
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

Automatica e Ricerca Operativa

Ciclo XXVIII

Settore concorsuale di afferenza: 01/A6 - RICERCA OPERATIVA

Settore scientifico disciplinare: MAT/09 - RICERCA OPERATIVA

Models and Solutions of Resource

Allocation Problems based on Integer

Linear and Nonlinear Programming

Presentata da: Dimitri Thomopulos

Coordinatore Dottorato Relatore

Prof. Daniele Vigo Prof. Enrico Malaguti

Correlatore

Prof. Andrea Lodi

Esame finale anno 2016

Contents

1 Introduction 1

1.1 On Resource Allocation Problems . 1

1.2 Thesis Contribution . 4

1.3 Applied Motivations . 5

1.4 Thesis Methodological Outline . 6

1.4.1 Two-Dimensional Guillotine Cutting Problem 6

1.4.2 Mid-Term Hydro Scheduling Problem 7

2 Two-Dimensional Guillotine Cutting Problem 11

2.1 Introduction . 11

2.1.1 Families of cutting problems. 12

2.1.2 Structure of general guillotine cuts. 13

2.1.3 Literature review. 13

2.1.4 Contribution. 16

2.2 MIP modeling of guillotine cuts . 16

2.2.1 Definition of the cut position set 20

2.2.2 Model extensions: Cutting Stock problem and Strip Packing
problem . 25

2.3 An effective solution procedure for the PP-G2KP Model 27

2.3.1 Variable pricing procedures . 27

2.4 Computational Experiments . 29

2.4.1 Lower bound (feasible solution) computation 32

2.4.2 Iterative Variable Pricing . 34

2.4.3 Models size and reductions . 36

2.4.4 Overall solution procedure . 41

2.4.5 Comparison with state-of-the-art approaches 46

2.4.6 Relevance of guillotine cuts . 48

2.5 Conclusions . 49

3 Mid-Term Hydro Scheduling Problem 51

3.1 Introduction . 51

3.1.1 Mid-term hydro scheduling . 54

3.1.2 Choice of the objective function 55

3.2 Decomposition algorithm for nonlinear (CCP) 56

3.2.1 Overview of the approach . 58

3.2.2 Separation algorithm . 59

3.2.3 Termination of the Branch-and-Cut algorithm 62

3.2.4 Comparison with generalized Benders cuts 64

3.3 (CCP) for mid-term hydro scheduling 66

3.3.1 Decomposition . 67

3.3.1.1 Electricity generation function 68

3.3.1.2 Demand and price function 69

3.3.2 Data . 69

3.4 Computational experiments . 71

3.4.1 Implementation details . 71

3.4.2 Computational performance . 73

3.4.3 Quadratic electricity generation function 80

3.4.4 The effect of α on the profit . 84

3.4.5 Other solvers . 86

3.5 Conclusions . 90

Bibliography 91

Keywords

• Two-dimensional Cutting Problems

• Guillotine Knapsack Problems

• Chance Constrained Programming

• Exact Algorithms

• Integer Linear Programming

• Nonlinear Programming

• Pricing

• Stochastic Programming

• Computational Experiments

Ai miei Genitori, mio Fratello, i miei Amici, i miei Nonni e in

particolar modo a mio Nonno Dimitris

Acknowledgements

I want to express my deeply-felt thanks to my thesis advisors, Professors Enrico

Malaguti and Andrea Lodi, for their warm encouragement, thoughtful guidance.

I also want to express my gratitude to Dr.Valentina Cacchiani for her continuous

support and sound advice.

Lastly, I wish to thank Professor Daniele Vigo and Professor Giacomo Nannicini.

Chapter 1

Introduction

1.1 On Resource Allocation Problems

Resource Allocation is the generic problem of assigning available resources to users

in the best possible way. Usually the resources are limited, thus sets of activities

compete for these resources establishing explicit and implicit dependencies, which may

be subject to uncertainty. The resulting decision problem on the best use of the

resources can be be decomposed in several problems that have been intensively studied

in the field of operations research in the last few decades. Examples of such problems

are:

• Scheduling Problem. Scheduling is the process of deciding, controlling and

optimizing works and activities in a production process or manufacturing process.

Scheduling is used to optimally allocate scarce resources to activities, and includes

problems like the allocation of plant and machinery resources, the organization of

human resources, and the control of production processes and materials purchase

(see, e.g., Jordan [1996]).

• Knapsack Problem. A large variety of resource allocation problems can be

cast in the framework of a knapsack problem. The aim of this problem, given a

set of items, each with a weight and a profit, is to maximize the total obtained

value, determining the number of each item to include in a knapsack, or more

generally in a collection, so that the total weight is less than or equal to a given

limit. The main idea is to consider the capacity of the knapsack as the available

amount of resource and the item types as activities to which this resource can be

allocated (see, e.g., Martello and Toth [1990]).

• Cutting Stock Problem. CSP is a general resource allocation problem where

the objective is to cut pieces of stock material into pieces of specified sizes,

minimizing the wasted material. Focusing more on the resources it can be defined

1

2 Chapter 1 Introduction

as the decision of subdividing a given amount of a resource into a number of

predetermined allocations so that the left-over amount is minimized (see, e.g.,

Gilmore and Gomory [1961]).

• Power Generation Scheduling Problem. Power Generation Scheduling is

required in order to find the optimum allocation of energy such that the annual

operating cost of a power system is minimized, or the obtained profit is maximized

(see, e.g., Bertsekas et al. [1983]). This problem is also strictly related to the

Unit Commitment Problem or Pre-Dispatch Problem, and it has been subject to

considerable discussion in the power system literature.

There is a large literature dealing with these problems and several solving techniques

have been proposed. One of the most widely used modeling and solution techniques

is Mathematical Programming (MP). This is one of the most effective and it can be

conveniently defined as a mathematical representation aimed at programming, i.e.,

planning the best possible allocation of scarce resources. Many real-world and theo-

retical resource allocation problems may be modeled in this general framework, which

involves searching for the optimal settings of decision variables satisfying all the occur-

ring constraints, while optimizing the objective function. These constraints represent

the conditions, like financial, technological and organizational conditions, which occur

in the problem.

Mathematical Programming is a significantly large discipline and several subfields have

been explored specifically. Among them we can mention:

• Linear Programming, LP in short, is a modeling technique for achieving the

best objective function in a mathematical model characterized by linear functions.

Hence, the objective function is linear and the constraints are linear inequalities

(see, e.g., Luenberger and Ye [2008]).

The first Linear Programming formulation of a problem was given by Kantorovich

in 1939, who also proposed a method for solving it (see, e.g., Schrijver [1986]).

He developed it during World War II motivated by combinatorial applications,

in particular transportation and transshipment. About the same time as Kan-

torovich, also Koopmans introduced LPs, formulating classical economic prob-

lems as Linear Programs. In addition, during 1946-1947, Dantzig independently

developed the General Linear Programming formulation. He was working for the

United States Air Force, where one of his tasks was to develop mathematical

models that could be used to formulate practical planning and scheduling prob-

lems. In 1947, Dantzig also invented the Simplex Method that is the most widely

applied algorithm for solving Linear Problems. In fact the journal Computing in

Science and Engineering listed it as one of the top 10 algorithms of the twentieth

century.

Chapter 1 Introduction 3

A convenient expression of LP is

(LP) max f(x) (1.1)

g(x) ≤ 0 (1.2)

x ∈ Rn+ (1.3)

• Integer Programming IP in short, refers to the class of constrained optimiza-

tion problems in which the variables are required to be integers. In many settings

the term refers to Integer Linear Programming (ILP), in which the objective func-

tion is linear and the constraints are linear inequalities (see, e.g., Jünger et al.

[2010]).

A generic ILP is conveniently expressed as

(ILP) max f(x) (1.4)

g(x) ≤ 0 (1.5)

x ∈ Zn (1.6)

0-1 Linear Programming is a possible special case of ILP that involves only binary

variables, i.e. variables that are restricted to be either 0 or 1. A generalization

is Mixed-Integer Linear Programming (MILP) that involves problems in which

only some of the variables x, are constrained to be integers, while other variables

are allowed to be non-integers.

Linear and Integer Linear Programming are presented, e.g., in Bertsimas and

Tsitsiklis [1997], Papadimitriou and Steiglitz [1998].

• Nonlinear Programming, NLP in short, is a framework for modeling prob-

lems defined by constraints, over a set of real variables, along with an objective

function to be maximized or minimized, where some of the constraints or the

objective function are nonlinear (see, e.g., Luenberger and Ye [2008]).

A NLP is conveniently expressed as

(NLP) max f(x) (1.7)

g(x) ≤ 0 (1.8)

x ∈ X ⊆ Rn (1.9)

where g(x) is a nonlinear function.

Similarly to the ILP approach it is possible to consider a variant of NLP where

some of the variables x are constrained to be integers, while other variables are

allowed to be non-integers. This is the Mixed-Integer Nonlinear Programming

(MINLP) approach.

Nonlinear Programming is presented, e.g., in Bertsekas [1999].

4 Chapter 1 Introduction

• Stochastic Programming. Stochastic Programs are mathematical programs

for modeling problems that involve uncertainty. Uncertainty is usually char-

acterized by a probability distribution on the model parameters. Some of the

data incorporated into the objective function or the constraints are uncertain,

and if some of the data are random, then also the solutions and the optimal

objective values are themselves random. In order to deal with uncertainties in

optimization, the available stochastic information is integrated into the problem

formulation.

One possible way for representing these problems is using recursive models, that

take one decision now and minimize the expected costs (or utilities) of the con-

sequences of that decision. Let us assume to have a set of decisions to be taken

without full information on some random events represented by a vector x. These

decisions are called first-stage decisions. Later, full information is received on the

realization of some random vector ξ. Then, some corrective action y can be taken.

These decisions are called second-stage decisions. This is known in literature as

the Two-Stage Stochastic Program (see, e.g., Birge and Louveaux [1997]). A

convenient expression of Two-Stage Stochastic Program is

(2S − SP) max f(x) + E[Q(x, ξ)] (1.10)

g(x) ≤ 0 (1.11)

x ∈ X (1.12)

where Q(x,ξ) is the minimized expected cost.

In some cases, it may be more appropriate to try to find a decision that ensures

that the probability of meeting a set of certain constraints is above a certain

level. This is the case of Chance-Constrained Programming, first introduced by

Charnes et al. [1958].

A generic formulation of Chance-Constrained Programming problem is

(CCP) max f(x, ξ) (1.13)

g(x, ξ) ≤ 0 (1.14)

P (g(x, ξ) ≥ 0) ≥ p (1.15)

x ∈ X (1.16)

p ∈ [0, 1] (1.17)

1.2 Thesis Contribution

In this thesis we deal with some variants of these approaches used for solving the con-

sidered resource allocation problems. In the first part we focus on the Integer Program-

ming approach for solving Two-Dimensional Guillotine Cutting Problems. We propose

Chapter 1 Introduction 5

a new framework to model general guillotine restrictions through a Mixed-Integer Lin-

ear Formulation. In the second part we present a Branch-and-Cut algorithm for a class

of Nonlinear Chance Constrained Mathematical Optimization Problems with a finite

number of scenarios. We apply this algorithm to a specific Power Generation Schedul-

ing Problem, i.e., the Mid-Term Hydro Scheduling Problem, for which we propose a

chance-constrained formulation. Thus, we propose a sophisticated algorithmic com-

bination of the three approaches Integer Programming, Nonlinear Programming and

Stochastic Programming specifically tailored for solving resource allocation problems

with a practical impact. Table 1.1 summarizes the combined approaches.

LP ILP NLP CCP

Two-Dimensional Guillotine Cutting Problem yes yes no no

Mid-Term Hydro Scheduling Problem no yes yes yes

Table 1.1: Used approaches

1.3 Applied Motivations

Making decisions on issues with important consequences has become a highly complex

problem due to the many competing forces under which the world is operating today.

Operations Research and Mathematical Programming techniques have been used more

and more to support managerial decisions. In this thesis we consider Two-Dimensional

Guillotine Cutting Problems and the Mid-Term Hydro Scheduling Problem. They be-

long to some of the current and crucial class of problems in which Mathematical Pro-

gramming is applied.

The study of efficient and innovative methods for solving Cutting Problems is required

by the economic impact of such problems. They are of great relevance in metal, wood,

paper or glass industries, but also in loading, transportation, telecommunications and

resource allocation in general (see, e.g., Bennell et al. [2013], Burke et al. [2006], Iori

et al. [2007], Lodi et al. [2011], Malaguti et al. [2014], Vanderbeck [2001]). Depending

on the industry, special features for the cuts may be required. Using guillotine cuts is

one of the most common of them. It applies to wood cutting, and in particular to glass

cutting. Glass Alliance Europe [2015] estimated that in 2014 the EU-28 glass produc-

tion reached a volume of more than 33 million tonnes, a slight increase of 2% compared

with 2013, involving 180,000 employees. This production level still maintains the EU

as the largest glass producer in the world with a market share of around 33% of the

total world market. Several industrial sectors directly depend on the production of

glass. Indeed, some of the most important customers of glass industries come from the

car industry, the construction sector, domestic and leisure industries. Therefore, even

small savings in costs may have a relevant global impact.

6 Chapter 1 Introduction

The other crucial problem studied in this thesis belongs to the family of the Power

Generation Scheduling Problems. Electric power today plays an exceedingly impor-

tant role in the development of several economic sectors, but also in the most common

aspects of modern life. Indeed, the modern economy is completely dependent on the

electric power, which is one of the basic inputs of several activities. With the ever in-

creasing per capita energy consumption and exponentially rising population, also the

need for power stations, transmission lines and networks is increasing. Consequently

Power Generation Scheduling Problems are becoming more and more complex and

relevant. The International Energy Agency [2015] estimated that in 2013 the world

energy consumption was 13,541 Mtoe, or 1.6 ×1011 MWh. Hydroelectricity is the most

widely used form of renewable energy, accounting for 3.9 ×109 MWh of production in

2013, with the generation costs that fall into a range of 50 to 100 USD/MWh. Not

surprisingly Power Generation Scheduling Problems deal with resources worth millions

of dollars. Thus, it is fundamental to optimize the activities that concern power pro-

duction.

1.4 Thesis Methodological Outline

In §1.2 we presented the practical contents of the thesis, instead in this Section we

present the methodological contents and contributions. As we mentioned before, in

this thesis we deal with two problems of resource allocation solved through a Mixed-

Integer Linear Programming approach and a Mixed-Integer Nonlinear Chance Con-

straint Programming approach, which are combinations of the approaches described

in §1.1:

• Two-Dimensional Guillotine Cutting Problem,

• Mid-Term Hydro Scheduling Problem.

1.4.1 Two-Dimensional Guillotine Cutting Problem

Cutting Problems are combinatorial optimization problems, which occur in several real-

world applications of industry and production. Due to the complexity and extensive

nature of these problems, several different formulations and approaches have been

proposed in literature (see, e.g., Bennell et al. [2013], Burke et al. [2006], Dyckhoff

[1981], Gilmore and Gomory [1961], Iori et al. [2007], Lodi et al. [2011], Malaguti et al.

[2014], Vanderbeck [2001]). The countless existing variants differ in terms of dimension,

application field and special requirements. Two Dimensional Cutting Problems are

subsets of these possible variants, which concern the best method to obtain a set of

small (rectangular) items from one or more (rectangular) larger panels. Depending on

Chapter 1 Introduction 7

the industry, special features for the cuts may be required; a very common one which

applies to glass and wood cutting is to have guillotine cuts.

(i) In guillotine cutting, items are obtained from panels through cuts that are parallel

to the sides of the panel and cross the panel from one side to the other;

(ii) Cuts can be performed in stages, where each stage consists of a set of parallel

guillotine cuts on the shapes obtained in the previous stages. If the maximum

number of stages is not allowed to exceed a value n, the problem is called n−stage.
Otherwise, if there is no such restriction the problem is called non− stage;

(iii) Each cut removes a so-called strip from a panel. If during the cut sequence, the

width of each cut strip equals the width of the widest item obtained from the

strip, then the cut is denoted as restricted.

In Chapter 2, we propose a framework to model general guillotine restrictions in two-

dimensional cutting problems formulated as Mixed-Integer Linear Programs (MILP).

The modeling framework requires a pseudo-polynomial number of variables and con-

straints, which can be effectively enumerated for medium-size instances. Our modeling

of general guillotine cuts is the first one that, once it is implemented within a state-

of-the-art MIP solver, can tackle instances of challenging size. Our objective is to

propose a way of modeling general guillotine cuts via Mixed Integer Linear Programs

(MILP), i.e., we do not limit the number of stages (restriction (ii)), nor impose the

cuts to be restricted (restriction (iii)). We only ask the cuts to be guillotine ones (re-

striction (i)). We mainly concentrate our analysis on the Guillotine Two Dimensional

Knapsack Problem (G2KP), for which a model, and an exact procedure able to sig-

nificantly improve the computational performance, are given. We also show how the

modeling of general guillotine cuts can be extended to other relevant problems such as

the Guillotine Two Dimensional Cutting Stock Problem (G2CSP) and the Guillotine

Strip Packing Problem (GSPP). Finally, we conclude the Chapter discussing an exten-

sive set of computational experiments on G2KP and GSPP benchmark instances from

the literature.

1.4.2 Mid-Term Hydro Scheduling Problem

Mathematical Programming is an invaluable approach for optimal decision-making

that was initially developed in a deterministic setting. However, early studies on prob-

lems with probabilistic (i.e., nondeterministic) constraints have appeared since the late

50s, see, e.g., Charnes et al. [1958], Prekopa [1970]. In a problem with probabilistic

constraints the formulation involves a (vector-valued) random variable that parame-

terizes the feasible region of the problem; the decisionmaker specifies a probability α,

and the solution to the problem must maximize a given objective function subject to

8 Chapter 1 Introduction

being inside the feasible region for a set of realizations of the random variable that

occurs with probability at least 1− α. The interpretation is that a solution that does

not belong to the feasible region is undesirable, and we want this event to happen

with small probability α. This type of problem is a Chance Constrained Mathemati-

cal Programming problem. For convenience, we reformulated the Chance Constrained

Mathematical Program (1.13)-(1.17) as

(CCP) max f(x, ξ) (1.18)

g(x, ξ) ≤ 0 (1.19)

P (g(x, ξ) ≥ 0) ≥ 1− α (1.20)

x ∈ X (1.21)

The main application of Chance-Constrained Programming studied in this thesis is the

Mid-Term Hydro Scheduling Problem. A central problem in power generation systems

is that of optimally planning resource utilization in the mid and long term and in the

presence of uncertainty. Hydro power production networks usually consist of several

reservoir systems, often interconnected, which are operated on a yearly basis: it is

common to have seasonal cycles for demand and inflows, which can be out of phase

by a few months, i.e. inflow peaks typically precede demand peaks by a few months.

The Mid-Term Hydro Scheduling Problem refers to the problem of planning produc-

tion over a period of several months. To be effective, such planning must take into

account uncertainty affecting rainfall and energy demand, as well as the complex and

nonlinear power production functions. A commonly used approach in practice is to

rely on deterministic optimization tools and on the experience of domain experts to

deal with the uncertainty, because of the sheer difficulty of incorporating uncertainty

into the model. Many deterministic approaches can be found in the literature, see, e.g.,

Carneiro et al. [1990]. More recently, methodologies that can take into account the

uncertainty in the model have appeared, see, e.g., Carpentier et al. [2012], but these

are still rare compared to the deterministic ones.

In Chapter 3, we present a Branch-and-Cut algorithm for a class of Nonlinear Chance

Constrained Mathematical Optimization Problems with a finite number of scenarios.

This class corresponds to the problems that can be reformulated as Deterministic Con-

vex Mixed-Integer Nonlinear Programming problems, but the size of the reformulation

is large and quickly becomes impractical as the number of scenarios grows. The Branch-

and-Cut algorithm is based on an implicit Benders decomposition scheme (see, e.g.,

Geoffrion [1972]), where we generate cuts as outer approximation cuts from the projec-

tion of the feasible region on suitable subspaces. The size of the master problem in our

scheme is much smaller than the deterministic reformulation of the chance-constrained

problem. We apply the Branch-and-Cut algorithm to the Mid-Term Hydro Scheduling

Problem, for which we propose a chance-constrained formulation. We are not aware

Chapter 1 Introduction 9

of previous work that employs a chance-constrained formulation for the mid-term hy-

dro scheduling problem, although there has been work on the related unit commitment

problem, see, e.g., van Ackooij [2014], Wang et al. [2012]. Even in the case of unit com-

mitment, chance-constrained optimization approaches are the least commonly used in

the literature, due to their difficulty [Tahanan et al., 2015, Sect. 4.4]. A computational

study using data from ten hydro plants in Greece shows that the proposed methodol-

ogy solves instances orders of magnitude faster than applying a general-purpose solver

for Convex Mixed-Integer Nonlinear Problems to the deterministic reformulation, and

scales much better with the number of scenarios. Our numerical experiments show that

introducing a small amount of flexibility in the formulation, by allowing constraints to

be violated with a joint probability ≤ 5%, increases the expected profit by 6.1%.

Chapter 2

Two-Dimensional Guillotine

Cutting Problem

1

In this chapter we propose a framework to model general guillotine restrictions in two-

dimensional cutting problems formulated as Mixed Integer Linear Programs (MIP).

The modeling framework requires a pseudo-polynomial number of variables and con-

straints, which can be effectively enumerated for medium-size instances. Our modeling

of general guillotine cuts is the first one that, once it is implemented within a state-

of-the-art MIP solver, can tackle instances of challenging size. We mainly concentrate

our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which

a model, and an exact procedure able to significantly improve the computational per-

formance, are given. We also show how the modeling of general guillotine cuts can be

extended to other relevant problems such as the Guillotine Two Dimensional Cutting

Stock Problem (G2CSP) and the Guillotine Strip Packing Problem (GSPP). Finally,

we conclude the Chapter discussing an extensive set of computational experiments on

G2KP and GSPP benchmark instances from the literature.

2.1 Introduction

Two dimensional cutting problems are about obtaining a set of small (rectangular)

items from one or more (rectangular) larger panels. Cutting problems are of great rel-

evance in metal, wood, paper or glass industries, but also in loading, transportation,

telecommunications and resource allocation in general (see, e.g., Bennell et al. [2013],

Burke et al. [2006], Iori et al. [2007], Lodi et al. [2011], Malaguti et al. [2014], Vander-

beck [2001]). Depending on the industry, special features for the cuts may be required;

a very common one which applies to glass and wood cutting is to have guillotine cuts.

1This chapter is based on Furini et al. [2014]

11

12 Chapter 2 Two-Dimensional Guillotine Cutting Problem

Figure 2.1: Examples of patterns which can be obtained through: non-guillotine
cuts (left), three-stage restricted guillotine cuts (center), guillotine cuts (right).

(i) In guillotine cutting, items are obtained from panels through cuts that are parallel

to the sides of the panel and cross the panel from one side to the other;

(ii) Cuts are performed in stages, where each stage consists of a set of parallel guil-

lotine cuts on the shapes obtained in the previous stages;

(iii) Each cut removes a so-called strip from a panel. If during the cut sequence, the

width of each cut strip equals the width of the widest item obtained from the

strip, then the cut is denoted as restricted.

Our objective is to propose a way of modeling general guillotine cuts via Mixed Integer

Linear Programs (MIPs), i.e., we do not limit the number of stages (restriction (ii)),

nor impose the cuts to be restricted (restriction (iii)). We only ask the cuts to be

guillotine ones (restriction (i)). In the following, we call these kind of cuts general

guillotine cuts or simply guillotine cuts.

In Figure 2.1 we report, on the left, a pattern (cutting scheme) that cannot be obtained

through guillotine cuts, in the center, a pattern that can be obtained through three-

stage restricted guillotine cuts, and in the right a pattern that needs unrestricted

guillotine cuts to be obtained, which are the ones we are interested in.

2.1.1 Families of cutting problems.

In the following, we will mainly concentrate our analysis on the Two Dimensional

Knapsack Problem, and briefly discuss extensions of the modeling ideas to the Two

Dimensional Cutting Stock Problem and the Strip Packing Problem. For convenience,

we remind the definition of these problems.

• Two-Dimensional Knapsack Problem (2KP): we are given one rectangular panel

of length L and width W , and a list of n rectangular items; each item i (i =

1, . . . , n) is characterized by a length li, a width wi, a profit pi, and is available

in ui copies. The 2KP requires to cut the subset of items of largest profit which

can fit in the rectangular panel (without overlapping).

Chapter 2 Two-Dimensional Guillotine Cutting Problem 13

• Two-Dimensional Cutting Stock Problem (2CSP): we are given infinitely many

identical rectangular panels, each one having length L and width W and a list

of n rectangular items; each item i (i = 1, . . . , n) is characterized by a length li,

a width wi, and must be cut in di copies. The 2CSP requires to cut all the items

by minimizing the number of used panels. The special case where the demand

of each items is equal to 1 is denoted as Two-Dimensional Bin Packing Problem

(2BPP).

• Strip Packing Problem (SPP): we are given a strip having length L and infinite

width and a list of n rectangular items; each item i (i = 1, . . . , n) is characterized

by a length li, a width wi, and must be cut in di copies. The SPP requires to

cut all the items from the strip by minimizing the used strip width.

In this chapter, we consider the guillotine versions of these problems (restriction (i)),

i.e. the Guillotine 2KP (G2KP), Guillotine 2CSP (G2CSP) and the Guillotine SPP

(GSPP). All these problems are NP-Hard.

2.1.2 Structure of general guillotine cuts.

Let us consider an example that shows the differences among the optimal solutions

of the Guillotine 2KP obtained by imposing decreasing restrictions to the cuts per-

formed.We compare the structure of the optimal solutions for an unweighted instance

of two-dimensional knapsack of seven items, where item profits equal their areas. In

the left of Figure 2.2, we report the optimal solution of the Guillotine two-stage 2KP,

where the rectangular panel is first divided into horizontal strips, and then items are

obtained from the strips by vertical cuts. Further horizontal cuts (trimming) may be

necessary to obtain the final items. In the center of the figure, we represent the optimal

solution of the Guillotine 2KP when we consider guillotine cuts with an unlimited num-

ber of stages, but cuts are restricted, i.e., they define strips whose width (resp., length)

equals the width (resp., length) of some item which is obtained from the strip. The

profit of this solution is 9.97% larger than the profit of the two-stage solution. Finally,

in the right of the figure we report the optimal solution of the G2KP studied in this

chapter: the only restriction imposed to the cuts is to be guillotine ones; they are not

restricted nor limited in the number of stages. The profit of this solution, where all

the seven items are obtained, is 17.04% larger than the profit of the two-stage solution.

The example shows a case where the tree problems have different optimal solutions of

strictly increasing profit.

