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Abstract

The knee joint plays a central role in human motion for its dual function: providing a

large range of motion in flexion/extension and stability in the other degrees of freedom

(DoF). Computational modeling is a powerful tool to deepen our understanding of the

joint mechanics, overcoming the main limitations of experimental investigations, i.e.

time, cost and impracticability, and providing valuable insights for prosthetic design,

rehabilitation and surgical planning. Within this background, the specific aim of this

dissertation is threefold.

• The aim of the first study (Chapter 2) to define a predictive kinetostatic model

of the tibiofemoral joint by means of a sequential procedure, in order to analyze

its behavior both in passive and in loaded conditions. Anatomical surfaces and

all the main ligamentous structures are included in the model. To verify the

predictive capabilities of the model, no parameter optimization is performed.

The model is validated by comparing its motion to experimental data from

the literature under several loading conditions. Then anatomical surfaces are

replaced with spherical ones in order to evaluate how this simplification affects

tibiofemoral motion. Anatomical articular surfaces provide results closer to

the reference kinematics, but the accuracy of the two models is comparable.

Predictions of the model with spherical surfaces are less accurate when the

loads are larger. Ligament and contact forces are also analyzed and they are

in reasonable agreement with previous studies. The model proves to effectively

replicate the behavior of the human knee in passive and loaded conditions.

• The aim of the second study (Chapter 3) is to develop a dynamic specimen-

specific model of the tibiofemoral (TF) and patellofemoral (PF) joint and to

validate it by means of in vitro experimental data from a squat activity. The

kinematic models of the TF and PF joints are developed following the sequential
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approach. First, the kinematic model is defined from the passive motion and

subsequently the joint compliance is optimized to match laxity tests data from

the literature. A computational framework was developed to reproduce the

loading conditions of the test rig used to carry out the experimental tests. The

quadriceps force needed at the joint to replicate the squat activity is computed

in two different ways: in a kinematics-driven simulation, through a static opti-

mization process, and in a 6 DoF force-driven finite-element (FE) simulation,

through a proportional-integral (PI) controller. The quadriceps force predicted

by the 6 DoF FE model is in good agreement with the one predicted by the

static optimization, but both are smaller than the experimental quadriceps force

from the test rig. The scope of the FE model was also to analyze quantities

not experimentally measurable, such as ligament and contact forces during the

squat activity.

• The aim of the third study (Chapter 4) is to introduce a novel method to eval-

uate TKR by determining the compressive loading required to achieve natural

knee stability. Pre-clinical assessment of stability in total knee replacement

(TKR) is crucial for developing preferred implant performance. Current TKR

patients often experience joint instability that the human body addresses with

compensatory strategies. Specifically, an increased quadriceps-hamstrings co-

contraction serves to increase joint stability through an increased compressive

force across the TF joint. Four current TKR geometries in both their cruciate-

retaining and posterior-stabilized forms are modeled in a finite-element (FE)

framework. The FE model is initially validated experimentally using traditional

knee laxity testing with a constant compressive load and anterior-posterior (A-

P) displacement or internal-external (I-E) rotation. Model predictions of con-

straint are in reasonable agreement with experimental results. The FE model is

subsequently interfaced with a feedback controller to vary the compressive force
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that the implant requires in order to match experimental natural knee I-E and

A-P stability at different flexion angles. Results show that the lower conformity

TKR designs require on average 66.7% more compressive load than high con-

formity designs to achieve natural knee constraint. As expected, TKR stability

and compressive load requirements to replicate natural kinematics vary with

inclusion of tibiofemoral ligaments. This study represents a new and physio-

logical approach to evaluate stability in existing TKR geometries and to design

implants that better restore natural knee mechanics.
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Chapter 1

Introduction

In the Introduction, a brief background on the knee joint anatomy, function and

common diseases as well as an overview of the state-of-the-art in the healthy and

implanted knee modeling will be offered. The objective of the Introduction is to

clarify the research rationale behind the studies presented in the following chapters.

1.1 The knee joint

The knee joint consists of two articulations in one: the first articulation is between the

condyles of the femur and the corresponding condyles of the tibia, i.e. the tibiofemoral

joint (TF) [37]. The second articulation is between the posterior side of the patella

and the anterior distal part of the femur (throclea), i.e. the patellofemoral joint

(PF) [37]. The TF joint could be thought as a simple hinge, but indeed it allows a

6 degrees of freedom (DoF) motion between the tibia and the femur (Fig. 1.1). The

PF joint also allows 6 DoF between the femur and the patella. The knee meets two

apparently opposite functional requirements: mobility and stability. It must provide

a large range of motion in flexion/extension and stability in the other DoF, in order

for the lower limb to properly perform any motor task. In addition, it is subjected

to a load of the order of multiple body weight and therefore it must offer extensive
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weight-bearing support. As a result, the knee is predisposed to degenerative diseases

and commonly injured, and it frequently necessitates surgical interventions. These

peculiar features make the knee one of the most complex and fascinating articulations

of the human body and justify the great amount of research interest that it raises.

Ligaments and articular surfaces (Fig. 1.2) are the main structures that guide the

relative motion between the joint bones and that stabilize the joint. Ligaments are

bands of fibrous connective tissue that connect the articular extremities of bones; they

are characterized by a force-elongation relationship, therefore a mechanical stiffness,

and they exhibit viscoelastic properties. The main ligaments crossing the TF joint

are the cruciates and the collaterals. The anterior cruciate and posterior cruciate

ligament (ACL and PCL) are the structures that restrain respectively the anterior and

posterior displacement of the tibia with respect to the femur. The cruciates originate

in between the femoral condyles and have their attachment locations on the very

anterior (ACL) and posterior (PCL) part of the tibial plateau. The medial and the

lateral collateral ligament (MCL and LCL) are responsible for resisting respectively

the internal and external rotation of the tibia and they provide stability in varus-

valgus DoF as well. The MCL is on the medial side of the joint and it consists of two

bundles, a short deep bundle and a superficial bundle that has its attachment more

distally on the tibia. The LCL connects the femur with the fibula, a bone on the lateral

side of the tibia that can be thought fixed to the tibia in the biomechanical analysis

of the joint. Secondary soft tissue structures, such as the oblique popliteus ligament

(OPL), the anterolateral structure (ALS), the posterior capsule (POST CAP) and the

oblique posterior ligament (OPL), play a secondary but noteworthy role in stabilizing

the joint. In the knee, as in any other human joint, direct bone-to-bone contact is

avoided by means of cartilage layers that are on the distal part of the femur, on

the proximal part of the tibia and on the posterior face of the patella. Cartilage

is made of closely packed collagen fibers whose primary functions are to provide a
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bearing surface with extremely low friction, reducing wear and permitting a smooth

relative motion between the joint bones, and to distribute the load by increasing the

contact area and therefore decreasing stress. Moreover, the knee is a synovial joint,

meaning that it is surrounded by a synovial membrane which secretes a lubricating

fluid into the joint cavity to facilitate frictionless motion between the bones. Menisci

are important structures for the mechanics of the knee joint too (Fig. 1.2). They

are two semilunar-shaped mobile pads of fibrocartilaginous tissue mostly made of

collagen fibers, as the cartilage is, that provide an extra cushioning essential for one

of the main task of the knee joint, which is weight-bearing. Menisci act to spread

the load transmitted between the femur and the tibia, increasing the contact area

and therefore reducing the average pressure on the articulating surfaces [35] and they

also facilitate shock absorption at the joint. Ligaments and articular surfaces can be

thought as passive structures of the joint, meaning that they do not actively generate

force but they exert force only in response to external loads, determining the mobility

of the joint. The mobility of an anatomical joint is defined by the range and pattern

of unrestrained movement of the articulating bones [26]. As for the knee, it can be

said that its mobility is controlled by the geometrical arrangement of the passive

anatomical structures, above all ligaments and articular surfaces [30,108].

The active structures that play a role in the knee mechanics are the muscles span-

ning this joint. Muscles are bundles of fibrous tissues that have the ability to contract

in order to generate a relative motion or to maintain the relative position of the bones

in the joint that they cross. In the case of the knee, the muscles crossing it generate

all the forces necessary for the lower limb to perform any dynamic activity. Knee

muscles can be divided in two groups: flexors and extensor. Flexor muscles are the

hamstrings, namely the biceps femoris, the semimembranosus, the semitendinosus

(Fig. 1.3), and they are responsible for the tibia to flex with respect to the femur.

Extensor muscles are the quadriceps (rectus femoris, vastus medialis, lateralis and
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intermedius) and the medial and lateral gastrocnemius, and they are responsible for

the tibia to extend with respect to the femur. Flexion-extension mechanism is com-

pleted by the patellar ligament (Fig. 1.3), that connect the distal part of the patella

to the anterior part of the tibia, permitting the quadriceps force to be transferred to

it. Muscles are attached to the joint bones through tendons, which are cords of tough

fibrous tissue capable of transmitting force. Together with the patellar ligament, the

quadriceps tendon is part of the extensor mechanism of the knee, and it connects the

quadriceps muscle group to the patellar bone (Fig. 1.3).

1.2 The Total Knee Arthroplasty

As mentioned before, the knee is particularly susceptible to various injures, such as

ligament or meniscus tears, and diseases, the most common of which is osteoarthritis.

Osteoarthritis (OA) is a degeneration of joint cartilage and the underlying bone and

it affects weight-bearing articulations. OA, also known as the inflammatory form

of the osteoarthrosis, causes pain and loss of mobility at the joint and it is a pri-

mary cause of disability in the elderly population. Many are the factors that can

lead to this disease, such as age, injury, obesity and genetic predisposition. So far

no cure exists for OA and the only known working procedure to restore joint mo-

bility and functionality and to relieve pain is the total knee arthroplasty (TKA) or

replacement (TKR). TKA is a surgical intervention consisting in the substitution of

the damaged articular surfaces of tibia, femur and possibly patella with artificial de-

vices (Fig. 1.4). Its incidence is estimated to reach 3.5 million of case in the United

States of America by 2030 [56], without considering the surgical revision that many

times is needed after the intervention because of infection, wear or loosening of the

implant. TKA surgical procedure has a high successful rate, with typical 10-year sur-

vivorship near 95% [36, 88]. In most of the cases, TKA involves the resection of the
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ACL and, in some cases, depending on the implant design, also the resection of the

PCL. It is clear then that this surgical procedure deprives the knee of its key stability

structures, namely the articular surfaces, the menisci and one or both the cruciate

ligaments. Therefore the ultimate goal of the TKR components must be to restore

normal knee mechanics, meaning that the implants must be capable of transmitting

load, providing sufficient stability and allowing enough mobility at the joint, properly

interacting with the soft tissue surrounding it, in a similar way to what the healthy

knee does. In other words, according to [106] TKR aims to offer to the implanted

joint the proper balance between stability and laxity. The femoral component and

the tibial tray are generally made of a cobalt chromium molybdenum alloy. The

tibial insert and the patella component are instead made of ultra-high-molecular-

weight polyethylene (UHMWPE), a polymer that offers high abrasion resistance and

superior wear properties. Both cobalt chromium molybdenum alloys and UHMWPE

are biocompatible and yield a low coefficient of friction, though higher than the one

that the cartilage provides. Various designs have been developed through the years,

since the first TKA were performed in the 1960s: fixed or mobile-bearing, cemented

or uncemented, with or without patellar resurfacing, with different degrees of con-

formity between the tibial and femoral components, all-polyethylene or metal-back,

symmetrical or asymmetrical. The asymmetrical TKR design deserves some atten-

tion. It consists in a conforming medial side and a low constraint lateral side, in the

attempt to replicate the natural asymmetrical morphology of the knee: despite that,

this design struggles to raise a real interest in the biomechanical world [106]. Differ-

ences exist also in the surgical approach chosen for the implant procedure, namely

the mechanical alignment and the kinematic alignment approach [14]. The intent of

kinematic alignment is the restoration of the normal three-dimensional orientation of

the knee, permitting some degrees of varus-valgus between the femur and the tibia,

while the mechanical alignment consists in having the hip, the knee and the ankle
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joint centers positioned along a straight line. The two most noticeable groups of TKR

designs are cruciate retaining (CR) and PCL sacrificing or posterior-stabilized (PS)

implants. The CR design takes advantage of the PCL to limit the anterior sliding of

the femoral component on the tibial insert. However, in some OA knees, the PCL is

damaged along with the cartilage, or the surgeon determines that its function cannot

be retained with TKA. In such cases, the PCL is resected and the PS implant is used.

The PS design typically incorporates a cam in the tibial insert and a post mechanism

in the femoral component to restrict the tibial posterior displacement, in the attempt

to artificially replace the function of the PCL.

1.3 Why modeling the knee?

Despite the high success rate of the TKA procedure, persistence of pain after the

surgery [15] and knee instability, particularly during high-demand activities [74, 76],

remain a common complaint of TKR patients. Investigating the mechanics of the

bones, articular cartilage, menisci, ligaments, as well as the kinematics of the TF

and PF joints and the muscular loads is crucial to effectively improve the TKR de-

sign and surgical procedure. Some of the joint mechanical quantities are relatively

straightforward to measure either in vivo or in vitro, such as the TF and PF relative

motion. Instead, it is problematic to experimentally assess the loads through the

joint structures, such as muscles, ligaments and contact surfaces, particularly in vivo.

For this reason, the development and validation of reliable computational models of

the joint is essential [109]. Biomechanical models are a useful tool to understand the

mechanical behavior of the knee, allowing the quantification of the key factors influ-

encing it and, therefore, the prediction of the functional capabilities of the natural

and implanted joints. Models can complement experimental testing and provide a

cost and time-efficient framework to investigate the interactions between the implant
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and the bone, the contact loads acting at the joint, the joint kinematics and the

constraints offered by the soft tissue. When modeling the knee joint, a certain level

of approximation must be tolerated, given the complexity of the anatomical struc-

tures involved. A relevant source of uncertainty comes from the large variability of

mechanical and geometrical properties in any biological tissue. Subject-specific and

specimen-specific models try to reduce this variability by identifying as many pa-

rameters as possible and replicating a specific patient or experiment. However, some

level of uncertainty can never be eliminated, because of the impossibility to directly

measure certain properties. For example, when in vitro laxity tests are performed

on cadaveric knees to measure the restrain offered by the ligaments, the mechanical

properties of single ligaments cannot be measured without compromising the integrity

of the joint. When direct measurements are not available, averaged data from the

literature are often used in place of them. A fundamental step to develope a reliable

biomechanical model is its validation, which is particularly challenging because of the

already mentioned difficulties in obtaining in vivo or in vitro data. An example of

the challenges in the validation process is the lack of muscle forces measurements:

electromyography (EMG) signals and instrumented implants are the only available

tools that allow a qualitative or indirect comparison of computational estimates to

in vivo data. Several approaches have been used to develop computational models of

healthy and TKA knees: the two most common approaches, i.e. multibody and finite

element modeling, are presented hereafter.

1.3.1 Multibody modeling

A multibody dynamic system consists of solid bodies, or links, connected to each other

by joints that limit their relative motion. Multibody models can be used for both

forward and inverse dynamic analysis, depending on the goal of the computational

simulation. When a forward dynamics simulation is performed, boundary conditions
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are applied to the model and its motion is forward-integrated and predicted; on the

other hand, an inverse dynamics analysis calculates the loads needed at the joints to

generate a certain motion. In the past, musculoskeletal models of the knee primarily

consisted of analytical rigid body representations with simplified geometry, ligaments

modeling and contact definitions. Some models were limited to the sagittal plane

[18, 79, 97], while others were three-dimensional [12, 108]. These models, in their

simplicity and within the limited computational power that was available at the

time, could still claim a good accuracy in predicting joint kinematics, ligament and

contact forces. A noteworthy modeling approach is the sequential procedure [30]: this

approach relies on the notion that isometric ligaments and articular contact guide

passive flexion and that the other five DoF are coupled to flexion during the passive

motion [108, 109]. It is a three-step procedure that starts from the definition of a

kinematic model of the joint, i.e. a model of the passive motion, used then as a starting

point for the kinetostatic and dynamic models (second and third step, respectively).

The advantage of the procedure is that each step does not invalidate the previous ones,

preserving their capabilities. It is worth notice that the kinematic model developed

through the sequential procedure is accurate and simple at the same time, and it can

easily be included in more complex musculoskeletal models of the lower limb [70].

The sequential approach is the one adopted for the two studies on the natural knee

presented in this dissertation (Chapter 2 and Chapter 3). Multibody modeling evolved

as more powerful software became available. Bloemker et al. [13] used Adams (MSC

Software Corporation, Santa Ana, CA) to develop a computational model of the knee

and of a dynamic knee simulator, in order to validate the joint model. Adams is used in

Chapter 2 of this dissertation for the development of a kinetostatic model of the knee.

Opensim, an open source multibody code specifically designed for the musculoskeletal

modeling, was introduced in 2007 by researchers at Stanford University and it is now

worldwide spread [19]. Opensim offers specific tools for computing inverse kinematics,
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inverse dynamic and forward dynamic analysis on musculoskeletal models. It also has

the capabilities to estimate muscular forces for a given motion, by performing a static

optimization that minimizes the sum of the squared muscular activation at each time

frame to solve for the muscle redundancy [19]. Muscle redundancy is due to the

fact that in the human body there are more muscles than DoF therefore there are

infinite combinations of muscle forces that result in the same joint motion. One of the

advantages of Opensim is that it allows different levels of complexity in the model: for

example, the knee joint can be modeled as a simple hinge, as a one DoF mechanism in

which translations and rotations are coupled to the flexion, or as a 6 DoF mechanism

that includes ligaments [111] and contact forces [60]. Opensim is used in Chapter 3

of this dissertation to compute the quadriceps force during a squat activity.

1.3.2 Finite element modeling

The finite element (FE) analysis is a well-known and broad used tool in the biome-

chanical world, because it provides the right platform to overcome the difficulties

related to the computing of stress, strain and contact areas of complex shapes such as

the anatomical and prosthetic surfaces [24]. For this reason, FE models of both the

natural [7] and the TKR joint [33, 46] have been and are successfully developed by

many biomechanical researchers, and they are used to predict joint kinematics and

contact mechanics, as well as ligament forces. The capability to estimate stress and

contact pressure in the healthy and TKR joint makes the finite element technique a

significantly valuable tool for implant design. Moreover, ligaments [7], menisci [83]

and cartilage [53] can be efficiently and effectively modeled in the FE platform. While

recent advances in model development and simulation platforms offer a wide range

of tools to investigators, the decision making process during modeling and simulation

has become more opaque [24]. The risk is that FE modelers are often uninformed

about the limitations of their models and the simulation software and therefore they
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compromise the goodness of their own results not knowing the boundaries of their

trustworthiness. In order for a FE model to be reliable, some precautions have to be

taken into account, such as having a refined enough mesh, i.e. small enough element,

and using a small enough time increment to run the analysis. In fact, a conver-

gence study on these two quantities is always suggested for the output quantities

to be reliable. These rules become clearer once the mathematical process behind a

FE simulation is explained. The healthy and implanted knee models presented in

this dissertation in Chapter 3 and Chapter 4 were developed using Abaqus/Explicit

(Abaqus, Inc., Providence, RI). Abaqus/Explicit uses a central difference rule to in-

tegrate equations of motion "explicitly" through time, using the kinematic conditions

at one increment to calculate the kinematic conditions at the next increment. At the

beginning of an increment the program solves for dynamic equilibrium. The acceler-

ations are integrated through time using the central difference rule, which calculates

the change in velocity assuming that the acceleration is constant. Thus, satisfying

dynamic equilibrium at the beginning of the increment provides the accelerations.

Knowing the accelerations, the velocities and displacements are advanced "explicitly"

through time. The term "explicit" refers to the fact that the state at the end of the

increment is based on the displacements, velocities, and accelerations at the begin-

ning of the increment. It is important to note that the explicit method is based on

the assumption that the nodal accelerations are constant during an increment. For

the method to produce accurate results, the time increments must be quite small,

and, as a result, analyses typically require many thousands of increments. However,

unlike the traditional implicit FE method, solving each iteration in explicit is com-

putationally inexpensive. In the case of rigid-body analyses, the internal stresses and

strains are not computed, and the problem is simplified to the calculation of just the

nodal displacements under specified contact definitions. This represents a substantial

saving in computational time.
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1.4 Purpose of this work

The overall purpose of the research presented in this dissertation is to possibly advance

the current knowledge on the modeling of the natural and implanted knee, with

particular focus on the factors that influence its stability and laxity. Each one of the

three studies presented in the following chapters has a specific aim, as listed below.

• The aim of the study presented in Chapter 2 is twofold. The first goal is

to assess if a sequentially-defined kinetostatic model of the TF joint, featuring

anatomical surfaces and a complete representation of the joint soft tissue, could

be exempt from optimization, and therefore claim predictive capabilities. The

second goal of this study is to evaluate the performance of spherical contact

surfaces, when they are used in place of anatomical surfaces, in kinetostatic

conditions.

