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ABSTRACT 

Due to the negative environmental impact of the Olive Mill Wastewaters (OMW), 

research is done in order to treat and valorize them. In this work, different OMW 

from different Italian regions (Liguria and Puglia) and harvests (from 2012 to 2014) 

were tested in order to recover polyphenols (PCs), molecules with a high added 

value because of their beneficial properties. The solid phase used for PCs recovery 

was the resin Amberlite XAD16; the desorption solvent was acidified ethanol. An 

HPLC method for total PCs content quantification was developed using a C18 

column.  

A new, repeatable and reliable column packing method was developed. The 

packing quality was evaluated with step-change fluid dynamic analysis tests using 

NaCl 0.04M as tracer. Also, to avoid clogging problems in the packed columns an 

OMW pre-treatment was designed, capable to remove 98% of the solids.  

Several breakthrough tests were performed to evaluate the influence of linear 

velocity and column length (0.52m and 2.0m). A repeatability test was performed in 

order to evaluate the stability of the process. The process was modeled using a 

plug flow with axial dispersion model with solid-liquid mass transfer; implemented in 

COMSOL3.5a.  

The desorption curves were obtained with subsequent solvent regeneration. 

Antioxidant activity tests were performed with the desorption product using the 

ABTS method. 

On the basis of economic considerations, two new ion-exchange resins were tested 

(IRA958Cl and IRA 67Cl). IRA958Cl showed the best performance. Two 

breakthrough tests at different linear velocities were conducted with this resin. 

In order to recover specific high added value molecules (tyrosol and hydroxytyrosol) 

from the actual OMW, experiments were performed in collaboration with the 

Fachhoschule Nordwestschweiz (FHNW) using a Cyclodextrin-based polyurethane 
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polymer, synthetized by the FHNW research group. Then, in order to increase the 

purity of tyrosol in the desorption fractions several organic solvents were tested.  

 

KEYWORDS: adsorption, olive mill wastewater, phenolic compounds, tyrosol, 

hydroxytyrosol, Amberlite resins, cyclodextrin-based polymers, mass-transfer, 

modeling. 
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OBJECTIVES 

The first goal of this thesis was the development of a reliable and cost-effective 

process for the continuous-flow extraction of a phenolic mixture from olive mill 

wastewaters (OMW), characterized by the possibility of recycling both the adsorbing 

phase and the extraction solvent. 

The second objective was the development of a reliable process for the continuous-

flow extraction of specific high added value molecules (tyrosol and hydroxytorsol) 

from olive mill wastewaters (OMW) using a Cyclodextrin-based Polyurethane 

(CDP). 
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CHAPTER 1 

INTRODUCTION 

 

1.1 World production of Olive Oil  and European Union directives for the 

agro industrial wastes treatment 

According to the International Olive Council (IOC) [1], the international organism for 

the responsible and sustainable development of the olives cultivation and their 

products elaboration, there are 47 countries in which the olive oil is produced, and 

160 countries in which it is consumed. The 98% of the producers are located in the 

Mediterranean zone, and the 80% of them work with the three phases method for 

the oil elaboration [1]. 

In the European Union, in the last five years has been produced the 69.9% of the 

world olive oil, being the most important producers Spain, Greece and Italy (See 

table 1.1). 

Country Production (Tonnes per 

year 2014/2015) 

% Production  

(2014/215) 

World  2,988,500 100% 

Spain 841,200 62.7% 

Greece 300,000 19.0% 

Italy 222,000 14.0% 

Portugal 61,000 3.4% 

Tunisia 340,000 6.2% 

Turkey 170,000 5.7% 

Morocco 120,000 5.6% 

Syria 105,000 4.2% 

Table 1.1 Olive Oil Production in the year 2014/2015 [1]. 
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Italy is the country with the highest olive oil consumption, near the 40% for the year 

2014/2015. The health properties of the olive oil have been known worldwide and 

the consumption is increasing, thus, also the cultivation areas. 

The European Union is the most important producer and consumer, the quantity of 

olive oil produced is around 1,731,100 tonnes/year (2014/2015) [1], so, also the 

quantity of Olive Mill Wastewaters (OMW) associated  (7-8 m3OMW/tonne of olive 

oil [2]). This is becoming an important problem in the Mediterranean Sea Basin, 

during the collection period (November to March) 10-12 x 106 tonnes of OMW are 

produced [3], and a considerable part of this is discharged in the Mediterranean 

aquatic body. Because of these, there are some laws that regulates the OMW 

treatment. The OMW are included in the Urban Wastewater Treatment Directive 

91/271/EEC, which concerns the collection, treatment and discharge of the wastes, 

in order to protect the environment from adverse effects from their inadequate 

discharge [4]. This directive is part of the Waste Framework Directive (2008/98/EC) 

in which the EU Member States were requested to reuse between 50%-70%  of 

their household and general wastes by the 2020 [3, 5]. 

Each government of the olive oil producers has implemented national regulations 

for the OMW treatment, like Spain, where is not allowed to discharge the OMW in 

receiving waters, and some technical improvements are being considered in order 

to produce a lower volume of OMW during olive oil obtaining. In some other cases 

like Italy and Greece, there are not specific regulations, but all the EU Member 

States has to adopt a management and prevention plan for the wastes [5].  

As it is evident, there are  environmental pollution problems associated with the 

disposal of the OMW, because it is not possible to use them directly as irrigation 

waters because of their polyphenolic content (phytotoxicity), so, in this project has 

been proposed the polyphenols separation by an adsorption-desorption process, in 

a suitable cost-effective system which besides permit the wastewaters 

decontamination and valorization, lets the recycling of the adsorption solid phase 

and the desorption solvent. 



16 
 

1.2 Olive oil production process  

For the olive oil production all the process phases are very important, from the 

olives harvest and storage to the bottling, influencing the final quality of the product. 

The oil, besides a great flavour, has to keep the healthy properties of the olive fruit 

[6-10]. 

The olive oil production is composed by five important steps: harvest, mill, shake, 

extraction and refinement. 

1.2.1 Extraction Methods 

The harvest is very important, the period and the kind of olive (taken from the tree 

or form the soil) affect directly the quality of the oil. Usually, the fruit harvest is done 

when the concentration of fat acids if the pomace and the fruit polyphenols content 

are in the maximum. This influences the sensorial characteristics of the final oil. 

The harvest method has to be chosen in order to produce the minor possible 

damage to the fruit and to the tree, to avoid problems during the washing and 

storage of the olives and for the growing of new fruits (i.e. damaged branches).  

After the harvest, the olives are screened to separate them from leaves, stones and 

dust, and then they are washed with cold water, to remove the remaining dust and 

herbicides. Later, they are stored. To produce an olive oil of very high quality the 

olives have to be processed in the 24 hours after their harvest, longer times lead to 

lower quality. 

After this, the olives are subjected to the mill, where they are broken and a paste is 

formed [7,8]. 

Until the 60’s the main mill method was the stone mill, but the productivity and the 

quality were low. Nowadays, the most used methodology is the hammermill, in this 

type of mill the olives are fed automatically, and the system includes a sieve, when 

the olive particles have the right size they pass if not they pass through the mill 

again [6]. 
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Once the paste is ready, the shake process starts. The objective of this step is to 

take out the oil from the olive paste by using rotatory blades with a very slow 

movement inside semicylindrical containers, which are jacketed, so that water at 

25°C-30°C can heat the olives paste facilitating the oil extraction, reducing its 

viscosity and helping the formation of the oil phase. Higher temperatures can 

damage the properties of the paste and the obtained oil. 

From the paste, drops of oil come out forming bigger drops by aggregation. If later 

the extraction is done with the press system, the shake process takes maximum 20 

minutes, otherwise, the process is a longer. The shaking time is important, because 

if it is very long the oil is going to be in contact with the wastewaters for more time, 

changing the oil characteristics, its phenolic content and in its stability, thus, 

lowering its quality.  

The next step is the extraction, where the oil is separated from the other olive 

components, water, seeds, husk, etc. 

Until the decade of 60’s the most used method was the press system . With this 

methodology, the product of the shaker is wrapped in woven baskets and pressed, 

the liquid phase passes while the solids are retained in the baskets. All the liquid is 

collected and decanted in order to separate the suspended solids that contaminate 

the oil. This is discontinuous process, so nowadays is not very applied [6,7]. 

The need of a continuous cycle production, led to some technological research, 

thus, the two and three phases systems were adopted, enhancing the weaknesses 

of the previous press process, also reducing the workforce and the economical 

expenses. Also, this kind of process helps to minimize the time that the olives have 

to be stored, improving the quality of the oil obtained. 

In the two and three phases systems, the oil is extracted with the centrifugal force of 

the rotatory machines of high speed, known as decanters. The two phases 

technology has two outlet sites, one for the oil-rich one and the other for the solid 

waste, but it is very hard to separate the emulsion made of oil and olive mill waste 

water, and also the solid waste is very hard to handle, it is composed by 75% of 
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water, to dehydrate it, temperatures about 1200°C are required. For this reason, the 

three phases system is proposed, so the decanters has three outlets, thus, the oil, 

the water and the solid part are separated. The disadvantage of this process is the 

addition of water, so the volume of produced olive mill waste water is high, leading 

to environmental problems because of its discharge.  

A scheme of the olive oil production with the two and three phases system is 

presented in figure 1.1. 

In the continuous processes the olive paste coming from the shaker is fed 

continuously to the decanter and the wastes come out also in a continuous way. 

The solid part that is still rich in oil passes again (3 times maximum) through the 

decanters. The oil coming from the first extraction is the most valuable and is known 

as virgin olive oil, while the product of the later centrifugations has different 

qualities, lower respect to the virgin oil.  

The last step is the refinement [9]. This part is done only if the oil is not adequate for 

consumption because of its organoleptic characteristics or its acidity. If this process 

is applied to a virgin oil, it loses its virginity because of the loss of antioxidants and 

vitamins, and for this, it is usually rectified by the addition of virgin oil of good quality 

(this part is done also with refined non-virgin oil). 

The refinement process can be applied in its totality or just partially, depending on 

how defective and the kind of defects of the oil that has to be refined. 

The refinement process is composed by the following stages: wintering, mucilage 

separation, neutralization and deodorizing. 

The wintering consists in the cooling of the oil, in order to avoid the glycerides of 

high fusion point and all the components that solidify with cold. Then the not wanted 

solid substances are filtered. In the past this step was done leaving the containers  

with the oil to cool with the cold air of the environment, nowadays, this is done by 

cooling the containers until 5°C rapidly, and keeping this temperature for 24 hours. 
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The mucilage separation is done by adding water and phosphoric acid, in this way 

the rubbery compounds are eliminated, but also some desirable proteins of the oil. 

The discoloration or whitening is done using active carbon or bentonite. In this way 

the oil colour is adjusted. 

The neutralization needs the treatment with alkalis. The esters obtained, are easily 

removed because of their insolubility on the oil. 

The deodorizing is done with water at 160°C-180°C and high vacuum, eliminating 

aldehydes. This process is not done where the oil is produced but in specialized 

refineries.  
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Figure 1.1 Olive oil production with the two and three phases systems based on [6]. 

 

1.2.2 Olive Oil Subproducts, Applications and Recovery 

All the steps of the olive oil production lead to different wastes and/or subproducts. 

Nowadays, with the higher interest in the environmental care, almost all the wastes 

are reutilized. 
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The residue of leaves and fine branches, produced after olives cleaning and before 

their processing. This type of waste is mainly used to feed animals, and recently, 

also to produce compost with other organic residues. In other cases, although the 

high moisture content of this waste, it is used for energy generation from biomass 

[10]. 

An important residue from the olive oil production is the marc.  Once the oil has 

been extracted from the olives, the paste formed by the pomace and the seeds is a 

waste. The marc is used to extract  marc oil, the rest is used for energy production 

after drying, and for composting. It can be used also to feed pigs and poultry, by 

milling it, in order that the seeds do not hurt the animals, and mixing it with other 

milled cereals [10].  

If the marc is used to obtain oil, after the extraction and drying there is a waste 

composed by 15%-30% of pomace, 30%-40% of seed and 30%-50% of other 

pomace solids. Its moisture is around 10% and it has a high combustible value, 

because of its high calorific power (4100 kcal/kg dry base [10]), thus, it is usually 

used to dry the marc before its oil extraction, or to generate energy for other part of 

the plant [10,11] . 

Another waste from the olive oil production is the alperujo, it is obtained only with 

the two phases extraction system. It is composed by different olive parts and 

residual oil, it has a solid  (marc) and a liquid part  (olive mill wastewaters). It is 

difficult to handle, it has been proposed to use it  to feed won, but it is necessary to 

know the  food shortages of the feeding the food that the alperujo can help to 

complete. Some studies have been done in order to valorise this subproduct. One 

solution is to use it as fertilizer. The direct use of alperujo in the soil can affect 

negatively seed germination, microbial activity and the plat growing, because of its 

organic matter, phenolic and fat acids content, although, it is rich in minerals like 

potassium that can help the soil, it is has also organic nitrogen, but it is poor in 

phosphorous and micronutrients, so, it is suitable for composting.  
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Fernández-Hernández et al (2014) [12], have studied the effects of a compost made 

with sheep or horse manure or olive pruning (used as nitrogen source or bulking 

agent) mixed with alperujo. The application of this fertilizer was evaluated  in terms 

of soil characteristics, plant growing, fruit content and oil quality. This study showed 

that the soil had a significant increase of available nitrogen, phosphorous, 

potassium and organic matter content, after the compost use. Also the fruit had 

15% more of oil than fruit obtained from a tree treated with inorganic fertilization. 

The quality of the oil was the same in both cases (compost and inorganic fertilizer). 

It has been suggested that can be used for mannitol obtaining, also to produce 

polysaccharides like xanthan and pullulan (food additives), for bioplastics, with the 

polyhydroxybutyrates (PHB) by microbial treatment, for pectin obtaining, colorants 

and antioxidants (for its phenolic content) [10]. 

Other proposal for alperujo valorisation is the biodiesel production. According to 

Hernández et al (2014) [13], the alperujo has around 4% of oil, this oil can be 

converted in  biodiesel (94.7%, crops and products) and glycerine (5.3%. crops and 

products), by transesterification in presence of basic catalyst. The biodiesel 

obtained fulfil the ASTM specifications, so this approach is promising for alperujo 

valorisation. Also Lama-Muñoz et al (2014) [14] use the alperujo oil for biodiesel 

obtaining, with a yield production very similar to that obtained for Hernández et al 

(2014). Lama-Muñoz et al (2014) [14] applied a two-step process, an acidic 

esterification to remove free fatty acids from the oil and a basic transesterification 

for the biodiesel and glycerol obtaining.  

Another use of alperujo is the pectin production. Rubio-Senent et al (2015) [15] 

obtained different pectins from alperujo treated with water steam (160°C), they 

found that the properties of the produced pectins are similar to that of the apple 

pectin, so they could be use as emulsifiers in the food industry. The biological 

properties of the studied pectins are similar to the citrus pectin, so they could have 

biomedical applications, for example, to reduce serum cholesterol levels and the 

risk of bowel cancer, and the cancer metastasis. The obtained pectins have a low 

molecular weight, so they can be easily absorbed by the intestinal track.   



23 
 

 

The olive seeds or stones are other residue. It is usually used for thermic energy 

obtaining because of its low moisture content (around 13%) and high calorific power 

(4400 kcal/kg dry base [10]). Some olive oil plants use it to generate the heat for the 

shake step or to dry the marc. Another usage is in the cosmetic field, where some 

exfoliant products use them to remove dead cell from the skin [10].  

Finally, if the oil is extracted with the three phases system, one of the wastes are 

the olive mill wastewaters (OMW). It represents an  important environmental issue 

because of its bad smell, low biodegradability, high organic, fatty acids and phenolic 

contents. It is composed by the olive water, the water added during the extraction 

process and of the olives cleaning, and it also has a certain quantity of solids. An 

important research job is being done to valorise this residue and to minimize its 

environmental impact, as it is going to be explained in the next section. 

 

1.3 Olive Mill Wastewaters (OMW) 

The olive mill wastewaters are one of the largest produced residues of the olive oil 

extraction. It has become an important environmental problem because of its 

physic-chemical characteristics that make of it a very dangerous contaminant for 

aquatic bodies and for agriculture.  

1.3.1 Olive Mill Wastewaters Characteristics  

The OMW are red-to black colored liquid, with high conductivity and mildly acidity. 

The OMW properties vary with the type of olive, the growing practices, the weather 

conditions, the olives storage time and the olive oil extraction process.  

 

Their main component is water (83%-92% [16]), followed by a high concentration of 

phenolic compounds (mainly phenolic acids, secoiridoids and flavonoids), sugars 

and different organic acids. They also contain a high quantity of potassium and 

some calcium and sodium, so the OMW could have potential as fertilizers.    
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The main characteristics of the OMW according to Dermeche at al (2013) [16] are 

listed in table 1.2. 

 

Property Value 

Dry Matter 6.33 – 7.19 

Ash (%) 1 

pH 2.24 – 5.9 

Electrical Conductivity (dS/m) 5.5 – 10 

Total Carbon (%) 2 – 3.3 

Organic Matter (%) 57.2 – 62.1 

Total organic Carbon (g/L) 20.19 – 39.8 

Total Suspended Solids (g/L) 25 – 30 

Mineral Suspended Solids (g/L) 1.5 – 1.9 

Volatile Suspended Solids (g/L) 13.5 – 22.9 

Volatile Solids (g/L) 41.9 

Mineral Solids (g/L) 6.7 

Volatile Acidity (g/L) 0.64 

Inorganic Carbon (g/L) 0.2 

Total Nitrogen (%) 0.63 

P (%) 0.19 

Na (%) 0.15 

Ca (%) 0.42 – 1.15 

Mg (%) 0.11 – 0.18 

Fe (%) 0.26 ± 0.03 

Cu (%) 0.0021 

Mn (%) 0.0015 

Zn (%) 0.0057 

Lipids (%) 0.03 – 4.25 

Total Phenols (%) 0.63 – 5.45 

Total Sugars (%) 1.5 – 12.22 

Chemical Oxygen Demand (g/L) 30 – 320 
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Biochemical Oxygen Demand (g/L) 35 - 132 

Table 1.2 Chemical Characteristics of the Olive Mill Wastewaters [16]. 

 

1.3.2 Olive Mill Wastewaters Environmental Impact 

As it has been said before, the OMW are a very important environmental concern, 

their discharge without treatment can led to several problems, they can contaminate 

much more than urban wastewaters [10]. 

The OMW have a high organic load, low pH, high COD and BOD which make them 

very toxic for aquatic life. Also their high phenolic content, the bad smell and the 

dark colour can damage not only the natural aquatic bodies, they can also change 

soil quality and its microbial activity, and properties and can be phytotoxic for plant 

growing and seed germination. 

Talking about soil pollution, it is important to say that the use of OMW as irrigation 

water is not possible, some compounds which come from the oil that can increase 

the soil hydrophobicity, decreasing water retention and infiltration rates.   

Some experiments have been done to evaluate the effect of direct irrigation with 

non-treated OMW and the results in e long term are negative, however, the OMW 

have also fertilization potential, so a pre-treatment or a rigid control in the volumes 

used for irrigation [16].  

Considering the disposal of the OMW into aquatic bodies, the can change the 

ecosystem balance because of the reduction of the available oxygen. Also, the high 

concentration of reduced sugars stimulates microbial respiration, so the level of 

dissolved oxygen reduces. Euthophication can appear as result of phosphorous or 

other OMW mineral addition, motivating plant growing and decreasing other aquatic 

species development, which can induce an important change in the aquatic 

ecosystem affected.  Also, it has been demonstrated in some marine studies [16], 

that the OMW discharge in natural water bodies deteriorate the aquatic community, 



26 
 

as it has been said, which besides the other mentioned problems, can reduce or 

change the self-purification mechanisms of the rivers, lakes, etc.   

In the surface water the OMW dark colour can lead to not sunlight reception for the 

vegetal water species, also the OMW lipids can block also block the oxygen 

exchange, damaging the ecosystem. Their use as irrigation waters can also lead to 

a high groundwater pollution.  

The OMW are also disposed in big containers for evaporation, this practice is not 

very good from the engineering point of view, because of the low stability and safety 

of the liquid accommodation. The OMW overflow is possible, contributing to the 

pollution of agricultural soil, r surface waters.  Also, the OMW led to evaporation or 

discharged into surface waters lead to their fermentation, which produces methane, 

hydrogen sulphide and other pungent gases. This, can have a negative effect on 

the normal and touristic lives of the zones near to the OMW production or disposal.   

1.3.3 Olive Mill Wastewaters Recovery 

Due to the important environmental concern that the olive mill wastewaters are, and 

because of their content of molecules of pharmaceutical interest, during the last 20 

years different detoxification, valorisation and recovery techniques have been 

studied and developed for their treatment [17].   

The most applied treatments include decolouration, solid filtration, COD reduction 

and recovery of phenolic compounds and other high added value molecules. 

Nogueira et al (2014)  [18] have applied a photocatalytic oxidation followed by the 

biological  biodegradation of funghi Pleurotussajorcaju and 

Phanerochaetechrysosporium. According to their results an important reduction in 

colour, ecotoxicity, COD and total phenols content was achieved. 

Another treatment for the OMW has been proposed by Gebreyohannes et al (2015)  

[19] with the forward osmosis. With this process the OMW are de-hydrate, the 

volume reduction achieved was of 71% with a complete decolouration and a 98% 

rejection of the phenols and ions. From the concentrate obtained in the membranes 
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were fractionated and recovered some phenolic compounds. From the phenolic 

concentrate it is also possible to obtain syngas for the production of methane, 

synthetic fuel and ammonia [19].     

The OMW can be also used for hydrogen production. Casanovas et al (2014) [20] 

have used a steam reforming process of distilled OMW for the H2 obtaining. The 

catalytic honeycombs functionalized with lanthanum-stabilized ceria with Pt and Rh 

produces 40 STP mL of pure hydrogen per mL of distilled OMW, and after the 

reaction, also an important reduction in the COD load (90%-96%) was observed. 

Also, Tosti et al (2015) [21] studied this application. They also work with distilled 

OMW and a catalytic process with a Pt-Ag membrane. They were able to achieve 

the production of hydrogen-rich mixture with a poor coke and methane formation. 

The hydrogen production is a new and very interesting approach for OMW re-

utilization.     

Another interesting work was conducted by Masi et al (2015) [22]. The OMW were 

evaporated leading to the obtaining of a concentrate rich in phenolic compounds 

and a condensate with just 2.4 gL-1 of COD (98.7% of removal after evaporation), 

which made it easily degradable biologically. The treated condensate had a pH near 

to neutrality without alkalinity dosing. The total removal of COD after complete 

processing was 99.8%. 

Scoma et al (2015) [23] used electrodyalisis for the separation-concentration of 

volatile fat acids (VFA) from OMW, for the production of polyhydroxyalkanoates. It 

was possible to remove between 30%-35% of the VFA present originally in the 

OMW studied.  

Martinez-Gonzalez et al (2015) [24] used dephenolized -fermented OMW for the 

polyhydroxyalkanoates (PHAs) obtaining using Cupriavidus necator pure culture as 

biocatalyst. The accumulation of PHAs achieved is the range of 46%-55%, 

depending on single or double sequential processing.   

The OMW also can be used for feed supplementation in animals food. 

Gerasopoulos et al (2015) [25] have studied the OMW effect in the broiler chickens 
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plasma and tissues antioxidant activity, which showed to be higher than the activity 

observed into the control (non-treated group). 

Different approaches are studied in order to valorise and recover the OMW, to avoid 

or at least to reduce their environmental impact. 

 

1.4 Phenolic Compounds 

The olives are fruits rich in antioxidants like phenolic compounds, that can be found 

in the oil after extraction, and in all extraction by-products, including the olive mill 

wastewaters, distributed in different proportions according to their polarity.  

