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Abstract

In this thesis the problem of trajectory planning for automatic machines is addressed,
considering in particular the problem of vibration suppression and perfect tracking.
In particular two novel trajectory generators based on dynamic filters are developed
and implemented. The proposed trajectory planners are designed respectively for
residual vibrations suppression and perfect tracking of periodic trajectories. Both so-
lutions are very effective and easy to implement, exploiting the realization of dynamic
filters by means of FIR filters.

In the first part of the thesis the problem of residual vibrations in motion control
of robots is addressed, pointing out the need to eliminate vibrations to achieve high
performance. Chapters 1 to 4 report the most widespread feed-forward techniques
for residual vibration suppression such as Input Shaping, filtering, system dynamic
inversion and proper trajectory planning. In a review fashion all these techniques
are analyzed in detail and implemented in simulation to verify the effect of vibration
reduction on a typical second order system. Moreover all the analysis are performed
with a control system perspective in order to give a unified point of view allowing to
compare all the solutions despite their differences.

Then in Chapter 5 a novel trajectory generator based on Exponential Filters is
presented, analyzed and compared with the most commonly used feed-forward tech-
niques for vibration suppression, proving comparable performances with the state of
the art. The analysis and comparison procedure is performed both in simulation and
in experimental activities. In particular this new method is developed first for simple
SISO LTT systems and then extended to MIMO systems showing great effectiveness
ranging from simple elastic transmissions up to robotic arms with compliant joints.



In Chapter 6 a new repetitive control scheme based on B-Spline Trajectory Gen-
erator that exploits dynamic filters is presented. The novel scheme integrates the
trajectory generator and the repetitive controller in a single discrete time feedback
loop achieving perfect tracking for periodic motions. Tracking performance and stabil-
ity are demonstrate both analytically and experimentally showing also a considerable
ease of implementation even on commercial robotic devices with unaccessible factory
controller.

In appendix A, a more technologically oriented activity is reported, concerning on
the development of a 6-axis Force/Torque sensor for underwater activities based on
optoelectronic components. The description covers the entire process from the concept
to the development of a simulation model and finally to the prototype realization.
Also the experimental activities about calibration and performance evaluation are
presented, paying much attention on how different solutions adopted for sealing the
sensor affect the performances.

Thesis Supervisor: Prof. Claudio Melchiorri
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“Anyone who stops learning is old,
whether at twenty or eighty.
Anyone who keeps learning stays younyg.

The greatest thing in life is to keep your mind young.”

Henry Ford
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Chapter 1

Feed-Forward Techniques for

Vibration Suppression

Reducing vibrations has always been a key issue in automation. In general, vibrations
are due to the motion itself since moving any inertial load could excite the resonant
frequencies of the body structures. This is a very undesirable condition since it affects
both the accuracy of the control system and the reliability of the structures. Typically
this problem was roughly avoided by slowing down any motion, especially in older
automatic machines which handle large inertias. Obviously this was not sufficient,
also lightening of robot’s structures, reducing frictions and the introduction of elastic
elements in the transmissions have made vibrations a more and more relevant issue.
Moreover the demand for ever faster motions led to the development of methods that
aims to reduce vibrations without compromising performances.

In literature both feedback and feed-forward schemes have been proposed in order to
suppress vibrations and among these, methods based on feed-forward action are of
great relevance. Feed-forward schemes are used to shape the command input, that
usually is a step, in order to provide a proper trajectory that minimizes both vibra-
tions and duration of the motion. The major advantage of this approach is that it can
be applied on any controlled system since it doesn’t need any change on the control
architecture or additional sensors.

Earliest forms of command shaping were mechanical design techniques of high-speed



cams. A huge literature refers to design methods of cam profiles based on proper
motion shaping in order to avoid the excitement of system resonances [66].

Focusing on control techniques, one of the first attempts was the posicast control de-
veloped in the 1950’s [95, 100, 96]. The method consists of exciting several transient
oscillations of the system, splitting up the input command into several fragments
properly delayed in time. In this way if the resultant sum of the transient oscillations
is zero, one can obtain a deadbeat step response from a very lightly damped system.
Unfortunately at that time digital controllers were just born and the implementation
of posicast control schemes could only be carried out with discrete elements and delay
lines. As a result implementing those schemes was a challenging task, mainly for lack
of robustness.

A well-known technique for minimizing the residual vibration in point-to-point mo-
tions is represented by input shaping [86, 106]. Basically it is a filtering technique
where the reference command is convolved with a train of properly designed impulses,
resulting a shaped command that aims to reduce or suppress residual vibration in a
controlled plant. The theory and the concept behind input shaping were exactly the
same of posicast control, but only in late 1980’s this technique become very popular.
This was mainly due to a discrete time reformulation and analysis, plus the possi-
bility to easily implement input shapers with digital controllers. Input shapers have
been successfully used in a number of practical applications, such as reduction of
crane oscillations, [42], control of industrial machines like XY stages, [34], vibration
suppression in flexible robotic arms, [59]. A deep review of input shapers is presented
in Chapter 2.

Alternative approaches for vibrations reduction by means of command shaping are
based on low-pass and notch filters, expressed either as finite or infinite impulse re-
sponse filters. In this case the method is quite simple and rely on filtering those
spectral components of the command input that could excite system resonances, but
it is worth noticing that filters do not guarantee complete vibration cancellation [90].
A technique that assures residual vibrations suppression exploits the dynamic inver-

sion of a flexible plant |[79]. This approach lead to a vibration free motion but the



need of the complete knowledge on the plant system made it not so attractive for
practical applications.

More recently, methods for vibration reduction directly based on a proper definition
of the reference signal have been presented, see [52, 13, 7]. These techniques rely on
the limitation of jerk impulses, whose duration must be carefully chosen on the basis
of the dynamics characteristics of the resonant system. Constant jerk trajectories are
the simplest example of this approach, but they assure complete vibration cancella-
tion only in case of totally undamped plants. An improvement has been presented in
[7], where asymmetric jerk profiles are used to take into account the damping coeffi-
cient of the flexible system. This approach, which has been generalized and improved,

will be discussed in Chapter 5.

1.1 Modelling Vibratory System

The problem of residual vibrations affects very different kind of machines. In order
to evaluate the features and the effects of any method for vibration suppression, the
motion system shown in Fig. 1-1 can been considered because of its significance in
the industrial field, where a number of applications can be modeled in this way: a
properly controlled electric motor is used to actuate an inertial load, whose inertial
coefficient is J;, by means an elastic transmission lightly damped, characterized by an
elastic constant k; and a damping coefficient b, |55, 6, 60]. By assuming that, because
of the control, the actuator behaves like an ideal position source, i.e. g, (t) = gref(2),
only the mathematical model of the system describing the elastic linkage, which causes
vibrations, and the load has been taken into account. It is a SISO (Single Input Single
Output) LTI (Linear Time Invariant) system that can be modelled with the transfer

function
Qi(s) 20w, s + w?
() = - 1.1
Gomi(5) Qm(s) 2+ 20w,s +w? (11)
with
ket by
Wp =1/ — =
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Figure 1-1: Lumped constant model of a motion system with elastic linkage (a) and
related block-scheme representation (b).

where Q(s) = L{gn(t)} and Q;(s) = L{q(t)} are the Laplace transforms of the
motor and load position, respectively. Note that the inertia J,, of the motor has no
influence on this model. From (1.1), it follows that the dynamic relation between
the motor position, supposed to be equal to the reference trajectory ¢..f(t), and the

tracking error £(t) is

E(s) —5? N E(s) -1
Qref(s) 82+ 20wys + w2 Qres(s) 82+ 20w,s + w2

(1.2)

and where E(S) = ‘C{E(t)}7 Qref(s) = ﬁ{qu(t)} and Qref(s) = 'C{QTef(t)}
As a matter of fact it can be noted that both transfer functions in (1.1) and (1.2) are

of the form
N(s)
$2 + 20wy, s + w?

F(s) =

that is, the difference between the above equations rely on the numerator only, while

the denominator refers always at the same complex conjugate poles couple. Indeed,
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Figure 1-2: Step response (a) and Pole-Zero diagram (b) of the considered plant
G(s), with w,, = 27 and with different damping value.

in terms of impulse response it can be proven that in general
flt) = [Me_‘S“”(t)} sin <wn\/1 — 0%t + ¢) ,

where M and ¢ only depends on the numerator N(s) that affects the amplitude
and the initial phase of the impulse response. Therefore in lieu of simplicity and
generality, an uncoupled linear vibratory systems it can be assumed modelled as a
common second order SISO (Single Input Single Output) LTI (Linear Time Invariant)

system plant
2

z 1.3
§% + 20w, s + w? (1.3)

G(s) =

5



Such a system fed with a unitary impulse, produces a decaying sinusoidal response

y(t) = [\/%e_éw”t] sin <wnmt> (1.4)

where w,, is the undamped natural frequency of the plant, ¢ is the damping ratio of
the plant and ¢ is time. Thus once the damping coefficient 6 and natural frequency w,,
of the system are known, the system and accordingly its vibrating response is defined.
In practical experience when the parameters are unknown, with standard procedures
it is possible to directly deduce their values from the response of the plant to input
signals that cause vibrations. For instance, the residual vibrations consequent to a

step input are given by

1
V1 — 02

Estep(t) = —

et cos <wn\/ 1—6%t+ @0)

where py = arctan ( \/16—T>' Therefore, if a measurement of the oscillation is available,

it is sufficient to detect two subsequent peak values, as highlighted in Fig. 1-3(a), and

compute the exponential decay and the time period of the oscillation as

where the meaning of ¢y, t5, p1, p2 is explained in the figure. Note that the period
of the oscillation and its decay rate depend on the system, and they do not change
also if different type of reference inputs are considered. For instance, second order
trajectories, with discontinuous acceleration, can be used in order to provide the
actuator with a feasible trajectory and to avoid an excessive strain on the plant (see

fig. 1-3(b)).
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Figure 1-3: Residual vibrations caused by the applications of a step input to the
system (1.3) (a) and comparison between residual vibrations caused by the application
of a step input and of a second order trajectory g»(t) to a vibratory system G(s) (b).

Finally the parameters 6 and w, can be made explicit by means of the relations

2T
To =k ——— k € N.
0 wpV 1 — 62

1.2 Performance Measurement of Command Shapers

Evaluating performances of any feed-forward technique, also referred as command
shapers (CS), is a key factor in order to choose the proper solution for any given
problem. As well as the many design solutions, in literature are proposed several
review papers that suggest various points of view to compare different CS (|108,
47, 53| among many others). Besides the measurement of the magnitude of residual
vibrations, several approaches take into account the duration of the shaped command
(distortion), while others for example introduce benchmarks based on the energy

content of residual vibrations.



1.2.1 Robustness

Typically the most important feature to evaluate CS performances is the robustness to
errors in parameters definition. Since, usually, they are designed to nullify vibrations
at a certain nominal frequency, in this way the focus is on the behaviour of an CS in the
neighborhood of the nominal frequency. This is crucial because rarely the real plant
parameters match the model’s. Moreover, CS are often applied to already controlled
plants whose parameters are unknown, and therefore to be estimated. Obviously
the estimation by means of proper identification techniques involves uncertainties on
model parameters and CS design is required to assure a certain level of robustness.

The analysis of the robustness comes directly from the measurement of the residual
vibration and its reduction by means of command shaping. First, Residual Vibration
(RV) is defined as the measure of the maximum displacement of a response from
equilibrium, from the time when the command ends. Traditionally, as maximum
displacement is meant the magnitude of the dissipation envelope of the response,
so RV refers to the value of that decaying envelope at the time when the shaped
command ends. Starting from RV is possible to define the Percent Residual Vibration
(PRV) as the ratio between Residual Vibrations from a shaped command and from

an unshaped command
RV

PRV = .
RV,

(1.6)

Finally robustness is evaluated according to the PRV’s sensitivity function to errors
in parameters w, and 9§, that represents the level of vibrations induced by a shaped
command when applied to a system with different values of natural frequency or

damping —
S w’

(1.7)

It is worth noting that usually PRV refers directly to the function in (1.7) that is
expressed in terms of percentage and normalized frequency or damping.

In fig. 1-4 a common PRV function with respect to errors in natural frequency is
shown: the plot easily highlight the behaviour of the shaper in nominal condition

(w = wy) and for any other frequency.
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Figure 1-4: Typical Percent Residual Vibration function with respect to frequency
variations.

1.2.2 Filter Based Approach

In (1.6) the PRV is given for a generic CS. However, a part from particular solutions
that lead to a proper formula, the PRV function needs to analyse responses in time
domain, therefore the calculation of the RV that could be tricky.

A very effective approach to evaluate the the PRV function exploits the analogy with
the filter’s theory. First, a completely undamped second order system (§ = 0) is

considered, representing also the worst condition in terms of vibrations

2

———. 1.8
52 4+ w? (1.8)

G(s) =

Moreover, H(s) is the transfer function of a generic CS for the system in (1.8) and it
is assumed to command an impulsive input to the system G(s). From (1.6) in order to
define the PRV function is required to calculate the value of RV in both shaped and
unshaped case. Since the unshaped case is basically the impulse response and G(s) an
elastic undamped system, the result is simply a sinusoidal response with frequency w,,,

see fig. 1-5(a). Therefore RV, is the amplitude of the sinusoidal response, RV, = X.

9



Regarding the shaped case, RV refers to the amplitude of the vibration of the system
response, at the time when the shaping effect of H(s) ends. However, in fig. 1-5(b)
is shown that the same system response could be obtained from the shaper H(s),
fed by a sinusoidal signal of frequency w,, thanks to the commutativity property of
linear systems. In this way, recalling the theory on frequency response function of
linear systems, is well known that for an asymptotically stable LTI system fed by a
sinusoidal input, the output is a sinusoidal function as well, once completed an initial
transient

y(t) = Y (wy) sinfw,t + @(wy,)], (1.9)

where

Y (wn) = X H (w,) (1.10)

with X the amplitude of the sinusoidal input and H(w,) the frequency response of
H(s) at frequency w,. This consideration is very useful since the mentioned transient
lasts exactly the duration of the shaping effect, so the residual vibration can be

determined by the frequency response, in particular
RV, = Y (w,)e?*“n) = X|H (jw,)| (1.11)

where X is the amplitude of the sinusoidal response of G(s), but also RV, = X as
stated before, so from (1.6) holds that

RV,  X|H(jw,)|
RV, X

PRV = = [H(jw,)|. (1.12)

Finally the result result in (1.12) can be extended to the PRV’s sensitivity function

to errors in frequency parameter

PRV (w) = |H(jw)|. (1.13)

The relation in (1.13) although valid to evaluate robustness with respect to frequency

variations only, is quite important since it allows to connect a widely used tool for

10



Figure 1-5: Definition of PRV for a typical elastic system with both unshaped (a)
and shaped (b) command.
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Figure 1-6: Frequency response of the input shaper H(jw).
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evaluating and design CS such as PRV function, and an analysis approach based on
control system theory. Assuming to have a plant like in (1.8) and a common CS
H(z) whose PRV’s sensitivity function to w, is like the one in fig. 1-4, if the ampli-
tude axis were expressed in terms of PRV (i.e. from 0 to 1) instead of percentage of
PRV, the result would be exactly the frequency response H (jw) in fig. 1-6. Obviously
this equivalence allows to consider CS like particular filters. Indeed, looking at the
problem in the complex plane, the system (1.13) is described by a couple of complex
conjugate poles at frequencies +jw,. Therefore in order to nullify vibrations caused
by the poles by means of a filter, it should have at least a couple of zeroes able to
cancel the poles (see fig. 1-7), that is exactly what is described by H (jw).

It has to be noted that besides the assumption of undamped system, these consid-
erations allow to use filtering techniques to design CS even for generic systems with
damping, since the design method based on the zero placement on the complex plane
permit to easily adapt the shaper for any value of ¢ as will be discussed later. More-
over with respect to robustness, this discussion permit to assume frequency response
as a preliminary tool for evaluation of command shapers. In fact it will be explained
that the effect of damping on CS design is a simple frequency translation of the CS
with 6 = 0.

Looking at fig. 1-8 the difference between damped and undamped case can be visual-
ized on the complex plane with a couple of complex conjugate poles with 6 = 0 and
0 # 0. It is well known that for a given natural frequency, the effect of damping is

simply a translation on a circular trajectory of radius w,, such that ¢ = arccos?.

12
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Chapter 2

Input Shapers: a Review

2.1 Input Shaping Technique

Input shaping is one of the most popular command generation technique. Basically
it is a filtering technique where the reference command is convolved with a train
of properly designed impulses, resulting a shaped command that aims to reduce or
suppress residual vibration in a controlled plant.

In order to understand how to cancel vibrations, a typical vibratory system as in Sec
1.1 has to be considered. In fig. 2-1 the system response to an impulse is reported
according to the equation in (1.4), that is de facto the vibration that has to be
cancelled. The easiest way to cancel the vibration is to add the same vibration in
phase opposition, like as it is shown with a dashed line. Since any impulse can provide
the same response in (1.4) with amplitude proportional to the impulse amplitude
itself, it is clear that a second virtual vibration can be overposed to the first by
applying a second command impulse properly delayed in time and with an amplitude
that assure to eliminate the first vibration. In this way the desired command is split
in two (or more) impulses that represents the shaped command. In particular the
shaped command assures the completion of the motion within the end of the train of
impulses and the vibration suppression at the end of the command.

The same result can be obtained analitically by exploiting the superposition property

of linear systems. Being (1.4) the generic impulse response of a second order system
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and known that for an LTI system holds that

By sin(wt + ¢g) + By sin(wt 4+ ¢1) = Byes sSin(wt + @res) (2.1)

it is clear that the resultant output depends on the amplitude of the impulses and the
time instants in which they are commanded. Moreover, in order to cancel vibration
it is sufficient to assure that B,.s = 0 after the last impulse. From (1.4) and (2.1)

and generalizing for N impulses, results

N-1 2 N-1 2
Bies = (Z Bj cos gbj) + (Z Bj sin ¢j>
j=0 J=0

where (2.2)

. A Wn —&dn(t]\r,l—tj)

J J 107
¢j = WnpV 1-— 52tj

Y

with A; the amplitude of the j-th impulse, ¢; the time of the j-th impulse and ty_,
the time of the last impulse of the shaped command. Further simplifications of (2.2)
lead to the following conditions that assure complete residual vibration suppression

for an N-impulses IS [85, 86|

=2

-1

Aje_éw"(tNil_tj) Sin (t]wn (1 — 52>> = O

[e=]

<.

=z

Aj6_6W7L(tN71_tj) coSs <t]wn (1 - 52)) - O

[en]

<.

2.1.1 Robustness Analysis

The robustness analysis of an Input Shaper (IS) is usually given by means of the PRV
function. However since a generic [S produces a train of N impulses and being the

system response to any impulse of the type in (1.4), the RV can be easily calculated
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as
6_6wntN71

RV=" 7+ 3 (2.4)

(1—62)
where
N-1
C= Aje’mti cos <tjwn\/ (1-— 52)) ,
=0
N (2.5)
S = Aje®nti sin <tjwn (1-— 52))
=0

with A; the amplitude of the j-th impulse, ¢; the time of the j-th impulse and N — 1
refers to the last impulse of the command. Starting from RV is possible to define the
Percent Residual Vibration as in (1.6), in particular PRV for IS is the ratio between
RV’s from a train of impulses and from a single unity magnitude impulse. From (2.4)
and (1.6) descends

PRV = ¢ %wntv-1,/C2 1 G2, (2.6)

where C' and S are defined in (2.4).

Finally robustness is evaluated according to (1.7)

PRV (w,8) = e=%tv-1,/[C(w, 6)2 + [ (w, )2 (2.7)

2.1.2 Vector Diagram Description of Input Shapers

Vector diagrams are graphical representations of impulse sequences, introduced in
early papers dealing with IS [94, 89|. Basically a vector diagram is a description of
the impulse train in polar coordinates that results quite useful in both design and
evaluation of I[S. In particular the diagram is created treating every impulse as a

vector of norm equal to the impulse amplitude and angle 6; such that

where t; is the time of the impulse, as can be seen in fig. 2-2.
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Figure 2-2: Representation of an impulse sequence by means of vector diagram.

The vector diagram turns into an important tool for the design of IS if w is chosen
as the system frequency. Such a construction method permits to make interesting
considerations on residual vibrations for a second order system fed by a shaped com-
mand from a generic N-impulses IS. That is, the resultant of the vectorial sum of
all impulses has magnitude proportional to the amplitude of residual vibrations and
angle equal to the phase of the vibratory response. Accordingly, both design and
evaluation of IS can be obtained by means of geometrical analysis on vectors.

The first achievement is that for any train of N arbitrarily chosen impulses, it is
always possible to define an IS with N + 1 impulses that guarantees zero residual

vibration. Being

[Bn| = /| Bal? + [Ry 2,

(2.9)
0r = arctan &
with
N-1 N-1
R, = Z A;jcost; and R, = Z A, sin 0; (2.10)
i=0 i=0
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Figure 2-3: Effect of the scaling on the vector diagram for a damped system.

the resultant of a train of NV impulses, vibration free motion is assured by adding one

more impulse such that

[An| = |Bnl,
(2.11)
‘9]\/ = ‘93 + 7.

It has to be noted that all these considerations are valid even in case of damped
system by taking into account the damping effect on both angle and amplitude,
that is introducing the effective amplitude |Agump| and frequency 0gump in the above

relations

Al
|Adamp| - ﬁa

Qdamp = wnt\/ 1— 52.

(2.12)

In particular the scaling of the amplitude is referred to the decay of the response
to the first impulse at time zero, in order to take into account the same effective
amplitude | Agumy| for any impulse at a certain time ¢. Graphically the scaling can be
represented on the vector diagram by superimposing the spiral Ae~% like in fig. 2-3.

Besides the calculation of a resultant that is proportional to the residual vibration
amplitude, vector diagrams permit to easily work on robustness. This is thanks to
the assumption that 6; = wt; which describes a rotation of the vectors depending

on the frequency. In this manner the evaluation of robustness can be geometrically
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performed by rotation of the vectors, moreover the design for particular sensitivity
behaviours (asymmetric, humped, ...) can be achieved by imposing proper geomet-
rical conditions.

The vector diagram approach also reveals a strong relationship between IS and filters.
In fact considering 6 = 0, and being the impulse train described as vectors in polar

coordinates it is possible to define a generic impulse as
A; = A = Ayt (2.13)
Therefore the resultant from a train of /N impulses of an IS becomes
Ry = Ag + Ape?r  Aged“nt2 - 4 Ay _jeoniv-1 (2.14)

so, from (2.9) and using Euler formula

|Rn| =

= <2_: Ay cos(wnti)> + <Z_: Ay sin(wnti)> . (2.15)

N-—-1
§ Alejwnti
i=0

This result become relevant if approaching IS with a system theory perspective. In

fact being a generic IS described by
h(t) = Apd(t) + A10(t —t1) + A0(t —to) + ... + An_10(t —tn-1) (2.16)
where 0(t) is the Dirac impulse, it is well known that the transfer function results
H(s) = Ag+ Aje™™" + Age ™ + ...+ Ay_je V-1 (2.17)
therefore its frequency response is

H(jw) = Ag + Aje 7" + Age™ 92 4 4+ Ay e 7¥iN-1, (2.18)
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and from (2.14) it is easy to affirm that
RN = H*(jwy). (2.19)

Finally, assuming to vary the frequency w in (2.14) to evaluate robustness, it descend
that
|By(w)| = [H(jw)] (2.20)

2.2 Zero Vibration Input Shaper

The Zero Vibration IS (ZV IS) is the simplest input shaper that assures complete
residual vibration suppression at a given system frequency of a second order plant.
The definition of the ZV IS descends directly from the considerations in Section 2.1,
and in particular is the simplest solution of the zero vibration conditions in (2.3), by

means of only two impulses

1 K
hav(t) = T=0(0) + 750t =) (2.21)
with
767r
K =ev1
(2.22)
T =

\/7

where ¢ is damping, w,, is the natural undamped frequency of the system and 7" the
time delay of the second impulse. The effect of the ZV IS is exactly that described in
fig. 2-1, in fact the delay 7' is half period of the vibration and the amplitude is such
that vibration is eliminated in phase opposition. In fig. 2-4(a) is reported the effect
of complete vibration suppression with a shaped step command in both damped and
undamped case. Also in fig. 2-4(a) and fig. 2-4(b) it can be noted the effect of damping
in the design of the shaper, i.e. the ratio between the two impulses depends on 4. In

fig. 2-4(c) the PRV function has been reported with respect to natural frequency w,.
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In order to analyze the ZV IS with a filter perspective as proposed in Section 1.2.2,

the definition in (2.21) can be easily rewritten in terms of transfer function

1+ Ke™T

Hov(s) = — K

(2.23)

In fig. 2-5(a) analysis of (2.23) in the complex plane shows the effect of the ZV IS that
performs a Pole-Zero cancellation of the pole’s couple that cause vibrations. Also in
fig. 2-5(b) and fig. 2-5(c) is reported the IS function with different values of o and jw
in order to obtain a description of the ZV IS in the whole S-Plane. These representa-
tions of the ZV IS show the zeroing effect of the shaper for nominal parameters, since
the value of the response is null in correspondence of the zeros position. However
since contour lines represent linearly spaced amplitude values, their proximity each
other means a rapid grow of the response when small variations are present. This can
be easily seen also in the 3-dimensional representation of fig. 2-6.

Plots in fig. 2-4(a) and fig. 2-4(c) demonstrate that ZV IS really suppresses vibration
when it is designed with exact plant’s parameters. Moreover it is very easy to imple-
ment and introduces very low distortion since, being 7y the period of the vibration
at system frequency wp, the shaped command only lasts a time 7" = 7°/,. However
from fig. 2-4(c) and fig. 2-5 it can be seen that the suppression effect rapidly decrease

as the real parameters differs from the nominal ones.
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of natural frequency (c).

24



60=0
” ‘ ‘ ‘ D Tj3wn
® +jw,
‘3 0
3
@ —Jjwn
2 L () _jgwn
(o2

Jw

0=0.1
O -] +j3wo
® ------1- +Jjwo
® -1 —Jwo
‘ O -====-1- —J3wWo
s ° o os
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equal scale on x and y axis in order to better understand the behavior of the system
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position is highlighted with a black cross.
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Figure 2-6: 3-D view of Hzy(s) with 6 = 0 as function of ¢ and jw . The contour
lines are equally spaced of 0.1 and the zeroes position is highlighted with a black
CTOSS.

2.3 Zero Vibration Derivative Input Shaper

The Zero Vibration Derivative Input Shaper (ZVD IS) has been introduced in order
to increase robustness of the ZV IS. As seen in Section 2.2 the ZV IS suffers from lack
of robustness in parameters definition which makes it rather unsuitable for implemen-
tation in real cases. ZVD IS is the earliest form of robust IS and still descends from
the the zero vibration conditions in (2.3), but adds additional conditions on the be-
havior of the IS near the nominal parameters. That is, equations in (2.3) are enriched

with the condition on the derivative of PRV with respect to frequency variations

7 (e ficwaP + 5w oF) =0 (224

The result from (2.3) and (2.24) is a three-impulses IS whose transfer function is

1 2K K? o

—sT
_ o 2.25
1okt K2 112K+ K20 TI1rerk+ K2 (2.25)

HZVD(S)
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where

—orm

K =¢eVvi-
T =

52

. (2.26)

w1 — 0%

that are the same of (2.22). As can be seen in fig. 2-7(a) and fig. 2-7(c) the vibrations
are suppressed as well, but the robustness is significantly increased resulting in a
smoother PRV function thanks to the derivative condition. However, it has to be
noted that the introduction of an additional impulse doubles the time duration of the
shaping effect, resulting in a total time 27" that equals the time T of the period of

the vibration at system frequency wy.

The increased robustness can be explained by simply manipulating (2.25) that results

1N 2
Havnl(s) = (%KIZ{I) = (Hav(s))%, (2.27)
that is basically to double the effect of a simple ZV IS. Also on the complex plane,
looking at fig. 2-8(a) is visible that the effect the derivative condition is exactly to
double the zeroes of the ZV IS. Therefore, the zeroing effect is wider as can be seen in
fig. 2-8(b) and fig. 2-8(c) where the contour lines although at same levels of fig. 2-5,
appears much more spread in the neighborhood of the zeroes of the ZDV IS.
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2.4 Zero Vibration n-Derivative Input Shapers

Starting from the ZVD IS an entire family of robust input shapers has been introduced
and defined by means of derivative methods. Basically adding to (2.3) and (2.24)

further derivative conditions of the type

aTn <6_6Wt"\/[0(wj5)]2 + [5(%5)]2) =0 (2.28)

with n the derivative order, an ever-increasing level of robustness can be achieved.
In this way it is possible to define the so-called Zero Vibration n-Derivative Input

Shapers (ZVD" IS), whose general transfer function results

1 K —sT\ "
T he ) (2.29)

Hzvpr(s) = <1+7K

where K and the sample time T are defined as in (2.22) as well.

The effect of adding constraints on null derivatives is visible in fig. 2-9(b) where
the smoothness of the PRV function is greater as the degree of the null derivative
increases, that is robustness increases as well. Unfortunately for every additional
condition, ie for every null derivative grade, an extra impulse is needed, resulting
in ever longer sequences in terms of duration of the shaping effect (see fig. 2-9(a)),
therefore causing an undesirable distortion of the command input when a high order
of derivatives as set to zero. Moreover it has to be noted that robustness increases
less and less as the number of impulses grows, so usually derivative methods are
not taken into account over the second or third derivatives. In particular these are
the Zero Vibration Double Derivative IS (ZVDD IS) and the Zero Vibration Triple
Derivative IS (ZVDDD 1IS), which are defined by means of conditions in (2.3) and
(2.24) plus the additional constraint in (2.28) with n = 2 and n = 2, 3 respectively.
This is confirmed also from a system theory point of view. Indeed looking at fig. 2-
10(a) it is clear that the effect of any further constraint on derivatives set to zero is
to increase of one the multiplicity of all zeroes in the complex plane. This obviously

increase the nullifying effect of the zeroes as can be seen also in fig. 2-10(b) and fig. 2-
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Figure 2-9: Step response of the system with 6 = 0 using ZVDD IS and ZVDDD IS
(a) and PRV function of the ZVDD IS and ZVDDD IS, compared to ZV IS in black
dotted line and ZVD IS in green dotted line (b).

10(c) where Hzypp(s) and Hzyppp(s) show large areas with very low amplitude.
However it has to be noted that the difference is appreciable only very close to nominal

parameters while the overall function doesn’t change so much with respect to fig. 2-

5(c) and fig. 2-8(c).
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2.5 Extra Insensitive Input Shaper

In Section 2.4 has been shown how robust IS based on derivative methods soon be-
come too much complicated compared with less and less effectiveness in increasing
robustness. Extra Insensitive IS (EI IS) instead are based on the concept of allowing
a certain amount of residual vibration, in order to guarantee the vibration reduction
effect for a wider range of frequencies. This idea is mainly driven by practical experi-
ence, since it is known that real implementations rarely match the simulation models.
Moreover for many real applications an augmented robustness with respect to vari-
ation of parameters is more important than the complete suppression of vibration,
although within certain limits.

EI IS has been introduced in [94, 89| by means of the vector diagram approach for
a system with damping 6 = 0. As said before the idea is to relax the null vibration
condition for nominal parameters, assuming to allow a certain level of PRV, typically
not more than 10%. Starting from a ZVD IS, it is proven that when the sum of the
three impulses at modelling frequency is set equal to a vibration limit V};,,,, the PRV
function presents an “hump” of amplitude V};,,, that drops down to zero symmetrically
with respect to the nominal frequency, as shown in fig. 2-12. Moreover by only modi-
fying amplitudes of a ZVD IS impulses, the 3-impulse sequence that yields maximum
robustness for a given vibration limit can be obtained.

By means of geometrical relationship between PRV and vector diagram representa-
tion given in Section 2.1.2, the behavior of the EI IS for 6 = 0 in fig. 2-12(b) is easily
explainable. Unlike the ZVD IS, the amplitude of the three impulses is chosen such

that the vectorial sum in fig. 2-13(a) is non null
[Ao| = [Ax] + [Az| = Viim (|Ao] + [A1] +[A2]),  w = wn. (2.30)

Being the angle of each impulse in the vector diagram related to frequency by 6, = w;t;,
it is straightforward that for each value of w the angle of the third vector 65 is always
twice the angle of the second vector f;. Therefore by means of simple geometrical

considerations it can be demonstrated that the vectorial sum can be set to zero at
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Figure 2-12: Step response of the system with 6 = 0 shaped by EI IS with V};,, = 0.05

(a) and PRV function of the EI IS compared to ZV IS in black dotted line and ZVD
IS in green dotted line (b).

certain angles that represent two frequency values equidistant from w, as described
in fig. 2-13(b).

However recalling the relationship between vector diagram, PRV function and fre-
quency response with 6 = 0, the same problem can be posed in a more formal way

looking at it in a filter perspective. First of all the EI IS can be described in Laplace

domain as
HE[(S) = Ao + A16_ST + A2€_S2T (231)
where
T
T=— 2.32
- (2:32)

being 6 = 0. Then in order to obtain a frequency response |Hgr(jw)| shaped like
the PRV function in fig. 2-12(b), amplitudes Ay, A;, As must satisfy the following

equations

|Hp(jw)| =1 ,w=0

‘HEI(jw” :‘/lzm , W = Wy
(2.33)

|Hpr(jw)| =0 W =Wy

| Hei(jw)] =0 w=ws
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Figure 2-13:  Vector diagram representation of the EI IS in nominal condition (a)
and for w that cause zero vibration (b).
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where

2
| Hpi(jw)| =Y Ae ™" (2.34)
i=0
and
wa=wy(l—a), wp=w,(l+a), (2.35)

being 2aw, the total frequency width of the hump in terms of normalized frequency.

The solution of (2.33) confirms the one of the authors in |94, 89|

_ 14+Viim
Ay = —lm
Al — 1_‘/lim
2
! (2.36)
A2 = —1+Zlim
\cos(awnT) = e

Moreover the last equation in (2.36) gives a direct correspondence between the allowed
residual vibration Vj;,, and the width of the hump. In particular it is interesting to
note that for &« = 0 the hump collapses in w = w,, and the shaper becomes a simple
ZVD 1S, while for o = 0.5 results Vj;;,, = 1 that is no shaping effect on vibration at
w = wy. In fact for a = 0.5 the EI IS behaves like a ZV IS designed for a frequency
Wy = wy /2. Therefore an EI IS for an undamped system is properly defined with

0<a<0.5. (2.37)

In fig. 2-14 the the Pole-Zero description and the behavior in the complex plane of
Hg(s) with proper amplitudes in (2.36) is shown. In particular comparing fig. 2-
14(c) and fig. 2-8(c) for a ZVD IS, it is evident that the effect of EI IS is to widen the
area of the S-Plane in which the shaper is able to reduce vibrations, using the same
number of impulses of a ZVD IS. Actually, has been already demonstrated that if a
certain Vj;,,, # 0 is assumed, the impulses of a ZVD IS change in amplitude according
to (2.36). This modification has a clear impact on the zero placement of the transfer

function Hg(s) in fig. 2-14(a) with respect to Hzyp(s) in fig. 2-8(a). As told before
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Figure 2-14: Pole-Zero diagram of the system with 6 = 0 shaped by EI IS with
Viim = 0.05 (a) and description of Hg(s) as function of o and jw (b,c). In (c) the
same plot of (b) is reported with full scale axis in order to better understand the
behavior of the system response. In (b) and (c) the contour lines are equally spaced
of 0.1 and the zeroes position is highlighted with a black cross.
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a ZVD IS can be considered as a particular EI IS for V;,, = 0, therefore « = 0 and
Hzyp(s) presents the typical complex conjugate couples of zeroes with multiplicity 2.
On the contrary for an EI IS the effect of o # 0 is graphically explained in fig. 2-15 as
a split of the double zero of a ZVD IS into two single zeroes accordingly with « and
equidistant from w,. However this is just a confirm of the result given by the PRV
function and the frequency response but again shows the consistency of the Pole-Zero
analysis for reducing vibrations, since a null value of PRV corresponds to a zero of
the IS transfer function.