• The aim of of the study presented in Chapter 3 is to develop a dynamic

specimen-specific sequentially-defined model of the TF and PF joint, starting

from the findings of Chapter 2, and to validate it by means of in vitro exper-

imental data from a squat activity. Another goal of this study is to compare

different techniques to predict the muscular force necessary to perform the squat

activity and to understand to to which extent the knee representation influences

these predictions.

• The aim of of the study presented in Chapter 4 is to introduce a novel method to

evaluate TKR joint by determining the compressive loading required to achieve

natural knee stability. The goal of the study is also to understand to which

extent implant geometry influences such compressive load.
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Figure 1.1: Tibiofemoral (TF) and patellofemoral (PF) joints. The 6 degrees of
freedom (DoF) of the tibia and the patella with respect to the femur are: flexion-
extension (FE), internal-external (IE) and varus-valgus (VV) rotation, medial-lateral
(ML), superior-inferior (SI) and anterior-posterior (AP) translation.

Figure 1.2: Soft tissue in the TF joint. Anterior cruciate ligament (ACL), posterior
cruciate ligament (PCL), medial collateral ligament (MCL), lateral collateral ligament
(LCL), medial and lateral menisci.
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Figure 1.3: Main muscles crossing the knee joint: hamstrings (biceps femoris,
semimembranosus, and semitendinosus) and quadriceps (rectus femoris, vastus me-
dialis, vastus lateralis and vastus intermedius).

Figure 1.4: Femoral component and tibial insert of P.F.C. Sigma R©, a TKR design
from DePuy Synthes Inc., Warsaw, IN: cruciate retaining (CR) design (left) and
posterior stabilizer (PS) design (right).
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Chapter 2

Sequentially-defined kinetostatic

models of the knee with

anatomical and spherical surfaces

2.1 Introduction

The knee joint has always played a central role in the human motion for its dual func-

tion: it provides a large range of motion in flexion/extension and stability in the other

degrees of freedom (DoF). Many mathematical models have been presented in the lit-

erature to investigate the dynamic behavior of the knee and two main approaches can

be identified. The first one is the simultaneous approach, which does not separate the

analyses of joint mobility and stability, solving the kinematic and dynamic analyses

of the joint in a single step [1,13,49]. The second method is the sequential approach,

which considers the kinematic, kinetostatic and dynamic analyses in subsequential

steps. First, a model that solves only the kinematic analysis is defined. This model

replicates the passive motion of the knee and it includes only the structures involved

in this type of motion (ligaments and articular surfaces). Then, based on this first
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step, two more models are defined [30,81,82,93,110]. The second model replicates the

behavior of the joint in kinetostatic conditions by including the compliance properties

of the articular structures. The third model includes the muscle actions and it solves

the dynamic analysis of the joint. Through the sequential approach, joint mobility

is addressed in the first step with the kinematic model, whereas joint stability is

modeled in the following two steps with the kinetostatic and dynamic models. This

approach allows a step-by-step identification of the model parameters by including

in each step only the structures involved in the current analysis [30, 93]. For this

reason the sequential approach preserves the role played by the passive structures

for both the mobility and the stability of the joint. In other words, it ensures that

the kinetostatic and dynamic models are still able to replicate the passive motion, in

addition to the the loaded motion.

A sequentially-defined kinetostatic model of the knee has been previously pre-

sented [93]. This model included the main ligamentous structures and a spherical

approximation of the articular surfaces. The mechanical characteristics of the liga-

ments were found in the literature and then optimized to fit the reference experimental

kinematics. The spherical approximation simplified the definition of the articular sur-

faces and the contact representation. The model proved to correctly replicate both

passive and loaded motion. However, the optimization of the elastic parameters may

be an issue in some applications because it is a time consuming process and it requires

a target loaded motion that, unlike the passive motion, is hardly achievable in vivo.

The main purpose of this study is to verify whether the model parameter opti-

mization can be avoided by using the sequential approach and by including a more

detailed and complete representation of the passive structures of the knee. This

would allow predictive potentialities for the model in loaded conditions and it could

free from technical issues related to the optimization procedure. Therefore, a new

kinetostatic model of the knee is defined in this study, according to the sequential
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approach. This model is based on an extension of a preliminary work [100] and it is

consistent with many previous studies [22,29,51,90,93] which emphasize an accurate

replication of the passive motion as a key point for a precise description of the hu-

man joints kinematics. Articular anatomical surfaces and almost all the ligamentous

structures of the knee are included in the new kinetostatic model in such a way that

does not alter the passive motion of the preliminary kinematic model. Assessment

of the model behavior is performed by comparing its motion during standard laxity

tests to target kinematics from the literature [31,41,55,85]. In addition, as a further

validation, ligament and contact forces are analyzed for selected loading conditions

and qualitatively compared to previous studies [1, 7, 34,40,47,65,66,80].

A limitation of several subject-specific models of the knee is that anatomical ge-

ometries are needed to model the tibiofemoral (TF) contact [61] and the segmentation

from MRI images is a time consuming process that requires manual work. Spherical

approximations of the contact surfaces are instead quickly obtainable from anthropo-

metric measurements and they closely replicate the anatomical surfaces during passive

motion [93], with the advantage of a simpler contact representation. The second goal

of the present work is then to evaluate the performance of spherical contact surfaces

in kinetostatic conditions by assessing their influence on the TF motion when they

are used in place of anatomical surfaces. Therefore, articular surfaces are replaced in

the model by spherical surfaces and the motions resulting from the two models are

compared. This analysis shows to which extent a simplified surface representation

can be reliable.

2.2 Methods

The kinetostatic model presented in this study is developed as the second step of

a procedure which includes three sequential steps [30]. A kinematic model (M1)
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of the knee with the main passive structures of the joint was defined to accurately

reproduce the passive motion. Then the kinetostatic model (M2) was defined as a

generalization of the kinematic model by adding the remaining passive structures to

it and by including the viscoelastic properties of all the structures. M2 replicated the

joint behavior when external loads are applied, but it did not involve muscle forces.

In the generalization from M1 to M2, the parameters of the kinematic model were not

changed and the newly added structures must not alter the passive motion. With a

proper identification of the model parameters, all the structures added in M2 remain

almost slack during the passive motion. For this reason M2 could replicate the knee

passive motion as well as M1, in addition to the joint loaded motion.

2.2.1 Experimental Session

Experimental data collected in previous investigations were used for the model defi-

nition [91, 93]. Geometries of a right knee specimen were obtained with a stereopho-

togrammetric system (Stryker Navigation System, Stryker-Leibinger): anatomical

landmarks, TF articular surfaces, origin and insertion areas of the main knee liga-

ments, namely anterior cruciate ligament (ACL), posterior cruciate ligament (PCL),

medial collateral ligament (MCL), lateral collateral ligament (LCL), were digitized

as point clouds. Bone geometries were segmented from a CT scan of the joint. The

combination of bone geometries and digitized point clouds allowed an accurate re-

construction of the joint surfaces. Anatomical landmarks were used to define two

anatomical coordinate systems, Sf for the femur and St for the tibia. The origin of

St is located at the center of the tibia, i.e. the deepest point in the sulcus between

the medial and lateral tibial intercondylar tubercles. The x-axis is orthogonal to the

plane defined by the two malleoli and the center, anteriorly directed. The y-axis is

directed from the mid-point between the malleoli to the tibia center. The z-axis is

consequently defined according to the right hand rule. The origin of Sf is located at
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the mid-point between the lateral and medial epicondyles. The x-axis is orthogonal

to the plane defined by the two epicondyles and the femoral head center, directed

anteriorly. The y-axis is directed from the origin to the femoral head center. The

z-axis is consequently defined to form a right-handed triad of axes.

2.2.2 Kinematic Model

The kinematic model is based on an equivalent mechanism presented in previous

studies [21, 78, 81, 82]. It replicates the passive motion of the knee, which is guided

by two articular contacts and three isometric ligament fibers [110]: one fiber of the

ACL, one of the PCL and one of the MCL. In this step, the knee was modeled as a

one DoF mechanism (Fig. 2.1) composed by two rigid bodies, i.e. the femur and tibia,

connected by three rigid links, i.e. the isometric fibers, and two sphere-on-sphere

pairs that represent the contacts between the two femoral condyles and the tibial

plateau [78,81,82]. The geometrical parameters of the model were the location of the

origins and insertions of isometric fibers and sphere centers, the ligament lengths and

the sphere center distances, i.e. the sum of the radii of the lateral pair spheres and the

difference of the radii of the medial pair spheres. Once the geometrical parameters are

identified on the specimen, the passive motion can be calculated by solving the loop

closure equations of the mechanism. The full identification procedure is described

in previous studies [82,91]. The articular surfaces were approximated by best-fitting

spheres and the attachment sites of the isometric fibers are determined according to

origin and insertion areas. This preliminary estimates were then optimized to best

replicate passive motion of the specimen.
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2.2.3 New Kinetostatic Model

The second step of the sequential approach is the definition of the kinetostatic model

M2 as a generalization of the kinematic model M1. M2 included anatomical articular

surfaces and a detailed representation of the ligamentous structures.

Articular Surfaces

The femoral and tibial surface point clouds, previously obtained by the stereopho-

togrammetric system and used for the kinematic model definition, were aligned and

merged with CT scans, in order to combine the geometrical accuracy of the first

method to the completeness of the second one. The alignment was performed with

the software Rhinoceros 3D (Robert McNeel and Associates) (Fig. 2.2). However,

according to the sequential approach definition, the anatomical contact surfaces must

not alter the passive motion of the knee. Therefore, the constraints provided by the

anatomical surfaces during the passive motion must be kinematically equivalent to

the two sphere-on-sphere contacts of the kinematic model. The envelope procedure

was used for this purpose. The aligned femoral surfaces were moved using the kine-

matic model in order to obtain their conjugated surfaces on the tibia during a passive

flexion arc. Two relevant sections of the conjugated surfaces around the contact areas

were isolated (in green in Fig. 2.3). These sections were then merged with the aligned

experimental surfaces of the tibia (in red in Fig. 2.3). The surfaces of the tibia ob-

tained with this method were very similar to the experimental ones, thanks to the

accuracy of the kinematic model. The tibial and femoral surfaces obtained with this

method were then imported as triangular meshes in Adams (MSC Software Corpo-

ration), the multibody dynamics software where the new M2 model is implemented.

Rigid contact with a stiffness coefficient of 105 N/mm2.2 and a damping coefficient

of 10 Ns/mm was imposed between the surfaces.
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To study the influence of surface approximation on the joint behavior, a second

model (M2s) was developed by replacing the anatomical surfaces with the spherical

surfaces of the kinematic model. M2s is exactly the same as M2, except for the surface

definition. Rigid contacts was then imposed between the spheres.

Ligament Modeling

Each ligament was represented in the model by a group of fibers, for a total of

thirty-five fibers. Origin and insertion of each fiber were determined on the bone

surfaces according to measurements on the specimen and to data from the literature.

Attachment areas of ACL, PCL, MCL and LCL were measured on the specimen.

Origins and insertions were then chosen inside the areas according to descriptions in

the literature [32,48,64,72]. The ACL, PCL and MCL featured, among the others, one

isometric fiber, i.e. ACL iso, PCL iso, MCL iso, which represented the corresponding

rigid link in the kinematic model. These fibers were modeled as elastic elements in the

kinetostatic model, but they were still called isometric to distinguish them from the

fibers not included in the kinematic model. The popliteal tendon (PT) was modeled

with two fibers whose origin and insertion coordinates were chosen according to [64].

The oblique popliteal ligament (OPL) was modeled with three fibers, two medial and

one lateral, as described in [57]. The origins of the three fibers were located in the

proximal lateral aspect of the joint, on the fabella, which can be thought as rigidly

coupled to the femur. The insertion of the OPL lateral fiber was just lateral to the

PCL insertion; the two medial fibers had their insertions on the medial aspect of

the tibia. The posterior oblique ligament (POL) was included in the model although

its existence as a distinct ligament is still debated [52, 57, 59, 84]. According to [52],

the POL was modeled with two fibers as a stand-alone ligamentous structure. It

can be thought as a thickening of the capsular ligament which extends obliquely and

posterior from the femoral adductor tubercle to the posteromedial part of the tibia,
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with a length of about 50 mm when the knee is fully extended. Its the tibial insertion

was located approximately 15 mm under the joint line. The fabellofibular ligament

(FFL) [23, 67] was modeled with two fibers that originated on the fabella, close to

the OPL origin. Their insertions were located on the fibular styloid, close to the

LCL insertion area, and the distance between the LCL and FFL origins was set to 20

mm [34]. Some authors pointed out a negative correlation between the FFL and the

arcuate ligament [47, 67], therefore, only the FFL was considered in the model. The

choice was based on the larger amount of accurate information on the geometry of the

FFL compared to the few available data on the arcuate ligament [23,38,47,58,64,67].

Two capsular structures were included in the model: the posterior capsule (CAP)

and the mid-third lateral capsular ligament (MLCL). The CAP was modeled with

three fibers: medial, intermedial and lateral [86]. The origins of the three fibers were

proximal to the articular margin of the femoral condyles and their insertions were

near the tibial articular margin. In particular, the lateral fiber origin was 19 mm

proximal to the origin of the OPL, while its insertion is lateral to the insertion of

the PCL [57]. The MLCL is an anterolateral structure which can be described as

a thickening of the lateral capsule and it is also known as anterolateral structure or

anterolateral capsule [6, 54, 98]. Its origin starts anterior and proximal to the lateral

epicondyle and ends near the attachment of the lateral gastrocnemius tendon. The

insertion extends from the Gerdy’s tubercle to the popliteal hiatus [23, 47, 101]. The

MLCL was modeled with four fibers. Literature data were used to set the stiffness

of each fiber of ACL and PCL [72], MCL, OPL and FFL [11, 64, 72, 80], LCL and

PT [64], CAP [86]. The stiffness of the FFL was obtained by data on the arcuate

ligament, since no specific information were found in the literature. Experimental

data were not available for the POL either, therefore its stiffness was set according to

the mechanical properties of the posteromedial capsule [89], because of the similarity

of these two ligaments. The MLCL stiffness was chosen within the minimum and the
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maximum boundaries presented in [6] for the anterolateral capsule. All the fibers were

modeled as one-dimensional nonlinear springs. The force-strain curve was assumed

to be parabolic-linear (Eqn. 2.1) and it was imposed to each fiber by a user function

in Adams [13]:

F =
1
4

k
ǫ2

ǫl

0 < ǫ ≤ 2ǫl

F = k(ǫ− ǫl) ǫ > 2ǫl

F = 0 ǫ ≤ 0

(2.1)

In Eqn. 2.1, k is the fiber stiffness and ǫ is the strain of the fiber defined as

ǫ = L−L0

L0
, where L and L0 are respectively the length and the zero-load length of

the fiber; ǫl is assumed to be 0.03 [13]. The zero-load lengths of the isometric fibers

were the same used in kinematic model, consistently with the sequential approach.

As regards the other fibers, they must be slack or just slightly tight during passive

motion not to alter it. Therefore, their zero-load lengths should be greater than

the maximum origin-to-insertion distances obtained during the passive flexion arc.

However, this inferior bound for each fiber was reduced by 1% to simulate a minimal

fiber tightening (that is possible for small ligaments) during the passive motion that

cannot be measured experimentally. A damping coefficient of 1 Ns/mm was used

in parallel to each fiber in order to reach the static equilibrium and avoid dynamic

instabilities. The geometrical and mechanical characteristics of all the ligamentous

fibers of M2 and M2s are reported in Appendix A (Tab. A.1).

Loading Conditions

M2 and M2s were tested in several clinically significant loading conditions. Specifi-

cally, anterior-posterior (AP) tests, ab/adduction (AA) tests, internal-external (IE)

torsion tests were performed. The relative motion between the femur and the tibia

under each loading condition was measured [42] and compared to the results presented
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in a reference study [41]. This work was chosen because of the accurate description of

the loading conditions and of the TF reference systems, as well as because results from

all the performed clinical tests were available both in passive and in loaded conditions

at various flexion angles. To be consistent with the testing conditions of the reference

study, the femur was fixed and the tibia was allowed to move freely under the effect

of its own weight (50 N) and of external forces (100 N along the anteroposterior axis,

20 Nm about the anteroposterior axis, 5 Nm about the superior-inferior axis). The

mediolateral rotation of the tibia was fixed at the desired flexion angle during each

test as in the experimental session [41], therefore the model had five DoF. AP tests

were also performed with various loads from 50 N up to 350 N at 90◦ of flexion, in

order to evaluate the influence of articular shape at high loads.

2.3 Results

The motion of both M2 and M2s replicated the experimental reference kinematics [41]

with good accuracy (Fig. 2.4). For further validation, the motion of the models

was also compared to more recent experimental data [31, 55, 85] and it was in good

agreement with them as well (Fig. 2.4). Fig. 2.4a shows the results of AP tests: top

and bottom curves represent respectively the anterior and posterior displacements

of the origin of St with respect to Sf . At each flexion angle, displacements are

measured from the corresponding relative pose when only the weight of the tibia is

applied [41]. Likewise, Fig. 2.4b and Fig. 2.4c show respectively the results of IE

and AA tests: bottom curves represent the variation in abduction and in internal

rotation angles, while top curves represent the variation in adduction and in external

rotation angles, with respect to the corresponding pose of the joint when only the

weight of the tibia is applied. The mean absolute differences between the reference

motion ( [41]) and the simulated motion, expressed as percent values with respect to
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the maximum range of the corresponding motion, were 12.21% (AP test), 7.99% (IE

test), 10.16% (AA test) for M2 and 19.07% (AP test), 7.22% (IE test), 22.45% (AA

test) for M2s. The comparison between the motion of M2 and M2s in the AP test

at 90◦ of flexion showed that, as the load increases, spherical surfaces become less

effective in providing a sufficient constraint to the joint motion (Fig. 2.5).

As a further validation, M2 ligament and contact forces for selected loading con-

ditions are reported in Fig. 2.6 and Fig. 2.7. Fig. 2.6 shows the contribution of each

structure to the anterior-posterior stability in the AP test. The displayed forces are

the projections of passive structure forces,i.e. ligaments and contact forces, along the

direction of the applied external load, therefore their sum is always equal and oppo-

site to the external force (100 N). Fig. 2.7 shows the resultant forces of each passive

structure for IE and AA tests at 0◦, 45◦ and 90◦ of flexion. Contact forces were gen-

erally high (up to 500 N), but for several loading conditions they were either in the

lateral or in the medial compartment (Fig. 2.7). Despite their large magnitude, the

contact forces did not always play a central role to balance the applied external load:

for instance, the projection of the lateral contact force during the anterior drawer at

0◦ is quite low (Fig. 2.6), even if the force itself has a high amplitude (Fig. 2.7). All

the ligaments, including the secondary ones, played a structural role in every clinical

test simulated in this study, in particular at full extension (Fig. 2.7). The number of

ligaments involved always increased near full extension (Fig. 2.7). In fact, the knee

is much more constrained and stiffer at full extension than at higher flexion angles.

The CAP significantly constrained the fully extended knee, providing the greatest

constraint in the abduction test, but it was almost unloaded at 45◦ and 90◦ of flexion

(Fig. 2.7). The OPL and FFL presented the same behavior (Fig. 2.7). As expected,

the ACL was the structure that exerted the highest force in the anterior drawer test,

regardless the flexion angle (Fig. 2.6, Fig. 2.7). Similarly, the PCL provided the great-

est constraint in the posterior test (Fig. 2.7). The LCL restrained both the anterior
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and posterior drawer tests at full extension, but its contribution was negligible when

the knee was flexed (Fig. 2.6, Fig. 2.7). The MCL constrained both the anterior and

posterior drawer tests at 45◦ and 90◦ of flexion (Fig. 2.6). Other ligaments exerted

significant forces as well, such as the POL in the posterior drawer test, the MLCL

in the anterior and posterior drawer tests and the PT in the anterior drawer test.

All these structures provided both positive and negative contributions to the joint

equilibrium (Fig. 2.6). The most loaded ligaments in the AA tests were the ACL and

PCL (Fig. 2.7), together with the LCL and PT (adduction) and the MCL and POL

(abduction). In the external torsion test, the CAP, the LCL, the OPL, the ACL and

the PT were the most important constraints when the knee is fully extended, while the

PT and the MCL exerted the highest forces at 90◦ of flexion (Fig. 2.7). In the internal

torsion test, the ACL and the MCL were generally the most involved ligaments, while

the CAP and PCL exerted considerable forces at 0◦ and 90◦ of flexion, respectively

(Fig. 2.7). The POL played an important role to stabilize the internal torsion when

the knee was fully extended but its importance was reduced as the knee was flexed

(Fig. 2.7). On the contrary, the MLCL force increased with flexion (Fig. 2.7).

