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Sommario 
La presente tesi descrive i risultati delle ricerche svolte durante il mio Dottorato in 

Bioingegneria.  L’obiettivo della ricerca era quello di investigare le proprietà biomeccaniche in 

vitro del corpo vertebrale di vertebre toraco-lombari naturali e trattate, sottoposte a vertebroplastica 

in via profilattica. La tesi fornisce un'analisi completa sulla distribuzione delle sollecitazioni e sulla 

meccanica del processo di frattura sia delle vertebre naturali che di quelle aumentate ottenendo 

indicazioni sulle prestazione del trattamento stesso.  La ricerca è stata effettuata principalmente 

presso il Laboratorio di Biomeccanica del Dipartimento di Ingegneria Industriale dell’Università di 

Bologna e in parte presso il Laboratorio di Tecnologia Medica (LTM) dell’Istituto Ortopedico 

Rizzoli (Bologna).!

La vertebra è il principale argomento di tutti gli studi presentati in questa tesi. I risultati che 

verranno riportanti riguardano solo gli aspetti della vertebra studiati a livello di organo. Il rachide e 

le vertebre sono state ampliamente investigate in passato, tuttavia vista la complessità biomeccanica 

di tali strutture possiamo dire che lo studio del rachide e delle vertebre rappresenta una sfida ancora 

aperta all’interno della Comunità Scientifica. Le fratture vertebrali da compressione sono il tipo più 

comune di frattura correlata all'osteoporosi, ogni anno all’incirca 1,4 milioni di nuove fratture si 

verificano in tutto il mondo. Queste fratture sono associate a dolore, diminuzione della qualità della 

vita ed a elevati costi sanitari. L'approccio più promettente per ridurre le conseguenze dell’ 

osteoporosi, è quello di diagnosticare la perdita di massa ossea precocemente ed iniziare strategie di 

trattamento prima che si verifichi la frattura. Negli ultimi anni la vertebroplastica in via profilattica 

è stata proposta come alternativa ai trattamenti farmacologici per ridurre il rischio di frattura nelle 

vertebre gravemente osteoporotiche o nelle vertebre adiacenti a quelle che hanno subito la 

vertebroplatica per limitare il rischio di ulteriori collassi. Questo trattamento ha lo scopo di 

aumentare la resistenza e il supporto strutturale delle vertebre patologicamente indebolite , mediante 

iniezione di un cemento acrilico all’interno del corpo vertebrale. I rischi associati (fuoriuscita di 

cemento e conseguente danno neuronale; necrosi dei tessuti a causa del monomero residuo e della 

reazione esotermica; aumento del rischio di fratture nelle vertebre adiacenti) hanno sollevato 

domande circa l’ efficacia e la sicurezza della vertebroplastica in generale. Inoltre, è ancora oggetto 

di dibattito se la vertebroplastica in realtà rafforzi la vertebra trattata. E’ necessario quindi 

comprendere meglio i costi e i benefici di questo trattamento. Alla luce di questo dibattito, 

conoscere in modo approfondito il comportamento biomeccanico e i meccanismi di frattura delle 
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vertebra aumentata in via profilattica è di fondamentale importanza per migliorare la diagnosi e il 

trattamento. L’obiettivo principale di questo lavoro è stato quello di investigare il comportamento 

biomeccanico in termini di resistenza meccanica e di distribuzione delle sollecitazioni delle vertebre 

umane naturali e trattate in campo elastico ed effettuare un’analisi completa sulla meccanica del 

processo di frattura delle vertebre trattate per ottenere indicazioni sull’ efficienza del trattamento. 

Per superare alcune limitazioni degli attuali studi in vitro sono state sviluppate e/o migliorate alcune 

metodologie in grado di garantire un’elevata ripetibilità e riproducibilità degli esperimenti.  

E’ stato definito e validato per la prima volta un sistema di riferimento anatomico in vitro 

per vertebre. L’adozione di tale riferimento anatomico ha permesso un’allineamento del provino 

maggiormente accurato durante i test in campo elastico e a rottura. 

E’ stato effettuato uno studio simulando le condizioni al contorno più comunemente 

impiegate in letteratura nei test in vitro, per chiarire come variano le proprietà del corpo vertebrale 

in termini di distribuzione delle sollecitazioni quando la vertebra viene testata come singola o nella 

configurazione di tripletta. 

Queste metodologie sperimentali sono state impiegate nei successivi test in vitro per la 

caratterizzazione biomeccanica delle vertebre umane naturali e trattate.  Lo studio sulla 

distribuzione delle sollecitazioni delle vertebre è stato condotto attraverso un’approccio integrato, 

che incorpora differenti tecniche di misura, dalle tecniche tradizionali come quella estensimetrica a 

tecniche più recenti come la Digital Volume Correlation (DVC).  Attraverso la tecnica 

estensimetrica sono state ottenute informazioni sulle sollecitazioni molto precise e puntuali ma 

esclusivamente a livello dell’osso corticale, mentre la tecnica della DVC ha permesso di investigare 

la distribuzione delle sollecitazioni all’interno del corpo vertebrale a livello dell’osso trabecolare. In 

conclusione questa tesi rappresenta un’approfondita analisi sulle proprietà biomeccaniche di 

vertebre umane naturali e aumentate allo scopo di fornire un’analisi biomeccanica completa sulla 

distribuzione delle componenti di sollecitazione (sia a livello corticale che trabecolare), sulla 

meccanica della frattura e sull' efficienza del trattamento della vertebroplastica in via profilattica. 



! J!

Summary 
The present thesis illustrates the research carried out during PhD studies in Bioengineering. 

The research objective was to investigate the in vitro biomechanical properties of human thoraco-

lumbar natural and treated vertebral body, underwent to prophylactic vertebroplasty, to provide a 

comprehensive analysis on the stress/strain distribution and the failure mechanics of natural and 

augmented vertebrae and to obtain indications on the performance of the treatment itself. The 

research was carried out mainly at the Biomechanics Laboratory of the Department of Industrial 

Engineering at the University of Bologna and partially at the Laboratory of Medical Technology 

(LTM) Rizzoli Orthopaedic Institute (Bologna). 

Vertebra is the main topic of the studies reported in this thesis. The results are related to 

vertebra as organ level. Spine and vertebrae have been widely investigated in the past, however, 

given the complexity of such structures a deep understanding of biomechanical properties is 

necessary to improve treatments and reduce the negative outcome of spine pathologies. Therefore, 

investigation of the spine and vertebrae is still an open challenge within the scientific community. 

Vertebral compression fractures are the most common fracture type related to osteoporosis, with an 

estimated 1.4 million new fractures occurred worldwide every year. These fractures are associated 

with pain, decreased quality of life and large health care costs. The most promising approach to 

reduce the consequences of osteoporosis, is to diagnose the bone loss early and begin treatment 

strategies before fractures occur. In the last years prophylactic augmentation has been proposed as 

an alternative to pharmacological treatments in order to reduce the fracture risk of osteoporotic 

vertebrae or to prevent adjacent fractures after augmentation.  This treatment is meant to increase 

the strength and the structural support of weak vertebrae, by injection of an augmentation material 

into the vertebral body. The associated risks (cement leakage and subsequent neural damage; tissue 

necrosis due to residual monomer and to the exothermal reaction; increased risk of fracture in the 

adjacent vertebrae) have raised questions about the efficacy and safety of the vertebroplasty in 

general. !Furthermore, it is still debated whether prophylactic augmentation actually strengthens the 

treated vertebra. Therefore, there is a need for a clearer understanding on the cost-benefit trade-off.  

In the light of this debate, in-depth knowledge of the mechanical behaviour and failure of 

prophylactic-augmented vertebra is of fundamental importance to understand vertebral 

biomechanics and improve diagnosis and prophylactic treatments. 
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The main objective of this work was to investigate the biomechanical behavior of the natural 

and augmented human vertebrae in terms of mechanical properties and strain distribution in the 

elastic regime up to failure to obtain indications about the efficacy of the treatment. 

To overcome some limitations of the current in vitro test, some methodological studies were 

developed to improve and make more accurate in vitro biomechanical test on vertebrae.  

To obtain a greater reproducibility and repeatability of test, an in vitro anatomical reference 

frame for human vertebrae was defined and validated for the first time.  

An investigation was developed to examine the effect of different experimental boundary 

conditions (with and without discs) in the human vertebra and to elucidate if testing a single-

vertebra specimen (which provides a number of practical advantages) is an acceptable alternative to 

a three-adjacent-vertebrae-segment (which can be assumed closer to physiological), when 

measuring the principal strains (magnitude and direction) on the surface of the vertebral body, in 

the elastic regime.   

The experimental methods developed were implemented during in vitro destructive e non-

destructive test to investigate the biomechanical behaviour of human natural and augmented 

vertebrae. Studies about the vertebral strain distribution were based on an integrated approach, 

which combined different measurement methods (strain gauges and digital volume correlation) for 

a more comprehensive investigation. Through the strain gauge technique, very precise and punctual 

strain information was collected but only at the cortical bone level, while the technique of DVC 

allowed to capture the internal full-field strain distribution and quantify internal microdamage 

initiation/evolution under loading.  

In conclusion this thesis is a comprehensive investigation of the biomechanical properties of 

natural and treated human in terms of strain distribution (both in the cortex and trabecular bone), 

and failure mechanics to obtain indication of the efficacy of prophylactic vertebroplasty. 

!

!
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Chapter 1: 

Introduction!

The mechanical behavior of vertebral bodies, their failure and their response to treatments rely on 

the complex relations that exist between the mechanics of bone tissue and its structure. The 

following section describes the bone tissue constituents and its structural micro organization and 

macro anatomy. An additional section describes the main constituent and the biomechanics of the 

human spine, with a focus on the vertebral body, the occurrence of vertebral compression fractures, 

and an emerging but still controversial treatment called vertebroplasty. Moreover an additional 

section is a review of in vitro and in situ studies that have been developed to investigate the 

structural behavior of human health and treated vertebral. It is then completed with an overview of 

the traditional experimental techniques used to investigate strain distribution, such as strain gauges 

and of a recent approach Digital Volume Correlation for the measurement of 3D deformation fields 

throughout entire volumes. The last one section describes the study aim and the related objectives. 

1.1 Bone 

1.1.1 Biomechanical of the human skeleton 

The skeletal system (Fig.1-1) includes individual bones and the soft tissues that connect 

them [1, 2]. The main component of the skeleton is bone and differs from the connective tissues 

(i.e. cartilage, ligaments and tendons) in rigidity and hardness. Bones are important both 

biomechanically and metabolically. In fact, the skeletal tissue performs three main functions: 

support, protection and homeostasis of calcium. The skeleton ensures that the shape of the body is 

maintained, it transmits muscular forces to create a movement, it protects the soft tissues of the 

cranial, thoracic and pelvic cavities, and it supplies the framework for the bone marrow. 

Furthermore, the mineral content of bone serves as a reservoir for ions, particularly calcium, and 

also contributes to the regulation of extracellular fluid composition. Bone is a self-repairing 

material, able to adapt its mass, shape and properties to the mechanical requirements during life. 
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1.1.2 Bone compositions 

Bone matrix is composed of approximately 28% by weight of organic matter, from 60% of 

inorganic substance and the remaining 12% of water (38.4% in volume organic matter, 37.7% 

mineral and 23.9% water [3]. 

The mineral is largely impure hydroxyapatite Ca6(PO4)6(OH)2, containing carbonate, citrate 

fluoride and strontium. The organic matrix consists of 90% collagen and about 10% noncollagenous 

proteins. From a mechanical point of view, the bone matrix is comparable to a composite material: 

the organic matrix is responsible to give toughness to the bone, while the inorganic one has the 

function to stiffen and strengthen the bone [1]. 

 

 

Fig.1-1: Anterior and posterior view of a human adult male skeleton. Source from 
http://www.innerbody.com. 
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1.1.3 Bone tissue architectures 

Adult bones are composed of two basic structures [1], i.e. cortical (or compact) and 

trabecular (or cancellous or spongy) bone (Fig. 1-2). Cortical bone is a solid and compact material, 

with the exception of microscopic channels. Approximately 80% of the skeletal mass in the adult 

skeleton is cortical bone. It forms the outer wall of all bones, being largely responsible for the 

supportive and protective function of the skeleton. The remaining 20% of the bone mass is 

trabecular bone, a lattice of plates and rods having typical mean thicknesses ranging from 50 µm to 

300 µm known as trabeculae, found in the inner parts of the skeleton. The trabecular bone is 

compliant and less strong than cortical bone, because of its discontinuous structure. Consequently it 

gives a smaller contribute to the rigidity of the bone.  Moreover, it shows a greater variability in 

mechanical behaviour than cortical bone, due to its greater structural irregularity. However, it plays 

several important roles:  

1 stiffens the structure by connecting the outer shell of cortical bone;  

2 supports the cortex layer and distributes loads;  

3 protects the hollows of bone from phenomena of instability (buckling).  

 

 

Fig.1-2: Scheme showing cortical and trabecular bone. Source from www.orthobullets.com. 

The diaphysis is composed mainly of cortical bone. Conversely, the epiphysis and 

metaphysis contain mostly trabecular bone, with a thin outer shell of cortical bone. During growing, 

the epiphysis is separated from the metaphysis by a plate of hyaline cartilage, known as the 

epiphyseal plate or growth plate. The growth plate and the adjacent trabecular bone of the 

metaphysis constitute a region where trabecular bone production and elongation of the cortex 
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occurs. In the adult, the cartilaginous growth plate is replaced by trabecular bone, which causes the 

epiphysis to become fused to the metaphysis. 

1.1.4 Cortical bone 

Adult cortical bone is composed of 3- to 7-!m-thick unit layers (called lamellae) which 

contain collagen fibers that run parallel to each other [1]. The main structural unit of cortical bone is 

given by the osteon or Haversian system (Fig. 1-3). A typical osteon is a cylinder about 200 !m in 

diameter, consisting of a central canal (Haversian canal) surrounded by about 20-30 concentric 

lamellae. The external surface of every bone is surrounded by several layers of lamellae, 

immediately underneath the periosteum and on the internal surface adjacent to the endosteum. 

These lamellae are called circumferential lamellae. In the gaps between Haversian systems can be 

found interstitial lamellae, as angular fragments of previous concentric and circumferential 

lamellae. Within the Haversian canals run blood and lymphatics vessels, and nerves.  

 

Fig. 1-3: Diagram of cortical bone: (a) Cross-sectional view of cortical bone shows the basic 
structural unit, the osteon. (b) Histological cross-section of cortical bone, showing osteon with its 
Harvesian canals, lacunae and cappilar canaliculi. In this micrograph of the osteon, you can 
clearly see the concentric lamellae and central canals. Source from 
https://courses.candelalearning.com/ap2x1/chapter/bone-structure. 
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The Haversian canals are interconnected by transverse canals, also called the Volkmann 

canals, which also allow the communication with the periosteum and bone marrow. The outer 

border of each osteon is surrounded by a cement line, which is a 1- to 2-!m-thick layer of 

mineralized matrix, deficient in collagen fibers. Throughout the bone, small cavities (lacunae) 

containing entrapped bone cells (osteocytes) are found. Microscopic tubular canals (canaliculi) 

connect the lacunae to each other and to the Haversian canal. 

1.1.5 Trabecular bone 

The trabecular bone has not Havers systems, but consists of an array of interconnected 

beams (trabecule), of a thickness less than 0.2 mm and variable in shape (Figure 1-4). Each 

trabecula is constituted by a packages of parallel lamellae. Usually a package of lamellae is up to 1 

mm long and 50-60 microns in section. 

 

Fig. 1-4: A: vertical section of trabecular bone from lumbar vertebra. B: single trabecula leaving 

from the endosteal surface. Source from [3]. 

According to the site of analysis is possible to find trabecular bone with different 

characteristics. The quantity of trabecular bone can widely vary within different anatomical sites. 

This leads to great differences in bone density. Moreover the orientation of the trabecular structure 

is tightly bonded to the anatomical site and its mechanical role. In fact the correlation between the 

trabecular orientation and the load direction was already showed in literature [4]; trabecular 

structure result to be mainly oriented along the primary load direction. However load direction 

depends by the motion, therefore trabecular structure can became very complex. 



! LG!

The trabecular bone is compliant and less strong than cortical bone, generally because of its 

discontinuous structure. Consequently it gives a smaller contribute to the rigidity of the bone.  

Most mechanical properties of trabecular bone depend to a large degree on the apparent density, 

which is defined as the mass of bone tissue present in a unit volume of bone [5]. Volume fraction 

typically ranges from 0.6 for dense trabecular bone to 0.05 for porous trabecular bone [6, 7]. The 

(wet) tissue density for human trabecular bone is fairly constant and is in the approximate range 

1.6-2.0 g/cm3 [8] By contrast, the (wet) apparent density varies substantially and is typically in the 

range 0.05-1.0 g/cm3 [8]. 

The cancellous bone tissue mechanical behaviour can be qualitatively represented as in Figure 1-5. 

 

Fig.1-5: Compression stress-strain curve for trabecular bone. 

The compressive stress-strain curves of cancellous bone show an initial linear elastic region up to a 

strain of about 0.05. The material yielding occurs as the trabeculae begin to fracture. A plateau 

region of almost constant stress follows this initial elastic region until fracture, exhibiting a ductile 

material behaviour. After yielding, it can sustain large deformations (up to 50% strain) while still 

maintaining its load-carrying capacity. Thus, trabecular bone can absorb substantial energy before 

mechanical failure. By contrast, cancellous bone fractures abruptly under tensile forces, showing a 

brittle material behaviour. The energy absorption capacity is considerably higher under compressive 

loads than under tensile loads. 
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Being a heterogeneous open cell porous solid, trabecular bone has anisotropic mechanical 

properties that depend on the porosity of the specimen as well as the architectural arrangement of 

the individual trabeculae. In order to specify its mechanical properties, one must therefore specify 

factors such as the anatomical site, loading direction with respect to the principal orientation of the 

trabeculae, age and health of the donor. Young’s module can vary 100-fold within a single 

epiphysis [9] and can vary on average by factor of three depending on loading direction [9, 10]. 

Pathologies such as osteoporosis, osteoarthritis and bone cancer are known to affect mechanical 

properties [11, 12]. Typically the modulus of human trabecular bone is in the range 0.010-2 GPa 

depending on the above factors. Strength, which is linearly and strongly correlated with modulus 

[9], is typically in the range 0.1-30 MPa [8]. 

1.2 Spinal anatomy and biomechanics 

The human spine is an articulated multi-segment structure responsible for bearing the loads 

acting on the upper body as well as allowing its physiological range of motion (ROM) (Fig.1-6). In 

addition, the physical protection of the spinal cord depends on the integrity of the whole structure 

[13]. The spine is composed of 24 articulated vertebrae: seven cervical, twelve thoracic and five 

lumbar, therefore dividing the spine into three main regions. There are four main curvatures on the 

sagittal plane of the spine: the cervical, thoracic, lumbar and sacral curve. The thoracic region 

presents a kyphosis that ranges from 18° to 51° whilst the lumbar region lordosis ranges from 42° to 

74° [14]. The first cervical vertebra (also called the atlas) is jointed with the skull, whilst the last 

lumbar vertebra (L5) is jointed with the sacrum. The sacrum is fused with the coccyx and is located 

posteriorly within the pelvis. This is the most caudal region of the spine and made of nine fused 

vertebrae. Each vertebra is articulated with its adjacent one through an intervertebral disc and a pair 

of facet joints. In addition, thoracic vertebrae present an additional joint, the costovertebral joint, 

where the ribs articulate. The additional stiffness provided by the rib cage increases strength and 

energy-absorbing capability in traumatic events [15]. Several muscle groups and ligaments run 

along the spine, exerting a complex set of forces and moments to achieve motion as well as 

cooperate with the other spinal structure to provide stability. Spinal stability is indeed a 

fundamental concept in spinal biomechanics which White et al. defines as “the ability of the spine 

under physiological loads to limit patterns of displacement in order not to damage or irritate the 

spinal cord and nerve roots and to prevent incapacitating deformity or pain caused by structural 

changes” [15].  
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Fig. 1-6: Anterior, lateral and posterior view of spine. Source from 

http://www.backpain-guide.com 
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1.2.1 Vertebral anatomy and biomechanics 

The vertebra is a bone consisting of two main anatomical regions: vertebral body and neural 

arch. The neural arch originates at the end of the pedicles, which protrude from the posterior-lateral 

surface of the upper part of the vertebral body. The hollow region confined within the posterior wall 

of the vertebral body, the pedicles and the neural arch is the vertebral foramen, which encloses the 

spinal cord [15]. The posterior processes (transverse and spinous) are bony structures emerging 

from the neural arch and are site of insertion of numerous muscle and ligaments (Fig. 1-7).  

 

Fig.1-7: General anatomy of the vertebral body. 

 

The vertebral body can be roughly approximated to an elliptical cylinder, principally 

composed by trabecular bone, surrounded by a shell of cortical bone. The strength of the vertebral 

body has been typically associated with its bone mineral density (BMD) and overall geometry [13, 

16]. However, these two factors alone have been shown not to be enough to fully describe the 

mechanical properties of the vertebra. The resultant structural behaviour is in fact the result of a 

complex interaction between the quality of the tissue and the architecture in which the bone is 

organized [17, 18]. It has been shown that the combination of BMD, micro-architecture and its 

heterogeneity can explain up to 86 % of variability in vertebral failure load whilst BMD alone can 

explain only up to 44 % [19]. The trabecular bone core is a network of rod and plate shaped struts 

[20, 21] which has been estimated to bear 76 to 89 % of the total load [22]. The thickness (Tb.Th) 
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and spacing (Tb.Sp) of the trabecular network have been measured by several authors using micro 

computed tomography (micro CT) and some indicative dimensions are reported below in Table 1-1. 

It is possible to note how measurements of micro-architecture vary among studies due to age and 

bone quality [20] 

 

Table 1-1: Trabecular thickness (Tb.Th) and spacing (Tb.Sp) for the vertebral body 
(mean±standard deviation). 

 Wegrzn et al., 
2011 [19] 

Roux et al., 2010 
[23] 

Fields et al., [18] Lochmüller et al., 
2008 [24] 

Hulme et al., 
2007 [25] 

Tb.Th 0.31mm ± 0.04 0.24 mm ±0.44 0.16 mm ±0.02 0.15 mm ±0.02 0.22 mm ±0.02 
Tb.Sp 1.34 mm ±0.33 – 0.98 mm ±0.11 0.96 mm ±0.18 1.11mm ±0.11 

 

The trabeculae within the vertebral body are organized according to load paths [4] and 

micro-scale finite element (FE) modelling suggests that the majority of the load is transmitted 

through parallel columns of vertically oriented trabeculae [26]. Furthermore, the trabecular structure 

extends from the vertebral body into the posterior elements through the pedicles following typical 

pathways, both on the sagittal and transverse plane (Fig.1-8), to counteract the forces and 

deformations to which the posterior processes undergo [27]. The geometry of the pedicles also 

varies significantly along the cranio-caudal direction, with a peculiar transition at the thoracolumbar 

junction. The thoracolumbar junction is an anatomical region spanning T11 to L1, where the 

thoracic spine joints the lumbar spine. The average cross sectional area (CSA) of the pedicle ranges 

from ~32 to ~65 mm2 in the thoracic vertebra and from ~83 to ~160 mm2 in the lumbar [28, 29]. In 

addition, the micro-structural properties of trabecular bone within the pedicle are different to those 

of the vertebral body. Trabeculae within the pedicles are more numerous, plate-like, and tend to be 

more densely packed, with a mean Tb.Th and Tb.Sp of 0.20 ± 0.04 and 0.93 ± 0.12, respectively 

[30]. 
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Fig.1-8: Principal orientation of the trabeculae architecture in the vertebra. Adapted from [27]. 

 

Although the overall anatomy of the vertebrae in the different regions remains the same, the 

actual bony features adapt to the functional changes along the spine, with the vertebral body being 

optimized to bear axial loads [31]. In fact, the size and mass of the vertebra, as well as the endplate 

area, increase downwards to withstand the increase in compressive forces [32] (Fig.1-9). The shape 

of the vertebral foramen also significantly changes along the spine, becoming more elliptical in the 

lumbar spine. This is mostly related to an increase of the spinal canal width (SCW), which can also 

be considered equivalent the interpedicular space distance (Fig.1-10). 

 

 

Fig.1-9: Gross anatomical differences amongst cervical, thoracic and lumbar vertebrae. 
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Fig.1-10: Anatomical variation of the vertebra across levels. VBH: vertebral body height; EPA 

endplate area (EPAi and EPAu stand for inferior and upper endplate, respectively); SCA: spinal 

canal area; SCW: spinal canal width; SCD: spinal canal depth. Data from [28, 29] 

 



! DD!

1.2.2 The intervertebral disc 

Each vertebral body articulates with the adjacent one through an avascular soft tissue called 

intervertebral disc. The intervertebral disc is limited superiorly and inferiorly by the endplate (often 

considered as part of the intervertebral disc too [33]) and is divided in two main regions: the 

nucleus pulposus and the annulus fibrosus (Fig. 1-11). The nucleus pulposus is located centrally and 

composed of a loose network of fibres within a mucoprotein gel which has a water content ranging 

from 70-90 % [15]. An additional ~ 0.8 mm thick layer of hyaline cartilage separates the bony 

endplate and the nucleus. Such layer is called cartilaginous endplate and is responsible for the 

exchange of nutrients from the blood vessels within the vertebra to the nucleus [33]. The nucleus is 

confined radially within the annulus fibrosus which is organized in 15 to 25 concentric layers called 

lamellae. The main component of each lamella is collagen, arranged in thick fibers running parallel 

to each other and anchored to the endplate [34]. The fibers are oriented at about 60° to the vertical 

axis and they run in opposite direction to each adjacent lamella (i.e. there is a 120° angle between 

fibers in adjacent lamellae) [15]. When loaded, the nucleus generates a hydrostatic pressure towards 

the annulus and the endplates [35]. Such pressure makes the endplate deflect [36] whilst the annulus 

bulges, hence putting the collagen fibers in tension. In fact, a 500 N compressive load induces a 0.7 

mm bulge which results in the fibers undergoing a 2.7 % strain [37]. 

 

 

Fig.1-11: The intervertebral disc: anatomy and schematic stress profiles within the disc. Adapted 

from Adams et al. [38]. 
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1.2.3 The facet joints 

The facet joints (or zygapophysial joints) are two synovial joints located between the neural 

arches of each pair of adjacent vertebrae. The facet is a bony process that originates laterally on the 

neural arch; each vertebra has two superior and inferior facets. A layer of hyaline cartilage (~1 mm 

thick) is present onto the mating surface of each facet to allow articular motion with minimum 

friction. The synovium and ligamentous capsule extend from the superior and inferior margin of the 

joint providing, respectively, lubrication for the cartilage and mechanical reaction against separation 

of the joint [39] (Fig. 1-12).  The shape of the facet is what actually dictates the kinematics of the 

joint and therefore that of the functional spinal unit [15]. The facets of the thoracic spine have a flat 

geometry whilst in the lumbar spine they have significantly curved mating surfaces to constrain 

axial rotation [15]. In the thoracic region the articular surface has a typical inclination of 

approximately 20° with the transverse plane and 60° with the sagittal. Conversely, in the lumbar 

region, the facet surface becomes almost orthogonal to the transverse plane whilst their orientation 

increases in the caudal direction up to ~50° (i.e. the facets splay) [15]. 

 

 

 

Fig.1-12: The facet joint. Source from http://corewalking.com/spinal-movement-facet-joints/ 

 

Facet joint 
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1.2.4 Spinal ligaments and musculature 

The spine is surrounded by a complex ligamentous structure that runs in several layers along 

it (Figure 1-13). Ligaments are mainly made of collagen and elastin fibers arranged in fascicles to 

provide uniaxial resistance. Furthermore, ligaments can respond only to tensile forces as they 

buckle in compression. This behaviour is due to the fibrous nature of the tissue itself. At low strains 

the elastin takes on the majority of the load as the collagen fibers are still crimped. Although being 

highly linear, the stiffness of the elastin is significantly lower than that of collagen. As the strain 

increases the collagen fibers uncrimp providing the actual stiffness required to withstand significant 

loads. Mechanical testing reflects this behaviour. There is an initial tract with low stiffness (neutral 

zone, NZ), followed by a higher stiffness tract (elastic zone, EZ). NZ and EZ are the physiological 

working regions. Exceeding EZ injuries the ligament (plastic zone) and may results in its failure 

[15]. Ligaments provide a passive component of stabilization by restricting motion of the vertebrae, 

therefore also protecting the spinal cord [40]. They have a fundamental role in traumatic events to 

provide quick reaction forces against deviation from the physiological posture [15]. There are two 

main longitudinal ligaments running down the whole spine which have insertions on the surface of 

the vertebral body and disc: the anterior longitudinal ligament (ALL) and the posterior longitudinal 

ligament (PLL). ALL provides stability mainly against extension as it covers the anterior aspects of 

the spine. Conversely, the PLL stabilizes mainly against flexion since it runs between the posterior 

wall and the spinal cord. The deposition of the fibers can originate from one vertebra and then span 

several levels whilst bulging of the disc contributes to their pre-tensioning [15]. This complex 

arrangement allows distributing the reaction force over several consecutive joints [41]. The 

posterior processes are connected via a set of multiple ligaments. The ligamentum flavum bridges 

the laminae of adjacent vertebrae and is located posteriorly to the spinal cord. This ligament is 

designed not to buckle (in physiological conditions) and recoil promptly in extension to avoid 

spinal cord impingement. Thus, the fibers of the ligamentum flavum are pre-tensioned also in the 

neutral position, whilst linearity of the response at low strains is given by the high content of elastin  

[15]. The interspinous ligament appears as a band connecting the superior ridge of the spinous 

process to the inferior of the adjacent one and is connected anteriorly to the ligamentum flavum. 

The fibers appear not to be organized as in other ligaments, thus the resistance provided in flexion 

is inferior [41]. The supraspinous ligament lies on the mid line of the most posterior aspect of the 

spinous process and bridges the interspinous spaces. The structure of the ligament is ambiguous as 

the deep layer is made up of tendinous fibres originating from the adjacent muscles [41]. The spinal 
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musculature is the only active component of the spine and their function is to contribute to 

stabilization and produce movements [15]. The aim of the muscles is to counteract the external 

loads through the modification of the shape of the spine [39]. From a functional point of view, the 

muscles can be generalized into four categories: superficial and deep flexors; superficial and deep 

extensors. Superficial muscles are usually longer, spanning several levels, and their activation 

controls gross movements. On the other hand, deep muscles are usually shorter and closer to the 

vertebral rotation axes and thus can act directly on the position of the vertebrae [40]. Preserving 

muscle integrity in surgery is paramount since dissection or excessive retraction of the tissue may 

lead to subsequent pain or disability [42]. 

 

Fig.1-13: Ligaments of spine. 

1.2.5 Spinal loads 

Daily activities induce complex loading scenarios on the spine. Understanding those 

loads is important not only from a strictly clinical point of view, but also for the design of 

valid in vitro experiments. Several approaches have been developed to estimate spinal loads, 

exploiting both in vitro and in vivo measures, as well as numerical simulations. However, 

given the complexity of spinal biomechanics, it is difficult to provide accurate estimations, 

whilst each method has different advantages and disadvantages [43]. In vivo measures are 

perhaps the most representative source, although they can be invasive and affected by natural 
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inter-subject variability [43]. Bergmann et al.  [44] has provided a series of in vivo studies 

using instrumented vertebral body replacements and spinal fixators. Measurements from 

vertebral body replacements have shown that the resultant force exerted during level walking 

can reach about 170 % of that measured when standing (ranging 100 - 300 N between two 

subjects). Loads increase when performing activities involving upper body flexion (e.g. 

ascending/descending stairs), during which the resultant can exceed 250 % of the standing 

force [45]. The direction of the resultant force acting on the vertebral body replacement during 

common daily activities can be approximated to span a cone with an aperture of 15°. This 

angle was estimated in a previous work [46], using data available from [44]. Measures over 10 

patients with instrumented spinal fixators have shown that walking, as well as 

ascending/descending stairs, induces a peak bending moment of ~110 % of standing value 

[47]. Similar trends have been found also in another study where walking has induced a 

maximum bending moment ranging from 2 - 9 Nm and a maximum resultant force ranging 

from 50 - 400 N on the fixator rods [48]. However, it must be borne in mind that those in vivo 

measurements are not representative of a physiological condition and that instrumented 

implants share loads with other spinal structures (e.g. bone grafts, facet joints) [45].  

An alternative site of measure is the intervertebral disc. Wilke et al. [49] has provided 

in vivo measurements by inserting a pressure transducer within the nucleus, showing an 

increase from 0.5 MPa when standing, to 2.3 MPa when lifting a 20 kg weight. McNally et al. 

[50] developed an in vitro stress profilometry technique, which was extensively used by 

Adams and his group [51-53]. The stress profile is obtained by inserting a transducer 

(continuously recording pressure) through the disc and then sliding it to the opposite side 

whilst the spine undergoes a constant load. Results showed that, in a healthy disc, the internal 

stress increases from the outer annulus towards the nucleus, where a plateau is reached (i.e. 

hydrostatic pressure condition). Conversely, a degenerated disc showed an altered load 

transfer, with stress concentration in the middle annulus and reduced stress within the nucleus 

[35](Fig.1-11). Such technique may also be used to estimate the force transmitted to the 

endplate. If the geometry of the disc is known, the integral of the pressure over the CSA will 

provide the force borne by the disc itself [54], although corrections factors may be required 

[55]. In vivo data were then used to estimate forces of about 400–600 N when standing, which 

may reach 1200–1500 N when bending forward [56-58]. Together with the intervertebral disc, 

the facet joints are responsible for transmitting the whole load between two adjacent vertebrae, 
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with the facets bearing about 2–7 % of the force in axial compression [59]. Furthermore, the 

load sharing between the disc and the facet joints depends on posture: the more the extension 

the more load sharing shifts posteriorly [59]. In addition, the facet joints have a substantial role 

in resisting anterior shear, by bearing 55–65 % of such loading component [60]. Numerical 

modelling has the great advantage of being non invasive whilst allowing replicating several 

loading conditions, although requiring a thorough validation process to achieve sufficient 

accuracy [43]. Dreischarf et al. developed an FE model of the disc, which was validated using 

force estimations from intradiscal pressure measurements [55]. Results predicted forces 

ranging 430–600 N when standing, with an error below 4 %. An alternative numerical 

approach is multibody dynamics, where bones are typically modelled as rigid segments 

undergoing forces exerted by multiple muscle groups (i.e. output of the model). External 

forces and kinematic can be measured in vivo non invasively (e.g. gait analysis) and then used 

as input for the model, as boundary conditions or for its validation. This method has allowed 

generating complex spinal models with up to 18 degrees of freedom and 154 muscles, 

estimating up to 238 Nm occurring at L5–S1 in extension [61]. The same approach was 

exploited to estimate a moment of 8 Nm acting on L1 when standing with both arms elevated, 

which increased by 5 Nm per additional kg of weight held in the hands [62]. 

1.3 Osteoporosis 

Osteoporosis is a metabolic disease which results in loss of bone mass and deterioration of 

the bone micro-architecture, is a major cause of fractures in the elderly. It mostly affects the bony 

structures where the trabecular bone is prevalent, such as the femoral neck, wrist and vertebral 

body. Therefore, the weakened structure becomes susceptible to fracture. The incidence and 

associated socio-economic costs of these fractures are very high and their health impact is far 

reaching: about 440,000 and 700,000 new cases per year in the European Union (EU) countries and 

in the United States, respectively [63]; direct annual costs estimated to be about US$440 million 

and US$750 million in the EU countries and in the United States, respectively [64]. 

