obtain
the second order element one can simply use the quadratic elements QUAD9
and TRI6 or consider to use a central point in the volume. Prism elements
built using two TRI3 elements as bottom and up faces and three QUAD4
elements as vertical faces are sometimes used to obtain a mesh which uses
quadrilateral elements in the flow direction and triangular ones on the section.
By doing so one can build a mesh that approximate very well a channel with
a curved section in the direction normal to the axis. Many other elements
have been built with different geometries and shape functions, for a more
comprehensive review one can see [20, 115, 116, 117].

1.5 Discrete approximation properties

The weak forms derived in Section 1.3 can be used to obtain a Finite Element
discretization by substituting the finite dimensional spaces Xh defined in the
previous Section 1.4 with the infinite dimensional ones. When this is done
an approximation error arise and we need some information on how this
error decreases with the order of the discretization and the element main
dimensions. To this end, let Xh(Ω) ⊂ H1(Ω) and Sh(Ω) ⊂ L2(Ω) be two
families of finite dimensional subspaces parametrized by a main dimension h
that tends to zero as the approximation improves. We also denote Xh0(Ω) ⊂
H1

0 (Ω) and Sh0(Ω) ⊂ L2
0(Ω). Furthermore consider (vh, ph) ∈ Xh(Ω)×Sh(Ω)

to be the approximations of the variables (v, p) in the finite dimensional
spaces.

We make the following assumptions on Xh(Ω) and Sh(Ω). The first is
the approximation hypotheses that says that there exists an integer l and a
constant C, independent of h, (v, p) such that for 1 ≤ k ≤ l we have

inf
vh∈Xh(Ω)

‖vh − v‖1 ≤ Chk‖v‖k+1 ∀v ∈ Hk+1(Ω) ∩H1
0 (Ω) (1.34)

inf
ph∈Sh(Ω)

‖ph − p‖ ≤ Chk‖p‖k ∀p ∈ Hk(Ω) ∩ L2
0(Ω) . (1.35)

The Inf-Sup Condition assures the stability of the discretized Navier-
Stokes equations if and only if

inf
qh∈Sh

sup
vh∈Xh

|b(vh, qh)|
‖vh‖1‖qh‖

> 0 . (1.36)
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This is true if the spaces are chosen properly and it can be verified for Taylor-
Hood spaces in dimension n,

Vh =

{
v ∈

n∏
i

V k
h : v = 0 on Γ

}
(1.37)

Ph =

{
q ∈ V k−1

h :

∫
Ω

q(x)dΩ = 0

}
, (1.38)

where V k
h are the spaces of C0 polynomials of degree k on a mesh of a

polygonal domain Ω ⊂ Rn with a maximum element length of h [20]. Thus if
the spaces Xh(Ω) and Sh(Ω) are chosen as Taylor-Hood spaces the stability
of the discretized Navier-Stokes equations is assured by (1.36).

Now we examine the advective trilinear form c(v,u, s) defined in (1.23).
To preserve the antisymmetry of this form we introduce the modified trilinear
form

c̃(v,u, s) =
1

2
(c(v,u, s)− c(v, s,u)) ∀v,u, s ∈ H1(Ω) . (1.39)

This modified form has some interesting properties,

c̃(v,u, s) = −c̃(v, s,u) ∀v,u, s ∈ H1(Ω) , (1.40)

c̃(v,u,u) = 0 ∀v,u ∈ H1(Ω) . (1.41)

Moreover there exist some interesting bounds for this form in the two dimen-
sional case. For all v,u, s ∈ H1(Ω) we have

|c̃(v,u, s)| ≤ C1‖v‖1‖u‖1‖s‖1 , (1.42)

|c̃(v,u, s)| ≤ C2‖v‖
1
2‖u‖

1
2‖s‖

1
2‖∇v‖

1
2‖∇u‖

1
2‖∇s‖

1
2 . (1.43)

Using the approximation property (1.34) we can also derive a boundary
approximation property valid for the restriction of the velocity on the bound-
ary Γ = ∂Ω of the domain Ω. LetQh = Xh|Γ be the space of the restrictions of
the functions belonging to Xh(Ω) on the boundary Γ and Qh0 = Qh∩H1

0 (Γ).
Then there exists an integer k and a constant C3, independent of h and s
such that for 1 ≤ m ≤ k we have

inf
sh∈Qh(Γ)

‖sh − s‖s ≤ C3h
m−s+ 1

2‖s‖m+ 1
2

∀s ∈ H1
0 (Γ) . (1.44)

It can be proven that the weak formulation (1.25-1.26) of Navier-Stokes
equations discretized with Finite Elements based on the Taylor-Hood spaces
as defined in (1.37) admits solutions for any value of Reynolds number [20,
116]. Moreover the solution is unique if the kinematic viscosity µ = ν/ρ
is “large enough”, i.e. if the diffusion term is more important than the
advection one. For more details on this result see Theorem 1 in Chapter 7
and the reference book [109].
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Chapter 2

Liquid metals

2.1 Physical properties

The study of heavy liquid metals started in the last century and it is still im-
portant nowadays for the engineering community since these fluids are often
considered for new advanced industrial applications. There is a broad range
of applications where liquid metals are involved, in nuclear and non-nuclear
fields. Regarding the first we mention Accelerator Driven Systems, fast and
breeding fission reactors, fusion reactors [27, 41, 93, 99]. In non-nuclear field
liquid metals are studied in the metallurgy industry and are considered as
heat transfer fluids for innovative concentrated solar power plants [35, 68].
Recently some European research programmes have been dedicated to the
study of liquid metal physical and chemical properties, heat transfer and
thermal-hydraulics in general, neutron properties and other research fields.
Specific features of liquid metals comprise neutron properties, which are very
interesting for the design of fast nuclear reactors, electromagnetic properties
useful for electromagnetic control of the flow and peculiar thermodynamical
properties with respect to common fluids. Here we focus our attention on
thermodynamical properties for thermal-hydraulics purposes.

This class of fluids is characterized by a very high thermal conductivity
and low molecular viscosity. The Prandtl number is defined for a fluid as

Pr =
ν

α
=
µCp
λ

, (2.1)

where ν is the kinematic viscosity, α is the heat diffusivity, µ is the dynamic
viscosity, Cp is the heat capacity and λ the thermal conductivity. This num-
ber represents the ratio between momentum and heat transport. For fluids
with Pr ∼ 1, like water and air, a similarity between the thermal and dynam-
ical boundary layers can be observed. If a fluid has a high Prandtl number,

27
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ρ [Kg/m3] µ [Pa · s] λ [W/(m K)] Cp [J/(Kg K)] Pr

Pb 10801 3.86 · 10−3 14.7 155.45 0.041
Bi 10115 2.12 · 10−3 12.09 121.17 0.021

LBE 10419 2.23 · 10−3 11.06 146.4 0.029
Hg 13040 1 · 10−3 13.1 136 0.01
Na 896.9 4.15 · 10−4 80.1 1334 0.0069

Table 2.1: Physical transport properties at T = 500 K of some heavy liquid
metals considered for industrial applications.

like oils, it means that the transport of momentum is faster than heat trans-
fer so that the fluid is very viscous and thermally insulating. If a fluid has a
very low Prandtl number, like liquid metals, the opposite is true and the heat
transfer is fast while the momentum transport is poor. This feature of liquid
metals is really desirable from a thermal-hydraulics point of view because it
results in a strong heat transfer and very low pressure drops when pumped
in a loop, so they are ideal coolants. Moreover electromagnetic fields applied
from outside the pool or the main loop could be used to actively control
the fluid flow to enhance the mixing and heat transfer or to modify the flow
pattern to decrease the pressure drops.

In table 2.1 the physical properties of several heavy liquid metals consid-
ered nowadays for industrial applications are reported for a reference temper-
ature of 500 K [34]. The metals Lead, Bismuth and Lead Bismuth Eutectic
(44.5 % Pb and 55.5 % Bi in mass) are studied for some fast nuclear re-
actor designs. Sodium has been used in the last century to operate fast
breeder reactors, like Phoenix reactor in France, but it is less considered
nowadays for safety reasons because sodium reacts with water inflaming and
exploding. Mercury is a peculiar metal with a very low melting point, such
that it is liquid at room temperature and it boils at not too high temper-
atures. All of these fluids are characterized by a very low Prandtl number
which is a function of the temperature. For the first three metals we report
the recommended correlations for the physical properties as functions of the
temperature [34].

Lead

ρ = 11441− 1.2795T

µ = 4.55 · 10−4 exp

(
1069

T

)
λ = 9.2 + 0.011T

Cp = 176.2− 4.923 · 10−2 T + 1.544 · 10−5 T 2 − 1.524 · 106 T−2
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Metal Tl [K] Tg [K]

Pb 600.6 2021
Bi 544.6 1831

LBE 398 1927
Hg 234.3 629.9
Na 370.7 1153

Table 2.2: Melting and boiling temperatures of some heavy liquid metals
considered for industrial applications.

Bismuth

ρ = 10725− 1.22T

µ = 4.456 · 10−4 exp

(
780

T

)
λ = 7.34 + 0.0095T

Cp = 118.2 + 5.934 · 10−3 T + 7.183 · 106 T−2

LBE

ρ = 11065− 1.293T

µ = 4.94 · 10−4 exp

(
754

T

)
λ = 3.284 + 0.0167T − 2.305 · 10−6 T 2

Cp = 164.8− 3.94 · 10−2 T + 1.25 · 10−5 T 2 − 4.56 · 105 T−2

These formulas can be implemented in a computational code used for the
design of a fast reactor in which one of these metals is employed.

In table 2.2 the melting and boiling temperatures are reported for the
same metals. In this table it can be seen that the choice of LBE for nuclear
reactors relies on its low melting temperature which allows to operate the
reactor in a wider and lower range of temperatures. Moreover, by keeping a
low pool temperature, maintenance is easier and corrosion rates remain low.

Despite these advantages with respect to ordinary fluids liquid metals are
not commonly used because of several reasons. The main one is that in order
to use these fluids appropriately, very precise information on their heat trans-
fer and physical behavior is needed but, because of the discrepancy among
experimental data, the definition of heat transfer correlations and physical
properties need to be employed with attention because of the limited range of
validity and possible experimental errors. Experimental studies are difficult
to perform because heavy liquid metals are solid at room temperature and
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must be kept liquid by a substantial increase of environmental temperature,
so experimental data cannot be collected easily with standard measurement
devices. Profiles of velocity, temperature and their turbulent fluctuations are
available mainly through DNS at low Reynolds numbers, while for engineer-
ing applications at higher Reynolds numbers one must rely on integral heat
transfer data. Furthermore there are many open problems in the compre-
hension of physics of turbulent heat transfer and in the consistency between
experimental observations, since data collected by different authors often do
not agree [27]. In the next section we describe the problem of turbulent heat
transfer modeling with a special emphasis on liquid metals.

2.2 Turbulent Heat Transfer Modeling

In fluids such as air or water with Pr ∼ 1 it is widely accepted that simi-
larity between the thermal and dynamical boundary layer holds. With this
hypothesis the turbulent heat transfer can be easily modeled using informa-
tion coming from turbulent dynamical modeling. It is common practice to
define a turbulent heat diffusivity αt and an effective heat diffusivity as the
sum of the molecular and turbulent heat diffusivities, αe = α+αt. Therefore
the only modification in the energy equation due to turbulence is the substi-
tution of α with αe in the diffusion term. In a similar way as done with the
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Figure 2.1: On the left Nusselt number as a function of Peclet number
in a cylindrical geometry flow heated with constant heat flux on the wall.
Kirillov experimental correlation (K) is reported and compared with CFD
computations with constant Prt = 4 (A), 3 (B), 2 (C), 1.8 (D) and 1.5
(E). On the right values of the turbulent Prandtl number needed to match
experimental correlation for the cylinder pipe heated with constant heat flux
as a function of the Peclet number.
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Prandtl number it is common to define a turbulent Prandtl number

Prt =
νt
αt
, (2.2)

where νt is the turbulent or eddy viscosity defined appropriately in the dy-
namical turbulence model. For fluids with Pr ∼ 1 it is common to assume
Prt constant by using a Simple Eddy Diffusivity (SED) model. The value of
Prt is usually set to 0.85− 0.9 and the turbulent heat transfer can be easily
modeled by computing αt from (2.2).

Fluids with very low Prandtl number show different thermal character-
istics from ordinary coolants. This is mainly due to the difference of time
scales between the thermal and dynamical turbulence, since the heat transfer
is due to a mix of conduction and convection transport phenomena. For this
reason the SED model with the hypothesis of a constant turbulent Prandtl
number does not hold for these fluids and therefore it should not be used in
Computational Fluid Dynamics (CFD) simulations. As an example of com-
mon mistakes in turbulent heat transfer predictions by using the SED model
we compare the experimental correlation proposed by Kirillov-Ushakov for
simple cylindrical geometry heated with constant heat flux with a set of CFD
data obtained with the SED model [26, 27, 61, 62]. In Figure 2.1 the asymp-
totic Nusselt numbers of this experimental correlation and computed with
CFD simulations are reported as a function of Peclet number. On the left
side of Figure 2.1 the correlation curve is labeled with the letter K. As one
can see the CFD computations with constant Prt = 4 (A), 3 (B), 2 (C),
1.8 (D) and 1.5 (E) cannot reproduce the Kirillov correlation curve K. The
cases with Prt = 1.8-1.5 are very close but only in a limited range of Peclet
numbers.

In order to match experimental data many formulas have been suggested
for the turbulent Prandtl number Prt which are valid for different geometries
and types of flow. For example the curve K can be reproduced if the turbu-
lent Prandtl number is set as a function of Peclet number as shown in Figure
2.1 on the right side [27]. Unfortunately this is true only for this particu-
lar geometry and a new set of turbulent Prandtl numbers should be defined
for each different geometry and boundary condition configuration. Indeed
it has been proven that computational models based on the same constant
turbulent Prandtl number fail to reproduce the available heat transfer exper-
imental correlations in different geometries [26, 27, 56]. Some expressions for
a variable Prt as a function of the distance from the wall or of the turbulent-
molecular viscosity ratio have been proposed, like the Kays model [32, 59],
but they need to be assessed in several geometries and for wider range of
Peclet numbers. To summarize, the Simple Eddy Diffusivity model with a



32 Chapter 2. Liquid metals

constant turbulent Prandtl number may be valid for water and air but it
does not seem to be appropriate for liquid metals.

To accurately predict turbulent heat transfer in liquid metal cooled reac-
tors two possibilities are available at the present time: an improved turbu-
lence modeling for the heat transfer and/or reliable experimental correlations
for the geometry chosen. In the next section we report the heat transfer cor-
relations currently available for the predictions of Nusselt number of fully
developed or developing flows, while in this section we report briefly the
ideas underlying turbulent heat transfer modeling currently employed. In
the following two chapters we focus on two different four parameter turbu-
lence models based on a k-ε or k-ω formulation.

The use of a turbulence model that takes into account thermal turbulence
effects and dissimilarities between thermal and dynamical turbulent fields
may solve the problems of the SED model. On the last several years, two-
equation heat transfer models have been developed starting from the Alge-
braic Flux Model (AFM) based on implicit or explicit formulation [5, 65, 101].
Implicit methods rely on an algebraic solution of the corresponding trans-
port equation computing directly the heat flux by solving a high non-linear
algebraic equation. Explicit methods approximate the implicit term by in-
troducing the velocity and temperature time scales and are based on a term
that is a product between the turbulent viscosity and the inverse turbulent
Prandtl number [3, 52, 54, 65, 86, 87, 89]. Heat transfer two-equation models
have been tested against DNS simulations for low Reynolds numbers in very
simple Cartesian geometries but a full test against experimental correlations
and data has not been yet investigated in a satisfactory way [30, 56, 89]. The
explicit formulation choice leads to k-ε-kθ-εθ four parameter turbulence mod-
els or to similar ones [3, 52, 88, 89]. Unlike the SED model, where the value
of Prt has to be assigned for each geometry, this modeling approach should
be valid in complex geometries and transient flows. Moreover, by using the
SED model one is not able to compute the local heat transfer and to take
into account advection and transport of thermal turbulence quantities.

In this thesis we focus our attention on new RANS models for applications
in liquid metal flows with Pr � 1. The turbulent heat transfer is computed
with the aid of a thermal two equation turbulence model. The complete
turbulence model is obtained by coupling the Reynolds-Averaged Navier-
Stokes and energy equations with four additional transport equations needed
to close the dynamical and thermal problems. These four equations consist of
two transport equations for the turbulent kinetic energy k and its dissipation
ε or specific dissipation rate ω, and two equations for the thermal turbulent
quantities kθ, which is the average square temperature fluctuation, and its
dissipation εθ or specific dissipation rate ωθ.
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These four parameter turbulence models could have some limitations due
to the isotropy of the model. In fact, there is an open discussion about
turbulent mixing in tight lattice bundles because some experimental and
numerical results have shown that there may exist an additional macroscopic
flow process in the regions adjacent to the gaps and that in some cases
a secondary flow could develop [26]. In order to detect secondary flows,
anisotropic turbulent models must be used [26]. Moreover when dealing
with turbulent buoyant flows it is necessary to take into account the specific
features of these flows. In literature some anisotropic k-ε-kθ-εθ models are
available and they should be considered for further model improvements to
study anisotropic and buoyant flows [49]. In this work we focus on forced
convection fully developed flows and report several numerical results that
prove the usefulness of this type of models in many industrial applications
where an accurate turbulent heat flux computation is needed.

2.3 Heat transfer correlations

2.3.1 Cylindrical Channel

Heat transfer in cylindrical geometry is an important topic because this type
of flow can be considered as the reference one and simplest to study. For
this reason several experimental studies are carried out using different liquid
metals to obtain heat transfer correlations and physical information in this
geometry. The most common and studied liquid metals are sodium, mercury,
lead, sodium-potassium and LBE alloys. The molecular Prandtl number de-
pends on temperature but sodium-potassium (NaK), mercury, lead and LBE
are close with values in the range of 0.01-0.03, as we have shown in Table
2.1. We consider Pr = 0.025 as the reference value since many heat trans-
fer correlations are based on experiments performed with a fluid with this
molecular Prandtl number. Most experiments are performed for engineering
applications in the range of Peclet numbers between 1000 and 10000 and the
heat transfer data are reported through the heat transfer coefficient h. In
the case of a constant heat flux on the wall it is defined as h = qw/∆T . The
quantity qw is the heat flux through the solid surface and ∆T = Tw − Tb
the temperature difference between the wall Tw and the surrounding bulk
coolant temperature Tb. This quantity is defined over the section surface A
as

Tb =

∫
A

v · nT dA∫
A

v · n dA
, (2.3)
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Figure 2.2: Nusselt number correlations for the cylindrical channel from dif-
ferent authors (Pr = 0.025) as a function of Pe number. Lyon with Prt = 1.8
(A), Kirillov (B), Skupinski (C), Sleicher (D), Ibragimov (E) and Stromquist
(F).

with n the unit normal to the surface. The coefficient h is usually computed
in non-dimensional form with the introduction of the Nusselt number which
is the most important parameter for integral heat transfer calculations in the
design of a heat transport system:

Nu =
Dh h

λ
=
Dh qw
λ∆T

, (2.4)

where Dh is the hydraulic diameter of the channel and λ the thermal con-
ductivity of the fluid.

Several correlations are available for liquid metal flows in a cylindrical
geometry heated with constant wall heat flux. Most of them can be written
as

Nu = A+ aPen , (2.5)

where A, a and n are constant positive real numbers. One of the first heat
transfer correlation for liquid metals was proposed by Lyon. Applying the
Reynolds analogy for momentum and energy transfer he obtained a semi-
empirical equation to calculate the heat transfer. This correlation reads
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[69, 70]

Nu = 7.0 + 0.025
( Pe
Prt

)0.8

, (2.6)

where the Prt is the turbulent Prandtl number. During a large period of
time the collection of data on liquid metals has produced many independent
and contradictory correlations. We report some of them

Nu = 7.0 + 0.025
(
Pe

Pr( εM
ν

)1.4
max − 1.82

Pr( εM
ν

)1.4
max

)
104 ≤ Re ≤ 5 · 106, (2.7)

Nu = 4.82 + 0.0185Pe0.827 104 ≤ Re ≤ 5 · 106 , (2.8)

Nu = 6.3 + 0.0167Pe0.85 Pr0.08 104 ≤ Re ≤ 5 · 106 , (2.9)

Nu = 4.5 + 0.014Pe0.8 104 ≤ Re ≤ 5 · 106 , (2.10)

Nu = 3.6 + 0.018Pe0.8 88 < Pe < 4000 . (2.11)

The correlation (2.7) was proposed by Dwyer [33]. Based on experimental
NaK heat transfer test data, the correlations in (2.8) and (2.9) were writ-
ten by Skupinski and Sleicher [102, 103]. Performing heat transfer tests in
LBE pipe flows Ibragimov proposed his correlation reported in (2.10), [53].
Stromquist carried out a systematic work with mercury over a large range of
Peclet number, after his studies he proposed (2.11), [105]. Recently Kirillov
and Ushakov, after a long analysis on existing correlations and experimental
data, recommended the following expression [62]

Nu = 4.5 + 0.018Pe0.8 104 ≤ Re ≤ 5 · 106 . (2.12)

In Figure 2.2 we show the Nusselt number of the different above men-
tioned correlations calculated with Pr = 0.025: Lyon with Prt = 1.8 (A),
Kirillov (B), Skupinski (C), Sleicher (D), Ibragimov (E) and Stromquist (F).
It is important to remark that there exists a large discrepancy between data
collected from different fluids and from different authors but Kirillov corre-
lation is taken as reference correlation as usually done in the most recent
literature. Skupinski (C) and Sleicher (D) correlations, based on NaK test
data, give higher heat transfer coefficients than other correlations proposed
for Mercury and LBE flows. In the low Peclet number region, the correla-
tions of Kirillov and Ibragimov show a similar heat transfer while Stromquist
correlation is different, whereas at high Peclet number, the Stromquist cor-
relation predicts a higher heat transfer coefficient than the Ibragimov corre-
lation. The correlation of Lyon with the standard turbulent Prandtl number
Prt = 0.9 gives much higher heat transfer coefficients than any other corre-
lation considered. Therefore this correlation has been modified setting the
turbulent Prandtl number to 1.8.
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2.3.2 Triangular rod bundle

The most consistent and numerous heat transfer experimental data for rod
bundle geometries are those in triangular geometry that are reported in form
of experimental heat transfer correlations. This geometry is defined in Figure
2.3, where a triangular bundle configuration is shown. In a nuclear core the
fuel pellets are located inside the cylindrical tubes and the coolant flows in
the gaps between the tubes. In this figure the rod diameter is labeled by
D and the bundle crosswise transverse pitch by P . The so called pitch-to-
diameter ratio χ = P/D is an important data in the parametric investigation
since many experimental data are grouped with respect to χ because of the
similarity of flow patterns encountered studying geometries with similar χ.
Triangular rod bundle correlations are important also because they can be
compared with experimental results in hexagonal bundle geometries because
of the similarity between these two geometries [93]. In many cases, however,
the experimental data collected from different authors should be used with
care since they exhibit extreme sensitivity to experimental conditions such
as depositions of impurities on rod surfaces and surface roughness [27].

In Figure 2.4 different heat transfer correlations obtained from experi-
mental data are shown for different pitch-to-diameter ratios χ. In this figure
the Nusselt number is shown as a function of Peclet number for χ = 1.2 on
top, 1.3 on the middle and 1.5 on the bottom. The first correlations for heat
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D

Figure 2.3: Triangular rod bundle geometry.
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Figure 2.4: Nusselt number as a function of Peclet number in the triangu-
lar rod bundle geometry from Friedland (F), Mareska (MA), Subbotin (S),
Graber (G), Ushakov (U) and Mikityuk (MI) correlations and for different
pitch-to-diameter ratio χ = 1.2 (top), 1.3 (middle) and 1.5 (bottom).

transfer of liquid metal flowing in a triangular bundle of circular rods were
derived by Dwyer and Friedland. These correlations are semi-empirical and
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they are based on different assumptions about the velocity profile. Dwyer
correlation reads [33]

Nu = 0.93 + 10.81χ− 2.01χ2 + 0.0252χ0.273 (ψPe)0.8 (2.13)

while Friedland correlation is [36]

Nu = 7.0 + 3.8χ1.52 + 0.027χ0.27 (ψPe)0.8 , (2.14)

where ψ is the ratio between the eddy diffusivity of heat and the eddy diffu-
sivity of momentum, which is basically the inverse of the turbulent Prandtl
number. The ratio of the eddy diffusivities of heat and momentum in this
correlation is assumed equal to one if the analogy hypothesis between heat
and momentum transfer is assumed to be true as for air, water and similar
fluids. The correlation (2.13) is valid for Peclet numbers of 70 up to 104 and
pitch-to-diameter ratios of 1.375 up to 2.2, while the range of applicability
of the second correlation, shown in Figure 2.4 with label F , is defined for
Pe = 0-105 and χ = 1.3-10.

Early experimental investigations have been performed at the Brookhaven
National Laboratories in a 13-pin-bundle cooled with mercury and in a 19-
pin-bundle cooled with a sodium-potassium alloy (NaK) and arranged in
an equilateral triangular lattice with the pitch-to-diameter ratio χ of 1.75.
These experimental results lead to the following Mareska-Dwyer heat transfer
correlation [80]

Nu = 6.66 + 3.126χ+ 1.184χ2 + 0.0155 (ψPe)0.86 , (2.15)

where the factor ψ can be approximated by the empirical equation

ψ = 1− 1.82

Pr(εM/ν)1.4
max

, (2.16)

log(εM/ν)max ≈ 0.864 log(Re)− 0.24χ− 2.12 . (2.17)

The correlation (2.15), shown (for ψ = 1) in Figure 2.4 with label (MA),
is valid for triangular bundles in the range 70-104 Pe and pitch-to-diameter
ratio χ of 1.3-3.

Subbotin proposes the following correlation for the flow of liquid metal in
a triangular rod lattice with the pitch-to-diameter ratio of 1.1-1.5 and Peclet
numbers of 80-4000 [107]

Nu = 0.58

(
2
√

3

π
χ2 − 1

)0.55

Pe0.45 . (2.18)
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This correlation, shown in Figure 2.4 with label S, is based on theoretical
consideration by using the Deq/D ratio for the triangular lattice as

Deq

D
=

2
√

3

π
χ2 − 1 , (2.19)

where Deq and D are the hydraulic diameter and the rod diameter, respec-
tively.

Borishanski performed experimental tests on seven tubes of 22 mm of
diameter arranged in equilateral triangular bundles with four different pitch-
to-diameter ratios P/D = 1.1, 1.3, 1.4 and 1.5. Three working fluids were
analyzed with Prandtl numbers 0.007, 0.03 and 0.024. The total of 230
(Nu, Pe) points were measured. On the basis of this data, the following
correlation was derived [17]

Nul = 24.15 log(−8.12 + 12.76χ− 3.65χ2) Pe < 200 (2.20)

Nu = Nul + 0.0174 (1− e−6(χ−1))(Pe− 200)0.9 Pe ≥ 200 . (2.21)

Eq. 2.21, shown in Figure 2.4 with label B, is recommended for triangular
bundles in the range of Peclet numbers 60-2200 and pitch-to-diameter ratios
1.1-1.5.

Graber correlation reads [40]

Nu = 0.025 + 6.2χ+ (0.032χ− 0.007)Pe0.8−0.024χ Pe ≤ 2500 . (2.22)

Three sets of experimental data were measured by Graber with the test
sections consisting of 31 tubes of 12 mm of diameter arranged in equilateral
triangular bundles with pitch-to-diameter ratios of 1.25, 1.6 and 1.95. The
working fluid was NaK at temperatures from 100o to 425oC. The Prandtl
number varied with temperatures from 0.011 to 0.024. A total of 246 data
pairs (Nu, Pe) were given for the range of the Peclet numbers 110-4300. As
one can see from Figure 2.4 the Graber correlation (labeled with G) and
the Ushakov correlation (labeled with U) are very close for pitch-to-diameter
ratio of 1.2-1.3.

The reference correlation for triangular bundle geometry nowadays is
Ushakov correlation [63]

Nu = 7.55χ− 20/χ13 + (0.041/χ2)Pe0.56+0.19χ . (2.23)

This correlation is shown in Figure 2.4 with label U and it is recommended
for the study of heat transfer in liquid metal flows in a triangular rod lattice
with pitch-to-diameter ratio of 1.3-2.0 and Peclet numbers up to 4000 [34].
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We recall also the recent Mikityuk correlation [83]

Nu = 0.025+6.2χ+(0.032χ−0.007)Pe0.8−0.024χ 30 ≤ Pe ≤ 4000 . (2.24)

The correlation in (2.24), shown in Figure 2.4 with label MI, refers to a
statistical correlation obtained by the collection of several data obtained in
rod bundle geometry.

2.3.3 Square rod bundle

The square rod bundle geometry has been considered for the design of the
core of nuclear reactors and it consists of a bundle of parallel cylindrical
tubes with diameter D arranged with their axis forming a square with side
P . In Figure 2.5 a scheme of this geometry is reported. Some heat transfer
correlations for the prediction of the Nusselt number as a function of Peclet
number and χ = P/D ratio are available for fully developed flows of heavy
liquid metals with low-Prandtl number in square lattice bare rod bundle
geometries. In the following we review the most important ones. There
are no many experimental data for the flow configuration of interest, so the
correlations should be used with care. In many cases the correlations for
square lattice geometry are obtained from the corresponding correlations for
triangular rod bundle geometry.

In the work by Subbotin et al. a correlation derived for the triangular
lattice is applied to the square lattice by adjusting the ratio Dh/D to 2

π
χ2−1,

D

P

Figure 2.5: Geometry of a square lattice bare rod bundle.
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Figure 2.6: Experimental heat transfer correlations for the prediction of
the Nusselt number as a function of the Peclet number for heavy liquid
metal flows in square lattice bare rod bundle geometries. Subbotin, Zhukov,
BREST and Mikityuk correlations are labeled by (S), (Z), (B) and (M). From
top to bottom χ = 1.22, 1.3 and 1.5.

see [107]. For square lattices it takes the form

Nu = 0.58

(
4

π
χ2 − 1

)0.55

Pe0.45 . (2.25)
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This correlation is proposed for a square lattice of rods with pitch-to-diameter
ratio of 1.1-1.5 and Peclet numbers of 80-4000.

The report issued in frame of the BREST lead-cooled reactor recommends
also for square arrays a correlation which is derived by the triangular arrays
one using equivalent pin flow area in triangular (hexagonal) and square lattice
bare rod bundle arrangements [6]. The BREST correlation reads

Nu = 7.55χ− 20χ−5 +
0.00354

χ2
Pe0.64+0.246χ (2.26)

It is reported that (2.26) was verified for P/D ratios of 1.28 and 1.46 in the
range 100 < Pe < 1600.

An experimental investigation in square lattice bare rod bundles has been
performed by Zhukov, see [114]. The experimental results were correlated by

Nu = 7.55χ− 14χ−5 + 0.007Pe0.64+0.246χ , (2.27)

for the case of tube bundles with no spacers. The working section of this
experimental program consisted of 25 tubes with diameter D = 12 mm.
Four groups of experimental data with pitch-to-diameter ratios of 1.25, 1.28,
1.34 and 1.46 were measured. However only a total of 36 data pairs (Nu, Pe)
are given in this experimental work for the range of the Peclet numbers of
60-2000.

Finally we report the correlation by Mikityuk who recently obtained a
heat transfer correlation for liquid metals from a wide database of both tri-
angular and square lattice bare rod bundle experimental studies [83]. The
correlation is claimed to be valid for rod lattices with χ = 1.1-1.95 and
Pe = 30-5000 and it reads

Nu = 0.047
(
1− exp−3.8(χ−1)

) (
Pe0.77 + 250

)
. (2.28)

Due to the limited availability of experimental data for square lattice bare
rod bundles in this database, Mikityuk recommends caution in the use of
the correlation for this geometry [83]. More experimental results or CFD
analysis are needed in order to better understand the differences in the heat
transfer between triangular and square lattice bare rod bundles.

In Figure 2.6 we report all these correlations for the three considered
geometries. From top left to bottom right the four correlations are plotted
for the parameter χ = 1.22, 1.3 and 1.5, respectively. Subbotin correlation
(S), Zhukov (Z), BREST (B) and Mikityuk (M) are reported. From these
figures it can be seen that Subbotin and Mikityuk correlations predict high
heat transfer, while Zhukov and BREST ones are more conservative. For the
case χ = 1.5 Zhukov correlation shows a peculiar behavior with a quite high
slope, crossing the lines of the other correlations.
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Turbulence model k-ε-kθ-εθ

In this Chapter we describe the four equation turbulence model k-ε-kθ-εθ
and report several numerical results obtained with the implementation of
this model in a finite element code for multiphysics simulations. In the first
section the mathematical formulation of the model is reported together with
a discussion on the boundary conditions to be used. The second section is
dedicated to numerical results obtained in several geometries interesting in
the nuclear engineering field. Results obtained in plane, cylindrical, triangu-
lar rod bundle and square rod bundle geometries are reported and compared
with DNS data and experimental correlations. The overall estimation of heat
transfer of this model can be considered satisfactory for these flows.

