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CHAPTER 1: INTRODUCTION 

1.1 Π-CONJUGATED POLYMERS 

Conjugated polymers (ICPs) are organic polymers that conduct electricity. Such compounds may 

have metallic conductivity or can be semiconductors. Conductive polymers are generally not 

thermoplastics, i.e., they are not thermoformable, but, like insulating polymers, they are organic materials. 

They can offer high electrical conductivity but do not show similar mechanical properties to other 

commercially available polymers. The electrical properties can be fine-tuned using the methods of organic 

synthesis or by advanced dispersion techniques. 

Conjugated polymers in their semiconducting or less conductive forms are widely used in the 

organic electronic field for applications such as light-emitting diodes [1], thin film field effect transistors 

[2], and bulk heterojunction solar cells (BHJ). 

Π-conjugated polymers are of relatively recent interest when, back in 1977, professors Alan J. 

Heeger, Alan G. MacDiarmid and Hideki Shirakawa found that polyacetylene, properly treated, showed 

conductivity comparable to a metal; this discovery was awarded with the Nobel Prize in Chemistry in 

2000 (Fig. 1). 

 

Figure 1. Winners of the Nobel Prize in Chemistry in 2000. 

Polyacetylene (PA), with its two structural isomers, is the simplest conjugated organic polymer 

(Fig. 2). 
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Figure 2. Isomeric structures of Polyacetylene. 

PA was synthesized as a conjugated polymer with high molecular weight, high crystallinity and 

regular structure in 1958 when Natta et al. [3] polymerized acetylene in hexane using Al(Et)3/Ti(OPr)4 as 

initiator. For long time PA was considered of poor interest due to the impossibility of obtaining a 

processable polymer regardless of the method of polymerization: in fact, it could be only obtained as a 

black powder, infusible, insoluble and air-unstable. Only at the beginning of ‘70s a renewed interest on 

this kind of material was raised by the studies made by Shirakawa et al. [4-7] that prepared flexible and 

high quality films both of the auburn cis-isomer and of the silver trans-isomer, in presence of ZieglerNatta 

catalyst and they also developed different techniques for controlling the ratio between the two isomers 

in the final product [6-7]. 

However, both product showed poor conductivity, i.e. to 10-8-10-7 S/m for cis-PA and 103102 S/m 

for trans-PA. Shirakawa noticed that IR spectra of PA film exposed to bromine or chlorine vapors, 

showed a significant decrease of trasmittance, that increased back after the complete alogenation of the 

polymer, a fact that suggested unusual electronic properties of this product. The collaboration with 

Heeger and MacDiarmid was crucial for the studies that worthed the Nobel Prize in Chemistry in 2000: 

until 1977they studied the electronic properties of PA exposed to iodine and bromine vapors [8] and 

treated with arsenic pentafluoride [9], measuring conductivity values ranging from 103 to 1011 S/m, which 

are typical values of metals. 

Increasing the conductivity of this material up to 18 orders of magnitude, depending on the 

treatment used, allows to control its electronic properties from insulating material to semiconductor, till 

metal. These discoveries and the consequently studies on the mechanisms of this behavior, led to the 

development of the so-called “synthetic metals”, named “Intrinsecally Conductive Polymers” (ICPs). 

The opportunity to combine processability, lightness, versatility, reliability of polymeric materials with 

the properties of conductive and semi-conductive materials, which are crucial for modern electronic and 

optical fields, led, from the 80s, to an intense study of conductive polymers; the main are (Fig. 3): 

polyparaphenylene (PPP), polyparaphenylenesulfide (PPS), polyparaphenylenevinylene (PPV), 
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polyaniline (PANI), polypyrrole (PPy), polythiophene (PT), polyisothianafene (PITN) and 

polyethylenedioxythiophene (PEDOT). 

 

Figure 3. Structure of some conjugated polymers. 

Polyacetylene is the polymer which shows higher conductivity, but its high sensitivity to air and 

moisture make it not suitable for practical uses although it’s still studied as the archetype of this class of 

polymers. 

Other products are more air stable both in neutral and electro-conductive forms. They show 

lower conductivity, usually around 104 S/m, which is however sufficient for many practical applications. 

Nowadays, the studies are mainly focused on the analysis of the structures and electronic 

properties of these polymers, on the development of synthetic routes which can lead to a better control 

on their properties, on the synthesis of functional polymers where polymeric backbone properties are 

associated with lateral groups in the side chains and on their technological applications. These polymers 

can be used from antistatic covers and energy storage systems to sophisticated electronic devices such as 

transistors, organic light emitting diodes (OLEDs), solid state lasers and modified selective electrodes 

and sensors. 

1.2 ELECTRONIC STRUCTURE OF CONJUGATED POLYMERS 

In common polymers, the electronic structure of the atomic chain forming the backbone of the 

macromolecule, consists exclusively of σ-type bonds. The high energy gap, Egap(σ), between bond and 

anti-bond levels, makes these materials electrically insulating and, generally, they don’t absorb visible 

radiation. For example, in polyethylene the Egap(σ) is about 8 eV. 
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Instead, conjugated polymers consist of a continuous network of close double bonds. The PA 

backbone is composed of sp2 hybridized carbon atoms, each of them forming three σ bonds, while the 

pz orbital is overlapped with the nearest other pz orbital, leading to a the π-type double bond.  

This kind of structure causes the formation of p states delocalized throughout the whole 

polymeric chain that create two bands, called “valence” and “conduction” bands as for metals, when the 

number of conjugated double bonds increases (Fig. 4) [10]. 

 

Figure 4. Schematization of valence and conduction bands model. 

The energy gap between π-bonding and π*-antibonding levels, Egap(π), tends asymptotically to a 

limit value which is lower than Egap(σ), explaining the absorption of lower energy photons in the region 

of visible light. The small value of Egap(π) (~ 1-4 eV) is responsible for the semiconducting characteristics 

of conjugated polymers (Fig. 5). 

 

Figure 5. Conductivity comparison between conjugated polymers and some conventional materials 
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The polymeric chains can be easily oxidized or reduced, generally by means of charge transfer 

with dopant molecules. This process leads to the formation of charged species with sufficient mobility 

to obtain high conductivity values. 

In traditional semiconducting materials, the atom coordination through covalent bond leads to 

the formation of a rigid three dimensional structure in which the excited electronic states are constituted 

by excess or lack of electrons. 

Instead, in ICPs, that have mono dimensional structure, the excited states are connected with 

backbone distortions. Two classes of polymer can be distinguished: the ones that have solitonic degenerate 

excited state with ground state and non-degenerate polaronic and bipolaronic excited state, as described in 

the following paragraphs.  

1.2.1 Systems with degenerate ground state 

Polyacetylene (CH)X in its trans form, which is the most thermodynamically stable, is the model 

for this class of polymers. Charge carriers, generated from the doping process, lead to a charge transfer 

from the polymer towards an electron acceptor (A), where the macromolecular chain acts as a polycation 

in presence of A- species. Similarly, with an electron donor (D), the polymer acts as a polyanion in 

presence of D+ species. Chemical compensation has been demonstrated, showing that the doping process 

is reversible and can also be made with an electrochemical process. 

In trans-(CH)x, if bonds length were equal, the repeating unit would be a CH group and the 

polymer would behave as an almost mono dimensional metal with a band half full of electrons. However, 

this system is unstable among the dimerization distortion, known as Peierls distortion, where the movement 

of the contiguous CH groups towards each other determines the alternating formation of shorter 

(partially double) and longer (partially single) bonds, lowering the system energy. Single and double bonds 

can be interchanged for symmetry, without energy variations. Therefore, two state at the lowest energy, 

A and B, possessing two different bonding structures, can exist. The transition from one form to another 

is described by the dimerization parameter, as follows: 

𝑢 = 𝑑𝐶=𝐶 − 𝑑𝐶−𝐶 

where 𝑑𝐶=𝐶 e 𝑑𝐶−𝐶 indicate the bond lengths for double and single bond respectively. The energy 

of the two states is function of the dimerization parameter (Fig. 6). 
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Figure 6. Structure and energy diagram for the two phases of PA. 

This degeneration in two levels leads to the existence of non-linear topological excitations (bonds 

alternation border domain or soliton) which seems responsible of many of the properties of PA. The soliton 

proposed for this polymer [11] is a “defect” in the electronic system: a border point that links phase A 

with phase B having different bond alternation (Fig. 7).  

 

Figure 7 A neutral soliton separates phases A and B. 

The existence of the soliton leads to the formation of a new energy level, called Fermi’s level, that 

is collocated exactly in the middle of the gap between valence and conducting bands (Fig. 8a). The doping 

with electron-acceptors determines the formation of positive charged soliton (non-occupied state, Fig. 

8b) while doping with electron-donors is obtained a negative charged soliton (double occupied state, Fig. 

8c). 

 

Figure 8. Energy levels diagram for a) neutral, b) positive and c) negative soliton. 

From the chemical point of view, neutral solitons are equivalent to a radical with no charge and 

spin of ½. Charged solitons, instead, don’t have spin and can move across the polyconjugated backbone 

by means of a potential difference generating the conductivity. 
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Finally, it should be noted that during the doping process, a couple of defects, in the form of 

soliton-antisoliton, is always formed. The separation energies of this couple have been studied by J. L. 

Bredas et al. [12]. The results show that, at low levels of doping, charges released in the macromolecular 

chain determine the formation of polaronic type charge carriers and not only of charged solitons. With the 

increase of doping, the polarons evolve, leading to the formation of charged solitons. 

1.2.2 Systems with non-degenerate ground state 

As PA, all ICPs have two resonance structures: aromatic and chinoid (e.g. polythiophene, Fig. 9a). 

However, these two forms are not isoenergetic, because the chinoid form has higher energy and 

consequently determines the presence of a non-degenerate ground state (Fig. 9b). 

 

Figure 9. a) Aromatic and chinoid forms of polythiophene and b) energy diagram of the two configurations. 

In these polymers, the existence of a single state located in the middle of the energy gap between 

π and π* bands is not possible. The formed defects are always constituted by a couple soliton-antisoliton 

and they appear to be “confined”. This confinement is due to the presence, caused by the formation of 

the soliton-antisoliton couple, of some rings in the chinoid form and therefore in higher energy state 

(Fig. 10). Therefore, a compromise must be created between the energy separation of the defects and the 

extent of relaxation of the lattice induced by them. 

 

Figure 10. Soliton-antisoliton couple of polythiophene. 

When an electron is removed from the polymeric system or added through doping, a unit called 

polaron is formed, which introduces one state of bonding and one antibonding state in the energy gap. 

Polarons can be positively or negatively charged and have spin equal to ½ (e.g. for PT, Fig. 11) 
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Figure 11. a) Positive charged and b) negative charged polarons with their energy diagrams. 

From the electronic levels point of view, we are in a similar situation to that of trans-PA with low 

level of doping. But, differently from trans-PA, in other ICPs the formation of bipolarons (dianions or 

dications with zero spin) is observed (Fig. 12). 

Although the formation of a bipolaron implies a higher deformation of the lattice, it’s energetically 

more favored than the formation of two polarons [13]. The high deformation, derived from the presence 

of the bipolaron, determines a further increase of the anti-bonding level above the valence band (Fig. 

12), making the ionization processes easier. 

 

Figure 12. Bipolarons with a) positive and b) negative charge with their corresponding energy levels for polythiophene. 

Charges of the bipolarons are very confined and they are localized for PT, PPy and PPP, on an 

average of five rings. 

With the increase of the doping level, several new levels emerge from the π band and form a new 

band with high energy. The conductivity of ICPs could come from the motion of several bipolaronic 

entities across the macromolecule. 

1.3 CHARACTERIZATION OF CONDUCTIVE POLYMERS 

As for many others polymers, ICPs can be characterized through different analysis techniques 

[14], such as: 
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 cyclic voltammetry, which allows to know redox processes; 

 optical characterization, for electrochromic application; 

 nuclear magnetic resonance for structural analysis and orientation of the chains; 

 gel permeation chromatography, for the molecular weight analysis; 

 Raman and FT-IR analysis, for the identification of the vibrational motions; 

 differential scanning calorimetry and thermogravimetric analysis for the identification of 

glass transition, menlting and decomposition temperature; 

 electroluminescence measurements for the possible use in PLEDs; 

 X-ray diffraction for determining the crystal structure. 

 

1.4 APPLICATION OF CONJUGATED POLYMERS IN THEIR 

ELECTROCONDUCTIVE DOPED STATE 

In these kind of applications, ICPs can be used in substitution of metals for their better properties, 

for the easier processing or for problems connected with toxicity or environmental pollution. It is 

possible to use directly these products for their conductivity or exploit the variation of physical properties 

of the material when the doping process occurs [15, 16]. 

1.4.1 Conductor devices 

The most obvious application of ICPs is their use as conductors, combining high conductivity 

with the excellent mechanical properties and high lightness of plastic materials.  

In the modern technology, a remarkable request for transparent conductors exists. Due to their 

high molar extinction coefficient, conjugated polymers are transparent only as thin films, but blends with 

insulating polymers allow to obtain a good optical transparency without a significant decrease of 

conductivity. The easy processing of polymeric materials allows to obtain antistatic covering and 

homogeneous fibers also in blends with other polymers. 

1.4.2 Radar application 

Radar detecting consists in determining the position, direction and speed of an object from the 

analysis of the signal obtained by reflection of a magnetic radiation which invests the object itself. The 

coverage with a doped conductive polymer lead to the absorption of more than 50% of the incident 
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radiation and the reflected part has such characteristic that the object is not distinguishable anymore, 

making it completely invisible at radar controls. This property generates a remarkable interest, especially 

in the military field, for the production of shield systems. 

1.4.3 Corrosion protection 

The current corrosion protection systems, especially in the marine field, use sacrificial metal 

electrodes which oxidize in place of the substrate determining a high environmental impact due to toxic 

metals release. Also coating with epoxy resins is widespread, but not very durable because a little break 

immediately exposes the substrate to oxidation. Coatings with conducting polymers having oxidation 

potential lower than the substrate, in addition to act as physical coverage, can be easily oxidized instead 

of the substrate even in case of cracks. Moreover, conjugated polymers, in the doped state, are completely 

insoluble, so the coating continues to resist eliminating the problem of environmental spread. 

Alternatively, conductive polymers with higher oxidation potential than the substrate can be used too. In 

this case, the polymer reacts with the material to be protected determining the passivation of the exposed 

surface. 

1.4.4 Batteries 

The field of accumulators of electricity [17] is one of the first in which ICPs have demonstrated 

a high commercial impact. In batteries, a cathode and an anode are present which are respectively reduced 

and oxidized in a reversible manner thanks to the presence of a support electrolyte that separates the two 

electrodes and acts as ions source for the redox reaction balancing. ICPs can be employed as cathodes 

offering ease of manufacture, processability and low weight. Lithium-polymeric batteries are interesting; 

the reactions that take place are: 
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Similarly, charge/discharge reaction take place when a ZnI2 solution is electrolyzed using Zn and 

polythiophene (PT) as negative and positive electrodes: 

 

1.4.5 Catalysts 

The doped surface of an ICP constitutes a hybrid material that can be seen as a heterogeneous 

catalyst supported on a polymeric matrix which can be used in many industrial processes such as the 

conversion of alcohols or olefin oxidation. The dispersion of the catalytic specie using the doping process 

and the chemical bond that is formed with the carrier prevent the release of the catalyst itself. Moreover, 

the possibility of easily varying the doping level allows to efficiently modulate the catalytic activity of the 

system. 

1.4.6 Electrochromic cells 

ICPs show different optical properties both in the neutral and in the doped state. Doping can be 

made electrochemically determining the so-called electrochromic effect. Electrochromic windows are based 

on this principle. Generally, one electrode of conducting polymer, a proper transparent electrolyte and a 
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counter-electrode are sandwiched together. The application of a difference of potential between the two 

electrodes induces the doping of the polymer and, consequently, a variation of its color. 

1.4.7 Sensors 

Conjugated polymers offer the possibility to combine the interaction with an analyte with an 

observable response since this process usually determines a variation in the polyconjugated backbone 

conformation resulting in a change of its optical or electrochemical properties. It derives the possibility 

of using ICPs as sensors [18] where polymer structures provide a higher sensitivity than molecular ones. 

ICPs based sensors exploit different schemes. Conductimetric sensors record a variation of the 

polymer conductivity, in the neutral or doped state, using a pair of electrodes. Instead, potentiometric 

sensors measure the variation of the potential of the system and only require the immobilization of the 

polymer onto an electrode. Optical sensors, such as colorimetric or fluorescence also exist. 

Unmodified ICPs are non-selectively sensible to pH and to many analytes as organic vapors, 

oxygen, nitrogen oxides, ammines, hydrazines, moisture, various ions and cytochrome C. The 

functionalization with polyalkylether chains, crown ethers and azo crown ethers allows to obtain specific 

selectivity for cations; with pyridine-based ligands, metals can be detected; chiral substituent exhibits 

enantioselectivity towards chiral dopant ions; metalcyanide, metalporphyrin and calixarene give high 

ionchromic response. Furthermore, simple acid-base interaction can be exploited for the determination 

of cations or anions or for the development of biological sensors for the recognition of proteins, DNA 

or RNA sequences and enzymes. 

1.4.7 Controlled release application 

Inorganic or biological ions can be selectively released by polymeric systems through the 

application of a controlled potential. A simple device and its working schemes are reported (Fig. 13). A 

conducting polymer A, with an oxidation potential EAox, is electrodeposited on a substrate with a mobile 

counter-ion X-. A second polymer B, with an oxidation potential EBox higher than A, is electrodeposited 

on the A film using non-mobile counter-ion Y-. The system results then exposed, from the B side, to the 

electrolyte solution. During the complete reduction (Fig. 13a) X- ion leaves the device and, as Y- is fixed, 

the charge balance is achieved only by from the input of a cation M+ from the external solution of the 

electrolyte. The selective oxidation of A calls back X- again in the internal layer (Fig. 13b) while with the 

oxidation of B, M+ is freed once again (Fig. 13c). 
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Figure 13. Ion-selective transport by an electroactive bi-layer. 

Ions transport as a function of the potential is an interesting system of drugs dosage in biological 

systems. Cycling the potential with E < EAox < EBox it is possible to distribute anions and receive cations, 

while in the return cycle, with EAox < E < EBox only anions are released or only cation if EAox < EBox < E. 

1.5 APPLICATION OF CONJUGATED POLYMERS IN THEIR 

NEUTRAL SEMI-CONDUCTIVE STATE 

Non-doped conjugated polymers are semi-conductors whose energy gap is depending not only 

by the chemical constitution of the backbone, but also by the nature of the substituent bonded to the 

main chain. Consequently, ICPs properties can be widely modified by means of an appropriate 

functionalization [19,20]. 

1.5.1 Polymeric Light Emitting Diodes (PLEDs) 

The studies made by Friend et al. [21] on the PP electroluminescence have opened a new field for 

the application of ICPs in technologies exploiting this phenomenon. Electroluminescence can be easily 

defined as the generation of light induced by electric excitation.  

In its simplest type, a PLED consists in a single layer of electroluminescent polymer sandwiched 

between two electrodes, one of them transparent to the light produced during electroluminescence effect 

(Fig. 14). This electrode in usually the anode (which injects electronic vacancy or “holes”) and it’s 

constituted of a layer of indium/tin oxide (ITO). The cathode, which generates electrons, must be 

composed of a easily oxidizable material such as Ca, Mg or Al. 
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Figure 14. Schematic structure of a single layer PLED. 

Up to a determined threshold voltage, current doesn’t flow; beyond this value, current increases 

rapidly with increasing of applied voltage. Opposite charge carriers, holes and electrons, are injected in 

the conjugated polymer layer respectively from the anode and the cathode. Vacancies are generated in 

the highest occupied molecular orbital (HOMO) of the π valence band, while electrons are injected in 

the lowest unoccupied molecular orbital (LUMO) of the π* conduction band (Fig. 15). In both electrodes 

a potential threshold that must be overcome in order to insert charges in the polymer clearly exist. The 

process can lead to the formation of excited states of singlet or triplet of which only the first one decays 

with a radiative process with light emission. 

 

Figure 15. Diagram for single-layer PLED bands. 
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In conjugated polymers, positive charges have higher mobility so electroluminescence mainly 

develops near the cathode. In this area, unfortunately, the probability of nonradiative charges 

recombination is higher with consequently decrease of device efficiency. To overcome to this 

disadvantage a bi-layer system can be used; in this system, an electrons carrier layer is inserted, between 

the cathode and the polymer. 

The frequency of emitted light is nearly equal to the difference between the potentials of oxidation 

and reduction of the polymer and, since it is possible to synthesize a wide range of polymeric structures, 

multicolor display can be obtained. 

1.5.2 Photovoltaic cells 

Photovoltaic cells allow the transformation of light radiation into electric energy and can be then 

considered as the opposite of a PLED. Unfortunately, the photo-induced charge generation, needed for 

the working of the device, has an extremely low efficiency because the ICPs are electron-donors if subject 

to photoexcitation. If an electron-acceptor molecule is available in the close area, charge separation occurs 

due to photo induced electronic transfer. In this case in the conjugated backbone a configuration of 

stable charge storage is formed: a highly mobile and delocalized positive polaron. Fullerene molecules are 

highly effective as electron-acceptors. It is then possible to imagine a bilayer photovoltaic cell where a 

layer of fullerene is inserted between the polymer and the cathode, improving considerably the 

photovoltaic efficiency and the photo induced current. 

1.5.3 Field effect transistors (FET) 

FET are electronic devices that are crucial in modern electronics, because they are present, for 

example, in the computers chips. A FET in formed by one semi conductive layer on which are deposited 

two electrodes: the one is a dispenser of electrons (source) and the other retrieves charge (drain). They 

are separated from each other and from a third electrode (gate) by a dielectric layer (Fig. 16) 
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Figure 16. Schematic structure of a FET. 

If no voltage between source and drain is applied, the device is in its insulating form (OFF). FET 

becomes conductive (ON) when a voltage is applied between source and drain electrodes through the 

organic semiconductor. The third electrode, the gate, allows, through small voltage variations, to control 

the concentration of generated charges in the polymer with a principle similar to old thermoionic valves. 
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CHAPTER 2: POLYTHIOPHENE AND ITS 

DERIVATIVES 

Between the conducting polymers, polythiophene (PT) is very interesting and studied thanks to 

its high air and moisture stability both in the neutral and the doped states. Moreover, the relative ease to 

functionalize the heterocycle ring allows to synthesize a wide range of derivatives, employable in different 

fields. 

2.1 POLYTHIOPHENE 

PT is much studied for its high conductivity (10-100 S/cm) and its high stability [1] (until 350°C 

in air and up to 900°C under inert atmosphere in the neutral state) which derives from the high redox 

potential (E0 = 0.70 V). Its completely insolubility even at low molecular weights, due to π-stacking 

interactions, limits the processability and consequently industrial applications. In the following 

paragraphs, the main preparation methods of PT will be indicated since they can be applied also to its 

soluble derivatives. These preparations aim to the obtainment of a polymer in which the thiophenic rings 

are bonded exclusively by the α positions because β-linkages lead to the decrease of electronic 

delocalization and consequently of every property derived from there. 

The two main techniques for PT synthesis and its derivatives are electrochemical and chemical 

polimerizations. 

2.1.1 Electrochemical synthesis 

Polythiophene can be synthesized by both cathodic and anodic polymerization [2]. In the first 

case the electroreduction of (2-bromo-5-thienyl)triphenyl nickel bromide in acetonitrile is used. The main 

disadvantage is that the polymer formed is in the neutral state leading to the quick passivation of the 

electrode resulting in low thickness of the film that does not exceed 100 nm. This method is the only 

possible when anodic corrosion susceptible electrodes are used. 

The anodic electropolymerization, a more convenient and widely used method, doesn’t require a 

catalyst and allows to obtain an already doped polymeric film directly on the electrode. The thickness of 

this film is easy tunable and it is possible to characterize in situ the process of growth of the polymer 

through electrochemical and/or spectroelectrochemical techniques.  
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The process begins with the formation of charged species on the surface of the anode by 

monomer oxidation. The required stoichiometry is two moles of electron for each mole of monomer and 

a slight excess of charge used for the doping of the polymer. The first step consists in the oxidation of 

the monomer to radical-cation. As the electronic transfer reaction is quicker than the monomer diffusion 

in the solution, a high radical concentration is maintained near the electrode. The second step involves 

the coupling of two radicals for the formation of a dihydro dimer dicathionic which evolves at dimer 

with the loss of two protons and riaromatization that constitutes the driving force of the process (Fig. 

17). Due to the applied potential, the dimer, which is easier oxidizable than the monomer, is converted 

to radical-cation. The coupling between a radical-cation and one monomer and the subsequently 

riaromatization leads to the formation of the trimer that starts again the cycle until the oligomer becomes 

insoluble and precipitates onto the surface of the electrode. However, some of the steps are still not 

completely clear and are currently subject to different interpretations.  

 

Figure 17. Mechanism of thiophene electropolymerization. 

Polymerization conditions greatly affect the structure and the properties of the obtained PT. It’s 

crucial the usage of anhydrous, aprotic, poorly nucleophile, with high dielectric constant and potential 

stable (~ 1.4-2.3 V/SCE) solvents, such as acetonitrile, benzonitrile, nitrobenzene and propylene 

carbonate. Low temperatures allow the preparation of PT with higher average conjugation length, 

because the formation of α-β bonds chain defects is minimized. The anode must be constituted of a 

noble metal (platinum or gold) or of ITO covered glass so that the polymer can settle permanently on it. 

The deposition can be both potentiometric and galvanostatic, taking care not to use a too high potential 

since it can lead to polymer degradation. 
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2.1.2 Chemical synthesis 

The first chemical syntheses [3] of PT were reported in 1980 from two research groups, both 

based of the polycondensation of 2,5-dibromothiophene with transition metals as catalysts. 

The Yamamoto procedure (Sch. 1a) involves the reaction of 2,5-dibromothiophene with Mg for 

the formation of the corresponding Grignard reactive in the 2 and 5 positions and its subsequently 

homocoupling catalyzed by nickel(bipyridine)dichloride.  

Lin and Dudek used a similar procedure (Sch. 1b) using instead Pd(acac)2 (acac = acetylacetonate) 

or Ni(acac)2 or Co(acac)2 or Fe(acac)2. 

 

Scheme 1. PT synthesis according to a) Yamamoto and b) Lin and Dudek 

2,5-dihalothiophenes can be polymerized by dehalogenative polycondensation with Ni0 based 

catalysts (Sch. 2) 

 

Scheme 2. Dehalogenative polycondensation. 

Wudl and his collaborators prepared the iodomagnesiumiodothiophene starting from the 

2,5-diiodiothiophene in diethylether and, by the Ni(dppp)Cl2 (dppp = 1,3-diphenylphosphinopropane) 

catalyzed homocoupling in hot anysole, obtained the corresponding polymer (Sch. 3a). 

A new procedure from Yamamoto (Sch. 3b) lead to a quantitative yield in PT from 2,5-

dibromothiophene, Ni(cod)2 (cod = cyclooctadiene) and triphenylphosphine in hot 

N,Ndimethylformamide (DMF). 
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Sugimoto, instead, proposed the oxidative polymerization that allows to obtain PT by direct 

oxidation of thiophene with ferric trichloride (Sch. 3c). 

 

Scheme 3. PT synthesis according to a) Wudl, b) Yamamoto and c) Sugimoto. 

2.2 3-ALKYL FUNCTIONALIZED POLYTHIOPHENES 

The insertion of alkyl chains in the 3 position of the thiophenic ring, allows to reduce the 

intrinsically insolubility of PT in a very effective way, since poly[(3-alkyl)thiophene]s (PATs) thus 

obtained possess good solubility in common organic solvents, such as CHCl3, CH2Cl2, THF, xylene, 

toluene, anisole, nitrobenzene, benzonitrile and nitropropane, even at high molecular weights. This kind 

of functionalization slightly lowers the conductivity of the polymers, without affecting their practical use. 

The first chemical synthesis of PATs, a polycondensation with organometallic derivatives, is reported by 

Elsenbaumer et al. [4] and puts in evidence that a good solubility can be obtained with an oligomethylenic 

chain with at least four carbon atoms. PATs preserve the high stability of PT together with an excellent 

filmability allowing the preparation of homogenous and self-standing polymeric films. 

By introducing a substituent in the 3 position of thiophene, the repeating unity becomes 

asymmetrical and the 2 and 5 positions are no longer equivalent. This results in the possibility to obtain 

different regioisomers where the thiophenic unities can be concatenated headtail (HT, 2-5’ bond), 

headhead (HH, 2-2’ bond) and tailtail (TT, 5-5’ bond), leading to the possibility of four triads linkages 

(Fig. 18). 
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Figure 18. Possible triads in PATs. 

2.3 PATS SYNTHESES 

Generally, with common syntheses techniques PATs with different concatenation are obtained, 

but regioregular systems can be prepared through opportune synthetic strategies. 

2.3.1 Electrochemical polymerization 

The electropolymerization of 3-alkylthiophene [5] is obtained in condition similar to those 

described for thiophene. Obviously the electrochemical behavior of the monomer must be preventively 

studied through cyclic voltammetry, with very low monomer concentration to avoid polymerization, in 

order to determine the optimal potential value to be used in the polymer synthesis. 

2.3.2 Cross-coupling polymerization with metals as catalysts 

In the first synthesis of this class [6], a 2,5-diiodo-3-alkylthiophene (Sch. 4a) is treated with one 

equivalent of Mg in THF producing a mixture of Grignard reactives. Then a catalytic amount of 

Ni(dppp)Cl2 is added and, by Halogen-Grignard coupling, a polymer consisting of only 2-5 linkage, which 

has random regioselectivity is formed 

PATs can be synthesized from 2,5-diiodo-3-alkylthiophenes, through coupling with nickel (0) 

(Sch. 4b) in similar condition to those used for PT preparation. The only difference consists in the 

reaction times that are higher for PATs, for which the use of the more reactive diiodothiophenes is 

preferable instead of dibromo derivatives. The polymerization mainly occurs by 5-5’ coupling so the 

obtained product has high rate of HH-TT linkage. This is probably due to the oxidative addition of Ni 

in the 5 position of the monomer, which is the less sterically hindered.  
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Another technique provides the polymerization by dehydrohalogenation of 

2-halogen-3-alkylthiophene with metal halide such as AlCl3 or FeCl3 (Sch. 4c) which leads to products 

with very low metal impurities, high molecular weights and regiorandom concatenations. 

Finally, the method proposed by Curtis et al. uses the polymerization of 2,5-bis(chloromercury)-

3-alkylthiophenes using copper powder and catalytic amount of PdCl2 in pyridine (Sch. 4d). Also in this 

case, the method isn’t regiospecific and leads to regiorandom polymers. 

 

Scheme 4. Cross-coupling polymerization with metals as catalysts. 

2.3.3 Oxidative polymerization 

With this technique [7] PATs can be obtained by reacting 3-alkythiophenes with FeCl3, which 

acts both as polymerizing agent and as dopant for the polymer (Sch. 5). 
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Scheme 5. Oxidative polymerization with FeCl3. 

The used reaction medium is a solvent in which the oxidant is insoluble, such as CHCl3 or CCl4, 

in order to keep the coordination vacancies active, that makes it a Lewis acid. In fact, in solution it is 

transformed in Fe2Cl6 dimer without free orbitals. Ferric chloride is used in a fourfold molar excess 

respect of the monomer to be polymerized because it is consumed also to form HFeCl4 when it reacts 

with HCl that is evolved during the reaction. A vigorous flow of inert gas is kept in order to avoid oxygen 

presence which can interfere with the polymerization mechanism and, at the same time, to remove the 

HCl evolved. 

The proposed mechanism of the reaction (Fig. 19) begins with the formation of the thiophenic 

radical-cation which evolves to 5-thienylradical (more stable by 1.456 kJ/mol than 2-thienylradical). The 

coupling with another thiophenic monomer molecule in the position with higher electronic density (2 

position, which has 0.0122 ue atomic charge higher than the 5 position) and its subsequently 

riaromatization, by loss of a proton and further oxidation, leads to the formation of a dimer. The latter 

is oxidized again and the cycle starts again allowing the growth of the macromolecule. 

 

Figure 19. Proposed mechanism of oxidative polymerization. 
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Thanks to the weak inductive effect of the alkyl substituent in the 3 position of the heterocycle, 

the synthesis process results regioselective, leading to a polymer with HT concatenation of about 75%. 

This technique, when compared to those previously described, is particularly easy and convenient 

because it ensures good yield and high molecular weights in a short period of time (generally 1 hour) 

working at room temperature and using cheap and non-toxic reagent such as the ferric trichloride; 

furthermore, the obtained polymer is in its electroconductive form. 

Recent developments of this technique [8,9] include the in situ precipitation of FeCl3 through the 

addition of a saturated solution of the oxidizer agent in CH3NO2 to CCl4 where the salt is not soluble. 

The ferric trichloride precipitates in a finely dispersed, high reactive form that allows the synthesis of 

polymer with lower molecular weight completely avoiding the formation of insoluble products. 

2.4 REGIOREGULAR PATS SYNTHESIS 

Regarding 3-functionalized polythiophenes, two kinds of regular concatenation can be defined: 

HH-TT and HT. A product belonging to the first class of polymer can be easily obtained by oxidative 

polymerization both of a HH dimer, that is a 3,3’-dialkyl-2,2’-bithiophene, and of a TT dimer, that is a 

4,4’dialkyl2,2’-bithiophene (Sch. 6). 

 

Scheme 6. Synthesis of a HH-TT regioregular PAT starting from a) HH dimer and b) TT dimer. 

The syntheses of HT polymers are generally more difficult, but more studied and used because 

this kind of configuration ensures higher mean conjugation lengths and, consequently, better electronic 

properties. Heterocyclic rings, in fact, prefer a trans-colpanar orientation which can be obtained with 

almost only HT concatenations, for which torsional angles of only 7°-8° between the rings have been 

calculated [10]. HH bonds, instead, show a deviation from coplanarity of about 40°, a too high value for 

the correct orbitals overlapping, leading to a structure with low conjugation length throughout the 
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backbone. PATs with high HT linkages content are generally synthesized starting from alkylthiophene 

monomers where the 2 and 5 positions are functionalized with different groups that can react through 

coupling reactions. 

2.4.1 Rieke-Chen polymerization 

Rieke zinc (Zn*) reacts with 2,5-dibromo-3-alkylthiophenes to obtain 5-(bromozinc)-2-bromo 

derivatives (Sch. 7) without the formation of bis-metallation product [11]. The intermediate can be 

polymerized with Ni(dppe)Cl2 in refluxing THF for 4 h, obtaining a PAT with 98.5% of HT linkage. 

 

Scheme 7. Rieke-Chen polymerization. 

The rate of regioregularity is strongly influenced by the kind of both metal and ligand used, since 

with Pd(PPh3) a regiorandom polymer is obtained while with Ni(PPh3) or Pd(dppe)Cl2 are observed 

respectively 65% and 70% of HT linkage. 

The method is quite versatile because, thus reactive, the organozinc compounds can be employed 

also in the presence of α, β unsaturated ketones, carbonyl groups, nitriles and compounds with acid 

chlorides.  

2.4.2 Stille coupling polymerization 

Iraqui et al. [12] and Lère-Porte et al. [13] employed this kind of coupling for the synthesis of 

regioregular PATs using, respectively, 2-iodo and 2-bromo-3-alkylthiophenes (Sch. 8). The halogenated 

monomer in the 2 position get selectively lithiated in the 5 position with lithiumdiisopropylamide (LDA) 

at -40°C. The obtained product is directly converted to tributylstannyl derivative by reaction with Bu3SnCl 

at -40°C. The latter intermediate is stable and can be purified with the most common preparation 

techniques before its polycondensation with Pd(PPh3), leading to the desired polymer with a 

regioregularity never less than 96% of HT linkage. 
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Scheme 8. Stille coupling polymerization. 

