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Preface

Radiation physics and engineering have reached a central importance role for several
different areas of application. For example scattered radiation can be used for a non
destructive analysis of materials composition and properties. Radiation emitted by
a star can be measured for understanding its composition, cosmological events like the
supernovae can be studied using their emitted radiation. Central importance of radiation
physics and engineering can not be discarded also in biomedical applications like X-ray
radiography and the treatment of cancer diseases.

A detailed description of the mechanism into which the radiation interacts with
a media is of fundamental importance for properly understand a radiation measure.
Moreover Radiation measures need to be corrected from the measuring system effects
which can lead to a loss of information.

In this thesis it is reported the most important results collected during this PhD
course in the field of radiation physics and engineering.

The thesis is organized in two chapters. The first one reports the work done during
the Marco Polo project under the supervision of Prof. Francesc Salvat of the Univer-
sity of Barcelona. This chapter presents the theory and the calculation of the atomic
photoeffect differential and total cross sections done for improving the already existing
libraries.

The second chapter reports the work done under the supervision of Prof. J.E. Fer-
nandez at the University of Bologna regarding the unfolding of radiation measurements
from the measuring system effects.

Both the chapters begin with a detailed introduction of the specific topic and are
organized in subsections. The results reported in this thesis were also published in the
following papers:

1)”Theory and calculation of the atomic photoeffect” [1]

2)”First principles Pulse Pile-Up balance equation and fast deterministic solution” [2].

3)”Multi-shape pulse pile-up correction, the code MCPPU”[3],

4)”A modelling tool for energy resolution and incomplete charge collection” [4],

5)”Improvement of the detector resolution in X-ray spectrometry by using the maximum
entropy method” [5],
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Chapter 1

Theory and calculation of the
atomic photoeffect

In the photoelectric effect, or photoeffect, a photon is absorbed by a target atom and,
as a result, an atomic electron is emitted or promoted to a bound open orbital thus
leaving the residual ion or atom in an excited state. The latter subsequently decays
to its ground state through a cascade of radiative and non-radiative transitions with
emission of characteristic x rays and Auger electrons. For photons with intermediate
and low energies, the photoeffect dominates the transfer of energy from the photon field
to charged particles. The so-called elementary theory of the process has been described
by Pratt et al. [6] and by Scofield [7]. In their formulation the states of the atom
are approximated by a model of independent electrons in a common central potential,
and the interaction between the target atom and the electromagnetic field is treated
as a perturbation to first order. This approach neglects electron correlations, i.e., the
collective character of the response of atomic electrons to the external field. Correlation
effects have been studied by many authors using a variety of theoretical methods such
as the random-phase approximation [8], many-body perturbation theory [9], R-matrix
perturbation theory [10], and the time-dependent local-density approximation [11, 12,
13]. Calculations with these methods are quite involved, and numerical results have
been published only for specific atoms and limited energy ranges.

Quantitative information on the photoeffect is required for practical applications
(e.g., x-ray fluorescence, x-ray photoelectron spectroscopy), as well as for Monte Carlo
simulation of photon transport. Numerical tables of subshell cross sections (for ioniza-
tion and for excitation to bound levels) and atomic cross sections are included in the
Evaluated Photon Data Library (EPDL) [14]. The XCOM program [15] gives atomic
cross sections for photoionization essentially equivalent to those in the EPDL. Both the
EPDL and XCOM databases are based on calculations performed by Scofield [7] us-
ing the independent-electron model with the self-consistent Dirac-Hartree-Fock-Slater
(DHFS) potential. They are considered to be the most reliable source of general infor-
mation available to date; indeed, practically all modern Monte Carlo codes for photon
transport utilize the EPDL. A systematic comparison of Scofield’s cross sections with
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experimental data has been made by Saloman et al. [16]. It is worth mentioning that
the theory, as well as the numerical tables calculated from it, apply to free atoms. Dif-
ferences are to be expected for molecules and solids, particularly near absorption edges,
partly because of aggregation effects on the atomic potential and also because of the
EXAFS effect (extended x-ray absorption fine structure) [17].

Calculations based on approximate independent-electron models, such as the DHFS
model, are affected by possible inaccuracies of the adopted central potential. A simple
strategy to account for inaccuracies in the atomic potential is provided by the normaliza-
tion screening approximation of Pratt and co-workers [18, 19, 20, 6]. According to this
approximation, the subshell cross sections calculated from the DHFS potential and from
a more elaborate atomic model (e.g.., the multi-configuration Dirac-Fock self-consistent
model implemented in the program of Desclaux [21, 22]) differ essentially by a constant
factor, which is equal to the ratio of electron densities near the nucleus. That is, in
principle, one can improve the DHFS cross sections by multiplying them by an energy-
independent factor, which is readily obtained from atomic-structure calculations that
are more elaborate than the DHFS ones.

The angular distribution of photoelectrons is needed in x-ray photoelectron spec-
troscopy, using either x rays or synchrotron radiation [23, 24, 25], as well as in radiation
transport calculations [26, 27]. Surprisingly, information on the angular distribution of
photoelectrons, consistent with the subshell cross sections, is quite limited, or unavail-
able (see, e.g., Ref. [28] and references therein). As a matter of fact, most Monte Carlo
photon transport codes still rely on the Sauter formula [29], which gives the differential
cross section for the ground state of hydrogenic ions obtained from the plane-wave Born
approximation. The most elaborate tables of angular distributions available for all sub-
shells of the elements are those given by Trzhaskovskaya et al. [30, 31, 28], which were
calculated within the quadrupole approximation and parameterized using the formulas
proposed by Cooper [32, 33]. These tables apply to unpolarised and linearly polarized
photons and cover the energy range from 100 eV to 5 keV. Theoretical studies of angular
distributions for soft-x-ray absorption by Derevianko et al. [34] and Amusia et al. [35]
revealed the importance of higher-multipole corrections.

In the present chapter it will be described the elementary theory of the photoeffect
in a concise but complete form, organized so as to allow systematic evaluations of cross
sections for both ionization and excitation to bound levels. Following Scofield and
others, it will be considered a model of independent electrons in the DHFS self-consistent
potential. Although Scofield’s numerical results are known to be fairly accurate, the
size of his database is moderate and, in some energy ranges, the grid energies are too
widely spaced to ensure that interpolation errors are less than the numerical accuracy
of the tabulated data. Nowadays, instead of interpolating from a limited database,
subshell ionization cross sections can be calculated interactively, even on modest personal
computers, using numerical algorithms that are highly accurate. Thanks to the Marco
Polo program, which allowed the author of this work to have an important collaboration
with Prof. F. Salvat of the University of Barcelona, it was written a robust, flexible
Fortran program, named photacs [1]. photacs calculates subshell cross sections for
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arbitrary atomic potentials. The calculations converge for excitation to levels with
principal quantum number up to about 20 and for ionization by photons with energies
up to about 2 MeV. Results from the program do confirm the accuracy of Scofield’s data,
but also reveal near-threshold features that are invisible in Scofield’s database because
of the large spacing of its energy grid. Photacs [1] includes tables of theoretical and
empirical atomic level widths and allows the calculated subshell cross section (excitation
plus ionization) to be transformed into a continuous function of the photon energy,
through a convolution with a Lorentzian line profile. Once the photoemission cross
section for a given photon energy is calculated, the angular distribution of photoelectrons
can be obtained with little additional effort because radial integrals, which take most
of the numerical work, were already computed to obtain the cross section. The code
photacs optionally calculates the angular distribution of photoelectrons emitted as a
result of the absorption of partially polarized photons in a given subshell. Arbitrary
photon polarization is described by means of the density matrix expressed in terms of
the Stokes parameters.

The chapter is organized as follows. Section 1.1 presents an overview of the theory of
the photoeffect. It is described a systematic extrapolation scheme to account for excita-
tions to bound levels near the ionization threshold, as well as an analytical formula for
extrapolating the photoionization cross section to arbitrarily high energies. Finally, the
effect of the finite width of atomic energy levels and the normalization screening correc-
tion are considered. Photon polarization is described by means of the density matrix and
the associated Stokes parameters. In Section 1.2 it is derived general formulas for the
angular distribution of photoelectrons released by photons with arbitrary polarizations.
The practical calculation of cross sections and photoelectron angular distributions is
considered in Section 1.3, which contains a brief presentation of the program photacs
and results from several illustrative calculations.

1.1 Theory

1.1.1 The Dirac Equation for an electron in a central potential
field

The one-electron Dirac Hamiltonian for a central potential V (r) [36] can be expressed
as:

H = c α̃ · p + β̃mec
2 + V (r), (1.1.1)

where c is the speed of light, me the mass of the electron, p = −i~∇ the momentum
operator, and α̃, β̃ are the Dirac 4×4 matrices in the spinor representation,

α̃ =

 0 σ

σ 0

 , β̃ =

 I2 0

0 −I2

 . (1.1.2)
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The 2×2 matrices σ = (σ1, σ2, σ3) are the Pauli matrices,

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (1.1.3)

and I2 is the identity matrix of rank two. The Dirac equation takes the form of:

i~
∂

∂t
Ψ(r, t) = HΨ(r, t), (1.1.4)

were the solution Ψ(r, t) is the so called Dirac spinor, i.e. a wave function with four
components:

Ψ(r, t) =


Ψ1(r, t)

Ψ2(r, t)

Ψ3(r, t)

Ψ4(r, t)

 . (1.1.5)

It is convenient to represent this vector as a bi-spinor:

Ψ(r, t) ≡
(

Ψu(r, t)

Ψl(r, t)

)
, (1.1.6)

which is a matrix of two lines and one row where the components are two spinors:

Ψu(r, t) ≡
(

Ψ1(r, t)

Ψ2(r, t)

)
, Ψl(r, t) ≡

(
Ψ3(r, t)

Ψ4(r, t)

)
, (1.1.7)

called respectively the upper and lower component. In this representation the Dirac
equation takes the form:

i~
∂

∂t

(
Ψu(r, t)

Ψl(r, t)

)
=

 mec
2 cσ · p

cσ · p −mec
2

(Ψu(r, t)

Ψl(r, t)

)
+ V (r)

(
Ψu(r, t)

Ψl(r, t)

)
. (1.1.8)

Assuming the possibility to express the bi-spinor as Ψ(r, t) = ψ(r)φ(t) (hypothesis of
separation of variables)the solution of the Dirac equation takes the form:

Ψ(r, t) = ψ(r)exp

[
− i (ε+ mec

2) t

~

]
=

(
ψu(r)

ψl(r)

)
exp

[
− i (ε+ mec

2) t

~

]
, (1.1.9)

where ε is the electron energy, exclusive of its rest energy. The time independent Dirac
equation can be obtained by considering the eigenvalues problem of the Dirac Hamilto-
nian operator:

Hψ(r) = (ε+mec
2)ψ(r) (1.1.10)
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Using Eq. (1.1.1) we have:[
c α̃ · p +

(
β̃ − 1

)
mec

2 + V (r)
]
ψ(r) = εψ(r), (1.1.11)

The solution of this equation are the spherical orbitals relative to a particle in a central
field, which are simultaneous eigenfunctions of the Dirac Hamiltonian and the total
angular momentum operator J = L + S, where L = −ir×∇ is the orbital angular
momentum and S is the spin angular momentum (all angular momenta in units of ~).
These eigenfunctions are the so-called spherical waves, and have the form [36, 37]

ψεκm(r) =
1

r

(
Pεκ(r) Ωκ,m(r̂)

iQεκ(r) Ω−κ,m(r̂)

)
, (1.1.12)

where Ωκ,m(r̂) are spherical spinors, and Pεκ(r) and Qεκ(r) are the large- and small-
component radial functions, which satisfy the coupled differential equations

dPεκ
dr

= − κ

r
Pεκ +

ε− V + 2mec
2

c~
Qεκ ,

dQεκ

dr
= − ε− V

c~
Pεκ +

κ

r
Qεκ .

(1.1.13)

The spherical spinors are eigenfunctions of the total angular momentum of Pauli’s theory,
i.e., simultaneous eigenfunctions of the operators L2, S2

P, J2
P and JPz with eigenvalues

`(`+ 1), 3/4, j(j + 1) and m, respectively. Here SP = 1
2
σ denotes the two-dimensional

Pauli spin operator and JP = L + SP. Ωκ,m(r̂) can be expressed as [38, 39]:

Ωκ,m(r̂) ≡ Ω`
j,m(r̂) =

∑
µ=±1/2

〈`, 1
2
,m− µ, µ|j,m〉 Y`,m−µ(r̂)χµ . (1.1.14)

The quantities 〈j1j2m1m2|j,m〉 are Clebsch-Gordan coefficients, Y`m(r̂) are spherical
harmonics, and χµ are the Pauli unit spinors, i.e., the eigenstates of S2

P and SP3 with
eigenvalues 3/4 and µ = ±1

2
, respectively. More explicitly:

χ+1/2 =
∣∣1

2
, +1

2

〉
=

(
1

0

)
and χ−1/2 =

∣∣1
2
, −1

2

〉
=

(
0

1

)
, (1.1.15)

Introducing the pauli spinors and writing the coefficients as reported in [39] Eq. (1.1.14)
can be rewritten as:

Ω`
`±1/2,m(r̂) =

1√
2`+ 1

±
√
`±m+ 1

2
Y`,m−1/2(r̂)√

`∓m+ 1
2
Y`,m+1/2(r̂)

 . (1.1.16)

To simplify notation, it is customary to use the relativistic angular momentum quantum
number

κ = (`− j)(2j + 1) , (1.1.17)
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which specifies both the total angular momentum, j, and the parity, (−1)` of the Dirac
spherical wave,

j = |κ| − 1
2
, ` = j +

κ

2|κ| =

 κ if κ > 0

−κ− 1 if κ < 0

 . (1.1.18)

It is also convenient to consider the quantum number

` ≡

−κ if κ < 0

κ− 1 if κ > 0

 = `− κ

|κ| , (1.1.19)

which is the value of ` corresponding to −κ.

In the case of bound orbitals (ε < 0), each discrete energy level is characterized by
the principal quantum number n and the relativistic quantum number κ. Bound orbitals
are normalized to unity and, consequently, satisfy the orthonormality relation∫

ψ†n′κ′m′(r)ψnκm(r) dr = δn′n δκ′κ δm′m . (1.1.20)

Free spherical waves (with ε > 0) are normalized in such a way that the large-component
radial function asymptotically oscillates with unit amplitude,

Pεκ(r) ∼
r→∞

sin
(
kr − `π

2
− η ln 2kr + δκ

)
, (1.1.21)

where
k = (c~)−1

√
ε(ε+ 2mec2) (1.1.22)

is the wave number, η = [limr→∞ rV (r)]me/(~2k) is the Sommerfeld parameter, and
δκ is the phase shift. Free spherical waves normalized in the form (1.1.21) satisfy the
orthogonality relation∫

ψ†ε′κ′m′(r)ψεκm(r) dr =
ε

k
π δ(ε′ − ε) δκ′κ δm′m . (1.1.23)

The state of a free electron with definite spin projection can be represented as a
distorted plane wave (DPW), i.e., a solution of the Dirac equation that asymptotically
behaves as a plane wave plus an outgoing (+) or incoming (−) spherical wave. A DPW is
characterized by the wave vector k of the asymptotic plane wave and the spin projection
µ; it can be expanded in the basis of spherical waves as (see, e.g., Refs. [36, 6, 40])

ψ
(±)
kµ (r) =

1

k

√
ε+ 2mec2

π(ε+ mec2)

∑
κ,m

i` exp (±iδκ)

{[
Ωκm(k̂)

]†
χµ

}
ψεκm(r) , (1.1.24)

where
ε =

√
(c~k)2 + (mec2)2 −mec

2 (1.1.25)
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is the kinetic energy of the particle. The expansion (1.1.24) is known as the partial-wave
series. It can be easily verified that, with the adopted normalization for free spherical
waves, DPWs satisfy the orthogonality relation

∫ [
ψ

(±)
k′µ′(r)

]†
ψ

(±)
kµ (r) dr = δ(k′ − k) δµ′µ . (1.1.26)

1.1.2 Matrix elements of Racah tensors and the spin operator

The calculation of cross sections, presented in this work, requires the calculation of the
matrix elements of the Racah Tensor defined by the following functions:

CLM(r̂) ≡
√

4π

2L+ 1
YLM(r̂) , (1.1.27)

It is important to note that the 2L+1 functions CLM(r̂) constitute an irreducible tensor
of rank L, C(L). By virtue of the Wigner-Eckart theorem (see, e.g., Ref. [41]), the matrix
elements of Racah tensors for eigenstates Ωκm of the total angular momentum J = L+SP

of a spin 1
2

particle are

〈Ωκ1m1|CLM |Ωκ2m2〉 ≡
∫

[Ωκ1m1(r̂)]† CLM(r̂) Ωκ2m2(r̂) dr̂

=
1√

2j1 + 1
〈j2Lm2M |j1m1〉

〈
`1

1
2
j1

∥∥C(L)
∥∥ `2

1
2
j2

〉
.(1.1.28)

The reduced matrix element
〈
`1

1
2
j1

∥∥C(L)
∥∥ `2

1
2
j2

〉
is given by the expression (see, e.g.,

Ref. [42])

〈
`1

1
2
j1

∥∥C(L)
∥∥ `2

1
2
j2

〉
= υ(L, `1, `2)

√
2j2 + 1 〈Lj201

2
|j1

1
2
〉 , (1.1.29)

where the factor

υ(L, `1, `2) ≡
{

1 if L+ `1 + `2 is even,

0 otherwise,
(1.1.30)

accounts for the parity selection rule.
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Matrix elements of spin operators can be evaluated by using the identity,

Ω†κ1m1
(r̂)σ Ωκ2m2(r̂) =

∑
J,M

(−1)M

×
{√

J

4π

(
κ1 + κ2

J
− 1

)
〈Ωκ1,m1|CJM |Ω−κ2,m2〉YJ−1

J,−M(r̂)

+

√
2J + 1

4π J(J + 1)
(κ1 − κ2) 〈Ωκ1,m1|CJM |Ωκ2,m2〉YJ

J,−M(r̂)

+

√
J + 1

4π

(
κ1 + κ2

J + 1
+ 1

)
〈Ωκ1,m1|CJM |Ω−κ2,m2〉YJ+1

J,−M(r̂)

}
, (1.1.31)

where the functions YL
JM(r̂) are the vector spherical harmonics, defined by (see, e.g.,

Refs. [39, 40])

YL
JM(r̂) =

1∑
ν=−1

〈L, 1,M + ν,−ν|JM〉YL,M+ν(r̂) ξ−ν , (1.1.32)

where ξν are the spherical unit vectors,

ξ+1 =
1√
2


−1

−i

0

 , ξ0 =


0

0

1

 , ξ−1 =
1√
2


1

−i

0

 . (1.1.33)

It is important to underline that the vectors ξν represents an useful spherical base
for expressing any vector G which can greatly simplify the calculations:

G =
∑
ν

(−1)νGνξ−ν , (1.1.34)

where

Gν = ξν ·G (1.1.35)

are the spherical components, which constitute an irreducible tensor operator [38, 41].
The dot product of two vectors, ζ and G, is given by

ζ ·G =
∑

ζiGi =
∑
ν

(−1)νζνG−ν , (1.1.36)

where ζi, Gi and ζν , Gν are, respectively, the Cartesian and spherical components of the
vectors.
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1.1.3 The DHFS potential

The Dirac Hartree Fock Slater potential (i.e. DHFS potential) of an atom or ion of
atomic number Z with N bound electrons is determined by the ground-state electron
density, ρ(r), which is obtained self-consistently (see, e.g., [43, 44]). It is given by

VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r) . (1.1.37)

The term Vnuc(r) is the nuclear potential (i.e., the electrostatic interaction energy of an
electron at r with the nucleus, which is assumed to be spherical). For a point nucleus,

Vnuc(r) = −Ze2/r. (1.1.38)

The effect of the finite size of the nucleus can be accounted for by using simple models
for the nuclear charge distribution. A convenient parameterisation of the proton density
is provided by the Fermi distribution [45],

ρp(r) =
ρ0

exp [(r −Rn)/z] + 1
, (1.1.39)

with
Rn = 1.07A1/3 fm, and z = 0.546 fm , (1.1.40)

where A is the mass number, which is usually replaced by the atomic weight (mean
relative atomic mass) of the element. The constant ρ0, which equals twice the proton
density at r = Rn, is to be determined by normalization. The nuclear potential for the
Fermi distribution has to be calculated numerically,

Vnuc(r) = −e2

∫
ρp(r′)

|r− r′| dr′

= −e
2

r

∫ r

0

ρp(r′) 4πr′2 dr′ − e2

∫ ∞
r

ρp(r′) 4πr′ dr′ . (1.1.41)

The second term in expression (1.1.37) is the electronic potential (i.e., the interaction
energy of an electron at r with the atomic electron cloud),

Vel(r) =
e2

r

∫ r

0

ρ(r′) 4πr′2 dr′ + e2

∫ ∞
r

ρ(r′) 4πr′ dr′ , (1.1.42)

and the last term is the local approximation to the exchange potential. Exchange inter-
action is a quantum mechanical effect (without any classical analogy) that only occurs
between identical particles. It is not a true force (lack of force carriers like photons
in electromagnetism interaction) and is due to the wave function of indistinguishable
particles being subject to exchange symmetry, that is, either remaining unchanged (sym-
metric) or changing its sign (antisymmetric) when two particles are exchanged. Both
bosons and fermions can experience the exchange interaction. For fermions, it is some-
times called Pauli repulsion and related to the Pauli exclusion principle. For bosons,
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the exchange interaction takes the form of an effective attraction that causes identi-
cal particles to be found closer together, as in BoseEinstein condensation. We use the
Slater-Latter potential given by

Vex(r) =


V Slater

ex (r) if r < rLatter,

−(Z −N + 1)
e2

r
− Vnuc(r)− Vel(r) if r ≥ rLatter,

(1.1.43)

where

V Slater
ex (r) = −3

2
e2(3/π)1/3[ρ(r)]1/3. (1.1.44)

is the exchange potential derived by Slater [46], and the cut-off radius rLatter is the outer
root of the equation

r
[
Vnuc(r) + Vel(r) + αV Slater

ex (r)
]

= −(Z −N + 1)e2. (1.1.45)

The modification (1.1.43) of Slater’s potential for r > rLatter, which ensures the correct
behaviour of V (r) at large radii, is known as Latter’s tail correction [47].

