
Alma Mater Studiorum · Università di Bologna

DOTTORATO DI RICERCA IN

Automati
a e Ri
er
a Operativa

Ci
lo XXVIII

Settore Con
orsuale di A�erenza: 09/G1

Settore S
ienti�
o Dis
iplinare: ING-INF/04

Online Traje
tory Planning

for Vibration Suppression

and Perfe
t Tra
king

Presentata da: LORENZO MORIELLO

Coordinatore di Dottorato:

Chiar.mo Prof.

DANIELE VIGO

Relatore:

Chiar.mo Prof.

CLAUDIO MELCHIORRI

Correlatore:

Prof.

LUIGI BIAGIOTTI

Esame Finale Anno 2016





Online Traje
tory Planning for Vibration Suppression

and Perfe
t Tra
king

by

Lorenzo Moriello

Submitted to the

Department of Ele
tri
al, Ele
troni
 and Information Engineering (DEI),

in partial ful�llment of the requirements

for the degree of

Ph.D on Automati
 Control and Operational Resear
h

Abstra
t

In this thesis the problem of traje
tory planning for automati
 ma
hines is addressed,


onsidering in parti
ular the problem of vibration suppression and perfe
t tra
king.

In parti
ular two novel traje
tory generators based on dynami
 �lters are developed

and implemented. The proposed traje
tory planners are designed respe
tively for

residual vibrations suppression and perfe
t tra
king of periodi
 traje
tories. Both so-

lutions are very e�e
tive and easy to implement, exploiting the realization of dynami


�lters by means of FIR �lters.

In the �rst part of the thesis the problem of residual vibrations in motion 
ontrol

of robots is addressed, pointing out the need to eliminate vibrations to a
hieve high

performan
e. Chapters 1 to 4 report the most widespread feed-forward te
hniques

for residual vibration suppression su
h as Input Shaping, �ltering, system dynami


inversion and proper traje
tory planning. In a review fashion all these te
hniques

are analyzed in detail and implemented in simulation to verify the e�e
t of vibration

redu
tion on a typi
al se
ond order system. Moreover all the analysis are performed

with a 
ontrol system perspe
tive in order to give a uni�ed point of view allowing to


ompare all the solutions despite their di�eren
es.

Then in Chapter 5 a novel traje
tory generator based on Exponential Filters is

presented, analyzed and 
ompared with the most 
ommonly used feed-forward te
h-

niques for vibration suppression, proving 
omparable performan
es with the state of

the art. The analysis and 
omparison pro
edure is performed both in simulation and

in experimental a
tivities. In parti
ular this new method is developed �rst for simple

SISO LTI systems and then extended to MIMO systems showing great e�e
tiveness

ranging from simple elasti
 transmissions up to roboti
 arms with 
ompliant joints.
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In Chapter 6 a new repetitive 
ontrol s
heme based on B-Spline Traje
tory Gen-

erator that exploits dynami
 �lters is presented. The novel s
heme integrates the

traje
tory generator and the repetitive 
ontroller in a single dis
rete time feedba
k

loop a
hieving perfe
t tra
king for periodi
 motions. Tra
king performan
e and stabil-

ity are demonstrate both analyti
ally and experimentally showing also a 
onsiderable

ease of implementation even on 
ommer
ial roboti
 devi
es with una

essible fa
tory


ontroller.

In appendix A, a more te
hnologi
ally oriented a
tivity is reported, 
on
erning on

the development of a 6-axis For
e/Torque sensor for underwater a
tivities based on

optoele
troni
 
omponents. The des
ription 
overs the entire pro
ess from the 
on
ept

to the development of a simulation model and �nally to the prototype realization.

Also the experimental a
tivities about 
alibration and performan
e evaluation are

presented, paying mu
h attention on how di�erent solutions adopted for sealing the

sensor a�e
t the performan
es.

Thesis Supervisor: Prof. Claudio Mel
hiorri
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�Anyone who stops learning is old,

whether at twenty or eighty.

Anyone who keeps learning stays young.

The greatest thing in life is to keep your mind young.�

Henry Ford
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Chapter 1

Feed-Forward Te
hniques for

Vibration Suppression

Redu
ing vibrations has always been a key issue in automation. In general, vibrations

are due to the motion itself sin
e moving any inertial load 
ould ex
ite the resonant

frequen
ies of the body stru
tures. This is a very undesirable 
ondition sin
e it a�e
ts

both the a

ura
y of the 
ontrol system and the reliability of the stru
tures. Typi
ally

this problem was roughly avoided by slowing down any motion, espe
ially in older

automati
 ma
hines whi
h handle large inertias. Obviously this was not su�
ient,

also lightening of robot's stru
tures, redu
ing fri
tions and the introdu
tion of elasti


elements in the transmissions have made vibrations a more and more relevant issue.

Moreover the demand for ever faster motions led to the development of methods that

aims to redu
e vibrations without 
ompromising performan
es.

In literature both feedba
k and feed-forward s
hemes have been proposed in order to

suppress vibrations and among these, methods based on feed-forward a
tion are of

great relevan
e. Feed-forward s
hemes are used to shape the 
ommand input, that

usually is a step, in order to provide a proper traje
tory that minimizes both vibra-

tions and duration of the motion. The major advantage of this approa
h is that it 
an

be applied on any 
ontrolled system sin
e it doesn't need any 
hange on the 
ontrol

ar
hite
ture or additional sensors.

Earliest forms of 
ommand shaping were me
hani
al design te
hniques of high-speed
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ams. A huge literature refers to design methods of 
am pro�les based on proper

motion shaping in order to avoid the ex
itement of system resonan
es [66℄.

Fo
using on 
ontrol te
hniques, one of the �rst attempts was the posi
ast 
ontrol de-

veloped in the 1950's [95, 100, 96℄. The method 
onsists of ex
iting several transient

os
illations of the system, splitting up the input 
ommand into several fragments

properly delayed in time. In this way if the resultant sum of the transient os
illations

is zero, one 
an obtain a deadbeat step response from a very lightly damped system.

Unfortunately at that time digital 
ontrollers were just born and the implementation

of posi
ast 
ontrol s
hemes 
ould only be 
arried out with dis
rete elements and delay

lines. As a result implementing those s
hemes was a 
hallenging task, mainly for la
k

of robustness.

A well-known te
hnique for minimizing the residual vibration in point-to-point mo-

tions is represented by input shaping [86, 106℄. Basi
ally it is a �ltering te
hnique

where the referen
e 
ommand is 
onvolved with a train of properly designed impulses,

resulting a shaped 
ommand that aims to redu
e or suppress residual vibration in a


ontrolled plant. The theory and the 
on
ept behind input shaping were exa
tly the

same of posi
ast 
ontrol, but only in late 1980's this te
hnique be
ome very popular.

This was mainly due to a dis
rete time reformulation and analysis, plus the possi-

bility to easily implement input shapers with digital 
ontrollers. Input shapers have

been su

essfully used in a number of pra
ti
al appli
ations, su
h as redu
tion of


rane os
illations, [42℄, 
ontrol of industrial ma
hines like XY stages, [34℄, vibration

suppression in �exible roboti
 arms, [59℄. A deep review of input shapers is presented

in Chapter 2.

Alternative approa
hes for vibrations redu
tion by means of 
ommand shaping are

based on low-pass and not
h �lters, expressed either as �nite or in�nite impulse re-

sponse �lters. In this 
ase the method is quite simple and rely on �ltering those

spe
tral 
omponents of the 
ommand input that 
ould ex
ite system resonan
es, but

it is worth noti
ing that �lters do not guarantee 
omplete vibration 
an
ellation [90℄.

A te
hnique that assures residual vibrations suppression exploits the dynami
 inver-

sion of a �exible plant [79℄. This approa
h lead to a vibration free motion but the

2



need of the 
omplete knowledge on the plant system made it not so attra
tive for

pra
ti
al appli
ations.

More re
ently, methods for vibration redu
tion dire
tly based on a proper de�nition

of the referen
e signal have been presented, see [52, 13, 7℄. These te
hniques rely on

the limitation of jerk impulses, whose duration must be 
arefully 
hosen on the basis

of the dynami
s 
hara
teristi
s of the resonant system. Constant jerk traje
tories are

the simplest example of this approa
h, but they assure 
omplete vibration 
an
ella-

tion only in 
ase of totally undamped plants. An improvement has been presented in

[7℄, where asymmetri
 jerk pro�les are used to take into a

ount the damping 
oe�-


ient of the �exible system. This approa
h, whi
h has been generalized and improved,

will be dis
ussed in Chapter 5.

1.1 Modelling Vibratory System

The problem of residual vibrations a�e
ts very di�erent kind of ma
hines. In order

to evaluate the features and the e�e
ts of any method for vibration suppression, the

motion system shown in Fig. 1-1 
an been 
onsidered be
ause of its signi�
an
e in

the industrial �eld, where a number of appli
ations 
an be modeled in this way: a

properly 
ontrolled ele
tri
 motor is used to a
tuate an inertial load, whose inertial


oe�
ient is Jl, by means an elasti
 transmission lightly damped, 
hara
terized by an

elasti
 
onstant kt and a damping 
oe�
ient bt [55, 6, 60℄. By assuming that, be
ause

of the 
ontrol, the a
tuator behaves like an ideal position sour
e, i.e. qm(t) ≃ qref(t),

only the mathemati
al model of the system des
ribing the elasti
 linkage, whi
h 
auses

vibrations, and the load has been taken into a

ount. It is a SISO (Single Input Single

Output) LTI (Linear Time Invariant) system that 
an be modelled with the transfer

fun
tion

Gml(s) =
Ql(s)

Qm(s)
=

2δωns + ω2
n

s2 + 2δωns+ ω2
n

(1.1)

with

ωn =

√

kt
Jl

, δ =
bt

2
√
ktJl

3
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Figure 1-1: Lumped 
onstant model of a motion system with elasti
 linkage (a) and

related blo
k-s
heme representation (b).

where Qm(s) = L{qm(t)} and Ql(s) = L{ql(t)} are the Lapla
e transforms of the

motor and load position, respe
tively. Note that the inertia Jm of the motor has no

in�uen
e on this model. From (1.1), it follows that the dynami
 relation between

the motor position, supposed to be equal to the referen
e traje
tory qref(t), and the

tra
king error ε(t) is

E(s)

Qref(s)
=

−s2

s2 + 2δωns+ ω2
n

⇒ E(s)

Q̈ref (s)
=

−1

s2 + 2δωns+ ω2
n

(1.2)

and where E(s) = L{ε(t)}, Qref(s) = L{qref(t)} and Q̈ref(s) = L{q̈ref(t)}.
As a matter of fa
t it 
an be noted that both transfer fun
tions in (1.1) and (1.2) are

of the form

F (s) =
N(s)

s2 + 2δωns + ω2
n

that is, the di�eren
e between the above equations rely on the numerator only, while

the denominator refers always at the same 
omplex 
onjugate poles 
ouple. Indeed,
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Figure 1-2: Step response (a) and Pole-Zero diagram (b) of the 
onsidered plant

G(s), with ωn = 2π and with di�erent damping value.

in terms of impulse response it 
an be proven that in general

f(t) =
[
Me−δωn(t)

]
sin
(

ωn

√
1− δ2t+ φ

)

,

where M and φ only depends on the numerator N(s) that a�e
ts the amplitude

and the initial phase of the impulse response. Therefore in lieu of simpli
ity and

generality, an un
oupled linear vibratory systems it 
an be assumed modelled as a


ommon se
ond order SISO (Single Input Single Output) LTI (Linear Time Invariant)

system plant

G(s) =
ω2
n

s2 + 2δωns+ ω2
n

(1.3)
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Su
h a system fed with a unitary impulse, produ
es a de
aying sinusoidal response

y(t) =

[
ωn√
1− δ2

e−δωnt

]

sin
(

ωn

√
1− δ2t

)

(1.4)

where ωn is the undamped natural frequen
y of the plant, δ is the damping ratio of

the plant and t is time. Thus on
e the damping 
oe�
ient δ and natural frequen
y ωn

of the system are known, the system and a

ordingly its vibrating response is de�ned.

In pra
ti
al experien
e when the parameters are unknown, with standard pro
edures

it is possible to dire
tly dedu
e their values from the response of the plant to input

signals that 
ause vibrations. For instan
e, the residual vibrations 
onsequent to a

step input are given by

εstep(t) = − 1√
1− δ2

e−δωnt cos
(

ωn

√
1− δ2 t+ ϕ0

)

where ϕ0 = arctan
(

δ√
1−δ2

)

. Therefore, if a measurement of the os
illation is available,

it is su�
ient to dete
t two subsequent peak values, as highlighted in Fig. 1-3(a), and


ompute the exponential de
ay and the time period of the os
illation as

T0 = t2 − t1

α =
1

T0
ln

(
p2
p1

)

where the meaning of t1, t2, p1, p2 is explained in the �gure. Note that the period

of the os
illation and its de
ay rate depend on the system, and they do not 
hange

also if di�erent type of referen
e inputs are 
onsidered. For instan
e, se
ond order

traje
tories, with dis
ontinuous a

eleration, 
an be used in order to provide the

a
tuator with a feasible traje
tory and to avoid an ex
essive strain on the plant (see

�g. 1-3(b)).
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Figure 1-3: Residual vibrations 
aused by the appli
ations of a step input to the

system (1.3) (a) and 
omparison between residual vibrations 
aused by the appli
ation

of a step input and of a se
ond order traje
tory q2(t) to a vibratory system G(s) (b).

Finally the parameters δ and ωn 
an be made expli
it by means of the relations

α = −δ ωn (1.5)

T0 = k
2π

ωn

√
1− δ2

k ∈ N.

1.2 Performan
e Measurement of Command Shapers

Evaluating performan
es of any feed-forward te
hnique, also referred as 
ommand

shapers (CS), is a key fa
tor in order to 
hoose the proper solution for any given

problem. As well as the many design solutions, in literature are proposed several

review papers that suggest various points of view to 
ompare di�erent CS ([108,

47, 53℄ among many others). Besides the measurement of the magnitude of residual

vibrations, several approa
hes take into a

ount the duration of the shaped 
ommand

(distortion), while others for example introdu
e ben
hmarks based on the energy


ontent of residual vibrations.
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1.2.1 Robustness

Typi
ally the most important feature to evaluate CS performan
es is the robustness to

errors in parameters de�nition. Sin
e, usually, they are designed to nullify vibrations

at a 
ertain nominal frequen
y, in this way the fo
us is on the behaviour of an CS in the

neighborhood of the nominal frequen
y. This is 
ru
ial be
ause rarely the real plant

parameters mat
h the model's. Moreover, CS are often applied to already 
ontrolled

plants whose parameters are unknown, and therefore to be estimated. Obviously

the estimation by means of proper identi�
ation te
hniques involves un
ertainties on

model parameters and CS design is required to assure a 
ertain level of robustness.

The analysis of the robustness 
omes dire
tly from the measurement of the residual

vibration and its redu
tion by means of 
ommand shaping. First, Residual Vibration

(RV ) is de�ned as the measure of the maximum displa
ement of a response from

equilibrium, from the time when the 
ommand ends. Traditionally, as maximum

displa
ement is meant the magnitude of the dissipation envelope of the response,

so RV refers to the value of that de
aying envelope at the time when the shaped


ommand ends. Starting from RV is possible to de�ne the Per
ent Residual Vibration

(PRV ) as the ratio between Residual Vibrations from a shaped 
ommand and from

an unshaped 
ommand

PRV =
RVs

RVu

. (1.6)

Finally robustness is evaluated a

ording to the PRV 's sensitivity fun
tion to errors

in parameters ωn and δ, that represents the level of vibrations indu
ed by a shaped


ommand when applied to a system with di�erent values of natural frequen
y or

damping

PRV (ω, δ) =
RVs(ω, δ)

RVu(ω, δ)
. (1.7)

It is worth noting that usually PRV refers dire
tly to the fun
tion in (1.7) that is

expressed in terms of per
entage and normalized frequen
y or damping.

In �g. 1-4 a 
ommon PRV fun
tion with respe
t to errors in natural frequen
y is

shown: the plot easily highlight the behaviour of the shaper in nominal 
ondition

(ω = ωn) and for any other frequen
y.
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al Per
ent Residual Vibration fun
tion with respe
t to frequen
y

variations.

1.2.2 Filter Based Approa
h

In (1.6) the PRV is given for a generi
 CS. However, a part from parti
ular solutions

that lead to a proper formula, the PRV fun
tion needs to analyse responses in time

domain, therefore the 
al
ulation of the RV that 
ould be tri
ky.

A very e�e
tive approa
h to evaluate the the PRV fun
tion exploits the analogy with

the �lter's theory. First, a 
ompletely undamped se
ond order system (δ = 0) is


onsidered, representing also the worst 
ondition in terms of vibrations

G(s) =
ω2
n

s2 + ω2
n

. (1.8)

Moreover, H(s) is the transfer fun
tion of a generi
 CS for the system in (1.8) and it

is assumed to 
ommand an impulsive input to the system G(s). From (1.6) in order to

de�ne the PRV fun
tion is required to 
al
ulate the value of RV in both shaped and

unshaped 
ase. Sin
e the unshaped 
ase is basi
ally the impulse response and G(s) an

elasti
 undamped system, the result is simply a sinusoidal response with frequen
y ωn,

see �g. 1-5(a). Therefore RVu is the amplitude of the sinusoidal response, RVu = X .
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Regarding the shaped 
ase, RVs refers to the amplitude of the vibration of the system

response, at the time when the shaping e�e
t of H(s) ends. However, in �g. 1-5(b)

is shown that the same system response 
ould be obtained from the shaper H(s),

fed by a sinusoidal signal of frequen
y ωn, thanks to the 
ommutativity property of

linear systems. In this way, re
alling the theory on frequen
y response fun
tion of

linear systems, is well known that for an asymptoti
ally stable LTI system fed by a

sinusoidal input, the output is a sinusoidal fun
tion as well, on
e 
ompleted an initial

transient

y(t) = Y (ωn) sin[ωnt+ ϕ(ωn)], (1.9)

where

Y (ωn) = XH(ωn) (1.10)

with X the amplitude of the sinusoidal input and H(ωn) the frequen
y response of

H(s) at frequen
y ωn. This 
onsideration is very useful sin
e the mentioned transient

lasts exa
tly the duration of the shaping e�e
t, so the residual vibration 
an be

determined by the frequen
y response, in parti
ular

RVs = Y (ωn)e
jϕ(ωn) = X|H(jωn)| (1.11)

where X is the amplitude of the sinusoidal response of G(s), but also RVu = X as

stated before, so from (1.6) holds that

PRV =
RVs

RVu
=

X|H(jωn)|
X

= |H(jωn)|. (1.12)

Finally the result result in (1.12) 
an be extended to the PRV 's sensitivity fun
tion

to errors in frequen
y parameter

PRV (ω) = |H(jω)|. (1.13)

The relation in (1.13) although valid to evaluate robustness with respe
t to frequen
y

variations only, is quite important sin
e it allows to 
onne
t a widely used tool for

10
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evaluating and design CS su
h as PRV fun
tion, and an analysis approa
h based on


ontrol system theory. Assuming to have a plant like in (1.8) and a 
ommon CS

H(z) whose PRV 's sensitivity fun
tion to ωn is like the one in �g. 1-4, if the ampli-

tude axis were expressed in terms of PRV (i.e. from 0 to 1) instead of per
entage of

PRV, the result would be exa
tly the frequen
y response H(jω) in �g. 1-6. Obviously

this equivalen
e allows to 
onsider CS like parti
ular �lters. Indeed, looking at the

problem in the 
omplex plane, the system (1.13) is des
ribed by a 
ouple of 
omplex


onjugate poles at frequen
ies ±jωn. Therefore in order to nullify vibrations 
aused

by the poles by means of a �lter, it should have at least a 
ouple of zeroes able to


an
el the poles (see �g. 1-7), that is exa
tly what is des
ribed by H(jω).

It has to be noted that besides the assumption of undamped system, these 
onsid-

erations allow to use �ltering te
hniques to design CS even for generi
 systems with

damping, sin
e the design method based on the zero pla
ement on the 
omplex plane

permit to easily adapt the shaper for any value of δ as will be dis
ussed later. More-

over with respe
t to robustness, this dis
ussion permit to assume frequen
y response

as a preliminary tool for evaluation of 
ommand shapers. In fa
t it will be explained

that the e�e
t of damping on CS design is a simple frequen
y translation of the CS

with δ = 0.

Looking at �g. 1-8 the di�eren
e between damped and undamped 
ase 
an be visual-

ized on the 
omplex plane with a 
ouple of 
omplex 
onjugate poles with δ = 0 and

δ 6= 0. It is well known that for a given natural frequen
y, the e�e
t of damping is

simply a translation on a 
ir
ular traje
tory of radius ωn, su
h that φ = arccos δ.
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Chapter 2

Input Shapers: a Review

2.1 Input Shaping Te
hnique

Input shaping is one of the most popular 
ommand generation te
hnique. Basi
ally

it is a �ltering te
hnique where the referen
e 
ommand is 
onvolved with a train

of properly designed impulses, resulting a shaped 
ommand that aims to redu
e or

suppress residual vibration in a 
ontrolled plant.

In order to understand how to 
an
el vibrations, a typi
al vibratory system as in Se


1.1 has to be 
onsidered. In �g. 2-1 the system response to an impulse is reported

a

ording to the equation in (1.4), that is de fa
to the vibration that has to be


an
elled. The easiest way to 
an
el the vibration is to add the same vibration in

phase opposition, like as it is shown with a dashed line. Sin
e any impulse 
an provide

the same response in (1.4) with amplitude proportional to the impulse amplitude

itself, it is 
lear that a se
ond virtual vibration 
an be overposed to the �rst by

applying a se
ond 
ommand impulse properly delayed in time and with an amplitude

that assure to eliminate the �rst vibration. In this way the desired 
ommand is split

in two (or more) impulses that represents the shaped 
ommand. In parti
ular the

shaped 
ommand assures the 
ompletion of the motion within the end of the train of

impulses and the vibration suppression at the end of the 
ommand.

The same result 
an be obtained analiti
ally by exploiting the superposition property

of linear systems. Being (1.4) the generi
 impulse response of a se
ond order system
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and known that for an LTI system holds that

B0 sin(ωt+ φ0) +B1 sin(ωt+ φ1) = Bres sin(ωt+ φres) (2.1)

it is 
lear that the resultant output depends on the amplitude of the impulses and the

time instants in whi
h they are 
ommanded. Moreover, in order to 
an
el vibration

it is su�
ient to assure that Bres = 0 after the last impulse. From (1.4) and (2.1)

and generalizing for N impulses, results

Bres =

√
√
√
√

(
N−1∑

j=0

Bj cos φj

)2

+

(
N−1∑

j=0

Bj sin φj

)2

where

Bj = Aj
ωn

√

(1− δ2)
e−δωn(tN−1−tj),

φj = ωn

√
1− δ2tj

(2.2)

with Aj the amplitude of the j-th impulse, tj the time of the j-th impulse and tN−1

the time of the last impulse of the shaped 
ommand. Further simpli�
ations of (2.2)

lead to the following 
onditions that assure 
omplete residual vibration suppression

for an N-impulses IS [85, 86℄

N−1∑

j=0

Aje
−δωn(tN−1−tj) sin

(

tjωn

√

(1− δ2)
)

= 0

N−1∑

j=0

Aje
−δωn(tN−1−tj) cos

(

tjωn

√

(1− δ2)
)

= 0

(2.3)

2.1.1 Robustness Analysis

The robustness analysis of an Input Shaper (IS) is usually given by means of the PRV

fun
tion. However sin
e a generi
 IS produ
es a train of N impulses and being the

system response to any impulse of the type in (1.4), the RV 
an be easily 
al
ulated

17



as

RV =
e−δωntN−1

√

(1− δ2)

√
C2 + S2

(2.4)

where

C =
N−1∑

j=0

Aje
δωntj cos

(

tjωn

√

(1− δ2)
)

,

S =

N−1∑

j=0

Aje
δωntj sin

(

tjωn

√

(1− δ2)
)

(2.5)

with Aj the amplitude of the j-th impulse, tj the time of the j-th impulse and N − 1

refers to the last impulse of the 
ommand. Starting from RV is possible to de�ne the

Per
ent Residual Vibration as in (1.6), in parti
ular PRV for IS is the ratio between

RV 's from a train of impulses and from a single unity magnitude impulse. From (2.4)

and (1.6) des
ends

PRV = e−δωntN−1

√
C2 + S2, (2.6)

where C and S are de�ned in (2.4).

Finally robustness is evaluated a

ording to (1.7)

PRV (ω, δ) = e−δωtN−1

√

[C(ω, δ)]2 + [S(ω, δ)]2. (2.7)

2.1.2 Ve
tor Diagram Des
ription of Input Shapers

Ve
tor diagrams are graphi
al representations of impulse sequen
es, introdu
ed in

early papers dealing with IS [94, 89℄. Basi
ally a ve
tor diagram is a des
ription of

the impulse train in polar 
oordinates that results quite useful in both design and

evaluation of IS. In parti
ular the diagram is 
reated treating every impulse as a

ve
tor of norm equal to the impulse amplitude and angle θi su
h that

θi = ωti, (2.8)

where ti is the time of the impulse, as 
an be seen in �g. 2-2.
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The ve
tor diagram turns into an important tool for the design of IS if ω is 
hosen

as the system frequen
y. Su
h a 
onstru
tion method permits to make interesting


onsiderations on residual vibrations for a se
ond order system fed by a shaped 
om-

mand from a generi
 N-impulses IS. That is, the resultant of the ve
torial sum of

all impulses has magnitude proportional to the amplitude of residual vibrations and

angle equal to the phase of the vibratory response. A

ordingly, both design and

evaluation of IS 
an be obtained by means of geometri
al analysis on ve
tors.

The �rst a
hievement is that for any train of N arbitrarily 
hosen impulses, it is

always possible to de�ne an IS with N + 1 impulses that guarantees zero residual

vibration. Being

|RN | =
√

|Rx|2 + |Ry|2,

θR = arctan
Ry

Rx

(2.9)

with

Rx =

N−1∑

i=0

Ai cos θi and Ry =

N−1∑

i=0

Ai sin θi (2.10)
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the resultant of a train of N impulses, vibration free motion is assured by adding one

more impulse su
h that

|AN | = |RN |,

θN = θR + π.
(2.11)

It has to be noted that all these 
onsiderations are valid even in 
ase of damped

system by taking into a

ount the damping e�e
t on both angle and amplitude,

that is introdu
ing the e�e
tive amplitude |Adamp| and frequen
y θdamp in the above

relations

|Adamp| =
|A|
e−δθ

,

θdamp = ωnt
√
1− δ2.

(2.12)

In parti
ular the s
aling of the amplitude is referred to the de
ay of the response

to the �rst impulse at time zero, in order to take into a

ount the same e�e
tive

amplitude |Adamp| for any impulse at a 
ertain time t. Graphi
ally the s
aling 
an be

represented on the ve
tor diagram by superimposing the spiral Ae−δθ
like in �g. 2-3.

Besides the 
al
ulation of a resultant that is proportional to the residual vibration

amplitude, ve
tor diagrams permit to easily work on robustness. This is thanks to

the assumption that θi = ωti whi
h des
ribes a rotation of the ve
tors depending

on the frequen
y. In this manner the evaluation of robustness 
an be geometri
ally
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performed by rotation of the ve
tors, moreover the design for parti
ular sensitivity

behaviours (asymmetri
, humped, . . . ) 
an be a
hieved by imposing proper geomet-

ri
al 
onditions.

The ve
tor diagram approa
h also reveals a strong relationship between IS and �lters.

In fa
t 
onsidering δ = 0, and being the impulse train des
ribed as ve
tors in polar


oordinates it is possible to de�ne a generi
 impulse as

Âi = Aie
jθ = Aie

jωnt. (2.13)

Therefore the resultant from a train of N impulses of an IS be
omes

RN = A0 + A1e
jωnt1 + A2e

jωnt2 + . . .+ AN−1e
jωntN−1 , (2.14)

so, from (2.9) and using Euler formula

|RN | =
∣
∣
∣
∣
∣

N−1∑

i=0

A1e
jωnti

∣
∣
∣
∣
∣
=

√
√
√
√

(
N−1∑

i=0

A1 cos(ωnti)

)2

+

(
N−1∑

i=0

A1 sin(ωnti)

)2

. (2.15)

This result be
ome relevant if approa
hing IS with a system theory perspe
tive. In

fa
t being a generi
 IS des
ribed by

h(t) = A0δ(t) + A1δ(t− t1) + A2δ(t− t2) + . . .+ AN−1δ(t− tN−1) (2.16)

where δ(t) is the Dira
 impulse, it is well known that the transfer fun
tion results

H(s) = A0 + A1e
−st1 + A2e

−st2 + . . .+ AN−1e
−stN−1 , (2.17)

therefore its frequen
y response is

H(jω) = A0 + A1e
−jωt1 + A2e

−jωt2 + . . .+ AN−1e
−jωtN−1 , (2.18)
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and from (2.14) it is easy to a�rm that

RN = H⋆(jωn). (2.19)

Finally, assuming to vary the frequen
y ω in (2.14) to evaluate robustness, it des
end

that

|RN(ω)| = |H(jω)|. (2.20)

2.2 Zero Vibration Input Shaper

The Zero Vibration IS (ZV IS) is the simplest input shaper that assures 
omplete

residual vibration suppression at a given system frequen
y of a se
ond order plant.

The de�nition of the ZV IS des
ends dire
tly from the 
onsiderations in Se
tion 2.1,

and in parti
ular is the simplest solution of the zero vibration 
onditions in (2.3), by

means of only two impulses

hZV (t) =
1

1 +K
δ(t) +

K

1 +K
δ(t− T ) (2.21)

with

K = e
−δπ√
1−δ2 ,

T =
π

ωn

√
1− δ2

,
(2.22)

where δ is damping, ωn is the natural undamped frequen
y of the system and T the

time delay of the se
ond impulse. The e�e
t of the ZV IS is exa
tly that des
ribed in

�g. 2-1, in fa
t the delay T is half period of the vibration and the amplitude is su
h

that vibration is eliminated in phase opposition. In �g. 2-4(a) is reported the e�e
t

of 
omplete vibration suppression with a shaped step 
ommand in both damped and

undamped 
ase. Also in �g. 2-4(a) and �g. 2-4(b) it 
an be noted the e�e
t of damping

in the design of the shaper, i.e. the ratio between the two impulses depends on δ. In

�g. 2-4(
) the PRV fun
tion has been reported with respe
t to natural frequen
y ωn.
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In order to analyze the ZV IS with a �lter perspe
tive as proposed in Se
tion 1.2.2,

the de�nition in (2.21) 
an be easily rewritten in terms of transfer fun
tion

HZV (s) =
1 +Ke−sT

1 +K
. (2.23)

In �g. 2-5(a) analysis of (2.23) in the 
omplex plane shows the e�e
t of the ZV IS that

performs a Pole-Zero 
an
ellation of the pole's 
ouple that 
ause vibrations. Also in

�g. 2-5(b) and �g. 2-5(
) is reported the IS fun
tion with di�erent values of σ and jω

in order to obtain a des
ription of the ZV IS in the whole S-Plane. These representa-

tions of the ZV IS show the zeroing e�e
t of the shaper for nominal parameters, sin
e

the value of the response is null in 
orresponden
e of the zeros position. However

sin
e 
ontour lines represent linearly spa
ed amplitude values, their proximity ea
h

other means a rapid grow of the response when small variations are present. This 
an

be easily seen also in the 3-dimensional representation of �g. 2-6.

Plots in �g. 2-4(a) and �g. 2-4(
) demonstrate that ZV IS really suppresses vibration

when it is designed with exa
t plant's parameters. Moreover it is very easy to imple-

ment and introdu
es very low distortion sin
e, being T0 the period of the vibration

at system frequen
y ω0, the shaped 
ommand only lasts a time T = T0/2. However

from �g. 2-4(
) and �g. 2-5 it 
an be seen that the suppression e�e
t rapidly de
rease

as the real parameters di�ers from the nominal ones.
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Figure 2-4: Step response of the system with ZV IS (a), impulses des
ription by

means of ve
tor diagram (b) and PRV fun
tion of the ZV IS with respe
t to variation

of natural frequen
y (
).
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Figure 2-5: Pole-Zero diagram of the system with ZV IS (a) and des
ription of

HZV (s) as fun
tion of σ and jω (b,
). In (
) the same plot of (b) is reported with

equal s
ale on x and y axis in order to better understand the behavior of the system

response. In (b) and (
) the 
ontour lines are equally spa
ed of 0.1 and the zeroes

position is highlighted with a bla
k 
ross.
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ross.

2.3 Zero Vibration Derivative Input Shaper

The Zero Vibration Derivative Input Shaper (ZVD IS) has been introdu
ed in order

to in
rease robustness of the ZV IS. As seen in Se
tion 2.2 the ZV IS su�ers from la
k

of robustness in parameters de�nition whi
h makes it rather unsuitable for implemen-

tation in real 
ases. ZVD IS is the earliest form of robust IS and still des
ends from

the the zero vibration 
onditions in (2.3), but adds additional 
onditions on the be-

havior of the IS near the nominal parameters. That is, equations in (2.3) are enri
hed

with the 
ondition on the derivative of PRV with respe
t to frequen
y variations

∂

∂ω

(

e−δωtn

√

[C(ω, δ)]2 + [S(ω, δ)]2
)

= 0. (2.24)

The result from (2.3) and (2.24) is a three-impulses IS whose transfer fun
tion is

HZVD(s) =
1

1 + 2K +K2
+

2K

1 + 2K +K2
e−sT +

K2

1 + 2K +K2
e−s2T

(2.25)
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where

K = e
−δπ√
1−δ2 ,

T =
π

ωn

√
1− δ2

,
(2.26)

that are the same of (2.22). As 
an be seen in �g. 2-7(a) and �g. 2-7(
) the vibrations

are suppressed as well, but the robustness is signi�
antly in
reased resulting in a

smoother PRV fun
tion thanks to the derivative 
ondition. However, it has to be

noted that the introdu
tion of an additional impulse doubles the time duration of the

shaping e�e
t, resulting in a total time 2T that equals the time T0 of the period of

the vibration at system frequen
y ω0.

The in
reased robustness 
an be explained by simply manipulating (2.25) that results

HZVD(s) =

(
1 +Kz−1

1 +K

)2

= (HZV (s))
2 , (2.27)

that is basi
ally to double the e�e
t of a simple ZV IS. Also on the 
omplex plane,

looking at �g. 2-8(a) is visible that the e�e
t the derivative 
ondition is exa
tly to

double the zeroes of the ZV IS. Therefore, the zeroing e�e
t is wider as 
an be seen in

�g. 2-8(b) and �g. 2-8(
) where the 
ontour lines although at same levels of �g. 2-5,

appears mu
h more spread in the neighborhood of the zeroes of the ZDV IS.

27



δ = 0 δ = 0.1

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PSfrag repla
ements

Time

A

m

p

l

i

t

u

d

e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PSfrag repla
ements

Time

A

m

p

l

i

t

u

d

e

(a)

  0.1

  0.2

  0.3

  0.4

  0.5

30

210

60

240

90

270

120

300

150

330

180 0

  0.1

  0.2

  0.3

  0.4

  0.5

30

210

60

240

90

270

120

300

150

330

180 0

(b)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

35

40

PSfrag repla
ements

ω/ωn

P

R

V

[

%

℄

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

5

10

15

20

25

30

35

40

PSfrag repla
ements

ω/ωn

P

R

V

[

%

℄

(
)

Figure 2-7: Step response of the system with ZVD IS (a), impulses des
ription by

means of ve
tor diagram (b) and PRV fun
tion of the ZVD IS 
ompared to ZV IS in

bla
k dotted line (
).
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Figure 2-8: Pole-Zero diagram of the system with ZVD IS (a) and des
ription of

HZVD(s) as fun
tion of σ and jω (b,
). In (
) the same plot of (b) is reported with

equal s
ale on x and y axis in order to better understand the behavior of the system

response. In (b) and (
) the 
ontour lines are equally spa
ed of 0.1 and the zeroes

position is highlighted with a bla
k 
ross.
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2.4 Zero Vibration n-Derivative Input Shapers

Starting from the ZVD IS an entire family of robust input shapers has been introdu
ed

and de�ned by means of derivative methods. Basi
ally adding to (2.3) and (2.24)

further derivative 
onditions of the type

∂n

∂ωn

(

e−δωtn

√

[C(ω, δ)]2 + [S(ω, δ)]2
)

= 0 (2.28)

with n the derivative order, an ever-in
reasing level of robustness 
an be a
hieved.

In this way it is possible to de�ne the so-
alled Zero Vibration n-Derivative Input

Shapers (ZVD

n

IS), whose general transfer fun
tion results

HZVDn(s) =

(
1 +Ke−sT

1 +K

)n

. (2.29)

where K and the sample time T are de�ned as in (2.22) as well.

The e�e
t of adding 
onstraints on null derivatives is visible in �g. 2-9(b) where

the smoothness of the PRV fun
tion is greater as the degree of the null derivative

in
reases, that is robustness in
reases as well. Unfortunately for every additional


ondition, ie for every null derivative grade, an extra impulse is needed, resulting

in ever longer sequen
es in terms of duration of the shaping e�e
t (see �g. 2-9(a)),

therefore 
ausing an undesirable distortion of the 
ommand input when a high order

of derivatives as set to zero. Moreover it has to be noted that robustness in
reases

less and less as the number of impulses grows, so usually derivative methods are

not taken into a

ount over the se
ond or third derivatives. In parti
ular these are

the Zero Vibration Double Derivative IS (ZVDD IS) and the Zero Vibration Triple

Derivative IS (ZVDDD IS), whi
h are de�ned by means of 
onditions in (2.3) and

(2.24) plus the additional 
onstraint in (2.28) with n = 2 and n = 2, 3 respe
tively.

This is 
on�rmed also from a system theory point of view. Indeed looking at �g. 2-

10(a) it is 
lear that the e�e
t of any further 
onstraint on derivatives set to zero is

to in
rease of one the multipli
ity of all zeroes in the 
omplex plane. This obviously

in
rease the nullifying e�e
t of the zeroes as 
an be seen also in �g. 2-10(b) and �g. 2-
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Figure 2-9: Step response of the system with δ = 0 using ZVDD IS and ZVDDD IS

(a) and PRV fun
tion of the ZVDD IS and ZVDDD IS, 
ompared to ZV IS in bla
k

dotted line and ZVD IS in green dotted line (b).

10(
) where HZVDD(s) and HZVDDD(s) show large areas with very low amplitude.

However it has to be noted that the di�eren
e is appre
iable only very 
lose to nominal

parameters while the overall fun
tion doesn't 
hange so mu
h with respe
t to �g. 2-

5(
) and �g. 2-8(
).
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Figure 2-10: Pole-Zero diagram of the system with derivative IS (a) and des
ription

of HZVDD(s) and HZVDDD(s) as fun
tion of σ and jω (b,
). In (
) the same plot of

(b) is reported with equal s
ale on x and y axis in order to better understand the

behavior of the system response. In (b) and (
) the 
ontour lines are equally spa
ed

of 0.1 and the zeroes position is highlighted with a bla
k 
ross.
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PRV H(σ, jω)
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Figure 2-11: Comparison of Pole-Zero diagram and transfer fun
tion des
ription on

the 
omplex plane of respe
tively ZV IS (a), ZVD IS (b) and ZVDD IS (
).
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2.5 Extra Insensitive Input Shaper

In Se
tion 2.4 has been shown how robust IS based on derivative methods soon be-


ome too mu
h 
ompli
ated 
ompared with less and less e�e
tiveness in in
reasing

robustness. Extra Insensitive IS (EI IS) instead are based on the 
on
ept of allowing

a 
ertain amount of residual vibration, in order to guarantee the vibration redu
tion

e�e
t for a wider range of frequen
ies. This idea is mainly driven by pra
ti
al experi-

en
e, sin
e it is known that real implementations rarely mat
h the simulation models.

Moreover for many real appli
ations an augmented robustness with respe
t to vari-

ation of parameters is more important than the 
omplete suppression of vibration,

although within 
ertain limits.

EI IS has been introdu
ed in [94, 89℄ by means of the ve
tor diagram approa
h for

a system with damping δ = 0. As said before the idea is to relax the null vibration


ondition for nominal parameters, assuming to allow a 
ertain level of PRV, typi
ally

not more than 10%. Starting from a ZVD IS, it is proven that when the sum of the

three impulses at modelling frequen
y is set equal to a vibration limit Vlim, the PRV

fun
tion presents an �hump� of amplitude Vlim that drops down to zero symmetri
ally

with respe
t to the nominal frequen
y, as shown in �g. 2-12. Moreover by only modi-

fying amplitudes of a ZVD IS impulses, the 3-impulse sequen
e that yields maximum

robustness for a given vibration limit 
an be obtained.

By means of geometri
al relationship between PRV and ve
tor diagram representa-

tion given in Se
tion 2.1.2, the behavior of the EI IS for δ = 0 in �g. 2-12(b) is easily

explainable. Unlike the ZVD IS, the amplitude of the three impulses is 
hosen su
h

that the ve
torial sum in �g. 2-13(a) is non null

|A0| − |A1|+ |A2| = Vlim(|A0|+ |A1|+ |A2|), ω = ωn. (2.30)

Being the angle of ea
h impulse in the ve
tor diagram related to frequen
y by θi = ωiti,

it is straightforward that for ea
h value of ω the angle of the third ve
tor θ3 is always

twi
e the angle of the se
ond ve
tor θ2. Therefore by means of simple geometri
al


onsiderations it 
an be demonstrated that the ve
torial sum 
an be set to zero at
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Figure 2-12: Step response of the system with δ = 0 shaped by EI IS with Vlim = 0.05
(a) and PRV fun
tion of the EI IS 
ompared to ZV IS in bla
k dotted line and ZVD

IS in green dotted line (b).


ertain angles that represent two frequen
y values equidistant from ωn as des
ribed

in �g. 2-13(b).

