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Abstract 
 

The mechanical characterisation of material components in existing masonry structures 

has been the topic of several research studies. Most of them are currently focusing on 

mortar, the most difficult material component to be characterised, trying to evaluate its 

behaviour. To achieve this aim, a good option is performing minor-destructive testing 

(MDT) such as the in-situ penetrometric tests or the extraction of samples to be tested in 

the laboratory. This thesis focuses on MDT for the mechanical characterisation of 

historical mortars. In the first part, a novel in-situ MDT technique is investigated, based 

on the field vane shear test for soils. The instrumentation consists in a four-winged pin 

(X-Drill) and a torque wrench. The testing procedure consists in inserting the pin in a 

mortar joint and applying a torque to the pin through the dynamometric key. The 

dynamometric key records the magnitude of the torque while the pin brings the material 

to failure.  This research presents the results of an experimental campaign based on the 

comparison between standard tests and X-Drill measurements on different types of 

mortars. The interpretation of the test, based on the analysis of the local stress evaluated 

on the failure surface, provides a possible correlation between the measured torque and 

the compressive strength of the material. 

After the X-Drill development, the thesis focuses on the extraction of samples to be 

tested in laboratory. The in-situ core drilling of existing masonry is a convenient 

sampling technique since it does not induce excessive damage to the historical structure 

and it allows a direct estimation of the mechanical properties by testing the extracted 

specimens in the laboratory. Brazilian tests can be carried out on cores including a 

diametral mortar joint with a defined inclination with respect to its original horizontal 
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position. A new integrated methodology is developed for the comprehensive mechanical 

characterisation of historical mortar based on different types of experimental tests 

results. This task is carried out by means of a large set of experiments performed ex-

novo on lime mortar masonry walls built in the laboratory. The processing of the results 

from Brazilian tests on cores with inclined diametral joint is complemented with the 

application of the double punch tests on mortar joints that may be also extracted through 

core drilling. The proposed experimental methodology is then compared with the results 

obtained from standard tests performed on the same materials, such as compression 

tests, flexural tests and shear tests on triplets. 

Finally, the parameters obtained are used as input parameters for 2D and 3D numerical 

analyses based on the Continuum Damage Mechanics constitutive model. This model 

allows to represent the material mechanical degradation through a single scalar 

parameter, which depends on the fracture energy dissipated during the failure process. 

The comparison between the experimental results and the numerical analyses confirm 

the good prediction capacity of the proposed techniques.  

 

 

Keywords: Minor-Destructive Tests, Penetrometric Tests, Historical Masonry 

Assessment, Lime Mortar, In-Situ Sampling, Double Punch Test, Mohr-Coulomb 

Theory, Shear Strength, Failure Envelope, Nonlinear Analyses, Fracture Mechanics, 

Continuum Damage Model. 

 



 

Sommario 
 

La caratterizzazione meccanica dei materiali che compongono strutture in muratura è 

stato l’oggetto di numerosi studi di ricerca. La maggior parte di questi è incentrata sulle 

malte, essendo il materiale più difficile da caratterizzare, cercando di stimarne il 

comportamento meccanico. Per raggiungere questo obiettivo, una buona opzione pare 

essere quella di utilizzare test moderatamente distruttivi (MDT), come prove 

penetrometriche o estrazione di campioni da testare in laboratorio. 

Questo lavoro è focalizzato sulle tecniche MDT per la caratterizzazione meccanica di 

murature storiche. Nella prima parte viene studiata una nuova tecnica MDT in-situ 

basata sul Field Vane Test per i terreni. La strumentazione, infatti, consiste in un chiodo 

alettato (chiamato X-Drill) e una chiave torsiometrica. La procedura di test consiste 

nell’inserire il chiodo in un letto di malta e successivamente nell’applicare un momento 

torcente mediante una chiave dinamometrica. Quest’ultima registra il valore massimo di 

torsione mentre il chiodo porta a rottura il materiale. Si presentano i risultati di una 

campagna sperimentale basata sul confronto di test di compressione standard con le 

letture di prove X-Drill eseguite su campioni di malta di proprietà differenti. La 

calibrazione è stata basata sull’analisi delle tensioni locali sulla superficie di rottura, 

ottenendo una possibile correlazione tra momento massimo misurato e resistenza a 

compressione del materiale. 

Successivamente, la ricerca si è concentrata sull’estrazione di piccoli campioni da 

testare in laboratorio. Il carotaggio di campioni in situ eseguito su murature esistenti 

può essere una tecnica conveniente, dal momento che non produce lesioni eccessive 

sulla struttura e permette una stima diretta delle proprietà meccaniche. La prova 
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Brasiliana può essere eseguita su carote che includano un giunto di malta diametrale, 

ponendo quest’ultimo inclinato rispetto alla direzione orizzontale. Viene proposta una 

tecnica integrata di caratterizzazione meccanica per le malte storiche che si basa 

sull’analisi e confronto di diversi tipi di prove sperimentali. Questa metodologia è stata 

sviluppata con l’ausilio di una campagna prove eseguita ex-novo in laboratorio su 

elementi in muratura con malta di calce idraulica. L’utilizzo combinato della prova 

Brasiliana su carote con giunto di malta inclinato e delle prove a punzonamento su 

lastrine di giunto di malta estratte dal muro ha consentito di stimare un dominio di 

rottura come inviluppo degli stati tensionali corrispondenti a ciascuna prova. I risultati 

sono poi stati confrontati con quelli ottenuti da prove standard di compressione, 

flessione e taglio su triplette. 

Infine, i parametri ottenuti dall’elaborazione sono stati utilizzati per la realizzazione di 

analisi numeriche su modelli agli elementi finiti 2D e 3D con leggi costitutive basate 

sulla meccanica del danno continuo. Tali leggi permettono di rappresentare il degrado 

del materiale attraverso un unico parametro scalare, il quale dipende dall’energia 

dissipata durante la frattura. Il confronto tra risultati sperimentali e numerici ha 

confermato la bontà del modello proposto per la caratterizzazione delle malte storiche. 

 

 

Parole chiave: Prove Limitatamente Distruttive, Prove Penetrometriche, Vulnerabilità 

Murature Storiche, Malta di Calce, Campionamento In-Situ, Double Punch Test, Teoria 

Mohr-Coulomb, Resistenza Taglio, Inviluppo Rottura, Analisi Non-Lineari, Meccanica 

della Frattura, Modello Danno Continuo. 

 

 



 

Chapter 1. Introduction 
 

The assessment of historical buildings has become a fundamental topic in the 

conservation of the architectural heritage, especially in the last decades where relevant 

catastrophic events have threatened many important structures. The evaluation of the 

structural health and the identification of possible vulnerabilities in those facilities shall 

allow the preservation of the cultural heritage value that they represent. 

The conservation of the architectural heritage requires a multidisciplinary approach 

involving a variety of professionals and organisations. For this reason, in 2003 the 

International Council on Monuments and Sites produced a document of 

recommendations (ISCARSAH 2003a; ISCARSAH 2003b) to assist the professional 

figures involved in historical masonry assessment and facilitate the communications 

between them. 

The current approach for the historical building assessment can be defined “Knowledge-

Based Assessment” and requires information about the original structural conception, its 

construction techniques, the possible damages or modifications occurred in the building 

life and finally on the present state. As reported in the aforementioned document 

(ISCARSAH 2003a), the diagnoses are based on historical qualitative and quantitative 

approaches; the qualitative approach is mainly based on direct observation of the 

structural damage and material degradation as well as historical and archaeological 

research. On the contrary, the quantitative approach is mainly based on material and 

structural tests, monitoring and structural analyses. Concerning the latter one, data and 

information should first be processed approximately, to establish a more comprehensive 

plan of activities in proportion to the real problems of the structures. In some cases, it is 
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convenient to organise the material characterisation in stages, beginning with simple 

techniques and eventually integrating them with more sophisticated methodologies. 

Non-destructive tests should be preferred to those that may involve any alteration to the 

structure. However, those kinds of tests often do not provide the required reliability 

concerning the investigated material’s results. In this case, it should be necessary to 

assess the benefit to be obtained by opening up the structure in terms of reduced 

structural intervention against the loss of culturally significant material (a cost-benefit 

analysis). For this reason, minor-destructive tests are increasingly used for the 

assessment of existing structures, providing more reliable results than non-destructive 

tests while maintaining a limited damage on the investigated part. 

Masonry is one of the most common materials in European heritage buildings. The 

building technique of masonry structures is mostly the same since centuries ago, 

consisting in superposing blocks or raw stones and, eventually, filling the joints by 

using mortar. The heterogeneous nature of the material introduce even more uncertainty 

on its mechanical behaviour, since the structural element capacity depends on the 

complex interaction of the units and mortar joints. Masonry structures are generally 

composed of materials characterised by very low tensile strength and that may easily 

show cracking or separation between elements. Nevertheless, these signs are not 

necessarily an indication of danger as masonry structures are intended to work mainly in 

compression. 

The preliminary analysis of masonry requires the identification of the characteristics of 

the constituent materials: the units (stones or bricks) and the type of mortar (cement, 

lime, etc.). It is also necessary to know how the elements are bonded (dry joints, mortar 

joints etc.) and the way in which they are geometrically related to each other. Different 

kinds of tests may be used to ascertain the composition of the wall. 

Focusing on the Italian territory, where the earlier European societies have settled and 

developed important technologies for the building construction, masonry structures 

have to deal with the seismic hazard. The latest important seismic events occurred in the 

Italian territory, such as Umbria-Marche in 1997, L’Aquila 2009 and Emilia-Romagna 

2012, caused huge damages on lots of historical masonry buildings. Italian governance 

faced with these casualties introducing the approach proposed by ICOMOS in the 

current Standard (D.M. 14/01/2008 2008). 
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approaches (i.e. compression, flexural test of mortar prisms and shear tests of 

masonry triplets). 

According to the ICOMOS Guidelines (ISCARSAH 2003b), it is preferable to plan the 

characterisation of materials of existing masonry structures in stages, processing firstly 

the outcomes of simple tests that could provide a first impression on the structural 

health. Secondly, the information retrieved from the first stage can help to choose 

further and more comprehensive experimental methodologies, such as those including 

MDT. 

According to the aforementioned Guidelines, the first part of the present research 

provides a new technology for quick in-situ evaluation of the mechanical properties of 

historical mortar. The proposed technique, called X-Drill penetrometer, reveals to be a 

promising methodology of investigation, since the instrumentation is quite cheap and 

the test is simple as for the execution and the interpretation of the results.  

The second stage of the research investigates non-standard techniques as an alternative 

to standard tests that usually cannot be performed on historical masonry. The direct 

comparison between standard and non-standard techniques is carried out considering 

historical-like materials reproduced in the laboratory according to the traditional 

construction practice. 

The experimental setup for Brazilian Test on core samples with inclined mortar joint is 

enhanced compared to previous works available in the literature. The introduction of 

linear variable differential transformers (LVDTs) placed parallel to the joints allows to 

measure the relative displacement of the two halves of the specimens and thus to derive 

important mechanical parameters. Moreover, the combination of different non-standard 

tests provides a new integrated methodology for a better interpretation and a more 

robust prediction of the materials’ mechanical parameters.  

The outcomes of the interpretation can be used as input parameters for numerical 

analyses, based on advanced constitutive models, such as Continuum Damage 

Mechanics ones, that can give further information on the nonlinear behaviour of the 

resisting element. 
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1.2. Outline of the Thesis  

 

This thesis consists in six Chapters. 

Chapter 1 provides the introduction and the objectives of the research.  

Chapter 2 presents a brief overview on the current masonry standards in the European 

Union both for new masonry constructions and for the historical masonry assessment. A 

state-of-the-art of available experimental and numerical techniques currently used for 

existing masonry assessment is also included. 

Chapter 3 presents the development of a novel MDT instrumentation. The X-Drill is 

based on the field vane test used for soils, consisting in a four-winged pin inserted in the 

material. A torque is then applied to the pin through a dynamometric key, which records 

the maximum value at failure. The calibration of the instrument was carried out in 

laboratory using a large set of mortar specimens with different compressive strengths. 

The analysis of local stresses on the material led to a linear correlation between the 

maximum torque measured and the compressive strength of the mortar. The proposed 

interpretation method returned a high prediction capacity on the mortar strength. 