Higher yield can be achieved by heating and only with long reaction time that, from the 18 hours 

for iodo-derivatives, it can take up to 72 hours when 2-bromo3-alkylthiophene are employed. The nature 

of the solvent influences only the weight features of the product. In THF, for example, only short 

oligomers are obtained while with more polar solvents a considerable increase of the molecular weight is 

observed. 

It is important to underline that one of the advantage of this procedure is the possibility to 

synthesize a stable organometallic intermediate that can be easily purified from the impurities, bad 

concatenations in the final polymer to be avoided; this procedure is also scarcely reactive towards many 

functional groups.  

2.4.3 Heck coupling polymerization 

Sevignon et al. [14] recently developed a method involving 2-iodo-3-alkylthiophenes. The 

monomer reacts with a catalytic amount of Pd(OAc)2, equimolar tetrabutylammonium bromide and an 

excess of K2CO3 in DMF at 80°C (Sch. 9), allowing to obtain with high yields regioregular oligomers 

constituted by a mean of 15 repeating units. 

 

Scheme 9. Heck coupling polymerization. 

The same procedure, applied to 2-bromo-3-alkylthiophenes, leads to similar results with the 

advantage of employing a simpler synthesizable monomer starting from less toxic and expensive reagents. 

2.4.4 Suzuki coupling polymerization 
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Also in this case, a 2-iodo-3-alkylthiophene is employed; the latter is easily obtained by the 

corresponding 3-alkylthiophene with powdered iodine and yellow mercury oxide in acetic acid at room 

temperature [15] (Sch. 10). The following step involves the lithiation in the 5 position of the intermediate 

obtained, with LDA at -40°C and subsequently quenching with trimethylborate. The boron ether, which 

is hydrolyzed in situ to form boronic acid, is directly converted in a stable ester when it reacts with an 

equivalent of 2,2-dimethyl-1,3-propanediol. The obtained boronate is stable and can be purified with 

common techniques. Its next polymerization, catalyzed by Pd(OAc)2 and heated at reflux for 16 hours in 

a mixture of THF, water and ethanol, leads to the desired polymer with a good yield, high molecular 

weights and with 9697% of HT concatenations. 

 

Scheme 10. Suzuki coupling polymerization. 

As for the Stille coupling, the possibility to obtain a stable organometallic intermediate, easy to 

purify and compatible with many functional groups, constitutes a great advantage. 

2.4.5 McCullough polymerization 

This kind of polymerization [16] is based on the use of the Kumada cross-coupling catalyzed by 

Ni(dppp)Cl2. A 3-alkylthiophene is brominated in the 2 position with bromine in acetic acid. Then the 

lithiation in the 5 position takes place, using LDA at -40°C, and the subsequent formation of 2-bromo-

3-alkyl-5-bromomagnesium thiophene by reaction with ether MgBr2 at -60°C. The reaction mixture is 

warmed to -5°C and then, the catalyst is added and the mixtures is allowed to react at room temperature 

for 18 hours (Sch. 11). In this way polymers having at least 98% of HT concatenation, are obtained with 

good yields. 
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Scheme 11. McCullough polymerization. 

The described procedure is particularly time-consuming and laborious and requires to work with 

high purity products and cryogenic temperatures. McCullough himself recently proposed an alternative 

procedure [17] very simple, quick and cheap. Practically, it deals with a 2,5-dibromo-3-alkylthiophene, 

easy to synthesize and purify, with an equivalent of CH3MgBr in refluxing THF (Sch. 12). In this way, by 

Grignard reactive metathesis, a mixture of isomers is obtained with a predominance of the isomer 

metalated in 5 position. Despite the non-complete regioselectivity, the addition of Ni(dppp)Cl2 in catalytic 

amount allows to obtain the desired polymer only after 2 hours of reflux, with yield of about 70% and 

99% of regioregularity. 

 

Scheme 12. McCullough new polymer synthesis. 

2.5 PATS CHARACTERIZATION 

PATs, and more generally, PT derivatives are characterized by all of the most common polymeric 

analysis techniques. Studies for the determination of particular properties can be associated to the latters, 

linked to a specific use of these materials, such as the measure of conductivity, of electroluminescence or 

solar cells efficiency. 

Nuclear magnetic resonance, infrared spectroscopy and UV-Vis absorption play a crucial role in 

the structural study of these materials and provide many and useful information that can be easily 

achievable in modern research laboratory. 

2.5.1 Nuclear magnetic resonance (NMR) spectroscopy 

The analysis of 1H and 13C NMR of PATs allows to determine, in addition to the structure, the 

regiochemistry of the backbone. 
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As for 1H-NMR, the presence of four signals in the aromatic region attributable to the β 

hydrogens belonging to the four possible triads, can be observed. In poly(3-hexylthiophene) (P3HT), the 

expansion of the aromatic region is reported as an exaple (Fig. 20), the signals at 6.98, 7.00, 7.03 and 7.05 

ppm are attributable to the HT-HT, TT-HT, HT-HH and TT-HH configurations respectively [18]. 

 

Figure 20. Aromatic region of 1H-NMR spectrum of poly(3-hexylthiophene). 

Also the signal of methylenic protons bonded to the α carbon of the heterocycle is affected by 

the kind of concatenation and it originates two signals, at 2.79 and 2.56 ppm for P3HT, the former is 

attributable to HT dyads while the other one to HH/TT dyads. Calculating the ratio between the relative 

integrals of the two peaks, it is possible to determine, in a very easy way, the percentage of backbone 

regioregularity. 

The 13C-NMR analysis allows to record in the aromatic region, sixteen different signals, more or 

less intense, attributable, in groups of four, to the thiophenic carbons belonging to rings that are linked 

in the different four triads. 

2.5.2 Infrared spectroscopy 

The stretching of the C-H bond (weak intensity) which involves the β hydrogen of the thiophenic 

ring and its out-of-plane bending (high intensity) together with symmetric and antisymmetric stretching 

(medium intensity) of the C=C double bond constitute the characteristic bands of the macromolecular 

backbone. In the case of P3HT the frequencies of these signals are about 3055 cm-1 (νC-H), 825 cm-1 (γCH), 

1510 cm-1 (νanti), 1460 cm-1 (νsimm). The frequency of out-of-plane bending of the C-H bond is affected by 

the kind of backbone configuration and it slightly shifts toward lower energies for system with high 
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regioregularity while the ratio (Is/Ia) between the intensity of the two bands attributable to symmetric and 

antisymmetric stretching of the thiophenic C=C allows to evaluate the conjugation length that increases 

as Is/Ia lowers [19]. 

 

2.5.3 UV-Vis absorption spectroscopy 

PATs UV-Vis spectra in solution show a maximum of absorption, with a high molar extinction 

coefficient, that is collocated at about 440 nm and corresponds to the π-π* electronic transition of the 

polyconjugated backbone. The wavelength of the maximum absorption (λmax) is connected with the 

conjugation length of the polymeric chain and is influenced by the regioregularity of the system, by the 

nature of the solvent or mixture of solvents employed for the analysis and by the temperature. 

The spectra of the polymer in film state are generally characterized by a red shift of the λmax, 

indicating the presence of a higher conformational order when compared to the solution, and a spectral 

structuration with the clear evidence of three or four vibronic quantum. 

2.6 OPTICAL PROPERTIES OF PATS 

The word “chromism” means the modification of the UV-Vis spectral behavior of a product as 

a function of the variation of the chemical-physical boundary conditions. This behavior, in the case of 

PATs and other PT derivatives, comes from the conformational mutation of the backbone, that 

influences the mean conjugation length and consequently the entity of the energetic gap between HOMO 

and LUMO, which is involved in the electronic transitions observable by visible light. A completely 

reversible alteration in the system is made, from a configuration with high degree of disorder with lower 

mean conjugation length, named A form, to a more ordered configuration and with higher mean 

conjugation, named B form [20] (Fig. 21). 

The A form, whose electronic delocalization is limited to 5-6 thiophenic rings, evolves according 

to a mainly interchain mechanism that involves two segments whose interactions determine, with a 

second order kinetic, an almost double mean conjugation length for the B form [21,22]. 
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Figure 21. Equilibrium between A and B forms. 

This behavior can be induced by a variation of temperature (thermochromism), pressure 

(piezochromism) or by mean of solvent (solvatochromism). In the first two cases, the increase of 

temperature or the decrease of pressure determine a freer rotation around C-C bonds that link the 

thiophenic rings with consequently increase of conformational disorder which leads, by the UV-Vis 

spectrum point of view, to a prominent ipsochromic shift of maxiumum wavelength absorption. 

Solvatochromism is observed when a non-solvent is added to a solution of a polymer. The latter 

progressively removes the solvent molecules from the polymeric chain that is allowed to assume a more 

coplanar conformation with a consequent bathochromic shift of λmax. 

UV-Vis spectra of P3HT in chloroform/methanol mixtures are reported as an example (Fig. 22). 

By increasing of the molar fraction of methanol, a prominent λmax red-shift is observed together with 

always more structured spectral profiles that derive from the high conformational order of the system. 

Four vibronic transitions are clearly identifiable including the pure electronic (E0-0), at about 600 nm, that 

shows an absorption value directly proportional to the concentration of the B form in solution. An 

isosbestic point is also observed, confirming the presence of only two species, A form and B form, in 

equilibrium between them. 
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Figure 22. Absorption spectra for P3HT in CHCl3/CH3OH mixtures at different molar ratios of CH3OH: a) 0.00; b) 0.28; c) 0.39; d) 
0.50; e) 0.66; f) 0.80; g) 0.98. 

The entity of the chromic effects is linked to the structural factors specifc of the analyzed polymer: 

the high percentage of regioregularity or the presence of groups in the side chains able to stabilize 

coplanar conformation, effectively contribute to the increase of the planarization of the backbone. The 

described phenomena, not only allow for an accurate study of the electronic structure of conjugated 

polymers, but also are the base of the study of their possible application in the field of chromic sensors 

based on the principle of chemical recognition.  

2.7 β-FUNCTIONALIZED POLYTHIOPHENES 

The great versatility of the thiophenic ring made PATs only the starting point for the preparation 

of polythiophenes variously substituted in the β or β-β’ positions. In fact, it is possible to synthesize, in 

an easy way, monomers bearing alkyl chains ω-functionalized for example with hydroxyl or sulfonic 

groups, acids, amines, amino acids, or halides. Furthermore, also chiral substituents, aromatics rings, ester 

groups, ethers or thioethers, oxaethylenic chains, crown ethers, calixarenes, or porphyrins have been 

included. The synthesis and the study of a great variety of products reported in the literature and 

nowadays subject to study, derives from the need to prepare a specific derivative for a specific use. Thanks 

to the β-functionalization, it is possible to modulate and improve the properties of the polyconjugated 

backbone so that the system has a specific characteristic that is particularly suitable for a specific 

application. 
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The synthesis of such derivatives can be made, in the major of the cases, by direct polymerization 

of an appropriate monomer, using similar procedures to those described for PATs. But sometimes it is 

possible to incur in a poorly reactive monomer that leads to a low yield for the desired product. In other 

cases, instead, some functional groups cannot be used because their reactivity towards one or more 

reactive involved in the polymerization is too low. These problems can be effectively removed with the 

development of a new synthetic route, named post-polymerization functionalization. 

2.7.1 Post-polymerization functionalization 

The post-polymerization functionalization (PPF) consists in the preparation of a reactive 

polymeric precursor that is subsequently converted in the derivative of interest. The precursor polymer 

has to be synthesized with high yield and high molecular weights through direct polymerization of an 

appropriate monomer and must be soluble in the solvents that will be used in the next functionalization 

step. The choice of the reactive group is crucial: it must be quantitatively converted to the desired 

substituent in order to avoid the formation of only partially substituted macromolecules, that would 

unavoidably lead to copolymers. The functionalization of a polymeric precursor requires longer reaction 

time that are “compensated” by the easier and quicker purification that in most cases consists in just a 

fractionation.  

Finally, since the macromolecular chain is preformed, all the polymers which derives from the 

same precursor will have the same kind of concatenations and the same mean polymerization degree: 

consequently, it will be easier to compare the properties just according to the present functional group. 
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CHAPTER 3: CONJUGATED POLYMERS FOR THE 

OBTAINMENT OF CONDUCTIVE PATTERNS THROUGH 

LASER TRACING 

3.1 INTRODUCTION 

Conjugated polymers (ICPs) in their semi-conducting or less conductive forms are widely used 

in the organic electronic field for applications such as light-emitting diodes [1], thin-film field effect 

transistors [2], and bulk heterojunction solar cells [3]. Moreover, the lithographic patterning of conductive 

polymer films has been successfully applied to various conjugated polymers by means of different 

approaches such as photochemical-induced doping [4], photochemical polymerization [5] and reactive 

ion etching [6]. In all cases, the crucial step for obtaining acceptable results was the choosing of both the 

conjugated polymer and the right source of irradiation, generally Xe-lamps, Ar ion lasers and KrF excimer 

lasers [7]. The conversion of polymers by laser irradiation from their non-conductive form to the 

conductive one has been reported for different conjugated and non-conjugated polymers such as 

poly(bis-alkylthioacetylene)s (PATACs) [8], polyimides (PIs) [9], and polyvinylchloride (PVC) [10]. 

Among the latter, disubstituted polyacetylenes are very promising materials for potential applications at 

the industrial and commercial level. Indeed, they are soluble in some solvents and can be prepared as thin 

and homogeneous films with a good thermal and environmental stability [11]. PATACs can be easily 

filmed from their concentrated solutions on several surfaces like glass, Si, Ge, ceramics, and metals by 

means of simple techniques such as spin-coating, doctor-blading or drop-casting. 

The most studied PATAC is poly(bis-methylthioacetylene) (PATAC-Me); it can be easily 

synthesized with good yields starting from dimethylthioacetylene with a Ni(II) catalyst in tetrahydrofuran 

[12]. The low temperature polymerization of acetylene leads to the prevalence of the cis isomer which 

converts to the thermodynamically more stable trans isomer at high temperatures. This is also true for 

polyacetylenes bringing thioalkylic substituents when the side chain is not a sterically demanding group. 

Poly(terbuthylthioacetylene), for example, [13] leads to the predominance of the trans-isomer already 

during the polymerization step [14].  

Disubstituted polyacetylenes with thioalkylic groups are sensitive to visible and UV-radiation; 

when their thin films are exposed to a laser light of suitable wavelength and intensity they can be easily 
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and rapidly converted from the insulating to the conductive form, keeping a high electrical conductivity 

for long times also in presence of oxygen, moisture or aggressive atmosphere.  

Today, many techniques are employed to cast active polymer layers (films) onto stiff or flexible 

substrates with the aim to cover large areas with low cost and high speed. The generated patterned 

polymeric structures can be the active components of organic field-effect transistors (OFETs) [15], 

organic light emitting diodes (OLEDs) [16] and organic photovoltaics (OPVs) [17] exploiting, in turn, 

the polymer semiconducting [18] or conducting properties (when nanoscaled composites are formed 

[19]), their transparency [20] or light-absorbing properties [21] and their thermal stability [22] or reactivity 

[23]. The most studied technique is called roll-to roll (R2R) or reel to reel coating [24] which is compatible 

with many deposition systems, an important feature considering that each system has its strengths and 

weaknesses and can present some applicative restrictions. 

The continuous deposition techniques which are compatible with R2R coating are: gravure 

printing, flexographic printing, rotary screen printing, knife/slot die coating, inkjet printing and spray 

coating. 

A very exhaustive and recent review exploring in detail all of these systems is reported in Ref. 

[25]. A concise overview of polymer thin film devices obtained using R2R techniques is reported in Table 

1 [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42]. 
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Table 1. Overview of reported polymer thin film applications using R2R techniques. 

Processing method  Applications Comments 

Gravure printing Active layers for OPV [26,27], 

OTFT [28], PLED [29] 

High speed (up to 15 m/s) 

Different substrates (PC, PET, glass) 

Less expensive 

Requires a pre-patterned printing form  

Flexographic printing Loudspeakers [30] Works well on paper 

Expensive 

Requires a pre-patterned printing form 

Screen printing  

(flat bed) 

Rotary screen printing 

(RSP) 

Silver electrodes for OPV [31] High speed (RSP) 

Simple and less expensive 

Requires a pre-patterned mesh 

Stepwise process (flat bed) 

Knife coating 

Slot die coating 

OPV (all layers) [32], PLED  

[33], EC [34] 

High speed (up to 200 m/min) 

Less expensive 

Wide applicability (premetered 

coating system) 

Inkjet printing OPV [35,36], PLED [37] High resolution 

High speed (up to 75 m/min) 

No premanufactured printing form 

required 

Expensive 

Spray coating Active layers and electrodes for 

OPV [38,39], photodiodes [40], 

EC [41] 

Simple and less expensive 

Not very uniform coating 

Light-induced 

thermocleavage 

Active layers for OPV [42] Simple and effective 

High speed  

Quite expensive 

Requires a prepatterned mask for the 

photonic sintering system and a suitable 

polymer 

Laser-induced 

thermocleavage 

Potential applications: OPV, 

TFT, PLED 

High speed 

Inexpensive 

Simple and effective 

No premanufactured printing form 

required 

Requires a suitable functional polymer 
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This work mainly aims to find the best operating conditions for the laser-patterning of PATAC-

Me films by means of commercial, lightweight, quite inexpensive diode lasers operating at low optical 

powers (lower than 1W), with the aim of bringing these techniques one step forward toward the 

industrialization of the process. Prepared samples have been deeply characterized by using FT-IR, UV-

Vis spectroscopy, optical microscopy, and SEM/EDS probe for in situ elemental analysis. Moreover, an 

attempt has been made to substitute PATAC-Me with a thiophenic polymer bearing a thioalkylic side 

chain. The properties and the applicability of the polythiophene derivative have been evaluated, showing 

that the latter is an easier obtainable polymer with better characteristics in terms of solubility, filmability 

and optical transparence as compared to the acetylenic polymer.  

3.2 EXPERIMENTAL 

1H- and 13C-NMR were recorded on a Varian Mercury Plus spectrometer (400 MHz) using TMS 

as a reference. FT-IR spectra of the monomers (pure liquids) and polymers (films) were carried out on 

Ge disks using a Perkin Elmer Spectrum One spectrophotometer. Raman spectra were recorded using 

polymer films on glass slides and a Renishaw RM 1000 instrument with an excitation wavelength of 785 

nm. Molecular weights were determined by gel permeation chromatography (GPC) using polystyrene 

standards and THF as an eluent on a HPLC Lab Flow 2000 apparatus equipped with a PL Gel MXL 

column and a Linear Instrument UV-Vis detector model UVIS-200 working at 263 nm. Elemental 

analyses were performed by Redox Laboratory, Monza, Italy. UV-Vis spectra were recorded using a 

Perkin Elmer Lambda 19 spectrophotometer. Polymer solutions on Hellma Suprasil quartz cuvettes were 

prepared using spectroquality solvents stored under molecular sieves, with a polymer concentration of 

about 7×10-5 mol×l-1, while films on quartz slides were cast from either chlorobenzene (PATAC-Me) or 

THF (PSBu) solutions (ca. 10-3 mol×l-1). 

Thermal analyses were performed on a TA Instruments DSC 2920 in a nitrogen atmosphere and 

on a TGA 2050 in air at a heating rate of 10°C/min. Electrical measurements were performed in air at 

room temperature using a Keithley 2101 electrometer (traced films) and an Alpha Lab teraohmeter 

(pristine films). The reported values were the means of some measurements performed on different parts 

of the same sample as well as on different samples. In all cases the differences did not exceed 2-3% of 

the final value. Electrical conductivity of the laser-traced samples was also examined in the 20-180°C 

range by means of a hot-plate controlled by a Pt100 thermocouple. The laser sources were a Wicked 

Lasers Spyder III Arctic class 4 diode laser, operating at 445 nm and a Wicked Lasers Spyder III Krypton, 

class 4 diode laser, operating at 532 nm, both with a nominal power of 750 mW. The effective power of 

laser beams on the polymer surface was measured with a Coherent FieldMax II laser power meter. 
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Samples were mounted on a computer-controlled positioning system (Thorlabs L490MZ) and moved on 

a plane perpendicular to the focused laser beam using two Thorlabs MTS TDC001 controllers. SEM 

analyses were performed on a Carl Zeiss EVO MA10 SEM apparatus, equipped with an EDS 

microanalysis probe. Optical 2D and 3D microscopy was performed using a Hirox KH-7700 Digital 

Microscope. 

3.3 MONOMER SYNTHESIS 

3.3.1 Synthesis of  3-(buthylthio)thiophene (TSBu) 

10.01 g (61.2 mmol) of 3-bromothiophene in 56 ml of anhydrous diethyl ether were stirred at -

78°C under Ar atmosphere and added dropwise with 40 ml of a 1.6 M buthyllithium solution in n-hexane. 

The mixture was stirred at -78°C for 30 min, added with 2.06 g (64.2 mmol) of sulfur and stirred for 40 

min at the same temperature. After heating to 0°C, 16.77 g (0.122 mol) of bromobutane were added and 

the mixture was stirred overnight at room temperature. 50 ml of aqueous 1M HCl were then added to 

the reaction mixture and the organic phase washed with both a saturated solution of NaHCO3 (3×150 

ml) and distilled water to neutrality, dried over MgSO4, and concentrated. The crude product was purified 

by column chromatography (silica gel, n-pentane/n-heptane 1:1) to give 4.13 g (24.0 mmol) of pure TSBu 

(40% yield). 

3.2.2 Synthesis of  2,5-dibromo-3-buthylthiothiophene (2,5BTSBu) 

A solution of 1.22 g of N-bromosuccinimide (NBS, 6.88 mmol) in 7 ml of N,N-

dimethylformamide (DMF) was added dropwise to a solution of 1.18 g (6.80 mmol) of TSBu in 7 ml of 

DMF. After stirring for 6h at room temperature, 1.59 g (8.95 mmol) of NBS in 9 ml of DMF were added 

dropwise and the reaction mixture was stirred for 24 h at room temperature. The mixture was then 

poured into 450 ml of distilled water and extracted with n-pentane (3×150 ml). The collected organic 

phases were washed with 2×300 ml of a 5% KHCO3 solution, then with water to neutrality, dried with 

MgSO4 and concentrated. The crude 2,5BTSBu was purified by chromatography (silica gel, n-heptane) 

giving 1.59 g of pure 2,5BTSBu (70% yield). 

3.4 POLYMER SYNTHESIS 

Elemental analysis: [C4H6S2]n Calcd: 40.64 C%; 5.12 H%; 54.24 S%. Found: 41.22 C%; 4.98 H%; 

53.80 S%. 
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3.4.1 Synthesis of  Poly[(3-methylthio)thiophene] (PSMe) 

1.6 ml of an aqueous solution of FeCl3 (7.5 10-3 M) was added dropwise to a solution of 0.622 g 

(2.31 mmol) of sodium dodecylsulfate (SDS) and 3-methylthiothiophene (TSMe, 0.200g, 1.54 mmol) in 

10 ml of distilled water and 3 ml of H2O2 (35% vol). The mixture was stirred for 6 h at 50°C under Ar 

atmosphere and filtered on a Teflon septum (0.45 m pore size). The recovered polymer was diluted 

with 100 ml of distilled water and poured into a dialysis membrane (100 nm average pore size) which was 

immersed in a beaker and washed continuously with a gentle flow of distilled water. After two weeks the 

polymer solution was concentrated, giving 0.100 g (51% yield) of PSMe. 

3.4.2 Synthesis of  Poly[(3-buthylthio)thiophene] PSBu – Oxidative 

polymerization 

A solution of 0.200 g (1.16 mmol) of TSBu in 12 ml of CHCl3 was added in 20 min to a 

suspension of 0.753 g (4.64 mmol) of FeCl3 in 10 ml of CHCl3. After stirring for 40 min at 20°C 

under a gentle flux of Argon, 20 ml of freshly distilled THF were added to the reaction mixture. The 

resulting mixture was then poured into 150 ml of a 5% HCl solution in methanol and filtered on a 

Teflon septum (0.20 m pore size). The recovered polymer was washed several times with methanol 

and dried, giving 0.311 g of PSBu (40% yield). 

1H-NMR (CDCl3, 400 MHz, ppm) : 7.40 (s, 1H); 7.37 (s, 1H); 7.20 (s, 1H); 2.82 (t, 2H); 

1.60 (m, 2H); 1.43 (m, 2H); 0.93 (t, 3H). 

13C-NMR (CDCl3, 400 MHz, ppm) : 134.0, 132.3, 112.8, 110.9, 35.0, 31.5, 21.8, 13.6. 

FT-IR (Ge disk, cm-1) 3101, 3057, 2956, 2927, 2869, 1521, 1463, 1377, 837, 746, 716. 

3.4.3 Synthesis of  Poly[(3-buthylthio)thiophene] PSBu – GRIM procedure 

2.10 ml (2.10 mmol) of a 1M solution of methylmagnesium bromide in di-n-buthylether was 

added to a solution of 0.688 g (2.08 mmol) of 2,5BTSBu in 12 ml of anhydrous THF. The reaction 

mixture was refluxed for 1h under stirring and under a gentle flux of Argon. 11.85 mg (0.022 mmol) of 

[1,3-bis(diphenylphosphino)propane]nickel(II) chloride (Ni(dppp)Cl2) were then added and the mixture 

was refluxed again for 2 h. The mixture, cooled down to room temperature, was filtered on a Teflon 

septum (0.45 m pore size). The recovered polymer was washed several times with methanol and dried, 

giving 0.200 g of regioregular PSBu (57% yield). 
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Elemental analysis: [C8H10S2]n Calcd: 56.42 C%; 5.92 H%; 37.66 S%. Found: 57.03 C%; 5.55 

H%; 37.42 S%. 

3.5 RESULTS AND DISCUSSION 

PATAC-Me and PATAC-Et (poly(bis-ethylthioacetylene) films require only a laser exposure to 

become electrically conducting materials, without the need of doping or other treatment. In fact, if they 

are irradiated with an excimer laser (351 nm) or argon ion laser (488 nm), they can change their electrical 

conductivity by 16 orders of magnitude (from 10-14 to 102 S×cm-1) if the radiation is correctly focused on 

the film surface and of the suitable intensity [43]. In fact, on the one hand a too-intense laser radiation 

can lead to polymer pyrolysis (graphitization process), with the consequent formation of non-conductive 

carbon residues, while, on the other hand, if the radiation intensity is too low (or the tracing speed too 

high) no conversion toward the more conductive form is observed. The right conversion conditions 

reported in literature for the use of an Ar+ laser are well described: 200 mW of power and 13 mm/sec of 

scan speed for PATAC-Et, leading to a specific electrical conductivity () of 2 S×cm-1, while for PATAC-

Me it is possible to reach 4 S×cm-1 by using 300 mW and 15 mm/sec [44]. During the laser exposure, the 

color and morphology of PATAC dramatically change, passing from the yellowish-brown of the 

untreated sample to the blue-black of the laser exposed films, also exhibiting an irregular and porous 

surface probably determined by the emission of gaseous reaction products. The conversion of PATAC 

samples starts with the generation of free radicals whose concentration reaches its peak and then remains 

almost constant [45]. This process can be considered a photopyrolysis of the polymer, leading to the 

formation of unsaturated structures with an extended π-system mainly made of sp2 hybridized carbon 

atoms partly linked with sulfur. The outflow of gaseous products during the conversion process (mainly 

sulfides and mercaptanes) and the insolubility of the final treated polymer suggest that the laser is able to 

both split-off thioalkylic side chains and determine a partial inter- or intra-chain cross-linking. This 

process can reduce the conformational mobility of the backbone, making the polymer more prone to 

assuming planar conformations with a more extended conjugation, thus leading to enhanced charge 

mobility and better electrical conductivity. 

In view of the foregoing, the first examined polymer was the PATAC-Me, bought from Aldrich 

Chemical Co. This sample had a Mn of 4000 g×mol-1, a polydispersity index of 1.15 and a DPn of about 

34 repeating units. Its 1H-NMR in CDCl3 is shown in Figure 23. 
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 Figure 23. 1H-NMR spectrum of PATAC-Me. 

The presence of only one peak, fairly broad and centered at 2.50 ppm, is clearly evident. 

This signal is ascribable to the thiomethylic protons, while its broadness is due to the presence of 

different proton chemical surroundings since commercial PATAC-Me is a mixture of stereoisomers. The 

elemental analysis of the polymer was in good agreement with the expected structure. In Figure 24 the 

FT-IR spectrum of PATAC-Me in film cast from chloroform on Ge disk is shown before and after the 

laser tracing with blue laser ( = 445 nm). 

 

 

Figure 24. FT-IR spectra of PATAC-Me before (left) and after (right) laser treatment. 
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In the spectrum of the pristine polymer, the signals ascribable to its chemical structure were 

clearly evident:  

 2984, 2916 cm-1: CH3 antisymmetric and symmetric stretching; 

 1664 cm-1: C=C stretching; 

 1430 cm-1: CH3 antisymmetric deformation; 

 1308 cm-1: CH3 symmetric deformation; 

 645 cm-1: S-CH3 symmetric stretching. 

The evolution in the intensity of the latter signal, which can range from 715 to 620 cm-1[46], could 

be evidence of the effectiveness of the laser treatment. In fact, its transmittance sensibly increased after 

the exposure to the coherent light (Figure 25). 

 

Figure 25. Detail of the FT-IR spectra of PATAC-Me before (a) and after (b) laser exposure. 

Figure 26 shows the Raman spectra of unconverted and converted PATAC-Me films. 

 

Figure 26. Raman spectra of PATAC-Me before (left) and after (right) laser exposure. 

Before laser exposure, the film spectrum showed a non-linear baseline and a high level of noise; 

this was due to the high reflective surface of the pristine polymer, giving a lot of scattering of the red 
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laser radiation (785 nm) used to record the spectrum. In any case, two peaks could be found at 1554 and 

708 cm-1; the first signal was ascribable to the in-phase vibration of the C=C double bonds, since polyenes 

usually show an intense absorption in the 1600-1500 cm-1 range, whose intensity may also be related to 

their extension of conjugation [47], while the signal around 700 cm-1 could be related to the C-S stretching 

of the –SMe groups. After laser exposure, the latter signal could not be found, while the peak around 

1300 cm-1 could be ascribed to the in-phase vibration of the C-C bonds in polymeric chains. 

The UV-Vis spectra of PATAC-Me in film on quartz slides are shown in Figure 27. 

 

Figure 27. UV-Vis spectra of PATAC-Me films. 

The polymer exhibited a non-structured profile, with a maximum absorption wavelength at 315 

nm. The film was homogeneous and devoid of macroscopic aggregates and was obtained by dissolving 

PATAC-Me in chlorobenzene. The absence of any evident peak at the lower energies evidenced that this 

polymer had a high energy gap (Eg), probably determined by its reduced conjugation length, as a 

consequence of the steric hindrance due to the presence both of the thiomethylic substituent on each C 

atom of the backbone, and of the non-stereoregularity of the sample. The spectral behavior changed after 

laser conversion since the inhomogeneous broadening of the spectrum decreased slightly while the 

absorption at the lower energies slightly increased.  

The solvatochromism of PATAC-Me was examined in CHCl3 (solvent)/CH3OH (non-solvent) 

mixtures. In Figure 28 the spectra of the polymer in pure chloroform (methanol molar fraction: 0.00) 

and at the higher non-solvent molar fraction (methanol molar fraction: 0.99) are shown. A further 

increase in the non-solvent concentration inevitably caused the precipitation of the polymer.  
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Figure 28. Solvatochromism of PATAC-Me. 

PATAC-Me was completely insensitive to the non-solvent additions, since the presence of the 

thiomethylic substituents strongly reduced the rotational mobility of the polymeric backbone even when 

the polymer was almost completely devoid of the solvent molecules. Unfortunately the solvatochromic 

behavior of the laser-converted PATAC-Me had not been examined since the exposed polymer is 

insoluble in common organic solvents. 

PATAC-Me was then dissolved in chlorobenzene (5 mg in 2 ml) and the solution, sonicated for 

30 min, was deposited by doctor blading on 10×2.5 cm glass slides. Samples were heated at 80°C for 4h 

and cooled down to room temperature. The conversion was made by means of Wicked Laser portable 

diode lasers, Artic (blue light, 1 W of peak power, max 445 nm) and Krypton (green light, 1 W of peak 

power, max 532 nm). The effective power of the laser radiation on the polymer surface was measured 

using a Coherent power meter while the laser beam was well focused at a lens-sample distance of 3.7 cm. 

The exposure of the polymer was performed line-by-line using a Thor Labs computer-controlled 

positioning system which allowed for both an accurate control of the samples’ position and their speed 

during irradiation. Samples were moved on the x-y plane from left to right using different scan speeds, 

by tracing a series of parallel 10-cm-long traces. The system was set so that the laser irradiated the same 

trace only once. The polymer film thickness, measured by means of a Burleigh Vista AFM used as a 

profilometer, ranged from 1 to 10 m and was influenced both by the adopted deposition technique 

(doctor blade, spin coating or drop casting, the latter giving thicker films) and by the possibility to make 

multiple depositions. 
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Under the same operating conditions (laser power, scan speed, and sample thickness), the Artic 

(blue) laser was more effective for the PATAC-Me conversion than the Krypton (green) one, being able 

to make the traces visible also from the opposite side of the sample. This fact is probably ascribable to 

the higher absorbance of PATAC-Me at 445 nm than at 532 nm. 

The best sample conversion was obtained using the Artic laser at a scan speed of 5 cm×s-1 with 

an effective power of 600 mW. Figure 29 shows an image of a partially traced PATAC-Me film (optical 

microscope, magnification: 50×). 

 

Figure 29. Optical microscope image of a partially traced film of PATAC-Me. 

In the lower part of the image, traces are clearly visible. The polymer morphology notably changed 

after the conversion, passing from a smooth surface, even if crossed by some cracks ascribable to the 

glassy nature of the film, to a rough, dull, and less homogeneous surface. Traces had a worm-like 

appearance and a porous structure, probably caused by the outflow of gaseous reaction products. Laser-

converted paths had an average width of 50 m and a mean depth of 3 m. The laser-induced conversion 

of PATAC-Me using the blue laser was undoubtedly effective, since the pristine polymer conductivity 

was around 10-14 S×cm-1 and, after exposure, the value increased greatly, up to 80 S×cm-1.  

Figure 30 shows the SEM micrograph of a traced sample of PATAC-Me. Paths are clearly evident 

on the left side of the image. 
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Figure 30. SEM micrograph of a PATAC-Me film after laser tracing. 

Figure 31 shows the topographic microanalysis of the latter sample in relation to the C and S 

elements recorded using an Energy-dispersive spectrometer (EDS) probe. 

 

Figure 31. EDS topographic microanalysis of the film reported in Fig. 30. Left: Carbon, right: sulfur. 

Since the concentration of the element is proportional to the intensity of white, it is evident that 

in the converted pathways there was a higher amount of C and a lower amount of S than in the unexposed 

ones. In fact, C and S concentrations passed from 41 and 54% of the unexposed area to 75 and 20% of 

the laser treated portions, respectively, thus confirming the partial loss of side chains.  

Even if PATAC-Me is a good candidate for electric and electronic applications, its non-complete 

solubility in common organic solvents is undoubtedly a great drawback. Concentrated solutions of this 

polymer can only be obtained in chlorinated or aromatic high-boiling solvents, such as chlorobenzene or 
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o-dichlorobenzene. Films prepared from these solvents are usually quite homogeneous even though they 

sometimes appear spotted, dotted or with some cracks. Moreover, PATAC-Me solutions cannot be cast 

on transparent polymeric layers, such as PET, PMMA, or cellulose acetate, since the solvent corrodes the 

substrate and, in any case, the resulting film would be too fragile for a permanent adhesion to flexible 

and bendable surfaces. 