Unfortunately for damped system, an EI IS with a PRV like the one in fig. 2-7(b)
can’t be easily defined or simply derived from the undamped problem (2.33). In fact
it is demonstrated that these constraint equations can’t be solved in closed form, only

numerical solutions are given for EI IS with 0 < ¢ < 0.3 and 0 < V};,, < 0.15, namely

Ap = 0.24968 + 0.24962 Vi, + 0.80008 & 4 1.23328 Vi, + 0.49599 62

+ 3.17316 0*Viipn,
Al =1—(Ag+ Ay), (2.38)
Ay = 0.25149 + 0.21474 Vi, — 0.83249 6 4 1.41498 Vi, + 0.85181 62

— 4.90094 6*Vi;,n,
Jw
Jwn(l+ @)

A

. .
‘.><2 JWn

y
c> Jwn (1l =)

»
>

o

Figure 2-15: Effect of the introduction of an allowable amount of vibration in the
placement of the zeroes of the transfer function Hg/(s): as « increase from 0 the
characteristic double zero of a ZVD IS is split into two single zeroes equally spaced
from jw,.
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with

TO - Oa
Ty = T5(0.49990 + 0.46159 6V}, + 4.26169 5*Viim + 1.75601 63 Vjim
2.39
+ 8.57843 0V;3, — 108.644 6*V;3 + 336.989 6°V;2 ), (2:39)
2
T=2T= —r—0,
? wpV 1 — 02
therefore the EI IS results
her(t) = Agd(t — Ty) + A1o(t — T1) + A6(t — Ts), (2.40)
that is in terms of transfer function
HEI(S) = A() + A16_ST1 + A26_8T2. (241)

In fig. 2-16(c) the PRV function of the IS designed in that way describes exactly
the desired humped behavior like in fig. 2-12(b) and the step response in fig. 2-16(a)
shows the response of the system with an EI IS that allows a certain level of vibration
Viim- Also it has to be noted that like in case of undamped system the total length
of the impulse train is the same of a ZVD IS but the three impulses are not anymore
equally spaced in time.

In fig. 2-17 the analysis of Hg;(s) in the S-Plane shows the same effect of widening the
area in which vibrations can be reduced. Again, this result is obtained by splitting
the typical double zero of a ZVD IS according to the amount of allowed vibrations.
Likewise the undamped case, the zeroes are split in order to match the zero values of
the PRV function. Being the PRV defined as a function of w,, with  # 0 the split
results taking place along a constant damping direction on the complex plane.
Unfortunately this constraint on the zeroes position, is the reason that makes the
design of the EI IS possible only with the numerical solution in 2.38 and 2.39.
However an easier solution can be found tackling the problem with a system theory

perspective. First of all it is proven that the EI IS is a particular ZVD IS in which
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Figure 2-16: Step response of the system with 6 = 0.1 shaped by EI IS with Vj;,, =
0.05 (a), impulses description by means of vector diagram (b) and PRV function of
the EI IS compared to ZV IS in black dotted line and ZVD IS in green dotted line

(c).

the double zeroes are split in order to widen the zeroing effect. Then the precise use
of the PRV function as a tool to define the shaper for damped system, lead to a
difficult solution. In particular it can be proven that in all previous cases the effect
of damping in IS design is a frequency translation of the zeroes for the undamped
case and a frequency adjustment to the correct system frequency. In fact, being for
example

1 —sT\ 2
L) (2.42)

Hovols) = (5
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Figure 2-17: Pole-Zero diagram of the system with 6 = 0.1 shaped by EI IS with
Viim = 0.05 (a) and description of Hg(s) as function of o and jw (b,c). In (c) the
same plot of (b) is reported with full scale axis in order to better understand the
behavior of the system response. In (b) and (c) the contour lines are equally spaced
of 0.1 and the zeroes position is highlighted with a black cross.

the transfer function of a ZVD IS for undamped system, and supposing ¢ = dw,, the

desired translation, holds that

1 —sT —6T\ 2
+e_€> , (2.43)

HZVD(S + (3') = < 5
where 7" is defined as usual

R — (2.44)

w1 — 02
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therefore solving the product 67, results

S 2
14 e—Te V152

HZVD(S—F&) = te 26 (245)

Finally recalling from (2.3)

—om
K =evi-o (2.46)
Hzyp(s+ &) becomes
. 1+ KesT\?

HZVD(8+0') = (f) = HZVD(S) (247)

which it is exactly the transfer function of a ZVD IS in (2.25), provided that the
static gain is set to one.

Following the same approach it can be defined an IS whose behavior is very close
to the EI IS, but without restrictions on the damping value and avoiding numerical
solutions. In details, starting from the undamped case in (2.36) a 3-impulse train IS

can be defined as follow

14+ Viim
AO — 4 !
11— Vz'm
A, = 5 tim 1o (2.48)
1+ Viim
A2 - + ! K2
4
where
To = O
T, =T (2.49)
T, =2T

with K and T defined as in (2.3). Therefore the transfer function result

H (S) o Al + A2€_ST + A3€_S2T
B = A+ Ay + 45

(2.50)
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Figure 2-18: Step response of the system with 6 = 0.1 shaped by EI* IS with V};,, =
0.05 (a), impulses description by means of vector diagram (b) and PRV function of
the EI* IS compared to EI IS designed by means of the numerical solution reported
with dotted line (c).

The step response in fig. 2-18(a) shows that a small amount of vibrations are allowed
like in fig. 2-16(a), also the PRV function of the EI* IS in fig. 2-18(c) demonstrates
that residual vibrations are constrained under the desired value V};,, for a wide range
of frequencies. In particular it can be seen that the range of variation of w, which
satisfy the vibration limit it is comparable to the one of the EI IS designed by means
of 2.38 and 2.39. On the contrary the EI* IS doesn’t assure complete vibration
suppression for any value of w,,, but anyway the purpose of an EI IS is to extend the
vibration reduction effect rather than nullify vibration.

In fig. 2-19 the analysis of EI* IS on the complex plane compared to the numerically
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defined EI IS shows a very similar effect in terms of widening the plane’s region in
which the vibrations are consistently reduced, except that the zeroes are split along
different directions. Even in this case the relation that links the allowed residual
vibration Vj;,, and the frequency split by means of the parameter a holds, provided

that the system frequency is considered instead of the natural frequency w,

1 — Viim
cos(awyT') = ﬁ (2.51)

where

wo = wpV 1 — 62 (2.52)

Therefore for a given vibration limit Vj;,, the zeroes are placed at frequencies
wy =wo(l —a), wp=uwi(l+a). (2.53)

Also, being wy and T defined for both damped and undamped system, we can assume
the above equations as the general relationship between Vj;,,, and the displacement of
the zeroes. Moreover it has to be noted that the product wyT" is always equal to 7, so
« is uniquely defined by Vj;,, and totally independent from the damping. That is «
is the ratio of the system frequency that identify the displacement of the zeroes from
the system frequency itself, and also for damped system must satisfy the condition

in (2.37).
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Figure 2-19: Pole-Zero diagrams of the system with § = 0.1 shaped by EI IS and EI*
IS with Vj;,, = 0.05 (a) and description of both transfer functions in terms of o and
jw variations (b,c). In (c) the same plot of (b) is reported with equal scale on = and
y axis in order to better understand the behavior of the system response. In (b) and
(c) the contour lines are equally spaced of 0.1 and the zeroes position is highlighted
with a black cross.
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2.6 Multi-Hump EI Input Shaper

Multi-Hump Extra Insensitive Input Shaper (n-Hump EI) are the natural extension
of EI IS that are characterized by a hump-shaped PRV function. In a manner similar
to ZVD" IS in Section 2.4, the idea is to increase robustness by adding n constraint
equations and n impulses of the IS. In particular, for the charateristic design approach
of EI IS adding a further constraint means design an additional hump in the PRV
function. Usually multi-hump IS refers to EI IS with only two or three humps, since
any additional hump implies the use of one more impulse and the complexity of the
design procedure rapidly grows. In [92, 93| the design algorithm of single-hump EI
IS reported in Section 2.5 is extended for a 2-Hump EI and a 3-Hump EI. Similarly
to EI IS the problem has been introduced for § = 0 by means of vector diagrams and
can be described by means of constraints on frequency response. For a 2-Hump EI

the transfer function of the shaper is
Hoppr(s) = Ag+ Are " + Aye T + Aze™¥" (2.54)

with

T = —o— 2.55
wpV 1 — 02 ( )

and amplitudes must satisfy

;

| Horrr (jw)| = 1 L w=0

|Hyrpr(jw)| =0 W= w,

\Hoppr(jw)| = Vien  , w=wm (2.56)
s [ Harrpi (jw)| = 0 L w=wm

Ay = Az and A, = A,

\

where

(2.57)

3
2 Aie—jin

1=0

|Hoppr(jw)| =

47



and

WH1 = wn(l — 5) (258)

is the frequency at which the hump for w < w,, has the maximum value. Basically the
constraints in (2.56) impose null vibration at nominal frequency, a residual vibration
limit Vj;,,, at a frequency wyq and that PRV (wyq) is a local maximum. Moreover the
last equation impose the symmetry of the PRV function with respect to w,,, therefore

for w > w, is implicitly defined an hump with a local maximum V};,,, at a frequency

WHo = wn(l + 6) (259)

where 3, unlike a for EI IS, refers to the frequency range between the maximum of
the two humps.

For a 2-Hump EI results

Ay = 3X2+2lé<;3vﬁm

A =1 — A

Ay = As (2.60)
Az = Ag

cos(Bw,T) = & <1 + ﬁ)

where

X = f\*/vlgm< 1—Vl§m+1). (2.61)

In the same way a 3-Hump EI for an undamped system is defined as
Hyppr(s) = Ao+ Are T + Age™?T + Aze™3 + Aje*" (2.62)

with

T = - 2.63
wpV 1 — 02 ( )
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provided that amplitudes satisfy

;

\

where

and

|Happr(jw)| =1 ,w=0
| Hane1(jw)| = Vi , W= Wy
|\ H3ppr(Jw)| = Viim , W= WH1 (2.64)
2\ Hsppr(jw)| =0 W= Wi
AO = A4 and Al = A3
4
|Happr(jw)| = ZAZB_WT (2.65)
i—0
w1 = wp(1 —7) (2.66)

is again the frequency at which the hump for w < w,, has the maximum value. However

in this case the symmetry condition makes that one hump is centered on w, and the

other two are at both sides with maximum value V};,, at frequencies wy; and wgys

that is

wira = wa(1 +7) (2.67)

with v again refers to the frequency range between the maximum of the two outer

humps.

Amplitudes that solve (2.64) are

,
0= 16

(2.68)
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Figure 2-20: Step response of the system with 6 = 0 shaped by 2-Hump EI and
3-Hump EI with V};,,, = 0.05 (a) and PRV functions of the IS compared respectively
to ZVDD IS and ZVDDD IS (b).

In fig. 2-20(b) the PRV functions of the EI IS with two and three humps are shown,
highlighting the robustness increase with respect to the ZVDD IS and the ZVDDD
IS that have the same time length respectively. Also in fig. 2-20(a) the step response
of the shaped system with nominal parameters present different behaviors according
to the number of humps, since for odd numbers of humps the PRV function present
a maximum in nominal conditions.

In fig. 2-21 the analysis of both the shapers on the complex plane describes the same
effect of zero-splitting already seen for the single-hump case. In this case however it
can be seen a different behavior depending on the number of zeros that are involved.

In fact, the 2-Hump IS that descend from a ZVDD IS present three zeroes that are
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Figure 2-21: Pole-Zero diagrams of the system with 6 = 0 shaped by 2-Hump EI and
3-Hump EI with Vj;,, = 0.05 (a) and description of both transfer functions in terms
of o and jw variations (b,c). In (c) the same plot of (b) is reported with equal scale
on x and y axis in order to better understand the behavior of the system response.
In (b) and (c) the contour lines are equally spaced of 0.1 and the zeroes position is
highlighted with a black cross.
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split symmetrically to w,, a part from one zero that cancel the system pole. On the
other hand the 3-Hump IS has four zeroes and the symmetric split doesn’t cancel the
system pole. This behavior obviously depend on the parity of the zeroes multiplicity
and has a direct consequence in the shape of the PRV function.

For damped system a numerical solution have been proposed for both 2-Hump IS
and 3-Hump IS, although only for V};,, < 0.05 and 0 < ¢ < 0.3. Coherently with the
simple EI IS, the numerical solution permits to split the zeroes in the same way of the
undamped case, along a constant damping direction as shown in fig. 2-19(a). However
with the same approach of (2.48) based on frequency translation of the zeroes, an
approximate solution can be derived for any values of ¢ starting from the amplitude

values in (2.60) and (2.68) that is

A 3X%2+2X +3V2,
0 16X
i (S-a)
2 (2.69)
Ag :A3K2
Ay = AgK?

for 2-Hump IS and

1+ 3Vim +24/2(ViZ,, 4 Viim)

AO lim

Al - 4 ! K

Ay = (1= 2(Ag + A)) K® (2.70)
A3 :A1K3

Ay = A K*

for 3-Hump IS. The step responses and PRV functions in fig. 2-22 show that even if
the shapers are designed with the frequency translation approach, the approximation
is quite good and the implementation of that IS is very effective in order to obtain a

vibration reduction for a wide range of frequencies. This is confirmed by the transfer
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Figure 2-22: Step response of the system with 0 = 0.1 shaped by 2-Hump EI and
3-Hump EI with V};,, = 0.05 (a) and PRV functions of the IS (b). Both are designed
with relations in (2.69) and (2.70).

functions analysis on the complex plane in fig. 2-23.

2.6.1 Approximate Design Techniques
for Multi-Hump EI Input Shaper

The proposed approximate method of design EI IS for damped system based on fre-
quency translation in Sections 2.5 and 2.6 is validated also in some recent works.
The truth is that the rigorous definition that is given by the authors in [94, 89| for
a single-hump EI and in [92, 93] for a multi-hump EI, places limitations which re-

duce the attractiveness of these techniques for damped systems. On the contrary
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Figure 2-23: Pole-Zero diagrams of the system with 6 = 0.1 shaped by 2-Hump
EI and 3-Hump EI with V};,, = 0.05 (a) and description of both transfer functions
in terms of o and jw variations (b,c). In (c) the same plot of (b) is reported with
equal scale on x and y axis in order to better understand the behavior of the system
response. In (b) and (c¢) the contour lines are equally spaced of 0.1 and the zeroes
position is highlighted with a black cross.
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Figure 2-24: Representation of the system pole and the zeroes for an EI IS with
respect to the system poles on the Z-Plane: in (a) the numerical solution let the
zeroes lying on a constant damping spiral, in (b) the approximate solution places the
zeroes on the circle whose radius is e=%7.

in a control systems perspective, methods that avoid numerical solutions are most
appreciable, albeit with a certain degree of approximation.

In [74] a graphical approach based on zero placement on the Z-Plane is proposed.
After a complete analysis of IS in discrete time domain together with the represen-
tation of the shaping effect on the Z-Plane, the authors come to highlight that the
vibration suppression is due to a pole-zero cancellation and that EI IS basically split
multiple zeroes in a proper way, as deeply discussed in previous sections. Moreover in
an equivalent manner to what reported in Section 2.5, they assure that the numerical
solution of EI IS is such that the zeroes are placed along a constant damping line that
is represented as a spiral in fig. 2-24(a). Therefore, in order to achieve a closed form
solution the graphical method proposes to place the zeroes on the circle whose radius
e~%nT is such that the constant damping spiral is intersected in correspondence of
the system poles (see fig. 2-24(b)).

However is easy to demonstrate that this graphical method is exactly the same of the

one based on frequency translation in the S-Plane. In fact from |74] the two zeroes

95



are defined as

219 = e_éw"T—’—j(li%:})W’ (271)

then being actually ﬁ—:’ = o with « defined as in 2.35 and recalling 7" in (2.3), results

21’2 _ 6—6wnT+jwnv 1_62(1:|:OC)T’ (272)
and collecting T’
29 = 6(—5wn+jwn\/1—52(1:|:a))T‘ (273)

Finally being the relation between the discrete transfer function and the continuous

transfer function z = e*7, from 2.73 it can be obtained
S12 = —0wy, + jw, V1 — 82 (1 £ ), (2.74)

that are the same zeroes of the solution in (2.48) reported in fig. 2-19.

In [48] instead, a partially analytical method is presented. First the three impulses
are defined to be equally spaced of T" and such that the vibration ratio for nominal
condition is a certain Vj,,,. As a consequence the solution in (2.48) is derived. In
addition the authors define an angle ¢ = am through which the constraint PRV =0
is given for just one side of the hump. In this way is obtained a closed form solution
for the amplitudes although it includes one unknown parameter which is a function
of ¢ and has to be numerically solved. However this solution is much more simple
than the rigorous one and the unknown parameter can be numerically solved for any
value of V};,, and 6. Unfortunately the null-PRV condition on one side only of the
hump does not assure that the PRV fall to zero either on the other side of the hump,
moreover it causes robustness degradation for high Vj;,, values. This behaviour can
be easily explained since in terms of poles-zeroes this method basically places one
zero in order to be coincident to the numerical solution, while the other is left like
in the solution in (2.48). Therefore the PRV function is no more symmetric and for

large split of the zeroes the robustness degrades quickly.
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In conclusion it has to be noted that the complication of numerical solutions,
though partial, are motivated mostly by the fact that the PRV function is defined for
variation of the natural frequency w,. Practically speaking is a fact that in evaluat-
ing parameters of an unknown damped system, what is actually measurable are the
system frequency wy = w,v/1 — 02 and the decay rate —dw, of the vibratory response,
that is the coordinates o and jw of the system poles on the S-Plane. Therefore po-
tential errors in parameters estimation typically affect both ¢ and w, and defining
the robustness for variation of w, or ¢ only is more a customary description than a
real need. In addition from the analysis of the IS as a function of o and jw reported
in previous sections, it can be noted that in general the vibration suppression effect
rapidly vanishes as o decreases, then the actual critical parameter in IS design is o,

so complicated numerical solutions are not so necessary.

2.7 IS Design for Multiple-Mode Vibrations

Suppression

In many real applications, from cranes to flexible robotic arms, system modelling by
means of a common second order LTT system as in Section 1.1 is not sufficient since
other vibratory modes besides the fundamental one may be significant and then to
be suppressed. In general IS for multiple-mode vibration suppression refers to higher

order LTT system of the form

m 2

Gn(s) =[] “ni (2.75)

$2 4 20,wWniS + w2,

1=

where m is the number of vibratory modes and 9;, w,; are the parameters of the i-th
mode. Basically in terms of poles of the transfer function, G,,(s) can be represented by
m couples of complex conjugate poles in the S-Plane. Therefore the natural approach

to suppress m modes of vibration is to convolute m IS, each of which designed for
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one of the m modes

H,(s) = H Hi(s) (2.76)

where H;(s) is the IS for the i-th mode. In this way every IS cares to cancel only
the poles for which it is designed and the convolution permits to achieve an overall
pole-zero cancellation of Gy, (s).

Unfortunately this simple approach has a main drawback in terms of distortion, in
fact the convolved shaper has total time duration equal to the sum of the shaping
time of each IS. This means that if each IS is of the same kind and with a certain
duration T;, the worst case is represented by m modes closed to each other since

results

Tiw = Y _Ti ~mT;. (2.77)

i=0

As a result the time dilatation may result in unfeasible solutions for some applications,
therefore many approaches has been proposed that define IS which are designed to
solve simultaneously the constraints for all the modes. The great advantage of all
these methods is that in this way is always possible to achieve solutions with a time

duration shorter than the convolved shaper.

2.7.1 Numerical Optimization Based Design

In [43, 87, 88| the design of IS for two or more vibratory modes is presented. Despite
different assumptions related to the constraints of the case study in each papers, a
general method can be deduced for the design of IS for multiple-modes vibration
suppression based on numerical solution. Typically for an m-modes system G,,(s)
an overall problem is considered which contains the residual vibrations constraints
for each mode along with additional constraints with respect to amplitudes of the
impulses and robustness. Direct solving of such problems usually results in infinite
possible solutions, therefore the IS is achieved choosing one of the feasible solution
by means of optimization algorithms, typically for minimizing the shaper duration.

These kind of IS reduce m vibratory modes and provide very low distortion, generally
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in terms of number of impulses, the optimization procedure results in impulse trains

of total 2m + 1 impulses, where m is the number of the modes.

2.7.2 Zero-Placement Based Design

A different approach to achieve a multiple-mode IS is reported in [106] exploiting the
zero placement technique in the Z-Plane to suppress vibrations. The assumption is
that in order to suppress m vibratory modes of a given system G,,(s), the IS must

have at least 2m zeroes able to cancel the system poles

m

H z—pi)(z—pi), (2.78)

=0

where p;, p; are the i-th couple of complex conjugate poles of the system. In addition
the above relation can be generalized in order to achieve augmented robustness for

some critical modes by increasing the zeroes multiplicity n;

H (z—p)" (z —p)™ (2.79)
=0

Then the IS is obtained in a discrete time fashion providing causality and minimum
distortion of the command, that is equalize the degree of the zeroes with r poles at

the Z-Plane origin

C m
=—11GE-=p)" (z—-p)", (2.80)
© =0
where
r=> mn (2.81)
i=0

and C' will provide also unitary static gain. Finally the impulse amplitudes are defined

by means of the impulse response

h(t) = C (5(t) + Z a;d(t — iT)) , (2.82)
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where the coefficient a; results from the polynomial expansion of the discrete transfer
function H,,(z). It has to be noted that H,,(z) is derived assuming to know from
the beginning the sample time 7" of the IS, as a matter of fact 7" is a design choice.
In fact the authors propose to calculate the coefficients a; by means of the poles of
the continuous transfer function G,,(s), therefore the amplitudes a; are obtained as
function of the sample time 7'. In this way the amplitudes can be chosen accordingly
to the feasibility of a real implementation and minimizing 7. At last C' is chosen to
provide unitary static gain.

This method allows to obtain suboptimal results for multiple-mode vibration sup-
pression. This is due to the use of equally time spaced impulses, as a result in case of
widely spaced modes of vibration IS derived in this way result typically longer than

convolved shapers.

2.7.3 An Application of EI IS for a Two-Mode

Vibratory System

In Section 2.5 a closed form solution for an EI IS has been derived by means of its
frequency response and a good approximation for damped systems has been given
by a frequency translation approach. Moreover the effect of zeroes split of EI IS has
been deeply discussed and characterized. Namely the characteristic hump is due to
two zeroes placed at frequencies in (2.53) which are symmetric with respect to the
system frequency and whose distance is expressed in terms of the parameter o that
is function of the system parameters and the desired vibration limit Vj;,, in (2.51).

Looking at the EI IS with a different perspective, the 3-impulse train cane be designed
in order to suppress two undamped vibratory modes or two damped modes with the
same decaying rate o. In particular, being w;, wo the frequencies of the two modes

with w; < ws, from (2.53) results

=27 w (2.83)
Wa + w1
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and obviously
wy = 22 JQF - (2.84)

where wf is a virtual system frequency that defines also a virtual damping 6*, for a

given o of the two modes. Then from (2.51), solving for the vibration limit descend

. 1 —cos(awiT™)
Bm 1 4 cos(awgT™)

(2.85)

with 7* defined as usual in (2.22) by means of the virtual parameters wj and J*.

*
lim

Therefore an EI IS design for a virtual system characterized by wyj, 6* and
assures complete vibration suppression of two modes at frequencies wq, wy. Moreover
since the system poles are cancelled by zeroes with multiplicity of one, the robustness
of the shaper with respect to each mode is comparable to a ZV IS.

This approach leads to a time optimal solution for suppression of two vibratory modes
with equal decay rate 0. However it has to be noted that for widely placed modes
this IS could introduce an undesirable effect of amplification between the two modes,
i.e. in undamped case by means of the frequency response it can be seen that if
wy > wy then |Hgr(jwy)| > 1. Anyway this effect can be avoided by imposing the
constraint 0 < a < 0.5 from (2.37), since as been told before for & = 0.5 results
|Hg(jw?)| = Viim = 1. Therefore in terms of frequencies, for a given w; the second

mode must satisfy

Wy > Wy > 3wi. (286)
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Chapter 3

Filtering Techniques and
System-Inversion Based Planning

for Vibration Reduction

3.1 Filter Based Methods for Vibration Reduction

The problem of vibrations suppression is often addressed by means of filtering tech-
niques. In literature many works propose approaches based on commands shaped
by either low-pass (LPF) or notch filters (BSF), as a solution to real case studies
[2, 1, 4, 32, 33|. The motivation relies on the analysis of the vibratory system in
terms of spectral components. In other words the plant is assumed to have one or
more resonant frequencies which describes the modes of vibration, therefore the filter
has the duty of eliminating those spectral components of the command input able to
excite the system’s resonances. In this way, since typical real controlled systems has
low-pass behavior and being the focus on avoiding certain frequency components of
the command, natural candidates for vibrations reduction by means of fiters are LPF

or BSP when high dynamics are not expendable.
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3.1.1 Low-Pass Filters

In order to describe the effect of shaping commands by means of filters, the case of a
typical second order LTI system as in Section 1.1 fed by a step filtered by a LPF is
presented first. Three of the most common filter’s design techniques are considered to
determine generalized considerations which relate to the filtering technique and not
only to a particular design. Namely the filters used in simulation are Butterworth
Filter, Chebyshev Filter and Elliptic Filter [107].

Butterworth filter assures a maximally flat magnitude response in the pass-band and
an overall monotonic behavior. The design is achieved by means of the normalized
Butterworth polynomials that are expressed in terms of the complex variable s as-

suming a cutoff frequency w, =1

i

2k -1
B,.(s) = [52 — 2scos (4_27::%) + 1} , M = even
k=1
ot (3.1)
2 2k -1
B,(s) =(s+1) H [52 — 25 ¢08 (272%) + 1] , n=odd

k=1

where n is the polynomial order. Therefore the transfer function of a Butterworth

filter with cutoff frequency w. and order n results

H(s) = B ((iy) , where v = wi (3.2)

where Hj is the static gain of the filter. In particular the transfer function is com-
posed of n poles equally spaced around a circle of radius w, in the left half plane.

Chebyshev filter has steeper transition band than Butterworth’s, but admits a con-
trolled amount of ripple of the gain amplitude in the pass-band or in the stop-band.
Commonly Chebyshev filters refer to the case with equiripple behavior in the pass-

band, whose frequency response for a LPF is

H(jw)| = ! (3.3)

1+ 2772 (i)
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where ¢ is the ripple factor, w. is the cutoff frequency and T, is a Chebyshev poly-
nomial of order n. The transfer function of this filter can be defined analyzing the
denominator of (3.3), in particular for an n-order filter results 2n poles arranged on

an ellipse in the complex plane centered at the origin, with a real semi-axis of length

sinh (% sinh™! (é)) (3.4)

and an imaginary semi-axis of length

cosh (% sinh ™ (é)) : (3.5)

Moreover the 2n poles are symmetrically arranged on the ellipse with respect to the
two axis, therefore in order to guarantee the stability of the filter the transfer function
considers the poles of the left half plane p~ only. As a result the transfer function of

a Chebyshev filter is

n

1 1
H(s) = 5 [ ] e (3.6)

i=1

The Elliptic filter has faster transition between pass-band and stop-band compared
to Chebyshev and Butterworth, and admits equiripple behavior in both pass-band
and stop-band. It can be seen as a kind of generalization of both Chebyshev and
Butterworth filters, since setting null ripple in one band defines a Chebyshev filter
and setting null ripple in both bands defines a Butterworth filter. The frequency

response of a low-pass elliptic filter is

H (juw)] = ! (3.7)

\/1 +e2R2 (5, wﬂ)

where R, is the elliptic rational function of order n, w, is the cutoff frequency, ¢ is

the pass-band ripple factor and ¢ is the selectivity factor which define the ripple in
the stop-band as a function of €. The transfer function of an Elliptic filter can be
derived in a similar way to Chebyshev filter, that is the poles of the transfer function

are the poles of the frequency response function and the zeroes result the poles of the

65



Magnitude [dB]

T T T T T T T T

S135[
270 TN

Phase [deg]

SO
A0

whads] T

Figure 3-1: Magnitude and phase response of the considered filters with respect to
frequency: in blue is reported the Butterworth filter, in red the Chebyshev filter and
in green the Elliptic filter. The dashed lines identify the cutoff frequency w. and the
system frequency wy.

elliptic rational function R,.

In fig. 3-1 the Bode plots of the three LPF are reported to highlight the different
behavior in terms of frequency response. All filters are of the fifth order and designed
assuming a cutoff frequency one octave lower than the system frequency, wy = 2w,
amplitude of the stop-band ripple equal to —50 dB for the Elliptic filter and ampli-
tude of the pass-band ripple equal to 1 dB for both Elliptic and Chebyshev filter.

In fig. 3-2 also are reported the responses of an undamped second order system to
a step command filtered by the three LPF. As can be seen the settling time of the
filtered system is very long, moreover the vibration is reduced but not suppressed.
In fact, filters does not assure vibration suppression and this can be explained by
looking the pole-zero diagram of the filters in fig. 3-3 where it is clear that there is no
zero able to cancel the system poles. Butterworth and Chebyshev cases are glaring
since there are no zeroes at all, while the Elliptic filter has two couples of complex
conjugate zeroes, but it has to be noted that usual design procedures do not refer
explicitly to the placement of that zeroes.

As a matter of fact the filtering effect intended as by means of filters, doesn’t rely

on the presence of zeroes but in redistributing the residues of the system poles. This
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Step Response

Frequency Response

Figure 3-2:
of Butterworth filter (a), Chebyshev filter (b) and Elliptic filter (c¢). Respective fre-
quency responses of the considered filters are reported in linear scale on the right

column
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Figure 3-3: Pole-Zero diagrams of the system with 6 = 0 shaped by Butterworth
filter (a), Chebyshev filter (b) and Elliptic filter (¢). On the right the description of
the filters in terms of ¢ and jw variations is reported with equal scale on x and y
axis. The contour lines are equally spaced of 0.1 and the filter’s Pole-Zero position is
highlighted with a black cross.
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Figure 3-4: Residue associated to the system pole in case of a step filtered by a
Butterworth filter. In (a) the amplitude of the residue is reported as a function of the
order n of the filter with cutoff frequency such that w, = 2w.. In (b) the amplitude
of the residue is reported as a function of the cutoff frequency w,. in a second order
filter. In red dashed line the unfiltered value of the residue is reported.

particular interaction can be explained assuming for example to filter a step refer-
ence commanded to an undamped second order system G(s) by means of a simple
Butterworth filter Hp,(s). In this way the Laplace transform of the step response
results

R(s) = &) Henls) (3.9)

s
then analyzing the residue of the poles of the vibratory system G(s) it can be noted
that the filter’s parameters determine the reduction of the residue, therefore the
decrease of the amplitude of that frequency component.

In fig. 3-4 is reported the amplitude of the residue of the system poles that cause the
vibration as function of the filter’s design parameters. Namely in fig. 3-4(a) is shown
the effect of increasing the order n of the filter with a fixed cutoff frequency. In terms
of frequency response this can be seen in a faster transition between pass-band and
stop-band, therefore an augmented selectivity of the filter, that is a sharp reduction
of the residue. In fig. 3-4(b) instead the effect of changing the cutoff frequency w, is
reported for a given second order filter. In this case it is clear that the lower is the

cutoff frequency the more the system frequency is filtered. This is exactly the behavior
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Figure 3-5: Magnitude and phase response of the considered notch filters with respect
to frequency: in blue is reported the Butterworth filter, in red the Chebyshev filter
and in green the Elliptic filter. The dashed lines identify the cutoff frequencies w,.r,
and w.g and the system frequency wy.

described in fig. 3-4(b) where the residue grows as the cutoff frequency increases, in

particular when w. > w, the residue approaches to its unfiltered value.

3.1.2 Notch Filters

In many filtering approach to reduce vibrations, notch filters are considered instead
of LPF. This is due to the possibility to reduce spectral components only in a limited
frequency band without compromising eventual higher dynamics. Even in this case
are considered BSF designed by means of Butterworth, Chebyshev and Elliptic filter
prototypes. In particular all filters are of the third order and designed assuming a
symmetric stop-band with respect to the system frequency wg and a stop-band width

of an octave
Wo

%7

Also the amplitude of the stop-band ripple is set equal to —50 dB for the Elliptic

wer = woV'2. (3.9)

Wep =

filter and the amplitude of the pass-band ripple equal to 1 dB for both Elliptic and
Chebyshev filter.

70



Step Response Frequency Response

14
121
)
H
WL 'H’ .
[} ] /] o
£ B
5 | 5"
=%
E 06 E E
<
04y
i
02l !
o ;
o 2 3 s O
Time
(a)
14
121
h
R
e et by
) RN
= i —
— ogf- 3
= ! N
= =
=% '
E 06 : E
<< '
04 :
oaf i
o ;
o 2 3 s s 0 12 w6 s
Time
14
121
]
oy |
P I ( 30  ¥
) ! N
E ! =
E oor i ?m’
— ~—
a, I
E 06 : E
< :
04 :
[
[
ozl iff
OU 2 4 6 8 10 12 14 |‘6 18 20 0 05 1 15 2 2‘.5 3
Time “S o
(c)

Figure 3-6: Response of the system G(s) with § = 0 to a step filtered by means of
Butterworth BSF (a), Chebyshev BSF (b) and Elliptic BSF (c). Respective frequency
responses of the considered filters are reported in linear scale on the right column.
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Figure 3-7: Pole-Zero diagrams of the system with 6 = 0 shaped by Butterworth
BSF (a), Chebyshev BSF (b) and Elliptic BSF (c¢). On the right the description of
the filters in terms of ¢ and jw variations is reported with equal scale on x and y
axis. The contour lines are equally spaced of 0.1 and the filter’s Pole-Zero position is
highlighted with a black cross.
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In fig. 3-5 the Bode plots of the three BSF are reported showing the attenuation
effect in the designed stop-band while outside the stop-band it can be noted that the
magnitude of approximately 0 dB assures the substantial transparency of the filter
for frequency components in the pass-band.

In fig. 3-6 the responses of an undamped second order system to a step command
filtered by the three BSF are reported, showing better results in terms of both vibra-
tion reduction and delay, with respect to LPF in fig. 3-2. However some additional
considerations have to be done by means of the pole-zero analysis in fig. 3-7. First of
all the filters are designed in order to exploit the characteristic zeroes of notch filters
to cancel the vibratory poles of the system G(s). Therefore this can be considered the
best condition to filter an undesired frequency. Also the reduced delay of BSF is influ-
enced by the choice of third order filters while the considered LPF in Section 3.1.1 are
of order 5. Anyway the delay introduced by BSF remains large with respect to other
shaping techniques. This can be easily demonstrated by considering for example a
ZVDD IS as reported in Section 2.4, whose effect is to cancel the vibratory poles with
a couple of complex conjugate zeroes of multiplicity 3 like the BSF in fig. 3-7. In fact
assuming to express the distortion introduced by the shapers in terms of periods of
system vibration, while the ZVDD IS lasts 1.5 periods, the filters in fig. 3-7 last from

about 8 to 12 times longer.