2.1.3 Literature review.

Cutting problems were introduced by Gilmore and Gomory [1965], who considered the

G2CSP and proposed the k − stage version of the problem. The authors introduced

14 Chapter 2 Two-Dimensional Guillotine Cutting Problem

Figure 2.2: Optimal solutions for an unweighted seven items instance: two-stage
2KP (left), restricted guillotine 2KP (center), guillotine 2KP (right).

the well-known exponential-size model which is usually solved via column generation,

where the pricing problem is a one dimensional Knapsack Problem. Since the seminal

work of Gilmore and Gomory [1965], a relevant body of literature on two-dimensional

cutting has been developed, thus, we mainly concentrate this review on 2KPs, and on

guillotine cutting. For a more comprehensive survey on two-dimensional cutting and

packing the reader is referred to Lodi et al. [2002] and Wäscher et al. [2007].

Concerning the 2KP (with no specific restrictions on the cut features), Boschetti et al.

[2002] proposed a branch-and-bound algorithm based on a MIP formulation. Caprara

and Monaci [2004] and Fekete et al. [2007] proposed exact algorithms. The first one is

based on a relaxation given by the KP instance with item weights coincident with the

Chapter 2 Two-Dimensional Guillotine Cutting Problem 15

rectangle areas; for this relaxation a worst case performance ratio of 3 is proved. The

latter is based on bounding procedures exploiting dual feasible functions.

Restricting the attention to guillotine cutting, the majority of contributions in the

recent literature considered the case where the number of stages is limited to two

or three. Unless explicitly stated, three stage approaches are for the restricted case.

Pisinger and Sigurd [2007] consider the G2CSP and solve the pricing problem as a

constraint satisfaction problem, by considering among others the case of guillotine

cutting (with limited and unlimited number of stages). Puchinger and Raidl [2007]

propose compact models and a branch-and-price algorithm for the three stage G2BPP.

They consider the unrestricted case as well. A more application-oriented study is

presented in Vanderbeck [2001], where a real-world G2CSP with multiple panel size

and additional features is solved via column generation in an approximate fashion. A

similar real-world problem, with the additional feature that identical cutting patterns

can be processed in parallel, was recently considered by Malaguti et al. [2014].

In terms of optimization models not based on the Gilmore and Gomory (exponential

size) formulation, Lodi and Monaci [2003] presented a compact model for the Guil-

lotine Two Stage 2KP. Macedo et al. [2010] solved the Guillotine Two Stage 2CSP

by extending a MIP formulation proposed by Valério de Carvalho [2002] for the one

dimensional CSP. The extension of the model to two dimensions asks to define a set

of flow problems to determine a set of horizontal strips, and a flow problem to de-

termine how the strips fit into the rectangular panel. Silva et al. [2010] presented a

pseudo-polynomial size model for the Guillotine Two and Three Stage 2CSP based on

the concepts of item to-be-cut and residual plates, obtained after the cut. Recently,

Furini and Malaguti [2015] extended this idea to model the Guillotine Two Stage 2KP.

Finally, a computational comparison of compact, pseudo-polynomial and exponential

size (based on the Gilmore and Gomory formulation) models for the Guillotine Two

Stage 2CSP with multiple panel size is presented in Furini and Malaguti [2013].

Few contributions are available in the literature for guillotine cutting problems with an

unlimited number of stages. This is probably due to the intrinsic difficulty of model-

ing guillotine restrictions. In addition to the mentioned paper by Pisinger and Sigurd

[2007], where guillotine restrictions are tackled through constraint satisfaction tech-

niques, exact approaches for G2KP have been proposed by Christofides and Whitlock

[1977], Christofides and Hadjiconstantinou [1995], Cung et al. [2000]. Cintra and Wak-

abayashi [2004] proposed a recursive exact algorithm for the unconstrained case of

G2KP, i.e., the case where no upper bound on the number of items of each type ex-

ists. A dynamic programming algorithm able to solve large-size instances of the latter

problem was recently proposed by Russo et al. [2014]. The most recent exact approach

to G2KP is due to Dolatabadi et al. [2012], where a recursive procedure is presented

that, given a set of items and a rectangular panel, constructs the set of associated

guillotine packings. This procedure is then embedded into two exact algorithms, and

16 Chapter 2 Two-Dimensional Guillotine Cutting Problem

computationally tested on a set of instances from the literature. In addition to the

reported exact methods, Hifi [1997] proposed two upper bounding procedures; con-

cerning heuristic algorithms, we mention the hybrid algorithm by Hifi [2004] and the

recursive algorithm by Chen [2008]. Finally, the related problem of determining if a

given set of items can be obtained from a given large rectangle by means of guillotine

cuts, was modeled through oriented graphs by Clautiaux et al. [2013].

Despite the relevance of general guillotine cutting problems, the only MIP model in

the literature we are aware of was proposed by Ben Messaoud et al. [2008], and solves

the guillotine GSPP. The model is polynomial in the input size, but in practice it has

a very large number of variables and constraints and, as observed in Ben Messaoud

et al. [2008], its linear programming relaxation produces “very loose lower bound”.

For these reasons the authors report computational experiments where instances with

5 items are solved in non-negligible computing time.

2.1.4 Contribution.

The main contribution of this chapter is to propose a way of modeling general guil-

lotine cuts via MIPs. The modeling framework requires a pseudo-polynomial number

of variables and constraints, which can be all explicitly enumerated for medium-size

instances. To the best of our knowledge, this is the first attempt to model guillotine

restrictions via MIPs that works in practice, i.e., once it is implemented within a state-

of-the-art solver, can tackle instances of challenging size. In this chapter, we mainly

concentrate on the G2KP. We model the problem as a MIP and propose an effective

exact method for selecting a subset of the variables containing an optimal solution.

Then, the resulting model can be solved by a general purpose MIP solver by only con-

sidering the subset of selected variables. This exact procedure is able to significantly

increase the number of instances solved to proven optimality. In addition, we propose

a number of procedures to further reduce the number of variables and constraints, and

discuss conditions under which these reductions preserve the optimality of the solu-

tions. We show how the modeling of guillotine cuts can be extended to other relevant

problems such as the G2CSP and the GSPP. Finally, we conclude the chapter by an

extensive set of computational experiments on benchmark G2KP and GSPP instances

from the literature.

2.2 MIP modeling of guillotine cuts

Dyckhoff [1981] proposed a pseudo-polynomial size model for the (one dimensional)

Cutting Stock problem, based on the concepts of cut and residual element. The idea

is the following: each time a stock of length L is cut in order to produce an item i

of length li, a residual element of size L − li is obtained, which can be further used

Chapter 2 Two-Dimensional Guillotine Cutting Problem 17

to produce additional items. The model associates a decision variable to each item

and each (stock or residual) element, and feasible solutions are obtained by imposing

balance constraints on the number of residual elements, while the cost of a solution is

given by the number of used stock elements.

We extend the approach of Dyckhoff [1981] to two dimensions by using the concepts of

cut and plate, where a plate can be either the original rectangular panel or a smaller

rectangular residual plate obtained from the panel as result of a sequence of guillotine

cuts. We concentrate on the G2KP; the main idea of the model we propose is the

following: starting from the initial rectangular panel, we obtain two smaller plates

through a horizontal or vertical guillotine cut; for each obtained plate, we need to

decide where to perform further cuts, or eventually to keep the plate as it is when its

dimensions equal the dimensions of one of the items to obtain. The process is iterated

until the plates are large enough to fit some item.

In the model we propose, each cut decision is represented by a triple (q, j, o), where

position q denotes the distance from the bottom left corner of a plate j, where a cut

with orientation o is performed. In the left of Figure 2.3 we depict a vertical cut

performed at position q on a generic plate j, producing two smaller plates j1 and j2.

We depict a horizontal cut in the right of the figure.

Figure 2.3: Vertical (left) and horizontal (right) cut at position position q producing
two plates j1 and j2.

Without loss of generality we can assume that all problem data are positive integers.

We denote by J the set of plates, where the rectangular panel, indexed by j = 0, has

dimensions L,W , and each plate j has dimensions (lj , wj), with 1 ≤ wj ≤ W and

1 ≤ lj ≤ L. The actual values of plate dimensions are discussed in the next section.

We denote by O = {h, v} the set of possible orientations for a cut (horizontal and

vertical, respectively), and by o ∈ O the generic orientation. We denote by J̄ ⊂ J the

subset of plates having dimensions equal to one of the items, thus, with a slight abuse

of notation, J̄ also denotes the set of items. Without loss of generality, we assume

0 ∈ J̄ (in case the rectangular panel does not correspond to an item to obtain, we set

u0 = 0). For a plate j we define by Q(j, o) the set of positions where we can cut j with

orientation o ∈ O. We have Q(j, h) ⊆ {1, . . . , wj − 1} and Q(j, v) ⊆ {1, . . . , lj − 1).

18 Chapter 2 Two-Dimensional Guillotine Cutting Problem

The model has integer variables xoqj denoting the number of times a plate of type j is

cut at position q through a guillotine cut with orientation o. Let aoqkj be a coefficient

taking value 1 when a plate of type k is obtained by cutting at position q a plate of

type j by a cut with orientation o, and 0 otherwise. In addition, we use the integer

variables yj , j ∈ J̄ , denoting the number of plates of type j that are kept as final items

or, equivalently, the number of items of type j that are obtained.

The G2KP can be modeled as follows

PP −G2KP : max
∑
j∈J̄

pjyj (2.1)

∑
k∈J

∑
o∈O

∑
q∈Q(k,o)

aoqkjx
o
qk−∑

o∈O

∑
q∈Q(j,o)

xoqj − yj ≥ 0 j ∈ J̄ , j 6= 0 (2.2)

∑
k∈J

∑
o∈O

∑
q∈Q(k,o)

aoqkjx
o
qk−∑

o∈O

∑
q∈Q(j,o)

xoqj ≥ 0 j ∈ J \ J̄ (2.3)

∑
o∈O

∑
q∈Q(0,o)

xoq0 + y0 ≤ 1 (2.4)

yj ≤ uj j ∈ J̄ (2.5)

xoqj ≥ 0 integer j ∈ J, o ∈ O, q ∈ Q(j, o) (2.6)

yj ≥ 0 integer j ∈ J̄ , (2.7)

where the objective function (2.1) maximizes the profit of cut items; constraints (2.2)

impose that the number of plates j that are cut or kept as items does not exceed the

number of plates j obtained through the cut of some other plates; constraints (2.3) are

equivalent to the previous constraints for plates j /∈ J̄ (hence, the corresponding yj

variables are not defined); constraint (2.4) impose that the original rectangular panel

is not used more than once; constraints (2.5) impose not to exceed the maximum

number of items which can be obtained. Finally, (2.6) and (2.7) force the variables to

be non-negative integers.

The model has a pseudo-polynomial size, indeed, in the worst case the number of plates

is WL, and each plate can be horizontally cut in O(W) positions and vertically cut in

O(L) positions. The overall number of x variables is thus O(WL(W +L)), in addition

to the y variables of which there are n. In the following, we denote this pseudo-

polynomial size model as PP-G2KP Model. Indeed, not all the plates (accordingly,

the variables and the constraints of the PP-G2KP Model) are necessary to preserve

Chapter 2 Two-Dimensional Guillotine Cutting Problem 19

the optimality of the solutions. In the following, we discuss different ways of safely

reducing the number of variables and constrains for the PP-G2KP Model.

The plates and, accordingly, the model variables can be enumerated by processing the

item set J̄ and the rectangular panel (plate 0) as described in Procedure 1. Starting

from plate 0, new plates are obtained through vertical and horizontal cuts (line 7),

and stored in set J when their size is such that they can fit some item (lines 9-12);

otherwise the new plate is discarded. The definition of the set of positions Q(j, o)

where plate j is cut with orientation o (line 5) is discussed in the next section.

Algorithm 1: Plate-and-variable enumeration

Require: plate 0, items set J̄

Ensure: plates set J , variables x

1: initialize J = {0}, mark 0 as non-processed;

2: while J contains non-processed plates do

3: select a non-processed j ∈ J ;

4: for all o ∈ {h, v} do

5: compute the set of cut positions Q(j, o);

6: for all positions q ∈ Q(j, o) do

7: cut j at q with orientation o, generate plates j1, j2;

8: if j1 6∈ J and j1 can fit some item then

9: set J = J ∪ {j1};

10: end if

11: if j2 6∈ J and j2 can fit some item then

12: set J = J ∪ {j2};

13: end if

14: create xoqj ;

15: end for

16: end for

17: mark j as processed;

18: end while

19: return J , x.

A related extension of the model in Dyckhoff [1981] was proposed by Silva et al.

[2010] to model two and three stage restricted guillotine 2CSPs. In Silva et al. [2010],

a decision variable defines the cut of an item from a plate through two orthogonal

guillotine cuts, which in addition to the item produce (up to) two residual plates. This

idea cannot be extended to the unrestricted case, where the position of a cut may not

correspond to the size of an item. In the following section we provide a lower bound

on the largest profit loss which is incurred by considering the restricted case instead

of the unrestricted one. An extension of the model of Silva et al. [2010] to two stage

guillotine knapsack problems is discussed in Furini and Malaguti [2015].

Finally, we mention Arbib et al. [2002], where a further extension of the model in

Dyckhoff [1981] is presented. The authors consider a one dimensional Cutting Stock

problem where the residual elements can be re-used and, in the specific application

case, combined, so as to obtain the requested items.

20 Chapter 2 Two-Dimensional Guillotine Cutting Problem

2.2.1 Definition of the cut position set

Model (2.1)–(2.7) can have very large size, depending on the cardinality of sets J and

Q(j, o), j ∈ J , o ∈ O. The number of plates that we consider and the number of cuts

performed on each plate (eventually producing new plates) determine, in practice, the

size of the model. Thus, a crucial question to be answered is the following:

Given a plate j of length lj and width wj, how should Q(j, o), o ∈ O, be defined in

order to minimize the number of variables and plates of the model, while preserving

the optimality of the solution?

Let Ij be the set of items that can fit into plate j, i.e., Ij = {i ∈ J̄ : li ≤ lj , wi ≤ wj}.
The complete position set (Q) where a cut can be performed includes the dimensions

of items i ∈ Ij , and all combinations of the items i ∈ Ij dimensions, and is defined as

follows:

Q(j, h) =

q : 0 < q < wj ; ∀i ∈ Ij , ∃ni ∈ N, ni ≤ ui, q =
∑
i∈Ij

niwi

 , (2.8)

and

Q(j, v) =

q : 0 < q < lj ; ∀i ∈ Ij , ∃ni ∈ N, ni ≤ ui, q =
∑
i∈Ij

nili

 . (2.9)

These positions are known in the literature as discretization points, and a pattern

where cuts are performed at discretization points is known as a normal or canonical

pattern, see Christofides and Whitlock [1977], Herz [1972]. All the combinations of

items defining the complete position set can be effectively obtained by a Dynamic

Programming (DP) algorithm. The DP algorithm we used is an extension to the case

of items available in several copies of the one described in Trick [2003] (which only

considers single items).

Let us also define the restricted position set (QR), including only the dimensions of

items i ∈ Ij , as:

QR(j, h) = {q : ∃i ∈ Ij , q = wi} , QR(j, v) = {q : ∃i ∈ Ij , q = li} . (2.10)

Note that one can remove symmetric cut positions for a plate j from set Q(j, o), o ∈ O
(resp. QR(j, o)), i.e.:

(wj − q) /∈ Q(j, h), ∀q ∈ Q(j, h), q < wj/2

(lj − q) /∈ Q(j, v), ∀q ∈ Q(j, v), q < lj/2.

These positions are automatically discarded by the DP algorithm.

Chapter 2 Two-Dimensional Guillotine Cutting Problem 21

Considering the PP-G2KP Model with the restricted position set only, does not guar-

antee in general the optimality of the corresponding solution. The following theorem

states a condition under which the optimality is preserved.

Theorem 2.1. If a plate j can fit at most five items by guillotine cuts, then an opti-

mal solution to the PP-G2KP Model exists by considering the positions q for plate j

restricted to QR(j, h) and QR(j, v).

Proof. Proof of Theorem 2.1. We need to show that, when cutting five items from a

plate, any packing can be obtained by considering restricted cut positions only. With-

out loss of generality, consider the first cut to be vertical. When performing the first

guillotine cut, either we obtain two new plates which contain two and three items, re-

spectively; or we obtain two new plates which contain one and four items, respectively.

In the latter case the first cut can be performed at a position corresponding to the

length of the item which is alone in the new plate. Assume instead the first case holds,

and consider the new plate containing two items. If they are placed one on the side

of the other (as in the left of Figure 2.4), it was possible to separate one of them with

the first cut. When the two items are placed one on top of the other (as in the right

of Figure 2.4), the first cut could be performed at a position equal to the length of

the longest of the two. Similar considerations apply when cutting four items from a

plate.

Figure 2.4: Possible configurations after separating five items with a vertical guil-
lotine cut.

Consider the following

Example 1. Consider an instance of the G2KP of six items with dimensions l =

[47, 40, 40, 40, 11, 4] and w = [34, 30, 30, 8, 31, 60] and a rectangular panel of dimensions

L = 102, W = 51 (see Figure 2.5). All items can be obtained from the rectangular

panel through guillotine cuts (in Figure 2.5, the first cut is vertical and separates the

panel in two new plates containing three items each), but no feasible solution to the

PP-G2KP Model with q restricted to QR(j, o), o ∈ O allows to obtain the six items.

From Example 1 it follows that

Remark 2.2. The value of five items in Theorem 2.1 is tight.

22 Chapter 2 Two-Dimensional Guillotine Cutting Problem

Figure 2.5: A six items packing that cannot be obtained by considering restricted
positions QR only.

Given the result of Theorem 2.1, a reduction in the number of variables of the PP-

G2KP Model can be obtained by considering positions in set QR for plates with the

property that they can fit at most five items. Since exactly checking this condition

can be computationally expensive, we considered the following relaxation. A sufficient

condition for this property to hold is that the cumulate area of the six smallest items

exceeds the plate area. In the following we denote the reduction obtained by checking

the previous sufficient condition as Cut-Position reduction.

Restricting the positions to QR(j, h) and QR(j, v) for all plates has a large impact

on the number of variables and plates of the PP-G2KP Model (see Section 2.4.1) but

potentially leads to sub-optimal solutions. Thus it is natural to wonder what is the

loss of profit in the worst case. In the following we denote the PP-G2KP Model with

variables restricted to the the position sets QR as Restricted PP-G2KP model. Let zR

be the optimal solution of the Restricted PP-G2KP model, and zU the optimal solution

of the PP-G2KP Model (with complete position and Q). The following proposition

provides an upper bound on the profit in the worst case.

Remark 2.3. In the worst case, zR
zU
≤ 5

6 .

Proof. Proof of Remark 2.3. The result follows from Example 1 when the profit is the

same for all the six items.

Notice that the Restricted PP-G2KP model allows to perform a cut on a plate without

obtaining a final item: this may happen each time the dimension of an item is the

combination of the dimensions of two or more smaller items. As an example, if there

are three items with widths 2, 3, 5, the Restricted PP-G2KP model would allow to cut

at position q = 5, and then to perform a further cut at position q = 2 on the obtained

plate. Hence, the width of the strip obtained by cutting at position 5 would not

correspond to the width of one of the obtained items. For this reason, the Restricted

PP-G2KP model can produce solution which do not satisfy the definition of restricted

guillotine cuts given in Section 2.1.

Chapter 2 Two-Dimensional Guillotine Cutting Problem 23

In order to solve the restricted G2KP, one possibility is to extend the modeling ideas

presented by Silva et al. [2010] for the Guillotine Two and Three Stage 2CSP, and

adapted by Furini and Malaguti [2015] to the 2KP. By removing the limitation on

the number of stages, the model in Furini and Malaguti [2015], which cuts items from

plates, can solve the restricted G2KP.

Another reduction of the model size can be obtained by removing redundant cuts (de-

noted as Redundant-Cut reduction in the following). Note that, while the Cut-Position

reduction can reduce the number of plates in the model, the Redundant-Cut reduction

do not affect the number of plates, but only the number of cut positions (and thus the

variables of the model).

We say that q is a trim cut on plate j when cutting plate j at position q produces a

single useful plate j1 (the second produced plate j2 is waste).

Remark 2.4. Given a plate j, one can remove a trim cut at position q with orientation

o from Q(j, o), while preserving the optimality of the solution of the PP-G2KP Model,

in the following cases:

1. Plate j can only be obtained through a sequence of two orthogonal trim cuts on

a larger plate.

2. Plate j can be obtained from one or more larger plates, but always through trim

cuts, and at least one of these trim cuts has orientation o.

Proof. Proof of Remark 2.4. In both cases, plate j is obtained anyway through an

alternative cut sequence, and thus the corresponding variable can be removed from the

model preserving optimality.

Figure 2.6: Trim cuts on plate 2 producing item 3a can be removed.

24 Chapter 2 Two-Dimensional Guillotine Cutting Problem

Figure 2.7: Trim cuts on plate 1 producing item 2b can be removed.

As an example of the first case, consider top of Figure 2.6: plate 0 is vertically trimmed

obtaining plate 1, and plate 1 is horizontally trimmed obtaining plate 2. There are no

other plates that can be cut to produce plate 2. The further trim cut of plate 2 to

obtain plate 3 can be safely removed, because plate 3 is also obtained in the sequence

0→ 4→ 3.

As an example of the second case, consider plate 1 in Figure 2.7. Since plate 1 is

simultaneously generated from 0 and from 3 through a vertical and horizontal trim

cut, respectively, no further trim cuts are considered on plate 1.

Conditions 1 and 2 of Remark 2.4 are checked during the enumeration of plates and

variables through Procedure 1. In order to check these conditions, we associate four

flags to each plate. The flags can assume values -1, 0, 1 (obtained only through a trim

cut, not obtained through a cut with the same orientation, obtained without a trim

cut):

• Flag sh indicates the status of the plate with respect to a cut with orientation h;

• Flag sv indicates the status of the plate with respect to a cut with orientation v;

• Flag fh indicates the status of flags sh for all the father plates of the plate;

• Flag fv indicates the status of flags sv for all the father plates of the plate.

Chapter 2 Two-Dimensional Guillotine Cutting Problem 25

At step 3 of Procedure 1 we select plate j, and check if it can be eventually obtained

by further cuts from plates in J . If this is the case, we cannot safely remove redundant

cuts, otherwise, at step 6:

• if one (or more) of the flags of plate j has value -1, do not perform trim cuts on

j in the flag orientation.

At step 7, if a new plate j1 /∈ J is obtained from j through a trim cut with orientation

h:

• set the flag sh of j1 to -1;

• set the flag sv of j1 to 0;

• set the flags fh and fv equal to flags sh and sv of j;

if a new plate j1 is obtained from j through a trim cut with orientation v:

• set the flag sv of j1 to -1;

• set the flag sh of j1 to 0;

• set the flags fh and fv equal to flags sh and sv of j;

if an existing plate j1 ∈ J is obtained from j through a trim cut:

• if sh of j is larger than -1, set the flag fh of j1 to 1;

• if sv of j is larger than -1, set the flag fv of j1 to 1;

if a plate (new or existing) j1 is obtained from j without a trim cut:

• set all flags of j1 to 1.

The computational effect on the number of variables and plates of the reductions

discussed in this section are highlighted in Section 2.4.

2.2.2 Model extensions: Cutting Stock problem and Strip Packing

problem

The modeling ideas of Section 2.2 can be extended to model other two-dimensional

guillotine cutting problems. We present in this section two MIP models for the G2CSP

and the GSPP.

26 Chapter 2 Two-Dimensional Guillotine Cutting Problem

By using the same variables defined for the PP-G2KP Model, a MIP formulation for

the G2CSP reads as follows

PP −G2CSP : min
∑
o∈O

∑
q∈Q(0,o)

xoq0 + y0 (2.11)

(2.2), (2.3)

yj ≥ dj j ∈ J̄ , (2.12)

xoqj ≥ 0 integer j ∈ J, o ∈ O, q ∈ Q(j, o) (2.13)

yj ≥ 0 integer j ∈ J̄ (2.14)

where the objective function (2.11) minimizes the number of rectangular panels that

are used; and constraints (2.12) impose to satisfy the demand associated with the

items. The remaining constraints have the same meaning as in the PP-G2KP Model.

The PP-G2CSP model can be extended to the case of panels available in p different

sizes, by defining p initial panels 0t and a coefficient ct, t = 1, . . . , p, specifying the

corresponding cost. The objective function is promptly modified to:

min
∑

t=1,...,p

ct(
∑
o∈O

∑
q∈Q(0t,o)

xoq0t + y0t). (2.15)

To model the GSPP, we first need an upper bound W on the optimal solution value.

We consider the first cut performed on the strip (j = 0) to be horizontal (h), with

Q(0, h) = {1, . . . ,W} and do not define vertical cuts for the strip (i.e., Q(0, v) = {∅});
in addition, out of the two parts obtained from the first cut, only the bottom one is a

finite rectangle that can be used, while the top part is the residual of the infinite strip.

The width of the obtained initial rectangle is in Q(0, h) and equals the solution value.

We use a variable z denoting the solution value, in addition to the variables defined

for the PP-G2KP Model. A MIP formulation for the GSPP is then

PP −GSPP : min z (2.16)

z ≥ qxhq0 q ∈ Q(0, h) (2.17)∑
q∈Q(0,h)

xhq0 = 1 (2.18)

(2.2), (2.3)

yj ≥ dj j ∈ J̄ (2.19)

xoqj ≥ 0 integer j ∈ J, o ∈ O, q ∈ Q(j, o) (2.20)

yj ≥ 0 integer j ∈ J̄ (2.21)

Chapter 2 Two-Dimensional Guillotine Cutting Problem 27

where the objective function (2.16) and constraints (2.17) minimize the (vertical) dis-

tance of the first cut from the bottom of the strip, constraint (2.18) impose to have one

horizontal first cut (where q is the width of the cut, with q ∈ Q(0, h)). The remaining

constraints have the same meaning as in the previous models.

2.3 An effective solution procedure for the PP-G2KP

Model

Tackling directly the PP-G2KP Model through a general-purpose MIP solver can be

out of reach for medium-size instances due to the large number of variables and con-

straints, thus in this section we describe an effective exact solution procedure based on

variable pricing, aiming at reducing the number of variables and quicken the compu-

tational convergence.

The procedure starts by enumerating all the PP-G2KP Model variables by means of

Algorithm 1, considering the complete position set Q (see Section 2.2). Symmetric

cut positions are not generated (Section 2.2.1). Variables are then stored in a variable

pool. We denote the PP-G2KP Model with all these variables as Complete PP-G2KP

Model. The variable pool of the Complete PP-G2KP Model can be preprocessed by

means of the Cut-Position and Redundant-Cut reductions, so as to reduce its size.

We perform two subsequent variable pricing procedures executed in cascade. The

first one concerns the solution of the linear relaxation of the PP-G2KP Model, where

variables having positive reduced profit are iteratively selected from the variable pool.

The value of the linear programming relaxation of the PP-G2KP Model, denoted as

LP in the following, gives an upper bound on the optimal integer solution value.

By exploiting the dual information from the linear programming relaxation, and by

computing a feasible solution of value LB, a second pricing of the variables can be

performed. This second variable pricing allows us to select from the variable pool all

the variables that, by entering in the optimal base with an integer value (e.g., after a

branching decision), could potentially improve on the incumbent solution of value LB.