The synthesis of a new polymer which, at the same time, has a conjugated backbone and photo-

cleavable side chains while being capable of giving homogeneous and elastic films, could be a first attempt 

at circumventing these problems. Poly[(3-methylthio)thiophene] (PSMe) seemed to be a good substitute 

for PATAC-Me since it belongs to the ICP class and bears thioalkylic substituents. 

3(methylthio)thiophene- was purchased from Atlantic Chemical Co. and subjected to an oxidative 

polymerization procedure in water, using H2O2 and FeCl3 as oxidizing agents and sodium dodecylsulfate 

as a surfactant [48]. This method should be particularly effective in molecular weight control, generally 

leading to low molecular weight polythiophenic fractions that are soluble in a wide range of organic 

solvents; it appeared particularly suitable for synthesizing PSMe, since short side chains usually lead to 

little-soluble polyalkylthiophenes [49].  

The polymerization reaction proceeded with an initial dark-brown color and the subsequent 

formation of a black oil, without any trace of precipitate. A first attempt to recover the polymer by 

multiple extractions of the reaction products with halogenated solvents did not give satisfying results, 

since the surfactant was found in both organic and aqueous phases. The polymer purification was then 

performed by means of a dialysis membrane (100 nm pore size), which allowed the recovery of the 

polymer without any trace of SDS and FeCl3 being detected. Contrary to expectations, PSMe was only 

partially soluble in organic solvents, leading to inhomogeneous and brittle films. Since its molecular 

weight was not particularly high, as evidenced by the 1H-NMR spectrum shown in Figure 32, where the 

chain-end signals are clearly evident, its low solubility might be ascribed to the too-short substituent 

inserted in the 3-position of the aromatic ring. 

. 
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Figure 32. 1H-NMR spectrum of PSMe. 

The NMR spectrum shows only one signal in the aliphatic region (-SCH3 at 2.65 ppm) while the 

aromatic region is more complex, showing three signals ascribable to the protons of the ending 

thiophenes (H4 at 6.97 ppm, H2 at 7.03 ppm and H5 at 7.37 ppm [50]) and one signal at 7.25 ppm, 

belonging to the β-proton of the central thiophene units of polymeric chains. The FT-IR analysis of 

PSMe was performed on a thin film cast on a Ge disk (Figure 33). 

 

Figure 33. FT-IR spectrum of PSMe. 
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The spectrum was in good agreement with the expected structure, showing the following peaks 

(in cm-1): 3059 (ν C-Hβ, thiophene); 2927 (νas –CH3); 2853 (νs –CH3); 1511 (νas C=C); 1462 (νs C=C); 1369 

(–CH3 sym. deformation); 1014 (–CH3 rocking); 826 (γ C-H 2,3,5-trisubstituted thiophene); 648 (ν C-S). 

The UV-Vis analysis of PSMe in solution (THF) and in film is shown in Figure 34. 

 

Figure 34. UV-Vis spectra of PSMe in solution and in film. 

The steric hindrance of the short side-chain, the presence of Head-to-Head (H-H) linkages and 

the low molecular weight negatively affected the conjugation length of the polymeric backbone. In fact, 

even if an evident bathochromic shift of the λmax was observable when passing from the solution to the 

solid state (Δλmax = 121 nm), the film spectrum showed a maximum absorption wavelength (332 nm) 

usually found in short thiophene oligomers [51]. Similar results were obtained using a different 

polymerization procedure which involved chloroform as a reaction solvent and an excess of iron 

trichloride as an oxidizing agent [52]. This time, the purification of the polymer was easier but the latter 

was, however, insoluble. 

Taking into account the previous results, a polyalkylthiophene (PAT) derivative with a longer 

thioalkylic side chain was synthesized, namely poly[(3-buthylthio)thiophene] (PSBu). The monomer (3-

buthylthio)thiophene (TSBu) was synthesized according to Ref. [53], starting from commercial 3-

bromothiophene and using a “one pot” reaction shown in Scheme 13. 
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Scheme 13. Synthesis of the monomer TSBu. 

TSBu was recovered with a good yield after purification and was firstly subjected to an oxidative 

polymerization initially with FeCl3 in CH3NO2/CHCl3, a solvent mixture usually giving a good control of 

molecular weights as well as a low polidispersity index [54], and afterwards with FeCl3 in pure CHCl3, a 

method that leads to higher molecular weights [55]. In spite of this, in both cases only short oligomers 

were recovered, probably because the low oxidation potential of TSBu promoted the formation of low-

molecular-weight stable species [56]. 

TSBu was then selectively dibrominated in the 2,5-positions of the thiophenic ring by means of 

N-bromosuccinimide (NBS) in anhydrous N,N-dimethylformamide (DMF) by using an optimized 

reaction procedure involving the addition of the brominating agent in two distinct steps at room 

temperature. 2,5-dibromo-3-(buthylthio)thiophene (2,5-BTSBu) was recovered in a good yield (70%) 

after chromatography column purification and exploited for organometallic coupling reactions using the 

McCullough procedure [57]. This method is a useful and straightforward way to synthesize regioregular 

Head-to-Tail (H-T) linked poly(3-alkylthiophene)s through the magnesium-halogen exchange (Grignard 

Metathesis Reaction, GRIM) with a preformed organometallic derivative and subsequent Ni(II) catalyzed 

cross-coupling reaction (Scheme 14). 

 

Scheme 14. Synthesis of the polymer PSBu by using the GRIM reaction. 

PSBu was obtained with good yield (57%) as a dark orange solid well soluble in common organic 

solvents. Despite its quite low molecular weight (Mn=11.000, PDI=1.4) it gave highly homogeneous and 

free-standing films. Its elemental analysis confirmed the expected chemical structure. 

Table 2 show the characteristic FT-IR absorptions of the monomers TSBu and 2,5-BTSBu and 

of the polymer PSBu prepared with the GRIM procedure. 
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Table 2. FT-IR absorption bands (cm-1) and relative assignments for TSBu, 2,5-BTSBu and PSBu samples. 

Assignment TSBu 2,5-BTSBu PSBu 

C-H stretching (thiophene, α-hydrogens) 3103 - - 

C-H stretching (thiophene, β-hydrogen) 3059 3050 3057 

C-H stretching (antisymmetric, methyl) 2953 2958 2956 

C-H stretching (antisymmetric, methylenes) 2928 2927 2927 

C-H stretching (symmetric, methyl+methylenes) 2871 2874 2870 

C=C stretching (antisymmetric, thiophene) 1492 1501 1501 

C=C stretching (symmetric, thiophene) 1464 1464 1463 

CH3 deformation 1350 1387 1378 

C-Br stretching (aromatic) - 992 - 

C-H bending out-of-plane (2,3,5-trisubstituted thiophene) - 839 826 

C-H bending out-of-plane (3-substituted thiophene) 773 - - 

CH2 rocking 754 747 751 

C-S stretching 686 647 714 

 

The absorption at 3103 cm-1, ascribable to the stretching of the thiophene α-hydrogens, was 

absent in 2,5-BTSBu and PSBu samples, as well as the band at 773 cm-1, which was substituted by the 

new absorption around 830 cm-1. Moreover, aromatic C-Br stretching at 992 cm-1 in the 2,5-BTSBu 

spectrum was completely missing in the polymer spectrum, while the C-S stretching mode was evident 

in all the samples. 

Table 3 shows the 1H- and 13C-NMR data for both the examined monomers and the PSBu 

polymer, together with the corresponding assignments obtained by comparing some selected references 

[58,59,60,61,62]. 
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Table 3. 1H- and 13C-NMR signals (ppm) and relative assignments for TSBu, 2,5-BTSBu and PSBu samples. 

Atom numbera TSBu  2,5-BTSBu  PSBu  

 δ1H δ13C δ1H δ13C δ1H δ13C 

2 7.11 (m) 122.8 - 111.6 - 132.3 

3 - 132.3 - 134.7 - 129.0 

4 7.00 (m) 129.7 6.91 (s) 133.0 7.37 (s) 130.3 

5 7.32 (m) 126.0 - 113.5 - 134.0 

6 2.82 (t) 35.0 2.81 (t) 35.7 2.81 (m) 35.0 

7 1.60 (m) 31.5 1.56 (m) 32.3 1.56 (m) 31.6 

8 1.43 (m) 21.8 1.44 (m) 22.4 1.43 (m) 21.7 

9 0.93 (t) 13.6 0.93 (t) 14.3 0.93 (m) 13.6 

aSee Figure 35 

 

Figure 35. Adopted atoms numbering for NMR analysis. 

The monomer 2,5-BTSBu was lacking in H atoms in the 2,5-positions of the thiophene therefore, 

its polymerization was only confirmed by the shift of the signal ascribable to the thiophene H-4 atom to 

a lower field. Moreover, the absence of the thiophene CH2 group prevented the determination of the 

percentage of regioregularity of PSBu in terms of configurational dyads. However, the presence of only 
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one signal in the aromatic region of the 1H-NMR spectrum of the polymer suggested that a high degree 

of regioregularity was achieved (Figure 36) 

 

Figure 36. 1H-NMR of PSBu prepared using the McCullough procedure.  

This was also confirmed by the presence of only four aromatic carbon signals in the 13C-NMR 

spectrum (Figure 37). The obtained results once again confirmed the easiness and versatility of the 

McCullough GRIM reaction for obtaining regioregular functionalized PATs. 

 

Figure 37. 13C-NMR of PSBu prepared using the McCullough procedure. 
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The high solubility of PSBu in common organic solvents made it possible to perform its UV-Vis 

analysis in different solvent- and non-solvent mixtures. Figure 38 shows the solvatochromic behavior of 

PSBu in dimethylpropyleneurea (DMPU)/methanol and tetrahydrofuran (THF)/methanol at increasing 

non-solvent (methanol) molar fractions. 

 

 

Figure 38. Solvatochromism of PSBu in DMPU/MeOH (top) and THF/MeOH (bottom) at increasing methanol molar fractions. 

In both cases, the solvatochromic transition from the solvated to the less solvated conformation 

was clearly visible, resulting in the solution color change from dark red to violet, without any trace of 

macroscopic aggregation being detected even after many days. The non-solvent effect was more evident 

in the DMPU/MeOH system (Δλmax = 26 nm, from 501 to 527 nm) than in THF/MeOH (Δλmax = 17 

nm, from 505 to 522 nm) while the polymer showed a clearly evident pure electronic transition (E0-0) 

around 604 nm, also visible in pure solvents. The moderate shifts of the λmax of the polymer spectra by 

progressive additions of the non-solvent as well as the presence of the E0-0 absorption without any 

addition of MeOH indicated the tendency of PSBu to assume well-ordered conformations even in good 
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solvents, probably because the side chains possessed a high ability to self-assemble even in the solvated 

state. This can be a very important feature for the obtaining of concentrated solutions of preordered 

planar PAT chains; they are particularly useful for the preparation of homogeneous thick films which can 

be used either for the laser writing process or for the building up of bulk heterojunctions (BHJ) solar 

cells. PSBu spectrum in the film state is shown in Figure 39. 

 

Figure 39. UV-Vis spectrum of PSBu in film. 

The λmax of PSBu in film (538 nm) is very similar to that recorded in solution of pure solvents, 

thus indicating the presence of the same conformer in solution and in the solid state. 

PSBu was then dissolved in THF (5 mg in 2 ml) and the solution was deposited on 10×2.5 cm 

preventively cleaned glass slides using the doctor blading technique. The obtained sample was annealed 

for 3h at 80°C in air, giving very homogeneous films with a thickness in the 5-10 m range. The best 

tracing conditions were obtained using the Krypton green laser, operating at 532 nm, a wavelength very 

close to the λmax of PSBu in film, with a scan speed of 3 cm/sec and an effective power of 600 mW, 

leading to a mean specific conductivity of 5×10-2 S×cm-1. The adopted tracing speed is slower than in 

PATAC-Me experiments, probably because this time the longer side chain is more difficult to eliminate 

from the substrate, and the final conductivity lower than for the polyacetylenic derivative. PSBu, however, 

is a very interesting material, since it is easy to synthesize and gives very homogeneous thick films which 

are completely devoid of macroscopic aggregates. Moreover, PSBu is able to increase its specific electrical 

conductivity by 8 orders of magnitude, reaching values comparable to those obtained in doped PATs 

[63] but without any detrimental effect of moisture and oxygen on its time performance. 
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PSBu films are essentially amorphous and more elastic than those obtained using PATAC-Me, 

so the former can be easily applied also on flexible substrates, such as PET, cellulose acetate, 

polyvinylalcohol, and polyvinylchloride. 

Figure 40 shows an optical microscope image of a traced sample of PSBu and the corresponding 

3D elaboration. 

 

  

 

Figure 40. Optical microscope images of traced PSBu films. Top left: 50×, right: 400 ×. Bottom: 3D elaboration, 50×. 

Moving from left to right, the untreated portion of PSBu film is clearly evident and is followed 

first by two traces obtained with the green laser operating at reduced power (60 mW), and then by two 

more traces produced with full-power laser (600 mW). In all cases, the tracing speed was 3 cm/sec. The 

3D image clearly shows homogeneous traces without any apparent pits or holes. 

Figure 41 shows the SEM image of a traced PSBu film. The image covers an area of about 2×4 

mm and clearly shows five parallel traces. The elemental microanalysis shows a sulfur content decreasing 

from 37 to 21%.  
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Figure 41. SEM image of a traced PSBu film (left). EDS microanalysis relative to sulfur on the same film (right). 

The IR spectrum of the traced PSBu sample showed the same main absorptions of the pristine 

polymer at 2927, 2853, 1515, 1462, 825 and 751 cm-1. The band at 714 cm-1 ( C-S) is absent, thus 

confirming the partial loss of the side chains after the photopyrolysis procedure (Figure 42). 

 

Figure 42. FT-IR spectrum of a PSBu film. a) untraced b) traced. 

The thermal behavior of unexposed PATAC-Me and PSBu has been examined by means of DSC 

in inert atmosphere with a heating scan of 10°C/min. Thermograms are shown in Figure 43. 



Part 1: Polythiophenes  Chapter 3: Conjugated polymers for laser tracing 

63 

 

 

Figure 43. DSC thermograms of PATAC-Me (left) and PSBu (right). 

Two second-order transitions (Tg) were found at 42 and 80°C for PATAC-Me and PSBu 

respectively, and two first-order transitions (Tm) at 131 and 166°C. After 200°C the two polymers started 

to decompose.  

The TGA analyses of the two polymers were recorded from 25 to 600°C with a heating scan of 

10°C/min in an oxidizing environment (air). PATAC-Me showed a two-phase weight loss: the first, 

starting around 200°C, was compatible with the loss of a thiomethylic and methylic group while the 

second, over 400°C, was due to the almost complete oxidation of the residual polymeric backbone (Figure 

44). The PSBu behavior was more complex, showing an initial weight loss at around 200°C and ascribable 

to the loss of a methylic group, a second loss from 250 to 500°C compatible with the loss of the 

SCH2CH2CH2 residue and a third one over 500°C due to the cracking of the polymeric backbone. 
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Figure 44. TGA thermograms of PATAC-Me (left) and PSBu (right). 

The electrical conductivities of PATAC-Me and PSBu were also examined in the 293-453 K 

(20-180°C) thermal range, far enough to arrive at their decomposition temperature. 

The obtained results are shown in Table 4. 
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Table 4. Electrical conductivity () of PATAC-Me and PSBu at different temperatures. 

Temperature  PATAC-Me  PSBu 

(K) (S×cm-1) (S×cm-1) 

293 80 5.0×10-2 

313 80 5.2×10-2 

333 84 5.2×10-2 

353 88 5.5×10-2 

373 91 6.1×10-2 

393 95 6.3×10-2 

413 105 7.1×10-2 

433 105 7.2×10-2 

453 107 7.6×10-2 

 

In the examined range the specific conductivity is subject to small changes, thus reflecting the 

polymers’ thermal stability in the examined temperature range, according to DSC measurements. The 

observed slight increase of  with temperature may indicate that polymers followed the typical behavior 

of inorganic semiconductors [64].  

3.6 CONCLUSION 

In this work we have successfully examined some conjugated polymers trying to find the best 

conditions for their laser tracing, with the aim of increasing their electrical conductivity. It is, in fact, well 

known that some ICPs can enhance their charge mobility, when irradiated with laser light at the suitable 

power and wavelength, by a photopyrolysis phenomenon which involves the partial loss of side-chain 

substituents. The laser-traced polymers are able to reach more planar conformations and then higher 

conjugation lengths since the macromolecular backbone becomes subjected to a lower degree of sterical 

crowding. 
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The first polymer examined belonged to the class of substituted polyacetylenes and was 

commercially available as dimethylthioderivative (PATAC-Me). After an accurate set-up of both the film 

deposition and the tracing conditions, we obtained pathways with an electrical conductivity similar to 

some metals by means of very simple procedures, involving the use of portable and inexpensive laser 

pointers. However, PATAC-Me films were rigid, fragile and brittle. In order to overcome this problem, 

we substituted the latter with the newly synthesized regioregular PSBu, a thiophenic polymer bearing a 

thiobutylic side chain, easily obtainable and able to give very homogeneous, flexible thick films. The high 

solubility of PSBu in common organic solvents, together with its flexibility, allowed for its deposition not 

only on glass or metal rigid substrates but also on plastic surfaces, thus leading, after laser exposure, to 

electrical conductivities comparable to those obtained with the best doped PATs films, but with a higher 

environmental and time stability. 

PSBu films are thus very promising materials for the preparation of integrated circuits on rigid or 

flexible substrates by using the simple and rapid laser tracing technique. 
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CHAPTER 4: USE OF 

POLY(3-METHYLTHIO)THIOPHENE BLENDS FOR 

DIRECT LASER TRACING AND BULK 

HETEROJUNCTION SOLAR CELLS 

4.1. INTRODUCTION 

The need for flexible, lightweight, easily processable new materials for electronics has pushed 

research toward the synthesis of organic materials able to compete with the “classic” inorganic 

semiconductors in their own application fields. Organic semiconductors, such as conjugated polymers, 

are promising candidates for this replacement, as demonstrated both by the number of patent 

applications in 2013 (more than 100 on polythiophenes) and by the growing number of newly launched 

companies and existing manufacturers of materials or devices that have added organic photovoltaics to 

their portfolio. 

In this context, polythiophenes are intriguing materials which have now been studied for a long 

time thanks to their electric and electronic properties. In fact, in the charged (doped) state they are very 

effective conductors of electricity, while in the neutral (undoped) state they are mainly employed in 

optoelectronic devices - for the construction of organic light emitting diodes (OLEDs), low-voltage field 

effect transistors and bulk heterojunction (BHJ) solar cells - and in devices such as optical filters, signal 

modulators and polarization rotators. Alkyl-substituted polythiophenes (PATs) are very soluble in 

common organic solvents and can be easily filmed and processed using a number of different techniques, 

e.g. spincoating [1], doctor blading [2], screen printing [3], inkjet printing [4] and roll-to-roll methods [5], 

making them very interesting materials from an industrial standpoint. 

Structurally, PATs belong to the class of conjugated polymers the precursor of which is 

polyacetylene (PAc). PAc shows electronic characteristics similar to those of PATs; recently some 

researchers have reported that PAcs functionalized with a thioalkylic group (PAc-SR) are photosensitive 

polymers [6]. In fact, thin insulating films of PAc-SR can be traced by laser operating at suitable speed, 

power, and wavelength leading to electroconductive patterns on the film surface [7]. This approach is 

particularly intriguing since it makes it technically feasible to obtain high resolution patterns for electronic 

circuits while strongly limiting the number of processing steps and chemicals required. In fact, the line 
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patterning of an insulating polymeric matrix by a laser-induced photopyrolysis process makes it possible 

to rapidly develop custom conductive circuits from a schematic drawing, by using simple CAD (computer 

aided design) systems to drive the laser source [8]. Various advantages are evident: over conventional 

inorganic conductors (metals, oxides, silicon), since no multiple etching and lithographic steps are 

required to obtain the final circuit, and over the most synthesized conjugated polymers, as no redox 

processes are necessary to make the polymer conductive, thus avoiding the well-known problems of time 

and environmental stability. 

But conjugated polymers are also intensively studied for other technological applications. In fact, 

in recent years, conjugated polymers-fullerene mixtures have been widely investigated for use in organic 

solar cells. Bulk heterojunction (BHJ) polymer solar cells have been reported using either poly(p-

phenylenevinylene) derivatives [9], poly(3-alkylthiophene)s [10,11], or low-bandgap polymers [12,13] as 

electron-donors combined with PCBM ([6,6]-phenyl-C61-buthyric acid methyl ester), a soluble fullerene 

derivative, as the electron acceptor thus creating the photoactive blend. In the standard architecture, the 

photoactive blend is sandwiched between a glass covered with indium tin oxide (ITO), acting as the 

anode, and a cathode made of a low-workfunction metal (usually Al). The light incident on the BHJ cell 

through the ITO electrode is mainly absorbed by the conjugated polymer, thus leading to the creation of 

bound excitons (holes/electrons couples). If the polymer and fullerene components are phase-segregated 

on a nanoscale length, the excitons can split into separated electrons and positive holes, which are 

transported along PCBM and conjugated polymer toward the metal and ITO electrode, respectively, thus 

generating the photocurrent and photovoltage. 

One factor that strongly limits the efficiency of this kind of cell is the low exploitation of the 

sunlight due to the narrower absorption band of the absorption spectrum of the conjugated polymer in 

comparison to the solar spectrum; however some strategies have been adopted to overcome this 

limitation, in particular the synthesis of low band-gap polymers [14, 15, 16] and the preparation of 

polythiophenes containing chromophores in the side chain [17, 18]. 

Therefore, the aim of this work is to synthesize a regioregular polythiophenic derivative 

functionalized with thiomethylic groups - namely the poly(3-methylthio)thiophene (PTSMe) - and to 

study its electrical behavior before and after laser tracing. For this purpose, PTSMe was blended with 

regioregular poly(3-hexyl)thiophene (P3HT) to overcome its poor filmability caused by its incomplete 

solubility in organic solvents. The obtained blend showed a wider absorption spectrum than conventional 

P3HT and was employed for the preparation of BHJ solar cells. The assembled cells were fully 

characterized from the morphological and electronic standpoint and their performances was compared 

with a reference cell made of only P3HT. 
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4.2. EXPERIMENTAL 

4.2.1. Synthesis and polymerization 

Scheme 15 outlines the experimental route from monomer to polymer. 

 
Scheme 15. Synthesis of the monomer 2,5-BTSMe and polymer PTSMe. 

4.2.2 Synthesis of  the monomer 2,5-dibromo-3-methylthiothiophene (2,5-

BTSMe) 

2.73 g (15.4 mmol) of N-bromosuccinimide (NBS) in 15.5 ml of N,N-dimethylformamide (DMF) 

were added dropwise - under stirring and in an inert atmosphere - to a solution of 2.0 g (15.4 mmol) of 

3-methylthiothiophene (TSMe, Atlantic Chemical Co., USA) in 15.5 ml of DMF. The mixture was reacted 

for 6 h at room temperature. 3.02 g (17.05 mmol) of NBS in 17.1 ml of DMF were added dropwise and 

the mixture was reacted for another 24 h at room temperature and under nitrogen. The reaction mixture 

was then poured into 500 ml of an aqueous solution of NaCl and the organic phase was extracted with 

4×150 ml of n-pentane. The collected organic phases were washed with a 5% solution of NaHCO3 

(2×300 ml) and with water to neutrality. The organic phase was then dried and concentrated at reduced 

pressure thus giving the crude product, which was purified with column chromatography (SiO2/n-

heptane) leading to 3.19 g of pure 2,5-BTSMe (72% yield). 

1H-NMR (CDCl3, ppm) : 6.91 (s, 1H, H4); 2.55 (s, 3H, CH3). 

FT-IR (Ge disk, cm-1): 3051 ( C-H, thiophene -hydrogen); 2960 ( C-H, antisymmetric methyl); 

2875 ( C-H, symmetric methyl); 1503 ( C=C, antisymmetric thiophene); 1468 ( C=C, symmetric 
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thiophene); 1368 (symmetric deformation CH3); 991 ( C-Br, thiophenic); 840 ( C-H 2,3,5-trisubstituted 

thiophene); 690 ( C-SMe). 

4.2.3 Synthesis of  the regioregular poly(3-methylthio)thiophene (PTSMe) 

4.2 ml (4.2 mmol) of a 1 M solution of methylmagnesium bromide in di-n-buthyl ether were 

added to a solution of 1.20 g (4.16 mmol) of 2,5-BTSMe in 25 ml of anhydrous THF. The mixture was 

refluxed for 2 h under stirring and under Ar atmosphere and then 24.83 mg (0.0458 mmol) of 

Ni(dppp)Cl2 were added and the reaction refluxed for 1 h more. The mixture was cooled down to room 

temperature, poured into 40 ml of methanol and filtered on a Teflon septum (0.45 m pore size). The 

recovered polymer was washed several times with methanol and dried, resulting in 0.320 g of PTSMe (60 

% yield). 

1H-NMR (CDCl3, ppm) : 7.26 (s, 1H, H4); 2.49 (s, 3H, CH3). 

FT-IR (Ge disk, cm-1): 3059 ( C-H, thiophene -hydrogen); 2957 ( C-H, antisymmetric methyl); 

2853 ( C-H, symmetric methyl); 1511 ( C=C, antisymmetric thiophene); 1462 ( C=C, symmetric 

thiophene); 1369 (symmetric deformation CH3); 1014 (rocking CH3); 823 ( C-H 2,3,5-trisubstituted 

thiophene); 716 ( C-SMe). 

4.2.4 Preparation of  the PTSMe-P3HT blend (PB) 

120 mg (0.94 mmol) of PTSMe and 60 mg (0.36 mmol) of regioregular poly(3-hexylthiophene) 

(P3HT, 92% HT, Mn=32 KDa, PDI=1.18), previously synthesized using the same procedure used for 

the preparation of PTSMe, were dissolved in 10 ml of CHCl3 at room temperature and the obtained 

solution was sonicated for 10 min. The solution was then filtered over a Teflon septum (0.20 m pore 

size) and concentrated at reduced pressure producing the PB blend. 

4.3 MEASUREMENTS 

1H-NMR were recorded on a Varian Mercury Plus spectrometer (400 MHz) using TMS as a 

reference. FT-IR spectra of the monomers (pure liquids) and polymers (films) were obtained on Ge disks 

using a Perkin Elmer Spectrum One spectrophotometer. Molecular weights were determined by gel 

permeation chromatography (GPC) using polystyrene standards and THF as an eluent on a HPLC Lab 

Flow 2000 apparatus equipped with a PL Gel MXL column and a Linear Instrument UV-Vis detector 

model UVIS-200 working at 263 nm. UV-Vis spectra were recorded on a Perkin Elmer Lambda 19 
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spectrophotometer using polymer films on quartz slides cast from chloroform solutions (ca. 10-3 M). 

Cyclic voltammetry (CV) was performed on a Autolab PGSTAT 30 (EcoChemie, The Netherlands) with 

a three electrode system in a solution of 0.1 M Bu4NPF6 in CH3CN, at a scan rate of 50 mV s-1. Polymer 

films were coated on a Pt plate electrode (1 cm2) by dipping the electrode into the corresponding solution 

(5 × 10-3 M in CHCl3) and then drying, obtaining films of the approximatively same thickness (0.4-0.5 

m). A Pt wire was used as the counter electrode and an aqueous saturated calomel electrode (SCE) as 

the reference electrode. 

Electrical measurements were performed in air at room temperature using a Keithley 2101 

electrometer (traced films) and an Alpha Lab teraohmeter (pristine films). The reported values were the 

mean of five measurements performed on different parts of the same sample as well as on five different 

samples prepared using the same experimental conditions. In all cases, differences did not exceed 5% of 

the final value. The laser source was a Wicked Lasers Spyder III Arctic class 4 diode laser, operating at 

445 nm with a nominal power of 750 mW. The effective power of the laser beam on the polymer surface 

was measured with a Coherent FieldMax II laser power meter giving an effective power of 600 mW. 

Samples were mounted on a computer-controlled positioning system (Thorlabs L490MZ) and moved on 

a plane perpendicular to the focused laser beam by using two Thorlabs MTS TDC001 controllers thus 

making it possible to control both the tracing speed on the x-y plane and the laser-sample distance for 

the correct focus of the beam on the sample surface, while operating on the z-axis. Films thickness was 

measured using an AFM Burleigh Vista 100 as a profilometer. SEM analyses were performed on a 

Phenom-world ProX SEM apparatus, equipped with an EDS microanalysis probe. AFM of the blend 

was performed on a Burleigh Vista Atom Force Microscope equipped with a silicon-nitride tip and 

operating in a non-contact tapping mode. Optical 2D and 3D microscopy was performed using a Hirox 

KH-7700 Digital microscope. 

4.3.1 ITO/PEDOT/PB:PCBM/Al solar cell assembly 

ITO glass (Delta Technologies, Stillwater, Minnesota, USA; 2.5 x 2.5 cm; code CG-41IN-0107) 

was first cleaned in an ultrasonic bath using a non-foaming glass detergent in deionized water. ITO glass 

was then rinsed sequentially in double distilled water, isopropanol, and acetone reaching a final resistance 

of 6 /sq. PEDOT:PSS (Aldrich Chemical Co.) was diluted 1:1 with isopropanol and deposited by 

doctor blading (DB) on top of the cleaned ITO glass using a Sheen Instruments Model No. S265674 

(film thickness about 80 nm). Anhydrous chloroform was used to prepare solutions of P3HT or PB and 

PCBM (1:1 weight ratio), which were deposited by DB on the PEDOT:PSS layer. After baking films in 

a vacuum at 130°C for 30 min, the active layer film thickness measured by AFM was about 100 nm. 
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Lastly, to create the OPV devices, 50 nm of Al was thermally deposited under a vacuum of 6 x 10-7 mmHg 

by means of an Edwards E306A vacuum coating apparatus equipped with a dual-stage mechanical 

vacuum pump Edwards 2 E2H2 and with a selectable diffusion pump or turbo-molecular pump. The 

current-voltage characteristics were measured using a Keithley 2401 source meter under the illumination 

of a Abet Technologies LS 150 Xenon Arc Lamp Source AM1.5 Solar Simulator, calibrated with an ILT 

1400-BL photometer.  

4.4. RESULTS AND DISCUSSION 

Polyacetylenes functionalized with thiomethylic (PAc-SMe) or thioethylic (PAc-SEt) groups were 

the first photosensitive polymers examined for laser patterning applications. In fact, they were able to 

increase their electrical conductivity by many orders of magnitude (up to 16) when exposed to a correctly 

focused laser radiation of a suitable wavelength (351 or 488 nm) without need for a chemical doping. The 

best conditions for the tracing of PAc derivatives were quite difficult to find but, when the system was 

correctly set-up, conducting traces became insoluble in common solvents and insensitive to humidity, 

chemical vapors and high temperature. When exposed to a coherent light source, these polymers undergo 

a photopyrolysis process, with the partial loss of the thioalkylic substituent, which leads to the formation 

of unsaturated backbones mainly made up of sp2 hybridized carbon atoms which are only partly linked 

with sulfur substituents in side chains [19]. This process leads to an extended -system delocalized over 

the polymeric chain with an enhanced main chain mean conjugation length (MCL), which explains the 

higher electrical conductivity.  

In this work, we tried to substitute PAc-SMe [20] with an easier synthesizable polythiophenic 

derivative, i.e. poly(3-methylthio)thiophene (PTSMe), which possesses a photosensitive functional group 

and a polyconjugated backbone, similar to the acetylene-based polymer, but also shows an increased 

solubility, filmability and environmental resistance in the non-traced pristine state. Since regioregularity 

is a fundamental prerequisite for obtaining PATs with high electron mobility [21], PTSMe was prepared 

using the McCullough Grignard Metathesis (GRIM) polymerization procedure (Scheme 1), which 

generally leads to regioregular and soluble thiophenic polymers [22].  

This procedure starts from a 2,5-dihalothiophene derivative and leads to the obtainment of 

functionalized polythiophenes with a good yield and a high degree of regioregularity through a simple 

and effective organometallic group exchange (Grignard Metathesis) reaction. With this aim, the monomer 

2,5-dibromo-3-(methylthio)thiophene (2,5-BTSMe) was prepared through the dibromination of TSMe 

with N-bromosuccinimide (NBS) in anhydrous N,N-dimethylformamide (DMF). The halogenation 

conditions were accurately optimized, providing for the addition of NBS in two separate amounts while 
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operating at room temperature, thus leading to a satisfying yield (72%) of 2,5-BTSMe. We tried also a 

faster way, which consisted of the one-step addition of the entire amount of NBS and a reaction time of 

only 4h at 60°C. This time, however, we observed a partial bromination of the –CH3 in the side chain. 

The two bromine atoms in the -positions of 2,5-BTSMe were exploited for the organometallic coupling 

involving the magnesium-halogen exchange (metathesis reaction) with a preformed Grignard derivative 

(1st reaction step), followed by a Ni(II) catalyzed cross-coupling reaction (2nd reaction step), thus leading 

directly to the regioregular polymer. These two steps are consecutive and the polymerization is a simple 

and fast one-pot process. 

PSMe was then obtained as a red-brownish powder highly soluble in aromatic chlorinated 

solvents (chlorobenzene and o-dichlorobenzene) up to 30 mg/ml, but its solubility decreases to about 5-

10 mg/ml in common organic solvents (CHCl3, THF) at room temperature. This can be ascribed to 

PTSMe short side chains, which are not able to produce a strong plastifying effect, and not to the polymer 

main chain lengths, since its molecular weight was not particularly high (Mn=18.000, PDI=1.2).  

Films of PTSMe cast on glass slides or PET foils show poor homogeneity, some dots, and 

brittleness and do not have good and permanent adhesion on different surfaces. In order to overcome 

this problem, we blended the prepared PTSMe with a previously synthesized P3HT sample prepared 

with the same polymerization technique (GRIM procedure), since P3HT is well soluble in common 

organic solvents, from which it produces thick, homogeneous free-standing films, while its optical and 

electrical properties have been well known for a long time now. 

The polymeric blend (PB) was prepared starting from a 2:1 weight ratio (about 7:3 molar ratio) 

between PTSMe and P3HT. The FT-IR analysis of PB was performed on a thin film cast on a Ge disk 

from CHCl3 solution (Figure 45). 
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Figure 45. FT-IR spectrum of PB in film cast on Ge disk from CHCl3 solution. The C-SMe stretching band is evidenced by an asterisk. 

The spectrum clearly shows the peaks ascribable to the presence of both polymers. Most of them 

are common to both the polymers but some peaks can be ascribed to each single structure. In detail, the 

signals (in cm-1) at 3055 ( C-H, thiophene -hydrogen), 2955 ( C-H, antisymmetric methyl), 2856 ( 

C-H, symmetric methyl), 1510 ( C=C, antisymmetric thiophene), 1455 ( C=C, symmetric thiophene), 

1377 (symmetric deformation CH3) and 820 ( C-H 2,3,5-trisubstituted thiophene) are common to both 

the polymers while the signals at 2925 ( C-H, antisymmetric methylenes) and 757 (CH2 rocking) are 

characteristics of P3HT and that at 716 ( C-SMe) is exclusive to PTSMe. 

1H-NMR spectrum of PB in CDCl3 is reported in Figure 46. 

 

Figure 46. 1H-NMR spectrum of PB in CDCl3. CHCl3 peak is indicated by an asterisk. 
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Starting from the aromatic region, the peak at 7.26 ppm is ascribable to the thiophenic H-4 proton of the 

TSMe monomer and the fact that it is a singlet confirms that we obtained a regioregular PTSMe polymer. 