2.4 Discussion

A new kinetostatic model of the knee was defined in this study to predict the behavior

of the joint both in passive and loaded conditions. The model included the anatomical

articular surfaces and a detailed set of the knee ligamentous structures, thanks to a

deep literature investigation. The model was developed by means of the generalization

of a kinematic model of the joint passive motion. This generalization process followed

a sequential approach, that allows joint mobility and stability to be sequentially

analyzed. The mechanical and geometrical parameters of the model were determined

from a specimen and from the literature. The results proved that the model accurately
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replicated the motion of the joint both in passive and loaded conditions (Fig. 2.4),

when compared to experimental data from the literature [31, 41, 55, 85]. Although

the model included the optimized parameters of the kinematic model [93], a full

optimization was not performed: this suggested a potentially predictive ability of the

model.

The kinematic model on which M2 is based was a spatial mechanism proposed,

discussed in detail in previous investigations [21, 78, 81, 82]. The kinematic model

accurately replicated the knee passive motion, reproducing the role that some pas-

sive structures play in guiding this motion. This mechanism included a spherical

approximation of the articular surfaces instead of anatomical surfaces because pre-

vious investigations showed that numerical instabilities and a high model sensitivity

are associated to equivalent mechanisms with complex surfaces [78]. Therefore the

anatomical surfaces were used only during the generalization from the kinematic

model to the kinetostatic one. After the generalization, the kinematic model cor-

responding to the new kinetostatic model was no longer the mechanism in Fig. 2.1

but it was kinematically equivalent to it, thanks to the procedure used to generate

the surfaces described in Sect. 2.2.3. However, it would provide different results in

terms of contact paths and articular forces, since the contact surfaces were no longer

spheres.

Besides anatomical surfaces, the model proposed in this study included a complete

representation of almost all the knee ligaments. Since the attachments of some liga-

mentous structures were not digitized during the experimental session, their location

on the specimen surfaces was chosen according to their anatomical descriptions in the

literature. The very existence of some structures is still discussed in the literature,

such as the existence of the POL as a distinct ligament or as a part of the deep

MCL [52, 57, 59, 84], or the possible negative correlation between the FFL and the

arcuate ligament [47,67]. Therefore the choices made in this study may not represent
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the real anatomy of the specific specimen. However, this limitation did not compro-

mise the accuracy of the model because of the small influence of these ligaments in

comparison to the main structures that constrain the joint. Ligamentous forces were

generally in good agreement with the literature [1, 7, 34, 40, 47, 65, 66, 80], therefore

they provided a further validation of the model and made it possible to understand

the role of all passive structures in giving stability to the joint (Fig. 2.6, Fig. 2.7). In

accordance with [1,7,80], at full extension, the most involved ACL fibers for the ante-

rior drawer test were the posterolateral ones, while the most involved PCL fibers for

the posterior drawer test were the posteromedial ones. On the contrary, the antero-

medial ACL fibers (in the anterior drawer test) and all the PCL fibers (in the posterior

drawer test) were involved at 90◦ of flexion ( [7]). During the anterior drawer test,

the resultant force on the ACL was always greater than the applied external force, in

accordance with [80]. This is a consequence of the rotations coupled with the joint

translations. The MCL posterior deep fiber played a significant constraining role dur-

ing the posterior drawer test [1]. In accordance with [80], results show that the ACL

and the MCL are the most involved ligaments in the internal torsion test. Besides

the MCL, on the medial aspect of the knee, the POL played an important role to

stabilize the internal torsion when the joint was fully extended, but its importance

was reduced as the knee flexed [40]. On the lateral side, the LCL acted in accordance

with [1], restraining both the anterior and posterior drawer test at full extension and

giving almost no contribution to the joint stability when the knee was flexed. The

MLCL was actually an important constraint of the joint in adduction [34, 47, 65, 66],

when the knee was either flexed or extended, and it could be considered the lateral

counterpart of the deep MCL. The analysis of the ligaments forces pointed out some

apparently paradoxical behaviors of the joint: an increasing force in posterior drawer

test at 90 degrees reduced the posterior translation, that became even positive (i.e.

anterior) with spherical surfaces at high loads (Fig. 2.5). However, these behaviors can
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be explained in the context of joint equilibrium, considering the rotations generally

coupled to translations during the drawer test.

The comparison between the results of M2 and M2s suggests that, even if the

anatomical surfaces provided a higher model accuracy, spherical surfaces can still

predict the joint behavior when the applied loads are not too high. However, de-

spite the mean absolute differences between the model and the reference results were

comparable (less than 12.21% for M2 and less than 22.45% for M2s), the behavior

of the two models was similar, but not always the same for each considered loading

condition. The shape of articular surfaces caused differences mainly in the posterior

drawer and in the abduction tests while internal and external rotations were quite

similar regardless the type of articular surfaces considered (Fig. 2.4). The differences

between M2 and M2s motion increased as the load increased (Fig. 2.5) and in these

conditions M2s showed a overall lower stiffness. Moreover, spherical surfaces could

not represent more than one contact point for each pair of contact surfaces, unlike the

anatomical surfaces. Thus, it may be inferred that the model with spherical surfaces

is a trustworthy tool to qualitatively predict the motion of the knee with some advan-

tages over the model with anatomical surfaces. Spherical surfaces allows a simple but

effective contact model [93] that reduces computational time and avoids the laborious

process of anatomical surface design. However, when the loads increase, the articular

contact is on areas where the spherical approximation is less effective. In this case,

the anatomical surface geometry provides secondary constraints that make the joint

stiffer.

A previous kinetostatic model with spherical surfaces and only the main ligamen-

tous structures showed slightly lower mean absolute differences with respect to the

same reference motion, because a systematic optimization on the mechanical char-

acteristics of the ligamentous fibers was performed [93]. Even if the new model is

not entirely exempt from an optimization procedure, no systematic optimization was
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performed on it in order to verify if a more accurate and complete representation of

the articular surfaces and ligaments improved the predictive capabilities of the model.

Although the results of the new model could benefit from an optimization procedure,

the present accuracy can be considered acceptable in several practical applications,

where optimization time could be saved. The reference experimental kinematics for

the present study was taken from the literature [41], therefore the specimen used to

develop the model and the ones used to measure experimental motion were differ-

ent. For this reason, it is not surprising that largest differences with respect to the

reference motion were found in the drawer tests: the amount of translation actually

depends on the reference point chosen to measure translations, due to the effect of

coupled rotations. Although a stronger validation will be required with laxity tests

performed on the same specimen, the accuracy showed by the model when compared

to several literature data confirms its predictive capabilities.

The development of this work will be the inclusion of the main muscular structures

that cross the knee joint and of the patellofemoral articulation. In other words, the

natural continuation of this study is the definition of the dynamic model of the knee

joint, which is the last step of the sequential procedure [30]. This will be presented

in Chapter 3.
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Figure 2.1: Kinematic model: spherical surfaces (yellow) approximate the anatomical
articular surfaces (grey); ACL, PCL, MCL isometric fibers are represented as rigid
links (red).
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Figure 2.2: Femoral surfaces (grey) after the alignment and the merging of CT scans
with point clouds (red) from the stereophotogrammetric system were performed.
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Figure 2.3: Conjugated surfaces and final tibial and femoral surfaces after the align-
ment and the merging of CT scans with stereophotogrammetric data were performed.
The relative position of the surfaces at full passive flexion (a) and the tibia surface
(b) are showed. Different contributions to the design of the anatomical surfaces are
shown in different colors: CT scans (grey), stereophotogrammetric data (red), contact
areas on the tibia during passive motion (green).
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Figure 2.4: Motion obtained with M2 and M2s is compared to the reference data
from [31,41,55,85]. The shaded regions represent the mean ± one standard deviation.
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Figure 2.5: Anterior and posterior drawer tests: comparison between M2 and M2s at
90◦ of flexion.
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Figure 2.6: Projection of passive structure resultant forces in the direction of the
external applied load, during the AP test at 0◦, 45◦ and 90◦ of flexion. For each flexion
angle, forces from the anterior test are on the left, and forces from the posterior test
are on the right.
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Figure 2.7: Ligament and contact forces during IE and AA tests at 0◦, 45◦ and 90◦

of flexion.
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Chapter 3

Specimen-specific dynamic model

of the knee to estimate squat

quadriceps force

3.1 Introduction

Computational models of the knee are powerful tools to evaluate the behavior of

the joint in different conditions and to estimate forces and variables that cannot be

measured. In order to be fully predictive, a joint model must be tested and validated

in several static and dynamic conditions, in which both internal and external loads

are applied. The sequential procedure proved to be an efficient and effective method

to design kinematic and kinetostatic models of both the tibiofemoral (TF) and the

patellofemoral (PF) knee joint [92, 93] The last step of the procedure consists in

the development of the dynamic model of the knee, whose objective is to estimate

the muscle load at the joint in any dynamic activity, starting from the previously

optimized kinematic and kinetostatic models [30]. Quantifying muscular forces is

crucial for the estimate of the joint loads and therefore it would benefit many aspects
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of the orthopaedic medicine, such as prosthetic design [8], rehabilitation strategies or

surgical procedures [87, 96]. Since non-invasive in vivo experimental measurements

of muscular forces are not possible, computational models are necessary in order to

estimate these loads [103]. Most of the musculoskeletal models simplify the knee joint

representing it as a 1 degree of freedom (DoF) mechanism [70], in which rotations and

translations of the tibia with respect to the femur are coupled to flexion. Moreover,

the vast majority of the available models are not subject or specimen-specific, meaning

that they use generic passive motion data [107, 112] to define the law of motion for

the knee mechanism [102]. This approach is certainly efficient but does not lead

to a deep understanding of the knee mechanics under dynamic loading conditions.

Recently, more interest has been directed towards the representation of the knee as

it is in the human body, i.e. a 6 DoF joint [103], but defining subject-specific joint

models that capture the complex three-dimensional knee laxity remains a challenge

for many reasons. Most of the mechanical and geometrical properties of the knee soft

tissue, such as the ligaments, need to be calibrated against joint laxity data, which is

a time-consuming process, especially if contact is included in the model. Moreover,

it is crucial that the knee model tested under static or dynamic conditions is able to

preserve the passive motion of the joint [30]. The sequential procedure offers a quick

and efficient way to design such a model for both the TF and the PF articulation.

The primary objective of this study is to validate the 6 DoF specimen-specific

model of the joint derived with the sequential approach by comparing the experi-

mental and model-predicted motion and quadriceps force for a squat activity. The

experimental data were previously collected from an in vitro experiment performed

with test rig [28]. Specifically, a finite element (FE) model of the joint is developed

and quadriceps force is estimated by means of a proportional-integral (PI) controller

that tracked knee flexion. This computational representation of the experiment pro-

vides also an estimate of quantities that cannot be measured neither in vivo nor in
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vitro, like ligament and contact forces [5, 33]. Musculoskeletal models are commonly

used to estimate muscle forces using an inverse dynamics approach, in which the

muscle redundancy of the human body is solved with optimization techniques that

minimize some kind of energy cost [4]. OpenSim is a freely available multibody dy-

namics software that allows to perform inverse dynamics from in vivo experimental

kinematics and to estimate muscle forces needed to achieve the measured motion by

means of a static optimization technique [19]. Another goal of the present study is to

replicate the in vitro squat experiment in OpenSim and to estimate the quadriceps

force needed to actuate the model with two different sets of kinematic data: first,

TF and PF rotations and translations are expressed as a function of flexion derived

from the squat kinematics; then TF and PF rotations and translations are replaced

with the same DoF from passive motion. A comparison between quadriceps forces

estimated with loaded and passive motion will allow to verify if passive motion is a

viable alternative to measured kinematics for the prediction of muscular loads. To

summarize, the objective of this study is threefold:

• To design a specimen-specific dynamic model of the joint and to validate it

against results from an in vitro squat activity.

• To analyze joint quantities not experimentally measurable, such as ligament

and contact forces, during the squat activity, in a FE framework.

• To understand to which extent the knee model affects the prediction of muscular

quantities in a dynamic activity like the squat.
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3.2 Methods

3.2.1 In vitro testing

Both unloaded (passive motion) and loaded (squat) tests were performed on the left

knee of an 80 year old male specimen with no previous condition at the joint, as

declared by the surgeon. A detailed description of the experimental procedure as well

as of the test rig used to perform the experiment can be found in [28]. Briefly, the foot

and the soft tissue were removed and the knee capsule was left intact. The leg was

mounted on the rig with its anatomical flexion axis (transepycondilar femoral axis)

coincident to the revolute joint axis between the portal and the base of the testing

machine. The passive motion of the TF and PF joints was recorded at several degrees

of flexion, from full extension to deep flexion (over 120 ◦). A tracker directly fixed

to each bone, i.e. introducing no soft tissue artifact, and a stereophotogrammetric

system (Vicon Motion Systems Ltd., nominal accuracy 0.5 Nm/0.5◦) were used to

measure the relative motion between femur, tibia and patella. Then the knee was

tested in a common daily task: a squat. Ground reaction forces and torques recorded

during a squat activity were taken from the literature [43] and applied to the tibia

by means of a cable driven parallel manipulator included in the test rig. At each

considered angle of flexion (from 7◦ to 94◦), the test rig applied the quadriceps force

that was necessary to equilibrate the external load. Since the rig does not allow co-

contraction of flexor and extensor muscles, it was assumed that the net torque at the

knee was generated by the quadriceps only. TF and PF joint motion was recorded

for the squat activity in the same way it was done for the passive motion. Magnetic

resonance imaging (MRI) was performed on the specimen lower limb.
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3.2.2 Computational modeling

The computational modeling is divided in subsequential steps (Fig. 3.1). First, the

knee kinematic and kinetostatic models were defined starting from experimental pas-

sive data and laxity tests data, similarly to what was done in Chapter 2. Then a

dynamic model was implemented both in a multibody software (Opensim, Stanford

University) and in a FE software (Abaqus/Explicit, SIMULIA, Providence, RI) in

order to estimate the quadriceps force during the squat activity and compare it to

the experimental force as a validation.

Kinematic model

The kinematic model of the TF joint is a 1 DoF mechanism able to replicate the

passive motion [81, 109]. It is defined as a 5-5 fully parallel mechanism, as in [93].

The five rigid links of the mechanism represent the passive structures that guide the

passive motion of the joint, i.e. three isometric ligamentous fibers, whose lengths do

not change during the passive flexion arc [109], and the medial and lateral articu-

lar contacts, which are model as spherical contacts (Fig. 3.2). To define the initial

geometrical parameters of the mechanism, the articular surfaces were approximated

by best-fitting spheres and the femoral and tibial attachment sites of three isometric

fibers were chosen inside the insertions areas of ACL, PCL and MCL. In the definition

of the mechanism proposed in [93], the medial contact is represented by a ball and

socket joint while the lateral contact is modeled as a sphere-on-sphere joint. This

explains why the center of the tibial sphere is above the center of the femoral sphere

in the medial contact representation, while the opposite happens in the lateral con-

tact representation (Fig. 3.2). The isometric fibers were selected among the entire

ligament bundles as those fibers whose lengths remain almost constant during the

passive flexion arc of the knee. An optimization procedure was implemented to find

the parameters of the mechanism that best replicate experimental passive motion.
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The design variables were the spatial coordinates of the tibial and femoral insertions

of the isometric fibers (ACL, PCL, MCL) and of the centers of the spheres that ap-

proximate the condyles (Fig. 3.2). The tibial quantities were expressed in the tibial

anatomical coordinate system St and femoral quantities were expressed in the femoral

anatomical coordinate system Sf . A global optimization method, namely the genetic

algorithm available in Matlab 2015 Global Toolbox (The MathWorks, Natick, MA),

was used to find the design vector that minimizes the difference between the exper-

imental passive motion and the motion produced by the mechanism throughout the

flexion arc. The motion was evaluated at 31 different flexion angles, from 5◦ to 123◦,

i.e. the limits of the available experimental motion. The motion of the mechanism

was obtained by solving its loop closure equations at each flexion angle. The loop

closure equations enforced that the length of each one of the five links must be equal

to the distance between the corresponding origin and insertion at each pose [93]. If

the flexion angle was imposed, the loop closure equations consisted in a set of five

equations in five unknowns, which were the parameters that define the relative posi-

tion and orientation of the femur and the tibia. The transformation matrix between

Sf and St was parametrized according to Grood and Suntay [42]: internal-external

(IE) and ab-adduction (AA) rotations, anterior-posterior (AP), superior-inferior (SI)

and medial-lateral (ML) translations. If the design vector satisfied the loop closure

equations, then the error between each parameter of the mechanism motion and the

correspondent experimental parameter was calculated and normalized with respect to

the maximum range of motion in that particular DoF. At each iteration, the output

of the objective function was the sum of the error at each flexion angle for each DoF.

If, for a particular design vector, the solution of the loop closure equations could be

found, the output of the objective function was set to an extremely large number. The

solution was considered feasible if the current design variables were inside a sphere

of radius equal to either 2.5 mm for the links representing the ligament fibers, or 2
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mm for the links representing the contacts. The centers of these spheres were defined

according to the initial geometry of the mechanism. This was done by means of a

nonlinear constraints function. After the global optimization was performed, a local

optimization method, namely the interior-point algorithm, available in Matlab 2015

Optimization Toolbox, was used to refine the result. Details of the code are reported

in Appendix B.

In the passive motion of the knee, all DoF of the PF joint are coupled to TF flexion

[92]. The patella can slide on the femoral distal surfaces (trochlea and condyles) while

it is connected to the tibia through the patellar ligament and to the femur through the

quadriceps. Since this muscle is not tight during passive motion, the patella moves

on the femur surfaces being trailed just by the patellar ligament. In particular, the

tibia and femur relative motion is not constrained by the PF joint during passive

motion if knee flexion is imposed. In other words, TF kinematics does not depend

on PF joint during passive motion. For this reason, the PF joint is modeled as a

zero DoF mechanism, as in [92]. To define the initial geometry of the mechanism,

the femoral trochlea was approximated by a best-fitting cylinder and the isometric

fiber of the patellar ligament was selected in a similar way to what was done for the

TF joint. In the kinematic PF model, the relative motion between the femur and

the patella is constrained with a hinge joint (Fig. 3.2) and the direction of the hinge

axis, i.e. the axis of the cylinder that approximates the trochlea, was chosen through

an optimization procedure. The tibial and patellar attachment sites of the patellar

ligament were optimization variables as well. The objective of the optimization was to

minimize the difference between the experimental PF passive motion and the motion

produced by the PF mechanism, at each TF flexion angle. At each iteration, the loop

closure equations of the PF mechanism must be satisfied [92] and, in case they were

not, the value of the objective function was automatically set to an extremely large

number. If the solution of the loop closure equations existed, the difference between
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the mechanism motion and the experimental motion was calculated as it was done for

the TF mechanism. A nonlinear constraint function was included in the optimization

algorithm to force the cylinder axis to be no more than 5 mm distant and no more

than pi/10 radians rotated with respect to the initial axis. The patellar ligament

attachments were constrained to be inside a sphere of 3.0 mm radius. For the PF

mechanism optimization, the use of a global technique was not needed because the

initial geometry of the mechanism was close enough to the optimal one. Therefore

the problem was solved with a local optimization technique, namely the interior-point

algorithm, available in Matlab 2015 Optimization Toolbox. Details of the code are

reported in Appendix B.

Kinetostatic model

A TF kinetostatic model was developed consistently with the sequential approach

(Fig. 3.3). The model was developed in a similar way to what was presented in

Chapter 2 of this dissertation. Origin and insertion areas of the cruciate (ACL, PCL)

and the collateral (MCL, LCL) ligaments were estimated from the MRI of the joint.

Specifically, the ACL was modeled by means of three fibers (anteromedial, postero-

lateral and isometric), the PCL was modeled by means of three fibers (posteromedial,

anterolateral and isometric), the MCL was modeled by means of three fibers (deep,

superficial and isometric), and the LCL was modeled by means of two fibers (anterior

and posterior). The attachment sites of the secondary passive structure of the knee

joint were estimated from the literature, according to the results of Chapter 2. The

posterior capsule (PCAP) was modeled with a medial, a lateral and an intermedi-

ate fiber. The posterior oblique ligament (POL) was model with an anterior and a

posterior fiber, the oblique popliteus ligament (OPL) was model with three fibers.

