Documenti full-text disponibili:
Abstract
The constant evolution of the telecommunication technologies is one fundamental aspect that characterizes the modern era. In the context of healthcare and security, different scenarios are characterized by the presence of multiple sources of information that can support a large number of innovative services. For example, in emergency scenarios, reliable transmission of heterogeneous information (health conditions, ambient and diagnostic videos) can be a valid support for managing the first-aid operations. The presence of multiple sources of information requires a careful communication management, especially in case of limited transmission resource availability. The objective of my Ph.D. activity is to develop new optimization techniques for multimedia communications, considering emergency scenarios characterized by wireless connectivity. Different criteria are defined in order to prioritize the available heterogeneous information before transmission. The proposed solutions are based on the modern concept of content/context awareness: the transmission parameters are optimized taking into account the informative content of the data and the general context in which the information sources are located. To this purpose, novel cross-layer adaptation strategies are proposed for multiple SVC videos delivered over wireless channel. The objective is to optimize the resource allocation dynamically adjusting the overall transmitted throughput to meet the actual available bandwidth. After introducing a realistic camera network, some numerical results obtained with the proposed techniques are showed. In addition, through numerical simulations the benefits are showed, in terms of QoE, introduced by the proposed adaptive aggregation and transmission strategies applied in the context of emergency scenarios. The proposed solution is fully integrated in European research activities, including the FP7 ICT project CONCERTO. To implement, validate and demonstrate the functionalities of the proposed solutions, extensive transmission simulation campaigns are performed. Hence, the presented solutions are integrated on a common system simulator which is been developed within the CONCERTO project.
Abstract
The constant evolution of the telecommunication technologies is one fundamental aspect that characterizes the modern era. In the context of healthcare and security, different scenarios are characterized by the presence of multiple sources of information that can support a large number of innovative services. For example, in emergency scenarios, reliable transmission of heterogeneous information (health conditions, ambient and diagnostic videos) can be a valid support for managing the first-aid operations. The presence of multiple sources of information requires a careful communication management, especially in case of limited transmission resource availability. The objective of my Ph.D. activity is to develop new optimization techniques for multimedia communications, considering emergency scenarios characterized by wireless connectivity. Different criteria are defined in order to prioritize the available heterogeneous information before transmission. The proposed solutions are based on the modern concept of content/context awareness: the transmission parameters are optimized taking into account the informative content of the data and the general context in which the information sources are located. To this purpose, novel cross-layer adaptation strategies are proposed for multiple SVC videos delivered over wireless channel. The objective is to optimize the resource allocation dynamically adjusting the overall transmitted throughput to meet the actual available bandwidth. After introducing a realistic camera network, some numerical results obtained with the proposed techniques are showed. In addition, through numerical simulations the benefits are showed, in terms of QoE, introduced by the proposed adaptive aggregation and transmission strategies applied in the context of emergency scenarios. The proposed solution is fully integrated in European research activities, including the FP7 ICT project CONCERTO. To implement, validate and demonstrate the functionalities of the proposed solutions, extensive transmission simulation campaigns are performed. Hence, the presented solutions are integrated on a common system simulator which is been developed within the CONCERTO project.
Tipologia del documento
Tesi di dottorato
Autore
Moretti, Simone
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
28
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Camera Selection, Video Adaptation, Resource Allocation, LTE, QoE
URN:NBN
DOI
10.6092/unibo/amsdottorato/7450
Data di discussione
5 Maggio 2016
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Moretti, Simone
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
28
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Camera Selection, Video Adaptation, Resource Allocation, LTE, QoE
URN:NBN
DOI
10.6092/unibo/amsdottorato/7450
Data di discussione
5 Maggio 2016
URI
Statistica sui download
Gestione del documento: