
  

 

 

 

 

 Alma Mater Studiorum – Università di Bologna 

DOTTORATO DI RICERCA IN 

BIOINGEGNERIA 

Ciclo XXVIII 

 

Settore Concorsuale di afferenza: 09/G2 - BIOINGEGNERIA 

 

Settore Scientifico Disciplinare: ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA 

 

DEVELOPMENT OF MARKERLESS SYSTEMS FOR 

AUTOMATIC ANALYSIS OF MOVEMENTS AND 

FACIAL EXPRESSIONS: APPLICATIONS IN 

NEUROPHYSIOLOGY 

 

Presentata da: Ing. Andrea Bandini 

 

 

Coordinatore Dottorato        Relatore 

Prof.ssa Elisa Magosso      Prof. ssa Claudia Manfredi 

 

Correlatore 

Prof. Andrea Corvi 

 

Controrelatori 

Prof. Ugo Della Croce  

Dr. Hugo Jair Escalante 

 

Esame finale anno 2016  

Relatore 

Prof. ssa Claudia Manfredi 

 

Correlatore 

Prof. Andrea Corvi 

 

Controrelatori  

Prof. Ugo Della Croce 

Dr. Hugo Jair Escalante 



  

 

 

 

  



  

i 

 

 

  

“Everyone must leave something in the room or left behind when he 

dies, my grandfather said. A child or a book or a painting or a house or a 

wall built or a pair of shoes made. Or a garden planted. Something your 

hand touched some way so your soul has somewhere to go when you 

die, and when people look at that tree or that flower you planted, you're 

there. It doesn't matter what you do, he said, so long as you change 

something from the way it was before you touched it into something 

that's like you after you take your hands away. The difference between 

the man who just cuts lawns and a real gardener is in the touching, he 

said. The lawn-cutter might just as well not have been there at all; the 

gardener will be there a lifetime.”  

- Ray Bradbury, Fahrenheit 451 
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Abstract 
 

This PhD project is focused on the development of markerless methods for studying facial expressions 

and movements in neurology, focusing on Parkinson’s disease (PD) and disorders of consciousness 

(DOC). 

Parkinson’s disease is a neurodegenerative illness that affects around 2% of the world population over 

65 years old. Impairments of voice and speech are among the main signs of the disease and affect high 

percentages of Parkinsonian patients. These patients may present alterations related to all speech 

dimensions (i.e., the four subsystems of speech production): respiration, phonation, articulation and 

prosody. This set of impairments is known as hypokinetic dysarthria, because of the reduced range of 

movements involved in speech production. This reduction can be visible also in other facial muscles, 

leading to a hypomimia typical of PD patients. Both impairments lead PD patients to have difficulties 

in social relationships, with a tendency to isolate themselves.  

Despite the high percentage of patients that suffer from dysarthria and hypomimia, only a few of them 

undergo speech therapy and rehabilitation processes with the aim to improve the dynamic of 

articulatory and facial movements. The main reason is the lack of low cost methodologies that could 

be implemented at home in order to perform therapeutic exercises during the daily activities. 

Disorders of consciousness after coma in severe brain injury are Vegetative State (VS), characterized 

by the absence of self-awareness and awareness of the environment, and Minimally Conscious State 

(MCS), in which certain behaviors, although functionally inconsistent, are sufficiently reproducible to 

be distinguished from simple reflex responses. The interest in these conditions has gradually spread in 

the medical and scientific community in relation to the relevant bioethical theme of end of life 

decision-making processes.  

The differential diagnosis between VS and MCS can be extremely hard and prone to a high rate of 

misdiagnosis (around 40%). This differential diagnosis is currently based on neuro-behavioral scales, 

instrumental examinations and functional neuroimaging techniques, although the latter techniques are 

limited to the research field due to the high costs. A key role to plan therapy and rehabilitation 

treatments for DOC patients is played by the first diagnosis after the end of coma. In fact, MCS 

patients who undergo a well-defined rehabilitation treatment are more prone to a better consciousness 

recovery than VS patients.  

Concerning PD patients the aim is the development of a contactless system that could be implemented 

to study symptoms related to speech and facial movements/expressions. The method proposed here, 

based on acoustical analysis and video processing techniques, would allow tracking the disease 

progression and providing support to patients during speech therapy also at home. In case of DOC 

patients the project was focused on the assessment of reflex and cognitive responses to standardized 

stimuli. This would allow objectifying the perceptual analysis performed by clinicians, developing a 
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markerless system for monitoring DOC patients and assessing reactions related to the perception of 

pain in patients that are unable to communicate. 

To this end, the following topics are covered in this dissertation: speech processing for biomedical 

applications, video-based analysis of articulatory movements, facial expression recognition and heart 

rate estimation from videos. 
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Summary 
 

The PhD project presents new and effective methods for the analysis of movements, facial expressions 

and voice in two neurological disorders: Parkinson’s disease and disorders of consciousness, i.e. 

vegetative state and minimally conscious state. 

 

Background 

Parkinson’s disease 

Alterations of voluntary and involuntary movements of the human being are clinical features common 

to many neurodegenerative diseases. Considering the constant increase in life expectancy of the world 

population and the high rate of incidence of neurological disorders, the automation of the diagnostic 

routines and of the rehabilitation processes is highly desirable. One of the most significant cases is 

Parkinson’s disease (PD), a neurodegenerative illness that affects around 2% of the world population 

over 65 years old. Idiopathic Parkinson’s disease involves the loss of neurons in the zona compacta of 

the substantia nigra of the midbrain and other pigmented nuclei. This loss of neurons leads to an 

insufficient synthesis and production of dopamine, an essential neurotransmitter for the control of 

body movements. 

Impairments of voice and speech are among the main signs of the disease. They affect about 70% of 

PD patients. PD patients may present alterations related to all speech dimensions (i.e., the four 

subsystems of speech production): respiration, phonation, articulation and prosody. Therefore, they 

might exhibit low intensity and fading during speech, vocal tremor, monotone pitch, hesitations in 

starting to speak, difficulties in pronunciation and articulation, speech acceleration and loss of timing 

control and nasalization. These alterations result in a reduced intelligibility of these patients that may 

cause a tendency to a social isolation. The severity of speech and voice impairments increases with the 

disease progression. 

This set of speech and voice impairments in PD patients is usually known as “dysarthria”. This term 

refers to a group of speech disorders caused by an alteration of the muscular control of the pneumo-

phono-articulatory organs due to damage in the basic motor processes involved in speech production. 

In most of PD patients, dysarthria is usually “hypokinetic”, because of the reduced range of 

movements involved in speech production. In fact, hypokinetic dysarthria is characterized by reduced 

peak velocities and displacements of the articulators (i.e., jaw, lips and tongue) during speech 

movements.  

The other motor sign considered in this PhD project is facial bradykinesia consisting in the reduction 

and slowness of facial movements. Facial bradykinesia may affect both the upper and the lower face. 

PD patients exhibit a blink rate reduction and reduced facial expressions (both spontaneous and 

posed), as well as impaired voluntary orofacial movements (as reported above for hypokinetic 

dysarthria). Face is an important means for conveying information about the emotional state of a 



  

4 

 

person. Facial bradykinesia is reflected in a reduction or loss of spontaneous facial movements and 

emotional facial expressions called hypomimia. The impairment of spontaneous facial expressions is 

consistent with the neuroanatomic evidence of a damage to the extrapyramidal motor system. 

Moreover, PD patients may experience difficulties in performing voluntary facial expressions and 

facial movements.  

The main signs of hypomimia in PD are: wider palpebral distances (that in conjunction with the 

reduced blink rate gives the impression of a staring expression), flattened nasolabial folds and 

unintentional lips separation (mouth opening). PD face is often a “masked” or “poker face”, typical of 

people without any interest in the surrounding environment. External observers and in particular 

practitioners, may have difficulties in decoding the emotional state behind the “mask”. This inaccurate 

impression could lead to problems with social relationships and interactions in PD patients with higher 

masking.  

One of the most altered facial expressions in Parkinsonian patients is smile. When PD patients 

experience spontaneous happiness, their smiles are perceived as fake and insensitive, because of the 

lack of cheeks raising and due to a loss of tone of the orbicularis oculi muscles. This reduction in 

smiling could also be related to depression. Today a big debate in the research community is focused 

on the nature of hypomimia in PD patients. In fact, many works support the hypothesis that the loss of 

facial expressions could be due to an impairment in facial emotion recognition, with main deficits in 

the decoding of disgust, fear and sadness. 

 

Disorders of consciousness 

Disorders of consciousness (DOC) after coma in severe brain injury are Vegetative State (VS), 

characterized by the absence of self-awareness and awareness of the environment, and Minimally 

Conscious State (MCS), in which certain behaviors, although functionally inconsistent, are sufficiently 

reproducible to be distinguished from simple reflex responses. The interest in these conditions has 

gradually spread in the medical and scientific community in relation to the relevant bioethical theme 

of end of life decision-making processes.  

Consciousness is a multifactorial concept composed by two main elements: self-awareness and 

awareness of the surrounding environment (“awareness” for simplicity) and “wakefulness”. In 

neurology, coma (also defined as “unarousable unresponsiveness state”) is a deep unconsciousness 

state, characterized by the absence of both aspects of consciousness (awareness and wakefulness), and 

caused by the inactivation of those neuronal circuits responsible of maintaining a waking state. These 

circuits are in the area of the brainstem called reticular activating system (RAS). In most cases, coma 

is a transient condition that can last for a few weeks, ending when patients open the eyes, recovering 

the wakefulness. Although the re-opening of the eyes is sufficient to establish the end of this first acute 

phase, it is not enough for determining what the clinical outcome of patients is. In fact, it is necessary 

to understand whether patients recover the awareness and at what level. According to these criteria, 
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the main post-comatose outcomes can be: vegetative state, minimally conscious state, locked-in 

syndrome, brain death and recovery. 

VS is a syndrome characterized by the lack of awareness, and the lack of intentional and 

communicative responses. VS is also called Unresponsive Wakeful Syndrome (UWS), since VS 

patients maintain a sleep-wake rhythm, they can smile, crying, grimacing and emit sounds, but without 

certain reasons. MCS, instead, is characterized by a partial recover of the awareness. There may be 

some cognitive-mediated behaviors, inconsistent in functional terms, but maintained long enough to be 

distinguished from simple reflex responses. These patients may experience smiles or other responses 

after the administration of external (audio-visual, emotional and linguistic stimuli), suggesting their 

ability to interact with the surrounding environment. MCS is often considered as an intermediate state 

between VS and the presence of consciousness.  

The differential diagnosis between VS and MCS can be extremely hard and prone to a high rate of 

misdiagnosis (around 40%). This differential diagnosis is currently based on neuro-behavioral scales 

(Coma Recovery Scale Revised - CRS-R, Glasgow Coma Scale - GCS, etc.), instrumental 

examinations (EEG, evoked potentials) and functional neuroimaging techniques, although the latter 

techniques are limited to the research field due to the high costs. A key role to plan therapy and 

rehabilitation treatments for DOC patients is played by the first diagnosis after the end of coma. In 

fact, MCS patients who undergo a well-defined rehabilitation treatment are more prone to a better 

consciousness recovery than VS patients. Despite the number patients with severe brain injury and low 

consciousness levels is negligible if compared to other neurological diseases (between 56 and 70 cases 

per million), the impact on the economy can be very important. 

 

Aims 

In case of PD patients, the aim was to extract acoustical and kinematic parameters related to speech 

disorders and facial expression impairments. This allows: 

 Objectifying the perceptual analysis performed by clinicians; 

 Developing a markerless system to monitor symptoms related to hypokinetic dysarthria and 

hypomimia; 

 Developing a markerless system for speech therapy that can be used in a domestic environment. 

Thus, by using acoustical analysis and video processing techniques the aim was to develop a 

contactless system that could be implemented to track the disease progression (in particular for 

studying symptoms related to speech and facial movements/expressions) and for aiding patients during 

the speech therapy process also at home. In fact, despite speech disorders concern a quite large 

population of PD patients, speech therapy is applied to a small part of them. 

In case of DOC patients the project was focused on the assessment of reflex and cognitive responses to 

standardized stimuli administered according to the CRS-R protocol. This allows: 

 Objectifying the perceptual analysis performed by clinicians; 
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 Developing a markerless system for monitoring DOC patients; 

 Assessing reactions related to the perception of pain in patients unable to communicate. 

The proposed system merges two of the methods developed in this PhD projects: the analysis of facial 

expressions (also used for studying hypomimia in PD patients) and the contactless estimation of the 

heart rate (HR). This system could be used as an aid to the monitoring of these patients, even when 

there are no caregivers or family members near them. 

Both case studies (PD and DOC patients) share the study of facial movements and facial expressions 

by means of video based techniques.  

 

Methods 

After a careful literature review of the main topics of the project (speech disorder, facial expressions 

impairments in PD patients and awareness evaluation in DOC patients), the following collaborations 

were established: 

 Unit of Neurology - Hospital “Nuovo San Giovanni di Dio” (Firenze) and Associazione Italiana 

Parkinsoniani (Firenze), for the recruiting of PD patients and of healthy control (HC) subjects;  

 “Villa delle Terme” rehabilitation center (Impruneta, Firenze) and “Don Carlo Gnocchi” 

Foundation IRCSS (Scandicci, Firenze) for the recruiting of DOC patients. 

Two audio/video acquisition protocols for PD and DOC patients were defined. PD patients were 

evaluated during the repetition of sentences, syllables and during the displaying of acted and imitated 

facial expressions (neutral, anger, disgust, happy and sad). DOC patients were video-recorded during 

the CRS-R protocol, were standardized stimuli of different nature (acoustic, visual, tactile, etc.) are 

administered for assessing patients’ reactions. During the PhD project the following subjects were 

enrolled: 

 27 PD patients (18 male, 9 female), age: 71.6 ± 8.2 years, disease duration 8.5 ± 5.0 years, Hoehn 

& Yahr scale: 2.1 ± 0.4, UPDRS motor score: 16.6 ± 10.4. Audio recordings during the speech 

task were performed on 25 patients (16 male, 9 female). Video recordings (color and depth 

streams) during the speech task were performed on 16 patients (10 male, 6 female), while video 

acquisitions (color stream only) of facial expressions were performed on 18 patients (14 male, 4 

female).  

 32 HC subjects (18 male, 14 female), age: 67.7 ± 7.8 years. Audio recordings during the speech 

task were performed on 23 subjects (11 male, 12 female). Video recordings (color and depth 

streams) during the speech task were performed on 19 patients (13 male, 6 female), while video 

acquisitions (color stream only) of facial expressions were performed on 17 subjects (6 male, 11 

female).  

 13 DOC patients (8 male, 5 female), age: 54.9 ± 15.8 years, months after the onset: 35.3 ±27.9, 11 

VS patients and 2 MCS patients, CRS-R score 6.1 ± 1.4, etiology: 8 post-anoxic, 5 traumatic brain 

injury. Because of the poor quality of some acquisitions, only nine (7 VS and 2 MCS) of the 13 
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patients were considered for the analysis of facial features and vital signs during the 

administration of external stimuli. 

According to the aims described above, during the three years of doctoral studies the following issues 

were addressed: acoustical analysis in PD patients, video analysis of articulatory movements PD 

patients, video analysis of facial expressions in PD patients and the video analysis of facial 

expressions and heart rate in DOC patients.  

 

Acoustical analysis in PD patients 

20 PD patients disease were recruited at the Department of Neurology of the Hospital “San Giovanni 

di Dio”, Firenze, Italy (14 male, 6 female; age: 72.2 ± 8.6 years; disease duration: 8.3 ± 4.6 years; 

Hoehn and Yahr scale: 2.1 ± 0.4; UPDRS part III: 15.7 ± 9.9; UPDRS speech item: 0-1). Moreover, a 

group of 19 HC subjects were tested (9 male, 10 female; age: 68.1 ± 8.4 years). Each subject was 

asked to repeat a standardized Italian voiced sentence (“Il bambino ama le aiuole della mamma”) at 

least 10 times as spontaneously as possible at comfortable loudness without hastening the speech, 

therefore properly separating the consecutive sentences. 

The aim of this part of the work was the development and the implementation of an automatic voiced-

unvoiced (AVU) segmentation algorithm for studying dysprosody in PD patients.  

The AVU algorithm splits the whole signal in short frames of the same length whose energy is 

evaluated and stored in an “energy vector”. The Otsu’s method applied to the energy histogram allows 

finding two thresholds for the separation between two classes (voiced and unvoiced frames). 

On each sentence, the following parameters were extracted: sentence duration (Tsentence in seconds) as 

the time interval between the beginning of a sentence and that of the next one; inter-sentence duration 

(Tinter in seconds) as the time interval between the end of a sentence and the beginning of the next one; 

pause duration (Tpause in seconds) as the sum of “breaks” (short pauses) inside a sentence; duty cycle 

(D%) as the percent of voiced time with respect to the sentence duration; net speech rate (NSR in 

syllables/s) defined as the number of syllables of the sentence, divided by the effective speech time 

(Tsentence – Tinter – Tpause). 

 

Video analysis of articulatory movements PD patients 

A markerless system for tracking lips movements during speech was developed by using a 3D 

structured light sensor (Primesense Carmine 1.09) and a face tracking algorithm. This system was 

firstly tested on 2 HC subjects, in order to compare the performances of tracking articulatory 

movements in 3D with respect to an optoelectronic marker-based method. For the automatic 

identification of the facial features, the Intraface tracking algorithm was used. Lips were modeled as a 

set of 18 points: 12 on the outer border and 6 on the inner border.  

Each subject was asked to read and pronounce a corpus composed by 50 meaningful sentences, 100 

meaningful words and 30 repetitions of the syllable /pa/.  
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The comparison with the reference trajectories was obtained computing the root-mean-square error 

(RMSE) in mm. This comparison was also performed on the following articulatory parameters: lips 

width, lips opening and lip protrusion. Afterwards, for each syllable repetition the following kinematic 

parameters (for both systems) were computed: the maximum velocity (Vopen) and acceleration (Aopen) 

during the opening phase, the maximum velocity (Vclose) and acceleration (Aclose) during the closing 

phase. For each syllable repetition the Pearson’s correlation coefficient between trajectories, velocities 

and accelerations extracted with both systems was computed. Correlation values close to 1 indicate 

that the trends of displacement, speed and acceleration calculated with the proposed method are very 

similar to the ground truth. 

This markerless technique was then used to analyze movements of the lower lip during a syllable 

repetition task, both in PD patients and HC subjects. The aim was that of testing the reliability of a 

cheap and markerless approach for assessing signs of hypokinetic dysarthria (in particular, alterations 

of peak velocities and accelerations). 

14 PD patients were recruited at the Unit of Neurology of the Florence Health Authority (“San 

Giovanni di Dio” Hospital, Firenze, Italy), and at the Associazione Italiana Parkinsoniani (AIP) – 

Sezione di Firenze¸ Firenze, Italy (9 male, 5 female; age: 71.6 ± 7.0 years; Hoehn and Yahr scale: 2.0 

± 0.3; UPDRS part III: 16.0 ± 12.0; UPDRS speech item: 0-1). A group of 14 HC subjects with no 

history of neurological disease was tested (8 male, 6 female; age: 69.0 ± 7.4 years). 

The speech task consisted in the repetition of the syllable /pa/ for at least 25 times within a single 

breath, in a comfortable steady pace.  

As described above the peak values of velocity and acceleration of the lower lip during the speech task 

were computed. The maximum value is relative to the opening phase (vopening and aopening) while the 

minimum value refers to the closing phase (vclosing and aclosing). Moreover, for each repetition the 

following parameters were computed: normalized range of opening (ΔOpeningnorm as difference 

between the maximum and the minimum opening values divided by its mean value) and the 

normalized maximum opening value (MaxOpeningnorm as the maximum opening value within a 

repetition, divided by the width of the lips).  

 

Video analysis of facial expressions in PD patients 

PD patients often experience serious difficulties in displaying both voluntary and spontaneous facial 

expressions. Thus, an objective evaluation of this sign is essential for the assessment of hypomimia (as 

an aid to the facial expressions item of UPDRS part III) and for rehabilitation, in particular for speech 

therapy.  

17 PD patients were recruited at the Department of Neurology of the Hospital “San Giovanni di Dio”, 

Firenze, Italy (13 male, 4 female; age: 71.9 ± 9.2 years, disease duration: 8.2 ± 5.0 years; Hoehn and 

Yahr scale: 2.1 ± 0.4; UPDRS part III 17.5 ± 10.3). A group of 17 HC subjects was tested as control 

group (6 male and 11 female; age: 68.8 ± 7.5 years).  



  

9 

 

Each subject was asked to perform the following tasks: displaying a neutral expression for at least 10 

seconds; displaying basic expressions (happiness, anger, disgust and sadness) upon request of the 

clinician; displaying basic expressions (happiness, anger, disgust and sadness) by imitating emotive 

faces shown on a screen. 

The subjects’ face was recorded using the Microsoft Kinect for Windows sensor (using only the color 

stream). On the recorded videos, two tests were performed: 

1. The analysis of facial features with respect to the neutral baseline, in order to find the most 

discriminative features between HC subjects and PD patients and giving an objective 

quantification of the facial hypomimia in PD; 

2. The automatic facial expressions recognition, in order to study how much far the PD expressions 

are from the standard expressions. 

Twenty geometric features of the face were extracted from the facial landmarks provided by the 

Intraface tracker: angles and raising of the eyebrows, distances of the eyes and of the mouth. 

During the first test (analysis of facial features with respect to the neutral baseline), a baseline of the 

neutral state was built, considering an average facial template from the neutral videos. After the set-up 

of the neutral baseline, the analysis was performed on the expressive videos (both acted and imitated 

expressions). For each subject and for each expressive video the 20 facial features were extracted and 

compared with the neutral baseline of each subject, computing the Euclidean distance between 

expressive frames and neutral template. This distance provides global information about the 

displacement of facial features from the neutral expression, during the displaying of different facial 

expressions.  

During the second test (automatic facial expressions recognition) the analysis of facial expressions 

was performed using an automatic facial expression classifier trained on different databases of posed 

and spontaneous expressions. However, most of the available facial expressions databases are 

composed by videos and images taken from healthy subjects. Starting from this consideration, the aim 

was to measure the intensity of facial expressions that PD patients are able to reach, with respect to 

HC subjects, that are assumed to express “standard” expressions. A multiclass Support Vector 

Machine (SVM) with radial basis function kernel was trained on the Extended Cohn-Kanade database 

(CK+) and the Radboud Faces database (RaFD) for a total of 3696 frames (divided into the 5 

expressions considered in this experiment: neutral, anger, disgust, happiness and sadness). The 

accuracy of the trained classifier was computed through a 10-fold cross validation on the training set, 

and it was equal to 88%. Once the classifier has been trained, we used as test set the database 

composed by HC subjects and PD patients enrolled for the project.  

 

Video Analysis of DOC patients: facial movements and vital signs 

The aim of this part of the work was the implementation of a markerless method for monitoring and 

studying DOC patients, in particular after the administration of standardized stimuli. The proposed 
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system merges two methods: the analysis of facial expressions and the contactless estimation of the 

heart rate.  

The aim was to extract quantitative and objective information to help clinicians in diagnostic 

assessment through the analysis of possible reactions after standardized stimuli in DOC patients. 

Moreover, this system could be used as an aid to the monitoring of these patients, especially when 

there are no caregivers or family members near them. 

Nine DOC patients were video recorded at the “Villa delle Terme” rehabilitation center, Firenze, Italy 

(7 male, 2 female; age: 53.4 ± 14.2 years; months after the brain injury: 31.7 ± 27.6 months; CRS-R 

score: 6.2 ± 1.5). For five patients, the etiology was post-anoxic/ischemic, four patients had a cerebral 

hemorrhage and one patient a traumatic brain injury. DOC patients were evaluated during the 

administration of the CRS-R. Although all the CRS-R items were video recorded, only the motor 

evaluation function was considered for this study. During this item a noxious stimulus was 

administered to hands or feet. Our aim was the study of facial expressions and vital signs after the 

administration of the noxious stimulation. 

During the CRS-R administration, patients’ faces were recorded with a webcam. For this work we 

merged the analysis of facial features with respect to the neutral baseline (already used for study 

hypomimia in PD patients) and the contactless video-based estimation of the heart rate. 

The analysis of facial features comes from the consideration that facial expressions could bring 

important information about patient’s reactions to external stimuli and pain as they are unable to 

communicate. In fact, most of the perceptual ratings performed by clinicians are based on the 

assessment of the facial mimicry. However, a standard facial expression recognition approach (i.e., 

training of a classifier on basic expressions and then testing on video frames, like the approach 

proposed for PD patients) is not well-suited for these patients. In fact, they do not exhibit standard 

expressions, even if sometimes they can display smiles and grimaces. In this case, a more “patient-

fitted” approach that allows extracting relative information about the evolution of the studied features 

during tests is best suited. Thus, for each video recording, the following processing steps were 

performed: 

 Baseline building on video frames without stimuli administration; 

 Extraction of the 20 facial features (as explained above) on the whole video recording; 

 Euclidean distance calculation between the facial features vector and the baseline built for the 

each subject. This distance provides a global information about the displacement of facial features 

from the neutral state (i.e., before the administration of the external stimulus). 

The HR could provide important information to evaluate patient’s reactions and the level of pain. 

However, a continuous and constant monitoring of HR could be expensive and uncomfortable for the 

presence of sensors attached to the patient’s body. Thus, we estimated HR through the following steps: 
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 Face tracking and Regions of Interest (ROIs) detection. Two ROIs were automatically located 

with the Intraface tracking algorithm: one on the forehead and one in the central facial region 

(including cheeks and nose). 

 For both ROIs the pre-processing was applied to the temporal trends of the mean values of the R, 

G and B channels: detrend based on a smoothness priors approach (smoothing parameter = 100, 

cutoff frequency = 0.66 Hz); mean value subtraction and normalization with respect to the 

standard deviation. 

 Estimation of the three independent sources by means of Independent Component Analysis (ICA) 

based on the joint approximate diagonalization of the eigenmatrices algorithm (JADE). 

Afterwards, a smoothing with a 5-point moving average window and a bandpass filtering between 

0.6 and 3.5 Hz with a 128-points Hamming window were applied to the three sources.  

 Heart rate estimation through an autoregressive (AR) model with recursive least squares (RLS) 

estimation on the estimated sources (model order = 4; forgetting factor = 0.9889, in order to take 

into account measurements up to the previous 3s). At each time instant the first peak of the AR 

power spectral was detected. The performance of this algorithm were firstly tested on four HC 

subjects monitored with an ECG in order to test the accuracy during HR variations due to a mild 

exercise (pedaling on an indoor cycling machine). 

 

Results and discussion 

Acoustical analysis in PD patients 

The results of this study show that PD patients exhibit an alteration of prosodic patterns of speech 

during a sentence repetition task. With respect to control subjects, PD patients have longer pauses 

between each sentence repetition (Tinter) and a lower percentage of “voiced time” during the entire 

repetition period (duty cycle D%), as reported in Tab. I. On the other hand, a decrease of duty cycle 

leads to an increase of NSR. Therefore PD patients tend to have a shorter time period occupied by 

speech than healthy controls, but at the expense of a longer recovery time, since no significant 

difference was found in Tsentence (the time from the start of a sentence to the start of the next one).  

 

Tab. I: - Mean value, standard deviation and t-test result for the acoustical parameters 

extracted from the sentences repetition task 

Parameters PD patients Healthy subjects t-test 

Mean SD Mean SD 

Tsentence (s) 3.05 0.67 3.14 0.56 t(39) = 0.42, p = .67 

Tinter (s) 0.76 0.33 0.57 0.23 t(39) = 2.03, p = .049 

D% 73.77 7.37 79.77 6.52 t(39) = 2.68, p = .011 

NSR (syll./s) 6.54 0.97 5.79 0.77 t(39) = 2.68, p = .011 

 

Our results concerning the increase of NSR in PD patients are consistent with other findings where an 

increase of the number of syllables per second was found during the reading of a text. However, other 

studies that used the reading of a passage did not show any significant difference in this parameter. 
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Thus, it is likely that speech rate alterations could be more easily raised from the repetition of a 

sentence rather than by the reading of a text.  

In conclusion, our results show that in PD patients with no or minimal speech problems (UPDRS item 

18 score between 0 and 1) the speech rate and temporal alterations are the most noticeable features of 

dysprosody during a sentence repetition task. 

 

Video analysis of articulatory movements PD patients 

The proposed markerless system is able to track lips movements during speech with errors between 1 

and 3 mm (against the marker-based optoelectronic reference) for most of the lips points. Considering 

the low image resolution and the lower cost of the depth sensor (if compared with the optoelectronic 

method) this is a very promising result. Kinematic parameters of the lower lip show a tendency to 

underestimate the module of the maximum and the minimum speed values (closing and opening 

phases) with differences around 20 mm/s. However, high correlation values between trajectories (0.96 

± 0.03), velocities (0.95 ± 0.05) and accelerations (0.88 ± 0.10), confirm that trends of these measures 

are very similar to the reference. This suggests that a bias is present in the estimation of the kinematic 

parameters. 

This bias might be due to the distance from the face at which the device was located (about 0.8 m), or 

to the different framerate of the systems (30 Hz for the depth sensor, 100 Hz for the marker-based 

method). This distance was a trade-off between the need to move the sensor as close as possible to the 

subject’s face and its characteristic (range of work: 0.4-1.5 m), without interfering with the field of 

view of the cameras of the optoelectronic system.  

During the comparison between PD patients and HC subjects in the syllable repetition task, significant 

differences were found in vopening (t(28) = 2.49, p = .019), vclosing (t(28) = 2.32, p = .028) and aopening 

(t(28) = 2.13, p = .043). All these values are lower in  PD patients.  In particular, the opening and 

closing velocities are reduced by more than 25 mm/s (94.94 ± 33.40 mm/s vs 64.45 ± 30.94 mm/s for 

vopening, 87.85 ± 31.28 mm/s vs 61.54 ± 28.49 mm/s for vclosing). Lower values were found also for 

aopening, although not significant. Concerning the opening parameters (ΔOpeningnorm, MaxOpeningnorm) 

the normalized range of opening is lower in PD patients (0.65 ± 0.36 vs 0.46 ± 0.23) although not 

significant, while the normalized maximum value is comparable with values around 0.4 in both groups 

(i.e., the maximum opening is about the 40% of the mouth width). Our results confirm the previous 

findings where PD patients exhibited reduced peak velocities of lower lip, both for opening and 

closing phases. In addition, the peak values of acceleration are reduced in PD patients with significant 

differences only for the opening phase. Thus, our work supports most of the literature on the kinematic 

analysis of the articulators in PD patients which states that most of these patients exhibit a 

downscaling of the articulatory movements. The novel contribution of this work concerns the 

assessment of this downscaling by means of a fully markerless and low-cost method. This is the first 

attempt to study articulatory movements in dysarthric patients by means of video-based contactless 
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methods. This method could be implemented at home in order to help these patients in performing 

speech therapy and rehabilitation exercises, since a large percentage of them suffers from dysarthria. 

 

Video analysis of facial expressions in PD patients 

Results from the automatic facial expression recognition showed that HC subjects perform anger and 

disgust better than PD patients during the acted task (42.51% vs 29.32% for anger, 43.42% vs 35.00% 

for disgust). 

During the imitation task there is a noticeable increase of anger and disgust only in HC subjects (from 

42.51% to 60.98% for anger, from 43.42% to 76.89% for disgust), while PD patients show a small 

increase of the anger percentage (from 29.32% to 33.87%) and a decrease of the disgust (from 35.00% 

to 32.89%).  

On average, HC subjects reported higher distances from the baseline than PD patients along the whole 

tasks (12.68 ± 5.05 for HC subjects vs 9.35 ± 3.85 for PD patients, p < .00001).  

These results show that anger and disgust are the two expressions in which HC subjects show a higher 

increase in the target expression during the imitation task. This means that HC subjects benefit from 

the displaying of the target expression in order to perform the imitation of those facial expressions. 

This not true for PD patients, where the percentage of the target expressions (anger and disgust) 

remains stable or decreases from the acted task to the imitated task. These results confirm in an 

objective way the results reported in literature, that is the loss of facial expressions in PD patients 

could be due to an impairment in facial emotion recognition, with main deficits in the decoding of 

emotions with negative valence (like disgust, fear and sadness). During happiness expression PD 

patients and HC subjects show similar results, with low differences in the target expression between 

acted and imitated also for HC subjects.  

Sadness is the expression with the worst results in terms of target expression percentage. In fact, after 

the experiment, the opinion of both groups was that it is very difficult to simulate sadness even when 

there is an image for the imitation. In this task both groups tend to assume different expressions, in 

particular anger and disgust. 

In all the four acquisitions PD patients exhibited higher percentage of neutral with respect to HC 

subjects. This confirm the presence of a hypomimia that reduced the displaying of other facial 

expressions. 

On average, HC subjects reported higher distances than PD patients along the whole tasks; this 

confirms that HC subjects show larger movements also during posed and imitated facial expressions. 

PD patients do not show any significant difference between acted and imitated expression in all the 4 

tasks. This confirm what described above, namely PD patients do not improve their facial mimicry 

even when they are asked to imitate another expression. This result could confirm that facial 

hypomima is not only a motor disorder, but also the result of an impairment at the level of the emotion 

recognition processes, although further investigations are needed. 
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Video Analysis of  DOC patients: facial movements and vital signs 

A one-way repeated-measures analysis of variance (ANOVA) was performed to compare the effect of 

the noxious stimuli over 4 time instants (before the first stimulus - baseline - and after the first 3 

stimuli) on the Euclidean distance of facial features from the neutral template and on the HR 

estimation. This analysis was performed on 7 patients. Results showed that the stimulus administration 

produced a significant increase in the Euclidean distance from the neutral template over the 4 time 

instants, F(3,18) = 7.1994, p =.002. No significant differences were found in HR values over the 4 

time instants, F(3,18) = 2.6155, p = .08. Concerning the Euclidean distance: no significant differences 

exist between the baseline (mean: 10.99, SD: 6.97) and after the administration of the first stimulus 

(mean: 13.79, SD: 9.18), t(6) = 1.73, p = .13; there was a significant difference between the baseline 

and the interval after the second stimulus (mean: 19.28, SD: 10.09), t(6) = 3.05, p = .02, and between 

the baseline and the interval after the third stimulus (mean: 24.49, SD: 13.48), t(6) = 4.21, p = .006. 

Concerning HR, no significant differences were found during the comparison between the baseline 

and the three intervals after the stimuli.  

No significant correlations were found between distance and CRS, age and months after the onset and 

between HR, CRS, age and months after the onset. 

Thus, DOC patients showed a significant increase of the Euclidean distance of facial features from the 

neutral template during the course of the experiment (in particular after the second stimulus). This is 

consistent with an increase of facial mimicry and facial movements that might indicate a patient’s 

reaction. This distance has lower values during the baseline time interval (i.e. before the 

administration of the first stimulus), reflecting a lower activity in facial mimicry with a facial 

expression similar to the neutral template. However, this is not true for the HR, where the mean value 

remains stable during the first 3 stimuli (around 80 bpm). Moreover, the variations along the 

administered stimuli are very small (around 5 bpm on average) and thus comparable with the accuracy 

of this estimation method. Thus, it is not possible to draw any conclusion on HR variations, although it 

is reasonable assume that only small changes occurred in DOC patients, at least considering the HR. 

This is due to the small number of patients considered for this study (only 9 patients). These patients 

had different etiology, different age and different post-comatose outcome (7 VS patients and 2 MCS 

patients). More accurate results could be obtained from larger samples, differentiating between VS and 

MCS patients. The present work is a pilot study and a first attempt to make a contactless automated 

monitoring of DOC patients, that could be easily extended to larger populations and to other CRS-R 

items (i.e., items for the evaluation of auditory, communicative functions), as well as to the interaction 

of patients with their relatives. In fact, some neuroimaging studies demonstrated that an activation in 

some cerebral areas (such as the amygdala) was found in MCS patients after listening to a familiar 

voice, while is absent in VS patients. For this reasons our study could be extended to larger groups of 

MCS and VS patients in order to find possible differences in facial mimicry and HR, evaluating within 

and between-groups differences.  
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Conclusion 

This PhD projects provides first results concerning the development of a contactless system for 

monitoring facial expressions and facial movements, with applications to neurology (in particular 

Parkinson’s disease and disorders of consciousness).  

Interesting results were obtained in PD patients were through a markerless and low-cost method it was 

demonstrated what already found in literature with more expensive techniques, that is PD patients 

exhibit reduced kinematic parameters of the articulatory movements during speech and reduced 

extents of facial expressions. Both are related to facial bradykinesia. Thus, the proposed methods 

could be implemented at home in order to help these patients in performing speech therapy and 

rehabilitation exercises, since a large percentage of them suffers from dysarthria and facial 

hypomimia. Moreover, this methodology allows the investigation of other disorders that affect speech 

production and facial movements/expressions (amyotrophic lateral sclerosis, Alzheimer’s disease, 

stroke, etc.). 