However re
alling the relationship between ve
tor diagram, PRV fun
tion and fre-

quen
y response with δ = 0, the same problem 
an be posed in a more formal way

looking at it in a �lter perspe
tive. First of all the EI IS 
an be des
ribed in Lapla
e

domain as

HEI(s) = A0 + A1e
−sT + A2e

−s2T
(2.31)

where

T =
π

ωn
(2.32)

being δ = 0. Then in order to obtain a frequen
y response |HEI(jω)| shaped like

the PRV fun
tion in �g. 2-12(b), amplitudes A0, A1, A2 must satisfy the following

equations







|HEI(jω)| = 1 , ω = 0

|HEI(jω)| = Vlim , ω = ωn

|HEI(jω)| = 0 , ω = ωA

|HEI(jω)| = 0 , ω = ωB

(2.33)
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Figure 2-13: Ve
tor diagram representation of the EI IS in nominal 
ondition (a)

and for ω that 
ause zero vibration (b).
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where

|HEI(jω)| =
∣
∣
∣
∣
∣

2∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.34)

and

ωA = ωn(1− α), ωB = ωn(1 + α), (2.35)

being 2αωn the total frequen
y width of the hump in terms of normalized frequen
y.

The solution of (2.33) 
on�rms the one of the authors in [94, 89℄







A0 =
1+Vlim

4

A1 =
1−Vlim

2

A2 =
1+Vlim

4

cos(αωnT ) =
1−Vlim

1+Vlim

(2.36)

Moreover the last equation in (2.36) gives a dire
t 
orresponden
e between the allowed

residual vibration Vlim and the width of the hump. In parti
ular it is interesting to

note that for α = 0 the hump 
ollapses in ω = ωn and the shaper be
omes a simple

ZVD IS, while for α = 0.5 results Vlim = 1 that is no shaping e�e
t on vibration at

ω = ωn. In fa
t for α = 0.5 the EI IS behaves like a ZV IS designed for a frequen
y

ω̂n = ωn/2. Therefore an EI IS for an undamped system is properly de�ned with

0 < α < 0.5. (2.37)

In �g. 2-14 the the Pole-Zero des
ription and the behavior in the 
omplex plane of

HEI(s) with proper amplitudes in (2.36) is shown. In parti
ular 
omparing �g. 2-

14(
) and �g. 2-8(
) for a ZVD IS, it is evident that the e�e
t of EI IS is to widen the

area of the S-Plane in whi
h the shaper is able to redu
e vibrations, using the same

number of impulses of a ZVD IS. A
tually, has been already demonstrated that if a


ertain Vlim 6= 0 is assumed, the impulses of a ZVD IS 
hange in amplitude a

ording

to (2.36). This modi�
ation has a 
lear impa
t on the zero pla
ement of the transfer

fun
tion HEI(s) in �g. 2-14(a) with respe
t to HZVD(s) in �g. 2-8(a). As told before
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Figure 2-14: Pole-Zero diagram of the system with δ = 0 shaped by EI IS with

Vlim = 0.05 (a) and des
ription of HEI(s) as fun
tion of σ and jω (b,
). In (
) the

same plot of (b) is reported with full s
ale axis in order to better understand the

behavior of the system response. In (b) and (
) the 
ontour lines are equally spa
ed

of 0.1 and the zeroes position is highlighted with a bla
k 
ross.
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a ZVD IS 
an be 
onsidered as a parti
ular EI IS for Vlim = 0, therefore α = 0 and

HZVD(s) presents the typi
al 
omplex 
onjugate 
ouples of zeroes with multipli
ity 2.

On the 
ontrary for an EI IS the e�e
t of α 6= 0 is graphi
ally explained in �g. 2-15 as

a split of the double zero of a ZVD IS into two single zeroes a

ordingly with α and

equidistant from ωn. However this is just a 
on�rm of the result given by the PRV

fun
tion and the frequen
y response but again shows the 
onsisten
y of the Pole-Zero

analysis for redu
ing vibrations, sin
e a null value of PRV 
orresponds to a zero of

the IS transfer fun
tion.

Unfortunately for damped system, an EI IS with a PRV like the one in �g. 2-7(b)


an't be easily de�ned or simply derived from the undamped problem (2.33). In fa
t

it is demonstrated that these 
onstraint equations 
an't be solved in 
losed form, only

numeri
al solutions are given for EI IS with 0 ≤ δ ≤ 0.3 and 0 ≤ Vlim ≤ 0.15, namely

A0 = 0.24968 + 0.24962 Vlim + 0.80008 δ + 1.23328 δVlim + 0.49599 δ2

+ 3.17316 δ2Vlim,

A1 = 1− (A0 + A2),

A2 = 0.25149 + 0.21474 Vlim − 0.83249 δ + 1.41498 δVlim + 0.85181 δ2

− 4.90094 δ2Vlim

(2.38)

PSfrag repla
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Figure 2-15: E�e
t of the introdu
tion of an allowable amount of vibration in the

pla
ement of the zeroes of the transfer fun
tion HEI(s): as α in
rease from 0 the


hara
teristi
 double zero of a ZVD IS is split into two single zeroes equally spa
ed

from jωn.
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with

T0 = 0,

T1 = T2(0.49990 + 0.46159 δVlim + 4.26169 δ2Vlim + 1.75601 δ3Vlim

+ 8.57843 δV 2
lim − 108.644 δ2V 2

lim + 336.989 δ3V 2
lim),

T2 = 2T =
2π

ωn

√
1− δ2

,

(2.39)

therefore the EI IS results

hEI(t) = A0δ(t− T0) + A1δ(t− T1) + A2δ(t− T2), (2.40)

that is in terms of transfer fun
tion

HEI(s) = A0 + A1e
−sT1 + A2e

−sT2 . (2.41)

In �g. 2-16(
) the PRV fun
tion of the IS designed in that way des
ribes exa
tly

the desired humped behavior like in �g. 2-12(b) and the step response in �g. 2-16(a)

shows the response of the system with an EI IS that allows a 
ertain level of vibration

Vlim. Also it has to be noted that like in 
ase of undamped system the total length

of the impulse train is the same of a ZVD IS but the three impulses are not anymore

equally spa
ed in time.

In �g. 2-17 the analysis ofHEI(s) in the S-Plane shows the same e�e
t of widening the

area in whi
h vibrations 
an be redu
ed. Again, this result is obtained by splitting

the typi
al double zero of a ZVD IS a

ording to the amount of allowed vibrations.

Likewise the undamped 
ase, the zeroes are split in order to mat
h the zero values of

the PRV fun
tion. Being the PRV de�ned as a fun
tion of ωn, with δ 6= 0 the split

results taking pla
e along a 
onstant damping dire
tion on the 
omplex plane.

Unfortunately this 
onstraint on the zeroes position, is the reason that makes the

design of the EI IS possible only with the numeri
al solution in 2.38 and 2.39.

However an easier solution 
an be found ta
kling the problem with a system theory

perspe
tive. First of all it is proven that the EI IS is a parti
ular ZVD IS in whi
h
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Figure 2-16: Step response of the system with δ = 0.1 shaped by EI IS with Vlim =
0.05 (a), impulses des
ription by means of ve
tor diagram (b) and PRV fun
tion of

the EI IS 
ompared to ZV IS in bla
k dotted line and ZVD IS in green dotted line

(
).

the double zeroes are split in order to widen the zeroing e�e
t. Then the pre
ise use

of the PRV fun
tion as a tool to de�ne the shaper for damped system, lead to a

di�
ult solution. In parti
ular it 
an be proven that in all previous 
ases the e�e
t

of damping in IS design is a frequen
y translation of the zeroes for the undamped


ase and a frequen
y adjustment to the 
orre
t system frequen
y. In fa
t, being for

example

HZVD(s) =

(
1 + e−sT

2

)2

(2.42)
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Figure 2-17: Pole-Zero diagram of the system with δ = 0.1 shaped by EI IS with

Vlim = 0.05 (a) and des
ription of HEI(s) as fun
tion of σ and jω (b,
). In (
) the

same plot of (b) is reported with full s
ale axis in order to better understand the

behavior of the system response. In (b) and (
) the 
ontour lines are equally spa
ed

of 0.1 and the zeroes position is highlighted with a bla
k 
ross.

the transfer fun
tion of a ZVD IS for undamped system, and supposing σ̂ = δωn the

desired translation, holds that

HZVD(s+ σ̂) =

(
1 + e−sT e−σ̂T

2

)2

, (2.43)

where T is de�ned as usual

T =
π

ωn

√
1− δ2

, (2.44)
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therefore solving the produ
t σ̂T , results

HZVD(s+ σ̂) =




1 + e−sT e

− δπ√
1−δ2

2





2

. (2.45)

Finally re
alling from (2.3)

K = e
−δπ√
1−δ2 , (2.46)

HZVD(s+ σ̂) be
omes

HZVD(s+ σ̂) =

(
1 +Ke−sT

2

)2

= HZVD(s) (2.47)

whi
h it is exa
tly the transfer fun
tion of a ZVD IS in (2.25), provided that the

stati
 gain is set to one.

Following the same approa
h it 
an be de�ned an IS whose behavior is very 
lose

to the EI IS, but without restri
tions on the damping value and avoiding numeri
al

solutions. In details, starting from the undamped 
ase in (2.36) a 3-impulse train IS


an be de�ned as follow

A0 =
1 + Vlim

4

A1 =
1− Vlim

2
K

A2 =
1 + Vlim

4
K2

(2.48)

where

T0 =0

T1 = T

T2 =2T

(2.49)

with K and T de�ned as in (2.3). Therefore the transfer fun
tion result

HEI⋆(s) =
A1 + A2e

−sT + A3e
−s2T

A1 + A2 + A3
. (2.50)
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Figure 2-18: Step response of the system with δ = 0.1 shaped by EI

⋆
IS with Vlim =

0.05 (a), impulses des
ription by means of ve
tor diagram (b) and PRV fun
tion of

the EI

⋆
IS 
ompared to EI IS designed by means of the numeri
al solution reported

with dotted line (
).

The step response in �g. 2-18(a) shows that a small amount of vibrations are allowed

like in �g. 2-16(a), also the PRV fun
tion of the EI

⋆
IS in �g. 2-18(
) demonstrates

that residual vibrations are 
onstrained under the desired value Vlim for a wide range

of frequen
ies. In parti
ular it 
an be seen that the range of variation of ωn whi
h

satisfy the vibration limit it is 
omparable to the one of the EI IS designed by means

of 2.38 and 2.39. On the 
ontrary the EI

⋆
IS doesn't assure 
omplete vibration

suppression for any value of ωn, but anyway the purpose of an EI IS is to extend the

vibration redu
tion e�e
t rather than nullify vibration.

In �g. 2-19 the analysis of EI

⋆
IS on the 
omplex plane 
ompared to the numeri
ally
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de�ned EI IS shows a very similar e�e
t in terms of widening the plane's region in

whi
h the vibrations are 
onsistently redu
ed, ex
ept that the zeroes are split along

di�erent dire
tions. Even in this 
ase the relation that links the allowed residual

vibration Vlim and the frequen
y split by means of the parameter α holds, provided

that the system frequen
y is 
onsidered instead of the natural frequen
y ωn

cos(αω0T ) =
1− Vlim

1 + Vlim
(2.51)

where

ω0 = ωn

√
1− δ2. (2.52)

Therefore for a given vibration limit Vlim, the zeroes are pla
ed at frequen
ies

ω⋆
A = ω0(1− α), ω⋆

B = ω0(1 + α). (2.53)

Also, being ω0 and T de�ned for both damped and undamped system, we 
an assume

the above equations as the general relationship between Vlim and the displa
ement of

the zeroes. Moreover it has to be noted that the produ
t ω0T is always equal to π, so

α is uniquely de�ned by Vlim and totally independent from the damping. That is α

is the ratio of the system frequen
y that identify the displa
ement of the zeroes from

the system frequen
y itself, and also for damped system must satisfy the 
ondition

in (2.37).
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Figure 2-19: Pole-Zero diagrams of the system with δ = 0.1 shaped by EI IS and EI

⋆

IS with Vlim = 0.05 (a) and des
ription of both transfer fun
tions in terms of σ and

jω variations (b,
). In (
) the same plot of (b) is reported with equal s
ale on x and

y axis in order to better understand the behavior of the system response. In (b) and

(
) the 
ontour lines are equally spa
ed of 0.1 and the zeroes position is highlighted

with a bla
k 
ross.
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2.6 Multi-Hump EI Input Shaper

Multi-Hump Extra Insensitive Input Shaper (n-Hump EI) are the natural extension

of EI IS that are 
hara
terized by a hump-shaped PRV fun
tion. In a manner similar

to ZVD

n

IS in Se
tion 2.4, the idea is to in
rease robustness by adding n 
onstraint

equations and n impulses of the IS. In parti
ular, for the 
harateristi
 design approa
h

of EI IS adding a further 
onstraint means design an additional hump in the PRV

fun
tion. Usually multi-hump IS refers to EI IS with only two or three humps, sin
e

any additional hump implies the use of one more impulse and the 
omplexity of the

design pro
edure rapidly grows. In [92, 93℄ the design algorithm of single-hump EI

IS reported in Se
tion 2.5 is extended for a 2-Hump EI and a 3-Hump EI. Similarly

to EI IS the problem has been introdu
ed for δ = 0 by means of ve
tor diagrams and


an be des
ribed by means of 
onstraints on frequen
y response. For a 2-Hump EI

the transfer fun
tion of the shaper is

H2HEI(s) = A0 + A1e
−sT + A2e

−s2T + A3e
−s3T

(2.54)

with

T =
π

ωn

√
1− δ2

(2.55)

and amplitudes must satisfy







|H2HEI(jω)| = 1 , ω = 0

|H2HEI(jω)| = 0 , ω = ωn

|H2HEI(jω)| = Vlim , ω = ωH1

∂
∂ω
|H2HEI(jω)| = 0 , ω = ωH1

A0 = A3 and A1 = A2

(2.56)

where

|H2HEI(jω)| =
∣
∣
∣
∣
∣

3∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.57)
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and

ωH1 = ωn(1− β) (2.58)

is the frequen
y at whi
h the hump for ω < ωn has the maximum value. Basi
ally the


onstraints in (2.56) impose null vibration at nominal frequen
y, a residual vibration

limit Vlim at a frequen
y ωH1 and that PRV (ωH1) is a lo
al maximum. Moreover the

last equation impose the symmetry of the PRV fun
tion with respe
t to ωn, therefore

for ω > ωn is impli
itly de�ned an hump with a lo
al maximum Vlim at a frequen
y

ωH2 = ωn(1 + β) (2.59)

where β, unlike α for EI IS, refers to the frequen
y range between the maximum of

the two humps.

For a 2-Hump EI results







A0 =
3X2+2X+3V 2

lim

16X

A1 =
1
2
− A0

A2 = A3

A3 = A0

cos(βωnT ) =
1
3

(

1 + 1
4A0

)

(2.60)

where

X = 3

√

V 2
lim

(√

1− V 2
lim + 1

)

. (2.61)

In the same way a 3-Hump EI for an undamped system is de�ned as

H3HEI(s) = A0 + A1e
−sT + A2e

−s2T + A3e
−s3T + A4e

−s4T
(2.62)

with

T =
π

ωn

√
1− δ2

(2.63)
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provided that amplitudes satisfy







|H3HEI(jω)| = 1 , ω = 0

|H3HEI(jω)| = Vlim , ω = ωn

|H3HEI(jω)| = Vlim , ω = ωH1

∂
∂ω
|H3HEI(jω)| = 0 , ω = ωH1

A0 = A4 and A1 = A3

(2.64)

where

|H3HEI(jω)| =
∣
∣
∣
∣
∣

4∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.65)

and

ωH1 = ωn(1− γ) (2.66)

is again the frequen
y at whi
h the hump for ω < ωn has the maximum value. However

in this 
ase the symmetry 
ondition makes that one hump is 
entered on ωn and the

other two are at both sides with maximum value Vlim at frequen
ies ωH1 and ωH2

that is

ωH2 = ωn(1 + γ) (2.67)

with γ again refers to the frequen
y range between the maximum of the two outer

humps.

Amplitudes that solve (2.64) are







A0 =
1+3Vlim+2

√
2(V 2

lim
+Vlim)

16

A1 =
1−Vlim

4

A2 = 1− 2(A0 + A1)

A3 = A1

A4 = A0

cos(γωnT ) =
1−Vlim

16A0

(2.68)
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Figure 2-20: Step response of the system with δ = 0 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and PRV fun
tions of the IS 
ompared respe
tively

to ZVDD IS and ZVDDD IS (b).

In �g. 2-20(b) the PRV fun
tions of the EI IS with two and three humps are shown,

highlighting the robustness in
rease with respe
t to the ZVDD IS and the ZVDDD

IS that have the same time length respe
tively. Also in �g. 2-20(a) the step response

of the shaped system with nominal parameters present di�erent behaviors a

ording

to the number of humps, sin
e for odd numbers of humps the PRV fun
tion present

a maximum in nominal 
onditions.

In �g. 2-21 the analysis of both the shapers on the 
omplex plane des
ribes the same

e�e
t of zero-splitting already seen for the single-hump 
ase. In this 
ase however it


an be seen a di�erent behavior depending on the number of zeros that are involved.

In fa
t, the 2-Hump IS that des
end from a ZVDD IS present three zeroes that are
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Figure 2-21: Pole-Zero diagrams of the system with δ = 0 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and des
ription of both transfer fun
tions in terms

of σ and jω variations (b,
). In (
) the same plot of (b) is reported with equal s
ale

on x and y axis in order to better understand the behavior of the system response.

In (b) and (
) the 
ontour lines are equally spa
ed of 0.1 and the zeroes position is

highlighted with a bla
k 
ross.
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split symmetri
ally to ωn a part from one zero that 
an
el the system pole. On the

other hand the 3-Hump IS has four zeroes and the symmetri
 split doesn't 
an
el the

system pole. This behavior obviously depend on the parity of the zeroes multipli
ity

and has a dire
t 
onsequen
e in the shape of the PRV fun
tion.

For damped system a numeri
al solution have been proposed for both 2-Hump IS

and 3-Hump IS, although only for Vlim < 0.05 and 0 ≤ δ ≤ 0.3. Coherently with the

simple EI IS, the numeri
al solution permits to split the zeroes in the same way of the

undamped 
ase, along a 
onstant damping dire
tion as shown in �g. 2-19(a). However

with the same approa
h of (2.48) based on frequen
y translation of the zeroes, an

approximate solution 
an be derived for any values of δ starting from the amplitude

values in (2.60) and (2.68) that is

A0 =
3X2 + 2X + 3V 2

lim

16X

A1 =

(
1

2
−A0

)

K

A2 =A3K
2

A3 =A0K
3

(2.69)

for 2-Hump IS and

A0 =
1 + 3Vlim + 2

√

2(V 2
lim + Vlim)

16

A1 =
1− Vlim

4
K

A2 = (1− 2(A0 + A1))K
2

A3 =A1K
3

A4 =A0K
4

(2.70)

for 3-Hump IS. The step responses and PRV fun
tions in �g. 2-22 show that even if

the shapers are designed with the frequen
y translation approa
h, the approximation

is quite good and the implementation of that IS is very e�e
tive in order to obtain a

vibration redu
tion for a wide range of frequen
ies. This is 
on�rmed by the transfer
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Figure 2-22: Step response of the system with δ = 0.1 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and PRV fun
tions of the IS (b). Both are designed

with relations in (2.69) and (2.70).

fun
tions analysis on the 
omplex plane in �g. 2-23.

2.6.1 Approximate Design Te
hniques

for Multi-Hump EI Input Shaper

The proposed approximate method of design EI IS for damped system based on fre-

quen
y translation in Se
tions 2.5 and 2.6 is validated also in some re
ent works.

The truth is that the rigorous de�nition that is given by the authors in [94, 89℄ for

a single-hump EI and in [92, 93℄ for a multi-hump EI, pla
es limitations whi
h re-

du
e the attra
tiveness of these te
hniques for damped systems. On the 
ontrary
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Figure 2-23: Pole-Zero diagrams of the system with δ = 0.1 shaped by 2-Hump

EI and 3-Hump EI with Vlim = 0.05 (a) and des
ription of both transfer fun
tions

in terms of σ and jω variations (b,
). In (
) the same plot of (b) is reported with

equal s
ale on x and y axis in order to better understand the behavior of the system

response. In (b) and (
) the 
ontour lines are equally spa
ed of 0.1 and the zeroes

position is highlighted with a bla
k 
ross.
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Figure 2-24: Representation of the system pole and the zeroes for an EI IS with

respe
t to the system poles on the Z-Plane: in (a) the numeri
al solution let the

zeroes lying on a 
onstant damping spiral, in (b) the approximate solution pla
es the

zeroes on the 
ir
le whose radius is e−δωnT
.

in a 
ontrol systems perspe
tive, methods that avoid numeri
al solutions are most

appre
iable, albeit with a 
ertain degree of approximation.

In [74℄ a graphi
al approa
h based on zero pla
ement on the Z-Plane is proposed.

After a 
omplete analysis of IS in dis
rete time domain together with the represen-

tation of the shaping e�e
t on the Z-Plane, the authors 
ome to highlight that the

vibration suppression is due to a pole-zero 
an
ellation and that EI IS basi
ally split

multiple zeroes in a proper way, as deeply dis
ussed in previous se
tions. Moreover in

an equivalent manner to what reported in Se
tion 2.5, they assure that the numeri
al

solution of EI IS is su
h that the zeroes are pla
ed along a 
onstant damping line that

is represented as a spiral in �g. 2-24(a). Therefore, in order to a
hieve a 
losed form

solution the graphi
al method proposes to pla
e the zeroes on the 
ir
le whose radius

e−δωnT
is su
h that the 
onstant damping spiral is interse
ted in 
orresponden
e of

the system poles (see �g. 2-24(b)).

However is easy to demonstrate that this graphi
al method is exa
tly the same of the

one based on frequen
y translation in the S-Plane. In fa
t from [74℄ the two zeroes
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are de�ned as

z1,2 = e−δωnT+j(1±∆ω
ωn
)π, (2.71)

then being a
tually

∆ω
ωn

= α with α de�ned as in 2.35 and re
alling T in (2.3), results

z1,2 = e−δωnT+jωn

√
1−δ2(1±α)T , (2.72)

and 
olle
ting T

z1,2 = e(−δωn+jωn

√
1−δ2(1±α))T . (2.73)

Finally being the relation between the dis
rete transfer fun
tion and the 
ontinuous

transfer fun
tion z = esT , from 2.73 it 
an be obtained

s1,2 = −δωn + jωn

√
1− δ2 (1± α) , (2.74)

that are the same zeroes of the solution in (2.48) reported in �g. 2-19.

In [48℄ instead, a partially analyti
al method is presented. First the three impulses

are de�ned to be equally spa
ed of T and su
h that the vibration ratio for nominal


ondition is a 
ertain Vlim. As a 
onsequen
e the solution in (2.48) is derived. In

addition the authors de�ne an angle φ = απ through whi
h the 
onstraint PRV = 0

is given for just one side of the hump. In this way is obtained a 
losed form solution

for the amplitudes although it in
ludes one unknown parameter whi
h is a fun
tion

of φ and has to be numeri
ally solved. However this solution is mu
h more simple

than the rigorous one and the unknown parameter 
an be numeri
ally solved for any

value of Vlim and δ. Unfortunately the null-PRV 
ondition on one side only of the

hump does not assure that the PRV fall to zero either on the other side of the hump,

moreover it 
auses robustness degradation for high Vlim values. This behaviour 
an

be easily explained sin
e in terms of poles-zeroes this method basi
ally pla
es one

zero in order to be 
oin
ident to the numeri
al solution, while the other is left like

in the solution in (2.48). Therefore the PRV fun
tion is no more symmetri
 and for

large split of the zeroes the robustness degrades qui
kly.
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In 
on
lusion it has to be noted that the 
ompli
ation of numeri
al solutions,

though partial, are motivated mostly by the fa
t that the PRV fun
tion is de�ned for

variation of the natural frequen
y ωn. Pra
ti
ally speaking is a fa
t that in evaluat-

ing parameters of an unknown damped system, what is a
tually measurable are the

system frequen
y ω0 = ωn

√
1− δ2 and the de
ay rate −δωn of the vibratory response,

that is the 
oordinates σ and jω of the system poles on the S-Plane. Therefore po-

tential errors in parameters estimation typi
ally a�e
t both δ and ωn and de�ning

the robustness for variation of ωn or δ only is more a 
ustomary des
ription than a

real need. In addition from the analysis of the IS as a fun
tion of σ and jω reported

in previous se
tions, it 
an be noted that in general the vibration suppression e�e
t

rapidly vanishes as σ de
reases, then the a
tual 
riti
al parameter in IS design is σ,

so 
ompli
ated numeri
al solutions are not so ne
essary.

2.7 IS Design for Multiple-Mode Vibrations

Suppression

In many real appli
ations, from 
ranes to �exible roboti
 arms, system modelling by

means of a 
ommon se
ond order LTI system as in Se
tion 1.1 is not su�
ient sin
e

other vibratory modes besides the fundamental one may be signi�
ant and then to

be suppressed. In general IS for multiple-mode vibration suppression refers to higher

order LTI system of the form

Gm(s) =
m∏

i=1

ω2
ni

s2 + 2δiωnis+ ω2
ni

(2.75)

where m is the number of vibratory modes and δi, ωni are the parameters of the i-th

mode. Basi
ally in terms of poles of the transfer fun
tion,Gm(s) 
an be represented by

m 
ouples of 
omplex 
onjugate poles in the S-Plane. Therefore the natural approa
h

to suppress m modes of vibration is to 
onvolute m IS, ea
h of whi
h designed for
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one of the m modes

Hm(s) =
m∏

i=1

Hi(s) (2.76)

where Hi(s) is the IS for the i-th mode. In this way every IS 
ares to 
an
el only

the poles for whi
h it is designed and the 
onvolution permits to a
hieve an overall

pole-zero 
an
ellation of Gm(s).

Unfortunately this simple approa
h has a main drawba
k in terms of distortion, in

fa
t the 
onvolved shaper has total time duration equal to the sum of the shaping

time of ea
h IS. This means that if ea
h IS is of the same kind and with a 
ertain

duration Ti, the worst 
ase is represented by m modes 
losed to ea
h other sin
e

results

Ttot =

m∑

i=0

Ti ≈ mTi. (2.77)

As a result the time dilatation may result in unfeasible solutions for some appli
ations,

therefore many approa
hes has been proposed that de�ne IS whi
h are designed to

solve simultaneously the 
onstraints for all the modes. The great advantage of all

these methods is that in this way is always possible to a
hieve solutions with a time

duration shorter than the 
onvolved shaper.

2.7.1 Numeri
al Optimization Based Design

In [43, 87, 88℄ the design of IS for two or more vibratory modes is presented. Despite

di�erent assumptions related to the 
onstraints of the 
ase study in ea
h papers, a

general method 
an be dedu
ed for the design of IS for multiple-modes vibration

suppression based on numeri
al solution. Typi
ally for an m-modes system Gm(s)

an overall problem is 
onsidered whi
h 
ontains the residual vibrations 
onstraints

for ea
h mode along with additional 
onstraints with respe
t to amplitudes of the

impulses and robustness. Dire
t solving of su
h problems usually results in in�nite

possible solutions, therefore the IS is a
hieved 
hoosing one of the feasible solution

by means of optimization algorithms, typi
ally for minimizing the shaper duration.

These kind of IS redu
e m vibratory modes and provide very low distortion, generally
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in terms of number of impulses, the optimization pro
edure results in impulse trains

of total 2m+ 1 impulses, where m is the number of the modes.

2.7.2 Zero-Pla
ement Based Design

A di�erent approa
h to a
hieve a multiple-mode IS is reported in [106℄ exploiting the

zero pla
ement te
hnique in the Z-Plane to suppress vibrations. The assumption is

that in order to suppress m vibratory modes of a given system Gm(s), the IS must

have at least 2m zeroes able to 
an
el the system poles

Hm(z) =
m∏

i=0

(z − pi) (z − p⋆i ) , (2.78)

where pi, p
⋆
i are the i-th 
ouple of 
omplex 
onjugate poles of the system. In addition

the above relation 
an be generalized in order to a
hieve augmented robustness for

some 
riti
al modes by in
reasing the zeroes multipli
ity ni

Hm(z) =
m∏

i=0

(z − pi)
ni (z − p⋆i )

ni . (2.79)

Then the IS is obtained in a dis
rete time fashion providing 
ausality and minimum

distortion of the 
ommand, that is equalize the degree of the zeroes with r poles at

the Z-Plane origin

Hm(z) =
C

zr

m∏

i=0

(z − pi)
ni (z − p⋆i )

ni , (2.80)

where

r =
m∑

i=0

ni (2.81)

and C will provide also unitary stati
 gain. Finally the impulse amplitudes are de�ned

by means of the impulse response

hm(t) = C

(

δ(t) +

r∑

i=1

aiδ(t− iT )

)

, (2.82)
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where the 
oe�
ient ai results from the polynomial expansion of the dis
rete transfer

fun
tion Hm(z). It has to be noted that Hm(z) is derived assuming to know from

the beginning the sample time T of the IS, as a matter of fa
t T is a design 
hoi
e.

In fa
t the authors propose to 
al
ulate the 
oe�
ients ai by means of the poles of

the 
ontinuous transfer fun
tion Gm(s), therefore the amplitudes ai are obtained as

fun
tion of the sample time T . In this way the amplitudes 
an be 
hosen a

ordingly

to the feasibility of a real implementation and minimizing T . At last C is 
hosen to

provide unitary stati
 gain.

This method allows to obtain suboptimal results for multiple-mode vibration sup-

pression. This is due to the use of equally time spa
ed impulses, as a result in 
ase of

widely spa
ed modes of vibration IS derived in this way result typi
ally longer than


onvolved shapers.

2.7.3 An Appli
ation of EI IS for a Two-Mode

Vibratory System

In Se
tion 2.5 a 
losed form solution for an EI IS has been derived by means of its

frequen
y response and a good approximation for damped systems has been given

by a frequen
y translation approa
h. Moreover the e�e
t of zeroes split of EI IS has

been deeply dis
ussed and 
hara
terized. Namely the 
hara
teristi
 hump is due to

two zeroes pla
ed at frequen
ies in (2.53) whi
h are symmetri
 with respe
t to the

system frequen
y and whose distan
e is expressed in terms of the parameter α that

is fun
tion of the system parameters and the desired vibration limit Vlim in (2.51).

Looking at the EI IS with a di�erent perspe
tive, the 3-impulse train 
ane be designed

in order to suppress two undamped vibratory modes or two damped modes with the

same de
aying rate σ. In parti
ular, being ω1, ω2 the frequen
ies of the two modes

with ω1 < ω2, from (2.53) results

α =
ω2 − ω1

ω2 + ω1
(2.83)
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and obviously

ω⋆
0 =

ω2 + ω1

2
, (2.84)

where ω⋆
0 is a virtual system frequen
y that de�nes also a virtual damping δ⋆, for a

given σ of the two modes. Then from (2.51), solving for the vibration limit des
end

V ⋆
lim =

1− cos(αω⋆
0T

⋆)

1 + cos(αω⋆
0T

⋆)
(2.85)

with T ⋆
de�ned as usual in (2.22) by means of the virtual parameters ω⋆

0 and δ⋆.

Therefore an EI IS design for a virtual system 
hara
terized by ω⋆
0, δ⋆ and V ⋆

lim

assures 
omplete vibration suppression of two modes at frequen
ies ω1, ω2. Moreover

sin
e the system poles are 
an
elled by zeroes with multipli
ity of one, the robustness

of the shaper with respe
t to ea
h mode is 
omparable to a ZV IS.

This approa
h leads to a time optimal solution for suppression of two vibratory modes

with equal de
ay rate σ. However it has to be noted that for widely pla
ed modes

this IS 
ould introdu
e an undesirable e�e
t of ampli�
ation between the two modes,

i.e. in undamped 
ase by means of the frequen
y response it 
an be seen that if

ω2 ≫ ω1 then |HEI(jω
⋆
n)| > 1. Anyway this e�e
t 
an be avoided by imposing the


onstraint 0 < α < 0.5 from (2.37), sin
e as been told before for α = 0.5 results

|HEI(jω
⋆
n)| = Vlim = 1. Therefore in terms of frequen
ies, for a given ω1 the se
ond

mode must satisfy

ω1 > ω2 > 3ω1. (2.86)
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Chapter 3

Filtering Te
hniques and

System-Inversion Based Planning

for Vibration Redu
tion

3.1 Filter Based Methods for Vibration Redu
tion

The problem of vibrations suppression is often addressed by means of �ltering te
h-

niques. In literature many works propose approa
hes based on 
ommands shaped

by either low-pass (LPF) or not
h �lters (BSF), as a solution to real 
ase studies

[2, 1, 4, 32, 33℄. The motivation relies on the analysis of the vibratory system in

terms of spe
tral 
omponents. In other words the plant is assumed to have one or

more resonant frequen
ies whi
h des
ribes the modes of vibration, therefore the �lter

has the duty of eliminating those spe
tral 
omponents of the 
ommand input able to

ex
ite the system's resonan
es. In this way, sin
e typi
al real 
ontrolled systems has

low-pass behavior and being the fo
us on avoiding 
ertain frequen
y 
omponents of

the 
ommand, natural 
andidates for vibrations redu
tion by means of �ters are LPF

or BSP when high dynami
s are not expendable.
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3.1.1 Low-Pass Filters

In order to des
ribe the e�e
t of shaping 
ommands by means of �lters, the 
ase of a

typi
al se
ond order LTI system as in Se
tion 1.1 fed by a step �ltered by a LPF is

presented �rst. Three of the most 
ommon �lter's design te
hniques are 
onsidered to

determine generalized 
onsiderations whi
h relate to the �ltering te
hnique and not

only to a parti
ular design. Namely the �lters used in simulation are Butterworth

Filter, Chebyshev Filter and Ellipti
 Filter [107℄.

Butterworth �lter assures a maximally �at magnitude response in the pass-band and

an overall monotoni
 behavior. The design is a
hieved by means of the normalized

Butterworth polynomials that are expressed in terms of the 
omplex variable s as-

suming a 
uto� frequen
y ωc = 1

Bn(s) =

n
2∏

k=1

[

s2 − 2s cos

(
2k + n− 1

2n
π

)

+ 1

]

, n = even

Bn(s) = (s+ 1)

n−1

2∏

k=1

[

s2 − 2s cos

(
2k + n− 1

2n
π

)

+ 1

]

, n = odd

(3.1)

where n is the polynomial order. Therefore the transfer fun
tion of a Butterworth

�lter with 
uto� frequen
y ωc and order n results

H(s) =
H0

Bn(γ)
, where γ =

s

ωc
(3.2)

where H0 is the stati
 gain of the �lter. In parti
ular the transfer fun
tion is 
om-

posed of n poles equally spa
ed around a 
ir
le of radius ωc in the left half plane.

Chebyshev �lter has steeper transition band than Butterworth's, but admits a 
on-

trolled amount of ripple of the gain amplitude in the pass-band or in the stop-band.

Commonly Chebyshev �lters refer to the 
ase with equiripple behavior in the pass-

band, whose frequen
y response for a LPF is

|H(jω)| = 1
√

1 + ε2T 2
n

(
ω
ωc

) (3.3)
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where ε is the ripple fa
tor, ωc is the 
uto� frequen
y and Tn is a Chebyshev poly-

nomial of order n. The transfer fun
tion of this �lter 
an be de�ned analyzing the

denominator of (3.3), in parti
ular for an n-order �lter results 2n poles arranged on

an ellipse in the 
omplex plane 
entered at the origin, with a real semi-axis of length

sinh

(
1

n
sinh−1

(
1

ε

))

(3.4)

and an imaginary semi-axis of length

cosh

(
1

n
sinh−1

(
1

ε

))

. (3.5)

Moreover the 2n poles are symmetri
ally arranged on the ellipse with respe
t to the

two axis, therefore in order to guarantee the stability of the �lter the transfer fun
tion


onsiders the poles of the left half plane p− only. As a result the transfer fun
tion of

a Chebyshev �lter is

H(s) =
1

2n−1ε

n∏

i=1

1
(
s− p−i

) . (3.6)

The Ellipti
 �lter has faster transition between pass-band and stop-band 
ompared

to Chebyshev and Butterworth, and admits equiripple behavior in both pass-band

and stop-band. It 
an be seen as a kind of generalization of both Chebyshev and

Butterworth �lters, sin
e setting null ripple in one band de�nes a Chebyshev �lter

and setting null ripple in both bands de�nes a Butterworth �lter. The frequen
y

response of a low-pass ellipti
 �lter is

|H(jω)| = 1
√

1 + ε2R2
n

(

ξ, ω
ωc

) (3.7)

where Rn is the ellipti
 rational fun
tion of order n, ωc is the 
uto� frequen
y, ε is

the pass-band ripple fa
tor and ξ is the sele
tivity fa
tor whi
h de�ne the ripple in

the stop-band as a fun
tion of ε. The transfer fun
tion of an Ellipti
 �lter 
an be

derived in a similar way to Chebyshev �lter, that is the poles of the transfer fun
tion

are the poles of the frequen
y response fun
tion and the zeroes result the poles of the
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Figure 3-1: Magnitude and phase response of the 
onsidered �lters with respe
t to

frequen
y: in blue is reported the Butterworth �lter, in red the Chebyshev �lter and

in green the Ellipti
 �lter. The dashed lines identify the 
uto� frequen
y ωc and the

system frequen
y ω0.

ellipti
 rational fun
tion Rn.

In �g. 3-1 the Bode plots of the three LPF are reported to highlight the di�erent

behavior in terms of frequen
y response. All �lters are of the �fth order and designed

assuming a 
uto� frequen
y one o
tave lower than the system frequen
y, ω0 = 2ωc,

amplitude of the stop-band ripple equal to −50 dB for the Ellipti
 �lter and ampli-

tude of the pass-band ripple equal to 1 dB for both Ellipti
 and Chebyshev �lter.

In �g. 3-2 also are reported the responses of an undamped se
ond order system to

a step 
ommand �ltered by the three LPF. As 
an be seen the settling time of the

�ltered system is very long, moreover the vibration is redu
ed but not suppressed.

In fa
t, �lters does not assure vibration suppression and this 
an be explained by

looking the pole-zero diagram of the �lters in �g. 3-3 where it is 
lear that there is no

zero able to 
an
el the system poles. Butterworth and Chebyshev 
ases are glaring

sin
e there are no zeroes at all, while the Ellipti
 �lter has two 
ouples of 
omplex


onjugate zeroes, but it has to be noted that usual design pro
edures do not refer

expli
itly to the pla
ement of that zeroes.

As a matter of fa
t the �ltering e�e
t intended as by means of �lters, doesn't rely

on the presen
e of zeroes but in redistributing the residues of the system poles. This
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Figure 3-2: Response of the system G(s) with δ = 0 to a step �ltered by means

of Butterworth �lter (a), Chebyshev �lter (b) and Ellipti
 �lter (
). Respe
tive fre-

quen
y responses of the 
onsidered �lters are reported in linear s
ale on the right


olumn.
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Figure 3-3: Pole-Zero diagrams of the system with δ = 0 shaped by Butterworth

�lter (a), Chebyshev �lter (b) and Ellipti
 �lter (
). On the right the des
ription of

the �lters in terms of σ and jω variations is reported with equal s
ale on x and y
axis. The 
ontour lines are equally spa
ed of 0.1 and the �lter's Pole-Zero position is

highlighted with a bla
k 
ross.
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Figure 3-4: Residue asso
iated to the system pole in 
ase of a step �ltered by a

Butterworth �lter. In (a) the amplitude of the residue is reported as a fun
tion of the

order n of the �lter with 
uto� frequen
y su
h that ωn = 2ωc. In (b) the amplitude

of the residue is reported as a fun
tion of the 
uto� frequen
y ωc in a se
ond order

�lter. In red dashed line the un�ltered value of the residue is reported.

parti
ular intera
tion 
an be explained assuming for example to �lter a step refer-

en
e 
ommanded to an undamped se
ond order system G(s) by means of a simple

Butterworth �lter HBn(s). In this way the Lapla
e transform of the step response

results

R(s) =
G(s)HBn(s)

s
(3.8)

then analyzing the residue of the poles of the vibratory system G(s) it 
an be noted

that the �lter's parameters determine the redu
tion of the residue, therefore the

de
rease of the amplitude of that frequen
y 
omponent.

In �g. 3-4 is reported the amplitude of the residue of the system poles that 
ause the

vibration as fun
tion of the �lter's design parameters. Namely in �g. 3-4(a) is shown

the e�e
t of in
reasing the order n of the �lter with a �xed 
uto� frequen
y. In terms

of frequen
y response this 
an be seen in a faster transition between pass-band and

stop-band, therefore an augmented sele
tivity of the �lter, that is a sharp redu
tion

of the residue. In �g. 3-4(b) instead the e�e
t of 
hanging the 
uto� frequen
y ωc is

reported for a given se
ond order �lter. In this 
ase it is 
lear that the lower is the


uto� frequen
y the more the system frequen
y is �ltered. This is exa
tly the behavior
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Figure 3-5: Magnitude and phase response of the 
onsidered not
h �lters with respe
t

to frequen
y: in blue is reported the Butterworth �lter, in red the Chebyshev �lter

and in green the Ellipti
 �lter. The dashed lines identify the 
uto� frequen
ies ωcL

and ωcH and the system frequen
y ω0.

des
ribed in �g. 3-4(b) where the residue grows as the 
uto� frequen
y in
reases, in

parti
ular when ωc > ωn the residue approa
hes to its un�ltered value.

3.1.2 Not
h Filters

In many �ltering approa
h to redu
e vibrations, not
h �lters are 
onsidered instead

of LPF. This is due to the possibility to redu
e spe
tral 
omponents only in a limited

frequen
y band without 
ompromising eventual higher dynami
s. Even in this 
ase

are 
onsidered BSF designed by means of Butterworth, Chebyshev and Ellipti
 �lter

prototypes. In parti
ular all �lters are of the third order and designed assuming a

symmetri
 stop-band with respe
t to the system frequen
y ω0 and a stop-band width

of an o
tave

ωcL =
ω0√
2
, ωcH = ω0

√
2. (3.9)

Also the amplitude of the stop-band ripple is set equal to −50 dB for the Ellipti


�lter and the amplitude of the pass-band ripple equal to 1 dB for both Ellipti
 and

Chebyshev �lter.
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Figure 3-6: Response of the system G(s) with δ = 0 to a step �ltered by means of

Butterworth BSF (a), Chebyshev BSF (b) and Ellipti
 BSF (
). Respe
tive frequen
y

responses of the 
onsidered �lters are reported in linear s
ale on the right 
olumn.
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Figure 3-7: Pole-Zero diagrams of the system with δ = 0 shaped by Butterworth

BSF (a), Chebyshev BSF (b) and Ellipti
 BSF (
). On the right the des
ription of

the �lters in terms of σ and jω variations is reported with equal s
ale on x and y
axis. The 
ontour lines are equally spa
ed of 0.1 and the �lter's Pole-Zero position is

highlighted with a bla
k 
ross.
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In �g. 3-5 the Bode plots of the three BSF are reported showing the attenuation

e�e
t in the designed stop-band while outside the stop-band it 
an be noted that the

magnitude of approximately 0 dB assures the substantial transparen
y of the �lter

for frequen
y 
omponents in the pass-band.