The signal at 6.99 ppm is ascribable to the aromatic H-4 protons of the T6H moieties; this time also, the 

spectrum confirms the high regioregularity of the P3HT sample, since the intensity of the peak 

attributable to the HT-HT dyads is strongly prevalent over those belonging to the other kinds of linkages, 

also visible at about 7.00 ppm. The singlet at 2.49 ppm is ascribable to the thiomethylic protons, while 

the triplet at 2.80 ppm (-CH2  to the thiophene ring), the multiplet at 1.73 ppm (-CH2  to the thiophene 

ring), the broad multiplet in the 1.50-1.20 ppm range (-CH2 of the central units) and, lastly, the triplet at 

0.90 ppm (-CH3) are due to the protons of the P3HT side chains. The composition of the blend can be 

determined by means of the normalized integral ratio of the signals at 2.49 and 0.90 ppm and, 

alternatively, by the normalized integral ratio of the two signals at 7.26 and 6.99 ppm. The real 

composition of PB was quite different from the starting ratio of the two polymers. In fact, the final molar 

ratio between PTSMe and P3HT was around 1:2 instead of the 7:3 feed ratio used. This can be ascribed 

to the low solubility of PTSMe in common organic solvents which caused a kind of fractionation when 

we filtered the PB solution on the Teflon septum. 

However, PB was well soluble in CHCl3, producing homogeneous and glossy dark-red films. 

 

Figure 47. UV-Vis spectra of polymers in film cast from CHCl3 solutions. 

Figure 47 shows the UV-Vis spectra of the polymers in film cast from CHCl3 solutions. 

Regioregular P3HT shows a max at 554 nm, corresponding to the first vibronic quantum, and an evident 

shoulder at 595 nm, corresponding to the pure electronic transition E0-0 [23] which derives from the 
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vibronic absorption of ordered P3HT crystalline regions in films [24]. PTSMe shows only one peak at 

415 nm, blue-shifted with respect to the max of P3HT and does not show any evident vibronic transition, 

since short side chains are not able to interact with themselves, thus giving more ordered main chains 

conformations [25]. The spectrum of the blend shows a very large absorption region, starting at 350 nm 

and ending at about 650 nm. The blend spectrum clearly evidences the main absorptions of its two 

components: the PTSMe absorption maximum is now embedded in the spectrum and becomes visible 

as a shoulder at 410 nm, while the transitions ascribable to the P3HT component are found at 599 nm 

(E0-0), 546 nm (first vibronic quantum), and 488 nm (max). The broad absorption range of the blend can 

be very useful for polymeric solar cells, since a wider light absorption in the visible region of the solar 

spectrum can generate more excitons in the BHJ active layer, thus increasing the Jsc of the final device 

[26]. 

A few drops of PB solution (5 mg in 5 ml) in CHCl3 were deposited on a quartz slide (4.0×4.0 

cm) using the DB technique thus giving a homogeneous 1.5 m thick film that was used for the laser 

tracing procedure. The best tracing conditions were found at a 1.0 mm/s tracing speed, by making three 

contiguous parallel lines with an inter-trace distance of 0.33 mm (Figure 48).  

 

Figure 48. Optical microscope image of a traced PB sample (x50). The film was cast from the polymer solution in CHCl3. 

The obtained traces are clearly visible since the polymer surface changed notably after the laser exposure, 

going from a very smooth, homogeneous surface to a rough, porous surface. This is also evident in the 

3D image and in the SEM micrograph of Figures 49 and 50, respectively. 
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Figure 49. 3D image of PB traces on the polymer film cast from CHCl3 solution. 

Film porosity is determined by the outflow of gaseous reaction products - mainly sulfides and 

mercaptanes [27] - which leaves the polymer surface during the laser patterning.  

 

Figure 50. SEM micrograph of a PB film after laser tracing. The polymer film was cast from PB solution in CHCl3. 

The band at 716 cm-1 in the IR spectrum of PB, ascribable to C-S stretching [28], decreases in intensity 

after the laser tracing, thus confirming the partial loss of the thiomethylic group after the photopyrolysis 

procedure (Figure 51). 
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Figure 51 FT-IR spectrum (expansion) of a PB film on Ge disk from CHCl3 solution before and after the laser tracing procedure. The C-SMe 
stretching band is evidenced by an asterisk. 

We observed that the resistance of the sample decreases as the number of contiguous traces 

increases, rapidly reaching an asymptotic value corresponding to about three lines. A droplet of an Ag 

conductive paint (Ted Pella Inc., USA) was then applied to the two ends of the 3-cm-long trace and the 

resistance was measured with a Keithley 2401 source meter. We prepared five samples of the traced PB 

blend and measured their surface resistance, which was 150 k/sq with a very good reproducibility of 

this value among the samples, with a deviation from the reported value of 3%.  

The surface resistance of the samples before tracing was 210 G/sq (5%) and was measured 

with a teraohmeter (Alpha Lab Inc., USA) using a two probe measuring system. Samples and probes were 

carefully shielded from surrounding EMF with a Faraday-cage homemade device. 

We then prepared another series of samples under the same experimental conditions, i.e. by 

depositing the CHCl3 solution of PB on a quartz slide using DB technique. This time, samples were 

annealed for 2 h at 130°C under a vacuum (0.5 mmHg) by using a Büchi B-585 glass oven before the 

laser tracing. Even if their initial resistance was essentially unchanged (about 200 G/sq (4%)), the final 

resistance of the traced samples was 272% k/sq. This time, the laser treatment of samples enabled a 

resistance decrease of six orders of magnitude. It must be stressed that the annealing procedure was also 

performed on the previously traced samples but - this time - it was ineffective, since no evident changes 

in the final resistance values were found. In fact, the exposure to the laser light makes the traced polymer 

apparently harder, more scratch-resistant, and insoluble in organic solvents, thus suggesting that the 
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exposed polymer no longer has the characteristics of a substituted polythiophene but rather those of a 

system of -conjugated C atoms. Figure 52 shows the SEM micrograph of an annealed PB sample, 

prepared by DB technique using PB chloroform solution, after laser tracing. Its appearance is nearly 

identical to the unannealed film sample, because the laser exposure converted the polymer into worm-

like dull traces, devoid of a fine texture, which are always apparently identical one to another. 

 

Figure 52. SEM micrograph of a pre-annealed PB film, cast from CHCl3 solution, after laser tracing. 

Figure 53 shows the topographic microanalysis of the sample shown in Figure 52 in relation to 

the C and S elements recorded using an energy-dispersive spectrometer (EDS) probe. 

 

Figure 53. EDS topographic microanalysis of PB film reported in Figure 8. Left: Carbon; Right: Sulfur. 

In Figure 9 it is evident that the laser-exposed polymer has a higher amount of C and a lower 

amount of S in the traces, since the concentration of the examined element is proportional to the intensity 

of white. More deeply, C and S concentration passed from 65% and 28% of the unexposed area to 68% 

and 25% of the laser-treated portions, respectively, thus confirming the partial loss of thiomethylic side 
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chains. It is worth noting that this slight changes in the PB composition due to the laser exposure is 

capable of determining such a high surface resistivity change. 

Lastly, we prepared a new set of samples made of P3HT alone, in order to evaluate whether the 

laser treatment was capable of decreasing their electrical resistance. P3HT films were deposited by DB 

using a polymer solution in CHCl3. In this case, the surface resistance of these samples was the same 

before and after the exposure to laser radiation i.e. 220 G/sq (6%). This test confirms that the 

electrical conductivity enhancement is ascribable to the presence of the photo-sensitive thiomethylic 

groups, which are involved in a laser-induced photocleavage which leaves the polythiophenic backbone 

able to partially crosslink and, then, to rearrange in a more planar and more conjugated conformation, 

thus aiding the electroconductivity of the final material [29]. 

Figure 54 shows the J-V characteristic curves of solar cells which have the structure of 

ITO/PEDOT:PSS/composite (photoactive polymer:PCBM)/Al. PEDOT:PSS acts as a hole-

transporting layer, the photoactive polymer (P3HT or PB) as an electron donor, and PCBM as an electron 

acceptor, while the Al electrode is the cathode of the solar cell and the ITO layer the anode [30]. The 

operational procedures followed for the preparation of cells are described in the experimental section. 

We used a polymer/PCBM 1:1 weight ratio since some studies have shown that devices with this ratio 

achieve the highest power conversion efficiency [31, 32] and the film thicknesses of the blend absorber 

layers were each about 100 nm, in order to make the measurement of the photocurrent independent of 

the thickness of the samples. 

 

Figure 54. J-V characteristic curves for the prepared solar cells under AM 1.5 irradiation with an intensity of 1 sun (100 mW/cm2) from a 
calibrated solar simulator. 

The device parameters: short circuit current (Jsc), open circuit voltage (Voc), Fill Factor (FF), and 

power conversion efficiency (PCE) are summarized in Table 5. 
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Table 5. Photovoltaic parameters for the devices obtained using the two different photoactive blends. 

Polymer Jsc (mA/cm2) Voc (V) FF (%) PCE (%) 

P3HT 7.73 0.61 52.8 2.48 

PB 8.58 0.65 56.7 3.16 

The electrochemical behavior of the three examined polymers has been evaluated performing 

cyclic voltammetry (CV) on their thin films cast on a Pt electrode from CHCl3 solutions (Figure 55). We 

decided to characterize also a film of PSMe even if, as already mentioned, this polymer was not employed 

as active layer for solar cells since its adhesion to the ITO-glass coated with PEDOT-PSS was very poor 

and prevented the homogeneous deposition of the Al cathode.  

 

Figure 55. Cyclic voltammograms of the polymer films on Pt recorded in 0.1 M Bu4NPF6 acetonitrile solution at a scan rate of 50 mV s-1. 

All voltammograms exhibited reversible oxidation and a quite good symmetry for the p-

doping/undoping process, and this can be useful for practical applications based on the charge/discharge 

process since the required potential range needed for passing between neutral and doped states is limited. 

The HOMO levels of the polymers were measured by CV, while the LUMO energies were calculated 
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indirectly, taking into account that they correspond to the HOMO energies plus the optical energy gaps 

(Eopt) evaluated from the onsets of the UV-Vis spectra of the polymers in film [33]. The obtained values 

are reported in Table 6. PSMe showed the lower oxidation potential, according to the electron-donor 

character of its thiomethylic side chain directly linked to the thiophene ring [34], and the higher bandgap, 

probably determined by disorder phenomenon like steric effects, cross linking or chain terminations [35].  

Table 6. Optical and electrochemical properties of the films cast from CHCl3 solutions. 

Polymer abs

edge  (nm) ,g optE  (eV) onset

oxE  (V) HOMO (eV) LUMO (eV) 

PSMe 520 2.38 0.18 -4.58 -2.20 

P3HT 655 1.89 0.76 -5.16 -3.27 

PB 655 1.89 0.55 -4.95 -3.06 

In Figure 56 is reported the band diagram with HOMO/LUMO levels of the ED polymers used 

for the solar cells in relation with the levels of PCBM and the work function of ITO and Al, according 

to Ref. [36]. 

 

Figure 56. Band diagram with HOMO/LUMO levels of the ED polymers and EA PCBM in relation to the work functions of ITO and Al 
electrodes. 

PB sample showed an energy difference between its LUMO level and the LUMO of the EA 

molecule (ΔELUMO) higher than P3HT (0.69 vs 0.48 eV) and this can be favorable for the photoinduced 

charge separation. In fact, it has been reported that a ΔELUMO = 0.3 eV is the minimum value required to 

overcome the binding energy of the excitons generated in organic semiconductor polymeric films [37, 
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38]. The total photovoltage of the organic solar cells is ideally equal to the band gap value of the 

conjugated polymer employed in the light-absorbing (active) layer. In the examined case, the theorical 

values should be the same for P3HT and PB since they have the same bandgap (1.89 eV). However, there 

exists a loss factor related to the high exciton binding energy in organic materials which determines the 

need for a LUMO-LUMO Donor/Acceptor offset in D/A cells to polarize the exciton [39, 40]. 

Practically, the LUMO offset should be large enough to obtain an effective and fast charge transfer and 

the loss factor is inversely proportional to the ΔELUMO value. This could explain the VOC value of PB 

slightly higher than that of the reference cell. 

The factors limiting the PCE of polymeric solar cells include the low exploitation of the sunlight 

mainly due to the narrower absorption band of the absorption spectra in the polyconjugated materials 

used in the photoactive layer, in comparison with the solar spectrum and the mismatch of the two spectra 

[41]. The increased efficiency of PB:PCBM solar cells compared to the reference cell made of the 

normally used regioregular P3HT could be ascribed to the stronger absorbance of PB blend in the 350-

500 nm range. Our results are very much in line with those reported in literature. In fact, Li et al. [42] 

reported that a series of solar cells prepared with polythiophene derivatives functionalized with 

bi(thienylenevinylene) side chains (biTV-PTs), reached a maximum PCE of 3.18% under AM 1.5, 100 

mW/cm2, with a 38% efficiency increase compared to that of the cells based on P3HT under the same 

operative conditions. The enhanced performance was attributed to the increased absorption of (biTV-

PTs) in the region between 350 and 450 nm [43]. In fact, the JSC represents the maximum photocurrent 

density produced by a solar cell under solar illumination at short circuit condition. This current is directly 

related to the external quantum efficiency (EQE) which depends on the absorption efficiency of the 

photoactive layer [44]. When the organic cells are made of a conjugated polymer and PCBM, a wider and 

more intense absorption spectrum of the photoactive blend can raise the PCE of the device acting on its 

photocurrent density. In our case, since the integrated intensity of the UV-Vis spectra of P3HT, PSMe 

and PB in film are in a 1:0.95:1.57 ratio respectively, and the thicknesses of the active layers in the cells 

are almost the same (about 100 nm), the higher value of JSC observed for PB (if compared with the 

reference cell) can be ascribed to its more extended absorption range. 

To analyze the morphology of solar cells, we chose to use atomic force microscopy (AFM). Figure 

57 shows the surface morphology of P3HT or PB and PCBM (1:1 weight ratio) photoactive blends. Films 

were prepared by casting the chloroform solutions of the polymers on ITO glasses using the DB 

technique. The support had been cleaned beforehand using the same procedure used for the preparation 

of solar cells. After the blend deposition, samples were subjected to the annealing procedure (30 min at 

130°C under vacuum) and the surface images were recorded using an AFM in a non-contact (tapping) 

mode in height-modulated (HMM) and phase-modulated (PMM) modes. 



Part 1: Polythiophenes  Chapter 4: Blends for laser tracing and BHJ SC 

90 

P3HT/PCBM      PB/PCBM 

  

 

Figure 57. AFM images of the examined blends (tapping mode, scale in nm; top: height modulated images; bottom: phase modulated images). 
The blends were obtained by casting the polymer/PCBM solutions in CHCl3 on ITO glasses. 

The AFM images of the surfaces of the two prepared films (100 nm thick) are quite different; in 

fact the surface rms (root-mean-square) roughness is 5.4 nm for the P3HT:PCBM film (with an average 

18 nm diameter of grains) and 2.2 nm for PB:PCBM (average 11 nm diameter grains). The large black 

features in PMM, which correspond to bumps in topography (HMM), are ascribable to PCBM-rich 

domains. The rough surface indicates a P3HT self-organization in the blend, enhancing the ordered 

structure formation in the film [45]. However, an excessively rough surface morphology can cause poorer 

contact between the photoactive layer and the metallic cathode [46], leading to a decrease in the VOC 

values as the shunt resistance of the cell increases [47]. Surface roughness was found to be a critical 

parameter also in polymer solar cells based on inkjet-printed PEDOT:PSS layers, where irregular surface 

morphologies of the layers led to very poor device performance in terms of Jsc, FF and PCE [48].  

All devices showed good reproducibility and stability in time in terms of final PCE: the cells 

stored in vacuo, at room temperature, showed an average approximate 5% PCE decrease in the initial 

value after 30 days. The best solar cell performance was obtained using the PB/PCBM system as the 
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active blend. This can be ascribed not only to the enhanced absorption spectrum of this blend, which 

acts positively on its generated photocurrent, but also to its very smooth surface and to the nanoscale 

homogeneous separation of its components, leading to a high interfacial area of the electron donor-

acceptor domains, which acts positively on the final Voc and FF, as confirmed by the data reported in 

Table 1. The obtained results are very promising since they demonstrate that it is possible to produce 

highly efficient active layers of polymer solar cells with good sunlight absorption by using a simple 

mixture of easily synthesizable polymers, thus avoiding the long and complex synthesis usually required 

to obtain low-bandgap conjugated polymers [49]. 

4.5 CONCLUSIONS 

This work demonstrated the possibility to enhance the electroconductivity of some films made 

of thioalkylic-substituted polythiophene derivatives through laser light exposure. In particular, a blend 

made of regioregular poly(3-methylthio)thiophene (PTSMe) and poly(3-hexyl)thiophene (P3HT) proved 

to be an optimal solution for overcoming the incomplete solubility and poor filmability of the thioalkyl-

substitued polythiophenic derivative alone. The blend used strategically combines the plastifying 

properties of the alkylthiophene polymer with the ability of the photosensitive polythiophene to increase 

its electrical conductivity by means of a fast, simple laser treatment. This way, we obtained very 

homogeneous polymeric films which were easily cast from common organic solvents and which proved 

to be capable of increasing their electrical conductivity by about 7×106 times after tracing. The final 

electrical conductivity of the conductive traces can be easily modulated by working on the blend 

composition, laser power, and tracing speed, thus making the preparation of integrated circuits faster and 

simpler. We also demonstrated that the performance of the BHJ solar cell prepared using the blend as 

the photoactive layer is higher than in the reference cell made of P3HT alone, thanks to the wider 

absorption spectrum and the more homogeneous morphology of the films obtained from P3HT/PTSMe 

mixtures. These results indicate that PTSMe and, in particular, its blends with P3HT, are promising 

multifunctional polymeric materials for application in electronics and in plastic solar cells. 
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CHAPTER 5: SOLVENTLESS DEPOSITION OF 

OLIGO- AND POLYTHIOPHENES FOR BHJ SOLAR 

CELLS 

5.1. INTRODUCTION 

Organic semiconductors are particularly attractive for low cost electronic applications, especially 

when characteristics such as lightness, flexibility and inexpensiveness have a dominant role if compared 

with electrical performances. Most organic semiconductors described in literature are thiophene-based 

oligomers [1,,3], homopolymers [4,,6] and copolymers [7]. These materials have been effectively used for 

optoelectronic applications such as either organic light-emitting diodes (OLEDs) or organic solar cells 

(OSCs) [8,9] and for electronic applications such as organic field-effect transistors [10] or for laser tracing 

aimed at obtaining conductive patterns on polymeric insulating thin films [11]. At present, a certified 

power conversion efficiency (PCE) on the order of 4-5% has been obtained using polythiophenes as 

active materials for the fabrication of OSCs with an architecture called Bulk Heterojunction Junction 

(BHJ) [12]. For this type of cells, the active layer is a blend of a polythiophene derivative (usually poly(3-

hexyl)thiophene, P3HT [13,14]) used as electron-donor material and a high electron-affinity molecule 

(usually C60-fullerene or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)). P3HT ensures high charge 

mobility and, with the addition of selected additives, has been effectively used in the preparation of highly 

efficient solar cells by ink-jet printing [15]. 

Recently, some researchers have demonstrated the possibility of obtaining thin, homogeneous 

and well adherent films from a polythiophene derivative (i.e. poly[3-(4-octyloxyphenyl)thiophene]) by 

means of the Matrix Assisted Pulsed Laser Evaporation technique [16]; however, the molecular weight 

of the evaporated polymer was not determined. Wei et al. [17] have reported on the deposition of P3HT 

using an electron-beam heated effusion cell and concluded that the chemical composition and structure 

of the polymer was largely conserved, basing their assumptions on FT-IR and XPS characterizations. 

More recently, Kovacik et al. [18] investigated the deposition of some P3HT samples by vacuum thermal 

evaporation (VTE) in depth, using 1H-NMR, FT-IR UV-Vis absorption spectroscopy and GPC. They 

observed both a strong reduction in P3HT molecular weight during the deposition process (Mw decresed 

from 36000 to 1500 g/mol) and how some side chains broke away from the backbone. In a 2012 paper 

[19], the same authors reported the thermal evaporation both of P3HT and of a non-substituted 

polythiophene sample (PTh). The latter gave homogeneous films with a high degree of crystallinity, 
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without any evidence of chemical decomposition and made it possible to obtain some planar 

heterojunction solar cells with improved overall photoconversion efficiency (+70%) if compared to 

P3HT.  

In view of the above, in this work we investigated the possibility of VTE co-depositing two 

thiophenic derivatives (a regioregular P3HT sample and a functionalized thiophenic octamer, OCT 

Scheme 16) and the electron-acceptor molecule (C60-fullerene) in order to obtain a final architecture of 

the photoactive layer as close as possible to the BHJ type.  
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Scheme 16. Structure of 3,3’’’,4’’’’,3’’’’’’’-tetra(6-methoxyhexyl)-2,2’:5’,2’’: 5’’,2’’’:5’’’,2’’’’: 5’’’’,2’’’’’:5’’’’’,2’’’’’’: 5’’’’’’,2’’’’’’’-octithiophene 
(OCT). 

We decided to examine the evaporation of both the most used and studied thiophenic polymer (P3HT) 

for comparison purpose and a previously synthesized oligothiophene [20] in order to take advantage of 

its higher volatility and the presence of methoxy groups in side chains. In fact, it is well known for 

polythiophene that the introduction of alkoxy side chains on thiophene units makes an increase in the 

coplanarity of the thienylene moieties all along the polymer side chain possible [21,22]. 

5.2. EXPERIMENTAL  

All the solvents and reagents used for the synthesis were purchased from Aldrich Chemical 

Company. NMR spectra were run on a Varian Gemini 300 (300 MHz) FT-NMR spectrometer using 

TMS as reference. FT-IR spectra were obtained using a Perkin Elmer Spectrum One FT-IR 

spectrophotometer. Molecular weights were determined by size exclusion chromatography (SEC) relative 
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to polystyrene standards on a HPLC Lab Flow 2000 apparatus equipped with a Phenogel mixed MXL 

column and a Linear Instrument UV-Vis detector (model UVIS-200) working at 263 nm, with THF being 

used as an eluent at a flow rate of 1.0 ml/min. The UV-Vis spectra were recorded with a Perkin Elmer 

Lambda 19 spectrophotometer. Thermal analysis was performed on a TA Instruments TGA-2050 at a 

heating rate of 10°C/min under inert atmosphere (30 Nml/min of N2). Cyclic voltammetry (CV) was 

performed on a Autolab PGS 30 (EcoChemie, The Netherlands) with a three-electrode system in a 

solution of 0.1 M Bu4NPF6 in CH3CN at a scan rate of 50 mV/sec. Oligomer film was prepared by 

evaporating OCT on a ITO glass obtaining a 0.25 m thick film. A Pt wire was used as the counter 

electrode and SCE was used as the reference electrode. 

Solar cells were prepared according to the following procedure: the ITO-glass substrate (area 1.0 

× 1.0 cm2, surface resistance 21 /sq, Alphalab Inc., USA) was firstly etched on three sides by using a 

concentrated Piranha solution, in order to obtain a final 0.75 × 0.75 cm2 area covered by ITO. The glass 

was then cleaned in a ultrasonic bath filled with a diluted solution (1% w/w) of a Roth detergent for 

ultrasonic cleaners (RBS-Viro) and subsequently washed several times with distilled water, isopropyl 

alcohol, acetone and, lastly, diethyl ether. It was then dried overnight at 70°C in an oven previously filled 

with dry silica gel. The final surface resistance of the ITO layer on glass was 15 /sq. 

The glass was then prepared for the VTE by covering a small 0.25 × 1.0 cm area with insulating 

tape on the side opposite to the previously etched area, in order to leave this small portion of conductive 

glass uncovered by the active layer. The final active area of the cell was 0.25 cm2. The active layer was 

evaporated by heating a tungsten boat (Edwards Co., USA) previously filled with a 1:1 (wt/wt) 

polymer/C60-fullerene (99% pure) powder using an Edwards E306A coating system operating at 1×10-6 

mmHg. The temperature of the boat was monitored using an Italmec Elettronica Srl (Italy) temperature 

controller equipped with a Julabo Pt-100 probe (Code No. 8981005) placed in contact with the 

evaporation boat. The P3HT/ C60 mixture was evaporated at 3205°C at a rate of about 10 nm/min, 

while the OCT/ C60 mixture was deposited at 2705°C at a rate of about 15 nm/min. Cells were annealed 

at 130°C for 30 min at 20 mmHg using a Büchi GKR-50 micro glass oven. 

The layers obtained were characterized by AFM and then a 50 nm thick Al contact was deposited 

using the above mentioned apparatus.  

The electrical parameters of the photovoltaic cells were measured at room temperature using a 

Keithley 2401 Source Meter and a Abet Technologies Solar Simulator (AM 1.5, 70 mW/cm2) calibrated 

with an ILT 1400-BL radiometer photometer. 

The film thickness was measured by means of a FTPadvanced FTPadv-2 (Sentech GmbH, 

Germany) film thickness probe equipped with FTP Expert software. This apparatus was calibrated by 
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measuring some reference films whose thickness was previously determined using a Burleigh Vista AFM 

system. The thickness of the active layer was 45 nm for P3HT/ C60 and 55 nm for OCT/ C60.  

The described deposition procedure was also used to obtain the polymeric samples that have 

been chemically and spectroscopically characterized, using a glass or a quartz slide instead of the ITO 

glass as a substrate. 

X-ray diffraction data were recorded at room temperature by using a CuK (=1.5406 Å) 

radiation source (Philips PW 1050) and a Bragg-Brentano diffractometer (Philips PW 1710) equipped 

with a graphite monochromator in the diffracted beam. The 2 range between 2.0 and 90.0° was scanned 

by 881 steps of 0.1° with a counting time of 15 sec for each step. The XRD characterization was carried 

out on films on glass slides obtained both by casting OCT solution in CHCl3 and by direct VTE of the 

oligomer. 

Poly(3-hexylthiophene) (P3HT: Mn=32000, PDI=1.2, 92% HT) was synthesized from 

commercial 3-hexylthiophene using the Grignard Metathesis (GRIM) procedure described by 

McCullough et al. [23], while the octamer was prepared according to the procedure described in a 

previous work [20].  

5.3. RESULTS AND DISCUSSION 

The main purpose of this work was to find a fast and effective system to deposit the photoactive 

layer onto the ITO substrate for the preparation of polymeric BHJ solar cells. We decided to use the 

vacuum thermal evaporation (VTE) system applied on a thiophenic oligomer. There are only a few 

examples in the literature of Bulk Hetero-Junction (BHJ) Solar Cells made of evaporated oligothiophenes. 

In fact, the performances of devices made with oligomers are usually rather inferior relative to cells made 

with blends of polythiophenes and fullerene derivatives and this can be ascribed to the reduced 

conjugation length of the oligomers and to the difficulty in maintaining a suitable and reproducible 

C60/oligomer ratio in the evaporated blend [24]. The first BHJ solar cells made with evaporated 

oligothiophenes were prepared by Aso, Otsubo and Harima [25] and showed a power conversion 

efficiency (PCE) of 0.4%.  

The standard BHJ architecture (i.e. ITO/PEDOT-PSS/ED polymer-EA molecule/Al, where the 

electron-donor polymer is usually a polythiophene and the EA molecule a fullerene derivative) was 

recently improved by Bäuerle and co-workers in a series of papers dealing with the preparation and the 

structure-property relationships of vacuum-processed small molecules based OSCs. In particular, they 

prepared some cells with planar heterojunction (PL) and bulk heterojunction (BHJ) architecture using a 
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mixture of C60-fullerene and a dicyanovinyl-substituted oligothiophene deposited by VTE as the 

photoactive layer. The active layer was the central layer of the cell and was surrounded by many other 

organic layers in a complex but effective architecture called Stacked Layer (SL). PLSL solar cells gave 

efficiencies of 1.2-2.8% while BHJSL solar cells up to 5.2% [26]. Other stacked layer vacuum deposited 

bulk heterojunction solar cells were made using dicyanovinylene-substituted selenophene-thiophene co-

oligomers (PCE up to 3.09% [27]), oligothiophenes incorporating benzothiadiazole units (PCE up to 

2.76% [28-29]) and methyl-substituted dicyanovinyl-capped quinquethiophenes (PCE up to 6.1% [30]). 

We can therefore conclude that conjugated thiophene oligomers with a well-defined length are versatile 

photoactive materials for the preparation of heterojunction solar cells and worthy of further 

investigations.  

In this work, the first attempt to evaporate a conjugated polymer was made on a regioregular 

P3HT sample. In fact, this polymer, thanks to its high electronic mobility [31], is usually used as hole-

transporting material in organic solar cells [32] and represents a reference p-donor material. Moreover, 

we decided to study the VTE of a regioregular sample of P3HT since some researchers reported that this 

polymer withstood the thermal evaporation process while largely retaining its chemical composition [15]. 

The thermal stability of P3HT was preliminarily examined using thermogravimetric analysis (TGA) in an 

inert (N2) atmosphere. The main weight loss was identified at around 400°C with a weight loss of 58% 

while two very small shoulders in the baseline can be found at around 150 and 300°C (Fig. 58). 

 

 

Figure 58. TGA thermogram of P3HT and OCT under nitrogen. 
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A thin yellow film of P3HT (70 nm thick) was obtained on a 2.5 × 2.5 cm quartz slide by 

evaporating the polymer at a temperature of 3505 °C after 4 minutes at a pressure of 1 × 10-6 mmHg. 

The VTE of P3HT was repeated many times in order to obtain an amount of evaporated polymer 

sufficient for its analysis. It is to underline that the deposition of P3HT was also attempted at lower 

temperatures, as 350°C is quite close to the temperature at which the decomposition of the polymer 

starts, but no evidences of film formation were found. The 1H-NMR spectrum of the evaporated P3HT 

is shown in Fig. 59 together with the spectrum of the pristine sample. 

 

 

Figure 59. 1H-NMR spectrum of P3HT. Up: evaporated polymer redissolved in CDCl3. Down: the same polymer before vacuum evaporation, 
dissolved in CDCl3. 

The spectrum shows the main signals ascribable to this kind of polymer, i.e. 7.00 ppm (thiophene 

H-4); 2.80-2.35 ppm (-CH2 α to the thiophene ring); 1.90-1.10 ppm (central -CH2- of the side chain); 0.90 

ppm (-CH3) together with a plethora of signals which are hardly ascribable to the P3HT structure. 
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Even when the P3HT was evaporated both under a controlled temperature, below the 

decomposition temperature determined by TGA analysis, and under high vacuum, the polymer 

underwent a pyrolysis reaction, with the consequent possible removal of small fragments and molecules. 

This hypothesis was also supported by the observation that the pressure in the Edwards evaporation 

system chamber tended to increase during polymer evaporation. The evaporated P3HT was also 

subjected to GPC analysis, which confirmed the partial loss of the polymeric structure of P3HT, giving 

a Mn of 1800 g/mol with a PDI of 3.5.  

Since the attempt to evaporate the P3HT sample was not completely successful, we decided to 

use the oligomer as an active layer for the OPV cell. We then tried to prepare an OCT film using the 

same evaporation procedure used for P3HT. The TGA of OCT is shown in Fig. 1 and highlights the 

total stability of this oligomer up to 400°C under inert atmosphere. 

At 400°C a very rapid weight loss was seen, leaving only 26% of the initial weight of the sample. 

OCT was then evaporated operating at 2705°C and 1 × 10-6 mmHg for 3 min. Even if the 

thermograms of OCT and P3HT are similar, their deposition temperatures are quite different probably 

because their thermal decomposition was examined under a nitrogen flux while their VTE was performed 

under high vacuum. A red-orange 80 nm thick film of OCT was obtained on the 2.5 × 2.5 cm quartz 

substrate. This time, the film showed metallic lusters and a very smooth and homogeneous surface. 

1H-NMR spectrum of evaporated OCT (Fig. 60, up) showed a group of signals in the aromatic 

region which can be attributed to thiophenic protons according to the numeric system used in the Fig.60. 
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Figure 60. 1H-NMR spectrum of OCT. Up: evaporated oligomer redissolved in CDCl3. Down: the same oligomer before vacuum evaporation, 
dissolved in CDCl3. 

In detail, signals at 6.94 and 7.00 ppm can be related to protons 2 and 7; signals at 7.02 and 7.04 

ppm to protons 3 and 6; the signal at 7.13 ppm to protons 4 and 5, respectively, while the doublet at 7.18 

ppm to proton 1. At 3.32 and 3.37 ppm the signals ascribable to -CH2- and -CH3 protons α to the oxygen 

atoms of the ether groups are clearly evident, and at 2.78 ppm the triplet deriving from the -CH2- groups 

α to the thiophene rings can be found. Signals in the 1.75-1.15 ppm range stem from protons of the 

central methylene units in the side chains. 
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The chemical identity of the evaporated OCT sample is also confirmed by its FT-IR analysis 

made by dissolving the deposited film in CHCl3 and by casting it on a Ge disk.  

Frequencies and assignments of IR absorption bands of OCT are listed in Table 7, while the 

spectrum is shown in Fig. 61 together with that of the pristine sample. 

Table 7. IR absorption bands and relative assignments for evaporated OCT. 

Assignment Wavenumber (cm-1) 

νC-H β thiophene 3063 

νas CH3 2979 

νas CH2 2930 

νsym CH2 2859 

νas CH2-O 2825 

νsym CH2-O 2806 

νas C=C 1500 

 C-H CH3 1464 

νsym C=C 1444 

νas C-O-C 1118 

γ C-H thioph. α, α’disubst. 789 

rocking –CH2- 730 

γ C-H thioph. α, β disubst. 691 

= stretching; on plane bending;  = out of plane bending 
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Figure 61. IR spectrum of evaporated (up) and pristine (down) OCT. 

These findings comply with the expected structure of the vacuum deposited octamer. 

The UV-Vis spectra of OCT in film on quartz slide are shown in Fig. 62. 
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Figure 62. UV-Vis spectra of pristine and evaporated OCT (film on quartz). 

The two curves are normalized to their maximum intensity. The pristine sample, cast from its 

solution in chloroform, shows a structured profile, with a λmax at 391 nm, and two shoulders at 462 and 

500 nm, corresponding to the second and to the first vibronic quantum, respectively. 

The E0-0 (pure electronic) transition is hard to find since the spectrum does not show any evident 

peak at low energies but the deconvolution of the spectrum profile allowed us to locate it at 612 nm. 

The presence of clear absorption in the 600-770 nm range can be ascribed to the presence of high 

intermolecular π-π stacking and indicates the existence of inter-chain aggregates [33-36]. On the basis of 

λmax values, the mean conjugation length (MCL) of pristine OCT in the film state can be calculated using 

the Jiang formula [37] and corresponds to about four thiophene conjugated units. The UV-Vis spectrum 

of the evaporated sample is quite different from the pristine one. In fact, the spectrum profile is broader 

and the λmax is red-shifted of 56 nm. Moreover, the spectrum does not show any evident structure and its 

onset is 584 nm ( = 2.12 eV). 

The MCL of the evaporated sample is higher than the pristine one and corresponds to about six 

conjugated thiophenic rings: a good value taking into account that the oligomer is composed of only 

eight thiophenic units. We can conclude that the pristine sample of OCT has better aggregation and 

stacking in film than the evaporated sample; the latter, however, shows a higher conjugation length, a 

parameter which directly affects electron mobility over the polymeric backbone [38]. 

The XRD patterns of OCT samples are shown in Fig. 63. 

opt

gE
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Figure 63. X-Ray diffractograms of OCT films obtained by casting (left) and VTE (right). 