3.1.3 Considerations on Command Shaping

by means of Filters

In Section 3.1.1 and 3.1.2 the effect of command shaping by means of typical filtering
techniques has been presented, showing that filters basically can not assure vibrations
suppression. Although the presence of zeroes, even BSF can not be considered as
vibration suppressors, mainly because the typical design procedures doesn’t rely on
the complete suppression of a particular frequency, but in the attenuation of a band of
frequencies. This behavior is even more evident in case of damped system as reported

in fig. 3-8. It is well known that in case of a second order system G(s) with § # 0 the
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vibratory poles no more lie on the imaginary axis of the complex plane, therefore the
pole-zero cancellation is impossible.

In several papers filters are compared to input shapers by means of deep experimental
analysis showing a relevant performance gap in terms of vibration suppression (84, 90,
91]. In addition to the mentioned inability to assure complete vibration suppression,
an other noticeable disadvantage is the large time delay introduced by the filters. This
is one of the side effects of the mechanism of residues modification of filters. In fact, a
part from the considerations on the cutoff frequency which has direct consequence on
the overall dynamics, it can be seen that in general the higher is the filter order, the
more effective is the filter. However raising the order of the filter means to increase the
number of the poles introduced by the filter. As a result the poles introduced by means
of usual filtering techniques add undesired dynamics visible as large overshoots in the
presented step responses, and also imply a large phase delay therefore an undesired
distortion.

In Section 3.1.1 and 3.1.2 only analog filters have been considered for brevity. As a
matter of fact same results can be achieved with digital implementations by means
of Infinite Impulse Response Filters (IIR). Moreover as reported in details in [84,
90, 91| even Finite Impulse Response Filters (FIR) designed by means of typical
methods (windowing and Parks- McClellan above all) doesn’t reach the benchmark
of IS, although FIR filters shows better performances than analog and IIR in reducing

vibrations.
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Figure 3-8: Response of the system G(s) with § = 0.1 to a step filtered by means of
Butterworth BSF (a), Chebyshev BSF (b) and Elliptic BSF (c¢). Respective Pole-Zero
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3.2 System Inversion Based Techniques

for Vibration Suppression

In Section 3.1.3 has been reported that usual filter design techniques have no aim of
vibration suppression. Roughly speaking, this is due to the fact that poles and zeroes
are mainly exploited in terms of their characteristic behavior to reduce or increase
the gain of the frequency response. In fact, filter designs by means of polynomials
which basically define a pole-zero placement in order to achieve a desired shaping of
the frequency response of the filter.

However considering BSF in Section 3.1.2, some additional considerations can be done
by analyzing the pole-zero diagram in fig. 3-7 from another point of view. As said
the particular design parameters choice in the treated filters, permitted to achieve a
perfect cancellation of the undesired vibratory dynamic. Therefore assuming that the
focus of a filter is to eliminate a certain frequency component indeed and the order
n of the filter is the multiplicity of the zeroes devoted to that cancellation, then the
polynomial prototypes may be intended as particular constraints by means of which
n additional stable dynamics are introduced in order to guarantee causality of the
filter. In theory according to this system inversion based perspective, the poles place-
ment can be achieved in a more convenient way than by means of usual polynomials,
such as by placing n arbitrarily fast stable real poles. As a matter of fact this trivial
solution as some drawbacks, that is it doesn’t take into account the actuator limits
and there is no constraint on the gain of the frequency response, a part from the
static gain.

Anyway the system inversion approach under reasonable conditions results very ef-
fective and several works in literature report methods that assure complete residual
vibration suppression. In particular in |78, 79, 80| a method based on system inversion
assures complete absence of oscillations during and at the end of a point-to-point mo-
tion, providing also a time minimization. This technique consists in a proper motion
planning which takes into account the transfer function of a second order vibratory

system and a desired vibration-free motion profile. Namely the authors propose to
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define a priori and impose a polynomial of class C") as target function for the system
output, in order to achieve monotonicity and h continuous derivatives. Therefore a
family of C"~Y-class functions is obtained by means of dynamic inversion of the vi-
bratory system and the target function. Finally by means of a numerical optimization
algorithm the minimum time solution is selected.

This approach provides a very good motion assuring vibration suppression and also
an arbitrary smoothness avoiding the typical step-like behavior of input shaping. In
addition presents a time delay comparable to a ZVD IS that is the most common
input shaper. However the main drawback is related to robustness since in general
system inversion techniques require the complete knowledge of the system that has
to be inverted. Obviously this can not be assured in general in real cases, where often
feed-forward techniques are implemented to enhance performances of servo systems

whose transfer function is unknown and then to be estimated.
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Chapter 4

Filters for Online Trajectory Planning

Planning motion laws and trajectories for the actuation system of a robot has a key
role not only from a functional point of view but also regarding the performance
level achievable by a given system. During decades plenty of techniques have been
presented for trajectory planning in order to meet many different requirements such
as timing, physical limitations of the actuators, energy parameters but also other
features related to the reliability like vibration reduction. In step with planning,
many methods have been proposed regarding the generation of such trajectories and
the implementation on real machines of proper trajectory generators, possibly capable

of online generation of the motion profiles.

4.1 Analytical Trajectories for Point-to-Point

Motions

Trajectories for point-to-point motions are of great importance as they are the basis
for more complex movements. Some of these are very common in practical indus-
trial applications since they allow to satisfy several mechanical requirements while

maintaining a good ease of use.
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4.1.1 Trapezoidal Velocity Trajectory

Trajectories with trapezoidal velocity are very common method to obtain trajectories
with a continuous velocity profile. In terms of position set-point are characterized
by linear motions joined with parabolic blends, in particular a single point-to-point
motion can be divided into three parts. Assuming a positive displacement, i.e. ¢; > qo,
duration 7T, of the acceleration phase equal to the duration 7, of the deceleration

phase, and time ty = 0, the trajectory is defined as follows:

1. Acceleration phase, t € [0,7,]. The position, velocity and acceleration are
expressed as

q(t) = ag+ ait + ast?

q(t) = aj + 2ast (4.1)

G(t) = 2as

that is the acceleration is positive and constant, and therefore the velocity is
a linear function of time and the position is a parabolic curve. The three
parameters ag, a;, and as are defined accordingly to the constraints on the
initial position gy and velocity vy, and on the constant velocity v, desired at the

end of the acceleration phase. Assuming initial velocity set to zero, results

p

ap = qo
()

a =

(" oT,

therefore the constant acceleration is v, /T,.

2. Constant velocity phase, t € [1,,t; — T,]. The position, velocity and accel-
eration are expressed as
(

q(t) = bo +bit
14() = b (4.3)

G(t) = 0
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that is the acceleration is null, the velocity is constant and the position is a

linear function of time. Also for continuity reasons results that by = v, and

v, 1 v
T,) = il 4.4
q(T,) = qo0 + 5 °+Ta (4.4)

therefore
v, 1,
2

b(] = {qo — (45)

3. Deceleration phase, t € [t; — T, t1]. The position, velocity and acceleration

are expressed as
q(t) = co+ aat + cof?

\d(t) = e+ 2ot (4.6)

q(t) = 202

that is a constant negative acceleration is present, the velocity decreases linearly
and the position is again a polynomial function of degree two. The parameters
Co, €1, and ¢y are by means of the conditions on the final position ¢; and velocity
vy, and on the constant velocity v, at the beginning of the deceleration phase.

Assuming a null final velocity, results

(C o Vt?
0 1 2T,
Uyt
¢ = Tal (4.7)
Uy
Cy = —
.. 27,

In conclusion, the position trajectory ¢(¢) in the general case t, # 0, can be defined

as
)
v
—(t —t9)* to <t <ty+T,
q0+2Ta( 0)? 0= O_l_
T,
q(t): q0+vv(t_t0_?), t0+Ta§t<t1—Ta (48)
—Uv(t—t)2 =T, <t<t
KQ1 2, 1 ) 1 a>T> 1

In order to univocally determine the trapezoidal trajectory, some additional conditions

must be specified. A typical condition concerns the time length of the acceleration
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Figure 4-1: Position, velocity and acceleration of a point-to-point motion from 0 to
q1 by means of trapezoidal velocity trajectory.

and deceleration periods T,, that must satisfy the obvious condition T}, < 7'/2 where
T is the total duration of the motion. In addition some other constraints on the
maximum velocity and acceleration of the actuation system can be imposed as deeply
discussed in [9]. Obviously, these conditions affect the feasibility of the trajectory,
therefore the given conditions must satisfy some geometric constraints. In particular,

from the velocity continuity condition one can obtain the relation

(

Ga = Q(tO + Ta)
_ Gm —{qa Q1+ qo h
aTa — m . 7 h = = — 49
a T T where Gm ; q0+2 (4.9)
ooty T
" 2 2

where a, is the constant acceleration value in the first phase. Then by substituting
results that

4, Ty — aq(ts — to)Tu + (@1 — qo) =0 (4.10)
which is the geometric constraint that any couple (a,,7,) must satisfy in order to
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achieve a feasible trapezoidal velocity trajectory.

4.1.2 Double-S Velocity Trajectory

Double-S velocity trajectories are an improvement of trapezoidal velocity trajectories
of Section 4.1.1 in terms of smoothness and therefore on the stress and the vibrational
effects generated on the transmission chain and on the load by the motion profile. A
double-S trajectory is characterized by a continuous, linear piece-wise, acceleration
profile instead of the typical discontinuous acceleration profile of trapezoidal one.
In this manner, the resulting velocity is composed by linear segments connected by
parabolic blends, thus the reason of the name double-S for this trajectory. It is known
also as seven segments trajectory, because it is composed by seven different tracts with
constant jerk, and it is precisely the typical step profile of the jerk which makes this
trajectory much less stressful for the mechanical systems with respect to trapezoidal
velocity trajectories which are characterized by an impulsive jerk profile.
Usually the double-S trajectory is defined assuming symmetrical actuator limits that
is

Jmin = —Jmazs  Gmin = —Gmazs  Umin = —Umaa (4.11)

where Jiin/maz, @min/maz> Vmin/maz, are the minimum and maximum values of respec-
tively jerk, acceleration and velocity. Moreover in the usual definition the case ¢; > qq
with ¢ty = 0 is considered, and generic initial and final values of velocity vy, v; are
assumed, while accelerations ay, a; are seto to zero. In addition the trajectory is

reported by means of the following definitions:

Tj1 @ time interval in which the jerk is constant (jmin Or jmar) during the acceleration

phase;

Tjo : time interval in which the jerk is constant (jyin Or jmaes) during the deceleration

phase;
T, : acceleration period;

T, : constant velocity period;
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Ty : deceleration period;

T : total duration of the trajectory (=T, + T, + Ty).

In the same manner of Section 4.1.1 the trajectory can be easily described by dis-
tinguishing three phases, namely acceleration phase, maximum velocity phase and

deceleration phase.

1. Acceleration phase, t € [0,7;]. The acceleration phase can be split according

to the three segments of the jerk profile

(a) t €0,T}]
r 3
q(t> = 4o + UOt + jmaxg
t2
] t = .max_
q(t) Vo +J 5 (4.12)
Q(t) = jmamt
4P (t) = Jma
(b) t € [Tj1, T, — Tj1]
( a
a(t) = qo+vot + =g=(3¢ = 3Tt + T7)
T
q(t> = o + Gmaz — =
2 (4.13)
q(t> = jmax{le = Gmaz
(C) te [Ta - TyjlvTa]
( T, (T, —t)3
Q(t) = qo + (’Uma:c + UO)? - 'Uma:c(Ta - t) - ]min( 6 )
: (T, —t)?
13 = Umaz t Imin———
" e 2 (4.14)
qt) = —Jmin(Ta — 1)
\q(?,) (t> = jmzn - _jmam
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2. Constant velocity phase, t € [T, T, +Tv|. The position, velocity and accel-

eration are expressed as

1,
= 4o + (Umam _'_ UO)? + Umam(t - Ta)

= Umax

(4.15)
=0

=0

3. Deceleration phase, t € [T — T,,T]. Again, the deceleration phase can be

split according to the three segments of the jerk profile

(a) t €T —

Ty, T — 1Ty —|—Tj2]

(t—T+Ty)>
6

T.
= g1 — ('Uma:c + Ul)gd + Umax(t -7 + Td) — Jmaz
(t—T+Ty)?
Umax _]maxf

= _jmax(t -7 + Td)

Jmin = —Jmaz

(4.16)
Ty + Tjo, T — T

T,
= ¢ — ('Uma:c + Ul)?d + Umax(t - T+ Td)+

Amyin
+6 @u—T+QP—Mhu—T+QHJ%)

T.
= VUmaz _l_ Amin <t - T + Td - %) (417)

= _]maxirj = Umin

=0
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Figure 4-2: Position, velocity, acceleration and jerk of a point-to-point motion from
0 to ¢; by means of double-S velocity trajectory.

o (T —1t)3
q1 — Ul(T - t) - ]max!
T —1t)?
(%1 + jmax!
2 (4.18)
_jma:c (T - t)
jmax

Even in this case the correct execution of the double-S trajectory is subject to fea-

sibility conditions, that is the existence of the mentioned phases, in particular it is

required to perform the trajectory by means of a double jerk impulse. Moreover it

can be demonstrated that a trajectory planned in order to reach, when possible, the

maximum (minimum) value for jerk, acceleration and velocity, it is a minimum time

trajectory. However the parameters definition of a double-S trajectory can be sub-
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jected to several constraints in practical implementations, such as prescribed time
length of some phase and different condition on initial and final velocity values. In [9]

the planning of double-S trajectories with various constraints is addressed in details.

4.1.3 Harmonic Trajectory

Harmonic trajectories are characterized by an acceleration profile which is propor-
tional to the position profile, with opposite sign. Geometrically the trajectory q(t)
can be described as the projection of a point p moving on a circle with constant

velocity, on the diameter of the circle itself. In general form results

q(t) = % (1 — cos w) + qo, (4.19)

where 7' is the total duration of the motion. Then by deriving

i) = 20 cos (M) (4.20)

277 T
3
g (t) = 573 St ( T

Harmonic trajectories are often used in more complex trajectories definition, charac-
terized in general by polynomial segments connected by means of sinusoidal blends.
This because the use of trigonometric functions permit to uniquely define all the
requested derivative order of a trajectory by means of integration or derivation op-
erations, given a single profile. Thus it may be of interest to plan trajectories by
directly specifying the velocity or acceleration profile as a composition of constant
segments connected by sinusoidal profiles, then the position, jerk, and so on, can be
simply obtained. In particular trajectories with constant velocity /acceleration and

harmonic blends are of rather used and described in [9].
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Time
Figure 4-3: Position, velocity, acceleration and jerk of a point-to-point motion from
0 to g1 by means of harmonic trajectory.

4.2 Analytical Trajectories for 3D Motions:

Uniform B-Spline Trajectory

Spline functions are extensively used in planning trajectories for robots because of
their flexibility. Tasks demanded to robots often require position profiles with complex
shapes which are usually defined by means of a number of via-points. These via-
points are then interpolated or approximated with smooth functions to be optimized
in order to comply with the constraints imposed by the specific robot application,
i.e. kinematic constraints (such as limit values of velocity, acceleration, jerk, etc.) or
dynamic constraints on the maximum torque available. In general, such interpolation
tasks are performed by means of cubic splines since they assure the continuity of

velocity and acceleration and prevent large oscillations of the trajectory that can
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result with high order polynomials [9]. That is when n + 1 points are given, in lieu
of a unique interpolating polynomial of degree n it is possible to use n polynomials
of degree d = 3, each one defining a segment of the trajectory. The overall function

q(t) defined in this manner is called cubic spline and results

q(t) = {qk(t), t e [tk,tk+1], k=0,....,n— 1},

(4.21)
Ge(t) = aro + agy (t — ) + ags (t — t1)° + aps (t — )" .

In this way a complex motion composed of n + 1 via-points is completely defined
by solving a linear system of n equations with a total number of 4n coefficients to
be determined. In particular the solution is given by means of imposing several

conditions which has to be satisfied:

e 2n conditions for the interpolation of the given via-points, since each cubic

function must cross the points at its extremities;
e n — 1 conditions for the continuity of the velocities at the transition points;
e n — 1 conditions for the continuity of the accelerations at the transition points.

The remaining two degrees of freedom permit to impose two additional constraints
that usually refer to boundary conditions of the spline derivatives. Moreover in lit-
erature several techniques have been presented in order to minimize some quantities,
such as acceleration, jerk or the total traveling time of robot trajectories subject to
constraints of velocity acceleration and jerk.

In some applications the requirement of planning trajectories with continuous deriva-
tives up to a given order r makes preferable the adoption of splines in the so-called
B-form, i.e. B-splines. Also the attractiveness of B-spline is because they are much
simpler from the computational point of view, and because a local modification can
be made quickly and easily without recomputing the entire trajectory.

A generic B-spline trajectory is defined as

m

gt) => p;Bit),  twin <t < tya (4.22)
7=0
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Figure 4-4: Spline trajectory through n + 1 points.

where B;l(t) is a B-spline basis function of degree d, and p, are the control points,
which are scalar parameters that determine the shape of the curve and must be
computed by imposing interpolation conditions on the given data points q,. That is
finding the values of the unknown parameters p;, j =0,...,m, which guarantee that
given n + 1 via-points to be interpolated at their respective n + 1 time instants (also

called knots), the B-spline function satisfies
qlty) =gy, k=0,... n. (4.23)

In particular the control points p; can be defined by means of a linear system com-

posed of n + 1 equations in m + 1 unknown of the form

Do
b
q(tr) = [By(ty), Bi(te), ..., By i(te), B | i | (4.24)
Prm—
y 2%

Then, being the number of control points m +1 = (n+ 1) +d — 1 (for odd values

of d, m+ 1= (n+ 1)+ d when even value of d is considered), in order to achieve a
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Figure 4-5: B-spline trajectory ¢(t) passing through the desired via-points q,. In red
the correspondent control points p; are reported.

unique solution further d — 1 (or d) equations of the form

Dy
b,
() = BV, BV (W), .. Bi(), BIOw)] | (4.25)
P
2

has to be added imposing d — 1 (or d) conditions on higher order time derivatives
of the curve. Alternatively d — 1 (or d) further equations can be added to impose
continuity of the curve and its derivative at initial and final time instants (periodic
B-spline).

Regarding the j-th B-spline basis function of degree d, is defined in a recursive manner
as

t—t; t; —t
J Bd—l(t) + j+d+1 Bd—l(t) (426)

Bi(t) = ;
i) tiva —t; 7 tivarr —tipn O
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with

1, lft] §t<t]’+1
Bl(t) = (4.27)
0, otherwise.

Therefore a B-spline basis function defined by means of (4.26) and (4.27) presents

the following properties:
° B?(t) is a piecewise polynomial, defined for all t € [t,in, tmaz);

o B?(t) is equal to zero everywhere except in the interval t € [t;,t;1441);

The interval [tg, ;1) is called k-th knot span and can be of zero length in case

of coincident knots;

The B-spline basis functions are normalized so that

Z le(t) - ]-7 tmin S t S tmaa: (428)
7=0

In every knot span [ty,tx1) at most d + 1 basis functions are not null, namely

d d
Bk)—d’ . 7Bk)

A particular case of B-splines is represented by uniform B-splines, that are defined
for an equally-spaced distribution of the knots, i.e. t;41 —¢; =T, 7 =0,...m — 1.

In this case, the basis functions for a given degree d are consistent under shifts:
d d .
Bj.,(t)=Bj(t—1), j=0,....,m—1.

Therefore, for uniform B-splines it is possible to express the (j + 1)-th basis function

B? in terms of the first basis function Bg, hereafter simply denoted by B®:
d . d . .
Bj(t) = B(t — jT), j=0,...,m

and the B-spline can be rewritten as

qu(t) =Y _p;B(t — jT), 0<t<mT. (4.29)

J=0
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Moreover, for uniform B-splines, the definition (4.26) of the basis function B®(t) of

degree d is equivalent to

1
Bl(t) = =B"'«B’
= %BO * %BO X ...k %Bi*BO, (4.30)
d t‘i,mes
with
1, if 0<t<T
B°(t) =
0, otherwise.
1 i RERREEEEEE
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0 T 5T 37T ar
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Figure 4-6: B-spline basis function B(t) obtained for different values of d.
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4.3 Dynamic Filters for Trajectory Generation

4.3.1 Filter-Based Generator for Multi-Segment Polynomial

Trajectories

The need of planning trajectories online has led to the development of a number of
filters able to produce motion profiles with the desired degree of smoothness simply
starting from rough reference signals, such as step functions, which set the desired
final position. In [13] a very simple and effective approach based on dynamic filters
is presented and allows to plan minimum-time trajectories for robots or automatic
machines under constraints of velocity, acceleration, etc. In this case, the advantages
of the filtering techniques, that allow to properly shape the frequency spectrum of
a motion law, are combined with the features of multi-segment trajectories, whose
parameters are generally defined with the only purpose of making the trajectories
compliant with given bounds on velocity, acceleration, jerk, etc as reported in Section
4.1. The key point is the equivalence between time-optimal multi-segment polynomial
trajectories with constraints on the first d derivatives and the output of a chain of d
moving average filters, where the number d is the order of the trajectory. Therefore,
in this case the filters are not used for making a given trajectory smoother but for
online generating a trajectory starting from initial and final positions.

As described in Section 4.1, multi-segment trajectories are motion laws composed
by several tracts, each one characterized by a specific analytical expression, prop-
erly joined in order to guarantee the desired degree of smoothness. In particular,
time-optimal trajectories under constraints of velocity, acceleration, jerk, etc. are
characterized by segments in which the velocity, the acceleration, and higher deriva-
tives are saturated to the maximum allowed value. Thus in general, by imposing
constraints on the first d derivatives one obtains a trajectory q(t) of class C*~!, that
is with the first d — 1 derivatives that are continuous, while the d-th derivative ¢(®(t)

is a piece-wise constant function whose values belong to the set {qfﬁ?n, 0, qf(,i)m}. With
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Figure 4-7: System composed by d filters for the computation of an optimal trajectory
of class C41.

the additional condition of symmetric constraints:

O — g9 i=1,...,d

quTL max?

one can show that such a kind of trajectories can be obtained by filtering a step input

with a cascade of d dynamic filters, each one characterized by the transfer function

11—eT
Mi(s) = =—— 4.31
(5 = (4.31)
where the parameter 7; (in general different for each filter composing the chain) is
a time length, see Fig. 4-7. The possibility of obtaining time-optimal trajectories

with the system of Fig. 4-7 fed by step input functions can be proved by exploiting a

property of the convolution product (denoted with ) on the differentiation, i.e.

d d, d
=T ag=1e% (1.32)

Consider the case of a single filter with a step input of generic magnitude h, i.e. hu(t),

being u(t) the unit step function

1, t>0
0, t<O0.

u(t) =

In this case the output trajectory can be computed as

@1(t) = hu(t) *my(t) (4.33)
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where

m;(t) = L7HM;(s)} = = (u(t) —u(t = T;)), i=1

is the impulse response corresponding to M;(s). Note that m;(t) is a rectangular
function of duration 7; and magnitude 1/7;, see Fig. 4-8. This implies that, as
well known, for any choice of 7; the area of the rectangular function is unitary, and

accordingly the static gain of the corresponding function M;(s) is unitary as well:

Mi(0) = / m(r) dr = 1.
0
By applying (4.32) to (4.33) one obtains

a(t) = hu(l)(t)*ml(t)

= hd(t) *mq(t) = hmy(t)

where 6(t) is the unit impulse function. Therefore, by adopting a single filter M (s)
fed by a step function of amplitude h, the output consists in a trajectory ¢;(¢) whose
velocity has a rectangular profile with magnitude v = h/T;. Then, it is immediate to

obtain the value of the parameter 77 which permits to impose a value of the velocity:

_

() =g — T1 =

. 1]
Tl max

(1) -

dmax

(4.34)

Accordingly, when a step input of amplitude h is applied, the output of M;(s) will
change from the initial to the final value (given by h) with a linear profile whose
duration is exactly T}.

If one adds a second filter Ms(s), characterized by the parameter T5, the resulting

trajectory is

q@(t) = q(t) *ma(?)

= hu(t) *my(t) * ma(t). (4.35)
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Figure 4-8: Relationships among the profiles of trajectories obtained by iterated
averaging operations. Note that in the first row the algebraic relation ¢;(¢) = ¢;_1(¢) *
m;(t), i = 1,2, 3 is reported, while in the remaining rows a pictorial representation
of the relationship among the trajectories of different orders and their derivatives is
shown.

Therefore, the first derivative is

¢V () = ¢V (t) xma(t) (4.36)

= hmq(t) *xms(t)

it is possible to deduce the second derivative

0’ (1) = hmi" (1)« ma(t)
_ Tﬁl(a(w — 3(t = Th)) + ma(t)

= v(mg(t) —ma(t — Tl))
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which is composed by two rectangular functions, one positive and one negative, of

v
magnitude ¢ = — and duration min{77,75}. Therefore the maximum value of the
2

acceleration can be freely set by imposing

(1)
v A% dmax
T2 Qmaz T2 @) @) (4 37)

max max

a =

Since the static gain of both M (s) and Ms(s) is unitary, the final value of the response
of Mi(s)-Ms(s) to a step input of magnitude h remains h. The system output g(t)
reaches such a value with a trapezoidal velocity profile as described in Section 4.1.1,
obtained by integrating qéz) (t).
The maximum acceleration of the trajectory is qux, and the velocity is still limited
by qﬁ,}u)m In fact, by defining for a generic function f(t)

peak(f(t)) = max|f(t)]

>0

from (4.36) one can prove that

peak (1)) < peak (o)) - [ lma(r)lar

< peak <Q§1)(t)) =q1. (4.38)

where [% [ma(7)|dT = [ ma(7)dr = 1 since my(t) > 0, Vt. In this case, if T} > Tp
then the maximum velocity q,(é,)m is actually reached, i.e. peak(qél)(t)) = qﬁ,}u)m and
¢2(t) is a minimum-time trajectory compliant with the given bounds q,(q?am, 1=1,2.
Conversely, if T < T3 then peak(qél)(t)) = |T—h2‘ < ‘Thll = %[)m, and the trajectory, that
still meets the proposed constraints, is not of minimum duration. In particular, when
T1 < T5, the roles of the two time constants 7; are switched, in the sense that the
duration of the acceleration period is 7} and the maximum velocity is h/T5. In any
case the total duration of the trajectory go(t) is given by the sum of the durations of

the impulse responses of M;(s) and Ms(s), i.e.

Tt = 11 + 1.

98



(1)

Note that the maximum velocity qniax is actually reached if and only if

1 1
T, < iﬂot = §(T1 +T,) < T, <T.

that is if and only if the (planned) duration T; of the acceleration/deceleration period

is not greater than half of the total duration of the trajectory.

As shown in Fig. 4-8, the second order trajectory go(t) can be made smoother by

adding a further filter Mj(s) (characterized by the parameter T3), obtaining in this

way a double S velocity trajectory
a3(t) = qa(t) * ma(t)
whose velocity, acceleration and jerk are respectively

5" (t) = g5 (t) * my(t)
a2 (1) = ¢ (t) * ma(t)

@57 (t) = ¢ (t) * m(t).

(2)

(4.39)

Since gy ' (t) is composed by two rectangular functions, its derivative is a sequence of

four impulsive functions of amplitude a properly shifted in time, see Fig. 4-8. There-

fore, from (4.39) it descends that qég) (t) is composed by four rectangular functions

of amplitude j = a/T3 and accordingly it is possible to select T3 on the basis of the

desired value of the jerk:

2
a (3) a a . qim)lx

J= g T e 7 = = =

dmax dmax max

Moreover, by the same argument as in (4.38) one can prove that

peak

/N

i (1)) < peak (6 (1)) = 42

peak ()" (1)) < peak(¢s7(1)) < peak (a1 (1)) = gl1
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In particular, if the tract with constant jerk is at most half of the acceleration /deceleration
period, that is

T; < (T2 + Tg) = T3 < Tb, (443)

N —

in (4.41) the sign equal holds true and the maximum acceleration qg()m is actually

reached by the third order trajectory ¢3(t). Analogously, if the acceleration /deceleration

period does not exceed half of the total duration of the trajectory, i.e.
1
Th+T5 < §(T1 +T5 + Tg) ~ 1o+ 15 <13 (444)

then peak (qél)(t)) = peak (qél)(t)) (and obviously peak (qél)(t)) = peak (q%l)(t)) since
((4.44)) implies T5 < T7), therefore the trajectory ¢s(t) reaches the maximum velocity
¢ If, both conditions (4.43) and (4.44) are met, the velocity and the acceleration
reach the maximum values g, and ¢3(t) is a minimum-time double-S velocity tra-
jectory as in Section 4.1.2. Conversely, when one (or both) of the two conditions is
not true, the trajectory is compliant with the given bounds but it is not time-optimal.
The procedure shown so far can be iterated by adding further filters M;(s). In the

general case, the expression of the minimum-time trajectory compliant with given

constraints on the first d derivatives, and therefore of order d, is
Gn(t) = hu(t) «mq(t) * ... x mg_1(t) * my(t) (4.45)
or with a recursive formulation

qa(t) = qa—1(t) x mq(t) (4.46)

where qo(t) = hu(t). As already pointed out, the smoothness of the trajectory, that is
the order of continuous derivative, is strictly tied to the number of filters composing
the chain. If one considers d filters, the resulting trajectory will be of class C4~1.
By increasing the smoothness of the trajectory, the duration augments as well. As

a matter of fact the total duration of a trajectory planned by means of d dynamic
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systems M;(s) is given by the sum of the lengths of the impulse response of each filter,
ie.

Tiot =T +15+ ...+ T4

The parameters T; can be set with the purpose of imposing desired bounds on velocity,

acceleration, jerk and higher derivatives, i.e.

0O <D, i=1,....d (4.47)
by assuming
h
—
qgt)zx
(4.48)
qﬁi&i)
dmax
with the constraints
T, >Tiq+ ...+ 1y, i=1,...,d—1. (4.49)

that guarantee that the trajectory, compliant with (4.47), is of minimum duration.
Finally in lieu of implementing a proper trajectory generator on controlled system,
not only the position profile of the trajectory but also the related profiles of velocity,
acceleration, jerk, etc. have to be provided. The computation of the derivatives of
a trajectory of generic order d, that is obtained by a cascade of d filters, is straight-
forward by considering the definition (4.45) and the property of convolution product
(4.32). In fact,

d ) = qaa(®)xmP()

Tid(a(t) 6t Ty) (4.50)

— T%l(qd_l(t) — qa—1(t — Td))-

= qa—1(t) *
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Figure 4-9: System composed by d filters for the computation of an optimal trajectory
of class C4~! and of all the derivatives of order i = 1,....d.

The generic derivative of i-th order, can be calculated in a recursive manner as

7 1 i— i—
(1) = 7 (o5 (0) a7 T) (451)

with q((io_)i(t) = q4-i(t). Figure 4-9 shows the block-scheme representation of the filter
for the computation of the trajectory and its derivatives, obtained by iterating and
Laplace transforming (4.51). Note that the filter of Fig. 4-9 gives a closed form
expression (in terms of Laplace transform) of the derivatives and does not simply

provide their numerical value.

4.3.2 Filters for Trigonometric Trajectories Generation

In [12] this method is extended exploiting dynamic filters to plan motion profiles
characterized by velocity, acceleration, or jerk (or higher derivatives, depending on
the order of the trajectory) composed only by sinusoidal functions (see Section 4.1.3,
leading to the so-called modified trapezoidal velocity trajectory, modified double-S
velocity trajectory, etc., see [9]. In this case, it is sufficient to consider in the chain

of averaging filters M;(s), characterized by a rectangular impulse response, a single
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Figure 4-10: Impulse response of the filter S;(s) defined by (4.53) (solid line) com-
pared with that of an average filter M;(s) (dashed line) characterized by the same
time constant 7;.

h - u(t) q(t) qa—1(1) qa(t) qan(t)

—_— Ml(S) e I —— Md(s) > Sd+1(8) >

Figure 4-11: System composed by d + 1 filters for the computation of the trajectory
qan(t) of class C*™!, whose d-th derivative is only composed by sinusoidal functions.

filter whose impulse response is

21}@(%) if0<t<T,
si(t) = i i (4.52)

0 otherwise

= 2% {Sm (% ) u(t) + sin (%(t - T,)) ult — Ti)}

where u(t) denotes again the step function, and 7; is a parameter that defines the

time duration of the response, which is finite as shown in Fig. 4-10. By Laplace

transforming (4.52), the transfer function of the filter can be readily obtained:

1 > 14T
Sis)=- (1) ¢ (4.53)
2\T; ) s
s+ TZ
Note that the system S;(s) has a unitary dc gain.
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The generation of a trajectory gq5(t) whose d-th derivative is only composed by
sinusoidal functions (and therefore is of class C4™1) can be achieved by adding the
“sinusoidal” filter Sgy1(s) at the end of a chain of d filters M;(s), as shown in Fig. 4-
11. With this configuration, it is possible to find the following relation between the
maximum values of ¢/¥(¢) and ¢4tV (¢) and the characteristic parameter T, of the

filter:

(d) T _ (d+1)
qmam t - qmam t).
( )2Td+1 (t)

As a consequence, if constraints on the d-th and (d + 1)-th derivative are given, the

time-length 7,1 can be computed as

(d)
Qmax T

max

Thus, for instance, for a modified trapezoidal velocity trajectory with d = 1 one

obtains
h T Umazx
1 1= ) 1 2

Umax 2 ama:c

while for a modified double-S velocity trajectory with d = 2

h Umax
Tl - ) T2 = ) T3 - 5
Umax Amaz 2 Jmaz

o m ama:c

Note that the time constant Ty, always corresponds to the sinusoidal filter.

4.3.3 Uniform B-spline Trajectory Generator

The use of dynamic filters proves to be very simple and effective in trajectory gen-
eration. In [13] the same filters of the form of (4.31) are exploited to implement
a trajectory generator for uniform B-spline. As reported in Section 4.2 a uniform

B-spline trajectory of degree d passing through m points can be defined as

qu(t) =Y _p;B(t — jT), 0<t<mT, (4.55)

J=0
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Figure 4-12: Position, velocity, acceleration and jerk of a time optimal motion from 0
to ¢1 by means of modified trapezoidal velocity trajectory (a), and modified double-S
velocity trajectory (a).

where p; are the control points, 7" is the uniform knot span and B(t) is the spline
basis function of degree d which is defined in a recursive manner, but also exploiting

the convolution product (denoted with ) results equivalent to

1
Bi(t) = =B «B’
%BO * %BO S %Bi*BO,

d times

(4.56)

with
1, if 0<t<T
B(t) =
0, otherwise.
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Figure 4-13: System composed by d filters for the computation of the B-spline basis
function BY(t) of degree d.