In �g. 3-6 the responses of an undamped se
ond order system to a step 
ommand

�ltered by the three BSF are reported, showing better results in terms of both vibra-

tion redu
tion and delay, with respe
t to LPF in �g. 3-2. However some additional


onsiderations have to be done by means of the pole-zero analysis in �g. 3-7. First of

all the �lters are designed in order to exploit the 
hara
teristi
 zeroes of not
h �lters

to 
an
el the vibratory poles of the system G(s). Therefore this 
an be 
onsidered the

best 
ondition to �lter an undesired frequen
y. Also the redu
ed delay of BSF is in�u-

en
ed by the 
hoi
e of third order �lters while the 
onsidered LPF in Se
tion 3.1.1 are

of order 5. Anyway the delay introdu
ed by BSF remains large with respe
t to other

shaping te
hniques. This 
an be easily demonstrated by 
onsidering for example a

ZVDD IS as reported in Se
tion 2.4, whose e�e
t is to 
an
el the vibratory poles with

a 
ouple of 
omplex 
onjugate zeroes of multipli
ity 3 like the BSF in �g. 3-7. In fa
t

assuming to express the distortion introdu
ed by the shapers in terms of periods of

system vibration, while the ZVDD IS lasts 1.5 periods, the �lters in �g. 3-7 last from

about 8 to 12 times longer.

3.1.3 Considerations on Command Shaping

by means of Filters

In Se
tion 3.1.1 and 3.1.2 the e�e
t of 
ommand shaping by means of typi
al �ltering

te
hniques has been presented, showing that �lters basi
ally 
an not assure vibrations

suppression. Although the presen
e of zeroes, even BSF 
an not be 
onsidered as

vibration suppressors, mainly be
ause the typi
al design pro
edures doesn't rely on

the 
omplete suppression of a parti
ular frequen
y, but in the attenuation of a band of

frequen
ies. This behavior is even more evident in 
ase of damped system as reported

in �g. 3-8. It is well known that in 
ase of a se
ond order system G(s) with δ 6= 0 the

73



vibratory poles no more lie on the imaginary axis of the 
omplex plane, therefore the

pole-zero 
an
ellation is impossible.

In several papers �lters are 
ompared to input shapers by means of deep experimental

analysis showing a relevant performan
e gap in terms of vibration suppression [84, 90,

91℄. In addition to the mentioned inability to assure 
omplete vibration suppression,

an other noti
eable disadvantage is the large time delay introdu
ed by the �lters. This

is one of the side e�e
ts of the me
hanism of residues modi�
ation of �lters. In fa
t, a

part from the 
onsiderations on the 
uto� frequen
y whi
h has dire
t 
onsequen
e on

the overall dynami
s, it 
an be seen that in general the higher is the �lter order, the

more e�e
tive is the �lter. However raising the order of the �lter means to in
rease the

number of the poles introdu
ed by the �lter. As a result the poles introdu
ed by means

of usual �ltering te
hniques add undesired dynami
s visible as large overshoots in the

presented step responses, and also imply a large phase delay therefore an undesired

distortion.

In Se
tion 3.1.1 and 3.1.2 only analog �lters have been 
onsidered for brevity. As a

matter of fa
t same results 
an be a
hieved with digital implementations by means

of In�nite Impulse Response Filters (IIR). Moreover as reported in details in [84,

90, 91℄ even Finite Impulse Response Filters (FIR) designed by means of typi
al

methods (windowing and Parks -M
Clellan above all) doesn't rea
h the ben
hmark

of IS, although FIR �lters shows better performan
es than analog and IIR in redu
ing

vibrations.
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Step Response Pole-Zero Diagram
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Figure 3-8: Response of the system G(s) with δ = 0.1 to a step �ltered by means of

Butterworth BSF (a), Chebyshev BSF (b) and Ellipti
 BSF (
). Respe
tive Pole-Zero

diagram of the 
onsidered �lters are reported in the right 
olumn.
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3.2 System Inversion Based Te
hniques

for Vibration Suppression

In Se
tion 3.1.3 has been reported that usual �lter design te
hniques have no aim of

vibration suppression. Roughly speaking, this is due to the fa
t that poles and zeroes

are mainly exploited in terms of their 
hara
teristi
 behavior to redu
e or in
rease

the gain of the frequen
y response. In fa
t, �lter designs by means of polynomials

whi
h basi
ally de�ne a pole-zero pla
ement in order to a
hieve a desired shaping of

the frequen
y response of the �lter.

However 
onsidering BSF in Se
tion 3.1.2, some additional 
onsiderations 
an be done

by analyzing the pole-zero diagram in �g. 3-7 from another point of view. As said

the parti
ular design parameters 
hoi
e in the treated �lters, permitted to a
hieve a

perfe
t 
an
ellation of the undesired vibratory dynami
. Therefore assuming that the

fo
us of a �lter is to eliminate a 
ertain frequen
y 
omponent indeed and the order

n of the �lter is the multipli
ity of the zeroes devoted to that 
an
ellation, then the

polynomial prototypes may be intended as parti
ular 
onstraints by means of whi
h

n additional stable dynami
s are introdu
ed in order to guarantee 
ausality of the

�lter. In theory a

ording to this system inversion based perspe
tive, the poles pla
e-

ment 
an be a
hieved in a more 
onvenient way than by means of usual polynomials,

su
h as by pla
ing n arbitrarily fast stable real poles. As a matter of fa
t this trivial

solution as some drawba
ks, that is it doesn't take into a

ount the a
tuator limits

and there is no 
onstraint on the gain of the frequen
y response, a part from the

stati
 gain.

Anyway the system inversion approa
h under reasonable 
onditions results very ef-

fe
tive and several works in literature report methods that assure 
omplete residual

vibration suppression. In parti
ular in [78, 79, 80℄ a method based on system inversion

assures 
omplete absen
e of os
illations during and at the end of a point-to-point mo-

tion, providing also a time minimization. This te
hnique 
onsists in a proper motion

planning whi
h takes into a

ount the transfer fun
tion of a se
ond order vibratory

system and a desired vibration-free motion pro�le. Namely the authors propose to
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de�ne a priori and impose a polynomial of 
lass C(h)
as target fun
tion for the system

output, in order to a
hieve monotoni
ity and h 
ontinuous derivatives. Therefore a

family of C(h−1)
-
lass fun
tions is obtained by means of dynami
 inversion of the vi-

bratory system and the target fun
tion. Finally by means of a numeri
al optimization

algorithm the minimum time solution is sele
ted.

This approa
h provides a very good motion assuring vibration suppression and also

an arbitrary smoothness avoiding the typi
al step-like behavior of input shaping. In

addition presents a time delay 
omparable to a ZVD IS that is the most 
ommon

input shaper. However the main drawba
k is related to robustness sin
e in general

system inversion te
hniques require the 
omplete knowledge of the system that has

to be inverted. Obviously this 
an not be assured in general in real 
ases, where often

feed-forward te
hniques are implemented to enhan
e performan
es of servo systems

whose transfer fun
tion is unknown and then to be estimated.
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Chapter 4

Filters for Online Traje
tory Planning

Planning motion laws and traje
tories for the a
tuation system of a robot has a key

role not only from a fun
tional point of view but also regarding the performan
e

level a
hievable by a given system. During de
ades plenty of te
hniques have been

presented for traje
tory planning in order to meet many di�erent requirements su
h

as timing, physi
al limitations of the a
tuators, energy parameters but also other

features related to the reliability like vibration redu
tion. In step with planning,

many methods have been proposed regarding the generation of su
h traje
tories and

the implementation on real ma
hines of proper traje
tory generators, possibly 
apable

of online generation of the motion pro�les.

4.1 Analyti
al Traje
tories for Point-to-Point

Motions

Traje
tories for point-to-point motions are of great importan
e as they are the basis

for more 
omplex movements. Some of these are very 
ommon in pra
ti
al indus-

trial appli
ations sin
e they allow to satisfy several me
hani
al requirements while

maintaining a good ease of use.
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4.1.1 Trapezoidal Velo
ity Traje
tory

Traje
tories with trapezoidal velo
ity are very 
ommon method to obtain traje
tories

with a 
ontinuous velo
ity pro�le. In terms of position set-point are 
hara
terized

by linear motions joined with paraboli
 blends, in parti
ular a single point-to-point

motion 
an be divided into three parts. Assuming a positive displa
ement, i.e. q1 > q0,

duration Ta of the a

eleration phase equal to the duration Td of the de
eleration

phase, and time t0 = 0, the traje
tory is de�ned as follows:

1. A

eleration phase, t ∈ [0, Ta]. The position, velo
ity and a

eleration are

expressed as 





q(t) = a0 + a1t+ a2t
2

q̇(t) = a1 + 2a2t

q̈(t) = 2a2

(4.1)

that is the a

eleration is positive and 
onstant, and therefore the velo
ity is

a linear fun
tion of time and the position is a paraboli
 
urve. The three

parameters a0, a1, and a2 are de�ned a

ordingly to the 
onstraints on the

initial position q0 and velo
ity v0, and on the 
onstant velo
ity vv desired at the

end of the a

eleration phase. Assuming initial velo
ity set to zero, results







a0 = q0

a1 = 0

a2 =
vv
2Ta

(4.2)

therefore the 
onstant a

eleration is vv/Ta.

2. Constant velo
ity phase, t ∈ [Ta, t1 − Ta]. The position, velo
ity and a

el-

eration are expressed as





q(t) = b0 + b1t

q̇(t) = b1

q̈(t) = 0

(4.3)
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that is the a

eleration is null, the velo
ity is 
onstant and the position is a

linear fun
tion of time. Also for 
ontinuity reasons results that b1 = vv and

q(Ta) = q0 +
vvTa

2
= b0 +

vv
Ta

, (4.4)

therefore

b0 = q0 −
vvTa

2
. (4.5)

3. De
eleration phase, t ∈ [t1 − Ta, t1]. The position, velo
ity and a

eleration

are expressed as







q(t) = c0 + c1t + c2t
2

q̇(t) = c1 + 2c2t

q̈(t) = 2c2

(4.6)

that is a 
onstant negative a

eleration is present, the velo
ity de
reases linearly

and the position is again a polynomial fun
tion of degree two. The parameters

c0, c1, and c2 are by means of the 
onditions on the �nal position q1 and velo
ity

v1, and on the 
onstant velo
ity vv at the beginning of the de
eleration phase.

Assuming a null �nal velo
ity, results







c0 = q1 −
vvt

2
1

2Ta

c1 =
vvt1
Ta

c2 = − vv
2Ta

(4.7)

In 
on
lusion, the position traje
tory q(t) in the general 
ase t0 6= 0, 
an be de�ned

as

q(t) =







q0 +
vv
2Ta

(t− t0)
2, t0 ≤ t < t0 + Ta

q0 + vv

(

t− t0 −
Ta

2

)

, t0 + Ta ≤ t < t1 − Ta

q1 −
vv
2Ta

(t1 − t)2, t1 − Ta ≤ t ≤ t1

(4.8)

In order to univo
ally determine the trapezoidal traje
tory, some additional 
onditions

must be spe
i�ed. A typi
al 
ondition 
on
erns the time length of the a

eleration
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Figure 4-1: Position, velo
ity and a

eleration of a point-to-point motion from 0 to

q1 by means of trapezoidal velo
ity traje
tory.

and de
eleration periods Ta, that must satisfy the obvious 
ondition Ta ≤ T/2 where

T is the total duration of the motion. In addition some other 
onstraints on the

maximum velo
ity and a

eleration of the a
tuation system 
an be imposed as deeply

dis
ussed in [9℄. Obviously, these 
onditions a�e
t the feasibility of the traje
tory,

therefore the given 
onditions must satisfy some geometri
 
onstraints. In parti
ular,

from the velo
ity 
ontinuity 
ondition one 
an obtain the relation

aaTa =
qm − qa
Tm − Ta

, where







qa = q(t0 + Ta)

qm =
q1 + q0

2
= q0 +

h

2

Tm =
t1 − t0

2
=

T

2

(4.9)

where aa is the 
onstant a

eleration value in the �rst phase. Then by substituting

results that

aaT
2
a − aa(t1 − t0)Ta + (q1 − q0) = 0 (4.10)

whi
h is the geometri
 
onstraint that any 
ouple (aa, Ta) must satisfy in order to
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a
hieve a feasible trapezoidal velo
ity traje
tory.

4.1.2 Double-S Velo
ity Traje
tory

Double-S velo
ity traje
tories are an improvement of trapezoidal velo
ity traje
tories

of Se
tion 4.1.1 in terms of smoothness and therefore on the stress and the vibrational

e�e
ts generated on the transmission 
hain and on the load by the motion pro�le. A

double-S traje
tory is 
hara
terized by a 
ontinuous, linear pie
e-wise, a

eleration

pro�le instead of the typi
al dis
ontinuous a

eleration pro�le of trapezoidal one.

In this manner, the resulting velo
ity is 
omposed by linear segments 
onne
ted by

paraboli
 blends, thus the reason of the name double-S for this traje
tory. It is known

also as seven segments traje
tory, be
ause it is 
omposed by seven di�erent tra
ts with


onstant jerk, and it is pre
isely the typi
al step pro�le of the jerk whi
h makes this

traje
tory mu
h less stressful for the me
hani
al systems with respe
t to trapezoidal

velo
ity traje
tories whi
h are 
hara
terized by an impulsive jerk pro�le.

Usually the double-S traje
tory is de�ned assuming symmetri
al a
tuator limits that

is

jmin = −jmax, amin = −amax, vmin = −vmax, (4.11)

where jmin/max, amin/max, vmin/max, are the minimum and maximum values of respe
-

tively jerk, a

eleration and velo
ity. Moreover in the usual de�nition the 
ase q1 > q0

with t0 = 0 is 
onsidered, and generi
 initial and �nal values of velo
ity v0, v1 are

assumed, while a

elerations a0, a1 are seto to zero. In addition the traje
tory is

reported by means of the following de�nitions:

Tj1 : time interval in whi
h the jerk is 
onstant (jmin or jmax) during the a

eleration

phase;

Tj2 : time interval in whi
h the jerk is 
onstant (jmin or jmax) during the de
eleration

phase;

Ta : a

eleration period;

Tv : 
onstant velo
ity period;
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Td : de
eleration period;

T : total duration of the traje
tory (= Ta + Tv + Td).

In the same manner of Se
tion 4.1.1 the traje
tory 
an be easily des
ribed by dis-

tinguishing three phases, namely a

eleration phase, maximum velo
ity phase and

de
eleration phase.

1. A

eleration phase, t ∈ [0, Ta]. The a

eleration phase 
an be split a

ording

to the three segments of the jerk pro�le

(a) t ∈ [0, Tj1]







q(t) = q0 + v0t+ jmax
t3

6

q̇(t) = v0 + jmax
t2

2

q̈(t) = jmaxt

q(3)(t) = jmax

(4.12)

(b) t ∈ [Tj1, Ta − Tj1]







q(t) = q0 + v0t+
amax

6
(3t2 − 3Tj1t + T 2

j1)

q̇(t) = v0 + amax

(

t− Tj1

2

)

q̈(t) = jmaxTj1 = amax

q(3)(t) = 0

(4.13)

(
) t ∈ [Ta − Tj1, Ta]







q(t) = q0 + (vmax + v0)
Ta

2
− vmax(Ta − t)− jmin

(Ta − t)3

6

q̇(t) = vmax + jmin
(Ta − t)2

2

q̈(t) = −jmin(Ta − t)

q(3)(t) = jmin = −jmax

(4.14)
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2. Constant velo
ity phase, t ∈ [Ta, Ta + Tv]. The position, velo
ity and a

el-

eration are expressed as







q(t) = q0 + (vmax + v0)
Ta

2
+ vmax(t− Ta)

q̇(t) = vmax

q̈(t) = 0

q(3)(t) = 0

(4.15)

3. De
eleration phase, t ∈ [T − Td, T ]. Again, the de
eleration phase 
an be

split a

ording to the three segments of the jerk pro�le

(a) t ∈ [T − Td, T − Td + Tj2]







q(t) = q1 − (vmax + v1)
Td

2
+ vmax(t− T + Td)− jmax

(t− T + Td)
3

6

q̇(t) = vmax − jmax
(t− T + Td)

2

2

q̈(t) = −jmax(t− T + Td)

q(3)(t) = jmin = −jmax

(4.16)

(b) t ∈ [T − Td + Tj2, T − Tj2]







q(t) = q1 − (vmax + v1)
Td

2
+ vmax(t− T + Td)+

+
amin

6

(
3(t− T + Td)

2 − 3Tj2(t− T + Td) + T 2
j2

)

q̇(t) = vmax + amin

(

t− T + Td −
Tj2

2

)

q̈(t) = −jmaxTj2 = amin

q(3)(t) = 0

(4.17)
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(
) t ∈ [T − Tj2, T ]






q(t) = q1 − v1(T − t)− jmax
(T − t)3

6

q̇(t) = v1 + jmax
(T − t)2

2

q̈(t) = −jmax(T − t)

q(3)(t) = jmax

(4.18)

Even in this 
ase the 
orre
t exe
ution of the double-S traje
tory is subje
t to fea-

sibility 
onditions, that is the existen
e of the mentioned phases, in parti
ular it is

required to perform the traje
tory by means of a double jerk impulse. Moreover it


an be demonstrated that a traje
tory planned in order to rea
h, when possible, the

maximum (minimum) value for jerk, a

eleration and velo
ity, it is a minimum time

traje
tory. However the parameters de�nition of a double-S traje
tory 
an be sub-
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je
ted to several 
onstraints in pra
ti
al implementations, su
h as pres
ribed time

length of some phase and di�erent 
ondition on initial and �nal velo
ity values. In [9℄

the planning of double-S traje
tories with various 
onstraints is addressed in details.

4.1.3 Harmoni
 Traje
tory

Harmoni
 traje
tories are 
hara
terized by an a

eleration pro�le whi
h is propor-

tional to the position pro�le, with opposite sign. Geometri
ally the traje
tory q(t)


an be des
ribed as the proje
tion of a point p moving on a 
ir
le with 
onstant

velo
ity, on the diameter of the 
ir
le itself. In general form results

q(t) =
q1 − q0

2

(

1− cos
π(t− t0)

T

)

+ q0, (4.19)

where T is the total duration of the motion. Then by deriving

q̇(t) =
πh

2T
sin

(
π(t− t0)

T

)

q̈(t) =
π2h

2T 2
cos

(
π(t− t0)

T

)

q(3)(t) = −π3h

2T 3
sin

(
π(t− t0)

T

)

(4.20)

Harmoni
 traje
tories are often used in more 
omplex traje
tories de�nition, 
hara
-

terized in general by polynomial segments 
onne
ted by means of sinusoidal blends.

This be
ause the use of trigonometri
 fun
tions permit to uniquely de�ne all the

requested derivative order of a traje
tory by means of integration or derivation op-

erations, given a single pro�le. Thus it may be of interest to plan traje
tories by

dire
tly spe
ifying the velo
ity or a

eleration pro�le as a 
omposition of 
onstant

segments 
onne
ted by sinusoidal pro�les, then the position, jerk, and so on, 
an be

simply obtained. In parti
ular traje
tories with 
onstant velo
ity/a

eleration and

harmoni
 blends are of rather used and des
ribed in [9℄.
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ity, a

eleration and jerk of a point-to-point motion from

0 to q1 by means of harmoni
 traje
tory.

4.2 Analyti
al Traje
tories for 3D Motions:

Uniform B-Spline Traje
tory

Spline fun
tions are extensively used in planning traje
tories for robots be
ause of

their �exibility. Tasks demanded to robots often require position pro�les with 
omplex

shapes whi
h are usually de�ned by means of a number of via-points. These via-

points are then interpolated or approximated with smooth fun
tions to be optimized

in order to 
omply with the 
onstraints imposed by the spe
i�
 robot appli
ation,

i.e. kinemati
 
onstraints (su
h as limit values of velo
ity, a

eleration, jerk, et
.) or

dynami
 
onstraints on the maximum torque available. In general, su
h interpolation

tasks are performed by means of 
ubi
 splines sin
e they assure the 
ontinuity of

velo
ity and a

eleration and prevent large os
illations of the traje
tory that 
an
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result with high order polynomials [9℄. That is when n + 1 points are given, in lieu

of a unique interpolating polynomial of degree n it is possible to use n polynomials

of degree d = 3, ea
h one de�ning a segment of the traje
tory. The overall fun
tion

q(t) de�ned in this manner is 
alled 
ubi
 spline and results

q(t) = {qk(t), t ∈ [tk, tk+1] , k = 0, . . . , n− 1} ,

qk(t) = ak0 + ak1 (t− tk) + ak2 (t− tk)
2 + ak3 (t− tk)

3 .
(4.21)

In this way a 
omplex motion 
omposed of n + 1 via-points is 
ompletely de�ned

by solving a linear system of n equations with a total number of 4n 
oe�
ients to

be determined. In parti
ular the solution is given by means of imposing several


onditions whi
h has to be satis�ed:

• 2n 
onditions for the interpolation of the given via-points, sin
e ea
h 
ubi


fun
tion must 
ross the points at its extremities;

• n− 1 
onditions for the 
ontinuity of the velo
ities at the transition points;

• n− 1 
onditions for the 
ontinuity of the a

elerations at the transition points.

The remaining two degrees of freedom permit to impose two additional 
onstraints

that usually refer to boundary 
onditions of the spline derivatives. Moreover in lit-

erature several te
hniques have been presented in order to minimize some quantities,

su
h as a

eleration, jerk or the total traveling time of robot traje
tories subje
t to


onstraints of velo
ity a

eleration and jerk.

In some appli
ations the requirement of planning traje
tories with 
ontinuous deriva-

tives up to a given order r makes preferable the adoption of splines in the so-
alled

B-form, i.e. B-splines. Also the attra
tiveness of B-spline is be
ause they are mu
h

simpler from the 
omputational point of view, and be
ause a lo
al modi�
ation 
an

be made qui
kly and easily without re
omputing the entire traje
tory.

A generi
 B-spline traje
tory is de�ned as

q(t) =

m∑

j=0

pj B
d
j (t), tmin ≤ t ≤ tmax (4.22)
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where Bd
j (t) is a B-spline basis fun
tion of degree d, and pj are the 
ontrol points,

whi
h are s
alar parameters that determine the shape of the 
urve and must be


omputed by imposing interpolation 
onditions on the given data points qk. That is

�nding the values of the unknown parameters pj , j = 0, . . . , m, whi
h guarantee that

given n+ 1 via-points to be interpolated at their respe
tive n+ 1 time instants (also


alled knots), the B-spline fun
tion satis�es

q(tk) = qk, k = 0, . . . , n. (4.23)

In parti
ular the 
ontrol points pj 
an be de�ned by means of a linear system 
om-

posed of n + 1 equations in m+ 1 unknown of the form

q(tk) =
[
Bd

0(tk), B
d
1(tk), . . . , B

d
m−1(tk), B

d
m(tk)

]














p0

p1

.

.

.

pm−1

pm














. (4.24)

Then, being the number of 
ontrol points m + 1 = (n + 1) + d − 1 (for odd values

of d, m + 1 = (n + 1) + d when even value of d is 
onsidered), in order to a
hieve a
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unique solution further d− 1 (or d) equations of the form

q(i)(tk) =
[

B
d(i)
0 (tk), B

d(i)
1 (tk), . . . , B

d(i)
m−1(tk), B

d(i)
m (tk)

]














p0

p1

.

.

.

pm−1

pm














(4.25)

has to be added imposing d − 1 (or d) 
onditions on higher order time derivatives

of the 
urve. Alternatively d − 1 (or d) further equations 
an be added to impose


ontinuity of the 
urve and its derivative at initial and �nal time instants (periodi


B-spline).

Regarding the j-th B-spline basis fun
tion of degree d, is de�ned in a re
ursive manner

as

Bd
j (t) =

t− tj
tj+d − tj

Bd−1
j (t) +

tj+d+1 − t

tj+d+1 − tj+1
Bd−1

j+1(t) (4.26)
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with

B0
j(t) =







1, if tj ≤ t < tj+1

0, otherwise.

(4.27)

Therefore a B-spline basis fun
tion de�ned by means of (4.26) and (4.27) presents

the following properties:

• Bd
j (t) is a pie
ewise polynomial, de�ned for all t ∈ [tmin, tmax];

• Bd
j (t) is equal to zero everywhere ex
ept in the interval t ∈ [tj , tj+d+1);

• The interval [tk, tk+1) is 
alled k-th knot span and 
an be of zero length in 
ase

of 
oin
ident knots;

• The B-spline basis fun
tions are normalized so that

m∑

j=0

Bd
j (t) = 1, tmin ≤ t ≤ tmax (4.28)

• In every knot span [tk, tk+1) at most d+ 1 basis fun
tions are not null, namely

Bd
k−d, . . . ,B

d
k.

A parti
ular 
ase of B-splines is represented by uniform B-splines, that are de�ned

for an equally-spa
ed distribution of the knots, i.e. tj+1 − tj = T, j = 0, . . .m − 1.

In this 
ase, the basis fun
tions for a given degree d are 
onsistent under shifts:

Bd
j+1(t) = Bd

j (t− T ), j = 0, . . . , m− 1.

Therefore, for uniform B-splines it is possible to express the (j + 1)-th basis fun
tion

Bd
j in terms of the �rst basis fun
tion Bd

0, hereafter simply denoted by Bd
:

Bd
j (t) = Bd(t− jT ), j = 0, . . . , m

and the B-spline 
an be rewritten as

qu(t) =

m∑

j=0

pjB
d(t− jT ), 0 ≤ t ≤ mT. (4.29)
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Moreover, for uniform B-splines, the de�nition (4.26) of the basis fun
tion Bd(t) of

degree d is equivalent to

Bd(t) =
1

T
Bd−1 ∗B0

=
1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

︸ ︷︷ ︸

d times

∗B0,
(4.30)

with

B0(t) =







1, if 0 ≤ t < T

0, otherwise.
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4.3 Dynami
 Filters for Traje
tory Generation

4.3.1 Filter-Based Generator for Multi-Segment Polynomial

Traje
tories

The need of planning traje
tories online has led to the development of a number of

�lters able to produ
e motion pro�les with the desired degree of smoothness simply

starting from rough referen
e signals, su
h as step fun
tions, whi
h set the desired

�nal position. In [13℄ a very simple and e�e
tive approa
h based on dynami
 �lters

is presented and allows to plan minimum-time traje
tories for robots or automati


ma
hines under 
onstraints of velo
ity, a

eleration, et
. In this 
ase, the advantages

of the �ltering te
hniques, that allow to properly shape the frequen
y spe
trum of

a motion law, are 
ombined with the features of multi-segment traje
tories, whose

parameters are generally de�ned with the only purpose of making the traje
tories


ompliant with given bounds on velo
ity, a

eleration, jerk, et
 as reported in Se
tion

4.1. The key point is the equivalen
e between time-optimal multi-segment polynomial

traje
tories with 
onstraints on the �rst d derivatives and the output of a 
hain of d

moving average �lters, where the number d is the order of the traje
tory. Therefore,

in this 
ase the �lters are not used for making a given traje
tory smoother but for

online generating a traje
tory starting from initial and �nal positions.

As des
ribed in Se
tion 4.1, multi-segment traje
tories are motion laws 
omposed

by several tra
ts, ea
h one 
hara
terized by a spe
i�
 analyti
al expression, prop-

erly joined in order to guarantee the desired degree of smoothness. In parti
ular,

time-optimal traje
tories under 
onstraints of velo
ity, a

eleration, jerk, et
. are


hara
terized by segments in whi
h the velo
ity, the a

eleration, and higher deriva-

tives are saturated to the maximum allowed value. Thus in general, by imposing


onstraints on the �rst d derivatives one obtains a traje
tory q(t) of 
lass Cd−1
, that

is with the �rst d− 1 derivatives that are 
ontinuous, while the d-th derivative q(d)(t)

is a pie
e-wise 
onstant fun
tion whose values belong to the set {q(d)min, 0, q
(d)
max}. With
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tory

of 
lass Cd−1
.

the additional 
ondition of symmetri
 
onstraints:

q
(i)
min = −q(i)max, i = 1, . . . , d

one 
an show that su
h a kind of traje
tories 
an be obtained by �ltering a step input

with a 
as
ade of d dynami
 �lters, ea
h one 
hara
terized by the transfer fun
tion

Mi(s) =
1

Ti

1− e−sTi

s
(4.31)

where the parameter Ti (in general di�erent for ea
h �lter 
omposing the 
hain) is

a time length, see Fig. 4-7. The possibility of obtaining time-optimal traje
tories

with the system of Fig. 4-7 fed by step input fun
tions 
an be proved by exploiting a

property of the 
onvolution produ
t (denoted with ∗) on the di�erentiation, i.e.

d

dt
(f ∗ g) = df

dt
∗ g = f ∗ dg

dt
. (4.32)

Consider the 
ase of a single �lter with a step input of generi
 magnitude h, i.e. h u(t),

being u(t) the unit step fun
tion

u(t) =







1, t ≥ 0

0, t < 0.

In this 
ase the output traje
tory 
an be 
omputed as

q1(t) = h u(t) ∗m1(t) (4.33)
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where

mi(t) = L−1{Mi(s)} =
1

Ti

(
u(t)− u(t− Ti)

)
, i = 1

is the impulse response 
orresponding to Mi(s). Note that mi(t) is a re
tangular

fun
tion of duration Ti and magnitude 1/Ti, see Fig. 4-8. This implies that, as

well known, for any 
hoi
e of Ti the area of the re
tangular fun
tion is unitary, and

a

ordingly the stati
 gain of the 
orresponding fun
tion Mi(s) is unitary as well:

Mi(0) =

∫ ∞

0

mi(τ) dτ = 1.

By applying (4.32) to (4.33) one obtains

q1(t) = h u(1)(t) ∗m1(t)

= h δ(t) ∗m1(t) = hm1(t)

where δ(t) is the unit impulse fun
tion. Therefore, by adopting a single �lter M1(s)

fed by a step fun
tion of amplitude h, the output 
onsists in a traje
tory q1(t) whose

velo
ity has a re
tangular pro�le with magnitude v = h/T1. Then, it is immediate to

obtain the value of the parameter T1 whi
h permits to impose a value of the velo
ity:

v =
|h|
T1

= q(1)max → T1 =
|h|
q
(1)
max

. (4.34)

A

ordingly, when a step input of amplitude h is applied, the output of M1(s) will


hange from the initial to the �nal value (given by h) with a linear pro�le whose

duration is exa
tly T1.

If one adds a se
ond �lter M2(s), 
hara
terized by the parameter T2, the resulting

traje
tory is

q2(t) = q1(t) ∗m2(t)

= h u(t) ∗m1(t) ∗m2(t). (4.35)
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d
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Figure 4-8: Relationships among the pro�les of traje
tories obtained by iterated

averaging operations. Note that in the �rst row the algebrai
 relation qi(t) = qi−1(t)∗
mi(t), i = 1, 2, 3 is reported, while in the remaining rows a pi
torial representation

of the relationship among the traje
tories of di�erent orders and their derivatives is

shown.

Therefore, the �rst derivative is

q
(1)
2 (t) = q

(1)
1 (t) ∗m2(t) (4.36)

= hm1(t) ∗m2(t)

and, by taking into a

ount that

m
(1)
1 (t) =

1

T1

(
δ(t)− δ(t− T1)

)

it is possible to dedu
e the se
ond derivative

q
(2)
2 (t) = hm

(1)
1 (t) ∗m2(t)

=
h

T1

(
δ(t)− δ(t− T1)

)
∗m2(t)

= v
(
m2(t)−m2(t− T1)

)
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whi
h is 
omposed by two re
tangular fun
tions, one positive and one negative, of

magnitude a =
v

T2

and duration min{T1, T2}. Therefore the maximum value of the

a

eleration 
an be freely set by imposing

a =
v

T2
= q(2)max → T2 =

v

q
(2)
max

=
q
(1)
max

q
(2)
max

. (4.37)

Sin
e the stati
 gain of bothM1(s) andM2(s) is unitary, the �nal value of the response

of M1(s)·M2(s) to a step input of magnitude h remains h. The system output q2(t)

rea
hes su
h a value with a trapezoidal velo
ity pro�le as des
ribed in Se
tion 4.1.1,

obtained by integrating q
(2)
2 (t).

The maximum a

eleration of the traje
tory is q
(2)
max, and the velo
ity is still limited

by q
(1)
max. In fa
t, by de�ning for a generi
 fun
tion f(t)

peak

(
f(t)

)
= max

t≥0
|f(t)|

from (4.36) one 
an prove that

peak

(

q
(1)
2 (t)

)

≤ peak

(

q
(1)
1 (t)

)

·
∫ ∞

0

|m2(τ)|dτ

≤ peak

(

q
(1)
1 (t)

)

= q(1)max (4.38)

where

∫∞
0

|m2(τ)|dτ =
∫∞
0

m2(τ)dτ = 1 sin
e m2(t) ≥ 0, ∀t. In this 
ase, if T1 ≥ T2

then the maximum velo
ity q
(1)
max is a
tually rea
hed, i.e. peak

(
q
(1)
2 (t)

)
= q

(1)
max and

q2(t) is a minimum-time traje
tory 
ompliant with the given bounds q
(i)
max, i = 1, 2.

Conversely, if T1 < T2 then peak

(
q
(1)
2 (t)

)
= |h|

T2
< |h|

T1
= q

(1)
max, and the traje
tory, that

still meets the proposed 
onstraints, is not of minimum duration. In parti
ular, when

T1 < T2, the roles of the two time 
onstants Ti are swit
hed, in the sense that the

duration of the a

eleration period is T1 and the maximum velo
ity is h/T2. In any


ase the total duration of the traje
tory q2(t) is given by the sum of the durations of

the impulse responses of M1(s) and M2(s), i.e.

Ttot = T1 + T2.
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Note that the maximum velo
ity q
(1)
max is a
tually rea
hed if and only if

T2 ≤
1

2
Ttot =

1

2
(T1 + T2) ⇔ T2 ≤ T1.

that is if and only if the (planned) duration T2 of the a

eleration/de
eleration period

is not greater than half of the total duration of the traje
tory.

As shown in Fig. 4-8, the se
ond order traje
tory q2(t) 
an be made smoother by

adding a further �lter M3(s) (
hara
terized by the parameter T3), obtaining in this

way a double S velo
ity traje
tory

q3(t) = q2(t) ∗m3(t)

whose velo
ity, a

eleration and jerk are respe
tively

q
(1)
3 (t) = q

(1)
2 (t) ∗m3(t)

q
(2)
3 (t) = q

(2)
2 (t) ∗m3(t)

q
(3)
3 (t) = q

(3)
2 (t) ∗m3(t). (4.39)

Sin
e q
(2)
2 (t) is 
omposed by two re
tangular fun
tions, its derivative is a sequen
e of

four impulsive fun
tions of amplitude a properly shifted in time, see Fig. 4-8. There-

fore, from (4.39) it des
ends that q
(3)
3 (t) is 
omposed by four re
tangular fun
tions

of amplitude j = a/T3 and a

ordingly it is possible to sele
t T3 on the basis of the

desired value of the jerk:

j =
a

T3
= q(3)max → T3 =

a

q
(3)
max

=
a

q
(3)
max

=
q
(2)
max

q
(3)
max

. (4.40)

Moreover, by the same argument as in (4.38) one 
an prove that

peak

(

q
(2)
3 (t)

)

≤ peak

(

q
(2)
2 (t)

)

= q(2)max (4.41)

peak

(

q
(1)
3 (t)

)

≤ peak

(

q
(1)
2 (t)

)

≤ peak

(

q
(1)
1 (t)

)

= q(1)max. (4.42)
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In parti
ular, if the tra
t with 
onstant jerk is at most half of the a

eleration/de
eleration

period, that is

T3 ≤
1

2
(T2 + T3) ⇔ T3 ≤ T2, (4.43)

in (4.41) the sign equal holds true and the maximum a

eleration q
(2)
max is a
tually

rea
hed by the third order traje
tory q3(t). Analogously, if the a

eleration/de
eleration

period does not ex
eed half of the total duration of the traje
tory, i.e.

T2 + T3 ≤
1

2
(T1 + T2 + T3) ⇔ T2 + T3 ≤ T1 (4.44)

then peak

(
q
(1)
3 (t)

)
= peak

(
q
(1)
2 (t)

)
(and obviously peak

(
q
(1)
2 (t)

)
= peak

(
q
(1)
1 (t)

)
sin
e

((4.44)) implies T2 ≤ T1), therefore the traje
tory q3(t) rea
hes the maximum velo
ity

q
(1)
max. If, both 
onditions (4.43) and (4.44) are met, the velo
ity and the a

eleration

rea
h the maximum values q
(i)
max and q3(t) is a minimum-time double-S velo
ity tra-

je
tory as in Se
tion 4.1.2. Conversely, when one (or both) of the two 
onditions is

not true, the traje
tory is 
ompliant with the given bounds but it is not time-optimal.

The pro
edure shown so far 
an be iterated by adding further �lters Mi(s). In the

general 
ase, the expression of the minimum-time traje
tory 
ompliant with given


onstraints on the �rst d derivatives, and therefore of order d, is

qn(t) = h u(t) ∗m1(t) ∗ . . . ∗md−1(t) ∗md(t) (4.45)

or with a re
ursive formulation

qd(t) = qd−1(t) ∗md(t) (4.46)

where q0(t) = h u(t). As already pointed out, the smoothness of the traje
tory, that is

the order of 
ontinuous derivative, is stri
tly tied to the number of �lters 
omposing

the 
hain. If one 
onsiders d �lters, the resulting traje
tory will be of 
lass Cd−1
.

By in
reasing the smoothness of the traje
tory, the duration augments as well. As

a matter of fa
t the total duration of a traje
tory planned by means of d dynami
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systems Mi(s) is given by the sum of the lengths of the impulse response of ea
h �lter,

i.e.

Ttot = T1 + T2 + . . .+ Td.

The parameters Ti 
an be set with the purpose of imposing desired bounds on velo
ity,

a

eleration, jerk and higher derivatives, i.e.

|q(i)d (t)| ≤ q(i)max, i = 1, . . . , d (4.47)

by assuming

T1 =
|h|
q
(1)
max

(4.48)

Ti =
q
(i−1)
max

q
(i)
max

, i = 1, . . . , d

with the 
onstraints

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1. (4.49)

that guarantee that the traje
tory, 
ompliant with (4.47), is of minimum duration.

Finally in lieu of implementing a proper traje
tory generator on 
ontrolled system,

not only the position pro�le of the traje
tory but also the related pro�les of velo
ity,

a

eleration, jerk, et
. have to be provided. The 
omputation of the derivatives of

a traje
tory of generi
 order d, that is obtained by a 
as
ade of d �lters, is straight-

forward by 
onsidering the de�nition (4.45) and the property of 
onvolution produ
t

(4.32). In fa
t,

q
(1)
d (t) = qd−1(t) ∗m(1)

d (t)

= qd−1(t) ∗
1

Td

(

δ(t)− δ(t− Td)
)

(4.50)

=
1

Td

(

qd−1(t)− qd−1(t− Td)
)

.
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Figure 4-9: System 
omposed by d �lters for the 
omputation of an optimal traje
tory

of 
lass Cd−1
and of all the derivatives of order i = 1, . . . , d.

The generi
 derivative of i-th order, 
an be 
al
ulated in a re
ursive manner as

q
(i)
d (t) =

1

Td

(

q
(i−1)
d−1 (t)− q

(i−1)
d−1 (t− Td)

)

(4.51)

with q
(0)
d−i(t) = qd−i(t). Figure 4-9 shows the blo
k-s
heme representation of the �lter

for the 
omputation of the traje
tory and its derivatives, obtained by iterating and

Lapla
e transforming (4.51). Note that the �lter of Fig. 4-9 gives a 
losed form

expression (in terms of Lapla
e transform) of the derivatives and does not simply

provide their numeri
al value.

4.3.2 Filters for Trigonometri
 Traje
tories Generation

In [12℄ this method is extended exploiting dynami
 �lters to plan motion pro�les


hara
terized by velo
ity, a

eleration, or jerk (or higher derivatives, depending on

the order of the traje
tory) 
omposed only by sinusoidal fun
tions (see Se
tion 4.1.3,

leading to the so-
alled modi�ed trapezoidal velo
ity traje
tory, modi�ed double-S

velo
ity traje
tory, et
., see [9℄. In this 
ase, it is su�
ient to 
onsider in the 
hain

of averaging �lters Mi(s), 
hara
terized by a re
tangular impulse response, a single

102



PSfrag repla
ements

time

Ti

1

Ti

π

2Ti

Figure 4-10: Impulse response of the �lter Si(s) de�ned by (4.53) (solid line) 
om-

pared with that of an average �lter Mi(s) (dashed line) 
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Figure 4-11: System 
omposed by d+ 1 �lters for the 
omputation of the traje
tory

qd,h(t) of 
lass Cd+1
, whose d-th derivative is only 
omposed by sinusoidal fun
tions.

�lter whose impulse response is

si(t) =







π

2Ti
sin

(
π

Ti
t

)

if 0 ≤ t ≤ Ti

0 otherwise

(4.52)

=
π

2Ti

[

sin

(
π

Ti
t

)

u(t) + sin

(
π

Ti
(t− Ti)

)

u(t− Ti)

]

where u(t) denotes again the step fun
tion, and Ti is a parameter that de�nes the

time duration of the response, whi
h is �nite as shown in Fig. 4-10. By Lapla
e

transforming (4.52), the transfer fun
tion of the �lter 
an be readily obtained:

Si(s) =
1

2

(
π

Ti

)2
1 + e−sTi

s2 +

(
π

Ti

)2 . (4.53)

Note that the system Si(s) has a unitary d
 gain.
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The generation of a traje
tory qd,h(t) whose d-th derivative is only 
omposed by

sinusoidal fun
tions (and therefore is of 
lass Cd+1
) 
an be a
hieved by adding the

�sinusoidal� �lter Sd+1(s) at the end of a 
hain of d �lters Mi(s), as shown in Fig. 4-

11. With this 
on�guration, it is possible to �nd the following relation between the

maximum values of q(d)(t) and q(d+1)(t) and the 
hara
teristi
 parameter Td+1 of the

�lter:

q(d)max(t)
π

2Td+1
= q(d+1)

max (t).