The analysis of facial movements and facial expressions was then extended to DOC patients, in order 

to highlight possible reactions after the administration of external stimuli. This analysis, in conjunction 

with HR estimation through video-based techniques, showed partial variations, with a visible and 

significant trend only for facial expressions. Thus these results need to be extended to larger 

populations differentiating between post-comatose outcomes. However, the first results obtained 

during these project might be a first step towards the development of an automated monitoring system 

for DOC patients, in order to assess patients’ reactions even when nobody is near them, thus providing 

a reliable support to clinicians in the diagnosis rehabilitation (that today is still prone to high rates of 

errors). 

 

Part I deals with the clinical and methodological background about the topics covered in this PhD 

thesis.  

Chapter 1 is focused on motor signs of Parkinson’s disease (PD), with special attention to speech and 

facial expressions impairments that affect high percentages of these patients. 

Chapter 2 provides an overview about disorders of consciousness (DOC), focusing on the differential 

diagnosis between vegetative state and minimally conscious state. At date, this diagnosis is performed 

through neurobehavioral scales and is prone to high rates of misdiagnosis. 

Chapter 3 summarizes the state of the art of the processing techniques used in this project. Through 

this chapter, the following topics are covered: acoustical analysis to study voice and speech problems 

in Parkinson’s disease; kinematic analysis of articulatory movements during speech and investigations 

in dysarthric patients; automatic analysis of facial expressions with applications to Parkinsonian 

patients with hypomimia; heart rate estimation through video-based methods. 
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In Part II video and signal processing techniques used throughout the studies performed in this 

project are presented. 

In Chapter 4 the aims of the work and the audio/video acquisition protocols developed during this 

project are described. In particular, the study of speech and articulatory movements in PD patients was 

performed using depth sensors (i.e. Microsoft Kinect), in order to extract three-dimensional 

information about the observed scene. 

Chapter 5 is focused on the acoustical analysis of PD speech. In this part of the work, 

voiced/unvoiced segmentation algorithms were applied to detect time parameters related to 

dysprosody during syllable and sentence repetition tasks.  

The syllable repetition task is also used for the analysis of articulatory movements (in particular lips 

movements) through a markerless technique developed within this project and composed by a depth 

sensor and a face tracking algorithm. 

Chapter 6 summarizes the tests performed to test the accuracy of this method against a marker-based 

optoelectronic system, while in Chapter 7 this technique is implemented to study the articulatory 

movements during speech in two groups: PD patients and age-matched control subjects. The aim is to 

highlight the presence of reduced articulatory movements (in terms of displacement, speed and 

acceleration of the articulatory organs) through a fully contactless and low-cost method. In fact, most 

of the works in this field performed these investigations through marker-based expensive methods 

(EMA, optoelectronic systems, etc.). 

Chapter 8 is focused on the study of facial expressions in PD patients. In this part of the work acted 

expressions (upon request of the clinician) and imitated expressions (after the visualization of a picture 

with the requested expression) were studied. The aims are the objectification of facial hypomimia and 

the investigation of emotion recognition processes that seem to be impaired in PD patients. Today a 

big debate in the research community is focused on the nature of hypomimia in PD patients. In fact, 

many works support the hypothesis that the decrease or loss of facial expressions could be due to an 

impairment in facial emotion recognition, while other studies state that hypomimia is the consequence 

of a motor impairment. Thus, the aim of this work was setting quantitative measures about facial 

mimicry through face tracking and classification algorithms. 

Chapters 9 and 10 are focused on methodologies used for studying DOC patients. This part combines 

the study of facial expressions (through the methods exposed in Chapter 8) and heart rate through 

video-based techniques. In Chapter 9 a recursive HR estimation method is proposed, comparing its 

performance against a reference ECG. In Chapter 10, the aforementioned methods are used to study 

patients’ reactions after the administration of standardized stimuli, as expected by the CRS-R protocol. 

 

Part III concerns the experimental results obtained through the different steps of the project. Each 

chapter is related to a chapter of Part II and reports the results obtained with the described 

methodologies.  
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Chapter 11 describes the results obtained with the acoustical analysis algorithms described in Part II - 

Chapter 5 and applied to PD patients.  

In Chapter 12 the results about the accuracy of the markerless method for studying speech articulators 

(described in Part II - Chapter 6) are shown.  

Chapter 13 reports the results on the kinematic analysis of articulatory movements in PD patients 

obtained with the methodologies reported in Part II - Chapters 6 and 7.  

Chapter 14 is focused on the results of the study of facial hypomimia in PD patients through the facial 

expression recognition algorithms described in Part II - Chapter 8.  

Chapter 15 concerns the accuracy results of the video-based HR estimation algorithm whose 

processing details are reported in Part II - Chapter 9. 

Chapter 16 reports the results of the study on DOC patients, where reactions to standardized stimuli 

are investigated through the methods described in Part II - Chapters 9 and 10. 
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1. Hypokinetic dysarthria and facial hypomimia in 

Parkinson’s disease 
 

Alterations of voluntary and involuntary movements of the human being are clinical features common 

to many neurodegenerative diseases. Considering the constant increase in life expectancy of the world 

population and the high rate of incidence of neurological disorders, the automation of the diagnostic 

routines and of the rehabilitation processes is highly desirable. One of the most significant cases is 

Parkinson’s disease, a neurodegenerative illness that affects around 2% of the world population over 

65 years old. 

In this chapter the most important features of Parkinson’s disease are explored, highlighting two motor 

symptoms that are the main subjects of this thesis: speech and facial expression impairments.  

 

1.1 Parkinson’s disease - background 

Idiopathic Parkinson’s disease (PD) is a neurodegenerative illness that involves neurons in the zona 

compacta of the substantia nigra of the midbrain and other pigmented nuclei [1,2,3]. Substantia nigra 

is a pigmented group of neurons composed by two parts: the pars reticulata and the pars compacta 

(Fig. 1.1). This loss of neurons leads to an insufficient synthesis and production of dopamine, an 

essential neurotransmitter for the control of body movements.  

This pathology is associated with a wide range of motor (tremor, stiffness, bradykinesia, postural 

instability) and non-motor (depression, cognitive impairments, sleep and mood disorders) symptoms 

that significantly reduce the quality of life of patients [4,5]. PD was described for the first time as a 

“Shaking Palsy” by James Parkinson in 1817 [6,7]. PD is the second most common neurodegenerative 

disease, following the Alzheimer’s disease [8]. Currently, in Italy, there are around 230000 people 

affected by PD, with higher incidence in male subjects (around 60% of patients are male). Due to the 

increase in life expectancy and the increasing aging of the world population, it is expected that in 2030 

the number of cases will be double [9,10]. The onset age is around 65 years old, although there is a 

small percentage of patients less than 50 years old. 

 

1.1.1 Pathogenesis 

Idiopathic PD is a chronic and progressive disease of the extrapyramidal central nervous system, 

defined by a clinical syndrome characterized by bradykinesia, rigidity, tremor and postural instability 

[2,4,11,12]. This syndrome is commonly known as “Parkinsonism”, and is characterized by all or 

some of the aforementioned motor symptoms. There are different kinds of Parkinsonism, which may 

differ for the underlying causes (gene mutations, metabolic disorders, toxins or drugs) [4]. 

PD is characterized by the degeneration of the dopaminergic neurons in the pars compacta of the 

substantia nigra [1,2] as shown in Fig. 1.1.  
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It is estimated that around 60% of the neuronal population involved is already compromised when 

symptoms become visible. 

Neurons of the substantia nigra normally produce dopamine, sending signals to the basal ganglia, a 

system whose purpose is to associate sensory information and motor commands for a proper motion 

planning. In basal ganglia disorders, as PD, the reduction of these signals affects the regular 

activation/deactivation of the individual components of a motor sequence. 

At histopathological level, the neurons of the pars compacta may present the following characteristics: 

depigmentation, gliosis and appearance of the Lewy bodies, abnormal inclusions of protein masses 

composed by α-synuclein [13]. An example of the Lewy bodies in the substantia nigra is reported in 

Fig. 1.2. 

Although a multifactorial origin is considered for PD, involving genetic and environmental factors, to 

date the exact causes of the onset the disease are not yet fully known [6]. 

 

1.1.2 Symptoms 

As mentioned above, PD is characterized by three cardinal motor signs: tremor at rest, muscular 

rigidity and akynesia/bradykinesia [11,14]. During the course of the disease other non-motor 

symptoms may appear: depression, cognitive impairments, sleep and mood disorders. This 

combination of motor and non-motor symptoms significantly reduces the quality of life of patients 

[4,5,15]. 

 

Fig. 1.1: Brain regions affected by Parkinson's disease [13]. 
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Tremor at rest is a very common sign in PD patients, it appears often in a hand, arm, or leg, and may 

occur in 80% of PD patients. This sign can help in the diagnosis during the first stages of the disease. 

The main characteristics are: low and regular frequency (around 4-5 Hz), unilateral debut, reduction or 

disappearance during voluntary movements, worsening in situations of emotional stress and fatigue, 

complete disappearance during sleep. 

Rigidity is due to an increase in muscular tone and is visible in limbs, neck and trunk. The increase in 

muscular stiffness is detectable by means of the passive mobilization of the body segments, especially 

at levels of wrists and elbows. Consequently, gait shows a deterioration, becoming rigid, in small steps 

and sometimes with accelerations (festination of gait) or blocks (freezing of gait), especially in 

changing direction. 

Bradykinesia is a slowdown in speed and amplitude of the motor gesture. This symptom is responsible 

for the reduction and slowdown of limbs movements. Parkinsonian patients may be subjects with 

reduced extents of movements. Bradykinesia is manifested also in the facial muscles, and is 

responsible of the reduction of the facial expressions.  In several cases, facial bradykinesia may give 

rise to a complete lack of facial mimicry, giving the impression of a facial paresis. This symptom is 

further described in Section 1.2.2. 

During the course of the disease other motor signs, such as postural instability and “freezing” of gait, 

are very common. In particular, during freezing, patients may experience transient episodes of short 

duration with difficulties in starting the action, with the feeling of having feet glued on the ground. 

Other common motor sings are speech and voice impairments. During speech production, it is 

common to recognize the same motor signs visible in limbs: reduced extents and slowdown of 

movements, muscular rigidity and tremor. Speech and voice impairments are further described in 

Section 1.2.1. 

In addition to motor signs, there are several non-motor symptoms: depression, cognitive impairments, 

sleep and mood disorders and sexual dysfunctions [4,5]. Among the cognitive impairments, attention 

Fig. 1.2: Substantia nigra in presence of Parkinson's disease, with characteristics Lewy bodies [4]. 
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disorders, depressive syndromes and dementia (especially in the latest stages) are common in PD 

patients [10]. 

 

1.1.3 Diagnosis 

The diagnosis of Parkinson’s disease is primarily based on a careful anamnesis during the neurological 

examination. Nevertheless, there may be many diagnostic errors due to the subjectivity of the 

examiner. For these reasons some diagnostic criteria were formulated; the most used are: the criteria of 

the UK Parkinson’s disease Brain Bank and the Gelb’s criteria [4,10]. 

The UK Brain Bank criteria require the presence of bradykinesia along with at least one of the 

following symptoms: rigidity, resting tremor, postural instability. Other causes of the Parkinsonism 

must be excluded, i.e. stroke, head injury, neoplastic pathologies, psychotropic drugs treatment. 

Moreover, another fundamental requirement is the presence of at least three signs among: unilateral 

onset, tremor at rest, persistent asymmetry, response to levodopa, and levodopa-induced dyskinesia. 

Gelb’s criteria require the presence of at least two of the following symptoms: tremor at rest, 

bradykinesia, rigidity, unilateral onset, of which at least one among tremor and bradykinesia. 

Moreover, as for the UK Brain Bank criteria, other possible causes of the Parkinsonian syndrome 

should be excluded. 

Neuroimaging techniques can be used to exclude other pathologies with similar symptoms. Among 

these methodologies, Single Photon Emission Computed Tomography (SPECT) and Positron 

Emission Tomography (PET) are used as an aid to the diagnosis. Another neuroimaging technique is 

the “dat-scan” a scintigraphy technique able to identify the loss of dopaminergic neurons in the 

striatum and in the substantia nigra in patients with uncertain PD diagnosis. This technique is 

performed with the injection of a radiotracer (ioflupane I-123) and allows the evaluation of the extent 

of damages to the dopaminergic system [4]. 

Despite pharmacological and neurosurgical treatments, one of the main problems of PD is its 

progressive nature. Thus, a constant and accurate evaluation of the motor symptoms progression is 

fundamental to modify and adapt the treatments during the course of the disease. For these reasons, 

PD patients undergo periodic and thorough assessments of symptoms [10] through the use of 

quantitative scales, such as the Unified Parkinson’s Disease Rating Scale (UPDRS) and the Hoehn and 

Yahr (H&Y) staging scale [16,17]. 

The UDPRS was firstly introduced in 1987 and published in a new version in 2003 by the Movement 

Disorder Society (MDS). Its aim is to give a standardized and quantitative assessment of the disease 

symptoms. This scale is composed by four parts: 

 Part I: evaluation of mood and behavioral aspects of patients (intellectual impairments, 

thought disorder, depression, motivation and initiative); 
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  Part II: auto-evaluation of the activities of daily living (speech performance, salivation and 

swallowing, handwriting, cutting food and handling utensils, dressing, hygiene, falling, 

walking and freezing, tremor, etc.) 

 Part III: motor examination of patients (discussed in depth in section 1.2); 

 Part IV: quantification of therapy-related complications (dyskinesia, clinical fluctuations, 

etc.). 

Each section is subdivided into several items. For each of these items, clinicians give a score that 

ranges between 0 and 4: 0 - absence of the symptom, 1 - slight symptom, 2 - mild to moderate 

symptom, 3 - marked symptom, 4 - severe symptom. The main advantage of this scale is its uniform 

interpretability by means of a numeric score and constitutes an important means to reduce the 

misdiagnosis rate. However, these evaluations may be subjective since they depend on the human 

observation. Thus, this scale could fail in the assessment of slight progressions of the symptoms. 

Another important scale is the H&Y staging scale [16]. Through this scale it is possible to divide the 

disease into different stages, depending on the symptoms progression evaluated through a clinical 

observation. The disease progression is divided into 5 severity phases, according to an increasing score 

from 1 to 5. Other intermediate stages were later introduced (1.5 and 2.5), in order to describe the 

disease progression with more precision. The H&Y disease stages are reported in Fig. 1.3. 

 

1.1.4 Therapies 

Pharmacological treatments 

Cardinal motor signs of PD respond favorably to the dopaminergic therapy, especially to levodopa, for 

a variable number of years depending on the single patient. This response to the treatment is a feature 

so important as to be included in the diagnostic criteria of idiopathic PD exposed in the previous 

section [11,14]. Conversely, postural instability and freezing of gait, whose pathogenesis cannot be 

entirely attributed to the deficit of the nigrostriatal pathway, generally do not respond satisfactorily to 

Fig.1.3: Hoehn and Yahr disease stages (left) and modified Hoehn and Yahr scale (right) with the 

intermediate stages 1.5 and 2.5. 
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the dopaminergic therapy [5]. Moreover, some non-motor signs (as psychotic manifestations) can even 

be induced or unmasked by the dopaminergic therapy [18,19,20]. 

Levodopa (or L-Dopa) is a dopamine precursor which is able to cross the blood-brain barrier. Despite 

its powerful effect on PD symptoms, in most of the patients the prolonged use of this drug is 

accompanied by the onset of complications, like fluctuations in motor performance during the day and 

involuntary movements (dyskinesia and dystonia). These phenomena depend on a complex interaction 

between the progression of PD and the effects of levodopa and are related to the duration of the 

treatment as well as to the dose of the taken medication. 

Dyskinesias are irregular movements (both fast and slow) that mainly occur in facial muscles, neck, 

jaw, tongue, trunk causing in turn abnormal movements of shoulders and hips [21]. It is widely 

accepted that the stable response to the L-dopa that characterizes the first stages of PD mainly depends 

on the ability of the remaining dopaminergic neurons to transform the exogenous L-Dopa into 

dopamine that is successively released according to the physiological mechanisms. With the nigro-

striatal pathway degeneration, the transformation of L-Dopa in Dopamine is possible only outside the 

nigro-striatal neurons. Thus, the effects of the neurotransmitter become dependent on the brain and 

plasma levels of L-Dopa. Experimental results indicate that the pulsatile dopaminergic stimulation 

related to the fluctuating striatal concentration of L-Dopa plays a key role for the onset of motor 

complications in PD [21]. For these reasons continuous and constant dopaminergic stimulation is 

necessary in order to plan an efficient pharmacological treatment. Some examples of this continuous 

dopaminergic administration are: the use of inhibitory drugs of the key enzymes in the metabolism of 

Dopamine, sub-cutaneous apomorphine administrations and administration of Dopamine directly into 

the duodenum. 

 

Neurosurgical treatments 

In cases where drug therapy does not provide further benefits for the control of PD symptoms, some 

neurosurgical treatments are implemented. The most recent and widespread approach is the Deep 

Brain Stimulation (DBS), preferred to other ablative treatments (as pallidotomy). During  DBS 

intervention, the stimulation electrodes are implanted in particular brain regions (as the subthalamic 

nucleus - STN or the globus pallidus interna - GPi) and positioned by means of stereotactic surgery, in 

order to place the electrodes as accurately as possible. Thus, the stimulation electrodes are connected 

to a pulse generator that is implanted in a subcutaneous region of the chest [10]. An example of a DBS 

system is reported in Fig.1.4 Several studies investigated and demonstrated the efficacy of DBS for the 

control of PD motor symptoms. DBS. 
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DBS is able to improve tremor, rigidity and bradykinesia in 15-30 minutes after the stimulation, both 

with low (60 Hz) and high frequencies (> 100 Hz). High frequency stimulations also alleviate drug-

induced motor fluctuations or dyskinesia [22,23]. Other studies [22] reported slight improvements of 

gait and balance after a few hours of stimulation, with low frequency and high amplitude. However, 

the main disadvantages of this technique are: 

 Currently, no standardized guidelines for programming the DBS (in terms of pulse frequency 

and amplitude) are available concerning balance and gait disorders [22]; 

 Neurosurgery should be considered with caution in patients over 70 years old; considering the 

high incidence of PD over 65 years old, this is a big drawback; 

 In addition, not all PD patients are candidates for neurosurgical treatments. Some of the 

selection criteria include, in addition to the age, the presence of the disease for at least five 

years, presence of motor complications due to drug therapy and the absence of comorbidity 

[22,24]. 

Nevertheless, this technique is able to reduce up to the 50-70% the extent of cardinal motor signs. 

However, many authors demonstrated that DBS does not improve other common motor sings such 

speech and voice impairments [25]. 

 

1.1.5 Rehabilitation  

Despite the different pharmacological and neurosurgical treatments, PD is a degenerative disease that 

causes a progressive and severe motor disability. Moreover, some motor symptoms are immune to the 

treatment or, in case of dyskinesia or dystonia, are instead the results of the treatments themselves. For 

these reasons all of the aforementioned therapies should be accompanied by a rehabilitation program, 

Fig.1.4: Brain regions were the stimulation electrodes are implanted 
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in order to strengthen the residual motor skills preventing further damages due to the reduced motility. 

Depending on the particular needs, patients can follow different kind of rehabilitation: motor 

rehabilitation, occupational therapy and speech therapy. 

The aims of motor rehabilitation are: the improvement of muscular strength,  the increase of the 

amplitude of movements and the reduction of muscular rigidity, by means of physical exercises. The 

use of visual or acoustic cues can improve some motor aspects of PD patients, as the stride length, the 

balance and the freezing episodes, for example giving information about the right pace of a motor task. 

Rehabilitation, if undertaken promptly, is particularly useful and effective in slowing the progression 

of the disease and reducing the need to increase the drug dosage. However, a constant and daily 

exercise is fundamental in order to obtain satisfactory results. For these reasons, low-cost and 

markerless systems have become popular in the last years, in order to increase the number of patients 

that can perform rehabilitation exercises at home. Most of these systems are based on technologies 

originally developed for videogames. Two important examples are: the Nintendo Wii and the 

Microsoft Kinect (that is used in this project to study facial movements in 3D) [26,27,28]. Their use 

has been encouraged mainly by their low cost (around 100-200 Euros) and their easy use in the home 

environment. Videogames developed on these systems are useful for the rehabilitation practice, 

because it is easy to provide a sensory feedback (visual or auditory), thus stimulating the postural 

control and facilitating exercises that involve complex movements. 

 

1.2 Motor signs evaluation - UPDRS part III 

As already indicated in section 1.1.3, the prolonged use of L-Dopa is often accompanied with the 

onset of complications and fluctuations in motor performance during the day. A reliable evaluation of 

these fluctuations is of crucial importance to optimize the drug therapy during the course of the 

disease. The use of semi-quantitative scales facilitates a standardized and reproducible assessment of 

motor symptoms during the visit. For this purpose the UPDRS [17] is worldwide used, whose section 

III includes the necessary items for the evaluation of motor signs in PD. For each task, the practitioner 

provides a score (ranging between 0 and 4, sect. 1.1.3), proportional to the severity of symptoms. The 

motor UPDRS is divided into 18 items, one for each motor symptom: 

1. Speech: patients have a spontaneous conversation with the practitioner about activities of daily 

livings, work, etc. Clinicians assess the volume, the modulation (prosody) and clarity of 

speech, the intelligibility and the presence of palilalia (repetition syllables) and tachyphemia 

(rapid speech, overlapping of syllables). 

2. Facial expression: patients are observed at rest and seated, for at least 10 seconds, with and 

without a conversation. The examiner evaluates the eye-blinking rate, the loss of facial 

expressions during the session, the ability in displaying spontaneous smile and the opening of 

the lips. 
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3. Rigidity: patients are evaluated in passive movements of the main joints, in a relaxed position. 

The examiner moves patient’s limbs and neck in order to evaluate the muscular stiffness. 

4. Finger taps: patient has to tap the thumb with the index finger, repeating the movement for 10 

times as faster and wider as possible (repeated for both hands). The examiner considers speed, 

amplitude, hesitations, interruptions and amplitude reduction along the task. 

5. Hands movements: similar to item 4, but during an opening-closing movement of the hand 

(patient opens and closes hands in rapid succession). 

6. Rapid alternating movements of hands: pronation-supination movements of hands, vertically 

and horizontally, with as large an amplitude as possible (for 10 times and for both hands). The 

examiner considers speed, amplitude, hesitations, interruptions and amplitude reduction along 

the task. 

7. Feet movements: patients, in a seated position, have to keep their heels on the ground and then 

tap their toes for 10 times, in a rapid and wide succession (repeated for both feet). The 

examiner considers speed, amplitude, hesitations, interruptions and amplitude reduction along 

the task. 

8. Leg agility: similar to item 7, but during the beating of the heel on the ground in rapid 

succession. Patients should picking up entire leg of at least 3 inches from the ground level. 

9. Arising from chair: patient must attempt to rise from a chair, with arms folded across chest. 

The examiner considers hesitations and interruptions during the rising gesture. Once the 

patient is standing, the examiner evaluates the posture (item 13). 

10. Gait: patient has to walk for a few meters and then must turn around and go back towards the 

examiner. The examiner considers the stride length, the speed, the amplitude of the heel lifting 

from the ground, the dragging of the heel during the gait. Moreover, the examiner can evaluate 

possible freezing events (item 11), in particular hesitations in the beginning or in the changing 

of direction, and the posture during gait (item 13). The examiner considers the number of 

backwards steps or possible falls.  

11. Freezing of gait: see item 10. 

12. Postural stability: response to sudden, strong posterior displacement produced by pull on 

shoulders while patient erect with eyes open and feet slightly apart (retropulsion test). 

13. Posture: see items 9 and10.  

14. Body Bradykinesia and hypokinesia: this item combines slowness, hesitancy, decreased arm 

swing, small amplitude, and poorness of movement observed during all the tasks. 

15. Postural tremor of hands: the patient has to stretch the arms forward with palms facing down. 

The examiner considers the presence and the amplitude of tremors. 

16. Kinematic tremor of hands: this item is evaluated during and index-nose test. The patient has 

to repeat a movement touching his nose and then reaching a target (i.e., the examiner’s finger). 
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This task is repeated for both hands. The examiner considers the presence and the amplitude 

of tremor during the arm movements. 

17. Amplitude of rest tremor: overall assessment of the tremor amplitude (at rest) during the 

whole examination. 

18. Continuity of rest tremor: overall assessment of the continuity of tremor at rest during the 

whole examination. 

Once the examiner has evaluated and assigned a score for each one of these items, the overall motor 

UDPRS score is the sum of the 18 sub-tasks. This score allows a quantitative evaluation of the disease 

progression. However, an objective assessment only during the visits (conducted every 3-6 months) is 

not sufficient to evaluate fluctuations that occur during the days. In addition, the possibility to use 

diaries compiled by the patient or care giver in the various phases of the day, does not guarantee the 

completeness and standardization of the contained information. 

 

1.2.1 Speech and voice impairments 

Impairments of voice and speech (hypokinetic dysarthria) are among the main signs of the disease. 

They affect about 70% of PD patients [29]. PD patients may present alterations related to all speech 

dimensions (i.e., the four subsystems of speech production): respiration, phonation, articulation and 

prosody. Therefore, they might exhibit reduced variability of pitch and loudness, hoarseness, reduced 

stress, imprecise consonant articulation, unorthodox speech silence and speech rate alterations [30]. 

These alterations result in a reduced intelligibility of these patients that may cause a tendency to a 

social isolation. The severity of speech and voice impairments increases with the disease progression. 

Voice in PD patients has the following characteristics: 

 low intensity and fading during speech: even if patients start to speak with high vocal 

intensities, the volume progressively decreases; 

 vocal tremor: some patients may experience a vocal tremor due to the tremor of the muscles of 

the larynx; 

 monotone pitch: pitch variations are small; this results in a loss of expressiveness during 

speech; 

 hesitations in starting to speak: it is hard to start speaking and then to maintain a steady voice 

until the end of a conversation; 

 difficulties in pronunciation and articulation: often the final phonemes of the words are 

unclear or even absent; 

 speech acceleration and loss of timing control: syllables and words may pile up and flow 

without pauses. There may be a progressive acceleration in the pronunciation of words and 

syllables in the end of a sentence. 

 nasalization: the soft palate cannot move properly and failing to block the passage of air to the 

nose. 
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From these features it is easy to assess many analogies with other motor impairments in PD patients: 

tremor, speech acceleration (like a festination of speech), hesitation in starting motor gestures and 

bradykinesia that in turn causes a reduction of the articulatory movements. 

This set of speech and voice impairments in PD patients is usually known as “dysarthria”. This term 

refers to a group of speech disorders caused by an alteration of the muscular control of the pneumo-

phono-articulatory organs due to damage in the basic motor processes involved in speech production 

[31,32]. Different neurological diseases with different brain lesions or different causes,  may lead to 

different kind of dysarthria [33]: flaccid dysarthria, spastic dysarthria, ataxic dysarthria hypokinetic 

dysarthria, hyperkinetic dysarthria and mixed dysarthria. In most of PD patients, dysarthria is usually 

“hypokinetic”. This term refers to the reduced range of movements involved in speech production. In 

fact, hypokinetic dysarthria is characterized by reduced peak velocities and displacements of the 

articulators (i.e., jaw, lips and tongue) during speech movements. Moreover, as explained above PD 

patients exhibit a harsh breathy voice quality. This is due to a non-complete closing of the vocal folds.  

All of these characteristics are the result of impairments in the muscular control of the pneumo-phono-

articulatory system. Unlike other types of dysarthria and neurological disorders, hypokinetic dysarthria 

in PD involves all the speech dimensions, thus resulting in alterations in muscular control of lungs, 

larynx, lips, soft palate, tongue, jaw. 

 

1.2.2 Facial expressions impairments 

One of the most common motor signs of Parkinson’s disease is facial bradykinesia, consisting in the 

reduction and slowness of facial movements. Facial bradykinesia may affect both the upper and the 

lower part of the face. PD patients exhibit a blink rate reduction and reduced smile expressions (both 

spontaneous and posed), as well as impaired voluntary orofacial movements (as reported in the 

previous section). Facial bradykinesia differs from bradykinesia of limbs for different reasons: 

 lack of joints on which the facial muscles act; 

 facial muscles have few or no proprioceptors; 

 rigidity and tremor rarely influence facial muscles; 

 limbs movements are mainly voluntary, in contrast to facial movements that are affected by 

the emotional state. 

Face is an important means for conveying information about the emotional state of a person. Facial 

bradykinesia is reflected in a reduction or loss of spontaneous facial movements and emotional facial 

expressions called hypomimia. PD face is often a “masked” or “poker face”, typical of people without 

any interest in the surrounding environment. External observers and in particular practitioners, may 

have difficulties in decoding the emotional state behind the “mask” [34]. This inaccurate impression 

could lead to problems with social relationships and interactions in PD patients with higher masking 

[35].  
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One of the most altered facial expressions in Parkinsonian patients is smile. When PD patients 

experience spontaneous happiness, their smiles are perceived as fake and insensitive, because of the 

lack of cheeks raising and due to a loss of tone of the orbicularis oculi muscles. This impairment in 

spontaneous facial expressions is consistent with the neuroanatomic evidence of damage to the 

extrapyramidal motor system. Moreover, PD patients may experience difficulties in performing 

voluntary facial expressions and facial movements [36,37,38,39,40]. Although posed expressions are 

believed to be originated from the cortical motor strip, a system that should be intact in PD patients, 

also these expressions appear to be impaired in PD patients [38,39]. The main signs of hypomimia in 

PD are [41]: 

 Wider palpebral distances, that in conjunction with the reduced blink rate gives the impression 

of a staring expression; 

 Flattened nasolabial folds; 

 Unintentional lips separation (mouth opening). 

In most of PD patients hypomimia is bilateral and symmetrical, although low percentages (around 6%) 

of them reported symptoms of hemihypomimia (i.e., one side of the face is more affected than the 

contralateral one). In particular, Ozekmekci et al., 2007 [42] reported that hemihypomimia affects the 

right hemiface in patients with predominantly right-sided PD symptomatology. 

Hypomimia is improved by the dopaminergic therapy, while some studies [43] demonstrated that 

neurosurgical treatments (in particular the STN-DBS) may worsen this sign. 

As mentioned above one of the most common signs in PD hypomimia is the reduced spontaneous and 

posed smiling. This reduction in smiling could also be related to depression [43,44]. Today a big 

debate in the research community is focused on the nature of the hypomimia in PD patients. In fact, 

many works support the hypothesis that the loss of facial expressions could be due to impairment in 

facial emotion recognition, with main deficits in the decoding of disgust, fear and sadness [41]. 

 

1.3 Speech therapy and Parkinson’s disease  

It is now accepted that physical and speech rehabilitation (in conjunction with drug therapy) can avoid 

a worsening of motor symptoms [45]. However, the beneficial effects of rehabilitation may be reached 

only with a  constant exercise. It is therefore essential that patients should be able to perform speech 

therapy not only in rehabilitation and clinical structures, but also in the home environment, in order to 

ensure a higher constancy in the exercises. 

One of the most important speech therapy treatment for PD patients is the Lee Silverman Voice 

Treatment (LSVT
®
) [46,47]. LSVT is an intensive treatment program whose aim is to improve vocal 

fold adduction, vocal loudness and the overall voice and speech production in PD patients with a 

simple set of tasks designed to maximize phonatory and respiratory functions. Patients are constantly 

instructed and stimulated to produce a loud voice with their maximum effort during various speech 
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tasks (as the sustained phonations). Treatment is administered in 16 sessions in a month, divided into 

four individual sessions of 60 minutes per week. Moreover, LSVT was successfully applied to other 

kind of Parkinsonism (Shy-Drager syndrome, multi-system atrophy and progressive supranuclear 

palsy) and to patients with stroke, multiple sclerosis, Down syndrome and cerebral palsy. 

Several studies support the improvements in vocal loudness, intonation and voice quality after the 

administration of the LSVT, with improvements maintained up to two years after the speech therapy 

treatment. Moreover, other studies showed that LSVT can improve other common problems in PD 

dysartrhic patients, i.e. facial hypomimia and swallowing disorders [48]. 

Another key role in speech therapy for PD, is played by the exercises for speech articulators and facial 

muscles [49]. The aim of these exercises is to reinforce and improve the amplitude of the oro-facial 

and articulatory movements, in order to get better speech articulation performance. Some of these 

exercises are: 

 Movements of tongue (pull out, rotations and movements inside the mouth); 

 Exercises for lips and cheeks (repetitive movements like opening and closing, smiling, 

protrusion and rounding of lips, puffing cheeks); 

 Displaying of facial expressions; 

 Movements of the eyelids. 

Despite the high percentages of PD patients that suffer from dysarthria, only a small part of them 

undergoes speech therapy. This discrepancy is due to several factors: 

 during group sessions, the speech therapist has difficulty in placing the right attention to each 

patient, in order to evaluate the exercises and provide a feedback to the patients;  

 most of the patients with hypokinetic dysarthria, due to neurodegenerative diseases, are 

elderly people, who could encounter difficulties in moving to specialized centers;  

 in addition, these patients should perform also the exercises at home. However, they might not 

be stimulated without the supervision of the therapist; 

 despite several studies demonstrated the effectiveness of speech therapy on the phono-

articulatory performances of PD patients there is still a lack of awareness about benefits that 

can be achieved with speech therapy treatments. 

For these reasons a system that could automatically provide a feedback about the articulatory 

movements and that could also be implemented in home environment would be highly beneficial. 

Therefore, this system should be as much as possible, contact-less and at reasonable price.  

 

 

 

 

 



  

34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

35 

 

2. Differential diagnosis of disorders of consciousness 
 

Disorders of consciousness (DOC) after coma in severe brain injury are: Vegetative State (VS), 

characterized by the absence of self-awareness and awareness of the environment, and Minimally 

Conscious State (MCS), in which certain behaviors, although functionally inconsistent, are sufficiently 

reproducible to be distinguished from simple reflex responses. The interest in these conditions has 

gradually spread in the medical and scientific community in relation to the relevant bioethical theme 

of end of life decision-making processes. Institutional information about incidence and prevalence 

provide variable data. However, it is estimated that only in the Tuscan region there are approximately 

220 new cases every 1 million inhabitants per year [50]. Nationwide, there are around 2000 patients 

who require continuous care in specialized centers or at home with obvious economic implications. 

The differential diagnosis between VS and MCS is currently based on neuro-behavioral scales, 

instrumental examinations (Electroencephalography- EEG, evoked potentials) and functional 

neuroimaging techniques, with a high rate of misdiagnosis. Since only MCS patients may evolve 

towards a recovery, the importance of combining rating scales with objective, non-invasive, 

contactless and cheap methods is of increasing relevance. Another important aspect for these subjects 

is the assessment of pain, which still relies on the perceptual evaluation of facial expressions, 

respiratory rate, body language, which are difficult to interpret. 

 

2.1 Disorders of consciousness - background 

Consciousness is a multifactorial concept composed by two main elements: self-awareness and 

awareness of the surrounding environment (“awareness” for simplicity) and “wakefulness”. According 

to the different levels of these two components, there can be many conditions (Fig.2.1): 

 Wake state: the person is awake and has a full self-awareness and awareness of the 

surrounding environment; 

 Drowsiness; 

 Light sleep; 

 Deep Sleep; 

 Coma: the person has a complete failure of the excitatory system, with closed eyes, and is 

unable to be woken up with external stimuli. 

In neurology, coma is a deep unconsciousness state, characterized by the absence of both aspects of 

consciousness (awareness and wakefulness), and caused by the inactivation of those neuronal circuits 

responsible of maintaining a waking state. These circuits are in the area of the brainstem called 

reticular activating system (RAS). RAS grows from the spine in a reticular formation and is connected 

to midbrain, myelencephalon, hypothalamus and cerebral cortex. 
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Coma is also defined as an “unarousable unresponsiveness state” and can be provoked by intoxications 

(drugs, alcohol, toxins), metabolic disorders (hypoglycemia, hyperglycemia, ketoacidosis) or damages 

and diseases of the central nervous system (stroke, head trauma, hypoxia) [52]. In most cases, coma is 

a transient condition that can last for a few weeks, ending when patients open the eyes, recovering the 

wakefulness. Although the re-opening of the eyes is sufficient to establish the end of this first acute 

phase, it is not enough for determining what the clinical outcome of patients is. In fact, it is necessary 

to understand whether patients recover the awareness and at what level. According to these criteria, 

the main post-comatose outcomes can be (Fig.2.2) [53]: 

 Vegetative state; 

 Minimally conscious state; 

 Locked-in syndrome; 

 Brain death 

 Recovery. 

Vegetative state (VS) is a syndrome characterized by the lack of awareness, and the lack of intentional 

and communicative responses [54]. VS is also called Unresponsive Wakeful Syndrome (UWS), since 

VS patients maintain a sleep-wake rhythm, they can smile, crying, grimacing and emit sounds, but 

without certain reasons [55]. 

VS patients can react to behavioral test, but they are unable to reproduce response in a continuative 

way. Also VS can be viewed as a transient state that, in turn, can evolve into: 

Fig. 2.1: Arousal-Awareness plane: VS and MCS are in a region with high arousal (between 

drowsiness and wake) and low awareness [51]. 
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 Persistent (or continuing) vegetative state (PVS); 

 Minimally conscious state (MCS). 

