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There are more things in heaven and earth, Horatio,

than are dreamt of in your philosophy.
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Abstract

To enable a new generation of digital computing applications, the greatest challenge

is to provide a better level of energy efficiency (intended as the performance that a

system can provide within a certain power budget) without giving up a systems’s flex-

ibility. This constraint applies to digital system across all scales, starting from ultra-

low power implanted devices up to datacenters for high-performance computing and

for the “cloud”. In this thesis, we show that architectural heterogeneity is the key to

provide this efficiency and to respond to many of the challenges of tomorrow’s com-

puter architecture - and at the same time we show methodologies to introduce it with

little or no loss in terms of flexibility. In particular, we show that heterogeneity can

be employed to tackle the “walls” that impede further development of new computing

applications: the utilization wall, i.e. the impossibility to keep all transistors on in

deeply integrated chips, and the “data deluge”, i.e. the amount of data to be processed

that is scaling up much faster than the computing performance and efficiency. We in-

troduce a methodology to improve heterogeneous design exploration of tightly coupled

clusters; moreover we propose a fractal heterogeneity architecture that is a parallel

accelerator for low-power sensor nodes, and is itself internally heterogeneous thanks

to an heterogeneous coprocessor for brain-inspired computing. This platform, which is

silicon-proven, can lead to more than 100× improvement in terms of energy efficiency

with respect to typical computing nodes used within the same domain, enabling the

application of complex algorithms, vastly more performance-hungry than the current

state-of-the-art in the ULP computing domain.
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Chapter 1

Introduction

1.1 Homogeneous and heterogeneous many-cores

In the last decades computing has become truly pervasive in a way never before imag-

ined even in the most daring predictions. What is particularly mind-shattering about

this phenomenon is that the utter dominance of digital computing has arrived at

the same time at many scales: from the enormous data centers that constitute the

backbone of the “cloud”, to the smallest body-implanted devices, passing through a

variety of applications in industrial plants, vehicles, everyday objects such as watches

and glasses, not to mention “explicit” computers such as PCs, tablets and smart-

phones.

Yet, even if the scale of these computers encompasses orders of magnitude in terms

of size, performance and energy consumption, all of them are based on relatively

similar principles, starting from the physics of Silicon devices up along the technology

stack. A corollary of the fundamental similarity of these systems in everything except

for scale is that problems, solutions and general trends are shared between systems

that seem totally dissimilar: for example, the irresistible trends to integrate more

functionality on single chips [9] and to provide higher flexibility substituting dedicated

hardware with software [10].

In the past, these trends have been fundamentally driven by Moore’s Law [11] and

Dennard scaling [12]: the number of transistors increased exponentially with each

technology generation, while the overall power density was kept constant by down-

scaling the operating voltage and delay was reduced due to the smaller capacitances

to be driven. While Moore’s law has continued working up to now, in the past 15
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years it has become increasingly clear that it is not possible to further scale down the

operating voltage. This is due to the fact that the leakage current grows exponentially

as the threshold voltage is reduced, effectively constituting a so-called power wall that

impedes further voltage downscaling [13]. At the end of the “single-core era”, complex

hardware was necessary to support the increasingly sophisticate techniques necessary

to exploit instruction level parallelism (ILP). More and more transistors had to be in-

vested into this kind of hardware (e.g. out-of-order execution, speculation, etc.) with

diminishing performance returns, resulting in an overall decrease of energy efficiency

that was no more counteracted by the availability of more transistors within the same

power budget, as was the case in the Dennard regime.

The solution to this issue was an industry-wide shift towards parallel computing.

Traditional single-core computers are not designed to be scalable from an architectural

point of view; there is no conceptually easy way to take a core and increase its per-

formance by 100× while spending no more than 100× the original power apart from

scaling its clock frequency. Conversely, parallel architectures are architecturally scal-

able by construction, the main tweakable parameter being the number of cores. This

fact is resumed into Pollack’s rule of thumb [14], that states that the performance of

a single core processor scales with the square root of its complexity, which is a strong

push towards architectures with many small and efficient cores. In fact, each core or

“processing element” in a parallel computer can be much simpler and smaller than

the most complex ILP-oriented cores, performing more operations per Joule even if it

is much slower. Several recently proposed platforms take this concept to its extreme,

working at very low clock speed to exploit the maximum efficiency of CMOS logic

when it is operated near the voltage threshold [15], and rely on thread-level paral-

lelism (TLP) or data-level parallelism (DLP) to reach an adequate performance target

[16].

The scalability of multi-core architectures has of course its own limits: first, some

applications have limited amounts of available TLP and DLP [17]; second, the com-

munication infrastructure typically poses a hard limit to either the number of cores

or to how flexibly they are able to share data - and thus to how much of the avail-

able parallelism can be exploited. In practice, these observations limit the number of

cores that can cooperate in a tightly coupled fashion through a shared local cache or

scratchpad, requiring the usage of a more scalable medium such as a network-on-chip

[18] to scale the number of processors above 8-16 [6]. We loosely distinguish between
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multi-core architectures, that are typically organized around a single memory shared

at level 1 (L1) or level 2 (L2) and feature a relatively small number of cores, and

many-cores, that are composed of clusters of cores interconnected with a network-on-

chip [5]. Many-cores can have from several tens up to thousands of cores, thanks to

the high degree of scalability of the network-on-chip. Each cluster can be a single core

or a group of cores sharing memory with a more flexible but less scalable scheme.

There are several limits for which these homogeneous many-cores, based on simple

replication of identical processing elements, could not grant the level of energy effi-

ciency that is needed for several applications. The end of Dennard’s scaling poses an

intrinsic upper limit to the number of cores that can be operated simultaneously: as

the power density increases with each technology node, keeping all transistors powered

on (and at a sufficiently low temperature) is rapidly becoming an intractable issue

for relatively high-performance platforms - a problem known as the utilization wall

[19][20]. To cope with the utilization wall, it is necessary to either power on only a

fraction of the chip at a time (dark silicon) or operate it at a much slower operating

point (dim silicon). At the same time, the amount of computing performance that

is required by very low power sensors and systems is growing very rapidly due to the

quantity of raw data that is necessary to drive modern “smart” applications based on

data mining and machine learning; much more rapidly, in fact, than the performance

that is available in typical systems used in sensor nodes, that are based on low-power

microcontrollers [21][22] - or than the capability to send this information on the net-

work for storage on a remote server [23]. We could call this limitation a data wall that

is difficult to solve by simple replication of the cores on existing microcontrollers, that

are mainly optimized for intrinsically sequential control tasks. Finally, the replication

of processors does not address at all the inherent energy efficiency limitations of Von

Neumann’s computational model, that are related to the necessity to repeatedly fetch

instructions in a fetch-decode-execute loop.

A possible common solution to many of these limitations is that of abandoning the

premise that the replicated cores are identical, optimizing each core or set of cores

for a particular task. This flavor of parallel computing is often called heterogeneous

computing and is already a popular solution in many fields, especially in the form of

Graphic Processing Unit (GPU) computing. Heterogeneous processing elements may

be cores with the same Instruction Set Architecture (ISA) but different microarchi-

tecture, cores with different ISAs, or even accelerators with no ISA at all or a simple

13



programming interface based on microcode. The heterogeneity of computing tasks is

often well reflected on a heterogeneous computing fabric. Heterogeneous computing

can be effective in addressing the utilization wall [20][1]: while the performance in a

homogeneous many-core is, in a first-order analysis, directly proportional to the num-

ber of active cores (and thus to the dissipated power), in a heterogeneous many-core

the relationship depends on the specialization of each core to a particular application,

giving the system designer an additional knob to keep thermal constraints in check.

Moreover, specialized cores are typically designed to yield much more performance for

each consumed watt than general-purpose ones (for a subset of application domains),

and they can exploit much finer grain data parallelism. Heterogeneous many-cores

that employ both standard cores and accelerators are therefore highly suited to cope

with the data deluge coming from sensors; more efficient computation directly on

sensors can greatly reduce the dimensionality of the data (by increasing its level of

abstraction), helping to solve the “data wall”.

In general, the effectiveness of heterogeneous computing is that it can help to un-

lock yet another level of energy efficiency that can be spent to get more performance

with the same power, or to get the same performance with less power, or a combina-

tion of both. Heterogeneous platforms with software cores and hardware accelerators

achieve this target by unlocking the energy efficiency potential that is kept unac-

cessible by the burden of the Von Neumann fetch-decode-execute loop. Conversely,

heterogeneous platforms composed of relatively complex ILP-optimized multi-cores

and programmable accelerators do the same at another level, unlocking the potential

of extracting data parallelism while keeping the flexibility of the more standard cores.

In fact, these two levels of heterogeneity can be coupled in what could be called frac-

tal heterogeneity : like a Russian matrioska, a standard multi-core can be accelerated

with a many-core platform that is itself accelerated internally with specialized units

to perform some tasks.

1.2 Taxonomy of heterogeneous parallel architectures

As previously explained, heterogeneous architectures based on HW accelerators work

in an asymmetric fashion: they feature a processor (or a group of processors) acting

as host running non-accelerable code, and accelerators used to achieve a greater level
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in some metric (e.g. energy-efficiency). This kind of heterogeneity can be present at

many scales in what we call fractal heterogeneity : for example, He-P2012 [24][25] –

the platform we present in Chapter 2 – is itself meant to be used as an accelerator to

an ARM host processor running mostly sequential code. We can group acceleration

paradigms regardless of the level at which they work in this fractal hierarchy, by

considering two main axes: how tight is the integration between host and accelerator,

and how is data exchanged between them.

A first approach is to insert accelerators directly inside the processor pipeline, and

share data through the register file. This is the case of ASIPs with specialized func-

tional units, such as the ones provided by Tensilica (now Cadence) [26] and Synop-

sys Processor Designer [27]. Other examples include specialized architectures such

as Movidius Myriad [28], Silicon Hive [29] and TI AccelerationPAC [30] that rely

on Very-Long Instruction Word (VLIW) cores augmented with special-purpose units.

Clemons et al. [31] propose EVA (Efficient Vision Architecture), an asymmetric multi-

core featuring 1 out-of-order coordinating core and many supporting low-power cores,

all augmented with custom Single Instruction, Multiple Data-stream (SIMD) accel-

erators for common operations such as dot products. This acceleration approach can

provide significant performance and energy-efficiency gains in very fine-grain work-

loads, but is inefficient for coarser-grain functionality, its main limitation being the

fact that it is usually limited to communicate through the register file interface. More-

over, as it is implemented inside a processor’s pipeline, it is still subject to the Von

Neumann fetch-decode-execute bottleneck, which can seriously limit its potential ef-

ficiency. Efficacy of this acceleration approach also relies on very deep knowledge of

the algorithm and the architecture on the programmer’s part (therefore limiting the

number of proficient users), or on very efficient compiler technology that is often not

available.

The opposite extreme of the spectrum is to use very coarse-grained accelerators and

rely mostly on message-passing channels for host-accelerator communication, adopting

a dataflow model of computation. This approach has been leveraged for software-

defined radio applications (see for example Ramacher et al. [32], CEA MAGALI

[33][34] and StepNP [35]), in high-performance computing (for example by Maxeler

[36]) and in the embedded vision domain (for example Vortex [37][38] for biologically-

inspired vision acceleration). Loose coupling of processors and accelerators through

message-passing channels is extremely scalable and power-efficient, as accelerators
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completely bypass the Von Neumann bottleneck, working only when they are fed with

input. Many high-level synthesis tools [39] partially relieve the designer of some of the

complexities of hardware design; however, this approach requires extensive rewriting of

the code following a dataflow model that is completely different with the dominant SW

imperative paradigm [40], thus requiring extensive specialization which greatly reduces

their practicality. Moreover, not all algorithms are amenable to be implemented in a

dataflow fashion without loss of generality or efficiency, and fine-grain acceleration is

typically not possible due to the overhead of message-passing communication. Much

recent research on loosely-coupled accelerators has concentrated on targeting FPGA

devices, often trying to hide the under-the-hood model from the developer by exposing

a high-level programming model such as OpenCL [41][42].

In between these two extremes, we find many architectures that employ architec-

tures clearly separated from the host processor pipeline, sharing data through one of

the levels of the memory hierarchy. At high level, this is what is done by APUs [43]

and many-core accelerators such as P2012 [5], which share DRAM with a x86 or ARM

host processor optimized for sequential execution. At a smaller scale, special-function

units in Nvidia GPUs [44] and coprocessors in Plurality HyperCore [45] are also exam-

ples of this trend. The GreenDroid architecture [1], shown in Figure 1.1, is composed
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of a set of tiles connected through a point-to-point mesh network-on-chip. Each tile

contains a single energy efficient general purpose processor able to boot Android, 32

kB of L1 data cache and a different array of 8 to 15 conservation cores or c-cores

that are tightly coupled to the processor through the L1 data cache. The c-cores are

generated via high-level synthesis of hot regions of code in Android libraries and in

the Dalvik virtual machine. In the Android-based workload that was considered by

Goulding-Hotta et al. [1] 95% was spent executing c-core accelerated code, with an

18× improvement on energy per instruction on average on the accelerated fraction.

Another similar architecture is EXOCHI, which was introduced by Wang et al.

[46], features hardware accelerators modeled as coarse-grain MIMD functional units,

collaborating with IA32 CPU cores by sharing of the same virtual memory space.

Cong et al. [47] also tackle the utilization wall by developing a heterogeneous multi-

core architecture with shared-memory accelerators; their HW IPs communicate by

means of shared L2 caches, accessible through NoC nodes. The model we propose

in Chapter 2, that is also based on previous work in our group (see e.g. Burgio et

al. [48], Dehyadegari et al. [49][50], Conti et al. [51]) is similar in that we consider

hardware processing elements (HWPEs) sharing memory at L1 with a tightly coupled

cluster of cores.

Platform
Offload
latency

Memory
latency

Memory
bandwidth

Memory
size

cycles cycles B/cycle B

Dataflow (Maxeler) 1000 10-100 64 (per link) > 1010

GPGPU (Nvidia) 1000 10-100 64 109

FPGA SoC (Zynq) 1000 10-100 8 109

He-P2012 (many-core) 1000 10-100 8 109

He-P2012 (HWPEs) 10-50 2-3 4 (per port) 105

ASIP 1 1 4 (per port) 103

Table 1.1: Orders of magnitude of offload latency and memory parameters for several
heterogeneous paradigms.

Table 1.1 specifies orders of magnitude for offload latency and memory access band-

width, latency and size for several heterogeneous platforms. Orders of magnitude of

memory performance metrics for Nvidia GPGPUs and the Zynq FPGA SoC are de-

rived from publicly available information from Nvidia and Xilinx; metrics for the

Maxeler dataflow engine are derived from [36].
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1.3 Homogeneous and heterogeneous parallel

platforms for low power

Heterogeneous platforms and systems are particularly useful in all use cases where

there is need for high performance under a very tight power envelope. In this scenario,

the energy efficiency boost provided by a heterogeneous platform can be a key enabler

to implement complex functionality with a limited system power. We believe that it is

at the ultra-low power scale, where energy efficiency matters most, that heterogeneity

can be most effective.

Currently, the state-of-the-art in low power and ultra-low power computation is

represented by single-core microcontrollers that can easily target power budgets of 50

mW and below. An example of such a platform is the STMicroelectronics STM32L47,

based on a ARM Cortex-M4 [52]. State-of-the-art ULP microcontrollers that can

work with less than 10 mW include the SiliconLabs EFM32 [53], Texas Instruments

MSP430 [54] families of microcontroller units (MCUs), and Ambiq Apollo [55]. With

respect to traditional microcontrollers operating at relatively high voltage (e.g. 1.2 V),

efficiency can be improved by operating near the threshold voltage, as is demonstrated

for example in Ickes et al. [56], SleepWalker [57] and Bellevue [58], which also exploits

SIMD parallelism to further improve performance. Similarly to the case of general-

purpose processors one decade ago, power considerations do not allow for a significant

improvement of the performance of these platforms. Both situations are related to the

end of Dennard scaling: while then the main issue was the thermal wall, in the case

of these microcontrollers the scaling limitation is mostly due to the objective power

constraints of the final applications.

However, many burgeoning applications such as vision-enabled sensor nodes would

need far more powerful platforms within a power budget comparable to that of the

lowest power MCUs currently on the market. For this reason, heterogeneous archi-

tectures already exist at this scale, although the coupling mechanisms are usually less

sophisticated than those used in higher power & performance state-of-the-art plat-

forms. For example, in many cases fixed-function HW blocks or ASICs are used to

augment a low-power microcontroller, with little flexibility in the application [59][60].

Computing capabilities such as simple filtering can also be integrated directly within

the vision sensor [61], forming an unusual kind of heterogeneous system.
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Figure 1.2: Peak energy efficiency at near-threshold voltage in a Pentium-class IA-32
microprocessor (from Jain et al. [2]).

To provide the same boost in efficiency while also keeping a higher level of flexibility,

a possible solution is to be inspired again by Pollack’s rule [14] and use many small and

slow cores working at ultra low voltage as an accelerator, as advocated for example

by Pinckney et al. [62]. To illustrate this principle, Figure 1.2 shows the results

reported by Jain et al. [2] regarding a Pentium-class in-order core in 32nm CMOS

logic that was demonstrated to be operational across a voltage range between 0.28 V

and 1.2 V, correspondent to a variation in frequency between 3 MHz and 915 MHz and

in power between 2 mW and 715 mW. At the minimum energy point (@0.45 V) the

core consumes 50× less than at the nominal 1.2 V operating point while being only

15× slower, underlying the advantage of this approach.

The same approach is followed by Centip3de [3]. Centip3de consists of a large scale

3D-integrated fabric of clusters of Cortex M3 cores. As shown in Figure 1.3, there are

64 cores organized in 16 clusters of 4 cores each. Each cluster shares instruction and

data caches residing on a separate die bonded face-to-face; these memories operate

at a higher voltage and at 4× the frequency of the cores, with the double advantage

of keeping the illusion of single-cycle access from the core’s point of view despite

the sharing and bypassing the necessity of 8T-SRAM cells that can be driven at low

voltage. In this way the frequency of the cores can be scaled much further down than

what is typically possible with standard 6T-SRAM [63].
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Figure 1.3: Centip3De near-threshold parallel architecture (from Fick et al. [3]).

The PULP architecture [64][65][66][67][68], that will be presented in a comprehen-

sive way in Chapter 3, combines this approach with the heterogeneous accelerator

model to enable a new class of applications with relatively high performance needs

on systems with a very low power budget. pulp introduces the advantages of hetero-

geneity to the sub-10 mW design space, by providing a general-purpose computing

device that is designed to deliver high performance/watt for parallel workloads while

leaving sequential control-related tasks to a normal microcontroller unit. The current

embodiment of this general model is a 28nm FD-SOI programmable ULP parallel

platform [67] that can be coupled to a low-power off-the-shelf MCU such as a STM32

via a low-power SPI connection that is used both for controlling the accelerator and

for data exchange. Moreover, we argue this kind of platform introduces significant

potential in terms of fractal heterogeneity - by combining software flexibility, effi-

ciency given by the technology and enabled by the architecture, and heterogeneous

acceleration, it would be possible to extract much of the potential efficiency of many

applications. Chapter 4 will describe such an architecture, targeted at the acceleration

of convolutional neural networks.

1.4 Balancing flexibility and efficiency: brain-inspired

computing and heterogeneity

As explained in the previous sections, it is often difficult to balance flexibility with

energy efficiency in the context of heterogeneous systems, especially when efficiency is

extracted by means of fixed-function hardware blocks that are intrinsically designed
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to perform a single function. However, a class of computational models that can be

used to enable a wide-ranging set of functionalities while still requiring only a small

set of primitive functions does exist: that of brain-inspired computing. Brain-inspired

models are very different one from the other, but at the fundamental level they share

the common nature of being suitable for a very large set of seemingly unrelated tasks

due to their capability to learn via an offline training procedure, via online learning or

a combination of both. In fact, some neural models have been proven to be capable of

universal approximated computation [69][70] and are thus capable, at least in theory,

of being trained to perform any task. These characteristic make them attractive

for integration in a heterogeneous parallel platform as an alternative to traditional

Von Neumann architectures1: the trade-off between efficiency and flexibility would

be substituted by another one between efficiency and accuracy. The fact that this

second trade-off between accuracy and energy efficiency is a fundamental one is well

known and is at the heart of the so-called “approximate computing” field [72][73],

in the context of which neural-network based approximators have been proposed a

number of times [74][75]. Flipping the approximate computing paradigm the other

way around, brain-inspired trained models are particularly effective to “approximate”

tasks of too high complexity to be represented by an actual closed form function or to

be efficiently solvable by simple algorithms. This is the case of most computer vision

algorithms, such as for example classification of images [76] and scene parsing [77].