As a 
onsequen
e, if 
onstraints on the d-th and (d + 1)-th derivative are given, the

time-length Td+1 
an be 
omputed as

Td+1 =
q
(d)
max

q
(d+1)
max

π

2
. (4.54)

Thus, for instan
e, for a modi�ed trapezoidal velo
ity traje
tory with d = 1 one

obtains

T1 =
h

vmax
, T2 =

π

2

vmax

amax

while for a modi�ed double-S velo
ity traje
tory with d = 2

T1 =
h

vmax
, T2 =

vmax

amax
, T3 =

π

2

amax

jmax

Note that the time 
onstant Td+1 always 
orresponds to the sinusoidal �lter.

4.3.3 Uniform B-spline Traje
tory Generator

The use of dynami
 �lters proves to be very simple and e�e
tive in traje
tory gen-

eration. In [13℄ the same �lters of the form of (4.31) are exploited to implement

a traje
tory generator for uniform B-spline. As reported in Se
tion 4.2 a uniform

B-spline traje
tory of degree d passing through m points 
an be de�ned as

qu(t) =

m∑

j=0

pjB
d(t− jT ), 0 ≤ t ≤ mT, (4.55)
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Figure 4-12: Position, velo
ity, a

eleration and jerk of a time optimal motion from 0
to q1 by means of modi�ed trapezoidal velo
ity traje
tory (a), and modi�ed double-S

velo
ity traje
tory (a).

where pj are the 
ontrol points, T is the uniform knot span and Bd(t) is the spline

basis fun
tion of degree d whi
h is de�ned in a re
ursive manner, but also exploiting

the 
onvolution produ
t (denoted with ∗) results equivalent to

Bd(t) =
1

T
Bd−1 ∗B0

=
1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

︸ ︷︷ ︸

d times

∗B0,
(4.56)

with

B0(t) =







1, if 0 ≤ t < T

0, otherwise.
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Figure 4-13: System 
omposed by d �lters for the 
omputation of the B-spline basis

fun
tion Bd(t) of degree d.

Therefore looking at the basis fun
tionsBd(t) obtained for di�erent values of d shown

in Fig. 4-6 and analyzing the 
onvolution produ
t of (4.56) in a �ltering perspe
tive,

it 
an be noted that (4.56) 
an be interpreted as the fun
tion B0(t) �ltered by a


as
ade of d �lters, ea
h one performing an averaging operation on the input signal

over an interval of duration T and 
hara
terized by the transfer fun
tion

M(s) = L
{
1

T
B0(t)

}

=
1

T

1− e−sT

s
, (4.57)

see Fig. 4-13. Moreover by Lapla
e transforming the general expression of the uniform

B-spline (4.55) and substituting (4.56) one obtains

Qu(s) =
m∑

j=0

L
{

pjB
0 ∗ 1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

}

e−jsT .

Exploiting the linearity of the above expression and the fa
t that

1
T
B0

is not a fun
tion

of the index j, the B-spline expression be
omes

Qu(s)=

(
m∑

j=0

L
{
pjB

0
}
e−jsT

)

·M(s) ·M(s) · . . . ·M(s)

=L
{

m∑

j=0

pjB
0(t− jT )

}

·M(s)·M(s) · . . . ·M(s)
︸ ︷︷ ︸

p �lters

. (4.58)

This expression suggests that a uniform B-spline 
an be evaluated by feeding the


as
ade of d moving average �lters M(s), reported in Fig. 4-13, with the pie
ewise
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onstant fun
tion

p(t) =
m∑

j=0

pjB
0(t− jT ) (4.59)

that in the generi
 interval jT ≤ t < (j + 1)T assumes the 
onstant value pj of the

j-th 
ontrol point of the related analyti
 B-spline.

Finally, in order to �nd the 
ontrol points whi
h de�ne the pie
ewise 
onstant fun
tion

pj, one 
an exploit 
lassi
al te
hniques derived by B-spline interpolation/approximation

methods.

For example, if one 
onsiders the interpolation of a set of n+1 points {q0, q1, q2, . . . , qn−1, qn}
it is ne
essary to impose the 
onditions

q(ti) = qi, i = 0, . . . , n (4.60)

where ti is the time instant at whi
h the spline q(t) 
rosses the given point qi.

The �rst step 
onsists in sele
ting the degree d of the spline a

ording to the desired

degree of smoothness. Stri
tly related to d is the 
hoi
e of time instants ti:

• if d is odd, the ti are assumed 
oin
ident with the knots, ti = iT ;

• if d is even, the time instants ti should be sele
ted in the midpoint of ea
h knot

span, ti =
2i+1
2

T .

On
e the interpolation time instants ti have been 
hosen, it is possible to make the

system of equations (4.60) expli
it with the substitution of the values of basis fun
tions

at ti in the spline de�nition (4.22). In parti
ular the values of Bd
for d odd and d

even, 
omputed at points ti = iT and ti =
2i+1
2

T respe
tively, is independent from T

be
ause of the 
hoi
e of the interpolation time instants, as a result Bd
only depends

on the index i, and obviously on the degree d, see [10℄.

Then in order to obtain a system of equations well 
onditioned from a mathemati
al

point of view, it is ne
essary to 
onsider symmetri
al B-splines qs(t), i.e. uniform B-

splines whose basis fun
tion βd(t) is symmetri
 with respe
t the origin. The fun
tion

βd(t) 
an be dedu
ed from Bd(t) with a simple time shift, βd(t) = Bd
(
t + d+1

2
T
)
. As
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a 
onsequen
e symmetri
al B-splines are related to standard uniform B-splines by

qs(t) =

m∑

j=0

pjβ
d(t− jT )

=
m∑

j=0

pjB
d(t+ d+1

2
T − jT ) = qu(t+

d+1
2
T ),

that is, given the 
ontrol points, uniform B-splines are equal to symmetri
al B-splines

delayed by

d+1
2
T . Obviously, the theory of Se
. 4.2 
ould be based on symmetri
al

B-splines but this would imply the presen
e of a temporal anti
ipation leading to

non
ausal �lters for the evaluation of the B-splines.

For ea
h point to be interpolated, with the only ex
eption of the �rst and last points,

the equation (4.60) be
omes

qs(ti) =
m∑

j=0

pjB
d(ti +

d+1
2
T − jT ) = qi (4.61)

where the unknowns are the 
ontrol point pj. The interpolation of the �rst and last

points, with zero velo
ity and a

eleration, is a
hieved by exploiting the 
hara
teristi
s

of the dynami
 system used to generate the spline. Sin
e all the �lters M(s) have

unitary stati
 gain, the output of the �lters 
as
ade will rea
h and maintain the desired

value q0 or qn if the same value is applied to the input

d+1
2
T se
onds before. In other

words, in order to smoothly start from q0 and end to qn, the �rst/last d 
ontrol

points must be equal to q0/qn. The n− 1 internal 
ontrol points are then 
omputed

by solving the system of equations obtained by sta
king (4.61) for i = 1, . . . , n − 1

and the pie
ewise 
onstant fun
tion p(t) in (4.59) 
an be �nally built by maintaining

the value of ea
h 
ontrol point pj for the entire period jT ≤ t < (j + 1)T by means

of a zero order hold as shown in �g. 4-14.
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Figure 4-14: System 
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tories of degree d.
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Figure 4-15: Control points sequen
e pj de�ning a 
ubi
 B-spline and related refer-

en
e traje
tory q(t− d+1
2
T ) with d+1

2
= 2 obtained with the dynami
 �lter of Fig. 4-14.

4.4 Frequen
y Analysis of Traje
tory Generators

4.4.1 Multi-Segment Polynomial Traje
tories

In Se
tion 4.3 very simple approa
hes have been des
ribed in order to plan some of

the most 
ommon types of traje
tory by means of dynami
 �lters. Basi
ally all the

methods rely on the implementation of a 
hain of a 
ertain number of mean �lters

Mi(s) as in (4.31) whose duration Ti has to be set in order to 
omply to the desired

traje
tory spe
i�
ations. In parti
ular in Se
tions 4.3.1 and 4.3.2 ea
h Ti of the 
hain's

�lters is used as a design parameter to impose kinemati
 
onstraints on the traje
tory,
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while in Se
tion 4.3.3 the 
hain is 
omposed of identi
 �lters of duration T , where T

is the knot span of a uniform B-spline traje
tory.

In addition, de�ning traje
tories by means of �lters is very useful to analyze the

frequen
y 
ontent of a pres
ribed motion and therefore the e�e
t of a given traje
tory

on a vibratory system. Be
ause of the 
hain stru
ture of the generators, and being

the 
hains (mainly) 
omposed of mean �lters M(s), the frequen
y analysis 
an be

performed by taking into a

ount the �lterM(s) at �rst, intended as the basi
 element

of a traje
tory generator

M(s) =
1

T

1− e−sT

s
(4.62)

In parti
ular, assuming to have an undamped vibratory system G(s) as 
onsidered

in Se
tion 1.1, it has to be noted that the implementation of the �lter M(s) as a


ommand shaper assures 
omplete vibration suppression, provided that the duration

T of the �lter is equal to the period of the vibration T0 of the system G(s)

T = T0 =
2π

ωn

, (4.63)

where ωn is the natural undamped frequen
y of the vibratory system. In lieu of the

possibility to suppress vibrations by means of M(s), in �g. 4-16(b) the PRV fun
tion

of the mean �lter is 
ompared to a ZV IS and a ZVD IS that are standard tools for

vibration suppression, as deeply dis
ussed in Chapter 2. The reason for whi
h this


omparison is meaningful appears more 
lear in �g. 4-17(a) where the �lter M(s) is

analyzed in terms of pole-zero diagram. As 
an be seen the e�e
t of the �lter is to

provide in�nite zeroes on the imaginary axis, equally spa
ed of kωn, k ∈ N, plus a

pole in the axis origin whi
h is 
an
elled by the zero asso
iated with k = 0. Therefore

the suppression of the vibratory mode is again due to a pole-zero 
an
ellation as

already stated in previous 
hapters. Also with respe
t to the 
omparison of �g. 4-

16(b), the robustness of M(s) is 
omparable to that of a ZV IS due to the single

multipli
ity of the zeroes of both M(s) and ZV IS. Anyway the redu
ed distan
e of

the zeroes of M(s) makes that the overall redu
tion e�e
t of the �lter is greater, at

least for frequen
y variation only (see �g. 4-17(a) and �g. 4-17(b). On the other hand
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Figure 4-16: Step response of the system with δ = 0 shaped by M(s) (a) and PRV

fun
tion of the mean �lter 
ompared to ZV IS in bla
k dotted line and ZVD IS in

green dotted line (b).

M(s) lasts twi
e the ZV IS, being the duration of a ZV IS half period of vibration,

and doesn't assure vibration suppression for system with damping δ 6= 0.

Despite the 
onsideration on M(s) used as an input shaper, it is 
lear that the

frequen
y analysis of a traje
tory of order d de�ned by means of a 
hain of d mean

�lters Mi(s), 
an be easily performed by 
omposing the e�e
ts of the d �lters. The


ases of trapezoidal velo
ity traje
tory and double-S velo
ity traje
tory of Se
tion

4.3.1 are straightforward, sin
e both planners are a
tually 
omposed of mean �lters

only. In general from (4.45) to (4.49) a 
lass Cd−1
traje
tory is de�ned by means of d

�lters Mi(s) where respe
tive Ti are 
hosen in order to impose desired bounds on d

derivatives of the traje
tory

Ti =
q
(i−1)
max

q
(i)
max

, i = 1, . . . , d,

resulting in a total duration of the motion

Ttot = T1 + T2 + . . .+ Td

that is the minimum time traje
tory for the given kinemati
 bounds provided that
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Figure 4-17: Pole-Zero diagram of the system with δ = 0 shaped by the mean �lter

(a) and des
ription of M(s) as fun
tion of σ and jω (b,
). In (
) the same plot of

(b) is reported with full s
ale axis in order to better understand the behavior of the

system response. In (b) and (
) the 
ontour lines are equally spa
ed of 0.1 and the

zeroes position is highlighted with a bla
k 
ross.

the generi
 Ti satisfy

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1.

In that 
ase the generi
 traje
tory planner has a transfer fun
tion of the form

Hd(s) = M1(s) ·M2(s) · . . . ·Md(s), (4.64)

and results quite simple to analyze by adding the 
ontribution of ea
h single �lter.

In �g. 4-18(a) the point to point motion obtained by means of a time optimal trape-

zoidal velo
ity traje
tory generator H2(s) is reported for example. In parti
ular the
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Figure 4-18: Position, velo
ity and a

eleration of a time optimal motion from 0 to

q1 by means of trapezoidal velo
ity traje
tory with desired bounds on velo
ity and

a

eleration. On the right the frequen
y response of the traje
tory is reported.

generator is

H2(s) = M1(s) ·M2(s),

where M1(s), M2(s) are mean �lters as in (4.62) with

T1 =
|h|
vmax

,

T2 =
vmax

amax

,

being vmax, amax pres
ribed kinemati
 
onstraints for the traje
tory. Also in �g. 4-

18(b) the frequen
y 
ontent of the traje
tory q(t) is given by simply deriving the

frequen
y response of the traje
tory generator H2(jω). In addition, in �g. 4-19 the

pole-zero analysis of the planner is presented, showing that the diagram of the planner

H2(s) is nothing but the merge of the pole-zero diagrams of the �lters M1(s), M2(s)

in �gs. 4-19(a) and 4-19(b) as expe
ted. This is very 
onvenient in terms of fre-

quen
y 
hara
terization of a traje
tory sin
e it results in 
omposition of quite simple


ontributions given by the generi
 mean �lter Mi(s). In parti
ular permits to make

interesting 
onsiderations with respe
t to the possibility of redu
ing or suppressing

vibrations by means of su
h traje
tories.
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Figure 4-19: Pole-Zero diagram of a trapezoidal velo
ity traje
tory generatorH2(s) =
M1(s) ·M2(s) (
): in (a) and (b) the pole-zero diagrams of respe
tively M1 and M2,

being ω1 = 2π/T1 and ω2 = 2π/T2 are reported. In (d) the des
ription of H2(s) as
fun
tion of σ and jω is shown, the 
ontour lines are equally spa
ed of 0.1 and the

zeroes position is highlighted with a bla
k 
ross.

In �g. 4-20 the the time optimal traje
tory in �g. 4-18 is used to 
ommand an un-

damped vibratory system G(s) with damping δ = 0 and natural frequen
y ωn. As


an be seen the vibration is redu
ed but not suppressed, a

ording to both frequen
y

response and pole-zero diagrams in �gs. 4-20(b) and 4-20(
) that point out the fa
t

that the 
an
ellation of the of the vibratory 
omponent doesn't o

ur. As a matter

of fa
t it is worth noting that the design method reported in Se
tion 4.3.1 leads to

de�ne a traje
tory generator for time optimal traje
tories given bounds on velo
ity,

a

eleration, jerk, et
., without any parti
ular spe
i�
ation on frequen
y.

However re
alling the 
onsiderations on vibration suppression by means of a mean �l-

ter reported before, one may be interested in using one of the generator's �lter Mi(s)
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Figure 4-20: Response of the system G(s) with δ = 0 fed by a trapezoidal velo
ity

traje
tory generated by means of H2(s) (a) and frequen
y response H2(jω) with the

vibrating frequen
y highlighted in red dashed line(b). In (
) the pole-zero diagram

of H2(s) is reported along with the poles of the vibratory system G(s) in blue.

in order to suppress vibrations, that is setting Ti equal to the period of vibration T0 as

in (4.63). With respe
t to the 
onsidered trapezoidal velo
ity traje
tory for example,

T1 or T2 must be set to T0. In order to properly 
hose the whi
h �lter modify it has

to be reminded that the given kinemati
 bounds are mandatory and also the relation

for the generi
 Ti

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1

must be satis�ed in any 
ase. Therefore for a given vibratory period T0 there 
ould

be three di�erent situations:
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1. T0 > T1 ≥ T2

In this 
ase the �rst mean �lter must be used to suppress the vibration, that

is T ⋆
1 = T0. As a 
onsequen
e the velo
ity will be limited under the pres
ribed

bound, namely

v⋆max =
|h|
T ⋆
1

< vmax. (4.65)

Then in order to minimize the time duration of the traje
tory the se
ond �lter

must be re
omputed taking into a

ount the new velo
ity limit v⋆max

T ⋆
2 =

v⋆max

amax
. (4.66)

2. T1 > T0 > T2

In this 
ase the �rst mean �lter is de�ned as usual by means of the velo
ity

limit

T1 =
|h|
vmax

, (4.67)

while the se
ond �lter must be used to suppress the vibration, that is T ⋆
2 = T0.

Therefore, being the velo
ity limit unaltered the a

eleration will be limited

under the pres
ribed bound, that is

a⋆max =
vmax

T ⋆
2

< amax. (4.68)

3. T1 ≥ T2 > T0

In this 
ase setting one of the �lter's length to T0 means shorten the time

duration of M1 or M2 therefore ex
eeding the kinemati
 bounds. Sin
e the

traje
tory must be still 
ompliant to that bounds, the only possibility is to

add a mean �lter M3 with T3 = T0. This solution lead to de�ne a double-S

traje
tory with unaltered limits on velo
ity and a

eleration and jerk limited as

a 
onsequen
e to

jmax =
amax

T0

. (4.69)

The proposed algorithm has been applied to the system in �g. 4-18 in order to sup-
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press the vibration of the system G(s) visible in �g. 4-20. In parti
ular the time

optimal traje
tory is obtained imposing vmax = 0.75 [rad/s] and amax = 1.5 [rad/s2],

thus for a step motion of 1 [rad] results T1 = 1.33 [s] and T2 = 0.5 [s]. The system

G(s) instead is 
hara
terized by a natural undamped frequen
y ωn = 2π [rad/s],

therefore T0 = 1 [s]. In this 
ase, being T1 > T0 > T2, the solution is to impose

T ⋆
2 = T0 that means to impose a lower a

eleration bound a⋆max = 0.75 [rad/s2].
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Figure 4-21: Response of the system G(s) with δ = 0 fed by a trapezoidal velo
ity

traje
tory generated by means of H2(s) designed for vibration suppression (a) and

frequen
y response H2(jω) with the vibrating frequen
y highlighted in red dashed

line(b). In (
) the pole-zero diagram of H2(s) is reported along with the poles of the

vibratory system G(s) in blue.

In �g. 4-21 is shown the e�e
t of the modi�ed generator, in parti
ular it has to be

noted that the poles that 
ause vibrations are a
tually 
an
elled by the zeroes of the
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Figure 4-22: Position, velo
ity and a

eleration of the motion from 0 to q1 obtained
by means of trapezoidal velo
ity traje
tory designed in order to suppress a vibrating

mode.

se
ond �lter (in green) whose duration T2 has been modi�ed. However in �g. 4-22 it


an be noted the redu
ed limit of a

eleration espe
ially if 
ompared to the time op-

timal one in �g. 4-18(a), this obviously a�e
ts the duration of the traje
tory resulting

longer.

The same algorithm 
an be easily extended for double-S velo
ity traje
tories by 
on-

sidering three �lters, therefore one more possible 
hoi
e in terms of �lter that has

to be modi�ed. The reason that lead to modify a double-S velo
ity traje
tory is

that despite the augmented smoothness and the limited jerk there is no assuran
e

of vibration suppression be
ause even in this 
ase the design of the planner takes

into a

ount only kinemati
 
onstraints without 
aring at dynami
 
onstraints, i.e.

vibrations that has to be suppressed. For example in �g. 4-23 is shown the e�e
t

of a double-S traje
tory generated by means of a �lter 
hain H3(s) on the vibratory

system G(s) 
onsidered in the previous 
ase. As 
an be seen the additional 
onstraint

on the jerk does not eliminate the residual vibration. This behavior is explained even

more 
learly in �g. 4-24 where the pole-zero diagram of the traje
tory generator H3(s)
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Figure 4-23: Position, velo
ity, a

eleration and jerk of a time optimal motion from

0 to q1 by means of double-S velo
ity traje
tory with desired bounds on velo
ity,

a

eleration and jerk (a). On the right the response of the se
ond order system G(s)
fed by q(t) is shown (b) and the frequen
y response of the traje
tory is reported below
(
). In (
) the frequen
y of the vibration is reported in red dashed line.

reports that even in this 
ase there is no zero able to 
an
el the 
ouple of poles that


ause the residual vibration.

The algorithm for a double-S generator is straightforward to the one of trapezoidal

generator, it just takes into a

ount an additional parameter T3 but remains 
on-

strained to both kinemati
 bounds and minimizing time 
onditions as in the previous


ase.

1. T0 > T1 ≥ T2 +T3

The �rst mean �lter must be used to suppress the vibration, that is T ⋆
1 = T0. As
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Figure 4-24: Pole-zero diagram of the double-S velo
ity traje
tory generator H3(s).
The 
ontribution of the three �lters M1(s), M2(s), M3(s) is reported respe
tively in

red, green and purple. The poles of the vibratory system G(s) is highlighted in blue.

a 
onsequen
e the velo
ity will be limited under the pres
ribed bound, namely

v⋆max =
|h|
T ⋆
1

< vmax. (4.70)

Then in order to minimize the time duration of the traje
tory the se
ond �lter

must be re
omputed taking into a

ount the new velo
ity limit v⋆max

T ⋆
2 =

v⋆max

amax

. (4.71)

In this 
ase sin
e T ⋆
2 6= T2 the 
ondition T ⋆

2 ≥ T3 must be veri�ed in order to

a
hieve minimum time feature. From [13℄ the 
ondition holds true if

amax ≤ alim =
√

v⋆maxjmax, (4.72)
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otherwise even the a

eleration must be limited under the bound, that is

âmax = alim < amax (4.73)

therefore T2 and T3 must be re
omputed as

T ⋆
2 =

v⋆max

âmax
, T ⋆

3 =
âmax

jmax
. (4.74)

2. T1 > T0 > T2 ≥ T3

In this 
ase the �rst mean �lter is de�ned as usual by means of the velo
ity

limit

T1 =
|h|
vmax

, (4.75)

while the se
ond �lter must be used to suppress the vibration, that is T ⋆
2 = T0.

Therefore, being the velo
ity limit unaltered the a

eleration will be limited

under the pres
ribed bound, that is

a⋆max =
vmax

T ⋆
2

< amax. (4.76)

A

ordingly the duration of the �lter M3 must be re
omputed taking into a
-


ount the new a

eleration limit a⋆max, that is

T ⋆
3 =

a⋆max

jmax
. (4.77)

3. T2 > T0 > T3

In this 
ase the �lters M1 and M2 are de�ned as usual by means of kinemati



onstraints while T3 must be set equal to T0. Therefore,

j⋆max =
amax

T ⋆
3

< jmax, (4.78)

being T ⋆
3 = T0
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Figure 4-25: Position, velo
ity, a

eleration and jerk of the motion from 0 to q1
obtained by means of double-S velo
ity traje
tory designed in order to suppress a

vibrating mode (a). On the right the response of the se
ond order system G(s) fed
by q(t) is shown (b) and the frequen
y response of the traje
tory is reported below

(
). In (
) the frequen
y of the vibration is reported in red dashed line.

4. T3 > T0

In this 
ase in order to 
omply to the kinemati
 
onstraint the only possibility

is to add a mean �lter M4 with T4 = T0. This solution lead to de�ne a 
lass

C3
traje
tory generator with unaltered limits on velo
ity, a

eleration and jerk

with the additional feature of the vibration suppression.

The proposed algorithm has been applied to the system in �g. 4-23 where the time

optimal traje
tory is obtained imposing vmax = 0.75 [rad/s], amax = 1.5 [rad/s2] and

jmax = 7.5 [rad/s3], thus for a step motion of 1 [rad] results T1 = 1.33 [s], T2 = 0.5 [s]

and T3 = 0.2 [s]. The system G(s) instead is 
hara
terized by a natural undamped

frequen
y ωn = 2π [rad/s], therefore T0 = 1 [s]. In this 
ase, being T1 > T0 > T2,
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the solution is to impose T ⋆
2 = T0 that means to impose a lower a

eleration bound

a⋆max = 0.75 [rad/s2]. A

ordingly T3 has to be re
omputed taking into a

ount a⋆max,

therefore T ⋆
3 = 0.1 [s]. In �g. 4-25 the response of the system G(s) to the traje
tory

provided by the modi�ed planner is presented. As 
an be seen the traje
tory generator

designed taking 
are of dynami
 
onstraints a
tually suppress vibrations, in parti
ular

in �g. 4-25(
) the drop of the frequen
y response H3(jω) in 
orresponden
e of the

frequen
y of vibration ωn denotes a proper pole-zero 
an
ellation. On the other hand

the traje
tory results longer by 
omparing it to the one in �g. 4-23(a) sin
e the

a

eleration 
an't rea
h the kinemati
 bound.

It has to be noted that in any 
ase the design of the planner for vibration suppression

as proposed, imply to loose the time optimality feature of the traje
tory, sin
e at

least one of the derivative bounds is further limited. However allowing a slight time

extension of the motion it has been proved that the traje
tory generator 
an a
tually

suppress vibrations. Nevertheless by means of the proposed algorithm one may obtain

a time minimum traje
tory generator with vibration suppression.

4.4.2 Traje
tories with Sinusoidal Blends

In Se
tion 4.3.2 has been des
ribed the method whi
h permit to a
hieve a modi�ed

trapezoidal/double-S velo
ity traje
tory generator by means of dynami
 �lters. That

is, in order to obtain multi-segment polynomial traje
tories with sinusoidal blends

(i.e. des
ribed by harmoni
 fun
tions in Se
tion 4.1.3, the �lter 
hain des
ribed in

Se
tion 4.3.1 must be modi�ed by substituting the last mean �lter with the so-
alled

sinusoidal �lter Si(s) in (4.53)

Si(s) =
1

2

(
π

Ti

)2
1 + e−sTi

s2 +

(
π

Ti

)2 .

A

ordingly to the dis
ussion in the previous se
tion, the frequen
y analysis of a

modi�ed trapezoidal/double-S velo
ity traje
tory 
an be performed by merging the

e�e
ts of the mean �lters of the 
hain and that of the sinusoidal �lter above. In
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Figure 4-26: Frequen
y response of the sinusoidal �lter Si(s) (a) and respe
tive

pole-zero diagram (b).

parti
ular the analysis of the sinusoidal �lter shows a di�erent behavior with respe
t

the mean �lter in �gs. 4-16 and 4-17. In �g. 4-26(a) the frequen
y response Si(jω)

drop to zero slower than a mean �lter with the same duration T . Namely it results

|Si(jω)| = 0 if ω =
2k + 1

2
· 2π
T

, being k ∈ {N\0}, (4.79)

while the mean �lter is zero for 2πk/T . Moreover from the pole-zero diagram in

�g. 4-26(b) it is shown that the �lter introdu
es a 
ouple of 
omplex 
onjugate poles

that are 
an
elled by a 
ouple of zeroes of the �lter itself, enlarging the �rst lobe

of the frequen
y response a

ordingly. Anyway the presen
e of in�nite zeroes on the

imaginary axis permit to assume the �lter Si as a 
andidate to suppress a vibration of

an undamped system, spe
i�
ally being T0 the period of vibration, it 
an be proven

that Si suppress the vibration if its duration T is set to T = 1.5T0.

Despite that, the use of the sinusoidal �lter to suppress vibration when inserted in a

traje
tory generator as des
ribed in Se
tion 4.3.2 may not be an optimal solution. In

lieu of an example it 
an be 
onsidered the 
ase of a modi�ed trapezoidal traje
tory

with 





vmax = 0.75 [rad/s],

amax = 1.5 [rad/s2],
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and a desired step motion of 1 [rad], feeding a vibratory system G(s) whose vibration

period is T0 = 1 [s]. From the approa
h in Se
tion 4.3.2 the duration of mean �lter

M1(s) and that of S2(s) results results







T1 = 1.33 [s],

T2 = 0.785 [s].

Then by applying the proposed algorithm of Se
tion 4.4.1 and taking into a

ount

the zeroing a�e
t of S2(s), the duration of the sinusoidal �lter has to be modi�ed as

T ⋆
2 = 1.5T0. Unfortunately in this 
ase T1 < T ⋆

2 , then even T1 has to be modi�ed in

order to respe
t the 
onstraint T1 ≥ T2, that is

T ⋆
1 ≥ T ⋆

2 = 1.5 [s],

therefore the total duration would be T ⋆
1 +T ⋆

2 = 3 [s]. As a matter of fa
t this solution

it is de�nitely not a minimum time solution sin
e it 
an be proven that a traje
tory

whi
h satisfy the same 
onstraints (both kinemati
 and dynami
) 
an be a
hieved

by means of a modi�ed double-S traje
tory generator of shorter duration. Namely,

assuming 





vmax = 0.75 [rad/s],

amax = 1.5 [rad/s2],

jmax = 7.5 [rad/s2],

the duration of the �lters M1, M2, S3 be
ome







T1 = 1.33 [s],

T2 = 0.5 [s],

T3 = 0.314 [s].
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Then by setting T ⋆
2 = T0 = 1 the a

eleration is limited to a⋆max < amax and the

duration of the sinusoidal �lter must be re
omputed be
oming

T ⋆
3 =

a⋆max

jmax

π

2
= 0.157 [s].

Therefore the total duration of the traje
tory is T1 + T ⋆
2 + T ⋆

3 = 2.49 [s] that is


onsistently shorter than the modi�ed trapezoidal one.

4.4.3 Uniform B-Spline traje
tories

In Se
tion 4.3.3 a method for the implementation of a uniform b-spline traje
tory

generator based on dynami
 �lters is reported. The generator exploit the equivalen
e

between a b-spline traje
tory of degree d and the output of a 
hain of d identi
 mean

�lters of duration T , fed by a proper stair
ase signal built by means of the 
ontrol

points pj of the desired spline traje
tory. In [11℄ the 
hain of d �lters has been

analyzed in terms of frequen
y response and 
ompared to the most 
ommon input

shaping te
hniques, leading to a design pro
edure that takes into a

ount the dynami



onstraint of a given plant in order to minimize residual vibrations. In parti
ular the

analysis points out the low-pass behavior of the �lter 
hain and a zeroing e�e
t at

frequen
y ω = 2π/T (and multiple frequen
ies kω, k ∈ N), being T the knot span

of the b-spline traje
tory. Also, for growing degree d of the spline both the low-pass

behavior and the zeroing e�e
t are enhan
ed, making the b-spline generator even

more robust of n-derivative input shapers (see Chapter 2) with respe
t to vibration

redu
tion. Therefore a proper 
hoi
e of the knot span T and a

ordingly the duration

of the �lters permits to greatly redu
e vibrations without the addition of 
ommand

shapers.

The dis
ussion in [11℄ 
an be further extended in
luding the 
onsiderations given in

Se
tion 4.4.1 with respe
t to the mean �lter M(s). In parti
ular has been already

stated that the mean �lter 
an a
tually suppress a vibration of period T0 = 2π/ωn

given that the duration of the �lterM(s) is set to T = T0. Also, it has been shown that

the frequen
y analysis of a traje
tory generator based on a 
hain of dynami
 �lters,
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Figure 4-27: Uniform 
ubi
 b-spline traje
tory applied to an undamped se
ond order

system G(s) with T0 = 2π/ωn. In (a) the motion law is provided by means of a

�lter-based generator assuming a knot span T = 1.25T0. In (b) the same motion

law is provided assuming T = T0. Pi
tures below denoted with ε(t), des
ribe the

error between the set-point given by the generators (red dashed line) and the a
tual

position of the system G(s) (in blue).


an be easily performed by 
omposition of the 
ontribution of ea
h single element

of the 
hain, i.e. in terms of pole-zero diagram it results the merge of the diagrams

of ea
h �lter. Therefore for a b-spline generator of order d with knot span T the

pole-zero diagram results equal to that of �g. 4-17(a) 
onsidering every poles/zeroes

of multipli
ity d. This also makes the 
omparison in [11℄ with respe
t to derivative-

based input shapers 
onsistent, sin
e the e�e
t in terms of pole-zero diagram of an

n-derivative IS is to augment the multipli
ity of the zeroes of a ZV IS to an order

n + 1. In addition the vibration suppression 
onditions for the 
as
ade of �lters

dire
tly des
end from that of the single �lter Mi(s), that is being G(s) an undamped

se
ond order system whose period of vibration is T0, the b-spline traje
tory generator


an provide a vibration-free motion if the knot span T is 
hosen su
h that T = T0.

However the 
hoi
e of the knot span for a uniform b-spline traje
tory planner has a

dire
t in�uen
e on the dynami
s of the set-point that 
an be provided to the plant.

In parti
ular being the knots equally spa
ed, the span T is usually 
hosen a

ordingly

to the frequen
y 
ontent of the desired motion law in a sampling fashion. That is the

lower is the allowed interpolation error between desired motion and spline traje
tory,
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the lower is the knot span T (whi
h assumes the meaning of a sample time for the

desired motion) and therefore the greater is the number of via-points qj. These


onsiderations lead to de�ne two di�erent 
ases, respe
tively when the motion law is

dis
retized by means of a sample time T whi
h is longer or shorter than the period

of vibration T0.

The 
ase T > T0 is reported in �g. 4-27 for a uniform b-spline traje
tory of order

3 feeding an undamped vibratory system G(s). It 
an be noted that a

ordingly to

what said before, even if the 
hoi
e of T > T0 a
ts as a 
onservative solution to redu
e

the amplitude of the vibrations, it doesn't assure the 
omplete suppression be
ause

the 
an
ellation of the poles of G(s) that 
ause the vibration doesn't o

urs. In

parti
ular the tra
king error ε(t) of �g. 4-27(a) highlights a residual vibration during

the whole motion. In �g. 4-27(b) however, the same motion law is given by means

of a generator 
omposed of �lters whose duration T ⋆ = T0 
ompletely suppress the

vibration. It is worth noting that in general the 
hange of the duration T must be

a

ompanied with the re
omputing of the via-points of the traje
tory, in �g. 4-27(b)

for example the motion law has been sampled again with the sample time T ⋆
. In

this way the total number of via-points qj has grown (up-sampling) but the resulting

traje
tory maintains the same 
hara
teristi
s in terms of kinemati
 
onstraints, i.e.

velo
ity, a

eleration, et
..

In �g. 4-28 instead the dual 
ase is shown, that is when the spline traje
tory is


omputed with a knot span T < T0. As 
an be seen in �g. 4-28(a) this is an undesirable


ondition that may 
auses large vibrations. In order to suppress the vibration one

has to raise the �lters duration to T ⋆ = T0, however in this 
ase re
omputing the set

of via-points may not be desirable. In fa
t this would be a down-sampling pro
edure

that a�e
ts the interpolation error with respe
t to the desired motion law, whi
h

typi
ally grows as the sampling be
ome less dense. Therefore when re
omputing via-

points is unsatisfa
tory the only solution is to assume an overall slow-down of the

traje
tory by a
ting only on the duration of the �lters as shown in �g. 4-28(
).
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Figure 4-28: Uniform 
ubi
 b-spline traje
tory applied to an undamped se
ond order

system G(s) with T0 = 2π/ωn. In (a) the motion law is provided by means of a

�lter-based generator assuming a knot span T = 0.75T0. In (b) the same motion

law is provided assuming T = T0 and re
omputing the via-points a

ordingly, in

order to maintain the same dynami
s of the traje
tory. In (
) the spline traje
tory

is generated assuming T = T0 but using the same via-points of (a) avoiding down-

sampling. Pi
tures denoted with ε(t), des
ribe the error between the set-point given

by the generators (red dashed line) and the a
tual position of the system G(s) (in
blue).
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4.5 FIR Filters for Online Traje
tory Generation

The expression of a generi
 traje
tory is usually provided in the 
ontinuous-time

domain by means of an analyti
 fun
tion of time t. On the other hand, for being used

as a referen
e signal for a 
omputer 
ontrolled system, it needs to be evaluated at

dis
rete-time instants tk = kTs, being Ts the sampling period. For this reason, it is


onvenient to dire
tly express the traje
tory in the dis
rete-time domain, obtaining

a system able to provide at ea
h time instant kTs the value q(k).

4.5.1 Multi-Segment Traje
tory Generator

In 4.3.1 a planner for multi-segment traje
tories is obtained by 
onne
ting d �lters

Mi(s) in a 
as
ade 
on�guration fed by a step fun
tion

Qd(s) =
h

s
·M1(s) ·M2(s) · . . . ·Md(s). (4.80)

Starting from the above equation it is possible to dedu
e an equivalent dis
rete-time

system by dis
retizing the �lters with one of the te
hniques available in the literature

and providing as input the sequen
e obtained by sampling with a period Ts the


ontinuous step fun
tion. In parti
ular in [13℄, the adoption of ba
kward di�eren
es

method leads to a dis
rete-time system 
omposed by a 
hain of FIR �lters, whose

transfer fun
tion results

Mi(z) = Mi(s)|s= 1−z−1

Ts

=
Ts

Ti

1− z−Ni

1− z−1

=
1

Ni

1− z−Ni

1− z−1

(4.81)

where

Ni =
Ti

Ts
(4.82)

is the number of samples (not null) of the �lter response, whi
h is also equal to

the number of elements 
omposing the FIR �lter as they appear in the equivalent
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Figure 4-29: System 
omposed by d moving average �lters for the 
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lass Cd−1
at dis
rete time-instants kTs.

(nonre
ursive) formulation

Mi(z) =
1

Ni
+

1

Ni
z−1 +

1

Ni
z−2 + . . .+

1

Ni
z−Ni−1. (4.83)

Note that (4.83) is the expression of a moving average �lter, whi
h averages the last

Ni samples. Finally, the expression of Qn(z) representing the dis
rete-time traje
tory

qn(k) in the Z-domain results

Qn(z) =
h

1− z−1
·M1(z) ·M2(z) · . . . ·Mn(z) (4.84)

where

1

1− z−1
is the Z-transform of

u(k) =







1, for k = 0, 1, 2, . . .

0, for k < 0.

(4.85)

It is worth highlighting that the temporal sequen
e qn(k) = Z−1Qn(z) only approxi-

mates the 
orresponding 
ontinuous-time traje
tory qn(t). However, it is possible to

prove that when Ts goes to zero, su
h an error vanishes. From a pra
ti
al point of

view, this means that, for su�
iently small sampling periods, the sequen
e qn(k) 
an

be used in lieu of the 
orresponding fun
tion qn(t) without appre
iable di�eren
es.

The bank of d FIR �lters shown in �g. 4-29, fed with sampled step fun
tions (de�n-

ing the desired �nal positions), 
an be therefore adopted to generate the traje
tory

of order d. Also the stru
ture proposed in �g. 4-29 for the generation of time-optimal

traje
tories results very e�
ient from a 
omputational point of view. In fa
t, the i-th
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FIR �lter is 
hara
terized by the di�eren
es equation

qi(k) = qi(k − 1) +
1

Ni
(qi−1(k)− qi−1(k −Ni)) , i = 1, . . . , d (4.86)

and, for the evaluation of qi at the i-th sampling instant, only two additions and one

multipli
ation are ne
essary. Therefore the traje
tory of order d requires d multipli-


ations and 2d additions. It is worth nothing that the order of 
omplexity of the 
hain

of FIR �lters and of the equivalent polynomial expression is 
omparable, but in 
ase

of dire
t evaluation of the analyti
 expression of the traje
tory it is also ne
essary a

sear
h algorithm to determine whi
h segment must be 
onsidered at a spe
i�
 value of

time t and a swit
h statement to apply a di�erent expression for ea
h tra
t. For this

reason, espe
ially for high values of the order d, the expression based on FIR �lters

may be preferable to the standard analyti
 expression of multi-segment traje
tories

both in terms of implementation 
omplexity and 
omputational 
osts.

4.5.2 Dis
rete-Time Filter for Trigonometri
 Blends

In Se
tion 4.3.2 the generation of a Cd+1

lass traje
tory with �sinusoidal� blends has

been a
hieved by adding a proper �lter Sd+1(s) at the end of a 
hain of d moving

average �lters Mi(s) as in �g. 4-11. Moreover in Se
tion 4.5 the dis
retization of a

multi-segment traje
tory generator has been reported leading to a 
hain of FIR �lters.

Therefore in order to provide a dis
rete-time trigonometri
 traje
tory generator it

is ne
essary to dis
retize the sinusoidal �lter Si(s) in (4.53). In [12℄ the dis
rete

transfer fun
tion Si(z) of the sinusoidal �lter has been 
omputed by z-transforming

the sequen
e obtained by sampling (4.52) with a periods Ts:

Si(z) =
(1− cos( π

Ni
))(z−1 + z−(Ni+1))

1− 2z−1 cos( π
Ni
) + z−2

where Ni = Ti/Ts In this way, the impulse response of the dis
rete-time �lter 
oin
ides

exa
tly with 
ontinuous one at dis
rete time instants kTs, and is therefore zero for

kTs > Ti. Note that, being cos( π
Ni
) a 
onstant to be 
omputed only on
e, the digital
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implementation of Si(z) is 
omputationally e�
ient, requiring four additions and two

multipli
ations.

4.5.3 FIR Filters for Uniform B-spline Traje
tory Generation

A uni�ed transformation to 
onvert analyti
 B-splines in the dis
rete domain does not

exist yet. In parti
ular, with referen
e to 
ardinal B-splines it is possible to �nd in

the literature di�erent te
hniques to obtains dis
rete B-splines. In general, they are

de�ned by dire
tly sampling analyti
 B-splines with Z-transform, bilinear transform,

et
.

In [10℄ the dis
rete B-spline qk is de�ned as the sequen
e that equals the 
orresponding

analyti
 uniform B-spline qu(t) at the dis
rete-time instants kTs:

qk = qu(kTs). (4.87)

where it is assumed that T = N Ts, N ∈ N, i.e. that the generi
 knot span T 
ontains

a whole number N of sampling periods. Sin
e a B-spline is nothing but a linear


ombination of basis fun
tions properly translated in time, the exa
t dis
retization of

the basis fun
tion Bd(t) is 
onsidered at �rst. In parti
ular the dis
rete basis fun
tion

Bd
k = Bd(kTs) 
an be expressed as

Bd
k=

1

N
B0

k∗
1

N
B0

k∗. . .∗
1

N
B0

k
︸ ︷︷ ︸

d times

∗Z−1
{
Fd(z

−1)
}
∗B0

k (4.88)

where ∗ denotes the dis
rete 
onvolution produ
t, Z the Z-transform,

B0
k = B0(kTs) =







1, if k = 0, 1, . . . , N − 1

0, otherwise.