PVS concerns patients that after coma do not recover the awareness within 30 days. The etiology is 

variable and can be the result of: traumatic brain injury (TBJ), ischemia, hypoxia and encephalitis. The 

prognosis depends on the causes of the brain damage. In case of TBJ there are no certain indicators of 

the negative outcome before a period of 12 months after the injury. In fact, the percentage of PVS 

patients that recovered after this period is very low (around 1.6 % [56]). In case of hypoxic-ischemic 

attack, several indicators for a reliable prognosis may already exist in the first weeks after the injury. 

Of course, a confirmation of the persistence of VS is necessary after 3-6 months [56]. In that period, 

the neurologist has to identify the absence of reproducible, intentional or voluntary responses after the 

administration of visual, acoustic, tactile and noxious stimuli. Moreover, there should be also a lack in 

language understanding. PVS is characterized by an irregular but cyclic sleep-wake rhythm, in 

contrast to patients in coma that maintain their eyes closed [57]. For PVS patients, the probability to 

get out of the coma decreases with time and after a year patients who regained consciousness may 

present significant disabilities in proportion to the time spent in such condition. 

MCS, instead, is characterized by a partial recover of the awareness. There may be some cognitive-

mediated behaviors, inconsistent in functional terms, but maintained long enough to be distinguished 

from simple reflex responses [58]. These patients may experience smiles or other responses after the 

administration of external stimuli (audio-visual, emotional and linguistic stimuli), suggesting their 

ability to interact with the surrounding environment [55]. MCS is often considered as an intermediate 

state between VS and the presence of consciousness. MCS can be further divided into 2 states: 

Chronic MCS and Acute MCS. MCS is chronic when no further improvements occur in time, while is 

Fig. 2.2: Main post-comatose outcome [53]. 
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acute when there are improvements over time that may also lead to a substantial recovery of 

consciousness.  

For the diagnosis of the MCS, it is necessary to demonstrate a persistent presence of the awareness, 

proving that the ability to perform simple commands (i.e. to respond to verbal and emotive stimuli) is 

not due to simple a reflex activity. 

Locked-in syndrome, describe by Plum and Posner in 1966 [52] is a particular condition characterized 

by the presence of awareness and wakefulness. However, patients are not able to move due to the 

complete paralysis of all the voluntary muscles of body. This results in a quadriplegia with inability to 

speak, but with preserved cognitive functions. The communication occur only with the codification of 

eye movements (i.e. eye-blinking), since their efferent pathways are not compromised by the brain 

damages. It is not uncommon for patients with locked-in syndrome to be classified as VS patients. 

Nowadays, there are different diagnostic methods for DOC and for the differential diagnosis between 

VS and MCS. The most important are: 

 The use of neurobehavioral scales; 

 Neuroimaging techniques; 

 Electrophysiological studies with the support of vital signs monitoring. 

In the next sections, these techniques will be briefly illustrated, focusing more on the use of 

neurobehavioral scales. However, all of these methods present intrinsic problems and disadvantages. 

The diagnosis based on neurobehavioral scales is a practical and reproducible method, making it 

widely used in the clinical practice. However, it relies on the subjective perception of the clinicians 

and is mainly based on the experience of the examiner that therefore might provide biased evaluations. 

Neuroimaging techniques are very precise, providing very accurate information about the 

physiological process underlying the disorder (often in real-time). However they cannot be used 

regularly due to the high costs of the technologies. Finally, electrophysiological studies are 

reproducible, but sometimes can lead to contradictory results that lead to confusion about the basic 

concepts of consciousness, rather than helping the clinical diagnosis. Moreover, the presence of 

cumbersome devices and sensors attached to the patient’s body may be a further disadvantage of these 

techniques. 

 

2.2 Differential diagnosis: vegetative state and minimally conscious state 

As mentioned above, it is easy to understand that the differential diagnosis between VS and MCS can 

be extremely hard and prone to a high rate of misdiagnosis. This differential diagnosis is mainly 

performed by means of neurobehavioral scale, with the support of neurophysiological studies (EEG, 

evoked potentials) and functional neuroimaging techniques (SPECT, PET, fMRI). However, the latter 

techniques are mainly used in the research field, due to the high costs. 

The use of neurobehavioral scales is based on the clinical observation performed by trained observers 

(neurologists, therapists, etc.) and allows not only a classification of the clinical status of patients, but 
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also the quantification of the behavioral changes and evolutions. The most widely used scales are: the 

Glasgow Coma Scale (GCS) and the Coma Recovery Scaler - Revised (CRS-R) [59,60,61,62], that 

will be described in the next section. Other neurobehavioral scales are: the Sensory Modality 

Assessment and Rehabilitation Technique (SMART) [63], the Disorders of Consciousness Scale 

(DOCS) [64,65], the Level of Cognitive Functions (LCF), the Disability Rating Scale (DRS) and the 

Bartel’s index [66]. However, these methods will not be considered in this chapter. 

A key role to plan therapy and rehabilitation treatments for DOC patients, is played by the first 

diagnosis after the end of coma [67]. In fact, MCS patients who undergo a well-defined rehabilitation 

treatment are more prone to a better consciousness recovery than VS patients. However, as stated 

above, an important problem is the high rate of misdiagnosis between VS and MCS. Childs et al., 

1993 [68] investigated this misdiagnosis rate in DOC patients: of 49 recruited DOC patients (with 

different etiology), 18 of them (around 37%) were incorrectly classified. Another study by Andrews et 

al., 1996 [69], showed that the error could be higher, around 43%. A more recent study, confirms these 

rates, with a misdiagnosis rate around 41% [70]. Of course, a correct diagnosis of DOC patients may 

influence both public expenditure and private health costs [58]. Despite the number patients with 

severe brain injury and low consciousness levels is negligible if compared to other neurological 

diseases (between 56 and 70 cases per million), the impact on the economy is very important: the cost 

per person during the course of these conditions may vary from 600000$ up to 1785000$. 

 

2.2.1 Neurobehavioral scales 

The classification of the clinical status is measured by means of different neurobehavioral scales: the 

simplified scales, the levels scales and the score scales. Among the score scales, the most important 

are the GCS and the CRS-R. 

 

Glasgow Coma Scale 

The GCS was the first score scale, introduced in 1974 by Teasdale and Jennet [59]. This scale, assigns 

a grade to the consciousness alteration on the basis of the patient’s responses to external stimuli 

(noxious, verbal, etc.). The overall score ranges from 3 (deep coma) to 15 (patient is awake and 

conscious), as reported in Fig. 2.3. 

This scale evaluates the opening of the eyes (assignig a score between 1 and 4) the motor responses 

(with a score between 1 and 6) and the verbal response (with a score beteween 1 and 5). Patients with 

scores ≤ 8 (for instance, Eyes opening = 1, Motor response = 5 and Verbal response = 2) are in coma 

and are unable to open the eyes after noxious and verbal stimuli [60] 
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Coma Recovery Scale - Revised 

Given the high false negative and positive rates, Giacino et al., 2004 [61,62] restructured the JFK 

Coma Recovery Scale, firstly proposed in 1991. The aim of this scale is to provide a standardized 

method for the differential diagnosis of between VS and MCS, for the prognostic evaluation and for 

planning the therapeutic treatments in DOC patients. CRS-R seems to be the most promising tool for 

the differential diagnosis of VS-MCS and it is the most widely used scale in the clinical routine. The 

aim of the CRS-R is to quantify the auditory, visual, motor, oro-motor, communicative and arousal 

functions of DOC patients. This scale is divided into 29 items grouped into 6 sub-scales, each one 

relatives to the aforementioned functions (Fig. 2.4). For each sub-scale, the observer provides a score 

on the basis of the presence or absence of specific responses after the administration of standardized 

stimuli. The lowest score of each subscale suggests a reflex activity, while the highest scores are index 

of cognitive-mediated responses. 

 

 

 

Fig. 2.3: Glasgow Coma Scale [59]. 
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Fig. 2.4: Italian version of the JFK Coma Recovery Scale - Revised [62]. 
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The auditory scale score is assigned observing movements of limbs, head and eyes related to a specific 

command (for instance looking at an object) or to a specific sound (for examples, external sound or 

clapping hands). Concerning the visual scale, the examiner has to observe the ability of patients to 

discern and reach with arms some objects, as well as the ability to pursuit specific objects with gaze. 

The motor function is assessed administering a noxious stimulus to hands or feet. The presence or 

absence of flexor response determines the score. The oro-motor verbal scale evaluates the ability of 

patients to produce verbalizations, vocalizations or just simple reflex movements of the articulatory 

organs (jaw, lips and tongue). Similarly, the communicative scale observes the patient’s ability to 

communicate in an appropriate and functional way (i.e. vocalizing or verbalizing) or by means of non-

functional cues (for instance through the eye-blinking). Finally, the wakefulness scale, provides an 

overall score, about the patient’s state during the whole examination. 

The overall score ranges from 0 to 23 and the differential diagnosis between VS and MCS is 

performed according to the following criteria [61,62]: 

 Vegetative state: auditory, motor and oro-motor verbal scores ≤ 2, or visual score = 1 and 

communicative score = 0; 

 Minimally conscious state: auditory score between 3 and 4, or visual score between 2 and 5, or 

motor score between 3 and 5, or communicative score = 1; 

 Minimally conscious state towards the emersion: motor score = 6, or communicative score = 

2. 

However, it is not always easy to classify the patient’s response on the basis of these criteria. Often, 

there could be many misleading events (like the eye-blinking) where it is very difficult to relate the 

event itself to the administered stimulus and to understand its nature (reflex or cognitive-mediated).  

 

Pain evaluation in DOC patients 

Another important aspect to be considered in these patients is the perception of pain. In subjects that 

are able to communicate, pain can be assessed by means of self-assessment scales, like the Visual 

Analogic Scale (VAS). Through this method, subject reports an “amplitude” of the perceived pain on a 

graduated line of length equal to 10 cm [71]. However, this evaluation is not applicable to DOC 

patients that are unable to communicate. In these patients, as in other severe dementia states, pain can 

be assessed through scales that consider vital signs (heart rate, respiratory rate, etc.) as well as 

physiognomic parameters (facial expression, postures and body language). 

The Nociception Coma Scale (NCS) was the first proposed method for the assessment of pain in MCS 

and VS patients [72]. It relies on 4 different sub-scales that evaluate the motor, verbal, visual and 

facial responses. For each one of these scales, the score ranges between 0 (null response) and 3 

(maximum response), for an overall score between 0 and 12 points. The evaluation is performed 

during the baseline and after the administration of noxious and non-noxious stimuli.   
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One of the most widespread tools to assess pain in DOC patients is the Pain Assessment in Advanced 

Dementia Scale (PAINAD)  [73]. The observer gives a score from 0 (normal) to 2 (severe) to each of 

the 5 subsections: respiratory rhythm, vocalization, facial expressions, body language and consolation. 

The overall score varies between 0 and 10 and through this score it is possible to have several pain 

levels: 

 Slight pain: score between 1 and 3; 

 Moderate pain: score between 4 and 6; 

 Strong pain: score between 7 and 10. 

However, the interpretation of these cues could be very subjective, leading to a difficult and biased 

assessment. 

 

2.2.2 Neuroimaging techniques 

As a result of what discussed above, it is easy to observe that the differential diagnosis between VS 

and MCS still relies on the ability and experience of the clinicians, resulting very subjective. For this 

reason, many studies tried to elucidate the dynamic underlying neuronal processes in DOC patients by 

means of neuroimaging techniques. 

Owen et al., 2002 [57] investigated the cerebral regions involved in facial recognition and speech 

perception in three PVS patients, using PET. Areas involved in visual recognition are those of the 

fusiform right gyrus, and areas responsible of speech perception and recognition are those of the 

superior temporal gyrus, both included in the temporal lobe. In two of the three VS patients the 

responses were comparable with control subjects. These results led to the conclusion that the PVS 

diagnosis was wrong (hypothesis supported by the fact that one of these patients reemerged from PVS) 

or that, despite the differential diagnosis performed with the CRS-R led to similar scores, each patient 

reacts in a very different way after the administration of external stimuli. However, other studies 

performed through the use of fludeoxyglucose as PET marker [74] demonstrated that the amount of 

glucose used in VS patients both at regional and global level, is lower than that used in age-matched 

healthy control (HC) subjects. 

Other studies [75,76] investigated the brain responses to speech and voice stimuli in MCS patients by 

means of fMRI [75] and PET [76]. In particular, an activation of the amygdala (the area responsible of 

the integration of superior motor processes, like emotions) was found after listening to a familiar voice 

(mother’s voice). Boyle et al., 2004 [77], demonstrated that MCS patients and HC subjects had similar 

responses to acoustic stimuli, by using PET. In fact, HC subjects highlighted the activation of the 

Brodmann’s areas 41, 42 and 22 (i.e. the fusiform right gyrus and superior temporal gyrus), similar to 

those encountered in MCS patients. In contrast VS patients did not show any activation of area 22. 

This could be due to the different level of consciousness that leads to an ability to process more 

detailed and complex information. 
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2.2.3 Electrophysiological studies and vital signs monitoring 

Other diagnostic investigations in DOC patients, rely on the electrophysiological techniques. In 

particular, the most widely used techniques are the Electroencephalography (EEG) and the Event-

Related Potentials (ERP). An ERP is a neurophysiological examination that studies the response of the 

nervous system to a sensory stimulus, analyzing the afferent nervous pathways. These responses can 

be the result of a thought or a perception and are measured through an EEG. Since the acquired 

response is the sum of the activation of different brain areas, the process is repeated several times and 

then the results are averaged, in order to delete the background brain activity. In general the type of 

ERP is identified with a letter (N - negative or P - positive) that expresses the polarity and is followed 

by the typical latency after a stimulus (for instance: P400 is a positive peak that occurs 400 ms after 

the stimulus).  

EEG studies were performed to monitor the brain activities in DOC patients. In [78], the main 

differences between these patients and HC subjects were investigated studying the different EEG 

waves: 

 Alpha waves (frequency range: 8-13 Hz, amplitude: 20-200 µV), typical of quiet conditions 

and wakefulness with closed eyes; 

 Beta waves (frequency range: 13.5-30 Hz, mean amplitude 19 µV), intense brain activities; 

 Theta waves (frequency range: 4-7.5 Hz, mean amplitude 75 µV), typical of adults with strong 

emotional stress, metabolic disorders and medulla oblongata lesions; 

 Delta waves (frequency range: 0.5-4 Hz, amplitude: 1-200 µV), typical of deep sleep. 

In general the EEG signals of VS patients have a slowdown of theta and/or delta waves with an 

attenuation of signals proportional to the extent of brain damage. It is not uncommon to find patterns 

typical of epilepsy. 

A case study by Coleman et al., 2009 [79], shown an EEG pattern with a prevalence of delta and theta 

waves. In general, the EEG power spectral density of MCS patients is characterized by a decrease of 

the power content in particular frequency ranges (> 20 Hz) typical of brain activities during the 

wakefulness. 

 

Vital signs monitoring 

In recent years, many studies proposed to investigate vital signs, in particular the heart rate (HR), in 

DOC patients, in order to monitor possible reactions in situations of emotional stress or after the 

administration of exogenous stimuli. The heart rate monitoring, and in particular the study of its 

variations (Heart Rate Variability - HRV) is a good index of the autonomic nervous system activity.  

Riganello et al., 2010 [80] studied VS patients during the listening to various music samples, selected 

to provoke different emotions. The HR was acquired through photopletysmography during the task, 

comparing HC subjects and VS patients. Moreover, HC subjects self-assessed their emotional state 

during the listening task (choosing between positive and negative emotion), in order to label the music 
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sample with a particular emotional flag. Results showed that for both groups the HR variations are 

similar, according to the aroused emotion.  

Flotta et al., 2013 [81] exploited the idea to study HR in DOC patients, proposing an integrated system 

for storage, processing and analysis of data coming from VS and MCS patients. The acquisition of 

signals and data during the monitoring of these patients, is an important process that allowed creating 

a database. This dataset is important to help clinicians during the diagnosis phase, being a support for 

the decision of the best rehabilitation process for each patient. 
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3. State of the art 
 

3.1 Acoustical analysis of patients with Parkinson’s disease 

Idiopathic Parkinson’s disease is associated with a wide range of motor (tremor, stiffness, 

bradykinesia, postural instability) and non-motor (depression, cognitive impairments, sleep and mood 

disorders) symptoms that significantly reduce the quality of life of patients [4,5].  Impairments of 

voice and speech (hypokinetic dysarthria) are among the main signs of the disease and can affect about 

70% of PD patients [29].  

As already introduced in Chapter 1, PD patients may present alterations related to all speech 

dimensions (i.e. the four subsystems of speech production): respiration, phonation, articulation and 

prosody. Therefore, they might exhibit reduced variability of pitch and loudness, hoarseness, reduced 

stress, imprecise consonant articulation, unorthodox speech silence and speech rate alterations [30].  

The non-invasiveness of acoustic measures, along with the debut of speech impairments in the early 

stage of the disease [82], has made this field very attractive towards researchers. Many authors tried to 

detect features of voice and speech belonging to the aforementioned speech dimensions (in particular 

phonation, articulation and prosody) that could discriminate PD patients from healthy subjects. Such 

features could provide an aid to an early diagnosis of PD, but could also help tracking the disease 

progression and testing the efficacy of drug therapy. 

Phonation is the production of sound at the level of the larynx due to the vibration of vocal folds. The 

most widespread task for studying this speech dimension is based on the acoustical analysis of a 

sustained vowel emitted by the patient at comfortable pitch and energy. Rusz et al. [83,84] showed 

that significant differences exist between PD patients and healthy subjects concerning some acoustic 

parameters: jitter, shimmer, HNR (Harmonics to Noise Ratio) and PPE (Pitch Period Entropy, a 

parameter related to the inefficiency of voice frequency control [85]). Specifically HNR, a parameter 

related to voice roughness and breathiness, was proven useful by Tsanas et al. [86] whose results 

confirm that PD patients tend to have a harsher voice as compared to healthy subjects. 

Articulation includes the set of movements of the articulatory organs (tongue, lips and jaw) that, by 

modifying the vocal tract resonant cavities, allow modelling the sound coming out from the vocal 

folds. Thus, most of the studies on speech articulation are based on the first two formant frequencies 

F1 and F2. Recently, Rusz et al. [87] showed that articulatory impairments in PD patients can be 

detected from F2u where FKj is the K-th formant for vowel j, tVSA (triangular Vowel Space Area, 

defined as: abs(F1i * (F2a – F2u) + F1a * (F2u – F2i) + F1u * (F2i – F2a))/2), F2i /F2u,  and VAI 

(Vowel Articulation Index, (F2i + F1a)/(F1i + F1u + F2u + F2a)). In particular, differences are 

enhanced by specific tasks such as sentence repetition, reading a passage and monologue. Walsh et al. 

[88] showed a reduction of the F2 transition during the emission of a diphthong within a sentence in 

PD patients. This alteration reflects the undershooting of tongue and/or jaw motion. Other studies 
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[89,90,91] compared different acoustic parameters related to articulation, highlighting that VAI is 

more accurate than VSA in discriminating PD from healthy controls. Moreover, Sapir et al. [91] 

proposed a novel parameter FCR (Formant Centralization Ratio) and demonstrated that FCR and 

F2i/F2u are not gender-sensitive. 

These results on speech articulation highlight the hypokinetic characteristics of speech impairments 

typical of PD, since the reduction of articulatory movements is reflected in the alterations of 

parameters derived from the formant frequencies. 

One of the most common speech impairments in PD is dysprosody that includes alterations of rhythm 

and speed of speech, articulation, speech/pause ratio, pitch intensity and its variations [30]. Many 

authors carried out studies on prosodic patterns of voice in PD patients, assessing parameters related to 

speech rate. Skodda et al. [92] found a speech rate variation (number of syllables per second) closely 

related to the progression of the disease. This modification is characterized by articulatory acceleration 

in the early stages of the disease, followed by slowdown in advanced stages. Speech rate measures 

were also used to test the dopaminergic therapy effects on Parkinsonian voice. However, no significant 

differences were found during this pharmacological treatment [93]. 

Another widespread task used to evaluate speech rhythm disorders is the syllable repetition task (oral 

diadochokinetic test). It was shown that PD patients tend to have less control on rhythm stability 

during this task, with a tendency to increase the pace of repetition. These results reflect a dysfunction 

at the level of basal ganglia that control the temporal regulation of a motor sequence [94]. Rhythm 

alterations derived from the oral diadochokinetic test were also found by Rusz et al. [84], who found 

that PD patients have fewer syllables per second with respect to HC subjects. Furthermore, PD 

patients showed a reduction in fundamental frequency (F0) modulation and intensity and an increase 

of the number of pauses per second within a monologue or when reading a text. A reduction of F0 

variability was also found in other works [95], as well as a reduction of pauses within polysyllabic 

words. 

These results demonstrate that rhythm variations, pause alterations and the reduction of F0 variability 

are relevant parameters to detect dysprosody patterns in PD. 

Other tests consist in the repetition of a short sentence, as reported in [87,88], although these studies 

considered only the articulatory dimension of speech. 

Most of the works on acoustic analysis in PD patients make use of freely available software tools like 

PRAAT [96] or commercial tools like the Multi Dimensional Voice Program (MDVP by Kay 

Elemetrics Corp. [97]). 

However, these tools are not provided with a pre-processing step that allows analyzing different parts 

of an audio recording in a completely automatic way. Specifically, as said above, the repetition of a 

standardized sentence is a commonly performed test in PD patients. With MDVP or PRAAT a manual 

selection of each sentence from the whole recording has to be made first. Then the tool is applied 

sentence by sentence for the estimation of the acoustic parameters. Therefore the automation of 
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manual segmentation would be desirable, being a time-consuming and operator-dependent step, 

especially in the case of long recordings.  

Few attempts have been made in order to solve this technological challenge for the acoustic analysis in 

Parkinson’s disease. Cmejla et al., 2013 [98] proposed a Bayesian autoregressive change point 

detector (BACD) for the evaluation of speech disfluency and articulation impairment. Tsanas et al. 

[99] used the AHTD (At Home Testing Device by Intel Corp. [100]) for tele-monitoring PD patients, 

in order to track the disease progression at home. However, the audio processing (concerning 

sustained vowels only) is made offline, as the voice records are sent to a server located in the medical 

center. Moreover, the analysis of sustained vowels, albeit providing useful parameters for the 

distinction between PD and healthy subjects, does not allow studying articulatory and prosodic 

alterations. 

Therefore it is relevant to develop a robust method for a complete automation of the process. This 

would be essential also for the implementation of an analysis system to be used at home for 

monitoring and rehabilitation of PD patients.  In particular, in the framework of speech therapy it is of 

basic importance for the patient to get an immediate feedback from the system in order to improve 

articulation.   

 

3.2 Kinematic analysis of articulatory movements 

3.2.1 Methods for articulatory movements analysis 

In the past decades several techniques were proposed and used for studying the movements of the 

articulators (lips, tongue and jaw): x-ray imaging (cineradiography, x-ray microbeam system), 

magnetic resonance imaging (MRI), ultrasound technique, electromagnetic articulography (EMA) and 

optoelectronic systems (passive and active) [101]. Applications of these methods may include: the 

study of speech disorders in neurological illnesses (Parkinson’s disease, amyotrophic lateral sclerosis, 

etc.) by means of optoelectronic [88,102], electromagnetic [103] and x-ray microbeam systems [104]; 

the use of the EMA to estimate the parameters of an articulatory model [105]; the study of tongue 

movements for speech therapy applications [106,107] by means of electromagnetic techniques. 

However, the main disadvantage of these methods is related to the high costs that limit their use only 

in specialized laboratories. To our knowledge one of the few attempts to go beyond this limit is 

presented in the work of Feng et al., 2014 [108] where the performance of a system composed by 2 

consumer-grade cameras in conjunction with a motion tracking software, are compared against an 

optoelectronic technique to track lips and jaw movements. However, the use of markerless systems (as 

well as low cost) would be desirable, in order to reduce the preparation time of the experiment and the 

discomfort for patients. 

The spread of 3D low-cost sensors (like Microsoft Kinect, Asus Xtion, Primesense Carmine, Creative 

Senz3D, etc.) that enables providing 3D information of the observed scene, could help us for these 



  

50 

 

purposes, in order to extract trajectories and kinematic parameters in the 3D space, with the possibility 

to analyze some fundamental articulatory parameters like lip protrusion. At date, no previous work has 

still considered the use of 3D depth sensors for studying articulatory movements. Moreover, these 

devices could imply beneficial applications for speech therapy since most of the tasks consist in facial 

and articulatory movements and a feedback on how these movements are carried out is fundamental 

[109].  

 

3.2.2 Applications to patients with Parkinson’s disease and other neurological disorders  

In most of PD patients, dysarthria is usually “hypokinetic”. This term refers to the reduced range of 

movements involved in speech production. In fact, hypokinetic dysarthria is characterized by reduced 

peak velocities and displacements of the articulators during speech movements [110]. This articulatory 

undershoot may lead to alterations in some acoustical parameters that are typical of articulation, such 

as the reduction of the second formant transition slope or a reduction of the tVSA [89,90,91]. 

Several approaches and methods have been implemented to describe the kinematic characteristics of 

the articulators in hypokinetic dysarthria associated with PD. Most studies 

[88,103,104,111,112,113,114] pointed out a reduction in terms of velocity and range of movements of 

the articulators, although results of unimpaired articulatory movements in Parkinsonian patients were 

also presented [115]. 

One of the most widespread tasks for kinematic analysis of the articulators is the production of 

syllables. Through this test several authors [111,113,114] found a reduction of the displacement and of 

the peak velocities of lower lip and jaw during the opening and closing of the mouth. A slowdown of 

jaw and lower lip movements was demonstrated also by Forrest et al., 1989 [112]; on the other hand 

they found an increase of the closing velocity of the lower lip in PD patients. This result might reflect 

an alteration of the motion control due to the severity of the dysarthria. In fact, as mentioned above, 

although the majority of PD patients suffers from hypokinetic dysarthria, a small percentage 

experiences symptoms of hyperkinetic dysarthria, whose occurrence could be related to the prolonged 

administration of drug therapies that causes the onset of involuntary movements (dyskinesia) [110].  

Other works on the articulatory kinematics in PD patients with hypokinetic dysarthria focused on 

tongue movements during speech. Yunusova et al., 2008 [104] studied movements of tongue, jaw and 

lower lip during the pronunciation of words, finding that tongue movements of PD patients could be 

more discriminative as compared to control subjects, although a reduction in lips and jaw kinematics 

still exists. Wong et al., 2012 [103] studied tongue movements during a sentence repetition task, in 

order to discriminate between dysartrhic and non-dysarthric PD patients. Unlike most of the previous 

findings, the authors demonstrated that dysarthric PD patients exhibited wider ranges of movements 

with an increase of peak velocities and accelerations. 

Although it is well accepted that PD patients with hypokinetic dysarthria exhibit a reduced articulatory 

kinematic, some conflicting results were found. Walsh et al., 2012 [88] tried to elucidate this point 
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studying jaw and lower lip movements during the opening and closing gestures in case of bilabial 

consonants. The authors demonstrated that PD patients exhibited a reduced articulatory kinematic, 

highlighted by reduced velocities of jaw and lower lip. These results support the hypothesis that a 

“downscaling” in speech production occurs in PD patients with hypokinetic dysarthria.  

Another important point concerns the implemented methodologies. As stated in the previous section, 

the kinematic analysis of the articulators was performed through several motion capture technologies. 

The most important are: optoelectronic systems [88,113,115], electromagnetic articulography (EMA) 

[103], X-ray techniques [104] and Magnetic Resonance Imaging (MRI) [101]. However, all these 

techniques are quite expensive and their use is limited to research within highly specialized 

laboratories. Moreover, some of the most widely used techniques (optoelectronic systems and EMA 

above all) are marker-based and need quite long preparation protocols in order to achieve good results. 

Despite hypokinetic dysarthria may afflict a large number of PD patients, today only a small 

percentage of PD patients undergoes speech therapy with specific protocols aimed at increasing their 

articulatory movements. This is due to several factors: 

 during group sessions, the speech therapist has big difficulties to pay the same attention to 

each patient in order to evaluate the performance during exercises and provide an immediate 

feedback;  

 several patients with hypokinetic dysarthria due to neurodegenerative diseases are elderly 

people that often have difficulties in moving to specialized centers;  

 patients should perform the exercises also at home. However, they do not because they lack 

the presence of the therapist. 

In the last years, several results in monitoring and rehabilitation of dysarthria in home environment 

were achieved with the help of acoustical analysis [99,100]. Instead, few results were obtained for the 

automation of exercises that involve facial muscles like those commonly performed in speech therapy 

protocols. The main reasons are related to the high costs of the methods used to study articulatory 

movements. 

 

3.3 Automatic analysis of facial expressions 

3.3.1 Methodologies for facial expressions recognition 

The communication of the emotional state of a person consists of two processes: the expression, where 

a specific set of features is produced, and the perception where an observer receives these features and 

can infer the emotional state of an individual. In more detail, the expression process is the 

externalization of the emotional state by means of physical signs (also called “expressed cues”), such 

as facial expressions, vocal variations and body gestures [116]. Thus, facial expressions play a 

fundamental role in this process.  
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The development of automatic systems for facial expression recognition has become one of the most 

popular topic in computer science and artificial intelligence, founding a new research field called 

“affective computing” [117]. Examples of applications are: robotics, Human-Computer Interface, 

video games and entertainment, psychiatry [118], neurology [119], automotive [120], security, etc. 

These studies are the result of decades of research in psychology that over the 20th century tried to 

describe in an objective manner facial expressions related to emotional states. This led to the definition 

of standards for the description and the recognition of facial expressions from the single facial muscles 

movements. One of the most popular standards is the Facial Action Coding System (FACS), 

developed by Ekman and Friesen in 1978 [117,121]. FACS allows decomposing a facial expression 

into specific Action Units (AU). An AU is a change that occurs in the face caused by one or more 

facial muscles; it can be viewed as the minimum change that in conjunction with other AUs causes a 

facial expression. FACS decomposes facial expressions into 44 AUs, plus other codes for head and 

eyes movements. Some of the existing AUs are: 

 AU1 - Inner brow raiser, caused by Frontalis (pars medialis) muscle; 

 AU2 - Outer brow raiser, caused by Frontalis (pars lateralis) muscle; 

 AU4 - Brow lowerer, caused by Corrugator supercilii and depressor supercilii muscles; 

 AU5 - Cheek raiser, caused by Orbicularis oculi (pars orbitalis) muscle; 

 AU9 - Nose wrinkle, caused by Levator labii superioris alaeque nasi muscle; 

 AU12 - Lip corner pull, caused by the zygomaticus major muscle; 

 AU15 - Lip corner depressor, caused by the depressor angulis oris muscle; 

 AU16 - Lower lip depressor, caused by the depressor labii inferioris muscle. 

Thus, facial expressions can be obtained as a combination of several AUs. For instance, happiness is 

the combination of AU6  and AU12, while disgust is the combination of AU9, AU15 and AU16. 

Until a couple of decades ago, facial expression recognition was performed only by the perceptual 

evaluation of trained raters, who based their work on standards like FACS. However, this field has 

significantly benefited from the latest improvements in computer vision and machine learning since 

the 90s to date. In general, an automatic facial expression recognizer is a system consisting of 3 parts 

[117,122]: 

1. Face detection and tracking. In this first step, a face must be identified in the image or in a 

video frame. In case of video analysis the face must be tracked along the subsequent video 

frames, in order to keep track of facial variations in time. 

2. Feature extraction. From the region of interest (ROI) detected in the previous step, some 

geometrical or appearance facial features are extracted. This step is essential in order to 

represent the face as a set of several components, thus focusing on those features that could 

bring information about expression variations. These features can be divided into two 

categories: permanent features (eyes, eyebrows, nose and lips) and transient features (facial 

lines and wrinkles that appear only in presence of particular expressions). 
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3. Expression recognition. After the face has been represented as a set of geometric and/or 

appearance features, these features are classified in order to predict the class they belong to 

(i.e., which expression or which combination of AUs). Usually, a classification algorithm is 

firstly trained on one or more databases of labeled expressions and then tested on facial 

expressions that do not belong to the training set. 

Several approaches have been proposed to automatically recognize facial expressions. Usually, all of 

these methods follow the above scheme, but differ for the different algorithms used to address the 

three steps [117,122,123,124]. 

Concerning face detection and tracking, one of the most used algorithms is the Active Appearance 

Model (AAM) [122,125,126]. AAM builds statistical models of shape and appearance by means of the 

Principal Component Analysis (PCA) performed on a set of training faces [125,126]. Other efficient 

face detection and tracking algorithms used for facial expressions recognition are the Supervised 

Descending Method (SDM) [127], the constrained local model (CLM) [128] and the particle filtering 

[129].  

Considering the facial features used to predict a facial expression, the proposed systems can be divided 

into two classes: systems that use geometrical (or shape) features and systems that use appearance 

features [124]. Most of the geometrical-based systems exploit the facial points provided by the face 

tracker, since the tracked landmarks describe the shape of permanent facial features (eyebrows, eyes, 

nose, lips, face contour, etc.) [117,122,123,130,131]. Appearance-based systems, instead, describe 

facial expressions using the information of the image texture extracted with descriptors such as local 

binary pattern (LBP), Gabor filters, histogram of oriented gradients (HoG), etc. [117,122,123]. The 

aim is to describe texture variations that occur in the face while performing an expression, trying to 

catch characteristic signs such wrinkle, furrows and facial lines. 

Other important differences among the proposed approaches consist in the temporal representation of 

an expression that could be static or dynamic [117,122]. Static representation classifies facial 

expressions frame-by-frame; in contrast, dynamic (or spatio-temporal) representation considers the 

temporal dynamic of a facial expressions, working on time windows of frames. The latter approach 

allows identifying the usually known dynamics of facial expressions: onset-apex-offset 

[2015_Sariyanidi]. Of course, temporal or static representations give rise to different classification 

strategies. Commonly used classifier for facial expressions are: Support Vector Machine (SVM), 

Adaboost, Neural Networks, Hidden Markov Models (HMM), etc. In particular HMMs were often 

used when the temporal dynamic of the expression is required [122,123]. 

Another important difference among the proposed approach is the affective model. Some methods aim 

at classifying basic expressions [132,133], while other methods perform an AU recognition 

[118,131,134]. Moreover, depending on the databases used for training the classifiers, it is possible to 

recognize spontaneous or posed expressions. The available databases may include posed expressions 

[135,136,137], spontaneous expressions [138,139], or both [140,141]. 
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For a more detailed list of different methods proposed and implemented in the past years, please refer 

to [117,122,123,124]. 

 

3.3.2 Applications to patients with Parkinson’s disease and other neurological disorders 

As described above, thanks to the perception process an observer can infer the emotional state of 

another person through the expressed facial features. However, if the pattern of expressed features is 

not unambiguous and does not vary among different emotional states, the underlying emotion cannot 

be reliably communicated and thus detected by the observer [116]. This is the case of Parkinsonian 

patients with facial hypomimia, where external observers may have difficulties in decoding the 

emotional state behind the “mask”, with severe problems in social relationships [34,35]. Moreover, 

facial bradykinesia affects all the functions that involve orofacial movements with severe problems of 

speech, swallowing, drooling, etc. 

Several works aim at detecting the most impaired expressions in PD patients. However, it is still 

unclear whether facial hypomimia is a pure motor disorder or is a secondary effect of an expression 

recognition impairment. Simons et al., 2004 [36] investigated facial expressivity in PD patients during 

several tasks: watching video clips, social interactions and expression posing. Results demonstrated 

that PD patients had a lower expressivity than HC subjects with problems in exhibiting some action 

units: AU4 (brow lowerer), AU9 (nose wrinkler), AU10 (upper lip raiser), AU1+2 (brow raiser) and 

AU6+12 (check raise plus lip corner pull). Moreover, PD patients had difficulties in the imitation of 

happiness, surprise and disgust. The reduction of the overall expressivity was also demonstrated by 

Bowers et al, 2006 [40], although the authors did not find that some expressions are more impaired 

than others. The analysis of AUs in PD patients was also performed by other studies [119,142]. In 

[119] the authors combined facial Electromyography (EMG) and classifiers for AUs detection, finding 

a reduced expressivity in PD patients, with an expressive reduction along with the increase of the 

disease severity [119]. Vinokurov et al., 2015 [142], instead, used the AUs detected by means of a 3D 

depth camera, in order to train an algorithm for the automatic identification of hypomimia in PD. 

Despite a reduction of facial expressivity was demonstrated for PD patients, no further information 

was provided about the most impaired expressions and/or the most impaired facial movements. 

Another study [143] tried to elucidate the possible relationship between the reduced expressiveness in 

PD patients and the impairment in recognizing emotions (alexithymia). The authors demonstrated that 

PD patients had reduced facial expressiveness (both static and dynamic), with difficulties in acting 

particular expressions (happiness, surprise and sadness). Moreover, they reported an impairment in 

recognizing disgust, fear and anger. However, from this work it is still not understood if voluntary 

acted expressions are impaired in PD patients. 