Chapter 4 presents a large experimental campaign carried out on specimens extracted 

from masonry walls reproduced in the laboratory using historical-like materials. The 

experimental campaign included also standard specimens prepared following the current 

standards for compression, flexural and shear tests. The extraction was carried out using 

a novel dry coring technique instead of water-cooled coring, in order to collect less 

disturbed specimens. Once the core samples were extracted, the walls were dismantled 

to obtain mortar joint specimens to be tested through DPT. These two tests can be 

performed in real experimental campaigns on existing structures, while the standard 

tests are hardly applicable since the samples extracted are not prismatic and regular. The 

core samples were subject to Brazilian Test with inclined mortar joint (BT), which 

induces a composite state of stress on the mortar joint. The test was enhanced by 

introducing LVDTs on both circular faces in order to measure the relative displacement 

of the bricks shaping the joint. This solution provided information about elastic, 

strength and nonlinear properties of mortar. The outcomes of BT and DPT were 

combined using a 3D representation of the state of stress (i.e. Mohr’s Circles), allowing 

defining a more precise estimation of failure envelope. The resulting compressive, 

tensile and shear strengths obtained by the failure envelope were compared with the 

standard tests performed, confirming the good agreement of the results. 
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Chapter 5 validates the experimental results presented in the previous Chapter 4 by 

means of 2D and 3D FE analyses based on a Continuum Damage Mechanics 

constitutive model. In particular, the samples tested were modelled using micro-models 

(i.e. units and mortar were defined separately as a heterogeneous model) with the 

parameters obtained by the integrated interpretation. 

Chapter 6 presents an extended summary, the main contributions of this work and the 

conclusions that can be derived from this study. Suggestions for future work are also 

pointed out. 

 

 



 

Chapter 2. State-of-the-art of experimental and 

numerical analysis of masonry 
 

This Chapter presents a critical review of the state-of-the-art on experimental and 

numerical approaches for the analysis of existing masonry.  

The available experimental approaches can be classified into Destructive Tests (DT), 

Minor Destructive Tests (MDT) and Non-Destructive Tests (NDT), depending on the 

procedures adopted during the testing operations. 

The available numerical approaches can be classified depending on the type of analysis 

performed (i.e. linear/nonlinear and static/dynamic), on the modelling scale (i.e. macro, 

micro or multi-scale) and on the constitutive law assumed (i.e. elasticity, plasticity or 

damage mechanics). 

 

2.1. State-of-the-art of the experimental characterisation of masonry 

 

The current European Standard for new masonry construction is the Eurocode 6 (EN 

1996-1-1:2005 2005). The first part of the standard reports the minimum requests in 

terms of material quality, such as composition, durability and mechanical properties.  

Concerning mortar, the material used must agree with the EN 998-2:2010 (EN 998-

2:2010 2010) which contains all the information about the preparation procedures, the 

proportions of sand, binder and water and the durability requirements. The binder used 

in the mortar can be either cement (EN 197-1:2011 2011) or hydraulic lime (EN 459-

1:2010 2010). EN 1015-1:1999 (EN 1015-1:1999 2007) reports the necessary analyses 
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௞݂ ൌ ܭ ∙ ௖݂௕
଴.଺ହ ∙ ௖݂௠

଴.ଶହ; ܧ			 ൌ 1000 ∙ ௞݂  (2.1a,b) 

 

Where ܭ is a constant dependent on the masonry units used, ௖݂௕ and ௖݂௠ are 

respectively compressive strength of units and mortar. 

The shear behaviour of masonry can be estimated through specific tests described in EN 

1052-3:2002 (EN 1052-3:2002 2002), which provides the procedures to be followed in 

order to obtain the initial shear strength. Such parameter allows to define the failure 

envelope in terms of ߪ െ ߬ stresses (i.e. Mohr-Coulomb), considering the possible crack 

formation as a two-dimensional interface failure. 

In the specific case of the evaluation of existing masonry, the experimental procedures 

contained in the aforementioned standards appear inappropriate, since the constituent 

materials usually do not comply with the minimum requirements of composition or 

material strength. Moreover, the dimensions of the specimens required by the standards 

are hardly obtainable from an existing structural element. For this reason, it is necessary 

to define novel reliable methodologies for the accurate mechanical characterisation of 

masonry components in existing structures.  

The Italian Cultural Heritage is composed mainly of historical masonry buildings, 

largely diversified in materials and construction techniques. Due to the high seismic 

hazard of the Italian territory, the national governance had to introduce further 

instructions and rules for the prevention and the restoration of the historical building. 

These rules were collected firstly in the Italian Standard (D.M. 14/01/2008 2008) in 

2008, and then extended to its Instructions (Circolare 02/02/2009 n. 617 2009). 

Italian Standards provide a precise schedule to be followed in order to obtain the 

requested level of knowledge of the investigated building, based on the European 

Recommendations for the safeguard of the Cultural Heritage buildings (ISCARSAH 

2003a; ISCARSAH 2003b). Firstly, it is necessary to retrieve the documentation about 

the structure realisation, such as original design projects, historical information about 

restoration interventions, structural alterations or relevant damages. All these 

information can contribute to the identification of the structural system and to the 

estimation of the loads acting on the resisting structure. Secondly, it is necessary to plan 

a survey to find possible incongruences between the original project and the current 

condition of the building. Once the global resisting system is identified, it is finally 

necessary to proceed with the material characterisation by performing experimental 

tests. 
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The Instructions of Italian Standard (Circolare 02/02/2009 n. 617 2009) provide a table 

containing reference values of mechanical parameters for different types of masonry. 

The proposed reference values refer to masonry realised with weak mortar, thick joints 

and no transversal interconnection between eventual multiple layers. If the masonry 

investigated presents some kind of reinforcement or is in better condition than in the 

reference condition, it is possible to use some correction factors to increase the 

mechanical properties. For limited and adequate levels of knowledge (named as LC1 

and LC2), the parameters assumed for the vulnerability analysis of the structure must 

comply with the range provided by the former table. Possible higher results obtained by 

experimental tests can be used only to increase the parameters that in any case have to 

fall within the range provided. If the number of tests performed is sufficiently large 

(exhaustive tests), it is possible to assume an accurate level of knowledge (i.e. LC3) 

allowing using directly the results of the experimental tests. The aforementioned 

standard reports the type of tests to be performed in order to consider the requested 

knowledge level. For example, if the level of knowledge LC3 is needed, Destructive 

Tests (DT) or Minor-Destructive Tests (MDT) are required. Non-Destructive Tests 

(NDT) are allowed as complementary tests, reducing the amount of DTs or MDTs. In 

fact, the Instructions to the Italian Standard (Circolare 02/02/2009 n. 617 2009) suggest 

that MDTs and DTs can be replaced for a total amount of 50% with NDTs by tripling 

the number of the tests removed. 

Recent studies (Borri et al. 2011; Galli et al. 2014) showed that the Instruction to the 

Italian Standard provides conservative values, suggesting that operating in an accurate 

level of knowledge could lead to more reliable results and could significantly reduce the 

restoration interventions. 

In addition to the National Standard, Italian Regions can provide further regulations to 

describe more in detail the assessment of historical masonry. As an example, the Tuscan 

“Regional Program VSM” (VSM Regione Toscana 2003) provides a complete 

characterisation of the masonry typologies that can be encountered on the territory, 

organised as an abacus with a standardised classification (see Figure 2.2). 
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In the sonic reflection method both the emitter and receiver of the sonic wave are placed 

on the same face of the masonry (as for indirect transmission shown in Figure 2.18c), 

but the stress wave recorded is the direct stress wave reflected from any discontinuity 

interface of the element investigated. The velocity calculated from the rear wall or face 

of a structure is a measure of the local velocities along the path. 

The problems that can be investigated by reflection methods are: 

- Internal dimensions and shape of the masonry element. 

- Type and properties of fill. 

- Voiding within the fill material. 

- Cracks and voids within the internal fabric of the structure. 

Seismic waves, which are also generated by an impact source, are commonly referred to 

NDT applications and propagate at frequencies in the range from 100 Hz to 1 kHz. The 

range of frequencies refers both to seismic and sonic waves, thus in practice the terms 

are often interchanged. Despite its advantages, the sonic reflection method is not 

recommended since the resolution achievable with the low frequency energy is poor and 

it is often difficult to distinguish reflections from surface waves and refracted arrivals 

(McCann & Forde 2001). 

The most recent development of sonic and ultrasonic methods is known as the “Impact–

Echo” test method (McCann & Forde 2001; Colla 2003), which was originally 

developed to measure concrete thickness and integrity from one surface. The method is 

performed on a point-by-point basis by using a small-instrumented impulse hammer to 

hit the surface of the material investigated at a given location. An accelerometer 

mounted adjacent to the impact location records the reflected energy, as reported in 

Figure 2.20. 
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2.2. State-of-the-art of the numerical analysis of masonry 

 

Once the mechanical characterisation of the material is achieved, it is necessary to 

analyse the structural system through numerical models. The masonry assessment can 

be based on linear and nonlinear analyses both in static and dynamic configurations on 

finite element models or using local analyses with kinematic approach. 

Linear static analysis is the most simple analysis to be performed. The Italian Standard 

(D.M. 14/01/2008 2008) suggests it only for simple structures. Linear dynamic analysis 

(i.e. Modal Analysis combined with response spectrum analysis) is widely used in 

seismic assessment, since it provides further information on the dynamic behaviour of 

the structure such as influence of modal components on the global behaviour (see 

Figure 2.24a). The hypothesis of linear materials is however the major limitation to the 

reliability of these analysis.  

Nonlinear static analyses (Pushover) are well-known in the professional practice, and 

consist in step-by-step analyses increasing the horizontal loading until the collapse. The 

constitutive model of the elements is nonlinear. The equilibrium can be calculated on 

the deformed geometry at each step, thus including also the nonlinear geometric effects. 

The results give information about the ultimate capacity of the structure, considering the 

nonlinear behaviour in the resisting elements (see Figure 2.24b and Figure 2.24c).  

Nonlinear dynamic analysis (Time-History) considers all the nonlinear properties of the 

materials subjected to a time-dependent action that usually is defined by accelerograms. 

This analysis is the most expensive in terms of computational costs, since it is based on 

the integration of motion equations for each degree of freedom. For this reason, Time-

History analyses are limited to special case-studies (Figure 2.24) and are not so widely  

used in practice-oriented works. 
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The primary aim of micro-modelling technique is to represent closely the masonry 

material from the knowledge of the properties of each constituent and the interfaces. 

The necessary experimental data has to be obtained from laboratory tests in the 

constituents and small masonry samples. Despite the advantages, the detailed micro 

modelling requires a large number of parameters and the high number of degrees of 

freedom making it hardly suitable for large models. However, this technique is widely 

used for the modelling of isolated masonry elements, allowing understanding accurately 

the local behaviour at the level of constituents. 

This drawback is partially solved by means of simplified micro-models (Gambarotta & 

Lagomarsino 1997; Lotfi & Shing 1994), where the description of the solid components 

is made by continuous mesh with elastic properties, while the behaviour of the mortar 

joints and unit-mortar interfaces is lumped into the discontinuous elements (Figure 

2.26c). Masonry is thus considered as a set of elastic blocks bonded by potential 

fracture/slip lines at the joints. Further improvements can consider even the potential 

crack internally to the units. Nevertheless, the simplified strategy still requires a strong 

effort in terms of computational costs, making the analysis of complex structures hard 

to manage. 