(4.89)

and Fd(z
−1) is a FIR �lter de�ned by

Fd(z
−1) =

z−1Qd−1(z
−1)

d!
, (4.90)

133



F1(z
−1) = z−1

F2(z
−1) = 1

2z
−1 + 1

2z
−2

F3(z
−1) = 1

6z
−1 + 4

6z
−2 + 1

6z
−3

F4(z
−1) = 1

24z
−1 + 11

24z
−2 + 11

24z
−3 + 1

24z
−4

F5(z
−1) = 1

24z
−1 + 26

24z
−2 + 66

24z
−3 + 26

24z
−4 + 1

24z
−5

Table I

Expression of the �lter Fd(z
−1) for di�erent values of d.

with the polynomial

Qr(z
−1) = cr,0 + cr,1z

−1 + . . .+ cr,r−1z
−(r−1) + cr,rz

−r
(4.91)

whose 
oe�
ients (for r ≥ 2) 
an be 
omputed in a re
ursive way as

cr,0 = cr,r = 1

cr,r−i = cr−1,r−i−1 · (i+ 1) + cr−1,r−i · (r − i+ 1)

with i = 1, . . . ,
[
r
2

]
, being

[
·
]
the integer part operator. In Tab. I the expression of

the FIR �lter Fd(z
−1) de�ned in (4.90) is reported for several values of the B-spline

degree d. From (4.88) it follows that, analogously to analyti
 B-splines, a generi


dis
rete basis fun
tion Bd
k of degree d 
an be 
omputed by applying the sequen
e B0

k

to a 
hain of d mean �lters. In the dis
rete-time 
ase, it is ne
essary to 
onsider the

PSfrag repla
ements
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rete B-spline basis fun
tion
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k of degree d.

134



additional �lter Fd(z
−1) as illustrated in Fig. 4-30. Therefore the dis
rete B-spline

qk =
m∑

j=0

pjB
d
k−jN (4.92)

of degree d 
an be obtained as output of the dynami
 system 
omposed by a 
as
ade

of d moving average �lters

M(z) =
1

N

1− z−N

1− z−1
(4.93)

=
1

N

(
1 + z−1 + z−2 + . . .+ z−(N−1)

)

and by the additional FIR �lter Fd(z
−1) feeded with the pie
ewise 
onstant fun
tion

pk =
m∑

j=0

pjB
0
k−jN (4.94)

where pj are the 
ontrol points of the related analyti
 B-spline. In Fig. 4-31 the

fun
tion pk is reported along with the values of the analyti
 B-spline 
orresponding

to the given 
ontrol points pj at the dis
rete time instants kTs.

The pro
edure des
ribed so far leads to an exa
t dis
retization of the basis fun
tion

of uniform B-splines of generi
 degree d that 
an be re
ursively de�ned starting from

B0(t), and therefore the dis
rete B-spline 
an be obtained. However in this 
ase

it is ne
essary to take into a

ount the presen
e of the FIR Fd(z
−1) whi
h makes

the relation more 
omplex. On the other hand, one would expe
t that a dis
rete

B-spline basis fun
tion of a given degree d 
ould be de�ned as a 
as
ade of d mean

�lters that re
eives as input the dis
rete-time fun
tion B0
k = B0(kTs) similarly to

the 
ontinuous 
ase. This is equivalent to negle
t the term Z−1 {Fp(z
−1)} in (4.88)

and leads to the de�nition of approximated dis
rete B-spline basis fun
tions and

approximated dis
rete B-splines, that do not share the same values of analyti
 basis

fun
tions Bd(t) and analyti
 B-splines qu(t) at dis
rete points kTs but approximate

su
h values within a pres
ribed toleran
e that depends on N . In parti
ular it 
an be

proved that when N rea
hes an high value, the di�eren
e is 
onsiderable redu
ed (for
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Figure 4-31: Samples of the pie
ewise 
onstant fun
tion pk (a) generating the spline

pro�le qk that interpolates the given points qj (b).

instan
e for N = 500 the error is less than 1%) and the use of dis
rete B-spline basis

fun
tions with or without Fd(z
−1) is nearly the same.

Anyway, although a 
hain 
omposed only by running average �lters is parti
ularly

attra
tive (and simple), it is worth noti
ing that, the FIR �lter Fd(z
−1) involves only

a slight additional 
omplexity. Namely this �lter only depends on the last d samples

of the input but relaxes 
onstraints on N .

4.5.4 Uniform B-spline Online Traje
tory Generator

Based on FIR Filters

In se
tions 4.3.3 and 4.5 the methods for design and implementation of a uniform

B-spline traje
tory generator are reported showing that this kind of splines 
an be

e�
iently generated by means of a 
hain of linear �lters properly fed with the se-

quen
e of the 
ontrol points that determine the shape of the 
urves in the spa
e. The

traje
tory generator shown in �g. 4-33(a) is 
omposed by d moving average �lters of
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order N and an algorithm that transforms the desired points qj in the set of 
ontrol

points pj used for de�ning the sequen
e p(k) whi
h is the input for the �lter 
hain.

Note that the B-spline is de�ned by adopting a sampling period Ts, that generally


oin
ides with the sampling time of the overall 
ontrol system, while p(k) is a pie
e-

wise 
onstant sequen
e, in whi
h the generi
 value pj is maintained for T = N · Ts
se
onds. Moreover, it is worth noti
ing that, while the spline evaluation is performed

online, its de�nition (i.e. the 
omputation of the 
ontrol points) is made o�-line.

In parti
ular in [10℄ it is shown that by adopting B-splines of generi
 degree d, the

systems to be solved for obtaining the 
ontrol points will be 
hara
terized by banded

matri
es, whose inversion 
an be 
arried out in a very e�
ient way.

Anyway it is 
lear that su
h a solution 
an only be found on
e all the via-points qj

are known, i.e. the solution must be performed o�-line. However, when the via-points

are given progressively, it may be desirable that 
ontrol points are 
al
ulated runtime

by approximating, if possible, the ideal solution. To this purpose, in [14℄ it is demon-

strated that the relationship (4.61) between 
ontrol points and via-points 
an be seen

as a dynami
 relationship between via-points and 
ontrol points, that in the domain

of the Z-transform 
an be expressed as

P (z)

Q(z)
=

6

z + 4 + z−1
(4.95)

for 
ubi
 B-splines, and

P (z)

Q(z)
=

120

z2 + 26z + 66 + 26z−1 + z−2
(4.96)

for quinti
 B-splines for example. Unfortunately, both �lters (4.95) and (4.96) are

unstable system and 
onsequently they 
annot be used for 
omputing the sequen
e

pj from qj . This is a dire
t 
onsequen
e of the fa
t that the interpolation pro
edure

is a global problem that involves all the points qj. Thus in order to implement su
h

a �lter, the most straightforward method is to trun
ate the ideal impulse response by

windowing. In other words it is possible to approximate the interpolation pro
ess by

taking into a

ount only a small set of points qi. This approa
h leads to a FIR �lter
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Figure 4-32: Impulse response h(n) of the �lter (4.95) (a) and of the �lter (4.96) (b).

de�ned by

H(z) =

r∑

n=−r

h(n) z−n
(4.97)

that approximates the impulse response of (4.95) and (4.96) within a pres
ribed

toleran
e a

ording to the value of r. The sequen
es h(n) for d = 3 and d = 5 are

reported in Fig. 4-32 and in both 
ases it 
an be noted that the value of h(n) be
omes

extremely small as |n| grows. Namely the 
hoi
e r = 4 for example guarantees an

approximation error with respe
t to the exa
t solution of the interpolation problem,

smaller than 0.5%.

Moreover, sin
e H(z) is not a 
ausal �lter, in order to pra
ti
ally implement the

transformation between via points and 
ontrol points it is ne
essary to introdu
e a

delay equal to r whi
h makes the �lter feasible, that is

H ′(z) = z−r H(z) =
2r∑

n=0

h(n− r) z−n. (4.98)
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By means of H ′(z) it is possible to repla
e the o�-line interpolation leading to a


omplete on-line traje
tory generator that assume an arbitrarily small interpolation

error. The 
hain is then 
omposed by two main elements a FIR �lter H ′r
d(z) of

order 2r + 1 that 
omputes the 
ontrol points from desired via-points and a 
as
ade

of d moving average �lters. The former element is 
omputed with a sample time

T , multiple of the basi
 sample period Ts (T = N · Ts), that represents the time

distan
e among the points to be interpolated/approximated. The average �lters are

implemented with a period Ts, and they have an impulse response of length equal to

T , being of order N . Between the two elements, it is ne
essary a rate transition from

T to Ts, that maintains the value pj for T se
onds, see �g. 4-33(b).
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Figure 4-33: Overall stru
ture of the �lter for B-spline traje
tories planning. In (a) is shown the solution with o�-line inter-

polation as reported in Se
tion 4.5, while in (b) is the full on-line traje
tory generator whi
h implements the �lter H ′(z) for
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ular the 
ase of an on-line 
ubi
 spline traje
tory generator is shown.
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Chapter 5

Optimal Traje
tories

for Vibration Redu
tion

Based on Exponential Filters

5.1 Filter for Exponential Jerk Traje
tory

In Se
tion 4.4.1 the 
onsiderations upon the frequen
y analysis of multi-segment poly-

nomial traje
tory generators based on dynami
 �lters leaded to a te
hnique for the

optimal sele
tion of the parameters of a standard d-order traje
tory, when dynami



onstraints are taken into a

ount aside from kinemati
 ones. In parti
ular for a third

order traje
tory generated by means of three linear �lters

Mi(s) =
1− e−sTi

sTi
,

as shown in �g. 5-1, the parameters of the traje
tory generator (i.e. time duration of

the �lters Ti) are 
hosen su
h that

T1 =
|h|
vmax

, T2 =
vmax

amax
(5.1)
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Figure 5-1: Stru
ture of a standard third order traje
tory generator.

guarantee that the traje
tory from q0 to q1 (h = q1 − q0) 
omplies with the velo
ity

limit vmax and the a

eleration limit amax, and the 
hoi
e

T3 =
2π

ωn
(5.2)

assures that the frequen
y 
ontent of the traje
tory is able to 
an
el the residual vi-

bration when the traje
tory is applied to an undamped resonant system 
hara
terized

by natural undamped frequen
y ωn and δ = 0.

Unfortunately, if the damping 
oe�
ient is not zero, the e�e
tiveness of the �lter

output (and therefore of standard 
onstant jerk traje
tories) in vibration suppres-

sion 
onsiderably de
reases. In �g. 5-2 the tra
king errors of a resonant system with

δ = 0.0083 and δ = 0.083 to a standard third order traje
tory are 
ompared. Note

that if δ grows, when the motion stops (that is for t ≥ Ttot), the peak value of the

os
illations of the me
hani
al system a

ordingly in
reases. Moreover, also very small

values of δ 
ause vibrations. The e�e
ts of damping are analyzed in �g. 5-3, where

PRV, the per
ent residual vibration, is shown as a fun
tion of δ. The in
reasing of

vibration's amplitude is 
onsequen
e of the fa
t that in the design of the �lter M3(s)

the damping 
oe�
ient is not 
onsidered. The only way to take into a

ount δ is in

the sele
tion of the time 
onstant T3, and therefore the duration of the 
onstant jerk

segment, whi
h 
an be assumed as

T3 =
2π

ωn

√
1− δ2

.

Unfortunately this 
hoi
e mitigates but does not solve the problem, as shown in

�g. 5-3.

In order to suppress vibrations in systems whose damping is not negligible, in [7℄

the use of a non
onstant limited jerk pro�le is proposed. In parti
ular, a dynami
 �lter
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Figure 5-2: Residual vibration due to a third order traje
tory q3(t) with h = 30 rad,
vmax = 250 rad/s, amax = 5000 rad/s

2
, applied to a se
ond order system with ωn =

260.43 rad/s and δ = 0.0083 (a) and δ = 0.083 (b).
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Figure 5-3: Per
ent residual vibration as a fun
tion of damping 
oe�
ient δ of a

se
ond order �lter system whose input is �ltered by M3(s).

to be applied to se
ond order traje
tories is devised. The �lter produ
es asymmetri


jerk segments, 
hara
terized by a linear de
rease, as shown in �g. 5-4. The slope of

these segments is 
omputed by solving an optimization problem aiming at minimizing

the residual vibration. This approa
h seems very promising as shown in �g. 5-5, where

the same 
onditions of �g. 5-2 are 
onsidered: in both 
ases the residual vibrations

are 
ompletely suppressed.

However, it is worth noti
ing that some weak points still exist in this te
hnique:

• A 
losed-form solution for the 
omputation of the �lter parameters is not avail-
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Figure 5-4: Asymmetri
 jerk traje
tory q2,a for h = 30 rad, vmax = 250 rad/s,

amax = 5000 rad/s

2
, and δ = 0.083 (a) and δ = 0.45 (b).

able and the numeri
al approximation provided in the paper is valid only for δ

su�
iently 
lose to 0. For instan
e, if δ = 0.45 the traje
tory does not 
an
el

residual vibrations, as shown in �g. 5-6.

• For high values of δ, it may happens that the sign of jerk 
hanges within the

same segment. As a 
onsequen
e the a

eleration pro�les exhibits undesirable

overshoots, see �g. 5-4(b).

In order to avoid the above mentioned problems, a shaping te
hnique based on ex-

ponential fun
tions has been proposed in [15℄. Given a se
ond order traje
tory q2(t),

obtained for instan
e with the 
as
ade of two �lters M1(s) ·M2(s), a multi-segment

traje
tory with jerk segments de�ned by exponential fun
tions 
an be obtained by
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Figure 5-5: Residual vibration due to a third order traje
tory with asymmetri
 jerk

q2,a(t) under the same 
onditions of �g. 5-2.
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Figure 5-6: Residual vibration due to a third order traje
tory with asymmetri
 jerk

q2,a(t) when the value δ = 0.45 is 
onsidered.

adding in the 
hain the �lter

Fexp(s) =
α

eαTJ − 1

1− eαTJ e−TJ s

s− α
(5.3)

where α and Tj are proper parameters that determines the de
ay rate and the time

duration of impulses 
omposing the jerk pro�le. As a matter of fa
t, the impulse

response of Fexp(s), shown in �g. 5-7, is

fexp(t) =
α

eαTJ − 1
eαt m(t), m(t)=







1, 0 ≤ t ≤ TJ

0, otherwise

.
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Figure 5-7: Impulse response of �lter Fexp(s) for negative values of parameter α.

Therefore when applied to the traje
tory q2(t) 
hara
terized by a pie
e-wise 
onstant

a

eleration, the �lter transforms the jerk signal 
omposed by impulsive fun
tion

±amaxδ(t − ti) in a sequen
e of exponential segments, see �g. 5-8. Note that the

maximum value of the jerk 
an be 
omputed as jmax = amax
α

eαTJ−1
.

The �lter Fexp(s), whi
h does not modify the limit values of velo
ity and a

elera-

tion of the original traje
tory q2(t), 
an be pro�tably applied to suppress residual

vibrations in those resonant systems that are 
hara
terized by signi�
ant damping


oe�
ient in lieu of standard third order traje
tories with limited, but 
onstant, jerk.

Theorem 1. The �lter Fexp(s) in (5.3) guarantees the 
omplete residual vibration

suppression for a vibratory systems G(s) des
ribed by (1.3) in Se
tion 1.1 fed by step

inputs if

α = −δ ωn (5.4)

TJ = k
2π

ωn

√
1− δ2

k = 1, 2, . . . (5.5)

Proof. When a step input �ltered by Fexp(s) is applied to the system (1.3), the tra
k-

ing error between the load position and the motor position 
an be 
omputed as

E(s) =
−s2

s2 + 2δωns+ ω2
n

· Fexp(s) ·
1

s
. (5.6)
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Figure 5-8: Se
ond order traje
tory q2(t) with h = 30 rad, vmax = 250 rad/s, amax =
5000 rad/s2, and 
orresponding exponential jerk traje
tory q2,e for ωn = 260.43 rad/s
and δ = 0.083 (b).

By inverse Lapla
e transforming E(s) and assuming t ≥ TJ , the analyti
 expression

of residual vibrations des
ends:

ε(t)=A
[
αe−δωnt

(
cos(Ωt)− cos(Ω(t− TJ))e

(δωn+α)TJ
)

−Be−δωnt
(
sin(Ωt)− sin(Ω(t− TJ))e

(δωn+α)TJ
)]

with

A =
α

(eαTJ − 1)(α2 + 2δωnα+ ω2
n)
, (5.7)

B =
αωnδ + ω2

n

ωn

√
1− δ2

,

Ω = ωn

√
1− δ2.
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Therefore, in order to assure that ε(t) = 0, ∀ t ≥ TJ it is su�
ient that

δωn + α = 0 ⇔ α = −δωn

ΩTJ = 2π k ⇔ TJ = k
2π

Ω
= k

2π

ωn

√
1− δ2

, k = 1, 2, . . .

Note that Fexp(s) is a generalization of a standard �lters with re
tangular impulse

response, whi
h produ
e pie
ewise 
onstant jerk pro�les. As a matter of fa
t, when

δ = 0 and 
onsequently α = 0, the straightforward appli
ation of the l'H�pital's rule

leads to

lim
α→0

α

eαTJ − 1
=

1

TJ

and therefore

lim
δ→0

Fexp(s)= lim
α→0

α

eαTJ − 1

1− eαTJ e−TJ s

s− α
=

1

TJ

1− e−sTJ

s
.

Di�erently from asymmetri
 jerk traje
tories, whose ability to 
an
el vibrations for

systems with δ = 0 leaded to de�ne a proper design algorithm in Se
tion 4.4.1, the

parameters of Fexp(s) that assure the 
omplete vibrations 
an
ellations are easily


al
ulable in the whole range of δ ∈ [0, 1[, and the problems tied to 
hanges in the

jerk sign are never present.

Theorem 2. Third order traje
tories with the jerk pro�le 
omposed by exponential

segments satisfying (5.4) and (5.5) guarantee that no residual vibrations are present

in the resonant system (1.3).

Proof. Third order traje
tories with exponential jerk, whose analyti
al expression is

reported in Chapter 4, 
an be obtained by �ltering a step signal of amplitude h (where

h is the desired displa
ement) with the 
as
ade of linear �lters M1(s) ·M2(s) ·Fexp(s).

Therefore, when the traje
tory is applied to the system G(s), the tra
king error
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Figure 5-9: Residual vibrations due to a third order traje
tory with exponential jerk

q2,e(t) under the same 
onditions of �g. 5-2, but with δ = 0.083 (a) and δ = 0.45 (b).

between the load position and the motor position is given by

Eq2e(s) =
−s2

s2 + 2δωns+ ω2
n

·
(

M1(s) ·M2(s) · Fexp(s) ·
h

s

)

= h ·M1(s) ·M2(s)·
( −s2

s2 + 2δωns+ ω2
n

· Fexp(s) ·
1

s

)

= h ·M1(s) ·M2(s) · E(s) (5.8)

where Eq2e(s) is the Lapla
e transform of the tra
king error to an exponential jerk

traje
tory, and E(s) is the transform of the error ε(t) to a step input, 
onsidered

in (5.6). If the 
onditions (5.4) and (5.5) are met, e(t) 6= 0 only for t ≤ TJ and,

be
ause the �lters M1(s) and M2(s) are 
hara
terized by a �nite length impulse

response of duration T1 and T2 respe
tively, from (5.8) it follows that eq2e(t) 6= 0 for

t ≤ T1 + T2 + TJ and eq3(t) = 0 otherwise. This means that after the end of the

referen
e traje
tory (whose duration is Ttot = T1 + T2 + TJ) residual vibrations are


ompletely 
an
elled.

In �g. 5-9 the tra
king errors obtained with exponential jerk traje
tories are

shown by 
onsidering resonant systems with quite di�erent damping 
oe�
ients, i.e.

δ = 0.083 (a) and δ = 0.45 (b). In both 
ases residual vibrations are 
ompletely

suppressed.

149



5.2 Sensitivity to Errors in Parameters De�nition

Sin
e the identi�
ation of the optimal values of the �lter parameters does not require

an expli
it knowledge of the damping 
oe�
ient and of the natural frequen
y of the

plant, the robustness of Fexp(s) is evaluated �rst by 
onsidering errors in σ and TJ

with respe
t to their nominal values, while the sensitivity with respe
t to 
hanges in

δ and ωn will be analyzed in Se
. 5.4 in order to 
ompare di�erent types of solutions

to the problem of vibrations suppressions. In �g. 5-10 the per
ent residual vibration

PRV% due to errors in the estimation of the parameters α and TJ are reported for

di�erent values of the damping 
oe�
ient and natural frequen
y of the plant. In

parti
ular the ranges [α̂/2, 2α̂] and [T̂J/2, 2T̂J ] about the nominal values (δ̂, T̂J) are


onsidered. From the �gure, it is possible to 
on
lude that

• the nominal value of the natural frequen
y of the plant does not in�uen
e the

robustness of the �lter Fexp(s) while the damping 
oe�
ient does;

• the 
hoi
e of TJ is de�nitely more 
riti
al than the 
hoi
e of α;

• an underestimation of TJ leads to large os
illations; 
onversely, a value of TJ

higher than the nominal one produ
e limited vibrations espe
ially for high

damping 
oe�
ients.

5.2.1 Sensitivity to Unmodeled Dynami
s of the Plant

A

ording to Theorem 1 the �lter Fexp(s) in (5.3) and 
onsequently the exponential-

jerk traje
tory obtained when the �lter is applied to a se
ond order traje
tory q2(t),

like in �g. 5-8, guarantees a 
omplete 
an
ellation of the vibrations if the plant 
an be

modelled as a se
ond order system su
h as (1.3). However, typi
al industrial plants

in
lude additional dynami
s that may modify the e�e
ts of the proposed �lter. If the

model of the plant in
ludes additional stable dynami
s ∆G(s), e.g.

GP (s) = G(s)∆G(s), (5.9)
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Figure 5-10: Sensitivity of Fexp(s) to 
hanges in σ and TJ for di�erent values of δ and
ωn of the plant: δ = 0.0083 (1), δ = 0.083 (2) and δ = 0.45 (3); ωn = 260.53 rad/s

(a) and ωn = 2.6053 rad/s (b).
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Figure 5-11: Response of a resonant system with an additional real pole, GP (s) =
G(s) 1

τ s+1
with ωn = 260.43 rad/s, δ = 0.0083 and τ = 0.0046s, for
ed by a step input

of amplitude h = 30 rad (a) and a step input �ltered by the �lter Fexp(s) (b).

it is possible to show that the properties of Fexp(s) remain unaltered. As a matter of

fa
t, be
ause of the linearity the response of the system (5.9) to a �ltered step input

is

Ql(s) = GP (s)Fexp(s)
1

s
= ∆G(s)

(

G(s)Fexp(s)
1

s

)

.

Therefore, the ideal response obtained with the nominal model G(s) whi
h, a

ording

to Theorem 1, does not have residual vibration, is simply �ltered by ∆G(s). Note

that the dynami
s∆G(s) will introdu
es additional modes in the response, but 
annot

ex
ite again the resonant mode of G(s) damped by the �lter Fexp(s).

In parti
ular, if ∆G(s) represents a dynami
s faster than the nominal model G(s)

and 
ompletely damped, for instan
e a real pole with time-
onstant τ = 1
10

1
δωn

, the

response of the system to a step input without and with the �lter Fexp(s) is the one

shown in �g. 5-11: the presen
e of the additional pole involves an in
reased duration

of the response that in the nominal 
ase rea
hes the steady-state 
ondition in TJ

se
onds, but the residual vibration is 
ompletely suppressed.

Also, if the 
onvergen
y rate of the additional pole is 
omparable with the rate of the

undamped (
omplex) poles that 
hara
terize G(s) the result is similar, that is the use

of Fexp 
an
el the os
illations that otherwise will a�e
t the response. See �g. 5-12

where the unmodeled dynami
s ∆G(s) = 1
τs+1

with τ = 1
δωn

has been 
onsidered.

In 
ase of systems with multiple vibratory modes, a single �lter Fexp(s) is only

able to 
an
el the os
illations due to a spe
i�
 mode. As a 
onsequen
e, the use of a
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Figure 5-12: Response of a resonant system with an additional real pole, GP (s) =
G(s) 1

τ s+1
with ωn = 260.43 rad/s, δ = 0.0083 and τ = 0.046s, for
ed by a step input

of amplitude h = 30 rad (a) and a step input �ltered by the �lter Fexp(s) (b).
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Figure 5-13: Response of a resonant system with 2 vibrational modes 
hara
terized

by ωn,1 = 260.43 rad/s, ωn,2 = 389.2971 rad/s and δ = 0.0083 for
ed by a step input

of amplitude h = 30 rad (a), a step input �ltered by the �lter Fexp(s) designed to

take into a

ount ω1 (b) and a step input �ltered by two �lters Fexp(s) whi
h 
onsider

both ω1 and ω2 (
).
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Figure 5-14: Response of a resonant system with 2 vibrational modes 
hara
terized

by ωn,1 = 260.43 rad/s, ωn,2 = 389.2971 rad/s and δ = 0.0083 for
ed by a se
ond

order traje
tory q2(t) with h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s

2
(a),

an exponential jerk traje
tory q2,e(t) taking into a

ount ω1 (b) and the traje
tory

q2,2e(t) of �g. 5-15 whi
h 
onsiders both ω1 and ω2 (
).

153



�lter Fexp(s) does not guarantee the 
omplete residual vibration suppression but it is

ne
essary to 
onsider the 
as
ade of two or more �lters, ea
h one related to a spe
i�


mode. In �g. 5-13 the step response of a plant 
hara
terized by two modes with

the same damping 
oe�
ient δ but di�erent natural frequen
ies ωn,1 and ωn,2, with

ωn,2 =
1
2
ωn,1 without and with �ltering a
tion is shown. A single �lter FJ,1(s) 
onsid-

erably redu
es residual vibration but does not 
an
el all the os
illations. Therefore,

a se
ond �lter FJ,2(s) is ne
essary to 
ompletely suppresses undesired vibrations with

the 
onsequent in
rease of the delay 
aused by the �lters. If the two �lters are not

applied to a step signal but to a se
ond order traje
tory q2(t), like in �g. 5-14, the


apability of suppressing residual vibrations 
an be merged with the 
omplian
e to

kinemati
 
onstraints but in this 
ase the �nal traje
tory is not 
hara
terized by a

jerk pro�le 
omposed by tra
ts of exponential fun
tion, see �g. 5-15.
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Figure 5-15: Pro�les of the traje
tory q2,2e(t) obtained by applying to the traje
tory

q2(t) of �g. 5-8(a) two exponential �lters with ωn,1 = 260.43 rad/s, ωn,2 = 389.2971
rad/s and δ = 0.083 (b).
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Figure 5-16: Stru
ture of the dis
rete-time �lter for exponential jerk generation.

5.3 Digital Implementation of the Exponential Filter

Sin
e the generation of exponential jerk traje
tories is based on the dynami
 �lters

fed by step fun
tions, i.e.

Q2e(s) = M1(s) ·M2(s) · Fexp(s) ·
h

s

it 
an be easily performed online by modifying the input signal. However, the pra
ti
al

use of the proposed �lter requires its transformation in the dis
rete time domain (Ts

denotes the sampling period) be
ause traje
tory planning is generally performed by

digital 
ontrollers. This 
onversion 
an be obtained with two main te
hniques, being

the impulse response of Fexp(s) of �nite length:

1. it is possible to obtain the 
oe�
ients of a FIR �lter by sampling the impulse

response fexp(t) with period Ts;

2. it is possible to dedu
e the IIR transfer fun
tion 
orresponding to Fexp(s) by

means of usual dis
retization te
hniques.

In order to obtain a 
losed form expression of Fexp(z) the se
ond approa
h has been

preferred. By Z-transforming the �lter Fexp(s) given in (5.3) and imposing a unitary

stati
 gain, the following expression des
ends

Fexp(z) =
1− eαTs

1− eαTs eαNJ

1− eαTs eαNJ z−NJ

1− eαTs z−1
(5.10)

where NJ = round(TJ/Ts). In �g. 5-16 the 
omplete stru
ture of the dis
rete-time

�lter for online generating exponential jerk traje
tories is shown. Note that in order

to guarantee that the sequen
e of values of the dis
rete time-traje
tory 
oin
ides with

the 
ontinuous-time pro�le at sampling times, its expression should be obtained by
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Z-transforming the overall 
hain of 
ontinuous �lters with a step input, i.e. Q2e(z) =

Z {Q2e(s)}. Therefore, the following expression 
an be dedu
ed

Q2e(z) =
h

1− z−1
·M1(z) ·M2(z) · Fexp(z) · F ′(z) (5.11)

where F ′(z) is a FIR �lter with unitary stati
 gain, whose expression is

F ′(z) = f0 z
−1 + f1 z

−2 + f2 z
−3

(5.12)

being

f0 =
−2 + 2eρ − 2ρ− ρ2

2(eρ − 1)ρ2

f1 =
4− 4eρ + 2ρ+ 2ρeρ − ρ2 + ρ2eρ

2(eρ − 1)ρ2

f2 =
−2 + 2eρ − 2ρeρ + ρ2eρ

2(eρ − 1)ρ2

and ρ = αTs. By 
omparing (5.11) with the dis
rete-time generator of �g. 5-16, it


omes out that the di�eren
e between the two output sequen
es is only 
aused by

the �lter F ′(z), whose main e�e
t 
onsists in a time delay of two sampling intervals

1

.

By negle
ting this �lter, a time anti
ipation is therefore introdu
ed in the generator,

as shown in �g. 5-17, where the step response of the 
ontinuous-time �lter and the

sequen
es obtained with the exa
t dis
retization and with the approximated gener-

ator of �g. 5-16 are reported. In order to emphasize the approximation error the

sampling period has been intentionally assumed very large (Ts = 0.1 s). In this way

it is possible to appre
iate that, besides the time anti
ipation, the dis
rete-time �lter

provides an ex
ellent approximation of the desired traje
tory. Obviously, when the

sampling period de
reases, the di�eren
e between q2e(t) and the approximated q2e(k)

1

Sin
e the sampling frequen
y ωs is generally 
hosen by assuming that ωs ≥ 10ωn, the parameter

ρ = −δωn
2π
ωs

results quite small in magnitude, i.e. −0.6283 ≤ ρ ≤ 0. As a 
onsequen
e, the range

of variation of the 
oe�
ients de�ning F ′(z) is rather limited (0.1412 ≤ f0 ≤ 0.1667, 0.6666 ≤
f1 ≤ 0.6656, 0.1667 ≤ f2 ≤ 0.1932). Moreover, f1 is 
onsiderably higher than other 
oe�
ients and

therefore a rough approximations of F ′(z) 
an be obtained by negle
ting f0 and f2, and assuming

that that F ′(z) ≈ z−2
.
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Figure 5-17: Comparison between the traje
tories produ
ed by exponential jerk

traje
tory �lters de�ned in the 
ontinuous- and dis
rete-time domain with T1 = 1 s,
T2 = 0.6 s (Ni = 
eil(Ti/Ts)), TJ = 0.2 s and α = −3.

tends to vanish.

A last remark 
on
erns the 
omputation 
omplexity of the proposed traje
tory gen-

erator. As illustrated in Tab. I, where the di�eren
e equations of the traje
tory

generator shown in �g. 5-16 are reported, at ea
h sampling time the 
omputation of

the output of the the 
as
ade of �lters requires a total of 6 additions and 5 multi-

pli
ations. If the �lter F ′(z) is 
onsidered, 2 more additions and 3 multipli
ations

must be performed. Moreover three memory areas are ne
essary, in order to store the

last N1 values of q1(k), the last N2 values of q2(k) and the last NJ values of q2e(k).

Note that the traje
tory generation based on the 
as
ade of dynami
 �lters is 
onsid-

erably more e�
ient than the dire
t 
al
ulation of the 
losed form equations of the

Table I

Di�eren
e equations 
orresponding to the traje
tory generator of �g. 5-16. The

values of the 
onstant parameters ai are:
a1 =

1
N1
, a2 =

1
N2
, a3 = eαTs

, a4 =
1−eαTs

1−eαTs eαNJ
, a5 = eαTs eαNJ

.

q1(k) = q1(k) + a1

(

r(k)− r(k −N1)
)

q2(k) = q2(k) + a2

(

q1(k)− q1(k −N2)
)

q2e(k) = a3 q2e(k) + a4

(

q2(k)− a5 q2(k −NJ)
)
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Figure 5-18: Complex motion pro�le q2e(k) with vmax = 250 rad/s, amax =
5000 rad/s

2
, ωn = 260.43 rad/s and δ = 0.083, obtained by applying to the sys-

tem in �g. 5-16 a referen
e signal r(k) 
omposed by several step fun
tions applied at

generi
 time instants.

traje
tory, whi
h, besides a larger number of additions and multipli
ations, requires

2 divisions and the 
omputation of an exponential fun
tion depending on t.

When a referen
e signal r(k) 
omposed by several step fun
tions starting at generi


time instants is applied to the traje
tory generator of �g. 5-16, the pro�les shown

in �g. 5-17 are obtained. If the time-instants in whi
h a new traje
tory is triggered


omply with the 
onditions reported in [13℄ a 
omplex motion pro�le q2e(t) that meets

velo
ity and a

eleration 
onstraints and 
an
els residual vibrations is obtained. Note

that in this 
ase the jerk pro�les is no longer 
omposed by tra
ts de�ned by an ex-

ponential fun
tion be
ause of overlaps between adja
ent jerk impulses. However,

the 
apability of suppressing vibrations remain unaltered. See �g. 5-19 where the

residual vibrations obtained with a se
ond order traje
tory q2(k) and with q2e(k) are


ompared.
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Figure 5-19: Comparison between the residual vibration 
aused by the appli
ation

to a resonant system G(s) of a se
ond order traje
tory q2(k) (ε2(t)) and the 
orre-

sponding exponential jerk traje
tory q2e(k) shown in �g. 5-18 (ε2e(t)).

5.4 Comparative Analysis with Alternative Te
hniques

for Vibration Suppression

As mentioned in the introdu
tion, the main te
hniques for 
omplete residual vibration

suppression based on a proper �ltering of the referen
e signal are input shaping and

inversion of the plant dynami
s. A �rst important di�eren
e between these te
hniques

and the proposed �lter Fexp(s) is that they do not in
rease the smoothness, i.e. the

order of 
ontinuous derivatives, of the �ltered input. They are generally applied to

referen
e traje
tories with bounded velo
ity and a

eleration and therefore at least

C1
, that is with 
ontinuous �rst-order derivative, and provide as output a traje
tory

of the same 
lass in 
ase of input shapers or even of lower 
lass if �lters based on

system inversion are applied. In �g. 5-20 the referen
e signals obtained by �ltering the

se
ond order traje
tory q2(t) with a ZVD input shaper and with a system-inversion-

based �lter are shown. Note that the traje
tory q
2,zvd

(t) remains C1
, i.e. with

dis
ontinuous a

eleration, and is 
ompliant with the desired bounds imposed to the

original traje
tory q2(t). The traje
tory q2,inv(t) �ltered by the inverse dynami
s of

the plant be
omes C0
, be
ause some dis
ontinuities appears in the velo
ity pro�le.

Moreover the bounds on the traje
tory derivatives are not met anymore, see the

a

eleration pro�le of q2,inv(t). This behavior of the system-inversion-based �lter
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Figure 5-20: Referen
e signals obtained by �ltering the se
ond order traje
tory q2(t)
of �g. 5-8(a) with a ZVD input shaper (a) and with the inverse dynami
s of the plant

(b).


an be rather troublesome, sin
e as shown in �g. 1-1 the system G(s) that 
auses

vibrations models only the load and the elasti
 transmission of a more 
omplex system

whi
h in
ludes also the a
tuator, supposed to be able to perfe
tly tra
k the referen
e

traje
tory qref(t). Therefore the referen
e s
heme of a standard motion system with

elasti
 linkage results as in �g. 5-21. Unfortunately, any kind of a
tuation system is


hara
terized by physi
al limitations on velo
ity and a

eleration and if these bounds

are not met the traje
tory be
omes unfeasible. Moreover, the requirement of perfe
t

PSfrag repla
ements
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Figure 5-21: Complete model of a motion system with elasti
 linkage.
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tra
king relates the smoothness of the referen
e traje
tory, supposed Cp
, with the

relative degree r of the linear time-invariant system des
ribing the a
tuation system

[30℄, i.e

p ≥ r − 1.

As a 
onsequen
e, in 
ase of an ele
tri
 a
tuator, with r = 3, the referen
e position

for the motor

2

must be at least C2
. This implies that if an input shaping �lter is

used for vibrations suppression, the se
ond order traje
tory q2(t) is not su�
ient but

a C2
fun
tion is required. With an inverse dynami
s �lter a C3

traje
tory must be

used. Conversely, the proposed �lter Fexp(s), that in
reases the smoothness of the

input traje
tory, needs a simple C1
fun
tion, like the fun
tion q2(t) whi
h leads to the

exponential jerk traje
tory of �g. 5-8.

From a fun
tional point of view, input shapers, system-inversion-based �lter and

the proposed �lter Fexp(s) guarantee the 
omplete vibrations suppression in nominal


onditions. However as already pointed out in previous 
hapters, one of the most

important features for a 
ommand shaper is the robustness with respe
t to errors

in model parameters, i.e. δ and ωn in of the 
onsidered plant. A

ordingly to the

dis
ussion about the other te
hniques, the robustness of the proposed exponential

�lter is investigated by means of the analysis of the transfer fun
tion Fexp(s).

In parti
ular, assuming to have a vibratory system G(s) as 
onsidered in Se
tion

2

Note the the transfer fun
tion of a standard DC motor is

Ga(s) =
Qm(s)

V (s)
=

Ki

LaJms3 + (RaJm +BmLa)s2 + (KbKi +RaBm)s

where Ki is the torque 
onstant, Kb the ba
k-emf 
onstant, Ra the armature resistan
e, La the

armature indu
tan
e, Jm the rotor inertia, Bm the vis
ous-fri
tion 
oe�
ient and V (s) denotes the
Lapla
e transform of the input voltage [54℄. A feed-forward 
ontrol that in nominal 
ase assures

perfe
t tra
king is

Vff (s) = G−1
a (s)Qref (s) =

(
LaJm

Ki

s3 +
RaJm +BmLa

Ki

s2 +
KbKi +RaBm

Ki

s

)

Qref (s)

whi
h 
orresponds to

vff (t) =
LaJm

Ki

q
(3)
ref (t) +

RaJm +BmLa

Ki

q
(2)
ref (t) +

KbKi +RaBm

Ki

q
(1)
ref (t).

The 
ontrol a
tion vff (t) is feasible, that is vff (t) < ∞, only if q
(3)
ref (t) is limited and a

ordingly

the referen
e traje
tory qref (t) ∈ C2
.
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Figure 5-22: Step response (a) and Pole-Zero diagram (b) of the system with δ = 0.1
shaped by Fexp(s).

1.1, the exponential �lter assures 
omplete vibration suppression, provided that the


onditions in (5.4) and (5.5) are satis�ed. In �g. 5-22 the vibration-free step response

of a se
ond order system with natural frequen
y ωn and damping δ = 0.1 is reported

along with the pole-zero diagram of the shaped system Fexp(s) ·G(s), demonstrating

that the vibration is suppressed sin
e the zeroes of the exponential �lter a
tually


an
el the poles of the system G(s) that 
ause vibrations. In addition it has to

be noted that the e�e
t of the �lter is to provide in�nite zeroes lo
ated on a line

parallel the imaginary axis, plus a pole on the real axis whi
h is 
an
elled by the

zero asso
iated with the multipli
ity k = 0. Re
alling the pole-zero diagram of the

mean �lter M(s) in �g. 4-17 it is 
lear that the two transfer fun
tions di�ers only

by a frequen
y translation that depends on the value of the damping δ. Therefore

the exponential �lter 
an be 
onsidered the frequen
y translated version of a mean

�lter, in parti
ular Fexp(s) preserves the frequen
y behavior of M(s) (i.e. frequen
y

response) and permit to exploit it in the whole de
aying sinusoidal domain, that is

with δ 6= 0.

This 
onsideration is not so surprising sin
e has been already demonstrated that

the exponential �lter Fexp(s) is a generalization of standard �lters with re
tangular

impulse response, whi
h produ
e pie
ewise 
onstant jerk pro�les. Namely in �g. 5-

7 it is shown that the impulse response fexp(t) varies a

ordingly to |α|, and the
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exponential-like shape degenerates into a re
tangular impulse of length TJ for |α| = 0.

Moreover, being α = −δωn and known that for a typi
al se
ond order system the


hara
teristi
 
omplex 
onjugate 
ouple of poles is lying on a verti
al line interse
ting

the real axis in σ = −δωn, it is straightforward to assume the de
ay rate α as the

required frequen
y translation needed to suppress a damped vibration by means of a

mean �lter M(s). In fa
t, being

MJ(s) =
1

TJ

1− e−sTJ

s
,

and α = −δωn the desired frequen
y translation, results

MJ (s− α) =
1

TJ

1− e−sTJeαTJ

s− α
= AFexp(s),

where A takes into a

ount the fa
t that the proposed exponential �lter has unitary

stati
 gain.

Finally this dis
ussion permits to highlight a strong 
onne
tion between the design

pro
edure of the exponential �lter and input shapers. In se
tion 2.5 has been ad-

dressed that the e�e
t of δ 6= 0 in the design of IS result in a frequen
y translation of

the transfer fun
tion for the undamped 
ase. In parti
ular in equations from (2.42) to

(2.47) it is shown that the parameter K de�ned in (2.3) takes into a

ount the value

of the damping δ providing the shift of the zeroes of the IS. In a similar way for the

exponential �lter, the translation of α in the above equation, enri
h the numerator of

MJ(s) of the term

eαTJ = e
− 2πδ√

1−δ2 .

By re
alling from (2.3)

K = e
− πδ√

1−δ2 ,

it turns out that the analogy is evident.