3.1 Mathematical formulation

The motion of incompressible fluids is based on Navier-Stokes and energy
balance equations. Since liquid metals in normal operative conditions can
be considered as incompressible fluids, it is customary to use Navier-Stokes
system to simulate liquid metal flows. In order to describe turbulent flows,
one can apply the Reynolds averaging procedure to the fundamental dynamic
equations and obtain a set of transport equations for averaged fields. In order
to solve for the flow variables (u, p, T ) we consider the incompressible Navier-
Stokes system

∇ · u = 0 , (3.1)

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ · σ −∇ · (ρu′u′) + ρg , (3.2)

ρCp

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · q−∇ · (ρCpu′T ′) +Q , (3.3)

43
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where u and T are the average velocity and temperature fields. Moreover,
the Reynolds stress tensor u′u′ is the average product of velocity fluctuations
while the turbulent heat flux vector u′T ′ is the average product of velocity
and temperature fluctuations. We also define the stress tensor σ and the
velocity deformation tensor S as

σij := −pδij + µSij Sij :=
∂ui
∂xj

+
∂uj
∂xi

, (3.4)

where µ is the molecular viscosity and p the so-called average static pressure.
In (3.2-3.3) the unknown Reynolds stress u′u′ and the turbulent heat flux
u′T ′ can be seen as solutions of two transport equations: the Reynolds stress
transport equation and the turbulent heat flux transport equation [82].

Direct solutions of Reynolds stress transport equation and of turbulent
heat flux transport equation are difficult to obtain. By using the concept of
the eddy viscosity one may model the Reynolds stresses. For general flow
situations the eddy viscosity model may be written as

ρu′iu
′
j = −νt

(
∂ui
∂xj

+
∂uj
∂xi

)
+

2k

3
δij , (3.5)

where k and νt are the turbulent kinetic energy and the turbulent viscosity,
respectively. The last term in (3.5) assures that the sum of the normal
stresses is equal to 2k, which is required by the definition of k. The normal
stresses act like pressure forces, so they can be absorbed into the pressure-
gradient term and the static pressure is replaced as an unknown quantity by
the modified pressure.

One of the most popular model to compute the turbulent viscosity νt is

νt := Cµ kτlu (3.6)

where Cµ = 0.09 and τlu is the local dynamical characteristic time that takes
into account the corrections near the wall region. The turbulent kinetic
energy, its dissipation and its specific dissipation are defined by

k :=
1

2
u′iu
′
i ε := ν

(
∂u′i
∂xj

)(
∂u′i
∂xj

)
. (3.7)

The equation for k can be written in the following form

∂k

∂t
+ (u · ∇)k = ∇ ·

[(
ν +

νt
σk

)
∇k
]

+ Pk − ε . (3.8)

with
Pk := −u′u′ : ∇u = νtS : ∇u . (3.9)
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The local dynamical characteristic time τlu can be modeled in many ways with
the introduction of the proper dynamical characteristic time τu = k/ε. Since
we intend to study also low Reynolds number flows and a near wall approach
for the solution of the velocity field, a second order expansion around the
wall can be written as [4, 88]

τlu =
(
f1µA1µ + f2µA2µ

)
, (3.10)

where the functions f1µ , A1µ, f2µ and A2µ are appropriate for modeling the
near wall behavior. We set

f1µ = (1− exp(−0.0714Rδ))
2 (3.11)

A1µ = τu (3.12)

f2µ = f1µ exp(−2.5× 10−5R2
t ) (3.13)

A2µ = τu
5

R
3/4
t

(3.14)

where Rt = k2/νε and Rδ = δ(εν)1/4/ν with δ the distance from the wall
are the turbulent Reynolds number and a non dimensional distance from the
wall. The term labeled with 1 is the bulk term that vanishes on the wall
with τu. The term labeled with 2 is the second order term that modifies the
incorrect behavior of νt as it approaches the wall. This model can reproduce
the near-wall turbulence asymptotic behavior, i.e., k ∝ δ2, ε ∝ δ0 and νt ∝ δ3

for δ tending to zero. For details one can see [4, 88].
The turbulent energy dissipation ε can be computed by using a two-

equation k-ε turbulence model. For this purpose one can write the equation
for the dissipation ε as

∂ε

∂t
+ (u · ∇)ε = ∇ ·

[(
ν +

νt
σε

)
∇ε
]

+ C1ε
ε

k
Pk − C2ε fε

ε2

k
, (3.15)

with C1ε = 1.5, C2ε = 1.9, Cµ = 0.09, σk = 1.4, σε = 1.4, Pk defined by (3.9)
and fε defined as

fε = (1− exp(−0.3226Rδ))
2 (1− 0.3 exp(−0.0237R2

t )
)
. (3.16)

In a similar way we can approximate the turbulent heat flux transport
equation with an algebraic solution which needs a two-equation turbulence
model to be computed. For this transport equation we may approximate the
solution as

ρCpu′T ′ = −αt∇T , (3.17)
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where αt is the turbulent thermal diffusivity. In analogy with the dynamical
case the thermal diffusivity αt may be defined as

αt = Cθ kτlθ , (3.18)

where Cθ = 0.1 = Cµ/0.9 and τlθ is the local thermal characteristic time that
takes into account the corrections near the wall region. In analogy with the
definitions in (3.7) we introduce the average square temperature fluctuation
kθ, its dissipation εθ and its specific dissipation ωθ as

kθ :=
1

2
T ′2 , εθ := α(∇T ′)2 , (3.19)

and define the characteristic time τθ = kθ/εθ and the ratio R = τθ/τu =
ε kθ/(εθ k) between the thermal turbulent characteristic time and the dy-
namical turbulent characteristic time.

The local thermal characteristic time τlθ can be modeled in a similar way
as done in the dynamical case with the introduction of the proper thermal
characteristic time τθ = kθ/εθ as

τlθ =
(
f1θ B1θ + f2θ B2θ

)
, (3.20)

where f1θ, B1θ, f2θ and B2θ are appropriate functions. We set

f1θ = (1− exp(−0.0526
Rδ√
Pr

)) (1− exp(−0.0714Rδ)) (3.21)

B1θ = τuC∞ (3.22)

f2θ B2θ = τu

(
f2aθ

2R

R + Cγ
+ f2bθ

√
2R

Pr

1.3
√
PrR

3/4
t

)
, (3.23)

where Cγ = 0.3, C∞ = 0.9, f2aθ = f1θ exp(−4 ·10−6R2
t ), f2bθ = f1θ exp(−2.5 ·

10−5Rδ
2). There are three characteristic times in this modeling: the asymp-

totic dynamical time τu, the thermal time τθ = Rτu and the mixed time τm,
which is defined as 1/τm = 1/τu + 1/τθ = (R + Cγ)/(2 τuR). The dynamical
time τu is proportional to the turbulent viscosity through (3.6). Near the wall
αt/τu is proportional to

√
R while in the asymptotic region αt is indepen-

dent of the time ratio. In the intermediate regions αt/τu is proportional to
2R/(R + Cγ). The model functions fj blend different behaviors in different
regions. For details one can refer to [4, 30, 50, 52, 88] and references therein.

The average square temperature fluctuation kθ is defined by the following
transport equation [50]

∂kθ
∂t

+ (u · ∇)kθ = ∇ ·
(
α +

αt
σkθ

)
∇kθ + Pθ − εθ , (3.24)



3.1. Mathematical formulation 47

where

Pθ := −u′T ′ · ∇T = αt∇T · ∇T . (3.25)

By following the same procedure as in the dynamical case the equation for
εθ can be written as [50]

∂εθ
∂t

+ (u · ∇)εθ = ∇ ·
[(
α +

αθ
σεθ

)
∇εθ

]
+

εθ
kθ

(
Cp1 Pθ − Cd1 εt

)
+
εθ
k

(
Cp2 Pk − Cd2 ε

)
, (3.26)

where Pk is defined by (3.9) and Pθ by (3.25). For heavy liquid metals, with
Pr ≈ 0.025, we have used the coefficients defined in [3, 89], namely Cd1 = 0.9,
Cp2 = 0.9, σkθ = 1.4 σεθ = 1.4. The coefficient Cp1 has been chosen to be
0.925 and

Cd2 = (1.9 (1− exp(−0.1754Rδ)
2)− 1) (1− 0.3 exp(−0.0237R2

t )) . (3.27)

For details one can see [50, 52, 65].
If the system (3.24)-(3.26) is solved then the function R can be computed

as (k/ε)/(kθ/εθ), and the corresponding turbulent thermal diffusivity αt and
the turbulent heat flux can be substituted in the energy equation.

In order to complete the definition of the problem, appropriate boundary
conditions must be imposed. The boundary conditions and the use of appro-
priate wall functions for the kθ-εθ system are under broad discussion [50, 52].
This is a very important issue since they can modify the solution and the
computational effort. We consider a near-wall approach for both the dynam-
ical and thermal fields. In literature three types of boundary conditions are
considered: constant temperature, constant heat flux and mixed boundary
conditions [3, 89, 96].

The constant temperature boundary condition assumes that the wall tem-
perature is uniform in space and constant in time, therefore the average tem-
perature squared fluctuations have to be set to zero on the wall. For fixed
temperature boundary conditions we consider the following expansion for
thermal fields around a wall point

T
′ ≈ bδ + cδ2 + . . . (3.28)

kθ =
T ′2

2
≈ b2

2
δ2 + . . . (3.29)

εθ = α

(
∂T ′

∂xj

)2

≈ αb2 + . . . , (3.30)
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where δ is the distance from the wall. This is easily imposed by using

dkθ
dδ
≈ 2 kθ

δ
εθ ≈ α

2 kθ
δ2

. (3.31)

Some authors assume full isotropy for all the gradient components on the
walls and set εθ ≈ 6αkθ/δ

2 instead of (3.31). Since this expansion is true
also for k and ε we have

dk

dδ
≈ 2 k

δ
+ . . . ε ≈ ν

2 k

δ2
+ . . . , (3.32)

and therefore

R =
ε kθ
k εθ
≈ Pr . (3.33)

This implies that for uniform wall temperature boundary conditions the time
ratio R must tend to Pr at the wall, as seems to be correct from physical
considerations and is assumed in many DNS computations [56, 57, 58, 100].

The constant heat flux boundary condition assumes that the wall heat
flux is uniform in space and constant in time. This implies that the wall
normal derivative of the average square temperature fluctuation has to be
set to zero. In this case temperature fluctuations are possible and kθ may be
different from zero on the wall. For constant uniform wall heat flux boundary
condition we consider the following expansion for thermal fields

T
′ ≈ a+ cδ2 + . . . (3.34)

kθ =
T ′2

2
≈ a2

2
+ acδ2 +

c2δ4

2
+ . . . (3.35)

εθ = 2α
(∂√kθ − kθw

∂δ

)2

≈ 2α ac+ . . . . (3.36)

This means that

dkθ
dδ
≈ 0 + . . . εθ ≈ 2α ac+ . . . , (3.37)

and

R =
ε kθ
k εθ
≈ Pr

a2 + 2acδ2 + c2δ4

d δ4
+ . . . . (3.38)

From (3.38) if kθ does not tend to zero, a2 does not tend to zero and R
cannot be finite for δ → 0. However this behavior of R may not be important
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since the behavior of the turbulent viscosity can still give finite values of the
thermal diffusivity αt close to the wall.

The mixed boundary conditions assumes that the wall heat flux is uniform
in space and the temperature constant in time. The average square temper-
ature fluctuation is set to zero on the wall and the time ratio R is equal to
Pr on the wall. For a detailed discussion on the boundary conditions one
can refer to [96, 104, 111].

3.2 Numerical simulations

This section is devoted to the evaluation of the performance of the k-ε-kθ-εθ
heat transfer model in several geometries in forced turbulent flows with no
gravity. As already explained in the previous section, this model consists of
the k-ε system for the transport of turbulent momentum in (3.8-3.16) and
the kθ-εθ two-equation model for the transport of turbulent energy in (3.18)
and (3.20-3.27). In order to validate the four parameter model for heavy
liquid metals in the range of 0.01 to 0.03 we consider the reference Prandtl
number Pr = 0.025. This Prandtl number is the reference value for this
class of fluids since a relatively large amount of experimental data and DNS
computations are available for comparison, see Chapter 2 for more details.

In the next section the results obtained with the k-ε-kθ-εθ turbulence
model is compared with DNS data in plane geometry. DNS data are avail-
able for fully developed flows and over a limited low Reynolds number range.
As we have discussed in Section 2.3.1, the most consistent and numerous heat
transfer experimental data can be found for cylindrical geometry as experi-
mental heat transfer correlations. In particular, the reference correlation for
this molecular Pr number is Kirillov correlation. The purpose of the next two
sections is to compare the numerical results of the four parameter model with
plane DNS computations at low Reynolds numbers and extend the compar-
ison to the high Reynolds numbers in order to reproduce the available data
in cylindrical geometry [74].

In the following third and four sections two more complex geometries are
studied, the triangular and square rod bundle geometries [75, 76]. Simula-
tions are performed in a wide range of pitch-to-diameter ratios and Peclet
numbers. The comparison is performed with available experimental correla-
tions for this class of geometry of interest in the nuclear field, see Sections
2.3.2 and 2.3.3 for more details on these geometrical configurations.
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3.2.1 Plane channel

The plane channel heat transfer problem has been studied extensively by
many authors in the past as this type of geometry is the limiting case for other
more complex geometries such as rectangular, cylindrical and annular ones.
The DNS data in plane geometry have been presented by several authors
[3, 5, 56, 60, 71, 89]. We refer mainly to the work in [56] since the results
are reported in a database available on the web while writing this thesis.
In this work the authors performed Direct Numerical Simulation of channel
flows to study the effect of Reynolds and Prandtl numbers on turbulent heat
transport. Three DNS cases with thermal computations, Pr = 0.025 and
friction Reynolds number Reτ = 180, 395, 640 are available in this database.
The bulk Reynolds numbers are in the range of Rem ≈ 5500 to 25000 with
velocity, in our reference configuration, from 0.0162 to 0.068 m/s. Since
these low velocities are not suitable for engineering applications, in order
to extend computations to higher Reynolds we use the correlation for the
cylindrical geometry in the following section, where experimental data are
more numerous and accurate.

For this series of tests we consider a plane geometry, as shown in Figure
3.1 (top), with a fully developed turbulent liquid metal flowing between two
plates located at a distance Ly = 2l = 2 · 0.03025 m heated by uniform
wall fluxes and with infinite length in the other two dimensions. Physical
properties of the fluid are given in Table 3.1 (bottom) with corresponding
molecular Prandtl number Pr = 0.025. We can subdivide the boundary
of the computational domain into inlet, outlet, symmetry regions and solid

y

x

Properties Values Units
Density ρ 10340. kg/m3

Dynamic viscosity µ 18.1× 10−4 Pa · s
Thermal conductivity λ 10.72 W/(m ·K)
Specific heat capacity Cp 145.75 J/(kg ·K)

Figure 3.1: Plane case. Geometry (top) and physical properties at the
reference temperature for Pr = 0.025 (bottom).
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walls, which will be denoted by Γi, Γo, Γs and Γw, respectively.
The boundary conditions for the k-ε model are enforced by using the near-

wall approach. The boundary conditions on the solid surfaces are imposed
on a plane surface at a distance δ from the wall. The distance δ depends
on the mesh size of the boundary layer region. We refine the mesh until the
surface defined by the distance δ lies in the viscous laminar region (y+ < 1),
then we enforce the near-wall boundary condition asymptotic expansions

τw :=
ρ ν

δ
uτ , un := 0 , k := kwlδ

2 , ε := 2νkwl = 2
νk

δ2
, (3.39)

on Γw. Since the constant kwl is not known the condition has been applied
in logarithmic form as dk/dn = 2k/δ on Γw.

It is well known that in a fully developed flow the bulk and wall tempera-
ture are linear. The slope of the linear profile for unit of vertical length ∆Tb
can be computed by writing an energy balance in the volume as

2Lx Lz q0 = Cp ṁ∆Tb Lx , (3.40)

with ṁ = 2l ρ v̄ Lz the constant mass flow rate. The steady energy equation
can be written as

(u · ∇)T = ∇ ·
[
(α + αt)∇T

]
, (3.41)

together with appropriate boundary conditions.
In the case of fully developed flow with uniform flux q0, we may set

λ
dT

dn
:= q0 on Γw , (3.42)

T := T |Γi + Lx ∆Tb on Γo , (3.43)

where Lx is the axial length computational domain and T |Γi is the inlet
temperature. This problem has not a unique solution since the integral form
of (3.41), which is basically the (3.40), and (3.43) give the condition (3.42)
under fully developed flow hypotheses. The solution becomes unique if one
fixes the average value of T . This is equivalent to fix a point on the wall, i.e.
the temperature of the first point of the wall is set to zero [96].

In many DNS computations the temperature results are reported in non-
dimensional quantities dividing by reference friction variables. In order to
define these quantities one can consider the temperature solution T in the
form

T = Tw0 + x∆Tb − θ , (3.44)

where ∆Tb and Tw0 are constant quantities and θ is the temperature distri-
bution which is zero on the walls Γw. After introducing (3.44) into (3.41) we
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have
(u · ∇) θ = ∇ · [(α + αt)∇ θ] +

v q

l ρCp v̄
, (3.45)

with constant heat flux (CHF) boundary conditions

θ := 0
dkθ
dy

:= 0 εθ := 2α
(∂√kθ − kθw

∂y

)2

on Γw , (3.46)

θ := θ|Γo kθ := kθ|Γo εθ := εθ|Γo on Γi . (3.47)

The (3.47) defines periodic boundary conditions for T −θ, kθ and εθ. In DNS
simulations usually mixed boundary conditions for uniform heat flux (MX)
are used, where the average square temperature fluctuation kθ is set to zero
on the wall. In this case the system (3.45-3.47) is the same but the condition
dkθ/dy = 0 is substituted with kθ = 0. In mixed boundary condition the
thermal boundary conditions for the kθ-εθ system are similar to those for the
k-ε system and they can be written as

kθ|Γw = kθwlδ
2 , εθ|Γw = 2αkwl = 2

αkθ
δ2

. (3.48)

The last condition for εθ on the wall is equivalent to set R = Pr.
Here we report the results obtained from seven different simulations with

Re ≈ 5500 (A), 13500 (B), 23250 (C), 40100 (D), 86200 (E), 204000 (F) and
345000 (G). They correspond to a mean velocity field from 0.0162 m/s to
1.0146 m/s in our reference configuration. The friction Reynolds numbers
for these seven cases are Reτ ≈ 180 (A), 395 (B), 640 (C), 1010 (D), 2000 (E),
4400 (F) and 7200 (G). The solution is obtained with the finite element code
described in Chapter 1 but in two steps. First we reach convergence with
regard to the velocity and k-ε fields and then we solve for the temperature
and kθ-εθ variables. This allows to use different solving parameters in order
to obtain a better and faster convergence.

The mean velocity distribution of the axial component v for case A (Reτ =
180) and for case E (Reτ = 2000) is shown respectively on the left and right
side of Figure 3.2. The behavior of other cases is similar and the linear
and logarithmic regions are well reproduced. The velocity and length are
non-dimensionalized based on friction velocity. We define the wall friction
velocity and the friction Reynolds number in the following way

vτ =

√
τw
ρ

Reτ =
vτ l

ν
, (3.49)

in order to compute the non-dimensional velocity and distance from the wall
as

v+ =
v

vτ
y+ =

vτy

ν
. (3.50)
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Figure 3.2: Plane case. Mean velocity distribution for Reτ = 180 (left) and
Reτ = 2000 (right).
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Figure 3.3: Plane case. Temperature distribution θ+ for different velocities
Reτ = 180 (A), 395 (B), 640 (C), 1010 (D), 2000 (E), 4400 (F) and 7200 (G).

In the linear region the normalized velocity follows the equation v+ = y+

while in the logarithmic region the equation v+ = (log y+)/0.4 + 5.

In Figures 3.3-3.4 temperature distributions are shown for different ve-
locities corresponding to Reτ = 180 (A), 395 (B), 640 (C), 1010 (D), 2000
(E), 4400 (F) and 7200 (G). In Figure 3.3 one can see the temperature
θ = T − Tw0 − x∆Tb which is the difference between the temperature and
the linear behavior characteristic of the fully developed flow. This drop in
temperature from the wall to the center of the channel is shown in non-
dimensional unit θ+ = θ/Tτ as a function of the dimensional distance from
the wall y. The reference temperature Tτ is the so-called friction temperature
which is Tτ = q/(vτρCp). In this case θ+ is independent of the heat source
which is assumed to be 360000 W/m2. We remark the change in the profile
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Figure 3.4: Plane case. Temperature distribution θ+/Pr for different Reτ =
180 (A), 395 (B), 640 (C), 1010 (D), 2000 (E), 4400 (F) and 7200 (G) and
comparison with DNS data for Reτ = 180 (K180) and Reτ = 395 (K395) on
the left.

between case A with low Reynolds number, where the temperature follows
a linear profile in nearly all the domain, and the case G with the highest
velocity field, where the temperature slope is very high far from the wall.

In Figure 3.4 the non-dimensional temperature profiles θ+/Pr are shown
as functions of the non-dimensional coordinate y+ and compared with DNS
cases of Reτ = 180 (K180) and 395 (K395). This comparison can be seen on
the left of Figure 3.4 where the DNS data (K180 triangles and K395 squares)
are very close to the results obtained with the k-ε-kθ-εθ model reported on
the lines (A) and (B). Dividing by the Prandtl number we can show the linear
behavior of the temperature distribution near the wall. A line θ+ = y+ Pr
is plotted against the results obtained where it is visible the correct linear
behavior predicted near the wall. For completeness on the right of the same
Figure all the curves are reported enhancing the different behavior at higher
Reynolds numbers. This log-log plot shows that all the curves are still linear
about 20-30 y+.

In Figure 3.5 the root-mean-square temperature fluctuation

θrms
+

Pr
=

√
2kθ

(TτPr)
(3.51)

for different velocities Reτ = 180 (A), 395 (B) and 640 (C) is shown on the left
as a function of the non-dimensional wall distance y+ together with the DNS
data [56, 58]. The DNS simulation forReτ = 180 is labeled K180 (square) and
the DNS simulation for Reτ = 395 is labeled K395 (circle). The agreement
between the k-ε-kθ-εθ model results and the DNS simulation is very good. For
completeness on the right of Figure 3.5 the root-mean-square temperature
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Figure 3.5: Plane case. On the right root-mean-square temperature fluctua-
tions θrms

+ for different Reτ = 180 (A), 395 (B) and 640 (C), 1010 (D), 2000
(E), 4400 (F) and 7200 (G) and comparison on the left of θrms

+/Pr with
DNS data for Reτ = 180 (K180) and Reτ = 395 (K395) on the left.
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Figure 3.6: Plane case. Non-dimensional turbulent heat flux u′T ′
+

as a func-
tion of the coordinate y (on the right) and of the non-dimensional distance
y+ (on the left) for different Reτ = 180 (A), 395 (B), 640 (C), 1010 (D),
2000 (E), 4400 (F) and 7200 (G). The square dots are the DNS results for
Reτ = 180 (K180) and Reτ = 395 (K395) on the left.

fluctuation θrms
+ is reported as a function of a dimensional coordinate that

starts from the center line of the channel, i.e. y = 0.03025 is the wall. In
this Figure distributions are shown for all the different velocities simulated
Reτ = 180 (A), 395 (B), 640 (C), 1010 (D), 2000 (E), 4400 (F) and 7200 (G).

Another very interesting result in these computations is the turbulent
heat flux qθ = u′T ′ in the normal direction to the wall, which in this model is
computed as −αt ∂T/∂y. In Figure 3.6 the non-dimensional turbulent heat

flux u′T ′
+

is shown as a function of the dimensional coordinate y (on the
right) and of the non-dimensional distance from the wall y+ (on the left) for
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On the right the characteristic time τθ, τu and their time ratio R for case
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Figure 3.8: Plane case. The turbulent Prandtl number (left) for different
Reτ = 640 (C), 1010 (D) and 2000 (E) and the average turbulent Prandtl
number (right) for the considered cases A-G.

different Reτ = 180 (A), 395 (B), 640 (C), 1010 (D), 2000 (E), 4400 (F) and
7200 (G). On the left of Figure 3.6 a comparison between DNS results and
the k-ε-kθ-εθ model results is reported. The square dots K180 and K395 are
from DNS data [56, 58] while the thick line (A) and (B) are the results of
the k-ε-kθ-εθ model for Reτ = 180 and Reτ = 395, respectively. Again the
agreement is rather good.

Finally, interesting details can be seen from the turbulent thermal dif-
fusivity αt which is reported in Figure 3.7 on the left. In this figure the
non-dimensional turbulent diffusivity αt

+ for different Reτ = 180 (A), 395
(B), 640 (C) and 1010 (D) is reported together with the DNS results. The
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Figure 3.9: Plane case. On top Nusselt number (thick line) and DNS values
(cross) for different Peclet number. On the bottom table of Nusselt number
for the k-ε-kθ-εθ model, DNS computations and Kirillov correlation (Nu (K)
cylindrical geometry)

DNS results are reported with squares along the K180 and K395 lines. For
Reτ = 180 case in Figure 3.7 on the right, the characteristic time τθ, τu and
their time ratio R can be seen. The circle line is for the DNS result (K180).
On the left of Figure 3.8, the turbulent Prandtl number for Reτ = 640 (C),
1010 (D) and 2000 (E) as a function of y is shown. On the right the average
turbulent Prandtl number is reported for all the cases considered.

From the engineering point of view the heat exchange is defined by the
Nusselt number. In Figure 3.9 on the top, we report the Nusselt number
Nu, as a function of Peclet number Pe, for the plane geometry. In the Table
on the bottom of Figure 3.9 one can see the number extracted from DNS
[56, 58] and from the k-ε-kθ-εθ model. The Nusselt value for Reτ = 180
extracted from DNS is a point of calibration for our model and the match is
almost perfect. The Nusselt number obtained by DNS data for Reτ = 640
is quite high. It is greater even than the one predicted by the experimental
Kirillov correlation for cylindrical geometry. The present model is calibrated
to reproduce DNS low-Reynolds data and high-Reynolds experimental data
collected in Kirillov correlation. In the regions where they differ the kθ-εθ
may reproduce only a compromise between these two sets of data.

The mixed boundary condition with uniform flux and kθ = 0 imposed
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Figure 3.11: Plane case. Temperature distribution θ+ for different velocities
Reτ = 180 (A), 395 (B), 640 (C) and for different boundary conditions on
the wall: thick line kθ = 0 (MX), dashed line dkθ/dx = 0 (CHF).

on the wall in the DNS computations are rather ideal. This is true if the
temperature turbulent oscillations generated in the fluid are damped out
on the wall boundary. If this hypothesis is not true then standard CHF
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boundary condition must be applied

dkθ
dn

= 0 εθ = 2α
(∂√kθ

∂δ

)2

on Γw . (3.52)

Temperature distribution θ+ and its root-mean-square temperature fluctua-
tion θrms

+ for uniform heat flux boundary conditions with wall temperature
square fluctuation (CHF) and with kθ = 0 on the wall (MX) are compared
in Figures 3.10-3.11. The mixed case (MX) is the case studied in the DNS
simulations and compared so far.

In Figure 3.10 one can see non-dimensional root-mean-square temperature
fluctuation θrms

+ for different velocities Reτ = 180 (A), 395 (B), 640 (C),
1010 (D), 2000 (E), 4400 (F) and for different wall boundary conditions.
Thick lines are for mixed boundary conditions (MX) kθ = 0 and dashed lines
for dkθ/dy = 0. The boundary condition dkθ/dy = 0 does affect the wall value
of kθ which is different from zero, but the profile in the interior region of the
domain remains approximately very close to the previous one, especially for
the high Reynolds number cases. This was already pointed out in [96, 104,
111] for DNS simulations when performed with other than mixed boundary
conditions. In Figure 3.11 temperature distributions θ+ for different velocities
Reτ = 180 (A), 395 (B), 640 (C) are shown. Uniform heat flux boundary
conditions with (MX) and without (CHF) wall temperature fluctuation are
reported in thick and dashed lines, respectively. The introduction of the
wall temperature fluctuation, kθ 6= 0, does not seem to affect significantly
the mean temperature θ+ and therefore the heat exchange and the Nusselt
number.

3.2.2 Cylindrical channel

In this section we report the numerical results obtained in cylindrical ge-
ometry by using the four parameter k-ε turbulence model. We compare our
results with DNS data, when available, and with the experimental correlation
by Kirillov, see Section 2.3.1 for other experimental correlations in cylindrical
channel.

The DNS data in cylindrical and annular pipes with Pr = 0.025 have
been presented by a few authors, see [92, 96, 98, 100] and references therein.
We refer mainly to the work in [100], where a direct numerical simulation
of turbulent heat transfer in pipe flows with bulk flow Reynolds number of
approximately 5000 (Reτ = 170) and Prandtl number 0.025 is presented.
The work in [100] examines the effect of pipe length for different resolution
and discusses the convergence of thermal turbulence statistics. In [98] a
similar direct numerical simulation of turbulent heat transfer in pipe flows is
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presented. In this case the friction Reynolds number Reτ is 180 but Pr =
0.026.

In order to compare these DNS computations and the mentioned corre-
lation we consider a pipe with radius Re = 0.03025 m and fluid properties
listed in Table 3.1 with corresponding Pr ≈ 0.025. All tests are performed
in this reference configuration with fully developed flow and average velocity
ranging from 0.0162 to 1.016 m/s. The heat exchange is studied with uniform
wall flux boundary conditions. As already explained in the plane case Section
3.2.1, we can have two types of boundary conditions with uniform wall heat
flux: MX and CHF boundary conditions. The mixed boundary condition is
imposed when the constant heat flux is set with vanishing average square
temperature fluctuation (MX), i.e., kθ = 0. On the other hand the CHF
boundary condition implies that the normal derivative of kθ is set to zero.
We have shown that the results in term of average temperature and Nusselt
number are very close and therefore we adopt the mixed boundary conditions
(MX) since all the DNS simulations are solved with this type of conditions.
For completeness at the end of this Section we present and discuss the other
class of boundary conditions.

As already pointed out, many authors do not report the results directly
in temperature variable but in a reduced non-dimensional variable θ+. The
solution T can be written as

T (r, z) = Tw0 + z∆Tb − θ(r) , (3.53)

with ∆Tb the variation of the bulk temperature along the unit length in the
axial direction z. θ is the profile of the temperature of the fully developed
flow that tends to zero on the walls. The profile of the inlet temperature is
Tw0− θ while the profile of the outlet temperature is Tw0 +Lz ∆Tb− θ. Since
θ is zero on the wall, the constant Tw0 can be identified with the arbitrary
inlet temperature over the wall. The value of ∆Tb can be calculated from
the energy balance resulting in 2 π Re q = Cp ṁ∆Tb where ṁ = πR2

e ρ v̄ is
the constant mass flow rate and v̄ is the average velocity over a transverse
section.

We can subdivide the boundary of the computational domain into an
inlet, an outlet and solid walls, which will be denoted by Γi, Γo and Γw
respectively. The boundary conditions for the k-ε model are enforced by
using the near-wall approach. As done in the previous section, we refine the
mesh until the surface on which we impose boundary conditions lies in the
viscous laminar region, then we enforce the near-wall boundary condition
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Figure 3.12: Cylinder case. Non-dimensional temperature drop distribution
θ+ for different friction velocities Reτ = 180 (A), 395 (B), 640 (C), 1400 (D),
4500 (E) and 7150 (F).

asymptotic expansions

τw :=
ρ ν

δ
ut , un := 0 , (3.54)

k := kwlδ
2 , ε := 2νkwl = 2

νk

δ2
on Γw ,

and periodic boundary conditions between the inlet and outlet surfaces. Since
the constant kwl is not known the condition is applied in logarithmic form as
dk/dr|Γw = 2k/δ. For temperature and kθ-εθ system we use mixed boundary
conditions (MX). We set

T = Tw0 + z∆Tb kθ = kθwlδ
2 , εθ = 2νkθ/Pr δ

2 on Γw (3.55)

T = TΓi + Lz ∆Tb kθ = kθ|Γi , εθ| = εθ|Γi on Γo .(3.56)

The boundary condition of εθ on Γw can be substituted by the equivalent con-
dition R|Γw = kθ ε/(k εθ) = Pr. With the transformation (3.53) the boundary
conditions at the outlet Γo are now simple periodic boundary conditions for
all the variables θ, kθ and εθ.

In the following the results from six different simulations with Re ≈ 5500
(A), 11150 (B), 23750 (C), 57500 (D), 213000 (E) and 345000 (F) are re-
ported. In the above proposed configuration they correspond to a mean
velocity field ranging approximately from 0.016 m/s to 1.016 m/s. The fric-
tion Reynolds numbers for these six cases are Reτ = 180 (A), 395 (B), 640
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Figure 3.13: Cylinder case. Temperature distribution θ+/Pr for different
friction velocities Reτ = 180 (A), 395 (B), 640 (C), 1400 (D), 4500 (E) and
7150 (F) and comparison with DNS data for Reτ = 170 (S170) on the left.
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Figure 3.14: Cylinder case. Non-dimensional root-mean-square temperature
fluctuations θrms

+ for different friction velocities Reτ = 180 (A), 395 (B),
640 (C), 1400 (D), 4500 (E) and 7150 (F) and comparison with DNS data
for Reτ = 170 (S170) on the left.

(C), 1400 (D), 4500 (E) and 7150 (F). Using the Blasius friction factor corre-
lation for smooth pipes, the friction Reynolds number can be approximately
evaluated from the bulk Reynolds number as [100]

Reτ =
uτD

2ν
= 99.436 · 10−3Re

7/8
D . (3.57)

The comparison with the DNS data is reported only for the case Reτ = 170,
i.e., when these data are available [100]. As in the plane case in order to use
the k-ε model in low-Reynolds number the second order approximation in [3,
50, 89] has been used together with appropriate mixed boundary conditions
(MX).
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Figure 3.15: Cylinder case. Non-dimensional turbulent heat flux u′T ′
+

as a
function of the axial coordinate r (on the right) and of the non-dimensional
distance r+ (on the left) for different friction velocities Reτ = 180 (A), 395
(B), 640 (C), 1400 (D), 4500 (E) and 7150 (F). The square lines are the DNS
results for Reτ = 170 (S170).
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Figure 3.16: Cylinder case. Non-dimensional turbulent thermal diffusivity
α+ for different friction velocities Reτ = 180 (A), 395 (B), 640 (C), 1400 (D),
4500 (E) and 7150 (F).

In Figures 3.12-3.13 temperature distributions are shown for different
velocities corresponding to Reτ = 180 (A), 395 (B), 640 (C), 1400 (D), 4500
(E) and 7150 (F). In Figure 3.12 one can see the temperature difference θ =
T−Tw0−z∆Tb between the temperature and the linear behavior characteristic
of the fully developed flow. This drop in temperature from the wall to the
center of the channel is shown in non-dimensional unit as θ+ = θ/Tτ . The
profile of the non-dimensional temperature drop along the radius changes its
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Figure 3.17: Cylinder case. Nusselt number (square) and Kirillov correlation
for cylindrical geometry (thick line).

shape and intensity between the case A with low Reynolds number and the
case F with higher velocity field.

In Figure 3.13 the non-dimensional temperature profiles divided by the
Prandtl number are shown as functions of the non-dimensional coordinate
r+. Dividing by the molecular Prandtl number one can evaluate the linear
behavior of the temperature distribution near the wall. The comparison
between the k-ε-kθ-εθ model and the DNS solution for Reτ = 170, (S170),
can be seen on the left of Figure 3.13. The results are good if we take
into account that the DNS data (S170 square) and the k-ε-kθ-εθ solution are
obtained for slightly different Reτ . For completeness on the right of the same
Figure all the curves are reported enhancing the different behavior at higher
Reynolds numbers. In this Figure 3.13 the log-log plot shows that all the
temperature profiles are still linear until about 30-40 r+.

In Figure 3.14 on the left the root-mean-square temperature fluctuation
θrms

+ for different velocities Reτ = 180 (A), 395 (B) and 640 (C) is shown
as a function of the non-dimensional wall distance r+ together with the DNS
simulation [100]. The DNS simulation for Reτ = 170 is labeled S170 (square).
The agreement between the k-ε-kθ-εθ model and the DNS simulation is good
considering the slight different Reynolds number. On the right of Figure 3.14
the root-mean-square temperature fluctuation θrms

+ is reported as a function
of the channel radius. In this Figure the distributions are shown for all the
simulated cases with Reτ = 180 (A), 395 (B), 640 (C), 1400 (D), 4500 (E)
and 7150 (F).

Another important variable in the turbulent heat transfer framework is
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Figure 3.18: Cylinder case. Non-dimensional root-mean-square temperature
fluctuations θrms

+ for different Reτ = 180 (A), 330 (B), 640 (C) and for
different boundary conditions on the wall: thick line kθ = 0 (MX), dashed
line dkθ/dr = 0 (CHF).

the heat turbulent flux qθ = u′T ′ normal to the wall, which gives the impor-
tance of the turbulent convective heat transfer with respect to the molecular
heat transfer. In the k-ε-kθ-εθ model qθ is defined basically by the turbulent
thermal diffusivity αt as qθ = αθ ∂T/∂r. In Figure 3.15 one can see the non-

dimensional turbulent heat flux u′T ′
+

as a function of the radius r (on the
right) and of the non-dimensional radius r+ (on the left) for different friction
velocities Reτ = 180 (A), 395 (B), 640 (C), 1400 (D), 4500 (E) and 7150
(F). On the left of Figure 3.15 a comparison between DNS results and the
k-ε-kθ-εθ model is reported. The square line S170 is from DNS data [100]
while the thick line (A) is for the k-ε-kθ-εθ model for Reτ = 180.

Finally the eddy thermal diffusivity αt
+ is reported in Figure 3.16 on the

left. In this figure αt is non dimensional with molecular thermal diffusivity
α and it is reported for different friction velocities Reτ = 180 (A), 395 (B),
640 (C), 1400 (D), 4500 (E) and 7150 (F) together with the DNS results.

The thermal diffusivity αt defines the corresponding heat exchange and
the Nusselt number. In Figure 3.17 we report the Nusselt number Nu, as
a function of Peclet number Pe, for the cylindrical geometry. The Nusselt
value for Reτ = 180, which has been calibrated with the plane DNS cases is
very close and the matching improves with higher Reynolds numbers. This
result is obtained by adapting the k-ε-kθ-εθ coefficients to DNS data in plane
geometry in the range of low-Reynolds numbers and to the data from the
Kirillov correlation for high-Reynolds flows.
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Figure 3.19: Cylinder case. Temperature distribution θ+ (left) and non-

dimensional radial turbulent heat flux u′T ′
+

(right) for different Reτ = 180
(A), 330 (B), 640 (C) and for different boundary conditions on the wall: thick
line kθ = 0 (MX), dashed line dkθ/dr = 0 (CHF).

The wall mixed boundary condition with uniform flux and kθ = 0 imposed
on the wall in the DNS computations are not appropriate if the temperature
turbulent oscillations generated in the fluid are not damped out on the wall
boundary. In this case we must apply standard CHF boundary conditions

dkθ
dn

= 0 εθ = 2α
(∂√kθ − kθw

∂r

)2

on Γw . (3.58)

Temperature distribution θ = Tw0 + z∆Tb−T , its root-mean-square temper-
ature fluctuation θrms

+ and radial turbulent heat flux u′T ′ for uniform heat
flux boundary conditions with wall temperature squared fluctuation (CHF)
and with kθ = 0 on the walls (MX) are compared in Figures 3.18-3.19. The
mixed case (MX) is the case studied in the DNS simulations and compared
so far.

In Figure 3.18 one can see the non-dimensional root-mean-square tem-
perature fluctuation θrms

+ for different Reτ = 180 (A), 395 (B), 640 (C)
and different wall boundary conditions. Thick lines are for mixed boundary
conditions (MX) with kθ = 0 and dashed lines for ∂kθ/∂r = 0 (CHF). The
root-mean-square temperature fluctuation θrms

+ with vanishing derivative
on the wall shows a constant value near the wall region. Then the curve
reaches a maximum and finally tends to decrease again. Both curves, with
different boundary conditions, reach the maximum around the same r+ but
for Reτ = 180 the maximum values are different. For this Reynolds number
the two curves merge around y+ ≈ 120. For higher Reynolds the match-
ing region moves towards to the wall region and the maximum value of the
root-mean-square temperature fluctuation θrms

+ becomes the same.
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In Figure 3.19 non-dimensional temperature distribution θ+ (left) and

non-dimensional radial turbulent heat flux u′T ′
+

(right) for different veloci-
ties Reτ = 180 (A), 395 (B), 640 (C) are shown. Uniform heat flux boundary
conditions with (MX) and without (CHF) wall temperature fluctuation are
reported in thick and dashed lines, respectively. The introduction of the
wall temperature fluctuation, kθ 6= 0, does not seem to affect significantly

the mean temperature θ+ and radial turbulent heat flux u′T ′
+

. This im-
plies that the Nusselt number remains approximately the same as previously
computed.

3.2.3 Triangular rod bundle

In this section we study the triangular rod bundle geometry and show nu-
merical results obtained with different pitch-to-diameter ratios χ at several
Peclet numbers. This geometry and the heat transfer correlations available
for the prediction of the Nusselt number as a function of the Peclet number
have been reported in Section 2.3.2, we report here the geometry of Figure
2.3 in Figure 3.20 for convenience. The reference physical parameters em-
ployed in the CFD simulations are shown in Table 3.1. We consider the kθ-εθ
turbulence model and the simple eddy diffusivity (SED) model with different
turbulent Prandtl numbers. The aim of this section is to compare the nu-
merical results obtained by using these heat transfer turbulence models with
the experimental correlations introduced in 2.3.2.

We consider periodic boundary conditions in the vertical direction z for
all dynamical variables. The solutions for the dynamical variables appear
constant along the vertical direction since only a pressure increasing between
the inlet and outlet surface is allowed as shown in Figure 3.21 for the vertical
component w of the velocity field and the turbulent kinetic energy k.

rod diameter D 0.0082 m
grid dimension P 0.00496-0.00615 m

P/D ratio χ 1.2-1.5
average velocity w 0.25-2.95 m/s

hydraulic diameter Dh 0.012-0.0625 m
viscosity µ 0.00184 Pa · s
density ρ 10340 Kg/m3

thermal conductivity λ 10.72 W/(m K)
heat specific capacity Cp 145.75 J/(Kg K)

Table 3.1: Physical parameters used in the CFD simulations.
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Figure 3.20: Triangular rod bundle geometry.

Figure 3.21: Triangular rod bundle with χ = 1.3. Vertical velocity and
turbulent kinetic energy fields in fully developed flow.

With reference to Figure 3.20 let us consider the region ABCD and divide
the boundary Γ in four parts: Γ1 (A-B), Γ2 (B-C), Γw (C-D) and Γ3 (D-
A). Let δ be the distance from the wall defined on the rod surface Γw
(C-D). The boundary conditions on the solid surfaces Γw are imposed on a
cylindrical surface at a distance δ from the wall. The distance δ depends on
the mesh size of the boundary layer region and, for this reason, it is standard
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procedure to refine the mesh until the surface defined by the distance δ lies in
the viscous laminar region. When δ is located in the viscous laminar region
we enforce the near-wall boundary condition asymptotic expansions in the
following form

τw|Γw =
ρ ν

δ
ut|Γw , un|Γw = 0 , (3.59)

k|Γw = kwlδ
2 , ε|Γw = 2νkwl = 2

νkw
δ2

. (3.60)

Since the constant kwl is not known the condition has to be applied in the
form dk/dn|Γw = 2k/δ. In fact if k = kwlδ

2 then dk/dδ = 2kwlδ = 2k/δ
which implies the derivative form of the boundary condition. In the region
Γ1 (A-B), Γ2 (B-C) and Γ3 (D-A), where the rod is absent, simple symmetry
boundary conditions should be imposed.

As we have already explained in Section 3.2.1, for the kθ-εθ system two
types of boundary conditions can be applied on Γw: the mixed (MX) and con-
stant heat flux (CHF) boundary conditions. The mixed boundary conditions
are enforced by the following near-wall asymptotic expansions

kθ|Γw = kθwlδ
2 , εθ|Γw = 2νktw/Pr δ

2 . (3.61)

Also in this case the constant kθwl is not known and since dkθ/dδ = 2kθwlδ =
2kθ/δ one can use the logarithmic condition dk/dn|Γw = 2k/δ which allows
the computation of the unknown constant kθwl. The mixed boundary condi-
tions, which enforce kθ = 0 on the wall, are rather ideal since this is true when
the temperature turbulent oscillations generated in the fluid are damped out
on the wall boundary. If this hypothesis is not true then standard CHF
boundary condition must be applied

dkθ
dn

= 0 εθ = 2α

(
∂
√
kθ

∂δ

)2

. (3.62)

Both MX and CHF boundary conditions for the fully developed case can be
used to compare to experimental data since the results on the core flow are
very similar and they differ only in the very near-wall region as shown in the
previous Sections. For this reason we enforce the mixed boundary conditions
(MX) with the following near-wall asymptotic expansions

dT

dn
|Γw = q , kθ|Γw = kθwlδ

2 , R|Γw = Pr , (3.63)

where the condition on R can be substituted by the equivalent condition
εθ|Γw = 2νktw/Pr δ

2. The boundary conditions on Γ1, Γ2 and Γ3 are simple
symmetric conditions (i.e., dΦ/dn = 0).
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Triangular rod bundle with P/D = 1.3

The case with χ = 1.3 may be considered a reference configuration since
most experimental data are available in the pitch-to-diameter range χ = 1.2-
1.5. For this case our computational domain is characterized by D = 8.4

0 0.2 0.4 0.6 0.8 1
y*

0

0.05

0.1

0.15

0.2

θ
∗

AB
C

D
E

F

0 0.2 0.4 0.6 0.8 1

x*

0

0.05

0.1

0.15

0.2

θ
∗

A

B

C

D

E

F

Figure 3.22: Triangular rod bundle with χ = 1.3. Non-dimensional temper-
ature θ∗ over the vertical line A-B (left) and horizontal line B-C (right) for
Pe ≈ 360 (A) , 530 (B), 750 (C), 1030 (D) 1470 (E) and 1970 (F).

Figure 3.23: Triangular rod bundle with χ = 1.3. Non-dimensional root-
mean-square temperature fluctuation θrms for Pe ≈ 360 (A), 530 (B), 1470
(E) and 1970 (F).
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mm and P = 1.3, so D = 10.66 mm. The characteristic physical properties
are defined in Table 3.1 and the equivalent hydraulic diameter Dh ≈ 7.07
mm. Six different simulations with Re ≈ 14550 (A), 21200 (B), 30100 (C),
41050 (D) 58700 (E) and 78700 (F) are presented, which correspond to an
average velocity range of 0.25 − 2.0 m/s in the considered geometry. These
cases correspond to the mean velocity field v ≈ 0.336 (A), 0.534 (B), 0.758
(C), 1.033 (D), 1.482 (E) and 1.92 (F) with corresponding Peclet numbers
Pe ≈ 360 (A) , 530 (B), 750 (C), 1030 (D) 1470 (E) and 1970 (F).

In order to analyze the temperature behavior, the solution T of the fully
developed flow is written as a sum of three terms

T = θ + Tc + ∆Tm z , (3.64)

where Tc is the constant temperature at the center of the inlet of the trian-
gular rod bundle (z = 0) and ∆Tm the linear increase of temperature per
unit of length in the vertical direction. In fully developed flow with constant
heat flux on the wall the temperature grows uniformly on horizontal sections
and linearly along the vertical direction. The slope of the linear growth ∆Tm
can be easily computed with an energy balance as ∆Tm = q̇/(Cpṁ) where
q̇ is the heat flux on the wall and ṁ the mass flux through the triangular
bundle. The non-dimensional value of temperature may be obtained in many
ways. In this work we divide the temperature by qDeq/λ, where q is the heat
surface flux, Deq the hydraulic diameter and λ the thermal conductivity. The
non-dimensional temperature θ∗ is therefore defined by θ∗ = θ λ/(qD). This
non-dimensional variable θ∗ resembles the inverse of the local Nusselt num-
ber. In the rest of the section we also set the inlet bundle center temperature
Tc to zero.

In Figure 3.22 the non-dimensional temperature θ∗ is shown over the
lines A-B and B-C for Pe ≈ 360 (A), 530 (B), 750 (C), 1030 (D), 1470(E),
1970 (F). The vertical line A-B is shown on the left and the horizontal line
B-C on the right. At the point A the variable θ∗ is zero, then increases
to reach the middle point of the triangle side (B) and the wall point C.
The temperature fluctuations are shown in Figures 3.23-3.24 by the non-
dimensional root square mean temperature. We define the non-dimensional
root square mean temperature θrms as θrms = λ

√
2 kθ/qDeq. In Figure 3.23

one can see the non-dimensional root-mean-square temperature fluctuation
θrms for the cases (A), (B), (E) and (F). The increasing values of Pe are
reported from top-left to right-bottom. In the center of the triangular bundle
kθ has a local minimum and in the region between the center and the wall
reaches its maximum. More details on temperature fluctuations can be seen
in Figure 3.24 where the non-dimensional root-mean-square temperature θrms
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Figure 3.24: Triangular rod bundle with χ = 1.3. Non-dimensional root-
mean-square temperature fluctuation θrms over the vertical line A-B (left)
and horizontal line B-C (right) for Pe ≈ 530 (B), 750 (C), 1030 (D).

Figure 3.25: Triangular rod bundle with χ = 1.3. Turbulent Prandtl number
Prt for Pe ≈ 360 (A), 530 (B), 1470 (E) and 1970 (F).

is shown over the vertical line A-B and over the horizontal line B-C on the
right and on the left respectively for the cases (B), (C) and (D). At the center
point A, θrms is minimum, then it reaches a maximum approximately in the
middle point of the segment A-B to decrease again to a new local minimum
at B. Along the segment B-C, θrms reaches a maximum and tends to the
boundary conditions θrms = 0 at the wall point C.
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Figure 3.26: Triangular rod bundle with χ = 1.3. Turbulent Prandtl number
Prt over the vertical line A-B (left) and horizontal line B-C (right) for Pe ≈
360 (A) Pe ≈ 530 (B), 1470 (E) and 1970 (F).

Figure 3.27: Triangular rod bundle with χ = 1.3. Time ratio R for Pe ≈ 360
(A), 530 (B), 1470 (E) and 1970 (F).

The turbulent Prandtl number Prt is shown in Figures 3.25-3.26. In Fig-
ure 3.25 one can see the behavior of turbulent Prandtl number for Pe = 360
(A), 530 (C), 1470 (E) and 1970 (F). The cases with increasing Pe num-
ber are reported from top-left to right bottom. In Figure 3.26 the turbulent
Prandtl number Prt is shown over the lines A-B and B-C for Pe ≈ 530 (B),
750 (C), 1470 (E) and 1970 (F). The turbulent Prandtl number Prt on the
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Figure 3.28: Triangular rod bundle with χ = 1.3. Time ratio R over the
vertical line A-B (left) and horizontal line B-C (right) for Pe ≈ 360 (A), 530
(B), 1470 (E) and 1970 (F).

vertical line A-B is shown on the left and the horizontal line B-C on the
right as a function of the non-dimensional path. In the first case the value 0
corresponds to point A and the value 1 to the point B. It is worth to remark
that the turbulent Prandtl number Prt is not constant but it shows a peak
near the wall.

The time ratio R is defined as R = τt/τu = ε kθ/(εθ k) and it is a key
parameter to define the turbulent Prandtl number and therefore the thermal
diffusivity coefficient αt. The time ratio R is shown in Figures 3.27-3.28 for
different cases. In Figure 3.27 the ratio R can be seen over the bundle section
for Pe ≈ 360 (A), 530 (B), 1470 (E) and 1970 (F). We can see from this Figure
that for higher velocity the time ratio R increases. A more detailed view is
reported in Figure 3.28 where R is shown over the lines A-B and B-C for
Pe ≈ 530 (B), 750 (C), 1030 (D). On the left of Figure 3.28 one can see the
time ratio R on the line A-B as a function of the non-dimensional path. At 0
(point A) R has a local minimum. Then it reaches a maximum to approach
again to a local minimum value at 1 (point B). Along the B-C segment R
takes higher values near the wall and decreases to the boundary conditions
on the wall itself.

In Figures 3.29-3.31 one can see a comparison of non-dimensional tem-
perature θ∗ for Pe = 1230 and different turbulence models: kθ-εθ and simple
eddy diffusivity model (SED) with different constant Prt. We briefly recall
the definition of the SED model. This model is based on the assumption of a
constant turbulent Prandtl number which allows a direct computation of the
turbulent thermal diffusivity from the eddy viscosity through equation (2.2).
The value of Prt has to be defined and here we use Prt = 1.5 and Prt = 2.
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Figure 3.29: Triangular rod bundle with χ = 1.3. Non-dimensional temper-
ature θ∗ for Pe = 1230 and different turbulence models: (from the top left
to the bottom right) kθ-εθ, SED model with Prt = 1.5 and with Prt = 2.0.
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Figure 3.30: Triangular rod bundle with χ = 1.3. Non-dimensional tem-
perature θ∗ over the vertical line A-B (left) and horizontal line B-C (right)
for Pe = 1230 (D) and different turbulence models: (from the top left to
the bottom right) kθ-εθ (M), SED model with Prt = 1.5 (S1.5) and with
Prt = 2.0 (S2.0).

In Figure 3.29, from the left top to the bottom right, non-dimensional
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Figure 3.31: Triangular rod bundle with χ = 1.3. On the left non-
dimensional temperature θ∗ over the arch C-D with Pe = 1230 for different
turbulence models: kθ-εθ (M), SED model with Prt = 1.5 (S1.5) and with
Prt = 2.0 (S2.0). On the right non-dimensional temperature θ∗ over the arch
C-D for different Pe ≈ 270 (A) , 530 (B), 750 (C), 1030 (D) 1470 (E) and
1970 (F).

< w >av (m/s) Pe < Prt >av

0.267 266 2.64
0.366 364 2.49
0.534 531 2.18
0.757 752 1.91
1.033 1026 1.79
1.238 1230 1.75
1.482 1468 1.73
1.92 1968 1.68

Table 3.2: Triangular rod bundle with χ = 1.3. Average turbulent Prandtl
number < Prt >av as a function of average axial velocity < w >av.

temperature θ∗ is shown on the outlet exit section for three different cases:
kθ-εθ, SED model for Prt = 1.5 and Prt = 2.0. The contour lines are obtained
by dividing the range in ten equal intervals. The temperature distribution
of the kθ-εθ model is between the SED model with Prt = 1.5 and Prt = 2.0.
In Figure 3.30 the same non-dimensional temperature θ∗ is shown over the
lines A-B (left) and B-C (right) respectively, while in Figure 3.31 the non-
dimensional temperature θ∗ is plotted over the arch C-D. On the left of
this Figure the temperature distributions for these different cases are labeled
by M (kθ-εθ), S1.5 (SED model for Prt = 1.5) and S2.0 (SED model for
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Figure 3.32: Triangular rod bundle with χ = 1.3. Nusselt number as a
function of Peclet number (left) from Friedland (F), Ushakov (U), Graber
(G), Mikityuk (MI) correlations and k-ε-kθ-εθ model (M) and for different
turbulence models (right): k-ε-kθ-εθ (M), SED model with Prt = 1.5 (S1.5)
and with Prt = 2 (S2.0).

Prt = 2.0).
The computation of the Nu number allows us to compare the results

obtained with the k-ε-kθ-εθ model and experimental correlations. The Nusselt
number is computed with the bulk temperature Tb and the average wall
temperature Twm as

Nu =
q̇ Deq

(Twm − Tb)λ
Tb =

∫
Ω
T v · n dΩ∫

Ω
v · n dΩ

Twm =

∫
Γw
T dΓ∫

Γw
dΓ

. (3.65)

We remark that the temperature is not constant on the rod wall and the
integral (3.65) should be computed with care. On the right of Figure 3.31
the non-dimensional temperature θ∗ over the arch C-D is shown for Pe ≈ 270
(A), 530 (B), 750 (C), 1030 (D) 1470 (E) and 1970 (F). As one can see from
this figure the rod average temperature Twm changes with Pe number and
it is a function of the angle. By observing the behavior of the temperature
along the arch C-D it is difficult to see a point that can be representative of
the average rod temperature, so an integral as the one reported in (3.65) has
to be computed precisely.

Finally the Nusselt number for the case χ = P/D = 1.3 is investigated
and compared with different correlations. On the left of Figure 3.32 the Nus-
selt number as a function of Peclet number from Friedland (F), Ushakov (U),
Graber (G), Mikityuk (MI) correlations is shown. It is important to remark
that Ushakov (U) and Graber (G) correlations are in very good agreement
with the k-ε-kθ-εθ model (M). It is easy to see also how the other heat transfer
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Pe = 750
Model Nu

Friedland (F) 17.52
Prt = 1.5 15.72
Prt = 2 14.63

k-ε-kθ-εθ 14.63
Ushakov (U) 14.24
Graber (G) 13.71

Mikityuk (MI) 13.23

Pe = 1030
Model Nu

Friedland (F) 21.25
Prt = 1.5 18.20

k-ε-kθ-εθ 17.07
Prt = 2 16.74

Ushakov (U) 16.71
Graber (G) 16.30

Mikityuk (MI) 15.65

Pe = 1470
Model Nu

Friedland (F) 22.56
Prt = 1.5 19.09

Ushakov (U) 17.87

k-ε-kθ-εθ 17.78
Graber (G) 17.49
Prt = 2 17.43

Mikityuk (MI) 16.76

Table 3.3: Triangular rod bundle with χ = 1.3. Nusselt number for differ-
ent turbulence models and comparison with different correlations: k-ε-kθ-εθ,
SED (Prt = const) model, Ushakov, Graber and Mikityuk (data fitting)
correlation.

turbulence models perform on the same cases. On the right of Figure 3.32
the Nusselt number is reported as a function of Peclet for k-ε-kθ-εθ (M) and
SED model with Prt = 1.5 (S1.5), Prt = 2 (S2.0). It can be seen that the
simple eddy viscosity (SED) model with an appropriate coefficient Prt in the
range of (1.5 − 2) can give quite good results in this geometry and for this
range of Peclet. The k-ε-kθ-εθ model lies between the line with Prt = 2 and
Prt = 1.5. This model approaches to Prt = 1.5 when Pe number increases.
An approximate evaluation of the constant turbulent Prandtl number Prt
for the SED model can be found in many papers [26, 27] but a guess value
can be taken also from the average Prt number computed from the k-ε-kθ-εθ
model as reported in Table 3.2 on the bottom. The values reported in Table
3.2 are close to those required approximately by the SED model. In this
case the average values of the Prt decrease with higher velocity as required
for SED simple eddy diffusivity models used with constant values. For a
detailed comparison among turbulence models and experimental correlations
one can refer to Table 3.3. Three cases are reported for Pe = 750, 1030 and
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1470. In Table 3.3 we report the Nusselt number calculated with k-ε-kθ-εθ
and SED (Prt = const) model, Ushakov, Graber and Mikityuk correlations.
It is worth to remark that the k-ε-kθ-εθ model gives very good results for
all these three cases and the Nusselt number is located between the values
computed with the SED model with Prt = 2.0 and Prt = 1.5.

Triangular rod bundle with different χ = P/D

In this section we present the results of triangular rod bundle heat transfer
simulations with different χ. In Figure 3.33 the geometries are shown for
the studied pitch-to-diameter ratios χ = 1.2, 1.3 and 1.5. The equivalent
hydraulic diameter is very different between these geometries and this can
be appreciated in Figure 3.33.

Since we have already presented the results for χ = 1.3 in the previous

Figure 3.33: Triangular rod bundle geometries for different χ. From left to
right χ = 1.2, 1.3 and 1.5.
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Figure 3.34: Triangular rod bundle with χ = 1.2. Non-dimensional temper-
ature θ∗ over the vertical line A-B (left) and horizontal line B-C (right) for
Pe ≈ 340 (A) , 500 (B), 680 (C), 980 (D) 1210 (E) and 1360 (F).
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Figure 3.35: Triangular rod bundle with χ = 1.2. Non-dimensional temper-
ature θ∗ for Pe ≈ 980 and three different turbulence models: (from the top
left to the bottom right) kθ-εθ, SED model for Prt = 1.5 and Prt = 2.0.
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Figure 3.36: Triangular rod bundle with χ = 1.2. Non-dimensional tem-
perature θ∗ over the line A-B (left) and B-C (right) for Pe ≈ 980 and
three different turbulence models: kθ-εθ (M), Kays (K), and SED model for
Prt = 1.5 (S1.5) and Prt = 2.0 (S2.0).

Section it is important to compare now the results for χ = 1.2 and 1.5. First
we analyze the case χ = 1.2, which is characterized by the same diameter
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Figure 3.37: Triangular rod bundle with χ = 1.2. On the left Nusselt
number as a function of Peclet number from Friedland (F), Ushakov (U),
Graber (G), Mikityuk (MI) correlations and k-ε-kθ-εθ model (M). On the
right the Nusselt number as a function of Peclet number for k-ε-kθ-εθ (M),
Kays (K) and SED model with Prt = 1.5 (S1.5), Prt = 2 (S2.0).

D = 8.4 mm but different pitch P = 9.84 mm, that results in an equivalent
hydraulic diameter Dh ≈ 4.82 mm. The characteristic physical properties
are the same defined in Table 3.1 with Pr = 0.025. For this configuration
we consider cases with average velocities in the range of 0.5 to 2 m/s. Six
different simulations with Re ≈ 13470 (A), 19780 (B), 27310 (C), 39180 (D)
48260 (E) and 54470 (F) are presented. These cases correspond to the mean
velocity field v ≈ 0.497 (A), 0.73 (B), 1.008 (C), 1.446 (D), 1.781 (E) and
2.01 (F) with corresponding Peclet numbers Pe ≈ 340 (A) , 500 (B), 680
(C), 980 (D) 1210 (E) and 1360 (F).

The non-dimensional temperature θ∗ for χ = 1.2 is reported in Figure
3.34 for these six cases over the lines A-B and B-C (refer to Figure 3.20
for the location of these lines). The distribution of θ∗ along the vertical
line A-B is reported on the left of Figure 3.34 and along B-C on the right.
With this geometry the drop in temperature is higher if compared with the
case χ = 1.3 which implies a less efficient heat transfer. This fact can be
explained by comparing the equivalent hydraulic diameters of these different
geometries.

Different turbulence models have been used for these simulations and
a comparison of the temperature is reported in Figures 3.35-3.36 for the
test case with Pe = 980. In Figure 3.35 one can see the non-dimensional
temperature θ∗ over the section of the triangular rod bundle for three different
turbulence models. From the top left to the bottom right the temperature
profiles and the corresponding contour lines for kθ-εθ, SED model with Prt =



82 Chapter 3. Turbulence model k-ε-kθ-εθ

0 0.2 0.4 0.6 0.8 1
y*

0

0.05

0.1

0.15

0.2

θ
∗

AB
C

E
D

0 0.2 0.4 0.6 0.8 1

x*

0

0.05

0.1

0.15

0.2

θ
∗

A

B

C

E
D

Figure 3.38: Triangular rod bundle with χ = 1.5. Non-dimensional temper-
ature θ∗ over the vertical line A-B (left) and the horizontal line B-C (right)
for Re ≈ 17800 (A), 26100 (B), 40400 (C), 53300 (D) and 68600 (E).

1.5 and Prt = 2.0 are shown. The contour lines are obtained by dividing the
θ∗ range in ten equal intervals over the section. The kθ-εθ model shows
a temperature that lies between the SED models with constant turbulent
Prandtl number 2.0 and 1.5. We can see the temperature distribution θ∗ in
more details in Figure 3.36 over the line A-B and B-C on the left and on
the right, respectively. In this Figure three different turbulence models are
compared: the kθ-εθ (M) the simple diffusivity model with Prt = 1.5 (S1.5)
and Prt = 2.0 (S2.0).

Finally we show the Nusselt number for this geometry calculated using
the kθ-εθ and SED model and compare it with available experimental correla-
tions for the heat transfer, namely Friedland, Ushakov, Graber and Mikityuk
correlations for χ = 1.2. In Figure 3.37 the Nusselt number is plotted as a
function of Peclet number. On the left a comparison among Friedland (F),
Ushakov (U), Graber (G) and Mikityuk (MI) experimental correlations and
k-ε-kθ-εθ model (M) is shown. On the right the comparison is between differ-
ent turbulence models: k-ε-kθ-εθ (M) and SED model with Prt = 1.5 (S1.5)
and Prt = 2 (S2.0). Friedland correlation (with ψ = 1) predicts a very high
heat transfer, while all the other correlations and turbulence models show
a similar behavior, except from Mikityuk correlation which predicts a lower
Nusselt number.

The triangular rod bundle case with χ = 1.5 is characterized by D = 8.2
mm and P = 12.3 mm which corresponds to an equivalent hydraulic diameter
Dh = 12.1 mm. This high hydraulic diameter allows a high heat transfer and
a more uniform temperature distribution in the section of the rod bundle.
In this geometry five different simulations with Re ≈ 17800 (A), 26100 (B),
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Figure 3.39: Triangular rod bundle with χ = 1.5. Non-dimensional temper-
ature θ∗ for Re ≈ 53300 (D) and three turbulence models: from the top left
to the bottom right, kθ-εθ, SED model with Prt = 1.5 and Prt = 2.0.
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Figure 3.40: Triangular rod bundle with χ = 1.5. Non-dimensional temper-
ature θ∗ over the lines A-B (left) and B-C (right) for Re ≈ 53300 (D) and
three turbulence models: from the top left to the bottom right, kθ-εθ (M),
SED model with Prt = 1.5 (S1.5) and Prt = 2.0 (S2.0).

40400 (C), 53300 (D) and 68600 (E) have been performed. They correspond
to a simulated velocity range 0.26-1 m/s in the rod bundle configuration.
The Peclet numbers for these five cases are Pe ≈ 450 (A), 650 (B), 1010 (C),
1340 (D) and 1720 (E). In order to characterize the temperature distribution,
in Figure 3.38 we have shown the non-dimensional temperature θ∗ over the
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Figure 3.41: Triangular rod bundle with χ = 1.5. Nusselt number as
a function of Peclet number for Friedland (F), Ushakov (U), Graber (G),
Mikityuk (MI) correlations and k-ε-kθ-εθ model (M).
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Figure 3.42: Non-dimensional temperature θ∗ over the arch C-D for χ = 1.2
on the left for all the different test cases A-F (Pe range of 340 to 1360) and
for χ = 1.5 on the right for the different cases A-E (Pe range of 450 to 1720).

lines A-B (left) and B-C (right) for all the cases simulated. As one can see,
the temperature is lower and more uniform on the domain if compared with
the 1.2− 1.3 cases.

A comparison among different turbulence models is reported in Figures
3.39-3.40 for the case D with Pe ≈ 1340. In Figure 3.39 the non-dimensional
temperature θ∗ is shown over a triangular rod section for three different
models: k-ε-kθ-εθ and simple eddy diffusivity (SED) model with Prt = 1.5
and 2. In Figure 3.39 the results obtained with the k-ε-kθ-εθ and the SED
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< w >av (m/s) Pe < Prt >av

0.497 340 2.2
0.73 500 2.125
1.008 680 1.94
1.446 980 1.789
1.781 1200 1.7388
2.01 1360 1.7218

< w >av (m/s) Pe < Prt >av

0.2615 450 2.435
0.3824 650 2.09
0.592 1010 1.871
0.7817 1330 1.723
1.006 1720 1.6688

Table 3.4: Average axial velocity < w >av, Peclet number and average
turbulent Prandtl number < Prt >av for χ = 1.2 (left) and 1.5 (right).

model with constant turbulent Prandtl number Prt = 1.5 and Prt = 2.0 are
reported from the top left to the bottom right for the test case with Re ≈
53300 (D). The θ∗ non dimensional temperature is reported with equally
subdivided contours for all the turbulence models used. In Figure 3.40 the
non-dimensional temperature θ∗ is plotted over the vertical line A-B on the
left and over the horizontal line B-C on the right. The results are labeled
(M) for the k-ε-kθ-εθ and (S1.5) and (S2.0) for the SED model with constant
turbulent Prandtl number of 1.5 and 2.0. In this Figure it can be seen that
the SED model with these two values of turbulent Prandtl number shows a
similar behavior as the four parameter k-ε-kθ-εθ model.

We can now present a comparison between the heat transfer predicted by
experimental correlations and by the four parameter turbulence model for
the triangular rod bundle with χ = 1.5. In Figure 3.41 the Nusselt number
is shown as a function of Peclet number for Friedland (F), Ushakov (U),
Graber (G) and Mikityuk (MI) correlations and for the k-ε-kθ-εθ turbulence
model (M) for comparison. The experimental correlations give quite similar
results for this case except from Friedland correlation which is quite higher.
We remark that the Friedland correlation values have been computed with
ψ = 1 (Prt = 1). The four parameter model predicts a little lower Nusselt
number value for higher Peclet numbers than that of the Ushakov correlation
while for intermediate Peclet numbers gives similar results.

It is very interesting to compare temperature and Nusselt number among
different geometries of triangular rod bundles in order to understand better
the different heat transfer behavior. This comparison is carried on in Figures
3.42-3.43 and Tables 3.4-3.5. In Figure 3.42, the non-dimensional temper-
ature θ∗ over the arch C-D is shown for different χ and for all the cases
simulated. On the left θ∗ is shown for χ = 1.2 and on the right for χ = 1.5.
The cases with χ = 1.2 show a higher temperature on the wall than cases
with χ = 1.5, considering similar Peclet numbers. Moreover, the cases with
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v = 1.45m/s Pe = 980
Model Nu

Friedland (A) 19.02
Prt = 1.5 14.62

k-ε-kθ-εθ 13.89
Graber (D) 13.83

Ushakov (C) 13.67
Prt = 2 13.62

Mikityuk (E) 11.28

v = 0.78m/s Pe = 1330
Model Nu

Friedland (A) 23.57
Mikityuk (E) 20.18
Prt = 1.5 20.00

Graber (D) 19.33
Ushakov (C) 19.19

k-ε-kθ-εθ 18.87
Prt = 2 18.57

Table 3.5: Nusselt number calculated with different turbulence models and
with experimental correlations for reference cases χ = 1.2 and 1.5. On the
left χ = 1.2 test case with Pe = 980 and on the right χ = 1.5 test case with
Pe = 1330.
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Figure 3.43: Comparison between triangular bundles with different χ. Nus-
selt number from k-ε-kθ-εθ model for χ = 1.2 (M1.2), 1.3 (M1.3) and 1.5
(M1.5) and from Ushakov experimental correlation for χ = 1.2 (U1.2), 1.3
(U1.3) and 1.5 (U1.5).

χ = 1.2 show a much variable temperature on the wall, while this is nearly
constant for the cases with χ = 1.5. Care must be taken when integrating the
wall temperature over the arch for calculating the Nusselt number over the
section for geometries with low χ because of this high variability. This is true
also for experimental measurements in order to obtain a proper definition of
the wall temperature.

In Table 3.4 turbulent Prandtl number calculated with the k-ε-kθ-εθ model
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P/D Min err [Nu] Max err [Nu] range[Pe]
1.2 0 0.9 350-1800
1.3 0 0.6 360-2200
1.5 0 1.2 400-2800

Table 3.6: Errors for different pitch-to-diameter ratio χ between the Ushakov
correlation and the k-ε-kθ-εθ turbulence model.

and averaged over the section are reported for all the cases simulated with
χ = 1.2 on the left and with χ = 1.5 on the right. The average Prt decreases
with increasing Peclet number and it remains in the range 1.6 − 2.4 for all
the test cases. The Nusselt number is compared for different correlations and
turbulence models in Table 3.5 between two cases with different χ. It can
be seen from these data that the Nusselt number calculated with the four
parameter model lies between the results obtained with the SED model with
Prt = 1.5 and Prt = 2.

Finally in Figure 3.43 the Nusselt numbers calculated with the k-ε-kθ-
εθ turbulence model are shown with the Ushakov correlation for different
pitch-to-diameter ratios. An increase of the parameter χ increases the Nus-
selt number. This Figure shows that the four parameter turbulence model
predicts a heat transfer quite similar to the one predicted by Ushakov corre-
lation. In Table 3.6 we show the maximum and minimum errors between the
Ushakov correlation and the k-ε-kθ-εθ turbulence model for different pitch-
to-diameter ratios χ = P/D and Pe numbers. The Nusselt number differs
with slightly higher Nu in the low Peclet range and lower Nu in the high
Peclet range. Since Ushakov correlation is now the most recommended cor-
relation for liquid metal flows in triangular rod bundles the four parameter
model can be considered a valid tool for the prediction of heat transfer for
this geometry in this range of Pe numbers.

3.2.4 Square rod bundle

In this section we report the numerical results obtained for the simulations
of fully developed turbulent flows of a heavy liquid metal with Pr = 0.025
in square lattice bare rod bundle geometries with different pitch-to-diameter
P/D ratio.

The physical properties and geometrical parameters employed for the
simulations are reported in Table 3.7. These data are representative of a
Lead-Bismuth Eutectic at the reference temperature of about 520 K with
a corresponding Prandtl number of 0.025 [34]. In these simulations all the
physical properties are considered to be constant with temperature.
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Square lattice bare rod bundle with χ = 1.22

The first geometry we consider is characterized by χ = 1.22 with a corre-
sponding hydraulic diameter of 7.3 mm. We made six simulations with an
average fluid velocity of 0.51 (A), 0.74 (B), 1.04 (C), 1.48 (D), 1.82 (E) and

Parameter Symbol Value Unit of Measure
Dynamic Viscosity µ 0.00184 Pa s

Mass Density ρ 10340 Kg/m3

Thermal Conductivity λ 10.7272 W/(m K)
Specific Heat Capacity Cp 145.75 J/(Kg K)

Rod Diameter D 8.2 mm
P/D Ratios χ 1.22 - 1.3 - 1.5

Table 3.7: Physical properties and geometrical parameters employed in the
simulations.

Figure 3.44: Square lattice bare rod bundle with χ = 1.22. Velocity, turbu-
lence kinetic energy and temperature for the test case C with Pe = 1070.
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Figure 3.45: Square lattice bare rod bundle with χ = 1.22. Average square
temperature fluctuation and its dissipation for the test case C with Pe =
1070.

Figure 3.46: Square lattice bare rod bundle with χ = 1.22, test case C. Non-
dimensional temperature θ+ for different turbulence model: from left to right
four parameters turbulence model and SED model with Prt = 1.5 and 2.

2.22 m/s (F). The corresponding Peclet numbers are approximately 520 (A),
760 (B), 1070 (C), 1520 (D), 1870 (E) and 2280 (F). In Figure 3.44 the ve-
locity, the turbulent kinetic energy and the temperature are visible in the
three-dimensional geometry for the test case C with Pe = 1070. The geom-
etry is scaled with a factor of 1/100 on the azimuthal axis in order to better
show the results. The flow is simulated as dynamically fully developed, so the
velocity and turbulent kinetic energy are flat along the axis of the channel,
while the thermal development of the flow is visible as the temperature rises
along the channel. In Figure 3.45 the average square temperature fluctuation
and its dissipation are reported on a slice in the fully developed region for
test case C. The main difference with respect to dynamical turbulent vari-
ables is the length of the thermal boundary layer which appears to be very
deep inside the channel. In Figure 3.46 the non-dimensional temperature
θ+ is reported for the test case C with Pe = 1070 to compare different tur-
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Figure 3.47: Square lattice bare rod bundle with χ = 1.22. On the left
non-dimensional temperature θ+ as a function of the angle on the rod arc
for test case C and different turbulence model: four parameter turbulence
model (M) and SED model with Prt = 1.5 (S1.5) and 2 (S2.0). On the right
non-dimensional temperature θ+ as a function of the angle on the arc for all
the test cases studied.

bulence models. The non-dimensional temperature is obtained dividing the
difference T − Tr by (qw · Dh)/λ where qw is the wall heat flux and Dh the
hydraulic diameter. As one can see from this Figure the result of the four pa-
rameter turbulence model shows a maximum temperature that lies between
SED model results obtained with Prt = 1.5 and Prt = 2. As we show in the
following a similar result is obtained in term of Nusselt number. Finally we
report in Figure 3.47 the non dimensional fluid temperature on the rod arc
as a function of the angle in degree unit. The considered arc is an eighth of
the rod total circumference. On the left the non dimensional temperature
θ+ is reported for test case C and for the three different turbulence model,
the four parameter and the SED model with Prt = 1.5 and Prt = 2. On the
right θ+ is reported on the same position for all the test cases studied. It
can be seen from this Figure that the temperature computed with the four
parameter model lies between the temperature obtained with the SED model
with Prt = 2 and 1.5. Moreover as the Peclet number increases the average
temperature on the wall decreases and it becomes more uniform.

As already pointed out the most important heat transfer parameter from
an engineering point of view is the asymptotic Nusselt number of the flow.
We can compute this quantity for different turbulence models and compare
it with the experimental correlations introduced in Section 2.3.3. In Table
3.8 the Nusselt numbers for all the test cases simulated and for the differ-
ent turbulence models are reported. In the last column it is reported the
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Test Case SED Prt = 2 SED Prt = 1.5 Four parameter 〈Prt〉
A 9.13 9.68 9.57 1.616
B 9.96 10.71 10.16 1.511
C 10.95 11.93 11.31 1.431
D 12.36 13.72 12.87 1.421
E 13.27 14.85 13.92 1.400
F 14.16 15.95 14.99 1.395

Table 3.8: Square lattice bare rod bundle with χ = 1.22. Nusselt number
for different turbulence models for all the test cases simulated. In the last
column average turbulent Prandtl number computed with the four parameter
turbulence model.
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Figure 3.48: Square lattice bare rod bundle with χ = 1.22. On the left
asymptotic Nusselt number as a function of Peclet number computed with the
four parameter turbulence model (4P) compared with Subbotin (S), Mikityuk
(M) and Zhukov (Z) correlations. On the right asymptotic Nusselt number as
a function of Peclet number for different turbulence models: four parameter
turbulence model (M) and SED model with Prt = 1.5 (S1.5) and 2 (S2.0).

average turbulent Prandtl number computed with the four parameter tur-
bulence model. It can be seen that the average Prt decreases as the Peclet
number of the flow increases. Moreover it is important to remark that even
if 〈Prt〉 is very close to 1.5 for test case B the resulting Nusselt numbers are
quite different; this is due to the fact that Prt variations over the domain are
more important than its average value. The integral heat transfer is highly
affected by a change of Prt in the region near the wall. However the average
value of Prt can give an overall estimate of the dissimilarity between the
thermal and the dynamical turbulent boundary layers. The Nusselt number
computed with the turbulence models are compared with the experimental
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heat transfer correlations in Figure 3.48. On the left the results obtained
with the four parameter model are compared with Subbotin, Mikityuk and
Zhukov correlations. The BREST report correlation is omitted here because
of its similarity with Zhukov one. On the right the Nusselt number computed
with different turbulence models are reported and compared. The Nusselt
numbers computed with the four parameter model lie between the experi-
mental correlations. Moreover as the constant Prt of SED model decreases
a higher heat transfer is predicted.

Square lattice bare rod bundle with χ = 1.3

The second geometry we analyze is the square lattice bare rod bundle with
pitch-to-diameter ratio χ = 1.3. The rod diameter is kept constant at 8.2 mm

Test Case < w > [m/s] Pe 〈Prt〉
A 0.442 590 1.615
B 0.574 760 1.506
C 0.925 1230 1.423
D 1.19 1580 1.398
E 1.56 2070 1.360
F 1.96 2610 1.351

Table 3.9: Square lattice bare rod bundle with χ = 1.3. Peclet numbers and
average velocities of the six test cases studied. In the last column average
turbulent Prandtl number for the four parameter turbulence model.

Figure 3.49: Square lattice bare rod bundle with χ = 1.3. Average square
temperature fluctuation and its dissipation for the test case D with Pe =
1580.
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Figure 3.50: Square lattice bare rod bundle with χ = 1.3. Non-dimensional
temperature θ+ on the rod arc as a function of the angle for all the test cases
studied.
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Figure 3.51: Square lattice bare rod bundle with χ = 1.3. On the left
asymptotic Nusselt number as a function of Peclet number computed with the
four parameter turbulence model (4P) compared with Subbotin (S), Mikityuk
(M) and Zhukov (Z) correlations. On the right asymptotic Nusselt number as
a function of Peclet number for different turbulence models: four parameter
turbulence model (M) and SED model with Prt = 1.5 (S1.5) and 2 (S2.0).

so the channel has a hydraulic diameter of 9.4 mm. We have studied six test
cases with average velocities in the range of 0.4 to nearly 2 m/s. The Peclet
numbers corresponding to the average velocities in our geometrical configu-
ration for all the test cases are reported in Table 3.9 in the first columns. In
the last column of the same Table the average turbulent Prandtl number in
the fully developed region as computed with the four parameter turbulence
model is reported for all the test cases. We remark the decreasing of Prt
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with increasing Pe as it happens in the test cases with χ = 1.2. In Figure
3.49 the averaged square temperature fluctuation kθ and its dissipation are
reported on a slice for the test case D with Pe = 1580.

We can now analyze the temperature behavior on the rod wall for this
geometry. In Figure 3.50 we report the non-dimensional temperature θ+

obtained with the four parameter model as a function of the angle for all the
six test cases. The mean values are lower for this geometry with respect to
χ = 1.2 cases, and the temperature slope is smoother. Indeed it is known that
with lower pitch-to-diameter ratios the temperature on the rod is less uniform
and so more care has to be taken from an experimental point of view when
low pitch-to-diameter geometries are considered because the measured wall
temperature could not be a good estimate of the average wall temperature.

Finally we report and compare the asymptotic Nusselt numbers as com-
puted with the SED and the four parameter models and as predicted by
experimental heat transfer correlations. In Figure 3.51 on the left the Nus-
selt number computed with the four parameter model is compared with the
experimental heat transfer correlations by Subbotin, Mikityuk and Zhukov.
The predictions of the turbulence model lie in between the experimental cor-
relations. However there is a quite different slope in the line of Nu(Pe) given
by the numerical results with respect to the experimental correlations. On
the right of Figure 3.51 a comparison between turbulence models is reported.
The results of the four parameter model lie between the results of the SED
model with Prt = 1.5 and 2. Starting from an average Prt ≈ 2 computed
by the four parameter model with a Nusselt number very similar to the one
predicted by the SED model with Prt = 2, as the average Prt decreases the
heat transfer predicted increases, tending to be more close to the SED model
with Prt = 1.5. The same behavior of the SED model as noted above is
found in this case.

Square lattice bare rod bundle with χ = 1.5

The last geometry we analyze is the square lattice bare rod bundle with
χ = 1.5. This channel has P = 6.15 mm and Dh = 15.3 mm. The hydraulic
diameter of this last geometry is high and this results in a higher heat transfer.
In Figure 3.52 the average square temperature fluctuation and its dissipation
are reported for the test case D with Pe = 2210. In this Figure it is visible
the difference in the geometry shape and that the maximum of the average
square temperature fluctuation is nearer to the rod wall, more similar to
the turbulent specific kinetic energy. We performed seven test cases in this
geometry with a range of Peclet number of 700 to 3700. The corresponding
average velocities are reported in the second column of Table 3.10. In the
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Figure 3.52: Square lattice bare rod bundle with χ = 1.5. Average square
temperature fluctuation and its dissipation for test case D with Pe = 2210.

Test Case 〈w〉 [m/s] Pe 〈Prt〉
A 0.324 700 1.639
B 0.531 1140 1.444
C 0.774 1660 1.391
D 1.031 2210 1.380
E 1.245 2670 1.364
F 1.525 3280 1.330
G 1.754 3770 1.309

Table 3.10: Square lattice bare rod bundle with χ = 1.5. Peclet numbers
and average velocities of the seven test cases studied. In the last column
average turbulent Prandtl number for the four parameter turbulence model.

last column of the same Table the average turbulent Prandtl numbers are
reported. We see that for low Peclet numbers in this case Prt is higher than
in geometries with lower χ.

In Figure 3.53 on the left the non-dimensional temperature θ+ on the rod
wall is reported as a function of the angle of the arc. We see a very flat
profile due to the large hydraulic diameter of this geometry. For this kind of
geometry the wall temperature can be measured with less care because the
profile is nearly flat. Moreover the average wall temperatures are lower than
in the previous cases. On the right of the same Figure the asymptotic Nusselt
number is reported as a function of Peclet number as computed with the
four parameter turbulence model and as predicted by Subbotin, Mikityuk,
BREST and Zhukov correlations. In this case the BREST report correlation
gives results quite different from Zhukov correlation, so it is reported in
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Figure 3.53: Square lattice bare rod bundle with χ = 1.5. On the left
non-dimensional temperature θ+ on the rod arc as a function of the angle for
all the seven test cases studied. On the right asymptotic Nusselt number as
a function of Peclet number computed with the four parameter turbulence
model (4P) compared with Subbotin (S), Mikityuk (M), BREST (B) and
Zhukov (Z) correlations.

the Figure. The turbulence model seems to be more conservative than the
experimental correlations, with the only exception of BREST report one
which predicts a lower heat transfer for the range of Peclet for which it is
proposed.



Chapter 4

Turbulence model k-ω-kθ-ωθ

This Chapter is devoted to the description of a k-ω-kθ-ωθ four parameter
turbulence model derived from the k-ε-kθ-εθ formulation reported in Chapter
3. In the first Section the derivation of this model is presented together
with some remarks on the improvements made in this new formulation with
respect to k-ε one. Some numerical results are reported in the second Section
and compared with results obtained with the k-ε model, with DNS data and
with experimental correlations for the integral heat transfer.

4.1 Mathematical formulation

For convenience, we summarize briefly here the full mathematical model of
the RANS equations for incompressible heavy liquid metal flows. The RANS
equations read

∇ · u = 0 , (4.1)

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ · σ −∇ · τ + ρg , (4.2)

ρCp

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · q−∇ · qθ +Q , (4.3)

where u is the averaged velocity of the fluid and T is the averaged temper-
ature. The tensors σ and q are the usual viscous stress and heat flux and
they are modeled using Navier-Stokes constitutive law for viscous fluids and
Fourier law for heat conduction.

σ := −pI + µD with D := ∇u +∇uT (4.4)

q := −λ∇T . (4.5)

97
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Two new terms appear after the averaging process, namely the Reynolds
stress tensor τ and the turbulent heat flux qθ, defined as the averaged prod-
uct of the fluctuating components of velocity with itself and velocity with
temperature. These terms are calculated as

τ = ρu′u′ , qθ = ρCpu′T ′ . (4.6)

Instead of solving the transport equations for the Reynolds stress tensor
and for the turbulent heat flux we approximate these terms with the eddy
diffusivity model as

τ = −νt
(
∇u +∇uT

)
+

2k

3
I , (4.7)

qθ = −αt∇T , (4.8)

where the eddy diffusivity of momentum νt and the heat eddy diffusivity
αt must be properly defined in the turbulence model. We assume them as a
function of the turbulence kinetic energy k and two characteristic time scales,
namely τlu, for dynamical turbulence, and τlθ, for thermal turbulence. The
eddy viscosity and the eddy diffusivity are then defined as

νt := Cµ kτlu , αt := Cθ kτlθ , (4.9)

where Cµ = 0.09 and Cθ = 0.1 = Cµ/0.9. The ratio between the two eddy
diffusivities is defined as the turbulent Prandtl number, which is Prt = νt/αt.

The time scale of dynamical turbulence is defined in the same way as in
Chapter 3, namely

τlu = f1µA1µ + f2µA2µ , (4.10)

where the functions f1µ , A1µ, f2µ and A2µ are appropriate for modeling the
near wall behavior. We set

f1µ = (1− exp(−0.0714Rδ))
2 (4.11)

A1µ = τu (4.12)

f2µ = f1µ exp(−2.5× 10−5R2
t ) (4.13)

A2µ = τu
5

R
3/4
t

(4.14)

where Rt = k2/νε and Rδ = δ(εν)1/4/ν with δ the distance from the wall.
The time scale of thermal turbulence shows slight changes in the values of
some constants with respect to the one defined in Chapter 3

τlθ = f1θ B1θ + f2θ B2θ , (4.15)
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with f1θ, B1θ, f2θ and B2θ appropriate functions. We set

f1θ = (1− exp(−0.0714
Rδ√
Pr

)) (1− exp(−0.0714Rδ)) (4.16)

B1θ = τuC∞ (4.17)

f2θ B2θ = τu

(
f2aθ

2R

R + Cγ
+ f2bθ

√
2R

Pr

1.3
√
PrR

3/4
t

)
, (4.18)

where Cγ = 0.3, C∞ = 0.75, f2aθ = f1θ exp(−4·10−6R2
t ), f2bθ = f1θ exp(−2.5·

10−5Rδ
2).

To obtain a k-ω formulation of the turbulence model introduced in Chap-
ter 3 we define the variables ω and ωθ, as the specific dissipation rate of k
and kθ. These new variables are defined as:

ω =
ε

Cµk
, ωθ =

εθ
Cµkθ

. (4.19)

By algebraically substituting the definitions (4.19) in the system of equa-
tions (3.8-3.15-3.24-3.26) we obtain

∂k

∂t
+ u · ∇k = ∇ ·

[(
ν +

νt
σk

)
∇k
]

+ Pk − Cµ k ω , (4.20)

∂ω

∂t
+ u · ∇ω = ∇ ·

[(
ν +

νt
σε

)
∇ω
]

+
2

k

(
ν +

νt
σε

)
∇k · ∇ω+

+ (cε1 − 1)
ω

k
Pk − Cµ (cε2fε − 1)ω2 ,

(4.21)

∂κθ
∂t

+ u · ∇κθ = ∇ ·
[(
α +

αt
σθ

)
∇κθ

]
+ Pθ − Cµ κθ ωθ , (4.22)

∂ωθ
∂t

+ u · ∇ωθ = ∇ ·
[(
α +

αt
σθ

)
∇ωθ

]
+

2

κθ

(
α +

αt
σθ

)
∇κθ · ∇ωθ+

+ (cp1 − 1)
ωθ
κθ
Pθ + cp2

ωθ
k
Pk − (cd1 − 1)Cµω

2
θ − cd2Cµωωθ .

(4.23)

For the k-ω turbulence model the coefficients cε1, cε2 and the function fε are
the same used in the k-ε model. For the kθ-ωθ thermal turbulence model
the coefficient cp2 and the function cd2 are the same used in the kθ-εθ model,
while cp1 and cd1 have been set to 1.025 and 1.1. In a k-ω formulation the
time scales of turbulence can be simply computed as τu = (Cµ ω)−1 and
τθ = (Cµ ωθ)

−1, so the time ratio becomes R = ω/ωθ. Using this model we
can avoid the variables coupling in the boundary conditions which occurs in
k-ε formulation, as we prove now.
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We can study the near wall behavior of the turbulent variables by using
Taylor series expansion near the wall. By applying this expansion to k, ε, kθ
and εθ in the case of zero temperature fluctuations on the wall we obtain the
following expressions

kw =
1

2
a δ2, εw = ν

kw
δ2
, kθw =

1

2
aθ δ

2, εθw = α
kθw
δ2

, (4.24)

where δ is the distance from the wall and a and aθ are constant values that
depend on the velocity and temperature fluctuations. In this case we cannot
impose exact Dirichlet boundary conditions on ε and εθ because the values kw
and kθw are not known a priori. A Neumann boundary condition is imposed
for k and kθ while a Dirichlet boundary condition depending on the value of
k and kθ as computed in the previous iteration is employed for ε and εθ, see
Chapter 3. This algorithm can lead to convergence issues if oscillations of
the solutions on the wall do generate.

The near wall Taylor series expansion of ω and ωθ is

ωw =
2ν

Cµδ2
, ωθw =

2α

Cµδ2
. (4.25)

As can be seen in (4.25) it is now possible to impose exact Dirichlet boundary
conditions for ω and ωθ near the wall because the terms on the right hand
side are known values. In this case we have no coupling between the variables
on the wall boundary condition and the solution of this system is more robust
and stable. As it can be seen, in both formulations the time scale ratio R
on the wall is equal to the molecular Prandtl number of the fluid while the
turbulent kinetic energy k and the mean square temperature fluctuation kθ
tend to zero on the wall.

4.2 Numerical simulations

In the next Sections we report the numerical results of fully developed tur-
bulent flow simulations in different geometries. The physical properties of
the fluid are reported in Table 4.1. These properties are representative of
Lead-Bismuth-Eutectic and other heavy liquid metal fluids with a molecular
Prandtl number of Pr = 0.025. The two geometries studied here are two
simple two dimensional geometries used commonly for model validation pur-
poses. The results are compared with DNS data for the plane channel and
with the experimental correlation by Kirillov for the pipe flow heated with
constant heat flux.
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4.2.1 Plane channel

In this section we report numerical results obtained for a fully developed tur-
bulent flows in plane channel geometry. This geometry is chosen because it is

Physical properties of LBE fluid
Viscosity µ 0.00184 Pa s
Density ρ 10340 Kg/m3

Thermal conductivity λ 10.72 W/(m K)
Heat specific capacity Cp 145.75 J/(Kg K)

Table 4.1: Physical parameters used in the CFD simulations.
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Figure 4.1: Plane case. Mean velocity distribution for Re ≈ 5500 (left) and
Re ≈ 86200 (right) as computed with k-ε and k-ω model.
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Figure 4.2: Plane case. Comparison of the temperature distribution θ+/Pr
obtained with k-ε (left) and k-ω model (right), with DNS data. DNS data are
reported for Reτ = 180 (K180), Reτ = 395 (K395) and Reτ = 640 (K640).
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Figure 4.3: Plane case. Temperature distribution θ+/Pr for different veloc-
ities Re ≈ 5500 (A), 13500 (B), 23250 (C), 40100 (D), 86200 (E), 203900
(F) and 344800 (G). On the left the results were obtained with the k-ε-kθ-εθ
model while on the right the results were obtained with k-ω-kθ-ωθ model

very simple and many DNS data are available for this flow. We consider two
plates located at a distance L = 0.0605 m and with infinite dimensions in the
other directions. On the wall a uniform heat flux of 360000 W/m2 is applied.
We can solve this problem in two dimensions with periodic boundary condi-
tions on the inlet and outlet of the channel, see Section 3.2.1 for more details.
The results of the k-ω-kθ-ωθ model are compared with the ones obtained with
the k-ε-kθ-εθ model and with DNS data from Kawamura database, see [56]
and references therein. The fields in DNS data are usually reported in non
dimensional form. The dimensionless temperature is defined as θ+ = θ/Tτ ,
where Tτ is the friction temperature calculated as Tτ = q/(uτρCp) and θ is
the difference between the temperature and the linear behavior characteristic
of the fully developed flow, θ = T − Tw0 − x∆Tb. Tw0 is the reference inlet
wall temperature which is assumed to be zero. By using the temperature θ
instead of T we can impose periodic boundary conditions on θ when the flow
is fully developed.

Seven simulations have been performed with Reynolds number of Re ≈
5500 (A), 13500 (B), 23250 (C), 40100 (D), 86200 (E), 203900 (F) and 344800
(G). They correspond to the friction Reynolds number of 180 (A), 395 (B),
640(C) , 1010 (D), 2000 (E), 4400 (F) and 7200 (G). In Figure 4.1 the non
dimensional mean velocity profiles obtained with the k-ω and with the k-ε
model u+ = u/uτ are reported as a function of the non dimensional wall
distance y+ = yuτ/ν for two test cases, namely the case Re ≈ 5500 (A) and
Re ≈ 86200 (E). The friction velocity uτ is defined as uτ =

√
τw/ρ with τw

the wall shear stress. The k-ω model reproduces well the linear and logarith-
mic behaviors of the velocity, namely u+ = y+ and u+ = log(y+)/0.4 + 5.
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Figure 4.4: Plane case. The root-mean-square temperature fluctuations θ+
rms

for different Re ≈ 5500 (A), 13500 (B), 23250 (C) and comparison with DNS
corresponding data (K180) and (K395). On the left results with the k-ε
model, on the right k-ω model.
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Figure 4.5: Plane case. Nusselt number (thick line) and DNS values (cross)
for different Peclet numbers. On the left results with the k-ε model, on the
right k-ω model.

Comparing the results obtained with k-ω model with the ones obtained with
k-ε we can observe only a slight difference between them in the buffer region.
In Figure 4.2 the non dimensional temperature θ+ is reported as a function
of y+ and divided by the Prandtl number. The temperature profiles for the
cases Reτ = 180, Reτ = 395 and Reτ = 640, are compared with DNS data
from Kawamura [56]. The data obtained with the four parameter models
agree very well with the DNS ones. The non dimensional temperature pro-
files of all the simulated cases are reported in Figure 4.3. The results obtained
with the k-ω-kθ-ωθ, Figure 4.3 (right), show no relevant differences with the
k-ε-kθ-εθ ones, Figure 4.3 (left).
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The root-mean-square temperature fluctuation θrms =
√

2kθ is an impor-
tant variable needed to evaluate the time ratio R and the turbulent heat
diffusion coefficient αt. In Figure 4.4 the non dimensional θ+

rms = θrms/Tτ is
reported for the k-ε (left) and k-ω (right) formulation of the model and it is
compared with DNS data for Reτ = 180 and 395. Very similar results to DNS
data are obtained with both the turbulence models, a slight difference in the
prediction of the position of the peak can be seen between the two models
but the overall result is very good. The Nusselt number is the most impor-
tant non dimensional number in engineering heat transfer calculations and it
quantifies the heat transfer effectiveness. It is defined as Nu = qDh/(λ∆T )
where Dh is the hydraulic diameter of the geometry and ∆T is the difference
between the average wall temperature and the bulk temperature, defined as
the average temperature on the section of the flow with respect to velocity. In
Figure 4.5 the Nusselt number calculated with the k-ε (left) and k-ω (right)
four parameter turbulence models is reported as a function of Peclet number
Pe = RePr. DNS data are reported as well for comparison. The first two
points matches very well while the third (corresponding to Re ≈ 23250 (C))
seems to slightly underestimate the DNS result.

4.2.2 Cylindrical channel

As a second test we simulate a fully developed turbulent flow in a cylindrical
pipe with diameter D = 0.0605. The physical properties of the simulated
flow are reported in Table 4.1. For this geometrical case we compare our
results with DNS data, which are available only for the case Reτ = 170, and

1 10 100 1000

r 
+

1

10

100

1000

 θ
 +

/P
r

A

B

C

D

E
Fθ

+
= Pr r

+

1 10 100 1000

r
+

1

10

100

1000

θ
+
/P

r

A

B

C

D

E
F

θ
+
=Pr r

+

Figure 4.6: Cylinder case. Temperature distribution θ+/Pr for Re ≈ 5500
(A), 11150 (B), 23750 (C), 57500 (D), 213000 (E) and 345000 (F). Results
obtained with k-ε-kθ-εθ (left) and k-ω-kθ-ωθ (right) model.
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Figure 4.7: Cylinder case. Non-dimensional root-mean-square temperature
fluctuation θ+

rms for Re ≈ 5500 (A), 11150 (B) and 23750 (C) and comparison
with DNS data for Reτ = 170 (S170). On the left the results were obtained
with the k-ε model while on the right they were calculated with the k-ω
model.
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Figure 4.8: Cylinder case. Nusselt number (square) and Kirillov correlation
for cylindrical geometry (thick line). On the left results obtained with the
k-ε model while on the right calculated with the k-ω model.

with Kirillov heat transfer correlation

Nu = 4.5 + 0.018Pe0.8 . (4.26)

This is the reference correlation for this class of fluids in cylindrical geometry
[62, 100] and it is claimed to be valid for 104 < Re < 5 · 106.

