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Abstract 

Due to the current and foreseen global growth of raw material demand, the 

sustainable supply of minerals and metals for high-tech applications, the so-called 

critical raw materials (Co, Cr, Ga, Nb, Rare Earth Elements, Sb, W, Platinum Group 

Elements), is of general concern. Industrial wastes have the potential to become an 

alternative source (flow) of strategic metals and, consequently, their valorisation 

can be seen as a move towards resources efficiency and circular economy. 

In this 3-years study I aimed to decipher the critical raw materials potential 

from solid residues produced by Municipal Solid Waste Incineration (MSWI), 

namely bottom and fly ashes. These solid residues, coming from different leading 

companies of MSWI in northern Italy, have been selected because they can be 

accounted for urban mining purposes and represent high elements flows, still 

poorly explored. In the present work I address the potential of MSWI solid 

residues as an alternative source of critical raw materials by studying the material 

chemistry, its resources flow and the evaluation of metals upgrading and recovery. 

Finally, I tackle some environmental and economic issues.  

As a matter of fact, the concentrations of several critical raw materials hosted 

in MSWI stocks are provided and their estimated annual flow is significant (order 

of 103 kg/a Co, Cr, and Sb). Remarkably, MSWI fly ashes can be promising target 

for the recovery of rare earths such as Tb, Ho, and Eu. Therefore, MSWI end-

products can represent an attractive low-concentration stream of valuable elements 

and the identification of added value anthropogenic materials, their upgrading and 

effective metal recovery processes are of crucial interest. The analysis of samples, 

collected by drawing a simple random stratified sampling, reveals that natural 

gravitational sorting of the bottom ash heaps might represent a preliminary 

upgrading process because of the higher contents of critical elements in the fine-
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grained fractions (uppermost part of the heap) than others (heaps bottom). As a 

consequence, I suggested an easy way to manipulate solid residue stockpiles 

directly at the incinerator plant. The measures of major elements and mass specific 

magnetic susceptibility correlate with critical elements, especially rare earths, 

demonstrating beneficial for a cost- and time-effective prospection. Geochemical 

(major elements) and magnetic (susceptibility) measurements show potential for 

resources prospecting and they can be readily tested and used on-site through 

portable analysers. Last but not least, the PIF or Pricing Influence Factor based on 

the ratio between element price and the abundance of that element on the Earth’s 

crust is introduced. The correlation between PIF and the widely employed (in ore 

geology) Enrichment Factor (EF) constitute a new empirical prospecting method 

that can be useful in decision-making strategies. The recovery potential of ore 

metals and critical elements by comparing sulphuric acid leaching and bio-assisted 

acid leaching is investigated. Both process resulted in satisfactory removal 

percentages (i.e., metal leached out from the solids) for Al, Cu, Mg, Mn, Ni, and Zn 

(>90%), Cr, Nd, and Sb (65%), Co, Ga, Nb and Ce (50-60%). Although chemical 

leaching still demonstrate higher yields than bioleaching, bio-assisted leaching 

resulted in low usage of mineral acid and low removal of unnecessary elements 

(Ca, Ti, Si, and Fe). Despite overall high metals leaching, the content of harmful 

substances of residual fractions after biohydrometallurgic treatments exceeds the 

guidance levels published by a Swiss public authority (BAFU) for solids 

landfilling. Also, liquids (leachates) are strongly acidic, requiring high-level control 

for wastewater. Thus there is still the aim to further processing each by-product. A 

schematic flow sheet of a hypothetical process chain for the treatment of MSWI fly 

ash is proposed. It involves the use of several processing steps, including 

optimised bioreactors, to recover critical elements from the ash and to reduce the 
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hazardous nature of both solid and liquid by-products for their safer and less 

expensive disposal. 

This work also addresses two important environmental aspects. First, the 

magnetic behaviour of MSWI solid residues led to a preliminary assessment of 

harmful ultrafine particles: most of the samples have a high (>10%) super-

paramagnetic fraction that can impact human and environmental health. Second, 

the determination of the rare chemical element osmium (Os) from MSWI samples 

demonstrates that point sources of Os contamination coming from waste 

incinerators should be acknowledged: hazardous volatile Os from MSWI 

smokestacks of a medium size country is predicted to be 16-38 ng Os/m2/a, much 

higher than the naturally transported Os (about 1 pg Os/m2/a). 

The scaling up of the research findings to the industrial processes will be the 

final goal to reduce the loss of resources and to enhance the waste management 

system. 

 

 

 

 

 

 

 

 

 

 

Keywords: Critical raw materials, Municipal solid waste incinerator residues, Urban 

mining, Resources prospecting, Bio-hydrometallurgy, Metal Recovery, Mass 

specific magnetic susceptibility, Anthropogenic Os cycle, Environmental risks.  
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Structure of the work 

Chapter 1 frames the research problem, provides a brief description of 

constraints related to raw material supply, current strategies for solid waste 

treatment, and of materials and methods used throughout the subsequent 

chapters. Here the purpose is to give a comprehensive overview of objectives and 

the used approaches and adjunctive information that cannot be found elsewhere in 

the present manuscript. 

Chapter 2 focuses on the critical elements occurrence in bottom and fly ash, 

produced by municipal solid waste incinerators. This work represents one of the 

first attempts in literature toward resources evaluation from Italian incinerator 

facilities by means of accurate material characterisation and mass flow analysis. 

Chapter 3 deals with the Rare Earth Element contents of bottom and fly ashes 

produced by municipal solid waste incinerators. The results coming from the 

present study promote both the prospecting of rare metals and impact assessment 

through the application of alternative methodologies. 

Chapter 4 shows a comparison of the performance characteristics of two 

leaching procedures for pre-treatment (prior to metal recovery) applied on a fly 

ash sample from a municipal solid waste incinerator. This work outlines two chief 

methods for metal leaching, sulphuric acid leaching and bio-assisted leaching. 

Chapter 5 tackles the profound interactions between environment and 

humans’ uses and needs. It focuses on the isotopic signature and concentration of 

Os within bottom and fly ashes produced by municipal solid waste incinerators. 

This first attempt in quantifying the impact related to Os contaminations 

contributes to stress the need to monitor Os pollution, generally overlooked, in 

areas close to incineration facilities and municipal waste landfill. 

Chapter 6 reports an overview of the major conclusions drawn from this 

work and suggests possible research directions for the future. 

Appendix A encloses conference proceedings and other research-related 

efforts, which have been accomplished during the 3-years PhD project. 

Appendix B encloses the candidate’s résumé, with last update February 2016. 
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Introduction to the thesis work 
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1. More than waste 

During the Bronze and Iron Ages, human beings used a few metals (Fe, Ni, 

Cu, Ag, Au) and in small amounts. With time increasing amount of many other 

elements has been included in the anthroposphere, thus modifying their natural 

cycle. It has been recently estimated that we use 1.4 million kg of resources (metals, 

minerals and fuels) during our life (Kyser et al., 2015) (Fig. §1-1). 

 

Fig. §1-1 Average lifetime consumption of resources for individuals (from Kyser et al., 2015). 

The increasing demand of raw materials for the global economic 

development has lead to move from limited and fixed stocks of primary ore 

deposits to the increasing anthropogenic stocks, which include notably high 

streams of waste. This creates the basis for the development of the Urban Mining 

concept, which represents actions and technologies for the recovery of secondary 

raw materials and energy from by-products of the urban catabolism (Baccini & 
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Brunner, 2012). Urban mining, therefore, provides systematic management of 

anthropogenic stocks and waste with long term benefits such as environmental 

protection, resource conservation, and eco-efficient technological development. 

Anthropogenic waste that can be potentially mined include, for example, waste 

from electric and electronic equipment (WEEE), end-of-life (EoL) vehicles, plastic 

residues, exhausted oils, construction and demolition waste (C&D), and 

combustion residues. The latter repository, in turn, includes bottom and fly ashes 

from municipal solid waste incinerators (MSWI), fly ash from sewage sludge 

treatment, coal ashes, industrial slag (e.g., foundry residues). Clearly, the closed 

loop of recycling and recovery of waste seems a promising option to meet the 

increased demand of critical metals and for the reduction in the consumption of 

primary raw materials. In practice this is highly challenging and requires high 

level of innovation and open-minded and multidisciplinary approach. 

When moving towards sustainable use of Earth’s resources through 

increased efficiency and improved material utilisation, the concept of urban 

mining becomes central for the assessment of the required tasks and strategies. 

After the exploration stage, namely the identification of potential alternative 

sources, the activities within a context of urban mining generally proceed with 

collection/sampling, material characterisation, evaluation of resources flow/stock, 

processing for upgrading and metal recovery, evaluation of recovery potential, 

environmental and economic assessment. In the present thesis I tried to address 

each of these steps, the MSWI solid residues will be the targets of the research. 

They are relatively unexplored anthropogenic deposits, but might represent high 

elements flows (see chapter 2), which can be recovered with high yields of 

extraction and with benefits for the environment (see chapter 4). The study of these 

residues requires the beneficial merging of a range of research aspects and 
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stakeholders and, in long term view, can contribute to improve the status of 

resource management in Europe. 

There are many alternatives for the management of solid waste including 

recycling, hydrometallurgical treatment, biological treatment, thermal treatment 

and landfill disposal. In general, solid waste management systems include the use 

of several of these processes. Highly selective separation methods, such as 

combined physical and bio-hydrometallurgical routes, might lead to recover 

elements of economic interest such as the critical raw materials for the EU, which 

are of particular interest throughout the present work but also they are present as 

minor species within MSWI. The incoming EU programs, in fact, highlight the 

need to increase recycling rates and recoveries of critical raw materials from waste 

streams when technically or economically possible, since they represent key 

elements and minerals for the technological development. 

1.1 Critical Raw Material 

The European Commission published a list of 14 raw materials regarded 

critical, including antimony, beryllium, cobalt, fluorspar, gallium, germanium, 

graphite, indium, magnesium, niobium, PGE (platinum group elements), LREE 

(light rare earth elements) and HREE (heavy rare earth elements), tantalum and 

tungsten (European Commission, 2014, 2010) (Fig. §1-2). This action wants to 

highlight the difficulty to supply these elements to industries, the dependence on 

imports and, hence, their strategic importance: each entry is selected according 

economic importance and supply risk. The list actually groups minerals and 

chemical elements. In the present thesis, the term “critical elements” refers to the 

chemical elements: Ge, Mg, HREE, LREE, Nb, In, Sb, Ga, Co, Be, PGE, W, Cr, 



24 

 

whereas “elements of (high) economic importance” are V, Ni, Zn, Hf, Mn, Al, Ta, 

Sn, Mo (compare Fig. §1-2). 

 

Fig. §1-2 Critical raw materials for the EU according their economic importance and supply risk (EC, 

2014). 

The increasing production and consumption of high-tech products to meet 

the burgeoning market demands is the result of a rapid technological progress. The 

critical elements play a significant role for a number of everyday products due to 

their unique physical and chemical properties. They usually meet specific 

requirements to perform essential functions in many industrial applications. Few 

or no satisfactory substitutes exist for critical elements (EC, 2010) contributing to 

stress their supply risk.  

Striving for rapid and constant technological advances, critical elements are 

increasingly used and stored in different applications. As a consequence, rare 

metals are also contained within the waste stream of end-of-life products. 

The rare earth elements (REE) and those of the platinum group (PGE), which 

are extensively used in modern applications, are particularly mentioned in the next 
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chapters (3 and 5) and, thus, the following sections provide a general description of 

their properties and market conditions. Worth mentioning, the accurate 

quantification of PGE should have served for calculation of PGE flows in chapter 2, 

but low levels of concentration and isobaric interferences hampered reliable 

determinations. Only Os determinations, which relied on an ad-hoc analytical 

method, were found to be accurate enough and are discussed in chapter 5. 

1.2 The rare earth elements 

The rare earth elements (REE) are a moderately abundant group of 17 

elements comprising the 15 lanthanides plus yttrium and scandium. The REEs 

shows similar physical and chemical properties. REEs ores are generally found in 

alkaline igneous rocks and also in sand or clay sediments as result of weathering 

processes of the source rock. There are about 200 known minerals containing light 

or heavy REE, six of those minerals are considered as primary sources: Bastnaesite 

(Ce, La, Y), Monazite (Ce, La, Pr, Nd Gd, Sm) Xenotime (Y, Dy, Er, Tb, Yb), 

Loparite (Ce), Apatite (Nd, Dy, Eu, Ce), Ion-adsorption clays (Y, Nd, La). The 

majority of REE ore deposits show grades that cannot be considered as economic, 

while other REE-rich deposits have a complex mineralogy requiring high level of 

processing for any mineral beneficiation. In addition, REE are usually associated 

with radioactive elements (uranium and thorium) and mining operations needs 

accurate safety controls. The REE recovery process requires high quantity of water, 

acids, and electricity, thus implying high costs and production of harmful by-

products due to the potential release of hazardous and radioactive metals. The 

largest reserves are in China (60%, 110 million tonnes of REE oxides “REOs”), and 

this is also the largest producer with 97% of the total; follow this primacy India, 

Brazil and Malaysia. The larger consumers are USA, Europe, Japan, Korea and 
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China. The REE demand is continuously growing (10%-20% increase each year) 

(UNEP, 2009). They are used in a wide range of technological application as high 

purity metal or metal oxide. The REE represent key-elements in many modern 

fields such automotive catalytic converters, fluid cracking catalysts in petroleum 

refining, phosphors in colour television and flat panel displays (cell phones, 

portable DVDs, and laptops), permanent magnets and rechargeable batteries for 

hybrid and electric vehicles, generators for wind turbines, and numerous medical 

devices. Moreover REEs are essential in important defence applications, such as jet 

fighter engines, missile guidance systems, antimissile defence, space-based 

satellites and communication systems. Unfortunately the reserves of REEs are not 

equally distributed in the world: in Europe and many other countries no relevant 

sources are present, and moreover recently China’s exportation of REE (major 

export country, about 97% of total export in the world) is dramatically decreased, 

for economic and environmental reasons (USGS, 2015). All these reasons push 

many countries to invest in mining the anthroposphere as solution for the 

industrial ecosystem, but this is not straightforward especially in presence of low 

grade ores. In general, promising waste streams for REE recovery (e.g., WEEE) 

contain relatively low concentrations of REE, typically well below 1%, whereas the 

present cut-off for extraction from primary ores is about 3% (Binnemans et al., 

2013). 

1.3 The platinum group elements with emphasis on osmium 

The Platinum Group Elements (PGE) are a group of six metals: ruthenium 

(Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). 

The PGE mainly occur in the natural ore deposits of South Africa, Russia, 

Zimbabwe, Canada and United States. In 2012, world mining production of PGE 
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was 451 tonnes. South Africa, Russia, Zimbabwe, Canada and United States 

accounted for 58%, 26%, 5%, 4%, and 4% of total global production in 2012, 

respectively. Their properties, such as good electrical conductivity, high melting 

point and corrosion resistance, make them indispensable for many industrial 

applications. To give two practical examples that show their high value for the 

social growth, PGE-bearing electronic components can increase the storage 

capacity in computer hard disk drives and powdered metals are used in 

automobile catalysts to reduce micro pollutants. The demand for PGE is leaded by 

the autocatalyst industry. PGE are also used in the glass industry, jewellery, 

chemical industry and electronics (USGS, 2015). Because of their unique physical 

and chemical properties, they cannot be effectively substituted by other materials 

so far. The consumption of PGE used in electronic products is decreasing due to 

the new substitutions with less PGE. Despite the limited PGE sources and their 

very low concentrations on the Earth’s crust, reports on increasing PGE 

concentrations in the surface environment are raising concern on potential impact 

of contaminations. Anthropogenic PGE emission can derive from automobile 

catalysts, mining and metal production, from medical facilities, manufacture of 

PGE-bearing products, and use and disposal of these products. 

Osmium was discovered in 1804 together with Ir. Like other PGE, Os occurs 

mainly in native alloys (e.g., osmiridium, iridosmine). Unlike other PGE, Os easily 

reacts with oxygen and may occur at various oxidation states, from +3 to +8, and 

also may have -1 oxidation state. Its abundance in the Earth’s crust is calculated at 

0.05 µg/kg. There are seven stable isotopes of Os. This metal is notable for its great 

density and the isotope 192Os is even the most dense element. Os is used almost 

entirely as a hardening alloy with other precious metals, especially in the weapon 

industry. There is a small production of Os, estimated as 300 t/a (Reimann & De 

Caritat, 1998). During metal processing, various Os compounds are formed, such 
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as OsF6, OsCl4 and volatile OsO4. All the Os compounds are toxic to humans and 

animals. Longer exposure to increased levels of some Os compounds can cause 

lung congestion, skin and eye damages, and is hazardous to marrow, liver, and 

kidneys (Kabata-Pendias, 2010; Farago & Parsons, 1994). Anthropogenic Os 

emission is expected from the same sources of PGE emission, but there is not much 

information on Os contamination, even near potential sources of Os pollution 

(Kabata-Pendias, 2010; Rauch & Morrison, 2008). Os emission rates are reported 

from automobile catalysts, metal smelters, medical centres, but not from MSWI 

plants where end-of-life PGE-rich products, spent catalysts and metallurgical and 

medical waste might end up. 
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2. Driving-question and issues 

The main driving -question of the PhD project is:  

 

Can MSWI anthropogenic flows be considered as a dynamic “URBAN ORE”? 

 

The main research problem embraces several specific questions that are 

addressed throughout the manuscript. These specific questions, divided according 

to the subject areas, are: 

 

Characterisation of MSWI residues 

Do MSWI solid residues contain significant amount of critical elements?  

To what extent rare metals such as REE and PGE occur in MSWI residues? 

Prospecting for resources in MSWI residues 

What is the resulting magnitude of the critical elements flows? 

Is this urban mine comparable with a low-grade ore deposit? 

Do critical elements preferably partition into bottom ash or fly ash? 

Where critical elements preferably partition in fine-grained or coarse-grained bottom ash? 

Is there a simple and cost-effective method that can be used for any element prospecting? 

Can correlation between major and critical elements, if any, help in prospecting? 

What about magnetic signatures? Can magnetic measures help in prospecting? 

Upgrading and metal recovery from MSWI residues 

Is there a simple and cost-effective separation strategy that can be used for any mineral 

beneficiation? 

Are the bio-hydrometallurgical procedures suitable for metal recovery? 

What are the recovery performances of chemical leaching and bioleaching? 

Are the proposed treatments affordable from economic and environmental point of view? 
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Environmental impact related to MSWI residues and their treatment 

In addition to heavy metals contamination, are there any other sources of pollution related 

to MSWI residues? 

Are there ultrafine magnetic particles within MSWI residues? Can magnetic susceptibility 

help assessing the extent of these harmful ultrafine particles? 

Are Os levels significant into MSWI bottom and fly ashes? Is the Os release from MSWI 

bottom and fly ash, and MSWI smokestacks significant? 

After bioleaching and chemical leaching, can fly ash be landfilled? 

2.1 Main issues 

To achieve the goals of the present work and answer the questions, several 

issues related to assessment methods, sampling and analytical quantification need 

to be addressed.  

Best practise for sampling and chemical analyses of solid waste are not 

defined, and assessment methods concerning, for example, the environmental 

impact of MSWI residues or metal recovery, are not well ascertained. 

Accurate sampling strategies and analytical methods are required for reliable 

mass flow analysis and evaluation of metal recovery. In order to avoid the 

domination of uncertainties introduced through sample heterogeneity, 

representative samples are needed. However, the composition of the MSWI 

feedstock, which can vary over time and between different incinerators, impacts 

the residues’ homogeneity and representativeness. On the other hand, the main 

difficulty during the determination of MSWI residues chemical compositions 

resides in the complex matrix of anthropogenic waste that can affect the quality of 

analytical results. The following effects might produce bias of results in analytical 

measurements when using techniques such as X-Ray Fluorescence (XRF) or 
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plasma-based (ICP) elemental analysis: nugget effect, introduction of error in 

sample preparation, spectral overlaps, lack of certified reference materials and 

efficient calibration. Effective digestion methods and low blanks are desirable for 

ICP-MS analysis, while the control of matrix effect is essential in XRF 

measurements. In addition, the determination of 1) non-routinely analysed critical 

metals, 2) metals at low concentrations (e.g., REE, PGE), 3) Os contents and isotopic 

ratios, and 4) magnetic properties (susceptibility) is highly challenging, given the 

above mentioned analytical difficulties and the lack of reference data from 

literature (especially for Os levels and magnetic susceptibility). 

A few assumptions, therefore, have to be made for mass flow analysis, metal 

recovery, and environmental assessment purposes. In parallel, uncertainties 

continue to affect the analytical methods. 
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3. Municipal solid waste incinerators and their solid 

residues 

Given the fluctuating markets of raw materials, reducing the loss of 

resources is needed and recycling becomes mandatory (Brunner, 2011) to provide 

alternative stable supplies. Worldwide the sharp technological advances favoured 

the increase of product consumption and wellness and, consequently, contributed 

to a significant stream of waste. The current strategies of waste management 

adopted in many industrialised countries for the unrecycled fractions (thus 

excluding separate collection) of municipal solid waste imply biological 

stabilisation of the biodegradable fraction and combustion with energy recovery of 

the un-biodegradable combustible part. Municipal solid waste incineration (MSWI) 

systems are actually widespread as they can reduce the volume of collected waste, 

destroy many toxic components and provide an alternative source of energy. Two 

main types of combustion chambers exist, grate-system and fluidised bed. Grate-

furnaces are largely the most used (Fig. §1-3). Significant streams of incinerated 

residues are generated from the combustion chamber of MSWI plants and from the 

subsequent cleaning process of flue gas recovered by the air-pollution-control 

(APC) system (see 13-17, in Fig. §1-3). The first part includes bottom ash and grate 

siftings which are coarse-grained materials generally named as bottom ash (BA). 

The second part includes for instance boiler ash, ash collected from electrostatic 

precipitators, scrubber residues, etc and such very fine-grained materials from the 

APC system is referred as fly ash (FA). About 20-30 % of the initial mass of 

incinerated waste is converted into BA, whereas FA represent about 2-6 % of the 

initial mass of incinerated waste (Chandler et al., 1997). The BA materials are 

separately stored from the FA almost everywhere. Conversely, in some cases the 
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separate streams of FA are often mixed depending on further treatment options 

and/or current local legislation.  

 

Fig. §1-3 Typical grate-furnace MSWI system (from Chandler et al., 1997). 

3.1 Bottom ash 

The BA are the solid, sandy and pebbly materials deriving from the waste 

mass combustion into the furnace. After combustion (850-1100 °C), this residual 

material is quenched (i.e., cooled in water) and wet BA are typically stored in 

heaps falling from a conveyor belt line (see 11 in Fig. §1-3); some MSWI systems 

(e.g., Morf et al., 2013) have a dry bottom ash discharger. As a result of similar 

operational conditions (e.g., allowed waste, temperature, residence time), BA 

generated in different incinerators are rather uniform in composition (Chandler et 

al., 1997). Lower amount of potential pollutants than in FA and satisfactory 

mechanical properties make untreated BA a good binder for construction material. 

In addition, weathering of BA mostly through carbonation (i.e., taking up 
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atmospheric CO2 thereby changing mineralogy from hydroxides to carbonates) 

acts as a natural stabilisation process for many metals due to the fact that their 

carbonates have significantly lower solubility compared with the hydroxides. The 

release of pollutants from weathered BA is generally low and complies with Italian 

regulation that, in turn, follows the European guidance levels. As a consequence, a 

large fraction of the generated BA is reused or landfilled as an inert material in 

Italy. 

3.2 Fly ash 

FA can be described as dust-like particles that are carried away from the 

combustion chamber with the flue-gas. The FA material is usually stored in big bags 

after each step of filtration (see 14, 15 in Fig. §1-3). Contrary to mass-combustion 

technology the APC systems is rather plant-specific, mostly reflecting legislative 

requirements and the currently available technologies. Therefore, FA produced in 

different incinerators vary in composition, water content, pH, etc. 

Typically, the mass of pollutants is lower in treated FA than in “pure” FA 

due to the dilution with unreacted additives and the neutralization capacity. 

Nevertheless, both materials contain large quantities of readily soluble salts (e.g., 

Cl, Na) and hazardous metals (e.g., Pb, Sb, As). Consequently, FA residues should 

only be landfilled or stored underground after pre-treatment. As a matter fact, FA 

materials are classified as hazardous waste in Italy and landfilling is the main 

option for their management. However, in view of recent waste policy, there is 

interest to devise new solutions of treatment and disposal of MSWI FA. The new 

solutions for FA reuse have to meet the criteria of economic and environmental 

sustainability, and adequate performance characteristic of the final product. 

Possible new directions include FA reuse as additive in concrete, in ceramic and 
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glass industries, as a fertiliser (thanks to the significant content of P and K), sorbent 

materials, as a filtrating agent in sewage sludge treatment. 

3.3 Mineralogy of MSWI residues 

Untreated BA is a heterogeneous material, the majority of which comprises 

of calcium-rich minerals and silicates potentially enriched in iron and sodium. 

Numerous studies concluded that a significant fraction of BA consists of melt 

products such as siliceous glass, spinel-group minerals (e.g., magnetite), and 

melitite-group minerals (e.g., gehlenite), calcite and many other minor phases 

(Kirby & Rimstidt, 1993, Bayuseno & Schmahl, 2010). Minerals commonly 

identified in bottom ash are in Tab. §1--1 The XRD patterns of BA samples from 

this study show a huge amount of peaks that correspond to numerous minerals of 

unreliable identification. Also FA show a complex mineralogy mainly due to 

processes occurring during the combustion and the subsequent flue-gas cleaning, 

i.e. vaporization, melting, crystallisation, vitrification, condensation and 

precipitation (Kirby & Rimstidt, 1993, Bayuseno & Schmahl, 2011). Consequently, 

sulphates, carbonates, silicates, phosphates, chlorides, (hydr)oxides, pure metals, 

and glass were identified in untreated FA (Tab. §1--1). 
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TTaabb..  §§11----11  Typical mineral phases experimentally detected in MSWI residues. Readapted from Kirby 

& Rimstidt (1993), Bayuseno & Schmah (2010, 2011). 

 

 

Generally, the identification of BA and FA minerals by means of, for 

example, XRD (X-Ray Diffraction) and AES (Auger Electron Spectroscopy) or by 

SEM (Scanning Electron Microscoopy) is challenging due to a high number phases 

produced under variable operating conditions of the MSWI system, combustion 

temperatures, variable chemical composition of the feedstock materials, which in 

turn control the minerals formation. The formation processes of minerals are still 

not well understood and such fact largely differentiates natural ores from 

anthropogenic stock. The determination of minerals where a certain metal 

partitions, is challenging and, especially, precise identification of minor 

compounds is often prevented. Large amounts of soluble salts (e.g. chlorides) 

occur in MSWI residues. As broadly ascertained, metals forming chloro-complexes 
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such as Cd and Sb will be liberated emphasising the overall toxicity risk associated 

to these materials. Care should be paid when handling, management and 

landfilling of incineration waste are addressed and the environmental impact 

assessment is commonly carried out for both BA and FA to reduce contamination 

risk. 

Preliminary attempts by XRD in identifying mineralogical phases have been 

made on selected BA samples during earlier stages of this work, but those results 

were not suitable to understand where the crm elements, occurring as minor 

phases, partitioned.  
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4. Samples collection 

I organised the visit to the selected incinerators plants, in accordance with the 

MSWI managers who were previously contacted in order to grant permission to 

access to the plants. Thank to the logistic support of MSWI managers and 

operators, the visit allowed 1) to understand the system features and performances 

and 2) to sample the available BA and FA materials in the most effective way. 

Samples repertory of this study derives from six MSWI facilities and includes 

original materials of BA and different FA types (according to the system 

technology). The selected MSWI plants are from northern Italy, mostly from Emilia 

Romagna region, among the most industrialised areas of the Peninsula. This 

translates in huge amounts of household waste and waste from industrial activities 

processed and impressive output flows of BA and FA, as detailed in chapter 2, 

supplementary material of chapter 3, and chapter 5. 

All the investigated MSWI facilities are equipped with a grate-system 

furnace and allow the separate storage of BA and each different FA. Wet (20-30% 

moisture content) BA from outdoor heaps have been sampled and used 

throughout the present study. Several FA residues have been sampled, depending 

on the available technology, and include: untreated fly ash from dry/semi-dry 

scrubbers (FAU, also called FA-RAW in chapter 4), fly ash from electrostatic 

precipitator (FAE), and fly ash from bag filters treated with lime (FAL) or soda 

(FAS) additives. In each incinerator plant, the sampling was performed a few days 

before the residues’ loading and subsequent relocation out of the storage site. The 

detailed sampling methodology is not addressed in this section because it is 

reported in the next chapters 2 and 3 and relative supplementary materials. Also, 

timeframe of residues’ production and physical properties at the sampling site of 

BA and FA are outlined in chapter 2 and 3.   
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5. Methods 

In this section I report the methods used following the order of their first 

appearance throughout the next chapters. Methods included geochemical and 

mineralogical characterisation, measures of magnetic and Os isotopic signature, 

other prospecting tools (e.g., mass flow analysis). Worth mentioning, the methods 

used for the purposes of the present research are typical of the Solid Earth Science 

and they were successfully applied to urban mining topics. 

I performed samples preparation and measurements independently, in 

accordance with laboratories’ supervisors. The analytical procedures and 

measurements were performed in the laboratories of the University of Bologna 

(BiGeA dept., Italy), University of Ferrara (Earth and Physical Science dept., Italy), 

Montanuniversität Leoben (General and Analytical Chemistry dept., Austria), 

CNR - National Research Council (Institute of Marine Sciences dept., Italy), VTT - 

Technical Research Centre (Material Recycling Reprocessing Recovery dept., 

Finland), Aalto University (School of Chemical Technology dept., Finland). 

5.1 Geochemical methods 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and X-Ray 

Fluorescence (XRF) have been used during the present work for the quantification 

of major (>1% m/m) and trace elements (<0.1% m/m). Because of the considerable 

use of XRF and ICP-MS, the following sections describe the analytical procedures 

and address the possible issues related to these analytical methods. Each technique 

had advantages and limitations; they should be considered as complementary 

rather than competing techniques. The combination and comparison of the 

analytical techniques have lead to a reliable assessment of analytes concentrations. 
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5.1.1 Sample preparation and efforts for reliable XRF measurements 

The XRF is widely used for geochemical analysis, it has many advantages 

(inexpensive, simple sample preparation, reagents are not required) and 

disadvantages (high detection limit, usually narrow dynamic range, spectral 

overlaps, matrix effect, no isotopic information). Generally, the XRF analysis 

remains a reasonable choice when very low detection limits are not required. 

Detection limits for many trace elements lie in the range of 5-10 ppm under routine 

operating conditions.  

I have undertaken the XRF analysis during different stages of this work at 

the BiGeA Department that is equipped with a PANalytical Axios wavelength 

dispersive X-ray fluorescence (WDXRF) spectrometer and all the facilities for 

samples preparation. About 5 g sample is grounded, dried (at 40°C), and 

accurately homogenised in an agate mortar until the powder is very fine milled 

(<40 µm). The powdered sample is then pressed (at 20 kPa) together with 10 g of 

boric acid, which acts as a “jacket”, by means of a hydraulic pressing machine. 

The XRF is a comparative technique thus the calibration needs certified reference 

materials (CRM). During routine analysis, the calibration curves for elemental 

quantification are based on a number of CRM, which are included in the SuperQ 

software. An online correction procedure translates the detected counts into 

elemental concentrations. The calibration curves cover a wide range of 

concentration; thereby they can be used for a range of geological sample with 

variable composition. The SuperQ applications for major and trace elements 

determination follow the analytical conditions as in Tab. §1-2. Under these 

conditions, the estimated analytical precision by means of replicates analysis is as 

low as 4% for major elements and 10% for trace elements. 
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TTaabb..  §§11--22  Analytical condition of the XRF analysis for major and trace elements. 
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The measured concentrations by XRF are also corrected by the value of loss 

of ignition (LOI), which is gravimetrically estimated after heating (for 12 hours, at 

950 °C).  