1.4.1 Phenolic Compounds Characteristics, Properties and Applications 

They are molecules characterized by the presence of one or more phenol groups, 

they are biosynthesized as secondary metabolites in plants. They are found in fruits, 

vegetables, berries, peanuts, cocoa, wine, beer and olive oil. The plants produce 

then in response to environmental pressure, like pathogen and insect attack, UV 

radiation and wounding [26].  

 

As general classification they are separated in simple (hydrolysable tannins) and 

complex phenols (condensed tannins or flavonoids, and lignins). Also, they can be 

divided according to the type and number of phenolic subcomponents. i.e. 

hydroquinones and catechins [26].  

 

Industrially they are used in the leather tannery (tannic acid) and nowadays in the 

cosmetics and pharmaceutical fields, because of their chelating, antiaging, 

antioxidant, anticarcinogenic, antibacterial and themogenic properties. They also 

help in the reduction of cardiovascular disease risk. Some phenols are also used as 

pesticides, acaricides and insecticides. They can also be used in the food industry 

as additives, especially for the wine flavor, and some are sold as dietary 

supplements [26].  
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1.4.2 Phenolic Compounds in the Olive Mill Wastewaters and their Recovery 

Talking about the polyphenolic compounds, it is important to say that due to their 

amphiphilic nature, i.e. their polarity, they distribute between the olive oil and its 

extraction by-products [16, 27]. Most of the phenolics contained in the olives 

products have showed to be more soluble in the aqueous phase than in the oily 

one, which explains, why the polyphenols content in the olive oil is less than 5% 

while in the wastewaters is about 50% (depending on the olive type and the 

extraction system) [27]. 

 

Because of the high polyphenolic content of the Oil Mill Wastewaters (OMW), 

between 100 mgL-1 and 17500 mgL-1 [16, 28-30], they are associated with a 

negative environmental impact, since the direct discharge, in soil, of the untreated 

waters inhibits seed germination and plant growing, changes the physicochemical 

soil properties and its normal microbial activity [16]. Their disposal in aqueous 

bodies, can cause eutrophication, which can be translated into a plant growing 

decay, the development of new species in the ecosystem and the reduction in the 

population of other vegetable and animal species. Also, the phenols that give the 

dark OMW color, can contaminate water, becoming it darker, that, together to the 

OMW lipids, which for a layer in the water surface, the natural exchange of oxygen 

and sun light could be changed, leading to all the negative effects mentioned above. 

Also their bad odor is a fact to consider [16].  

As it was said before, the phenolic compounds have important health properties, 

being very interesting the antioxidant activity presented by oleuropein, tyrosol and 

hydroxytyrosol. The last one of these phenols, has showed one of the highest 

antioxidant, antibacterial anti-inflammatory and antigiogenic activities, for name just 

some of its valuable health properties [31-34], which make of it one of the most 

expensive phenolic compounds, besides to oleuropein and tyrosol. However its high 

market price, its powerful antioxidant activity, makes that hydroxytyrosol, have an 

important demand in the pharmaceutical, food and cosmetics fields [32]. Nowadays, 

there are some chemical and biotechnical ways developed for its production, being 
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all of them expensive because of the high price of some of the narrow matters [33]. 

The hydroxytyrosol recovery from OMW is a much more economical manner to 

produce it [33], because it is the most abundant polyphenol in the olive mill 

wastewaters [16, 28, 32]. 

   

Because of the OMW phenols content, that in a way or another, has to be extracted, 

different authors have propose diverse recovery methodologies. The most know 

method is the liquid-liquid extraction, using ethyl acetate as solvent [16], because of 

its high efficiency. Also, some optimization studies have been done with ethanol at 

pH2 [16]. Because of the solvent toxicity and flammability, this type of procedure is 

being replaced by the use of supercritical fluids, as CO2 [16]. However, for the 

OMW, in some cases, the polyphenols recovery yield continues to be better with the 

traditional liquid-liquid extraction separation [16].  

 

Otherwise, the membrane technology offers some alternatives by ultrafiltration 

processes [35]. Nowadays, optimization procedures are being developed, in order 

to reduce the membranes fouling, an important problem in the OMWs treatment, 

because of their high content of suspended solids [35]. However, a filtration process 

(filtration, ultrafiltration, microfiltration, etc.) is recommended as a pretreatment step 

for the OMW dephenolization [35]. 

 

Other recent initiative, is the Cloud Point Extraction technique (CPE), initially 

investigated by Gortzi et al 2010 [36], for the polyphenols recovery from wine 

sludge, using Genapol X-080 and PEG-8000 as surfactants, achieving very good 

results (75.8% and 95.8% of recovery, respectively). With this technique, an 

aqueous solution of a non-ionic surfactant is  carried to a higher temperature of 

which it stars to form micelles, so higher than its cloud point temperature, so the 

formed micelles aggregate, and a two phases separation occurs, obtaining a 

surfactant-rich phase or coacervate, and a diluted phase. The solute present in the 

initial aqueous solution, is then, distributed between both phases, so there is an 

extraction. 
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There is another way to recover phenolic compounds from OMW, the solid-liquid 

extraction. This, is an excellent manner to treat OMW, because it suitable to handle 

the large wastewaters production volumes [37], besides, it is easily adaptable to 

industrial production lines, with a semi-continuous operation [38]. 

 

In the present work has been proposed the OMW polyphenols by an adsorption-

desorption process, in a suitable cost-effective system which permits the 

wastewaters decontamination and valorization, and the recycling of the adsorption 

solid phase and the desorption solvent, in order to develop a more environmentally 

friendly process. 

 

1.4.3 Tyrosol and Hydroxytyrosol  

Tyrosol is a phenolic substance present in different organic sources. It is one of the 

most concentrated phenols in the olive oil, in the argan oil and in the white wine. 

Tyrosol is known for its antioxidant capacity. Recently, its cardio-protection 

properties were discovered and have been studied [39]. 

Hydroxytyrosol is a phenolic phytochemical compound. After gallic acid 

hydroxytyrosol is the phenol with the highest antioxidant capacity. It is known for its 

antinflamatory and antiviric properties, it also helps in the reduction of the risk of 

heart diseases and of some cancer types (skin and colon). One of the most 

important source is the olive tree, where it is a inmunostimulator and antiobiotic , it 

is present mainly in the leaves, also in the extra virgin olive oil [40]. 

As it was said before, pure tyrosol and hydroxytyrosol are usually produced by 

biological and or enzymatic pathways using different bacterial and fungal species 

[41], but this procedures require expensive reagents for the growth media.  

Knowing that olive oil, and so its by-products, the olive mill wastewaters are 

considered an important source of valuable phenolics, for this reason, research is 

done for selective recovery of antioxidants like gallic acid, tyrosol and 
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hydroxytyrosol. Some studies have been done by Sannino et al (2012) [42], they 

have proposed a small- scale process for pure hydroxytyrosol obtaining from olive 

mill wastewaters using a soxhlet continuous liquid-liquid extraction followed by two 

chromatographic stages consistent with the silica gel middle pressure and 

percolation on C-18 phase chromatography. 

Also the used of molecular imprinted polymers has been evaluated for the selective 

extraction of high added value phenols from olive mill wastewaters [31, 43, 44].  

New approaches are studied, one of this is the cyclodextrin-based polymers for 

selective solid-liquid extraction of tyrosol and hydroxytyrosol from the olive mill 

wastewaters. This technology is going to be tested and discussed in the present 

work. 
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CHAPTER 2 

THEORETICAL CONTENTS 

 

2.1 Adsorption Process  

The adsorption is a separation process based on the capacity of some types of 

solids to retain selectively target molecules (sorbate) on their surfaces. The affinity 

between the solid and the sorbate is a key parameter to develop an appropriate 

adsorption process. The sorbate transport from the liquid phase to the surface of 

solid phase and from there to binding sites, has also to be studied deeply to 

properly take advantage of this separation operation.  

2.1.1 Types of Adsorption 

There are two kinds of adsorption phenomena, the first one is the physisorption, or 

Van der Waals sorption which is completely reversible, it is due to intermolecular 

attractive forces between the molecules of the sorbate and the solid phase [45]. The 

second one is chemisorption or activated adsorption, in which there are chemical 

bonds formation between the sorbed substance and the stationary phase. In 

general, in the desorption the adsorbed substance is recovered but with some 

chemical changes, for this reason, this type of adsorption is so important in 

heterogeneous catalysis. It is also possible that both phenomenon be present 

simultaneously in the same adsorption process [45]. 

2.1.2 Types of Adsorbents 

The adsorbents are granular solids from different particles sizes and with a big 

surface area. They have to be chemically inert with the fluid which they are in 

contact with.  It is essential that the particles do not reduce their size during the 

adsorption process, and they have to offer a low pressure drop in the packed bed. It 

is imperative to understand the adsorption capacity of the sorbent according to the 

nature of the substance we want to separate. 



34 
 

2.1.2.1 Ion exchange resins  

They are used in the chemisorption. Their operating principle is the chemical 

substitution reaction between two electrolytes, one in the solution of the mobile 

phase and the other in the solid one.   

In the other hand, in the physical adsorption there are two main kinds of interaction: 

affinity ligands and hydrophobicity [46]. 

2.1.2.2 Affinity ligands 

The affinity ligands are biochemical molecules chemically attached to an inert solid. 

According, to their molecular weight and their selectivity, there are two important 

kinds of ligands, the specific and the general ones.  

As it is expected, the specific ligands have a very big selectivity, they attach just one 

composite, but they are of difficult obtaining, and are usually used for repetitive 

separations of the same compound.  

The general ligands link a group of biochemical substances, so we can separate a 

group of compounds from a solution, and in some cases we are able to do a 

separation between the group compounds. 

2.1.2.3 Silica resins 

There are of two types, coated and not coated ones. The last ones can act really 

well in water and in organic solvents, so they are widely used for the separation of 

hydrophilic substances. The covered ones are coated with long-chain alkanes, 

becoming suitable for hydrophobic compounds adsorption.  

2.1.2.4 Polymeric resins 

They have two important characteristics, their high stability and their low cost. In 

general, they are bigger than silica resins, and are suitable for process behind 4 bar 

of pressure. There are two types of polymeric resins, natural and synthetic. The 
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natural resins (dextran and agarose) are very hydrophilic and are suitable for 

separate proteins and biomaterials [46]. 

Then, for the synthetic polymers, there are two widely used in the industry, 

polyacrylamide and styrene divinylbenzene. The first ones are found as hydrogel, 

and are mainly used in the size exclusion chromatography [46].  The styrene 

divinylbenzene polymers are widely used fir the adsorption of non-polar substances 

from aqueous solutions.  

2.1.2.5 Molecular Sieves 

They are synthetic zeolites crystals. The sorbate is trapped in the crystal cells, 

according to the cell diameter, but the sieves can separate substances not only by 

size exclusion also by adsorption having into account the polarity of the sorbate 

molecule and the sieve insaturation. They are mainly used for dehydration 

processes and for gas hydrocarbons separation. They regenerate with the elution 

solvent but also by heating [46].  

2.1.2.6 Cyclodextrin-based polymers 

The cyclodextrins are cyclic oligosaccharides composed by α-1,4-coupled D-

glucose unites.  They are characterized by a high solubility in water, even if they 

have an apolar internal cavity. 

They can form inclusion or «Host-Guest» complexes with hydrophobic molecules. 

One of their most important characteristics is that there is not covalent bonds 

formation with the «Guest» molecule, so there is not chemical modification of it. 

They are widely used for drug delivery purposes [84].  

2.1.2.6.1 Cyclodextrin-based Polyurethanes (CDP) 

 Because of cyclodextrin high solubility in water, it was necessary to support them in 

a polymeric matrix, for this task polyurethanes have been chosen.  

Polyurethanes are polymeric materials obtained by the reaction of a diisocyanate 

and a poly-ol. According to the reactants couple selected, the polyurethane 



36 
 

produced has different properties. In this case, in order to enhance the CDP 

selectivity for Tyrosol and Hydroxytyrosol, different diisocianates and poly-oles were 

tested, until the best combination was found: 4,4’-methylene diphenyl diisocyanate 

and β-cyclodextrin [85]. 

 

2.2 Mass Transport 

The adsorption is a separation operation, and as in all separation processes the 

mass transport is very important. The sorbate transport from the liquid to the solid 

phase occurs through a stagnant mass transfer layer at the surface of the solid 

particle and the adsorbate diffuse through pores to an active site [46] So, there are 

different transport mechanisms that are involved. The first one is the transport by 

diffusion, in which the solute moves from the point of greater concentration to the 

point of less concentration, so the solute transport is due to concentration gradients, 

the diffusion will occur until the concentration gradient exists, even if there is not 

fluid movement. This transport mechanism is described by Fick's first law, which 

says that the mass of fluid that is diffusing is proportional to the concentration 

gradient [47]. 

𝑭 = −𝑫𝒊𝒇𝒇 (
𝒅𝑪

𝒅𝒙
)      (2 .1) 

Here, 

F is the solute mass flux per unit area per unit time 

Diff is the diffusion coefficient 

C is the solute concentration 

dC/dx is the concentration gradient 

When there is a solute carried by a moving flow, there is the solute transport by 

convection. The quantity of transported solute depends on its concentration and on 

the amount of fluid that is moving [47]. 
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If we talk about the convective transport in a porous media, for a normal flow to a 

unit cross-sectional area, the amount of flow moving  is equal to the average liquid 

linear velocity (vi) multiplied by the effective porosity of the media (ε) [47]. 

The average liquid linear velocity is the rate at which the flux of fluid across the unit 

cross-sectional area of pore space passes [47], and the effective porosity is the 

porosity in which the fluid can flow, excluding non-interconnected and dead-end 

pores [47]. 

𝑭𝒙 = 𝒗𝒙𝜺𝑪     (2.2) 

→
𝝏𝑪

𝝏𝒕
= −𝒗𝒙

𝝏𝑪

𝝏𝒙
      (2.3) 

Equation 3 is the expression for the convective transport in one dimension [47]. The 

solution of this equation leads to a sharp concentration front, in which the advancing 

side has the concentration of the invading fluid, while in the other side the 

concentration is the background value, and it does not change. This situation in 

called plug flow, and in it all the pore fluid is replaced by the invading solute front 

[47].  

The solute in a porous media flows at velocities higher and lower that the average 

linear velocity, this is due to: 

1. When the fluid is moving through the pores, it moves faster in the center than 

in the edges of the pores. 

2. To do the same linear distance, a portion of the fluid can take longer paths 

than other fluid portion. 

3. Pores are not equal between them, so the longer ones let the fluid flows 

faster. 

Thank to this different velocities, mixing is occurring along the flowpath, so that 

there is a solute dilution in the advancing flow edge. This mixing is known as 

mechanical dipersion. If it occurs in the direction of the flowpath, it called 

longitudinal dispersion and if it occurs in a direction normal to the flowpath then it is 

named transversal dispersion [47]. 
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Assuming that dispersion can be described with the Fick's first law and that the 

quantity of mechanical dispersion is a function of the liquid linear average velocity 

there is possible to talk about the coefficient of mechanical dispersion, that is equal 

to the multiplication of the dispersivity (α), which is a property of the medium, and 

the liquid linear average velocity.  

𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 𝒎𝒆𝒄𝒉. 𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒄𝒐𝒆𝒇𝒇.= 𝜶𝑳𝒗𝑳    (2.4) 

𝑻𝒓𝒂𝒏𝒔𝒗𝒆𝒓𝒔𝒂𝒍 𝒎𝒆𝒄𝒉. 𝒅𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒐𝒏 𝒄𝒐𝒆𝒇𝒇.= 𝜶𝑻𝒗𝑻       (2.5) 

The diffusion cannot be separated from the mechanical dispersion for the flow in a 

porous media, so combining them it is possible to define a parameter called 

hydrodynamic dispersion coefficient (D), which can be calculated, for parallel and 

normal direction of flow, as: 

𝑫𝑳 = 𝜶𝑳𝒗𝑳 + 𝑫𝒊𝒇𝒇        (2.6) 

𝑫𝑻 = 𝜶𝑻𝒗𝑻 + 𝑫𝒊𝒇𝒇       (2.7) 

With these parameters defined it is possible to write the Convection-Dispersion 

Equation for solute transport (Fetter 2.) This expression is based on a mass balance 

in a small representative volume of the porous media. Some assumptions have 

been done [47]: 

1. The porous medium is homogeneous, isotropic and it is saturated with the 

fluid. 

2. The flow conditions let the application of Darcy's law. 

The equation for the convective transport is: 

𝑪𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒗𝒆 𝒕𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 = 𝒗𝒊𝜺𝑪 𝒅𝑨      (2.8) 

While for the dispersive transport we have: 

𝑫𝒊𝒔𝒑𝒆𝒓𝒔𝒊𝒗𝒆 𝒕𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕 =  𝜺𝑫𝒊
𝝏𝑪

𝝏𝒊
𝒅𝑨       (2.9) 
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Where dA is the cross-sectional area and the subscript i is the direction which is 

normal to the cross-sectional area. 

So the mass flux per unit cross-sectional area per unit time is: 

𝑭𝒊 = 𝒗𝒊𝜺𝑪 −  𝜺𝑫𝒊
𝝏𝑪

𝝏𝒊
       (2.10) 

So, the mass of sorbate entering to the representative elementary volume is: 

𝑭𝒙𝒅𝒛𝒅𝒚 + 𝑭𝒚𝒅𝒙𝒅𝒛 + 𝑭𝒛𝒅𝒙𝒅𝒚       (2.11) 

The sorbate mass coming out from the representative elementary volume is: 

(𝑭𝒙 +
𝜹𝑭𝒙

𝜹𝒙
𝒅𝒙)𝒅𝒚𝒅𝒛 + (𝑭𝒚 +

𝜹𝑭𝒚

𝜹𝒚
𝒅𝒚)𝒅𝒙𝒅𝒛 + (𝑭𝒛 +

𝜹𝑭𝒛

𝜹𝒛
𝒅𝒛)𝒅𝒙𝒅𝒚       (2.12) 

The mass change rate inside the representative elementary volume is: 

𝜺
𝝏𝑪

𝝏𝒕
𝒅𝒙𝒅𝒚𝒅𝒛    (2.13) 

So doing the mass balance for the elementary volume chosen we have: 

𝝏𝑭𝒙

𝝏𝒙
+
𝝏𝑭𝒚

𝝏𝒚
+
𝝏𝑭𝒛

𝝏𝒛
= −𝜺

𝝏𝑪

𝝏𝒕
       (2.14) 

Then replacing Fi for equation 10 and after some mathematical treatment, we 

obtain: 

[
𝝏

𝝏𝒙
(𝑫𝒙

𝝏𝑪

𝝏𝒙
) +

𝝏

𝝏𝒚
(𝑫𝒚

𝝏𝑪

𝝏𝒚
) +

𝝏

𝝏𝒛
(𝑫𝒛

𝝏𝑪

𝝏𝒛
)] − [

𝝏

𝝏𝒙
(𝒗𝒙𝑪) +

𝝏

𝝏𝒚
(𝒗𝒚𝑪) +

𝝏

𝝏𝒛
(𝒗𝒛𝑪)] =

𝝏𝑪

𝝏𝒕
           

(2.15) 

For the longitudinal direction respect to the fluid flow, for a conservative solute, i.e. a 

sorbate that does not interact with the porous media, and considering the average 

liquid linear velocity vx is uniform in the space, the mass balance equation is [47]: 

𝑫𝑳
𝝏𝟐𝑪

𝝏𝒙𝟐
− 𝒗𝒙

𝝏𝑪

𝝏𝒙
=
𝝏𝑪

𝝏𝒕
       (2.16) 
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2.3 Adsorption Kinetics and Equilibrium 

2.3.1 Adsorption Kinetics 

The adsorption kinetics can be expressed in the same way as convectional reaction 

kinetics [48]. 

𝑹𝒂𝒅𝒔 = 𝒌′𝑪
𝒏     (2.17) 

Where Rads is the adsorption rate, C is the sorbate concentration and n is the kinetic 

order. 

The adsorption rate can be written in an Arrhenius form: 

𝑹𝒂𝒅𝒔 = 𝑨𝒆
(
−𝑬𝒂

𝑹𝑻⁄ )𝑪𝒏     (2.18) 

It is important to have into account that the key controlling parameters that govern 

the adsorption rate are [48]: 

1. The arrival rate of the sorbate molecules to the solid phase surface. 

2. The proportion of incident sorbate molecules that are adsorbed. 

Knowing the adsorption kinetics for a determined couple of solid and mobile phases 

is very helpful to estimate the time in which the equilibrium of the system is reached.  

2.3.2 Adsorption Equilibrium 

The adsorption equilibrium is a dynamic state, reached when the net rate of 

adsorption in the solid phase is equal to the rate of desorption [47].  

𝑪𝑳 + 𝑺
𝑲𝒆𝒒
↔ 𝑪𝑳𝑺       (2.19) 

CL is the sorbate concentration in the liquid, S represents the adsorption sites (that 

is equivalent to the sorbate concentration in the solid phase CS, so the amount of 

the sorbate that is occupying the adsorption sites) and CS in the bound to the site, 

with Keq as the equilibrium constant governing the reaction [46].  
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 In this dynamic process the most important parameter is the adsorption phase 

capacity for a particular sorbate, and as it is evident, in this characterization there 

are three important factors: the concentration of the sorbate in the liquid phase CL, 

the sorbate concentration in the solid phase Cs and the temperature.  Keeping one 

of this factors constant it is possible to represent the equilibrium of the system 

graphically. Usually the temperature is kept constant and the graph obtained is 

called adsorption isotherm.  

The gas-solid systems have been studied deeper that the liquid-solid ones, so the 

adsorption equilibrium is based on the theories investigated for gas-solid processes, 

but these models are also be applied to the liquid-solid systems. 

The linear isotherm is the first of these theories, in which it is postulated that at low 

concentrations of the sorbate, molecules are sufficiently separate to not influence 

on another, so it is possible to say that the concentration of the sorbate in the solid 

phase is proportional (equilibrium constant Keq)  to the sorbate concentration in the 

liquid phase, supposing a mono-layer formation. This model can be applied just to a 

few systems.  

𝑪𝒔 = 𝑲𝒆𝒒𝑪𝑳  (2.20) 

Where CS is the sorbate concentration in the solid phase, CL is the sorbate 

concentration in the liquid phase, and Keq is the equilibrium constant. 

One of the most used isotherm theories is the Langmuir isotherm, this equilibrium 

model supposes a mono-layer formation until saturation of the active sites of the 

solid surface, and it is based on the following assumptions [49]: 

1. Between adjacent molecules in the solid surface there are not interactions 

2. In all over the solid surface the energy of adsorption is the same 

3. Once the molecules are adsorbed, they are at fixed places and they cannot 

migrate over the solid surface  

𝑪𝒔 =
𝑲𝒆𝒒𝑪𝑳

𝟏+𝑲𝒆𝒒
    (2.21) 
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Another well-known model is  the Freundlich isotherm, it is an empirical theory 

which says that the adsorbed concentration of the sorbate in the solid phase 

increases as its concentration is higher in the media, following an exponential trend 

(Bergmann and Machado). It also proposes a multi-layer formation. 

𝑪𝑺 = 𝜷𝑪𝑳
𝟏
𝒏⁄    (2.22) 

Here, β is the Freundlich equilibrium constant and n is the Freundlich exponent [50]. 

If 1/n<1 the isotherm is considered to have a favorable shape, meaning that there is 

affinity between the solid phase and the sorbate molecules. If 1/n>1 the isotherm 

has unfavorable shape, so the solid phase could not be suitable for the sorbate 

adsorption. 

Another important  model is the BET isotherm (Brunauer, Emmet and Teller and 

Emmet and De Witt isotherm), it assumes that there are not interaction between 

adjacent adsorbed molecules, and that the retained molecules cannot migrate 

through the solid phase, as the Langmuir model. It also contemplates the formation 

of multi-layers of adsorbed sorbate and that the net amount of surface that is empty 

or has a mono, bi, tri-layer and so on, is constant for any specific equilibrium 

condition [49]. It applies the Langmuir theory to each layer, so it is the extension of 

the Langmuir model to the multi-layer case [51]. It is also applied for the 

measurement of the surface area of a material [51]. 