Internally, the class of brain-inspired models has extreme variance in terms of the

accuracy of representation of the inner mechanisms of the brain. They range from very

high level models of the primary visual cortex such as HMAX [78] and Convolutional

Neural Networks [79]) to accurate large-scale spiking models to study the internal

mechanisms of the brain such as Izhikevich’s model [80], passing through “middle

ground” such as spiking-based liquid state machines [81][82].

A particularly interesting class of algorithms from this point of view is that of Con-

volutional Neural Networks (CNNs or ConvNets) that are state-of-the-art in many

accuracy benchmarks, particularly in the computer vision field [76][83][84][85][86]. As

CNNs are based on accumulation of convolutions, they are well suited to being im-

1An interesting trivia note is that the original Von Neumann architecture, as proposed in the “First
Draft of a Report on the EDVAC” [71], uses a good amount of brain-inspired concepts in justifying
its architectural proposal, drawing explicit comparisons between what we would now call “logic
gates” and neurons.
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plemented in hardware using well-known techniques, which makes them attractive for

integration in heterogeneous platforms and systems to enable implementation of a

task in a different point of the accuracy-efficiency point mentioned before. Research

on specific hardware for CNNs is rich and includes FPGA platforms such as NeuFlow

[87][88] and nn-X [89], ASICs such as ShiDianNao [90][91] and Origami [92], and SIMD

processor extensions such as the Convolution Engine presented in Qadeer et al. [93].

In Chapter 4 we present the HWCE [94], an energy efficient tightly-coupled copro-

cessor for acceleration of convolutional workloads in a ultra-low power heterogeneous

platform.

Several architectures making use of spiking neural networks (SNN s) for recognition

and vision have been recently proposed [95][96]. IBM TrueNorth [97][95] targets

vision applications using event-based spiking neural networks, and provides first class

energy results, being able to perform real-time multi-object recognition with a 72mW

power budget. With respect to the amount of outstanding results available for more

abstract models such as CNNs, state-of-the-art accuracy out of SNNs has not been

fully demonstrated yet; however, recent results such as those of Diehl et al. [98] have

shown that it is possible to reuse the training infrastructure for non-spiking deep

neural networks also for SNNs, enabling their usage in a much bigger class of cases.

1.5 Contributions and claims

The great challenge of heterogeneous architectures is to find the most effective point

in the trade-off between the full flexibility of executing all computation in software

on a general-purpose machine and the full efficiency of executing it in custom hard-

ware, specialized for one and only one task. In the remainder of this thesis, we

will explore both extremes in the trade-off between these two defining characteristics

of heterogeneous architectures, concentrating on the space of energy-efficient multi-

cores. We will first describe a platform with embedded fixed-function accelerators,

in which design-time flexibility comes out of the usage of high-level synthesis and a

certain degree of run-time flexibility can also be reached, by using simple and stan-

dard software primitives for the accelerator control. However, this run-time flexibility

is of course still limited by the initial choice of accelerators. Then, we will switch

to the opposite side of the trade-off describing a fully programmable accelerator for
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microcontrollers employing a set of Reduced Instruction Set Computer (RISC) cores

to accelerate data-parallel algorithms. This platform can reach a very high level of

energy efficiency thanks to its power-optimized architecture and the extended usage

of several low-power features of the STMicroelectronics FD-SOI 28nm technology;

this notwithstanding, its efficiency is still fundamentally limited by the inefficiency of

the Von Neumann fetch-decode-execute bottleneck. Finally, we will propose a com-

promise solution that can help achieve the same high level of efficiency of traditional

accelerators while also delivering a very significant level of application-level flexibil-

ity, by leveraging the features of brain-inspired computational models such as neural

networks.

Overall, our contributions add up to show that heterogeneous computing is an

effective solution to many of the challenges that computer architecture is facing after

the end of Dennard’s scaling and at the twilight of Moore’s law, as will be detailed in

the final Chapter 5 of this thesis. In absence of a technological breakthrough, in a few

years’ time the effort to keep up with the growing computational needs of humanity

will be almost entirely up to computer architects, who will have to find innovative

solutions that bypass the limitations we have described in Section 1.1. Essentially,

this boils down to increasing computational energy efficiency (in terms of operations

per unit energy) and computational density (in terms of operations per unit area)

by pure architecture changes. We claim that despite the power and attractiveness

of some computational models such as approximate computing and brain-inspired

computing, general-purpose computing as was refined during the ∼ 70 years since the

invention of the first digital electronic computers [71] is here to stay. The reason is

simply that general-purpose computers are able to do everything, even if they might

be suboptimal at it - and the level of precision on a given task is defined at the

algorithmic and not at the architectural level, leaving full freedom to developers to

explore any kind of solution. Moreover, and perhaps most importantly, success of

a paradigm in computer architecture (as in any engineering discipline) depends not

only on general effectiveness, but on cost-effectiveness. With the cost of integrated

circuit design and fabrication becoming higher and higher with each process node [99],

economy of scale considerations encourage designs that can be reused for many tasks

against ones that are specific to a single one - more so in advanced technology nodes.

The necessary increase of efficiency and density will therefore arrive not by sub-

stituting general-purpose computers, but rather by introducing together with them
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heterogeneous elements, ranging from different microarchitectures using the same ISA

up to elements heterogeneous to the Von Neumann model itself. These heterogeneous

cores will progressively be tightly integrated with “traditional” cores, as they are

more effective and efficient at particular tasks (be they parallel computing in a GPU

or a many-core platform, perception in a neural computing unit, or cryptography in

a specialized engine) without fundamentally impairing the system flexibility.
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Chapter 2

He-P2012: exploring heterogeneity in

tightly-coupled clusters

As explained in Chapter 1, adding heterogeneity to a computing platform adds both

advantages and challenges. In this Chapter, we provide two main contributions: first,

we define an architectural paradigm for the integration of heterogeneous fixed-function

cores (i.e. accelerators) inside a homogeneous tightly-coupled cluster of processors;

second, we provide a methodology for the exploration of the heterogeneous design

space starting from software running on the original homogeneous cluster.

2.1 Overview

One of the main challenges for the design of future embedded Systems-on-Chip is

the utilization wall [20]: due to the end of Dennardian scaling, the fraction of the

chip that can be kept on at a given power budget decreases with every new technol-

ogy node. Most of the area in future SoCs will therefore be “dark silicon”[19], i.e.

composed of transistors that are only seldom powered on; designers must face the

challenge to provide more computing performance by exploiting this dark silicon in

an effective and sensible way. The utilization wall limits the amount of parallelism

that can be exploited by adding more and more general-purpose processors, because

it is impossible to keep them simultaneously on. At the same time, though, it also

frees chip area for other purposes.

Proposed techniques to make effective use of dark silicon include dim and special-

ized silicon [20], i.e. respectively silicon that is used seldom/at a lower frequency and
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silicon that performs specialized functions. By inserting both general and special-

purpose processors in a single computing fabric we can effectively counteract the loss

of potential performance due to the utilization wall, since special-purpose processors

are typically not in use simultaneously nor are they always on [100]. However, het-

erogeneous architectures increase the size and complexity of the design space along

several axes: granularity of the heterogeneous processors, coupling with software cores,

communication interfaces, etc. Simulation flows and tools aimed at simplifying design

space exploration are thus highly beneficial.

Evolution towards heterogeneity in multi- and many-core SoCs stimulates an evo-

lution also in traditional HW/SW codesign techniques [101][102]. In this chapter,

we describe our technique to augment the STMicroelectronics P2012 cluster with

tightly-coupled shared-L1 memory hardware processing elements (HWPEs). HWPEs

can be used to increase performance and/or energy efficiency of the P2012 homoge-

neous clusters. Shared-L1 HWPEs work in-place on data shared by the SW cores

instead than on a copy, therefore avoiding consistency issues typical of many accel-

eration schemes and allowing cooperation between SW threads and HW jobs. To

support this architectural heterogeneity paradigm, we developed a novel tool flow

and design methodology that allows to generate HWPEs semi-automatically starting

from normal C code for homogeneous P2012, using commercial high-level and RTL

synthesis tools. Our methodology supports a significant fraction of the C syntax and

respects SW conventions for pointer manipulation and data layout, therefore allow-

ing shared-memory acceleration for non-trivial accelerated code. Generated HWPE

models are integrated in the P2012 platform simulator; this facilitates exploration

of various acceleration schemes, early performance assessment and generation of HW

using commercial HLS tools.

This architectural approach is promising since it overcomes the scalability issues

of ASIP-like architectures while not requiring extensive changes to the application

code, and making it easier to integrate accelerator programming in standard shared

memory programming models; it makes efficient use of dark silicon since accelerators

are triggered only in correspondence of hot regions of code, and then switched off.

There are several major differences between GreenDroid [1] (and similar architectures)

and our proposal. First, in our case the shared memory is an L1 software-managed

scratchpad, and not a cache. This implies a completely different usage of the two basic

computation elements (i.e. the cluster in our case, the tile in the case of GreenDroid),
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as in our case communication is explicitly managed via DMA transfers. This adds

more complexity to the management of data transfers, but allows to extract a much

higher degree of performance by hiding data transfer overhead with techniques such

as double buffering. A second critical difference is that in the case of GreenDroid

the cluster contains a single software core and a sea of c-cores, while in our case we

have multiple cores per cluster to maintain the flexibility of the homogeneous P2012

architecture. Finally, contrarily to previous work in this category of accelerators,

we propose a full-fledged flow that allows fast design exploration of heterogeneous

clusters, with semi-automatic generation of HWPEs and estimation of power and

area consumption based on RTL synthesis results.

2.2 Hardware architecture

2.2.1 P2012 homogeneous cluster architecture

Platform 2012 [5] is an effort led by STMicroelectronics to build up a fabric of tightly-

coupled homogeneous clusters. In the tightly-coupled cluster paradigm (exemplified

by many-core accelerators such as P2012 and Kalray MPPA [103]), each cluster is

composed by a relatively small number of simple in-order RISC cores (Processing

Elements or PEs) that communicate through a fast low-latency interconnection to a

shared L1 or L2 data memory. Clusters are then connected through a high-bandwidth

scalable medium such as a network-on-chip.

Figure 2.1 shows the overall architecture of Platform 2012, with 4 clusters and one

fabric controller communicating through an asynchronous network-on-chip.

In P2012, each cluster, as shown in Figure 2.2, contains up to 16 STxP70-v4

cores (PEs) sharing an L1 scratchpad of 256 KB, called tightly-coupled data mem-

ory (TCDM). Each PE has a 16 KB instruction cache; there is no data cache. The

logarithmic interconnection between the PEs and the TCDM was designed to allow

single-cycle access to the memory banks in case there is no contention (see Rahimi et

al.[6]). To minimize access contention, word-level interleaving and a banking factor

of 2 were used. The cluster also has a similarly designed peripheral interconnection

that is used for communication between PEs and peripherals (e.g. DMAs), memory

outside of the cluster, and a Cluster Controller containing another STxP70 core.

The P2012 fabric is not meant to be used as a stand-alone computing device, but
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as a programmable accelerator connected to a ARM host processor. Sequential code

is mostly executed on the ARM, while highly parallel workloads are offloaded to the

fabric. In its first embodiment, the STHORM board, the P2012 fabric is connected

to a Zynq device as a host running a full operating system (Linux or Android), while

the fabric runs only a light environment to support the OpenCL and OpenMP pro-

gramming models.

2.2.2 He-P2012: Heterogeneous P2012
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Figure 2.3: He-P2012 cluster: a P2012 cluster extended for heterogeneous computing.

We propose here He-P2012, a heterogeneous extension to the P2012 architecture. In

He-P2012, the tightly-coupled clusters are augmented with a set of HW accelerators

that communicate with PEs via the same shared L1 data memory (a scratchpad)

used by the PEs themselves. These tightly-coupled shared memory HW Processing

Elements or HWPEs [49] address the shortcomings of more traditional copy-based

accelerator models, such as the necessity to transfer and maintain coherent multiple

copies of data between distinct processor and accelerator memory spaces. In addition,

they diminish the semantic gap between executing a task in SW or HW: from a

programming perspective, dispatching a HW task on a HW IP is not different from

calling a SW function to perform the same task. In fact, the programming model we
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propose in section 2.3.1 exposes a synchronous HW interface call that maintains the

same interface and semantics of the accelerated SW function, although asynchronous

calls may also be used to enhance performance or energy savings if that is needed.
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Each HWPE is treated as an additional master with one or more ports on the

cluster logarithmic interconnection, exactly as if it was an additional core in the clus-

ter. Figure 2.4, which was adapted from Rahimi et al. [6], shows the logarithmic

interconnect in a simple configuration with 4 masters and 8 slaves (memory banks).

The logarithmic interconnection manages synchronization on memory accesses via a

simple round-robin scheme to avoid starvation [6]: access to a contended memory

location is granted to a single master, while the other masters are stalled for one

cycle. Contention on accesses from HWPEs and software PEs (or between those from

different HWPEs) is treated in the same way as in the homogeneous cluster. The

performance loss due to contention depends on the computation-to-communication

ratio of PEs and HWPEs and on the architectural parameters of the shared memory,

such as its banking factor. In Figure 2.5 we plot the results of a synthetic bench-

mark showing the execution time overhead of a 4-master port HWPE running in a

cluster with 16 PEs, while varying the probability of a memory access for both each

PE and each HWPE port. The maximum overhead is ≈70% when all 16 PEs have
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Pmem op PE = 90% and each HWPE port has Pmem op HWCE = 90%; this can be con-

sidered a worst-case scenario where all 16 PEs are essentially being used for data

movement only. In a more realistic high-contention scenario, with Pmem op PE = 50%

and Pmem op HWCE = 80%, overhead is reduced to ≈30%. This is consistent with our

empirical observations on the tests shown in Section 2.4. In many cases, software

computation-to-communication ratio is much higher and as a consequence the over-

head introduced by memory contention is less than 15%. 1 All results reported in

Section 2.4 include modeling of memory contention.

Figure 2.5: Overhead due to memory contention on a synthetic benchmark.

HWPEs are also connected as targets to the peripheral interconnection for con-

trol. Figure 2.3 shows a diagram of the He-P2012 cluster extended with HWPEs for

heterogeneous computing. HWPEs are designed as two separate modules:

1. the HW IP or accelerator proper is a datapath that implements the accelerated

function. It can be designed using high-level synthesis from a C function.

2. the wrapper provides the HW IP with the capability of accessing shared memory

1A more detailed discussion regarding the architectural tradeoffs of shared-memory HWPEs versus
private-memory ones can be found in Dehyadegari et al. [50].
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through a set of ports on the logarithmic interconnect and of accepting jobs from

the SW processing elements into a job queue.

The HW IP can be developed directly from the original software function by means

of standard methodologies (e.g., HLS tools [39][104]) with no additional programmer

effort. High-level synthesis produces an IP that can read and write to an external

memory using a custom protocol based on address and handshake. It is possible

to build HW IPs with more than one port for enhanced memory bandwidth. An

important limitation of current HLS tools is that they do not support IPs dynamically

addressing data in the external memory: all transactions happen in a private memory

space, where data is placed statically (i.e. at design time). This limitation is overcome

by connecting the HW IP to the HWPE wrapper.
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Figure 2.6: Simplified architecture of the HWPE wrapper.

The wrapper, shown in Figure 2.6, was designed to take care of three tasks:

• translating the memory accesses from the custom handshake protocol produced

in the HLS tool to the one used in the shared-memory interconnection;

• augmenting the memory transactions so that they support data placed dynam-

ically (i.e. at run time) in the shared-memory;

• providing a control interface through which the SW PEs can offload jobs to the

HWPE.
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The wrapper is divided in a controller submodule that translates HW IP transactions

into shared memory ones and a slave module hosting a register file to provide the

control interface.

To offload a new job to the HWPE, a SW PE must i) take a lock on the HWPE

(so that no other PE can concurrently offload a different job) by accessing a special

register in the register file, ii) write the base addresses of I/O data in the HWPE

register file and iii) trigger the execution (and release the lock) by accessing another

special register. The controller then uses the addresses in its register file to remap

memory accesses from the HW IP to the right region in the shared memory using

the address translation block. In the current implementation, the register file in the

wrapper can host a queue of up to 4 jobs that can be offloaded to the HWPE also

when the HW IP is busy, to minimize the offload overhead; as soon as one of the jobs

is completed, the next one is started.

The HLS tool produces a cycle-accurate SystemC model for simulation and a Ver-

ilog model that can be used for both RTL simulation and synthesis; these can be

used in conjunction to a SystemC or SystemVerilog implementation of the wrapper,

respectively.

2.3 Exploration flow

The final goal of the tool-flow presented here is to enable fast design space exploration

of heterogeneous architectures. To achieve this goal we need an exploration tool that

is easy-to-use, and that leverages a clear, well-defined methodology. GEPOP (Generic

Posix Platform), the simulation infrastructure provided with the official P2012 SDK,

provides a convenient starting point to achieve this goal. Clearly, it only models the

original homogeneous P2012 clusters, so we extended it to support accurate simulation

of HWPEs, wrapped with the discussed tightly-coupled shared memory methodology.

Models of all HWPEs are encapsulated in a single SystemC model that runs as a

separate process. A GEPOP plugin manages communication between this model and

the rest of the simulation platform, by means of UNIX pipes.

As our target is to explore the costs and gains related to the tightly-coupled shared

memory acceleration model on practical applications, in these experiments we gener-

ate separate simulation platforms for each application. Based on the results of this
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exploration, it would be possible to define which subset of accelerators explored are

definitely useful for a whole class of applications. We simplify simulator generation

by automating essentially all the steps required to create an executable simulation.

The user is exclusively responsible for:

1. writing the main application source code, using one of the programming models

supported in homogeneous P2012 (i.e., OpenCL or OpenMP);

2. defining the HW/SW interface in a custom language (SIDL, see Section 2.3.1);

3. extracting the functions to be accelerated into separate C files.

The tool flow uses this information to automatically generate all of the underlying

glue code that is required to execute the application on our heterogeneous platform.

Catapult scripts & glue files,

SystemC simulator files,

Makefile & build helper 

scripts

Interface Definition 

File (SIDL)

HWPE Software

API Interface

SIDL

COMPILER

Accelerator

Source (C/C++)

CATAPULT

HLS

P2012 Application 

Source (OpenCL)

CLAMC + STXP70 

COMPILER

HWPE RTL

(Verilog)

HWPE model

 (SystemC)

P2012

Application
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SIMULATION

RTL SYNTHESIS

(Design Compiler)

Figure 2.7: He-P2012 flow for cycle-accurate HWPE simulation.
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HLS and RTL synthesis scripts, SystemC wrappers for the HWPEs and SW API

calls to be used in the application code are all generated from the interface, which is

described in a custom language called SIDL (Software/hardware Interface Definition

Language). Figure 2.7 shows how the SIDL compiler takes the HW/SW interface

specification, and produces information for both the HW and the SW sides of the

flow. The compiler produces several TCL scripts to drive the HLS and RTL synthesis

tools (Calypto Catapult and Synopsys Design Compiler, respectively). Moreover, it

also generates a set of C++ classes that are used to support the shared-memory

interface between HW and SW in the Catapult HLS tool, as described in Section

2.3.2, and the top-level SystemC wrapper that encapsulates all HWPEs. Finally, it

also generates the C API (application programming interface) that can be used by

the OpenCL or OpenMP kernels in the GEPOP simulation to call for HW-accelerated

execution of a function.

It is worth mentioning that our flow also supports a less accurate simulation mode,

in which the HWPEs are modeled at a purely functional abstraction level, with accel-

erated portions of code executed in zero time.. This can be useful at early design stages

to quickly get a feeling of the behavior of different SW/HW partitioning schemes.

2.3.1 Software/Hardware Interface

The tools model the interaction between software and HWPEs as a client/server com-

munication, similarly to what is done in DSOC [105]; in our case, the client is the

SW running on the He-P2012 processing elements and the server are the available

HWPEs. The client/server interface is expressed in SIDL (Software/Hardware Inter-

face Description Language), a subset of C++.