Therefore looking at the basis functions B%(t) obtained for different values of d shown
in Fig. 4-6 and analyzing the convolution product of (4.56) in a filtering perspective,
it can be noted that (4.56) can be interpreted as the function B°(t) filtered by a
cascade of d filters, each one performing an averaging operation on the input signal

over an interval of duration 7" and characterized by the transfer function

11—t

M(s) = £ {%BO@)} - (4.57)

S

see Fig. 4-13. Moreover by Laplace transforming the general expression of the uniform

B-spline (4.55) and substituting (4.56) one obtains

- 1 1 1 .
Q.(s) = ZE {ijO * TBO * TBO k.. % ?BO} e 5T,

J=0

Exploiting the linearity of the above expression and the fact that %BO is not a function

of the index j, the B-spline expression becomes

Q.(s)= <Z£ {p,B°} e_jST> ~M(s) - M(s)-...- M(s)

=L {Z p;B°(t — jT)}- M(s)-M(s)-...-M(s). (4.58)

J=0 p filters

This expression suggests that a uniform B-spline can be evaluated by feeding the

cascade of d moving average filters M (s), reported in Fig. 4-13, with the piecewise
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constant function
m

p(t) =" p;B(t—jT) (4.59)

5=0

that in the generic interval j7 <t < (j + 1)T assumes the constant value p; of the

j-th control point of the related analytic B-spline.

Finally, in order to find the control points which define the piecewise constant function

p;, one can exploit classical techniques derived by B-spline interpolation /approximation
methods.

For example, if one considers the interpolation of a set of n+1 points {q,, q;, 495, - - -, @1, 4, }

it is necessary to impose the conditions
q(t;) = q;, i=0,...,n (4.60)

where ¢; is the time instant at which the spline ¢(t) crosses the given point g;.
The first step consists in selecting the degree d of the spline according to the desired

degree of smoothness. Strictly related to d is the choice of time instants ¢;:
e if d is odd, the ¢; are assumed coincident with the knots, ¢, = iT’;

e if d is even, the time instants ¢; should be selected in the midpoint of each knot

span, t; = 21T

Once the interpolation time instants ¢; have been chosen, it is possible to make the
system of equations (4.60) explicit with the substitution of the values of basis functions
at t; in the spline definition (4.22). In particular the values of B? for d odd and d
even, computed at points ¢; = i7" and t; = 2i2i1T respectively, is independent from T’
because of the choice of the interpolation time instants, as a result B? only depends
on the index ¢, and obviously on the degree d, see [10].

Then in order to obtain a system of equations well conditioned from a mathematical
point of view, it is necessary to consider symmetrical B-splines ¢(t), i.e. uniform B-
splines whose basis function 4%(¢) is symmetric with respect the origin. The function

B4(t) can be deduced from B(t) with a simple time shift, 3%(t) = B? (t + 41T). As
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a consequence symmetrical B-splines are related to standard uniform B-splines by

(t) = Y _ p#lt—jT)

5=0
= Y p;BYt+ 4T — jT) = q(t + 4 T),

=0
that is, given the control points, uniform B-splines are equal to symmetrical B-splines
delayed by %T. Obviously, the theory of Sec. 4.2 could be based on symmetrical
B-splines but this would imply the presence of a temporal anticipation leading to
noncausal filters for the evaluation of the B-splines.
For each point to be interpolated, with the only exception of the first and last points,
the equation (4.60) becomes

qs(ti) = ijBd(ti + %T —jT) =g, (4.61)
=0

where the unknowns are the control point p;. The interpolation of the first and last
points, with zero velocity and acceleration, is achieved by exploiting the characteristics
of the dynamic system used to generate the spline. Since all the filters M (s) have
unitary static gain, the output of the filters cascade will reach and maintain the desired
value g, or g, if the same value is applied to the input %T seconds before. In other
words, in order to smoothly start from g, and end to g, the first/last d control
points must be equal to q,/q,. The n — 1 internal control points are then computed
by solving the system of equations obtained by stacking (4.61) for i = 1,...,n — 1
and the piecewise constant function p(¢) in (4.59) can be finally built by maintaining
the value of each control point p; for the entire period j7° <t < (j + 1)T" by means

of a zero order hold as shown in fig. 4-14.
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Figure 4-14: System composed by d mean filters and by a zero-order hold Hy(s) for
the computation of continuous-time B-spline trajectories of degree d.
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Figure 4-15: Control points sequence p; defining a cubic B-spline and related refer-
ence trajectory q(t—%AT) with £ = 2 obtained with the dynamic filter of Fig. 4-14.

4.4 Frequency Analysis of Trajectory Generators

4.4.1 Multi-Segment Polynomial Trajectories

In Section 4.3 very simple approaches have been described in order to plan some of
the most common types of trajectory by means of dynamic filters. Basically all the
methods rely on the implementation of a chain of a certain number of mean filters
M;(s) as in (4.31) whose duration 7; has to be set in order to comply to the desired
trajectory specifications. In particular in Sections 4.3.1 and 4.3.2 each 7T; of the chain’s

filters is used as a design parameter to impose kinematic constraints on the trajectory,
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while in Section 4.3.3 the chain is composed of identic filters of duration 7', where T’
is the knot span of a uniform B-spline trajectory.

In addition, defining trajectories by means of filters is very useful to analyze the
frequency content of a prescribed motion and therefore the effect of a given trajectory
on a vibratory system. Because of the chain structure of the generators, and being
the chains (mainly) composed of mean filters M(s), the frequency analysis can be
performed by taking into account the filter M (s) at first, intended as the basic element
of a trajectory generator

11—e5T

M(s) = = ——— (4.62)

In particular, assuming to have an undamped vibratory system G(s) as considered
in Section 1.1, it has to be noted that the implementation of the filter M(s) as a
command shaper assures complete vibration suppression, provided that the duration

T of the filter is equal to the period of the vibration T of the system G(s)

2
T=Ty="2", (4.63)

Wn

where w,, is the natural undamped frequency of the vibratory system. In lieu of the
possibility to suppress vibrations by means of M(s), in fig. 4-16(b) the PRV function
of the mean filter is compared to a ZV IS and a ZVD IS that are standard tools for
vibration suppression, as deeply discussed in Chapter 2. The reason for which this
comparison is meaningful appears more clear in fig. 4-17(a) where the filter M(s) is
analyzed in terms of pole-zero diagram. As can be seen the effect of the filter is to
provide infinite zeroes on the imaginary axis, equally spaced of kw,, k € N, plus a
pole in the axis origin which is cancelled by the zero associated with £ = 0. Therefore
the suppression of the vibratory mode is again due to a pole-zero cancellation as
already stated in previous chapters. Also with respect to the comparison of fig. 4-
16(b), the robustness of M(s) is comparable to that of a ZV IS due to the single
multiplicity of the zeroes of both M(s) and ZV IS. Anyway the reduced distance of
the zeroes of M (s) makes that the overall reduction effect of the filter is greater, at

least for frequency variation only (see fig. 4-17(a) and fig. 4-17(b). On the other hand
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Figure 4-16: Step response of the system with § = 0 shaped by M(s) (a) and PRV
function of the mean filter compared to ZV IS in black dotted line and ZVD IS in
green dotted line (b).

M (s) lasts twice the ZV IS, being the duration of a ZV IS half period of vibration,

and doesn’t assure vibration suppression for system with damping o # 0.

Despite the consideration on M (s) used as an input shaper, it is clear that the
frequency analysis of a trajectory of order d defined by means of a chain of d mean
filters M;(s), can be easily performed by composing the effects of the d filters. The
cases of trapezoidal velocity trajectory and double-S velocity trajectory of Section
4.3.1 are straightforward, since both planners are actually composed of mean filters
only. In general from (4.45) to (4.49) a class C*~! trajectory is defined by means of d
filters M;(s) where respective T; are chosen in order to impose desired bounds on d

derivatives of the trajectory

(i—1)
o dmaz -
T, = o = 1,...

max
resulting in a total duration of the motion

Tiop =Ty + 1o+ ...+ 1y

that is the minimum time trajectory for the given kinematic bounds provided that
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Figure 4-17: Pole-Zero diagram of the system with 6 = 0 shaped by the mean filter
(a) and description of M(s) as function of o and jw (b,c). In (c¢) the same plot of
(b) is reported with full scale axis in order to better understand the behavior of the
system response. In (b) and (c) the contour lines are equally spaced of 0.1 and the
zeroes position is highlighted with a black cross.

the generic 7T; satisty

T> T +...+Ty,  i=1,....d—1.

In that case the generic trajectory planner has a transfer function of the form

Hy(s) = My(s) - Ms(s) - ...- Mqy(s), (4.64)

and results quite simple to analyze by adding the contribution of each single filter.
In fig. 4-18(a) the point to point motion obtained by means of a time optimal trape-

zoidal velocity trajectory generator Hs(s) is reported for example. In particular the
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Figure 4-18: Position, velocity and acceleration of a time optimal motion from 0 to
¢1 by means of trapezoidal velocity trajectory with desired bounds on velocity and
acceleration. On the right the frequency response of the trajectory is reported.

generator is

HQ(S) = Ml(S) . MQ(S),

where M, (s), M(s) are mean filters as in (4.62) with

A
Tl - )
gmax
max
T2 - )
Amaz

being vuaz, Amar prescribed kinematic constraints for the trajectory. Also in fig. 4-
18(b) the frequency content of the trajectory ¢(t) is given by simply deriving the
frequency response of the trajectory generator Hy(jw). In addition, in fig. 4-19 the
pole-zero analysis of the planner is presented, showing that the diagram of the planner
Hj(s) is nothing but the merge of the pole-zero diagrams of the filters M (s), Ms(s)
in figs. 4-19(a) and 4-19(b) as expected. This is very convenient in terms of fre-
quency characterization of a trajectory since it results in composition of quite simple
contributions given by the generic mean filter M;(s). In particular permits to make
interesting considerations with respect to the possibility of reducing or suppressing

vibrations by means of such trajectories.
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Figure 4-19: Pole-Zero diagram of a trapezoidal velocity trajectory generator Hs(s) =
M;(s) - Ms(s) (¢): in (a) and (b) the pole-zero diagrams of respectively M; and Mo,
being wy = 27 /T) and wy = 27/T3 are reported. In (d) the description of Hs(s) as
function of ¢ and jw is shown, the contour lines are equally spaced of 0.1 and the
zeroes position is highlighted with a black cross.

In fig. 4-20 the the time optimal trajectory in fig. 4-18 is used to command an un-
damped vibratory system G(s) with damping 6 = 0 and natural frequency w,. As
can be seen the vibration is reduced but not suppressed, according to both frequency
response and pole-zero diagrams in figs. 4-20(b) and 4-20(c) that point out the fact
that the cancellation of the of the vibratory component doesn’t occur. As a matter
of fact it is worth noting that the design method reported in Section 4.3.1 leads to
define a trajectory generator for time optimal trajectories given bounds on velocity,
acceleration, jerk, etc., without any particular specification on frequency.

However recalling the considerations on vibration suppression by means of a mean fil-

ter reported before, one may be interested in using one of the generator’s filter M;(s)

114



08

Amplitude
Hy(jw)

)
06 0

i
04

[
02F

| +jwn
X2

Jw

—JWn

Figure 4-20: Response of the system G(s) with 6 = 0 fed by a trapezoidal velocity
trajectory generated by means of Hs(s) (a) and frequency response Hs(jw) with the
vibrating frequency highlighted in red dashed line(b). In (c) the pole-zero diagram
of Hy(s) is reported along with the poles of the vibratory system G(s) in blue.

in order to suppress vibrations, that is setting 7; equal to the period of vibration 7j as
in (4.63). With respect to the considered trapezoidal velocity trajectory for example,
T7 or T must be set to Ty. In order to properly chose the which filter modify it has
to be reminded that the given kinematic bounds are mandatory and also the relation

for the generic T;

T,>Ton+ .. +Ty,  i=1,...,d—1

must be satisfied in any case. Therefore for a given vibratory period Ty there could

be three different situations:
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1. To>T, > T,
In this case the first mean filter must be used to suppress the vibration, that
is T7 = Ty. As a consequence the velocity will be limited under the prescribed

bound, namely

T— u < VUnaz- (4.65)

Then in order to minimize the time duration of the trajectory the second filter

*

must be recomputed taking into account the new velocity limit v, .

Ty = Ymas (4.66)

ama:l:

2. T1>Tog>T,
In this case the first mean filter is defined as usual by means of the velocity

limit
h
T, = [~ , (4.67)

Umax

while the second filter must be used to suppress the vibration, that is 75 = Tj.
Therefore, being the velocity limit unaltered the acceleration will be limited

under the prescribed bound, that is

@t = g (4.68)

3. Ty >Ts > Ty
In this case setting one of the filter’s length to 7Ty means shorten the time
duration of M; or M, therefore exceeding the kinematic bounds. Since the
trajectory must be still compliant to that bounds, the only possibility is to
add a mean filter M3 with T3 = Ty. This solution lead to define a double-S
trajectory with unaltered limits on velocity and acceleration and jerk limited as

a consequence to

Amaz
.ma:c = . 4.69
j T (4.69)

The proposed algorithm has been applied to the system in fig. 4-18 in order to sup-

116



press the vibration of the system G(s) visible in fig. 4-20. In particular the time
optimal trajectory is obtained imposing v,,., = 0.75 [rad/s] and e = 1.5 [rad/s?],
thus for a step motion of 1 [rad] results 77 = 1.33 [s] and Ty = 0.5 [s]. The system
G(s) instead is characterized by a natural undamped frequency w, = 27 [rad/s],
therefore Ty = 1 [s]. In this case, being T} > Ty > T3, the solution is to impose

Ty = Ty that means to impose a lower acceleration bound a¥, .. = 0.75 [rad/s?].

14
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Figure 4-21: Response of the system G(s) with 6 = 0 fed by a trapezoidal velocity
trajectory generated by means of Hy(s) designed for vibration suppression (a) and
frequency response Hs(jw) with the vibrating frequency highlighted in red dashed
line(b). In (c) the pole-zero diagram of Hs(s) is reported along with the poles of the
vibratory system G(s) in blue.

In fig. 4-21 is shown the effect of the modified generator, in particular it has to be

noted that the poles that cause vibrations are actually cancelled by the zeroes of the
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Figure 4-22: Position, velocity and acceleration of the motion from 0 to ¢; obtained

by means of trapezoidal velocity trajectory designed in order to suppress a vibrating

mode.

second filter (in green) whose duration 75 has been modified. However in fig. 4-22 it
can be noted the reduced limit of acceleration especially if compared to the time op-
timal one in fig. 4-18(a), this obviously affects the duration of the trajectory resulting
longer.

The same algorithm can be easily extended for double-S velocity trajectories by con-
sidering three filters, therefore one more possible choice in terms of filter that has
to be modified. The reason that lead to modify a double-S velocity trajectory is
that despite the augmented smoothness and the limited jerk there is no assurance
of vibration suppression because even in this case the design of the planner takes
into account only kinematic constraints without caring at dynamic constraints, i.e.
vibrations that has to be suppressed. For example in fig. 4-23 is shown the effect
of a double-S trajectory generated by means of a filter chain H3(s) on the vibratory
system G(s) considered in the previous case. As can be seen the additional constraint
on the jerk does not eliminate the residual vibration. This behavior is explained even

more clearly in fig. 4-24 where the pole-zero diagram of the trajectory generator Hs(s)
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Figure 4-23: Position, velocity, acceleration and jerk of a time optimal motion from
0 to ¢ by means of double-S velocity trajectory with desired bounds on velocity,
acceleration and jerk (a). On the right the response of the second order system G(s)
fed by ¢(t) is shown (b) and the frequency response of the trajectory is reported below
(c). In (c) the frequency of the vibration is reported in red dashed line.

reports that even in this case there is no zero able to cancel the couple of poles that
cause the residual vibration.

The algorithm for a double-S generator is straightforward to the one of trapezoidal
generator, it just takes into account an additional parameter 75 but remains con-

strained to both kinematic bounds and minimizing time conditions as in the previous

case.

1. To >Ty >Ty+Ts
The first mean filter must be used to suppress the vibration, that is 77 = Tj. As
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Figure 4-24: Pole-zero diagram of the double-S velocity trajectory generator Hs(s).
The contribution of the three filters M;(s), Ms(s), M3(s) is reported respectively in
red, green and purple. The poles of the vibratory system G(s) is highlighted in blue.

a consequence the velocity will be limited under the prescribed bound, namely
v = < Upaa- (4.70)

Then in order to minimize the time duration of the trajectory the second filter

*

must be recomputed taking into account the new velocity limit v}, .

,U*

Ty = —mes. (4.71)

ama:c

In this case since Ty # T, the condition 73 > T5 must be verified in order to

achieve minimum time feature. From [13| the condition holds true if

Amaz S Qlim = 1/ 'U;qaxjma:ca (472)
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otherwise even the acceleration must be limited under the bound, that is
&ma:c = Alim < Amax (473)

therefore T5 and T3 must be recomputed as

* A

ama:l: ]max

.T1>Tog>Ty > T3
In this case the first mean filter is defined as usual by means of the velocity

limit
h
T, = A , (4.75)

Umaw

while the second filter must be used to suppress the vibration, that is 75 = Tj.
Therefore, being the velocity limit unaltered the acceleration will be limited

under the prescribed bound, that is

af = Jmer o - (4.76)

Accordingly the duration of the filter M3 must be recomputed taking into ac-

count the new acceleration limit a,,., that is
a*
Ty = ™=, (4.77)
]ma:c

. Tyg>Tyg>Ts
In this case the filters M; and M, are defined as usual by means of kinematic

constraints while 73 must be set equal to Ty. Therefore,

amax

N < Jmazs 4.78
Jmas = T < (4.78)

being 75 = Tg
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Figure 4-25: Position, velocity, acceleration and jerk of the motion from 0 to ¢;
obtained by means of double-S velocity trajectory designed in order to suppress a
vibrating mode (a). On the right the response of the second order system G(s) fed
by ¢(t) is shown (b) and the frequency response of the trajectory is reported below
(c). In (c) the frequency of the vibration is reported in red dashed line.

4. T3 > Ty
In this case in order to comply to the kinematic constraint the only possibility
is to add a mean filter M, with T, = T;. This solution lead to define a class
C? trajectory generator with unaltered limits on velocity, acceleration and jerk

with the additional feature of the vibration suppression.

The proposed algorithm has been applied to the system in fig. 4-23 where the time
optimal trajectory is obtained imposing v,., = 0.75 [rad/s], amee = 1.5 [rad/s? and
Jmaz = 1.5 [rad/s®], thus for a step motion of 1 [rad] results T} = 1.33 [s], T, = 0.5 [s]
and T35 = 0.2 [s]. The system G(s) instead is characterized by a natural undamped
frequency w, = 27 [rad/s], therefore Ty = 1 [s]. In this case, being 71 > Ty > Ty,
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the solution is to impose T3 = T that means to impose a lower acceleration bound

*

at,0e = 0.75 [rad/s?). Accordingly T3 has to be recomputed taking into account a¥,,.,

mazx
therefore 75 = 0.1 [s]. In fig. 4-25 the response of the system G(s) to the trajectory
provided by the modified planner is presented. As can be seen the trajectory generator
designed taking care of dynamic constraints actually suppress vibrations, in particular
in fig. 4-25(c) the drop of the frequency response H3(jw) in correspondence of the
frequency of vibration w,, denotes a proper pole-zero cancellation. On the other hand
the trajectory results longer by comparing it to the one in fig. 4-23(a) since the
acceleration can’t reach the kinematic bound.

It has to be noted that in any case the design of the planner for vibration suppression
as proposed, imply to loose the time optimality feature of the trajectory, since at
least one of the derivative bounds is further limited. However allowing a slight time
extension of the motion it has been proved that the trajectory generator can actually

suppress vibrations. Nevertheless by means of the proposed algorithm one may obtain

a time minimum trajectory generator with vibration suppression.

4.4.2 Trajectories with Sinusoidal Blends

In Section 4.3.2 has been described the method which permit to achieve a modified
trapezoidal /double-S velocity trajectory generator by means of dynamic filters. That
is, in order to obtain multi-segment polynomial trajectories with sinusoidal blends
(i.e. described by harmonic functions in Section 4.1.3, the filter chain described in
Section 4.3.1 must be modified by substituting the last mean filter with the so-called
sinusoidal filter S;(s) in (4.53)

Accordingly to the discussion in the previous section, the frequency analysis of a
modified trapezoidal/double-S velocity trajectory can be performed by merging the

effects of the mean filters of the chain and that of the sinusoidal filter above. In
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Figure 4-26: Frequency response of the sinusoidal filter S;(s) (a) and respective
pole-zero diagram (b).

particular the analysis of the sinusoidal filter shows a different behavior with respect
the mean filter in figs. 4-16 and 4-17. In fig. 4-26(a) the frequency response S;(jw)

drop to zero slower than a mean filter with the same duration 7. Namely it results

2k+1 27

|S;(jw)|=0if w= 5 T being k € {N\0}, (4.79)

while the mean filter is zero for 2wk/T. Moreover from the pole-zero diagram in
fig. 4-26(b) it is shown that the filter introduces a couple of complex conjugate poles
that are cancelled by a couple of zeroes of the filter itself, enlarging the first lobe
of the frequency response accordingly. Anyway the presence of infinite zeroes on the
imaginary axis permit to assume the filter .S; as a candidate to suppress a vibration of
an undamped system, specifically being 7j, the period of vibration, it can be proven
that S; suppress the vibration if its duration 7" is set to T' = 1.57T5,.

Despite that, the use of the sinusoidal filter to suppress vibration when inserted in a
trajectory generator as described in Section 4.3.2 may not be an optimal solution. In
lieu of an example it can be considered the case of a modified trapezoidal trajectory
with

Umaz = 0.75 [rad/s],

Umaz = 1.5 [rad/s?],
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and a desired step motion of 1 [rad], feeding a vibratory system G(s) whose vibration
period is Ty = 1 [s]. From the approach in Section 4.3.2 the duration of mean filter

M, (s) and that of Sy(s) results results

Ty = 133][s],

Ty = 0.785 [s].

Then by applying the proposed algorithm of Section 4.4.1 and taking into account
the zeroing affect of Sy(s), the duration of the sinusoidal filter has to be modified as
Ty = 1.57. Unfortunately in this case T} < T3, then even 77 has to be modified in

order to respect the constraint 77 > 75, that is

Tr > TF = 1.5 [s],

therefore the total duration would be 77 +T75 = 3 [s]. As a matter of fact this solution
it is definitely not a minimum time solution since it can be proven that a trajectory
which satisfy the same constraints (both kinematic and dynamic) can be achieved
by means of a modified double-S trajectory generator of shorter duration. Namely,

assuming
.

Umaz = 0.75 [rad/s],

Umaz = 1.5 [rad/s?],

Jmaz = 7.5 [rad/s?],
\
the duration of the filters M;, M5, S3 become

(

T, = 1.33s],
§T, = 0.5 [s],
Ts = 0.314 [s].

\
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Then by setting 75 = Ty = 1 the acceleration is limited to a},,, < @me and the

max

duration of the sinusoidal filter must be recomputed becoming

a* T

Ty = —mer 2 — (.157 [s].

jmam

Therefore the total duration of the trajectory is 171 + T3 + T3 = 2.49 [s] that is

consistently shorter than the modified trapezoidal one.

4.4.3 Uniform B-Spline trajectories

In Section 4.3.3 a method for the implementation of a uniform b-spline trajectory
generator based on dynamic filters is reported. The generator exploit the equivalence
between a b-spline trajectory of degree d and the output of a chain of d identic mean
filters of duration T, fed by a proper staircase signal built by means of the control
points p; of the desired spline trajectory. In [11] the chain of d filters has been
analyzed in terms of frequency response and compared to the most common input
shaping techniques, leading to a design procedure that takes into account the dynamic
constraint of a given plant in order to minimize residual vibrations. In particular the
analysis points out the low-pass behavior of the filter chain and a zeroing effect at
frequency w = 27/7T (and multiple frequencies kw, k € N), being T" the knot span
of the b-spline trajectory. Also, for growing degree d of the spline both the low-pass
behavior and the zeroing effect are enhanced, making the b-spline generator even
more robust of n-derivative input shapers (see Chapter 2) with respect to vibration
reduction. Therefore a proper choice of the knot span 7" and accordingly the duration
of the filters permits to greatly reduce vibrations without the addition of command
shapers.

The discussion in [11| can be further extended including the considerations given in
Section 4.4.1 with respect to the mean filter M(s). In particular has been already
stated that the mean filter can actually suppress a vibration of period Ty = 27/w,
given that the duration of the filter M (s) is set to T' = Ty. Also, it has been shown that

the frequency analysis of a trajectory generator based on a chain of dynamic filters,
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Figure 4-27: Uniform cubic b-spline trajectory applied to an undamped second order
system G(s) with Ty = 27 /w,. In (a) the motion law is provided by means of a
filter-based generator assuming a knot span 7" = 1.257;. In (b) the same motion
law is provided assuming 7' = Tj. Pictures below denoted with £(¢), describe the
error between the set-point given by the generators (red dashed line) and the actual
position of the system G(s) (in blue).

can be easily performed by composition of the contribution of each single element
of the chain, i.e. in terms of pole-zero diagram it results the merge of the diagrams
of each filter. Therefore for a b-spline generator of order d with knot span 7' the
pole-zero diagram results equal to that of fig. 4-17(a) considering every poles/zeroes
of multiplicity d. This also makes the comparison in [11| with respect to derivative-
based input shapers consistent, since the effect in terms of pole-zero diagram of an
n-derivative 1S is to augment the multiplicity of the zeroes of a ZV IS to an order
n + 1. In addition the vibration suppression conditions for the cascade of filters
directly descend from that of the single filter M;(s), that is being G(s) an undamped
second order system whose period of vibration is Tj, the b-spline trajectory generator
can provide a vibration-free motion if the knot span 7' is chosen such that 17" = Tj.

However the choice of the knot span for a uniform b-spline trajectory planner has a
direct influence on the dynamics of the set-point that can be provided to the plant.
In particular being the knots equally spaced, the span 7" is usually chosen accordingly
to the frequency content of the desired motion law in a sampling fashion. That is the

lower is the allowed interpolation error between desired motion and spline trajectory,
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the lower is the knot span 7' (which assumes the meaning of a sample time for the
desired motion) and therefore the greater is the number of via-points q,;. These
considerations lead to define two different cases, respectively when the motion law is
discretized by means of a sample time 7" which is longer or shorter than the period
of vibration Tj.

The case T' > Ty is reported in fig. 4-27 for a uniform b-spline trajectory of order
3 feeding an undamped vibratory system G(s). It can be noted that accordingly to
what said before, even if the choice of T' > Tj acts as a conservative solution to reduce
the amplitude of the vibrations, it doesn’t assure the complete suppression because
the cancellation of the poles of G(s) that cause the vibration doesn’t occurs. In
particular the tracking error £(t) of fig. 4-27(a) highlights a residual vibration during
the whole motion. In fig. 4-27(b) however, the same motion law is given by means
of a generator composed of filters whose duration 7% = Ty completely suppress the
vibration. It is worth noting that in general the change of the duration 7" must be
accompanied with the recomputing of the via-points of the trajectory, in fig. 4-27(b)
for example the motion law has been sampled again with the sample time 7. In
this way the total number of via-points g; has grown (up-sampling) but the resulting
trajectory maintains the same characteristics in terms of kinematic constraints, i.e.
velocity, acceleration, etc..

In fig. 4-28 instead the dual case is shown, that is when the spline trajectory is
computed with a knot span 7" < T. As can be seen in fig. 4-28(a) this is an undesirable
condition that may causes large vibrations. In order to suppress the vibration one
has to raise the filters duration to 7* = T}, however in this case recomputing the set
of via-points may not be desirable. In fact this would be a down-sampling procedure
that affects the interpolation error with respect to the desired motion law, which
typically grows as the sampling become less dense. Therefore when recomputing via-
points is unsatisfactory the only solution is to assume an overall slow-down of the

trajectory by acting only on the duration of the filters as shown in fig. 4-28(c).
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Figure 4-28: Uniform cubic b-spline trajectory applied to an undamped second order
system G(s) with Ty = 27/w,. In (a) the motion law is provided by means of a
filter-based generator assuming a knot span 7" = 0.757;. In (b) the same motion
law is provided assuming 7' = T{ and recomputing the via-points accordingly, in
order to maintain the same dynamics of the trajectory. In (c¢) the spline trajectory
is generated assuming 7" = T, but using the same via-points of (a) avoiding down-
sampling. Pictures denoted with &(¢), describe the error between the set-point given
by the generators (red dashed line) and the actual position of the system G(s) (in
blue).
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4.5 FIR Filters for Online Trajectory Generation

The expression of a generic trajectory is usually provided in the continuous-time
domain by means of an analytic function of time ¢. On the other hand, for being used
as a reference signal for a computer controlled system, it needs to be evaluated at
discrete-time instants t, = kT, being Ty the sampling period. For this reason, it is
convenient to directly express the trajectory in the discrete-time domain, obtaining

a system able to provide at each time instant k7, the value g(k).

4.5.1 Multi-Segment Trajectory Generator

In 4.3.1 a planner for multi-segment trajectories is obtained by connecting d filters

M;(s) in a cascade configuration fed by a step function
h
Q,(s) = o M (s) - My(s) - ... My(s). (4.80)

Starting from the above equation it is possible to deduce an equivalent discrete-time
system by discretizing the filters with one of the techniques available in the literature
and providing as input the sequence obtained by sampling with a period 7 the
continuous step function. In particular in [13], the adoption of backward differences
method leads to a discrete-time system composed by a chain of FIR filters, whose
transfer function results

Mi(z) = M(s)] 1.

s=

T,1— 2N
= iil 1 (4.81)
B 11— 2N
- Nz 1— Z_l
where
T;
N, = T (4.82)

is the number of samples (not null) of the filter response, which is also equal to

the number of elements composing the FIR filter as they appear in the equivalent
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Figure 4-29: System composed by d moving average filters for the computation of
an optimal trajectory of class C4~! at discrete time-instants kTs.

(nonrecursive) formulation

1 1 1 1
Mi(2)=—+—z'4+ —224 .+ —z N1 4.83
(2) N + Niz + Niz + ...+ Niz (4.83)
Note that (4.83) is the expression of a moving average filter, which averages the last

N; samples. Finally, the expression of ),,(z) representing the discrete-time trajectory

¢n(k) in the Z-domain results

h

1

Q,(2)

CM(2) - Mo(2) - .. Miy(2) (4.84)

where is the Z-transform of

— 1

1, fork=0,1,2,...
u(k) = (4.85)
0, for k<O.

It is worth highlighting that the temporal sequence ¢, (k) = Z7'Qn(z) only approxi-
mates the corresponding continuous-time trajectory ¢, (t). However, it is possible to
prove that when 7§ goes to zero, such an error vanishes. From a practical point of
view, this means that, for sufficiently small sampling periods, the sequence ¢, (k) can
be used in lieu of the corresponding function g, (t) without appreciable differences.
The bank of d FIR filters shown in fig. 4-29, fed with sampled step functions (defin-
ing the desired final positions), can be therefore adopted to generate the trajectory
of order d. Also the structure proposed in fig. 4-29 for the generation of time-optimal

trajectories results very efficient from a computational point of view. In fact, the i-th
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FIR filter is characterized by the differences equation

a(k) = ik 1)+ - (G () s (k= N)) i =L.d (450

and, for the evaluation of ¢; at the ¢-th sampling instant, only two additions and one
multiplication are necessary. Therefore the trajectory of order d requires d multipli-
cations and 2d additions. It is worth nothing that the order of complexity of the chain
of FIR filters and of the equivalent polynomial expression is comparable, but in case
of direct evaluation of the analytic expression of the trajectory it is also necessary a
search algorithm to determine which segment must be considered at a specific value of
time ¢ and a switch statement to apply a different expression for each tract. For this
reason, especially for high values of the order d, the expression based on FIR filters
may be preferable to the standard analytic expression of multi-segment trajectories

both in terms of implementation complexity and computational costs.

4.5.2 Discrete-Time Filter for Trigonometric Blends

In Section 4.3.2 the generation of a C**! class trajectory with “sinusoidal” blends has
been achieved by adding a proper filter Sy, 1(s) at the end of a chain of d moving
average filters M;(s) as in fig. 4-11. Moreover in Section 4.5 the discretization of a
multi-segment trajectory generator has been reported leading to a chain of FIR filters.
Therefore in order to provide a discrete-time trigonometric trajectory generator it
is necessary to discretize the sinusoidal filter S;(s) in (4.53). In [12| the discrete
transfer function S;(z) of the sinusoidal filter has been computed by z-transforming

the sequence obtained by sampling (4.52) with a periods T:

(1 —cos(§)) (=" + z~ (Nt 1))

1—2z71cos(§) + 272

where N; = T; /T, In this way, the impulse response of the discrete-time filter coincides
exactly with continuous one at discrete time instants k7, and is therefore zero for

kETs > T;. Note that, being cos(%) a constant to be computed only once, the digital
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implementation of S;(z) is computationally efficient, requiring four additions and two

multiplications.

4.5.3 FIR Filters for Uniform B-spline Trajectory Generation

A unified transformation to convert analytic B-splines in the discrete domain does not
exist yet. In particular, with reference to cardinal B-splines it is possible to find in
the literature different techniques to obtains discrete B-splines. In general, they are
defined by directly sampling analytic B-splines with Z-transform, bilinear transform,
etc.

In [10] the discrete B-spline qy, is defined as the sequence that equals the corresponding

analytic uniform B-spline ¢,(t) at the discrete-time instants k7:

Ak = Gu(KT). (4.87)

where it is assumed that T'= N T, N € N, i.e. that the generic knot span 7" contains
a whole number N of sampling periods. Since a B-spline is nothing but a linear
combination of basis functions properly translated in time, the exact discretization of
the basis function B%(t) is considered at first. In particular the discrete basis function

Bl = BY(kT's) can be expressed as

1 1 1
Bi=Blx 5 Blx. B2 Fa(a7) 1+ By (4.88)

-~

d times

where x denotes the discrete convolution product, Z the Z-transform,

1, if k=0,1,...,N—1
By = B(KT,) = (4.89)

0, otherwise.
and Fy(z7') is a FIR filter defined by

2 Qa (7Y

Fy(z7h) = (4.90)
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Fi(z7h) = 2z}

Fy(z7l)y = 271 4 1272

Fy(z7l)y= 171 4+ 2272 4+ 1273

Fy(zl)y =Lz 1+ 824 B34 Lot

Fi(z) =gzt 4+ 282724 80,834 20744 L5
Table 1

Expression of the filter Fy(z~!) for different values of d.

with the polynomial
QN =croteuzt +. ez Y 4,2 (4.91)
whose coefficients (for » > 2) can be computed in a recursive way as

Cr0 = Crp = 1

Crr—i = Cr—1pr—i—1" (Z + 1) + Cr—1,r—i " (’l" —i+ ]-)

with s =1,..., [g}, being H the integer part operator. In Tab. I the expression of
the FIR filter F;(27") defined in (4.90) is reported for several values of the B-spline
degree d. From (4.88) it follows that, analogously to analytic B-splines, a generic
discrete basis function B¢ of degree d can be computed by applying the sequence BY

to a chain of d mean filters. In the discrete-time case, it is necessary to consider the

Blg 1—z—N . Fd(z_l) Bl(gl

> 0 06 06 ——p %1_2_1

d blocks

Figure 4-30: System composed by d moving average filters and by the FIR filter
Fy(271) defined in (4.90) for the computation of the discrete B-spline basis function

B{ of degree d.
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additional filter Fy(271) as illustrated in Fig. 4-30. Therefore the discrete B-spline
qr = ijBff_jN (4.92)
j=0

of degree d can be obtained as output of the dynamic system composed by a cascade

of d moving average filters

11—2N
1
= N(1+z_1+z_2+...+2_w_1))

and by the additional FIR filter F(2~') feeded with the piecewise constant function

Dy = ijBlg—jN (4.94)

=0
where p; are the control points of the related analytic B-spline. In Fig. 4-31 the
function p, is reported along with the values of the analytic B-spline corresponding

to the given control points p; at the discrete time instants k7.