We performed six simulations over a wide range of Reynolds numbers,
namely Re ≈ 5500 (A), 11150 (B), 23750 (C), 57500 (D), 213000 (E) and
345000 (F) corresponding to Reτ = 180 (A), 395 (B), 640 (C), 1400 (D), 4500



106 Chapter 4. Turbulence model k-ω-kθ-ωθ

(E) and 7150 (F). In Figure 4.6 the non dimensional temperature divided
by the Prandtl number θ+/Pr is reported for all the simulated cases, as a
function of the non dimensional wall distance r+ = ruτ/ν. Comparing Figure
4.6 (right) with Figure 4.6 (left) we can see that the k-ω results are very close
to the k-ε ones. The linear behavior of the non dimensional temperature field
is well reproduced in all the simulated cases.

The non-dimensional root-mean-square temperature fluctuation θ+
rms for

Re ≈ 5500 (A), 11150 (B) and 23750 (C) is compared with DNS data for
Reτ = 170 (S170) in Figure 4.7. A good agreement with the DNS data is
obtained with both models. Comparing the k-ε results with the k-ω ones,
for the cases Reτ = 395 and Reτ = 640 one can see some differences between
the models but there are no reference results to compare with. The Nusselt
number for these simulations is reported in Figure 4.8. The square dots are
the results obtained with the four parameter turbulence model, while the
thick line is Kirillov correlation. On the left the results are reported for the
k-ε model while on the right for the k-ω model. The matching between the
numerical results and the correlation is almost perfect at any velocity for the
k-ε model while little discrepancies can be seen for the k-ω model at very
high velocities.
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Chapter 5

Introduction to adjoint optimal
control theory

Optimization of industrial devices and control of complex systems in engi-
neering is a very common and old research field. Starting from the sim-
plest wheel shape problem to the control of power plants or flap position for
lift control in airplanes, optimization and control are pervasive subjects in
engineering. Linear feedback methods are commonly employed to operate
complex systems like turbine valves-heat exchanger in power stations and
are used in electronic applications in the railway or automotive industries
[48, 95]. Multi-objective optimization and sensitivities-based optimal control
are other interesting research fields that find applications ranging from en-
gineering design to financial predictions of market shares. The literature on
these subjects is wide, the interested reader is referred to [28, 67, 90, 91] and
to references therein for a first approach to these interesting subjects.

In this work we focus on adjoint based methods, which have been proven
to be a good approach for the optimal control of complex problems in which
Computational Fluid Dynamics simulations can be performed on the system
of interest [45, 46, 47, 77, 113]. Adjoint optimal control theory has gained
popularity in the last several years because of the growth of computational
power that allows this type of problems to be applied in many industrial and
research fields. The mathematical background of this theory is strong, since
it has been studied from a mathematical point of view from several years,
but applications of this theory to very complex problems are still lacking.
In optimal control theory different types of controls, such as distributed,
boundary and shape controls are considered, see for a review [47]. In the
first one, source terms are used as control parameters in the whole domain
to attain a specific objective. Due to practical issues it can be difficult to
set control devices inside the system and this type of control cannot often be
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used in real-life applications. In such cases the boundary control may be a
possible approach. In this setting the control is a boundary condition on the
domain, such as a temperature or heat flux on a wall or a fluid injection or
suction. However, boundary control is more challenging than the distributed
one, from the theoretical point of view and in the development of feasible
computational algorithms. The last one we mention is the shape control in
which the geometrical properties of the system can be changed in order to
obtain the desired result. A common application of this type of control is
airplane and car wings design [44].

In this Chapter we describe the theory and the methods to obtain and
solve the optimality system in a general adjoint optimal control framework.
In the following two Chapters we describe the application of this theory to
two problems relevant for CFD studies of liquid metal systems. The first is
a temperature boundary optimal control problem in which a desired temper-
ature is set in a region of the domain and the controlling parameter is the
temperature on some boundaries of the domain. The second is a velocity-
turbulence distributed optimal control problem in which the objective is set
as a velocity matching profile or a turbulence increase or decrease and the con-
trol is realized through a distributed force acting on the fluid. Together with
the mathematical derivation and study of the optimality systems, numerical
results are reported to prove the feasibility of this approach to industrially
relevant problems.

5.1 Optimal control setting

To set up an optimal control problem we first need to specify the objective
of the optimization and the way in which we aim at controlling the system.
The objective functional has to be defined mathematically using the state
variables of the system and appropriate functions or integration domains to
improve the objective definition. The control can be a distributed force, a
boundary condition or a geometrical parameter that determines the domain
shape. The purpose of the optimization is to find a minimum of the objec-
tive functional, subjected to the state system constraint, by changing the
control. This is a typical constrained optimization problem. The Lagrange
multiplier method allows to obtain an unconstrained optimization problem
by introducing a set of new Lagrange multiplier functions. These parame-
ters multiply the constraint equations and the full Lagrangian is written as
the sum of these terms and the objective functional. Finally to find a local
minimum one can use the first-order necessary conditions of null variations
of the Lagrangian with respect to all the variables involved. This is a very
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brief summary of how an adjoint optimal control problem can be solved, we
describe now in more detail how this procedure can be applied to a simple
reference problem.

As an example to which apply the method, consider a system such as a
metal sheet or bar subjected to heat treating that we would like to heat in a
specific way by applying heat sources on it. In order to write this objective
in a mathematical way we could compute the expression

J (T ) =

∫
Ω

(T − Td)2dΩ , (5.1)

where Ω is the domain of the sheet or bar and Td is the desired temperature
that we want to reach on the metal in order to properly treat it. The square
is needed in order to avoid error cancellation during the integration over the
whole domain Ω. The temperatures T and Td could be functions of space and
time but in this discussion we consider only steady state solutions that can
vary in space, otherwise the integral in (5.1) should be performed also in the
treatment time and the derivation of the optimality system would become
more complex. As already said, the control is performed using heat sources
that can be spatially controlled, so the equation modeling this problem is the
heat conduction equation for a material with λ as thermal conductivity and
Q the heat source

∇ · (λ∇T ) +Q = 0 ∀x ∈ Ω , (5.2)

that has to be completed with appropriate boundary conditions, such as

λ∇T · n = qw on Γn (5.3)

T = Tb on Γd . (5.4)

If this boundary value problem is written in a weak form by multiplying
(5.2) with a test function φ defined in an appropriate space

φ ∈ VΓd = {φ ∈ H1(Ω) : φ = 0 on Γd} , (5.5)

integrating over the whole domain Ω and performing the integration by parts
on the Laplacian term, the boundary value problem is expressed in a complete
formulation as

−
∫

Ω

λ∇T · ∇φ dΩ +

∫
Γn

qw φ dΩ +

∫
Ω

QφdΩ = 0 ∀φ ∈ VΓd . (5.6)

This equation is the state system for the problem of interest written in weak
form.
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The boundary value problem expressed by (5.2-5.4) or (5.6) can be seen as
the constraint to the state variables T andQ in the optimal control setting. In
general one still has to limit the control Q in some way because otherwise the
problem could become unbounded and Q could assume infinite values in some
points of the domain. From a mathematical point of view this corresponds
to Q being in a distribution space of functions not square integrable over Ω.
To solve this problem one can limit directly the value of the control with an
additional constraint in the form

Q < Qmax ,

or the definition of the L2 norm of a function can be used in order to keep this
norm bounded for Q and so not allowing Q to be a distribution. Therefore
in the objective functional (5.1) we add a term containing the L2 norm of Q
penalized with a parameter β

J (T,Q) =
1

2

∫
Ω

(T − Td)2 dΩ +
β

2

∫
Ω

Q2 dΩ . (5.7)

By doing so the cost of using a control Q is kept in the optimal control setting
and this cost can be tuned by changing the parameter β. If a large value of β
is chosen than the optimization algorithm cannot improve the reference state
too much because the cost of increasing the control Q is very high and a local
minimum of this functional is likely to be found near the reference state. On
the other hand, if a small value of β is used the optimization algorithm can
use high values of the control Q and therefore the local minimum can be
found far from the reference state.

The problem just described is a typical example of a distributed optimal
control where the control is performed through a source in the state equation.
Another possibility we mentioned is to use a boundary control. In this case
a boundary condition is the control of the system, like a heat flux or a
temperature on a surface or a fluid velocity on an inlet of a channel. The
main difference in this case for the setting up of the optimal control problem
is that one boundary condition is unknown, so the space of the test function
has to be chosen properly. The objective functional shows some differences
because the control is defined on a surface, so the regularization integral is
performed on the controlled surface. Quite often in this case the control is not
defined in a simple square integrable function space but usually additional
requirements on the regularity of the control are considered. If we wish
to have the control in H1 we need to bound the whole H1 norm, so the
derivative of the control is included in the objective functional with another
penalization parameter. Considering the problem (5.2-5.4) described above
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we could think to obtain the desired temperature on the sheet by changing
the boundary temperature Tb. In this case the state equation becomes

∇ · (λ∇T ) = 0 ∀x ∈ Ω , (5.8)

with boundary conditions

λ∇T · n = qw on Γn (5.9)

T = g on Γd . (5.10)

The objective functional for this problem is

J (T, g) =
1

2

∫
Ω

(T − Td)2 dΩ +
β

2

∫
Γd

g2 dΓ +
γ

2

∫
Γd

∇g · ∇g dΓ , (5.11)

where the parameter γ is to be set different from zero if a smooth solution
on the controlled surface Γd is looked for. It should be clear that in general
a boundary control is weaker than a distributed one because the boundary
condition can affect only a small portion of the domain and if the objective
is set in a region far from this boundary it could be impossible to obtain
good improvements on the reference case. However in many real industrial
applications, boundary control is the only one possibility because it might be
impossible to operate in the domain interior for physical or practical reasons.
Therefore the study of both distributed and boundary control can give useful
insights and have practical relevance in different cases.

The shape control is the third possibility that is considered in the field of
adjoint optimal control. In this setting a geometrical parameter or a function
defining the shape of a part of the domain can be changed in order to obtain
the desired objective. Typical examples of these problems are the shape
changing of airplane wings or compressor and turbine blades. In this thesis
we do not consider this type of control but focus on distributed and boundary
control.

In the example described above the objective functional has been defined
to assess a simple temperature matching profile over the whole domain but
it is possible to use a weight function to set the desired objective in a specific
region of the domain. There are also many other possibilities to define differ-
ent functionals based on the state variables. To name a few we recall velocity
matching profile, mass flow rate changing, minimum drag or maximum lift,
increase or decrease of turbulent mixing, minimum heat flux magnitude or in
some directions, and others. Any quantity of interest to engineering design
that can be expressed through the state variables or their gradient can be
used in the functional. This possibility opens wide opportunities to the use of
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this approach in several industrial fields where a well defined mathematical
model of the problem exists and it can be solved numerically with not too
much computational expenses. We remark that this method is used to find a
local minimum and that the solution of a problem with a complex objective
functional and/or state system could be very hard. In principle we do not
have information on the properties of the functional and many minimums
can exist. This method, in contrast to other global optimization techniques,
can be used only to get improvements on a reference state and not to find
the global optimal solution to the problem, unless this is the only minimum
of the functional. However, in many practical situations an improvement on
a reference state is what is needed because too big changes on the design
cannot be performed for physical or practical reasons. In these cases this
method could prove useful for the optimal design of engineering devices.

5.2 Optimality system

The optimality system is a system of equations that allows to find the opti-
mal state and control for a given optimal control problem, i.e. an objective
functional and a type of control. This system of equations consists of the first
order optimality conditions and can be found with the use of the Lagrange
multiplier method. To describe the Lagrange multiplier method we apply it
to the distributed optimal control problem set up in the previous section in
order to obtain the optimality system composed of the first order necessary
conditions. We write the full Lagrangian of the problem that is composed
of the objective functional and of the constraint multiplied by the Lagrange
multiplier φ

L(T,Q, φ) =
1

2

∫
Ω

(T − Td)2 dΩ +
β

2

∫
Ω

Q2 dΩ+ (5.12)∫
Ω

[∇ · (λ∇T ) +Q] φ dΩ .

To obtain the first-order necessary conditions we derive L(T,Q, φ) with re-
spect to the three variables T , Q, and φ and then we set to zero these three
components of the gradient in order to find a local minimum,

δL
δT

= 0

δL
δQ

= 0 (5.13)

δL
δφ

= 0 .
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The variation of the Lagrangian with respect to the variation of one of its
variables is called Fréchet derivative and can be defined as

δL
δT

= lim
ε→0

L(T + εδT,Q, φ)− L(T,Q, φ)

ε
, (5.14)

where the variation δT of the temperature is arbitrary. This derivative is
different from the ordinary derivative of a function because the value of the
derivative depends on the variation δT [47]. By computing the first of the
three first-order necessary conditions (5.13) we get

δL
δT

=

∫
Ω

(T − Td) δT +

∫
Ω

∇ · (λ∇δT )φ dΩ = 0 ∀δT ∈ H1(Ω) , (5.15)

when the derivative is taken with respect to Q we get

δL
δQ

= β

∫
Ω

QδQ+

∫
Ω

δQφ dΩ = 0 ∀δQ ∈ H1(Ω) , (5.16)

and the last variation in φ is

δL
δφ

=

∫
Ω

[∇ · (λ∇T ) +Q] δφ dΩ = 0 ∀δφ ∈ H1(Ω) . (5.17)

The equations (5.15-5.17) form the optimality system that can be used to
find (T,Q, φ) for which the objective functional (5.7) is stationary and sub-
ject to the constraint (5.2). We can analyze this system to get some useful
information. For example (5.17) is a weak form of the state equation (5.2)
and if we assume δφ ∈ VΓd(Ω) and perform an integration by parts substi-
tuting the value of λ∇T = qw on the surface Γn in the surface integral we
recover (5.6). The (5.16) is an algebraic equation in the control Q and thus,
since δQ is arbitrary, it can be easily solved by assuming

Q = −φ
β
. (5.18)

The first variation is the adjoint equation and it has to be solved for φ.
Performing an integration by parts we get∫

Ω

(T − Td) δT −
∫

Ω

λ∇φ · ∇δT dΩ +

∫
Γ

λ∇δT · nφ dΓ = 0 (5.19)

∀δT ∈ H1(Ω) ,

that is the adjoint equation for the Lagrange multiplier φ. Since δT is the
variation of the temperature T we can safely assume that this variation is
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zero where the temperature is fixed with a Dirichlet boundary condition, so
from (5.4) δT ∈ VΓd(Ω) ⊂ H1(Ω). Moreover, by taking the variation of (5.3)
we get ∇δT ·n = 0 on Γn since qw is a constant. To obtain the dual or natural
boundary conditions of the adjoint equations together with the strong form
of it we have to perform another integration by parts on the volume integral
of the gradient product,∫

Ω

(T − Td) δT +

∫
Ω

∇ · (λ∇φ) δT dΩ−
∫

Γn

λ∇φ · n δT dΓ+ (5.20)∫
Γd

λ∇δT · nφ dΓ = 0 ∀δT ∈ VΓd(Ω) ,

where the considerations on δT have been taken into account. The dual
boundary conditions are obtained by setting to zero the surface integrals
that appear in (5.20). On Γn the normal gradient of φ is zero, on Γd the
value of φ is zero. The adjoint boundary value problem in strong form can
be written as

∇ · (λ∇φ) + (T − Td) = 0 ∀x ∈ Ω , (5.21)

λ∇φ · n = 0 on Γn (5.22)

φ = 0 on Γd , (5.23)

since the variations δT are arbitrary. If we compare the problem (5.21-5.23)
with (5.2-5.4) we understand that the adjoint variable φ satisfies an equation
of heat transfer with the same thermal conductivity of the state temperature
and a source equal to the difference between the temperature and the desired
temperature. Moreover the boundary conditions of this equation are the same
as in the state problem but they are homogenous. This is a typical feature
of adjoint problems, in the regions where a Dirichlet b.c. is imposed in the
state system the adjoint system presents a homogenous Dirichlet b.c., while
in the regions where a Neumann b.c. is used, the adjoint system has an
homogenous Neumann b.c..

5.3 Solution of the optimality system

Once the optimality system has been obtained it has to be solved in order to
find the optimal solution. In principle a fully coupled solution of this system,
a one-shot approach, is the first and best solution that comes to mind. For
the optimality system obtained in the previous section, with a very simple
and linear equation if λ does not depend on T , and an adjoint equation with
the same operator, this approach could be the best. Moreover in this case
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Algorithm 1 Steepest descent algorithm to find the optimal solution
1: function Find Optimal
2: set a state T 0 satisfying (5.17) with Q0 = 0 . Setup of the reference state
3: compute the functional J 0 in (5.11)
4: set r0 = r0

5: for i = 1→ imax do
6: Solve equation (5.20) to obtain the adjoint state φi

7: for j = 1→ jmax do
8: compute the control Qi = Qi−1 − ri,j φi/β
9: solve (5.17) for the state T i,j with the new control Qi.

10: compute the new functional J i,j+1 in (5.11)
11: if ‖J i,j − J i‖/J i < τ then
12: convergence reached . end of the algorithm
13: else if J i,j > J i then
14: set ri,j+1 = 2/3 ri,j , j = j + 1 and go to 8 . loop on j again
15: else if J i,j < J i then
16: set ri,j+1 = 3/2 ri,j , i = i+ 1 and go to 6 . loop on i again
17: end if
18: end for
19: end for
20: end function

we can simply substitute the definition of the control Q from (5.16) to (5.17)
and solve the optimality system for T and φ only. A numerical solution of
this system in a two-dimensional or either three-dimensional case is not a
big task and so a one-shot approach is a fast and reliable way to obtain the
solution in this case. However this straightforward solution could not be the
best or possible at all in some cases.

In Chapter 7 we study a distributed optimal control for a state system
composed of four equations coupled in a strong non-linear way through the
definition of the eddy viscosity. When the optimality system is derived it
becomes clear that a system composed of at least nine non-linearly coupled
equations cannot be easily solved with a one-shot approach. Moreover one
has to keep in mind that the numerical solution of a system with so many
equations becomes very quickly too much expensive if a mesh with a high
number of nodes is used. On the contrary by solving the equations in a
segregated way the number of nodes can be increased without affecting too
much the computational expense of the solver. In this and other cases an
algorithm for the segregated solution of the optimality system has to be de-
veloped. To simplify the description we report the steepest descent algorithm
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to solve the distributed optimal control problem introduced in Section 5.2.
This algorithm can be used for other adjoint optimal control problems by
changing appropriately the definition of the state and adjoint equations and
the control computations.

After the initialization of the reference state, Algorithm 1 is composed of
two main loops. In the outer loop i the adjoint system is solved to obtain
the adjoint given a state of the main variable. In the inner loop j the state
system is solved using different step increases of the control by using the
adjoint computed at iteration i. Once a solution is obtained the functional
is computed using its definition (5.11) and it is compared with its value
as computed in the reference state for iteration i = 1 or in the preceding
i iteration for i > 1. If a decrease in the functional is obtained we save
the control and proceed with another i iteration. If the functional does not
decrease, the step size is decreased and the state system is solved again in
another j iteration with this different control based on the new step size
until a decrease in the functional is obtained or no more improvements can
be obtained. The Algorithm continues the search until a tolerance on the
difference between the two functionals J i,j−J i is reached. The value of this
tolerance is τ and it can be set to 10−6, for example. The value of r0 must be
smaller than 1 and usually it can be set to r0 = β. This algorithm requires
several solutions of the state and adjoint systems in order to find the optimal
control, however it does not need a great amount of memory which is limited
to a standard state or adjoint simulation.

More complex algorithms that uses information from the Hessian of the
functional are currently being developed [113]. These algorithms should be
faster and more precise in the search of the minimum with respect to the
simple Algorithm 1, but are much more complex and require a great amount
of memory in addition to keep information from previous iterations of the
algorithm. In this thesis we focus on different and complex applications of ad-
joint optimal control to obtain new optimality systems instead of developing
algorithms to solve these optimality systems.

In the following Chapters we report the derivation of the optimality sys-
tem for a temperature boundary optimal control problem and for the dis-
tributed control of a turbulent flow modeled by a two equation RANS clo-
sure. The method used is exactly the same as the one reported here and it
is applied to a boundary control or to a quite complex system of equations.
In order to understand the following Chapters one has to keep in mind the
steps that have been explained in this very simple case and that are applied
to more complex problems in the following Chapters.



Chapter 6

Temperature optimal control

In this Chapter we consider an optimal boundary control problem for the
temperature equations with velocity computed with Navier-Stokes system
[24, 55]. Heat convection is regarded as the dominant physical mechanism
for heat transfer and the effects of temperature on velocity and pressure,
such as buoyancy, are neglected. We consider a boundary optimal control
problem for the temperature equation where the control is performed through
the boundary conditions of temperature on well defined parts of the boundary
and the objective functional is given in the following form

J (T, g) =
1

2

∫
Ω

(T (x)− Td)2 w(x) dΩ +
β

2

∫
Γc

g2 dΓ + (6.1)

λ

2

∫
Γc

∇g · ∇g dΓ ,

where T (x) is the temperature distribution, Td is the desired temperature,
w(x) is a weight function that can be used to improve the control, Γc is the
surface on which the control is imposed and g is the controlled temperature.
This functional consists of three terms: the objective and two regularization
terms. The two parameters β and λ can be used to impose a more smooth
controlled temperature. In particular if both parameters are different from
zero the function g is differentiable, g ∈ H1(Γc) while for vanishing λ we
have only square integrability, g ∈ L2(Γc). We consider and analyze three
cases. In the first case we set λ = 0 and use standard Lagrangian quadratic
elements. As it is proven in next Section, g is the trace of the gradient of
the adjoint variable, so it is difficult to evaluate directly its numerical values.
To overcome this difficulty we rewrite the boundary control equation in a
volumetric form. In the second case we still set λ = 0 and use discontinuous
Galerkin method [9, 29]. In the first two approaches we solve the optimal-
ity system with a fully coupled one-shot algorithm, which is very efficient
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and fast. In the third case we consider the full functional and find a solu-
tion in more regular spaces, g ∈ H1(Γc). We solve this optimality system
in a segregated way with standard quadratic elements for all state-adjoint
variables.

6.1 Optimality System

Let Ω be an open set with boundary Γ. The optimality system on Ω can
be obtained by minimizing the objective functional under the constraints
imposed by the energy equation and the Navier-Stokes system. The Navier-
Stokes equations for an incompressible Newtonian flow are

∇ · u = 0 , (6.2)

ρ(u · ∇)u = −∇p+ µ∇2u , (6.3)

where µ is the dynamical viscosity, ρ the density and p the pressure. The
steady state energy equation together with the boundary conditions can be
written as

(u · ∇)T = α∇2T (6.4)

∂T

∂n
= d on Γn

T = g on Γc ,

where u is the fluid velocity and α is the constant fluid thermal diffusivity.
We assume that the value of the heat flux d is given. The optimal control
problem consists in finding the best possible g in order to minimize the
functional (6.1). In this optimal control problem the velocity behaves as a
given field computed with the Navier-Stokes equations (6.2-6.3). Therefore
we do not consider the possibility of varying the fluid velocity to obtain the
desired objective and the optimal control setting comprises only the energy
equation and the objective functional (6.1).

The mathematical properties of the optimal control problem for the en-
ergy system, such as existence and smoothness of the solution, are well
known, so we apply the Lagrange multiplier method without proving the
existence of the solution and the differentiability of the Lagrangian func-
tional. The interested reader can see an example of this procedure applied to
a more complex problem in the next Chapter 7 or in the very comprehensive
book [47].

The total Lagrangian of the problem is composed of the objective func-
tional and the energy equation multiplied by the appropriate Lagrangian
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multiplier,

L(T, θ, g) = J (T, g) +

∫
Ω

[(u · ∇)T − α∇2T ] θ dΩ . (6.5)

Following the method depicted in Chapter 5 we can obtain the optimality
system for this problem. We set the Fréchet derivatives of (6.5) with respect
to all the variables involved to zero and obtain the weak form of the optimality
system∫

Ω

[(u · ∇)T ]φ dΩ +

∫
Ω

α∇T · ∇φ dΩ−
∫

Γn

α∇T · nφ dΓ = 0 , (6.6)

∀φ ∈ H1
Γc(Ω)∫

Ω

θ [(u · ∇)ψ] dΩ +

∫
Ω

α∇θ · ∇ψ dΩ−
∫

Γn

α∇θ · nψ dΓ = (6.7)∫
Ω

(T − Td)ψ dΩ , ∀ψ ∈ H1(Ω)∫
Γc

β gχ dΓ +

∫
Γc

λ∇g · ∇χdΓ =

∫
Γc

α∇θ · nχ dΓ , ∀χ ∈ H1/2(Γc) . (6.8)

The adjoint temperature θ is the Lagrange multiplier satisfying (6.7). The
(6.8), defined only on the controlled surface, is the equation for the control
temperature g. The functions χ ∈ H1/2(Γc) are the restrictions of the test
functions ψ ∈ H1(Ω) over Γc. If one approximates the above spaces with the
finite dimensional ones, the finite element approximation is obtained.

We now describe and compare three different approaches for the solution
of the system (6.6-6.8). In the first case we set the parameter λ = 0 so we
seek a solution for the controlled temperature in L2(Γc). In this case (6.8)
can be solved by

T = g = α
∇θ · n
β

on Γc . (6.9)

Algorithm 2 Simple steepest descent algorithm
1: function Find optimal boundary temperature
2: assign an initial condition g(0) for the temperature on Γc
3: for i = 1→ imax do
4: solve energy equation (6.6) with the control g(i)

5: solve adjoint energy equation (6.7) with new T
6: solve control equation (6.8) with new θ and update g(i+1)

7: end for
8: end function
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Algorithm 3 Steepest descent algorithm
1: function Find optimal boundary temperature
2: assign an initial condition g(0) for the temperature on Γc
3: solve energy equation (6.6) with the control g(0) . Reference state
4: for i = 1→ imax do
5: solve adjoint energy equation (6.7)
6: solve control equation (6.8) with new θ and update g(i+1)

7: compute the functional J (T, g) in (6.1) and assign an initial η
8: for j = 1→ jmax do
9: solve energy equation (6.6) with b.c. (1− η) g(i) + η g(i+1)

10: compute J 1(T, g) with the new temperature
11: if J 1(T, g) < J (T, g) then
12: Go to 5 . loop on i again
13: else if J 1(T, g) > J (T, g) then
14: Compute η = 0.5 η and go to 9 . loop on j again
15: else if J 1(T, g) ≈ J (T, g) then
16: Convergence is reached . End of the algorithm
17: end if
18: end for
19: end for
20: end function

In order to evaluate T from θ on Γc we can proceed in the following way. We
first recall (6.8) with λ = 0,∫

Γc

β Tχ dΓ =

∫
Γc

α∇θ · nχ dΓ , ∀χ ∈ H1/2(Γc) (6.10)

which can be rewritten, using equation (6.7), as∫
Γc

β T χ dΓ =

∫
Ω

θ [(u · ∇)ψ] dΩ +

∫
Ω

α∇θ · ∇ψ dΩ− (6.11)∫
Ω

(T − Td)ψ dΩ ∀ψ ∈ H1(Ω) ,

where the test function χ is the restriction of ψ on Γc. We remark that the
temperature control (6.9) is the trace of the function ∇θ which is difficult
to evaluate numerically. The expression (6.11) allows an easy computation
of T = g on the boundary since all the right hand side functions are well
defined on Ω.

In the second case we still assume λ = 0 and use the Discontinuous
Galerkin method for the solution of the energy equation. Therefore we im-
pose Dirichlet boundary conditions by setting T = g on Γc. The use of
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Discontinuous Galerkin is appropriate for this setting since we have β 6= 0
and the solution g ∈ L2(Γc). We remark that β = 0 implies g ∈ H−1/2(Γc)
[46, 66, 79]. In the first two cases we solve the optimality system with a
one-shot solver because the system is linear and the control g is computed
implicitly.

In the third case we assume λ 6= 0 which implies g ∈ H1(Γc). In this
case the differential equation (6.8) must be solved on the boundary. Extra
boundary conditions over ∂Γc must be enforced which can be arbitrarily
chosen as g = Td on ∂Γc. We solve this optimality system in a segregated way
with standard quadratic elements for all the three variables T , θ and g. In this
case we do not use a one-shot solver and the equations are solved segregated
so the simple Algorithm 2 could be used to obtain the final solution. We
have found however that this algorithm does not converge monotonically
and often convergence is not reached. One may introduce some changes to
the algorithm to obtain a more stable solution process, see Algorithm 3.
This algorithm is very similar to the one reported in Section 5.3 and in the
numerical solution of the optimality system (6.6-6.8) it is proven that it can
reduce strongly solution oscillations. For these reasons it has been used to
obtain the numerical results reported in the next Section.

6.2 Numerical Results

In this section we report the numerical results obtained by solving the bound-
ary optimal control problem for the energy equation, as described in Section
6.1, in different geometries and using different values of the parameters β
and λ. In the following we refer to the three approaches to the solution of
the optimality system as reported in Section 6.1 which are a one-shot solver
with λ = 0 and standard quadratic elements, a one-shot solver with λ = 0
and a discontinuous Galerkin method and a segregated solution with λ 6= 0
using Algorithm 3.

We consider three geometries for the test problem cases. The first is a
simple two-dimensional boundary layer plane flow, the others two are a two
and a three-dimensional geometry with secondary flow injections at different
temperatures. The objective functional in all cases is a desired constant
temperature to be obtained in a specific region with support Ωd where the
weight function is defined w(x) 6= 0. We report the temperature and velocity
fields and the physical properties in non-dimensional values.
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Figure 6.1: The plane boundary layer geometry. On the left inlet of the flow,
on top symmetry axis, on bottom solid wall and on the right outlet.

Boundary layer flow

In this paragraph we analyze the behavior of different optimal control solvers
in a simple laminar fully developed plane flow. The geometry is reported in
Figure 6.1. With reference to this Figure we can define the inlet on the left
side, the outlet on the right side, a symmetry plane on the top and the wall
with the controlled temperature on the bottom. Two test cases have been
studied with a different Td. For the first test case the weight function is set
to be w(x) = 1 on the whole domain and we seek for an analytical solution:
we impose a non-dimensional inlet temperature of 0.7 and we set Td = 0.7.
This case should serve as a benchmark for the optimal control solver. In the
second test case we set Td = 1 and still w(x) = 1 on the whole domain. With
this setting the solution is no longer analytical and the temperature develops
as a boundary layer along the channel.

In the first test case the three approaches give slightly different solution
results, as we can see in Figure 6.2. In this Figure the temperature profile
on the controlled wall is reported as a function of the axial coordinate x
for the three approaches and different values of the parameters β and λ. In
the graph on top three temperature profiles for β = 10−3 (dotted line) and
β = 10−6 (straight line) are reported as obtained with the one-shot solver
and Discontinuous Galerkin method. It is clear that the controlling param-
eter β has a great importance in obtaining the correct solution. Using the
Discontinuous Galerkin method convergence problems arise when imposing
β = 10−6, probably due to numerical errors. When β tends to zero the con-
trol is not a standard function anymore and therefore it becomes difficult
to numerically represent a distribution. The result reported is the one with
β = 10−3 (dashed line). On the bottom we can see the results obtained by
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Figure 6.2: Plane boundary layer with Td = 0.7, temperature on the wall.
One-shot case with quadratic elements (OS) and Discontinuous Galerkin
method (DG) (top) and λ 6= 0 case (bottom). In the last graph, dotted
lines are for λ = 10−6 while continuous for λ = 10−3.

imposing λ 6= 0 and solving the control equation for g. By changing the
parameter β one can obtain the correct solution, while by changing λ no
relevant differences can be seen. The solution profiles obtained with this
method are smoother than the ones obtained with λ = 0 as one can see by
comparing the graphs on top and bottom of Figure 6.2.
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Figure 6.3: Plane boundary layer with Td = 1, temperature on the wall. One-
shot case with quadratic elements (OS) with β = 10−3 (dotted), 10−6 (con-
tinuous) and Discontinuous Galerkin method (DG) with β = 10−3 (dashed)
on top. Segregated approach with λ = 10−3 (continuous lines), β = 10−3,
λ = 10−6 (dotted) and β = 10−6, λ = 10−6 (dashed) on the bottom.

In Table 6.1 the objective functional J ′ defined as

J ′ = 1

2

∫
Ω

(T (x)− Td)2 w(x) dΩ , (6.12)

is reported for the first test case, different solution approaches and β and λ
values. It can be clearly seen that the most powerful control is achieved by
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Figure 6.4: Plane boundary layer with Td = 1, one-shot case with β = 10−6.
Temperature (top) and adjoint variable θ (bottom) contours obtained with
ten equal subdivisions of the variable range.

setting β = 10−6 and that the best result for this case is obtained with the
segregated approach with λ = 10−6. It must be taken into account that this
method is much slower than the one-shot method in obtaining a convergent
solution.