In large and practice-oriented analyses, the knowledge of the interaction between units 

and mortar can be neglected in the analysis of the global structural behaviour. In these 

cases, a continuum material (i.e. macro-modelling) shall be more suitable (Figure 

2.26d). Macro modelling is largely diffuse for the global analysis of structures, but the 

mechanical properties of the homogenised material are difficult to be determined. The 

anisotropic behaviour of masonry can be considered using specific models. Available 

models were provided by Pelà  (Pelà 2009; Pelà et al. 2011a; Pelà et al. 2013)and 

Lourenço (Lourenço et al. 1995). The first one is based on establishing a one-to-one 

mapping relationship between the behaviour of an anisotropic real material and that of 

an isotropic fictitious one. This general formulation allows adjusting an arbitrary 

isotropic criterion to the particular behaviour of the orthotropic material. The 

orthotropic elastic and inelastic behaviours can be modelled in such a way that very 

different mechanical responses can be predicted along the material axes (see Figure 

2.28). This model showed its predictive capacity both for linear and nonlinear analyses 

of homogenised macro-models. 
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ܿ ൌ ோೣି஼ೣ∙ୱ୧୬ሺఝሻ

ୡ୭ୱሺఝሻ
   (3.6) 

 

Considering the Mohr-Coulomb criterion the tensile and compressive strengths can be 

obtained by the Equations 3.7a,b: 

 

௧݂ ൌ
ଶ∙௖∙ୡ୭ୱሺఝሻ

ଵାୱ୧୬ሺఝሻ
; 			 ௖݂ ൌ

ଶ∙௖∙ୡ୭ୱሺఝሻ

ଵିୱ୧୬ሺఝሻ
   (3.7a,b) 

 

where ft and fc are respectively the tensile and compressive strength of the mortar. 

Brittle materials are characterised by different tension and compression strengths. 

Previous studies (Benedetti & Pelà 2012; Benedetti et al. 2008) assessed that the ratio 

between tensile and compressive strengths in historical mortars may be approximately 

equal to its Poisson’s ratio, usually in the range of νm=0.20÷0.30. Thus, it is possible to 

obtain an approximated relationship between the Poisson’s modulus and the friction 

angle of the mortar, as reported in Equations 3.8. 

 

߮ ൌ arcsin ቀଵି௙೟/௙೎
ଵା௙೟/௙೎

ቁ ≅ arcsin ቀଵିఔ೘
ଵାఔ೘

ቁ  (3.8) 

 

Using standard Poisson’s values for the mortar such as νm=0.25, the resulting friction 

angle is φ=36.87°, in line with recent studies about the evaluation of Mohr-Coulomb 

parameters for this kind of material (Marastoni et al. 2016; Pelà et al. 2012; Pelà et al. 

2015; Binda et al. 1994). 

 

3.3. Experimental Campaign 

 

An experimental campaign was carried out to validate the theoretical interpretation of 

the X-Drill proposed in the previous section. Firstly a large set of standard specimens 

was designed to ensure a wide range of mortar compressive strength. Secondly, each 

specimen was tested using the X-Drill and then crushed in standard compression test, in 

order to define a direct correlation between the two measurements. 
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3.3.1. Materials 

Seven different mixtures of mortar were realized using different proportions of fine 

river sand, cement, hydraulic lime and water. The components adopted for the mixture 

are summarized below: 

- Moderately Natural Hydraulic Lime NHL 3.5; 

- Portland Cement 32.5 R; 

- Fine river sand 0 ÷ 2 mm. 

The proportions between the components were studied according to the Italian Standard 

(D.M. 14/01/2008 2008), introducing few modifications in order to obtain a sufficient 

wide range of final compressive strengths. The exact mass quantities for each mixture 

are reported in Table 3.1. 

 

Table 3.1 Mortar mixtures adopted in the reference campaign 

Mixture 
Hydraulic 

Lime 
[kg] 

Cement 
 

[kg] 

Sand 
 

[kg] 

Water 
 

[kg] 

Total  
 

[kg] 
A1 5.0 0.0 15.0 3.0 23.0 
A2 2.0 3.0 16.0 2.5 23.5 
A3 4.0 1.1 16.0 3.0 24.1 
A4 3.5 2.5 15.0 2.7 23.7 
B2 3.4 0.0 18.0 3.0 24.4 
B3 1.5 2.5 14.9 2.5 21.4 
B4 1.0 1.5 18.0 2.5 23.0 

 

Mixtures “A” were obtained by using a water/binder weight ratio of approximatively 

0.5÷0.6, reproducing a standard historical mortar. Mixtures “B” were prepared in order 

to have a lower strength, so the water/binder ratio was set around 1.0, i.e. reducing the 

binder quantity. 

 

3.3.2. Preparation of specimens 

 

Three specimens for each mortar mixture were casted, using PVC moulds with nominal 

dimensions 150 × 150 × 150 mm3 (Figure 3.9). The samples were stored for 28 days in 

a climatic chamber (20°C and 98% RH) according to the Italian Standards (D.M. 

14/01/2008 2008). 

After the curing period, two pilot holes were drilled in the centre of two opposite faces 

of each specimen. The pilot hole was drilled using a drill press equipped with a 7 mm 

hardened steel bit, in order to produce an orthogonal perforation as much as possible. 
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After the X-Drill tests over the two opposite faces, each specimen was replaced under 

the vertical press with the damaged faces in contact with the metal plates. The 

extraction of the X-Drill sometimes pulled out some material, reducing the effective 

loading area of the compression test. This issue was taken into account by measuring 

the damaged zone and considering a reduced cross section of the sample in the 

evaluation of the compressive strength. 

The compressive strength obtained from a cubic specimen was reduced to 83% of its 

original value in order to remove the confinement effect produced by the dimensions 

ratio, using the Italian Standards for concrete characterisation as reference (D.M. 

14/01/2008 2008). 

Table 3.4 summarises the effective cross sections of the samples and the results 

obtained from the compressive test. 

 

Table 3.4 Mortar compression test results 

Name 
An 

[mm2] 
Fmax  
[kN] 

fc  
[MPa] 

Name 
An 

[mm2] 
Fmax 

 [kN] 
fc 

[MPa] 
A1.1 21750 34.3 1.31 B2.1 21000 11.4 0.45 
A1.2 21600 37.3 1.43 B2.2 21150 11.7 0.46 
A1.3 21150 33.8 1.33 B3.1 21300 138.3 5.39 
A2.1 21900 225.6 8.55 B3.2 21000 145.7 5.76 
A2.2 21900 229.1 8.68 B3.3 16650 116.7 5.82 
A2.3 21600 221.7 8.52 B4.1 21150 46.3 1.82 
A3.1 21600 63.3 2.43 B4.2 20850 44.6 1.78 
A3.2 21900 63.0 2.39 B4.3 21600 47.1 1.81 
A3.3 21900 63.2 2.39     
A4.1 21750 194.2 7.41     
A4.2 21750 201.1 7.67     
A4.3 21300 183.9 7.17     

 

3.4. Experimental Calibration of the Instrument 

 

Figure 3.11 shows the relationship between the normalised ultimate torque mv and the 

experimental compressive strength fc. The normalised torque is obtained by dividing the 

torque Mv by the depth Lw of the X-Drill. The values of mv reported in the figure are the 

averages between the two normalised torques measured at the opposite faces of each 

sample. The linear regression of the experimental dataset provides the following 

empirical equation: 

 

௖݂ ൌ ߯௘௫௣ ∙ ൫݉௩ െ ݉଴,௘௫௣൯  (3.9) 
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with a coefficient of determination of R2=0.958. 

 

 
Figure 3.11 Experimental data correlation and linear regression line. 

 

The experimental empirical Equation 3.9 is compared in the following with the 

interpretation model proposed in Section 3.2. After substituting Equations 3.1-3.6 and 

Equation 3.8 into Equation 3.7b, the following analytical equation expresses the 

relationship between fc and (mv - m0):  

 

௖݂ ൌ ߯ ∙ ሺ݉௩ െ ݉଴ሻ  (3.10) 

 

where ߯ is a correlation factor that is a parameter depending on the mortar’s Poisson’s 

modulus ߥ௠ and the geometric properties of the X-Drill. 

Figure 3.11 indicates a value m0=161 Nmm/mm. However, the lowest normalised 

torque measured during the experimental tests was mv=133 Nmm/mm. This result 

suggests that the effective value of ݉଴ is actually smaller than those obtained by the 

linear regression of experimental results. For this reason, a value of m0=100 Nmm/mm 

was considered in the calculations with the analytical prediction model. 

The correlation factor ߯ depends on the assumption of a realistic value for the Poisson’s 

modulus. A sensitivity analysis was carried out to evaluate its influence on the 

correlation factor. Considering a realistic range of Poisson’s modulus of νm=0.20÷0.30, 

the χ coefficient assumes values from χ=0.0072 mm-2 to χ=0.0059 mm-2, showing a 

rather low sensitivity. Furthermore, the range of the coefficients of determination in a 

R² = 0.9584
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range between νm=0.20÷0.25 is R2=0.908÷0.940, i.e. very close to that of the linear 

regression, confirming a good predictive capacity of the model proposed. 

Figure 3.12 shows the graphical comparison between the experimental regression line 

and the interpretation model. For νm=0.20 (Figure 3.12a) the proposed model gets closer 

to the experimental regression line for mortars with higher compressive strength. In case 

of mortars with lower compressive strength, the proposed model slightly overestimates 

the experimental results. Higher values of the assumed Poisson’s ratio (Figure 3.12b,c) 

provide better agreement for mortars with lower compressive strength, maintaining a 

conservative prediction for higher ones. 

 

 
Figure 3.12 Comparison between experimental regression line and the proposed interpretation model 

depending on the Poisson’s modulus: ߥ௠ ൌ 0.20 (a), ߥ௠ ൌ 0.25 (b) and ߥ௠ ൌ 0.30 (c). 

 

It is important to remark that using the assumptions on which it is based the theoretical 

interpretative model (Section 3.2), the stress level induced in the mortar is very high. 

Since the test is designed to be performed on existing masonry, the influence of the 

ordinary loading conditions of the structure can be easily neglected in the interpretation 

of the X-Drill test results.  

As a further confirm of this hypothesis, the first work presented on this instrument 

(Christiansen 2011) reported also tests performed on the same material at different 

vertical stress levels. The comparison carried out by Christiansen confirmed that the 

vertical stress does not influence the X-Drill test results. 
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Chapter 4. Integrated Laboratory Methodology 

for Minor Destructive Testing 
 

As for the experimental characterisation of the material components (mortar and units), 

the current codes only consider tests made on standard specimens, like whole units (EN 

1996-1-1:2005 2005; EN 772-1:2011 2011) or prismatic specimens of mortar (EN 772-

1:2011 2011) that are mainly intended for new structures.  

Concerning the shear behaviour of masonry, the available standards considers only tests 

performed on specific setups, using two or three units superposed and joined by mortar 

layers (EN 1052-3:2002 2002). The test is carried out by pre-compressing the specimen 

orthogonally respect to the mortar layer and exerting a shear state of stress on the mortar 

by loading one unit while the others are blocked (Figure 4.1a). The bed joints are then 

subject to a composite state of compression and shear. By varying the magnitude of the 

pre-compression is possible to determine the failure envelope of the tested samples. The 

reference standard (EN 1052-3:2002 2002) is based on the Mohr-Coulomb theory to 

define the failure criterion (Figure 4.1b)., i.e. a two-parameter linear failure envelope. 
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This methodology is appropriate for historical constructions, since samples can be 

extracted from hidden structural members reducing to the minimum the amount of 

induced damage.  

Recent studies have shown the possibility of core drilling perpendicular to the face of 

the structural member to extract masonry cylindrical samples to be tested in the 

laboratory (Pelà et al. 2012; Benedetti & Pelà 2012; Mazzotti et al. 2014; Marastoni et 

al. 2016). The cores included two circular segments of brick and a diametral mortar 

joint, with a total diameter of the sample from 70 to 110 mm. In case of the Brazilian 

tests with 45º inclined joint cores they assumed that the load split into normal and 

tangential components on the mortar joint. This led to the hypothesis of an infinitesimal 

thickness of the mortar joint, reducing it to a non-dimensional interface between the 

bricks.  

On the other hand, Benedetti and co-workers (Benedetti et al. 2008) proposed an 

alternative interpretation of the stress state inside the diametral mortar joint of the 

cylindrical specimen, by considering the whole mortar layer, instead of reducing it to an 

interface. In this case, it was possible to introduce into the mechanical interpretation of 

the test also the mutual interaction between the two circular segments of brick and the 

mortar in the joint. Such interaction induces a three-dimensional state of stress to the 

mortar. The graphical interpretation of each test requires the drawing of Mohr’s circles 

representing the complete stress state in the mortar at failure. Most recent experimental 

studies by the same authors (Pelà et al. 2015; Pelà et al. 2012; Benedetti & Pelà 2012) 

showed the possibility of carrying out different Brazilian tests by varying the inclination 

of the diametral mortar joint. In this way, different shear-compression states can be 

applied to the mortar, corresponding to different Mohr’s circles on the Mohr’s plane. 