In order to 
ompare the exponential �lter to the other te
hniques for vibration

suppression, in �g. 5-23 the analysis of Fexp(s) on the 
omplex plane is reported along
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Figure 5-23: Comparison of transfer fun
tion des
ription on the 
omplex plane of

respe
tively exponential �lter Fexp(s) (a), ZV IS (b) and ZVD IS (
). On the right

the diagrams are reported with equal s
ale to the one of �g. 5-22 in order to better

understand the behavior of the system response. The 
ontour lines are equally spa
ed

of 0.1 and the zeroes position is highlighted with a bla
k 
ross
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Figure 5-24: Per
ent residual vibration as a fun
tion of the damping 
oe�
ient δ
about the nominal value δ̂ = 0.081 (a) and δ̂ = 0.45 (b).

with that of ZV IS and ZVD IS. As already noti
ed from the PRV fun
tion of the

mean �lter in �g. 4-16 the robustness of the proposed �lter Fexp(s) is at an interme-

diate value between ZV and ZV D input shapers. This is due to two main aspe
ts,

on the one hand the multipli
ity of the zeroes is one, like ZV IS, on the other hand

the redu
ed distan
e between the zeroes of Fexp(s) has a grater overall �ltering e�e
t.

In parti
ular it 
an be noted that for frequen
ies higher than the nominal one, the

response of the exponential �lter is 
onsiderably lower than that of IS. That is for

example in lieu of an approximate design solution, one may pro�tably takes into a
-


ount an approa
h based on underestimating the frequen
y parameter, while in 
ase

of IS this assumption 
an't be 
onsidered sin
e the response of IS is always symmetri


to the zeroes.

Also to the aim of 
omparing all the mentioned di�erent approa
hes in vibration sup-

pression, an extensive simulation a
tivity has been 
arried out in order to evaluate the

per
ent residual vibration of system G(s) as a fun
tion of the errors in the estimation

of its parameters, when applying di�erent te
hniques. In parti
ular sin
e the inverse-

dynami
s �lter requires a 
ontinuous input fun
tion, the 
omparative analysis has

been 
ondu
ted by using the traje
tory q2(t) as test fun
tion in lieu of the standard

step signal. By means of extensive simulations, the 
urves reported in �g. 5-24 and

�g. 5-25 have been obtained. For the sake of 
larity, the variations of parameters

165



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

60

70

W

 

 
F

J
(s)

M
3
(s)

G
ml
−1

ZV IS
ZVD IS

PSfrag repla
ements

P

R

V

%

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

10

20

30

40

50

60

70

W

 

 
F

J
(s)

M
3
(s)

G
ml
−1

ZV IS
ZVD IS

PSfrag repla
ements

P

R

V

%

(b)

Figure 5-25: Per
ent residual vibration as a fun
tion of the ratio ωn/ω̂n, where ωn is

the a
tual natural frequen
y of G(s) and ω̂n is the nominal value used to de�ne the

�lter, for δ = 0.081 (a) and δ = 0.45 (b).

δ and ωn with respe
t to their nominal values are 
onsidered separately. In �g. 5-24

the per
ent residual vibration is shown as a fun
tion of δ. Sin
e the nominal value δ̂

in�uen
es the results, two di�erent values have been 
onsidered in order to show the

behavior of the di�erent �lters for small and large damping 
oe�
ients (δ̂ = 0.081

and δ̂ = 0.45 respe
tively). For the natural frequen
y, the nominal value ω̂n = 260.53

rad/s has been assumed, but it is worth noti
ing that the per
ent residual vibration

does not depends on this parti
ular value.

The relationship between a
tual value of natural frequen
y and per
ent residual vi-

bration is shown in �g. 5-25, where the ratio ωn/ω̂n has been 
onsidered. Also in this


ase two di�erent values of δ have been taken into a

ount.

These 
urves highlight that the proposed �lter Fexp(s) is 
hara
terized by an interme-

diate robustness between ZV and ZV D input shapers, and results mu
h more robust

than system-inversion-based �lters. Moreover, for high values of ωn, Fexp(s) o�ers the

best performan
es, see �g. 5-25. As already dis
ussed in Chapter 4, the �lter M3(s)

that produ
es 
onstant jerk traje
tories, provides similar results for small values of δ

(see �g. 5-25(a)), but 
annot 
ompletely suppress residual vibrations.

Finally, a fair 
omparison between these methods requires also an estimation of the

time-delay that the �lters introdu
e and of the 
onsequent in
rease of the motion
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duration. With this respe
t, it is well-known that an higher robustness of Input

Shapers is obtained by in
reasing the number of impulses that form the shapers and

a

ordingly the delay introdu
ed in the motion generation.

System-inversion-based �lters do not 
ause any delay in the referen
e signal tra
king.

However, the need for smoother traje
tories implies higher durations of the motion

with respe
t to lower order traje
tories, the bounds on velo
ity, a

eleration, and

higher derivatives being equal. Input shapers, like ZV and ZVD �lters, introdu
e in

the system time-delays similar to that 
aused by the Fexp(s) �lter; in parti
ular the

additional delays are TJ/2 for ZV and TJ for ZVD, but also in this 
ase the need

for higher order input traje
tories with respe
t to the �lter Fexp(s) may in
rease the

total duration of the motion.

5.5 Experimental Validation of the Exponential Fil-

ter

In order to experimentally test the proposed method the setup of �g. 5-26 has been ar-

ranged. This simple system is 
hara
terized by a linear motor, LinMot PS01-37x120,

whose slider is 
onne
ted to an inertial load by means an elasti
 transmission obtained

with a 
oil spring. The load is pla
ed on a liner guide in order to guarantee the axial

alignment with the motor slider and to redu
e stati
 fri
tion. The 
ontrol system

is based on the servo 
ontroller LinMot E2010-VF that performs the basi
 
urrent


ontrol, while the position 
ontrol (based on a PID 
ontroller and a feedforward a
-

tion) has been implemented on a standard PC with a Pentium IV 3 GHz pro
essor

and 1 GB of RAM, equipped with a Sensoray 626 data a
quisition board, used to

both 
ommuni
ate with the servo 
ontroller and a
quire the sensors signals. The po-

sition of the motor is measured by an in
remental en
oder with a resolution of 1µm

integrated in the stator, and the monitoring of vibrations is obtained via a load 
ell


onne
ted between the slider and the elasti
 transmission. As a matter of fa
t, the

for
e fk exerted by the spring is proportional to the error ε between motor position
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Figure 5-26: Experimental setup.

and load position, and, if the inherent damping of the transmission is 
onsidered, like

in �g. 1-1, for
e fk is simply a s
aled, low-pass �ltered version of ε.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux

kernel 2.6.17.11 and RTAI 3.4 allows the position 
ontroller to run with a sampling

period Ts = 500µs. For the design of the 
ontrol s
heme and of traje
tory generator,

the MatLab/Simulink/RealTime Workshop environment has been used.

In Tab. II the main 
hara
teristi
s

3

of the me
hani
al system are reported. The

value of the internal damping bt is unknown, but it 
an be easily dedu
ed from the

parameters α and TJ of the �lter Fexp(s). The value of these parameters is obtained

as des
ribed in Se
. 5.2 but the os
illation is indu
ed by physi
ally blo
king the mo-

3

The symbols refer to the model of �g. 1-1(b).
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Table II

Motion system parameters.

Parameter Symbol Value Unit

Slider mass Jm 0.599 kg

Load mass Jl 0.623 kg

Spring sti�ness kt 6490 Nm

tor slider and applying an initial deformation to the spring. In �g. 5-27, the for
e

fk(t) re
orded during an experiment is shown together with the for
e of the identi�ed

system 
hara
terized by δ̂ = 0.0246 and ω̂n = 101.3724 rad/s, whi
h 
orrespond to

α̂ = −2.4958 and T̂J = 0.0620 s (indeed, several tests have been performed and the

mean value of the parameters has been assumed). Note that the value of ωn found

in the experiments is 
onsistent with the theoreti
al value

√

kt/Jl = 102.0653 rad/s.

The main di�eren
e between the responses of real and ideal system lies in the man-

ner in whi
h the os
illation vanishes, see �g. 5-27 for t ≥ 0.9 s: the model's output

goes to zero asymptoti
ally while the real system suddenly stops probably be
ause

of the (unmodeled) stati
 fri
tion. Moreover, besides the vibratory dynami
s Gml(s)

the model of the real system should in
lude the poles of the 
ontrolled a
tuator, but

sin
e the 
ontrol feedba
k has been designed with a very high bandwidth these poles

have been negle
ted. As a matter of fa
t, as already noted in Se
. 5.2.1 unmodeled

poles faster than the me
hani
al dynami
s that indu
es vibrations do not modify

signi�
antly the results of the appli
ation of the �lter Fexp(s) and of the exponential

jerk traje
tories.

In �g. 5-28, the response of the system to se
ond-order traje
tory q2(t) used as basi


motion pro�les is reported. This traje
tory, 
hara
terized by a total displa
ement h

of 30 mm, has been obtained by means of the two �lters of �g. 5-16 with Ni = Ti/Ts,

i = 1, 2, being T2 = 1.5 T̂J = 0.0930 s and T1 = 2 T2 = 0.1860 s. With these param-

eters, the maximum velo
ity and the maximum a

eleration are vmax = 0.1613m/s

and amax = 1.7343m/s

2
respe
tively. Obviously the behavior of the system at the

end of motion (highlighted in the plots with the white ba
kground) is very similar to

that of the un
ontrolled system of �g. 5-27.

When the �lter Fexp(z) is added and the exponential jerk traje
tory is applied to
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Figure 5-27: Os
illations of the system of �g. 5-26 used for the identi�
ation of the

parameters of �lter Fexp(s).
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Figure 5-28: Residual vibrations indu
ed in the system of �g. 5-26 by the appli
ation

of a se
ond order traje
tory q2(t).

the resonant system, the residual vibration is 
onsiderably redu
ed, see �g. 5-29(a).

However, it is not 
ompletely 
an
elled. Note that the residual vibration seems not

due to additional unmodelled (linear) dynami
s of the plant sin
e its period is exa
tly

T̂J . Instead, the 
ause must be probably sought in nonlinear phenomena (i.e. the

stati
 and Coulomb fri
tion on the motor slider) and external disturban
es (su
h as

the 
ogging whi
h is present in the linear motor) a�e
ting the system. These e�e
ts

are probably not 
ompletely 
ompensated by the motor 
ontroller and the a
tuator

does not behaves like an ideal position sour
e.

In order to evaluate the bene�ts of the proposed method in real appli
ations, its
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Figure 5-29: Comparison between residual vibrations indu
ed in the system of �g. 5-

26 by the appli
ation of an exponential jerk traje
tory (a), a se
ond order traje
tory

�ltered by a ZVD input shaper (b) and a se
ond order traje
tory �ltered by the

system inverse dynami
s (
).
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Figure 5-30: Residual vibrations indu
ed in the system of �g. 5-26 by the appli
ation

of a se
ond order traje
tory q2(t) with T2 = 0.1137s.

behavior has been 
ompared with those of the alternative approa
hes mentioned in

Se
tion 5.4, whi
h should lead to a 
omplete 
an
ellation of residual vibrations. In

parti
ular, in �g. 5-29(b) the response of the experimental setup to the traje
tory

q2(t) �ltered by a ZVD input shaper is shown, and in �g. 5-29(
) the result with the

inverse dynami
s �lter is reported. The a
tual 
apabilities of the exponential jerk

traje
tory and of the input shaper in vibrations suppression are 
omparable, while

the �lter based on the dynami
s inversion shows a lower robustness with respe
t to

the above mentioned non-idealities: the level of vibrations de
reases with respe
t to

those obtained with the dire
t appli
ation of q2(t) only for a positive displa
ement

of the motor, while it remains pra
ti
ally un
hanged if the motion o

urs along the

negative dire
tion. Note that several tests have been performed but the result was

always the same.

Note that the vibrations redu
tion shown in �g. 5-29 with respe
t to �g. 5-28 is

marginally 
aused by the in
rease of the time-duration of the traje
tory be
ause of

the additional �lters. As a matter of fa
t, both for exponential jerk traje
tory and for

the input shaper �ltered traje
tory the duration of the motion is Ttot = T1+T2+ T̂J =

0.3410 s. Therefore, in order to perform a more pre
ise 
omparison, a se
ond-order

traje
tory q2(t) with the same total duration (that is T2 = 0.1137 s T1 = 2 T2 and

Ttot = T1 + T2 = 0.3410 s) has been applied to the me
hani
al system. The result,
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Figure 5-31: Residual vibrations indu
ed in the system of Fig. by an exponential jerk

traje
tory with TJ = 0.5T̂J (a) and TJ = 1.5T̂J (b), and by a se
ond order traje
tory

�ltered by a ZVD input shaper with TJ = 0.5T̂J (
) and TJ = 1.5T̂J (d).

illustrated in �g. 5-30, 
on�rms that the redu
tion of the residual vibration obtained

with a simple time-s
aling is rather limited if 
ompared with the proposed approa
h,

for equal time duration of the overall traje
tory.

Finally, the robustness of the �lter Fexp with respe
t to errors in the parameter TJ has

been experimentally tested. In �g. 5-31(a) and �g. 5-31(b) the responses of the system

to the exponential jerk traje
tory 
omputed with the parameter TJ equal to 0.5T̂J and

1.5T̂J are reported, and 
on�rm that an underestimation of TJ makes the �lter Fexp

less e�e
tive while an overestimation of TJ lead to small residual vibrations. Con-

versely, with ZVD input shapers only the nominal values of the parameters produ
e

good performan
es. In fa
t, both underestimation and overestimation of TJ 
ause

large residual vibrations, see �g. 5-31(
) and (d). Note that in the test reported in
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�g. 5-31(b) the residual vibration is even smaller than the vibration obtained with the

nominal value of parameter TJ and shown in �g. 5-29(a). This is probably due to the

fa
t that the higher duration of the traje
tory, i.e. Ttot = T1 + T2 + 1.5T̂J = 0.3808 s,

with respe
t to the nominal traje
tory, for whi
h Ttot = 0.3410 s, mitigates the above

mentioned non-ideal phenomena, like fri
tion and 
ogging, and allows the motor to

better tra
k the given pro�le qref(t).

5.6 Feedforward Control of an Elasti
 Joint

for Vibrations Suppression

In the previous Se
tions it has been shown that the use of exponential jerk traje
tories,

whi
h 
an be e�
iently generated by �ltering standard trapezoidal traje
tories, allows

to redu
e 
onsiderably the vibrations level in motion systems with elasti
 transmis-

sion. In parti
ular a dynami
 �lter Fexp(s) has been de�ned and 
hara
terized both

analyti
ally and experimentally. In order to further exploit the 
apability of the ex-

ponential �lter, in [18℄ has been proposed as a feedforward 
ontroller for Variable

Sti�ness A
tuators (VSAs).

VSAs are trend topi
 in roboti
s sin
e two de
ades ago. The development of servi
e

robots 
lose 
ooperating with humans has driven the designers towards novel me-


hani
al solutions aiming at in
reasing the me
hani
al 
omplian
e and redu
ing the

apparent inertia of robot manipulators [20℄. Unfortunately, an high level of me
han-

i
al 
omplian
e deteriorates the performan
e of the plant, in parti
ular with respe
t

to pre
ision. For this reason, in order to solve simultaneously safety and performan
e

issues, VSAs, whi
h introdu
e a me
hani
al 
omplian
e in the joint a
tuation that


an be altered via 
ontrol a
tion, have been proposed [23, 110, 104, 22℄. Unfortu-

nately, the performan
e of Variable Sti�ness Joints (VSJ) robots are still far from

those of standard rigid joints manipulators, be
ause of the high order nonlinear dy-

nami
s of the system, due to the additional sti�ness variation me
hanism, and the

strongly nonlinear 
hara
teristi
s of VSAs. Moreover, a major problem of VSAs is the
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very low intrinsi
 damping that usually 
hara
terizes this type of devi
es, whi
h may


ause vibrations and undesired os
illations, [3℄. A

ordingly, inje
ting damping into

the system is one of the main 
ontrol goal in this �eld. Several 
ontrol approa
hes for

VSJ robots are presented in the literature. While many 
ontrollers are 
on
eived for

single-joint systems (see [103, 3℄ among many others), the multi-joint 
ase is treated

less frequently. A feedba
k linearization algorithm is designed and validated in sim-

ulations in [69℄. A state feedba
k 
ontroller aiming at obtaining the desired level of

damping is presented in [76℄, while, more re
ently, in [77℄ a ba
kstepping approa
h

has been proposed in order to manage the 
omplexity of a VSA system.

The 
hoi
e of a feed-forward 
ontrol for VSAs is motivated by a twofold reason:

• the goal of the 
ontrol is to 
an
el the os
illations that a�e
t point-to-point

motions of the robot joints, 
onne
ted to the motors by the (variable sti�ness)

elasti
 transmissions with low damping, while stati
 performan
es, in terms of

pre
ision, are not addressed;

• the proposed open-loop 
ontrol does not alter the sti�ness seen at the link side,

while a 
losed-loop 
ontrol does it [3℄.

Note that, in the literature a number of feedforward 
ontroller has been applied to

roboti
 system with elasti
 elements. In [5, 59, 65℄ the 
ommand shaping te
hnique

has been used for robots with �exible links in order to redu
e vibrations. The same

goal has been a
hieved for robot manipulators with elasti
 joints, in [52℄, where an

input shaping te
hniques is 
ombined with an iterative learning me
hanism that up-

dates the parameter of a Zero Vibration (ZV) input shaper in order to take into

a

ount nonlinear and time-varying 
hara
teristi
s of the plant.

The 
ontrol of a single roboti
 joint with elasti
 transmission, like the one depi
ted

in �g. 5-32, 
an be easily performed by 
onsidering only variables at the motor side.

It is well known, see e.g. [27℄, that, in absen
e of gravity, a PD 
ontrol based on mo-

tor's position qm and velo
ity q̇m is stable for any positive value of the proportional

and derivative gains. Therefore, it is possible to obtain a 
ontrolled system that in

prin
iple is arbitrarily fast and pre
ise. Unfortunately, even if the motor is able to
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ture of a roboti
 joint with elasti
 transmission.

tra
k the desired referen
e signal qref(t) with small errors (and therefore it is possible

to assume qm(t) ≈ qref (t)) the link position may be a�e
ted by undesired os
illations

and vibrations. As a matter of fa
t, the relationship between the motor position and

the link position 
an be modelled as a typi
al se
ond order system G(s) like the one

in (1.3). Thus the use of the exponential �lter Fexp(s) in (5.3) as a 
ommand shaper

for the 
ontrolled motor has been already proven to be a simple and e�e
tive way

to redu
e/suppress the os
illation. This 
onsideration allow to generalize the results

in previous Se
tions to any type of Single Input Single Output (SISO) Linear Time-

Invariant (LTI) system, 
hara
terized by one or more os
illating dynami
al modes.

Therefore, given a dynami
 system modelled as

G(s) =
N(s)

D(s)(s2 + 2δωns+ ω2
n)

where N(s) and D(s) are generi
 polynomial (D(s) Hurwitz), it is possible to show

that the 
ontribution to the response of the os
illating mode 
hara
terized by (δ, ωn)


an be 
ompletely nulli�ed TJ se
onds after the appli
ation of the input signal by

inserting between the input and the system a properly tuned �lter Fexp(s).
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5.7 Feedforward Control of MIMO LTI Systems

for Residual Vibration Suppression

The extension of the results for SISO systems to Multiple Input Multiple Output

(MIMO) systems is straightforward. As a matter of fa
t, for MIMO LTI systems,

usually modelled in the state spa
e domain as







ẋ = Ax+Bu

y = Cx+Du
(5.13)

where x ∈ Rn
is the state ve
tor, u ∈ Rr

is the input ve
tor, y ∈ Rm
is the output

ve
tor, and {A, B, C, D} are matri
es of appropriate dimensions, it is possible to

dedu
e the transfer matrix, i.e. the matrix of the transfer fun
tion between the r

inputs and the m outputs,

H(s) =
CAdj(sIn −A)B + |sIn −A|D

|sIn −A| (5.14)

where Adj(X) is the adjoint matrix asso
iated with X and |X| denotes the deter-
minant of X. The term |sIn −A| is an n-th polynomial, whose roots are the poles

4

of the transfer fun
tions that 
ompose H(s). Note that, if no 
an
ellations o

ur

between the numerator and the denominator of these transfer fun
tions, they share

the same poles. Therefore, in order to suppress the e�e
ts of a poorly damped mode

(δ, ωn) on the outputs, it is ne
essary to insert a �lter Fexp(s) before ea
h of the r

inputs.

5.8 Feedforward Control of Roboti
 Manipulators

with Elasti
 Joints

In order to apply the te
hnique proposed in Se
tion 5.1 to a roboti
 system a

ordingly

to the MIMO 
ase extension in Se
tion 5.7, it is ne
essary to 
onsider the 
omplete

4

As well-known, if no 
an
ellations o

ur the poles 
oin
ide with the eigenvalues of matrix A.
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model of the manipulator. The redu
ed model

5

of a vis
o-elasti
 joints robot is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+Kt · (ql − qm)

+Bt · (q̇l − q̇m) = 0 (5.15)

where M(ql), and C(ql, q̇l) are the inertia and 
entrifugal/Coriolis for
es matri
es,

g(ql) represents the gravity term, Kt = diag{kti}, Bt = diag{bti} are the matri
es

of the transmission sti�ness and vis
ous fri
tion, ql and qm denote the ve
tor of

the joint positions at the link side and at the motor side, respe
tively [28℄. Note

that the motors' dynami
s that usually a

ompanies (5.15) has been negle
ted sin
e,

a

ording to a standard de
entralized 
ontrol of robot manipulators, it is assumed that

the motors behave like ideal position sour
es able to impose any desired 
on�guration

qm.

The model of VSJ robots 
an be ideally obtained from (5.15) by assuming that the

sti�ness matrix is not a 
onstant but a fun
tion of time, i.e.

Kt = Kt(t).

The sti�ness modi�
ation is generally obtained with extra 
ommand inputs to the

robot system that allow to 
hange ea
h joint sti�ness independently, i.e.

kti = kti(si)

where si denotes the a
tivation signal of the sti�ness of the i-th joint. Therefore,

it is possible to rewrite the transmission sti�ness matrix as Kt = Kt(s). In many


ases, in parti
ular when the variable sti�ness me
hanism is obtained with a 
ouple

of antagonisti
 a
tuators (like in the experiments proposed in this paper) [69℄, the

elasti
 torque not only depends on the external signal s(t) but is a nonlinear fun
tion

of the motors displa
ement. As a 
onsequen
e, the general expression of the elasti


5

This model is based on the assumption that the angular kineti
 energy of the motors is only due

to their own spinning [99℄.
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transmission torque should be τ
el

= τ
el

(ql−qm, s) where τ el

(∆q, ·) denotes a ve
torial
nonlinear fun
tion whose elements are odd stri
tly monotoni
ally in
reasing fun
tions

of ∆q and τ
el

(0, ·) = 0. Finally, it is worth noti
ing that often the variable sti�ness

me
hanism makes also the damping torques not 
onstant but variable as a fun
tion

of the time. Therefore, a quite general expression that des
ribes the dynami
s of VSJ

robots is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+τ el(ql − qm, s)

+τ
damp

(q̇l − q̇m, s) = 0 (5.16)

where, similarly to τ
el

, τ
damp

(∆q̇, ·) denotes a ve
torial nonlinear fun
tion whose

elements are odd stri
tly monotoni
ally in
reasing fun
tions of∆q̇ and τ
damp

(0, ·) = 0.

5.8.1 Linearized Model of a VSJ Robot and Feed-Forward

Design

In order to �nd the parameters of the proposed �lter for feed-forward 
ontrol for a

given value s = s⋆, it is ne
essary to linearize (5.16) around the desired equilibrium

state (ql, q̇l) = (q⋆
l , 0) with q⋆l related to the equilibrium input (qm, q̇m) = (q⋆

m, 0) by

g(q⋆
l ) + τ

el

(q⋆
l − q⋆

m) = 0. (5.17)

Note that, for the sake of 
larity, sin
e the input s is supposed to be a 
onstant the

dependan
e of τ
el

and τ
damp

on it has been omitted. The approximation of (5.16) by

Taylor series expansion up to the �rst order provides the following expression

M (q⋆
l )∆q̈l + g(q⋆

l ) +
∂g(ql)

∂ql

∣
∣
∣
∣
ql=q

⋆
l

∆ql + τ
el

(q⋆
l − q⋆

m)

+
∂τ

el

(∆q)

∂∆q

∣
∣
∣
∣
∆q=q⋆

l
−q⋆

m

(∆ql −∆qm) +
∂τ

damp

(∆q̇)

∂∆q̇

∣
∣
∣
∣
∆q̇=0

(∆q̇l −∆q̇m) = 0 (5.18)

where ∆ql = ql − q⋆
l , ∆qm = qm − q⋆

m, et
. represent small variations with respe
t

to the 
orresponding equilibrium values. Note that 
entrifugal/Coriolis terms, that
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are quadrati
 with respe
t to the velo
ity, disappear in the linearized model. By

substituting (5.17) in (5.18) and denoting

G⋆ =
∂g(ql)

∂ql

∣
∣
∣
∣
q

l
=q⋆

l

K⋆
t =

∂τ
el

(∆q)

∂∆q

∣
∣
∣
∣
∆q=q⋆

l
−q⋆

m

B⋆
t =

∂τ
damp

(∆q̇)

∂∆q̇

∣
∣
∣
∣
∆q̇=0

the expression of the linearized model be
omes

M(q⋆
l )∆q̈l +G⋆∆ql +K⋆

t (∆ql −∆qm) +B⋆
t (∆q̇l −∆q̇m) = 0 (5.19)

whi
h 
an be rewritten in the state-spa
e form su
h as (5.13) with

A =




0n In

−M−1(q⋆
l )K

⋆
t −M−1(q⋆

l )G
⋆ −M−1(q⋆

l )B
⋆
t





B =




0n 0n

M−1(q⋆
l )K

⋆
t M−1(q⋆

l )B
⋆
t





where the state and input ve
tor are x =




∆ql

∆q̇l




and u =




∆qm

∆q̇m




respe
tively. By

analyzing the eigenvalues of the matrix A it is possible to �nd the values of the reso-

nant modes that a�e
t the roboti
 plant. A n degrees-of-freedom robot manipulator

with undamped or poorly damped elasti
 joints will be 
hara
terized by n pairs of


omplex 
onjugate eigenvalues with (δi, ωni), i = 1, . . . , n. In order to suppress the

os
illations at a 
onstant 
on�guration q⋆
l it is su�
ient to �lter the referen
e signals

of the motors, and 
onsequently the motor positions qm(t) supposed to be equal to

qref(t), with a 
hain of �lters Fexpi(s), one for ea
h mode of the system.
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5.9 Experimental Results

The method des
ribed in previous se
tions has been tested on a real soft roboti


arm build with QBMove - Maker Pro VSAs by QBRoboti
s [81℄. These a
tuators

implement the 
on
ept of variable sti�ness servo motors, i.e. motor units that in
lude

also (position) sensing and 
ontrol system allowing the user to 
ommand both the

position and the sti�ness of the output shaft with an external signal. For these reason,

these a
tuators are very suitable for rapid prototyping robots with variable sti�ness

joints [22℄. QBMove VSAs are provided with an easy to use Matlab/Simulink toolbox

that 
an runs without parti
ular restri
tion even on standard operating system and


ommuni
ates with the a
tuators via USB. In the experiments reported in this se
tion

Matlab ran with a �xed step size Ts = 2 ms. For this reason, the �lter Fexp(s) has

been dis
retized a

ording to the te
hniques reported in Se
tion 5.3.

The me
hani
al stru
ture of these VSAs is based on an antagonisti
 
on�gurations

with two servomotors 
onne
ted to the output shaft by tendons that are �xed to

springs. The working prin
iple is quite simple: the shaft position is the mean of the

servos position so it is due to the 
on
ordant motion of the servo motors, while the

sti�ness grows as the displa
ement between the servos in
reases. Therefore, when the

user spe
i�es a give shaft position ql and a sti�ness preset s, these values, related to

the motor position by

ql =
qm,1 + qm,2

2
, s =

qm,1 − qm,2

2
,

are translated by the QBMove 
ontroller in the motor positions qm,1 and qm,2, that

are a
tuated by the two servomotors. As a 
onsequen
e, a feedforward 
ontroller that

�lters the inputs ql and s is a
tually pla
ed before the motor position qm,1 and qm,2,

as supposed in Se
. 5.8.
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Parameter Value Unit

Peak (Maximum) Torque 1.5 Nm

Maximum Speed 9.5 rad/s

Maximum Sti�ness 13 Nm/rad

Minimum Sti�ness 0.5 Nm/rad

Figure 5-33: CAD view of the setup for parameters evaluation and main data of the

servomotor.

5.9.1 Chara
terization of a Single A
tuator

In order to test the proposed method, an intensive experimental analysis on a single

a
tuator has been 
arried out to estimate the parameters α and TJ whi
h 
hara
ter-

ize the �lter Fexp(s). In order to better appre
iate the os
illations due to the elasti


transmission, a known inertial load represented by an iron disk of diameter 10 
m

and weight 1 kg has been atta
hed to the a
tuator shaft, as shown in �g. 5-34. Then

a step of 45o have been 
ommanded to the a
tuator with a �xed sti�ness preset value

and the response has been evaluated.

Several tests has been performed with various sti�ness values in order to analyze

di�erent step responses. As 
an be seen from the responses of �g. 5-34, the system

behaves like a se
ond order system. This means that the dominant dynami
s is the

me
hani
al dynami
s of the inertia with the elasti
 transmission, while the dynami
s

of the two servo motors inside the a
tuators 
an be negle
ted. For ea
h sti�ness
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Figure 5-34: Step response ql(t) of the servomotor with an inertial load with di�erent

sti�ness values k⋆
t . In red the step set-point of 45o is reported.
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Figure 5-35: Estimated parameters ωn (a) and δ (b) for di�erent values of sti�ness

presets s⋆. Di�erent equilibrium points have been 
onsidered.

preset s⋆, and therefore for ea
h values of the sti�ness k⋆
t , the values of the damp-

ing 
oe�
ient δ and natural frequen
y ωn of the system have been determined, and

are reported in �g. 5-35. It is worth noti
ing that, as expe
ted, ωn in
reases as the

sti�ness grows but it is also visible a slight in
rease of δ, due to fri
tion e�e
ts of

the parti
ular transmission of the QBMove. Sin
e Jl is known, from δ and ωn it is

possible to immediately dedu
e the values of the sti�ness and damping (k⋆
t , b

⋆
t ) about

the equilibrium point.

In a �rst stage of this experimental a
tivity, the proposed feedforward 
ontrol based

on the exponential �lter Fexp(s) has been applied to a single a
tuator and its per-

forman
e have been 
ompared with those of ZVD Input Shapers, that are the most

widespread �ltering methods for residual vibration suppression, see [95, 86, 106℄. In

order to appre
iate the e�e
tiveness of the proposed method, only very low sti�ness

values have been 
onsidered as they represent a more 
hallenging situation in terms

of vibrations. With the parameters derived by means of the pro
edure des
ribed

above, the appropriate parameters of the exponential and ZVD �lters have been de-

rived for every sti�ness preset that has been 
onsidered. Then a �ltered step input

has been provided to the a
tuator. The obtained results are shown in �g. 5-36: the

performan
es of the two methods in terms of residual vibration redu
tion and time
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Figure 5-36: Response of the system with sti�ness preset s⋆ = 5 to a step input of

45o, shaped by exponential jerk �lter (a) and ZVD input shaper (b).

duration of the motion are similar and in general very good. However, it is interesting

to noti
e the di�eren
e between the motions qm,1(t) and qm,2(t) performed by the two

servo motors. While the motors with the ZVD input shaper are fed by several steps,

exponential �lter provide a smoother traje
tory that 
an be easily tra
ked.

5.9.2 Appli
ation of the feed-forward 
ontrol to a planar robot

The proposed te
hnique has been applied to the 3-dofs planar roboti
 arm made of

QBmove VSAs shown in �g. 5-37. For our purpose the arm has been 
ontrolled only

in position without 
aring about orientation, therefore the dis
ussion refers only to

the �rst two joints. The a
tuator parameters (k⋆
t , b

⋆
t ) derived in previous se
tion for

a given sti�ness preset s⋆ have been used to determine the values (δi, ωni) of the two

vibratory modes that 
hara
terize the robot model, linearized about the desired �nal


on�guration. From these values the parameters of two exponential �lters, whi
h are

arranged in a 
as
ade 
on�guration on the referen
e inputs of the motor, are obtained,

see �g. 5-38. Also in this 
ase the behavior obtained with the proposed exponential

�lter is 
ompared with the those obtained with ZVD Input Shapers.

In the test shown in �g. 5-39, only the �rst joint is moved, a

ording to a step signal

of 30o. In this 
ase the preset sti�ness signal has been set to 5. Despite the large

variations, the �lters, designed for linear systems, are able to 
an
el the os
illation
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Figure 5-38: Blo
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heme representation of the feedforward 
ontrol.

on the �rst joint and also to avoid the mutual in�uen
e with the se
ond joint, see

�g. 5-39(b). In �g. 5-40 a simultaneous motion of 30o is required to both joints. It is

quite evident that the proposed method eliminates residual vibrations. Moreover, it

guarantees a smoother motion with respe
t to the ZVD input shaping te
hnique with

the same time performan
e. In both the experiments it is evident a noti
eable position

error due to the fa
t that feedforward 
ontrol is not able to 
ompensate for fri
tion

186



e�e
ts (the gravity does not a�e
t the system whi
h move on the horizontal plane).

Anyway, the fa
t that even without �lters the stati
 error is 
omparable proves that

this problem is not related to the spe
i�
 traje
tory generation, but rather to the

small value of the sti�ness.

In �g. 5-41 the same experiment of �g. 5-40 but with an higher value of the sti�ness

(s⋆ = 30) is shown. The 
on
lusions do not 
hange with respe
t to the previous test,

that is the use of exponential �lters on the referen
e inputs 
an
els the os
illations

on the joints positions. In this 
ase, the stati
 pre
ision slightly improves, be
ause of

the higher sti�ness.
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Figure 5-39: Response of the a
tuators (ql,2(t) and ql,2(t)) that 
ompose the 2-dofs

roboti
 arm to a step input traje
tory with a sti�ness preset s⋆ = 5. In dashed red the
a
tual traje
tory is reported. �g. 5-39(a) is a pure step, �g. 5-39(b) is an exponential

�ltered step, �g. 5-39(
) is a ZVD shaped input.
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Figure 5-40: Response of the a
tuators (ql,1(t) and ql,2(t)) that 
ompose the 2-dofs

roboti
 arm to a step input traje
tory with a sti�ness preset s⋆ = 5. In dashed red the
a
tual traje
tory is reported. �g. 5-40(a) is a pure step, �g. 5-40(b) is an exponential

�ltered step, �g. 5-40(
) is a ZVD shaped input.
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Figure 5-41: Response of the a
tuators (ql,1(t) and ql,2(t)) that 
ompose the 2-dofs

roboti
 arm to a step input traje
tory with a sti�ness preset s⋆ = 30. In dashed

red the a
tual traje
tory is reported. �g. 5-41(a) is a pure step, �g. 5-41(b) is an

exponential �ltered step, �g. 5-41(
) is a ZVD shaped input.
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Chapter 6

A Repetitive Control S
heme

for Industrial Robots

Based on B-Spline Traje
tories

6.1 Motivations

In pra
ti
al appli
ations, desired tasks are often repetitive or 
y
li
 in nature. This

is parti
ularly true in industrial roboti
s and in automati
 ma
hines, where many

tasks simply imply the 
ontinuous repetition of a given motion. From a 
ontrol point

of view, it is therefore required to tra
k and/or reje
t a periodi
 exogenous signal

that 
an be 
onsidered known sin
e it refers to planned traje
tories or disturban
es

whose 
y
le time is easily measurable or known in advan
e. In order to improve the

tra
king a

ura
y, Repetitive Control (RC) represents a simple and e�e
tive method,

sin
e it aims at 
an
elling tra
king errors over repetitions by learning from previous

iterations. RC was �rst developed by Inoue et al. [45, 44℄ to improve the 
ontrol

of the power supply in a proton syn
hrotron a

elerator, but soon was applied to

many other di�erent systems. Many surveys, see e.g. [25℄, [109℄, report the su

essful

use of RC in a number of appli
ations, su
h as high a

ura
y traje
tory tra
king of

servome
hanism, torque vibration suppression in motors, noise 
an
ellation in power
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supply, industrial roboti
s, and so on. The theoreti
al foundation of the RC is due

to the internal model prin
iple (IMP) [35℄ whi
h states that to tra
k or reje
t a


ertain signal without steady-state error, the signal 
an be regarded as the output

of an autonomous generator that is inside the 
ontrol system. The IMP with the

well known fa
t that any periodi
 signal with period T 
an be generated by a time-

delay positive feedba
k system with an appropriate initial fun
tion, are the basis of

a Repetitive Controller.

Stabilizability of a RC system is not a trivial problem due to the presen
e of a time-

delay in the positive feedba
k loop. In order to address this issue, several solutions

have been presented providing ne
essary and/or su�
ient 
onditions for stability and

error 
onvergen
e to zero.

In [17, 16℄, a novel repetitive 
ontrol s
heme is presented. The s
heme is based on a

proper modi�
ation of the referen
e traje
tory for the plant, whi
h is supposed to be

already 
ontrolled. A similar idea has been already proposed in the 
ontinuous-time

domain in [37℄, where a two-degree-of-freedom lo
al 
ontrol, and a plug-in type RC is

used to update the referen
e traje
tory. The novelty of this 
ase 
onsists in assuming

that the referen
e traje
tories are de�ned by spline fun
tions, whi
h are de-fa
to the

standard tool used in the industrial �eld for planning 
omplex motions interpolating a

set of given via-points [9℄. Thanks to the possibility of generating B-spline traje
tories

by means of dynami
 �lters as reported in Chapter 4, the traje
tory planner has

been inserted in an external feedba
k 
ontrol loop that modi�es in real-time the


ontrol points of the B-spline 
urve so that the tra
king error at the desired via-points


onverges to zero. The proposed 
ontrol s
heme has been dire
tly developed in the

dis
rete time-domain, and is 
hara
terized by a very low 
omputational 
omplexity.

Moreover, the appli
ation of this 
ontrol s
heme is independent by the parti
ular


ontrol law of the plant, whi
h is seen as a servo-system able to tra
k a spline 
urve.
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6.2 B-spline Curves and B-spline Filters for Set-point

Generation

In a number of pra
ti
al appli
ations the referen
e signal for dynami
al systems is

de�ned by using spline fun
tions that interpolate a set of desired via-points qj, j =

0, . . . , n − 1 at time instants tj. By assuming a B-spline form of the traje
tory, as

reported in Se
tion 4.2 results

q(t) =
n−1∑

j=0

pj B
d
j (t), t0 ≤ t ≤ tn−1 (6.1)

where Bd
j (t) is a B-spline basis fun
tion of degree d, the 
ontrol points pj must be


omputed by imposing interpolation 
onditions on the given data points qj , see [9℄.

Note that, as shown in �g. 6-1, the 
ontrol points alone determine the geometri
 shape

of the B-spline 
urve, whi
h represent a sort of smooth approximation of the so-
alled


ontrol polygon.

6.2.1 B-spline Evaluation

In order to evaluate the spline (6.1) for a given value t ∈ [t0, tn−1] it is ne
essary

to 
ompute the basis fun
tions Bd
j (t) via numeri
al pro
edures, whi
h are usually

based on re
ursion. As des
ribed in Se
tion 4.3.3 if uniform B-splines are 
onsidered,

i.e. B-splines 
hara
terized by an equally-spa
ed distribution of the knots tj i.e.

tj+1 − tj = T j = 0, . . . n − 2, the generation of the traje
tory 
an be obtained by

means of a 
hain of d dynami
 �lters de�ned as

M(s) =
1− e−sT

Ts

fed by the stair
ase signal p(t) obtained by maintaining the value of ea
h 
ontrol

point pj for the entire period jT ≤ t < (j + 1)T . See the s
heme of �g. 6-2 and

the signals shown in �g. 4-15, where the generation of a 
ubi
 B-spline is 
onsidered.

Note that p(t) is obtained by applying a zero-order hold to the train of impulses of
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amplitude pj . Moreover, it is worth noti
ing that the output traje
tory is delayed

with respe
t to the appli
ation of 
ontrol points of mT se
onds, where m = d+1
2
. For


omputer 
ontrolled systems equipped with digital 
ontrollers with sampling period

Ts, the B-spline referen
e traje
tory must be 
omputed at time-instants kTs. It is

therefore ne
essary to dis
retize the �lter of �g. 6-2. By Z-transforming the 
hain of

d �lters M(s) with a zero-order hold the system of �g. 6-3 is obtained, where Fd(z
−1)

is a FIR �lter de�ned by

Fd(z
−1) =

z−1Qd−1(z
−1)

d!
, (6.2)
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rete-time B-spline traje
tories

of degree d.

as reported in Se
tion 4.5. The samples of the B-spline sequen
e are then generated

by the �lter denoted by Md(z) and 
oin
ide with the value of the 
ontinuous-time

traje
tory at time instants kT , i.e qk = q(kT ), see �g. 6-4.

6.2.2 Control Points Computation

The 
ontrol points pj are 
omputed by imposing the interpolation 
onditions on

the via-points at the time-instants de�ned by knots whi
h for uniform B-spline are

multiple of the fundamental period T , i.e.

q(jT ) = qj, j = 0, . . . , n− 1. (6.3)

As well-known the de�nition of the interpolating B-spline is a global problem, that


an be performed only when the entire set of via-points is provided. However, it is

possible to approximate this global mapping between via-points and 
ontrol points

within a smaller set of data, see Se
tion 4.5.4. The system H(z) is a FIR �lter that

approximates the relation between via-points and 
ontrol points assuming to treat

the interpolation problem as a dynami
 relationship between via-points and 
ontrol

points, i.e.

P (z)

Q(z)
=

6

z + 4 + z−1
(6.4)
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e pj de�ning a 
ubi
 B-spline and related referen
e

traje
tory qk−mN with m = 2 obtained with the dynami
 �lter of �g. 6-3.

for a 
ubi
 B-spline. This approa
h leads to a FIR �lter de�ned by

H(z) =

r∑

n=−r

h(n) z−n
(6.5)

that approximates the interpolation problem within a pres
ribed toleran
e a

ording

to the value of r. The 
oe�
ients h(n) for d = 3 
an be 
omputed as

h(n) =
1− α

1 + α
α|n|

where α = −2+
√
3 is the stable pole of (6.4). The sequen
e h(n) is shown in �g. 4-32.