In the second set of test cases studied in this geometry with the weight
function w(x) = 1 and Td = 1 the solution is no more analytical and a
not uniform distribution of T and θ is obtained. We report the controlled
solution and also some results for the adjoint temperature θ. In Figure 6.3
we show the profile of the temperature on the controlled wall as computed in
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Solution Approach J ′
One-shot β = 10−3 2.23× 10−06

One-shot β = 10−6 3.40× 10−12

Disc. Galerkin β = 1× 10−3 1.63× 10−06

β = 10−3 and λ = 10−3 1.48× 10−06

β = 10−3 and λ = 10−6 1.46× 10−06

β = 10−6 and λ = 10−3 2.68× 10−11

β = 10−6 and λ = 10−6 2.57× 10−12

Table 6.1: Plane boundary layer with Td = 0.7, objective functional com-
puted with different solution approaches.

Solution Approach J ′ · 102

One-shot β = 10−3 1.0941
One-shot β = 10−6 1.0936

Disc. Galerkin β = 10−3 1.0921
β = 10−3and λ = 10−3 1.0940
β = 10−3and λ = 10−6 1.0940
β = 10−6and λ = 10−3 1.0936
β = 10−6and λ = 10−6 1.0936

Table 6.2: Plane boundary layer with Td = 1, objective functional computed
with different solution approaches.

all the three cases. On top the temperature profile is obtained with one-shot
approach and Discontinuous Galerkin method while on the bottom with the
segregated solver and g as additional variable. One-shot and DG method
give quite similar results for the temperature profile: the controlled wall
tends to increase the fluid temperature near the inlet while the temperature
falls to 1.1 close to the outlet. The third approach shows ripples for cases
with λ = 10−6 and the profiles are different from the ones obtained with the
other two approaches because near the outlet the temperature rises again.
On the other hand, the profiles with λ = 10−3 are smoother than the others.

In Figure 6.4 the temperature and adjoint variables are reported for the
one-shot case with β = 10−6. Near the axis of symmetry, very far from
the wall, the control is difficult to be enforced and the maximum absolute
value of θ is reached. On the other side, near the wall the control is very
good and the adjoint variable vanishes in this region. Finally in Table 6.2
we report the values of the functional J ′ for this test case. We remark that
the functional is several orders of magnitude higher than in the previous test
case. This is due to the fact that an analytical optimal solution does not
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exist in this setting. We can see also that the parameter β is less important
for this range of values and the lowest objective functional is achieved with
the Discontinuous Galerkin method.

Two-dimensional mixing channel

In this paragraph we report the numerical results obtained in a more com-
plex geometry in order to show the capability of this optimal control solver
in problems which are more similar to practical applications. We simulate a
mixing channel in which a secondary flow injected from one side of the chan-
nel joins a main flow with different temperature. The objective of the problem

1

1

x

y

5

BA D

F

C

E

Figure 6.5: Mixing channel geometry (top) and weight function w(x) (bot-
tom). The segment AF (black on bottom) is the main flow inlet, BC (red on
bottom) is the secondary flow inlet, DE (green on bottom) is the outflow.
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Figure 6.6: Velocity streamlines and velocity magnitude in the mixing chan-
nel.

is to obtain a desired temperature in the flow at the outlet of the channel
lower than the inlet one Ti = 1 but still higher than the walls, Tw = 0.5. The
desired temperature is then set to Td = 0.7. Moreover we decide to assign
great importance to the center of the channel near the outlet where the fluid
velocity is higher by using the weight function w(x) = (8 x− x2) (y − y2)/4.
This weight function is equal to 1 near the outlet and in the center of the
channel and it decreases with a parabolic profile in the other directions to
reach zero on the boundaries. In Figure 6.5 the geometry and the weight
function are reported over the computational domain. In this Figure on top
the geometry main dimensions are reported and the key regions are marked
as follows: the segment AF is the inlet of the main flow, BC is the injection
of the secondary flow with the controlled temperature and DE is the outlet.
The other boundaries are solid walls with an assigned constant temperature.
The characteristic parabolic shape of the weight function can be seen in Fig-
ure 6.5 on the bottom, where the main inlet is marked in black, the secondary
inlet is red and the outlet is marked in green.

As mentioned above the Navier-Stokes equations are solved numerically
with a finite element solver to obtain the velocity field before solving the
optimality system. The horizontal velocity on the main inlet is set to a
constant value of 1 while in the second injection boundary it is set with
a parabolic profile. The Reynolds number of the flow based on the main
inlet dimension and velocity is Re = 1000. In Figure 6.6 the velocity field
is reported with flow streamlines and the velocity magnitude with colors.
The effect of the injection flow can be clearly seen and a recirculation zone
appears just after the injection region. With this velocity field we can solve
the optimality system with different approaches as described before.

The one-shot approach with quadratic elements is very robust and the
fully coupled solution with this approach is quite fast to obtain. The tem-
perature and the adjoint variable fields, as obtained with the one-shot ap-
proach, are reported in Figure 6.7 for β = 10−6. We can see, as expected,
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Figure 6.7: Temperature T (top) and adjoint variable θ (bottom) computed
with first approach and β = 10−6.
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Figure 6.8: Temperature on the inlet line computed in the first case for
β = 10−3 (continuous line) and β = 10−6 (dotted line).

that the region with high values of the modulus of the adjoint variable is
the region where the weight function w(x) is higher. With β = 10−6 we
can have a stronger control but the smoothness of the temperature on the
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Figure 6.9: Temperature distribution on the whole domain (top) and on
the inlet line (bottom) computed with Discontinuous Galerkin method and
β = 10−3.

controlled boundary decreases, as it can be seen in Figure 6.8. In this Figure
the temperature is reported on the injection inlet line with coordinate x in
the range of 0.8 to 2.2 for two values of β = 10−3 and β = 10−6. Strong
oscillations of the temperature start to appear as the parameter β decreases
under a certain value. On the contrary, with β = 10−3, the temperature
is quite smooth but it shows a sharp peak near the walls, where the inlet
velocity v → 0. The temperature distribution along the central region of the
inlet flow is very similar for all different values of β.

The results obtained with the Discontinuous Galerkin method are re-
ported in Figure 6.9. On top the temperature field is reported on the whole
domain as computed with β = 10−3 while on the bottom the temperature on
the controlled inlet is shown as a function of the coordinate x in the range
of 0.8 to 2.2. The result is quite similar to the one obtained with the first
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Figure 6.10: Temperature on the inlet line computed with third approach
and β = 10−3 (continuous) and β = 10−6 (dotted), λ = 10−3 in both cases.

Solution Approach J ′ · 10−2

One-shot β = 10−3 3.3039
One-shot β = 10−6 3.2960

Disc. Galerkin β = 10−3 3.2890
β = 10−3 and λ = 10−3 3.3275
β = 10−6 and λ = 10−3 3.3270

Table 6.3: Two-dimensional mixing channel. Objective functional computed
with different solution approaches and β-λ values.

approach showing sharp edges near the inlet wall and a flat non-dimensional
temperature of around 0.8 in the center of the flow.

In Figure 6.10 we report the temperature profile on the inlet line as com-
puted with the third approach solving directly a differential equation for g.
We consider solutions with λ = 10−3 and with β = 10−3 and 10−6. In this
Figure two plots are reported with a straight continuous line for β = 10−3

and with a dotted line for β = 10−6. The results with varying β are quite
similar, maybe due to the high value of λ. These profiles show similar peaks
near the inlet walls as those obtained in the other two cases.

Finally we can compute the objective functional J ′ and compare the
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results obtained with the different solvers. In Table 6.3 the functional is re-
ported for the injection test case and for all the different approaches and β
values employed. As already remarked, from this table one can see that by
imposing a lower value of β the control is more effective. All the methods
give quite similar values but the best result is obtained with the Discontin-
uous Galerkin method. The solution obtained with the segregated method
is smoother and therefore the control loses effectiveness. For this reason it
gives the worst results in term of functional J ′. The one-shot approach with
quadratic elements lies between the other two. The result that gives high
temperature oscillations near the wall corresponds to a low functional value.

Three-dimensional mixing channel

In this paragraph we report the numerical results obtained in a three dimen-
sional test case. The geometry is a mixing channel with a main flow entering
from the bottom and two injections of a fluid with controlled temperature
on two sides of the box. The control problem can be summarized as a simple
mixing flow heater exchanger with well defined geometry and flow rates and
with the objective to increase the temperature of a main flow being able to
inject fluid with controlled temperature from two specific locations.

The axial domain dimension is 5 while the other two dimensions x and
y are 0.1. The injections are located between z = 1.5-2 and z = 3-3.5
and are square and 0.05 wide. A three-dimensional view of the geometry
is reported in Figure 6.11 with a scale factor of 0.1 in the axial direction.
In this Figure the secondary injections are reported in red color while the
walls are blue and the flow is directed from left to right. The main inlet
velocity is 2 while the secondary injection velocities are 0.5 in the normal
direction of the inlet giving a Reynolds number based on the square size and
main inlet velocity of Re = 2000. The main inlet temperature and the wall
temperature are assigned as 0.5, while the temperature of the two injection
flows is controlled. The control objective is to obtain a constant temperature
Td = 1, higher than the main flow temperature, in the region near the outlet
of the channel. This can be accomplished setting a weight function as

w(x) = (0.12 z2 − 0.016 z3)(e
ln(2)

5
z − 1)(40 y − 400 y2)(40x− 400x2) .

This weight function is reported in Figure 6.11 with a geometrical scale factor
of 0.1 in the axial direction and with ten equally spaced isosurfaces of the
weight function in the range of 0 to 1.

The velocity field of the incompressible Navier-Stokes system can be
solved separately from the optimality system, as explained before. The so-
lution of the velocity and pressure fields requires a high computational cost
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Figure 6.11: Three-dimensional mixing channel geometry with a scale factor
of 0.1 in the axial direction (top), weight function on the same geometry
(bottom). On the top the two flow injections are visible in red color and
on the bottom ten equally subdivided isosurfaces for the weight function are
reported. The flow is directed from left to right in both figures.

because of the three-dimensional problem and is obtained with a fully coupled
solver. On top of Figure 6.12, the flow pattern is visible with the velocity
streamlines reported on the three-dimensional domain and colored by the
velocity magnitude. One can see the formation of vortices due to the lateral
injections. A slice obtained at axial coordinate z = 4 is reported in Figure
6.12 on the bottom with the velocity vectors represented with arrows and
colored by the velocity magnitude. The recirculation patterns are visible in
this Figure and the flow on the outlet section is pushed towards a corner of
the channel by two recirculation vortices.

For this test case the optimality system has been solved with the one-
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     0
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Figure 6.12: Velocity flow pattern of the three-dimensional mixing channel
geometry. Velocity streamlines colored by the velocity magnitude (top) and
velocity on a slice obtained at a constant axial coordinate z = 4 with arrows
colored by velocity magnitude (bottom).

shot approach only, because of its robustness and fast convergence obtained
in the other test cases. The temperature results obtained with β = 0.1 are
reported in Figure 6.13. In this Figure the temperature is shown with ten
equally subdivided isosurfaces on the domain clipped with a section normal
to the x-axis on top and y-axis on the bottom. On top one can see the
effect of the first injection located between z = 1.5-2 and on the bottom it
can be seen the second injection located between z = 3-3.5. The control
on the boundary tries to heat the flow by increasing temperature on the
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Figure 6.13: Temperature profile obtained with β = 0.1 in the three-
dimensional mixing channel geometry. Ten equally spaced temperature iso-
surfaces on half of the domain clipped with a section normal to the x-axis
(top) and section normal to the y-axis (bottom).

two injections. The hotter fluid moves along the channel achieving a lower
functional J ′.

It is interesting to study also the adjoint variable in order to better under-
stand the control problem. Moreover this variable can give useful indications
for an improved design. In Figure 6.14 the adjoint variable is reported with
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Figure 6.14: Adjoint variable profile obtained with β = 0.1 in the three-
dimensional mixing channel geometry. Ten equally spaced temperature iso-
surfaces on half of the domain clipped with a section normal to the x-axis
(top) and section normal to the y-axis (bottom).

ten equally subdivided isosurfaces. On top the domain is clipped with a
plane normal to the x-axis, on the bottom with respect to y-axis. The ad-
joint or importance function is higher in modulus where the control should
act stronger in order to better achieve the desired result. We can see several
regions where θ is higher, for example in front of the second injection which is
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Figure 6.15: Temperature profile obtained with β = 0.05 in the three-
dimensional mixing channel geometry. Ten equally spaced temperature iso-
surfaces on half of the domain clipped with a section normal to the x-axis
(top) and section normal to the y-axis (bottom).

near to the objective region and where the weight function is high. Another
region where θ is quite high is towards the inlet of the channel. Here the
weight function is nearly zero, so one possible explanation of this behavior
could be the high velocity of the flow: changing the temperature near the
inlet could control better the result than injecting fluid near the end of the
channel due to advective effects. A possible way of taking into account this
information could be to reformulate the problem by setting the injections
upstream in the axial direction and solve again the optimality system with
the new geometry. However here we are not interested in the best solution to
this specific problem but in showing the information given from the solution
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Figure 6.16: Adjoint temperature profile obtained with β = 0.05 in the
three-dimensional mixing channel geometry. Ten equally spaced temperature
isosurfaces on half of the domain clipped with a section normal to the x-axis
(top) and section normal to the y-axis (bottom).

of the optimality system and in testing the use of adjoint optimal control
algorithms, so we keep the same geometry for another test with different β.

By decreasing the parameter β to 0.05 the control acts stronger to de-
crease the objective functional because the solution T on the boundary can
take higher values. In Figure 6.15 the temperature is reported with ten
equally subdivided isosurfaces on the domain clipped with respect to the x
(top) and y-axis (bottom). It can be seen from this Figure that the values
attained by the temperature on the controlled surfaces are higher in modu-
lus than the ones obtained by setting β = 0.1. The adjoint variable for this
case is reported in Figure 6.16 and it is shown with ten equally subdivided
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Figure 6.17: Temperature distribution on the outlet section of the three-
dimensional mixing channel. Test case with β = 0.1 (top) and β = 0.05
(bottom).

isosurfaces. On top the domain is clipped with respect to the x-axis and on
the bottom with respect to the y-axis. By decreasing β the adjoint variable
becomes lower and the region where the control cannot act to reduce the
objective functional is more visible. Clearly this is the entrance region, as
we have already explained.

We can now compare the temperature distributions obtained on the outlet
section for the two different values of β. The objective of the control is to
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Solution Approach J ′ · 103

One-shot β = 0.1 1.722
One-shot β = 0.05 1.054

Table 6.4: Three-dimensional mixing channel test case, objective functional
computed with different β values.

obtain a higher temperature near the outlet region with more importance
to the center of the channel, so we show the results in this region. On top
of Figure 6.17 the temperature on a slice normal to the main flow at z = 4
obtained in the test case with β = 0.1 is reported, while on the bottom
the one of β = 0.05. Over this section the vortices created by the two
injections are well visible because the injected flow is hotter and the flow
is too fast to allow a complete diffusion of heat in the fluid. Moreover we
remark the different ranges of temperature with the different β, with the
maximum temperature Tmax = 0.71 obtained for β = 0.05 higher than the
one obtained with β = 0.1, which is Tmax = 0.56.

Finally in Table 6.4 we compare the objective functional computed on
the results obtained with the one-shot approach and β = 0.1 and 0.05. It is
clear the important effect of the regularization parameter β in achieving low
functional values.



Chapter 7

Turbulence optimal control

The study of adjoint optimal control applied to the Navier-Stokes equations
started several years ago. In spite of the computational difficulties, optimal
control is nowadays commonly used in many fluid dynamics applications.
Many works dealing with the distributed, boundary and shape control of
Navier-Stokes equations exist in literature, [18, 44, 45, 46]. However the ma-
jority of these works refer to standard Navier-Stokes equations and a very
high computational effort is needed to consider the effects of turbulence with-
out modeling the averaged fields. Direct Numerical Simulation is currently
the only way to take into account turbulence without applying filters or av-
eraging to the fields.

In literature there are some studies dealing with the optimal control of
modeled turbulent flows and different levels of approximation are used to
account for turbulence effects in the optimal control setting. The simplest
method which is often chosen is to consider the turbulent viscosity as “frozen”
or independent on the control variable, [21, 106]. In this case no adjoint
turbulent viscosity and turbulence model exist, so the computational effort
is strongly decreased. Another common method to obtain information on
the optimal turbulent flow without a too high computational cost is to use
a lower level turbulence model, like a one-equation model. By doing so only
one adjoint turbulence equation is obtained in the optimization process and
the computations are faster, see [108, 118]. In work [118] the differences
in the optimal solutions obtained with a complete model or with a frozen
viscosity model are remarked. Some studies of the full adjoint two-equations
turbulence model has been performed recently in the works [81, 94]. They
deal with shape optimization problem by using automatic differentiation tools
and adjoint approach for the k-ε model.

In this Chapter we aim at developing an adjoint optimal control setting
for the Reynolds averaged Navier-Stokes system coupled with a two-equation

143
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k-ω model. The objective is set in order to obtain two problems, a velocity
matching or a turbulence enhancement or decreasing one. The control has
been chosen as a distributed force in the domain which could be feasible
with heavy liquid metals in fast nuclear reactors or other power systems.
The objective functional is written as

J (v, k, f) = a
1

2

∫
Ω

(u− ud)
2 dx + b

1

2

∫
Ω

(k − kd)2 dx + (7.1)

λ
1

2

∫
Ω

f2 dx ,

where b is a non negative constant and a and λ positive. If b = 0 the
objective functional can be used in a velocity matching profile problem, while
a ≈ 0 is to be used for a turbulence reduction or enhancement problem. It is
important the introduction of the regularization term multiplied by the scalar
λ. The choice of this parameter is a key point for the numerical solution of
the problem because high values of λ can result in a poor control, while low
ones usually lead to convergence issues due to the enlargement of the control
space f to the space of distributions. The integral (7.1) is usually referred to
as cost functional because it measures the difference between our objective
and what we have actually achieved.

In the next Section we present the mathematical model of the RANS
equations together with the k-ω model by Wilcox [112]. Three theorems are
presented to prove the existence of solutions to the RANS system, which
are needed in the following Section where some remarks are made on the
mathematical properties of the control problem [78]. The optimality system
is then derived using the Lagrange multiplier method described in Chapter 5.
In the last Section some numerical results are reported to prove the feasibility
of this method in complex industrial applications [77].

7.1 RANS system

The steady state RANS system coupled with the k-ω model consists of the
following set of equations

∇ · u = 0 , (7.2)

(u · ∇)u +∇p−∇ · [(ν + νt)S(u)] = f , (7.3)

(u · ∇)k −∇ [(ν + σkνt) · ∇k] = Sk − β∗ k ω , (7.4)

(u · ∇)ω −∇ [(ν + σωνt) · ∇ω] = αSω − βω2 , (7.5)
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where f is the force acting on the flow, p the total fluid pressure, ν the
kinematic viscosity of the fluid and S the deformation tensor

S(u) := ∇u +∇uT . (7.6)

The model coefficients and functions are [112]

σk = 0.6 σω = 0.5

β∗ = 0.09 α =
13

25
β = 0.0708 .

In order to complete the system (7.2)-(7.5) the production term of the tur-
bulent kinetic energy and its dissipation are usually modeled as

Sk = νtS(u) : ∇u =
1

2
νtS

2(u) (7.7)

Sω =
ω

k
νtS(u) : ∇u =

1

2
S2(u) , (7.8)

with S2(u) = S(u) : S(u) since ∇u is symmetric and νt = k/ω. The key
quantity νt is the turbulent or eddy viscosity which has to be defined in the
turbulence model.

Standard regular Navier-Stokes solutions of (7.2)-(7.5) have the deriva-
tives of the velocity field square integrable but not necessarily bounded. The
k and ω equations have the typical pattern of the diffusion-reaction equations
and therefore their solutions can be constrained inside a precise interval lim-
ited by the roots of the equation defined only by the right-hand-side non
linear terms in (7.7)-(7.8). For example in an infinite medium with no ad-
vection and diffusion term (7.5) becomes

α

2
S2(u)− β ω2 = 0 , (7.9)

which has solution ω = ±
√
αS2(u)/(2β). Only the positive root should be

considered but if ∇u is not bounded then S(u) and ω are unbounded. In
order to keep Navier-Stokes solutions in standard functional classes and the
turbulent fields bounded in well defined intervals, we must regularize the
modeling of the turbulence sources. Therefore we assume

Sk = min

[
1

2
νtS

2(u), β∗kmax,vω

]
(7.10)

Sω = min

[
1

2
S2(u),

ω2
max,vβ

α

]
, (7.11)
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where kmax,v and ωmax,v are positive constants. This notation points out
that kmax,v and ωmax,v will be proven to be limits for k and ω fields while
the label v suggests that these are volumetric bounds. The source model in
(7.10)-(7.11) assures that, in the case of unbounded gradient velocity, the
dissipation terms can cope with the turbulence sources and keep k and ω
limited.

In k-ω model νt = k/ω, so if ω vanishes νt becomes singular. The existence
of regular solutions of (7.4)-(7.5) when νt is an unbounded function is difficult
to prove [97]. For this reason we assume

νt = min

[
k

ω
, νmax

]
. (7.12)

The constants kmax,v, ωmax,v and νmax can be chosen as large as needed in
order to assure the regularity of the problem together with the accuracy of
the physical solution. By doing so the solution of Navier-Stokes equations
remains unchanged while only the turbulence source terms are modeled to
avoid singularities.

We use a near-wall approach for the solution of the turbulence problem,
so the RANS equations are integrated throughout the viscous layer where
near-wall boundary conditions are imposed. By using Taylor expansion for
the turbulence variables, with respect to the distance from the wall δ, we
obtain for the tangential component v of the velocity and for the turbulence
variables

v =
σw
µ
δ k = a1δ

2 ω =
2 ν

β∗δ2
, (7.13)

with a1 constant and σw the stress on the boundary. For more details on the
boundary conditions to be set with turbulence models see the discussion in
Chapters 3 and 4.

7.1.1 Notations

Before introducing the boundary value problem, let us briefly recall some no-
tations about functional spaces used here that have been defined in Chapter
1. We denote by Hs(O), s ∈ <, the standard Sobolev space of order s with
respect to the set O, which is either the flow domain Ω ⊂ <n (n = 2, 3), or its
boundary Γ, or part of its boundary. Whenever m is a non-negative integer,
the inner product over Hm(O) is denoted by (f, g)m and (f, g) denotes the
inner product over H0(O) = L2(O). Hence, we associate with Hm(O) its
natural norm ‖f‖m,O =

√
(f, f)m. Whenever possible, we will neglect the
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domain label in the norm. For more details on these spaces, one can consult
[7, 20].

For vector-valued functions and spaces, we use boldface notation. For
example, Hs(Ω) = [Hs(Ω)]n denotes the space of <n-valued functions such
that each component belongs to Hs(Ω). Of special interest is the space

H1(Ω) =

{
vi ∈ L2(Ω)

∣∣∣ ∂vi
∂xj
∈ L2(Ω) for i, j = 1, 2, 3

}
equipped with the norm ‖v‖1 = (

∑
i,j(‖vi‖2

1 + ‖∂vi/∂xj‖2
1))1/2. We define

the divergence-free space

V(Ω) = {u ∈ H1(Ω) | ∇ · u = 0 } .

For Γs ⊂ Γ with nonzero measure, we also consider the subspace

H1
Γs(Ω) = {v ∈ H1(Ω) | v = 0 on Γs } .

Also, we write H1
0(Ω) = H1

Γ(Ω). Let (H1
Γs

)∗ denote the dual space of H1
Γs

.
Note that (H1

Γs
)∗ is a subspace of H−1(Ω), where the latter is the dual space

of H1
0(Ω). The duality pairing between H−1(Ω) and H1

0(Ω) is denoted by
〈·, ·〉.

Let g be an element of H1/2(Γ). It is well known that H1/2(Γ) is a Hilbert
space with norm

‖g‖1/2,Γ = inf
v∈H1(Ω); γΓv=g

‖v‖1 ,

where γΓ denotes the trace mapping γΓ : H1(Ω)→ H1/2(Γ). We let (H1/2(Γ))∗

denote the dual space of H1/2(Γ) and 〈·, ·〉Γ denote the duality pairing be-
tween (H1/2(Γ))∗ and H1/2(Γ). From the definition of the dual norm, we
have

‖s‖−1/2,Γ = sup
g∈H1/2(Γ);g 6=0

〈s,g〉Γ
‖g‖1/2

= sup
v∈H1(Ω);v 6=0

〈s, γΓv〉Γ
‖v‖1

.

Since the pressure is only determined up to an additive constant by the
Navier-Stokes system with velocity boundary conditions, we define the space
of square integrable functions having zero mean over Ω as

L2
0(Ω) =

{
p ∈ L2(Ω) |

∫
Ω

p dx = 0

}
.

In order to define a weak form of the Navier-Stokes-k-ω equations, we
introduce the continuous bilinear forms

a(ν; u,v) =
1

2

∫
Ω

ν S(u) : S(v) dx ∀u ∈ H1(Ω), ∀v ∈ H1
0(Ω) (7.14)
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and

b(v, q) = −
∫

Ω

q∇ · v dx ∀ q ∈ L2
0(Ω) , ∀v ∈ H1(Ω) (7.15)

and the trilinear form

c(w; u,v) =
1

2

[∫
Ω

[(w · ∇)u] · v dx−
∫

Ω

[(w · ∇)v] · u dx
]

(7.16)

∀w ∈ V(Ω),u ∈ H1(Ω),v ∈ H1
0(Ω) .

The above definitions of the continuous bilinear forms are also valid for
scalars with the appropriate mono dimensional operators, for example the
form (7.14) becomes

a(ν;u, v) =

∫
Ω

ν∇u · ∇v dx ∀u ∈ H1(Ω), ∀ v ∈ H1
0 (Ω) . (7.17)

Obviously, given any ν ∈ L∞(Ω), a(·, ·) is a continuous bilinear form on
H1(Ω)×H1

0(Ω) and b(·, ·) is a continuous bilinear form on H1(Ω)×L2
0(Ω); also

c(·; ·, ·) is a continuous trilinear form on H1(Ω)×H1(Ω)×H1
0(Ω). For details

concerning the function spaces we have introduced, one may consult [7, 109]
while for details about the bilinear and trilinear forms and their properties
see [39, 109] and Chapter 1.

7.1.2 The associated boundary value problem

We consider the formulation of the direct problem for the RANS system
(7.2)-(7.3) and turbulence equations (7.4)-(7.5). A weak formulation of the
Navier-Stokes-k-ω system is given as follows

given νmax, kmax,v and ωmax,v positive real constants and f ∈
H−1(Ω), gu ∈ H1(Ω), gk ∈ H1(Ω), gω ∈ H1(Ω), find (u, p, k, ω) ∈
H1(Ω)× L2

0(Ω)×H1(Ω)×H1(Ω) satisfying
a(ν + νt; u,v) + c(u; u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ H1

0(Ω)

b(u, q) = 0 ∀ q ∈ L2
0(Ω)

〈u, s〉Γ = 〈gu, s〉Γ ∀ s ∈ H−1/2(Γ) ,

(7.18)



c(u; k, ψ) + a(ν + νtσk; k, ψ) = 〈Sk, ψ〉 − (β∗ kω, ψ) ∀ψ ∈ H1
0 (Ω)

〈k, sk〉Γ = 〈gk, sk〉Γ ∀ sk ∈ H−1/2(Γ)

c(u;ω, φ) + a(ν + νtσω;ω, φ) = 〈αSω, φ〉 − (β ω2, φ) ∀φ ∈ H1
0 (Ω)

〈ω, sw〉Γ = 〈gw, sw〉Γ ∀sw ∈ H−1/2(Γ) ,

(7.19)
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where

νt(k, ω) = min
{k
ω
, νmax

}
(7.20)

Sk(u, k, ω) = min
{
νt

S2(u)

2
, β∗ω kmax,v

}
(7.21)

Sω(u, k, ω) = min
{S2(u)

2
,
βω2

max,v

α

}
. (7.22)

Existence and uniqueness results for solutions of the system (7.18) are con-
tained in the following theorem; see, e.g., [44, 109].

Theorem 1. Let Ω be an open, bounded set with Lipschitz-continuous bound-
ary Γ. Let νt be a non-negative function in L∞(Ω), f ∈ H−1(Ω) and gu ∈
H1(Ω). Then,

i) there exists at least one solution (u, p) ∈ H1(Ω)× L2(Ω) of (7.18); and

ii) if
ν > ν0(Ω, f ,gu) (7.23)

for some positive ν0 whose value is determined by the given data, then
the set of solutions of (7.18) consists of a single element.

Note that solutions of (7.18) exist for any value of the Reynolds number.
However, ii) implies that uniqueness can be guaranteed only for “large enough”
values of ν or for “small enough” data f and gu.

For the k-ω turbulence system we have a similar result for the existence
of solutions to the non linear set of equations (7.19).

Theorem 2. Let Ω be an open, bounded set with Lipschitz-continuous bound-
ary Γ. Let u be in V(Ω), gk and gω in H1(Ω) ∩ L∞(Ω) and νt, Sk, Sω as in
(7.20)-(7.22). Then,

i) there exists at least one solution (k, ω) ∈ H1(Ω)∩L∞(Ω)×H1(Ω)∩L∞(Ω)
of (7.19);

ii) let ωmax,v and kmax,v be positive real constants, and

ksup = sup
{

sup
Γ
{gk}, kmax,v

}
ωinf = inf

{
inf
Γ
{gω}, inf

Ω
{
√
αSω/β}

}
(7.24)

ωsup = sup
{

sup
Γ
{gω}, ωmax,v

}
] ,
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then

0 ≤ k ≤ ksup , (7.25)

0 ≤ ωinf ≤ ω ≤ ωsup . (7.26)

Proof. Due to the theorem assumptions the proof of i) follows from standard
techniques, see [38, 84, 97] for details. Therefore let us suppose that there is
a solution (k, ω) ∈ H1(Ω)×H1(Ω) and prove that (k, ω) ∈ L∞(Ω)× L∞(Ω)
with the bounds in ii).

The proof follows the basic framework for the maximum principle and
the material in [84, 97]. Let φ ∈ H1

0 (Ω) that can be decomposed as

φ = φ+ − φ− φ+ = sup(φ, 0) φ− = sup(−φ, 0) . (7.27)

A well known result in [105] states that both φ+ and φ− are in H1
0 (Ω) and

are orthogonal, which means

(φ+, φ−) = (∇φ+,∇φ−) = 0 . (7.28)

Furthermore if φ− = 0 then φ ≥ 0 or if φ+ = 0 then φ ≤ 0.
In order to prove the boundedness of k and ω we define k̃ and ω̃ as

k̃ =


kinf if k ≤ kinf
k if kinf ≤ k ≤ ksup
ksup if k ≥ ksup

, (7.29)

ω̃ =


ωinf if ω ≤ ωinf
ω if ωinf ≤ ω ≤ ωsup
ωsup if ω ≥ ωinf

, (7.30)

with kinf = 0. The k̃ and ω̃ are the same functions as k and ω inside the
proposed limits.

Now we introduce a similar k-ω problem where the non linear terms are
regularized by k̃ and ω̃ and prove that k̃ = k and ω̃ = ω are indeed solutions
of the problem. We consider the following regularized problem

c(u; k, ψ) + a(ν + ν̃tσk; k, ψ) = 〈S̃k, ψ〉 − (β∗ k̃ω̃, ψ) ∀ψ ∈ H1
0 (Ω)

〈k, sk〉Γ = 〈gk, sk〉Γ ∀ sk ∈ H−1/2(Γ)

c(u;ω, φ) + a(ν + ν̃tσω;ω, φ) = 〈α S̃ω, φ〉 − (β ω̃2, φ) ∀φ ∈ H1
0 (Ω)

〈ω, sw〉Γ = 〈gw, sw〉Γ ∀sw ∈ H−1/2(Γ) ,

(7.31)
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where ν̃t = νt(k̃, ω̃), S̃k = Sk(u, k̃, ω̃) and S̃ω = Sω(u, k̃, ω̃). The problem
(7.31) is the same as problem (7.19) inside the proposed interval.

We have that ω−ωinf = (ω−ωinf )+− (ω−ωinf )− where ()− and ()+ are
the negative and positive operator functions respectively. Since (ω−ωinf )− ∈
H1

0 (Ω) we can consider −(ω − ωinf )− as test function and obtain

c(u;ω,−(ω − ωinf )−) = c(u;−(ω − ωinf )−,−(ω − ωinf )−) = 0 (7.32)

a(ν + ν̃tσk;ω,−(ω − ωinf )−) = (7.33)

a(ν + ν̃tσk;−(ω − ωinf )−,−(ω − ωinf )−) .