The popliteus tendon (PT) was represented by an anterior and a posterior fiber. The

anterolateral structure (ALS) and the fabellofibular ligament (FFL) were each one
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represented by a single fiber. Each fiber was modeled as one-dimensional parabolic-

linear spring [13]. A Matlab code was developed to optimize the laxity properties

of the joint, minimizing the RMS differences between the model-predicted and the

experimentally measured laxity at various DoF. The stiffness of each ligament was

varied within boundaries reported in the literature [7, 39, 64, 71]. The resting length

of each fiber was chosen according to the maximum distance between the origin and

the insertion of the fiber during the passive flexion arc [92]. The lengths found with

this process were then shorten by 1% or 2% to account for some possible tightening of

the ligament fibers during the passive flexion and to help stabilizing the simulations

when the applied load is low. The ligament resting lengths determined in this way

were not optimized. Although the specimen-specific ACL, PCL, LCL and MCL tibial

and femoral attachment sites were identified by means of MRI, errors within this

process are likely. Hence, the attachment locations were included in the optimiza-

tion. Collaterals and cruciates attachment sites were allowed to vary inside a sphere

of respectively 3 mm ad 1 mm radius by means of a nonlinear constraint function

included in the optimization algorithm. Isometric fibers geometry was left unmodi-

fied from the kinematic model, to be consistent with the sequential procedure. The

genetic algorithm available in Matlab 2015 Global Toolbox was used to minimize dif-

ferences between model-predicted and experimental [41] laxity responses at 0◦, 15◦,

30◦, 45◦, 60◦, 75◦ and 90◦ of flexion for various external loads, namely IE torque

(10 Nm), AA torque (20 Nm) and AP force (100 N). In the optimization process,

the laxity of the model under different types of external load was always normalized

with respect to the laxity in the DoF of interest when only the tibial weight was

applied. Consequently, the experimental laxity taken as a reference was normalized

too. As in the study presented in Chapter 2, the experimental data for the laxity

tests were taken from [41] despite more recent work available in the literature because

the completeness of the results presented allowed to set up an optimization process
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that could capture the laxity of the knee in all the main DoF at all flexion angles

and the knee passive behavior as well. The optimization process had a design vector

containing 19 stiffness values; the total number of fibers present in the model was

23 but some secondary structures, such as the POL or the PT, were modeled with

multiple fibers constrained to have the same stiffness value to decrease computational

time. Moreover, the attachment sites of cruciates and collaterals (all the fibers except

the isometric ones) had to be included in the design vector, making a total of 67 pa-

rameters to optimize. The optimization process was set up so that at each iteration

the equilibrium equations of the system were numerically solved, meaning that the

sum of the forces, namely ligament forces, contact forces, weight and external load,

if present, and the sum of the moments acting on the femur with respect to the tibia

must be equal to zero. Since each laxity test was performed at a fixed flexion angle,

a counter force was introduced: its magnitude was obtained at each iteration so that

the sum of the moments produced by all the other forces about the flexion axis was

zero and its direction was anteroposterior in St, at a fixed distance from the origin. If

for a particular value of the design vector, the solution to the equilibrium equations

could not be found, the output of the objective function was automatically set to an

extremely large number. Details of the code are reported in Appendix B.

Dynamic model

The knee dynamic model was developed both in Opensim and in Abaqus/Explicit,

as follows.

• One of the limitation of the test rig used in the experiment is that it does not

allow co-contraction of flexor and extensor muscles crossing the knee joint. To

understand to which extent co-contraction could affect quadriceps force pre-

diction in the squat, Opensim [19] was use to reproduce the experiment and to

estimate the muscular force necessary to generate the needed torque at the knee
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joint for this activity. Opensim models are designed in a similar way to serial

robots: each body is defined by means of a mass and an inertia matrix and it

is connected to the previous body in the chain (parent body) by means of a

customizable joint. In the Opensim model developed for this study, the TF and

PF joints were model in two different ways, and then muscular forces and joint

torque prediction were compared. First, the TF joint was modeled as a 1 DoF

joint in which IE and VV rotations and AP, SI and ML translations were coupled

to flexion by means of splines defined from the experimental squat kinematics

(Fig. 3.4). This ensures a perfect replication of the knee motion from the squat

test. The PF joint was modeled in the same way, but PF flexion was coupled to

TF flexion, leaving zero DoF at the patella. In a second version of the model,

the TF and PF joints were modeled assigning splines to each DoF according

to the joint passive kinematics, as it is typically done in most of the published

models [70, 102]. The splines used for the knee kinematics were calculated ex-

tracting the Cardan angles from the transformation matrices between the bones

in their anatomical coordinate systems. Opensim uses the X-Y-Z Cardan angle

sequence, therefore the rotation about Z axis is the first one to be performed,

followed by the rotations about Y and X axis. Translations are then performed

after rotations. The hip was modeled as a spherical joint between the femur

and the pelvis. No foot, i.e. no ankle joint, was present in the model since it

was not present in the experiment either. Four muscles were included to model

the quadriceps: vastus medialis, vastus lateralis, vastus intermedius and rectus

femoris. The hamstrings (biceps femoris long head, biceps femoris short head,

semitendinosus and semimembranosus) and the gastrocnemii (gastrocnemius

medial and gastrocnemius lateralis) were included in a second model, almost

identical to the first except for the presence of these muscles. The attachment

sites of the muscles were derived from previous work [18] and manually adapted
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to the current bone geometry. Wrapping surfaces were included in the model for

the flexor and the extensor muscles and for the gastrocnemii in order to allow

physiological wrapping to the underlying bones, i.e. the posterior and anterior

part of the femoral condyles. Muscles were treated as linear actuators in order

to be as consistent as possible with the experiment and to avoid uncertainty

generated by the parameters that characterize the Hill-type model [113], also

available in Opensim. The Hill-type model is certainly more a physiological

representation of the muscular unit but it adds a complexity to the model that

exempts from the purpose of this study. In the model with only the quadriceps

group, the femur flexed and extended with respect to the tibia, which always

remained in vertical position, consistently with the experiment. In the model in-

cluding the hamstrings and the gastrocnemii, both the knee and the hip joints

were present and the squat motion was achieved with an extension moment

about both joints. The extension moment at the hip causes the activation of

the hamstrings. However, the hamstrings are biarticular muscles that also gen-

erate a flexion moment at the knee. Therefore, co-contraction of antagonistic

muscles at the knee takes place during the squat activity. Hip kinematics profile

was taken from the same literature data as the ground reaction forces [43] for

consistency. Muscle forces were computed solving the redundancy problem, i.e.

more actuators than DoF, through a static optimization procedure available in

Opensim, which minimizes the sum of the activation squared at each instant of

time [19]. Inverse dynamics was performed on the model as well in order to cal-

culate the net joint torque during the squat activity. The geometries from the

segmented MRI of the joint were included in the model only for visual purpose

(Fig. 3.4).

• A dynamic FE model of the TF and PF joint was developed, starting from

the previously defined kinematic and kinetostatic models. The model included
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bones, ligaments and flexor/extensor muscles crossing the knee and it was imple-

mented in Abaqus/Explicit (Fig. 3.5). The complexity of the TF articular sur-

faces representation was increased from spherical approximation to anatomical-

based shapes. The tibial contact surfaces were altered in such a way that the

passive motion was not modified from the one predicted by the kinematic model.

Details of the procedure were already presented in Chapter 2. Briefly, the conju-

gate surfaces of the femur were generated from the TF kinematic model. Then

the contact areas at each pose were identified as those points on the tibia (rep-

resented as a point cloud) whose distance from at least one point of the femoral

surface (represented as a point cloud) was less than 0.5 mm. This threshold

was chosen after different values were evaluated, based on the goodness of the

final result. These tibial points were substituted with the correspondent section

of the envelope of the conjugates in Rhinoceros 3D (Robert McNeel and Asso-

ciates). This process ensures that the constraints provide by the contact surfaces

during the passive motion remained consistent with the kinematic model and

it can also make up for possible errors during the segmentation process. The

tibia, the femur and the patella were meshed with two-dimensional triangular

element in Hypermesh (Altair, Troy MI) and treated as rigid bodies in the sim-

ulation to reduce the computational cost without sacrificing the accuracy of the

kinematics prediction. The average edge length for each element was set to 2

mm: mesh refinement was proved not to influence kinematics [33], therefore a

finer mesh would have been an unjustified cause of increase in computational

time. A coefficient of 3.2 was used to define the contact stiffness and the coef-

ficient of friction between bones was set to 0.0025 [73] to replicate the one of

cartilage-on-cartilage. A contact damping coefficient of 0.01 Ns/m was add to

the contact definition in order to increase the stability of the simulation. TF

ligaments were defined as axial connectors with a nonlinear force-displacement
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relationship. The stiffness and zero-load length were assigned to each connec-

tor representing a ligament fiber according to the results of the optimization

previously performed. TF kinematics was measured by three connectors at the

joint, defined according to [42]. The squat activity performed on the test rig

was replicated in the FE framework with objective to estimate the quadriceps

force and compare it to the experimental one and to the one obtained with

Opensim through the static optimization. The PF joint was modeled both as

the zero DoF mechanism previously optimized and as a 6 DoF joint with a two-

dimensional membrane-like patellofemoral ligament [3] and results from the two

models were compared. In order to represent the zero DoF PF mechanism in the

FE framework, a hinge joint was built between the femur and the patella, with

the hinge axis direction coincident to the one found in the PF model optimiza-

tion process, and the patellar ligament was treated as isometric. The ground

reaction force measured during the squat activity [43] was applied to the tibia at

each degree of flexion (from 7◦ to 94◦) by means of three concentrated loads and

three pure torques, properly transformed to the global coordinate system of the

FE model, i.e. the femoral anatomical coordinate system. The quadriceps mus-

cle was modeled with three axial connectors representing the vastus medialis,

vastus lateralis and vastus intermedius. The connectors were directed as the

global (femoral) SI axis. The patellar attachments for the vastus intermedius

was set on the most superior point of the patella, while the patellar attachments

for the vastus medialis and lateralis were defined according to the [18]. Besides

the connectors, a two-dimensional membrane was integrated in the quadriceps

muscle in order to let it to wrap around the frontal surface of the distal femur

(Fig. 3.5). Two hamstring muscles were included in the model as well, namely

the semimembranosus and the biceps femoris: the axial connectors representing

the hamstring were directed as the global SI axis and their tibial attachment
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sites were defined according to [18], consistently with the Opensim model. A

proportional-integral (PI)-control was integrated into the model to drive the

muscular actuators. A sensor measuring knee flexion was incorporated into the

FE model, and instantaneous measurements from the sensor were fed to the

controller, implemented within an Abaqus/Explicit user subroutine VUMAP.

The control system was used to calculate the instantaneous flexor or extensor

force required to match the target knee flexion profile, which was the same as

the experiment. The flexor and extensor force computed at each instant with

the controller was divided between each muscular unit to match the proportions

of the Opensim results. Therefore 70% of the flexor force was assigned to the

semimembranosus (30% to the biceps femoris), 60% of the extensor force was

assigned to the vastus lateralis (25% to the vastus medialis and 15% to the

vastus intermedius). This distribution respected the proportion between the

physiological cross sectional areas (PCSA) of the muscles. Model verification

was performed by comparing the model-predicted TF kinematics and quadri-

ceps force to the corresponding experimental quantities. The quadriceps force

predicted by the FE model was also compared to the muscular forces obtained

with Opensim. The simulation time was 1.5 second, with a time increment of

1e-5 second. The simulation was divided in two subsequential steps: first (step

1, 0.5 second long) tibia, femur and patella were bring into contact by apply-

ing a small load to the quadriceps, then (step 2, 1 second long) the feedback

controlled squat activity was performed. As was previously proved [33], the

kinematic results from an explicit FE analysis are independent from the time

step size when the activity or test that are being replicated are quasi-static.
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3.3 Results

Kinematic and kinetostatic model optimization

The root mean square (RMS) differences between the experimental TF passive motion

and the TF mechanism motion were 2.24◦ (IE), 0.4◦ (AA), 2.77 mm (AP), 0.78 mm

(SI), 1.19 mm (ML) (Fig. 3.6 (a)). The root mean square (RMS) differences between

the experimental PF passive motion and the PF mechanism motion were 20.04◦ (FE),

2.54◦ (AA), 2.79◦ (IE), 7.58 mm (AP), 7.18 mm (SI), and 2.09 mm (ML) (Fig. 3.6

(b)). The genetic algorithm combined with the interior-point method found the op-

timized parameters of the TF mechanism in less than 5 hours (15579 seconds) and

the interior-point algorithm found the optimized parameters of the PF mechanism in

less than 10 minutes (483 seconds), using one CPU. The RMS differences between

the experimental TF laxity tests [41] and the same tests simulated with the kineto-

static model were 2.7◦ (IE), 1.2◦ (VV) and for 0.8 mm (AP). The genetic algorithm

found the global optimal solution for the problem in about 50 hours, using 1 CPU.

When only the tibia weight was applied, the kinetostatic model was able to replicate

the passive motion without significant alterations with respect to the motion of the

kinematic model (Fig. 3.7 (a)), ensuring that ligament forces remained extremely low

(Fig. 3.7 (b)).

Opensim muscular force prediction

Inverse dynamics was performed in Opensim and the net joint torque necessary for

the squat activity is shown in Fig. 3.8. The torque was not significantly affected by

the type of model adopted at the knee joint. The muscular force necessary to generate

such a torque was computed in Opensim through a static optimization process and

it is shown in Fig. 3.9. If co-contraction was allowed, the total quadriceps force was

on average 85% more than in case of no-contraction, i.e. only the extensor muscles

52



generated the torque at the joint. In both cases, the quadriceps force predicted

by the Opensim model was smaller than the experimental one. The average RMS

difference between the moment arms calculated with the squat kinematics and the

passive kinematics was 15.4 mm, averaged across the three vasti muscles.

FE model prediction

The quadriceps force that the PI controller calculated at each instant of the simulation

in order to guarantee equilibrium at the desired flexion angle was close to the one

obtained with the Opensim model (Fig. 3.10). RMS difference between the two was

126 N . When the zero DoF mechanism was used in place of the 6 DoF PF joint,

the quadriceps force necessary for the squat activity was smaller by 21% on average.

The average RMS difference between the target flexion profile and the model flexion

profile was 1.32◦, which suggests that the PI controller gains were correctly tuned. TF

rotations and translation predicted by the FE model were extracted and compared to

the experimental ones, using the Cardan angle sequence Z-Y-X (Fig. 3.11). Ligament

and contact forces predicted by the FE model are shown in Fig. 3.12 (a). The FE

model correctly identifies the ACL as the tightest structure in full extension and the

PCL as the tightest structure when the joint is flexed (Fig. 3.12 (a)). The contact

forces predicted by the model for the TF and PF joint were respectively almost 1200

N and over 600 N when the knee is flexed (Fig. 3.12 (b)). The FE simulation ran in

about 45 minutes, using 4 CPU.

3.4 Discussion

The purpose of this work was to develop and validate a computational framework

to replicate an in vitro experiment performed of the knee, namely a squat activity.

This was done in subsequential steps: first, the kinematic model of both TF and PF
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joint was defined and then compliance was added, optimizing the geometrical and

mechanical parameters of the TF ligaments in order for the model to correctly match

the experimental motion during several laxity tests (IE, AP, and VV). This joint

model was then integrated in a more complex FE musculoskeletal model, which in-

cluded quadriceps and hamstrings muscles, and in which the spherical approximation

of the condyles, used in the optimization procedure for efficiency, were replaced with

anatomical-based geometries. The FE model was tested in a force-driven simulation,

where the TF flexion was feedback controlled through flexor and extensor muscular

forces in order to match the experimental flexion from the squat activity, and all

the other TF and PF DoF were left free. The quadriceps force estimated with the

feedback-controlled FE model was then compared to the one obtained with Opensim

static optimization for the same squat activity.

3.4.1 Findings

The comparison between the experimental and FE model-predicted quadriceps force

showed large differences. Specifically, a RMS difference of 1397 N between the two

force profiles was calculated. A possible explanation for this difference could be

that the moment arm of the quadriceps in the FE model was much larger than the

actual moment arm in the specimen. Another difference between the experiment and

the model that possibly affected the results is that a dynamic simulation across the

range of flexion was performed with the model, whereas several static tests at various

flexion angles were performed in the experiment. Yet, these differences can hardly

explain why the peak quadriceps force needed in the experiment was twice as large as

the muscle load in the model. However, the musculoskeletal simulations performed in

OpenSim and data from the literature [44] favorably compared to the results obtained

with the FE model. This suggests that quadriceps forces reasonably consistent with

the applied external forces and with the simulated activity were predicted by the FE
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model. It is worth noting that, without some flexor muscle force, the tibia would

not have been able to follow the squat flexion profile in the very first part of the

simulation. In fact, at the beginning of the activity, the tibia tended to extend under

the effect of the ground reaction force, causing the hamstrings to activate.

Opensim proved to be a proper tool to model a dynamic experiment and to com-

pute muscle forces. Static optimization is a validated technique that proved to be

equivalent to dynamic optimization for gait [4] and was used for more challenging

activities such as step down and chair rising on TKR patients, predicting contact

loads consistent with data from instrumented implants [75]. Moment arms represent

the effectiveness of a muscle in generating a torque about a joint of interest, while in a

given configuration [99]. Moment arms mainly depend on the muscle geometry. How-

ever, the results presented in this study prove that joint kinematics can also influence

them, since they are estimated with respect to the instantaneous helical axis. In fact,

when the kinematics measured in the experiment and passive motion of the joint were

implemented in the knee model, significantly different moment arms were calculated

(average RMS difference: 15.4 mm). Therefore, the predicted muscular forces were

also different (RMS difference: 145 N in the case without co-contraction), although

similar net torques were estimated by performing inverse dynamics (Fig. 3.8). The

analysis of the ligament forces throughout the squat cycle proved that the mechani-

cal properties optimized by the sequential approach were consistent with the modeled

specimen. Specifically, the ACL was active at the beginning of the simulation (close

to full extension) to prevent hyperextension of the tibia, whereas PCL and MCL gen-

erated force at deep flexion angles. Most of the other ligaments were only slightly

tight throughout the flexion range and did not significantly influence the motion of

the joint.

The model-predicted TF and PF kinematics were moderately different from the

experimental ones (Fig. 3.11). This does not surprise mainly because the quadriceps
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force applied in the experiment was significantly larger (average RMS difference: 1397

N) than the one obtained with the PI controller in the FE model. The difference

in the quadriceps force certainly affects the motion of the joint. For instance, the

internal rotation of the tibia in the experimental session was at most 5◦, while the

model predicted an internal rotation up to 11◦ throughout the squat cycle. Moreover,

the ligaments calibration performed against literature data could have produced soft

tissue mechanical properties that did not perfectly match the ones of the specimen.

Generally, the prediction of all the DoF in a complex joint such as the knee is one

of the greatest challenges in the biomechanical world. Therefore the FE-predicted

kinematics, although it does not perfectly match the experimental measurements,

could still be positively interpreted as a validation of the model.

This work shows that the FE modeling is a powerful and efficient tool to estimate

all those quantities not easily measurable during an experiment but crucial for the

prosthetic design and the surgical planning, such as contact and ligament loads. In

this study, the prediction of TF and PF contact forces has a limited meaning because

of the experiment itself. In vitro estimates of contact forces are certainly not com-

parable to in vivo ones. However, the computational framework developed in this

study could easily be adapted to in vivo experiments, which offer more interesting

and meaningful data in terms of muscular forces and joint loads.

3.4.2 Limitations

The limitations within the current study are several, but they do not invalidate the

main findings of this work. Ideally, the laxity properties of the TF joint would have to

be calibrated against tests performed on the same specimen. In absence of those tests,

literature data are a valid option, as it was showed in Chapter 2 of this dissertation,

but still a source of errors. For example, the definition of the coordinate systems used

to record the joint relative motion could be not exactly the same between the model
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and the experiment. Moreover, the patellar ligament mechanical properties are taken

from the literature [3] and not calibrated on the current specimen. The muscles are

modeled as simple linear actuators, while in reality the muscular forces are length- and

velocity-dependent [113]. This simplification is acceptable here because in the in vitro

experiment against which the model predictions are validated, a hydraulic cylinder is

used in place of the quadriceps. If the computational framework designed in this study

will be used to replicate an in vivo experiment, a more physiological representation

of the muscles will have to be adopted. In the FE model of the knee joint, one-

dimensional ligaments are an acceptable approximation within the scope of this work.