Note that the value of h(n) be
omes extremely small as |n| grows (for more details

194



PSfrag repla
ements

G(z)
Control

Points

Computation

up-sampler

1 : N

pj pk
qj qr

k−mN qk−mN

Mp(z)
1− z−N

1− z−1

T Ts

Figure 6-5: Set-point de�nition by means of B-spline �lter for a (
ontrolled) dis
rete-

time system G(z).

see [14℄).

In the s
heme of �g. 6-7, the �lter H(z) is used to transform the interpolation errors

q̃j in an error in the 
ontrol points position p̃j . Sin
e H(z) is not a 
ausal �lter, it is

ne
essary to introdu
e a delay equal to r to make it feasible, that is

H ′(z) = z−r H(z) =
2r∑

n=0

h(n− r) z−n. (6.6)

The referen
e traje
tory generated by the dis
rete B-spline �lter is then provided

to the plant, as illustrated in �g. 6-5. Sin
e this s
heme has a standard 
as
ade

stru
ture without 
ontrol a
tions but with the only purpose of generating arbitrarily


omplex traje
tories for the plant G(z), the 
apabilities of G(z) to tra
k su
h a kind

of signals are impli
itly assumed. Therefore, the system G(z) is assumed to be a


ontrolled plant, with a standard 
losed-loop stru
ture, whose frequen
y response is


hara
terized by a typi
al low-pass behavior with a stati
 gain as 
lose as possible to

the unity. In order to follow the input signal a

urately, the bandwidth of system must

be large enough [67℄, and in parti
ular larger than the maximum spe
tral 
omponents

of the input. In 
ase of uniform B-splines generated by the linear �lter Md(z), the

spe
trum of the resulting traje
tories 
an be determined by analyzing the frequen
y

response of Md(z). In parti
ular the magnitude of Mp(e
jωTs) is

|Mp(e
jωTs)| =

∣
∣Fp(e

−jω)
∣
∣ ·

∣
∣
∣
∣
∣
∣

sin


(
ω
ω0

)

sin


(
ω
ωs

)

∣
∣
∣
∣
∣
∣

d

, ω ≤ ωs

2
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Figure 6-6: Magnitude of the frequen
y response of the B-spline �lter Mp(z) for

p = 3 (and N = 25) 
ompared with the frequen
y response of the 
ontinuous-time

generator Md(s).

where sin
(·) denotes the normalized sin
 fun
tion de�ned as sin
(x) = sin(πx)
πx

and

ω0 =
2π
T
, ωs =

2π
Ts
. The FIR �lter Fp(e

−jω) has a standard low-pass behavior, therefore

|Md(ejωTs)| is a low-pass �lter as well, and its magnitude de
reases rather qui
kly as

ω grows, espe
ially for high values of p. In �g. 6-6, the frequen
y response of the


ubi
 (p = 3) B-spline �lter is reported. Obviously, the frequen
y response of Mp(z)

is a good approximation of that of the 
ontinuous time generator (the approximation

level depends on the ratio N between T and Ts). Fig. 6-6 highlights that spe
trum


omponents of the referen
e traje
tory qr(t − mT ) at the output of this �lter are

signi�
ant only in the frequen
y range [0, ω0], while the redu
tion of the 
omponents

for ω > ω0 is at least of two order of magnitude (-40 db). From 
ommon pra
ti
e, it is

known that in order to obtain good tra
king performan
es, the 
ontrolled plant G(z)

must have a 
uto� frequen
y ωc ≫ ω0 (typi
al values are ωc ≥ αω0, with α = 5÷10).

Consequently, sin
e the sampling frequen
y ωs is 
hosen as ωs ≥ βωc with β = 5÷10,

the minimum value of N may range between 25 and 100.
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Unfortunately, even if the 
onsiderations on G(z) above mentioned are veri�ed, that

is

G(ejωTs) ≈ 1 for ω ≤ 2π

T
≪ ωc (6.7)

the tra
king error e = q − qr
between plant output and referen
e B-spline traje
tory


an be not negligible, be
ause G(ejωT ) is equal to one only approximatively and may

be a�e
ted by external disturban
es.
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Figure 6-7: Dis
rete-time repetitive 
ontrol s
heme based on dis
rete-time B-spline

�lter.

6.3 Repetitive Control S
heme Based on Dis
rete-

Time B-spline Filter Generator

We assume here that the tasks to be performed are 
y
li
, and therefore that the

traje
tories to be tra
ked are repetitive. Moreover, we assume that also �external�

disturban
es have the same property, i.e. that there might be either external loads

or unmodeled dynami
s depending on the 
urrent state of the system. In �gs. 6-8

and 6-9 is depi
ted the typi
al situation of a robot tra
king a given traje
tory q⋆(t)

whi
h interpolates a set of desired via-points q⋆
j . Being the robot subje
t to a 
ertain

tra
king error, the a
tual robot position q(t) doesn't mat
h the given traje
tory,

thus the desired via-points. In this 
ase, it is possible to implement a pro
edure for

modifying the referen
e signal in order to guarantee that the interpolation error at
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tory interpolating a set of via-points q⋆
j .

the given via-points q⋆
j asymptoti
ally vanishes as highlighted in �g. 6-9.

The s
heme of �g. 6-7 shows the me
hanism for B-spline modi�
ation based on the

RC approa
h. In this s
heme, both the traje
tory generator and the plant G(z) are

inserted in a dis
rete-time 
ontrol loop that, on the basis of the interpolation error

q̃j = q⋆
j − qj , modi�es in real-time the 
ontrol points sequen
e (denoted by pr

j) from

the initial value p⋆
j . It is a typi
al dual rate system with the feedba
k loop running at

a sampling time T 
onsiderably higher than the period Ts of the traje
tory generator

and of the 
ontrolled plant G(z).

The sequen
e p̃j multiplied by the 
onstant Kp, assumed to be equal to one, and

properly delayed in time is provided to the �lter

1

1 + z−n
(6.8)

used to 
ompute the referen
e sequen
e of points pr
j for the dis
rete-time interpolator

based on B-splines and the 
ontrolled plant. Note that the initial value of the output
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Figure 6-9: Two-dimensional B-spline traje
tory interpolating a set of via-points q⋆
j .

of �lter in (6.8) has been set to p⋆
j , that is the sequen
e of the 
ontrol points de�ning

the ideal traje
tory.

Theorem 1. The 
ontrol s
heme of �g. 6-7, subje
t to periodi
 disturban
es, guaran-

tees that the interpolation error q̃j = q⋆
j − qj between the desired via-points and the

plant output at time tj = jT = kNTs asymptoti
ally 
onverges to zero provided that

the plant G(z) meets the traje
tory tra
king 
ondition (6.7).

Proof. A

ording to the theory of dis
rete-time repetitive 
ontrol [105℄, that exploits

the internal model prin
iple [35℄, the presen
e in the 
ontrol loop of the transfer

fun
tion (6.8) assures asymptoti
 perfe
t tra
king of a periodi
 signal with period n

(in this 
ase the sequen
e of desired via points q⋆
j) if the stability of the whole system

is assured.

Be
ause of the stru
ture of the 
ontrol s
heme, the stability analysis of the system at

the slow sampling rate (T ) 
an be dedu
ed by neutralizing the e�e
ts of up-sampler

and down-sampler. By 
onsidering the 
as
ade of the �lter H(z) and of the system
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with period Ts 
omposed by plant and traje
tory generator, as shown in �g. 6-10(a),

it is possible to simplify the s
heme by means of some formal manipulations:

• Sin
e the 
ontrolled plant G(z) is supposed to have a standard low-pass stru
-

ture, in a worst 
ase perspe
tive, in lieu of the transfer fun
tion G(z) the (
on-

stant) 
omplex number

G
w


= max
ω≤ω0

|G(ejωTs)| e
jmin

ω≤ω0

{argG(ejωTs)}


an be 
onsidered in order to take into a

ount the maximum gain variation and

the maximum (negative) phase displa
ement 
aused by G(z). The use of the

B-spline �lter allows to restri
t the range of variation of ω to the interval [0, ω0]

be
ause, as already noted, the referen
e signal for the plant 
an be 
onsidered

null outside this interval. In this way, the blo
k des
ribing the plant and the

down-sampler 
an be ex
hanged, as shown in �g. 6-10(b).

• the �lter H(z) whi
h approximates the relation between via-points q⋆
j and 
on-

trol points p̂⋆
j is followed by the B-Spline generator whi
h, fed by the 
ontrol

points p̂⋆
j , provides at knots jT the desired via-points q̂⋆

j−m delayed of mT in-

stants

1

. As 
onsequen
e this 
as
ade 
an be redu
ed to a simple time-delay

z−m
, as shown in �g. 6-10(
).

Finally, the s
heme of �g. 6-7 
an be redu
ed to the one shown in �g. 6-11, that

runs with a sampling period T . It is a quite standard repetitive 
ontrol s
heme whose

stability 
an be inferred by analyzing its 
hara
teristi
 equation

1 +
z−n

1− z−n
Kp Gw


= 0. (6.9)

By following the approa
h proposed in [102℄, it is possible to see that the asymptoti


stability of (6.9) is equivalent to the stability of the feedba
k system with loop-transfer

1

Note that p̂
⋆
j , and 
onsequently q̂

⋆
j−m, is only an approximation of the real value p⋆

j , be
ause

of the �lter H(z). However, the level of the approximation 
an be arbitrarily improved by assum-

ing larger values of r. If the interpolation of n via-points with B-spline traje
tory of degree p is


onsidered, the optimal (highest) value of r is r = n−m, being m = p+1
2 .
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Figure 6-10: Model redu
tion of the dis
rete-time repetitive 
ontrol s
heme based on

B-spline �lter.

fun
tion

L(z) = z−n(KpGw


− 1).

Therefore, by applying the Nyquist 
riterion it des
ends that all the poles of (6.9) are

within the unit 
ir
le if and only if the polar plot of L(ejωT ) for − π
T
≤ ω ≤ π

T
does

not en
ir
le or tou
h the 
riti
al points −1. This 
an be assured by imposing that

||KpGw


− 1|| < 1. (6.10)

Being Kp ≤ 1 (usually Kp = 1), the stability 
ondition (6.10) holds if 
ondition (6.7)

is met (in this 
ase G
w


≈ 1). �
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Note that from (6.7) results

Kp <
2 cos

(
minω≤ω0

{argG(ejωTs)}
)

maxω≤ω0
|G(ejωTs)| . (6.11)

Thus, in 
ase of ideal systems, the 
omplex number G
w


= 1 then suitable values

for the gain are Kp ∈ ]0, 2[. As a matter of fa
t real plants doesn't assure null

tra
king error presenting stati
 gain just 
lose to unity, therefore one may 
onsider

maxω≤ω0
|G(ejωTs)| < 1, and then values Kp > 2 may be a

eptable. In this 
ase

however, the argument of the plant plays a key role sin
e it 
an be shown that for

in
reasing values of the argument, the maximum value allowed for Kp de
reases. At

least for argG(ejωTs) = π
2
, Kp 
ollapses to zero therefore the system with RC be
omes

unstable.

6.4 Experimental analysis on a single a
tuator

In order to experimentally test the proposed method the setup of Fig. 6-12 has been

arranged. This system reprodu
es the typi
al behavior of a roboti
 joint without the

risk of stru
tural damages even if instability 
onditions o

ur, and is the ideal tool

for analyzing limits and performan
es of the proposed approa
h.

The test bed is 
hara
terized by two linear motors, LinMot PS01-37x120, rigidly


onne
ted along the axis of motion. Linear motor A is 
ontrolled by means of a

position 
ontroller properly set up to tra
k a desired periodi
 motion de�ned by a

uniform B-spline traje
tory. On the other side, the linear motor B, equipped with
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Figure 6-12: Experimental setup.

a for
e/
urrent 
ontroller, is used to generate an external periodi
 disturban
e that

emulates a me
hani
al load 
onne
ted to the a
tuator A or the inertial 
oupling that

exists among di�erent axes of a robot manipulator. In parti
ular, in the experiments

the simple relation

Fdist = −k qm(t)− c q̇m(t)

that reprodu
es a spring-damper system has been assumed, with the parameters

k = 500 [Nm℄ and c = 100 [Nm s

−1
℄. The 
ontrol system is based on the servo


ontroller LinMot E2010-VF that performs the basi
 
urrent 
ontrol, while the posi-

tion 
ontrol (based on a standard velo
ity/position 
as
ade 
ontrol s
heme) and the

for
e 
ontrol have been implemented on a standard PC with a Pentium IV 3 GHz

pro
essor and 1 GB of RAM equipped with a Sensoray 626 data a
quisition board,

used to 
ommuni
ate with the servo 
ontroller. The position of the motor is mea-

sured by an in
remental en
oder with a resolution of 1µm integrated in the stator.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux
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Figure 6-13: Response of the servo system of �g. 6-12 to a step input of amplitude

10mm.

kernel 2.6.17.11 and RTAI 3.4 allows the position 
ontroller to run with a sampling

period Ts = 500µs. For the design of the 
ontrol s
heme and of traje
tory generator,

the MatLab/Simulink/RealTime Workshop environment has been used.

In order to better highlight the behavior of the RC me
hanism, the integral 
ontrol

term whi
h is present in the position 
ontrol loop of the a
tuator has been disabled.

The response of the plant to a step input of amplitude 10 mm is shown in �g. 6-13

where it is 
ompared with that of a model based on a se
ond order system 
hara
ter-

ized by a stati
 gain of 0.915 and a natural frequen
y ωn = 63 rad/s. Note that the

real system is a�e
ted by not negligible nonlinear phenomena due to the very high

level of stati
 and 
oulomb fri
tion.

In order to test the performan
es of the system with the RC s
heme, a traje
tory

passing through n = 20 via-points is 
onsidered. On
e that the shape of the B-spline

traje
tory and its 
ontrol-points, whi
h depend only on the given via-points, have

been �xed, the only parameters of the traje
tory generator that 
an be 
hanged are

the knot span T (and a

ordingly the total duration of the traje
tory) and the or-

der d of the spline. In �g. 6-14, the behavior of the system with and without RC

modi�
ation of the traje
tory is shown, along with the interpolation errors q̃j, for

di�erent values of the degree d. When the RC is not a
tivated the tra
king error,
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Figure 6-14: Referen
e traje
tory and a
tual position of the motor A and related

interpolation error q̃j without and with RC me
hanism as a fun
tion of d (T = 0.25
s).

intentionally quite large due to the noti
eable external disturban
e, seems to be not

in�uen
ed by d. On the 
ontrary, when the RC is a
tivated (after 15 
y
les), even if

the interpolation error q̃j at sampling time jT is negligible, during the inter-samples

the tra
king error is strongly a�e
ted by d. The same 
on
lusions 
an be dedu
ed

from the results illustrated in �g. 6-15, where the tra
king errors obtained with the

RC for di�erent values of T and d are shown. It has to be noted that in these exper-

iments the gain Kp has been maintained equal to one, therefore the stability of the

overall 
ontrol system only depends on T , as stated in Se
tion 6.3. In fa
t the system

is stable until ω0 is smaller than the 
uto� frequen
y of the plant (ωc ≈ ωn = 63

rad/s). But when T = 0.05 s and a

ordingly ω0 = 125.6637 rad/s over
omes ωc the


ontrol system be
omes unstable, independently of d. Also by analyzing �g. 6-15,

it is 
lear that the amplitude of the inter-sample os
illation depends on d, and in

parti
ular it de
reases as d grows. This appear reasonable, sin
e pra
ti
al experien
e

suggests that smoother referen
e signals, represented by B-spline of higher degree d,

are usually better tra
ked by physi
al plants.

Finally, the role played by the gain Kp has been investigated. As a matter of fa
t,
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Figure 6-15: Interpolation error q̃j at sampling instants jT as a fun
tion of d and

T . On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

traje
tory, represents the number of iterations.
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Figure 6-16: Interpolation error q̃j at sampling instants jT as a fun
tion of Kp.

On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

traje
tory, represents the number of iterations.

despite the e�e
t on the rate of 
onvergen
y of the error q̃j whi
h is visible in �g. 6-16,

Kp has a role even on the stability of the system as stated in Se
tion 6.3. In �g. 6-17

the experiments whi
h denoted stable 
onditions in �g. 6-15 has been tested with

di�erent values of Kp, showing that the system remains stable even with Kp = 2.

This 
an be explained by re
alling that the stati
 gain of the experimental system is

0.915, therefore Kp = 2 still veri�es the stability 
ondition in (6.10), while Kp = 2.5

leads to instability. On the 
ontrary the 
ase with T = 0.05, whi
h was unstable with

Kp = 1, 
an be stabilized only with very low values of Kp as reported in �g. 6-18.
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Figure 6-17: Interpolation error q̃j at sampling instants jT as a fun
tion of Kp and

T . On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

traje
tory, represents the number of iterations.
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Figure 6-18: Interpolation error q̃j at sampling instants jT as a fun
tion of Kp

for system 
lose to instability. On the x-axis, t/TTOT , being TTOT = nT the total

duration of the desired spline traje
tory, represents the number of iterations.
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6.5 Appli
ation of the RC s
heme to a Comau Smart5

Six industrial manipulator

In a real s
enario involving an industrial manipulator, like the Comau Smart5 Six,

the proposed 
ontrol 
an be used a

ording two di�erent s
hemes and purposes:

a) the iterative modi�
ation of the robot traje
tories de�ned in the joint-spa
e

is obtained on the basis of the measurements provided by the proprio
eptive

sensors of the robot, i.e. motors en
oders;

b) the robot traje
tories are dire
tly de�ned in the workspa
e and are modi�ed on

the basis of an external sensor that dete
t the position of the end-e�e
tor in the

3-D spa
e, i.e. a RGB-D 
amera [38℄.

In the 
ase a) the goal of the repetitive 
ontrol is improving the robot pre
ision

by 
ompensating the errors that the internal 
ontroller of the robot is not able to


orre
t, while in 
ase b) the external sensor allows the 
ompensation of errors that

are not sensed by the motors en
oders, e.g. position errors due to the elasti
ity of

the transmission 
hain.

6.5.1 S
enario a

In order to experimentally evaluate the proposed method the setup of Fig. 6-19 has

been arranged. The system is 
omposed of a COMAU Smart5 Six industrial roboti


Payload

Real Time PC

Position, 

Velocity,

Current controlCu

COMAU Smart5 SiX

COMAU C4G Controller

Trajectory

Generation

Figure 6-19: Experimental setup.
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arm, a COMAU C4G Controller and a standard PC with an Intel Core 2 Duo 2.4

GHz pro
essor and 1 GB of RAM. The COMAU Smart5 Six is a 6 DOF robot with

anthropomorphi
 stru
ture, with a payload of 6 Kg. The robot is driven by the

COMAU C4G Controller that performs both the position/velo
ity 
ontrol (adaptive


ontrol) and the power stage management with 
urrent 
ontrol of ea
h joint. The

C4G Controller also implements a software option 
alled �C4G OPEN� that allows

the integration of the robot 
ontrol unit with the external personal 
omputer, in or-

der to develop 
omplex 
ontrol systems at high hierar
hi
al level. The C4G Open

ar
hite
ture is based on a real time 
ommuni
ation on Ethernet network between the


ontroller and the real time PC. In parti
ular the PC runs on the real-time operating

system RTAI-Linux on a Ubuntu NATTY distribution with Linux kernel 2.6.38.8 and

RTAI 3.9 that allows the traje
tory generator to run with a sampling period Ts = 1ms.

For the design of the 
ontrol s
heme and of traje
tory generator, the MatLab/Simulink

RealTime Workshop environment has been used.
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Figure 6-20: Tra
king performan
e of the system due to the fa
tory 
ontroller without

RC (a) and with RC 
ontroller a
tivated (b). In the middle, the modi�ed referen
e

traje
tory qr(t) for the third joint is reported in blue, as a result of the implementation

of the RC 
ontroller.
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Figure 6-21: Response of the system at the a
tivation of the Repetitive Control

(t = 0). Errors at sampling instants T are highlighted in blue.

For sake of simpli
ity, the RC of Fig. 6-7 has been implemented on the third joint

only, while the se
ond joint has been a
tuated in order to disturb the third joint

be
ause of the dynami
 
oupling. Obviously, both joints are required to tra
k two

di�erent 
y
li
 spline traje
tories with the same period. In parti
ular, ea
h traje
-

tory interpolates 12 via-points q⋆
i with uniform knot span T = 1s. In Fig. 6-20(a)

the performan
e of the system is shown. As 
an be seen, the third joint is a�e
ted

by a quite evident tra
king error, due to both the se
ond joint movement and a 3 Kg

payload represented by the UBHand IV roboti
 hand [64℄. It is worth noting that

the tra
king error is relevant even in 
orresponden
e of the points q⋆
i that de�ne the

spline traje
tory.

In Fig. 6-21 the tra
king performan
e of the third joint is presented when the RC

is swit
hed on. It 
an be noted that the error de
reases in overall terms, but mainly,

in 
orresponden
e of the points q⋆
i the de
ay is drasti
 and o

urs in a few 
y
les.

In Fig. 6-20(b) a detail of the traje
tory tra
king with RC (after 5 
y
les) is shown:

in this 
ase the referen
e traje
tory qr(t) is di�erent from the theoreti
al spline q⋆(t),

as it is modi�ed by the 
ontroller in order to suppress tra
king error at instants T . By


omparing Fig. 6-20(a) and Fig. 6-20(b) the redu
tion of the tra
king error is evident,

parti
ularly in 
orresponden
e of the points q⋆
i .
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Figure 6-22: Experimental setup based on a Comau Robot with an external RGB-D

sensor.

6.5.2 S
enario b

In a number of pra
ti
al appli
ations the motion of the robot is de�ned with respe
t

to its workspa
e rather than to the joint spa
e. In this 
ase, 
y
li
 motions 
ould

be a�e
ted by errors that 
ome from either external loads or unmodeled dynami
s.

Sometimes also the kinemati
 inversion 
ould be a sour
e of errors due to parameters

variation and numeri
al roundings. In this s
enario, RC 
an be e�e
tively used to

nullify the position tra
king error of the end-e�e
tor that is required to 
ross a number

of via-points, usually used for de�ning 
omplex motions. Furthermore, if a pre
ise

position measurement in the workspa
e is available, like a vision system, errors due

to un
ertainties on the displa
ement between robot and the surroundings 
an be


an
elled.

In this experiment, the robot with the 
ontrol ar
hite
ture shown in �g. 6-22 has been

equipped with an external sensor, that is a simple vision system, based on ASUS Xtion

PRO Live RGB-D 
amera, whi
h dete
ts the position of a marker lo
ated at the robot

end-e�e
tor. For the sake of simpli
ity, the desired path has been de�ned by means

of 60 via-points q⋆
i disposed on y − z plane and the robot is moved with a �xed

orientation. In �g. 6-23 the view of the 
amera, whi
h is disposed in front of the
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Figure 6-23: Overposed snapshots of the 
amera view of the 
omau. The desired

traje
tory is reported in blue.

robot, and the desired traje
tory are reported. The image elaboration system runs

on a dedi
ated standard desktop PC running Ubuntu Operating System and provides

position of the marker with respe
t to the 
amera framework within a resolution of

about 1 mm. Note that the pre
ision of the 
amera, whi
h is a low 
ost devi
es, is

lower than the pre
ision of the industrial robot (whose repeatability is 0.05 mm) but

the proposed experiment is only a proof of 
on
ept aiming at demonstrating how real

appli
ations 
an bene�t from the RC s
heme. The desired traje
tory is de�ned in the


amera spa
e and the (large) initial tra
king error, shown in �g. 6-24(a) for the y-axis,

is probably due to a misalignment between robot and 
amera and to a non-perfe
t


alibration of the 
amera. In any 
ase, whatever the 
ause of the tra
king error is,

the position feedba
k dire
tly provided in the workspa
e is able to asymptoti
ally


an
el the error between via-points and end-e�e
tor position, as shown in �g. 6-24(b)
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for the y-axis. In �g. 6-25 the workspa
e traje
tory of the robot q(t) along with the

modi�ed referen
e traje
tory qr(t) are shown. The tra
king error de
ay as a fun
tion

of time is reported in �g. 6-26. Despite the noise, due to the position estimation with

the 
amera, the repetitive 
ontrol s
heme is able to 
onsiderably redu
e the errors

between via-points and geometri
 path.
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Figure 6-24: Tra
king performan
e of the system due to the fa
tory 
ontroller without

RC (a) and with RC 
ontroller a
tivated (b). In the middle, the modi�ed referen
e

traje
tory qr(t) for the y 
oordinate is reported in blue, as a result of the implemen-

tation of the RC 
ontroller.
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Figure 6-25: y − z planar view of the tra
king performan
e of the system with RC


ontroller a
tivated. The modi�ed referen
e traje
tory qr(t) is reported in blue, as a

result of the implementation of the RC 
ontroller, while the a
tual traje
tory of the

end-e�e
tor is in red. Colors are reported with in
reasing intensity as the time goes
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Figure 6-26: Error de
ay in the y and z dire
tions after the a
tivation of the RC

me
hanism (t = 0).
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6.6 Con
lusions

In [17, 16℄, motion planning and rea
tive 
ontrol have been integrated in order to

obtain a perfe
t tra
king of a desired set of via-points. By 
onsidering tasks performed


y
li
ally, whi
h are quite 
ommon in the industrial and roboti
s �eld, a traje
tory

generation based on B-spline has been enhan
ed with a RC-type me
hanism that

modi�es in real-time the 
ontrol points de�ning the spline in order to nullify the

tra
king error at the desired points. The e�e
tiveness of the proposed approa
h

has been demonstrated both analyti
ally and experimentally. In parti
ular, tests

performed on an industrial manipulator have shown that this s
heme 
an be used

to enhan
e the performan
e of the original position 
ontroller of the robot. Finally,

the proposed approa
h 
ould be used to re�ne the 
omputation of the 
ontrol points

for a given motion traje
tory in order to 
ompensate for 
y
li
 disturban
es that


hara
terize the plant. After an initial �training� the modi�ed 
ontrol points pr
i

that take into a

ount the dynami
 behavior of the plant 
ould be used without the

adaptation me
hanism in lieu of the theoreti
al values p⋆
i .
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Chapter 7

Con
lusions

In this thesis the most widely used te
hniques for planning traje
tories in industrial

�eld have been revised in order to meet spe
i�
 dynami
 requirements of a given

plant, and two novel traje
tory generators based on dynami
 �lters have been devel-

oped and implemented.

In the �rst part of the thesis, besides the 
onventional des
ription, all the mentioned

methods have been deeply analyzed in terms of their respe
tive transfer fun
tions

within a �lter-based framework. As a matter of fa
t, traditional te
hniques for vi-

bration suppression address the problem of residual vibrations under di�erent points

of view: input shapers are de�ned by means of the impulse response of the system

(i.e. time domain), traditional �lters relates to the frequen
y response of the system,

te
hniques based on system inversion mainly fo
us on the transfer fun
tion of the

modelled plant (i.e. poles/zeroes 
ontent) and analyti
 traje
tory planning is usually

performed in order to 
omply with kinemati
 
onstraints of the a
tuators, providing

a 
ertain level of smoothness.

As a result it has been demonstrated how di�erent te
hniques su
h as input shaping

and analyti
 traje
tory planning for example, are a
tually 
losely related if treated as

dynami
 �lters. Therefore the design pro
edure of a traje
tory planner for vibration

redu
tion 
an bene�t from a uni�ed framework, whi
h allows to properly 
ompare

and 
hose the optimal solution for any need. In parti
ular the analysis performed

in this thesis permits to uniquely 
hara
terize the two fundamental parameters for a
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generi
 
ommand shaper:

• E�e
tiveness, whi
h is related to the ability of the 
onsidered method to

perform a proper 
an
ellation of the pair of 
omplex 
onjugate poles whi
h 
ause

the vibrations, under nominal 
onditions of the 
hara
teristi
 parameters of the

plant. Note that the possibility to 
an
el vibrations needs to be a

ompanied

by a proper design te
hniques, that is a dire
t de�nition of the 
an
elling zeroes.

• Robustness, whi
h is the e�e
t of the given te
hnique when a parameters

mismat
h o

urs between modelled and real plant, and relates to the overall

response of the �ltering method in the proximity of the nominal 
onditions.

In parti
ular the robustness is a�e
ted by both the overall 
ontent in terms of

those poles/zeroes whi
h are not involved in the 
an
ellation, and the eventual

augmented multipli
ity of the 
an
elling zeroes.

Moreover the des
ription by means of dynami
 �lters allows to easily analyze ea
h

method using well known 
ontrol systems te
hniques, in order to a
hieve signi�
ant

features su
h as time delay, sensitivity and smoothness of the resulting traje
tory.

In addition, the use of a 
ommon framework to des
ribe various te
hniques al-

lows not only to make bridges between those methods but also to merge valuable

features. For example, in Chapter 4 
ommonly used traje
tories de�ned by means

of analyti
 fun
tions and 
ompliant to kinemati
 bounds have been des
ribed as �l-

ter 
hains. On the other hand the �lter-based analysis applied on standard tools

for vibration suppression, su
h as input shapers, led to de�ne pre
ise 
onditions for

a
hieving vibration-free motion in Chapter 2. Then, te
hniques proposed in both

Chapters 4 and 5 
an be seen as methods for planning optimal traje
tories whi
h


omply to hybrid 
onstraints, that is both kinemati
s and dynami
s.

With respe
t to analyti
 traje
tory also, the use of dynami
 �lters results very


onvenient in terms of implementation and integration in more 
omplex systems. In

parti
ular the repetitive 
ontrol s
heme proposed in Chapter 6 demonstrates that the
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integration of widespread te
hniques for traje
tory generation into a rea
tive feedba
k

system for perfe
t tra
king 
an be easily a
hieved thanks to the de�nition of an on-line

traje
tory generator based on dis
rete time �lters.
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Appendix A

Development of an Optoele
troni


6-axis For
e/Torque Sensor

for Roboti
 Appli
ations

A.1 Introdu
tion

Nowadays, one of the most 
hallenging goals in roboti
s is the development of au-

tonomous devi
es able to intera
t with dynami
 environments and 
ooperate with

humans in every-day life. Either in a domesti
 or an industrial environment, a robot

must be able to sense what surrounds it in order to operate safely and autonomously.

For this reason, robots are equipped with many sensors in order to a
hieve a rea-

sonable autonomy level for performing several tasks in unstru
tured environments.

In parti
ular, the availability of For
e/Torque (F/T) sensors is a 
ommon require-

ment in roboti
 systems designed for intera
ting with unknown environments and

with humans, and are also useful for the manipulation of un
ertain obje
ts, allowing

the online adaptability of the robot to the real 
hara
teristi
s and 
onditions of the

obje
t, environment or person.

Commer
ial F/T sensors are mostly based on strain-gauges. The motivation be-

hind this fa
t 
an be as
ribed to the reliability of this solution, to the wide literature
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Figure A-1: A prototype of the optoele
troni
 6-axis For
e/Torque sensor.

about the optimization of this sensing prin
iple [19, 98℄, to the relatively simple nu-

meri
al methods for the estimation of strain in multi-axis F/T sensors [57℄ and to

the large sti�ness of the sensor that does not introdu
e destabilizing e�e
ts when ap-

plied on 
onventional industrial manipulators. As a 
onsequen
e, this te
hnologi
al

solution has been used in a wide number of di�erent roboti
 appli
ations, e.g. in

[97℄ where a 4-axis strain-gauge sensor has been developed for measuring intera
tion

for
es in hapti
 devi
es or in [51℄ where a 6-axis F/T sensor has been embedded in

an intelligent roboti
 foot.

Fo
using on grasping and manipulation tasks, the sense of tou
h is essential to

proper manipulation of obje
ts. Indeed, the huge amount of work in ta
tile sensing

literature is justi�ed by the importan
e of having a proper sensing of the 
onta
t

for
es exerted during manipulations. A re
ent and 
omplete review on ta
tile sensor

te
hnologies and features is reported e.g. in [26℄. Despite this, a relatively limited

number of 
ommer
ial ta
tile sensors are 
urrently available, mainly due to high man-

ufa
turing 
omplexity and 
ost. Even if many di�erent design solutions have been

proposed and several physi
al transdu
tion prin
iples have been exploited, the design

of reliable and a

urate ta
tile sensors has proven to be very hard, then the use of

F/T sensors as intrinsi
 ta
tile sensors [21℄ has been investigated be
ause of the sim-

pli
ity of the devi
e (if 
ompared to ta
tile sensors). In this s
enario, the adoption of

opti
al-based F/T sensors may introdu
e several advantages, as shown by the many

di�erent implementations proposed in literature. While strain-gauge based F/T sen-
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sors measure the strain indu
ed on the me
hani
al stru
ture by the an external for
e

and/or torque, optoele
troni
 sensors exploit the s
attering or the re�e
tion of a light

beam emitted by a sour
e and re
eived by suitable dete
tors to dire
tly measure the

deformation of a 
ompliant stru
ture or the relative displa
ement between elasti
ally


oupled elements 
aused by the external for
e and/or torque. The appli
ations of

optoele
troni
-based for
e sensors range from 
onventional mono-axial measurements,

like in [73℄ where dis
rete optoele
troni
 
omponents are used to measure the for
es

in a tendon based transmission system, to 6-axis F/T sensors, as in [56℄ where the

authors adopt optoele
troni
 devi
es mounted on a 
ompliant stru
ture to measure

human-robot intera
tion for
es. The resear
h 
arried out by Hirose and Yoneda [40℄

in the �eld of opti
al F/T sensors is parti
ularly noti
eable: they implemented an op-

ti
al 6-axis F/T sensor adopting a 2-axis photosensor for measuring the deformation


aused by the external load on a 
ompliant stru
ture. In the �eld of ta
tile sensors, a

quite 
ommon opti
al te
hnology is based on Fibre Bragg Gratings (FBG), exploiting

the relationship between the variations of the FBG wavelength and the external for
e

applied to the FBG [39℄. Other optoele
troni
 solutions are based on CCD or CMOS


amera to a
quire the deformation of a surfa
e 
aused by external for
e [46℄. Both

these solutions are quite expensive and introdu
e serious design problems if their in-

tegration in 
omplex roboti
 stru
tures like anthropomorphi
 hands and roboti
 arms

is 
onsidered. In [31℄ and [36℄ the light beam of a Light Emitting Diode (LED) is

s
attered by a sili
on dome and a urethane foam 
avity respe
tively: the 
ompression

of the dome or the 
avity due to applying an external for
e, 
auses a s
attered energy

density variation that is dete
ted by several PhotoDete
tors (PDs). In [29℄ another

interesting example of opti
al ta
tile sensors based on a matrix of LED/PD 
ouples


overed by a deformable elasti
 layer 
an be found. This sensor exploits both the


avity s
attering prin
iple mentioned before and taxel-based re
onstru
tion typi
al of

CMOS sensors. In [101℄ an example of ta
tile/for
e sensor exploiting the re�e
tion

of the light 
one emitted by an LED on a sili
on rubber dome is reported. The mea-

suring prin
iple of this sensor is based on the measurement of the radiation intensity

spatial distribution variation after the light re�e
tion on the deformable dome above
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the opti
al 
omponents 
aused by the deformation of the dome itself under the e�e
t

of the external 
onta
t for
e.

The main advantages of opti
al F/T sensors with respe
t to the ones based on

strain-gauges are: the easier assembly pro
edure; the adaptability to me
hani
al

stru
tures 
hara
terized by limited sti�ness; the simpler 
onditioning ele
troni
s; the

intrinsi
 robustness with respe
t to ele
tromagneti
 noise; the possibility of integrat-

ing a large number of sensing elements on the same devi
e, e.g. in CCD and CMOS

sensors; the redu
ed 
ost of the sensing devi
es. On the other hand, strain-gauge

based F/T sensors ensure better reliability and sensitivity.

In [72℄ is reported the development of a 6-axis F/T sensor

1

based on the opti
al

re�e
tion 
on
ept mentioned above. Due to the already mentioned advantages, this

solution allows to obtain an easily s
alable and low-
ost F/T sensor, suitable also to

be used as an intrinsi
 ta
tile sensor. Moreover, be
ause of the adoption of opti
al


omponents, the proposed sensor requires an extremely simple 
onditioning ele
tron-

i
s. Finally, with a proper exploitation of the light re�e
tion, the sensor design 
an be

signi�
antly simpli�ed sin
e all the required ele
troni
 
omponents 
an be allo
ated

in a single Printed Cir
uit Board (PCB), making it easier the sensor integration into


omplex roboti
 stru
tures su
h as roboti
 hands.

A.2 Sensor Con
ept and Mathemati
al Modeling

The basi
 working prin
iple of the proposed sensor is based on the modulation of

the 
urrent �owing through a PD 
aused by the power variation of the re
eived light

generated by an infrared sour
e su
h as an LED. The light power modulation is mainly

due to variations both of the angle of view and of the length of the opti
al path [50℄.

The sensor is 
omposed by an LED, a 
ertain number of PDs arranged on the same

plane (mounted on the PCB) and a Re�e
tive Surfa
e (RS), e.g. a mirror, lo
ated

above the PCB. The frame supporting the PCB and the one supporting the RS are

me
hani
ally 
onne
ted by a 
ompliant stru
ture that allows the relative motion of

1

Patented [63℄.
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Figure A-2: Re�e
tion of an ideal light 
one under the a
tion of a moving mirror.

the RS with respe
t to the PCB under the e�e
t of an external for
e. As seen in

the 
ase of ta
tile sensors, the applied for
e 
an be re
onstru
ted by measuring the

motion of the RS on whi
h the light re�e
tion or s
attering o

urs. In this 
ase, the

RS is not deformable as in [29℄, but it 
an move if an external for
e is applied thanks

to a suitably designed 
ompliant stru
ture. Therefore, the basi
 idea is use the light

intensity measured by the PDs to re
onstru
t the position and orientation of the RS

and, as a 
onsequen
e, the applied for
e and torque.

Figure A-2 reports a s
hemati
 view of the basi
 elements that 
ompose the pro-
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posed sensor: one LED is mounted in the 
enter of a square PCB, and 4 PDs are

symmetri
ally arranged around the LED at a proper distan
e. In front of the PCB,

a rigid RS deviates the light 
oming from the LED ba
k to the PDs. The PCB with

the optoele
troni
 
omponents is �xed to a base frame, while the RS is 
onne
ted to

the base frame by means of a suspension system that allows the mirror to 
hange its

relative position and orientation with respe
t to the PCB. A s
hemati
 view of the

re�e
ted light behavior when basi
 movements (translation or rotation) are applied

to the RS is shown in �g. A-2. From this �gure it is possible to see that ea
h basi
 RS

movement 
auses a variation of both the light path length and the re�e
tion angle.

Sin
e the light re�e
tion is invariant with respe
t both to RS translations along dire
-

tions tangent to the RS itself (up to the dimension of the RS) and rotations around

the RS normal axis, it is 
lear that the devi
e shown in �g. A-2 is sensible only to

translations normal to the RS, and rotations around RS tangent axes. Then, three

parameters des
ribing the a
tual RS 
on�guration (1 translation and two rotations)


an be estimated by using a minimum number of three PDs. In our implementation,

four PDs have been used to introdu
e a 
ertain redundan
y in the measure, fa
t that


an improve the quality of the measure itself from the point of view of the pre
i-

sion and noise reje
tion, redu
ing also the issues related to the non-ideal 
omponent

assembly. The PD photo
urrents 
an be then simply measured by means of proper

resistors and dire
tly a
quired by an Analog-to-Digital Converter (ADC) as shown in

�g. A-3.
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A.2.1 Theoreti
al Model of the LED-PD Intera
tion

With the aim of 
olle
ting useful information for the sensor design, a mathemati
al

model des
ribing how the light propagates from the LED to the PD under the a
tion

of the moving RS has been developed. To derive the theoreti
al model, let us �rstly

re
all the basi
 working prin
iple of the devi
e by means of the simpli�ed represen-

tation of a LED-PD intera
tion reported �g. A-4. In this s
heme, the LED and the

PD are supposed to be mounted on parallel planes, su
h that their opti
al axes are

parallel and lie on the same plane. This assumption is made be
ause in the pra
ti
al

implementation of the devi
e, the opti
al axes of the optoele
troni
 
omponents are

normal to the PCB, but the height of the LED and the PD are di�erent. In �g. A-4,

α represents the angle between the LED opti
al axis and the segment denoting the

light path, while β represents the angle between the PD opti
al axis and the light

path. From this s
heme, it is 
lear that α and β depend on the re�e
tion angle θ, that

in turn depends on the RS orientation ϕ and distan
e d. Moreover, also the length l

of the light path 
hanges with the RS orientation and distan
e. In this 
onditions, a


ertain amount of light emitted by the LED rea
hes the PD and it is proportionally


onverted into an ele
tri
al 
urrent, that 
onsidering the others as 
onstant param-

eters, 
an be expressed as a fun
tion of α and β, i.e. Ip(α, β) (also referred to as

photo
urrent). When the RS orientation ϕ and its distan
e d experien
e a variation

with respe
t to their initial values, the light path 
hanges and a di�erent amount of

light power will be sensed by the PD, and then a photo
urrent variation o

urs. The

radiant intensity pattern of the LED L(·) and the responsivity pattern of the PD
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R(·) are available from the data-sheets of the 
omponents. A

ording to the general

theory on the intera
tion between the optoele
troni
 
omponents [50℄, given the LED

radiant intensity I(I
LED

) as a fun
tion of the LED bias 
urrent I
LED

, the radiant

intensity pattern of the LED, evaluated in α (denoted as L(α)) and the responsivity

pattern of the PD, evaluated in β (denoted as R(β), the intensity that irradiates the

PD, Ir, is:

Ir = I(I
LED

)L(α) IR{R}R(β) [mW/sr℄ (A.1)

where IR{R} is the real part of the re�e
tivity R of the mirror, that is determined

by the angle of in
iden
e of the ray with respe
t to the normal of the mirror (θ in

�g. A-4) and the 
omplex refra
tive indi
es of air (n1) and the RS (n2):

R = (RS +RP )/2

RS =

∣
∣
∣
∣
∣
∣

n1 cos(θ)− n2

√

1− (n1

n2
sin(θ))2

n1 cos(θ) + n2

√

1− (n1

n2
sin(θ))2

∣
∣
∣
∣
∣
∣

2

RP =

∣
∣
∣
∣
∣
∣

n1

√

1− (n1

n2
sin(θ))2 − n2 cos(θ)

n1

√

1− (n1

n2
sin(θ))2 + n2 cos(θ)

∣
∣
∣
∣
∣
∣

2

The relation between the LED radiant intensity and 
urrent I(I
LED

) 
an be derived

from the 
omponent datasheet. As a simplifying assumption, we assume this relation

is almost linear

I(I
LED

) = K
LED

I
LED

(A.2)

where K
LED

is a proper 
onstant (this assumption holds for the sele
ted devi
e in a

wide range of the 
urrent I
LED

). The problem is then to de�ne the relation between,

on one side, the orientation ϕ and the distan
e d of the RS and, on the other side, the

angles α, β, θ and the light path length l. By simple geometri
al relations it follows
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that (a detailed analysis is reported in [72℄):

α = a
os

(BA)z
BA

, β = a
os

(CA)z
CA

, (A.3)

θ = a
os

(

aTRS

−→
BA
)

, l = BA+ CA (A.4)

where aRS is the unit ve
tor orthogonal to the RS plane, the position of a point with

respe
t to the origin of the referen
e system is denoted by 
apitol letter, e.g. A,

AB = A−B denotes the segment 
onne
ting A and B, AB = ||AB|| is the length of

AB,
−→
AB = AB/AB is the unit ve
tor denoting the dire
tion of AB pointing from A

to B and the subs
ript z denotes the z-
oordinate of the relative ve
tor.