We denote the PP-G2KP Model after the second variables pricing as Priced PP-G2KP

Model.

The details on the two variable pricing procedures are given in the next section.

2.3.1 Variable pricing procedures

The linear programming relaxation of the PP-G2KP Model can be solved by variable

pricing, where we iteratively solve the model with a subset of variables and exploit

28 Chapter 2 Two-Dimensional Guillotine Cutting Problem

dual information to add variables with positive reduced profit. Initially, we relax the

integrality requirements for the variables (constraints (2.6) and (2.7)) to:

xoqj ≥ 0 j ∈ J, o ∈ O, q ∈ Q(j, o), (2.22)

yj ≥ 0 j ∈ J̄ , (2.23)

and we initialize the resulting linear program (2.1)–(2.5) and (2.22), (2.23) with all

the yj , j ∈ J̄ variables and the xoqj , j ∈ J, o ∈ O, q ∈ QR(j, o) variables, i.e.,

variables corresponding to cuts in the restricted positions set QR (see Section 2.2).

The solution of the resulting linear programming relaxation provides optimal dual

variables πj associated with constraints (2.2) and (2.3).

The reduced profit of a variable xoqj , associated with a cut of plate j producing (up to)

two new plates j1 and j2, is readily computed as:

p̃(xoqj) = πj1 + πj2 − πj , (2.24)

and can be evaluated for all the variables of the Complete PP-G2KP Model, stored

in the pool, in linear time in the size of the pool. The reduced profit p̃(xoqj) repre-

sents the change in the objective function for an unitary increase in the value of the

corresponding variable xoqj .

We optimally solve the linear relaxation of the PP-G2KP Model by iteratively adding

variables with positive reduced profit, i.e., a subset of

{
xoqj , j ∈ J, o ∈ O, q ∈ Q(j, o) : p̃(xoqj) > 0

}
,

and then re-optimizing the corresponding linear program. When all variables in the

variable pool have a non-positive reduced profit, then the linear programming relax-

ation of the Complete PP-G2KP Model is optimally solved, providing us an upper

bound of value LP .

Given a feasible solution of value LB, the optimal value LP of the linear programming

relaxation, and the optimal value of the dual variables π∗j , j ∈ J , we perform a last

round of pricing. The Priced PP-G2KP Model is defined by including the y variables

and the subset of the x variables

{
xoqj , j ∈ J, o ∈ O, q ∈ Q(j, o) : bp̃(xoqj) + LP c > LB

}
.

This includes all the variables in base plus the variables that, by entering in the current

basic solution with value 1 (i.e., at the minimal non-zero integer value), would produce

a solution of value z > LB.

The effectiveness of the last round of variable pricing in reducing the number of vari-

ables of the Priced PP-G2KP Model largely depends on the gap between the upper

Chapter 2 Two-Dimensional Guillotine Cutting Problem 29

bound value LP and the value of a feasible solution LB. Heuristic feasible solutions of

excellent quality can be computed by solving the Restricted PP-G2KP model, defined

by the variables from the restricted position set Qr (see Section 2.4.1 in the following).

The exact solution procedure is summarized in Algorithm 2.

Algorithm 2: Solution procedure for the PP-G2KP Model

1: Set LB to the value of a feasible solution to the PP-G2KP Model ;

2: Generate the variable pool through Algorithm 1;

3: Apply the Cut-Position and Redundant-Cut reductions to the pool variables;

4: Initialize the model with the variables of the restricted position set QR;

5: repeat

6: Solve the linear programming relaxation, compute reduced profits, add the variables with

positive reduced profit from the pool,

7: until variables with positive reduced profit exist;

8: Let LP be the optimal solution value of the linear relaxation of the PP-G2KP Model ;

9: Final Pricing : define the Priced PP-G2KP Model by including the x variables with reduced

profit p̃(x) such that bp̃(x) + LP c > LB, and all the y variables;

10: Solve the Priced PP-G2KP Model with a MIP solver.

2.4 Computational Experiments

To the best of our knowledge, the modeling framework of guillotine restrictions that

we propose in this chapter is the first approach based on Mixed-Integer Linear Pro-

gramming that is able to solve benchmark instances to optimality. Thus, the scope

of the reported computational experiments is broader than simply comparing the ob-

tained results against previous approaches. Namely, with these experiments we wish

to evaluate:

• the size and practical solvability of the Complete PP-G2KP Model for a set of

G2KP benchmark instances by means of a general purpose MIP solver;

• the effectiveness of the proposed Cut-Position and Redundant-Cut reductions

in removing variables and constraints from the Complete PP-G2KP Model .

• the capability to solve the PP-G2KP Model by means of the pricing procedure

described in Section 2.3 (Priced PP-G2KP Model);

• the quality of the solutions that are obtained by optimally solving the PP-G2KP

Model by considering the restricted position set QR only;

• finally, we wish to discuss the computational performance of our framework with

respect to a state-of-the-art combinatorial algorithm for the G2KP (Dolatabadi

et al. [2012]), and with the only alternative MIP formulation of guillotine restric-

tions we are aware of, which is described for the GSPP (Ben Messaoud et al.

[2008]).

30 Chapter 2 Two-Dimensional Guillotine Cutting Problem

We performed all the computational experiments on one core of a Core2 Quad Q9300

2.50GHz computer with 8 GB RAM, under Linux operating system. As linear pro-

gramming and MIP solver we used IBM ILOG CPLEX 12.5.

In the computational experiments, we considered two sets of classical two-dimensional

instances, listed in Table 2.1. The first set of 21 instances, for which Dolatabadi et al.

[2012] reports computational results as well, is from the OR library (OR-Library); the

second set of 38 instances is from Hifi and Roucairol [2001]. Both sets include weighted

and unweighted instances, where the profit of each item is given, or equals the item

area, respectively.

unweighted weighted

OR-Library gcut1 - gcut12, wang20, cgcut1 - cgcut3, okp1 - okp5,

2s, 3s, A1s , A2s, STS2s, HH, 2, 3, A1, A2, STS2,

Hifi and Roucairol [2001] STS4s, OF1, OF2, W, CHL1s, STS4, CHL1, CHL2, CW1,

CHL2s, A3, A4, A5, CHL5, CW2, CW3, Hchl2, Hchl9.

CHL6, CHL7, CU1, CU2,

Hchl3s, Hchl4s, Hchl6s, Hchl7s,

Hchl8s.

Table 2.1: List of the considered G2KP instances.

In order to classify the instances according to the size, we generated the Complete

PP-G2KP Model, and we grouped the instances into three sets, according to the cor-

responding number of variables. Table 2.2, 2.3 and 2.4 reports the features of small

(less than 100,000 variables), medium (between 100,000 and 500,000 variables), and

large-size instances, having more than 200,000 variables).

For each instance, the table reports the name (name), the optimal solution value (opt),

the number of different items n, the total number of items n̄, the largest ratio between

an item length or width and the length or width of the rectangular panel (ρ). Then

the table reports the number of variables of the Complete PP-G2KP Model (vars) and

the corresponding number of plates (plates). We solved the model with the CPLEX

MIP solver by allowing 1 hour of computing time. The table reports the effective

computing time (t) and the corresponding percentage optimality gap (gap), computed

as 100 (UBMIP−LBMIP)
UBMIP

(where UBMIP and LBMIP are the lower and upper bound

achieved by the MIP solver at the end of the computation).

The size of the Complete PP-G2KP Model can be very large, in particular for the gcut

instances, the largest model (gcut12) has more than 66 million variables and almost 0.5

million constraints. In addition to a very large size, since no reductions are applied to

the Complete PP-G2KP Model, it may contain equivalent solutions. The CPLEX MIP

solver can solve to optimality 24 out of 26 small-size instances, 12 out of 18 medium-

size instances, and none of the 21 large-size instances. For instance A5 and all the

Chapter 2 Two-Dimensional Guillotine Cutting Problem 31

instance features Complete PP-G2KP Model

name best n n̄ ρ vars plates t gap

cgcut1 244 7 16 10.0 801 140 0.1 0.0

CHL5 390 10 18 20.0 2,858 345 0.6 0.0

Hchl8s 911 10 18 49.0 13,997 896 tl 1.8

OF2 2,690 10 24 10.0 37,261 2,110 66.0 0.0

cgcut3 1,860 19 62 6.4 38,485 1,860 58.6 0.0

wang20 2,721 19 42 6.4 38,485 1,860 60.7 0.0

3 1,860 20 62 6.4 38,485 1,860 81.6 0.0

3s 2,721 20 62 6.4 38,485 1,860 60.7 0.0

W 2,721 20 62 6.4 38,485 1,860 56.5 0.0

OF1 2,737 10 23 10.0 38,608 2,098 53.9 0.0

gcut1 48,368 10 10 3.8 39,896 4,429 8.8 0.0

A1 2,020 20 62 5.6 45,333 2,040 85.4 0.0

A1s 2,950 20 62 5.6 45,333 2,040 82.3 0.0

cgcut2 2,892 10 23 10.0 52,590 2,017 58.4 0.0

2 2,892 10 23 10.0 52,590 2,017 55.2 0.0

2s 2,778 10 23 10.0 52,590 2,017 57.2 0.0

CHL2 2,326 10 19 6.1 57,567 2,348 104.1 0.0

CHL2s 3,279 10 19 6.1 57,567 2,348 110.4 0.0

A2 2,505 20 53 5.0 61,047 2,276 236.6 0.0

A2s 3,535 20 53 5.0 61,047 2,276 131.0 0.0

Table 2.2: Small-size instances.

instance features Complete PP-G2KP Model

name opt n n̄ ρ vars plates t gap

STS2 4,620 30 78 8.5 118,036 3,383 289.8 0.0

STS2s 4,653 30 78 8.5 118,036 3,383 385.7 0.0

Hchl9 5,240 35 76 7.6 130,738 3,666 612.5 0.0

A3 5,451 20 46 5.7 134,164 3,752 435.5 0.0

HH 11,586 5 18 7.5 141,167 5,486 tl 4.5

A4 6,179 20 35 10.0 179,759 4,860 1,259.0 0.0

gcut5 195,582 10 10 3.8 250,327 25,336 tl 1.4

okp1 27,589 15 50 100.0 255,497 7,947 490.5 0.0

okp3 24,019 30 30 33.3 261,074 8,356 tl 8.8

okp4 32,893 33 61 100.0 287,773 9,049 684.4 0.0

okp2 22,503 30 30 100.0 289,825 9,506 tl 30.0

CU1 12,330 25 82 5.0 335,415 7,700 1,460.8 0.0

STS4 9,700 20 50 7.1 352,590 7,224 2,476.6 0.0

STS4s 9,770 20 50 7.1 352,590 7,224 2,452.4 0.0

okp5 27,923 29 97 100.0 368,529 9,506 2,118.6 0.0

CW1 6,402 25 67 5.0 410,004 8,407 tl 70.7

gcut9 919,476 10 10 3.4 474,360 38,936 2,847.9 0.0

A5 12,985 20 45 10.2 494,455 10,402 tl 100.0

Table 2.3: Medium-size instances.

larger ones, gaps at time limit are 100%, meaning that no feasible solution is found by

the solver.

32 Chapter 2 Two-Dimensional Guillotine Cutting Problem

instance features Complete PP-G2KP Model

name best n n̄ ρ vars plates t gap

Hchl4s 12,006 10 32 8.5 525,902 9,670 tl 100.0

Hchl3s 12,215 10 51 8.5 526,403 9,670 tl 100.0

CHL1 8,699 30 63 10.2 549,019 10,402 tl 100.0

CHL1s 13,099 30 63 10.2 549,019 10,402 tl 100.0

CHL6 16,869 30 65 10.8 817,604 13,170 tl 100.0

Hchl2 9,954 35 75 7.2 828,561 12,594 tl 100.0

CHL7 16,881 35 75 7.2 831,884 12,594 tl 100.0

CW2 5,354 35 63 4.9 884,289 14,664 tl 100.0

CU2 26,100 35 90 5.0 951,889 16,068 tl 100.0

gcut2 59,307 20 20 3.8 1,105,140 28,793 tl 100.0

gcut6 236,305 20 20 3.8 1,717,110 74,797 tl 100.0

gcut3 60,241 30 30 4.0 1,969,390 32,681 tl 100.0

gcut10 903,435 20 20 3.8 2,625,443 138,062 tl 100.0

CW3 5,689 40 96 4.6 2,837,862 33,224 tl 100.0

gcut4 60,942 50 50 4.0 2,963,221 35,176 tl 100.0

Hchl6s 61,040 22 60 7.2 4,730,229 44,593 tl 100.0

gcut7 238,974 30 30 3.0 4,908,322 100,800 tl 100.0

Hchl7s 63,112 40 90 8.0 5,722,617 46,491 tl 100.0

gcut8 245,758 50 50 3.9 16,329,925 136,524 tl 100.0

gcut11 955,389 30 30 3.8 32,997,962 400,070 tl 100.0

gcut12 970,744 50 50 3.9 66,415,467 489,428 tl 100.0

Table 2.4: Large-size instances.

2.4.1 Lower bound (feasible solution) computation

Computing a feasible solution is the first step of the solution procedure for the PP-

G2KP Model, summarized in Algorithm 2. A possible fast way of computing a feasible

solution is by the iterated greedy algorithm proposed by Dolatabadi et al. [2012]: given

a random order of the items, the algorithm selects the first k items in the ordering whose

cumulate profit would improve on the incumbent solution. The algorithm then tries to

pack the selected items into the rectangular panel, according to a First Fit Decreasing

strategy (see Coffman et al. [1980]); in case of success, the incumbent solution is

updated (the attempt is not performed if the sum of the areas of the selected items

is larger than the area of the panel). In our implementation, we allow 1 million of

iterations after the last update of the incumbent solution.

Improved feasible solutions can be obtained by considering the optimal solution of

the PP-G2KP Model with cut positions in the restricted position set QR, i.e., the

Restricted PP-G2KP model. Example 1 tells us that the Restricted PP-G2KP model

might not contain the optimal solution. However, this occurrence is rare in practice

and, in any case, the optimal solution value of the Restricted PP-G2KP model is a

valid lower bound LB on the optimal solution value.

Chapter 2 Two-Dimensional Guillotine Cutting Problem 33

In order to show the relative size of the Restricted PP-G2KP model, in Figure 2.8 we use

performance profiles to depict the percentage of variables and plates of the Restricted

PP-G2KP model with respect to variables and plates of the Complete PP-G2KP Model.

In the horizontal axis the figure reports the percentage of variables (resp., plates), and

in the vertical axis the percentage of instances for which the Restricted PP-G2KP

model has no more than the corresponding percentage of variables (resp., plates). The

continuous line is for the variables, the dashed line for the plates. We see that for 80%

of the instances, the Restricted PP-G2KP model has at most 25% of the variables and

65% of the plates of the Complete PP-G2KP Model.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Perc. of vars/plates

P
er
c.
 o
f
in
st
a
n
ce
s

Figure 2.8: Variables and plates of the Restricted PP-G2KP model with respect to
the Complete PP-G2KP Model.

Despite the large reduction in the number of variables and plates, solving the Restricted

PP-G2KP model by using a MIP solver can be very time consuming, hence, we adapted

the pricing procedure of Algorithm 2 to this case. We compute an initial feasible

solution by means of the iterated greedy algorithm, we solve the linear programming

relaxation of the Restricted PP-G2KP model, and we price the model variables, thus

defining a Restricted Priced PP-G2KP Model containing only the variables that, by

entering in base with value 1 or larger, could improve on the incumbent solution. Then,

we solve the resulting Restricted Priced PP-G2KP Model by means of the CPLEX MIP

solver.

In Figure 2.9 we use performance profiles to represent the gaps between the values

of the greedy heuristic solution (LBg) and of the Restricted PP-G2KP model (LBR)

optimal solution, and the value of the best solution we can compute. In the horizontal

axis of the figure we report the percentage gap, computed as 100(best − LB)/best,

34 Chapter 2 Two-Dimensional Guillotine Cutting Problem

and in the vertical axis the percentage of instances for which the corresponding or a

smaller gap is obtained. The dashed line denotes the greedy heuristic solution and the

continuous line the Restricted PP-G2KP model, solved through the pricing procedure.

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Percentage gap

P
e
rc
.
o
f
in
st
a
n
c
e
s

Figure 2.9: Value of the greedy heuristic solution (dashed line) and value of the
Restricted PP-G2KP model optimal solution (continuous line), percentage gap with

respect to the best computed solution.

The quality of the solutions obtained by solving the Restricted PP-G2KP model is

very good: for all but three cases it coincides with the best solution we could compute.

This suggests that, even though in principle the Complete PP-G2KP Model solution

can have a profit that is at least 20% larger than the profit of the Restricted PP-

G2KP model (see Remark 2.3), in many cases one could consider solving (exactly or

heuristically) the latter, still obtaining very good solutions. Concerning the greedy

heuristic, the largest gap with respect to the best computed solution does not exceed

17%.

Concerning the computational effort, the greedy heuristic takes few seconds, while

solving the Restricted PP-G2KP model can be time consuming, even if the pricing

procedure is used. More details on the computing times are reported next in Table

2.10.

2.4.2 Iterative Variable Pricing

Solving the linear programming relaxation of the PP-G2KP Model through the vari-

able pricing procedure asks to iteratively add variables with positive reduced profit,

and then re-optimize the linear program, as explained in Algorithm 2. The actual way

Chapter 2 Two-Dimensional Guillotine Cutting Problem 35

variables are added has practical relevance, because it heavily impacts on the com-

puting time and number of iterations of the procedure. On the one hand, one could

add at each iteration all the variables having positive reduced profit, solving the lin-

ear programming relaxation in less iterations (but eventually solving large LPs). On

the other hand, one could add a single variable to the linear program at each time,

eventually performing more iterations.

We designed an optimized procedure for iteratively adding variables with positive re-

duced profit to the linear programming relaxation of the PP-G2KP Model. The proce-

dure uses two parameters, namely, the maximum number nmax of variables added at

each iteration, and a threshold p̄ for the reduced profit of the variables to be added.

At each iteration, the first nmax variables in the pool, having reduced profit larger

than p̄, are added to the linear programming relaxation of the PP-G2KP Model. If no

variable with reduced profit larger than p̄ exists, the first nmax variables with positive

reduced profit are added. Variable number nmax is defined as the number of variables

that have positive reduced profit at the first iteration, times a parameter α. Threshold

p̄ is defined as the sum of the profits of all the available items, times a parameter β.

The values of parameters α and β were experimentally tuned, so as to minimize the

cumulate computing time of the variable pricing procedure for the whole instance set.

In Figure 2.10 we report three lines, one per value of α; each line depicts the average

variable pricing time for different values of β. As result of these experiments, we choose

the following values of the parameters: α = 0.20 and β = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
20

40

60

80

100

120

140

β

A
v
e
ra
g
e
 t
im
e

α=0.1

α=0.2

α=0.3

Figure 2.10: Linear programming relaxation solution time for different values of the
α and β parameters.

36 Chapter 2 Two-Dimensional Guillotine Cutting Problem

2.4.3 Models size and reductions

In this section we discuss the size of the various models we work with, namely, the Com-

plete PP-G2KP Model, the Complete PP-G2KP Model after applying the Cut-Position

and Redundant-Cut reductions, and the Priced PP-G2KP Model.

We use performance profiles to represent the percentage of variables of each consid-

ered model with respect to the number of variables of the Complete PP-G2KP Model

(reported in Tables 2.2, 2.3 and 2.4). Figure 2.11 reports on the horizontal axis the

percentage of residual variables, and on the vertical axis the percentage of instances

having no more than the specified percentage of variables. From right to left, the

lines in the figure correspond to the application of the Redundant-Cut reduction, the

Cut-Position reduction, and the two reductions together. The reduction strategies

appear to be very effective for the gcut instances, where in several cases the number

of variables is halved, while for the rest of the instance set the percentage of residual

variables ranges between 72% and 96%. The leftmost line of Figure 2.11 depicts the

percentage of residual variables of the Priced PP-G2KP Model (i.e., after the variable

pricing procedures are applied). For approximately 80% of the instances, the percent-

age of residual variables in the Priced PP-G2KP Model is smaller than 40%. The

benefit of such a reduction in the model size is discussed in the next section.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Perc. of variables

P
e
r
c
.
o
f
in
s
t
a
n
c
e
s

Figure 2.11: Percentage of residual variables of the PP-G2KP Model after the
reductions. From right to left: variables after the Redundant-Cut reduction, the
Cut-Position reduction, the two reductions together. Leftmost line: percentage of

variables of the Priced PP-G2KP Model.

Concerning the number of plates, as anticipated only the Cut-Position reductions

can affect it. In practice this happens for a small fraction of the instance set, where

Chapter 2 Two-Dimensional Guillotine Cutting Problem 37

there is a large reduction: for 3% of the instances, the percentage of residual plates is

no larger than 10%; for 90% of the instances, the number of plates is unchanged.

Table 2.5, 2.6 and 2.7 reports the percentage of residual variables and plates of the

PP-G2KP Model after the reductions.

For each instance, the table reports the name (name), and the data of the Complete PP-

G2KP Model after the Redundant-Cut reduction, the Cut-Position reduction, the

two reductions together and finally of the Restricted PP-G2KP model. The percentage

of computing time (with respect to the total ttot in Tables 2.8, 2.9 and 2.10) is reported

in column two (%tgen) for the Complete PP-G2KP Model with no reductions and in

column ten for the Restricted PP-G2KP model . Then the table reports the number

of variables after the different reductions (vars(%)) and the corresponding number of

plates (plates(%)).

3
8

C
h
ap

ter
2
T
w
o-D

im
en

sion
al

G
u
illotin

e
C
u
ttin

g
P
rob

lem

Complete PP-G2KP Model Redundant-Cut Cut-Position PP-G2KP Model Restricted PP-G2KP model

name tgen(%) vars(%) vars(%) plates(%) vars(%) plates(%) vars(%) plates(%) tgen(%)

cgcut1 0.0 99.9 93.5 100.0 93.4 100.0 68.7 92.9 0.0

CHL5 0.7 100.0 87.8 100.0 87.8 100.0 61.9 94.2 0.0

Hchl8s 0.0 100.0 94.0 100.0 94.0 100.0 50.0 94.5 0.0

OF2 0.7 98.2 86.8 100.0 85.0 100.0 15.9 43.6 0.2

cgcut3 0.3 95.8 86.7 100.0 82.5 100.0 26.2 57.3 0.1

wang20 2.0 95.8 86.7 100.0 82.5 100.0 26.2 57.3 1.0

3 0.3 95.8 86.7 100.0 82.5 100.0 26.2 57.3 0.1

3s 2.5 95.8 86.7 100.0 82.5 100.0 26.2 57.3 1.0

W 2.0 95.8 86.7 100.0 82.5 100.0 26.2 57.3 1.0

OF1 2.3 99.1 90.2 100.0 89.3 100.0 23.9 63.7 0.9

gcut1 6.3 84.8 7.3 11.6 7.2 11.6 7.2 11.6 3.1

A1 0.5 96.5 87.5 100.0 84.0 100.0 21.2 48.2 0.2

A1s 3.1 96.5 87.5 100.0 84.0 100.0 21.2 48.2 1.2

cgcut2 0.4 98.5 94.6 100.0 93.1 100.0 17.3 50.5 0.3

2 0.4 98.5 94.6 100.0 93.1 100.0 17.3 50.5 0.2

2s 0.4 98.5 94.6 100.0 93.1 100.0 17.3 50.5 0.2

CHL2 0.1 97.2 85.6 100.0 82.8 100.0 16.1 45.1 0.0

CHL2s 0.2 97.2 85.6 100.0 82.8 100.0 16.1 45.1 0.1

A2 0.1 93.9 81.5 100.0 75.4 100.0 22.1 46.6 0.1

A2s 2.3 93.9 81.5 100.0 75.4 100.0 22.1 46.6 1.1

Table 2.5: Reductions of the small-size instances.

C
h
a
p
ter

2
T
w
o
-D

im
en

sion
al

G
u
illo

tin
e
C
u
ttin

g
P
rob

lem
39

Complete PP-G2KP Model Redundant-Cut Cut-Position PP-G2KP Model Restricted PP-G2KP model

name tgen(%) vars(%) vars(%) plates(%) vars(%) plates(%) vars(%) plates(%) tgen(%)

STS2 0.8 98.6 90.4 100.0 89.1 100.0 36.5 64.5 0.3

STS2s 1.1 98.6 90.4 100.0 89.1 100.0 36.5 64.5 0.5

Hchl9 0.4 98.8 91.5 100.0 90.2 100.0 40.8 68.2 0.2

A3 0.7 96.1 88.7 100.0 84.8 100.0 20.7 49.6 0.3

HH 0.0 99.0 97.1 100.0 96.1 100.0 6.3 29.2 0.0

A4 0.1 99.1 92.4 100.0 91.5 100.0 26.5 61.7 0.1

gcut5 0.0 92.3 69.7 96.6 67.6 96.6 2.6 5.1 0.0

okp1 0.4 100.0 98.2 100.0 98.2 100.0 29.5 99.7 0.2

okp3 0.0 99.9 85.9 100.0 85.9 100.0 42.1 94.2 0.0

okp4 0.4 100.0 94.4 100.0 94.4 100.0 40.2 99.9 0.1

okp2 0.0 100.0 90.4 100.0 90.4 100.0 43.9 96.8 0.0

CU1 3.4 92.7 81.6 100.0 74.3 100.0 9.4 30.7 1.1

STS4 0.4 98.3 95.6 100.0 94.0 100.0 19.0 55.6 0.1

STS4s 0.4 98.3 95.6 100.0 94.0 100.0 19.0 55.6 0.1

okp5 0.2 100.0 97.3 100.0 97.3 100.0 33.8 96.8 0.1

CW1 0.2 94.6 86.3 100.0 80.9 100.0 12.9 40.6 0.1

gcut9 1.1 92.4 66.9 92.8 65.0 92.8 1.3 2.1 0.0

A5 0.2 99.3 95.6 100.0 95.0 100.0 15.6 54.3 0.1

Table 2.6: Reductions of the medium-size instances.