Diffraction patterns display a set of strong peaks in the central region (2 = 17°-28°) and some 

peaks of lower intensity in the remaining regions. For the cast sample, low angle peaks are found at 2 = 

2.49° and 5.00° (d= 3.54 and 1.77 nm, respectively) and correspond to the (100) and (200) peaks observed 

in poly(3-octylthiophene) [39]. Moving to higher angles, three peaks at 2 = 19.6°, 22.8° and 28.0° (d= 

4.52, 3.90 and 3.18 Å, respectively) can be found. The latter have been previously ascribed to the (110), 

(200) and (210) reflections of unsubstituted polythiophene [40,41]. The evaporated sample shows a 

diffractogram with a less detailed fine structure, with broader and less intense peaks according to a lower 

degree of cristallinity, as already observed from its UV-Vis spectrum in film. 

The electrochemical behaviour of OCT was evaluated by means of cyclic voltammetry. A film of 

evaporated OCT on a ITO glass (55 nm thick) was examined and its voltammogram is reported in Fig. 

64. 

 

Figure 64. Cyclic voltammogram of an OCT film obtained by VTE (1st scan). 
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Unfortunately, the absence of any evident peak in the negative bias range made it impossible to 

evaluate both the reduction potential of OCT ( ) and its electrochemical bandgap ( ). The energy 

of the HOMO level was estimated according to the following relation [42,43]: 

 

𝐼𝑝 (𝐻𝑂𝑀𝑂) (𝑒𝑉) =  −𝑒(𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 + 4.4) 

 

Since 𝐸𝑜𝑥
𝑜𝑛𝑠𝑒𝑡 was 0.45 V, the HOMO level of evaporated OCT was – 4.85 eV and, since 𝐸𝑔

𝑜𝑝𝑡
 

was 2.12 eV, the LUMO level was -2.73 eV. 

The HOMO level energy is very close to the standard reference P3HT (-4.8 eV, [44]) thus 

indicating that OCT can be effectively used as an electron-donor material for organic solar cells [45]. 

The bandgap of evaporated OCT (2.12 eV) is lower than that of P3HT [40] and this could favour 

the final photoconversion efficiency of the device [46,47].  

BHJ solar cells were prepared by evaporating the electron-donor material (P3HT and OCT) and 

the electron-acceptor (C60-fullerene) at the same time, as detailed in the experimental section. The final 

architecture of the cells was: ITO (100 nm)/Photoactive blend/Al cathode (50 nm) while the thickness 

of the active layers made of evaporated P3HT/C60 or OCT/C60 was 45 and 55 nm, respectively. The 

active area of the cells was 0.25 cm2 and both devices were annealed in a vacuum at 130°C for 30 min 

using a Büchi GKR-50 micro glass oven before the cathode deposition. I/V measurements were 

performed at room temperature with a Keithley 2401A source meter operating in the -2/+2 V range. For 

the photovoltaic characterization, the cells were illuminated with 70 mW/cm2 power intensity of AM 1.5 

radiation provided by an Abet Technologies LS150 Xenon Arc Lamp Source calibrated with an ILT 

1400-BL radiometer photometer. The recorded J/V curves under illumination are shown in Fig. 65 while 

photovoltaic properties are listed in Table 8. 

onset
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Figure 65. J/V curves under AM 1.5 illumination of the prepared cells. 

 

Table 8. Photovoltaic properties of the assembled solar cells. 

Property a P3HT OCT 

Voc (V) 0.43 0.51 

Jsc (mA/cm2)a 2.66 4.19 

FF  0.22 0.40 

 (%) 0.35 1.21 

a) under 70 mW/cm2 simulated AM 1.5 illumination through the ITO electrode 

Very promising results were obtained using the co-evaporated mixture of OCT/C60: in this case, 

the shape of the J/V curve was the same usually observed in this kind of devices [48] while the power 

conversion efficiency was notably higher than in the previously prepared cells (=1.21% vs 0.35%), when 

a photoactive blend of OCT and SWCNT in CHCl3 was deposited by spin-coating on the ITO glass and 

was used as an active layer [20]. The PCE of the OCT cell is comparable with the values obtained with 

PLSL solar cells (but lower than those reported for BHJSL solar cells) [26] prepared using VTE system. 

Even if the obtained efficiency is not very high in absolute terms, OCT seems to be particularly 

prone to evaporation by VTE in one single step together with fullerene, with a rapid and straightforward 

procedure, without the need to prepare the electron donor/acceptor solution and also avoiding the 
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deposition of the PEDOT-PSS buffer layer, the use of solvents and, above all, the deposition of many 

layers as reported for the stacked layer solar cells. Moreover, the adopted deposition procedure was 

particularly efficient, since no residues were found on the tungsten source. Therefore, the use of OCT 

seems very promising in continuous coating systems using roll to roll (R2R) or reel to reel coating 

techniques [49,50].  

Unfortunately, the good results shown by OCT were not obtained when the active layer was 

prepared by the evaporation of the P3HT/C60 mixture. In fact, in this case the power conversion 

efficiency was only 0.35% while a reference cell prepared using the same batch of P3HT and fullerene in 

chlorobenzene and spin-coated on a ITO glass, with a final architecture ITO (100 nm)/PEDOT (50 

nm)/P3HT- C60 (50 nm)/Al (50 nm), led to a PCE of 1.10%. This is not surprising, since the VTE of a 

polymer is harder than for an oligomer and then the polymer thermal degradation cannot be completely 

avoided. 

Fig. 66 shows the surface morphology of OCT/C60 and P3HT/C60 blends made by thermal 

evaporation of components on ITO glass and annealed at 130°C for 30 minutes.  

 

Figure 66. AFM images of OCT/C60 (left) and P3HT/C60 (right) evaporated blends.  

AFM non-contact tapping mode images allowed the surface parameters to be determined: 

OCT/C60 roughness (nm) 0.40, diameter (nm) 12; P3HT/C60 roughness (nm) 0.66, diameter (nm) 16. 

The OCT blend showed the lowest root mean square (RMS) roughness and average diameter of grains, 

while the P3HT blend evidenced the highest roughness and diameter of crystallites, and this is probably 

due to the presence of nanoaggregated fullerene. Moreover, the latter sample showed the less uniform 

distribution of aggregates as well as the less homogeneous thickness of the polymeric layer and this fact 

could be ascribed to the poor chemical resistance of P3HT to the evaporation deposition system. 
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5.4. CONCLUSIONS 

In this work we have successfully demonstrated that the VTE technique can be suitable for the 

deposition of photoactive blends for the construction of polymeric solar cells. This deposition method 

is very fast and effective since it facilitates the simultaneous deposition of the two components in the 

blend and does not require the presence of a buffer layer, such as PEDOT-PSS. However, this method 

cannot be applied to the entire range of conjugated polymers. In our experiments P3HT, unlike a 

tetrasubstituted octithiophene oligomer (OCT), was damaged during the evaporation procedure, thus 

leading to a final device with low photoconversion efficiency (0.35%). On the contrary, the low molecular 

weight oligothiophene derivative made it possible to obtain a polymeric solar cell with an acceptable 

efficiency (1.21%), notably higher than that showed by a sample prepared using conventional deposition 

techniques. 

The VTE system is compatible with continuous manufacturing processes and can be effectively 

used in the preparation of a number of electronic or optoelectronic devices. 
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CHAPTER 6: A REGIOREGULAR 

POLYTHIOPHENE-FULLERENE FOR POLYMERIC 

SOLAR CELLS 

6.1 INTRODUCTION 

Organic photovoltaic (OPV) solar cells are devices based on either small organic semiconducting 

molecules or conjugated polymers capable of converting sunlight into electrical power. They are prepared 

by sandwiching a thin (from tens to a few hundred nanometers) film of an organic semiconductor 

between two electrodes. In the usual geometry, the electrons exit from the top electrode (usually Al) and 

positive holes from the bottom electrode (usually ITO which, thanks to its high transparency, allows for 

a good illumination of the photo-active layer); however, an inverted geometry has also been reported, in 

which electrons exit at the bottom and holes at the top.[1,2,3] The active layer, made by intermixing an 

electron-acceptor and an electron-donor material, is usually deposited either by spin-coating a solution 

of conjugated polymer/electron acceptor molecule on the ITO electrode or by vacuum-evaporating small 

organic molecules on the same substrate. In the latter case, some active materials can be easily synthesized 

and purified, thus increasing the photoconversion efficiency, while the processing speed is usually lower 

than for solution-processed conjugated polymers.[4] In any case, OPV solar cells are very attractive 

devices, being cost-effective, light-weight and particularly suitable for being scaled-up from a laboratory 

scale (usually a few square centimeters) to a commercial scale (many square meters) using roll-to-roll 

printing techniques.[5]  

Among the different possible techniques for fabricating OPV cells, bulk heterojunction (BHJ) 

architecture has been studied intensively in recent years for its potential to obtain high efficiency at low 

costs. BHJ is essentially based on a bi-continuous network of an electron-donor (a conjugated polymer) 

and acceptor (fullerene or its derivatives) in which the two components are separated at a micro- or 

nanoscale level, with a high internal surface area where the ultrafast photoinduced charge transfer can 

occur; this way mobile holes in the donor phase and mobile electrons in the acceptor phase can be 

generated. The carriers produced are then driven to the electrodes by the cell internal field before they 

recombine in the photoactive layer. 
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The carrier generation and transport process is the key- mechanism which determines the main 

parameters of the BHJ solar cell, directly acting on the short-circuit current density (Jsc), the fill factor 

(FF) and then the final power conversion efficiency (PCE). 

The morphology and microstructure of the active layer are thus of primary importance, even if 

how to control them and at what degree of separation remain unclear, since a compromise is required 

between the need for a nanoscale separation (i.e. high interfacial area) for efficient exciton quenching, 

and the presence of larger domains (macrophase separation) for both the efficient transport of charges 

to the electrodes and an increased carrier lifetime [6]. 

With the aim of producing optimal phase segregation between the donor and acceptor molecules 

for charge generation while, at the same time, maintaining a continuous path in each phase for the 

efficient transport of electrons and holes, a number of strategies have been adopted. Among them, the 

synthesis of donor-acceptor double-cable polymers appears particularly intriguing. In fact, this 

architecture leads to the homogeneous distribution of the electron donor-acceptor (ED-EA) domains, at 

the same time maximizing the interface between them.[7] In these systems, the fullerene group is usually 

linked to the conjugated polymer (CP) main chain (generally a polythiophene derivative, exploiting the 

3-position of the thiophenic units) by means of either an aromatic substituent8 or an alkylic spacer which 

enhances the solubility of the final polymer by increasing the mobility of the EA group and, at the same 

time, electronically insulates the conjugated backbone from the C60 aromatic molecule.[9,10] 

Double-cable polymers allow for the optimized nanoscale phase separation of the EA/ED 

domains whose length scale must be comparable to exciton diffusion distance (10-20 nm [11]) by 

avoiding spontaneous phase separation; the latter is usually observed in conventional BHJ blends, and is 

caused by the very low entropy of mixing for high molecular weight polymers [12]. 

On these bases, the making of a “molecular heterojunction” by covalently grafting fullerene to 

polythiophene backbone may be considered a suitable alternative to the conventional BHJ architecture 

of OPV solar cells; in fact, this system exploits the same ED/EA moieties while retaining the positive 

electronic and photophysical properties of CP/fullerene composites but limiting phase separation and 

clustering phenomena. A drawback of double-cable polymer way to build polymeric solar cells is, indeed, 

the more complex synthetic route necessary to obtain the fullerene-functionalized monomers; this usually 

makes the conventional BHJ architecture - based on the simple mixing of the ED/EA components even 

if on a nanoscale separation - preferable when final power conversion efficiencies are essentially the same. 

In this paper, we report on both the synthesis of a new thiophenic monomer bearing the C60-

fullerene at the end of a hexylic side chain, and the preparation of a soluble thiophenic copolymer using 

the same procedure used for the monomer on a reactive polymeric precursor. The synthesis employed is 
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particularly interesting since it involves a very simple and straightforward procedure based on the 

Grignard-coupling between -bromoalkyl-derivatives and C60-fullerene. The prepared copolymer was 

widely characterized using IR, NMR, GPC, UV-Vis spectroscopy, and DSC-TGA thermal analysis. The 

molecular arrangement of its thin films was studied by AFM measurements. Lastly, the current 

density/voltage (J/V) characteristics of the prepared solar cell were determined under one-sun 

illumination, in order to evaluate PCE when using the newly synthesized double-cable copolymer as a 

photoactive layer; these characteristics were also compared with those of a reference OPV solar cell made 

with BHJ conventional architecture. 

6.2 EXPERIMENTAL 

6.2.1 Materials 

All reagents were purchased from Sigma-Aldrich Chemical Co. and used without further 

purification where not expressly indicated otherwise. All solvents used (HPLC grade) were dried and 

purified by normal procedures, stored under molecular sieves, and handled in a moisture-free 

atmosphere. 

The reference polymer for solar cells, i.e. poly(3-hexylthiophene) (P3HT), was synthesized 

starting from 3-hexylthiophene (T6H) purchased from Sigma-Aldrich (CAS No. 1693-86-3, Product No. 

399051) using the McCullough procedure, [13] regioregularity in HT dyads 96%, Mn 30.0 KDa, PDI 1.2. 

6.2.2 Measurements 

1H NMR and 13C NMR were recorded on a Varian Mercury Plus spectrometer using TMS as a 

reference. IR spectra were taken on KBr pellets (model compound and alkylthiophene-fullerene 

derivative) and Ge disk (thin polymer films) using a Perkin Elmer Spectrum One spectrophotometer. 

Molecular weights were determined by gel permeation chromatography (GPC) using polystyrene 

standards and THF as an eluent on a HPLC Lab Flow 2000 apparatus equipped with a PL Gel MXL 

column and a Linear Instrument UV-Vis detector model UVIS-200 working at 263 nm. Mass spectra 

were recorded on a Thermo Finnigan MAT95XP spectrometer. The elemental analysis of the prepared 

copolymers was performed by Redox Laboratory, Monza, Italy. UV-Vis spectra were recorded on a 

Perkin Elmer Lambda 19 spectrophotometer using polymer films on quartz slides cast from o-

dichlorobenzene (ODCB) solutions using the doctor blading (DB) technique (average thickness: 150 

nm). A DSC TA Instruments 2920 was used for the thermal analysis of the polymer by varying the 
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temperature from -50 to 200°C at a rate of 10°C min-1 in a nitrogen atmosphere. A TGA TA Instruments 

2050, operating in either an inert or an oxidizing atmosphere, was used to determine the decomposition 

temperatures of the polymer by heating samples from 30° to 900°C at a heating scan rate of 20°C min-1. 

AFM measurements were made on a Burleigh Vista instrument in a non-contact tapping mode using 

high resolution silicon-nitride tips. 

For the preparation of the solar cells, ITO glass (1×1 cm) was first cleaned in an ultrasonic bath 

using a non-foaming glass detergent in deionized water. ITO glass was then rinsed sequentially in double 

distilled water, isopropanol, and acetone. PEDOT:PSS (Aldrich Chemical Co.) was diluted 1:1 with 

isopropanol, filtered on a Gooch filter G2 and deposited by doctor blading on top of the cleaned ITO 

glass (film thickness about 80 nm) by means of a Sheen Instruments S265674. The glass slide was baked 

under a vacuum at 120°C for 2 h using a Büchi GKR-50 Micro Glass Oven. Anhydrous ODCB was used 

to prepare solutions of COP2 (7, 10, 13, and 15 mg ml-1), which were deposited by doctor blading on the 

PEDOT:PSS layer. More concentrated solutions of COP2 in ODCB determined the formation of a dark- 

red precipitate on the bottom of the vial. After baking films in a vacuum at 130°C for 15 min, the active 

layer film thicknesses measured by AFM were respectively 80, 100, 150 and 180 nm. Lastly, to create 

PSCs, 50 nm of Al were thermally deposited under a vacuum of 6 × 10-7 mmHg using an Edwards E306A 

vacuum coating apparatus. The active area of the cell was 0.25 cm2. The current-voltage characteristics 

were measured using a Keithley 2401 source meter under the illumination of a Abet Technologies LS 150 

Xenon Arc Lamp Source AM1.5 Solar Simulator, calibrated with an ILT 1400-BL photometer. The 

reported PCE results were the averaged values obtained from 5 different devices prepared under the 

same operative conditions. The spectral response of the solar cells was measured using a SCSpecIII 

(SevenStar Optics, Bejing, PRC) incident photon to charge carrier efficiency (IPCE) setup. 

6.3 SYNTHESES OF MONOMERS 

6.3.1 Synthesis of  the model compound 1-fullerenylhexane (HexF) 

Scheme 17 outlines the experimental route for the preparation of HexF. 
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Scheme 17. Synthesis route for the preparation of HexF 

A solution of 0.837 g (5.07 mmol) of 1-bromohexane in 6 ml of anhydrous THF was added 

dropwise to 0.141 g (5.80 mmol) of Mg under stirring and in an inert atmosphere. The mixture was 

refluxed for 5h, cooled down to room temperature, and then transferred via cannula to a solution of 1.22 

g (1.69 mmol) of C60-fullerene in 400 ml of anhydrous toluene and 2.30 ml of anhydrous 

N,N-dimethylformamide (DMF). The final mixture was reacted for 30 min under stirring at room 

temperature and in an inert atmosphere. The reaction was quenched with a solution of 100 mg of NH4Cl 

in 10 ml of distilled water and then added to 200 ml of brine. The organic phase was washed with distilled 

water to neutrality, dried with MgSO4, and concentrated. The crude product was dissolved in 50 ml of 

toluene and precipitated by adding 100 ml of MeOH dropwise to the solution. After filtration on a Teflon 

septum (0.45 m pore size), 1.05 g of 1-fullerenylhexane (HexF) were recovered as a dark brown powder 

(77% yield). 

1H NMR (400 MHz, CDCl3, δ): 6.48 (s, 1H, C60H), 3.45 (m, 2H, C60CH2), 2.60 (q, 2H, 

C60CH2CH2), 1.92-1.45 (bm, 6H, central methylenes), 1.05 (t, 3H, CH3). 

13C NMR (100 MHz, CDCl3, δ): 157.45 (2C, C60), 153.91 (2C, C60), 147.45 (1C, C60), 147.42 (1C, 

C60), 146.90 (2C, C60), 146.31 (2C, C60), 146.25 (2C, C60), 146.15 (2C, C60), 146.00 (2C, C60), 145.78 (2C, 

C60), 145.65 (2C, C60), 145.41 (2C, C60), 145.31 (2C, C60), 145.25 (2C, C60), 145.21 (2C, C60), 144.77 (2C, 

C60), 144.45 (2C, C60), 143.22 (2C, C60), 142.45 (2C+2C, C60), 142.10 (2C, C60), 141.95 (2C, C60), 141.85 

(2C, C60), 141.78 (2C, C60), 141.68 (2C, C60), 141.55 (2C, C60),141.45 (2C, C60), 140.44 (2C, C60), 140.00 

(2C, C60), 137.22 (2C, C60), 135.85 (2C, C60), 61.03 (1C, C60CH2), 41.82 (1C, C60CH2), 31.03 (1C, CH2CH3), 

29.98 (1C, CH2), 26.93 (1C, CH2), 22.88 (1C, CH2), 14.22 (1C, CH2CH3). 

IR (KBr): ν = 2952, 2921, 2850, 1428, 1384, 1182, 577, 526 cm-1. 

EIMS m/z (%): 807 (10) [M+], 806 (25) [M+ - H]. 

(CH2)6 Br
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(CH2)6
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H (CH2)6 MgBrH

H

HexF



Part 1: Polythiophenes Chapter 6: Regioregular PT-C60 for polymeric SC 

120 

6.3.2 Synthesis of  3-(6-fullerenylhexyl)thiophene (T6F) 

Scheme 18 outlines the experimental route for the preparation of T6F. 

 

Scheme 18. Synthesis route for the preparation of T6F. 

1.24 g (5.07 mmol) of 3-(6-bromohexyl)thiophene prepared according to Ref. 14 in 6 ml of 

anhydrous THF was added dropwise to 0.141 mg (5.80 mmol) of Mg under stirring in an inert 

atmosphere. The mixture was refluxed for 5 h, cooled down to room temperature, and then transferred 

via cannula to a solution of 1.22 g (1.69 mmol) of C60-fullerene in 400 ml of anhydrous toluene and 2.30 

ml of anhydrous N,N-dimethylformamide (DMF). The final mixture was reacted for 30 min under 

stirring and in an inert atmosphere. The reaction was quenched with a solution of 100 mg of NH4Cl in 

10 ml of distilled water and then added to 300 ml of brine. The organic phase was washed with distilled 

water to neutrality, dried with MgSO4 and concentrated. The crude product was dissolved in 75 ml of 

toluene and precipitated by adding 150 ml of n-pentane dropwise to the solution. After filtration on a 

Teflon septum (0.45 m pore size), 1.20 g of 3-(6-fullerenylhexyl)thiophene (T6F) were recovered as a 

black powder with metallic lusters (80% yield). 

1H NMR (400 MHz, ODCB-d4, δ): 7.21 (m, 1H, H5Th), 6.93 (m, 2H, H2Th+H4Th), 6.48 (s, 1H, 

C60H), 3.45 (m, 2H, C60CH2), 2.85 (m, 2H, ThCH2), 2.60 (m, 2H, C60CH2CH2), 2.00-1.25 (bm, 6H, central 

methylenes). 

13C NMR (100 MHz, ODCB-d4, δ): 157.33 (2C, C60), 153.22 (2C, C60), 147.55 (1C, C60), 147.33 

(1C, C60), 146.80 (2C, C60), 146.42 (2C, C60), 146.22 (2C, C60), 146.11 (2C, C60), 146.00 (2C, C60), 145.75 

(2C, C60), 145.62 (2C, C60), 145.45 (2C, C60), 145.31 (2C, C60), 145.22 (2C, C60), 145.00 (2C, C60), 144.67 

(2C, C60), 144.45 (2C, C60), 143.18 (2C, C60), 142.35 (2C+2C, C60), 142.10 (2C, C60), 141.95 (2C, C60), 

SS

(CH2)6 Br
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THF SS
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141.85 (2C, C60), 141.78 (2C, C60), 141.68 (2C, C60), 141.53 (2C, C60),141.43 (2C, C60), 140.65 (2C, C60), 

140.11 (2C, C60), 139.92 (1C, ThC3), 137.28 (2C, C60), 135.98 (2C, C60), 135.70 (1C, ThC5), 128.91 (1C, 

ThC2), 125.85 (1C, ThC4), 61.22 (1C, C60CH2), 41.62 (1C, C60CH2), 30.60 (1C, CH2Th), 29.88 (1C, CH2), 

29.60 (1C, CH2), 26.20 (2C, CH2). 

IR (KBr): ν = 3101, 3051, 2924, 2851, 1512, 1461, 1427, 1173, 766, 671, 576, 526 cm-1. 

EIMS m/z (%): 889 (35) [M+], 888 (60) [M+ - H]. 

6.4 SYNTHESES OF POLYMERS 

6.4.1 Synthesis of  Poly[3-hexylthiophene-co-3-(6-bromohexyl)thiophene] 

(COP1) 

1.02 ml of a CH3MgCl 3.0 M solution in anhydrous THF was added to 0.80 g (2.45 mmol) of 2,5-

dibromo-3-hexylthiophene (2,5BT6H) and 0.25 g (0.61 mmol) of 2,5-dibromo-3-(6-

bromohexyl)thiophene (2,5BT6Br) in 20 ml of anhydrous THF. The mixture was refluxed for 2 h under 

stirring in inert atmosphere and then 8.29 mg (0.015 mmol) of NiDPPPCl2 were added and the reaction 

refluxed for 1 h. After cooling down to room temperature, the copolymer was recovered by adding 30 

ml of methanol to the solution and subsequent filtration on a PTFE membrane (0.45 m pore size). The 

copolymer was dissolved in 15 ml of CHCl3 and reprecipitated with 50 ml of methanol, leading to 0.455 

g (2.50 mmol, 82% yield) of dark-red COP1. 

1H NMR (400 MHz, CDCl3, δ): 6.98 (s, H4Th), 3.43 (t, CH2Br), 2.90-2.45 (2bm, ThCH2), 1.90-

1.25 (bm, central methylenes), 0.89 (t, CH3). 

13C NMR (100 MHz, CDCl3, δ): 140.29 (ThC3), 134.35 (ThC5), 131.30 (ThC2), 129.25 (ThC4), 

34.63 (CH2Br), 33.91 (CH2CH2Br), 30.91 (CH2Th), 29.94 (CH2), 29.30 (CH2), 27.15 (CH2), 22.91 

(CH2CH3), 15.10 (CH3). 

IR (Ge): ν = 3050, 2955, 2927, 2853, 1560, 1510, 1458, 1375, 1260, 1235, 1089, 830, 729, 643, 

561 cm-1. 

Anal calcd for [(C10H13BrS)0.2 (C10H14S)0.8]n: C 65.97, H 7.64, Br 8.78, S 17.61; found: C 65.15, H 

7.55, Br 8.95, S 18.35. 
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6.4.2 Synthesis of  Poly[3-hexylthiophene-co-3-(6-fullerenylhexyl)thiophene] 

(COP2) 

Scheme 19 shows the synthesis of the copolymer COP2. 

 

Scheme 19. Synthesis of copolymer COP2 

0.407 g (2.24 mmol) of COP1 in 10 ml of anhydrous THF was added dropwise to 0.062 mg (2.56 

mmol) of Mg under stirring in an inert atmosphere. The mixture was refluxed for 5 h, cooled down to 

room temperature, and then transferred via cannula to a solution of 0.539 g (0.747 mmol) of C60-fullerene 

in 200 ml of anhydrous toluene and 1.10 ml of anhydrous N,N-dimethylformamide (DMF). The final 

mixture was reacted for 30 min under stirring in an inert atmosphere. The reaction was quenched with a 

solution of 50 mg of NH4Cl in 5 ml of distilled water and then added to 150 ml of brine. The organic 

phase was washed with distilled water to neutrality, dried with MgSO4 and concentrated. The copolymer 

was then fractionated by redissolving it in 75 ml of toluene and then slowly adding the solution to 150 

ml of n-pentane. After filtration through a Teflon membrane (0.45 m pore size), 0.571 g of fractionated 

COP2 were obtained (81% yield). 

 

1H NMR (400 MHz, ODCB-d4, δ): 7.00 (m, H4Th), 6.40 (s, C60H), 3.45 (m, C60CH2), 2.80-2.55 

(bm, ThCH2 + C60CH2CH2), 2.00-1.25 (bm, central methylenes), 0.95 (t, CH3). 

13C NMR (100 MHz, ODCB-d4, δ): 157.43 (C60), 153.50 (C60), 147.92 (C60), 147.15 (C60), 146.95 

(C60), 146.52 (C60), 146.31 (C60), 146.15 (C60), 146.05 (C60), 145.85 (C60), 145.65 (C60), 145.50 (C60), 145.35 

(C60), 145.25 (C60), 145.05 (C60), 144.75 (C60), 144.35 (C60), 143.10 (C60), 142.45 (C60), 142.20 (C60), 141.90 

(C60), 141.80 (C60), 141.70 (C60), 141.62 (C60), 141.55 (C60),141.40 (C60), 140.95 (ThC3), 140.68 (C60), 140.15 

(C60), 137.25 (C60), 135.95 (C60), 135.15 (ThC5), 129.80 (ThC2), 126.80 (ThC4), 61.22 (C60CH2CH3), 42.65 

(C60CH2), 31.95 (CH2CH3), 30.55 (CH2Th), 29.88 (CH2), 29.63 (CH2), 26.22 (CH2), 14.55 (CH2CH3). 

IR (Ge): ν = 3049, 2954, 2923, 2851, 1538, 1460, 1428, 1377, 1173, 829, 576, 526 cm-1. 

Anal calcd for [(C70H14S)0.2 (C10H14S)0.8]n: C 85.12, H 4.55, S 10.33; found: C 84.85, H 4.65, S 10.50. 
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6.5 RESULTS AND DISCUSSION 

The control of the morphology of the active layer in the polymeric photovoltaic cells is a very 

important parameter since it is necessary to maximize the surface area of the p-n junction in order to 

achieve a high energy conversion efficiency [15,16]. In fact, the blend morphology can directly influence 

the conformational order of the conjugated backbone, while it is well known that a low degree of the 

polythiophene intra- and inter-chain disorder [17] may lead to a strong increase in hole mobility and, 

consequently, in charge carrier generation and extraction efficiency [18]. 

Moreover, recently, some thin films of organic polymers have been deposited on ITO glass or 

plastic surfaces by ink-jet printing [19[ or screen printing [20], thus demonstrating that the development 

of fast, reproducible, homogeneous and stable film-forming techniques is of the utmost interest. 

In addition to a physical (thermal) approach, several chemical methods may also be used for 

controlling the morphology within the photoactive layer, in order to minimize the separation of the 

donor-acceptor compounds. One of these methods consists of synthesizing a conjugated p-type 

macromolecule bearing a fullerene molecule linked to its backbone. This method is particularly interesting 

and chemically elegant, since a single polymeric material would possess the ability to transport both the 

electrons and the holes (double-cable polymer). This would then lead to a fast inter- and intra-chain 

transport of positive holes and also to a more rapid displacement of the electrons along the fullerenes 

[21]. In addition, the interfacial area between the donor and acceptor would be maximized and 

segregation would be avoided. In this regard, J. R. Durrant et al. in a very recent paper [22], stress the 

fact that the use of donor copolymers with a high degree of D-A character can be particularly effective 

in reducing the energy offset requirement for an efficient charge separation, thus leading to high efficient 

organic solar cell devices.  

In this work, a new thiophenic monomer containing fullerene in the side chain was synthesized 

using the Grignard-coupling reaction; this synthesis method made it possible to use C60-fullerene directly 

as the starting material, without either resorting to its expensive derivatives (e.g. PCBM) or preparing 

fulleropyrrolidine intermediates [23]. Moreover, the Grignard reaction involves few simple and 

straightforward steps, making the preparation of the monomer particularly easy, efficient, and interesting. 

Before proceeding to the synthesis of the fullerene-substituted thiophenic monomer, i.e. 3-(6-

fullerenylhexyl)thiophene (T6F), we attempted to synthesize a model compound, in order to verify the 

actual feasibility of synthesis. The monoaddition of the Grignard reagent to C60-fullerene was inspired by 

the paper of Nakamura et al. [24] We started from 1-bromohexane, which is quite similar to 3-(6-

bromohexyl)thiophene, but devoid of the thiophene moiety. 
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The reaction was carried out in an inert atmosphere using freshly distilled anhydrous THF, by 

reacting 1-bromohexane with Mg turnings. The obtained mousey-gray Grignard solution was transferred 

via a PTFE cannula into a second flask containing the C60-fullerene solubilized in toluene/DMF. The 

reaction mixture was left at room temperature for 15 min and then quenched with ammonium chloride; 

subsequently, the solvent was evaporated at reduced pressure. HexF was purified by fractionation using 

a toluene/methanol solution and recovered, after filtration, as a dark brown powder with a good yield. 

The product obtained was characterized by 1H and 13C NMR, IR, and mass spectroscopy (see 

Experimental section). 

The 1H NMR spectrum shows the expected signals; in details, the triplet ascribable to the 

terminal -CH3 protons can be found at 1.05 ppm, the two quintets attributable to the internal -CH2- 

protons of the alkyl chain between 1.45 and 1.92 ppm and the quintet due to the -CH2- protons  to the 

fullerene group at 2.60 ppm. The multiplet at 3.45 ppm is relative to the -CH2- directly linked to the 

fullerene: it is not a triplet due to the conformational stability of the alkyl chain linked to the fullerene; in 

fact, even if the bridge methylenic group is able to rotate, most of the time it maintains a specific 

conformation. This results in two hydrogen atoms which are chemically identical but magnetically 

different, whose couplings may be described by an AA'BB' system, giving the observed characteristic 

peak profile [25]. Lastly, the singlet due to the directly fullerene-linked hydrogen can be found at 6.48 

ppm. The 13C NMR spectrum, the IR spectroscopy and the mass analysis also confirm the HexF expected 

structure. 

Once the ability to bind an alkyl halide directly to the fullerene via the Grignard reaction was 

confirmed, we proceeded with the synthesis of the monomer of interest (T6F). The reaction conditions 

used were analogous to those reported for the model compound, except for the purification conditions.  

This time the 1H NMR spectrum was recorded in deuterated o-dichlorobenzene, since T6F is 

more soluble in this solvent than in chloroform (25 mg/ml vs 8 mg/ml). Thanks to the previous study 

of the model compound, it was possible to state that the reaction was successful in this case also. 

In particular, the singlet relative to the proton directly linked to fullerene is clearly visible at 6.48 

ppm, the multiplet relative to the -CH2-  and  to the fullerene group at 3.45 and 2.60 ppm respectively, 

and the multiplet of the methylenic protons  to the thiophenic ring at 2.85 ppm. Lastly, the last three 

multiplets in the 1.25-2.00 ppm range are related to the central methylene groups of the alkylic side chain. 

Thiophenic aromatic protons appear partially embedded with the solvent signals and are found at 7.21 

(H5) and 6.93 ppm (H2+H4). 

The 13C NMR spectrum of the monomer is also in good agreement with the expected structure. 
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The presence of head-to-head (HH) couplings among the repeating units of poly(3-

alkylthiophene)s affects the polymer conformation, leading to poor electrical conductivity,26 low values 

of conjugation length27 and then low power conversion efficiencies in BHJ solar cells28. Therefore we 

decided to polymerize T6F using a regiospecific procedure, namely the Grignard Metathesis (GRIM)29 

polymerization reaction, which involves the cross-coupling of organomagnesium intermediates prepared 

by reacting a 2,5-dibromothiophene derivative with a pre-formed Grignard’s reactive (usually 

methylmagnesium chloride or isopropylmagnesium bromide) in the presence of a Ni(II) catalyst. 

Unfortunately, the dibromination of T6F to obtain 2,5-dibromo-3-(6-fullerenylhexyl)thiophene did not 

give any acceptable results since the bromination of the fullerene moiety was unavoidable even using 

mild reaction conditions, i.e. adding the N-bromosuccinimide in two subsequent steps and operating at 

0°C in anhydrous N,N-dimethylformamide. 

An alternative procedure was then used, namely the insertion of the fullerenic substituent on a 

pre-synthesized polymeric precursor: a technique known as post-polymerization functionalization (PPF) 

[30]. 

As it may be inferred from the data reported in Table 9, a satisfactory yield of the regioregular 

polymeric precursor COP1 was obtained by reacting 2,5-dibromo-3-hexylthiophene and 2,5-dibromo-3-

(6-bromohexyl)thiophene in a 80:20 molar ratio with one equivalent of CH3MgCl in anhydrous THF. 

The adopted synthetic strategy is not only easy to perform, but it also produces a polymer with 

appreciable molecular weight and microstructural features. COP1 is, in fact, characterized by a good DPn 

(185 r.u.) and a high degree of regioregularity (96% in HT dyads content), as determined by the integral 

ratio of the signals at 2.90 and 2.45 ppm in the 1H-NMR spectrum [31].  

Table 9. Copolymers characteristics. 

Polymer Yielda [%] HT dyadsb [%] Mn
c [KDa] Mw/Mn  

COP1 82 96 33.7 1.3 

COP2 81 96 55.0 1.2 

a In fractionated polymer 

b Regioregularity expressed as Head-to-Tail dyads percentage 

c Determined by GPC relatively to polystyrene standards 

 

COP1 was then dissolved in anhydrous THF and reacted with metallic Mg and then with a 

solution of fullerene in toluene using the same procedure used for the preparation of T6F from T6Br. 
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After filtration, the resulting black powder was brought to dryness at 50°C in a vacuum oven. The high 

content of the non-functionalized monomer in COP2 allowed for both its good solubility in common 

organic solvents and its high post-polymerization functionalization reaction yield (86%).  

The solubility of COP2 was 15 mg/ml in ODCB and 5 mg/ml in CHCl3 and its molecular weight, 

determined via GPC with respect to polystyrene standards, was: Mn=55.000 g/mol with a polydispersivity 

index (PDI) of 1.2. 