From these studies it is well accepted that PD patients had a reduced expressivity with respect to HC 

subjects. However, only few studies provided quantitative information about the impaired facial 

expressions and/or action units [36,143]. Moreover, despite the huge developments of affective 
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computing (as described in the previous section), the implementation of automatic methods for facial 

expression recognition is a fairly unexplored field in PD patients with hypomimia. Of the reported 

studies, only Wu et al., 2014 [119] made use of a fully automated facial expression recognizer. In 

particular, using appearance and geometrical facial features they were able to detect 11 AUs through a 

binary SVM for the recognition of each AU. Other studies [40,142] implemented semi-automatic 

methods. In [40] a frame differencing algorithm is used to quantify the expression change along the 

recorded videos; however, it required the manual selection of some facial landmarks by the user. In 

[142], the authors used a commercially available software called faceshift
1
 [144] that in conjunction 

with consumer depth cameras (like Microsoft Kinect) is able to track 3D facial landmarks and drive an 

avatar. However, this algorithm is person-specific and requires a calibration for each subject. 

Other applications in psychiatry and neurology [118] demonstrated the high potentials of the 

algorithms for facial expression recognition. Thus, we believe that these systems could be used to 

objectify facial hypomimia in PD patients, in order to extract objective measures of facial mimicry and 

help to settle the still open issues: is facial hypomimia a pure motor disorder? Are PD patients able to 

act voluntary facial expressions?  

Moreover, the use of contactless video-based systems like those described in the previous section, can 

be an important means for analyzing facial expressions also in rehabilitation framework (in particular 

speech therapy), where patients would derive a definite advantage about a real-time feedback of the 

right facial expressions/movements to perform. 

 

3.4 Contactless heart rate estimation 

Heart rate (HR) estimation through contactless techniques has become a popular field in biomedical 

signal processing. The estimation of vital signs without any sensor attached to the patient’s skin can 

bring important benefits in those cases where a prolonged monitoring is required (for instance in long-

term bedridden patients or neonatal intensive care units [145]). Depending on the underlying physical 

principle, these methods can be classified into several classes [146,147]: 

- Electromagnetic-based systems; 

- Laser-based systems; 

- Image-based systems, both thermal and visible imaging; 

In general, an ideal contactless HR monitoring system, should be: 

- fully automated; 

- robust against motion artifacts; 

- robust against light variations (especially in case of image-based systems); 

- low cost. 

                                                                 
1
 In 2015 Apple Inc. bought Faceshift GmbH. No updates are available on the website www.faceshift.com 
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In particular, the latter requirement could allow the spread of these systems in the everyday clinical 

practice. 

On the basis of the above requirements, image-based systems gained great importance in the last 5 

years. The physical principle of these methods is similar to that exploited by photoplethysmography 

(PPG). PPG is a non-invasive technique for sensing the cardiovascular pulse wave by means of 

transmitted/reflected light variations [148]. Pressure pulses coming from the heart cause volume 

changes also in the skin vessels. These changes could be detected by illuminating the skin with a light 

source and then measuring the transmitted or reflected light [148]. Light absorption in blood is mainly 

caused by hemoglobin, the protein responsible for the oxygen transportation in the circulatory system. 

PPG uses an external light source (usually red or infra-red light emitting diodes - LEDs); however, in 

recent years it was demonstrated that PPG measures can be extracted using ambient light as a source 

and digital cameras as sensors. In particular, most of the works [145,146,148,149] focused the 

attention on the face region. Among red (R), green (G) and blue (B) channels of a RGB color image, 

signals extracted from the G channel reported the highest amount of plethysmographic signal, because 

of the high absorption of ambient light by hemoglobin in that particular wavelength range (between 

500 and 600 nm) [148,149]. Thus, by studying frame-by-frame skin color variations it is possible to 

estimate the fluctuations due to the skin perfusion, and thus to the heartbeat.  

In order to overcome some problems such as the robustness against movements and illumination 

changes, several computer vision and signal processing techniques were used. In particular, most of 

the proposed methods used a face tracking algorithm in order to keep track of head and facial 

movements, reducing the analysis to a small facial ROI [146,148]. Moreover, several works used 

Blind Source Separation (BSS) techniques (in particular Independent Component Analysis - ICA), in 

order to filter out the noise components from the signals [146,148,150]. In the next sections, a brief 

overview of image-based systems for HR estimation is presented. 

 

3.4.1 BSS-based methods for HR estimation 

Blind Source Separation (BSS) indicates a set of techniques for recovering different source signals that 

mixed together gave rise to the observed signals, without any information about the mixing process. 

Among BSS methods, the most widely used for the image-based HR estimation is ICA [145,146,148]. 

In general, given a set of m observed signals x(t) = [x1(t), x2(t), … xm(y)]
T 

and a set of n unknown 

source signals s(t) = [s1(t), s2(t), … sn(t)]
T
, x(t) can be expressed as function of the underlying sources 

by the following equation: 

 

 𝒙(𝑡) = 𝒇{𝒔(𝑡)} + 𝒏(𝑡)                          (3.1) 

 

where f can be any unknown function and n(t) is additive noise. However, without any prior 

assumption the problem cannot be fixed [150]. Thus, the aim of ICA is to obtain an estimation of the 
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mixing matrix (called unmixing matrix) representative of the underlying mixing process, in order to 

find an estimation of s given the observations x. The assumptions of ICA are [148,150]: 

 Linearity: the observed signals are obtained as linear combination of the unknown sources:  

 

𝒙(𝑡) = 𝑨𝒔(𝑡) + 𝒏(𝑡)             (3.2) 

 

were A is the n x m mixing matrix; 

 Noise term n(t) negligible: this hypothesis reduces the equation to: 

 

𝒙(𝑡) = 𝑨𝒔(𝑡)       (3.3) 

 

 The number of unknown sources is less than or equal to the number of observed signals (n ≤ 

m); 

 Stationary mixing: the statistics of the mixing matrix A (and thus the physics of the mixing 

process) do not vary over the time;  

 Statistical independence of the sources: the sources are assumed to be mutually independent. 

Thus, the ICA problem is reduced to the estimation of an unmixing matrix W that approximates the 

inverse of the original mixing matrix A: 

 

�̂�(𝑡) = 𝑾𝒙(𝑡)      (3.4) 

 

where �̂�(𝑡) is an estimation of s(t). The estimation of the sources is performed through the central limit 

theorem: a sum of independent random variables is more Gaussian than the original variables. Thus, 

the observed signals x(t) should be more Gaussian than the estimated sources; in other words, W 

maximizes the non-Gaussianity of each source [150]. Different methods for the estimation of the 

unmixing matrix were proposed. The most important are: FastICA [151], Infomax [152] and JADE 

[153]. 

In case of image-based methods for HR estimation, the observed signals are the variations of the three 

color channels (R, G and B) of the RGB color video frames. Thus, considering the above assumptions, 

it is possible to estimate a maximum of 3 source signals [148]. 

In general, an ICA-based method for HR estimation consists of the following steps: 

 Video acquisition; 

 Face detection and ROI location; 

 Pre-processing (usually composed by signal detrend, normalization and band-pass filtering); 

 ICA to estimate the underlying sources starting from the pre-processed signals; 

 post-processing (usually a band-pass filtering on the estimated sources); 

 HR estimation from the estimated sources. 
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Concerning the acquisition step, most of the authors used common RGB webcams 

[145,146,148,154,155], although high speed cameras [156] and 5-channels color cameras (RGBCO, 

where C is cyan and O is orange) [157] were also implemented. In particular in the latter study, the 

authors demonstrated that the best results can be obtained using a combination of cyan, green and 

orange channels. 

Once that the facial ROIs have been detected (forehead and cheeks are the most widely used ROIs), 

most of the works performed a spatial average within the ROI, over the image channel 

[145,146,148,155,156,158]. Thus, for each video frame a value for each color channel is obtained. 

Temporal variations of color channels are then detrended using a smoothness priors approach [159] 

and normalized by subtracting the mean value and dividing by the standard deviation of the signals 

[146,157,158]. Moreover, a band-pass filtering can be used to limit the frequency range of the signal 

to that typical of the heart rate (from around 0.6 Hz up to 4 Hz). 

The most used ICA method is the Joint Approximate Diagonalization of Eigenmatrices (JADE) 

algorithm [153]. Another approach called FASTICA [151] is used by Lewandowska et al., 2011 [154]. 

Once the independent sources have been estimated, some authors performed another band-pass 

filtering, in the same frequency range of the heart beat (0.6-4 Hz, corresponding to 36-240 bpm) 

[146,158].  

Finally, the filtered sources are used to estimate the HR. The most widely used methods are based on 

the highest peak of the Fast Fourier Transform (FFT) in the frequency range of interest (0.6-4 Hz) 

[148,156,157,158], or by computing the inter-beat interval [146], by peak-picking in the selected 

source. 

An issue raised by most of the ICA-based works is the choice of the source to be considered for HR 

estimation. Poh et al., 2010 [148] stated that the second component usually contains the strongest 

pulse signal; this phenomenon might be related to the highest plethysmographic content in the second 

observed signal (i.e., the green channel of a RGB image) [148,149]. Another method proposed to 

identify the best source for HR estimation is to select the one with the highest spectral peak in the 

frequency range of interest [146]. Monkaresi et al., 2014 [160] tried to address this issue starting from 

the assumption that all the three components can contain useful information about the HR; thus, the 

selection of just one source (completely excluding the other two) should be a restricting choice. 

Through machine learning techniques (linear regression and k-nearest neighbor) the authors developed 

a method able to predict the best source for HR estimation, within a temporal window. This method is 

based on the selection of the source with the spectral content that minimizes the Root Mean Square 

Error (RMSE) between the HR estimation and HR reference value. 

 

3.4.2 Other methods 

Many other approaches that do not use BSS methods were proposed. However, for most of them the 

processing framework is the same of that reported in the previous section. The main goal is still the 
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filtering (and the amplification) of skin color variations due to the heartbeat, in order to predict the 

frequency at which these variations occur. 

A very popular algorithm to amplify and reveal small temporal variations in videos, and thus color 

variations due to the skin perfusion, is the Eulerian Video Magnification (EVM) [161]. The processing 

steps of this algorithm are illustrated in Fig. 3.1. First, a spatial decomposition is applied to the video, 

in order to decompose each frame in different spatial frequency bands. These frequency bands are then 

filtered with a pass-band filter (the same for each band), that in case of HR estimation can be tuned to 

the frequency range of the heartbeat (0.4-4 Hz [161]). Then, each frequency band is amplified by a 

given amplification factor in order to enhance different details in different frequency bands. Finally, 

each filtered and amplified band is added back to the original signal, to build an output video where 

only events of interest are amplified.  

Other image-based HR estimation methods are based on the wavelet transform, both continuous [162] 

and discrete [163] and on autoregressive (AR) models [164]. In particular, Tarassenko et al., 2014 

[164] considered two ROIs: one on the face and another one on a fixed background (i.e., the wall). 

Temporal variations of the green channel of both ROIs are modelled with a 9-order AR model, within 

temporal windows of 15s of duration. Afterwards, poles that are common to both models are cancelled 

from the AR model of the facial ROI. This method is based on the assumption that the model built on 

the background describes illumination changes due only to the artificial light flickering and other noise 

factors. Thus, the “pole cancellation” procedure provides a new AR model with poles that describe 

only temporal variations due to the heart rate [164]. 

Xu et al., 2014 [165] exploited the Lambert-Beer law and the linear relationship between skin 

absorbance and hemoglobin absorbance to determine a pixel quotient in log space (a quantity related 

to the hemoglobin concentration and thus to blood concentration). Then, temporal variations of this 

quantity provide information about the frequency at which the blood concentration varies in time due 

to the heartbeat [165]. 

  

Fig. 3.1: Processing steps of the Eulerian Video Magnification algorithm [161]. 
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4. Acquisition Protocols 
 

During this PhD project, the following collaborations were established: 

 Unit of Neurology - Hospital “Nuovo San Giovanni di Dio” (Firenze) and Associazione 

Italiana Parkinsoniani (Firenze), for the recruitment of PD patients and HC subjects; 

 “Villa delle Terme” rehabilitation center (Impruneta, Firenze) and “Don Carlo Gnocchi” 

Foundation IRCSS (Scandicci, Firenze) for the recruitment of DOC patients. 

In case of PD patients, the aim was to extract acoustical and kinematic parameters related to speech 

disorders and facial expression impairments. This allows: 

 Objectifying the perceptual analysis performed by clinicians; 

 Developing a markerless system to monitor the disease progression, in particular the 

symptoms related to hypokinetic dysarthria and hypomimia; 

 Developing a markerless system for speech therapy purposes that can be used in a domestic 

environment. 

In case of DOC patients the aim was slightly different, since the project was focused on the assessment 

of reflex and cognitive responses to standardized stimuli, administered according to the CRS-R 

protocol. This allows: 

 Objectifying the perceptual analysis performed by clinicians; 

 Developing a markerless system for monitoring DOC patients; 

 Assessing several reactions and aspects related to the perception of pain in patients unable to 

communicate. 

Both case studies (PD and DOC patients) share the study of facial movements and facial expressions 

by means of video based techniques. However, the definition of two experimental protocols was 

necessary in order to meet the two different aims. 

This chapter describes the two acquisition protocols as well as the two datasets of patients recruited 

throughout the project.  

 

4.1 Audio-Video recordings of patients with Parkinson’s disease 

The definition of the audio-video acquisition protocol for PD patients comes from the first two item of 

the UPDRS part III: the speech task and the facial expressions task. During the speech task, patients 

have to talk as spontaneously as possible in a monologue or in an interview with the clinician. 

However, in order to standardize and make the acoustic and kinematic measurements reproducible, 

this task was revised (in accordance with expert clinicians) and divided into two parts:  

 Subtask 1: repetition of a “voiced sentence” (/Il bambino ama le aiuole della mamma/) at least 

10 times, as spontaneously as possible, at a comfortable loudness. Thanks to reliable 

voiced/unvoiced segmentation algorithms, it is possible to extract temporal parameters such as 
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sentence and pause duration, pauses inside a sentence and speech rate. Given the high 

prevalence of vowel sounds, the use of this sentence allows obtaining other clinically useful 

parameters (fundamental frequency, formant frequencies, jitter, shimmer, harmonic to noise 

ratio, etc.).  

 Subtask 2: repetition of the syllable /pa/, at least 25 times at a rate as regular as possible. The 

voiced/unvoiced segmentation allows the extraction of temporal parameters to quantify 

rhythm impairments.  

During the UPDRS facial expression task the patient is at rest in a seated position for at least 10 

seconds. During that period, the following features are observed by the clinician: eye-blink frequency, 

loss of facial expressions, spontaneous smiling and lips opening. In order to perform experiments, I 

revised this task, in accordance with expert clinicians dividing it into three parts:  

 Displaying of neutral expression for at least 10 seconds; 

 Displaying of basic expressions (happiness, anger, disgust and sadness) upon request from the 

clinician; 

 Displaying of basic expressions (happiness, anger, disgust and sadness) by imitating emotive 

faces shown on a screen (Fig. 4.1); 

Moreover, the assessment of differences between the emotions expressed by imitation an those 

expressed on request was performed, as many studies highlight that PD patients are impaired in 

recognizing emotions on other faces (Part I - sections 1.2.2 and 3.3.2).  

Fig. 4.1: Facial expression for the imitation task. From left to right: happy, anger, disgust and sadness, 

for men (upper row) and women (lower row). 
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The experiments were carried out in a quiet room of the “San Giovanni di Dio” Hospital, Firenze, 

Italy. Speech signals were recorded on a standard personal computer using Audacity software 

(version: 2.0.3) with a Shure SM58 microphone and a Tascam US-144 audio board. Signals were 

digitized at a sampling frequency Fs = 44.1 kHz. The microphone, fixed on a boom, was positioned at 

a distance of 5 cm from the subject’s mouth. Participants were asked to avoid acceleration and 

slowdown of the articulatory velocity during the repetitions of syllables and sentences. Subjects’ face 

was kept under constant and uniform illumination during the whole acquisition. 

The subjects’ face was recorded using the Microsoft Kinect for Windows sensor and was kept under 

constant and uniform illumination during the whole acquisition. The Microsoft Kinect is a structured 

light sensor that provides two video streams: a color stream (in the RGB color space), and a depth one 

where each pixel codes the distance of the points in the scene from the camera plane. This low-cost 

device allows markerless assessment of movements in the 3D space, overcoming the limits of 

conventional cameras. The Kinect sensor was placed in front of the subject’s face at a distance 

between 0.5 and 0.7 m from the mouth and at a height close to that of the subject’s eyes. This distance 

was chosen as a trade-off between the technical specifications provided by the manufacturer (in “near 

range” mode the minimum distance is 0.4 m [166]) and the need of having the subject’s face as close 

as possible to the camera, in order to achieve the best accuracy in tracking the 3D facial points.  

The resolution of both video streams was 640x480 pixels at 30 frames per second (fps). Color frames 

were recorded in 24-bit RGB images (8 bits per channel), while depth frames were recorded in 16-bit, 

1 channel images. These features are the best trade-off, in terms of spatial and temporal resolution, 

provided by this kind of sensor to achieve good accuracies for tracking fast movements like those of 

the lips during the syllable repetition task. An overview of the experimental setting for audio-video 

acquisitions is reported in Fig. 4.2. Both streams were recorded and stored in avi files through the 

OpenNI (ver. 2.2) and OpenCV (ver. 2.4.9) libraries using a customized code written in C++ language. 

Despite both tasks (speech and facial expression task) were performed recording both video streams, 

for the analysis of facial expressions we used only the color stream, as explained in Part II, chapter 8. 
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4.1.1 Dataset 

During this PhD project the following subjects were recruited: 

 27 PD patients (18 male, 9 female), age: 71.6 ± 8.2 years, disease duration 8.5 ± 5.0 years, Hoehn 

& Yahr scale: 2.1 ± 0.4, UPDRS motor score: 16.6 ± 10.4. Audio recordings during the speech 

task were performed on 25 patients (16 male, 9 female). Video recordings (color and depth 

streams) during the speech task were performed on 16 patients (10 male, 6 female), while video 

acquisitions (color stream only) of facial expressions were performed on 18 patients (14 male, 4 

female).  

 32 HC subjects (18 male, 14 female), age: 67.7 ± 7.8 years. Audio recordings during the speech 

task were performed on 23 subjects (11 male, 12 female). Video recordings (color and depth 

streams) during the speech task were performed on 19 patients (13 male, 6 female), while video 

acquisitions (color stream only) of facial expressions were performed on 17 subjects (6 male, 11 

female).  

 

4.2 Video recordings of patients with disorders of consciousness 

The aim of is to assess facial expressions and facial movements related to reflex and cognitive 

behaviors, as well as vital signs (in particular the heart rate) estimated by means of video-based 

techniques. Starting from the CRS-R protocol, the useful items for the automatic analysis of facial 

features were selected, i.e. those tasks that do not involve occlusions of the patient’s face by objects or 

movements of the clinician: 

Fig. 4.2: the experimental set up for audio-video acquisitions in PD patients and HC subjects. 
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1. Auditory function scale: 

a. Score 2/4 - Localization to sound; 

b. Score 1/4 - Auditory startle; 

2. Visual function scale: 

a. Score 3/5 - Visual pursuit; 

b. Score 2/5 - Fixation; 

c. Score 1/5 - Visual startle; 

3. Motor function scale: 

a. Score 3-1/6 - Localization to noxious stimulation; 

4. Oro-motor/verbal function scale: 

a. Score 3/3 - Intelligible verbalization; 

b. Score 2/3 - Vocalization/oral movement; 

c. Score 1/3 - Oral reflexive movement; 

5. Communication scale: 

a. Score 2/2 - Functional: accurate; 

b. Score 1/2 - Non-functional: intentional; 

In particular, as one of the aims was the assessment of several reactions and features related to the 

perception of pain in patients that are unable to communicate, we focused our attention on the Item 3 

(Motor function scale - Localization to noxious stimulation): unlike the original purpose of this item, 

i.e. the evaluation of the motor response in the limbs, we wanted to study facial expressions and vital 

signs after the administration of the noxious stimulation. It is thus possible to assess facial features and 

vital signs related to the level of pain felt by the patient.  

During the experiments, patients’ faces were recorded with the Creative Senz3D camera and were kept 

under constant and uniform illumination during the whole acquisition. Despite this sensor can provide 

two video streams (like the Kinect), only the color stream was used for these experiments. In fact, 

unlike the kinematic analysis of speech movements performed in PD patients, in this case the purpose 

was not the assessment of kinematic parameters of the articulators, as DOC patients rarely exhibit 

some articulatory movements, vocalizations and verbalizations. Although the depth stream could 

provide additional information, it was preferred to work just on the color stream, thus saving computer 

memory for video recordings. 

Before each experiment, the camera was placed in front of the patient’s face at a distance around 0.5 m 

from the mouth and at height close to that of the subject’s eyes. The camera’s optical axis had to be 

perpendicular to the subject’s face, as shown in Fig. 4.3 Thus, according to these criteria, the face can 

be visible inside the scene for the whole recording. During the CRS-R administration, patients were in 

a half-seated position in the hospital bed.  
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The resolution of the color stream was 640x480 pixels at 30 frames per second (fps). Color frames 

were recorded in 24-bit RGB images (8 bits per channel). Videos were stored in avi files through the 

OpenCV (ver. 2.4.9) libraries using a customized code written in C++ language. 

 

At the same time, the audio signal consisting of the clinician’s voice was recorded with the built-in 

microphones of the Senz3D sensor (Fs = 44.1 kHz, recording software: Audacity, ver. 2.0.5). The 

audio signals where synchronized with the video recordings. The audio was recorded just for the 

identification of the time instants when the stimuli were administered (in particular for the localization 

of the noxious stimulation, where the stimulus is provided pressing the big toe or the thumb of 

patients, thus in a region not included in the video recordings). The time instants related to the external 

stimuli were identified with a short acoustic signal in the audio track. 

 

4.2.1 Dataset 

During the PhD project the following subjects were recruited: 13 DOC patients (8 male, 5 female), 

age: 54.9 ± 15.8 years, months after the onset: 35.3 ±27.9, 11 VS patients and 2 MCS patients, CRS-R 

score 6.1 ± 1.4, etiology: 8 post-anoxic, 5 traumatic brain injury. Because of the poor quality of some 

acquisitions, only nine (7 VS and 2 MCS) of the 13 patients were considered for the analysis of facial 

features and vital signs during the administration of the noxious stimulation. 

 

 

 

 

 

 

Fig. 4.3: Right orientation of the camera for the acquisitions 
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5. Acoustical analysis of PD speech 
 

As already stated in sections 1.3 and 3.1 of Part I, impairments of voice and speech (hypokinetic 

dysarthria) are among the main signs of the disease. PD patients may present alterations related to all 

speech dimensions (i.e. the four subsystems of speech production): respiration, phonation, articulation 

and prosody. Therefore, they might exhibit reduced variability of pitch and loudness, hoarseness, 

reduced stress, imprecise consonant articulation, unorthodox speech silence and speech rate alterations 

[30]. The non-invasiveness of acoustic measures, along with the debut of speech impairments in the 

early stage of the disease [82], has made this field very attractive. Many authors tried to detect features 

of voice and speech belonging to the aforementioned speech dimensions (in particular phonation, 

articulation and prosody) that could discriminate PD patients from healthy subjects. Such features 

could provide an aid to an early diagnosis of PD, but could also help tracking the disease progression 

and testing the efficacy of drug therapy. 

In particular, this part of the work is focused on the study of prosody in PD patients. Dysprosody 

includes alterations of rhythm and speed of speech, articulation, speech/pause ratio, pitch intensity and 

its variations [30]. A widespread task used to evaluate speech rhythm disorders is the syllable 

repetition task (oral diadochokinetic test). Through this task, it was demonstrated that the alteration of 

the rhythm of speech is one of the most prominent features of dysprosody in patients with Parkinson’s 

disease (PD) [94]. PD patients show a higher pace variability during a syllable repetition task, with 

tendencies to accelerate the rhythm [94]. However, in past studies the utterances were cut manually; 

this leads to long working times, incompatible with the current pace of work of the clinicians. 

Moreover, most of the works on acoustic analysis in PD patients make use of freely available software 

tools like PRAAT [96] or commercial tools like the Multi Dimensional Voice Program (MDVP by 

Kay Elemetrics Corp. [97]). However, these tools are not provided with a pre-processing step that 

allows analyzing different parts of an audio recording in a completely automatic way. Specifically, as 

said above, the repetition of syllables is a commonly performed test in PD patients. With MDVP or 

PRAAT a manual selection of each sentence from the whole recording has to be made first. Then the 

tool is applied sentence by sentence for the estimation of the acoustic parameters. Therefore the 

automation of manual segmentation would be desirable, being a time-consuming and operator-

dependent step, especially in the case of long recordings. Therefore it is relevant to develop a robust 

method for a complete automation of the process. This would be essential also for the implementation 

of an analysis system to be used at home for monitoring and rehabilitation of PD patients. 

Thus, the aim of this part of the work is the development and the implementation of an automatic 

method for studying dysprosody in PD patients. This work is divided into two main parts: 

1. To test the performance of an automatic voiced-unvoiced (AVU) segmentation algorithm, a 

dataset of speech signals (syllable repetition task) already analyzed in [94] was used. In this paper 

the temporal parameters related to dysprososdy were obtained by manual labeling the repetitions 
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of the syllable /pa/ uttered by PD patients and healthy control (HC) subjects. Thus, the results 

extracted with the AVU segmentation algorithm are compared to those provided by the authors of 

[94].  

2. Once the accuracy of the automatic methods is tested and new temporal parameters related to 

dysprosody were defined, the attention was moved to the identification of dysprosodic patterns 

during a sentence repetition task through standard and new parameters. 

Although the monologue is the most accurate task for revealing speech alterations in PD patients 

[83,87], the use of this task to develop and standardize an automatic analysis procedure is not 

straightforward. For this reason, in this part of the work we choose the repetition of a sentence to 

study dysprosody in idiopathic Parkinson’s disease. 

 

5.1 Experimental settings 

5.1.1 Dataset 

Subjects for testing the performance of the AVU algorithm 

The database used for this work consists in a subset of samples already used for a previous study [94]. 

32 signals from PD patients and 29 signals from HC subjects were analyzed. An exhaustive 

description of the groups’ characteristics is reported in [94]. 

Subjects for studying dysprosody in PD speech 

20 patients with idiopathic Parkinson’s disease were recruited at the Department of Neurology of the 

Hospital “San Giovanni di Dio”, Firenze, Italy. Patients’ age ranged from 53 to 83 years (mean: 72.2 

years; standard deviation SD: 8.6 years). 14 patients were male, 6 were female. At the time of the 

experiment, disease duration ranged from 2 to 15 years (mean: 8.3 years, SD: 4.6 years). Before the 

experiment each patient underwent a neurological examination. The Hoehn and Yahr disease stage 

[16] ranged from 1.5 to 3 (2.1 ± 0.4) and the UPDRS motor score (UPDRS part III [17]) ranged from 

5 to 33 (15.7 ± 9.9), while the speech task (item 18 of the UPDRS protocol) gave results equal to 0 or 

1. Thus, PD patients assessed through the perceptual evaluation did not show any (or very minimal) 

problem related to speech. All PD patients were under levodopa medication and were tested during 

their “on” state.  

A group of 19 healthy subjects was tested as control group (age: 54-85 years, mean: 68.1 years, 

standard deviation: 8.4 years), 9 male and 10 female. A summary of subjects’ characteristics is 

reported in Tab. 5.1. 

All subjects were Italian native speakers. Signed informed consent was obtained from all the 

participants. 
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Table 5.1 - The dataset 

 PD patients Healthy subjects 

Mean SD Mean SD 

Age (years) 72.2 8.6 68.1 8.4 

Male 14 9 

Female 6 10 

Disease duration (years) 8.3 5.1 - 

Hoehn & Yahr stage 2.1 0.4 - 

UPDRS motor score 16.6 10.4 - 

UPDRS speech 0.6 0.5 - 

 

5.1.2 Experimental setup 

Experimental setup for testing the performance of the AVU algorithm 

An exhaustive description of the acquisition protocol can be found in [94]. The speech task consisted 

in the repetition of the syllable /pa/ for at least 25 times, in a comfortable steady pace without 

accelerating or slowing the articulatory velocity. The first 20 utterances were considered for the 

analysis. 

Experimental setup for studying dysprosody in PD speech 

Each subject was asked to repeat a standardized Italian voiced sentence (“Il bambino ama le aiuole 

della mamma”) at least 10 times as spontaneously as possible at comfortable loudness without 

hastening the speech, therefore properly separating the consecutive sentences. 

Speech signals were recorded on a standard personal computer using Audacity software (version: 

2.0.3) by means of a Shure SM58 microphone and a Tascam US-144 audio board. Signals were 

digitized at a sampling frequency Fs= 44.1 kHz. The microphone, fixed on a boom, was positioned at 

a distance of 5 cm from the subject’s mouth. The experiments were carried out in a quiet room of the 

“San Giovanni di Dio” hospital and subjects were required to stay seated during the test. 

 

5.2 Methods 

5.2.1 Testing the performance of the AVU algorithm 

The aim AVU segmentation algorithm consists of finding each utterance (syllable or sentence) in the 

repetition task. After band-pass pre-filtering the signal (IIR Butterworth filter, 5
th
 order, cut 

frequencies: 50 Hz – 1000 Hz), a 20 ms sliding temporal window is applied on the whole signal. 

Within each window the Short-Term Energy (STE) is computed according to the following equation: 

 

𝑆𝑇𝐸 =  𝑙𝑜𝑔10 (
∑ 𝑠(𝑖)2𝑛

𝑖=1

𝑛
+ 𝑘)     (5.1) 

 

The STE values are stored in an energy vector and their histogram is computed. A suitable 

modification of Otsu’s method [167] is then applied to the histogram to find two optimal thresholds 
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that split the energy histogram into two classes corresponding to voiced and unvoiced frames 

respectively. We point out that the method does not require defining empirical thresholds (as in other 

software tools) as they are adaptively computed according to the characteristics of the signal under 

test. The method is discussed in detail in [167,168] where its capabilities are also shown. 

Figure 5.1 shows an example of the AVU algorithm on a syllable repetition task. A report with the 

starting and ending points of each voiced part is automatically saved as .xls file. 

 

 

In order to compare the results from the AVU algorithm with those extracted manually, the following 

parameters were computed [94]: 

 Mean interval Duration (IntDur), as the average of the intervals between a vocalization and 

the next one; 

 Standard Deviation (SD) of the intervals; 

 Mean interval Duration for the first 4 repetitions (avIntDur1-4), for the repetitions from the 5
th
 

to the 12
th
 (avIntDur5-12) and for the repetitions from the 13

th
 to the 20

th 
(avIntDur13-20). 

Moreover, on the same syllable repetitions, we compared PD patients with HC subjects, introducing 

new temporal parameters. We defined the Duty Cycle (D%) of the repetition, as the percent of voiced 

time with respect to the utterance duration. For this parameter we calculated the same measures 

defined in [94] for the interval duration: 

 Mean value of the first 20 repetitions (Dmean); 

 Standard Deviation of the first 20 intervals (DSD); 

Fig. 5.1: example of the result of the AVU segmentation algorithm (red line) on a syllable repetition 

task. 



  

73 

 

 Mean value for the first 4 repetitions (avD1-4), for the repetitions from the 5
th
 to the 12

th
 (avD5-

12) and for the repetitions from the 13
th
 to the 20

th 
(avD13-20); 

 Coefficient of Variation (DCOV) on the whole task and the relative coefficient of variation 

(DCOV5-20) defined as: 

𝐷𝐶𝑂𝑉 =
𝐷𝑆𝐷

[𝐷𝑚𝑒𝑎𝑛 √20⁄ ]
⁄  × 100     (5.2) 

 𝐷𝐶𝑂𝑉5−20 =
𝐷𝑆𝐷5−20

[𝑎𝑣𝐷1−4 √16⁄ ]
⁄  × 100          (5.3) 

 The ratio between avD5-12 and avD1-4 (DRelStab5-12), the ratio between avD13-20 and avD1-4 

(DRelStab13-20) and their difference (DPA). 

 

5.2.2 Comparison between HC subjects and PD patients on sentence repetitions 

In this work we aimed at separating the repetitions of the voiced sentence: “Il bambino ama le aiuole 

della mamma”. Since the sentence is mainly composed by vowel sounds, the voiced/unvoiced 

segmentation coincides in this case with speech/silence segmentation. 

The acoustic analysis is composed by two parts: the AVU segmentation and the extraction of acoustic 

parameters from the voiced parts only. 

In this study the LTAA (Long Term Audio Analyzer) module, proposed by our group [168] is 

implemented in the latest release of the software BioVoice [169] (Rel. 3.0), thus making up a single 

tool that performs both pre-processing and audio analysis. Moreover, the new tool allows analyzing 

sequentially and automatically several audio signals, thus significantly reducing the processing time as 

the manual user intervention to upload individual audio files to be analyzed is no longer required. 

Results (Excel sheets, plots, tables, etc.) are stored in separate folders, one for each signal. The 

software interface is shown in Fig 5.2. 
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Figure 5.3 shows an example AVU segmentation process applied to the sentence repetition task of a 

healthy control subject (upper figure) and to a PD patient (lower figure).  

After segmentation, some criteria are required to identify which starting and ending points of voiced 

parts really correspond to the beginning and to the end of each sentence. In fact, it may happen that 

short pauses are found within each sentence. These pauses, though significant from the clinical point 

of view, must be distinguished from the longer pauses between each sentence repetition. To this end 

we set an empirical threshold (0.3 s): an unvoiced segment (between two voiced parts) is considered a 

Fig. 5.2: Main software interface (upper figure) with the possibility to upload and automatically analyze 

several tracks. The lower figure shows the panel for choosing the signal properties. According to the 

selection (adult/newborn, male/female, etc.) BioVoice automatically sets some internal parameters such 

as pre-filtering, window’s length for F0 estimation, F0 range, etc. 
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pause within the sentence if it lasts less than this threshold. This value may be changed according to 

the task under consideration (Fig. 5.3, lower plot).  

 

On each sentence, the following parameters are extracted: 

 Tsentence: sentence duration [s], computed as the time interval between the beginning of a 

sentence and that of the next one. Thus  Tsentence is an index of the pace of repetition; 

 Tinter: inter-sentence duration [s], computed as the time interval between the end of a sentence 

and the beginning of the next one; 

 Tpause: pause duration [s], computed as the sum of “breaks” (short pauses) inside a sentence 

(less than 0.3 s); 

Fig. 5.3: Result of the VU segmentation process. The upper figure shows a control case where three 

repetitions of the vocalic sentence are correctly segmented. The lower plot concerns a PD patients, who 

makes pauses also within each sentence that are correctly identified (dashed black line) and removed 

according to the empirical threshold settled at 0.3s. 
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 D%: Duty Cycle, defined as the percent of voiced time with respect to the sentence duration; 

 

                                             𝐷 =  
𝑇𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒−𝑇𝑖𝑛𝑡𝑒𝑟−𝑇𝑝𝑎𝑢𝑠𝑒

𝑇𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 × 100                  (5.3) 

 

 NSR: Net Speech Rate in syllables/s, defined as the number of syllables of the sentence, 

divided by the effective speech time (Tsentence – Tinter – Tpause) [92].  

The second part of the analysis consists in the extraction of some acoustic parameters from each 

sentence. In this paper the following relevant parameters are considered: the fundamental frequency 

(F0) and the noise level. They were estimated with BioVoice and compared to PRAAT and MDVP. 

With BioVoice F0 estimation is performed by means of a two-step algorithm. First, the Simple Inverse 

Filter Tracking (SIFT) is applied to signal time windows of short and fixed length; afterwards, F0 is 

adaptively estimated on signal frames of variable length through the Average Magnitude Difference 

Function (AMDF) within the range provided by the SIFT [169,170]. With both MDVP and PRAAT 

F0 is estimated through the autocorrelation of the signal calculated on short frames. For details and 

differences among these approaches, refer to [96,97,169]. 

Spectral noise is closely related to degree of perceived voice hoarseness [171,172], thus we expect a 

not negligible amount of noise in Parkinsonian speech samples, as also reported in [83]. With 

BioVoice noise is estimated by means of an adaptive version of the Normalised Noise Energy method 

(ANNE) [171]. This method was in fact successfully applied to pathological voices in [169,170]. 

Once F0 and noise are tracked within each sentence, the following parameters are computed: 

 F0 Coefficient of Variation (F0CV), defined as the ratio between F0 standard deviation and F0 

mean value; 

 F0 Normalized Range (F0NR), defined as the difference between F0 max and F0 min, divided 

by the mean value of F0; 

 ANNE mean value. 

The normalization of the F0 values was performed in order to take into account for gender differences 

within the samples. We compared our results concerning F0CV, F0NR and noise with those obtained 

with PRAAT and MDVP. We remark here that each tool implements different techniques both for F0 

and noise estimation. Specifically, PRAAT computes the HNR (Harmonics to Noise Ratio) while 

MDVP estimates the NHR (Noise to Harmonics Ratio). A comparison of the performance of 

BioVoice, PRAAT and MDVP is reported in [173,174,175,176].  