The pathology mostly affects women as the post-menopausal oestrogens deficiency 

enhances the bone resorption activity of osteoclasts [65]. Vertebral compression fractures, the most 

common type of osteoporotic fractures, are associated with pain, increased mortality and a 5-fold 

increased risk of additional vertebral fractures [66]. What makes the situation even worse is that 

vertebral compression fractures can be clinically elusive: about half of them are thought to be 
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asymptomatic and remain clinically undetected [67]. Better tools are therefore needed to better 

diagnose and prevent the occurrence of vertebral fractures.  

1.4 Vertebral fracture 

Vertebral fractures occur when the loading conditions exceed the strength of the 

vertebrae [17]. However, the mechanism and outcome of that event is an extremely complex 

topic which involves several factors. Bone quality is a fundamental discriminant in the 

mechanics of traumatic and pathological fractures. Pathological conditions hinder bone quality 

and physiological loads may become too demanding for the vertebral structure. Therefore, 

daily activities may induce a micro-damage whose continuous accumulation causes back pain 

and may lead to fracture [67]. Conversely, traumatic fractures arise when the spine undergoes 

non physiological and extreme/impact loading conditions. Dissipation of such a high amount 

of energy may result in the fracture of the vertebra and/or damage to spinal soft tissue [15].  

For the purpose of this work the candidate have focused on vertebral compression 

fracture. 

1.4.1 Vertebral compression fractures 

Vertebral compression fractures are a severe cause of morbidity and disability as well as a 

significant burden for healthcare systems. However, the biomechanics underlying fracture onset and 

success of its treatment raises research questions which are still far from being answered. In simple 

terms, a vertebral compression fracture (VCF) is a fracture in which the vertebral body partially 

collapses. VCF are radiographically demonstrated deformities defined as a decrease of 15% to 20% 

of the vertebral height, measured by comparison with adjacent vertebrae. They typically occur when 

the combined axial and bending loads on the spine exceed the strength of the vertebral body [68]. 

This usually occurs in the anterior part of the vertebral body, involving the anterior cortex and 

occasionally one or both endplates, and may also spreads to the lateral cortex. When the posterior 

cortical shell is fractured, retropulsed fragments bursting out from the posterior cortex can create 

compression of the spinal cord (Fig.1-14). 

The cause of the vertebral fracture may be either pathological or traumatic. The main 

pathological conditions are osteoporosis and cancer, whose metabolic alterations result in bone 

weakening [69, 70]. Osteoporosis has been estimated to afflict up to 30 % of post-menopausal 
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women [71] causing about 1.4 million new vertebral fractures every year [72]. Metastatic 

infiltration, primary spinal tumours and multiple myeloma usually induce gross osteolytic lesions, 

leading to painful vertebral fractures and severe back pain [73, 74]. Understanding the mechanics of 

those fractures is then fundamental to develop effective treatments, also considering the little time 

available to mend the life quality of patients (metastatic infiltration may occur at a terminal stage of 

the cancer). Spinal traumatic fractures are present in more than 20 % of trauma cases [75] and they 

occur when the spine undergoes accidental high-energy loading conditions, hence exceeding its 

own strength. The majority of spinal traumas arise from motor vehicle accidents (~66 %) and fall 

from heights (~13 %) [75], which are events where the main force component is axial. Compression 

fractures indeed account for about 66 % of all spinal fractures with a 14 % incidence of 

neurological deficit [76]. Burst fractures are a sub-type of compression fractures, and they account 

for about 30 % of all spinal injuries [76] whilst approximately 47 % of cases present with a degree 

of neurological deficit at the time of admission [77]. The main features of the fracture are the spinal 

canal occlusion (SCO), comminution of the endplates and interpedicular widening (IPW).  

 

Fig.1-14: Classification of vertebral compression fractures according to Genant [78]. 

While most compression fractures from trauma will heal within 8 to 10 weeks with 

conservative treatment consisting of bed rest, bracing, and pain medications, in some cases 

excessive deformity require surgical procedures to correct and reverse the damage caused by the 

VCF.  
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A minimally-invasive method called vertebroplasty is used to treat VCF in cases where 

vertebral collapse doesn’t exceed 65% [79]. More severe trauma necessitates more complex 

surgical procedures and the use of instrumentation that might present a greater risk and precipitation 

of associated medical complications for elderly patients [80]. This is indicated when there is spinal 

cord compression leading to neurological deficit, or a progressive deformity (kyphosis or scoliosis) 

leading to pulmonary compromise or imbalance of the trunk. In some cases, spinal instrumentation 

consisting of spinal rods, hooks and screws can be attached to the posterior part of the spine to act 

as a splint, with the aim to improve support and halt progression of deformity 

1.5 Vertebroplasty 

Vertebroplasty is a minimally-invasive approach which consists in injecting low viscosity 

cement, typically polymethylmethacrylate (PMMA), directly into the collapsed vertebral body, with 

the goal of stabilizing the fracture and relieving the associated pain. After the cement has 

polymerized and hardened, it is can prevent further collapse of the vertebra and further deformity 

such as spine curvature and/or loss of height. Successful repair of the collapsed vertebrae is 

commonly said to be achieved when strength is restored to pre-fracture values [81].  

Vertebroplasty is considered a minimally invasive surgical procedure because takes about 1 

hour to complete and patients usually go home the same or next day as the procedure. The main 

steps of this procedure are:The patient is treated with local anesthesia and light sedation, usually in 

a x-ray suite or operating room on an outpatient basis. 

1. A biopsy needle is guided into the fractured vertebra under fluoroscopic x-ray 

guidance through a small puncture in the patient’s skin (Fig.1.15). 

2. Specially formulated acrylic bone cement (most commonly PMMA) is injected 

under pressure directly into the fractured vertebra, filling the spaces within the bone, 

with the goal of creating a type of internal cast (a cast within the vertebra) to 

stabilize the vertebral bone (Fig.1.15).  

3. The needle is removed and the cement hardens quickly (few minutes) and forms a 

support structure inside the vertebra that provide stabilization and strength. 



! EL!

 

Fig.1-15: Illustration of the vertebroplasty procedure, consisting in the injection of cement with 

cannulae placed thought the pedicles ( Modified from Medical Encyclopedia: www.nlm.nih.gov). 

In the last years vertebroplasty has also been successfully used as a prophylactic treatment, with the 

objective to reinforce osteoporotic vertebral bodies which are at risk of failure, thus preventing 

fracture [82]. 

1.5.1 The biomechanics of vertebroplasty 

Vertebroplasty procedure was first performed in 1984 in France by Galibert and Deramond 

[83] and has been gradually introduced in Europe and in the United States [84]. Efficacy of 

vertebroplasty on the pain relief and quality of life [80], was reported in 73% to 90% of patients 

[85]. This immediate pain alleviation resulting from cement augmentation is associated with 

inhibition of painful micro movement at the fracture site [86]. This has mainly contributed to make 

vertebroplasty an attractive option to more conservative and surgically-invasive treatments related 

to tumors and osteoporotic vertebral compression fractures. 

Despite the potential advantage of vertebroplasty, this procedure has several drawbacks. It is 

clinically performed under fluoroscopy to control the amount of injected cement, and avoid cement 

leakage. Cement leakage has been reported as cause of temporal or permanent paralysis and at 
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worth patient death, due to a reaction to the toxicity of cement. These circumstances are rare and 

mostly due to a mistaken placement of needle or an altered cement mixtures that increase their 

fluidity and leaking risks [70]. It has been hypothesized that the cement filling of the intertrabecular 

spaces prevent the supply of bone nutrients coming from marrow lead to bone necrosis in the 

neighbor tissues as much as the heat of polymerization [87, 88]. Moreover, an altered 

biomechanical stress and load transfer after procedure may affect the risk of failure of the adjacent 

vertebral bodies. In fact, more than 20% of patients undergoing to vertebroplasty suffer to further 

fractures [89], and in 67% of the cases, these fractures occur within 30 days post-operatively. An 

example of such a case is shown in Figure 1.16 [90]. Due to the stiff nature of PMMA, most of 

these new fractures occur in the vertebrae adjacent to the one that has been reinforced with cement. 

The stress shielding effects due to the stiff cement, is known to cause undesirable of bone resorption 

[91]. 

The effects of injected cement volume and distribution are still debated. In vivo studies have 

shown that only small amounts of cement (from 2 ml to 8 ml) are required for strength and stiffness 

restoration [92] [93]. Volume fill also correlated with strength and stiffness restoration [84]. A 

general agreement is that although very low amounts could restore strength in a fractured vertebra, 

larger volumes are required to restore stiffness [92]. Clinically, the distribution and volume of 

injected cement is influenced to the injection method (uni- or bi-pedicular approach) and to the 

anatomy of the vertebral body (angle of needle insertion and placement).  

Moreover, the mechanical properties of the polymerized cement might also affect the out- 

comes of the procedure. The presence of a quantity of very stiff cement, typically PMMA, which is 

one order of magnitude stiffer than trabecular bone, is believed to promote the failure of the already 

weak osteoporotic bone of the adjacent vertebrae. Finite element analyses as well as in vivo studies 

have been shown that even relatively low volumes of PMMA may increase the risk of adjacent 

vertebrae failure at lower loads than if the fracture vertebra had been left untreated [89].  
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Fig.1-16: Radiographic evidence of adjacent vertebral fracture (color circle) 6 months after 

vertebroplasty (Source from Tanigawa et al. [90]) 

This might be related to the so-called ”pillar effect”, demonstrated by a few studies of 2 or more 

spine levels [94-96]. The pillar effect of injected cement is hypothesized to decrease the endplate 

bulge in the augmented vertebra causing an increase in adjacent disc pressure that is communicated 

to the adjacent vertebra [94]. 

In the last years prophylactic vertebroplasty has been proposed as an option to reduce the 

fracture risk of metastatic and osteoporotic vertebrae [69, 81, 97-99], or to prevent adjacent 

fractures after vertebroplasty [100, 101]. 

The risks affiliate with vertebroplasty has raised many questions about the safety of the 

procedure, moreover prophylactic augmentation (treatment of nonfractured vertebra) exposes the 

patients to additional risk ,for this reason there is a need for a clearer understanding on the cost-

benefit trade-off. 
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1.6 Biomechanical investigation of spine 

Biomechanical investigations are paramount to gain a thorough understanding of spinal 

biomechanics and related treatments. The following section is meant to provide an overview of 

the literature relevant to the experiments carried out in this study. 

1.6.1 In vitro testing of spine 

Knowledge of the normal functional behavior and mechanical properties of the vertebral 

column is important to understand the pathogenesis of back lesions, to identify the clinical 

manifestations of back pain, and to ensure a rational approach to physical therapy.  

Daily activity induces complex loading scenarios on the human vertebrae. Information about 

spinal loads can be derived from a combination of in vivo or in vitro measured, and mathematical 

models. Even if direct in vivo spine measurements provide the most reliable loading data [57, 102-

104], in vivo studies are difficult to perform because of their methodological and ethics limitations. 

Conversely, biomechanical in vitro simulations have the advantage of being non-invasive and more 

effortless to carry out. For these reasons it is clear that in vitro mechanical testing is widespread 

performed to better understand the biomechanics of spine, fracture, and to test/optimize surgical 

treatment. 

Since in vitro testing represents a simplified scenario, the simulated loading conditions  

follow different approaches, reflecting the complexity of the human musculoskeletal system. In 

vitro experiments aim at assessing [43]:  
• Kinematics of the spine: these experimental protocols are usually designed to replicate 

simple motor tasks (i.e., by applying combinations of pure moments and forces), 

focusing on the relationship between motion and loads. Hence, results provide 

information about parameters such as range of motion (ROM), joint axes of rotation, 

neutral zone and elastic zone. 

• Mechanical and structural properties of the vertebral body and discs: stiffness, strains, 

failure strength, mode of failure are investigated by applying simplified loading 

conditions (e.g., axial compression) to grant better control of the experimental 

scenario. 
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• Comparison with healthy and pathological conditions (e.g., disc degeneration, spinal 

instability, osteoporosis, malignant infiltration): these experiments are also performed 

to assess the effects of clinical treatments (e.g. cement augmentation, spinal implants). 

The experimental approach performed in this study, is based on the study of mechanical and 

structural properties of human natural and treated vertebral body. 

In vivo measurements and numerical modelling of the spine only record/predict compressive 

forces in the vertebral body (Table 1-2).  Tensile forces measured in vivo and predicted by 

numerical models are 1-2 orders of magnitude smaller than the compressive ones.  This was 

recently confirmed by two large EU-funded international consortia investigating the spine 

biomechanics [105], and vertebral treatments [106]. Moreover, recent in vitro studies [31, 46, 107] 

have shown that the structure of the vertebral body is optimized to withstand pure compressive 

forces (as opposed to tensile, oblique or torsional).  This confirms that in nature the vertebral body 

is not subjected to tension. 

In fact, all in vitro tests and numeric models aiming at replicating relevant physiological 

conditions apply a pure compressive force  (possibly including a bending component associated 

with an anterior offset of the load or an eccentric load, Table 1-2). Recently, a study was published  

[46] where eight thoracolumbar vertebrae instrumented with eight triaxial strain gauges. The 

vertebrae were loaded through their disks and were subjected to a variety of loading conditions that 

included the cone spanned by the resultant force during physiological motor tasks, but also other 

load components such as torsion and traction [44]. 

In vitro experiments are also performed to assess the outcomes of clinical treatments, such 

as cement augmentation (Table1-3). The increasing interest in the use of vertebroplasty as a 

treatment for vertebral compression fractures has led to a number of studies on the biomechanical 

aspects of the technique using both experimental and computational models. In both experimental 

and computational modelling of the vertebroplasty process, studies have generally concentrated on 

examining the effects of the cement type and volume. 

It must be noted that most studies focused on the overall failure strength of the natural and treated 

vertebral body, without analyzing the strain distribution. 
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Table 1-2: Examples of in vitro and numerical studies where the vertebral body is subjected to 

compression 

Number &type of cycles Method of estimation References 

Destructive axial compression (burst fracture) In vitro study [108] 
Increasing cyclic compressive fatigue test  (from 10000 to 
80000 cycles) under escalating load to the patientʼs Body 
Weight (BW) (1 to 3.5 BW) 

In vitro study  [109] 

Compression cycles loading until failure In vitro study [110] 
Simulation of axial compression up to 1000 N Numerical study [111] 
Destructive axial compression (burst fracture) In vitro and numerical study [112] 
Destructive axial compression In vitro and numerical study [113] 
Creep analysis during static compressive loading In vitro study [114] 
Compressive loading along the follower load path (tangent to 
the curve of spine) In vitro study [115] 

Destructive testing under eccentric compression  In vitro studies [100]; [116] 
Eccentric compression In vitro study [117] 
Creep analysis during static compressive loading In vitro study [118] 
Destructive testing under compressive loading tilted in 6°-10° 
of flexion In vitro study [119] 

Destructive testing under unconstrained compressive loading 
by using a 6-degree-of-freedom robotic arm In vitro study [120] 

Destructive axial compression In vitro study [121] 
No destructive testing under compressive loading and tilted of 
15° in each direction  In vitro study [46] 

No destructive axial compression In vitro study [122] 
No destructive testing under axial compressive loading and 
tilted of 15° in each direction  In vitro study [107] 

The body of the thoraco-lumbar vertebrae is optimized to 
resist to a load applied strictly in an axial direction In vitro study [31] 

Destructive axial compression In vitro study [123] 
Destructive axial compression In vitro study [124] 
Destructive axial compression In vitro study [125] 
Destructive axial compression In vitro study [126] 
Destructive axial compression In vitro study [127] 
Destructive axial compression In vitro study [128] 
Destructive axial compression In vitro and numerical study [129] 
Destructive axial compression In vitro and numerical study [130] 
Destructive axial compression In vitro study [131] 
Destructive axial compression In vitro and numerical study [132] 
Destructive axial compression In vitro study  [133] 
Destructive axial compression In vitro and numerical study [18] 
Destructive axial compression In vitro and numerical study [26] 
Destructive axial compression In vitro study [134] 
Destructive axial compression In vitro study [135] 
Destructive axial compression In vitro study [67] 
Destructive axial compression In vitro and numerical study [136] 
Destructive axial compression In vitro study [137] 
Destructive axial compression In vitro study [23] 
Destructive axial compression In vitro study [138] 
Eccentric compression In vitro study [139] 
Anterior bending In vitro study [140] 
Anterior bending In vitro and numerical study [141] 
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Table 1-3: Examples of in vitro studies on augmented vertebrae 

Type of treatment Applied force and number of cycles Type of cement References 

Post-fracture vertebroplasty Static destructive test  
Failure load= 2857 N 

Acrylic cement [142] 

Prophylactic augmentation  
 

Static destructive test: 
Failure force=2019±979 N for controls 
Failure force = 6407 ± 6336 N augmented 

Acrylic or brushite cement [143] 

Prophylactic augmentation  Static destructive test 
Failure force= 11936±1985 N1 

Calcium phosphate (CP) 
cement [144] 

Post-fracture vertebroplasty 

Destructive fatigue loading (flexion-
compression force) and a stepwise increasing 
applied peak force (no detail about number of 
cycles) 
Fatigue fracture force:  
PMMA group 2854±648 N 
PMMA modified group 1980±786 N 

A variety of modified acrylic 
formulations [145] 

Post-fracture vertebroplasty 

Increasing cyclic compressive fatigue test  
(from 10000 to 80000) under escalating load 
to the patientʼs Body Weight (BW) (1 to 3.5 
BW) 
Failure force 2280±890 N 

Acrylic cement  [109] 

Post-fracture kyphoplasty  
 

Non destructive dynamic compressive fatigue 
test (10000 cycles 100 or 200-600 N) 
Destructive static compression test for both 
techniques:  
Failure force= 4709±1953 N  
Failure force= 4779±1068 N 

Acrylic cement injected with 
two different technique 

[146] 

[147] 

Synthetic vertebral body 
augmentation model for 
Balloon Kyphoplasty 

Three series of destructive compression 
fatigue life testing: 
0-2300 N 100% of PMMA run out (one million 
loading cycles) 
0-2300 N 28% of CP run out 
0-1150 N 100% of CP run out (one million 
loading cycles) 

Acrylic bone cement and 
Calcium Phosphate (CP) 
bone substitute  
This study uses a 
polyurethane foam vertebral 
body model.  

[148] 

Prophylactic augmentation 
and kyphoplasty 
 

Compressive fatigue test 100000 cycles of 
eccentric loading (100-600 N) 

Acrylic bone cement and 
Calcium Phosphate (CP) [149] 

Post-fracture vertebroplasty 

Destructive anterior wedge fracture 
Failure force=1114±325 N for specimens 
augmented endplate to endplate 
Failure force=767±257 N for specimens 
partially augmented 

 Acrylic bone cement  [150] 

Prophylactic augmentation 
and post-fracture 
vertebroplasty 

Destructive compression test 
Failure force 5000-8000 N 

Acrylic and Calcium 
Phosphate (CP) bone 
cements 

[151] 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
L!The values reported by (Ikeuchi et al., 2001) are significantly higher than any other study, and refer to formalin-fixed 
vertebrae completely filled with cement.  !
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Type of treatment Applied force and number of cycles Type of cement References 

Post-fracture vertebroplasty 

Destructive static compression. 
For central and lateral 3.5 ml injection 
cement: 
Failure force= 2175±295 N  
Failure force= 2027±335 N  
For central and lateral 7.0 ml injection 
cement: 
Failure force= 3396±295 N (central) 
Failure force= 3311±295 N (lateral) 

Acrylic bone cement  [152] 

Prophylactic augmentation Destructive static compression 
Failure force 7807±2650 N (4309-12431 N) 

Acrylic bone cement  [153] 

Post-fracture vertebroplasty 
Destructive static compression. 
Failure force for lumbar 1788-2336 N 
Failure force for thoracic 1362-3310 N 

Acrylic bone cement  [93] 

Post-fracture vertebroplasty 

Destructive static compressive test. 
Results of the different cements for lumbar 
vertebrae: 
Failure load 4208±364 N 
Failure load 3134±364 N 
Failure load 2450±364 N 
and for thoracic vertebrae: 
Failure load 4058±347 N 
Failure load 4146±330 N 
Failure load 2476±330 N 

Three different 
hydroxyapatite cements [154] 

Prophylactic augmentation 
and post-fracture 
vertebroplasty 

Compressive wedge fracture 
Failure strength: 
Prophylactic 2230±620 N 
Vertebroplasty 2630±850 N 

Acrylic bone cement [117] 

Post-fracture kyphoplasty  
 

Destructive static compressive test: 
Failure load 1122±993 N (T1-T5)  
Failure load 2906±1008 N (T1-T5) 

Acrylic bone cement  [98] 

Post-fracture kyphoplasty  
 

Destructive static compressive test: 
Failure load 5092±2543 N (T1-T5)  

Acrylic bone cement  [137] 

Post-fracture vertebroplasty 
Destructive static compressive test: 
Failure load 4200 N (uni-pedicular) 
Failure load 6800 N (bi-pedicular) 

Acrylic bone cement  [155] 

Prophylactic augmentation 
In vitro and numerical study. 
Destructive static compressive test: 
Failure load range 2000 N -7000 N 

Acrylic bone cement 
standard and with low-
modulus 

[156] 

Prophylactic augmentation Destructive static compressive test  
Failure load omitted 

Acrylic bone cement 
standard and with low-
modulus 

[157] 
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1.6.2 In situ testing 

In situ testing is an experimental paradigm where stepwise loading is integrated with CT 

scanning, hence allowing the investigator to perform high-resolution scanning of the sample under 

load. Therefore, the testing cell is designed to deliver a known force to the sample as well as satisfy 

the requirements for CT scanning. One of the firstly developed protocols allowed axial compression 

of a 9 x 22 mm specimen within a micro CT with a resolution of 34 !m [158]. However, that testing 

cell required loading through a universal testing machine, with obvious issues to consistently 

maintain the applied strain when the rig was fitted into the scanner. Subsequently, the in situ 

protocol has been used with synchrotron radiation source CT to achieve resolution up to a few nm 

[159, 160]. Despite the high resolution, micro CT typically has a limited field of view and sealed 

scanning chamber. High–resolution peripheral quantitative CT (HR–pQCT) has provided a viable 

alternative for whole bone scanning since it allows a cylindrical first instance of an in situ 

investigation with HR–pQCT is from Hulme et al. [36]. The authors developed a rig to be fitted 

within the scanner where the axial compression could be applied manually by means of a screw–

driven actuator. Load and displacement were recorded throughout the test as the rig was equipped 

with a load cell and displacement transducer. The authors tested functional spinal units which 

underwent scan 1500–200 N). Image processing based on rigid registration of the two datasets was 

used to compute the deflection of the endplates. 

1.6.3 Strain distribution measurements 

One of the first studies on the strain distribution in the vertebral body was carried out by 

means of brittle coating, photoelasticity [161] and 17 strain gauges [162], for different compressive 

loads. They reported strains of the order of 500–1500 microstrains for a 1470 N compressive force. 

The effect of an inclined load (2800 N at 161) has been investigated on functional spinal units using 

3 to 4 strain gauges, where compressive strain of about 650 microstrain were measured [163]. 

Strains induced by compression and shear loads were quantified with three triaxial strain gauges on 

the vertebral rim, and one on the endplate surface [164]. Fracture risk was assessed by Kayanja et 

al.[165], but the most stressed region could not be identified as only one gauge was applied on each 

vertebral body. The principal strains were generally aligned as expected: axially/circumferentially 

for all loading configurations implying a compressive force, and roughly at 45° for torsion. Recent 

studies [166-168] has been successfully implemented digital image correlation (DIC) to understand 

the biomechanics of the vertebra. 
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However, these traditional experimental techniques such as strain gauges are restricted to the 

surface of specimens, where no internal strain distribution could be interrogated [169].  Alternative 

approaches have been exploited to overcome this limitation. With the advent of high-resolution 

micro-CT imaging (µCT) in conjunction with in situ mechanical testing, digital volume correlation 

(DVC) techniques emerged as a novel tool for the measurement of 3D deformation fields 

throughout entire volumes. DVC is based on tracking the displacement of micro-structural features 

observed within image volumes, by optimizing an objective function used to compare small subsets 

of image data from two subsequent scans of a sample, in both an unloaded and a loaded state [170]. 

Strain fields are calculated from the displacement fields by gradient estimation technique. For bones 

such as the vertebra, the use of DVC allows the detection of the onset and progression of failure. 

Application of DVC to whole bones was recently exploited to examine yield and post-yield 

deformations in vertebral compression experiments [171].  
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1.7 Study aim 

The main aim of this thesis was to investigate the mechanical properties of human natural and 

augmented thoraco-lumbar vertebrae in term of strain distribution. Moreover, the ultimate goal of 

the candidate was to provide a comprehensive biomechanical analysis to gain further insight on the 

mechanics of the failure process in prophylactic augmented vertebrae as well as the performance of 

the treatments.  To elucidate the mechanical properties of the natural (either healthy, or 

osteoporotic) and augmented vertebrae, an integrated approach is presented, which incorporates 

different experimental measurement methods (strain gauges and digital volume correlation).  

1. To improve and make more reproducible in vitro biomechanical test of natural and treated 

vertebrae the following methods were validated and implemented by the candidate: 

• Definition of a reproducible anatomical reference frame for the human vertebrae, 

suitable for in vitro and numerical applications 

• Provide comprehensive in vitro investigation on different boundary condition 

experienced by vertebrae, assessing the surface strain distribution between vertebra 

tested in physiological condition (i.e. through its adjacent discs and vertebrae) and the 

same vertebra tested as isolated vertebra body! 

1. The methods described above, were applied in the following applications. These objectives 

were pursued by the candidate to satisfy the aim of this study: 

• To provide comprehensive in vitro investigation about prophylactic augmentation 

• To develop an in situ testing protocol for use with natural and augmented vertebrae 

• To provide for the first time experimental data on augmented vertebrae using DVC 

analysis  

• To provide comprehensive investigation of the internal strain distribution, both in the 

elastic regime and up to failure in the natural and augmented vertebrae 

• To better evaluate biomechanical efficacy of prophylactic augmentation, using two 

commercial biomaterials, in preventing fracture of non-fractured vertebral body. 
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2.1 Abstract 

Definition of an anatomical reference frame is necessary for in vitro biomechanical testing.  

Nevertheless, there is neither a clear recommendation, nor consensus in the literature concerning an 

anatomical reference frame for in vitro testing of the human vertebrae.  The scope of this work is to 

define a reference frame for the human vertebrae for in vitro applications.  The proposed anatomical 

reference frame relies on alignment of well-defined points on the endplates, and on two landmarks 

on the posterior wall.  The repeatability of the proposed alignment procedure has been tested in 

vitro by 5 operators, on 7 specimens.  Furthermore, the feasibility and repeatability of the proposed 

procedure was assessed in silico, using CT-scans of the same specimens. 

Variations between operators were slightly larger than between repetitions by the same 

operator.  The intra-operator in vitro repeatability was better than 3° for all angles.  The inter-

operator in vitro repeatability was better than 9° for all angles.  The lateral tilt was the most 

repeatable angle, while anterior-posterior tilt was least repeatable.  The repeatability when 

alignment was performed in silico on CT-scans was comparable to that obtained in vitro, on the 

physical specimens. 

This is the first time than an anatomical reference frame is formally defined and validated 

for the human vertebrae. 

The adoption of this reference frame will provide more reproducible alignment of the 

specimens and of the test load.  This will enable better in vitro biomechanical tests, and 

comparisons with numerical models. 

Keywords: Human vertebrae, Thoraco-lumbar spine, Vertebral body, Anatomical Reference 

frame, Mechanical in vitro testing, In vitro landmarks 
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2.2    Introduction 

There is a consensus within the biomechanics community (e.g. International Society of 

Biomechanics, ISB) about the need to standardize reference frames [1-3].  Univocal definition of 

reference frames is extremely important to allow comparisons of data-sets from different studies [4-

7].  In vitro reference frames enable the correct alignment of the specimens and the applied loads, 

and the definition of reproducible testing conditions [2, 8].  While in vivo a reference frame is based 

on anatomical landmarks that need to be palpable non-invasively [9] an in vitro reference can rely 

on landmarks that are accessed invasively (e.g. when soft tissues are removed).   

Nevertheless, there is still some lack of consensus about the definition of reference frames 

for in vitro biomechanical testing, especially for the vertebrae [2] (Table 2-1). This makes 

comparisons between various studies difficult, if not impossible.  

In most of the previous works, details on the procedures to align the vertebra are missing: 

single vertebrae [10, 11] or functional spinal units (FSU) [12, 13] had their extremities embedded in 

bone cement to provide parallel planes for mechanical loading, but information about the alignment 

procedure is not reported. 

When some kind of alignment is indicated, the procedure usually refers to horizontal 

alignment of anatomical structures such as the endplates or intervertebral disks, but little anatomical 

detail is given [14-16].  Alternatively, a steel rod was clamped in the medullary canal, against the 

posterior wall of the vertebral body to align a single vertebra [17], or three-adjacent-vertebra 

segments [18].  This procedure seems able to firmly hold the specimens, but cannot guarantee 

consistent anatomical alignment.  A robust reference frame for single vertebrae is based upon CT 

scans: the centre of mass (CoM) of the vertebra was computed, while projections of the frontal and 

sagittal planes containing the CoM were used to align the specimen in the testing machine [19]. 

The group of Panjabi probably performed the most extensive anatomical study to provide a 

quantitative vertebral geometric database [20-23].  The reference frame proposed by Panjabi et al. is 

based on the identification of four landmarks (right and left, superior and inferior edges of the 

posterior wall of the vertebral body).  The digitized coordinates of these four points are used to 

define the reference planes, using a least-squares method.  However, this procedure is difficult to 

implement for two reasons: (i) the need of digitizing the landmarks; and (ii) the complex procedure 

for aligning the physical specimen with a reference frame which is numerically derived from such 
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digitized coordinates.  In fact, the reference frame of Panjabi et al was conceived to perform 

anatomical measurements, not for in vitro tests. 

Table 2-1: Overview of the in vitro anatomical reference frames proposed in the literature for 

testing the human vertebrae. 

 Type of specimen Anterior-Posterior Tilt Lateral Tilt Axial Rotation 

[21-23] Whole vertebra Alignment of 
anatomical landmarks 

Alignment of 
anatomical landmarks 

Alignment of 
anatomical landmarks 

[15] Three-adjacent-
vertebrae segment 

Parallelism of endplates Posterior wall of the 
central vertebra vertical 
respect to the ground 

Not specified 

[10] Isolated vertebral body Not specified Not specified Not specified 

[14] Functional Spinal Unit 
(FSU) 

Align intervertebral 
disk horizontally 

Align intervertebral 
disk horizontally 

Not specified 

[17] Whole vertebra Insertion of a rod through the spinal canal against the posterior wall of the 
vertebral body 

[18] Three –adjacent- 
vertebrae segment 

Insertion of a rod through the spinal canal against the posterior wall of the 
vertebral bodies 

[11] Isolated vertebral body Not specified Not specified Not specified 

[13] Functional Spinal Unit 
(FSU) 

Not specified Not specified Not specified 

[12] Functional Spinal Unit 
(FSU) 

Not specified Not specified Not specified 

[19] Isolated vertebral body 
without endplates 

No alignment of anatomic landmarks but of points recognizable in CT scan 
and in the FE model 

[16] Whole vertebra  Endplates perpendicular 
to the level of fixation 
pot carrying the bone 
cement 

Endplates perpendicular 
to the level of fixation 
pot carrying the bone 
cement 

Not specified 

The main aim of this study was to provide a portable definition for a reproducible 

anatomical reference frame for the human vertebrae, suitable for in vitro applications.  Such a 

reference frame must rely on robust anatomical landmarks, and needs to be implemented, 

consistently, by different operators.  Consequently, the intra-operator and inter-operator 

repeatability of the proposed reference frame have been measured. 
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2.3 Material and Methods 

2.3.1 Definitions 

To leverage on past experience, the proposed reference frame adopted some part of the 

alignment commonly found in the literature (orientation of the endplates), and the most robust 

definition available for axial rotation (based on the posterior wall of the vertebral body).  The 

reference frame was developed to be applicable both to isolated vertebrae, and to three-adjacent-

vertebrae segments, where the central vertebra is investigated.  In this work the reference frame was 

validated for the three-adjacent-vertebrae segment, which is the most critical case because of the 

limited visibility of the endplates. 

The anatomical planes were defined as follows (Fig.2-1): 

• The transverse plane is parallel to the endplates (if the endplates are not parallel to 

each other, the bisector of the two endplates is considered).   

• The frontal plane is perpendicular to the transverse plane, and goes through points 

LL and LR.  The landmarks LL and LR correspond to the left and right upper edges of the 

posterior wall of the central vertebra [21-23]. 

• The sagittal plane is perpendicular to the previous two planes. 

The rotations were defined as follows: 

• Lateral tilt is a rotation in the frontal plane (i.e. about an antero-posterior axis). 

• Anterior-posterior tilt is a rotation in the sagittal plane (i.e. about a right-left axis). 

• Axial rotation occurs in a transverse plane (i.e. about a cranio-caudal axis). 
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Fig. 2-1 – Definition of the proposed anatomical reference frame for the vertebral body.  The 

transverse plane is parallel to the endplates.  The frontal plane is perpendicular to the transverse 

plane, and goes through points LL and LR.  The landmarks LL and LR correspond to the left and 

right upper edges of the posterior wall of the central vertebra.  The sagittal plane is perpendicular 

to the previous two planes.   

2.3.2 Guidelines for implementing an anatomical reference frame 
in vitro 

All the surrounding tissues, with exception of the intervertebral disks, must be removed, 

including the ligaments.  Special attention must be paid to the cavity between the vertebral body 

and the posterior element, because this is used for alignment.  The posterior elements of the 

adjacent vertebrae must be removed using a saw, to remove excess material. 

The posterior process of the central vertebra must be clamped in a 6-degree-of-freedom (6 

DOF) clamp, which allows rotational adjustment about three axes.  The 6 DOF clamp (which is 

mounted on a reference table) can be replaced by modelling clay as an adjustable support for the 

bone specimen, similar to [24].  First, a visual unaided preliminary alignment must be performed: 
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the peripheral portion of the endplates must be horizontal in the anterior and lateral view, and the 

posterior wall of the vertebral body parallel to the edge of the reference table in a cranial view. 

Then, fine alignment must be carried out using a 6 DOF clamp in this sequence: 

A. To align the vertebra in the frontal plane, the endplates must be aligned horizontally 

from an anterior point of view, using adjustable horizontal rulers.  The specimen is correctly 

aligned when the right- and left-most points of both endplates are at the same height (Fig. 2-

2A).   

B. To align the vertebra in the sagittal plane the endplates must aligned horizontally 

from a lateral view using adjustable horizontal rulers.  The specimen is correctly aligned 

when the most anterior and most posterior points of both endplates are at the same height 

(Fig. 2-2B).  

C. To align the vertebra in the transverse plane the landmarks LL and LR at the upper 

corners of the posterior wall are aligned from a superior view, using a smaller engineering 

square (Fig. 2-2C). 

If the landmarks for steps A) and B) are not recognizable because of the presence of 

osteophytes, the visible part of the endplates must be used for alignment.  If the endplates are not 

parallel to each other, the bisector of the two endplates must be horizontal. 

 

Fig. 2-2 – Steps for aligning the vertebra, which is held in the 6DOF clamp (partially shown, (1)):  

(A) alignment in the frontal plane using adjustable horizontal rulers (2).  (B) Lateral view for the 

alignment in the sagittal plane using the adjustable horizontal rulers (2).  (C) Top view of the 

vertebra.  A vertical ruler (3) is co-planar with landmarks LL and LR (defined in Fig. 1) inside the 
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spinal canal, to obtain the correct alignment in the transverse plane.  In this picture, the distal 

vertebra was partially resected as part of a different study. 