1.1.4 Photon polarization

The polarization of photon beams that propagate in the direction of the z axis can be
described in terms of the basis {|ε̂1〉, |ε̂2〉} of linear polarisation states along the x and
y axes. Pure polarisation states can be expressed in the form

|ζ〉 = cos(α/2)|ε̂1〉+ sin(α/2) exp(iβ)|ε̂2〉 =

 cos(α/2)

sin(α/2) exp(iβ)

0

 (1.1.46)

with α ∈ [0, π] and β ∈ (−π, π]. There is a one-to-one correspondence between polarisa-
tion states |ζ〉 and polarisation vectors of electromagnetic waves, ζ = ζ1ε̂1 + ζ2ε̂2. The
electric field E of the polarized wave is given by

E(r, t) = Re
{

[cos(α/2) ε̂1 + sin(α/2) exp(iβ) ε̂2] exp [i(k·r− ωt+ χ)]
}

(1.1.47)

In the following, we simplify the notation by writing ζ and ε̂i instead of |ζ〉 and |ε̂i〉,
i.e., we use the same symbol to designate the quantum polarisation states and the unit
polarisation vectors. States with β = 0 correspond to linear polarisation in a direction
that makes an angle α/2 with ε̂1. If β = ±π/2 and α = π/2, we have right-handed (r)
and left-handed (l) circularly polarised photons1,

ε(r) =
1√
2

(ε̂1 + iε̂2) = −ξ̂+1,

ε(l) =
1√
2

(ε̂1 − iε̂2) = ξ−1, (1.1.48a)

1We consider “natural” right-handed polarization, which is opposite to the convention adopted in
optics [48].
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where ξ+1 and ξ−1 are the vectors of the spherical basis, Eq. (1.1.35).

Usually, real beams are partially polarized, that is, their photons are in various
states |ζn〉 of pure polarisation with corresponding probabilities pn. The states |ζn〉 are
only assumed to be normalised to unity, their number and nature are arbitrary. The
probabilities pn are positive and add to unity. Polarization features of real beams can be
described by using the density matrix formalism [49, 50, 51, 52]. The density operator
for such a radiation beam is

ρ ≡
∑
n

|ζn〉 pn〈ζn|. (1.1.49)

The matrix of this operator in the basis of states of linear polarisation {ε̂1, ε̂2} is Her-
mitian and has unit trace. It can be expressed as a linear combination of the Pauli
matrices σ, Eq. (1.1.3), and the 2× 2 identity matrix, I2, with real coefficients,

ρ =
1

2
(I2 + P1σ1 + P2σ2 + P3σ3) =

1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
. (1.1.50)

The coefficients Pi are the Stokes parameters; they provide a complete description of the
polarisation of a beam and can be measured experimentally [50]. We have Pi = Trρσi
or, more explicitly,

P1 = ρ12 + ρ21, P2 = i(ρ12 − ρ21), P3 = ρ11 − ρ22. (1.1.51)

It is worth mentioning that in optics the Pauli matrices, as well as the Stokes parameters,
are usually considered in a different order, namely, {σ3, σ1, σ2}. We prefer the ordering
(1.1.3) employed in quantum mechanics because the formalism is thus parallel to that
of polarisation of spin-1

2
particles.

The Stokes parameters can be regarded as the components of a vector, P ≡ (P1, P2, P3),
the Poincaré vector, which is analogous to the direction of spin of a spin-1

2
particle, al-

though it transforms differently under rotations (see [51, 50]). For a pure state of the
type (1.1.46) the density matrix takes the form

ρ =

(
cos2(α/2) cos(α/2) sin(α/2) exp(−iβ)

cos(α/2) sin(α/2) exp(iβ) sin2(α/2)

)
, (1.1.52)

and the associated Stokes parameters are

P1 = sinα cos β, P2 = sinα sin β, P3 = cosα. (1.1.53)

Note that α and β are the polar and azimuthal angles of the Poincaré vector P, and
that P = 1. In the opposite situation, when the Stokes parameters vanish, P = 0,
the density matrix takes the form ρ = 1

2
I2, which represents unpolarized photons. The

magnitude P of the Poincaré vector measures the degree of polarization; it can take
values from 0 (unpolarised photons) to 1 (pure polarisation states).
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In the case of pure states (P = 1), inverting the relations (1.1.53), we obtain the
state angles (α, β) from the Stokes parameters,

α = arccosP3, exp(iβ) =
P1 + iP2√

1− P 2
3

. (1.1.54)

The pure states corresponding to the Poincaré vectors P and −P, with respective di-
rections (α, β) and (π − α, β + π), are

ζ(P) =

 cos(α/2)

sin(α/2) exp(iβ)

0

 and ζ(−P) =

 sin(α/2)

− cos(α/2) exp(iβ)

0

 . (1.1.55)

Note that these states are orthogonal,

〈ζ(P)| ζ(−P)〉 = 0. (1.1.56)

Hence, by reversing the signs of the Stokes parameters of a pure state, we obtain its
orthogonal state (except for, possibly, an irrelevant phase factor). Thus, the state angles
(α, β), the Poincaré vectors and the density matrices of the states {ε̂1, ε̂2} of the linear-
polarisation basis are

ε̂1 = x̂ =

 1

0

0

 :
α = 0

β = 0
, P =

 0

0

1

 , ρ =
1

2

(
2 0

0 0

)
, (1.1.57a)

ε̂2 = ŷ =

 0

1

0

 :
α = π

β = π
, P =

 0

0

−1

 , ρ =
1

2

(
0 0

0 2

)
. (1.1.57b)

Similarly, for the states of the basis of circular polarisation, we have

ε̂(r) = −ξ+1 =
1√
2

 1

i

0

 :
α = π/2

β = π/2
, P =

 0

1

0

 , ρ =
1

2

(
1 −i

i 1

)
, (1.1.58a)

ε̂(l) = ξ−1 =
1√
2

 1

−i

0

 :
α = π/2

β = −π/2 , P =

 0

−1

0

 , ρ =
1

2

(
1 i

−i 1

)
. (1.1.58b)

The intensity of a photon beam is defined as the number of photons that cross a
unit surface perpendicular to the direction of the beam per unit time. Let us consider
two photon beams with intensities I1 and I2 and respective density matrices ρ1 and ρ2.
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The incoherent admixture of these two beams gives a beam with intensity I = I1 + I2

and density matrix

ρ =
I1

I
ρ1 +

I2

I
ρ2. (1.1.59a)

The corresponding Stokes parameters are

P =
I1

I
P1 +

I2

I
P2, (1.1.59b)

where P1 and P2 are the Poincaré vectors of the initial beams. Notice that an unpolar-
ized beam can be considered as the admixture of two completely polarised beams with
equal intensities and “opposite” polarisations, P and −P, whatever the direction of P.

A partially polarised beam with Stokes parameters P (P < 1) can be regarded as
an incoherent admixture of an unpolarised beam and a completely polarised beam. To
characterise these beams, we define the reduced Stokes parameters P ′i ≡ Pi/P . The
matrix density of the partially polarised beam P can then be expressed as

ρ =
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)

= (1− P )
1

2

(
1 0

0 1

)
+ P

1

2

(
1 + P ′3 P ′1 − iP ′2
P ′1 + iP ′2 1− P ′3

)
. (1.1.60)

Hence, the original beam is equivalent to the mixture of an unpolarised beam and a
completely polarised beam (with Poincaré vector P′ = P/P , P ′ = 1), having relative
intensities (1− P ) and P , respectively.

1.1.5 Derivation of the cross sections

In this section it will be summarized the derivation of the cross section of a beam of
photons with energy W = ~ω and wave vector k (k = ω/c), polarized in a direction
ζ perpendicular to k, incident on a target atom at the origin of coordinates. The
absorption of a photon causes the transition of the active electron from the initial orbital
ψa with energy εa < 0, and ionization energy Ea ≡ |εa|, to an excited orbital with energy
εb = εa+W , which may be either bound (when W < Ea, excitation) or free (if W > Ea,
ionization). To simplify calculations, it is considered that photons propagate along the
direction of the z axis. This implies that the spherical components of the polarization
vector [ζν = ξν ·ζ, see Eq. (1.1.34)] are such that ζ0 = 0 and |ζ−1|2 + |ζ+1|2 = 1. The
Hamiltonian of the target atom in a radiation field can be expressed as:

H =
N∑
i=1

[
c α̃i · pi + e α̃i ·Ai(ri, t) +

(
β̃ − 1

)
mec

2
]

+
N∑
i=1

Vnuc(ri) +
N∑

i<j=1

e2

|ri − rj|
, (1.1.61)
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where, for the i-th atomic electron, Vnuc(ri) is the interaction energy of that electron
with the nucleus (assumed spherical), and the last double summation is the Coulomb
interaction between electrons. The summations run over the N electrons in the atom
(N < Z in the case of positive ions). Note that the nucleus is assumed to be fixed at the
origin of the reference frame and is represented simply through its electrostatic potential
Vnuc(ri) = −eϕnuc(r). This is equivalent to assuming that the nucleus has infinite mass,
an assumption that is not appropriate for photons with energies that are comparable to
the rest energy of the atom. We can rewrite Eq. as H = H0 +H′(t) where H0 is the
Hamiltonian of the target atom:

H0 =
N∑
i=1

[
c α̃i · pi +

(
β̃ − 1

)
mec

2
]

+
N∑
i=1

Vnuc(ri) +
N∑

i<j=1

e2

|ri − rj|
, (1.1.62)

and H′(t) is the Hamiltonian of the interaction between the atom and the radiation:

H′(t) = e

N∑
i=1

α̃i ·Ai(ri, t). (1.1.63)

In Quantum electrodynamics (QED), electromagnetic radiation fields are treated using
the formalism of second quantification. The electromagnetic field in vacuum is repre-
sented by the vector potential operator [53]:

A(r, t) =
∑
k,α

√
2π~c2

L3ω

{
akαε̂α exp[i(k·r− ωt)] + a†kαε̂

∗
α exp[−i(k·r− ωt)]

}
. (1.1.64)

where akα(0) and a†kα(0) are creation and annihilation operators and the sum is over
wave numbers k and over the two polarization states ε̂α. Here r is not regarded as a
quantum dynamical variable, but simply as a parameter that modulates the operator
(it has nothing to do with the position coordinates of a photon). The frequency ω of
each mode k is given by ω = ck. The constant under the square root corresponds to the
monochromatic plane waves obeying periodic boundary conditions on a cubic box with
edges of length L. To simplify the formulas, we introduce the (dimensionless) operators:

Mkα = ε̂α ·
N∑
i=1

α̃i exp(ik · ri) , (1.1.65)

The Hamiltonian of interaction can be rewritten as:

H′(t) =
∑
k,α

√
2π~c2e2

L3ω

[
akαMkα exp(−iωt) + a†kαM

†
kα exp(iωt)

]
. (1.1.66)

In most practical cases, the interaction between the atom and the radiation field is
weak and H′(t) can be treated as a perturbation. It can be assumed that, sometime
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in the past, the atom was prepared in a bound state ψA with energy EA satisfying the
Dirac Equation:

H0ΨA = EAΨA. (1.1.67)

The interaction with the radiation field may cause transitions of the atom from the initial
state ΨA to other states ΨB, by absorption or emission of photons. If the initial radiation
field contains photons with large enough energy ~ω, absorption of these photons may
cause the ionization of the atom, i.e., the transition to a final state in which one of the
atomic electrons is in a free orbital with positive energy. The interaction also modifes
the state of the field. In emission and absorption processes, the number of photons in
the active mode kα is reduced or increased in one unit (at least). Photons can also be
scattered by the target atom. In a scattering event, the incident photon is absorbed and
a new photon is emitted, so that the number of photons in the field remains constant.
The target atom may either remain in the initial energy level (Rayleigh scattering),
change to another bound level (Raman scattering) or be ionized (Compton scattering).
Here it is assumed that the radiation field is weak enough (i.e., the number of photons
in each mode kα is sufficiently small) for the interaction H′(t) to be considered as a
perturbation and it will be considered the process of absorption of photons.

It is important to underline that the operator H′(t) acts on the space of states of the
whole system (atom plus radiation field) which is the direct product of the state space
of the atom and the Fock space of the radiation field. The base states of the system are
of the form:

Φ = | Ψ 〉 ⊗ | nk1α1 , nk2α2 , ... 〉 ≡ | Ψ, nk1α1 , nk2α2 , ... 〉 , (1.1.68)

where Ψ is an eigenstate of H0 with energy E and | nk1α1 , nk2α2 , ... 〉 is a vector of
the symmetrical basis of Fock’s space representing a field with nkiαi photons in the
mode kiαi for i = 1, 2, ...,∞. In order to compute the cross section for photoeffect
it will be necessary to compute the matrix elements 〈ΦB |H′(t)|ΦA〉 of the interaction
Hamiltonian.

It can be showed [53] that the matrix elements of the operator Mkα, 〈ΦB |Mkα|ΦA〉,
are different from zero only when the final and initial states differs in a single photon.
The same holds for the Hamiltonian H′(t). Hence, to first order of perturbation theory,
the interaction can only cause the emission or absorption of a single photon by the
atom. To study processes that involve 2 (or more) photons, the interaction has to be
treated using second (or higher) order perturbation theory. In particular, to describe
scattering processes we need to use second-order perturbation theory. It is also assumed
that radiation beams are incoherent, that is, that there are no correlations between the
photons in the beam. This is true for photon beams from a hot gas, because photons are
emitted at random by the individual atoms in the gas. When the beam is incoherent,
the transition rate is obtained by simply adding the transition rates corresponding to
each mode kα (i.e., there is no interference between the various modes). Note that the
two assumptions (weak and incoherent fields) may not hold for laser fields, because the
light from these devices has a high degree of coherence and because high-power laser
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beams may be very intense. In intense low-energy laser beams, simultaneous absorption
of several photons has been observed.

With this assumptions it is possible to calculate transition rates using the Fermi
Golden Rule for free final state:

dwBA,kα =
2π

~
dN

dεB dk̂B
|H′BA|2 δ(εB − εA − ~ω) dεB dk̂B, (1.1.69)

where dN /dεB dk̂B is the density of the final states of the electron:

dN
dεB dk̂B

= kB
εB +mec

2

(c~)2
(1.1.70)

and H′BA(t) = 〈ΦB |H′(t)|ΦA〉. In the case of of bounded final state the Fermi golden
rule becomes:

wBA,kα =
2π

~
|H′BA|2 δ(εB − εA − ~ω) , (1.1.71)

The matrix element of the interaction operator is:

H′BA(t) =
∑
k,α

√
2π~c2e2

L3ω

〈
ΦB

∣∣∣akαMkα exp(−iωt) + a†kαM
†
kα exp(iωt)

∣∣∣ΦA

〉
(1.1.72)

which can be rewritten using the properties of the creation and annihilation operators
(for the case of absorption) as:

H′BA(t) =
∑
k,α

√
2π~c2e2

L3ω
{ (Mkα)BA 〈nkα − 1 |akα|nkα〉 exp(−iωt)

+ (M †
kα)BA

〈
nkα − 1

∣∣∣a†kα∣∣∣nkα

〉
exp(iωt) } , (1.1.73)

where:

(Mkα)BA =

〈
ΨB

∣∣∣∣∣ε̂α ·
N∑
i=1

α̃i exp (ik · ri)
∣∣∣∣∣ΨA

〉
. (1.1.74)

Considering the definition of the matrix element, the only term which gives a non zero
contribution is:

〈nkα − 1 |akα|nkα〉 =
√
nkα , (1.1.75)

so the matrix element of the interaction operator becomes:

H′BA(t) =

√
2π~c2e2

L3ω
(Mkα)BA

√
nkα , (1.1.76)

In order to simplify the formulation of the theory, and also to facilitate numerical
calculations, it will be assumed that the target atom can be described by using an
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independent-electron model(IEM). In the calculations it will be used the DHFS self-
consistent potential VDHFS(r), which means that the atomic Hamiltonian in Eq. is
approximated by the IEM Hamiltonian:

H0 ≈
N∑
i=1

Hi , (1.1.77)

with
Hi = c α̃i · pi + β̃mec

2 + VDHFS(r). (1.1.78)

The one-active-electron approximation consists of considering only the excitations of a
single electron from a bound orbital to an unoccupied (bound or free) final one, whereas
the other atomic electrons behave as mere spectators and their orbitals remain frozen
in the course of the interaction. This approximation amounts to neglecting correlation
effects. This loose term refers to approximations underlying the IEM model and to
possible readjustments of the orbitals of inactive electrons during the interaction. This
allows to simplify the function Ψ in the so called Slater determinants [53]:

Ψ =
1√
N !

det(Ψ) =
1√
N !

∣∣∣∣∣∣∣
ψ1(r1) . . . ψ1(rN)

...
. . .

...

ψN(r1) . . . ψN(rN)

∣∣∣∣∣∣∣ , (1.1.79)

build with one-electron orbitals ψi(ri) that are solutions of the Dirac equation for the
DHFS self-consistent potential:[

c α̃ · p +
(
β̃ − 1

)
mec

2 + VDHFS(r)
]
ψν(r) = ενψν(r). (1.1.80)

Following the Slater-Condon rule Eq.(1.1.74) is simplified giving:

(Mkα)BA = 〈ψB |ε̂α · α̃ exp (ik · r)|ψA〉 (1.1.81)

For exitation we have:

wBA,kα =
(2π)2~c2e2

W

nkα

L3
|Mkα|2 δ(εB − εA − ~ω) , (1.1.82)

where the quantity nkαc/L
3 represents the flux of photons in the incident beam. Dividing

the transition rate for this quantity it can be obtained the cross section for excitation
of the active electron to a bound orbital, ψb = ψnbκbmb :

σexc,1
nbκbmb;naκama

(W, ζ) =
(2π)2e2c~

W

∣∣M exc
nbκbmb;naκama

(W, ζ)
∣∣2 δ(εb − εa −W ) , (1.1.83)

with the transition matrix element which can be computed in spherical components as:

M exc
nbκbmb;naκama

(W, ζ) = ζ ·Gexc(κbmb;κama) , (1.1.84)
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where

Gexc(κbmb;κama) ≡ 〈ψnbκbmb| α̃ exp(ik·r)|ψnaκama〉 . (1.1.85)

The delta distribution in Eq. (1.1.83) indicates that absorption is possible only at
resonance, i.e., when the excitation energy εb − εa coincides with the energy of the
photon. A finite cross, which varies continuously with the photon energy, is obtained
when the energy width of atomic levels is taken into account.

In the case of ionization, the final orbital belongs to the continuum spectrum (εb > 0).
The differential cross section (DCS) for absorption of a photon, with emission of the
active electron with spin mSb, linear momentum ~kb, and direction of motion within the
solid angle element dk̂b about the direction k̂b, is [6, 7]:

dwBA,kα =
(2π)2~c2e2

W

nkα

L3
kB
εB +mec

2

(c~)2
|Mkα|2 δ(εB − εA −W ) dεB dk̂B, (1.1.86)

which becomes as done for the excitation case:

dσion,1
b;naκama

(W, ζ) =
(2π)2e2

W

kb(εb + mec
2)

c~
∣∣M ion

b;naκama(W, ζ)
∣∣2 dk̂b , (1.1.87)

where the transition matrix element

M ion
b;naκama(W, ζ) = ζ ·

〈
ψ

(−)
kbmSb

∣∣∣ α̃ exp(ik·r)
∣∣∣ψnaκama〉 (1.1.88)

is to be evaluated on the energy shell, i.e., with εb = εa + W . Inserting the expansion
(1.1.24) of the DPW, the matrix element becomes

M ion
b;naκama(W, ζ) =

1

kb

√
εb + 2mec2

π(εb + mec2)

∑
κb,mb

i−`b exp (iδκb) ζ ·Gion(κbmb;κama)

×
[
χ†mSb

Ωκbmb(k̂b)
]
, (1.1.89)

where

Gion(κbmb;κama) = 〈ψεbκbmb| α̃ exp(ik·r)|ψnaκama〉 , (1.1.90)

are matrix elements of the operator α̃ exp(ik·r) in the basis of spherical waves, analogous
to those of excitation.

1.1.6 One-electron transition-matrix elements

The matrix elements (1.1.85) and (1.1.90) are of the type

Mba = ζ ·G with G = 〈ψεbκbmb |α̃ exp(ik·r)|ψεaκama〉 , (1.1.91)



1.1. Theory 19

where, in general, the polarization vector ζ may be complex. To calculate the spherical
components of G, Eq. (1.1.35), it is introduced the Rayleigh expansion of the plane
wave,

exp(ik · r) =
∞∑
J=0

J∑
M=−J

iJ(2J + 1) jJ(kr)C∗JM(k̂)CJM(r̂) , (1.1.92)

where jJ(kr) are spherical Bessel functions. The formulas become simpler if it is con-
sidered a reference frame with the z axis parallel to the direction k̂ of the photon. In
such a frame, C∗JM(k̂) = δM0, and it is possible to write

G =
∑
J

iJ(2J + 1) 〈ψεbκbmb |α̃ jJ(kr)CJ0(r̂)|ψεaκama〉 . (1.1.93)

The matrix elements in this expression can be evaluated on the basis of Eq. (1.1.31), by
a method similar to the one adopted by Mann and Johnson [54] for a related problem.
After a rather tedious calculation it is found the following expressions for the spherical
components of G,

G+1(κb,mb;κa,ma) =
∞∑
J=1

iJ
2J + 1√
2J(J + 1)

{
〈Ωκb,mb|CJ,+1|Ωκa,ma〉 eRJ

εbκb;εaκa

+i 〈Ωκb,mb|CJ,+1|Ω−κa,ma〉mRJ
εbκb;εaκa

}
, (1.1.94a)

G−1(κb,mb;κa,ma) =
∞∑
J=1

iJ
2J + 1√
2J(J + 1)

{
〈Ωκb,mb|CJ,−1|Ωκa,ma〉 eRJ

εbκb;εaκa

−i 〈Ωκb,mb|CJ,−1|Ω−κa,ma〉mRJ
εbκb;εaκa

}
, (1.1.94b)

and

G0(κb,mb;κa,ma) =
∞∑
J=0

iJ (2J + 1) 〈Ωκb,mb|CJ,0|Ωκa,ma〉 lRJ
εbκb;εaκa

, (1.1.94c)

with the radial integrals

lRJ
εbκb;εaκa

=
1

2J + 1

[
(κb − κa) (F J−1

εbκb;εaκa
+GJ−1

εbκb;εaκa
)− J(F J−1

εbκb;εaκa
−GJ−1

εbκb;εaκa
)

+ (κb − κa) (F J+1
εbκb;εaκa

+GJ+1
εbκb;εaκa

) + (J + 1)(F J+1
εbκb;εaκa

−GJ+1
εbκb;εaκa

)
]
,

(1.1.95a)

eRJ
εbκb;εaκa

=
J(J + 1)

2J + 1

[
κb − κa
J

(F J−1
εbκb;εaκa

+GJ−1
εbκb;εaκa

)− (F J−1
εbκb;εaκa

−GJ−1
εbκb;εaκa

)

−κb − κa
J + 1

(F J+1
εbκb;εaκa

+GJ+1
εbκb;εaκa

)− (F J+1
εbκb;εaκa

−GJ+1
εbκb;εaκa

)

]
, (1.1.95b)
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and

mRJ
εbκb;εaκa

= (κa + κb) (F J
εbκb;εaκa

+GJ
εbκb;εaκa

), (1.1.95c)

where

F J
εbκb;εaκa

≡
∫ ∞

0

Pεbκb(r)Qεaκa(r) jJ(kr) dr, (1.1.96a)

GJ
εbκb;εaκa

≡
∫ ∞

0

Qεbκb(r)Pεaκa(r) jJ(kr) dr. (1.1.96b)

The superscripts “l”, “e” and “m” in the integrals (1.1.95) stand for “longitudinal”,
“electric” and “magnetic”, respectively, because these radial integrals also arise in an
alternative treatment based on the multipole expansion of the radiation field (see, e.g.,
[55, 56]).