The Mohr’s circles related to the Brazilian tests were complemented with those 

corresponding to compression tests on the mortar, e.g. using the Double Punch Test 

(DPT). Finally, all the Mohr’s circles representing mortar at failure under different 

stress conditions were used to derive the Mohr’s failure envelope by means of a least 

square method. 

This section presents an experimental program that was intended to reproduce in the 

laboratory the MDT techniques of in-situ sampling and subsequent laboratory testing of 

small specimens extracted from historical masonry structural members. At the same 

time, several specimens were prepared following the relevant standards for the 

mechanical characterisation (EN 772-1:2011 2011; EN 1052-3:2002 2002; EN 1015-
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11:2007 2007) in order to compare the non-standard results with reliable values. Proper 

material components were chosen in order to reproduce those typically employed in 

historical masonry with low mechanical properties, i.e. handmade clay bricks and lime 

mortar. The manufacturing and curing of lime mortar were carefully executed using 

traditional building techniques in controlled laboratory conditions. Each material 

component was tested in order to obtain a comprehensive characterisation of its 

mechanical behaviour. Then, the selected materials were used to build two masonry 

walls. After the necessary period of curing and hardening to reach a sufficient strength 

of the material, the extraction of cylindrical samples was carried out by core drilling. A 

novel dry extraction procedure was adopted, based on an air cooling system, in contrast 

to common wet core drilling in which water could spoil the lime mortar joints in the 

samples. Brazilian tests were carried out on 90 mm diameter masonry cores by varying 

the inclination of the diametral mortar joint with respect to its original horizontal 

position. DPTs were also executed on mortar joints extracted from the same walls. A 

comprehensive micromechanical interpretation of the different experimental tests is 

presented. Finally, an integrated methodology is proposed to obtain a full 

characterisation of the mechanical properties of mortar, considering the redundant 

results derived from all the different types of experimental tests executed. The 

experimental procedures adopted, as well as the theory proposed for the interpretation 

of the tests, can be considered during the inspection activities on historical masonry 

structures to evaluate the mechanical properties of the existing mortar.  

 

4.1. Experimental Campaign 

 

The experimental investigation was carried out at the Laboratory of Technology of 

Structures and Materials of the Technical University of Catalonia (UPC-

BarcelonaTech). In the following, each stage of the experimental program is discussed 

in detail, paying attention to important issues like the preparation of material samples, 

the curing conditions, the procedures of extraction and testing. 
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Standard specimens were prepared during the wall construction in order to obtain a 

complete mechanical characterisation of the materials used. Concerning bricks, whole 

units were rectified on the larger faces to be tested in compression (EN 772-1:2011 

2011), prismatic specimens were cut from the units to perform flexural and compressive 

tests (EN 1015-11:2007 2007) and small cylinders were cored from the stretcher face to 

evaluate Young’s modulus (EN 12390-13:2013 2013). On the other hand, mortar 

specimens were prepared to perform both flexural and compressive strength (EN 1015-

11:2007 2007). Finally, nine triplets were prepared to perform shear tests according to 

the relative standard EN 1052-3:2002 (EN 1052-3:2002 2002). 

 

4.1.2. Standard Mechanical Characterisation of Materials 

 

Due to the lack of a specific standard for the evaluation of the tensile strength of bricks, 

the EN 1015-11:2007 standard for mortars (EN 1015-11:2007 2007) was used as a 

reference. Eight 40 × 40 × 160 mm3 prisms were cut (Figure 4.4a) and tested according 

to a three-point bending setup. Cubic specimens of about 35 × 35 × 35 mm3 were cut 

from the bricks and tested (Figure 4.4b). The experimental results of flexural these tests 

are summarized in Table 4.1. 

Since there are no available standards for the laboratory evaluation of the Young’s 

modulus of the brick, the EN 12390-13:2013 (EN 12390-13:2013 2013) for concrete 

samples was considered as a reference. Cylinders were cored from the header face of 

the brick with a diameter of 35 mm and length of 75 mm (Figure 4.4d). The upper and 

lower faces were rectified to make them parallel and then the samples were tested using 

extensometers to measure the vertical deformation of the central third. After three 

cycles from 10% to 30% of the failure load, the Young’s modulus was determined, as 

shown in Table 4.1. 
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Figure 4.9 Triplets tests: load vs. average LVDTs displacement for each step of pre-compression. 

 

The tests were carried out at three pre-compression levels of 0.2 MPa, 0.6 MPa and 1.0 

MPa, in agreement with the reference standard (EN 1052-3:2002 2002). The reference 

standard provides also the methodology for the estimation of the stress distribution over 

the mortar joint, considering a constant value of normal and tangential stresses as 

reported in Equations 4.1a,b. 

 

௠௔௫ߪ ൌ
ிಹ
஺
;			߬௠௔௫ ൌ

ி೘ೌೣ

ଶ∙஺
   (4.1a,b) 

 

where FH is the constant force applied as pre-compression for the joint, A is the area of 

the mid-section of the mortar joint and Fmax is the maximum force at failure applied 

parallel to the joints. 

The experimental results derived from the investigated nine specimens are reported in 

Table 4.3. 
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In this research, the procedure of extracting the mortar layers was slightly different from 

the aforementioned approach, since the specimens were obtained by dismantling the 

wall after the core drilling operations. 

The extraction of cylindrical specimens from the two walls was carried out 60 days after 

their construction. The walls were maintained in vertical position during the coring 

operations (Figure 4.11a). During the movements, a proper confinement was ensured by 

two horizontal steel profiles, placed below the base and the over the upper edge and 

connected by four rods tensioned by a small force (Figure 4.11b). 

Horizontal core drilling was executed perpendicularly to the face of the walls (Figure 

4.11b). A novel procedure was followed in order to avoid spoiling the samples during 

their extraction. Common core drills, normally adopted for concrete structures, use a 

water cooling system. This well-known system showed its limitations in previous 

experimental programs, since water could wash lime mortar joints away (Pelà et al. 

2015). In addition, the use of water can be inconvenient in case of sampling activities 

from the inside of existing historical buildings. For this reason, this research proposes a 

novel dry extraction procedure, in which air cooling is adopted instead of water cooling, 

in order to preserve the integrity of the mortar joints. Air cooling is ensured by an 

aspirator connected to the coring bit. However, during the masonry core drill, the dust 

might block the sample inside the bit. In fact, the bit usually overheats during drilling, 

allowing the dust to interpose between itself and the sample. As soon as the core drill 

stops working and the bit gets colder, its sudden contraction might block the specimen 

inside. The aspirator continuously removes the dust inside the bit and cools down the 

system, but sometimes its effect is not sufficient. Therefore, in this study, the masonry 

was core drilled step by step, making sure that at each small step the dust was removed 

completely either by the aspirator or by a spray compressor. By using this procedure, a 

total of 22 intact cores were extracted for this experimental program. In addition, other 

30 larger diameter cores were extracted from the walls, without any operational 

problem, and they were utilized for a different research study. 
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Table 4.4 Experimental results of Brazilian tests on masonry cores with inclined mortar joint. 

Sample ࢻ	ሾ°ሿ ࢞ࢇ࢓ࡲ ሾۼܓሿ ࢞ࢇ࢓࣌ ሾ܉۾ۻሿ ࢞ࢇ࢓࣎	ሾ܉۾ۻሿ 

1JC04 45 10.62 0.56 0.56 

1JC11 45 14.19 0.76 0.76 

1JC14 45 17.87 0.95 0.95 

1JC19 45 14.26 0.76 0.76 

1JC02 50 12.50 0.58 0.69 

1JC06 50 11.53 0.55 0.66 

1JC07 50 10.68 0.52 0.61 

1JC09 55 10.63 0.46 0.66 

1JC16 55 8.25 0.36 0.51 

1JC05 60 5.12 0.19 0.33 

1JC10 60 9.39 0.35 0.61 

1JC13 60 11.32 0.42 0.73 

1JC18 60 10.20 0.39 0.67 

1JC21 60 6.69 0.26 0.45 

Average 
45 

14.23 0.76 0.76 

CV 21% 21% 21% 

Average 
50 

11.57 0.55 0.66 

CV 8% 6% 6% 

Average 
55 

9.44 0.41 0.58 

CV 18% 18% 18% 

Average 
60 

8.54 0.32 0.56 

CV 30% 30% 30% 

 

4.2.2. Double Punch Tests on Mortar Joints 

 

The DPT is a promising MDT technique that revealed to be suitable for the mechanical 

characterisation of mortar in existing masonry structures (Pelà et al. 2012; Benedetti & 

Pelà 2012). It consists in a local compression test performed on roughly 50 × 50 mm2 

mortar layers using two special punching devices with a contact surface diameter of 20 

mm (Figure 4.16a). Being mortar a heterogeneous material and being the DPT executed 

on a small portion of the mortar layer, the experimental results usually present high 

scatter. In addition, the upper and lower faces of the mortar joint, once detached from 

the bricks during sampling, appear normally irregular. This drawback adds a further 

complexity to the DPT. However, DPT can provide useful information about the 

strength of mortar and is actually the only possible laboratory test that can be carried out 

on mortar samples extracted from existing masonry structures. 
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Table 4.5 Experimental results of double punch tests on mortar joints. 

Sample ࢞ࢇ࢓࣌ ሾ܉۾ۻሿ 
P1_E 2.29 
P2_E 2.91 
P3_E 2.29 
P4_E 3.41 
P5_E 3.04 

P2_E_2 2.60 
P3_E_2 2.38 
P4_E_2 3.40 
P5_E_2 2.10 
Average 2.71 

CV 18% 
 

4.3. Interpretation of the Experimental Results 

 

This section presents the comprehensive discussion and interpretation of the results 

from the BTs on masonry cores with inclined diametral mortar joint and the DPTs on 

mortar joints. The tests considered in this experimental program are analysed in depth to 

estimate the properties of mortar. 

 

4.3.1. Brazilian Tests on Cores with Inclined Diametral Mortar Joint 

 

The mechanical interpretation of the experimental results from BTs is carried out firstly 

using continuum mechanics theory. The mortar joint is not considered as an interface 

but as a continuum subject to a triaxial state of stress during the execution of the BT. 

This kind of interpretative approach was called Continuum Model in (Pelà et al. 2015) 

and was firstly proposed in (Pelà et al. 2012; Benedetti & Pelà 2012; Benedetti et al. 

2008). Further improvements to the model are presented in this study together with its 

validation by comparison with experimental results obtained in the laboratory. 

According to the Continuum Model, the state of stress in the mortar joint during the BT 

can be represented graphically in the σ-τ Mohr’s plane by means of Mohr’s circles. The 

circles representing the mortar’s stress state at failure are tangent to the failure 

envelope. (Pelà et al. 2015) considered a Mohr-Coulomb criterion represented by a 

straight line. The parameters c and  of the criterion, denoting the material’s cohesion 

and friction angle, were determined using a least square method in order to best fit the 

experimental data set.  
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This research presents an improvement to the aforementioned approach, since it 

considers a more realistic nonlinear Mohr’s criterion as failure envelope for the Mohr’s 

circles of the BTs at failure (Pelà et al. 2012). In fact, the linear Mohr-Coulomb 

criterion is widely used for numerical modelling of a masonry element, since the 

prediction on its shear behaviour returns values in good agreement with the 

experimental results. On the other hand, dealing with historical masonry, it usually 

overestimate the tensile strength and the multiaxial compressive strength. Several 

authors suggested modified version of this criterion, introducing some limits in tensile 

and compressive strength (Pluijm et al. 2000; Lourenço et al. 1995). The nonlinear 

model proposed in (Pelà et al. 2012) allows to introduce a tensile limit without 

increasing the necessary parameters. 