2.3.3 Testing the intra-operator and inter-operator repeatability in 

vitro 

Thoraco-lumbar specimens (Table 2-2), consisting of three-adjacent-vertebra segments were 

obtained through an ethically-approved program (IIAM, www.iiam.org) from donors free of 

musculoskeletal pathologies.  The first 6 specimens (4 donors, 1female, 3males, age 49-84y.o.) 

were the training set, to optimize the alignment procedure (section 2.3.2).  Other 7 specimens 

(different from the ones above: 2 donors, males, age 70-88y.o.) were the test set, to validate the 

procedure.  

The spines were visually inspected and CT-scanned while submersed in saline solution 

(multislice BrightSpeed, GE Medical Systems, Waukesha, USA: tube current 160mA, 120kVp 

voltage, helical mode with 0.195 mm pixel in the transverse plane and 0.625 mm slice thickness). 

To assess the intra-operator repeatability (i.e. when the same operator repeatedly aligns the 

same specimen) and the inter-operator repeatability (i.e. when different operators align the same 

specimen), five experienced operators aligned each specimen three times. To avoid any bias, the 

specimen orientation was modified between repetitions, so that the operator could not recognize 

previous alignments.  For each repetition, the absolute orientation was measured using a goniometer 

(Mitutoyo, Tokyo, Japan; precision: 0.1degrees). 

2.3.4 Testing the repeatability in silico 

The CT-scans of the specimens used to test the repeatability in vitro were imported in 

dedicated software (LHPBuilder, B3C, Bologna, Italy).  LHPBuilder supports handling of medical 

images, automatic segmentation, virtual palpation, and definition of customized reference frames 

[25, 26].  The same landmarks as for the in vitro alignment were identified by an experienced 

operator, three times for each specimen.  

 



! HD!

Table 2-2: Details of the specimen used in this study as a test set to validate the alignment 

procedure.  In the first five columns, the details of the donors are listed.  In the following three 

columns, the biomechanical dimensions are reported.  The vertebral body height was measured 

between the centre of the upper endplate and the centre of the lower endplate.  The antero-posterior 

depth was measured between the most anterior and the most posterior point at mid-height of the 

vertebral body.  The vertebral body right-left width was measured between the most lateral points 

at mid-height of the vertebral body.  The presence/absence of significant osteophytes is reported in 

the last column. 

Donor’s details Vertebral body details 

Specimen 
ID 

Three-vertebra 
segment 

Gender 

Age at 
death 

(years) 

Height 
(cm) 

Weight 
(kg) 

Cause of 
death 

Height 

(mm) 

Antero-
posterior 

length 

(mm) 

Right-
left 

width 

(mm) 

Presence of 
Osteophytes 

T3-a T2-T3-T4 M 70 168 86 Cardiac 
dysrhythmia 11.6 22.9 26.9 yes 

T5-a T4-T5-T6 M 70 168 86 Cardiac 
dysrhythmia 11.2 24.4 28.4 no 

T7-a T6-T7-T8 M 70 168 86 Cardiac 
dysrhythmia 17.6 30.5 25.9 yes 

T9-a T8-T9-T10 M 70 168 86 Cardiac 
dysrhythmia 15.5 33.2 29.8 yes 

L3-a L2-L3-L4 M 70 168 86 Cardiac 
dysrhythmia 24.7 32.1 42.9 no 

L3-b L2-L3-L4 M 88 180 77 Congestive 
heart failure 25.8 34.7 45.0 yes 

L5-a L4-L5-S1 M 70 168 86 Cardiac 
dysrhythmia 17.5 50.1 34.3 yes 

 

2.3.5 Statistics 

The intra-operator repeatability was quantified as follows: 

• For each of the five operators, and each specimen, the standard deviation between the 

three repetitions was computed for each angle defining the specimen’s orientation.  

• The root-mean-square-average between specimens was computed, for each operator.  
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The inter-operator repeatability was quantified as follows: 

• For each of the five operators, and each specimen, the average orientation (out of 

three repetitions) was computed.  

• The reference orientation of each specimen was computed as the average between 

the five operators. 

All analyses were performed using MatLab (2009Edition, MathWorks, Natick, MA, USA). 

2.4 Results 

The variation between in vitro repetitions performed by the same operator was less than 3° 

for all angles, with the exception of four outliers (Fig.2-3).   

 

Fig.2-3 – In vitro intra-operator repeatability for the three angles defining the specimen’s 

orientation (lateral tilt, anterior-posterior tilt, and axial rotation) reported in terms of standard 
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deviation between repetitions, for all operators.  The central red mark indicates the median of the 5 

operators over 7 specimens; the blue boxes includes the 25th to the 75th percentile; the whiskers 

extend to the most extreme data points.  The outliers (i.e. those data points exceeding the 99% 

coverage range) are marked with red crosses, and were excluded from the analysis. 

The lateral tilt was the most repeatable angle, while the anterior-posterior tilt was least 

repeatable.  The orientation identified in vitro by the five operators fell within a range of 9° for all 

angles, with the exception of two outliers (Fig.2-4).  

 

Fig. 2-4 – In vitro inter-operator repeatability for the three angles defining the specimen’s 

orientation reported in terms of mean variation between 5 operators (a positive angle corresponds 

respectively to: lateral tilt towards left; anterior tilt; axial rotation towards right).  The central red 

mark indicates the median of the 5 operators; the blue boxes includes the 25th to the 75th percentile; 

the whiskers extend to the most extreme data points.  The outliers (i.e. those data points exceeding 

the 99% coverage range) are marked with red crosses, and were excluded from the analysis. 
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 Also the inter-operator test confirmed that the lateral tilt was most repeatable, while the 

anterior-posterior tilt was least repeatable.  Variation between operators was slightly larger than 

between repetitions by the same operator (Fig.2-3 - 2-4).  The intra-operator repeatability in silico 

was comparable to the in vitro one (Fig.2-5). 

 

Fig. 2-5 – In silico intra-operator repeatability for the three angles defining the specimen’s 

orientation (lateral tilt, anterior-posterior tilt, and axial rotation) reported in terms of standard 

deviation between repetitions.  The central red mark indicates the median of the specimens, the blue 

boxes includes the 25th to the 75th percentile, the whiskers extend to the most extreme data points.  

The outliers (i.e. those data points exceeding the 99% coverage range) are marked with red 

crosses, and were excluded from the analysis. 

2.5 Discussion 

While in vitro mechanical testing of the human vertebrae is regularly performed (e.g. [10-

19]), no clear definition has been proposed for an anatomical reference frame for in vitro purposes.  
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The aim of this study was to formalize a proposal for a reference frame for the human 

thoracolumbar vertebrae. 

The importance of alignment of trabecular bone is known: the Young’s modulus and 

ultimate stress decrease by about 40% for a misalignment of 20° between the testing direction and 

the trabecular main direction [27].  Thus, since most of the vertebral body structure is trabecular, 

misalignment will result in a significant alteration of the vertebral strength. 

To the Authors’ knowledge, the current study defines and validates, for the first time, a 

reproducible reference frame of the human vertebrae for in vitro applications.  The proposed 

reference frame relies on robust anatomical landmarks and can be consistently applied by different 

operators. 

In vitro, lateral tilt was most repeatable, both for the same operator, and between operators. 

Conversely, the anterior-posterior tilt was least repeatable in vitro, both for the same operator, and 

between operators (Figs. 2-3 and 2-4).  The main in vitro problem reported by the 5 operators was 

the identification of the most anterior and posterior landmarks, because of the ambiguity associated 

with observing the vertebra (which has some degree of asymmetry) from both right and left sides: 

this affects the anterior-posterior tilt.  In vitro, lateral tilt was best repeatable, possibly because of 

the larger distance separating the most lateral points of the vertebral body (if the same error affects 

identification of a landmark, this propagates less heavily to the identification of a plane if the “lever 

arm” is longer).   

In silico identification of the landmarks was somewhat easier, thanks to the LHPBuilder 

tools that enable adjustable thresholding, etc. [25, 26].  For this reason, comparable uncertainty was 

found for the alignment in all planes. 

The outliers (Figs. 2-3 and 2-5) were associated with those specimens that were small in 

dimension (thoracic vertebrae). 

Despite the presence of osteophytes in most specimens (Table 2-2), the in vitro alignment 

repeatability remained satisfactory.  Landmarks LL and LR on the posterior wall of the vertebra 

were highly repeatable, because the posterior wall is seldom affected by deformity or osteophytes 

[20-23].  For this reason, the axial rotation is affected by limited uncertainty.  Similar to most 

studies, the proposed reference frame does not rely on the posterior process, because this structure 
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is often affected by deformity and large inter-subject variations (inter-subject variations of about 

10° [23]).   

Direct comparison with other studies is not possible, as for no other vertebral reference 

frame the intra- and inter-operator repeatability have been published.  Repeatability has not been 

quantified even for the reference frame by [21-23]. 

In the past, however, anatomical reference frames for the long bones have been investigated 

[2, 28, 29]: 

• The alignment repeatability of the vertebrae is one order of magnitude worse than for 

long bones (tibia, femur, humerus) in the sagittal and frontal planes.  In fact, long bones are 

one order of magnitude longer than the vertebra. 

• Conversely, the alignment repeatability of the vertebra is comparable to that of the 

long bones about their long axis (their transverse dimension is of the same order of 

magnitude as the vertebra).  

• Alignment repeatability of the vertebra was of the same order of magnitude as that 

for short bones such as the metatarsal bones (they have comparable dimensions). 

This study has some limitations. First, after being optimized on a training set, this reference 

frame was tested on a limited sample size (7 specimens), obtained from 2 donors, reducing the 

variability in the dimension and shape of the vertebrae.  Moreover the proposed reference frame 

was tested only on the thoracolumbar vertebrae.  The reference frame is intended only for in vitro 

use; in fact the vertebra surface can only be accessed invasively (e.g. when soft tissue are removed).  

However, we have shown that it can be implemented also in silico, on CT-scans.   

A further limitation is associated with the practical problems encountered while performing 

alignment.  The in vitro problems reported by the operators were: bad visibility of the bone surface, 

the asymmetry in the vertebral structure, anatomical differences among specimens, and the presence 

of deformities (e.g. ostheophytes, scoliosis, calcifications etc).  Also the limited dimensions of the 

specimens played an important role in the alignment procedure, especially for the thoracic 

vertebrae.  
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Our methodology incorporated relatively simple and inexpensive equipment, while 

achieving high repeatability.  If the 6DOF clamp used in our study is not available, it can easily be 

replaced by modelling clay as an adjustable support for the bone specimen, similar to [24]. 

The proposed reference frame relies on bony prominences and landmarks (as opposed to 

anatomical planes and axes) for more robust alignment.  The adoption of this anatomical reference 

frame provides more reproducible specimen alignment, making in vitro biomechanical tests more 

accurate.  The use of this reference frame can also be useful for the development of accurate 

numerical models, and for numerical-experimental comparison. 
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3.1 Abstract 

The strength of natural and treated vertebrae can be assessed through in vitro mechanical tests both 

on isolated vertebral bodies, and on sets of three-adjacent-vertebrae (where the central one, under 

investigation, is loaded through the adjacent intervertebral discs).  The goal of this in vitro study 

was to determine if testing the human vertebral body in a single-vertebra configuration provides 

different results from three-adjacent-vertebrae-segment.  Twelve sets of three-adjacent-vertebrae 

were extracted from fresh-frozen thoracolumbar human spines.  To measure the magnitude and 

direction of surface principal strains, the central vertebra of each three-adjacent-vertebrae-segment 

was prepared with eight strain-gauges.  They were tested in vitro, allowing comparison of the 

surface strain distribution when the same vertebral body was loaded through the intervertebral discs 

(three-adjacent-vertebrae-segment), and with the endplates embedded in acrylic cement (single-

vertebra).  They were subjected to four non-destructive loading conditions (axial-compression, 

axial-traction, torsion-clockwise, torsion-counter-clockwise) first as a three-adjacent-vertebrae-

segment, then as single-vertebra.  The magnitude of measured principal strains differed 

significantly between the two boundary conditions.  For axial loading, the largest principal strains 

on the surface (along the cranio-caudal axis of the vertebra) were significantly higher when the 

same vertebra was tested isolated, as opposed to a three-adjacent-vertebrae-segment.  Conversely, 

the circumferential strains decreased significantly in the single-vertebra compared to the three-

adjacent-vertebrae.  In some cases, variations exceeded 100% of the strain magnitude, including 

changes from tension to compression. For torsional loads, the differences between the two boundary 

conditions were smaller This study shows that when the vertebral body is loaded through a cement 

pot, load is transferred in a different way from the physiological one (through the intervertebral 

discs).  Therefore, when single vertebrae are tested, results on the bone surface should be taken with 

caution. 

Keywords: in vitro biomechanical testing; human vertebral body; single vertebra; intervertebral 

disc; spine segment; principal strains. 
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3.2 Introduction 

In vitro mechanical testing of the vertebra is essential to investigate fracture risk_[1, 2], 

spinal disease_[3, 4], the effects of aging_[5], surgical treatments_[6], and in general to investigate 

the biomechanics of the spine_[7].  Different in vitro methods to characterize the mechanical 

behaviour of the vertebral body are present in the literature_[8].  The most common types of test 

specimen are:  

• Spine segments composed of a series of adjacent vertebrae, including the surrounding 

soft tissues_[2, 6, 9-13]:  this boundary condition allows physiological load transfer to 

the endplates through the adjacent intervertebral discs.  The main disadvantage is that 

failure can occur in the vertebral body under investigation, but also in the adjacent 

discs and/or vertebrae, adding complexity to the experiment.   

• Isolated vertebrae, after removal of the adjacent intervertebral discs:  this simplified 

approach facilitates control of the loading conditions, and allows focusing exclusively 

on the vertebra under investigation.  The most frequent type of isolated vertebra 

consists of a vertebral body (with or without the neural arch) loaded through its 

endplates.  In some cases the endplates have been simply placed in contact with the 

platens of the testing machine (which is associated with undesirable point-wise load 

application_[14-17]).  A better option consists in embedding the endplates in bone 

cement, enabling a rather uniform load transfer_[18-28].  To generate a highly-

reproducible test condition, the endplates can be removed to obtain flat-parallel 

loading surfaces_[15, 29]. 

Testing single vertebrae is appealing.  First of all, it requires shorter (more cost-effective) 

specimens.  Secondly, when a single-vertebra is tested, failure surely initiates within the vertebral 

body (as opposed to the adjacent discs/vertebrae).  However, this simplified boundary condition 

may limit the physiological relevance of results.  In fact, loading the endplates through a cement 

pot, rather than through the discs, may result in a non-physiological loading mechanism, and a 

different distribution of stress/strain inside the vertebral body. 

The strain distribution for different boundary conditions was investigated in vitro_[30]: 

three-adjacent-vertebrae, single-vertebra loaded through intervertebral discs, and single vertebra 

(without discs) embedded in bone cement.  Measurements were made using a texture-correlation 
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technique on a sagittal slice of trabecular bone.  Although at that time such measurement technique 

was not fully-developed, distinctly different strain patterns were observed for the different boundary 

conditions.  A study using micro-computed-tomography and digital volume correlation (DVC)_[31] 

showed that testing vertebral bodies from young rabbits with or without intervertebral discs did not 

affect the strength, but only the strain distribution inside the vertebra, and the failure mechanism.  A 

finite element (FE) study showed that the strength for a three-adjacent-vertebrae-segment (with the 

intervertebral discs) was approximately 34% lower than for a single vertebra (loaded through 

cement pots)_[13].  The biomechanical role of the cortical shell in the vertebral body can be 

substantial, being about 45% at the mid-height; but a better understanding of the structural role of 

the cortical and trabecular bone is needed_[32].  

The effect of different boundary conditions (with and without discs) on the strain 

distribution in the human vertebra has never been measured experimentally.  A better understanding 

is needed about the effect of the different experimental boundary conditions, when investigating the 

biomechanics of the vertebral body.   

Our research question was whether a single-vertebra configuration is an acceptable 

alternative to a three-adjacent-vertebrae-segment, when measuring the principal strains (magnitude 

and direction) on the surface of the vertebral body, in the elastic regime. 

3.3 Materials and Methods 
!

3.3.1 Overview 

Non-destructive tests were performed on twelve specimens (Table 3-1), under two different 

boundary conditions (Fig.3-1): 

• Three-adjacent-vertebrae: the central vertebra was loaded through its adjacent vertebrae and 

intervertebral discs.   

• Single-vertebra: the central vertebra of each three-adjacent-vertebrae-segment was isolated 

and tested again, after having been potted in bone cement. 
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The strain distribution on the bone surface was investigated by means of strain-gauges.  

Different loading configurations (axial-compression, axial-traction and torsion) were performed in 

order to assess the mechanical behaviour for different loading scenarios. 

Table 3- 1: Details of specimen investigated. 

  Donor’s details Vertebral body dimensions 

Specimen: three-
adjacent-vertebrae 

Specimen: 
single-

vertebra 
Donor Gender 

Age at 
death 

(years) 

Height 
(cm) 

Weight 
(kg) 

Cause of 
death 

Height 
(mm) 

Antero-
posterior 

length 
(mm) 

Right-
left 

width 
(mm) 

half T2 - T3 - half T4 T3 #1 M 70 168 86 
Cardiac 

dysrhythmia 
11.6 22.9 26.9 

half T4 - T5 - half T6 T5 #1 M 70 168 86 
Cardiac 

dysrhythmia 
11.2 24.4 28.4 

half T6 - T7 - half T8 T7 #1 M 70 168 86 
Cardiac 

dysrhythmia 
17.6 30.5 25.9 

half T8 - T9 - T10 T9 #1 M 70 168 86 
Cardiac 

dysrhythmia 
15.5 33.2 29.8 

half T12 - L1 -half L2 L1 #2 M 49 182 181 Pneumonia 25.7 23.7 37.2 

half T12 - L1 - half 
L2 

L1 #3 M 66 177 59 Infarct 25.7 27 37.4 

half L2 - L3 - half L4 L3 #2 M 49 182 181 Pneumonia 25.5 35 43 

half L2 - L3 - half L4 L3 #4 F 78 171 64 Euthanasia 26.3 23 38.2 

half L2 - L3 - half L4 L3 #5 M 88 180 77 
Congestive 
heart failure 

25.8 34.7 45 

half L2 - L3 - half L4 L3 #1 M 70 168 86 
Cardiac 

dysrhythmia 
24.7 32.1 42.9 

half L4 - L5 - S1 L5 #2 M 49 182 181 Pneumonia 23.2 27.9 42.2 

half L4 - L5 - S1 L5 #6 M 84 178 82 Dementia 28.8 31.9 43.1 

Average - - - 67 178 114 - 25.7 29.4 41.4 

Standard deviation - - - 16 5 56 - 1.5 4.4 2.8 

Note.  ! The first two columns describe the specimen in the three-adjacent-vertebrae configuration 

(the test vertebra was connected to the intervertebral discs and at least half of each adjacent 

vertebrae), and in the single-vertebra condition (the same test vertebra as before).  In the last three 

columns, the biomechanical dimensions are reported, which were measured as in [33].  The 

vertebral body height was measured between the centers of the two endplates from a lateral view.  
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The antero-posterior length was measured between the most anterior and most posterior point at 

mid-height of the vertebral body.  The vertebral body width was measured between the two most 

lateral points at mid-height of the vertebral body. 

Note.  ! To maximize the number of test specimens, in most cases, the adjacent vertebrae (which 

served only to transfer load to the intervertebral discs) were sectioned transversally, so as to leave 

half of the adjacent vertebra attached to each intervertebral disc.   

 

Fig. 3-1: Two different boundary conditions were applied to the same vertebrae: (A) three-

adjacent-vertebrae (the central vertebra was loaded through its adjacent intervertebral discs); (B) 

single-vertebra (the same central vertebra of three-adjacent-vertebrae specimen was loaded 

through its endplates embedded in bone cement).  (C) Schematic of a vertebra showing the position 

of the eight triaxial strain-gauges.  The strain-gauges were equally spaced around the vertebral 

body, at mid-height.  The actual position of the strain-gauges was sometimes adjusted by up to 4 

mm from the theoretical location due to small defects of the bone surface (pores, ridges, or 

grooves).  One grid of each strain-gauge was aligned parallel to the cranio-caudal axis 
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3.3.2 Bone specimen 

Twelve test specimens were obtained from six fresh-frozen thoraco-lumbar spines, through 

an ethically-approved donation program (IIAM, http://www.iiam.org).  Donors did not suffer from 

cancer nor musculoskeletal pathologies, with the exception of osteoporosis (Table 3-1).  The spines 

were computed-tomography scanned to exclude the internal defects or previous fractures.  The 

specimens were sealed in bags at -28°C when not in use.  They were thawed in physiological saline 

solution for at least 6 hours prior to each test, and kept hydrated with saline solution during testing. 

All the surrounding soft tissues were removed, including the ligaments.  A reproducible 

reference frame was adopted_[33].  The two extremes of the three-adjacent-vertebrae specimens 

were potted in acrylic bone cement (Restray, Salmoiraghi, Mulazzano, Italy).  In order to isolate the 

mechanical behaviour of the vertebral body from the surrounding structures, the neural arches were 

removed.  The three-adjacent-vertebrae specimens were tested non-destructively (see below). 

The single-vertebra specimens were dissected from the three-adjacent-vertebrae specimens.  

Both intervertebral discs were completely removed.  The endplates of each single-vertebra were 

potted in acrylic cement.  Dedicated procedures were adopted to ensure that the alignment of the 

single-vertebra was the same as when it was tested in the three-adjacent-vertebrae-segment 

(removal of one disc at a time, immediate potting of the cleaned endplate of the single-vertebra).  

The same non-destructive tests were performed again on each single-vertebra. 

3.3.3 Strain measurement 

Eight strain-gauges were equally spaced at mid-height of the body of the test vertebra (the 

central one of the three-adjacent-vertebrae-segment, Fig.3-1).  Triaxial-stacked rosettes strain-

gauges (FRA-1-11-3L, TML Tokyo-Sokki-Kenkyujo, Japan, 1mm grid, 120 Ohm) were bonded 

following an established procedure for wet cadaveric specimens_[34], which included removal of 

soft tissues, degreasing with ethanol, and a cocktail of acetone and 2-propanol, bonding with 

cyanoacrylate glue (CN-Adhesive, TML), and waterproofing with polyurethane (M-COAT-A, 

Vishay-MicroMeasurements, Raleigh, NC, USA).  To avoid overheating, a grid excitation of 1Volt 

was selected.  The same strain-gauges were used when the same vertebra was tested in the three-

adjacent-vertebrae and single-vertebra conditions.  In 15 cases out of 96, a strain-gauge was 
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damaged during dissection to isolate the single-vertebra from the three-adjacent-vertebrae-segment: 

an identical strain-gauge was placed in the original location. 

Strains were recorded at 5000Hz using a multi-channel data-logger (System-6000, Vishay-

MicroMeasurements), together with force/torsion and displacement/rotation signals from the testing 

machine. 

3.3.4 Loading conditions 

In order to obtain a comprehensive characterization of the strain distribution, multiple 

loading configurations were applied to each specimen.  The same conditions were applied both to 

the three-adjacent-vertebrae-segment, and the single-vertebra: 

• To replicate a scenario close to physiological loading, a compressive axial force was applied 

(axial-compression), as frequently found in the literature (e.g._[2]). 

• To understand if traction induces a symmetric strain distribution respect to compression, a 

tensile axial force was similarly applied (axial-traction). 

• To gather information about a completely different (yet physiological) loading scenario, 

torsion about the cranio-caudal axis was applied in both directions (clockwise and counter-

clockwise)_[10]. 

These loading conditions were selected as they could be replicated identically for the two 

boundary conditions. 

Tests were performed on an axial-torsional testing machine (858-MiniBionix, MTS, 

Minneapolis, USA, Fig.1).  Specimens were over-constrained: all components of rotation and 

translation were constrained at both extremities.  A lockable ball-joint was placed between the 

actuator and the upper loading plate to ensure correct alignment.  During the tests the ball-joint was 

locked, avoiding any further rotation_[10, 35, 36].  To monitor all components of loading during 

testing, an additional six-components load-cell (FDC-011, Metior, Dongo, Italy) was used.   

The loading protocol was similar to_[6, 10, 34, 37].  The testing machine operated in 

position control (axial-displacement, or rotation).  A trapezoidal waveform was implemented for 

each loading configuration.  The actuator displacement/rotation was adjusted for each specimen, 
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and each loading configuration, so that principal strains in the most stressed strain-gauge did not 

exceed ±2000microstrain (such displacement/rotation was determined in a pre-test were the testing 

machine was manually-operated).  This is a physiological value_[38], and is approximately 20% of 

the failure strain for cortical bone_[39].  For this reason, the applied force (N) and moment (Nm) 

were different among specimens, and also for the same specimen tested as a three-adjacent-

vertebrae-specimen and as a single-vertebra.  Because of the compliance of the discs, such 

displacement/rotation were one order of magnitude larger for the three-adjacent-vertebrae-segment 

than the single-vertebra.  The actuator speed was tuned to reach the maximum 

displacement/rotation in 0.2seconds, which is comparable to many motor tasks_[40, 41].  The 

maximum displacement/rotation was held for 2seconds.  To overcome variations due to 

viscoelasticity, strain readout was averaged over the first 0.1seconds (500points) after the maximum 

displacement/rotation was reached. 

Each configuration was repeated six times for each specimen, with 4 minutes recovery 

similar to_[10], as in such recovery time bone strains returns close to zero_[42]. 

3.3.5 Measured quantities and statistics 

For each strain-gauge the principal strain magnitude (!1, !2) and direction ("p, counter-

clockwise from the cranio-caudal axis) were computed for each test repetition.  A high linearity 

existed between applied load and strain (R2>0.98 for all the gauges where strain exceeded 50 

microstrain).  Small intra-specimen variability existed in the load applied among test repetitions, 

while larger variability existed among different specimens for the same loading condition.  Before 

doing any further analysis, the strain magnitude for each test repetition was scaled to the body 

weight, BW (axial-compression, axial-traction) and to 0.5% BW*m (torsion).   

Intra-specimen test repeatability was good.  For axial-compression, the magnitude of 

principal strains ("1, "2) varied by 1.86% among repetitions; the principal direction (#p) by 0.60°.  

For axial-traction, the principal strains ("1, "2) and direction (#p) varied respectively by 3.11% and 

0.64° among repetitions.  For torsion, the principal strains ("1, "2) and direction (#p) varied by 1.06% 

and 0.06° among repetitions.   

To exclude outliers, Peirce’s criterion was applied_[43].  Suspect data were checked among 

repetitions, for each specimen: approximately 6% of the repetitions had to be excluded.  To obtain a 
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single output for each specimen and each loading configuration, the average of the principal strain 

(!1,!2, which follow a normal distribution) and the median of the principal direction ("p, does not 

follow a normal distribution) were calculated among the six repetitions. 

To quantify the variations of principal strains between the two boundary conditions, the ratio 

between the magnitude in the single-vertebra and in the three-adjacent-vertebra configuration 

(assumed as a reference) was calculated for the principal strains: 

!

! 

"1RATIO =
"1SINGLE#VERTEBRA

"1THREE#VERTEBRAE#SPECIMEN
!! (Eq. 1)!

!

! 

"2 RATIO =
"2SINGLE#VERTEBRA

"2THREE#VERTEBRAE#SPECIMEN
! (Eq. 2)!

Similarly, the variation of principal strain direction ("p) was computed as the difference 

between the angle in the single-vertebra and three-adjacent-vertebrae configurations: 

! 

"# p = # pSINGLE$VERTEBRA
$# pTHREE$VERTEBRAE$SPECIMEN ! (Eq. 3)!

Such comparisons were performed separately for each specimen, each loading 

configuration, and each strain-gauge.  To exclude points where such a ratio is poorly significant, 

measurements below 50 microstrain were excluded. 

For each loading condition, the significance of the differences between the two boundary 

conditions was assessed with the paired t-test for the principal strains  

(

! 

"1SINGLE#VERTEBRA vs "1THREE#VERTEBRAE#SPECIMEN , and 

! 

"2SINGLE#VERTEBRA vs "2THREE#VERTEBRAE#SPECIMEN ), and with the Wilcoxon 

paired-sample non-parametric test for the principal direction  

(

! 

" pSINGLE#VERTEBRA
vs " pTHREE#VERTEBRAE#SPECIMEN

).  To assess if the strain distribution for the two boundary 

conditions (

! 

"1SINGLE#VERTEBRA vs "1THREE#VERTEBRAE#SPECIMEN , and 

! 

"2SINGLE#VERTEBRA vs "2THREE#VERTEBRAE#SPECIMEN ) had similar 

trends, the Pearson product-moment correlation coefficient (rPearson) was computed.  Statistics were 

performed with SPSS-16.0 (SPSS, Chicago, USA). 



! JD!

3.4 Results 

For axial-compression, the largest principal strain (absolute value) was always compressive 

("2), and roughly aligned to the cranio-caudal axis (median: within 6° for the single-vertebra, 13° 

for the three-adjacent-vertebrae).  This strain component in the single-vertebra was 79% larger 

(average of 8 strain measurement locations) than in the three-adjacent-vertebrae specimen.  

However, such a difference was statistically significant only at 6 out of 8 locations (Fig.3-2).  The 

other principal strain component ("1, nearly circumferential) was one order of magnitude lower in 

the single-vertebra than in the three-adjacent-vertebrae (Fig.3-2).  In some strain-gauges (mainly 

anteriorly) the circumferential principal strain switched from tensile (three-adjacent-vertebrae) to 

compressive (single-vertebra).  Such difference was statistically significant for 7 of 8 measurements 

locations.  The angles of principal strain differed little between the two boundary conditions, when 

the median of all specimens was considered (maximum difference 12°, with limited statistical 

significance, Fig.3-2).  However, in some specimens the principal strain direction varied by over 

30° between the two boundary conditions. 

For axial-traction, the largest principal strain (absolute value) was always tensile ("1), and 

roughly aligned with the cranio-caudal axis (median: within 21° for the single-vertebra, 29° for the 

three-adjacent-vertebrae).  This strain component in the single-vertebra was on average 61% larger 

than in the three-adjacent-vertebrae: such a difference was larger and statistically significant in the 

two posterior strain-gauges (Fig.3-3).  The other principal strain component ("2, nearly 

circumferential) was one order of magnitude lower in the single-vertebra than in the three-adjacent-

vertebrae (Fig.3-3).  In some strain-gauges the circumferential principal strain switched from 

compressive to tensile or vice-versa (statistically significant only at one location).  The angles of 

principal strain differed little between the two boundary conditions, when the median of all 

specimens was considered (maximum difference 24°, statistically not-significant, Fig.3-3).  

However, in some individual specimen the principal strain direction varied by over 45° between the 

two boundary conditions. 

For torsion, the two principal strain components ("1,"2) had similar magnitude and were 

within 5° from being at +/-45° from the cranio-caudal axis.  On average, the principal tensile ("1) 

and compressive ("2) strains in the single-vertebra were 12% lower than in the three-adjacent-

vertebrae-segment.  However, the effect was not uniform over the vertebral body (Fig.3-4).  In the 

posterior region both principal strain components slightly increased in the single-vertebra compared 
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to the three-adjacent-vertebrae.  Conversely in the anterior region both strain components decreased 

in the single-vertebra (Fig.3-4).  The angle of principal strains varied little between the two 

boundary conditions (median variation 3°, maximum 5°, some statistical significance only in the 

lateral regions, Fig.3-4). 

 

 

 

Fig. 3-2: Axial-compression.  The principal strain magnitude ("1, "2) in the single-vertebra is 

expressed as a fraction of the three-adjacent-vertebrae condition (average and SD: 100% indicates 

no difference between the two conditions; greater than 100% means that the single-vertebra 

experienced an increase of strain compared to the three-adjacent-vertebrae; a negative value 

indicates a change of sign).  The variation of principal direction (#p) is the difference between the 

three-adjacent-vertebrae and the single-vertebra (median and SD: 0° indicates no variation; a 

positive sign indicates a clockwise difference from the three-adjacent-vertebrae to the single-
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vertebra). (The detailed strain distribution in absolute terms for the two boundary conditions is 

reported as Supplementary material). 

 

 

Fig. 3-3: Axial-traction.  The principal strain magnitude ("1, "2) in the single-vertebra is expressed 

as a fraction of the three-adjacent-vertebrae condition (average and SD: 100% indicates no 

difference between the two conditions; greater than 100% means that the single-vertebra 

experienced an increase of strain compared to the three-adjacent-vertebrae; a negative value 

indicates a change of sign).  The variation of principal direction (#p) is the difference between the 

three-adjacent-vertebrae and the single-vertebra (median and SD: 0° indicates no variation; a 

positive sign indicates a clockwise difference from the three-adjacent-vertebrae to the single-

vertebra). (The detailed strain distribution in absolute terms for the two boundary conditions is 

reported as Supplementary material). 
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Fig. 3-4: Torsion.  The principal strain magnitude ("1, "2) in the single-vertebra is expressed as a 

fraction of the three-adjacent-vertebrae condition (average and SD: 100% indicates no difference 

between the two conditions; greater than 100% means that the single-vertebra experienced an 

increase of strain compared to the three-adjacent-vertebrae).  The variation of principal direction 

(#p) is the difference between the three-adjacent-vertebrae and the single-vertebra (median and SD: 

0° indicates no variation; a positive sign indicates a clockwise difference from the three-adjacent-

vertebrae to the single-vertebra).! (The detailed strain distribution in absolute terms for the two 

boundary conditions is reported as Supplementary materials).!

The strain magnitudes in the single-vertebra and three-adjacent-vertebrae-segment were 

poorly correlated for axial-compression and axial-traction (Table 3-2); rPearson was negative for 

the tensile principal strain ("1), and positive for the compressive one ("2).  Correlation was higher 

for torsion, with positive rPearson. 
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Table 3-2: For each loading condition, the Pearson product-moment correlation coefficient 

(rPearson) was computed between the strain magnitude measured in the single-vertebra and in the 

three-adjacent-vertebrae condition, separately for the two principal components of strain ("1, "2). 

 "#$%&'
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;)-1@-N%#!@.$N)(33-2(!3')%-1!!O!DP! M=EGL! M=DEJ! M=JDK!
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3.5 Discussion 

While in vitro mechanical tests are regularly performed on the vertebral body, it remains 

unclear how the mechanical behaviour is affected by the experimental boundary conditions.  In fact, 

studies involving both sets of three-adjacent-vertebrae_[2, 6, 10-13, 44, 45] and single-

vertebrae_[18-28] can be found.  The goal of this study was to elucidate if testing a single-vertebra 

specimen (which provides a number of practical advantages) provides similar results to a three-

adjacent-vertebrae-segment (which can be assumed closer to physiological). 

Our findings suggest that direct application of load to the endplates leads to some 

differences in the strain distribution (magnitude and direction) on the bone surface, compared to a 

three-adjacent-vertebrae-segment.  The differences in strain magnitude were larger when an axial 

force (compressive or tensile) was applied.  Compared with the three-adjacent-vertebrae 

configuration, the single-vertebra condition was associated with a marked and uniform increase of 

the strains along the cranio-caudal axis of the vertebra, and a decrease of the circumferential ones, 

both for axial-compression and axial-traction.  Such differences were less pronounced in torsion. 