A SIDL source file is composed by a preamble, in which structured data types are

declared using C++ struct syntax, and a series of interfaces, which are declared as

the virtual methods of a pure virtual class (e.g., class hwpe). Since the HWPEs share

data exclusively through the shared TCDM, inputs and outputs of the HW IP are all

expressed by means of pointers to simple or structured data types, as when passing

arguments by reference to a C function. The following is the SIDL code describing

the interface for two functions called foo and bar:

// library interface function specification (SIDL)

class hwpe {
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#pragma sidl unroll core/inner_loop 4

#pragma sidl pipeline core/main_loop 2

virtual v o i d foo( i n t *in , i n t *out) = 0;

#pragma sidl unroll core/main_loop

virtual v o i d bar( i n t *in, i n t *out) = 0;

};

The SIDL source may also contain a small set of pragmas that are used to direct

the HLS tools in a relatively easy way. Table 2.1 lists the supported pragmas.

#pragma sidl Description

nb hwpe N duplicates the HWPE N times
nb master N uses N shared-mem ports
unroll LOOP N unrolls LOOP N times
pipeline LOOP N pipelines LOOP with init. interval N
directive DIR passes DIR directive to Catapult

Table 2.1: SIDL Pragmas.

Following the classical client/server IDL approach, we developed a compiler to

process the SIDL interface definition and generate all downstream files as shown in

Figure 2.7 from a set of templates. The SIDL compiler is based on open-source tools

(flex, bison and libtemplate) and easily extensible.

On the client (i.e. SW) side, the result of the SIDL compilation is a set of APIs for a

light-weight runtime environment for the HWPE that can be used instead of the native

low-level HAL that drives the HWPE wrapper module. These APIs are expressed

in pure C, and they are therefore compatible with all the programming paradigms

available for the P2012 platform, such as the OpenMP and OpenCL programming

models. The tools provide both a synchronous interface call, in which the client

blocks until the results are available, as well as an asynchronous one that returns

immediately. In the latter case, the SIDL compiler generates also APIs to wait for

the end of the HWPE computation or to check if it has ended.

2.3.2 High-Level Synthesis

Due to the shared-memory nature of our architecture, argument marshaling is not

needed to collect the client arguments, and it is not necessary to copy data from the
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client to the server (i.e., from the SW-accessible memory to the HWPE). Rather, data

is left in-place, and only pointers are exchanged between the client and the hardware

accelerator. This allows a very low-overhead client/server call.

As a high-level synthesis tool, we decided to use Calypto Catapult System-Level

Synthesis as it supports out-of-the box most of the C and C++ syntax, as well as

SystemC. However, to make better use of the shared-memory nature of He-P2012,

we also need to support the conventions used by the SW compiler for data layout:

transforming by software the client data to a representation usable by the hardware

is not desirable - the overheads of data reformatting would defeat the advantages of

our shared-memory architecture. Manually modifying the HLS code to explicitly deal

with the layout used by the software compiler is also undesirable, as it would require

discarding all higher-level data structures. It would also lower the general abstraction

level, which is highly undesirable as this would defeat part of the purpose of our flow.

Therefore, we introduced a C++ template-based technique that statically maps

simple and structured data types used in the source code of the HW IP to a lower-

level, word-based representation that respects the conventions set by the SW compiler.

This way, normal data access syntax in the HW IP source is maintained, while correct

data addressing in the shared-memory is also guaranteed.

At the lowest level, all inputs/outputs are represented by an array of sc uint<36>

(i.e., 36-bit SystemC unsigned integers) called backing store. The highest four bits

of the backing store represent a byte enable signal, whereas the lowest 32 bits are

the actual data word. The 36-bit backing store is used to abstract the actual shared-

memory concept from the HLS tool, which is not meant to support such a scenario but

can easily handle non-standard word sizes such as 36 bits. To represent the address

of a particular word in the backing store, a hwpe addr class is used. Note that, as the

HLS tool does not support dynamically positioning data in the shared-memory, this

class merely represents an offset with respect to the base of the input/output array

pointed by the backing store.

To map atomic (i.e. non-structured) types to the underlying backing store, a tem-

plate C++ hwpe atomic<T> class is used, where T is the C atomic type (e.g. int16 t).

From the moment of its construction, a hwpe atomic instance features a pointer to a

underlying backing store and an offset value. Assignment and access operators on

hwpe atomic classes are overloaded so that, depending on the byte width of the high-

level type T, the correct byte enables are activated (in case of a store operation) or
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the correct part of the data word is retrieved (in case of a load). All standard integer

types are supported: signed and unsigned 8-bit, 16-bit, 32-bit and 64-bit integers.

The following code snippet shows some parts of the hwpe atomic class.

class hwpe_atomic <T> {

sc_uint <36> *backing_store;

i n t byte_offset;

public:

const T operator =( hwpe_atomic &atomic) {

r e t u r n operator =( atomic.operator T());

}

operator T() {

i n t bs_offset = byte_offset / 4;

i n t byte_idx = (byte_offset % 4)/ s i z e o f (T);

// for brevity , only sizeof(T) = 4 case is shown

r e t u r n (T) backing_store[bs_offset ].range (31 ,0);

}

hwpe_ptr_atomic <T> operator &() {

r e t u r n hwpe_ptr_atomic <T>( backing_store , byte_offset );

}

};

To provide the shared-memory interface, a smart pointer hwpe ptr atomic<T> tem-

plate class is also created corresponding to each hwpe atomic class, to represent a

pointer to the atomic type. Similarly to the hwpe atomic class, hwpe ptr atomic fea-

tures a pointer to the underlying backing store and an offset. Pointer and array access

operators (* and []) are overloaded to return a hwpe atomic instance; conversely, the

& operator of hwpe atomic is overloaded to return a hwpe ptr atomic instance.

For each structured type present on the interface of the HWPE, two template C++

classes are generated by the SIDL compiler. Let us suppose that the higher-level data

structure is the following structured t:

t y p e d e f s t r u c t {

uint32_t foo;

int16_t bar;

uint16_t who;

} struct_t;

To represent it, the SIDL compiler generates a C++ class that includes hwpe atomic

types for each of the members of the higher-level struct:

class hwpe_struct_t {
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sc_uint <36> *backing_store;

i n t byte_offset;

public:

hwpe_atomic <uint32_t > foo;

hwpe_atomic <int16_t > bar;

hwpe_atomic <uint16_t > who;

};

This class also overloads the field access operator (.) to allow access to its fields.

Finally, a smart pointer template class hwpe ptr struct<T> allows pointer access to

the structured data type by overloading pointer, array access and field access operators

(*, [] and -> respectively). For convenience, the SIDL compiler defines new types for

all pointers used in the interface of the HWPE:

t y p e d e f hwpe_ptr_atomic <uint32_t > hwpe_ptr_uint32_t;

t y p e d e f hwpe_ptr_struct <hwpe_struct_t > hwpe_ptr_struct_t;

In this way, most features typically required from accelerated hardware are sup-

ported: simple data structures, random access to the shared memory, data-dependent

control flow, inlined function calls. The main limitation, which is imposed by the

fact that Catapult does not support dynamic addressing, is that it is not possible

to dynamically reference data: double pointers are not supported, and therefore all

structures must be purely composed of atomic data types. Calling inlined functions

is supported as a means of code organization; it is not possible to call functions to be

executed in software from the accelerator, nor is it possible to use function pointers.

From the perspective of the designer of the HW IP source code, only minimal

changes are strictly needed to the HW IP source code to achieve a functional accel-

erator, though naturally to achieve better performance it is sometimes necessary to

perform optimizations. The following code snippet shows an example of the transfor-

mation of a simple function from the regular C pointer syntax to the Catapult smart

pointer one.

// Function with regular C pointer

v o i d add_one( i n t *the_value) {

*the_value = *the_value + 1;

}

// Function with Catapult smart pointer

v o i d add_one(hwpe_ptr_int the_value) {

*the_value = *the_value + 1;

}
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In this example, the value is pointing to data in the shared memory space. In the

Catapult implementation the hwpe ptr int type must be used in the function decla-

ration, as in the second case. The hwpe ptr int type generated by the SIDL compiler

can be used like an integer pointer, i.e., it seems to the HW IP developer that this

type was defined like typedef int *hwpe ptr int. This modification must be carried

out in all pointer types referring to data placed in the shared memory.

To perform the high-level synthesis of a HW IP the developer must therefore only

i) define the SW/HW interface, ii) adapt the HW IP source code from the original

SW version so that it uses smart pointers and iii) optionally optimize the HW IP for

better performance. The Catapult backend is called automatically from a lightweight

make-based wrapper that is used to automate the flow. HWPEs generated with this

methodology show only a minor area and power increase with respect to those gener-

ated directly inside Catapult. For example, the size of the CSC HWPE (see Section

2.4) increases by 6.3% with respect to the one that would be obtained directly, while

power increases by 3%. We believe this increase is well worth the gain in general-

ity and the speedup in design time; moreover, as this flow is meant to be the first

exploration step in the definition of a particular He-P2012 version, it is possible to

use it only as a methodology for the fast assessment of the best acceleration strat-

egy, switching then to a manually tweaked HWPE. One must note, however, that

data types different from 32-bit integers in the shared memory cannot be directly

supported in Catapult without manually replicating much of what is automatically

generated by our flow.

2.3.3 Power/Area Estimation and Simulation

The high-level synthesis tool produces two outputs: a synthesizable Verilog model and

a cycle-accurate SystemC model of the HW IP. After high-level synthesis, RTL syn-

thesis of the HWPE (including both the HW IP and the wrapper) can be performed

using Synopsys Design Compiler. The SIDL compiler generates all the scripts neces-

sary to fully automatize the process. Estimations of area and power consumption can

be extracted from the Design Compiler synthesis.

To evaluate the execution time, the SystemC models of all HW IPs are encapsulated

in a single executable together with a model of all the wrappers. The SystemC model

and the power estimation are loaded by a GEPOP plugin to estimate the energy
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consumed by the platform in the heterogeneous configuration. We used the following

simple energy model:

Etot = Euncore + EPEs + EHWPEs

Euncore = Puncore · texec

EPEs = PPE

∑
PEi

ton,PEi

EHWPEs =
∑

HWPEj

PHWPEj
· ton,HWPEj

The total energy spent in the cluster is due to three components: the energy spent in

uncore devices (i.e. everything in the cluster that is not a PE or a HWPE, e.g. DMAs),

which are supposed to be on during the whole execution time; the energy spent in

PEs; the energy spent in HWPEs. Energy spent in memory access is collapsed

inside the “uncore” category and was measured in a worst-case scenario, using results

provided by STMicroelectronics. We assume PEs and HWPEs to be clock-gated and

consume no leakage power when idle. This simplistic power model has the goal to

facilitate design space exploration and to compare different architectural solutions, not

to provide an accurate estimation of the full-system power. We argue that the model

is sufficient for this purpose, as (due to the complexity of the cluster) it would be

necessary to resynthesize the cluster from scratch down to the bottom of the backend

flow, with full synthesis of the clock tree, placement and routing to provide really

accurate results in terms of power.

2.4 Results

In this section we explore various versions of the He-P2012 cluster on a set of bench-

marks that were originally developed for the homogeneous P2012. Note that the focus

here is not on optimizing the HW blocks, which we simply derived from C code with

minimal modifications, but on showing the effects of augmenting the P2012 architec-

ture with heterogeneity by adding tightly-coupled accelerators.

For the purpose of this work, we concentrated our analysis of performance and

energy to a single P2012 cluster clocked at 400 MHz, where we sweep the number

of SW and HW processing elements present in the cluster. In fact, communication
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between clusters and with the host is dealt with in the same way in both homogeneous

and heterogeneous clusters and is an orthogonal issue with respect to our focus.

For our experiments we consider six applications that were originally developed

for the homogeneous P2012 cluster: Viola-Jones Face Detection using Haar features

[106], FAST Circular Corner Detection [107][108], Removed Object Detection based on

normalized cross-correlation (NCC) [109], a parallel version of Color Tracking from

the OpenCV library, a Convolutional Neural Network (CNN) forward-propagation

benchmark [76] [110], and a Mahalanobis Distance (10-dimensional) kernel. Face

Detection is parallelized with OpenCL, while the other benchmarks use the OpenMP

implementation described in Marongiu et al. [4]. Four of the applications we chose to

focus on (Viola-Jones, FAST, ROD, and Color Tracking) are from the computer vision

field, while the two remaining ones (CNN, Mahalanobis Distance) are more generally

from the machine learning field, though vision is one of their main uses. We chose to

focus on applications from this field for several reasons: first, they are typically very

demanding from the computational point of view and feature high computation-to-

communication ratios, making them well suited for HW acceleration. Second, these

kernels are often used in pipelines to build complete applications; this makes them

an ideal target for our heterogeneity paradigm, that is highly focused on cooperation

between software and hardware cores where we could run different stages of a pipeline.

Finally, they are among the main applications targeted by the homogeneous platform

we built upon (P2012), which allowed us to directly compare the homogeneous and

heterogeneous platforms. This set of applications differs significantly in size, execution

time and structure, with the objective of demonstrating our flow on a wide range of

applications.

Color Tracking (CT) is composed of three kernels: color scale conversion (CSC),

color based threshold (TH) and moment based center of gravity computation (MOM). The

most computationally intensive kernel is CSC, which we chose for HW acceleration.

The application is structured as a software pipeline made up of a DMA-in stage, a

CSC stage and a TH+MOM+DMA-out stage. It is possible to use both synchronous and

asynchronous calls for the accelerated CSC kernel; in the latter case, the accelerated

CSC execution can be almost completely hidden behind the TH+MOM stage.

Viola-Jones object recognition (VJ) is the most complex of our set of benchmarks;

it includes two computation-intensive kernels: cascade, whose execution time might

vary on a scale of 3 orders of magnitude, depending on input data; integral image,
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Figure 2.8: Execution time.
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Figure 2.10: Performance/Area/Energy.
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Figure 2.11: Energy vs Execution Time.
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whose execution time is not strongly dependent on input. For this benchmark, we

developed three HWPEs.

The cascade kernel is composed by a series of 13 stages, each of which is more

expensive than the previous one. Only matches have to go through the full cascade;

non-matching windows usually get out of the cascade at an earlier stage. In our

experiments, up to 95% of the windows got out of the cascade in the first two stages.

Therefore, we developed two distinct strategies to accelerate the cascade kernel: the

first strategy consists in accelerating the whole cascade in HW (coarse HWPE); the

second in accelerate only stages from the third on (finer HWPE), i.e. only in the least

common cases.

FAST circular detection (FAST) is composed of two kernels, detection and score.

To accelerate the application, we merged them in a single HWPE, that is called

asynchronously.

Removed Object Detection (ROD) spends most of its execution time in the nor-

malized cross-correlation kernel (NCC). We consider two approaches for acceleration:

a coarse HWPE that accelerates all the iterations, and a fine HWPE that accelerates

only one iteration. In the first case, only one PE is actually used; in the second case

the code containing the offload call to a HWPE can be parallelized among all the

threads.

Convolutional Neural Network (CNN) is composed of a series of convolutional,

max-pooling and linear layers. Convolutional layers are responsible for the great ma-

jority of execution time and energy consumption; we therefore concentrated on accel-

erating their two main kernels: convolutions (conv HWPE) and hyperbolic tangents

(tanh HWPE), both used in an asynchronous fashion. We simulated configurations

with one of the two kind of HWPEs, or both.

Mahalanobis Distance (MD) is composed by a single 10-dimensional distance ker-

nel, which was fully HW-accelerated in the heterogeneous configuration.

We collect results for three different metrics: execution time, energy, perfor-

mance/area/energy. Performance is measured as inverse execution time (as it is seen

by the controlling PEs), while energy is estimated using the model described in Section

2.3.3. We measure execution time To obtain area and power values for the HWPEs,

we used Calypto Catapult University Version 2011.a62 for high-level synthesis and we

synthesized its RTL output together with a SystemVerilog wrapper using Synopsys

Design Compiler G-2012.06. We used the 28 nm bulk STMicroelectronics technology
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libraries as a target, with a clock frequency of 400 MHz. Table 2.2 reports power and

area estimations for all HWPEs used in these benchmarks.

HWPE Power (mW) Area (kgates)

CT 5.82 16.74
VJ coarse 12.58 44.98
VJ finer 7.86 27.20
VJ int 4.88 19.79
FAST 4.55 13.88
ROD coarse 4.98 17.74
ROD fine 5.04 17.52
CNN conv 7.99 26.67
CNN tanh 2.43 7.10
MD 5.59 19.06

Table 2.2: Design Compiler synthesis results.

To better understand how much acceleration is achievable with HWPEs, we in-

troduce a new metric called accelerator efficacy ξ whose goal is to compare actual

accelerators versus a perfect accelerator by Amdahl’s law, i.e. one that reduces the

accelerable fraction of our application to 0 time. Acceleration efficacy is defined as

the following:

ξhwpe =
Tsw − TAmdahl

Tsw − Tsw+hwpe

Figure 2.12 shows the accelerator efficacy ξ for the accelerators we considered in

our study. We can reach an average efficacy of ∼ 80%, with some lower-efficacy

accelerators such as VJ stopping at ∼ 60% and others, especially those exploiting

asynchronicity between SW and HWPE execution, reaching up to 98%.

In Figures 2.8, 2.9, 2.10 we show results for the execution of our six bench-

marks in terms of execution time, energy spent in the cluster and normalized per-

formance/area/energy respectively. From these results we can drive some interesting

observations on the class of accelerators that can be generated from our flow. First,

as shown by the VJ benchmark, acceleration of coarse code blocks is best controlled

by a small number of PEs. Long-running HWPEs are clearly more likely to generate

high HWPE contention in cases where the code parallelized among a large number

of PEs does not contain much computation to be done in SW (besides the code to

offload computation). HWPE contention can be seen in most benchmarks; when the

number of PEs is high the execution time does not scale down any more, thus limiting
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Figure 2.12: Accelerator efficacy with 1 PE + HWPEs in % of Amdahl’s limit.

performance/area/energy, which shows a peak at 4 or 8 cores in most tests.

A second effect is that when the number of PEs is relatively low, area and power

consumption are mostly reduced to the invariant contribution of other components

of the cluster (DMAs and external interfaces). Therefore, adding PEs or HWPEs

to the cluster improves performance without significantly worsening area and power,

whereas when the number of PEs is higher the reverse may be true, as they scale

approximately with the number of PEs and HWPEs. The combination of the effect

of HWPE contention and of the linear scaling of power and area with number of

processing elements can be seen in Figure 2.10, where the performance/area/energy

in most tests reaches its maximum with 4 or 8 PEs.

Third, applications structured as pipelines, such as CT, benefit the most from this

acceleration model because it is possible to exploit asynchronous HWPE calls and to

hide most of the accelerated execution behind the rest of the application.

In the single-PE CT case, asynchronous execution allowed us to almost fully exploit

CSC acceleration, obtaining a speedup of 123×, that is 98% of the maximum permitted

by Amdahl’s law. The same benchmark shows an increase of almost an order of
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magnitude in performance/area/energy; the FAST benchmark, which is also relatively

efficient in term of Amdahl’s limit, goes even farther achieving a 21× increase in that

metric in the measurement with 4 PEs.

Figure 2.11 helps understanding the energy-delay tradeoffs implied by the choice

of a particular homogeneous or heterogeneous architecture, by reporting normalized

execution time versus energy spent in each benchmark while we sweep the number

of SW PEs from 1 to 16. Many plots exhibit near-ideal performance scaling in SW;

however, it is clear that in most benchmarks that only a certain amount of SW

parallelism can be extracted in an energy-efficient way, as efficiency drops considerably

when using more than a certain number of PEs (between 4 and 8, depending on the

benchmark). This is due to the fact that performance scaling is never completely ideal

and usually saturates at a certain threshold, while power scaling is always linear; this

is clearly shown in the plots, where most curves bend rightwards after 4/8 PEs.

In the CT and VJ benchmarks and in the finer configuration of the ROD HWPE

jobs are offloaded concurrently by all PEs, which causes two visible effects: the first is

HWPE contention by PEs, which is particularly visible in the coarse configuration of

VJ. The second, which is shown in both CT and VJ, is the “constructive interference”

of SW and HW co-working, which leads to significant overall speedups even when we

are using the most SW parallelism available (up to 6× overall in VJ ) or to complete

acceleration (i.e. reaching Amdahl’s limit) in the case of CT. We also see that in

ROD finer there is a hard limit to performance (both in SW and HW) given by

memory bandwidth: bringing data in/out of the cluster via DMA transfer becomes

the bottleneck.