Anthropogenic samples have atypical composition compared to natural 

samples and, consequently, the matrix effects and spectral overlaps can be 

significant leading to unreliable quantification. As previously mentioned, suitable 

mathematical correction procedures are used to avoid discrepancies between the 

detected counts and final concentrations, mostly caused by absorption-

enhancement effects. However, in some cases, the selection of CRM for calibration 

is a limiting factor of the x-ray spectrometry, especially for the analysis of 

industrial samples. Owing the analytical challenges on MSWI samples chemical 

characterisation by XRF, I developed an offline procedure for analytes 

determination in order to check and validate the quantification methods 

implemented in the SuperQ software. Selected CRM (JR-1 and TB), matrix 

matched CRM (BCR-176, BCR-176r, and NBS 1633a), and in-house reference 

materials (BCR-176* and NBS 1633a*) are used for calibration (Fig. §1-4). In-house 

reference materials represent the corresponding CRM diluted by a fixed factor 

with the CRM JGb-1 (gabbro powder, Geological Survey of Japan, 1984) in order to 

obtain calibration curves for suitable range of concentrations. Following elements 

were checked: Ca, Mg, As, Ba, Cl, Co, Ga, Cu, Cr, Ni, Sb, S, and Zn. According to 

the measures of selected CRM (i.e., UBN, NIM-D, MICA-Fe, BXN) as unknown 

samples, the estimated relative error is as low as 5% for Ca, Ba, Cr, Cu, Mg, Sb, and 

Zn, while around 10% for Co, Ga, Ni, As, Cl, and S. Certified values were derived 

from the GeoReM database (http://georem.mpch-mainz.gwdg.de/).  

Samples measurements by XRF were done always in triplicate and the data 

quality were evaluated by means of statistical software (mostly, GCDkit and 

Minitab 16), following the recommendation outlined in Reimann et al. (2008).  
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Fig. §1-4 Calibration curves for offline conversions of XRF counts. 

5.1.2 The sodium peroxide sintering technique coupled with ICP-MS 

Compared to XRF, ICP-MS has greater speed, precision and sensitivity but 

time-consuming sample digestion and/or pre-concentration steps are often 

required. An overview on published digestion and pre-concentration methods can 

be found elsewhere (Barefoot, 1997). 

During the visiting period at the Montanuniversität Leoben, I analysed the 

MSWI samples using the sodium peroxide (Na2O2) sintering technique coupled 

with ICP-MS measurements. The Na2O2 sintering technique is an effective method 

of sample digestion for the most refractory material known today (Meisel et al., 

2002). The Na2O2 sintering is highly effective because Na2O2 can intimately attack 

minerals and the resulting sinter residue gets dissolved easily. The sodium 

peroxide decomposes to NaOH and O2 and does not introduce elements that cause 

significant instrument memory. The present technique is simple, inexpensive and 

capable of digesting samples containing refractory minerals such as stable high 
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melting temperature oxides, organic materials with high molecular mass, 

industrial magnesite, silicon carbide, etc. with highly reproducible and reliable 

results. In addition, the higher total dissolved solids compared to acid digestion 

techniques (e.g., HNO3/HClO4/HF mixture) and higher blanks do not affect the 

quality of the result. It is, therefore, preferable over others due to its performance 

characteristics. 

The procedure for Na2O2 sintering is hereafter outlined. About 0.1 g of dried 

and milled sample is exactly weighted into glassy carbon crucibles and each of 

them is thoroughly mixed with 0.6 g of fine powdered Na2O2 by a glass stirrer. The 

carbon crucibles are then heated in a muffle furnace at 480 °C for 30 minutes. 

Afterward, they sample crucibles are allowed to cool down to room temperature. 

The crucibles are washed from outside with Milli-Q water to remove any kind of 

possible exterior deposition due to heating. Carbon crucibles are kept in Teflon 

backers covered with glass lids and again heated on a hot plate (90 °C) along with 

magnetic stirrer stirring at 250 rpm for 30 minutes. Milli-Q water is added drop-

wise in the crucibles till the reaction ceases and no more vapour is visible, which 

earlier is being accumulated on glass lids. The following reaction occurs: 

 

2 Na2O2 + 2 H2O  4 NaOH + O2 

 

The solution is poured to the 50 ml PP centrifugation tubes and centrifuged 

at 4000 rpm for 5 minutes. The clear solution from centrifugation tubes is then 

poured into a 100 ml volumetric flask, while the solid residue from centrifugation 

is dissolved by 3 ml of 3M HCl. In parallel, 2 ml of conc. HCl (reagent grade) is 

added to all the crucibles to get sinter cake dissolved. All the solutions from the 

centrifuge tubes, Teflon backers and carbon crucibles are finally poured into 100 ml 

labelled flasks. The resulting solution is diluted to the mark with Milli-Q water 
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after rinsing centrifuge tube, backer, and crucible. The flasks are closed with their 

stoppers, the solution mixed by gentle shaking and the final clear solution is 

poured into the tubes for further treatment (i.e., dilution, standard addition) 

required for ICP-MS analysis.  

During our measures of incineration ash samples, exactly 1 ml of clear 

solution is used and further diluted up to 5 ml total with 1% HNO3, while 100 µl 

In/Re (100 ppb) and 50 µl Ge (1 ppm) are added as internal standards. Blank 

solutions and selected reference materials (RM: MRH, SdAr-1) were also treated 

with the same procedure before final measurements by ICP-MS. The RMs allowed 

evaluating analytical uncertainties. 

The analytes determination was satisfactory for most of the elements with 

excellent detection limits (at the ppb level), but the analysis of PGE mass fractions 

was challenging due to isobaric interferences. As a fact, the interferences of Ni, Cu, 

Cd, Cl, Sb, and Pb, typically hosted in high amounts within MSWI samples, 

hampered a reliable PGE quantification. Moreover, the lack of a comprehensive 

dataset of measurands in certified RM for MSWI ashes led to a weak 

determination. As a consequence, a comparison with a different technique might 

help assessing the integrity of PGE data from MSWI samples; isotope dilution (ID) 

with High Pressure Asher (HPA) acid digestion coupled with ICP-MS 

measurements is used. The following section provides essential information about 

this technique. 

5.1.3 Isotope dilution with High Pressure Asher (HPA) acid digestion 

coupled with ICP-MS 

As main advantages, the HPA-ID allows determining Re, has low level 

blanks, lower detection limits and, hence, better precision in low-level 
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homogeneous samples (Savard et al., 2010). We aimed to determine PGE 

concentrations by High Pressure Asher digestion (HPA-S; Anton Paar, Graz, 

Austria) followed by online separation and quantification by ID, as in Meisel et al. 

(2003). First, the production of a PGE-spiked solution is necessary. An ideal spike 

has the following characteristics: freedom of isobaric and molecular interference, 

highest possible enrichment of one isotope that has a low abundance in the natural 

element, and minimized total uncertainty of the concentration determination. The 

procedure of calibrated spike production can be found elsewhere (Savard et al., 

2010, Meisel et al., 2001). Up to 2 g of finely powdered samples were weighed into 

90 ml quartz glass vessels. There has been concern that OsO4 could escape before 

the vials are sealed, thus it has been suggested pre-cooling acids in a regular 

refrigerator before adding them to the HPA-S vessels is sufficient (Meisel et al., 

2001). An appropriate amount of spike was added followed by 2 ml of cooled conc. 

HCl and 5 mL of conc. HNO3 was added before closing the vials. After adding 2 ml 

of conc. HCl and 5 ml of conc. HNO3 the vials were immediately sealed with 

Teflon tape and a glass lid and heated in the HPA-S, by following a setup of 

heating (at 300 °C and a pressure of ca. 125 bar during three hours) and slow 

cooling down (until room conditions). Soon after cooling, the samples were 

processed for Os immediately to avoid the dispersion of volatile Os. In fact, OsO4 

can be purged by directing the carrier gas of the ICP-MS through the vial filled 

with the solution recovered from the quartz glass vessels (Hassler et al., 2000). 

Although dropping exponentially, the intensities remain sufficiently high to 

determine the Os concentration by determining the isotope ratios (187Os/188Os) that 

can be determined with adequate accuracy for geochemical purposes. The Os 

concentration of MSWI samples was immediately detected by direct OsO4 sparging 

into the plasma torch with an argon gas flow. For Os measurements selected RMs 

and matrix matched RMs were used: BCR176, BCR176R, NIST1633a, and WPR-1.  
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On the other hand, the analysis by HPA-ID-ICP-MS of other PGE mass 

fractions from MSWI samples is still in progress. After Os measurements, the 

procedure continued by drying samples on a hot plate at 70–80 °C until the 

complete evaporation of the liquid phase. The residue was eluted with 2–10 ml of 

0.1M HCl. After centrifugation, 0.2–1 ml of the solution was introduced into a 1-m 

long cation exchanged resin column previously washed with 6M HCl and 

equilibrated at 0.1 M HCl. The column was directly attached to the ICP-MS for 

online separation (FFiigg..  §§11--55). A multiple PGE-Au and Re stock solution (SCP 

Science, Canada) was used to monitor the mass drift. The isotopes used for 

quantification through ID were 101Ru, 106Pd, 186Re, 188Os, 193Ir and 196Pt.  

The method limit of detection cannot readily be calculated for HPA-ID 

because the result is obtained by a summation of the signal integrated over a 

period of time that can vary. The uncertainty is dominated by sample 

inhomogeneity rather than that of the analytical technique. In general, limits of 

detection are about one order of magnitude lower than for nickel-sulphur fire 

assay technique, which is also widely used for PGE quantification. 

 

Fig. §1-5 Schematics of the on-line chromatographic set up from Meisel et al. (2003). (1) Application of 

2 bar N2 pressure, (2) 0.1M HCl reservoir (eluant), (3) sample loop ca. 2 ml, (4) sample 

introduction, (5) cation exchange column (1 m) and (6) peristaltic pump. 
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5.1.4 Chemical and mineralogical characterisation: other analytical methods 

Other analytical results were used either for the preliminary characterisation 

or as complementary information, helped to drive and validate the main analytical 

work. For chemical characterisation Inductively Coupled Plasma Atomic Emission 

Spectroscopy (ICP-AES) and gas chromatography were used, whereas X-Ray 

Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) allowed the 

identification of mineral phases and organic compounds. Moreover, I performed 

morphological observations by Electron Microprobe (EMP) and Scanning Electron 

Microscope (SEM) and semi-quantitative chemical analysis through Energy 

Dispersive Spectrometer (EDS) coupled to these analysers. Actually, the outcomes 

in Chapter 4 partly derive from ICP-AES and SEM analysis. Data from other 

analytical methods are not shown. 

5.2 Strategic tools for prospecting: Substance flow analysis  

Material flow analysis (MFA) is a systematic assessment of the flows and 

stocks of materials within a system defined in space and time (Brunner & 

Rechberger, 2004). It connects the sources, the pathways, and final sinks of a 

material. Because of the law of the conservation of matter, the results of an MFA 

can be controlled by a simple material balance comparing all inputs and outputs of 

a process. The input-output method has been recently incorporated into Life Cycle 

Assessment (LCA) to establish the economic input–output LCA method. In the last 

decades, solid waste LCA models or MFA are often used to evaluate the 

environmental and financial consequences of various waste management strategies 

(e.g., Brunner & Mönch, 1986; Fellner et al., 2015). 
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In MFA, the term Material stands for both substances and goods. When using 

geochemical data and modelling flows of elements the term Substance is more 

appropriate, as broadly ascertained. Therefore, Substance Flow Analysis (SFA) has 

been used in the present study. 

5.3 Magnetisation and magnetic methods 

Magnetic susceptibility measurement issued in Chapter 3 was carried out at 

the Institute of Marine Sciences of the National Research Council (ISMAR-CNR) by 

using a MS2 Bartington meter. The exact sample mass was recorded and magnetic 

susceptibility values (k) on MS2 display were noted. Mass specific magnetic 

susceptibility (x) was calculated with the following formula: 

 

X = (k∙10)/(mass of sample (g)) 

 

Magnetisation which occurs as a response of an externally applied magnetic 

field Mi is known as induced magnetization. The ratio between the induced 

magnetization, Mi, and magnetic field, Ha, is called magnetic volume susceptibility 

which is denoted with k. 

 

κ = Mi/Ha 

 

Dividing volume susceptibility by density gives specific susceptibility X. 

 

X = k/ [m3/kg] 
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In general, magnetic methods are widely used in geology for paleo-

environmental reconstruction as the magnetisation is a sensitive tracer of the time 

when a rock formed. Magnetic measures are also sensitive to elements, especially 

heavy metals, and to grain size (e.g., ultra fine particles). It has been suggested to 

apply magnetic characterisation to environmental impact assessment. Heavy 

metals have affinity to form metallic bonding with ferrous material which leads to 

increase the magnetic susceptibility. Heavy metals are incorporated in 

ferromagnetic material during combustion process or they get adsorbed on the 

surface of ferrimagnetic materials already existing in the environment (Chaparro et 

al., 2004). A correlation between magnetic data and concentrations of heavy metals 

is often observed (Maier & Scholger, 2004, Reyes et al., 2011). Researchers have 

been trying to use magnetic susceptibility measurement as a tool to map areas with 

higher heavy metals contents and to study lithological and pedological impact on 

magnetic susceptibility (Hanesch & Scholger, 2002).  

Interestingly, magnetic properties are very susceptible to specific minerals 

and elements (e.g., magnetite, Gd); fact that aimed to suggest the magnetic 

susceptibility correlates with metals of economic interest (such as REE) and can be 

helpful for quick mineral prospecting. 

5.4 Methods for separation, upgrading and treatment of MSWI 

residues 

In the present section I report an overview of potential methods for the 

treatment, metal separation and mineral beneficiation of MSWI residues. The 

detailed experimental procedures for metal upgrading/recovery is not addressed in 

this section because it is reported in the next chapters 2 and 4 and relative 

supplementary materials. 
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A number of processing techniques of BA and FA from MSWI have been 

proposed both to minimise harmful metals release (improve the environmental 

status of the residue) and recover metals of economic interest. MSWI residues are 

commonly treated with separation techniques, followed sometimes by thermal 

treatments or stabilisation/solidification (e.g., Adam et al., 2009; Jakob et al., 1996; 

Nowak et al., 2010; 2012) (Tab. §1-3). Separation technologies consist of physical-

mechanical separation and chemical processes. 

TTaabb..  §§11--33  Main processing options for prior to utilisation of final disposal of MSWI residues 

(modified from Sabbas et al., 2003). 

Physical 

separation 

Chemical 

separation 

Stabilisation 

treatment 

Thermal 

treatment 

Size separation Washing Ageing/weathering  Sintering 

Size reduction Acid extraction Carbonation Vitrification 

Magnetic separation Alkaline extraction Chemical stabilisation Pyrolysis 

Eddy current  Solvent extraction Blending with cement  

 Combined extraction Pelletizing  

5.4.1 Overview on physical-mechanical separation methods 

Physical and mechanical treatments of MSWI residues are widely used 1) to 

recover scrap metals, 2) to improve the residual ash quality for its reuse as 

construction material or geopolymer, 3) to obtain any mineral beneficiation prior to 

hydrometallurgical processes. Iron, aluminium, copper and other base metals, with 

different grades of purity, can be obtained (especially from bottom ashes) by 

physical-mechanical separation incorporating drying, crushing, sieving, magnetic 

separation and eddy current separation. The magnetic separation methods are 
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mainly used for separating metallic scraps, iron minerals from MSWI residues. 

Commonly used magnetic machines are cross-belt magnetic separator, drum 

magnetic separator and magnetic pulley separator. In the investigated MSWI 

facilities a drum magnetic separator recovers the biggest metallic scraps before the 

BA are piled up. Several systems divide ferromagnetic and non-ferromagnetic 

fractions of BA with relatively high efficiency. The former (almost iron) can be 

successfully recovered, while the non-ferrous fraction is further treated to recover, 

for example, Al and Zn. Ferrous and non ferrous metals are present in a range of 7-

15% and 1-2%, respectively (Sabbas et al., 2003). Further thermal treatments such as 

vitrification by re-melting (1200-1400°C) are suitable to destroy organic 

contaminants and stabilise inorganic compounds. However, thermal methods are 

rarely applied due to the high energy consumption. 

5.4.2 Chemical separation: hydrometallurgy and bio-hydrometallurgy 

Hydrometallurgical separation methods are those in which one, or more, of 

the phases related to the process is aqueous. The process chains of modern 

hydrometallurgy developed starting from the 19th century. Hydrometallurgical 

solutions are typically generated by dissolving metals present in the raw materials 

in acids or bases. Metals are separated in the dissolution step, the so-called leaching, 

when one or more of the metals are not soluble in the solvent used. 

Hydrometallurgical separation is also performed by solvent extraction or by means 

of solid ion exchangers, ionic liquids, membranes, and adsorption capacity of other 

materials. Once the metals have been separated from each other, pure metal can be 

produced for example by precipitation, cementation or electrowinning. 

Nevertheless, the reverse process of the leaching, i.e., production of a solid 

precipitate, is also widely used as a separation method and it can be part of the 
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process chain. Biohydrometallurgy, i.e., a hydrometallurgical extraction enhanced 

by microorganism, is a widely studied (and with increasing interest) branch of 

hydrometallurgy and successfully employed in the treatment of mines and plants 

tailings, and in metal recovery from secondary sources. As a matter of fact, the 

industrial utilisation of bioleaching already started in the end of 19th century: Rio 

Tinto copper mine in South-Western Spain was considered the first large-scale 

biohydrometallurgical operation; during 1950-1980 bioleaching was utilized in 

heaps and from 1980 onwards in heaps and dumps (Bosecker, 1997). During the 

last decades, bio-mediated processes were progressively increased also for the 

treatment of by-products (e.g., for recovery of gold from tailings in Nerco Can 

Mine, Canada; Stefanski & Martin, 1992).  

The falling grade of primary ores due to the intense exploitation has lead to 

develop fine-tuned bio- and hydrometallurgical methods, which are often more 

suitable than thermal treatments in terms of process economics and recovery 

performances. As the concentrations of ore metals in anthropogenic deposits such 

as MSWI waste streams are rather small, and also variable, hydrometallurgical 

methods are suitable for the treatment of such materials because they are more 

flexible than, for example, pyrolysis methods. Both bio-hydrometallurgical 

procedures can prove beneficial to decontamination of industrial waste and mine 

tailings, coupling metal recovery with environmental remediation. Commercial 

bio- and hydrometallurgical applications for secondary raw materials have been 

recently reviewed by Meawad et al. (2010) and Lee et al. (2012).  

5.4.3 Leaching and leachability 

During the leaching procedures, minerals or group of metals dissolve by 

varying thermodynamic conditions. Typical leaching reagents include water, 
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mineral acids (H2SO4, HCl, etc.), bases (NaOH, NH4OH), organic acids (e.g., maleic 

acid) salt solutions and combinations of these. Processes can be optimised by 

changing temperature, pressure, reaction time, but also by the addition of 

oxidizing (H2O2, Cl2, HClO, NaClO) or reducing (Fe2+, SO2) agents. Equilibrium and 

kinetics of leaching are often favoured in aggressive conditions (e.g., elevated 

temperature and/or pressure, strongly acidic/alkaline environment). Among 

leaching methods, heap leaching, dump leaching (heap without crushing), reactor 

leaching, vat leaching, autoclave leaching (high pressure and temperature) and in-

situ leaching (extractant pumped directly in the ore deposit) are the most used. 

Also, microorganisms can enhance the leaching. An excellent overview on 

suitable microorganisms for metals recovery was provided by Rawlings (2002) and 

recent edited books cover a number of specific topics in biohydrometallurgy 

(Rehm and Reed, 2001; Donati and Sand, 2007; Rawlings, 1997; Rawlings and 

Johnson, 2007) to which the reader can refer for further information. Generally, 

bacteria can favour the metal solubility mostly by producing acid or by oxidisation 

mechanisms of Fe2+ to Fe3+. As a consequence, bioleaching demonstrates potential 

to reduce operating costs compared to conventional leaching processes. It seems 

also an environmentally sustainable process, since the use of strong chemicals, 

energy and aggressive conditions are reduced.  

Other methods that have been tested to improve the performance of 

conventional leaching are, for example, microwave- and ultrasound-assisted 

leaching. 
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Abstract 

The incineration of municipal solid wastes is an important part of the waste 

management system along with recycling and waste disposal, and the solid 

residues produced after the thermal process have received attention for 

environmental concerns and the recovery of valuable metals. This study focuses on 

the critical raw materials (crm) content in solid residues from two Italian municipal 

waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash 

residues, i.e. the two main outputs of common grate-furnace incinerators, and 

determined their total elemental composition with sensitive analytical techniques 

such as XRF and ICP-MS. After the removal of a few coarse metallic objects from 

bottom ashes, the corresponding ICP solutions were obtained using strong 

digestion methods, to ensure the dissolution of the most refractory components 

that could host significant amounts of precious metals and crm. The integration of 

accurate chemical data with a Substance Flow Analysis, which takes into account 

the mass balance and uncertainties assessment, indicates that bottom and fly ashes 

can be considered as a low concentration stream of precious and high-tech metals. 

The magnesium, copper, antimony and zinc contents are close to the 

corresponding values of a low-grade ore. The distribution of the elements flow 

between bottom and fly ash, and within different grain size fractions of bottom 

ash, is appraised. Most elements are enriched in the bottom ash flow, especially in 

the fine grained fractions. However, the calculated transfer coefficients indicate 

that Sb and Zn strongly partition into the fly ashes. The comparison with available 

studies indicates that the crm concentrations in the untreated solid residues are 

comparable with those residues that undergo post-treatment beneficiations, e.g. 

separation between ferrous and non-ferrous fractions. The suggested separate 

collection of “fresh” bottom ash, which could be processed for further mineral 
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upgrading, can constitute an attractive option of the waste management system, 

when physical-mechanical devices are not available or could not be implemented 

in old MSWI systems. The suggested procedure may lead to the improvement of 

recovery efficiency up to 83% for crm and 94% for other valuable metals. 
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1. Introduction 

The European waste policy discourages waste landfill in favour of waste 

recycling, recovery and, finally, waste-to-energy processes (EC, 2008). Today, the 

waste incineration represents the mainstream method for the management of 

unsorted urban and industrial wastes in many industrialized countries. An 

integrated system of municipal solid waste incineration (MSWI) reduces the 

volume of collected waste, destroys many toxic components and provides a source 

of alternative energy. Final solid residues are around 30% of the total mass input 

and their reuse, as additive for construction materials (e.g.: Bertolini et al., 2004; 

Izquierdo et al., 2001), or their disposal in landfills invariably requires the 

assessment of the amount of hazardous elements, which can endanger the 

environment and the human health (e.g.: Li et al., 2004; Pan et al., 2013). Efforts 

have been made to characterise the chemical and mineralogical composition of the 

residues, including the leachable fractions (e.g.: Hu et al., 2012; Pan et al., 2013; 

Zhang et al., 2008b). 

The growing body of chemical (and mineralogical) data is adding a new 

perspective on solid waste as a secondary source of metals and other valuable 

chemical elements. During the last few years, several authors investigated on 

precious metals (mostly Ag, Au, Pt) in MSWI residues (Hu et al., 2009; Jung and 

Osako 2009a; Muchova et al., 2009). Recently, the European Commission (2010; 

2014) defined a list of “critical” raw materials on the basis of their relative 

economic importance and supply risk. Critical Raw Materials (crm) are chemical 

elements and minerals such as Be, Co, Cr, Ga, Ge, In, Mg, Nb, Sb, W, Platinum 

Group Elements (PGE), Rare Earth Elements (REE), borates, coking coal, fluorspar, 

graphite, magnesite, phosphate rock, silicon metal, which are important for the 

technological development. In this regard, recent works reported the total content 
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of crm in solid residues from incineration plants (Hasegawa et al., 2014), also 

inspecting the annual flow for several elements (Morf et al.; 2013; Allegrini et al., 

2014). 

Although several studies dealt with the fractionation of potentially harmful 

elements in different grain size fractions of bottom and fly ashes (De Boom and 

Degrez, 2012; Yao et al., 2013; Zhang et al., 2008a), the distribution of crm in such 

fractions has not been fully explored. Morf et al. (2013) and Allegrini et al. (2014) 

investigated the crm content in treated bottom ashes (i.e., after magnetic separation 

or with automatic samplers of the MSWI system) and in grain size fraction of the 

treated residues (i.e., non-ferrous batches). However, the treatment after quenching 

of bottom ash (e.g., separation between magnetic and diamagnetic materials) might 

not be a common practice at the facility scale, especially when a 10-15 years old 

system is operating. 

For this reason we focus on the characterisation and the crm potential 

evaluation of the main outputs of common incineration systems: 1) the whole and 

“fresh” (=after quenching) bottom ash residues and 2) the untreated (=prior to any 

filtration) fly ashes. We provide the elements mass fraction by XRF and ICP-MS 

and the estimated element flows (kg/a) of some crm and other valuable metals 

through a substance flow analysis, as carried out in other works (Astrup et al., 

2011; Belevi and Moench, 2000; Brunner and Ernst, 1986; Brunner and Moench, 

1986; Morf et al., 2013; Zhang et al., 2008a). In general, the annual flow evaluation 

lack in balanced mass account and in a clear description of uncertainty assessment 

(Astrup et al., 2015), but in this contribution we provide the necessary information 

for the substance flow calculation to prove its integrity and to facilitate the inter-

comparison with existing works. 

Applying the same methods of analysis and elements flow evaluation, we 

further explore the different grain sizes of “fresh” bottom ash stocks by means of a 



67 

 

visual-aided separation, easy for unskilled operators, in order to understand if the 

recovery potential of bottom ashes can be improved immediately after the 

incineration process and with low costs for the plant managers. In addition, the 

separate collection of fresh untreated bottom ash may constitute a good choice 

when physical-mechanical devices are not available or could not be implemented 

in old MSWI systems. 

The crm elements Be, Co, Cr, Ga, Mg, Nb, Sb, REE, W and Y are investigated 

in this study and hereafter called crm for simplicity reason. 

2. Materials and methods  

2.1 Bottom and fly ash samples 

We collected the final solid residues from two waste incinerator plants from 

Northern Italy, named SWI-1 and SWI-2. The selected incinerators have similar 

thermo-recycling technology, with two boiler systems that produce an average 

electricity of 85000 MW/h per year. The incineration systems consist of two lines 

that drive the collected waste, about 0.13 Mt/a (this value refers to the mean of the 

two plants), in the furnace that operates at temperatures between 850 and 1100 °C. 

More than 90% of the solid waste input is made of unsorted municipal solid waste 

while the remaining consists of special waste derived from pre-processing of the 

former. Moreover, the input to the SWI-1 also includes pharmaceutical and 

hospital waste. 

The main outputs of the incineration process are slag, bottom and fly ashes. 

Hot slag and bottom ashes (hereafter called BA) are quenched in cooling tanks. The 

residence time of the residue in the water varies between 4 and 8 hours depending 

on the throughput of waste and on its calorific value. At this stage, a broad 
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magnetic separation removes the coarse ferric scrap; since this residue is 

completely recycled, it is not considered in our investigation. Belt conveyors 

transport the remaining wet residues (depurated only by the largest ferric objects, 

which is not considered in the final mass-weighted for the calculation of elements 

flow) to a temporary outdoor storage site where the BA are piled up. There is no 

further post-combustion treatment (e.g., trammel screening, magnetic separation). 

The total annual output of BA is about 0.023 Mt/a and 0.032 Mt/a for SWI-1 and 

SWI-2, respectively. Other outputs besides BA and FA, e.g., iron scrap from 

preliminary separation, off-gases, are accounted separately and do not affect the 

balance of the SFA for BA and FA. 

Untreated fly ashes from the furnace (hereafter, FA) are among the first 

residues produced during the incineration in both plants. These residues derive 

from mechanical waggle of the FA evacuation systems and are separately collected 

in big bags. Such kind of ash is typical of many conventional MSWI systems. Fly 

ashes undergo further steps of physical and chemical treatment (ESP, scrubber and 

bag filter with chemical additives) but these treated fly ashes are not the object of 

the present work. The total annual output of FA is about 2400 t/a and 3200 t/a for 

SWI-1 and SWI-2, respectively. 

The overall process ensures that there is no mixing between FA and BA. 

2.2 Sampling and sample preparation  

The BA sampling from the two plants (SWI-1 and SWI-2) was carried out in a 

typical day of the process activity in May 2013, directly from the outdoor storage 

site. Each sampled stockpile was 3-4 meters high and representative of two-month 

deposition in total, since the last loading took place in early March 2013. 
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The samples collection followed the “stratified simple random sampling”, a 

method outlined in the Italian technical standard UNI 10802 (2013) and also 

successfully adopted for the management of incineration waste in France (SVDU, 

1995). The method is suitable in case of solid waste forming an accumulation, 

which contains separate units or “strata” with vertical or horizontal direction. The 

strata should be readily distinguishable by specific features (e.g., colour, grain size, 

etc.) and are followed by drawing a simple random sample from each stratum. 

Generally, the stratified simple random sampling is more representative of the 

population than the simple random sampling (Kaur et al., 1996 and reference 

therein). 

 As the hill-shaped pile was clearly influenced by gravitational sorting, the 

variable that allows to stratify the BA stockpile is the gravity, which affects the 

grain size distribution of the solid material. Although the high deposition rate of 

materials, a visual inspection of the BA pile revealed coarser BA at the bottom of 

the pile and fine-grained BA at the top. This visual inspection allowed us to 

identify three layers (strata) based on their prevalent grain-size. Layers are named 

B, M, T respectively for bottom, intermediate and top. The influence of the gravity 

in grain size sorting is appraised by a grain-size analysis on primary samples 

conducted for the two plants (FFiigg..  §§22--11). Directly from fresh BA stock, 7-8 kg 

primary sample was taken from each layer. Each batch was split in four portions, 

the opposite portions were mixed together and again split for three times, to 

ensure homogeneity and representativeness. Three subsamples were taken from 

primary samples (i.e. each layer), nine in total from each incinerator plant. BA have 

5-10 wt. % moisture content and show cm-sized fragments of metals, glassware and 

ceramics. All samples were oven-dried at 40°C for one week under continuous air 

flow. 

FA were collected in December 2013 from “big bags” with a random 

sampling method (UNI 10802, 2013). In both incinerator plants, about 5 kg FA 



70 

 

primary sample was collected from almost full big bags and blended from a large 

number of increments in order to reach representativeness. FA samples are very fine-

grained with very low moisture content, i.e. < 1 wt. %. They were oven-dried at 40°C 

overnight.  

For our study we did not average samples taken over a longer period. 

Although BA were collected about seven months earlier than FA, the latter were collected 

before the system cleaning and we assumed it is comparable to BA because of the low 

output flow rate of FA. The equipment of the selected MSWI plants did not allow to collect 

FA residues corresponding to the same BA mass burning. 

The chosen samples of BA and FA were homogenized with an agate 

vibratory disk mill for 30 min and milled again with an agate mortar until the 

whole material had size <40 μm within one week after sampling. Only a few coarse 

metallic objects (>1 cm), which could not be size reduced, were removed from BA 

samples in order to pulverise the “fresh” BA materials, including the sub-

centimetric fragments of metal. 
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Fig. §2-1 Grain-size analysis of the sampled material in bottom (B), intermediate (M) and top (T) 

layers of the stratified simple random sampling method, for SWI-1 and SWI-2. 

2.3 Analytical techniques 

The bulk chemical composition of milled material was obtained by X-ray 

fluorescence spectrometry (XRF) and inductively coupled plasma mass 

spectrometry (ICP-MS) techniques. 
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2.3.1 X-ray fluorescence spectrometry 

Major (> 1 g/100g), minor (0.1 to 1.0 g/100g) and trace (< 0.1 g/100g) element 

analyses were performed on the bulk sample of each layer (B, M, T) for the two 

selected MSWI plants. The total number of analysed samples is 18, three samples 

for each layer. The total elemental chemistry was determined on thin layer pressed 

powder pellet (ϕ 37 mm) in boric acid binder, using three grams of the dried and 

milled sample. A sequential wavelength dispersive X-ray fluorescence (XRF) 

spectrometer (Axios-Panalytical), equipped with a 4 kW Rh tube and SuperQ 3.0 

software, was used at the Department of Biological Geological and Environmental 

Sciences - Geology Division of the University of Bologna. The estimated precision 

for major and trace element determinations are better than 5% except for those 

elements ≤10 mg/kg (10–15%). Total loss on ignition (LOI) was gravimetrically 

estimated after overnight heating at 950°C. The following elements were analysed 

by XRF: Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, As, Ba, Ce, Co, Cr, Cu, Ga, La, Mo, Nb, 

Nd, Ni, Pb, Rb, Sc, Sm, Sn, Sr, V, Y, Zn and Zr. 

2.3.2 Inductively coupled plasma spectrometry 

Inductively coupled plasma mass spectrometry (ICP-MS) was used for the 

determination of the total elemental composition of FA samples (from both MSWI 

plants; 2 samples each) and BA samples (from SWI-1 layers; 3 samples each, 9 in 

total). 