Summarizing, in order to have a set of characteristics related to dysprosody in PD patients, for each 

sentence we computed parameters related to temporal features of speech (Tsentence, Tinter, Tpause, D% and 

NSR), to pitch variability (F0CV and F0NR) and to the degree of dysphonia (mean ANNE). 
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Statistical Analysis 

A two-tailed t-test was applied to assess the significance of differences between the PD patients and 

controls. The difference was considered significant for p < 0.05. Given the different methods for noise 

estimation implemented in BioVoice, PRAAT and MDVP, the strength of the relationship among 

these methods was tested computing the correlation coefficient between ANNE and HNR and between 

ANNE and NHR. Statistical analysis was performed with Microsoft Excel 2010. 
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6. Markerless analysis of articulatory movements during 

speech (validation on healthy subjects) 
 

The main disadvantages of the existing methods for studying articulatory movements during speech 

(i.e., x-ray imaging, magnetic resonance imaging - MRI, ultrasound technique, electromagnetic 

articulography - EMA, optoelectronic systems, etc.) are the high cost and the discomfort for 

participants or patients. Moreover, the above techniques needs a lengthy preparation protocol, thus 

their use is limited to the research field (Part I - Section 3.2.1).  

In order to broaden the kinematic studies of speech articulation for speech therapy purposes, or track 

the disease progression, the use of a low-cost and fully contactless system would be desirable. 

In the last five years the spreading of 3D video sensors (like Microsoft Kinect, Asus Xtion, Primesense 

Carmine, etc.), has revolutionized the world of videogames and not only, providing new possibilities 

to study body movements without any sensor attached to the subject. These devices could be used to 

get trajectories and kinematic parameters in the 3D space, and to analyze some fundamental 

articulatory parameters like lip protrusion. Moreover, these devices could be integrated in speech 

therapy applications since most of the tasks consist of tracking facial and articulatory movements to 

provide clinically useful feedback [109].  

Speech therapy can address the slowdown of speech disorders related to neurological illnesses, such as 

hypokinetic dysarthria associated with Parkinson’s disease or stroke [106,109,177]. Although speech 

disorders concern a quite large population, speech therapy is often applied to a small number of 

patients. This is due to the following factors:  

 During group sessions, the speech therapist has difficulty to pay the same level of attention to each 

patient, in order to evaluate the therapy exercises and provide a valuable feedback to patients;  

 Due to neurodegenerative diseases, most of the patients with hypokinetic dysarthria are elderly 

people, that frequently have trouble getting and attending therapy in specialized centers;  

 In several cases, patients should continue the therapy exercises at home. However, they often are 

not enough motivated without the direct supervision of the therapist. 

For these reasons, it arises the need for a system which could automatically provide a feedback about 

the articulatory movements and that could also be integrated in home environment. Therefore, this 

system should be as much as possible at reasonable price and based on a contact-less technique.  

Some applications of the Kinect sensor have been developed also for speech therapy purposes, in order 

to study and automatically identify the therapeutic exercises that involve facial movements [178]. 

However, to our knowledge, the accuracy of a fully markerless technique to study speech articulation 

was never tested. Thus, our aim is to test the performance of a system composed by a 3D depth sensor 

and a face tracking algorithm in order to track lip movements during speech. In this study the accuracy 

is verified against an established optoelectronic method. 
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6.1 Experimental Settings 

To test the performances of the markerless system (based on the Primesense Carmine 1.09 sensor, 

which is a Kinect-like device, and the Intraface tracking algorithm) to track articulatory movements, 

we used an optoelectronic technique (Vicon Motion Systems Ltd.) widely used as accurate marker-

based motion capture system. Both systems (Primesense and Vicon) were used simultaneously and the 

different streams were acquired synchronously. In the following sections, we present the systems used 

in our study and we describe the method.  

 

6.1.1 Markerless system 

Video acquisitions 

During the experiments the subjects’ faces were recorded with the depth sensor Primesense Carmine 

1.09. This device was chosen for its ability to work at short distances (0.4-1.5 m), thus appropriate for 

face movements. As classical structured-light sensors, it provides two video streams: the color video 

(like a normal webcam) and the depth stream, where the pixels of each frame code the distance of a 

point in the scene from the camera plane. The image resolution of both streams was set at 320 x 240 

pixels. Both videos were acquired synchronously at 30 frames per second, and stored as avi files by 

means of the OpenNI (ver. 2.2) and OpenCV (ver. 2.4.9) libraries. 

The device was located in front of the subject’s face (at the height of the mouth) at a distance around 

0.7-0.8 m from the lips, according to the specifications provided by the manufacturer. 

For the automatic identification of the facial features, the tracking algorithm Intraface
2
 was used. This 

algorithm fits to the video frames a face model composed of 49 points, on the basis of texture 

descriptors like SIFT (Scale-Invariant Feature Transform) [127,179]. This algorithm was chosen for its 

robustness against illumination changes, for its ability to describe asymmetrical face movements (very 

important in the context of speech therapy applications) and for its efficiency [127]. In particular, lips 

are modeled as a set of 18 points: 12 on the outer border and 6 on the inner border. In our study, only 7 

points on the outer border were considered for the analysis (Fig. 6.1) to compare the performance of 

the system against the marker-based method. 

 

Audio acquisitions and streams synchronization 

An audio track of the speech corpora (words, sentences and syllables) uttered during the experiment 

was recorded using the depth sensor that is provided with two built-in microphones. These 

acquisitions were performed through the software Audacity (Version 2.0.5) on the same laptop used 

for the video streams. Stereo signals were recorded at 44100 Hz of sampling rate and coded at 16 bits. 

Although our aim was just the evaluation of the articulatory movements, the audio stream was of basic 

importance for the alignment of the different streams and for the evaluation of the errors for each 
                                                                 
2 Intraface tracking algorithm is available at http://www.humansensing.cs.cmu.edu/intraface/. The algorithms are available 

for research purposes only, commercial use is not allowed. 
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phoneme of the corpus. In order to synchronize the four streams we built and used a simple electronic 

circuit composed by: a normally open switch, a LED with red visible light, an infrared LED (with 

wavelength in the near infra-red, in order to be seen by the Vicon cameras, between 800 and 900 nm) 

and a buzzer. At the beginning and at the end of each acquisition the button was pressed two 

consecutive times, so that in the audio stream it was possible to hear the acoustic signal, to see the red 

light in the color stream and an extra marker (the infra-red LED) could be identified in the marker-

based stream. Image registration and frame synchronization between the two Kinect streams (depth 

and color) were performed via dedicated software, through the same tool used for the acquisition. 

 

6.1.2 Marker-based system 

To compare the performance of the aforementioned markerless method, we used an optoelectronic 

system (Vicon Motion Systems Ltd., UK) as a reference. This system was composed by four cameras 

(MX3+ model) with special optics for near range applications. Sixteen reflective markers of 3mm 

diameter were glued on the faces of the subjects. This size is suitable to study facial movements 

without interfering with the face tracker. 

Before each acquisition, the markers were accurately located in some precise facial points defined by 

the Intraface model: two for each eyebrow, three on the nose, seven on the outer border of the lips 

(one for each corner – L1 and L4, two on the upper lip – L2 and L3 – and three on the lower lip – L5-

L7) and two on the chin (Fig. 6.2). The 3D trajectories of these markers were recorded synchronously 

using the infrared cameras at 100 Hz of sampling frequency and reconstructed using the Vicon Nexus 

software. 

Fig. 6.1: Experimental setting: marker-based system and Kinect-sensor displacement. 
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6.1.3 Speech corpora and data collection 

The acquisitions were performed in a quiet room with reduced environmental noise of the LORIA 

research center of Nancy, France. Two healthy subjects were recruited for the experiment: an Italian 

native speaker and a French one. Subjects were seated in front of the camera at a distance between 0.7 

and 0.8 m from the Primesense sensor. This range is a tradeoff between the device characteristics and 

its distance from the subject’s face (as close as possible) without interfering with the field of view of 

the Vicon cameras (Fig. 6.1 and 6.3). 

As stated above, before each acquisition, 16 reflective markers were accurately glued on the subject’s 

face in precise anatomical points chosen in correspondence to selected points of the Intraface model 

(presented in the next section), as shown in Fig. 6.2. We checked that the markers did not alter the 

acquisition quality of the Intraface tracker. 

Each subject was asked to read and pronounce the corpus (displayed on screen in front of the subject, 

Fig. 6.3) without any excess of head movements. We chose two corpora (one for each language), both 

composed of 50 meaningful sentences and 100 meaningful words. The French sentences were 

extracted from the Comberscure corpus [180], while the words were chosen from the Lafon lists [181]. 

The Italian sentences and words were chosen from the corpus defined by Bocca and Pellegrini [182]. 

Moreover, both subjects had to repeat the syllable /pa/ for at least 30 times with a single breath. The 

subjects’ face was kept under constant and uniform illumination during the whole recordings (Fig. 

6.3). 

 

 

Fig. 6.2: Intraface tracker model points (green dots) and optical markers locations (red circles). The 

markers were located in the same position of some model points, in order to estimate the 3D rigid 

transformation to register the two sets of points. 
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6.2 Methods 

6.2.1 Data processing 

As mentioned above, to detect some facial feature points (as the lips) a tracking algorithm capable of 

detecting and tracking these points, is needed. The face tracker Intraface used in this work fits a model 

of the face to the color image using texture descriptors (SIFT) [127,179]. Unlike other face trackers 

based on a priori learned face model, such as active appearance models [125,126], here each landmark 

position is directly optimized to the current frame based on texture descriptors. This involves a better 

ability to generalize situations never seen in the training set, like asymmetrical face movements, 

leading to a higher flexibility. Moreover, since the fitting is based on SIFT descriptors, this algorithm 

is robust against illumination changes [127]. The Intraface tracker fits to the scene a model composed 

of 49 points: 10 for the eyebrows, 12 for the eyes, 9 for the nose and 18 for the lips (12 on the outer 

contour, 8 on the inner contour) as shown in Fig.6.2. For this study we considered the points of the 

eyebrows, nose and of the outer lips contour.   

Since the face tracker works on 2D color images, it was necessary to extract the 3D coordinates of the 

points of interest. Thus, for each of these points we computed the coordinates on the lateral axis (X) 

and on the vertical axis (Y) starting from the depth information (frontal axis – Z).  

Fig. 6.3: A healthy subject during the speech acquisitions 
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Since we registered and synchronized the depth frames with the color frames provided by the depth 

sensor, to extract the Z value (in mm) for each point we just needed to sample the depth image in the 

same pixel coordinates provided by the face tracker. According to the scheme in Fig. 6.4, we 

calculated the X and Y coordinates with the following formulas [183]: 

 

𝑋 = 𝑍 
(𝑥−𝑐𝑥)

𝑓
       𝑤𝑖𝑡ℎ  𝑓 =

𝑊

2
 [tan (

𝐹𝑂𝑉ℎ

2
)]

−1
   (6.1) 

𝑌 = 𝑍 
(𝑦−𝑐𝑦)

𝑓
        𝑤𝑖𝑡ℎ  𝑓 =

𝐻

2
 [tan (

𝐹𝑂𝑉𝑣

2
)]

−1
   (6.2) 

 

where 𝑥 and 𝑦 are the coordinates on the image plane (in pixels) of a point of coordinates [𝑋 𝑌 𝑍]
T
 in 

the 3D space, 𝑓 is the focal length (in pixels) of the camera, (cx,cy) are the coordinates (in pixels) of the 

principal point,  𝑊 and 𝐻 are the dimensions of the image (width and height, respectively) in pixels, 

𝐹𝑂𝑉ℎ and 𝐹𝑂𝑉𝑣 are the horizontal and vertical field of view (equal to 57.5° and 45°, respectively). 

 

 

As the two reference frames are different, the two sets of points must be aligned in the space to 

compare the trajectories of the points of interest extracted with the markerless system with the 

reference ones. To do this, paying great attention to locate the markers in the same position as some 

Intraface points, the 3D rigid transformation that allows mapping the markerless points in the marker-

based reference frame can be estimated. Using pairs of corresponding points provided by the two 

systems, the rotation matrix R and the translation vector T were estimated through a least squares 

solution and this transformation was applied to each point extracted from the markerless system: 

 

Fig. 6.4: Pinhole camera model. This model was used to retrieve the 3D coordinates of the face 

points (estimated with the markerless system), starting from the image coordinates plus the depth 

information Z (according to equations 6.1 and 6.2). 
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𝑃′
𝑘 =  𝑹 𝑃𝑘 + 𝑻      (6.3) 

 

where 𝑃𝑘 is a generic point of coordinates [𝑋k 𝑌𝑘  𝑍𝑘]
T
 in the marker-less reference frame mapped to 

the Vicon reference frame (𝑃′
𝑘) through the 3x3 rotation matrix 𝑹 and the translation vector 𝐓. Thus, 

knowing couples of corresponding points in the two reference frames, it was possible to estimate the 

transformation parameters. Using a least squares solution and making use of more pairs of points than 

those required by the number of unknowns, we overestimated the system reducing the effect of noise 

on the estimation.  

For this work we used 7 pairs of points, respectively: two for each eyebrow, two for the nose and one 

for the lips (midpoint on the lower lip – L6, Fig. 6.2).   

 

Speech Alignment 

In order to measure the tracking errors of the lips points for each phoneme, the audio signals were 

processed by means of two speech alignment software. First, the stereo speech samples were 

converted to mono and then resampled at 16 kHz. The French corpus was aligned using Sphinx [184] 

while the Italian text was aligned with the SPPAS software, based on the Julius Speech Recognition 

Engine [185,186]. Both tools are based on Hidden Markov Models (HMM). After the alignment was 

completed, we obtained the files with the phonemes included in the corpora, the starting and the 

ending instants for each of these phonemes. The temporal values allowed aligning the phonemes to the 

trajectories extracted with the two methods (marker-less and marker-based) and the subsequent error 

calculation for each phoneme, as shown in Fig. 6.5. 

 

 

Fig. 6.5: vertical coordinate of point L6 during the pronunciation of a French sentence (“Le facteur va 

porter le courrier”), whose phonemes obtained after the alignment process are shown on top. 
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6.2.2 Articulatory parameters and error measure 

Once the two sets of points were aligned, the trajectories extracted with the markerless system were 

resampled at 100 Hz using a spline interpolation technique. In this way, the comparison with the 

reference trajectories was obtained computing the root-mean-square error (RMSE) in mm, according 

to the following formula: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1       (6.4) 

 

Where N is the number of samples of the trajectories during a single phoneme or syllable repetition, 𝑦𝑖 

is the i-th sample of the marker-based trajectory and �̂�𝑖 is the corresponding sample extracted from the 

resampled markerless trajectory. 

In addition to the comparison on the 3D coordinates of the points of interest (points L1-7 in Fig. 6.2), 

we computed some articulatory parameters: 

 Lip width: distance on the lateral axis between the two corner points (points L1 and L4); 

 Lip opening: distance on the vertical axis from the midpoint between points L2 and L3, and the 

central lower lip point (point L6); 

 Lip protrusion: distance on the frontal axis from the midpoint between points L2, L3 and L6 and a 

fixed reference point, in this case the nose tip.  

All these parameters were normalized with respect to head rotation angles. These angles were 

calculated from the markers located on the eyebrows and nose. 

Afterwards, for each syllable repetition the following kinematic parameters (for both systems) were 

computed: the maximum velocity (Vopen) and acceleration (Aopen) during the opening phase, the 

maximum velocity (Vclose) and acceleration (Aclose) during the closing phase. These parameters were 

calculated differentiating in time the trajectory on the vertical axis of the central point of the lower lip 

(point L6 in Fig. 6.2). Vopen was calculated as the minimum speed value during the first half of the 

repetition, while Vclose corresponds to the maximum speed value from the time instant of Vclose up to the 

end of the utterance (Fig. 6.6). The same criteria were adopted to extract Aopen and Aclose from the 

acceleration values of the lip point (Fig. 6.6). Moreover, for each syllable repetition the Pearson’s 

correlation coefficient between trajectories, velocities and accelerations extracted with both systems 

was computed. Correlation values close to 1 indicate that the trends of displacement, speed and 

acceleration calculated with the proposed method are very similar to the ground truth, as shown in Fig. 

6.6. 
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6.2.3 Depth accuracy 

The manufacturer of the Primesense sensor provided only the spatial resolution at 0.5 m from the 

camera, equal to 1 mm for the depth and 0.9 mm for the other two axes. Since our experiments were 

performed at a distance between 0.7 and 0.8 m, we expected lower resolutions. To estimate the error 

introduced by the Kinect sensor in the estimation of the depth value of a point in the scene (and thus 

for the estimation of its 3D coordinates), we used a phantom object composed by a box on which 7 

reflective markers (of the same type used during experiments) were glued on small squares of yellow 

paper (surface = 1 cm
2
) on one surface of the box (Fig. 6.7). These markers were located like a cross: 

the points on the horizontal axis were equally spaced of 25 mm, while those on the vertical axis were 

spaced of 50 mm. The Primesense sensor and the Vicon cameras were placed in front of a table on 

Fig. 6.6: vertical trajectory of the central point of the lower lip (upper plot) during the repetition of the 

syllable /pa/; speed (central plot) and acceleration  (lower plot) on the vertical axis. The blue lines are 

relative to the reference method (marker-based), while the red lines are estimated with the markerless 

technique. The green points indicate the maximum velocities and accelerations during the opening 

phase, while the magenta points are the maximum velocities and accelerations during the closing 

phase. 
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which the box was moved with a constant speed from a distance of 900 mm to 500 mm from the depth 

device. This test was repeated twice. 

 

We calculated the mean RMSE for the 7 points along the 3 coordinates for the entire range of 

movement covered by the box. Finally, dividing this range into intervals of 20 mm, within which the 

mean RMSE was computed, 20 error values were obtained. 

In order to check if the errors introduced by the Primesense sensor in the estimation of the depth 

values was comparable to the RMSE values obtained during speech acquisitions, we computed the 

mean distance of the lips (in mm) from the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.7: Phantom object used to estimate the depth accuracy of the Primesense sensor. 
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7. Markerless analysis of articulatory movements during 

speech (applications to PD patients) 
 

Although it is well accepted that PD patients with hypokinetic dysarthria exhibit a reduced articulatory 

kinematic, some conflicting results were found. Walsh et al., 2012 [88] tried to elucidate this point 

studying jaw and lower lip movements during the opening and closing gestures in the case of bilabial 

consonants. The authors demonstrated that PD patients exhibited a reduced articulatory kinematic, 

highlighted by reduced velocities of jaw and lower lip. These results support the hypothesis that a 

“downscaling” in speech production occurs in PD patients with hypokinetic dysarthria.  

As explained in Part I - Chapter 3, an important issue concerns the implemented methodologies. In the 

past decades the kinematic analysis of the articulators were performed through several motion capture 

technologies. The most important are: optoelectronic systems [88,113,115], electromagnetic 

articulography (EMA) [103], X-ray techniques [104] and Magnetic Resonance Imaging (MRI) [101]. 

However, all these techniques are quite expensive and their use is limited to research within highly 

specialized laboratories. Moreover, some of the most widely used techniques (optoelectronic systems 

and EMA above all) are marker-based and need quite long preparation protocols in order to achieve 

good results. 

In the previous chapter, a fully markerless and low-cost method to study the articulatory movements in 

3D (in particular lips movements) during speech was proposed. We tested its accuracy against an 

optoelectronic marker-based method during the repetition of words, sentences and syllables. This 

system is able to track lips movements during speech, combining a face tracking algorithm and a 3D 

depth sensor. This markerless technique, whose accuracy was proven for tracking lips movements 

(results on the accuracy are reported in Part III - Chapter 12), is thus applied here to analyze 

movements of the lower lip during a syllable repetition task, both in PD patients and HC subjects. The 

aim is that of testing the reliability of a cheap and markerless approach for assessing signs of 

hypokinetic dysarthria (in particular, alterations of peak velocities and accelerations) as already 

demonstrated by Walsh et al., 2012 [88]. 

This system could be used for the analysis of the articulatory movements during speech, leading to a 

significant improvement in monitoring disease progression, and in speech therapy in patients with 

dysarthria due to neurodegenerative diseases. In fact, this system could be easily implemented in a 

home environment increasing the percentage of patients that undergoes speech therapy.  

 

7.1 Experimental settings 

7.1.1 Subjects 

14 PD patients were recruited at the Unit of Neurology of the Florence Health Authority (“San 

Giovanni di Dio” Hospital, Firenze, Italy), and at the Associazione Italiana Parkinsoniani (AIP) – 
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Sezione di Firenze¸ Firenze, Italy. PD patients’ age ranged between 62 and 80 years (mean: 71.6 years, 

standard deviation: 7.0 years). 9 Patients were male and 5 were female. Before carrying out the 

experiment, each patient underwent a neurological examination. The Hoehn and Yahr disease stage 

[16] ranged from 1.5 to 2.5 (2.0 ± 0.3) and the Unified Parkinson's Disease Rating Scale (UPDRS) 

motor score (UPDRS part III [17]) ranged from 5 to 43 (16.0 ± 12.0), while the speech task (item 18 

of the UPDRS part III protocol) gave results equal to 0 or 1. Through this item, the neurologist judges 

the Parkinsonian continuous speech, paying attention on those signs related to dysphonia and 

dysprosody, but still considering global aspects as the intelligibility. In this way, ratings do not directly 

concern the issue addressed in this paper (the articulatory undershoot). Thus, PD patients assessed 

through the perceptual evaluation of the neurologist showed no speech problems (speech item = 0) or 

slight problems (speech item = 1) consisting in loss of modulation, diction or volume, without major 

alterations of speech intelligibility. All PD patients were under levodopa medication and were tested 

during their “on” state. 

An age-matched control group composed by 14 HC subjects with no history of neurological disease 

was recruited. HC subjects’ age ranged from 60 to 85 years (mean: 69.0 years; standard deviation: 7.4 

years). 8 subjects were male and 6 were female. Table 7.1 summarizes the features of the two groups, 

both consisting of Italian native speakers. Signed informed consent was obtained from all the 

participants.  

 

Tab. 7.1: Characteristics (mean values and standard deviations) of 

the two groups analyzed in this work 

 PD patients HC subjects 

Mean SD Mean SD 

Age (years) 71.6 7.0 69.0 7.4 

Male 9 8 

Female 5 6 

Disease duration (years) 8.4 6.1 - 

Hoehn & Yahr stage 2.0 0.3 - 

UPDRS motor score 16.0 12.0 - 

UPDRS speech 0.6 0.5 - 

 

7.1.2 Experimental setup 

The experiments were carried out in a quiet room of the “San Giovanni di Dio” Hospital, Firenze, 

Italy. The speech task consisted in the repetition of the syllable /pa/ for at least 25 times within a single 

breath, in a comfortable steady pace. According to [187], participants were asked to avoid acceleration 

and slowdown of the articulatory velocity. As shown in Skodda et al., 2011 [187] a difference between 

PD patients and HC subjects might be present in the pace of repetition (i.e., PD patients tend to 

accelerate the rhythm of repetition). However, the analysis of this point goes beyond the aims of the 

present work and is not considered here. Subjects were seated during the experiment trying to avoid 

abrupt head movements during the whole task. 
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The subjects’ face was recorded using the Microsoft Kinect for Windows sensor. The aim was that of 

detecting the 3D coordinates of some facial points during the speech task. The Microsoft Kinect is a 

structured light sensor that provides two video streams: a color stream (in the RGB color space), and a 

depth one where each pixel codes the distance of the points in the scene from the camera plane. The 

Kinect sensor was placed in front of the subject’s face at a distance between 0.5 and 0.7 m from the 

mouth and at a height close to that of the subject’s eyes. This distance was chosen as a trade-off 

between the technical specifications provided by the manufacturer (in “near range” mode the 

minimum distance is 0.4 m [166]) and the need of having the subject’s face as close as possible to the 

camera, in order to achieve the best accuracy in tracking the 3D facial points.  

 

7.2 Methods 

7.2.1 Video specifications 

The resolution of both streams was 640x480 pixels at 30 frames per second (fps). Color frames were 

recorded in 24-bit RGB images (8 bits per channel), while depth frames were recorded in 16-bit, 1 

channel images. These features are the best trade-off, in terms of spatial and temporal resolution, 

provided by this kind of sensor to achieve good accuracies for tracking fast movements like those of 

the lips during the syllable repetition task.  

Both streams were recorded and stored in avi files through the OpenNI (ver. 2.2) and OpenCV (ver. 

2.4.9) libraries using a customized code written in C++ language. 

 

7.2.2 Depth-color registration 

Facial feature points were tracked on the color images by the face tracking algorithm that will be 

described in the next section. To provide the 3D location of these points, the alignment between depth 

and color frames is required. In fact, as the two streams come from two different and unaligned 

cameras (color and infrared cameras, as reported in Fig. 7.1) a stereo calibration step is firstly 

required. This step involves two parts: 

 Intrinsic calibration for both cameras: we retrieved the internal parameters of each camera 

(i.e., focal length, principal point, skew coefficient and distortions). An exhaustive description 

of these parameters is reported in [188]. These parameters allow the estimation of the 3D 

coordinates of facial points, as described in the next section.  

 Extrinsic calibration: the rotation matrix and the translation vector that define the position of 

one camera with respect to the other one are estimated. In our case we estimated the roto-

translation matrix required to map the position of each depth pixel in the color reference 

frame. 

In this work, the calibration step was performed using the Camera Calibration Toolbox for Matlab 

[189] by simultaneously recording with the two cameras 25 images of a checkerboard in different 
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positions and angles. This procedure was performed just once before making the video recordings on 

both groups. 

Once the intrinsic parameters of each camera and the extrinsic relationship between the two reference 

frames were estimated, it was possible to map the pixels of the depth image into the color reference 

frame, as shown in Fig. 7.1. 

The alignment process is of great relevance in order to achieve good results in the next steps, in 

particular in the estimation of the 3D coordinates of facial points. In fact, the face tracker used to 

automatically locate and track the facial landmarks relies only on the color frames, providing 2D 

Fig. 7.1: Main video processing steps. Left - The face tracking algorithm detects the facial feature 

points in the colour video frames. Right - The information of the depth frames  allows computing the 

3D coordinates of the face points (bottom plot). 
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points in the image plane. Therefore, to estimate the 3D position of these points, their distance from 

the camera plane must be known. After the alignment, these distances are given by the values of the 

depth image in the same pixel coordinates of the points of interest detected in the color image, 

sampled at the same time instant. 

Although a depth to color registration was possible by means of the OpenNI libraries, a manual 

calibration of the sensor was carried out. In fact the intrinsic parameters on which this “factory 

calibration” is based might not be very accurate. Thus, we preferred to perform the calibration before 

carrying out the experiments. 

 

7.2.3 Face tracking 

As previously introduced, the facial feature points were located and tracked by means of a face 

tracking algorithm. In this work we used the Intraface tracking algorithm as implemented in the 

previous chapter, where its performance (combined with a depth sensor) in tracking lip movements 

during speech was tested. This tracking algorithm fits a face model made up by 49 feature points to the 

color images provided by the camera. These points are set as follows: 10 for the eyebrows, 12 for the 

eyes, 9 for the nose and 18 for the lips (12 on the outer contour, 8 on the inner contour) as shown in 

Fig. 7.2. To solve the optimization problem that consists in minimizing the distance between the 

model and the image, the algorithm uses texture descriptors (Scale Invariant Features Transform – 

SIFT). These descriptors make the tracker robust against illumination changes [127,179]. Moreover 

Intraface was chosen for its ability to generalize situations and face movements never seen in the 

training set, like asymmetrical movements of the mouth and eyelid movements. This could lead to a 

greater flexibility in view of the development of a system for speech therapy purposes, where 

exercises of facial muscles that involve asymmetrical movements are of great importance. 

As the face tracker works on 2D color images, the facial feature points have coordinates in the image 

plane. Thus, process steps to get the 3D coordinates of the points of interest are the same already 

Fig. 7.2: Face model used in this work. The Intraface tracker allows detecting and tracking 49 face 

points (dots). For the kinematic analysis the following points are taken into account: Central Upper 

Lip (CUL), Central Lower Lip (CLL) and the two mouth. 
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discussed in Part II - Section 6.2.1. We exploited the intrinsic and extrinsic camera parameters 

obtained in section 7.2.2 during camera calibration. In this work the lens distortion parameters were 

not taken into account since the Kinect color camera uses lenses with low distortion [190]. 

 

7.2.4 Artefacts correction 

The depth images are estimated by means of a structured light coding, thus in some cases (in particular 

during the opening phase) it was difficult to estimate the distances from the camera plane for the area 

inside the mouth. Frequently this area assumes zero values. Since lips movements are fast during the 

repetition of the syllable /pa/, sometimes the tracked points on the external contour of the lips could be 

located on “border” areas were the depth value is zero. Indeed, according to equations (6.1) and (6.2), 

if Z (frontal axis) is equal to 0 also X (lateral axis) and Y (vertical axis) are equal to zero. This 

problem results in the presence of artefacts in the trajectories, as shown in Fig. 7.3. The time intervals 

where the trajectory is equal to zero were detected and corrected through a nearest neighbor 

interpolation in order to remove these artefacts. This method was preferred to other techniques (such 

as linear or cubic interpolation) for its low memory requirements and the fast computation time that 

make it suitable for real-time applications. An example of the artefacts correction process is reported 

in Fig. 7.3. 

 

 

 

 

 

 

Fig. 7.3: Artefacts correction for lips trajectories. The time intervals where the trajectory  (dashed 

line) is equal to zero are detected and corrected through a nearest neighbor interpolation (solid 

segments). This figure refers to the vertical trajectory of the Central Lower Lip (CLL) point during 

the syllable repetition task. 
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7.2.5 3D kinematic parameters 

After the 3D coordinates of the facial feature points were computed, the velocity and acceleration on 

the vertical axis were calculated for the central point of the lower lip (CLL point, Fig. 7.2). We 

considered just the movements on the vertical axis since they are the most important ones during the 

repetition of the syllable /pa/. First, the trajectory of interest was smoothed with a 5-point moving 

average window (165 ms) to avoid large distortions of the curve especially during fast repetitions. 

Then the minimum values (that correspond to the closure time instants) were detected. The time 

interval between two consecutive minima corresponds to the period of a single syllable repetition. 

Thus, for each time interval, the velocity and the acceleration on the vertical axis were computed as 

the first and the second time derivatives, respectively. The maximum and minimum values were 

computed for both velocity and acceleration of each repetition. The maximum value is relative to the 

opening phase (vopening and aopening) while the minimum value refers to the closing phase (vclosing and 

aclosing) (Fig. 7.4). 

For each repetition we also computed the opening of the lips as the difference between the vertical 

coordinates of the central points on the lower lip (CLL) and on the upper lip (CUL) (Fig. 7.2). This 

distance was normalized with respect to the head roll angle (rotations around the frontal axis). We did 

not take into account the rotations around the other 2 axes as the camera was placed in front of the 

subject’s face at a height close to that of the eyes. Finally, for each repetition the following parameters 

were computed:  

 normalized range of opening ΔOpeningnorm: difference between the maximum and the 

minimum opening values divided by its mean value; 

 normalized maximum opening value MaxOpeningnorm: the maximum opening value within a 

repetition, divided by the width of the lips. The width was calculated as the difference 

between the X-coordinates of the points Rcorner and Lcorner normalized with respect to the 

roll angle of the head. 

These normalized values allowed taking into account the anatomical variations among subjects that 

result in different values of opening and width of the mouth. 
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7.2.6 2D kinematic parameters 

As the repetition of the syllable /pa/ involves main movements on the vertical axis, we computed the 

same kinematic parameters defined in the previous section (opening and closing velocity and 

acceleration, normalized range of opening and normalized maximum value of opening) from only 2D 

images. Indeed, if differences between groups could be detected also through 2D analysis, the 

advantages of this markerless system for monitoring and rehabilitation of speech diseases might be 

extended to the use of a simple webcam without requiring a depth stream. This would allow a further 

reduction of the costs making the system easier and applicable to smartphones and tablets. 

Fig. 7.4: Computation of the kinematic parameters (velocity and acceleration). A) The minima of 

the vertical trajectory of point CLL (solid line in the upper plot) are detected (dots) to separate each 

repetition. B) Vertical trajectory of point CLL  of a single repetition. C) Velocity on the vertical 

axis calculated as the first time derivative of the trajectory. D) Acceleration on the vertical axis 

calculated as the second time derivative of the trajectory. The maximum velocity and acceleration 

values are relative to the opening phase, while the minimum values refer to the closing phase. 
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Starting from the 2D face points tracked by Intraface, the x and y coordinates of the points in the 

image plane were normalized with respect to their maximum values along the whole task. The 

maximum y coordinate is the vertical coordinate of the point CLL in the maximum opening instant 

while the maximum x value is that of the external point of the left eyebrow (Fig. 7.2). Thus, the 

coordinates assume values between 0 and 1 for all the subjects. After the normalization the same 

procedure applied to the 3D kinematic parameters was used here. 

 

7.2.7 Statistical analysis 

A two-tailed t-test was performed to assess the significance of differences between PD patients and 

HC subjects. The degrees of freedom of the distribution are equal to 28. The difference was considered 

significant for p < 0.05. 
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8. Analysis of facial expressions and movements in PD 

patients 
 

In this chapter the methods for facial expressions analysis and recognition in PD patients are 

described. As already introduced in Part I - Sections 1.2.2 and 3.3.2, some of the main motor signs of 

Parkinson’s disease are hypomimia and facial bradykinesia. PD patients often experience serious 

difficulties in displaying both voluntary and spontaneous facial expressions. Thus, an objective 

evaluation of this sign is essential for the assessment of hypomimia (as an aid to the facial expressions 

item of UPDRS part III) and for rehabilitation, in particular for speech therapy.  

In this project, facial expressions of PD patients were studied during the displaying of basic 

expressions. Some of the methods implemented here will be used also for studying facial features in 

DOC patients (Part II - chapter 10), for the automated analysis of reactions to standardized stimuli. 

 

8.1 Experimental settings 

As previously introduced (Part II - Chapter 4), PD patients were evaluated during audio-visual 

recordings for the analysis of speech and facial expressions impairments. In fact, the facial expressions 

task was originally proposed to study facial hypomimia and facial bradykinesia during the UPDRS 

motor signs evaluation. According to the UPDRS item, the clinician has to observe the patient at rest 

in a seated position for at least 10 seconds. During that period, the following features are observed by 

the clinician: eye-blink frequency, loss of facial expressions, spontaneous smiling and lips opening. In 

order to perform the experiments, this task was revised in accordance with expert clinicians. In the 

next sections, sample groups recruited for this experiment and the experimental setup will be 

described. 

 

8.1.1 Subjects 

17 PD patients were recruited at the Department of Neurology of the Hospital “San Giovanni di Dio”, 

Firenze, Italy. Patients’ age ranged from 53 to 83 years (mean: 71.9 years; standard deviation SD: 9.2 

years). 13 patients were male, 4 were female. At the time of the experiment, disease duration ranged 

from 2 to 20 years (mean: 8.2 years, SD: 5.0 years). Before the experiment each patient underwent a 

neurological examination. The Hoehn and Yahr disease stage [16] ranged from 1.5 to 3 (2.1 ± 0.4) and 

the UPDRS motor score (UPDRS part III [17]) ranged from 6 to 43 (17.5 ± 10.3). All PD patients 

were under levodopa medication and were tested during their “on” state.  

A group of 17 healthy subjects was tested as control group (age: 53-84 years, mean: 68.8 years, 

standard deviation: 7.5 years), 6 male and 11 female. A summary of subjects’ characteristics is 

reported in Tab. 8.1. 
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All subjects were Italian native speakers. Signed informed consent was obtained from all the 

participants. 

 

Table 8.1 – The dataset 

 PD patients HC subjects 

Mean SD Mean SD 

Age (years) 71.9 9.2 68.4 7.5 

Male 13 6 

Female 4 11 

Disease duration (years) 8.2 5.0 - 

Hoehn & Yahr stage 2.1 0.4 - 

UPDRS motor score 17.5 10.3 - 

 

8.1.2 Experimental setup 

Each subject was asked to perform the following tasks: 

 Displaying a neutral expression for at least 10 seconds; 

 Displaying basic expressions (happiness, anger, disgust and sadness) upon request of the 

clinician; 

 Displaying basic expressions (happiness, anger, disgust and sadness) by imitating emotive 

faces shown on a screen (Fig. 4.1 in Part I - Chapter 4); 

Thus, for each subject we obtained: 1 neutral video and 8 expressive videos (4 with acted/requested 

expressions and 4 with imitated expressions). 

The subjects’ face was recorded using the Microsoft Kinect for Windows sensor as already described 

in Part II - Chapter 7. The Kinect sensor was placed in front of the subject’s face at a distance between 

0.5 and 0.7 m from the mouth and at a height close to that of the subject’s eyes. However, unlike the 

experiments performed on speech articulatory movements, in this case we used just the color stream 

(like a standard webcam). Videos were acquired at 640x480 pixels at 30 frames per second (fps). 

Color frames were recorded in 24-bit RGB images (8 bits per channel). Color stream was recorded and 

stored in avi files through the OpenNI (ver. 2.2) and OpenCV (ver. 2.4.9) libraries using a customized 

code written in C++ language. 