The ROD coarse configuration and the CNN and MD benchmarks show instead

what happens when HWPEs are called by a single PE. In ROD coarse and MD, we

have no scaling at all as the whole application is accelerated. In CNN it is possible

to employ SW cores concurrently with HWPE execution, which is started by a single

PE. It is interesting to note that though convolution is responsible for more than 80%

of the total execution time, it is difficult to achieve a top-grade accelerator using our

HLS flow in this case, because the efficient way of expressing convolutions in SW is

fundamentally different from the top-efficiency way to design them in HW [8]. For this

reason, the single accelerator we use in the conv configuration is not able to compete

with 16 PEs performance-wise. Conversely, accelerating the hyperbolic tangent in

the tanh configuration is very easy and effective using our flow, even if the hyperbolic
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tangent is not as critical a kernel as the convolution is. Accelerating both kernels leads

to the best results in terms of energy efficiency, but makes it impossible to exploit

SW scaling to reach even better performance and energy; the convolution accelerator

acts as the bottleneck in the 16 PE both configuration.

Finally, the FAST benchmarks shows what happens to a very unbalanced applica-

tion. We used a synthetic image (a checkerboard) as input to the benchmark; this

tends to exacerbate the imbalance as, depending on the total number of SW threads

and the subsequent chunking of the image, some cores will consistently have no corners

and some others many corners to find. The plot clearly shows that neither SW-only

nor HW-augmented scaling are ideal; however, we also see that using an accelerator in

this case is helpful as it reduces the difference between threads with many corners and

threads with none, reducing the imbalance. This results in slightly improved scaling

and significant gains in terms of both energy and performance.

2.5 Conclusions

The novel methodology and tools we developed, oriented at heterogeneity exploration

on the tightly-coupled shared-memory He-P2012 platform, allow fast and easy ex-

ploration of a number of hardware acceleration alternatives. We have shown that

with our heterogeneous approach it is possible to obtain a significant advantage with

respect to pure software in terms of performance, energy consumption and perfor-

mance/area/energy. This was achieved without major rewriting of any benchmark,

since we adopted the viewpoint of augmenting the multicore cluster of P2012 with

heterogeneity rather than completely changing its working paradigm.

Design space exploration and early assessment of the benefits of one acceleration

solution over the others are critical to help overcome the utilization wall by means of

architectural heterogeneity. This chapter demonstrates a technique to apply HW ac-

celeration to a wide range of SW kernels and exemplifies it in the case of a state-of-art

many-core platform, P2012. Although the flow we have shown is specific to P2012,

we argue that the underlying heterogeneity approach and the proposed methodol-

ogy are applicable to the entire class of clustered many-cores (e.g. Kalray MPPA

[103]). Chapter 4 will show how it is possible to use the architectural paradigm of

tightly-coupled shared memory acceleration we proposed in this chapter in a com-
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pletely different scenario, i.e. integration of a manually designed heterogeneous core

specialized in the acceleration of CNNs.
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Chapter 3

PULP: a programmable accelerator

for MCUs

Chapter 2 introduced an architectural paradigm to augment tightly-coupled clusters of

processors with heterogeneity, and provided a methodology for the exploration of the

resulting expanded design space. Let us now take a step back and consider whether

a tightly-coupled cluster can itself be considered as a programmable accelerator for

another system, constituting a “higher level” heterogeneous system with respect to the

one explored in Chapter 2. PULP, the platform that we will introduce, is internally

homogeneous but is meant to be used in such a scenario, i.e. as an accelerator for

microcontroller units. We will focus our attention in particular on applications with

very tight power and performance constraints such as embedded vision in smart nodes

for Wireless Sensor Networks (WSNs) and the Internet-of-Things (IoT), and insect-

size unmanned aerial vehicles (UAVs), that provide a challenging scenario especially

for an internally homogeneous cluster that must rely on software efficiency.

3.1 Overview

With the introduction of cheap and powerful embedded computing devices such as

Qualcomm Snapdragon 810 [111] and Nvidia Tegra K1 [112], the computer vision field

has started to shift from theory and PC-based prototypes towards embedded applica-

tions such as smart cameras, self-driving cars and semi-autonomous robots. However,

all current vision devices depend on the availability of a relatively abundant source of

energy such as a mobile phone battery, which prevents integration of significant vision
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capabilities in devices that must run on very limited power and energy budgets, such

as micro- or nano-UAVs that have a limited payload to host a battery or wireless

sensor nodes that run on harvested power or must live years on a single charge [113].

These devices typically employ low power and ultra-low power microcontroller units

(MCUs) that cannot cope with the heavy workloads of CV algorithms, even for very

small images.

The ideal computing platform for this kind of heavily energy-constrained appli-

cations would be a low power, yet flexible fabric that is able to provide significant

performance when needed and remain in a very low-consumption state when not. In

particular, smart cameras, micro-UAVs and other similarly constrained applications

that are designed to work with input from low-power imagers and performing vision-

related algorithms need an exceptional degree of performance and energy scalability

to cope both with the limited energy budget and with the frame-rate requirements of

vision applications. At the same time, a computing fabric answering to these needs

should also provide a very high level of programmability with an easy-to-use model,

to keep on track with the fast-moving CV field.

In this Chapter we introduce the PULP platform, i.e. Parallel processing Ultra-Low

Power platform, a project trying to answer some of these needs. The PULP plat-

form project is a collaborative effort of several academic and industrial institutions1,

whose goal is to design an ultra-low power achieving high levels of energy efficiency

by combining near-threshold computing and parallel computing and by exposing low-

power features of the technology up the technological stack, at the architecture and

software levels. For the purposes of this chapter, we will concentrate on the version

of the architecture implemented on the PULPv2 chip, exploiting the capabilities of

STMicroelectronics Ultra-Thin Body and BOX Fully Depleted Silicon-on-Insulator

(UTBB FD-SOI) technology [114][115] that, in contrast with deep submicron bulk

technologies, allows to exploit an extended body bias range to modulate the perfor-

mance/energy trade-off at different operating points.

To achieve high performance when needed, PULP features a cluster of simple, yet

complete, OpenRISC [116] cores that can be used to exploit both coarse- and fine-

grain data level parallelism or task level parallelism. At the same time, operating

points (voltage, frequency, body biasing) can be controlled at a fine granularity and

1Including the University of Bologna, ETH Zurich, STMicroelectronics, EPFL Lausanne, Politec-
nico di Milano and others.
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high speed to achieve high energy efficiency when the performance constraints are

more relaxed or when the power budget is tighter. Current PULP chips are not

intended as a standalone computing platform, but rather as a component of a low-

power heterogeneous system that works in unison with a microcontroller and a set

of sensors, targeting mainly the internet-of-things2. In particular, it is meant as a

general-purpose computing device that is designed to deliver high performance/watt

for parallel workloads.

We put the PULP platform to test using several vision benchmarks, which were

implemented in pure C code using the OpenMP programming model to express par-

allelism. Two benchmarks are targeted at the smart surveillance use case. The first is

absolute difference motion estimation, a well known highly parallel algorithm that can

be used to detect intruders in a camera stream, and is also a component of successful

video compression algorithms[117]. The second benchmark is based on Convolutional

Neural Networks (CNN s or ConvNets) [79], a model that is state-of-art in many cur-

rent CV benchmarks and has shown promising accuracy results in new classification,

detection, and full-scene understanding tasks. CNN-based algorithms are typically

computationally demanding and require a good level of performance to work at ac-

ceptable frame rates. Finally, to demonstrate the micro-UAV use case for a device

such as PULP, we provide a benchmark based on Lucas-Kanade optical flow [118]

that can be used as input for self-stabilization and hovering in an aerial vehicle.

The first application we chose to evaluate PULP is smart visual surveillance, with

the motion estimation and CNN benchmarks. Motion estimation is a well-known al-

gorithm that is part of video standards such as MPEG [117], with known hardware

(e.g. Hsieh et al. [119]) and software (e.g. Brockmeyer[120]) implementations. Con-

versely, Convolutional Neural Networks (CNNs or ConvNets), originally proposed by

LeCun et al. [79], have been object of many recent developments that were rekindled

by the discovery of efficient ways to train them [76]. ConvNets have been used to

obtain state-of-art accuracy results on scene labeling, video classification and object

detection and interest in their applications has been shown by companies such as

Google [85][84], Microsoft [86] and Facebook [121].

Future applications for scalable ultra-low power and energy computing devices are

beginning to emerge in many fields, such as that of micro-UAVs and of smart and

2For an elaborate discussion on the reasons for this choice, see Section 3.4.
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ubiquitous surveillance. State-of-art work on autonomous UAVs focuses on relatively

big UAVs that are driven by full desktop-class processors and GPUs [122] [123]; to

achieve full autonomy in micro-UAVs with much more limited batteries and payload a

breakthrough in computing efficiency is needed. Wood et al. [124] quantify the total

power budget for this kind of vehicle as 100 mW, of which only 5 mW can be dedicated

to sensing and computation. In a similar fashion, smart wireless cameras acting as

WSN node need to perform relatively complex activities in a reduced amount of time,

while keeping the energy consumption at a minimum [125].

3.2 Architecture

3.2.1 PULP SoC overview
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Figure 3.1: PULP architecture.

PULP (Parallel processing Ultra Low Power platform) is a scalable, clustered multi-

core computing platform able to operate on a large range of operating voltages, achiev-

ing in this way a high level of energy efficiency over a wide range of application work-

loads. Figure 3.1 shows the main building blocks of a single-cluster PULP SoC. The

SoC features an L2 memory (sized in the 32 kB to 256 kB range) accessible through

a system bus, plus I/O peripherals that provide flexibility to the whole platform.
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The set of peripherals integrated in the PULP platform includes two SPI (Serial Pe-

ripheral Interface) interfaces (one master and one slave), GPIOs, a bootup ROM and

a JTAG interface suitable for testing purposes. Both SPI interfaces can be configured

in single mode or quad mode depending on the required bandwidth. This provides

the necessary flexibility to be able to interface PULP with a large set of off-chip

components, such as non-volatile memories, voltage regulators and digital cameras.

Moreover, the SPI slave can be configured as a master, and a set of enable signals

placed on both SPI interfaces allow the SoC to interface to up to 4 slave peripherals.

To connect to more complex devices such as sensors providing on an analog interface,

as well as to more complex communication devices (e.g. wireless radios), PULP relies

on the host that is also responsible for overall control. Section includes a thorough

discussion of this computation model and the reasons behind it.

Normally, PULP behaves as a multi-core accelerator of a standard host processor

(e.g. an ARM Cortex M low-power microcontroller). In this configuration the host

microcontroller is responsible for loading the application and processing data on the

PULP L2 through the SPI slave interface on PULP, and initiate and synchronize

the computation through dedicated memory mapped signals (e.g. fetch enable) and

GPIOs. It is also possible to configure the PULP SoC to work in a “stand-alone”

mode where it detects the presence of a flash memory on its SPI master interface and

boots from it.

3.2.2 Cluster architecture

The cluster architecture features a parametric number of Processing Elements (PEs)

consisting of a highly power optimized microarchitecture based on OpenRISC 32-

bit ISA [116], each one with a private instruction cache (I$). The refill ports of all

instruction caches converge on a common cluster instruction initiator port through

a cluster instruction bus. The OpenRISC cores were optimized to achieve a high

IPC on a wide variety of benchmarks, including control-intensive code [126]. Energy

efficiency is boosted by using a simple in-order pipeline to reduce register and clocking

overhead, while the datapath was area-optimized to reduce leakage. Further, extensive

architectural clock gating was employed to reduce spurious dynamic power.

The PEs do not have private data caches, avoiding memory coherency overhead

and increasing area efficiency, while they all share an L1 multi-banked tightly coupled
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data memory (TCDM) acting as a shared data scratchpad memory. The TCDM

has a number of ports equal to the number of memory banks providing concurrent

access to different memory locations. Intra-cluster communication is based on a high

bandwidth low-latency interconnect, implementing a word-level interleaving scheme

to reduce access contention [6].

A lightweight multi-channel DMA enables fast and flexible communication with the

L2 memory and external peripherals [127]. The DMA uses minimal request buffering

and features a direct connection to the TCDM, to eliminate the need for internal

buffering, which is very expensive in terms of power. A peripheral interconnect pro-

vides access to all the cluster peripherals and to all the resources external to the

cluster.

3.2.3 Power management

In order to provide the best energy efficiency across a wide range of workloads, the

cluster can work at its own voltage and frequency. To enable fine grained tuning of

the SoC frequency, an FLL (Frequency-Locked Loop [128]) is included as a peripheral

at SoC level. Moreover, a set of clock dividers (one for the SoC + one for each

cluster) allow to further divide the clock generated by the FLL. To reduce the dynamic

power consumption in idle mode, each processor can be separately disabled and clock-

gated through a set of registers mapped on the peripheral interconnect. In this way,

depending on the required workload, each cluster is able to work with an arbitrary

number of processing elements, while the others consume zero dynamic power.

The STMicroelectronics 28nm FD-SOI technology enables control of the voltage

threshold with body biasing; by using forward body-biasing (FBB) it is possible to

lower the threshold improving speed by paying a cost in terms of leakage current,

while on the other hand reverse body biasing (RBB) allows to increase the thresh-

old and lower the leakage, with reduced performance3. To dynamically select the

back-bias voltage of the cluster, a body bias multiplexer (BBMUX) is included, en-

abling ultra-fast transitions between the normal operating mode and the boost mode

when temporary peaks of computation are required by the applications. To reduce

the latency of the transitions between different operating modes, and making them

3Depending on the flavor of the technology (regular well or flip well) the amount of body biasing
that can be performed varies. In particular, flip well LVT transistors, used in the version of
PULP described in this chapter, allow for more FBB than RBB
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transparent to the software, a power management unit (PMU ) was added to generate

the control signals of the processors fetch enables, clock gating units, and BBMUX.

3.3 Benchmarking PULP

This section examines the implementation results of the PULP platform on the ref-

erence configuration described in Section 3.2, providing the area of the platform, the

estimation of the energy efficiency at the different operating points, and a compar-

ison with other state of the art multi-core platforms for embedded computing. It

also reports the results of our evaluation of performance and energy in the motion

estimation, ConvNet and optical flow benchmarks.

3.3.1 Implementation results
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Figure 3.2: PULP cluster area breakdown.

In the context of this chapter we consider a single cluster PULP implementation

operating in stand-alone mode. Thus, we assume the SoC connected to an external

flash memory which contains the application code, a video surveillance camera peri-

odically feeding the L2 of the SoC with a new frame, and a programmable DC/DC

converter configured by the cores to switch between the idle, search and follow mode
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described in Section 3.3.4. The L2 memory consists of 128 kB of SRAM to fit both the

program code and one 320×240 frame, that are offloaded via SPI from the host.. The

cluster consists of 8 cores featuring 1 kB of I$ each, while the TCDM is composed of

16 banks of 2 kB each, leading to an overall TCDM size of 32 kB. These architectural

parameters were chosen to fit the constraints of the benchmarks described in Section

3.3, and should be sufficiently flexible for a broad variety of vision tasks. Both the

TCDM banks and the processor’s I$ are implemented using standard cell memory

(SCM) cuts of 4 kbits each. While SRAMs may achieve a higher density than SCMs

(by a factor of ∼ 3×), SCMs are able to work at the same voltage ranges as the rest of

the logic, with the key benefit of providing much smaller energy/access (∼ 4×)[129].

Our results refer to a post place & route implementation of the proposed SoC

in STMicroelectronics 28nm UTBB FD-SOI technology, using low voltage threshold

(LVT) transistors. Thus, they include the overheads (i.e. timing, area, power) caused

by the clock tree implementation, accurate parasitic models extraction, cell sizing for

setup fixing and delay buffers for hold fixing (neglecting these would cause signifi-

cant underestimations in the clock tree dynamic power). The SoC was synthesized

with Synopsys Design Compiler, the place & route was performed using Cadence SoC

Encounter, and the signoff was performed using Synopsys StarRC for parasitic ex-

traction and Synopsys PrimeTime for timing and power analysis with backannotated

switching activities.

VDD [V]
fmax[MHz] fmax[MHz] fmax[MHz]
VFBB = 0V VBB = 0.5V VBB = 1V

0.3 2.5 4.45 6.31
0.4 22 35.9 49.1
0.6 200 277 350
0.8 400 484 563
1.0 588 650 705
1.3 775 836 885

Table 3.1: Supply voltage and peak frequencies for the reference PULP cluster. Bold
values indicate reference operating points.

We tested our platform with power supplies ranging from 0.3V to 1.3V and forward

body biasing ranging from 0 to 1V in the typical corner case at the temperature

of 25◦C4. Table 3.1 shows the peak frequency that the PULP cluster can reach at

4In FBB n-wells and p-wells are biased by a similar amount, lowering the threshold voltage of both
NMOS and PMOS transistors.
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Figure 3.3: PULP energy efficiency in GOPS/W.

each operating point, considering the power spent in the cluster. Being the cluster

composed of 8 cores, the theoretical performance of the platform can scale between

20 MOPS @0.3V, no FBB to 7 GOPS @ 1.3V, 1.0V FBB. An additional amount of

scalability is given by the possibility to enable/disable cores at a fine grain to lower

the dynamic power consumption.

Figure 3.2 shows the area breakdown of the cluster, where the overall cluster area

in the considered configuration is 1.2 mm2. It is possible to note that the TCDM and

the cores I$ occupy ∼59% of the overall cluster area, mainly due to the SCM based

implementation. However, this is fully compensated by the improvement in terms of

dynamic power consumption of the memories, which are responsible for the ∼15% of

the overall cluster dynamic power, with an improvement of ∼ 4× with respect to a

previous implementation of the same architecture [126].

3.3.2 Energy efficiency analysis

This section provides an evaluation of the energy efficiency of the proposed PULP

implementation at the different operating points that can be exploited on the platform,

focusing on the cluster power domain. To cope with the leakage power variation in the

28nm UTBB FD-SOI, cell libraries are characterized very conservatively; early silicon

measurements on PULP prototypes showed that there is more than a 2× guardband on

power models. For this reason, we first evaluated the energy efficiency of the platform

in four scenarios, accounting for various levels of pessimism for leakage: conservative,
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where the leakage power is directly extracted from the standard cell libraries; typical,

with leakage scaled down by 2×; optimistic, where it is scaled down by 5×; and ideal

with no leakage. This experiment allowed us to quantify the impact of the leakage

power model guardband over our energy efficiency estimation.
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Figure 3.4: Energy efficiency comparison with several platforms.

Figure 3.3a shows the results of this exploration; the platform is working at the

maximum operating frequency achievable at each given supply voltage. The peak

energy efficiency points in the four scenarios are 172 GOPS/W, 211 GOPS/W, 262

GOPS/W, and 500 GOPS/W respectively. The best energy efficiency point is around

0.4V in all the scenarios except for the ideal. In all but the ideal scenario, the impact

of leakage power is huge in the 0.3V to 0.4V operating range, when the supply voltage

VDD is close to Vth (0.28V for this technology), due to the relatively slow operating

frequency (2.5 MHz to 50 MHz) that causes the static contribution of leakage to be

dominant. On the other hand, when working with VDD larger than 0.6V, the combined

effect of increased dynamic power density (which scales as V 2
DD), and higher operating

frequency causes the impact of leakage to be smaller. Here we only consider the

typical scenario with a twofold leakage reduction as our reference for further power

estimations and comparisons; measurements on a previous batch of fabricated PULP

prototypes suggest that this is the most realistic value.

Figure 3.3b shows what happens when forward body biasing (FBB) is introduced.

By applying FBB, it is possible to dynamically modulate the Vth of transistors to

60



improve the frequency without changing the supply, with only a slight increase of dy-

namic power in the high-VDD range. On the other hand, FBB introduces an overhead

in leakage power, quantifiable as a 7× increase when VBB is 1V [114][115]. For these

reasons, FBB is an effective knob to increase the energy efficiency by up to 1.5× for

workloads larger than 1.6 GOPS (200 MHz). For example, the target workload of

3.2 GOPS (400 MHz) can be achieved @0.8V with 0V FBB or @0.6V with 1V FBB,

resulting in a 1.5× improvement in energy efficiency. These results also justify the

need for adaptive body biasing, by showing that the cost of FBB in terms of leakage

power is significant: at the 0.6V operating point, it is possible to boost performance

by up to 2× using body biasing, but leakage also gets roughly 2× worse. As a conse-

quence, FBB is more effectively used by switching between a boost mode and normal

active mode than by being used constantly, as this second option would enormously

increase the idle power consumption.
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Figure 3.5: Motion estimation benchmark results.