We recall that the matrix elements 〈Ωκb,mb|CJ,ν |Ωκa,ma〉 vanish unless mb = ma + ν.
Moreover, at least one of the elements 〈Ωκb,mb|CJ,ν |Ωκa,ma〉 and 〈Ωκb,mb|CJ,ν |Ω−κa,ma〉
vanishes because the values of `a for κa and −κa differ by one unit and, therefore, the
parity factor υ(J, `b, `a) is null for one of these matrix elements. Hence, the two terms
in curly braces on the right-hand side of Eqs. (1.1.94a) and (1.1.94b) cannot be both
different from zero.

More compact formulas are obtained by introducing the quantities

lYJεbκb;εaκa ≡
√

2J + 1
〈
`b

1
2
jb
∥∥C(L)

∥∥ `a 1
2
ja
〉

lRJ
εbκb;εaκa

, (1.1.97a)

eYJεbκb;εaκa ≡
√

2J + 1

2J(J + 1)

〈
`b

1
2
jb
∥∥C(L)

∥∥ `a 1
2
ja
〉

eRJ
εbκb;εaκa

, (1.1.97b)

mYJεbκb;εaκa ≡
√

2J + 1

2J(J + 1)

〈
`b

1
2
jb
∥∥C(L)

∥∥ `a 1
2
ja
〉

mRJ
εbκb;εaκa

, (1.1.97c)

where ¯̀
a is the orbital angular momentum quantum number corresponding to −κa.

Considering the symmetry properties of Clebsch-Gordan coefficients it is possible to
write

G±1 = (−1)ja−ma
∞∑
J=1

iJ 〈ja, jb,ma,−mb|J,∓1〉
{

eYJεbκb;εaκa ± i mYJεbκb;εaκa
}

(1.1.98a)

and

G0 = (−1)ja−ma
∞∑
J=0

iJ 〈ja, jb,ma,−mb|J, 0〉 lYJεbκb;εaκa . (1.1.98b)

The cross section for photoabsorption by the electrons in a closed subshell (naκa)
2|κa|

is proportional to the sum of squared transition-matrix elements over magnetic quantum
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numbers, Eqs. (1.1.103) and (1.1.110),

Gba ≡
∑
ma,mb

|Mba|2 =
∑
ν,ν′

(−1)ν+ν′ ζ−ν ζ
∗
−ν′

∑
ma,mb

GνG
∗
ν′ . (1.1.99)

Since the photon polarization vector ζ is perpendicular to the wave vector k = kẑ and
normalized to unity, it is ζ0 = 0 and |ζ−1|2 + |ζ+1|2 = 1. We note that the only depen-
dence on the quantum numbers ma and mb is through the Clebsch-Gordan coefficients
〈ja, jb,ma,−mb|J, ν〉. The summation over these quantum numbers is performed easily
by using the orthogonality property of these coefficients. We thus obtain,∑

ma,mb

G±1G
∗
∓1 = 0, (1.1.100a)

and

∑
ma,mb

G±1G
∗
±1 =

∞∑
J=1

{[
eYJεbκb;εaκa

]2
+
[

mYJεbκb;εaκa
]2}

, (1.1.100b)

Therefore, the quantity (1.1.99) is given by

Gba =
∑
J

{[
eYJεbκb;εaκa

]2
+
[

mYJεbκb;εaκa
]2}

. (1.1.101)

1.1.7 Cross sections of closed subshells

In practice, target atoms are randomly oriented and the measurable quantity is the cross
section for photoabsorption by the electrons of a subshell (naκa)

qa with qa electrons.
Calculations are easier in the case of closed subshells, with qa = 2|κa| electrons, because
of various sum rules obeyed by the angular integrals in transition matrix elements. For
open subshells, with qa < 2|κa|, the average over atomic orientations is equivalent to
assuming that the individual orbitals in the subshell have a fractional occupation number
equal to qa/2|κa|; the resulting partial cross section is then equal to that of the closed
subshell times qa/2|κa|.

In the case of excitation, the measured cross section includes transitions to any
state of the final energy level εb. Generally, the final level is empty (qb = 0), although
occasionally it may correspond to an open subshell (nbκb)

qb filled with qb (0 < qb < 2|κb|)
electrons. Hence, the cross section for one-electron excitation from the subshell (naκa)

qa

to a bound level εb by absorption of a photon of polarization ζ is given by

σexc
ba (W ) =

qa
2|κa|

2|κb| − qb
2|κb|

∑
ma

∑
mb

σexc,1
nbκbmb;naκama

(W, ζ)

= σexc
nbκb;a

(W ) δ(εb − εa −W ) (1.1.102)
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where it is introduced the “reduced” cross section, σexc
ba (W ), defined by

σexc
nbκb;a

(W ) =
(2π)2e2c~

W

qa
2|κa|

2|κb| − qb
2|κb|

Gexc(κb, κa) , (1.1.103)

where

Gexc(κb, κa) =
∑
ma

∑
mb

∣∣M exc
nbκbmb;naκama

(W, ζ)
∣∣2

=
∑
ma

∑
mb

∣∣∣∣∣∑
ν=±1

(−1)νζνG
exc
−ν (κb,mb;κa,ma)

∣∣∣∣∣
2

(1.1.104)

is the sum of squared transition-matrix elements over orbitals of the initial and final
energy levels, which is given by Eq. (1.1.101),

Gexc(κb, κa) =
∑
J

{[
eYJnbκb;εaκa

]2
+
[

mYJnbκb;εaκa
]2}

. (1.1.105)

The quantities e,mYJnbκb;εaκa are defined by Eqs. (1.1.97) with radial integrals mRJ
nbκb;εaκa

evaluated for the final bound orbital ψnbκbmb . Note that the reduced cross section
(1.1.103) is independent of the polarization of the absorbed photon. Naturally, this
result is a direct consequence of the spherical symmetry of closed subshells.

Let us now consider the observed DCS for ionization of a subshell (naκa)
qa . In

addition to the assumption that the target atom is randomly oriented, it is supposed
that the final spin state of the emitted photoelectron is not measured. The observed
DCS is thus obtained by summing over degenerate initial states and over final spin
states, mSb.

dσion
a (W, ζ)

dk̂b
=

(2π)2e2

W

kb(εb + mec
2)

c~
qa

2|κa|
∑
ma

∑
mSb

∣∣M ion
b;naκama(W, ζ)

∣∣2 . (1.1.106)

Inserting the expansion (1.1.90):

dσion
a (W, ζ)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
ma

∑
κ′b,m

′
b

i−`
′
b exp

(
iδκ′b
)
ζ ·Gion(κ′b,m

′
b;κa,ma)


∗

×
{∑
κb,mb

i−`b exp (iδκb) ζ ·Gion(κb,mb;κa,ma)

}

×Ω†κ′bm′b
(k̂b)

[∑
mSb

χmSb
χ†mSb

]
Ωκbmb(k̂b) , (1.1.107)

where the sum in square brackets is equal to the 2 × 2 unit matrix. The total cross
section for ionization of the subshell (naκa)

qa is obtained by integrating the DCS over
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the directions of the emerging photoelectron,

σion
a (W ) =

∫
dσion

a (W, ζ)

dk̂b
dk̂b . (1.1.108)

Using the orthogonality of the spherical spinors, Ωκbmb(k̂b), it is obtained

σion
a (W ) =

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
κb

G ion(κb, κa) , (1.1.109)

where

G ion(κb, κa) =
∑
ma

∑
mb

∣∣ζ ·Gion(κbmb;κama)
∣∣2

=
∑
ma,mb

∣∣∣∣∣∑
ν=±1

(−1)νζ−νG
ion
ν (κb,mb;κa,ma)

∣∣∣∣∣
2

(1.1.110)

is the sum of squared transition-matrix elements over the orbitals of the active subshell
and over the spherical waves with the final energy, which is given by Eq. (1.1.101),

G ion(κb, κa) =
∑
J

{[
eYJεbκb;εaκa

]2
+
[

mYJεbκb;εaκa
]2}

, (1.1.111)

with the quantities e,mYJnbκb;εaκa defined by Eqs. (1.1.97). We see that, as in the case
of excitation, the total cross section is independent of the polarization of the absorbed
photon.

1.1.8 The dipole approximation

The calculation of cross sections for both excitation and ionization by photons with low
energies, such that the wavelength λ = 2π/k is much larger than the average radial
distance of the electrons in the active subshell, can be simplified by using the dipole
approximation. In this approximation, the quantity k·r is assumed to be much less than
unity, and the exponential in the matrix elements (1.1.85) and (1.1.90) is replaced by
unity,

Gdip(κb,mb;κa,ma) ' 〈ψεbκbmb| α̃|ψnaκama〉 . (1.1.112)

Using the commutation relation of the Dirac Hamiltonian, Eq. (1.1.80), with r,

[H, r] = −i c~ α̃ , (1.1.113)

we get the familiar “length” form of the matrix elements in the dipole approximation,

Gdip(κb,mb;κa,ma) =
i

c~
W 〈ψεbκbmb| r|ψnaκama〉 . (1.1.114)
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Recalling that the spherical components of the vector r are rν = rC1,ν(r̂), the angular
integrals of these matrix elements reduce to matrix elements of the Racah tensors. We
have

Gdip
ν (κb,mb;κa,ma) =

i

c~
W 〈Ωκb,mb|C1,ν |Ωκa,ma〉Dεbκb;εaκa (1.1.115)

with the radial integrals

Dεbκb;εaκa =

∫ ∞
0

[Pεbκb(r)Pεaκa(r) +Qεbκb(r)Qεaκa(r)] r dr. (1.1.116)

Within the dipole approximation, the quantities (1.1.105) and (1.1.111) reduce to

Gdip(κb, κa) =
∑
ma

∑
mb

∣∣∣∣∣∑
ν=±1

(−1)νζν G
dip
−ν (κb,mb;κa,ma)

∣∣∣∣∣
2

=
W 2

3(c~)2

〈
`b

1
2
jb
∥∥C(1)

∥∥ `a 1
2
ja
〉2

[Dεb,κb;εa,κa ]2 . (1.1.117)

Although the dipole approximation yields realistic values of the total cross section for
long-wavelength photons (see Section 1.3), the DCS (i.e., the angular distribution of
photoelectrons) obtained from this approximation is qualitatively correct only for photon
energies near the ionization threshold (see Fig. 1.5).

1.1.9 Near-edge excitation cross section

Because of memory and time constraints, our computer program photacs calculates
reduced excitation cross sections, σexc

nbκb;a
(W ), for bound levels with principal quan-

tum number nb up to ncut = 18. The numerical value of the quantity Gdip(κb, κa),
Eq. (1.1.117), qualifies the levels εnbκb . Cross sections of dipole-forbidden levels [with
Gdip(κb, κa) = 0] have values that are typically several orders of magnitude smaller than
those of dipole-allowed levels [with Gdip(κb, κa) 6= 0]. To reduce the size of the tables,
and to simplify further calculations, photacs delivers cross-section values only for exci-
tations to dipole-allowed levels. Cross sections for transitions to dipole-forbidden levels
are calculated and added to the cross section of the nearest dipole-allowed level. In other
words, the reduced cross section σexc

nbκb;a
(W ) given by the program is the cross section of

the allowed level εnbκb plus small contributions of excitations to neighbouring forbidden
levels.

For a given value of κb, there exists an infinite series of bound levels εnbκb , whose
energies increase monotonically with the principal quantum number nb and have an
accumulation point at zero energy. To account for the cross sections for excitation to
levels with nb larger than 18, it is possible to rely on the fact that, regarding the bound
levels with energies close to zero as a quasi-continuum, the cross section for excitation
continuously joins the ionization cross section at the edge, W = Ea (see, e.g., Refs.
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[57] and [58]). Explicitly, from the cross sections for excitation to the levels εnbκb , it is
defined the following step function

Sa(κb;W ) =
σexc
nbκb;a

(W )

εnb − εnb−1

if εnb−1 − εa < W ≤ εnb − εa, (1.1.118)

where εnb are the midpoints of the energy intervals between successive energy levels,

εnb =
εnbκb + εnb+1,κb

2
. (1.1.119)

That is, the excitation cross section is spread over the energy interval that is closest to
the final level. Numerical results confirm that the step function Sa(κb;W ) does smoothly
join the ionization cross section at the edge (see Fig. 1.3 below). The smooth matching
of the discrete and the continuum is due to the fact that, for a given angular momentum
κb and for not too large radii, the radial functions of bound orbitals with very large nb
differ from those of free orbitals with very small kinetic energies only by a normalization
factor. When free-state orbitals are normalized on the energy scale,∫

ψ†ε′κ′m′ ψεκm dr = δ(ε′ − ε) δκ′κ δm′m , (1.1.120)

and bound orbitals are normalized to unity, Eq. (1.1.20), the radial functions of bound
and free states with energies close to zero are such that(

Pεbκb(r)

Pnbκb(r)

)2

=
1

εnb − εnb−1

(1.1.121)

for sufficiently small radii r, large nb, and small εb. This quantity, which coincides with
the “spread factor” in the definition (1.1.118), can be regarded as the number of discrete
levels per unit energy interval, the analogue to the density of states of the continuum.

In calculations of excitation to bound levels each series of (optically-allowed) levels
εnbκb , with κb fixed is considered separately. Let n0(κb) denote the principal quantum
number of the first level in the series. We describe the first three levels in the series [with
nb = n0(κb), n0(κb)+1, n0(κb)+2] as discrete resonances. The levels with nb > n0(κb)+2
are treated as a quasi-continuum, which extends from a certain cut-off energy W cut

aκb
to

W = Ea, with the excitation cross section expressed as a cubic polynomial in Ea −W ,

σexc
a (κb;W ) = Aκb,0 + Aκb,1(Ea −W ) + Aκb,2(Ea −W )2 + Aκb,3(Ea −W )3. (1.1.122)

The coefficients of this polynomial are determined from a least-squares fit to a table
of values of the step function (1.1.118) at the excitation energies of the levels, {εnbκb ,
Sa(κb; εnbκb−εa)} with nb = n0(κb)+3 to 18. The cut-off energy W cut

aκb
is fixed so that the

integral of the analytical approximation (1.1.122) over W in the interval from W cut
aκb

to
the upper limit of the subinterval of the nb = 18 level, equals the sum of excitation cross
sections of the levels εnbκb with nb = n0(κb) + 3 to 18. We assume that this polynomial
represents the quasi-continuum faithfully and, hence, that it does account for excitations



26 Chapter 1. Theory and calculation of the atomic photoeffect

to levels with nb greater than 18. These considerations can be verified numerically using
our computer programs. A graphical analysis of the case of excitations from the K shell
of argon atoms is given below in Fig. 1.3.

Note that pseudo-continua of series with different κb extend over different intervals.
The cross section for excitations to bound levels is then given by

σexc
a (W ) =

∑
nbκb

σexc
nbκb;a

(W ) δ(εb − εa −W )

+
∑
κb

σexc
a (κb;W ) Θ(W −W cut

aκb
) Θ(Ea −W ) , (1.1.123)

where Θ(x) is the unit step function (= 1 if x ≥ 0, = 0 otherwise). The first summation
is over discrete resonances (excitations to the three lowest levels of each κb series), and
the second summation accounts for excitations to levels in the pseudo-continua.

1.1.10 Ionization cross sections at high energies

The convergence rate of the series (1.1.109) decreases when the energy of the photon
increases. Therefore, the program photacs is able to compute the ionization cross
section σion

a (W ) for photons with energy W up to a certain maximum value W cut
a . Cross

sections for photons with energies higher than W cut
a can be obtained by extrapolating

the calculated numerical cross sections using the approximate formula given by Pratt
[18] (see also Ref. [6]) for K-shell electrons, which combines Pratt’s high-energy limit
with the general energy dependence determined by Gavrila [59]. The formula for the
cross section per electron in the K shell of an atom of atomic number Z reads

σPratt
K (W ) = σ0

(βγ)3

(W/mec2)4

exp[−2(a/β) arccos a]

a2ξ

×M(β) {1 + πa[N(β)/M(β)] +R(a)} , (1.1.124)

where a = Zα [α = e2/(c~) ' 1/137 is the fine-structure constant], ξ = 1−
√

1− a2, β
is the velocity of the photoelectron in units of c,

β =

√
(W − Ea)(W − Ea + 2mec2)

(W − Ea + mec2)2
, (1.1.125)

and

γ ≡
√

1

1− β2
= 1 +

W − Ea
mec2

. (1.1.126)

The quantity σ0 is the high-energy cross section per electron, given by

σ0 = 2πa2
0 a

5α3 mec
2

W
. (1.1.127)



1.1. Theory 27

The functions M(β) and N(β) are defined by

M(β) =
4

3
+
γ(γ − 2)

γ + 1

[
1− 1

2γ
√
γ2 − 1

ln

(
γ +

√
γ2 − 1

γ −
√
γ2 − 1

)]
, (1.1.128)

and

N(β) =
1

15β3

[
−4γ + 34− 63

γ
+

25

γ2
+

8

γ3
+

15(γ2 − 3γ + 2)

2βγ3
ln

(
1− β
1 + β

)]
. (1.1.129)

Finally, the quantity R(a) is defined so as to reproduce Pratt’s high-energy limit of the
total cross section (per electron) for the photoeffect in the K shell, which is given by
[18, 6]

lim
W→∞

σK(W ) = σ0F (a) (1.1.130)

with

F (a) =
3− 2ξ

2ξ
a−2ξ 1

4

∫ 1

−1

dx

∫ 1

−1

dy

(
1− x
1 + x

)ia [
a+ i
√

1− a2 x
]−4+2ξ

×
{

(1− x2y2)1−ξ

[
1 +

(
ξ

a

)2
]

−2(1− y2) (1− x2y2)−ξ

[
i
ξ

a
x+

(
ξ

a

)2

x2

]}
. (1.1.131)

Consistency of Eq. (1.1.124) with this high-energy limit implies that

F (a) =
exp(−2a cos−1 a)

a2ξ

[
1− 4π

15
a+R(a)

]
. (1.1.132)

Values of the function F (a) calculated numerically by Pratt, with an estimated accuracy
of 0.1 %, are given in Table I of Ref. [18]. Numerical values ofR(a) are also given by Pratt
et al. [6] in their Table 6.1. Unfortunately, the latter table contains several erroneous
signs. To determine an accurate analytical approximation to R(a), it is calculated the
function F (a) for a dense grid of a values by computing the double integral (1.1.131)
using an adaptive Gauss-Legendre quadrature method, which allows control of numerical
errors, to an accuracy of about 10−7. The calculated table extends from a = 0.01
to 0.8, corresponding to Z up to 109, and agrees with Pratt’s values [18] within the
claimed accuracy of the latter. A least-squares fit of our tabulated values leads to the
approximation

R(a) = 0.00372a− 0.16326a2 + 0.94375a3 − 0.71732a4, (1.1.133)

which, when inserted into expression (1.1.132), approximates the numerical values of
F (a) with relative error less than 0.01 %.
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As indicated by Pratt et al. [6] the ratios of cross sections of different subshells are
nearly energy independent. Hence, although the formula (1.1.124) was derived for the
K shell, it can be employed to extrapolate the DHFS cross sections of other subshells
for energies above their numerical cut-off W cut

a . In this calculations it was setted

σion
a (W ) =

σion
a (W cut

a )

σPratt
K (W cut

a )
σPratt

K (W ) (1.1.134)

for W > W cut
a . In practice, this extrapolation scheme works very well for inner subshells

with binding energies larger than about 100 eV, for which the extrapolation matches the
numerical cross sections in a wide energy interval, and not so well for outer shells with
Ea . 100 eV because the slopes of the numerical and the extrapolation curves at W =
W cut
a are slightly different. However, the relative contributions of the outer subshells

are less than about 10−5 and, consequently, the error introduced by the extrapolation
has no practical effects. A similar extrapolation method was employed by Hubbell et al.
[60], and also by Cullen et al. [14], who used a semiempirical formula that reproduces
Pratt’s high-energy values for the K shell.