𝟏

𝒗[(
𝒑𝟎
𝒑⁄ )−𝟏]

=
𝒄−𝟏

𝒗𝒎𝒄
(
𝒑

𝒑𝟎
) +

𝟏

𝒗𝒎𝒄
    (2.23) 

With, 

𝒄 = 𝒆(
𝑬𝟏−𝑬𝑳
𝑹𝑻

)
    (2.24) 

p and p0 are equilibrium and saturation pressures respectively, of the sorbate gas at 

the adsorption temperature, v is the quantity of adsorbed gas, usually defined as 

volume, vm is the quantity of gas adsorbed in the monolayer, c is the BET constant, 
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E1 is the energy of adsorption for the monolayer, and EL is the energy to the next 

and higher layers, and it is equal to the heat of liquefaction [51].  

The BET equation can fit all the shapes known for an adsorption isotherm. The 

shapes that are presented in the following figure and that are taken from a 

classification proposed in an article of Brunauer, Deming, Deming an Teller  [49]. 

 

Figure 2.1 Isotherms shape classification according to Brunauer, Deming, Deming and Teller 

[49].  

Another isotherm theory with a very different point of view is known as the Gibbs 

isotherm, in it it is assumed that all the adsorbed layers behave as liquid films and 

that the adsorbed molecule can move through the solid surface. According to this it 

is possible to apply the mathematical relations of classical thermodynamics [49]. 

With this approach the properties that determine the free energy of the "film" are 

temperature, pressure, area available to the film (As) and the number of molecules 

contained (ns) [49], so the Gibbs free energy is written as: 

𝑮 = 𝑭(𝑷, 𝑻, 𝒏𝒔, 𝑨𝒔)    (2.25) 

At constant pressure and temperature, and after some mathematical treatment the 

equation for the Gibbs isotherm is: 

𝒅𝜞 =
𝒏𝒔

𝑨𝒔
𝑹𝑻𝒅(𝒍𝒏𝑷)     (2.261) 
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Where Γ is a spreading or two-dimensional pressure. 

 

2.4 Adsorption Bed Design 

To design an adsorption bed for a specific system the mandatory information 

needed are the volumetric flow rate to treat, the concentration of the target 

substance (the one to be adsorbed) in the column inlet and the maximum 

concentration accepted of the solute at the column outlet [52]. 

Once the project information is known the steps for the adsorption bed design are: 

1. Adsorbent Material Selection: To choose the adsorbent solid phase it is 

necessary to evaluate its adsorption capacity (the maximum saturation 

capacity) and the type of equilibrium relation of the system, through the 

elaboration of the adsorption isotherms, and the easiness of regeneration. It 

is also important to consider all the solid chemical and physical properties 

and its cost.   

Another important concern is the solid particle size, because as smaller they are, 

smaller is going to be the occupied volume, so the porosity of the bed, and the 

volume of the apparatus, but the pressure drop is going to be bigger.  

2. Temperature and Pressure of Operation: These parameters have to be 

estimated from the equilibrium isotherms and from the process economic 

analysis. 

 

3. Solid Phase Regeneration Frequency: If the regeneration frequency is low, 

the bed has a higher useful life, it also means, higher quantities of solid for 

each useful life period. If the regeneration frequency is high the cost of this 

step can be very high. The selection of the regeneration frequency has to be 

done according to the economic analysis of this stage. 
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4. Determination of the Effective Volume of Adsorption Bed: The minimum 

quantity of solid can be calculated from the adsorption capacity of the 

adsorbent at saturation, which can be estimated using the inlet solute 

concentration in the equilibrium isotherm expression, assuming an 

adsorption yield of 100% and a utilized bed fraction of 1. With this information 

and knowing the solid bulk density, the theoretical volume of the bed can be 

determined. The effective bed volume is calculated by increasing the 

theoretical bed volume the 20%-40%, which means an adsorption yield less 

than 100% and an utilized bed fraction minor than 1. 

 

5. Determination of the transversal area of the column: To obtain the right 

transversal area it is necessary to work with values of liquid superficial 

velocities which let non very high pressure drops. Usually, the values of 

superficial velocity are in the range of 0.25 m/s to 0.50 m/s [52].  

 

6. Determination of the column length: The column length is calculated by 

dividing the column volume by the optimal transversal section. 

 

There is also the empirical approach to design the adsorption bed. For this method 

the pilot tests are the starting point. Usually, the liquid superficial velocity is fixed, 

transversal area is calculated as well as the total volume of the column (and the 

quantity of solid to be packed), the breakthrough time and the adsorption cycle time 

can be determined from the test [52].  

With the empirical method the adsorption yield is known a priori, but the cycle time 

could not be the optimum value, and the opposite situation is present with the first 

approach [52].  
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2.5 Column Adsorption 

To optimize and design a large-scale adsorption process it is important to 

understand the adsorption dynamics. For this it is necessary to performance a mass 

balance of the process.  

The mass balance equation, excluding the reaction term is: 

𝝏𝑪𝑳,𝒊

𝝏𝒕
= −𝒗𝒊𝒏𝒕 ∙

𝝏𝑪𝑳,𝒊

𝝏𝒛
+𝑫𝑳 ∙

𝝏𝟐𝑪𝑳,𝒊

𝝏𝒛𝟐
−
𝝆𝒃

𝜺

𝝏𝑪𝑺,𝒊

𝝏𝒕
          (2.27) 

The left side of the mass balance corresponds to the accumulation term, while in 

the right side we have the convection, dispersion and adsorption terms, 

respectively.  

 Here, 

CL,i is the sorbate i concentration in the liquid phase 

z is the longitudinal distance 

DL is the coefficient of longitudinal dispersion 

Vint is the liquid phase interstitial velocity (Q/Aε) 

ε is the packed bed porosity 

CS,i is the sorbate i concentration in the solid phase. 

ρb is the density of the packed solid phase 

t is the time 

If we consider that the driving force is linear, the adsorption term can be written as: 

𝝆𝒃

𝜺

𝝏𝑪𝑺,𝒊

𝝏𝒕
= 𝒌𝑳𝒂(𝑪𝑳,𝒊 − 𝑪𝑳,𝒊

𝒆𝒒
)         (2.28) 

Where, 
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kLa is an overall mass transfer coefficient, which includes the internal and external 

mass transfer resistance [46]. 

Ceq
L,i is the sorbate i concentration in the liquid phase that is in equilibrium with the 

sorbate concentration in the solid phase (CS,i). 

If the equilibrium can be described by a linear isotherm, equation 28 can be written 

as: 

𝝆𝒃

𝜺

𝝏𝑪𝑺,𝒊

𝝏𝒕
= 𝒌𝑳𝒂 (𝑪𝑳,𝒊 −

𝑪𝑺,𝒊

𝑲𝒆𝒒
)            (2.29) 

For a Langmuir isotherm the expression would be: 

𝝆𝒃

𝜺

𝝏𝑪𝑺,𝒊

𝝏𝒕
= 𝒌𝑳𝒂 (𝑪𝑳,𝒊 −

𝑪𝑺,𝒊(𝟏+𝑲𝒆𝒒)

𝑲𝒆𝒒
)    (2.30) 

And for a Freundlich isotherm it is: 

𝝆𝒃

𝜺

𝝏𝑪𝑺,𝒊

𝝏𝒕
= 𝒌𝑳𝒂(𝑪𝑳,𝒊 − ( √

𝑪𝑺,𝒊

𝜷

𝟏
𝒏⁄

))      (2.31) 

For equations 2.29 and 2.30 Keq is the equilibrium constant, and for equation 2.31 β 

is the Freundlich equilibrium constant and n is the Freundlich exponent, as it was 

mentioned in section 2.3.2. 

2.5.1 Adsorption Breakthrough Curves 

The adsorption breakthrough curves are plots of the ratio of the sorbate outlet 

concentration and its intlet concentration in the liquid phase, as function of time (or 

the volume) [53]. 

The figure 2.2 shows an adsorption breakthrough curve [54]. 



48 
 

 

Figure 2.2 Adsorption breakthrough curve [54].  

The shape of the breakthrough curve depends also on the adsorption isotherm of 

the studied system, and its steepness determines the extent of the column capacity 

that can be used. So, the curve shape is important to stablish the column length 

[53].  

Usually, the adsorption is performed until the breakthrough point which is the 

moment in which the outlet fluid concentration is between the 5%-10% of the inlet 

concentration value. After that point, the outlet concentration increase rapidly until 

be the same as in the column fed, which means that the packed bed is saturated.  

From the breakthrough curve it is possible to obtain different information of the 

adsorption process that is occurring, by using the following equations: 

𝒎𝒇𝒆𝒅(𝒕) = 𝑸 ∙ 𝑪𝑳𝟎 ∙ 𝒕            (2. 32) 

𝒎𝒐𝒖𝒕 (𝒕) = 𝑸 ∙ ∫𝑪 ∙ 𝒅𝒕        (2.33) 

𝒎𝒔𝒐𝒓𝒃𝒆𝒅(𝒕) = 𝒎𝒇𝒆𝒅(𝒕) −𝒎𝒐𝒖𝒕 (𝒕)   (2.34) 

𝒎𝒔𝒐𝒓𝒃𝒆𝒅(𝒕) = 𝑸 ∙ 𝑪𝑳𝟎 ∙ 𝒕 − 𝑸 ∙ ∫ 𝑪 ∙ 𝒅𝒕 = 𝑸 ∙ [𝑪𝑳𝟎 ∙ 𝒕 − ∫𝑪 ∙ 𝒅𝒕]            (2.35) 

𝒎𝒔𝒐𝒓𝒃𝒆𝒅(𝒕) = 𝑾 ∙ 𝑪𝑺                (2.36) 

𝒎𝒔𝒂𝒕(𝒕) = 𝑸 ∙ ∫ 𝑪 ∙ 𝒅𝒕
𝒕𝒔𝒂𝒕

𝟎
       (2.37) 

Operational capacity of 

the column 

Lost Feed 

Unused 

column 

capacity 

Breakthrough 

point 

V fed/t 
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mfed is the solute mass fed at the column inlet, CL0 is the feed concentration, t is the 

adsorption test total time, Q is the liquid phase flow rate, mout is the sorbate mass 

that is coming out from the column, msorbate is the sorbate mass that has been 

adsorbed, W is the packed resin weight, CS is the sorbate concentration in the solid 

phase, msat is the sorbate mass theoretically adsorbed when the packed bed is 

saturated, and tsat is the time to reach saturation. 

With this information the packed bed efficiency ɳresin, which is the fraction of the 

packed bed that has been utilized, is calculated as: 

𝜼𝒓𝒆𝒔𝒊𝒏 =
𝒎𝒔𝒐𝒓𝒃𝒂𝒕𝒆(𝒕)

𝒎𝒔𝒂𝒕(𝒕)
         (2.38) 

2.5.2 Mass Transfer Units (N) and Length of Unused Bed (LUB) 

The mass transfer units (N) methodology is a method for the analysis of packed bed 

separation processes. The quantity of mass transfer units is a way to understand 

the difficulty of the studied separation, analogously at the trays of a plate column, so 

higher is the number of units, the final product has a higher purity. 

The mass transfer units can be calculated as: 

𝑵 = 𝒌𝑳𝒂 ∙
𝑳

𝒗𝒔
= 𝒌𝑳𝒂 ∙

𝑳

𝜺∙𝒗𝒊𝒏𝒕
= [

𝑳∙𝜺

𝒗𝒔
] [

𝜺

𝒌𝑳𝒂
]⁄ = 𝒌𝑳𝒂 ∙

𝝉

𝜺
=

𝒕𝒄𝒐𝒏𝒗𝒆𝒄𝒕𝒊𝒐𝒏

𝒕𝒎𝒂𝒔𝒔 𝒕𝒓𝒂𝒏𝒔𝒑𝒐𝒓𝒕
         (2.39) 

 

Where, 

vs is the liquid superficial velocity. 

If N is higher the breakthrough curve is steeper. In the case of a system with a 

linear isotherm if the column length increases, also the mass transfer zone (that is 

the length of bed over which the sorbate concentration from a higher value CL1 to a 

lower one CL2 [55] does, so the dimensionless breakthrough curve becomes 

steeper, so, ɳresin grows. With a favorable shape isotherm this effect is much more 

marked [52,56].  
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This shows that the mass transfer units  are a key parameter for adsorption 

optimization. N depends only on the mass transfer coefficient kLa and the system 

residence time τ, which means that depends on column length (L) and the liquid 

superficial velocity (vs).  

Thus, in order to increase the column efficiency, lowering the packed resin costs, 

kLa and τ have to increase, and this can be done by lowering vs or by increasing the 

column length.  

If vs is reduced, kLa will behave in the same way (because the interstitial velocity 

decreases, which is directly related with the liquid phase superficial velocity), 

lowering, so there is a minor effect in the column efficiency improvement, so, it is 

more convenient to increase the column length [52].  

This can be explained by the following expressions: 

𝒌𝑳𝒂 ∝ 𝒗𝒊𝒏𝒕
𝜷         (2. 40) 

𝑵 = 𝒌𝑳𝒂 ∙
𝝉

𝜺
= 𝒌𝑳𝒂 ∙

𝑳

𝜺∙𝒗𝒊𝒏𝒕
= 𝑲𝑻 ∙

𝒗𝒊𝒏𝒕
𝜷∙𝑳

𝜺∙𝒗𝒊𝒏𝒕
= 𝑲𝑻 ∙

𝑳

𝜺∙𝒗𝒊𝒏𝒕
(𝟏−𝜷)     (2. 41) 

Where KT is a proportionality constant.  

  Once the optimum column length is found for the small or pilot scale, the process 

can be scaled up, for this the most used procedure is the length of unused bed 

(LUB), the procedure will be explained below. 

The LUB of the adsorption column can be estimated as: 

𝑳𝑼𝑩 = 𝑻𝒐𝒕𝒂𝒍 𝒃𝒆𝒅 𝒍𝒆𝒏𝒈𝒕𝒉 − 𝑼𝒔𝒆𝒅 𝒃𝒆𝒅 𝒍𝒆𝒏𝒈𝒉𝒕      (2. 42) 

𝑼𝒔𝒆𝒅 𝒃𝒆𝒅 𝒍𝒆𝒏𝒈𝒉𝒕 = 𝑻𝒐𝒕𝒂𝒍 𝒃𝒆𝒅 𝒍𝒆𝒏𝒈𝒕𝒉 ∙ ɳ𝒓𝒆𝒔𝒊𝒏       (2. 43) 

 The LUB depends on the breakthrough curve shape; it means that it depends on 

the equilibrium isotherm of the system, and not on the column length. According to 

this, also in the larger column the LUB is going to be the same, and the packed bed 

efficiency will increase. 
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𝜼𝒍𝒂𝒓𝒈𝒆 =
𝑳𝒍𝒂𝒓𝒈𝒆−𝑳𝑼𝑩

𝑳𝒍𝒂𝒓𝒈𝒆
       (2. 44) 

With the larger column efficiency (tB) the breakthrough time for the larger column 

can be calculated as: 

𝒕𝑩 = 𝜼𝒍𝒂𝒓𝒈𝒆 ∙ 𝒕
∗     (2. 45) 

t* is the adsorption ideal time: 

𝒕∗ =
𝒎𝒇𝒆𝒅(𝒕

∗)

𝑸∙𝑪𝑳𝟎
=
𝒎𝒔𝒐𝒓𝒃𝒂𝒕𝒆(𝒕

∗)+ 𝒎𝑳(𝒕
∗) 

𝑸∙𝑪𝑳𝟎
     (2. 46) 

 𝒎𝑳(𝒕) = 𝑪𝑳𝟎 ∙ 𝑽𝑳     (2. 47) 

With VL is the liquid volume used in the test. 

If the equilibrium can be described by a linear isotherm for msorbate calculation, t* is 

estimated as: 

𝒕∗ =
𝑾∙𝑲𝒆𝒒+𝑽𝑳

𝑸
= 𝝉 ∙ (𝑲𝒆𝒒 ∙

𝝆𝒃𝒖𝒍𝒌

𝜺
+ 𝟏) = 𝝉 ∙ 𝒇𝒅𝒆𝒍𝒂𝒚    (2. 48) 

Where fdelay is the delay factor, which measures the delay of the fluid front because 

of adsorption and τ is the column residence time, which obtaining will be explained 

in the section 2.7. 

Coming back to the LUB scaling up procedure, it is important to say that if the 

isotherm which describes the system equilibrium is of favorable shape (convex 

curve) the breakthrough curve shape keeps constant, so the length of the mass 

transfer zone (MTZ), is also constant, thus, the proportion of adsorbent mass and 

unused bed length, too [52].  

If the isotherm is linear, the MTZ is not constant over the column length, so if the 

length is increased also the LUB grow. This means that if the LUB procedure is 

used for the adsorption column scale up, ɳresin will be overestimated, so, also the 

adsorbent mass will have to be overestimated [52]. 
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In general, for the optimization of an adsorption process it is important to consider 

parameters like the column efficiency, resin regeneration cost, pressure drop and so 

on, which depend simultaneously different factors as column length and diameter, 

liquid phase superficial velocity (volumetric flow) and the mass of packed resin. For 

this reason, once the optimum values for the column length and the liquid superficial 

velocity are found in small scale, the most applied practice for scaling up to the 

industrial process is to keep these values by increasing the column diameter. 

 

2.6 Fixed Bed Column Packing  

The column packing is a critical step, because the packing yield affects directly the 

column performance and, obviously, the adsorption efficiency. For medium, large 

and industrial scales, there are two ways of adding the resin beads into a column, in 

their dry form (dry packing), or as a slurry (slurry packing). These are the 

techniques applied also for chromatography columns. 

Industrially, there are three used methods, dynamic axial compression (DAC),flow 

packing and pack-in-place.  

2.6.1 The Dynamic Axial Compression (DAC): 

It is very popular because provides a constant compression to the packed bed, 

which helps to reduce the particle size segregation, and most important, minimizes 

channel formation, so the packing quality is really good. Besides, it is a one-step 

process, making it easier. 

2.6.2 The Flow Packing: 

This process can be made in two ways, constant pressure or constant flow. In each 

case, it is necessary to use a flow rate at least 30% bigger than the process real 

volumetric flow [57]. It is suitable for packing soft gel media or not very small 

particles, otherwise, channeling probability is very high, because a not really dense 

bed is formed.  
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2.6.3 The Pack-in-Place: 

This methodology is very similar to the flow packing one, it is used in case of preset 

column high, and does not need to remove the adjuster cell of the column. 

2.6.4 Dry Packing: 

This method has an important advantage, it minimizes the column washing up, but it 

has a clear disadvantage, it is very hard to have a well-packed column [58]. 

The base support (sand, ecc.) is poured inside and then washed with a solvent 

(usually the actual mobile phase) in order to remove trapped bubbles. Then the 

solid phase is poured inside. Once it is inside the solvent is passed through and the 

column is tapped to help the particles to settle with a better distribution. For this 

packing procedure, tapping demonstrated to produce beds of better quality [59]. 

The dry packing is widely used for non-spherical and low dense materials, with 

particle sizes down 50µm, with smaller diameters the quality of the bed is worsened 

[60]. It is also used when the slurry methods cannot be applied, because of 

hardware limits of the column system or for the slurry transportation.   

 

 2.7 Fluid Dynamic Characterization  

To evaluate the fluid dynamic behavior of a packed bed, usually it is applied the 

Retention Time Distribution Method or RTD method.  

The residence time distribution gives the information about the mixing that is 

occurring inside a reactor or a packed bed, and it is one of the most important 

parameters in their characterization. 

The RTD can be determined experimentally, by many different ways [61], but the 

most used methods are based in the injection of an inert tracer, which are the ones 

that we are going to explain here. 
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The tracer is injected at time t = 0, and the effluent concentration is measured at the 

outlet of the column or reactor, during time. There are two ways to inject the marker, 

the pulse input or the step input [61]. 

The first one consists in the injection of a certain amount of tracer in one shot in the 

shortest possible time (compared with the residence time). To apply this 

methodology, the dispersion between the injection point and the real column 

entrance has to be negligible, so it is necessary that the column/reactor hardware 

enables compliance with this condition, otherwise it is better to use the second 

listed approach for injecting the marker. 

 The tracer concentration is measured at the reactor outlet as function time. The 

graphic response obtained, named also as C curve [61], is showed in figure 2.3. 

 

Figure 2.3 Response of a pulse injection test [61]. 

Where C is the tracer concentration at the reactor/column outlet. It can be 

measured as conductivity, radioactivity or by absorbance [61]. 

With the C curve it is possible to obtain the Residence Time Distribution Function or 

E curve which "describes in a quantitative manner how much time different fluid 

elements have spent in the reactor"1.  

 

The E curve is obtained from the experimental data with the following equation: 

                                                           
1 S.H.  Fogler & M.N. Gürmen, Elements of Chemical Reaction Engineering, forth ed., Pearson, Michigan, 2008. 
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𝑬(𝒕) =
𝑪(𝒕)

∫ 𝑪(𝒕)𝒅𝒕
∞
𝟎

   (2.49) 

The denominator in equation 1 is the area below the C curve, so the integral can be 

estimated by numerical methods application. 

Another important expression for the RTD function is: 

∫ 𝑬(𝒕)𝒅𝒕 = 𝟏
∞

𝟎
  (2.50) 

If we consider that  ∫ 𝐸(𝑡)𝑑𝑡
𝑡2

𝑡1
 is the fraction of matter that is coming out from the 

reactor that has been inside it for a period of time between t1 and t2, equation 2 

results evident. 

On the other hand, the step input method, considers a time-varying injection 

marker, usually in a system with a constant volumetric flow rate.  

The response obtained at column/reactor outlet is showed in figure 2.4.  

 

Figure 2.4 Response of a step injection test [61]. 

From this curve, it is possible to calculate the Cumulative Retention Time 

Distribution Function or F curve. The F function is defined as: 

𝑭(𝒕) =
𝑪(𝒕)𝒐𝒖𝒕

𝑪𝒐
    (2.51) 

Then, from the F curve RTD Function can be estimated as: 
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𝑬(𝒕) =
𝒅 𝑭(𝒕)

𝒅𝒕
   (2.52) 

Once the E function is found, the average residence time can be calculated with the 

following equation: 

𝒕 = 𝝉 = ∫ 𝒕 × 𝑬(𝒕)𝒅𝒕
∞

𝟎
    (2.53) 

The theoretical residence time (τ) is equal to the average residence time if there are 

not dead zones inside the column/reactor. 

With this information is also possible to estimate the packed bed porosity (for a 

packed column or a packed bed reactor) by applying the following expressions: 

𝑳𝒊𝒒𝒖𝒊𝒅 𝑽𝒐𝒍𝒖𝒎𝒆 = 𝑽𝒐𝒍𝒖𝒎𝒆𝒕𝒓𝒊𝒄 𝑭𝒍𝒐𝒘  𝒓𝒂𝒕𝒆 ×  𝝉     (2.54) 

𝜺 =
𝑳𝒊𝒒𝒖𝒊𝒅 𝑽𝒐𝒍𝒖𝒎𝒆

𝑻𝒐𝒕𝒂𝒍 𝒄𝒐𝒍𝒖𝒎𝒏 𝒓𝒆𝒂𝒄𝒕𝒐𝒓⁄  𝑽𝒐𝒍𝒖𝒎𝒆
    (2.55) 

With the E curve obtaining is very important to characterize a packed bed and to 

evaluate the packing quality and the column efficiency, which are very significant 

parameters, because the column/reactor performance and the reproducibility of the 

results obtained depend directly on them.  

A high quality packing has to be homogeneous and stable, with no air bubbles of air 

trapped, with no channels or preferential paths formation. 

To test the efficiency of the column and the quality of the packing the most used 

approach is the theoretical plate model, presented by Martin and Synge in 1941 

[62]. This model proposes the column division in several discrete sections, called 

theoretical plates, in which the sorbate in the solid and in the mobile phases is in 

partition equilibrium, so it (sorbate) is moving through the column in an equilibrated 

liquid phase from one plate to another [63]. 