In addition, this work considers a more precise graphical representation of the stress 

state by Mohr’s circles based on the representation of the complex triaxial state of stress 

actually experienced by the mortar during the BT and triplets tests. Figure 4.17 shows 

the comparison between the Mohr’s circle representation of a generic BT as done in 

previous works (Pelà et al. 2015; Pelà et al. 2012; Benedetti & Pelà 2012; Benedetti et 

al. 2008) and in the present one. The former is drawn using a light grey line, whereas 

the second is drawn in dark grey. The stress state inside the mortar joint at failure is also 

presented, referring to Figure 4.15 and Equations 4.2a,b. As shown, the previous 

researches considered, as an approximation, zero confinement in the direction parallel to 

the joint. This hypothesis is reinterpreted here by including also the confinement effect 

σH in the Mohr’s representation. This confinement is exerted by the stiffer circular 

segments of brick that limit the expansion of the softer diametral mortar joint during the 

execution of the BT. The graphical representation of this effect implies the construction 

of a smaller Mohr’s circle than in the case of zero confinement (see Figure 4.17). Notice 

that compression stresses are considered positive in Figure 4.17 and also in the 

following ones.  
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negligible. This means implicitly that the units act as a constraint for the expansion of 

the mortar due to their high stiffness. Thus, it is possible to simplify the Equation 4.4 as 

follows. 

 

ுܭ ≅
ఔ೘

ଵିఔ೘
  (4.5) 

 

The confinement ratio for BT using Equation 4.4 resulted KH,B=0.415, having assumed 

in calculations the following average parameters: Em=400 MPa, Eb=9792 MPa, νm=0.30, 

νb=0.17, hm=15 mm and hb=77 mm. Considering the simplified expression reported in 

Equation 4.5 the confinement ratio resulted KH,B=0.429, only 3% higher than the 

previous evaluation. This result confirms that a good estimation of the confinement 

effect can be given by considering only the Poisson’s ratio of the mortar. 

The material’s parameters that were not directly assessed by the experimental tests 

presented in the previous section were assumed on the base of reference values 

available in the literature. For instance, Em and νb are realistic values in good agreement 

with those provided in  (Baronio et al. 1995; Binda et al. 1994; Vermeltfoort & Pluijm 

1991) for lime mortar and bricks. The value of νm was derived using the theory of 

elasticity with the assumed value of Em and the experimental value Gm=154 MPa. 

Hilsdorf’s theory is based on the micromechanical analysis of a representative cell 

composed of one unit and one mortar joint. Since the core sample contains one layer of 

mortar and two half cylindrical pieces of unit, the thickness of the brick to be used in 

the equations are those in Figure 4.18. 
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For instance, the Interface model is the interpretation theory used in (EN 1052-3:2002 

2002) for the triplets shear test. 

The experimental setup used in this research for BTs allowed to develop a possible 

method for the estimation of another mechanical parameter of mortar, i.e. the tangential 

elastic modulus Gm. By measuring the relative displacement between the brick circular 

segments, which is due to the shear deformation of the mortar joint, it was possible to 

estimate Gm. Considering the initial elastic response of mortar, the tangential modulus 

can be calculated as the ratio between the tangential stress τ and the shear strain γ. The 

estimation of Gm depends on the stress/strain level at which it is calculated. Technical 

recommendations available in the literature do not provide any suggestion for the 

assessment of Gm. For this reason, it was found interesting to measure the variability of 

Gm values for different elastic stress levels. The tangential stress can be defined like in 

Equation 4.2b but for a load level lower than that at failure, i.e. still within the elastic 

range of mortar. The load level to be considered for the evaluation of Gm can be 

expressed as a percentage of the maximum failure load according to β · Fmax, where 

0<β<1. The shear strain is the deformation over the thickness of the joint. The tangential 

modulus is finally determined by Equation 4.7 as: 

 

௠ܩ ൌ ఉ∙ఛ೘ೌೣ	

ఊ
ൌ ఉ∙ி೘ೌೣ

஺
∙ sinሺߙሻ ∙ ௧

ఋ
   (4.7) 

 

where t is the thickness of the mortar layer and δ is the relative displacement measured 

between the two circular segments of brick at the load β · Fmax. 
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  (4.9a,b,c) 

 

 

Table 4.7 Estimation of the confinement stress ߪு,் for the mechanical interpretation of the triplet shear 

tests. 

Sample ࢞ࢇ࢓࣌ ሾ܉۾ۻሿ ࡴ࣌	ሾ܉۾ۻሿ 

T1-NHL 0.99 0.41 

T10-NHL 0.99 0.41 

T13-NHL 0.99 0.41 

T3-NHL 0.59 0.25 

T7-NHL 0.59 0.25 

T12-NHL 0.59 0.25 

T2-NHL 0.20 0.08 

T5-NHL 0.20 0.08 

T11-NHL 0.20 0.08 

 

4.3.3. Double Punch Test 

 

A precise interpretation of the DPT results requires the estimation of the transversal 

confinement exerted by the loading punches on the flat sample of mortar. This is 

necessary in order to obtain a more precise graphical presentation by Mohr’s circles of 

the stress states in DPTs. The Hilsdorf’s theory (Hilsdorf 1969) is not suitable for DPT, 

since the hypothesis of constant horizontal stresses along the joint depth is not valid due 

to the fact that the dimensions of the metal punches are comparable to the thickness of 

the mortar specimen.  

The analysis of the transversal confinement in the mortar sample was carried out by 

means of a numerical simulation of the DPT using a Finite Element Model (FEM). The 

2D axisymmetric FEM was elastic and its only purpose was to evaluate the amount of 

horizontal confinement to which the mortar joint sample is subject during the DPT. The 

mesh was composed of 12000 nodes and 36601 eight-node plane elements (Figure 

4.23a). Due to the axial symmetry of the problem, the mesh discretized only one-fourth 

of the real DPT, including both the 20 mm diameter punches and the mortar sample. 

Due to the irregular shapes of the specimens during the DPTs, only the inscribed 

cylinder to the sample was discretized as an approximation. Its outer dimension was 60 

mm and its thickness was 15 mm. The mortar’s Young’s modulus was Em=400 MPa and 

the Poisson’s ratio was νm=0.30. The Young’s modulus of metallic punches was 
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conversion from flexural to tensile strength. The conversion formula takes into account 

the possible non-standard dimensions of the specimens as reported in Equation 4.11. 

 

௧݂௕,ா஼ଶ ൌ
௙೟್,೑

ଵ.଺ିሺ௛/ଵ଴଴଴ሻ
  (4.11) 

 

Where ftb,f is the flexural strength calculated according to the three-point bending test 

(EN 772-6:2011 2011) and h is the height of the specimen. 

Concerning the compression tests, the actual standard for units refers only to the whole 

unit compression (EN 772-1:2011 2011). This test was hardly executable on the bricks 

used in the reference experimental campaign due to their aspect ratio. In fact, the 

thickness of the units compared to their transversal dimensions was largely lower than 

the minimum requested from the standard.  

For this reason the compressive strength was determined using the standard for mortar 

as reference (EN 1015-11:2007 2007). The compressive strength for the units was 

assumed as fcb=18.40 MPa. 

 

4.4. Integrated Methodology of Micro-Mechanical Interpretation 

 

An integrated method is proposed to post-process the experimental results from BTs 

and DPTs and to evaluate the properties of mortar. The Continuum model presented in 

Section 4.3.1 represents graphically the mortar’s state of stress at failure by Mohr’s 

circles in the σ-τ Mohr’s plane (Figure 4.17). The failure criterion can be represented by 

the envelope of all the Mohr’s circles. On the other hand, the Interface model (see 

Section 4.3.1) considers only a plane state of stress on the theoretical failure surface, 

identified as the mid-section of the mortar joint. The state of stress of one specimen is 

then represented as a point on the Mohr’s plane (Figure 4.19). 

The experimental results are usually scattered due to unavoidable heterogeneities in the 

mortar joints. For this reason, the failure envelope must be assessed by adopting a 

statistical approach leading to the determination of the best fit over the group of results 

in both models. 

The data elaboration was carried out by means of a software developed in this research 

using Matlab (MathWorks 2013). The program was designed to process entirely the raw 

data coming from a laboratory test report, leaving to the user the possibility to select 
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different option for the interpretation method from the user-friendly interface. 

Moreover, it was studied to provide the necessary parameters for a numerical FE 

software developed by the Technical University of Catalonia and called COMET 

(CIMNE 2002). This software allows to compute nonlinear analysis with sophisticated 

constitutive models such as continuum damage model. 

 

4.4.1. Theoretical Development for Continuum Model 

 

A recent study (Pelà et al. 2015) proposed the adoption of a Mohr-Coulomb straight-

line using the least squares method to minimize the sum of square distances between the 

line and ultimate Mohr’s circles of all tested specimens. In a previous work of the same 

author (Pelà et al. 2012) also used a least squares analysis on the distances between the 

Mohr’s circles and the failure surface, but it assumed a Mohr’s parabolic failure 

envelope. This criterion can be defined by two positive constants, σ0 and τ0 in Equation 

4.12, which indicate the intersections between the σ-τ axes and the parabola:  

 

ቀ ఛ
ఛబ
ቁ
ଶ
െ ఙ

ఙబ
ൌ 1  (4.12) 

 

The use of a Mohr’s curved criterion like the parabolic one seems the most accurate to 

approximate the experimental set of data, as will be shown in the following. A 

numerical program was developed to automatize the least squares method and calculate 

the failure envelope. The input is the set of raw data obtained from the BTs and DPTs 

tests, such as dimensions of samples and failure loads. Starting from these input data the 

program associates a specific stress state to each sample, according to the hypotheses 

formulated in Section 4.3.1, Section 4.3.2 and Section 4.3.3 and it calculates the 

relevant Mohr’s circles. Then, the software evaluates the minimum distances between 

the centres of the Mohr’s circles and the parabolic failure criterion. This distance must 

be carefully evaluated, by considering the minimum one among all the possible lines 

that pass through the centres of the Mohr’s circles and are perpendicular to the parabola. 

In particular, when the centre of a Mohr’s circle lays between the vertex (-σ0,0) and a 

certain threshold (σcrit,0) described in Equation 4.13 the minimum distance is the 

horizontal one, i.e. the point of tangency of the Mohr’s circle is the vertex of the 

parabola (Figure 4.26). 
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3:2002 2002)) the failure of the specimen involves simultaneously the two mortar 

layers. In the former campaign, for the lowest value of normal pre-compression (0.2 

MPa) the specimens exhibited a small slip along the loading plates, sufficient to induce 

the premature cracking of one mortar joint before the other one. This problem brought 

to a lower value of the ultimate shear for 0.2 MPa pre-compression. Figure 4.30 reports 

the curve with the average displacement measured by the LVDTs in abscissa versus the 

load recorded by the load cell. Two peaks can be clearly noticed, relative to the failure 

of each mortar joint. This caused a premature loss of cohesion in one joint while the 

other was still not loaded. As a result, the shear capacity of the element appeared lower 

than the expected value. 

 

 
Figure 4.30 Force-Displacement curve of the triplet tests performed with 0.2 MPa of pre-compression. 

 

Considering the results of the 0.2 MPa pre-compression triplets, the evaluation of the 

failure envelope of mortar leads to the underestimation of the mechanical parameters 

(Figure 4.31a). On the other hand, if the results of 0.2 MPa pre-compression triplets are 

discarded, the envelope is in remarkable agreement with the one obtained with the BTs 

(Figure 4.31b). The parameters obtained by the two interpretations are reported in Table 

4.11 and Table 4.12. 
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Mohr’s plane, since the only stress considered is the tensile one. Concerning the 

compressive standard tests according to the referenced standard (EN 1015-11:2007 

2007), the result obtained from the test can be assumed as the compressive strength, i.e. 

the uniaxial ultimate state of stress. As for the triplet tests, these kind of standard tests 

actually could not be carried out in practical studies on existing and historical structures, 

being possible only the extraction of core samples for BT and mortar joint layers for 

DPT. However, it is interesting to note that the proposed interpretative approach is 

rather flexible and it allows us to include the outcomes from different testing 

techniques. The results of flexural tensile strength found in Section 4.1.2 are about 10% 

higher than the tensile strength estimation derived from the integrated model. 

Furthermore, the compressive strength prediction appears conservative of about 6% on 

the value obtained from the standard test. This means that a remarkable agreement is 

found between the mechanical parameters obtained from standard laboratory tests and 

those derived from the proposed MDT techniques. This fact confirms that combining 

BTs and DPTs is a reliable method to evaluate the mechanical properties of existing 

mortar in historical construction.  