4
0

C
h
ap

ter
2
T
w
o-D

im
en

sion
al

G
u
illotin

e
C
u
ttin

g
P
rob

lem

Complete PP-G2KP Model Redundant-Cut Cut-Position PP-G2KP Model Restricted PP-G2KP model

name tgen(%) vars(%) vars(%) plates(%) vars(%) plates(%) vars(%) plates(%) tgen(%)

Hchl4s 0.0 99.1 97.0 100.0 99.1 100.0 13.0 59.1 0.0

Hchl3s 0.0 99.1 97.0 100.0 99.1 100.0 13.0 59.1 0.0

CHL1 0.1 99.4 95.0 100.0 94.4 100.0 26.2 63.0 0.0

CHL1s 0.2 99.4 95.0 100.0 94.4 100.0 26.2 63.0 0.1

CHL6 0.2 99.3 95.5 100.0 94.9 100.0 24.3 62.2 0.1

Hchl2 0.1 98.6 93.3 100.0 92.0 100.0 23.4 61.0 0.0

CHL7 0.1 98.6 93.8 100.0 92.4 100.0 23.2 61.0 0.0

CW2 0.0 91.6 83.4 100.0 75.0 100.0 9.0 31.7 0.0

CU2 2.4 92.9 78.9 100.0 71.8 100.0 9.9 33.4 0.8

gcut2 1.8 77.0 64.5 100.0 48.5 100.0 2.6 11.1 0.4

gcut6 1.2 83.7 60.8 98.7 55.9 98.7 1.3 4.3 0.1

gcut3 2.6 77.1 66.7 100.0 47.3 100.0 3.7 17.2 0.7

gcut10 28.2 85.5 0.8 1.8 0.8 1.8 0.8 1.8 1.4

CW3 0.3 90.6 88.0 100.0 78.6 100.0 6.8 28.1 0.1

gcut4 1.8 84.3 76.2 100.0 60.5 100.0 6.3 24.6 0.6

Hchl6s 0.1 98.1 90.3 100.0 88.4 100.0 8.1 41.2 0.0

gcut7 1.4 74.1 58.6 99.7 44.0 99.7 1.3 7.1 0.2

Hchl7s 0.5 98.5 94.6 100.0 93.1 100.0 15.8 54.3 0.2

gcut8 2.1 77.5 70.7 100.0 48.5 100.0 2.4 15.5 0.5

gcut11 0.3 75.4 67.5 100.0 43.6 100.0 0.5 4.0 0.0

gcut12 1.4 70.1 57.7 100.0 34.5 100.0 0.7 6.4 0.2

Table 2.7: Reductions of the large-size instances.

Chapter 2 Two-Dimensional Guillotine Cutting Problem 41

2.4.4 Overall solution procedure

Finally, Tables 2.8, 2.9 and 2.10 report the results obtained by applying the proposed

solution procedure to the small, medium and large-size instances, respectively. The

tables follow the steps of the solution procedure:

• After the instance name, the tables report the overall computing time in seconds

spent for the corresponding instance (ttot). The procedure has three time limits

of 1 hour, for solving the Restricted PP-G2KP model, for the variable pricing and

for solving the Priced PP-G2KP Model, respectively. If a time limit is incurred,

the corresponding value is marked with a ∗ in the tables.

• The first step of the solution procedure is to enumerate the problem variables

(and plates) to be stored in the variable pool, and to apply the reductions

(Cut-Position and Redundant-Cut). The percentage of computing time (with

respect to the total ttot) is reported in column three (%tgen).

• The solution procedure first asks for a feasible solution, that we compute by

solving the Restricted PP-G2KP model. As anticipated, the Restricted PP-G2KP

model is tackled by solving the corresponding MIP through CPLEX, after a pric-

ing of the variables has been performed. The pricing asks for a feasible solution,

which is obtained through the greedy heuristic. The percentage computing time

%tLB in column five accounts for all these computations. Instead, the percent-

age computing time for solving only the greedy heuristic is reported in column

four %tHEU . Note that the aim of this step is producing a good quality feasi-

ble solution, thus, even if the step reaches the time limit, the correctness of the

procedure is maintained. In column six we report the the percentage of residual

variables used after the first pricing procedure is applied.

• The next step of the procedure is to solve the linear programming relaxation of

the PP-G2KP Model through iterative pricing of the pool variables. The tables

report, in column seven, the percentage of the overall computing time devoted

to this task. No useful upper bound is available if this step reaches the time

limit. Column eight (gapLP) reports the percentage optimality gap at this step

of the procedure, computed as 100UBLP−LB
UBLP

, where LB is the value of the feasible

solution computed in the previous step, and UBLP is the upper bound obtained

by rounding down the value of the linear programming relaxation.

• After applying a final round of pricing, the procedure defines the Priced PP-

G2KP Model. The Priced PP-G2KP Model is then tackled by the CPLEX

MIP solver with a time limit of 1 hour. In column nine we report the per-

centage computing time, and in column ten the percentage optimality gap, i.e.,

100UBbest−LBbest
UBbest

, where LBbest and UBbest are the values of the best feasible so-

lution and upper bound computed during the overall procedure, respectively. In

42 Chapter 2 Two-Dimensional Guillotine Cutting Problem

column eleven we report the final percentage of residual variables of the Priced

PP-G2KP Model (i.e., after the variable pricing procedures are applied).

C
h
a
p
ter

2
T
w
o
-D

im
en

sion
al

G
u
illo

tin
e
C
u
ttin

g
P
rob

lem
43

Restricted PP-G2KP model linear relaxation Priced PP-G2KP Model

name ttot tgen(%) tHEU(%) tLB(%) colLB(%) tLP (%) gapLP t(%) gap col(%)

cgcut1 0.6 0 95.2 96.8 27.1 1.6 0.2 1.6 0 36.1

CHL5 1.4 0.7 29.0 86.2 60.0 5.1 8.3 8 0 39.0

Hchl8s 3,638.20 0 0.0 1.1 49.9 0 22 98.9∗ 0.8 93.9

OF2 4.3 0.7 9.7 69.7 13.3 27.7 7.8 1.8 0 23.9

cgcut3 13.9 0.3 4.2 53.8 24.3 7.6 13.5 38.3 0 28.6

wang20 1.9 2.7 23.2 58.9 13.4 37.3 5 1.1 0 9.7

3 16.3 0.2 3.3 63.2 25.1 7 14.5 29.6 0 30.0

3s 1.9 2.6 23.6 58.1 13.4 38.7 5 0.5 0 9.6

W 1.8 2.2 32.6 43.1 10.5 53.6 3.6 1.1 0 9.8

OF1 2.1 2.3 27.1 34.6 10.1 58.9 1.5 4.2 0 15.6

gcut1 0.3 3.1 71.9 78.1 3.6 9.4 4.7 9.4 0 3.6

A1 9.8 0.4 5.4 84.8 20.7 14.5 15.1 0.3 0 12.9

A1s 1.5 3.4 32.4 33.1 3.6 62.8 0 0.7 0 7.4

cgcut2 10 0.5 10.1 78.6 17.1 20.7 12.5 0.2 0 13.4

2 9.2 0.4 8.5 84.4 17.1 14.9 12.5 0.3 0 11.3

2s 9.6 0.5 8.0 79.2 17.1 19.2 13 1 0 16.0

CHL2 65.7 0.1 0.8 10 13.7 3.1 6.8 86.8 0 32.0

CHL2s 23.9 0.2 2.1 23.7 13.7 6.3 6.6 69.8 0 33.3

A2 47.9 0.1 1.4 19.8 21.9 3.2 15.7 76.9 0 36.5

A2s 2.4 2.9 26.4 45 8.8 50.4 3.4 1.7 0 10.1

Table 2.8: Solution of the small-size instances.

4
4

C
h
ap

ter
2
T
w
o-D

im
en

sion
al

G
u
illotin

e
C
u
ttin

g
P
rob

lem

Restricted PP-G2KP model linear relaxation Priced PP-G2KP Model

name ttot tgen(%) tHEU(%) tLB(%) colLB(%) tLP (%) gapLP t(%) gap col(%)

STS2 41.7 0.9 3.9 47.7 19.2 31.2 3 20.3 0 18.1

STS2s 29.1 1.2 2.5 52.1 13.7 45.7 1.8 1 0 7.5

Hchl9 121.6 0.4 0.6 75.4 40.4 21.4 9.9 2.7 0 13.4

A3 25.1 0.8 3.2 28.1 8.4 22.4 2.4 48.7 0 16.8

HH 3,654.00 0 0.0 1.5 6.3 0.1 12.1 98.5∗ 4.4 67.3

A4 297.9 0.2 0.2 43.2 24.5 9 5.8 47.6 0 26.9

gcut5 558.3 0.1 0.1 0.5 2.0 1.4 11.7 98 0 53.1

okp1 319.4 0.5 0.5 64.2 28.1 31.8 11.2 3.5 0 37.7

okp3 7,429.20 0 0.0 48.4∗ 42.1 3.1 11.4 48.4∗ 8.4 85.3

okp4 685.5 0.4 0.1 32.5 39.3 66.6 5.6 0.4 0 10.0

okp2 7,667.20 0 0.0 46.9∗ 43.9 6.1 15.9 46.9∗ 15.9 90.4

CU1 7.4 3.7 11.3 11.7 1.6 83.9 0.1 0.8 0 5.0

STS4 205.5 0.4 0.5 66.8 17.4 31.3 5.4 1.6 0 9.7

STS4s 197.2 0.4 0.6 69.1 17.6 30.5 5.9 0.1 0 4.4

okp5 1,276.20 0.3 0.1 29.9 33.6 69.8 12.6 0 0 11.5

CW1 318.9 0.2 0.3 25.2 12.8 6.2 17.2 68.4 0 26.7

gcut9 20.5 4.2 1.5 2.3 0.7 76.1 1.9 17.4 0 30.8

A5 700.2 0.2 0.1 37.1 13.9 17.2 4.1 45.5 0 19.0

Table 2.9: Solution of the medium-size instances

C
h
a
p
ter

2
T
w
o
-D

im
en

sion
al

G
u
illo

tin
e
C
u
ttin

g
P
rob

lem
45

Restricted PP-G2KP model linear relaxation Priced PP-G2KP Model

name ttot tgen(%) tHEU(%) tLB(%) colLB(%) tLP (%) gapLP t(%) gap col(%)

Hchl4s 7,602.50 0 0.0 47.3∗ 13.0 5.3 9 47.3∗ 9 75.3

Hchl3s 2,518.00 0 0.1 15.7 12.4 12.7 4.4 71.6 0 39.1

CHL1 4,577.60 0.1 0.0 33.3 26.1 7.5 11.9 59.2 0 49.7

CHL1s 1,520.00 0.2 0.1 59.9 23.5 22.8 4.1 17.1 0 17.0

CHL6 2,576.80 0.2 0.0 67.5 21.4 32.2 3.9 0.1 0 4.4

Hchl2 4,346.30 0.1 0.0 38.6 23.2 34.2 10 27 0 22.0

CHL7 3,801.30 0.1 0.0 51.5 21.3 43.3 5 5.1 0 18.6

CW2 3,932.40 0 0.0 7.6 8.3 0.9 11.9 91.5∗ 5.5 28.9

CU2 51.8 2.5 1.9 3.8 2.6 93.4 1.7 0.3 0 4.5

gcut2 17.6 4.7 1.7 2.6 0.9 78.9 1.5 13.9 0 10.7

gcut6 46.5 8.9 0.6 0.9 0.5 87.2 0.6 3.1 0 13.6

gcut3 34.9 4 0.9 2 1.0 89.9 1.2 4.1 0 5.6

gcut10 4.9 2.4 5.5 46.4 0.5 9.9 6.1 41.3 0 0.5

CW3 1,264.80 0.3 0.1 70.7 6.5 22.3 15.4 6.6 0 13.5

gcut4 181.7 2.1 0.3 5.9 1.4 71.8 1.1 20.2 0 7.6

Hchl6s 7,234.10 0.3 0.0 49.8∗ 6.5 50∗ - - - 88.4

gcut7 117.1 7.3 0.2 0.5 0.4 72.5 1.3 19.7 0 8.2

Hchl7s 7,270.40 0.6 0.0 49.8∗ 15.8 49.5∗ - - - 93.1

gcut8 666.4 3.6 0.1 0.1 0.4 95.1 0.2 1.2 0 3.3

gcut11 4,522.00 2.8 0.0 0.2 0.2 17.2 2.1 79.7∗ 2.1 10.2

gcut12 2,454.60 8 0.0 0.1 0.2 89.8 0.8 2.1 0 3.6

Table 2.10: Solution of the large-size instances

46 Chapter 2 Two-Dimensional Guillotine Cutting Problem

We compare the results obtained by applying the proposed solution procedure with

the performance of the CPLEX MIP solver in solving the Complete PP-G2KP Model.

Concerning small-size instances, two instance remains unsolved, (Hchl8s), but the final

optimality gaps are reduced from 1.8% to 0.8%. Concerning medium-size instances,

three additional instance are solved to optimality. For the tree instances which remain

unsolved, the final optimality gaps are reduced. The computing times are reduced

for almost all solved instances, in several cases of one or two orders of magnitude.

Concerning the 21 large-size instances, they are all unsolved when the Complete PP-

G2KP Model is tackled directly by the CPLEX MIP solver, and no feasible solution

is produced by the solver, hence the optimality gap is 100%. By applying the solution

procedure based on pricing, we could solve to optimality 16 of them, and for three

out of five unsolved instances, the final optimality gap is at most 9%. For only two

instances, namely, Hchl6s and Hchl7s, the time limit is reached during the solution

of the linear programming relaxation, and a valid upper bound is not provided.

In order to give a graphical representation of the performance of the two methods,

namely, solving the Complete PP-G2KP Model directly by the CPLEX MIP solver and

applying the proposed solution procedure, we report a performance profile in Figure

2.12. For each instance we compute a normalized time τ as the ratio of the computing

time of the considered solution method over the minimum computing time for solving

the instance to optimality. For each value of τ in the horizontal axis, the vertical

axis reports the percentage of the instances for which the corresponding method spent

at most τ times the computing time of the fastest method. The proposed solution

procedure based on pricing (dashed line) has a much better performance than solv-

ing the Complete PP-G2KP Model directly with the CPLEX MIP solver (continuous

line). The performance profile of both methods reaches an horizontal line denoting the

percentage of instances that could be solved within time limit.

We conclude this section by commenting on the quality of the solutions obtained by

solving the Restricted PP-G2KP model to optimality: quite often this is the opti-

mal solution; among 50 instances solved to optimality, the solution of the Restricted

PP-G2KP model is optimal in 47 cases. For three instances only, the incumbent is

improved, namely: A5, CHL1 and CHL7. For the remaining instances, the value of

the lower bound LB is not improved when solving the Priced PP-G2KP Model. In

other words, solving the Priced PP-G2KP Model is quite often only needed to certify

the optimality of the incumbent solution.

2.4.5 Comparison with state-of-the-art approaches

The most recent and effective combinatorial algorithm for the 2GKP is the A1 algo-

rithm by Dolatabadi et al. [2012], which embeds a recursive procedure to enumerate all

possible packings of the items within a given rectangular panel. Algorithm A1 needs

Chapter 2 Two-Dimensional Guillotine Cutting Problem 47

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

Normalized time τ

P
e
r
c
.
o
f
in
s
t
a
n
c
e
s

Figure 2.12: Percentage of solved instances with respect to the normalized comput-
ing time. Complete PP-G2KP Model (continuous line) and Priced PP-G2KP Model

(dashed line).

as input an upper bound UB on the maximum profit which can be obtained from

the original rectangular panel, which is set to UB = min{Ukp, Uunc}, where Ukp is the

optimal solution of the associated non-guillotine problem, and Uunc is the optimal solu-

tion value of the associated unconstrained two-dimensional problem (i.e., the problem

in which infinite copies of each item are available). Algorithm A1 also needs a lower

bound which is computed by running the greedy heuristic described in Section 2.4.1.

We ran an implementation of the algorithm received from the authors of Dolatabadi

et al. [2012], which computes internally the UB, while the lower bound is obtained

by running for 60 seconds (as in Dolatabadi et al. [2012]) our implementation of the

greedy heuristic.

In our experiments, A1 could solve all the 59 instances we considered, with an average

computing time of 62.6 seconds, with a minimum of 60 and a maximum of 99.21

seconds. It has a strictly better performance (in terms of computing time or optimality

of the solution) in 31 cases and a worse performance (in terms of computing time) in 28

cases. Most of the computing time (60 seconds) is spend by the initial greedy heuristic,

however, the quality of this information is crucial for the performance of the algorithm.

If the initial greedy heuristic is removed and a trivial lower bound of value 0 is used,

the algorithm runs into time limit for 14 out of the 59 considered instances.

In addition, as reported in Dolatabadi et al. [2012], A1 can also solve many of the

APT problems from Alvarez-Valdes et al. [2002]. Because of their structure, where

very small items need to be packed into large rectangular panels, these instances are

48 Chapter 2 Two-Dimensional Guillotine Cutting Problem

intractable for the PP-G2KP Model, whose number of variables would be too large in

that case.

Concerning the modeling of guillotine restrictions through MIPs, the only alternative

framework we are aware of was proposed by Ben Messaoud et al. [2008], and applied to

the GSPP. The model was tested on instances having 5 items, to be packed into strips of

length L = 300. Items lengths l were randomly generated with uniform distribution in

[αL, βL], with (α, β) ∈ {(0.1, 0.5), (0.3, 0.7)}. Three shape classes were considered for

the items: wide items, long items and almost square items. Wide items, with w ∈ [1.2l,

5l], were generated with probability A; almost square items, with w ∈ [0.8l, 1.2l], where

generated with probability B; and long items, with w ∈ [0.1l, 0.8l], were generated

with residual probability. Ben Messaoud et al. [2008] considered the following set of

values for A and B: (A,B) ∈ {(1/2, 1/4), (1/4, 1/2), (1/4, 1/4), (1/3, 1/3)}.

In Table 2.11, we report on some experiments we performed by generating instances

with these features. We implemented the PPS-GSPP Model (2.16)–(2.21) and com-

puted the upper bound W on the optimal solution by using a greedy first-fit algorithm

for the two-stage version of the problem. For each combination of the A,B, α and

β parameters, in the table we report the average computing time for solving a set of

10 homogeneous instances: tFMT is the time need by our approach for solving the

instances we generated, while tBCE is the time reported in Ben Messaoud et al. [2008]

for solving instances generated with the same features. Our approach is 2 orders of

magnitude faster in solving 6 of the 8 problem classes, and still faster on the remaining

2 classes. This testifies the better performance of our approach, although Ben Mes-

saoud et al. [2008] used an older version of the CPLEX MIP solver and a slightly slower

computer. We are confident that our results could still be improved by refining the

value of the initial upper bound W .

A,B [α, β]

[0.1,0.5] [0.3,0.7]

t FMT t BCE t FMT t BCE

1/2,1/4 37.0 5,174 13.9 6,218

1/4,1/2 74.0 5,511 10.4 3,299

1/4,1/4 50.1 688 22.5 5,993

1/3,1/3 58.8 80 18.6 5,169

Table 2.11: Average computing times for solving homogeneous classes of five items
Strip Packing instances.

2.4.6 Relevance of guillotine cuts

Guillotine cuts potentially allow a better use of the panels and can reduce the waste of

raw material when compared with more constrained cut paradigms. General guillotine

Chapter 2 Two-Dimensional Guillotine Cutting Problem 49

cuts, being less constrained than restricted guillotine cuts, potentially are the most

efficient in this respect.

In our computational experiments we considered 59 general (unrestricted) guillotine

G2KP from the literature. We tackled the same instances with the model described in

Furini and Malaguti [2015], after removing all limitations on the number of stages, i.e.,

we solved the restricted G2KP. For 4 out of 56 instances we could solve to optimality

for the latter problem, the optimal solution of the general G2KP has larger profit than

the solution of the restricted G2KP. The profit increase is between 0.07% and 0.45%.

Considering the overall set of 59 instances, instead, there is a profit increase with

respect to the corresponding two-stage optimal solution in 48 cases, with an overall

increase of 2.05%; and a profit increase with respect to the corresponding three-stage

optimal solution in 46 cases, with an overall increase of 1.17%.

In Figure 2.5 of Section 2.2.1, we depicted an instance for which the profit of the

optimal solution of the general G2KP is 20% larger than the profit of the optimal

solution obtained by using restricted guillotine cuts or two-stage cuts.

These examples shows that, even though in general the profit increase obtained by

allowing general instead of restricted guillotine cuts is limited (at least for the consid-

ered set of instances), there exist cases in which it can be quite large. On the other

hand, the profit increase obtained by allowing general guillotine cuts instead of two or

three-stage cuts is often substantial for the considered set of instances.

As a final consideration, the practical suitability of general (instead of restricted) guil-

lotine cuts depends on the cutting technology. When in a general pattern the height

(or width) of a strip is determined by more than just one element, there might be

precision problems with the size of the elements. Problems occur when it is possible

to cut off from the raw material a waste part in a precise way, but the width of the

cut and therefore the size of the remaining part are not known with full certainty in

advance. In this case, it is preferable avoiding cuts from which a part is obtained that

needs to be further cut into multiple elements without any remaining waste.

2.5 Conclusions

In this chapter we proposed a way of modeling (general) guillotine cuts in Mixed Integer

Linear Programs, without limiting the number of stages, nor imposing the cuts to be

restricted. We concentrated on the Guillotine Two-Dimensional Knapsack Problem

(G2KP), and we discussed extensions of the approach to Guillotine Two-Dimensional

Cutting Stock and Guillotine Strip Packing problems. As our framework, based on

the concepts of cuts and residual plates, can lead to a very large (pseudo-polynomial)

number of variables, we proposed effective procedures for generating, managing and

solving the obtained models.

50 Chapter 2 Two-Dimensional Guillotine Cutting Problem

Specifically, we devised a solution procedure based on the computation of a feasible

solution of very good quality, which is obtained by restricting the modeling to consider

only cuts that coincide with the size of some item. By exploiting dual information, we

then perform a pricing of the variables which allows us to define smaller-size models

while preserving the optimality of the solutions.

We reported extensive computational experiments, where the approach we proposed

solved to optimality several benchmark instances from the literature. Compared with

the state-of the art combinatorial approach for the G2KP, the proposed approach had

a satisfactory performance, and it outperformed the only alternative framework based

on Mixed-Integer Programming we are aware of.

Chapter 3

Mid-Term Hydro Scheduling

Problem

1

We present a Branch-and-Cut algorithm for a class of nonlinear chance-constrained

mathematical optimization problems with a finite number of scenarios. This class

corresponds to the problems that can be reformulated as deterministic convex mixed-

integer nonlinear programming problems, but the size of the reformulation is large and

quickly becomes impractical as the number of scenarios grows. The Branch-and-Cut

algorithm is based on an implicit Benders decomposition scheme, where we generate

cutting planes as outer approximation cuts from the projection of the feasible region

on suitable subspaces. The size of the master problem in our scheme is much smaller

than the deterministic reformulation of the chance-constrained problem. We apply the

Branch-and-Cut algorithm to the mid-term hydro scheduling problem, for which we

propose a chance-constrained formulation. A computational study using data from ten

hydroplants in Greece shows that the proposed methodology solves instances orders

of magnitude faster than applying a general-purpose solver for convex mixed-integer

nonlinear programming problems to the deterministic reformulation, and scales much

better with the number of scenarios. Our numerical experiments show that introducing

a small amount of flexibility in the formulation,by allowing constraints to be violated

with a joint probability ≤ 5%, increases the expected profit by 6.1%.

3.1 Introduction

Mathematical programming is an invaluable tool for optimal decision-making that was

initially developed in a deterministic setting. However, early studies on problems with

1This chapter is based on Lodi et al. [2016]

51

52 Chapter 3 Mid-Term Hydro Scheduling Problem

probabilistic (i.e., nondeterministic) constraints have appeared since the late 50s, see,

e.g., Charnes and Cooper [1959], Charnes et al. [1958], Prekopa [1970]. In a problem

with probabilistic constraints, the formulation involves a (vector-valued) random vari-

able that parametrizes the feasible region of the problem; the decision-maker specifies

a probability α, and the solution to the problem must maximize a given objective func-

tion subject to being inside the feasible region for a set of realizations of the random

variable that occurs with probability at least 1−α. The interpretation is that a solution

that does not belong to the feasible region is undesirable, and we want this event to

happen with small probability α. This type of problem is called a chance-constrained

mathematical programming problem in the literature (see, e.g., Charnes et al. [1958]).

Without loss of generality, a chance-constrained mathematical program can be ex-

pressed as

max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X}, (CCP)

where w is a random variable, Cx(w) is a set that depends on the realization of w

(the set of probabilistic constraints), and X is a set that is described by deterministic

constraints Prekopa [1970]. We use the subscript Cx to emphasize the fact that, given

w, Cx(w) is described in terms of the x variables only; this notation will be useful in

subsequent parts of the chapter. A considerable simplification of the problem is that in

which Cx(w) is described by a set of constraints and Pr(x ∈ Cx(w)) takes into account

the violation of constraints one at a time, instead of considering the joint probability

of x ∈ Cx(w), which is more difficult. Chance-constrained mathematical programming

problems find applications in many different contexts, see, e.g., Tanner et al. [2008],

Watanabe and Ellis [1993]. The formulation (CCP) allows for two-stage problems with

recourse actions, because the sets Cx(w) can be the projection of higher-dimensional

sets. This chapter discusses the case where recourse actions are allowed and we are

interested in the joint probability of x ∈ Cx(w).

If uncertainty affects only the right-hand side values of the system of inequalities that

defines the feasible region, under certain assumptions it is possible to derive a tractable

reformulation of the problem (see, e.g., Charnes and Cooper [1963], Lejeune [2012]). A

more general case is considered when the uncertainty can affect all parts of the system

of inequalities describing Cx(w). In this case,

• if the sample space, denoted as Ω, is discrete and finite, and in particular Ω =

{wi : i = 1, . . . , k}, and

• if all the Cx(wi)’s are polyhedra sharing the same recession cone,

then, (CCP) can be reformulated as a deterministic mathematical program with inte-

ger variables, following a result in Jeroslow [1987]. This is accomplished by defining a

problem with all the constraints of each of the Cx(wi), and introducing an indicator

variable zi for each wi to activate/deactivate the corresponding constraints, see, e.g.,

Chapter 3 Mid-Term Hydro Scheduling Problem 53

Shen et al. [2010]. We should note that the assumption of discrete and finite sam-

ple space, while restrictive, includes a large number of practically relevant situations:

typically, forecasts of future events cannot be too detailed and a general distribution

can be truncated and discretized if necessary. Furthermore, even in the case that

discretization and truncation cannot be applied, one can typically obtain good solu-

tions and approximation bounds for a problem that requires general distributions via

sample-average approximation Luedtke and Ahmed [2008]. From now on, we indeed

assume Ω = {wi : i = 1, . . . , k}.

Unsurprisingly, the size of the problems obtained with the indicator-variable refor-

mulation is unmanageable in most practically relevant situations, and moreover, the

relaxations of mathematical programs with this type of indicator variables tend to be

very weak, leading to poor performance of solution methods (see, e.g., Bonami et al.

[2015]). However, under relatively mild assumptions it is possible to perform implicit

solution of the reformulated problem Luedtke [2014]. The idea is to keep the indicator

variables, but avoid the classical on/off reformulation of the constraints that involves

them. Then, if cut separation routines for the set Cx(w) are available, a Branch-and-

Cut algorithm Padberg and Rinaldi [1991] can be applied to the problem maxx∈X cx,

augmented with the indicator variables for the sets Cx(w) and a constraint to ensure

that the scenarios for which the indicator variables are on occur with probability at

least 1 − α. This problem is called a master problem. Whenever the solution of the

master problem x̂ does not satisfy the chance constraint Pr(x̂ ∈ Cx(w)) ≥ 1 − α,

cuts are generated for the sets Cx(wi) for which the corresponding indicator variable

zi is active, but x̂ 6∈ Cx(wi). The cuts are then added to the master problem. This

basic idea yields an exact algorithm for the original chance-constrained mathemati-

cal program, and it has been successfully applied to different types of problem Liu

et al. [2014], Luedtke [2014]. However, the literature mainly focuses on the case where

all of the constraints are linear and all the original variables are continuous. While

there are a few studies on linear problems with integer variables and certain classes of

integer two-stage problems, see, e.g., Gade et al. [2014], Song et al. [2014], they are

limited to specific problem structures, thus, the methods proposed cannot be applied

in general. The classical decomposition approach for two-stage nonlinear problems is

generalized Benders decomposition Geoffrion [1972], but it has the drawback of requir-

ing separability and/or knowledge of the problem structure to be practically viable;

for these reasons, to the best of our knowledge it has not been embedded in an au-

tomated, general-purpose (i.e., problem-independent) decomposition scheme for this

class of problems so far.