The E curve obtained can be used for calculating the numbers of plates of a column 

and to evaluate column packing, as follows: 
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Figure 2.5 E curve( for pulse or step injection) or C curve (for pulse injection) analysis for 

packing quality and column efficiency testing. Modified from [64]. 

 

𝑵 = 𝟓. 𝟓𝟒 (
𝝉

𝑾𝒉
)
𝟐

  (2.56) 

 Where, 

N is the number of plates 

τ is the residence or retention time 

Wh is the peak width at half height  

With the number of plates the height equivalent of a theoretical plate or HETP can 

be estimated as: 

𝑯𝑬𝑻𝑷 =
𝑳

𝑵
   (2.57) 

L is the column length 

Higher is the number of plates (N) or smaller is the value of HETP, the efficiency of 

the column is higher. 

With these two parameters the reduced plate height or h can be calculated with the 

expression: 

E(t) or 

C(t) 
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𝒉 =
𝑯𝑬𝑻𝑷

𝒅𝒑
     (2.58) 

According of different analytical and process chromatographic column producers 

[64,65], application in which the packing quality and column performance are as 

significant as for an adsorption process, values of h ≤ 3 are characteristic of a high 

efficiency column. 

Another important parameter is the asymmetry factor or As of the peak, which 

measures the deviation of the obtained peak from an ideal Gaussian peak. 

𝑨𝒔 =
𝒃

𝒂
      (2.59) 

Where b is the right half of the E curve or C curve, and a is its left half. 

If 0.8 ≤ As ≤ 1.8 the packing can be considered of good quality and a good 

performance of the column can be expected [65].  

As with values minor than 0.8 are present in peaks with fronting, which means that 

the packing was over-packed, and values superior than 1.8 (peaks with tailing) 

mean under-packed beds, and in both cases the column has to be re-packed [65]. 

Also, according to PALL Life Sciences [65] and GE Healthcare Bio-Sciences [64] 

technicians, although the values for N, HETP, h, and As, the most important is the 

repeatability of them not only after each packing procedure, also after several 

separation (adsorption) cycles, so it is important to do the fluid dynamic test not only 

after packing, but also after the different steps of the separation process itself. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Olive Mill Wastewaters (OMW), resins, Cyclodextrin-based polyurethane 

(CDP) and chemicals 

The OMW used in this study, labeled “Imperia 2012”, “Imperia 2013” and “Imperia 

2014” were provided by an olive mill located near Imperia, in the North-West of Italy. 

The OMW labeled as “Gallipoli 2012” produced in the Apulia Region in Southern 

Italy. The main characteristics of the tested OMW are reported in Table 4.2. 

For the phenolics mixture recovery, the adsorption non-ionic solid phase is the 

styrene-divinylbenzene  resin Amberlite XAD 16 (DOW Chemicals Europe GmbH, 

Horgen, Switzerland). Its main characteristics are described in the Table 3.1. The 

resin was activated as follows: i) resin soaking with acidified ethanol (0.5% HCl 

0.1N), ii) overnight drying at 105°C, iii) second resin soaking with acidified ethanol, 

iv) washing with demineralized water (twice) [66]. Finally, the activation solvent was 

removed by siring aspiration and a mass of activated and hydrated resin (28.3% 

w/w resin, 71.7% w/w water) was obtained. 

 

The adsorption ionic-exchange solid phases tested are the anionic resins Amberlite 

IRA958Cl and IRA 67Cl (DOW Chemicals Europe GmbH, Horgen, Switzerland). 

The first one in a strongly basic anion exchange resin, with quaternary ammonium 

functional group in a crosslinked acrylic polymer matrix, and the last one is a weakly 

basic anion exchange resin, with tertiary amine functional group in a crosslinked 

acrylic gel structure. The properties of both ionic resins are listed on tables 3.2a. 

and 3.2b. 

The cyclodextrin-based polyurethane (CDP) used for tyrosol and hydroxytyrosol 

selective recovery was synthetized by the FHNW research group, as it is described 

in the section 2.2. The reagents for CDP synthesis, the solvents for Ty and HTy 
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elution, and the HPLC mobile phase components for the Ty and HTy method, were 

obtained from Sigma Aldrich (Buchs, Switzerland).  

 

The desorption-regeneration solvent for phenols mixture recovery, the HPLC mobile 

phase components for total PCs content analysis, gallic acid, the Folin-Ciocaletu 

reagent, sodium carbonate, sodium chlorate, sulfuric acid, the ABTS reagent, the 

ascorbic acid and the solvents for resin activation were obtained from Sigma Aldrich 

(Milan, Italy). The COD Test Tubes were acquired from Aqualytic (Dortmund, 

Germany). 

 

Matrix Macroreticular aliphatic crosslinked polymer 

(styrene / divinylbenzene) 

Physical form White translucent beads 

Specific density (kg/L) 1.039 

Adsorption capacity at saturation 

(mg/gdry resin)a 

370 

Surface area (m2/g) 800 

Porosity (dry resin; L/L) 0.55 

Average particle size (dry resin; mm) 0.63 

Uniformity coefficient 2.0 

Fines content (mm) < 0.350: 2.0% max 

Coarse content (mm) > 1.18: 2.0% max 

Maximum reversible swelling 25% (on p-xylene via methanol) 

Table 3.1 Technical characteristics of adsorption resin Amberlite XAD 16. 
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Matrix Crosslinked acrylic macroreticular structure 

Functional groups 

Physical form 

Quaternary ammonium 

White opaque beads 

Ionic form as shipped 

Total exchange capacity (Cont. Value) 

Chloride 

≥0.8eq/L (Cl- form) 

Moisture holding capacity (Cont. 

Value) 

66 to 72% (Cl- form) 

Specific gravity 

Shipping weight  

Particle size 

1.05 to 1.08 (Cl- form) 

720 g/L 

 

Uniformity coefficient 

Harmonic mean size 

Fine contents (Cont. Value) 

Coarse beads 

≤1.8 

630 to 850 µm 

<0.355 mm : 1.0% max 

>1.180 mm : 5.0% max 

Table 3.2 a). Technical characteristics of adsorption ionic resin Amberlite IRA 958Cl. 

 

Matrix Crosslinked acrylic gel structure 

Functional groups 

Physical form 

Tertiary amine 

Translucent white spherical beads 

Ionic form as shipped 

Total exchange capacity (Cont. Value) 

Free Base (FB) 

≥1.60eq/L (FB form) 

Moisture holding capacity (Cont. 

Value) 

56 to 64% (FB form) 

Shipping weight  

Particle size 

700 g/L 

 

Uniformity coefficient (Cont. Value) 

Harmonic mean size (Cont. Value) 

<0.300 mm (Cont. Value) 

Reversible swelling 

≤1.8 

0.500 to 0.750 mm 

3.0% max 

FB → Cl- ≤ 30% 

Table 3.2 b). Technical characteristics of adsorption ionic resin Amberlite IRA 67Cl. 
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3.2 Cyclodetrin-based Polyurethane Synthesis 

 

To prepare 668g of CDP are needed 290g of methylated β-cyclodextrin (MeβCD) 

and 378g of 4,4'-methylene diphenyl diisocyanate (MDI). The polymerization 

reaction occurs in presence of dibutylin dilaureate (DBTDL, 2mL) as catalyst. In one 

flask the MeβCD with 630mL of acetone. In a second flask put the MDI with 270mL 

of acetone. Both flasks were stirred at heated until 40°C. Once the temperature was 

reached, 2mL of DBTDL were added to the MeβCD suspension , and stirring 

continued for 10 minutes. Then, heating was stopped and the MeβCD flask was put 

in ice. The MDI suspension was added dropwise to the MeβCD flask, agitating 

vigorously for 30 seconds. A white polymer was obtained, it was scrapped to get a 

powder. The CDP was washed with acetone to remove residual DBTDL, and then 

with water to eliminate MeβCD not reacted. The polymer was dried under vacuum 

overnight, and grinded with a small kitchen crusher. 

 

3.3 Analytical methods 

3.3.1 Total Phenols 

Two different approaches were applied and compared to measure total PCs: the 

conventional colorimetric test developed by Folin and Ciocalteu (FC) [67] and an in-

house developed HPLC method. In the Foulin-Ciocalteu (FC) method, 25 mL flasks, 

carefully cleaned with sulfuric acid 25% and washed with de-ionized (DI) water, 

were filled with 12.5 mL of DI water, 125 µL of sample (diluted as required, to avoid 

absorbance signal saturation) and 1.25 mL of FC reagent. After 2 minutes, the 

reaction was quenched by adding 3.75 mL of sodium carbonate (20% w/v). Finally, 

the flasks were diluted to the volume mark, and left at 75°C for two hours. Then, the 

absorbance was read at 765 nm with a Cary 100Scan UV spectrophotometer 

(Agilent, Santa Clara, California), using as reference a dephenolized OMW obtained 

by repeated adsorptions with the Amberlite XAD16 resin until the attainment of a 
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final PC content < 1% of the original PC level in the OMW, and then treated with FC 

reactants. The method was calibrated with acid gallic as external standard. 

For the HPLC method, a Jasco 880 pump, a Jasco 875-UV Intelligent UV/vis 

detector (Easton, Maryland) set at 264 nm and a C18 Kinetex 2.6 m 100A 

Phenomenex column were utilized. The flow was set at 1.0 mL/min. The following 

mobile phase gradient was applied: 0-4 minutes, 100% phase A (HPLC water with 

0.1with orthophosphoric acid); 4-6 minutes, 70% phase A and 30% phase B 

(acetonitrile); 6-15 minutes 70% phase A and 30% phase B. The mobile phase 

gradient was designed to merge all the phenolic peaks into a single broad peak. 

This approach makes the analysis faster and the method more sensitive, but it 

prevents the identification of the single compounds. An internal standard (gallic acid 

50 mg/L) was added in each HPLC analysis.  

 

3.3.2 Tyrosol (Ty) and Hydroxytyrosol (HTy) Quantification 

A HPLC method was developed for quantifying Ty and HTy in the inlet OMW and in 

the adsorption and desorption samples. An Agilent 1100 Series G1311A Quat 

pump, an Agilent 1100 Series G1313A ALS UV/VIS detector set at 230 nm and a 

ZORBAX SB-C18  4.6 µm 5-Micron column, were used. The flow rate was set at 1.0 

mL/min, the column was thermostated at 15°C and the mobile phase was 

composed by 90% acidified water (0.1% H3PO4) and 10% pure acetonitrile. The 

time of each analysis was 70 minutes.  

 

3.3.3 Total Solids 

20 mL of OMW were dried overnight at 105°C in a porcelain crucible, cooled in a 

desiccator and weighted using a 4-digit analytical balance. The procedure was 

applied in triplicate. Suspended Solids. 20 mL of OMW were filtered with a 0.45 µm 

ALBET cellulose nitrate membrane filter and placed in a Whatman vacuum filtration 

system. The filter was dried at 105°C for two hours, cooled in a desiccator and 

weighted. The procedure was applied in triplicate. Dissolved solids were calculated 

as the difference between total and suspended solids. 
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3.3.4 COD 

The COD was measured spectrophotometrically using the Aqualytic COD Vario 

Tubes (range: 0-1500 mgO2/L). Each tube contained potassium permanganate in an 

acid medium, to which 2 mL of diluted sample were added. The tubes were then left 

at 150°C for 2 hours in a ECO16 Velp Scientifica thermoreactor (Monza, Italy). After 

cooling the tubes for 30 minutes, the absorbance of each sample was measured at 

610 nm. For COD of selected desorption samples, the ethanol (elution solvent) was 

stripped with nitrogen and the residual solid was re-suspended in water, in the same 

volume of ethanol that was stripped.  

 

3.3.5 Total carbohydrates 

The total carbohydrates were determined by a modified Dubois method [68]. The 

calibration curve was made with glucose as standard. All measurements were done 

in duplicate.  

3.3.6 Total lipids 

Lipids were evaluated as reported in [69] using as a standard the olive oil produced 

at the industrial plant to which the tested OMW belongs.  

3.3.7 Total proteins 

Proteins were determined with the Bradford method [70], by using the commercial 

protein assay dye reagent concentrate from BioRad (Milano, Italy). 

3.3.8 Density and pH 

A 100 mL ITI Tooling  pycnometer was used for OMW density estimation, whereas 

pH was measured with an EUTECH Instruments pH 2700 Series pH-meter 

(Thermoscientific, Walthman, Massachusetts). 

3.3.9 Antioxidant Activity (ABTS Assay) 

From the ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) stock 

solution (7mM in 2.5mM of K2SO7) was prepared one day before the assay and it 
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was left to incubation overnight without light at room temperature. Then, before the 

analysis, the ABTS work solution was prepared form the stock solution using the 

spectrophotometer at 734 nm, the final absorbance has to be 0.7+/-0.02.  1mL of 

the ABTS work solution reacted with maxim100µL of sample (already diluted).Then 

the analysed samples were incubated at 30°C for 30 minutes and read in the 

spectrophotometer at 734 nm, using water as blank. The calibration line was done 

with ascorbic acid as standard [71].  

To calculate the antioxidant activity of the sample as µg of ascorbic acid 

equivalent/µL of sample, the following expression was applied: 

𝐀𝐧𝐭𝐢𝐨𝐱𝐢𝐝𝐚𝐧𝐭 𝐀𝐜𝐭𝐢𝐯𝐢𝐭𝐲 (
𝛍𝐠 𝐚𝐬𝐜𝐨𝐫𝐛𝐢𝐜 𝐚𝐜𝐢𝐝 𝐞𝐪.

𝛍𝐋 𝐬𝐚𝐦𝐩𝐥𝐞⁄ ) =

𝐕𝐚𝐥𝐮𝐞 𝐜𝐚𝐥𝐮𝐥𝐚𝐭𝐞𝐝 𝐟𝐫𝐨𝐦 𝐜𝐚𝐥𝐢𝐛𝐫𝐚𝐭𝐢𝐨𝐧 𝐥𝐢𝐧𝐞 (𝐠 𝐚𝐬𝐜𝐨𝐫𝐛𝐢𝐜 𝐚𝐜𝐢𝐝 𝐞𝐪.)×𝐬𝐚𝐦𝐩𝐥𝐞 𝐝𝐢𝐥𝐮𝐭𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫

𝐒𝐚𝐦𝐩𝐥𝐞 𝐯𝐨𝐥𝐮𝐦𝐞 𝐫𝐞𝐚𝐜𝐭𝐞𝐝 𝐰𝐢𝐭𝐡 𝟏𝐦𝐋 𝐀𝐁𝐓𝐒 𝐰𝐨𝐫𝐤 𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧 (𝛍𝐋 𝐬𝐚𝐦𝐩𝐥𝐞)
                                            

(3.1) 

3.3.10 Volatile Fat Acids (VFA) Content 

For VFA quantification a HPLC method was applied. A Shimadtzu pump, with a 

refraction index detector and a coregel H3 columnm thermostated at 40°C, were 

used. The mobile phase is H2SO4 0.12N. The flow rate was set initially at 0.6 

mL/min. In order to separate properly the VFA a ramp of flow rate was 

implemented, as it is shown in table 3.3. 

 

 

Time Flow Rate 

0 min  to 28.2 min 0.6 mL/min 

28.2 min to 34.5min 0.9 mL/min 

34.5 min to 62 min 1.3 mL/min 

62 min to 64 min 0.6 mL/min 

Table 3.3 Flow rate ramp for HPLC method for VFA quantification. 
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3.4 Adsorption Columns System 

 

3.4.1 Adsorption Columns System for Phenolic Mixture Recovery 

 

The adsorption system for PCs recovery is composed by an in-line microfiltration 

system, in which a filter holder of 12.5 cm of diameter kept a Whatman paper filter 

of 25µm or a 11µm, according to the OMW pretreatment step (section 3.7), followed 

by four pyrex glass columns, each one of 52.5 cm of length and 2.44 cm of 

diameter. The columns were connected in series by Teflon pipes and steel fittings, 

but could also work separately. The total length of the adsorption zone is 2.00 m. 

Each column had one sampling point in the top and other one at the bottom, letting 

the change of the flow direction, and the sampling at different lengths of the 

adsorption zone when the columns worked connected. The top sampling point 

worked also as purge to remove the trapped air that could accumulate in the 

packing and rinsing operations, or for possible leakages in the system. Before the 

first, the  second and the fourth columns, pressure indicator were put. The last 

column was connected to an auto sampling system composed by 15 electrovalves 

L321 (Sarai) with the respective timers, which let overnight programmed sampling. 

 

A picture and a process flow diagram of the adsorption system is displayed in 

figures 3.1a. and 3.1b. 

 

Figure 3.1 a). PCs adsorption system 
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Figure 3.1 b). Process flow diagram of the  PCs adsorption system 

3.4.2 Adsorption Column System for Tyrosol and Hydroxytyrosol Recovery 

 

For the Ty and HTy recovery system, the OMW pre-treatment was done separately, 

using the filter holder and the Whatman filter paper of 11µm used in the PCs 

adsorption system.  

 

The adsorption pilot plant is made in stainless steel; it is composed by one storage 

tank of 25L for the OMW, connected to a feed tank of 2L. Between these tanks 

there was a Wolftechnik Filtersysteme Filtergehäuse F-10 cartridge filter of 5µm, 

that was not used because on the small pore size, to avoid pressure drop problems. 

The adsorption system had also one rinsing tank of 15L, and two elution vessels 

(for desorption solvents) of  2.0L, two columns of 13.0 cm of length and 6.0 cm of 

diameter connected in series by steel pipes and fittings. The columns could also 

work separately. There were also two reclaim tanks of 5L each, and a collecting 

tank for the dephenolized OMW of 30L. The feed, rinsing and elution tanks had 

EGE MFP 075 GA-LM030 filling level meters. Between the feed tank and the 

column there was a Bronkhorst mini CORI-Flow mass meter which gave the signal 
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of the mass flow rate passing to the software in which the process was programed 

and controlled. Another equal device was located between the elution tanks (in the 

point in which the pipes of each tank became one pipe) and the column. 

The columns were connected to a two auto sampling systems, one for collecting the 

adsorption samples, and the second for the desorption ones. Each auto sampling 

system let the collection of 46 fractions. WIKA A-10 pressure sensors were located 

between the feed, rinsing and elution tanks and the columns.  Two WIKA TR-30 

temperature sensors were located at the columns bottom. The system had 33 

Gemü 0322, 0324, 0326 magnetic valves and a HOKE R6000 overflow valve. 

 

The OMW were fed by a magnetic-diaphragm metering Prominent Delta pump at 

the bottom of the column, with a maximum velocity of 0.52 m/h. The desorption 

solvents were fed at the column bottom with two Bram hose pumps at 0.44 m/h, and 

the rinsing water was fed at the column bottom by a Verder Verdergear motor VEM 

pump. The process settings were fixed with the software SIMENS S7-1200, and all 

the control parameters of the pilot plant. The control system worked with 

compressed air at 5 bars. The complete adsorption system and the program 

software belong to SIMA-tech GmbH (Schwalmtal, Germany). 
 

 

Figure 3.2 a). "Laboratory-Phenols-Adsorption-Reactor" of SIMA-tec GmbH (Schwalmtal, 

Germany), fot Ty and HTy adsorption (SIMA-tec). 
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Figure 3.2 b). Process flow diagram of the "Laboratory-Phenols-Adsorption-Reactor" of SIMA-

tec GmbH (Schwalmtal, Germany), fot Ty and HTy adsorption (SIMA-tec). 

 

3.5 Adsorption Kinetics  

 

3.5.1 Adsorption Kinetics for Amberlite XAD 16 

 

To know the time that takes to the system resin-OMW, to 1.5L of OMW was added 

the equivalent of 93.5g of dry Amberlite XAD 16 (previously activated, section 3.1). 

The volume of liquid phase was chosen in order that with sampling the total volume 

did not change more than 5%, otherwise, the thermodynamical properties of the 

system could change and the data obtained would not be representative of the 

initial system. 

The mixed phases are then located in a shaker at 140 rpm. A sample of 2mL was 

taken every 4 minutes until 20 minutes, then every 10 minutes until 60 minutes, 
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then at 90 minutes and finally at 120 minutes. The samples were analyzed with the 

total phenols HPLC method. 

Then, with the concentrations obtained in the liquid phase samples, it was possible 

to know how was changing the concentration of the target compounds in the solid 

phase by applying the following equation, for each sampled point: 

 

𝑸𝒔𝒐𝒍−𝒆𝒒 (
𝒎𝒈

𝒈𝒅𝒓𝒚 𝒓𝒆𝒔𝒊𝒏 𝒐𝒓 𝑪𝑫𝑷
) =

(𝑪𝒍𝒊𝒒𝒊𝒏𝒊𝒕𝒊𝒂𝒍
−𝑪𝒍𝒊𝒒𝒔𝒂𝒎𝒑𝒍𝒆−𝒆𝒒

)×𝑻𝒐𝒕𝒂𝒍 𝑽𝒐𝒍𝒖𝒎𝒆𝒍𝒊𝒒

𝑾𝒆𝒊𝒈𝒉𝒕𝒅𝒓𝒚 𝒔𝒐𝒍𝒊𝒅 𝒑𝒉𝒂𝒔𝒆
                                   

(3.2) 

 

3.5.2 Adsorption Kinetics for CDP 

 

For the CDP-OMW system, 30 g of dry CDP polymer were added to 1L of OMW, 

and shaked at 140 rpm. Every 10 minutes until 60 minutes a sample of 2mL was 

taken of the liquid phase, then, every 20 minutes until 120 minutes and finally, every 

30 minutes until 180 minutes. The samples were analyzed with the Ty and HTy 

HPLC method. 

Then, with the concentration obtained in the liquid phase the concentration change 

in the solid phase for Ty and HTy was calculated with the equation 3.2. 

 

3.6  Adsorption Isotherms 

 

3.6.1 Adsorption Isotherms for Amberlite Resins (Phenolic Mixture) 

 

The adsorption isotherms of the total PCs contained in the tested OMW “Imperia 

2012” were studied both at 21 and 30°C. Different amounts (0.1, 0.2, 0.5, 1.0 or 2.0 

g) of dry resin were introduced into 50 mL glass vials. Two vials were set up for 

each amount of resin. The resin activation procedure (Section 3.1) was performed 

inside each vial. After adding 20 mL of OMW were added. 
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For the other OMW tested, all the estimated resin that was going to be used for 

isotherm obtaining, was activated (Section 3.1), and then, the equivalent of 5.0g of 

dry was put in beakers with different OMW quantities (10mL, 25mL, 40mL, 60mL, 

90mL, 125mL, 180mL and 270 mL).  Then the beakers were placed in a rotatory 

shaker (140 rpm, at the set temperature) for 2 h. The equilibrium total PC 

concentration in the liquid phase was evaluated with the HPLC method. The same 

procedure was applied for the isotherms obtaining with Amberlite IRA 958Cl, the 

beakers were shaken for 3 h, and the PCs concentration in the liquid phase was 

evaluated with the Total Phenols HPLC method. 

 

The equilibrium concentration in the solid phase CS,eq was then calculated  as:  

 

𝑪𝑺,𝒆𝒒 =
(𝑪𝑳,𝒐∙𝑽𝑳,𝒂𝒅𝒅𝒆𝒅−𝑪𝑳,𝒆𝒒∙𝑽𝑳,𝒇𝒊𝒏𝒂𝒍)

𝒎𝒔
                   (3.3) 

 

where mS is the dry resin mass, CL,0 and CL,eq are the initial and final concentrations 

of PCs, in the liquid, whereas VL,added and VL,final are respectively the OMW volume 

added to the solid and the final liquid volume resulting from the sum of the added 

OMW and the water initially contained in the activated resin. For Amberlite IRA 

958Cl case, VL,final = VL,added , because there was not a previous activation 

procedure. The 95% confidence intervals associated to CS,eq were calculated using 

standard error propagation rules, on the basis of the 95% confidence intervals 

associated to the experimental measurements of CL, VL and mS. The 95% 

confidence interval associated to CL, was estimated from 15 replicated HPLC 

analyses of a reference gallic acid standard solution (50 mg/L). 