For BA analyses, 0.2 g dried and milled sample were totally digested with 

high purity grade HNO3, HClO4 and HF (Merck, Darmstadt, Germany) on a hot 

plate at 170°C until the digested solution was clear. Final H2O2 treatment followed 

the digestion procedure to dissolve the carbonic refractory fraction. Dissolved 
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samples were dried out and then diluted to the mark in ultrapure water obtained 

from a Milli-Q purifier system (Millipore Corp., Bedford, MA, USA). The analyses 

were carried out using an X-Series Thermo-Scientific spectrometer at the 

Department of Physics and Earth Sciences of the University of Ferrara. Specific 

amounts of Rh, Re and In were added to the analysed solutions as an internal 

standard, in order to correct for instrument drift. The precision, based on 

replicated analyses of samples and standards, is estimated as better than 10% for 

all elements well above the detection limit.  

FA samples were analysed at the department of General and Analytical 

Chemistry of Montanuniversität Leoben using the Na2O2 sintering technique 

(Meisel et al., 2002) as a method of total digestion. For the digestion 0.1000 g of 

dried and milled samples were weighed into glassy carbon crucibles and each of 

them were mixed thoroughly with about 0.6 g of fine powered Na2O2 by a glass 

stirrer. The carbon crucibles were sintered in a muffle furnace at 480°C for 30 

minutes, then they were allowed to cool down to room temperature. After cooling, 

crucibles were kept in Teflon beakers. Milli-Q water was added drop-wise in the 

crucibles till the reaction ceased. The Teflon beakers were heated again (90°C) 

along with magnetic stirrer stirring at 250 rpm for 30 minutes. The final solution 

was centrifuged at 4000 rpm for 5 minutes. The clear solution from centrifugation 

tubes was poured into a 100 ml volumetric flask, while 2 ml of concentrated HCl 

(reagent grade) and 3 ml of 3 mol/l HCl were added to the crucibles and the 

residues obtained after centrifugation, respectively, to dissolve the precipitates. All 

the solutions were poured from centrifuging tubes, Teflon beakers and crucibles 

into the respective labeled flasks and diluted to the mark (up to 100 ml). One ml of 

the final solution was taken for ICP-MS measurement and further diluted up to 5 

ml total with 1% of HNO3. 100 µl of In/Re (100 ppb) and 50 µl of Ge (1 ppm) were 
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added as internal standard. Blank solution and reference materials were also 

treated similarly before final measurements with ICP-MS.  

2.4 Substance flow analysis 

An estimation of substance flow (Brunner and Rechberger, 2004) for SWI-1 

BA and FA was carried out on single output products and their grain size fractions. 

The substance flow analysis allows to determine the annual flow of commodities 

within output products and the transfer coefficient from inputs to outputs. The 

spatial system boundary for the experiment was the MSWI process itself, from the 

waste collection to output products, and included the sampling and the 

preliminary samples clustering in grain size fractions. The temporal system 

boundary was defined as one year, assuming that the sampled material is 

representative for one year process activity (i.e., 2013). 

For the calculation of total annual flow for BA and FA we used following 

simple equations: 

 

                    [1] 

 

                    [2] 

 

Where: F is the annual flow in mass/time, Ci is the measured concentration of 

element i in mass/mass and O is the total output mass/time for the BA and FA. 

The evaluation of the uncertainty propagation follows the Gauss’ law of error 

propagation. Since only coarser fractions show strongly deviating data and skewed 

distribution, we decided to calculate means and error propagation assuming 
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normal distribution. As the annual flow evaluation needs data of high precision in 

order to minimise the calculation bias, we have considered the ICP-MS results.  

The following elements were selected for the annual flow analysis: the crm 

elements Be, Co, Cr, Ga, Mg, Nb, Sb, W, including the REE group (from La to Lu 

plus Sc and Y), the precious metals gold (Au) and silver (Ag), some metals of high 

economic importance, according the European Commission (2014), Al, Cu, Fe, Li, 

Mn, Mo, Ni, Sn, Ta, Ti, V and Zn and other metals, Ba, Bi, Hf, K, Pb, Rb, Sr, Tl and 

Zr. 

Transfer ratios (K) of selected crm and other valuable metals were calculated 

by the following equations: 
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                       [5] 

 

where: BA% and FA% are the mass flow in percent of the bottom and fly ash 

residues in the final solid output, respectively. CiFA and CiBA are the concentration 

of the element i in the respective residue. K from FA (KFA) and BA (KBA) final 

outputs were calculated, in a similar way adopted by Zhang et al. (2008a) for the 

evaluation of the distribution of heavy metals between different types of residues. 

The equation [5] allows us to calculate the K among different fractions of BA (KBAf). 
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3. Results and discussion 

3.1 Bottom ash 

SiO2 and CaO are the main oxides in BA (TTaabb..  §§22--11), with concentrations 

higher than 30 g/100g and 20 g/100g, respectively. The BA contain about 10 g/100g 

of iron (expressed as Fe2O3), about 8 g/100g of Al2O3. The contribution of titanium, 

aluminium, iron and manganese oxides is similar between SWI-1 and SWI-2. The 

mean values are quite similar and the relative standard deviation ranges between 

10 and 40 %, pointing that the material is rather homogeneous. This is probably 

due to similar waste input and combustion conditions (De Boom & Degrez, 2012). 

The amount of MgO is higher in SWI-1 rather than SWI-2, with a large variance 

calculated for the former. Magnesium could derive from metallurgical processes, 

electronic devices, agricultural fertilizer, chemicals and pharmaceuticals. Therefore 

it is worthy to note that the waste input to SWI-1 comprises also 

pharmaceutical/hospital waste. 

XRF trace elements analyses of BA samples from SWI-1 and SWI-2 (TTaabb..  §§22--22) 

show high concentrations of the following heavy metals (in decreasing order of 

abundance): Zn, Cu, Ba, Cr, Pb, Sn and V. Each sample contains more than 2 g/kg 

of Zn and Cu, over 1 g/kg Ba. Many trace elements show high standard deviation 

probably due to a random error during sampling operations, e.g. the presence of 

sub millimeter metallic scraps can affect lead, tin and zinc concentrations. 

However trace elements concentration are quite similar in SWI-1 and SWI-2 BA 

residues, only V, Ni and La, show higher values in SWI-1 relative to SWI-2.  

ICP-MS data for SWI-1 BA (TTaabb..  §§22--33) show a silver mean concentration of 

5.5 mg/kg, 0.4 mg/kg Au, 0.6 g/kg as sum of selected crm (Be, Co, Cr, Ga, Nb, Sb, 

W), over 0.1 g/kg REY (REE + Sc + Y), 7.7 g/kg other metals with high economic 

importance (Cu, Li, Mo, Ni, Sn, Ta, V and Zn - according to EC, 2014). Cerium is 
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the prevailing element of the REE group (31.8 mg/kg), chromium and antimony are 

the most abundant amongst crm elements (0.37 and 0.12 g/kg, respectively). For 

most of trace elements ICP-MS measured concentrations are in good agreement 

with XRF data of this study (see TTaabb..  §§22--22) and within the ranges quoted in the 

literature (TTaabb..  §§22--33). Moreover, the untreated samples composition is comparable 

to the Danish and Swiss treated residues, analysed by Allegrini et al. (2014) and 

Morf et al. (2013), revealing that the post-treatment (i.e., separation between ferrous 

and non-ferrous material) of BA leads to a weak mineral beneficiation. 

Tab. §2-1 Major elements concentration of bottom (BA) and fly ash (FA) samples from the selected 

incinerators (SWI-1 and SWI-2) by XRF. Average values are reported in g/100g of oxides with relative 

standard deviation (%) for n number of samples. Loss of ignition (L.O.I.) value is also provided. 
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Tab. §2-2 Trace elements concentration of bottom ash (BA) samples (from SWI-1 and SWI-2) by XRF. 

Average values reported in mg/kg with relative standard deviation (%) for 3 samples each 

sampled layer.     
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Tab. §2-3 Average content of bottom (BA) and fly ash (FA) samples from SWI-1 plant by ICP-MS 

compared with literature ranges, upper continental crust (UCC) mean values and typical ore 

concentrations. Major elements (from SiO2 to P2O5) are reported in g/100g of oxides, minors 

and traces (from Ag to Zr) in mg/kg. 
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3.1.1 Gravitative selection control on partitioning of critical elements 

The simple gravitative selection of the stockpile drives the distribution of the 

elements. The total content of Zn, Cu and Ba is more abundant in the B layer as far 

over 1 g/kg. Ni, V and Zr concentrations range between 0.10 and 0.25 g/kg, with 

the T layer enriched compared to the others. 

FFiigg..  §§22--22 shows the elements distribution within the sampled layers of SWI-1: 

Ag, Ce, La, Nb, Sb and Mo preferentially partition in the finer fractions, as the most 

of REE, whereas Cr and Gd are relatively enriched into the coarser fraction of the 

bottom layer. About 0.5 mg/kg gold and 7 mg/kg silver are found in the top layer, 

as well around 15 mg/kg La, Nb and Nd. Conversely, Au, Co, Ga, Sc, Ta and Y 

seem to be less influenced by grain size.  

These results suggest that the potential recovery of some elements could be 

simplified by treating specific grain size fractions, readily distinguishable on the 

storage piles. XRF analyses on sieved samples are provided in the Supplementary 

Materials of Chapter 2 to further confirm the hypothesis of the grain size control on 

the distribution of some crm.  Therefore, the visual aid sampling may represent a 

good choice when any mineral beneficiation is required before the elements 

recovery is planned from low concentration streams. Moreover this primary 

separation onsite, which could be performed by unskilled operators, is cost-

effective because require no further devices, whose implementation could be 

expensive especially for old MSWI systems. In section 3.3 Estimated annual flow of 

SWI-1 residues we report an estimation of annual substance flow for BA sampled 

fractions. 
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Fig. §2-2 The distribution of selected crm (including REE) and precious metals in B, M and T layers of the 

stratified simple random method, by ICP-MS. Concentrations are in mg/kg. 

3.2 Fly ash 

The major constituents of FA samples (TTaabb..  §§22--11) are CaO (>30 g/100g), SiO2 

(>10 g/100g), Al2O3, MgO and K2O (around 5 g/100g), Fe2O3, TiO2 and P2O5 (< 3 

g/100g). Lithophile elements such as silicon, aluminum and calcium, which form 

very stable oxides and anions and have high boiling point are more concentrated 

in BA rather than in FA (see TTaabb..  §§22--11).  

FA contain a high amount of the crm elements Sb (around 0.1 g/kg) and Cr 

(around 0.6 g/kg), as well as the base metals Zn (> 10 g/kg) and Pb (> 2 g/kg), in 

both incinerator plants (TTaabb..  §§22--44). Such values are one to two orders of magnitude 

higher than those of others crm and valuable metals. Elements like Bi, Cd and Rb 

range between 0.04 and 0.12 g/kg, Cu and Sn from 0.7 to 0.9 g/kg. 
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FA residues from the two MSWI facilities show a silver mean concentration of 19.3 

mg/kg, 48 mg/kg as the sum of selected crm (Co, Ga, Nb, W), 62 mg/kg REY (REE 

+ Sc + Y), 150 mg/kg other metals with high economic importance (Li, Mo, Ni, Ta 

and V - according to EC, 2014). FA present very similar concentrations between 

SWI-1 and SWI-2; the MgO exception is probably due to the different waste input 

composition, as suggested for BA (see TTaabb..  §§22--11). 

Results are in good agreement with the available data from literature on 

furnace ashes from Belgian MSWI plants (De Boom & Degrez, 2012) and are within 

the compositional ranges of the overall fly ash data, which are provided in TTaabb..  

§§22--33. 
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Tab. §2-4Trace elements concentration (averages) of FA from SWI-1 and SWI-2, by ICP-MS. Values 

are reported in mg/kg. 
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3.3 Estimated annual flow of SWI-1 residues 

With the simple mass balance given by the equations [1] and [2]  we estimated 

the yearly flows of selected metals, in kg/a, for the SWI-1 (TTaabb..  §§22--55). Only ICP-MS 

data was used for calculations. The estimated annual flows are reported both for 

BA and FA, which are separately stored and managed in common incinerator 

plants, in order to determine the most useful residue for the recovery of certain 

crm. The owners of the incinerator plant provided the total BA and FA output, as 

reported in section 2.1.  

For BA residues we determined a total flow of more than 350 t/a Mg, 8.5 t/a 

Cr, 4.3 t/a Co, nearly 3 t/a Sb. The overall annual flow of the light REE (La, Ce, Pr, 

Nd, Sm, Eu, Gd) plus Sc and Y exceeds 2 t/a; whereas the flow of heavy REE (Tb, 

Dy, Ho, Er, Tm, Yb and Lu) is around 0.1 t/a, being Yb the most significant flow. 

The annual flow analysis even shows considerable amount of other crm: W (0.5 t/a), 

Ga and Nb (0.3 t/a). The flow for precious metals is approximately 0.01 t/a gold and 

0.12 t/a silver. Because of the small amount of the BA test portions (tens of 

kilograms), the contribution of “nuggets” to the total elements content cannot be 

evaluated and the average value of the real flows could be underestimated. 

TTaabb..  §§22--55 shows a flow of 79 t/a Mg, 2.4 t/a Sb, around 1 t/a Cr, 0.05 t/a Ce, 

0.04 t/a Co for FA residues. Other metals have relatively high flows, in decreasing 

order: Bi, Tl, Zn, Sn, Ag, Au, Mo and Ta. In the FA the contribution of nuggets on 

the total content of precious and valuable metals could be negligible due to the 

sample and grain size homogeneity. The FA annual flows are about one order of 

magnitude lower than BA flows because of the difference between the total mass 

output of fly ashes and bottom ashes. The origins in the input sources of the 

elements were not evaluated in this study. The separate collection of waste from 

electrical and electronic equipment (WEEE), among the others, is adopted in the 
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region, but the presence of REE and other specific elements might reveal a poor 

upstream separation. The evaluation of elemental flows in final waste outputs 

discloses deficiency in the separate collection system. The overall flows data 

presented in this study are in good agreement with the results of Morf et al. (2013), 

although the latter report an estimated annual flow for the total waste input of a 

Swiss incinerator plant. By multiplying their measured concentrations with the 

inferred output flow of the Swiss facility (40-60 k ton per year), the flows of 

elements range in the same order of magnitude than the output flows of the Italian 

incinerator plant. As an example, flows from 0.01 to 0.03 t/a Au, 0.45-0.65 t/a Co, 

0.28-0.43 t/a Nd can be found in the output materials and these figures are 

comparable with values reported in TTaabb..  §§22--55. Considering 46 active MSWI plants 

in Italy during 2013 (ISPRA, 2013), the total solid waste output in Italy is 

approximately 1.8 million tons and the national substance flow of selected precious 

metals, crm and other elements can be estimated. 4500 ton Cu, 130 ton of total REE 

and 0.5 ton Au might be potentially recovered from BA, near the projected values 

reported in Swiss and Denmark by Morf et al. (2013) and Allegrini et al. (2014), 

respectively; while huge amounts of Zn (6700 t) and Sb (500 t) are in the FA output. 
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Tab. §2-5 Estimated annual flow for BA and FA in kg/a by the equations 1 and 2. The average 

concentrations are calculated for n number of samples. KFA (%) is the relative recovery 

efficiency between BA and FA; KBAf (%) is the relative recovery efficiency in different 

granulometric fractions. Percentages are calculated on the basis of transfer coefficients 

(equation 3, 4 and 5). 

  
Flow (kg/a) KBAf (%) Flow (kg/a) KFA(%) 

  

Bulk BA 
  (n=9)* B M T 

Bulk FA 
  (n=2)* OFA OFA = OBA  

C
R

M
 

Mg 354,000    5,600 0 -6 +7 78,500    350 -78 +113 
Cr 8,500    400 +16 -4 -13 800    53 -92 -10 
Co 4,300    3,000 -43 -40 +83 42    11 -98 -90 
Sb 266    440 -13 -11 +24 2401    60 +3 +767 
Ce 730    53 -1 +0 +3 46    7.0 -94 -40 
W 483    13 -1 +4 -4 22    4.1 -95 -57 
La 430    38 -2 -9 +14 27   0.1 -94 -40 
Ga 330    22 -6 +0 +6 19    0.2 -94 -45 
Nb 330    49 -3 +9 -6 24    0.2 -93 -30 
Y 321    33 -7 -8 +15 23    1.0 -92 -31 
Nd 270    35 -11 -4 +11 15    1.0 -94 -48 
Sc 230    11 +4 -4 +4 11    0.5 -96 -57 
Pr 70    10 -14 +0 +14 3.1    0.2 -95 -57 
Gd 50    11 +20 -20 0 2.1    0.4 -97 -60 
Sm 50    6 -6 -4 +10 2.1    0.1 -96 -60 
Dy 40    7 -25 -25 0 1.0    0.1 -97 -75 
Yb 24    3.3 -4 -8 +17 1.0    0.1 -95 -58 
Er 20    3.7 0 0 +50 1.0    0.2 -95 -50 
Eu 20    2.6 -50 0 0 1.0    0.1 -90 -50 
Be 11    1.0 -27 -9 +36 - - - 
Tb 9.0    1.0 -11 -11 +11 0.6    0.02 -92 -33 
Ho 8.0    1.3 0 -13 +13 0.6    0.03 -97 -67 
Lu 3.7    0.5 -5 -8 +16 0.1    0.001 -97 -67 
Tm 3.6    0.4 -6 -6 +17 0.2    0.01 -97 -67 

V
al

u
ab

le
 M

et
al

s 

Fe 1,500,000    31,700 -2 +9 -7 39,000    1,300 -97 -76 
Al 1,200,000    26,400 +5 -6 +1 66,500    2,100 -95 -47 
Ti 145,000    5,170 +6 -6 0 19,000    440 -88 +26 
Cu 81,000    7,350 -11 +12 -2 2,400    50 -97 -72 
Zn 69,500    3,920 +7 -4 -4 36,000    200 -52 +396 
Mn 24,000    495 -3 -3 +5 1,650    23 -93 -34 
Ni 5,200    346 -4 -6 +10 230    9.2 -95 -58 
V 4,200    570 -50 -44 +94 41    3.5 -98 -91 
Sn 3,680    140 +16 -18 +2 1,840    14 -57 +379 
Li 610    38 +2 -7 +7 57    0.7 -91 -10 
Mo 380    22 -5 -8 +13 55    1.6 -85 +39 
Ag 120    41 -8 -17 +33 54    0.3 -51 +333 
Ta 25    5.5 -8 +8 -4 3.0    0.1 -87 +16 
Au 10    3.7 +10 -40 +20 1.7    0.2 -85 +60 

O
th

er
 M

e
ta

ls
 

K 220,000    17,400 +2 -8 +7 86,500    600 -62 +276 
Pb 34,600    7,120 -2 -1 +2 5,770    52 -83 +60 
Ba 32,400    1,050 -2 -1 +3 2,630    332 -92 -22 
Sr 10,200    700 -7 -1 +2 950    14 -90 -10 
Zr 2,630    1,200 -19 +2 +18 184    38 -91 -33 
Rb 790    65 -13 -9 +6 230    2.2 -66 +181 
Cd 122    24 -16 -4 +19 291    6.1 +139 +2209 
Hf 60    24 -17 0 +17 4.0    0.8 -94 -50 
Bi 50    15 +40 -40 -40 150    9.5 +119 +2840 

Tl 3.0    1.5 0 0 +33 2.6    0.07 -13 +733 
 1 

* Estimated average annual flow and uncertainty are calculated also with replicates measurement. 
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3.4 Transfer coefficients of SWI-1 residues  

Transfer coefficients were used to determine the distribution of specific 

elements between BA and FA output fractions (B, M, T), which are shown in TTaabb..  

§§22--55 as relative percentage. These data may provide information on which grain 

size fraction is more promising for the eventual element recovery.  

The calculated transfer coefficients (see Tab. S.2 in Supplementary Materials 

of Chapter 2) by equations [3] and [4] reveal that Cr, Co, Cu, Mn, Zr and other base 

metals are found primarily in the BA, whereas the volatile elements (e.g.: Zn, Sb, 

Cd and Bi) are more distributed between BA and FA, as observed by others (e.g.: 

Morf et al., 2013; Astrup et al., 2011; Zhang et al., 2008a). 

The recovery efficiency of FA on the basis of the relative mass output flows 

(OFA) seems to be very low, with almost all negative values. However, FA residues 

are enriched in volatile elements such as Bi, Cd and Sb despite the mass output 

difference. Most of the crm, but Sb, preferentially partitions into the BA (FFiigg..  §§22--33).  

Silver, gold and other valuable metals (i.e., Bi, Mo, Sn, Ta, Zn) have rather 

high transfer coefficients to FA. Furthermore, hypothesizing a recovery process 

with the same mass volume of BA and FA (OFA = OBA in TTaabb..  §§22--55), the relative 

efficiency from FA residues is significantly higher for Bi, Cd and Sb than the same 

elements from BA; moreover, for elements like Zn, Sn, Ag, Mg and Au the 

recovery performance is improved (396%, 379%, 333%, 113% and 60%, 

respectively).  

We determined the transfer coefficients for BA in different granulomentric 

fractions (TBAf) following the equation [5]. The percentage represents the 

enrichment or the depletion of the concentration with respect to the bulk BA 

content. The crm show a relative enrichment in the top layer, except for chromium, 

niobium and tungsten. 
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Precious and other valuable elements (Ag, Be, Co, Sb and V) are more 

abundant in the finest fraction of BA, while Bi, Cr and Zn are enriched in the 

coarser BA. REE are preferentially portioned in the finer BA, except for Gd that it is 

enriched in the coarser BA. Europium, dysprosium and scandium are dispersed 

between fractions. Similar percentages or positive values both for B and T layers 

indicate the absence of a granulometric control for Au, Sc and Sn. The results 

indicate that a simple separation procedure of the fresh and untreated BA may 

lead to an increase of the relative recovery efficiency up to 94% for certain 

elements. It is important to highlight that the accumulation and concentration of 

elements in output fractions are not due to the different ageing of sampled 

materials. The sampled stockpile was representative of two-months deposition 

with high deposition rate. Several authors (e.g.: Meima & Comans, 1998; Cornelis 

et al., 2008; Santos et al., 2013) investigated bottom and fly ashes in different stage 

of ageing in order to assess the environmental risk and leaching properties. They 

pointed out that aged bottom and fly ashes always show an enrichment of heavy 

metals, such as Be, Co, Mo, Sb, V, W and Zn. In this study we found higher content 

of these metals preferentially in finer fractions or T layers, which would be rather 

younger levels. 
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Fig. §2-3 Distribution of selected crm between BA and FA final outputs calculated following equations 3 and 4. 

3.5 “Urban” ore deposits as a potential target for raw materials 

supply 

The EU policies encourage reducing the waste of waste and lead to consider 

MSWI residues as anthropogenic flows of resource. Since those flows can change in 

composition, size and, additionally, the knowledge on the size varies, they are 

dynamic “urban” ore deposits. Bearing in mind boundaries and assumptions of the 
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SFA, we discuss the potential on raw material of the investigated MSWI flows. In 

TTaabb..  §§22--33 the average values of SWI-1 BA and FA (“urban” ore), by ICP-MS, are 

compared with the average upper continental crust (UCC) values (from Rudnick 

and Gao, 2014) and with typical values of concentrated ores (from Allegrini et al., 

2014 and reference therein). Most of analysed crm, including REE, show 

concentrations in the “urban ore” comparable with UCC values. Zinc, tin, 

antimony, sulfur, lead, copper, cadmium, bismuth, gold, silver concentrations are 

one order of magnitude higher than the UCC. Compared with UCC, interesting 

amount of vanadium and strontium are found in BA; chromium, silver and tin in 

FA. However, the concentration levels are by far lower than typical levels in 

concentrated ores, with the exception of copper (whose concentration is close to the 

concentrated ore values) and magnesium (only one order of magnitude lower than 

the low-grade concentration). 

As a qualitative index to evaluate economic feasibility of urban ore deposits 

as an alternative source of supply for Europe, we compare the MSWI residues 

concentrations with reference values from the Geological Survey of Finland (GTK) 

reports of active mines in Fennoscandia during 2013. The minimum concentration 

for naturally occurring silver is 1.3 g/t (in the Aitik-Nautanen metallogenic area), 

while this study shows a silver grade of 5.5 g/t in the urban ore. Likewise, copper 

and zinc oxides have a minimum concentration of 0.01 g/100g and 0.4 g/100g, 

respectively; the concentrations resulted from this study indicate occurrences of 

0.03 g/100g Cu in BA residues and 1.3 g/100g Zn in FA residues. Lead, 

molybdenum and nickel are also close to the reported values for active mines in 

Fennoscandia; the concentration of some crm and other base metals in MSWI 

outputs can be compared to a depleted ore in Europe and to polymetallic deposits 

(e.g., Cu, Cr, Co, Sn, Ni and Zn) in China and India (Dachang, Zhaokalong and 

Koira-Noamundi metallogenic areas; Li et al., 2013; Mohapatra et al., 2009; Jiang et 
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al., 1999). REE concentrations appear too low in the “urban ore” to be considered as 

a potential target for the recovery. The total content of rare earths as oxides (TREO) 

has to be in the range of 0.5% to 3% today to allow an economic exploitation. For 

example, the Kvanefjeld mining field contains 1.35% of TREO (www.ggg.gl), 

which is higher than the TREO content of the MSWI residues (about 0.01 %). 

Although the urban mining as a source of critical elements is gaining increasing 

interest, at present the recovery of these materials does not seem feasible (Morf et 

al., 2013). Furthermore, applying the existing technologies for metal recovery 

would be not economic, especially when a large amounts of impure metals and 

strong alkaline conditions are found, such as in MSWI residues. However, the 

urban ore deposit has the advantage of being already in granular form and leads to 

a limited environmental impact (or perhaps reduces it), in contrast with the natural 

ore deposit that may require lengthy and expensive operations: i.e., obtain 

concessions, remove the overburden, concentrate the mineral ore and restore the 

natural area. From this point of view, the efforts in the development of urban mine 

plans in order to recover valuable metals have to be increased. The concentration 

of metals of environmental concern, e.g. Ba, Cd, Pb, Mo and the antimony itself, is 

over the minimum range of concentration of active mines (TTaabb..  §§22--33). This may 

represent an advantage for their recovery, but leaching properties of solid residues 

and, consequently, the risk for contamination should be accounted. 
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4. Conclusions 

In the near future incineration processes will continue to be an important 

part of the waste management system along with recycling and waste disposal. As 

a consequence, the governance of the solid residues will remain a general concern. 

Our working hypothesis considers the solid residues as an unconventional source 

of crm. The recovery of precious metals from MSWI residues might be an attractive 

option if the growing demand for raw materials will confront with their supply 

risk related to the instability of international markets. The main results of this 

study are: 

The analysed bottom and fly ashes from two grate furnace incinerators 

confirm the presence of crm and other valuable elements in concentration 

comparable with a low-grade ore deposit (e.g.: magnesium and copper).  

A simple mass balance for untreated bottom and fly ash residues indicates 

significant amounts per year of critical elements and other metals of economic 

interest, such as antimony, cobalt, copper, magnesium and zinc. Furthermore, the 

transfer coefficients allow to identify added-value products, which could be 

processed for further mineral upgrading and recovery with the existing 

technologies. 

There is a grain size control over the distribution of Ag, Sb, Ce, La, Nb, Ni, V 

which are enriched in the fine-grained portion, whereas Gd, Cr, Sc, W and Y 

preferentially partition into the coarser fraction of the residues. 

The grain size fractions of bottom ash, commonly stored in stockpiles, are 

readily distinguishable at the storage site. This evidence permits a simple and cost-

effective separation strategy easy to implement at the plant scale. Such operation 

can be performed by less trained operators and may lead to an increase of the 

relative recovery efficiency up to 83% for crm elements. 
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Supplementary Materials of Chapter 2 

S.1 Effectiveness of a stratified random method 

One of the aims of the present study is defining a simple and cost-effective 

strategy to manage solid wastes after incineration. A careful collection of the 

output waste allows to improve the relative recovery efficiency of some elements. 

The separate collection of fresh bottom ash (BA) stockpiles shows potential in the 

defining added-value products, which could be processed for further mineral 

upgrading and recovery with the existing technologies. Therefore, waste 

processors may benefit from a separation strategy with no or very low 

modification of the operations of the current system. 

The sampling of BA residues from the selected incineration plants followed 

the “stratified random sampling” mainly after the protocol UNI 10802. The 

analytical results indicated higher relative recovery efficiency in the uppermost 

strata (likely of finer grain size) rather than in the bottom ones. The hypothesis is 

consequently supported by XRF data on sieved fractions from bulk BA batches 

(Supplementary Materials of Chapter 2). The XRF data are consistent with data 

provided in the paper, with some exceptions e.g., Cr, Zr; this is probably due to 

nugget effects highlighted by relatively high RSD in the coarser fractions. These are 

supplementary information to sections 2.2 Sampling and sample preparation and 3.1.1 

Gravitative selection control on partitioning of critical elements.  
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Tab. S.1. Trace elements concentration of sieved BA samples (from SWI-1 and SWI-2) by XRF. Average values 

each 3 samples (sieved fraction) are reported in mg kg-1 with relative standard deviation (%). 

Element 
 

Sieved samples of SWI-1 
 

Sieved samples of SWI-2 

< 1 mm BA > 1 mm BA 
 

< 1 mm BA > 1 mm BA 

As 6.22 ± 28% 16.4 ± 30% 
 

5.65 ± 10% 14.0 ± 34% 
Ba 922 ± 19% 1395 ± 5% 

 
1104 ± 79% 786 ± 13% 

Ce 16.7 ± 57% 46.6 ± 19% 
 

35.3 ± 50% 29.4 ± 17% 
Co 17.1 ± 66% 34.1 ± 13% 

 
23.2 ± 27% 45.0 ± 27% 

Cr 415 ± 33% 745 ± 7% 
 

617 ± 25% 690 ± 6% 
Cu 2031 ± 22% 3225 ± 13% 

 
1330 ± 69% 6290 ± 26% 

Ga 7.44 ± 22% 10.2 ± 8% 
 

7.77 ± 20% 15.7 ± 27% 
La 9.56 ± 48% 22.5 ± 11% 

 
8.43 ± 25% 15.5 ± 31% 

Mo 14.4 ± 41% 25.3 ± 13% 
 

7.07 ± 22% 12.4 ± 13% 
Nb 10.4 ± 57% 20.4 ± 17% 

 
7.13 ± 28% 13.3 ± 25% 

Nd 6.33 ± 56% 13.0 ± 9% 
 

15.3 ± 16% 22.9 ± 31% 
Ni 147 ± 34% 286 ± 14% 

 
108 ± 22% 155 ± 22% 

Pb 398 ± 61% 690 ± 15% 
 

594 ± 59% 1337 ± 21% 
Rb 25.7 ± 28% 37.6 ± 15% 

 
30.9 ± 10% 40.4 ± 24% 

Sc 13.5 ± 34% 17.0 ± 20% 
 

8.78 ± 9% 10.0 ± 14% 
Sm 1.75 ± 0.5% 6.51 ± 37% 

 
3.30 ± 17% 6.80 ± 40% 

Sn 371 ± 83% 192 ± 12% 
 

178 ± 53% 231 ± 18% 
Sr 383 ± 3% 419 ± 11% 

 
824 ± 99% 505 ± 12% 

V 185 ± 39% 270 ± 20% 
 

41.2 ± 8% 49.9 ± 20% 
Y 15.0 ± 8% 17.0 ± 13% 

 
12.5 ± 9% 14.0 ± 21% 

Zn 2137 ± 43% 4207 ± 8% 
 

3137 ± 67% 4565 ± 18% 
Zr 145 ± 70% 309 ± 21% 

 
218 ± 58% 204 ± 18% 
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S.2 The calculation of transfer coefficients (TC) 

The distribution of inert mass flows and the partitioning of selected metals 

between BA and FA have been calculated (as transfer coefficients) by mean of the 

Eqs. 3-4 and the output mass of solid waste. SWI-1 had an annual waste input of 

120000 t a-1 (as referred in 2013) resulting in 29900 t a-1 of total solid waste output. 

The incineration system produced 23200 t a-1 and 2400 t a-1 BA and FA residues, 

respectively (sewage sludge and recovered metallic scrap are the remaining). The 

transfer coefficients among different sampled strata of BA (i.e.: B, M, T) have been 

also reported, assuming 50%, 30% and 20% of total mass residues as fraction mass 

for B, M and T, respectively. In the S.2 The calculation of transfer coefficients (TC) the 

transfer coefficients are reported (with the sum of output = 1). These are 

supplementary information to sections 2.4 Substance flow analysis and 3.4 Transfer 

coefficients of SWI-1 residues. 