The continuum interpretative model allows us also to estimate the compression strength 

of mortar using Equation 4.18, derived from Mohr-Coulomb theory: 

 

௖݂௠ ൌ ଶ∙௖∙ୡ୭ୱሺఝሻ

ଵିୱ୧୬ሺఝሻ
  (4.18) 

 

On the other hand, the tensile strength is defined by the cut-off value ߪ଴. The mortar’s 

compressive and tensile strengths are fcm=2.30 MPa and ftm,CUT=0.34 MPa for the 

proposed methodology including BTs and DPTs only. Notice that the estimated 

compressive strength is only slightly lower than that directly obtained from standard 

compression strength on prisms (fcm=2.45 MPa). 

 

4.4.2. Theoretical Development for Interface Model 

 

The second method proposed in (Pelà et al. 2015) to interpret the results from BTs on 

masonry cores with inclined diametral mortar joint and the triplets tests is the Interface 

model, already mentioned in Section 4.3.1 and Section 4.3.2. This method analyses the 

mortar joint as a plane interface, not explicitly accounting for the triaxial stress 
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Chapter 5. Numerical Validation of Laboratory 

Experimental Tests 
 

This chapter presents the numerical validation of the laboratory experimental tests 

described in Chapter 4. The analyses are aimed at supporting the hypotheses at the basis 

of the interpretative methodology proposed in Section 4.4. 

First, linear analyses were performed to validate the hypotheses on the analytical 

evaluation of the state of stress in the cylindrical specimens subject to BT. Second, the 

parameters obtained in Section 4.4 were used in FE nonlinear analysis to test the 

reliability of the methodology by means of a software developed at the International 

Center for Numerical Method in Engineering (CIMNE) of the Technical University of 

Catalonia of Barcelona (Spain). Several models were performed to simulate the 

behaviour of mortar during the Brazilian test of masonry cores with rotated diametral 

mortar joint. Since the analytical interpretative methodology presented in Chapter 4 

considers a triaxial state of stress in mortar, a plane stress analysis would not represent 

correctly the mechanical response of the material. Plane strain 2D and full 3D models 

can consider a more correct three-dimensional state of stress in mortar. The 3D analysis 

requires higher computational time than the 2D plane strain model. The latter considers 

the adoption of approximate but yet acceptable hypotheses that reduce the number of 

degrees of freedom and thus the computation time. However, some hypotheses of the 

plain-strain 2D model could lead to an erroneous estimation of the expected behaviour. 

The 3D and 2D plain strain analyses were carefully compared for the numerical 

simulation of both BTs and shear tests on triplets. 
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5.1. Linear Analyses of Brazilian Tests 

 

As reported in Section 4.2, the typical failure mode of the specimens with low strength 

mortar subjected to BT is the “parasymmetric” mode (Figure 2.12a and Figure 4.13). 

The stress state of the mortar during the BT adopted in the analytical interpretation of 

the test presented in Section 4.3.1 was evaluated by considering values of normal and 

tangential stresses averaged over the mid-section of the mortar joint (see Equations 

4.6a,b,c). This hypothesis was widely accepted in other researches (Braga et al. 1992; 

Binda et al. 1994; Benedetti et al. 2008; Pelà et al. 2012; Mazzotti et al. 2014; 

Marastoni et al. 2016) and in this work it was also improved by adding the confinement 

effect due to the interaction of bricks and mortar derived from the Hilsdorf’s theory 

(Hilsdorf 1969).  

Despite the hypothesis of constant stress distribution over the mid-section of the joint, 

the experimental fracture starts spreading from opposite brick-mortar interfaces. In the 

most of cases, the fracture assumes a parasymmetric shape, propagating through the 

joint in the centre of the sample (as seen in Figure 4.13), as also seen in several previous 

studies (Marastoni et al. 2016; Pelà et al. 2015; Braga et al. 1992). Thus, the state of 

stress on the actual fracture plane can be compared with the one over the mid-section in 

order to validate the aforementioned hypothesis for the analytical interpretation of the 

test. 

The comparison of the stress distributions between boundary and mid-section was 

carried out using two elastic 2D FEM analyses (Figure 5.1a) representing the BT with 

inclined mortar joint at 45° and 60°. The models were composed of 48576 triangular 

elements, for a total amount of 24489 nodes. The outer diameter of the modelled 

specimen is 100 mm including a mortar joint of 15 mm thickness. Since each model 

was calculated under plane strain condition, the analysis considers a unitary width of the 

specimen. The load was applied on an area of 6.5 mm2/m to simulate the wooden 

supports used in the tests. 

Table 5.1 summarises the values obtained in the experimental campaign concerning the 

elastic properties required by the Hilsdorf’s theory.  
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Figure 5.2 reports the plots of the aforementioned analyses performed on specimens 

with diametral mortar joint inclined of 45° (Figure 5.2a) and 60° (Figure 5.2b) with 

respect to the horizontal. In both graphs, the abscissa reports the adimensional position 

 is the ܦ is the position from the external bound of the specimen and ݔ where ,ܦ/ݔ

diameter of the sample. The ordinate axis reports the adimensional stresses ߪො and ߬̂ 

according to Equations 5.1. According to the interpretation of the BT proposed in 

Section 4.3.1, the analytical state of stress is also reported as adimensional values as 

follow. 

 

ො௭௭,஺ߪ ൌ cosሺߙሻ				 ; ߬̂௫௭,஺ ൌ sinሺߙሻ				 ; ො௫௫,஺ߪ ൌ ො௬௬,஺ߪ ൌ ுܭ ∙ cosሺߙሻ (5.2a,b,c) 

 

The interface stress distribution (Figure 5.2) reports small differences with the ones 

measured in the mid-section. For ܦ/ݔ ൑ 0.05 the stresses are affected by a strong 

boundary effect due to the high discontinuity in the interface section. For this reason, 

the results for this small portion of the sample can be disregarded in the comparison. 

Considering the results for ܦ/ݔ ൐ 0.05 the stress distributions of the two sections are in 

remarkable agreement each other.  

Table 5.2 reports the average value of each stress measured on the boundary section and 

on the mid-section. 

 

Table 5.2 Comparison between interface section and mid-section average adimensional stress plots. 

 ࡱࡲ,࢟࢟ෝ࣌ ࡱࡲ,࢞࢞ෝ࣌ ࡱࡲ,ࢠ࢞ො࣎ ࡱࡲ,ࢠࢠෝ࣌ 

Num-45° INT 0.776 - 0.787 - 0.271 - 0.314 - 

Num-45° MID 0.737 -5% 0.767 -2% 0.273 1% 0.303 -4% 

Num-60° INT 0.538 - 0.935 - 0.252 - 0.237 - 

Num-60° MID 0.473 -12% 0.927 -1% 0.237 -6% 0.213 -10% 

 

The comparison of the average values of the stresses obtained by the FE analyses and 

those obtained with the analytical formulation reported in Equations 5.2a,b,c (red lines 

in Figure 5.2) shows good agreement (Table 5.3). The differences are sufficiently small 

to consider the constant stress distribution over the mid-section of the mortar joint as an 

acceptable approximation. Moreover, the Hilsdorf’s theory provides a good estimation 

of the confinement effect on the mortar, thus validating the assumption made in the 

interpretation theory developed in Chapter 4. 
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Table 5.3 Comparison between average mid-section and analytical adimensional stress plots. 

 ො௬௬ߪ ො௫௫ߪ ො௭௭ ߬̂௫௭ߪ  

Num-45° MID 0.737 - 0.767 - 0.273 - 0.303 - 

Analytical-45° 0.707 -4% 0.707 -8% 0.294 7% 0.294 -3% 

Num-60° MID 0.473 - 0.927 - 0.237 - 0.213 - 

Analytic-60° 0.500 6% 0.866 -7% 0.208 -12% 0.208 -3% 

 

 

5.2. Isotropic Damage Model for Nonlinear Analyses 

 

This section presents the constitutive model adopted in the nonlinear FEM analyses. An 

isotropic continuum damage model with only one scalar internal variable is adopted to 

monitor the local damage in the material (Simo & Ju 1987; Cervera 2003). This choice 

provides a simple constitutive model which, nevertheless, is able to reproduce the 

overall nonlinear behaviour including stiffness degradation and strain-

hardening/softening response under tensile and shear stresses. The combination with a 

Mohr-Coulomb criterion with tension cut-off leads to the proper description of the 

frictional failure of the material. 

 

5.2.1. Constitutive Model and Failure Criterion 

 

The constitutive model considered is based on the concept of effective stress tensor, 

introduced in connection with the hypothesis of strain equivalence (Lemaitre & 

Chaboche 1978). The effective stress tensor ࣌ഥ can be computed in terms of the total 

strain tensor ࢿ, as: 

 

ഥ࣌ ൌ ࡯ ∶  (5.3)  ࢿ	

 

Where ࡯ represents the (fourth-order) isotropic linear-elastic constitutive tensor and ሺ∶ሻ 

is the tensor product. The damage is modelled using a single scalar parameter, the so-

called damage index ݀, which varies between 0 when the material is elastic and 1 when 

it is completely damaged. The constitutive equation relating effective and total stress 

tensors can be written as: 
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࣌ ൌ ሺ1 െ ݀ሻ࣌ഥ ൌ ሺ1 െ ݀ሻ	࡯ ∶  (5.4)  ࢿ	

 

For the particular purpose of this research, the use of a single damage variable with an 

isotropic constitutive law is justified by the nature of the tests represented which only 

involve tensile and shear stress states (Saloustros et al. 2015). 

In compliance with the formulation postulated by Simo and Ju (Simo & Ju 1987), a 

scalar positive quantity, termed as equivalent stress ߑ, is defined in order to identify 

‘loading’, ‘unloading’ or ‘reloading’ situations for a general 3D stress state. The 

equivalent stress can assume several forms, depending on the damage threshold 

criterion assumed. The present work considers the Mohr–Coulomb criterion with 

tension cut-off, which can be expressed in the following form:  

 

ߑ ൌ maxቐ
௄ାଵ

ଶ∙௄
∙ max ቎

തଵߪ| െ |തଶߪ ൅ തଵߪሺߩ ൅ തଶሻߪ
തଵߪ| െ |തଷߪ ൅ തଵߪሺߩ ൅ തଷሻߪ
തଶߪ| െ |തଷߪ ൅ തଶߪሺߩ ൅ തଷሻߪ

቏ ; ௙೟
௙೟,಴ೆ೅

∙  തଵቑ (5.5)ߪ

 

Where ߪതଵ ൐ തଶߪ ൐  is the compression/tension ܭ ,തଷ are the effective principal stressesߪ

ratio (according to the Mohr-Coulomb failure surface) expressed as ܭ ൌ ௖݂/ ௧݂	 and 

ߩ ൌ ௄ିଵ

௄ାଵ
  is an adimensional coefficient. The term ௧݂,஼௎் is the cut-off tensile strength. 

Tensile stresses are intended as positive. 

The damage criterion is defined in the effective stress space as: 

 

߶ሺߑ, ሻݎ ൌ ߑ െ ݎ ൑ 0  (5.6) 

 

Where ݎ is an internal stress-like variable representing the current damage threshold, 

which drives the monotonical expansion of the damage surface. The initial value of the 

damage threshold is ݎ଴ ൌ ௧݂. The expansion of the damage surface for loading, 

unloading and reloading conditions follows the Kuhn-Tucker relations and the damage 

consistency condition, which are  

 

ሶݎ ൒ 0; 				߶ሺߑ, ሻݎ ൑ ሶݎ				;0 ∙ ߶ሺߑ, ሻݎ ൌ 0  (5.7) 

݂݅		߶ሺߑ, ሻݎ ൌ ሶݎ				݄݊݁ݐ				0 ∙ ߶ሺߑ, ሻݎ ൌ 0  (5.8) 
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The Kuhn-Tucker relations lead to the explicit definition of the current values of the 

internal variable ݎ (Cervera 2003): 

 

ݎ ൌ maxሾݎ଴,maxሺߑሻሿ  (5.9) 

 

Note that Equation 5.9 allows to compute the current values for ݎ in terms of the current 

value of ߑ, which depends explicitly on the current total strains. 