The experiments were carried out in a quiet room of the “San Giovanni di Dio” hospital and subjects 

were required to stay seated during the test. 

 

8.2 Methods 

On the recorded videos, two tests were performed: 

 The first one consists in the analysis of facial features with respect to the neutral baseline, in 

order to find the most discriminative features between HC subjects and PD patients, 



  

101 

 

characterizing the deviant PD expressions, and giving an objective quantification of facial 

hypomimia in PD; 

 The second test concerns the implementation of automatic facial expressions recognition 

algorithms, to study how much far the PD expressions are from the standard expressions (in 

terms of classification results and percentage of a targeted expression).  

In the first case we want to measure the amount of facial movements in PD patients in order to find 

objective indices of facial mimicry in impaired expressions. 

In the second case, the aim is that of assessing the intensity of facial expressions that PD patients are 

able to reach, with respect to healthy control subjects. This could provide useful information and real-

time feedback for speech therapy, in order to produce more enhanced facial movements, reaching a 

higher intensity of the expression. 

 

8.2.1 Analysis of expressive features with respect to the neutral baseline 

Each video was manually labeled, detecting the acted or the imitated expression (i.e. expected 

expression). For each PD patient/HC subject we have 9 videos: 1 for the neutral state, 4 for the posed 

expressions, 4 for the imitated expressions (with the exception of a patient that was not able to display 

sadness and disgust requested by the clinician). The duration of these videos is variable and ranges 

between 3 s and 12 s. 

 

Face tracking and facial features  

The automatic identification of facial landmarks was performed through the Intraface tracking 

algorithm [127], already used to study facial and articulatory movements in PD patients and HC 

subjects during various speech tasks (Part II - Chapters 6 and 7). Starting from the 49 facial landmarks 

tracked by this algorithm (Fig. 8.1), according to Soleymani et al., 2012 [130] we focused our 

attention on the following facial features (f1-f20, Fig. 8.2): 

 Eyebrows: Angles between the horizontal line connecting the inner corners of the eyes and the 

line that connects inner and outer eyebrow (f1, f2), the vertical distances from the outer 

eyebrows to the line that connects the inner corners of the eyes (f3, f4) (see Fig. 8.2a). 

 Eyes: Distances between the outer eyes’ corner and their upper eyelids (f5, f9), distances 

between the inner eyes’ corner and their upper eyelid (f6, f10), distances between the outer 

eyes’ corner and their lower eyelids (f8, f12), distances between the inner eyes’ corner and 

their lower eyelids (f7, f11), vertical distances between the upper eyelids and the lower eyelids 

(f13, f14) (see Fig. 8.2b). 

 Mouth: Distances between the upper lip and mouth corners (f15, f16), distances between the 

lower lip and mouth corners (f18, f18), distances between the mouth corners (f19), vertical 

distance between the upper and the lower lip (f20) (see Fig. 8.2c).  
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The line that connects the inner eye corners was used as a reference line since the inner eye corners are 

stable facial points, i.e., changes in facial expression do not induce any changes in the position of these 

points. For each sequence, the aforementioned 20 features were extracted for all the frames. 

 

 

Baseline Building 

As PD patients may exhibit impairments of facial expressions/movements, a baseline of the neutral 

state was built, considering an average template from the neutral videos. Thus, each PD patient and 

HC subject has his own neutral baseline (i.e. a vector of 20 facial features), from which we can 

compute the displacement of the facial features during the tasks. The neutral baseline was built as 

follows: 

 for each video frame of the neutral video the 49 facial landmarks were detected by means of 

the Intraface tracking algorithm; 

 to define geometric features, an average facial template from the facial landmarks vector was 

iteratively built by Procrustes analysis. For each video frame, each facial landmark was 

aligned to the template, updating the template by averaging the aligned landmarks [118]; 

Fig. 8.1: Indexed Intraface points from which the facial features were computed 

Fig. 8.2: facial features extracted from the Intraface points: a) Eyebrows features, b) eyes features and c) 

mouth features [130]. 
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 once the average facial template was computed (i.e., a vector of 49 2D points), the 20 facial 

features were calculated as above. 

 

Facial features extraction from the expressive videos 

After the set-up of the neutral baseline, the analysis was performed on the expressive videos (both 

acted and imitated expressions). Thus, for each subject and for each expressive video: 

 the 49 2D facial points provided by the Intraface tracking algorithm were extracted from each 

video frame; 

 for each frame the extracted facial model was aligned to the neutral template of the current 

subject by affine transformation (that includes rotations, translations, scaling and skewing), in 

order to suppress within-subject head pose variations. This affine transformation was 

estimated from 4 pairs of corresponding points in the facial model of the current frame and in 

the average neutral model: the two inner corners of the eyes, the nose tip and the point 

between the two eyes (points 23, 26, 14 and 11 in Fig. 8.2). These points were chosen because 

of their stability with respect to non-rigid facial movements [131]. 

 Once the face model for the current video frame was aligned to the neutral template, the 20 

facial features were extracted as above. 

Thus, for each expressive video, a vector of 20 features for each frame was obtained. 

 

Facial features analysis 

Given the extracted parameters (i.e. facial features of the neutral baseline and facial features from the 

expressive videos), for each subject and for each expressive videos, the following processing was 

performed. For each video frame the Euclidean distance was computed between the facial features 

vector and the baseline features vector built for the current subject. This distance provides global 

information about the displacement of facial features from the neutral expression, during the 

displaying of different facial expressions. On the Euclidean distance vector, the following statistics 

were calculated along the duration of the expressive video: mean value, median, standard deviation, 

skewness, kurtosis, maximum value, minimum value and range (i.e., difference between maximum 

and minimum values). 

Thus, for each subject and for each expressive video, we got: 8 statistic features of the Euclidean 

distance between the 20 “expressive” facial features and the neutral baseline. 

 

8.2.2 Automatic facial expression recognition 

In this part of the study an automatic facial expression classifier was trained on different databases of 

posed and spontaneous expressions. However, most of the available facial expressions databases are 

composed by videos and images taken from healthy subjects. Starting from this consideration, the aim 

is to measure the intensity of facial expressions that PD patients are able to reach, with respect to 
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healthy control subjects that are assumed to express “standard” expressions. This measure is extracted 

through the prediction given by the classification algorithms. 

Since supervised learning methods were implemented, this part is divided into two sub-sections:  

 the training phase: where the classification algorithm is trained on labeled images; 

 the test phase: where the trained algorithm is tested over the subjects recruited in this study 

(both PD patients and HC subjects). 

Video recordings considered for the test phase are the same used for the analysis of facial features 

with respect to the neutral baseline. 

 

Training phase 

The main items to be considered during this phase are: the facial features to feed the classifier, the pre-

processing step on facial features, the classification algorithms, the databases used for training the 

facial expressions classifier and the number of expressions taken into account. The choice of these 

items is of crucial importance and must be carefully evaluated, in order to get good performances in 

terms of classification accuracy. 

Concerning facial features, we decided to use the same 20 geometric features described and used in 

the previous section. This choice is reasonable in terms of dimensionality (20 features) and 

characterization of the face, since we can describe the behavior of the most important components of 

the face (eyebrows, eyes and mouth). 

Two classifiers are used: kernel ridge regression and Multi-class Support Vector Machine (SVM). In 

both cases, one-versus-rest classifiers were built in order to perform a multiclass classification, 

training a single classifier per class. 

SVM is a supervised learning algorithm that divides a feature space into two classes through a linear 

separation (i.e., a hyperplane). This hyperplane is built exploiting the maximum separation margin 

between the two classes. One of the biggest advantages of SVM is the capability to deal also with 

problems in which features are not linearly separable. Through the so called “kernel trick” it is 

possible to map the original features in a higher-dimensional space in which features can be separable. 

Popular kernel classes are: polynomial functions and Gaussian radial basis function (as the one used in 

this work). The kernel trick can be used also for other classification algorithms such as ridge 

regression. Ridge regression differs from linear regression for the presence of a penalty term on the 

size of model parameters to be estimated. Kernel ridge regression is similar to SVM, especially in its 

non-linear version; however, the objective to optimize depends on all the training examples and not 

just on a subset of them (support vectors) as in case of SVM [191,192,193]. 

Two databases are considered: the Extended Cohn-Kanade database (CK+) and the Radboud Faces 

database (RaFD) [137,141]. The CK+ database contains facial expressions from 210 adults of different 

age (18-50 years old), cultures and races. Participants performed a series of 23 facial displays, 

including single action units, combination of action units and posed expressions (happy, sad, disgust, 
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fear, angry, surprise and contempt). Each sequence begins with a neutral expression. Of the whole 

database, 327 image sequences include a nominal emotional label, manually checked from certified 

FACS coders, thus we assume this set as reliably annotated. The number of occurrences for each 

stereotypical expression is reported in Tab. 8.2.  

 

Tab. 8.2: number of occurrences for each 

facial expression class in the CK+ database 

Emotion label number of images 

Angry 45 

Contempt 18 

Disgust 59 

Fear 25 

Happy 69 

Sadness 28 

Surprise 83 

 

Afterwards, in order to enrich the database and make it more balanced, for each subject and for each 

expression sequence we considered the last 4 frames (i.e. the frames were the particular facial 

expression is more enhanced). In contrast, in order to build the neutral expression class, for each 

subject and for each sequence, we chose the first frame. Thus, we selected the following instances: 

327 for neutral, 180 for anger, 72 for contempt, 236 for disgust, 100 for fear, 276 for happy, 112 for 

sad and 332 for surprise, for a total of 1635 frames. 

The RaFD database is composed by images of posed expressions obtained from 57 adults (Caucasian 

males and females and Moroccan Dutch males) and 10 Caucasian Dutch children (both boys and 

girls). Each subject showed eight facial expressions (neutral, anger, sadness, fear, disgust, surprise, 

happiness, and contempt, the same of the CK+ database) with three gaze directions and were got from 

five different camera angles (in steps of 45°) [137]. Thus the total amount of images for each subject is 

120, for a total number of images contained in the database of 8040. In our case, we excluded: 

children images and profile images, taking into account only 3 viewpoints of the acquisitions (45°, 90° 

- frontal view, 135°). Thus we obtained 513 samples for each expression, for a total of 4104 images. 

Considering the pre-processing step, before training the classifier, a landmark template from training 

data was built by Procrustes analysis. For each frontal training face each facial landmark (extracted 

with Intraface) was aligned to the template, updating the template by averaging the aligned landmarks. 

After the template was built, each shape of the training set was aligned to the template by estimating 

the affine transformation. This step is essential to suppress within-subject head pose variations and 

inter-subject geometric differences. As already introduced in the past section, the affine transformation 

was estimated from 4 pairs of corresponding points: the two inner corners of the eyes, the nose tip and 

the point between the two eyes (on the top of the nose). These points were chosen because of their 

stability with respect to non-rigid facial movements. 

In order to find the best combination of components (i.e., classification algorithms, databases, number 

of expressions) in terms of classification accuracy, we combined all the possible solutions among: 
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 Two possible classifiers: Kernel Ridge Regression or Multi-Class SVM; 

 Three possible databases: RaFD, CK+ or both databases combined together; 

 Three possible expression sets: all expressions (8 expressions - 7 and neutral), excluding 

contempt (6 and neutral) and considering only the expressions used during our acquisitions 

(neutral, anger, disgust, happy and sad); 

Thus, we obtained 18 different possibilities that were evaluated with a 10-fold cross-validation to 

extract the accuracy of the classification. The accuracy for each test is reported in Tab. 8.3. 

 

Tab. 8.3: different tests performed with different classifiers, databases and set of 

emotions. 

Classifier DB Emotions Accuracy 

Kridge regression RaFD All (7 + neu) 65.28% 

Kridge regression RaFD No contempt (6 + neu) 73.10% 

Kridge regression RaFD 5 (neu, ang, dis, hap, sad) 80.66% 

Kridge regression CK+ All (7 + neu) 70.28% 

Kridge regression CK+ No contempt (6 + neu) 73.45% 

Kridge regression CK+ 5 (neu, ang, dis, hap, sad) 78.69% 

Kridge regression RaFD & CK+ All (7 + neu) 62.75% 

Kridge regression RaFD & CK+ No contempt (6 + neu) 69.91% 

Kridge regression RaFD & CK+ 5 (neu, ang, dis, hap, sad) 75.57% 

Multiclass - SVM RaFD All (7 + neu) 80.56% 

Multiclass - SVM RaFD No contempt (6 + neu) 84.49% 

Multiclass - SVM RaFD 5 (neu, ang, dis, hap, sad) 86.08% 

Multiclass - SVM CK+ All (7 + neu) 96.51% 

Multiclass - SVM CK+ No contempt (6 + neu) 97.06% 

Multiclass - SVM CK+ 5 (neu, ang, dis, hap, sad) 98.41% 

Multiclass - SVM RaFD & CK+ All (7 + neu) 82.56% 

Multiclass - SVM RaFD & CK+ No contempt (6 + neu) 86.24% 

Multiclass - SVM RaFD & CK+ 5 (neu, ang, dis, hap, sad) 87.56% 

 

From table 8.3, the following observations can be drawn: 

 Multi-Class SVM gives higher accuracies than Kernel Ridge Regression (always higher than 

80%), thus the first 9 attempts in Tab. 8.3 can be excluded from the selection process; 

 Experiments with only the CK+ database seem to give better results. However, this database, 

if considered alone, is not well balanced (despite the enrichment method adopted). 

For these reasons we decided to choose as classifier for the testing phase the Multi-Class SVM, trained 

on both databases (RaFD and CK+) with the 5 expressions used in our acquisition (last row of Tab. 

8.3). Since our experiments were controlled and we knew which was the target expression that each 

subject had to reach during the single task, we decided to force the classifier to recognize only these 

expressions. Thus, the landmark template for the alignment of the training shapes was built using 

frontal faces from both databases. 

In Tab. 8.4, confusion matrix and other measures of the classification performances (precision, recall 

and f-measure) are reported for the chosen case. Accuracy is defined as the ratio between the correct 

classifications and the overall number of classifications (sum of the diagonal elements of the confusion 
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matrix divided by the sum of all the elements of the matrix). The other measures are: precision, 

defined as the ratio between true positives and the sum of true positives and false positives; recall, the 

total number of true positives divided by the sum of true positives and false negatives; F-measure, 

defined as: 

2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
      (8.1) 

 

and ranges between 0 (worst results) and 1 (best results). 

 

Tab. 8.4: Confusion matrix, accuracy, precision, recall and f-measure for the selected classifier 

 

 

Test phase 

Once the classifier has been trained, we use as test set our database composed by HC subjects and PD 

patients recruited during the experiments. Thus, for each subject and for each expressive video (8 

videos with 4 imitated expression and 4 acted expressions), we got the predicted facial expression 

label for each frame of the video. Since the Multi-Class SVM is a one-vs-rest classifier, each classifier 

produces the predicted class likelihoods by giving two scores: one corresponding to the negative class 

and one corresponding to the positive class. For instance, if the classifier is trained to recognize 

between happy and non-happy instances, the first score concerns the non-happy class, while the 

second score the happy class. Thus, the predicted facial expression label was determined as the 

maximum among all the positive scores returned by the Multi-class SVM (winner-takes-all strategy). 

  

Instances Accuracy Precision Recall F-Measure

Neutral Anger Disgust Happy Sadness 3696

Neutral 714 37 41 4 44 840 0,875541 0,830233 0,85 0,84

Anger 42 608 19 0 24 693 0,882438 0,877345 0,879884

Disgust 9 3 736 1 0 749 0,823266 0,982644 0,895922

Happy 2 2 17 767 1 789 0,992238 0,972117 0,982074

Sadness 93 39 81 1 411 625 0,85625 0,6576 0,743891

Predicted

Actual
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9. Contact-less video-based tracking of heart rate  
 

As explained in Part I - Section 3.4, several approaches were proposed to process the reflected 

plethysmographic signal of the skin recorded with a webcam. Most of them rely on the processing of 

the color channels of RGB video frames. The chromatic variations due to the cardiac rhythm are 

estimated by means of the Independent Component Analysis (ICA) [146]. Following this approach we 

propose a recursive method for the heart rate (HR) estimation during a mild physical exercise. The 

accuracy of the proposed method is compared to the electrocardiographic (ECG) data and to the 

results obtained with the continuous wavelet transform (CWT) on four healthy subjects. 

 

9.1 Experimental settings 

To elicit a HR variation four healthy control subjects sat on a cycling ergometer during the 

experiment. The experiment duration was 450s, of which: 180s at rest, 90s during mild exercise 

(setting a power of 65 W and pedaling at 60-70 cycles per minute) and 180 s at rest. The ECG signal 

was recorded with a video-EEG system (EBNeuro Mizar-Sirius, 128 Hz sampling frequency) and the 

subject’s face was recorded with a Creative Senz3D webcam. Video resolution was 1280x720 pixels 

at 30 frames per second (fps) and color frames were stored in 24-bit RGB images (8 bits per channel). 

The ECG signal was extracted from the precordial leads V1 and V6. Subjects had to maintain the 

forehead free from hair or other occlusions during the whole task. This requirement allows extracting 

color variations from the skin’s surface without any other contribution due to external factors. 

Moreover, subjects had to avoid abrupt head movements, for a stable video recording of the face. 

Color videos were recorded and stored in avi files through the OpenCV (ver. 2.4.9) libraries using a 

customized code written in C++ language. 

 

9.2 Methods 

The HR estimation process is made of different steps: face detection and tracking, identification of the 

Regions of Interest (ROIs) in the face, extraction and pre-processing of the color variations within the 

selected ROIs, ICA on the pre-processed signals to detect the independent components that generated 

those variations and HR estimation on the processed components. 

 

9.2.1 Face tracking and ROIs extraction 

The first step was the automated identification and location facial landmarks (eyebrows, eyes, nose 

and mouth) in the video frames. To perform this task, the Intraface tracker algorithm [127] was used, 

as already done for the other experiments described in the previous chapters (Part II - Chapters 6-8). 

Once the face and its main features (eyebrows, eyes, nose and mouth) were detected within the image 
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plane, two ROIs were defined, in order to extract the R, G and B channel variations. Starting from the 

49 tracked points, the following ROIs were automatically located: one on the forehead and one in the 

central face region (including cheeks and nose), as reported in Fig. 9.1. These regions were chosen for 

their higher skin blood perfusion, for their higher visibility and uniform illumination. These regions 

were already used in literature [154,194,195] for video-based HR estimation. 

 

 

According to the landmarks distribution provided by the Intraface tracking algorithm (Fig. 8.1, Part II 

- Section 8.2.1), these ROIs were selected as follows: 

 Forehead ROI: the two lower vertices of the rectangular ROI were selected in correspondence 

of points 3 and 8 (central points of the eyebrows). Their horizontal distance defines the ROI 

width. Starting from these points, the upper vertices of the rectangle were located at a vertical 

distance of size equal to 1/3 of the width. This value was selected in order to fit the ROI 

within the forehead, without considering hair regions. 

 Cheeks ROI: the two upper points of the rectangular ROI were selected at the horizontal 

coordinate of points 2 and 8 (the second external eyebrows points) and at a vertical 

coordinates between points 12 and 13 (the two central nose points). Then, the lower vertices 

of this ROI were located at a vertical coordinate between points 14 (nose tip) and 17 (central 

nose base). 

ROIs were normalized with respect to the head rotation angles, in order to make their positioning 

integral with head movements. 

 

9.2.2 RGB components extraction and pre-processing 

Starting from the two ROIs the R, G and B signals were extracted by averaging pixels values (on the 

different 3 channels) along the whole ROI. Thus, for each frame an average value of R, G and B was 

obtained for both ROIs. This process was repeated for the whole video duration, in order to extract 3 

signals for each ROI. 

Fig. 9.1: ROIs considered for this study, selected from the Intraface landmarks. 
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Afterwards, to remove low frequencies a detrend based on a smoothness priors approach [159] was 

applied. This detrend, already used in [146,148,154], operates as a time-varying high pass FIR filter 

and the frequency response can be adjusted by setting a single smoothing parameter λ, that in our case 

was set equal to 100 (corresponding to a cutoff frequency of the filter of 0.66 Hz). Thus, events with 

frequency below 39 beats per minute (bpm) were filtered out. 

The detrended signals were then normalized in amplitude subtracting their mean value and dividing by 

the standard deviation. In Fig. 9.2 the result of detrend and normalization on R, G and B signals is 

reported. 

 

9.2.3 Estimation of the independent components 

As introduced in Part I - Section 3.4, the idea behind video-based methods to estimate HR is to exploit 

the volumetric variations due to the cardiac cycle that cause changes in blood vessels of the facial skin.  

These variations modify the path length of the incident light, so that the reflected light can contain 

information about the cardiac cycle [148]. The hemoglobin absorptivity varies across the visible and 

near-infrared spectral range, with the highest peak in the green/yellow wavelength range (around 510-

590 nm) [148,149]. In fact, Fig. 9.2, highlights that the highest oscillations consistent to the blood 

pulsations are in the pre-processed green channel. 

However, video recordings performed with RGB color cameras contain a mixture of the reflected 

plethysmographic signal with other underlying sources. In particular, the pre-processed signals 

considered until now are a mixture of different sources: skin color variations due to the blood 

Fig. 9.2: mean R, G and B channel intensities after detrend and normalization. The highest 

oscillations consistent to the blood pulsations in the pre-processed green channel [148,149]. 
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perfusion, light variations due to the sunlight or to the artificial illumination flickering, noise, shadows 

due to the head movements, etc. Thus, the purpose of ICA is to unmix these sources, identifying the 

variations due to the cardiac cycle. In this part of the work the decomposition into three source signals 

was performed through the ICA based on the Joint Approximate Diagonalization of the Eigenmatrices 

(JADE) algorithm, already used for the same purpose in [146,148,157,160].  

On the estimated sources a smoothing with a 5-point  moving average window and a bandpass filtering 

between 0.6 and 3.5 Hz with a 128-points Hamming window were applied. In particular, the band-pass 

filtering allows restricting the frequency range of the heart rate between 36 and 210 bpm. The three 

filtered sources are reported in Fig. 9.3. 

 

 

9.2.4 HR estimation 

Autoregressive method 

To track the HR variations an autoregressive (AR) model with recursive least squares (RLS) 

estimation was applied. Through an AR model (of order p), a signal y(t) can be expressed as: 

 

 

𝑦(𝑡) =  − ∑ 𝛼𝑘𝑦(𝑡 − 𝑘) + 𝑢(𝑡)
𝑝
𝑘=1        (9.1) 

 

Fig. 9.3: Filtered sources obtained after the ICA with JADE algorithm 
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where αk (k = 1…p) are the p+1 unknown model parameters and u(t) is a zero-mean white noise 

process with variance σu
2
. Through the estimation of αk and σu

2
, the power spectral density can be 

computed as follows: 

𝑃𝐴𝑅 =  
𝑇�̂�𝑢

2

|1+ ∑ 𝑎𝑘𝑒−𝑗2𝜋𝑓𝑘𝑇𝑝
𝑘=1 |

      (9.2) 

 

with T equal to the sampling period of y(t). The basic RLS algorithm assigns the same weight to all 

the past data for the estimation of the actual one. A more refined version is provided with the so-called 

“forgetting factor” λ that assigns less weight to older data. Specifically data older than T0 samples are 

considered with a weight around 36% of the most recent one. T0 is defined as: 

 

𝑇0 = 1/(1 − 𝜆)      (9.3) 

 

According to formula 9.3, a forgetting factor λ=0.9889 allowed taking into account measurements up 

to the previous 90 samples (3 s). At each time instant the first peak of the AR power spectral density 

(PSD) was estimated and converted in bpm. A low model order p=4 was found capable of smoothing 

the PSD peaks giving a single maximum in the frequency range of interest (Fig. 9.4) [196]. 

Complex Wavelet Tansform 

For each one of the filtered sources the CWT was computed using a complex Morlet as mother 

wavelet. The complex Morlet function is obtained from the product between a Gaussian function and a 

complex exponential, according to the following formula: 

 

𝜓(𝑡) =  
1

𝜋1/4 𝑒𝑗2𝜋𝑓0𝑡𝑒−𝑡2/2𝜎2
     (9.4) 

 

where the first term is a normalization factor, f0 is the central frequency of the mother wavelet and σ is 

the standard deviation of the Gaussian function. The Gaussian standard deviation defines the scale of 

the wavelet; in fact, since the 99.7% of the area under a Gaussian function is within an interval of 6σ, 

Fig. 9.4: AR Power Spectral Density (PSD) obtained by a RLS estimation of the parameters. In a 

given instant the HR is the frequency value of the first peak, converted in bpm. 
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it is possible to extract the central frequency of the wavelet by setting the number of significant 

oscillations of the wavelet: 

 

𝑓0 =  
𝑛

6𝜎
      (9.5) 

 

This relationship derives from the assumption that n oscillations are included in an interval of 6σ. The 

higher σ  the lower the central frequency f0. In this work, we set n = 7. 

Afterwards, the peak frequency was computed as the weighted average of the peaks within the 

frequency range of interest (0.6-3.5 Hz). The peaks amplitudes were considered as the weights in this 

calculation. An example of the spectrogram obtained from the second independent component is 

reported in Fig. 9.5 

 

9.2.5 Error calculation 

Once the HR estimations were extracted for both ROIs (forehead and cheeks) and for both estimation 

methods (AR models and CWT), they were resampled at 128 Hz (sampling frequency of the video 

EEG) using a spline interpolation technique. Thus, the comparison with the ground truth HR values 

was made according to the root-mean-square error (RMSE) in bpm, given by: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1       (9.6) 

Where N is the number of samples of the video recording, 𝑦𝑖 is the i-th sample of the reference HR 

and �̂�𝑖 is the corresponding HR estimation with the video-based technique. 

Fig. 9.5: Spectrogram obtained for the second independent component. It is possible to see a high 

energy band that lies in the frequency range of interest (0.6-3.5 Hz) and varies in correspondence to 

the HR variations due to the physical exercise (between 200 and 300 s). 
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10. Video Analysis of  DOC patients: facial movements and 

vital signs 
 

In this chapter we propose to study facial expressions and heart rate in patients with disorders of 

consciousness (DOCs) by means of low cost and contactless techniques. The aim of this part of the 

work is the implementation of a markerless method for monitoring and studying DOC patients, in 

particular after the administration of standardized stimuli (such as those included in the CRS-R 

protocol - Part I - Chapter 2). The proposed system merges some of the methods already described in 

the previous chapters, in particular: the analysis of facial expressions (Part II - Chapter 8) and the 

contactless estimation of the heart rate (Part II - Chapter 9). 

The aim is to extract quantitative and objective information to help clinicians in diagnostic assessment 

through the analysis of possible reactions after standardized stimuli in DOC patients. Moreover, this 

system could be used as an aid to the monitoring of these patients, even when there are no caregivers 

or family members near them. 

This will lead to the development of a tool for monitoring of patients in vegetative/minimally 

conscious state, capable of automatically assess reflex and cognitive-mediated behaviors during the 

whole day, relating them to possible external stimuli. Moreover, it will bring more information both to 

the clinicians and relatives about the level of pain of the patient. 

 

10.1 Experimental settings 

DOC patients studied in this chapter were evaluated during the administration of the CRS-R. Although 

all the CRS-R items were video recorded, only the motor evaluation function was considered for this 

study. During this item a noxious stimulus is administered to hands or feet. The presence or absence of 

flexor response determines the score (Part I - Chapter 2). However, unlike the original purpose of this 

item, our aim was the study of facial expressions and vital signs after the administration of the noxious 

stimulation. It is thus possible to assess facial features and vital signs related to the level of pain felt by 

the patient. Signed informed consent was obtained from family member or caregivers of the 

participants. 

 

10.1.1 Subjects 

Nine DOC patients were video recorded at the “Villa delle Terme” rehabilitation center (Impruneta, 

Firenze). Seven patients were male and two were female. At the time of the experiments the patients’ 

age ranged from 35 to 80 years (mean value: 53.4 years, standard deviation: 14.2 years) and the 

months after the brain injury ranged from 4 and 93 (mean value: 31.7 months, standard deviation: 27.6 

months). For five patients, the etiology was post-anoxic/ischemic, four patients had a cerebral 
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hemorrhage and one patient a traumatic brain injury. The total CRS-R score assessed at the moment of 

the experiment ranged between 4 and 9 (mean value: 6.2, standard deviation: 1.5). 

 

10.1.2 Experimental setup 

During the CRS-R administration, patients’ faces were recorded with the Creative Senz3D camera, 

under a constant and uniform illumination. Despite this sensor can provide two video streams (like the 

Kinect), only the color stream was used for these experiments. In fact, unlike the kinematic analysis of 

speech movements performed in PD patients (Part II - Chapter 7 and Part III - Chapter 13), in this case 

the purpose was not the assessment of kinematic parameters of the articulators, as DOC patients rarely 

exhibit some articulatory movements, vocalizations and verbalizations. Although the depth stream 

could provide additional information, it was preferred to work just on the color stream, thus saving 

computer memory for video recordings. 

Before each experiment, the camera was placed in front of the patient’s face at a distance around 0.5 m 

from the mouth and at height close to that of the subject’s eyes. The camera’s optical axis was set 

perpendicular to the subject’s face, as shown in Fig. 4.3 of Part II - Section 4.2. Thus, according to 

these criteria, the face can be visible inside the scene for the whole recording. During the CRS-R 

administration, patients were in a half-seated position in the hospital bed.  

The resolution of the color stream was 640x480 pixels at 30 frames per second (fps). Color frames 

were recorded in 24-bit RGB images (8 bits per channel). Videos were stored in avi files through the 

OpenCV (ver. 2.4.9) libraries using a customized code written in C++ language. 

At the same time, the audio signal consisting of the clinician’s voice was recorded with the built-in 

microphones of the Senz3D sensor (Fs = 44.1 kHz, recording software: Audacity, ver. 2.0.5). The 

audio signals were synchronized with the video recordings. The audio was recorded just for detecting 

the time instants when the stimuli were administered. In particular the noxious stimulation 

administrations were identified in the recorded track (and in turn in the video frames) by an acoustic 

signal (with a similar procedure described in Part II - Section 6.1.1 “Audio acquisitions and streams 

synchronization”). 

Videos had different durations that range from 38 s up to 220 s. For some patients, more than one 

stimulus was administered. 

 

10.2 Methods 

As mentioned above, most of the processing steps are the same described in the previous chapters. In 

particular, for this work we merged the analysis of facial features with respect to the neutral baseline 

(Part II - Section 8.2.1) and the contactless video-based estimation of the heart rate (Part II - Chapter 

9). 
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10.2.1 Facial features extraction 

The analysis of facial features comes from the consideration that facial expressions could bring 

important information about patient’s reactions to external stimuli and pain as they are unable to 

communicate this condition. In fact, most of the perceptual ratings performed by clinicians are based 

on the assessment of the facial mimicry (see PAINAD scale, Part I - Section 2.2.1). However, a 

standard facial expression recognition approach (i.e., training of a classifier on basic expressions and 

then testing on video frames, like the approach proposed in Part II - Section 8.2.2) is not well-suited 

for these patients. In fact, they do not exhibit standard expressions, even if sometimes they can display 

smiles and grimaces. In this case, a more “patient-fitted” approach that allows extracting relative 

information about the evolution of the studied features during tests, is more appropriate. For these 

reasons we decided to follow the same steps already described in Part II - Section 8.2.2. Thus, for each 

video recording, the following processing steps were performed: 

 Neutral template building on the first second (30 frames). These frames are required and used 

for the neutral template, because the noxious stimuli were not yet administered. As reported in 

Part II - Section 8.2.2, facial landmarks were assessed by means of the Intraface tracker and 

then the baseline template was built by Procrustes analysis. On the average facial template, the 

20 facial features reported in Fig. 8.3 (Part II - Chapter 8) were computed. 

 On the whole duration of the video the 49 facial landmarks provided by the Intraface 

algorithm were extracted and then aligned to the neutral baseline by affine transformation. 

Afterwards the 20 facial features were extracted for each frame. 

 For each frame the Euclidean distance was computed between the facial features vector and 

the neutral template built for the current subject. This distance provides a global information 

about the displacement of facial features from the baseline state (i.e., before the administration 

of the external stimulus). 

 

10.2.2 Contactless HR estimation 

The HR could provide important information to evaluate patient’s reactions and the level of pain. 

However, a continuous and constant monitoring of HR could be expensive and uncomfortable for the 

presence of sensors attached to the patient’s body. Thus, we estimated HR from the same videos 

processed to extract facial features, in the same way as already explained in Chapter 9, namely: 

 Face tracking and ROIs detection. Two ROIs were automatically located with the Intraface 

tracking algorithm: one on the forehead and one in the central facial region (including cheeks 

and nose). 

 For both ROIs the following preprocessing steps were applied to the temporal trends of the 

mean values of the R, G and B channels: detrend based on a smoothness priors approach 
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(smoothing parameter = 100, cutoff frequency = 0.66 Hz); mean value subtraction and 

normalization with respect to the standard deviation. 

 Estimation of the three independent sources by means of ICA based on the joint approximate 

diagonalization of the eigenmatrices algorithm (JADE). Afterwards, a smoothing with a 5-

point moving average window and a bandpass filtering between 0.6 and 3.5 Hz with a 128-

points Hamming window were applied to the three sources.  

 Heart rate estimation. To compute the HR values an autoregressive (AR) model with recursive 

least squares (RLS) estimation was applied. At each time instant the first peak of the AR 

power spectral density (PSD) was estimated and converted in beats per minute (bpm). A low 

model order p=4 was found capable of smoothing the PSD peaks giving a single maximum in 

the frequency range of interest. A forgetting factor f=0.9889 allowed taking into account 

measurements up to the previous 3s. For each one of the filtered sources the CWT was 

computed using a complex Morlet as mother wavelet: the peak frequency was obtained as the 

weighted average of the peaks within the frequency range of interest and weights are the peaks 

amplitudes. 

  

10.2.3 Evaluation of patients reactions 

For each patient we got: a facial features vector (20 facial features for each video frame), a distance 

vector (Euclidean distance between the facial features and the baseline, for each frame) and a HR 

estimation. Thus, each one of these vectors was divided into different parts: 

 From the beginning of the recording up to the administration of the first stimulus. This phase 

is called “baseline”; 

 After the administration of a noxious stimulus up to the next administration or to the end of 

the video. These phases are called “stimulus1”, “stimulus2”, etc., according to the number of 

noxious stimuli administered for each patient (in this study this number ranges from 1 to 4). 

This decomposition allow to evaluate the behavior of heart rate, facial features and its distance from 

the baseline during the different phases, in order to assess possible variations due to the external 

stimulation. 
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11. Acoustical analysis of PD speech
3
 

 

In this section, results obtained from the acoustical analysis of patients with Parkinson’s disease, are 

reported. As already stated in Part II - Chapter 5, the study is divided into two main parts: 

 The first part concerns performance evaluation of an AVU segmentation algorithm on a 

dataset of speech signals (syllable repetition task) already analyzed in [94]. Temporal 

parameters extracted with the AVU segmentation algorithm are compared with  those 

provided by the authors of [94]. Moreover, a comparison between HC subjects and PD 

patients was performed. 

 Once the accuracy of the automatic methods is tested and new temporal parameters related to 

dysprosody  were defined, the attention was moved to the identification of dysprosodic 

patterns during a sentence repetition task through standard and new parameters. 

 

11.1 Results 

11.1.1 Performance of the AVU algorithm on syllable repetitions 

The parameters used to compare the two methods are reported in Tab. 11.1. Concerning the 

comparison between PD patients and HC subjects (Tab. 11.2), both groups show similar values of 

Dmean (around 0.50 – this indicates that on average the 50% of the interval duration is made by the 

vocalization). The only parameter that shows significant differences between two groups is 

DRelStab13-20, with HC subjects that exhibit higher values (92.97 ± 8.60 vs. 87.33 ± 10.36, p = 0.02). 

 

 

 

 

 

                                                                 
3
 These results, as well as methods discussed in Part II - Chapter 5 can also be found in [200,201,202,203,204] 

Tab. 11.1: mean values, standard deviations and correlation coefficients for the parameters 

used to compare the AVU with the reference results extracted with the manual labeling. 

Parameter Group Manual labeling AVU Correlation  

IntDur (ms) PD 545.15 ± 182.08 550.06 ± 186.59  

0.997 HC 505.56 ± 234.33 507.28 ± 236.09 

SD (ms) PD 39.56 ± 20.15 41.56 ± 20.29  

0.905 HC 28.50 ± 16.51 36.03 ± 19.28 

avIntDur1-4 (ms) PD 553.77 ± 181.95 554.22 ± 184.44  

0.995 HC 501.38 ± 219.38 509.48 ± 230.49 

avIntDur5-12 (ms) PD 554.13 ± 189.01 557.03 ± 190.48  

0.998 HC 512.85 ± 240.00 514.14 ± 239.36 

avIntDur13-20 (ms) PD 536.30 ± 188.41 541.02 ± 188.16  

0.997 HC 500.36 ± 237.52 499.31 ± 237.47 
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11.1.2 Comparison between HC subjects and PD patients on sentence repetitions 

Mean values and standard deviations (SD) of parameters computed with BioVoice, PRAAT and 

MDVP on sentence repetition signals are reported in Tab. 11.3. As not all participants show breaks 

within single sentences, the parameter Tpause was considered only for D% and NSR calculation. For 

this reason, this parameter was not reported in Tab. 11.3. 