The PD output photo
urrent Ip is then 
omputed as a fun
tion of the spe
tral

�ux density Ee, that is the power in
ident on the PD surfa
e (in mW/
m

2
)

Ip = f(Ee, VPD) (A.5)

where VPD is the voltage drop a
ross the PD and the fun
tion f(·, ·) is reported on

the PD datasheet. Sin
e in the proposed implementation the PD works far from the

saturation region, eq. (A.5) 
an be approximated as

Ip = K
PD

Ee (A.6)

where K
PD

is a proper 
onstant. It is worth noti
ing that while eq. (A.1) expresses

the LED radiant intensity in mW/sr, in eq. (A.6) the light power density in mW/
m

2

is 
onsidered. This implies a 
onversion from the PD surfa
e to the LED solid angle

(i.e. the solid angle delimited by the 
one with vertex in the LED 
enter and as base

the PD sensitive area), that involves the path length l. To perform this 
onversion,

the PD sensible area is �rstly supposed to be normal to the light path dire
tion (AC

segment) and with 
ir
ular shape. Then, the radius r of the PD area, i.e. the solid

angle aperture, is simply r =
√

APD/π, where APD is the PD sensitive area, while

the radius R of the sphere 
entered on the LED and 
ontaining the LED solid angle

is R =
√
l2 + r2. The the LED solid angle ω 
an be then 
omputed from the ratio

229



between the areaAz = 2 π R(R−l) of the sphere portion bounded by the PD sensitive

area and the whole sphere area

ω =
4 πAz

4 π R2
=

8 π2R(R− l)

4 πR2
= 2 π

(

1− 1
√

1 + (r/l)2

)

(A.7)

The power in
ident on the PD surfa
e 
an be then obtained from the LED radiant

intensity

Ee =
APD

ω
Ir cos β [mW/
m

2] (A.8)

where the term cos β takes into a

ount the redu
tion of the PD area due to the angle

between the light path dire
tion and the PD surfa
e itself. It is also impli
itly assumed

that the LED radiant intensity pattern L(·) and the PD responsivity pattern R(·)
present 
onstant values, 
orresponding to the ones evaluated in α and β respe
tively

(i.e. along the light path ABC), within the solid angle ω. From (A.7) and (A.8) it 
an

be noted that the light power Ee in
ident on the PD is related to the light path length

l by an inverse-square relation. Finally, the photo
urrent Ip 
an be simply measured

by means of a resistor, as shown in �g. A-3, 
onverting the photo
urrent into an

output voltage, the ADC then 
onverts it into a digital signal that is transmitted

through the digital bus.

Summarizing, the mathemati
al model of the LED-PD intera
tion is des
ribed

by eq. (A.1), (A.3), (A.6) and (A.8). The numeri
al evaluation of this model has

been developed taking as basi
 
omponents an infrared LED with a narrow viewing

angle and with a typi
al peak wavelength of 860 nm (Osram SFH4451), and as PD a

sili
on NPN phototransistor (Osram SFH3010) with a maximum peak sensitivity at

860 nm wavelength. The LED radiant intensity pattern L(·) and the PD responsivity

pattern R(·) have been derived by 
ubi
 interpolation of a suitable point set taken

from the datasheet of the devi
es, while the parameters of the sele
ted optoele
troni



omponents are reported in Tab. I. Considering a LED-PD 
ouple arranged on a

printed 
ir
uit board at a distan
e of 6 mm, �g. A-5 reports the PD output voltage

for di�erent values of the distan
e and orientation of the RS. The plot reports a

limited range of d and ϕ variations be
ause to redu
e at most as possible the overall
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Figure A-5: Theoreti
al Output voltage as a fun
tion of angle and distan
e of the

RS.

devi
e dimensions, these parameters should be as small as possible. This �gure shows

a quite 
omplex behavior of the PD output voltage modulated by the RS motion.

Indeed, it is 
lear from the previous analysis that the RS distan
e and orientation

a�e
ts the angles α, β, θ and the light path length l in a quite 
omplex and non-

linear way. The sele
tion of a LED with narrow viewing angle avoids that the PD is

illuminated by dire
t light from the LED (without being re�e
ted �rst). Moreover,

a narrow viewing angle is 
ru
ial to boost the e�e
t of the α and β variations on

the output voltage, providing a good sensitivity also on very small angular and linear

displa
ements, as shown in �g. A-5. Moreover, due to the amplitude of the output

voltage variation, this signal 
an be dire
tly digitalized without introdu
ing any signal

ampli�er, allowing a signi�
ant simpli�
ation of the sensor 
onditioning ele
troni
s.

Table I

LED and PD Parameters.

Des
ription Symbol Value Unit

PD Sensitive Area APD 0.04 mm

2

PD Sensitivity K
PD

280 µA 
m

2
mW

−1

LED Radiant Intensity K
LED

600 mW sr

−1
A

−1
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Figure A-6: Comparison between the theoreti
al model (blue) and experimental data

(red).

A.2.2 Theoreti
al Model Validation

The results of the model presented in the previous se
tion have been 
ompared with

experimental data a
quired from a purposely developed setup, in whi
h the posi-

tion of the RS (both translations and rotations) with respe
t to the optoele
troni



omponents 
an be a

urately measured. Some of the results are shown in �g. A-6.

The experimental setup is 
omposed by three linear motors LinMot P01-23Sx80

(see �g. A-7) driven by two servo 
ontrollers LinMot E210-VF (ea
h servo 
ontroller


an drive up to two linear motors). The 
ontrol system is based on a standard PC

with Pentium IV 3GHz pro
essor, equipped with a Sensoray 626 data a
quisition

board used both to 
ommuni
ate with the servo 
ontrollers and to a
quire the PD

output signal. Ea
h motor is provided with an integrated linear position en
oder

with a resolution of 1µm. The RTAI-Linux realtime operating system has been

used for 
ontrolling the system, while the MatLab/Simulink/RealTime Workshop

environment has been used for the development of the 
ontrol s
heme and as user

interfa
e. The linear motors are driven by a low-level 
ontrol system that allows

pre
ise regulation of the motor slider positions 
ompensating for the fri
tion, motor


ogging and external disturban
e for
es [68℄. Figure A-7(a) shows the top view of this

experimental setup, in whi
h the upper 
over has been removed to allows a better

vision of the internal stru
ture, whereas �g. A-7(b) provides a better view of the
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Figure A-7: Experimental setup (without upper 
over) for the validation of the LED-

PD theoreti
al intera
tion model.

LED, PD and RS arrangement. In this experimental setup, the RS is mounted on

a planar element (RS plane) that 
an slide along a linear guide aligned with the

LED opti
al axis, moreover the rotation of the RS plane along an axis orthogonal

to the linear guide is allowed. The RS is moved by two linear motors, and its linear

and angular displa
ements are re
onstru
ted by means of the linear motor integrated

en
oders. The LED is mounted on a �xed element, while the PD is mounted on a

sliding element whose position is 
ontrolled by the third linear motor. This allows to

evaluate also the theoreti
al model for di�erent values of the LED-PD distan
e, but

for the sake of brevity the dis
ussion reported in this paper is restri
ted to the 
ase

of minimum LED-PD distan
e 
ompatible with the devi
e implementation (3mm)

for a
hieving the minimum overall devi
e dimension. As shown in �g. A-6(b) where

the 
olormap representation of the relative error is reported, the maximum error

between the model and the experimental data is about 10% over the whole range

under investigation. Anyway, these results are quite satisfa
tory sin
e they allow

to investigate in advan
e, by exploiting the developed theoreti
al model des
ribed in

Se
tion A.2.1, the design and the 
hara
teristi
s of the devi
e taking into 
onsideration

the optoele
troni
 
omponent parameters, their arrangement and the RS range of

motion. In �g. A-8 the 
ombined output voltage sensitivity (normalized within the
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Figure A-8: Evaluation of the normalized output voltage 
ombined sensitivity with

respe
t to both linear and angular RS displa
ement.

range [0, 1℄) with respe
t to both the linear and angular RS displa
ement is reported:

the higher the 
ombined sensitivity is, the higher is the output voltage variation in


ase of both the linear and angular RS motions, while a lower 
ombined sensitivity

means that the output voltage is less sensitive with respe
t to that motions or is

sensitive to one motion type only (linear or angular). For symmetry reasons, and

sin
e more than one PD will be mounted on the same PCB, we are interested in

the investigation of an angular working range 
entered on 0 deg (the RS is parallel

to the PCB in rest 
onditions), then �g. A-8 suggests the sele
tion of a working

range for the proposed devi
e of [-1, +1℄ deg and [0.0097, 0.0117℄mm, resulting in a

distan
e between the RS and the LED 
enter in rest 
onditions of 10.7mm. In this

working range, the output voltage 
ombined sensitivity is almost homogeneous at the

maximum value, as shown in �g. A-8, and the model error is also limited to about

5%, as reported in �g. A-6(b).

Aiming at measuring the distan
e and the orientation of the RS with respe
t to

the LED-PD plane, the experimental setup shown in �g. A-7 has been modi�ed as

reported in the CAD drawing �g. A-9(a), where the element supporting the LED

and the PD has been repla
ed with the one shown in �g. A-9(b) (the linear motor

for adjusting the LED-PD distan
e is not used anymore). In this devi
e two pairs

of PDs are symmetri
ally arranged with respe
t to the LED, reprodu
ing the LED-
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e and orientation.
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PD arrangement shown in �g. A-2, and a mask for redu
ing the e�e
ts of spurious

re�e
tions on the PD output voltages has been mounted over the PCB. Sin
e in the

experimental setup the RS 
an be rotated along one axis only, the output voltages of

only two PDs (over the available four) will be used for re
onstru
ting the RS position

and orientation. In parti
ular, the output voltage of the two PDs arranged along the

dire
tion normal to the RS rotation axis are used for this purpose. Although the

obtained 
hara
teristi
 is strongly nonlinear, it is interesting to investigate the usage

of a polynomial map of the output 
hara
teristi
, at least in a region surrounding the


enter of the working range (angle = 0 deg, distan
e 10.7mm), for the re
onstru
tion

of the PDs and both the linear and angular RS displa
ements. This will allow the

adoption of a quite simple estimation pro
edure for re
onstru
ting the RS motion by

means of the devi
e output voltage. The mapping between the PD output voltages

and the RS position and orientation is then a
hieved by the following polynomial
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Figure A-11: Re
onstru
tion of linear and angular displa
ement using a LED and

two PDs.

interpolation: 


d

ϕ



 = M v (A.9)

where

v =
[

vn1 vn2 vn−1
1 vn−1

2 · · · v1 v2 1 1
]T

is the ve
tor of the output voltages of the two PDs, v1 and v2 respe
tively, and the


orresponding powers up to the order n (the two ones at the end of the ve
tor are

used to remove the output voltage o�set), and M is the 
alibration matrix that 
an

be derived from experiments as

M = ΛΣ+
(A.10)

where Σ+
denotes the pseudoinverse of matrix Σ and

Λ =




d1 d2 · · · di · · · dm

ϕ1 ϕ2 · · · ϕi · · · ϕm





Σ =
[

v1 v2 · · · vi · · · vm

]

are the matri
es of the m experimental measures of the RS position and orientation

and of the PD output voltages. Figure A-10 reports the mean absolute error in the

estimation of the RS position and orientation from the PD output voltages over the
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whole set of experimental measures for di�erent order of the polynomial map: it


an be noted that no signi�
ant improvement is obtained with an order greater than

three, then this order is sele
ted as a valid trade-o� between estimation error and


omputational 
omplexity. The results reported in �g. A-11 show that, within the

sele
ted working range, this devi
e allows to re
onstru
t the RS distan
e and the

orientation with an estimation error less than the 10% of the measurement.

A.3 Sensor Prototype

The basi
 element for building up the proposed 6-axis F/T sensor is a PCB with

a LED mounted in its 
enter and four PDs symmetri
ally arranged around it on a


ir
le of radius 3mm. In the implemented devi
e, the PCB is a 10×10mm ele
troni


board (1 
m

2
). Furthermore, to measure for
es and torques along the three axes with

a proper redundan
y, 3 of these basi
 elements have been pla
ed on three fa
es of

a 
ube. Despite three of these PCBs mounted on non parallel planes are su�
ient

to dis
riminate all the 
omponents of for
es and torques along the 6-axis, this PCBs

arrangement intuitively allows to a
hieve the maximum sensitivity and de
oupling

of the measurements. A prototype of the sensor is shown in �g. A-12 and �g. A-

13. Note that the geometry of the sensor and the pla
ement of the PCB may vary

depending on the spe
i�
 appli
ation for whi
h the sensor is designed. A spe
i�
 mask

with suitable hollows has been designed in order to avoid 
ross-disturban
es (light

re�e
tions) between the three boards, as also detailed in �g. A-9(b). The relative

motion of the RS with respe
t to the PCBs is a
hieved by means of a 
ompliant

frame, whose design is detailed in Se
tion A.3.1, 
onne
ting the internal part of the

sensor (where the PCBs are �xed) to the external 
onta
t surfa
e, the 
over (where

the RSs are atta
hed). The 
ompliant frame deforms in an elasti
 way when a 
onta
t

for
e is applied to the external 
onta
t surfa
e. Note that, by a suitable design of

these elasti
 elements, the sensor working ranges (in the for
e domain) 
an be freely

adjusted a

ording to the appli
ation requirements. The 
onditioning ele
troni
s

is extremely simple, as the 
ir
uit s
hemati
 in �g. A-3 shows. This aspe
t is quite
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Figure A-12: Con
eptual design of the sensor prototype.

12 m
m

Figure A-13: Internal view of the sensor: the 
ube with the three PCBs and the 
over

with the RS.

important be
ause it allows a simple integration of the sensor in me
hani
ally 
omplex

stru
ture, sin
e the whole 
ir
uit in �g. A-3 
an be implemented in the same PCB

where the LED and the PDs are hosted. The three PCB shown in �g. A-13 are

then 
onne
ted through the SPI digital bus to a mi
ro
ontroller board lo
ated into

the sensor base that elaborates the PDs output signals to perform noise �ltering and

providing the for
e estimation on the base of the 
alibration data (the 
alibration

pro
edure is des
ribed in Se
tion A.4). The mi
ro
ontroller is then able to transmit

the estimated for
es and torques via digital bus using di�erent proto
ol and bus

types: the CAN bus and CanOpen proto
ol have been adopted for the developed

sensor prototype.

The external surfa
e of the sensor, in this spe
i�
 prototype, is a spheri
al 
ap
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with radius R = 44 mm. This parti
ular design has been developed sin
e the sensor

is going to be pla
ed on the �ngertips of an underwater three-�ngered robot gripper,

[8℄, and both the dimension and some of the design 
hoi
es (e.g. the o-rings for water

insulation as reported in A.5) derive from this spe
i�
 appli
ation. In parti
ular,

the overall dimension of the sensor 
ould be drasti
ally redu
ed for other types of

appli
ations.

A.3.1 Compliant Frame Design

Figure A-14(a) shows the stru
ture of the 
ompliant frame used for 
onne
ting the


onta
t surfa
e, and then the RS rigidly 
onne
ted to it, to the base frame of the

sensor where the PCB with the LEDs and the PDs are lo
ated. In parti
ular, the


ompliant frame is 
omposed by an inner frame, rigidly 
onne
ted to the sensor base,

an outer frame 
onne
ted to the 
onta
t surfa
e and a set of �exible links (three in

the spe
i�
 
ase) that 
onne
t the inner and the outer frames. Suitable elements to

limit the maximum deformation and to avoid damage to the deformable stru
ture

itself 
an also be added to the 
ompliant frame, but this issue is not addressed here

to simplify the dis
ussion. It the following analysis, it is supposed that only the links

are deformed by the e�e
ts of the external for
e, while both the inner and the outer

frames are treated as rigid bodies. Moreover, all the links are 
onsidered equal (with

the same physi
al dimension and material) to a
hieve a symmetri
 deformation of the


ompliant frame. Figure A-14(a) reports also the referen
e frame of the sensor base,

of ea
h link of 
ompliant frame and the one of the 
onta
t surfa
e.

A

ording with the Timoshenko beam theory, the sti�ness of ea
h link 
an be
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expressed as [75℄

KL =

















AE
L

0 0 0 0 0

0 12EIz
L3 0 0 0 6EIz

L2

0 0 12EIy
L3 0 −6EIy

L2 0

0 0 0 GJ
L

0 0

0 0 −6EIy
L2 0 4EIy

L
0

0 6EIz
L2 0 0 0 4EIz

L

















(A.11)

where E and G are the modulus of elasti
ity (Young modulus) and the shear modulus

respe
tively, that are equal for all the links, L, Iy, Iz, A and J are the length, the

area moment of inertia about the y- and z-axis, the 
ross se
tion area and the torsion


onstant (polar moment of inertia) of the i-th link respe
tively. The matrix KL rep-

resents the sti�ness of a 6-dimensional spring that allows to 
ompute the for
e/torque

ve
tor w = [fT , mT ]T generated at the link referen
e frame when the 
ross se
tion in

the yz-plane experien
es a displa
ement p = [δxT , δγT ] (translations and rotations)

with respe
t to the other link end. To 
larify the proposed analysis, it is important to

introdu
e the dependen
e of the terms in eq. (A.11) from the physi
al dimensions of

the links. �g. A-14 shows the simpli�ed stru
ture of a link together with the position

of the referen
e frame used to de�ne the link's sti�ness matrix (A.11). With referen
e

to �g. A-14(b), the parti
ular geometry of the links allows the 
omputation of the

parameters appearing in (A.11) in a very straightforward way:

A = a b, Iy =
1

12
a3 b, Iz =

1

12
a b3, J = Iy + Iz

The subs
ript L means that this sti�ness matrix is de�ned with respe
t to a referen
e

frame atta
hed at one link end and with the x-axis along the link length and the y-

and z-axis normal to the lateral surfa
e, as shown in �g. A-14(b). A suitable 
hange of


oordinates is used to represent the sti�ness matrix of ea
h link in the referen
e frame

of the 
onta
t surfa
e. It is supposed that the 
onta
t surfa
e referen
e frame Fe is

translated along the z-axis by pz with respe
t to the base referen
e frame F0, while
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Figure A-14: Detailed view of the 
ompliant frame and of the links.

the referen
e frame atta
hed to ea
h link Fi, i = 1, · · · , k, where k is the number of

links, are rotated along the z-axis by φi = −2 (i − 1)π/k and then translated along

the x-axis by −px. So the homogeneous transformation matrix

eT0 expressing the

position of F0 with respe
t to Fe is

eT0 =







1 0 0 0
0 1 0 0
0 0 1 −pz
0 0 0 1







(A.12)

while

0Ti expressing the position of Fi with respe
t to F0 is

0Ti =







cosφi − sin φi 0 −px
sinφi cosφi 0 0
0 0 1 0
0 0 0 1







(A.13)
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It is important to say that this 
oordinate transformation is performed by means of

the velo
ity transformation matrix

eGi and the for
e/torque transformation matrix

eGT
i [83℄. Re
alling the general form of homogeneous transformations

bTa =

[

bRa
apab

0 1

]

, apab =
[

px py pz 1
]T

,

aPab =






0 −pz py
pz 0 −px
−py px 0






where

bRa and

bpa are respe
tively the rotation matrix and the origin translation

between Fa and Fb, it results

eGi =

[

eRi −eRi
iPie

0 eRi

]

Then the sti�ness matrixKe seen from the (external) 
onta
t surfa
e 
an be 
omputed

as the sum of ea
h link sti�ness expressed in the frame Fe:

Ke =
k∑

i=1

eGT
i KL

eGi (A.14)

In the same way, it is possible to de�ne the 
omplian
e matrix as Ce = K−1
e that

maps the for
e applied to the 
onta
t surfa
e into its displa
ement.

The 
ompliant frame design problem is now to sele
t the link parameters a, b, L

(within a suitable range 
ompatible with the implementation of the devi
e) and the

the link number k in su
h a way to obtain the desired sti�ness along the di�erent

dire
tions a

ording to the appli
ation requirements and taking into a

ount the

maximum displa
ement range dis
ussed in Se
tion A.2.2. The parameters of the


ompliant frame used in the experiments here reported 
an be found in Tab. II: note

that these parameters have been sele
ted to obtain a 
ompliant frame with similar

linear sti�ness and similar torsional sti�ness along all the dire
tions for sensor testing

purposed, but are not sele
ted a

ording to any parti
ular appli
ations.
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Table II

Compliant frame parameters.

Des
ription Symbol Value Unit

ABS Young Modulus E 2900 MPa

ABS Shear Modulus G 1050 MPa

Link Thi
kness a 1.5 mm

Link Width b 4.8 mm

Link Length L 16.5 mm

Link x-axis O�set px 21.5 mm

Number of Links k 4

Surfa
e z-axis O�set pz 20 mm

A.4 Calibration and Chara
terization

A.4.1 Sensor Calibration

The 
alibration pro
edure has been performed by using as referen
e sensor an ATI

Gamma SI-130-10 F/T sensor. The developed sensor prototype has been me
hani
ally


onne
ted to the referen
e ATI sensor in su
h a way that, apart form a suitable


hanges in the referen
e frame and in the point where the for
e is applied, the sensor

are subje
t to the same for
es and torques. Then a variable load in terms of both

for
es and torques has been applied to the sensor prototype and the data from both

sensors have been a
quired. As mentioned in Se
tion A.2.2, being the 
ompliant frame

working within the elasti
 regime, it 
an be assumed that a linear fun
tion exists

between the applied for
e/torque ve
tor w = [fT , mT ]T and RS displa
ement. Then,

similarly to what is des
ribed is Se
tion A.2.2, the mapping between the PD output

voltages and the applied for
e and torque 
an be done by polynomial interpolation as

w = C v (A.15)

where

v =
[

vn1 · · · vn12 · · · v1 · · · v12 1 · · · 1
]T

is the ve
tor of the sensor output voltages (12 PD output voltages), and the 
orre-

sponding powers up to the order n (the 12 ones at the end of the ve
tor are used to
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remove the output voltage o�set), and C is the 
alibration matrix that 
an be derived

from experiments as

C = ΩΣ+
(A.16)

where Σ+
denotes the pseudoinverse of the matrix Σ and

Ω =
[

w1 w2 · · · wi · · · wm

]

Σ =
[

v1 v2 · · · vi · · · vm

]

are the matri
es of the m experimental measures of the external for
es/torques ap-

plied to the optoele
troni
 sensor and of the PD output voltages respe
tively. For the

derivation of the 
alibration matrix, the for
e and torque 
omponents are a
quired

by the referen
e sensor and preliminary 
onverted to the optoele
troni
 sensor refer-

en
e frame by means of a suitable transformation matrix. As des
ribed in Se
tion

A.2.2, a 3rd-order interpolation polynomial has been adopted for deriving the external

for
e/torque ve
tor from the sensor output signals.

Be
ause of the spe
i�
 me
hani
al design

2

, the operating range of the sensor is

[−50÷50] N along the linear axes, while torques are limited to [−1÷1] Nm about the

rotational axes. �g. A-15 shows a test in whi
h for
es are measured by the referen
e

sensor and by the proposed optoele
troni
 sensor after 
alibration; for
e and torque

estimation errors are reported as well.

A.4.2 Cross Coupling Analysis

The analysis of the 
ross 
oupling error is usually performed to verify the properties of

strain-gauge based F/T sensors, espe
ially in 
ase of me
hani
ally de
oupled sensors

[98, 58, 111℄, and it 
an be 
onsidered as an index of the sensor quality. A

ording

to the de�nition given in [49℄, the 
ross 
oupling error is de�ned as the ratio of

unfavorable signals to the intended one at a given output of the sensor a

ording to

pure for
e 
omponents. In the 
ase of the proposed sensor, sin
e we are not interested

2

As already mentioned, the me
hani
al and elasti
 parts of the sensor 
an be tailored for spe
i�


appli
ations, and therefore di�erent performan
es 
an be a
hieved if desired.
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Figure A-15: Performan
e of the optoele
troni
 F/T sensor: For
e and Torque re
on-

stru
tion.

in measuring the strain indu
ed on the me
hani
al stru
ture and sin
e there are

several output signals that are expe
ted to 
hange when a pure for
e 
omponent

is applied to the sensor, the analysis of the 
ross 
oupling error is performed by

taking into a

ount the output voltages variations of the PD 
onditioning 
ir
uit

when a pure for
e or torque is applied along the sensor referen
e axes. Assuming

that the PCBs are mounted orthogonally to the sensor referen
e axes, due to the

stru
ture of the proposed measuring 
ir
uit, a pure for
e 
omponent along a referen
e

axis will produ
e, in ideal 
onditions, a variation of the PD output voltages in the

PCB orthogonal to the for
e dire
tion only, while a pure torque 
omponent will

produ
e a variation of the PD output voltages in the PCBs that are parallel to the

torque dire
tion only. Any deviation from this expe
ted behavior 
an be as
ribed to

misalignment between the referen
e axes and the PCBs (and the RS), defe
ts in the

PCB assembly that 
ause deviation of the LED and PD opti
al axes with respe
t to

the PCB plane or to spurious light re�e
tions.

The 
ross 
oupling error has been then evaluated by 
onsidering the maximum load

(50N for
e or 1Nm torque) along the sensor referen
e axes and the 
orresponding

PD output voltage variations. The 
ross 
oupling errors ci are de�ned in this 
ase as

the ratio between the absolute value of ea
h PD output variation, denoted as |∆Vi|,
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and the maximum one, denoted as |∆Vi|max

, i.e.

ci =
|∆Vi|

|∆Vi|max

(A.17)

In Tab. III the 
ross 
oupling errors evaluated on the experimented sensor prototype

are reported: note that the PDs numbered from 1 to 4 are mounted on the PCB

orthogonal to the x axis, the ones numbered from 5 to 8 are mounted on the PCB

orthogonal to the y axis and the ones numbered from 9 to 12 are mounted on the

PCB orthogonal to the z axis. From these results it 
an be stated that, even if a


onsiderable 
oupling error exists, probably due to the aforementioned defe
ts in the

sensor implementation, the variation of the output signals are 
onsistent with the

expe
ted behavior.

Table III

The 
ross 
oupling errors evaluated on the experimented sensor prototype.

ci Fx = 50N Fy = 50N Fz = 50N Mx = 1Nm My = 1Nm Mz = 1Nm
c1 0.996 0.324 0.109 0.211 1 0.990

c2 1 0.215 0.080 0.129 0.772 0.872

c3 0.993 0.199 0.170 0.132 0.951 0.940

c4 0.884 0.235 0.122 0.190 0.698 0.761

c5 0.141 1 0.059 0.901 0.054 0.847

c6 0.120 0.971 0.166 0.764 0.184 0.798

c7 0.195 0.899 0.098 1 0.045 0.604

c8 0.208 0.910 0.119 0.655 0.101 1

c9 0.210 0.351 0.891 0.689 0.804 0.129

c10 0.207 0.103 0.989 0.872 0.922 0.032

c11 0.181 0.099 0.889 0.541 0.799 0.007

c12 0.190 0.177 1 0.967 0.985 0.150

A.4.3 Chara
terization as Intrinsi
 Ta
tile Sensor

Among the variety of possible F/T sensor appli
ations, several authors reported how

to use them in roboti
s as intrinsi
 ta
tile sensors, i.e. for the 
omputation of the


onta
t point between e.g. the �ngers of a robot hand and the grasped obje
t, see

[21, 82, 24, 61℄. Considering an �hard �nger� 
onta
t hypothesis (i.e. only for
es and
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not torques 
an be applied at the 
onta
t point), the use of the proposed devi
e as

an intrinsi
 ta
tile sensor has been investigated. As des
ribed e.g. in [21℄, in 
ase of a

sensor with spheri
al surfa
e (with radius r) the position pc of the 
onta
t point 
an

be obtained from the for
e f and torque m measured by the F/T sensor from

λ = − 1

‖f‖

√

r2 − ‖f ×m‖2
‖f‖4

r0 =
f ×m

‖f‖2
pc = r0 + λf

These equations admit up to two possible solutions (the interse
tion of a line with

a spheri
al surfa
e), then the right solution 
an be sele
ted assuming that the 
on-

ta
t for
e 
an only push on the sensor external surfa
e. Some experimental tests

are reported in �g. A-16, where the measured for
es and the 
orresponding 
on-

ta
t point position on the sensor surfa
e are represented by blue lines and red dots

respe
tively. In this tests, the estimated [x, y, z] 
oordinates have been 
omputed

as [−2.4, −1.7, 43.9] mm, [−5.1, −10.5, 42.4] mm, [−10.6, −7.2, 42.1] mm and

[13.6, −0.6, 41.8] mm. For the sake of 
omparison, in �g. A-16 also the for
es mea-

sured by the ATI referen
e sensor and the 
orresponding 
onta
t point positions are

reported with green lines and bla
k dots respe
tively. These results allow to state

that the proposed optoele
troni
 devi
e 
an be used as intrinsi
 ta
tile sensor.

A.4.4 Slip Dete
tion

A slip dete
tion algorithm exploiting the information gathered from the proposed

optoele
troni
 sensor has been implemented and experimentally tested. Figure A-17

shows the experimental setup 
omposed by two linear motors LinMot-37x160: the

�rst motor (Motor 1) is mounted with its motion axis aligned with the sensor z-axis

and is used to hold an obje
t against the optoele
troni
 sensor by means of a rounded

tip (to simulate the 
onta
t between the obje
t and a se
ond �ngertip); the se
ond

motor (Motor 2) is positioned perpendi
ularly to Motor 1 and is equipped with a

247



−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

0.036
0.038

0.04
0.042

X
Y

Z

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

0.036
0.038

0.04
0.042

X
Y

Z

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

0.036
0.038

0.04
0.042

X
Y

Z

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

0.036
0.038

0.04
0.042

X
Y

Z

Figure A-16: Conta
t point re
onstru
tion tests: for
e dire
tions (blue lines) and


onta
t point positions (red dots) measured by the optoele
troni
s F/T sensor; for


omparison, for
e dire
tions (green lines) and 
onta
t point positions (bla
k dots)

measured by the referen
e ATI sensor.

pre
ision load 
ell. Motor 2 is used both to apply to the obje
t a tangential for
e and

to measure the obje
t displa
ement during slip by means of the integrated en
oder.

Figures A-18 and A-19 show the typi
al behavior of the obje
t in 
ase of slow and

fast in
reasing of the tangential for
e respe
tively. In parti
ular, referring to �g. A-

18(a), the tangential for
e is slowly in
reased and the measured motion of the obje
t

is mostly due to the elasti
 deformation of the sensor and of the sili
on rubber on

the 
onta
t surfa
e during the �rst part of the experiment, while in the se
ond part

of the experiment (at about 65 s) it is possible to see that the obje
t speed suddenly

in
reases when the tangential for
e rea
h a 
ertain threshold. This event shows that

the obje
t slip o

urs, fa
t that 
an also be noted from the FFT analysis of the

tangential for
e signal. In this tests, the FFT has been performed 
onsidering N =

256 samples ea
h iteration, that 
onsidering a sensor sampling frequen
y of 100 Hz,

results in a fundamental FFT frequen
y of 0.39 Hz. It is possible to note from the blue

plot in Fig.A-18(a) reporting the se
ond harmoni
 of tangential for
e signal, that its

value is quite small during the hold phase, while a peak emerges when the obje
t start

to slip. As also widely reported in literature [41℄, this information 
an be extra
ted
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troni
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Figure A-17: Laboratory setup for 
alibration and experimental validation.

from the sensor measure and 
an be used for obje
t slip dete
tion and prevention. A

zoom over the region where the slip o

urs is reported in �g. A-18(b). As a possible

implementation of the slipping dete
tion algorithm, a suitable threshold it has been

assumed: beyond this PSD threshold the slipping 
ompensation should be a
tivated

in
reasing the normal for
e used to hold the obje
t to in
rease the fri
tion for
e. In

�g. A-18(b) the time instants at whi
h the identi�
ation o

urs are highlighted by red


ir
les: this points are in the proximity of the 
hange of slope of the plots of the obje
t

position, whi
h 
learly indi
ates that the obje
t is slipping. To test the algorithm

under di�erent 
onditions, the test has been exe
uted with di�erent tangential for
e

variation rates. Figure A-19 reports the test results in 
ase of a fast tangential for
e

variation: in �g. A-19(a) the whole experiment is reported, whereas in �g. A-19(b)

the region over the obje
t slipping and the instant in whi
h the PSD threshold is

ex
eeded are shown.
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Figure A-18: Slippage dete
tion algorithm: slow tangential for
e variation.
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A.5 Waterproof Prototype for Underwater Roboti
s

Figure A-20: A prototype of the sealed optoele
troni
 6-axis For
e/Torque sensor and

internal design of the sensor.

As already mentioned in Se
tion A.3, one of the key features of this sensor is the

possibility to easily adapt the me
hani
al design to the spe
i�
 use, provided that

the geometri
al 
onstraints of photo-
omponents and re�e
tive surfa
es are satis�ed.

In �g. A-12 two di�erent implementations are shown, in parti
ular it 
an be noted

that they di�er from the top 
over and the 
ompliant frame design. While the top


over has no in�uen
e on the sensor performan
es, the 
ompliant frame has dire
t

in�uen
e on the measurement range. Moreover it is a 
ru
ial se
tion of the sensor

when the insulation of the sensor from the environment is 
ompulsory. This is the


ase addressed in [62, 70, 71℄ in whi
h the 6-axis F/T sensor is exploited as an intrinsi


ta
tile sensor for underwater appli
ations.

In this parti
ular version of the sensor the relative motion of the RS and the PCBs

is a
hieved by exploiting the o-ring seals 
omplian
e, that elasti
ally deform when an

external for
e is applied to the external 
over of the sensor, but also guarantee the

sensor sealing as 
an be seen in �g. A-20.
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Figure A-21: Displa
ement/for
e 
hara
teristi
 of sili
on rubber (top) and �uoro
ar-

bon rubber (bottom) o-rings for di�erent 
ompression rates.

A.5.1 Chara
terization of O-ring Materials

The 
hara
teristi
s of two di�erent o-ring materials have been evaluated by means of

suitable experiments to �nd whi
h material is better suited for our appli
ation. In

these experiments, sili
on rubber and �uoro
arbon rubber o-rings have been 
ompared

by applying a sinusoidal 
ompression with frequen
y range from 0.1 to 5Hz and

measuring the 
orresponding rea
tion for
e. The o-rings have the same dimensions

in both the 
ases, with a thi
kness of 3.53mm and an internal diameter of 47.62mm,

and both the materials present an hardness of 70 Shore A. The results reported in

�g. A-21 shows that, while sili
on rubber presents a quite linear response within

the displa
ement and frequen
y range of our interest, �uoro
arbon rubber presents a

large hysteresis for high value of the 
ompression rate. Sin
e we are interested in a

implementing a sensor whit an as wider as possible 
onstant frequen
y response, the

sili
on o-rings are more suitable for the implementation of the proposed sensor.
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Figure A-22: For
e re
onstru
tion after 
alibration.

A.5.2 Calibration of the Waterproof Sensor

For the 
alibration and the experimental 
hara
terization of the sensor, the same

setup of �g. A-17 has been used and the same pro
edure of Se
tion A.4 has been

followed. �g. A-22 shows a test in whi
h for
es are measured by the referen
e sensor

and by the new sensor after 
alibration, and the di�eren
e among them. From the

plots, and in parti
ular from the plot of the di�eren
e, it 
an be noti
ed that there

are some �peaks� when the applied for
e has a sudden 
hange. These peaks are due

to the di�erent elasti
 properties of the two sensors (the o-rings have a more evident

vis
o-elasti
 behaviour).

A.5.3 Dynami
 Performan
e of the Sensor

In order to fully 
hara
terize from a stati
 and dynami
 point of view the sensor,

other experiments have been performed. In parti
ular, the sensor has been installed

on the setup of �g. A-23 in order to apply pre
ise axial for
es (z dire
tion).

For example, �g. A-24 shows a test in whi
h a sinusoidal for
e with 
onstant frequen
y

(0.1 Hz) and in
reasing amplitude is applied by the motor along the z axis. It is

possible to see an in
reasing error when the for
e gradient be
omes larger and larger.

As a matter of fa
t, be
ause of the vis
o-elasti
 properties of the rubber used to
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Figure A-23: Laboratory setup for 
alibration and experimental validation.
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Figure A-24: Appli
ation of a sinusoidal for
e signal with in
reasing amplitude at 0.1

Hz.

seal the opti
al sensor, this is `slower' than the referen
e sensor in re
overing the

unloaded position. This e�e
t is more evident in �g. A-25 where a 20 N sinusoidal

for
e is applied at in
reasing frequen
ies, from 0.01 to 3 Hz. The error in
reases with

the frequen
y of the input signal.

However, it has to be pointed out that this e�e
t is not due to some intrinsi


limitations of the basi
 prin
iple of the sensor, but rather to the parti
ular me
hani
al

design employing rubber sealing. To verify this fa
t, the for
e/displa
ement response

of the sensor without and with o-ring sealing has been measured and analyzed. In

�g. A-26 it is 
lear that the introdu
tion of the sealing elements redu
e the frequen
y

range of the sensor, redu
ing in this way also the sensitivity of the sensor. Then,

in parti
ular in 
ase frequen
y based dete
tion te
hniques are used, the e�e
t of the

sealing material needs to be 
onsidered during the 
alibration of the system for a
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proper identi�
ation of the slip events. It also possible to see that no signi�
ant

di�eren
e exists in the sensor response in 
ase of rubber or sili
on sealing.
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Figure A-25: Appli
ation of a sinusoidal for
e signal (20 N) at in
reasing frequen
ies.

Figure A-26: Frequen
y response of the sensor with respe
t to the ATI referen
e

sensor, without sealing and with sealing.
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Figure A-27: Measurement of the normal and tangential for
es.

A.5.4 Evaluation of the Fri
tion Coe�
ient

Another experiment is reported in and �g. A-27, where a 
onstant for
e along the z

dire
tion is applied to an obje
t. On the obje
t, an external in
reasing for
e is applied

as well (by means of some weights) and therefore the sensor measures both the normal

(z axis) and tangential (x−y plane) for
es (fn, ft). In the experiment, the obje
t was


overed by a sili
on rubber to in
rease fri
tion (the surfa
e of the sensor, built with

3D printing te
hnology, has a very low fri
tion 
oe�
ient), and the applied tangential

for
es were ft = 3, 8, 13, 18 N, while the normal for
e was fn = 30 N. Noti
e that

with the load of ft = 13 N, the obje
t starts to slide. The de
rease of the normal

for
e fn when the tangential 
omponent is ft = 13 N is due to the non negligible

deformation of the sili
on rubber 
overing the obje
t. This type of experiment allows

also to estimate the fri
tion 
oe�
ient µ = ft/fn and to implement some 
ontrol

strategies in order to avoid slippage of the obje
t.

A.5.5 Ta
tile Sensing Test

Finally the sensor has been 
hara
terized as intrinsi
 ta
tile sensor following the

pro
edure in Se
tion A.4.3 Typi
al results are reported in �g. A-28, where the applied

for
es are shown as lines and the 
onta
t points are measured on the surfa
e of the

sensor. In this test, three for
es are applied at three di�erent points, whose [x, y, z]


oordinates have been 
omputed as [1.2, 2.1, 21.1] mm, [−1.4, 10.7, 18.1] mm and
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Figure A-28: Measurement of the applied for
es and of the 
onta
t point.

[17.6, −7.8, 5.4] mm, 
orresponding to radii of 21.2, 21.1 and 20.0 mm respe
tively

(the radius of the spheri
al surfa
e is 21.5 mm).

A.6 Con
lusions

Thanks to the adoption of dis
rete optoele
troni
 
omponents, the proposed sensor is


hara
terized by a low-
ost and a simple and reliable implementation. As additional

remarkable advantages, the 
ompa
t and 
ustomizable ele
troni
s of the implemented

sensor allow an easy me
hani
al and ele
troni
 integration into relatively 
omplex

roboti
 systems. As a preliminary evaluation of the sensor 
hara
teristi
s, several

experiments have been performed to validate the mathemati
al model of the devi
e.

These experiments 
on�rmed that the mathemati
al model of the sensor 
an be used

for sele
ting a suitable devi
e working range. The reported experiments show satis-

fa
tory performan
e of the proposed devi
e not only for the estimation the applied

for
e and torque, but also for dete
ting the 
onta
t point lo
ation and obje
t slip.

This result allows to state that the proposed devi
e 
an be used as an `intrinsi
 ta
tile'

sensor.
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Moreover the same devi
e has been exploited in order to be integrated in a three-

�ngered gripper for underwater appli
ations. A di�erent me
hani
al 
on�guration of

the 
ompliant frame has been developed by means of o-rings seals, in order to a
hieve

a waterproof sensor. An extensive experimental a
tivity has been 
arried out in order

to both 
hara
terize di�erent elasti
 materials and analyze their e�e
ts on the sensor's

performan
es. Despite the limited dynami
 range due to the o-rings based sealing,

the experimental results 
on�rm the satisfa
tory ben
hmarks of the original sensor

even for the waterproof version.
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Appendix B

List of Personal Pubbli
ations

Here follows the list of a
hievements arising from the resear
h a
tivities reported in

this thesis.

B.1 Publi
ations in Journals

1. G. Palli, L. Moriello, U. S
ar
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