The principal strain direction was slightly affected by the boundary conditions.  The largest 

differences were observed for axial-compression and axial-traction.  This effect varied greatly 

between specimens (no statistical significance), and measurement locations.  This could be 

explained by the fact that the spine is mainly optimized to withstand axial compression, and other 

modes of loading may result in unpredictable load transfer_[46].  
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Such findings might be related to the biomechanical conditions experienced by the vertebrae 

and the adjacent discs.  When a vertebra is axially loaded through the adjacent discs, the pressure 

existing in the nucleus pulposus generates a state of tensile stress in the annulus fibrosus.  This 

tension tends to shield the compressive stress transferred to the cortical shell (while enhancing the 

amount of load transferred to the center of the vertebra)_[47].  In fact, a common failure mechanism 

consists in a partial rupture of the endplate, when the nucleus partially herniates within the vertebral 

body (Schmorl’s node_[48]).  This load transfer mechanism is completely modified when a single 

vertebra is loaded through two cement pots, which provide a rather uniform stress to the endplates, 

without distinction between the edges (cortical shell) and the central region (trabecular core).  Such 

alteration was more pronounced when an axial force was applied, and was less visible in torsion. 

Our findings are in agreement with another in vitro study_[30].  Their results on sagittal 

slices of spine segments loaded in compression showed distinctly different strain patterns for 

different boundary conditions.  They found that the principal compressive strain in the trabecular 

bone was 20-30% larger when the same vertebra was loaded through a cement pot, than when it 

was loaded through its discs.  However, their results cannot be directly compared to ours, as they 

focused on the trabecular core, while we measured cortical strains. 

A recent DVC study_[31] showed that testing vertebral bodies with or without intervertebral 

discs affected the load transfer and failure mechanism, but not the magnitude of the failure force.  

Direct comparisons are not possible as our study focused on cortical strain in the elastic regime.  

However, the fact that strains are generally larger in the single-vertebra suggests that this condition 

is more critical for the vertebral body.  The differences between their and our findings can be 

explained by their use of vertebrae from growing rabbits (with open growth plates), with a different 

anatomy and tissue architecture from humans_[49].   

An experimental-numerical study_[13] showed that the failure force predicted by an FE 

model for a single vertebra loaded through cement pots overestimated by 34% the strength of the 

same vertebra loaded through its discs.  They suggested that cement embedding would provide a 

higher vertebral strength because this way the cortex carries a larger portion of the load_[13].  

However, such effect may depend on the way the thin cortical shell was modelled.   

Some limitations of this study should be considered.  First of all, the specimens were 

obtained from different donors, and from the thoracic and lumbar regions.  While specimens were 
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carefully screened (visually and from CT-images) to exclude defective specimens, the bone quality 

was not quantitatively assessed.  Furthermore, our specimens were obtained from elderly donors 

(Table 3-1): although the discs did not have obvious lesions, they possibly had some degree of 

degeneration.  The variability of the intervertebral discs might affect the load distribution across the 

endplate and the mechanical response of the vertebral body_[50-52].  All these factors might have 

concurred to the scatter of our results, and to the lack of statistical significance for some 

observations. 

The soft tissues and posterior elements were removed from our specimens.  Such elements 

are important to the biomechanics of the spine segments, but are not essential to investigate the 

biomechanical competence of the vertebral body, and are often removed in similar studies_[14-29]. 

The same specimens were tested first as a three-adjacent-vertebrae-segment and then as a 

single-vertebra.  As the tests were well within the elastic regime, no damage or conditioning should 

be expected between the two boundary conditions.   

Strain measurement was affected by systematic error: the actual strain was underestimated 

by 3-9% because of the reinforcement effect of the strain-gauges_[10].  While the absolute strain 

value is affected by such error, this artifact was compensated when the ratio was computed between 

the three-adjacent-vertebrae and single-vertebra conditions, for the same strain-gauge. 

In this study only the strain on the surface of the cortical shell was investigated, and does not 

provide any insight about the stress/strain distribution within the trabecular structure.  An 

alternative tool for investigating internal strains is DVC_[53-56]. 

In summary, this study supports the idea that the magnitude of the principal strains on the 

vertebral surface is significantly different between boundary condition (three-adjacent-vertebrae 

and single vertebra).  Even if testing the single-vertebra is advantageous from several points of 

view, the strain distribution for this boundary condition presents some difference from the case 

where the vertebra is loaded through its adjacent discs, especially when axial compression is 

investigated.   
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3.6 Supplementary Materials 

A. AXIAL-COMPRESSION  

The charts below compare the strain distribution in the three-adjacent-vertebrae and the single-vertebra conditions.  The 
magnitude ("1, "2) and the direction (#p, measured counter-clockwise from the cranio-caudal axis) of principal strains 
are reported at the eight measurement locations (average and standard deviation of 12 specimens). Peirce’s criterion 
was applied to exclude outliers.  
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B. AXIAL-TRACTION 

The charts below compare the strain distribution in the three-adjacent-vertebrae and the single-vertebra conditions.  The 

magnitude ("1, "2) and the direction (#p, measured counter-clockwise from the cranio-caudal axis) of principal strains 

are reported at the eight measurement locations (average and standard deviation of 12 specimens). Peirce’s criterion 

was applied to exclude outliers. 
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C. TORSION 

The charts below compare the strain distribution in the three-adjacent-vertebrae and the single-vertebra conditions.  The 

magnitude ("1, "2) and the direction (#p, measured counter-clockwise from the cranio-caudal axis) of principal strains 

are reported at the eight measurement locations (average and standard deviation of 12 specimens).  The plots are 

referred to a clockwise torque.  Results with a counter-clockwise torque were quite similar. Peirce’s criterion was 

applied to exclude outliers 
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D. REMARK ABOUT COMPARISONS BETWEEN THESE CHARTS AND FIG. 3-2, 3-3, 3-4  

The plots in the Supplementary Material are relatively easy to understand: the average between specimens was 
computed to for the principal strains (the median was computed for the principal direction). - Fig. 3-2, 3-3 and 3-4 
report the average of the ratio between the strain in the single-vertebra and threevertebra-specimen. - For this reason, 
the values in Fig. 3-2, 3-3, 3-4 cannot be directly obtained by simply computing the ratio of the average strain values in 
the Supplementary material. - For instance it can happen that the actual principal strain is small in magnitude with some 
positive and some negative values in the different specimens. The result is a close-to-zero average strain in the charts in 
the Supplementary material (possibly with the same sign in the singlevertebra and three-vertebra-specimen). However, 
as the ratio between the single-vertebra and the three-vertebra is computed for each specimen, this may result in 
negative (or positive) average values of the ratio. 
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4.1 Abstract 

The strain distribution in vertebral body has been measured in vitro in the elastic regime, but 

only on the bone surface by means of strain gauges and digital image correlation (DIC).  Micro-CT 

based digital volume correlation (DVC) allowed measurements of the internal strain distribution in 

bone at both tissue (trabecular and cortical bone) and organ (vertebra) level.  However, DVC has 

been mainly employed to investigate failure of the vertebral body, but hasn’t yet been deployed to 

investigate the internal strain distribution in the elastic regime.  In this sense, recent methodological 

studies on DVC helped in improving its accuracy and precision, so that even relatively low strain 

can be reliably measured.  The aim of this study was to investigate elastic strain and failure inside 

the vertebral body, including analysis of strain in all directions.  Three porcine thoracic vertebrae 

were micro-CT scanned in a step-wise fashion at increasing steps of compression (5%, 10%, 15%). 

Micro-CT images successfully identified regions of failure initiation and progression, which where 

well quantified by DVC-computed strains. Interestingly, the same regions where failure eventually 

occurred experienced the largest strain magnitude also for the lowest degrees of compression (yet in 

the elastic regime). 

!
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Keywords: digital volume correlation, micro-CT, bone, vertebral body, microdamage, full-field 

strain, elastic strain.  
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4.2 Introduction 

Pathologies such as osteoporosis and bone metastases are the major causes of vertebral 

fractures, often in combination with trauma or para-physiological overloading.  These vertebrae are 

weak because their micro- and/or macro-structure are pathologically compromised. If untreated, 

they might fracture, causing severe disabilities and in some cases even mortality [1, 2].  For this 

reason, knowledge of the failure mechanism in the vertebra is of fundamental importance to 

understand vertebral biomechanics [3], improve diagnosis and prophylactic treatments [4, 5].  

In vitro testing of the vertebral body has been extensively carried out in the past [6].  The 

strain distribution in the vertebral body was investigated using different experimental techniques 

but mainly with strain gauges [7], where the full-field strain distribution was not investigated.  

Furthermore, strain gauges are associated with a reinforcement effect that in the case of a thin shell 

of cortical bone cannot be neglected [8].  

More recently, digital image correlation (DIC) was adopted to investigate the full-field 

strain distribution on the cortical surface of vertebrae, in an attempt to avoid direct contact 

measurement (i.e. via strain gauges) that could potentially produce important artifacts in the local 

strain determination [9].  To this extent, [10] presented a comparison of strain rosettes and DIC to 

measure the vertebral body strain. In that study porcine vertebrae were prepared with a strain rosette 

plus a speckled paint pattern for DIC and loaded in compression.  However, it must be pointed out 

that also the specimen preparation for an appropriate DIC measurement (i.e. speckle pattern 

distribution) must be planned carefully if reliable results are to be achieved [9, 11].  When 

measuring strain in bone one must consider the magnitude of strain experienced during 

physiological tasks (1000-2000 microstrain, [12]), and the failure strain of bone tissue (7000-10000 

microstrain, [13]).  The overall precision that can be obtained with strain gauges when applied to 

bone is of the order of 1-2% of the readout [8, 14], which corresponds to 10-20 microstrain when 

physiological strains are applied in vitro.  The overall precision that can be obtained with DIC 

(which is mainly limited by noise) is of the order of 100-300 microstrain [8-10].   

In any case, for all the above studies with strain gauges and DIC the main limitation is 

represented by the inability to capture and quantify internal microdamage evolution and full-field 

strain distribution under load.  As the internal trabecular bone of the vertebral body plays a!
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fundamental structural role [3] it would be extremely important to measure the internal strain 

distribution.  In fact, a number of studies have shown that in several cases failure starts inside the 

vertebral body itself [15, 16].  In this perspective, digital volume correlation (DVC) is ideal to 

investigate the internal strain distribution and the local damage inside the vertebra. In recent years, 

DVC has become a powerful tool to examine full-field internal deformations mainly in trabecular 

[17-21] and cortical bone [19, 21, 22].  The use of DVC to investigate the strain distribution in 

vertebrae has been firstly introduced by Hardisty et al. [23]. In that study a new image registration 

algorithm was developed to spatially resolve strain in whole bones (rat vertebrae) using micro-CT 

images.  Since then, a number of studies investigated the full-field strain distribution in vertebral 

bodies without [24] and with the adjacent intervertebral discs [25], as well as entire vertebrae [26] 

under compressive loading. Hussein et al. [24] reported the highest strain magnitudes (minimum 

principal strain) distributed in the superior-inferior (axial) direction ranging between -20000 and -

40000 microstrain, in human vertebral bodies. In a following study from the same Authors [25], a 

comparison between vertebral body (rabbits) without and with the presence of adjacent 

intervertebral discs highlighted a different minimum principal strain distribution in the two 

configurations for yield and failure conditions, with maximum differences of -10000 microstrain for 

the average strain magnitude in the two configurations (with and without discs).  However, in both 

studies [24, 25] there is no information on the progression of strain levels from the elastic regime 

(more physiological), preceding the final failure event.  Also, the influence of strain directionality 

and local levels of strain on microdamage evolution in the vertebra has not been investigated. [26] 

is the only study to date to report the microdamage in metastatic and healthy vertebrae (rat models) 

associated with full-field strain from DVC, but only for the axial strain.  That work reported an 

average axial strain at failure of -27000 microstrain for the healthy group (5 specimens), but no 

information of the critical strain values in different locations of the vertebrae.  Another important 

aspect to be considered is the level of uncertainly of the DVC-computed strain distribution, that can 

be associated to imaging conditions, bone type, image preparation, computation sub-volume size 

and nature of the DVC approach (i.e. local vs global).  Very recently, an in-depth methodological 

investigation of all those aspects for natural and augmented vertebral bodies (porcine models) was 

carried out [27, 28].  Those studies reported that strain uncertainties can be reduced below 300 

microstrain for both local and global approaches if the images are adequately prepared (excluding 

the non-tissue!background), and with an appropriate choice of the computation sub-volume size (i.e. 

48 voxel for a 39 micrometers voxel size image).  
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In this study, full-field strain distributions inside porcine vertebral bodies were obtained 

thought DVC under compressive load.  Specifically, the main aims of this paper were:  

1) to measure the internal strain , both in the elastic regime and up to failure;  

2) to analyze the distribution of the different components of strain (axial, antero-

posterior and lateral-lateral) for each specimen;  

3) to identify microdamage initiation/progression during loading, and to damage 

with the distribution of the three components of strain . 

!

4.3 Materials and Methods 

4.3.1      Materials and experimental procedures 

Three thoracic vertebrae (specimens T1, T2, T3) were harvested from animals that were 

bred and slaughtered for alimentation purposes. All the surrounding soft tissues were removed, 

including the ligaments and discs. The vertebrae were obtained from young animals, where the 

growth plates were still fully open. To avoid the presence of soft tissue and prevent viscoelastic 

phenomena (which might compromise image acquisition under load), the growth plates were 

removed together with the adjacent endplates (due to the young age of the animals at sacrifice, this 

could be performed with little manual effort). The endplate areas of the vertebrae were aligned and 

potted in poly-methyl-methacrylate (PMMA) following a procedure adapted from Danesi et al. 

[29]. The spinous process was used to center the specimen in the transverse plane and align it about 

its vertical axis. The posterior arch was subsequently removed.  

Step-wise compression testing of the vertebrae in combination with time-lapsed micro-CT 

imaging was performed. In situ testing was conducted by means of a loading device (CT5000, 

Deben Ltd, UK), equipped with a 5kN load cell and a custom-designed environmental chamber 

which was filled with physiological saline solution (Fig. 4-1). The specimens were constrained 

against rotation inside the loading device with sandpaper discs applied to the bottom compressive 

platen. A preload of 50 N was applied. Each specimen was compressed axially under displacement 

control in a step-wise fashion. The compression steps were adjusted for each specimen based on its 

height, so that at each step the free height was compressed by 5% (this corresponded to actuator 

steps of 0.54-0.66 mm, depending on the specimen’s size). All tests were carried out at a!constant 
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actuator speed of 0.1 mm/sec.  At each compression step the specimens were allowed to relaxate to 

reach a steady state for 15 minutes before imaging.  

Micro-CT imaging (XTH225, Nikon Metrology, UK) was carried out at each step (0% with 

50N preload, 5%, 10% and 15% compression).  The micro-CT scanner was set to a voltage of 88-89 

kV, a current of 115-116 microA and exposure time of 2 s. The image acquisition was performed at 

a rotational step of 0.23° over 360° for a scanning time of approximately 90 min at each 

compression step.  The reconstructed micro-CT images had an isotropic voxel size of 38.8 

micrometers.   

 

!

Fig. 4-1: The mechanical loading device inside the micro-CT chamber (top-left). The specimen was 

potted in PMMA and aligned to the rotation axis of the micro-CT (top-right). At the bottom, the 

reference and compressive steps are shown. 
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4.3.2 Digital volume correlation (DVC) 

DaVis DVC software (v8.3, LaVision, Germany) was used to compute the full-field strains 

in the vertebra along the axial, antero-posterior and lateral-lateral directions. The operating 

principle of the DaVis DVC has been detailed elsewhere [21, 30]. Briefly, DaVis sub-divides the 

3D images into smaller sub-volumes that can be correlated independently (local approach) as a 

discrete function of grey-levels. The matching between the sub-volumes corresponding to the 

different stages of loading is achieved via a direct correlation function (DaVis-DC). Additionally, a 

piece-wise linear shape function and a third-order spline interpolation in the image reconstruction 

are employed to help correlation of the pattern information contained in the reference and deformed 

images. The displacement vector field is obtained at the center of each sub-volume. The strain field 

is subsequently computed using a centered finite differences (CFD) scheme. The original micro-CT 

images were masked in order to remove the background areas where no bone was present.  In fact, 

it was shown that regions that do not contain useful feature for the correlation algorithm are 

associated with large strain artifacts [27, 28]. A user-defined polygon mask was created, which 

corresponded to the contour shape of each vertebral body. The mask was defined in the transverse 

plane of the vertebral body and sequentially adapted in the cranial-caudal direction to follow the 

shape of the vertebra. The geometric mask enabled the DVC software to include only to voxels 

inside the mask (vertebral body area).   

The DVC computation relied on final sub-volumes of 48 voxels, reached after successive 

(predictor) passes using sub-volumes of 128 voxels, 112 voxels, 96 voxels, 80 voxels and 64 

voxels, with a 0% overlap. This multipass sequence was found to produce the lowest strain error in 

DaVis-DC for such type of specimens, with the same imaging and environmental settings [27, 28]. 

Given the voxel size of the acquired micro-CT images, the final computation sub-volume size 

corresponded to 1862 micrometers. 

In order to evaluate the strain distribution in the vertebra and to associate local high-strains 

with visible microdamage, dedicated Matlab (v2014a, MathWorks, US) scripts were developed. 

This allowed visualization of the 3D strain maps for the three components of normal strain. 

Moreover, for each compression step, the average within each slice was computed for each 

component of strains (axial, antero-posterior and lateral-lateral strain), following a procedure 

reported in [21].!
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4.4 Results 

The force-displacement curves showed a monotonic trend for all specimens while load was 

increased (Fig.4-2). Specimen failure (clearly visible as a plateau and decrease in the force-

displacement plots) occurred at 10% or 15% steps in all specimens. The loads applied onto the three 

specimens for each loading steps are reported in Table 4-1. Relaxation was also visible at the end of 

each step of compression, when the actuator was stopped to allow micro-CT scanning. 

!

Fig.4- 2: Force-compression curves for the three specimens.  The load shows a drop at the end of 

each step of compression: this corresponds to relaxation while the specimen was allowed to settle 

(15 minutes) before the micro-CT scan took place (90 minutes). 

The internal strain distributions (axial, antero-posterior and lateral-lateral components of 

strain) for the three compression steps (5%, 10% and 15%) on the sagittal section of the three 

specimens are reported in Figures 4-3 4-4 and 4-5.  

The micro-CT images of specimen T1 showed a main microdamage localized in the 

trabecular bone (caudal region), which started to appear at the 10% compressive step, and 

degenerated into a trabecular collapse at 15% (Fig. 4-3).  
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Table 4-1: Loads experienced by the three specimens (T1, T2, T3) at each step of compression 

(applied in displacement control).  
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Fig. 4-3:  Specimen T1: Internal strain distribution for the three steps of compression. Left: Sagittal 

micro-CT slice taken at each compression step (the antero (A) and posterior (P) regions are also 

indicated).  The crushed zone of specimen T1 is visible in the images at 10% and 15% compression 

steps (red arrows). The distribution of the Axial, Antero-Posterior and Lateral-Lateral components 

of strain are plotted over the same sagittal slice in the colored plots. The most strained region!
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corresponded to the damaged area, which gradually progressed in a collapse propagating across 

the vertebral body, in an approximately transverse plane.  

Such a collapse gradually led to a weakening of the vertebral body in the transverse plane, 

with damage extending to the cortical bone anteriorly. The distribution of the three components of 

strain well described the damage events, with the maximum strains located in regions adjacent to 

the crushed zone; away from the crushed region the strains were significantly lower (Fig. 4-3).  

A similar agreement between the damage (visible in the micro-CT images) and the 

distribution of strain (computed by means of DVC) was found in the other two specimens, although 

the damage pattern was different (Fig. 4-4 and 4-5). In specimen T2 the microdamage seemed to be 

localized in the trabecular structure as a gradual collapse that initiated (10%) and then propagated 

(15%) posteriorly, along the caudal-cranial direction (Fig. 4-4), similarly to specimen T1. In 

specimen T3 damage initiated in the cranial region (10% compression) and progressively extended 

as a collapse in a transverse plane (15% compression) (Fig. 4-5). 

!

Fig. 4-4:  Specimen T2: Internal strain distribution for the three steps of compression. Left: Sagittal 

micro-CT slice taken at each compression step (the antero (A) and posterior (P) regions are also 

indicated). The crushed zone of specimen T2 is visible in the images at 10% and 15% compression 

steps (red arrows). The distribution of the Axial, Antero-Posterior and Lateral-Lateral components 

Antero-Posterior Strain 
(microstrain) 

Lateral-Lateral Strain 
(microstrain) 

5% 

10% 

15% 

0 

-1000 

-2000 

-3000 

-4000 

-5000 

-6000 

-7000 

-5000 

0 

-10000 

-15000 

-20000 

-25000 

0 

-5000 

-10000 

-35000 

-30000 

-25000 

-15000 

-20000 

-40000 

-45000 

-3000 

5000 

4000 

3000 

2000 

1000 

0 

-1000 

-2000 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 

20000 

25000 

15000 

10000 

5000 

0 

-1000 

-1500 

-500 

0 

500 

1000 

1500 

2000 

10000 

4000 

6000 

8000 

2000 

0 

-2000 

-2000 

14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 

Slice 

P A 

P A 

P A 

Axial Strain  
(microstrain) 



! LMI!

of strain are plotted over the same sagittal slice in the colored plots. The most strained region 

corresponded to the damaged area, which gradually progressed in a collapse propagating across 

the vertebral body, in an approximately caudal-cranial direction.  

In general, for all specimens the increase of strain was larger from 10% to 15% 

compression, than from 5% to 10% compression, both for the axial component of strain 

(compressive), and the antero-posterior and lateral-lateral ones (tensile). 

!

Fig. 4-5:  Specimen T3: Internal strain distribution for the three steps of compression. Left: Sagittal 

micro-CT slice taken at each compression step (the antero (A) and posterior (P) regions are also 

indicated). The crushed zone of specimen T3 is visible in the images at 10% and 15% compression 

steps (red arrows). The distribution of the Axial, Antero-Posterior and Lateral-Lateral components 

of strain are plotted over the same sagittal slice in the colored plots. The most strained region!
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For all specimens, the strain distribution in the elastic regime (first step of loading, 5%) 

showed a non-uniform strain distribution, which seemed to predict the location of damage initiation 

before it actually became identifiable (Fig. 4-3; 4-4; 4-5).  
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The progression of strain (axial, antero-posterior and lateral-lateral components of strain) 

during compression for the three specimens is shown in Figure 4-6 in terms of average strain at 

each cross-section.  

!

Fig. 4-6: Progression of strain as compression was increased (5%, 10% and 15% steps). The 

average strains were computed for each transverse slice of the DVC-computed 3D strain map for 

the Axial, Antero-Posterior and Lateral-Lateral components of strain. In general, an incremental 

strain pattern among the consecutive compression steps was observed in all specimens (T1, T2 and 

T3). The slices where the largest strains were observed corresponded to the areas where collapse 

was localized (Fig. 4-3;4-4;4-5).  

Specimen T1 experienced the highest axial compressive strain (-75689 microstrain, average over 

the most strained cross-section), followed by specimen T3 (-42005 microstrain) and specimen T2 (-
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experienced a strain between 6161 and 7940 microstrain (average over the most strained cross-

section), in all specimens. For the lateral-lateral component of strain, the most strained regions 

experienced a strain between 3430 and 9013 microstrain (average over the most strained cross-

section), in all specimens. The strain pattern along the caudal-cranial direction was similar for 
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specimens T1 and T2, with the largest deformation localized in correspondence of the first quarter 

caudal. In specimen T3 the highest axial strain magnitudes were found where the cortical shell was 

mostly curved (first quarter cranial); the largest antero-posterior and lateral-lateral strains were 

observed in correspondence of the cranial and caudal endplates. The cranial-posterior portion of this 

specimen was in a compressive state, with the largest strain (-5327 microstrain) at 15% loading 

step. 

4.5 Discussion 

The first aim of this paper was to evaluate the internal strain distribution (axial, antero-

posterior and lateral-lateral components of strain) from DVC in porcine vertebral body, under 

applied compressive load. A deeper understanding of the internal elastic full-field strain distribution 

was achieved. In fact, despite a number of studies used DVC to investigate the vertebral global 

fracture under compression [24-26], the elastic strain distribution is still unexplored. The results 

clearly showed how local strain built up from the elastic regime, and highlighted those internal 

weaker regions that could result in microdamage initiation and progression up to vertebral failure 

(Fig. 4-3; 4-4; 4-5). When a compression of 5% was applied, all specimens experienced levels of 

internal tensile and compressive strains above or close to the typical values of bone tissue failure 

(i.e. 7000 microstrain for tensile and -10000 microstrain for compression as reported in [3]). For 

two specimens (T1 and T2) rather regular strain maps were identified for each component of strain, 

and for the steps of applied Compression.  Conversely, the third specimen (T3) exhibited a more 

irregular strain distribution, possibly associated with the superimposition of compression and some 

degree of bending. 

The benefit of using DVC compared to surface strain measurement techniques (i.e. strain 

gauges or DIC) is particularly evident in specimen T1. In fact, surface strain measurement in the 

5% compression step (load of 1115 N) would have only provided information on the strain 

distribution on the cortical shell that was mostly below the yield values for bone in both 

compression and tension (Fig. 4-3 and 4-6). In fact, strains of the order of 500 to 1500 microstrain 

were found in the cortical shell of vertebral bodies using strain gauges for a 1470 N compressive 

load [31] and average compressive and tensile strains (minimum and maximum principal strains) 

from DIC were found to be -2587 microstrain and 678 microstrain for a compressive load equal to 

2050 N [10].  These values would have therefore obscured the real nature of internal strain 

distribution and made impossible to predict where the damage in the vertebral body would initiate. 
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In this context the ability of DVC in identifying internal strain represents an invaluable resource, 

despite its lower strain precision (of the order of 100-300 microstrains) [27, 28] when compared to 

DIC (of the order of 10-50 of microstrains) [9, 32] or strain gauges (few microstrains)[10].  

Another important advantage of DVC relies in its ability to quantify internal microdamage 

in the bone microstructures.  The use of micro-CT image-guided failure assessment [33, 34] has 

allowed three-dimensional analysis of microdamage in bone tissue, allowing the assessment of 

damage onset and progression under load. In trabecular bone the microdamage is mainly 

characterised by bending and buckling of the trabeculae at different locations [34, 35].  The use of 

DVC allowed a successful coupling of a qualitative microdamage inspection (from micro-CT 

images), to quantitative information about the strain fields (from DVC), throughout the entire 

volume of the specimens [30].  Interestingly, the use of DVC in vertebral mechanics rarely focused 

on the coupling of microdamage with strain distribution in the failure region. When this was done, 

it mainly involved the axial strain [26], which is surely important in a compression loading but 

provides only incomplete physiological information.  Conversely, when the main physiological 

directions (axial, antero-posterior and lateral-lateral components of strain) were considered, the 

microdamage development associated to that specific strain condition was not analyzed [24, 25]. 

Moreover, only scattered information on the average strains at the different levels along the 

vertebral body are reported [25].  Hussein et al. presented an average compressive strain (minimum 

principal strain) in six vertebral bodies at three locations; namely superior ($44000 ± 53000 

microstrain), central ($49000 ± 76000 microstrain) and inferior ($50000 ± 65000 microstrain) 

regions. However, no details on the single vertebral bodies were reported and, as indicated by the 

large scatter in the results, a number of different damage patterns are to be expected. Our findings 

are in agreement with the results of Hussein et al. [25], where the most important compressive 

strains were found in caudal direction (or inferior) for both specimen T1 (-75689 microstrain) and 

specimen T2 (-32859 microstrain).  Dissimilarly, the third specimen (T3) experienced highest 

compressive strains (-42005 microstrain) in the cranial region, confirming the high standard 

deviations reported by Hussein et al. [25].   

The current study has two main limitations. Firstly, the use of three specimens could not 

provide enough statistical power to identify consistent trends.  However, this sample was sufficient 

to demonstrate the feasibility of measuring internal strain in the elastic regime, to correlate such 

elastic strain with the final failure mechanism and to understand the basic strain distribution 
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associated with microdamage in vertebral bodies.  A second limitation relates to the use of animal 

vertebrae (which are certainly different from the human ones [7]).  This choice was is justified by 

easier tissue availability compared to human, and by the possibility of fitting the entire vertebral 

body in the micro-CT scanner and its loading device. Additionally, animal tissue was also used in 

similar studies [23, 25, 26] and is fully justified for explorative in vitro testing of vertebrae [36]. 

!!

4.6    Conclusions 

In this paper building up of internal full-field strain from DVC in the elastic regime and 

progression up to failure was measured in vertebral bodies loaded under step-wise compression. 

Regions of internal microdamage were successfully matched with the distribution of strains, where 

axial, antero-posterior and lateral-lateral strains were monitored for all specimens at all levels of 

compression.  The results obtained in this study clearly show how different vertebral bodies may be 

subjected to different stress/strain distribution.  Thus, consequent microdamage can develop and 

progress in different ways towards the final failure of the vertebra. Interestingly, DVC-computed 

strains in the elastic regime have the ability to predict high-strain concentration and therefore 

damage before failure actually occurs.  This has the potential to be implemented in clinical CT 

assessment of vertebrae, given controlled loading conditions during imaging.  

!

!

!

!

!

!

!

!

!



! LLD!

4.7    References 
1. Ferrar L., Jiang G., Adams J. and Eastell R. (2005) Identification of vertebral fractures: An 
update. Osteoporosis International 16: 717-728. 

2. Tancioni F., Lorenzetti M.A., Navarria P., Pessina F., Draghi R., Pedrazzoli P., Scorsetti M., 
Alloisio M., Santoro A. and Rodriguez y Baena R. (2011) Percutaneous vertebral augmentation in 
metastatic disease: state of the art. J Support Oncol 9: 4-10. 

3. Cristofolini L. (2015) In vitro evidence of the structural optimization of the human skeletal 
bones. Journal of biomechanics 48: 787-796. 

4. Goel V.K., Panjabi M.M., Patwardhan A.G., Dooris A.P. and Serhan H. (2006) Test 
Protocols for Evaluation of Spinal Implants. Journal of Bone and Joint Surgery 88: 103-109. 

5. Pollintine P., van Tunen M.S., Luo J., Brown M.D., Dolan P. and Adams M.A. (2010) 
Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine 
(Phila Pa 1976) 35: 386-394. 

6. Brandolini N., Cristofolini L. and Viceconti M. (2014) Experimental Method for the 
Biomechanical Investigation of Human Spine: a Review Journal Of Mechanics in Medicine and 
Biology 14: 1430002. 

7. Cristofolini L., Brandolini N., Danesi V., Juszczyk M.M., Erani P. and Viceconti M. (2013) 
Strain distribution in the lumbar vertebrae under different loading configurations. The spine journal 
: official journal of the North American Spine Society 13: 1281-1292. 

8. Freddi A., Olmi G. and Cristofolini L. (2015) Experimental Stress Analysis for Materials 
and Structures: Stress Analysis Models for Developing Design Methodologies Springer. 

9. Palanca M., Brugo T.M. and Cristofolini L. (2015) Use of Digital Image Correlation to 
Understand the Biomechanics of the Vertebra. Journal Of Mechanics in Medicine and Biology 15: 
1540004-1540001/1540004-1540010. 

10. Gustafson H., Siegmund G. and Cripton P. (2016) Comparison of Strain Rosettes and 
Digital Image Correlation for Measuring Vertebral Body Strain. Journal of biomechanical 
engineering Accepted. 

11. Lionello G. and Cristofolini L. (2014) A practical approach to optimizing the preparation of 
speckle patterns for digital-image correlation. Measurement Science and Technology 25: 107001. 

12. Lanyon I.E. (1980) Bone remodelling, mechanical stress, and osteoporosis. In: Osteoporosis, 
H.F. De Luca (Ed). University Park Press, Baltimore: 129-138. 

13. Bayraktar H.H., Morgan E.F., Niebur G.L., Morris G.E., Wong E.K. and Keaveny T.M. 
(2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical 
bone tissue. Journal of biomechanics 37: 27-35. 

14. Cristofolini L. and Viceconti M. (1997) Comparison of Uniaxial and Triaxial Rosette Gages 
for Strain Measurement in the Femur. Experimental Mechanics 37: 350 - 354. 



! LLE!

15. Silva M.J., Keaveny T.M. and Hayes W.C. (1997) Load sharing between the shell and 
centrum in the lumbar vertebral body. Spine (Phila Pa 1976) 22: 140-150. 

16. Wang X.-Y., Dai L.-Y., Xu H.-Z. and Chi Y.-L. (2007) The Load-Sharing Classification of 
Thoracolumbar Fractures: An In Vitro Biomechanical Validation. Spine 32: 1214-1219 
1210.1097/BRS.1210b1013e318053ec318069. 

17. Liu L. and Morgan E.F. (2007) Accuracy and precision of digital volume correlation in 
quantifying displacements and strains in trabecular bone. Journal of biomechanics 40: 3516-3520. 

18. Gillard F., Boardman R., Mavrogordato M., Hollis D., Sinclair I., Pierron F. and Browne M. 
(2014) The application of digital volume correlation (DVC) to study the microstructural behaviour 
of trabecular bone during compression. J Mech Behav Biomed Mater 29: 480-499. 

19. Dall'Ara E., Barber D. and Viceconti M. (2014) About the inevitable compromise between 
spatial resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study. 
Journal of biomechanics 47: 2956 - 2963. 

20. Roberts B.C., Perilli E. and Reynolds K.J. (2014) Application of the digital volume 
correlation technique for the measurement of displacement and strain fields in bone: A literature 
review. Journal of biomechanics 47: 923-934. 

21. Palanca M., Tozzi G., Cristofolini L., Viceconti M. and Dall'Ara E. (2015) 3D Local 
Measurements of Bone Strain and Displacement: Comparison of Three Digital Volume Correlation 
Approaches. J Biomech Eng (ASME) 137: 071006-071001/071006-071014. 

22. Christen D., Levchuk A., Schori S., Schneider P., Boyd S.K. and Muller R. (2012) 
Deformable image registration and 3D strain mapping for the quantitative assessment of cortical 
bone microdamage. Journal of Mechanical Behavior of Biomedical Materials 8: 184-193. 

23. Hardisty M.R. and Whyne C.M. (2009) Whole bone strain quantification by image 
registration: a validation study. Journal of biomechanical engineering 131: 064502. 

24. Hussein A.I., Barbone P.E. and Morgan E.F. (2012) Digital Volume Correlation for Study of 
the Mechanics of Whole Bones. Procedia IUTAM 4: 116-125. 

25. Hussein A.I., Mason Z.D. and Morgan E.F. (2013) Presence of intervertebral discs alters 
observed stiffness and failure mechanisms in the vertebra. Journal of biomechanics 46: 1683-1688. 

26. Hardisty M., Akens M., Hojjat S., Yee A. and Whyne C. (2012) Quantification of the Effect 
of Osteolytic Metastases on Bone Strain within Whole Vertebrae Using Image Registration. J 
Orthop Res 30: 1032-1039. 

27. Palanca M., Tozzi G., Dall'Ara E., Curto M., Innocente F., Danesi V. and Cristofolini L. 
(2016) Strain uncertainties from two digital volume correlation approaches in natural and 
augmented vertebrae: an organ-level analysis. J Mech Behav Biomed Mater Submitted. 

28. Tozzi G., Dall'Ara E., Palanca M., Curto M., Innocente F. and Cristofolini L. (2016) Strain 
uncertainties from two DVC approaches in prophylactically augmented vertebrae: local analysis on 
bone and bone-cement microstructures. Journal of the Mechanical Behavior of Biomedical 
Materials Submitted. 



! LLF!