Figure 67 shows the 1H NMR spectrum of COP2. 

 

Figure 67. 1H NMR spectrum of COP2 in ODCB-d4. 

The 1H NMR spectrum of COP2 shows the signals ascribable to both the monomers but some 

of them are superimposed since the two repeating units differ only in the final group of the side chain. 

However, some peaks can be unequivocally ascribed, like those at 0.95 ppm (protons of the terminal -

CH3 group of the alkyl chain of the non-functionalized monomer) and at 3.45 ppm (-CH2 directly linked 

to the fullerene). All signals between 1.25 and 2.00 ppm are due to the central methylenic groups of the 

alkyl chains of the two monomers. The multiplet in the range between 3.00 and 2.55 ppm is attributable 

to the signals of methylenic protons - and - to thiophene and fullerene, respectively. The overlapping 

of these signals makes it impossible to directly determine the regioregularity of the copolymer using 1H-

NMR. 

At 6.40 ppm the signal of the proton directly attached to the fullerene group is evident and, lastly, 

in the aromatic region, the signal ascribable to thiophene H-4 can be found at 7.00 ppm. 

The composition of COP2 was determined by comparing the integral of the signal of the -CH3 

group belonging to the alkylic monomer at 0.95 ppm with the integral of the peak at 3.45 ppm, concerning 
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methylenes  to fullerene (this time, also, a multiplet and not a triplet), which is present only in the 

functionalized monomer. COP2 has a 20% molar content of T6F, thus proving the effectiveness of the 

employed PPF reaction, since all –Br groups have been substituted by the C60 moiety.  

As evidenced by 13C-NMR analysis of COP2 (Figure 1 in the Supporting Information section), 

the signals at 34.63 and 33.91 ppm, ascribable to the presence of the –Br group in the side chains, clearly 

observable in COP1 spectrum, are completely missing in COP2 spectrum, thus confirming the complete 

bromine atom substitution by the fullerene group. 

The signals reported in the Experimental section confirm what was said about the proton 

spectrum. Moreover, the presence of only four evident signals ascribable to thiophenic carbons suggests 

the prevalence of one kind of configurational triad in the COP2 structure. This is not surprising, since 

the PPF reaction does not involve the polymer main chain but only the reactive functional groups at the 

end of the side chains.  

Figure 68 shows the IR spectrum of T6F, COP1 and COP2 as a thin film on the Ge disk, while 

the main IR bands of the model compound, T6F, and copolymers COP1 and COP2 are listed in Table 

10 together with their respective assignments.  

 

 

Figure 68. IR spectra of T6F, COP1 and COP2. 



Part 1: Polythiophenes Chapter 6: Regioregular PT-C60 for polymeric SC 

128 

Table 10. IR absorption bands (in cm-1) and respective assignments for the synthesized materials 

Assignment HexF T6F COP1 COP2 

νC-H α thiophene - 3101 - - 

νC-H β thiophene - 3051 3050 3049 

νas CH3 2952 - 2955 2954 

νas CH2 2921 2924 2927 2923 

νsym CH2 2850 2851 2853 2851 

νas C=C thiophene - 1512 1510 1538 

νas C=C thiophene - 1461 1458 1460 

fullerene 1428 1427 - 1428 

-CH3 deformation 1384 - 1375 1377 

fullerene 1182 1173 - 1173 

γC-H thioph. 2,3,5-trisubstituted - - 830 829 

γC-H thioph. 3-substituted - 766, 671 - - 

νC-Br   643, 561  

fullerene 577, 526 576, 526  576, 526 

= stretching;  = out of plane bending 

The IR analysis of the copolymers confirmed the expected structures. In fact, the characteristic 

absorptions of the 3-alkylthiophenic system are clearly evident, as well as those related to the particular 

functional groups, i.e. the halogen at 643 and 561 cm-1 and the fullerene moiety at about 1428, 1180, 576 

and 526 cm-1. Moreover, in the copolymers spectra, the band at 3101 cm-1 is absent, while that at about 

3050 cm-1 is evident and the bands at 766 and 671 cm-1 are replaced by that at 829 cm-1. These observations 
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confirm that the repeating units of copolymers are linked through the  positions of thiophene rings 

(absence of - and - couplings), thus benefiting the structural regularity and electron delocalization. 

Figure 69 shows the UV-Vis spectrum of COP2 and of P3HT/PCBM blend on a quartz slide 

cast from ODCB solution.  

 

Figure 69. UV-Vis spectrum of COP2 and P3HT/PCBM blend in film 

The absorbance around 340 nm is attributable to the fullerene derivative [32,33] (in the side chain, 

for COP2, and in the blend for P3HT) which, given the intense absorbance, appears to be a particularly 

efficient chromophoric system. The shoulder around 500 nm, particularly evident in COP2 spectrum, is 

attributable to the polythiophenic system while the presence of a further shoulder at 600 nm, albeit of 

weak intensity, indicates the formation of -stacking between thiophene rings [34]. Even if COP2 is a 

copolymer between two thiophenes bearing different groups in the side chain - one of which is 

particularly bulky - the structured profile of the spectrum clearly evidences the presence of a 

conformational order among the polymeric main chains. 

The DSC thermogram of COP2 (Figure 70) shows an evident endothermic flexure at 29°C (glass 

transition temperature) and two endothermic peaks at 95° and 155°C which are ascribable to the melting 

of crystalline domains determined by the packing of side chains and backbones, respectively.  
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Figure 70. DSC curve of COP2. 

It is interesting to note that, for the usually employed poly(3-hexylthiophene) (rrP3HT, Aldrich 

Chemical Co., %HT dyads 95%, Mn: 15000-45000, CAS No. 156074-98-5, Code No. 698989), the main 

chain melting transition occurs at around 200°C and the Tg at -4.7°C,35,36 while COP2 has a lower Tm but 

a higher Tg than the reference polymer; the selection of polymers with the highest possible glass transition 

temperature is an important prerequisite for the thermal stability of the photoactive blend in order to 

avoid the demixing of its components.37,38 The lower Tm of COP2 with respect to the reference polymer 

can be ascribed to the higher steric hindrance of the substituent of the former, since bulky groups in 

polythiophene side chains generally hinder the crystallization process of the polymer. 39 Moreover, the 

higher Tg of COP2 can be explained in terms of the reduced mobility of the side chains, as already 

evidenced in the 1H-NMR section (vide infra). 

The COP2 thermal stability was investigated by the TGA analysis both under nitrogen and in air 

at a heating scan of 20°C min-1. The thermograms obtained are shown in Figure 71. 

 

Figure 71. TGA graphs of COP2 under nitrogen and in air. 
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In nitrogen, COP2 is stable up to around 300°C, after which the thermal decomposition begins 

with a two-step weight loss. The second step begins at around 400°C. In air, the decomposition starts at 

around 275°C and the second step always at 400°C. This time, a third degradation step can be observed 

and, over 600°C, no residual product can be found. These results agree with those obtained by Kumar 

et al., [40] showing that the addition of carbon nanotubes or C60 fullerene to poly(3-hexylthiophene) 

reduces its thermal stability. 

Figure 72 shows the J-V characteristic curves of solar cells which have the structure of 

ITO/PEDOT:PSS/photoactive layer/Al under AM 1.5 one sun illumination (100 mW cm-2).  

 

Figure 72. Current density-voltage for tested cells under AM 1.5 one sun illumination. 

As reference cell we used a P3HT/PCBM 1:1 weight ratio, since some studies have shown that 

devices with this ratio achieve the highest power conversion efficiency [41,42]. The cell made with COP2 

did not require the use of PCBM, since fullerene was already present in this copolymer, at a loading of 

approximately 46% wt. We tried to optimize the deposition conditions of the active layers by acting both 

on the thickness of the blend and on the annealing temperature. In fact, these important parameters 

directly affect the PCE of the final device through the light absorption efficiency as well as the 

morphology of the photoactive blend, mainly acting on the JSC of the PSC [43]. The effect of the thickness 

of the active layer was examined by depositing, using the doctor blade, COP2 solutions in ODCB at 

different concentrations (Table 2). The thermal annealing of the photoactive layer was performed at 

130°C for 15 min in a vacuum, since these conditions gave the best results. The best conditions for the 

reference cell were found to be: P3HT:PCBM 1:1 (w/w) and 15 wt% solution in ODCB, leading to a 160 

nm-thick film after doctor blade deposition.  
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A summary of the averaged J-V characteristics, based on the analysis of 5 devices, is given in 

Table 11. 

Table 11. Photovoltaic parameters for the devices obtained using the two different photoactive polymers. 

Polymer Jsc [mA cm-2] Voc [V] FF [%] PCE [%] 

COP2 10.7 0.58 52.0 3.21 

P3HT/PCBM 7.20 0.63 55.1 2.50 

 

The results obtained for the P3HT/PCBM device are in good agreement with those reported in 

the literature; in fact, we obtained a 3.53% of PCE with a 160 nm thick film, after an annealing time of 

15 min at 130°C, whereas the best conditions reported for the same system were an annealing time of 10 

min at 130°C using a 150 nm thick film, giving a 3.60% of PCE. 43 In the COP2 case, the best results 

were obtained with a 150 nm thick film with the same annealing conditions used for the reference cell, 

leading to a superior PCE performance of 4.19%.  

The IPCE plots of the best devices under short circuit conditions are shown in Figure 73.  

 

Figure 73. IPCE curves of the prepared OPV solar cells. 

The photo-current response wavelength of the cells based on the P3HT/PCBM photoactive 

blend and on the COP2 layer range from 290 to 700 nm and 310 to 750 nm, respectively. The curve of 

the device based on the reference cell has two feature peaks at 355 and 575 nm and a shoulder at 600 

nm, whereas the device based on the copolymer shows only two peaks at 400 and 580 nm. The IPCE 
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profile of COP2 follows the trend observed in the absorption spectra of the copolymer in film, indicating 

that the harvested photons over the whole absorption spectrum contribute to the photocurrent. 

Moreover, an enhanced quantum efficiency is observed in the device made with COP2 as compared to 

the device made with P3HT/PCBM, thus suggesting an improved charge collection efficiency of the 

copolymer.  

The results obtained clearly show that the performance of the double-cable based solar cells is 

higher than that of the device prepared following the conventional bulk-heterojunction approach, and 

reaches a PCE higher than the value reported in literature for BHJ solar cells made with 

poly(alkyl)thiophenes (P3ATs)/PCBM with a conventional architecture (3.57%) [44]. 

To analyze the morphology of solar cells, we chose to use atomic force microscopy (AFM). Figure 

74 shows the surface morphology of the reference blend, i.e. P3HT and PCBM (1:1 weight ratio), as well 

as of a film of COP2 on ITO glass. The two films had similar thickness (about 150 nm) and were prepared 

by filming with doctor blade the ODCB solutions of polymers on ITO glasses that had been cleaned 

beforehand using the same procedure used for the preparation of solar cells. After the film deposition, 

samples were subjected to an annealing procedure (15 min at 130°C under vacuum) and surface images 

were recorded using an AFM in a non-contact (tapping) mode in height-modulated (HMM) mode. 

 

Figure 74. AFM images of a P3HT/PCBM blend (left) and of a COP2 film (right). 

The AFM images of the surfaces of the two prepared films are quite different; in fact the surface 

rms (root-mean-square) roughness is 16.1 nm for the P3HT:PCBM film (with an average 25.6 nm 

diameter of grains) and 5.7 nm for COP2 (average 7.1 nm diameter grains). The bumps in topography 

are ascribable to PCBM-rich domains. P3HT has a rougher surface than COP2, thus suggesting a higher 

degree of self-organization in the blend, which could foster the formation of ordered structure in the film 

[45] However, fullerene derivatives that have a strong tendency to self-crystallize (such as PCBM) do not 

mix well with P3HT, thus producing inhomogeneous composite films with a less efficient photoinduced 
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charge-transfer [46] and then a lower JSC [47]. Therefore, the use of COP2 as a photoactive blend, with 

no need for other EA species, is very promising, since the copolymer produces films with a very smooth 

surface, a more uniform molecular distribution, and a high interfacial area of the electron donor-acceptor 

domains, which acts positively on the final JSC and PCE, as confirmed by the data shown in Table 10. 

Further studies are in progress, with the aim to prepare regioregular copolymers with a fullerene content 

higher than COP2.  

6.6 CONCLUSIONS 

In this work, we have obtained important results toward the optimization and production of 

polymeric solar cells. The first goal we had set provided for the synthesis of a model compound that 

confirmed the feasibility of the direct functionalization of a bromoalkane with the fullerene moiety. After 

the confirmation that the model could be obtained, the synthesis was modified by replacing 1-

bromohexane with 3-(6-bromohexyl)thiophene, thus obtaining the monomer 3-(6-fullerenylhexyl) 

thiophene with a good yield and via a simple and straightforward synthesis procedure. The designed 

synthesis was adopted to prepare a soluble and filmable copolymer functionalized with 20% (in moles) 

of fullerene which provided a 4.19% photovoltaic efficiency when used as the photoactive layer in a 

polymeric solar cell, after a suitable optimization of the layer thickness and of the annealing procedure. 

The PCE obtained is higher than that of the reference cell and also of the values reported in literature 

for conventional BHJ solar cells based on the P3AT/PCBM system. The results obtained are especially 

encouraging. In fact, they show the possibility to obtain a photoactive polymer that is directly usable, 

without resorting to the preparation of the EA/ED blend (polymer/fullerene, carbon nanotubes or 

PCBM), thus avoiding the problems associated with the aggregation, segregation, and inhomogeneity of 

the components in the photoactive layer. 
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Table 12. List of ABBREVIATIONS and SYMBOLS 

BTPPC Benzyltriphenylphosphonium chloride 

CTFE Chlorotrifluoroethylene 

DBU 1,8-Diazabicyclo[5-4-0]-undec-7-ene 

DETA Diethylene triamine 

DMAC Dimethylacetamide 

d.o.g. Degree of grafting 

DSC Differential scanning calorimetry 

DTA Differential thermal analysis 

EDA (-C) Ethylene diamine (carbamate) 

HBTBP Hexamethylene-N,N’bis(tert-butyl 

peroxycarbamate HFP Hexafluoropropene 

HMDA Hexamethylene diamine 

HMDA-C Hexamethylene diamine carbamate 

HPFP 1H-pentafluoropropene 

MBTBP Methylene bis-4-cyclohexyl-N,N’(tert-butylperoxycarbamate) 

ODR Oscillating disc rheometer 

PMVE Perfluoro(methyl vinyl ether) 

PVDF Polyvinylidene fluoride 

t1/2 Half life 

TAC Triallylcyanurate 

TAIC Triallylisocyanurate 

TFE Tetrafluoroethylene 

THF Tetrahydrofurane 

VDF Vinylidene fluoride 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION ON FLUOROPOLYMERS 

Fluorinated polymers are particularly interesting and attractive compounds because of their 

properties. Indeed, the electronegativity of the fluorine atom implies strong C-F bonds (about 110 

kcal.mol-1), and a higher strength of the C-C bonds in fluorinated compounds (97 kcal.mol-1). It also 

supplies to fluoropolymers strong Van Der Waals forces between hydrogen and fluorine atoms [1-3], and 

it confers a lot of good properties to the fluorinated polymers such as: 

 Chemical, thermal, electric stabilities [4-6],  

 Inertness to acids, bases, solvents and oils,  

 Low dielectric constant, 

 Low refractive index,  

 No flammability, 

 High resistance to ageing, and to oxidation,  

 Low surface tension. 

Fluorinated polymers also range as a wide scope of thermoplastics, elastomers, plastomers, 

thermoplastic elastomers [7-14], and can be semi-crystalline or totally amorphous. Hence, fluorinated 

polymers have been used in many applications: building industries (paints and coatings resistant to UV 

and to graffiti), petrochemical and automotive industries, aerospace and aeronautics (use of elastomers 

as seals, gaskets, O-rings used in extreme temperature for tanks of liquid hydrogen for space shuttles), 

chemical engineering (high-performance membranes), optics (core and cladding of optical fibers), 

treatment of textile, stone protection (especially for old monuments), microelectronics [8-14], and for 

cable insulation. 

As a matter of fact, the performance of fluoropolymers, especially insolubility and fusibility can 

be improved by crosslinking. Indeed, the crosslinking reaction takes advantage of the base-sensitive 

characteristic of the VDF-based polymer [15]. The crosslinking is a chemical reaction between the 

polymer backbone and an ex-situ agent that possesses both same fonctions in order to couple covalently 

the polymeric chains together, to produce a network structure, and to increase the molecular weight. 

Sulphur has been the predominant curing agent in the rubber industry, and in 1840, rubber was 

with sulphur [16]. Many efforts have been devoted over the 40 years of existence of fluoroelastomers 

toward the development of practical crosslink systems. 
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Fluoroelastomers are now usually cured by nucleophiles such as diamines [17-31], or bisphenols 

[3,32-38], or with peroxides [3,35,39-43], by chemical reactions when the polymers based on VDF contain 

cure-site monomer, such as thiol function [44], by radiation, such as electron beam [45-52]. 

The cure chemistry of VDF based fluoroelastomers is connected with the strong polarity of the 

C-F bond and specific polarisation of molecules, which determine their selective ability to split off 

hydrogen fluoride under the influence of internal factors. 

1.2 PVDF 

Among fluoropolymers, polyvinylidene fluoride (PVDF) is a semi-crystalline and thermoplastic 

polymer, with a glass transition temperature of –40°C [53,54]. This polymer exhibits interesting thermal, 

chemical and physical properties, especially when it is co- or ter- polymerised with a fluorinated alkene 

[14,35,50,55-59]. Its main drawback is its sensitivity to base that can degrade it by creating insaturations. 

PVDF homopolymer is a long chain macromolecule endowed with a high crystallinity rendering it 

unsuitable as elastomer, and unsuitable for curing. So, copolymers of VDF with various comonomers 

can fall into three categories: 

1. when the amount of comonomers in the copolymer is small about that of VDF, the 

resulting materials are thermoplastics with a lower crystallinity than that of the PVDF 

[60,61]; 

2. for a bit higher content of comonomer, thermoplastic elastomers are obtained;  

3. for higher proportion of comonomers, the produced copolymers are elastomeric and 

amorphous with low intermolecular forces [35,50,57,58,62-66].  

In the case of the poly(VDF- co-HFP) copolymer, when the molar percentage of VDF is higher 

than 85%, the copolymer is a thermoplastic, whereas for a smaller content, the copolymer is an elastomer 

[35,50]. 

1.3 COPOLYMER BASED ON VDF 

VDF has been involved in radical copolymerisation with many monomers [14,60,61,67], listed in 

Table 1 [44,68-94]. 

Most common co- or termonomers of VDF [14,50] are hexafluoropropene (HFP) [80,82,83,95-

97], tetrafluoroethylene (TFE) [78,80,81,98,99], chlorotrifluoroethylene (CTFE) [78,79,100-102], 

trifluoroethylene (and in that case, interesting piezoelectrical materials have been obtained) [75], 

perfluoro(methyl vinyl ether) (PMVE) [77,84,103-105], and 1H-pentafluoropropene (HPFP) 
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[67,106,107]. Interestingly, functional fluoromonomers (also called cure site monomers) useful for further 

crosslinking, have been successfully used, bearing OH [86], CO2H [71,89], Si(OR)3 [94] functions, or 

bromine [87] and iodine atoms. Table 13 supplies a non-exhaustive list of fluoromonomers that were 

copolymerised with VDF, and their reactivity ratios ri, when assessed. 

Table 13. Monomer reactivity ratios for the radical copolymerization of VDF (A) with other fluoroalkenes (B) (and vinyl acetate and ethylene) 

Monomer B rA rB rArB 1/rA Ref. 

CH2=CH2 0.05 8.5 0.42 20.00 [68] 

CH2=CHOCOCH3 -0.40 1.67 -0.67 -2.5 [69] 

 0.50 2.0 1.00 2.0 [70] 

CH2=C(CF3)COOH 0.33 0 0 3.03 [71] 

CHF=CH2 0.17 4.2-5.5 0.71-0.94 5.88 [72] 

 0.20-0.43 3.8-4.9 0.76-2.11 2.33-5.00 [73] 

CH2=CFCF2ORF 0.38 2.41 0.92 2.63 [74] 

CF2=CHF 0.70 0.50 0.35 1.43 [75] 

CF2=CHCF3 9.0 0.06 0.54 0.11 [76] 

CF2=CHC6F13 12.0 0.90 10.80 0.08 [77] 

CFCl=CF2 0.73 0.75 0.55 1.37 [78] 

 0.17 0.52 0.09 5.88 [79] 

CFBr=CF2 0.43 1.46 0.63 2.33 [78] 

CF2=CF2 0.23 3.73 0.86 4.35 [78,80] 

 0.32 0.28 0.09 3.13 [81] 

CF3-CF=CF2 6.70 0 0 0.15 [82] 

 2.45 0 0 0.40 [80] 

 2.90 0.12 0.35 0.34 [83] 

CF2=CFOCF3 3.40 0 0 0.29 [84] 

CF2=CFOC3F7 1.15 0 0 0.86 [84] 

CF2=CFO(HFP)OC2F4SO2F 0.57 0.07 0.04 1.75 [85] 

CF2=CFCH2OH 0.83 0.11 0.09 1.02 [86] 

CF2=CF(CH2)2Br 0.96 0.09 0.09 1.0 [87] 

CF2=CF(CH2)3OAc 0.17 3.26 0.59 5.56 [88] 

CF2=CF(CH2)3SAc 0.60 0.41 0.25 4.07 [44] 

CF2=CFCOOCH3 0.30 0 0 3.33 [89] 

CF2=C(CF3)OCOC6H5 7.60 0.02 0.15 0.13 [90] 
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Although it is difficult to compare their reactivities (since 1) the copolymerisations were not 

carried out under similar conditions, 2) certain articles do not mention if the kinetics of copolymerisation 

were realised at low monomer conversion, and 3) various kinetic laws were used], it was worth examining 

a reactivity series of fluorinated monomers with VDF. The traditional method for the determination of 

a reactivity of a macroradical to several monomers was used. Indeed, it is common to compare the value 

1/rA = kAB/kAA, as the ratio of rate constants of co-propagation (kAB) to that of homo-propagation (kAA). 

Thus, the higher the 1/r value, the higher the copropagation reactivity of the radical. Based on the data 

in Table 13, the increasing order of relative reactivities of monomers to ~VDF macroradicals is as follows 

CF2=CHC6F13 < CF2=CHCF3 < HFP < PMVE < PPVE < CF2=CFC2H4Br < VDF < 

CF2=CFCH2OH < CF2=C(CF3)OCOC6H5 < TrFE < CTFE (recent value) ≈ BrTFE < 

CH2=CFCF2ORF < CF2=CFCOOCH3 < TFE < CF2=CFC3H6SCOCH3 < CF2=CFC3H6OAc < 

CH2=CHF ≈ CTFE (old value) < CH2=CH2 

1.4 OVERVIEW 

In order to improve their properties, poly(VDF-co-HFP) copolymers or poly(VDF-ter-HFP- ter-

TFE) terpolymers can be crosslinked by bisnucleophiles, such as diamines or bisphenols, or by 

irradiation. On the other hand, poly(VDF-ter-HFP-ter-termonomer containing an iodine or bromine 

atom) terpolymer can be crosslinked by peroxides/coagent systems. Those three main ways of 

crosslinking exhibit two main crosslinking mechanisms (ionic and radical mechanisms) and different 

properties. 

1.4.1 Different crosslinking agents 

Several curing systems have been investigated or developed for the crosslinking of 

fluoroelastomers. Some of them are [35,108] 

 high energy radiation [19, 45-52], 

 peroxide with or without coagent [3,35,39-43], 

 dithiols in combination with amines [19], 

 aromatic polyhydroxy compounds [3, 32-38], 

 diamines and their derivatives [17-31], 

 thiol-ene systems [44,50]. 
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Each curing system exhibits a different crosslinking mechanism, and results in different 

mechanical properties and crosslinking densities. Indeed, Table 14 [35] shows different mechanical 

properties for bisphenols and peroxides cured systems. 

Table 14. Improvement of mechanical properties of bisphenol, and peroxide-cured poly(VDF-ter-HFP-ter-TFE) terpolymer with post cure step. 

Properties Bisphenol Peroxide 

 Press cure1 Post cure2 Press cure1 Post cure2 

Modulus al 100% strain (MPa) 5.0 7.9 5.0 7.9 

Tensile strength at break (MPa) 10.0 13.8 9.7 15.9 

Elongation at break (%) 225 175 165 150 

Compression set (200°C, 70h) 

O-rings (%) 63 25 50 27 

Pellets (%) 85 20 52 20 

1 press cure at 177°C for 10 min 

2 post cure at 232°C for 24 h 

1.4.2 Compounding 

In order to improve the properties of the raw elastomer, many materials that enable to facilitate 

mixing or processing may be compounded with the vulcanizing agent [28,55], accelerators and accelerator 

activators to increase the rate of vulcanization and to improve product properties; fillers to enhance 

physical properties and /or to reduce costs; softeners enable to aid processing or to plasticize the product; 

antioxidants and other materials which slow down decomposition of the product by oxidation; heat 

and/or radiation; pigments and blowing agents. 

For the main additional materials, the proportions (in part per hundred of polymer) are [55]:  

 Raw Polymer 100; 

 Curing agent 1-6; 

 Basic metallic oxide 6-20; 

 Filler > 60. 
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1.4.3 Press-cure and Post-cure steps for crosslinking 

The best vulcanisate properties are obtained by a two step-process [35,58,109]. Fluoroelastomers 

and additives are generally molded in a press and then post cured in an oven [28]. 

First, the materials are press cured at different times and temperatures, depending on the size of 

the product, the structure of the polymer, the curing systems, and on end-use requirements (paints, O-

rings, membranes, seals) [28]. Press cure conditions vary from 4 minutes at temperatures approaching 

200°C for thin cross sections, to 30 min at 150-170°C for thick sections [28,110]. The purpose of this 

step is to develop sufficient crosslinks in the sample to prevent the formation of bubbles due to the 

release of trapped air during the early stages of the subsequent oven cure [111]. 

Then, the second step (post cure or oven-cure) is carried out in air or under nitrogen at higher 

temperature than that of the press cure, and under atmospheric pressure [35,58]. 

This post cure step is required to reach the best vulcanisate properties (tensile strength, modulus 

at 50 or 100% elongation, compression set resistance, elongation at break) [28,40,108,111]. Table 15 [35] 

shows the improvement of compression set resistance with post curing, for four samples containing 

poly(VDF-ter-HFP-ter-TFE) terpolymer crosslinked with a peroxide [2,5-bis(t-butylperoxy)-2,5-

dimethylhexyne] in the presence of triallyl/isocyanurate [35,108,112,113]. Table 2 [35] presents the 

improvement of some mechanical properties of bisphenol and peroxide cured systems with post cure. 

An improvement in compression set resistance is observed after post cure under nitrogen 

compared to that realised under air (Table 15). The C=C double bond of the polymeric backbone 

undergoes an oxidation from the oxygen of air atmosphere, that prevents from good compression set 

resistance. Table 15 shows a 50% increase in modulus at 100% elongation (M100) and tensile strength at 

break, and a 50% decrease in elongation at break. 
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Table 15. Compression set resistance measured at 204°C for 70h, of a peroxide cured VDF/HFP/TFE terpolymer. 

Compound Compression set % 

 Press Cured1 Post Cured2 

 Air Air N2 

A 71 38 20 

B 70 37 25 

C 59 27 12 

D 52 21 9 

Compound A: 100 phr polymer, 3 phr peroxide, 3 phr TAIC, 3 phr PbO 

Compound B: 100 phr polymer, 3 phr peroxide, 3 phr TAIC, 2 phr MgO, 2 phr ZnO 

Compound C: 100 phr polymer, 3 phr peroxide, 3 phr TAIC, 3 phr PbO 

Compound D: 100 phr polymer, 3 phr peroxide, 6 phr Ca(OH)2, 3 phr MgO 

Bromo cure site in A and B differed from that in C and D. 

1 press cure in air at 177°C for 15 min 

2 post cure in air or N2 at 232°C for 24 h [35] 

 

During the step of crosslinking of fluoroelastomers, water is formed, and post cure removes this 

water, whose presence prevents from full development of the diamine cure and causes reversion of the 

bisphenol cure [3,23,40,114]. Indeed, during press cure, water is formed from the reaction between the 

acid acceptor and HF, caused by dehydrofluorination. 

For thick sections, the temperature of the post cure oven is usually raised in several steps to 

prevent from fissuring of the part. Generally, 12-24h reaction time at a temperature of 200-260°C is used 

[28,35,58,110]. Typically, 200°C is sufficient for amines [59,111], whereas bisphenol and peroxide cures 

need higher temperatures (230 to 260°C). 

All these results suppose a difference in the crosslinking mechanism of bisphenols, peroxides and 

diamines cured systems, that are the most important crosslinking agents for VDF-based 

fluoroelastomers. The crosslinking mechanisms and the properties of the resulting crosslinked polymers 

are the subject of the following parts. 
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1.5 CROSSLINKING OF VDF-BASED FLUOROELASTOMERS 

1.5.1 Crosslinking with Amines and Diamines 

The curing by diamines, originally introduced in late 1950s, was a predominant way of 

crosslinking of raw fluoroelastomers until late 1960s, when bisphenol curing was introduced [55,58]. The 

polyamine system is the best for general use because of easier processing [96]. Indeed, it only needs the 

presence of hydrogen atoms in the polymer backbone. Moreover, the mechanism of crosslinking can be 

a simple addition on this backbone [96]. 

The diamine curing system generally results in relatively poor processing, safety concerns, thermal 

and ageing resistance, and compression set resistance. However, this cure system has demonstrated 

specific properties, such as excellent adhesion to metal [115]. 

The curing of elastomer with an amine or a diamine usually takes place in the three following 

steps [24,114,116,117]: 

(1) an elimination of HF (dehydrofluorination) from VDF segments adjacent to HFP in the main 

chain to generate internal double bonds, 

(2) a Michael addition of the diamine onto the resulting double bonds to form crosslinks, 

(3) an elimination of HF from the crosslinks, during post cure to form further double bonds. 

Although amine curing is no more used, it is useful to describe it in order to better understand 

what is happening during the crosslinking process. Amine curing is reported as an example. 

1.5.2 Dehydrofluoruration of  the Fluoropolymer 

The dehydrofluorination of a solution of Viton poly(VDF-co-HFP) copolymer treated with 

several amines, or heated at high temperature can be monitored by measurement of hydrogen fluoride 

elimination (titration of the HF in the solution) [5,15,19,116], infrared study [19,24,118], viscosity [19], 

solubility and determination of the gel content [5]. 

Solutions of Viton in tetrahydrofurane were treated with primary, secondary and tertiary 

monoamines for periods of several weeks at room temperature. The reaction was followed by the 

measurement of HF elimination by a titration of the hydrogen fluoride in the solution. Figure 75 [19] 

shows the evolution of the quantity of HF in the solution of THF as a function of time for primary, 

secondary and tertiary monoamines. All of the monoamines used caused dehydrofluorination of the 

polymer to some degree. Tertiary amines are the least efficient, primary amines by far are the most active. 
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Figure 75. Amount of elimination of HF from primary, secondary and tertiary amines cured Viton A. 

Figure 76 [24,118] shows the infrared spectrum of uncured poly(VDF-co-HFP) copolymer (FKM 

gum), before and after a thin film of polymer is heated in air at 300°C. Two new bands centered at 1580 

and 1750 cm-1 appeared after heating, which are assigned to the conjugated double bonds and to 

the -CH=CF2 end groups, respectively. Unsaturation is likely to be caused by elimination of HF from 

PVDF block of the FKM chain, in particular from the head- to-tail position of the structure. 

 

Figure 76. Infrared spectra of an uncured poly(VDF-co-HFP) copolymer before (A) and after (B) heating at 300°C for 20 min in air. 

So, in the presence of a base or under heating, the VDF-based fluoroelastomers are submitted to 

dehydrofluorination. 

The conjugated double bonds evidenced by infrared measurements allowed us to interpret a new 

mechanism. Figure 2 [118] exhibits the presence of isolated double bonds (1710 cm-1), and the presence 

of conjugated double bonds (1580 cm-1). It is proposed that the initial double bond (1710 cm-1) activates 

the elimination of HF from neighboring atoms leading to conjugated double bonds (1580 cm-1). This 

process would lead to the formation of a brown color [20,24,118]  
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Such a conjugate site would then be expected to react with a double bond, in an adjacent chain 

by a Diels Alder reaction, leading to a fluorinated cyclohexene which should readily loses HF to form an 

aromatic ring (Scheme 20) [19,119]. 

 

Scheme 20. Diels-Alder reaction during post-curing forms aromatic ring with loss of HF. 

The observed absorption at 1580 cm-1 could be ascribed to such a site. 

The evolution of the solubility of a raw poly(VDF-co-HFP) copolymer heated in air at 250°C is 

shown in Table 16 [24]. Indeed, there is an initial rapid decrease in solubility, and then it proceeds to rise 

slowly. This type of variation of solubility, together with the formation of a swollen gel, indicates the 

simultaneous occurrence of crosslinking and chain scission in the polymer [5,114]  

Table 16. Soluble fraction in acetone of a poly(VDF-co-HFP) copolymer heated in air at 250°C. 

Time 

(hours) 

Fraction soluble in 

acetone at 28°C 

Volume fraction of polymer in swollen gel fraction at 

equilibrium in acetone at 28°C 

3 0.78 Not determined 

24 0.52 0.02 

42 0.47 0.02 

48 0.48 0.02 

137 0.53 0.01 

During heating or attack with a base, the polymer undergoes a dehydrofluorination, creating 

conjugated double bonds that can be involved in a Diels Alder reaction. But, at higher temperature or in 

the presence of a stronger base, it also creates degradation such as oxidation or scissions that can be 

evidenced by the measurements of the decrease in the intrinsec viscosity, caused by the decrease in 

molecular weight [19]. In order to avoid any degradation, the created double bonds can become the site 

of the addition of several agents like diamines, bisphenols or peroxides, that can increase the mechanical 

and chemical properties. 
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In VDF-based fluoropolymers, and especially poly(VDF-co-HFP) copolymer, 

dehydrofluorination occurs on special sites. 

Paciorek et al. [23] studied the crosslinking of amines on several fluoro-compounds models. The 

model of addition of butylamine onto 1,5,5-trihydro-4-iodoperfluorooctane and 

4-hydroperfluoroheptene-3, in diethylether at room temperature, is the only one known. It proceeds 

according to the following scheme: 

C2F5CFICH2C3F7 + H2NC4H9  C2F5C(=NC4H9)CH2C3F7 + C2F5C(NHC4H9)=CHC3F7 

The reaction occurs mainly on the carbon adjacent to the iodine atom, because 

dehydrofluorination is the main process under the selected conditions. 

From 19F NMR characterisation, Schmiegel [3,15,32,33] showed that a polymer based on VDF 

units with HFP, TFE, PMVE co- or ter-monomers in solution of DMAC can undergo 

dehydrofluorination from the n-Bu4N
+ -OH in specific sites. 