 

3.6.2 Adsorption Isotherms for CDP (Tyrosol and Hydroxytyrosol) 

 

For the CDP case, 2.0g of dry polymer in beakers with 5mL, 20mL, 50 mL, 150 mL, 

250 mL and 350 mL of OMW. The Ty and HTy concentration in the liquid phase 

were analyzed with the HPLC method for Ty and HTy quantification (Section 3.3.2). 
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The respective Ty and HTy equilibrium concentrations in the solid phase were 

estimated with the equation 3.3. For CDP case, VL,final = VL,added , because there was 

not a previous activation procedure. 

 

 

3.7 OMW pre-treatment 

 

To avoid a gradual pressure drop increase in the adsorption column and eventually 

the complete clogging of the inlet section, a suitable OMW pre-treatment aimed at 

suspended solids removal must be performed. For this reason, an OMW 3-step pre-

treatment was set up. The first step consisted in centrifugation at 4000 rpm for 30 

minutes, using a Thermoscientific SC16R centrifuge (Walthman, Massachusetts). 

The second and third step consisted in a continuous in-line microfiltration performed 

respectively with 25 µm and 11 µm GE Healtcare Life Science Whatman filters, 

placed in plastic filter holders. Filtration was performed at 1.67 cm/min superficial 

velocity.  

For the Ty and HTy adsorption the OMW were centrifugated at 7000 rpm for 20 min 

and then filtered with the filter holder used in the PCs adsorption system, using the 

GE Healtcare Life Science Whatman filter paper of 11µm, in this case the OMW 

were fed to the filter with a ISMATEC peristaltic pump, at 2.5 cm/min superficial 

velocity.  

 

3.8 Adsorption column packing 

 

3.8.1 Adsorption Column packing Amberlite Resins 

 

The semicontinuous adsorption / desorption tests were performed in a glass 

columns of 0.525 m and 2.000 m length with inner diameter 0.020 m. After placing a 

10-mm layer of quartz sand at the bottom of the column, the latter was filled with 

activated XAD16 resin using the Dynamic Axial Compression (DAC) technique, by 

applying two alternative procedures. The first procedure was based on the use of a 
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slurry prepared by mixing equal volumes of activated resin (Amberlite XAD 16) and 

of a 10% solution of acidified ethanol (HCl 0.1 N 0.5%) in water [72]. The slurry 

resin was then divided into 4 aliquots. After pouring each aliquot, the column was 

filled with acidified ethanol and the solvent was extracted and recirculated 

downwards with a Masterflex L/S 0.1HP 1-100 RPM pump (Cole-Parmer, Vernon 

Hill, Illinois) until the stable settling of the resin. Then, a further aliquot was fed and 

the procedure was repeated. The second procedure was based on the use of two 

activated resin slurries, prepared with DI water (100 gdry_resin/LDI water and 600 

gdry_resin/LDI water, respectively). Each slurry was sonicated for 5 minutes in order to 

remove the air trapped in the resin beads. Initially, 150 mL of the first slurry were 

poured on the sand layer and left to natural settling for one hour. Then, after 

recirculating DI water downwards until the stable settling of the resin, 25 mL of the 

second slurry were added in three steps, and a further DI water recirculation was 

applied. As a final step in both column packing procedures, a further 10-mm quartz 

sand layer was placed at the top of the resin and the column was flushed 

downwards overnight with DI water. 

The packing procedure with demineralized water performed markedly better than 

that employing acidified ethanol, with: i) a slight increase in the number of 

theoretical plates (from 93 to 117), a 23-fold reduction in terms of HETP/dp (from 

0.32 to 7.5) and an asymmetry factor significantly closer to 1 (0.82 for the acidified 

ethanol procedure, 1.1 for the demineralized procedure). The demineralized water 

procedure was thus utilized for the PCs adsorption/desorption tests object of this 

work. The same procedure was applied for packing Amberlite IRA 958Cl resin. 

 

3.8.2 Adsorption Column Packing for CDP  

 

For the CDP packing, because of the adsorption system hardware limits and the 

probable non-sphericity of the particles (powder obtained after grinding with a 

kitchen crusher), a slurry packing method is not suitable. In this case, ¼ at the 

column bottom and upper part were filled with sand, and 2/4 with dry CDP. Once 

the column was closed, demineralized water at 25mL/min (maximum flowrate of the 
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system) was fed from the top of the column for 1h, then, the procedure was 

repeated, feeding the demineralized water from the bottom of the column. The 

water feeding cycles were repeated for another couple of hours, not only for packing 

the polymer, also for cleaning the CDP of possible residuary substances from its 

synthesis. 

 

 

3.9 Fluid dynamic test 

 

3.9.1 Fluid dynamic test Amberlite Resins Packed Bed 

 

To evaluate the packing quality and the fluid dynamic behaviour of the packed bed, 

a frontal analysis experimental test was carried out after each packing procedure. A 

0.04 M NaCl solution was fed from the top of the column at a superficial velocity of 

1.22 m/h. At the column outlet, the electrical conductivity (EC) was measured with 

an EUTECH Instruments 2700 series conductimeter. 

The packing quality was evaluated by means of two approaches based on the 

analysis of the retention times distribution curve (RTD) obtained by calculating point 

by point the derivative of the sigmoidal experimental curve of normalized EC versus 

time provided by the fluid-dynamic test [61,73]. The first approach is based on the 

Theoretical Plate Model: the number of theoretical plates Ntp can be evaluated as: 

 

𝑵𝒕𝒑 = 𝟓. 𝟓𝟒 ∙ (𝒕𝑹 𝒘𝟏/𝟐⁄ )
𝟐
     (3.4) 

 

where tR indicates the retention time of the RTD curve and w1/2 its width at half-

height. The height equivalent to a theoretical plate (HETP) can then be calculated 

as L/Ntp, where L indicates the column length. A high-quality column packing is 

characterized by a value of HETP/dp < 3, where dp indicates the average size of the 

packing particles [64]. The second approach is based on the asymmetry factor (As), 

defined as the ratio between the leading and tailing semi-width of the peak at 10% 
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of the peak height, and representing the peak deviation from a Gaussian curve. Its 

value should be as close as possible to 1 [64]. 

The frontal analysis data were also utilized to estimate the effective porosity (ε) and 

longitudinal dispersivity (αL) of the resin packed bed. The former parameter was 

evaluated directly from the RTD curve according to the procedure proposed by 

Levenspiel [73], whereas the latter was estimated by best-fit of the experimental 

outlet concentrations with a 1-D convection-dispersion model: 

 

𝜹𝒊 ∙
𝝏𝑪𝑳,𝒊

𝝏𝒕
= −𝒗𝒊𝒏𝒕 ∙

𝝏𝑪𝑳,𝒊

𝝏𝒛
+𝑫𝑳 ∙

𝝏𝟐𝑪𝑳,𝒊

𝝏𝒛𝟐
  (3.5) 

 

In Eq. (3.5) the retardation factor δi, equal to 1+Keq,i ρb / ε, was set to 1 due to the 

absence of NaCl adsorption, the interstitial velocity vint was calculated as Q / (St 

εresin) for the resin bed (10 mm < z < 515 mm) or Q / (St εsand) for the two sand 

layers (z < 10 mm and 515 mm < z < 525 mm or 1990 mm < z < 2000 mm, 

according to the column length), and the equivalent diffusion coefficient DL was 

approximately expressed as αL,resin · vint,resin or αL,sand · vint,sand [47]. The integration of 

Eq. (3.5) was performed with the time-dependent convection/diffusion module of the 

finite element PDE solver Comsol Multiphysics 3.5a, using as input values the 

estimates of εsand and αL,sand obtained in preliminary tests and the value of εresin 

estimated as described above. As for αL,resin, its best-fit value and the 95% 

confidence interval were determined by applying the Gauss-Newton method, 

following the procedure illustrated by Englezos and Kalogerakis [74] and later 

adapted to convection-dispersion problems by Zama et al. [75]. In particular, the 

integration of Eq. (3.5) was repeated for different values of αL, until the minimization 

of the sum of the squared residuals between experimental and calculated values at 

the column outlet. As a convergence criterion, the Gauss-Newton algorithm was 

stopped when the relative variation in αL,resin resulted < 10-3. This procedure was 

implemented by means of a dedicated MATLAB code. 
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3.9.2 Fluid dynamic test CDP Packed Bed 

 

For the Ty and HTy adsorption system, the fluid dynamic test performed was the 

same using the WTW LF 296 conductimeter with a WTW Tetracon 325 electrode, 

both coupled in the SIMA-tec Allrounder 15 pilot plant, so the pipe at the column exit 

was connected to the conductimeter system inlet of this second pilot plant. A NaCl 

0.01M solution was used as tracer and was fed at the same liquid linear velocity of 

the adsorption tests (section 3.10).  

 

3.10 Adsorption Process:  

 

3.10.1 Breakthrough tests and simulations for Amberlite Resins 

 

In the case of the Amberlite XAD 16 resin, after packing the column with the second 

procedure, several adsorption breakthrough tests were performed with the 

experimental OMW, at different superficial velocities from  0.8 cm/min to 7.6 cm/min 

and at two different column lengths (0.525 m and 2.000 m). These velocities were 

selected on the basis of the values typically used in similar studies [37, 38, 76-80]. 

The breakthrough test were performed at room temperature. The pre-treated OMW 

was fed downwards with a Masterflex L/S 0.1 HP 1-100 RPM peristaltic pump. Both 

pressure drop and temperature were measured hourly. The total PCs concentration 

was measured with the HPLC method in OMW samples taken every hour from the 

column exit and every 3 hours from the inlet, whereas COD was measured in 

selected samples at the column inlet and outlet. The average PCs concentration 

and COD values at the inlet were used to normalize the corresponding outlet 

values. Continuous-flow dephenolization processes are typically stopped in 

correspondence with the attainment of a relatively low PCs level at the column 

outlet, the break-point (e.g., COUT/CIN = 0.10-0.20). However, in the initial 

experimental tests were continued up to outlet normalized PC concentrations 

varying between 0.56 (bt 1) and 0.65 (bt 2), in order to increase the extension of the 
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experimental breakthrough curve, and thus the reliability of the subsequent model 

simulations. The following adsorption tests were performed until 0.2 – 0.3 of 

normalized concentrations. 

 

In order to validate the proposed PCs adsorption method, a repeatability test was 

performed by conducting four adsorption/desorption cycles at the same conditions 

(same packed bed and liquid linear velocity of 5.0 cm/min), using the procedure 

described above, with the resin Amberlite XAD 16. 

 

The experimental normalized PCs and COD breakthrough curves were interpreted 

by means of two types of 1-D convection-dispersion models, in order to study the 

key controlling phenomena, to evaluate the process efficiency and to set up the 

basis for a model-based optimization and scale-up of the process. A first set of 

simulations was performed under the hypothesis of local adsorption equilibrium and 

linear adsorption isotherm (on the basis of the results of the PC isotherm studies). 

In these simulations, the normalized PC and COD concentrations were interpreted 

with Eq. (3.5), with the retardation factors δPCs or δCOD expressed as (1+Keq,PCs · ρb / 

εresin) or (1+Keq,COD · ρb / εresin) for the resin layer (10 mm < z < 515 mm or 1990mm, 

according to the column length used) and set to 1 for the two sand layers. The bulk 

density ρb was calculated as the mass of dry resin introduced during the packing 

process divided by the volume of the column portion occupied by resin. Using the 

estimates of εresin and αL,resin obtained from the fluid-dynamic test as input values, 

the equilibrium constants Keq,PCs and Keq,COD relative to each breakthrough test were 

estimated by best-fit on the corresponding experimental concentrations following 

the Gauss-Newton method described in section 3.8. As a convergence criterion, the 

algorithm was stopped when the average parameter variation resulted < 10-3. 

In a second set of simulations, conducted under the hypothesis of not negligible 

mass-transfer resistance and linear isotherm, the normalized outlet PCs and COD 

were interpreted with the following equation: 

 

𝝏𝑪𝑳,𝒊

𝝏𝒕
= −𝒗𝒊𝒏𝒕 ∙

𝝏𝑪𝑳,𝒊

𝝏𝒛
+𝑫𝑳 ∙

𝝏𝟐𝑪𝑳,𝒊

𝝏𝒛𝟐
− 𝒌𝑳𝒂 ∙ (𝑪𝑳,𝒊 −

𝑪𝑺,𝒊

𝑲𝒆𝒒,𝒊
)       (3.6) 
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where CL,i indicates the PCs or COD liquid phase concentration, CS,i the 

corresponding solid-phase concentration (gi/gdry resin) and kLa the mass-transfer 

coefficient. In this model internal and external mass transfer phenomena are 

expressed by means of an overall volumetric coefficient and an overall driving force 

[56]. The same kLa value was assumed to be valid for PCs and COD. The presence 

of a solid-phase concentration independent of the liquid-phase concentration 

requires the addition of the mass-balance relative to CS,i, characterized by the 

absence of any convection or dispersion: 

 

𝝆𝒃

𝝐
∙
𝝏𝑪𝑺,𝒊

𝝏𝒕
= 𝒌𝑳𝒂 ∙ (𝑪𝑳,𝒊 −

𝑪𝑺,𝒊

𝑲𝒆𝒒,𝒊
)   (3.7) 

 

In these simulations, while kLasand and Keq,sand (for z < 10 mm and 515 mm < z < 525 

mm or 1900 mm < z < 2000 mm accrding to the column length used) were set equal 

to zero, both Keq,PCs and kLaresin (for 10 mm < z < 515 mm or 1900 mm according to 

the column length used) were estimated by best-fit on the experimental PC 

concentrations following the Gauss-Newton method, and the resulting value of 

Keq,PCs was compared to that obtained from the corresponding PCs isotherm. In the 

COD simulations, only Keq,COD was estimated by best-fit on the experimental COD 

concentrations, whereas the kLaresin best estimate obtained from the corresponding 

PCs breakthrough test was used as an input value. For both sets of simulations, the 

quality of each best fit was evaluated by means of the correlation coefficient R2, 

defined so as to allow the comparison of models with different numbers of 

parameters [81]: 

 

𝑹𝟐 = 𝟏 −

[
∑ (𝑪𝑳,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅,𝒋−𝑪𝑳,𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅,𝒋)

𝟐𝑵
𝒋=𝟏

𝑵−𝑷−𝟏
]

[
∑ (𝑪𝑳,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅,𝒋−𝑪̅𝑳,𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅)

𝟐𝑵
𝒋=𝟏

𝑵−𝟏
]

⁄          (3.8) 
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where N indicates the number of experimental data and P the number of 

parameters evaluated by best fit on the experimental data (1 or 2, depending on the 

set of simulations). 

For each breakthrough test, the best-fitting simulation was utilized to estimate two 

types of parameters useful for the evaluation of the adsorption process 

performance: the PCs and COD adsorption yields Yads,PCs and Yads,COD, and the 

resin utilization efficiency (or percent utilization) ηresin, complementary to the 

normalized length of unused bed [56]. Both types of parameters were evaluated 

relatively to the fraction of breakthrough curve comprised between CPC,OUT/CPCs,IN = 

0 and CPCs,OUT/CPCs,IN = 0.20, so as to obtain data representative of a hypothetical 

industrial process. The adsorption yields Yads,i were evaluated as mi,sorbed,20% / 

mi,fed,20%, where mi,sorbed,20% indicates the PCs or COD mass adsorbed until the 

attainment of a 20% outlet normalized PCs concentration, and mi,fed,20% indicates 

the corresponding PCs or COD mass fed to the column. mi,sorbed,20% was estimated 

as: 

 

𝒎𝒊,𝒔𝒐𝒓𝒃𝒆𝒅,𝟐𝟎% = 𝒎𝒊,𝒇𝒆𝒅,𝟐𝟎% −𝒎𝒊,𝒐𝒖𝒕,𝟐𝟎%  (3.9) 

 

where mi,out,20% is the mass lost in the outlet up to the 20% breakpoint. Eq. (3.9) 

neglects the liquid phase PCs content at the 20% breakthrough point, which is 

generally negligible and whose fate is determined by the process choices on how to 

move from the adsorption phase to the regeneration step. mi,out,20% was calculated 

by integrating the breakthrough curve: 

 

𝒎𝒊,𝒐𝒖𝒕,𝟐𝟎% = 𝑸 ∙ ∫ 𝑪𝑳,𝒊,𝑶𝑼𝑻  ∙ 𝒅𝒕
𝒕𝟐𝟎%

𝟎
   (3.10) 

 

A more compact expression for mi,sorbed,20% can be obtained combining Eqs. (3.9) 

and (3.10): 

 

𝒎𝒊,𝒔𝒐𝒓𝒃𝒆𝒅,𝟐𝟎% = 𝑸 ∙ ∫ (𝑪𝑳,𝒊,𝑰𝑵 − 𝑪𝑳,𝒊,𝑶𝑼𝑻)  ∙ 𝒅𝒕
𝒕𝟐𝟎%

𝟎
 (3.11) 



80 
 

 

The integrals in Eqs. (3.10) and (3.11) were calculated by numerical integration of 

the best-fitting simulated outlet concentrations.  

The resin utilization efficiency ηresin represents the fraction of adsorption bed 

capacity actually utilized. It was evaluated, only for PCs adsorption, as: 

 

𝜼𝒓𝒆𝒔𝒊𝒏 =
𝒎𝑷𝑪𝒔,𝒔𝒐𝒓𝒃𝒆𝒅,𝟐𝟎%

𝒎𝑷𝑪𝒔,𝒔𝒐𝒓𝒃𝒆𝒅,𝒔𝒂𝒕.
            (3.12) 

                

where mPCs,sorbed,sat indicates the PCs mass theoretically adsorbed by the resin upon 

saturation of the sorption capacity. If the equilibrium constant is known, mPCs,sorbed,sat 

can be evaluated as   Keq,PCs · CL,PCs,IN mresin. Alternatively, by extrapolating the best 

fitting simulation, it can be estimated as  𝑄 ∙ ∫ (𝐶𝐿,𝑖,𝐼𝑁 − 𝐶𝐿,𝑖,𝑂𝑈𝑇)  ∙ 𝑑𝑡
𝑡99%

0
  where t99.9% 

indicates the time theoretically corresponding to the attainment of an outlet PCs 

concentration equal to 99.9% of the inlet value. 

 

For the resin Amberlite IRA 958Cl, two breakthrough tests were performed at 5.0 

cm/min and 2.1 cm/min, using the same procedure described for Amberlite XAD 16 

above for PCs and for COD adsorption. Simulations where not performed because 

of the not very good results observed with this resin, which is going to be discussed 

in the chapter 4. 

 

3.10.2 Breakthrough test for CDP 

 

In the CDP adsorption case, four test were performed in one column (13.0 cm of 

length) using the OMW “Imperia 2014”, fed at  0.87cm/min, 0.58 cm/min and 0.44 

cm/min for 1h. Samples at the column outlet were taken every 3 min, and 3 samples 

of the fed were taken in different moments during the test. Each sample was 

analysed with the HPLC method for tyrosol and hydroxytyrosol. The average Ty and 

HTy concentrations at the inlet were used to normalize the corresponding outlet 
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values. The analysis of the experimental data was done as described for the 

Amberlite XAD 16 for PCs, the COD adsorption was not studied in this case.  

 

 

 

3.11 Desorption-regeneration tests 

 

3.11.1 Desorption-regeneration tests for Phenolic Mixture Recovery 

 

For the phenolics mixture recovery, to desorb and recover the PCs, at the end of 

each adsorption test acidified ethanol (0.5% v/v HCl 0.1N) was fed from the top of 

the column with a Masterflex L/S 0.1 HP -1-100 RPM pump. The solvent flow rate 

was initially set to the OMW flow rate of the corresponding adsorption test. 

However, due to the increase in solvent viscosity associated to the increase in PCs 

dissolved concentration, a gradual decrease in solvent flow rate was required in 

order to maintain the total pressure at the column inlet < 2 bars. Desorption was 

continued until the attainment of a PC concentration < 5% of the average inlet 

concentration during the adsorption step. This criterion corresponded to a total 

desorption time equal to 5 HRTs for Amberlite XAD 16. The desorbed extract was 

submitted to low-pressure distillation in a rotatory evaporator (LABOROTA 4002 

Heidolph, Schwabach, Germany), in order to regenerate the solvent and recover the 

desorbed matter. Temperature was kept at 30°C with a Heizbad WB Heidolph 

thermostated bath (Schwabach, Germany), and vacuum (0.5 bar of absolute 

pressure) was applied with a Vacuubrand diaphragm vacuum pump (Wertheim, 

Germany). Water at 5°C was used as coolant. Preliminary tests indicated that 

desorption with acidified ethanol is also an effective resin regeneration method for 

Amberlite XAD 16. On the basis of the integral PCs concentration measured in the 

ethanol collected from the column outlet, the desorption yield Ydes,PCs was evaluated 

as mPCs,desorbed,total / mPCs,sorbed,total. 

The same procedure was applied for PCs desorption and bed regeneration in the 

case of Amberlite IRA 958Cl. 



82 
 

 

3.11.2 Desorption-regeneration tests for Tyrosol and Hydroxytyrosol 

Recovery 

 

For desorbing Ty and HTy, a batch test was performed with 7 different organic 

solvents or their mixtures with water or acidified water (0.5% v/v HCl 0.1N). For this 

test, 2.0g of CDP were added to 25mL of ethyl acetate, methanol, methanol/water 

(60%/40%), acidified water (0.5% v/v HCl 0.1N), dicloromethane, methanol/acidified 

water (20%/80%) and acetonitrile/acidified water (15%/85%). The flasks were 

shaked at 140 rpm for 2h. According to the results of this experiment, as first 

approach for continuous desorption, pure methanol fed from the column bottom was 

used, but the obtaining of elution fractions with low concentrations of Ty and HTy 

leads to the implementation of a gradient of three mobile phases: acidified water 

(0.5% v/v HCl 0.1N), acetonitrile and methanol as it is presented in the table 3.3. 

Samples in the column outlet were taken every 3 minutes, the desorption was 

stopped when the concentrations of Ty and HTy were not detected by the HPLC. 

The desorption yields were calculated as mTy,desorbed,total / mTy,sorbed,total and 

mHTy,desorbed,total / mHTy,sorbed,total , for Ty and HTy, respectively. After desorption, the 

column was rinse with demineralized water, no further treatment was necessary 

before starting a new adsorption cycle. 

 

Time (min) Solvent 

0 min to 15 min Acidified water 

15 min to 30 min 95% Acidified Water + 5% Acetonitrile 

30 min to 42 min 85% Acidified Water + 15% Acetonitrile 

42min to 72 min 75% Acidified Water + 25% Acetonitrile 

72 min to 84 min 80% Acidified Water + 20% Methanol 

84 min to 99 min 40% Acidified Water + 60% Methanol 

99 min to 159 min 100% Methanol 

Table 3.4 Solvent gradient for Ty and HTy desorption. 
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3.12 Preliminary Economic Analysis for Phenolic Mixture Recovery with 

Amberlite XAD 16 

 

 In order to evaluate the economic feasibility of the proposed adsorption process for 

the PCs recovery some assumptions for the hypothetical industrial process were 

considered (table 3.5). 

Process Characteristics 

Plant production (OMW treated / 

year) 

10000 m3/y 

No. of cycles with the same resin 50  

Column length 2 m 

Column diameter 0.42 m 

Pump efficiency 0.65  

Ethanol loss per cycle 4 % 

Table 3.5 Process assumptions for preliminary economic analysis. 

With the results obtained, an evaluation of the factor which impacted significantly 

the total process cost, was done. Also, a way to calculate the cost resin 

replacement is presented in the section 4.7.   