1.1.11 Finite level widths and experimental ionization energies

Up to this point it was assumed that excited states are stationary. This assumption leads
to the delusive delta function in the excitation cross section, Eq. (1.1.102). In reality,
excited states decay by radiative and non-radiative transitions and, consequently, have
a finite mean life τb and a natural level width Γb = ~/τb. Assuming that excited estates
decay exponentially with time, it is concluded that absorption lines have a Lorentz
profile centred at the resonance energy, with full width at half-maximum equal to Γb
(see, e.g., Ref. [61]). Consequently, results from measurements of the energy E of an
excited level εb are expected to follow the Lorentz distribution

L(Γb; εb − E) =
1

π

(Γb/2)

(εb − E)2 + (Γb/2)2
. (1.1.135)

In addition, the cross section for excitation of an electron from the level εa (corresponding
to the ground state) to a level εb by absorption of photons with energy W should be
calculated as the integral over the continuous level profile,

σexc
ba (W ) =

∫ ∞
0

σexc
nbκb;a

(W ) δ(E − εa −W )L(Γb; εb − E) dE

= σexc
nbκb;a

(W )L(Γb; εb − εa −W ) . (1.1.136)

This result differs from the expression (1.1.102) for stationary levels only in that the
Lorentz distribution replaces the delta resonance.

As noted by Ritchmyer et al. [62], in the case of excitations that produce a single
vacancy in an inner subshell (naκa), the first stage of the subsequent decay of the atom
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is the filling of that vacancy by electrons from nearest subshells, a process practically
independent of the condition of the excited electron. Consequently, all excited levels
with a vacancy in subshell (naκa) have approximately the same level width, Γa, the so-
called “core-level width”. Calculated values of core-level widths of free atoms are given
in the EADL [63]. Campbell and Papp [64] give a complete set of recommended widths
for K to N7 levels of atoms obtained from consideration of available experimental data.
Typically, the core-level widths increase with the binding energy of the subshell, and
are of the order of 0.1 eV or less for weakly bound subshells, and reach values of the
order of 100 eV for K shells of transuranic elements.

Assuming that the level width is a characteristic of the active subshell (naκa)
qa

where the vacancy is created, its influence on the photoeffect can be accounted for by
convolving the calculated cross section with the Lorentzian distribution (1.1.135). That
is to say [cf. Eq. (1.1.123)],

σa(W ) =
∑
nb,κb

σexc
nbκb;a

(W )L(Γa; εb − εa −W )

+
∑
κb

∫ Ea

W cut
aκb

σexc
a (κb;E)L(Γa;E −W ) dE

+

∫ ∞
Ea

σion
a (E)L(Γa;E −W ) dE (1.1.137)

where again, the first summation is over discrete resonances with excitation energies
less than the corresponding cut-off W cut

aκb
. The integrals of the second term on the right-

hand side, with σexc
a (κb;W ) expressed by the polynomial approximation (1.1.122), can

be evaluated analytically. The last term can be evaluated similarly when the ionization
cross section σion

a (W ) is obtained from a pre-calculated table of values, at suitably spaced
energies, by means of cubic spline interpolation.

There is a further empirical correction to be considered. Although the DHFS eigen-
values, Ea, are quite close to the experimental subshell ionization energies Eexp

a [65],
the differences induce appreciable shifts of the absorption edges (typically, of a few eV).
We can correct the calculated cross sections for this discrepancy, by simply shifting the
energy scale and setting

σes
a (W ) = σa(W + Ea − Eexp

a ) . (1.1.138)

The cross sections given by this formula will be referred to as “energy-shifted cross
sections”. The post-processing program photacs-pp (see below) allows this energy
shift to be applied automatically. The default experimental ionization energies Eexp

a

have been taken from the compilation of Carlson [66], which covers all the subshells of
the elements from Z = 1 to 106. Alternatively, the program allows ionization energies to
be used from the more updated compilation by Williams [67], which is mostly based on
x-ray photoelectron measurements on samples prepared in ultra-high vacuum conditions.
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1.1.12 Normalization screening approximation

A primary ingredient of the calculations is the DHFS potential, which provides only a
rough approximation to the atomic wave functions. More elaborate atomic structure
calculations employ the multi-configuration Dirac-Fock (MCDF) method [21]. Unfortu-
nately, the theoretical scheme underlying this method does not permit easy calculation of
photoelectric cross sections, because the MCDF equations involve a non-local potential
that is different for each subshell.

A simple method for estimating how the use of more accurate wave functions would
affect the cross section for the photoeffect is provided by Pratt’s normalization screening
approximation, which is presented in Ref. [68] and discussed in Refs. [19, 20, 6]. The
key idea under this approximation is that, for photon energies a few keV above the
ionization threshold, the dominant contributions to the transition matrix elements come
from radial distances of the order of the reduced electron Compton wavelength, λe =
~/mec = 3.8616× 10−13 m. In other words, from distances that are substantially larger
than the radius of the nucleus but much smaller than the average radial distance of
electrons in bound orbitals. At radii important for photoabsorption, the only effect of
screening is a change in the normalization of bound states. It then follows that the
photoelectric cross sections for the screened atomic potential (scr) and for the Coulomb
potential of the bare nucleus (Coul) differ by an energy-independent factor,

σscr
a (W ) = Ξ2

a σ
Coul
a (W ) , (1.1.139)

where Ξ2
a is the ratio of electron densities at r = 0. This ratio is determined by the

normalization of the bound-state wave functions,

Ξ2
a = lim

r→0

[P 2
naκa(r) +Q2

naκa(r)]scr

[P 2
naκa(r) +Q2

naκa(r)]Coul

=

(
lim
r→0

[Pnaκa(r)]scr

[Pnaκa(r)]Coul

)2

. (1.1.140)

The accuracy of the normalization screening approximation can be practically assessed
by running our program with the DHFS potential and with the (unscreened) Coulomb
potential. It should be noted, however, that the proportionality (1.1.139) only holds
when a point nucleus is considered in the DHFS calculation. Otherwise, the radial func-
tions for the DHFS potential and for the Coulomb potential have different shapes, a fact
that complicates the theoretical analysis. Indeed, the approximation is found to work
very well for photons with energies larger than the DHFS ionization energies. We may
expect that it will perform even better for “similar” screened potentials. Schmickley
and Pratt [19] went a step further and suggested that the normalization screening ap-
proximation can be effectively employed to relate cross sections calculated with different
atomic models. Scofield [7], more explicitly, stated that “the approximation probably
holds for an atom as a whole, if the single-particle model is given up.” Consistently,
he calculates cross sections for all the elements with the DHFS potential and lists the
normalization ratios Ξ2

a for orbitals obtained from the DHFS code and from restricted
relativistic Hartree-Fock calculations for Z = 1 to 54.

Following Scofield, it is evaluated Ξ2
a for all subshells of the ground-state configura-

tion of the elements Z = 1 to 99 using wave functions obtained from calculations with
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our DHFS program and with the MCDF program of Desclaux [21, 22]. The resulting
density ratios for the K shell and the L, M and N subshells of the elements are repre-
sented in Fig. 1.1. Because density ratios are less than, and close to unity, the displayed
quantity is the difference 1−Ξ2

MCDF,a/Ξ
2
DHFS,a. We see that the effect of the normaliza-

tion screening correction is a reduction of the cross section of the order of a few percent
or less, except for outer subshells with small binding energies, where it can rise up to
about 30 percent. Furthermore, the correction is larger for the outer subshells and,
consequently, its effect is most visible for photons with relatively low energies. We can
thus apply the normalization screening correction to the photoionization cross sections
obtained from DHFS calculations,

σscr
a (W ) =

Ξ2
MCDF,a

Ξ2
DHFS,a

σDHFS
a (W ) , (1.1.141)

to get better estimates of cross sections, whose accuracy is expected to be comparable
to that of the MCDF model.
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Figure 1.1: Relative reduction of the subshell cross sections introduced by the normalization

screening correction, obtained from electron density ratios resulting from MCDF and DHFS

self-consistent atomic calculations.

1.2 Angular distribution of photoelectrons

Although the polarization of the photon does not affect the total cross section, it does
have an effect on the angular distribution of photoelectrons which, classically, accelerate
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in the direction of the electric field of the incident electromagnetic wave. The DCS for
ionization, Eq. (1.1.107), can be expressed as

dσion
a (W, ζ)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
ma

[
gκama(ζ, k̂b)

]† [
gκama(ζ, k̂b)

]
, (1.2.142)

where it is introduced the emission amplitude (spinor)

gκama(ζ, k̂b) ≡
∑
κbmb

i−`b exp (iδκb) ζ ·Gion(κb,mb;κa,ma) Ωκbmb(k̂b)

=
∑
κbmb

Uκb,mb;κa,ma Ωκbmb(k̂b), (1.2.143)

where

Uκb,mb;κa,ma = i−`b exp (iδκb)

{∑
ν=±1

(−1)νζνG
ion
−ν(κb,mb;κa,ma)

}
. (1.2.144)

and [see Eq. (1.1.98a)]

Gion
±1(κbmb;κama) = (−1)ja−ma

∞∑
J=1

iJ 〈ja, jb,ma,−mb|J,∓1〉

×
{

eYJεbκb;εaκa ± i mYJεbκb;εaκa
}
, (1.2.145)

with [see Eqs. (1.1.97b) and (1.1.97c)]

eYJεbκb;εaκa =

√
2J + 1

2J(J + 1)

〈
`b

1
2
jb
∥∥C(L)

∥∥ `a 1
2
ja
〉

eRJ
εbκb;εaκa

, (1.2.146a)

mYJεbκb;εaκa =

√
2J + 1

2J(J + 1)

〈
`b

1
2
jb
∥∥C(L)

∥∥ `a 1
2
ja
〉

mRJ
εbκb;εaκa

. (1.2.146b)

The value of the component Gion
0 is irrelevant here because the polarization vector is on

the x-y plane, i.e., ζ0 = 0.

Evidently, the DCS (1.2.142) is more difficult to compute than the total cross section,
Eq. (1.1.109), because of the dependence of the emission amplitude on the magnetic
quantum numbers of the initial and final states. As it will be seen, the DCS can be
effectively computed from Eq. (1.2.142). Of course, the resulting DCS is consistent
with the total cross section (1.1.109), that is, when the emission amplitude is calculated
using the same number of κb terms as in expression (1.1.109), numerical evaluation of
the integral (1.1.108) should yield the same result as Eq. (1.1.109).

To obtain a more explicit expansion of the DCS in terms of Legendre functions (sim-
ilar, e.g., to that derived by Scofield [69] for linearly polarized photons), it is introduced
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the expression (1.1.14) of the spherical spinors, and make use of the orthogonality of
the unit spinors χµ, to write

dσion
a (W, ζ)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
ma

∑
νν′

(−1)ν+ν′ζνζ
∗
ν′

∑
µ

×
∑
κbκ
′
b

i`
′
b−`b exp

[
i
(
δκb − δκ′b

)] ∑
mbm

′
b

G−ν(κb,mb;κa,ma)G
∗
−ν′ (κ

′
b,m

′
b;κa,ma)

× 〈`b, 1
2
,mb − µ, µ|jb,mb〉〈`′b, 1

2
,m′b − µ, µ|j′b,m′b〉 Y`b,mb−µ(k̂b)Y

∗
`′b,m

′
b−µ

(k̂b) .

Introducing the Clebsch-Gordan series for the spherical harmonics, and after rather
lengthy transformations using conventional angular momentum recoupling algebra [38,
41, 39], the DCS can be written in the form (cf. Ref. [69])

dσion
a (W, ζ)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
νν′

ζνζ
∗
ν′

∑
`

A`νν′ Y`,ν′−ν(k̂b) (1.2.147)

with

A`νν′ = (−1)`+ν
′

√
2`+ 1

4π

∑
κb,J,κ

′
b,J
′

(−1)ja+jb+j
′
b+1/2

×
√

(2jb + 1) (2j′b + 1) (2`b + 1) (2`′b + 1) (2J + 1) (2J ′ + 1)

×
(
`b `

′
b `

0 0 0

){
j′b jb `

`b `
′
b

1
2

}{
J J ′ `

j′b jb ja

}

×
(
J J ′ `

ν −ν ′ ν ′ − ν

)
i`
′
b−`b+J−J

′
exp

[
i
(
δκb − δκ′b

)]
×
{

eYJεbκb;εaκa − i ν mYJεbκb;εaκa
}{

eYJ ′εbκ′b;εaκa + i ν ′ mYJ ′εbκ′b;εaκa
}
,(1.2.148)

where (:::) and {:::} are, respectively, Wigner’s 3j and 6j symbols, [38, 41, 39]. A
convenient simplification is obtained by using the formula

υ(`, `b, `
′
b)

(
` jb j′b
0 1

2
−1

2

)
= −

√
(2`b + 1)(2`′b + 1)

(
`b `

′
b `

0 0 0

){
j′b jb `

`b `
′
b

1
2

}
, (1.2.149)
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where υ(`, `b, `
′
b) is the parity factor (1.1.30). Noting that (−1)ν

′
= −1, and considering

the symmetry of the 3j symbols, we get

A`νν′ = (−1)ja+1/2

√
2`+ 1

4π

∑
κb,J,κ

′
b,J
′

√
(2jb + 1) (2j′b + 1) (2J + 1) (2J ′ + 1)

× υ(`, `b, `
′
b)

(
` jb j′b
0 −1

2
1
2

){
J J ′ `

j′b jb ja

}

×
(
J J ′ `

ν −ν ′ ν ′ − ν

)
i`
′
b−`b+J−J

′
exp

[
i
(
δκb − δκ′b

)]
×
{

eYJεbκb;εaκa − i ν mYJεbκb;εaκa
}{

eYJ ′εbκ′b;εaκa + i ν ′ mYJ ′εbκ′b;εaκa
}
. (1.2.150)

From the symmetry properties of the 3j and 6j symbols, it follows that

A`νν′ =
[
A`ν′ν

]∗
. (1.2.151)

In addition, because of the parity factor in the reduced matrix element of the Racah ten-
sor, Eq. (1.1.29), the vector coupling coefficients in (1.2.150) have reinforced symmetries
which imply that

A`+1,+1 = A`−1,−1 and A`+1,−1 = A`−1,+1. (1.2.152)

The right-hand side of Eq. (1.2.147) can be reduced further by expressing the spher-
ical harmonics in terms of Legendre functions [41, 39]. We have

∑
νν′

ζνζ
∗
ν′

∑
`

A`νν′ Y`,ν−ν′(k̂b) =
∑
`

√
2`+ 1

4π

×
[(
|ζ+1|2 + |ζ−1|2

)
A`+1,+1 P`(cos θ)

+

√
(`− 2)!

(`+ 2)!
2Re

(
ζ−1ζ

∗
+1 ei2ϕ

)
A`+1,−1 P

(2)
` (cos θ)

]
, (1.2.153)

where θ and φ are the polar and azimuthal angles of the direction k̂b, P`(cos θ) are Leg-

endre polynomials and P
(2)
` (cos θ) are associated Legendre functions of order 2. Finally,

the DCS (1.2.147) can be cast in the form

dσion
a (W, ζ)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

{∑
`

A` P`(cos θ)

+ 2
[
Re
(
ζ−1ζ

∗
+1

)
cos(2φ)− Im

(
ζ−1ζ

∗
+1

)
sin(2φ)

]∑
`

B`P
(2)
` (cos θ)

}
,(1.2.154)
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where the coefficients A` and B` are real. It is worth noticing that the DCS is invariant
under inversion of the polarization vector (ζ̂ → −ζ̂). Evidently, expressions of the
coefficients A` and B` are quite involved and hard to compute because of the abundance
of vector coupling coefficients. In practice, it is more efficient to calculate the DCS
from the less elaborate formula (1.2.142) and the expansion (1.2.143) of the emission
amplitude.

For linear polarization along the x axis, ζ̂ = x̂ (ζ+1 = −1/
√

2, ζ−1 = 1/
√

2), the
DCS takes the form obtained by Scofield [69],

dσion
a (W, x̂)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
`

{
A` P`(cos θ)−B` cos(2φ)P

(2)
` (cos θ)

}
.

(1.2.155)
In the case of circular polarization, which corresponds to ζ = −ξ+1 (ζ+1 = −1, ζ−1 = 0,
right handed) or ζ = ξ−1 (ζ+1 = 0, ζ−1 = 1, left handed), Eq. (1.2.154) becomes

dσion
a (W,∓ξ±1)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

∑
`

A` P`(cos θ) . (1.2.156)

As expected, in this case the angular distribution of photoelectrons is axially symmet-
rical, i.e., independent of the azimuthal angle φ of the direction k̂b. We also note that
the DCSs for right- and left-handed circular polarizations are identical, and equal to the
DCS for unpolarized photons (see Section 1.2.1).

Sauter [29] derived an analytical expression of the DCS for ionization of the K shell
of atoms by photons linearly polarized along the x axis from the Born approximation,
i.e., from the above formulation with hydrogenic initial orbital and the photoelectron
distorted plane waves replaced by Dirac plane waves. The normalized probability dis-
tribution function of the photoelectron direction obtained by Sauter reads [29, 70]

pSauter(cos θ, φ) ≡ 1

σion
K (W )

dσion
K (W, x̂)

dk̂b

=
3

4πγ4

[
1 +

3

4

γ(γ − 2)

γ + 1

(
1− 1

2βγ2
ln

1 + β

1− β

)]−1

× sin2 θ

(1− β cos θ)4

{
cos2 φ

[
1− 1

2
γ(γ − 1)(1− β cos θ)

]
+

1

4
γ(γ − 1)2(1− β cos θ)

}
, (1.2.157)

where β and γ are defined by Eqs. (1.1.125) and (1.1.126). The angular distribution for
unpolarized photons is obtained by averaging over polarization directions (or, equiva-
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lently, over the azimuthal angle φ), which gives

pSauter(cos θ) =
3

8πγ4

[
1 +

3

4

γ(γ − 2)

γ + 1

(
1− 1

2βγ2
ln

1 + β

1− β

)]−1

× sin2 θ

(1− β cos θ)4

[
1 +

1

2
γ(γ − 1)(γ − 2)(1− β cos θ)

]
.(1.2.158)

Sauter’s distribution is used in the majority of high-energy Monte Carlo radiation codes.
It gives fairly realistic results for the K shell of elements with small and moderate atomic
numbers, say up to Z ∼ 30. However, the corresponding total cross section is less
accurate than Pratt’s high-energy formula (1.1.124).

1.2.1 Partially polarized photons

Pure polarization states can be described by the Poincaré vector, P = (P1, P2, P3),
whose components are the Stokes parameters (see Appendix B). The Poincaré vector of
pure states has unit length and can be expressed in polar form, [see Eq. (1.1.53)],

P = (sinα cos β, sinα sin β, cosα) . (1.2.159)

The corresponding polarization vector is [see Eq. (1.1.55)]

ζ(P) = cos(α/2)ε̂1 + sin(α/2) exp(iβ)ε̂2, (1.2.160)

with spherical components [ζν = ξν ·ζ, see Eqs. (1.1.35) and (1.1.33)]

ζ+1(P) = − 1√
2

[cos(α/2) + i sin(α/2) exp(iβ)] , (1.2.161a)

and

ζ−1(P) =
1√
2

[cos(α/2)− i sin(α/2) exp(iβ)] . (1.2.161b)

It follows that

ζ−1(P)ζ∗+1(P) = −1
2

(cosα− i sinα cos β) = −1
2
(P3 − iP1). (1.2.162)

Consequently, the DCS (1.2.154) can be written as

dσion
a (W,P)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

{∑
`

A` P`(cos θ)

− [P3 cos(2φ) + P1 sin(2φ)]
∑
`

B`P
(2)
` (cos θ)

}
. (1.2.163)
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Let us now consider the angular distribution of photoelectrons for photons with arbi-
trary polarization represented by the Poincaré vector, P = (P1, P2, P3). The polarization
density matrix can be expressed as [see Eq. (1.1.60)]

ρ = (1− P )
1

2

(
1 0

0 1

)
+ P

1

2

(
1 + P ′3 P ′1 − iP ′2
P ′1 + iP ′2 1− P ′3

)
, (1.2.164)

where P = (P 2
1 + P 2

2 + P 2
3 )1/2 is the degree of polarization and P ′i = Pi/P . The latter

quantities are the Stokes parameters of a pure state with polarization vector

ζ(P′) = cos(α′/2) ε̂1 + sin(α′/2) exp(iβ′) ε̂2 (1.2.165)

where

α′ = arccosP ′3, exp(iβ′) =
P ′1 + iP ′2√

1− P ′23

. (1.2.166)

Equation (1.2.164) means that the photon beam can be regarded as the incoherent
superposition of two partial beams: an unpolarised beam with relative intensity (1−P ),
and a fully polarized beam with Poincaré vector P′ = P/P and relative intensity equal
to the degree of polarization. On the other hand, the unpolarised beam is equivalent
to the superposition of two polarized beams with opposing polarizations, P′ and −P′,
and equal intensities. This implies that the DCS for photons with polarization P can
be calculated as a weighted average of the DCSs for photons with pure polarizations P′

and −P′,

dσion
a (W,P)

dk̂b
=

1− P
2

(
dσion

a (W, ζ(P′))

dk̂b
+

dσion
a (W, ζ(−P′))

dk̂b

)
+ P

dσion
a (W, ζ(P′))

dk̂b

=
1 + P

2

dσion
a (W, ζ(P′))

dk̂b
+

1− P
2

dσion
a (W, ζ(−P′))

dk̂b
(1.2.167)

where

ζ(−P′) = sin(α′/2) ε̂1 − cos(α′/2) exp(iβ′) ε̂2 (1.2.168)

is the polarization vector corresponding to the Poincaré vector −P′ [see Eq. (1.1.55)].
The DCS (1.2.167) can be expressed as a Legendre series in terms of the Stokes param-
eters,

dσion
a (W,P)

dk̂b
=

(2π)2e2c~
W

kb
πεb

qa
2|κa|

{∑
`

A` P`(cos θ)

− [P3 cos(2φ) + P1 sin(2φ)]
∑
`

B`P
(2)
` (cos θ)

}
. (1.2.169)
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1.3 Numerical calculation of cross sections

Our Fortran program photacs calculates cross sections for ionization and excitation
of subshells of free atoms and ions using the theory presented above (Section 1.1).
The structure and numerical algorithms adopted in the program are similar to those
employed in the programs developed by Bote and Salvat [71, 72] to compute cross
sections for inelastic collisions of charged particles with atoms. photacs calculates the
radial functions of initial and final electron states by means of an updated version of the
subroutine package radial [73, 74], which allows strict control of numerical round-off
errors. The radial subroutines are also used in the self-consistent calculation of the
DHFS potential [74]. Vector-coupling coefficients and reduced matrix elements of the
Racah tensors are calculated from their analytical formulas [38, 39] using a subroutine
package that performs arithmetic operations at a high level of precision, well beyond
Fortran double precision, by working in radix (base) 1,000.