29. Danesi V., Zani L., Scheele A., Berra F. and Cristofolini L. (2014) Reproducible reference 
frame for in vitro testing of the human vertebrae. Journal of biomechanics 47: 313-318. 

30. Tozzi G., Zhang Q.H. and Tong J. (2014) Microdamage assessment of bone-cement 
interfaces under monotonic and cyclic compression. Journal of biomechanics 47: 3466 - 3474. 

31. Shah J., Hampson W. and Jayson M. (1978) The distribution of surface strain in the 
cadaveric lumbar spine. J Bone Joint Surg Br 60-B: 246-251. 

32. Grassi L. and Isaksson H. (2015) Extracting accurate strain measurements in bone 
mechanics: A critical review of current methods. J Mech Behav Biomed Mater 50: 43-54. 

33. Nazarian A. and Müller R. (2004) Time-lapsed microstructural imaging of bone failure 
behavior. Journal of biomechanics 37: 55-65. 

34. Tozzi G., Zhang Q.H. and Tong J. (2012) 3D real-time micromechanical compressive 
behaviour of bone-cement interface: experimental and finite element studies. Journal of 
biomechanics 45: 356-363. 

35. Tozzi G., Zhang Q.H., Lupton C., Tong J., Guillen T., Ohrndorf A. and Christ H.J. (2013) 
Characterisation of a metallic foam-cement composite under selected loading conditions. J Mater 
Sci Mater Med 24: 2509-2518. 

36. Brandolini N., Cristofolini L. and Viceconti M. (2014) Experimental Methods for the 
biomechanical investigation of the human spine: a review. Journal Of Mechanics in Medicine and 
Biology 14: 1430002. 

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!



! LLG!

Chapter 5: 

 

Application of digital volume correlation to 

study the efficacy of prophylactic vertebral 

augmentation 
 

 

 

Valentina Danesi1, Gianluca Tozzi2, Luca Cristofolini3 

 

1Department of Industrial Engineering, Alma Mater Studiorum – Università di Bologna, Italy 

2School of Engineering, University of Portsmouth, UK 

 

 

 

The candidate was the first investigator of this study. This paper was submitted to Clinical 

Biomechanics. 

 

 



! LLH!

 

5.1 Abstract 

While the biomechanical effects of vertebroplasty on fractured vertebrae have been 

thoroughly investigated, very little data exist regarding the effects of prophylactic augmentation on 

non-fractured vertebrae.  Moreover, such studies on vertebroplasty and prophylactic augmentation 

mainly focused on the overall failure strength of the treated vertebral body, without analyzing the 

internal strain distributions.  The aim of this study was, for the first time, to measure the full-field 

strain distributions by means of DVC inside prophylactically augmented vertebral bodies under 

compression.  Specifically, we aimed at investigating the state of strain distribution inside the 

vertebral body, in the injected cement, and in the cement-bone interdigitated region of vertebrae 

that were prophylactically augmented with two different cements, including the elastic regime 

(axial, antero-posterior and lateral-lateral components of strain), but also the internal micro-failure 

mechanisms. Destructive tests were carried out on twelve porcine natural and prophylactically 

augmented vertebral bodies.  Specimens were tested under axial-compression loading in a step-wise 

fashion.  Micro-CT images were acquired after each loading step of compression (5%, 10%, 15%). 

Micro-CT images successfully identified regions of failure initiation and progression, which where 

well quantified by DVC-computed strains. Our findings showed that prophylactic augmentation 

increased the force required to induce damage only in some of the vertebrae and other specimens 

failed under a force that was lower than the one produced in the controls.  Augmentation was not 

associated to an evident modification of the strain magnitude when compared to the control 

vertebrae, but rather to a different localization of highly strained regions due to the variable cement 

distribution. Such elevated strain concentration within the cement did not produce visible damage to 

the cement region itself, but affected the strength of the surrounded trabecular bone, resulting in an 

increased fracture risk at the cement-bone interdigitated region and of the surrounding trabecular 

bone regions just above or below the cement mass. 

 

Keywords: Augmentation, Digital volume correlation, Micro-CT, Bone, Vertebral body, Fracture, 

Microdamage, full-field strain measurement, elastic strain.  
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5.2 Introduction 

Vertebral fractures are a severe cause of morbidity and disability [1, 2], as well as a 

significant burden for healthcare systems [3].  The cause of the fracture may be pathological, 

traumatic, or a combination of the two.  The main pathological conditions are osteoporosis [4] or 

metastatic lesion [5], whose metabolic alterations result in bone weakening.  However, the 

biomechanics underlying fracture onset and development of post-fracture and prophylactic 

treatments raises research questions that are still far from being answered.  

In the last years prophylactic augmentation has been proposed as an alternative to 

pharmacological treatments [6] in order to reduce the fracture risk of osteoporotic vertebrae [2, 7-

10] or to prevent adjacent fractures after augmentation [11, 12].  This treatment is meant to increase 

the strength and the structural support of weak vertebrae, by the injection of an augmentation 

material into the vertebral body [7, 10, 11, 13-15]. 

The associated risks such as cement leakage and subsequent neural damage; tissue necrosis due to 

residual monomer and to the exothermal reaction; increased risk of fracture in the adjacent 

vertebrae, have raised questions about the efficacy and safety of the vertebroplasty [16-20]. 

Moreover, prophylactic augmentation (treatment of non-fractured vertebra) exposes the patients to 

additional risk, hence there is a need for a clearer understanding on the cost-benefit trade-off.  For 

this reason, in-depth knowledge of the mechanical behaviour and failure of prophylactic-augmented 

vertebra is of fundamental importance to understand vertebral biomechanics and improve diagnosis 

and prophylactic treatments [14].  

Furthermore, it is still debated whether prophylactic augmentation actually strengthens the 

treated vertebra.  The increasing interest in the use of prophylactic augmentation, as a treatment for 

reduce the risk of fracture, has led to a number of experimental studies [13, 21-32]. Several in vitro 

studies showed that the strength of prophylactically augmented vertebrae was on average greater 

than that of non-augmented vertebrae [23, 27], however there were cases where single treated 

specimens were weaker than the untraded controls [16, 33].  Prophylactic augmentation has been 

found to strengthen [27, 34, 35], to provide no improvement [8], or even to weaken at least some 

specimens [16], in comparison to untreated controls.  It must be noted that most of these studies 

focused on the overall failure strength of the natural and treated vertebral body, without analyzing 

the strain distribution. 
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The strain distribution has been partially assessed in the untreated vertebral body [36] (the 

most stressed region could not be identified as only one strain-gauge was applied on each vertebra).  

Recently, the strain distribution was measured for a variety of loading conditions using eight  strain 

gauges [37].  While strain gauges provide pointwise measurements, digital image correlation (DIC) 

allows investigating the full-field strain distribution on the specimen’s surface.  In recent years, DIC 

has successfully been exploited to measure the strain distribution on the surface of untreated 

vertebrae [38-42]. The surface strain distribution was also measured in prophylactically augmented 

vertebrae in vitro, using eight strain gauges [13].  The measured principal strains were generally 

aligned as expected: axially/circumferentially for all loading conditions implying an axial force.  

That paper concluded that the variability of the weakening/strengthening effect of prophylactic 

augmentation depended on the quality of augmentation (amount, localization and distribution of the 

injected material).  Even this study could not draw any conclusive information about the failure 

mechanisms associated to the internal state of the vertebra.  However, strain gauges and DIC allow 

investigating only the surface of specimens, where the stress/strain distribution inside the bone and 

the augmentation material cannot be measured.   

Numerical predictions through finite element (FE) models allowed the investigation of the 

internal strain distribution (e.g. [10, 43, 44]).  However, one cannot take for granted the credibility 

of FE models of complex structures such as an augmented vertebra, which include thin cortical 

shell, cement-bone interdigitation, interfaces between different materials, tissue anisotropy, 

inhomogeneity and nonlinearity [45, 46]. 

For these reasons alternative approaches have been exploited to overcome this limitation.  

With the recent and rapid progress of high-resolution micro-CT imaging in conjunction with in situ 

mechanical testing [47, 48], digital volume correlation (DVC) emerged as a novel tool for the 

measurement of 3D deformation fields throughout entire bone volumes [49].  So far, DVC was 

successfully employed to examine full-field internal deformations in trabecular bone [50-55], 

cortical bone [51, 56, 57] and cement-bone interface [58]. Application of DVC to whole untreated 

vertebra was also exploited to examine yield and post-yield deformations [59, 60], and more 

recently also the strain field in the elastic regime [61].  DVC is an ideal tool to investigate the 

internal mechanism leading to onset and progression of failure of augmented vertebrae, and could 

potentially be used to elucidate under which conditions prophylactic augmentations can 

reinforce/weaken the vertebral body.   
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While DVC has been applied to characterize the mechanical performance of untreated 

vertebral body, so far it has not been applied to augmented vertebral bodies.  Because of its high 

complexity, accuracy and precision of DVC cannot be taken for granted [54, 62]. Recently for the 

first time, 3D zero-strain studies demonstrated the suitability of DVC approach to investigate 

augmented bone both at organ-level [63] and tissue-level [64]. Those studies reported that strain 

uncertainties can be reduced below 300 microstrain if the images are adequately prepared 

(excluding the non-tissue background), and with an appropriate choice of the computation sub-

volume size (i.e. 48 voxels for a 39 micrometers voxel size image). 

The aim of this study was, for the first time, to measure the full-field strain distributions by 

means of DVC inside prophylactically augmented vertebral bodies under compression.  

Specifically, we aimed at investigating the state of strain distribution inside the vertebral body, in 

the injected cement, and in the cement-bone interdigitated region of vertebrae that were 

prophylactically augmented with two different cements, including the elastic regime (axial, antero-

posterior and lateral-lateral components of strain), but also the internal micro-failure mechanisms. 

5.3  Materials and Methods 

Destructive tests were carried out on twelve porcine natural and prophylactically augmented 

vertebral bodies.  Specimens were tested under axial-compression loading in a step-wise fashion.  

Micro-CT images were acquired after each loading step. Starting from the reconstructed micro-CT 

volumes, the full-field strain distribution and the associated failure mechanisms were investigated 

inside the vertebral bodies by image-guided failure assessment (IGFA) and digital volume 

correlation (DVC). 

 

5.3.1 Specimens and prophylactic augmentation 

Four porcine thoracic spine segments (T1-T3) were obtained from animals, which were 

sacrificed for alimentary purposes.  The animals were all female, of the same breed, approximately 

9 months and 100kg at sacrifice.  The single vertebrae were dissected from the spine segments, 

removing the soft tissues, including the intervertebral discs (Fig. 5-1).  Within each spine segment, 

two vertebrae were assigned for prophylactic augmentation with two types of bone cement, and one 

vertebra was used as non-augmented control.  Sampling was arranged so that the augmented and 
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control samples were well distributed within the spine segment, in order to have at least one T1, one 

T2 and one T3 per group: 

• A sample of four vertebrae (Mendec-1, Mendec-2, Mendec-3 and Mendec-4) was 

prophylactically augmented with acrylic bone cement (Mendec-Spine, Tecres, Italy), using its 

proprietary mixing and delivery kit.  Mendec contains 8% of BaSO4 pellets with an average 

size of 300 micrometers, which grant adequate visibility during micro-CT imaging [63].  

• Another sample of four vertebrae (Cal-CEMEX-1, Cal-CEMEX-2, Cal-CEMEX-3 and Cal-

CEMEX-4) was treated with an experimental acrylic-based bone substitute, using a similar 

delivery device as for the Mendec specimens.  This cement (Cal-CEMEX, Tecres, Italy, 

consisting of 40.4%poly-methyl-methacrylate (PMMA)), additivated with 6% of BaSO4 

pellets (average size: 300 micrometers) to make it suitable for vertebroplasty. 

• The remaining four specimens served as untreated controls (hereafter refereed to as Natural-1, 

Natural-2, Natural-3 and Natural-4).  Three of these specimens were part of a different 

methodological study [61].  These specimens are included in the present paper as a blank 

control; more details about the natural specimens can be found in [61].   

Augmentation was performed on the selected 8 specimens with the two types of bone 

cement with a uni-lateral approach (Fig.5-1).  Injection was stopped at the first visible sign of 

leakage (injected volume: ~1-1.5 ml of cement).  In order to facilitate a more realistic cement flow 

and polymerization, the vertebrae were heated for 1 hour before and 12 hours after augmentation, in 

saline solution at 44°C (the physiologic temperature in pigs is 38.5-40°C  [65, 66]). 

To avoid the presence of soft tissue and reduce viscoelastic effects and strain concentration, which 

would compromise micro-CT imaging and DVC analysis, the growth plates were removed from the 

augmented and natural vertebrae, together with the adjacent endplates (due to the young age of the 

animals, this could be performed with little manual effort) [67].  A reproducible reference frame 

was adapted [68], and the ends of each vertebra were potted in PMMA so that the cranio-caudal 

axis was consistently aligned with the loading direction within the micro-CT scanner (Fig.5-1).  The 

neural arches were subsequently excised through resection of the pedicles. 

5.3.2 Compression testing and micro-CT scanning 

Destructive tests were carried out on all prophylactically augmented and control vertebrae, 

under axial-compression with a customized-micro-mechanical loading device (CT5000, Deben Ltd, 
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UK), equipped with a 5kN load cell and environmental chamber filled with 0.9% saline solution 

(Fig. 5-1).  To avoid translation and rotation of the specimens inside the chamber, a sandpaper disc 

was applied to the bottom loading platen.  The force and displacement signals were acquired at 2 

Hz (Microtest V6 2.67, Deben Ltd, UK). 

A preload of 50 N was applied.  Each specimen was compressed axially under displacement 

control in a step-wise fashion (Fig. 5-1).  The compression steps were adjusted for each specimen 

based on its height, so that at each step the free height was compressed by 5% (this corresponded to 

actuator steps ranging between 0.47 and 0.67 mm, depending on the specimen’s size).  The actuator 

speed was 0.1 mm/sec.  At each compression step, the specimens were allowed to settle for 15 

minutes, to reach a steady state prior to scanning.  

Micro-CT imaging (XTH225, Nikon Metrology, UK) was carried out at each step (0% with 

50N preload, 5%, 10% and 15% compression) (Fig. 5-1).  The micro-CT scanner was set to a 

voltage of 88-89 kV, a current of 110-116 microA and exposure time of 2 seconds. Images were 

collected at rotational steps of 0.23° over 360°, for a scanning time of approximately 90 min at each 

compression step. The reconstructed micro-CT images had an isotropic voxel size of 38.8 

micrometers.   

5.3.3 Digital volume correlation (DVC) 

DaVis DVC software (v8.3, LaVision, Germany) was used to investigate the full-field 

strains in both control and augmented vertebrae along the axial, antero-posterior and lateral-lateral 

directions.  The operating principle of the DaVis DVC software has been detailed elsewhere [63]. 

Briefly, DVC discretizes the 3D volume into small sub-volumes, which are independent each other 

(local approach). Each sub-volume is represented as a discrete function of grey-level.  A direct 

correlation function (DaVis-DC) is employed together with a piece-wise linear shape function and a 

third-order spline interpolation, to correlate the structural patterns contained in the reference and 

deformed sub-volumes. To achieve this, LaVision’s software adopts a multi-pass approach that uses 

the displacement gradient from the previous pass to deform the sub-volume on the subsequent pass 

until the highest possible correlation is achieved [69]. The displacement vector field is obtained at 

the center of each sub-volume. The strain field is subsequently computed using a centered finite 

differences (CFD) scheme. The original micro-CT images were masked in correspondence to the 

contour shape of each vertebral body, in order to isolate the vertebra from noisy background areas 
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where no tissue was present [61].  In fact, it was shown that regions that do not contain useful 

pattern for the correlation algorithm are associated with large strain artifacts [63, 64] 

DVC calculation settings utilized a final sub-volume of 48 voxels (0% overlapping), reached 

after prior passes of 128, 112, 96, 80 and 64 voxels.  This multipass sequence was found to produce 

the lowest strain error in DaVis-DC for such type of specimens, under the same imaging and 

environmental [63, 64].  As for large deformations the local pattern experiences significant changes, 

the displacement field obtained was calculated not relative to the specimen in its undeformed state 

(preload of 50N, 0% compression), but using a ‘sum of differential’ approach between successive 

images (0%-5%; 5%-10%, 10%-15% compression) that were then summed in a Lagrangian 

coordinate system. 

As LaVision’s software can only display 2D image views in the transverse plane, a 

dedicated Matlab (v2014a, MathWorks, US) script was developed to allow visualization of the 2D 

strain maps in sagittal and frontal planes.  Moreover, for each compression step, the average strain 

within each transverse slice was computed for the strain components in axial, antero-posterior and 

lateral-lateral direction, following a procedure reported in [57]. 
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Fig.5-1: Overview of the experimental design.  The vertebral bodies were dissected from the spine 

segments, removing all soft tissues. Prophylactic augmentation was performed on the selected 
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specimens with two types of cements (Mendec and Cal-CEMEX).  The remaining specimens were 

used as untreated controls.  The ends of each vertebra were potted in PMMA.  Then, destructive 

tests were carried out under axial-compression in a step-wise fashion.  Micro-CT imaging was 

acquired at each loading step (0% with 50N preload, 5%, 10% and 15% compression).  Finally, 

digital volume correlation (DVC) was performed to compute the internal full-field strains. 

 

5.4 Results 

The force-displacement curves for augmented specimens showed a monotonic trend for all 

specimens, while load was increased (Fig. 5-2 and 5-3).  Specimen failure (in most cases clearly 

visible as the point was immediately followed by load drop) occurred either at 10% or 15% steps in 

all augmented specimens.  The loads applied onto the augmented specimens for each loading steps 

are reported in Table 5-1.  Relaxation was also visible at the end of each compression step, when 

the actuator was stopped to allow micro-CT imaging. 

For both groups the force-displacement curves differed among specimens, according to the 

quality of augmentation [13] (Fig. 5-2 and 5-3).  Comparing the force-displacement curves of 

augmented specimens to the controls reported in[61], both augmented groups exhibited different 

trends.  In some cases the failure load of augmented vertebrae was higher than the respective 

control (Mendec-2, Mendec-3, Cal-CEMEX-2), conversely in other cases the failure load of 

augmented vertebrae was lower than the control. 
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Fig. 5-2: Force-compression curves for the four specimens augmented with Mendec cement.  The 

load showed a drop at the end of each step of compression: this corresponded to the stress 

relaxation while the specimen was allowed to settle (15 minutes), before the micro-CT scan took 

place (90 minutes). 

 

Fig. 5-3: Force-compression curves for the four specimens augmented with Cal-CEMEX cement.  

The load showed a drop at the end of each step of compression: this corresponded to stress 
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relaxation while the specimen was allowed to settle (15 minutes), before the micro-CT scan took 

place (90 minutes). 

Table 5-1: Loads experienced by the eight augmented specimens at each step of compression 

(applied in displacement control).  

Augmented Specimens Force at 5% 
compression 

Force at 
10% 
compression 

Force at 
15% 
compression 

Mendec-1 1502 N 4125 N 4064 N 

Mendec-2 3089 N 4481 N 4036 N 

Mendec-3 3058 N 3222 N 3403 N 

Mende-4 2532 N 4267 N 4053 N 

Cal-CEMEX-1 1388 N 2762 N 2463 N 

Cal-CEMEX-2 1101 N 3007 N 2057 N 

Cal-CEMEX-3 2088 N 4527 N 3802 N 

Cal-CEMEX-4 2345 N 3423 N 3408 N 

 

The micro-CT images for the three compression steps (5%, 10% and 15% compression) on 

the sagittal section of the specimens augmented with Mendec and Cal-CEMEX cements are 

reported in Figures 5-4 and 5-5, respectively. 

In general, the micro-CT images of Mendec specimens showed a main microdamage, which 

started to be visible at the 10% compressive step, and degenerated into a trabecular collapse at 15% 

(Fig. 5-4).  In the majority of cases, specimens showed a main microdamage localized in the 

trabecular bone at middle region in the transverse plane. Such collapses seemed to initiate from the 

cement-bone interface, then gradually spread across the trabecular bone anteriorly and finally in the 

transverse plane reaching the cortical bone.  In addition, Mendec-3 showed a further microdamage 

just below the cement area (Fig. 5-4, 15% compression).  Only the specimen Mendec-4 seemed to 
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show a vertebral collapse in the cranio-caudal direction (Fig. 5-4, 15% compression), which ended 

with a trabecular crushing in most of the caudal region, far away from the cement area.  Conversely, 

in all specimens the cement region appeared to be unaffected even at the final loading stage (15% 

compression).  

 

Fig.5-4: Sagittal micro-CT slice taken at each compression step of specimens augmented with 

Mendec cement (the antero (A) and posterior (P) regions are also indicated).  In the micro-CT 

images the microdamage started to be recognize at 10% stage, but only at the last step 15% their 

full extent was detected (red arrows).  Conversely the microdamage was not detected in the early 

loading stage (5%) in any specimens. 

The specimens augmented with Cal-CEMEX showed a main microdamage localized in the 

trabecular bone region just above or below the cement mass (Fig. 5-5, 15% compression).  Only in 

Cal-CEMEX-3 the microdamage was detected laterally respect to the cement mass (Fig. 5-4, 15% 

compression).  As for the Mendec specimens, such collapses initiated from cement-bone interface 

and then gradually developed across the trabecular bone anteriorly or posteriorly in the transverse 

plane, affecting the cortical bone in some cases (Fig. 5-5; Cal-CEMEX-2 and Cal-CEMEX-3).  
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Once again, the cement region appeared to be unaffected even at the final stage (15% compression) 

for all specimens.   

 

Fig.5-5: Sagittal micro-CT slice taken at each compression step of specimens augmented with Cal-

CEMEX cement (the antero (A) and posterior (P) regions are also indicated).  In the micro-CT 

images the microdamage started to be recognize at 10% stage, but only at the last step 15% their 

full extent was detected (red arrows).  Conversely the microdamage was not detected in the early 

loading stage (5%) in any specimens.  

The internal axial strain distributions for the three compression steps (5%, 10% and 15% 

compression) on the sagittal section of the specimens augmented with Mendec and Cal-CEMEX 

cement are reported in Figures 5-6 and 5-7, respectively.  

For specimens augmented with Mendec cement, the regions of high compressive strains in 

the strain maps seemed to describe very well the microdamage visualized in the micro-CT.  

Elevated compressive strains were also present in the vicinity of the microdamage.  The axial strain, 

which reflecting the compressive deformation was the dominating mode at microdamage and they 

were always compressive in all specimens.  For the antero-posterior and lateral-lateral directions, 

the normal strains were mainly tensile (details of antero-posterior and lateral-lateral strain maps are 
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reported as supplementary material).  In all cases, antero-posterior and lateral-lateral strain 

magnitudes were significantly lower than axial strain.  The highest strains (compressive or tensile) 

were generally concentrated in the regions where the microdamage developed.  Strains were 

significantly lower away from the damaged regions.  In most of the specimens subjected to the first 

compression stage (5%), some parts of the cement regions experienced the largest axial-strain.  

Conversely in the final loading step (15%) the cement areas seemed to be the less strained regions 

in all specimens.  The strain distribution in the elastic regime (5% compression) seemed being able 

to predict the location of the microdamage initiation before it actually became identifiable in the 

most of specimens (Fig. 5-6; Mendec-2, Mendec-3 and Mendec-4).  Only the specimen Mendec-1 

showed a relocation of the highest axial strain from the posterior (5% compression) to the anterior 

region (15% compression) (Fig. 5-6). 

 

Fig. 5-6: Internal strain distribution of specimens augmented with Mendec cement for the three 

steps of compression.  The distribution of axial strains is showed for each specimen over the same 

sagittal slice as in Fig. 5-4.  The most strained regions corresponded to the damaged area, which 

gradually progressed into a collapse propagating across the trabecular bone. 
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A similar agreement between the damage (visible in the micro-CT images) and the 

distribution of strain (computed by means of DVC) was also found in specimens augmented with 

Cal-CEMEX (Fig. 5-5 and 5-7).  In most of the cases, larger strains were localized and concentrated 

only in one region of the specimen, which was more or less extended. Only in Cal-CEMEX-4 the 

highest strain was detected in two different regions of the specimen that were quite far away from 

each other, but both close to the cement mass.  For the normal strains in antero-posterior and lateral-

lateral directions the highest strains were always tensile (details of antero-posterior and lateral-

lateral strain maps are reported as supplementary material).  Antero-posterior and lateral-lateral 

strains magnitudes were significantly lower than axial strain.  However, in all directions the highest 

strains (compressive or tensile) were typically concentrated in the regions of the microdamage and 

significantly lower away from the damaged regions.  In most of the specimens, the cement regions 

were partially affected by the largest axial strain at the first stage (5% compressive).  Conversely, in 

the final step (15% compressive) the cement areas appeared to be the less strained regions in all 

specimens.  Once again, the strain distribution in the elastic regime (5% compressive) seemed to 

predict quite well the location of damage initiation before it actually occurred (Fig. 5-7). 

 

Fig. 5-7: Internal strain distribution of specimen augmented with Cal-CEMEX cement for the three 

steps of compression.  The distribution of axial strains is showed for each specimen over the same 
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sagittal slice as in Fig. 5-5. The most strained regions corresponded to the damaged area, which 

gradually progressed into a collapse propagating across the trabecular bone. 

In general, no apparent differences were observed between the values of strain experienced 

by augmented and control groups.  Also in the most strained regions, where the microdamage 

developed, the value of strains between augmented and control specimen were similar. 

The progression of axial strain during compression for the two augmented groups is shown 

in Figure 5-8 and 5-9, in terms of average strain calculated for each cross-section.  

 

Fig. 5-8: Progression of strain with compression steps (5%, 10% and 15%).  The average axial 

strains were computed for each transverse slice of the DVC-computed 3D strain maps.  In general, 

an incremental strain pattern among the consecutive compression steps was observed in all 

specimens.  The slices where the largest strains were observed corresponded to the areas where 

internal damage was localized in the vertebra (Fig. 5-4 and 5-6).  
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The strain pattern along the caudal-cranial direction was mostly similar, with the largest 

deformation localized in correspondence approximately of the specimen middle region or slightly 

moved toward cranial direction as for Mendec-2 (Fig. 5-8).  This strain trend was different from the 

pattern of control specimens reported in [61], where the largest deformation was observed in 

correspondence of the cranial or caudal extremities of the specimen. 

 

Fig. 5-9: Progression of strain with compression steps (5%, 10% and 15%).  The average axial 

strains were computed for each transverse slice of the DVC-computed 3D strain maps. In general, 

an incremental strain pattern among the consecutive compression steps was observed in all 

specimens.  The slices where the largest strains were observed corresponded to the areas where 

internal damage was localized in the vertebra (Fig. 5-5 and 5-7).  

The strain pattern along the caudal-cranial direction of specimens augmented with Cal-

CEMEX was pretty different from the pattern exhibited by the specimens augmented with Mendec, 

but more similar to the control specimens reported by Tozzi et al. [61], with the largest deformation 

localized in correspondence of the first quarter caudal or cranial of the specimen (Fig. 5-9).   
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5.5 Discussion 

While the biomechanical effects of vertebroplasty on fractured vertebrae have been 

thoroughly investigated, very little data exist regarding the effects of prophylactic augmentation on 

non-fractured vertebrae.  Moreover, such studies on vertebroplasty and prophylactic augmentation 

mainly focused on the overall failure strength of the treated vertebral body, without analyzing the 

internal strain distributions [21-32].  The aim of this study was, for the first time, to measure the 

full-field internal strain distributions by means of DVC in prophylactically augmented vertebral 

bodies under compression.  Specifically, we aimed at investigating the strain localization (axial, 

antero-posterior and lateral-lateral components) in both fully augmented and cement-bone 

interdigitated regions of vertebrae with two different cements and to couple this information with 

the internal microdamage initiation and development under applied load. 

Our findings showed that prophylactic augmentation increased the force required to induce 

damage only in some of the vertebrae and other specimens failed under a force that was lower than 

the one produced in the controls.  These findings were consistent with previous studies, which 

reported cases where treated vertebrae were weaker than the untreated controls [13, 16, 33].  This 

variability of the weakening/strengthening effect of prophylactic augmentation seems to confirm a 

recent study [13], in which it has been hypnotized that the effect of augmentation depends on the 

quality of augmentation itself (i.e. amount, localization and distribution of the injected material). 

This study confirmed for the first time the usefulness of the DVC technique in investigating the 

internal strain distribution of augmented vertebrae, from the elastic regime and up to failure.  In 

fact, despite a number of studies used DVC to investigate the internal strain distribution of natural 

vertebrae under compression [59-61, 70], the internal strain distribution of augmented vertebrae is 

still unexplored.  The results clearly showed that augmentation was not associated to an evident 

modification of the strain magnitude when compared to the control vertebrae, but rather to a 

different localization of highly strained regions due to the variable cement distribution.  Hence, the 

higher strains were distributed within the cement region in the elastic regime (5% compression) and 

successively developed towards the surrounding trabecular bone during failure (10% and 15% 

compression steps). This suggests an alteration of the load sharing in the augmented structure where 

the load is mostly carried by the cement region, rather than the trabecular core in the vertebra.  This 

would result in an altered load transferred to the endplates [71] and to the disc [72], and could easily 
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explain some of the clinically reported incidence of fracture in the adjacent (and untreated) 

vertebrae to the augmented one [20, 73-76].  

Such elevated strain concentration within the cement did not produce visible damage to the 

cement region itself, but affected the strength of the surrounded trabecular bone, resulting in an 

increased fracture risk at the cement-bone interdigitated region and of the surrounding trabecular 

bone regions just above or below the cement mass.  In conclusion the most critical region was 

found at the cement-bone interface, where the onset of the fracture was recognizable consistently 

with previous studies [58, 77]. Starting from the cement-bone interdigitated region the 

microdamage gradually spread under applied load across the trabecular bone, which provided a 

lower stiffness than the injected cement.  In most of the cases, the microdamage developed in the 

trabecular bone was mainly characterized by bending and buckling of trabeculae in the transverse 

plane [77].  The failure mechanism did not seem to depend on the cement type. 

There are some limitations in this study that must be considered.  First of all, porcine 

specimens were used, which have a different anatomy and tissue properties than human tissues [78].  

This choice was driven by the size of the specimens to fit inside the microCT-scanner and its 

loading device.  For this reason, the current results cannot be entirely indicative from a clinical 

perspective, as both the failure force and the strain magnitude may differ from human vertebrae.  

However, comparisons between the natural and augmented specimens, and between different types 

of cement are possible.  Furthermore, this study allowed, for the first time, a complete in vitro 

characterization of the internal failure mechanisms in the augmented vertebral body.  Another 

limitation is the relatively small sample size: 4 specimens were tested for each group, making 

difficult any conclusive statistical comparison.  Larger samples (from 30 to 66) were tested when 

only the failure force was measured [22, 27, 79], but as in our study we investigated in detail the 

internal strain distribution a smaller number of specimens could be considered.  All these 

limitations are compensated by the fact that, to the author’s knowledge, this is the first time that the 

internal strain distribution (in the elastic regime) through DVC was employed to investigate the 

internal failure mechanisms in prophylactically augmented vertebrae. 
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5.6 Supplementary Materials 

 

 

Fig. A: Internal strain distribution of specimens augmented with Mendec cement for the three steps 

of compression.  The distribution of lateral-lateral strains is showed for each specimen over the 

same sagittal slice as in Fig. 5-4.  The most strained regions corresponded to the damaged area, 

which gradually progressed into a collapse propagating across the trabecular bone.  The 

distribution of anterior-posterior strains showed a similar pattern. 
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Fig. B: Internal strain distribution of specimens augmented with Cal-CEMEX cement for the three 

steps of compression.  The distribution of anterior-posterior strains is showed for each specimen 

over the same sagittal slice as in Fig. 5-5.  The most strained regions corresponded to the damaged 

area, which gradually progressed into a collapse propagating across the trabecular bone.  The 

distribution of lateral-lateral strains showed a similar pattern. 
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Conclusion  
This study delivered a comprehensive in vitro investigation of the mechanical properties of 

the human thoraco-lumbar natural and prophylactic augmented vertebrae, through the experimental 

protocol developed. Moreover, the candidate provided a comprehensive biomechanical analysis to 

gain further insight on the mechanics of the failure process in augmented vertebrae as well as the 

performance of the treatments. To elucidate the mechanical properties of the natural (either healthy, 

or osteoporotic) and augmented vertebrae, an integrated approach is presented, which incorporates 

different experimental measurement methods (strain gauges and digital volume correlation). 

1. To improve and make more reproducible in vitro biomechanical test of natural and treated 

vertebrae the following methods were validated and implemented by the candidate: 

• Develop of a reproducible anatomical reference frame for the human vertebrae, 

suitable for in vitro and numerical applications 

• Provide a comprehensive in vitro investigation on different boundary condition 

experienced by vertebrae, assessing the surface strain distribution between vertebra 

tested in physiological condition (i.e. through its adjacent discs and vertebrae) and the 

same vertebra tested as isolated vertebra body 

2. The methods described above, were applied in the following applications.  A set of main 

objectives were defined and completed to provide the presented investigation:  

• Provide comprehensive in vitro investigation about prophylactic augmentation 

• Develop an in situ testing protocol for use with natural and augmented vertebrae 

• Provide for the first time experimental data on augmented vertebrae using DVC 

analysis  

• Provide comprehensive investigation of the internal strain distribution, both in the 

elastic regime and up to failure in the natural and augmented vertebrae 

• Evaluate biomechanical efficacy of prophylactic augmentation, using two different 

commercial biomaterials, in preventing fracture of non-fractured vertebral body. 



! LFF!

General Conclusion 

Strong clinical interest is given to spinal fractures due to the high rate of morbidity and the 

increasing healthcare costs. Bone metastases, osteoporosis and trauma are the most common 

sources of vertebral fractures, which can lead to severe consequences and mortality.  Spinal 

fractures are indeed one of the most serious problem in industrialized countries. More effective 

treatments are needed in order to improve patient’s quality of life. The most promising approach to 

reduce the consequences of osteoporosis, is to diagnose the bone loss early and begin treatment 

strategies before fractures occur.  In the last years prophylactic augmentation has been proposed as 

an alternative to pharmacological treatments in order to reduce the fracture risk of osteoporotic 

vertebrae or to prevent adjacent fractures after augmentation.  This treatment is meant to increase 

the strength and the structural support of weak vertebrae, by injection of an augmentation material 

into the vertebral body.  The associated risks (cement leakage and subsequent neural damage; tissue 

necrosis due to residual monomer and to the exothermal reaction; increased risk of fracture in the 

adjacent vertebrae) have raised questions about the efficacy and safety of the vertebroplasty in 

general. !Furthermore, it is still debated whether prophylactic augmentation actually strengthens the 

treated vertebra. Therefore, there is a need for a clearer understanding on the cost-benefit trade-off.  

In the light of this debate, in-depth knowledge of the mechanical behaviour and failure of 

prophylactic-augmented vertebra is of fundamental importance to understand vertebral 

biomechanics and improve diagnosis and prophylactic treatments. 

To overcome some limitations of the current in vitro methods, the first part of the presented 

thesis (chapter 2 and 3) was focused on improving and making more reproducible in vitro 

biomechanical test on natural and augmented vertebrae. From a biomechanical point of view, the 

spine is probably the most complex structure of the human musculoskeletal system and its 

investigation is an ongoing challenge. In the literature there are several studies on the mechanical 

behavior of the vertebrae, but results are fragmentary and incomplete with respect to some 

problems. While in vitro mechanical testing of the human vertebrae is regularly performed no clear 

definition has been proposed for an anatomical reference frame for in vitro purposes. This makes 

comparisons between various studies difficult, if not impossible. Moreover, none has demonstrated 

which boundary conditions better replicate the in vivo conditions.  