To further provide insight into the scaling capabilities of the PULP platform, in

Figure 3.4 we investigate energy efficiency in terms of peak GOPS per watt. We

compare the reference PULP platform with several other commercial and academic

platforms: the Processing System of the Xilinx Zynq platform (i.e. a dual core ARM

Cortex A9), a Samsung Exynos 5 (i.e. a ARM big.LITTLE quad-core A7 + quad-core

A15), and many of the ULP platforms referenced in Section 1.3. PULP, providing

up to 211 GOPS/W, is competitive with microcontrollers specialized for low-power

(Bellevue, SleepWalker) and more performant parallel ULP platforms (Centip3de,
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DietSoda), and is much more efficient than mobile solutions such as the Exynos 5 due

to the simpler, optimized architecture of the OpenRISC cores and to the fine-grain

knobs for power management provided by the FD-SOI technology and enabled by the

PULP architecture. It must also be noted that both Centip3de and DietSoda do not

support a programming model, whereas PULP has been designed for compatibility

with standards such as OpenCL and OpenMP, to ease the exploitation of potential

performance in applications.

3.3.3 Motion estimation benchmark

As a first test for the PULP cluster, we wrote an absolute difference motion estimation

[117] benchmark composed of several simple kernels: background subtraction, abso-

lute value, binarization, erosion, dilation and a Sobel filter. The aim of the proposed

algorithm is to detect the presence of external objects on a video transmitted by a

camera framing a fixed background. For each video frame the first stage performs

the absolute difference between the current and the background image. The resulting

maximum value is extracted and used to calculate the threshold for binarization. The

binarized image is then processed by three spatial operators. Erosion and dilatation

implement the opening kernel which denoises the binarized image, while edge detec-

tion is implemented through a bidimensional Sobel convolution filter to create the

external object boundary. If an external object is detected, the final kernel returns

the highlighting of that object on the original frame.

The motion estimation benchmark runs on an input 8-bit grayscale 176×120 QCIF

image produced by a low-power camera and loaded on the PULP L2 memory along

with a prerecorded background. The program code occupies 12508 bytes in the L2

memory. Since the full image cannot fit in the TCDM, we divided the input image in

slices or tiles of 44×20 pixels that are loaded into the TCDM and processed separately.

Each tile occupies 1320 bytes in the TCDM, with a total TCDM occupation of 10560

bytes (four buffers used for present tile output computation, plus four used for double

buffering).

Figure 3.5a shows the speedup of parallel versus sequential execution. This kernel

is relatively simple and linear and completely parallelizable; as a consequence, its

performance scales nicely up to 16 cores. The slight gap between the theoretical and

simulated performance is mainly caused by the calculation of the maximum pixel value
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after the binarization stage, that cannot be completely parallelized over the available

cores. Even so, as that is the only sequential part of the benchmark, speedup and

energy efficiency are almost ideal. Figure 3.5b shows performance (in terms of GOPS)

against power to evaluate the energy efficiency of the motion estimation benchmark.

The plot shows that efficiency peaks at 192 GOPS/W at the 0.4V operating point,

reaching 90% of the theoretical limit. One interesting observation is that in active

mode the energetic cost of the cluster infrastructure (e.g. memories, interconnections,

DMA, etc.) is dominant with respect to the cost of the simple cores that are used in

the cluster. The cost of the cores begins to dominate between 4 and 8 cores, which

indicates that the “sweet spot” for tightly-coupled clusters with this kind of cores is

in this point, and justifies our choice of an 8-core cluster.

3.3.4 ConvNet benchmarks
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Figure 3.6: Reference convolutional network.

A CNN is composed by a deep sequence of convolutional or fully-connected linear

layers intermixed with pooling ones to perform a transformation on feature maps

produced by the previous layer. Weights in convolutional and linear layers are trained

by backpropagation but are used thereafter in a strictly feedforward fashion; due to

their data parallel nature they are a natural candidate for acceleration in a parallel

platform such as PULP. Convolutional layers in CNNs compute output feature maps

of a layer as sums of convolutions over input feature maps; therefore, we chose to use

a convolution-accumulation step as our basic kernel: y(i, j) := y(i, j) +
(
W ∗ x

)
(i, j).

where x is the input image, W is the convolution kernel and y is the output image.

We used 16-bit fixed point numbers for inputs, kernels and outputs. We imple-

mented three versions of convolution-accumulation: naive directly implements it as

four nested loops (two on the output pixels and two for the convolution kernel W );

1-unrolled uses manual loop unrolling on the innermost loop; 2-unrolled uses loop
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Implementation 3× 3 5× 5 7× 7 9× 9 11× 11

naive, single thread 0.26 0.32 0.34 0.35 0.36
1-unrolled, single thread 0.52 0.62 0.65 0.69 0.88
2-unrolled, single thread 0.80 0.83 0.76 0.26 0.18

naive, 8 threads 0.26 0.31 0.34 0.35 0.36
1-unrolled, 8 threads 0.49 0.60 0.65 0.69 0.85
2-unrolled, 8 threads 0.71 0.77 0.74 0.27 0.18

Table 3.2: Convolution-Accumulation: average efficiency/core.

unrolling on the two innermost loops. We benchmarked these convolutions with a

single thread or 8 parallel threads5.

Table 3.2 shows the efficiency/core for the various convolution-accumulation im-

plementations on a 32 × 32 input image, computed as the ratio between useful (i.e.

computation) cycles and the total number of cycles spent in the outermost loop. For

smaller convolution kernels, unrolling both inner loops provides a much better effi-

ciency; however, for kernels bigger than 7×7, efficiency is reduced by I$ misses due to

the size of the unrolled loop. As a consequence, the tighter 1-unrolled convolution-

accumulation step is more convenient for bigger kernels. Results are similar in the

multi-threaded case, as data contention on the TCDM causes on average only a small

amount of efficiency decrease.

Use case: CNN for visual surveillance

On top of these optimized convolutions, we developed a network based on the one

proposed by LeCun et al. [79] for MNIST classification, which is shown in Figure 3.6.

This network has 2220 parameters and a footprint of 11408 bytes for data and 4400

bytes for weights on the L1 TCDM; Table 3.3a summarizes them. The program code

uses 16768 bytes on the L2 memory. As shown in Conti et al. [110], a network of this

kind can be trained for complex object detection tasks by running it on a window

sliding over the input frame.

We use this CNN for visual surveillance. The platform spends most of the time in

a low-power search mode looking for suspicious objects (as this task requires only a

relatively low frame rate), and it switches to a high-performance follow mode to keep

5We used the or1k-elf-gcc compiler (build 4.9.0 20140308), with the following flags: -O2

-nostdlib -mhard-mul -msoft-div.
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layer params memory (bytes)
#feat W feat weights data

input 1 - 32×32 0 2048
conv 0 4 5×5 28×28 200 6272
pool 1 4 - 14×14 0 1568
conv 2 6 5×5 10×10 1200 1200
pool 3 6 - 5×5 0 300
full 4 10 5×5 1×1 3000 20

(a) small CNN.

layer params memory (bytes)
#feat W feat weights data

input 1 - 32×32 0 2048
conv 0 8 5×5 28×28 400 12544
pool 1 8 - 14×14 0 3136
conv 2 12 5×5 10×10 4800 2400
pool 3 12 - 5×5 0 600
full 4 10 5×5 1×1 6000 20

(b) medium CNN.

layer params memory (bytes)
#feat W feat weights data

input 1 - 32×32 0 2048
conv 0 16 5×5 28×28 800 25088
pool 1 16 - 14×14 0 6272
conv 2 24 5×5 10×10 19200 4800
pool 3 24 - 5×5 0 1200
full 4 10 5×5 1×1 12000 20

(c) big CNN.

layer params memory (bytes)
#feat W feat weights data

input 1 - 64×64 0 16384
conv 0 4 5×5 60×60 200 28800
pool 1 4 - 30×30 0 7200
conv 2 6 5×5 26×26 1200 8112
pool 3 6 - 13×13 0 2028
conv 4 10 5×5 9×9 3000 920

(d) small CNN on a 64× 64 image.

Table 3.3: Parameters and memory usage of all CNN networks.

track of a previously detected object. Input frames are brought inside the PULP clus-

ter by DMA transfer from the L2. This transfer is superimposed to the computation

of deeper layers and has no impact on the final throughput.

Figure 3.7a shows the performance of the reference CNN when run on a 32 × 32

image patch, scaling the clock frequency of the cluster from 100 MHz to 1 GHz and the

number of OpenRISC cores in the PULP cluster between 1, 2, 4, 8 or 16. As expected

from a highly data-parallel algorithm such as ConvNets, execution time scales almost

linearly with the number of cores. In our visual surveillance application, the ConvNet

is run on a 32× 32 window spanning a QVGA (320× 240) image with a stride of 32

pixels. Each frame is spanned two times: one with no offset, the other with an offset

of 16 pixels in both directions so that the chance of missed detections on the border

of a window are reduced. PULP can be set to work at a very low frame rate (∼0.7

fps at the 0.4V operating point) in the search mode, and then switched to a frame

rate as high as 27 fps (at the 1.3V operating point with 1V FBB) in the follow mode.

Figure 3.7b shows the energy efficiency of the ConvNet execution on a frame in terms

of FPS/W; we ran the same ConvNet on the Xilinx Zynq PS and on a Samsung Exynos

5 for comparison, as this benchmark is beyond the typical performance capabilities

of most ULP microcontroller architectures. Benchmark results substantially confirm

65



0 100 200 300 400 500 600 700 800 900 1000

frequency (MHz)

0

2

4

6

8

10

12

ti
m

e
 (
m

s)

1 PE conv

1 PE other

2 PE conv

2 PE other

4 PE conv

4 PE other

8 PE conv

8 PE other

16 PE conv

16 PE other

CNN on 32x32 image

1 PE conv

1 PE other

2 PE conv

2 PE other

4 PE conv

4 PE other

8 PE conv

8 PE other

16 PE conv

16 PE other

(a) Execution time in ms (32× 32 patch).

100 F
P
S
/W

10 F
P
S
/W

1000 F
P
S
/W

search

follow

(b) Energy efficiency in FPS/W (QVGA frame).

Figure 3.7: Surveillance ConvNet benchmark results.

the theoretical values shown in Figure 3.4. The energy/execution time tradeoff when

switching between search and follow mode is also clearly shown: in search mode,

PULP consumes 1.18 mJ per frame and lives at a power budget of 834 µW, whereas

in follow mode energy consumption jumps at 12.6 mJ per frame.
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Figure 3.8: Tiled CNN benchmark performance results.

To further explore the capabilities of the PULP platform in this scenario, we con-

sidered the case that the CNN or its input image cannot fit in the TCDM. In this

case, it is necessary to tile the CNN similarly to what is described in Section 3.3.3;

also in this case, double buffering can be employed to hide the latency of the L2/L1
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memory transfer.

In the case of CNNs, tiling involves some amount of recomputation as the receptive

field of each output convolutional tile is partially superimposed to that of the next

output tile. We can tile the same ConvNet with two distinct approaches. With a

“vertical” tiling approach, the full network is applied to each input tile until the last

layer, then the output is transferred to the L2 memory and a new tile is loaded;

“horizontal” tiling instead is applied by dividing input of a single layer in tiles and

computing all output tiles before proceeding to the following layer. In this approach,

intermediate results (i.e. the outputs of intermediate layers) have to be stored in

buffers in the L2 memory.

We chose to concentrate on horizontal tiling for three reasons: first, vertical tiling

involves a lot of recomputation as the smaller ConvNet tile has to be moved over

the input image (similarly to what we did in Section 3.3.4, but with a stride of 1

pixel instead of 32). Second, the horizontal approach allows us to tile also in the

input feature dimension, whereas in vertical tiling all input features are needed in

the shared memory to compute the following layer. Third, although horizontal tiling

involves frequent data transfers between L1 and L2, we will show in the following

that the impact of these transfers scales nicely with the size of the input data and the

amount of parallelism.

We extended the reference CNN6 of Section 3.3.4 in the following way. The medium

and big CNNs, whose parameters are reported in Tables 3.3b and 3.3c respectively, are

similar to the small one but their intermediate layers have more features. The fourth

CNN shares the same parameters as the small one, but runs on a bigger image patch

of 64×64 pixels; its parameters and memory consumption are reported in Table 3.3d.

In this network, the final linear layer is substituted by an equivalent convolutional

layer using the same weights; the output is equivalent to the separate classification

of all pixels (see for example Sermanet et al. [130]). In all benchmarks, we set the

maximum dimension of the tiles to 4KB so that it is possible to fit two input tiles and

two output tiles in the TCDM. The dimension of the program code is similar for all

of these benchmarks (∼25KB loaded on the L2 memory), since we relied on the same

ConvNet library extended with horizontal tiling support.

Figure 3.8a reports the execution time of all benchmarks in terms of cluster clock

6We will refer to this network as the small network from this point on.
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cycles. The computational complexity of the CNN raises exponentially when we

double the number of feature maps used in each layer or the pitch of the input image;

we observe that the big CNN applied on a 32 × 32 image and the small one on a

64 × 64 image impose similar constraints both in terms of workload and of memory

occupation. To better evaluate how performance scales in all benchmarks as we vary

the number of cores, Figure 3.8b compares speedup versus single-core execution for

all benchmarks. Figure 3.8b also reports the theoretical speedup if we neglected all

impact of DMA transfers. The main limiting factor for speedup is given by Amdahl’s

law: due to the small dimension of the tiles, the parallel fraction of the code is not

sufficient to yield quasilinear speedup. This is clearly visible in that the same ConvNet

applied to a 4× bigger input image yields much better results in terms of performance

scaling. The size of the input image itself is mainly limited by the availability of L2

memory. The plot also shows that, due to the higher computation to communication

ratio, the impact of data transfers on the speedup scales nicely with the size of the

workload, i.e. the bigger the input image and/or the CNN is, the less limiting impact

DMA transfers have over parallel execution speedup.
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Figure 3.9: Test error of small, medium and big CNNs on the CIFAR-10 set over 500
training epochs.

To estimate how much the accuracy may vary between the small, medium and big
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CNNs, we trained them to classify the CIFAR-10 dataset [131], a well known and

freely available set of 60000 32 × 32 images labeled in 10 classes 7. Figure 3.9 shows

that the difference can be significant: after 500 epochs of training the final accuracy

is 70.64% for the big CNN, which drops to 64.38% for the medium one and to 50.05%

for the small one. The difference is greatly reduced if we compare the CNNs for a one

versus all classification task over the same dataset: the final accuracy in this case is

95.1%, 94.2% and 93.3% for the big, medium and small CNNs respectively.
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Figure 3.10: Energy efficiency for execution of the small CNN on a 64 × 64 image,
while sweeping the number of cores.

In Figure 3.10, we plot the energy efficiency in terms of GOPS/W for the execu-

tion of the big ConvNet (results are practically identical for the other benchmarks).

Compared with the peak theoretical value of 211 GOPS/W, we measured a peak of

150 GOPS/W in this benchmark, which correspond to an average IPC of 0.71 per

core. By comparison, average single-core IPC in the inner convolutional loops is 0.96,

and average single-core overall IPC is 0.87. The IPC reduction in the multi-core tests

is mainly accounted for by contention on the shared TCDM and, to a lesser extent,

7As our CNNs work on grayscale images, the training and test samples where converted from
RGB to grayscale. Training consisted in 500 epochs of mini-batch stochastic gradient descent
with momentum µ = 0.9 and starting learning rate λ0 = 0.01 (dropping exponentially as λ =
λ0 · 0.995nepoch), using 20% dropout [76] layers for better regularization.
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Figure 3.11: Optical flow benchmark results.

by contention on the I$ refill bus. Still, IPC in the inner-loops is as high as 0.90

per core when executing with 8 cores. The energy efficiency results mimic the peak

ones presented in Figure 3.4, and peak efficiency (125 MOPS @ 834 µW) at the same

operating point (0.4V without FBB) in the near-threshold region.

3.3.5 Optical flow benchmark

As a representative application for the usage of PULP as an accelerator for an au-

tonomous nano-UAV, we developed an optical flow benchmark that is meant to be

integrated in the drone control loop to make completely autonomous hovering and

navigation possible. In this scenario, a low-resolution (e.g. 128×128 pixel) ultra-low-

power imager such as a CentEye Stonyman [132] continuously feeds frames to PULP

via the QSPI slave interface. On turn, PULP computes the optical flow and uses its

QSPI master to report the flow vectors back to the microcontroller driving the vehicle,

where they are used to estimate rotations and translations of the drone.

The benchmark is composed of three kernels: FAST corner detection [107][108], non-

maximal suppression and Lucas-Kanade optical flow estimation [118]. Since Lucas-

Kanade should be applied to strong corners to yield high-quality, it is generally not

advisable to drop either the non-maximal suppression step or the whole corner detec-

tion. Nonetheless, since the users of the flow vectors (i.e. the aerial vehicle software

developers) might want to trade off optical flow accuracy for performance and energy,

we decided to explore also these non-optimal cases. Therefore, we present results
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for three separate implementations: FAST+NMS+LK that feeds corners produced

by the FAST algorithm in non-maximal suppression before computing optical flow;

FAST+LK that uses all corners produced by FAST for the optical flow; LK that

drops corner detection and computes optical flow on all pixels.

The input of the optical flow application are two 128 × 128 8-bit grayscale frames

stored in the L2 memory by the QSPI slave module. To cope with the dimension of

the input frames, we divided them in stripes of 128×16 pixels; we use double buffering

to transfer the stripes from the L2 to the TCDM while we are computing the optical

flow of the previous stripe.

Figure 3.11a reports the execution time in cycles for all versions of the benchmark,

sweeping the number of cores in the PULP cluster from 1 to 16. The first observation

is that the FAST+LK benchmark is the slowest; this is due to the fact that if non-

maximal suppression is dropped, the Lucas-Kanade step has to be performed on a

much higher number of corners, in the order of several hundreds. The LK benchmark

drops FAST altogether and is therefore the fastest, even if it computes optical flow

on the full 16384 pixels of the image. Conversely, the FAST+NMS+LK benchmarks

spends most of its time in computing the best corners (in the order of some tens) in

the picture and much less time in the actual optical flow, as it is computed only on

those corners. In all cases, optical flow computation on the 128 × 128 input frames

takes more than 1 million cycles when performed with 8 cores: intuitively, this means

that the workload to perform this task at 60fps is bigger than 60 MOPS.

Figure 3.11b helps to understand whether this is a feasible target, and at what

power budget, by plotting energy efficiency in terms of GOPS versus watt measured

by profiling the optical flow FAST+NMS+LK benchmark. At the most efficient op-

erating point (0.4V with no FBB, 834 µW of power consumption) the 8-core cluster

achieves a performance of 127 MOPS, with an efficiency of 152 GOPS/W. The peak

efficiency is similar to that of the CNN benchmark but this is due to a different mixture

of effects from the result obtained in Section 3.3.4. First, the lower internal regular-

ity of the FAST benchmark (which is responsible for the majority of the execution

time) hits the inner-loop IPC with respect to the very regular and manually optimized

convolutional kernels employed in the ConvNet. At the same time, however, it also

significantly lowers data contention, leading to a similar overall efficiency result. At

this operating point, optical flow would be feasible for a micro-UAV application as it

would add less than a mW to the total vehicle power, which nicely fits in the 5 mW
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budget for computing in Wood et al. [124]. The energy budget to compute a frame

is 13.9 µJ; to make this measure concrete let us take for example the commercial

Crazyflie Nano Quadcopter [133], that mounts a 240 mAh 3.3V battery, hosting ap-

proximately 2850 J of energy destined primarily to power DC motors. If we suppose a

flight time of one hour, the battery consumption due to the PULP accelerator would

amount to ∼3 J, i.e. 0.1% of the total battery, which is almost negligible with respect

to the energy consumed by the vehicle actuators.