In this chapter we consider the case where each set Cx(wi) is nonlinear convex, and

propose a finitely convergent Branch-and-Cut algorithm. The cutting planes that we

generate can be obtained as outer approximation cuts Duran and Grossmann [1986]

and are therefore linear, as opposed to the generalized Benders cuts of Geoffrion [1972],

54 Chapter 3 Mid-Term Hydro Scheduling Problem

which can be nonlinear in general. We show that our cuts are a linearization of gener-

alized Benders cuts from a particular choice of dual variables, but our cut generation

algorithm is much simpler than the generalized Benders procedure: it has fewer as-

sumptions, in particular it does not require separability of the first and second stage

variables or knowledge of the gradients, and it can be automated. While our main focus

and computational testing is for the continuous convex case, our algorithm is finitely

convergent also in the case where each Cx(wi) is a mixed-integer set with a convex con-

tinuous relaxation. The main application studied in this chapter is the scheduling of a

hydro valley in a mid-term horizon Baslis and Bakirtzis [2011], Carpentier et al. [2012],

Kelman [1998]. We propose a chance-constrained quantile optimization model for this

problem that is equivalent to the minimization of the Value-at-Risk (see, e.g., McNeil

et al. [2015]), and perform a case study on the scheduling of a 10-plant hydro valley

in Greece, using a mix of historical and realistically generated data. Computational

experiments show that our approach is able to solve large instances obtained from data

of Baslis and Bakirtzis [2011] very effectively. Furthermore, in our case study intro-

ducing a moderate amount of flexibility, i.e., allowing some of the constraints to be

violated with probability ≤ α = 0.05, increases the expected profit by approximately

6%. If the maximum probability of violating the constraints is relaxed to α = 0.1 we

can obtain an additional 1% increase in the expected profit, but there are no further

gains increasing α beyond 0.1.

This chapter is organized as follows. In the rest of this section, we briefly introduce the

main driving application for our paper, namely, the mid-term hydro scheduling prob-

lem, and discuss our choice for the robustness model of the objective function. Section

3.2 describes the decomposition approach with the associated Branch-and-Cut algo-

rithm, discussing separating inequalities and their properties. Section 3.3 formalizes a

mathematical model for the hydro scheduling problem. Section 3.4 contains a compu-

tational evaluation of several algorithms on instances of increasing difficulty derived

from our case study, and discusses the numerical results. Finally, some conclusions are

drawn in Section 3.5.

3.1.1 Mid-term hydro scheduling

A central problem in power generation systems is that of optimally planning resource

utilization in the mid and long term and in the presence of uncertainty. Hydro power

production networks usually consist of several reservoir systems, often interconnected,

which are operated on a yearly basis: it is common to have seasonal cycles for demand

and inflows, which can be out of phase by a few months, i.e., inflow peaks typically

precede demand peaks.

Chapter 3 Mid-Term Hydro Scheduling Problem 55

The mid-term hydro scheduling problem refers to the problem of planning production

over a period of several months. To be effective, such planning must take into ac-

count uncertainty affecting rainfall and energy demand, as well as the complex and

nonlinear power production functions. A commonly used approach in practice is to

rely on deterministic optimization tools and on the experience of domain experts to

deal with the uncertainty, because of the sheer difficulty of incorporating uncertainty

into the model. Many deterministic approaches can be found in the literature, see,

e.g., Carneiro et al. [1990]. More recently, methodologies that can take into account

the uncertainty in the model have appeared, see, e.g., Baslis and Bakirtzis [2011], Car-

pentier et al. [2012], Kelman [1998]. We are not aware of previous work that employs a

chance-constrained formulation for the mid-term hydro scheduling problem, although

there has been work on the related unit commitment problem, see, e.g., van Ackooij

[2014], Wang et al. [2012]. Even in the case of unit commitment, chance-constrained

optimization approaches are the least commonly used in the literature, due to their

difficulty [Tahanan et al., 2015, Sect. 4.4].

The problem studied in this chapter can be described as follows: there are n hy-

droplants, each one associated with a reservoir, with an initial amount of water qh, h =

1, . . . , n. The water in each reservoir can be used to obtain energy through the power

plant. Our goal is to define a mid-term production plan, that is, how much water

to release in each period from each reservoir, over a time horizon of several months,

in order to maximize a profit function. The profit depends on the amount of energy

obtained and on the market price, assuming that the amount of energy sold influences

the final price, i.e., the generating company is a price maker. In each time period, the

total quantity of water in the reservoirs must satisfy some lower and upper bounds. All

the water that is not released in period t is available at t+1, in addition to the natural

water inflow from rivers, precipitations and seasonal snow melting. The definition of

a production plan faces two sources of uncertainty, namely: the natural water inflow,

and the energy price on the market. We model the uncertainty by defining a finite

number of inflow and energy market scenarios, each one with an associated probability

of realization. The assumption of a finite number of scenarios is typical and widely

accepted in the energy scheduling literature.

3.1.2 Choice of the objective function

When the problem takes into account a long time span, the decision-maker is typically

interested in the optimal present-time (i.e., first stage) decisions: future decisions can

be adjusted depending on the evolution of the market and the context. Consequently,

we consider a problem formulation with recourse, where in our case, the recourse

actions are simply all the decision taken at time periods t > 1.

56 Chapter 3 Mid-Term Hydro Scheduling Problem

It is important to remark that the profit for the generating company is a function of

the first-stage decisions and the scenario, i.e., the realization of w. Thus, in order to

formulate the objective function of the problem, we must decide what measure of profit

we are interested in. Widely used choices when optimizing an uncertain profit are the

expected profit and the worst-case profit. Our approach draws from the financial risk

management literature: we use a measure of profit related to the well-known Value-at-

Risk McNeil et al. [2015], which allows the decision-maker to determine the trade-off

between risk and returns. In particular, given 0 ≤ α < 1, our objective function is

the maximization of the α-quantile of the profit. We now show how this relates to

Value-at-Risk.

Let ϕ(x,wi) be the profit that can be obtained in scenario wi with first-stage decision

variables x; notice that given x and wi, the value of ϕ(x,wi) can be computed by

solving a deterministic optimization problem. Define the random variable ϕx : Ω→ R,

ϕx(w) = ϕ(x,w). Since ϕx is a random variable that measures the profit, we define

the loss as Lx = −ϕx. The α-Value-at-Risk is defined as

VaRα(Lx) = inf{` ∈ R : Pr(Lx > `) ≤ 1− α}.

Thus, we can write

min
x

VaR1−α(Lx) = min
x

inf{` ∈ R : Pr(Lx > `) ≤ α}

= min
x

inf{` ∈ R : Pr(−ϕx > `) ≤ α}

= max
x

sup{−` ∈ R : Pr(−ϕx > `) ≤ α}

= max
x

sup{−` ∈ R : Pr(ϕx < −`) ≤ α}

= max
x

sup{q ∈ R : Pr(ϕx < q) ≤ α}

= max
x

sup{q ∈ R : Pr(ϕx ≥ q) ≥ 1− α}

= max
x

Qα(ϕx),

where Qα is the α-quantile. The equation above shows that maximizing the α-quantile

of the profit is equivalent to minimizing the (1− α)-Value-at-Risk of the loss.

3.2 Decomposition algorithm for nonlinear (CCP)

When the sets Cx(wi) in (CCP) are polyhedra with the same recession cone, it is easy

to write a mixed-integer linear programming problem (MILP) reformulation of (CCP).

The MILP model naturally leads to Benders decomposition algorithm, and this is the

approach followed, e.g., in Luedtke [2014]. We now introduce this MILP model for the

case where each Cx(wi) is a polyhedron, to explain the basic ideas and notation before

transitioning to the case where each Cx(wi) is instead a general convex set, which

Chapter 3 Mid-Term Hydro Scheduling Problem 57

is the focus of this chapter. In terms of notation, we use x to denote the decision

variables of (CCP), yi to denote the recourse variables for scenario wi, and z to denote

binary variables with the property that zi = 0 ⇒ x ∈ Cx(wi). Let pi = Pr(w = wi),

X = {x : Ax ≤ b}, Cx(wi) = {x : ∃yi Aix + H iyi ≤ bi}. Then, (CCP) can be

formulated as follows:

max cx

s.t.: Ax ≤ b

A1x + H1y1 ≤ b1 +M1z1

A2x + H2y2 ≤ b2 +M1z2

...
...

Akx + Hkyk ≤ bk +M1zk

p1z1 + p2z2 + . . . + pkzk ≤ α

z1, z2, . . . zk ∈ {0, 1}.

(3.1)

In this formulation, 1 is a vector of ones and M is a large enough constant that is able to

deactivate each constraint i in which zi = 1. The joint chance constraint
∑k

i=1 pizi ≤ α
ensures that the probability associated with unsatisfied scenarios is smaller than α.

The formulation (3.1) is a two-stage problem with recourse where there is no objective

function contribution associated with the recourse variables, therefore the second-stage

problems are feasibility problems. It is well known that the case where the second-stage

decisions affect the objective function can be reduced to the feasibility case by means

of an additional first-stage variable for each scenario to represent the corresponding

objective function contribution.

This chapter studies the case where Cx(wi) is a general convex set, described as

Cx(wi) = {x : ∃yi gij(x, yi) ≤ 0, j = 1, . . . ,mi}. For all i, we write the vector function

gi(x, yi) = (gi1(x, yi), . . . , gimi
(x, yi))T . For ease of notation we keep the assumption

that X = {x : Ax ≤ b}, but this does not affect our development and the generaliza-

tion to the case where X is a general convex set is straightforward. If all the Cx(wi)

have the same recession cone, we can write a MINLP model for (CCP) as follows:

max cx

s.t.: Ax ≤ b

g1(x, y1) ≤ M1z1

g2(x, y2) ≤ M1z2

...
...

gk(x, yk) ≤ M1zk

p1z1 + p2z2 + . . . + pkzk ≤ α

z1, z2, . . . zk ∈ {0, 1}.

(3.2)

Assuming the functions gij are convex, (3.2) is a convex MINLP in the sense that it

has a convex continuous relaxation.

58 Chapter 3 Mid-Term Hydro Scheduling Problem

3.2.1 Overview of the approach

Solving directly the MINLP model (3.2) can be impractical, therefore we follow a

decomposition approach whereby we define a master problem with the constraints

defining x ∈ X, and k scenario subproblems, one for each scenario, involving scenario-

dependent constraints. Let Cx,y(w
i) be the feasible region of a scenario, and define

Cx(wi) = ProjxCx,y(w
i). So, x̂ is feasible for scenario i if x̂ ∈ Cx(wi). The basic

idea we exploit is to generate solutions for the master, and if they are not feasible

for enough scenarios to satisfy the joint chance-constraint, we cut them off. This

is essentially a Benders decomposition approach applied to (3.2). In the linear case

(3.1), the solution to the master problem can be cut off by means of textbook Benders

cuts. In the nonlinear case (3.2), we can use generalized Benders cuts. This chapter

advocates a particular choice of outer approximation cuts, that are linearizations of

Benders cuts and present several advantages: this will be the subject of Section 3.2.2;

the relationship with generalized Benders decomposition Geoffrion [1972] is discussed

in Section 3.2.4.

Instead of applying a pure Benders decomposition approach to (3.2), we use a Branch-

and-Cut approach adapted from Luedtke [2014], where the linear case is considered

and therefore applies to (3.1) rather than (3.2). However, the steps of the algorithm

remain the same, as this is essentially implicit Benders decomposition: we do not solve

the master problem to (integral) optimality, but apply Branch-and-Cut and separate

Benders cuts at every node with an integral solution. The algorithm uses a separation

routine for the scenario subproblems, combined with the variables z. A basic version

of the algorithm is given by Algorithm 3.

Algorithm 3: Decomposition Algorithm

1 Define a master problem of the form

max cx
s.t.: Ax ≤ b∑k

i=1 pizi ≤ α
z ∈ {0, 1}k

 (3.3)

2 repeat
3 Perform Branch and Bound on (3.3);

4 At every node of the tree with solution (x̂, ẑ), ẑ ∈ {0, 1}k, do the following: for
i = 1, . . . , k do

5 if ẑi = 0 and x̂ 6∈ Cx(wi) then
6 separate x̂ from Cx(wi) via an inequality γx ≤ βi;
7 add inequality γx ≤ βi +Mzi to the master problem (3.3);

8 end

9 end

10 until no more nodes to be explored ;

Chapter 3 Mid-Term Hydro Scheduling Problem 59

It is not difficult to see that this algorithm can be applied even if the sets Cx(wi) are

nonlinear provided that we have access to a separation routine, although termination

is in general not guaranteed. We remark that we could employ a nonlinear separating

inequality rather than a hyperplane in step 6 of Algorithm 3, as is done in general-

ized Benders decomposition Geoffrion [1972]. However, linear inequalities have several

computational advantages, and allow for an easy lifting procedure of the coefficients on

the z variables following Luedtke [2014]. We will revisit this topic in Section 3.2.4 from

a theoretical point of view, whereas a discussion of lifting on the z variables is given in

Section 3.4.1; notice that lifting does not affect the general scheme of the algorithm.

Algorithm 3 has some similarities with the LP/NLP-BB approach of Abhishek et al.

[2010] and the Hybrid approach of Bonami et al. [2008], in the sense that all these

methodologies involve a Branch-and-Cut algorithm where additional outer approxima-

tion inequalities are computed at nodes of the tree with integer solution. However, a

fundamental difference exists: the algorithms of Abhishek et al. [2010], Bonami et al.

[2008] as applied to (3.2) would work with a relaxation of the feasible region that

includes all the decision variables, using NLP subproblems to construct outer approxi-

mation cuts fixing the integer variables. In the case of Algorithm 3, the master contains

a subset of decision variables and is not aware of the recourse variables yi. Therefore,

we work on a projection of the feasible region of (3.2), and some integer and continuous

variables (z and x) are fixed to obtain outer approximation cuts. It can be easily seen

that the sequence of points generated by the algorithm is not necessarily the same.

3.2.2 Separation algorithm

In this section we provide a separation algorithm for step 6 of Algorithm 3 that applies

to chance-constrained mathematical programming problems with recourse variables

within a convex feasible region. For ease of notation, we drop the dependence on w

and refer to Cx,y, Cx as the subproblems associated with a particular realization of w,

i.e., a scenario. Therefore, for a given scenario i, we can write

Cx,y = {(x, y) : gj(x, y) ≤ 0, j = 1, . . . , d} (3.4)

where gj(x, y) is convex for all j. (Note that for scenario i, system (3.4) would have

been Cx,y(w
i) = {(x, yi) : gij(x, y

i) ≤ 0, j = 1, . . . ,mi}, i.e., d = mi.) Given a solution

for the master problem x̂, we need to answer the question: does there exist ŷ such that

(x̂, ŷ) ∈ Cx,y? If such ŷ does not exist, we must find a separating hyperplane: this is

the purpose of the separation routine.

Notice that the master problem involves the x variables only. For this reason, the

separation routine must find a cut in the x space. One approach to do so is given

by generalized Benders decomposition Geoffrion [1972]. Here we advocate a simpler

60 Chapter 3 Mid-Term Hydro Scheduling Problem

approach that allows computation of a separating hyperplane under mild conditions;

we discuss its relationship with generalized Benders decomposition in Section 3.2.4.

Define the problem

min
(x,y)∈Cx,y

1

2
‖x− x̂‖2x, (PROJ)

where by ‖ · ‖x we denote the Euclidean distance in the x space only. If x̂ 6∈ Cx, the

optimal value of PROJ must be > 0.

Theorem 3.1. Assume that Cx,y is a continuous convex set and constraint qualifi-

cation conditions are met. Let (x̄, ȳ) be the optimal solution to (PROJ), `∗ > 0 the

optimal objective function value, and µj , j = 1, . . . , d a set of the corresponding optimal

KKT multipliers. Let I = {j ∈ {1, . . . , d} : gj(x̄, ȳ) = 0}. Then, the hyperplane∑
j∈I

µj∇gj(x̄, ȳ)

 ((x, y)− (x̄, ȳ)) ≤ 0

separates x̂ from Cx and involves only the x variables. This hyperplane is the deepest

valid cut that separates x̂ from Cx, if depth is computed in `2-norm.

Proof. By KKT conditions, we must have

−∇1

2
‖x̂− x̄‖2x = (x̂− x̄) =

d∑
j=1

µj∇gj(x̄, ȳ)

for some µj ≥ 0. Notice that ‖ · ‖x does not depend on y, hence the y components

of the gradient must be zero. By complementary slackness, µjgj(x̄, ȳ) = 0 for all j.

Then,
∑

j∈I µj∇ygj(x̄, ȳ) = 0. Consider the hyperplane∑
j∈I

µj∇gj(x̄, ȳ)

 ((x, y)− (x̄, ȳ)) ≤ 0.

Then clearly this hyperplane only involves the x variables, and it does not cut off any

point in Cx,y by convexity of the gj ’s. Moreover, if we plug in the point x̂, we obtain∑
j∈I

µj∇xgj(x̄, ȳ)

 (x̂− x̄) = (x̂− x̄)(x̂− x̄) = ‖x̂− x̄‖2 = 2`∗ > 0.

Hence, the hyperplane cuts off x̂.

To show that it is the deepest valid cut, notice that distx(x̂, x̄) = 2`∗. Any cut that

cuts x̂ by more than 2`∗ in Euclidean distance computed in the x space would cut x̄

off, forsaking validity.

Chapter 3 Mid-Term Hydro Scheduling Problem 61

x2

Cx,y

x̂ProjxCx,y

y

x1

arg min
(x,y)∈Cx,y

‖(x̂, 0)− (x, y)‖x

Figure 3.1: Separating hyperplane.

The discussion above suggests an easy approach to derive maximally violated separat-

ing hyperplanes, which requires fewer assumptions with respect to generalized Benders.

We observe that the cutting plane derived is simply (x̂ − x̄)T (x − x̄) ≤ 0. It can be

computed from the solution of (PROJ) even without the KKT multipliers.

Theorem 3.2. Let Cx,y be a closed set such that Cx = ProjxCx,y is convex, and

x̂ 6∈ Cx. Let (x̄, ȳ) be the optimal solution to (PROJ), `∗ > 0 the optimal objective

function value. Then, the hyperplane

(x̂− x̄)T (x− x̄) ≤ 0

separates x̂ from Cx. This hyperplane is the deepest valid cut that separates x̂ from

Cx, if depth is computed in `2-norm.

Proof. Because Cx,y is closed, Cx is closed, and convex by assumption. Therefore,

there exists a unique vector v that minimizes ‖v − x̂‖ over all v ∈ Cx. By definition

of (PROJ), v = x̄. Then, we can apply the projection theorem (see, e.g., [Bertsekas,

1999, Prop. B.11 (b)]) to obtain

(x̂− x̄)T (x− x̄) ≤ 0 ∀x ∈ Cx.

Hence, this hyperplane is valid for Cx, and it separates x̂ because ‖x̂ − x̄‖2 = `∗ > 0

by hypothesis. The argument about this being the deepest valid cut is the same as in

the previous theorem.

A sketch of the main elements of Theorem 3.2 can be found in Fig. 3.1. It is evident

that the inequalities described in Theorem 3.2 are outer approximation cuts. Outer

62 Chapter 3 Mid-Term Hydro Scheduling Problem

approximation was introduced in Duran and Grossmann [1986] and has proven to be

an extremely useful tool in mixed-integer convex programming, see, e.g., Bonami et al.

[2008, 2009], Fletcher and Leyffer [1994]. Outer approximation is used to separate a

point not belonging to a convex set from the convex set itself, and typically the point

and the set live in the same space. In this chapter, we apply outer approximation to

separate a point from the projection of a set on a lower-dimensional space, and we

do not have an explicit description of such projection: for this reason, to obtain the

separating inequality we perform an optimization in the higher-dimensional space, and

the result is the outer approximation cut that would have been obtained if we had the

explicit description of the projection.

The important difference between Theorem 3.2 and Theorem 3.1 is that we dropped

all assumptions, except that Cx,y projects to a closed convex set, i.e., we no longer

require constraint qualification. However, to find the hyperplane we must be able to

solve (PROJ), which is an optimization problem over Cx,y: the difficulty of separa-

tion depends on the difficulty of optimizing over Cx,y. If Cx,y is described as a set

of (continuous) nonlinear convex constraints and constraint qualification holds, then

Theorem 3.2 is equivalent to Theorem 3.1 and the separation can be carried out in

polynomial time. However, an interesting case is when Cx,y is the convex hull of the

mixed-integer points satisfying a set of convex constraints. In this case, typically Cx,y

is described as the set of mixed-integer points satisfying some convex constraints, but

an explicit description of the convex hull is not available and therefore gradients of the

boundary-defining constraints cannot be computed. With the approach we advocate,

the description of the convex hull is not necessary: we can solve problem (PROJ), i.e.,

optimize over Cx,y, using a Branch-and-Bound solver for convex MINLPs, then apply

Theorem 3.2 to obtain a separating hyperplane. We remark that in this case separation

cannot be performed in polynomial time in general.

3.2.3 Termination of the Branch-and-Cut algorithm

We now show that Algorithm 3, combined with the separation routine that generates

the cut (x̂ − x̄)T (x − x̄) ≤ 0 as in Theorem 3.2, terminates in the case of convex and

mixed-integer convex scenario problems under mild assumptions.

Theorem [Kelley, 1960, Sec. 2] considers a continuous convex function G(x) defined

on a compact convex set X such that, at every point x̂ ∈ X, there exists an extreme

support y = p(x, x̂) to the graph of G(x) whose gradient is bounded by a constant.

Given a cost vector c, if x̂h defines a sequence of points such that cx̂h = min{cx|x ∈
Xh}, h = 0, 1, . . . , where X0 = X and Xh = Xh−1 ∪ {x|p(x, x̂h−1) ≤ 0}, then the

sequence {x̂h} contains a subsequence that converges to a point ξ in X with G(ξ) ≤ 0.

We are ready to prove the following theorem.

Chapter 3 Mid-Term Hydro Scheduling Problem 63

Theorem 3.3. Consider a problem of the form

max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X}, (CCP)

where X is compact, Cx(w) is a closed and convex set for all w = w1, . . . , wk, and

assumptions (A1)-(A3) of Luedtke [2014] are satisfied. Then, given any εc > 0, Algo-

rithm 3 finds a solution x̃ with ‖x∗− x̃‖ ≤ εc after a finite number of iterations, where

x∗ is an optimal solution to (CCP).

Proof. We can rely on the convergence proof of the counterpart of Algorithm 3 in

[Luedtke, 2014, Theorem 3]. Theorem 3.2 shows that the separation routine separates

exactly over Cx(wi) for i = 1, . . . , k. The notable difference with respect to the proof of

[Luedtke, 2014, Theorem 3] is that our separation routine does not return inequalities

from a finite set, hence we must show that the termination condition for processing a

node is satisfied after finitely many iterations of the separation routine. In other words,

we must show that after a finite number of separation rounds at a node, the solution

to the master problem x̂ belongs to Cx(wi) (or is εc-close) for all i such that zi = 0.

This is true in the setting of Luedtke [2014] because Cx,y(w
i) is a polyhedron, and the

chapter considers only inequalities corresponding to extreme points of the Benders cut

generating problem, which are in finite number. In the context of the present chapter,

it must be proven.

For this, it is sufficient to show that for every Cx(wi) satisfying the assumptions,

the separation routine of Theorem 3.2 requires a finite number of inequalities for εc-

convergence. This ensures finite εc-convergence to the intersection of Cx(wi) for all i

such that zi = 0, if the separation routine is applied to all Cx(wi). For ease of notation,

we drop wi and discuss a generic set Cx,y with projection Cx.

We can now apply the convergence result of Theorem [Kelley, 1960, Sec. 2] as follows.

Let X be the set defined by feasible region of the master problem, and define G(x) =

minx̃∈Cx ‖x− x̃‖, i.e., as the distance function from the convex set Cx. Therefore, G(x)

is convex. By convexity, an extreme support of G(x) exists at each point of X, and,

by the definition of G(x), its gradient is bounded. We have G(x) = 0 ⇔ x ∈ Cx,

G(x) > 0 ⇔ x /∈ Cx. Given x̂ ∈ X, x̂ /∈ Cx, define x̄ = arg minx̃∈Cx ‖x̂ − x̃‖, so that

G(x̂) = ‖x̂− x̄‖. An extreme support y = p(x, x̂) to G(x) at x̂ is

y = G(x̂) +∇TG(x̂)(x− x̂) = ‖x̂− x̄‖+
(x̂− x̄)

‖x̂− x̄‖
(x− x̂)

Then, since x̂ = x̄+ x̂− x̄, the expression p(x, x̂) ≤ 0 reads as

(x̂− x̄)(x− x̄) ≤ 0,

which is exactly the condition we use to (iteratively) separate x̂. By Theorem [Kelley,

1960, Sec. 2], we can define a sequence of x̂h converging to a point ξ in X, G(ξ) ≤ 0,

64 Chapter 3 Mid-Term Hydro Scheduling Problem

i.e., ξ ∈ Cx. By definition of convergence, for every εc, there exists an integer v such

that after v inequalities, ‖x̂− ξ‖ ≤ εc. This concludes the proof.

3.2.4 Comparison with generalized Benders cuts

This section investigates the relationship between the separation approach we advocate

and generalized Benders decomposition Geoffrion [1972], which applies to the same

class of problems studied in this chapter, namely those that can be formulated as

(3.2). Here we only discuss the case where the second-stage problems are feasibility

problems, as we can always reduce to that case. The result in Geoffrion [1972] assumes

that a “dual adequate” algorithm to solve the scenario subproblems is available, that

is, if the problem is infeasible a dual certificate of infeasibility can be computed. In

its computational considerations it remarks that “it appears necessary” to assume

additional properties on the structure of the problem, namely, that the function

L(x, λ) = min
y∈Cx,y

λT g(x, y)

can be easily computed for all x ∈ X,λ ∈ Rm, λ ≥ 0. In particular this means that we

should be able to find an analytical expression for such function. This can be done in

some specific situations, for example if the nonlinear functions are separable in x and

y (see, e.g., Bloom [1983], França and Luna [1982]), but may be difficult in general if

the solution to the minimization problem over y depends on x. Even when that is the

case, one issue remains: in the approach of Geoffrion [1972] these functions are the

Benders cut added to the master problem, and they have the form of the constraints

g(x, y). If the g(x, y) are nonlinear, we are left in the unfortunate situation of possibly

adding nonlinear constraints to the master problem. The nonlinear cuts could be

stronger than linear inequalities, but are computationally less attractive and would

not allow us to use the existing well-developed machinery for linear inequalities, such

as mixing techniques Günlük and Pochet [2001]. Of course, one could simply linearize

a generalized Benders cut: we show that this is in fact exactly what is happening.