One-dimensional ligaments are a reliable and computationally efficient representation

of the effect of the soft tissue constraints on the joint motion [5]. However, in order to

extract more detailed information on ligament length patterns or loading conditions,

a two- or three-dimensional representation would be more appropriate.
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Figure 3.1: Workflow. The TF and PF kinematic models are designed and then in-
cluded in the kinetostatic model. The last step is the design of the dynamic (muscular)
model of the knee.
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Figure 3.2: Kinematic model of the TF and PF joint. ACL (red), PCL (blue), MCL
(green) and patellar ligament (orange) isometric fibers are represented as rigid links.
The black lines are the rigid links that connect the centers of the medial and lateral
spheres approximating the condyles. The axis of the cylinder approximating the
femoral trochlea in the PF mechanism is represented as a black dotted line.
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Figure 3.3: Kinetostatic model of the TF joint (posterior view). ACL (blue), PCL
(red), MCL (green), LCL (grey) and secondary structures (black) with anatomical
surfaces are shown.
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Figure 3.4: Opensim model. TF and PF experimental motions are assigned to the
joint by means of splines and the ground reaction forces and torques are applied to
the tibia in the same way as the test rig does, i.e. by means of a ring. The model
represented in this picture is the one with only the vasti muscles.
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Figure 3.5: FE model of the TF and PF joints (Abaqus/Explicit). Quadriceps and
patellar tendon are represented as two-dimensional membranes while ligaments (not
visible) are represented as one-dimensional springs. Bones are meshed with triangular
elements.
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(a)

(b)

Figure 3.6: TF (a) and PF (b) passive motion: model-predicted motion against
experimental results.
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(a)

(b)

Figure 3.7: Passive motion of the kinematic and kinetostatic model (a). Ligament
and contact forces in the kinetostatic model during passive flexion (b). Ligament
forces are not small but not quite zero because their resting lengths was shorten by
1% to 2% with respect to the one obtained from the kinematics model.
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Figure 3.8: Joint torque needed to perform the squat activity in Opensim. The TF
and PF joints are modeled respectively as 1 DoF (TF) and zero DoF (PF) joint whose
rotations and translations are expressed as a function of TF flexion derived from the
passive motion (dotted lines) or from the squat kinematics (continuous lines).
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Figure 3.9: Quadriceps (vastus medialis, vastus lateralis and vastus intermedius) force
to perform the squat activity obtained with Opensim static optimization, compared
to the experimental force. The TF and PF joints are modeled as 1 DoF (TF) and zero
DoF (PF) joint whose rotations and translations are expressed as a function of TF
flexion derived from the passive motion (dotted lines) or from the squat kinematics
(continuous lines).
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Figure 3.10: Quadriceps force obtained with the feedback controlled FE model (con-
tinuous line), compared to Opensim prediction (dotted line).
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Figure 3.11: FE model-predicted and experimental Cardan angles (Z-Y-X sequence)
and translations for the TF joint during feedback controlled squat activity, in the
femoral anatomical coordinate system.
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(a)

(b)

Figure 3.12: Ligament forces (a) and contact forces (b) obtained with the FE model
simulating the squat activity.
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Chapter 4

TKR compressive load to

reproduce natural joint stability

4.1 Introduction

Total knee replacement (TKR) is a common and effective procedure in reducing or

eliminating joint pain and restoring joint function, with typical 10-year survivorship

near 95% [36, 88]. The procedure involves removing a number of structures which

provide restraint in the natural knee, including the articular surfaces of the bones,

menisci and one or both cruciate ligaments. The implanted components aim to restore

joint stability provided by the sacrificed structures; however, knee instability remains

a common complaint of TKR patients, particularly during high-demand activities

such as stair ascent/descent [17,69,74,76].

A number of studies have compared tibiofemoral (TF) laxity/stability charac-

teristics of the natural knee with a variety of available implant designs. Various

experimental studies [45,94] compared the laxity of multiple TKR designs of varying

sagittal radius in the absence of any soft-tissue, reporting substantial differences in

anterior-posterior (AP) and internal-external (IE) range of motion between compo-
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nents. Luger et al. [62] used an experimental knee simulator to apply compressive

force plus cyclic AP force and IE torque to cadaveric natural and implanted knees,

reporting that for low conforming devices, soft-tissue restraint was required at low

compressive loads in order to avoid anterior tibial subluxation, while at higher com-

pressive force, sufficient stability was provided by the component geometry alone.

These traditional laxity tests are based on evaluating the differences in joint mo-

tions under an applied out-of-plane load for different designs; for example, they

demonstrate that a low conformity design will achieve greater IE range of motion

under the same applied IE torque as a high conformity design. However, it is diffi-

cult to interpret the resulting differences in laxity, across implants or compared with

the natural knee, in millimeters or degrees, and the potential impact to the joint

replacement patient directly. In addition, the human body is effective at adopting

compensatory strategies in response to surgical trauma, injury or degeneration. No-

tably, adaptation of muscle recruitment patterns and forces to counteract sensations

of joint instability is commonly reported in clinical electromyography (EMG) studies,

with increased quadriceps-hamstrings co-contraction shown to enhance TF joint sta-

bility after TKR [9,10,16,25,63,104]. Benedetti et al. [9,10] reported a high level of

coactivation of hamstrings and quadriceps in the stance phase of gait for patients with

low conformity TKR, two years after surgery. Lunderberg et al. [63] showed similar

findings, specifically a prolonged co-contraction of antagonistic muscles in the TKR

subjects compared to the healthy group. In sight of this, some studies [104] pointed

out that to minimize compensatory movement strategies and optimize muscle-firing

patterns should be the focus for clinicians treating TKR patients. Mitchell et al. [68]

suggested that intrinsic stability in TKR design may be one of the factor that provides

for efficient muscle recruitment. With respect to the TF articular surfaces, muscle

co-contraction is primarily experienced as an increase in the compressive force on the

joint, i.e. the contact force across the joint, as this is an important factor in stabi-
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lization [8, 77]. Hsieh and Walker [50] reported a marked increase in stability with

an increase in compressive load, and believed geometrical conformity of the condyles

to be the most important factor in decreasing laxity under load-bearing conditions.

The compressive force across the joint has been identified as one of the key factor

influencing TKR motion, together with friction and condylar conformity [94].

As an appropriate goal for TKR is to restore the natural mechanics of the TF

joint [20, 95, 105, 106], we aim to evaluate TKR stability in a novel, more physiologi-

cal way, through incorporating adaptation in compressive load via feedback control.

Specifically, the objective of the current study is to estimate compressive load require-

ments necessary to achieve natural stability/laxity for current TKR designs, and we

hypothesize that these load requirements will vary as a function of the constraint

inherently provided by the geometry of the TKR components.

4.2 Methods

4.2.1 Model Validation

Two cruciate-retaining fixed-bearing TKR (Attune R© and P.F.C. Sigma R©, DePuy Syn-

thes Inc., Warsaw, IN) were tested in a tension-torsion Instron (Norwood, MA) ser-

vohydraulic test frame with custom fixturing (Fig. 4.1). Prior to testing, the joint

was lubricated with Vaseline. A constant compressive load of 667 N was applied to

the implant. At different flexion angles (0◦, 15◦), experimental trials were run under

displacement control, applying either IE rotation (up to 20◦) or AP translation (up to

10 mm), while the corresponding load in the same degree of freedom (DoF) was mea-

sured. During testing, femoral varus-valgus and vertical translation were free, with

all other DoF fixed except for the DoF under evaluation. AP translation was applied

to the insert via a side actuator during the AP constraint testing. A finite-element

(FE) model of the implant (Fig. 4.1) was developed in Abaqus/Explicit (SIMULIA,
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Providence, RI): the model consisted of the femoral component and the tibial insert.

Both the polyethylene insert and the femoral component were meshed with triangular

surface elements and were modeled as rigid bodies for computational efficiency. A

rigid contact definition with a pressure-overclosure relationship optimized to repli-

cate the deformable behavior [46] was used together with a friction coefficient of 0.04

appropriate for metal-polyethylene interaction [33]. The model was evaluated under

the same conditions as the experiments. Response loads were measured in the DoF

of interest and compared to the experimental data.

4.2.2 Conformity Ratio Measurement

Before simulation, conformity ratios were computed to quantify the geometry of four

current TKR designs in posterior-stabilized (PS) and cruciate-retaining (CR) config-

urations: Triathlon R© (Stryker, Kalamazoo, MI), NexGen R© (Zimmer, Warsaw IN),

Attune R© (DePuy, Warsaw, IN) and P.F.C. Sigma R© (DePuy Warsaw, IN). Confor-

mity ratio was calculated by dividing the femoral sagittal radius of curvature by the

insert radius of curvature at the dwell point at 0◦, 30◦, 60◦, and 90◦ of flexion. The

utilized implants intentionally represent a range of available conformity (Fig. 4.2).

4.2.3 Feedback-Controlled Model Development

Data from experimental in vitro laxity tests of the natural knee were obtained from

published literature [2,50]. Specifically, torque-rotation and force-displacement curves

from the following tests were obtained:

• Anterior tibial translation under an increasing AP load from 0 to 200 N at 40◦

and 90◦ of flexion with a compressive load of 900 N [2].

• Internal and external tibial rotation under an increasing IE torque from 0 to 15

Nm or 20 Nm at 40◦ and 90◦ of flexion with a compressive load of 900 N [2].
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• Internal-external rotation under a cyclic IE torque from 0 to 4.903 Nm at full

extension with a compressive load of 734 N [50].

A FE model of the implanted TF joint as described above was used. The primary lig-

aments crossing the joint were also included (Fig. 4.3). Specifically, two-dimensional

representations of the posterior capsule (PCAP), medial collateral ligament (MCL),

lateral collateral ligament (LCL), antero-lateral structure (ALS), popliteofibular liga-

ment (PFL), and posterior cruciate ligament (PCL) (with CR designs) were included

in the model, and have been previously calibrated to reproduce measured knee con-

straint [5]. The boundary conditions of the experimental testing were replicated.

The implant components were positioned according to the initial flexion angle of the

specific test and in neutral mechanical alignment. Preliminary simulations were per-

formed as traditional laxity tests. Load profiles (either IE torque or AP force), as

per the in vitro tests, and compressive force were applied to the tibial component

and relative TF joint motions were recorded. TF joint kinematics and loads were

applied and measured via a Grood and Suntay joint coordinate system [42]. The

step size time was 1 second: previous work showed that if the FE model is meant

to replicate quasi-static activity/test, the step length does not affect kinematics pre-

diction [33]. The time increment was chosen after a convergence analysis and set to

1e-5 second. Laxity properties of the four TKR designs were evaluated. One of the

CR devices (P.F.C Sigma R©) was evaluated in two states: with a normal posterior

cruciate ligament (PCL) and in a worst-case scenario, i.e. with the PCL removed.

All the evaluated TKR designs were the same size (equivalent to P.F.C. Sigma R© size

3). Subsequently, simulations which allowed adaptation of the applied compressive

load in response to implant laxity were performed; that is, the compressive force was

calculated based on the force required to match the target IE torque or AP force

profiles of the cadaveric tests. This was implemented through a proportional-integral

(PI) control system which was coded in FORTRAN language and interfaced with the
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FE models through an Abaqus user subroutine [27]. Details of the subroutine are

reported in Appendix C. A sensor in the Abaqus/Explicit model was used to pass

the instantaneous load of the tibial component (either torque or force, depending on

the test) to the PI controller at each increment of time during the simulation, while

the natural knee kinematics (either IE rotation or AP translation) was applied to

the insert (Fig. 4.4). The purpose of the controller is to adjust the compressive load

active on the tibial component, so that, for an instantaneous kinematic pose, joint

load in the corresponding DoF matched that of the natural knee. For example, if

the measured IE torque in the model is greater than the target IE torque (i.e. the

natural knee IE torque), the compressive load applied to the implant decreases to

reduce IE torque, while if the measured IE torque is less than the target torque, the

compressive load increases. The proportional and integral gains in the PI controller

were manually tuned for each laxity test in order to minimize the error between the

target profile and the sensor value. The compressive load required for each implant

during each simulation was recorded and compared to the compressive force applied in

the natural knee cadaveric tests. Compressive load requirements were also compared

between implant designs, implant types (CR or PS), and between models tested with

and without ligament structures. To evaluate the most efficient FE solution, results

from Abaqus/Explicit (dynamic) and Abaqus/Standard (both static and quasi-static)

models were compared in terms of required compressive load and target matching as

well as analysis time. Abaqus/Explicit was faster than Standard (20 min. vs. 2

hrs. simulation), obviously an important characteristic in the control tuning process,

providing comparable results, and hence was adopted for the analyses shown herein.
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4.3 Results

The FE model predictions of TKR constraint in IE and AP were in good overall

agreement (Fig. 4.5) with the experimentally measured displacements in the same

DoF (average root mean square (RMS) error = 0.39 Nm and 79.6 N , respectively),

and appropriately differentiated the two implant designs. Because of the rigid body

assumption, deviation from the experiment began upon edge loading of the insert,

as can occur toward the extents of motion (Fig. 4.5). The feedback-controller was

able to effectively match the natural knee stability after an adequate tuning of the

gains of the control system. RMS differences between the simulations and the target

kinematic profiles were on average 0.52 Nm for the IE tests (4.41% with respect to

the load range) and 8.17 N for the AP test (4.09% with respect to the load range).

Traditional laxity testing with the same constant compressive force applied on

the intact natural knee during the experimental testing, resulted in substantially

different measured behaviors at full extension (Fig. 4.6) as well as at 40◦ and 90◦ of

flexion (Fig. 4.6). Many of the tested implant designs dislocated (interrupted plots in

Fig. 4.6b) when subjected to the same loads applied to the natural knee. The TKR

IE laxity was in general greater than the natural knee when the same compressive

force was applied (Fig. 4.6a). Conformity ratios ranged from 0.22 to 0.88 (Fig. 4.2).

P.F.C. Sigma R© and Attune R© showed a higher conformity ratio than Nexgen R© and

Triathlon R© at each of the evaluated degrees of flexion.

With the feedback-controlled FE models, the lower conformity implants (as de-

fined by the conformity ratios) generally required a higher compressive force than

higher conformity geometries regardless of the flexion angle at which the laxity test

was performed (Fig. 4.7, Fig. 4.9, Fig. 4.8, Fig. 4.10). The two lower conformity

designs overall required an average of 66.7% more compressive force than the high

conformity designs to maintain stability equivalent to that of the natural knee (at

peak applied AP/IE loading). The two groups (two lower and two higher conformity
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implants) were statistically different (p ≤ 0.001) by means of an unpaired two-tailed

Student’s t-test. Simulation was also performed in IE without the soft tissues present,

which quantifies to what extent the implant surfaces contribute to the stability of the

joint (Fig. 4.7, Fig. 4.9). When the implants were tested without the soft tissue,

differences in the required compressive force to match natural stability were found,

although not always substantial, which indicates that the articular surfaces of TKR

are the main contribution to the joint stability. On average, at the peak IE load,

the device tested without ligaments required 28.2% more compressive force. Implants

overall were much more similar to natural stability in AP loading than IE loading. On

average, over all the tests performed, the PS designs required 2.6% more compressive

force than CR, at the peak AP or IE load; the two groups proved to be not statistically

different when subjected to a paired Student’s t-test. On average, cruciate-retaining

P.F.C. Sigma R© tested without PCL required 37.7% more compressive force at the

peak IE torque, with respect to the same implant evaluated with the ligament.

4.4 Discussion

Current TKR designs demonstrate wide variation in the level of geometric constraint

provided at the TF joint. Under a constant compressive load, the most constrained de-

vice, evaluated with soft tissue, provided similar AP and IE laxity to that reported in

the natural knee during cadaveric testing, while the least constrained device resulted

in AP and IE motions up to 5X greater than the natural knee. These traditional

laxity tests assume that the loading condition at the joint remains consistent and

variation in component design is reflected through variation in joint motion and liga-

ment forces. It is somewhat difficult to interpret the impact to the patient of greater

motion in the implanted knee under consistent loading. The method described in

this paper is a novel approach to assessing joint constraint in the implanted knee.
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Implant stability is described in terms of the physiological requirements to reproduce

stability equivalent to that of the natural knee. EMG studies have demonstrated that

the body adopts alternative muscle loading strategies to try to maintain the stabil-

ity of the joint, with higher levels of quadriceps-hamstrings coactivation frequently

reported after TKR than in an intact control group [9, 10, 16,25, 63, 104]. While it is

most likely that the in vivo joint will incorporate a combination of increased muscle

force and increased joint laxity, rather than purely one or the other, the current study

provides an interesting complement to traditional laxity assessments and illustrates

the levels of compressive load required to achieve stability on par with the natural

knee for different TKR designs. Given that patients commonly suffer from muscle

activation deficit, implant designs which aim to reduce the compressive force require-

ments (and hence muscle force requirements) to maintain a stable knee have potential

for improving efficiency and function for the TKR patient.

This work presented an extended comparison between TKR designs with different

level of conformity in their cruciate-retaining and posterior-stabilized configurations.

In general terms, all of the implants required more compressive load in order to main-

tain natural stability, which demonstrates the complexity of reproducing the com-

bined contribution of the articular surfaces and stabilizing structures of the natural

knee. The higher conformity designs with soft tissue reasonably reproduced measured

natural stability, while the lower conformity implants required greater compressive

loading to maintain stability. Implants were much closer to natural mechanics dur-

ing anterior tibial loading than during internal-external loading, which is primarily a

reflection of different design philosophies. Many implants have intentionally reduced

IE constraint in an attempt to allow or encourage a more natural kinematic response

with substantial IE rotation during flexion. As seen with rotating-platform designs,

IE constraint is not a requirement for clinical success; however, as both the under-

standing of natural knee mechanics and implant design become more sophisticated,
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reproducing combined stability and mobility requirements will be more accessible,

and the method developed herein will be useful in iterative design.

There are limitations in the present study that should be considered. First, the

reference natural knee data were taken from previously published work and therefore

minor differences between the computational model boundary conditions and the

experimental setup could be present. However, the authors believe that this limitation

does not significantly affect the main findings of the study and it certainly does not

affect the validity of the proposed method for implant evaluation. A second limitation

is that the mechanical and geometrical properties of the ligaments included in the FE

model derive from a previous work [5] and therefore do not match the specific in vitro

experiment or the range of patient soft-tissue balance post-operatively. However, the

experimental data used here as a reference were averaged over more than one subject

therefore the effect of the ligament properties on the knee joint laxity were averaged

as well. In addition, under compressive load, the conformity of the condylar surfaces

is a more critical factor for the TKR stability than the surrounding soft tissue [50]. A

last limitation of the study is that only the main DoF, i.e. IE and AP, and only some

flexion angles, i.e. 0◦, 40◦, 90◦, were considered currently, primarily due to absence

of a comprehensive experimental dataset published in the literature or elsewhere.

The current study comprises of a reasonably straightforward approach to joint sta-

bility; increased or decreased stability is directly created through modification of the

compressive force acting at the joint. For a patient, the compressive force across the

joint is driven by the muscle forces acting across the knee; additional co-contraction

of the quadriceps and hamstrings serve to increase the compressive force and reduce

joint motion under external loads. However, despite the simple implementation, this

study demonstrates the influence of implant design, and ranks TKR components, in

isolation of confounding patient-specific factors (ligament tension, body weight, etc.),

in terms of the compressive load requirements to maintain a level of stability mea-
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sured in the natural knee. This ranking is consistent with articular surface conformity

of these devices. Clearly, there is a trade-off between stability and mobility; a more

conforming design has potential to hinder range-of-motion and affect the functional-

ity of the joint [95]. Hence, in this study we selected natural knee motions as our

target joint motions for each device; implants which better match natural constraint

have potential to create more natural mechanics and reduce incidences of instability

in patients during high demand activities with large out-of-plane loads.

This study serves as a preliminary investigation into whether joint motion can

be controlled through adaptation of compressive joint via a PI controller. Having

demonstrated the efficacy of the approach here, subsequent work will aim to evaluate

the specific muscle force and synergy adaptations required to achieve stability during

high-demand dynamic activities on a design-specific basis.
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Figure 4.1: Experimental stability testing (left), and finite element model represen-
tation of anterior-posterior (AP) and internal-external (IE) testing with constant
compressive load (right).
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Figure 4.2: Conformity ratios of the implants at various flexion angles. Conformity
ratio was calculated by dividing the femoral sagittal radius of curvature by the insert
radius of curvature at the dwell point.
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Figure 4.3: Finite element model of the tibiofemoral joint with posterior-stabilized
implant and soft-tissue constraint.
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Figure 4.4: Workflow. The PI feedback controller is coded in FORTRAN and linked
to the model in Abaqus/Explicit as a user-defined subroutine. Measurement from the
sensor in the FE model, tracking the TKR load (AP force/IE torque) is compared to
the target profile and then the actuator load required to match this target profiles is
fed back to the FE simulation.
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Figure 4.5: Experimental and model-predicted anterior-posterior (AP) force-
displacement (above) and internal-external (IE) torque-rotation (below) data at full
extension and 15◦ of flexion with constant compressive load. Kinematics of femoral
component with respect to tibial insert is shown. Only data from the internal rotation
tests are shown because the implant is symmetric with respect to the sagittal plane.
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Figure 4.6: TKR laxity when the same compressive force from the natural knee
testing [2, 50] is applied. IE rotation at full extension (above), at 40◦ and 90◦ of
flexion (below). Dislocation occurred when the plot is interrupted with a cross.
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Figure 4.7: Compressive force required by the TKR to match the natural knee laxity
at full extension under a tibial torque of 4.903 Nm [50] with ligaments (solid bars)
and without ligaments (dashed bars).
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Figure 4.8: Compressive force required by the TKR to match the natural knee laxity
throughout an IE torque cycle [2].
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Figure 4.9: Compressive force required by the TKR to match the natural knee laxity
at 40◦ of flexion under an IE torque [2], with ligaments (solid bars) and without
ligaments (dashed bars).
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Figure 4.10: Compressive force required by the TKR to match the natural knee laxity
at 40◦ and 90◦ of flexion under an AP force of 200 N [2].
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Chapter 5

Conclusion

Estimates of musculoskeletal loading conditions, soft tissue stress and strain, and

relative motion between the bones at the knee joint during dynamic activities can

significantly benefit orthopaedic medicine by providing the necessary insights to im-

prove prosthetic design and surgical and rehabilitation procedures planning. With

the current technology, some of this information can be gathered using either in vivo

or in vitro experimental techniques. It is the case of the relative motion between the

bones, measurable in vivo by means of marker-based motion capture or fluoroscopy

instrumentation; ground reaction forces, measurable with force platforms; muscular

activity data, measurable with EMG signals; TKR joint loads, measurable with in-

strumented implants. Moreover, the most advanced imaging techniques, such as MRI

and CT scans, allow for a three-dimensional view of the bones and all the soft tissue

surrounding them. In vitro experiments can instead provide information regarding

the behavior of the joint under specific loading conditions, by means of laxity tests,

or the force-length relationship of ligaments or tendons, by means of tensile tests.