The procedure described so far leads to an exact discretization of the basis function
of uniform B-splines of generic degree d that can be recursively defined starting from
B°(t), and therefore the discrete B-spline can be obtained. However in this case
it is necessary to take into account the presence of the FIR F,;(2~') which makes
the relation more complex. On the other hand, one would expect that a discrete
B-spline basis function of a given degree d could be defined as a cascade of d mean
filters that receives as input the discrete-time function BY = BY(kT,) similarly to
the continuous case. This is equivalent to neglect the term Z=!'{F,(27!)} in (4.88)
and leads to the definition of approximated discrete B-spline basis functions and
approximated discrete B-splines, that do not share the same values of analytic basis
functions B4(t) and analytic B-splines qu(t) at discrete points k7T, but approximate
such values within a prescribed tolerance that depends on N. In particular it can be

proved that when N reaches an high value, the difference is considerable reduced (for
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Figure 4-31: Samples of the piecewise constant function p, (a) generating the spline
profile q; that interpolates the given points q; (b).

instance for N = 500 the error is less than 1%) and the use of discrete B-spline basis
functions with or without Fy(z!) is nearly the same.

Anyway, although a chain composed only by running average filters is particularly
attractive (and simple), it is worth noticing that, the FIR filter Fy(z~!) involves only
a slight additional complexity. Namely this filter only depends on the last d samples

of the input but relaxes constraints on V.

4.5.4 Uniform B-spline Online Trajectory Generator
Based on FIR Filters

In sections 4.3.3 and 4.5 the methods for design and implementation of a uniform
B-spline trajectory generator are reported showing that this kind of splines can be
efficiently generated by means of a chain of linear filters properly fed with the se-
quence of the control points that determine the shape of the curves in the space. The

trajectory generator shown in fig. 4-33(a) is composed by d moving average filters of
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order N and an algorithm that transforms the desired points g, in the set of control
points p; used for defining the sequence p(k) which is the input for the filter chain.
Note that the B-spline is defined by adopting a sampling period Ty, that generally
coincides with the sampling time of the overall control system, while p(k) is a piece-
wise constant sequence, in which the generic value p; is maintained for T'= N - T's
seconds. Moreover, it is worth noticing that, while the spline evaluation is performed
online, its definition (i.e. the computation of the control points) is made off-line.
In particular in [10] it is shown that by adopting B-splines of generic degree d, the
systems to be solved for obtaining the control points will be characterized by banded
matrices, whose inversion can be carried out in a very efficient way.

Anyway it is clear that such a solution can only be found once all the via-points g;
are known, i.e. the solution must be performed off-line. However, when the via-points
are given progressively, it may be desirable that control points are calculated runtime
by approximating, if possible, the ideal solution. To this purpose, in [14] it is demon-
strated that the relationship (4.61) between control points and via-points can be seen
as a dynamic relationship between via-points and control points, that in the domain

of the Z-transform can be expressed as

P(z) 6
= 4.
Qz) z+4+z271 (4.95)
for cubic B-splines, and
P 120
(2) _ (4.96)

Q(z) 22 +262+66+ 262" + 22

for quintic B-splines for example. Unfortunately, both filters (4.95) and (4.96) are
unstable system and consequently they cannot be used for computing the sequence
p; from g;. This is a direct consequence of the fact that the interpolation procedure
is a global problem that involves all the points g;. Thus in order to implement such
a filter, the most straightforward method is to truncate the ideal impulse response by
windowing. In other words it is possible to approximate the interpolation process by

taking into account only a small set of points g,. This approach leads to a FIR filter
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Figure 4-32: Impulse response h(n) of the filter (4.95) (a) and of the filter (4.96) (b).

defined by )
H(z)= )Y h(n)z" (4.97)

n=—r
that approximates the impulse response of (4.95) and (4.96) within a prescribed
tolerance according to the value of r. The sequences h(n) for d = 3 and d = 5 are
reported in Fig. 4-32 and in both cases it can be noted that the value of h(n) becomes
extremely small as |n| grows. Namely the choice r = 4 for example guarantees an
approximation error with respect to the exact solution of the interpolation problem,
smaller than 0.5%.

Moreover, since H(z) is not a causal filter, in order to practically implement the
transformation between via points and control points it is necessary to introduce a

delay equal to r which makes the filter feasible, that is

H'(z)=2z"H(z)=» h(n—r) 2" (4.98)

n=0



By means of H’(z) it is possible to replace the off-line interpolation leading to a
complete on-line trajectory generator that assume an arbitrarily small interpolation
error. The chain is then composed by two main elements a FIR filter H'}(z) of
order 2r + 1 that computes the control points from desired via-points and a cascade
of d moving average filters. The former element is computed with a sample time
T, multiple of the basic sample period T's (T = N - T), that represents the time
distance among the points to be interpolated/approximated. The average filters are
implemented with a period T}, and they have an impulse response of length equal to
T, being of order N. Between the two elements, it is necessary a rate transition from

T to T, that maintains the value p; for 7" seconds, see fig. 4-33(b).
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Figure 4-33: Overall structure of the filter for B-spline trajectories planning. In (a) is shown the solution with off-line inter-
polation as reported in Section 4.5, while in (b) is the full on-line trajectory generator which implements the filter H'(z) for
approximated interpolation solution, in particular the case of an on-line cubic spline trajectory generator is shown.
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Chapter 5

Optimal Trajectories
for Vibration Reduction

Based on Exponential Filters

5.1 Filter for Exponential Jerk Trajectory

In Section 4.4.1 the considerations upon the frequency analysis of multi-segment poly-
nomial trajectory generators based on dynamic filters leaded to a technique for the
optimal selection of the parameters of a standard d-order trajectory, when dynamic
constraints are taken into account aside from kinematic ones. In particular for a third

order trajectory generated by means of three linear filters

1—eh

as shown in fig. 5-1, the parameters of the trajectory generator (i.e. time duration of

the filters T;) are chosen such that

T1 - y T2 - Umaz (51)



()] 1—eTt |qu(t)] 1—eT |gt)] 1—eT |g3(t)
sTh sTy sT3

Figure 5-1: Structure of a standard third order trajectory generator.

guarantee that the trajectory from ¢y to ¢1 (h = ¢1 — qo) complies with the velocity

limit v,,,, and the acceleration limit a,,,,, and the choice

T; = 2 (5.2)

Wn
assures that the frequency content of the trajectory is able to cancel the residual vi-
bration when the trajectory is applied to an undamped resonant system characterized

by natural undamped frequency w, and 6 = 0.
Unfortunately, if the damping coefficient is not zero, the effectiveness of the filter
output (and therefore of standard constant jerk trajectories) in vibration suppres-
sion considerably decreases. In fig. 5-2 the tracking errors of a resonant system with
0 = 0.0083 and 6 = 0.083 to a standard third order trajectory are compared. Note
that if 6 grows, when the motion stops (that is for ¢ > T},), the peak value of the
oscillations of the mechanical system accordingly increases. Moreover, also very small
values of § cause vibrations. The effects of damping are analyzed in fig. 5-3, where
PRV, the percent residual vibration, is shown as a function of §. The increasing of
vibration’s amplitude is consequence of the fact that in the design of the filter M3(s)
the damping coefficient is not considered. The only way to take into account ¢ is in
the selection of the time constant T3, and therefore the duration of the constant jerk

segment, which can be assumed as

2T

Ty= — 2
’ wpV 1 — 02

Unfortunately this choice mitigates but does not solve the problem, as shown in
fig. 5-3.
In order to suppress vibrations in systems whose damping is not negligible, in [7]

the use of a nonconstant limited jerk profile is proposed. In particular, a dynamic filter
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Figure 5-2: Residual vibration due to a third order trajectory ¢s(t) with h = 30 rad,

Vmaz = 250 tad /s, ame: = 5000 rad/s?, applied to a second order system with w,, =
260.43 rad/s and § = 0.0083 (a) and 6 = 0.083 (b).
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Figure 5-3: Percent residual vibration as a function of damping coefficient § of a
second order filter system whose input is filtered by Mj(s).

to be applied to second order trajectories is devised. The filter produces asymmetric
jerk segments, characterized by a linear decrease, as shown in fig. 5-4. The slope of
these segments is computed by solving an optimization problem aiming at minimizing
the residual vibration. This approach seems very promising as shown in fig. 5-5, where
the same conditions of fig. 5-2 are considered: in both cases the residual vibrations

are completely suppressed.

However, it is worth noticing that some weak points still exist in this technique:

e A closed-form solution for the computation of the filter parameters is not avail-
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Figure 5-4: Asymmetric jerk trajectory ¢o, for h = 30 rad, v = 250 rad/s,
Umaz = 5000 rad/s?, and § = 0.083 (a) and § = 0.45 (b).

able and the numerical approximation provided in the paper is valid only for
sufficiently close to 0. For instance, if 6 = 0.45 the trajectory does not cancel

residual vibrations, as shown in fig. 5-6.

e For high values of ¢, it may happens that the sign of jerk changes within the

same segment. As a consequence the acceleration profiles exhibits undesirable

overshoots, see fig. 5-4(b).

In order to avoid the above mentioned problems, a shaping technique based on ex-
ponential functions has been proposed in [15|. Given a second order trajectory g¢o(t),
obtained for instance with the cascade of two filters M (s) - Ms(s), a multi-segment

trajectory with jerk segments defined by exponential functions can be obtained by
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Figure 5-5: Residual vibration due to a third order trajectory with asymmetric jerk
¢2,4(t) under the same conditions of fig. 5-2.
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adding in the chain the filter

a 1— eCl{TJ e—TJS

Fop(s) = (5.3)

exTr — 1 s—a«

where o and 7Tj are proper parameters that determines the decay rate and the time

duration of impulses composing the jerk profile. As a matter of fact, the impulse

response of F,,,(s), shown in fig. 5-7, is

o 1, 0<t<Ty
feap(t) = Ty 1 _
e 0, otherwise



Jean(t) ]

o lal?

eaTJ_l

Ty t
Figure 5-7: Impulse response of filter F.,,(s) for negative values of parameter a.

Therefore when applied to the trajectory go(t) characterized by a piece-wise constant
acceleration, the filter transforms the jerk signal composed by impulsive function
+am4:0(t — t;) in a sequence of exponential segments, see fig. 5-8. Note that the
maximum value of the jerk can be computed as jmar = Gmaz =777

The filter F,.,(s), which does not modify the limit values of velocity and accelera-
tion of the original trajectory ¢»(t), can be profitably applied to suppress residual
vibrations in those resonant systems that are characterized by significant damping

coefficient in lieu of standard third order trajectories with limited, but constant, jerk.

Theorem 1. The filter F.,,(s) in (5.3) guarantees the complete residual vibration
suppression for a vibratory systems G(s) described by (1.3) in Section 1.1 fed by step
nputs if

o= —0wy (5.4)
2T

T =k ———
! wpV' 1 — 02

k=12, .. (5.5)
Proof. When a step input filtered by F.,,(s) is applied to the system (1.3), the track-

ing error between the load position and the motor position can be computed as

- (s) ! (5.6)
cFegp(s) - —. .
$2 + 20wy, s + w? v 5

E(s) =
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Figure 5-8: Second order trajectory ¢o(t) with A = 30 rad, vye, = 250 rad/s, e =

5000 rad/s?, and corresponding exponential jerk trajectory ¢ for w, = 260.43 rad/s
and 0 = 0.083 (b).

By inverse Laplace transforming E(s) and assuming ¢ > 7', the analytic expression

of residual vibrations descends:

e(t)=A [ae ™" (cos(Qt) — cos(Q(t — Tyy))elPentoTr)

—Be % (sin(Qt) — sin(Q(t — TJ))e(‘s“’”Jra)T")}

with

a
A= (e2Tr —1)(a? + 20w, + w?)’ (5.7)

awnd + w?

w1 — 02
Q=w,V1-— 6.
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Therefore, in order to assure that (t) =0, V ¢t > T} it is sufficient that

ow,+a=0 & o= —0w,
2 2
! ’ Q wWpV1 — 02

Note that F..,(s) is a generalization of a standard filters with rectangular impulse
response, which produce piecewise constant jerk profiles. As a matter of fact, when
0 = 0 and consequently o = 0, the straightforward application of the I’Hopital’s rule

leads to
Q 1

im ——— =
a—0exly —1 Ty

and therefore

a 1—elielis 11— ey
lim F, =i =—
550 eap(5) and eaTs — 1 5— T; 5
Differently from asymmetric jerk trajectories, whose ability to cancel vibrations for
systems with 0 = 0 leaded to define a proper design algorithm in Section 4.4.1, the
parameters of F,.,(s) that assure the complete vibrations cancellations are easily
calculable in the whole range of 6 € [0, 1], and the problems tied to changes in the

jerk sign are never present.

Theorem 2. Third order trajectories with the jerk profile composed by exponential
segments satisfying (5.4) and (5.5) guarantee that no residual vibrations are present

in the resonant system (1.3).

Proof. Third order trajectories with exponential jerk, whose analytical expression is
reported in Chapter 4, can be obtained by filtering a step signal of amplitude A (where
h is the desired displacement) with the cascade of linear filters M, (s) - Ma(s) - Frpp(s).

Therefore, when the trajectory is applied to the system G(s), the tracking error
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Figure 5-9: Residual vibrations due to a third order trajectory with exponential jerk
¢2,¢(t) under the same conditions of fig. 5-2, but with 6 = 0.083 (a) and 6 = 0.45 (b).

between the load position and the motor position is given by

—g2

2 + 20w, + w? <M1(S) - My (s) - Fopp(s) - g)

= 12(9) M) (g Pl )

§2 + 20w, s + w2 s

Ep (s) =

=h-M(s) - My(s) - E(s) (5.8)

where E,, (s) is the Laplace transform of the tracking error to an exponential jerk
trajectory, and FE(s) is the transform of the error £(¢) to a step input, considered
in (5.6). If the conditions (5.4) and (5.5) are met, e(t) # 0 only for ¢ < T and,
because the filters M;(s) and Ms(s) are characterized by a finite length impulse
response of duration 77 and 75 respectively, from (5.8) it follows that e, (t) # 0 for
t < Ty + 715+ Ty and e (t) = 0 otherwise. This means that after the end of the

reference trajectory (whose duration is Ti,; = 11 + T + 1) residual vibrations are

completely cancelled. O

In fig. 5-9 the tracking errors obtained with exponential jerk trajectories are
shown by considering resonant systems with quite different damping coefficients, i.e.

d = 0.083 (a) and 6 = 0.45 (b). In both cases residual vibrations are completely

suppressed.
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5.2 Sensitivity to Errors in Parameters Definition

Since the identification of the optimal values of the filter parameters does not require
an explicit knowledge of the damping coefficient and of the natural frequency of the
plant, the robustness of F.,,(s) is evaluated first by considering errors in o and 7
with respect to their nominal values, while the sensitivity with respect to changes in
0 and w,, will be analyzed in Sec. 5.4 in order to compare different types of solutions
to the problem of vibrations suppressions. In fig. 5-10 the percent residual vibration
PRV% due to errors in the estimation of the parameters o and T; are reported for
different values of the damping coefficient and natural frequency of the plant. In
particular the ranges [@/2,24] and [T;/2,21)] about the nominal values (6, 7) are

considered. From the figure, it is possible to conclude that

e the nominal value of the natural frequency of the plant does not influence the

robustness of the filter F.,,(s) while the damping coefficient does;
e the choice of T} is definitely more critical than the choice of «;

e an underestimation of 7T'; leads to large oscillations; conversely, a value of T’
higher than the nominal one produce limited vibrations especially for high

damping coefficients.

5.2.1 Sensitivity to Unmodeled Dynamics of the Plant

According to Theorem 1 the filter F,,,(s) in (5.3) and consequently the exponential-
jerk trajectory obtained when the filter is applied to a second order trajectory ¢s(t),
like in fig. 5-8, guarantees a complete cancellation of the vibrations if the plant can be
modelled as a second order system such as (1.3). However, typical industrial plants
include additional dynamics that may modify the effects of the proposed filter. If the
model of the plant includes additional stable dynamics AG(s), e.g.

Gp(s) = G(s) AG(s), (5.9)
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Figure 5-10: Sensitivity of F,,(s) to changes in o and T for different values of 6 and
wy, of the plant: 6 = 0.0083 (1), 6 = 0.083 (2) and J = 0.45 (3); w, = 260.53 rad/s
(a) and w, = 2.6053 rad/s (b).
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Figure 5-11: Response of a resonant system with an additional real pole, Gp(s) =
G(s) Tsl+1 with w, = 260.43 rad/s, 6 = 0.0083 and 7 = 0.0046s, forced by a step input
of amplitude h = 30 rad (a) and a step input filtered by the filter F,,,(s) (b).

it is possible to show that the properties of Fi,,(s) remain unaltered. As a matter of
fact, because of the linearity the response of the system (5.9) to a filtered step input
is

Quls) = Gols) Fex,,(s)é — AG(s) (G(s) Femp(s)é) .

Therefore, the ideal response obtained with the nominal model G(s) which, according
to Theorem 1, does not have residual vibration, is simply filtered by AG(s). Note
that the dynamics AG(s) will introduces additional modes in the response, but cannot
excite again the resonant mode of G(s) damped by the filter Fi,,(s).

In particular, if AG(s) represents a dynamics faster than the nominal model G(s)
and completely damped, for instance a real pole with time-constant 7 = 1—10&, the
response of the system to a step input without and with the filter F,,,(s) is the one
shown in fig. 5-11: the presence of the additional pole involves an increased duration
of the response that in the nominal case reaches the steady-state condition in 7
seconds, but the residual vibration is completely suppressed.

Also, if the convergency rate of the additional pole is comparable with the rate of the
undamped (complex) poles that characterize G(s) the result is similar, that is the use
of F,,, cancel the oscillations that otherwise will affect the response. See fig. 5-12
where the unmodeled dynamics AG(s) = %H with 7 = ﬁ has been considered.

In case of systems with multiple vibratory modes, a single filter F.,,(s) is only

able to cancel the oscillations due to a specific mode. As a consequence, the use of a
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Figure 5-12: Response of a resonant system with an additional real pole, Gp(s) =
G(s) T81+1 with w,, = 260.43 rad/s, § = 0.0083 and 7 = 0.046s, forced by a step input
of amplitude h = 30 rad (a) and a step input filtered by the filter F.,,(s) (b).
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Figure 5-13: Response of a resonant system with 2 vibrational modes characterized
by w1 = 260.43 rad/s, wy, 2 = 389.2971 rad/s and § = 0.0083 forced by a step input
of amplitude h = 30 rad (a), a step input filtered by the filter F.,,(s) designed to

take into account w; (b) and a step input filtered by two filters F,,,(s) which consider
both w; and wy ().
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Figure 5-14: Response of a resonant system with 2 vibrational modes characterized
by wp1 = 260.43 rad/s, w,o = 389.2971 rad/s and § = 0.0083 forced by a second
order trajectory go(t) with h = 30 rad, Ve = 250 rad/s, ame. = 5000 rad/s* (a),

an exponential jerk trajectory ¢o.(t) taking into account w; (b) and the trajectory
¢2.2¢(t) of fig. 5-15 which considers both w; and wy (c).
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filter F.,,(s) does not guarantee the complete residual vibration suppression but it is
necessary to consider the cascade of two or more filters, each one related to a specific
mode. In fig. 5-13 the step response of a plant characterized by two modes with
the same damping coefficient ¢ but different natural frequencies w, ; and w, 2, with
Wno = %wn,l without and with filtering action is shown. A single filter F;;(s) consid-
erably reduces residual vibration but does not cancel all the oscillations. Therefore,
a second filter F;o(s) is necessary to completely suppresses undesired vibrations with
the consequent increase of the delay caused by the filters. If the two filters are not
applied to a step signal but to a second order trajectory ¢o(t), like in fig. 5-14, the
capability of suppressing residual vibrations can be merged with the compliance to

kinematic constraints but in this case the final trajectory is not characterized by a

jerk profile composed by tracts of exponential function, see fig. 5-15.

i i i i
0 0.05 0.1 0.15 0.2

t [s]

Figure 5-15: Profiles of the trajectory gs2.(t) obtained by applying to the trajectory
¢2(t) of fig. 5-8(a) two exponential filters with w, ; = 260.43 rad/s, w,2 = 389.2971
rad/s and § = 0.083 (b).
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Figure 5-16: Structure of the discrete-time filter for exponential jerk generation.

5.3 Digital Implementation of the Exponential Filter

Since the generation of exponential jerk trajectories is based on the dynamic filters

fed by step functions, i.e.

Qac(8) = Mi(s) - Ma(8) - Fegp(s) - %

it can be easily performed online by modifying the input signal. However, the practical
use of the proposed filter requires its transformation in the discrete time domain (7
denotes the sampling period) because trajectory planning is generally performed by
digital controllers. This conversion can be obtained with two main techniques, being

the impulse response of F.,,(s) of finite length:

1. it is possible to obtain the coefficients of a FIR filter by sampling the impulse
response fe.,(t) with period Ty;

2. it is possible to deduce the IIR transfer function corresponding to F.,,(s) by

means of usual discretization techniques.

In order to obtain a closed form expression of F,,,(z) the second approach has been
preferred. By Z-transforming the filter F,,,(s) given in (5.3) and imposing a unitary

static gain, the following expression descends

1 — eaTs 1— eaTs eaNJ Z_NJ
Feap(2)

(5.10)

- 1_eaTS eaNJ 1_eaTS Z—l

where N; = round(7;/Ts). In fig. 5-16 the complete structure of the discrete-time
filter for online generating exponential jerk trajectories is shown. Note that in order
to guarantee that the sequence of values of the discrete time-trajectory coincides with

the continuous-time profile at sampling times, its expression should be obtained by
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Z-transforming the overall chain of continuous filters with a step input, i.e. Qq(2) =

Z{Q2(s)}. Therefore, the following expression can be deduced

Quelz) = - _hz_l M(2) - Ma(2) - Foy(2) - F(2) (5.11)

where F’(z) is a FIR filter with unitary static gain, whose expression is

F'(2)=foz '+ fiz 2+ fo27° (5.12)
being

f = —2 4+ 2eP —2p — p?

2 —1)p?
;= 4 — 4def + 2p + 2peP — p? + pPef

L 2(er —1)p?
b= —2 4 2e” — 2pef + pPef

‘o 2(er —1)p?

and p = oT,. By comparing (5.11) with the discrete-time generator of fig. 5-16, it
comes out that the difference between the two output sequences is only caused by
the filter F’(z), whose main effect consists in a time delay of two sampling intervals.
By neglecting this filter, a time anticipation is therefore introduced in the generator,
as shown in fig. 5-17, where the step response of the continuous-time filter and the
sequences obtained with the exact discretization and with the approximated gener-
ator of fig. 5-16 are reported. In order to emphasize the approximation error the
sampling period has been intentionally assumed very large (75 = 0.1 s). In this way
it is possible to appreciate that, besides the time anticipation, the discrete-time filter
provides an excellent approximation of the desired trajectory. Obviously, when the

sampling period decreases, the difference between go.(t) and the approximated go (k)

!Since the sampling frequency w, is generally chosen by assuming that w, > 10w,,, the parameter
p = —&uni—” results quite small in magnitude, i.e. —0.6283 < p < 0. As a consequence, the range
of variation of the coefficients defining F’(z) is rather limited (0.1412 < fu < 0.1667, 0.6666 <
f1 <0.6656, 0.1667 < fo < 0.1932). Moreover, f7 is considerably higher than other coefficients and
therefore a rough approximations of F’(z) can be obtained by neglecting fy and f», and assuming

that that F'(z) ~ 272
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Figure 5-17: Comparison between the trajectories produced by exponential jerk
trajectory filters defined in the continuous- and discrete-time domain with 77 = 15,
Ty =0.6s (V; = ceil(T;/T's)), Ty = 0.2s and o = —3.

tends to vanish.

A last remark concerns the computation complexity of the proposed trajectory gen-
erator. As illustrated in Tab. I, where the difference equations of the trajectory
generator shown in fig. 5-16 are reported, at each sampling time the computation of
the output of the the cascade of filters requires a total of 6 additions and 5 multi-
plications. If the filter F’(2) is considered, 2 more additions and 3 multiplications
must be performed. Moreover three memory areas are necessary, in order to store the
last N7 values of ¢;(k), the last Ny values of ¢o(k) and the last N; values of go. (k).
Note that the trajectory generation based on the cascade of dynamic filters is consid-

erably more efficient than the direct calculation of the closed form equations of the

Table 1
Difference equations corresponding to the trajectory generator of fig. 5-16. The

values of the constant parameters a; are:

_ 1 _ ,aT, _ 1—e*Ts _ ,aTs jaN,
Ay = 35, A3 = €77°, A4 = {— o7y any, G5 = €77 em .

01(k) = au(k) + a1 (r(k) = r(k = V) )
@(k) = (k) + a2 (a1 (k) — ai(k — N))
2o (k) = a3 @2e(F) + a1 (k) — a5 aa(k = )
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Figure 5-18:  Complex motion profile go.(k) with v = 250 rad/s, Gme: =
5000 rad/s?, w, = 260.43 rad/s and § = 0.083, obtained by applying to the sys-
tem in fig. 5-16 a reference signal r(k) composed by several step functions applied at
generic time instants.

trajectory, which, besides a larger number of additions and multiplications, requires
2 divisions and the computation of an exponential function depending on ¢.

When a reference signal (k) composed by several step functions starting at generic
time instants is applied to the trajectory generator of fig. 5-16, the profiles shown
in fig. 5-17 are obtained. If the time-instants in which a new trajectory is triggered
comply with the conditions reported in [13] a complex motion profile go.(f) that meets
velocity and acceleration constraints and cancels residual vibrations is obtained. Note
that in this case the jerk profiles is no longer composed by tracts defined by an ex-
ponential function because of overlaps between adjacent jerk impulses. However,
the capability of suppressing vibrations remain unaltered. See fig. 5-19 where the
residual vibrations obtained with a second order trajectory ¢o(k) and with go. (k) are

compared.
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Figure 5-19: Comparison between the residual vibration caused by the application
to a resonant system G(s) of a second order trajectory g2(k) (2(t)) and the corre-
sponding exponential jerk trajectory go.(k) shown in fig. 5-18 (£4.(%)).

5.4 Comparative Analysis with Alternative Techniques

for Vibration Suppression

As mentioned in the introduction, the main techniques for complete residual vibration
suppression based on a proper filtering of the reference signal are input shaping and
inversion of the plant dynamics. A first important difference between these techniques
and the proposed filter F,,,(s) is that they do not increase the smoothness, i.e. the
order of continuous derivatives, of the filtered input. They are generally applied to
reference trajectories with bounded velocity and acceleration and therefore at least
C', that is with continuous first-order derivative, and provide as output a trajectory
of the same class in case of input shapers or even of lower class if filters based on
system inversion are applied. In fig. 5-20 the reference signals obtained by filtering the
second order trajectory go(t) with a ZVD input shaper and with a system-inversion-
based filter are shown. Note that the trajectory g,,q(t) remains C!, i.e. with
discontinuous acceleration, and is compliant with the desired bounds imposed to the
original trajectory g»(?). The trajectory g, i, (¢) filtered by the inverse dynamics of
the plant becomes C°, because some discontinuities appears in the velocity profile.
Moreover the bounds on the trajectory derivatives are not met anymore, see the

acceleration profile of g, (). This behavior of the system-inversion-based filter
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Figure 5-20: Reference signals obtained by filtering the second order trajectory go(t)
of fig. 5-8(a) with a ZVD input shaper (a) and with the inverse dynamics of the plant

(b).

can be rather troublesome, since as shown in fig. 1-1 the system G(s) that causes
vibrations models only the load and the elastic transmission of a more complex system
which includes also the actuator, supposed to be able to perfectly track the reference
trajectory g..f(t). Therefore the reference scheme of a standard motion system with
elastic linkage results as in fig. 5-21. Unfortunately, any kind of actuation system is
characterized by physical limitations on velocity and acceleration and if these bounds

are not met the trajectory becomes unfeasible. Moreover, the requirement of perfect

qﬂ(i)} Controlled motor qm(tL G(s) M}

>
(Umaz: amaa:)

Figure 5-21: Complete model of a motion system with elastic linkage.
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tracking relates the smoothness of the reference trajectory, supposed C?, with the
relative degree r of the linear time-invariant system describing the actuation system
[30], i.e

p>r—1.

As a consequence, in case of an electric actuator, with » = 3, the reference position
for the motor? must be at least C2. This implies that if an input shaping filter is
used for vibrations suppression, the second order trajectory go(t) is not sufficient but
a C? function is required. With an inverse dynamics filter a C* trajectory must be
used. Conversely, the proposed filter F,,,(s), that increases the smoothness of the
input trajectory, needs a simple C* function, like the function g»(¢) which leads to the
exponential jerk trajectory of fig. 5-8.

From a functional point of view, input shapers, system-inversion-based filter and
the proposed filter F.,,(s) guarantee the complete vibrations suppression in nominal
conditions. However as already pointed out in previous chapters, one of the most
important features for a command shaper is the robustness with respect to errors
in model parameters, i.e. 0 and w, in of the considered plant. Accordingly to the
discussion about the other techniques, the robustness of the proposed exponential
filter is investigated by means of the analysis of the transfer function F,,(s).

In particular, assuming to have a vibratory system G(s) as considered in Section

2Note the the transfer function of a standard DC motor is

V(s)  LaJms®+ (RaJm + BimLa)s? + (KyK; + RyBp,)s

Go(s)

where K is the torque constant, K; the back-emf constant, R, the armature resistance, L, the
armature inductance, J,, the rotor inertia, B,, the viscous-friction coefficient and V' (s) denotes the
Laplace transform of the input voltage [54]. A feed-forward control that in nominal case assures
perfect tracking is

LaoJm Ry,Jm + BnL, KyK; + R, By,
K, s3 + ;;Z s% + ’ zz 5) Qref(s)

Vip(s) = G (5)Qres(s) = (

which corresponds to

LaJm 3 RaJm+BmLa 2 KbKi+RaBm 1
o () = =gy (t) + =T (1) = g (),

The control action vys(t) is feasible, that is vys(t) < oo, only if qii)f (t) is limited and accordingly

the reference trajectory g..f(t) € C2.
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Figure 5-22: Step response (a) and Pole-Zero diagram (b) of the system with 6 = 0.1
shaped by F,,(s).

1.1, the exponential filter assures complete vibration suppression, provided that the
conditions in (5.4) and (5.5) are satisfied. In fig. 5-22 the vibration-free step response
of a second order system with natural frequency w,, and damping 6 = 0.1 is reported
along with the pole-zero diagram of the shaped system F,,(s) - G(s), demonstrating
that the vibration is suppressed since the zeroes of the exponential filter actually
cancel the poles of the system G(s) that cause vibrations. In addition it has to
be noted that the effect of the filter is to provide infinite zeroes located on a line
parallel the imaginary axis, plus a pole on the real axis which is cancelled by the
zero associated with the multiplicity & = 0. Recalling the pole-zero diagram of the
mean filter M(s) in fig. 4-17 it is clear that the two transfer functions differs only
by a frequency translation that depends on the value of the damping 6. Therefore
the exponential filter can be considered the frequency translated version of a mean
filter, in particular Fi,,(s) preserves the frequency behavior of M(s) (i.e. frequency
response) and permit to exploit it in the whole decaying sinusoidal domain, that is
with § # 0.

This consideration is not so surprising since has been already demonstrated that
the exponential filter F,,,(s) is a generalization of standard filters with rectangular
impulse response, which produce piecewise constant jerk profiles. Namely in fig. 5-

7 it is shown that the impulse response fe,,(¢) varies accordingly to ||, and the
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exponential-like shape degenerates into a rectangular impulse of length 77 for || = 0.
Moreover, being & = —dw, and known that for a typical second order system the
characteristic complex conjugate couple of poles is lying on a vertical line intersecting
the real axis in ¢ = —dw,, it is straightforward to assume the decay rate a as the
required frequency translation needed to suppress a damped vibration by means of a

mean filter M(s). In fact, being

1 1—eT
My(s) = ————,
J( ) TJ S
and o = —dw,, the desired frequency translation, results

1 1—esTierds

MJ(S—Oé) :AFemp(5>7

TJ S —«

where A takes into account the fact that the proposed exponential filter has unitary
static gain.

Finally this discussion permits to highlight a strong connection between the design
procedure of the exponential filter and input shapers. In section 2.5 has been ad-
dressed that the effect of 6 # 0 in the design of IS result in a frequency translation of
the transfer function for the undamped case. In particular in equations from (2.42) to
(2.47) it is shown that the parameter K defined in (2.3) takes into account the value
of the damping ¢ providing the shift of the zeroes of the IS. In a similar way for the
exponential filter, the translation of « in the above equation, enrich the numerator of

M(s) of the term

e?Tr — ¢ VimsZ
By recalling from (2.3)
K=e e

it turns out that the analogy is evident.

In order to compare the exponential filter to the other techniques for vibration

suppression, in fig. 5-23 the analysis of F,,,(s) on the complex plane is reported along
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Figure 5-23: Comparison of transfer function description on the complex plane of
respectively exponential filter F,,,(s) (a), ZV IS (b) and ZVD IS (c¢). On the right
the diagrams are reported with equal scale to the one of fig. 5-22 in order to better
understand the behavior of the system response. The contour lines are equally spaced
of 0.1 and the zeroes position is highlighted with a black cross
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Figure 5-24: Percent residual vibration as a function of the damping coefficient o
about the nominal value 0 = 0.081 (a) and 6 = 0.45 (b).

with that of ZV IS and ZVD IS. As already noticed from the PRV function of the
mean filter in fig. 4-16 the robustness of the proposed filter F,,,(s) is at an interme-
diate value between ZV and ZV D input shapers. This is due to two main aspects,
on the one hand the multiplicity of the zeroes is one, like ZV IS, on the other hand
the reduced distance between the zeroes of F,,,(s) has a grater overall filtering effect.
In particular it can be noted that for frequencies higher than the nominal one, the
response of the exponential filter is considerably lower than that of IS. That is for
example in lieu of an approximate design solution, one may profitably takes into ac-
count an approach based on underestimating the frequency parameter, while in case
of IS this assumption can’t be considered since the response of IS is always symmetric
to the zeroes.

Also to the aim of comparing all the mentioned different approaches in vibration sup-
pression, an extensive simulation activity has been carried out in order to evaluate the
percent residual vibration of system G(s) as a function of the errors in the estimation
of its parameters, when applying different techniques. In particular since the inverse-
dynamics filter requires a continuous input function, the comparative analysis has
been conducted by using the trajectory ¢o(t) as test function in lieu of the standard
step signal. By means of extensive simulations, the curves reported in fig. 5-24 and

fig. 5-25 have been obtained. For the sake of clarity, the variations of parameters
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Figure 5-25: Percent residual vibration as a function of the ratio w, /@,, where w, is

the actual natural frequency of G(s) and w, is the nominal value used to define the
filter, for 6 = 0.081 (a) and 6 = 0.45 (b).