Tab. S.2. Transfer coefficient among different residues (FA vs. BA) and BA fractions (B, M, and T). 

 
FA vs. BA BA Fractions (B, M, T) 

Element KFA KBA KBAB KBAM KBAT 

Ag 0.298 0.702 0.441 
0.248 0.258 

Al 0.052 0.948 0.523 0.283 0.202 

Au 0.145 0.855 0.554 0.192 0.250 

Ba 0.075 0.925 0.490 0.296 0.207 

Bi 0.751 0.249 0.734 0.230 0.153 

Cd 0.678 0.322 0.410 0.257 0.192 

Ce 0.058 0.942 0.491 0.297 0.205 

Co 0.012 0.988 0.292 0.179 0.364 

Cr 0.085 0.915 0.581 0.290 0.175 

Cu 0.029 0.971 0.447 0.337 0.196 

Dy 0.046 0.954 0.476 0.283 0.221 

Er 0.048 0.952 0.490 0.281 0.217 
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Eu 0.077 0.923 0.454 0.307 0.214 

Fe 0.025 0.975 0.488 0.328 0.186 

Ga 0.054 0.946 0.467 0.301 0.213 

Gd 0.050 0.950 0.569 0.261 0.198 

Hf 0.061 0.939 0.414 0.304 0.232 

Ho 0.076 0.924 0.504 0.268 0.220 

La 0.060 0.940 0.488 0.270 0.225 

Li 0.086 0.914 0.505 0.281 0.212 

Lu 0.041 0.959 0.470 0.275 0.229 

Mg 0.181 0.819 0.498 0.281 0.213 

Mn 0.064 0.936 0.488 0.293 0.210 

Mo 0.127 0.873 0.474 0.278 0.225 

Nb 0.067 0.933 0.484 0.327 0.188 

Nd 0.053 0.947 0.458 0.290 0.223 

Ni 0.042 0.958 0.479 0.282 0.221 

Pb 0.142 0.858 0.492 0.298 0.204 

Pr 0.052 0.948 0.455 0.301 0.217 

Sb 0.473 0.527 0.436 0.267 0.248 

Sc 0.046 0.954 0.512 0.284 0.206 

Se 0.263 0.737 0.390 0.251 0.277 

Sm 0.053 0.947 0.468 0.290 0.220 

Sn 0.332 0.668 0.578 0.246 0.205 

Ta 0.108 0.892 0.462 0.329 0.196 

Tb 0.065 0.935 0.474 0.281 0.223 

Ti 0.115 0.885 0.529 0.283 0.200 

Tl 0.396 0.604 0.489 0.264 0.229 

Tm 0.045 0.955 0.460 0.283 0.228 

V 0.010 0.990 0.248 0.168 0.389 

W 0.045 0.955 0.497 0.313 0.193 

Y 0.069 0.931 0.463 0.276 0.231 

Yb 0.041 0.959 0.477 0.273 0.227 

Zn 0.340 0.660 0.536 0.289 0.193 

Zr 0.065 0.935 0.405 0.304 0.235 

∑REE 0.057 0.943 0.488 0.296 0.208 

∑crm 0.180 0.820 0.468 0.274 0.230 

REE: Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc, Sm, Tb, Tm, Y, Yb. 

crm: Co, Cr, Ga, Mg, Nb, Sb, W. 
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Abstract 

Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are 

hazardous products that present concern for their safe management. An attractive 

option to reduce their impact both on the environment and the financial 

commitment is turning MSWI ashes into secondary raw materials. In this study we 

present the REE content and distribution of bottom and fly ashes from MSWI after 

a highly effective digestion method and samples analysis by ICP-MS. The 

chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable 

with that of crustal averages, suggesting a main geogenic source. Deviations from 

typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic 

provenance. The correlation with major elements indicates possible sources for 

REE and facilitates a preliminary resource assessment. Moreover, magnetic 

susceptibility measurements can be a useful prospecting method in urban ores 

made of MSWI ashes. The relationship between REE and some influencing 

parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash 

as alternative source of REE and the need of further efforts for REE recovery and 

purification from low concentrations but high flows waste. 

 

 

 

Keywords: MSWI fly and bottom ash; Rare Earth Elements, Mass specific magnetic 

susceptibility. 
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1. Introduction 

Rare Earth Elements (REE) are among critical raw materials, as defined by 

the European Commission (EC, 2010; 2014), because of their importance for new 

and green technologies. They are used as essential constituents in a wide range of 

technological application (Chakhmouradian & Wall, 2015) and their low 

substitutability implies to secure a stable REE supply. The major REE ore deposits 

are located in a handful of countries (EC, 2010; Chakhmouradian & Wall, 2015): 

restriction policies on the REE export from these countries may increase the supply 

risk for EU countries as occurred during the 2011 crisis. Therefore there is an 

increasing interest to evaluate other REE sources, as secondary raw materials.  

Literature exists that investigated REE abundance and their recovery 

performances from exhaust phosphors or other waste from electric and electronic 

equipments (WEEE) (e.g., Binnemans & Jones, 2014; Innocenzi et al., 2014). 

Recently, it has been demonstrated that solid residues from municipal solid waste 

incinerators (MSWI) host significant amounts of critical elements (Morf et al., 2013; 

Allegrini et al., 2014; Funari et al., 2015) possibly due to a weak control over the 

collected waste and the separated collection upstream (Singh et al., 2014). The REE 

within MSWI solid residues are not routinely analysed since their low 

concentrations suggest there would be only a small potential for economic and 

environmental benefits. However, the need to reduce hazardous waste and the 

advances of bio-hydrometallurgy (Lee & Pandey, 2012) are adding new 

prospective for the metal recovery from waste streams. A better knowledge of REE 

within MSWI ashes and their availability is therefore required. Novel and cost-

effective methods for REE prospecting from waste streams will ultimately provide 

a twofold benefit: improving hazardous materials management and creating 

potential economic value. 
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We aim to test the hypothesis that correlations with either major elements or 

magnetic measurements are an alternative way for the evaluation of REE potential 

in MSWI ashes. For that purpose chemical analyses of bottom and fly ashes from 

two incineration plants were performed, with emphasis on REE, and the accurate 

analytes determination was achieved by the Na2O2 sintering technique (Meisel et 

al., 2002) coupled with ICP-MS. Simultaneously, the magnetic susceptibility 

measurement of MSWI ash samples was adopted as complementary or alternative 

tool for geochemical prospecting of REE in urban mines. As a fact, magnetic 

analyses have been correlated with heavy metal contents in a range of materials 

(Lecoanet et al., 2003; Jordanova et al., 2004; Fialová et al., 2006; Sagnotti et al., 2009; 

Huliselan et al., 2010), including coal fly ashes (Veneva et al., 2004; Lu et al., 2009), 

and discriminating plots derived from magnetic susceptibility measurements have 

a great potential to determine the source of magnetic minerals as well as the 

environmental impact. Remarkably, correlations between the magnetic 

susceptibility and REE were observed within samples from urban areas (Wang & 

Qin, 2005; Zhang et al., 2012), which, in turn, suggested the need to measure such 

parameter in the current study. The magnetic behaviour of incinerated ashes 

assessed by analysing different magnetic properties will not the object of this 

study, but the attention is focused on the mass specific magnetic susceptibility, 

which can be determined quickly and with a very limited cost. To the best of our 

knowledge, the magnetic susceptibility measurements of raw MSWI ash are 

reported here for the first time. 
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2. Materials and Methods 

2.1 Investigated incinerators 

Solid residues from two MSWI plants from Northern Italy, named plant A 

and B were collected. The selected incinerators consist of two lines that drive the 

collected waste, about 1.2∙105 t/a, in the grate-furnace that operates at temperatures 

between 850 and 1100 °C. Both plants are Waste-to-Energy systems that burn 

unsorted waste (more than 90% of solid waste input is household waste and 

around 10% special waste such as shredder automobile residues, industrial, and 

hospital waste). 

2.2 Sampling of bottom and fly ash 

The main outputs of the incineration process are bottom and fly ashes. The 

concept design of the MSWI system is reported in FFiigg..  §§33--11 to which the reader can 

refer to identify main processes, sampling points and temperature profiles. Belt 

conveyors transport the bottom ashes (BA) to a temporary outdoor storage site 

where they are piled up. Directly from the BA storage site, the heap of several tons 

of BA material was first sampled following the approach as in Funari et al. (2015). 

Three subsamples from the heap were blended from a large number of increments 

and roughly divided on site by the quartering method through a loader machine. 

From the last batch (order of hundreds of kilograms), 7-8 kg primary sample was 

taken by a simple random sampling. In the lab, the primary samples was 

thoroughly mixed on a hard, clean surface and split in four portions, the opposite 

portions were mixed together and again split for three times, to ensure 

representative sampling. Seven BA samples from incinerator A and six BA samples 
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from incinerator B were collected. Furnace and boiler fly ash (FA) are recovered 

through the air pollution control system, undergoing further treatment steps (FFiigg..  

§§33--11) before being released in the atmosphere. Specific devices/filters retain the 

residual FA fraction during each treatment step. The FA samples have been 

separately sampled at the different devices from the two incinerators. Where it was 

possible, untreated FA (FAU) were collected from dry scrubbers, after the 

electrostatic precipitation system (FAE) and after bag filters. Bag filters involve the 

use of soda (FAS) or lime (FAL) additives. In both incinerator plants, about 5 kg FA 

primary sample was collected with a random sampling method from the FA 

material stored in big bags (approximately 1 ton), previously blended from a large 

number of increments in order to reach representativeness. The primary sample of 

each FA was further subdivided by means of the quartering method in the 

laboratory. A total number of seven FA sample were collected. According to the 

estimates provided by Morf et al. (2013), the sample masses needed for reliable 

determination of low-concentration elements from BA and FA were in the range of 

hundreds of kilograms and tens of kilograms, respectively. In the present work, 

lower sample masses were used owing the capacity limitations of laboratory 

equipments. Before being analysed, all the samples were milled (<40 µm) with an 

agate vibratory disc mill and oven-dried (40°C) for one week. No separation 

procedures (e.g., magnetic extracts) have been undertaken and, hence, the samples 

can be considered as raw ashes. 
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Fig. §3-1 Schematic picture of the incinerator system with its relevant processes, including sampling 

points (red dots) and temperature (T) profile. Acronyms used: BA=bottom ash; FAE=fly ash 

from ESP; FAL=fly ash from bag filter with Ca-additive; FAS=fly ash from bag filter with Na-

additive; FAU=untreated fly ash; ESP=electrostatic precipitator. 

2.3 Elemental chemistry determination 

The complete sample digestion was obtained with the Na2O2 sintering 

technique (Meisel et al., 2002), which has the capability to dissolve all the refractory 

materials known today, and the total elemental chemistry was determined by ICP-

MS (7500ce Agilent Technologies). Analyses were performed at the Department of 

General and Analytical Chemistry of Montanuniversität Leoben (Austria). The 

description of the analytical procedure followed for the analyses of MSWI samples 

can be found elsewhere (Funari et al., 2015). Major and trace elements were 

determined (S.1), but emphasis is given to all the Rare Earth Elements (REE), 

namely Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Tm, and Yb plus Sc and Y 

which are the focus of this study. 
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2.4 Magnetic susceptibility measurement 

Magnetic susceptibility is the most commonly measured magnetic parameter 

since the nature of its measurement is relatively easy and rapid (Peters & 

Thompson, 1998). Magnetic susceptibility can be roughly defined as a measure of 

the magnetisation capability of a given material. It is known to be a sensitive 

indicator of magnetic concentration and grain size. Initial magnetic susceptibility is 

defined to be the ratio of the induced magnetisation to the applied magnetic field. 

The volume susceptibility, , is dimensionless in SI units, while the mass specific 

susceptibility, , is measured in m3kg-1. The latter is used throughout the present 

study. 

Magnetic susceptibility was measured at two different frequencies (0.47 and 

4.7 kHz) by using a dual frequency MS2B Bartington meter available at the 

Institute of Marine Sciences, National Research Council (Bologna). The difference 

between the two measurements was used to calculate the frequency dependence of 

susceptibility (Kfd%). This parameter reflects the presence of very fine (<0.03 µm for 

magnetite) ferromagnetic grains in the super paramagnetic (SP) state. The 

calibration of the instrument was checked using an alloy as a magnetic reference 

material. Dried and milled (<40 μm) samples of MSWI residues were laid down 

and gently compacted in cubic plastic boxes of 8 cm3 volume. Mass specific 

magnetic susceptibility () was calculated dividing , previously corrected for the 

drift, by the sample mass. 
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3. Results and discussion 

3.1 The REE concentrations and distribution in MSWI ashes 

The sum of REE (∑REE) concentration ranges between 88 and 124 mg/kg 

within BA samples, whereas is 54 mg/kg on average within FA. The variation of 

REE in each sample, both for BA and FA, has been analysed using the box plots 

(FFiigg..  §§33--22). The general variability might reflect the heterogeneity of the samples, 

resulting from possible uncertainties associated to limitation of the primary sample 

size but also from different waste input, treatment steps and combustion condition 

between the two incineration facilities. However, the independent sample t-test 

conducted to assess the difference of REE concentration between plants A and B 

reveals the total of MSWI residues (BA+FA) are statistically equal for the two 

incinerators (Tab. T.2, Supplementary Materials of Chapter 3). Additional details 

regarding the test procedure and assumptions are provided in S.2 Independent 

sample t-test. 

Higher ∑REE is typically found in BA rather than in FA (FFiigg..  §§33--33) as a 

consequence of the high boiling points of REE (1194-3426 °C) (Zhao et al., 2008). In 

FA samples the majority of REE have concentration from around 0 mg/kg (25th 

percentile) to 7 mg/kg (75th percentile) while in BA from 0 (25th percentile) to 15 

mg/kg (75th percentile). In this case, the independent sample t-test confirms what 

box plots show. The FA from plant A and B are statistically comparable despite the 

wide range of process treatments (e.g.: different cooling conditions, chemical 

additives); on the other hand, the REE averages in the BA residues are significantly 

(at 0.05 significance level) different between plant A and B. 

As can be seen from FFiigg..  §§33--44, both light REE (LREE: Sc, La, Ce, Pr, Nd, Sm, 

Eu, Gd) and heavy REE (HREE: Y, Tb, Dy, Ho, Er, Tm, Yb, Lu) normalised mass 

fractions are enriched in BA compared to FA, in agreement with the partition 
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coefficients calculated by Morf et al. (2013) that revealed a significant mass flow of 

REE into BA rather than FA. The concentration of each element of the REE group is 

within the range quoted in literature (Funari et al., 2015 and reference therein) 

despite the wide range of investigated MSWI ashes from different places and times 

of sampling. As a matter of fact, the content of Gd, Nd, Sc, and Y within the MSWI 

input determined in Morf et al. (2013) is consistent with elemental content into the 

MSWI output reported in the present work (see Tab. T.1, Supplementary Materials 

of Chapter 3), being in order of abundance Y>Nd>Sc>Gd. 

 

Fig. §3-2 The REE variability in the studied samples. The boundaries of the box indicate the 25th 

percentile and the 75th percentile, the continuous line within the box marks the median and the 

red dot marks the mean. Whiskers above and below the box indicate the 90th and 10th 

percentiles, whereas starred dots are the outliers (mainly Ce). 
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Fig. §3-3 The variability of REE in BA and FA samples, a comparison between incinerators A and B; 

outliers are mainly Ce and La. For the significance of box-plots see Fig. §3-2. 

 

 

Fig. §3-4 Chondrite-normalised REE patterns for the MSWI ashes (C1 in the y-axis stands for type 1 of 

carbonaceous chondrite). The white dashed line represents the chondrite-normalised REE 

patterns of the Upper Continental Crust (UCC). Chondrite and UCC average values are from 

McDonough & Sun (1995) and Rudnick & Gao (2014), respectively. 
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Normalized REE pattern can be used to evaluate the relative enrichment of 

REE in studied materials (e.g., Zhang et al., 2002), and to highlight geochemical 

anomalies from typical crustal pattern, which might derive from anthropogenic 

contamination. The chondrite-normalised patterns of our MSWI samples (FFiigg..  §§33--44) 

resemble that of the Upper Continental Crust average (UCC, white dashed line), 

suggesting a principal geogenic source of REE. As a fact, when there are no clear 

anomalies for an element, it might likely derive from natural rocks, geologic 

processes, and from its use into goods and products without the need of an 

enrichment of that element (e.g., no typical REE enrichment in construction 

materials). However, a few element anomalies are visible and they might be 

related to manmade processes, which had lead to an enrichment of specific 

elements in certain everyday products (e.g., magnets, fluorescent lights). All types 

of MSWI samples show enrichment in Eu and Tb over the adjacent elements. The 

BA patterns from both plants, moreover, have a weak Er enrichment with respect 

the other HREE. The chondrite-normalised patterns of chemically treated FA (i.e., 

FAS and FAL) show differences with respect to the other patterns: FAL shows a 

significant enrichment in Gd, whereas FAS is the most REE-depleted sample but 

shows a relative enrichment in Ho compared to the other HREE. The overall 

sample set of MSWI ash normalised to the continental crust (data not shown) 

instead of the chondrite is enriched in Eu and Tb and depleted in La and Ce. 

Interestingly, similar observations were reported by Zhang et al. (2001) who 

investigated MSWI ash from two Japanese incinerators. The normalised patterns of 

sampled MSWI ashes, however, differ from those reported by Zhao et al. (2008) 

who investigated medical waste incinerator ashes. They found a remarkable Gd 

enrichment, possibly derived from medical wastes. Despite of the likelihood of 

some medical waste burned in the MSWI plants from this study, gadolinium is 

rather depleted in the sample set, with the exception of the FAL sample. 
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The LREE/HREE ratio ranges between 2.7-3.5 and 3.9-4.8 in FA and BA, 

respectively. The lowest LREE/HREE ratio is found in additives-treated FA, both 

FAS and FAL. The similar low LREE/HREE ratio of FAS and FAL might be 

explained by LREE retention during the early steps of the exhaust gas cleaning 

process (see FFiigg..  §§33--11) or by the introduction of HREE contained in lime- or soda-

additives injected into the flue gas for acid gas control. However, the extent of 

additives’ influence cannot be assessed since we were not allowed to sample and 

analyse these materials. When an effective method for HREE recovery and 

purification from complex matrices will be devised, FA from bag filters could 

represent an added-value product or, at least, the most favourable product among 

MSWI ashes. This indication of HREE enrichments, which are the elements of REE 

group at the highest risk of supply according EC (2014), could be critical in 

discussing the REE enrichment parameters in section 3.4 The REE enrichment and 

Pricing Influence Factor. 

3.2 Correlation between major elements and REE 

FFiigg..  §§33--55 provides the correlation between ∑REE and selected major 

elements. Major elements like P2O5 (of likely anthropogenic introduction) and 

Al2O3 (both geogenic and anthropogenic component) show a positive correlation 

with ∑REE. The association of Al2O3 (R2=0.92) with REE is the strongest amongst 

major elements, followed by SiO2 (R2=0.87) and P2O5 (R2=0.77). The R2 coefficients 

of other major (>0.1 g/100g) and minor (>0.01 g/100g) elements follow this 

sequence: Mn, Ba, Fe, Cu, Sn, Zn, Pb, and Ti. Aluminium and silicon (i.e., the BA 

and FA main components), and phosphorus oxides are chief indicators of REE 

occurrence in MSWI samples. The relative high variance of data in REE-Al2O3 and 

REE-SiO2 scatter plots within BA samples, can be explained with the limitation of 
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primary samples size which most likely affect BA material. Nevertheless, there is a 

clear positive correlation between the selected major elements and the REEs (FFiigg..  

§§33--55). These trends suggest that the main sources of REE in solid residues from 

MSWI are aluminosilicates of perhaps primarily geogenic origin, as also 

corroborated by the normalized REE patterns (FFiigg..  §§33--44). However, manmade 

aluminosilicates that may give an anthropogenic REE contribution, e.g. polishing 

agents in ceramics, cannot be ruled out. The positive correlations of REE with P, 

Mn, Fe, Cu and Zn might be related to phosphates and hydroxides, which can 

contain REE difficult to mobilise (Pang et al., 2002). Hydroxides minerals are used 

in various application fields and, moreover, they might be present within MSWI 

residues as newly-formed minerals (e.g., after quenching). Therefore, the 

identification of input sources that contain both hydroxides and REE is prevented. 

The inverse correlation between LOI and REE (FFiigg..  §§33--55) seems to preclude an 

effective contribution of hydrous phases over the REE occurrence, but the high LOI 

values are more likely related to the water absorption capacity of residues after 

their storage, especially of FA materials. The input sources of phosphates in the 

feedstock material can derive from technological applications such as fluorescent 

materials and phosphate binding agents used in the medical field, and from 

biogenic waste such as food waste, garden waste, road waste, fertilisers, and 

sewage sludge. There is the likelihood that the correlation between REE and P2O5 

mass fractions derives from fluorescent materials and medical applications that 

host relevant amount of REE. Although the total REE content of biogenic waste is 

negligible compared to that of, e.g., fluorescent lamps, the amount of biogenic 

waste into the MSWI system is, however, more significant than any other P-rich 

fraction, revealing that the measured concentrations of REE include a contribution 

of anthropogenic origin. 
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Fig. §3-5 Correlations of ∑REE and selected major elements. The REE vs. LOI scatter plot is also 

provided. The data set is grouped by kind (BA=bottom ash; FA=fly ash). 

3.3 Magnetic susceptibility and its potential correlation with REE 

The investigated materials from MSWI show a wide range of mass specific 

magnetic susceptibility () values varying between 2.3 ∙ 10-8 and 304 ∙ 10-8 m3/kg 

(TTaabb..  §§33--11, FFiigg..  §§33--66), with a distinct magnetic signature for BA and FA samples. 

The BA samples show relatively high  values ranging from 121 ∙ 10-8 m3/kg to 304 ∙ 

10-8 m3/kg, while FA samples show lower values of about one of order magnitude 

respect with BA. The FA samples (RSD% = 69) exhibit a larger variance of  values 
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than BA samples (RSD% = 28). The high  values found in BA are clearly a 

response to high heavy metals loads (Zhang et al., 2012) that partition in BA 

materials (Allegrini et al., 2014; Funari et al., 2015) and likely derive from metallic 

sheets, barrels and cans, remaining in the bottom materials.  

These results lie within the wide range of  values of urban sediments (e.g., 

4-13000 ∙ 10-8 m3/kg as in Zhang et al., 2012) and partly within the values range of 

other kinds of incineration residues such as coal ash, i.e., 306-1703 ∙ 10-8 m3/kg 

reported in Lu et al. (2009). Nevertheless, the  measurements of MSWI ashes 

reported here are rather consistent with those of sediments near Fe-smelters (200-

600 ∙ 10-8 m3/kg as in Zhang et al. 2011) and from MSW landfill (64-970 ∙ 10-8 m3/kg 

as in Huliselan et al. 2010).  

Generally, the variability of  measurements of MSWI ashes might be 

ascribed to several factors: the initial composition and mineralogy, morphology 

and shape, technological conditions (e.g., combustion temperatures), solid-phase 

reactions, and stress levels within the particles. The latter factor is typically 

influenced by a very fast cooling, which can reasonably occur to BA materials (i.e., 

quenching). Moreover the presence of ultra fine grained super-paramagnetic (SP) 

particles in our samples can increase the measured susceptibility. Frequency 

dependent susceptibility (Kfd %) values lower than 2 have little or no significance, 

as argued elsewhere (Oldfield, 1991). However, TTaabb..  §§33--11 shows figures of Kfd up 

to 7.7 % with an average of the whole sample set of 2.7%. According to the semi-

quantitative model by Dearing et al. (1997), the most of MSWI ashes have a SP 

fraction >10%. The SP fraction is even more significant for several FA samples. 

Quantify the extent of SP and multiple-domain grains in further works might have 

profound repercussions on the environmental risk associated to MSWI residues. 
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Tab. §3-1 Mass specific magnetic susceptibility () and frequency-dependent magnetic susceptibility 

in percent (Kfd%) of MSWI ashes. Iron oxides mass fraction and the sum of REE are also 

reported. Samples are grouped by kind (BA = bottom ash; FAU = untreated fly ash; FAE = fly 

ash from electrostatic precipitator; FAS = Soda-treated fly ash; FAL = Lime-treated fly ash). 

The letters A and B in parentheses indicate MSWI plant A and B, respectively. 

MSWI ash Sample mass χ (10
-9 

m
3
/kg) Kfd (%) Fe2O3 (g/100g) ∑REE (mg/kg) 

BA(A) 8.8068 209.270 1.90 9.6 124 
BA(A) 8.8266 236.898 3.44 10.1 118 
BA(A) 6.9992 192.593 2.45 9.4 109 
BA(A) 7.1343 200.020 2.73 9.9 101 
BA(A) 8.2413 303.472 2.64 10.0 107 
BA(A) 6.8589 212.570 2.54 9.5 116 
BA(A) 6.0557 242.416 3.95 10.1 105 
Average  BA(A) 228.177 2.80 9.8 111 

BA(B) 9.3557 350.588 0.12 7.1 94.7 
BA(B) 6.2748 132.339 0.02 7.4 94.1 
BA(B) 8.1208 228.549 1.29 7.6 97.0 
BA(B) 8.1468 186.945 2.10 7.2 101 
BA(B) 6.4090 189.733 1.23 6.9 88.3 
BA(B) 7.0321 121.440 1.87 7.1 94.7 
Average  BA(B) 201.599 1.10 7.2 95.0 

FAE(B) 6.0554 24.748 1.33 2.0 55.2 
FAL(B) 5.7173 13.748 2.93 1.0 42.4 
FAS(A) 5.2443 2.279 4.18 0.2 4.78 
FAU(A) 8.5724 42.421 3.15 2.3 58.9 
FAU(A) 3.1497 50.497 7.17 2.8 71.3 
FAU(B) 7.8924 16.586 3.40 1.7 63.5 
FAU(B) 6.9713 19.630 4.75 1.9 80.5 
Average  FA 24.273 3.84 1.7 53.8 

 

Correlations between magnetic data and heavy metals concentration have 

been observed (e.g. Lecoanet et al., 2003; Maier & Scholger, 2004); especially iron 

mass fraction and  values typically show a good association in scatter-plots since 

iron hosted in magnetic minerals (e.g., magnetite) led to an increase of magnetic 

susceptibility. The mass specific magnetic susceptibility of our set of samples is 

strongly related to iron oxide mass fraction (FFiigg..  §§33--66a), being the R2 coefficient 

equals to 0.90. Furthermore, magnetic susceptibility shows good to moderate 

association with other heavy metals (e.g., R2
-Cu=0.54; R2

-Co=0.24; R2
-Mn=0.46). The 

mass specific magnetic susceptibility and its scattering with specific metals show 

that different kinds of MSWI ashes are readily distinguishable. The FA samples are 

characterised by  values lower than 100 · 10-8 m3/kg and they form a clearer trend 
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compared with BA samples. The BA samples are scattered in two distinct groups, 

identifying the investigated MSWI plants (squares and circles in FFiigg..  §§33--66a). This 

scattering of BA samples might indicate the presence of variable amounts of 

magnetic minerals, which differentiate plant A and B. 

There is recent evidence that susceptibility measurements of topsoil from 

urban areas correlate with REE (Wang & Qin, 2005; Zhang et al., 2012). In MSWI 

samples, we found a direct correlation between  values and REE (FFiigg..  §§33--66b), both 

LREE (R2=0.63) and HREE (R2=0.51), being the coefficients of determination from 

the stronger (R2=0.80) to the poorer (R2=0.14): Sc > Er > Dy > Tm > Sm > Lu > Yb > 

Ce > Pr > Ho > La > Nd > Y > Tb > Eu > Gd. This positive correlation could be 

linked to a process of anthropogenic nature, for instance as a direct consequence of 

the presence of REE-bearing devices in waste input (mostly WEEE). Since the 

susceptibility correlates both with iron and REE mass fractions, there is the 

possibility that the presence of high Fe-REE products such as NdFeB magnets in 

the waste input controls the REE contents. However, the weak relative enrichment 

of Nd (see FFiigg..  §§33--44) rules out the presence of NdFeB magnets. The FA samples 

from bag filters, namely FAS and FAL, have the lowest REE contents, which 

usually correspond to lowest  values. High magnetic values do not necessarily 

reflect a high REE content, with the highest density of samples high in REE around 

the  value of 200 ∙ 10-8 m3/kg. 

This is a first attempt in order to discriminate magnetic signature of MSWI 

ash and, from the handful of data obtained so far, the mass specific magnetic 

susceptibility appears to be linked on the REE abundance. 
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Fig. §3-6 Scatter plot of mass specific magnetic susceptibility () vs. Fe2O3 (a) and ƩHREE (b). The data 

set is grouped by kind (BA=bottom ash; FAE=fly ash from ESP; FAL=fly ash from bag filter 

with Ca-additive; FAS=fly ash from bag filter with Na-additive; FAU=untreated fly ash). The 

provenance of BA sample is also provided (A=plant A; B=plant B). 

3.4 The REE enrichment and Pricing Influence Factor 

In order to evaluate the abundance of REE within MSWI ash samples the 

Enrichment Factors (EFs) are calculated. Element EFs are widely used in 

environmental sciences to speculate on the origin and fate of elements among a 

variety of environmental records. To calculate the EF for a given element, the 

measured concentration of that element in the sampling medium is divided by the 

concentration of the same element in the Earth’s crust and possibly normalised to a 

“conservative” element (Reimann & De Caritat, 2000). For the normalisation 

purpose, we used aluminium oxide mass fraction as adopted in Fujimori et al. 

(2004) for MSWI bottom ashes and in Westerhoff et al. (2015) for sewage sludge. 

The EF is expressed according the equation: 

 

EF= (Xsample / Alsample) / (Xcrust / Alcrust)  [Eq. 1] 

 



123 

 

where Xsample and Alsample are the measured mass fraction of the element of 

REE group and Al2O3 in the sample, and Xcrust and Alcrust are their mass fraction in 

the continental crust reported in literature (Rudnick & Gao, 2014). 

FFiigg..  §§33--77 shows the calculated EFs as the degree of REE enrichments of BA 

samples from plant A and B and the average of FA samples. Yttrium, La, Eu, Gd, 

Tb, and Ho are significantly enriched in FA samples compared to BA samples. 

Conversely, scandium is enriched in BA samples. These observations are consistent 

with EFs calculated using data in Morf et al. (2013) with the exception of Sc that is 

slightly enriched in FA (EF=0.68 in FA, EF=0.31 BA). Seven over sixteen of REE 

show enrichment, while the most of REE are rather depleted in MSWI ashes with 

respect to upper continental crust concentration. The EFs for the enriched elements 

of REE are lower than 10. Fujimori et al. (2004) reported EFs of MSWI bottom ashes 

over 100 for Cu, Mo, Pb, Sb, and Zn that were characterised by a relatively low 

variability among the investigated MSWI plants (up to one order of magnitude). 

The EFs of REE of BA samples are even more similar for the two MSWI plants, 

despite these samples were collected from different incinerators with likely diverse 

kinds and proportions of input waste materials, revealing a substantial 

homogeneity concerning the REE occurrence within BA. The calculated EFs from 

data by Morf et al. (2013) for Y, Sc, Nd, and Gd within BA further confirm this 

hypothesis, being in a range of 1.32-0.31. The differences of EF values of BA are 

within a very narrow range, with the exception of Nd. The differences of EF values 

between BA and FA samples are relatively high especially for Y, Eu, Gd, Tb, and 

Ho. 
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Fig. §3-7 Comparison of the enrichment factors for the REE in BA and FA from MSWI plants. The BA 

from MSWI plant A and B are reported separately. For the calculation of enrichment factors 

see Eq. 1. 

Although our results represent a first estimate and more data are needed, the 

overall EFs of REE are near the unit in agreement with the normalised patterns of 

MSWI ashes (see FFiigg..  §§33--44) and recent outcomes (Fujimori et al., 2004; Westerhoff et 

al., 2015) as well as the calculated EFs using data from Morf et al. (2013). This 

indicates a poor REE enrichment within MSWI ashes and highlights a geogenic 

provenance rather than anthropogenic. 