The program reads the potential V (r) felt by the active electron from an input file;
the information to be provided in that file is a table of values of the function rV (r), for a
dense enough grid of radii to allow accurate interpolation by natural cubic splines. The
function rV (r) is required to be finite for all r, but is otherwise arbitrary. Optionally,
the program also allows the unscreened Coulomb potential of the bare point nucleus to
be used. As indicated above, in the calculations it is normally used the DHFS potential
described in Section A.2. For the evaluation of the integrals (1.1.96), the radial functions
are calculated for a non-uniform radial grid, with 16 points in a wavelength, from which
the integrals are evaluated using the 6-point Lagrange quadrature formula. The stability
of the calculations was verified by using denser radial grid with 25 points/wavelength;
cross sections computed with the two radial grids differ by less that 10−6.

The reduced cross section for excitation, σexc
ba (W ), is computed according to Eq.

(1.1.103). The difficulty of the calculation increases with the principal quantum number
nb of the final level because the radial functions of the final state extend to larger radii.
We only need values of the radial functions of the final level for computing the radial
integrals (1.1.96) for the relatively small radii at which the radial functions of the initial
state take appreciable values. However, the radial equations of the final state still need
to be integrated up to large radii to determine the energy and normalization of the state.
As indicated in Section 1.1.9 above, the program effectively computes the reduced cross
sections for excitations to discrete levels with nb ≤ 18.

The calculation of ionization cross section σion
a (W ), Eq. (1.1.109), is performed by

adding the grouped contributions from κb = ±|κb| in increasing order of |κb|. The
summation is discontinued at the first term which becomes less than 10−6 times the
accumulated sum. Our program allows values of |κb| to be considered up to ∼ 200. The
number of terms N|κ| needed to get convergence of the series (1.1.109) increases with
the energy of the photon, and it is fairly independent of atomic number of the target
atom and the considered subshell. Typical values of N|κ| are about 5, 7, 10, 15, 35, and
150 for photons with energies of 100 eV, 1 keV, 10 keV, 100 keV, 1 MeV, and 10 MeV,
respectively. An analysis of the variation of the calculated G ion(κb, κa) values with |κb|
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indicates that the relative numerical errors of the computed ionization cross sections are
usually less than about 10−5.

The ionization cross section σion
a (W ) can be calculated for photon energies W from

threshold (W = Ea) up to a cut-off energy W cut
a for which the spacing of the radial grid

where wave functions are tabulated is insufficient to reproduce the fast oscillations of
the integrands in Eqs. (1.1.96). Typically, the cut-off energy is larger than about 500Ea,
where Ea = −εa is the ionization energy of the active shell. It is worth mentioning that,
despite our superior computer power, photacs does not allow much higher energies
than Scofield’s calculations to be reached.

The computer program generates a table of σion
a (W ) for a grid of energies extending

from threshold up to the cut-off energy. This table contains a nearly logarithmic grid,
with 15 points per decade, plus a number of additional energies that are set by means of a
self-adaptive method. The resulting energy grid is such that linear log-log interpolation
errors are kept below some prescribed limit, which in the program was set equal to
0.05 %. For elements with atomic numbers near 19, 37, 55, and 87 (i.e., near the
alkalies), this procedure reveals near-edge structures that were partially overlooked in
Scofield’s tables. Otherwise, our results agree closely with those of Scofield, typically to
within about 0.05 %, the differences being mostly attributable to the different numerical
methods employed to solve the radial Dirac equations.

Figure 1.2 displays the cross section for photoionization (W > Ea) of the K shell
of argon atoms as a function of the photon energy. The solid line represents results
calculated from the general formula (1.1.109), and extends over the energy interval
where calculations with photacs are feasible, i.e., from the ionization threshold up to
W cut
a , which in the present case is 2 MeV. For comparison purposes, it is included cross-

section data from the EPDL [14], which were calculated by Scofield using the DHFS
potential. The close agreement between our results and those of Scofield, which were
generated using different computer codes, provides a clear indication of the accuracy of
the numerical algorithms. Notice that the extrapolation formula (1.1.133) agrees well
with the numerical results in a wide interval, differences are less than 2 % down to about
200 keV.

Because excitation to bound levels is limited to a narrow energy interval, it is ne-
glected in most of the existing databases and Monte Carlo simulation codes. Further-
more, the finite width of atomic levels is usually disregarded. These two effects become
significant for describing the penetration and dosimetry of photon beams with energies
near absorption edges. A situation where these effects are observed is in experimental
measurements of the photon mass energy-absorption coefficient of air [75]. The values
of the coefficient predicted by Monte Carlo codes, although in fairly good agreement
with experiment, fail to reproduce the structure displayed by the measured coefficient
near the energy of the K absorption edge of argon.

The contribution from excitation to bound levels (Section 1.1.9), the effect of the
atomic-level width (Section 1.1.11), and the normalization screening correction (Section
(1.1.12)), are accounted for by a post-processing program, named photacs-pp, which
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Figure 1.2: Cross section for ionization of the K shell of argon atoms by absorption of

photons, as a function of the photon energy W . The solid curve, which extends from threshold

up to about 2 MeV, is the numerical result calculated from expression (1.1.109). The dashed

curve (red online) is the prediction of the extrapolation formula (1.1.134). The dotted curve

(blue online) was obtained from the dipole approximation. Diamonds represent data from the

EPDL [14].

reads the tables of numerical cross sections generated by photacs. This program de-
termines the polynomial approximation (1.1.122) for the excitation pseudo-continua,
extrapolates the ionization cross section to high energies using the formula (1.1.134),
and performs a convolution with the Lorentzian profile (1.1.135) [see Eq. (1.1.137)]. The
result from photacs-pp is a realistic photoelectric cross section, which varies continu-
ously with energy and exhibits excitation structures that are in qualitative agreement
with measurements in gases. Figure 1.3 displays this cross section for absorption in
the K shell of argon atoms of photons with energies near the edge (using the original
DHFS energies calculated by photacs). The right panel is a magnified view of the step
function (1.1.118) which describes the contribution of excitations to bound levels with
nb ≤ 18, and the polynomial approximation (1.1.122) to the quasi-continuum. Notice
that, as it is already mentioned, the excitation and ionization cross sections match at
the edge. Figure 1.4 shows calculated cross sections for the subshells of argon and their
sum, the atomic cross section. Interestingly, the dipole approximation is seen to predict
subshell cross sections quite accurately for photon energies up to about 10 keV.

Optionally, the program photacs can calculate the DCS for ionization, i.e., the
photoelectron angular distribution, for a photon beam with energy W and polarization
defined by the Stokes parameters P [see Eq. (1.2.167)]. The calculation starts by com-
puting the ionization cross section σion

a (W ), Eq. (1.1.108), as described above. The
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quantities e,mYJεbκb;εaκa [see Eqs. (1.2.146)] computed at this stage are stored in memory.
The DCSs for pure polarization states can be calculated either from Eq. (1.2.142), which
involves a minimum of angular momentum algebra, or from the more elaborate expres-
sion (1.2.154), which requires lengthier preliminary calculations. The DCS is calculated
and tabulated for a dense grid of directions k̂b of the photoelectron, defined by the polar
and azimuthal angles, θ and φ, respectively. The DCSs obtained from the two schemes
[i.e., from Eqs. (1.2.142) and (1.2.154)] are identical because we are using exact (double
precision) values of vector coupling coefficients. The amount of work needed to sum the
series (1.2.150) increases quickly with photon energy. Consequently, for photon energies
well above the absorption edge, the calculation from Eq. (1.2.142) is much faster than
from Eq. (1.2.154). The accuracy of the results can be verified by comparing the cross
section σion

a (W ) calculated previously with the value obtained by numerical integration
of the DCS table for non-polarized photons. The numerical values resulting from the
two calculations normally agree to more than 5 digits.

Figure 1.5 shows calculated DCS for ionization of the K shell of argon by unpo-
larized (or circularly polarized) photons. For comparison purposes, it is also included
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results from the dipole approximation, i.e., DCS calculated from the emission ampli-
tude (1.2.143) with the G± coefficients given by Eq. (1.1.115). It is seen that the dipole
approximation works much better for the total cross section than for the DCS. The
dipole DCS agrees reasonably with the partial-wave results only for energies near the
ionization threshold; it fails to describe the progressive decrease of the most probable
emission angle when the photon energy increases. Interestingly, the Sauter distribution,
Eq. (1.2.158), renormalized to reproduce the calculated cross section, provides quite an
accurate description of the angular distribution for all energies because the example
falls within the domain of applicability of Sauter’s theory (K shell, moderate atomic
number). For other subshells and for heavier elements the approximation is much less
satisfactory.

Figure 2.17 displays DCSs of the K shell of argon for 50 keV photons with linear
polarizations along the x and y axes. The sum of these two distributions, with weights
equal to 1

2
, is the DCS for an unpolarized photon beam [see Eq. (1.2.167)], the numerical

results agree with those obtained for a circularly polarized beam, which are independent
of the azimuthal angle φ [ cf. Eq. (1.2.156)], to more than 5 digits. The DCS for linear
polarization at 45 degrees from the x axis, which corresponds to the Poincaré vector
P = (1, 0, 0), is also displayed. Evidently, the maxima in the DCS are at directions
with the azimuthal angle coinciding with that of the electric field; the polar angle of
the maxima is close to 90 deg at small energies and decreases when the photon energy
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increases (Fig. 1.5) because photoelectrons do absorb part of the linear momentum of
the photon.
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Chapter 2

Inverse problems in radiation
spectrometry

Inverse problems are a relatively recent mathematical branch. They were studied for the
first time by the Soviet-Armenian physicist Viktor Ambartsumian which published his
work in the Zeitschrift für Physik journal in 1929. Ambartsumian studied the inverse of
the Sturm-Liouville problem trying to find the form of an equation given an ensemble
of eigenvalues. The work of Ambartsumian remained in obscurity until the interest on
these problems, coming from both the scientific and the industrial community, started to
increase with the technological development of modern diagnostics machines like TAC,
SPECT, etc. The principle of operation of these technologies is to reconstruct two or
three dimensional objects given their projections. Practically they solve the inverse
problem of reconstructing the geometry of an object using its projection.

This kind of problem has ancient roots. About 2000 years ago Plato in the VII book
of ”The Republic” described the so called ”Problem of the cave”. A prisoner, trapped
in a cave, try to reconstruct the objects outside the cave by observing their shadows
projected on the cave wall. Plato used, without having no idea of it, an inverse problem
as a metaphor for the human discovery of reality and its real nature. Such metaphor
describes perfectly the essence of one of the most well known inverse problem type: the
unfolding.

In the unfolding process the data, coming from a measurement, are corrected by the
influences of the measurement system. Practically the unfolding recovers, when it is
possible, the loss of informations due to the measuring process.

Actually there is no generalized procedure to follow for solving an inverse problem.
Each different situation could require a special strategy, centred on the specific charac-
teristics of the problem. Sometimes the formalization of an inverse problem can lead to
the so called ill position which prevents any attempt to find a meaningful solution.

A more rigorous description of an inverse problem can be given by considering the
following equation:

y = Kx , (2.0.1)
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where x, K and y are respectively a generic input vector, an operator and an output
vector. Equation (2.0.1) represents a classical cause-effect (input-output) direct problem
which is the standard description for several physical systems. From the direct problem
it is possible to define two different types of inverse problems:

1)Given the output and the operator, reconstruct the input.

2)Given the output and the input reconstruct the operator.

Unfolding problem belongs to the first category and it will be the central topic of this
chapter. Formally it is possible to represent an inverse problem by the inversion of the
operator K:

x = K−1y . (2.0.2)

Usually and unfortunately it is not easy to compute the inverse of an operator and the
inverse problem has to be formalized by using the direct one. This is not the only difficult
in approaching this topic. Another fundamental peculiarity is that inverse problems are
usually ill posed.

A mathematical problem is ill posed if it does not respect the so called Hadamard
conditions:

1)Existence: Given y it exists, at least, one x which satisfies Eq.(2.0.1)

2)Uniqueness: Given y it exists only and only one x which satisfies Eq.(2.0.1)

3)Stability: x depends with continuity on y

The most frequent situation is that the direct problem is well-posed and its related
inverse one is not. With an Ill-posed problem there is no hope to find a solution with
physical meaning, however in some cases it is possible to reformulate the problem avoid-
ing the ill-position.

All this peculiarity characterize also unfolding for radiation spectrometry, which is
the central topic of this chapter.

Referring to fig. (2.1) when it is performed an X- or Gamma-Ray measurement part
of the scattered beam, coming from the target, is captured by the detector which pro-
duces a signal collected by the pulse handling circuitry with the multi-channel analyser
(MCA). Unfolding strategy reconstructs the scattered spectrum (original spectrum) by
the knowledge of the measurement (the spectrum given by the multichannel analyser)
and all the effects (o the measure) of the detector and its related pulse handling cir-
cuitry. It is worth nothing that the effects coming from the pulse handling circuitry and
the detector are uncorrelated and they can be separated without any consequences to
the generality of the problem. This means that the unfolding can be divided as well in
two steps:
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Figure 2.1: Radiation measure system

1)Unfolding from the effects of the pulse handling circuitry (Pulse pile-up).

2)Unfolding from the effects of the detector (detector response function).

Following this subdivision the present chapter is organized in three sections.

In the first section it will be discussed the so called pulse pile-up effect and its
consequences on a measure. This is one of the most important pulse handling circuitry
effects on the measured spectrum. Other effects coming from pulse handling circuitry
will be discarded. This is possible because modern detectors comprise built in electronics
which can efficiently correct these effects on-line (i.e. during the measure), without the
need of post process correction.

Then a second section regarding the computation of the so called detector response
function which represents an elegant formalism for describing together the principal
mechanism of interaction between the radiation and the detector.

Finally it is reported a concluding section on the detector unfolding strategy.

For all the topics described before it will be reported all the results obtained during
this PhD course which are published in [2] [3] [4] [5]
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2.1 Pulse pile-up

One of the most important influence of the pulse handling circuitry, on the radiation
measure, is represented by the so called pulse pile-up effect (PPU). The PPU is an
always present effect which cannot be completely avoided in every measure performed
with an high counting rate (necessary for a good statistics). Pulse handling circuitry
cannot process correctly too many pulses arriving in a too short time interval. When
pulses are too close together they can be overlapped and recorded at wrong energies.

PPU effect is strictly connected to the shape into which the pulses are modelled
inside the pulse handling circuitry. As reported in [76], there are two different type of
PPU: tail and peak PPU.

Figure 2.2: Tail pile-up

If the pulse shape is characterized by long duration tail or undershoot it is possible
that one or several pulses can be superposed to the tail (or to the undershoot) leading
to the so called tail pile-up. The direct consequence of this superposition are pulses
collected with wrong energies. In fig.(2.2) it is possible to see the tail PPU between
two pulses characterized by long tail. Through tail PPU long pulse tail or undershoot
worsen the detector resolution adding wings to the recorded peaks in the pulse height
spectra. Unfortunately tail and undershoot can persist for relatively long time periods
so tail pile-up can be significant even at relatively low counting rates.

Actually this effect can be efficaciously corrected on-line by the so called rise time
discriminator (RTD) [76] function which is comprised in several modern detector pulse
handling circuitry. RTD cuts the long pulse tail or undershoot allowing to discard this
effect without a significant error.
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Figure 2.3: Peak pile-up

Regarding Peak PPU (from now when is used the acronym PPU it will refer only to
peak pulse pile-up) it is the most difficult PPU effect to correct in a measured spectrum.
It is directly connected to the so called dead time τ of the counting system. This
parameter, τ , is defined as the minimum amount of time necessary to record two pulses
as separated events [76]. If the time gap between two pulses is lower than the dead time,
they cannot be distinguished and are recorded as a single pulse at a distorted energy
(PPU effect, see fig.2.3). It is possible that not only two but also three or more pulses
(a pulse train) are recorded as one. The number of pulses piled-up together is called the
order of the pile-up.

Due to the random nature of emission, the PPU worsen with the increasing of the
radiation source emission rate. Increasing the emission rate, in fact, the probability
to have time gap smaller than τ increases and, as a consequence, PPU becomes more
and more visible. High emission rate is mandatory for obtaining spectra with good
statistics in an acceptable amount of time. In order to avoid severe distortions due to
PPU, modern detectors comprises built in rejection circuitry which performs an on-line
correction of PPU. Unfortunately the current state of the art of rejection circuitry can
only attenuate PPU without correcting it at all. The remaining distortion could be still
evident and not negligible in the measures requiring a post process correction.

There are two opposite and so called dead time behaviours for a pulse handling
circuitry as showed in fig.(2.4).

In the paralyzable detector true events occurring during a dead time are assumed
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Figure 2.4: Dead time behaviours: (A) Non paralyzable detector. (B) paralyzable detector.
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to extend the dead time by another τ period following the lost event. In the non
paralyzable, events occurring in the dead time are assumed to have no effect on the
behaviour of the detector. The paralyzability behaviour of a detector directly affects
the measured counting rate which can be strongly different from the true interaction
rate.

It is possible to define the true interaction rate n as the total number of events
occurring in the detector during the real measurement time. Instead the measured
counting rate m represents the total number of recorded pulses during the live time of
the detector. As reported in [76] in the nonparalyzable detector:

n−m = nmτ, (2.1.3)

where nτ represents the average number of pulses lost in the dead time. Multiplying this
average loss with the measured counting rate it is obtained the difference in Eq.(2.1.3)
which give the relation:

n =
m

1−mτ . (2.1.4)

In the paralyzable case dead periods are not of fixed lengths and it is not possible
to apply the same argument for the nonparalyzable. However the rate m is identical to
the rate of occurrences of time intervals between true events which exceed τ :

m = ne−nτ . (2.1.5)

Real detectors have always an hybrid behaviour and paralyzable and nonparalyzable
models are only extreme cases (see [76]).

PPU has three important consequences on the measured spectra: in first place, the
recorded spectrum suffer a net loss of counts; secondly, pile-up photons are assigned to
wrong energy channels and, finally, the whole spectrum is distorted since the lost pulses
are not collected at the proper energies.

Different post processing methods have been developed for characterizing the PPU
and to obtain a corrected high counting spectrum. Analytical techniques based on first
principles were implemented in the works [77] and [78]. Statistical methods were also
implemented. The Monte Carlo approach was introduced by Bristow and Harrison [79].
In order to make the Monte Carlo strategy adaptable to different kind of detectors
Sabbatucci et al. [3] proposed the code mcppu which allows to consider the specific
pulse shape of the detector.

In what follows it will be exposed a new theoretical approach developed during this
PhD course [2] and a revisited Monte Carlo approach [3] to the PPU. Regarding the
theoretical approach it will be considered only second order PPU and a rectangular
pulse shape. Due to this assumptions it is possible to provide a simple and fast strategy
for PPU correction which requires a minimum amount of information for being applied
(the dead and live time and the measurement). The Monte Carlo approach indeed will
be introduced for handling more complicated situations where the pulse shape can not
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be considered rectangular and higher PPU orders are not negligible. The solutions of
both approaches will be compared for some paradigmatic examples. In particular, it
will be considered a Si solid state detector (SSD) comprising PPU suppression circuitry
active.

2.1.1 Peak PPU Balance equation

Consider a measured spectrum y(E) in a continuous energy range and the related mea-
sured counts in each infinitesimal energy bin dE, i.e. y(E)dE. From the physical point
of view it is considered the measured spectrum before the action of the MCA. The y(E)
spectrum can be related to the original spectrum h(E), free from PPU effect, through
the following counts balance equation:

y(E)dE = h(E)dE − L(E)dE +R(E)dE , (2.1.6)

where L(E)dE and R(E)dE denote, respectively, the probable number of lost and in-
coming pulses due to PPU in the generic bin [E,E+dE]. It is possible to introduce the
normalized original spectrum h(E) and the total number of counts Nt as:

h(E) = h(E)/

∞∫
0

h(E ′)dE ′ = h(E)/Nt , (2.1.7)

and the related quantity h(E)dE which represents the probability of having one pulse
with energy between E and E + dE. Assuming the generation of different pulses as an
ensemble of completely independent processes the probability to have two pulses with
energy in [E1, E1 + dE1] and in [E2, E2 + dE2] is simply h(E1)h(E2)dE1dE2.

In order to find the mathematical expressions for both L(E)dE and R(E)dE, it
is possible to introduce the differential PPU probability

(
∂P/∂E

)
dE. This quantity

represents the probability of having second order PPU with the resulting pulse energy
lying in [E,E + dE]. The integral over all the possible resulting energies represents the
total probability P of having second order PPU.

Using the total PPU probability the expression of L(E)dE is:

L(E)dE = 2Ph(E)dE . (2.1.8)

The probability of having PPU, considering the pulse coming from [E,E + dE] as the
first or the second pulse, is the same and so the factor 2 is introduced.

Regarding R(E)dE the probability of having two pulses with energy in [E1, E1+dE1]
and [E2, E2 +dE2] which, piled-up together, produce a new pulse with energy in [E,E+
dE] is h(E1)h(E2)

(
∂P/∂E

)
dE1dE2dE. By integrating this expression and multiplying

it by Nt we obtain:

R(E)dE = Nt

 ∞∫
0

∞∫
0

h(E1)h(E2)
∂P

∂E
dE1dE2

 dE . (2.1.9)
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By replacing Eqs.(2.1.8) and (2.1.9) in Eq. (2.1.6) we obtain the nonlinear integral
balance equation:

y(E) =
(
1− 2P

)
h(E) +Nt

∞∫
0

∞∫
0

h(E1)h(E2)
∂P

∂E
dE1dE2 . (2.1.10)

2.1.2 Pulse pile-up probability

In order to find the mathematical expression of ∂P/∂E it is possible to adapt, to our
case, the method proposed in [77] for finding PPU probabilities. Assuming the gen-
eration of pulses as a Poisson’s process, the probability that n uncorrelated events
(generations) occur in the time distance, from 0 to t, is:

Pn(t) =
(λt)n

n!
e−λt . (2.1.11)

where λ is the original counting rate not affected by PPU. Considering two pulses, with
energies E1 and E2, one generated at t = 0 and the other generated in [t1, t1 + dt1] with
t1 < τ :

Figure 2.5: Pile-up between two rectangular pulses with energies E1 and E2 and a time gap

t1 + dt1. The resulting pulse is still rectangular with energy E.