Proposition 3.4. Assume that constraint qualification conditions are met, and let

(x̄, ȳ) be the optimal solution to (PROJ), µ be the corresponding KKT multipliers.

Then, the cut

(x̂− x̄)T (x− x̄) ≤ 0

is the linearization of a generalized Benders cut obtained from x̂ with multipliers µ.

Proof. A generalized Benders cut has the form L(x, λ) ≤ 0, where L(x, λ) =

miny∈Cx,y λ
T g(x, y) and λ is a nonegative vector such that miny∈Cx,y λ

T g(x̂, y) > 0;

see Geoffrion [1972]. By construction, the hyperplane
(∑

j∈I µj∇gj(x̄, ȳ)
)

((x, y) −
(x̄, ȳ)) = (x̂− x̄)T (x− x̄) ≤ 0 is supporting for

∑
j∈I µjgj(x, y) at (x̄, ȳ), so

Chapter 3 Mid-Term Hydro Scheduling Problem 65

∑
j∈I µjgj(x, y) ≥ (x̂ − x̄)T (x − x̄) for all (x, y) ∈ Cx,y because the left-hand side

expression is convex. It follows that

min
y

∑
j∈I

µjgj(x̂, y) ≥ (x̂− x̄)T (x̂− x̄) = `∗ > 0.

This shows that the multipliers µ yield a violated generalized Benders cut. Further-

more,
∑

j∈I µjgj(x̄, y) ≥ (x̂ − x̄)T (x̄ − x̄) = 0 for all y, and
∑

j∈I µjgj(x̄, ȳ) = 0

by complementary slackness, hence ȳ = arg miny
∑

j∈I µjgj(x̄, y). It follows that

(x̂− x̄)T (x− x̄) is the tangent plane to L(x, µ) at the point x̄.

The fact that outer approximation cuts are linearizations of generalized Benders cuts is

well known: since every nonnegative combination of the constraints gj can be consid-

ered a generalized Benders cuts, every valid linear inequality for Cx is a linearization of

a generalized Benders cuts. [Abhishek et al., 2010, Sect. 3.1] remarks that aggregating

linearizations to the constraints using optimal dual multipliers simplifies the cut, and

the unfixed variables disappear from the cut expression.

It is important to remark that our way of generating cuts is conceptually simpler than

applying generalized Benders decomposition, and it has some clear advantages. In fact,

let λ ≥ 0 be any vector of dual variables that gives rise to a violated generalized Benders

cut, i.e., miny∈Cx,y λ
T g(x̂, y) > 0. Since the expression miny∈Cx,y λ

T g(x̂, y) ≤ 0 is

convex, any tangent hyperplane is a valid inequality. The approach of Geoffrion [1972]

requires the dual variables λ only, but in order to compute a tangent hyperplane,

we additionally need a point about which the linearization is obtained. To this end,

Abhishek et al. [2010] proposes a hierarchy of points, where the weakest one is analogous

to the ECP method Westerlund et al. [1998] and does not require solving a subproblem,

while the strongest one obtains the point by solving the NLP relaxation of the current

node. Notice that in our context, because no value for y is initially known, it seems that

solving an NLP subproblem to generate the point is a better approach. Furthermore,

if the point about which the linearization is generated does not belong to Cx,y the

tangent hyperplane may not be supporting for Cx, hence it would be dominated by

some other valid inequality. Finally, if the set Cx,y contains integrality requirements,

linearizing generalized Benders cuts is not a viable approach as optimal dual variables

are not available unless the convex hull is explicitly known.

In principle, our projection approach to generate a separating inequality can also be

applied in the case where Cx,y is a polyhedron, and it yields violated Benders cuts

from a particular choice of dual variables. The most commonly approach used in the

literature is instead to obtain the dual variables by minimizing the largest constraint

violation, which corresponds to a specific truncation of the unbounded dual rays (see

Fischetti et al. [2010]). The standard approach guarantees that all the inequalities

are generated from extreme points of the dual polyhedron, whereas our projection

approach may construct a Benders cut from dual variables that are not extreme, in

66 Chapter 3 Mid-Term Hydro Scheduling Problem

which case the cut would not be extreme either, i.e., it could be obtained as a convex

combination of extreme Benders cuts.

3.3 (CCP) for mid-term hydro scheduling

We apply the decomposition algorithm for nonlinear chance-constrained problem of

Section 3.2 to the hydro scheduling problem that we describe next.

We consider a multi-period planning problem with T periods (indexed by t = 1, . . . , T),

where all information regarding period 1 is deterministically known, while the remain-

ing periods are subject to uncertainty. As mentioned in Section 3.1.1, we consider

uncertainty with respect to inflows and energy market prices, hence, at each period

one of the possible inflow-price scenarios is realized. Our objective in a deterministic

setting would be to maximize the profit obtained by selling energy on the energy mar-

ket. Electrical energy is obtained by transforming the potential energy of the water

when, during each period, the water is released from the reservoirs. There are n reser-

voirs in total, indexed by h = 1, . . . , n. We denote by xth the amount of water released

in period t from reservoir h, and by wth the water level of reservoir h at the end of the

period (w0h is a parameter denoting the initial water level). Parameter fth denotes the

natural water inflow in period t at reservoir h. The water released from reservoir h is

transformed into an amount of energy that depends on a nonlinear function gh(w, x).

Energy obtained this way, denoted as eth for period t and reservoir h, is sold on the

market; since hydro power production has in general a large capacity, we assume to be

price-makers on the electricity market, according to a price function πt(·) that depends

on the total amount of electrical energy to be sold at period t, namely, et =
∑n

h=1 eth.

In the deterministic setting, the hydro scheduling problem described above is modeled

by the following nonlinear program:

max
T∑
t=1

πt(et)et (3.5)

w(t−1)h − xth + fth ≥ wth t = 1, . . . , T, h = 1, . . . , n (3.6)

0 ≤ xth ≤ uth t = 1, . . . , T, h = 1, . . . , n (3.7)

qth ≤ wth ≤ Qth t = 1, . . . , T, h = 1, . . . , n (3.8)

eth ≤ gh(wth, xth) t = 1, . . . , T, h = 1, . . . , n (3.9)

dt ≤ et ≤ mt t = 1, . . . , T (3.10)

et =
n∑
h=1

eth t = 1, . . . , T. (3.11)

The objective function (3.5) maximizes the profit obtained by selling the transformed

energy. Constraint (3.6) is an inventory constraint that defines the water balance

between consecutive periods: since water can be released without obtaining energy

Chapter 3 Mid-Term Hydro Scheduling Problem 67

(spillage), we have an inequality. Constraints (3.7) and (3.8) impose lower and upper

bounds on the quantity of water used for transforming energy and on the water levels in

the reservoirs, respectively. Constraints (3.9) define the relation between the released

water and the obtained electrical energy at a specific plant h. Finally, (3.10) defines

lower and upper bounds on the amount of obtained electrical energy. Notice that the

above problem is convex assuming that gh is concave.

To model uncertainty, Baslis and Bakirtzis [2011] assumes that forecasts for aggregated

demand and precipitations are available as discrete random variables. The optimization

occurs over a relatively long period of time (i.e., twelve months), therefore it would

be unrealistic to assume temporal independence of demand and precipitations, and

the assumption in Baslis and Bakirtzis [2011] is that the realization of the random

variables at any time period depends on the realization in the previous time period.

We follow the approach of Baslis and Bakirtzis [2011]. This yields a scenario tree,

where a scenario is a realization of the random parameters over the entire time period,

i.e., a sample path. A scenario tree starts from the root node at the first period and,

for each possible realization of the random parameters, branches into a node at the

next period. The branching continues up to the leaves of the tree, whose number

corresponds to the number of scenarios k.

3.3.1 Decomposition

We decompose the problem into a master problem and k scenario subproblems. Each

scenario subproblem i includes decision variables xiht, and has a feasible region defined

by (3.6) – (3.10). In addition, we link the profit in each scenario to an overall measure

of profit in the master problem by introducing a master variable ψ that is maximized,

and defining the following additional constraints:

ψ ≤
T∑
t=1

πit(et)et i = 1, . . . , k. (3.12)

Hence, a specific scenario is satisfied given the decision variables in the master (energy

obtained in the first time period, and measure of profit ψ) if not only constraints (3.6)

– (3.10) can be satisfied for subsequent time periods, but also the total profit for the

scenario is not smaller than ψ. Since the master maximizes the profit that can be

obtained by satisfying a subset of scenarios having associated probability not smaller

than 1− α, this is equivalent to optimizing the α-quantile of the profit.

Following Baslis and Bakirtzis [2011], we assume that all scenarios have an associated

probability of 1/k (modifying the formulation to allow for nonuniform scenario proba-

bilities is straightforward), and the joint chance constraints are equivalent to imposing

that at least k−p scenarios are satisfied, where p = bαkc. Nonanticipativity constraints

are enforced by the master, guaranteeing that for all t, decisions up to period t are the

68 Chapter 3 Mid-Term Hydro Scheduling Problem

same for all sample paths that are identical up to t. Given two scenario indices i and r,

define τ(i, r) as the largest time period index such that the sample path realizations of

scenarios i and r are identical up to it. We can then write the initial master problem

(before addition of outer approximation cuts) as the following MILP:

maxψ (3.13)∑
i=1,...,k

zi ≤ p, (3.14)

xith = xrth, i = 1, . . . , k − 1, r = i+ 1, . . . , k, t ≤ τ(i, r), h = 1, . . . , n (3.15)

0 ≤ xith ≤ uth t = 1, . . . , T − 1, i = 1, . . . , k, h = 1, . . . , n (3.16)

zi ∈ {0, 1} i = 1, . . . , k. (3.17)

where (3.14) is the joint probability constraint, constraints (3.15) express nonanticipa-

tivity, constraints (3.16) impose bounds on the quantity of water released. We remark

that in practice we do not explicitly write constraints (3.15), because we keep only one

copy of the x variables for all sample paths identical up to a given period, implicitly

performing the substitution. This is conceptually equivalent and reduces the size of

the problem.

3.3.1.1 Electricity generation function

The transformation of the water potential energy into electrical energy is described in

terms of a nonlinear power function vh(w, ẋ) that depends on the water flow and water

level w at reservoir h. We assume that the water flow and level are constant within

each time period, and that the amount of electrical energy obtained during a given

period is directly proportional to the length of the period θt. Hence, we can write

gh(wth, xth) = vh(wth, xth/θt)θt. (3.18)

Several alternatives are proposed in the literature regarding the shape of vh(w, ẋ)

(see e.g., Bacaud et al. [2001], Chang and Chen [1998], Salam et al. [1998]). These

alternatives depend on the characteristics of each power plant and typically must be

experimentally evaluated.

The most common power functions consider power as a quadratic expression of the

flow, as vh = ρ(x/θt)
2 + νx/θt + σ, where the values of the coefficients ρ, ν, and σ,

when specified, accurately describe the characteristics of several real-world plants. The

value of these parameters is not a constant, but it is instead read or interpolated from

a table, and depends on the water level w (see, e.g., Ruz̆ić et al. [1996]). Instead

of interpolating the values from a table, since the value of the parameters ρ, ν, σ is

approximately linear in the water level w Salam et al. [1998], we define the power

Chapter 3 Mid-Term Hydro Scheduling Problem 69

function as

vh(w, x) = (w + η)(ρ(x/θt)
2 + νx/θt + σ), (3.19)

where η is then a fourth parameter to be experimentally tuned.

3.3.1.2 Demand and price function

Obtained electrical energy can be sold on the electricity market at the market price;

since we are considering a hydro power producer with a large capacity, the producer is

a price-maker, i.e., the market price depends on the amount of energy that it sells. We

define a linear function to describe the price-quantity relation, obtained by linearizing

the staircase-shaped price-quantity functions of Baslis and Bakirtzis [2011]. A finer

description of the market effect of a price-maker activity can be obtained by using

staircase-shaped decreasing functions. Modeling a staircase function would require

binary variables in the subproblems, making them computationally more difficult. No-

tice that as remarked in Section 3.2, our approach can theoretically deal with binary

variables in the scenario subproblems, but this complicates the solution process and we

did not test it numerically. Using a linear price function, the profit-quantity relation

in equation (3.5) is expressed by a quadratic function of the energy, that is

πt(et)et = (π1et + π0)et,

where we recall that et =
∑n

h=1 eth.

3.3.2 Data

The computational evaluation presented in this chapter considers a case study based

on the data from Baslis and Bakirtzis [2011], which describes a hydro system configu-

ration comprising 10 major hydroplants of the Greek power system, for a production

capacity of 2720 MW. As in Baslis and Bakirtzis [2011], we consider a three period

configuration covering 12 months. The choice of the time periods is based on the Greek

hydrological and load demand patterns, where high inflows are observed in winter and

spring, and a load peak is observed in summer: the first period is the month of Oc-

tober, the second period goes from November to February, and the third period from

March to September. Inflows and demand curves are computed based on historical

data; we refer the reader to Baslis and Bakirtzis [2011] for details. The first time pe-

riod is deterministic, as previously mentioned; a scenario tree (Figure 3.2) comprising

90 scenarios is obtained by considering 5 inflow realizations coupled with 3 demand

realizations at the second time period, and 3 inflow realizations coupled with 2 demand

realizations at the third time period.

70 Chapter 3 Mid-Term Hydro Scheduling Problem

H

MH

M

h

m

l

h

H

H

M

L

M

L

h
l

h
l

h
l

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

m

l

H

M

L

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

h
H

M

L

h
l

h
l

h
l

m

l

H

M

L

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

h
H

M

L

h
l

h
l

h
l

m

l

H

M

L

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

h
H

M

L

h
l

h
l

h
l

m

l

H

M

L

h
l

h
l

h
l

H

M

L

h
l

h
l

h
l

ML

ML

Inflow

Uncertainty

(5 realizations)

Demand

Uncertainty

(3 realizations)

Inflow

Uncertainty

(3 realizations)

Demand

Uncertainty

(2 realizations)

1
st

 period

(1 month)

2
nd

 period

(4 months)

3
rd

 period

(7 months)

Figure 3.2: Yearly three-period 90-scenario tree.

Period 2 3

Realization H MH M M L L H M L

Factor 1.5 1.25 1 0.75 0.5 1.25 1 0.75

Table 3.1: Inflow realizations.

For each of these possible realizations we used a corresponding scale factor to modify

the average inflow and demand, as in Baslis and Bakirtzis [2011]. These factors are

presented in the Tables 3.1 and 3.2. In order to express the high dependence of the

third period on the second period, we multiplied the scale factors of the third period

with the scale factor of its parent second period realization.

For each scenario we modified the average demand and price function using the scale

factors in Table 3.2 and the modification factors of the price in the Tables 3.3 and 3.4,

respectively for the second and the third period.

Chapter 3 Mid-Term Hydro Scheduling Problem 71

Period 2 3

Realization h m l h l

Factor 1.1 1 0.9 1.1 0.9

Table 3.2: Demand realizations.

Inflow H MH M ML L

Demand h m l h m l h m l h m l h m l

Factor 1 0.95 0.925 1 0.975 0.95 1.05 1 0.975 1.15 1.05 1 1.25 1.15 1

Table 3.3: Price modification for the second period.

Inflow H M L

Demand h l h l h l

Factor 1 0.95 1.05 0.975 1.15 1

Table 3.4: Price modification for third period.

In addition, the final reservoir volume wTh was set equal to half of the initial value

w0h.

3.4 Computational experiments

In this section we report on the experimental results obtained by the described Branch-

and-Cut algorithm when solving decomposable chance constrained problems, where

the subproblems are continuous and convex. We tested the algorithm on instances de-

scribed in Section 3.3, and compare the algorithm performance with the direct solution

of the large MINLP (3.2) by a general purpose solver for convex MINLPs.

The objective of these experiments is twofold: on the one hand, they are intended

to assess the algorithmic performance of the method we propose; on the other hand,

they allow us to evaluate our modeling approach for mid-term hydro scheduling prob-

lems, determining the size of the instances that can successfully be dealt with, and

highlighting the trade-off between profit and robustness of the solution.

3.4.1 Implementation details

We implemented the Branch-and-Cut algorithm within the IBM ILOG CPLEX 12.6

MILP solver, and solved the convex subproblems with IPOPT 3.12 using the interface

provided by BONMIN. In our implementation, CPLEX manages the branching tree of

the master problem, and returns the control to a user-written callback function when

the solution associated with a tree node is integer feasible.

Within the callback function, we define a separation problem PROJ for those scenarios i

having associated variable zi = 0, i.e., the scenarios whose constraints must be satisfied.

72 Chapter 3 Mid-Term Hydro Scheduling Problem

Problems PROJ are then solved by IPOPT. If the optimal solution of problem PROJ

has strictly positive value for some scenario j, that is, the current master solution

x̂ violates the constraints of scenario j, then we derive a (single) valid cut γx ≤ βj

separating x̂ from the feasible region of scenario j, as explained in Section 3.2.2.

Then, we consider adding the obtained cut to the master problem in two alternative

ways:

big M The cut is directly added to the master problem in the form γx ≤ βj + Mzj .

We compute the value for the M coefficient as: M =
∑

l:γl>0 γlul − βj , where

l denotes the index of the x variables in the cut and ul is the associated upper

bound in the master problem;

lifted The cut is lifted computing valid coefficients for the zi variables corresponding

to other scenarios, i.e., i 6= j, as suggested in Luedtke [2014].

In the second case, for every i we first compute the coefficient βi making the inequality

valid for the corresponding scenario wi, solving the optimization problem:

βi = max{γx|x ∈ X ∩ Cx(wi)}. (3.20)

Assuming the βi values, i = 1, . . . , k, are sorted by non-decreasing order, we consider

the first p+1 scenarios (recall p = bαkc), and we obtain the following valid inequalities

(see [Luedtke, 2014, Lemma 1]):

γx+ (βi − βp+1)zi ≤ βi, i = 1, . . . , p. (3.21)

From this basic set of inequalities, one could obtain stronger star inequalities (see

Atamtürk et al. [2000]). The basic idea is that, given an ordered subset T = {t1, t2, . . . , tl}
of {1, . . . , p}, one can derive the following star inequality (see Luedtke [2014] for further

details):

γx+

l∑
i=1

(βti − βti+1))zi ≤ βt1 . (3.22)

Since the star inequalities (3.22) are in exponential number, they need to be separated.

Separation can be performed by solving a longest path problem in an acyclic digraph.

However, since we are separating integer solutions in the z variables, the most violated

inequality by a solution (x̂, z) is exactly the inequality (3.21) associated with the first

ti in the ordering such that zti = 0. Thus, in our implementation we add precisely the

inequalities (3.21).

Notice that to ensure correctness of the Branch-and-Cut algorithm, it is sufficient

to find one violated scenario i having associated variable zi = 0, and to add the

cut obtained by solving the PROJ problem to the master problem (alternatively, all

scenarios having associated variable zi = 0 are satisfied, and the node does not have to

Chapter 3 Mid-Term Hydro Scheduling Problem 73

be processed further). In our implementation we considered the following alternatives

to determine how and when to perform separation:

sepAll Separation is performed at integer solutions for each scenario i having associ-

ated variable zi = 0;

sepGroup Scenarios are partitioned in subsets, where each subset includes those sce-

narios of the scenario tree having a common ancestor at the second time period

(i.e., the corresponding sample paths are equal up to that point in time). Sepa-

ration is performed at integer solutions for each group, until a violated scenario

i in the group having associated variable zi = 0 is found.

The rationale for sepGroup is that scenarios in the same group have common decision

variables at the second time period, hence a cut for one of these scenarios might change

the primal solution for all scenarios in the same group. We tested two additional

strategies that turned out to have poor computational performance, hence we describe

them briefly below, but we will not report the corresponding results:

sep1 Separation is performed at integer solutions until the first violated scenario i

having associated variable zi = 0 is found.

sepFrac We attempt to separate cuts at fractional solutions using one of the other

strategies mentioned above.

Both sep1 and sepFrac were ineffective for the same reason: these two strategies

increase the number of separation rounds, and, as it will be seen in the next section,

the vast majority of the CPU time is already spent in solving the nonlinear separation

subproblems, therefore increasing in the number of separation rounds is an issue.

Concerning the large MINLP (3.2), it is tackled through BONMIN, with IPOPT 3.12

as embedded nonlinear solver. For each constraint of the MINLP formulation to be

activated/deactivated by the associated z variable, we compute the smallest value of

the M coefficient using the bounds on the x variables and the maximum profit that

can be obtained in the scenarios by releasing the associated water quantities.

3.4.2 Computational performance

The data from Baslis and Bakirtzis [2011] includes 10 hydroplants and a scenario tree

with 90 equiprobable scenarios. From these data, we construct 5 smaller configurations

with a number of plants chosen from the set {1, 2, 5, 7, 10}. For each configuration, we

can specify the robustness of the solution: we consider values of the probability α

starting from α = 0.5 and decreasing by 0.1 down to α = 0.1 (the computed solution

must satisfy scenarios with associated probability of at least 1− α). In the discussion

74 Chapter 3 Mid-Term Hydro Scheduling Problem

Nodes Time

B&C algorithm B&B Sep. CPU [s] % NLP NLP solved Added cuts

sepAll-bigM 30.4 4.2 121.1 99.5 8,228.0 1,384.2

sepGroup-bigM 28.9 4.0 154.5 99.5 10,504.2 1,346.9

sepAll-lifted 10.3 2.7 1,251.1 100.0 (8,309.6) 102,529.3 1,409.1

sepGroup-lifted 13.3 2.7 1,098.2 100.0 (9,829.5) 87,653.6 1,188.3

Table 3.5: Performance summary for the four main variants of the B&C algorithm.

about the performance of the hydroplants in Section 3.4.4 we additionally report results

for α = 0.05, but they are not included here as they do not provide further insight.

Moreover, for 5 and 10 hydroplants and all values of α, we considered four simplified

scenario trees that contain 30, 48, 60 or 72 scenarios. We therefore obtain 65 instances

of varying difficulty. All experiments are performed on a single node of a cluster

containing machines equipped with an Intel Xeon E3-1220 processor clocked at 3.10

GHz and 8 GB RAM.

In Table 3.5 we report the main indicators to evaluate the performance of the four

variants of the Branch-and-Cut algorithm that are obtained combining the separation

procedures sepAll and sepGroup with the bigM and lifted procedures to add cuts

to the master problem. More specifically, the table reports average values of the

total number of Branch-and-Bound nodes (second column), number of Branch-and-

Bound nodes at which separation is performed (third column), total computing time

and fraction of time spent in the nonlinear separation subproblems (fourth and fifth

column respecitvely), number of nonlinear programs solved (sixth column), number of

cuts added to the master problem (seventh column). For the bigM case, the number

of NLPs solved is the same as the number of iterations of the separation procedure.

For the lifted case, the number in brackets in the seventh column is the number

of nonlinear programs solved to prove a given scenario is satisfied or derive the cut

(iterations of the separation procedure), and the number of NLPs solved includes the

NLPs to lift the cut.

All versions of the B&C algorithm solve all tested instances in less than 2 hours of com-

puting time per instance. The sepAll-bigM variant is the fastest version on average,

and we take it as our reference. Table 3.5 shows that the number of Branch-and-Bound

nodes is very small on average (about 30), and almost all the computing time is spent

in solving NLPs (on average, 8,228 NLPs per instance). Most of the separation iter-

ations occur at the root node of the Branch-and-Cut algorithm (approximately 3/4

on average). We observe that many separation rounds are performed at each node

where separation occurs. In the majority of the cases, when several mixed-integer so-

lutions are produced at the same node each new mixed-integer solution differs from

the previous one only in its continuous components. Only occasionally a new mixed-

integer solution has different values for the z variables, unless of course the separation

is performed at different nodes of the Branch-and-Bound tree. This behavior can be

Chapter 3 Mid-Term Hydro Scheduling Problem 75

explained by recalling that the master problem (3.13)-(3.17) is not aware of the non-

linear dynamics of the scenario subproblems, therefore a good approximation must be

constructed by means of several linear cuts, even when the integer variables are fixed.

Results with sepGroup-bigM are similar, with a small increase in the number of

NLPs solved, and a corresponding increase of computing time.

Concerning the lifted cuts, we note that given a cut γx ≤ βi obtained for some

scenario i, computing the lifting is computationally expensive due to the solution of

several additional NLPs. This additional effort would be justified only if lifted cuts

were able to significantly reduce the number of cut separation iterations with respect to

bigM cuts. Table 3.5 shows that this is not the case: although the number of Branch-

and-Bound nodes is reduced, the average number of separation iterations is of similar

magnitude. As a consequence, sepAll-lifted and sepGroup-lifted solve many more

NLPs and the CPU time increases accordingly. The ineffectiveness of lifted cuts can be

explained in connection to the specific structure of the scenario tree we consider: when

solving the optimization problem (3.20) for a given scenario i and a given hyperplane

γx, only a subset of the variables with nonzero coefficient in γ appears in nontrivial

constraints (i.e., not bound constraints) for scenario i. Hence, the lifting procedure is

rarely able to produce stronger cuts. The same observation on the weak computational

performance of the mixing inequalities generated by an analogous lifting procedure is

reported in Qiu et al. [2014], where a chance-constrained formulation is studied as well.

The computational performance of BONMIN’s NLP-based Branch-and-Bound algo-

rithm, applied directly to the MINLP (3.2), are also evaluated on all 65 problem

instances. The time limit for BONMIN is set to 10 hours. In Figure 3.3 we report a

performance profile for the sepAll-bigM Branch-and-Cut algorithm and BONMIN,

for the whole set of instances. The Branch-and-Cut algorithm can solve all instances,

while BONMIN’s Branch-and-Bound algorithm hits the time limit in 7 cases. In ad-

dition, the profiles clearly show the significantly better performance of the proposed

approach compared to the direct solution of the large MINLP (3.2). Before report-

ing detailed computational results comparing the two approaches, we remark that we

tried to solve the MINLP (3.2) with additional solvers based on other solution meth-

ods, namely, the BONMIN Outer Approximation algorithm, the BONMIN hybrid al-

gorithm and the FilMINT Branch-and-Cut algorithm. None of the mentioned solvers

could consistently handle the MINLP (3.2), and all solvers were plagued by severe

numerical issues; as a consequence, they could correctly solve only small instances or

instances with simplified nonlinear functions.The computational results obtained with

these solution methods are described in Section ??.