 

3.13 Amberlite IRA 958Cl and Amberlite IRA 67Cl Resin Screening                                                                                     

 

In order to test the performance for PCs adsorption of two ionic-exchange resins 

some batch experiments were conducted. The resins were tested at different 

conditions of pH (OMW pH, pH 6 and pH 7, adjusted with a NaOH  10M solution) 

and with and without VFA presence (acetic acid 2.0 g/L, propionic acid 1.0 g/L, 

butyric acid 2.0 g/L and valeric acid 1.0 g/L, to mimic the VFAs concentration in an 
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anaerobically digested OMW). The VFA influence in PCs adsorption was evaluated 

because the possibility of feeding anaerobically digested OMW to the adsorption 

columns was considered, as part of an experimental change in the bio-refinery 

process in which the adsorption column is one of the first steps. 

The OMW at each condition were prepared the day before the test, and were left in 

the fridge overnight at 4°C.Inside microcosms bottles were poured 25 g of each 

resin (dry weight), and after that, 50 mL of sample of OMW were put inside. The 

filled bottles were closed and left in a shaker at 140 rpm and at room temperature 

(24°C). In the initial test, samples were taken at 3h and 24h, because of not 

concentration change in the liquid, for the following experiments, the total time was 

fixed at 3h. After 3h, all the liquid phase was taken and the flasks were filled with 

NaOH 3% (w/v) or acidified ethanol (0.5% v/v with HCl 0.1N), then they were 

closed. The bottles were shaked at 140 rpm for 3h. Finally, all the liquid phase was 

collected. The samples were left in the fridge before starting the analysis. The Total 

Phenols concentration was measured with the HPLC method (section 2.3.1). For 

the samples in NaOH, the pH was corrected (pH 5) with HCl 1M, before analysis. 

COD concentration was measured with the COD Aqualytic COD kit (section 2.3.5). 

For the samples in NaOH, the pH was corrected (pH 5) with HCl 1M, before 

analysis. For the samples in acidified ethanol, the ethanol was stripped with 

nitrogen, and the samples were re-suspended in the same volume of distillated 

water. 

 

VFA concentration was measured with the HPLC (section 2.3.11). For the samples 

in NaOH the pH was corrected by diluting the sample 5 times in the HPLC mobile 

phase, and then 50μL of H2SO4 4N, were added to reach a final pH near to 2 (the 

pH of the HPLC mobile phase). For the samples in acidified ethanol, the ethanol 

was stripped with nitrogen, and the samples were re-suspended in the same 

volume of distillated water, this step was necessary because the ethanol has the 

same retention time of the isobutyric acid. 
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CHAPTER 4 

RESULTS AND DISCUSSION: RECOVERY OF PHENOLICS 

MIXTURES 

In this chapter the continuous flow solid-liquid extraction of a phenolic mixture from 

olive mill wastewaters using different commercial resins is discussed. A simulation 

model is proposed and evaluated with the experimental data. Also a preliminary 

cost study is done for the process with the resin Amberlite XAD 16.  

 

4.1 Ancillary results: PCs analytical method selection  

 

The HPLC PCs method was studied in order to develop a fast, precise and 

automatable analytical tool to assess the adsorption performances, whereas it was 

not meant as a substitute of the Folin-Ciocalteu (FC) method, widely adopted for 

PCs content assessment. Indeed, neither method guarantees that all and only 

phenolic compounds will be detected: the HPLC method could in principle sum non-

phenolic compounds to the actual PCs and/or fail to detect specific PCs, whereas 

the FC method can be characterized by an interference due to other organic 

compounds present in OMW (i.e. proteins and carbohydrates). Both the traditional 

FC method and the proposed HPLC method treat the PCs mixture as a pseudo 

component, expressing the total PCs concentration as specific PC equivalent (gallic 

acid in this case). These methods thus avoid the complexity of taking into account 

the contribution of each single compound. This approximation is less severe in the 

case of the FC method, which recognizes the chemical functionality by the selective 

colorimetric reaction. For that reason, some preliminary cross-checks between the 

two methods were carried out.  

In the first place, the PCs content in the studied Imperia 2012 OMW was measured 

using both methods (Table 4.1). As expected, the total PCs concentrations 

measured with the two methods were not equal, and a 36% lower value was 
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observed with the HPLC method. In order to strengthen the comparison between 

the two methods, the same type of analysis was applied to a different OMW, 

characterized by a higher PCs concentration and by a different PCs composition 

(Gallipoli 2012 OMW, produced in the Apulia Region in Southern Italy, See table 

4.2). As shown in Table 4.1, the agreement between the two methods is similar. On 

the other hand, the low relative errors associated to the HPLC method (equal to 

about 1/3 of the FC relative errors) indicate that the HPLC method is significantly 

more precise.  

OMW type Imperia 2012 Gallipoli 2012 

Folin-Ciocalteu method (g/L) 1.96 ± 0.37 4.14 ± 0.81 

HPLC method (g/L) 1.26 ± 0.09 2.79 ± 0.16 

Deviation between the two 

methods 

36% 33% 

 

Table 4.1 PCs concentrations measured in two distinct OMWs with the Folin Ciocalteu 

colorimetric method and with the HPLC method: average values ± 95% confidence intervals. 

 

Finally, PCs concentration in the samples taken at the column outlet during one of 

the breakthrough tests performed in this work (Bt2), conducted at 30°C and 2.4 

cm/min) was analyzed with both methods. This validation test was aimed at 

checking the capacity of the HPLC method to mimic the FC results in the 

characterization of the adsorption process. As different PCs are eluted at different 

breakthrough times, the outlet composition is continuously changing. Thus, this test 

is far more severe than the simple comparison of total OMW PCs. The results are 

shown in Fig. 4.1 in terms of dimensionless outlet PCs concentration versus 

dimensionless time, defined as time / HRT. The deviation between the two methods 

ranged between 0.4% and 17%, with an average value (10%) comparable to the 

relative analytical errors. The scrutiny of Fig. 4.1 confirms the higher precision of the 

HPLC method. On the basis of these results, the HPLC method was selected as the 

reference method for this study.  
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Figure 4.1 Dimensionless outlet PCs concentration versus dimensionless time for 

breakthrough test n. 2 (30°C, 1.44m/h): comparison between the HPLC method and the Folin-

Ciocalteu method. 

 

4.2 Olive Mill Wastewaters (OMW) Characterization 

The main characteristics of the different OMW analysed are displayed in Table 4.2. 

The results presented were obtained with the procedures described in section 3.3 of 

chapter 3. 
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Table 4.2 Main characteristics of the tested “Imperia 2012”, "Imperia 2013", "Imperia 2014" 

and “Gallipoli 2012” OMW. 

All the procedures were applied in triplicated. For the total phenols content was 

applied the hplc method described in section 3.3.1 to three samples of the inlet 

OMW before starting each breakthrough test. 

 

4.3 Adsorption Kinetics for Amberlite XAD 16 

In order to obtain the time in which the equilibrium of the system is achieved, 

experiments of adsorption kinetics were performed for all the studied systems. 

The adsorption kinetics for the resin Amberlite XAD 16 were obtained according to 

the procedure described in the section 3.5. The results achieved with the OMW 

Imperia 2012 are displayed in the following graph. 

OMW IMPERIA 

2012 

IMPERIA 

2013 

IMPERIA 

2014 

GALLIPOLI 

2012 

Total phenols Content 

(g/L) 

1.6 0.51 0.8 2.9 

Total solids (g/L) 34 13 N.A 77 

Suspended solids (g/L) 0.7 4.5 N.A 40 

Disolved solids (g/L) 33 8 N.A 37 

COD (g/L) 32 21 32 69 

Total carbohydrates 

(g/L) 

5.4 23 16.2 16.8 

Density (g/mL) 1.01 1.00 1.01 1.02 

pH 4.60 4.59 4.96 4.62 
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Figure 4.2 Adsorption Kinetics for the Amberlite XAD 16 and the OMW Imperia 2012. 

The concentration of total phenols was measured in the liquid phase, so their 

concentration in the solid phase was obtained indirectly using the expression: 

𝑸(
𝒎𝒈

𝒈𝒅𝒓𝒚 𝒓𝒆𝒔𝒊𝒏
) =

(𝑪𝑳𝒐−𝑪𝑳𝒊)×𝑽𝒐𝒍

𝑾𝒅𝒓𝒚 𝒓𝒆𝒔𝒊𝒏
                (4.1) 

 Where 

Q is the mass of total phenols per gram of dry resin 

CLo is the initial concentration of total phenols in the liquid phase 

CLi is the total phenols concentration in the sample 

Vol is the total volume of the liquid phase 

Wdry resin  is the mass of dry resin  

According to the results plotted, the dynamic equilibrium is reached at 

approximately 1 hour. 

Similar results were obtained for the OMW Imperia 2013 and Imperia 2014 with the 

same solid phase (Amberlite XAD 16). 
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4.4 Adsorption Isotherms for Amberlite XAD 16 

The adsorption isotherms describe the equilibrium relation between the liquid and 

the solid phases that are in contact. 

The adsorption isotherms were obtained at different temperatures for all the OMW-

resin systems studied. 

This resin was the most studied adsorbent phase, so the adsorption isotherms were 

obtained at different temperatures with the OMW Imperia 2012 and Imperia 2013. 

All isotherms were achieved using the procedure described in the section 3.6. 

4.4.1 OMW Imperia 2012 

The isotherms were obtained at 21°C and 35°C. The results obtained are displayed 

in the following graph. 

 

 

 

 

 

 

 

 

Figure 4.3 Adsorption isotherm for the system OMW Imperia 2012-Amberlite XAD 16 at 21°C 

and at 35°C. 

As it is expected, the adsorption constant is higher when the temperature is lower. 
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4.4.2 OMW Imperia 2013 

The adsorption isotherms for the OMW Imperia 2013 were obtained as it is 

described in the section 3.6 of the chapter 3. 

In this case, to be sure that the isotherm could be considered linear also at high 

adsorption grade , the OMW Imperia 2013 were concentrated through a rota 

evaporator system, thus the las two points of the isotherms were concentrated to 

1/3 and 2/3 of the initial volume, respectively.  

 

Figure 4.4 Adsorption isotherm for the system OMW Imperia 2013-Amberlite XAD 16 at 10°C 

and at 25°C. 

Despite the quite high data dispersion in the four isotherms, the points seem to 

follow a slightly pronounced sigmoidal curve that might result from the competitive 

adsorption of multiple PCs, measured by the selected analytical method as a single 

equivalent compound.  Nevertheless, as shown in Fig. 4.4, at all tested 

temperatures a linear interpolation – corresponding to the initial linear part of the 

Langmuir curve – resulted in acceptable R2 values. Indeed, the almost linear 

behavior of these isotherms is reasonable considering that the resin adsorption 

capacity (370 mg/gdry resin, referred to medium molecular weight compounds; Table 
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3.1) is almost 10 times higher than the maximum concentration of sorbed PCs 

attained in these tests (47 mg/gdry resin, without considering the last two concentrated 

points os the OMW Imperia 2013 isotherms). Also, with the concentrated points in 

the isotherm of the OMW Imperia 2013, still, a linear behaviour is observed. Thus, 

other types of interpolations were not taken into consideration. The best estimates 

of Keq,PC obtained from the isotherms of Fig. 4.3 and 4.4 are in agreement with the 

results of Bertin at al. [28], who tested XAD16 on a different OMW. Although Bertin 

at al. [28] used both a Langmuir and a Frendlich isotherm, their experimental data 

correlate very well with a straight line corresponding to an equilibrium constant of 58 

L/kgdry resin, versus  42-193 L/kgdry-resin in this study. 

 

4.5 Fluid Dynamic Characterization for Amberlite XAD 16 

In order to evaluate the packing procedure and to calculate some important 

parameters for the adsorption process (bed porosity and residence time) fluid 

dynamic tests of stimulus/response with step disturbance using NaCl as tracer, as it 

was described in the section 3.8.  

The test were performed after each packing procedure and during the repeatability 

test (discussed later), after each adsorption/desorption cycle.  

The initial fluid dynamic tests were done to evaluate the packing quality of the bed. 

The packing was achieved using the first procedure described in the section 3.9, 

using demineralized water with acidified ethanol as solvent for the resin slurry. 

Then, for the next tests the second packing procedure explained in the same 

section, was applied. Before chose that packing procedure, a comparison of the 

packing quality was done in order to choose the most reliable and most repeatable 

procedure. The packing quality and the repeatability of the parameters calculated 

from it affect directly the adsorption performance of the column, so the selection of 

the right packing procedure is a crucial step for an adsorption process. 
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 In the figure 4.5 there is shown as a representative example a Cumulative 

Retention Time Curve or F Curve, obtained during one of the fluid dynamic tests 

performed (superficial velocity range 2.0 cm/min to 5.1 cm/min). 

 

Figure 4.5 F Curve after column packing. Liquid superficial velocity of 5.03 cm/min. 

The uniformity of the sigmoidal curve means a good packing quality. Deriving the F 

curve it is possible to obtain the Retention Time Curve or E Curve from which is 

possible to calculate the different parameters that characterize the packing (N, 

HETP, h and As, see section 2.7). 
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Figure 4.6 E Curve obtained  by derivation of F curve. Liquid superficial velocity of 5.03 

cm/min. 

As it was said before, two column packing methods were applied in order to decide 

the best one for our purposes. The obtained results are presented in the table 4.3. 

Parameter 

First packing 

procedure 

(Acidified ethanol) 

Second packing 

procedure 

(Demineralized water) 

No. of theoretical plates (N) 93 117 

Height of theoretical plate /dp  (h) 7.5 0.32 

Asymmetry factor (As) 0.82 1.10 

Table 4.3 Comparison between the two column packing procedures evaluated. 

With the second packing procedure, the column has a higher number of plates, a 

reduced plate height (h) minor than 3 [64], and the asymmetry factor is nearer to 1, 

all of them, characteristics of a very high quality packing. Thus, the second column 

packing procedure was chosen as the method to pack our adsorption column. 
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Then, in order to evaluate the stability of the packed bed, a fluid dynamic test was 

performed after each adsorption cycle during an adsorption repeatability test. After 

each test the repeatability of the porosity value was evaluated. The obtained results 

are shown in the table 4.4. 

Breakthrough 

test No. 

Superficial 

Velocity 

 (m/s) 

τ ( min) Porosity 

% 

Breakthrough 

3 

5,03 32,3 83,6 

Breakthrough 

4 

4,88 32,5 81,6 

Breakthrough 

5 

5,13 33,5 88,2 

Breakthrough 

6 

5,07 33,9 89,1 

Table 4.4 Porosity values obtained from fluid-dynamic test after each adsorption/desorption 

cycle during an adsorption repeatability test. 

It can be noticed that the porosity values changes slightly, this can be explained for 

the formation of preferential paths in the packed bed.  

Another important factor for the fluid dynamic characterization is the longitudinal 

dispersivity (αL), which was calculated by best-fit of the experimental data with the 

equations 2.6 and 2.16. The system was solved by a Gauss-Newton algorithm. With 

this calculation methodology, also the porosity values are re-evaluated, the 

simulated values are in agreement with the obtained directly with the experimental 

data. 

Figure 4.7 shows an experimental F curve and the obtained one with the best-fit of 

the 1D-fluy dynamic model. As it is evident, the best fit of the experimental points is 

very good, with a R2 equal to 0.9994. 
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Figure 4.7 Fluid-dynamic test at 2.04 cm/min. Experimental dimensionless NaCl concentration 

at the column exit and corresponding best-fitting simulation. 

The longitudinal dispersivity values obtained for all the fluid dynamic tests 

performed for the Amberlite XAD 16 are presented in the table 4.5. 

Breakthrough 

Test No. 

Longitudinal 

Dispersivity (m) 

1 0,0041 +/- 0,0002 

2 0,0040 +/- 0,0002 

3 0,0088 +/- 0,0002 

4 0,0191 +/- 0,0004 

5 0,0290 +/- 0,0004 

6 0,0323 +/- 0,0010 

7 0,0552 +/- 0,0017 

8 0,0620 +/- 0,0020 

Table 4.5 Longitudinal dispersivity values obtained for all the fluid dynamic tests performed 

for the Amberlite XAD 16 with 95% confidence interval. 
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4.6 OMW pre-treatment 

With regards to the OMW pre-treatment required before feeding the adsorption 

column, the suspended solid removal was equal to 91.5% after the initial 

centrifugation step (4000 rpm, 30 minutes), and to 98.5% after the entire pre-

treatment sequence (centrifugation + 25 µm filtration + 11 µm filtration). Despite the 

high removal obtained with only centrifugation, preliminary breakthrough tests 

performed with centrifuged but unfiltered OMW in the Amberlite XAD 16 bed, led to 

a marked increase in pressure drop across the column (from 0.1 to 1 bar). 

Conversely, the complete pre-treatment allowed the operation of 36-hour 

breakthrough tests with modest pressure drop increases (from 0.1 to 0.3 bar, 

corresponding to a total pressure in the column inlet of 1.1-1.3 bars), that were 

completely reversed during the subsequent desorption step. The PCs removal 

associated to the complete pretreatment sequence, measured with the HPLC 

method, resulted equal to 7-8%. 

Because of the good results obtained with the complete pre-treatment of OMW for 

Amberlite XAD 16 case, the same procedure was applied before feeding OMW at 

Amberlite IRA 958Cl bed, no pressure problems were observed during the 

adsorption tests. 

Also in the CDP bed the pressure did not present problems during the breakthrough 

tests after OMW pre-treatment. 

 

4.7 Phenolic compounds and COD Breakthrough tests for Amberlite XAD 16 

In order to understand the phenolic and other organic compounds continuous 

adsorption some breakthrough experiments were performed, monitoring the 

phenolic compounds and the COD concentration at the column outlet. 

The first two breakthrough experiments were done with a 0.52 m length column, at 

0.8 cm/min and 2.4 cm/min. Usually, the adsorption is conducted until a limit of 5%-

10% of the inlet concentration at the column outlet, but in these cases the 
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experiment continued until the 56% of breakthrough for the first test and 65% for the 

second one, in order to have more information to understand the continuous 

adsorption on the Amberlite XAD 16. 

The results obtained are displayed in the figure 4.8, in the Y axis there are the 

normalized PCs outlet concentration and in the X axis the dimensionless time 

(t/HTR or t/tau). The Pcs concentration at the column outlet was normalized respect 

to the PCs concentration in the feed. 

 

Figure 4.8 Experimental Breakthrough Curves at 0.8 cm/min (Bt1) and 2.4 cm/min (Bt 2) with a 

0.52 m length column. 

Following the procedure explained in the section 3.10, a set of the simulations was 

done under the hypothesis of local equilibrium. The best-fitting sigmoidal curves are 

completely incompatible with the experimental data, as it is presented in the figures 

4.9a. and 4.9b. 
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Figure 4.9 a.) Experimental Breakthrough Curve at 0.8 cm/min (Bt 1) and the respective Best 

Fit Curve obtained with the hypothesis of local equilibrium.  

Figure 4.9 b.) Experimental Breakthrough Curve at 2.4 cm/min (Bt 2) and the respective Best 

Fit Curve obtained with the hypothesis of local equilibrium. 
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These results make evident that the mass transfer phenomena has to be taken into 

account in the simulation model. Thus, a second set of simulations were done with 

the hypothesis of non-negligible mass transfer resistance and linear equilibrium 

isotherm, using equations 2.27 and 2.28 (section 2.5). This consideration led to 

satisfactory simulations with R2 in the 0.95-0.99.  The Keq obtained with the linear 

approximation of the experimental data are lower (28% for 21°C and 50% for 30°C) 

than the values obtained with the simulation model, this can be explained for the 

simplifying approximation of treating all the PCs as a single pseudo-component. 

With this hypothesis all the PCs are assumed to present a single breakthrough 

curve, whereas the observed experimental trends in the breakthrough experiments 

result from the combination of different, and possibly competing, adsorption curves. 

This time-changing adsorption equilibrium is not present in the isotherm 

experiments, where all the PCs are at equilibrium contemporaneously.   

The curves obtained with the non-equilibrium model are displayed on figure 4.10. 

 

Figure 4.10 Experimental Breakthrough Curve at 0.8 cm/min (Bt 1) and the respective Best Fit 

Curve obtained with the hypothesis of non-negligible mass transfer resistance and 

Experimental Breakthrough Curve at 2.4 cm/min (Bt 2) and the respective Best Fit Curve 

obtained with the hypothesis of non-negligible mass transfer resistance. 
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With the simulated data, it was possible to calculate the fraction of utilized bed for 

these tests, and as it was expected (also for the experimental sigmoidal curves 

shape), just the 16%, approximately, was used (evaluating the data until 20% of 

breakthrough). 

Then, in order to improve the column performance some work was done to identify 

the optimal column length. As it is explained in the section 2.5.2, an increase in the 

column efficiency, means an increase in the fraction of used bed (resin utilization 

efficiency), for this, it is more convenient to increase the column length than reduce 

the liquid superficial velocity, that can reduce the value of the mass transfer 

coefficient kLa, lowering the effect in the column efficiency improvement (see 

equations 2.40 and 2.41 of the section 2.5.2). 

 For this, the 1-D dispersion, convection and non-equilibrium with mass transfer 

model best fitting estimates of Kee PCs, Keq COD and kLa obtained for the Bt 2 (2.4 

cm/min, 30°C) were used to simulate the PCs adsorption in columns characterized 

by different lengths in the 0.5m-10m range. As it is shown in the figure 4.11, the 

PCs adsorption yield and the resin utilization efficiency increase with the bed length 

(evaluating at the 20% of breakthrough).  
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Figure 4.11 PCs adsorption yield and resin utilization efficiency at a 20% breakthrough point 

evaluated for columns of different lengths, using the best-fitting parameters estimated for Bt 

2 (2.4 cm/min 30°C). 

 

The increase in the resin utilization efficiency is related to a lower yearly cost 

associated to the periodic resin replacement, so finding the optimal column length is 

also very important from the economic point of view. 

To explain this better there are some mathematical expression that can be useful: 

The duration of each adsorption step, or the breakthrough time (tb) can be 

calculated as: 

𝒕𝒃𝒕 =
𝒎𝑷𝑪𝒔,𝒔𝒐𝒓𝒃𝒆𝒅,𝒃𝒕 𝒀𝒂𝒅𝒔,𝑷𝑪𝒔⁄

𝒎̇𝑷𝑪𝒔,𝑰𝑵
=
𝒎𝑷𝑪𝒔,𝒔𝒐𝒓𝒃𝒆𝒅,𝒔𝒂𝒕∙𝜼𝒓𝒆𝒔𝒊𝒏

𝒎̇𝑷𝑪𝒔,𝑰𝑵∙𝒀𝒂𝒅𝒔,𝑷𝑪𝒔
=
𝑲𝒆𝒒,𝑷𝑪𝒔∙𝝆𝒃∙𝑺𝒕∙𝑳∙𝒄𝑷𝑪𝒔,𝑰𝑵∙𝜼𝒓𝒆𝒔𝒊𝒏

𝑸∙𝒄𝑷𝑪𝒔,𝑰𝑵∙𝒀𝒂𝒅𝒔,𝑷𝑪𝒔
           (4.2) 
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Then, assuming two columns working in parallel which have adsorption and 

desorption stages of the same length, it is possible to estimate the resin operational 

time (tresin) as:  

𝒕𝒓𝒆𝒔𝒊𝒏 = 𝟐 ∙ 𝒕𝒃𝒕 ∙ 𝒏𝒄𝒚𝒄𝒍𝒆𝒔 = 𝟐 ∙ 𝒏𝒄𝒚𝒄𝒍𝒆𝒔 ∙
𝑲𝒆𝒒,𝑷𝑪𝒔∙𝝆𝒃∙𝑺𝒕∙𝑳∙𝜼𝒓𝒆𝒔𝒊𝒏

𝑸∙𝒀𝒂𝒅𝒔,𝑷𝑪𝒔
          (4.3) 

Where ηcycles is the number of adsorption/desorption cycles that can be performed 

with one resin load. The last equation is based on the assumption that ηcycles is 

independentfrom ηresin.  