0 and w, with respect to their nominal values are considered separately. In fig. 5-24
the percent residual vibration is shown as a function of §. Since the nominal value )
influences the results, two different values have been considered in order to show the
behavior of the different filters for small and large damping coefficients (5 = 0.081
and § = 0.45 respectively). For the natural frequency, the nominal value @, = 260.53
rad /s has been assumed, but it is worth noticing that the percent residual vibration
does not depends on this particular value.

The relationship between actual value of natural frequency and percent residual vi-
bration is shown in fig. 5-25, where the ratio w, /@, has been considered. Also in this
case two different values of d have been taken into account.

These curves highlight that the proposed filter F,,(s) is characterized by an interme-
diate robustness between ZV and ZV D input shapers, and results much more robust
than system-inversion-based filters. Moreover, for high values of w,,, Fi,,(s) offers the
best performances, see fig. 5-25. As already discussed in Chapter 4, the filter M;5(s)
that produces constant jerk trajectories, provides similar results for small values of §
(see fig. 5-25(a)), but cannot completely suppress residual vibrations.

Finally, a fair comparison between these methods requires also an estimation of the

time-delay that the filters introduce and of the consequent increase of the motion
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duration. With this respect, it is well-known that an higher robustness of Input
Shapers is obtained by increasing the number of impulses that form the shapers and
accordingly the delay introduced in the motion generation.

System-inversion-based filters do not cause any delay in the reference signal tracking.
However, the need for smoother trajectories implies higher durations of the motion
with respect to lower order trajectories, the bounds on velocity, acceleration, and
higher derivatives being equal. Input shapers, like ZV and ZVD filters, introduce in
the system time-delays similar to that caused by the F.,,(s) filter; in particular the
additional delays are T;/2 for ZV and T for ZVD, but also in this case the need
for higher order input trajectories with respect to the filter Fi,,(s) may increase the

total duration of the motion.

5.5 Experimental Validation of the Exponential Fil-

ter

In order to experimentally test the proposed method the setup of fig. 5-26 has been ar-
ranged. This simple system is characterized by a linear motor, LinMot PS01-37x120,
whose slider is connected to an inertial load by means an elastic transmission obtained
with a coil spring. The load is placed on a liner guide in order to guarantee the axial
alignment with the motor slider and to reduce static friction. The control system
is based on the servo controller LinMot E2010-VF that performs the basic current
control, while the position control (based on a PID controller and a feedforward ac-
tion) has been implemented on a standard PC with a Pentium IV 3 GHz processor
and 1 GB of RAM, equipped with a Sensoray 626 data acquisition board, used to
both communicate with the servo controller and acquire the sensors signals. The po-
sition of the motor is measured by an incremental encoder with a resolution of 1um
integrated in the stator, and the monitoring of vibrations is obtained via a load cell
connected between the slider and the elastic transmission. As a matter of fact, the

force fr exerted by the spring is proportional to the error ¢ between motor position
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Figure 5-26: Experimental setup.

and load position, and, if the inherent damping of the transmission is considered, like
in fig. 1-1, force f; is simply a scaled, low-pass filtered version of ¢.
The real-time operating system RTAI-Linux on a Debian SID distribution with Linux
kernel 2.6.17.11 and RTAI 3.4 allows the position controller to run with a sampling
period T = 500us. For the design of the control scheme and of trajectory generator,
the MatLab/Simulink/RealTime Workshop environment has been used.

In Tab. II the main characteristics® of the mechanical system are reported. The
value of the internal damping b, is unknown, but it can be easily deduced from the
parameters o and Ty of the filter Fi,,(s). The value of these parameters is obtained

as described in Sec. 5.2 but the oscillation is induced by physically blocking the mo-

3The symbols refer to the model of fig. 1-1(b).
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Table 11
Motion system parameters.

Parameter Symbol Value Unit
Slider mass Im 0.599 kg
Load mass Ji 0.623 kg
Spring stiffness k& 6490 Nm

tor slider and applying an initial deformation to the spring. In fig. 5-27, the force
fr(t) recorded during an experiment is shown together with the force of the identified
system characterized by 6 = 0.0246 and @, = 101.3724 rad /s, which correspond to
& = —2.4958 and T = 0.0620 s (indeed, several tests have been performed and the
mean value of the parameters has been assumed). Note that the value of w, found
in the experiments is consistent with the theoretical value \/m = 102.0653 rad/s.
The main difference between the responses of real and ideal system lies in the man-
ner in which the oscillation vanishes, see fig. 5-27 for ¢ > 0.9 s: the model’s output
goes to zero asymptotically while the real system suddenly stops probably because
of the (unmodeled) static friction. Moreover, besides the vibratory dynamics G, (s)
the model of the real system should include the poles of the controlled actuator, but
since the control feedback has been designed with a very high bandwidth these poles
have been neglected. As a matter of fact, as already noted in Sec. 5.2.1 unmodeled
poles faster than the mechanical dynamics that induces vibrations do not modify
significantly the results of the application of the filter F,,,(s) and of the exponential
jerk trajectories.

In fig. 5-28, the response of the system to second-order trajectory ¢2(t) used as basic
motion profiles is reported. This trajectory, characterized by a total displacement h
of 30 mm, has been obtained by means of the two filters of fig. 5-16 with N; = T; /T,
1 =1,2, being T, = 1.5 T = 0.0930s and T = 2T, = 0.1860s. With these param-
eters, the maximum velocity and the maximum acceleration are v, = 0.1613m/s
and a4, = 1.7343m/s? respectively. Obviously the behavior of the system at the
end of motion (highlighted in the plots with the white background) is very similar to
that of the uncontrolled system of fig. 5-27.

When the filter F,,,(2) is added and the exponential jerk trajectory is applied to
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Figure 5-27: Oscillations of the system of fig. 5-26 used for the identification of the

parameters of filter F,,,(s).
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Figure 5-28: Residual vibrations induced in the system of fig. 5-26 by the application
of a second order trajectory go(t).

the resonant system, the residual vibration is considerably reduced, see fig. 5-29(a).
However, it is not completely cancelled. Note that the residual vibration seems not
due to additional unmodelled (linear) dynamics of the plant since its period is exactly
1. Instead, the cause must be probably sought in nonlinear phenomena (i.e. the
static and Coulomb friction on the motor slider) and external disturbances (such as
the cogging which is present in the linear motor) affecting the system. These effects
are probably not completely compensated by the motor controller and the actuator
does not behaves like an ideal position source.

In order to evaluate the benefits of the proposed method in real applications, its
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Figure 5-29: Comparison between residual vibrations induced in the system of fig. 5-
26 by the application of an exponential jerk trajectory (a), a second order trajectory
filtered by a ZVD input shaper (b) and a second order trajectory filtered by the
system inverse dynamics (c).
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Figure 5-30: Residual vibrations induced in the system of fig. 5-26 by the application
of a second order trajectory ¢o(t) with 75 = 0.1137s.

behavior has been compared with those of the alternative approaches mentioned in
Section 5.4, which should lead to a complete cancellation of residual vibrations. In
particular, in fig. 5-29(b) the response of the experimental setup to the trajectory
¢2(t) filtered by a ZVD input shaper is shown, and in fig. 5-29(c) the result with the
inverse dynamics filter is reported. The actual capabilities of the exponential jerk
trajectory and of the input shaper in vibrations suppression are comparable, while
the filter based on the dynamics inversion shows a lower robustness with respect to
the above mentioned non-idealities: the level of vibrations decreases with respect to
those obtained with the direct application of go(t) only for a positive displacement
of the motor, while it remains practically unchanged if the motion occurs along the
negative direction. Note that several tests have been performed but the result was
always the same.

Note that the vibrations reduction shown in fig. 5-29 with respect to fig. 5-28 is
marginally caused by the increase of the time-duration of the trajectory because of
the additional filters. As a matter of fact, both for exponential jerk trajectory and for
the input shaper filtered trajectory the duration of the motion is T,y = 11+ 715 +TJ =
0.3410s. Therefore, in order to perform a more precise comparison, a second-order
trajectory go(t) with the same total duration (that is 7, = 0.1137s 77 = 275 and
Tiot = 11 + 15 = 0.3410s) has been applied to the mechanical system. The result,
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Figure 5-31: Residual vibrations induced in the system of Fig. by an exponential jerk
trajectory with 7y = 0.57; (a) and T = 1.57} (b), and by a second order trajectory
filtered by a ZVD input shaper with 7); = 0.57; (¢) and T, = 1.5T (d).

illustrated in fig. 5-30, confirms that the reduction of the residual vibration obtained
with a simple time-scaling is rather limited if compared with the proposed approach,
for equal time duration of the overall trajectory.

Finally, the robustness of the filter F,,, with respect to errors in the parameter 7’y has
been experimentally tested. In fig. 5-31(a) and fig. 5-31(b) the responses of the system
to the exponential jerk trajectory computed with the parameter 7'; equal to 0.57; and
1.5TJ are reported, and confirm that an underestimation of 77y makes the filter F¢,,
less effective while an overestimation of Ty lead to small residual vibrations. Con-
versely, with ZVD input shapers only the nominal values of the parameters produce
good performances. In fact, both underestimation and overestimation of 7'; cause

large residual vibrations, see fig. 5-31(c) and (d). Note that in the test reported in
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fig. 5-31(b) the residual vibration is even smaller than the vibration obtained with the
nominal value of parameter 7; and shown in fig. 5-29(a). This is probably due to the
fact that the higher duration of the trajectory, i.e. Tyoy = 17 + 15 + 1.5TJ = (0.3808s,
with respect to the nominal trajectory, for which T;,; = 0.3410s, mitigates the above
mentioned non-ideal phenomena, like friction and cogging, and allows the motor to

better track the given profile g,.r(t).

5.6 Feedforward Control of an Elastic Joint

for Vibrations Suppression

In the previous Sections it has been shown that the use of exponential jerk trajectories,
which can be efficiently generated by filtering standard trapezoidal trajectories, allows
to reduce considerably the vibrations level in motion systems with elastic transmis-
sion. In particular a dynamic filter F,,,(s) has been defined and characterized both
analytically and experimentally. In order to further exploit the capability of the ex-
ponential filter, in [18] has been proposed as a feedforward controller for Variable
Stiffness Actuators (VSAs).

VSAs are trend topic in robotics since two decades ago. The development of service
robots close cooperating with humans has driven the designers towards novel me-
chanical solutions aiming at increasing the mechanical compliance and reducing the
apparent inertia of robot manipulators [20]. Unfortunately, an high level of mechan-
ical compliance deteriorates the performance of the plant, in particular with respect
to precision. For this reason, in order to solve simultaneously safety and performance
issues, VSAs, which introduce a mechanical compliance in the joint actuation that
can be altered via control action, have been proposed |23, 110, 104, 22|. Unfortu-
nately, the performance of Variable Stiffness Joints (VSJ) robots are still far from
those of standard rigid joints manipulators, because of the high order nonlinear dy-
namics of the system, due to the additional stiffness variation mechanism, and the

strongly nonlinear characteristics of VSAs. Moreover, a major problem of VSAs is the
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very low intrinsic damping that usually characterizes this type of devices, which may
cause vibrations and undesired oscillations, |3]. Accordingly, injecting damping into
the system is one of the main control goal in this field. Several control approaches for
VSJ robots are presented in the literature. While many controllers are conceived for
single-joint systems (see [103, 3| among many others), the multi-joint case is treated
less frequently. A feedback linearization algorithm is designed and validated in sim-
ulations in [69]. A state feedback controller aiming at obtaining the desired level of
damping is presented in |76|, while, more recently, in |77| a backstepping approach
has been proposed in order to manage the complexity of a VSA system.

The choice of a feed-forward control for VSAs is motivated by a twofold reason:

e the goal of the control is to cancel the oscillations that affect point-to-point
motions of the robot joints, connected to the motors by the (variable stiffness)
elastic transmissions with low damping, while static performances, in terms of

precision, are not addressed;

e the proposed open-loop control does not alter the stiffness seen at the link side,

while a closed-loop control does it [3].

Note that, in the literature a number of feedforward controller has been applied to
robotic system with elastic elements. In [5, 59, 65| the command shaping technique
has been used for robots with flexible links in order to reduce vibrations. The same
goal has been achieved for robot manipulators with elastic joints, in [52|, where an
input shaping techniques is combined with an iterative learning mechanism that up-
dates the parameter of a Zero Vibration (ZV) input shaper in order to take into
account nonlinear and time-varying characteristics of the plant.

The control of a single robotic joint with elastic transmission, like the one depicted
in fig. 5-32, can be easily performed by considering only variables at the motor side.
It is well known, see e.g. [27|, that, in absence of gravity, a PD control based on mo-
tor’s position ¢, and velocity ¢,, is stable for any positive value of the proportional
and derivative gains. Therefore, it is possible to obtain a controlled system that in

principle is arbitrarily fast and precise. Unfortunately, even if the motor is able to
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Figure 5-32: Structure of a robotic joint with elastic transmission.

track the desired reference signal g,.;(t) with small errors (and therefore it is possible
to assume g, (t) &~ grer(t)) the link position may be affected by undesired oscillations
and vibrations. As a matter of fact, the relationship between the motor position and
the link position can be modelled as a typical second order system G(s) like the one
in (1.3). Thus the use of the exponential filter F,,,(s) in (5.3) as a command shaper
for the controlled motor has been already proven to be a simple and effective way
to reduce/suppress the oscillation. This consideration allow to generalize the results
in previous Sections to any type of Single Input Single Output (SISO) Linear Time-
Invariant (LTT) system, characterized by one or more oscillating dynamical modes.
Therefore, given a dynamic system modelled as

N(s)

G) = D)+ 20wns + 07

where N(s) and D(s) are generic polynomial (D(s) Hurwitz), it is possible to show
that the contribution to the response of the oscillating mode characterized by (6, w,)
can be completely nullified T'; seconds after the application of the input signal by
inserting between the input and the system a properly tuned filter Fi,,(s).
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5.7 Feedforward Control of MIMO LTI Systems
for Residual Vibration Suppression

The extension of the results for SISO systems to Multiple Input Multiple Output
(MIMO) systems is straightforward. As a matter of fact, for MIMO LTI systems,

usually modelled in the state space domain as

z = Ax+ Bu
y =Cx+ Du

(5.13)

where x € R" is the state vector, u € R" is the input vector, y € R™ is the output
vector, and {A, B, C, D} are matrices of appropriate dimensions, it is possible to
deduce the transfer matrix, i.e. the matrix of the transfer function between the r

inputs and the m outputs,

_ CAdj(sI,-—A)B+|sI,, — A|D
B |sI, — A|

H(s) (5.14)

where Adj(X) is the adjoint matrix associated with X and |X| denotes the deter-
minant of X. The term |sI,, — A| is an n-th polynomial, whose roots are the poles*
of the transfer functions that compose H(s). Note that, if no cancellations occur
between the numerator and the denominator of these transfer functions, they share
the same poles. Therefore, in order to suppress the effects of a poorly damped mode
(0,wy,) on the outputs, it is necessary to insert a filter F,,,(s) before each of the r

inputs.

5.8 Feedforward Control of Robotic Manipulators
with Elastic Joints

In order to apply the technique proposed in Section 5.1 to a robotic system accordingly

to the MIMO case extension in Section 5.7, it is necessary to consider the complete

4As well-known, if no cancellations occur the poles coincide with the eigenvalues of matrix A.
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model of the manipulator. The reduced model® of a visco-elastic joints robot is

M(q))q, + C(a;,q;) q, +9(q)+ K, - (q, — q,,)
+B;-(q,—q,,) =0 (5.15)

where M (q,), and C(q,, q,) are the inertia and centrifugal/Coriolis forces matrices,
g(q;) represents the gravity term, K; = diag{k;}, B; = diag{b;} are the matrices
of the transmission stiffness and viscous friction, g, and gq,, denote the vector of
the joint positions at the link side and at the motor side, respectively [28]. Note
that the motors’ dynamics that usually accompanies (5.15) has been neglected since,
according to a standard decentralized control of robot manipulators, it is assumed that
the motors behave like ideal position sources able to impose any desired configuration
q,,

The model of VSJ robots can be ideally obtained from (5.15) by assuming that the

stiffness matrix is not a constant but a function of time, i.e.

K, = K,(t).

The stiffness modification is generally obtained with extra command inputs to the

robot system that allow to change each joint stiffness independently, i.e.

ky = kti(si)

where s; denotes the activation signal of the stiffness of the i-th joint. Therefore,
it is possible to rewrite the transmission stiffness matrix as K; = K(s). In many
cases, in particular when the variable stiffness mechanism is obtained with a couple
of antagonistic actuators (like in the experiments proposed in this paper) [69], the
elastic torque not only depends on the external signal s(¢) but is a nonlinear function

of the motors displacement. As a consequence, the general expression of the elastic

5This model is based on the assumption that the angular kinetic energy of the motors is only due
to their own spinning [99].
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transmission torque should be 7¢) = T¢1(q;—q,,,, s) where 7¢(Ag, -) denotes a vectorial
nonlinear function whose elements are odd strictly monotonically increasing functions
of Ag and 7(0,-) = 0. Finally, it is worth noticing that often the variable stiffness
mechanism makes also the damping torques not constant but variable as a function
of the time. Therefore, a quite general expression that describes the dynamics of VSJ

robots is

M(q,)q, + C(q;, q;) @, + g(q)+Tala; — a,,,5)

‘I'Tda,mp((:h - Qm> S) =0 (516)

where, similarly to Te, Tdamp(Ag,-) denotes a vectorial nonlinear function whose

elements are odd strictly monotonically increasing functions of A¢ and 7gump (0, -) = 0.

5.8.1 Linearized Model of a VSJ Robot and Feed-Forward
Design
In order to find the parameters of the proposed filter for feed-forward control for a

given value s = s*, it is necessary to linearize (5.16) around the desired equilibrium

state (¢, 1) = (g7, 0) with ¢ related to the equilibrium input (¢, ¢n) = (g},,0) by

9(q;) + Talg; — q,) = 0. (5.17)

Note that, for the sake of clarity, since the input s is supposed to be a constant the
dependance of T¢ and Tgamp on it has been omitted. The approximation of (5.16) by

Taylor series expansion up to the first order provides the following expression

. N 0 *
M (q7)Aq, + g(q7) + %(q‘) Aq; + Talqf — q},)
Ql ql:(H
A mo (A . .
OmalBa)| (pg, — Ag,)+ LaamlBD | (ny  Agy—0  (518)
MG |pg=g;-g:, OA¢  [ag=0

where Aq, = q, — g}, Aq,, = q,, — q},, etc. represent small variations with respect

to the corresponding equilibrium values. Note that centrifugal/Coriolis terms, that
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are quadratic with respect to the velocity, disappear in the linearized model. By

substituting (5.17) in (5.18) and denoting

G* _ ag(ql)
8(][ q,=4q;
K: _ 8T91(Aq)
8Aq Aq:q?_q:n
B* _ aTdaump(Aq')
! R

the expression of the linearized model becomes

M (q7)Aq, + G*Aq, + K{(Aq, — Ag,,) + Bf (Aq, — Aq,,) =0 (5.19)

which can be rewritten in the state-space form such as (5.13) with

0, I,
A= 1 1 1
| —M"(q))K; - M (q;)G" —M"(q])B;}
0, 0,
B = 1 1
| M(g)KT M “\q)B;
where the state and input vector are r = and u = respectively. By

analyzing the eigenvalues of the matrix A it is possible to find the values of the reso-
nant modes that affect the robotic plant. A n degrees-of-freedom robot manipulator
with undamped or poorly damped elastic joints will be characterized by n pairs of
complex conjugate eigenvalues with (0;,wp;), @ = 1,...,n. In order to suppress the
oscillations at a constant configuration gj it is sufficient to filter the reference signals
of the motors, and consequently the motor positions ¢,,(t) supposed to be equal to

¢ref(t), with a chain of filters Fi,p,.(s), one for each mode of the system.
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5.9 Experimental Results

The method described in previous sections has been tested on a real soft robotic
arm build with QBMove - Maker Pro VSAs by QBRobotics [81]. These actuators
implement the concept of variable stiffness servo motors, i.e. motor units that include
also (position) sensing and control system allowing the user to command both the
position and the stiffness of the output shaft with an external signal. For these reason,
these actuators are very suitable for rapid prototyping robots with variable stiffness
joints [22]. QBMove VSAs are provided with an easy to use Matlab/Simulink toolbox
that can runs without particular restriction even on standard operating system and
communicates with the actuators via USB. In the experiments reported in this section
Matlab ran with a fixed step size 75 = 2 ms. For this reason, the filter F,,(s) has
been discretized according to the techniques reported in Section 5.3.

The mechanical structure of these VSAs is based on an antagonistic configurations
with two servomotors connected to the output shaft by tendons that are fixed to
springs. The working principle is quite simple: the shaft position is the mean of the
servos position so it is due to the concordant motion of the servo motors, while the
stiffness grows as the displacement between the servos increases. Therefore, when the
user specifies a give shaft position ¢, and a stiffness preset s, these values, related to

the motor position by

_ qm,1 + qm,2 P qm,1 — dm,2

l 9 ; 9 )
are translated by the QBMove controller in the motor positions g, and ¢, 2, that
are actuated by the two servomotors. As a consequence, a feedforward controller that
filters the inputs ¢ and s is actually placed before the motor position ¢, ; and g, 2,

as supposed in Sec. 5.8.
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Parameter Value Unit
Peak (Maximum) Torque 1.5 Nm

Maximum Speed 9.5 rad/s
Maximum Stiffness 13 Nm/rad
Minimum Stiffness 0.5 Nm /rad

Figure 5-33: CAD view of the setup for parameters evaluation and main data of the
servomotor.

5.9.1 Characterization of a Single Actuator

In order to test the proposed method, an intensive experimental analysis on a single
actuator has been carried out to estimate the parameters o and 7); which character-
ize the filter F,,,(s). In order to better appreciate the oscillations due to the elastic
transmission, a known inertial load represented by an iron disk of diameter 10 cm
and weight 1 kg has been attached to the actuator shaft, as shown in fig. 5-34. Then
a step of 45 have been commanded to the actuator with a fixed stiffness preset value
and the response has been evaluated.

Several tests has been performed with various stiffness values in order to analyze
different step responses. As can be seen from the responses of fig. 5-34, the system
behaves like a second order system. This means that the dominant dynamics is the
mechanical dynamics of the inertia with the elastic transmission, while the dynamics

of the two servo motors inside the actuators can be neglected. For each stiffness
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Figure 5-34: Step response ¢;(t) of the servomotor with an inertial load with different
stiffness values k7. In red the step set-point of 45° is reported.

183



Wy, [rad/s|

.18
E o16] s L]
z
o 014F e ® )
b o, . s
° L]
0.12 o
e 8 o
o1 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30

Stiffness Preset s*
Figure 5-35: Estimated parameters w, (a) and § (b) for different values of stiffness
presets s*. Different equilibrium points have been considered.

preset s*, and therefore for each values of the stiffness £}, the values of the damp-
ing coefficient ¢ and natural frequency w, of the system have been determined, and
are reported in fig. 5-35. It is worth noticing that, as expected, w, increases as the
stiffness grows but it is also visible a slight increase of d, due to friction effects of
the particular transmission of the QBMove. Since J; is known, from ¢ and w, it is
possible to immediately deduce the values of the stiffuess and damping (£}, b}) about
the equilibrium point.

In a first stage of this experimental activity, the proposed feedforward control based
on the exponential filter Fi,,(s) has been applied to a single actuator and its per-
formance have been compared with those of ZVD Input Shapers, that are the most
widespread filtering methods for residual vibration suppression, see [95, 86, 106|. In
order to appreciate the effectiveness of the proposed method, only very low stiffness
values have been considered as they represent a more challenging situation in terms
of vibrations. With the parameters derived by means of the procedure described
above, the appropriate parameters of the exponential and ZVD filters have been de-
rived for every stiffness preset that has been considered. Then a filtered step input
has been provided to the actuator. The obtained results are shown in fig. 5-36: the

performances of the two methods in terms of residual vibration reduction and time
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Figure 5-36: Response of the system with stiffness preset s* = 5 to a step input of
45° shaped by exponential jerk filter (a) and ZVD input shaper (b).

duration of the motion are similar and in general very good. However, it is interesting
to notice the difference between the motions ¢, 1(t) and ¢, 2(t) performed by the two
servo motors. While the motors with the ZVD input shaper are fed by several steps,

exponential filter provide a smoother trajectory that can be easily tracked.

5.9.2 Application of the feed-forward control to a planar robot

The proposed technique has been applied to the 3-dofs planar robotic arm made of
QBmove VSAs shown in fig. 5-37. For our purpose the arm has been controlled only
in position without caring about orientation, therefore the discussion refers only to
the first two joints. The actuator parameters (k},b;) derived in previous section for
a given stiffness preset s* have been used to determine the values (d;, w,;) of the two
vibratory modes that characterize the robot model, linearized about the desired final
configuration. From these values the parameters of two exponential filters, which are
arranged in a cascade configuration on the reference inputs of the motor, are obtained,
see fig. 5-38. Also in this case the behavior obtained with the proposed exponential
filter is compared with the those obtained with ZVD Input Shapers.

In the test shown in fig. 5-39, only the first joint is moved, according to a step signal
of 30°. In this case the preset stiffness signal has been set to 5. Despite the large

variations, the filters, designed for linear systems, are able to cancel the oscillation
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Figure 5-37: Picture of the 3-dofs robotic arm made of QBmove VSAs.
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Figure 5-38: Block-scheme representation of the feedforward control.

on the first joint and also to avoid the mutual influence with the second joint, see
fig. 5-39(b). In fig. 5-40 a simultaneous motion of 30° is required to both joints. It is
quite evident that the proposed method eliminates residual vibrations. Moreover, it
guarantees a smoother motion with respect to the ZVD input shaping technique with
the same time performance. In both the experiments it is evident a noticeable position

error due to the fact that feedforward control is not able to compensate for friction
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effects (the gravity does not affect the system which move on the horizontal plane).
Anyway, the fact that even without filters the static error is comparable proves that
this problem is not related to the specific trajectory generation, but rather to the
small value of the stiffness.

In fig. 5-41 the same experiment of fig. 5-40 but with an higher value of the stiffness
(s* = 30) is shown. The conclusions do not change with respect to the previous test,
that is the use of exponential filters on the reference inputs cancels the oscillations
on the joints positions. In this case, the static precision slightly improves, because of

the higher stiffness.
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Figure 5-39: Response of the actuators (¢, 2(t) and g 2(t)) that compose the 2-dofs
robotic arm to a step input trajectory with a stiffness preset s* = 5. In dashed red the
actual trajectory is reported. fig. 5-39(a) is a pure step, fig. 5-39(b) is an exponential
filtered step, fig. 5-39(c) is a ZVD shaped input.
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Chapter 6

A Repetitive Control Scheme
for Industrial Robots

Based on B-Spline Trajectories

6.1 Motivations

In practical applications, desired tasks are often repetitive or cyclic in nature. This
is particularly true in industrial robotics and in automatic machines, where many
tasks simply imply the continuous repetition of a given motion. From a control point
of view, it is therefore required to track and/or reject a periodic exogenous signal
that can be considered known since it refers to planned trajectories or disturbances
whose cycle time is easily measurable or known in advance. In order to improve the
tracking accuracy, Repetitive Control (RC) represents a simple and effective method,
since it aims at cancelling tracking errors over repetitions by learning from previous
iterations. RC was first developed by Inoue et al. [45, 44| to improve the control
of the power supply in a proton synchrotron accelerator, but soon was applied to
many other different systems. Many surveys, see e.g. [25], [109], report the successful
use of RC in a number of applications, such as high accuracy trajectory tracking of

servomechanism, torque vibration suppression in motors, noise cancellation in power
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supply, industrial robotics, and so on. The theoretical foundation of the RC is due
to the internal model principle (IMP) [35] which states that to track or reject a
certain signal without steady-state error, the signal can be regarded as the output
of an autonomous generator that is inside the control system. The IMP with the
well known fact that any periodic signal with period T can be generated by a time-
delay positive feedback system with an appropriate initial function, are the basis of
a Repetitive Controller.

Stabilizability of a RC system is not a trivial problem due to the presence of a time-
delay in the positive feedback loop. In order to address this issue, several solutions
have been presented providing necessary and/or sufficient conditions for stability and
error convergence to zero.

In [17, 16], a novel repetitive control scheme is presented. The scheme is based on a
proper modification of the reference trajectory for the plant, which is supposed to be
already controlled. A similar idea has been already proposed in the continuous-time
domain in [37], where a two-degree-of-freedom local control, and a plug-in type RC is
used to update the reference trajectory. The novelty of this case consists in assuming
that the reference trajectories are defined by spline functions, which are de-facto the
standard tool used in the industrial field for planning complex motions interpolating a
set of given via-points |9]. Thanks to the possibility of generating B-spline trajectories
by means of dynamic filters as reported in Chapter 4, the trajectory planner has
been inserted in an external feedback control loop that modifies in real-time the
control points of the B-spline curve so that the tracking error at the desired via-points
converges to zero. The proposed control scheme has been directly developed in the
discrete time-domain, and is characterized by a very low computational complexity.
Moreover, the application of this control scheme is independent by the particular

control law of the plant, which is seen as a servo-system able to track a spline curve.
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6.2 B-spline Curves and B-spline Filters for Set-point
Generation

In a number of practical applications the reference signal for dynamical systems is
defined by using spline functions that interpolate a set of desired via-points q;, j =
0,...,n — 1 at time instants ¢;. By assuming a B-spline form of the trajectory, as

reported in Section 4.2 results
n—1
o) = p;Bi(t),  to<t<tn (6.1)
=0

where B}i(t) is a B-spline basis function of degree d, the control points p,; must be
computed by imposing interpolation conditions on the given data points g;, see [9].
Note that, as shown in fig. 6-1, the control points alone determine the geometric shape
of the B-spline curve, which represent a sort of smooth approximation of the so-called

control polygon.

6.2.1 B-spline Evaluation

In order to evaluate the spline (6.1) for a given value t € [ty, t,—1] it is necessary
to compute the basis functions B]C-l(t) via numerical procedures, which are usually
based on recursion. As described in Section 4.3.3 if uniform B-splines are considered,
i.e. B-splines characterized by an equally-spaced distribution of the knots ¢; i.e.
tiz1—t; =T 7 =0,...n — 2, the generation of the trajectory can be obtained by

means of a chain of d dynamic filters defined as

1— e—sT

M(s) T

fed by the staircase signal p(t) obtained by maintaining the value of each control
point p; for the entire period j7° <t < (j + 1)T. See the scheme of fig. 6-2 and
the signals shown in fig. 4-15, where the generation of a cubic B-spline is considered.

Note that p(t) is obtained by applying a zero-order hold to the train of impulses of
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Figure 6-2: System composed by d mean filters and by a zero-order hold Hy(s) for
the computation of continuous-time B-spline trajectories of degree d.

amplitude p;. Moreover, it is worth noticing that the output trajectory is delayed
with respect to the application of control points of m T seconds, where m = %. For
computer controlled systems equipped with digital controllers with sampling period
T,, the B-spline reference trajectory must be computed at time-instants k7. It is
therefore necessary to discretize the filter of fig. 6-2. By Z-transforming the chain of
d filters M (s) with a zero-order hold the system of fig. 6-3 is obtained, where Fy(271)

is a FIR filter defined by
2 'Qaa(27)

Fd(z_l) = d‘ )

(6.2)
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Figure 6-3: System My(z) composed by d moving average filters and by the FIR
filter Fj;(271) defined in (6.2) for the generation of discrete-time B-spline trajectories
of degree d.

as reported in Section 4.5. The samples of the B-spline sequence are then generated
by the filter denoted by My(z) and coincide with the value of the continuous-time
trajectory at time instants k7', i.e g, = q(kT), see fig. 6-4.

6.2.2 Control Points Computation

The control points p; are computed by imposing the interpolation conditions on
the via-points at the time-instants defined by knots which for uniform B-spline are

multiple of the fundamental period 7', i.e.

q(jT) = q;, j=0,...,n—1. (6.3)

As well-known the definition of the interpolating B-spline is a global problem, that
can be performed only when the entire set of via-points is provided. However, it is
possible to approximate this global mapping between via-points and control points
within a smaller set of data, see Section 4.5.4. The system H(z) is a FIR filter that
approximates the relation between via-points and control points assuming to treat
the interpolation problem as a dynamic relationship between via-points and control
points, i.e.

— (6.4)
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Figure 6-4: Control points sequence p; defining a cubic B-spline and related reference
trajectory qj_,,n With m = 2 obtained with the dynamic filter of fig. 6-3.

for a cubic B-spline. This approach leads to a FIR filter defined by
H(z)= Y h(n)z" (6.5)

that approximates the interpolation problem within a prescribed tolerance according

to the value of r. The coefficients h(n) for d = 3 can be computed as

1= a il

hn) = 14+ a

where o = —2++/3 is the stable pole of (6.4). The sequence h(n) is shown in fig. 4-32.

Note that the value of h(n) becomes extremely small as |n| grows (for more details
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Figure 6-5: Set-point definition by means of B-spline filter for a (controlled) discrete-
time system G(z).

see [14]).
In the scheme of fig. 6-7, the filter H(z) is used to transform the interpolation errors
q; in an error in the control points position p;. Since H(z) is not a causal filter, it is

necessary to introduce a delay equal to r to make it feasible, that is

2r

H'(z)=2z"H(z)=» hn—r)z" (6.6)

n=0

The reference trajectory generated by the discrete B-spline filter is then provided
to the plant, as illustrated in fig. 6-5. Since this scheme has a standard cascade
structure without control actions but with the only purpose of generating arbitrarily
complex trajectories for the plant G(z), the capabilities of G(z) to track such a kind
of signals are implicitly assumed. Therefore, the system G(z) is assumed to be a
controlled plant, with a standard closed-loop structure, whose frequency response is
characterized by a typical low-pass behavior with a static gain as close as possible to
the unity. In order to follow the input signal accurately, the bandwidth of system must
be large enough |67], and in particular larger than the maximum spectral components
of the input. In case of uniform B-splines generated by the linear filter M%(2), the
spectrum of the resulting trajectories can be determined by analyzing the frequency

response of M%(z). In particular the magnitude of M,(e/*7%) is

d
' sinc <wi>
— Bl |—% ], w2
sinc <Wi)

195

| M, (e77)




20 ‘
Discrete—time
— — — Continuous-time

20+ u

Ms (77| [db]

-100

-120
0

w/wy

Figure 6-6: Magnitude of the frequency response of the B-spline filter M, (z) for
p = 3 (and N = 25) compared with the frequency response of the continuous-time
generator M<(s).

where sinc(-) denotes the normalized sinc function defined as sinc(z) = w and

Wy = 2%, Ws = ?p—” The FIR filter F,(e77*) has a standard low-pass behavior, therefore

M)

is a low-pass filter as well, and its magnitude decreases rather quickly as
w grows, especially for high values of p. In fig. 6-6, the frequency response of the
cubic (p = 3) B-spline filter is reported. Obviously, the frequency response of M, (z)
is a good approximation of that of the continuous time generator (the approximation
level depends on the ratio N between 7" and 7}). Fig. 6-6 highlights that spectrum
components of the reference trajectory ¢"(t — m7T) at the output of this filter are
significant only in the frequency range [0, wp|, while the reduction of the components
for w > wy is at least of two order of magnitude (-40 db). From common practice, it is
known that in order to obtain good tracking performances, the controlled plant G(z)
must have a cutoff frequency w. > wy (typical values are w. > awy, with a = 5+ 10).
Consequently, since the sampling frequency w, is chosen as w, > Sw, with g = 5-+10,

the minimum value of N may range between 25 and 100.
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Unfortunately, even if the considerations on G(z) above mentioned are verified, that
is

, 2
G (7)) x 1 for w < % < we (6.7)

the tracking error e = ¢ — q@" between plant output and reference B-spline trajectory

can be not negligible, because G(e7“T) is equal to one only approximatively and may

be affected by external disturbances.