3.4 PULP as a programmable accelerator

Heterogeneous acceleration in the design space of low power sensor nodes, nano-UAVs

and similar devices answers to a different set of requirements with respect to other

domains. Although energy efficiency is extremely important, absolute power consump-

tion is also a first-class citizen; sensor nodes in particular are severely constrained in

terms of cost and power delivery, which is usually implemented with small batter-

ies and/or harvesters [21]. As a target model for flexible heterogeneous acceleration

within this domain, we consider an accelerator with three main characteristics:

1. energy efficiency : to a much larger degree with respect to what happens in larger

scale heterogeneous computers, an ULP accelerator needs to be significantly

more energy-efficient than its host to be effective - otherwise it will not be

useful for acceleration under the low-power constraints typical of these systems;

2. dynamic offload : for the accelerator to be programmable (as opposed to simply

reconfigurable), it must be possible to dynamically offload different applications

from the host; this marks a strong difference to typical fixed functionality ASICs

that are often used in a similar domain;

3. programmability : development of accelerator code must rely on a program-

ming model that allows efficient exploitation of parallelism, while leveraging a

lightweight runtime system with low execution overhead and memory footprint.

PULP satisfies these requirements: it is fully programmable with OpenMP and sup-

ports code and data offload via the SPI interfaces, while the previous sections have

shown how it is possible to obtain significant performance and energy efficiency on

the platform.
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Within the work described in this chapter, we chose to treat PULP as an acceler-

ator to a host MCU, avoiding usage of PULP standalone or the integration of both

the MCU and PULP within a single-chip heterogeneous system; instead, we proposed

to use an accelerator built in 28nm FD-SOI technology and an off-the-shelf MCU

fabricated in a more “conservative” technology node as the host. This choice answers

to cost considerations specific of the low-power domain. The PULP accelerator abso-

lutely needs to be implemented in a deeply integrated technology to achieve the high

energy-efficiency (as shown in Figure 3.4) that can be “spent” to provide a high level

of speedup. Conversely, MCUs are typically fabricated with a different set of goals,

such as very low mask cost and fast turn-around time due to the need to produce a

great number of models differing by interfaces, memory size, etc. In particular, a sig-

nificant fraction of many MCU chips is occupied by analog and mixed-signal IPs such

as analog-to-digital converters that are difficult to scale down to deeply integrated

technologies, and therefore are not easy to integrate on the accelerator.
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Figure 3.12: Low-power heterogeneous accelerator model, showing a simple offload
procedure with code (yellow), input data (light blue) and output data
transfers (orange).

Figure 3.12 shows an abstract model of the heterogeneous system we consider. For

generality, we consider the case of a sensor connected to the host MCU memory and

communication between the MCU and the PULP accelerator via DMA. We consider
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this model as it provides a baseline for the offload mechanism; connecting the sensor

directly to the accelerator would be optimal from the energy point of view, but it

would be less cost effective unless the sensor uses a standard digital interface such as

SPI, since it would require the addition of a custom interface to the accelerator.

In fact, to amortize the non-recurrent engineering costs of the higher density tech-

nology, accelerators such as PULP must be produced in high volume; therefore, the

most sensible approach is to make them able to couple with the highest possible

number of microcontrollers on the market. In PULP, this is achieved using an SPI

interface, which is available on the overwhelming majority of MCU platforms and

allows relatively easy and cheap integration of the host and accelerator in a system-

on-board. It also has the significant advantage of being fully retrocompatible with

the programming legacy, as it builds on existing MCU programming models without

disrupting them.

From the energy perspective, it is of course possible to significantly improve com-

pared to this baseline by using a low-power, high-throughput serial link such as, for

example, that presented in Choi et al. [134]. Clearly, another variation on the model

proposed in Figure 3.12 is to bring data from the sensor directly to the internal

memory of the accelerator. This reduces the pressure on the coupling link in terms of

throughput, while it can still be used for pipeline cooperation between accelerator and

host. However, it also requires a dedicated (and more expensive) interface between

the sensor and the accelerator.

To further understand the implications of the choice of a “slow” serial link as the

main communication mechanism between the PULP accelerator and the host MCU,

we measured the overhead of the offload procedure over a set of kernels from IoT

applications (matmul, strassen, cnn, hog, svm) [7] 8. We consider an offload following

this procedure: i) kernel code is transferred from the host MCU to PULP; ii) the first

input data frame is transferred from the MCU to PULP; iii) while PULP computes

over the frame, a new input frame is loaded using a double buffering scheme; iv)

similarly, double buffering is also used for output data to be transferred from PULP

to the MCU.

Figure 3.13 shows the offload efficiency, measured as the ratio between the effec-

8In this experiment, the kernel code has an average size of 20.4 kB, the average input/output data
payload is of 15.4 kB, and the average computation-to-communication ratio is kept relatively low
at 0.31 ops/B.
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tive execution time (including the offload overhead) and the ideal execution time (i.e.

that with no offload overhead) while varying the number of kernel iterations per each

offload. Transfer happens over quad-SPI at four possible frequencies. As expected,

excessively low transfer speed can seriously hurt performance for kernels with very

low computation-to-communication ratio; however, with relatively low speed require-

ments (e.g. 8 MHz), very good efficiency can be reached by using the simple double

buffering scheme we propose and reducing the initial overhead of kernel code offload

with repeated executions of the same kernel. In the case of a sensor node, repeating

the same basic task over varying data is a reasonable assumption, therefore we can

conclude that - even in the “worst-case” conditions of not having a dedicated sensor-

to-accelerator interface - it is indeed possible to use an accelerator such as a PULP

SoC as accelerator.

3.5 Conclusions

In this chapter we introduced the PULP (Parallel processing Ultra-Low Power) plat-

form that features a cluster of tightly-coupled OpenRISC cores to achieve high energy
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efficiency through parallelism. We have analyzed the platform, showing that its per-

formance can be scaled by the dramatic factor of 354× and that it features a peak

energy efficiency of 211 GOPS/W.

As a use case for PULP, we show a motion estimation algorithm for smart surveil-

lance which almost fully exploits the available performance, with a peak energy ef-

ficiency of 192 GOPS/W, i.e. 90% of the theoretical peak. We also implemented

a ConvNet-based algorithm for video surveillance, showing that it can be switched

from a low-power state consuming just 1.18 mJ per frame with a rate of 0.7 fps to a

high-performance state running at 27 fps and consuming 12.6 mJ per frame. Finally,

we wrote a sample benchmark for applications in the nano-UAV field, where we use

PULP to accelerate estimation of optical flow from frames produced by a ULP im-

ager, with the objective of autonomous hovering and navigation; we show that it is

possible to meet tight timing constraints (60fps frame rate) at the energy budget of

14 µJ per frame. These benchmarks showcase the high level of flexibility and pro-

grammability of the PULP platform, that does not come at the expense of energy

efficiency: all of them were able to reach at least 70% of the peak efficiency overall,

with much higher peaks in highly parallel regions such as in the motion detection and

inner convolutional kernels.

Several PULP chips have been fabricated and tested at the time of this thesis us-

ing several technologies, including STMicroelectronics 28nm FD-SOI (both LVT and

RVT[67]) and UMC 65nm bulk. A functional PULP chip featuring 4 OpenRISC cores,

64 kB of L2 memory and 24 kB of TCDM has been fabricated in 28nm STMicroelec-

tronics FD-SOI technology in 2015 [135]. With respect to the work described in this

Chapter, later revisions of the PULP architecture include a shared instruction cache

for improved energy efficiency [136], a redesigned microarchitecture for the core [68],

support for a shared floating-point unit [137], hardware accelerators [94] and other

improvements.

This chapter has shown a different flavor of heterogeneity than what was shown in

Chapter 2: a loose coupling with the host via SPI instead of a tight one using the

TCDM; a fully programmable accelerator instead of a a fixed-function one. However,

despite these substantial differences architectural heterogeneity is used in both cases

to extract more energy efficiency out of the overall platform. This is done by exploiting

some of the potential parallelism that is present in the application without paying the

full cost of being completely general-purpose, although PULP is of course a much
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more flexible kind of accelerator than the HWPEs presented in Chapter 2.

Moreover, as both He-P2012 and PULP are based on the same tightly-coupled clus-

ter architectural paradigm, it is possible to reuse a similar acceleration methodology

in the PULP scenario. In fact, Chapter 4 will deal with this idea, introducing a

tightly-coupled shared memory accelerator inside the PULP cluster.

77



Chapter 4

Brain-inspired acceleration in an

ultra-low energy budget

As was discussed in Chapter 2, one of the key issues when augmenting a platform

with fixed-function accelerators is the actual choice of which tasks should be imple-

mented in hardware; this choice can be made only at design time. Therefore, it would

be particularly desirable to introduce a heterogeneous core that, by accelerating a

specific fixed function, can be used to implement an entire class of tasks. This kind

of functionality can be partially introduced relying on learning based models, which

are in general loosely inspired by some of the mechanisms of the mammal neural cor-

tex. Some of these models, such as convolutional neural networks, can be used to

give approximate solutions to problems for which an algorithmic solution is known

or, equivalently, to solve problems for which an algorithmic solution is not known

(e.g. counting the number of people from an image [110]). At the same time, models

such as CNNs are extremely relevant in the domains targeted by the PULP platform,

e.g. in “smart” sensor nodes in wireless sensor networks, as they can be used to ex-

tract relevant semantic information (such as a class) out of low “information density”

raw data such as images - which allows to greatly reduce the amount of data to be

sent through wireless radio links that are relatively expensive (in terms of energy).

Therefore, CNN models are an extremely interesting target for acceleration for both

conceptual and pragmatic reasons. In this Chapter, we propose to augment a platform

such as PULP with a core that is specialized in acceleration of convolutional neural

networks.
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4.1 Overview

Computer vision (CV) is a rapidly developing field; algorithms showing excellent

results in terms of object detection, full scene parsing, image segmentation have been

successfully proposed in the last years. A particularly interesting class of algorithms

is that of brain-inspired CV (BICV), which is loosely inspired by the inner working of

the mammal brain. This class includes algorithms such as HMAX and Convolutional

Neural Networks (CNNs or ConvNets [79]) that are state-of-the-art in many accuracy

benchmarks [76][83][84][85][86].

Most of these algorithms rely on a large number of time- and energy-hungry 2D

convolutions. While some BICV applications are not particularly performance- or

power-constrained, and can thus rely on off-the-shelf HW for implementation, many

more would greatly benefit from low-energy implementations of state-of-the-art BICV

algorithms: wearable computers, wireless sensor networks, visual impairment aids are

just some examples. As an example use case, let us consider a Google Glass-like

device powered by a 2.1Wh (7560 J) battery that we want to last for 24 hours,

while running the GoogLeNet convolutional network, which has achieved top-quality

results in the ImageNet Large-Scale Visual Recognition Challenge 2014 and has been

designed for running on computation- and memory-constrained hardware [138]. The

network has a receptive field of 224 × 224 RGB pixels and requires a total of 1.5

billion multiply-accumulate (MAC) operations. Scaling this to a standard QVGA

camera (320 × 320 pixels), the performance requirement is of 2.3 GMAC/s. Let us

assume that our target is real-time classification at 15 fps. This requires a performance

of 34.5 GMAC/s or a total of 2.98×1015 MAC operations per day, giving us a budget

of 2.5 pJ per MAC operation. Equivalently, as we have an average power budget of

87 mW for computation, the overall efficiency must be of 397 GMAC/s/W or more,

i.e. more than 1500 GOPS/W if we consider that each MAC corresponds to at least

4 RISC operations (load pixel, load weight, multiply, add). 1.

Much research has recently focused on many-core architectures using many simple

power-optimized RISC cores to build up a high-performance, low-power platform.

1This is simply a lower bound, as in general we define the number of RISC operations required by
a given function in an operational fashion: we run it on a single OpenRISC core and count the
number of instructions executed. Since the OpenRISC core has a very simple 5-stage pipeline
and a reduced instruction set (comparable to that of the original MIPS) this gives a relatively
accurate measurement of the computational characteristics of the function.
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The PULP platform [68][64][66], that was described in Chapter 3, is such an effort

and demonstrates a high degree of energy-efficiency without sacrificing the flexibility

of software. Relying on pure software can be a suboptimal choice in the context

of brain-inspired CV that is mostly based on repetitions of a single basic kernel:

convolution. First, convolution is heavily data-driven; the same basic fetch weight -

fetch pixel - multiply - accumulate loop is repeated many times on changing inputs,

and a lot of unnecessary energy is spent in fetching these same instructions over and

over. Moreover, convolution is a reduction operation in which input data and weights

are reused many times, too; redundant memory operations result in energy waste.

Third, it also shows an excellent degree of data-level parallelism that could be used

to counteract the former overheads, but is usually left untouched in ILP-oriented

processors and cannot be fully exploited by parallel platforms unless they feature a

very high core count. Finally, deep convolutional networks share a very reduced set of

kernels, but can be used to implement a huge application domain by simply changing

weights and network topology.

All these characteristics make a strong case for a mixed solution in which a set

of flexible dim cores cooperate with a specialized convolution core that is kept dark

most of the time, but can provide much better performance and energy efficiency

when needed. To this end, this Chapter presents the Hardware Convolution Engine

or HWCE, a coprocessor for 2D convolution optimized for enhanced speed and en-

ergy efficiency in BICV and other convolution-heavy applications. We integrated the

HWCE in PULP [66], the ultra-low power multi-core platform described in 2.

In this Chapter, we show that by using the HWCE it is possible to spend as little as

6.5 pJ/output pixel in optimal cases, 40× better than what achievable by SW and im-

proving more than 6× with respect to the state-of-the-art in convolution acceleration

in a multi-core cluster [93]; moreover, we provide results for the implementation of a

full Convolutional Neural Network using the HWCE. The main feature distinguish-

ing the HWCE from the state-of-the-art is its integration within the PULP cluster,

enabling to access ASIC-grade energy efficiency while still retaining a great amount

of flexibility with respect e.g. to CNN topology.
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Figure 4.1: HWCE-augmented shared-memory PULP cluster.

4.2 Architecture

4.2.1 Shared-memory cluster

The target shared-memory cluster is that of the PULP [68][66] architecture that was

descrived in Chapter 3. Specifically, the architecture we consider features 4 OpenRISC

cores sharing 16kB of TCDM acting as a L1 shared scratchpad and having each 1kB of

private instruction cache. It also includes a lightweight multi-channel DMA for flexible

and fast communication with L2 and external peripherals [127]. Following the tightly-

coupled acceleration paradigm that was detailed in Chapter 2, the heterogeneous

cluster includes a Hardware Convolution Engine (HWCE), whose internal architecture

is detailed in Section 4.2.2. The HWCE shares data with the rest of the cluster through

three ports on the low-latency interconnect, behaving essentially as an additional

special-purpose core. At the same time, control of the HWCE is memory mapped

through the peripheral interconnect much like other peripherals in the cluster. The

main difference between the HWCE and the HWPEs featured in Chapter 2 is that

those are generated semi-automatically from a set of C sources, while the HWCE

has been optimized for much better energy efficiency, which is essential for achieving

adequate performance within a tight power budget.
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Figure 4.2: Architecture of the HW Convolution Engine.

4.2.2 Hardware Convolution Engine

The Hardware Convolution Engine (HWCE) is designed in a modular and parametric

fashion, to ease IP reuse and provide sufficient flexibility for a great majority of CV

applications relying on convolutional kernels. It is entirely described at the register-

transfer level in the synthesizable subset of the SystemVerilog HDL.

The HWCE is algorithmically optimized to minimize memory bandwidth require-

ments to perform convolutions. It is structured in three main blocks: the proper

engine (a datapath purely responsible of computation of output pixels), the wrapper

(which provides data- and control-plane communication with the shared-memory clus-

ter) and a simple weight loader (that loads and keeps weights used for convolution).

Convolution strategy

In convolutional neural networks, convolutional layers are well known to be the most

expensive in terms of computation [92]. The general structure of the linear part of

a convolutional layer is given in Equation 4.1. K = 2P + 1 is the size of the filter,

while Nif and Nof are the number of input and output feature maps, respectively. x

is the input feature map set, a 3-dimensional tensor of size (Nif ;h,w), where h and

w are the height and width of the input frame, respectively. y is the output feature

map set, a 3-dimensional tensor of size
(
Nof ; (h − K + 1), (w − K + 1)

)
. WK is the

weight 4-dimensional tensor, of size (Nof , Nif ;K,K). b is the 2-dimensional bias of size

(Nof , Nif). kif , Nof are indices spanning the first dimension of the input feature map

set and the first dimension of the output feature map set, respectively. i, j, ui, uj are
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Figure 4.3: Strategy for 2D 5× 5 convolution with linear data streams [8].

the row and column indices of the feature maps and of the filter, respectively.

y(kof ,kif ; i,j) =

Nof−1∑
kof=0

Nif−1∑
kif=0

b(kof , kif) +
P∑

ui=−P

P∑
uj=−P

WK(kof ,kif ; ui,uj)x(i−ui,j−uj)

 . (4.1)

The non-linear part of the convolutional layer applies a function such as rectification or

hyperbolic tangent to the output y of the linear part. As the linear part is responsible

for the overwhelming majority of the computation performed in a CNN, we will focus

exclusively on it for the remainder of this Chapter.

The computation of Equation 4.1 can be visualized as the repetition for Nif ×
Nof times of a basic convolution-accumulation step while changing the WK filters.

Equation 4.2 shows this basic convolution-accumulation step:

y(kof ; i,j) := y(kof ; i,j) +
+P∑

ui=−P

+P∑
uj=−P

WK(kof ,kif ; ui,uj)x(i−ui,j−uj). (4.2)

For convenience, we can split the y feature accumulator in two separate yin and yout
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and rewrite Equation 4.2 as follows:

yout(kof ; i,j) := yin(kof ; i,j) +
+P∑

ui=−P

+P∑
uj=−P

WK(kof ,kif ; ui,uj)xin(kif ; i−ui,j−uj). (4.3)

The specific task performed by the HWCE is the acceleration of this convolution-

accumulation step as defined by Equation 4.3. xin and yin are treated as input streams

and yout is treated as an output stream.

The HWCE can be configured at design time to support in an optimal way 3× 3,

5×5, 7×7, 9×9 or 11×11 weights, though all convolutions can be supported with all

accelerators by software (with a performance and energy penalty). As customary for

CV applications, borders are neglected; thus the y image is smaller than x by (K−1)

pixels in both directions. To compute a K ×K convolution, the engine must use all

pixels in the neighborhood of the output pixel, as shown in Equation 4.3. A naive

strategy to compute convolution would be: i) keep (K−1) ·K unchanged pixels from

the last iteration; ii) load the K pixels of the next column; iii) compute the new

output pixel; iv) discard the oldest K pixels and return to i). However, this strategy

requires a memory bandwidth of K pixels/cycle in input (plus 1 for yin) to sustain a

throughput of 1 output pixel/cycle.

Instead, we adopted a strategy to extract windows from a linear data stream by

storing (K − 1) lines of the image and K pixels of the following line in a conceptual

“shift register”, as proposed for example in Bosi et al. [8]. This is a well established

technique in image processing, used also in other fields such as stereo vision [139]

to reduce memory bandwidth at the expense of the necessity of a register file that

can be accessed in a parallel fashion. The strategy is explained by Figure 4.3: in

the first phase, the shift register is filled with input pixels. When this buffer is full,

there is enough data for a full convolution window and the computation can begin.

Each cycle, i) a new pixel is inserted in the shift register; ii) the top left pixel in the

buffer is discarded; iii) the leftmost K × K window is used to compute the output

pixel. In this way, the memory bandwidth requirement is only 1 pixel/cycle in input

(plus 1 for yin) to reach the peak throughput of 1 output pixel/cycle. This strategy

is more scalable and suited for integration in a shared-memory cluster with respect

to the naive one, as it minimizes the ports required by the HWCE on the shared-

memory interconnect (typically one of the critical paths of a cluster). Thanks to the
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word interleaving strategy adopted in the low-latency interconnect, the HWCE traffic

nicely spreads between all banks instead of hitting always a single one; the reduced

bandwidth requirements using the strategy shown in Figure 4.3 minimizes interference

with PEs working in parallel by further reducing banking contention.

To provide more efficient support for convolution-accumulation over a set of input

feature maps, the HWCE can be programmed to perform multiple iterations of the

step of Equation 4.3. The outermost loop (i.e. that spanning the output feature maps

set) is typically managed via software, for two reasons: first, we deemed the additional

hardware to manage it too expensive for the very small gain (waking up an idle core

every several thousand cycles is acceptable); second, a fully computed output feature

map can be transferred to a higher level of the memory hierarchy via a DMA transfer,

which anyways implies software intervention.