Thus, the yearly cost for the resin replacement can be calculated as: 

𝑪𝒓𝒆𝒔𝒊𝒏 =
𝒎𝒓𝒆𝒔𝒊𝒏∙𝒔𝒄𝒓𝒆𝒔𝒊𝒏

𝒕𝒓𝒆𝒔𝒊𝒏
=
𝟐∙𝝆𝒃∙𝑺𝒕∙𝑳∙𝒔𝒄𝒓𝒆𝒔𝒊𝒏

𝒕𝒓𝒆𝒔𝒊𝒏
=

𝑸∙𝒔𝒄𝒓𝒆𝒔𝒊𝒏∙𝒀𝒂𝒅𝒔,𝑷𝑪𝒔

𝒏𝒄𝒚𝒄𝒍𝒆𝒔∙𝑲𝒆𝒒,𝑷𝑪𝒔∙𝜼𝒓𝒆𝒔𝒊𝒏
      (4.4) 

As it is evident, the rsin yearly cost is inversely proportional to the resin utilization 

efficiency (ηresin). 

The identification of the optimal column length requires a deeper study on all these 

factors. However, the figure 4.11 shows that at column lengths between 2m and 4m 

the PCs adsorption yield is almost complete and the resin utilization efficiency 

increases with a lower slope. So, a column with a length in the range of 2.0m-4.0m 

could be preliminarily identified as a god starting point to continue with the process 

development and optimization. For this reason, it was decided to work with a 2.0m 

length column.  

 

The experimental data and the effects of the column length in the PCs adsorption 

are shown in the figure 4.12.  
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Figure 4.12 Column length effect. Experimental Breakthrough curves at 0.52 m and 2.0 m with 

OMW Imperia 2012 and Imperia 2013. 

The breakthrough curves shape improved by increasing four times the column 

length. The area corresponding to the operational capacity of the column (see 

section 2.5.1) increased, as well as, the fraction of utilized bed (resin utilization 

efficiency), that changed from 16% to 50% (evaluating the data until 20% of 

breakthrough) . 

Also the adsorption yield was enhanced, valuating the data until 20% of 

breakthrough, with a column length of 0.52m the 54% of the PCs fed was adsorbed, 

while with a column length of 2.0m the 94% of the fed PCs was retained. To 

calculate these values, the equations of the section 2.5.1 were used. To estimate 

the mass adsorbed at saturation, simulations were done until the 99.99% of 

adsorption using the parameters values (αL, ε, Keq and KLa) evaluated with the 

experimental data best fit, using the non-equilibrium mass transfer model. 

With the good results obtained for the 2.0m length, then the liquid superficial 

velocity effect was valuated using this column length. For this, breakthrough tests 
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were conducted at three different liquid linear velocities (2.2 cm/min, 4.6 cm/min 

and 7.6 cm/min). The dimensionless plot is presented is the figure 4.13. 

 

Figure 4.13 Liquid superficial velocity effect. Experimental Breakthrough curves at 2.2cm/min, 

4.6 cm/min and 7.6 cm/min with OMW Imperia 2013. 

As the plotted results are making evident, there is not a significant liquid superficial 

velocity effect, there is just a slight decrease in the adsorption efficiency at 2.2 

cm/min, and there is not an important improvement above 4.6 cm/min. This means 

that for the industrial scale up of the process, the optimal liquid linear velocity has to 

be higher than 4.6 cm/min. The optimal value depends on several economic factors, 

because using high velocities (if the column length does not change) leads to a 

smaller column diameters, so smaller quantities of resin, which means a lower 

investment cost, but the pressure drop increases, then, also the operational costs. 

So an overall economic analysis of the process is needed to find the optimal liquid 

superficial velocity value.  
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Once the effects of the column length and liquid linear velocity were studied and in 

order to validate the adsorption method proposed for the PCs mixture recovery, a 

repeatability test of four breakthrough experiments at 2.0m column length and at the 

same liquid superficial velocity (5.0cm/min approximately), was performed, using 

the OMW Imperia 2013. 

The results are displayed in the figure 4.14. 

 

Figure 4.14 Repeatability test breakthrough curves at 5.0 cm/min approx. and 2.0m column 

length with OMW Imperia 2013. 

If we take a look at the same dimensionless time value, in the last tests the content 

of PCs at the column outlet is higher, this means that the column efficiency is 

reducing (slightly), which is expected  due to the previous desorption stages in 

which the recovery of the adsorbed PCs is less than 100%, so in each new cycle 

the active sites available for adsorption are less, decreasing the adsorption 

efficiency. Despite of the reduction in the column efficiency, it is important to make 

evident that after five adsorption/desorption cycles, the efficiency decreased by less 

than 5%, then, it is possible to say that the adsorption step is stable. 
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With a good repeatability test and with different experimental breakthrough curves 

obtained, the mass transfer coefficient kLa was evaluated through the best fit of the 

experimental data using the non-equilibrium mass transfer model. A representative 

plot is displayed in the figure 4.15. 

   

Figure 4.15 Experimental breakthrough curves with their respective simulation curves used 

for the calculation of the mass transfer coefficient (kLa) at different liquid superficial 

velocities. 

The different points correspond to the experimental data and the continuous lines to 

the respective best fit curves. 

The values for the mass transfer coefficient kLa obtained for the presented curves 

are: 
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Liquid Superficial Velocity (cm/min) kLa (s-1) 

2.2 0.9 +/- 0.1 

4.6 3.0 +/- 0.3 

7.6 4.6 +/- 0.6 

Table 4.6 Values of  the mass transfer coefficient  kLa obtained with the best fit of the 

experimental data using the non-equilibrium mass transfer model, at different liquid 

superficial velocities (OMW Imperia 2013). 

The non-equilibrium model with mass transfer with the independently estimated 

parameters (ε, αL, Keq and kLa) allows a satisfactory fit of the experimental curves 

obtained at different liquid linear velocities.  

The value of the mass transfer coefficient increases when the velocity increases. 

This behaviour is in reasonable agreement with the Wilson and Geankopoli’s model 

(equation 4.5), valid in our Reynols number range (0.1-0.2). 

𝑺𝒉 =
𝟏.𝟎𝟗

𝜺
∙ 𝑹𝒆𝟎.𝟑𝟑 ∙ 𝑺𝒄𝟎.𝟑𝟑         (4.5) 

Where, 

Sh is the Sherwood number 

Re is the Reynolds number 

Sc is the Schmidt number  

ε is the porosity of the packed bed 

Then, in order to assess the selectivity of the resin during the breakthrough tests at 

both column lengths (0.52m and 2.0m) the adsorption of the COD (organic matter) 

was monitored. The figure 4.16 presents, as representative case, the breakthrough 

curves for PCs and COD at a superficial velocity of 4.6 cm/min using the 2.0m 

length column. 
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Figure 4.16 PCs and COD experimental breakthrough curves  (4.6 cm/min, 2.0m column 

length, OMW imperia 2013) with their respective simulation curves. 

It is evident that the total COD is reaching the saturation faster than the PCs, this 

means that there is a high selectivity of the resin for the PCs. However, if we 

consider the adsorption until the 20% of PCs breakthrough, nearly the 32% of non-

phenolic COD has been adsorbed, and it was found that this COD is almost 

completely release (95%) in the desorption step, so we have a final product with 

more than 30% of non-phenolic substances. This situation leads to two important 

considerations, the first is the effect that this “contamination” can have during a 

subsequent purification step of the product and the second is the effect that the 

presence of non-phenolic COD can have in the utilization of a phenolic mixture as 

an antioxidant, without any further purification. In other words, the influence on this 

COD has to be evaluated according to the final use of the product. 
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A more detailed analysis has been done with the breakthrough curves obtained for 

PCs and COD for the tests Bt 1 (0.8 cm/min) and Bt 2 (2.4 cm/min), using the 

column of 0.52m length. 

Besides the experimental data obtained for both PCs and COD, also best fit 

simulations were done for the COD breakthrough curves. The simulations were 

done under the hypothesis of non-negligible mass transfer resistance and linear 

equilibrium isotherm, as for the PCs. For these set of simulations the volumetric 

mass transfer coefficient kLa estimated for PCs was used as input data for the 

calculation of the COD equilibrium constant Keq,COD. This approximation was done 

considering that kL (individual mass transfer coefficient), which depends on the 

diffusion coefficient and the fluid dynamic conditions, is not very different for PCs 

and carbohydrates (main compounds of the COD studied), while the interfacial area 

a is the same for both cases (PCs and COD). This assumption leads to COD best fit 

curves with good correlation coefficients R2, in the range of 0.83 – 0.96. The values 

obtained for Keq,COD are 11 +/- 1 L/Kgdry resin and  11 +/- 2 L/Kgdry resin for Bt 1 and Bt 

2, respectively.  

The Gauss-Newton method used by the MatLab code converged after 6-7 

iterations, and provided 95% confidence intervals varying between 2% and 18% of 

the corresponding best estimates. The low Keq,COD /Keq,PC ratio, equal to 0.11-0.13, 

confirms the quite high selectivity of the tested resin for PCs. The experimental and 

simulated breakthrough curves obtained are displayed on figures 4.17a and 4.17b. 

for Bt 1 and Bt 2, respectively. 
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Figure 4.17 a). Experimental PCs and COD breakthrough curves  for Bt 1 (0.8 cm/min, 0.5m 

column length, OMW Imperia 2012) and their respective simulation curves. 

 Figure 4.17 b). Experimental PCs and COD breakthrough curves  for Bt 2 (2.4cm/min, 0.5m 

column length, OMW Imperia 2012) and their respective simulation curves. 

The best-fitting PCs and COD simulations were used to calculate the PCs and COD 

adsorption yields (Yads,PCs and Yads,COD) and the resin utilization efficiency (ηresin, see 

equation 2.38) at the selected 20% breakpoint (Table 4.7). Yads,PCs resulted close to 

90%, independently of temperature and superficial velocity. From the same 

simulated data, the PCs adsorption yield and the PCs mass fraction in the adsorbed 

matter (phenolic COD / total COD) were evaluated against dimensionless time 

(Figure 4.18). The resulting plots show that, as the adsorption time (and therefore 
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the breakthrough concentration) increases, the PCs adsorption yield decreases but 

the selectivity in PCs against COD increases, and a more pure product is thus 

obtained.  

 

 

Figure 4.18  Model-based evaluation of the PCs adsorption yield and PCs mass fraction in the 

adsorbate relative to test Bt 2 (2.4 cm/min, 30°C). 

 

Despite the good selectivity of resin Amberlite XAD16 for PCs, as a result of the 

lower content of OMWs in PCs with respect to total COD (the phenolic COD / total 

COD ratio is typically very low, 7% for the studied OMW in this case, Imperia 2012) 

even at very high dimensionless times the purity of the final product is low (< 30%). 

Indeed, if a process strategy to maximize Yads,PCs is chosen, only a modest 

concentration of PCs in the COD of the final product is achieved; on the contrary, if 

the maximization of PCs in the desorbed product is privileged (with a considerable 

PCs loss in the treated OMW) the selectivity of Amberlite XAD16 for PCs allows to 

obtain a 4-fold increase of the PCs/COD ratio. 

Some work was done to characterize the COD in both the desorbed product and the 

treated OMW obtained in test Bt 2. The analyses showed that carbohydrate 

concentration in the treated OMW was reduced from 23 g/L to 7 g/L (in good 

agreement with the 70% adsorption yield calculated form the experimental data 
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model simulation), whereas proteins were completely adsorbed. The residual 

carbohydrate concentration in the treated OMW did not lead to any observable 

inhibition effect in the subsequent anaerobic digestion process [24] of the 

biorefinery process in which the proposed adsorption process is the initial step. With 

regard to the desorbed product, the analyses showed that the non-phenolic COD 

was composed by carbohydrates (84%) and proteins (16%). 

 

4.8 Desorption step and Antioxidant Activity of the Obtained Product 

(Amberlite XAD 16) 

 

After each adsorption stage a desorption step was executed using acidified ethanol 

(0.5% HCl 0.1N) as solvent. The desorption procedure is described in section 3.11. 

The samples in ethanol were analysed with the total phenols HPLC method 

explained in section 3.3.1, which have been used for the quantification on the total 

phenols concentration in all the samples taken during the study of the 

adsorption/desorption process proposed. 

As it was mentioned in the section 3.11, due to the high viscosity of the richest 

fractions in phenolic compounds, during the elution step, sometimes, it was 

necessary to adjust manually the flow rate, in order to keep the total pressure at the 

column inlet into a safe limit (< 2bar), because the adsorption columns are made of 

glass. The desorption main space velocities were in the range of 0.29 cm/min to 

0.51 cm/min). 

A representative desorption profile is presented in figure 4.19. 
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Figure 4.19 Experimental desorption profile (0.43 cm/min approx. PCs from OMW Imperia 

2013, desorption solvent: acidified ethanol 0.5%v/v HCl 0.1N). 

The desorption step is faster than the adsorption one, the complete elution of the 

adsorbed PCs takes less than 6 HTR (or tau) while the adsorption takes between 

20 HTR  - 30 HTR. This characteristic is very important for a future industrial 

process. 

Then, in order to evaluate the repeatability of the desorption step the different 

desorption profiles obtained during different adsorption/desorption cycles were 

plotted together (Figure 4.20). The obtained graph shows the high stability of this 

stage, so, it is possible to say that the complete adsorption/desorption process 

proposed is stable. 
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Figure 4.20 Experimental desorption profiles  at 0.20 cm/min, 0.43 cm/min and 0,51 cm/min 

(PCs from OMW Imperia 2013, desorption solvent: acidified ethanol 0.5%v/v HCl 0.1N). 

The PCs desorption yield was between 65% and 74% during the 

adsorption/desorption cycles performed. In an earlier batch experiment, the 

desorption yield was lower (53%), other authors obtained complete desorption of 

PCs from different adsorbents using different ethanol/water mixtures [76, 82]. 

Agalias et al. [37] worked with an actual OMW and with the Amberlite XAD 16 resin, 

and reported a successful PCs desorption using an ethanol/isopropanol mixture. 

These works showed that an almost quantitative recovery of PCs from Amberlite 

XAD16 is possible and that an optimization of the desorption step in the 

continuous–flow process is needed. The optimization need of PCs desorption is 

supported also by the overall process yield that is between 50% and 68%, (the 

adsorption yield is near to 90%). With the information given by other authors, the 

optimization of desorption should have different alternatives to be successful.  
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Another important issue is the non-phenolic COD desorption, that was discussed 

previously on section 4.7, supporting the conclusion that an optimization of the 

desorption step is needed. 

Once the desorption product was collected, the ethanol was recovered by low 

pressure distillation and the separated product was re-suspended in demineralized 

water, as it was described on section 3.21. The product antioxidant activity was 

evaluated by the ABTS assay explained on section 3.3.9. According to the results 

obtained, the final product (in which between the 8% and 10% of the mass 

corresponds to the phenolic compounds, and the rest to the non-phenolic COD 

desorbed) has an antioxidant activity of nearly 25mM of ascorbic acid equivalent, 

which is a value almost five times higher than the antioxidant activity reported in 

literature (M.I. Gil et al. 2000 [86]) with the same method for the green tea and red 

wine, to agro industrial products widely known for their antioxidant properties. 

This characteristic of the final mixture is very interesting and lets its utilization in 

different fields, for example, as an antioxidant additive in plastics. 

 

4.9 Preliminary Cost Evaluation  for Amberlite XAD 16 

In order to evaluate the economic feasibility of the proposed process a preliminary 

cost evaluation was done. 

The characteristics of the studied plant are listed on table 3.5. 

According to the considerations done for the plant production and all the involved 

expenses, the yearly cost, which includes the operational cost and the amortization 

of capital cost, would be around 375000 €/year or 37.5€/m3.  

The yearly revenues are around 400000€/year - 500000€/year from sales of a 

phenolic mixture [83]. The value could increase for sales of purified phenolic 

compounds. 

The figure 4.21 shows the contribution of all the factors involved in the process. 



117 
 

 

Figure 4.21 Cake diagram of the contribution of each process factor in the total process cost 

for the preliminary economic evaluation. 

As the graph makes evident, the highest cost is the resin periodic replacement, so 

there are two ways to affront this situation, the first one is to increase the number of 

cycles performed with the same resin charge and the second way is to find a new 

and cheaper solid phase that can be used for the phenolic compounds adsorption, 

even if its efficiency is slightly lower than the adsorption efficiency of the Amberlite 

XAD 16. 

In this project, the way chosen was the second one, and for this two anionic 

exchange resins which cost six times less than the  Amberlite XAD 16, were tested. 

The results obtained during the screening and the different experiments performed 

are going to be discussed in the next sections. 
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4.10 Amberlite IRA 958Cl and Amberlite IRA 67Cl Screening  

The screening tests were performed following the procedure described in the 

section 3.13. The condition of 50 mL of OMW with 25g of dry resin corresponds to a 

low concentration point in the isotherms obtained for Amberlite XAD 16. The chosen 

point corresponds to dimensionless concentration of about 0.1, a reasonable value 

at the column outlet, commonly used to stop the adsorption step in an actual 

industrial process, it is the breakpoint. 

As it was described in the section 3.13, the resins performances were studied at 

different conditions, at the OMW pH (around 4.9), pH 6 and pH 7, being ion-

exchange resins, the pH can have an important effect in the adsorption of acidic 

compounds like PCs.  

Also the presence of VFAs (volatile fat acids) was investigated, because the 

possibility of feeding OMW anaerobically digested was considered, in order to 

possibly change the digestion step of the biorefinery process in which the PCs 

adsorption is participating. 

Also the Amberlite XAD 16 was tested in the same conditions for direct comparison 

purposes. 

For all three resins the adsorption performances for PCs, COD and VFAs were 

evaluated by the comparison of the respective adsorption yields Yads,I calculated as 

mi,adesorbed / mi,fed and the adsorption selectivities , estimated as PCs/COD and 

PCs/VFAs yields radios. 

The results are displayed on figures 4.22a. and 4.22b. The calculations are 

presented in table 4.7.  
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a. Yields 
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b. Selectivities 

 

Figure 4.22 a.) Amberlite XAD 16, Amberlite IRA 958Cl and Amberlite IRA 67Cl PCS and COD 

adsorption yields at different pH and VFAs content.  

Figure 4.22 b). Amberlite XAD 16, Amberlite IRA 958Cl and Amberlite IRA 67Cl PCs adsorption 

selectivities respect to COD and VFAs. 

 

 

 

 

 

 



121 
 

 

 

 PC

s 

 

CO

D 

VFA

s 

Selectivity as 

Yield ratio 

PCs CO
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Y 

ads 

Y 

ads 

PCs/CO

D 

PCs/VF

As 

g_a

ds 

g_a

ds 

g_a

ds 

XAD16 no VFAs 

addition 

77

% 

71% 72% 1.1 1.1 0.7 18.4 1.8 

  with VFA 

addition 

83

% 

44% 43% 1.9 1.9 0.7 19.5 5.7 

IRA 

958Cl 

no VFAs 

addition 

60

% 

31% 43% 2.0 1.4 0.5 9.4 0.4 

  with VFA 

addition 

55

% 

38% 46% 1.5 1.2 0.4 16.2 3.3 

IRA 

67Cl 

no VFAs 

addition 

33

% 

17% 22% 1.9 1.5 0.3 5.6 0.2 

  with VFA 

addition 

41

% 

31% 37% 1.3 1.1 0.3 13.2 2.7 

       
Table 4.7 Adsorption yields for PCS, COD and VFAs,PCs adsorption selectivities as yield ratio 

and PCs, COD and VFAs mass adsorbed for Amberlite XAD 16, Amberlite IRA 958Cl and 

Amberlite IRA 67Cl. 

The experimental data has a wide dispersion, although that it is possible to 

conclude that:  

- In all conditions Amberlite XAD 16 has a better performance than the two 

anionic exchange resins. It has a PCs yield between 75% and 90%, while 

Amberlite IRA 958Cl, the best of the ionic resins, has values between 45% 

and 65%. 

- With pH 4.9with the addition of VFAs, the Amberlite IRA 67Cl has an 

adsorption yield of 80%, a value comparable with the performance of the 

Amberlite XAD 16. 
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- The pH variation seems to have no effects on the Amberlite XAD 16 

performance, with and without VFAs addition, while for Amberlite IRA 958Cl 

the pH increase improves the performance, whereas for Amberlite IRA 67Cl 

the effect is the opposite. In general, the pH is not influencing the selectivity 

of the process in any case. 

- The VFAs presence seems to have a non-significant influence in the 

performance of all resins. 

- In terms of PCs adsorption capacity, Amberlite XAD 16 confirms to be the 

best option, but talking about selectivity this resin is not the best, the average 

PCs, COD and VFAs yields are very similar (77%, 71% and 72%, 

respectively, see table 4.8). 

- Both Amberlite IRA resins have a poor PCs capacities, but higher 

selectivities, for example, the Amberlite IRA 958Cl  in absence of VFAs 

adsorbs 60% PCs, but just the 31% of COD and 43% of VFAs. 

- The samples with VFAs presence showed that Amberlite IRA resins have a 

low VFAs adsorption capacities (just 46%). 

- The Amberlite XAD 16 selectivity seems to improve significantly when the 

VFAs are present: the PCs/COD and PCs/VFAs yield ratios are almost the 

double (from 1.1 to 1.9 for both cases). 

The performance of the Amberlite IRA resins is lower than for Amberlite XAD 16 in 

terms of adsorption capacity, but they have a better efficiency talking about 

selectivity. An important characteristic for Amberlite IRA 958Cl is its low affinity for 

VFAs, which make it suitable for a process in which the fed OMWs be anaerobically 

digested. Knowing this and on the basis of the lower Amberlite IRA 958Cl cost, it 

was selected for further investigation (isotherm obtaining, see section 4.12), and 

breakthrough experiments, see section 4.14). 
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4.11 Adsorption Kinetics for Amberlite IRA 958Cl 

For the anionic resin Amberlite IRA 958Cl the time in which the equilibrium is 

reached was obtained during the screening step by taking samples after 3 hours 

and 18 hours of experiment. According to the results obtained, it was observed that 

there is not a significant difference in the total phenols concentrations between the 

samples taken at 3 hours and at 18 hours, so for the further experiments, the 

equilibrium time used was 3 hours. 

 

4.12 Adsorption Isotherms for Amberlite IRA 958Cl 

The isotherm of the system Amberlite IRA 958Cl – OMW Imperia 2014 was 

obtained at 30°C, the same temperature of one of the isotherms obtained for the 

Amberlite XAD 16. The data of both isotherms obtained at 30°C with both solid 

phases is displayed in the following figure. 

 

Figure 4.23 Adsorption isotherms for the systems OMW Imperia 2013-Amberlite XAD 16 at 

25°C and OMW Imperia 2014-Amberlite IRA 958Cl at 30°C. 
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In the case of XAD 16, we have experimental equilibrium points that describe a type 

linear trend which can be envisaged as the initial linear part of a conventional 

Langmuir isotherm; this last hypothesis is supported by the theoretical XAD 16 

capacity declared by the producer (370 mg/gdryresin, referred to medium molecular 

weight compounds) that is several times higher than the maximum solid 

concentration measured, as it was said before. 

On the other hand, IRA958Cl experimental points show only an unfavourable 

behaviour with a trend that can be interpreted by a power-low curve (Freundlich 

type isotherm) with an exponent higher than 1. It cannot be excluded that the IRA 

958Cl behaviour at higher PCs concentration would become about linear as in the 

case of XAD16. Those higher concentration values could not be investigated due to 

the relative low PCs content in the untreated OMW, and for this same reason are 

less interesting from an industrial point of view. 

Regardless of the different isotherm type and the slight difference in the 

temperature, the comparison of the experimental data clearly shows that the IRA 

958Cl adsorption performance is significantly worse than that of XAD 16, at least at 

the low PCs concentration typical of the OMWs. Nevertheless, the characterization 

of IRA 958Cl and the comparison with XAD were completed carrying out 

breakthrough tests in the 2.0m adsorption column designed to optimize the 

adsorption/desorption with XAD 16, and that is going to be further explained. 