To take insight of the elements enrichment, the EF values can be compared to 

the mining influence factors as defined in Reimann & De Caritat (2000), which is 

calculated as the ratios of annual human use of the elements to their crustal 

reserves. However, the literature data about the mined tonnage only available for a 

limited group of REE so far has followed to suggest a modified procedure which 

takes into account the price of each REE (as 99.9% purity metals). The Pricing 

Influence Factor (PIF) can be defined as follow: 

 

PIF= Xprice / Xcrust  [Eq. 2] 
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where Xprice is the price of the element, from Kogel (2006), and Xcrust is its 

abundance in the upper continental crust, from Rudnick & Gao (2014). The price of 

the element can be considered as an indicator of its human use and priority of 

supply, while the abundance on the upper continental crust might give a rough 

estimate of its availability. For example Ce and Nd pure metals are sold for 30 

US$/kg, but Nd is rarer than Ce, being their mean content in the upper continental 

crust 27 mg/kg and 63 mg/kg, respectively. Therefore, the PIF of Nd is more than 

two times higher than that of Ce, being their PIF value 1.1 and 0.48, respectively. 

The correlation between EF and PIF is shown in FFiigg..  §§33--88, both for BA and FA. 

There is a positive correlation between the EF and PIF values for REE with PIF 

values larger than 100 and lower than 1800, indicating that these elements are 

enriched in MSWI ash and virtually marketable. The higher the slope of the 

tendency line (red lines in FFiigg..  §§33--88) relatively more advantageous can be the 

considered source. Considering their market price and their EF within MSWI 

ashes, europium and some HREE (i.e., Tb, Ho and Yb) can be the potential targets 

for the development of new recovery strategies. FFiigg..  §§33--88 also discloses that Sc, Y, 

La, and other LREE are relatively enriched in MSWI ashes but current (as for 2015) 

market price of these elements most likely disallow any planning for their recovery 

and, hence, their exploitation from MSWI sources. Thulium and Lu show a 

different behaviour: they are slightly enriched in MSWI ashes but have a great 

economic importance. The efforts in the development of new techniques in order to 

recover these valuable metals, and to secure them also from urban mines, might be 

profitable in any case.  

The above outcomes deriving from EF and PIF (provided in FFiigg..  §§33--77 and FFiigg..  

§§33--88) highlight that FA materials are promising targets for future recovery of Eu 

and some HREE with respect to BA materials, even though both EF and PIF 
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parameters do not consider the output flows (reported in S.3 REE flows of MSWI 

output). 

 

 

Fig. §3-8 Bi-plot of Enrichment Factor (EF) and Pricing Influence Factor (PIF) of REE in BA (above) 

and FA (below) sampled materials. The red line represents the trendline of observations 

within a selected range of PIF values (100-1800). The EF and PIF were calculated by the 

Equations 1 and 2, respectively. 
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4. Conclusions and outlook 

Bottom and fly ashes have an average concentration of 104 and 54 mg/kg 

∑REE, respectively, which translate in a low stream of REE from MSWI plants. In 

this study some useful tools for REE prospecting were recognised, which give 

indications on where the REE recovery strategies have to focus, if the supply risk 

will further decrease and new market condition will enable the metals recovery 

from urban mines.  

Major elements/compound mass fractions like P2O5 and Al2O3 show a 

positive correlation with REE concentrations and also magnetic susceptibility 

values can be used as proxies for REE. Moreover, the susceptibility measurement 

has produced some intriguing results which can be used as information for further 

purposes such as the assessment of heavy metals contamination (e.g., Lecoanet et 

al., 2003) or of harmful ultrafine SP particles (e.g., Fialová et al., 2006), and for the 

appraisal of best substrates for the synthesis of magnetic geo-polymers (e.g., 

Belviso et al., 2015). Interestingly, both chemical (major elements) and magnetic 

measurements can be performed quickly, with low costs and on-site. Magnetic 

susceptibility analysers are small and light equipments and portable XRF is a 

reliable alternative for major elements analysis in the field. Even if they cannot 

provide the accuracy of laboratory measurements and testing, the quality is 

adequate to identify valuable ores from waste heaps. Finally, some parameters 

such as the enrichment factor and the pricing influence factor are suggested as 

valuable indicators of potential urban mines and decision-making strategies.  

In order to plan investments regarding REE recovery from MSWI residues, 

these first results need to be corroborated by new data based on accurate sampling 

strategies. Nonetheless, the integration of magnetic, chemical, and statistical 

methods demonstrated potential to a better assessment of secondary raw materials 
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from hazardous substances. Still, there is scope to test the limits of these 

preliminary efforts and new attempts have to be made to establish a general work 

practice for REE prospecting in MSWI residues. 
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Supplementary Materials of Chapter 3 

S.1 Total elemental chemistry of MSWI ashes 

Tab. T.1 Major and trace elements concentration of MSWI samples (Plant A and B).  
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S.2 Independent sample t-test 

The independent sample t-test was used in order to compare the means of 

independent observations between two unrelated groups, namely the 

concentration of each element of the REE between the two unrelated groups of 

measurements from MSWI plant A and MSWI plant B. 

 

 

a 

b 
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Fig. S.1 Probability plots of standard normal distribution of LREE (a) and HREE (b). The blue lines 

show the hypothetical normal distribution and the 95% confidence interval. On the picture’s 

side, the statistical parameters and the p-values are reported for each element. 

 

Several assumptions are required for an independent t-test to obtain a valid 

result: 1) the variables should be measured on a continuous scale; 2) the 

independent variable should consist of two categorical, independent groups; 3) 

independence of observations, i.e. no relationship between the observations in each 

group or between the groups themselves; 4) the dependent variable should be 

normally distributed; 5) the homogeneity of variances should be acknowledged. 

Assumptions 1 to 3 are fulfilled because of the nature of data: they are elemental 

concentrations, in mg/kg, of samples collected from two different MSWI plants. 

Considering the whole sample set, the assumption of population normality is 

fulfilled with the exception of europium (Fig. S.1). Conversely, the data set of the 

two independent groups (i.e., plant A and plant B, taken individually) 

approximately follows a normal distribution. As a fact, all the selected elements 

satisfy the normality assumption with the exception of Dy, Eu, Gd, Ho, La, Sc, Sm, 

Tb and Y of the “plant A” group. However, t-tests are quite robust to violations of 

normality and even valid when the samples come from non-normal populations 

(Reimann et al., 2008). This property makes them one of the most useful procedures 

for making inferences about population means. 

The homogeneity of variances was tested by means of Bartlett’s test and has 

been reported in Tab. T.2 together with the results of the independent sample t-

test. 
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Tab. T.2 The independent sample t-test, performed for bulk MSWI (BA+FA), BA and FA. Comparison 

of the REE mean content in MSWI residues from plants A and B. 

 

[Numbers smaller than 0.05, significance level, are in bold character] 
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S.3 REE flows of MSWI output 

An estimation of substance flow for BA and FA residues was carried out to 

determine the REE annual flow within output products, following the method and 

recommendations outlined in literature (Brunner & Rechberger, 2004; Astrup et al., 

2015). The spatial system boundary for the experiment was the MSWI process itself 

(see FFiigg..  §§33--11 in main text), from the waste collection to outputs products, and 

included the sampling. The temporal system boundary was defined as 1 year, 

assuming that the sampled material is representative for one year process activity 

(i.e., 2013). For the calculation of total annual flow, F in kg/a, we used the following 

equation:  

F= Ci · Or                                         [Eq. E.1]  

Where: Ci is the measured concentration of element i, expressed in 

mass/mass, and Or is the total output, in mass/time, of the final solid residue, r, i.e. 

BA or FA. The measured concentrations are provided by ICP-MS analyses. The 

owners of the incinerator plant provided the total BA and FA output in mass per 

year. According to the national recommendation, these figures are known with 

good accuracy. The output flow of BA materials is 2.8 ∙ 104 t/a (average value of 

two plants), while the FA output is 2.7 ∙ 103 t/a (average value of different kinds of 

FA). It is essential to keep in mind that the overall process ensures no mixing 

between FA and BA but disallows the FA sampling of the same BA burning mass, 

in reason of the significantly different output flow rate. However we assumed that 

the collected input waste was rather homogeneous within region during time in 

order to consider FA representative of the BA stockpile. We are moderately 

confident about our hypothesis because a substantial homogeneity in the 

municipal waste has been found among different municipalities in the region 

(Regione Emilia Romagna, 2009). The evaluation of the uncertainty propagation 
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follows the Gauss’ law of error propagation. Even if Ce, Gd, and Nd show a non-

normal distribution, we decided to calculate means and error propagation 

assuming normal distribution for the whole sample set. With the simple mass 

balance given by the Equation E.1, we estimated the yearly flows of REE, in kg/a, 

for the incinerators A and B (Tab. T.3). 

Tab. T.3 The estimated annual flow (kg/a) of selected residues. Mean and standard deviation (SD) are 

calculated on seven samples for FA and BA(A) and on six samples for BA(B). For FA samples 

the range of flows is also reported. 

 BulkFA (A, B)      BA (A)          BA (B) 
        range mean SD mean SD mean SD 

Ce 5 - 83 47 ±21 760 ±60 1020 ±50 
Dy 0.2 - 4.4 2.3 ±1.4 45 ±4.9 55 ±1.0 
Er 0.1 - 2.4 1.4 ±0.8 30 ±2.9 37 ±1.3 
Eu 0.1 - 2.6 1.5 ±0.8 22 ±1.9 28 ±1.7 
Gd 0.2 - 12.5 4.3 ±4.2 50 ±4.7 65 ±3.3 
Ho 0.1 - 1 0.5 ±0.3 9.4 ±1.0 11 ±0.2 
La 2.1 - 44 27 ±14 440 ±5.5 530 ±76 
Lu 0.1 - 0.4 0.2 ±0.1 4 ±0.7 4.4 ±0.2 
Nd 1.2 - 33 18 ±10 290 ±5.7 458 ±42 
Pr 0.3 - 9 5 ±2.9 81 ±1.3 110 ±1.3 
Sc 0.1 - 18 10 ±6.8 240 ±6.3 296 ±1.6 
Sm 0.1 - 5.5 3 ±1.8 54 ±5.0 68 ±1.0 
Tb 0.1 - 1.2 0.6 ±0.4 10 ±1.1 13 ±1.8 
Tm 0.1 - 0.3 0.1 ±0.1 4 ±0.5 4.4 ±0.2 
Y 2.4 - 40 24 ±12 340 ±3.9 421 ±20 

Yb 0.1 - 2.5 1.3 ±0.8 27 ±3.8 30 ±3.5 
LREE 9 - 207 115 ±67 1930 ±205 2570 ±170 
HREE 3 - 51 31 ±16 470 ±51 580 ±20 
∑REE 11 - 258 148 ±83 2400 ±240 3140 ±190 

[bulkFA=mean flow of fly ashes; BA=Bottom ash; A and B are the selected MSWI  plants] 

The REE mean concentrations are quasi-equally distributed between the 

different kinds of MSWI residues but the estimated yearly mean flows are higher 

in BA than FA (Fig. S.2), as a consequence of the higher BA output-flow rate with 

respect to that of FA. The comparison of wedges of pies (from concentrations to 

flows) in Fig. S.2 gives an indication of the REE partitioning and transferring into 

the output streams. A separate estimate of BA flows is needed for each incinerator 

as indicated by the t-test results (see Tab. T.2), and actually it would be a wise 
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choice because of the heterogeneity of sample materials and possible sampling 

bias. In Tab. T.3 we reported BA flows for plants A and B with their standard 

deviation values (on the basis of the samples batch) and the mean flow of FA 

residues from the two plants, i.e., BulkFA (A,B). Considering to Fig. S.2 and Tab. 

T.3, the FA residues from bag filters with soda additive (FAS) have the lowest 

potential of REE flow. Bottom and fly ashes have an average concentration of 104 

and 54 mg/kg ƩREE, respectively. For FA the expected annual flow is 115 kg/a 

LREE and 31 kg/a HREE, whereas for BA is 2250 kg/a LREE and 525 kg/a HREE. 

The REE flow from BA(B) is slightly higher than that deriving from BA(A). The 

annual flows of REE are in good agreement with recent works (Morf et al., 2013; 

Allegrini et al., 2014; Funari et al., 2015). 

 

Fig. S.2 Pie charts of LREE and HREE; the partitioning of mean concentrations and mean flows 

between the different outputs are reported (BA = bottom ash; FAU = untreated fly ash; FAE = 

fly ash from electrostatic precipitator; FAS = Soda-treated fly ash; FAL = Lime-treated fly ash). 
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Abstract 

Bio- and hydrometallurgical experimental setups at 2-litre reactor scale for 

the processing of fly ash from municipal waste incinerators were explored. We 

aimed to compare chemical H2SO4 leaching and bioleaching; the latter involved the 

use of H2SO4 and a mixed culture of acidophilic bacteria. The leaching yields of 

several elements, including some of those considered as critical (Mg, Co, Ce, Cr, 

Ga, Nb, Nd, Sb and Sm), are provided. At the end of the experiments, both 

leaching methods resulted in comparable yields for Mg and Zn (>90%), Al and Mn 

(>85%), Cr (~65%), Ga (~60%), and Ce (~50%). Chemical leaching showed the best 

yields for Cu (95%), Fe (91%), and Ni (93%), whereas bioleaching for Nd (76%), Pb 

(59%), and Co (55%). The two leaching methods generated solids of different 

quality with respect to the original material as we removed and significantly 

reduced the metals amounts, and enriched solutions where metals can be 

recovered for example as mixed salts for further treatment. Compared to chemical 

leaching the bioleaching halved the use of H2SO4, i.e., a part of agent costs, as a 

likely consequence of bio-produced acid and improved metal solubility. 

 

 

 

 

 

 

Keywords: MSWI fly ash; H2SO4 leaching; bioleaching, critical elements, metal 

removal. 
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1. Introduction 

Municipal Solid Waste Incineration (MSWI) systems can reduce waste 

volume up to 90% (of the input mass) and simultaneously produce energy for 

public use (Sabbas et al., 2003). However, the management and recycling of solid 

by-products deriving from MSWI, namely bottom ashes and fly ashes, are of 

general concern. While the bottom ash is rarely classified as hazardous waste and 

is typically reused as aggregate in construction materials (Müller & Rübner, 2006), 

fly ashes pose the most severe environmental problems. The fly ashes are dust-like 

particles carried away from the combustion chamber with the flue-gas that 

undergo several steps of filtration (e.g., dry/wet scrubber, electrostatic precipitator, 

chemical bag filter) through the Air Pollution Control (APC) system, before being 

released into atmosphere. Despite the mass of pollutants is lower in filtered fly 

ashes than in raw fly ashes due to the dilution with unreacted additives and the 

neutralization capacity, both materials contain large quantities of soluble salts (e.g., 

Cl, Na) and hazardous metals (e.g., As, Cd, Pb) that are easily volatilised after 

burning (Eighmy et al., 1995; Astrup et al., 2006; Pan et al., 2013; Funari et al., 

2015a,b) and readily accessible to weathering and transport into the environmental 

sinks. Consequently, the fly ash material is considered as hazardous waste and is 

landfilled or stored underground after pre-treatment. 

Every year thousands of tonnes of MSWI fly ashes might contain 103 kg Cu, 

Sn, and Sb, 104 kg Al and Zn (Funari et al., 2015a), but their landfilling results in a 

loss of marketable metals such as Al, Cu, Sn, Zn, and critical raw materials (e.g., 

Cr, Co, Ga, Mg, Nb, Sb, and lanthanides; according to the EC, 2014) (Morf et al., 

2013; Funari et al., 2015a). There is, therefore, interest in turning MSWI fly ashes 

into a secondary resource. Enhancing metal removal and recovery from these 
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alternative sources requires accurate investigations and new technologies need to 

be compared and combined in order to meet specific aims of treatment.  

Desirable approaches are always those capable of both metal recovery and 

environmental stabilization (Meawad et al., 2010). Main technologies of MSWI fly 

ash pre-treatment are thermal or hydrometallurgical processes. The 

hydrometallurgical approach may lead to a safe disposal of precipitates and 

eluates and to the recovery of valuable metals (by means of subsequent 

reprecipitation from solutions) with relatively low energy demand and toxins 

release. Various studies have investigated wet extraction processes by using 

chelating agents (Hong et al., 2000; Hasegawa et al., 2014), mineral or organic acids 

(Bipp et al., 1998; Meawad et al., 2010 and reference therein) and bio-produced 

acids (Brombacher et al., 1998; Lee & Pandey, 2012 and reference therein; Xu et al., 

2014).Since there has long been interest in assessing the environmental impact of 

MSWI ashes and developing new technologies for decontamination or 

immobilisation of harmful elements, the majority of literature works focuses on the 

leaching behaviour of toxic metals and a handful of other elements (Astrup et al., 

2006; Huang et al., 2007; Pan et al., 2013; Funari et al., 2015a) and on evaluating the 

influence of experimental parameters such as time, temperature, reagents used, 

and liquid solid ratio (Hong et al., 2000; Zhang & Itoh, 2006). 

In this work we focus on two leaching methods for subsequent metals 

recovery from MSWI fly ash, namely chemical leaching and bioleaching, in acid 

solution. A comparison of their leaching yields is provided to help assessing an 

affordable pre-treatment strategy prior to metal recovery. Leaching behaviour and 

recovery potential of Mg, Co, Cr, Ga, Nb, Sb, La, Ce, Nd, and Sm (hereafter critical 

elements), Al, Cu, Mn, Sn, and Zn (hereafter marketable elements), Ca, Fe, and Ti 

(unvalued elements), As, Ba, Mo, Ni, Pb, Sr and V (hazardous elements) are 

discussed. Chemical leaching by means of sulphuric acid was used because it is 
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found to be effective in metal removal (Nagib & Inoue, 2000) and relatively less 

expensive than other strong acids (Meawad et al., 2010). Conversely, in the 

bioleaching procedure we employed a mixed culture with sulphur- and iron-

oxidizing bacteria that are commonly used at industrial scale for the bioleaching of 

sulphide ores (Bosecker, 1997; Rawlings, 2002). Recent works demonstrated these 

bacteria are adaptable to MSWI substrate (Brombacher et al., 1998; Krebs et al., 

2001; Ishigaki et al., 2005) and, thereby, contributed to increase the interest on bio-

assisted approach and its capabilities.  

The outcomes of the present paper will help to figure out which procedure 

results in more enriched process solutions, where metals can be recovered by 

further treatment, and more stable solids. Emphasis is given on the bioleaching 

method, which is relatively unexplored for the treatment of MSWI fly ashes and 

shows major potential for improvements. 

2. Experimental Section  

2.1 Materials 

The studied fly ash comes from an Italian grate-furnace incinerator with 

thermo-recycling technology, which burns 90% household waste and 10% of 

special waste. The latter input source consists of processing waste from ceramics 

and metallurgy, automobile shredder residues, hospital and pharmaceutical waste. 

The main output products of the MSWI are bottom and fly ashes. 

The investigated fly ash material derives from the dry scrubber located after 

the combustion chamber and prior to the chemical bag filters within the APC 

system. This fly ash can be defined as untreated raw fly ash (hereafter FA-RAW) 

and represents the most undiluted, hence hazardous, residue deriving from the 
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APC. The output flow of the FA-RAW is 3.2 ∙ 103 t/a at the year of the sampling, 

according to the facility report. 

The samples were collected in May 2013 from a big bag (order of hundreds of 

kilograms) after blending a large number of increments, as in Funari et al. (2015a). 

Colour and grain size of the collected samples were homogeneous upon visual 

inspection. The FA-RAW was recovered into the big bag during normal and stable 

operation of the combustor. The MSWI system allowed the separate recovery of the 

FA-RAW and other kind of APC residues (e.g., treated fly ashes), following the 

system steps described elsewhere (Funari et al., 2016). 

2.2 Leaching procedure 

2.2.1 Pre-treatment of fly ash material 

The collected primary sample (approximately 10 kg) was oven dried at low 

temperature (40°C) for one week, grounded, homogenised and very fine milled (< 

40 µm) with an agate vibratory mill disk, before being used in the experiments. 

The milled material of FA-RAW was firstly analyzed and then used as starting 

material before bio-hydrometallurgical treatments. 

In order to remove water-soluble salts the FA-RAW was washed with 

distilled water prior to the leaching step. The washing treatment promotes 

leaching efficiency during both chemical leaching (Zhang & Itoh, 2006) and 

bioleaching methods (Wang et al., 2009). A 10:1 liquid-solid ratio (L/S) and three 

steps of washing were used, since they have been found to be enough to dissolve 

the most of water soluble salts (Nagib & Inoue, 2000). The solid residue and the 

liquid were separated using a centrifuge (Allegra X-15R, Beckman Coulter). After 

separation, the washed residue (hereafter FA-WW) was dried at 105 °C for 24 h 
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and used throughout the experiments. The chemical parameters of FA-WW were 

pH 11.5 and red-ox potential of 135 mV at the beginning of the experiments. 

2.2.2 Chemical leaching 

The FA-WW (10% v/v) and distilled water (90% v/v) were treated with H2SO4 

in a 2 litre glass reactor equipped with a top-entered agitator and an aeration 

system, which supplied a continuous airflow from the bottom of the reactor (FFiigg..  

§§44--11). Rotation speed of 320 rpm and airflow rate of 1.0 l/min were used. As high 

temperatures do not improve remarkably leaching kinetics and yields in sulphuric 

acid leaching of MSWI fly ashes (Nagib & Inoue, 2000), the reactor operated at 

room temperature. In order to investigate leaching as a function of pH, several pH 

intervals (i.e., pH 1.0, 3.0, 5.0, 7.0, 9.0) have been sampled, after a leaching time of 

30 minutes in which the pH level was maintained constant by 4M H2SO4 titration 

(T70, Mettler-Toledo). Reaction time of 30 minutes was used because it is generally 

adequate to achieve good leaching performances (Nagib & Inoue, 2000). The 

overall duration of the leaching experiment was six hours. A benchtop meter 

(Consort C3040) was used in order to monitor pH, red-ox (Ag/AgCl in 3M KCl) 

potential and temperature values. The liquid solution was collected using a 

vacuum filtration system and a 45 µm glass-fibre filter. After vacuum filtration, 

several elements were determined in the leachate (Ca, Al, Fe, Cu, Cr, Sb, Sn, Zn) 

using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), 

while the solid precipitate was poured again into reactors in order to avoid weight 

loss and dilution effects during the experiments. Only the final solid precipitate 

was analysed for total elemental chemistry by XRF, after being washed using two 

times of its volume of distilled water in order to remove the water soluble 
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materials (mainly salts), oven-dried, and exactly weighted for further mass balance 

assessment. 

2.2.3 Bioleaching: preliminary adaptation of the bacteria mixture and 

experimental setup 

For bioleaching a mixed acidophilic culture, enriched from a sulphide ore 

mine site (Halinen et al., 2009), containing At. ferrooxidans, At. thiooxidans, At. caldus, 

L. ferrooxidans, Sb. thermosulfidooxidans, Sb. thermotolerans and some members of 

Alicyclobacillus genus was used. These bacteria use metal-sulphide phases and also 

elemental sulphur as their substrate to produce sulphuric acid (Bosecker, 1997; 

Sand et al., 2001; Rawlings, 2002) through the reaction: 

 

S0 + 1.5 O2 + H2O →2 H+ + SO42-     [1] 

 

Metal-sulphides are found as minor phases within MSWI ashes (Bayuseno & 

Schmahl, 2011); therefore, when treating these kind of unconventional materials, 

sulphur-oxidizing bacteria must be fed with elemental sulphur to achieve 

sulphuric acid production and promote leaching. The culture was cultivated in a 

modified Silverman 9K medium (Silverman & Lundgren, 1959) containing 

(NH4)2SO4 3.0 g/l, K2HPO4 0.5 g/l, MgSO4·7H2O 0.5 g/l, KCl 0.1 g/l, Ca(NO3)2 0.01 

g/l, FeSO4·7H2O 22.5 g/l and also 10.0 g/l S0. The modified 9K medium was adjusted 

to pH 2.0 with concentrated H2SO4. The culture was incubated in a rotary shaker 

(150 rpm) and the temperature was set to 30°C due to mesophilic At. thiooxidans 

(Rawlings, 2002). The culture was renewed every 15 days by inoculating 10% (v/v) 

of former cultivation and 90% (v/v) of the modified 9K medium. 
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The original acidophilic culture was adapted to tolerate the presence of 

MSWI fly ash and the adaptation experiment was conducted in 250 ml Erlenmeyer 

flasks containing 90 ml of the modified 9K medium. Flasks were inoculated with 

the acidophilic culture (10% v/v) followed by the addition of the FA-WW. The pH 

was adjusted to 2.0 with concentrated H2SO4 and flasks were incubated in a rotary 

shaker (150 rpm, 30°C). If a spontaneous decrease in pH was observed during 15 

day, a new modified 9K medium with an increased amount of FA-WW was 

prepared and inoculated with the former solution (10% v/v) of the adaptation 

experiment. The amounts of solid FA-WW were increased three times (1, 2, and 

5%) of L/S ratio, respectively. 

After the adaptation experiment, a scaled-up experiment was conducted in a 

2 litre glass reactor with a similar setup as for chemical leaching (FFiigg..  §§44--11) by 

using the same sample mass of FA-WW (100 g) to obtain more representative 

results. Rotation speed of 320 rpm and airflow rate of 1.0 l/min were used. The 

reactor temperature was maintained at 30°C using a heated water jacket. The 

reactor contained 90% (v/v) modified 9K medium (without FeSO4 · 7H2O) and the 

previously adapted acidophilic culture (10 % v/v). The pH was fixed to 2.0 with 

concentrated H2SO4 and precultivation of microorganisms was conducted for 4 

days without FA-WW sample. Then, 5 % (v/v) of FA-WW sample was introduced 

and bioleaching continued for 21 days with pH fixing to pH 1.8 (i.e., set point) with 

concentrated H2SO4, if necessary. 
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Fig. §4-1 EExxppeerriimmeennttaall  sseettuupp  ooff  lleeaacchhiinngg  pprroocceedduurree  iinn  aa  22  lliittrree  ggllaassss  rreeaaccttoorr,,  eeqquuiippppeedd  wwiitthh  ttiittrraattiioonn  

ssyysstteemm  aanndd  bbeenncchhttoopp  mmeetteerrss  ffoorr  ccoonnttiinnuuoouuss  mmoonniittoorr  ooff  ppHH,,  rreedd--ooxx  aanndd  tteemmppeerraattuurree.. 

2.3 Analytical techniques 

The total elemental chemistry of solid material was determined on pressed 

powder pellet (φ 37 mm) by a wavelength dispersive X-ray fluorescence 

spectrometer (WD-XRF), PANalytical Axios, equipped with a 4 kW Rh tube. The 

SuperQ 3.0 software was used for online correction and analytes quantification. 

The estimated precision for trace element (<0.01 wt. %) determinations are better 

than 5% except for those elements at 10 mg/kg and lower (10–15%). Triplicate 

samples analysis was carried out in order to assess the precision of measurements 

by means of standard deviation (SD) and relative standard deviation (RSD). In 

addition, a MSWI fly ash reference material (BCR-CRM 176) was analysed as 

unknown sample to evaluate precision and accuracy of the analytical method. 

Total loss on ignition (LOI) was gravimetrically estimated after overnight heating 

at 950°C.  
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The leachates were analysed by Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES, Perkin-Elmer). The solutions were completely 

dissolved with aqua regia in closed alumina bombs at 170°C until the digested 

solution was clear. Element quantification employed calibration curves prepared 

with diluted standard solutions. 

2.4 Metal removal 

The measured concentrations of solid residues and leached solution obtained 

by XRF and ICP-AES, respectively, are used to evaluate the percentage of metal 

removal (yield), R%, which is defined as 

 

Rij % = (1-Cij Mj / C0ij M0j) · 100  [2] 

 

where Rij is the degree of removal for the element i in the batch j, Cij is the 

concentration of the element i in the batch j in the treated sample, Mj is the mass of 

the treated sample of batch j, C0ij is the concentration of the element i in the batch j 

in the untreated sample and M0j is the mass of the untreated sample of batch j. 

3. Results and Discussion 

3.1 Characterisation of original MSWI ash sample 

The bulk elemental content of the FA-RAW is given as averages of three FA-

RAW samples in order to test sample homogeneity and representativeness (TTaabb..  

§§44--11). Despite a low amount of primary sample (about 10 kg) was collected due to 

logistical reasons, the representativeness of fly ash material can be assessed by 
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comparing the analysis of FA-RAW sample with concentrations range quoted in 

literature and recently outlined in Funari et al. (2015a). Comparing the values of the 

matrix-matched reference material with the certified values (CV) served for a 

quality check. Good results in term of relative error (when applicable) were 

obtained for the most of critical elements, even if some discrepancies occur due to 

spectral overlaps and/or matrix effect. This might lead to underestimation of 

leaching yields and recovery potential for elements like Al, Co, K, Mn, and Cl, 

according to TTaabb..  §§44--11. The FA-RAW is characterised by high amounts of Ca, S, Cl, 

and Si, being their oxides weight fractions of about 20, 24, 13, and 9 wt. %, 

respectively. SD values for most of major elements are within a narrow range, 

suggesting a relative homogeneity of the sampled material. 

There are high concentrations of several elements such as Cr, Cu, Pb, Sb, and 

Zn. The FA-RAW sample contains more than 1 wt. % of Zn, and about one order of 

magnitude less of Cr, Cu, Pb, and Sb. A number of trace elements show high SD 

probably due to characteristic fragments ending up into sample: for example the 

presence of metallic scraps can influence Pb concentrations, plastics might affect Sb 

and Cl, ceramic waste Ce, Co, Nb, and Nd. 

Tab. §4-1 Major and trace elements composition of the reference material (BCR -CRM 

176) and the untreated raw fly ash, FA-RAW.  

 
  BCR-CRM 176   FA-RAW 

 
CV average SD %RSD RelErr   average SD %RSD 

Major element 
(wt. %) 

         Al2O3   19.20 16.74 0.13 0.75 13   6.11 0.10 1.76 
CaO   8.80 8.42 0.01 0.08 4   33.61 0.31 0.98 
Fe2O3   3.05 2.72 0.01 0.51 11   1.62 0.02 1.01 
K2O   5.42 3.99 0.01 0.26 26   0.64 0.09 14.9 
MgO   - 3.10 0.02 0.64 -   3.21 0.17 5.56 
MnO   0.19 0.13 0.00 0.00 32   0.09 0.01 6.93 
Na2O   4.04 6.20 0.06 0.90 53   1.09 0.02 1.51 
P2O5   - 1.58 0.04 2.22 -   1.21 0.05 4.17 
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SiO2   - 25.22 0.25 1.00 -   11.42 1.77 16.6 
TiO2   - 1.30 0.00 0.00 -   1.75 0.03 2.13 
CuO   0.16 0.16 0.00 1.79 2   0.11 0.00 1.91 
ZnO   3.21 3.26 0.02 0.56 2   1.92 0.05 3.01 
PbO   1.25 1.27 0.03 2.15 1   0.63 0.04 7.41 
Cr2O3   0.13 0.14 0.00 2.11 8   0.22 0.01 2.53 
Sb2O3   0.05 0.05 0.00 1.45 2   0.16 0.00 3.28 
Cl   4.00 3.46 0.02 0.69 13   1.98 0.06 3.34 
SO3   8.74 8.82 0.09 0.98 1   28.42 0.96 3.62 
LOI   

 
13.44 

   
  5.81 

            Trace element 
(mg/kg) 

     
  

   As   95 92 0.1 0.08 3    31 4 12.6 
Ba   5000 5004 73 1.47 0    879 37 4.18 
Ce   - 76 14 18.49 -   22 3 12.6 
Co 

 
31 26 1 3.61 14    8 1 11.2 

Cs   - 43 8 18.05 -   13 2 18.9 
Ga   - 33 1 1.42 -   29 2 6.07 
La   - 32 2 7.63 -   11 5 49.6 
Mo   - 30 0.3 0.96 -   21 1 6.38 
Nb   - 21 1 2.76 -   15 0.3 2.01 
Nd   - 42 9 20.39 -   13 5 38.3 
Ni   124 131 6 4.43 6    53 7 13.9 
Sm   - 3 0.07 2.24 -   3 0 4.00 
Sr   462 411 10.2 2.48 11    510 19 3.68 
V   100 108 8.91 8.26 8    81 2 2.73 
Zr   - 160 5.37 3.37 -   151 6 3.98 

A v e r a g e ,  s t a n d a r d  d e v i a t i o n  (S D )  a n d  r e l a t i v e  s t a n d a r d  d e v i a t i o n  (R S D )  v a l u e s  o f  t r i p l i c a t e  s a mp l e s  a r e  r e p o r t e d .  C e r t i f i e d  v a l u e s  (C V)  o f  

r e f e r e n c e  ma t e r i a l  a l l o we d  t h e  c a lc u l at i o n  o f  t h e  r e l a t i v e  e r r o r  (R e l E r r ) .  C e r t i f i e d  v a l u e s  o f  t h e  B C R -C R M 1 7 6  a r e  t a ke n  f r o m t h e  Ge o R e M  

d a t a b a s e  (h t t p : / / g e o r e m. mp c h - ma i n z . g wd g . d e / ) .  