In Table 3.6 we report detailed results for a subset of instances of increasing complexity,

comparing sepAll-bigM with BONMIN Branch and Bound. All instances in the

table have 90 scenarios. The table reports the number of hydroplants and the level

of risk α in the first two columns. Subsequent columns report the results obtained

76 Chapter 3 Mid-Term Hydro Scheduling Problem

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Normalized time τ

P
e
r
c
.
o
f
in
s
t
a
n
c
e
s

Branch-and-Cut

MINLP Bonmin

Figure 3.3: Performance profiles for 65 instances.

by the Branch-and-Cut algorithm, as in Table 3.5. The last two columns report the

performance of BONMIN Branch-and-Bound algorithm, indicating the total CPU time

and the number of Branch-and-Bound nodes. The Branch-and-Cut algorithm solves

all instances in less than 10 minutes each, and in a very limited number of Branch-

and-Bound nodes. Instances with a smaller number of hydroplants appear easier for

the Branch-and-Cut algorithm, while the level of risk α has little effect on the solution

time. Solution via BONMIN Branch-and-Bound algorithm takes a much larger number

of nodes and computing time (two orders of magnitude larger on average). Very few

instances are solved to optimality within 1 hour of computing time.

Similar considerations can be drawn from Tables 3.7 and 3.8, where all the instances

are for the 5 and the 10 hydroplants configuration, and different number of scenarios,

as reported in the first column. In addition, the tables clearly show that reducing the

number of scenarios makes the problem easier, for both the Branch-and-Cut algorithm

and the BONMIN Branch-and-Bound algorithm.

Chapter 3 Mid-Term Hydro Scheduling Problem 77

Branch and Cut BONMIN

B&B Sep. % time NLP Added

Plants α nodes nodes Time (s) NLP solved cuts Time (s) Nodes

1 0.1 31 5 22.3 100.0 2,520 228 155.6 365

1 0.2 9 3 26.5 100.0 3,114 289 2,775.4 14,173

1 0.3 21 4 23.0 99.9 2,799 304 2,291.6 12,955

1 0.4 14 4 20.9 99.9 2,845 327 4,331.8 26,144

1 0.5 16 3 15.7 99.8 2,160 273 3,691.6 22,856

2 0.1 16 5 27.0 99.9 2,844 395 1,836.7 2,606

2 0.2 1 1 16.0 99.7 1,746 339 14,279.8 24,749

2 0.3 31 3 27.1 99.7 2,925 418 14,961.3 29,606

2 0.4 35 4 32.4 99.8 3,514 482 6,326.3 20,554

2 0.5 7 2 8.1 99.8 990 329 7,996.1 27,761

5 0.1 12 2 98.6 99.9 7,887 1,315 2,471.5 3,060

5 0.2 34 5 82.3 99.7 6,720 1,258 5,331.1 6,255

5 0.3 17 3 93.6 99.8 7,676 1,339 13,086.6 17,800

5 0.4 63 7 89.1 99.6 7,380 1,338 9,376.6 11,745

5 0.5 27 5 88.7 99.7 7,427 1,325 8,011.3 10,742

7 0.1 9 3 205.3 99.8 14,883 2,021 9,554.3 7,001

7 0.2 36 3 136.7 99.7 9,977 1,803 7,107.8 6,338

7 0.3 47 6 180.3 99.6 13,201 2,424 5,776.8 4,445

7 0.4 115 6 131.8 99.1 9,052 1,605 16,619.1 13,397

7 0.5 74 9 175.1 99.5 11,783 1,785 7,520.0 6,159

10 0.1 45 7 237.6 99.6 14,375 2,295 4,520.6 2,189

10 0.2 33 4 200.9 99.6 11,822 2,062 9,186.7 4,811

10 0.3 29 5 383.6 99.6 23,904 3,602 14,136.2 6,380

10 0.4 131 9 429.7 99.1 26,668 3,845 13,818.4 7,035

10 0.5 94 8 414.2 99.2 26,280 3,821 T.L. 17,077

Table 3.6: Comparison between sepAll-bigM and BONMIN Branch and Bound
on configurations of 1, 2, 5, 7, and 10 hydroplants and 90 scenarios.

78 Chapter 3 Mid-Term Hydro Scheduling Problem

Branch and Cut BONMIN

B&B Sep. % time NLP Added

scen. α nodes nodes Time (s) NLP solved cuts Time (s) Nodes

30 0.1 1 1 25.7 99.8 1,947 435 19.7 5

30 0.2 5 2 25.6 99.8 2,046 424 71.6 276

30 0.3 6 3 30.3 99.7 2,382 566 203.5 878

30 0.4 1 1 19.2 99.9 1,576 381 51.9 191

30 0.5 2 2 15.3 99.5 1,178 326 60.5 218

48 0.1 10 3 32.5 99.8 2,688 685 238.1 221

48 0.2 13 5 68.6 99.8 5,742 948 2,504.6 3,809

48 0.3 15 4 23.5 99.8 1,986 562 1,748.8 2,609

48 0.4 7 2 44.5 99.8 3,728 699 159.6 249

48 0.5 8 2 43.9 99.8 3,624 744 492.4 26

60 0.1 4 2 57.1 99.9 4,597 765 132.0 57

60 0.2 8 4 85.0 99.8 6,971 1,030 454.2 846

60 0.3 25 6 60.3 99.7 4,929 1,099 4,351.6 2,605

60 0.4 27 5 55.5 99.7 4,632 1,056 4,351.6 8,621

60 0.5 11 2 42.6 99.8 3,571 704 377.3 720

72 0.1 32 8 100.1 99.8 8,262 1,260 408.0 279

72 0.2 59 7 84.5 99.7 7,061 1,249 T.L. 29,114

72 0.3 46 7 80.1 99.8 6,779 1,118 T.L. 27,436

72 0.4 30 6 89.8 99.7 7,493 1,153 T.L. 25,633

72 0.5 28 4 43.4 99.7 3,636 801 1,812.1 2,836

90 0.1 12 2 98.6 99.9 7,887 1,315 2,471.5 3,060

90 0.2 34 5 82.3 99.7 6,720 1,258 5,331.1 6,255

90 0.3 17 3 93.6 99.8 7,676 1,339 13,086.6 17,800

90 0.4 63 7 89.1 99.6 7,380 1,338 9,376.6 11,745

90 0.5 27 5 88.7 99.7 7,427 1,325 8,011.3 10,742

Table 3.7: Comparison between sepAll-bigM and BONMIN Branch and Bound
on configurations with 5 hydroplants and 30, 48, 60, 72, and 90 scenarios.

Chapter 3 Mid-Term Hydro Scheduling Problem 79

Branch and Cut BONMIN

B&B Sep. % time NLP Added

scen. α nodes nodes Time (s) NLP solved cuts Time (s) Nodes

30 0.1 1 1 74.9 99.7 4,506 780 27.2 7

30 0.2 2 2 23.5 99.7 1,470 512 39.7 34

30 0.3 1 1 34.7 99.6 2,171 666 85.0 117

30 0.4 15 3 55.0 99.7 3,396 788 60.1 85

30 0.5 1 1 24.9 99.8 1,425 409 36.0 30

48 0.1 30 3 115.1 99.7 6,643 1,378 868.9 347

48 0.2 29 5 187.3 99.5 11,278 2,121 6,286.4 2,029

48 0.3 38 7 266.5 99.5 16,702 2,642 2,301.4 1,169

48 0.4 14 3 190.4 99.6 11,304 1,615 5,785.1 2,907

48 0.5 19 3 71.0 99.5 4,283 974 52.6 1

60 0.1 1 1 215.4 99.7 12,992 1,956 1,299.7 615

60 0.2 11 3 209.1 99.6 13,091 2,182 1,472.1 891

60 0.3 31 5 377.1 99.4 22,024 3,408 1,111.1 746

60 0.4 106 8 294.9 99.4 18,419 2,659 1,155.8 769

60 0.5 39 6 127.7 99.4 7,923 1,869 406.7 329

72 0.1 3 2 183.8 99.6 11,181 2,399 7,896.0 2,692

72 0.2 29 4 221.9 99.4 13,700 2,698 T.L. 8,575

72 0.3 48 7 284.4 99.5 17,814 2,942 T.L. 11,505

72 0.4 112 8 458.5 99.1 28,658 3,905 T.L. 10,471

72 0.5 161 11 260.1 99.0 16,522 2,844 4,421.3 2,860

90 0.1 45 7 237.6 99.6 14,375 2,295 4,520.6 2,189

90 0.2 33 4 200.9 99.6 11,822 2,062 9,186.7 4,811

90 0.3 29 5 383.6 99.6 23,904 3,602 14,136.2 6,380

90 0.4 131 9 429.7 99.1 26,668 3,845 13,818.4 7,035

90 0.5 94 8 414.2 99.2 26,280 3,821 T.L. 17,077

Table 3.8: Comparison between sepAll-bigM and BONMIN Branch and Bound
on configurations with 10 hydroplants and 30, 48, 60, 72, and 90 scenarios.

80 Chapter 3 Mid-Term Hydro Scheduling Problem

3.4.3 Quadratic electricity generation function

We tested the 65 instances also using a different formulation for (3.9). We approxi-

mated the nonlinear electricity generation function to a quadratic function that de-

pends only on the water flows. As we mentioned in Section 3.3, the most com-

mon power functions consider power as a quadratic expression of the flow, as vh =

ρ(x/θt)
2 + νx/θt + σ. Thus we obtained convex quadratic subproblems and we tested

the Branch-and Cut algorithm solving the subproblems with IPOPT 3.12 using the

interface provided by BONMIN and CPLEX 12.6.

The computational performance of BONMIN’s NLP-based Branch-and-Bound algo-

rithm, applied directly to the MINLP (3.2) using a quadratic formulation for (3.9), are

also evaluated on all 65 problem instances. The time limit is still set to 10 hours.

In Table 3.9 we report detailed results for a subset of instances of increasing complexity,

comparing sepAll-bigM using BONMIN for solving the subproblems, sepAll-bigM

using CPLEX for solving the subproblems and BONMIN Branch and Bound. All

instances in the table have 90 scenarios. The table reports the number of hydroplants

and the level of risk α in the first two columns. Subsequent columns report the results

obtained by the Branch-and-Cut algorithm using BONMIN and using CPLEX. The

last two columns report the performance of BONMIN Branch-and-Bound algorithm,

indicating the total CPU time and the number of Branch-and-Bound nodes. The

Branch-and-Cut algorithm solves all instances in less than 2 hours each, and in a limited

number of Branch-and-Bound nodes. Instances with a smaller number of hydroplants

appear easier for the Branch-and-Cut algorithm using CPLEX, while instances with

a larger number of hydroplants appear easier for the Branch-and-Cut algorithm using

BONMIN. Instead solution via BONMIN Branch-and-Bound algorithm takes a much

larger number of nodes and computing time in most of the cases.

Similar considerations can be drawn from Tables 3.10 and 3.11, where all the instances

are for the 5 and the 10 hydroplants configuration, and different number of scenarios,

as reported in the first column. But the tables clearly show that reducing the number

of scenarios makes the problem easier for the BONMIN Branch-and-Bound algorithm.

C
h
a
p
ter

3
M
id
-T
erm

H
y
d
ro

S
ch
ed

u
lin

g
P
rob

lem
81

Branch and Cut BONMIN Branch and Cut CPLEX BONMIN

B&B Sep. % time NLP Added B&B Sep. % time NLP Added
Plants α nodes nodes Time (s) NLP solved cuts nodes nodes Time (s) NLP solved cuts Time (s) Nodes
1 0.1 11 2 20.4 99.7 3,249 506 11 2 8.9 99.5 3,249 513 29.7 41
1 0.2 31 6 23.2 99.8 3,618 503 31 6 10.6 99.7 3,618 505 1,285.8 7,846
1 0.3 21 4 21.3 99.9 3,064 530 21 4 9.2 99.7 3,065 533 907.0 5,877
1 0.4 5 3 17.1 99.8 2,359 375 24 4 9.4 99.7 2,952 421 1,858.0 12,371
1 0.5 15 4 23.4 99.9 3,027 411 15 4 10.1 99.9 3,027 416 1,201.9 7,684
2 0.1 10 2 26.1 99.7 2,520 615 25 2 16.1 99.3 3,413 713 83.4 87
2 0.2 68 7 39.3 99.7 3,762 657 69 6 17.0 99.3 3,402 651 5,088.6 16,402
2 0.3 51 6 44.0 99.8 4,185 713 19 4 22.6 99.6 4,248 728 2,148.7 7,200
2 0.4 76 6 52.5 99.7 5,014 800 51 6 21.5 99.6 3,762 672 2,327.0 7,423
2 0.5 13 4 30.8 99.8 2,970 529 10 3 21.2 99.7 3,896 781 2,259.1 7,733
5 0.1 11 3 149.7 99.6 11,597 2,251 31 3 163.0 99.0 13,666 3,271 108.0 17
5 0.2 101 12 314.7 99.4 24,126 3,176 121 6 157.3 98.6 13,847 3,503 2,531.1 3,323
5 0.3 128 8 179.5 99.2 13,966 2,422 109 6 230.9 98.4 19,223 3,840 5,859.6 8,702
5 0.4 70 7 228.1 99.5 16,989 2,650 253 7 244.5 97.5 20,300 4,793 1,792.2 2,702
5 0.5 28 4 107.7 99.6 8,309 1,386 28 5 185.6 99.2 14,684 3,538 2,468.9 3,647
7 0.1 34 4 562.9 99.1 38,537 5,842 88 8 914.8 97.9 64,080 11,629 280.3 62
7 0.2 54 5 628.7 99.2 43,129 5,778 67 8 864.6 97.2 57,010 11,101 3,195.4 3,014
7 0.3 110 8 421.7 97.8 29,277 5,577 161 10 496.6 96.8 32,768 7,554 3,810.3 3,846
7 0.4 230 8 315.3 97.1 21,721 4,213 113 8 501.2 96.8 32,532 8,760 10,321.6 10,559
7 0.5 240 21 923.8 98.2 64,110 9,333 69 8 569.2 97.9 36,329 8,615 2,597.4 2,573
10 0.1 45 4 1,744.6 98.3 104,781 13,898 42 5 1,216.1 96.2 50,353 17,448 205.2 18
10 0.2 217 15 3,675.0 96.8 218,367 26,881 208 11 4,053.7 91.8 145,394 42,084 5,716.7 3,756
10 0.3 203 16 2,000.0 96.2 118,623 17,354 295 13 3,394.1 90.8 118,098 37,627 1,615.8 1,051
10 0.4 272 21 2,794.0 96.1 163,791 21,959 270 16 3,758.6 92.0 128,264 39,488 4,846.4 2,953
10 0.5 341 22 1,956.5 94.7 114,643 19,276 536 45 3,232.8 93.7 113,101 35,454 2,893.1 1,846

Table 3.9: Comparison among sepAll-bigM BONMIN, sepAll-bigM CPLEX, and BONMIN Branch and Bound on configurations of 1, 2, 5, 7,
and 10 hydroplants and 90 scenarios.

8
2

C
h
ap

ter
3
M
id
-T
erm

H
y
d
ro

S
ch
ed

u
lin

g
P
rob

lem

Branch and Cut BONMIN Branch and Cut CPLEX BONMIN

B&B Sep. % time NLP Added B&B Sep. % time NLP Added
scen. α nodes nodes Time (s) NLP solved cuts nodes nodes Time (s) NLP solved cuts Time (s) Nodes
30 0.1 1 1 46.7 99.7 3,673 963 1 1 62.1 99.7 4,782 1,474 16.9 22
30 0.2 5 2 63.4 99.8 4,900 870 3 2 124.5 99.7 9,167 2,067 72.7 286
30 0.3 1 1 56.1 99.8 4,400 746 4 2 110.2 99.6 7,821 1,954 15.7 38
30 0.4 2 2 35.3 99.5 2,813 1,009 7 4 26.6 99.5 2,309 1,142 26.2 70
30 0.5 9 3 29.7 99.3 2,359 1,092 13 3 29.1 99.7 2,431 1,021 17.0 26
48 0.1 3 2 69.7 99.7 5,586 1,389 19 4 134.8 99.4 8,936 3,409 161.7 189
48 0.2 21 4 100.6 99.4 8,046 1,874 12 2 132.2 99.6 9,216 2,468 170.6 175
48 0.3 30 4 103.8 99.6 8,393 1,665 8 2 111.5 99.4 8,537 3,148 1,132.9 1,489
48 0.4 25 5 93.6 99.6 7,520 1,178 31 5 98.1 99.3 7,066 2,638 175.4 202
48 0.5 1 1 28.1 99.8 2,303 686 1 1 54.1 99.6 4,200 1,869 19.9 1
60 0.1 7 2 134.3 99.6 10,624 2,306 5 2 124.5 99.4 10,202 2,627 226.6 347
60 0.2 58 4 149.7 99.5 11,287 2,033 27 5 101.1 99.4 8,228 2,195 96.2 148
60 0.3 111 8 150.5 99.4 11,740 1,856 30 6 170.6 99.4 11,890 2,824 1,719.6 3,494
60 0.4 32 4 63.6 99.6 5,068 1,044 39 5 158.2 99.5 11,080 2,690 234.7 295
60 0.5 1 1 57.3 99.9 4,708 798 1 1 69.8 99.8 5,250 1,597 30.3 1
72 0.1 15 3 94.2 99.7 7,284 1,386 21 4 103.2 99.4 7,092 2,353 214.0 143
72 0.2 72 3 110.4 99.3 8,694 1,560 31 5 145.3 98.6 10,402 3,418 18,654.8 18,559
72 0.3 37 3 62.2 99.6 4,916 1,249 51 5 173.3 99.2 11,046 2,911 1,187.9 802
72 0.4 22 3 149.5 99.5 11,679 1,922 29 5 176.3 98.7 12,950 3,667 18,347.1 14,435
72 0.5 28 4 122.7 99.4 9,923 2,094 106 6 206.9 98.6 13,965 3,736 1,565.3 3,022
90 0.1 11 3 149.7 99.6 11,597 2,251 31 3 163.0 99.0 13,666 3,271 108.0 17
90 0.2 101 12 314.7 99.4 24,126 3,176 121 6 157.3 98.6 13,847 3,503 2,531.1 3,323
90 0.3 128 8 179.5 99.2 13,966 2,422 109 6 230.9 98.4 19,223 3,840 5,859.6 8,702
90 0.4 70 7 228.1 99.5 16,989 2,650 253 7 244.5 97.5 20,300 4,793 1,792.2 2,702
90 0.5 28 4 107.7 99.6 8,309 1,386 28 5 185.6 99.2 14,684 3,538 2,468.9 3,647

Table 3.10: Comparison among sepAll-bigM BONMIN, sepAll-bigM CPLEX, and BONMIN Branch and Bound on configurations with 5
hydroplants and 30, 48, 60, 72, and 90 scenarios.

C
h
a
p
ter

3
M
id
-T
erm

H
y
d
ro

S
ch
ed

u
lin

g
P
rob

lem
83

Branch and Cut BONMIN Branch and Cut CPLEX BONMIN

B&B Sep. % time NLP Added B&B Sep. % time NLP Added
scen. α nodes nodes Time (s) NLP solved cuts nodes nodes Time (s) NLP solved cuts Time (s) Nodes
30 0.1 9 3 362.7 98.5 22,271 5,257 9 3 754.6 97.7 29,830 9,639 24.5 10
30 0.2 24 4 540.7 98.0 32,510 6,866 38 5 800.7 97.6 30,072 9,516 19.2 15
30 0.3 32 5 472.0 98.6 28,474 3,753 35 5 534.3 97.3 20,295 7,684 29.6 43
30 0.4 28 3 178.1 97.8 11,163 4,582 3 2 376.7 97.7 13,023 6,259 87.1 180
30 0.5 35 6 247.4 96.2 15,332 7,286 39 7 392.2 97.5 12,660 6,984 16.7 9
48 0.1 25 5 875.4 98.3 52,896 10,040 28 8 1,913.4 97.0 66,098 23,826 425.1 189
48 0.2 38 5 723.6 97.6 43,911 10,172 71 9 1,259.5 96.8 44,410 17,248 301.4 175
48 0.3 126 11 849.1 97.1 50,964 9,458 89 10 2,058.3 95.1 68,260 27,305 1,941.3 1,169
48 0.4 166 11 541.3 96.8 32,394 7,235 181 10 1,878.3 92.9 58,966 26,092 1,689.2 1,099
48 0.5 1 1 209.3 99.1 13,145 3,365 1 1 490.3 98.8 16,968 5,841 45.5 1
60 0.1 30 6 1,372.4 97.9 82,864 13,187 41 4 943.0 96.9 34,909 14,644 106.1 23
60 0.2 119 8 1,390.9 96.3 83,109 15,705 82 10 2,267.8 94.2 77,946 26,104 1,889.1 2,063
60 0.3 93 10 1,103.6 97.2 66,438 13,441 340 19 3,415.3 93.4 114,058 34,831 1,367.9 1,466
60 0.4 152 11 1,025.0 97.6 61,701 9,142 103 10 1,189.9 93.8 42,492 17,560 1,395.7 1,565
60 0.5 9 2 538.5 98.9 33,559 5,113 1 1 530.3 99.0 18,660 5,926 50.7 1
72 0.1 44 3 983.0 98.0 58,922 12,283 38 5 1,405.6 97.2 53,878 17,075 476.2 143
72 0.2 120 9 1,485.2 97.3 88,847 14,590 184 11 2,420.2 95.3 85,691 24,976 T.L. 16,039
72 0.3 157 10 1,571.1 96.6 93,986 17,617 91 8 1,670.1 95.9 57,966 25,648 2,572.8 1,205
72 0.4 149 13 1,131.9 97.5 68,315 13,386 164 12 2,681.2 94.4 91,467 31,718 7,745.0 2,975
72 0.5 196 15 1,319.2 95.7 77,908 16,556 149 11 2,379.7 90.6 78,660 27,969 205.4 102
90 0.1 45 4 1,744.6 98.3 104,781 13,898 42 5 1,216.1 96.2 50,353 17,448 205.2 18
90 0.2 217 15 3,675.0 96.8 218,367 26,881 208 11 4,053.7 91.8 145,394 42,084 5,716.7 3,756
90 0.3 203 16 2,000.0 96.2 118,623 17,354 295 13 3,394.1 90.8 118,098 37,627 1,615.8 1,051
90 0.4 272 21 2,794.0 96.1 163,791 21,959 270 16 3,758.6 92.0 128,264 39,488 4,846.4 2,953
90 0.5 341 22 1,956.5 94.7 114,643 19,276 536 45 3,232.8 93.7 113,101 35,454 2,893.1 1,846

Table 3.11: Comparison among sepAll-bigM BONMIN, sepAll-bigM CPLEX, and BONMIN Branch and Bound on configurations with 10
hydroplants and 30, 48, 60, 72, and 90 scenarios.

84 Chapter 3 Mid-Term Hydro Scheduling Problem

α E[ϕ] σ

0.00 561.0 198.9
0.05 595.3 203.1
0.10 600.3 211.5
0.20 588.3 252.5
0.30 594.0 257.4
0.40 582.6 257.7
0.50 518.7 330.1

Table 3.12: Expected profit in e M (second column) and standard deviation (third
column) for different values of α.

3.4.4 The effect of α on the profit

We now discuss the trade-off between profit and risk allowed by our chance-constrained

formulation for the mid-term hydro scheduling problem. Figure 3.4 shows, for several

configurations of the system (1 to 10 hydroplants), the objective function value (quan-

tile of the profit) of the solutions as a function of the level of risk α, restricted to the

case of 90 scenarios. This allows the decision maker to easily evaluate not only the

(minimum) profit they can obtain for a specified value of the risk, but also what profit

they could expect by accepting a larger or smaller uncertainty. Of course, the objective

function value obtained with a given α corresponds to the minimum profit that can be

achieved with probability 1 − α, but the solution may be infeasible with probability

α. In this section, α = 0.05 is included in the comparison besides the α values tested

above.

Once the problem is optimally solved for a specific level of risk α, the decision maker

can also evaluate the distribution of the profits associated with the different scenar-

ios. Indeed, a solution to the master problem specifies a value for the flow variables:

this allows us to compute the associated profit for all satisfied scenarios, and also for

those unsatisfied scenarios for which the flow variables define a physically feasible so-

lution (i.e., those scenarios for which the water balance constraints are satisfied, but

constraints (3.12) are not). Figure 3.5 depicts the inverse distribution function of the

profit for the case of 10 hydroplants. We remark that here, and in the computation

of expected profits below, we are assuming that the profit is zero whenever a solution

violates the water conservation constraints. The solution obtained with α = 0 (all

scenarios are satisfied) achieved a profit that is consistently below the other solutions,

except for scenarios when the other solutions are infeasible. As expected, there is a

spike in each curve when the value on the x-axis corresponds to the level of risk α being

optimized. It is interesting to note that even a risk-averse solution (α = 0.05) achieves

a profit that is relatively similar to the least risk-averse solution (α = 0.5), although in

the most favorable scenarios (right part of the graph), α = 0.5 typically yields better

profit than α = 0.05. On the other hand, for the most unfavorable scenarios, up to a

cumulative probability of almost 0.5, the solutions with α = 0.05 and α = 0.1 perform

Chapter 3 Mid-Term Hydro Scheduling Problem 85

50 40 30 20 10 5 0
0

100

200

300

400

500

600

Risk level α

P
ro

fi
t

€
M

1

2

5

7

10

Plants

Figure 3.4: Trade-off between profit in eM and level of risk: the x-axis reports the
risk level α, and the y-axis the corresponding objective function value.

much better than with α = 0.5. Solutions obtained with α ∈ {0.2, 0.3, 0.4} are similar

to each other, and they all perform worse than α = 0.1 for a cumulative probability of

up to 0.2, as expected, but perform better in the most favorable scenarios, achieving

approximately 50M higher profit in some cases. Table 3.12 reports the expected profit

and the standard deviation of the solutions corresponding to the tested values of α.

We can see that relaxing some of the constraints with small probability (≤ 0.05) yields

an increase of the expected profit by 6.1% as compared to the solution with α = 0,

although unsurprisingly this comes at the cost of a slightly larger standard deviation.

The highest expected profit is achieved with α = 0.1, where the increase is of 7% as

compared to α = 0. Allowing constraint violations with higher probability produces

infeasible solutions in a larger number of scenarios, and the corresponding lack of profit

decreases the expected gain. When α is very large (α = 0.5), the solution obtained is

infeasible for many scenarios, leading to an expected profit almost 10% lower than the

conservative solution with α = 0.

Summarizing, our computational experiments indicate that introducing a moderate

amount of flexibility in the formulation, namely by allowing some constraints to be

violated with small probability (0.05 or 0.1), can increase the expected profit by a

significant amount. However, there are diminishing returns of increasing α, and when

the allowed probability of violating the constraints becomes too large, the resulting

trade-off between risk and rewards seems to be unfavorable, yielding a considerable

drop in the expected profit.

86 Chapter 3 Mid-Term Hydro Scheduling Problem

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Probability

P
ro
fi
t

0
5
10
20
30
40
50

α

Figure 3.5: Inverse distribution function of the profit.

3.4.5 Other solvers

As remarked in Section 3.4.2, we tried to solve the MINLP (3.2) with additional solvers

based on other solution methods, namely, the BONMIN Outer Approximation algo-

rithm, the BONMIN hybrid algorithm and the FilMINT Branch-and-Cut algorithm.