The definition and adoption of an in vitro human vertebrae reference frame is found to be of 

extreme importance and usefulness, to perform experimental tests on the natural and augmented 
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vertebrae.  Application of this anatomical reference frame to align specimens during tests provided 

more reproducible specimen alignment, making in vitro biomechanical tests more accurate.  The 

use of this reference frame can also be useful in silico for the development of accurate numerical 

models, and for numerical-experimental comparison. Moreover, an anatomical reference frame for 

in vitro experiment was never formally defined and validated for the human vertebrae. 

Different in vitro methods to characterize the mechanical behaviour of the vertebral body are 

present in the literature: the strength of natural and treated vertebrae can be assessed both on 

isolated vertebral bodies, and on sets of three-adjacent-vertebrae (where the central one, under 

investigation, is loaded through the adjacent intervertebral discs). In this thesis an investigation was 

developed to examine the effect of different experimental boundary conditions (with and without 

discs) in the human vertebra and to elucidate if testing a single-vertebra specimen (which provides a 

number of practical advantages) is an acceptable alternative to a three-adjacent-vertebrae-segment 

(which can be assumed closer to physiological), when measuring the principal strains (magnitude 

and direction) on the surface of the vertebral body, in the elastic regime.  The investigation showed 

that the magnitude of the principal strains on the vertebral surface is significantly different between 

boundary condition (three-adjacent-vertebrae and single vertebra).  Even if testing the single-

vertebra is advantageous from several points of view, the strain distribution for this boundary 

condition presents some difference from the case where the vertebra is loaded through its adjacent 

discs, especially when axial compression is investigated. This lead to conclude that simplified 

boundary condition may limit the physiological relevance of results, therefore, when single 

vertebrae were tested, results on the bone surface should be taken with caution. 

The methods described above, were applied in the following application (chapter 4, 5 and 

appendixes) to make investigation on the mechanical properties of natural and augmented vertebrae 

more accurate. 

In vitro testing of the vertebral body has been extensively carried out in the past, but only in 

few cases the strain distribution has been measured. The strain in the vertebral body was 

investigated using different experimental techniques but mainly with strain gauges and digital 

image correlation. The strain gauges have been heavily used in biomechanics, and they are still 

considered the gold standard in bone strain measurements because their accuracy and high 

frequency response, however this measurement technique not provide any insight about the 

stress/strain distribution within the trabecular structure. As the internal trabecular bone of the 
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vertebral body plays a fundamental structural role, it would be extremely important to measure the 

internal strain distribution. An alternative tool for investigating internal strains is DVC.  For this 

reason in this thesis, the mechanical properties of natural and treated vertebrae and the effect of 

prophylactic augmentation on the strength and toughness of the vertebrae were investigated both in 

terms of force-displacement plots, surface strain distribution (from standard testing with strain 

gauges), and internal strains and failure mechanism (from DVC).  Application of DVC to whole 

porcine natural and augmented vertebrae has been able to capture and quantify internal 

microdamage initiation/evolution and the internal full-field strain distribution of the different 

components under loading. Findings showed that prophylactic augmentation increased the force 

required to induce damage only in some of the vertebrae and other specimens failed under a force 

that was lower than the one produced in the controls. This variability of the 

weakening/strengthening effect of prophylactic augmentation seems to support that the effect of 

augmentation depends on the quality of augmentation itself (amount, localization and distribution of 

the injected material). The positive/detrimental effect depends on a combination of factors 

describing the quality of augmentation. Results suggest that a proper strengthening is achieved 

when the cement is placed in the anterior region, and forms a unique mass bridging the endplates. 

Factors that deserve consideration to obtain a significant improvement of the strength and toughness 

of prophylactic-augmented vertebrae are: fill of the vertebral body (at least 25%), formation of a 

single cement mass (uni-pedicular access seems to be an advantage), endplate-to-endplate contact 

and cement mass placed in the anterior region.  It is therefore reasonable to assume that to improve 

the outcomes of prophylactic augmentation, more attention should be dedicated to the quality of 

augmentation itself. Conversely, augmentation was not associated to an evident modification of the 

strain magnitude when compared to the control vertebrae, but rather to a different localization of 

highly strained regions due to the variable cement distribution. Such elevated strain concentration 

within the cement did not produce visible damage to the cement region itself, but affected the 

strength of the surrounded trabecular bone, resulting in an increased fracture risk at the cement-

bone interdigitated region and of the surrounding trabecular bone regions just above or below the 

cement mass. The most critical region was the bone-cement interdigitated area where the onset of 

the fracture was recognizable. Starting from the bone-cement interdigitated area the microdamage 

gradually spread under load across the trabecular bone, which provided a lower stiffness than the 

cement injected. In the most of cases, the microdamage in the trabecular bone is mainly 

characterized by bending and buckling of the trabeculae in the transverse plane.  There are some 
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limitations of this present study on DVC that must be considered.  First of all, porcine specimens 

were used, which have a different anatomy and tissue properties than human ones. For this reason, 

the current results cannot be assumed in absolute terms as both the failure force and the strain 

magnitude might be different from the human ones.!However, comparisons between the natural and 

augmented specimen were possible.  All these limitations are compensated by the fact that, to the 

author’s knowledge, this is the first time that the internal strain distribution (in the elastic regime) 

and the internal mechanism of failure are investigated in prophylactically-augmented vertebrae. 

The present thesis underlined the importance to use an integrated approach, which combined 

different measurement methods (strain gauges and digital volume correlation) for the 

comprehensive investigation of the mechanical characterization of the human natural and treated 

thoraco-lumbar failure. It appears evident that no method is clearly superior to the others. Despite 

being old, strain gauges are still the gold standard when it comes to strain accuracy and 

measurement repeatability. They are recommended for accurate, discrete measurements in specific 

locations that can be a priori determined. Digital volume correlation can augment the knowledge in 

terms of internal strain distribution in bone in response to different loading conditions and when 

approaching yield. However, DVC is sensitive to noise in the obtained strain data. Such noise 

effects need to be controlled and measured in order to get a proper strain resolution. Moreover, the 

long acquisition time currently limits the usability to experiments where the real time strain 

response is not crucial. 

Nonetheless, some tools could be developed further to better understand clinical needs 

and/or transferred to other projects. First at all, the DVC analysis conducted in this work were 

performed on porcine vertebrae, future work is necessary to implement and validate experimental 

protocol to human vertebrae. An additional next step is to test a spine segment in order to obtain 

strain distribution maps closest to physiological condition.  Moreover the DVC results obtained 

could be combined with finite element analysis (FEA), to produce a more reliable predictive tools. 
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Abstract 

Background context - The stress/strain distribution in the human vertebrae has seldom been 

measured, and only for a limited number of loading scenarios, at few locations on the bone surface. 

Purpose – This in vitro study aimed at measuring how strain varies on the surface of the lumbar 

vertebral body, and how such strain pattern depends on the loading conditions. 

Methods - Eight cadaveric specimens were instrumented with 8 triaxial strain gauges to measure 

the magnitude and direction of principal strains in the vertebral body.  Each vertebra was tested in a 

three-adjacent-vertebrae-segment fashion.  The loading configurations included a compressive force 

aligned with the vertebral body, but also tilted (15°) in each direction in the frontal and sagittal 

planes, a traction force, and torsion (both directions).  Each loading configuration was tested 6 

times on each specimen. 

Results - The strain magnitude varied significantly between strain measurement locations.  The 

strain distribution varied significantly when different loading conditions were applied (compression 

vs. torsion vs. traction).  The strain distribution when the compressive force was tilted by 15° was 

also significantly different from the axial compression.  Strains were minimal when the 

compressive force was applied coaxial with the vertebral body, compared to all other loading 

configurations.  Also, strain was significantly more uniform for the axial compression, compared to 

all other loading configurations.  Principal strains were aligned within 19° to the axis of the 

vertebral body for axial-compression and axial-traction.  Conversely, when the applied force was 

tilted by 15°, the direction of principal strain varied by a much larger angle 15°-28°). 

Conclusions - This is the first time that the strain distribution in the vertebral body is measured for 

such a variety of loading configurations, and a large number of strain sensors.  The present findings 

suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas 

even a small tilt angle makes the vertebral structure work under sub-optimal conditions. 

Keywords:  Lumbar spine; strain distribution; principal strain and direction of principal strain; 

vertebral body; in vitro mechanical testing; structural optimization; axial compression; axial 

traction; anterior bending; torsion. 
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Notation 

AAL strain gauge on the most anterior left side of the vertebral body 

AL strain gauge on the anterior left side of the vertebral body 

AAR strain gauge on the most anterior right side of the vertebral body 

AR strain gauge on the anterior right side of the vertebral body 

BW body weight 

CV coefficient of variation 

CT computed tomography 

FE Finite Element 

L1 1st lumbar vertebra  

L3 3rd lumbar vertebra  

L5 5th lumbar vertebra  

LL  strain gauge on the lateral left side of the vertebra body 

LR strain gauge on the lateral right side of the vertebra body 

PL strain gauge on the posterior left side of the vertebra body 

PR strain gauge on the posterior right side of the vertebra body 

!1 maximum principal strain (typically tensile) 

!2 minimum principal strain (typically compressive) 

"p angle of the principal planes (counterclockwise) 
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1.  Introduction 

Trauma, osteoporosis and bone metastases are the most common causes of vertebral 

fractures, which can lead to severe consequences and mortality [1-3].  Success of treatments such as 

fixation or augmentation can be jeopardized by limited understanding of spine biomechanics [4-7].  

In-depth knowledge about the stress distribution in the vertebral body is fundamental to improve the 

understanding of spine biomechanics in health and disease, during ageing [8], and to improve 

surgical treatment [9].  Because of the difficulty of accessing in vivo the musculoskeletal loads in 

the spine, in vitro measurements of the load-strain relationship in the vertebral body can provide 

valuable indirect information about spine biomechanics. 

In vitro biomechanical tests on the vertebral body often focus on fracture (e.g. [10-12]).  In 

most such studies the strain distribution was not investigated.  One of the first studies on the strain 

distribution in the vertebral body was carried out by means of brittle coating, photoelasticity [13] 

and 17 strain gauges [14], for different compressive loads.  The effect of an inclined load (16˚) has 

been investigated on functional spinal units using 3 to 4 strain gauges [15].  The contribution of the 

neural arch to load transfer was investigated by [16] with 11 triaxial strain gauges (8 on the 

vertebral body), with a compressive load.  Strains induced by compression and shear loads were 

quantified with three triaxial strain gauges on the vertebral rim, and one on the endplate surface 

[17].  Fracture risk was assessed by [18], but the most stressed region could not be identified as 

only one gauge was applied on each vertebral body.  Later, 3 triaxial strain gauges were used to 

assess the changes due to cement augmentation [19].  When uniaxial gauges are used (e.g. [20]) it is 

possible to determine neither the value of principal strains, nor their direction. 

Axial compressive loading is probably the most frequent in vitro loading condition (e.g. [11, 

21-25]).  In some cases also eccentric compression [26-28] or anterior bending [10, 29] were 

simulated. 

Finite element (FE) models can provide valuable insight in the stress/strain distribution [30-

32].  Validation of FE models is mandatory to prove their accuracy and closeness to reality [33-35].  

A combined numerical-experimental study was presented by [36], where 4 strain gauges were used 

to validate the FE predictions.  A combination of experiments and FE modelling was used to 

estimate the elastic modulus of the cortical shell, based on the measured stiffness of the vertebral 

body [37]. 



! LGD!

The summary above highlights that the strain distribution in the vertebral body has been 

measured (i) with a limited number of strain gauges, (ii) for a limited set of loading configurations. 

Aim of the present study was to explore the effect of different types of loading on the strain 

distribution in the vertebral body of the lumbar vertebrae.   

2.  Materials and Methods 

Non-destructive tests were performed on vertebral bodies of L1, L3, and L5 vertebrae.  The 

strain distribution on the bone surface strain distribution was investigated by means of triaxial strain 

gauges.  Different loading configurations were performed in order to obtain a comprehensive 

characterization of the strain distribution. 

 

2.1 Bone Specimens 

Six thoraco-lumbar spines were obtained through an ethically-approved donation program 

from donors who did not suffer from musculoskeletal pathologies.  Specimens were computed 

tomography (CT) scanned (BrightSpeed, General Electric, USA) to document bone quality and lack 

of abnormality or defects.  Tests were performed on three-adjacent-vertebrae segments (8 

specimens in total, Table 1), allowing physiological loading of the vertebral body through its 

adjacent intervertebral discs.   

All the surrounding soft tissues were removed, including the ligaments.  For each specimen 

the adjacent vertebrae were potted in acrylic cement (Restray, Salmoiraghi, Mulazzano, Italy) (Fig. 

1).  A 3-degrees-of-freedom clamp was used to hold the central vertebra in order to align its upper 

and lower vertebral rims parallel to the ground, fitting two parallel references.  The spinous process 

was used to centre the specimen in the right/left direction, and align it about its vertical axis.  In 

order to isolate the mechanical behaviour of the vertebral body from the surrounding structures, 

after potting the posterior arch was resected through the pedicles and removed.   
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Table 1: Details of the specimen investigated.  In the first five columns, the details of the donors are 

listed.  In the following three columns, the biomechanical dimensions are reported.  The vertebral 

body height was measured between the centre of the upper endplate and the centre of the lower 

endplate.  The antero-posterior length was measured between the most anterior and the most 

posterior point at mid-height of the vertebral body.  The vertebral body width was measured 

between the most lateral points at mid-height of the vertebral body.  In the last four columns the 

values of the applied loads are reported: the force (configurations: Axial-Compression, Axial-

Traction, Anterior_15-Compression, Posterior_15-Compression, Left_15-Compression, Right_15-

Compression), and the torque (Axial-Compression and Torsion-Clockwise).  The average and 

standard deviation are summarized in the last two rows for the entire sample. 
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During the tests, the specimens were kept hydrated with physiological saline solution.  

Specimens were stored sealed in bags at -24°C when not in use. 
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Fig.1:Experimental setup for loading the three-adjacent-vertebrae specimens: (A) the specimen is 

loaded with a force aligned with the vertebral body (loading configuration “Axial-Compression”); 

(B) delivery of a force oblique (15°) towards anterior (configuration “Anterior_15-Compression”) 

was achieved by tilting the specimen towards posterior; (C) delivery of a force oblique towards left 

(configuration “Left_15-Compression”, with the specimen tilted towards right); (D) schematic 

showing the 8 loading configurations tested on each specimen.  The vertebra under examination 

(v), instrumented with strain gauges, was loaded through its adjacent disks (ad) and vertebrae (av), 

which were embedded with acrylic cement in two aluminium pots (p).  The specimen was mounted 

on top of the six-component load cell (loc, partially hidden by a polyethylene protection).  Specimen 

alignment was obtained by means of wedges (w, either 0°, or 15° suitably oriented).  Load was 

delivered to the specimen by the actuator of the testing machine (a), through a lockable ball-joint 

(b).  Vertical displacement was measured by means of an additional extensometer (e). 

2.2 Strain measurement 

Eight triaxial-stacked strain gauges were equally spaced around each vertebral body, at mid-

height (Fig. 2).  Both 1-mm grid (FRA-1-11-3L, TML Tokyo Sokki Kenkyujo, Tokyo, Japan) and 

3-mm grid strain gauges (UFRA-3-350-11-3L, TML) were used, depending on the space available.  

Strain gauges were bonded following an established procedure for wet cadaveric specimens [38], 

which included: 
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• Accurate removal of soft tissues with a scalp and sandpaper (grade 400);  

• Degreasing first with ethanol, then with a cocktail of acetone and 2-propanol; 

• Bonding the strain gauges with cyanoacrylate glue (CN-Adhesive, TML);  

• Waterproofing the strain gauges with polyurethane protection (M-COAT A, Vishay-

MicroMeasurements, Raleigh, NC, USA).   

 

Fig. 2 – Schematic of a vertebra with an indication of the position of the eight triaxial strain gauges 

around the vertebral body.  One grid was aligned parallel to the vertical axis.  The actual position 

was sometimes adjusted by up to 4 mm, when small defects (pores, ridges, or grooves) made the 

bone surface locally unsuitable for bonding a strain gauge. 

To avoid overheating, a grid excitation of 1 V was selected for the 1-mm gauges, whereas 

the 3-mm gauges were excited at 2 V.  Strains were sampled at 5000 Hz using a multi channel data-

logger (System 6000, Vishay-MicroMeasurements), together with the signals from the testing 

machine and all other transducers (see below).  The principal strains e1 and e2 and the angle qp of 

the principal planes were computed on the basis of the readout from the three grids of each strain 

gauge [39].   
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2.3 Analysis of the reinforcement caused by strain gauges 

Strain gauges are known to cause reinforcement, especially on low-modulus materials and 

thin structures [40, 41].  This leads to an underestimation of the actual strain.  As the cortical bone 

around the vertebral body is extremely thin, it was suspected that reinforcement would significantly 

bias strain measurements.  The reinforcement caused by the strain gauge was estimated, assuming 

parallel loading between the bone thin shell and the strain gauge [40-42].  The thickness of the 

strain gauges used in this study was 0.085 mm, with an average Young modulus (estimated on the 

sandwich structure of the triaxial stacked strain gauges) of 6.4 GPa [43].  A typical Young’s 

modulus of 15.0-18.0 GPa was assigned to the cortical bone based on the literature [44].  The 

thickness of the cortical shell was measured using a digital calliper (CD-15CP-500, Mitutoyo, 

Tokyo, Japan: precision 0.05mm).  Only the contribution of the cortical shell was included in this 

estimate.  As the contribution of the trabecular bone to structural stiffness was neglected, this 

analysis provides an overestimate of the reinforcing effect. 

2.4 In vitro loading configurations 

In order to explore the effect of a wide range of loading conditions on the strain distribution 

in the vertebral body, a set of simplified loading configuration was explored.  Rather than 

replicating specific motor tasks, a selection of loading configurations was chosen that covered the 

physiological range of loading.  To achieve better control on the testing conditions, load 

components were applied separately.  Muscle forces were not simulated.  The following eight 

loading configurations were tested (Fig. 1): 

• To replicate a loading configuration frequently used in the literature (e.g. [16]), a 

compressive axial force was applied to the vertebral body (Axial-Compression).   

• To understand if traction induces a symmetric strain distribution with respect to 

compression, a tensile axial force was similarly applied (Axial-Traction). 

• To identify the range of direction of the force delivered to the vertebral body, a database 

available from telemeterized vertebral body replacements was interrogated [45, 46].  The 

force applied to the vertebral body during a variety of physiological activities (level 

walking, stair climbing, rising from a chair, elevation of both arms, traction of an elastic 

band, trunk flexion/extension and lateral bending while standing, trunk extension while 
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sitting, pelvis elevation from supine position) was found to fall within a cone of 15° around 

the vertical axis.  Therefore, four extreme loading configurations were tested where the 

force was tilted by 15° in either direction in the frontal and sagittal planes (load 

configurations: Anterior_15-Compression, Posterior_15-Compression, Left_15-

Compression, Right_15-Compression).  This was achieved applying a vertical force to the 

vertebra which was tilted by 15° in each direction (Fig. 1). 

• To test the strain distribution with torsional loading, a torque about the vertebral axis was 

applied in both opposite directions (Torsion-Clockwise and Torsion-Counterclockwise, with 

respect to the upper endplate).  These loading configurations were not available for 

specimen L3b.   

Tests were performed in over-constrained conditions: all components of rotation and 

translation were constrained at both the distal and proximal extremities.  To monitor all components 

of loading during testing, a six-component load cell (FDC-011, Metior, Dongo, Italy) was used.  

The three-adjacent-vertebrae specimens were mounted on top of the six-components load cell, 

which was coaxial with the load cell of the testing machine (858-MiniBionix, MTS, Minneapolis, 

MN, USA).  Wedges were used to tilt the specimens by the assigned angles (0° for axial and torsion 

loading, 15° for the oblique loading, Fig. 1).  A lockable ball-joint was placed between the actuator 

and the upper loading plate to ensure parallelism.  During testing the ball-joint was locked, avoiding 

any further rotation, similar to [37, 47].  To provide a more accurate measurement, vertical 

displacement was measured by means of an additional extensometer (632.06H-20, MTS, 

Minneapolis, USA) (Fig. 1).   

Specimens underwent a trapezoidal load ramp, for each loading configuration: 

• For the Axial-Compression configuration the maximum force was tuned to induce 600 

microstrain of strain (average over all strain gauges).  Strain on the most stressed strain 

gauges did not exceed 1000 microstrain, which is considered as a physiological strain value 

[48], and it is approximately 10% of the failure strain for the cortical bone [49].   

• For the compressive oblique (15°) and Axial-Traction configurations, the same force as for 

the Axial-Compression was applied.   

• For Torsion-Clockwise and Torsion-Counterclockwise configurations, a torque inducing 

600 microstrain of strain (average over all strain gauges). 
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• The load ramp was tuned so that the peak was reached in 0.2 seconds, which is comparable 

to the loading rate for many motor tasks [45, 46].  Thus, the strain rate was approximately 

0.005 s-1 in the most stressed regions. 

• The maximum displacement was held for 2 seconds to allow a constant time for a repeatable 

amount of creep to take place. 

• To overcome variations due to viscoelasticity, strain readout was consistently averaged over 

the first 0.1 seconds of full-load application (500 points). 

Each loading configuration was repeated six times for each specimen.  The specimens were 

allowed to recover for 4 minutes between repetitions.  This loading protocol is similar to previous 

works on bone specimens [50, 51]. 

2.5 Statistics 

Linearity between force and strain was checked by linear regression separately for each 

strain gauge and each specimen. 

To obtain a single output for each strain gauge and each specimen, the average over six load 

repetitions was calculated for the principal strains (!1, !2), and for the angle of the principal planes 

("p).  To estimate the measurement repeatability (intra-specimen variability) the standard deviation 

of the principal strains (!1, !2), and of the angle ("p) were computed between repetitions, for each 

strain gauge and each specimen.  The coefficient of variation (CV: standard deviation expressed as 

a percentage of the average) was computed for the principal strain (!1, !2), for each measurement 

location.  To avoid fictitiously increasing the CV with close-to-zero data, measurement locations 

where strains was lower than 100 microstrain were excluded. 

Peirce’s criterion was applied to exclude outliers [52].  First, for each specimen, each 

loading configuration and each strain gauge, suspect data were checked among repetitions: 7.1% of 

the data had to be excluded (mainly in association with strain gauges that had to be applied away 

from the standard position).  Secondly, the entire sample was checked: none of the specimens had 

to be excluded. 
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To assess the significance of differences between strain values, non-parametric tests were 

performed (Kruskal-Wallis one-way analysis of variance) because of the limited sample size: (i) 

The significance of the difference between strain measurement locations was assessed separately 

for each loading configuration; (ii) The significance of the effect of the loading configurations on 

the value and direction of principal strain was assessed separately for each strain measurement 

location.   

The difference between strain measurement locations depended on the loading 

configurations.  To assess the significance of such load-related variation, we compared the 

variances (between measurement locations) computed for the different loading configurations (F-

test for equality of variance).   

To visualize the effect of opposite directions of loading (e.g. Axial-Compression vs. Axial-

Traction, and Torsion-Clockwise vs. Torsion-Counterclockwise) on the strain distribution, the 

correlation between the strains measured with opposite directions of applied load was investigated 

by means of linear regression. 

All statistical analyses were performed using dedicated software (IBM SPSS Statistics, 

v.14.0, SPSS Inc. Chicago, Illinois). 

3.  Results 

3.1 Reinforcement caused by the strain gauges 

The cortical shell in some cases was as thin as 0.25 mm (range: 0.25-1.20mm).  A similar 

thickness (0.44±0.24 mm) has been reported for L1 [53].  The reinforcement associated with strain 

gauges was estimated to cause an underestimate of the actual strain by 3% to 9%, and varied from 

region to region and among specimens because of the uneven thickness of the cortical shell.   

 

 



! LHM!

3.2 Intra-specimen and inter-specimen repeatability 

Test repeatability (intra-specimen variability) was good:  

• The Coefficient of Variation (CV) among replicates under the same conditions was on 

average 0.7% for the principal strains (!1, !2).   

• The principal direction ("p) varied on average by 0.3° (standard deviation) among replicates 

for the same loading configuration. 

Inter-specimen variability was obviously larger:  

• To achieve the intended strain level (average 600 microstrain) the loading protocol involved 

different load values for each specimen (Table 1).  Such differences were large both in 

absolute terms, and when normalized by the donors’ body weight (BW).  This might be 

explained by the fact that only the post-mortem BW was known: if the donors’ BW changed 

significantly in the last months of their lives, it is possible that their vertebrae were 

“designed” for a different BW than that in Table 1.   

• The principal direction ("p) varied by 12° to 43° between specimens, for the same loading 

configuration. 

3.3 Linearity and viscoelasticity 

Linearity between load and displacement was very high in all cases (R2%0.98).  Also load-

strain and displacement-strain linearity was excellent (R2%0.98) for each grid and each loading 

configuration, for all the cases where strains exceeded 100 microstrains.  This confirms that the 

bone can be assumed to behave linearly with good approximation for the strain range and strain rate 

used in this study. 

Strain readout was monitored during the holding phase of mechanical loading.  The strain 

magnitude in the bone surface tended to decrease over 2 seconds by typically 1.5%#13% of the 

initial value (only in specimen L5d this decrease reached 22% of the initial value), because of 

relaxation in the adjacent discs.  After unloading, bone strains returned rapidly to zero, with residual 

strain of 4% of the peak value 4 minutes after unloading. 
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3.4 Strain pattern 

Tensile principal strains (!1) were similar to compressive ones (!2) in absolute value at all 

measurement locations.  Only in Axial-Compression, compressive strain was slightly larger in 

absolute value than tensile strain, while in the Anterior_15-Compression configuration tensile strain 

predominated.   

The vertebral body exhibited a rather uniform distribution strain distribution (Fig. 3-4).  

Limited but statistically significant differences existed among strain measurement locations on both 

principal strains components, for some loading configurations (Table 2). 

Table 2:  Significance of the difference between strain measurement locations for the maximum and 

minimum principal strain components (e1, e2), and for the direction of the principal planes (qp), for 

the 8 loading configurations.  Significance is expressed in terms of p-value for the Kruskal-Wallis 

one-way analysis of variance. 
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The variation of principal strain direction ("p) between measurement locations was limited 

(Fig. 5).  However, because of the high measurement repeatability, such a variation was significant 

for most loading configurations (Table 2). 
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Fig. 3 – Maximum and minimum principal strains ("1, "2) on the surface of the vertebral body for 

the five compressive loading configurations: Axial-Compression (AXIAL), Anterior_15-

Compression (ANT), Posterior_15-Compression (POST), Left_15-Compression (LEFT) and 

Right_15-Compression (RIGHT).  To enable comparison between the different loading 

configurations, for each strain gauge, each strain component ("1 and "2) was normalized with 

respect to the average between the five loading configurations.  The average and standard 

deviation of the six specimens is plotted. 
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Fig. 4 – Maximum and minimum principal strains ("1, "2) on the surface of the vertebral body for 

Axial-Traction (top) and Torsion-Clockwise (bottom) loading configurations.  Because of the large 
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inter-specimen variability, for each specimen, each strain component ("1 and "2) was normalized 

with respect to the average between measurement locations.  The strain distribution for Torsion-

Counterclockwise (not reported here for brevity) was similar to Torsion-Clockwise (see also Fig. 

8).  The average and standard deviation of the six specimens is plotted. 

 

 

Fig. 5 – Direction of principal strains on the surface of the vertebral body for the eight loading 

configurations.  The angle #p of the maximum tensile principal strain "1 was measured with respect 

to the vertebral axis.  The average of the six specimens is plotted. 
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3.5 Effect of the loading configurations 

When the compressive force was applied in different directions, limited but statistically 

significant differences existed for both principal strains (!1, !2: Fig. 3, Table 3).  In general, the peak 

strain was lower when the force was aligned with the vertebral body (Axial-Compression), and 

larger when the force was tilted by 15° in any direction.  The pattern for Axial-Traction, and for 

Torsion-Clockwise and Torsion-Counterclockwise differed from the compressive configurations 

(Fig. 4).   

For the Axial-Compression configuration a rather uniform strain distribution was observed: 

the tensile principal strain (!1, in the circumferential direction) varied by 5.1% (standard deviation 

between measurement locations), while the compressive principal strain (!2, in the axial direction) 

varied by 2% (Fig. 6).  Significantly larger variations between measurement locations were 

observed when the compressive force was tilted (15°), and in torsion.  The variations between 

measurement locations were similar for all oblique loading configurations (Fig. 6). 

Table 3:  Significance of the difference between the five compressive loading configurations (Axial-

Compression, Anterior_15-Compression, Posterior_15-Compression, Left_15-Compression, 

Right_15-Compression) in the eight strain measurement locations. Significance is expressed in 

terms of p-value for the Kruskal-Wallis one-way analysis of variance for the maximum and 

minimum principal strain components (!1, !2), and for the direction of the principal planes (#p). 
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The location of the largest strain changed in relation to the direction of the applied load (Fig. 

3-4).  The Anterior_15-Compression configuration generally caused larger strains than any other 

loading configuration.  Both the tensile and compressive principal strains in the anterior region 

(gauges AAR, AAL) exhibited a greater magnitude in the lateral configurations (Left_15-

Compression, Right_15-Compression).   

The principal direction ("p) varied greatly in relation to the direction of the applied force 

(Fig. 5).  The principal tensile strain (!1) was nearly perpendicular to the vertebral body axis for the 

Axial-Compression, and roughly aligned with the vertebral body for Axial-Traction.  The principal 

direction ("p) for Axial-Compression differed by 15°-28° from all other configurations tilted by 15° 

(Fig. 5).  Principal strains were nearly at 45° to the vertebral body axis when torsion was applied.  

Such variations were statistically significant in all regions (Table 3).   

When the two opposite directions of axial force were compared, the correlation was quite 

low, and the slope was quite different from 1.0: Axial-Traction generated larger strain (and with 

larger inter-specimen variations) than Axial-Compression, in absolute value (Fig. 7).  Conversely, 

the two opposite direction of torsion (Clockwise and Counterclockwise) generated quite similar 

strain distribution (Fig. 8). 
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Fig. 6 – Strain inhomogeneity for the different loading configurations, computed as standard 

deviation between strain measurement locations, for the maximum ("1) and minimum ("2) principal 
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strain.  The significance of the differences between loading configurations is indicated (F-test for 

equality of variance). 

 

 

Fig. 7 – Correlation between strains when the vertebra was subjected to Axial-Compression and 

Axial-Traction loading configurations (same absolute value of the applied force, with opposite 

direction).  All specimens and all strain measurement locations are pooled.  A slope equal to -1.00 

would indicate that strains in compression and traction had opposite sign and were equal in 

absolute value.  The slope reported (larger than 1.00 in absolute value) indicates that strains in 

traction were larger (in absolute value) than in compression (i.e. the bone is more compliant in 

traction than compression).  The low R2 value reported indicates a poor correlation between 

traction and compression. 
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Fig. 8 – Correlation between strains when the vertebra was subjected to Torsion-Clockwise and 

Torsion-Counterclockwise loading configurations (same absolute value of the applied torque, with 

opposite direction).  All specimens and all strain measurement locations are pooled.  A slope equal 

to -1.00 would indicate that strains for Torsion-Clockwise and Torsion-Counterclockwise had 

opposite sign and were equal in absolute value.  The slope reported (lower than 1.00 in absolute 

value) indicates that strains in Torsion-Counterclockwise were slightly lower (in absolute value) 

than in Torsion-Clockwise.  The R2 value reported indicates a good correlation between opposite 

directions of torsion. 

4.  Discussion 

This study aimed at assessing the effect of different loading configurations on the strain 

distribution in the lumbar vertebral body. 

The strain distribution was measured in the vertebral body of eight lumbar vertebrae, under a 

variety of loading configurations that included the cone spanned by the resultant force during 

physiological motor tasks, but also other load components such as torsion and traction.  The 

maximum principal strain (!1) was generally aligned as expected: circumferentially for all loading 

configurations implying a compressive force, axially for a tensile force, and roughly at 45° for 
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torsion (Fig. 6).  The strain pattern was significantly affected by the loading configuration.  In fact, 

when the same compressive force was applied, significantly lower strain were observed for the 

Axial-Compression configuration compared to all other configurations tilted by 15° (Fig. 3).  A 

remarkably uniform strain distribution was generally observed for the Axial-Compression 

configuration.  Conversely, significantly larger differences between measurement locations existed 

for all the other configurations (Fig. 5). 

The strain distribution was quite different when the same force was applied in compression 

(Axial-Compression) as opposed to tension (Axial-Traction) (Fig. 7).  Part of such a difference 

could be explained by the different response of the intervertebral disc in compression 

(physiologically generating a rather uniform pressure over the entire endplate) and traction (the 

nucleus pulposus has limited response in traction and most of the tensile force is transferred by the 

annulus fibrosus).  In fact, for Axial-Compression the three-adjacent-vertebra specimens were 69% 

to 186% stiffer than for Axial-Traction.  Conversely, quite similar strains were observed for the two 

opposite directions of torsion (Fig. 8).  The torsional stiffness of the three-adjacent-vertebra 

specimens differed by 3% to 33% for opposite directions of torsion. 

The loads applied in the present study were designed to generate a strain range (average: 600 

microstrain) compatible with the physiological range in the literature, which ranges from 300 (for 

light activity) to 2500 microstrain (most severe tasks) [54-56].  In fact, the physiological strain (to 

prevent bone remodelling and resorption) is assumed to be in the range of 1000 microstrain [48].  

For the compressive loading configuration, a force of 0.4-3.2BW was required (Table 1).  This is 

compatible with the forces measured in vivo for physiological motor tasks (0.2-1.2BW [45, 46]). 

Comparison is possible with a few studies where strain has been measured in the vertebral 

body.  Strains of the order of 500-1500 microstrains were found for a 1470N compressive force 

[14].  Strains of 200-700 microstrains were reported for a 490 compressive force [16], and 100-300 

microstrains for a 500 N compressive force [17].  A compressive strain of 650 microstrains was 

measured on the anterior surface of the vertebra when a force (2800 N) was applied tilted anteriorly 

at 16˚ [15].  Such strain ranges are compatible with those reported here, if scaled by the applied 

load. 

There are some limitations of this study that must be considered.  First of all, the strain 

measurement was affected by systematic error: the actual strain was underestimated by 3-9% 
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because of the reinforcement effect of the strain gauges.  While the absolute strain values are 

affected by such an error, such an artefact is eliminated when different loading configurations are 

compared for the same strain measurement location. 

A second limitation relates to the limited sample size (eight specimens), caused by the large 

effort required to instrument and test the specimens.  It must be noted that the amount of strain data 

(8 triaxial strain gauges on each specimen, for a total of 192 strain sensors), and the variety of 

physiological and non-physiological loading (8 scenarios in total) in this study is unequalled in the 

literature. 

The loading configurations were based on measurements from telemeterized vertebral body 

replacements [45, 46].  It is possible that such patients did not load their spines in the most 

physiological way.  However, this is the only source of directly measured in vivo loads in the 

literature.   

In our experiment, the posterior arch was removed to ensure a better control of the loading 

conditions applied to the vertebral body, similar to [22, 29, 57].  In fact, this way the vertebral body 

was loaded uniquely through its adjacent discs, while it would have been extremely difficult to 

measure the additional load components applied through the facets.  This operation modifies the 

spinal kinematics [58].  However, an in vitro study on 21 strain-gauged specimens has shown that 

removal of the posterior arch has a limited effect on the strain distribution in the anterior and central 

region of the vertebral body (while differences were larger near the insertion of the posterior 

processes) [16].  A similar trend was demonstrated with an FE model of the lumbar vertebrae [59]. 