3.2 Effect of pre-washing 

High contents of Cl and mineral salts as those of Na, Ca, K typically hamper 

an efficient recovery of metals from MSWI fly ashes (Okada et al., 2007). Alkali salts 

consume large amounts of acid during the leaching and they may also complicate 

the separation of valuable metals bonded with them. Our fly ash pre-washing 

removes most of water soluble salts (TTaabb..  §§44--22). More than 80% of Cl, K and Na 

were removed, in agreement with previous works (Nagib & Inoue, 2000; Wang et 

al., 2009). 
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Tab. §4-2 Chemical composition of FA-RAW and FA-WW by XRF, and calculated yield 

(R%). Elements are listed from highest to lowest R%.  

 
Average and standard deviation (SD) values of triplicate samples are reported. SD of the R (%) was estimated on the basis of maximum and 

minimum removal for each element. 
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3.3 Chemical leaching 

The leaching behaviour of MSWI fly ash was investigated as a function of pH 

(Eighmy et al., 1995; Astrup et al., 2006) by testing the sample material subjected to 

several stages of pH and analysing leaching solutions at specific pH intervals. At 

the end of the experiment (i.e., at pH 1), the XRF analysis of solid by-product 

allowed assessing metal removal rates (as R%,     
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TTaabb..  §4-3), which are calculated for each element according the equation 2 

and the mass balance of the experiment. Chemical leaching effectively removes 

elements such as Al, Cu, Fe, Mg, Ni, P, and Zn, showing > 90% yields. The leaching 

efficiency coupled with the relatively high concentrations of these elements within 

initial MSWI fly ash show significant recovery potential. Other elements such as 

Cl, Mo, Na, are almost totally recovered by H2SO4. Among critical elements, Cr, Sb 

and Nd show a better leaching yield (nearly 70%) than Ga (58%), Ce (49%), Nb 

(46%), Sm (31%), and Co (28%). However, high values of SD for lanthanides 

emphasise a limited confidence on their calculated yield. It was also found that 

40% Ca, 50% Si, and 45% Pb were mobilised. Despite Ca can be present as easily 

soluble compounds in acidic environment, the overall Ca release was lower with 

respect to similar work reported in literature (Nagib & Inoue, 2000; Zhang & Itoh, 

2006; Huang et al., 2007). 
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Tab. §4-3 Chemical composition of the FA-WW and samples after treatments (FA-

H2SO4 ,  and FA-BIO),  by XRF. Calculated yield (R%) for FA -H2SO4  and FA-BIO 

is reported.  

 
Average and standard deviation (SD) values of triplicate samples are reported. SD of the R (%) was estimated on the basis of maximum and minimum removal for 

each element. 

As expected, the concentration of selected elements in leachates (Fig. §4-2) 

indicates that H2SO4 leaching performances change as a function of pH. Elements 

such as Ca and Al show a good solubility even at pH intervals close to neutrality, 

whereas Zn, Cr, and Sb demonstrate a slight amphoteric behaviour where removal 

rates fall at 7 pH and start rising again in alkaline conditions. Overall, removal 

rates and potential recovery of marketable elements (especially Al, Cu, and Zn) 
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from MSWI fly ash after H2SO4 leaching are consistent with the outcomes of 

previous work (Nagib & Inoue, 2000; Astrup et al., 2006; Zhang & Itoh, 2006). 

 

FFiigg..  §§44--22  MMeeaassuurreedd  ccoonncceennttrraattiioonnss  bbyy  IICCPP--AAEESS  ooff  sseelleecctteedd  eelleemmeennttss  iinn  lleeaacchhaatteess  ffrroomm  HH22SSOO44  lleeaacchhiinngg  

aass  aa  ffuunnccttiioonn  ooff  ppHH..  RReedd  ddaasshheedd  lliinnee  iiss  tthhee  ddeetteeccttiioonn  lliimmiitt..  

3.4 Bioleaching 

Unlike the chemical leaching procedure, the sampling from bioleaching 

reactor was performed over time at an initial pH of 1.8, maintained with H2SO4 

addition. The buffer capacity of MSWI fly ash sample was greater than biologically 

produced sulphuric acid and this made necessary a few manual addition of 

sulphuric acid during the experiment (see 3.5.2 Effect of pH and acid 

consumption/production). Acid consumption significantly decreased after three days 

and a steady acid consumption was achieved (FFiigg..  §§44--33). The sampling started on 

the third day and carried out each day for ten days, then three days before the end 

of the experiment, and at the end of the experiment (after three weeks in total). At 
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the end of the experiment, pH had decreased to 1.4, clearly below the pH 1.8 set 

point, showing the activity of sulphur-oxidizing bacteria and production of 

sulphuric acid from elemental sulphur. 

 

Fig. §4-3 CChheemmiiccaall  ppaarraammeetteerrss,,  ppHH  aanndd  rreedd--ooxx,,  ooff  tthhee  bbiioorreeaaccttoorr  aass  aa  ffuunnccttiioonn  ooff  ttiimmee..  TThhee  ccuummuullaattiivvee  

aacciidd  ccoonnssuummppttiioonn  iinn  mmll//mmiinn  iiss  ccaallccuullaatteedd  oovveerr  aa  ppeerriioodd  ooff  tthhrreeee  ddaayyss  ((ii..ee..,,  tthhee  hhiissttooggrraammss’’  

hheeiigghhtt))..  RReedd  ddaasshheedd  lliinnee  iiss  tthhee  ppHH  11..88  sseett  ppooiinntt.. 

The investigated elements show a high leachability already during the first 

days of the experiment (FFiigg..  §§44--44), and from third day onwards the bioleaching 

reactor was close to equilibrium. The bioleaching system does not show a clear 

time-dependence and the majority of leaching most likely occurs within 0-3 day. 

From day-3 sample to day-21 sample, data disclose a slight increase of Fe, Cr, and 

Zn concentrations in leachates and a slight decrease of Cu and Sb.  

The recovery performances of the bioleaching procedure, based on the XRF 

analysis of FA-BIO solid sample, can be evaluated in TTaabb..  §§44--33. Critical and 

marketable elements such as Mg, Zn, Mn, Al, Nd, and Cu show removal 

percentages of 99, 91, 87, 86, 76, and 74, respectively. Moreover, toxic elements 
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such as Ni and Pb, and the critical elements Cr, Co, and Ga were efficiently 

solubilised with removal close to 60%. Other critical elements were moderately 

leached out from the solids, for example 52% Sb, 48% Ce and 30% Nb were 

removed. The mobility of the unvalued Si, Ca, Ti and the harmful As from solid to 

solution after bioleaching is relatively low. 

 

Fig. §4-4 Measured concentrations by ICP-AES of selected elements in leachates from bioleaching as a 

function of time. 

3.5 Comparison of chemical leaching vs. bioleaching 

3.5.1 Speciation of elements within solid residues of MSWI fly ash after 

chemical leaching and bioleaching 

A comparison of the performance (yields) between chemical leaching and 

bioleaching is shown in FFiigg..  §§44--55. The error bars indicate the uncertainty associated 

to XRF measurements for each element. A larger standard deviation is frequently 

associated with the bioleached rather than chemically leached residue. The reasons 

of this discrepancy are unclear. On the basis of morphological analysis of FA-

RAW, FA-H2SO4 and FA-BIO (see Supplementary Materials of Chapter 4) we 

suggest that the formation of coarse mineral grains may promote the nugget effect. 
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Fig. §4-5 CCoommppaarriissoonn  ooff  lleeaacchhiinngg  yyiieellddss  ((RR%%))  bbeettwweeeenn  cchheemmiiccaall  lleeaacchhiinngg  aanndd  bbiioolleeaacchhiinngg  ffoorr  sseelleecctteedd  

uunnvvaalluueedd//hhaazzaarrddoouuss  ((aa))  aanndd  ccrriittiiccaall//mmaarrkkeettaabbllee  ((bb))  eelleemmeennttss..  EErrrroorr  bbaarrss  aarree  tthhee  ssttaannddaarrdd  

ddeevviiaattiioonn  ooff  RR%%.. 

Chemical leaching and bioleaching showed comparable yields for easily 

soluble elements such as Al, Cl, Cs, Mg, and Na, but larger differences in Ba, K, 

Mo, Co, and Fe. The element Sm showed unreliable differences in leaching yield 

due to the analytical sensitivity, therefore Sm is not reported. Both procedures are 

efficient in the removal of critical/marketable metals such as Al, Ce, Cr, Ga, Mg, 

and Zn (FFiigg..  §§44--55b), while a low mobilisation of Ca was noted. The presence of Ca 

could potentially inhibit the extraction of other elements (Kalmykova & Fedje, 

2013), thus low Ca yields might be of beneficial for the quality of the final product 

and the overall recovery potential. The reason of low Ca release after both 

treatments may relate to the untreated fly ash used in the present study, which had 

not lime addition (typically employed to remove SO2 gas from APC systems). In 

fact, Ca-bearing compounds within untreated fly ashes can occur in form of low 
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soluble amorphous silicates, oxides or sulphides rather than gypsum and calcium 

carbonate minerals, which are instead more mobile (Zhang & Itoh, 2006). 

Both procedures can be beneficial to the decontamination of MSWI fly ashes: 

the bioleaching enhanced the removal of several hazardous elements (FFiigg..  §§44--55a) 

such as As, Ba, Pb, and Sr while chemical leaching is an option for the removal of 

Mo, Ni, and V. Overall, As was slightly mobilised from the solid material probably 

due to its low concentration in the FA-RAW or bonding with refractory silicates. 

The chemical leaching resulted in higher leaching yields for Cu, Fe, Ni, P, 

and Sb with respect to bioleaching, but the removal of unvalued elements such as 

Si and Ti is even high (FFiigg..  §§44--55a). The removal rates of Co, Pb and Nd are 

definitely enhanced by means of bioleaching. Generally, similar leaching (acidic 

solutions at pH 1-1.4) of metals should result in similar levels of total acid 

consumption (either with mineral or bio-produced H2SO4); a different mobilisation 

of metals could be related to a different reaction time (a few hours for the chemical 

leaching; several days for the bioleaching) but also to mechanisms of direct 

enzymatic reduction or any other indirect activities of microorganisms 

(Brombacher et al., 1998). Although a detailed investigation of bacteria activity and 

growth is not the aim of this paper, the unbalanced yields especially for Co, Pb, 

and Nd suggest that the bio-produced sulphuric acid is not the sole agent of metals 

mobilisation. Several mechanisms might compete during leaching which, in turn, 

might selectively enhance or inhibit the solubilisation of some metals. The 

improved solubilisation of Co and Pb, which partly occur in sulphide minerals 

within MSWI ashes, might be enhanced by Fe3+ produced by iron-oxidizing 

bacteria (Sand et al., 2001). These bacteria (At. ferrooxidans and L. ferrooxidans) were 

found from the mixed acidophilic culture and were most likely oxidizing acid-

dissolved Fe2+ to Fe3+ during bioleaching: 
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2 Fe2+ + 0.5 O2 + 2 H+ → 2 Fe3+ + H2O  [3] 

 

On the other hand, lanthanides can accumulate on cell wall or bacteriogenic 

oxides (Moriwaki & Yamamoto, 2013). The effect of red-ox reactions induced by 

bacteria, such as biotic oxidation of Fe2+ to Fe3+ that catalyses metals solubilisation, 

might play an important role on leaching efficiency and will be the object of a 

forthcoming paper. 

3.5.2 Effect of pH and acid consumption/production 

The overall acid consumption during chemical leaching was 2.014 litre of 

concentrated (96% purity) H2SO4 per kg of FA-WW, while 0.810 litre during 

bioleaching. The added value for bioleaching is the limited consumption of 

sulphuric acid, two times less than chemical leaching, illustrating the activity of 

sulphur-oxidizing bacteria and their capability to produce remarkable amounts of 

H2SO4. According to the equation 1, biologic transformation of 1 ton of elemental 

sulphur produces approximately 3 tons of H2SO4. In U.S. (2013) the price of 

elemental sulphur and imported H2SO4 product was 69 and 63 $/t, respectively 

(USGS, 2013). Therefore, chemical costs for bio-based H2SO4 are three times lower 

than the price of imported sulphuric acid. 

3.5.3 Potential environmental implication 

According to the European regulation (EU, 2002), the limit values for waste 

acceptance at landfills are based on a leaching procedure (TCPL, Toxicity 

Characteristic Leaching Procedure), which have to follow Technical Specification 
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of the European Committee for Standardization. Although our experiments do not 

comply with the standard procedures for TCLP as it was not in the scope of the 

present work, Tab. §4-4 shows that the composition of treated MSWI ashes are 

below the European guidance levels (for leachates) for several regulated chemical 

elements such as Cl, Cu, Mo, Ni, and V. Other harmful elements within solid by-

products largely exceed the TCPL limits and likely have an impact on the 

environment. 

Limit values for waste acceptance in landfill or for waste reuse as 

construction material are not available for solids. Data of solid residues after 

chemical leaching and bioleaching treatments can be compared with guidance 

levels published by BAFU (Federal Office for the Environment, Switzerland) as 

suggested elsewhere for other incineration ashes (Nowak et al., 2010). The 

comparison helps assessing whether treated residues can be reused and, thus, can 

constitute an added value product rather than a secondary waste. The solid 

residues produced at the end of bio-hydrometallurgical treatments do not meet the 

guidance levels of BAFU for a number of elements (Tab. §4-4). Harmful elements 

such as Zn, Cr, Pb, and Sb were significantly removed, but their still high 

concentrations prevent the residues’ landfilling. The solid by-products have 

potential for re-use after further removal of these elements, especially Pb and Sb. 

TTaabb..  §§44--44  Chemical composition of the FA-RAW and process solids (FA-WW, FA-

H2SO4, and FA-BIO). The TCLP limits and BAFU criteria for waste acceptance 

at landfill of pulverised coal ash and blast furnace slag are also reported.  

Element 
FA-RAW 

average  RSD 
FA-WW 

average  RSD 
FA-H2SO4 

average  RSD 
FA-BIO 

average  RSD 
Guidance levels 

TCPL Coal Slag 
(mg/kg) 

           Ca 142000 4 240200 1 166300 1 139900 3 - - - 
Cl 142000 10 18500 3 130 17 300 3 25000 - - 
S 105700 3 106200 4 232000 1 177500 4 50000 - - 
Si 44300 12 53400 17 30500 19 34900 28 - - - 
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Na 37700 11 8000 2 1700 2 1100 55 - - - 
K 31200 8 5300 15 3300 8 1500 8 - - - 
Al 19300 7 32400 2 2900 15 4800 27 - - - 
Mg 10300 11 19400 6 80 173 200 52 - - - 
Zn 10200 3 14400 3 1400 4 1600 2 250 1000 400 
Ti 5700 1 10500 2 3000 5 5500 5 - - - 
Fe 5500 5 11300 1 1100 17 5400 18 - - - 
P 5500 4 5300 4 180 12 1200 18 - - - 
Pb 3400 8 5100 7 3800 3 3000 7 5 300 75 
Cr 1500 4 1500 3 600 3 700 11 5 300 200 
Ba 900 4 1080 1 1100 3 900 5 100 1500 1000 
Sb 900 1 1300 3 500 3 860 2 150 10 5 
Cu 600 2 900 2 50 7 200 36 250 200 200 
Sr 500 4 560 2 400 1 300 3 1 - - 
Mn 370 1 690 7 70 0 100 69 - - - 
V 80 3 100 3 30 6 50 12 250 300 300 
Ni 50 14 90 1 10 63 30 23 250 200 200 
As 30 13 40 19 40 2 30 13 5 40 30 
Mo 20 6 20 2 2 26 10 3 30 - - 
Co 8 14 12 11 10 4 6 28 - 100 100 

Relative standard deviation (RSD) in percent is reported. 

3.5 Limits and potential improvements toward industrial application 

Both leaching methods could sufficiently extract marketable metals and serve 

as a pre-treatment step toward factual metals recovery from urban waste streams 

like MSWI fly ashes. However, wastewater and solid by-products require further 

control and processing. Future experiments to improve stabilisation of solid by-

products and metal recovery from process solutions could include leaching at 

elevated temperatures, high acid composition and combined bioleaching and 

chemical leaching to utilize the selectivity differences and maximise recoveries and 

environmental status of the residue. Chlorides and alkali salts, which are 

substantially unvalued/hazardous compounds and may hinder the recovery of 

marketable metals, can be leached by water (see TTaabb..  §§44--22) and the pre-washing 

treatment might be further optimised toward improved removal amounts. Other 

impurities such as Fe and Mn can be removed by drop-wise adding NaOH and 
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KMnO4, respectively, to the leaching liquor at room temperature, as in Chen et al. 

(2015). Marketable elements can be recovered from process solutions by solvent 

extraction or ion exchange experiments (Nguyen & Lee, 2014; Chen et al., 2015; 

Tang & Steenari, 2015). Well known methods such as thermal treatments and 

carbonation (Nowak et al., 2010; Liu et al., 2015) might lead to inert solid by-

products in a closed-loop strategy. 

Although the H2SO4 leaching is still not affordable for industrial application 

(Okada et al., 2007; Meawad et al., 2010), the bioleaching in sulphuric acid solution, 

under our experimental conditions, resulted in satisfactory removals, low amount 

of unvalued elements in the leachate, and low agent costs for H2SO4 (due to bio-

produced acid). Moreover, the bioleaching procedure has great (and relatively 

unexplored) potential for optimisation, e.g., by improving medium (S0, Fe2+, 

nutrients) and substrate quality, thermo-chemical conditions, inoculum volume 

and fraction of bacterial strains. Chemical leaching in pH 1.0 removes some 

elements (e.g., Cu, Fe, Ni, P, and Sb) better than bioleaching in pH 1.4. The possible 

requirement for a low pH is not a process-limiting factor in bioleaching as, for 

example, the well-known sulphur-oxidizing bacterium, At. thiooxidans, can thrive 

even in pH 0.5 (Bosecher, 1997). Therefore, the pH can be adjusted to the desired 

level also in bioprocess, but this tends to be relatively far away from their pH 

optimum (between pH 1.0 and 2.5) and can have an effect on the bioprocess 

performance that should be tested before implementation. The production rate of 

the H2SO4 is clearly the limiting factor, as bioleaching required additions of 

sulphuric acid during the main leaching period (days 0-3). Therefore, the potential 

industrial application for fly ash bioleaching would consist of two reactors, the first 

one optimised for biologic H2SO4 production from elemental sulphur (in the 

absence of fly ash) and the second reactor utilizing this bio-based lixiviant for fly 

ash chemical leaching. In Fig. §4-6 we report the concept design of a hypothetical 
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treatment strategy for MSWI fly ash. It involves two optimised bioreactors 

ensuring closed circuits of washing water and acidic solution, and suggests 

industrial uses of process by-products. 

 

FFiigg..  §§44--66  FFllooww  sshheeeett  ooff  aa  hhyyppootthheettiiccaall  pprroocceessss  cchhaaiinn  ffoorr  tthhee  ttrreeaattmmeenntt  ooff  MMSSWWII  ffllyy  aasshh..  
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4. Conclusions 

Fly ash samples from an Italian incinerator of municipal solid waste were 

treated by chemical leaching and bioleaching in glass reactors after a pre-washing 

treatment. The results can be summarised as following: 

1.  Both processes resulted in good leaching yields (>85%) for a number of 

elements, especially for Al, Cu, Mg, Mn, and Zn, which can be potentially 

recovered from solutions by known methods, and low removals for Ca (   

40%) and As (   10%). 

2. Chemical leaching still demonstrated higher yields than bioleaching for 

elements such as Al, Mg, Zn, Cu, Ni, Sb, and Sn. 

3. Bioleaching showed good yields also for Pb, Ce, Co, La, Nd and Sb with the 

advantage of significant selectivity (especially for toxic elements) and lower 

removal of un-necessary elements (e.g., Si and Ti) compared to chemical 

leaching. In addition, the bio-produced H2SO4 favourably impacts on agent 

costs for reagents. 

4. Final residues deriving from the two methods under the experimental 

conditions used in this work (leaching time, temperature, and acid 

composition) cannot be reused as construction material and need further 

processing for landfilling as non-hazardous or inert waste status. A process 

chain for MSWI fly ash treatment, which includes optimised bioreactors and 

suggests the final destination of by-products, could be tested for industrial 

application. 
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Supplementary Materials of Chapter 4 

S.1 Morphological characterisation of solids pre- and post-

treatment 

Morphological images of MSWI fly ash particles were obtained by Scanning 

Electron Microscopy (SEM), Philips 515B, working at 15 kV electron accelerating 

voltage and with a beam current of about 1 nA at the specimen level. For these 

observations, disaggregated loose particles with different sizes below 40 μm were 

embedded in stubs and sputtered with gold. Semi-quantitative chemical analysis 

on spot superficial point was also performed using an energy dispersive X-ray 

spectrometer (EDS) coupled to the SEM. Morphology and compositional analysis 

by SEM-EDS were employed as complementary information to evaluate 

differences between raw fly ashes and treated ones. 

Morphological images by scanning electron microscopy (SEM) were taken on 

the FA-RAW sample and on the solid residues after the leaching procedures (Fig. 

S.1). The fly ash sample before leaching (Fig. S.1 a) shows particles with a wide 

range of shapes. Highly agglomerated fragments, in which smaller particles 

amalgamate forming irregular clusters greater than 100 µm, with a rough surface, 

are the main feature of the FA-RAW, in line with the majority of observations 

reported by others (Huang et al., 2007; Fedje et al., 2010). Due to the small size of 

the ash particles and their tendency to agglomerate into clusters, a detailed study 

by EDS on the distribution of specific elements within the particles was not 

possible. Generally, these agglomerated bodies contain Si-Ca compounds plus 

variable amounts of Al, Fe, S, and alkali (Fig. S.1, inset A1). A very limited 

presence of euhedral crystals and of gypsum/anhydrite minerals suggests that 

most of Ca occur in form of amorphous silicates, oxides and sulphides. In FA-

RAW, rare spherules are present, even though spherical morphologies of complex 
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aluminosilicates have been documented in MSWI fly ashes from electrostatic 

precipitators (Eighmy et al., 1995; Zhang et al., 2007). The SEM images of FA-RAW 

shows, moreover, equant and columnar fragments (A2 in Fig. S.1) that are 

characterised by a flat morphology and contain sulphur and chloride salts and 

minor elements such as Pb and Zn. Micrographs b and c of Fig. S.1 reveal that 

agglomerated particles, as those observed in micrograph a, partly disappeared due 

to the formation of secondary compounds and minerals with near euhedral shapes. 

In the treated fly ashes, both FA-H2SO4 and FA-BIO, morphological images and 

EDS analysis showed the presence of Ca-sulphate precipitates (inset B1). The 

occurrence of coarser gypsum crystals in the FA-BIO rather than in FA-H2SO4 can 

be simply related to a longer leaching time. The presence of spherules up to 40 µm 

diameter containing S, Ti and Fe (inset C1) might be linked either to the activity of 

microorganisms, which enhance Ti substitution in sulphur rich systems, as occurs 

in marine environments (e.g., Botsou et al., 2015), or to typical magnetic spherules 

generated by industrial processes at specific thermo-chemical conditions (e.g., 

Blaha et al., 2008). These hypotheses, however, need to be confirmed by means of 

further investigation. The reason of a nearly absence of spherules in the FA-RAW 

sample still remains doubtful, but may occur that the relative abundance of S-Ti-

Fe-bearing spheres increased in the bioleached residue due to their low solubility, 

as suggested by Eighmy et al. (1995). The S-Ti-Fe spherules occurrence and coarse-

grained fragments in the solid residue after bioleaching could favour a further 

selective removal of metals by means of subsequent physical-mechanical 

techniques such as sieving, density or magnetic separation. If this can serve to 

improve future bioleaching process chains, clear advantages given by later 

treatments after the chemical leaching cannot be assessed by SEM observation of 

the solid residue. 
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FFiigg..  SS..11  SSEEMM  mmiiccrrooggrraapphhss  ooff  FFAA--RRAAWW  ((aa)),,  FFAA--HH22SSOO44  ((bb)),,  aanndd  FFAA--BBIIOO  ((cc))..  IImmaaggeess  AA11,,  BB11,,  aanndd  

CC11  aarree  EEDDSS  ssppeeccttrraa  ooff  rreedd  ssqquuaarreess  ddrraawwnn  iinn  mmiiccrrooggrraapphhss  aa,,  bb,,  aanndd  cc,,  rreessppeeccttiivveellyy..  FFoorr  AA22  sseeee  

ddeessccrriippttiioonn  iinn  tthhee  tteexxtt..  

  

A2 
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Abstract 

Osmium release from Municipal Solid Waste Incinerators (MSWI), even if 

acknowledged to occur at least over the last fifteen years, remains overlooked in 

the majority of recent studies. We present the osmium concentration and 

187Os/188Os isotopic measurements of different kinds of bottom and fly ash samples 

from MSWI plants and reference materials of incinerator fly ash (BCR176 and 

BCR176R). The analysis of the unknown ash samples shows a relatively wide range 

of 187Os/188Os ratios (0.24-0.70) and Os concentrations (from 0.026 ng/g to 1.65 ng/g). 

Osmium concentrations and isotopic signatures differ from those of other known 

Os sources, either natural or manmade, suggesting a mixture of both contributions 

in the MSWI feedstock material. Furthermore, the comparison between the BCR176 

and the renewed BCR176R indicates a decrease in Os concentration of one order of 

magnitude over the years (from 1 to 0.1 ng/g) due to improved recycling efficiency 

of Os-bearing waste. The estimated annual amount of Os from a typical incinerator 

(using average Os values and MSWI mass balance) is 13.4 g/a. The osmium 

potentially released from MSWI smokestacks is predicted to be from 16 to 38 ng 

Os/m2/a, considering a medium size country having 50 MSWI facilities; therefore 

much higher than the naturally transported osmium from continental dust in the 

atmosphere (about 1 pg Os/m2/a). MSWI systems are considered one of the best 

options for municipal solid waste management in industrialised countries, but 

their contribution to the Os budget can be significant. 

 

 

 

 

Keywords: Osmium, Incinerators, Bottom and Fly ashes 
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1. Introduction 

The Platinum Group Elements (PGE: Pt, Pd, Rh, Ru, Os and Ir) are among the 

rarest elements in the Earth crust, but increasing PGE levels have been noted in 

many environmental compartments (Lattermoser, 1994; Barefoot, 1997; Barbate et 

al., 2001; de Vos et al., 2002; Whiteley & Murray, 2003; Fritsche & Meisel, 2004; 

Rauch et al., 2005). The study of PGE isotopic compositions allows distinguishing 

the sources of pollution either natural or anthropogenic and indicates that 

unexpected concentrations found in the environmental records are a likely 

consequence of PGE’s massive use in industrial applications during the last 

century. The chemical element osmium (Os, atomic number 76) that like other PGE 

occurs in native alloys of variable composition has a small production (estimated 

as 300 tons/year in 1995) and a limited number of anthropogenic uses (Kabata-

Pendias, 2010). Its industrial application as a main component is still limited to 

specialty alloys and microelectronics and it can occur as impurity in other high-

PGE products. Several studies reported anthropogenic Os in estuarine samples and 

coastal sediments (Williams & Turekian, 2002; Turekian et al., 2007), lakes (Rauch et 

al., 2004), atmospheric precipitation (Chen et al., 2009) and urban airborne particles 

(Rauch et al., 2005). The Os isotopic composition is a tracer of crustal and mantle 

inputs to seawater and sediments and the distinctive characteristics of the Re-Os 

isotopic system can lead to decipher the principal sources of anthropogenic Os 

contamination (Esser & Turekian, 1993; Sharma et al., 1997; Meisel et al., 2001; 

Reisberg & Meisel, 2002). In fact, the radiogenic part of Os isotope 187 is derived 

from radioactive decay of 187Re (t1/2 ca 42 billion years). As Os is highly siderophile 

and chalcophile and compatible element it is associated with metal and sulphide 

minerals. Also, during melting processes involving the Earth’s mantle Os hardly 

partitions into the melt (e.g., basalts) and remains in the mantle. As such, the Re/Os 
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ratio is highly variable with high values in crustal rocks leading also to highly 

variable radiogenic 187Os contributions. This information can be used to identify 

sources contributing to the total Os budget of samples. The 187Os/188Os of the 

primitive upper mantle, i.e. a hypothetical upper mantle that has never 

experienced a melt enrichment or depletion, is estimated to be 0.1296 (Meisel et al., 

2001) while sediments derived from continental crust have average 187Os/188Os 

ratios roughly around unity with exceptions having ratios higher than 10. Most 

samples taken from anthropogenic sources are expected to reveal 187Os/188Os 

somewhere in between the two end-members. Natural sources of Os to the 

atmosphere include continental mineral aerosols (187Os/188Os = 1.26), cosmic dust 

(187Os/188Os = 0.13) and volcanic aerosols (187Os/188Os = 0.14), while potential 

anthropogenic sources are combustion of fossil fuels (187Os/188Os = 1.2-13.7), 

smelting of PGE, chromium and base metals sulphide ores (187Os/188Os = 0.12-0.20), 

and automobile catalytic converters (187Os/188Os = 0.1-0.2) (McCandless & Ruiz, 

1991; Esser & Turekian, 1993; Sharma et al., 1997; Poirier & Gariépy, 2005; Chen et 

al., 2009). Isotopic ratios of 187Os/188Os close to 1 are considered as “radiogenic”, 

whereas those near 0.1 as “unradiogenic” and, generally, higher Os concentrations 

and lower 187Os/188Os ratios have been linked to anthropogenic sources in urban 

areas. It has been supposed that the usage of automobile catalytic converters could 

provide the principal source of globally dispersed Os (Chen et al., 2009). Moreover, 

processing waste from industrial activities (Williams & Turekian, 2002) and 

metallurgical smelters (Rodushkin et al., 2007; Gogot et al., 2015) are considered as 

additional sources of anthropogenic Os. Since Os is widely used as fixative and 

stain in the preparation of tissue thin sections for optical and electron microscopy 

(Esser & Turekian, 1993) and high Os levels near hospital and medical research 

centres are reported, several authors infer the Os contamination is strongly linked 

to the discharge and incineration of biomedical waste (Helz et al., 2000; Williams & 
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Turekian, 2002; Turekian et al., 2007). The waste incineration process, which 

typically works at temperature higher than 850 °C, might enhance Os 

contamination, like other PGE (Lattermoser, 1994; Jackson et al., 2010), and can be 

effective in promoting Os oxidation into its volatile form (boiling point of OsO4 

ca.110 °C).  

The Os easily reacts with oxygen gaining various oxidation states and, as a 

consequence, it may pollute any environmental sink. However, there is not much 

information on Os contamination mainly due to analytical difficulties even in the 

vicinity of expected sources of Os pollution. Given this fact and also the toxicity 

risk for humans and animals associated to all Os compounds (Farago & Parsons, 

1994; Kabata-Pendias, 2010), a better knowledge of Os signature and OsO4 release 

from incineration facilities is required. The present study aims to 1) analyse 

samples of Municipal Solid Waste Incineration (MSWI) solid by-products and 2) 

evaluate the potential Os release associated to MSWI plants. The MSWI system is 

one of the main options for the management and minimisation of a wide range of 

waste materials, from household and gully waste to industrial and hospital waste 

(Chandler et al., 1997). Waste incinerators are common in industrialised countries 

and generate huge amounts of solid and gaseous output flows, which represent 

concern as they contain heavy metals such as Cr, Pb, Mo and Sb (Lam et al., 2010; 

Funari et al., 2015; 2016), and also release dust pollutants into the atmosphere. 

Atmospheric pollution is directly associated with the emission of fine particulate 

matter via roof vents, whereas the storage of solid materials (namely fly ash and 

bottom ash materials) are mainly in charge of heavy metals contamination. Bag 

filters, chemical additives and specific devices for air pollution control such as SCR 

(Selective Catalytic Reduction) are addressed toward reduction of environmental 

issues related to MSWI outputs. The Os concentrations have never been detected 

neither in solids nor in gases and also its isotopic signatures in MSWI residues are 
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virtually unknown. As a fact, end-of-life products that contain Os in variable 

amount such as specialty alloys, medical waste and the unrecycled fraction of 

spent car catalysts, might be processed into incinerators and intimately modified 

by combustion. This in turn might lead to an increased bioavailability of elemental 

Os and also its volatile form. The capability of OsO4 to be reduced quickly once 

released in atmosphere rules out a very disperse contamination, but the toxicity of 

exposure, which causes lung congestion, skin and eye damage, and chronic 

diseases to marrow, liver and kidneys (Farago & Parsons, 1994; Kabata-Pendias, 

2010), might be locally intensified. To the best of our knowledge, this study is the 

first attempt in quantifying the impact of MSWI plants and their solid by-products 

on the anthropogenic Os budget. 