Engine

The convolution engine is the inner core of the HWCE, which performs the actual

computation. The HWCE engine receives xin and yin as streams and produces a yout

stream following Equation4.3. The engine was designed to be as unaware as possible

of details such as the layout of data in memory and the size of the image, as well as

to be entirely streaming-oriented in that it continues to work as long as it is fed with

new pixels. The streams are generated outside the engine, in the wrapper module

described in Section 4.2.2. The streams follow the AXI4-Stream protocol interface,

that is based on a simple valid-ready handshake: the valid bit comes from the stream

source, the ready bit from the sink; a packet exchange is valid only when both are

asserted in the same cycle.

The HWCE engine can be configured at design time to work with 32-bit or 16-bit

pixel data; in the latter case, since the I/O streams are fixed to 32 bits, the engine

works at a peak throughput of 2 pixels/cycle. CNNs are typically trained using single

precision floating point, but as pixels and weights typically have low dynamic range

fixed point numbers can also be used, with an often cited “golden-point” for precision

of 12 bits [92][140]. In our case we chose to support standard sizes well understood

by software to ease communication with the rest of the PULP cluster. We will refer

to the 16-bit mode for the remainder of this Chapter except when noted otherwise.

The datapath of the HWCE engine (Figure 4.4) is composed of three sets of blocks:
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Figure 4.4: Internal structure of the engine in the 16-bit configuration.

the line buffer, the multipliers and the adder trees. These blocks communicate using

an internal streaming protocol with the same handshake used in AXI4-Stream: a

transaction is valid when both the valid and ready signals are asserted.

The line buffer implements the conceptual “shift register” storing input pixels as

explained in Section 4.2.2. It takes the xin stream as input and outputs two windows

of K2 pixels per cycle after the initial loading phase (one in case the HWCE is in the

32-bit configuration). The width of the line buffer is a design-time parameter that

must have the form dLB +K − 1, where dLB is a power of 2. Feature maps with lines

longer than dLB +K − 1 are not supported in hardware, but are easily supported via

software as described in Section 4.2.3.

To reduce the burden of a naive implementation of the line buffer based on a long

shift register, as well as to make the line buffer flexible, the internal microarchitecture

of this element relies on two hardware FIFO queues, a “big” one dLB elements deep

and (K − 1)× 32 bits wide (which implements the first K − 1 lines of the conceptual

shift register), and a “small” one K/2 + 1 elements deep and 32 bits wide (which

implements the last incomplete line). This choice offers several distinct advantages:

• the amount of internal switching is greatly reduced, which reduces the cost of

the line buffer in terms of dynamic power.

• the FIFO can be used to implement a “virtual” line buffer of any depth com-

prised between K and dLB elements.
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• the FIFO could be implemented as a standard-cell memory (SCM) cut (built

with latches and clock gating cells), which allows to further reduce its energy

cost 2.

The output windows of the line buffer are multiplied with the stored weights in the

multipliers. The multiplied value is right-shifted by a runtime-configurable number

of bits to support fixed-point multiplication. Finally, the products are summed up in

two adder trees (one in the 32-bit configuration), adding also the current yin pixels to

produce the final yout stream packet. The modules implementing this functionality,

that naturally are the heart of the engine data path, are called sum-of-products or

SoP units.

Control is performed by means of a small finite-state machine embedded in the

engine, which is in charge of activating the various parts of the datapath (just the

line buffer in the preload phase, all blocks afterwards) and ensures that the xin and

yin streams are always in sync to ensure correctness.

It must be noted that a possible way to improve the performance of the HWCE

with respect to this work is to compute multiple filters on the same xin stream simul-

taneously. While this would certainly improve performance, we believe it would not

similarly impact energy efficiency: first, while a small part of the HWCE could remain

shared (namely, the register file and the line buffer), the SoP units that dominate the

HWCE area and dynamic power would have to be replicated, as well as all the facil-

ities related to the yin and yout streams. We expect the overall energy consumption

per full convolutional layer of a HWCE with more SoPs to be only marginally better

than the one presented here, unless the energy efficiency of SoPs is also increased 3.

Weight loader

As convolution operates repeatedly on a same relatively small set of weights, it is

obviously convenient to load them inside the HWCE at the start of the computation.

Two main possible design choices can be adopted: either loading them manually inside

2It must be noted that except from Section 4.4 the results reported in this Chapter refer to a FIFO
implemented using normal flip-flops.

3This is in the assumption that the number of TCDM ports is limited to 4 (the HWCE presented
here uses 3). If more than 4 ports are needed to feed the HWCE yin and yout streams, we expect
the results to be comparable or even marginally worse than in a smaller HWCE, unless this
increase is matched by a significant improvement in the energy efficiency of the SoPs.

87



memory-mapped registers during the offload phase, or using a lightweight offload in

which just a pointer to the weights is set. The former strategy has two shortcomings

with respect to the latter: first, the offload procedure is much longer, making the

HWCE less convenient to use for small and medium-sized images. Second, as the

HWCE is able to keep in queue more than 1 job (2 in the default configuration), the

weight registers would have to be duplicated. For these reasons, we chose the latter

option for the HWCE.

The weight loader module is composed of a finite-state machine to generate memory

requests and a set of registers to store weights, implemented with SCMs. An additional

task performed by the weight loader is modifying the weights in case a HWCE with a

small filter size K is used to compute a bigger convolution (e.g., a 11×11 convolution

computed with a 5 × 5 HWCE). In this case, the bigger convolution kernel is split

in smaller kernels that may be partially superimposed a number of times (typically a

power of 2); to cope with this, some of the weights must be shifted by the appropriate

amount of bits since they will be applied multiple times.

Wrapper

The HWCE wrapper is responsible for the communication between the convolution

engine and the shared-memory cluster, both in the data and in the control plane. The

former task is performed in the source and sink submodules that convert the address-

based protocol of the cluster into the internal stream-based communication or vice

versa; the latter in the slave module, which features a memory-mapped register to

store a queue of offloaded jobs. All the blocks in the HWCE wrapper are generic IPs

that can be easily reused in the design of other HW Processing Elements. In fact,

many of them - especially those related with the slave module - are shared with the

HWPEs described in Chapter 2.

Both the source and sink modules contain a FIFO buffer of four elements (the

amount sufficient to decouple the streams from possible memory contention stalls, as

seen in early simulations) and an address generator block, plus some simple control

logic. The address generator is composed by three modulo counters that can be used
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to generate addresses for a 3D strided data pattern:

A(i) = Abase

+ Sfeat ·
(
idivLline divLfeat

)
+ Sline ·

(
idivLline modLfeat

)
+ Sword ·

(
imodLline

)
where A(i) is the address of the i-th element, S are the strides and L the lengths of

words, lines and feature maps (i.e. 2D blocks) in a given pattern. 3D strided data

access is used to support accumulating multiple convolutions over a single output

image, as in Equation 4.3.

Control of the HWCE is performed through a target port in its register file, that

can be accessed by any core in the cluster via memory-mapped I/O. To offload a job

to the HWCE, a core must first acquire a lock by reading a special location in the

register file, which returns either the ID of the new job or an error code (if another

core is already trying to offload a job or the job queue is full). Then, the necessary

parameters (base pointers, strides and lengths for each stream + a pointer to the

weights) must be set in the register file through simple writes. Finally, the job is

triggered with a write to another special location, which also releases the lock.

The slave module takes care of executing the queue of jobs by dispatching control

signals to the other modules in the HWCE (namely, the weight loader, the engine, and

the stream sink and sources). When a job is selected for execution, the weight loader

is activated to load the convolutional kernel weights inside its registers. After the end

of the weight loading phase, the xin source is activated to begin the preload phase,

in which the line buffer is filled with the first rows of input data. When the buffer

is full, the yin source is also activated and the engine starts producing actual output

pixels with a peak throughput of 1 streaming packet/cycle. Finally, when the sources

and the sink have produced/consumed all the streams the slave module updates the

running job ID and begins executing a new job (if present).

4.2.3 Programming model

To perform a convolution using the HWCE, the OpenRISC cores in the cluster must

access the HWCE register file via normal memory-mapped load/store operations. To
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ease the usage of the HWCE, we designed a simple hardware abstraction layer to

perform the offload. Table 4.1 shows its main functions.

HAL function explanation

acquire
polls on the job lock register in the HWCE

register file until it gets a new job id

setup writes convolution parameters in HWCE register file

trigger
ends the offload by writing in the HWCE
trigger register; also releases the job lock

wait
waits for an HWCE event, then checks

if the running id is bigger than the given one

Table 4.1: HWCE Hardware Abstraction Layer.

Figure 4.6 formalizes the HWCE offload algorithm, which splits the input feature

in vertical stripes of maximum width dLB and minimum width of a single 32-bit word,

i.e. 2 pixels for the 16-bit configuration. Convolutions on stripes with odd width can

be supported by adding one vertical stripe of 1-pixel of zeros.

function hwce offload(Wptr, xptr, yptr, w, ... )
wint ← w
while wint ≥ 0 do

whwce ← min
(
winte ; dLB

)
wint ← wint − whwce

idoffload ← acquire()

setup(Wptr, xptr, yptr, whwce, ...)

trigger()

xptr ← xptr + whwce

yptr ← yptr + whwce

end while
return idoffload

end function

Figure 4.6: HWCE offload algorithm.
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4.3 Results

4.3.1 HWCE synthesis results

We synthesized the HWCE in STMicroelectronics 28nm UTBB FD-SOI technology

using Synopsys Design Compiler. We back-annotated switching activity using Men-

torGraphics ModelSim for RTL simulation and estimated dynamic and leakage power

consumption at five operating points(reported in Table 4.2) at 25◦C and with no body

biasing. Power results also include dynamic power dissipation from the clock network

as predicted by Design Compiler in topographical mode, and power consumption as-

suming the TCDM and I$ are implemented with SCM memories [141]. Execution

time is derived from full-platform RTL simulations of the HWCE-augmented shared-

memory cluster.

VDD [V] 0.3 0.4 0.8 1.0 1.3
fmax [MHz] 2.5 22 400 588 775

Table 4.2: Operating points for the heterogeneous cluster.

Table 4.3 reports the relative area of the 16-bit HWCE described in this Chapter in

terms of equivalent kilogates (kGE) 4. The line buffer parameter dLB is swept between

32 and 128 pixels and the filter size K between 3 and 11. We observe that these two

parameters greatly affect area occupation; this is expected, as the total size of the

line buffer increases linearly with both dLB and K, while the number of multipliers is

2K2.

Area (kGE)
Filter size

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

dLB

32 112 193 306 465 639
64 124 216 342 505 697
128 148 263 411 596 814

Table 4.3: Area of 16-bit HWCE in equivalent kilogates.

The design is pipelined in such a way that it is never a frequency bottleneck for

the rest of the cluster by using Design Compiler retiming inside the datapath; in fact,

while the nominal frequency for the cluster is that shown in Table 4.2, the HWCE is

always synthesizable at a higher frequency.

4We define an equivalent gate as the smallest 2-input NAND cell available in our technology library.
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4.3.2 Convolve-accumulate performance

To assess speedup over SW convolution and estimate the energy-efficiency boost, we

developed a micro-benchmark focusing on a single 3× 3, 5× 5, 7× 7, 9× 9 or 11× 11

convolution-accumulation (as defined in Equation 4.2) over a 16×16, 32×32 or 64×64

image. We developed two SW implementations of convolution-accumulation for each

filter size: the naive implementation directly follows the definition in Equation 4.2

by using four nested loops (two on the output pixels and two for the convolution

kernel W ); the optimized implementation uses manual loop unrolling and explicit

pointer arithmetic to achieve better performance. Both implementations run either

on a single core or in four parallel threads running on the PEs of the shared-memory

cluster. The HWCE implementation is based on the programming model discussed

in Section 4.2.3.

Figure 4.5 shows the speedup over a single-thread naive implementation with the

optimized SW and using HWCEs of different sizes to implement 3 × 3, 5 × 5, 7 × 7,

9 × 9 and 11 × 11 filters. All HWCEs have the line buffer parameter dLB set to 32.

Results include all overheads due to the offload procedure, including I$ misses and

function stall overhead. By sweeping the size of the input image from 16 × 16 to

64× 64, we observe a great increase in the acceleration’s efficiency: this effect is due

to the diminished impact of the phases during which no output is produced (offload

and preload for the HWCE, branches for the SW optimizations) with respect to the

rest of the run. Note that this behavior will not scale indefinitely, as eventually it

is no longer possible to store bigger and bigger images in the shared memory, which

becomes the system’s bottleneck.

Unsurprisingly, the fastest way to compute a N ×N convolution is using a HWCE

configured with a N×N filter. Using a bigger HWCE requires an increased line buffer

size, while a smaller HWCE requires more offloading, both resulting in performance

losses. For example, a 11× 11 convolution on a 64× 64 image can be performed with

a 3×3 HWCE with 16 distinct offloads, and a performance loss of 8× with respect to

the 11× 11 HWCE (but is still 14× faster than SW). On average, the speedup on the

biggest image ranges between 40× and 160× compared to the the fastest single-thread

SW implementation (10×-40× over the multi-thread one); on the smallest image it is

reduced to 7×-18× (2×-6× over the multi-thread one).

To verify what is the overhead introduced by our shared memory paradigm, in
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Table 4.4 we report average execution times (in clock cycles) of a 5× 5 convolution-

accumulation on a 32× 32 image. For the test, we consider a 5× 5 HWCE with small

FIFOs of 4 elements in the sink and source units. We evaluate the runtime as divided

in: i) a first configuration phase that is typically payed only at the first usage of

the HWCE within a set of offloads, thanks to the job queue; ii) a startup/idle phase

between the end of a job and the beginning of a new one; iii) the weight and line

buffer preloading phase; iv) the actual convolution, i.e. the time during which the

HWCE produces new output pixels. We compare three scenarios:

• an ideal scenario, in which the only time considered is that technically necessary

for the engine data path to produce the 28 × 28 output pixels (i.e. infinite

bandwidth towards the shared TCDM, no preloading phase);

• a no contention scenario, in which we consider the real interfaces of the HWCE

towards the shared memory, but we disregard any performance degradation due

to memory contention;

• a realistic low contention scenario, where the HWCE is used concurrently with

control-oriented code run on a single OpenRISC core.

• a realistic high contention scenario, where the HWCE is used concurrently with

a core executing control-oriented code and with a DMA transfer to enable a

double buffering scheme (i.e. an additional traffic of 8 bytes per cycle towards

the shared memory).

first config startup/idle preload convolution total (no config)

ideal (infinite TCDM bandwidth) - - - 392 392

no contention 258 2 67 448 517
efficiency vs ideal - - - 88% 76%

low contention 258 2 86 509 597
efficiency vs no contention 100% 100% 78% 88% 87%
efficiency vs ideal - - - 77% 66%

high contention 258 2 88 546 636
efficiency vs low contention 100% 100% 98% 93% 94%
efficiency vs no contention 100% 100% 77% 82% 81%
efficiency vs ideal - - - 72% 62%

Table 4.4: HWCE overheads.

With respect to the infinite bandwidth scenario, the necessity to move data in and

out of the accelerator causes a 25% efficiency loss, that could be reduced by increas-
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ing the bandwidth towards the TCDM; this, however, would make the logarithmic

interconnect more complex and increase its power consumption. The main source of

overhead between the second and the third scenario is actually the self-contention

between HWCE xin, yin and yout streams, which is unavoidable in a flexible shared-

memory platform such as the one we propose but can be effectively diminished by

increasing the size of the sink and source FIFOs (e.g., increasing their size to 8 ele-

ments practically removes all self-contention in the low contention scenario). Some

more overhead is visible between the low and high contention scenarios, introduced

by the DMA traffic on the TCDM. Also in this case, the overhead can be reduced

by increasing the size of the FIFOs. The memory contention overhead is essentially

the cost of supporting the tightly-coupled shared memory acceleration paradigm; we

deem this cost more than acceptable as in exchange for a performance loss of less than

30% for the “steady-state” convolution phase we gain total flexibility and the ability

to freely intermix HWCE jobs and normal SW code, with no hidden copy overhead

within the cluster.
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Figure 4.7: Energy efficiency (average throughput in equivalent GOPS vs total plat-
form power consumption).

4.3.3 Convolve-accumulate power & energy

Energy-wise, our results show significant savings compared to SW solutions for con-

volutional workloads. In Figure 4.7, we show average energy efficiency of the SW

convolutions and HWCEs benchmarked in Figure 4.5 in the case of a 64 × 64 input
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image, at the operating points of Table 4.2. We consider throughput in terms of equiv-

alent GOPS; this value is computed as the output pixel throughput multiplied by the

minimum number of RISC operations needed to compute a pixel (i.e., 4W 2). Power

shown in Figure 4.7 is the total of the shared-memory cluster, keeping three cores

off when the HWCE is on. Peak efficiency is 2.75 TOPS/W considering equivalent

RISC operations, reached with the 11 × 11 HWCE at the 0.4V operating point. By

comparison, the peak efficiency of the SW implementation is 72 GOPS/W (∼ 38×
less). We also note that peak efficiency is reached near the voltage threshold (i.e.

with VDD at 0.4V or 0.3V) with a total power budget within 100 µW and 1 mW for

the whole cluster. Even at the fastest configuration, total power is always kept under

1 W.
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Figure 4.8: Energy spent per output pixel at 22 MHz (0.4V operating point).

To contrast SW convolution on OpenRISC and the HWCE convolution, in Figure

4.8 we plot the energy spent by the PE or HWCE to compute a single output pixel

at 22 MHz (the most efficient operating point). On average all HWCEs are able to

compute ∼ 40× more pixels than PEs with the same energy; average consumption

is 35 pJ/px instead of almost 2000 pJ/px. By comparison, a 2.1Wh battery for

a wearable device would suffice for more than 50 billion convolutions on a 64 × 64

image. Point-wise, the 3× 3 HWCE reaches the peak efficiency of 6.5 pJ/px in the

3× 3 convolution.

Table 4.5 contrasts our results with those of several state-of-the-art platforms that

were described in Section 1.4, showing that this work improves state of art in terms of
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technology maturity performance energy eff.

NeuFlow [87] IBM 45nm post-layout 147 GMAC/s 245 GMAC/s/W

Qadeer et al. [93] IBM 45nm post-synthesis 205 GMAC/s 118 GMAC/s/W

ShiDianNao [91] TSMC 65nm post-layout 64 GMAC/s 200 GMAC/s/W

Camunas-Mesa et al. [142] 350nm silicon 16.6 Mspike/s 185 Mspike/s/W

IBM TrueNorth [95] Samsung 28nm silicon - 46 Gspike/s/W

Origami [92][140]
@0.8 V UMC 65nm silicon 28 GMAC/s 402 GMAC/s/W
@1.2 V UMC 65nm silicon 73 GMAC/s 218 GMAC/s/W

PULP+HWCE
@0.4V

ST 28nm FD-SOI post-layout
0.70 GMAC/s 688 GMAC/s/W

@1.0V 18.5 GMAC/s 103 GMAC/s/W

PULP+HWCE
@0.65V

UMC 65nm silicon
2.41 GMAC/s 261 GMAC/s/W

@1.05V 10.69 GMAC/s 104 GMAC/s/W

Table 4.5: Comparison with other state-of-the-art CNN accelerators and brain-
inspired platforms.

energy efficiency in its most efficient point. We also anticipate results for the HWCE

implementation in UMC 65nm technology, that are further described in Section 4.4.

For better consistency, all results are reported in terms of MAC operations as the

definition of equivalent RISC ops may vary from source to source.

4.3.4 ConvNet benchmark

We used a complete CNN on our platform to further test the HWCE; its topology is

the small one that was described in Chapter 3 as shown in Figure 3.6. Convolutional

layers use a piecewise linear approximation of the hyperbolic tangent (executed in

SW) for activation, while pooling ones use max-pooling. The CNN is fed with a

32 × 32 grayscale input image, and is sized to fully fit in the 16kB of cluster shared

memory so that DMA data transfers from L2 can be completely hidden with double

buffering. This is consistent with many of the CNNs listed in literature, which are

used to classify a small window of an image at a time.

Figure 4.9 reports execution time in cycles for a full-SW CNN or a HWCE-

accelerated one (both using either 1 or 4 threads for SW sections); we split this

time between the various layers composing the CNN. CNNs are dominated by con-

volutional layers, and thus convolutions constitute the main bottleneck as processors

employ respectively 74.6% and 72.6% of their time performing them. The overall

speedup given by augmenting the cluster with a HWCE is 3.86× and 3.41× for the

single- and 4-thread implementations respectively. Figure 4.9 also shows that the com-
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Figure 4.9: CNN benchmark execution time.

bined action of SW parallelism and HW acceleration achieves an overall 12× speedup

over sequential execution; HWCEs essentially hit the wall of Amdahl’s law, as the

overall speedup is respectively 98.2% and 93.2% of the Amdahl limit. Note that, as

convolutions would be more dominant in CNNs with more complex topology [140],

the impact of the HWCE is also likely to be higher.