From (7.22), since ω2
inf ≤ infΩ{αS̃ω/β} and Sω(u, k̃, ω̃) ≥ ω2

infβ/α for all k̃
and ω̃, we have

(αS̃ω,−(ω − ωinf )−)− (β ω̃2,−(ω − ωinf )−) = (7.34)

(αS̃ω − β ω2
inf ,−(ω − ωinf )−) ≤ 0 ,

which implies

a(ν + ν̃tσk; (ω − ωinf )−, (ω − ωinf )−) ≤ 0 , (7.35)

and (ω − ωinf )− = 0. Therefore we have 0 ≤ ωinf ≤ ω.
In a similar way using (ω − ωsup)+ ∈ H1

0 (Ω) as test function we obtain

c(u;ω, (ω − ωsup)+) = c(u; (ω − ωsup)+, (ω − ωsup)+) = 0 (7.36)

a(ν + ν̃tσk;ω, (ω − ωsup)+) = a(ν + ν̃tσk; (ω − ωsup)+, (ω − ωsup)+) . (7.37)

From (7.22), since ω2
sup ≥ supΩ{αS̃ω/β} then Sω(u, k̃, ω̃) ≤ ω2

supβ/α for all k̃
and ω̃, we have

(αS̃ω, (ω − ωsup)+)− (β ω̃2, (ω − ωsup)+) = (7.38)

(αS̃ω − β ω2
sup, (ω − ωsup)+) ≤ 0 ,

which implies

a(ν + ν̃tσk; (ω − ωsup)+, (ω − ωsup)+) ≤ 0 , (7.39)

and (ω − ωsup)
+ = 0 or ω ≤ ωsup. This implies ωinf ≤ ω ≤ ωsup and

ω = ω̃ ∈ [ωinf , ωsup].
By following the same procedure as done for ω, we can prove that the

turbulent kinetic energy k should be equal to k̃. We can use −(k − kinf )− ∈
H1

0 (Ω) as test function and obtain

c(u; k,−(k − kinf )−) = c(u;−(k − kinf )−,−(k − kinf )−) = 0 (7.40)

a(ν + ν̃tσk; k,−(k − kinf )−) = (7.41)

a(ν + ν̃tσk;−(k − kinf )−,−(k − kinf )−) .
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Since kinf = 0 and S̃k ≥ 0 then

(S̃k,−(k − kinf )−)− (β∗ k̃ω̃,−(k − kinf )−) = (S̃k,−k−) ≤ 0 , (7.42)

which implies

a(ν + ν̃tσk; k
−, (k)−) ≤ 0 , (7.43)

and (k)− = 0 or k ≥ 0.
Finally if we use (k − ksup)+ ∈ H1

0 (Ω) as test function we have

c(u; k, (k − ksup)+) = c(u; (k − ksup)+, (k − ksup)+) = 0 (7.44)

a(ν + ν̃tσk; k, (k − ksup)+) = a(ν + ν̃tσk; (k − ksup)+, (k − ksup)+) . (7.45)

From (7.24), since β∗ksup ω̃ ≥ supΩ{S̃k} then S̃k ≤ β∗ksup ω̃ we have

(S̃k, (k − ksup)+)− (β k̃ω̃, (k − ksup)+) = (7.46)

(S̃k − β ksupω̃, (k − ksup)+) ≤ 0 ,

which implies

a(ν + ν̃tσk; (k − ksup)+, (k − ksup)+) ≤ 0 , (7.47)

and (k − ksup)+ = 0 or k ≤ ksup. This implies 0 ≤ k ≤ ksup and k = k̃ ∈
[0, ksup].

We remark that ωinf = inf
{

infΓ{gω}, infΩ{
√
αSω/β}

}
is zero if there

is a region where S2(u) = 0. In this case, which is very usual, we have
k ∈ [0, ksup] and ω ∈ [0, ωsup]. With these bounds the ratio νt = k/ω is
non-negative but may be unbounded. The total kinematic viscosity ν + νt is
strictly positive. In order to have νt ∈ L∞(Ω) the turbulence viscosity must
be bounded by νmax when ω vanishes.

By using the previous theorems we can prove an important result of the
associated boundary value problem.

Theorem 3. There exists a solution (u, p, k, ω) of the associated boundary
value problem in (7.18)-(7.22).

Proof. The proof is obtained with standard techniques that can be found in
[97]. We briefly describe the most important steps. In order to simplify the
notation we assume gu = 0 and gk = gω = 0. Let (u1, k1, ω1) ∈ H1

0×H1
0×H1

0
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be given. Let (uη, pη) and (kη, ωη) be the state of the following Navier-Stokes-
k-ω split problem

a(ν + νt1; uη,v) + c(u1; uη,v) + b(v, pη) = 〈f ,v〉 ∀v ∈ H1
0(Ω)

b(uη, q) = 0 ∀ q ∈ L2
0(Ω) (7.48)

c(u1; kη, ψ) + a(ν + νt1σk; kη, ψ) = 〈Sk1, ψ〉 − (β∗ kη ωη, ψ) ∀ψ ∈ H1
0 (Ω)

c(u1;ωη, φ) + a(ν + νt1σω;ωη, φ) = 〈αSω1, φ〉 − (β ωη ωη, φ) ∀φ ∈ H1
0 (Ω)

where νt1 = νt(k1, ω1), Sk1 = Sk(u1, k1, ω1) and Sω1 = Sω(u1, k1, ω1). By
using standard techniques and Theorem 2 we can prove the existence of a
solution of the split system (7.48). Since ‖νt1‖∞ ≤ νmax then ‖uη‖1 and
‖pη‖0 are bounded uniformly by the constants Cu and Cp, respectively, for
any u1 and νt1. By using Theorem 2 also ‖kη‖1 and ‖ωη‖1 are uniformly
bounded by the constants Ck and Cω as functions of the given values kmax,v
and ωmax,v.

Consider now the following mapping

T : D = H1
0 ×H1

0 ×H1
0 → A = H1

0 ×H1
0 ×H1

0 (7.49)
uη = uη(u1, k1, ω1)
kη = kη(u1, k1, ω1)
ωη = ωη(u1, k1, ω1) .

We endow the product space H1
0 ×H1

0 ×H1
0 with the norm ‖(u1, k1, ω1)‖ =

‖u1‖ + ‖k1‖ + ‖ω1‖. By using standard techniques it is possible to show
that (7.49) is a continuous mapping with respect to this norm. For similar
proofs see [97]. Let R denote the constant R = Cu +Ck +Cω and let BR be
the ball of radius R. Since for all (u1, k1, ω1) ∈ D we have ‖(uη, kη, ωη)‖ =
‖uη‖+ ‖kη‖+ ‖ωη‖ < Cu + Ck + Cω = R then

T (BR) ⊂ BR . (7.50)

Now we can use the Schauder fixed point theorem in order to prove the
existence of the fixed point (u1, k1, ω1) = (uη, kη, ωη) in the mapping T . We
recall briefly the theorem. Let D be a separated topological vector space,
BR ⊂ D a convex subset, and T (BR) → BR a continuous function on BR,
equipped with the topology inherited from D. Also let T (BR) be a compact
subset of BR. Then T has a fixed point, namely, there exists x ∈ BR such
that T (x) = x. The theorem follows from the compactness of BR, which can
be proven with standard techniques, see for example [97].
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7.2 Control problem

After having proven the existence of solution to the RANS equations cou-
pled with the k-ω system with the bounds defined above, we can now study
the optimal control problem. Given the extended boundary functions gk ∈
H1(Ω) ∩ L∞(Ω) and gω ∈ H1(Ω) ∩ L∞(Ω) and the positive constants kmax,v,
ωmax,v, νmax we can define ksup, ωsup and ωinf . The set of all admissible
functions k and ω is determined by

Qad =
{

(k, ω) ∈ H1(Ω)×H1(Ω) | (7.51)

0 ≤ ωinf ≤ ω ≤ ωsup and 0 ≤ k ≤ ksup
}
,

and set of all admissible functions νt by

Had =
{
νt ∈ L2(Ω) | such that νt ∈ [0, νmax]

}
. (7.52)

The optimal control problem can then be stated in the following way

Given gk, gω ∈ H1(Ω) ∩ L∞(Ω) ⊂ Qad and gu ∈ H1(Ω), find the

control f̂ ∈ L2(Ω) and (û, p̂, k̂, ω̂, ν̂t, Ŝk, Ŝω) such that

J (û, k̂, f̂) ≤ J (u, k, f) (7.53)

for all (u, p, k, ω, νt, Sk, Sω) ∈ H1(Ω) × L2
0(Ω) × Qad × L2(Ω) ×

L2(Ω)×L2(Ω) satisfying the constraints (7.18)-(7.22) and the ob-
jective functional (7.1).

The admissible set of states and controls is given by

Aad = {(u, p, k, ω, νt, Sk, Sω, f) ∈
V(Ω)× L2

0(Ω)×Qad × L2(Ω)× L2(Ω)× L2(Ω)×H−1(Ω)

such that J (u, k, f) <∞ and

(u, k, ω, f) satisfies (7.18)-(7.22) and (7.1)} .

We now turn to the question of the existence of optimal solutions for the
problem in (7.53).

Theorem 4. There exists at least one optimal solution (û, p̂, k̂, ω̂, ν̂t, Ŝk, Ŝω,

f̂) ∈ Aad of the optimal control problem (7.53).

Proof. The proof follows from standard techniques (see, e.g., [16] or [45])
and here we sketch the main idea. Let f = 0 then we can solve the flow sys-
tem (u, p, k, ω, νt, Sk, Sω,0). Since the set of admissible solutions Aad is not
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empty and the set of the values assumed by the functional is bounded from
below, there exists a minimizing sequence (um, pm, km, ωm, νtm, Skm, Sωm, fm)
in V(Ω)× L2

0(Ω)×Qad × L2(Ω)× L2(Ω)× L2(Ω)×H−1(Ω). The sequences
νtm, Skm, Sωm are uniformly bounded in L2(Ω) by construction. If the tur-
bulence source terms Skm, Sωm are bounded then also sequences km, ωm are
uniformly bounded in H1(Ω). Furthermore the functional value for the solu-
tion f = 0 is a uniform bound for um and fm. Using a standard argument,
we can extract sub sequences (un, pn, kn, ωn, νtn, Skn, Sωn, fn) that converge

weakly to (û, p̂, k̂, ω̂, ν̂t, Ŝk, Ŝω, f̂) [16, 45, 97]. By standard argument we can
pass to the limit inside the linear and the nonlinear terms to prove that this
satisfies the constraints. For details on Navier-Stokes one can see [45, 97]
and for details on turbulence equations [97].

In order to compute the optimal solution, we introduce the Lagrange
multiplier method and define the optimality system.

7.2.1 The Lagrange multiplier method

In this section we show that the Lagrange multiplier technique is well posed
and can be used to obtain the first-order necessary condition. Further, the
Lagrangian map can be shown to be strictly differentiable for all values of the
external force and this allows us to apply the Lagrange multiplier method
to a wider range of problems and completes the theoretical treatment of
the problem for arbitrary values of the viscosity. Also, this method gives a
different and better theoretical insight into the control process, allowing us
to write the inequality constraints in a different form.

First, we introduce auxiliary variables that allow us to transform the
inequality constraints into equalities and then invoke well-known techniques
for equality constrained minimization problems; see, e.g., [8] or [110]. We
begin by replacing

νt = min
{k
ω
, νmax

}
Sk = min

{νt
2

S2(u), β∗kmax,vω
}

(7.54)

Sω = min
{1

2
S2(u),

ω2
max,vβ

α

}
,
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by

(k − νtω)(νmax − νt) = 0 (7.55)

r2
ν − (k − νtω)− ω (νmax − νt) = 0

(
νt
2

S2(u)− Sk)(β∗kmax,vω − Sk) = 0 (7.56)

r2
k − (

νt
2

S2(u)− Sk)− (β∗kmax,vω − Sk) = 0

(
1

2
S2(u)− Sω)(

ω2
max,vβ

α
− Sω) = 0 (7.57)

r2
ω − (

1

2
S2(u)− Sω)− (

ω2
max,vβ

α
− Sω) = 0 ,

for some rν , rk, rω ∈ L2(Ω). To better understand these constraints let us
consider (7.55). If r2

ν > 0 then νt = k/ω < νmax or νt = νmax < k/ω which
implies (7.54), and viceversa if k/ω < νmax we have νt = k/ω and r2

ν =
(νmax − νt) > 0 or k/ω > νmax we have νt = νmax and r2

ν = (k − νmaxω) > 0.
If r2

ν = 0 then νt = νmax = k/ω. The same remark is true for the inequalities
(7.56)-(7.57).

Now we compact all the constraint equations and the functional in two
mappings in order to study their differential properties. It is convenient to
define the following functional spaces

B̂1 = H1
0(Ω)× L2

0(Ω)× L2(Ω)×Qad × (7.58)

L2(Ω)× L2(Ω)2 × (L2(Ω))3 ,

B̂2 = H−1(Ω)× L2
0(Ω)×H1/2(Γ)×H−1(Ω)×H1/2(Γ)× (7.59)

H−1(Ω)×H1/2(Γ)× L1(Ω)6 ,

B̂3 = H−1(Ω)× L2
0(Ω)×H1/2(Γ)×H−1(Ω)×H1/2(Γ)× (7.60)

H−1(Ω)×H1/2(Γ)× L1(Ω)6 ,

and equip B̂1, B̂2 and B̂3 with the usual graph norms for the product spaces
involved. The functional space B̂1 is set for the state variables b̂ = (û, p̂, f̂ ,

k̂, ω̂, ν̂t, Ŝk, Ŝω, r̂ν , r̂k, r̂ω). With this notation the constraints of the problem

can be used to form the nonlinear mapping M from B̂1 to B̂3 defined by

M(b̂) = b̂∗
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if and only if

a(ν + νt; û, v̂) + c(û; û, v̂) + b(v̂, p̂)−∫
Ω

f̂ · v̂ dx =

∫
Ω

l1 · v̂ dx ∀ v̂ ∈ H1
0(Ω)

b(û, ẑ) =

∫
Ω̂

l2 ẑ dx ∀ ẑ ∈ L2
0(Ω)∫

Γ

(û− gu) · ŝu ds =

∫
Γ

l3 · ŝu ds ∀ŝu ∈ H−1/2(Γ)

a(ν + νtσk; k̂, φ̂) + c(û; k̂, φ̂)− 〈Sk, φ̂〉+ 〈β∗ kω, φ̂〉 =∫
Ω

l4φ̂ dx ∀ φ̂ ∈ H1
0 (Ω)∫

Γ

(k̂ − gk) ŝk ds =

∫
Γ

l5 ŝk ds ∀ŝk ∈ H−1/2(Γ)

a(ν + νtσω; ω̂, ψ̂) + c(û; ω̂, ψ̂)− α 〈Sω, ψ̂〉+ 〈β ω2, ψ̂〉 =∫
Ω

l6ψ̂ dx ∀ ψ̂ ∈ H1
0 (Ω)∫

Γ

(ω̂ − gω) ŝw ds =

∫
Γ

l7 ŝw ds ∀ŝw ∈ H−1/2(Γ)

(7.61)

(k̂ − ν̂tω̂)(νmax − ν̂t) = lν0 ∀x ∈ Ω

r̂2
ν − (k̂ − ν̂tω̂)− ω̂(νmax − ν̂t) = lν1 ∀x ∈ Ω

(
ν̂t
2

S2(û)− Ŝk)(β∗kmax,vω̂ − Ŝk) = lk0 ∀x ∈ Ω

r̂2
k − (

ν̂t
2

S2(û)− Ŝk)− (β∗kmax,vω̂ − Ŝk) = lk1 ∀x ∈ Ω

(
1

2
S2(û)− Ŝω)(

ω2
max,vβ

α
− Ŝω) = lω0 ∀x ∈ Ω

r̂2
ω − (

1

2
S2(û)− Ŝω)− (

ω2
max,vβ

α
− Ŝω) = lω1 ∀x ∈ Ω

,

with b̂∗ = (l1, l2, l3, l4, l5, l6, l7, lν , lk, lω) ∈ B̂3. The set of constraint equations
in the optimal control problem can be expressed as

M(b̂) = 0 .

Given b̂ ∈ Aad, we define another nonlinear mapping Q : B̂1 → <× B̂2 by
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Q(b̂) = b̂∗ if and only if

(
J (û, k̂, f̂)− J (u1, k1, f1)

M(b̂)

)
=

(
a1

b̂∗

)
. (7.62)

7.2.2 Differentiability

These mappings are strictly differentiable, as it is shown in the following
lemma. We recall the notion of strict differentiability (see [110]). Let X
and Y denote Banach spaces, then the mapping ϕ : X → Y is strictly
differentiable at x ∈ X if there exists a bounded, linear mapping D from
X to Y such that for any ε > 0 there exists a δ > 0 such that whenever
‖x− x1‖X < δ and ‖x− x2‖X < δ for x1, x2 ∈ X, then

‖ϕ(x1)− ϕ(x2)−D(x1 − x2)‖Y ≤ ε‖x1 − x2‖X . (7.63)

The strict derivative D at the point x ∈ X, if it exists, will often be denoted
by D = ϕ′(x). The value of this mapping on an element x̃ ∈ X will often

be denoted by ϕ′(x) · x̃. In the next theorem we can identify X = B̂1 and

Y = B̂2.

Lemma 1. Let the nonlinear mappings M : B̂1 → B̂2 and Q : B̂1 → <× B̂2

be defined by (7.61) and (7.62), respectively. Then, these mappings are strictly

differentiable at the point b̂ = (û, p̂, f̂ , k̂, ω̂, ν̂t, Ŝk, Ŝω, r̂ν , r̂k, r̂ω) ∈ B̂1 and its

strict derivative is given by the bounded linear operator M ′(b̂) : B̂1 → B̂2 ,
where

M ′(b̂) · b̃ = b

for all b̃ = (ũ, p̃, f̃ , k̃, ω̃, ν̃t, S̃k, S̃ω, r̃ν , r̃k, r̃ω) ∈ B̂1 and b = (l1, l2, l3, l4, l5,
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l6, l7, lν , lk, lω) ∈ B̂2 if and only if

a(ν̃t; û, v̂) + a(ν + νt; ũ, v̂) + c(ũ; û, v̂) + c(û; ũ, v̂)

+b(v̂, p̃)− 〈f̃ , v̂〉 =

∫
Ω̂

l1 · v̂ dx ∀ v̂ ∈ H1
0(Ω̂)

b(ũ, ẑ) =

∫
Ω̂

l2 ẑ dx ∀ ẑ ∈ L2
0(Ω̂)∫

Γ

(ũ− gu) · ŝu ds =

∫
Γ

l3 · ŝu ds ∀ŝu ∈ H−1/2(Γ)

a(ν̃tσk; k̂, φ̂) + a(ν + νtσk; k̃, φ̂) + c(ũ; k̂, φ̂)+

c(û; k̃, φ̂)− 〈S̃k, φ̂〉+ 〈β∗ k̃ω̂, φ̂〉+

〈β∗ k̂ω̃, φ̂〉 =

∫
Ω

l4φ̂ dx ∀ φ̂ ∈ H1
0 (Ω)∫

Γ

k̃ ŝk ds =

∫
Γ

l5 ŝk ds ∀ŝk ∈ H−1/2(Γ)

a(ν̃tσω; ω̂, ψ̂) + a(ν + νtσω; ω̃, ψ̂) + c(ũ; ω̂, ψ̂) + c(û; ω̃, ψ̂)−

α 〈S̃ω, ψ̂〉+ 〈β 2ω̂ω̃, ψ̂〉 =

∫
Ω

l6ψ̂ dx ∀ ψ̂ ∈ H1
0 (Ω)∫

Γ

ω̃ ŝw ds =

∫
Γ

l7 ŝw ds ∀ŝw ∈ H−1/2(Γ)

(7.64)

and for the turbulence sources by

(k̃ − ν̃tω̂ − ν̂tω̃)(νmax − ν̂t)− ν̃t(k̂ − ν̂tω̂) = lν0 ∀x ∈ Ω

2 r̃ν r̂ν − (k̃ − ν̃tω̂ − ν̂tω̃) + ω̂ν̃t + ν̂tω̃ = lν1 ∀x ∈ Ω

(
ν̃t
2

S2(û) + ν̂tS(ũ) : S(û)− S̃k)(β∗kmax,vω̂ − Ŝk)+

(
ν̂t
2

S2(û)− Ŝk)(β∗kmax,vω̃ − S̃k) = lk0 ∀x ∈ Ω

2r̃kr̂k − (
ν̃t
2

S2(û) + ν̂tS(ũ) : S(û)− S̃k)−

(β∗kmax,vω̃ − S̃k) = lk1 ∀x ∈ Ω

(S(ũ) : S(û)− S̃ω)(
ω2
max,vβ

α
− Ŝω))−

S̃ω(
1

2
S2(û)− Ŝω) = lω0 ∀x ∈ Ω

2r̃ωr̂ω − S(ũ) : S(û) + 2S̃ω = lω1 ∀x ∈ Ω .

(7.65)
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Moreover, the strict derivative of Q at a point b̂ ∈ B̂1 is given by the bounded
linear operator Q′(b̂) : B̂1 → <× B̂2, where

Q′(b̂) · b̃ = (a, l1, l2, l3, l4, l5, l6, l7, lν , lk, lω) (7.66)

for all b̃ ∈ B̂1 and (a, l1, l2, l3, l4, l5, l6, l7, lν , lk, lω) ∈ < × B̂2 if and only if(
J ′(û, f̂ , k̂, ω̂) · (ũ, p̃, f̃ , k̃, ω̃, ν̃t, S̃k, S̃ω, r̃ν , r̃k, r̃ω)

M ′(b̂) · (ũ, p̃, f̃ , k̃, ω̃, ν̃t, S̃k, S̃ω, r̃ν , r̃k, r̃ω)

)
=(

a

(l1, l2, l3, l4, l5, l6, l7, lν , lk, lω)

)
,

where

J ′(b̂) · b̃ = a

∫
Ω

(û− ud) · ũ dx + b

∫
Ω

(
k̂ − kd

)
k̃ dx + λ

∫
x

f̂ · f̃ dx .

Proof. The linearity of the operator M ′ is obvious and its boundedness fol-
lows from the continuity of the forms a(·; ·, ·), b(·, ·) and c(·; ·, ·). Likewise,
the linearity and boundedness of the operator Q′ are obvious. The fact that
M ′ is the strict derivative of the mapping M also follows from the conti-
nuity of the trilinear form c(·; ·, ·) and bilinear form a(·; ·, ·). Indeed, given

b̂ = (û, p̂, f̂ , k̂, ω̂, ν̂t, Ŝk, Ŝω, r̂ν , r̂k, r̂ω) ∈ B̂1 we have that for any ε > 0 and

b̂1, b̂2 in B̂1, such that ‖b̂− b̂1‖B̂1
< δ and ‖b̂− b̂2‖B̂1

< δ, with appropriate
δ = δ(ε) we obtain

‖M(b̂1)−M(b̂2)−M ′(b̂) · (b̂1 − b̂2)‖B̂2
≤ ε‖b̂1 − b̂1‖B̂1

.

The procedure is standard and the interested reader can see [44, 45, 72, 79]
for similar proofs. Thus, the mapping M is strictly differentiable on all of
B̂1 and its strict derivative is given by M ′.

Using the strict differentiability of the mapping M it is then easy to show
that the mapping Q is also strictly differentiable and that its strict derivative
is given by Q′.

In order to prove the closure of the range of M ′ we need a result that
claims the existence of the solution with a convection-diffusion equation of
the following type

−∇ · (A∇T ) + (u · ∇)T + b T = f in Ω (7.67)

T = T1 on Γ (7.68)
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This operator does not satisfy the coercivity property due to the presence
of the convective terms and therefore the usual Lax-Milgram setting cannot
be applied. Nevertheless, it is possible to claim the existence of the state
solutions for the non-coercive elliptic case if the velocity field u is in L2(Ω)
[10, 31]. This existence result is obtained not in the Lax-Milgram setting but
by using a Leray-Schauder Topological Degree argument.

Theorem 5. Let N∗ = N when N ≥ 3, N∗ ∈]2,∞[ when N = 2. Consider
the (7.67) with b ∈ LN∗/2(Ω), b ≥ 0 a.e. on Ω, u ∈ LN∗(Ω), and f ∈
(H−1(Ω)). If A is a function which satisfies these two properties:

1. ∃αA > 0 such that A(x)ξ · ξ ≥ αA|ξ|2 for a.e. x ∈ Ω and for all ξ ∈ <;

2. ∃ΛA > 0 such that |A(x)| ≤ ΛA for a.e. x ∈ Ω;

Then, there exists a unique solution T ∈ H1(Ω) of (7.67).

Proof. The proof of this result is based on a Leray-Schauder Topological
Degree argument and can be found in [31].

We note that the Navier-Stokes system in (7.2)-(7.3) with Dirichlet bound-
ary conditions has at least one solution (u, p) ∈ H1(Ω) × L2

0(Ω). The
Sobolev compact embedding theorem implies H1(Ω) ↪→ Lq(Ω) which holds
for 1 ≤ q < ∞ when N = 2 and for 1 ≤ q ≤ 6 when N = 3. The velocity
solution u ∈ H1(Ω) verifies the hypothesis in Theorem 5 both with N = 2
and with N = 3.

We remark also that, if one needs to use the Lax-Milgram setting, ex-
istence can be proven by assuming some condition on the velocity field u.
For instance, in the case of fully Dirichlet boundary conditions one can have
coercivity with

− 1

2
∇ · u + b ≥ 0 . (7.69)

This condition of additional regularity on the velocity field is not needed in
the Leray-Lions setting [10].

Next, we prove some further properties of the derivatives of the mappings
M and Q. It is worthwhile to note that rν , rk and rω are zero when the
differential equations in k and ω satisfy both limits at the same time. This is
not a problem for the optimization if this happens over points or boundary
regions with zero measure but it may be a problem if this is verified over
domain with positive measure. For this reason let us introduce the following
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subsets

Ων =
{

x ∈ Ω such that νt = νmax = k/ω
}

(7.70)

ΩSk =
{

x ∈ Ω such that Sk = νtS
2(u)/2 = β∗kmax,v ω

}
(7.71)

ΩSω =
{

x ∈ Ω such that Sω = S2(u)/2 = βω2
max,v/α

}
. (7.72)

We use these sets to assure the validity of the Lagrangian multiplier technique
around the region where the minimum point should be searched.

Lemma 2. Let b̂ ∈ B̂1 denote a solution of the optimal control problem.
Then, if the region Ων ∪ ΩSk ∪ ΩSω has zero measure, we have

i) the operator M ′(b̂) has closed range in B̂2;

ii) the operator Q′(b̂) has closed range in <× B̂2;

iii) the operator Q′(b̂) is not onto <× B̂2.

Proof. In order to show i) we split the system (7.64-7.65) into three parts:
the Navier-Stokes, the k-ω model and turbulence source constraint derivative
operator system. Let us consider the Navier-Stokes derivative operator in
(7.64) with νt ∈ L∞(Ω) and ν + νt > 0. The question of the closeness of the

range of the Navier-Stokes operator defined in M ′ : B̂1 → B̂2 reduces to the
like question for the inhomogeneous Stokes operator S̃ : H2(Ω) ∩ H1

0(Ω) ×
H1(Ω) ∩ L2

0(Ω) → H−1(Ω) × L2
0(Ω) × H1/2(Γ(α)) defined as S̃ · (w̃, p̃) =

(̃l1, l̃2, l̃3) if and only if
νa(w̃,v) + b(v, p̃)− (v, f̃) = 〈̃l1,v〉 ∀v ∈ H1

0(Ω)

b(w̃, z) = (l̃2, z) ∀ z ∈ L2(Ω)∫
Γ

(w̃ − g) · s ds =

∫
Γ

l̃3 · s ds ∀ s ∈ H−1/2(Γ) ,

(7.73)

where f ∈ L2(Ω) and g ∈ H1/2(Γ). The fact that the operator S̃ has closed
range in H−1(Ω) × L2

0(Ω) × H1/2(Γ) follows easily from well-known results
for the Stokes equations; see, e.g., [109]. We can then conclude that the

operator S̃ has closed range in B̂2, and, since the operator M ′(b) is a compact

perturbation of the operator S̃, we have, from the Fredholm theory, that
M ′(b) itself has closed range in B̂2.
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Now we consider the k-ω system in M ′. Since b̂ is an optimal solution
the system reduces to

a(ν + νtσk; k̃, φ̂) + c(û; k̃, φ̂) + 〈β∗ ω̂k̃, φ̂〉 =

∫
Ω

l4φ̂ dx−

a(ν̃tσk; k̂, φ̂)− c(ũ; k̂, φ̂)− 〈β∗ ω̃k̂, φ̂〉+ 〈S̃k, φ̂〉 ∀ φ̂ ∈ H1
0 (Ω)∫

Γ

k̃ ŝk ds =

∫
Γ

l5 ŝk ds ∀ŝk ∈ H−1/2(Γ)

a(ν + νtσω; ω̃, ψ̂) + c(û; ω̃, ψ̂) + 〈β 2ω̂ω̃, ψ̂〉 =

∫
Ω

l6ψ̂ dx−

a(ν̃tσω; ω̂, ψ̂)− c(ũ; ω̂, ψ̂) + 〈S̃ω, ψ̂〉 ∀ ψ̂ ∈ H1
0 (Ω)∫

Γ

ω̃ ŝw ds =

∫
Γ

l7 ŝw ds ∀ŝw ∈ H−1/2(Γ) .

(7.74)

It is possible to show that ω̃-equation in (7.74) has a solution for all l6
and also that k̃-equation can be solved for all l4. In fact since ν + νt is a
positive function in L∞(Ω) and thanks to the Sobolev compact embeddings
H1(Ω) ↪→ Lq(Ω) which holds for 1 ≤ q <∞ when N = 2 and for 1 ≤ q ≤ 6
when N = 3, we have that u ∈ H1(Ω) verifies the hypothesis in Theorem 5
both with N = 2 and with N = 3.

Finally we focus on the system (7.65) under the assumption that b̂ is an

optimal solution. From this we have that Ŝ2(û) is bounded and ν̂t ∈ L∞(Ω).
If we assume that the region (Ων ∪ Ωk ∪ Ωω) ∩ Ω has a measure zero then
r̂ν , r̂k, r̂ω cannot be zero a.e. on the domain Ω. Therefore the equations can
be solved a.e. in Ω for all lν = (lν0, lν1) ∈ L2(Ω) × L2(Ω), lk = (lk0, lk1) ∈
L2(Ω) × L2(Ω) and lω = (lω0, lω1) ∈ L2(Ω) × L2(Ω) as a function of ν̃t, r̃ν1,

k̃, r̃k1 and ω̃ and r̃ω1, respectively.
Starting from i), the proof of ii) and iii) can be found easily by using the

standard techniques in [42, 43, 45].

The first-order necessary condition follows easily from the fact that the
operator Q′(b̂) is not onto <× B̂2; see, e.g., [42, 46].

Theorem 6. Let b̂ ∈ B̂1 be a solution of the optimal control problem, then
there exists a nonzero Lagrange multiplier b̂a = (λ1, ûa, p̂a, f̂a, k̂a, ω̂a, ν̂ta, Ŝka,

Ŝωa, r̂νa, r̂ka, r̂ωa) ∈ < × B̂∗2 satisfying the Euler equations

λ1 J ′(û, k̂, f̂) · b̃ + 〈b̂a,M ′(b̂) · b̃〉 = 0 ∀ b̃ ∈ B̂1 , (7.75)

where 〈·, ·〉 denotes the duality pairing between B̂2 and B̂∗2.
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7.2.3 The optimality system

Next, we examine the first-order necessary condition (7.75) to derive an op-
timality system from which optimal states and controls may be determined.