2. Experimental 

2.1 Materials 

Bottom ashes and fly ashes from four MSWI plants were collected; the 

selected incinerators, named A, B, C and D, are situated in four different 

municipalities of northern Italy. The municipalities where the MSWI plants are 

located have a population size ranging from 3 to 7  105 inhabitants, distributed in a 

similar area of about 2,500 square kilometres with the exception of MSWI-D area 

that is three times smaller than others. According to the population density, the 

investigated MSWI plants can be listed in increasing order as MSWI-C, MSWI-A, 

MSWI-B and MSWI-D. The MSWI thermo-recycling technology, which is adopted 

in all the four incinerators, produces an average electricity of 85,000 MW/h per year 

and the overall process complies the local regulation for final waste production. 

Each MSWI system consists of two lines that drive the collected waste into a grate-
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furnace that operates at temperatures between 850 and 1100 °C. The solid waste 

input consists of 90% household waste and 10% of special waste, i.e. processing 

waste from ceramics and metallurgy, automobile shredder residues, hospital and 

pharmaceutical waste. Incinerator C collects also hospital and pharmaceutical 

waste, representing 1% of the total waste input. For other incinerators this is not 

declared, but there is the possibility that hospital and pharmaceutical waste end up 

in the category of special waste. The amount of sewage sludge fraction within the 

feedstock material is nearly negligible as all the municipalities refer to other 

facilities for the treatment of sewage sludge. The separate collection of waste from 

electric and electronic equipments (WEEE) and spent catalysts, among the others, 

is adopted in the region. However, we cannot exclude any contamination from 

such kinds of waste because of the likelihood of a weak upstream separation. 

The main output products of MSWI facilities are bottom ashes (BA) and fly 

ashes (FA). After burning and quenching, the BA are a sandy and pebbly material 

stored in outdoor heaps. The BA samples were collected in all the investigated 

MSWI. Conversely, the FA are the finest material from burner and boiler and 

undergo several treatment steps, e.g. dry/wet scrubbers are used to spray fine 

dispersed slurry or lime powder in order to neutralise the acid gases (Chandler et 

al., 1997), within the air pollution control (APC) system before being released in the 

atmosphere. Each specific device/filter retains a residual FA fraction producing 

different kinds of FA. Where it was possible, FA were collected at a first step 

without any treatment (untreated, FAU), after the electrostatic precipitation system 

(FAE) and after chemical bag filters, which involve the use of soda (FAS) or lime 

(FAL) additives. As a matter of fact, the MSWI system consists of a typical 

sequence of treatments for FA which produce in the following order FAU, FAE, 

FAL and FAS (Lam et al., 2010; Funari et al., 2016). However in some case one or 

two treatment steps are missing, as it is in our investigated plants. Generally, the 
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FAS is the last residue before the flux of residual FA (i.e., the fraction not retained 

by filtration) undergoes to the SCR treatment and then to the atmosphere. The 

reader can refer to Figure 1 in Funari et al. (2016), which is also reported in the 

Supplementary Material of Chapter 5, in order to examine concept design, steps of 

processing, temperature profiles and potential sampling points of a fully-equipped 

MSWI system. The BA and FA have been sampled directly to their temporary 

storage site during process activity (in mid-2013). The samples from this study are 

representative of the solid residues produced during the first-half 2013 (see S.1

 Bottom and fly ashes sampling). From each MSWI facility, one or two FA 

output materials were sampled depending on their availability and assuming them 

representative of the corresponding BA output materials. The materials (order of 

tonnes) were blended from a large number of increments and followed by drawing 

a simple random sampling; approximately 7 kg of primary sample taken from each 

sampling point. The sampling procedure for BA and FA followed the approach as 

in Funari et al. (2016) and a detailed description is also reported in the 

supplementary material. All the collected material was oven dried at low 

temperature (40°C) for one week, grounded, homogenised and very fine milled 

(less than 40 µm) with an agate vibratory mill disk. A second drying before the 

measurement procedure was accomplished, being the samples highly sensitive to 

the moisture adsorption. 

Two fly ash reference materials (RM) namely BCR-CRM176 and BCR-

CRM176R, obtained from the Community Bureau of Reference, were also analysed 

with the aim of comparing Os content and 187Os/188Os ratios of more representative 

samples, since large batch of those reference materials have been tested for 

homogeneity (within 5% for certified analytes) by the above mentioned institute. 

These reference materials come from fly ash collected in the electrostatic filter of 

the same Dutch MSWI facility and they represent an aliquot from a 195 kg batch of 
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grinded and homogenised (<105 µm) material. Moreover, the measurements of 

reference materials can prove the variation, if it does exist, of the isotopic signature 

over a 20 years period because in 2007 the BCR-CRM176R has replaced the year 

1987 BCR-CRM176.  

2.2 Methods 

The digestion procedure and the Os determinations of the mass fractions and 

the isotopic composition through isotope dilutions isotope ratio measurements (ID-ICP-

MS) were accomplished at the General and Analytical Chemistry laboratories of the 

Montanuniversität Leoben (Austria) following the procedure outlined in Meisel et 

al. (2001) and using a High Pressure Asher, HPA-S (Anton Paar Instruments, Graz), 

with 7 X 50 ml quartz glass vessels and a single quadrupole ICP-MS in standard 

configuration (7500 Agilent Technologies). About two grams of sample powder 

mass was exactly weighted in a glass vials and spiked with an Os spike solution 

enriched in 190Os. The spike preparation and calibration procedure can be found in 

Meisel et al. (2001). After adding 2 ml of conc. HCl and 5 ml of conc. HNO3 the vials 

were immediately sealed with Teflon tape and a glass lid and heated in the HPA-S, 

by following a setup of heating (at 300 °C and a pressure of ca. 125 bar during three 

hours) and slow cooling down (until room conditions). Upon cooling, the volatile 

OsO4 was sparged directly into the plasma torch with an argon gas flow (Hassler et 

al., 2000). Rinsing in-between each sample was adopted in order to reduce 

uncertainties introduced through instrumental memory. The measurement 

uncertainty, as relative standard deviation (RSD), of the isotope ratio results was 

assessed by replicate determinations of the in house Os isotope standard solution 

(LOsST) and is estimated to be 2 %RSD for 1 ng and up to 10% for 100 pg and less. 

Considering the range of isotopic compositions of the samples this is considered to 
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be fit for the purpose. The acquisition of isotopic species’ counts was followed by 

de-convolutions and corrections off-line. The long term total analytical blanks were 

1 pg and does not contribute significantly to the measurement uncertainty budget. 

After HPA acid digestion some un-dissolved phases are found in the vessels, 

reasonably made of amorphous silicates, hematite or other strongly refractory 

minerals. However, the PGM and associated Os are found in sulphides or 

sulphates either as native form which can be easily dissolved with the aid of HPA 

acid digestion thus making accessible the noble metals chemical reactions and 

dissolution. Moreover, in the case scenario of incomplete Os liberation from the 

residual fraction, the released Os calculated here would be underestimated rather 

than overestimated and the insights from this study would then be even more 

significant. 

The chemical composition was also determined using the Na2O2 sintering 

technique, a method of digestion considered to be capable of complete dissolution 

of the most refractory components known today, coupled with ICP-MS (Meisel et 

al., 2002). Moreover, the major elements composition of unknown samples was 

previously obtained on thin-layer pressed powder pellets in a boric acid binder by 

an X-ray fluorescence spectrometer (XRF, PANalytical), equipped with SuperQ 

software, at the BiGeA department (Geology Division), University of Bologna. The 

accuracy of data was assessed by analysing both industrial and matrix matched 

geological reference materials; uncertainties were as low as 5%. The chemical 

composition of selected MSWI samples can be found in the S.2 The chemical 

composition of selected MSWI samples. 

Tab. §5-1 The Os content (ng/g) and isotopic ratios of MSWI ashes and fly ashes RM. Where: BA = 

bottom ash; FAU = untreated fly ash; FAE = fly ash from electrostatic precipitator; FAL = lime-

treated fly ash; FAS = soda-treated fly ash. 
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  Os [ng/g] 187Os/188Os RSD 

MSWI-A 
   FAU 0.03 0.489 4.1% 

BA 0.26 0.241 2.7% 
MSWI-B 

   FAE 0.10 0.374 5.4% 
BA 0.11 0.663 2.3% 
MSWI-C 

   FAS 1.65 0.299 0.9% 
FAU 0.18 0.391 13% 
BA 0.56 0.322 1.0% 
MSWI-D 

   FAL 0.08 0.704 6.4% 
FAU 0.03 0.433 4.8% 
BA 0.12 0.372 3.0% 
Reference Materials 

  BCR176 1.04 0.206 0.8% 
BCR176R 0.11 0.504 2.7% 

The relative precision of 187Os/188Os ratios is presented at the 95% confidence level. 

3. Results and discussion 

3.1 Unknown MSWI ashes 

In this section we will focus on the unknown MSWI ashes coming from the 

four investigated incinerators. The XRF and ICP-MS analyses of unknown MSWI 

ashes indicate that all samples consist of silicates, calcium silicates and alumina-

silicates. The MSWI BA contains significant amount of iron and aluminium oxides 

mass fraction due to metallic scraps and metal sheets, while MSWI FA has variable 

Ca-, Na-, K-, Mg-oxides mass fraction likely due to variable composition of the 

carrier gas and chemical additives of the bag filters. Generally, major and trace 

elements composition are within the range of values quoted in literature (Funari et 

al., 2015). The PGE contents are below the µg/g level. Reliable PGE determinations 

of MSWI solid matrices are hampered by isobaric interferences (e.g. those of Cu, 
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Mo, Sn, etc.) and require detailed investigation by means of a comparison between 

different independent techniques. 

 

Fig. §5-1 Inverse of Os content (expressed in ng/g) and isotopic signature of BA and FA from MSWI 

plants A, B, C and D. Fly ash RM are also reported. Abbreviations for the FA types are: FAU = 

untreated fly ash; FAE = fly ash from electrostatic precipitator; FAL = lime-treated fly ash; FAS 

= soda-treated fly ash. Gray arrow points to crustal values. 

Replicates of Os isotopic ratios differ by up 13% and exceed the measurement 

uncertainty of a single measurement, possibly indicating the heterogeneity of 

investigated MSWI ashes linked to the variable input of feedstock materials and a 

random error during sampling from the heaps. The Os isotopic signatures of 

unknown MSWI ashes range from 0.24 to 0.70 (TTaabb..  §§55--11; FFiigg..  §§55--11) and actually 

both BA and FA 187Os/188Os ratios ranges are similar (between 0.24 - 0.66 and 0.30 - 

0.70, respectively). These figures are inconsistent with 187Os/188Os ratios of typical 

PGE ore deposits (e.g., 0.15 - 0.20 for ultramafic PGE-bearing rocks in Bushveld 

Complex; McCandles & Ruiz, 1991), while they fall within the widest range of 

natural signatures (from 0.1 to 2.6; Esser & Turekian, 1993). The 187Os/188Os ratios 

range of MSWI ashes is wider than those of PGE ore deposits, disclosing a 

significant variability of Os sources (FFiigg..  §§55--22). However, the measured ratio of 

FAL lies out the 95% confidence interval of the cumulative probability plot of 



193 

 

187Os/188Os data and if we exclude the measured values of FAL the Os isotopic 

signature of the other samples shows a standard deviation (SD) of 0.12. The 

relatively smaller variation of Os isotopic composition of FA (SD=0.14) with respect 

to BA (SD=0.18) might indicate a similar process of fractionation and mass transfer 

from BA to FA during combustion.  

The Os concentrations vary from 0.03 ng/g to 1.7 ng/g and are higher than 

expected considering that MSWI residues are found to contain very low amounts 

of other PGE (e.g., 60 ng/g Pt and 0.09 ng/g Rh in Morf et al., 2013). Generally, the 

Os contents of unknown ash samples from the selected MSWI are dissimilar 

reasonably due to a variable feedstock input. The highest overall Os concentrations 

of MSWI-C products might derive from the hospital wastes that are clearly 

acknowledged in the owners’ report of that incinerator, unlike the others. 

According to the national recommendation, the input and output mass fractions 

have to be known with good accuracy but a quality control on feedstock materials 

is not required. Therefore we cannot exclude that the large category of special 

waste, declared to be burned in the other incinerators, includes a fraction of 

hospital/pharmaceutical waste. Generally, the proportion of each subcategory of 

special waste collected in MSWI plants is unknown. 

Bottom ash samples (including BA from MSWI-C) have an Os mass fraction 

that ranges almost in the same order of magnitude whereas FA samples show a 

pronounced variability of Os mass fraction between each other (TTaabb..  §§55--11, FFiigg..  

§§55--11). Such variability is likely ascribable to different treatments that the FA 

undergoes. Two samples of untreated FA from selected MSWI facilities, i.e. FAU 

from MSWI-A and MSWI-D, are strongly depleted in Os concentration respect 

with the others. While the most of the samples follow a mantle-crust mixing trend, 

the FAUs lie outside of such distinct range. This evidence contradicts the notion 

that higher Os concentrations and lower 187Os/188Os ratios are linked to 
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anthropogenic Os sources. The combustion and filtration processes might conceal 

the original Os yields through leaching of Os during transport of particles or 

dilution with low-Os material. 

Presumably the use of specific devices for the FA purification influences the 

Os yields. The processes of filtration with chemical additives or electrostatic 

precipitator seem to inhibit the Os volatility as one could argue by comparing Os 

yields of FAE, FAL and FAS with those of FAU. We suspect that Os can condensate 

in sulphur-complexes or alkali-salts within the APC system while the temperature 

is lowered (from 1000°C of the furnace to 150°C in the APC; Chandler et al., 1997) 

and the content of chlorides and sulphides relatively increases. This hypothesis 

seems reasonable since the Os mass fraction shows a good negative correlation 

with CaO mass fraction (R2= 0.79; the most significant among major elements) and 

a positive correlation with Na2O (R2= 0.71). The lower the Os mass fraction the 

higher the calcium oxides mass fractions might indicate that in a high-Ca system 

the available sulphur will form bonds with calcium to the detriment of Os content. 

The measured concentration from FAS is up to two orders of magnitude higher 

than the other samples. These preliminary results should trigger matter of concern 

when any recovery and recycling strategies from FAS residues are planned. The 

FAS solid fraction is recovered after Na-treatment and prior to the final selective 

catalytic reduction (SCR system) of nitrogen oxides. It is well known that the free 

OsO4 can be dissolved at this stage in aqueous alkali to give Na2[OsO2(OH)4] but 

also can be reduced to H2OsCl6 or OsCl2O2(NH3)4 in presence of hydrochloric acid 

or NH4Cl, respectively. Both these options for Os precipitation might be fulfilled in 

the APC system at this stage and might explain the relatively high concentration of 

Os found in the FAS residue. 
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Fig. §5-2 Comparison of Os concentration and Os isotope ratios ranges between MSWI ashes and 

other recognised sources, both natural and manmade. The grey boxes are concentrations range, 

whereas the outlined boxes show isotopic variations. Black and white arrows mean that values 

exceed the limit of representation for isotopic and concentration ranges, respectively. Data 

references are: precipitation, seawater, rivers, fossil fuels, base-metal sulphide ores, chromites and 

PGE ores (Chen et al., 2009 and references therein), airborne particles (Rauch et al., 2005), urban 

sediments (Rauch et al., 2004), car catalysts (Poirier & Gariépy, 2005), hospital contamination 

(inferred contamination of sediments by biomedical activities; Helz et al., 2000), sewage sludge ash 

(Jackson et al., 2010). 

To date, the overall range of Os composition and isotopic ratios determined 

in MSWI ash samples do not resemble any other known source, either natural or 

anthropogenic, but rather look like a mixture of carbon-related products (i.e. fossil 

fuels, humus, and leaves), spent automobile catalysts, biomedical waste and 

smelting of PGE-bearing ores (FFiigg..  §§55--22), readily burned in incinerator systems. Car 

catalysts, possibly one of the most important Os sources to end up into incinerator 

as unsorted waste, show a composition range from 0.006 to 0.2 ng/g and isotopic 
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ratios close to 0.1-0.2 (Poirier & Gariépy, 2005). Conversely, since high 187Os/188Os 

ratios coupled with low Os concentrations are found in several samples, 

medical/hospital waste might be one of the chief Os sources, as Helz et al. (2000) 

suggested. Jackson et al. (2010), in their paper on the PGE determination in 

incinerated sewage sludge from UK, report Os concentrations from 5 to 12 ng/g, 

being 2 ng/g the lower detection limit, and they pointed out that the overall PGE 

abundance is higher in incinerated ash than in the original waste. This may 

implicate that the burning process can play an important role in Os concentrations 

upgrading.  

3.2 MSWI ashes reference materials 

The analysis of BCR-CRM reference materials shows relatively high Os 

concentrations and radiogenic 187Os/188Os ratios (TTaabb..  §§55--11). The results are 

consistent with those of unknown MSWI ashes. Although the BCR-CRM reference 

materials are fly ashes from electrostatic precipitator of the same MSWI facility, 

they are notably different from each other. This might indicate that the feedstock 

material has changed considerably over time; in fact the old and new BCR-CRM 

reference materials were produced in 1987 and 2007, respectively. The BCR-

CRM176 is the only material that lies within the area of typical PGE ore values (FFiigg..  

§§55--11). Conversely, the source material of the BCR-CRM176R is characterised by 

higher 187Os/188Os ratio than the material used to produce BCR-CRM176. The 

reasons for such difference between the two RM can be, for example: 1) a poor 

recycling efficiency of PGE in the past, 2) the earlier high-PGE products such as 

bio-medical applications and car catalysts (from 1986 in Europe) were more Os-

rich because of an inferior purification/refinement of the raw material, and 3) the 

processing techniques of PGE-bearing ores were probably less efficient.  
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The Os concentration and isotopic signature of the new reference material, 

BCR-CRM176R, are similar to those of the unknown FA sample from the 

electrostatic precipitator (FAE). A comprehensive dataset of observation is needed 

to assess the spatial independence of the Os envelope among different MSWI ashes 

of today, but the similarity between BCR-CRM176R and FAE might suggest that 

the feedstock material is rather uniform, as a consequence of massive technological 

advances on PGE production and refinement. 

Since the geochemical behaviour of Os can be chalcophile and strongly 

associated with organic-rich systems (Reisberg & Meisel, 2002), we have further 

undertaken the Os measurements of NIST1633a reference material to assess 

whether coal fly ashes host significant amounts of Os and distinct isotopic 

signatures. The Os concentrations of the coal ash RM are below the detection limit 

(as low as 20 pg) under our instrument condition. This agrees with the available 

data for the coal fly ash reference material NIST-SRM1633b (Os=0.005-0.02 ng/g 

and 187Os/188Os=5.018; Rodushkin et al., 2007). 

4. Environmental Impact Assessment of MSWI 

4.1 Assessment of osmium volatility and partitioning 

Modern MSWI grate-furnaces approximately operate at temperature higher 

than 850 °C and the combustion under these conditions would reasonably enhance 

the oxidation of Os, of indistinct natural and anthropogenic origin,  into its gaseous 

form. The origin of volatile Os coming from natural sources cannot be positively 

assessed, but for its industrial applications, e.g. in staining tissues or carbon 

materials for optical and electron microscopy, chemical syntheses, etc., Os is 

typically employed as powered or spongy Os tetraoxide, which is known to have a 
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slow volatility even at room temperatures. In addition, a 75-95% depletion in the 

initial Os yield of car catalysts is observed after heating at 400°C (Poirier & 

Gariépy, 2005). Thus we suspect that significant amounts of Os would be lost from 

the PGE- or Os-bearing waste and partitioned into MSWI outputs. The Os contents 

resulted in BA samples can be due to one of following factors or a combination of 

them: 1) refractory Os-alloys or some natural Os sources are hardly volatilised, 2) 

unburnt materials (low temperature areas within the furnace may lead to 

incomplete combustion), and 3) the volatilised Os is not completely transferred 

into the FA because of the turbulent air flow, which is sparged to allow the 

complete burning of lightest particles (i.e. paper, wood and plastic), and some Os 

condensed in BA. The volatile Os that flows through the tubing of the APC system 

is transferred in different FA residues. A good understanding of the Os 

transferring and stabilising among the FA kinds is hampered by several factors, 

e.g. the carrier gas composition, the inner working of filtering devices and the 

cooling at each stage (ca 150 °C average temperature within the APC system).  

The results here produced allow pointing out that MSWI ashes host 

considerable amount of Os and its release and the kinetics of its 

oxidation/volatilisation should be carefully taken into account when further 

treatments of incinerated ashes are planned. The majority of post-treatment 

procedures for stabilisation, recycling or metal recovery require temperature 

higher than 110°C and over that temperature OsO4 becomes gaseous. 

4.2 MSWI ashes, landfill and smokestacks 

The above results (TTaabb..  §§55--11), which provide the whole spectra of potential 

MSWI outputs but refer to representative samples of the first-half year of waste 

production, and the mass balance of investigated MSWI systems (TTaabb..  §§55--22) allow 
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us to estimate the annual quantity of Os in solid residues from each MSWI plant. 

The annual amount of Os in BA outputs is 8.3, 5.1, 13, and 4.1 grams per year for 

incinerator A, B, C and D, respectively, while that in FA outputs range between a 

minimum of 0.08 g/a in FAU from MSWI-D and a maximum of 3.0 g/a in FAS from 

MSWI-C. These figures reveal that the size of the facility and the relative 

population density is not directly related to Os outputs, being the MSWI-C 

residues the highest in Os yields but the lowest in final solid outputs. Taking the 

average of MSWI total output (4.32∙104 t/a) and the average Os concentration of 

0.31 ng/g, we obtain 13.4 g/a Os that can be indicative of Os annual flow from solid 

ashes of a typical MSWI system.  

Tab. §5-2 Mass balance of the selected MSWI systems. Figures refer to the owners’ report and are 

expressed in kilo tonnes per year. The hyphen means residue not produced or unworkable 

sampling. It can be noted that the sum of BA and FA output is not equal to total output and 

the lack in balance represents the mass fraction of the recovered iron from BA (low field 

magnetic separation after quenching) and sewage sludge. 

 
Pop. 

Densitya 
Total 
input 

Total 
output 

BA output 
FA output 

  FAU FAE FAL FAS 

MSWI-A 166 140 41 32 3.2 - - - 

MSWI-B 259 200 60 48 - 3.8 - - 

MSWI-C 116 110 30 23 2.5 - - 1.8 

MSWI-D 393 140 42 35 3.0 - 2.0 - 
                 

a: Data from National Institute of Statistics (ISTAT) 

This translates approximately in 675 g of relatively non volatile Os 

discharged every year in the environment by a medium size country running 50 

MSWI plants. The four selected incinerators are assumed to be representative of an 

average plant in order to give an order of magnitude of the expected Os yield and 
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release, but Os concentrations and behaviour are influenced by several variables 

and further studies are needed in order to compare different regions. 

The Os loss from MSWI landfill by evaporation in tetraoxides species or 

mobilisation after weathering would be expected. Considering that the natural Os 

input from continental erosion (using Os continental crust average value of 0.030 

ng/g) is estimated to be   800 pg/m2/a (Poirier & Gariépy, 2005) and the Os average 

concentration in MSWI landfill is potentially ten times higher than in continental 

crust, the Os derived from MSWI landfill would have a significant impact in urban 

areas. Os in landfill waste is probably more accessible to leaching, transport etc. 

than Os in the crustal material where it is bound to refractory minerals and alloys. 

Moreover, a fraction of volatile Os can directly spread from MSWI plants hot 

spot. Although further studies in MSWI facility areas are required, some volatilised 

Os is likely introduced to the atmosphere by smokestacks or can be lost due to an 

irregular insulation of the system itself.  

Bearing in mind the processing steps of the MSWI system (see S.1 Bottom 

and fly ashes sampling), we assume all the Os fluxing through the APC system is 

retained within the FAS residues and the Os yields of each MSWI final product 

maintains the same proportion of those of MSWI-C, i.e. the only plant having FAS. 

Therefore we estimate the Os loss from MSWI systems lacking in Na-additive bag 

filter, further assuming a 100% Os loss in the OsO4 species. These hypotheses 

would represent a compromise between the inferred and the real Os loss because it 

has to be considered that unlikely all the Os fixates on FAS residues and there is no 

release through the tubing of the whole system. Being Os from (MSWI-C)FAS three 

times higher than Os from (MSWI-C)BA, the potential Os yields in the other MSWI 

plants (without the last-step of filtration) will range from 0.31 ng/g to 0.77 ng/g. 

Generally, MSWI plants produce 0.7 t of gases and particulate vapour per tonne of 

input waste (Committee for Prevention and Precaution, 2004), which translate, 
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using an average of 1.47∙105  t/a, in 1.03∙105 t/a of gas and particulate vapour. Then 

we obtain a range of between 33 and 78 g of volatile Os per year fluxing from the 

smokestack of a typical MSWI plant, i.e. from 16 to 38 ng Os/m2/a will be 

distributed in a medium size country (using an average area of 360000 km2, 

calculated by dividing the European surface area over the number of EU countries) 

having 50 MSWI facilities. 

The above estimates are based on a 100% volatility of the Os contained 

within the APC system and are thus a maximum range value. However, they 

provide an order of magnitude for emissions from MSWI systems and show how 

significant the impact of their smokestacks and residues on the Os geochemical 

cycle. This line of argument, similar to that undertaken by Poirier and Gariépy 

(2005), facilitates a comparison with the emissions of Os from catalytic converters 

(up to 120 pg Os/m2/a in highly urbanised areas), which are considered one of the 

chief sources of liberated Os. Nevertheless, the predicted Os emissions reported in 

the present work are consistent with recent values calculated by Gogot et al. (2015) 

for an aluminium smelter. It has been suggested that the residence time of OsO4 in 

the atmosphere can be very short and volatile Os might have only a local impact. 

The Os is probably reduced to non-volatile or metal form that can subsequently be 

mobilized by weathering and accumulated into the environmental records. This 

consequently would add with the Os yields from MSWI landfill. Therefore, MSWI 

outputs are strong candidates to account for the higher Os concentrations coupled 

with variable 187Os/188Os ratios encountered in urban sedimentary records and the 

potential Os release from MSWI landfill and smokestack can adulterate the 

measured values in urban areas. 
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5. Conclusion 

We measured osmium concentrations and isotopic composition of MSWI 

solid by-products, namely bottom and fly ashes. The study of isotopic signatures 

suggested a mixture of natural and anthropogenic contribution on the MSWI 

feedstock material. The assessment of Os-related impact, though the estimate is 

based on the first-half year of waste production for northern Italy, revealed up to 

13.4 g/a Os within the stream of final by-products and up to 78 g/a of volatile Os 

emitted from the smokestack of a sole MSWI plant. Therefore, the incineration of 

unsorted waste and the landfill and reuse of MSWI residues might be a significant 

source of anthropogenic Os on the continental scale, considering that on average a 

MSWI plant burns thousands of tonnes of waste per year and MSWI facilities are 

actually widespread in industrialised and developing countries. Despite the 

analytical challenges in Os determination and the lack of accurate information 

about the input waste fractions, this work demonstrates the MSWI contribution to 

the anthropogenic Os budget should not be overlooked. This work provides a first 

attempt on the impact assessment of MSWI output products to the Os budget and 

highlights the need of further investigations on areas close to MSWI plants and 

MSWI ashes as well as more efforts from the companies and local communities to 

improve the quality on feedstock material. Future research directions could 

include the study of seasonal and geographical variations of Os levels and 

potential epidemiologic implications. 
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Supplementary Material of Chapter 5 

S.1 Bottom and fly ashes sampling 

The main outputs of the incineration process are bottom (BA) and fly ashes 

(FA). The concept design of a typical fully-equipped MSWI system is reported in 

Fig. S.1 to which the reader can refer to identify main processes, temperature 

profiles and all the potential sampling points. 

 

Fig. S.1 Schematic picture of the incinerator system with its relevant processes, including sampling 

points (red dots) and temperature (T) profile (Funari et al. 2016). Acronyms used: BA=bottom 

ash; FAE=fly ash from ESP; FAL=fly ash from bag filter with Ca-additive; FAS=fly ash from 

bag filter with Na-additive; FAU=untreated fly ash; ESP=electrostatic precipitator. 

We arranged the sampling in end-May during a typical working day of 

MSWI system just before the end-products were about to leave the plant for the 

first time of the year 2013. As a fact, the maintenance service of MSWI plants is 
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regularly carried out during last two weeks of December, whereas from January to 

May and from June to December there are the first and second rounds of end-

products production, respectively. Therefore, the samples from this study are 

representative of the end-products production of first-half year 2013. The sampling 

strategy followed a stratified/simple random sampling as outlined in the Italian 

technical standard (UNI 10802, 2013) and two steps of quartering on site and in the 

laboratory, respectively. The procedure was slightly different for the sampling of 

BA and FA materials due to their different storage status: 

BA) Belt conveyors transport the BA to a temporary outdoor storage site 

where they are piled up. We sampled the BA heap when the capacity limit of the 

storage site was reached. Directly from the BA storage site, the heap of several tons 

of BA material was first sampled following the stratified simple random sampling 

method as used in Funari et al. (2015). Three subsamples from the heap were 

blended from a large number of increments and roughly divided on site by the 

quartering method through a loader machine. From the last batch (order of 

hundreds of kilograms), about 10 kg primary sample was taken by a simple 

random sampling. In the lab, the primary samples was thoroughly mixed on a 

hard, clean surface and split in four portions, the opposite portions were mixed 

together and again split for three times, to ensure representative sampling. We 

collected three BA samples from each incinerator. These three samples, to be 

intended as exclusive of a MSWI plant, have been exactly portioned to achieve the 

needed sample mass for Os measurements. Such mass, in turn, is the 

representative sample of BA from one MSWI plant.  

FA) In each incinerator plants, FA from different devices as in Fig. S.1 are 

stored in big bags, which contain approximately 1 tonne of material when 

completely filled. The sampling took place when the big bags were full and about 

to leave the plant. Approximately 5 kg FA primary sample was collected with a 
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simple random sampling from the FA material stored in big bags, previously 

blended from a large number of increments and quartered on site in order to reach 

representativeness. The primary sample of each FA was further subdivided by 

means of the quartering method in the laboratory. One sample of FA was collected 

from each available sample point and was used for Os measurements.  
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S.2 The chemical composition of selected MSWI samples 

Tab. T.1 Major and trace elements composition of MSWI ashes, by XRF. The percentages of loss on 

ignition (LOI) are also reported. 

Sample FAU-A BA-A FAE-B BA-B FAS-C FAU-C BA-C FAL-D FAU-D BA-D 

(g/100g) 
          Al2O3 5.96 9.31 5.24 6.82 0.34 5.20 10.2 2.28 7.25 9.63 

CaO 27.0 26.0 18.5 35.8 1.92 24.9 20.7 30.5 29.9 27.9 

Fe2O3 1.68 6.91 1.98 4.77 0.23 2.30 9.64 0.97 1.87 5.89 

K2O 5.13 1.11 9.12 0.84 2.28 4.31 1.50 3.21 2.19 0.43 

MgO 1.92 2.02 1.40 2.91 0.56 5.39 3.11 0.98 2.08 1.47 

MnO 0.06 0.08 0.05 0.12 0.01 0.07 0.13 0.03 0.08 0.08 

P2O5 1.52 1.53 1.31 1.43 0.14 1.38 2.81 0.57 1.73 1.59 

SiO2 14.0 29.3 14.0 21.1 1.40 13.9 37.3 5.06 16.3 19.4 

TiO2 1.53 1.19 1.17 1.14 0.09 1.31 1.21 0.57 1.70 0.84 

Na2O 5.83 1.70 23.9 1.72 53.7 7.27 2.37 4.07 3.81 1.64 

Cl 12.5 5.20 1.11 11.0 9.90 8.87 3.01 3.56 14.1 13.6 

LOI % 22.7 15.3 23.6 11.7 30.3 25.0 10.6 48.9 18.6 17.8 

(mg/kg) 
          As 21 8 34 3 10 21 8 11 9 3 

Ba 852 1109 855 707 116 1088 1478 476 1064 721 

Co 21 23 23 20 2 21 39 9 17 13 

Cr 941 910 590 324 53 328 703 238 989 163 

Cu 910 3904 1286 1740 670 993 3222 824 499 1477 

Ga 8 9 11 8 3 8 11 4 7 3 

Mo 18 15 45 9 10 23 21 37 22 8 

Nb 11 9 22 7 1 10 14 4 13 4 

Ni 76 233 292 81 18 95 306 56 81 59 

Rb 106 28 177 23 54 96 40 68 44 11 

Sn 665 233 1476 198 588 760 232 506 262 135 

Sr 463 454 316 419 37 394 475 234 553 327 

Y 10 11 9 14 1 10 16 9 12 8 

Zn 11991 3642 24281 2251 9756 14834 3183 8193 4341 1582 
BA = bottom ash; FAU = untreated fly ash; FAE = fly ash from electrostatic precipitator; FAL = lime-treated fly ash; FAS = 

soda-treated fly ash. After the descriptive acronyms of MSWI ashes, letters A, B, C and D represent the investigated 

MSWI plants, as used in the text. 
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Chapter 6

 

Conclusions and future research directions 
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1. Conclusions 

Both pure and applied research ventures play fundamental roles in 

providing the techniques to manage raw material production in sustainable 

manner. This approach can lead towards efficient ore mining also from 

anthropogenic waste streams. The growing demand and increasing market prices 

of critical raw materials (i.e., those of crucial importance for the technological 

development) pushes to invest in anthroposphere mining. 