Although beneficial to biomechanical research, experiments are expensive and time-

consuming and their results are affected by numerous sources of errors, like the soft

tissue artifact in motion capture techniques. Furthermore, not all the quantities of
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interest can be experimentally measured in a non-invasive way with the current tech-

nology. Such is the case of the muscular forces, that are not currently measurable in

vivo. For these reasons, the experimental approach needs to interface with the compu-

tational modeling, which offers an inexpensive, repeatable and easily adaptable way

to investigate the biomechanics of the knee as well as of other parts of the human

body. Holistic and reliable computational models of the static and dynamic behavior

of the knee joint remain a great challenge for biomechanical researchers, given the

intrinsic complex nature of the joint itself.

This dissertation presented novel and efficient computational frameworks to as-

sess the knee behavior for both the natural (Chapter 2 and 3) and implanted joint

(Chapter 4), in static and dynamic loading conditions. Regarding the healthy joint,

the present work advances the state-of-the-art in the modeling of the human knee

joint by implementing and validating an efficient approach for the optimization of its

mechanical properties. Specifically, the first two studies (Chapter 2 and 3) success-

fully apply a sequential procedure for the definition of a model able to replicate the

passive and loaded motion of the knee, optimizing the parameters that affect the knee

laxity, i.e. ligaments stiffness and attachment areas, against experimental data. The

procedure presented in Chapter 2 is computationally efficient thanks to the spherical

representation of the joint contact surface, which are substituted by their anatomical

representation only after the optimization. The first study proves that this process is

successful and the surface substitution does not deteriorate the optimization results,

as long as a detailed representation of all the main ligamentous structures is included

in the model and the anatomical contact surfaces are properly adjusted in order to

provide, together with the isometric ligaments, the same constraint as the kinematic

model in passive motion. The last step of the sequential procedure is the implemen-

tation of the dynamic model of the joint, which is a model that includes muscles.

The computational framework developed in this dissertation (Chapter 3) allows for
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this last step to be performed, using two state-of-the-art techniques in biomechanics,

i.e. finite element modeling and multibody musculoskeletal modeling, to replicate

an in vitro dynamic experiment in which the previously developed knee model could

be tested. The computational framework can be easily adapted to replicate in vivo

experiments, which is the ultimate goal for a model that aims to accurately estimate

muscular forces. The third Chapter 4 presents an innovative and efficient way to as-

sess laxity in the currently available TKR geometries and provides a broad comparison

between various designs, identifying the conformity of the femoral component with

respect to the tibial insert as the key factor that influences the implant mechanics

and therefore the muscle loading state. This study advances the traditional approach

in the evaluation of the TKR laxity, suggesting that the objective of the implant

should be to provide for the same stability of the healthy joint, in order to avoid

the antagonistic muscular activity commonly registered in TKR patients when they

perceive joint instability. In this study, the effect of the muscular co-contraction is

represented as a compressive load across the joint: this representation allows for a

simple but effective way to model the main effect of the muscles on the knee joint.

In conclusion, this dissertation presented novel and efficient procedures to model

and evaluate the behavior of the natural and implanted knee under the effect of

static and dynamic loading conditions, extending the current knowledge in the field

of musculoskeletal computational modeling.
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Appendix A

An exhaustive description of both the geometrical and mechanical characteristics of

each ligamentous fiber of the model presented in Chapter 2 is reported in Tab. A.1.

Ligament Origin (Sf ) [mm] Insertion (St) [mm] K [N ] L0 [mm]

ACL AMa (-5.398, 2.264, 6.768) (15.722, -2.650, -1.524) 5805 34.922

ACL AMp (-10.741, 4.188, 9.742) (9.703, 0.955, -6.318) 1512 32.097

ACL PLa (-9.517, 0.547, -9.315) (8.205, -1.229, 2.630) 1884 26.775

ACL PLp (-12.744, 1.895, 9.769) (2.187, 2.377, -2.164) 1560 24.499

ACL iso (-9.104, 0.040, 9.853) (22.896, 4.614, -3.251) 2667 34.823

PCL ALa (1.056, -4.748, -2.392) (-17.304, -6.777, -4.125) 4094 35.592

PCL ALp (-1.711, -10.979, -5.812) (-17.009, -6.595, -8.117) 4094 37.895

PCL PMa (-5.843, 0.957, -3.199) (-21.417, -12.838, -2.607) 4094 37.843

PCL PMp (-8.611, -5.275, -6.619) (-21.122, -12.656, -6.599) 4094 36.976

PCL iso (-4.941, -2.378, -1.787) (-32.175, -6.396, -0.048) 4094 37.933

MCL ant (12.099, 5.094, -40.160) (11.599, -9.675, -40.308) 3319 47.958

MCL post (1.038, 0.358, -40.646) (3.299, -15.223, -41.959) 3319 39.877

MCL prox (12.098, 5.093, -40.162) (15.077, -80.078, -15.753) 3319 120.096

MCL inter (5.196, 10.745, -43.374) (11.851, -89.083, -17.349) 3319 125.385

MCL dist (1.038, 0.357, -40.646) (7.998, -98.677, -18.076) 3319 126.630

MCL iso (0.714, 3.778, -50.733) (8.817, -105.708, -20.877) 3319 133.916
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LCL ant (-0.636, 5.115, 42.454) (-18.555, -20.784, 36.386) 756 51.919

LCL post (-3.882, 4.727, 43.269) (-21.592, -20.110, 35.994) 756 50.708

LCL dist (-0.688, 0.889, 42.448) (-18.368, -22.233, 38.492) 756 49.481

PT ant (2.000, -9.500, 40.000) (-27.204, -12.416, 30.219) 1459 43.870

PT post (2.000, -11.500, 40.000) (-27.412, -10.427, 33.454) 1459 42.710

POL ant (-3.500, 11.000, -43.000) (-13.837, -13.690, -37.145) 1274 45.034

POL post (-6.500, 11.000, -43.000) (-16.809, -13.998, -36.883) 1274 45.034

CAP med (-21.000, 28.000, -26.000) (-18.018, -14.035, -27.744) 6780 59.400

CAP inter (-21.000, 26.000, 0.000) (-16.306, -8.575, -1.893) 3381 52.470

CAP lat (-21.000, 26.000, 26.000) (-17.045, -8.396, 24.269) 1261 52.554

MLCL Aa (10.000, 6.000, 40.000) (10.346, -6.442, 33.917) 200 51.833

MLCL Ap (8.000, 6.000, 40.000) (8.365, -6.648, 34.092) 200 49.087

MLCL Pa (-10.500, 12.500, 38.000) (-7.165, -8.278, 33.453) 200 40.390

MLCL Pp (-11.500, 12.500, 38.000) (-8.156, -8.381, 33.540 ) 200 40.390

FFL med (-26.000, 8.000, 23.000) (-28.225, -3.484, 29.155) 1835 30.466

FFL lat (-26.000, 8.000, 25.000) (-28.397, -3.522, 27.163) 1835 30.466

OPL Mp (-22.000, 8.000, 21.000) (-20.855, -12.270, -23.516) 3963 56.839

OPL Md (-24.000, 8.000, 21.000) (-22.837, -12.485, -23.341) 3963 56.845

OPL lat (-25.000, 8.000, 21.000) (-18.530, -11.773, 3.379) 3963 40.831
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Table A.1: Geometrical and mechanical characteristics of the ligamentous fibers of
M2 and M2s model (right leg). Namely, the ligamentous fibers are: two anteromedial
(ACL AMa, ACL AMp), two posterolateral (ACL PLa, ACL PLp) and one isometric
(ACL iso) fibers for the ACL; two anterolateral (PCL ALa, PCL ALp), two pos-
teromedial (PCL PMa, PCL PMp) and one isometric (PCL iso) fibers for the PCL;
two fibers (MCL ant, MCL post) in the deep boundle, three fibers (MCL prox, MCL
inter, MCL dist) in the superficial boundle and one isometric fiber (MCL iso) for the
MCL; one anterior (LCL ant), one posterior (LCL post) and one distal (LCL dist)
fibers for the LCL; one anterior (PT ant) and one posterior (PT post) fibers for the
PT; one anterior (POL ant) and one posterior (POL post) fibers for the POL; one
medial (CAP med), one intermedial (CAP inter) and one lateral (CAP lat) fibers for
the CAP; two anterior (MLCL Aa, MLCL Ap) and two posterior (MLCL Pa, MLCL
Pp) fibers for the MLCL; one lateral (FFL lat) and one medial (FFL med) fibers for
the FFL; two medial (OPL Mp, OPL Md) and one lateral (OPL lat) fibers for the
OPL.
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Appendix B

Appendix B shows the Matlab functions for the loop closure equations of the TF and

PF mechanisms, the nonlinear constraints, the objective functions and the equilibrium

equations used for the optimization of the TF kinetostatic model in Chapter 3.

f unc t i on [ eq ]= closure_55 (x , f e s , s ide , a , b , l )

% f e s i s the f l e x i o n angle , x (1 ) i s ab/add , x (2 ) i s IE Ű

Grood and Suntay notat ion .

% Ges2r bu i l d s the t i b i o f e m o r a l t rans fo rmat ion matrix .

% a−R∗b−p are the c l o s u r e equat ions o f the mechanism ( S a n c i s i

2011)

f e a a i e =[ f e s , x (1 ) , x (2 ) ] ;

R=ges2r ( f e aa i e , s i d e ) ;

P=[x (3 ) ; x (4 ) ; x (5 ) ] ;

p=P∗ ones (1 , 5 ) ;

d=a−R∗b−p ;

eq=diag (d ’∗ d)− l . ^ 2 ;

end
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f unc t i on [C, Ceq]= cons t r_t f ( s , r_l ig , r_contact , s0 )

% new v a r i a b l e s

a ( 1 : 3 , 1 )=s ( 1 : 3 ) ;

a ( 1 : 3 , 2 )=s ( 4 : 6 ) ;

a ( 1 : 3 , 3 )=s ( 7 : 9 ) ;

a ( 1 : 3 , 4 )=s ( 10 : 1 2 ) ;

a ( 1 : 3 , 5 )=s ( 13 : 1 5 ) ;

b ( 1 : 3 , 1 )=s ( 16 : 1 8 ) ;

b ( 1 : 3 , 2 )=s ( 19 : 2 1 ) ;

b ( 1 : 3 , 3 )=s ( 22 : 2 4 ) ;

b ( 1 : 3 , 4 )=s ( 25 : 2 7 ) ;

b ( 1 : 3 , 5 )=s ( 28 : 3 0 ) ;

l ( 1 : 5 )=s ( 31 : 3 5 ) ;

% prev ious v a r i a b l e s

a0 ( 1 : 3 , 1 )=s0 ( 1 : 3 ) ;

a0 ( 1 : 3 , 2 )=s0 ( 4 : 6 ) ;

a0 ( 1 : 3 , 3 )=s0 ( 7 : 9 ) ;

a0 ( 1 : 3 , 4 )=s0 ( 10 : 1 2 ) ;

a0 ( 1 : 3 , 5 )=s0 ( 13 : 1 5 ) ;

b0 ( 1 : 3 , 1 )=s0 ( 16 : 1 8 ) ;

b0 ( 1 : 3 , 2 )=s0 ( 19 : 2 1 ) ;

b0 ( 1 : 3 , 3 )=s0 ( 22 : 2 4 ) ;

b0 ( 1 : 3 , 4 )=s0 ( 25 : 2 7 ) ;

b0 ( 1 : 3 , 5 )=s0 ( 28 : 3 0 ) ;

l 0 ( 1 : 5 )=s0 ( 31 : 3 5 ) ;
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% C<0

% a

C(1)=norm( a ( 1 : 3 , 1 )−a0 ( 1 : 3 , 1 ) )−r_ l i g ;

C(2)=norm( a ( 1 : 3 , 2 )−a0 ( 1 : 3 , 2 ) )−r_ l i g ;

C(3)=norm( a ( 1 : 3 , 3 )−a0 ( 1 : 3 , 3 ) )−r_ l i g ;

C(4)=norm( a ( 1 : 3 , 4 )−a0 ( 1 : 3 , 4 ) )−r_contact ;

C(5)=norm( a ( 1 : 3 , 5 )−a0 ( 1 : 3 , 5 ) )−r_contact ;

% b

C(6)=norm(b ( 1 : 3 , 1 )−b0 ( 1 : 3 , 1 ) )−r_ l i g ;

C(7)=norm(b ( 1 : 3 , 2 )−b0 ( 1 : 3 , 2 ) )−r_ l i g ;

C(8)=norm(b ( 1 : 3 , 3 )−b0 ( 1 : 3 , 3 ) )−r_ l i g ;

C(9)=norm(b ( 1 : 3 , 4 )−b0 ( 1 : 3 , 4 ) )−r_contact ;

C(10)=norm(b ( 1 : 3 , 5 )−b0 ( 1 : 3 , 5 ) )−r_contact ;

% l eng th s

C(11)=norm( l (1 )−l 0 (1 ) )−2∗ r_ l i g ; %i s o

C(12)=norm( l (2 )−l 0 (2 ) )−2∗ r_ l i g ; %i s o

C(13)=norm( l (3 )−l 0 (3 ) )−2∗ r_ l i g ; %i s o

C(14)=norm( l (4 )−l 0 (4 ) )−2∗r_contact ; %contact

C(15)=norm( l (5 )−l 0 (5 ) )−2∗r_contact ; %contact

%

Ceq = [ ] ;

%

end

func t i on e r r=obj fun_tf ( s , s ide , exp_mot , excu r s i on s )

% −−−−−−−−−−−−−−−−−−−−−−−
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size_exp_mot=s i z e (exp_mot , 2 ) ;

matr ix_excurs ions=excu r s i on s ( 2 : 6 ) ∗ ones (1 , size_exp_mot ) ;

x1=ze ro s (5 , size_exp_mot ) ;

f e s=exp_mot ( 1 , : ) ;

aaie_xyz_s=exp_mot ( 2 : 6 , : ) ;

x0=exp_mot ( 2 : 6 , 1 ) ;

% −−−−−−−−−−−−−−−−−−−−−−−

a ( 1 : 3 , 1 )=s ( 1 : 3 ) ;

a ( 1 : 3 , 2 )=s ( 4 : 6 ) ;

a ( 1 : 3 , 3 )=s ( 7 : 9 ) ;

a ( 1 : 3 , 4 )=s ( 10 : 1 2 ) ;

a ( 1 : 3 , 5 )=s ( 13 : 1 5 ) ;

b ( 1 : 3 , 1 )=s ( 16 : 1 8 ) ;

b ( 1 : 3 , 2 )=s ( 19 : 2 1 ) ;

b ( 1 : 3 , 3 )=s ( 22 : 2 4 ) ;

b ( 1 : 3 , 4 )=s ( 25 : 2 7 ) ;

b ( 1 : 3 , 5 )=s ( 28 : 3 0 ) ;

l ( 1 : 5 , 1 )=s ( 31 : 3 5 ) ;

% c l o s u r e equat ions

indconv =1;

i =0;

opts=opt imset ( ’ Display ’ , ’ Off ’ , ’ Jacobian ’ , ’ Off ’ ) ;

whi l e i<s i z e (exp_mot , 2 ) && indconv==1

i=i +1;

[ x1 ( : , i ) ,~ , s i s c onv ]= f s o l v e ( @closure_55 , x0 , opts , f e s ( i ) ,

s ide , a , b , l ) ;
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x0=x1 ( : , i ) ;

i f s i s conv <=0

indconv=indconv ∗0 ;

end

end

% e r r o r

i f indconv == 0

e r r =100000;

e l s e

e r r=sum(sum ( ( ( x1−aaie_xyz_s ) . / matr ix_excurs ions ) .^2 ) ) ;

end

end

func t i on [ eq ] = c l o s u r e _ p a t e l l a (xp , f e s , TF_motion , s ide , s_p)

%

TFGS_mot = [ f e s ; TF_motion ] ; % Flex ion and the other 5 DoFs o f

femur wrt t i b i a from the 55 opt imized mechanism

%

% fem−t i b k inemat ic s

% TFGS_mot i s the motion o f the TF mechanism

f e a a i e _ t f = TFGS_mot( 1 : 3 ) ;

Ptf = [TFGS_mot(4 ) ,TFGS_mot(5 ) ,TFGS_mot(6 ) ] ’ ;

% pat−fem kinemat ic s

f eaa i e_fp = [ xp (1 ) , xp (2 ) , xp (3 ) ] ;
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Pfp = [ xp (4 ) , xp (5 ) , xp (6 ) ] ’ ; % o r i g i n o f p a t e l l a in femora l

anatomical r e f system

%

Rfp=ges2r ( feaa ie_fp , s i d e ) ;

Rtf = ges2r ( f e a a i e _ t f ( 1 : 3 ) , s i d e ) ;

%

%

% parameters

eta1 =s_p (1 , 1 ) ;

de l t a1 = s_p (2 , 1 ) ;

Q1 = s_p ( 3 : 4 , 1 ) ;

eta2 =s_p (5 , 1 ) ;

de l t a2= s_p (6 , 1 ) ;

Q2= s_p ( 7 : 8 , 1 ) ;

C1 = s_p ( 9 : 1 1 , 1 ) ;

D1 = s_p (12 : 1 4 , 1 ) ;

l_pl = s_p (15 ,1 ) ;

lambda= s_p (16 ,1 ) ;

%

n1 = [ cos ( de l t a1 ) ∗ s i n ( eta1 ) s i n ( de l t a1 ) ∗ s i n ( eta1 ) cos ( eta1 )

] ’ ;

n2 = [ cos ( de l t a2 ) ∗ s i n ( eta2 ) s i n ( de l t a2 ) ∗ s i n ( eta2 ) cos ( eta2 )

] ’ ;

%

% c l o s u r e equat ions ( S a n c i s i 2011)

% 6 unknows : GS ang l e s and p o s i t i o n o f p a t e l l a wrt femur

d i s t=Rtf ∗( Rfp∗D1+Pfp )+Ptf−C1 ; % c a l c u l a t e d i s t anc e in Sta
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eqt (1 )=norm( d i s t )−l_pl ;

eqt ( 2 : 4 )=Rfp∗n2−n1 ; % the l a s t one ( eqt (4 ) can be neg l e c t ed

because the re are only 6 unknows

eqt ( 5 : 7 )=Rfp ∗ [Q2 ; 0]+Pfp−(lambda∗n1+[Q1 ; 0 ] ) ;

eq = [ eqt (1 ) ; eqt (2 ) ; eqt (3 ) ; eqt (5 ) ; eqt (6 ) ; eqt (7 ) ] ;

%

%

%

end

func t i on [ C, Ceq ] = constr_pf (xp , r_ligP , inc_max , dist_max ,

s0_p )

% fmincon : C<0

% xp are the ac tua l parameters

% s0_p are the i n i t i a l parameters

% s0_p ( 1 : 2 , 1 ) = [ eta1 ; de l t a1 ] ;

% s0_p ( 3 : 4 , 1 ) = Q1_p( 1 : 2 ) ;

% s0_p ( 5 : 6 , 1 ) = [ eta2 ; de l t a2 ] ;

% s0_p ( 7 : 8 , 1 ) = Q2_p( 1 : 2 ) ;

% s0_p ( 9 : 1 1 , 1 ) = C1 ;

% s0_p (12 : 1 4 , 1 ) = D1 ;

% s0_p (15 ,1 ) = l_pl ;

% s0_p (16 ,1 ) = lambda ;
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C1_actual = xp ( 9 : 1 1 ) ;

D1_actual = xp ( 12 : 1 4 ) ;

C1 = s0_p ( 9 : 1 1 ) ;

D1 = s0_p ( 12 : 1 4 ) ;

C(1) = dot ( C1_actual−C1 , C1_actual−C1)−r_ligP ; %l igament

i n s e r t i o n t i b

C(2) = dot ( D1_actual−D1, D1_actual−D1)−r_ligP ; %l igament

i n s e r t i o n pat

Q1 = [ s0_p ( 3 : 4 ) ; 0 ] ;

Q1_actual = [ xp ( 3 : 4 ) ; 0 ] ;

Q2 = [ s0_p ( 7 : 8 ) ; 0 ] ;

Q2_actual = [ xp ( 7 : 8 ) ; 0 ] ;

n1 = [ cos ( s0_p (2) ) ∗ s i n ( s0_p (1) ) s i n ( s0_p (2) ) ∗ s i n ( s0_p (1) ) cos