Theorem 7. Let b ∈ B̂1 denotes a solution of the optimal control problem.
Then, if the region Ων∪ΩSk∪ΩSω has zero measure, (ûa, p̂a, f̂a, ) are solutions
of

b(ûa, p̃) = 0

a(ν + νt; ũ, ûa) + c(ũ; û, ûa) + c(û; ũ, ûa) + b(ũ, p̂a) =

−a
∫

Ω

ũ (û− ud)− c(ũ; k̂, k̂a)− c(ũ; ω̂, ω̂a)+

a(r̂kaν̂t + r̂ωa; û, ũ)− a(Ŝkaν̂t (β∗kmax,v ω̂ − Ŝk)+

Ŝωa (
βω2

max,v

α
− Ŝω); û, ũ)

λ〈f̂a, f̃〉 = 〈ûa, f̃〉 ,

(7.76)

for all (ũ, p̃, f̃) in H1
0(Ω)× L2

0(Ω)× L2(Ω), k̂a, ω̂a are solutions of

a(ν + νtσk; k̃, k̂a) + c(û; k̃, k̂a) + 〈β∗ k̂a ω̂, k̃〉 =

−b
∫

Ω

(
k̂ − kd

)
k̃ dx− 〈ν̂a − r̂νa, k̃〉

a(ν + νtσω; ω̃, ω̂a) + c(û; ω̃, ω̂a) + 〈2β ω̂ ω̃, ω̂a〉 =

〈−r̂νaν̂t + ν̂aν̂t(νmax − ν̂t), ω̃〉 − 〈β∗ k̂ k̂a, ω̃〉−

〈Ŝka(
ν̂t
2

S2(û)− Ŝk)− r̂ka, β∗kmax,vω̃〉 ,

(7.77)

for all (k̃, ω̃) in H1
0(Ω) × H1

0(Ω), ν̂a, Ŝka, Ŝωa are solutions of the following
algebraic equations

ν̂a

[
ω̂(νmax − ν̂t) + (k̂ − ν̂tω̂)

]
=[

∇û : ∇ûa + σk∇k̂ · ∇k̂a + σω∇ω̂ · ∇ω̂a
]
+

2r̂νa ω̂ + Ŝka
S2(û)

2
(β∗kmax,vω̂ − Ŝk)− r̂ka

S2(û)

2
,

Ŝka

[
(β∗kmax,v ω̂ − Ŝk) + (

ν̂t
2

S2(û)− Ŝk)
]

= −k̂a + r̂ka ,

Ŝωa

[
(
βω2

max,v

α
− Ŝω) + (

1

2
S2(û)− Ŝω)

]
= −αω̂a + 2r̂ωa ,

(7.78)



7.2. Control problem 165

and r̂νa, r̂ka, r̂ωa satisfy

r̂νar̂ν = 0 r̂kar̂k = 0 r̂ωar̂ω = 0 . (7.79)

Proof. The first-order necessary condition (7.75) is equivalent to

λ1

(
a

∫
Ω

ũ (û− ud) dx + b

∫
Ω

k̃
(
k̂ − kd

)
dx +

λ

∫
x

f̃ · f̂ dx
)

+ a(ν̃t; û, ûa) + a(ν + νt; ũ, ûa)+

c(ũ; û, ûa) + c(û; ũ, ûa) + b(ûa, p̃)− 〈f̃ , ûa〉+ b(ũ, p̂a)+∫
Γ

(ũ− gu) · ûa ds+ a(ν̃tσk; k̂, k̂a) + a(ν + νtσk; k̃, k̂a) + c(ũ; k̂, k̂a)+

c(û; k̃, k̂a)− 〈S̃k, k̂a〉+ 〈β∗ k̃ω̂, k̂a〉+ 〈β∗ k̂ω̃, k̂a〉+

∫
Γ

k̃ k̂a ds+

a(ν̃tσω; ω̂, ω̂a) + a(ν + νtσω; ω̃, ω̂a) + c(ũ; ω̂, ω̂a) + c(û; ω̃, ω̂a)− α 〈S̃ω, ω̂a〉+

〈β 2ω̂ω̃, ω̂a〉+

∫
Γ

ω̃ ω̂a ds+ 〈ν̂a, (k̃ − ν̃tω̂ − ν̂tω̃)(νmax − ν̂t)− ν̃t(k̂ − ν̂tω̂)〉+

〈 r̂νa, 2r̃ν r̂ν − (k̃ − ν̃tω̂ − ν̂tω̃) + ν̃tω̂ + ω̃ν̂t〉+

〈Ŝka, (
ν̃t
2

S2(û) + ν̂tS(ũ) : S(û)− S̃k)(β∗kmax,vω̂ − Ŝk)+

(
ν̂t
2

S2(û)− Ŝk)(β∗kmax,vω̃ − S̃k)〉+ 〈r̂ka, 2r̃kr̂k−

(
ν̃t
2

S2(û) + ν̂tS(ũ) : S(û)− S̃k)− (β∗kmax,vω̃ − S̃k)〉+

〈r̂ωa, 2r̃ωr̂ω − S(ũ) : S(û)〉+ 〈r̂ωa, 2S̃ω〉+

〈Ŝωa, (S(ũ) : S(û)− S̃ω)(
ω2
max,vβ

α
− Ŝω)− S̃ω(

1

2
S2(û)− Ŝω)〉 = 0 ,

for all b̂ = (û, p̂, f̂ , k̂, ω̂, ν̂t, Ŝk, Ŝω, r̂ν , r̂k, r̂ω) ∈ B̂1. In order to satisfy the
integral on the boundary we set homogeneous Dirichlet boundary conditions
for the adjoint variables (ûa, p̂a, k̂a, ω̂a). Furthermore we are free to choose
λ1 = 1. By extracting the terms involved in the same variation we obtain
(7.76-7.79).

From (7.79) we note that if r̂k 6= 0 then r̂ka = 0. This is true also for r̂ωa
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and r̂νa. Therefore the final adjoint system reduces to

b(ûa, p̃) = 0 ,

a(ν + νt; ũ, ûa) + c(ũ; û, ûa) + c(û; ũ, ûa) + b(ũ, p̂a) =

−a
∫

Ω

ũ (û− ud) dx− c(ũ; k̂, k̂a)− c(ũ; ω̂, ω̂a)−

a(Ŝkaν̂t (β∗kmax,v ω̂ − Ŝk) + Ŝωa (
βω2

max,v

α
− Ŝω); û, ũ) ,

a(ν + νtσk; k̂a, k̃) + c(û; k̃, k̂a) + 〈β∗ k̂a ω̂, k̃〉 = −〈ν̂a, k̃〉−

b

∫
Ω

(
k̂ − kd

)
k̃ dx

a(ν + νtσω; ω̃, ω̂a) + c(û; ω̃, ω̂a) + 〈2β ω̂ω̂a, ω̃〉 =

〈ν̂a ν̂t(νmax − ν̂t), ω̃〉−

〈β∗ k̂ k̂a, ω̃〉 − 〈Ŝka(
ν̂t
2

S2(û)− Ŝk)β∗kmax,v, ω̃〉 ,

(7.80)

with control

f̂a =
ûa
λ
, (7.81)

adjoint turbulent viscosity

ν̂a =

[
∇û : ∇ûa + σk∇k̂ · ∇k̂a + σω∇ω̂ · ∇ω̂a

]
Ŝka

r2
ν

·S
2(û)

2
(β∗kmax,vω̂ − Ŝk) ,

(7.82)

and adjoint turbulence sources

Ŝka = − k̂a
r2
k

, Ŝωa = −αω̂a
r2
ω

. (7.83)

Furthermore in the case in which no bounds are reached and

ν̂t =
k

ω
, Ŝk =

ν̂t
2

S2(û) , Ŝω =
1

2
S2(û) , (7.84)

the adjoint system (7.82-7.83) simplifies drastically.
To complete the optimality system definition we report the boundary

conditions to be used for a generic turbulent flow simulations where the
inlets are defined by the surface Γi, the outlets by Γo, the solid walls are
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defined by Γw and a near wall approach is chosen. The boundary conditions
for the state variables over the generic inlet Γi are

v · n = vi , v ·T = 0 ,

k = ki , ω = ωi ,

and on the outlet Γo

(ν + νt)S(v) · n = 0 , v ·T = 0 , p = 0 ,

∇k · n = 0 , ∇ω · n = 0 ,

where n is the normal vector to the boundary surface and T the tangential
tensor. If a near wall approach is chosen the boundary conditions on the
solid wall Γw are

v · n = 0 , (ν + νt)S(v) · n = ν
v ·T
yd

,

∇k · n =
2 k

yd
ω =

2 ν

β∗ y2
d

.

The natural or dual boundary conditions for the optimality system in strong
form can be obtained by setting to zero the surface integrals that contain
unknown terms or non-integrable functions. Over the inlet Γi we set

va = 0 , ka = 0 , ωa = 0 ,

on the outlet Γo

(ν + νt)S(va) · n = −(v · n)va ,va ·T = 0 , pa = 0 ,

(ν + σkνt)∇ka · n = −(v · n)ka ,

(ν + σωνt)∇ωa · n = −(v · n)ωa ,

and on the wall Γw

v · n = 0 ,

(ν + νt)S(va) · n =
νva ·T
yd

+ 2[kaνt + γa1g(k,v)]v ·T ,

∇ka · n = 2
ka + σdωa

yd
, ωa = 0 ,

In order to obtain a finite element discretization of the optimality sys-
tem the infinite dimensional functional spaces are replaced by finite di-
mensional spaces and a suitable basis for these spaces is chosen. We use
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quadratic finite elements for all variables except the pressure which is as-
sumed linear to satisfy the inf-sup condition needed as stability require-
ment for discrete Navier-Stokes approximations, see Chapter 1 for more
details. Let vh ∈ X2

h(Ω) ⊂ H1(Ω) and ph ∈ Ph(Ω) ⊂ L2
0(Ω) be the

quadratic and linear approximations for the fluid flow field. For the tur-
bulence system we use quadratic approximations as kh ∈ X2

h(Ω) ⊂ H1(Ω)
and ωh ∈ X2

h(Ω) ⊂ H1(Ω). Similar approximations are used for the adjoint
variables. With this assumption the weak form of the optimality system can
be split into the incompressible Navier-Stokes system with the k-ω turbulence
model and their adjoint equations. The first block of equations consists of
the Navier-Stokes system

∫
Ω

∇ · vhψhdΩ = 0 ∀ψh ∈ Ph , (7.85)∫
Ω

[
[(vh · ∇)vh] ·wh − ph∇ ·wh + (ν + νt)S(vh) : ∇wh − fh ·wh

]
dΩ

(7.86)

−
∫

Γw

[
ν

yd
(vh − (vh · n)n) ·wh

]
dΓ = 0 ∀wh ∈ X2

h ,

and its adjoint set of equations

∫
Ω

∇ · vhaψhadΩ = 0 ∀ψha ∈ Ph , (7.87)∫
Ω

[
[(wha · ∇)vh] · vha + [(vh · ∇)wha] · vha − pha∇ ·wha+ (7.88)

(ν + νt)S(vha) : ∇wha + kha(δv · ∇)kh + ωha(wha · ∇)ωh+

a (vh − vd) ·wha − [khaνt + αωha] S(vh) : S(wha)+

− γa1
g(k,vh)

S2(vh)
S(vh) : S(wha)

]
dΩ−∫

Γw

[
ν

yd
(vha − (vha · n)n) ·wha

]
dΓ = 0 ,

for all wha ∈ X2
h. The terms (vh − (vh · n)n) and its dual are simply the

tangential velocity. The second block of equations to be solved consists of
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the turbulence system∫
Ω

[
[(vh · ∇)kh]ψh + (ν + σkνt)∇kh · ∇ψh − Phkψh + β∗khωhψh

]
dΩ+

(7.89)

−
∫

Γw

2 k

yd
ψh dΓ = 0 ∀ψh ∈ X2

h∫
Ω

[
(vh · ∇)ωhϕh + (ν + σωνt)∇ωh · ∇ϕh+ (7.90)[

βω2
h +

σd
ωh
∇kh · ∇ωh − αS2(vh)

]
ϕh

]
dΩ = 0 ∀ϕh ∈ X2

h

and the corresponding adjoint set of equations∫
Ω

[
− [(vh · ∇)kha]ψh + (ν + σkνt)∇kha · ∇ψh + β∗khaωhψh+ (7.91)

γa1 g(1,vh)ψh − σd
ωha
ωh
∇ωh · ∇ψh +

γa2 − νa (νt − g)

ωh
ψh+

b (kh − kd)ψh
]
dΩ−

∫
Γw

2 kha
yd

ψhdΓ = 0

∫
Ω

[
[(vh · ∇)ϕh]ωha + (ν + σωνt)∇ωha · ∇ϕh + β∗khakhϕh+ (7.92)

2βωhaωhϕh − σd
ωha
ωh
∇kh · ∇ϕh+

σd ωha
ω2
h

∇kh · ∇ωhϕh −
(νa (νt − g)− γa2) k

ω2
h

ϕh

]
dΩ = 0 ,

for all ψh ∈ X2
h, ϕh ∈ X2

h. The system (7.85-7.92) is a finite element dis-
cretization of the optimality system (7.2-7.5), (7.80-7.83) when the boundary
conditions are included. In the next section we solve the optimality system
described here in some numerical cases.

7.3 Numerical Results

In this section we report some results obtained from the numerical solution of
the optimality system described in the previous section. We use a segregated
solver for the state and adjoint systems and the steepest descent Algorithm
4 for the optimal control solution. After the setup in which the first state
solution is obtained, the Algorithm consists of two main loops, the outer
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Algorithm 4 Steepest descent algorithm to find the optimal solution
1: function Find Optimal
2: Set f0 = 0, r0 = λ
3: Set an initial state (v0, p0, k0, ω0) satisfying (7.85-7.86) and (7.89-7.90)
4: Compute the functional J 0 in (7.1) . Setup of the reference state
5: for i = 1→ imax do
6: Solve (7.87-7.88-7.91-7.92) for the adjoint state (via, p

i
a, k

i
a, ω

i
a)

7: for j = 1→ jmax do
8: Compute the control f i = f i−1 + ri,j via/λ
9: Solve (7.85-7.86) and (7.89-7.90) for the state (vi,j , pi,j , ki,j , ωi,j , νi,jt )

10: Compute the new functional J i,j+1 in (7.1)
11: if ‖J i,j+1 − J i,j‖/J i,j < toll then
12: Convergence of the optimal control problem reached . End
13: else if J i,j+1 > J i,j then
14: set ri,j+1 = 2/3 ri,j and go to 8 . loop on j again
15: else if J i,j+1 < J i,j then
16: set ri,j+1 = 3/2 ri,j and go to 6 . loop on i again
17: end if
18: end for
19: end for
20: end function

with index i and the inner with index j. The loop j is nested inside the
loop i after the adjoint system is solved. In the loop j the new control f is
obtained by adding the previous value with a weighted contribution from the
adjoint va computed at the current i-iteration. This weight function ri,j is
initialized to λ and can be updated at every j iteration based on the value
of the new computed functional. After the control f is updated, the state
system is solved and the new functional is computed in order to compare
this value with the previous one. If the relative difference between the two
functionals is bounded by the tolerance toll then the searching for an optimal
solution ends. If the new functional is greater than the old one, the value
of r is too large and must be reduced. The new control f can be computed,
then the state solution and another j-iteration is performed. When the new
functional is less than the old one we have successfully performed a reduction
in the functional with the current control f , so the j-loop ends and a new
i-iteration can start by solving the adjoint system with new velocity and
turbulence fields. The algorithm stops when the two computed functionals
are nearly identical and no more improvement is possible on the state system.

Some remarks need to be done on this algorithm. First we notice the high
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computational cost needed by an adjoint based algorithm that solves many
times the adjoint and state systems. In iterative methods it is very common
to employ the last solution available as initial condition for the system solu-
tion in order to reduce the computational time. In this case however some
care is needed because in the j-loop, if r is too big, the state solution can
become very different from the solution at the begin of the j-loop and much
time could be needed to obtain the correct solution with a much smaller r.
The strategy adopted in this work has been to reset the state solution at
the same value after every not successful j iteration. In the algorithm the
state system is solved many times, while the adjoint one less often. Keeping
in mind also that the adjoint system could be harder to solve numerically,
one could use a faster projection algorithm for the RANS solution which is
performed many times and a fully coupled and robust solver for the adjoint
system. Comparing this algorithm with higher order ones where for exam-
ple second order information through a Hessian computation are available,
we can assume that this is more robust and suitable for this specific optimal
control problem because of RAM limitations [47, 113]. However in the future
more complex algorithms could be assessed to obtain possible improvements.

In the rest of this section we report the results obtained for some test cases
for different parameters a, b and λ in two and three-dimensional geometries.
Two cases are simulated: a two dimensional plane channel with a developing
flow and a three dimensional channel with a more complex geometry. In the
first case we test the optimal control solver for both a velocity matching and
a turbulence enhancement problem, while in the three dimensional channel
we study the turbulence reduction-enhancement problems. Different values
of the parameter λ are chosen in the range of 0.1 to 0.001. In the following we
report all the physical properties, dimensions and results in non-dimensional
units.

Figure 7.1: Plane channel geometry. Inlet on the left, outlet on the right,
wall on the bottom and symmetry axis on top.
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7.3.1 Plane Channel

In this section we solve the optimal control Algorithm 4 in two-dimensional
geometry for the velocity-matching profile case and for the turbulence en-
hancement problem. We refer to the first case as case (a) and to the latter
as case (b). The plane channel geometry is reported in Figure 7.1. The half-
channel width W is 1 and the length L is 5. The x-axis is set along the flow
direction while the transverse one is y-axis. The inlet is set on the left of the
channel and a simple velocity uniform profile v = (1, 0) boundary condition
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Figure 7.2: Case (a). On top axial velocity vx in the plane channel geometry,
profile on a line at x = 4. On the bottom adjoint axial velocity profile vax
on the same line. Result (A) obtained with λ = 0.1, (B) with λ = 0.01 and
(C) with λ = 0.001. Profile (D) on top obtained with no control.
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Figure 7.3: Case (a). Iso-surface contours (top) and vector field (bottom) of
the adjoint axial velocity vay for λ = 0.001.

is imposed here, while on the right a standard outflow boundary condition
is set. On the symmetry axis a homogenous Neumann boundary condition
is set for vx, vax, k, ω, ka and ωa and zero value for vy and vay on the same
symmetry axis. On the wall we use the near-wall boundary conditions as
defined in Section 7.1.

The kinematic viscosity is the main physical parameter of this problem.
Defining the Reynolds number based on the modulus of the inlet velocity
U = 1 and on the half-width of the channel W = 1, Re = UW/ν, we can
consider different Reynolds numbers by changing the molecular viscosity ν.
For this test case we set Re = 10, 000 that implies a not fully developed flow
at the outlet of the channel.

For the velocity matching case (a) we choose the desired velocity vd =
(1, 0) and λ = 0.1, 0.01 and 0.001. When λ is smaller the control can act
stronger and achieve low values of the objective functional. In Figure 7.2,
on top, the velocity vx profiles on a line at x = 4 obtained with decreasing λ
are reported. The lines (A-C) show the profile of the controlled velocity and
line (D) is the reference result with no control. In the central region, as λ
decreases, the velocity approaches a unitary uniform value and the matching
is better achieved. Due to vanishing boundary conditions on the wall the
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Figure 7.4: Case (a). Iso-surface contours (top) and scalar field (bottom) of
the adjoint turbulent kinetic energy ka for λ = 0.001.

λ ∞ 0.1 0.01 0.001
J (v,va) 0.015995 0.003803 0.003353 0.003318

Table 7.1: Case (a). Objective functionals computed with no control (λ =∞)
and different λ values in the velocity matching profile problem, plane channel.

control cannot act efficiently in the near-wall region and therefore the source
term (v−vd) and the adjoint variable are substantially large. In Figure 7.2,
on the bottom, the profile of the adjoint velocity vax is reported for three
values of λ showing a strong peak near the wall and flat profile in the center-
channel region with negative values that decrease the fluid velocity. In this
Figure we can see different values of vax obtained with decreasing λ, (lines
A-C). In order to understand this behavior we must consider that the control
f is scaled by the value of λ, so a smaller adjoint velocity is needed to obtain
the same effect on the fluid velocity with decreasing λ.

In Figures 7.3-7.4 several equally subdivided contours of the adjoint vari-
ables va and ka are reported for λ = 0.001. The interaction between the
adjoint velocity and the adjoint turbulent kinetic energy is shown. The most
important source for ka seems to be the tensor double product of the velocity
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Figure 7.5: Case (b). Turbulence kinetic energy k (top) and adjoint axial
velocity vax (bottom) profiles along the line x = 4 for different λ = 0.1 (A),
0.01 (B) and 0.001 (C).

derivatives and its adjoint. However the non linearity of the equations im-
plies high complexity and the physical meaning of this variable in the context
of velocity matching profile is difficult to be understood.

Finally in Table 7.1 the objective functionals are reported as computed in
the velocity matching profile problem for the different λ values. As one can
see, by decreasing λ a more effective control is attained and the objective



176 Chapter 7. Turbulence optimal control

0 0.2 0.4 0.6 0.8 1
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v
x

A

B

C

0 0.2 0.4 0.6 0.8 1
y

0

0.02

0.04

0.06

0.08

0.1

k
a

A
B

C

Figure 7.6: Case (b). Axial velocity vx (top) and adjoint turbulent kinetic
energy ka (bottom) profiles along the line x = 4 for different λ = 0.1 (A),
0.01 (B) and 0.001 (C).

functional becomes smaller. Moreover by decreasing λ from 0.1 to 0.01 a
great improvement is obtained while this is less evident when decreasing λ
from 0.01 to 0.001.

In order to test the optimal control solver with a = 0, b = 1 in equation
(7.1) we choose a turbulence enhancement problem and set the desired value
kd to 0.1 because the turbulence energy in the test case without control
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Figure 7.7: Case (b). Iso-surface contours of turbulent kinetic energy k (top)
and adjoint turbulent kinetic energy ka (bottom) for λ = 0.001.

is always smaller than this value. The regularization parameter λ of this
case (b) is set to 0.1, 0.01 or 0.001. In Figure 7.5, on top, the turbulence
kinetic energy k is reported for the three values of λ along the line x = 4.
On the bottom of the same Figure the axial adjoint velocity is reported
for different values of λ. The control increases the value of the turbulence
energy by applying a negative force near the wall and in the center of the
channel, slowing down the fluid in these regions, and a positive force in
the intermediate region accelerating the fluid. The same scaling behavior
of the adjoint velocity with decreasing λ is obtained, as pointed out in the
description of Figure 7.2.

The resulting axial velocity profile is reported in Figure 7.6 on top. As
expected, the control slows down the fluid near the wall and in the center of
the channel. It also accelerates the fluid in the intermediate region. By doing
so the gradient of the velocity becomes higher and the turbulence intensity
increases. In this Figure on the bottom we can see the profile of the adjoint
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λ 0.1 0.01 0.001
J (k,va) 0.02009 0.01894 0.01870

Table 7.2: Case (b). Objective functionals computed with different λ values
in the turbulence enhancement problem, plane channel.

turbulence intensity ka, reported for three values of λ. The main source term
of ka is the difference k − kd so where ka is higher the objective functional
is far from vanishing. By looking at this profile one can see that in the
center of the channel the turbulence energy is too low. By decreasing λ we
obtain better overall results, except from a small region near the center of
the channel where no improvement can be obtained.

In this test case advective effects are important because the coupling
between velocity and adjoint turbulent kinetic energy is weak. In Figure 7.7
on top the turbulent kinetic energy k is reported on the whole domain with
several iso-surface contours for the test case with λ = 0.001. The highest
turbulence intensity is obtained near the outlet of the channel and near the
wall where the boundary layer is enlarged by the control. On the bottom of
the same Figure the adjoint turbulence energy ka is shown. On the inlet of
the channel, near the center, the control is ineffective and ka has a strong
peak. Furthermore ka is smaller in the regions near the outlet and the wall,
where turbulence energy is higher. By looking at these results it can be easily
understood that convection is strong and large values of control are needed
to affect upstream regions.

Finally we report in Table 7.2 the objective functional for case (b) and
different λ values. It is worthwhile to note the decreasing of the functional
with the decreasing of λ and in particular in the range of 0.1 to 0.01.

7.3.2 Three dimensional channel

In this section we report the results of the simulations performed on a three-
dimensional geometry that represents a closed channel with two obstacles.
In Figure 7.8 the three-dimensional geometry of the channel is shown with
the main flow direction along the z-axis. The flow enters at the bottom
at z = 0, throughout a unitary square surface, with v = (0, 0, 0.1) and a
Reynolds number of about 1, 000, and impacts on two solid walls to finally
exit crossing the top section located at z = 5. The two obstacles consist of
two slices in the middle of the channel. The first one is located at z = 1.5 and
extends along the x-axis inside the channel for 0.4 and along the z-direction
for 0.1. The second obstacle is set at z = 2.5 and extends along the y-axis
for 0.5 and along the z-axis for 0.1.
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Figure 7.8: Three dimensional channel geometry. Inlet on the left, outlet
on the right of the Figure. The two obstacle walls are visible where the
corresponding fluid crossing sections are shown in red.

Figure 7.9: Three dimensional channel with no control. The velocity field
(on the left) and the velocity magnitude (on the right) are shown on the
whole domain with arrows and colored by the magnitude.

The uncontrolled flow is reported in Figures 7.9-7.10. On the left of Figure
7.9 the velocity field is depicted with arrows colored by its magnitude. Two
main vortices appear after the solid walls and the main flow is compressed
at the corner of the channel where no solid walls are present. On the right
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Figure 7.10: Three dimensional channel with no control. The turbulent
kinetic energy k (on the left) and its iso-surface contours representing regions
at similar k values (on the right) are represented with colors.

of the same Figure one can see the magnitude of the velocity field. In Figure
7.10 the turbulent kinetic energy k is shown on the left and its iso-surface
contours representing regions at similar k values on the right. The second
wall is a strong source of turbulence and a high amount of turbulent kinetic
energy is produced in this region. The turbulence is then convected through
the exit of the channel dissipating on the way. Another region where the
turbulence level is high is near the inlet where a constant value of k = 0.005
is imposed on the inlet boundary.

In this geometry we study two control problems, a turbulence reduction
and a turbulence enhancement problem. Concerning the first, we impose a
desired value for the turbulent kinetic energy of kd = 0 constant on the whole
domain. As already explained, kd could be chosen as a smooth function of the
spatial coordinates but since in this case we are interested in a more general
result we use a function constant with respect to the spatial coordinates. For
the second problem we have to choose a high value for kd, so based on the
obtained values in the uncontrolled flow reported in Figure 7.9 we choose
kd = 0.1. The two test cases are simulated both with values of λ = 0.01 and
λ = 0.001 to make a comparison.

In Figure 7.11 we report the results obtained for the turbulence reduc-
tion problem with λ = 0.01. On the left of this Figure the adjoint velocity
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Figure 7.11: Three dimensional channel controlled for a turbulence reduction
problem, λ = 0.01. On the left adjoint velocity reported with arrows colored
by the adjoint velocity magnitude and with streamlines. On the right ad-
joint turbulent kinetic energy ka shown with iso-surface contours representing
regions at similar ka values.

is reported and represented with arrows colored by the adjoint velocity mag-
nitude. Moreover we report in this Figure some streamlines in the region
between the walls to better show the control pattern. It can be seen that
there are two main effects of the control in this region, the first is to push
the flow behind the obstacle wall and the second is to slow down the flow
in the region where it is faster. The adjoint turbulent kinetic energy ka is
reported on the right of the same Figure 7.11 with iso-surface contours. The
adjoint ka is negative on the whole domain and higher in modulus where the
turbulence energy k is higher. Two main regions are visible, the area near
the inlet of the flow and the one near the second wall.

A similar pattern for the adjoint variables is visible for the test case with
λ = 0.001. In Figure 7.12 on the left the adjoint velocity is reported with
arrows colored by the adjoint velocity magnitude and with some streamlines.
The control pattern is similar to the one obtained for the case with λ = 0.01,
the differences lie in the magnitude of the control due to the smaller λ and
in a more complex and strong force in the region between the two walls. On
the right of Figure 7.12 the adjoint turbulent kinetic energy ka is reported
with the same iso-surface contours to compare with Figure 7.11. It can be
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Figure 7.12: Three dimensional channel controlled for a turbulence reduction
problem, λ = 0.001. On the left adjoint velocity reported with arrows colored
by the adjoint velocity magnitude and with streamlines. On the right ad-
joint turbulent kinetic energy ka shown with iso-surface contours representing
regions at similar ka values.

λ ∞ 0.01 0.001
J (k,va) · 105 2.068 1.244 1.110

Table 7.3: Objective functionals computed with no control and with different
λ values in the turbulence reduction problem, three dimensional channel.

seen that a reduction in the modulus of ka is obtained in the region near
the second wall, while in the entrance region the values are nearly the same.
This could be explained by considering that in a fluid flow where convective
effects are important and the inlet velocity and turbulent kinetic energy are
imposed, it is very difficult for the control to influence the upstream region.

Finally we can compare the results attained from the optimal control
solver in the turbulence reduction problem with regard to the main variable,
the turbulent kinetic energy k. In Figure 7.13 k is reported with several
iso-k surface contours, on the left for the test case with λ = 0.01 and on
the right for λ = 0.001. Comparing these Figures with Figure 7.9 on the
right it can be seen that the objective is well attained in the region near the
outflow where a strong reduction in the turbulence intensity is achieved. On
the contrary, in the region near the inlet the control cannot act to decrease
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Figure 7.13: Three dimensional channel controlled for a turbulence reduction
problem, on the left λ = 0.01, on the right λ = 0.001. On both sides the same
iso-surface contours are reported, representing regions at similar k values.

the turbulence, because it is due to an upstream boundary condition. In
Table 7.3 the objective functionals for the turbulence reduction problem as
computed with no control and with λ = 0.01 and λ = 0.001 are reported.
A clear decreasing of the functional is attained with the decreasing of λ, as
expected.

The turbulence enhancement problem has been studied with λ = 0.01
and λ = 0.001. As already said for this test case we set kd = 0.1 to set a
limit to the maximum value of k. As we show in the results, the enhanc-
ing of turbulence is not limited to this value but the turbulence intensity
can be increased more. However this value should be enough to prove the
feasibility of our method. In Figure 7.14 the main flow patterns are visible
for the test case with λ = 0.001. On the left of this Figure the velocity is
reported with streamlines colored by the velocity magnitude, on the right
the adjoint velocity field is reported in the same way. The control produces
many vortices in order to increase turbulence in the flow and performs a suc-
tion from the outlet to increase the vorticity and the velocity gradients by
applying an adverse force on the flow. The velocity flow field is complex and
some helical vortices are located near the inlet and in the region before the
outlet. Moreover the flow is strongly accelerated and a maximum velocity
magnitude greater than 0.8 is present in some regions of the domain. This
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Figure 7.14: Three dimensional channel controlled for a turbulence enhance-
ment problem, λ = 0.001. On the left velocity v reported with streamlines
colored by the velocity magnitude. On the right adjoint velocity va reported
with streamlines colored by the adjoint velocity magnitude.

λ ∞ 0.01 0.001
J (k,va) 0.023321 0.009826 0.002896

Table 7.4: Objective functionals computed with no control and with λ = 0.01
and λ = 0.001 in the turbulence enhancement problem, three dimensional
channel.

value has to be compared with the maximum value of 0.3 which is reported
in Figure 7.9 for the uncontrolled case. The suction performed on the outlet
region does not produce a net variations of the total mass flow crossing the
channel because of the incompressibility constraint, as can be demonstrated
by computing the integrals of the velocity normal to the inlet and to the
outlet of the channel and comparing the two values, which are both equal to
0.1.

The main result of the optimal control algorithm for the turbulence en-
hancement problem can be seen in Figure 7.15 where the turbulent kinetic
energy is reported with several iso-surface contours. The turbulence is well
spread and diffused in the whole domain and very high values of k are reached,
a maximum of 0.145. These values and pattern of k have to be compared
with the ones of the uncontrolled solution in Figure 7.9. Finally, in Table
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Figure 7.15: Three dimensional channel controlled for a turbulence enhance-
ment problem, λ = 0.001. Turbulence kinetic energy k reported with iso-
surface contours representing regions at similar k values.

7.4 the values of the objective functional for the turbulence enhancement
problem are reported as computed with no control and with λ = 0.01 and
λ = 0.001. The difference between the uncontrolled and controlled values is
very high and for the case λ = 0.001 reaches one order of magnitude, so the
objective can be considered very well achieved.
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Conclusion

In this thesis we have presented several computational models that can be
useful for the study and design of industrial devices in which liquid met-
als are used as working fluid and coolant. In the first Part, the closure of
Reynolds Averaged Navier-Stokes equations for the turbulence modeling has
been assessed by developing a new four-parameter turbulence model that
takes into account dissimilarities between thermal and dynamical turbulent
transport. In the second Part the adjoint optimal control theory has been
used to develop algorithms based on the adjoint to solve two optimal control
problems. The first is a temperature boundary optimal control and the sec-
ond one a distributed optimal control for the RANS equations closed with a
two-equation turbulence model. All these solvers have been implemented in a
Finite Element computational platform and tested in several test cases. The
numerical results reported in each Chapter show the effectiveness of these
computational models in several interesting applications.

The turbulence model developed in k-ε or k-ω formulation has been vali-
dated in four geometries for a wide range of parameters such as Peclet num-
bers and pitch-to-diameter ratios for rod bundle geometries. In all these
cases the model predictions in term of integral heat transfer are very close to
experimental correlations widely used in literature, with the only exception
of some square rod bundle simulations. The results have been also compared
with DNS data and they show a very good agreement for local variables such
as average temperature fluctuations and total heat flux. The improvements
of the k-ω formulation are mostly numerical because this formulation allows
for a more robust and stable convergence of the approximated solution. The
results obtained with this formulation are comparable with the ones obtained
with k-ε formulation. This model can be further improved in the future by
assessing a logarithmic formulation of the model and could be tested in more
complex geometries, like hexagonal rod bundles with grid spacers. The effect
of buoyancy could be also taken into account for further improvements.

The results obtained implementing the adjoint optimal control algorithms
for the temperature and turbulent flows control prove that this approach
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is versatile and can be applied to complex problems. In the temperature
boundary control Chapter 6 we have derived and solved an optimality sys-
tem comparing three approaches to the solution of some test cases in two
and three-dimensional geometries. The results have shown a fast and robust
optimization process. One main result of the turbulence control Chapter
7 is the derivation of the optimality system for a two equation turbulence
model together with a discussion and mathematical proof of the existence of
solutions. Moreover the results have shown the power of this type of control
that can achieve a strong reduction of the objective functional through a
distributed force. This type of control can find applications in liquid metal
flows where it is possible to actively control the fluid by means of electromag-
netic forces. This study could be the ground for future applications of this
approach to boundary control problems where the controlling parameters are
boundary velocity profiles.
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