Following the Bayes theorem we can define the differential probability that two pulses
are piled-up together as the product of three separated probabilities:

dP = P0(t1)P1(dt1)P0(τ − t1 − dt1) , (2.1.12)
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where using the Poisson formula we have:

P0(t1) = e−λt1 , (2.1.13)

P1(dt1) = λdt1e−λdt1 = λdt1 , (2.1.14)

P0(τ − t1 − dt1) = e−λ(τ−t1−dt1) = e−λ(τ−t1) . (2.1.15)

Inserting Eqs.(2.1.13), (2.1.14) and (2.1.15) in Eq.(2.1.12) we obtain:

dP = λe−λτdt1 , (2.1.16)

Integrating Eq.(2.1.16) between 0 and τ we obtain the total probability of having pile-up
of order 2:

P = λe−λττ . (2.1.17)

As reported in [77] [80] t1 is directly correlated to the energy of the resulting pulse.
Calling f(t) the pulse shape function, two pulses piled-up together will produce a new
pulse with shape f(t):

f(t) = E1f(t) + E2f(t− t1) , (2.1.18)

The energy of the resulting pulse, E, will be:

E = E1f(t) + E2f(t− t1) , (2.1.19)

where t is the time where f(t) reaches its maximum. It is possible to invert Eq.(2.1.19)
for obtaining t1 as functions of E1, E2 and the resulting pulse energy E. Differentiating
t1 considering only the resulting pulse energy E, i.e. dt1 = (∂t1/∂E) dE , we have:

dP = λe−λτ
∂t1
∂E

dE . (2.1.20)

2.1.3 PPU balance equation for rectangular pulses

Eqns.(2.1.17) and (2.1.20) can be used to generate the balance equation for a generic
pulse shape. In particular, for a rectangular pulse shape the energy of the resulting
pulse from PPU is:

E = E1 + E2 ∀∆t1 ∈ (0, τ) , (2.1.21)

This allows us to write:
∂t1
∂E

= τδ[E − (E1 + E2)] . (2.1.22)

dP = λτe−λτδ[E − (E1 + E2)]dE . (2.1.23)
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By replacing Eqs.(2.1.17) and (2.1.23) in Eq.(2.1.10) we obtain the following nonlinear
balance equation:

ω(E) = ah(E) + b

Emax∫
Emin

h(E1)h(E − E1)dE1 . (2.1.24)

where ω(E) = y(E)/Nt , b = λτe−λτ and a = 1 − 2b. This equation is valid either
for paralyzable and nonparalyzable detector models because paralyzabilty affects only
higher orders of PPU.

In order to test Eq.(2.1.24), we can consider for example a monochromatic normalized
original spectrum, h(E) = δ(E − E) . Then, Eq.19 becomes:

ω(E) = aδ(E − E) + bδ(E − 2E) . (2.1.25)

which integrated for all the energies of the spectrum gives:

Mt = Nt[1− λτe−λτ ] (2.1.26)

with Mt representing the total number of counts of the measured spectrum. As reported
in [76] considering the live time tm we have the measured counting rate λm:

λm =
Mt

tm
= λ[1− λτe−λτ ] (2.1.27)

Using Eq. (2.1.5) we obtain the well-known expression:

λm = λ[1− τλm] (2.1.28)

which allows to find Nt and the original counting rate λ and from λm, τ and tm.

It is possible also to test the stability of Eq.(2.1.24) supposing to have a corrected
spectrum perturbed by a limited function:

h(E) = x(E) + β sin(nβE) for n = 1, 2, ... (2.1.29)

substituting this expression in Eq. 2.1.24 we obtain:

ω(E) = a [x(E) + β sin(nβE)] + b

Emax∫
Emin

[x(E1) + β sin(nβE1)]

×{x(E − E1) + β sin[nβ(E − E1)]}dE1 . (2.1.30)
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which becomes:

ω(E) = a x(E) + b

Emax∫
Emin

x(E1)x(E − E1)dE1 + a β sin(nβE) +

+b

Emax∫
Emin

x(E1)β sin[nβ(E − E1)]dE1 +

+b

Emax∫
Emin

β sin(nβE1)x(E − E1)dE1 +

+b

Emax∫
Emin

β sin(nβE1)β sin[nβ(E − E1)]dE1 . (2.1.31)

calling:

ωunp.(E) = a x(E) + b

Emax∫
Emin

x(E1)x(E − E1)dE1 , (2.1.32)

it is obtained:

ω(E) = ωunp.(E) + a β sin(nβE)

+b

Emax∫
Emin

x(E1)β sin[nβ(E − E1)]dE1 + b

Emax∫
Emin

β sin(nβE1)x(E − E1)dE1

+b

Emax∫
Emin

β sin(nβE1)β sin[nβ(E − E1)]dE1 . (2.1.33)

considering that:

sin(nβE1) sin[nβ(E − E1)] =
1

2
{cos[nβ(2E1 − E)]− cos(nβE)} (2.1.34)

we have:

ω(E) = ωunp.(E) + a β sin(nβE) + b

Emax∫
Emin

x(E1)β sin[nβ(E − E1)]dE1 +

+b

Emax∫
Emin

β sin(nβE1)x(E − E1)dE1 +
bβ2

2

{
1

2nβ
[sin(nβ(2Emax − E))

− sin(nβ(2Emin − E))]− cos(nβE)(Emax − Emin)} . (2.1.35)
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From the Riemann Lebesque theorem [81] we can see that, for n >> 1:

ω(E) = ωunp.(E) + a β sin(nβE)− bβ2

2
cos(nβE)(Emax − Emin) . (2.1.36)

The problem is always stable.

2.1.4 Iterative method for solving order two PPU balance equa-
tion

In what follows it will be shown that the solution of Eq.(2.1.24) can be found by com-
puting iteratively:

ω(E) = −a x(i)(E) + b

Emax∫
Emin

x(i)(E1)x(i−1)(E − E1)dE1 i = 1, 2..., n , (2.1.37)

with the condition:
x(0)(E) = ω(E) . (2.1.38)

To find the solution of Eq.(2.1.24), let us compute its Laplace transform::

y(s) = a h(s) + b h(s)2 . (2.1.39)

One solution of this equation can be written as a continued fraction:

h(s) = −a
b

+
1

b

y(s)

h(s)
. (2.1.40)

which becomes:

h(s) = −a
b

+
y(s)

−a+
y(s)

−a
b

+
y(s)

−a+
y(s)

· · ·

. (2.1.41)

The term with the continued fraction in Eq.(2.1.41) can be obtained from the following
iterative equation:

ω(s) = −a x(i)(s) + bx(i)(s)x(i−1)(s) i = 1, 2..., n , (2.1.42)

with x(0)(s) = ω(s). Then, x(1)(s) becomes:

x(1)(s) =
ω(s)

−a+ b ω(s)
. (2.1.43)
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and similarly we find the subsequent x(2)(s) , x(3)(s),, x(n)(s) in the Laplace domain:

lim
n→∞

x(n)(s) =
ω(s)

−a+
ω(s)

−a
b

+
ω(s)

−a+
ω(s)

· · ·

. (2.1.44)

The difference between Eq.(2.1.41) and (2.1.44) is only the constant term which anti-
transformed gives a delta in the zero energy which is not relevant. Then we find
Eq.(2.1.37) by antitransforming Eq.(2.1.42).

Let us considering the discretization of Eq.(2.1.37) in N energy bins:

ωj = −a x(i)
j + b

j∑
k=1

x
(i)
k x

(i−1)
j−k . (2.1.45)

Each iteration of Eq.(2.1.45) requires the solution of a numerical system:

~ω = P~x(i) (2.1.46)

Where the matrix P can be expressed using the step and Kronecker functions H(j − k)
and δj,k:

Pj,k = −a δj,k + bx
(i−1)
j−k H(j − k) (2.1.47)

The coefficients a and b allows the diagonal dominance, so for each iteration a SOR
(successive over relaxation) method can be implemented.

The algorithm used for implementing the deterministic strategy of this work can be
summarized as follows:

(1) Read the input data: τ , y, tm.

(2) compute the integrated spectrum: Mt =
N∑
i=1

yi

(3) compute the the measured emission rate: λm = Mt/tm

(4) compute the true emission rate: λ = λm/(1− τλm)

(5) compute: b = λτe−λτ

(6) compute: a = 1− 2b

(7) compute the integrated original spectrum: Nt = Mt/(1− b)
(8) compute: ωj = yj/Nt for j = 1, 2, ..., N

(9) initialize: x
(0)
j = ωj for j = 1, 2, ..., N

(10) for i = 1, n (n is the total number of iteration chosen equal to 5)

(a) Initialize: Pjk = 0
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(b) for j = 1, N

(I) set: Pjj = a

(II) for k = 1, N

(α) if j ≥ k then

(a) set: l = j − k + 1

(b) compute: Pjk = Pjk + bx
(i−1)
l

(β) end if.

(IV) end for.

(c) end for

(d) Introduce SOR relaxation factor Ω (used Ω = 1.7)

(e) initialize zj = 0 for j = 0, 1, ..., N

(f) initialize z0
j = x

(i−1)
j for j = 0, 1, ..., N

(g) for l = 1, nsor (nsor max iterations of the SOR routine, chosen equal to 30)

(I)for j = 1, N

(α) sum row = 0

(β) for k = 1, j − 1

(a) sum row = sum row + Pjkzk

(γ) end for

(δ) for k = j + 1, N

(a) sum row = sum row + Pjkz
0
k

(ε) end for

(ζ) sum row = (ωj − sum row)/Pjj

(η) zj = z0
j + ωj(sum row − z0

j )

(II) end for

(III) z0
j = zj for j = 1, ..., N

(h) end for

(i) x
(i)
j = zj j = 1, ..., N

(11) end for

(12) hj = −Ntx
(n)
j for j = 1, ..., N
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2.1.5 Si detector application

It is possible to show now some examples with a Si SSD detector using XRF experimental
spectra of different samples collected at the Laboratory of Montecuccolino. For all the
measures, the X-ray source is a Hamamatsu X-ray tube operated at 35 kV and the
detector is a Si SSD XR-100CR from Amptek, used without collimator. The scattering
angle is 90 degrees.

Two different target materials are used: pure lead and tin alloy. The live time for
each measure is 600 seconds and the dead time was estimated using mcppu giving a
value of 2.5 µs considering the rise time discriminator (RTD) active. For each sample,
both a High counting rate (HCR) and a low counting rate (LCR) measure are acquired,
with the RTD and the rejection circuitry both active.

Figures 2.6-a and 2.6-b show the results for the lead sample. In figure 2.6 the peaks
in channels 200-300 correspond to the Pb L-lines. The four peaks in channels 400-600, in
the HCR spectrum, do not correspond to any X-ray line, therefore it can be assumed that
they are due to PPU. Figure 2.6-b shows the comparison with the LCR spectrum and
makes it clear that the PPU effects have been recognized and corrected. From the figure
it is possible to note the presence of numerical artefacts appearing in the region where
PPU is higher. These artefacts are due to the statistical fluctuations combined with
the influence of the detector energy calibration and the MCA discretization in energy,
unfortunately they cannot be avoided because are independent from the calculation.

Analogous considerations can be done for the tin alloy spectrum in fig.2.7. In the
HCR measure, it is apparent the presence of photons above the excitation energy of
the X-ray source (channels 700-1024). These peaks are clearly due to PPU. For these
two examples it was necessary to compute only five iterations. Each iteration took few
seconds (on a Windows 7-64 AMD AthlonTM II X4 640 @3.0 GHz).

2.1.6 Monte Carlo method for pulse pile-up

In the previous section it was showed a deterministic approach to PPU correction which
can be applied to a limited experimental cases. It is possible to generalize this approach
taking into account the real detector pulse shape and all PPU orders following the same
concept schema showed before. However this procedure leads to an extremely hard
mathematical problem without fast solution. In order to avoid these difficulties it is
possible to consider a statistical approach using the Monte Carlo method (MC).

The MC, applied to PPU correction, allows to consider not only the real pulse
shape of the detector, but also all PPU orders without an excessively increase of the
computation difficulty. This approach was investigated in the works [79], [82], [83] and
[84]. Based on the MC algorithm developed in [83] and [84] during this PhD course it
was developed the code mcppu [3] which allows to perform pulse pile-up correction of
spectra adaptable to different detectors.
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Figure 2.6: PPU correction for a sample of pure Lead considering a Si SSD with RTD

active. (a) high counting rate measure (dots) together with the original spectrum (line). (b)

Comparison between the original spectrum (line) and a scaled low counting rate spectrum

(dots).
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Figure 2.7: PPU correction for a sample of Tin alloy considering a Si SSD: (a) high counting

rate measure (dots) together with the original spectrum (line). (b) Comparison between the

original spectrum (line) and a scaled low counting rate spectrum (dots).
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The core of the method can be represented by two sampling process:

1) Sampling the channel of all the recorded pulses in a measured spectrum,

2) Sampling the time gap which separates the production of two different pulses.

It is possible to compute the probability of having two pulses separated by a certain
time gap using the Poisson formula in Eq.(2.1.11). Assuming one pulse fixed at t = 0
and the second one at t = t1 + dt1 the differential probability of having a time gap of
t1 + dt1 is:

dP (t1) = P0(t1)P1(dt1) = λe−λt1dt1 . (2.1.48)

Integrating between 0 and ∆t we find the probability of having two pulses with a time
gap ∆t:

P (∆t) =

∆t∫
0

λe−λt1dt1 = 1− e−λ∆t . (2.1.49)

It is possible to sample ∆t using a random number ξ uniformly distributed in [0, 1]:

1− e−λ∆t = ξ , (2.1.50)

which leads to:

∆t = − log(1− ξ)
λ

≡ − log(ξ)

λ
. (2.1.51)

Using a reference spectrum h, it is possible to sample the channel j of the pulse
(which is directly connected to its heigh) using another random number ξ1 with the
same properties of ξ:

j∑
i=1

hi = ξ1 , (2.1.52)

Inverting this equation it is obtained the channel of the pulse as a function of the random
number.

The MC method can be implemented initializing a first pulse at the time t = 0 in
a sampled channel. Then a second pulse channel and the time gap ∆t are sampled. If
∆t < τ the two pulses are summed, obtaining a new pulse in a new channel. The process
is continued, keeping in memory the piled-up pulses of the previous step, sampling
another pulse channel and a new time gap ∆t′. If ∆t′ < τ the pulse will be summed
to the piled-up pulses of the previous step and they will be kept in memory. The
summation is stopped when the time gap is greater then τ . In this case the piled-up
pulses are stored as a single pulse in the resulting channel. After that a new pulse train
is sampled until all the pulses of the measure are considered.

It is evident that the choice of h is of primary importance for the channel sampling.
There are two possible choices for h:

1) A low counting rate spectrum (LCR) [82].

2) The measure itself [83] [84].
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The first strategy implies long low counting rate measurements for obtaining a LCR
spectrum with an acceptable statistics. Moreover long measurements can overheat the
detector changing the operational condition. It is worth nothing that the dead time is
extremely sensible to the operational conditions [76]. The change of these conditions
can greatly modify the referenced dead time making it bigger and increasing PPU effect.
This is one of the most important reason for avoiding this choice.

The second strategy implies the construction of an iterative procedure where the
spectrum used for the channel sampling is, in each iteration, updated starting from the
measure until it reaches the original spectrum, solution of the problem. In what follows
it will be discussed this strategy which is implemented in the code mcppu [3].

2.1.7 The code mcppu

The MC strategy described in the previous section was implemented in the post-processing
code mcppu [3] (Monte Carlo Pulse Pile-Up) developed during this PhD course.

The code implements a robust procedure for PPU correction capable to be applied to
any kind of detector-amplifier combination. It is well known that this combination and
the use of PPU suppression circuitry concurs to produce the final pulse shape [76] [80].
Thus, it is difficult that simple analytical shapes may describe properly the real shape
of the pulse. For this reason mcppu allows the user to insert an external text file with
the digitized measured pulse shape, as collected from the pulse handling circuitry. The
pulse shape needs to be normalized and discretized in a vector in which each component
represents the value at a time step of 1µs.

mcppu is also capable to give an estimation of the dead time using both high and
low counting rate measures.

The mcppu algorithm can be described as follows:

(1) Read the input data: τ , the measure y, the discretized pulse shape in the vector D,
the live time tm.

(2) Set h0
i = yi for i = 1, 2, ..., N (where N is the total number of channels in the

measure)

(3) for m = 1,maxit (external iteration cycle)

(a) compute the total number of counts Nt =
N∑
i=1

h
(m−1)
i

(b)compute λ = Nt/tm

(c) compute the Cumulative Distribution Function (CDF):

Cj =
j∑
i=1

h
(m−1)
i for j = 1, 2, ..., N

(d) sample the channel of a first pulse solving Cj(0) = ξ1
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(e) set D
(0)
i = Di for i = 1, 2, ..., Nmax (where Nmax is the size of the vector D

allowed)

(f) for n = 1, Nt

(I) sample the energy of a new pulse Cj = ξ1

(II)sample the time gap: ∆t = − log(ξ)
λ

(III)if ∆t < τ then:

(α)compute l = int(∆t ∗ 106)

(β) set D
(n)
α =

{
0 if α < l

D
(0)
α−l+1 if α ≥ l

(γ)compute the pile-up pulse shape D
(n)
α = j(n−1)D

(n−1)
α + jD

(n)
α

(δ)compute j(n) searching the maximum value of D(n)

(ε) Update recovery spectrum Rj = Rj + 1

(ζ) set PPU = .TRUE. (PPU flag)

(IV) else:

(α)if (PPU) update pile-up spectrum Pj(n−1) = Pj(n−1) + 1

(β)if (PPU) update the measure simulation spectrum Sj(n−1) = Sj(n−1) + 1

(γ)update Sj = Sj + 1

(δ)set j(n) = j

(ε)set PPU = .FALSE.

(IV)end if

(g) end for (inner cycle)

(h) compute h(m) = y − P +R

(i) compute χ2 = 1
N

N∑
i=1

(yi−Si)2
yi

(j) if χ2 ≤ toll then exit

(4) end for

From the algorithm it is evident that each iteration increases the total number of
pulses (counts) in the corrected spectrum, since the recovered pulses are always at least
twice the number of pile-up pulses.

The evaluation of the dead time of the counting system is mandatory for having a
good PPU correction. In mcppu the dead time is evaluated using a HCR spectrum and
a LCR spectrum without the need of additional experimental devices as requested in
[85] and [76]. Firstly, the user inserts the dead time starting value and the dead time
increment, and the number of iterations. Then the pile-up correction is calculated for
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all the dead time values in the selected range with the given dead time increment and
the result of each computation is stored. mcppu compares automatically the corrected
spectrum resulting from each calculation, with the given LCR measure. The dead time
which gives the spectrum minimizing the chi-square is selected.

χ2 =
1

N

N∑
i=1

(Li − hi)2

Li
, (2.1.53)

where in Eq.(2.1.53) Li is the low rate spectrum. The presented dead time calculation
operates well also in the presence of rejection circuitry for PPU suppression and needs
to be performed only once for given conditions of acquisition.

2.1.8 Si application of mcppu

In order to test the correctness of mcppu results it is here replicated the correction of
PPU for a Lead and tin alloy showed in the preivous sections.

The method was tested successfully with Si SSD obtaining the same results obtained
with the deterministic methodology using the digitalized pulse shape of the detector.
The presence in the results of both mcppu and deterministic strategies of the same
numerical artifacts shows that they are not influenced by the Monte Carlo statistics and
they are due to the statistical fluctuation with the combined influence of the detector
energy calibration and the MCA discretization in energy, and cannot be avoided.

The choice between the two proposed approaches depends on the characteristics of
the detector. It has to be preferred the deterministic approach (when the hypothesis
of the method are compatible with the detector) because it is simpler to be used and
faster.
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Figure 2.8: PPU correction comparison between deterministic method (dots) and MC one

(line) for a sample of: (a) Lead target. (b) Tin alloy target. The detector used is the one

described in sec. 2.1.5
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2.2 Detector Response function

Pulse pile-up correction described in the previous section can not be sufficient for recov-
ering the scattered spectrum (see fig.(2.1)). The second step to follow is the unfolding
from the detector response function (DRF) which represents an almost complete de-
scription of the detector effects on a measure.

DRF for X- and Gamma-ray detectors can be formalized as a convolution of three
fundamental contributions, each one referred to a different physical process inside the
detector.

1) The energy deposition spectrum, which is the distribution of the amount of energy
absorbed by the detector.

2) The detector resolution function, which represents the smearing effect of the detector
on the measure.

3) The detector efficiency, which gives an estimation of the amount of radiation not
absorbed by the detector for each energy bin.

The energy deposition spectrum depends on the physical properties of the detector
(such as, composition, thickness, geometry, etc.). It represents the result of the radia-
tion transport inside the detector, which can be described by the principal interaction
mechanism between radiation and matter: Compton, Rayleigh and Photoelectric effects.

Inside the detector active media (for example a semiconductor crystal) a photon
has to be completely absorbed in order to produce a pulse of heigh proportional to the
photon energy. When photon absorption is due to Scattering (Rayleigh or Compton)
or photoeffect nearby the boundary surfaces, of the active media, only a part of the
photon energy may be actually absorbed. Photoelectric effect, Compton and Rayleigh
scattering produce a new photon which can escape from the boundary surfaces of the
detector. There are several consequences of these incomplete photon absorption on the
measured spectra. For photoelectric effect the partial absorbed energy is related to the
characteristics lines of the active media, generating the so called escape peaks. For
Compton scattering it is produced a continuous spectrum (Compton escape) below the
excitation energy. This effect is due to the dependence between the energy of the result-
ing pulse and the scattering angle. For Rayleigh scattering there is no energy absorption
(coherent scattering) and the photon is completely lost. However this effect can be taken
into account in the energy deposition spectrum considering a contribution at the zero
energy. The energy deposition spectrum can be computed by using deterministic or MC
codes. In this work they will be computed using MC codes such as penelope [27] and
mcshape [86].