Finally, similarly to most studies based on cadaver specimens, there was some uncertainty 

about the actual BW of the donors, which was measured only post-mortem.  For this reason, it is 

difficult to relate the in vitro loads to the actual BW of the donors. 

The results from the present study seem to indicate that the structure of the vertebral body is 

optimized for a compressive force aligned with the vertebral body.  In fact: 

• The strain distribution was significantly more uniform for Axial-Compression than for any 

other configuration (uniform stress/strain is an optimization criterion in structural 

engineering). 
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• Strain was lower when the compressive force was perpendicular to the vertebral body, as 

opposed to all the oblique configurations. 

• When the force was tilted by 15° in any plane, the direction of principal strains varied by a 

wider angle (15°-28°) compared to the Axial-Compression configuration.  As bone 

(especially trabecular bone) is known to be significantly weaker when loaded oblique to its 

structure [60], this seems to suggest that the structure of the vertebra is optimized (in terms 

of local tissue arrangement, and anisotropy) for a specific loading direction. 

Such an observation is in agreement with the fact that the resultant force delivered in vitro to 

the vertebral body spans a narrow angle [45, 46].  This supports the hypothesis that the vertebral 

body is loaded between two ball-joint-like structures (the intervertebral disks).  Such a hypothesis 

underlies many numerical models of the spine [61, 62]. Most disk replacements are designed 

consistently with such a ball-joint-like assumption [63]. 

To the authors’ knowledge, this is the first time that the strain distribution was measured in 

the vertebral body for a variety of loading configurations.  The information provided in this study 

(strain gradients, and dependence from loading scenario) can help improve the understanding of 

spine biomechanics, and can also serve to improve validation of numerical models of the spine. 
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Abstract L!

The biomechanical effectiveness of prophylactic augmentation in preventing fracture was D!

investigated.  In vitro biomechanical tests were performed to assess which factors make E!

prophylactic augmentation effective/ineffective in reducing fracture risk.  Non-destructive and F!

destructive in vitro tests were performed on isolated osteoporotic vertebrae.  Five sets of three- G!

adjacent-vertebrae were tested.  The central vertebra of each triplet was tested in the natural H!

condition (control) non-destructively (axial-compression, torsion) and destructively (axial- I!

compression).  The two adjacent vertebrae were first tested non-destructively (axial-compression, J!

torsion) pre-augmentation; prophylactic augmentation (uni- or bi-pedicular access) was then K!

performed delivering 5.04 to 8.44 ml of acrylic cement by means of a customized device; quality of LM!

augmentation was CT-assessed; the augmented vertebrae were re-tested non-destructively (axial- LL!

compression, torsion), and eventually loaded to failure (axial-compression).  Vertebral stiffness was LD!

correlated with the first-failure, but not with ultimate failure.  The force and work to ultimate failure LE!

in prophylactic-augmented vertebrae was consistently larger than in the controls.  However, in some LF!

cases the first-failure force and work in the augmented vertebrae were lower than for the controls.  LG!

To investigate the reasons for such unpredictable results, the correlation with augmentation quality LH!

was analyzed.  Some augmentation parameters seemed more correlated with mechanical outcome LI!

(statistically not-significant due to the limited sample size): uni-pedicular access resulted in a single LJ!

cement mass, which tended to increase the force and work to first- and ultimate failure.  The LK!

specimens with the highest strength and toughness had also: at least 25% cement filling, cement DM!

mass shifted anteriorly, and cement-endplate contact.  These findings seem to confirm that DL!

prophylactic augmentation may aid reducing the risk of fracture.  However, inadequate DD!

augmentation may have detrimental consequences.  This study suggests that to improve the strength DE!

of the augmented vertebrae, more attention should be dedicated to the quality of augmentation in DF!
terms of amount and position of the injected cement.  DG!

Keywords: Prophylactic augmentation; vertebral body; in vitro mechanical testing; strength; work DH!

to failure; strain distribution. DI!

!! ! DJ!
! DK!

! EM!
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LIST OF ACRONYMS AND ABBREVIATIONS 

AAL strain-gauge on the most anterior left side of the vertebral body 

AL strain-gauge on the anterior left side of the vertebral body 

AAR strain-gauge on the most anterior right side of the vertebral body 

AR strain-gauge on the anterior right side of the vertebral body 

BMD bone mineral density  

BW body weight 

CV coefficient of variation 

CT computed tomography 

LL  strain-gauge on the lateral left side of the vertebra body 

LR strain-gauge on the lateral right side of the vertebra body 

PMMA polymethylmethacrylate 

PL strain-gauge on the posterior left side of the vertebra body 

PR strain-gauge on the posterior right side of the vertebra body 

!1 maximum principal strain 

!2 minimum principal strain 

"p angle of the principal planes (counterclockwise) 

!
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1.  Introduction 

Pathological conditions, such as osteoporosis [1] or metastatic infiltration [2], weaken the 

vertebra by compromising its micro- and/or macro-structure.  If untreated, such vertebrae may 

fracture, causing severe pain and morbidity.  Moreover, a high incidence of fracture of the adjacent 

vertebrae is reported for patients who have undergone vertebroplasty/kyphoplasty [3-5].  Therefore, 

there is a need for strategies to promptly reduce the fracture risk, or prevent further fractures from 

occurring.  Prophylactic augmentation has been recently proposed as an option to reduce the 

fracture risk through mechanical reinforcement of the vertebral body by injection of a synthetic 

material.  Thus, the prophylactic augmentation aims at strengthening selected weaker vertebrae [6-

10].  Augmentation has also been associated with retention of the original vertebral body height, 

and preservation of spinal alignment [11].  In addition, prophylactic augmentation is associated with 

a lower risk of para-vertebral cement leakage, compared to augmentation in fractured vertebrae 

(where the cortical shell is compromised) [12].   

While many studies have investigated the biomechanical effects of vertebroplasty on 

fractured single vertebral bodies [13-17] or spine segments [7, 11, 18, 19], very little data exist 

regarding the efficacy of prophylactic augmentation on non-fractured vertebrae.  

In an in vitro study [20], an increase in strength was found in 10 out of 12 in vitro 

augmented lumbar vertebrae, while the remaining samples showed a controversial decrease.  Other 

in vitro studies [16, 21] showed that failure strength in prophylactic augmentation with 

polymethylmethacrylate (PMMA) or calcium phosphate cement was on average greater than that of 

non-augmented vertebrae.  In a different in vitro study [12], prophylactic augmentation increased 

the failure strength (normalized to bone mineral density and dimensions of the vertebral body), and 

restored vertebral stiffness more effectively when compared to post-fracture vertebroplasty.  The 

failure load of prophylactic-augmented vertebrae has been reported to increase [15, 21, 22], to 

remain unchanged [7], or even to decrease [19] in comparison to untreated controls.  Similarly, the 

stiffness has been reported to increase [12, 21-23] or to remain unchanged [15, 19] after 

prophylactic augmentation.  It must be noted that most studies focused on the overall behavior of 

the treated vertebral body, without analyzing the strain distribution. 

A possible explanation to the variability of the reinforcement effect of prophylactic 

augmentation can be sought in the bone quality, and in some details of treatment.  The effects of 
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cement volume and BMD on the mechanics of prophylactic-augmented lumbar vertebrae were 

investigated [15]: a 20% fill resulted in a significant increase in the compressive strength of the 

vertebrae, while the localization of the cement mass did not appear to affect the resultant 

mechanical properties.  In a different study, prophylactic augmentation resulted in a significant 

increase in stiffness and strength in osteoporotic specimens, but not in specimens with normal BMD 

[23].  Greater stiffening and strengthening has been found when the injected cement was in contact 

with both endplates than for the cases where cement reached only one endplate, both in vitro [24] 

and in silico [25-27].  

Despite the potential advantage of augmentation in preventing fracture, prophylactic 

augmentation has several drawbacks, similar to post-fracture vertebroplasty.  Clinical studies have 

shown that excessive cement fill is associated with increased complications such as para-vertebral 

leakage (which in many cases is associated with neural damage), and pulmonary embolism [28-30].  

It has been shown that cement leakage is conditioned by factors such as cement viscosity, and 

placement of the injected cement [26, 31, 32].  Other potential problems of using PMMA include 

necrosis of the surrounding tissues due to the high polymerization temperature and monomer 

toxicity.  Furthermore, when PMMA is used, it remains as a foreign body within the vertebra, with 

no chances of osteointegration [33].  The vertebrae next to the prophylactic-augmented one(s) are 

exposed to a higher risk of fracture, due to the greater stiffness of the treated vertebra [11, 34]. 

Therefore, treatment of a non-fractured vertebra exposes the patient to additional risks.  At 

the same time, it is not quite clear whether prophylactic augmentation provides a biomechanical 

benefit.  For this reason, there is a need for a clearer understanding on of the cost-benefit trade-off. 

The aim of the present study was to investigate the biomechanical efficacy of prophylactic 

augmentation in preventing fracture of intact vertebral bodies.  More specifically, it has been 

hypothesized that the effect of augmentation depends on the quality of augmentation itself.  

Therefore, we aimed at identifying which surgical factors make prophylactic augmentation 

effective/ineffective in reducing the risk of fracture.  For this reason we measured in vitro both the 

structural properties (stiffness, strength, toughness) and the strain distribution of the intact and 

augmented vertebrae. 
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2. Material and methods 

Non-destructive and destructive tests were carried out on non-treated and prophylactic-

augmented isolated vertebral bodies, under axial compression and torsional loading.  Groups of 

three adjacent vertebrae were used to allow comparison between prophylactic-augmented vertebrae 

and controls.  Strain on the bone surface was measured on selected specimens by means of strain-

gauges. 

 

2.1 Bone Specimens 

Four fresh thoraco-lumbar spines were obtained through ethically-approved donation 

programs (IIAM, http://www.iiam.org) from donors who did not suffer from musculoskeletal 

pathologies or cancer.  The specimens were computed-tomography (CT) scanned (multislice 

BrightSpeed, General-Electric Medical System, Waukesha, USA) with a voxel size of 0.20 mm to 

document lack of defects and bone quality (all specimens were osteoporotic).  Tests were performed 

on five series of three adjacent vertebrae, to allow comparison between matching vertebrae (either 

prophylactic-augmented or non-treated control: Figure 1).  

The T11-T12-L1 segment was available for all four donors; in addition, the L4-L5-S1 

segment was available for one donor (Table 1).  The central vertebra of each set served as control 

and was tested non-destructively and destructively in the non-augmented condition.  The two 

adjacent vertebrae were subjected to prophylactic augmentation and tested non-destructively both 

pre- and post-augmentation, while destructive test was carried out in the post-augmentation 

condition.   

 

 

 

 



! ! LJI!

 

!

Fig. 1. Schematic of the use of the vertebrae of each set of three: the central vertebra was used as a 

control (non-augmented, tested non-destructively an destructively), while the two adjacent ones 

were tested in the natural (non-destructively) and prophylactic-augmented condition (non-

destructive and destructive). Within each set of three vertebrae, one of the two prophylactic-

augmented vertebrae was randomly assigned for a uni-pedicular access, while the other one had a 

bi-pedicular access. 
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Table 1. Details of the specimens investigated.  In the first 6 columns, the details of the donors are 

listed.  In the following columns, the biomechanical dimensions are reported for each vertebra.  

The vertebral body height was measured between the centre of the upper endplate and the centre of 

the lower endplate.  The antero-posterior length was measured between the most anterior and the 

most posterior point at mid-height of the vertebral body.  The vertebral body width was measured 

between the most lateral points at mid-height of the vertebral body.  Indication of the presence of 

the strain-gauges is reported for each vertebra. The last two columns report the testing conditions 

of the augmented and of the control vertebrae. 
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All the surrounding soft tissues were removed, ligaments included.  Alignment was 

performed using a 6-degrees-of-freedom clamp similar to Danesi et al.[35].  The endplates of each 

vertebra were potted in PMMA to a depth of 2 mm to embed the endplate rim (Figure 2).  The 
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neural arch was subsequently excised through resection of the pedicles.  During the preparation and 

tests (typically 3-4 days altogether), the specimens were kept hydrated with physiological saline 

solution.  When not in use they were sealed in bags at -24°C. 

!

Fig. 2. In vitro loading setup.  (a) Overview with a vertebra, V, without strain-gauges.  The superior 

and inferior endplates of the vertebra were potted with acrylic cement in two aluminum pots, P.  

The specimen was mounted on top of the six-component load cell, LC (partially hidden by a 

polyethylene protection).  Load (axial-compression or torsion) was delivered to the specimen by the 

actuator of the testing machine, A, through a lockable ball-joint, B.  (b) Posterior-lateral detailed 

view of a vertebra with strain-gauges.  On the posterior side the resected posterior processes can 

be seen. 

2.2 Prophylactic Augmentation 

Augmentation was performed on 9 vertebrae (Table 1) after the non-destructive mechanical 

testing in the natural condition.  Room-temperature bowl-mixed acrylic bone cement (Simplex-P, 

Stryker, Mahwah, NC, USA) was used.  A customized formulation was adopted to reduce viscosity 

(to better match the specifications of the injection device [36, 37]) and enhance radiopacity (as part 

of a different study [38]): 10 gr Simplex-P powder, 10 ml liquid, 1 gr additional BaSO4. 

Augmentation was performed by means of a custom delivery device that enabled control of 

injection speed (hence volumetric flow rate), while simultaneously recording plunger displacement 
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and injection force [36, 37] (Figure 3).  The flow rate and injection force data can be used to 

estimate the cement viscosity.  Either a uni-pedicular of bi-pedicular access was randomly assigned 

to one vertebra of each set of three. 

!

Fig. 3. Device to perform augmentation while controlling flow rate and injection force 37,38.  (a) 

Overview of the system with the laptop (for data logging), controller box (C), the hand-held haptic 

command to control injection speed and pressure (H), and the motorized injection device (M).  (b) 

Detail of the motorized instrumented injection device with the cement syringe and needle in place.  

(c) Detail of a vertebra with a needle ready for uni-pedicular in vitro prophylactic augmentation. 

Between 5.04 and 8.44 ml of cement were injected in each vertebra (injection was stopped at 

the first visible sign of para-vertebral leakage).  The specimens were CT-scanned again post-

augmentation (voxel size: 0.20 mm) to assess the distribution of cement inside the vertebral body.  

The following indicators were obtained from the augmentation files, and from visual examination 

of the post-augmentation CT-scans (Table 2): 

• Access: uni-pedicular, bi-pedicular; 

• Volume of cement injected (measured by the injection device); 

• Degree of filling of the vertebral body: injected volume (measured by the injection device) / 
volume of the vertebral body (estimated based on its height and cross-section, approximated 
with an ellipse); 

• Para-vertebral leakage: yes, no; 

• Placement in the sagittal plane: centered, or in contact with the anterior cortical shell; 

• Distribution in the transverse plane: one-mass or two-masses; 

• Sphericity of fill: sphere, ellipsoid (typically cranial-caudal due to the preferential trabecular 
direction), or diffuse; 

• Achievement of endplate contact: none, one, or both; 
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Table 2. For each augmented vertebra the parameters defined during the injection (uni- or bi-

pedicular access, injected volume of cement, degree of filling as a % of the volume of the vertebral 

body, para-vertebral leakage) are reported in the first columns.  The volume of the vertebral body 

was estimated based on its cross-section (approximated with an ellipse) and its height.  In the 

following 4 columns the parameters measured from the CT images are reported: placement in the 

sagittal plane (centered vs. in contact with the anterior cortical wall), and in the transverse plane 

(one-mass, two-masses), sphericity of the cement mass, and achievement of endplate contact.  In the 

last five columns the type of failure, and the force and displacement at first and ultimate failure are 

indicated for the Axial-compression destructive test (with reference to Figure 4) 
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2.3!Non-destructive testing!

In order to explore the effect of augmentation under different conditions two types of 

loading configurations were applied to each vertebra (Figure 2).  A compressive axial force was 

applied to the vertebral body (Axial-compression), to replicate a scenario close to physiological 

loading, as frequently found in the literature [39].  In addition, to gather information about a 

completely different (yet physiological) loading scenario, a torque about the vertebral axis was 

applied in both opposite directions (Torsion-clockwise and Torsion-counterclockwise), similar to 

Cristofolini et al. [40].  To enable an estimation of the measurement precision, and obtain more 

reliable data from each specimen, each loading configuration was repeated six times for each 

vertebra pre- and post-augmentation.  The specimens were allowed to recover for 4 minutes 

between repetitions. 

Tests were performed on an axial-torsional testing machine (858-MiniBionix, MTS, 

Minneapolis, MN, USA, Figure 2).  The specimens were over-constrained: all components of 

rotation and translation were constrained at both extremities.  A lockable ball-joint was placed 

between the actuator and the upper loading plate to ensure correct alignment.  During the test, the 

ball-joint was locked, avoiding any further rotation [41, 42].  To monitor all components of loading 

during testing, an additional six-component load cell (FDC-011, Metior, Dongo, Italy) was used.   

The loading protocol was similar to previous works on bone specimens [40, 43].  The testing 

machine operated in position control (axial displacement/rotation).  A trapezoidal ramp was used, 

where the full-load was reached in 0.2 seconds, which is comparable to the rate for many 

physiological motor tasks [44, 45].  The maximum displacement was held for 2 seconds to allow a 

repeatable amount of viscoelasticity to take place.  To overcome variations due to viscoelasticity, 

strain readout was consistently averaged over the first 0.1 seconds of full-load application (500 data 

points).  The actuator displacement was adjusted for each specimen based on a preliminary test, to 

achieve on average 600 microstrain (calculated on the specimen free length, and verified from the 

strain-gauges where available).  Strain on the most stressed strain-gauges did not exceed 1000 

microstrain, which is considered a physiological value [46], and is approximately 10% of the failure 

strain for cortical bone [47].  This resulted in different load magnitudes for each specimen.  In axial-

compression the applied force was on average 501 N (range: 297-769 N), which corresponded to 

67% of the donor’s body weight (BW) (range: 51-96% BW).  In torsion the applied torque was on 



! ! LKE!

average 6.22 Nm (range: 4.95-8.20 Nm), which corresponded to 0.83% BW*m (range: 0.66-1.02% 

BW*m).   

2.4 Destructive testings 

All vertebrae eventually underwent destructive testing, either post-augmentation or non-

augmented (control, Table 1).  The same axial-compression loading configuration as for the non-

destructive testing was used, with the same actuator speed, down to a compression equal to 20% of 

the height of the vertebral body, such as [48]. 

2.5 Strain distribution and structural properties 

Four vertebrae (both from the augmentation and the control group, Table 1) were 

instrumented with eight strain-gauges each, equally spaced around the vertebral body, at mid-height 

(Figure 2).  Triaxial-stacked 1-mm rosettes strain-gauges (FRA-1-11-3L, TML, Tokyo, Japan) were 

bonded following an established procedure for wet cadaveric specimens [43], which included 

removal of soft tissues with a scalpel and sandpaper, degreasing first with ethanol, then with a 

cocktail of acetone and 2-propanol, bonding the strain-gauges with cyanoacrylate glue (CN-

Adhesive, TML), and waterproofing the strain-gauges with polyurethane (M-COAT A, Vishay-

MicroMeasurements, Raleigh, NC, USA). 

To avoid overheating, a grid excitation of 0.5 V was selected.  Strains were sampled at 5000 

Hz using a multi channel data-logger (System6000, Vishay-MicroMeasurements), together with 

force and displacement signals from the testing machine.  The principal strains (!1, !2) and the angle 

("p) of the principal planes were computed from the readout of each strain-gauge.   

To assess the effect of augmentation, the stiffness was determined during the non-

destructive testing as the slope of the force/displacement (or torque/rotation) curve for each vertebra 

pre- and post-augmentation. 

The force-displacement curves of the destructive tests differed between specimens, 

according to the augmentation quality (Figure 4).   
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Fig. 4. Typical force-displacement plots obtained during destructive testing.  TYPE A: all the non-

augmented vertebrae showed a first force peak, a significant force decrease followed by plateau 

until ultimate failure, which occurred at a lower force than the first peak.  TYPE B: for some 

augmented vertebrae the first peak was higher than the control, and was followed by a steady 

increase of force until ultimate failure (for one of such augmented vertebrae, B’, the first-failure 

event could hardy be detected as the ramp was roughly monotonic).  TYPE C: for other augmented 

vertebrae the first force peak was lower than the control, and was followed by a significant load 

recovery until ultimate failure, which occurred at a higher force than the first peak.  The actual 

First-failure and ultimate failure forces of each specimen are reported in Table 2. 

The following data were extracted: 

1. To have a robust and consistent identification of the first-failure event, we adopted the 0.2% 
offset criterion for the force-displacement curve (in most cases this point was immediately 
followed by a load drop).  We chose the offset strategy, which is more robust than a generic 
“first peak” when the force-displacement curves exhibit local fluctuations and/or 
progressive yield.  This criterion is often used to determine the failure initiation both in 
mechanics [49] and in bone biomechanics [50].  This identifies the point where the vertebra 
starts being damaged. 

2. The ultimate failure was defined as the highest peak of the force-displacement curve after 
the first-failure event (typically, after this point the force dropped by at least 20%).  This 
identifies the point where the integrity of the vertebra is seriously compromised. 
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3. To quantify the toughness, the work required to reach the first-failure event and the ultimate 
failure was computed as the integral of the force-displacement curve; 

4. The force, displacement and the work required by the post-augmented vertebrae were 
expressed as a fraction of the value of the corresponding control vertebrae. 

Similarly, the post-augmentation principal strains ("1, "2) were expressed as a fraction of the pre-
augmentation strain, while the variation of the angle (#p) of principal strain was computed between 
the pre- and post-augmentation condition.  

2.6 Statistics 

Test repeatability (intra-specimen variability) was good.  For Axial-compression, the 

Coefficient of Variation (CV) among repetitions was on average 2.4% for the stiffness, and 2.2% 

for the principal strains ("1, "2).  The principal direction (#p) varied on average by 0.8° (standard 

deviation) among repetitions.  In Torsion, the CV was 5.2% for the stiffness, and 1.6% for the 

principal strains ("1, "2).  The principal direction (#p) varied on average by 0.2°.  The Peirce’s 

criterion was applied to exclude outliers [51].  First, for each specimen, each loading configuration 

and each strain-gauge, suspect data were checked among repetitions: 7% of the repetitions were 

excluded.  To obtain a single output for each specimen, the average over six load repetitions was 

calculated for the stiffness, the principal strains ("1, "2), and the angle (#p) of the principal strain.  To 

enable comparisons between repetitions (the actual force slightly varied among repetitions) and 

between specimens, the strain readouts were normalized respectively to the same reference force 

(100% BW) and moment (1.00% BW*m), similar to a previous study[40]. 

The entire sample was then checked with the Peirce’s criterion: none of the specimens had 

to be excluded. 

To ensure that the two groups (control and augmentation) were comparable, their stiffness in 

the pre-augmentation condition was compared (Wilcoxon-signed-rank-test for paired samples).  

The significance of the effect of augmentation on the mechanical outcome was assessed 

using Wilcoxon-signed-rank-test for paired samples: the strain distribution and stiffness were 

compared for the same specimen pre- and post-augmentation; the first-failure and ultimate force 

and work were compared between the augmented specimens and the respective controls.   
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The effect of the factors describing the quality of augmentation (Table 2) on the mechanical 

outcome was assessed with Mann-Whitney-Wilcoxon (factors with 2 levels) and Kruskal-Wallis 

(factors with 3 levels) non-parametric tests.   

All statistical analyses were performed with StatView-5.0.1 (SAS-Institute, Cary, NC, 

USA). 

3.  Results 

3.1  Augmentation group versus control group 

The stiffness (measured during the non-destructive test) of the vertebrae in the pre-

augmented condition was similar to the control group.  For axial-compression the control group was 

on average 16% stiffer (range -8% to +71%).  This difference was statistically not significant 

(Wilcoxon-signed-rank-test for paired samples, p=0.06).  In torsion the control group was on 

average 1% less stiff (range -38% to +22%).  This difference was not significant (Wilcoxon-signed-

rank-test for paired samples, p=0.68).  

3.2 Stiffness before and after prophylactic augmentation 

When the stiffness measured during the non-destructive testing was compared for the same 

vertebra pre- and post-augmentation, very small differences were found (Figure 5).   

For axial-compression, the prophylactic-augmented vertebrae were on average 1% less stiff 

than in the pre-augmented condition (range -35% to +32%: only 5 vertebrae out of 9 were stiffer).  

Such a difference was not statistically significant (Wilcoxon-signed-rank-test for paired samples, 

p=0.86).  In torsion, the prophylactic-augmented vertebrae were on average only 9% stiffer (range -

19% to +39%: 7 vertebrae out of 9 were stiffer) than in the pre-augmented condition (not 

statistically significant: Wilcoxon-signed-rank-test for paired samples, p=0.17).  
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Fig. 5. Comparison of the stiffness of the 9 test specimens (average and standard deviation), in the 

pre-augmentation and post-augmentation conditions for axial-compression (a) and torsion (b). 

3.3 Strain distribution 

The magnitude of the principal strains measured during the non-destructive testing in the 

same vertebra post-augmentation was on average lower than pre-augmentation (Figure 6).   

!

Fig. 6. (a) Strains in the post-augmentation condition are plotted versus the corresponding values 

in the pre-augmentation condition for the axial-compression and torsion tests.  A value of the 

regression slope equal to 1.000 indicates no effect of augmentation on the strain magnitude; a 
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value lower than 1.000 indicates that strains were lower post-augmentation.  (b) Schematic of a 

vertebra with an indication of the position of the eight triaxial strain-gauges around the vertebral 

body.  The plots depict the effect of prophylactic augmentation on the maximum and minimum 

principal strains, for axial-compression and torsion.  Strains in the post-augmentation condition 

are reported as a percentage of the corresponding strain in the pre-augmentation condition: a 

value of 100% means no variation due to prophylactic augmentation, a value lower than 100% 

indicates that prophylactic augmentation caused a reduction of bone strain.  Bars are missing for 

those locations where strains were lower than 100 microstrain. 

For axial-compression, the principal compressive strain (longitudinal) decreased on average 

by 18% due to prophylactic augmentation (Wilcoxon-signed-rank-test for paired samples, 

p=0.0002).  The principal tensile strain (circumferential) decreased on average by 59% (p=0.75).  In 

torsion, both principal strain components decreased on average by 12% due to prophylactic 

augmentation (Wilcoxon-signed-rank-test for paired samples, p<0.01). 

For axial-compression, principal strains were nearly aligned with the axes of the vertebral 

body; the direction of principal strains varied very little due to prophylactic augmentation (average 

variation 6°, maximum 25°; Wilcoxon-signed-rank-test for paired samples, p=0.73).  In torsion, 

principal strains were close to +/-45° from the anatomical axis; the variation of the direction of 

principal strains due to prophylactic augmentation was small (average variation 6°, maximum 15°; 

Wilcoxon-signed-rank-test for paired samples, p=0.0007). 

The effect of augmentation on the magnitude and direction of principal strains did not vary 

among measurement locations (Kruskal-Wallis, p>0.1).   

3.4 Strength and toughness 

During the axial-compression destructive tests the effect of prophylactic augmentation was 

visible (Figure 7): 

1. For the prophylactic-augmented vertebrae the first-failure event occurred at a force that was 

on average 121% of the controls (Wilcoxon-signed-rank-test for paired samples, p=0.37).  In 

5 vertebrae out of 9, failure started with a force that was larger (119% up to 237% of the 
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controls).  However, 4 vertebrae started failing with a force that was slightly lower (77% to 

91% of the controls). 

2. The work required by the prophylactic-augmented vertebrae to reach the first-failure event 

was on average 155% of the controls (Wilcoxon-signed-rank-test for paired samples, 

p=0.26).  In 7 vertebrae out of 9, failure started with a work that was larger (104% to 399% 

of the controls).  However, two vertebrae required less work to start failing (75% to 98% of 

the controls). 

3. The ultimate force of the prophylactic-augmented vertebrae was on average 295% of the 

controls (consistently higher for all specimens, range: 169% to 541%, Wilcoxon-signed-

rank-test for paired samples, p=0.008). 

4. The work taken by the prophylactic-augmented vertebrae to reach ultimate failure was on 

average 280% of the controls (consistently higher for all specimen, range: 156% to 598%, 

Wilcoxon-signed-rank-test for paired samples, p=0.008). 

!

Fig. 7. Mechanical outcome of prophylactic augmentation: the values of the force and work to the 

first-failure event and to ultimate failure are plotted for the augmented vertebrae as a fraction of 

the adjacent control.  The average and standard deviation (all specimens pooled together) are 
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represented, together with the individual data points.  A value of 100% indicates no variation with 

respect to the control; a value larger than 100% indicates that prophylactic augmentation 

increased the strength/toughness of the vertebral body. 

In an attempt to understand the reason(s) for the large variability of the mechanical outcome 

of prophylactic augmentation, correlation between the quality of augmentation and the mechanical 

outcome was assessed (Figure 8):  

1. Access: the vertebrae prepared with a uni-pedicular access had higher first-failure force and 

work, as well as higher ultimate force and work than those prepared with a bi-pedicular 

access (not statistically significant: Mann-Whitney-Wilcoxon, p>0.1). 

2. Degree of filling: the median value of cement filling was 25.4% of the vertebral body 

volume.  The vertebrae filled by more than 25% had higher first-failure and ultimate force 

and work than those filled by less than 25% (not statistically significant: Mann-Whitney-

Wilcoxon, p>0.1). 

3. Para-vertebral cement leakage: the vertebrae with leakage had lower first-failure and 

ultimate force and work than those without leakage (not statistically significant: Mann-

Whitney-Wilcoxon, p>0.1). 

4. Placement in the sagittal plane:  the vertebrae in which the cement mass was in contact with 

the anterior cortical shell had higher first-failure and ultimate force and work than those in 

which the cement mass was central (not statistically significant: Mann-Whitney-Wilcoxon, 

p>0.1). 

5. Distribution in a transverse plane: the cases where the cement formed a unique mass had 

higher first-failure and ultimate force and work than when the cement formed two separate 

masses (not statistically significant: Mann-Whitney-Wilcoxon, p>0.1). 

6. Sphericity of fill: an ellipsoid-shaped cement mass was associated with higher first-failure 

force, and ultimate force and work; a spherical-shaped cement mass was associated with the 

highest first-failure work (not statistically significant: Kruskal-Wallis, p>0.1). 

7. Endplate contact: achievement of contact with both endplates was associated with an 

increase of all magnitudes, except the first-failure force (not statistically significant: 

Kruskal-Wallis, p>0.1). 
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8. The correlation between mechanical properties of the augmented vertebrae was assessed by 

means of the Pearson’s correlation coefficient (R2).  The stiffness was correlated with the 

first-failure force (R2=0.90) and work (R2=0.84), but poorly correlated with the ultimate 

failure force (R2=0.66) and work (R2=0.75).  The first-failure force and work were highly 

correlated with each other (R2=0.99), but respectively poorly correlated with the ultimate 

failure force (R2=0.66, R2=0.61) and work (R2=0.79, R2=0.74).  The ultimate force and work 

were highly correlated with each other (R2=0.93). 
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Fig. 8. Effect of the prophylactic augmentation parameters on the mechanical outcome: the values 

of first-failure force (a) and work (b), and ultimate force (c) and work (d) are plotted for the 

prophylactic-augmented vertebrae as a fraction of the adjacent control.  A value of 100% indicates 

no variation with respect to the control; a value larger than 100% indicates that prophylactic 

augmentation increased the strength/toughness of the vertebral body.  Legend: Access (uni-

pedicular or bi-pedicular); degree of filling (lower or greater than 25% of the vertebral body 

volume); para-vertebral leakage (yes/no); placement in the sagittal plane (centered vs. in contact 

with the anterior cortical wall); distribution in the transverse plane (one-mass, two-masses), 

sphericity of the cement mass (sphere, ellipsoid, diffuse); endplate contact (none, one or both). 
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4.  Discussion 

While the biomechanical effects of vertebroplasty on fractured vertebrae have been 

thoroughly investigated in the past, very little data exist regarding the effects of prophylactic 

augmentation on non-fractured vertebrae.  The aim of the present study was to investigate the 

biomechanical effectiveness of prophylactic augmentation in preventing fractures.  It has been 

hypothesized that the effect of augmentation depends on the quality of augmentation itself; 

therefore we aimed at identifying which factors influence the suitability of prophylactic 

augmentation in reducing the risk of fracture. 

Our findings suggest that augmentation is associated with a marked (although not uniform) 

decrease of the strain in the cortical shell when compared to pre-augmentation conditions.  Such 

strain alterations were two orders of magnitude larger than the errors possibly associated with strain 

measurement.  This suggests an alteration of the load sharing, where most of the load is transferred 

through the (augmented) core of the vertebral body.  This may result in an altered load transfer to 

the endplates [52] and discs [53], which is widely supposed to contribute to the onset of adjacent 

fractures [3-5, 54, 55].  

Even with a limited sample size, our findings suggest that, on average, prophylactic 

augmentation tends to increase the strength and toughness of the vertebral body.  In particular, 

prophylactic augmentation significantly increased in all vertebrae the force and work required to 

achieve ultimate failure (which is associated with serious loss of integrity of the vertebral body).  

However, the first-failure event (which is associated with a first degree of structural damage) in 

some prophylactic-augmented vertebrae occurred with a force and work lower than in the controls.  

Therefore, while in all specimens prophylactic augmentation reduced the risk of reaching ultimate 

failure, in some cases it increased the risk of partial failure.  Our results suggest that the stiffness 

itself is a poor predictor of the strength of the vertebra: while the stiffness was somehow correlated 

with the first-failure event, it was poorly correlated with ultimate failure.  The first-failure and 

ultimate failure events were poorly correlated with each other.   

Even if a limited sample was available, we tried to investigate the causes of such a 

variability of results by examining the augmentation details of each specimen.  We focused on the 

parameters defined during the injection, and on the cement distribution inside the vertebral body.  
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As a trend (although not statistically significant), an association was found between some indicators 

of the quality of augmentation, and the strengthening/weakening effect with respect.   

The different types of force-displacement curves we found for the prophylactic-augmented 

and control vertebrae (Figure 4) were similar to those reported by previous studies [20, 23].  Our 

findings concerning an insignificant increase of the stiffness due to augmentation are in agreement 

with other studies where no significant stiffening was found [12, 15, 19, 21].  Therefore, we do not 

support the idea that prophylactic augmentation would significantly stiffen the vertebral body as 

reported elsewhere [9, 22, 23].  However, other studies reported lower stiffness after prophylactic 

augmentation [7].   

We found that the first-failure force was on average higher after prophylactic augmentation.  

Our findings are in agreement with other studies [12, 16], which reported that first-failure force of 

prophylactic-augmented vertebrae were on average greater than the controls (without specifying if 

they found cases where the augmented vertebra was weaker).  However, in our study, 4 out of 9 

augmented vertebrae showed a first-failure force lower than that in the untreated controls.  This is 

consistent with a previous study [20], which reported an increase of the first-failure force in 10 out 

of 12 treated specimens.  At the same time, the study [20] reported an increase of the ultimate 

failure load in all the prophylactic-augmented vertebrae with respect to the control, which is 

consistent with our findings.  Similarly, Lim et al. [21] reported that the maximum force (apparently 

defined as our “ultimate failure”) of prophylactic-augmented vertebrae was greater than the control.  

A different study [19] reported a reduction of 19% of the first-failure force in prophylactic-

augmented spinal segments.   