Periodic
Ldisturbances

T'T; | m—
T b
i fup-sampler| | |1 — z*]\“ di—mN
— M, (2> G(z >
1:N| |1z P( ()‘
Lo oo oo
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|
\
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N:1[

Figure 6-7: Discrete-time repetitive control scheme based on discrete-time B-spline
filter.

6.3 Repetitive Control Scheme Based on Discrete-

Time B-spline Filter Generator

We assume here that the tasks to be performed are cyclic, and therefore that the
trajectories to be tracked are repetitive. Moreover, we assume that also “external”
disturbances have the same property, i.e. that there might be either external loads
or unmodeled dynamics depending on the current state of the system. In figs. 6-8
and 6-9 is depicted the typical situation of a robot tracking a given trajectory g*(t)
which interpolates a set of desired via-points g;. Being the robot subject to a certain
tracking error, the actual robot position g(¢) doesn’t match the given trajectory,
thus the desired via-points. In this case, it is possible to implement a procedure for

modifying the reference signal in order to guarantee that the interpolation error at
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Figure 6-8: Two-dimensional B-spline trajectory interpolating a set of via-points gj.

the given via-points g} asymptotically vanishes as highlighted in fig. 6-9.

The scheme of fig. 6-7 shows the mechanism for B-spline modification based on the
RC approach. In this scheme, both the trajectory generator and the plant G(z) are
inserted in a discrete-time control loop that, on the basis of the interpolation error
4; = q; — q,, modifies in real-time the control points sequence (denoted by p) from
the initial value p7. It is a typical dual rate system with the feedback loop running at
a sampling time 7" considerably higher than the period 7 of the trajectory generator
and of the controlled plant G(z).

The sequence p; multiplied by the constant K),, assumed to be equal to one, and

properly delayed in time is provided to the filter

1
1+ 277

(6.8)

used to compute the reference sequence of points pj for the discrete-time interpolator

based on B-splines and the controlled plant. Note that the initial value of the output

198



mroro
mrrroroo

Figure 6-9: Two-dimensional B-spline trajectory interpolating a set of via-points q;.

of filter in (6.8) has been set to p;, that is the sequence of the control points defining
the ideal trajectory.

Theorem 1. The control scheme of fig. 6-7, subject to periodic disturbances, guaran-
tees that the interpolation error q; = q; — q; between the desired via-points and the
plant output at time t; = jT = kNT, asymptotically converges to zero provided that
the plant G(z) meets the trajectory tracking condition (6.7).

Proof. According to the theory of discrete-time repetitive control [105], that exploits
the internal model principle [35], the presence in the control loop of the transfer
function (6.8) assures asymptotic perfect tracking of a periodic signal with period n
(in this case the sequence of desired via points q}) if the stability of the whole system
is assured.

Because of the structure of the control scheme, the stability analysis of the system at
the slow sampling rate (7') can be deduced by neutralizing the effects of up-sampler

and down-sampler. By considering the cascade of the filter H(z) and of the system
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with period Ty composed by plant and trajectory generator, as shown in fig. 6-10(a),

it is possible to simplify the scheme by means of some formal manipulations:

e Since the controlled plant G(z) is supposed to have a standard low-pass struc-
ture, in a worst case perspective, in lieu of the transfer function G(z) the (con-
stant) complex number

jmin{arg G(e’“%*)}

G.. = max|G(e/T)| e w0

w<lwg

can be considered in order to take into account the maximum gain variation and
the maximum (negative) phase displacement caused by G(z). The use of the
B-spline filter allows to restrict the range of variation of w to the interval [0, wp]
because, as already noted, the reference signal for the plant can be considered
null outside this interval. In this way, the block describing the plant and the

down-sampler can be exchanged, as shown in fig. 6-10(b).

e the filter /() which approximates the relation between via-points g} and con-
trol points f); is followed by the B-Spline generator which, fed by the control
points f);, provides at knots 57" the desired via-points (};_m delayed of mT in-
stants'. As consequence this cascade can be reduced to a simple time-delay

z~™, as shown in fig. 6-10(c).

Finally, the scheme of fig. 6-7 can be reduced to the one shown in fig. 6-11, that
runs with a sampling period 7'. It is a quite standard repetitive control scheme whose

stability can be inferred by analyzing its characteristic equation

—n

z

140
+1—z—"

K,G..=0. (6.9)

By following the approach proposed in [102], it is possible to see that the asymptotic
stability of (6.9) is equivalent to the stability of the feedback system with loop-transfer

INote that f);, and consequently q;,m, is only an approximation of the real value p}, because
of the filter H(z). However, the level of the approximation can be arbitrarily improved by assum-
ing larger values of r. If the interpolation of n via-points with B-spline trajectory of degree p is
counsidered, the optimal (highest) value of r is » = n — m, being m = %.
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Figure 6-10: Model reduction of the discrete-time repetitive control scheme based on
B-spline filter.

function
L(z) =2"(K,G,.—1).

Therefore, by applying the Nyquist criterion it descends that all the poles of (6.9) are
within the unit circle if and only if the polar plot of L(e*T) for —% <w < 7T does

not encircle or touch the critical points —1. This can be assured by imposing that
|K,G,.—1]| < 1. (6.10)

Being K, <1 (usually K, = 1), the stability condition (6.10) holds if condition (6.7)

is met (in this case G, = 1). O
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Figure 6-11: Discrete-time repetitive control scheme with sampling period 7" obtained
from the dual-rate scheme of fig. 6-7 based on discrete-time B-spline filter.

Note that from (6.7) results

2 cos (minwgwo{al"g G(€jWTS)})

' max,,, |G(e/T)|

(6.11)

Thus, in case of ideal systems, the complex number G, = 1 then suitable values
for the gain are K, € ]0,2[. As a matter of fact real plants doesn’t assure null
tracking error presenting static gain just close to unity, therefore one may consider

max,.., |G(e™")

< 1, and then values K, > 2 may be acceptable. In this case
however, the argument of the plant plays a key role since it can be shown that for
increasing values of the argument, the maximum value allowed for K, decreases. At
least for arg G(e/*"*) = Z, K, collapses to zero therefore the system with RC becomes

unstable.

6.4 Experimental analysis on a single actuator

In order to experimentally test the proposed method the setup of Fig. 6-12 has been
arranged. This system reproduces the typical behavior of a robotic joint without the
risk of structural damages even if instability conditions occur, and is the ideal tool
for analyzing limits and performances of the proposed approach.

The test bed is characterized by two linear motors, LinMot PS01-37x120, rigidly
connected along the axis of motion. Linear motor A is controlled by means of a
position controller properly set up to track a desired periodic motion defined by a

uniform B-spline trajectory. On the other side, the linear motor B, equipped with
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Figure 6-12: Experimental setup.

a force/current controller, is used to generate an external periodic disturbance that
emulates a mechanical load connected to the actuator A or the inertial coupling that
exists among different axes of a robot manipulator. In particular, in the experiments

the simple relation

Fdist - _ka(t) - CC]m(t)

that reproduces a spring-damper system has been assumed, with the parameters
k = 500 [Nm| and ¢ = 100 [Nms™'|. The control system is based on the servo
controller LinMot E2010-VF that performs the basic current control, while the posi-
tion control (based on a standard velocity /position cascade control scheme) and the
force control have been implemented on a standard PC with a Pentium IV 3 GHz
processor and 1 GB of RAM equipped with a Sensoray 626 data acquisition board,
used to communicate with the servo controller. The position of the motor is mea-
sured by an incremental encoder with a resolution of 1um integrated in the stator.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux
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Figure 6-13: Response of the servo system of fig. 6-12 to a step input of amplitude
10mm.

kernel 2.6.17.11 and RTAT 3.4 allows the position controller to run with a sampling
period T = 500us. For the design of the control scheme and of trajectory generator,
the MatLab/Simulink/RealTime Workshop environment has been used.

In order to better highlight the behavior of the RC mechanism, the integral control
term which is present in the position control loop of the actuator has been disabled.
The response of the plant to a step input of amplitude 10 mm is shown in fig. 6-13
where it is compared with that of a model based on a second order system character-
ized by a static gain of 0.915 and a natural frequency w, = 63 rad/s. Note that the
real system is affected by not negligible nonlinear phenomena due to the very high
level of static and coulomb friction.

In order to test the performances of the system with the RC scheme, a trajectory
passing through n = 20 via-points is considered. Once that the shape of the B-spline
trajectory and its control-points, which depend only on the given via-points, have
been fixed, the only parameters of the trajectory generator that can be changed are
the knot span 7' (and accordingly the total duration of the trajectory) and the or-
der d of the spline. In fig. 6-14, the behavior of the system with and without RC
modification of the trajectory is shown, along with the interpolation errors gq;, for

different values of the degree d. When the RC is not activated the tracking error,
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Figure 6-14: Reference trajectory and actual position of the motor A and related
interpolation error q; without and with RC mechanism as a function of d (T'=10.25

S).

intentionally quite large due to the noticeable external disturbance, seems to be not
influenced by d. On the contrary, when the RC is activated (after 15 cycles), even if
the interpolation error q; at sampling time j7" is negligible, during the inter-samples
the tracking error is strongly affected by d. The same conclusions can be deduced
from the results illustrated in fig. 6-15, where the tracking errors obtained with the
RC for different values of T" and d are shown. It has to be noted that in these exper-
iments the gain K, has been maintained equal to one, therefore the stability of the
overall control system only depends on 7', as stated in Section 6.3. In fact the system
is stable until wy is smaller than the cutoff frequency of the plant (w. ~ w, = 63
rad/s). But when 7" = 0.05 s and accordingly wy = 125.6637 rad/s overcomes w, the
control system becomes unstable, independently of d. Also by analyzing fig. 6-15,
it is clear that the amplitude of the inter-sample oscillation depends on d, and in
particular it decreases as d grows. This appear reasonable, since practical experience
suggests that smoother reference signals, represented by B-spline of higher degree d,
are usually better tracked by physical plants.

Finally, the role played by the gain K, has been investigated. As a matter of fact,
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Figure 6-15: Interpolation error g; at sampling instants j7T' as a function of d and
T. On the z-axis, t/Tror, being Tror = nT' the total duration of the desired spline
trajectory, represents the number of iterations.
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Position Error [mm]

Figure 6-16: Interpolation error q; at sampling instants j7' as a function of K.
On the x-axis, t/Tror, being Tror = nT the total duration of the desired spline
trajectory, represents the number of iterations.

despite the effect on the rate of convergency of the error q; which is visible in fig. 6-16,
K, has a role even on the stability of the system as stated in Section 6.3. In fig. 6-17
the experiments which denoted stable conditions in fig. 6-15 has been tested with
different values of K, showing that the system remains stable even with K, = 2.
This can be explained by recalling that the static gain of the experimental system is
0.915, therefore K, = 2 still verifies the stability condition in (6.10), while K, = 2.5
leads to instability. On the contrary the case with 7" = 0.05, which was unstable with
K, =1, can be stabilized only with very low values of K, as reported in fig. 6-18.

207



Position Error [mm]

Position Error [mm]

Position Error [mm]

Figure 6-17: Interpolation error g; at sampling instants j7" as a function of K} and
T. On the z-axis, t/Tror, being Tror = nT' the total duration of the desired spline
trajectory, represents the number of iterations.
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Figure 6-18: Interpolation error q; at sampling instants j7' as a function of K,
for system close to instability. On the z-axis, t/Tror, being Tror = nT the total
duration of the desired spline trajectory, represents the number of iterations.
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6.5 Application of the RC scheme to a Comau Smart5
Six industrial manipulator

In a real scenario involving an industrial manipulator, like the Comau Smart5 Six,

the proposed control can be used according two different schemes and purposes:

a) the iterative modification of the robot trajectories defined in the joint-space
is obtained on the basis of the measurements provided by the proprioceptive

sensors of the robot, i.e. motors encoders;

b) the robot trajectories are directly defined in the workspace and are modified on
the basis of an external sensor that detect the position of the end-effector in the

3-D space, i.e. a RGB-D camera [38].

In the case a) the goal of the repetitive control is improving the robot precision
by compensating the errors that the internal controller of the robot is not able to
correct, while in case b) the external sensor allows the compensation of errors that
are not sensed by the motors encoders, e.g. position errors due to the elasticity of

the transmission chain.

6.5.1 Scenario a

In order to experimentally evaluate the proposed method the setup of Fig. 6-19 has
been arranged. The system is composed of a COMAU Smart5 Six industrial robotic

Real Time PC COMAU Smart5 SiX
B -
=
- 0

i
(7 N | Trajectory

| Generation
i

COMAU C4G Controller | Payioad

Position,
Velocity,

Figure 6-19: Experimental setup.
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arm, a COMAU C4G Controller and a standard PC with an Intel Core 2 Duo 2.4
GHz processor and 1 GB of RAM. The COMAU Smart5 Six is a 6 DOF robot with
anthropomorphic structure, with a payload of 6 Kg. The robot is driven by the
COMAU C4G Controller that performs both the position/velocity control (adaptive
control) and the power stage management with current control of each joint. The
C4G Controller also implements a software option called “C4G OPEN” that allows
the integration of the robot control unit with the external personal computer, in or-
der to develop complex control systems at high hierarchical level. The C4G Open
architecture is based on a real time communication on Ethernet network between the
controller and the real time PC. In particular the PC runs on the real-time operating
system RTAI-Linux on a Ubuntu NATTY distribution with Linux kernel 2.6.38.8 and
RTAI 3.9 that allows the trajectory generator to run with a sampling period 75 = 1ms.
For the design of the control scheme and of trajectory generator, the MatLab/Simulink

RealTime Workshop environment has been used.
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Figure 6-20: Tracking performance of the system due to the factory controller without
RC (a) and with RC controller activated (b). In the middle, the modified reference
trajectory ¢ (t) for the third joint is reported in blue, as a result of the implementation
of the RC controller.
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Figure 6-21: Response of the system at the activation of the Repetitive Control
(t = 0). Errors at sampling instants 7" are highlighted in blue.

For sake of simplicity, the RC of Fig. 6-7 has been implemented on the third joint
only, while the second joint has been actuated in order to disturb the third joint
because of the dynamic coupling. Obviously, both joints are required to track two
different cyclic spline trajectories with the same period. In particular, each trajec-
tory interpolates 12 via-points q; with uniform knot span 7' = 1s. In Fig. 6-20(a)
the performance of the system is shown. As can be seen, the third joint is affected
by a quite evident tracking error, due to both the second joint movement and a 3 Kg
payload represented by the UBHand IV robotic hand [64]. It is worth noting that
the tracking error is relevant even in correspondence of the points g} that define the
spline trajectory.

In Fig. 6-21 the tracking performance of the third joint is presented when the RC
is switched on. It can be noted that the error decreases in overall terms, but mainly,
in correspondence of the points g} the decay is drastic and occurs in a few cycles.

In Fig. 6-20(b) a detail of the trajectory tracking with RC (after 5 cycles) is shown:
in this case the reference trajectory ¢"(t) is different from the theoretical spline ¢*(t),
as it is modified by the controller in order to suppress tracking error at instants 7". By
comparing Fig. 6-20(a) and Fig. 6-20(b) the reduction of the tracking error is evident,

particularly in correspondence of the points g;.
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Figure 6-22: Experimental setup based on a Comau Robot with an external RGB-D
Sensor.

6.5.2 Scenario b

In a number of practical applications the motion of the robot is defined with respect
to its workspace rather than to the joint space. In this case, cyclic motions could
be affected by errors that come from either external loads or unmodeled dynamics.
Sometimes also the kinematic inversion could be a source of errors due to parameters
variation and numerical roundings. In this scenario, RC can be effectively used to
nullify the position tracking error of the end-effector that is required to cross a number
of via-points, usually used for defining complex motions. Furthermore, if a precise
position measurement in the workspace is available, like a vision system, errors due
to uncertainties on the displacement between robot and the surroundings can be
cancelled.

In this experiment, the robot with the control architecture shown in fig. 6-22 has been
equipped with an external sensor, that is a simple vision system, based on ASUS Xtion
PRO Live RGB-D camera, which detects the position of a marker located at the robot
end-effector. For the sake of simplicity, the desired path has been defined by means
of 60 via-points g; disposed on y — z plane and the robot is moved with a fixed

orientation. In fig. 6-23 the view of the camera, which is disposed in front of the
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Figure 6-23: Overposed snapshots of the camera view of the comau. The desired
trajectory is reported in blue.

robot, and the desired trajectory are reported. The image elaboration system runs
on a dedicated standard desktop PC running Ubuntu Operating System and provides
position of the marker with respect to the camera framework within a resolution of
about 1 mm. Note that the precision of the camera, which is a low cost devices, is
lower than the precision of the industrial robot (whose repeatability is 0.05 mm) but
the proposed experiment is only a proof of concept aiming at demonstrating how real
applications can benefit from the RC scheme. The desired trajectory is defined in the
camera space and the (large) initial tracking error, shown in fig. 6-24(a) for the y-axis,
is probably due to a misalignment between robot and camera and to a non-perfect
calibration of the camera. In any case, whatever the cause of the tracking error is,
the position feedback directly provided in the workspace is able to asymptotically

cancel the error between via-points and end-effector position, as shown in fig. 6-24(b)
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for the y-axis. In fig. 6-25 the workspace trajectory of the robot ¢(t) along with the
modified reference trajectory ¢"(t) are shown. The tracking error decay as a function
of time is reported in fig. 6-26. Despite the noise, due to the position estimation with
the camera, the repetitive control scheme is able to considerably reduce the errors

between via-points and geometric path.

=
—

| =
F =

Y] 10 20 30 40 50 60

y Axis Position Error [mmy Axis Position [mm]
o 5 8
» -
= 1
h-J
==
=
—
o=

Figure 6-24: Tracking performance of the system due to the factory controller without
RC (a) and with RC controller activated (b). In the middle, the modified reference
trajectory ¢"(t) for the y coordinate is reported in blue, as a result of the implemen-
tation of the RC controller.
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Figure 6-25: y — z planar view of the tracking performance of the system with RC
controller activated. The modified reference trajectory ¢"(t) is reported in blue, as a
result of the implementation of the RC controller, while the actual trajectory of the
end-effector is in red. Colors are reported with increasing intensity as the time goes
on.
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Figure 6-26: Error decay in the y and z directions after the activation of the RC
mechanism (t = 0).
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6.6 Conclusions

In [17, 16], motion planning and reactive control have been integrated in order to
obtain a perfect tracking of a desired set of via-points. By considering tasks performed
cyclically, which are quite common in the industrial and robotics field, a trajectory
generation based on B-spline has been enhanced with a RC-type mechanism that
modifies in real-time the control points defining the spline in order to nullify the
tracking error at the desired points. The effectiveness of the proposed approach
has been demonstrated both analytically and experimentally. In particular, tests
performed on an industrial manipulator have shown that this scheme can be used
to enhance the performance of the original position controller of the robot. Finally,
the proposed approach could be used to refine the computation of the control points
for a given motion trajectory in order to compensate for cyclic disturbances that
characterize the plant. After an initial “training” the modified control points p}
that take into account the dynamic behavior of the plant could be used without the

adaptation mechanism in lieu of the theoretical values p;.
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Chapter 7

Conclusions

In this thesis the most widely used techniques for planning trajectories in industrial
field have been revised in order to meet specific dynamic requirements of a given
plant, and two novel trajectory generators based on dynamic filters have been devel-
oped and implemented.

In the first part of the thesis, besides the conventional description, all the mentioned
methods have been deeply analyzed in terms of their respective transfer functions
within a filter-based framework. As a matter of fact, traditional techniques for vi-
bration suppression address the problem of residual vibrations under different points
of view: input shapers are defined by means of the impulse response of the system
(i.e. time domain), traditional filters relates to the frequency response of the system,
techniques based on system inversion mainly focus on the transfer function of the
modelled plant (i.e. poles/zeroes content) and analytic trajectory planning is usually
performed in order to comply with kinematic constraints of the actuators, providing
a certain level of smoothness.

As a result it has been demonstrated how different techniques such as input shaping
and analytic trajectory planning for example, are actually closely related if treated as
dynamic filters. Therefore the design procedure of a trajectory planner for vibration
reduction can benefit from a unified framework, which allows to properly compare
and chose the optimal solution for any need. In particular the analysis performed

in this thesis permits to uniquely characterize the two fundamental parameters for a
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generic command shaper:

e Effectiveness, which is related to the ability of the considered method to
perform a proper cancellation of the pair of complex conjugate poles which cause
the vibrations, under nominal conditions of the characteristic parameters of the
plant. Note that the possibility to cancel vibrations needs to be accompanied

by a proper design techniques, that is a direct definition of the cancelling zeroes.

e Robustness, which is the effect of the given technique when a parameters
mismatch occurs between modelled and real plant, and relates to the overall
response of the filtering method in the proximity of the nominal conditions.
In particular the robustness is affected by both the overall content in terms of
those poles/zeroes which are not involved in the cancellation, and the eventual

augmented multiplicity of the cancelling zeroes.

Moreover the description by means of dynamic filters allows to easily analyze each
method using well known control systems techniques, in order to achieve significant

features such as time delay, sensitivity and smoothness of the resulting trajectory.

In addition, the use of a common framework to describe various techniques al-
lows not only to make bridges between those methods but also to merge valuable
features. For example, in Chapter 4 commonly used trajectories defined by means
of analytic functions and compliant to kinematic bounds have been described as fil-
ter chains. On the other hand the filter-based analysis applied on standard tools
for vibration suppression, such as input shapers, led to define precise conditions for
achieving vibration-free motion in Chapter 2. Then, techniques proposed in both
Chapters 4 and 5 can be seen as methods for planning optimal trajectories which

comply to hybrid constraints, that is both kinematics and dynamics.

With respect to analytic trajectory also, the use of dynamic filters results very
convenient in terms of implementation and integration in more complex systems. In

particular the repetitive control scheme proposed in Chapter 6 demonstrates that the
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integration of widespread techniques for trajectory generation into a reactive feedback
system for perfect tracking can be easily achieved thanks to the definition of an on-line

trajectory generator based on discrete time filters.
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Appendix A

Development of an Optoelectronic
6-axis Force/Torque Sensor

for Robotic Applications

A.1 Introduction

Nowadays, one of the most challenging goals in robotics is the development of au-
tonomous devices able to interact with dynamic environments and cooperate with
humans in every-day life. Either in a domestic or an industrial environment, a robot
must be able to sense what surrounds it in order to operate safely and autonomously.
For this reason, robots are equipped with many sensors in order to achieve a rea-
sonable autonomy level for performing several tasks in unstructured environments.
In particular, the availability of Force/Torque (F/T) sensors is a common require-
ment in robotic systems designed for interacting with unknown environments and
with humans, and are also useful for the manipulation of uncertain objects, allowing
the online adaptability of the robot to the real characteristics and conditions of the

object, environment or person.

Commercial F/T sensors are mostly based on strain-gauges. The motivation be-

hind this fact can be ascribed to the reliability of this solution, to the wide literature
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Figure A-1: A prototype of the optoelectronic 6-axis Force/Torque sensor.

about the optimization of this sensing principle [19, 98], to the relatively simple nu-
merical methods for the estimation of strain in multi-axis F/T sensors |57 and to
the large stiffness of the sensor that does not introduce destabilizing effects when ap-
plied on conventional industrial manipulators. As a consequence, this technological
solution has been used in a wide number of different robotic applications, e.g. in
[97] where a 4-axis strain-gauge sensor has been developed for measuring interaction
forces in haptic devices or in [51] where a 6-axis F/T sensor has been embedded in

an intelligent robotic foot.

Focusing on grasping and manipulation tasks, the sense of touch is essential to
proper manipulation of objects. Indeed, the huge amount of work in tactile sensing
literature is justified by the importance of having a proper sensing of the contact
forces exerted during manipulations. A recent and complete review on tactile sensor
technologies and features is reported e.g. in [26]. Despite this, a relatively limited
number of commercial tactile sensors are currently available, mainly due to high man-
ufacturing complexity and cost. Even if many different design solutions have been
proposed and several physical transduction principles have been exploited, the design
of reliable and accurate tactile sensors has proven to be very hard, then the use of
F/T sensors as intrinsic tactile sensors |21] has been investigated because of the sim-
plicity of the device (if compared to tactile sensors). In this scenario, the adoption of
optical-based F /T sensors may introduce several advantages, as shown by the many

different implementations proposed in literature. While strain-gauge based F/T sen-
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sors measure the strain induced on the mechanical structure by the an external force
and /or torque, optoelectronic sensors exploit the scattering or the reflection of a light
beam emitted by a source and received by suitable detectors to directly measure the
deformation of a compliant structure or the relative displacement between elastically
coupled elements caused by the external force and/or torque. The applications of
optoelectronic-based force sensors range from conventional mono-axial measurements,
like in 73] where discrete optoelectronic components are used to measure the forces
in a tendon based transmission system, to 6-axis F/T sensors, as in |56] where the
authors adopt optoelectronic devices mounted on a compliant structure to measure
human-robot interaction forces. The research carried out by Hirose and Yoneda [40]
in the field of optical F/T sensors is particularly noticeable: they implemented an op-
tical 6-axis F/T sensor adopting a 2-axis photosensor for measuring the deformation
caused by the external load on a compliant structure. In the field of tactile sensors, a
quite common optical technology is based on Fibre Bragg Gratings (FBG), exploiting
the relationship between the variations of the FBG wavelength and the external force
applied to the FBG [39]. Other optoelectronic solutions are based on CCD or CMOS
camera to acquire the deformation of a surface caused by external force [46]. Both
these solutions are quite expensive and introduce serious design problems if their in-
tegration in complex robotic structures like anthropomorphic hands and robotic arms
is considered. In [31] and [36] the light beam of a Light Emitting Diode (LED) is
scattered by a silicon dome and a urethane foam cavity respectively: the compression
of the dome or the cavity due to applying an external force, causes a scattered energy
density variation that is detected by several PhotoDetectors (PDs). In [29] another
interesting example of optical tactile sensors based on a matrix of LED/PD couples
covered by a deformable elastic layer can be found. This sensor exploits both the
cavity scattering principle mentioned before and taxel-based reconstruction typical of
CMOS sensors. In [101] an example of tactile/force sensor exploiting the reflection
of the light cone emitted by an LED on a silicon rubber dome is reported. The mea-
suring principle of this sensor is based on the measurement of the radiation intensity

spatial distribution variation after the light reflection on the deformable dome above
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the optical components caused by the deformation of the dome itself under the effect
of the external contact force.

The main advantages of optical F/T sensors with respect to the ones based on
strain-gauges are: the easier assembly procedure; the adaptability to mechanical
structures characterized by limited stiffness; the simpler conditioning electronics; the
intrinsic robustness with respect to electromagnetic noise; the possibility of integrat-
ing a large number of sensing elements on the same device, e.g. in CCD and CMOS
sensors; the reduced cost of the sensing devices. On the other hand, strain-gauge
based F /T sensors ensure better reliability and sensitivity.

In [72] is reported the development of a 6-axis F /T sensor ' based on the optical
reflection concept mentioned above. Due to the already mentioned advantages, this
solution allows to obtain an easily scalable and low-cost F /T sensor, suitable also to
be used as an intrinsic tactile sensor. Moreover, because of the adoption of optical
components, the proposed sensor requires an extremely simple conditioning electron-
ics. Finally, with a proper exploitation of the light reflection, the sensor design can be
significantly simplified since all the required electronic components can be allocated
in a single Printed Circuit Board (PCB), making it easier the sensor integration into

complex robotic structures such as robotic hands.

A.2 Sensor Concept and Mathematical Modeling

The basic working principle of the proposed sensor is based on the modulation of
the current flowing through a PD caused by the power variation of the received light
generated by an infrared source such as an LED. The light power modulation is mainly
due to variations both of the angle of view and of the length of the optical path [50].
The sensor is composed by an LED, a certain number of PDs arranged on the same
plane (mounted on the PCB) and a Reflective Surface (RS), e.g. a mirror, located
above the PCB. The frame supporting the PCB and the one supporting the RS are

mechanically connected by a compliant structure that allows the relative motion of

'Patented [63].
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(a) Rest position.

(b) Pure translation.

(c) Pure rotation.

Figure A-2: Reflection of an ideal light cone under the action of a moving mirror.

the RS with respect to the PCB under the effect of an external force. As seen in
the case of tactile sensors, the applied force can be reconstructed by measuring the
motion of the RS on which the light reflection or scattering occurs. In this case, the
RS is not deformable as in [29], but it can move if an external force is applied thanks
to a suitably designed compliant structure. Therefore, the basic idea is use the light
intensity measured by the PDs to reconstruct the position and orientation of the RS

and, as a consequence, the applied force and torque.

Figure A-2 reports a schematic view of the basic elements that compose the pro-
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Figure A-3: Simplified measuring circuit of the PCB with one LED and four PDs.

posed sensor: one LED is mounted in the center of a square PCB, and 4 PDs are
symmetrically arranged around the LED at a proper distance. In front of the PCB,
a rigid RS deviates the light coming from the LED back to the PDs. The PCB with
the optoelectronic components is fixed to a base frame, while the RS is connected to
the base frame by means of a suspension system that allows the mirror to change its
relative position and orientation with respect to the PCB. A schematic view of the
reflected light behavior when basic movements (translation or rotation) are applied
to the RS is shown in fig. A-2. From this figure it is possible to see that each basic RS
movement causes a variation of both the light path length and the reflection angle.
Since the light reflection is invariant with respect both to RS translations along direc-
tions tangent to the RS itself (up to the dimension of the RS) and rotations around
the RS normal axis, it is clear that the device shown in fig. A-2 is sensible only to
translations normal to the RS, and rotations around RS tangent axes. Then, three
parameters describing the actual RS configuration (1 translation and two rotations)
can be estimated by using a minimum number of three PDs. In our implementation,
four PDs have been used to introduce a certain redundancy in the measure, fact that
can improve the quality of the measure itself from the point of view of the preci-
sion and noise rejection, reducing also the issues related to the non-ideal component
assembly. The PD photocurrents can be then simply measured by means of proper
resistors and directly acquired by an Analog-to-Digital Converter (ADC) as shown in
fig. A-3.
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Figure A-4: Interaction between the optoelectronic components.

A.2.1 Theoretical Model of the LED-PD Interaction

With the aim of collecting useful information for the sensor design, a mathematical
model describing how the light propagates from the LED to the PD under the action
of the moving RS has been developed. To derive the theoretical model, let us firstly
recall the basic working principle of the device by means of the simplified represen-
tation of a LED-PD interaction reported fig. A-4. In this scheme, the LED and the
PD are supposed to be mounted on parallel planes, such that their optical axes are
parallel and lie on the same plane. This assumption is made because in the practical
implementation of the device, the optical axes of the optoelectronic components are
normal to the PCB, but the height of the LED and the PD are different. In fig. A-4,
a represents the angle between the LED optical axis and the segment denoting the
light path, while S represents the angle between the PD optical axis and the light
path. From this scheme, it is clear that o and § depend on the reflection angle 6, that
in turn depends on the RS orientation ¢ and distance d. Moreover, also the length [
of the light path changes with the RS orientation and distance. In this conditions, a
certain amount of light emitted by the LED reaches the PD and it is proportionally
converted into an electrical current, that considering the others as constant param-
eters, can be expressed as a function of a and 3, i.e. I,(a, ) (also referred to as
photocurrent). When the RS orientation ¢ and its distance d experience a variation
with respect to their initial values, the light path changes and a different amount of
light power will be sensed by the PD, and then a photocurrent variation occurs. The

radiant intensity pattern of the LED L(-) and the responsivity pattern of the PD
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R(-) are available from the data-sheets of the components. According to the general
theory on the interaction between the optoelectronic components [50|, given the LED
radiant intensity J(Ipgp) as a function of the LED bias current I pp, the radiant
intensity pattern of the LED, evaluated in « (denoted as L£(«)) and the responsivity
pattern of the PD, evaluated in 3 (denoted as R((), the intensity that irradiates the
PD, 37,, is:

3, =3(Iep) L() R{R} R(p) [mW /st (A.1)

where R{ R} is the real part of the reflectivity R of the mirror, that is determined
by the angle of incidence of the ray with respect to the normal of the mirror (6 in

fig. A-4) and the complex refractive indices of air (n;) and the RS (ns):

R=(Rs+ Rp)/2

ny cos(0) — ny \/1 — (22 sin(6))?
Rg —

ny cos(0) + nqy \/1 — (52 sin(0))?

nl\/l — (7sin(6))? — ng cos(0) 2
Rp =

n \/1 — (2 5in(6))2 + ny cos(0)

The relation between the LED radiant intensity and current J(/;gp) can be derived
from the component datasheet. As a simplifying assumption, we assume this relation

is almost linear

j(ILED) = KLED ILED (A2)

where Kygp is a proper constant (this assumption holds for the selected device in a
wide range of the current I pp). The problem is then to define the relation between,
on one side, the orientation ¢ and the distance d of the RS and, on the other side, the

angles o, 8, 6 and the light path length [. By simple geometrical relations it follows
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that (a detailed analysis is reported in |72]):

o (BA). . (CA).
= acos————, B = ACoS =~ (A.3)
0 = acos <a£5 ﬂ) , l=BA+CA (A.4)

where agg is the unit vector orthogonal to the RS plane, the position of a point with
respect to the origin of the reference system is denoted by capitol letter, e.g. A,
AB = A — B denotes the segment connecting A and B, AB = ||AB]|| is the length of
AB, E = AB/AB is the unit vector denoting the direction of AB pointing from A

to B and the subscript . denotes the z-coordinate of the relative vector.

The PD output photocurrent [, is then computed as a function of the spectral

flux density &, that is the power incident on the PD surface (in mW /cm?)
I, = f(&,Vpp) (A.5)

where Vpp is the voltage drop across the PD and the function f(-,-) is reported on
the PD datasheet. Since in the proposed implementation the PD works far from the

saturation region, eq. (A.5) can be approximated as
Ip - KPD ge (A6)

where Kpp is a proper constant. It is worth noticing that while eq. (A.1) expresses
the LED radiant intensity in mW /sr, in eq. (A.6) the light power density in mW /cm?
is considered. This implies a conversion from the PD surface to the LED solid angle
(i.e. the solid angle delimited by the cone with vertex in the LED center and as base
the PD sensitive area), that involves the path length [. To perform this conversion,
the PD sensible area is firstly supposed to be normal to the light path direction (AC
segment) and with circular shape. Then, the radius r of the PD area, i.e. the solid
angle aperture, is simply r = \/m, where App is the PD sensitive area, while
the radius R of the sphere centered on the LED and containing the LED solid angle
is R = /124 12. The the LED solid angle w can be then computed from the ratio
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between the area A, = 27 R(R—1) of the sphere portion bounded by the PD sensitive

area and the whole sphere area

47A, 8w R(R-1) 1
_ _ P [ I — A.
YT AR 47 R? " ( 1+(r/1)2> (A7)

The power incident on the PD surface can be then obtained from the LED radiant

intensity

A
E = jD J,cos 3 [mW /cm?| (A.8)

where the term cos [ takes into account the reduction of the PD area due to the angle
between the light path direction and the PD surface itself. It is also implicitly assumed
that the LED radiant intensity pattern £(-) and the PD responsivity pattern R(-)
present constant values, corresponding to the ones evaluated in o and 8 respectively
(i.e. along the light path ABC'), within the solid angle w. From (A.7) and (A.8) it can
be noted that the light power £, incident on the PD is related to the light path length
[ by an inverse-square relation. Finally, the photocurrent I, can be simply measured
by means of a resistor, as shown in fig. A-3, converting the photocurrent into an
output voltage, the ADC then converts it into a digital signal that is transmitted
through the digital bus.