Regarding the energy resolution it depends specifically on the detection mechanism
which is characteristic of the single detector. In a first approximation, the energy reso-
lution can be modelled using a normalized Gaussian distribution having its full width at
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half maximum (FWHM) expressed in terms of specific semi-empirical formulas for semi-
conductors detectors (solid-state detectors), scintillators and gas proportional counters.
However, this approach is not sufficient with some SSD. It is frequent to find that the
peaks show a deviation from the Gaussian shape: a long flat shelf structure from the
peak centroid to the lower energies, and an asymmetry in the Gaussian which can be
described with an exponential decay on the left side of the peak. Some authors [87]
[88] attribute these artifacts to incomplete charge collection (like carrier trapping and
charge escape). Other authors show that the interactions between the metal contact
and the detector material produce a low energy shelf structure, with defined steps [89].
Papp [90] points out the effect of the signal processing electronics on the evolution of the
electronic signal and, from the details of the electron transport processes, proposes an
approximate analytical function to describe the detector response. The line shape can be
modeled with analytical [91] or semi-empirical formulas [88] [87] [92]. Among them, the
so-called HYPERMET [87] function represents a general semi-empirical formula which
was initially proposed for describing the line-shape of a Ge detector. Campbell et al [88]
tested the HYPERMET function also in the case of Si(Li) detectors with satisfactory
results. Usually, the HYPERMET function is fitted to a given measured spectrum. In
the present work the energy resolution will be computed using the Gaussian model and
an adaptation of the HYPERMET model which are implemented in the graphical tool
resolution [86] [4].

Finally regarding the detector efficiency, as the energy deposition spectrum, it can
be both empirically measured or computed using deterministic or MC codes.

In what follows it will be discussed both the theoretical model for the DRF and
its computation through the new version of the software resolution [4] which was
developed during this PhD course by an older version done by the research group of
Prof. J.E. Fernandez [86]. The application of resolution will be explained with some
examples using commercial solid state detectors.

2.2.1 Theoretical model

In what follows it is assumed a measured spectrum Im corrected from pulse handling
circuit effects. The scattered spectrum I, i.e. original spectrum, can be related to the
measured one through an integral equation [86] [93]:

Im(E) =

∫
K(E ′, E)I(E ′)dE ′, (2.2.54)

where K(E ′, E) is the DRF. It is possible to rewrite the DRF as:

K(E ′, E) = R(E ′, E)φ(E ′), (2.2.55)

where R(E ′, E) represents the contribution of both the energy deposition spectrum
and the energy resolution. The other function φ(E ′) is the detector efficiency. The
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function R(E ′, E) is the convolution of the energy deposition spectrum Q(E ′′, E0) with
the detector resolution function G(E ′′, E):

R(E ′, E) =

∫
Q(E ′′, E ′)G(E ′′, E)dE ′′. (2.2.56)

By replacing Eqn(2.2.56) in (2.2.54) and changing the order of integration, it is finally
possible to write:

Im(E) =

∫
S(E ′′)G(E ′′, E)dE ′′ , S(E ′′) =

∫
Q(E ′′, E ′)φ(E ′)I(E ′)dE ′. (2.2.57)

When I(E ′) is monochromatic the function S(E ′′) depends only on the physical prop-
erties of the detector, such as geometry, composition, density, thickness, etc. and can
be computed by means of deterministic or Monte Carlo codes.

Regarding the energy resolution it depends on the detector type and it does not
present an ideal behaviour. Assuming that the formation of each energy carrier is a
Poisson process and that the total number of carriers is high, the energy resolution
due to the statistical noise can be represented, in a first approximation, by a Gaussian
distribution:

G(E ′′, E) =
A

σ
√

2π
exp

(
−(E ′′ − E)2

2σ2

)
= 0.939

A

FWHM
exp

(
−2.773

(E ′′ − E)2

FWHM2

)
, (2.2.58)

where FWHM is the full width at half maximum and σ ∼= FWHM/2.355. E and A
represent the centroid and the peak area, respectively.

It is worth nothing that the FWHM, which is a function of the energy, is the most
commonly used parameter for characterizing the energy resolution. It is possible to give
a more applicative definition of the energy resolution as the FWHM of a single energy
peak divided by the peak centroid, it is usually expressed as a percentage.

As reported in [76], there are different sources of fluctuation that result in imperfect
energy resolution (a Dirac delta in the peak centre): a drift of the operational char-
acteristics during the measure, the random noise and the statistical noise. The latter
one depends on the discrete nature of the measurement itself: the energy deposited
inside the detector is revealed by a discrete number of charge carriers which is subject
to random fluctuations. It is also worth noting that the processes inside the detector are
not independent and therefore the Poisson statistics is not valid. As a consequence, the
resolution computed with purely statistical methods is much worse that the observed
one and must be corrected by means of the so-called Fano factor F [94]. Any other
source of fluctuations combines with the statistical noise. It can be proved that the
overall energy resolution can be represented by a Gaussian function with FWHM given
by [76]:

FWHMoverall =
√

FWHMstatistical + FWHMnoise + FWHMdrift + ..., (2.2.59)
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where FWHMstatistical is the contribution due to statistical noise, FWHMnoise is the
one due to electronic noise and FWHMdrift the one due to operational drift during the
measure process.

Sometimes, in the particular case of SSD, the line shape can appear skewed with
a long tail going from the peak centroid to the zero energy [87] [88]. In this case the
Gaussian line profile should be corrected with proper models. As reported in [87] [88]
charge carrier trapping and incomplete charge collection can subtract counts from the
full energy peak by creating an exponential distribution below it:

T (i0, i) =

HD exp
(
i0−i
α

)
i ≤ i0

0 i > i0
, (2.2.60)

where i is the channel, i0 the full energy line channel, α the exponential slope and HD

the amplitude of the tail. Charge collection mechanism and electronic noise can also
introduce a flat continuous (plateau) going from the peak centroid to the zero energy
[87] [88]:

M(i0, i) =

HS i ≤ i0

0 i > i0
, (2.2.61)

where HS is the height of the plateau which contributes to produce the continuous part
of the DRF. The exponential tail T (i0, i) and the plateau M(i0, i) can be considered as
part of the energy deposition spectrum and must be included in the response function
before applying the energy resolution. The convolution of T (i0, i) and M(i0, i) with
the Gaussian distribution gives the tail and shelf function presented in literature as the
HYPERMET functions [87] [88] [89] :

S(i0, i) =
1

2
HS erf

(
i− i0
σ
√

2

)
(2.2.62)

D(i0, i) =
1

2
HD exp

(
i− i0
α

)
erf

(
i0 − i
σ
√

2
+

σ

α
√

2

)
(2.2.63)

where σ is the standard deviation of the Gaussian distribution. fig. 2.9 shows the effect
of the function D(i0, i) and S(i0, i) on a full energy line.

The parameters HS, HD and α, the so-called HYPERMET parameters, are all func-
tion of the energy. Among the several empirical models in literature to express these
parameters, it was chosen to use a modification of the one that was proposed by Camp-
bell et al [88]:

SF (E) = a0 + a1 exp(a2E) (2.2.64)

TF (E) = b0 exp(b1E) + b2 exp(b3E) (2.2.65)

β(E) = c0 + c1E + c2E
2 + c3E

3 (2.2.66)
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Figure 2.9: Qualitative representation of the different functions that concur to describe a

single peak.

where SF (shelf fraction) and TF (tail fraction) are expressed as a function of the
channel energy E; a0, a1, a2, b0, b1, b2, b3, c0, c1, c2 and c3 are fitting parameters
determined empirically for each detector. Once these functions have been estimated,
the number of counts can be as follows. Under the full energy peak (at channel i0) it
becomes:

H̃(i0) = H(i0)− SFH(i0)− TFH(i0) (2.2.67)

where H(i0) represents the total number of counts lost in the full energy peak that are
uniformly distributed in i0−1 channels below (uniform shelf distribution) and TFH(i0)
represents the total number of counts lost in the full energy peak that forms the expo-
nential tail. The counts lost by the full energy peak are distributed at lower energies.
The generic bin below the full energy peak gains counts according to the expression:

H̃(i0) = H(i0)− SFH(i0)

i0 − 1
− TFH(i0) exp

(
i
α

)
i0−1∑
i=1

exp
(
i
α

) (2.2.68)

where α = βσ/∆E, and σ is the standard deviation of the Gaussian distribution at the
energy and the channel width. The chosen strategy, which is implemented in the new
version of resolution, Hs and HD of the HYPERMET functions are obtained from
SF and TF by introducing the two corrective (normalization) factors:

HS =
SFH(i0)

i0 − 1
(2.2.69)
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HD =
TFH(i0)

i0−1∑
i=1

exp
(
i
α

) (2.2.70)

2.2.2 The tool resolution

resolution is a software tool which adds the smearing effect of energy resolution
and incomplete charge collection to simulated x- and gamma-ray spectra comprising
the energy deposition spectrum in the detector. To model the energy resolution, the
code, in a first approximation, redistributes in the energy E the counts collected in the
channel energy E ′′ (referring to Eq.(2.2.58)) using a normalized Gaussian distribution
whose FWHM, for each kind of detector, is given by the following expressions:

1. Gas proportional counters:

FWHM =
√
W (F + β)E (2.2.71)

2. Solid state detectors:

FWHM =
√

8 log(2)[WFE + aEb] + ∆E2
elec (2.2.72)

3. Scintillators:
FWHM =

√
c+ dE (2.2.73)

The above formulas are taken from Knoll [76] for gas proportional counters and
scintillators, and from Devanathan et al. [95] and Owens [96] for solid state detectors.
W represents the average energy to produce a ion pair (in keV). Typical values of W
are 2.96 eV for Ge and 3.62 eV for Si [96]. β is the parameter for the Polya distribution;
a, b, c and a are semi-empirical constants and ∆Eelecthe electronic noise. F is the Fano
factor. Different values for F can be found in literature: according to Papp et al [97]
F is 0.06 for Ge and Si; Owens et al [98] suggest to adopt values greater than 0.10 for
Si-detectors. However, as pointed out by Owens [96], in Eqn.(2.2.72), both F , a and b
can be treated as fitting parameters. The resolution algorithm can be summarized
as follows:

(1) Read the input parameter and the input spectrum H with the energy of the bins E.

(2)Initialize the output spectrum D to zero in each channel.

(3) If the detector is a SSD then:

(a) For k = 1, N (N is the total number of channels of the input spectrum),

(I) If H(k) > 0 then compute:

(α) SF = a0 + a1exp[a2E(k)]

(β) If SF > 0 then:
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(a)HS = H(k)SF
k−1

(b) For i = k − 1, 1,−1

(1) H(i) = H(i) +HS

(c) End for

(γ) else

(a)SF = 0

(δ) End if

(ε) FWHM =
√

8 log(2)[WFE(k) + aEb(k)] + ∆E2
elec

(ζ) σ = FWHM
2.355

(η) β = c0 + c1E + c2E
2 + c3E

3

(θ) α = βσ
∆E

(ι) ε =
k−1∑
i=1

exp
(
i
α

)
(κ) TF = b0exp [b1E(k)] + b2exp [b3E(k)]

(λ) If TF > 0 then compute:

(a) HD = H(k)TF
ε

(b) If HD > 0 then:

(1) For i = k − 1, 1,−1

(I) H(i) = H(i) +HDexp
(
i
α

)
(2) End for

(c) End if

(µ) else

(a) TF = 0

(ν) End if.

(ξ) H(k) = H(k)− SFH(k)− TFH(k).

(II) End If

(b) End For

(4) End IF

(5) For m = 1, N

(a) if the detector is SSD then:

(I) FWHM =
√

8 log(2)[WFE(m) + aEb(m)] + ∆E2
elec

(b) Else if the detector is a scintillator then:
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(I) FWHM =
√
a+ bE(m)

(c) Else if the detector is a Gas proportional counter then:

(I) FWHM =
√
W (F + β)E(m)

(d) End If

(e) For j = 1, N

(I) D(j) = D(j) +H(m) 2.355
2πFWHM [E(m)]

exp
[
−2.3552

2
[E(m)−E(j)]2

FWHM2[E(m)]

]
(f) End For

(6) End For

The input spectrum of resolution can be the result of a MC simulation. It is
introduced as an ASCII file which contains, for each channel, a line with two real values
specifying the energy at the center of the bin (in keV) and the corresponding number of
counts of the bin. The total number of bins is arbitrary. The peak shape is specified by
several input parameters, which are introduced by means of a graphical user interface
(fig. 2.10).

Figure 2.10: Graphical interface of the tool resolution reporting the parameters for a CdTe

detector.

The parameters are divided into groups. The first one (Set FWHM parameters in
figure 2.10) allows to model the FWHM of the Gaussian shape. Depending on the de-
tector type, formula and parameters change automatically in the interface to resemble
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Eqns.(2.2.71)-(2.2.73). The button PlotFWHM allows the visualization of the com-
puted FWHM as a function of the energy (fig.2.11).

Figure 2.11: Full width at half maximum (FWHM) computed with resolution as a function

of the energy for a Ge detector.

For SSD, the groups ”Set shelf fraction” and ”Set tail parameters” (on the right side
in fig. 2.10) contains the parameters to model the departures from the Gaussian shape.
It possible to insert the detectors parameters manually or by means of an external text
file and to save them in a text file.

An error message appears any time the introduced parameters produce negative val-
ues in the output spectrum. At the end of the computation, resolution automatically
plots the results of the convolution with the possibility to choose the scale from linear
to logarithmic.

2.2.3 Examples of resolution applications with SSD

As it is apparent from Eqs.(2.2.64)-(2.2.66) and Eqs.(2.2.71)-(2.2.73), resolution re-
quires many parameters to completely describe the detector resolution, providing a very
adaptable model. On the other side, to find the best parameter combination may be
tricky in practical cases. In what follows, a suggested procedure is described.

1. Measure one (or more) well isolated peak(s), taking care that effects like PPU are
kept to a minimum. It is advisable to perform a pulse pile-up correction when
possible before to proceed.
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2. Compute the energy deposition spectrum for the same peak using, for example,
a deterministic or a MC code.

3. Import this energy deposition spectrum into the code resolution by reading
the corresponding ASCII file.

4. Model the energy resolution using the code resolution.

A. As first attempt, it is recommended to express the line shape using only
the Gaussian function, with standard parameters for the considered detector
type. Set to zero all the other groups.

B. Compare the results of resolution with the measurement, and change
the Gaussian parameters until the agreement is good. For some detectors, no
further improvement is required.

C. If the Gaussian function fails to describe properly the detector line shape,
then start including the shelf and the tail distribution, in separate steps.

i. If the continuum of the energy deposition spectrum differs significantly
from the one in the measurement, add the shelf distribution. First, set a
proper value of a0 while leaving the other parameters equal to zero. The
parameters a1 and a2 represents a refinement and can be adjusted in a
second moment, if necessary.

ii. The comparison between the Gaussian function and the measurement
is helpful to understand the entity of the asymmetry of the full energy
peak. If the measured peak is skewed on the lower energy, add the tail
parameters. First, set all the tail fraction parameters equal to zero except
for b0 and c0. By means of an iterative comparison with the measurement,
adjust b0 and c0. The other parameters can be added after a first raw
representation of the exponential tail is completed, to improve the
agreement with the experimental data. As it is apparent from Eq.(2.2.70),
both TF and β concur to model the tail fraction, and therefore cannot be
set separately.

Fig.2.12-A shows the Monte Carlo simulation of the energy deposition in a Ge detec-
tor for a monochromatic source of photons of 34.4 keV. The simulation was performed
using the code penelope [27] by considering a cylindrical germanium crystal surrounded
by a layer of aluminum and protected by a Be window. Figure 2.12-B shows the ap-
plication of resolution by considering the modified Gaussian distribution with the
complete model, including shelf and tail description.

Another example of resolution application can be introduced by considering a
CdTe SSD. A known problem in CdTe detectors is the presence of a significant hole
tailing in their response above 50 keV [99]. As an example, the response of the Amptek
CdTe detector is computed with the code mcshape. The source is Co-57, emitting at
14.41300 keV (9.16%), 122.0614 keV (85.60%) and 136.4743 keV (10.68%). The result of
the MC simulation (without the effect of energy resolution and charge collection) is then
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Figure 2.12: (A) Result of the Monte Carlo simulation of a Ge detector response function

for a monochromatic source of photons of 34.4 keV and (B) detector response function after

the application of the code resolution. In this case, the departure from the Gaussian model

is negligible.
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used as input by the tool resolution. Fig.2.13-A shows the comparison between the
measure and the result of resolution applying a Gaussian model for the main peak of
Co-57. It is apparent the poor capability to describe the peak shape without a correction
for the low energy tail of the peak. Fig.2.13-B shows the result of resolution after
applying the complete model, including shelf and tail description. It is worth noting
that the agreement with the measure is good also for the peak at 136 keV (see fig.2.14).

Figure 2.13: Main peak of Co-57 at 122.06 keV, collected with an AMPTEK CdTe detector

(dots), compared with the energy resolution computed by resolution with (A) only the

normalized Gaussian function and (B) the complete model including hole tailing.
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Figure 2.14: Co-57 spectrum collected with an AMPTEK CdTe detector (dots). The output

of resolution describes correctly the shape of the two peaks located at 122.06 and 136.47

keV.

2.3 Detector unfolding

Once the detector response function (DRF) is computed it can be used for recovering
the scattered spectrum (see fig.2.1) which is the final result of the complete unfolding
procedure (including the pulse pile-up correction). In the DRF theoretical model it was
introduced (Eq.(2.2.54)) the fundamental relation between the measured spectrum and
the scattered one. In order to give a brief introduction on the mathematical difficulties
concerning detector unfolding here Eq.(2.2.54)is reported as:

Im(E) + εm(E) =

Emax∫
Emin

K(E ′, E)f(E ′)dE ′, (2.3.74)

where the measure is split in its true value Im and the associated absolute error εm. Emin
and Emax are the chosen minimum and maximum energies of the scattered spectrum
with a non negligible contribution of counts.

Considering the Hadamard conditions, exposed at the beginning of this chapter,
existence and uniqueness of the solution of Eq.(2.3.74) depends almost exclusively on
the mathematical typology of the kernel. Stability instead depends on the structure
itself of this equation. It can be showed that stability condition is always not satisfied
by Eq.(2.3.74).
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Following what was done for the pulse pile-up balance equation, it can be considered
a solution of the type:

f(E) = x(E) + β sin(nβE) n = 1, 2, ... (2.3.75)

where x(E) is an un-perturbed solution of the integral equation and β sin(nβE) a per-
turbation. Inserting Eq.(2.3.75) in Eq.(2.3.74):

Im(E) + εm(E) =

Emax∫
Emin

K(E ′, E)x(E ′)dE ′ + β

Emax∫
Emin

K(E ′, E) sin(nβE ′)dE ′. (2.3.76)

For the Riemann-Lebesgue theorem [81]:

Emax∫
Emin

K(E ′, E) sin(nβE ′)dE ′ → 0 for n→∞, (2.3.77)

which means that for n big enough the perturbation on the solution gives irrelevant
change on the measured spectrum.

The reason for this instability is in the smoothing property of the integral. Smoothing
process (which is the direct problem related to this unfolding one) is always well-posed
giving as a consequence an ill-posed inverse problem.

Several methods have been developed for avoiding the discussed ill-posed behaviour
in order to solve the inverse problem (see [100]; [101]). Most of these methods recur
to purely mathematical criteria and may lead to an non physical solution, i.e. negative
values in the resulting spectrum. In particular, fast Fourier transforms algorithms have
been used in the past to improve the detector resolution [102]; [103]. These methods
present some additional drawbacks: they create false peaks that can be confused with
the real ones and need to be applied to limited energy regions around the peaks and not
to the entire spectrum.

Another important category of methods for solving an ill-posed problem are the so
called Regularization techniques which introduce additional information as constraints
for avoiding the ill-position. Among the different regularization techniques developed,
in order to perform the unfolding from the DRF function, the method of the maximum
entropy [104] is chosen for its fundamental property of preserving the positive-defined
character of the spectrum. The maximum entropy method has been implemented in the
code maxed [105] which solves the inverse problem by optimizing the entropy functional,
taking advantage of the known a priori information on the original spectrum. maxed
represents the state-of-the-art for unfolding of neutron spectra. gravel [104] is another
useful unfolding algorithm which preserves positive values in the spectra. Both codes,
maxed and gravel, are contained in the UMG (Unfolding with maxed and gravel)
package version 3.3, released in March 2003, developed at the Physikalisch Technische
Bundesanstalt (PTB) and distributed by NEA Data Bank [106].
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The code umestrat [107] developed recently at the University of Bologna, exploits
the maximum entropy approach in X-ray spectrometry applications, for the unfolding
of X- and gamma-ray spectra. umestrat provides a semi-automatic unfolding strat-
egy based on a suitable combination of maxed and gravel. The original algorithm
presented in [107] leads to solutions which can be considered qualitative but not quan-
titative. In what follows it will be discussed the principal features of the new version
of umestrat [5] which allows to obtain quantitative results. This is possible by intro-
ducing the additional constraint of the total number of photons of the spectrum which
can be determined by inverting the diagonal efficiency matrix. The features of the up-
graded code are discussed with some examples which illustrate the important software
improvement of the detector resolution as a consequence of the unfolding.

2.3.1 maxed algoritm

Consider the discretization of Eq.(2.3.74):

Ik + εk =
n∑
i=1

Rkifi k = 1, 2, ...,m (2.3.78)

where n and m are the number of energy bins; k and i are channel indices, R is the
DRF and εk represents the (unknown) errors, which require estimation.

The chi-square per degree of freedom χ2 can be introduced as follows:

χ2 =
1

n

m∑
k=1

ε2k
σ2
k

. (2.3.79)

Eq.(2.3.79) assumes that the errors are normally distributed with zero mean and vari-
ances σ2

k.

As reported in [105], from the set of possible solutions, the one that maximizes the
information entropy S is selected:

S = −
n∑
i=1

[
fi log

(
fi

fdefi

)
+ fdefi − fi

]
. (2.3.80)

In Eq.(2.3.80) fdefi denotes the so-called default spectrum, which contains all the a-
priori information on the original spectrum. In other words, the solution represents the
maximum of S (Eq.(2.3.80)), with the constraints given by Eqs.(2.3.78) and (2.3.79).