The internal damage variable ݀ ൌ ݀ሺݎሻ is explicitly defined in terms of the current 

value of the damage thresholds, so that it is a monotonically increasing function such 

that 0 ൑ ݀ ൑ 1. In the present work, the damage variables are computed according to 

the exponential softening law proposed by Cervera et al. (Cervera et al. 2010): 

 

݀ሺݎሻ ൌ 1 െ ௥బ
௥
exp ቄ2ܪௗ ቀ

௥బି௥

௥బ
ቁቅ ଴ݎ						݄ݐ݅ݓ						 ൑  (5.10) ݎ

 

Where ܪௗ ൒ 0 is the discrete softening parameter. In order to ensure mesh-size 

objective results, the specific dissipated energy ݃௙ is adjusted for each damaged finite 

element so that the equation (Bažant & Oh 1983; Oliver 1989).  

 

݃௙ ∙ ݈௖௛ ൌ  ௙  (5.11)ܩ

 

Where ݈௖௛ is the characteristic width of the crack in the discrete problem and ܩ௙ is the 

material’s tensile fracture energy. For the isotropic damage model with exponential 

softening, the specific energy dissipated is 

 

݃௙ ൌ ቀ1 ൅ ଵ

ு೏
ቁ
ሺ௙೟ሻమ

ଶா
  (5.12) 

 

The discrete softening parameter ܪௗ can be obtained by using Equations 5.11 and 5.12, 

as follows. 

 

ௗܪ ൌ
௟೎೓

௟೘ೌ೟ି௟೎೓
  (5.13) 
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The mechanical parameters used for the analyses were obtained from the material 

characterisation discussed in Section 4.4.1 and are reported in Table 5.6. The 

parameters not directly obtained from the experimental campaign were assumed on the 

basis of reference values found in literature. As for the fracture energy, some authors 

(Lourenço 1996; Pluijm 1993) showed that realistic values of the fracture energy for 

shear behaviour of mortar can be chosen in the range of 10 to 250 J/m2. Moreover, the 

same authors provided values between 60 and 130 J/m2 for solid clay units characterised 

by tensile strength ranging from 1.50 MPa to 3.50 MPa. For this reason, the fracture 

energy for mortar and units was set to Gf,m=100 J/m2 and Gf,b=100 J/m2 respectively. 

 

Table 5.6 Mechanical properties used in the nonlinear analyses. 

Mortar properties  Brick properties  
௕ܧ ሾMPaሿ 400	௠ܧ ሾMPaሿ 9792 
௕ߥ ሾMPaሿ 0.30	௠ߥ ሾMPaሿ 0.17 
௙,௕ܩ ሾJ/mଶሿ 100	௙,௠ܩ ሾJ/mଶሿ 100 
ܿ௠	ሾMPaሿ 0.62 ௧݂௕ ሾMPaሿ 2.33 
߮௠	ሾ°ሿ 33.11 ௖݂௕ ሾMPaሿ 18.40 

௧݂௠,஼௎்	ሾMPaሿ 0.34   
 

Where E is the Young’s modulus, ߥ the Poisson’s modulus, Gf the fracture energy, c is 

the cohesion, φ is the internal friction angle, ftm,CUT the cut-off tensile strength for 

mortar, ftb and fcb are the Mohr-Coulomb tensile and compressive strength for units. The 

݉ and ܾ subscripts are used for mortar and bricks respectively. 

The models were carried out on a workstation equipped with an Intel Xeon E5-1620 

clocked at 3.6 GHz and 16 GB of RAM. Each analysis took about 9 hours, depending 

on the type of the elements and on the dimension of the mesh. 

 

5.4. 2D Plain Strain Nonlinear Analyses of Brazilian Tests and Triplets 

 

Figure 5.7 reports the models developed using 2D elements under plane strain 

conditions in order to represent the longitudinal confinement stress on the mortar. The 

dimensions of the 2D models are reported in Table 5.7. The same mechanical 

parameters shown in Table 5.6 were used for the two-dimensional models.  
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5.5. Discussion and Comparison of the Numerical Results 

 

This section presents the results of the numerical analyses for both BTs and triplets. The 

outcomes of these models are necessary to validate the accuracy of the integrated 

methodology applied to the Continuum model discussed in Section 4.4.2 for the 

analytical interpretation of the experimental laboratory tests. 

 

5.5.1. Brazilian Test on Cores with Inclined Diametral Mortar Joint 

 

The analyses ran on BT with both 2D and 3D models showed good agreement with the 

experimental failure observed. 

The parasymmetric configuration of the BT is responsible of the initiation of damage in 

two opposite positions located on the mortar-brick interfaces, as discussed in the 

previous section. The increasing deformation given in the numerical simulation enlarges 

at each step the area subjected to damage, localized in a single layer of elements. 

The nature of the problem suggests that the cracks arise from two opposite points over 

the brick-mortar interfaces, propagating parasymmetrically in the surrounding areas 

with a certain angle of inclination. Thus, two cracks grow parallel one respect to the 

other. Depending on the magnitude of the stresses involved, these cracks can connect 

each other in the centre of the mortar layer (Figure 5.9) or split the damage flow 

maintaining two parallel paths (Figure 5.11b).  
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The results of the numerical simulations are in good agreement with the experimental 

failures, as observed in the BT models. Contrary to the BT models, the damage is 

entirely located into the mortar joint for all the pre-compression levels, without 

affecting the units. 

Figure 5.20 shows the damage contour progression during the analysis for the TX-NHL-

1.0-2D model. The damage starts close to the loading area in the mortar-brick interface 

(step 38). After few steps (step 48), also the lower part of the mortar joint starts 

cracking with the same inclination of the first one. Step 53 represents the moment of the 

maximum bearing capacity of the specimen, after which both cracks spread on the 

mortar-unit interfaces (step 54). In the following steps, the two damage contours grow 

in opposite direction, involving at each step a larger amount of elements located on the 

two interfaces. The specimen exhibited a load capacity drop between steps 122 and 123. 

The elements of one interface are all involved by damage at step 123. 
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internal micro-cracks appear and thus the materials can be considered as continuous 

entities. In the numerical models, the onset of cracking was described correctly for all 

the pre-compression levels, confirming that the Continuum Model proposed in Section 

4.4.1 provides reliable results in terms of ultimate strength capacity of the materials. 

Once the cracking phenomenon initiates with the appearance of macro-cracks, the 

residual mechanism is characterised experimentally by a pure frictional interface 

behaviour. The residual frictional angle is normally different than the initial friction 

angle used in the continuum damage model (Lourenço 1996). Due to the simple format 

of the nonlinear constitutive model adopted in the present research, the residual strength 

exhibited by the experiments cannot be reproduced by the numerical analyses. More 

sophisticated models should be necessary for a more precise description of the nonlinear 

behaviour of the triplet samples, that is governed by the residual frictional angle of the 

material. 
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Chapter 6. Conclusions 
 

6.1. Summary 

 

The preservation of existing masonry constructions, and in particular those pertaining to 

the built cultural heritage, is still a challenging task. The experimental characterisation 

of these buildings requires considerable knowledge about their structural health, but it is 

always necessary to minimize the damage during the inspection activities.  

This research represents an original contribution to the investigation procedures aimed 

at the assessment of the existing masonry buildings. Both standard and non-standard 

minor destructive techniques have been analysed, providing further improvements 

concerning the execution of the tests and the post processing of the experimental results.  

Chapter 1 has provided an introduction and the objectives of the research.  

Chapter 2 has presented a brief overview of the current masonry standards in the 

European Union both for new masonry and for the assessment of historical masonry. 

Most of the available standards for masonry characterisation are addressed to new 

constructions. They usually refer to masonry structures composed of fired-clay units 

and cement/lime mortars produced according to strict guidelines concerning their 

composition and their manufacturing. The industrial production process of realisation 

leads to materials with standardised features and very small differences between 

elements’ behaviours.  

Structural members composed by different kinds of units and binders are very common 

in historical masonry, and they can be even deteriorated by environmental factors. 
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Hence, the mechanical characterisation of these materials should not be carried out 

referring to the standards for new constructions. The few standards related to the 

assessment of existing masonry provide different techniques for the mechanical 

investigation. The available testing techniques are classified depending on the amount 

of damage caused by the inspection, i.e. Destructive Testing (DT), Minor-Destructive 

Testing (MDT) and Non-Destructive Testing (NDT). The state-of-the-art on the 

available experimental approaches has focused on the emerging MDT techniques, such 

as the in-situ penetrometric test and the extraction of core samples to be tested in the 

laboratory. These methodologies has showed to be suitable for historical buildings, 

since they can provide reliable results while producing limited damages on the 

investigated part of the structure. 

A state-of-the-art of available numerical analyses for the assessment of existing 

masonry has been also presented. Micro modelling is probably the most sophisticated 

tool to analyse the real behaviour of the material, particularly concerning its local 

response at the level of constituents. It leads to very accurate results, but it requires an 

intensive computational effort. For the particular purpose of this research, we have 

focused on micro-scale models for the investigation of the laboratory tests developed 

during this study. The constitutive law adopted in these models is based on Continuum 

Damage Mechanics, which provides a powerful and general framework for the 

derivation of consistent material models suitable for engineering applications.  

Chapter 3 presents the development of a novel MDT instrumentation. The X-Drill 

system is based on the field vane test used for soils. It consists in a four-winged pin to 

be inserted in the material to investigate. A torque is then applied to the pin through a 

torque wrench, recording the maximum value at failure. A previous research on the X-

Drill proposed a simple empirical calibration based on a simple linear regression 

between standard compressive strength of the mortar and the maximum torque 

measured. In this research, the original format of the system has been enriched making 

important improvements on its geometrical properties in order to reduce the 

uncertainties of the results. An analytical theory has been also developed based on the 

local stress in the contact area between the pin’s wings and the mortar, leading to a 

linear correlation depending on the geometrical properties of the instrument and on the 

mechanical parameters of the material investigated. Finally, the instrument has been 

calibrated in the laboratory using a large set of mortar specimens with different 

compressive strengths. The correlation between maximum torque and compressive 
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strength using a linear regression has shown a high coefficient of determination, 

confirming the reliability of a linear correlation rule. Moreover, the resulting parameters 

of the linear regression compared to those found using the analytical model returned 

rather comparable values for realistic ranges of the mechanical properties of the mortar. 

Chapter 4 has presented a large experimental campaign carried out on core samples 

extracted from historical-like masonry walls. The experimental campaign has included 

also the analysis of standard specimens prepared according to the relevant standard for 

compression, flexural and shear tests. The extraction has been carried out using a novel 

dry coring technique. This novel technique has revealed to be more suitable than the 

water-cooled coring, since in historical structures the water used for the cooling of the 

bit can spoil the mortar joints usually constituted by poor material. The samples were 

core drilled from the walls to be subject to the Brazilian Test (BT) with inclined mortar 

joint. This kind of test induces a composite state of stress of compression-shear on the 

mortar joint. The cored walls were dismantled to extract mortar joint specimens for 

Double Punch Test (DPT). While the standard tests are not feasible in the case of the 

assessment of existing buildings, both the BT and DPT show to be suitable for real 

experimental campaigns on existing structures. The BT setup has been enhanced by 

introducing LVDTs on both circular faces, measuring the relative displacement of the 

two semi-cylindrical brick parts. This solution has provided further information about 

elastic and nonlinear properties of the mortar. The outcomes of the BT and the DPT 

have been combined using a three-dimensional state of stress representation (i.e. Mohr’s 

Circles), resulting in a more precise estimation of the failure envelope. The resulting 

compressive, tensile and shear strengths obtained by the failure envelope have been 

compared with those from the standard tests, confirming the good agreement of the 

results. 

Chapter 5 has presented the numerical validation of the results obtained in the previous 

Chapter 4. 2D and 3D FE analyses have been carried out, using a constitutive model 

based on Continuum Damage Mechanics. The constitutive law of isotropic continuum 

damage can represent the softening behaviour of the material through a single scalar 

parameter. The degradation of the material’s capacity occurs for either compression, 

tension or shear actions. Since the tests modelled have involved mainly tension and 

shear failure in the mortar, the isotropic continuum damage model has been used. In 

particular, the samples tested have been modelled using micro-models, i.e. the units and 
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the mortar have been defined separately using the parameters obtained by the previous 

experimental activity. 