Figure 77 [33] represents the 294.1 MHz 19F NMR spectra of poly(VDF-co-HFP) copolymer 

before (top) and after (bottom) treatment with hydroxylic base in DMAC at 20°C. Peaks A and B are 

assigned to CF3 group, peaks C, D, E, F, G, H, I, J, K,and L are attributed to CF2 of VDF, peaks M and 

N are assigned also to CF2 of the HFP, and finally peaks O and P are assigned to CF. The small 

resonances A, G and O correspond to HFP inversions, whereas F, J, K, and L are attributed to VDF 

inversions. Spectrum at the bottom exhibits selective intensity reduction of resonance B, H, I, M, N and 

P after addition of Bu4N+ -OH. A peak assigned to CF3 groups of –C=C(CF3)-C-appears also at -55 

ppm. These observations can be accommodated to the highly selective dehydrofluorination of isolated 

VDF units, i.e. HFP- VDF-HFP structures [3,32-34]. The concentration of this site in a 3.5 poly(VDF-

co-HFP) copolymer is about 0.6 mol/kg. The same results were observed in poly(VDF-co-TFE) and 

poly(VDF-co-PMVE) copolymers, and poly(VDF-ter-HFP-ter-TFE) and poly(VDF-ter-PMVE-ter-

TFE) terpolymers [33]. For example, in poly(VDF-co-TFE) copolymer, dehydrofluorination occurs on 

VDF units having a TFE-VDF-TFE triad, or in poly(VDF-ter- HFP-ter-TFE) terpolymer, it occurs on 

HFP-VDF-TFE structure. 
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Figure 77. 19F-NMR spectra of a poly(VDF-co-HFP) copolymer before (top) and after (bottom) treatment with hydroxyl base 
(2,5-trifluorobenzotrifluoride internal standard). Changes in peak intensities are indicated.  

A reaction scheme of dehydrofluorination of poly(VDF-co-HFP) copolymer in the presence of 

a base was given by Schmiegel (Scheme 21) [32,33]. 

First, the attack of hydroxide creates a double bond on VDF units in VDF-HFP diad. Then, a 

fluoride ion rearrangement of the initial double bond occurs. The resulting allylic hydrogen is abstracted 

by fluoride, followed by an elimination of a second fluoride. So, a bifluoride and a formally conjugated 

non-coplanar diene are formed. Then, a nucleophilic attack by the hydroxide on the diene forms an enone 

and subsequent attack of fluoride ion onto the highly acidic hydrogen of the tertiary carbon atom. The 

final product is the dienone [32,33]. 



Part 2: FKM  Chapter 1: Introduction 

157 

 

Scheme 21. Dehydrofluorination mechanism of poly(VDF-co-HFP) copolymer in the presence of base. 

1.5.2.1 Role of the acid acceptor 

An acid acceptor of metal oxide type is a necessary ingredient of all VDF-based polymer curing 

formulations. No cure is obtained without any metal oxide which did not contain magnesium oxide, and 

the state of cure developed is directly related to the amount of MgO [111,114,120]. 

Figure 78 [111] represents the evolution of the tensile strength and the modulus versus the 

quantity of MgO, for a trimethylamine hydrochloride cured poly(VDF-co-HFP) copolymer. Indeed, 

there is an evidence by infrared that MgO contributes to the elimination of HF from the polymer during 

irradiation, and probably also in the course of the chemical cures. 
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Figure 78. Effect of MgO on the mechanical properties of a formula comprising Viton A cured with dithiol. 

Figure 79 [116] shows the variation of the amount of fluoride ions at 200°C with MgO content. 

The presence of MgO does not prevent from HF elimination; it merely reduces its rate of evolution from 

the elastomer, a 15% addition giving a result comparable with that of the raw polymer alone. 

 

Figure 79. Evolution of the yield of fluoride atom of VDF-based fluoropolymer heated at 200°C versus time and amount of MgO (acid acceptor) 

 

The reaction between MgO and HF is given in the following scheme [114]:  

MgO + 2HF  MgF2 + H2O 

Several metal oxides can be used as HF scavengers for VDF-based polymers. The relative 

efficiencies of a number of basic oxides, hydroxides and carbonates as HF acceptors at approximately 

275°C are illustrated in Figure 80 [116]. It is apparent that there are many variations in the efficiencies of 

the different compounds. The decreasing order of efficiencies is as follows: 

CaO >> Li2O ≈ B2O3 ≈ BeO > Al2O3 > MgO > TiO2 
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The hydroxides are significantly better acceptors than their analogous oxides. The decreasing 

order of efficiencies is [116]: 

Ca(OH)2 > Mg(OH)2 > LiOH > Al(OH)3 

Finally, the decreasing order of efficiencies for carbonates is [116]:  

CaCO3 > Li2CO3 > MgCO3 > Na2CO3 > K2CO3 

The most commonly used acid acceptor is MgO. 

Thus, dehydrofluorination of VDF comonomer in the diad is the first step of crosslinking 

mechanism with diamine. The second step consists in the addition of the amine or the diamine onto that 

unsaturation. 

 

Figure 80. Comparison of the efficiency of acid acceptors: a) metal oxide at 275°C, b) hydroxide acceptors at 275°C and c) carbonate acceptors at 
275°C. 
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1.6 CROSSKLINKING WITH BISPHENOLS 

Bisphenols are presently the predominant crosslinking agents for curing fluorocarbon-based 

elastomers. Bisphenols curing was developed in the late 1960ies and started replacing the diamine cure 

in the early 1970ies [109,135-138]. Because of processing and property advantages, the most commonly 

used compound is bisphenol AF (2,2-bis(4-hydroxyphenyl) hexafluoropropane). Others, like substituted 

hydroquinone, and 4,4’-disubstituted bisphenols also work well and are used commercially to a lesser 

degree [35,36,38,58]. As in cases above, crosslinking reaction was evidenced by 
19

F NMR. 

1.6.1 Crosslinking mechanism 

The crosslinking mechanism takes place in three steps: elimination of HF creating double bonds, 

then reorganisation of the double bonds, such as in Scheme 2, and finally substitution of the bisphenol 

onto the double bond. 

Crosslinking agent require accelerators to make that reaction more efficient. For example, to 

enable the dehydrofluorination of a VDF/HFP diad, bisphenols need to react with a metal oxide to give 

the phenolate ion, which in turn reacts with the phosphonium or tetraalkylammonium ion to give 

intermediates I and II. 

R4P
+ -

OArOH  R4N
+ -

OArOH 

I    II 

These intermediates are strong bases [35]. The crosslinking mechanism proposed by Schmiegel 

is shown in Scheme 81 [33,35,64,139]. 
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Figure 81. Crosslinking mechanism with bisphenol. 

In the first step (the dehydrofluorination) Viton copolymer is attacked by the intermediate 

described below, creating diene. Then, the bisphenol-derived phenolate (
-
OArOH) attacks the 

intermediate diene and finally leads to the dienic phenyl ether crosslinks [32,33]. This reaction is a 

substitution. The resulting product surprisingly shows good properties, particularly with regard to 

oxidative and hydrophilic stability. 

1.6.2 19F NMR study 

The mechanism of crosslinking was evidenced by 
19

F NMR, and Schmiegel et al. [3,32,33] studied 

the 
19

F NMR spectra of poly(VDF-co-HFP) copolymer treated in dimethylacetamide (DMAC), with 

DBU (1,8-diazabicyclo[5-4-0]-undec-7-ene) and bisphenol AF. DBU is strong enough to enable a 

dehydrofluorination of the polymer and to ionise the phenol, but is sterically hindered for being an 

efficient competitor of phenoxide for the fluoroolefin [33]. Figure 82 [33,34] represents the 
19

F NMR 

spectra of a base (DBU)-treated soluble polymer (upper spectrum), and the gel produced by base in the 

presence of bisphenol-treated polymer (lower spectrum). Both spectra exhibit two new peaks at –55 and 

–62 ppm, assigned to – C=C(CF3)-C- isomeric structure of the CF3. So, poly(VDF-co-HFP) copolymers 

treated with DBU and with DBU/bisphenol system undergo at least dehydrofluorination and 

rearrangment, such as in Scheme 2. However, to prove the crosslinking of bisphenol-AF onto the 

copolymer, a 
19

F NMR spectrum of the same sample after precipitation must be recorded. 
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Figure 82. 19F-NMR spectra of a poly(VDF-co-HFP) copolymer treated with DBU in a solution of DMAC (top) and the gel which results 
from this reaction in the presence of BAF (bottom). 

Figure 83 [33,34] shows two 
19

F NMR spectra of poly(VDF-co-HFP) copolymers. The first one 

(top) deals with the spectrum of poly(VDF-co-HFP) copolymer treated with DBU and the bisphenol AF 

in DMAC, while the other one (bottom) represents the same sample but precipitated twice from an 

appropriate solvent for free phenol or any unreacted phenolate (acetonitrile). The 
19

F NMR spectra of 

the washed polymer (bottom) clearly shows the presence of the geminal trifluoromethyl groups. So, after 

precipitation in acetonitrile of all the phenol and phenolate that did not react with the copolymer, the 

peak at –55 ppm was still noted. It proves that a part of the bisphenol-AF enabled the crosslinking of 

the copolymer. Under those conditions, about 40% of the phenolate were incorporated based on the 

internal p-fluoroanisole standard. 
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Figure 83. 19F-NMR spectra of a poly(VDF-co-HFP) copolymer treated with DBU and BAF in as solution of DMAC (top) and the same 
sample after several purifications (bottom). 

Hence, 
19

F NMR results allowed us to evidence that crosslinking was achieved. 

1.6.3 Oscillating Disc Rheometer (ODR) response 

Bisphenol-cured fluoropolymers are usually analysed by ODR. Reaction time and crosslinking 

density can be deduced from ODR curve. 

This equipment can plot the evolution of the torque (in Nm) as function of time (in min), at a 

given temperature, for a crosslinkable mixing (copolymer, crosslinking agent, accelerators, coagent...). 

Usually, the torque starts to decrease (during an induction period), and when the crosslinking reaction 

occurs it increases rapidly, reaching a maximum when the reaction is finished. 

Bisphenols curing systems are usually used for O-ring applications [26]. Indeed, they exhibit a 

high resistance to high temperature compression set. Figure 84 [3,33,35] depicts the evolution of a 177°C 

cure response by ODR, of a bisphenol AF (BAF) curing poly(VDF-co-HFP) copolymer. 
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Figure 84. Cure response by ODR at 177°C of a VDF-based polymer cured with BAF. 

The ODR response is characterised by an induction period, which depends on the amount of the 

accelerator (benzyltriphenylphosphonium chloride or BTPPC), or amount of bisphenol. High Bp-AF 

amounts increase the length of the induction period and lead to high cure states. The maximum cure 

state is the initial slope of the curve; ts2, the time to initiation; tc90, the time to 90% completion of cure; 

ML, the minimum torque; MH, the maximum torque; and MH-ML, the degree of state of cure [3,33,35]. 

In Figure 20, at 177°C, and after a 2.5 minutes induction period, the reaction of crosslinking is practically 

complete after 5 min. Only a 2% increase in cure state occurs between 13 and 60 min. The final state of 

cure does not change with increasing temperature [3,33,35]. When BTPPC is omitted from the standard 

recipe, no cure occurs within one hour at 177°C. 

Figure 85 [3,33] shows the dependence of the ODR cure state versus Bp-AF concentration, in 

the presence of standard concentration of Ca(OH)2, MgO, BTPPC and carbon black. It is noted that the 

greater the concentration in bisphenols, the higher the ODR cure state, so the higher the crosslinking 

density. The lower line shows that the accelerator BTPPC in the absence of the bisphenol can also lead 

to a substantial cure state, although only at very high concentrations [3,33]. 



Part 2: FKM  Chapter 1: Introduction 

165 

 

Figure 85. Evolution of the ODR units (crosslink density) at 177°C: (O) with variation of BAF concentration (in phr), in the presence of 
BTPPCl and (Δ) with BTPPCl concentration in the absence of BAF. 

1.6.4 Limitations of  the bisphenol-cured fluoroelastomers 

Bisphenol-cure is a very rapid crosslinking system, as shown by ODR, but this system presents 

also some limitations. 

The crosslinking mechanism between poly(VDF-ter-PMVE-ter-TFE) terpolymer and bisphenols 

generates elimination of a trifluoromethoxide and a fluoride ion, giving a CF=CF double bonds. The 

trifluoromethoxide reacts with hydrogen, giving trifluoromethanol that is further degraded in air to 

hydrogen fluoride and carbon dioxide, which results in the formation of a large amount of volatiles 

[3,33,35]. The cured system, therefore, shows excessive porosity and poor vulcanisate properties due to 

volatiles produced during the curing process. For this reason, it is advisable that VDF-based polymers 

containing perfluoroalkyl vinyl ethers have a special cure site with curing chemistry different from 

nucleophilic attack on the backbone. Such a chemistry is the peroxide induced crosslinking which was 

specially developed to bypass these kinds of problems. 

1.7 CROSSLINKING WITH PEROXIDES 

Another technique to crosslink VDF containing fluoropolymers requires peroxides. 

The first peroxide cure agents were used in 1929. But the vulcanisates obtained had poor physical 

properties, and poor resistance to heat ageing when compared to sulphur-cured vulcanisates. 
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Braden and Fletcher [140] described the vulcanisation of natural rubber with dicumyl peroxide 

using different compounding ingredients and comparing it with sulphur-cured compounds. 

Since 1950s, peroxides/triallylisocyanurate systems, which enable crosslinking of fluoropolymers 

through a free radical mechanism, have been established as the best-known 

non sulfurated crosslinking agent. 

1.7.1 Reaction conditions 

That kind of crosslinking is more easily achieved when the polymer bears specific group. This 

group or atom can be introduced into the polymer from the direct terpolymerisation of VDF and 

fluoroalkene. 

A fluorinated monomer susceptible to copolymerise or terpolymerise vinylidene fluoride is 

needed to undergo free-radical attack to render peroxide curable the elastomeric co- or 

terpolymers of VDF [35]. So, this monomer must be functionalized or halogenated to ensure a free-

radical crosslinking. The main used monomers are bromine-containing fluoroolefins such as [42,43]: 

 Bromotrifluoroethylene, BrCF=CF2 [42,141,142] 

 1-bromo-2,2-difluoroethylene, BrCH=CF2 [143-145] 

 4-bromo-3,3,4,4-tetrafluorobutene-1, CH2=CHCF2CF2Br [146-148] 

 3-bromoperfluoropropylene, BrCF2CF=CF2 [149] 

 Fluorobutylene BrCF2CF2CF=CF2, BrCF2CF2CH=CF2, F2C=CFOC2F4Br [150-152] 

 1,1,2-trifluoro-4-bromobutene, F2C=CFC2H4Br [87] 

The VDF-based polymer containing the brominated monomer gives free radical intermediates 

on its polymeric backbone upon attack by peroxides [3,35,40,41,62-65,134]. Fluoroelastomers containing 

iodine or bromine atoms can be cured with peroxides. Indeed, modifications of fluorocarbon elastomers 

with perfluoroalkyl iodides allow to introduce iodine end groups on the polymeric chain [35,153-158]. 

These polymers also lead to free radical intermediates upon attack by peroxides, which in turn crosslink 

into a network in the presence of a radical trap. Thus, the peroxide needs a coagent to trap the polymeric 

radicals. 

Aromatic as well as aliphatic peroxides can be used. Diacyl peroxides give low crosslinking 

efficiency and usually require 10 phr for adequate curing. Some dialkyl peroxides and peresters give high 

crosslinking efficiencies. However, mainly di-tertiary butyl peroxide and dicumyl peroxide are able to cure 

compounds containing reinforcing carbon black fillers [16]. 
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The main used peroxides are: 

 dibenzoyl peroxide, t1/2 = 1h at 92°C [16]: 

 

 di-t-butyl peroxide, t1/2 = 1h at 132°C [16]: 

 

 dicumyl peroxide, t1/2 = 1h at 132°C [16,159]: 

 

 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, t1/2 = 1h at 105°C [16]: 

 

 2,5-bis-(t-butylperoxy)-2,5-dimethylhexane, t1/2=1h at 134°C [40,159]: 

 

 2,5-bis-(t-butylperoxy)-2,5-dimethylhexyne, t1/2=1h at 141°C [40,159]: 

 

 α,α’-bis(t-butylperoxy)diisopropylbenzene, t1/2 = 1h at 134°C [39,159]: 

 

The coagents are used to enhance the crosslinking efficiency of peroxide cured compounds. They 

are generally di- and trifunctional vinyl compounds, such as: 

 



Part 2: FKM  Chapter 1: Introduction 

168 

 1,2-polybutadiene [16,159]:  

 

 ethylene glycol dimethacrylate [16,159]: 

 

 triallyl phosphate [16]: 

 

 triallylisocyanurate (TAIC) or triallyl-1,2,5-triazine-2,4,6-(1H,3H,5H)-trione 

[35,40,95,97,160]: 

 

 triallylcyanurate (TAC), or 2,4,6-triallyloxy-1,2,5-triazine [16]: 

 

The triazine ring is chemically and thermally stable. So, it reinforces the crosslinking network. But 

the best coagent is TAIC. 

The crosslinking reaction also needs metal oxides such as Ca(OH)2, CaO, MgO, ZnO, and PbO 

to absorb traces of HF generated during the curing process [35], MgO, being the most efficient one, as 

shown in a case above. 
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1.7.2 Importance of  the coagent 

The coagent, whose most efficient one is TAIC, is essential in the peroxide-cure mechanism. 

Indeed, it permits the reaction of crosslinking and improves the compression set resistance. 

A poly(TFE-alt-P) copolymer is mixed with the α,α’-bis(t-butylperoxy)-p-diisopropylbenzene (5 

phr), different coagents, such as divinylbenzene, N,N'-m-phenylenedimaleimide, 1,2- polybutadiene, 

trimethylolpropane trimethythacrylate, diallylmelamine, TAC, TAIC (3 phr), MgO as acid acceptor (10 

phr), and carbon black (35 phr), to investigate the influence of the different coagents on the gel fraction 

and the compression set resistance [39]. Each sample is press cured at 160°C for 30 min, and oven cured 

at 200°C for 2h. 

Table 17 [39] exhibits the effects of the coagent on peroxide vulcanisation. By considering the 

compression set percentage, TAIC is found to exhibit the lowest compression set, so it is the most 

efficient coagent. Basic metal also contributes to improve the compression set resistance. Indeed, the 

percentage of compression decreases from 75 to 62% thanks to calcium carbonate in the presence of 

TAIC. 

Table 17. Influence of the coagent on the gel fraction and the compression set resistance of a peroxide-cured poly(VDF-co-HFP) copolymer 
(Mn=100000 g/mol). 

Coagent Gel fraction Compression set (%) 

None 0.44 100 

Divinylbnzene 0.50 100 

N,N’-m-phenylenedimaleimide 0.70 98 

1,2-polybutadiene (Mw=2000) 0.66 100 

Trimethylolpropane trimethacrylate 0.77 94 

Diallylmelamine 0.76 95 

Triallyl cyanurate (TAC) 0.80 85 

Triallyl isocyanurate (TAIC) 0.84 75 

Triallyl isocyanurate + CaCO3 0.89 62 

Compound (phr): polymer 100, α,α’-bis(t-butylperoxy)-p-diisopropylbenzene 5, MgO 10, carbon black 35.  

Vulcanization conditions: press cure at 160°C for 30 min, and oven cure at 200°C for 2 h. 
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Figure 86 [39,40] shows the gel formation as a function of the peroxide level. The gel fraction 

gradually increases with the peroxide level, when coagent is not present. The cure-promoting effect of 

the TAIC is remarkable, yielding a gel fraction of nearly 90% at low peroxide dose. So, the crosslinking 

density is not really influenced by the level of peroxide when coagent (TAIC) is introduced. 

 

Figure 86. Evolution of the gel fraction as a function of peroxide dose (phr) for a peroxide-cured poly(TFE-alt-P) copolymer (a) without any 
coagent; (b) with 3 phr of TAIC; (c) with 2.4 phr of divinylbenzene; (d) with 3 phr of TAC. 

The same result is obtained in the presence of the 2,5-bis-(t-butylperoxy)-2,5-dimethylhexane 

[40]. A poly(VDF-co-HFP) copolymer was crosslinked by this peroxide in the presence of TAIC, by 

oscillating disk rheometer (ODR) at 177°C for 30 min. MH-ML represents the measured cure state (or 

crosslinking density in N.m). 

Figure 87 [40] shows that cure state tends to be more drastically influenced by coagent 

concentration than peroxide concentration. Indeed, Figure 87 shows that with an unchanged amount of 

3 phr for the coagent, and by increasing the quantity of peroxide, the cure state remains constant, whereas 

with a constant amount of 3 phr of the peroxide, and by increasing the amount of the coagent, the cure 

state increases. However, cure rate is influenced by both TAIC concentration and peroxide 

concentration. 
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Figure 87. Interactions between peroxide and coagent, in the evolution of initial cure state (Nm) of a poly(VDF-co-HFP) copolymer, measured 
by ODR at 177°C for 30 min. 

1.7.3 Influence of  the nature and the amount of  the peroxide 

Lots of peroxides enable the curing of VDF-based fluoropolymers, but the nature of the 

peroxides, and the molar amount can influence many different factors such as the curing temperature 

and the gel fraction. 

Identical cure systems are crosslinked, with either 2,5-bis-(t-butylperoxy)-2,5-dimethylhexane, or 

2,5-bis-(t-butylperoxy)-2,5-dimethylhexyne [35,40]. Table 18 [35] shows the different cure state obtained 

when changing the peroxide and the temperature. For both peroxides, the cure state exhibits a maximum 

at a fixed temperature. For 2,5-bis-(t- butylperoxy)-2,5-dimethylhexane, the cure state is maximum at 

177°C, whereas with 2,5-bis- (t-butylperoxy)-2,5-dimethylhexyne, it is maximum at 182°C. Moreover, 

2,5-bis-(t- butylperoxy)-2,5-dimethylhexane is also more efficient than 2,5-bis-(t-butylperoxy)-

2,5-dimethylhexyne. Indeed, the first peroxide reaches a cure state of 8.6 Nm, whereas it is 7.7 Nm for 

the second one. 
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Table 18. Crosslinking of two peroxides onto poly(VDF-co-HFP) copolymer and the influence of their cure temperature on ODR values. 

Cure temperature 

(°C) 

Peroxide half-life 

(min) 

ODR Values 

ts2 

(min) 

tc90 

(min) 

Cure state, MH - ML 

(Nm) 

2,5-bis-(t-butylperoxy)-2,5-dimethylhexane 

160 4.80 4.0 24.0 8.0 

177 0.80 1.6 8.3 8.6 

190 0.24 1.4 4.6 8.2 

204 0.07 0.8 2.8 7.9 

2,5-bis-(t-butylperoxy)-2,5-dimethylhexyne-3 

160 18.7 7.1 41.0 - 

177 3.4 3.4 14.0 7.7 

190 1.0 2.1 7.5 7.7 

204 0.3 1.2 4.2 7.5 

 

Gel fractions were measured from different poly(TFE-alt-P) copolymers cured by peroxide. In 

Table 19 [39], 30 eq.mol-1 polymer of peroxide (acyl-, alkyl- or hydro-) are added to a poly(TFE-alt-P) 

copolymer and vulcanised in mold at 160°C for 30 min, and post cure at 200°C for 2h. Gel fraction 

results indicate that these peroxides achieve vulcanisation, except for the hydroperoxide which tends to 

decompose ionically. The best result was obtained with α,α’-bis(t-butylperoxy)diisopropylbenzene, but 

even in this case, the gel fraction was only 44% because of the absence of a coagent. 
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Table 19. Half-life and gel fraction values of poly(TFE-co-P) copolymers (Mn=100000 g/mol) cured with acyl-, alkyl- or hydroperoxides. 

Peroxides Type Peroxide group t1/2 (min) Gel fraction 

 

Acyl 2 1.2 0.05 

 

Alkyl 2 4.0 0.44 

 

Alkyoxy or methyl 1 12.0 0.10 

 

Hydroxy 1 6.0 0.00 

The samples are press cured at 160°C for 30min and post cured at 200°C for 2 h. 

A rheometric study [159] was carried out by different tested poly(VDF-ter-HFP-ter-TFE) 

terpolymers cured by peroxides (dicumyl peroxide (40%) for P-1; 1,3-bis(tert- butylperoxisopropyl)-

benzene (40%) for P-2; 1,1-bis(tert-butylperoxy)-3,3,5- trimethylcyclohexane (40%) for P-3; 2,5-bis-(t-

butylperoxy)-2,5-dimethylhexane (45%) for P-4; 2,5-bis-(t-butylperoxy)-2,5-dimethylhexyne (45%) for P-

5) with the same coagent (TAIC). Table 20 [159] gives the composition of the compounds used in the 

study. Compounds (FP-1 to FP-5) differ only from the type and the amount of the peroxide. 
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Table 20. Composition of different Viton GF compunds cured with peroxide. 

Component Compound 

FP-1 FP-2 FP-3 FP-4 FP-5 

Viton GF1 100 100 100 100 100 

Carbon black  30 30 30 30 30 

PbO 3 3 3 3 3 

TAIC 3 3 3 3 3 

P-12 3     

P-23  4.8    

P-34   3.4   

P-45    3  

P-56     3 

1poly(VDF-ter-HFP-ter-TFE) terpolymer 

2P-1 = dicumylperoxide 

3P-2 = α,α’-bis(t-butylperoxy)diisopropylbenzene, 

4P-3 = 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane 

5P-4 = 2,5-bis-(t-butylperoxy)-2,5-dimethylhexane 

6P-5 = 2,5-bis-(t-butylperoxy)-2,5-dimethylhexyne-3 

 

Figure 88 [159] is the cure response of an oscillating disc rheometer of the compounds mentioned 

in Table 20. Figure 88 demonstrates that the rate of crosslinking varies drastically for the industrial 

peroxides. Efficiencies of P-4 and P-5 are outstanding as compared to the three other peroxides, but in 

the presence of P-3, no crosslinking could be detected by rheometric curve. 

So, the following decreasing activity series of the peroxides can be suggested: 

P-5 ≈ P-4 >> P-1 ≈ P-2. 
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Figure 88. Rheometer curve of the compounds containing different peroxides. 

1.7.4 Mechanism of  crosslinking 

The crosslinking mechanism with peroxide/ TAIC system is slightly different from these of 

diamine or bisphenol ones. 

Scheme 22 [3,16,35] shows the most probable reaction taking place in a fully compounded stock. 

An initial process is the thermally induced homolytic cleavage of a peroxide molecule to yield two oxy 

radicals. The primary decomposition of the 2,5-bis-(t-butylperoxy)-2,5- dimethylhexane leads to the 

formation of a t-butoxy radical, which may, in a minor reaction, abstract a hydrogen atom to give a t-

butanol, and in a major reaction (usually from 120°C), decomposes into acetone and methyl radical. The 

methyl radical, in turn, can abstract a bromine atom from the polymer, to give methyl bromine, or add 

to the triallyl(iso)cyanurate to give a more stable radical intermediate. These intermediate radicals abstract 

bromine from the polymer to generate polymeric radicals. The driving force for the chain reaction during 

propagation is the transfer of a bromine atom from the electron-poor fluoropolymer to an electron-rich 

hydrocarbon radical on the coagent. Crosslinking takes place when the polymeric radicals add to allylic 

bonds of the trifunctional coagent. The coagent, therefore becomes the crosslinker. 
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Scheme 22. Crosslinking mechanism with peroxide. 
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The cure temperature chosen in peroxide formulations depends on the stability, and the half-life 

of the peroxide. Peroxides with acid groups decompose at lower temperatures than these involving dialkyl 

or diaryl peroxide. Thus, dicumyl peroxide offers better processing safety than dibenzoyl peroxide does. 

According to Bristow [161], to obtain peroxide cured natural vulcanisates endowed with the best 

properties, cure times should not be less than one hour at 160°C, 3h at 150°C, and 8h at 140°C. 

Peroxide and bisphenol or diamine- cured systems are differentiating by the type of reaction of 

crosslinking. Bisphenols or diamines exhibit a dehydrofluorination of the fluoropolymer backbone, 

followed by a Michael addition for the diamine, and a substitution of thefluorine atom for the bisphenols. 

Peroxide-cure reaction is a free radical attack, and so this system needs special cure site monomers. 

Another important crosslinking system that implies radical is the radiation crosslinking. 

1.8 COMPARISON OF PHYSICAL AND MECHANICAL PROPERTIES 

All the different cured systems mentionned previously differ from the crosslinking agents and 

mechanism, but also from the crosslinking density, and the mechanical properties, such as compression 

set resistance, elongation at break, modulus at 100 and 200%, tensile strength, hardness of the cured 

material, etc... The comparison of the crosslinking density and the different mechanical properties for the 

main cured systems (diamines, bisphenols and peroxides) is the subject of this part. 

Regarding resistance to acids (H2SO4, HNO3), to bases (NaOH, NaClO), and to water, by 

measuring the volume increase after immersion, it is clear that peroxide-cured elastomers are more 

resistant to acids, to bases and to water than those from diamine one. Indeed, this last system decomposes 

when immersed in a strong base or an acid solution. 

Nevertheless, diamine-cured systems have a lower percentage of volume increase after immersion 

in oil and fuel oil than peroxide ones. 

Figure 89 [3,35,134] compares the crosslinking density of post cure diamine, bisphenol or 

peroxide cured systems at 204°C under nitrogen. The vulcanisate crosslinking density of bisphenol and 

peroxide cured systems, before and after post curing remains the same, whereas that of the diamine 

vulcanisate increases substantially. This implies that diamine is a better crosslinking agent than bisphenol 

or peroxide regarding crosslinking densities. 
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Figure 89. Crosslinking density of cured gum stocks versus post cure time at 204°C, under nitrogen: (A) diamine cured system; (B) peroxide 
cured system and (C) bisphenol cured. 

A Viton A-HV (poly(VDF-co-HFP) copolymer) is crosslinked with a same amount of a diamine 

(biscinnamylidene hexamethylene diamine or LD-214) and a peroxide (benzoyl peroxide), in the presence 

of Maglite D (MgO) [23]. Different mechanical properties (tensile strength, elongation at break, and 

hardness) are evaluated for both press cure and post cure systems. Tables 21 I and II [23] shows that 

peroxide cure system leads to materials which exhibit higher tensile strengths, whereas diamine improves 

the elongation and hardness of the resulting crosslinked macromolecules. Table 16 II also shows that 

post cure step improves readily each mechanical property (tensile strength, elongation and hardness). So, 

this step is essential in the crosslinking mechanism. 

Table 21. Composition of vulcanizates I and II. 

Components Vulcanisate I (phr) Vulcanisate II (phr) 

Viton A-HV1 100 100 

Maglite D2 15 15 

LD-2143 4 - 

Benzoyl peroxide, 95% - 4 

1Viton A-HV = poly(VDF-co-HFP) copolymer 

2Maglite D = MgO 

3LD-214 = biscinnamylidene hexamethylene diamine 
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Other mechanical properties and resistance to bases and to acids are studied for a poly(TFE-alt-P) 

elastomer cured with a peroxide (α,α’-bis-(t-butylperoxy)-p-diisopropylbenzene), and a poly(VDF-ter-

HFP-ter-TFE) terpolymer cured with a diamine (N,N’ dicinnamylidene-1,6- hexanediamine) (Table 22) 

[39]. 

As in Table 21 II, peroxide-cured systems exhibit a better tensile strength, and a better 

compression set resistance, whereas diamines exhibit higher elongation at break and hardness. 

Table 22. Mechanical properties of vulcanizates I (diamine cure) and II (peroxide cure) after press cure at 150°C for 30min and post cure from 
120°C to 200°C at heating rate of 25°C/h then heat at 200°C for 24h. 

Properties 

Vulcanisate I Vulcanisate II 

Press cure Post cure Press cure Post cure 

Tensile strength (psi) 2230 3250 3550 3650 

Elongation (%) 460 310 460 420 

Hardness, shore A 64 68 60 63 

 

Table 14 [35] displays different mechanical properties (modulus at 100%, tensile strength, 

elongation at break and compression set for O-rings and pellets) for bisphenol-cured and peroxide-cured 

poly(VDF-ter-HFP-ter-TFE) terpolymer, after press cure at 177°C for 10 min and after post cure at 

232°C for 24h. As in Table 22 II, Table 2 shows an improvement of the mechanical properties after post 

cure. Moreover, bisphenol-cured system has a better compression set resistance than peroxide-cured 

system, whereas peroxide-cured system has better modulus at 100%, better tensile strength, better 

elongation than those resulting from bisphenol crosslinking. 

A study of several mechanical properties (100% Modulus, tensile strength, elongation at break, 

and compression set resistance) of bisphenol AF and peroxide (2,5-dimethyl-2,5-di-t- butyl-

peroxyhexane)-cured poly(VDF-co-HFP) copolymers is supplied in Table 23 [40]. First, the post cure 

step improves all mechanical properties. Then, bisphenol post cure systems exhibit a better compression 

set resistance than peroxide one, whereas peroxide- cured polymer exhibits better modulus at 100%, 

better tensile strength, and better elongation at break than bisphenol-cured polymer. 
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Table 23. Mechanical and chemical properties of a peroxide-cured poly(TFE-alt-P) elastomer and a diamine-cured poly(VDF-ter-HFP-ter-
TFE) elastomer 

Properties Peroxide1 cured TFE/P 

elastomer 

Diamine2 cured 

VDF/HFP/TFE terpolymer 

Physical properties: 

Specific gravity (g/cm3) 1.60 1.93 

Tensile strength (MPa) 20-25 14-17 

Elongation at break (%)) 200-400 400-500 

Tensile modulus at 100% (MPa) 2.5-3.5 4.0-5.0 

Hardness, shore A 70 83 

Compression set3 (%) 35 49 

Brittle point (°C) -40 -45 

Retraction temperature (°C) 3 -20 

Chemical resistance 

Volume increase after immersion (%) 

96% H2SO4, 100°C, 3 d 4.4 45 

60% HNO3, 70°C, 3 d 10.0 Decomposed 

50% NaOH, 100°C, 3 d 1.1 Decomposed 

10% NaClO, 100°C, 7 d 1.0 Decomposed 

H2O, 100°C, 3 d 1.1 5.9 

Steam, 160°C, 7 d 4.6 12.8 

Oil #1, 150°C, 3 d 2.0 0.5 

Oil #3, 150°C, 3 d 10.0 2.0 

Fuel oil, 25°C, 7 d 38 3.0 
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Flisi [131] studied the evolution of elongation at break and tensile strength for a poly(VDF- co-

HFP) Tecnoflon N copolymer cured with a bisphenol AF and diamines (melting of piperazine carbamate 

and trimethylene diamine carbamate). Figures 90 and 91 [131] represent elongation at break and tensile 

strength versus time for those samples. This author showed that elongation at break (Figure 34) decreased 

continuously because the network chains became shorter. Moreover, crosslinking with bisphenol yielded 

materials with a higher elongation than those achieved from diamine. Tensile strength (Figure 35) 

decreased slowly in bisphenol vulcanisate during the whole period of 32 days, while the curve of the 

diamine vulcanisate presents an irregular trend. Indeed, the curve first decreased, then increased, and 

finally decreased again. 

 

Figure 90. Dependance of elongation at break versus aging time of a poly(VDF-co-HFP) copolymer crosslinked with piperazine carbamate and 
trimethyl diamine carbamate (curve A) and cured with Bisphenol AF (curve B). 

 

Figure 91. Dependence of tensile strength versus ageing time of the same sample than Fig. 90. 

First, the best compression set resistance was obtained for curve 4 (biphenol-AF cured 

poly(VDF-co-HFP) copolymer). Second, little improvement was obtained in Tecnoflon T by changing 
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the curing agent from HMDA-C (curve 1) to piperazine carbamate (curve 2). Finally, no practical 

difference was observed by changing the polymer with the same formulation, since curves 2 and 3 have 

the same behaviour. 

Table 24 summarizes the efficiency of bisphenol, peroxide and diamine cure systems regarding 

each mechanical property. Bisphenols and peroxides-cured fluorinated polymer exhibit better tensile 

strength, and resistance to bases and acids than diamine-cured systems. However, diamine-cured VDF-

based polymers show a higher hardness and resistance to oil than those of peroxide- and bisphenol-cured 

systems. Indeed, bisphenol was shown to be the best crosslinking agent for a high compression set 

resistance. By regarding the thermostability of each cure system, the diamine (biscinnamylidene 

hexamethylene diamine) cure copolymer decomposes at 457°C whereas the peroxide one decomposes at 

472°C [23,184]. The diamine cure is thermally more stable than the hydroquinone one [29]. 