4.4 The Mia Wallace SoC

In April 2015, a PULP SoC codenamed “Mia Wallace” was taped out using the

UMC 65nm technology. It contains an updated version of the cluster with respect

to what was described in this Chapter and in Chapter 3; there are four OpenRISC

cores redesigned from scratch (called OR10N) [68], a new shared instruction cache

[136], several improvements to the DMA controller; moreover it has a relatively large

L2 memory of 256 kB that can be used to perform significant computation. The

chip contains a version of the HWCE essentially identical to the one described here,

with a 5 × 5 HWCE and a 32-words line buffer. The HWCE is configured to work

on two 16-bit pixels per cycle. The main microarchitectural difference between the

HWCE implemented in Mia Wallace and the version described in the rest of this

Chapter is that the register file and the line buffer are implemented using SCM cuts,

to save area and dynamic power with respect to normal flip-flops. Figure 4.10 shows
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Figure 4.10: Mia Wallace die microphotograph.

a microphotograph of the Mia Wallace die, which measures 3.95 mm×1.88 mm.

To check the correct functionality of the HWCE and verify its peak energy efficiency,

we used a simple test where CNN convolutional layers are computed multiple times on

a 32×32 image stored in the TCDM. This test tracks accurately a scenario where the

computation-to-communication ratio is very high and using a technique such as the

horizontal tiling strategy (described in Section 3.3.4 and in Conti et al. [66]) the total

execution time is dominated by computation time, with transfer time non-critical;

this is often the case for CNNs, especially for the first layers that greatly expand the

dimensionality of the data set (e.g. GoogLeNet [138])5.

In Figures 4.11 and 4.12 we plot respectively frequency and power measured on

the tester for the Mia Wallace chip while running the test previously described; we

sweep the supply voltage VDD between 0.65 V and 1.2 V and the body-biasing voltage

VBB between −0.4 V and 0.4 V. Figure 4.13 combines the two measurements to esti-

mate the energy efficiency in terms of GMAC/s/W while using the HWCE at nominal

throughput. The efficiency peak is 263 GMAC/s/W and is reached at minimum VDD

(0.65 V) while applying a small amount of reverse body biasing (−100 mV). In this op-

erating point, the PULP cluster consumes 7.5 mW of power while working at 54 MHz.

5Note that this is true only if one does considers an efficient scheme for data movement such
as the tiling strategies described in 3.3.4, or similar ones such as that of Peemen et al. [143].
Without using one of these strategies (e.g. in purely streaming accelerators such as nn-X [89])
it is necessary to rely on external memory as storage for intermediate results, which impacts
performance in an extremely severe way with respect to ideal peak throughput [144].

99



0.7 0.8 0.9 1.0 1.1 1.2
Vdd [V]

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

V
b
b
 [

V
]

Frequency [MHz] vs (Vdd,Vbb)

0 40 80 120 160 200 240 280 320 360

Figure 4.11: Frequency sweep on the HWCE test for the Mia Wallace chip while vary-
ing the supply voltage VDD and the body-biasing VBB.
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Figure 4.12: Power sweep on the HWCE test for the Mia Wallace chip while varying
the supply voltage VDD and the body-biasing VBB.
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Figure 4.13: Energy efficiency sweep on the HWCE test for the Mia Wallace chip while
varying the supply voltage VDD and the body-biasing VBB.

With respect to the GoogLeNet task mentioned in Section 4.1, the Mia Wallace SoC

would be able to achieve 1 fps within a power envelope of less than 10 mW, using the

efficient horizontal tiling strategy discussed in Section 3.3.4[145].

4.4.1 Scaling to ST 28nm FD-SOI

To compare this number with the pre-silicon ones reported for the initial HWCE

architecture in ST 28nm FD-SOI technology, we can scale power using the simple

model proposed by Cavigelli and Benini [140], i.e.

Pst28 = Pumc65
65 nm

28 nm

(
VDD,st28

VDD,umc65

)2

(4.4)

We consider two operating points for both technologies, defined by their operating

frequency6: a high efficiency and a high performance point, as defined by Table 4.6.

6For ST 28nm we estimate the probable operating points by interpolating results from post-layout
static timing analysis, using a slow-slow corner.
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In both technologies we don’t consider using any body biasing.

UMC 65nm ST 28nm FD-SOI

High efficiency

Frequency 65 MHz 65 MHz
VDD 0.65 V 0.55 V
Throughput 2.4 GMAC/s 2.4 GMAC/s
Power 9.2 mW 2.8 mW
Efficiency 261 GMAC/s/W 859 GMAC/s/W

High efficiency

Frequency 300 MHz 300 MHz
VDD 1.05 V 0.75 V
Throughput 10.7 GMAC/s 10.7 GMAC/s
Power 103.2 mW 22.7 mW
Efficiency 104 GMAC/s/W 471 GMAC/s/W

Table 4.6: Power and Energy efficiency projection.

To compare the results with the ones presented in the other Sections of this Chapter

(e.g. in Table 4.5), it is sufficient to consider a factor of ∼ 4 between the number of

MAC operations and that of equivalent RISC operations; therefore, our silicon results

scaled to 28 nm appear to be slightly better than what estimated by power analysis

and reported in Section 4.3.3. This is most likely due to two separate effects: on

one hand, timing and power analysis use guardbands that might be on the pessimistic

side, especially for relatively new processes such as the ST 28nm FD-SOI; on the other

hand, we expect the scaling to be optimistic as Equation 4.4 disregards the impact

of leakage that is higher in ST 28nm, due to the deeper integration. Moreover, the

usage of SCMs (i.e. latches) in place of flip-flops in the line buffer and in the HWCE

register file likely contribute to the reduction of the overall power in the UMC 65nm

HWCE used in the Mia Wallace SoC.

4.4.2 Flexibility of the platform: Huffman decoding use case

As extensively argued during the course of this thesis, the main advantage of our

approach to heterogeneity versus state-of-the-art ASICs is that it provides a much

higher level of flexibility, while achieving competitive levels of energy efficiency (see

Table 4.5). Use cases for this approach are literally infinite, but to show a practical

example we report here a simple experiment considering that we may want to store

the CNN weights in a compressed format and decompress them on-the-flight while
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running the network. For the sake of this experiment, we will consider a simple

compression scheme based on Huffman coding [146].

Let us consider the CNN network proposed by Cavigelli et al. [147] for scene

parsing, which requires 8.1 GMAC operations per frame (considering the multi-scale

version) and ∼1.24 MB of parameters for a 320 × 240 input frame. Using optimal

Huffman compression on the network weights, we could reduce their size by a factor

of 3.1×. Specifically, we computed a single Huffman code table for all weights in

the network; then we divided it in blocks encoded separately. Since the code table

is shared between all blocks, the preamble of each encoded block contains only the

expected number of output bytes. To decode the Huffman-encoded weights, we ported

the freely available libhuffman library [148] to PULP, optimized it, and adapted it so

that multiple blocks can be decoded in parallel using the four cores available in the

Mia Wallace chip7.

Our version of libhuffman was able to decode Huffman encoded weights at a rate of

∼ 3.9 bits/cycle, i.e. enough to decode all weights in the network in 8.9 ms, considering

the high-performance operating point of Table 4.6 (in UMC 65nm technology). In

the same operating point, the CNN would require ∼ 758 ms; given the difference of

two orders of magnitude between the execution, the two operations can be easily

pipelined (decompressing the next weights while the current set is being used), hiding

the decompression overhead almost completely8.

Moreover, as the compression scheme is entirely implemented in software, the Mia

Wallace SoC could support a plethora of other similar compression schemes (e.g.

Adaptive Huffman) without any architectural change. At the same time, the presence

of the heterogeneous architecture improves the energy efficiency on the bulk of the

CNN computation by two orders of magnitude, as shown in the previous Sections

of this Chapter. This provides a significant advantage with respect to fixed function

platforms as it allows to adapt to situations with diverse requirements but at the same

time can reach a level of efficiency comparable to a fully custom solution.

7We used the PULP OpenMP runtime, obtaining a speedup of ∼ 3.5× with respect to the original
libhuffman port, which uses a single block and cannot be easily parallelized due to the sequential
nature of bit-by-bit Huffman decoding by parsing the Huffman code tree.

8As Huffman decoding in this specific case is far from dominating the execution time, one could
also think of using only one/two cores to execute it and use the others for other tasks e.g. DMA
control. Our paradigm ensures a high degree of freedom in how to use the software cores and
how to coordinate them with the bulk of the computation executed on the HWCE.
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4.5 Conclusions

To support state-of-the-art BICV algorithms on highly battery-constrained devices

such as WSN nodes and wearable computers, we need to extract as much performance

as possible from every pJ of energy. In this Chapter, we provided a contribution

towards this goal with the design of an energy-optimized streaming based engine for

convolution computation and of a wrapper for efficient data/control integration in

a shared-L1 multicore cluster. Our power analysis results show that the HWCE-

augmented PULP cluster reaches state-of-the-art convolution energy-efficiency: up to

2.75 TOPS/W, spending 35 pJ/px on average in the most efficient configuration. We

also validated our results on real silicon, showing results that are competitive in terms

of energy efficiency with the state-of-the-art Origami ASIC [92][140], while proposing

a platform that is significantly more flexible thanks to the internal architecture of the

HWCE and obviously to the availability of the four PULP software cores.

Coupling efficiency with flexibility is key to the success of specialized architectures

[93]. We argue that even if the HWCE is accelerating a single kernel, it nevertheless

brings about a good level of application flexibility due to its applicability in deep con-

volutional networks, which are able to perform a huge variety of different tasks with

state-of-the-art accuracy [85][84][86]. Therefore, it is a significant step towards the

goal of the development of a heterogeneous parallel platform or system where “tradi-

tional” cores cooperate with accelerators or coprocessors that are able to implement a

computational model different from the traditional Von Neumann machine, but still

capable of universal or quasi-universal computation. In the case of the HWCE, the

main limitation from this point of view is related to the nature of the underlying

CNN model that has been shown to be capable of many tasks with excellent results in

the computer vision and signal processing fields, but is not capable of fully universal

computation. However, our work has the main purpose of showing a methodology and

arguing that it can be used to yield excellent results; we argue that applying a simi-

lar methodology to other kinds of brain-inspired or even more exotic computational

models is possible and likely effective.
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Chapter 5

Conclusions

In Chapter 1, we surveyed many of the challenges and opportunities that are cur-

rently encountered by computing. These can be briefly resumed as follows in “four

challenges”:

1. the end of Dennard’s scaling [13] and the twilight of Moore’s law make it increas-

ingly difficult to scale performance upwards by “simple” technological scaling,

i.e. by relying on the increasing number of transistors in each technological

node with no architectural innovation. Even if Moore’s law can be prolonged

for several more decades [149], the thermal constraint given by the utilization

wall will likely require extensive advancements in computer architecture to make

effective and energy-efficient use of the available transistors.

2. the insurgence of ubiquitous connected sensing devices (known as the “Internet-

of-Things” or IoT) means that the amount of raw data produced is growing

faster than our ability to transfer and use it, a phenomenon known as the data

deluge [23]. Previously confined to relatively niche domains such as high-energy

physics [150], the necessity to cope with huge amounts of data has been shifting

towards mainstream computing. To reduce the quantity of traffic (and the

consequent wasted energy), there is a strong push to move computation inside

the sensors themselves, so that only higher level, more information-dense data

is transferred [151][57]. This, however, requires significant work towards energy-

efficient near-sensor computation, as sensor nodes are typically heavily power-

and energy-constrained.

3. in part as a consequence of the availability of previously unconceivable amounts
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of data, and in part of the availability of ever-more-powerful computing devices,

machine learning techniques are becoming a mainstream algorithmic device to

solve problems that were previously considered unsolvable [152][153]. While

these algorithms are ideal candidates to solve the problem described in the pre-

vious point by being integrated in smart sensors, their computational burden is

high (and growing) not only for the training phase, but also for simple inference.

This will require a breakthrough in architectural energy efficiency.

4. the fabrication cost of chips in deeply integrated technologies increases with

every process node, making it increasingly less convenient to design fully spe-

cialized computing devices such as ASICs in advanced nodes [99]; this is the

strongest reason for which flexibility and the ability to execute general-purpose

software will remain relevant in the future.

The results presented in this PhD thesis make it clear that architectural hetero-

geneity is a powerful technique to improve energy efficiency of computing systems,

therefore targeting the “four challenges” listed above. We have shown three different

(though linked) examples of heterogeneity in Chapters 2, 3 and 4, and in all cases

we can conclude that coupling a more general-purpose platform with a more special-

ized one yields an improvement in efficiency that can vary from ∼ 10× up to almost

1000× due to specialization. We have contributed techniques that significantly lower

the bar to access the “premium efficiency” granted by heterogeneity: a technique for

systematic exploration of the heterogeneous design space (Chapter 2); a fully (and rel-

atively easily) programmable system for heterogeneous acceleration in the low-power

space (Chapter 3); and a heterogeneous cluster for CNN acceleration (Chapter 4).

Regarding this last point, to the best of our knowledge this thesis contributes the

first example of tight coupling between general-purpose cores and a brain-inspired

accelerator for CNNs in the ultra-low power domain; this heterogeneous platform is

silicon-proven and has been tested to reach up to 263 GMAC/s/W in 65nm technol-

ogy, and potentially up to more than 800 GMAC/s/W in a more deeply integrated

28nm FD-SOI process.

Beyond these immediate technical results, as argued several times, the fundamen-

tal trade-off in heterogeneous platforms is that of flexibility versus efficiency, both of

which are necessary to solve those challenges. In Chapter 2 we proposed a methodol-

ogy that helps to simplify the exploration of the heterogeneous design space, therefore
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alleviating the difficulty of the choice between the many possible trade-off points. In-

stead, the architectures we propose in Chapters 3 and 4 explore two different ways

not to trade off efficiency with flexibility. In one case, we do this using a parallel

programmable platform (PULP) and an offload model that reminds techniques that

have been demonstrated to be effective in successful e.g. in the GPU computing do-

main, albeit applied to a totally different low-power scenario. In the other case, we

propose an HW accelerator that uses the same kind of underlying methodology pro-

posed in 2 to be tightly-coupled with a multi-core cluster, but is carefully optimized

for CNN applications, essentially shifting flexibility from the architecture (that is now

specialized) to the algorithm it accelerates. In both cases, we show that the addition

of flexible heterogeneity is still extremely beneficial for energy efficiency, therefore tar-

geting points 1,2,3 of the “four challenges” above, but also meet point 4. This last

point might be regarded as the most important one since (as argued in Chapter 1)

any engineering solution must be not only generally effective, but most importantly

cost-effective. We believe the contribution of this thesis to be significant with re-

spect to pushing this flexible heterogeneity paradigm into computing architecture in

all spaces, and in particular in that of low-power smart sensor nodes.

5.1 Future research directions

We believe there is still a very significant body of research that could be performed

building upon the results presented in this thesis.

First, in Chapter 4 we merely scratch the surface of “substituting” the flexibil-

ity versus efficiency trade-off with a more convenient accuracy versus efficiency one.

For example, recent research has argued that deep neural networks are themselves

approximable with several techniques [75][154][155] that could be applied to derive

more energy-efficient hardware with a bounded loss in accuracy. An entire research

field centering on this accuracy versus efficiency field is flourishing [74][73][156]. As

a related research direction, it is clear that beyond CNNs and deep artificial neural

networks in general, other brain-inspired models such as those based on spiking neural

networks are becoming more and more relevant [97][95] and could open up additional

design points in heterogeneous systems.

Moreover, we believe that while the general target for the heterogeneity approaches
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we have shown in this thesis has been towards low-power and energy efficiency embed-

ded systems such as autonomous WSN nodes, they respond to energy efficiency issues

that are common up to much more powerful systems such as those for cloud servers

[157] and HPC. In particular, the design challenges of HPC systems are also clearly

related to energy efficiency via power and cooling costs, making the idea of using

near-threshold many-core accelerators using replicated PULP clusters attractive.

In general, as argued in the very first lines of Chapter 1, in the computing architec-

ture field problems and solutions tend to arise in a similar fashion at scales that differ

by orders of magnitude in terms of performance, power consumption and mere phys-

ical size (ranging from implanted nano-devices to data centers). We believe that this

is fundamentally true also for the ideas presented here, as they respond to challenges

that are general and not specific to one or another domain in computing.
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Glossary

6T-SRAM 6-transistor Static Random-Access Memory. 19

8T-SRAM 8-transistor Static Random-Access Memory. 19

ASIC Application-Specific Integrated Circuit. 18, 22, 72, 80, 102, 104, 106

BBMUX Body Bias Multiplexer. 56, 57

BICV Brain-Inspired Computer Vision. 79, 80, 104

BOX Buried Oxide. 52, 114

CNN Convolutional Neural Network. 7, 21, 22, 50, 78–80, 83, 85, 97–99, 102–104,

106, 107

CV Computer Vision. 52, 53, 79, 80, 82, 84

DLP Data Level Parallelism. 12

DMA Direct Memory Access. 27, 41, 42, 47, 48, 56, 65, 68, 73, 81, 85, 94, 95, 97, 98,

103

FBB Forward Body Biasing. 56, 58–61, 65, 70, 71

FD-SOI Fully Depleted Silicon-on-Insulator. 23, 52, 56, 58, 59, 62, 73, 76, 92, 101,

102, 106

FIFO First In, First Out (queue). 86–88, 94, 95

FLL Frequency-Locked Loop. 56

FPGA Field Programmable Gate Array. 16, 17, 22
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GOPS Billions of Operations Per Second. 6, 59–61, 63, 69–71, 76

GPIO General Purpose Input/Output. 55

GPU Graphics Processing Unit. 13, 16, 17, 24, 54, 107

HLS High-Level Synthesis. 26, 32, 33, 35–37, 48

HPC High-Performance Computing. 108

HWCE HardWare Convolution Engine. 7, 22, 80–82, 84–88, 90–104

HWPE HardWare Processing Element. 6, 26, 27, 29–41, 45–48, 77, 81, 88

I/O Input/Output. 54, 85, 90

ILP Instruction Level Parallelism. 12, 14, 80

IoT Internet-of-Things. 51, 105

ISA Instruction Set Architecture. 13, 24, 55

L1 Level 1 memory or cache. 13, 17, 26, 27, 29, 55, 64, 66, 67

L2 Level 2 memory or cache. 13, 54–58, 62, 64–68, 71, 76, 98

LVT Low Voltage Threshold. 58

MAC Multiply-Accumulate. 79, 97, 99

MCU Micro-Controller Unit. 18, 20, 52, 73, 74

NMOS n-type Metal-Oxide-Semiconductor transistor. 58

PE Processing Element. 6, 27, 29–33, 41, 45–49, 53, 55

PMOS p-type Metal-Oxide-Semiconductor transistor. 58

PULP Parallel Ultra-Low Power Platform. 4–7, 20, 51–63, 65, 66, 70–78, 80, 81, 85,

98, 99, 103, 104, 107, 108
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RBB Reverse Body Biasing. 56

RISC Reduced Instruction Set Computer. 23, 55, 62, 65, 75, 97

SCM Standard Cell Memory. 58, 59, 87, 88, 92, 98, 102

SIMD Single Instruction, Multiple Data-stream. 15, 18, 22

SoC System-on-Chip. 4, 5, 25, 26, 54–58, 75, 98, 101–103

SoP Sum-of-Products. 87

SPI Serial Protocol Interface. 55, 58, 70–72, 74, 76

SRAM Static Random-Access Memory. 58

TCDM Tightly-Coupled Data Memory. 27, 35, 56, 58, 59, 62, 64, 66, 67, 69, 71, 76,

81, 87, 92, 94, 95, 99

TLP Thread Level Parallelism. 12

UAV Unmanned Aerial Vehicle. 51–54, 70–72, 76

ULP Ultra-Low Power. 3, 61, 65, 72, 76

UTBB Ultra-Thin Body and BOX. 52, 58, 59, 92

VLIW Very-Long Instruction Word. 15

WSN Wireless Sensor Node. 51, 54, 108
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