Summarizing, the mathematical model of the LED-PD interaction is described
by eq. (A.1), (A.3), (A.6) and (A.8). The numerical evaluation of this model has
been developed taking as basic components an infrared LED with a narrow viewing
angle and with a typical peak wavelength of 860 nm (Osram SFH4451), and as PD a
silicon NPN phototransistor (Osram SFH3010) with a maximum peak sensitivity at
860 nm wavelength. The LED radiant intensity pattern £(-) and the PD responsivity
pattern R () have been derived by cubic interpolation of a suitable point set taken
from the datasheet of the devices, while the parameters of the selected optoelectronic
components are reported in Tab. I. Considering a LED-PD couple arranged on a
printed circuit board at a distance of 6 mm, fig. A-5 reports the PD output voltage
for different values of the distance and orientation of the RS. The plot reports a

limited range of d and ¢ variations because to reduce at most as possible the overall
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Figure A-5: Theoretical Output voltage as a function of angle and distance of the
RS.

device dimensions, these parameters should be as small as possible. This figure shows
a quite complex behavior of the PD output voltage modulated by the RS motion.
Indeed, it is clear from the previous analysis that the RS distance and orientation
affects the angles «, (3, € and the light path length [ in a quite complex and non-
linear way. The selection of a LED with narrow viewing angle avoids that the PD is
illuminated by direct light from the LED (without being reflected first). Moreover,
a narrow viewing angle is crucial to boost the effect of the o and [ variations on
the output voltage, providing a good sensitivity also on very small angular and linear
displacements, as shown in fig. A-5. Moreover, due to the amplitude of the output
voltage variation, this signal can be directly digitalized without introducing any signal

amplifier, allowing a significant simplification of the sensor conditioning electronics.

Table I
LED and PD Parameters.
Description ‘ Symbol ‘ Value ‘ Unit
PD Sensitive Area App 0.04 | mm?
PD Sensitivity Kpp 280 pA ¢cm? mW—!

LED Radiant Intensity | Kpgp 600 mW sr—t A1
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Figure A-6: Comparison between the theoretical model (blue) and experimental data
(red).

A.2.2 Theoretical Model Validation

The results of the model presented in the previous section have been compared with
experimental data acquired from a purposely developed setup, in which the posi-
tion of the RS (both translations and rotations) with respect to the optoelectronic
components can be accurately measured. Some of the results are shown in fig. A-6.
The experimental setup is composed by three linear motors LinMot P01-235x80
(see fig. A-7) driven by two servo controllers LinMot E210-VF (each servo controller
can drive up to two linear motors). The control system is based on a standard PC
with Pentium IV 3GHz processor, equipped with a Sensoray 626 data acquisition
board used both to communicate with the servo controllers and to acquire the PD
output signal. Each motor is provided with an integrated linear position encoder
with a resolution of 1 um. The RTAI-Linux realtime operating system has been
used for controlling the system, while the MatLab/Simulink/RealTime Workshop
environment has been used for the development of the control scheme and as user
interface. The linear motors are driven by a low-level control system that allows
precise regulation of the motor slider positions compensating for the friction, motor
cogging and external disturbance forces [68|. Figure A-7(a) shows the top view of this
experimental setup, in which the upper cover has been removed to allows a better

vision of the internal structure, whereas fig. A-7(b) provides a better view of the
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Figure A-7: Experimental setup (without upper cover) for the validation of the LED-
PD theoretical interaction model.

LED, PD and RS arrangement. In this experimental setup, the RS is mounted on
a planar element (RS plane) that can slide along a linear guide aligned with the
LED optical axis, moreover the rotation of the RS plane along an axis orthogonal
to the linear guide is allowed. The RS is moved by two linear motors, and its linear
and angular displacements are reconstructed by means of the linear motor integrated
encoders. The LED is mounted on a fixed element, while the PD is mounted on a
sliding element whose position is controlled by the third linear motor. This allows to
evaluate also the theoretical model for different values of the LED-PD distance, but
for the sake of brevity the discussion reported in this paper is restricted to the case
of minimum LED-PD distance compatible with the device implementation (3 mm)
for achieving the minimum overall device dimension. As shown in fig. A-6(b) where
the colormap representation of the relative error is reported, the maximum error
between the model and the experimental data is about 10% over the whole range
under investigation. Anyway, these results are quite satisfactory since they allow
to investigate in advance, by exploiting the developed theoretical model described in
Section A.2.1, the design and the characteristics of the device taking into consideration
the optoelectronic component parameters, their arrangement and the RS range of

motion. In fig. A-8 the combined output voltage sensitivity (normalized within the
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Figure A-8: Evaluation of the normalized output voltage combined sensitivity with
respect to both linear and angular RS displacement.

range |0, 1]) with respect to both the linear and angular RS displacement is reported:
the higher the combined sensitivity is, the higher is the output voltage variation in
case of both the linear and angular RS motions, while a lower combined sensitivity
means that the output voltage is less sensitive with respect to that motions or is
sensitive to one motion type only (linear or angular). For symmetry reasons, and
since more than one PD will be mounted on the same PCB, we are interested in
the investigation of an angular working range centered on 0 deg (the RS is parallel
to the PCB in rest conditions), then fig. A-8 suggests the selection of a working
range for the proposed device of |-1, +1]| deg and [0.0097, 0.0117] mm, resulting in a
distance between the RS and the LED center in rest conditions of 10.7 mm. In this
working range, the output voltage combined sensitivity is almost homogeneous at the
maximum value, as shown in fig. A-8, and the model error is also limited to about

5%, as reported in fig. A-6(b).

Aiming at measuring the distance and the orientation of the RS with respect to
the LED-PD plane, the experimental setup shown in fig. A-7 has been modified as
reported in the CAD drawing fig. A-9(a), where the element supporting the LED
and the PD has been replaced with the one shown in fig. A-9(b) (the linear motor
for adjusting the LED-PD distance is not used anymore). In this device two pairs

of PDs are symmetrically arranged with respect to the LED, reproducing the LED-
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Figure A-9: Experimental setup for the evaluation of the RS distance and orientation.
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Figure A-10: Mean absolute error vs. Polynomial interpolation order.

PD arrangement shown in fig. A-2, and a mask for reducing the effects of spurious
reflections on the PD output voltages has been mounted over the PCB. Since in the
experimental setup the RS can be rotated along one axis only, the output voltages of
only two PDs (over the available four) will be used for reconstructing the RS position
and orientation. In particular, the output voltage of the two PDs arranged along the
direction normal to the RS rotation axis are used for this purpose. Although the
obtained characteristic is strongly nonlinear, it is interesting to investigate the usage
of a polynomial map of the output characteristic, at least in a region surrounding the
center of the working range (angle = 0 deg, distance 10.7mm), for the reconstruction
of the PDs and both the linear and angular RS displacements. This will allow the
adoption of a quite simple estimation procedure for reconstructing the RS motion by
means of the device output voltage. The mapping between the PD output voltages

and the RS position and orientation is then achieved by the following polynomial
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Figure A-11: Reconstruction of linear and angular displacement using a LED and
two PDs.

interpolation:

=Mv (A.9)

where
T

vz[v{‘ R T R

is the vector of the output voltages of the two PDs, v; and v, respectively, and the
corresponding powers up to the order n (the two ones at the end of the vector are
used to remove the output voltage offset), and M is the calibration matrix that can

be derived from experiments as
M=AX" (A.10)

where Y1 denotes the pseudoinverse of matrix ¥ and

A di dy -+ di -+ dp
Y1 P2 Yi o Pm
2 p— Ul U2 .« . ,I-}Z PR Um

are the matrices of the m experimental measures of the RS position and orientation
and of the PD output voltages. Figure A-10 reports the mean absolute error in the

estimation of the RS position and orientation from the PD output voltages over the
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whole set of experimental measures for different order of the polynomial map: it
can be noted that no significant improvement is obtained with an order greater than
three, then this order is selected as a valid trade-off between estimation error and
computational complexity. The results reported in fig. A-11 show that, within the
selected working range, this device allows to reconstruct the RS distance and the

orientation with an estimation error less than the 10% of the measurement.

A.3 Sensor Prototype

The basic element for building up the proposed 6-axis F/T sensor is a PCB with
a LED mounted in its center and four PDs symmetrically arranged around it on a
circle of radius 3 mm. In the implemented device, the PCB is a 10x10 mm electronic
board (1 cm?). Furthermore, to measure forces and torques along the three axes with
a proper redundancy, 3 of these basic elements have been placed on three faces of
a cube. Despite three of these PCBs mounted on non parallel planes are sufficient
to discriminate all the components of forces and torques along the 6-axis, this PCBs
arrangement intuitively allows to achieve the maximum sensitivity and decoupling
of the measurements. A prototype of the sensor is shown in fig. A-12 and fig. A-
13. Note that the geometry of the sensor and the placement of the PCB may vary
depending on the specific application for which the sensor is designed. A specific mask
with suitable hollows has been designed in order to avoid cross-disturbances (light
reflections) between the three boards, as also detailed in fig. A-9(b). The relative
motion of the RS with respect to the PCBs is achieved by means of a compliant
frame, whose design is detailed in Section A.3.1, connecting the internal part of the
sensor (where the PCBs are fixed) to the external contact surface, the cover (where
the RSs are attached). The compliant frame deforms in an elastic way when a contact
force is applied to the external contact surface. Note that, by a suitable design of
these elastic elements, the sensor working ranges (in the force domain) can be freely
adjusted according to the application requirements. The conditioning electronics

is extremely simple, as the circuit schematic in fig. A-3 shows. This aspect is quite
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Figure A-12: Conceptual design of the sensor prototype.

Figure A-13: Internal view of the sensor: the cube with the three PCBs and the cover
with the RS.

important because it allows a simple integration of the sensor in mechanically complex
structure, since the whole circuit in fig. A-3 can be implemented in the same PCB
where the LED and the PDs are hosted. The three PCB shown in fig. A-13 are
then connected through the SPI digital bus to a microcontroller board located into
the sensor base that elaborates the PDs output signals to perform noise filtering and
providing the force estimation on the base of the calibration data (the calibration
procedure is described in Section A.4). The microcontroller is then able to transmit
the estimated forces and torques via digital bus using different protocol and bus
types: the CAN bus and CanOpen protocol have been adopted for the developed

sensor prototype.

The external surface of the sensor, in this specific prototype, is a spherical cap
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with radius R = 44 mm. This particular design has been developed since the sensor
is going to be placed on the fingertips of an underwater three-fingered robot gripper,
[8], and both the dimension and some of the design choices (e.g. the o-rings for water
insulation as reported in A.5) derive from this specific application. In particular,
the overall dimension of the sensor could be drastically reduced for other types of

applications.

A.3.1 Compliant Frame Design

Figure A-14(a) shows the structure of the compliant frame used for connecting the
contact surface, and then the RS rigidly connected to it, to the base frame of the
sensor where the PCB with the LEDs and the PDs are located. In particular, the
compliant frame is composed by an inner frame, rigidly connected to the sensor base,
an outer frame connected to the contact surface and a set of flexible links (three in
the specific case) that connect the inner and the outer frames. Suitable elements to
limit the maximum deformation and to avoid damage to the deformable structure
itself can also be added to the compliant frame, but this issue is not addressed here
to simplify the discussion. It the following analysis, it is supposed that only the links
are deformed by the effects of the external force, while both the inner and the outer
frames are treated as rigid bodies. Moreover, all the links are considered equal (with
the same physical dimension and material) to achieve a symmetric deformation of the
compliant frame. Figure A-14(a) reports also the reference frame of the sensor base,

of each link of compliant frame and the one of the contact surface.

According with the Timoshenko beam theory, the stiffness of each link can be
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expressed as |75]

AE- 0 o 0 0 0
o 2% 0o o0 0 O
0 0 12E1, 0 _SEL 0
K, = L2 . L2 (A.11)

0 0 0o < 0 0
o o =% o L

Bl El.

0 oF o 0 0 =]

where E and G are the modulus of elasticity (Young modulus) and the shear modulus
respectively, that are equal for all the links, L, I,, I., A and J are the length, the
area moment of inertia about the y- and z-axis, the cross section area and the torsion
constant (polar moment of inertia) of the i-th link respectively. The matrix K, rep-
resents the stiffness of a 6-dimensional spring that allows to compute the force/torque
vector w = [fT, mT|T generated at the link reference frame when the cross section in
the yz-plane experiences a displacement p = [6x7, 57| (translations and rotations)
with respect to the other link end. To clarify the proposed analysis, it is important to
introduce the dependence of the terms in eq. (A.11) from the physical dimensions of
the links. fig. A-14 shows the simplified structure of a link together with the position
of the reference frame used to define the link’s stiffness matrix (A.11). With reference
to fig. A-14(b), the particular geometry of the links allows the computation of the

parameters appearing in (A.11) in a very straightforward way:

_ _ 13 R S _
A=ab, Iy—12a b, Iz—l2ab, J=1,+1,

The subscript ; means that this stiffness matrix is defined with respect to a reference
frame attached at one link end and with the x-axis along the link length and the y-
and z-axis normal to the lateral surface, as shown in fig. A-14(b). A suitable change of
coordinates is used to represent the stiffness matrix of each link in the reference frame
of the contact surface. It is supposed that the contact surface reference frame F, is

translated along the z-axis by p, with respect to the base reference frame Fj, while
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(a) Sketch of the compliant frame and related ref-
erence systems.
Y

(b) 3D view of the link.

Figure A-14: Detailed view of the compliant frame and of the links.

the reference frame attached to each link F;, i =1,---  k, where k is the number of
links, are rotated along the z-axis by ¢; = —2 (i — 1)7/k and then translated along
the x-axis by —p,. So the homogeneous transformation matrix °7j expressing the

position of Fj with respect to F, is

100 0

e 010 0
T, = A12
0 001 —p, (A-12)

000 1

while 9T} expressing the position of F; with respect to Iy is
cosg; —sing; 0 —p,
o _ | sin ¢; cosgp; 0O O A1l
! 0 0 1 0 (A.13)
0 0 0 1
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It is important to say that this coordinate transformation is performed by means of
the velocity transformation matrix °G; and the force/torque transformation matrix

°GT [83]. Recalling the general form of homogeneous transformations

b a T
b _ Ra Pab a _ |: ]
Ta - ) ab — )
o O —Pz py
ab — Pz 0 —DPz
_py Pz 0

where YR, and ’p, are respectively the rotation matrix and the origin translation

between F, and Fj, it results

“R; —Ri'P.

“=10 “m

Then the stiffness matrix K, seen from the (external) contact surface can be computed

as the sum of each link stiffness expressed in the frame F:

k
Ko=) Gl K.°G (A.14)
i=1
In the same way, it is possible to define the compliance matrix as C, = K ! that
maps the force applied to the contact surface into its displacement.

The compliant frame design problem is now to select the link parameters a, b, L
(within a suitable range compatible with the implementation of the device) and the
the link number £ in such a way to obtain the desired stiffness along the different
directions according to the application requirements and taking into account the
maximum displacement range discussed in Section A.2.2. The parameters of the
compliant frame used in the experiments here reported can be found in Tab. II: note
that these parameters have been selected to obtain a compliant frame with similar
linear stiffness and similar torsional stiffness along all the directions for sensor testing

purposed, but are not selected according to any particular applications.
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Table 11
Compliant frame parameters.

Description Symbol | Value | Unit
ABS Young Modulus | £ 2900 | MPa
ABS Shear Modulus | G 1050 | MPa
Link Thickness a 1.5 mm
Link Width b 4.8 mm
Link Length L 16.5 | mm
Link z-axis Offset D 21.5 mm
Number of Links k 4

Surface z-axis Offset | p, 20 mm

A.4 Calibration and Characterization

A.4.1 Sensor Calibration

The calibration procedure has been performed by using as reference sensor an ATI
Gamma SI-130-10 F /T sensor. The developed sensor prototype has been mechanically
connected to the reference ATI sensor in such a way that, apart form a suitable
changes in the reference frame and in the point where the force is applied, the sensor
are subject to the same forces and torques. Then a variable load in terms of both
forces and torques has been applied to the sensor prototype and the data from both
sensors have been acquired. As mentioned in Section A.2.2, being the compliant frame
working within the elastic regime, it can be assumed that a linear function exists
between the applied force/torque vector w = [fT, mT]T and RS displacement. Then,
similarly to what is described is Section A.2.2, the mapping between the PD output

voltages and the applied force and torque can be done by polynomial interpolation as
w=Cuv (A.15)

where
T
'U:|:’U{L ,U{LQ R R PN 1 --- 1

is the vector of the sensor output voltages (12 PD output voltages), and the corre-

sponding powers up to the order n (the 12 ones at the end of the vector are used to
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remove the output voltage offset), and C is the calibration matrix that can be derived

from experiments as

C=Qx* (A.16)

where X1 denotes the pseudoinverse of the matrix X and

|:w1 w2 . wl . wm}

Q
> [Ul vy e vy e vm}

are the matrices of the m experimental measures of the external forces/torques ap-
plied to the optoelectronic sensor and of the PD output voltages respectively. For the
derivation of the calibration matrix, the force and torque components are acquired
by the reference sensor and preliminary converted to the optoelectronic sensor refer-
ence frame by means of a suitable transformation matrix. As described in Section
A.2.2, a 3rd-order interpolation polynomial has been adopted for deriving the external
force/torque vector from the sensor output signals.

Because of the specific mechanical design?, the operating range of the sensor is
[—50-+50] N along the linear axes, while torques are limited to [—1-1] Nm about the
rotational axes. fig. A-15 shows a test in which forces are measured by the reference
sensor and by the proposed optoelectronic sensor after calibration; force and torque

estimation errors are reported as well.

A.4.2 Cross Coupling Analysis

The analysis of the cross coupling error is usually performed to verify the properties of
strain-gauge based F /T sensors, especially in case of mechanically decoupled sensors
[98, 58, 111], and it can be considered as an index of the sensor quality. According
to the definition given in [49], the cross coupling error is defined as the ratio of
unfavorable signals to the intended one at a given output of the sensor according to

pure force components. In the case of the proposed sensor, since we are not interested

2 As already mentioned, the mechanical and elastic parts of the sensor can be tailored for specific
applications, and therefore different performances can be achieved if desired.
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Figure A-15: Performance of the optoelectronic F /T sensor: Force and Torque recon-
struction.

in measuring the strain induced on the mechanical structure and since there are
several output signals that are expected to change when a pure force component
is applied to the sensor, the analysis of the cross coupling error is performed by
taking into account the output voltages variations of the PD conditioning circuit
when a pure force or torque is applied along the sensor reference axes. Assuming
that the PCBs are mounted orthogonally to the sensor reference axes, due to the
structure of the proposed measuring circuit, a pure force component along a reference
axis will produce, in ideal conditions, a variation of the PD output voltages in the
PCB orthogonal to the force direction only, while a pure torque component will
produce a variation of the PD output voltages in the PCBs that are parallel to the
torque direction only. Any deviation from this expected behavior can be ascribed to
misalignment between the reference axes and the PCBs (and the RS), defects in the
PCB assembly that cause deviation of the LED and PD optical axes with respect to
the PCB plane or to spurious light reflections.

The cross coupling error has been then evaluated by considering the maximum load
(50N force or 1 Nm torque) along the sensor reference axes and the corresponding
PD output voltage variations. The cross coupling errors ¢; are defined in this case as

the ratio between the absolute value of each PD output variation, denoted as |AV}],
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and the maximum one, denoted as |AV}|yax, i-€.

|AV]|

Ci = W (A.17)

In Tab. III the cross coupling errors evaluated on the experimented sensor prototype
are reported: note that the PDs numbered from 1 to 4 are mounted on the PCB
orthogonal to the x axis, the ones numbered from 5 to 8 are mounted on the PCB
orthogonal to the y axis and the ones numbered from 9 to 12 are mounted on the
PCB orthogonal to the z axis. From these results it can be stated that, even if a
considerable coupling error exists, probably due to the aforementioned defects in the
sensor implementation, the variation of the output signals are consistent with the
expected behavior.

Table II1
The cross coupling errors evaluated on the experimented sensor prototype.

¢ Fp,=50N F,=50N F,=50N M,=1Nm M,=1Nm M,=1Nm

cr 0.996 0.324 0.109 0.211 1 0.990
co 1 0.215 0.080 0.129 0.772 0.872
cg 0.993 0.199 0.170 0.132 0.951 0.940
¢y 0.884 0.235 0.122 0.190 0.698 0.761
cs 0.141 1 0.059 0.901 0.054 0.847
cs 0.120 0.971 0.166 0.764 0.184 0.798
cr 0.195 0.899 0.098 1 0.045 0.604
cg  0.208 0.910 0.119 0.655 0.101 1

co 0.210 0.351 0.891 0.689 0.804 0.129
cio  0.207 0.103 0.989 0.872 0.922 0.032
cin 0.181 0.099 0.889 0.541 0.799 0.007
ciz2 0.190 0.177 1 0.967 0.985 0.150

A.4.3 Characterization as Intrinsic Tactile Sensor

Among the variety of possible F/T sensor applications, several authors reported how
to use them in robotics as intrinsic tactile sensors, i.e. for the computation of the
contact point between e.g. the fingers of a robot hand and the grasped object, see

[21, 82, 24, 61]. Considering an “hard finger” contact hypothesis (i.e. only forces and
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not torques can be applied at the contact point), the use of the proposed device as
an intrinsic tactile sensor has been investigated. As described e.g. in [21], in case of a
sensor with spherical surface (with radius r) the position p. of the contact point can

be obtained from the force f and torque m measured by the F/T sensor from

1 [f x m]?
A= ——y 2= L2
I £1] £
S fxm
’ [l
Pe = TO_I_)\f

These equations admit up to two possible solutions (the intersection of a line with
a spherical surface), then the right solution can be selected assuming that the con-
tact force can only push on the sensor external surface. Some experimental tests
are reported in fig. A-16, where the measured forces and the corresponding con-
tact point position on the sensor surface are represented by blue lines and red dots
respectively. In this tests, the estimated [z,y, 2] coordinates have been computed
as [—2.4, —1.7, 43.9] mm, [-5.1, —10.5, 42.4] mm, [-10.6, —7.2, 42.1) mm and
[13.6, —0.6, 41.8] mm. For the sake of comparison, in fig. A-16 also the forces mea-
sured by the ATI reference sensor and the corresponding contact point positions are
reported with green lines and black dots respectively. These results allow to state

that the proposed optoelectronic device can be used as intrinsic tactile sensor.

A.4.4 Slip Detection

A slip detection algorithm exploiting the information gathered from the proposed
optoelectronic sensor has been implemented and experimentally tested. Figure A-17
shows the experimental setup composed by two linear motors LinMot-37x160: the
first motor (Motor 1) is mounted with its motion axis aligned with the sensor z-axis
and is used to hold an object against the optoelectronic sensor by means of a rounded
tip (to simulate the contact between the object and a second fingertip); the second

motor (Motor 2) is positioned perpendicularly to Motor 1 and is equipped with a
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Figure A-16: Contact point reconstruction tests: force directions (blue lines) and
contact point positions (red dots) measured by the optoelectronics F/T sensor; for
comparison, force directions (green lines) and contact point positions (black dots)
measured by the reference ATI sensor.

precision load cell. Motor 2 is used both to apply to the object a tangential force and
to measure the object displacement during slip by means of the integrated encoder.
Figures A-18 and A-19 show the typical behavior of the object in case of slow and
fast increasing of the tangential force respectively. In particular, referring to fig. A-
18(a), the tangential force is slowly increased and the measured motion of the object
is mostly due to the elastic deformation of the sensor and of the silicon rubber on
the contact surface during the first part of the experiment, while in the second part
of the experiment (at about 65s) it is possible to see that the object speed suddenly
increases when the tangential force reach a certain threshold. This event shows that
the object slip occurs, fact that can also be noted from the FFT analysis of the
tangential force signal. In this tests, the FFT has been performed considering N =
256 samples each iteration, that considering a sensor sampling frequency of 100 Hz,
results in a fundamental FFT frequency of 0.39 Hz. It is possible to note from the blue
plot in Fig.A-18(a) reporting the second harmonic of tangential force signal, that its
value is quite small during the hold phase, while a peak emerges when the object start

to slip. As also widely reported in literature [41], this information can be extracted
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Figure A-17: Laboratory setup for calibration and experimental validation.

from the sensor measure and can be used for object slip detection and prevention. A
zoom over the region where the slip occurs is reported in fig. A-18(b). As a possible
implementation of the slipping detection algorithm, a suitable threshold it has been
assumed: beyond this PSD threshold the slipping compensation should be activated
increasing the normal force used to hold the object to increase the friction force. In
fig. A-18(b) the time instants at which the identification occurs are highlighted by red
circles: this points are in the proximity of the change of slope of the plots of the object
position, which clearly indicates that the object is slipping. To test the algorithm
under different conditions, the test has been executed with different tangential force
variation rates. Figure A-19 reports the test results in case of a fast tangential force
variation: in fig. A-19(a) the whole experiment is reported, whereas in fig. A-19(b)
the region over the object slipping and the instant in which the PSD threshold is

exceeded are shown.
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Figure A-18: Slippage detection algorithm: slow tangential force variation.
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A.5 Waterproof Prototype for Underwater Robotics

External
Cover

Reflective ]
Surface (R / Sensor

Sealing
O-Rings

Sensor
Frame

Connector

Figure A-20: A prototype of the sealed optoelectronic 6-axis Force/Torque sensor and
internal design of the sensor.

As already mentioned in Section A.3, one of the key features of this sensor is the
possibility to easily adapt the mechanical design to the specific use, provided that
the geometrical constraints of photo-components and reflective surfaces are satisfied.
In fig. A-12 two different implementations are shown, in particular it can be noted
that they differ from the top cover and the compliant frame design. While the top
cover has no influence on the sensor performances, the compliant frame has direct
influence on the measurement range. Moreover it is a crucial section of the sensor
when the insulation of the sensor from the environment is compulsory. This is the
case addressed in [62, 70, 71] in which the 6-axis F /T sensor is exploited as an intrinsic
tactile sensor for underwater applications.

In this particular version of the sensor the relative motion of the RS and the PCBs
is achieved by exploiting the o-ring seals compliance, that elastically deform when an
external force is applied to the external cover of the sensor, but also guarantee the

sensor sealing as can be seen in fig. A-20.
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Figure A-21: Displacement /force characteristic of silicon rubber (top) and fluorocar-
bon rubber (bottom) o-rings for different compression rates.

A.5.1 Characterization of O-ring Materials

The characteristics of two different o-ring materials have been evaluated by means of
suitable experiments to find which material is better suited for our application. In
these experiments, silicon rubber and fluorocarbon rubber o-rings have been compared
by applying a sinusoidal compression with frequency range from 0.1 to 5Hz and
measuring the corresponding reaction force. The o-rings have the same dimensions
in both the cases, with a thickness of 3.53 mm and an internal diameter of 47.62 mm,
and both the materials present an hardness of 70 Shore A. The results reported in
fig. A-21 shows that, while silicon rubber presents a quite linear response within
the displacement and frequency range of our interest, fluorocarbon rubber presents a
large hysteresis for high value of the compression rate. Since we are interested in a
implementing a sensor whit an as wider as possible constant frequency response, the

silicon o-rings are more suitable for the implementation of the proposed sensor.
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Figure A-22: Force reconstruction after calibration.

A.5.2 Calibration of the Waterproof Sensor

For the calibration and the experimental characterization of the sensor, the same
setup of fig. A-17 has been used and the same procedure of Section A.4 has been
followed. fig. A-22 shows a test in which forces are measured by the reference sensor
and by the new sensor after calibration, and the difference among them. From the
plots, and in particular from the plot of the difference, it can be noticed that there
are some “peaks” when the applied force has a sudden change. These peaks are due
to the different elastic properties of the two sensors (the o-rings have a more evident

visco-elastic behaviour).

A.5.3 Dynamic Performance of the Sensor

In order to fully characterize from a static and dynamic point of view the sensor,
other experiments have been performed. In particular, the sensor has been installed
on the setup of fig. A-23 in order to apply precise axial forces (z direction).

For example, fig. A-24 shows a test in which a sinusoidal force with constant frequency
(0.1 Hz) and increasing amplitude is applied by the motor along the z axis. It is
possible to see an increasing error when the force gradient becomes larger and larger.

As a matter of fact, because of the visco-elastic properties of the rubber used to
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Figure A-23: Laboratory setup for calibration and experimental validation.
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Figure A-24: Application of a sinusoidal force signal with increasing amplitude at 0.1
Hz.

seal the optical sensor, this is ‘slower’ than the reference sensor in recovering the
unloaded position. This effect is more evident in fig. A-25 where a 20 N sinusoidal
force is applied at increasing frequencies, from 0.01 to 3 Hz. The error increases with

the frequency of the input signal.

However, it has to be pointed out that this effect is not due to some intrinsic
limitations of the basic principle of the sensor, but rather to the particular mechanical
design employing rubber sealing. To verify this fact, the force/displacement response
of the sensor without and with o-ring sealing has been measured and analyzed. In
fig. A-26 it is clear that the introduction of the sealing elements reduce the frequency
range of the sensor, reducing in this way also the sensitivity of the sensor. Then,
in particular in case frequency based detection techniques are used, the effect of the

sealing material needs to be considered during the calibration of the system for a
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proper identification of the slip events. It also possible to see that no significant

difference exists in the sensor response in case of rubber or silicon sealing.
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Figure A-25: Application of a sinusoidal force signal (20 N) at increasing frequencies.
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Figure A-26: Frequency response of the sensor with respect to the ATI reference
sensor, without sealing and with sealing.
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Figure A-27: Measurement of the normal and tangential forces.

A.5.4 Evaluation of the Friction Coefficient

Another experiment is reported in and fig. A-27, where a constant force along the z
direction is applied to an object. On the object, an external increasing force is applied
as well (by means of some weights) and therefore the sensor measures both the normal
(z axis) and tangential (z —y plane) forces (f,,, f;). In the experiment, the object was
covered by a silicon rubber to increase friction (the surface of the sensor, built with
3D printing technology, has a very low friction coefficient), and the applied tangential
forces were f; = 3,8,13,18 N, while the normal force was f, = 30 N. Notice that
with the load of f; = 13 N, the object starts to slide. The decrease of the normal
force f, when the tangential component is f; = 13 N is due to the non negligible
deformation of the silicon rubber covering the object. This type of experiment allows
also to estimate the friction coefficient p = f;/f, and to implement some control

strategies in order to avoid slippage of the object.

A.5.5 Tactile Sensing Test

Finally the sensor has been characterized as intrinsic tactile sensor following the
procedure in Section A.4.3 Typical results are reported in fig. A-28, where the applied
forces are shown as lines and the contact points are measured on the surface of the
sensor. In this test, three forces are applied at three different points, whose [z, y, z]

coordinates have been computed as [1.2, 2.1, 21.1] mm, [—1.4, 10.7, 18.1] mm and
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Figure A-28: Measurement of the applied forces and of the contact point.

[17.6, —7.8, 5.4] mm, corresponding to radii of 21.2, 21.1 and 20.0 mm respectively

(the radius of the spherical surface is 21.5 mm).

A.6 Conclusions

Thanks to the adoption of discrete optoelectronic components, the proposed sensor is
characterized by a low-cost and a simple and reliable implementation. As additional
remarkable advantages, the compact and customizable electronics of the implemented
sensor allow an easy mechanical and electronic integration into relatively complex
robotic systems. As a preliminary evaluation of the sensor characteristics, several
experiments have been performed to validate the mathematical model of the device.
These experiments confirmed that the mathematical model of the sensor can be used
for selecting a suitable device working range. The reported experiments show satis-
factory performance of the proposed device not only for the estimation the applied
force and torque, but also for detecting the contact point location and object slip.
This result allows to state that the proposed device can be used as an ‘intrinsic tactile’

Sensor.
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Moreover the same device has been exploited in order to be integrated in a three-
fingered gripper for underwater applications. A different mechanical configuration of
the compliant frame has been developed by means of o-rings seals, in order to achieve
a waterproof sensor. An extensive experimental activity has been carried out in order
to both characterize different elastic materials and analyze their effects on the sensor’s
performances. Despite the limited dynamic range due to the o-rings based sealing,
the experimental results confirm the satisfactory benchmarks of the original sensor

even for the waterproof version.
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Appendix B

List of Personal Pubblications

Here follows the list of achievements arising from the research activities reported in

this thesis.

B.1 Publications in Journals

1. G. Palli, L. Moriello, U. Scarcia, C. Melchiorri, " Development of an Op-
toelectronic 6-axis Force/Torque Sensor for Robotic Applications",
Sensors & Actuators A: Physical, Volume 220, Page(s) 333 to 346, December
2014

2. L. Biagiotti, C. Melchiorri, L. Moriello, " Optimal Trajectories for Vibra-
tion Reduction Based on Ezxponential Filters", IEEE Transactions on

Control Systems Technology, in press, 2015

B.2 Publications in Conferences

1. C. Melchiorri, L. Moriello, G. Palli, U. Scarcia, "A New Force/Torque Sen-
sor for Robotic Applications Based on Optoelectronic Components",
IEEE International Conference on Robotics and Automation, Hong Kong, China,

May 31 - June 7, 2014
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. G. Palli, L. Moriello, U. Scarcia, C. Melchiorri, " An Intrinsic Tactile Sensor
for Underwater Robotics", 19th IFAC World Congress, Cape Town, South
Africa, August 24-29, 2014

. G. Palli, L. Moriello, C. Melchiorri, " The Effects of Sealing in 6-axis
Force/Torque Sensors for Underwater Applications", Fifteenth Inter-
national Conference on Computer Aided Systems Theory, Workshop on Marine
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2015
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NGCUV’2015, Girona, Spain, April 28-30, 2015

. G. Palli, L. Moriello, C. Melchiorri, " On the Bandwidth of 6-axis Force/Torque
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ferences OCEANS’15, Genova, Italy, May 18-21 ,2015

. L. Biagiotti, C. Melchiorri, L. Moriello, "A Repetitive Control Scheme
Based on B-Spline Trajectories Modification for Robotic Manipu-
lators", 11th IFAC Symposium on Robot Control, Salvador, Brasil, August
26-28, 2015

. L. Biagiotti, C. Melchiorri, L. Moriello, "A Repetitive Control Scheme for
Industrial Robots Based on B-Spline Trajectories", IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Hamburg, Germany,

September 28 - October 02, 2015

. L. Biagiotti, L. Moriello, C. Melchiorri, " Feedforward Control of Vari-
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