None of the mentioned solvers could consistently handle the MINLP (3.2), and all

solvers were plagued by severe numerical issues; as a consequence, they could cor-

rectly solve only small instances or instances with simplified nonlinear functions. If a

numerical issue is incurred, the corresponding value is marked with a ∗ in the tables.

In Table 3.13 we report detailed results for a subset of instances of increasing com-

plexity, comparing the BONMIN Branch and Bound (B-BB) with the BONMIN Outer

Approximation algorithm (B-OA), the BONMIN hybrid algorithm (B-Hyb) and the

FilMINT Branch-and-Cut algorithm. All instances in the table have 90 scenarios and

the time limit is set to 10 hours for every solver and instance. The table reports the

number of hydroplants and the level of risk α in the first two columns. Subsequent

columns report the total CPU time and the number of Branch-and-Bound nodes.

The BONMIN Outer Approximation algorithm incurs in numerical issues in the ma-

jority of the tested instances. Instead the BONMIN hybrid algorithm (B-Hyb) and the

FilMINT Branch-and-Cut algorithm solve very few instances to optimality.

Similar considerations can be drawn from Tables 3.14 and 3.15, where all the instances

are for the 5 and the 10 hydroplants configuration, and different number of scenarios,

as reported in the first column.

Chapter 3 Mid-Term Hydro Scheduling Problem 87

B BB B OA B Hyb FilMINT

Plants α Time (s) nodes Time (s) Time (s) nodes Time (s)

1 90 155.6 365 368.5 T.L. 815,311 6,930.0

1 80 2,775.4 14,173 996.4 T.L. 355,751 T.L.

1 70 2,291.6 12,955 2.3* 2.7* 1 T.L.

1 60 4,331.8 26,144 6,813.4 2.7* 1 T.L.

1 50 3,691.6 22,856 0.0* T.L. 1,430,981 T.L.

2 90 1,836.7 2,606 0.0* 0.0* 1 9.6*

2 80 14,279.8 24,749 0.0* 0.0* 1 13.0*

2 70 T.L. 29,606 0.0* 0.0* 1 880.1*

2 60 6,326.3 20,554 0.0* T.L. 1,311,775 T.L.

2 50 7,996.1 27,761 238.5* 85.8 949 26,515.4*

5 90 2,471.5 3,060 0.0* 0.0* 1 2,509.1*

5 80 5,331.1 6,255 451.6 T.L. 657,584 14,811.7*

5 70 13,086.6 17,800 492.4* T.L. 262,137 T.L.

5 60 9,376.6 11,745 67.7* T.L. 265,862 T.L.

5 50 8,011.3 10,742 31,899.7* T.L. 352,355 T.L.

7 90 9,554.3 7,001 0.0* 0.0* 1 1,253.2*

7 80 7,107.8 6,338 0.0* 17,625.6 127,802 T.L.

7 70 5,776.8 4,445 6.0* T.L. 191,250 T.L.

7 60 16,619.1 13,397 4.9* T.L. 191,292 T.L.

7 50 7,520.0 6,159 0.0* T.L. 286,059 T.L.

10 90 4,520.6 2,189 0.0* 0.0* 1 10,111.1*

10 80 9,186.7 4,811 0.0* T.L. 138,781 T.L.

10 70 14,136.2 6,380 18.4* T.L. 114,764 T.L.

10 60 13,818.4 7,035 12.5* T.L. 137,012 T.L.

10 50 T.L. 17,077 9.4* T.L. 211,111 T.L.

Table 3.13: Comparison among the BONMIN Branch and Bound (B-BB), the BON-
MIN Outer Approximation algorithm (B-OA), the BONMIN hybrid algorithm (B-
Hyb) and the FilMINT Branch-and-Cut algorithm on configurations of 1, 2, 5, 7, and

10 hydroplants and 90 scenarios.

88 Chapter 3 Mid-Term Hydro Scheduling Problem

B BB B OA B Hyb FilMINT

scen. α Time (s) nodes Time (s) Time (s) nodes Time (s)

30 0.1 19.7 5 0.0* 0.0* 1 3.2*

30 0.2 71.6 276 38.9 38.7 651 14.5*

30 0.3 203.5 878 29.1 196.7 6,775 63.0*

30 0.4 51.9 191 22.8* 240.2 8,819 77.8

30 0.5 60.5 218 13.8* 570.1 15,602 27.3

48 0.1 238.1 221 0.0* 0.0* 1 8.8*

48 0.2 2,504.6 3,809 150.7 279.3 9,884 740.3*

48 0.3 1,748.8 2,609 2,768.3 95.2 4,520 2,003.7*

48 0.4 159.6 249 183.2* 7,973.2 298,097 4,760.7*

48 0.5 492.4 26 193.4* T.L. 785,408 1,070.9*

60 0.1 132.0 57 0.0* 0.0* 1 26.0*

60 0.2 454.2 846 364.1 2,136.8 51,302 2,592.1*

60 0.3 4,351.6 2,605 22,297.3 20,694.7 266,543 3,501.8*

60 0.4 4,351.6 8,621 26.8* T.L. 431,014 T.L.

60 0.5 377.3 720 2,390.2* T.L. 449,348 8,103.7

72 0.1 408.0 279 0.0* 0.0* 1 79.5*

72 0.2 T.L. 29,114 408.0* 22,075.3 662,902 T.L.

72 0.3 T.L. 27,436 0.0* T.L. 754,885 T.L.

72 0.4 T.L. 25,633 0.0* T.L. 480,527 T.L.

72 0.5 1,812.1 2,836 48.8* T.L. 253,616 T.L.

90 0.1 2,471.5 3,060 0.0* 0.0* 1 2,509.1*

90 0.2 5,331.1 6,255 451.6 T.L. 657,584 14,811.7*

90 0.3 13,086.6 17,800 492.4* T.L. 262,137 T.L.

90 0.4 9,376.6 11,745 67.7* T.L. 265,862 T.L.

90 0.5 8,011.3 10,742 31,899.7* T.L. 352,355 T.L.

Table 3.14: Comparison among the BONMIN Branch and Bound (B-BB), the
BONMIN Outer Approximation algorithm (B-OA), the BONMIN hybrid algorithm
(B-Hyb) and the FilMINT Branch-and-Cut algorithm on configurations with 5 hy-

droplants and 30, 48, 60, 72, and 90 scenarios.

Chapter 3 Mid-Term Hydro Scheduling Problem 89

B BB B OA B Hyb FilMINT

scen. α Time (s) nodes Time (s) Time (s) nodes Time (s)

30 90 27.2 7 5.0 12.2 13 43.4*

30 80 39.7 34 80.1 22.1 77 258.4*

30 70 85.0 117 2.9* 104.5 1,105 598.9

30 60 60.1 85 2.0* 79.9 811 391.6

30 50 36.0 30 1.9* 684.4 6,211 189.5

48 90 868.9 347 1.7* 16.2 13 340.0*

48 80 6,286.4 2,029 3.4* 661.9 10,250 6,603.0

48 70 2,301.4 1,169 5.5* 608.2 12,875 2,951.0*

48 60 5,785.1 2,907 2.9* 6,034.6 114,266 7,656.4

48 50 52.6 1 174.6 80.4 377 4,663.9

60 90 1,299.7 615 1.7* 123.3 371 3,031.9*

60 80 1,472.1 891 1.9* 3,155.3 22,617 21,306.8*

60 70 1,111.1 746 3.8* 14,440.1 103,331 T.L.

60 60 1,155.8 769 7.5* T.L. 189,921 T.L.

60 50 406.7 329 241.9* T.L. 257,795 T.L.

72 90 7,896.0 2,692 11,822.9 869.4 6,827 2,363.1*

72 80 T.L. 8,575 2.6* 3,736.7 46,970 T.L.

72 70 T.L. 11,505 11.0* T.L. 468,884 T.L.

72 60 T.L. 10,471 12.2* T.L. 304,701 T.L.

72 50 4,421.3 2,860 2,806.5* T.L. 336,265 T.L.

90 90 4,520.6 2,189 0.0* 0.0* 1 10,111.1*

90 80 9,186.7 4,811 0.0* T.L. 138,781 T.L.

90 70 14,136.2 6,380 18.4* T.L. 114,764 T.L.

90 60 13,818.4 7,035 12.5* T.L. 137,012 T.L.

90 50 T.L. 17,077 9.4* T.L. 211,111 T.L.

Table 3.15: Comparison among the BONMIN Branch and Bound (B-BB), the
BONMIN Outer Approximation algorithm (B-OA), the BONMIN hybrid algorithm
(B-Hyb) and the FilMINT Branch-and-Cut algorithm on configurations with 10 hy-

droplants and 30, 48, 60, 72, and 90 scenarios.

90 Chapter 3 Mid-Term Hydro Scheduling Problem

3.5 Conclusions

We have proposed a Branch-and-Cut algorithm for a class of nonlinear chance-constrained

mathematical optimization problems with a finite number of scenarios. The algorithm

is based on an implicit Benders decomposition scheme, where we generate cutting

planes as outer approximation constraints from the projection of the feasible region on

suitable subspaces.

The algorithm has been theoretically analyzed and computationally evaluated on a

mid-term hydro scheduling problem by using data from ten hydroplants in Greece.

We have shown that the proposed methodology is capable of solving instances orders

of magnitude faster than applying a general-purpose solver for convex mixed-integer

nonlinear programming problems to the deterministic reformulation, and scales much

better with the number of scenarios.

From the economical standpoint, our numerical experiments have shown that the in-

troduction of a small amount of flexibility in the formulation, by allowing constraints

to be violated with a joint probability ≤ 5%, increases the expected profit by 6.1% on

our dataset.

Bibliography

K. Abhishek, S. Leyffer, and J. Linderoth. FilMINT: An outer approximation-based

solver for convex mixed-integer nonlinear programs. INFORMS Journal on Com-

puting, 22(4):555–567, 2010.

R. Alvarez-Valdes, A. Parajon, and J. M. Tamarit. A tabu search algorithm for large-

scale guillotine (un)constrained two-dimensional cutting problems. Comput. Oper.

Res., 29(7):925–947, 2002.

C. Arbib, F. Marinelli, F. Rossi, and F. di Iorio. Cutting and reuse: an application from

automobile component manufacturing. Operation Research, 50(6):923–934, 2002.

A. Atamtürk, G.L. Nemhauser, and M. W.P. Savelsbergh. The mixed vertex packing

problem. Mathematical Programming, 89(1):35–53, 2000.

L. Bacaud, A. Lemarèchal, C. Renaud, and C. Sagastizábal. Bundle methods in

stochastic optimal power management: A disaggregated approach using precondi-

tioners. Computational Optimization ans Applications, 20(3):227–244, 2001.

G. C. Baslis and G. A. Bakirtzis. Mid-term stochastic scheduling of a price-maker

hydro producer with pumped storage. IEEE Transactions on Power Systems, 26(4):

1856–1865, 2011.

S. Ben Messaoud, C. Chu, and M. Espinouse. Characterization and modelling of

guillotine constraints. European Journal of Operational Research, 191(1):112–126,

2008.

J. A. Bennell, J. F. Oliveira, and G. Wäscher. Cutting and packing. International

Journal of Production Economics, 145(2):449–450, 2013.

D. P. Bertsekas. Nonlinear Programming, 2nd Edition. Athena Scientific, Belmont,

MA, 1999.

D. P. Bertsekas, G. S. Lauer, N. R. Jr. Sandell, and T. A. Posbergh. Optimal short-term

scheduling of large-scale power systems. IEEE Transactions on Automatic Control,

28(1):1–11, 1983.

D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization (Athena Scien-

tific Series in Optimization and Neural Computation, 6). Athena Scientific, 1997.

91

92 BIBLIOGRAPHY

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, 1997.

J. A. Bloom. Solving an electricity generating capacity expansion planning problem

by generalized Benders’ decomposition. Operations Research, 31(1):84–100, 1983.

P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird,

J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter. An algorithmic framework

for convex Mixed Integer Nonlinear Programs. Discrete Optimization, 5:186–204,

2008.

P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for Mixed

Integer Nonlinear Programs. Mathematical Programming, 119(2):331–352, 2009.

P. Bonami, A. Lodi, A. Tramontani, and S. Wiese. On mathematical programming

with indicator constraints. Mathematical Programming, 151(1):191–223, 2015.

M. Boschetti, E. Hadjiconstantinou, and A. Mingozzi. New upper bounds for the two-

dimensional orthogonal non guillotine. IMA Journal of Management Mathematics,

13(2):95–119, 2002.

E. Burke, R. Hellier, G. Kendall, and G. Whitwell. A new bottom-left-fill heuristic

algorithm for the two-dimensional irregular packing problem. Operation Research,

54(3):587–601, 2006.

A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations

Research Letters, 32(1):5–14, 2004.

A. A. F. M. Carneiro, S. Soares, and P. S. Bond. A large scale of an optimal determin-

istic hydrothermal scheduling algorithm. IEEE Transactions on Power Systems, 5

(1):204–211, 1990.

P. L. Carpentier, M. Gendreau, and F. Bastin. Midterm hydro generation scheduling

under uncertainty using the progressive hedging algorithm. Technical Report 2012-

35, CIRRELT, 2012.

H. C. Chang and P. H. Chen. Hydrothermal generation scheduling package: a genetic

based approach. IEE Proceedings - Generation, Transmission and Distribution, 145

(4):451–457, 1998.

A. Charnes and W. W. Cooper. Chance-constrained programming. Management Sci-

ence, 6(1):73–79, 1959.

A. Charnes and W. W. Cooper. Deterministic equivalents for optimizing and satisficing

under chance constraints. Operations Research, 11(1):18–39, 1963.

A. Charnes, W. W. Cooper, and G. H. Symonds. Cost horizons and certainty equiva-

lents: An approach to stochastic programming of heating oil. Management Science,

4(3):235–263, 1958.

BIBLIOGRAPHY 93

Y. Chen. A recursive algorithm for constrained two-dimensional cutting problems.

Computational Optimization and Applications, 41(3):337–347, 2008.

N. Christofides and E. Hadjiconstantinou. An exact algorithm for orthogonal 2-d

cutting problems using guillotine cuts. European Journal of Operational Research,

83(1):21–38, 1995.

N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting problems.

Operational Research, 25(1):30–44, 1977.

G. Cintra and Y. Wakabayashi. Dynamic programming and column generation based

approaches for two-dimensional guillotine cutting problems. In CelsoC. Ribeiro and

SimoneL. Martins, editors, Experimental and Efficient Algorithms, volume 3059 of

Lecture Notes in Computer Science, pages 175–190. Springer Berlin Heidelberg, 2004.

F. Clautiaux, A. Jouglet, and A. Moukrim. A new graph-theoretical model for the

guillotine-cutting problem. INFORMS Journal on Computing, 25(1):72–86, 2013.

E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds for

level-oriented two-dimensional packing algorithms. SIAM Journal on Computing, 9

(4):808–826, 1980.

V-D. Cung, M. Hifi, and B. Le Cun. Constrained two-dimensional cutting stock prob-

lems a best-first branch-and-bound algorithm. nternational Transactions in Opera-

tional Research, 7(3):185–210, 2000.

M. Dolatabadi, A. Lodi, and M. Monaci. Exact algorithms for the two-dimensional

guillotine knapsack. Computers & Operations Research, 39(1):48–53, 2012.

M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-

integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

H. Dyckhoff. A new linear programming approach to the cutting stock problem. Op-

erations Research, 29(6):1092–1104, 1981.

S. P. Fekete, J. Schepers, and J. van der Veen. An exact algorithm for higher-

dimensional orthogonal packing. Operations Research, 55(3):569–587, 2007.

M. Fischetti, D. Salvagnin, and A. Zanette. A note on the selection of Benders
’
Äô

cuts. Mathematical Programming, 124(1-2):175–182, 2010.

R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by outer ap-

proximation. Mathematical Programming, 66:327–349, 1994.

P. M. França and H. P. L. Luna. Solving stochastic transportation-location problems

by generalized Benders decomposition. Transportation Science, 16(2):113–126, 1982.

94 BIBLIOGRAPHY

F. Furini and E. Malaguti. Models for the two-dimensional two-stage cutting stock

problem with multiple stock size. Computers & Operations Research, 40(8):1953–

1962, 2013.

F. Furini and E. Malaguti. A pseudo-polynomial size formulation for 2-stage 2-

dimensional knapsack problems. In Proceedings of the 45th International Conference

on Computers & Industrial Engineering (CIE 45), 2015.

F. Furini, E. Malaguti, and D. Thomopulos. Modeling two-dimensional guillotine cut-

ting problems via integer programming. Technical Report OR-14-25, DEI - Univer-

sity of Bologna, 2014.

D. Gade, S. Küçükyavuz, and S. Sen. Decomposition algorithms with parametric

Gomory cuts for two-stage stochastic integer programs. Mathematical Programming,

144(1-2):39–64, 2014.

A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory

and Applications, 10(4):237–260, 1972.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 9(6):849–859, 1961.

P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and more

dimensions. Operations Research, 13(1):94–120, 1965.

Glass Alliance Europe. The eu glass industry in 2014-2015, 2015. URL

http://www.glass-international.com/contentimages/subscriber-pdf/

Glass_Alliance.pdf.

O. Günlük and Y. Pochet. Mixing mixed-integer inequalities. Mathematical Program-

ming, 90(3):429–457, 2001.

J. C. Herz. Recursive computational procedure for two-dimensional stock-cutting. IBM

Journal of Research Development, 16(5):462–469, 1972.

M. Hifi. An improvement of viswanathan and bagchi’s exact algorithm for constrained

two-dimensional cutting stock. Computers & Operations Research, 24(8):727–736,

1997.

M. Hifi. Dynamic programming and hill-climbing techniques for constrained two-

dimensional cutting stock problems. Journal of Combinatorial Optimization, 8(1):

65–84, 2004.

M. Hifi and C. Roucairol. Approximate and exact algorithm for constrained

(un)weighted two-dimensional two-staged cutting stock problems. Journal of Com-

binatorial Optimization, 5(4):465–494, 2001.

International Energy Agency. Key World Energy Statistics 2015. IEA, 2015.

http://www.glass-international.com/contentimages/subscriber-pdf/Glass_Alliance.pdf
http://www.glass-international.com/contentimages/subscriber-pdf/Glass_Alliance.pdf

BIBLIOGRAPHY 95

M. Iori, J. J. Salazar González, and D. Vigo. An exact approach for the vehicle routing

problem with two-dimensional loading constraints. Transportation Science, 41(2):

253–264, 2007.

R. G. Jeroslow. Representability in mixed integer programming, I: characterization

results. Discrete Applied Mathematics, 17(3):223–243, 1987.

C. Jordan. Batching and Scheduling: Models and Methods for Several Problem Classes.

Lecture Notes in Economics and Mathematical Systems 437. Springer-Verlag Berlin

Heidelberg, 1 edition, 1996.

M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,

G. Rinaldi, and L. A. Wolsey. 50 years of integer programming 1958-2008: From

the early years to the state-of-the-art. Springer-Verlag Berlin Heidelberg, 1 edition,

2010.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal of the

Society of Industrial and Applied Mathematics, 8(4):703–712, 1960.

M. P. N. C. R. Kelman. Long-term hydro scheduling based on stochastic models.

EPSOM, 98:23–25, 1998.

M. A. Lejeune. Pattern-based modeling and solution of probabilistically constrained

optimization problems. Operations Research, 60(6):1356–1372, 2012.

X. Liu, S. Küçk̈yavuz, and J. Luedtke. Decomposition algorithms for two-stage chance-

constrained programs. Mathematical Programming, pages 1–25, 2014.

A. Lodi and M. Monaci. Integer linear programming models for 2-staged two-

dimensional knapsack problems. Mathematical Programming, 94(2):257–278, 2003.

A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: a survey.

European Journal of Operational Research, 141(2):241–252, 2002.

A. Lodi, S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Mingozzi, C. Eklund,

and J. Moilanen. Efficient two-dimensional packing algorithms for mobile wimax.

Management Science, 57(12):2130–2144, 2011.

A. Lodi, E. Malaguti, G. Nannicini, and D. Thomopulos. Nonlinear chance-constrained

problems with applications to hydro scheduling. Technical Report OR-15-9, DEI -

University of Bologna, 2016.

J. Luedtke. A branch-and-cut decomposition algorithm for solving chance-constrained

mathematical programs with finite support. Mathematical Programming, 146:219–

244, 2014.

J. Luedtke and S. Ahmed. A sample approximation approach for optimization with

probabilistic constraints. SIAM Journal on Optimization, 19(2):674–699, 2008.

96 BIBLIOGRAPHY

D. G. Luenberger and Y. Ye. Linear and nonlinear programming. International series

in operations research and management science. Springer, 3rd ed edition, 2008.

R. Macedo, C. Alves, and J. M. Valério de Carvalho. Arc-flow model for the two-

dimensional guillotine cutting stock problem. Computers & Operations Research, 37

(6):991–1001, 2010.

E. Malaguti, R. Medina Durán, and P. Toth. Approaches to real world two-dimensional

cutting problems. Omega, 47:99–115, 2014.

S. Martello and P. Toth. Knapsack problems: algorithms and computer implementa-

tions. Wiley, 1990.

A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts,

Techniques and Tools (Revised Edition). Princeton Series in Finance. Princeton

University Press, Princeton, NJ, 2015.

OR-Library. Or-library. http://people.brunel.ac.uk/ mastjjb/jeb/info.html.

M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-

scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Dover Publications, unabridged edition, 1998.

D. Pisinger and M. Sigurd. Using decomposition techniques and constraint program-

ming for solving the two-dimensional bin-packing problem. INFORMS Journal on

Computing, 19(1):36–51, 2007.

A. Prekopa. On probabilistic constrained programmming. In H. W. Kuhn, editor,

Proceedings of the Princeton Symposium on Mathematical Programming, pages 113–

138, Princeton, NJ, 1970. Princeton University Press.

J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-dimensional

bin packing. European Journal of Operational Research, 183(3):1304–1327, 2007.

F. Qiu, S. Ahmed, and L. A. Dey, S. S.and Wolsey. Covering linear programming with

violations. INFORMS Journal on Computing, 26(3):531–546, 2014.

M. Russo, A. Sforza, and C. Sterle. An exact dynamic programming algorithm for

large-scale unconstrained two-dimensional guillotine cutting problems. Computers

& Operations Research, 50:97–114, 2014.

S. Ruz̆ić, N. Rajaković, and A. Vuc̆ković. A flexible approach to short-term hydro-

thermal coordination. I. Problem formulation and general solution procedure. IEEE

Transactions on Power Systems, 11(3):1564–1571, 1996.

BIBLIOGRAPHY 97

M. S. Salam, K. M. Nor, and A. R. Hamdan. Hydrothermal scheduling based lagrangian

relaxation approach to hydrothermal coordination. IEEE Transactions on Power

Systems, 13(1):226–235, 1998.

A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,

1986.

S. Shen, J. C. Smith, and S. Ahmed. Expectation and chance-constrained models and

algorithms for insuring critical paths. Management Science, 56(10):1794–1814, 2010.

E. Silva, F. Alvelos, and J. M. Valério de Carvalho. An integer programming model

for two- and three-stage two-dimensional cutting stock problems. Computers &

Operations Research, 205(3):699–708, 2010.

Y. Song, J. Luedtke, and S. Küçükyavuz. Chance-constrained binary packing problems.

INFORMS Journal on Computing, 26(4):735–747, 2014.

M. Tahanan, W. van Ackooij, A. Frangioni, and F. Lacalandra. Large-scale unit

commitment under uncertainty. 4OR, 13(2):115–171, 2015.

M. W. Tanner, L. Sattenspiel, and L. Ntaimo. Finding optimal vaccination strate-

gies under parameter uncertainty using stochastic programming. Mathematical Bio-

sciences, 215(2):144–151, 2008.

M. Trick. A dynamic programming approach for consistency and propagation for

knapsack constraints. Annals of Operations Research, 118(1):73–84, 2003.

J. M. Valério de Carvalho. LP models for bin packing and cutting stock problems.

European Journal of Operational Research, 141(2):253–273, 2002.

W. van Ackooij. Decomposition approaches for block-structured chance-constrained

programs with application to hydro-thermal unit commitment. Mathematical Meth-

ods of Operations Research, 80(3):227–253, 2014.

F. Vanderbeck. A nested decomposition approach to a three-stage, two-dimensional

cutting-stock problem. Management Science, 47(6):864–879, 2001.

Q. Wang, Y. Guan, and J. Wang. A chance-constrained two-stage stochastic program

for unit commitment with uncertain wind power output. Power Systems, IEEE

Transactions on, 27(1):206–215, 2012.

G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and

packing problems. European Journal of Operational Research, 183(3):1109–1130,

2007.

T. Watanabe and H. Ellis. Stochastic programming models for air quality management.

Computers & Operations Research, 20(6):651–663, 1993.

98 BIBLIOGRAPHY

T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn. An extended cutting plane

method for a class of non-convex MINLP problems. Computers & Chemical Engi-

neering, 22(3):357–365, 1998.

	1 Introduction
	1.1 On Resource Allocation Problems
	1.2 Thesis Contribution
	1.3 Applied Motivations
	1.4 Thesis Methodological Outline
	1.4.1 Two-Dimensional Guillotine Cutting Problem
	1.4.2 Mid-Term Hydro Scheduling Problem

	2 Two-Dimensional Guillotine Cutting Problem
	2.1 Introduction
	2.1.1 Families of cutting problems.
	2.1.2 Structure of general guillotine cuts.
	2.1.3 Literature review.
	2.1.4 Contribution.

	2.2 MIP modeling of guillotine cuts
	2.2.1 Definition of the cut position set
	2.2.2 Model extensions: Cutting Stock problem and Strip Packing problem

	2.3 An effective solution procedure for the PP-G2KP Model
	2.3.1 Variable pricing procedures

	2.4 Computational Experiments
	2.4.1 Lower bound (feasible solution) computation
	2.4.2 Iterative Variable Pricing
	2.4.3 Models size and reductions
	2.4.4 Overall solution procedure
	2.4.5 Comparison with state-of-the-art approaches
	2.4.6 Relevance of guillotine cuts

	2.5 Conclusions

	3 Mid-Term Hydro Scheduling Problem
	3.1 Introduction
	3.1.1 Mid-term hydro scheduling
	3.1.2 Choice of the objective function

	3.2 Decomposition algorithm for nonlinear (CCP)
	3.2.1 Overview of the approach
	3.2.2 Separation algorithm
	3.2.3 Termination of the Branch-and-Cut algorithm
	3.2.4 Comparison with generalized Benders cuts

	3.3 (CCP) for mid-term hydro scheduling
	3.3.1 Decomposition
	3.3.1.1 Electricity generation function
	3.3.1.2 Demand and price function

	3.3.2 Data

	3.4 Computational experiments
	3.4.1 Implementation details
	3.4.2 Computational performance
	3.4.3 Quadratic electricity generation function
	3.4.4 The effect of on the profit
	3.4.5 Other solvers

	3.5 Conclusions

	Bibliography