In the present thesis I applied basic principles of the Earth Sciences in order 

to assess the geochemical characteristics, resources potential and environmental 

impact of municipal solid waste incinerators (MSWI) residues, with final aim of 

understanding their potential as urban ore deposit. Such urban repository is 

generally poorly explored for critical raw materials, despite MSWI residues 

represent one of the fastest growing waste streams. This drove the research project 

to explore a range of residues from Italian MSWI facilities. 

The main conclusions of the present thesis are hereafter listed according the 

theoretical stages of the urban mining approach: geochemical characterisation, 

evaluation/prospecting, upgrading/recovery, environmental issues. 

1.2 Geochemical characterisation 

The MSWI bottom and fly ashes contains significant amount of critical raw 

materials and other ore metals such as the critical elements Mg (30 g/kg), Cr and Sb 

(1-2 g/kg), and the other elements of economic interest Al (>50 g/kg), Cu and Zn (10 

g/kg). Concerning the total content of rare earth elements (∑REE), bottom and fly 

ashes have an average concentration of 104 and 54 mg/kg ∑REE, respectively. 

Volatile elements (e.g., Sb, Zn, Cd) concentrations are higher in MSWI fly ash 
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rather than in bottom ash, whereas other elements mass fractions preferably 

partition in MSWI bottom ash. Elements like Ag, Sb, Ce, La, Nb, Ni, and V are 

enriched in the fine-grained fraction of the MSWI residues, whereas Gd, Cr, Sc, W 

and Y partition into the coarser fraction. 

To the best of our knowledge, other characterisation analyses are performed 

for the first time during this work: the analysis of Os concentrations and 187Os/188Os 

isotopic ratios.  

The Os concentrations of the investigated samples vary from 0.03 ng/g to 1.7 

ng/g and are higher than expected considering literature data on other PGE 

concentrations from MSWI. The cycling of Os in the surface environments is 

limited in importance, but increased Os concentrations raise concern about the 

potential environmental risk. The study of Os isotopic ratios (samples range from 

0.24 to 0.70) and Os concentrations suggested the resulting Os signatures are a 

mixture of natural and anthropogenic contributions in the MSWI feedstock 

material. The estimated Os annual flow from MSWI solid residues is 13.4 g/a for a 

single incinerator. 

1.3 Resource evaluation and prospecting 

The present work suggests MSWI urban ore are comparable with a low-

grade natural ore, indicating that the exploration and prospecting of anthropogenic 

waste should not be overlooked. In addition, the MSWI urban ores have many 

advantages: 1) they are already in granular form that allows overcoming 

constraints of expensive drilling/crushing operations; 2) they represent a 

continuous flow of material rather than the limited volumes of natural ores; 3) the 

hypothetical treatment of these materials can reduce their environmental impact 

rather than produce new impacts (e.g., the associated gangue material can be used 
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in civil engineering applications). In this study, useful tools for MSWI residues 

prospecting were successfully used/devised. The mass flow analysis has been used 

for the evaluation of critical and valuable elements flow within the MSWI output 

materials. The results pointed out that the MSWI residues represent a low-

concentration but high-flow streams of ore metals. According to the mass flow 

analysis applied to a MSWI plant, the expected flows of Mg, Co, Cr, Sb (critical 

element), Al, Cu, Mn, Ni, V, Zn (elements of economic interest) are, conservatively, 

in the order of 104-103 kg/a, while 102-101 kg/a for the precious metals, Au and Ag, 

and the REE. The study of transfer coefficients revealed MSWI fly ashes can be a 

promising target for the recovery of, for example, Sb and Zn, while MSWI bottom 

ashes can be treated for the recovery of the critical elements Mg, Co, and Cr. Also, 

the finest fraction of MSWI bottom ashes can be a good choice for critical elements 

recovery. I suggested other strategic tools (correlations between REE and major 

elements or magnetic susceptibility, pricing influence/enrichment factor) that 

might help during prospecting of MSWI residues. The P2O5 and Al2O3 mass 

fractions and the mass specific magnetic susceptibility are reliable indicators of the 

REE occurrence within MSWI residues. In particular, the MSWI residues show a 

distinct magnetic susceptibility signature, different from any geological materials. 

The investigated magnetic parameter helps distinguishing bottom from fly ash, 

and even among different kinds of treated fly ash. Both chemical (major elements) 

and magnetic measurements can be performed quickly, with low costs and on-site 

by means of portable analyzers. An empirical parameter that considers both 

element partitioning and relative abundance in ores (enrichment factor, EF) and 

market price (pricing influence factor, PIF), pointed out that MSWI fly ashes 

represent the most promising target for future recovery of the REE, especially Tb, 

Ho, Yb, and Eu. This, in turn, might help the decision-making authorities 

regarding the management of these residues. 
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Overall, the prospecting stage benefited from the integration of magnetic, 

chemical, and statistical methods, leading to a better assessment of secondary raw 

materials and also of hazardous substances. 

1.4 Upgrading and recovery  

The study of upgrading/recovery efficiency was accomplished by applying 

and testing several strategies. A separation strategy, deriving from natural sorting 

of bottom ash heaps, can increase the relative recovery efficiency up to 83% for 

critical elements. It is simple, cost-effective and easy to implement at the plant 

scale. This separation process can be actually assimilated to a sampling strategy 

that might lead to the identification an upgraded starting material for later 

treatments. 

This work confirms that bio-hydrometallurgical routes are highly suitable for 

the treatment of complex and/or low grade ores, such as waste streams. Both 

sulphuric acid leaching and bioleaching of fly ash sample from MSWI resulted in 

good recovery performances. Comparable removals are calculated for Mg and Zn 

(>90%), Al and Mn (>85%), Cr (~65%), Ga (~60%), and Ce (~50%). On average, the 

chemical leaching performed better than bioleaching with the highest removals for 

Cu (95%), Fe (91%), and Ni (93%). Bioleaching showed satisfactory yields for the 

critical elements Ce, Co, La, Nd, Sb and for the ore metals, Zn and Pb. Bioleaching 

has the advantage of an improved selectivity especially for toxic elements and low 

removal of un-necessary element (e.g., Si and Ti). In addition, the bio-produced 

H2SO4 favourably impacts on the process economics. Valuable metals yields can be 

improved by controlled physical-mechanical methods (e.g., crushing, size 

separation) and finally utilising fine-tuned hydrometallurgical processes. 
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1.5 Environmental issues 

In the next years growing MSWI streams will continue to flow and cause 

severe pollution into environmental sinks. MSWI bottom and fly ashes contain 

high levels of hazardous substances; especially the latter are enriched with mobile 

harmful elements such as Pb, Cd, and Mo. The MSWI bottom and fly ashes 

constitute an environmental problem that can be faced by the urban mining 

concept. Our point of view is that the environmental sustainability matches the 

urban mining concept and turning waste into resources means also 

decontamination. Bio-hydrometallurgical processes are most affordable as they 

often show high efficiency with low energy consumption with respect to physical 

methods. However, final residues deriving from the two methods under the 

experimental conditions used in this work (leaching time, temperature, and acid 

composition) cannot be reused as construction material and need further 

processing for landfilling as non-hazardous or inert waste status. According to the 

guidance levels published by BAFU (Federal Office for the Environment, 

Switzerland) for pulverised coal ash and blast furnace ash, a further removal of 

Zn, Cr, Pb, and Sb is needed prior to final disposal of the studied treated residues. 

Nonetheless, during bioleaching the selected bacteria mixture allowed to halve the 

use of manually added acid (through the bio-production of sulphuric acid from 

sulphur) and demonstrated potential for improvements. Highly selective metal-

microbe interactions offer the possibility to combine decontamination with 

enhanced resource recovery. 

Osmium measurements, which were not straightforward due to analytical 

challenges, showed increased Os levels in MSWI residues. The assessment of Os-

related impact revealed up to 13.4 g/a Os within the stream of MSWI final by-

products. These Os quantities get lost in landfill where anthropogenic Os (e.g., 
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from end-of-life PGE applications) is probably more accessible to weathering and 

transport than Os in the geological records (e.g., refractory minerals and alloys). 

Furthermore, we estimated up to 78 g/a of volatile Os emitted from the 

smokestack of a sole MSWI plant. Considering a medium size country having 50 

MSWI facilities, the estimate of Os release from MSWI smokestacks is predicted to 

be from 16 to 38 ng Os/m2/a, much higher than the naturally transported osmium 

in the atmosphere of about 0.001 ng Os/m2/a. The Os contamination from MSWI 

should be acknowledged as a strong candidate to account for the geochemical Os 

cycle. 

The magnetic susceptibility data for MSWI residues suggest the presence of 

ultrafine superparamagnetic fractions (>10%), which could represent matter of 

concern for humans and animals health. 

2. Way forward 

The following aspects would need further researches: 

Sampling and characterisation. Best practices in waste management have to be 

defined to secure methods homogenisation, inter-comparison and, 

consequently, enhanced know-how. Public authorities, industrial managers 

and the research community would benefit from appropriate sampling 

strategies. There is the lack of a proper classification of MSWI and their end-

products that prevents any accurate comparison. Furthermore, waste input 

collection needs to be improved. The Italian case study pointed out that 

MSWI inputs are not accurately managed. The different fractions are not 

separately weighed; the upstream separate collection (glass, metallic scrap) 

still not reaches high levels of efficiency. The WEE separate collection also 

seems to be somehow lacking, as corroborated by the presence of REE and 
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other specific elements. The correlations between major elements/magnetic 

susceptibility vs. REE (and other correlations, e.g., Ni-Ga) highlighted that 

some indicators of substances typically contained in WEEE does exist; thus a 

few properties (and their relationships) of by-products can serve as a 

monitoring tool for WEEE separate collection efficiency. Finally, seasonal and 

spatial variations concerning MSWI input and output materials should be 

accounted. Upcoming researches will include the accurate PGE 

determination (data evaluation is in progress) and a comprehensive magnetic 

characterisation of MSWI residues in order to increase the number of 

reference data and, consequently, for improving the methods of prospecting 

and environmental assessment. In general, more and accurate chemical data 

are needed in order to perform massive and reliable SFA for national flows 

and stocks of marketable and hazardous (including Os) elements. This would 

definitely help assessing the relevance of MSWI systems on potential 

economic losses and environmental impact (with subsequent FCA and EIA, 

respectively). Further improvement of the work (especially, that deriving 

from chapter 2 and 3) concerns the possible integration of chemical data with 

detailed microstructural and mineralogical analytical characterisation. These 

efforts may provide some useful indications about the mineralogical 

incorporation of trace elements in specific mineral phases and, in turn, 

provide valuable information for the optimisation bio-hydrometallurgical 

process (see chapter 4). 

Resources evaluation and prospecting. This work demonstrates that MSWI output 

residues represent low grade, but high flows ores. They could represent the 

future of raw material supply if recovery strategies will focus on separation, 

processing and recycling of minor species. Improving the selectivity 

characteristics of, for example, bio-hydrometallurgical processes, is therefore 
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of crucial importance. In order to plan investments regarding critical 

elements/ore metals recovery from MSWI residues, the proposed prospecting 

methods such as mass flow analysis, geochemical/magnetic correlations need 

to be corroborated by new data based on accurate sampling strategies. The 

magnetic parameter can be used to identify minor magnetic phases (when 

otherwise is not possible by XRD analysis) where critical elements may 

concentrate. This could be highly desirable for resource prospecting and 

environmental assessment. 

Metal recovery. There is no single solution for the processing of waste streams and 

metal recovery from them due to varying conditions even at local scale, thus 

more efforts have to be made to solve real-life situations. To enhance the 

recovery of critical elements from low concentrations complex wastes the 

proposed process chains must be optimised. There is still the aim to further 

treat each by-product from the bio-hydrometallurgical processes, by testing 

precipitation from solutions and physical post-treatment of solids and, 

finally, assess the environmental stability of the final solids and liquids. In 

addition, future experiments could include leaching at elevated 

temperatures, the use of other catalysing agents, and combined bioleaching 

and chemical leaching to utilise the selectivity differences and maximise 

recoveries and environmental status of the residue. In order to exploit the 

intrinsic capability of some microorganisms for metal recovery, more efforts 

are needed to understand the behaviour of microorganism during leaching 

and to identify new promising species or association of bacterial strains. 

Biotechnologies will continue to play a crucial role for the supply with 

critical raw materials, because they offer eco-efficient alternatives. For proper 

assessment of a suitable treatment strategy, the performance characteristics 

of the bioleaching need to be compared with other leaching procedures from 
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economical and ecological point of view, by using evaluation tools such as: 

Full Cost Accounting (FCA), Life Cycle Assessment (LCA), and 

Environmental Impact Assessment (EIA). 
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APPENDIX A. 

This section reports the contributions (abstracts) to national and international 

conferences to which I participated during different stages of the PhD work. Each 

speech or poster presentation has been of great help for exchange knowledge and 

for networking. 

 

 

Conference: IWIW 2016 (Feb. 2016, Genova, IT) 

THE CRITICAL RAW MATERIALS POTENTIAL OF ANTHROPOGENIC DEPOSITS: 

INSIGHTS FROM SOLID RESIDUES OF MUNICIPAL WASTE INCINERATION 

Valerio Funari · Roberto Braga · Enrico Dinelli  

In the present work we address the 

potential of MSWI solid residues as an 

alternative source of critical raw materials by 

studying the material chemistry, its resources 

flow and the evaluation of metals upgrading 

and recovery. The recovery potential of ore 

metals and critical elements from MSWI fly 

ashes is investigated by comparing sulphuric 

acid leaching and bio-assisted leaching. 

 

 

Conference: SARDINIA 2015 (Oct. 2015, S. Margherita di Pula, IT) 

METAL RECOVERY FROM MUNICIPAL SOLID WASTE INCINERATORS FLY ASH BY 

SULPHURIC ACID LEACHING AND BIOLEACHING 

Valerio Funari · Justin Salminen · Jarno Mäkinen · Hannu Revitzer · Roberto Braga  
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Municipal solid waste incinerators (MSWI) ashes are being investigated in 

order to understand recovery opportunities with the final aim of diversifying 

sourcing and partly overcoming raw materials shortage. Turning waste into 

resource in the most efficient way is challenging, especially when secondary 

critical raw materials are the final objectives of recovery. The advances on bio- and 

hydrometallurgy are crucial for enhanced metals recovery and mitigation of 

environmental risks directly associated with the treatment of solid waste. Here we 

present preliminary results of bio- and hydrometallurgical experiments for critical 

metals recovery from MSWI fly ash and a comparison of the performance 

characteristics between acid leaching and acid bioleaching. Sulphuric acid leaching 

showed the advantage of reduction and mobilisation of Ca, thus improving the 

quality of the final product. Conversely, bioleaching experiments were performed 

in a mixed culture of T. ferrooxidans and T. thiooxidans and their efficiency was 

evaluated over a period of several weeks; reagents involved are lower than those 

needed for acid leaching thus making the process economically feasible and more 

environmental friendly. The influence of the experimental parameters will be 

discussed for both acid leaching and acid bioleaching procedures. 

 

 

Conference: SGI-SIMP 2014 (Sept. 2014, Milano, IT) 

MSWI RESIDUES AS UNCONVENTIONAL SOURCE OF CRITICAL RAW MATERIALS: 

UNDERSTANDING POSSIBLE EASY WAYS TO EVALUATE THEIR OCCURRENCE AND 

ADDED-VALUE PRODUCTS.   

Valerio Funari · Syed Nadeem Hussain Bokhari · Thomas Meisel · Luigi Vigliotti · Enrico Dinelli · Roberto Braga  

Critical raw materials (CM) are chemical elements and minerals such as Be, 

Co, Ga, Ge, In, Mg, Nb, Sb, Ta, W, Platinum Group Elements (PGE), Rare Earth 

Elements and Y (REY), fluorite, graphite, which are important for the technological 
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development (European Commission, 2010) needed to achieve a low-carbon 

society. Solid residues from Municipal Solid Waste Incinerators (MSWI) may 

represent an unconventional source of valuable chemical elements, as a continue 

flow stream (e.g.: Morf et al., 2012). In this contribution we will show that the CM 

content in bottom and fly ashes, which are the common MSWI outputs, and their 

estimated annual flow (t/a) are significant. Analyses were carried out by ICP-MS 

and XRF, reaching very low detection limits in order to evaluate the CM potential. 

Total CM (Ce, Co, Nb, Sb, Ta, W) in bottom ashes is 380 mg/kg; fly ashes contain 

1022 mg/kg Sb, 49 mg/kg total other CM (Ce, Co, Nb, Ta, W). Bottom and fly ashes 

have an average concentration higher than 60 mg/kg SREY. The estimated 

substance flow shows that a hypothetical recovery is advantageous in bottom 

ashes for the most of the elements. To further explore the CM potential of bottom 

ashes, we have considered the different granulometric fractions produced by 

simple gravitational sorting during their temporary storage as stockpiles. The 

substance flow analysis reveals that the bottom ash finer fraction (which forms the 

top layer) shows an overall enrichment in CM compared to the other coarser 

layers. The finer bottom ashes residing on the top 

of stockpiles, which can be sampled by simple 

visual inspection at the plant storage facility, 

seem to represent the most promising target for 

future recovery strategies. We are also 

investigating whether correlations with the mass 

specific magnetic susceptibility of the MSWI solid 

residues can be used as proxies for CM 

occurrence (and, hence, as a fast indicator of CM’s 

relative availability). First results show that this 

parameter is related to the REE distribution. On 
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the short term, our data will help to bolster the attention on incinerated waste as an 

unconventional solution for raw materials supply. A comprehensive strategy has 

to be implemented to address the quantitative availability of CM through new 

prospecting technologies, as called for by the European Commission in its 

European Innovation Partnership in Raw Materials (EIP).  

 

 

Conference: SGI-SIMP 2014 (Sept. 2014, Milano, IT) 

MARINE GEORESOURCES OF THE SOUTHERN TYRRHENIAN SEA: CRITICAL ELEMENTS 

POTENTIAL ASSESSED BY GEOCHEMICAL DATA   

Valerio Funari · Marzia Rovere · Fabiano Gamberi · Michael Marani · Enrico Dinelli · Roberto Braga  

Critical Elements (CrE), i.e. Be, Co, Ga, Ge, In, Mg, Nb, Sb, Ta, W, the 

Platinum Group Elements (PGE) and the Rare Earth Elements (REE), have been 

identified to be essential for Europe due to their high relative economic importance 

concurrent with their high supply risk. The highest production of CrE is based in 

non-EU countries and in China in particular (European Commission, 2010). Their 

availability is increasingly under pressure because of their strategic importance for 

emerging new and green-energy technologies, such as hybrid cars, energy saving 

LEDs, electronic devices memories, wind power generators, medical applications. 

In the past few years, the development of seafloor exploration technology and 

novel geochemical and mineralogical results are adding new perspectives to the 

economic potential of marine georesources. Several submarine geological processes 

are suggested to be capable of depositing CrE (e.g. Kato et al., 2011). Here we 

present the preliminary results of XRF and ICP-MS analyses performed on a 

number of sub-surface (depth < 1 m) seafloor samples collected in the southern 

Tyrrhenian Sea from different provinces associated with cold seeps and 

hydrothermal vents at the seabed. We focus on: 1) the determination of 
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geochemical proxies for the CrE occurrence in specific deep-sea settings and 2) the 

prediction of CrE’s potential in the seafloor sediments through colour-shaded 

concentration maps. The southern Tyrrhenian seabed shows up to 47 g/kg total 

CrE. By clustering samples on the basis of the average bulk concentration of the 

main oxide, we found that Co content is high in iron oxy-hydroxides, while REE 

are enriched in Al-Si-rich samples. The Ca- and Mn-rich samples appear to be 

depleted in CrE. Interpolated maps of CrE concentration indicate that the Paola 

Basin and the Eastern Aeolian Arc show relatively high content of Co and REE, the 

Palinuro area is high in Mg and precious metals (both with local hot spots of 

highest concentration). Seabed mining is still in its infancy with a few companies at 

present fully engaged in exploring the potential of deep sea resources worldwide, 

while general skepticism about the real potential of the seabed CrE deposits, 

coupled with the growing sensibility to environmental protection issues, are 

increasing. Yet, the global demand could drive further expansion of seabed mining 

in the near future and any efforts to develop innovative and sustainable 

exploration and exploitation techniques have to be encouraged among both the 

scientific community and the industry. 

 

 

Conference: SGI-SIMP 2014 (Sept. 2014, Milano, IT) 

URBAN ORE DEPOSITS: MSWI SOLID OUTPUTS, A SOLID PERSPECTIVE   

Valerio Funari  

Invited speaker 

W2 pre-conference workshop: Georesources in Horizon 2020. Perspectives of deep sea 

and continent exploration/exploitation and recycling of non-energy raw materials.  

This workshop will cover topics on exploration and sustainable supply of 

raw materials from on-land and deep-sea environments, in the framework of the 
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Horizon 2020 Societal Challenge "Climate, Environment, Resource Efficiency and 

Raw Materials". The programme includes talks and discussions on:  

1. Technology development and innovation in deep sea prospecting  

2. Supply of georesources and economic aspects for the EU  

3. Re-cycling and re-use of waste  

4. Ocean governance and the protection of the Marine Environment  

5. Mineral deposits in Italy  

Discussions will focus on how to foster relations between the research community 

and industry within the European Innovation Partnership (EIP) on Raw Materials. 

 

 

Conference: ERES 2014 (Sept. 2014, Milos Island, GR) 

THE REE POTENTIAL IN “URBAN” ORE DEPOSITS: AN EVALUATION ON CONTENTS 

AND PROSPECTING TOOLS FROM ITALIAN MUNICIPAL SOLID WASTE INCINERATORS.   

Valerio Funari · Syed Nadeem Hussain Bokhari · Thomas Meisel · Luigi Vigliotti · Roberto Braga  

Solid residues from Municipal Solid Waste Incinerators (MSWI) may 

represent an unconventional source of REE and other critical raw materials as 

defined by the European Commission. In this contribution we present the total 

REE content in bottom and fly ashes, which are the common MSWI outputs, and 

their estimated annual flow are significant. Samples were digested with sodium 

peroxide sintering which is highly effective analytical technique and the analysis 

was performed with ICP-MS. Bottom and fly ashes have an average concentration 

of 103 and 54 mg/kg ƩREY, respectively. For fly ashes the expected annual flow is 

1.1 t/a LREE and 0.3 t/a HREE, whereas for bottom ashes is 22.5 t/a LREE and 5.2 

t/a HREE. Moreover, we show that simple magnetic susceptibility measurements 

can be a promising prospecting method when exploring for REE in urban ores is 

concerned. 



231 

 

Conference: ASAC 2014 (Jun. 2014, Tulln, AT) 

MAJOR AND TRACE ELEMENTS ANALYSIS OF INDUSTRIAL WASTES WITH SINTERING   

Valerio Funari · Syed Nadeem Hussain Bokhari · Thomas Meisel · Roberto Braga  

Knowledge about the chemical composition of industrial waste is 

important for: i) risk assessment analysis, ii) understanding economic potential of 

residue for raw material supply and iii) mass flow analysis. Accurate analyte 

determination from industrial waste is hampered by incomplete digestion of 

refractory material e.g. industrial magnesite, chrome-bearing materials (e.g. 

chromite), refractory materials from pyrometallurgical processes (containing MgO, 

Al2O3, CaO), stable high melting temperature oxides, silicon carbide, zirconium 

and chromium oxides, organic materials with high molecular mass, noble metals, 

ceramics scrap, etc. Effective measurement procedures are required for a complete 

digestion of these refractory materials. Dissolution by wet acid digestions is often 

incomplete and high blank and total dissolved solids (TDS) contents with alkali 

fusions can lead to an underestimation of analyte concentrations. Hence an 

effective analytical procedure that successfully dissolves refractory material is 

needed to be employed for reliable analytical results. The Na2O2 sintering 

combined with solution ICP-MS has the capability of complete digestion of all the 

refractory material known today. 

We have undertaken the study of 

three kinds of industrial wastes i.e. 

fly ashes, bottom ashes and waste 

from processing ceramics. Sintering 

was performed to achieve total 

digestion and the quantification was 

done with ICP-MS (Agilent 7500ce). 

A comprehensive data set of 



232 

 

measurands, e.g., of As, Ba, Ce, Co, Cr, Cu, Ga, La, Mo, Nb, Nd, Ni, Pb, Rb, Sr, V, 

Y, Zn, Zr was obtained with sintering and ICP-MS. In comparison XRF data were 

unreliable due to higher detection limits and unaccounted matrix effects. For 

example, XRF analysis in bottom ash residues underestimates mainly lead, 

yttrium, and gallium and overestimates niobium, molybdenum, chromium, and 

zirconium mass fractions. Moreover, critical element contents i.e. Ce, Co, Cr, La, 

Ga, Nb, Nd, Y, Zn, can be successfully determined (and cost effectively recovered) 

from industrial waste with the sintering method. As a next step PGE contents of 

the industrial waste will be determined using QQQ-ICP-MS by removing spectral 

interferences after Na2O2 sintering and preconcentrations steps. 

 

 

Conference: SUM 2014 (May 2014, Bergamo, IT) 

SOLID RESIDUES FROM INCINERATORS: A SOURCE FOR CRITICAL RAW MATERIALS?   

Valerio Funari · Enrico Dinelli · Syed Nadeem Hussain Bokhari · Thomas C. Meisel · Roberto Braga  

The European Commission (2010) defined a list of “critical” raw materials 

on the basis of their relative economic importance and supply risk. Critical raw 

materials (CRM) are chemical elements and minerals such as Be, Co, Ga, Ge, In, 

Mg, Nb, Sb, Ta, W, Platinum Group Elements (PGE such as Ag, Au, Pd, Pt, Rh 

etc.), Rare Earth Elements and Y (REY), fluorite, graphite, which are important for 

the technological development needed to achieve a low-carbon society. We focus 

our research on the content of these CRM in solid residues from municipal waste 

incinerator plants. In previous works, solid residues from incinerator were studied 

in order to reduce their impact on the environment and human health, to assess 

their potential reuses, e.g. as road construction materials or concrete additives, 

and/or to look for significant concentrations of precious metals. The solid residue 

from incinerators as potential source of CRM has not yet been fully understood. 
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We sampled slags, bottom and fly ashes from two grate-furnace incinerators and 

determined their total elemental composition with sensitive analytical techniques 

such as X-ray fluorescence spectrometry (XRF) and inductively coupled plasma 

mass spectrometry (ICP-MS). Bottom ash analyses show a silver mean 

concentration of 5.5 mg/kg, 0.4 wt. % CuO, whereas other base metals oxides are 

up to 0.7 wt. %, 380 mg/kg total CRM (Be, Ce, Co, Nb, Sb, Ta, W), 69 mg/kg ∑REY 

(REE + Y), 697 mg/kg other metals with high economic importance (Cr, V, Ni, Mo, 

Tl - according to EC, 2010). For investigated fly ashes we determined a silver mean 

mass fraction of 19.3 mg/kg, 1022 mg/kg Sb, 49 mg/kg total other CRM (Ce, Co, Nb, 

Ta, W), 62 mg/kg ∑REY (REE + Y) and 776 mg/kg other metals with high economic 

importance (Cr, V, Ni, Mo, Tl - according to EC, 2010). Grain-size distribution and 

gravitational sorting in stockpiles (only for bottom ashes and slags) seems to affect 

the distributions of some CRM in different granulometric fractions, e.g.: the fine-

grained fraction is enriched in Sb, Ce and La relative to the coarse grained fraction, 

whereas there is no granulometric control over Co, Ga and Ta. Therefore a 

substance flow analysis for CRM, including REE, and other valuable metals has 

been conducted in order to evaluate the relative efficiency of a hypothetical 

recovery from the total residues and investigated granulometric fractions of 

bottom ashes. Our data will help to focus the attention on incinerated waste as an 

unconventional solution for raw materials supply. 

 

Conference: RITMARE (Apr. 2014, Bologna, IT) 

CRITICAL RAW MATERIALS IN TYRRHENIAN SEABED   

Valerio Funari · Marzia Rovere · Fabiano Gamberi · Michael Marani · Enrico Dinelli · Roberto Braga 

Critical Raw Materials (CRM) are some chemical elements and minerals 

such as Be, Co, Ga, Ge, In, Mg, Nb, Sb, Ta, W, Platinum Group Elements (PGE), 

Rare Earth Elements (REE), fluorite, graphite (EC, 2010; Fig. 1), which are 
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important for the new and green-energy technologies, e.g., hybrid cars, energy 

saving LEDs, electronic devices memories, wind power generators, medical 

applications, etc. In the last few years, the growing body of chemical/mineralogical 

analysis and the developing of seafloor exploration technology are adding new 

perspectives on marine resources exploitation at economic feasible costs. Several 

types of seafloor sediment are known hosting high concentrations of valuable 

elements (e.g., polymetallic nodules), but their availability is yet to be quantified. 

Recently Kato et al. (2011) tried to understand the Rare Earth Element potential in 

the Pacific Ocean. As the CRM demand is 

growing, the seafloor mining could be soon 

cost-effective and efforts to develop new 

recovery strategies have to be increased. In 

order to understand the CRM potential in 

deep seafloor sediments of Southern 

Tyrrhenian we aim to 1) determine proxies for 

CRM occurrence, 2) produce preliminary 

interpolation maps of CRM by using Surfer® 

13 - Golden Software – and the kriging method 

of interpolation. 

 

 

Conference: MINERALS FOR LIFE (Jun. 2013, Edinburgh, GB) 

NON-ENERGY RAW MATERIALS SOURCES IN EMILIA ROMAGNA REGION AND 

TYRRHENIAN SEA (ITALY): PRELIMINARY RESULTS.   

Valerio Funari · Roberto Braga · Enrico Dinelli · Marzia Rovere · Fabiano Gamberi · Michael Marani · Giovanni Gabbianelli  

Non-Energy Raw Materials (NERM) are some chemical elements and 

minerals, defined by the European Commission (2010), such as Sb, Ge, In, Ga, Nb, 
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Ta, W, Mg, Be, Platinum Group Metals (PGM), Rare Earth Elements (REE), fluorite, 

graphite that are important for the new and green-energy technologies and 

because their global demand is rapidly increasing. As Europe is poor of NERM’s 

mineral deposits, NERM supply is critical for Italy and Emilia-Romagna region 

which supports our research through the SPINNER consortium funds 

(www.spinner.it). We aimed to quantify NERM from alternative sources: 1) ash 

from waste incineration (IWA), 2) processing waste and sewage sludge from 

ceramic industry (WSC), 3) deep-sea sediment from the southern Tyrrhenian Sea 

(MAR) that include samples from cores and dredged sediments. This study will 

allow to evaluate compositional and evolutionary trends of specific environmental 

matrices in order to identify conditions that favour significant concentrations of 

NERM and, consequently, improve their recovery. For example, knowing the 

mineral/vitreous phases in which NERM are concentrated can facilitate their 

extraction through bio-metallurgical techniques. Preliminary qualitative and semi-

quantitative analyses by XRF and ICP-AES shows interesting concentrations of 

Mn, Ti, Ni, Co, Cr, V, Ga, As, Br, Mo (in marine 

samples) and Ni, Cu, Ga, Ce (in IWA), Mo, B, W 

(in “ceramic” sludge). The available IWA 

samples are poorly sorted, with 5-10 wt% 

moisture content and showing cm-sized 

fragments of metals, glassware and ceramics. 

Currently we are investigating if the amount of 

NERM varies as a function of IWA grain-size. 

Finally, our data will be used to improve 

analytical protocols and create an advanced 

NERM database for Emilia Romagna region.  
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