( s0_p (1) ) ] ’ ;

n1_actual = [ cos ( xp (2 ) ) ∗ s i n ( xp (1 ) ) s i n ( xp (2 ) ) ∗ s i n ( xp (1 ) ) cos (

xp (1 ) ) ] ’ ;

n2 = [ cos ( s0_p (6) ) ∗ s i n ( s0_p (5) ) s i n ( s0_p (6) ) ∗ s i n ( s0_p (5) ) cos

( s0_p (5) ) ] ’ ;

n2_actual = [ cos ( xp (6 ) ) ∗ s i n ( xp (5 ) ) s i n ( xp (6 ) ) ∗ s i n ( xp (5 ) ) cos (

xp (5 ) ) ] ’ ;
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P1 = Q1+n1 ;

P1_actual = Q1_actual+n1_actual ;

P2 = Q2+n2 ;

P2_actual = Q2_actual+n2_actual ;

C(3 ) = acos ( dot (n1 , n1_actual ) )−inc_max ; %ax i s i n c l i n a t i o n

C(4) = acos ( dot (n2 , n2_actual ) )−inc_max ; %ax i s i n c l i n a t i o n

C(5) = d i s t_ax i s (P1 ,Q1, P1_actual , Q1_actual )−dist_max ; %ax i s

d i s t anc e

C(6) = d i s t_ax i s (P2 ,Q2, P2_actual , Q2_actual )−dist_max ; %ax i s

d i s t anc e

Ceq = [ ] ;

end

func t i on e r r=objfun_pf ( s_p , exp_motP , mech_motTF , excurs ionsP ,

s i d e )

y0=exp_motP ( 1 : 6 , 1 ) ;

y1=ze ro s (6 , l ength (exp_motP) ) ;

indconv =1;

i =0;
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opt ions=opt imset ( ’ Display ’ , ’ Off ’ , ’ Jacobian ’ , ’ Off ’ ) ;

f e s = mech_motTF ( 1 , : ) ;

TF_motion = mech_motTF ( 2 : 6 , : ) ;

%

RPAFA = ges2r (exp_motP ( 1 : 3 , 1 ) ,1 ) ;

% indipendent v a r i a b l e i s s t i l l TF f l e x i o n

whi l e i<s i z e (exp_motP , 2 ) && indconv==1

i=i +1;

[ y1 ( : , i ) , f va l , s i s c onv ]= f s o l v e ( @closure_pate l la , y0 , opt ions

, f e s ( i ) ,TF_motion ( : , i ) , s ide , s_p) ;

y0=y1 ( : , i ) ;

i f s i s conv <=0

indconv=indconv ∗0 ;

end

end

exc_matP=excurs ionsP ∗ ones (1 , l ength (exp_motP) ) ;

i f indconv == 0

e r r =200000;

e l s e

e r r=sum(sum ( ( ( y1−exp_motP ( : , 1 : s i z e ( y1 , 2 ) ) ) . /

exc_matP ( : , 1 : s i z e ( y1 , 2 ) ) ) .^2 ) ) ;

end
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end

func t i on [ eq ]=equilibrium_M2 (x , f l e x ,K, t ib ia_weight , eps i l on_l ,

L_0 , contact_parameters , exp_forces , app l i ca t ion_po ints ,

exp_moments , tibia_MC , inse r t i ons_Sta , or ig ins_Sfa , s i d e )

% The equ i l i b r i um equat ions o f the femur are numer i ca l ly

so lved at a l l

% f l e x i o n ang l e s and f o r each load ing cond i t i on

% Fext and Mext are f o r a s p e c i f i c t e s t at a s p e c i f i c f l e x i o n

ang le

% x conta in s the GS parameters o f the femur wrt t i b i a ( Sfa

wrt Sta )

% FEMURAL_position = [ x (3 ) x (4 ) x (5 ) ] ;

% FEMURAL_orientation = [ f l e x x (1 ) x (2 ) ] ;

Rtf_a=eye (4 ) ;

f e a a i e =[ f l e x ; x (1 ) ; x (2 ) ] ;

Rtf_a ( 1 : 3 , 1 : 3 )=ges2r ( f e aa i e , s i d e ) ;

Rtf_a ( 1 : 3 , 4 ) =[x (3 ) ; x (4 ) ; x (5 ) ] ;

%i n v e r t matrix to have Sta wrt Sfa ( Rft_a )

Rft_a=inv ( Rtf_a ) ;
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%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

CL_tib=contact_parameters ( 1 : 3 ) ;

CL_fem=contact_parameters ( 4 : 6 ) ;

CM_tib=contact_parameters ( 7 : 9 ) ;

CM_fem=contact_parameters ( 1 0 : 1 2 ) ;

l0_CL=contact_parameters (13) ;

l0_CM=contact_parameters (14) ;

K_contact=contact_parameters (15) ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−I n i t i a l i z a t i o n

−−−−−−−−−−−−−−−−−−−−−

Flig_Sfa=ze ro s ( l ength ( o r i g in s_S fa ) ,3 ) ; %l igament f o r c e in Sfa

l_Sfa=ze ro s (3 , l ength ( o r i g in s_S fa ) ) ;

i n s e r t i on s_S fa=ze ro s (3 , l ength ( o r i g in s_S fa ) ) ;

Mlig_Sfa=ze ro s ( l ength ( o r i g in s_S fa ) ,3 ) ; %moments that F l i g

gene ra t e s about the o r i g i n o f Sfa

Flig_n=ze ro s ( l ength ( o r i g in s_S fa ) ,1 ) ; %norm of the f o r c e

l_SfaNorm=ze ro s ( l ength ( o r i g in s_S fa ) ,1 ) ;

r l i g S f a=ze ro s ( l ength ( o r i g in s_S fa ) ,3 ) ;%moment arm in Sfa

e p s i l o n=ze ro s ( l ength ( o r i g in s_S fa ) ,1 ) ;

po l eS fa = [ 0 ; 0 ; 0 ] ; %o r i g i n o f Sfa in Sfa r e f system
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%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−− Compute f o r c e s in the l igaments and t h e i r

moments −−−−−−−−−−−−

f o r i =1: l ength ( o r i g in s_S fa )

i n s e r t i on s_S fa ( : , i )= Rft_a ( 1 : 3 , 1 : 3 ) ∗ i n s e r t i on s_Sta ( : , i ) +

Rft_a ( 1 : 3 , 4 ) ;

l_Sfa ( : , i ) = or i g in s_S fa ( : , i )− i n s e r t i on s_S fa ( : , i ) ;

l_SfaNorm ( i )=norm( l_Sfa ( : , i ) ) ;

e p s i l o n ( i )=(l_SfaNorm ( i )−L_0( i ) ) /L_0( i ) ;

% l i g f o r c e s

i f e p s i l o n ( i )>0

i f e p s i l o n ( i )<2∗ ep s i l on_ l

Flig_n ( i ) = 0.25∗K( i ) ∗ e p s i l o n ( i ) ^2/ ep s i l on_ l ;

e l s e

Flig_n ( i ) = K( i ) ∗( e p s i l o n ( i )−ep s i l on_ l ) ;

end

e l s e

Flig_n ( i ) =0;

end

l_Sfa ( : , i ) = or i g in s_S fa ( : , i ) − i n s e r t i on s_S fa ( : , i ) ;

Fl ig_Sfa ( i , : ) = Flig_n ( i ) ∗ l_Sfa ( : , i ) /l_SfaNorm ( i ) ;

r l i g S f a ( i , : ) = in s e r t i on s_S fa ( : , i )−po l eS fa ;

Mlig_Sfa ( i , : ) = c r o s s ( r l i g S f a ( i , : ) , Fl ig_Sfa ( i , : ) ) ;

end
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%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−− Compute contact f o r c e s and moments −−−−−−−−−−−−−

% l a t e r a l contact

CL_tib_Sfa=Rft_a ( 1 : 3 , 1 : 3 ) ∗CL_tib+Rft_a ( 1 : 3 , 4 ) ;

l_CL = CL_fem−CL_tib_Sfa ;

l_CLnorm=norm(l_CL) ;

epsi lonCL=(l_CLnorm−l0_CL) /l_CLnorm ;

i f epsi lonCL <0 % negat ive e p s i l o n

F_CL_n = −K_contact∗ epsi lonCL ^2;

e l s e

F_CL_n =0;

end

% Sfa

F_CL_Sfa = F_CL_n∗l_CL/l_CLnorm ;

rc l_Sfa = CL_tib_Sfa − po l eS fa ;

Mcl_Sfa = c r o s s ( rc l_Sfa , F_CL_Sfa) ;

%

% medial contact

CM_tib_Sfa=Rft_a ( 1 : 3 , 1 : 3 ) ∗CM_tib+Rft_a ( 1 : 3 , 4 ) ;

l_CM = CM_fem−CM_tib_Sfa ;

l_CMnorm=norm(l_CM) ;

epsilonCM=(l_CMnorm−l0_CM) /l_CMnorm ;

i f epsilonCM>0 % negat ive e p s i l o n

F_CM_n = K_contact∗epsilonCM ^2;

e l s e
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F_CM_n =0;

end

% Sfa

F_CM_Sfa = F_CM_n∗l_CM/l_CMnorm ;

rcm_Sfa = CM_tib_Sfa − po l eS fa ;

Mcm_Sfa = c r o s s ( rcm_Sfa ,F_CM_Sfa) ;

%

%−−−−−−−−−−−−−−−−−−−−−−−−−−−− Compute weight f o r c e and moment

−−−−−−−−−−−−−

% Sfa

Fp_Sfa = [ 0 ; −(9.81∗ t ib ia_weight ) ; 0 ] ; %always along g l oba l y

ax i s ( Sfa y ax i s )

we ight_app l i ca t ionS fa=Rft_a ∗ [ tibia_MC ; 1 ] ; %trans form t i b i a

c en te r o f mass in Sfa

rp_Sfa=we ight_app l i ca t ionS fa ( 1 : 3 )−po l eS fa ;

Mp_Sfa=c r o s s ( rp_Sfa , Fp_Sfa ) ;

%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−External Forces

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Sfa

Fext_Sfa=Rft_a ( 1 : 3 , 1 : 3 ) ∗ exp_forces ; % exp_forces are

expres sed in Sta r e f e r e n c e system

f ex t_app l i c a t i onS f a=Rft_a ∗ [ app l i c a t i on_po in t s ; 1 ] ; %ro t a t e and

t r a n s l a t e the a p p l i c a t i o n po int o f the f o r c e

rext_Sfa=f ex t_app l i c a t i onS f a ( 1 : 3 )−po l eS fa ;
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Mext_Sfa=c r o s s ( rext_Sfa , Fext_Sfa ) ;

%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

%−−−−−−−−−−−−−−−−− F counter Sta

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%

% f ind the f o r c e that ba lances MZ, i . e . the moment about the

femora l med i o l a t e r a l ax i s o f Sta ( f i x e d f l e x i o n )

% Fc i s d i r e c t e d as x ax i s o f Sta and i t i s app l i ed at the

t i b i a l c en t e r o f mass

%

% Sfa

exp_moments_Sfa = Rft_a ( 1 : 3 , 1 : 3 ) ∗exp_moments ; % exp_moments

are expres sed in Sta r e f e r e n c e system

Mfinal_Sfa =[Mlig_Sfa ; Mcm_Sfa ’ ; Mcl_Sfa ’ ; Mp_Sfa ’ ; Mext_Sfa ’ ;

exp_moments_Sfa ’ ] ;

Fc_appl icat ion_Sfa = Rft_a ∗ [ tibia_MC ; 1 ] ;

Fc_direct ion_Sfa = Rft_a ( 1 : 3 , 1 : 3 ) ∗ [ 1 ; 0 ; 0 ] ; %x ax i s o f Sta

rc_Sfa = Fc_appl icat ion_Sfa ( 1 : 3 )−po l eS fa ;

%from the matrix form o f the c r o s s product determine the norm

of the

%f o r c e that ba lances Mz, i . e . sum( Mfinal_Sfa ( : , 3 ) )

F_counter_norm = (−sum( Mfinal_Sfa ( : , 3 ) ) /( rc_Sfa (1 ) ∗

Fc_direct ion_Sfa (2 )−rc_Sfa (2 ) ∗ Fc_direct ion_Sfa (1 ) ) ) ;

F_counter_Sfa = F_counter_norm∗ Fc_direct ion_Sfa ;
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Mc_Sfa = c r o s s ( rc_Sfa , F_counter_Sfa ) ;

%

%

%

%−−−−−−−−−−−−−−− Fina l F and M

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% Sfa

Ftot_Sfa=[ Fl ig_Sfa ; Fp_Sfa ’ ; F_CM_Sfa ’ ; F_CL_Sfa ’ ; F_counter_Sfa

’ ; Fext_Sfa ’ ] ;

F_Sfa =sum( Ftot_Sfa ) ;

M_tot_Sfa=[Mfinal_Sfa ; Mc_Sfa ’ ] ;

M_Sfa =sum(M_tot_Sfa ) ;

%

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

eq =[F_Sfa M_Sfa ( 1 : 2 ) ] ;

end
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Appendix C

Appendix C shows an example of Abaqus user-written subroutine that instanta-

neously computes the compressive force to apply to the tibial insert in order to

replicate the healthy knee kinematics (Chapter 4).

SUBROUTINE VUAMP (

* ampName , time , ampValueOld , dt , nprops , props , nSvars ,

* svars , lFlagsInfo , nSensor , sensorValues , sensorNames ,

* jSensorLookUpTable ,

* AmpValueNew ,

* lFlagsDefine ,

* AmpDerivative , AmpSecDerivative , AmpIncIntegral )

INCLUDE ’ VABA_PARAM . INC ’

parameter ( iStepTime = 1,

* iTotalTime = 2,

* nTime = 2)

parameter ( iInitialization = 1,

* iRegularInc = 2,

* ikStep = 3,

* nFlagsInfo = 3)

parameter ( iComputeDeriv = 1,

* iComputeSecDeriv = 2,

* iComputeInteg = 3,

* iStopAnalysis = 4,

* iConcludeStep = 5,

* nFlagsDefine = 5)

dimension time ( nTime ), lFlagsInfo ( nFlagsInfo ),

* lFlagsDefine ( nFlagsDefine ),
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* sensorValues ( nSensor ),

* props ( nprops ),

* sVars ( nSvars )

character *80 sensorNames ( nSensor )

character *80 ampName

dimension jSensorLookUpTable (*)

REAL (8) IErotationsCUR1

REAL (8) tfIEload

REAL (8) tfIEloadmax

REAL (8) tStart

REAL (8) tEnd

REAL (8) svars

REAL (8) outputDT

REAL (8) controlDT

REAL (8) subDT

REAL (8) forceDefault

REAL (8) IE_Cp , IE_Ci , IE_Cd

REAL (8) IE_Cpout , IE_Ciout , IE_Cdout , IE_Ctotal

REAL (8) cie_target cie_curr cie_error , error

character *256 jobOutDir , jobName , outFile ,

* targetdata

integer lenJobOutDir , lenJobName

forceDefault = 2000.0

maxTorque = 20000.0

stepLength = 0.5

tfIELoad = vGetSensorValue (’ IE_LOAD_SENSOR ’,jSensorLookUpTable ,

* sensorValues )
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open (unit =102 ,

* file = "C :\\ Users \\ Alessandro \\ Desktop \\ irene \\ implicit \\ INT_TORQU

& E_40_RESULTS_explicit . txt",

* status =’UNKNOWN ’, action =’WRITE ’)

if ( ampName (1:14) .eq. ’ AMP_COMPR_USER ’ ) then

if (( lFlagsInfo ( iInitialization ).eq .1).AND .( lFlagsinfo ( ikStep ).eq .2)) then

ampValueNew = forceDefault

svars (1) = ampValueOld

svars (2) = ampValueNew

else

tStart = tim - dt

tEnd = tim

if ( lFlagsinfo ( ikStep ).eq .2) then

cie_target = maxTorque / stepLength *tim

tim = time ( iStepTime )

cie_target = 40000*( tim -dt)

cie_curr = tfIELoad

error = -( cie_target - cie_curr )

IE_Cp = -0.000000000001

IE_Ci = -0.01

IE_Cpout = IE_Cp * error

svars (1) = ( error *dt) + svars (1)

IE_Ciout = IE_Ci *( svars (1))

IE_Ctotal = ( IE_Cpout + IE_Ciout )

svars (2) = forceDefault + forceDefault * IE_Ctotal

116



if ( svars (2) .le. 0) then

svars (2) = 0.0

end if

ampValueNew = svars (2)

WRITE (102 , ’( F18 .6, F18 .6, F18 .6, F18 .6, F18 .6, F18 .6) ’)

*error ,tim , cie_target ,cie_curr , svars (2)

end if

end if

end if

return

end

117



Bibliography

[1] E. M. Abdel-Rahman and M. S. Hefzy. Three-dimensional dynamic behaviour
of the human knee joint under impact loading. Med Eng Phys, 20(4):276–90,
1998.

[2] A. M. Ahmed, A. Hyder, D. L. Burke, and K. H. Chan. In-vitro ligament tension
pattern in the flexed knee in passive loading. J Orthop Res, 5(2):217–30, 1987.

[3] A. A. Ali, S. S. Shalhoub, A. J. Cyr, C. K. Fitzpatrick, L. P. Maletsky, P. J.
Rullkoetter, and K. B. Shelburne. Validation of predicted patellofemoral me-
chanics in a finite element model of the healthy and cruciate-deficient knee. J

Biomech, 49(2):302–9, 2016.

[4] F. C. Anderson and M. G. Pandy. Static and dynamic optimization solutions
for gait are practically equivalent. J Biomech, 34(2):153–61, 2001.

[5] M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky,
and P. J. Rullkoetter. Dynamic finite element knee simulation for evaluation of
knee replacement mechanics. J Biomech, 45(3):474–83, 2012.

[6] Mark A. Baldwin, Chadd W. Clary, Clare K. Fitzpatrick, James S. Deacy,
Lorin P. Maletsky, and Paul J. Rullkoetter. Dynamic finite element knee simu-
lation for evaluation of knee replacement mechanics. Journal of Biomechanics,
45:474–483, 2012.

[7] Mark A. Baldwin, Peter J. Laz, Joshua Q. Stowe, and Paul J. Rullkoetter. Ef-
ficient probabilistic representation of tibiofemoral soft tissue constraint. Com-

puter Methods in Biomechanics and Biomedical Engineering, 12(6):651–659,
2009.

[8] S. A. Banks, M. K. Harman, J. Bellemans, and W. A. Hodge. Making sense of
knee arthroplasty kinematics: news you can use. J Bone Joint Surg Am, 85-A
Suppl 4:64–72, 2003.

[9] M. G. Benedetti, P. Bonato, F. Catani, T. D’Alessio, M. Knaflitz, M. Marcacci,
and L. Simoncini. Myoelectric activation pattern during gait in total knee
replacement: relationship with kinematics, kinetics, and clinical outcome. IEEE

Trans Rehabil Eng, 7(2):140–9, 1999.

118



[10] M. G. Benedetti, F. Catani, T. W. Bilotta, M. Marcacci, E. Mariani, and
S. Giannini. Muscle activation pattern and gait biomechanics after total knee
replacement. Clin Biomech, 18(9):871–6, 2003.

[11] L. Blankevoort and R. Huiskes. Ligament-bone interaction in a three-
dimensional model of the knee. J Biomech Eng, 113(3):263–9, 1991.

[12] L. Blankevoort, J. H. Kuiper, R. Huiskes, and H. J. Grootenboer. Articular
contact in a three-dimensional model of the knee. J Biomech, 24(11):1019–31,
1991.

[13] K. H. Bloemker, T. M. Guess, L. Maletsky, and K. Dodd. Computational knee
ligament modeling using experimentally determined zero-load lengths. Open

Biomed Eng J, 6:33–41, 2012.

[14] J. J. Cherian, B. H. Kapadia, S. Banerjee, J. J. Jauregui, K. Issa, and M. A.
Mont. Mechanical, anatomical, and kinematic axis in tka: Concepts and prac-
tical applications. Curr Rev Musculoskelet Med, 7(2):89–95, 2014.

[15] R. R. da Silva, A. A. Santos, J. de Sampaio Carvalho Junior, and M. A. Matos.
Quality of life after total knee arthroplasty: systematic review. Rev Bras Ortop,
49(5):520–7, 2014.

[16] B. S. Davidson, D. L. Judd, A. C. Thomas, R. L. Myzner, D. G. Eckhoff, and
J. E. Stevens-Lapsley. Muscle activation and coactivation during five-time-sit-
to-stand movement in patients undergoing total knee arthroplasty. Journal of

Electromyography and Kinesiology, 23(6):1485–1493, 2013.

[17] J. Dawson, R. Fitzpatrick, D. Murray, and A. Carr. Questionnaire on the
perceptions of patients about total knee replacement. J Bone Joint Surg Br,
80(1):63–9, 1998.

[18] S. Delp. Surgery simulation: A computer-graphics system to analyze and de-

sign musculoskeletal reconstructions of the lower limb. PhD thesis, Stanford
University, 1990.