As shown in [105], starting from Eqs (2.3.78)-(2.3.80), and defining a set of m La-
grange multipliers λk, the problem can be reformulated in terms of the maximization of
the potential function Z :

Z = −
n∑
i=1

fdefi exp

(
−

m∑
k=1

λkRki

)
−
[
χ2

m∑
k=1

(λkσk)
2

] 1
2

−
m∑
k=1

λkIk. (2.3.81)
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In maxed the values of λk which maximize Z are obtained by means of a simulated
annealing algorithm. These values are then introduced in the following expression:

fi = fdefi exp

(
−

m∑
k=1

λkRki

)
, (2.3.82)

to find the unfolded spectrum f (free of detector influences).

It is worth noting that the χ2 constraint introduces a dependence of the total num-
ber of counts in the unfolded spectrum with the chosen value of the chi-square. This
can be illustrated by considering a single energy channel detector with DRF R. From
Eqs.(2.3.78) and (2.3.79) it is possible to find the original spectrum as:

f =
I

R
+
σ
√
χ2

R
. (2.3.83)

In general, after the unfolding, the total number of counts in the original spectrum
depends on the chi-square. In maxed, this parameter is arbitrarily introduced as an
input by the user, considering not only the physics but also the numerical characteristics
of the problem, ensuring the convergence of the algorithm. It is worth noting that
incorrect values of χ2 lead to meaningless results (or no results at all). The variability
of the unfolded spectrum with the selected χ2, makes the result only qualitative. In order
to obtain a quantitative result it is necessary to introduce the additional constraint of
the total number of counts in the unfolded spectrum, as illustrated in the following
section.

2.3.2 umestrat

umestrat [107] is a graphical tool developed at the University of Bologna to obtain
the unfolding solution applying a combination of the codes maxed [105] and gravel
[104]: maxed is used to compute the unfolding, whereas gravel is used to find suitable
parameters to ensure the convergence of maxed. Given the measurement and the DRF,
umestrat computes and plots the unfolded spectrum, as a function of the energy.
The main features of the code are illustrated in [107]. In this work it is presented an
improvement of umestrat [5] including a strategy to recover the quantitative meaning
of the unfolded spectrum. As shown in the previous section, the total number of counts
of the unfolded spectrum depends on the value of the χ2 which, in the umestrat
strategy, can be obtained by running gravel first or can be set arbitrarily by the user.
In order to obtain a solution which is independent of the selected χ2, it is necessary to
link the unfolded spectrum to the measurement by introducing a common magnitude
not considered yet in the algorithm. A good candidate is the total number of counts
which can be estimated with good precision by taking advantage of the detector physics
as shown below.
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Consider the discretization of the DRF (Eqs.(2.2.55) and (2.2.56)) and also given
[86]:

Rki =
n∑
r=1

(
n∑
j=1

QkjGjr

)
φri =

n∑
r=1

Nkrφri, (2.3.84)

where j, r, and k are channel indices and n is the total number of channels. The detector
response matrix can be split in the product of a normalized part N (given by the product
of the energy deposition spectrum Q and the energy resolution G) and efficiency φ. The
efficiency is a diagonal matrix expressed as:

φri =

 φri r = i0

0 r 6= i
. (2.3.85)

Introducing Eq.(2.3.84) in Eq.(2.3.78) gives:

Ik + εk =
n∑
i=1

n∑
r=1

Nkrφrifi k = 1, ...,m (2.3.86)

By inverting the sum order it is possible to obtain:

Ik + εk =
n∑
r=1

Nkr

n∑
i=1

φrifi k = 1, ...,m (2.3.87)

To maintain the quantitative meaning in the solution, it is necessary to introduce
the additional constraint given by the total number of counts of the unfolded spectrum.
For this purpose, the new strategy implemented in umestrat [4] splits the solution of
the linear system in Eq.(2.3.87) (i.e. the unfolding of the measurement) in three steps.

In the first step, umestrat unfolds the measured spectrum considering only the
normalized part of the DRF, finding the solution y of the linear system:

Ik + εk =
n∑
r=1

Nkryr with k = 1, ...,m (2.3.88)

From the physical point of view the unfolded spectrum y in Eq(2.3.88) must have the
same number of counts of the measured spectrum because the normalized matrix N
produces only a smearing effect on the original spectrum. The difference in the total
number of counts between the measured and the original spectrum is a consequence of
the efficiency.

In the second step, the constraint on the total number of counts is introduced. The

spectrum y is normalized by using the total number of counts of the measurement
n∑
i=1

Ii,

thus finding the spectrum ynorm:

ynormr =

n∑
i=1

Ii

n∑
i=1

yi

yr. (2.3.89)
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In the third and last step, the original spectrum fi is computed by solving:

ynormr =
n∑
i=1

φrifi = φrrfr r = 1, ..., n (2.3.90)

It is worth noting that this new umestrat strategy, comprising the constraint in
the total number of counts of the original spectrum, requires as separated input the
efficiency and the normalized detector response matrix. An additional advantage of this
strategy is that it avoids the modification of the maxed algorithm.

2.3.3 Energy resolution improvement in radiation measure-
ments

The unfolded spectrum obtained with umestrat can now be considered quantitative.
The old version of umestrat was firstly tested on X-ray fluorescence (XRF) spectra
measured with a XR-100CR Amptek Si detector, using a bin width of 50 eV. As shown
in [107], by using umestrat it was possible to resolve the Zn Kα and Cu Kβ peaks
which were overlapped in the brass measurement. The spectrum after unfolding showed
a FWHM of about 200 eV for the Cu Kβ peak, which was half of the measured one
giving the detector resolution for that energy.

In this work, the capabilities of the new version of umestrat are explored with
SSD other than Si. The first example shows the unfolding of XRF spectra revealed
using a XR-100T Amptek CdTe detector and collected with a MCA-8000A multichannel
analyzer, with 1024 bins of 100 eV of bin width. The source is a Tungsten X-ray tube,
with a glass window, operating at 50 kV. The DRF matrix is estimated using the MC
code mcshape [86] and the post processing tool resolution [4] (described in the
previous section 2.2.2), which adds the effects of incomplete charge collection and the
energy resolution of the detector. For the energies in the range 6-50 keV, the CdTe
detector has an almost ideal efficiency and charge trapping effects are limited. Fig.2.15
shows the XRF lines of a brass target. It is apparent that after unfolding with the new
version of umestrat the peaks appear better resolved: due to the choice of the bin
width, the Zn-Kα and the Cu-Kβ peaks cannot be separated anymore. The FWHM
is now less than 300 eV which is 30% less of 400 eV, the detector resolution for that
energy.

Fig.2.16 shows the unfolding of the L Pb lines of a Pb target, under the same
experimental conditions. For the Pb L α peak, the FWHM goes from 430 eV in the
measurement to 244 eV after the unfolding with umestrat. In the unfolded spectrum
some minor Pb L lines are visible, in particular Pb Ls (9.9688 keV) and Pb Lη (11.349
keV). A second example shows the unfolding of a direct measurement of a X-ray tungsten
tube operating at 110 keV, collected with a ORTECH PGE detector(Fig.2.17). The
DRF is computed with the MC code penelope [27] considering a complete 3D model
of the detector. The computed energy deposition spectra are post processed with the
tool resolution [4], adding the energy resolution and the charge trapping effects. It
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is worth noting that in this case the effects of incomplete charge collection are high,
increasing the ill-conditioning of the problem. Nevertheless, umestrat may find the
unfolding solution. It is apparent that the lower energy part of the measured spectrum
(below 20 keV) represents a detector artefact due to the DRF (escape plus resolution
shelf). In this example the energy discretization of the measure(with a bin width of
200eV) allows only a coarse description of the peaks. The improvement of the FWHM
is apparent: for W Kα the FWHM goes from 470 eV in the measurement to 306 eV in
the unfolded spectrum.

Figure 2.15: Unfolding of a brass spectrum collected with a XR-100T Amptek CdTe detector

and a bin width of 100eV. The resolution is improved by 30% and the Zn-Kβ peak is better

resolved. The Zn-Kα and the Cu-Kβ peaks cannot be separated as for the Si detector.
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Figure 2.16: Unfolding of a Pb spectrum collected with a XR-100T Amptek CdTe detector.

It is apparent that the resolution is improved: for the Pb-Lα peak, the FWHM goes from 430

eV in the measurement to 244 eV after the unfolding with umestrat
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Figure 2.17: Unfolding of a direct measurement of a W X-ray tube spectrum, operating at 110

keV. The lower part of the measured spectrum (below 20 keV)is not physical but represents

a detector artefact due to the continuous part of the detector response function(Compton

continuum and shelf).It is removed in the unfolded spectrum. (b)The peak region shows the

improvement in resolution: the FWHM goes from 470 eV in the measurement to 306 eV in

the unfolded spectrum.
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Quantitative information on the photoeffect is required for practical applications
(e.g., x-ray fluorescence, x-ray photoelectron spectroscopy), as well as for Monte Carlo
simulation of photon transport. Numerical tables of subshell cross sections (for ioniza-
tion and for excitation to bound levels) and atomic cross sections are included in the
Evaluated Photon Data Library (EPDL) [14]. There is also the XCOM program [15]
which gives atomic cross sections for photoionization essentially equivalent to those in the
EPDL. Both the EPDL and XCOM databases are based on calculations performed by
Scofield [7] using the independent-electron model with the self-consistent Dirac-Hartree-
Fock-Slater (DHFS) potential. They are considered to be the most reliable source of
general information available to date; indeed, practically all modern Monte Carlo codes
for photon transport utilize the EPDL. However Scofield’s Calculations were performed
without the modern computational possibility using sometimes a too wide energy grid.

Regarding the angular distribution of photoelectrons is needed in x-ray photoelec-
tron spectroscopy, using either x rays or synchrotron radiation [23, 24, 25], as well as
in radiation transport calculations [26, 27]. However information on the angular dis-
tribution of photoelectrons, consistent with the subshell cross sections, is quite limited,
or unavailable (see, e.g., Ref. [28] and references therein). As a matter of fact, most
Monte Carlo photon transport codes still rely on the Sauter formula [29], which gives
the differential cross section for the ground state of hydrogenic ions obtained from the
plane-wave Born approximation.

In this thesis it was presented a detailed formulation of the theory of the photoeffect,
within the one-active-electron approximation, in a form that is suitable for implemen-
tation in a computer program, complemented with extrapolation schemes to cover the
full energy range of interest.

Because of the robustness of the numerical methods (exact vector-coupling coeffi-
cients, highly accurate and densely tabulated radial functions), the program photacs
provides reliable results for any atomic (or ionic) target and for any photon energy below
the practical cut-offs. It allows generating cross section tables of subshell cross sections
for the elements with unprecedented detail, including excitation to bound levels and
angular distributions of photoelectrons for arbitrary photon polarizations. Although in
the present calculations it is adopted the DHFS self-consistent potential, the program
can also work with other screened potential models, e.g., to study the influence of the
electron vacancy left after photoabsorption.
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The post-processing program photacs-pp uses elaborate extrapolation models to
determine subshell cross sections for highly-excited discrete levels and for photons with
energies above the calculation cut-offs. It can also account for the effect of the finite
width of atomic levels, which yields the cross section as a continuous function of the
photon energy.

These programs have been used to generate a complete database of photoionization
cross sections for the inner subshells (up to the N7 subshell) of the ground state config-
urations of the elements Z = 1 to 99, for photon energies from the ionization threshold
up to 1 GeV. The provided cross-section tables were built from the numerical cross
sections calculated by photacs (with the DHFS potential), which were extrapolated to
energies higher than the calculation cut-off by means of Pratt’s extrapolation formula,
shifted in energy to have the absorption edges coinciding with the experimental subshell
ionization energies given by Carlson [66], and renormalized using MCDF/DHFS density
ratios. This database has already been adopted in the Monte Carlo code penelope
[27].

In order to correct measured spectra from PPU effect a nonlinear integral balance
equation is derived from first principles considering the measured spectra in a continuous
energy range (before the action of the MCA). The presented model takes into account
only second order PPU and can be applied on both paralyzable and non paralyzable
detectors assuming a rectangular pulse shape. The obtained balance equation is solved
with an iterative formula whose convergence is demonstrated by analyzing the solution
of the balance equation in the Laplace transform domain. The iterative calculation is
then adapted to be applied to a discretized energy interval and then solved by using
the SOR method. This deterministic correction of the PPU effect requires a minimum
amount of information (live time, dead time and the experimental measure to correct).

In order to solve more general pulse pile-up problem also a Monte Carlo strategy
was implemented with the code mcppu. mcppu is a computational tool which performs
post- processing pile-up correction on spectra obtained with different detectors. It takes
into account every order of PPU, peak or tail. mcppu corrects pile-up distortions for
spectra collected with or without electronic reduction circuitry. The resulting spectrum
after the correction recovers the proper number of counts recorded at the correct energy
channels. mcppu implements an iterative Monte Carlo algorithm based in the one
introduced by Guo et al. [83] [84] to compute automatically the PPU correction.

It uses a digitized pulse shape matching the measured pulse. The digitized pulse
shape is easily introduced by means of an external text file. This unique feature makes
the tool suitable to be used with any detectoramplifier combination. To make possible
the comparison with previous works, mcppu allows also the selection of the pulse shape
from a library of rectangular and semi-Gaussian shapes described in literature [76] [80].
mcppu contains also an automatic procedure to evaluate the dead time to use in the
pile-up recovery which needs only a high counting rate and a low counting rate mea-
surement of the same spectrum. Once determined, the same dead time can be used for
all the measurements performed with the same acquisition conditions. The comparison
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of corrected high counting rate spectra with experimental low counting rate spectra,
demonstrates that mcppu can efficiently remove pile-up distortions.

The method was tested successfully with Si SSD obtaining the same results obtained
with the deterministic strategy. The presence in the results of both mcppu and deter-
ministic strategies of the same numerical artifacts shows that they are not influenced by
the Monte Carlo statistics and they are due to the statistical fluctuation with the com-
bined influence of the detector energy calibration and the MCA discretization in energy,
and cannot be avoided. The proposed deterministic approach is then to be preferred to
the most elaborated method (at least for Si SSD) because it is simpler to be used and
faster. The convergent solution of the deterministic balance equation is obtained after
only five iterations with a total computational time of few seconds.

Regarding the detector response function it was developed a new tool for inserting
the effects of the energy resolution and incomplete charge collection in the computed
response function. Energy resolution is a characteristic of the DRF that depends on
different aspects (statistical spread in the number of charge carriers, charge collection
phenomena, electronic noise, etc.) and changes with operating conditions, counts rates,
and pulse shape. For these reasons, it is not, or is only partially, considered in Monte
Carlo or deterministic models of the detector response. However, its effect plays an
important role in X-ray spectrometry, in both qualitative and quantitative analyses of
X-ray spectra. The tool resolution developed to simply and fast add the effect of
the energy resolution to the DRF computed with deterministic or Monte Carlo codes
has been potentiated with an adaptation of the general HYPERMET function [87]. In
the adopted procedure, the Gaussian distribution, the exponential tail, and the shelf
are kept separated and are added in successive steps: the full energy peak is firstly
modified by the exponential tail and the shelf distribution and then convoluted with the
Gaussian spread. The expression of the FWHM is implemented by using the models
found in literature [76] [93] for the three detector types: SSD, scintillators, and gas
proportional counters. For SSD, the effects due to the charge collection mechanism are
introduced by using the models presented by Phillips et al.[87] and Campbell et al. [88].
The presence of a hole tailing is particularly evident for CdTe operating above 50 keV.
resolution proved to be able to describe this effect in the case of the main peaks of
Co-57.

Regarding the detector unfolding the new version of umestrat applies a new strat-
egy to optimally solve the inverse problem in a semi-automatic mode by using the
maximum entropy principle through a combination of the codes GRAVEL [104] and
MAXED [105]. This work presented an improvement of the code umestrat with the
introduction of the constraint on the integral of the original spectrum which allows find-
ing quantitative results. Now umestrat can be used as a post processing correction of
revealed spectra, to improve the detector resolution, with, as a consequence, the capa-
bility to resolve overlapped peaks in the measurement. umestrat has been tested with
different solid state detectors. For a Si detector, for the CuKα peak, the spectrum after
the unfolding has FWHM of about 200 eV, which is half of the original resolution due
to the detector. For the CdTe detector,for the PbLα peak, the FWHM goes from 430
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eV in the measurement to 244 eV after the application of umestrat. In the unfolding
of a direct measurement of a X-ray tube collected with a HPGe detector, the energy
discretization of the measure(bin width of 200 eV)allows only a coarse description of
the peaks.In this example, the unfolding removes the lower energy side of the collected
spectrum, which is due to the detector response function and the Tungsten Kα FWHM
goes from 470 eV in the measurement to 306 eV in the unfolded spectrum. All the ex-
amples prove that umestrat can handle a dense detector response matrix, containing
the complex effects of charge collection, demonstrating the capability of the algorithm
to successfully solve heavy ill conditioned problems.



Summary of the activities done
during the PhD course

Developed codes:

1. photacs: code written in FORTRAN77 for the calculation of photoeffect subshell
cross sections for arbitrary atomic potentials.

2. mcppu: a Monte Carlo code written in Fortran90 (comprising graphical interface
built with Winteracter), for correcting radiation measures from the pulse pile-up effect.

3. resolution: graphical tool written in Fortran90 (comprising graphical interface
built with Winteracter) for introducing energy resolution and incomplete charge collec-
tion effects in the detector response function.

4. umestrat: code written in Fortran90 (comprising graphical interface built with
Winteracter) for the unfolding of radiation measures from the detector response function.

Participation to conferences:

1. IRRMA9 (9th International Topical Meeting on Industrial Radiation and Radioiso-
tope Measurement Applications) in Valencia from 6 to 11 July 2014.

2. Member of the Local Organizing Committee of the EXRS-2014 (European Conference
on X-Ray Spectrometry) in Bologna from 15 to 20 June 2014.

Participation to applications compatible with the doctorate:

1. Part-time work at NIER Ingegneria for verification and validation of mechanical
systems from October to December 2015.

2. Winner of the Marco Polo grant used for developing research activity at the depart-
ment of physics of the University of Barcelona under the supervision of Prof. Francesc
Salvat from 6 October 2014 to 1 March 2015.

Courses attended:

1. Numerical modelling with COMSOL Multiphysics (University of Bologna, Prof. Ste-
fano Lazzari, 8 hours course).

2.Kinetic equations and statistical foundations of transport theory (University of Bologna,
Prof. Domiziano Mostacci, 8 hours course).
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3.Numerical techniques for solving the neutron transport equation (University of Bologna,
Prof. Marco Sumini, 8 hours course).

4. Elements of Microfluidics (University of Bologna, Prof. Gian Luca Morini, 8 hours
course).

5. Inverse problems in heat conduction (University of Bologna, Prof. Marco Lorenzini,
8 hours course).

6. Availability functions and thermodynamic efficiency (University of Bologna, Prof.
Enzo Zanchini, 8 hours course).

7. Testing the stability of a fluid system (University of Bologna, Prof. Leonardo Santos
de Brito Alves, 8 hours course).

8. Use of a symbolical mathematical code for convection-diffusion problems (University
of Bologna, Prof. Leandro Alcoforado Sphaier, 8 hours course).

9. Control and Optimization methods (University of Bologna, Prof. Sandro Manservisi,
8 hours course).

10. X-ray physics and synchrotron radiation (University of Bologna, Prof. Federico
Boscherini, 60 hours course).

11. Electronic measures and laboratory T-1 (University of Bologna, Prof. Pier Andrea
Traverso, 90 hours course).

12. Fortran90 introduction(CINECA, BOLOGNA, Dot. Elda Rossi, 24 hours course).

13. Radiobiology of charged particles and radiotherapy implications (University of Bologna,
Prof. Roberto Cherubini, 1 day course).

14. Liquid scintillators (University of Bologna, Prof. Ulrich Scherer, 1 day course).

15. Nuclear fuel management (University of Bologna, Prof. Jean Pierre Leveque, 1 day
course).

Workshop:

1. Workshop on Accelerated High-Performance Computing in Computational Sciences
(ICTP, International centre for theoretical physics, Trieste from 25/05/2015 to 05/06/2015)

Publications:

1. L. Sabbatucci, J.E. Fernandez: First principles Pulse Pile-Up balance equation and
fast deterministic solution, submitted to Radiat. Phys. Chem. (2016)

2. L. Sabbatucci, F. Salvat: Theory and calculation of the atomic photoeffect Radiat.
Phys. Chem. 121 (2016) 122-140

3. J. E. Fernndez, V. Scot, E. Di Giulio, L. Sabbatucci: Improvement of the detector
resolution in X-ray spectrometry by using the maximum entropy method. Radiat. Phys.
Chem. 116 (2015) 194-198.

4. J. E. Fernndez, V. Scot, L. Sabbatucci: A modeling tool for detector resolution and
incomplete charge collection, X-ray Spectrom. 44 (2015)177-182.
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5. L. Sabbatucci, V. Scot, J. E. Fernandez: Multi-shape pulse pile-up correction: the
MCPPU code. Radiat. Phys. Chem. 104 (2014) 372375.

Presentations :

1. Improvement of the detector resolution in X-ray spectrometry by using the maximum
entropy method: presented at IRRMA9 (9th International Topical Meeting on Industrial
Radiation and Radioisotope Measurement Applications) in Valencia from 6 to 11 July
2014

2. Multi-shape pulse pile-up correction: the MCPPU code: presented by prof. J.E.
Fernandez at ICDA-1 (1st International Conference on Dosimetry and its Applications)
in Prague from 23 to 28 June 2013

Posters :

1 : A Modelling tool for detector resolution and incomplete charge collection: Poster
presented at the EXRS-2014 (European Conference on X-Ray Spectrometry) in Bologna
from 15 to 20 June 2014.

2 : First principles Pulse Pile-Up balance equation and fast deterministic solution:
Poster presented by Prof. J.E. Fernandez at the ISRP-13 (13th International Sym-
posium on Radiation Physics) in Pechino from 7 to 12 September 2015.
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