 

4.13 Fluid dynamic Characterization for Amberlite IRA 958Cl Bed 

The 2.0m column was packed with Amberlite IRA 958Cl with the second procedure 

described on section 3.8, and once the column was packed, and after each 

adsorption/desorption cycle, a fluid dynamic test was performed as it was explained 

on section 3.9. 

For the resin IRA 958Cl, as representative case of F curves (Cumulative Retention 

Time Curves), the figure 4.24 shows the data obtained before the breakthrough test 
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at 5cm/min (Bt 7) and after  a second breakthrough test at 2.1 cm/min (Bt 8), with 

the fluid dynamic information of the breakthrough test Bt 4 (experimental data and 

simulation). 

 

Figure 4.24 F curves before Bt 4, before Bt 7 and Bt 8 and after Bt 8 (repacked bed) with the 

simulation F curve of Bt 4. 

After Bt 8 a partial and limited collapse of the packed bed was observed after the 

desorption step in the last of the four columns that compound the adsorption 

system, and a less important collapse was observed in the other three columns. 

The fluid dynamic test record this incident showing a large change in the slope of 

the experimental F Curve suggesting a decrease in the number of plates (N) 

increasing also the longitudinal dispersivity (αL), worsen the adsorption 

performance. 

The quality packing evaluation confirmed this (see table 4.8), the number of plates 

(N) decreases and the asymmetry factor is very far from 1, indicating a pronounced 

tail in the retention time curve (E curve), which could mean mixing/stagnant zone. 
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Thus, the adsorption bed was re-packed, pouring new fresh resin in the upper part 

of the column to fill the gap formed during the collapse in the desorption step.  

Test N HETP 

(m) 

HETP/dp As Packing 

Quality 

Desirable values high low low near 1  

XAD 16 Bt 3 new 121 0.017 27 1.3 very 

good 

XAD 16 Bt 4 used 57 0.037 58 1.0 very 

good 

IRA 958Cl Bt 7 46 0.045 61 1.3 very 

good 

IRA 958Cl Bt 8 / 

4th col. collapsed 

19 0.112 151 2.8 poor 

IRA 958Cl Bt 8 re-

packing 

29 0.073 99 1.8 good 

Table 4.8 Fluid dynamic parameters comparison to evaluate column packing quality between 

Amberlite XAD 16 and Amberlite IRA 958Cl packed beds. 

 

4.14 Phenolic compounds and COD Breakthrough tests for Amberlite IRA 

958Cl 

A breakthrough test (Bt 7) was carried out after packing the column with the resin 

Amberlite IRA 958Cl. The liquid linear velocity was set at around 5.0 cm/min, as the 

tests conducted for the repeatability study of the adsorption step for Amberlite XAD 

16. In this cases (Bt 3- Bt 6 and Bt 7), the column length was 2.0m. 

A comparison between the experimental breakthrough curves for Amberlite XAD 16  

and Amberlite IRA 958Cl is presented in figure 4.25. The performance for the Pcs 

adsorption of the resin Amberlite IRA 958Cl is far worse than the resin Amberlite 

XAD 16, an important presence of PCs at the column outlet started at around 1 
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HTR for Amberlite IRA 958Cl while for the hydrophobic resin Amberlite XAD 16 this 

situation started at near 5 HTR. 

 

Figure 4.25 PCs experimental breakthrough curves for Amberlite XAD 16 (5.1 cm/min, 2.0m 

column length, OMW Imperia 2013) and Amberlite IRA 958Cl (5.0 cm/min, 2.0m column length, 

OMW Imperia 2014). 

During the PCs breakthrough test Bt 7, as for the case of Amberlite XAD 16, the 

COD adsorption was also monitored, the experimental data is displayed in the 

figure 4.26.  
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Figure 4.26 PCs and COD experimental breakthrough curves at 5.0 cm/min (2.0m column 

length OMW Imperia 2014) for Amberlite IRA 958Cl). 

The COD and PCs  breakthrough curve have a similar trend, even if the COD one is 

a bit faster is closer to the PCs curve than in the case of Amberlite XAD 16 (see 

section 4.7). This means that Amberlite IRA 958Cl has a poorer selectivity for PCs, 

and this leads to a lower concentration of these compounds in the final solid extract. 

Although simulation of this data was not done, with the experimental data was 

possible to estimate PCs and COD yields, and the resin utilization efficiency. This 

information is presented on the table 4.9. Even if the PCs yield could be considered 

reasonably good, the COD yield is very near and the resin utilization efficiency is 

very low.  
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Parameter Bt2  Bt5 Bt7 Bt8 

Resin XAD16 XAD16 IRA958Cl IRA958Cl 

Column length (m) 0.5 2.0 2.0 2.0 

Bulk density (ρb, kgdry resin /L) 0.870 0.870 0.654 0.654 

T (°C) 30 24 29.4 26.4 

Vs (cm/min) 2.4 5.1 5.0 2.1 

OMW (Imperia) 2012 2013 2014 2014 

αL,resin (m) 0.004 0.029 N.A. N.A 

Resin porosity (εresin-) 0.830 0.894 0.532 0.554 

PCs adsorption yield (Yads,PC, -)a 88% 92% 87% 97% 

COD adsorption yield (Yads,COD, -)a 75% 37% 95% 96% 

Resin utilization efficiency (ηresin, -)a 12% 42.4% 9% 30% 

PCs desorption yield (Ydes,PC, -) 74% 75% 60% 51% 

gPCs,OMW/gCOD,OMW 3.7% 3.8% 2.4% 2.7% 

gPCs,ads/gCOD,ads 4.3% 9.7% 2.2% 2.7% 

Productivity (gsorbed PC / kgresin) 3.4 7.6 2.1 0.9 

Table 4.9 Bt 2, Bt 5, Bt 7 and Bt 8 adsorption and fluid dynamic parameters and process 

productivity comparison. 

Due to the low performance of the Amberlite IRA 958Cl, but in order to try to have 

better results, a second test was conducted at around 2.0 cm/min (Bt 8). This can 

double the residence time influencing positively in the resin utilization efficiency, but  

can reduce the liquid linear velocity, affecting negatively the mass transfer 

coefficient performance, if mass transfer is the key phenomenon, as in the case of 
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Amberlite XAD 16. The results obtained for Bt 7 and Bt 8 with the respective COD 

curves, are presented in figure 4.27. 

 

Figure 4.27 PCs and COD experimental breakthrough curves at 5.0 cm/min and 2.1 cm/min 

(2.0m column legth, OMW Imperia 2014) for Amberlite IRA 958Cl. 

These results show that an important improvement of the PCs adsorption was not 

reached by reducing the liquid superficial velocity. This suggests that for PCs 

adsorption, although its high price, it is more convenient to use the hydrophobic 

resin Amberlite XAD 16. 

 

4.15 Desorption-regeneration tests and productivity for Amberlite IRA 958Cl 

 

As for the Amberlite XAD 16 case, after each adsorption step, the desorption stage 

was performed using acidified ethanol (0.5% v/v HCl 0.1N) and the subsequent 

rinsing with demineralized water, as it was described in the Materials and Methods 

chapter. 
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The desorption profiles are not shown because of the frequent manual changes in 

the ethanol flow rate in order to keep the total pressure  at the column inlet below 2 

bars (glass columns).  

The obtained extract was analyzed to estimate the PCs desorption yield. In the case 

of Amberlite XAD 16, the desorption yield is around 75% while for Amberlite IRA 

958Cl was very low for both tests, between 50%-60%. Also the rinsing water was 

analyzed, and 1/3 and half of the desorbed PCs was there. So, the desorption 

procedure for Amberlite IRA 958Cl has to be changed. Studies regrading to the 

desorption step improvement for the ionic resin were not conducted because of the 

not very good results obtained also for the adsorption stage. 

From the economical point of view, it was important to evaluate the productivity (g of 

PCs/ Kg dry resin) in one adsorption/desorption cycle, in order to compare the 

performances of both types of resin (Amberlite XAD 16 and Amberlite IRA 958Cl), 

taking into account the difference of bulk density that exists between them. 

The experimental values are presented in the table 4.9. 

For Amberlite XAD 16 the productivity was enhanced by increasing the column 

length. In the case of Amberlite IRA 958Cl, considering the case with higher liquid 

linear velocity, the productivity is just three times lower than for Amberlite XAD 16 in 

the same conditions. Even if the productivity of Amberlite IRA 958Cl increases, the 

cost of this improvement is seen in a lower resin utilization efficiency.      
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CHAPTER 5 

RESULTS AND DISCUSSION: RECOVERY OF PURE 

POLYPHENOLS  

The continuous flow selective extraction of tyrosol and hydroxytyrosol from olive mill 

wastewaters using a cyclodextrin-based polyurethane is discussed in this chapter. 

 

5.1 Cyclodetrin based Polymers (CDP) for single phenolic compounds 

Recovery: Tyrosol (Ty) and Hydroxytyrosol (HTy) 

In order to recover tyrosol and hydroxytyrosol from OMWs, the nanoscience 

research group of the FHNW (Fachhochschule Nordwestschweiz) at Basel, 

Switzerland, produced a cyclodextrin based polymer made of methylated β-

cyclodextrin (MeβCD) and  of 4,4'-methylene diphenyl diisocyanate (MCI), produced 

with the methodology described in the section 3.2. 

 

5.2 Adsorption Kinetics for CDP 

To obtain the adsorption kinetics of tyrosol and hydroxytyrosol the procedure 

described in the section 3.5 was applied, using the OMW Imperia 2014. The 

concentration of these phenolic compounds were measured in the liquid phase 

through the hplc method for the identification and quantification of these 

substances, presented in the section 3.3.2. The concentration of tyrosol (Ty) and 

hydroxytyrosol (HTy) in the solid phase were calculated with the equation 4.1. 

The results are displayed in the following graph. 

http://www.fhnw.ch/
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Figure 5.1 Adsorption Kinetics for the CDP and the OMW Imperia 2014. 

The dynamic equilibrium is reached after 150 minutes. 

The equilibrium information was used to perform the experiments for the adsorption 

isotherms obtaining. 

 

5.3 Adsorption Isotherms for Tyrosol and Hydroxytyrosol with CDP 

For the CDP solid phase, the isotherms were obtained for tyrosol and 

hydroxytyrosol, using the OMW Imperia 2014, using the procedure described in the 

section 3.5 and applying the Ty and HTy hplc method of section 3.3.2. 
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Figure 5.2 Adsorption isotherms for the systems  Ty-CDP and HTy-CDP at 30°C (Ty and HTy 

from OMW Imperia 2014). 

 

The isotherm for tyrosol has a linear trend with an acceptable R2, this behaviour 

maybe be due to the not very high concentration of this phenol (around 5.6mg/L) in 

the OMW Imperia 2014. This result shows the affinity of the solid phase for this 

substance. 

In the other hand, the isotherm of the hydroxytyrosol can be described for a power 

law function, so it is a Freundlich type isotherm, with an exponent higher than 1, so 

the curve shape is unfavourable, indicating a low affinity of the CDP polymer for this 

phenolic compound. Although this result, the hydroxytyrosol adsorption was 

monitored during the breakthrough test to evaluate the tyrosol recovery. 

The cyclodextrin based polyurethane was packed following the dry-packing 

procedure described on chapter 3 in the adsorption system of the figure 3.2 of the 

section 3.4. 
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5.4 Fluid Dynamic Characterization of the CDP Bed 

Once the bed was packed with fresh CDP a fluid dynamic test was performed 

following the method of the section 3.9 with a liquid superficial velocity of 0.87 

cm/min. 

The cumulative retention time curve (F curve) obtained is display in the figure 5.3. 

 

Figure 5.3 F curve obtained for CDP packed bed before breakthrough tests. 

 

The parameters calculated from the derivation of the F curve are listed in the table 

5.1. 
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Parameter Value 

Porosity 0.29 

Number of Plates (N) 12.05 

Height Equivalent Theoretical Plate (m) (HETP) 0.11 

Asymmetry Factor 1.47 

Table 5.1 Fluid dynamic parameters for CDP packed bed. 

According to this results and with the uniformity of the sigmoid that describes the F 

curve, the packing was consider of enough quality and some breakthrough tests 

were conducted. 

 

5.5  Tyrosol and Hydroxytyrosol Breakthrough tests for CDP 

With the packed bed were conducted four breakthrough tests at different liquid 

linear velocities and the outlet concentrations of tyrosol and hydroxytyrosol were 

estimated with the hplc method described in the section 3.3.2. 

Before feeding the OMW Imperia 2014 in the adsorption system, the OMWs were 

treated as described on section 3.7. 

During the first adsorption test (0.87 cm/min) all the tyrosol fed with the OMW 

Imperia 2014 was adsorbed while hydroxytyrosol was detected at the column outlet, 

so the CDP has more affinity for Ty than for HTy, confirming the results previously 

obtained with the adsorption isotherms in the section 5.3. 

After the fourth adsorption/desorption cycle (0.44 cm/min), the tyrosol adsorption 

yield was still high (86%). 

The breakthrough curves obtained for both compounds in the first and in the fourth 

tests are shown in figure 5.4. 
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Figure 5.4 Tyrosol and hydroxytyrosol experimental breathrough curves at 0.87 am/min and 

0.44 cm/min (OMW Imperia 2014) for CDP. 

The complete adsorption of tyrosol was observed also in the second test (0.87 

cm/min), the tyrosol adsorption yield reduces from the third test (0.58cm/min – 86%) 

and was stable in the fourth cycle (86%). Also a reduction in the hydroxytyrosol was 

observed from 71% in the first test to 55% in the fourth one.  

The decrease in the tyrosol and hydroxytyrosol adsorption yields could be due to 

the reduction in the number of available sites, which is normal because with the 

desorption less than the 100% of the molecules adsorbed are released. Also, this 

situation can be worsened by instability of the packed bed, one of the 

disadvantages of the dry-packing method is that the bed stability cannot be kept for 

a long term [60], however, because of the CDP very small particle size and because 

of the adsorption system  hardware and its liquid flow settings it was not possible to 

use another packing method, for the industrial process this step could be enhanced 

using a more suitable hardware which can apply higher pressures that could pack 

better the polymer inside the column. 
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5.6 Desorption Solvent Selection: Batch tests 

In order to find the most suitable solvent for the extraction of tyrosol and 

hydroxytyrosol, seven different organic solvent were tested, the results are 

presented in the table 5.2. 

Solvent % Des Ty % Des HTy 

Ethyl Acetate 63,54 59,33 

Methanol 81,43 100,38 

Methanol/ water 60%/40% 72,08 99,49 

Acidified Water 41,43 51,08 

Dicloromethane 20,53 0 

MetOH/ Acid. Water (20%/80%) 81,97 62,44 

ACN/ Acid. Water (15%/85%) 100 73,69 

Table 5.2 Organic  solvent tested in batch experiments for tyrosol and hydroxytyrosol 

desorption from CDP. 

The acidified water contained 0.5% v/v of HCl 0.1N. 

The pure methanol presented the best results. Good results were presented also for 

the mixtures methanol/acidified water (20%/80%) and acetonitrile/ acidified water 

(15%/85%), so, it was decided to build a solvent gradient with methanol, acetonitrile 

and acidified water. 

Pure methanol and the solvent gradient were tested in the pilot plant. The 

description of the solvent gradient in is table 3.3 in chapter 3. 
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5.7 Desorption-regeneration tests for CDP 

With pure methanol it was possible to recover the 92% and the 59% of the Ty and 

HTy adsorbed, respectively. At around 10 HTR no more desorption of these 

compounds was detected. An analysis of the desorbed product reveals that the 

27% of it was composed by Ty (20%) and HTy (7%). 

The desorption profiles are presented in figures 5.5a. and 5.5b. 

 

 

Figure 5.5 a). Tyrosol desorption profile using methanol as extraction solvent. 

Figure 5.5 b). Hydroxytyrosol desorption profile using methanol as extraction solvent. 
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With the desorption with the solvent gradient, it was possible to recover the 90% 

and the 86% of the adsorbed TY and HTy, respectively. The desorption profiles are 

displayed in figures 5.6a. (Ty) and 5.6b. (HTy). 

 

 

Figure 5.6 a). Tyrosol desorption profile using the organic solvent gradient as elution solvent.  

Figure 5.6 b). Hydroxytyrosol desorption profile using the organic solvent gradient as elution 

solvent. 
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percentage of HTy desorbed.  And according to the hplc analysis of the desorbed 

product, 61% is composed by Ty and 11% by HTy, so it was possible to have a final 

product that is composed mainly of Ty and HTy. 

The approach of using a gradient solvent to desorb the target compounds could be 

very interesting but it is necessary to think about a separation method which lets the 

obtaining of the extracted product without the solvent mixture. 
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CHAPTER 6 

CONCLUSIONS 

The work performed with the different solid phases and the diverse adsorption 

systems leads to the following conclusions. 

For the Recovery of Phenolics Mixtures: 

- As first developments of this work, an effective OMW pre-treatment was 

settled and an analytical HPLC method more precise and less time-

consuming than the traditional FC method was set up and validated. 

- A good packing method was found for Amberlite XAD 16, the calculation of 

different parameters like the number of plates (N), the asymmetry factor (As) 

and the porosity of the bed, had demonstrated that the packing procedure is 

repeatable and leads to packed beds of good quality and high stability, 

enhancing the column performance, and letting the use of the same bed 

during several adsorption/desorption cycles. 

- The experimental tests conducted with an adsorption bed  of 0.52m, led to 

the development of a reliable model of the process, based on the assumption 

of non-equilibrium adsorption and characterized by an overall mass transfer 

resistance. The model parameters were estimated with a high accuracy and 

fitting quality. The model was utilized to estimate the process performances 

and to accomplish a preliminary evaluation of the optimal column length for a 

pilot plant. The  column length estimated with the model  (2.0m) was utilized 

successfully for the adsorption process optimization study and  for a more 

robust assessment of the process performances. 

- The non-equilibrium model with mass transfer resistance was suitable to 

interpret, fit and predict the experimental information obtained with the 2.0m 

column. 

- The increase in the column length improve considerably the PCs adsorption 

yield, the resin utilization efficiency and the process productivity. 
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- The adsorption step was validated by means of a repeatability test, which 

demonstrated that this stages is reliable and stable.  

- The repeatability of the desorption profiles shown that also this step is stable. 

However, further research is needed to optimize the desorption step, to 

evaluate the number of adsorption/desorption cycles that can be performed 

with the same resin, and to perform an overall and more robust economic 

optimization of the process. 

- The continuous-flow PCs adsorption, desorption and recovery proposed 

process with the Amberlite XAD 16  proved to be feasible, reliable and 

effective. Despite the high selectivity of this resin for PCs, the PCs purity in 

the finale product resulted < 30% as a result of the very low (phenolic COD / 

total COD) ratio of the tested OMW. However the non-phenolic COD 

presence, the product obtained has a very high antioxidant activity, which 

lets the use of the phenolic mixture in other fields, like the plastics 

production, where it can be used as surfactant. So the obtained product with 

interesting characteristics, so its economic value could increase.  

- The preliminary cost analysis showed that the factor that is affecting 

considerably the process cost is the frequent change of the resin bed. So, 

two ion exchange resins were tested as alternative. 

- Two ion exchange resins were tested in batch experiments for the PCs 

adsorption, as less expensive solid phases, and the Amberlite IRA 958Cl 

proved to have a good enough performance to be well worth testing in a 

breakthrough test experiment. 

- With the selected Amberlite IRA 958Cl two breakthrough tests were 

performed at different liquid superficial velocities, the performances, in terms 

of resin bed utilization efficiency and PCs selectivity on COD, were just 

acceptable. So, for PCs recovery the Amberlite XAD 16 is still the best option 

for this process, and even its cost the process is economically feasible. 

- Another resins should be tested in order to find a good agreement between 

the solid phase price, and its performance, including the number on cycles 

that can be done with each resin load. 
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For the Recovery of Pure Polyphenols: 

 

- The cyclodextrine based polyurethanes (CDP) demonstrated to be a 

promising approach for the selective recovery of target phenolic compounds 

from the OMW. It was possible the selective adsorption of tyrosol and 

hydroxytyrosol, two of the phenolic compounds with the highest added value 

for their interesting properties. 

- A more suitable packing procedure should be found for the CDP bed in order 

to improve the performance of the column and the number of cycles that can 

be done with one CDP load. 

- The desorption with a solvent gradient leads to the obtaining of a product that 

in a 72% is composed by tyrosol and hydroxytyrosol, so the product is of high 

interest and very high quality. However, the desorption step has to be studied 

deeply in order to find a suitable separation process that lets the obtaining of 

a Ty and HTy extract free of the solvent mixture, and maybe this process 

could give also the option to separate the solvents, so it would be possible to 

recover and re-utilize them in a next adsorption/desorption cycle. 

- An economic analysis should be done to evaluate the CDP process 

feasibility, the solid phase is very expensive, but the product obtained is of 

very high quality, so the costs could be compensated, but the real 

possibilities of the process can be understood only with a costs study. 

- Overall, this study represents an important step towards the development, 

modeling and preliminary optimization of a continuous flow 

adsorption/desorption process aimed at the separation of PCs mixtures or 

single PCs from OMW. 
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LIST OF SYMBOLS 

 

As Asymmetry factor (-) 

CL,i Liquid phase concentration of compound i (mg/L) 

 Average liquid phase concentration measured during a given experiment 

(mg/L) 

CL,PCs,0, 

CL,PCs,eq 

Initial and final (equilibrium) PCs concentration in the liquid phase 

(OMW) during the isotherm tests (mgPC/L) 

Cresin Yearly cost for the periodic resin replacement (€/y) 

CS,i Solid phase (resin) concentration of compound i (mg/ gdry resin) 

CS,PCs,eq Final (equilibrium) PCs concentration in the solid phase (resin) during the 

isotherm tests (mgPC/gdry resin) 

Deq Equivalent diffusion coefficient, calculated as αL · vint 

dp Average size of the packing particles (m) 

HETP Height equivalent to a theoretical plate, in the packed column (m) 

HRT Hydraulic residence time in the column, calculated as Vresin  εresin / Q + 

Vsand  εsand / Q (s) 

Keq,i Adsorption constant of compound i, defined as the slope of the linear 

portion of the isotherm (Lpore volume / kgdry resin). A further subscript, if 

present, indicates the temperature. 

𝑘𝐿𝑎 Mass transfer coefficient (1/s) 

L Column length (m) 

𝑚̇𝑃𝐶𝑠,𝐼𝑁 PCs mass flow rate entering the column (mg/s) 

mPCs,sorbed,bt PCs mass adsorbed by the resin at time tbt (mg) 

mPCs,sorbed,sat PCs mass theoretically adsorbed by the resin upon saturation of the 

measuredLC ,
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sorption capacity (mg) 

mS Mass of dry resin in the isotherm strudies (gdry resin) 

N Number of experimental data used to calculate each R2 value (-) 

𝑛𝑐𝑦𝑐𝑙𝑒𝑠 Number of adsorption and desorption cycles that can be performed with 

one resin load (-) 

Ntp Number of theoretical plates in the column packing (-) 

P Number of parameters estimated in each model calibration (-) 

Q Volumetric flow rate through the column (m3/s) 

scresin Resin specific cost (€/kg) 

St Column section (m2) 

tbt Breakthrough time (s) 

tR Retention time of the RTD curve, in the fluid-dynamic tests (s) 

tresin Resin operational time (s) 

vsup Superficial velocity (m/s) 

vint Interstitial velocity (m/s) 

w1/2 Width of the RTD curve at half-height, in the fluid-dynamic tests (s) 

Yads,i Adsorption yield of compound i in a breakthrough test, calculated as 

mi,sorbed,20% / mi,fed,20% (-) 

αL Longitudinal dispersivity (m) 

𝛿𝑖 Retardation factor i, calculated as 1+Keq,i ρb / ε (-) 

ε Effective porosity (-) 

ηresin Resin utilization efficiency, calculated as mPC,sorbed,20% / mPC,sorbed,sat (-) 

ρb Resin bulk density (kg/ m3) 
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