Table 24. Mechanical properties for press cure and post cure VDF/HFP copolymer cured with BAF or peroxide. 

Compounds VDF/HFP copolymer cured 

by BAF1 

VDF/HFP copolymer cured by 

peroxide1 

Post cure2 No Yes No Yes 

Stress-strain, 25°C 

100% Modulus (MPa) 4.5 6.3 5.3 11.4 

Tensile strength 

(MPa) 

11.7 14.5 10.4 15.9 

Elongation at break 

(%) 

250 185 200 140 

Compression set3 (%) 

Pellets 85 15 45 18 

O-ring 40 16 44 25 

1both cured samples are press cured at 177°C for 30 min 

2post cured at 232°C for 24 h 

3at 200°C for 70 h 



Part 2: FKM  Chapter 1: Introduction 

183 

1.9 APPLICATIONS 

The chemical, physical and mechanical properties mainly depend on the crosslinking agent. Those 

properties are crucial for the applications. 

The thermal stability, sealing capability and chemical resistance of fluoroelastomers have led to 

increase their use in a broad variety of industries. Applications for fluorocarbon elastomers in automotive, 

petroleum, and energy related industries illustrate the potential for those high- performance elastomer 

[115]. 

Fluoroelastomers are nowadays widely used in the industry as O-rings, V-rings, gaskets and other 

types of static and dynamic seals, as diaphragms, valve seals, hoses, coated clothes, shaft seals [185], 

expansion joints, etc [186]. They are also used in cars as O-rings for fuel, shaft seals and other components 

of fuel and transmission systems [35,58,63-66]. 

Moreover, some properties of fluoroelastomers, and especially those of VDF-based elastomers 

can be improved by crosslinking. Those better properties allow one to use cured fluoroelastomers in new 

applications as mentioned below. 

The elastomeric poly(VDF-co-HFP) copolymers crosslinked with polyamine possess high 

temperature stability, good resistance to a wide variety of solvents, oils, and fuels [187]. So, these cured 

elastomers are particularly suitable for use in the manufacture of tubing employed as aircraft hoses, used 

to carry fuel lubricants, at high temperature and under high pressure [188]. Moreover, poly(VDF-co-

HFP) copolymers crosslinked with aminosilane are used in the aircraft construction industry because they 

are also odorless [189]. 

Other applications of cured fluoroelastomers are sealings, O-rings [26] and oil seals 

[26,115,131,190]. It is mentioned above that a cured VDF-based copolymer has a better compression set 

resistance than a raw rubber. This property is essential for the sealing application. 

Peroxide curable VDF-based copolymer and terpolymer offer improved extrusion characteristics. 

They can be vulcanised at atmospheric pressure and eliminates fissuring in thick sections. They have 

applications as cords, tubes or irregular-profile items of any dimension [40,191]. 

A poly(VDF-co-HFP) copolymer is applied to a metallic substrate, as coating composition and 

crosslinked with amine, diamine, or ethoxysilane [192]. This cured polymer used as thick or thin free 

standing films, or thick or thin films with good adhesion to metallic or other rigid surfaces [192]. 

Moreover, diamine-cured PVDF can be used as strong adhesive joints without prior surface modification 

[31]. 
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Crosslinkable fluoropolymers based on TFE, TrFE, HFP, VDF, CTFE, and 

perfluoro(alkylvinylether) can form corrosion resistant structures [193]. 

Another application of cured fluoroelastomer is a multi-layer insulator system for electrical 

conductors. This system possesses an extruded crosslinked fluoroelastomer outer layer with the 

fluoropolymer selected from copolymer or terpolymer of ethylene and TFE. 

Irradiated PVDF and poly(VDF-co-TrFE) copolymer possess ferroelectric properties that allow 

the use of such fluorinated polymer in the domain of captors, sensors, and detectors [47,194]. Another 

interesting property of crosslinked poly(VDF-co-HFP) copolymer is their insolubility in oganic solvent 

[195]. Cured fluorinated polymers can be processed as membranes for many electrochemical applications 

such as fuel cell and batteries [196]. For example, a poly(VDF-co-HFP) copolymer has been crosslinked 

with polyamines, polyols, by irradiation with electron beam or -rays in order to elaborate a solid polymer 

electrolyte for non-aqueous lithium battery [197]. This electrolyte is particularly interesting for its ionic 

conductivity, its adhesion with an electroconductive substrate and also remarkably enhanced heat 

resistance. 
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CHAPTER 2: BISPHENOL-BASED CURING 

SYSTEMS 

2.1 INTRODUCTION 

The most common curing system based on bisphenol consists of two components, Bisphenol 

AF [2,2-bis-(4-hydroxyphenyl)-hexafluoropropane] and benzyltriphenylphosphonium chloride (BTPPCl) 

(Fig. 92). 

 

Figure 92. Bisphenol AF and BTPPCl curing system. 

As explained in the previous chapter, the bisphenol AF (BAF) is the crosslinking agent while the 

phosphonium (or ammonium) salt act as an accelerator of the reaction. 

The study of the curing system involves the synthesis and the characterization of different 

systems, each of them based on a different phosphonium salt. As mentioned above, the most commonly 

used is a completely aromatic salt; in this work we investigated the possibility of using different ligands 

for the P+ cation, such as aliphatic chains or aromatic and aliphatic mixed systems. Lastly we studied the 

possibility of varying also the anionic counterpart of the salt. 

In particular, we used four different salt in order to obtain our crosslinking systems (Fig. 93): 

1. Benzyltriphenylphosphonium chloride; 

2. Tetrabutylphosphonium bromide; 

3. Butyltriphenylphoshonium bromide; 

4. Tetrabutylphoshonium hexafluorophosphate. 
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Figure 93. Different salts used in the curing systems. 

Each salt was mixed with bisphenol AF and the obtained mixture was used as the crosslinking 

agent for a standard VDF/HFP copolymer.  

2.2 EXPERIMENTAL 

2.2.1 Typical preparation of  the crosslinking system 

Bisphenol AF and the examined phosphonium salt are mixed in a 4:1 molar ratio. The powders 

are mixed together then they are melted with a heat gun, avoiding boiling or smoking. Once chilled, an 

orange-pinkish glass-like solid is obtained.  

The systems obtained with salts 2 and 4 are slightly sticky, probably because the aliphatic chains 

decrease the melting point of the whole system. 

2.2.2 Preparation of  the rubber compounds 

The four systems are then used in a rubber compound that is prepared by mixing 100 phr of 

virgin polymer, 30 phr of carbon black, 6 phr of Ca(OH)2, 3 phr of MgO, 2.6 phr of the examined catalytic 

system in exam, 1 phr of waxes.  

2.2.3 Instruments used 

NMR spectra are recorded on a Varian Mercury Plus VX 400 spectrometer using 3-5% solution in 

CD3OH. Chemical shifts are expressed in ppm using TMS as reference. 

ODR analysis were performed with Gibitre Reocheck Profile Oscillating Disk at 180°C for 12 minutes. 

Stress-strain curves were obtained by means of Gibitre Tensor Check Profile at room temperature, after 

a post curing performed at 230°C for 24h. 
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2.3 1H-NMR ANALYSIS 

First of all, bisphenol AF, the four salts and obtained the four systems were characterized by 

1H-NMR analysis.  

The BAF spectrum is reported in figure 94. 

 

Figure 94. 1H-NMR spectrum of bisphenol AF. 

Since the BAF molecule is symmetrical, in the spectrum (CD3OD) there are only two doublets in 

the aromatic region: that at 6.85 ppm is attributable to the two protons near the hydroxyl groups while 

the other signal, at 7.17 ppm, is ascribable to the protons near the CF3 central groups. 

Figure 95 shows the spectrum of the benzyltriphenylphosphonium chloride (Salt 1, top) and the 

crosslinking system 1 obtained with this salt (bottom). 

 

 

Figure 95. 1-H-NMR spectra of benzyltriphenylphoshonium chloride (top) and crosslinking system 1 (bottom). 
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The aliphatic regions of the two spectra are simple: the only evident signal is located at 4.9 ppm 

and is relative to the -CH2- of the benzyl group. In the aromatic region, there are two groups of signals, 

each of them composed of three multiplets: the signal relative to the para proton of the three phenyl 

groups can be found at 7.93 ppm; the multiplet of the two protons in the meta position of the three phenyl 

groups can be observed at 7.76 ppm; lastly, the signal of the ortho protons of the three phenyl groups is 

found at 7.67 ppm. The signals relative to the benzyl group are distributed as follows: the multiplet of 

the para proton at 7.37 ppm; the signal relative to the two protons in the ortho position at 7.25 ppm while 

the signal of the two meta protons at 7.03 ppm. 

In the spectrum of the crosslinking system 1 (Fig. 95, down) the same signals can be found, with 

the addition of the two relative to the bisphenol AF. 

Figure 96 shows the spectra of the tetrabutylphosphonium bromide (salt 2, top) and the 

crosslinking system 2 obtained with this salt (bottom). 

 

 

Figure 96. 1-H-NMR spectra of tetrabutylphosphonium bromide (top) and crosslinking system 2 (bottom). 

In this case, the aromatic region of the spectrum of the salt is devoid of any evident signal, while 

the three signals found are in the aliphatic region: that relative to the α -CH2- to the P at 2.25 ppm, the 
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multiplet ascribable to two central -CH2- of the chain at 1.51 ppm and the signal of the terminal -CH3 at 

1.02 ppm. 

The same signals can be found in the spectrum of the crosslinking system 2 (Fig. 96, bottom), 

with the addition of the two relative to the bisphenol AF, which are the only signal present in the aromatic 

region. 

Figure 97 shows the spectra of the butyltriphenylphosphonium bromide (salt 3, top) and the 

crosslinking system 3 obtained with this salt (bottom). 

 

 

Figure 97. 1-H-NMR spectra of butyltriphenylphosphonium bromide (top) and crosslinking system 3 (bottom). 

The spectrum of butyltriphenylphosphonium bromide shows signals in both aromatic and 

aliphatic regions: the signal relative to the para proton of the phenyl rings at 7.92 ppm and the signals of 

the remaining protons of the phenyl rings in the area between 7.75 and 7.86 ppm. In the aliphatic region, 

the signal of the -CH2- α to the P of the butyl chain is found at 3.50 ppm; the signals of the two central 

methylenic groups of the chain at 1.62 ppm and the triplet relative to the terminal -CH3 at 1.02 ppm. 

The same signals can be found in the spectrum of the crosslinking system 3 (Fig. 97, bottom), 

with the addition of the two signals relative to the bisphenol AF, located at .6.85 and 7.24 ppm. 
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Figure 98 shows the spectra of the tetrabutylphosphonium hexafluorophosphate (salt 4, top) and 

the crosslinking system 4 obtained with this salt (bottom). 

 

Figure 98. 1-H-NMR spectra of tetrabutylphosphonium hexafluorophosphate (top) and crosslinking system 4 (bottom). 

As it was for salt 2, in this case there are no signal in the aromatic region: the signal relative to the 

methylene group α to the P can be found at 2.55 ppm; the signal attributable to the central methylenic 

groups of the chains at 1.52 ppm and the signal relative to the terminal methyl group of the chains at 

1.02 ppm. 

The same signals evidenced for salt 4 have been found in the spectrum of the crosslinking system 

4 with the addition of the signals relative to the bisphenol AF in the aromatic region. 

It should be noticed that, although the anion is different from salt 2, the chemical shifts of the 

butylic chains are not affected by this difference. 

2.4 ODR ANALYSIS 

ODR analysis were perfomed on rubber compounds, using the different crosslinking systems. 

The obtained curves for the analysis are reported in figure 99. 
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Figure 99. ODR curves for the four examined crosslinking systems. 

In a typical ODR analysis, the viscosity of the system is measured as the torque made by the 

oscillating disk and it is the main indicator of the crosslinking progress. At the very beginning, the torque 

increases as the disk get in the compound; than the measured value decreases, due to the heating of the 

gum, until a minimum value of torque (ML) is reached; when the required temperature is achieved, the 

system begin to crosslink, increasing the value of the torque; after a certain time, a plateau value is reached 

(MH). Other interesting parameters are ts1, ts2 and t90 which are the time required to reach a value of 

torque higher of 1 point, 2 point and 90% of MH, respectively.  

The values obtained for the four crosslinking systems are reported in table 25. 

Table 25. ODR values for the four examined crosslinking systems. 

Compound ML 

(dN*m) 

Ts1 

(min.sec) 

Ts2 

(min.sec) 

T90 

(min.sec) 

MH 

(dN*m) 

1 13.50 1.33 1.42 2.59 108.63 

2 10.95 1.49 1.58 3.26 122.21 

3 10.98 1.49 1.59 3.25 127.24 

4 12.60 1.09 1.17 2.06 114.88 
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All the four systems produce an effective crosslinking, but with slight difference between each 

other. The first system, shows typical values for this kind of materials, where the 90% of crosslinking 

occur in about 3 minutes from the beginning, reaching about 90 dN*m of cure entity (calculated as MH-

ML). the second and the third systems are quite similar: both show ML lower thant the first one, suggesting 

that the crosslinking begins slightly later; this is confirmed by the other values: in fact, the compounds 

need about further 30 seconds to achieve the T90 time. Particularly interesting is the MH values reached 

which are higher than the first compound; this determines a more rigid final material. 

The last compound possesses the quickest times for curing, gaining almost 30 seconds when 

compared with the others, reaching anyway a good MH value. This rapidity for curing may not be 

advantageous for industrial applications, because the compound can begin to crosslink during the 

injection phase into the mold, which is obviously not desirable. 

2.5 STRESS-STRAIN CURVES 

Traction curves were obtained using a bone-shaped sample cut from a tile of cured rubber which 

was post cured at 230°C for 24h that is pulled until break occurs. Then, the modulus (force/surface) 

versus percentage of elongation is reported. 

The obtained curves for the analysis are reported in figure 100. 

 

Figure 100. Stress-strain curves for the four crosslinking systems in exam. 
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Stress-strain curves report the tension (stress) as a function of the percentage of deformation 

(strain) and they are characteristic of every material. In particular, for an elastomer the elongation is 

particularly higher than a thermoplastic polymer, due to the crosslinking process which allows the 

elastomer to behave differently. Two parameters are important: the modulus at breaking point (TS) and 

the elongation percentage (Eb) at breaking point. These two parameters show if the rubber is hard or 

soft and give an idea of the curing entity; in fact, a more cured rubber, gives lower values of elongation 

at break because the material isn’t elastic enough.  

The values for the four examined crosslinking systems are reported in table 26. 

Table 26. Modulus and elongation at break for the four examined crosslinking systems. 

Compound TS (N/mm2) Eb (%) 

1 12.96 189.53 

2 12.92 80.97 

3 14.35 81.49 

4 12.84 119.27 

The results agree with that previously said for the vulcanization curves: the first compound has 

the highest elongation at break which confirms the effectiveness of this crosslinking system; the second 

and the third systems show the lowest elongation due to the higher MH values reached during the curing 

process, making the final rubber harder and less elastic; lastly, the fourth compound has a slightly higher 

elongation at break but still not even close to the first crosslinking system. 

2.6 CONCLUSIONS 

Four crosslinking systems have been prepared and they were tested as the curing system in rubber 

compound. The entity of the crosslinking was different from one system to another, which was 

confirmed both by ODR analysis and stress-strain curves. The most effective phosphonium salt is the 

benzyltriphenylphosphonium chloride which is, at the state of the art, the most common salt employed 

in this kind of materials. However, the study on different salts is crucial to better understand which is the 

exact mechanism of the curing process, in order to achieve better performances both for the curing itself 

and for the mechanical properties of the final material. 
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CHAPTER 3: DEHYDROFLUORURATION OF 

VDF/HFP COPOLYMER 

3.1 INTRODUCTION 

The most common crosslinking agent is the bisphenol system which is easy and affordable but 

has some disadvantages; however, the peroxide crosslinking allows to avoid these inconveniences but is 

more expensive due to the different starting polymer. In fact, a third monomer together with VDF and 

HFP is needed for a peroxide curable rubber; this monomer bears an Iodine or a Bromine atom, where 

the peroxide can bond during the crosslinking process. 

This work is aimed to research a flexible polymer that can be used both for ionic (bisphenol) and 

peroxide curing in order to reduce cost and at the same time obtain a more flexible polymer starting from 

the same raw material. 

The involved reaction is a dehydrofluoruration induced by a base in order to create unsaturations 

in the polymer backbone which can be employed to crosslink both with bisphenol and peroxide by 

exploiting the reactivity of the double bond. 

3.2 EXPERIMENTAL 

3.2.1 Instruments 

NMR spectra are recorded on a Varian Mercury Plus VX 400 spectrometer using 3-5% solution in 

THF-d8. Chemical shifts are expressed in ppm using CFCl3 as reference. 

UV-Vis spectra are recorded on a Perkin Elmer Lamdba 19 spectrophotometer on quartz slides from 

THF solution or using quartz cells. 

FT-IR spectra are carried out on a Perkin Elmer Spectrum One spectrometer on Ge disk. 

3.2.2 Biphasic dehydrofluoruration reaction 

In a flask kept at a constant temperature 50 ml of NaOH aqueous solution and 0.1 g of 

tetrabutylammonium bromide are introduced. Then a solution of 10 g of copolymer (C20) in 100 ml of 

MTBE is added. The biphasic mixture is heated at temperature and times indicated in table 27. At the 
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end of the reaction, the mixture is poured into a separating funnel and 2% HCl is added until two phases 

are formed. The organic phase is collected and dried with MgSO4. After filtration the solvent is removed 

under reduced pressure.  

19F-NMR (d4-THF, ppm): δ -54.91; -60.23; -68.80; -73.21; -73.48; -73.67; -74.07; 89.22; -89.84; -90.68; 

-93.51; -101.61; -106.96; -108.54; -110.79; -111.81; -113.40; 114.11; -116.27; -116.79; -179.90; -181.85; -

182.18. 

Table 27. Conditions of biphasic dehydrofluoruration. 

Products Copolymer NaOH 

(w/w) 

Temperature Time Yielda % molar of double 

bonds formedb 

01 C20 23% 50°C 2 h 69,4% 1,1% 

04 C20 46% 50°C 2 h 87,0% 0,6% 

a (g products / g copolymer) ·100 

b Determined by 19F-NMR 

3.2.3 Homogeneous phase dehydrofluoruration 

In a flask 5 g of polymer are dissolved in 100 ml of methanol and poured in a thermostatically 

controlled flask, then 30 ml of a solution of NaOH in methanol is added. Times, temperatures and NaOH 

concentrations employed are reported in table 28. At the end of the reaction, the mixture is poured in 

100 ml of 5% HCl in methanol. The precipitated polymer is then filtered, washed several times with 

methanol and water and lastly dried in oven overnight. 

Table 28. Conditions of homogeneous phase dehydrofluoruration. 

Product Copolymer NaOH Temperature Time Yielda % molar of double 

bonds formedb 

05 C20 0,6 g 50°C 2 h 94,6% 4,0% 

06 C20 1,2 g 50°C 2 h 94,0% 9,5% 

07 C20 0,6 g 50°C 4 h 94,5% 4,4% 

08 C20 1,2 g 25°C 24 h 96,9% 9,4% 

a (g products / g copolymer) ·100 

b Determined by 19F-NMR 
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19F-NMR (d4-THF, ppm): -54.24; -57.76; -58.09; -71.57; -74.22; -74.63; -75.43; 75.98; -91.97; -92.27; -

104.41; -111.32; -112.13; -112.46; 113.55; -114.61; -116.91; 119.61; -182.70; -184.63; -184.88. 

FT-IR (Ge Disk, cm-1): 2960; 2859; 1722; 1686; 1637; 1398; 1306; 1198; 1134; 1111; 1074; 884; 834. 

3.2.4 Photocrosslink samples preparation  

Two samples are prepared: 

1. 1 g dehydrofluorinated polymer 06 + 2% w/w triethyleneglycol dimethacrylate + 1.5% 

w/w 1-hydroxycyclohexyl-phenylketone dissolved in 5 ml of THF 

2. 1 g dehydrofluorinated polymer 06 + 4% w/w triethyleneglycol dimethacrylate + 3% 

w/w 1-hydroxycyclohexyl-phenylketone dissolved in 5 ml of THF 

The obtained samples were used to cast thin films on quartz slides for UV-Vis analysis and on 

Ge disk for FT-IR analysis; the samples were then exposed to an UV Philips PL 11 W lamp and spectra 

were recorded after different times of exposure: 0 min, 30 min, 1h, 3h, 6h, 12h and 24 h. 

Other samples were prepared in the same way in order to evaluate the photocrosslinking under 

sunlight illumination; for this samples, spectra were recorded after 18 and 32 days. 

3.2.5 Compound preparation for thermal crosslinking 

50 g of dehydrofluorinated polymer 06 are dissolved in 250 ml of THF then 15 g of carbon black, 

1.25 g of TAIC (triallyl isocyanurate) and 0.6 g of Luperox (t-butyl peroxide) are added. The solvent is 

then removed and the polymer is dried in oven at 60°C. 

3.3 RESULTS AND DISCUSSION 

In order to obtain double bonds on a macromolecular chain composed of vinylidene fluoride 

(CH2CF2) and hexafluoropropene (CFCF3CF2) a dehydrofluoruration reaction is needed. This kind of 

reaction involves the elimination of HF from the macromolecular backbone by means of a base. The 

reaction is possible only in zones where at least one hydrogen is present that, in the case of the copolymer 

in exam, is characteristic only of the vinylidene fluoride units (Fig. 101). 

 

Figure 101. Schematic structure of VDF/HFP copolymer. 
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The starting point was the dehydrofluoruration using a biphasic system: the polymer is dissolved 

in an organic solvent, in our case MTBE, while the base (NaOH) is dissolved in water. The reaction takes 

place thanks to a phase transfer catalyst (tetrabutylammonium bromide, TBAB) that allows the transfer 

of the base from the aqueous phase to the organic one. The reaction mixture is then heated and the 

reaction starts as reported in scheme 23. 

 

Scheme 23. Biphasic dehydrofluoruration reaction. 

The adding of the NaOH leads to the immediate formation of a dark precipitate and the solution 

turns dark; this behavior can be ascribed to the formation of double bonds and to the consequent 

formation of crosslinked areas, also due to the presence of the phase transfer catalyst that could act as 

crosslinking accelerant. Furthermore, if the number of unsaturation is high, aromatic cycles, 

polyconjugated systems or double bonds oxidations can be formed, explaining the dark color of the 

mixture. 

At the end of the reaction, the presence of TBAB prevents the separation of the two phases at a 

neutral pH. Only the addition of HCl allows the breaking of the emulsion and the recovery of the polymer 

but with low relatively yield (69-87%), as reported in the experimental section. 

The biphasic reaction led to dark rubbery materials as shown in figure 102. 

 

Figure 102. Typical product for the biphasic dehydrofluoruration. 

The products have been characterized by 19F-NMR to determine the amount of the formed 

double bonds. 

The main disadvantages of this procedure are the difficulty to recover the treated polymer and 

the low yields obtained. 
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To avoid these problems, a homogeneous phase reaction has been employed in order to avoid 

the formation of emulsions and simplify the contact between the polymer and the base. The chosen 

solvent was methanol because it is capable of solubilize both the polymer and the base. The new 

procedure, that follows the reaction in Scheme 24, provides for the solubilization of the polymer in 

methanol and the subsequent addition of a solution of NaOH in methanol. After the time required for 

the reaction, the polymer is recovered by acidification with HCl in methanol in order to precipitate the 

polymer  

 

Scheme 24. Homogeneous phase dehydrofluoruration reaction. 

By mean of this optimized reaction, the obtained polymer is less colored, with an orange 

appearance (Fig. 103)  

 

Figure 103. Typical product for homogeneous phase dehydrofluoruration. 

As reported in the experimental section, different conditions have been employed. In all cases 

good yields (94-96%) were obtained; this suggest that the temperature, the time and the amount of NaOH 

don’t influence the stage of the recovery of the polymer.  
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3.3.1 19-F-NMR 

In figure 104 are reported the spectrum of the copolymer (up) employed for the 

dehydrofluoruration and an expansion of this spectrum (down) in the region of the CF2 and CF3 groups. 

A typical 19F-NMR spectrum of a FKM copolymer presents three different regions: 

 the signals relative to the CF3 groups are located in the -50 to -75 ppm range, belonging 

only to HFP unities; 

 the signals relative to the CF2 groups are located in the -80 to -120 ppm range, belonging 

both to HFP and VDF unities; 

 the signals relative to the CF groups are located in the -120 to -180 ppm range, belonging 

only to HFP unities. 

The attributions of all signals of a typical spectrum of a copolymer are reported in table 29. 

 

 

Figure 104. Typical 19F-NMR spectrum (up) and expansion (down) of a FKM copolymer. 
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Table 29. 19F-NMR signals attribution for a typical VDF/HFP copolymer. 

Chemical shift (ppm) Attributiona 

-64,5 -CH2CF2CF(CF3)CF2CH2- 

-CH2CF2CF(CF3)CF2CF2- 

-69 -CH2CF2CF(CF3)CH2CF2- 

-69,5 -CF2CF2CF(CF3)CH2CF2- 

-84,5 -CH2CF2CH2CF2CH2CF2- 

-85 -CFCF2CH2CF2CH2CF2- 

-86,5 -CFCH2CF2CH2CF2 

-89 -CH2CH2CF2CH2CF2- 

-90 -CH2CH2CF2CH2CF2- 

-95,5 -CFCH2CF2CFCF2- 

-96,5 -CF2CFCF2CH2CF2- 

-97 -CF2CH2CF2CFCF2- 

-102,5 -CFCH2CF2CF2CF- 

-103,5 -CF2CH2CF2CF2CF- 

-104 -CF2CH2CF2CF2CF- 

-106 -CH2CH2CF2CF2CF- 

-106,5 -CFCH2CF2CF2CH2- 

-107,5 -CF2CH2CF2CF2CH2- 

-109 -CH2CF2CF2CH2CF2- 

-109,5 -CH2CF2CF2CH2CH2- 

-112 -CH2CF2CF2CFCH2- 

-112,5 -CH2CF2CF2CFCH2- 

-175,5 -CH2CF2CFCF2CH2- 

-177,5 -CF2CF2CFCH2CF2- 

a the underlined unity contains the fluorine atom relative to the signal reported. 
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From the 19F-NMR spectrum it is possible to calculate the composition of the copolymer using 

the formula: 

%𝐻𝐹𝑃 =
3(∑ 𝐶𝐹3)

2(∑ 𝐶𝐹2)
∗ 100 

%𝑉𝐷𝐹 = 100 − %𝐻𝐹𝑃 

In this formula ΣCF3 and ΣCF2 represent the sum of all the integrals from CF3 region and all the 

integrals from CF2 region, respectively. The examined copolymer is composed by 22.7% HFP and 77.3% 

of VDF. 

In figure 105 is reported the expansion of the spectrum of a typical dehydrofluorinated polymer. 

All the obtained products have similar spectra; the only differences are in the values of the integrals that 

changes from product to product. 

 

Figure 105. CF3 and CF2 region expansion of a typical spectrum of dehydrofluorinated polymer. 

The main difference with the spectrum of the pristine polymer is the appearance of two new 

signals in the CF3 region at -44.5 and -52.3 ppm, that were not present at all in the pristine spectrum. 

Other differences include the decrease of some CF2 signals, in particular the ones at -69 and -102.5 ppm 

and the latter even disappears.  

The dehydrofluoruration takes place in sites where a hydrogen atom is present, that is only on a 

VDF unity that can be bonded to a -CF(CF3) or -CF2 unity. According to where the fluorine atom is 

extracted, a new double bond near a CF3 or a CF2 group can be formed, as shown in scheme 25. 
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Scheme 25. Possible mechanisms for FKM dehydrofluoruration. 

In addition to the differences found in the spectra of the dehydrofluorinated polymers, a quantitative 

analysis can be made by means of the integrals of the signals. 

The percentage of formed double bonds can be easily obtained by the following formula: 

%𝑑𝑜𝑢𝑏𝑙𝑒 𝑏𝑜𝑛𝑑𝑠 =
∑ 𝐶𝐹3𝑛𝑒𝑤

∑ 𝐶𝐹3𝑡𝑜𝑡
∗ %𝐻𝐹𝑃 

where ΣCF3new represents the sum of the integrals of the new signals in the CF3 region, while ΣCF3tot 

represents the sum of all the integrals from the CF3 region; by multiplying this results with the percentage 

of HFP, the double bonds content expressed in function of the composition of the copolymer can be 

obtained. 
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A summary of the values obtained is reported in table 30 together with the adopted procedure and the 

reaction conditions. 

Table 30. Summary of the values obtained. 

Product Procedure NaOHa Temperature Time Yield % molar of double 

bonds formedb 

01 Biphasic 12% 50°C 2h 69,4% 1,1% 

04 Biphasic 24% 50°C 2h 87,0% 0,6% 

05 Homogeneous 12% 50°C 2h 94,6% 4,0% 

06 Homogeneous 24% 50°C 2h 94,0% 8,5% 

07 Homogeneous 12% 50°C 4h 94,5% 4,4% 

08 Homogeneous 24% 25°C 24h 96,9% 9,4% 

a w/w respect to the polymer 

b Determined by 19F-NMR 

 

It is evident that the homogeneous phase dehydrofluoruration leads to products with higher 

percentage of double bonds formed together with higher yields, making this procedure more suitable for 

industrial application. 

Moreover, the concentration of NaOH directly influences the amount of formed double bonds 

but the temperature seems not affecting this value at all. Furthermore, it seems that results are not 

affected by the reaction time, suggesting that the reaction takes place very quickly and arrives at a plateau 

value after a short time. 

To confirm this hypothesis, a new reaction has been made and portions of the reaction mixtures 

have been removed at different times and analyzed. Following the same method as described above, it 

was possible to obtain a chart of the percentage of double bonds formed as a function of reaction time 

(Fig. 106) 
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Figure 106. Percentage of double bonds formed as a function of reaction time. 

It is clear that the dehydrofluoruration reaction is very quick and the time slightly affects the final 

value. 

3.3.2 FT-IR analysis 

FT-IR analysis was performed (Figure 107) both on pristine (left) and treated (right) polymer. 

These spectra confirm the obtainment of double bonds since the presence of new bands relative to 

double bonds stretching can be found. 

 

 

Figure 107. FT-IR spectra of the pristine (left) and treated (right) polymer in exam. 
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The complete attribution of the bands for a dehydroflurinated product is reported in table 31. 

Table 31. Attribution of FT-IR bands for a dehydroflurinated product. 

Frequency (cm-1) Attribution 

2960, 2859 ν C-H 

1722, 1686, 1637 ν C=C 

1398, 1074 ν C-F 

1306, 1198, 1134, 1111 ν C-F2 

884, 834 ν C-F3 

The appearance of the bands at 17221 1686 and 1637 cm-1 confirms the formation of double 

bonds on the polymeric backbone. 

3.3.3 Photocrosslinking 

The dehydrofluorinated polymers can be susceptible to peroxide crosslinking due to the reactivity 

of the double bonds. The first attempt was made by a photo induced crosslinking. For this purpose, two 

samples have been prepared using the sample with the higher percentage of double bonds; they were 

added by different amounts of a radical initiator (1-hydroxycyclohexylphenyl ketone) and of a 

crosslinking agent (triethyleneglycol dimethacrylate). In particular, sample 1 had 2% w/w of initiator and 

1.5% w/w of crosslinking agent, while sample 2 had double amounts. 

The polymer was dissolved in THF, then the required quantities of the crosslinking system was 

added and the solution was deposited on quartz and germanium slides and illuminated with an UV lamp 

for 24h. The crosslinking was monitored by UV-Vis and FT-IR spectroscopies. 

The crosslinking take place easily also for the sample with the lower amount of crosslinking 

system, making the sample insoluble in organic solvents.  

The FT-IR spectra (Fig. 108) show the decrease of the band relative to the double bonds 

stretching (ν C=C); the ratio between the intensities of this band (located at 1637 cm-1) and of a constant 

band, for example that at 883 cm-1 and relative to the ν of C-F3, allows to obtain a graphical representation 

of the crosslinking progression, as shown in Figure 109. 
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Figure 108. FT-IR spectra relative to sample 1 (up) and sample 2 (down) under UV radiation at different times 

 

Figure 109. Bands ratio as a function of crosslinking time. 

The UV-Vis spectra in film of sample 1 (up) and sample 2 (down) at different times after UV 

exposure are reported in figure 110.  
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Figure 110. UV-Vis spectra in film relative to sample 1(up) and sample 2 (down) at different times after UV exposure. 

From the spectra, the decrease of the band located between 200 and 300 nm, attributable to the 

C=C double bonds is evidents, indicating the progression of the photocrosslinking. 

Lastly, another sample was prepared similarly to sample 1, but this time it was exposed to sunlight 

for 1 month. The FT-IR spectrum of this sample at different times is reported in figure 111. 
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Figure 111. FT-IR spectra of a sample exposed to sunlight at different times. 

In this case it is evident that the crosslinking took place after 18 days of exposure because after 

32 days the spectrum is virtually unchanged.  

It is clear that, also with the smallest quantities of crosslinking system, the polymer can easily 

undergo to a crosslinking reaction by means of a peroxide. 

3.3.4 Thermal crosslinking 

The dehydrofluorinated polymer has been employed in a peroxide-curable compound as used in 

normal industrial applications. 

The polymer is dissolved in THF then 1.5% by weight of t-butyl peroxide, 2.5% by weight of 

triallylisocyanurate and 30% by weight of carbon black are added. After complete mixing and evaporation 

of the solvent, the compound was analyzed by ODR (Oscillating Disc Rheometer) at 180°C during the 

curing process. The relative curve is reported in figure 112. 
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Figure 112. ODR curve for a peroxide-curable compound. 

In the ODR analysis, the torque developed by a rotor submerged in the compound to maintain 

an oscillation of 3°C as a function of time is recorded at a temperature of 180°C. The starting torque 

decreases because of the heating of the compound, then the viscosity decreases together with the torque 

until a minimum value ML. Subsequently, the torque increases as the crosslinking proceeds. When the 

curing is finished the torque stabilizes at a maximum value of MH. Usually the values that characterize 

the compound together with MH, ML, are Ts1, Ts2 which are the times from the beginning to obtain an 

increase of 1 and 2 unities more than ML respectively and T’90, that is the time required for the compound 

to reach the 90% of MH-ML value.  

Data for the examined compound are reported in table 32. 

Table 32. ODR data for a peroxide-curable compound. 

ML (dN/m) MH (dN/m) Ts1 (min:sec) Ts2 (min:sec) T’90 (min:sec) 

3,64 11,46 3:00 3:18 4:25 

 

The obtained values confirm that the polymer used, normally cured by bisphenol crosslinking 

system, can be cured by a peroxide system after the dehydrofluorination process. 

This result is particularly interesting since it is possible to obtain two different polymers by varying 

the kind of curing system starting from the same raw material.  
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3.4 CONCLUSIONS 

The possibility of dehydrofluoruration for a VDF/HFP copolymer by means of a base has been 

studied. Two different techniques have been developed, using a biphasic or a homogeneous phase 

reaction; the latter was the most effective to obtain double bonds on the polymer backbone. 

The double bonds formed in this way were exploited to cure a rubber compound via peroxide a 

method which is usually not suitable for this kind of material, owing to the need of having a third 

monomer in the starting raw polymer. 

The obtained compound was cured both with UV and heat showing that in both cases the 

crosslinking takes place easily and quickly. 

These results are particularly encouraging to obtain a flexible material whose properties can be 

tuned, depending on the need, changing the curing system. 

The obtainment of double bonds on the polymeric backbone allows for the insertion of specific 

functional groups with particular properties for specific applications, opening the way toward polymer 

post functionalization. 