[19] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John,
E. Guendelman, and D. G. Thelen. Opensim: open-source software to cre-
ate and analyze dynamic simulations of movement. IEEE Trans Biomed Eng,
54(11):1940–50, 2007.

[20] J. D. DesJardins, P. S. Walker, H. Haider, and J. Perry. The use of a
force-controlled dynamic knee simulator to quantify the mechanical perfor-
mance of total knee replacement designs during functional activity. J Biomech,
33(10):1231–42, 2000.

[21] R. Di Gregorio and V. Parenti-Castelli. A spatial mechanism with higher pairs
for modelling the human knee joint. J Biomech Eng, 125(2):232–7, 2003.

119



[22] R. Di Gregorio, V. Parenti-Castelli, J. J. O’Connor, and A. Leardini. Mathe-
matical models of passive motion at the human ankle joint by equivalent spatial
parallel mechanisms. Med Biol Eng Comput, 45(3):305–13, 2007.

[23] A. Diamantopoulos, Tzurbakis M. Tokis, A., I. Patsopoulos, and A. Georgoulis.
The posterolateral corner of the knee: evaluation under microsurgical dissection.
Journal of Arthrostopic and Related Surgery, 21(7):826âĂŞ833, 2005.

[24] A. Erdemir, T. M. Guess, J. Halloran, S. C. Tadepalli, and T. M. Morrison.
Considerations for reporting finite element analysis studies in biomechanics. J

Biomech, 45(4):625–33, 2012.

[25] H. R. Fallah-Yakhdania, H. Abbasi-Bafghi, O. G. Meijer, S. M. Bruijn,
N. van den Dikkenberg, M. G. Benedetti, and J. H. van Dieen. Determinants of
co-contraction during walking before and after arthroplasty for knee osteoarthri-
tis. Clin Biomech, 27(5):485–494, 2012.

[26] J. D. Feikes, J. J. O’Connor, and A. B. Zavatsky. A constraint-based approach
to modelling the mobility of the human knee joint. J Biomech, 36(1):125–9,
2003.

[27] C. K. Fitzpatrick, M. A. Baldwin, C. W. Clary, L. P. Maletsky, and P. J. Rul-
lkoetter. Evaluating knee replacement mechanics during adl with pid-controlled
dynamic finite element analysis. Comput Methods Biomech Biomed Engin,
17(4):360–9, 2014.

[28] M. Forlani, N. Sancisi, M. Conconi, and V. Parenti-Castelli. A new test rig for
static and dynamic evaluation of knee motion based on a cable-driven parallel
manipulator loading system. Meccanica, pages 11–11, 2015.

[29] R. Franci, V. Parenti-Castelli, C. Belevedere, and A. Leardini. A new one-dof
fully parallel mechanism for modelling passive motion at the human tibiotalar
joint. Journal of Biomechanics, 42:1403ï£¡–1408, 2009.

[30] R. Franci and N. Parenti-Castelli; V., Sancisi. A three-step procedure for the
modelling of human diarthrodial joints. International Journal of Mechanics and

Control, 10(2), 2009.

[31] M. T. Galloway, E. S. Grood, J. N. Mehalik, M. Levy, S. C. Saddler, and F. R.
Noyes. Posterior cruciate ligament reconstruction. an in vitro study of femoral
and tibial graft placement. Am J Sports Med, 24(4):437–45, 1996.

[32] F.G. Girgis, J.L. Marshall, and A. Monajem. The cruciate ligaments of the knee
joint. anatomical, functional and experimental analysis. Clinical Orthopaedics

and Related Research, 106:216–231, 1975.

[33] A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson. Simulation
of a knee joint replacement during a gait cycle using explicit finite element
analysis. J Biomech, 35(2):267–75, 2002.

120



[34] J.P. Goldblatt and J.C Richmond. Anatomy and biomechanics of the knee.
Operative Techniques in Sports Medicine, 11(3):172–186, 2003.

[35] J. Goodfellow and J. O’Connor. The mechanics of the knee and prosthesis
design. J Bone Joint Surg Br, 60-B(3):358–69, 1978.

[36] O. Gothesen, B. Espehaug, L. Havelin, G. Petursson, S. Lygre, P. Ellison,
G. Hallan, and O. Furnes. Survival rates and causes of revision in cemented
primary total knee replacement: a report from the norwegian arthroplasty reg-
ister 1994-2009. Bone Joint J, 95-B(5):636–42, 2013.

[37] H. Gray. Anatomy of the Human Body. Lea and Febiger, Philadelphia, PA,
1985.

[38] J.E. Greenleaf. The anatomy and biomechanics of the lateral aspect of the knee.
Operative Techniques in Sports Medicine, 4(3):141–147, 1996.

[39] C. J. Griffith, C. A. Wijdicks, R. F. LaPrade, B. M. Armitage, S. Johansen,
and L. Engebretsen. Force measurements on the posterior oblique ligament and
superficial medial collateral ligament proximal and distal divisions to applied
loads. Am J Sports Med, 37(1):140–8, 2009.

[40] Chad J. Griffith, Coen A. Wijdicks, Robert F. La Prade, Bryan M. Armitage,
Steinar Johansen, and Lars Engebretsen. Force measurements on the posterior
oblique ligament and superficial collateral ligament proximal and distal divisions
to applied loads. The American Journal of Sports Medicine, 10(10):1–9, 2008.

[41] E. S. Grood, S. F. Stowers, and F. R. Noyes. Limits of movement in the hu-
man knee. effect of sectioning the posterior cruciate ligament and posterolateral
structures. J Bone Joint Surg Am, 70(1):88–97, 1988.

[42] E. S. Grood and W. J. Suntay. A joint coordinate system for the clinical
description of three-dimensional motions: application to the knee. J Biomech

Eng, 105(2):136–44, 1983.

[43] T. M. Guess and A. Stylianou. Simulation of anterior cruciate ligament defi-
ciency in a musculoskeletal model with anatomical knees. The Open Biomedical

Engineering Joirnal, 6(23):23–32, 2012.

[44] Y. Guo, X. Zhang, A. Meiwen, and W. Chen. Determination of quadriceps
forces in squat and its application in contact pressure analysis of knee joint.
Acta Mechanica Solida Sinica, 25(1):53–60, 2011.

[45] H. Haider and P. S. Walker. Measurements of constraint of total knee replace-
ment. J Biomech, 38(2):341–8, 2005.

[46] J. P. Halloran, A. J. Petrella, and P. J. Rullkoetter. Explicit finite element
modeling of total knee replacement mechanics. J Biomech, 38(2):323–31, 2005.

121



[47] S. Harish, P. O’Donnell, D. Connell, and A. Saifuddin. Imaging of the postero-
lateral corner of the knee. Clin Radiol, 61(6):457–66, 2006.

[48] C. D. Harner, G. H. Baek, T. M. Vogrin, G. J. Carlin, S. Kashiwaguchi, and S. L.
Woo. Quantitative analysis of human cruciate ligament insertions. Arthroscopy,
15(7):741–9, 1999.

[49] M.S. Hefzy and T.D.V Cooke. Review of knee models: 1996 update. Applied

Mechanics Reviews, 49(10-2):187–193, 1996.

[50] H. H. Hsieh and P. S. Walker. Stabilizing mechanisms of the loaded and un-
loaded knee joint. J Bone Joint Surg Am, 58(1):87–93, 1976.

[51] H. Huber and C. Mattheck. The cruciate ligaments and their effect on the
kinematics of the human knee. Med Biol Eng Comput, 26(6):647–54, 1988.

[52] J. C. Hughston and A. F. Eilers. The role of the posterior oblique ligament in
repairs of acute medial (collateral) ligament tears of the knee. J Bone Joint

Surg Am, 55(5):923–40, 1973.

[53] K. E. Keenan, S. Pal, D. P. Lindsey, T. F. Besier, and G. S. Beaupre. A
viscoelastic constitutive model can accurately represent entire creep indentation
tests of human patella cartilage. Journal of Applied Biomechanics, 29(3):292–
302, 2013.

[54] A.M. Kiapour, V. Kaul, A. Kiapour, C.E. Quatman, S.C. Wonderman, T.E.
Hewett, C.K. Demetropoulos, and V.K. Goel. The effect of ligament modeling
techniques on knee joint kinematics: a finite element study. Applied Mathemat-

ics, 4(5A):91–97, 2013.

[55] E. Kondo, A. M. Merican, K. Yasuda, and A. A. Amis. Biomechanical analysis of
knee laxity with isolated anteromedial or posterolateral bundle-deficient anterior
cruciate ligament. Arthroscopy, 30(3):335–43, 2014.

[56] S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern. Projections of primary
and revision hip and knee arthroplasty in the united states from 2005 to 2030.
J Bone Joint Surg Am, 89(4):780–5, 2007.

[57] R. F. LaPrade, A. H. Engebretsen, T. V. Ly, S. Johansen, F. A. Wentorf, and
L. Engebretsen. The anatomy of the medial part of the knee. J Bone Joint

Surg Am, 89(9):2000–10, 2007.

[58] R. F. LaPrade, T. V. Ly, F. A. Wentorf, and L. Engebretsen. The posterolateral
attachments of the knee: a qualitative and quantitative morphologic analysis of
the fibular collateral ligament, popliteus tendon, popliteofibular ligament, and
lateral gastrocnemius tendon. Am J Sports Med, 31(6):854–60, 2003.

122



[59] R. F. LaPrade, P. M. Morgan, F. A. Wentorf, S. Johansen, and L. Engebretsen.
The anatomy of the posterior aspect of the knee. an anatomic study. J Bone

Joint Surg Am, 89(4):758–64, 2007.

[60] Z. F. Lerner, M. S. DeMers, S. L. Delp, and R. C. Browning. How
tibiofemoral alignment and contact locations affect predictions of medial and
lateral tibiofemoral contact forces. J Biomech, 48(4):644–50, 2015.

[61] G. Li, J. Gil, A. Kanamori, and S. L. Woo. A validated three-dimensional
computational model of a human knee joint. J Biomech Eng, 121(6):657–62,
1999.

[62] E. Luger, S. Sathasivam, and P. S. Walker. Inherent differences in the laxity
and stability between the intact knee and total knee replacements. The Knee,
4(1):7–14, 1997.

[63] H. L. Lunderberg, I. L. Rojas, and Wimmer; M. A. Foucher; K. C. Comparison
of antagonist muscle activity during walking between total knee replacement
and control subjects using unnormalized electromyography. The Journal of

Arthroplasty, 1(1-9), 2016.

[64] R. F. La Prade, T. S. Bollom, F. A. Wentorf, N. J. Wills, and K. Meister.
Mechanical properties of the posterolateral structures of the knee. American

journal of sports medicine, 33(9):1386–1391, 2005.

[65] Claude T. Moorman III and R. F. La Prade. Anatomy and biomechanics of the
posterolateral corner of the knee. The Journal of Knee Surgery, pages 137–145,
2005.

[66] G. McCluskey and T.A Blackburn. Classification of knee ligament instabilities.
Journal of the American Physical Therapy Association, 60(12):1575–1577, 1980.

[67] T. Minowa, G. Murakami, H. Kura, D. Suzuki, S. H. Han, and T. Yamashita.
Does the fabella contribute to the reinforcement of the posterolateral corner of
the knee by inducing the development of associated ligaments? J Orthop Sci,
9(1):59–65, 2004.

[68] K. Mitchell, S. Banks, J. Rawlins, S. A. Wood, and W. A. Hodge. Strength
of intrinsically stable tka during stair-climbing. 51st Annual Meeting of the
Orthopaedic Research Society, 2005.

[69] R. L. Mizner and L. Snyder-Mackler. Altered loading during walking and sit-to-
stand is affected by quadriceps weakness after total knee arthroplasty. J Orthop

Res, 23(5):1083–90, 2005.

[70] F. Moissenet, L. Cheze, and R. Dumas. A 3d lower limb musculoskeletal model
for simultaneous estimation of musculo-tendon, joint contact, ligament and bone
forces during gait. J Biomech, 47(1):50–8, 2014.

123



[71] T. J. Mommersteeg, L. Blankevoort, R. Huiskes, J. G. Kooloos, and J. M.
Kauer. Characterization of the mechanical behavior of human knee ligaments:
a numerical-experimental approach. J Biomech, 29(2):151–60, 1996.

[72] T. J. A. Mommersteeg, L. Blankevoort, R. Huiskes, J. G. M. Kooloos, and
J. M. G. Kauer. Characterization of the mechanical behavior of human
knee ligaments: a numerical-experimental approach. Journal of Biomechan-

ics, 29(2):151–160, 1996.

[73] V. C. Mow, G. A. Ateshian, and R. L. Spilker. Biomechanics of diarthrodial
joints: a review of twenty years of progress. J Biomech Eng, 115(4B):460–7,
1993.

[74] D. Nam, R. M. Nunley, and R. L. Barrack. Patient dissatisfaction following
total knee replacement: a growing concern? Bone Joint J, 96-B(11 Supple
A):96–100, 2014.

[75] A. Navacchia, C. A. Myers, P. J. Rullkoetter, and K. B. Shelburne. Prediction
of in vivo knee joint loads using a global probabilistic analysis. J Biomech Eng,
138(3), 2016.

[76] P. C. Noble, M. J. Gordon, J. M. Weiss, R. N. Reddix, M. A. Conditt, and
K. B. Mathis. Does total knee replacement restore normal knee function? Clin

Orthop Relat Res, (431):157–65, 2005.

[77] J. J. O’Connor, T. L. Shercliff, D. FitzPatric, E. Biden, and J. W. Goodfellow.
Mechanics of the knee. In D. Daniel et al., editor, Knee Ligaments: Structures,

Function, Injury and Repair, pages 201–237. Raven Press, 1990.

[78] A. Ottoboni, V. Parenti-Castelli, N. Sancisi, C. Belvedere, and A. Leardini.
Articular surface approximation in equivalent spatial parallel mechanism models
of the human knee joint: an experiment-based assessment. Proc Inst Mech Eng

H, 224(9):1121–32, 2010.

[79] M. G. Pandy and K. B. Shelburne. Theoretical analysis of ligament and
extensor-mechanism function in the acl-deficient knee. Clin Biomech, 13(2):98–
111, 1998.

[80] M.G. Pandy, K. Sasaki, and S. Kim. A three-dimensional musculoskeletal model
of the human knee joint. part 1: theoretical construction. Computer Methods

in Biomechanics and Biomedical Engineering, 1:87–108, 1997.

[81] V. Parenti-Castelli and R. Di Gregorio. Parallel mechanisms applied to the

human knee passive motion simulation. Advances in Robot Kinematics. 2000.

[82] V. Parenti-Castelli and N. Sancisi. Synthesis of spatial mechanisms to model
human joints. In M. McCarthy, editor, 21th Century Kinematics, pages 49–84.
Springer, 2012.

124



[83] E. Pena, B. Calvo, M. A. Martinez, and M. Doblare. A three-dimensional
finite element analysis of the combined behavior of ligaments and menisci in
the healthy human knee joint. J Biomech, 39(9):1686–701, 2006.

[84] W. Petersen, S. Loerch, S. Schanz, M. Raschke, and T. Zantop. The role of
the posterior oblique ligament in controlling posterior tibial translation in the
posterior cruciate ligament-deficient knee. Am J Sports Med, 36(3):495–501,
2008.

[85] A. Race and A. A. Amis. Pcl reconstruction: in vitro biomechanical comparison
of ’isometric’ versus single and double-boundled ’anatomic’ grafts. Journal of

Bone and Joint Surgery, 80B(1):173–179, 1998.

[86] H. H. Rachmat, D. Janssen, T. van Tienen, R. L. Diercks, B. Verkerke, and
N. Verdonschot. Material properties of the human posterior knee capsule. Jour-

nal of Biomechanics, 45(S1):S380, 2012.

[87] J. A. Reinbolt, M. D. Fox, M. H. Schwartz, and S. L. Delp. Predicting outcomes
of rectus femoris transfer surgery. Gait and Posture, 30(1):100–5, 2009.

[88] V. I. Roberts, C. N. Esler, and W. M. Harper. A 15-year follow-up study of
4606 primary total knee replacements. J Bone Joint Surg Br, 89(11):1452–6,
2007.

[89] J. R. Robinson, A. M. Bull, and A. A. Amis. Structural properties of the medial
collateral ligament complex of the human knee. J Biomech, 38(5):1067–74, 2005.

[90] N. Sancisi, B. Baldisserri, V. Parenti-Castelli, C. Belvedere, and A. Leardini.
One-degree-of-freedom spherical model for the passive motion of the human
ankle joint. Med Biol Eng Comput, 52(4):363–73, 2014.

[91] N. Sancisi and V. Parenti-Castelli. A 1-dof parallel spherical wrist for the
modelling of the knee passive motion. Mechanism and Machine Theory, 45:658–
665, 2010.

[92] N. Sancisi and V. Parenti-Castelli. On the role of ligaments in the guidance of
the human knee passive motion. In Proceedings of Euromech Colloquium 511,

Ponta Delgada, Azores, Portugal, March 09–12, pages 1–9, 2011.

[93] N. Sancisi and V. Parenti-Castelli. A sequentially-defined stiffness model of the
knee. Mechanism and Machine Theory, 46:1920–1928, 2011.

[94] S. Sathasivam and P. S. Walker. A computer model with surface friction for
the prediction of total knee kinematics. J Biomech, 30(2):177–84, 1997.

[95] S. Sathasivam and P. S. Walker. The conflicting requirements of laxity and
conformity in total knee replacement. J Biomech, 32(3):239–47, 1999.

125



[96] L. C. Schmitt and K. S. Rudolph. Influences on knee movement strategies
during walking in persons with medial knee osteoarthritis. Arthritis Rheum,
57(6):1018–26, 2007.

[97] K. B. Shelburne and M. G. Pandy. A musculoskeletal model of the knee for
evaluating ligament forces during isometric contractions. J Biomech, 30(2):163–
76, 1997.

[98] K. B. Shelburne, M. R. Torry, and M. G. Pandy. Muscle, ligament, and joint-
contact forces at the knee during walking. Medicine and Science in Sports and

Exercise, 37(11):1948–1956, 2005.

[99] M. A. Sherman, A. Seth, and S. L. Delp. What is a moment arm? calculat-
ing muscle effectiveness in biomechanical models using generalized coordinates.
Proc ASME Des Eng Tech Conf, 2013, 2013.

[100] I. Sintini, N. Sancisi, and V. Parenti Castelli. A sequentially-defined kinetostatic
model of the knee with anatomical surfaces. In Interdisciplinary Applications

of Kinematics, volume 26 of Mechanism and Machine Science, pages 109–117.

[101] G. C. Terry and R. F. La Prade. The posterolateral aspect of the knee. Anatomy
and surgical approach. American Journal of Sports Medicine, 24(6):732–739,
1996.

[102] D. G. Thelen, F. C. Anderson, and S. L. Delp. Generating dynamic simulations
of movement using computed muscle control. J Biomech, 36(3):321–8, 2003.

[103] D. G. Thelen, K. Won Choi, and A. M. Schmitz. Co-simulation of neuromus-
cular dynamics and knee mechanics during human walking. J Biomech Eng,
136(2):021033, 2014.

[104] A. C. Thomas, D. L. Judd, B. S. Davidson, D. G. Eckhoff, and J. E. Stevens-
Lapsley. Quadriceps/hamstrings co-activation increases early after total knee
arthroplasty. The Knee, 21(6):1115–1119, 2014.

[105] P. S. Walker. Application of a novel design method for knee replacements to
achieve normal mechanics. Knee, 21(2):353–8, 2014.

[106] P. S. Walker. The design and pre-clinical evaluation of knee replacements for
osteoarthritis. J Biomech, 48(5):742–9, 2015.

[107] P. S. Walker, J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge
design and placement on joint mechanics. J Biomech, 21(11):965–74, 1988.

[108] D. R. Wilson, J. D. Feikes, and J. J. O’Connor. Ligaments and articular contact
guide passive knee flexion. J Biomech, 31(12):1127–36, 1998.

[109] D. R. Wilson, J. D. Feikes, A. B. Zavatsky, and J. J. O’Connor. The components
of passive knee movement are coupled to flexion angle. J Biomech, 33(4):465–73,
2000.

126



[110] D.R. Wilson and J.J.: OâĂŹConnor. A three-dimensional geometric model of
the knee for the study of joint forces in gait. Gait and Posture, 5(2):108–115,
1997.

[111] H. Xu, D. Bloswick, and Merryweather. An improved opensim gait model with
multiple degrees of freedom knee joint and knee ligaments. Computer Methods

in Biomechanics and Biomedical Engineering, 18(11):1216–1224, 2014.

[112] G. T. Yamaguchi and F. E. Zajac. A planar model of the knee joint to charac-
terize the knee extensor mechanism. J Biomech, 22(1):1–10, 1989.

[113] F. E. Zajac. Muscle and tendon: properties, models, scaling, and application to
biomechanics and motor control. Crit Rev Biomed Eng, 17(4):359–411, 1989.

127


	frontespizio
	IreneDissertation