In our specimens, the type of access seemed to affect (but with no statistical significance) 

both the first- and ultimate failure event:  the uni-pedicular access provided better results.  This is 

possibly explained because the cement formed a single mass, more suitably placed within the 

vertebral body, and achieved better contact with the endplates.  Our results are not in agreement 

with a previous study [56], which reported no difference in the strength of bi-pedicular and uni-

pedicular vertebroplasty in fractured vertebrae.  

Although no statistical significance was found, a better mechanical effect of prophylactic 

augmentation was found for a cement fill greater than 25% of the vertebral volume.  Similarly, 

previous studies [15, 57], reported a better outcome when cement fill exceeded 20-30% of the 
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vertebral body volume.  Only a study on vertebroplasty of fractured vertebral body [32] reported 

that the fill ratio was not a significant factor in the effectiveness of augmentation. 

We found that the amount of cement injected was not the only factor affecting the 

strengthening/weakening effect, as also the cement distribution within the vertebral body played a 

role.  In our study, the augmented vertebrae had larger (but not statistically significant) first-failure 

force and work than the controls when the cement mass was: anterior in the sagittal plane, formed a 

single mass in the transverse plane, and was in contact with both endplates.  The shape of the 

cement mass had very marginal effect on the resultant strength.  Although slightly better results 

were obtained when the cement mass was ellipsoid-shaped (stretched in the cranial-caudal 

direction), little difference was found between sphere-shaped and diffuse cement mass.  Such 

findings are in agreement with other in vitro [20, 24] and in silico [25-27] studies that demonstrated 

the importance of cement distribution over the simple amount of cement injected.  Only Higgins et 

al. [15] reported that cement distribution was not to a significant factor. 

There are some limitations of this study that must be considered.  First of all, the limited 

sample size may not be sufficient to allow a generalization of our findings.  Furthermore, due to 

budget and time constraints, only a limited sub-sample could be instrumented with strain gauges.  

The low statistical power in some cases permitted only to deduce conclusions from trends that were 

indicative of the actual behavior.  At the same time, this is the first time that prophylactic-

augmented vertebrae are tested for multiple loading configurations, while measuring several 

parameters and indicators of the quality of augmentation. 

One may suspect that the results of the destructive tests may have been affected by previous 

non-destructive tests.  However, the possibility that specimens were pre-damaged was very low 

because they were loaded in the elastic range (maximum recorded strain: 1000 microstrain).  In fact, 

the failure force actually recorded during the destructive tests exceeded by a factor 15 (average) the 

force applied in the non-destructive tests. 

Due to the destructive nature of the last part of our tests, the strength and toughness of the 

augmented vertebrae could only be compared against the adjacent control (non-augmented) 

vertebrae.  Adjacent vertebrae were compared as augmented and control specimens.  This strategy 

was chosen (rather than comparing matched vertebrae from different donors) because even if the 

specimens compared were not equal from an anatomical point of view, during donor’s life they 
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experienced the same physiological load, lifestyle etc.  It must be noticed that differences between 

neighboring vertebrae are more pronounced in the posterior arch and processes (which were not 

included in this study) and less in the vertebral body (more or less cylindrical).  In fact, no statistical 

differences were found when we compared the stiffness of the control sample and that of the 

augmentation sample (measured pre-augmentation) for different loading configurations. 

The over-constrained axial loading we applied could not promote wedge-shaped fractures; 

hence our test might not be very sensitive to the position of the cement.  Furthermore, we did not 

include load transmission through the posterior elements.  Previous studies [58, 59] have shown that 

in physiological conditions only a small fraction of the load is carried by the posterior elements.  

Another concern is the non-physiological loading of the vertebra through the endplates 

potted in PMMA, although frequently adopted [9, 22, 23].  Since we compared the pre- and post-

augmentation as paired specimens, variations due to augmentation were reliably detected whilst 

compensating the effect of endplate embedding (conversely, our stiffness and strength data might 

be biased by such boundary conditions). 

The strain measurement was affected by systematic error: the actual strain was 

underestimated by 3-9% because of the local reinforcement effect of the strain-gauges; which 

becomes negligible at a structural level, when the entire vertebral body is considered [40].  While 

the absolute strain values are affected by such error, the artifact is compensated when comparing 

same strain measurement locations between pre- and post-augmentation.  Strain-gauged vertebrae 

were present in both the augmentation and control group (Table 1).  Therefore, also the structural 

reinforcement effect -if any- was balanced. 

This study identified failure from the force-displacement curves, and measured strain on the 

outer bone surface.  It might be interesting to measure internal strains, so as to identify the region 

where failure initiates (e.g. in the cement mass, in the cancellous bone, at the cement-bone 

interface).  The recent developments of digital volume correlation (DVC) would possibly be able to 

gather this additional piece of information [60-62]. 

In summary, this study confirmed that prophylactic augmentation might be able to reduce 

the risk of macroscopic loss of integrity of the vertebral body, since in all cases an increase of the 

force and work required to reach ultimate failure was detected.  However, in some cases inadequate 
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augmentation seemed to increase the risk of partial fractures.  The positive/detrimental effect of 

prophylactic augmentation seemed to depend on a combination of factors describing the quality of 

augmentation.  Although no statistical significance was found, our results seem to suggest that an 

adequate strengthening can be achieved when the cement is placed in the anterior region, and forms 

a unique mass bridging the endplates.  Factors that would deserve further consideration to improve 

the strength and toughness of prophylactic-augmented vertebrae are: degree of fill of the vertebral 

body (at least 25%); formation of a single cement mass (uni-pedicular access seems to be an 

advantage); achievement of endplate-to-endplate contact; placement of the cement mass in the 

anterior region. 
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Abstract 

Digital Volume Correlation (DVC) is becoming popular for measuring the strain distribution inside 

bone structures.  There are a number of methodological questions still not satisfactorily addressed: 

as the reliability of DVC to investigate augmented bone tissue, the magnitude of errors on different 

specimens, the distribution of measurement errors inside a bone, the presence of preferential 

directions.  To address these issues, five augmented and five natural porcine vertebrae were 

subjected to repeated micro-CT scan (~39 micrometers voxel size) in a zero-strain condition.  The 

acquired images were processed with a local (DaVis-DC) and a global (ShIRT-FE) DVC 

approaches.  Different computation sub-volumes were considered ranging from 16 voxel (624 

micrometers) to 128 voxel (4992 micrometers).  The deviation from the ideal zero-strain value was 

analyzed to quantify systematic and random error.  The local approach produced very large errors in 

the entire image, mainly due to the saline solution surrounding the vertebrae, whereas the global 

approach was more robust in this case and insensitive to saline environment.  When a volume-of-

interest was cropped inside the vertebra errors were significantly lower.  The systematic error was 

generally within the range -100 to 100 microstrain and did not depend on the computation sub-

volume. The random error was higher than 1000 microstrain for the smallest sub-volume (16 

voxels) and rapidly decreased: with a sub-volume of 64 or larger the random errors were within 200 

microstrain for both approaches.  The errors did not show any preferential direction inside the 

vertebra nor respect to the micro-CT acquisition geometry.  While these trends were rather 

consistent within the sample, two individual specimens yielded unpredictably larger errors.  For this 

reason, a zero-strain check on each specimen should always be performed before any in-situ micro-

CT testing campaign is conducted.  This study clearly shows that, when sufficient care is dedicated 

to preliminary methodological work, different DVC computation approaches allow measuring the 

strain with a reduced overall error (i.e. ~200 microstrain), which makes it a viable technique also to 

investigate strain in more physiological conditions. 

 

Keywords: Digital Volume Correlation (DVC), micro-CT, measurement uncertainties, augmented 

and natural vertebrae. 
!
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1.  Introduction 

Digital Volume Correlation (DVC) is a novel measurement technique able to explore the 

full field three-dimensional (3D) displacement and strain distribution inside specimens from 3D 

images [1-3].  Potential applications include investigation of the strain distribution and the failure 

mechanism in bony structures, such as augmented vertebrae.!Since the introduction of DVC, several 

studies were performed to evaluate its reliability (measurement error).  As no other experimental 

method allows measuring internal displacements and strains, validation experiments must be 

designed where the field of displacement and/or strain are known a priori.  Tests in a zero-strain 

condition have been performed, from the tissue-level (trabecular or cortical bone [1, 4-8]), to the 

organ-level (vertebral bodies [9, 10]).  Depending on the nature of the tissue under investigation and 

voxel size of the input images, the accuracy of strain measurements can range between 300 

microstrain and 794 microstrain, while the precision between 69 microstrain and 630 microstrain 

[2].  However, direct comparison between different studies is often difficult, as images with 

different voxel sizes are typically produced (i.e. ranging from 9.96 micrometers to 36 micrometers).  

In any case, all these studies showed how the performance of the methods depends on the features 

available in the specimen (i.e. hystomorphometric parameters in trabecular bone) and how DVC 

was suitable to examine the pre- and post-yield deformation in bone [4].  !

Although the above-mentioned studies allowed a deep knowledge about the reliability and 

main benefits/limitations of the DVC applied to bone, only one paper [4] performed an evaluation 

on more bone types (2 specimens for each type), considering the intrinsic variability in different 

biological tissues. Another open issue relates to the reliability of DVC in bone specimens and their 

inter-digitation with biomaterials, such as cement-bone composites.  In fact, in the last decades, 

vertebroplasty has become increasingly popular to treat and/or prevent vertebral fractures [11].  

Because of the potential clinical implications of investigations on augmented bone, the reliability of 

DVC on augmented bone must be investigated.  To the authors’ knowledge, a wide validation, 

comparing different DVC approaches (i.e. local and global), at the organ-level, on specimens 

including different materials such as an augmented vertebra is currently missing.  !

The aims of this work were to: 

• Quantify the reliability (in terms of systematic and random error) of DVC when applied to 

natural and augmented bones; 
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• Assess the effect of the variability between different specimens; 

• Investigate the spatial distribution of the errors, and the presence of any preferential 

direction; 

• Compare the output of global and local DVC approaches; 

To extend the robustness of our study, repeated scans of natural and augmented vertebrae 

were elaborated with two DVC approaches (a local and a global approach) to compute the apparent 

strains (the specimens were in a zero-strain condition) and quantify the systematic and random 

error.   

2.  Materials and Methods 

2.4 Specimens and Images 

Ten thoracic vertebrae specimens were collected from six fresh porcine spines, dispatched 

from alimentary purposes.  Soft tissues, intervertebral disks and growth plates were removed, 

without damaging the vertebral body or alter the morphological features.  A sample of five 

vertebrae was used for augmentation (hereafter referred to as “augmented”).  Acrylic cement 

(Mendec Spine, Tecres, Italy), which contains BaSO4 pellets with an average size of 300 

micrometers, was injected in the vertebral body with a custom made device, until the cement started 

leaking from the bone (typically ~1 ml of cement).  The vertebrae were heated, before and after the 

augmentation, in a circulating bath at 40°C, which represents the physiologic temperature in pigs 

[12], to facilitate injection, flow and consolidation of the cement.  Another sample of five vertebrae 

was used as natural specimens, without augmentation (hereafter referred to as “natural”).  Sampling 

was arranged so that the augmented and natural samples were well distributed within the thoracic 

spine segment (T1-T3).  The posterior processes were removed for both samples and endplates of 

each vertebra were potted in poly-methyl-methacrylate (PMMA) support through a custom-made 

setup, to allow alignment [13] within the micro-CT.  
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In order to evaluate the reliability of DVC approaches, each specimen was scanned twice in 

a zero-strain condition, without any repositioning between the scans, such as in the Repeated-Scan-

Test [7].  Micro-CT (XTH225, Nikon Metrology, UK) scans of the entire vertebrae were performed 

using the following settings: voltage: 88kV; current: 110-115 micro-A; voxel size: 39.0-39.9 

micrometers; exposure: 2s; rotation step: 0.23 degree; total rotation 360 degree.  The samples were 

placed in the environmental chamber of a loading device (CT5000, Deben Ltd, UK) and immersed 

in saline-solution throughout the duration of the test, in order to closely simulate in situ loading 

conditions that are typically being applied to such vertebral bodies. 

Volumes of interest (VOIs) were obtained (MeVisLab, Me Vis Medical Solution AG, 

http://www.mevislab.de/) to reduce the dimension of the images, cropping only the whole vertebral 

body (VOI-0) or cropping only the largest possible region inscribed to the vertebral body (VOI-1) 

and consistently with all the samples dimensions (Fig. 1).  VOI-0 was a parallelepiped inscribing 

the contour in the transversal plane of the vertebra, including 432 slices and with slice dimensions 

ranging from 548 pixels to 812 pixels, in x-axis and from 525 pixels to 825 pixels, in y-axis.  This 

was prepared to study the strain error inside the vertebra and in surrounding or border areas. VOI-1 

was a parallelepiped inscribed inside the transversal plane of the vertebra with 300x300x432 voxel 

and was prepared to study the error only inside the vertebra. 

In order to allow comparison between the results obtained from different DVC approaches, 

the image datasets used in the present study will be made available to the interested researchers by 

contacting us.  
!
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Fig. 1 – The vertebra was aligned and potted in a PMMA support and then scanned with a micro-

CT.  In order to show the differences between VOIs, only the slice in the mid-height of each 

vertebra sample was reported.  The larger box represents VOI-0: the entire vertebra with the 

surrounding saline solution.  The smaller box represents VOI-1: the inside of the vertebra. 

2.5 Local approach vs. global approach 

Two DVC software packages, using either a local or a global approach, were compared in 

this work, similarly to [7].  The local approach is implemented in a commercial package (DaVis 

8.2.1, LaVision, Germany) later referred to as “DaVis-DC”.  The global approach is a combination 

of an home-written elastic registration software ShIRT (Sheffield Image Registration Toolkit)[14] 

[15, 16] and a Finite Element (FE) software package (Ansys Mechanical Apdl v.14.0, ANSYS, Inc., 

Canonsburg, PA), later referred to as “ShIRT-FE”.  The operating principles of the two DVC 
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approaches were described in detail in [7].  Briefly, DaVis-DC starts in dividing the 3D images into 

smaller sub-volumes, which have the ability to be independently correlated as a discrete function of 

grey-levels.  The matching between the sub-volumes is done via direct correlation (DC), which was 

found to provide better results compared to other correlation functions such as FFT [7] for bone.  A 

piece-wise linear shape function and a cross-correlation function are employed to quantify the 

similarity between the reference and deformed image.  The displacement field was evaluated at the 

centre of each sub-volume.  Finally, the strain field is computed using the centred finite differences 

(CFD) scheme.  ShIRT-FE focuses on the recognition of identical features in the whole 3D images 

by superimposing a grid with selectable nodal spacing (sub-volume) to the images.  The approach 

solves the elastic equations at the nodes of the grid to evaluate the displacement field.  The grid is 

then converted into an eight-noded hexahedrons mesh and the displacements computed by ShIRT at 

each node are imposed as boundary conditions.  The strain field was obtained differentiating the 

displacement field obtained with ShIRT by using the FE software package.   

In order to compute the measurement errors related to a specific sub-volume for these 

specimens, a group of eight sub-volume sizes (from 16 to 128 voxels, in steps of 16 voxels) was 

investigated (Table 1).  Moreover, to avoid misinterpretation of the results, the percentage of the 

correlated volume for each sub-volume size was computed as the ratio between the number of the 

correlated voxels and the total number of voxels (Table 1).   

Table 1: Comparison of the correlated volume for the different approaches evaluated for both 

vertebrae sample (augmented and natural) and both VOI for each sub-volume size.  The values 

reported for the sample were obtained as the median on the five augmented vertebrae and the five 

natural vertebrae. 
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VOI SAMPLE SUB-VOLUME SIZE DaVis-DC ShIRT-FE 

16 100% 

32 100% 

48 100% 

64 98% 

80 99% 

96 100% 

112 97% 

Augmented 

128 100% 

16 100% 

32 100% 

48 100% 

64 99% 

80 98% 

96 98% 

112 94% 

VOI-0 

Natural 

128 97% 

16 100% 

32 100% 

48 100% 

64 94% 

80 94% 

96 97% 

112 79% 

Augmented 

128 100% 

VOI-1 

Natural 16 99% 

100% 
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32 100% 

48 100% 

64 94% 

80 94% 

96 97% 

112 80% 

  

128 100% 

 

For the local approach it was essential, being the correlation of each sub-volume 

independent from each other.  For the global approach, instead, on the entire volume was imposed a 

grid and the displacement and strain were computed only on the nodes of the grid; so no regions 

were excluded.  Finally, a multipass scheme with final sub-volume size of 48 voxels (mp(48), Table 

2), available only on DaVis-DC and described in (Palanca et al., 2015), was tested to explore the 

potentialities of the local approach. 

Table 2: Series of steps implemented in the multipass approach, mp(48), without any overlap.  This 

feature is available only on DaVis-DC. 

STEP SUB-VOLUME 
SIZE 

NUMBER OF 
ITERATIONS 

1 128 1 

2 112 2 

3 96 2 

4 80 2 

5 64 2 

6 48 2 

!

!
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2.6 Quantification of the errors (error metrics) 

Given the zero-strain condition, any strain value different from zero was considered to be an 

error.  Strain values were extracted for each component of strain from both DVC approaches, and 

both VOIs.  The following analyses were carried-out: 

• Strain component comparison: for each specimen, the systematic and random errors were 

quantified as the average and standard deviation, separately, for each component of strain.  

This analysis was repeated for VOI-0 and VOI-1 for the different sub-volume sizes. 

• Strain distribution: in order to identify the areas with larger errors, a qualitative analysis of 

the apparent strain distribution was performed on the slice at mid-height, for both DVC 

approaches, both in the natural and augmented samples, in the z-direction, for sub-volume 

size of 48 voxels. 

• Variability: the variability of the systematic and random errors between specimens was 

investigated.  The errors for each component of strain in VOI-1 were reported for each 

specimen (both augmented and natural) for a sub-volume size of 48 voxels.  The bone 

volume fraction (BV/TV: bone volume, divided by the total volume) for the natural 

vertebrae or the solid volume fraction (SV/TV: the sum of the volume of the cement and of 

the bone, divided by the total volume) for the augmented vertebrae were computed in order 

to investigate if a link existed between the magnitude of the error and the intrinsic 

morphology of each specimen. Both BV/TV and SV/TV were calculated using a voxel-

based method implemented in ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of 

Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2015) (BoneJ plugin 

(Doube et al., 2010)).  The images were segmented by using a single level threshold, chosen 

in the valley between the first and second peak of the frequency distribution of the greyscale 

(histograms). The threshold value was adapted by visual comparison of the segmented and 

greyscale image in order to separate bone (or bone and cement) from the background values 

for natural (or augmented) vertebrae.  

All the elaborations of the results were processed with a home-written script in MatLab 

2014a (MathWorks, US).  Data were screened for outliers applying the criterion of Peirce (Ross, 

2003). 
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3.  Results 

3.1 Errors over VOI-0 

VOI-0 included the entire vertebra and some surrounding saline solution.  Apart from the 

initial peak for the smallest sub-volume size, the systematic errors fluctuated around zero 

microstrain (Fig. 2).   

A large difference existed between the two approaches, especially for small sub-volume 

size.  Only with sub-volume size larger than 96 voxels the systematic errors were comparable 

(generally within 100 microstrain). Otherwise DaVis-DC had errors up to two orders of magnitude 

larger than the ones in ShIRT-FE.   

The random errors showed a clear decreasing trend towards larger sub-volume sizes (Fig. 3). 

The differences between the approaches were as high as two orders of magnitude.   

The multipass scheme (Table 2) on DaVis-DC was able to reduce both the systematic and 

random errors by up to a factor ten, with respect to the ones provided with equivalent sub-volume 

size (48 voxels).  Nevertheless, the two DVC approaches were still incomparable: for multipass 

scheme DaVis-DC showed systematic errors in the order of hundreds microstrain, and random 

errors of thousands microstrain, while ShIRT-FE showed errors respectively below hundred 

microstrain and around thousand microstrain for sub-volume size of 48 voxels.   

Generally speaking, no evident and consistent differences between the components of strain 

were found in terms of systematic or random error.  Systematically, the errors on augmented 

vertebrae were larger, up to 50%, than the ones on natural vertebrae.   

The distribution of apparent strain within VOI-0 (Fig. 4) showed that most of the errors for 

DaVis-DC were due to the regions outside the vertebral body (the saline solution offers less clearly 

recognisable features to the local correlation algorithm).  Similarly, even though the maximal errors 

for ShIRT-FE were three orders of magnitude lower than the ones for DaVis-DC, the highest values 

were as well localized in the corner of the image, outside the bone.  
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Fig. 2: Systematic errors for the local (DaVis-DC) and global (ShIRT-FE) DVC approaches, 

evaluated for VOI-0 in the augmented and natural vertebrae, for sub-volume sizes ranging from16 

to128 voxels.  A multipass computation for DaVis-DC (mp(48); 6 passes, from 128 to 48 voxels) is 

also reported.  The median over the five augmented and five natural specimens is plotted. 

!

!

!

!
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Fig. 3: Random errors for the local (DaVis-DC) and global (ShIRT-FE) DVC approaches, 

evaluated for VOI-0 in the augmented and natural vertebrae, for sub-volume sizes ranging from 16 

to 128 voxels. A multipass computation for DaVis-DC (mp(48); 6 passes, from 128 to 48 voxels) is 

also reported.  The median over the five augmented and five natural specimens is plotted.   
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Fig. 4: Strain distribution in the z-direction with a sub-volume size of 48 voxels on a mid-height 

cross section of typical augmented and natural specimens, for, on the left the local approach 

(DaVis-DC) and, on the right, the global approach (ShIRT-FE).  The scales on the right of each 

plot were selected to allow visualization of the strain distribution in the region of interest.  The 

maximum ranges recorded are reported under each strain map. 

3.2 Error over VOI-1 

In order to evaluate the errors of the DVC for regions of effective interest (i.e. within the 

specimen), VOI-1 was analysed.  In this case, the systematic and random errors were of the same 

order of magnitude and showed similar trends for both DVC approaches (Fig. 5 and 6).   

!

!

!

!
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Fig. 5: Systematic errors for the local (DaVis-DC) and global (ShIRT-FE) DVC approaches, 

evaluated for VOI-1 in the augmented and natural vertebrae for sub-volume sizes ranging from 16 

to 128 voxels. A multipass computation for DaVis-DC (mp(48); 6 passes from 128 to 48 voxels) is 

also reported.  The median over the five augmented and five natural specimens is plotted.   

For DaVis-DC the systematic and random errors were drastically lower than for VOI-0.  For 

ShIRT-FE the difference between the errors for VOI-0 and VOI-1 was minimal.  Comparing the 

two approaches, DaVis-DC was affected by slightly larger (tens microstrains) systematic and 

random errors compared to ShIRT-FE.   

The effect of sub-volume size on the systematic error was negligible (Fig. 5). 
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The random error had a decreasing trend towards larger sub-volume sizes, for both DVC 

approaches (Fig. 6).  For the smallest sub-volume (16 voxels) the random errors for DaVis-DC were 

in the range 960 - 1517 microstrain for the augmented vertebrae, and 807 - 1279 microstrain for the 

natural vertebrae.  The maximum random error for DaVis-DC on VOI-1 was two orders of 

magnitude lower than VOI-0.  Random errors with DaVis-DC were generally lower than 200 

microstrain with sub-volume size equal or larger than 48.  The benefit of the multipass scheme for 

VOI-1 was less pronounced than for VOI-0, and similar results were obtained with and without 

multipass scheme.  

!

Fig. 6: Random errors for the local (DaVis-DC) and global (ShIRT-FE) DVC approaches, 

evaluated for VOI-1 in augmented and natural vertebrae for sub-volume sizes ranging from 16 to 
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128 voxels.  A multipass computation for DaVis-DC (mp(48); 6 passes from 128 to 48 voxels) is 

also reported.  The median over the five augmented and five natural specimens is plotted. 

ShIRT-FE confirmed for VOI-1 the same trend and order of magnitude of the random errors 

found in VOI-0.  The highest random errors (corresponding to the smallest sub-volume, 16 voxels) 

for ShIRT-FE were in the range 359 - 606 microstrain for the augmented vertebrae, and 445 - 1003 

microstrain for the natural vertebrae.  For larger sub-volumes random errors for ShIRT-FE were 

consistently smaller than 200 microstrain. 

The two DVC approaches provided comparable random errors (both for the augmented and 

natural samples) for sub-volume size larger than 48 voxels, and were stably lower than 200 

microstrain above 64 voxels.   

A systematic difference was observed between the augmented and the natural vertebrae for 

DaVis-DC, with lower random errors for the natural vertebrae for all the sub-volume sizes.  ShIRT-

DC, instead, had comparable errors for the augmented and natural samples.   

No significant differences were found between the components of strain for both ShIRT-FE 

and DaVis-DC.   

Random and systematic errors showed large inter-specimen differences (Fig. 7).  In 

particular, within the augmented sample, considerably higher errors were found for specimen-1, 

with both DVC approaches.  Similarly, specimen-3 was associated with the largest error in the 

natural sample.  However, the reason is not clear, as the error was not associated with the 

highest/lowest values of solid volume fraction, or bone volume fraction (Table 3).  The Peirce’s 

criterion identified these two specimens as outliers in terms of error values, but not in terms of 

volume fraction. 
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Fig. 7: Variability of the random error inside the augmented and natural vertebrae, for VOI-1, for a 

sub-volume size of 48 voxels. Similar trends were found for the systematic error. 

Table 3: Solid Volume Fraction (SV/TV) evaluated as the ratio between the sum of the volume of the 

cement and the bone, and the total volume for augmented vertebrae and Bone Volume Fraction 

(BV/TV) evaluated as the ratio between the bone volume and the total volume for natural vertebrae. 

Augmented SV/TV (%) 

1 44.4 

2 72.2 

3 50.1 

4 63.6 

5 57.1 
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Natural BV/TV (%) 

1 29.5 

2 32.0 

3 29.0 

4 30.4 

5 27.7 

!

4.  Discussion 

The aims of this work were to quantify the measurement uncertainties of different DVC 

approaches applied to augmented bones at the organ-level.  More specifically, we intended to 

investigate how such uncertainties vary between specimens and if there is any anisotropy-related 

directionality in the measurement error. 

Two DVC approaches were investigated: a local correlation algorithm (DaVis-DC) and a 

global strategy (ShiRT-FE).  As no robust alternative reference method is available for measuring 

internal strains, repeated scans (zero-strain condition) of natural and augmented vertebrae were 

shared between our institutions in a sort of round-Robin test. 

Our results showed that applying a local approach directly on images with limited pre-

processing (bone including the surrounding saline solution, VOI-0) yielded significantly larger 

systematic and random errors compared to the same images cropped to include only bone (VOI-1).  

This is possibly explained by the lack of features provided by the saline solution to the correlation 

algorithm.  The analysis of the spatial distribution of the errors (Fig. 4) confirmed this hypothesis: 

the areas that acted as noise source were mainly the outer boundaries of the bone and the saline 

solution; the areas where errors were substantially lower were all inside the specimen (which are 

typically the areas of interest).  Therefore, average measurements over a volume including regions 

with lack of features should be used with care if a local algorithm is applied.  This effect could be 

an issue for low BV/TV samples such as osteoporotic human vertebrae where a few features are 

present.  A marked improvement was obtained with a multipass approach applied to VOI-0, as it 
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allows a more robust tracking of areas poor of features as it initially relies on larger sub-volumes 

and only in the later iterations refines down to smaller sub-volumes.  Conversely, the global 

approach was insensitive to the surrounding saline solution.  This suggests that a global approach 

may be more accurate for strain measurements at the border of specimen.  This is particularly 

important for the vertebrae where the cortical shell is thin.   

For VOI-1 the errors had the same order of magnitude for the local and global approaches 

inside the specimens.  For both approaches the bias (systematic error) fluctuated generally within 

100 microstrain, meaning that the average of the strain components were close to zero, 

independently of the selected sub-volume size.  Both approaches showed a decreasing trend of the 

random error with larger sub-volumes, and comparable results above the sub-volume size of 48 

voxels (approximately 100-200 microstrain).   

However, a larger sub-volume implies a reduction of the spatial resolution in the 

measurement [5].  The errors for the local approach consistently decreased for each subsequent sub-

volume.  The effect of the multipass scheme was limited, compared to VOI-0, because a single pass 

was sufficient to recognize and track the feature of interest.   

While for the local approach the random error had continuously decreasing trend for the 

range of computation sub-volumes explored, the global approach reached a plateau after 48 voxels.   

The comparison between augmented and natural vertebrae at the organ-level showed small 

differences in terms of systematic and random error, and of the respective trends.  This confirms the 

strength of both DVC approaches on different biomaterial interdigitation, as it is confirmed in 

tissue-level study [17].  It must be noted that the present results were obtained with cement with 

pellets of BaSO4 (300 micrometers), which could have provided suitable features to the correlation 

algorithms.   

For both DVC approaches, the systematic and random errors were similar in all directions, 

independently of the preferential direction of trabecular bone, and of the rotation axis of the micro-

CT (Fig. 2,3,5,6).  

The findings reported above applied quite consistently on the sample of five augmented and 

five natural vertebrae.  While the trend was extremely consistent, some differences existed between 

specimens in absolute terms. To the authors’ best knowledge inter-specimen variations and 



! ! DED!

potential outliers have not been considered before at organ level.  In a sample of five specimens it is 

questionable to perform an outlier analysis, such as the Peirce’s criterion [18].  However, two 

specimens (Specimen-1 for augmented vertebrae and Specimen-3 for natural vertebrae, Fig. 7) 

showed clear outlier behaviour for both approaches. The small differences existing in terms of 

morphometric characteristics (similar dimensions, same species, same age, etc.), quality of the 

images (grayscale distribution), solid/bone volume fraction (for augmented vertebrae, specimen-1 

had a SV/TV of 44.4%, while the average was 60.8%; for natural vertebrae, specimen-3 had a 

BV/TV of 29%, while the average was 29.9%), did not correlate with the different behaviour in 

terms of errors in DVC-computed strains.  As no a-priori indicator suggested that some of the 

specimens could cause larger errors, it would not be fair to exclude a-posteriori such specimens 

from the analysis.  In fact, if one were to perform a DVC-based strain measurement, would not be 

able to detect a-priori a potentially critical specimen.  This can be a warning for future works, 

because a sequence of apparently high-quality images can unexpectedly result in this kind of 

problem.  A question left open with this work is whether some robust parameters exist and whether 

these are able to avoid such errors and their consequences.  Therefore, when the application requires 

a high precision of the DVC, the authors always recommend a zero-strain test, as described above, 

before loading the specimen.  Unfortunately this kind of methodological analysis is frequently 

missing [9]. 

A similar zero-strain study on human, bovine and rabbit trabecular bone was performed by 

[4].  They analyzed 4.3 mm cubes with a voxel size of 36 micrometers.  They explored a range of 

computation sub-volume of 20, 30, 40 and 50 with three DVC methods (based on home-written 

algorithm of digital particle image velocimetry and ultrasound elastography).  In that paper the 

individual components of error were not reported.  Conversely, a scalar indicator (which contains 

less information) was computed: accuracy and precision were quantified for the first time as 

average and standard deviation of the average of the absolute values of the six components of strain 

for each sub-volume. They reported [4] a similar trend with smaller errors for larger computation 

sub-volumes.  For the human vertebrae and a 40 voxels sub-volume they found an accuracy in the 

order 500 microstrain, and a precision of 150-200 microstrain.  They found slightly lower errors for 

the bovine distal femur.  The smallest total error they found was 345 microstrain.  To allow 

comparisons, we computed the same scalar indicators for the augmented and natural sample for 

VOI-1 (Fig. 8).  Also with this representation of our results the errors of accuracy and precision 

decreased increasing the sub-volume size, with a simultaneous loss in terms of resolution, as it was 
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proved in previous works [4, 5, 7].  In order to compare the results, interpolated power laws were 

evaluated and used to compute the errors of accuracy and precision.  DaVis-DC showed an 

accuracy of 275 microstrain for the augmented vertebrae and 215 microstrain for the natural 

vertebrae; while ShIRT-FE had an accuracy of 159 microstrain for the augmented vertebrae and 

139 for the natural vertebrae.  The errors of precision were 116 microstrain for the augmented 

vertebrae and 68 microstrain for the natural vertebrae, evaluated with DaVis-DC.  Instead, error of 

68 microstrain for the augmented vertebrae and 61 microstrain for the natural vertebrae, were 

obtained using ShIRT-FE.    

!

Fig. 8: Accuracy and precision (with interpolated power laws) for the local (DaVis-DC) and global 

(ShIRT-FE) DVC approaches, evaluated for VOI-1 in augmented and natural vertebrae for sub-

volume sizes ranging from 16 to 128 voxels, in step of 16 voxels. A multipass computation for 
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DaVis-DC (mp(48); 6 passes from 128 to 48 voxels) is also reported.  The median between the five 

augmented and the five natural specimens is plotted. 

An evaluation of the mean and standard deviation error of strain in a zero-strain condition 

was provided for human natural vertebrae in [10].  The voxel size (37 micrometers) was similar to 

the present work.  They analyzed a single sub-volume size of 4.8 mm, which corresponds to 

approximately 130 voxels.  They reported larger errors than in the present study: accuracy of 740 

microstrain, precision of 630 microstrain and the analysis was performed as a preliminary check 

before the actual compression test.  

The current study has shown that, when sufficient care is dedicated to a preliminary 

methodological optimization, both DVC approaches allow measuring strain with an overall error of 

better than 200 microstrain.  This may be sufficient to investigate the strain distribution for 

physiological (in terms of magnitude) loads (1000-2000 microstrain) [19, 20], and definitely 

adequate to investigate failure (7000-10000 microstrain) [21, 22].  Of course, an issue related to the 

time-consuming of the micro-CT scans is still open. Moreover, while DVC methods have been used 

to quantitatively validate the outputs of micro finite element models of trabecular bone samples [23, 

24] or to qualitatively compare the outputs of computational and DVC measurements for whole 

vertebrae [10], and to the authors’ knowledge there is no quantitative comparison performed at the 

organ level.  The results of this study suggest that for whole vertebrae the DVC methods are 

accurate enough for proper validation of the strain predictions from computational models only 

when sub-volumes equal or larger than 48 voxels (equivalent to approximately 2mm in side length) 

are used. However, in order to validate the strain at spatial resolutions of 10-30 micrometers, typical 

of micro finite element models [25], the accuracy of the current DVC approaches should be 

improved.  

A limitation of the present work is the use of porcine vertebrae instead of human ones.  This 

was an ethical choice, in order to perform such an extensive methodological work.  While the 

present results might not directly translate to human specimens in absolute terms, the trends and the 

general observation will certainly apply also to human trabecular bone.   

Another study focused on smaller volumes of interest, to investigate if measurement error 

depends on the type of tissue (trabecular vs cortical) or material (bone vs cement) interdigitation 

[17]. 
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5.  Conclusion 

This study demonstrated the suitability of local and global DVC approaches to investigate 

both natural and augmented bone, confirming that the most crucial issue is the presence of suitable 

features in the imaged specimen.  Systematic and random errors were rather isotropic, with no 

relation to bone anisotropy or micro-CT scanning planes.  While the errors were rather consistent 

between specimens, some specimens caused unpredictably and inexplicably larger errors: for this 

reason, it is highly recommended to perform a preliminary zero-strain check on each specimen 

being tested. 

With the accuracy and precision measured in this study for a reasonable high sub-volume 

size (i.e. 100-200 microstrain for sub-volume equal to 48 voxels), the DVC becomes an attractive 

tool not only for the detection of local failure, but also for the measurement of local properties 

(displacements and strain) in the elastic range.  This could be useful per se, to investigate bone 

micromechanics, but also to reliably validate predictions of computational models at the tissue level 

for spatial resolutions of approximately 2mm.  
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