 

 

Tab. 11.2: mean values, standard deviations and correlation coefficients for the 

parameters used to compare PD patients and HC subjects during the syllable 

repetition task (data from [94]) 

Parameters HC subjects PD patients t-test 

Dmean 0.50 ± 0.11 0.50 ± 0.12 p = 0.82 

DSD 0.05 ± 0.02 0.06 ± 0.03 p = 0.08 

avD1-4 0.53 ± 0.11 0.55 ± 0.13 p = 0.62 

avD5-12 0.50 ± 0.11 0.50 ± 0.13 p = 0.82 

avD13-20 0.49 ± 0.12 0.48 ± 0.12 p = 0.56 

DCOV 2.31 ± 1.16 2.82 ± 1.47 p = 0.11 

DCOV5-20 2.33 ± 1.27 2.58 ± 1.21 p = 0.34 

DRelStab5-12 94.97 ± 7.67 90.53 ± 9.91 p = 0.08 

DRelStab13-20 92.93 ± 8.60 87.33 ± 10.36 p = 0.02 

DPA 2.04 ± 7.70 3.21 ± 6.51 p = 0.29 

 

These results show that significant differences exist between the two groups for parameters T inter, D% 

and NSR. In particular, there is a marginal significance of the difference in the means as far as Tinter is 

concerned (t(39) = 2.03, p = .049), with PD patients have higher values than healthy controls. 

Significant differences exist as far as D% (t(39) = 2.68, p = .011) and NSR (t(39) = 2.68, p = .011) are 

concerned. In particular, D% is larger in the control group while NSR is larger in PD patients (NSR 

being inversely proportional to D%). No significant differences were found in the parameters related 

to F0 and noise. However, the ratio between F0CV of the last sentence and F0CV of the first sentence 

is larger in PD patients (t(39) = 1.91, p = .063) with respect to controls. Similar result were found with 

PRAAT (t(39) = 1.99, p = .054) and MDVP (t(39) = 1.79, p = .080) (Tab. 11.3). A slight difference, 

though not significant was also found for ANNE: the healthy control group exhibits larger negative 

values (that is, less noise) than PD patients. Again similar results were found with PRAAT and 

MDVP: no significant differences were found in the parameters related to F0 and noise. Moreover, 

with our data no relevant correlation nor any significant trend or pattern (increasing or decreasing) 

during the sentence repetition task was found between the following parameters: disease duration and 

UPDRS motor score.    
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Tab. 11.3: - Mean value, standard deviation and t-test result for the acoustical parameters extracted 

from the sentences repetition task 

Software 

tool 

Parameters PD patients Healthy subjects t-test 

Mean SD Mean SD 

BioVoice Tsentence (s) 3.05 0.67 3.14 0.56 t(39) = 0.42, p = .67 

Tinter (s) 0.76 0.33 0.57 0.23 t(39) = 2.03, p = .049 

D% 73.77 7.37 79.77 6.52 t(39) = 2.68, p = .011 

NSR (syll./s) 6.54 0.97 5.79 0.77 t(39) = 2.68, p = .011 

F0CV  0.13 0.04 0.12 0.04 t(39) = 0.83, p = .41 

F0CV last/first 1.06 0.34 0.89 0.19 t(39) = 1.91, p = .063 

F0NR  0.56 1.14 0.51 0.15 t(39) = 1.13, p = .27 

F0NR last/first 1.15 0.65 0.98 0.37 t(39) = 0.97, p = .34 

ANNE (dB) -20.00 3.78 -21.73 3.89 t(39) = 1.39, p = .17 

Praat F0CV 0.14 0.04 0.14 0.05 t(39) = 0.29, p = .78 

F0CV last/first 1.14 0.56 0.87 0.17 t(39) = 1.99, p = .054 

F0NR 0.65 0.14 0.69 0.17 t(39) = 0.77, p = .44 

F0NR last/first 1.05 0.41 0.96 0.32 t(39) = 0.74, p = .47 

HNR (dB) 12.74 4.41 15.28 3.97 t(39) = 1.86, p = .071 

MDVP F0CV 0.15 0.04 0.16 0.08 t(39) = 0.38, p = .71 

F0CV last/first 1.11 0.44 0.88 0.33 t(39) = 1.79, p = .080 

F0NR 0.85 0.34 0.78 0.19 t(39) = 0.79, p = .43 

F0NR last/first 1.06 0.31 1.04 0.36 t(39) = 0.16, p = .87 

NHR 0.23 0.10 0.20 0.05 t(39) = 1.31, p = .20 
 

 

11.2 Discussion 

11.2.1 Performance of the AVU algorithm on syllable repetitions 

Comparing the AVU results with the manual labeling, the automatic segmentation provides results 

very close to the reference. These results are very promising in order to implement an automatic and 

computationally fast method to assess dysprosody in PD patients, since the processing time is on 

average below 2 s for signals with duration of 20 s. However, for the SD it was not possible to 

highlight the same significant differences of the manual results (Tab. 11.1), although a higher 

variability in PD patients is still visible. For these reasons, the comparison on a larger dataset is 

needed. 

Concerning the comparison between PD patients and HC subjects, since DRelStab13-20 is defined as the 

ratio between avD13-20 and avD1-4, this result indicates a decreasing of D during the repetitions. In fact, 

since D is the percentage of voiced time related to the whole utterance duration, and that a decreasing 

of Interval Duration along the repetitions is present in PD patients but not significant (Tab. 11.1), it 

could mean that there is a reduction of the vowel duration during the task. This is true for both groups, 

but more enhanced in PD patients. 
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11.2.2 Comparison between HC subjects and PD patients on sentence repetitions 

The results of this study show that PD patients exhibit an alteration of prosodic patterns of speech 

during a sentence repetition task. With respect to control subjects, PD patients have longer pauses 

between each sentence repetition (Tinter) and a lower percentage of “voiced time” during the entire 

repetition period (duty cycle D%). On the other hand, a decrease of duty cycle leads to an increase of 

NSR. Therefore PD patients tend to have a shorter time period occupied by speech than healthy 

controls, but at the expense of a longer recovery time, since no significant difference was found in 

Tsentence (the time from the start of a sentence to the start of the next one).  

At a first glance our results on Tinter (time interval between two adjacent sentences) are in contrast with 

other findings [92,93,95], where PD patients (of both genders) showed a less percentage of pauses 

than healthy controls. However, it should be noted that in these studies the task is not the repetition of 

a sentence but the reading of a passage composed by four sentences.  

The main difference might be due to the fact that we have considered only inter-sentence pauses using 

intra-sentence pauses for the computation of the other parameters (D% and NSR). 

Our results concerning the increase of NSR in PD patients are consistent with other findings [92,95] 

where an increase of the number of syllables per second was found during the reading of a text. 

However, other studies that used the reading of a passage [84,93] did not show any significant 

difference in this parameter. Thus, it is likely that speech rate alterations could be more easily raised 

from the repetition of a sentence rather than by the reading of a text.  

It’s worth noting that in our study we choose the sentence repetition task for two main reasons: first, 

we aimed at studying temporal parameters related to the pace of the repetition; second, some patients 

may have problems with regarding a passage due to poor eyesight and to age (most PD patients are 

elderly) and this may lead to an altered emotional state with obvious consequences on the quality and 

characteristics of the voice. Other studies, as well as results exposed in the previous section, show that 

alterations in speech rhythm could be pointed out by the widespread syllable repetition task (i.e., the 

repetition of syllables /pa/ or /pa/-/ta/-/ka/). It was shown that this test could reveal vocal pace 

variations; in particular, rhythm acceleration was found in PD patients [94].  

Temporal parameters (Tinter, Tsentence, D% and NSR) are computed with the AVU module of BioVoice. 

A comparison with the other two software tools (PRAAT and MDVP) was not carried out because 

they both provide only global information (relating to the entire recording) about the voiced and the 

unvoiced parts. More details on the comparison among the three software as far as VU segmentation 

performance is concerned are reported in [168]. 

No significant differences were found in the F0-related parameters (F0CV and F0NR). The only 

observed change between control and PD patients, although not significant, is the ratio between F0CV 

of the last sentence and F0CV of the first sentence ( t(39) = 1.91, p = .063) that is higher in PD 

patients than in healthy controls (1.06 vs 0.89). Similar results were obtained with PRAAT (t(39) = 
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1.99, p  = .054) and MDVP (t(39) = 1.79, p = .080), with higher values for the control groups with 

respect to PD patients (1.14 vs 0.87 with PRAAT, 1.11 vs 0.88 with MDVP). 

This suggests that the potential non-significant trend observed may be worth exploring in a larger 

sample. Other studies concerning F0 variations showed that PD patients exhibit reduced F0 standard 

deviation and variation range during a passage reading and a monolog [84,92,93,95]. This reflects the 

reduced variability of F0 which is one of the most common speech alterations in Parkinson’s disease. 

The different result obtained with our study could be due to the fact that here the sentence repetition 

was not performed with any particular intonation, unlike e.g. in Rusz et al. [84] where 10 sentences 

were pronounced according to different emotional context. From the comparison with these findings, 

it seems that the sentence repetition task is less meaningful with respect to the monolog or the text 

reading in enhancing reduced variability of F0 in PD. 

Concerning noise, no significant differences were found although some variation is detected (Tab. 

11.3). As expected healthy subjects exhibit larger negative values of ANNE than PD patients (-21.73 

dB vs -20.00 dB) that reflects a slightly higher noise in PD patients. However both groups are in the 

range of good quality of the voice. This is confirmed by similar results with PRAAT (lower HNR in 

PD patients) and with MDVP (higher NHR in PD patients). As the three tools apply different methods 

for noise estimation, the correlation coefficients between ANNE and HNR (r(37) = - 0.84, p < .001) 

and between ANNE and NHR (r(37) = 0.65, p < .001) were computed, showing moderate correlations 

between them. 

In conclusion, our results show that in PD patients with no or minimal speech problems (UPDRS item 

18 score between 0 and 1) the speech rate and temporal alterations are the most noticeable features of 

dysprosody during a sentence repetition task. 

The advantage of our method is that the chosen sentence (which consists mainly of vowel sounds) not 

only allows an automatic segmentation within the whole signal, but also the estimation of other 

acoustic parameters (fundamental frequency, noise, etc.). 

Skodda et al. [197] showed that tVSA (total Vowel Space Area) and VAI (Voice Articulation Index) 

computed from the first and the second formant frequencies of the vowels /a/, /i/ and /u/, are predictive 

of PD progression. Since our sentence (“Il bambino ama le aiuole della mamma”) contains all these 

vowels in a triphthong (/aiu/ inside /aiuole/), it would be easy to evaluate also these parameters. Other 

possibilities could be: the analysis of the three corner vowels where each vowel (/a/, /i/ and /u/) is 

extracted separately from the same sentence and the analysis of “staccato” vowels uttered in isolation. 

This problem will be addressed in future work.  

A disadvantage of our method consists in the empirical threshold to identify inter-sentence pauses. 

Despite most of subjects showed pauses/breaks inside a sentence shorter than the inter-sentence ones 

(and lower than the empirical threshold), in two cases (1 PD patient and 1 healthy control the length of 

some inter-sentence pause was comparable to the length of some intra-sentence pause. In these two 

cases the selection of the inter-sentence pauses was made by hand. 
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Thus, further developments will concern the implementation of a speech recognition module in order 

to detect the words that delimit each sentence. In this way we would be able to consider all the pauses 

between such words as well as the inter-sentence ones. Moreover, a speech recognition module would 

allow detecting a set of words within a “less controlled” framework, such as a monolog.  Indeed some 

studies [83,87] showed that the monolog is the most predictive task for speech impairment assessment 

in PD. Through this module  it would thus be possible to automatically perform the acoustic analysis 

of some features extracted from the monolog, while meeting requirements in order to standardize 

different and heterogeneous acquisition (i.e., to extract some particular vowel from the same words in 

monolog, etc.), as suggested in [87]. 
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12. Markerless analysis of articulatory movements during 

speech (validation on healthy subjects)
4
 

 

In this chapter, results on the performance of the proposed markerless method for studying the 

articulatory movements (in particular lips movements) are reported (methods are shown in Part II - 

Chapter 6). In particular, the RMSE of the tracked lip points is calculated exploiting words and 

sentences of the chosen speech corpora, while syllable repetitions (/pa/ for at least 25 times) were used 

to compare our markerless method with the marker-based reference in the estimation of some 

kinematic parameters (peak velocities and accelerations of the lower lip during the opening and 

closing phases). 

 

12.1 Results 

12.1.1 Error assessment 

The acquisition relative to the French subject was carried out at a mean distance of the mouth from the 

Primesense sensor of (737.99 ± 41.88) mm, while those relative to the Italian subject were performed 

at a mean distance of (770.20 ± 14.14) mm. The mean values and the standard deviations of the RMSE 

for the 3D trajectories of the 7 points of interest as well as the RMSE for the 3 articulatory parameters 

were reported in Tab. 12.1. These results were computed on the whole corpus for a total of 3413 

phonemes (1743 coming from the French corpus and 1670 from the Italian corpus). Since the points 

extracted with the markerless method were mapped to the Vicon reference frame, the notation used in 

this table refers to Vicon coordinates system: x is the lateral axis, y is the frontal axis and z is the 

vertical axis.  

Considering the mean distances at which the experiments were performed, the mean errors introduced 

by the Primesense sensor, for  the French corpus were 0.99 mm on the lateral axis, 0.83 mm on the 

vertical axis and 1.13 mm on the frontal axis (Fig. 12.1). For the Italian corpus, the mean errors were 

1.17 mm on the lateral axis, 0.81 mm on the vertical axis and 1.21 mm on the frontal axis (Fig. 12.1). 

                                                                 
4
 Part of these results, as well as methods discussed in Part II - Chapter 6 can also be found in [205,206] 



  

128 

 

 

As shown in tab. 12.1, the mean values of RMSE relative to the French corpus ranged between 1 and 3 

mm (except for the coordinate y of the points L5 and L7 and the coordinate x of the point L7). Even in 

the Italian corpus we noticed mean values less than 3 mm, although errors higher than 3 and 4 mm are 

more frequent. In particular, for the coordinate y of the points L2, L3, L5 and L7 the RMSEs ranged 

between 4 and 5 mm. Considering the depth accuracy of the device, the error for the depth values (z-

axis) was approximately of 0.7 mm for z < 600 mm, ranged between 0.8 and 1.2 mm for z between 

600 mm and 800 mm and is about 2 mm for z > 800 mm. Similar values were present on the x-axis, 

although the increase of the RMSE values over 2 mm occurs after 850-870 mm of distance. On the y-

axis (vertical), the error seems to be constant along the entire range covered by the object. In fact, we 

found that the RMSE ranged between 0.7 mm and 1.2 mm in the considered distance range. 

 

Tab: 12.1. RMSE (mean values and standard deviations) for the 7 points of interest and for the 3 

articulatory parameters 

Points and 

Parameters 

French RMSE (mm) Italian RMSE (mm) 

x y z x y z 

L1 1.63 ± 0.99 2.15 ± 0.96 2.57 ± 1.53 2.91 ± 2.30 2.35 ± 1.54 1.61 ± 1.01 

L2 1.39 ± 0.82 2.98 ± 1.44 1.40 ± 0.96 2.79 ± 1.85 4.17 ± 2.17 1.50 ± 0.99 

L3 1.28 ± 0.95 2.99 ± 1.49 1.50 ± 1.04 5.62 ± 3.06 4.14 ± 1.68 1.57 ± 1.39 

L4 2.10 ± 1.14 1.53 ± 0.85 2.23 ± 1.51 2.54 ± 2.08 1.85 ± 1.27 1.92 ± 1.21 

L5 1.30 ± 0.80 3.43 ± 1.40 2.46 ± 1.52 2.93 ± 2.30 5.50 ± 2.81 2.36 ± 1.27 

L6 1.96 ± 1.13 2.47 ± 1.39 2.49 ± 1.61 2.85 ± 2.49 2.92 ± 1.85 2.47 ± 1.31 

L7 3.15 ± 1.54 6.50 ± 2.08 2.44 ± 1.59 3.29 ± 2.73 5.08 ± 2.62 2.63 ± 1.51 

Width 2.07 ± 1.22 1.86 ± 1.07 

Opening 2.72 ± 1.66 3.81 ± 2.39 

Protrusion 1.36 ± 0.81 4.45 ± 2.08 

 

Fig. 12.1: mean errors introduced by the Primesense sensor with respect to the frontal distance from 

the camera 
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12.1.2 Kinematic analysis on syllable repetitions 

The analysis on the syllable repetition task was conducted on a total of 80 utterances. The kinematic 

parameters (mean values and standard deviations) for speed and acceleration during opening and 

closing phases relative to the same point are reported in Tab. 12.2. 

The correlation coefficient for the trajectory on the vertical axis of the point L6 was (0.96 ± 0.03), 

while those for speed and acceleration were respectively (0.95 ± 0.05) and (0.88 ± 0.10). 

 

Tab. 12.2: Mean values and standard deviations of the kinematic 

parameters during the opening and closing phases of the syllable repetition 

Kinematic parameters Marker-based Markerless 

Vopen (mm/s) -114.37 ± 30.55 -96.39 ± 23.48 

Vclose (mm/s) 100.01 ± 45.82 79.77 ± 26.97 

Aopen (mm/s
2
) -1689.63 ± 559.86 -1759.10 ± 665.73 

Aclose (mm/s
2
) 2619.02 ± 1068.82 2141.91 ± 910.86 

 

12.2 Discussion 

For most of the points, the RMSE mean values ranged between 1 and 3 mm (Tab. 12.1). Considering 

the low image resolution used for the experiment this is a very promising result. Further information 

about acceptable error ranges could be provided by future works that could be devoted to the 

calculation of error measures with other algorithms, devices and configurations. 

Concerning the articulatory parameters (Tab. 12.1), we obtained good results for the width in both 

corpora (mean RMSE around 2 mm) and for opening and protrusion in the French corpus (mean 

values: 2.72 mm and 1.36 mm, respectively). Instead, the errors for opening and protrusion in the 

Italian corpus were higher, with values over 4 mm for protrusion. Since protrusion is computed from 

the y-coordinate of points L2, L3 and L6, bigger errors for these points could lead to a bigger 

protrusion error; in fact, the error on the y-coordinate for these 3 points is always bigger in the Italian 

corpus with respect to the French one (Tab. 12.1). 

These differences could be due to several factors. First of all, the markers were accurately positioned 

to match the Intraface points, but this positioning presents an intrinsic error due to the manual settings. 

For the opening, the higher RMSE could be due to the higher distance of the acquisition and different 

orientation of the Primesense with respect to the face that, along with the low resolution of the images, 

could lead to bigger errors. 

The kinematic parameters reported in Tab. 12.2 show a tendency to underestimate the module of the 

maximum and the minimum speed values (closing and opening phases) with differences around 20 

mm/s. An underestimation is visible also for the closing acceleration, while during the opening phase 

the two estimates seem to be closer. 

Although the results on kinematic parameters seem to be inconsistent, from the plot in Fig. 6.6 of Part 

II - Section 6.2.2, and from the correlation values between the two systems, it is possible to observe 
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that the trajectories, the velocities and the accelerations extracted with the markerless technique were 

very similar when compared with the reference. This suggests that a bias is present in the estimation of 

the kinematic parameters. 

This bias might be due to the distance from the face at which the device was located (about 0.8 m), or 

to the different framerate of the systems (30 Hz for the depth sensor, 100 Hz for the marker-based 

method). This distance was a trade-off between the need to move the sensor as close as possible to the 

subject’s face and its characteristic (range of work: 0.4-1.5 m), without interfering with the field of 

view of the Vicon cameras. The distance, in conjunction with the low image resolution (320 x 240 

pixels) probably explains these differences. However, further experiments with structured light sensors 

should consider an experimental design with higher frame resolutions (at least 640 x 480 pixels) and 

smaller distances from the subject’s face (i.e., 0.5-0.6 m, according to the specification provided by 

the manufacturer).  

Considering the depth accuracy of the device we found that the errors on the x (lateral) and z (frontal) 

axes exhibited similar behaviors, with higher values with increasing distance from the camera. 

Considering the distances at which the speech acquisitions were performed (0.7-0.8 m) the errors in 

the depth estimation reflected what has already been observed in the results of table 12.1, namely for 

most of points the biggest error is on the frontal axis (that in the Vicon reference frame is the y-axis). 

However, this error is always smaller than those reported in Tab. 12.1 (only in the case of the point L4 

might be similar, since it is between 1.5 mm and 1.8 mm). Even for the other two coordinates the 

device errors were lower than those computed during speech experiments. We believe that this is due 

to the low resolution of the video frames (320 x 240 pixels) and the distance of the Primesense to the 

subject. This means that the pixels of the color images (those on which the face tracker works) 

correspond to an area of the face larger than that which would be using a higher resolution and/or 

decreasing the distance between the face and the Primesense camera. Thus, some depth variations of 

the face (in particular the cavities in the corner of the mouth due to the lip anatomy) might be 

indistinguishable.  

For these reasons for further experiments that will involve structured light cameras (Microsoft Kinect, 

Primesense sensors, Asus Xtion, etc.) we strongly recommend to acquire images of at least 640 x 480 

pixels of resolution for both streams.  

Although the working range used for this experiment led to reasonable errors in the estimation of the 

3D coordinates another requirement to adopt for future experiments is to perform the acquisitions at 

distances lower than 0.7 m. In fact, according to our results and considering the range of working 

specified by the manufacturer (0.4-1.5 m), the resolution on the 3 axes should be better at distances 

between 0.4 and 0.6 m from the camera. This recommendation allows increasing indirectly the 

resolution. However, due to the technical design of this experiment, we could not bring the camera 

closer to the subject’s face. 
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13. Markerless Analysis of articulatory movements during 

speech (application to PD patients)
5
 

 

13.1 Results 

The parameters obtained with the kinematic analysis (vopening, aopening, vclosing, aclosing, ΔOpeningnorm, 

MaxOpeningnorm, already defined in Part II - Chapter 7) are reported in Table 13.1 for both 2D and 3D 

analysis. Specifically: vopening and aopening refer to the maximum speed and acceleration of point CLL 

during the opening phase, vclosing and aclosing refer to the maximum speed and acceleration of point CLL 

during the closing phase, ΔOpeningnorm and MaxOpeningnorm are the normalized range of opening and 

the normalized maximum opening value, respectively. For simplicity, values related to the closing 

phase (vclosing and aclosing, Table 13.1) are reported in absolute value since they should be negative. 

Indeed in this experiment the values on the vertical axis increase downward. This is due to the fact that 

the 3D coordinates are computed  starting from the 2D image coordinates where the plane origin is 

located in the upper left corner and the y axis is positive downward. The closing movement direction 

is opposite to that axis leading to negative values of speed and acceleration. 

Concerning the 3D analysis, the results show significant differences in vopening (t(28) = 2.49, p = .019), 

vclosing (t(28) = 2.32, p = .028) and aopening (t(28) = 2.13, p = .043). All these values are lower in  PD 

patients.  In particular, the opening and closing velocities are reduced by more than 25 mm/s (94.94 ± 

33.40 mm/s vs 64.45 ± 30.94 mm/s for vopening, 87.85 ± 31.28 mm/s vs 61.54 ± 28.49 mm/s for vclosing). 

Lower values were found also for aopening, although not significant. Concerning the opening parameters 

(ΔOpeningnorm, MaxOpeningnorm) the normalized range of opening is lower in PD patients (0.65 ± 0.36 

vs 0.46 ± 0.23) although not significant, while the normalized maximum value is comparable with 

values around 0.4 in both groups (i.e., the maximum opening is about the 40% of the mouth width). 

These values are normalized to take into account the anatomical variations among subjects that result 

in different values of opening and width of the mouth, as explained in Part II - Chapter 7. 

As far as the 2D kinematic analysis is concerned, similar considerations can be drawn. Velocities and 

accelerations are reduced in PD patients, although no significant differences were found.  

 

 

 

                                                                 
5
 These results, as well as methods discussed in Part II - Chapter 7 can also be found in [207] 
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Figure 13.1 shows the trend of the six 3D parameters described above during the whole repetition task. 

The plots show a decrease of all parameters for both groups, more pronounced for velocity in PD 

patients. To provide a quantitative evaluation of this trend a linear regression was applied. The slope 

of the regression line is reported in Table 13.2 for each parameter and both PD and HC subjects. 

Indeed Table 13.2 shows that the decrease of the velocities in HC subject is slower than in PD patients 

(-0.41 vs -0.72 for vopening and -0.38 vs -0.77 for vclosing) while for the other parameters the trend is 

comparable.   

 

 

Tab. 13.2: Slope of the regression line of the kinematic 

parameters along the entire repetition task. 

 PD HC 

vopening -0.72 -0.41 

vclosing -0.77 -0.38 

aopening -12 -19 

aclosing -26 -25 

ΔOpeningnorm -0.0034 -0.0027 

MaxOpeningnorm -0.0018 -0.0015 

 

13.2 Discussion 

Our results confirm the findings reported by Walsh et al., 2012 [88] where PD patients exhibited 

reduced peak velocities of lower lip, both for opening and closing phases. In addition, the peak values 

of acceleration are reduced in PD patients with significant differences only for the opening phase. 

Thus, our work supports most of the literature on the kinematic analysis of the articulators in PD 

Fig. 13.1: Kinematic parameters along the whole repetition task. Solid lines: HC subjects; Dashed 

lines: PD patients. Left plot: trend of peak velocities. Middle plot: trend of peak acceleration values. 

Right plot: trend of normalized opening values. All the parameters show a decrease in both groups, 

however it seems to be more pronounced in PD patients especially for velocities (left plot and Tab. 

13.2). 
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patients with hypokinetic dysarthria which states that most of these patients exhibit a downscaling of 

the articulatory movements [88,104,111,112,113,114]. 

The novel contribution of this work concerns the assessment of this downscaling by means of a fully 

markerless and low-cost method. In Part II - Chapters 6 and 7, we described in detail the video-

processing framework: camera calibration, face tracking, 3D coordinates estimation and calculation of 

the kinematic parameters. All of these steps can be easily automated, providing an easy-to-use method 

for speech therapy and disease progression monitoring. By exploiting an existing face tracking 

algorithm and computer vision methods, the application of contact sensors or markers to the subject’s 

face is no longer required and no other manual setting is needed with obvious advantages for the 

patient. 

The accuracy of this technique was already demonstrated in the previous chapter although those 

experiments rely only on healthy subjects. Thus, a further development should be focused on testing 

this markerless method against a marker-based reference also for dysarthric patients.  

Because of the limited number of PD patients, we did not make any distinction among different levels 

of severity of dysarthria. Thus, future studies will be devoted to increasing the dataset, recruiting PD 

patients at different stages of the disease and with different levels of speech impairment, in order to 

investigate the evolution of the kinematic parameters. We expect a reduction of the kinematic 

parameters proportional to the severity of dysarthria, although further investigations are strictly 

necessary. As far as the normalized range of opening (ΔOpeningnorm) is concerned, we found lower 

values in PD patients with respect to HC subjects although this difference is not significant. This result 

supports previous findings [88] where the displacement of the lower lip during the utterance of bilabial 

sounds was lower in PD patients with respect to HC subjects. In our case PD patients have lower 

values of ΔOpeningnorm. This could be due to the fact that the maximum/minimum interval of lower lip 

displacement is reduced in PD patients, since this value is defined as the difference between the 

maximum and the minimum opening values divided by its mean value. Differently from [88] here we 

normalized the opening values. This allows taking into account the anatomical variations of different 

subjects. Conversely, the results of MaxOpeningnorm are similar between the two groups. As the 

maximum/minimum interval is reduced in PD patients, but the maximum value of opening is similar 

between groups, the decrease of the normalized range of opening in PD patients might be due to an 

increase of the minimum value of opening. This means that during the pronunciation of the bilabial 

plosive /p/ the occlusion phase of the lips before the “burst” (releasing phase of the airflow) is less 

pronounced in PD patients. This might be due to a weakness in tightening the lips. 

Concerning the 2D analysis, we found a decrease in the kinematic parameters of PD patients with 

respect to HC subjects as well as for the 3D analysis. However, the comparison among the 2D 

parameters did not show any significant difference between groups. For this reason, we recommend 

the use of both video streams (colour and depth) to evaluate the articulatory kinematic to get highly 

accurate results. New experiments should be performed on larger patients groups to better assess if 
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these differences could be detected with a single colour video stream. Thanks to the proposed 

methodology, the simple 2D parameters proposed here could be easily implemented in a user friendly 

smartphone app for rehabilitation purposes. This would increase the number of PD patients 

undergoing monitoring and provide further clinical data to the clinicians. As the only significant 

differences between the groups were found for 3D parameters, we evaluate the trends of these 

measures during the task. Figure 13.1 shows a decrease of all the parameters along the syllable 

repetition, although from Table 13.2 a clear decrease of the regression line slope is present for vopening  

and vclosing only. This could be due to speech-related fatigue that mainly occurs in PD patients. 

However, a recent study [198] shows that fatigue manifestations would not be so noticeable in PD 

patients. In our case the performed speech task is too short to draw conclusions about speech-related 

fatigue, while in [199] a speech task of 1 hour of duration was used. Nevertheless we could apply our 

method to assess those findings from a kinematic point of view. 

In contrast to Walsh et al., 2012 [88] we use a syllable repetition task, a widely used speech task 

already implemented in many studies on the kinematic analysis of the articulators in PD patients 

[111,113,114]. However, the analysed bilabial movements are similar to those proposed there (/pa/ in 

our study, /paIp/ in [88]). Further developments will be devoted to the implementation of this 

technique to other speech tasks in particular those that involve spontaneous speech (passage reading or 

monologue).  

Concerning the methodology some considerations should be drawn. Two main differences exist 

between the current work and the previous chapter where we tested the accuracy of the markerless 

system: 

1. During the accuracy tests we used the depth sensor Primesense Carmine 1.09 while in the current 

study we carried out the experiments by means of the Microsoft Kinect for Windows. However, 

both devices have very similar hardware and also the Kinect sensor used in our experiments can 

work in a near range mode [199]. 

2. To assess the accuracy of the proposed method we used an image resolution of 320x240 pixels 

(Part II - Chapter 6). Though this is a quite low resolution for our purposes, promising results were 

found in terms of tracking errors of the lips during speech production. We concluded that higher 

resolutions should be adopted for the experiments that involve the study of the articulatory 

movements with 3D depth sensors. A recommendation was to use at least 640x480 pixels for both 

streams (colour and depth) according to the device features. 

As already demonstrated in the previous chapter the error introduced in the depth estimation by the 

sensor is fairly constant (around 1 mm) between 0.5 and 0.7 m far away from the camera. Considering 

these values and the working range provided by the manufacturer (greater than 0.4m) we performed 

these experiments within these distances. Moreover, subjects were seated during the experiments, 

therefore these boundaries were reasonably kept even in the case of PD patients with involuntary 

movements. 
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In the previous chapter we demonstrated that with low image resolutions our method was able to 

accurately track the trajectories and the trends of velocity and acceleration of the lower lip. Despite 

these good results, with correlation coefficients over 0.95 for trajectories and velocities when 

compared to the marker-based reference, we noted that the markerless method underestimates the peak 

velocities of about 20 mm/s. In the present work we cannot state if the estimation of the peak 

velocities and accelerations were underestimated as we have not yet compared our markerless method 

against a marker-based technology with higher image resolutions. Thus, further experiments will 

concern also this topic. 

With this simple markerless system we are able to track lips movements with good accuracy and 

detect significant differences in the kinematic parameters of the lower lip between PD patients and HC 

subjects. However, the main limitation of this system is its capability of tracking only the external 

articulators being based on colour and infrared cameras. Thus, as speech involves a complex 

coordination of several articulators, complete and exhaustive results could be obtained only combining 

markerless and marker-based techniques (for instance, EMA for studying tongue movements). 
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14. Analysis of facial expressions and movements in PD 

patients 

 
 

14.1 Results - Analysis of expressive features with respect to the neutral 

baseline  

For each video frame of the expressed videos the Euclidean distance from the current face model and 

the neutral template for each subject was computed. As already reported in Part II - Chapter 8, for each 

video, the following measures related to the distance were computed: mean value, standard deviation, 

skewness, kurtosis, maximum value, minimum value and range. On average, HC subjects reported 

higher distances than PD patients along the whole tasks (12.68 ± 5.05 for HC subjects vs 9.35 ± 3.85 

for PD patients, p < .00001). Then, for each one of the 4 expressions, the following comparison on the 

aforementioned measures was performed: PD patients during the acted expressions vs PD patients 

during the imitated expressions (PD_act vs PD_im), HC subjects during the acted expressions vs HC 

subjects during the imitated expressions (HC_act vs HC_im), PD patients vs HC subjects during the 

acted expressions (PD_act vs HC_act) and PD patients vs HC subjects during the imitated expressions 

(PD_im vs HC_im). Results are reported in Tables 14.1-14.4. Within group differences (PD_act vs 

PD_im and HC_act vs HC_im) are reported in bold, while between group differences (PD_act vs 

HC_act and PD_im vs HC_im) are highlighted in grey. 

 

 

Tab. 14.1: Distance measures during the anger expression for PD patients and HC 

subjects. Results are reported for both tasks (acted and imitated expression) 

 Distance measures HC subjects PD patients 

 

 

 

Acted 

Mean 10.13 ± 3.44 8.05 ± 3.38 

SD 1.93 ± 0.96 2.11 ± 1.43 

Skewness -0.14 ± 1.63 0.64 ± 0.95 

Kurtosis 6.74 ± 8.05 4.42 ± 2.65 

Max 16.11 ± 6.20 14.27 ± 5.75 

Min 4.94 ± 1.98 4.03 ± 1.51 

Range 11.17 ± 6.08 10.24 ± 4.99 

 

 

 

Imitated 

Mean 12.50 ± 4.95 8.44 ± 2.80 

SD 1.65 ± 0.59 1.73 ± 1.05 

Skewness 0.06 ± 0.97 0.59 ± 1.35 

Kurtosis 4.40 ± 2.18 5.82 ± 5.87 

Max 17.40 ± 5.96 13.47 ± 4.08 

Min 8.12 ± 4.71 4.96 ± 2.20 

Range 9.28 ± 3.38 8.51 ± 4.38 
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Tab. 14.2: Distance measures during the disgust expression for PD patients and 

HC subjects. Results are reported for both tasks (acted and imitated expression) 

 Distance measures HC subjects PD patients 

 

 

 

Acted 

Mean 12.77 ± 4.98 9.38 ± 3.25 

SD 2.50 ± 1.15 2.31 ± 1.10 

Skewness -0.29 ± 1.23 0.36 ± 0.93 

Kurtosis 4.57 ± 3.27 3.53 ± 1.55 

Max 18.73 ± 6.84 15.62 ± 5.28 

Min 6.78 ± 4.74 4.96 ± 1.73 

Range 11.95 ± 5.61 10.65 ± 4.60 

 

 

 

Imitated 

Mean 14.88 ± 5.22 10.38 ± 4.79 

SD 2.11 ± 1.10 2.69 ± 3.19 

Skewness -0.10 ± 0.93 0.08 ± 0.86 

Kurtosis 4.39 ± 3.63 3.33 ± 1.58 

Max 20.24 ± 6.12 18.89 ± 8.17 

Min 9.75 ± 5.28 5.34 ± 2.31 

Range 10.49 ± 4.58 10.54 ± 8.25 

 

Tab. 14.3: Distance measures during the happiness expression for PD patients and 

HC subjects. Results are reported for both tasks (acted and imitated expression) 

 Distance measures HC subjects PD patients 

 

 

 

Acted 

Mean 13.86 ± 5.86 10.94 ± 4.84 

SD 3.68 ± 2.34 2.81 ± 0.93 

Skewness 0.34 ± 1.26 0.32 ± 0.86 

Kurtosis 5.22 ± 6.63 3.18 ± 1.05 

Max 24.75 ± 9.95 17.80 ± 5.84 

Min 6.17 ± 3.10 5.45 ± 3.44 

Range 18.57 ± 9.43 12.35 ± 3.69 

 

 

 

Imitated 

Mean 14.17 ± 6.62 10.21 ±4.52 

SD 2.49 ± 1.29 2.42 ± 1.11 

Skewness 0.16 ± 1.25 0.31 ± 0.99 

Kurtosis 5.16 ± 3.71 3.68 ± 2.84 

Max 21.22 ± 6.85 16.01 ± 5.57 

Min 8.54 ± 5.14 5.26 ± 2.56 

Range 12.69 ± 5.23 10.75 ± 4.79 

 

Tab. 14.4: Distance measures during the sadness expression for PD patients and 

HC subjects. Results are reported for both tasks (acted and imitated expression) 

 Distance measures HC subjects PD patients 

 

 

 

Acted 

Mean 11.14 ± 3.47 8.76 ± 2.48 

SD 2.37 ±1.39 1.91 ± 0.97 

Skewness 0.04 ±1.38 0.41 ± 0.84 

Kurtosis 5.48 ± 4.13 3.77 ± 2.49 

Max 17.55 ± 6.28 13.89 ± 4.02 

Min 5.54 ± 2.12 4.92 ± 1.68 

Range 12.01 ±5.99 8.97 ± 3.87 

 

 

 

Imitated 

Mean 11.97 ± 4.13 8.63 ± 2.94 

SD 1.71 ± 0.65 1.98 ± 0.93 

Skewness 0.35 ± 1.24 0.46 ± 0.84 

Kurtosis 5.26 ± 4.31 3.39 ± 1.82 

Max 16.91 ± 4.52 13.73 ± 3.99 

Min 7.45 ± 3.11 4.99 ± 2.15 

Range 9.46 ± 3.36 8.74 ± 3.31 
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14.1.1 Comparison between groups (PD_act vs HC_act and PD_im vs HC_im) 

Significant differences were found in the imitation of the anger expression. PD patients showed lower 

values of mean (8.44 ± 2.80 vs 12.50 ± 4.95, p = 0.007), maximum (13.47 ± 4.08 vs 17.40 ± 5.96, p = 

0.033) and minimum distance (4.96 ± 2.20 vs 8.12 ± 4.71, p = 0.020), as reported in Tab. 14.4. 

During the disgust, significant differences were found in both tasks (acted and imitated expressions) 

for mean distance, with lower values in PD patients (Tab 14.2). During the acted expression mean 

distance was 9.38 ± 3.25 for PD patients and 12.77 ± 4.98 for HC subjects (p = 0.027), while during 

the imitated expression mean distance was 10.38 ± 4.79 for PD patients and 14.88 ± 5.22 for HC 

subjects (p = 0.014). 

Concerning the happiness, significant differences were found in both tasks (Tab. 14.3). During the 

acted expression PD patients showed reduced maximum (17.80 ± 5.84 for PD patients, 24.75 ± 9.95 

for HC subjects, p = 0.020) and range values of distance (12.35 ± 3.69 for PD patients, 18.57 ± 9.43 

for HC subjects, p = 0.019). During the imitation task, PD patients showed reduced maximum (16.01 

± 5.57 for PD patients, 21.22 ± 6.85 for HC subjects, p = 0.021) and minimum values of distance (5.26 

± 2.56 for PD patients, 8.54 ± 5.14 for HC subjects, p = 0.028). 

Significant differences were also found during the display of sadness (Tab 14.4). Concerning the acted 

expression, PD patients showed lower mean values of distance (8.76 ± 2.48 for PD patients, 11.14 ± 

3.47 for HC subjects, p = 0.031). During the imitation task, PD patients showed lower mean (8.63 ± 

2.94 for PD patients, 11.97 ± 4.13 for HC subjects, p = 0.011), maximum (13.73 ± 3.99 for PD 

patients, 16.91 ± 4.52 for HC subjects, p = 0.037) and minimum values of distance (4.99 ± 2.15 for PD 

patients, 7.45 ± 3.11 for HC subjects, p = 0.012). 

 

14.1.2 Comparison within groups (PD_act vs PD_im and HC_act vs HC_im) 

During the anger expression HC subjects showed an increase of the following parameters from the 

acted expression to the imitation task (Tab. 14.1): mean (10.13 ± 3.44 during the acted anger, 12.50 ± 

4.95 during the imitated anger, p = 0.049) and minimum values of distance (4.94 ± 1.98 during the 

acted anger, 8.12 ± 4.71 during the imitated anger, p = 0.011). The same differences were also found 

during the disgust (Tab. 14.2): HC subjects showed an increase (from the acted task to the imitated 

task) of mean (12.77 ± 4.98 during the acted disgust, 14.88 ± 5.22 during the imitated disgust, p = 

0.0056) and minimum values of distance (6.78 ± 4.74 during the acted disgust, 9.75 ± 5.28 during the 

imitated disgust, p = 0.0015). 

Concerning happiness, HC subjects showed an increase from the acted expression to the imitated 

expression in minimum value of distance (6.17 ± 3.10 during the acted happiness, 8.54 ± 5.14 during 

the imitated happiness, p= 0.039) and a decrease of the range value of distance (18.57 ± 9.43 during 

the acted happiness, 12.69 ± 5.23, p = 0.028), as reported in Tab. 14.3. 
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During sadness (Tab. 14.4), only a significant increase for HC subjects in the minimum value of 

distance from the acted to the imitated expression was found (5.54 ± 2.12 during the acted sadness, 

7.45 ± 3.11 during the imitated sadness, p = 0.005). 

No significant differences were found in the PD group between the acted expressions and the imitated 

expressions. 

 

14.2 Results - Automated facial expression recognition 

For each expressive video the SVM-scores were extracted. The multiclass SVM provides 5 scores (1 

for each class), thus for each video frame the maximum score was computed, retrieving the predicted 

class among: neutral, anger, disgust, happiness and sadness. This procedure provided the total number 

of frames assigned to a particular class for an expressive video. In order to test whether predictions 

coincide with the target expressions of a particular video, the total number of occurrences of each class 

was computed for both groups (PD patients and HC subjects) and for the acquisition tasks (acted and 

posed expressions). Afterwards, these values were normalized with respect to the overall number of 

occurrences (i.e., classified video frames), in order to get a percentage of a particular expression. 

For each one of the 4 target expressions (both acted and imitated) the pie plots of these percentages are 

shown in Figures 14.1-14.4. For each target expression they provide a visual representation of the 

average expressions recognized by the classifier in a particular task. 

 

 

Fig. 14.1: Pie charts for anger: acted expressions (upper plots) and imitated expressions (lower plots). 

The two plots on the left concern PD patients, while those on the right concern HC subjects. 
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Fig. 14.2: Pie charts for disgust: acted expressions (upper plots) and imitated expressions (lower 

plots). The two plots on the left concern PD patients, while those on the right concern HC 

subjects. 

Fig. 14.3: Pie charts for happiness: acted expression (upper plots) and imitated expressions (lower 

plots). The two plots on the left concern PD patients, while those on the right concern HC 

subjects. 
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Moreover, the SVM output scores were considered as an index of the similarity of a particular 

expression to the target one, since we supposed that the learned expressions were the standard ones (as 

we trained the classifier on databases of expressions of healthy subjects). This provides further 

information about the capability of one group in exhibiting an expression better than the other group 

(i.e. closer to the standard expression). Results are reported in Table 14.5. 

 

 

Tab. 14.5: SVM average scores during the anger expressions for PD patients and 

HC subjects. The target expression of this task is reported in red, while the highest 

average scores are reported in bold for both tasks (acted and imitated) 

  Acted Imitated 

 

 

HC subjects 

Neutral -0.63 ± 0.17 -0.75 ± 0.12 

Anger -0.49 ± 0.41 -0.37 ± 0.38 

Disgust -0.69 ±0.16 -0.64 ± 0.18 

Happiness -0.75 ± 0.11 -0.76 ± 0.12 

Sadness -0.69 ± 0.16 -0.74 ± 0.15 

 

 

PD patients 

Neutral -0.57 ± 0.26 -0.57 ± 0.34 

Anger -0.48 ± 0.44 -0.42 ± 0.59 

Disgust -0.73 ± 0.18 -0.74 ± 0.20 

Happiness -0.76 ± 0.12 -0.79 ± 0.13 

Sadness -0.71 ± 0.21 -0.75 ± 0.18 

 

 

 

Fig. 14.4: Pie charts for sadness: acted expression (upper plots) and imitated expressions (lower 

plots). The two plots on the left concern PD patients, while those on the right concern HC subjects. 



  

143 

 

Tab. 14.6: SVM average scores during the disgust expressions for PD patients and 

HC subjects. The target expression of this task is reported in red, while the highest 

average scores are reported in bold for both tasks (acted and imitated) 

    Acted Imitated 

 

 

HC subjects 

Neutral -0.69 ± 0.11 -0.70 ± 0.10 

Anger -0.51 ± 0.30 -0.59 ± 0.34 

Disgust -0.61 ± 0.13 -0.54 ± 0.14 

Happiness -0.71 ± 0.11 -0.67 ± 0.10 

Sadness -0.73 ±0.07 -0.74 ± 0.07 

 

 

PD patients 

Neutral -0.56 ± 0.33 -0.68 ± 0.20 

Anger -0.44 ± 0.50 -0.38 ± 0.56 

Disgust -0.69 ± 0.19 -0.70 ± 0.19 

Happiness -0.77 ± 0.12 -0.77 ± 0.13 

Sadness -0.80 ± 0.17 -0.73 ± 0.19 

 

Tab. 14.7: SVM average scores during the happiness expressions for PD patients 

and HC subjects. The target expression of this task is reported in red, while the 

highest average scores are reported in bold for both tasks (acted and imitated) 

  Acted Imitated 

 

 

HC subjects 

Neutral -0.64 ± 0.08 -0.65 ± 0.15 

Anger -0.78 ± 0.10 -0.77 ± 0.09 

Disgust -0.58 ± 0.12 -0.59 ± 0.13 

Happiness -0.50 ±0.22 -0.49 ± 0.34 

Sadness -0.74 ±0.06 -0.74 ± 0.08 

 

 

PD patients 

Neutral -0.57 ±0.17 -0.53 ± 0.26 

Anger -0.69 ± 0.29 -0.60 ± 0.47 

Disgust -0.72 ± 0.19 -0.68 ± 0.20 

Happiness -0.59 ± 0.28 -0.66 ± 0.19 

Sadness -0.70 ± 0.15 -0.77 ± 0.15 

 

Tab. 14.8: SVM average scores during the sadness expressions for PD patients and 

HC subjects. The target expression of this task is reported in red, while the highest 

average scores are reported in bold for both tasks (acted and imitated) 

  Acted Imitated 

 

 

HC subjects 

Neutral -0.70 ± 0.09 -0.69 ± 0.21 

Anger -0.51 ± 0.30 -0.46 ± 0.33 

Disgust -0.64 ± 0.12 -0.66 ± 0.12 

Happiness -0.72 ± 0.10 -0.73 ± 0.10 

Sadness -0.71 ± 0.11 -0.71 ± 0.12 

 

 

PD patients 

Neutral -0.51 ± 0.32 -0.64 ± 0.26 

Anger -0.50 ± 0.47 -0.45 ± 0.52 

Disgust -0.71 ± 0.19 -0.71 ± 0.19 

Happiness -0.78 ± 0.11 -0.76 ± 0.12 

Sadness -0.76 ± 0.24 -0.71 ± 0.23 

 

14.2.1 Anger  

Fig. 14.1 shows that HC subjects perform the expression of anger better than PD patients during the 

acted task (42.51% vs 29.32%). In both groups, the other most frequent recognized expression is 

disgust (21.54% in HC subjects and 37.62% in PD patients). Neutral expression is higher in PD 
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patients than in HC subjects (24.00% vs 16.15%), the percentage of sadness exceeds 10% only in HC 

subjects (19.29%). 

During the imitation task there is a noticeable increase of the target expression only in HC subjects 

(from 42.51% to 60.98%), while the increase of the anger percentage in PD patients is around 4% 

(from 29.32% to 33.87%). On the other hand, PD patients show an increase of the neutral expression 

(from 24.00% to 31.71%), while this expression almost disappears in HC subjects. 

Results Tab. 14.5 show that in both groups the highest score is relative to the target expression (anger). 

 

14.2.2 Disgust  

Fig. 14.2 shows that HC subjects perform the expression of disgust better than PD patients during the 

acted task (43.42% vs 35.00%). In both groups, a large percentage of anger is present (43.13% in HC 

subjects and 29.42% in PD patients), with PD patients also showing higher percentage of neutral 

(30.28%). During the imitation task there is a large increase of the target expression only in HC 

subjects (from 43.42% to 76.89%), while in PD patients there is even a decrease of the disgust (from 

35.00% to 32.89%) at the expense of an increase of the anger expression (from 29.42% to 38.51%). 

During the imitation PD patients still show a higher percentage of neutral than HC subjects (18.62% 

vs 3.56%). 

Results in Tab. 14.6 show that in both groups the highest score is related to the anger class during the 

acted expression. This is compatible with the high anger percentages showed in the upper plots of Fig. 

14.2. However, during the imitation task, the average highest score in PD patients is still related to the 

anger class, in contrast to HC subjects, where the highest score coincides with the target expression.  

 

14.2.3 Happiness 

Fig. 14.3 shows that HC subjects perform the expression of happiness better than PD patients during 

the acted task (31.58% vs 18.09%). However, in both groups, this is not the highest percentage, since 

disgust is 49.93% in HC subjects and 32.97% in PD patients. During the imitation, the percentage of 

happiness decreases in both groups (from 31.58% to 29.84% in HC subjects, from 18.09% to 10.00% 

in PD patients). Also in this case disgust has the highest percentage (54.98% for HC subjects and 

30.34% for PD patients), with an increase of the neutral expression in PD patients from 25.19% to 

29.44%.  

However, results in Tab. 14.7 show that HC subjects have the highest score in correspondence to the 

target expression during both tasks (acted and imitated), while the highest score for PD patients 

corresponds to the neutral class in both tasks. 
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14.2.4 Sadness  

Fig. 14.4 shows that both groups have low percentage of sadness. This is the only case when the 

percentage of the target expression is higher in PD patients than in HC subjects (9.30% vs 5.50% 

during the acted expression, 11.81% vs 5.00% during the imitating task). In both groups, during the 

acted expression there are high percentages of disgust (44.58% in HC subjects and 27.99% in PD 

patients) and anger (42.77% in HC subjects and 31.74% in PD patients). During the acted expression 

there is a large increase of the anger percentage in HC subjects (from 42.77% to 59.95%), while PD 

patients show an increase of disgust (from 27.99% to 36.69%), with a consequent decrease of anger 

(from 31.74% to 28.82%) and neutral (from 30.98% to 22.68%). However, neutral still remains higher 

in PD patients than in HC subjects for both tasks. 

Tab. 14.8 shows that both groups have the highest average score in correspondence to the anger class 

for both tasks. 

 

14.3 Discussion 

Considering PD patients, the percentage of target expression did not undergo to big changes between 

acted and imitated tasks (Fig. 14.1-14.4). The percentage of neutral expression was always higher than 

HC subjects, during both tasks. Moreover, PD patients never showed an expression that clearly 

exceeds the others, as would be expected especially during the imitation. This suggests that PD 

patients had poor ability to show acted expressions both upon request and after that a visual aid has 

been shown for the imitation. 

In contrast, HC subjects showed higher variations (between acted and imitated tasks) of the target 

expression than PD patients especially for anger and disgust. Moreover, during the imitation of anger 

and disgust (Fig. 14.1-14.2) the target expression greatly exceeded the other expressions. This 

suggests that HC subjects were able to show a certain expression unambiguously upon request, but 

they clearly improved this ability when the visual aid for the imitation is shown. However, this result 

was not found during happiness and sadness (Fig. 14.3-14.4). Concerning happiness, the target 

expression remained stable between acted and imitated tasks and it was not the highest expression in 

terms of percentage. In fact, a high percentage of disgust was visible during acted and imitated tasks 

(Fig. 14.3). Watching the acquired video clips, we noticed that many HC subjects exaggerated this 

expression showing an excessive nose wrinkler, characteristic of disgust. Unlike PD patients, HC 

subjects did not show high percentages of neutral expression (Fig. 14.3); this means that they tried to 

exhibit happiness, but sometimes they failed in performing the right expression.  

Sadness was the expression with the worst results in terms of target expression percentage. Both 

groups showed very low percentage of the target expression. PD patients always showed high 

percentages of neutral, disgust and anger. These three expressions fill almost the entire pie plot in Fig. 

14.4. HC subjects, showed similar results but with a clear reduction of the neutral expression. Thus, as 
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in case of happiness, HC subjects tried to perform the expression but failed to do the right facial 

movements. In fact, after the experiment, the opinion of both groups was that it is very difficult to 

express sadness even when there is an image for the imitation. In this task both groups tend to assume 

different expressions, in particular anger and disgust.  

The fact that HC subjects tried to perform happiness and sadness without succeed is proven by the 

results in Tab. 14.3 and 14.4. In fact, PD patients showed lower maximum and range values of 

distance during the acted happiness, lower maximum and minimum values of distance during the 

imitated happiness, a lower mean value of distance during the acted sadness and lower mean, 

maximum and minimum values of distance during the imitated sadness.   

Considering the Euclidean distance from the neutral baseline, PD patients never showed significant 

differences between acted and imitated expressions (Tab. 14.1-14.4). This confirms the results of pie 

plots in Fig. 14.1-14.4, that is, the performances of PD patients in exhibiting a certain expression 

remain stable even after that a visual aid has been shown for the imitation. In contrast, HC subjects 

showed an increase in mean distance between acted and imitated expressions, for both anger and 

disgust. This confirms that a higher expressivity is present during the imitation for HC subjects. Other 

significant variations were found in the minimum value of distance for all the expressions, although 

the decrease of the range value of distance during happiness indicates that HC subjects did not show 

big variations (between acted and imitated tasks) of the overall expressivity during this expression. 

Considering only the acted expressions we can state that PD patients always showed a higher 

percentage of neutral than HC subjects (Fig. 14.1-14.4). Distance results showed that no significant 

differences exist in the overall expressivity between HC subjects and PD patients during anger (Tab. 

14.1), although the target expression is higher in HC subjects (Fig. 14.1). During acted disgust and 

acted sadness, PD patients showed a reduction of the mean distance with respect to HC subjects. Thus, 

the overall expressivity is reduced for PD patients. PD patients showed a lower expressivity also 

during the acted happiness, as suggested by a significant reduction of maximum and range values of 

distance. 

The higher percentages of neutral expression in PD patients were confirmed also during the imitated 

task. The differences between PD patients and HC subjects are greatly enhanced during the imitation, 

since a significant reduction was detected in: mean distance during anger, disgust and sadness; 

maximum and minimum distance during anger, happiness and sadness. Thus, the reduction of the 

overall expressivity of PD patients is more enhanced during the imitated than the acted expressions. 

These results showed that anger and disgust are the two expressions in which HC subjects showed a 

higher increase in the target expression during the imitation task. This means that HC subjects 

benefited from the displaying of the target expression in order to perform the imitation of those facial 

expressions. This was not true for PD patients, where the percentage of the target expressions (anger 

and disgust) remained stable or decreased from the acted task to the imitated task.  
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In order to quantify the amount of facial movements (and thus the overall expressivity) of both groups, 

the Euclidean distance of the facial model from the neutral baseline was computed. On average, HC 

subjects reported higher distances than PD patients along the whole tasks; this confirms that HC 

subjects showed larger movements during both posed and imitated facial expressions.  

From Tables 14.1-14.4 we note that PD patients did not show any significant difference between acted 

and imitated expressions in all the 4 tasks. This confirms what suggested by the pie plots in Figures 

14.1-14.4, namely PD patients did not improve their facial mimicry even when they were asked to 

imitate another expression. The reduced Euclidean distance from the neutral baseline means that PD 

patients showed a global reduction of expressivity during the tasks. These results agree with other 

findings reported in literature [36,40,119,143]. 

In particular, Simons et al., 2004 [37] found a reduction of posed smiles and difficulties in imitating 

happiness, surprise and disgust in PD patients (facial movements from participants were coded by a 

certified FACS coder). The authors found that Parkinsonian patients had difficulties in exhibiting the 

following AUs during posed expressions: AU4 (brow lowerer), AU9 (nose wrinkler), AU10 (upper lip 

raiser), AU1+2 (brow raiser) and AU6+12 (cheek raise plus lip corner pull). In particular, AU4 is 

involved in sadness, fear and anger, AU9 is involved in disgust and AU6+12 are characteristic of 

happiness. In our case, we did not detected AUs, but the reduced percentage of disgust and anger (Fig. 

14.1-14.2) in PD patients, could be due to the impairment in exhibiting these movements: brow 

lowerer and nose wrinkler. 

In all the acquisitions PD patients exhibited higher percentages of neutral with respect to HC subjects. 

This confirms the presence of a hypomimia that reduced the displaying of other facial expressions. In 

fact, even when HC subjects did not succeed in reaching the target expression (happiness - Fig.14.3, 

sadness - Fig. 14.4), the neutral percentage is always lower if compared to PD patients.  

As reported in Ricciardi et al., 2015 [143], it is still unclear whether PD patients are unable to show 

posed expressions, since conflicting results are present in literature. Our results suggest that PD 

patients have difficulties in exhibiting posed expressions, if compared with HC subjects. However, the 

most evident result is that PD patients did not improve the ability to reach a requested expression even 

when a visual aid is proposed (in this case the imitation of an expression); in contrast, HC subjects 

showed this improvement, especially for anger and disgust. 

These results do not provide a solution to the issue about hypomimia in PD (i.e., hypomimia is a pure 

motor disorder or is the consequence of a failed recognizing process). Actually, our experiments 

suggest that both the hypotheses may be valid, and that a joint action of two phenomena may be the 

most reasonable scenario: PD patients had lower performance in reaching a target expression upon 

request, with lower overall expressivity and facial movements (thus, confirming a motor disorder), but 

they did not improve these performance when they had to imitate a provided expression.  

Limitations of this study are the heterogeneous PD sample and the exclusion of fear and surprise. 

More accurate results could be provided by analyzing patients with different stages of the disease, in 
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order to study facial hypomimia along the course of the disease, and maybe drawing more useful 

information about impairments in expression recognition processes. More information could be 

extracted by studying AUs, as already done in [36,119]. In particular, the automatic detection of AUs 

could be an important aid for therapeutic exercises that involve facial mimicry, in order to develop a 

system for speech therapy and rehabilitation focusing mainly on those movements that seem to be 

more impaired in PD patients (as already demonstrated by [37]). 

Another point that could be elucidated in future works is the cultural dependency of these methods. A 

still open debate in literature (in particular in psychology) is the cultural specificity in the expression 

and perception of emotions. Previous works [116] demonstrated that it is difficult to draw firm 

conclusions about the expression of emotions across cultures, although some differences can be 

present. This issue could be focused also in PD patients of different cultures, in order to see if the 

disease can modify inter-cultural aspects and in which way. 

A clear advantage of this study is the objectification of facial hypomimia in PD patients by means of a 

contactless technology. Although Wu et al., 2014 [119] already performed an analysis of facial 

mimicry in PD patients through AUs classification techniques, in that study the authors recorded a 

group of PD patients monitored with facial EMG and ECG. The automatic analysis of facial 

expressions is a continuously evolving field of research that finds several applications also in medicine 

[118]. In particular, we believe that this system can be used to extract objective measures of facial 

mimicry constituting an important means for analyzing facial expressions also in rehabilitation 

framework (in particular speech therapy), whereby patients may obtain definite advantages about a 

real-time feedback of the right facial expressions/movements to perform. 
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15. Contact-less video-based tracking of heart rate
6
 

 

15.1 Results 

Mean values and standard deviations of the RMSE for the two estimation methods (AR-RLS and 

Wavelet-based methods) are reported in Tab. 15.1. Both methods were compared with the reference 

ECG measures for the 3 independent sources (Source 1, Source 2 and Source 3 in Tab. 15.1) extracted 

from the two facial ROIs: forehead and cheeks. 

 

Tab. 15.1: Mean value and standard deviation of RMSE for both estimation 

methods (AR-RLS and Wavelet-based methods) computed on the three 

independent sources extracted from the two facial ROIs (forehead and cheeks). 

These methods were compared with reference HR values extracted from an 

ECG. Values are expressed in bpm. 

ROI Independent Source AR-RLS Wavelet 

 

Cheeks 

Source 1 14.42 ± 4.25 14.75 ± 3.59 

Source 2 16.44 ± 2.00 16.81 ± 1.84 

Source 3 11.10 ± 3.50 12.65 ± 2.64 

 

Forehead 

Source 1 12.48 ± 2.59 12.90 ± 2.60 

Source 2 14.79 ± 0.99 16.70 ± 2.34 

Source 3 9.58 ± 2.82 11.67 ± 2.25 

 

Among the sources of both ROIs the one who gives the best results was Source 3 extracted from the 

forehead (Tab. 15.1). Considering this signal for the estimation, the AR-RLS methods gave better 

results than the wavelet-based one, with mean RMSE around 9 bpm. 

Fig. 15.1 shows the results of both estimation methods compared to the reference values (blue line). 

The HR estimation was performed on the third independent source extracted from the forehead.  

 

                                                                 
6
 Part of these results, as well as methods discussed in Part II - Chapter 9 can also be found in [208] 

Fig. 15.1: Comparison between the AR-RLS estimation (red) wavelet estimation (green) and 

reference data (blue). 
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15.2 Discussion 

A recursive HR estimation method from video signals was proposed. This method was compared 

against a reference ECG and against a wavelet-based method. Results in Tab. 15.1 highlight that the 

best results can be achieved using the third source signal extracted from the forehead. The use of a 

recursive estimation method allowed tracking heart rate variations under mild physical exercise (Fig. 

15.1). 

Our results seem to be in contrast with other proposed methods [146,148], where the best source for 

HR estimation was the second one. Although one of the problems of ICA is the lack of an order 

between the estimated sources (this leads to difficulties on how to interpret the sources [150]), in those 

works the authors stated that the second one could be related to the green channel of color images, 

where the highest plethysmographic content is present. The best result in terms of accuracy was 4.63 

bpm in presence of motion artifacts [148]. 

On the other hand, Monkaresi et al., 2014 [160], demonstrated that useful information for HR 

estimation could be contained in all the estimated ICA sources. Performing a similar task to that used 

in our work (indoor cycling), the authors used machine learning techniques (linear regression and k-

nearest neighbor) to predict the best source for HR estimation within a temporal window. However, 

when they considered the acquisition as a whole, the third source gave the best results. The estimation 

error reached values around 4 bpm when the authors combined ICA and k-NN [160].  

In our work, the errors against the reference HR are higher than those proposed in [148,160]. 

Nevertheless our method is able to track HR variations during physical exercises and motion artifacts. 

However, since our aim is to apply this method to study DOC patients and their reactions after the 

administration of external stimuli, this accuracy could be acceptable for our purposes. In fact, this kind 

of patients does not perform large movements of the head (especially patients in persistent vegetative 

state). Indeed the higher error values could be due to the head motion that occurs when subjects are 

pedaling. Because of its recursive nature, an improvement could be the implementation of a variable 

forgetting factor, in order to decrease the memory of the system during rapid HR changes and increase 

it during the stable phases. This would allow a better tracking of the varying dynamics of the system. 
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16. Video analysis of DOC patients: facial movements and 

HR 
 

16.1 Results 

Mean values of Euclidean distance and HR for each subject are reported in Tab. 16.1. As not all 

patients had the same number of stimuli, two analyses were performed. The first one considered those 

patients who had at least 3 stimuli after the baseline (N = 7) and the second one those patients who had 

at least 2 stimuli after the baseline interval (N = 8).  

 

16.1.1 Analysis on 3 stimuli 

A one-way repeated-measures analysis of variance (ANOVA) was performed to compare the effect of 

the noxious stimuli over the 4 time instants (before the first stimulus - baseline - and after the first 3 

stimuli) on the Euclidean distance of facial features from the neutral template and on the HR 

estimation. This analysis was performed on 7 patients. 

The repeated-measures ANOVA showed that the stimulus administration produced a significant 

increase in the Euclidean distance from the neutral template over the 4 time instants, F(3,18) = 7.1994, 

p =.002. No significant differences were found in HR values over the 4 time instants, F(3,18) = 

2.6155, p = .08. Boxplots of Euclidean distance and HR over the considered 4 time intervals are 

reported in Figures 16.1 and 16.2. 

For both measures (distance and HR), three paired t-tests were used to make post hoc comparisons 

between the following conditions: baseline vs 1
st
 stimulus, baseline vs 2

nd
 stimulus and baseline vs 3

rd
 

stimulus. The paired t-tests performed on the distance reported the following results: no significant 

differences exist between the baseline (mean: 10.99, SD: 6.97) and after the administration of the first 

stimulus (mean: 13.79, SD: 9.18), t(6) = 1.73, p = .13; there was a significant difference between the 

baseline and the interval after the second stimulus (mean: 19.28, SD: 10.09), t(6) = 3.05, p = .02, and 

between the baseline and the interval after the third stimulus (mean: 24.49, SD: 13.48), t(6) = 4.21, p = 

.006. Concerning HR, no significant differences were found during the comparison between the 

baseline and the three intervals after the stimuli. Mean values and standard deviations of distance and 

HR for the 4 time intervals are reported in Tab. 16.2. 

No significant correlations were found between distance and CRS-R score, age and months after the 

onset and between HR, CRS-R score, age and months after the onset. 

 

16.1.2 Analysis on 2 stimuli 

A one-way repeated-measures ANOVA was performed to compare the effect of the noxious stimuli 

over the 2 time instants (before the first stimulus - baseline - and after the first 2 stimuli) on the 
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Euclidean distance of facial features from the neutral baseline and on the HR estimation. This analysis 

was performed on 8 patients. 

The repeated-measures ANOVA showed that no significant differences exist in the Euclidean distance 

from the neutral template over the 3 time instants, F(2,14) = 2.4275, p =.12, while a significant 

difference exists in the HR estimation, F(2,14) = 6.1699, p = .012. Boxplots of Euclidean distance and 

HR over the 3 time intervals are reported in Figures 16.3 and 16.4. 

For both measures (distance and HR), two paired t-tests were applied to make post hoc comparisons 

between the following conditions: baseline vs 1
st 

stimulus and baseline vs 2
nd

 stimulus. The paired t-

tests performed on the distance reported the following results: no significant differences exist between 

the baseline (mean: 10.87, SD: 6.46) and after the administration of the first stimulus (mean: 13.20, 

SD: 8.67), t(7) = 1.56, p = .16; there was a significant difference between the baseline and the time 

interval after the second stimulus (mean: 17.77, SD: 10.28), t(7) = 2.52, p = .04. Concerning HR, there 

was a significant difference between the baseline and the time interval between the first stimulus 

(mean:, SD:), t(7) = -2.48, p = .04, while no significant differences were found during the comparison 

between the baseline and the interval after the second stimulus. Mean values and standard deviations 

of distance and HR for the 3 time intervals are reported in Tab. 16.2. 

No significant correlations were found between distance and CRS, age and months after the onset and 

between HR, CRS, age and months after the onset. 

 

Tab. 16.1: Mean values of Euclidean distance and HR for each patient considered in the study. Seven 

patients (1,2,3,4,5,7 and 8) were considered for the analysis on the first 3 stimuli, while 8 patients (1 to 8) 

were considered for the analysis on the first 2 stimuli. 

Patient Gender 
Age 

(years) 

Onset 

(months) 

CRS-R 

score 
Baseline Stimulus1 Stimulus2 Stimulus3 Stimulus4  

P1 F 41 29 7 
3.65 6.29 20.39 20.31 - Distance 

82.60 77.84 70.99 84.02 - HR (bpm) 

P2 M 56 22 6 
22.88 28.92 36.80 44.63 - Distance 

78.55 75.69 72.39 76.98 - HR (bpm) 

P3 F 35 93 7 
4.16 4.01 11.11 10.48 - Distance 

83.45 81.62 85.45 87.17 - HR (bpm) 

P4 M 80 15 6 
12.23 14.00 20.76 35.34 14.93 Distance 

88.28 82.57 85.52 92.48 89.16 HR (bpm) 

P5 M 25 14 7 
16.29 14.98 14.92 26.90 27.59 Distance 

73.36 75.50 76.37 82.69 86.85 HR (bpm) 

P6 M 50 20 9 
10.08 8.97 7.18 - - Distance 

87.61 84.59 86.72 - - HR (bpm) 

P7 M 48 4 5 
6.51 6.34 5.85 6.12 6.72 Distance 

81.43 82.39 79.15 81.83 88.06 HR (bpm) 

P8 F 51 29 4 
11.18 22.04 25.16 27.67 28.91 Distance 

81.74 74.83 74.10 77.07 77.58 HR (bpm) 

P9 M 66 59 5 
17.43 16.15 - - - Distance 

110.80 95.08 - - - HR (bpm) 
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Tab. 16.2: Mean values and standard deviations for Euclidean distance and HR during the two 

analyses (N = number of patients; * p < .05, ** p < .01) 

Analysis Measure Baseline Stim1 Stim2 Stim3 

3 stimuli 

(N = 7) 

Distance 10.99 ± 6.97 13.79 ± 9.18 19.28 ± 10.09 * 24.49 ± 13.48 ** 

HR 81.34 ± 4.58 78.63 ± 3.47 77.71 ± 5.94 83.18 ± 5.49 

2 stimuli 

(N = 8) 

Distance 10.87 ± 6.46 13.20 ± 8.67 17.77 ± 10.28 * - 

HR 82.13 ± 4.78 79.38 ± 3.84 * 78.84 ± 6.35 - 
 

 

Fig. 16.1: Boxplots of the Euclidean distance of facial features from the neutral template over the 4 

time interval considered for the study (baseline - before the administration of the first stimulus, and 

after the administration of the first 3 stimuli). 
 

 

Fig. 16.2: Boxplots of the HR over the 4 time interval considered for the study (baseline - before the 

administration of the first stimulus, and after the administration of the first 3 stimuli). 
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Fig. 16.3: Boxplots of the Euclidean distance of facial features from the neutral template over the 3 

time interval considered for the study (baseline - before the administration of the first stimulus, and 

after the administration of the first 2 stimuli). 
 

 

Fig. 16.4: Boxplots of the HR over the 3 time interval considered for the study (baseline - before the 

administration of the first stimulus, and after the administration of the first 2 stimuli). 
 

16.2 Discussion 

As reported in Fig. 16.1 and 16.3 patients showed a significant increase of the Euclidean distance of 

facial features from the neutral template during the course of the experiment (in particular after the 

second stimulus). This is consistent with an increase of facial mimicry and facial movements that 

might indicate a patient’s reaction. This distance has lower values during the baseline time interval 
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(i.e. before the administration of the first stimulus), reflecting a lower activity in facial mimicry with a 

facial expression similar to the neutral template. However, the same visible trend is not present for HR 

(figures 16.2 and 16.4); in fact, results in Tab 16.2 confirm that the mean HR remains stable during the 

first 3 stimuli, around 80 bpm. Moreover, the variations along the administered stimuli are very small 

(around 5 bpm on average) and thus comparable with the accuracy of this estimation method that in 

the previous chapter was demonstrated to be around 9 bpm. Thus, it is not possible to draw any 

conclusion on HR variations, although it is reasonable to suppose that no large variations occurred in 

DOC patients, at least considering the HR. 

This could depend on the small number of patients considered for this study (only 9 patients). These 

patients had different etiology, different age and different post-comatose outcome (in this case we had 

7 VS patients and only 2 MCS patients). More accurate results could be obtained with a larger data set, 

differentiating between VS and MCS patients. However, this is a pilot study and a first attempt to 

perform a contactless automated monitoring of DOC patients, that could be easily extended to larger 

populations and to other CRS-R items (i.e., items for the evaluation of auditory, communicative 

functions), as well as to the interaction of patients with their relatives. In fact, some neuroimaging 

studies [75,76] demonstrated that an activation in some cerebral areas (such as the amygdala) was 

found in MCS patients after listening to a familiar voice, but is absent in VS patients. Thus, our study 

could be extended in order to find possible differences in facial mimicry and HR in larger groups of 

MCS and VS patients, evaluating both within and between-groups differences. 
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Conclusion 
 

This PhD project provides first results concerning the development of a markerless system for 

monitoring facial expressions, facial movements and speech with applications to neurology (in 

particular Parkinson’s disease and disorders of consciousness).   

A markerless method for tracking articulatory movements during speech was tested against a marker-

based optoelectronic reference, obtaining good results in terms of accuracy. Interesting results were 

obtained in PD patients were through this markerless and low-cost approach it was demonstrated what 

already found in literature with more expensive techniques, that is PD patients exhibit reduced 

kinematic parameters of the articulatory movements (speed and acceleration of lips) during speech and 

reduced extents of facial expressions. Both are related to facial bradykinesia. Thus, the proposed 

methods could be implemented at home in order to help these patients in performing speech therapy 

and rehabilitation exercises, since a large percentage of them suffers from dysarthria and facial 

hypomimia.  

Interesting results were also found as far as the acoustical analysis of speech is concerned, with PD 

patients that show speech rate alterations during syllable and sentence repetition tasks. Thus, the 

analysis of facial expressions and articulatory movements, in conjunction with the acoustical analysis 

of speech signals can provide an important means for tracking the disease progression in different 

diseases that involve impairments in the speech production and facial movements. Moreover, the 

methodologies proposed in this thesis can also be extended for the investigation of other disorders, 

such as amyotrophic lateral sclerosis, Alzheimer’s disease, stroke, etc. 

The analysis of facial movements and facial expressions was also applied to DOC patients, in order to 

highlight possible reactions after the administration of external stimuli. This analysis, in conjunction 

with HR estimation through video-based techniques, highlighted some changes with a clear and 

significant trend only for facial expressions. Thus, these results need to be extended to larger 

populations differentiating between post-comatose outcomes. However, the first results obtained 

during this project might be a first step towards the development of an automated monitoring system 

for DOC patients, in order to assess patients’ reactions even when nobody is near them. This could 

provide a reliable support to clinicians in the differential diagnosis between vegetative state and 

minimally conscious state that today is still prone to high rates of error. 
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