 

6.2. Main Contributions 

 

6.2.1. Penetrometer for in-situ MDT 

 

Concerning the novel penetrometer developed, the technical improvements are aimed at 

reducing the uncertainties in the measurements. The original version of the X-Drill 

(Christiansen 2011) has been improved in this research by means of further details on 

the shape of the pin, making the technique more appropriate for the analysis of existing 

historical mortars. The principal modifications introduced are: 

- reduction of the diameter of the pin’s cross section from 10 mm to 9 mm, allowing 

to insert it into thinner mortar joints; 

- definition of the wings length Lw=15 mm, for a better standardisation of the 

penetration depth; 

- reduction of the body’s diameter from 10 mm to 6.5 mm, allowing the X-Drill to 

penetrate deeper into the mortar joint. 

A theoretical model has been proposed to interpret the results of the novel penetrometric 

test. It is based on plane-stress assumption at the contact section between the 

instrument’s wings and the mortar. The torque applied by the instrument induces the 

formation of tangential stresses along the failure surface (identified as the circumscribed 

circle at the pin’s cross section), as well as normal stresses over the wing’s contact 

section. Due to the material surrounding the loaded area, it is possible to assume a 

constrained condition of the mortar in the radial direction, producing a confinement 

effect on the investigated mortar. The resulting state of stress can be represented by a 

Mohr’s circle on the σ-τ plane, allowing the evaluation of the corresponding Mohr-

Coulomb failure surface. 

The interpretation model has been validated by a wide experimental dataset. The 

analytical predictions have been compared with the experimental results obtained in the 

laboratory. Penetrometric and compressive tests were executed on cubic specimens built 

using different types of mortars. Each mortar was characterised by a different mixture 
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of components in order to obtain a rather wide range of compressive strengths. The 

results obtained can be summarised as follows: 

- The proposed theoretical model is based on the local failure of the mortar located in 

the contact zone with the instrument’s wings. The correlation rule between the 

measured torque and the compressive strength of the mortar is reduced to a linear 

law, where the slope depends on the geometric parameters of the instrument, the 

assumed Poisson’s ratio of the mortar  and the friction angle; 

- the dependency of the correlation factor on the Poisson’s modulus in a realistic 

range of values shows rather low sensitivity, reducing the bias introduced by the 

uncertain evaluation of the Poisson’ modulus. 

- concerning to the experimental results, a linear regression gives high value of the 

coefficient of determination (R2=0.958), confirming the linear law as a reliable 

model to express the relationship between the compressive strength and the torque 

measured by the X-Drill test; 

- The proposed interpretation model and the relative experimental results are in good 

agreement for realistic values of the Poisson’s ratio. For νm=0.30 the model shows 

high accuracy for mortars having fc<2.0 MPa, and returns conservative values for 

higher resistance mortars. Reducing the Poisson’s modulus, the model gets closer to 

the experimental strengths for higher resistance mortars and overestimates the 

strengths of lower resistance mortars. 

- The proposed in-situ MDT technique has shown its suitability as a complementary 

test to laboratory destructive ones, in order to reduce invasive inspection activities 

on masonry historical buildings. 

 

6.2.2. Laboratory Tests for MDT 

 

The second part of this work has focused on the laboratory tests performed on extracted 

specimens. The proposed methodology of interpretation combines the outcomes of 

different tests (i.e. BT, DPT and triplets) into an integrated procedure for the definition 

of the failure criterion of the mortar. The following conclusions can be drawn on the 

basis of the results obtained from the aforementioned tests: 

- The dry extraction performed in the experimental program has shown to be more 

suitable for historical masonry than the water-cooled drilling, since weak mortars are 

often present and the water may spoil the specimen. None of the specimens was 
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damaged during the dry core drilling of the walls. The novel dry extraction 

procedure seems a reliable option for sampling, even from the interior of existing 

buildings. 

- The novel experimental setup developed for the BTs with inclined mortar joint has 

afforded an estimation of the mortar’s shear elastic modulus, besides the strength 

parameters. This estimation has been made possible by the use of displacement 

control via the LVDTs placed on both faces of the specimens. An estimation of 

Gm=154 MPa has been obtained by considering the secant value at 30% of the 

maximum load.  

- The vertical displacement control used for the Brazilian Tests combined with a high 

sampling rate of the acquisition control unit (50 Hz) has allowed recording part of 

the softening branch during the tests. However, the high fragility of the failure 

mechanism has caused a loss of data during the descending branch of the loading 

curves. An interpolation of the lost data has been carried out by means of a quadratic 

function, allowing having a full description of the softening behaviour of the mortar 

joint under shear actions. 

- The Brazilian tests were performed at different inclinations of the diametral joint 

(45°, 50°, 55° and 60°), inducing different combinations of shear and compression to 

the mortar. The specimens exhibited a characteristic “parasymmetric” failure in 

most of the cases, with a fracture crossing the mortar joint and involving the two 

opposite brick-mortar interfaces. The results have shown that for α ≥ 45° the crack 

starts in the mortar layer, sometimes involving small parts of the brick near the 

loading area, confirming previous results by the authors (Pelà et al. 2015). 

- The triplets tests were performed at different pre-compression levels of 0.2 MPa, 0.6 

MPa and 1.0 MPa, according to the reference standard (EN 1052-3:2002 2002). The 

specimens’ failure was mainly located at the interface between mortar and unit, 

except for the external parts of the joints close to the loading area and to the 

supports, where the cracks cross the joint to the opposite interface. The results have 

shown that for 0.2 MPa of pre-compression the samples exhibited a non-

simultaneous cracking of the two joints, returning non-reliable values of ultimate 

load. For this reason, these tests have been discarded from the analyses. 

- The compressive strength obtained from the DPTs (2.71 MPa) resulted 10% higher 

than that obtained from standard compression tests on mortar prisms (2.45 MPa), 
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due to the confinement induced by the external material surrounding the loaded area 

and exerted by the punches over the flat specimen. 

The interpretative theories proposed in (Pelà et al. 2015; Marastoni et al. 2016), i.e. 

continuum model and interface model, have been used to process the results from the 

experimental program and to provide realistic estimations of mortar’s mechanical 

parameters. The main outcomes from the two models, as well as the main novelties 

introduced by the present study, are summarized below: 

- The continuum model has been improved with a more refined micromechanical 

interpretation of the triaxial stress states in the samples at failure. This has allowed a 

more precise representation of the Mohr’s circles of the experimental test on the σ-τ 

plane. As for the BT and triplets, the Hilsdorf’s theory has been considered to 

estimate the horizontal confining stress in the mortar, providing a value around the 

40% of the transversal compression. As for the DPT, the horizontal confining stress 

has been estimated using the FEM, providing a conventional value around the 5% of 

the vertical compression. The introduction of the confinement components has 

improved remarkably the definition of the Mohr’s circles for BTs, triplets and DPTs. 

Another novel improvement to the continuum model has been the adoption of a 

Mohr’s parabolic failure criterion. It has been adjusted using a least square method 

applied to the Mohr’s circles obtained from the experimental tests. The parameters 

of the Mohr’s parabolic failure envelope for BTs and DPTs resulted σ0=0.34 MPa 

and τ0=0.62 MPa in the present experimental campaign. The nonlinear envelope has 

been also simplified using a linear Mohr-Coulomb criterion with tension cut-off, 

whose constitutive parameters are c=0.62 MPa, φ=33.11° and ftm,CUT=0.34 MPa. The 

compressive strength has been derived using the Mohr-Coulomb theory as fcm=2.30 

MPa.  

- The integrated methodology applied to the triplets tests and DPTs has shown 

remarkable agreement with that calculated with BTs and DPTs. The resulting 

parabolic failure envelope is characterised by σ0=0.34 MPa and τ0=0.63 MPa , 

almost superposed to those obtained from BTs and DPTs. The linearization of the 

parabolic envelope has led to consistent results, being the constitutive parameters 

obtained c=0.63 MPa, φ=33.18° and ftm,CUT=0.34 MPa.  

- The interface model considers the mortar joint as a two-dimensional interface, with 

the thickness of the joint collapsed in its central section. The state of stress is 

represented as a point instead of a circle on the σ-τ plane, excluding the possibility of 
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integrating the DPTs results in the calculation of the failure envelope. Using the 

points from the sole BTs, a linear Mohr-Coulomb failure envelope has been 

calculated using a linear regression with C=0.32 MPa and Φ=32.32°. 

- As for the triplets results, the interface model has reported similar results compared 

to those obtained by the BTs. The linear regression of the points representing the 

state of stress of the triplets at the failure moment has returned as parameters C=0.36 

MPa and Φ=32.61°. 

- The proposed MDT techniques and their interpretation theories have shown their 

suitability for the experimental activities of mechanical characterisation of historical 

masonry of the built cultural heritage. The proposed sampling technique can ensure 

limited invasivity to the existing structure. The novel integrated methodology for the 

processing of DPTs and BTs has shown good reliability and robustness. 

 

6.2.3. Numerical modelling of laboratory tests 

The validation of the integrated methodology has been carried out using linear and 

nonlinear analyses on 2D and 3D FE models. The constitutive law used for the 

nonlinear analyses is an isotropic damage model, based on the Continuum Model 

parameters obtained from the combination of BTs and DPTs.  

The principal results derived from the numerical analyses of BTs are summarised 

below: 

- The linear elastic analyses carried out on BT models have confirmed the good 

approximation of the state of stress on the mortar joint calculated with the analytical 

formulas adopted in previous works (Braga et al. 1992; Benedetti et al. 2008; Pelà et 

al. 2012). The estimation of the confinement stresses in the mortar joints by means 

of the Hilsdorf’s theory (Hilsdorf 1969) have been also confirmed as a good 

estimation method, returning consistent results compared with the elastic FE models. 

- The nonlinear analyses carried out on BT models have provided results in good 

agreement with the experimental ones, both in case of 2D and 3D models. The 

cracks’ patterns and their evolutions at each step of the analyses fully agreed with 

the experimental fractures. The three-dimensional models have shown their 

capability to represent internal variations of the crack patterns, displaying realistic 

fracture’s shapes in agreement with the experimental evidence. The 2D models have 

provided a good estimation of the cracking phenomena relatively to the central 

cross-section of the specimens. 
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- The load vs. displacement curves obtained by the 2D and 3D nonlinear analyses 

have resulted in agreement with the experimental ones. All the BT models have lost 

more than 95% of their bearing capacity in the first 1.50 mm of relative 

displacement of the joints like in the experimental case, with a comparable 

descending trend. 

- The numerical failure loads of the BT with inclined mortar joint have returned 

slightly conservative values if compared with the experimental results, confirming 

the integrated methodology of interpretation of the laboratory tests as a reliable 

strategy for the evaluation of the mortar behaviour.  

The outcomes from the numerical simulations of triplet tests are summarised below: 

- The 2D and 3D nonlinear analyses have provided cracks’ patterns in agreement with 

the experimental fractures. The larger finite elements used in the 3D mesh in order 

to limit the computation effort has led to different results in some specimens. 

- The numerical failure loads of the triplet tests have returned slightly conservative 

values if compared with the experimental results, confirming the integrated 

methodology of interpretation of the laboratory tests as a reliable strategy for the 

evaluation of the mortar behaviour.  

 

6.3. Suggestions for future work 

 

The penetrometric method proposed in this doctoral thesis gives room for possible 

developments of the experimental technique, as for the execution of the test and for the 

proposal of more sophisticated interpretation theories. The following aspects seem 

worthy of future work: 

- The calibration of the proposed penetrometric method could be improved by 

considering a wider range of strengths for the tested mortars.  

- Besides the comparison of the penetrometer readings with the compressive strengths 

derived from cube specimens, it could be interesting to investigate further 

comparisons between the penetrometric estimations and other types of laboratory 

tests, like DPT on mortar joints extracted from the same walls tested with the X-

drill. 

- New optimized shapes of the pin could be proposed in order to obtain more reliable 

results and reduce the experimental scattering. Also, torque wrench with digital 

display could be adopted to improve the precision of the reading. 
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- The analytical interpretation rule proposed in this work depends on the geometric 

properties of the penetrometer and on the elastic parameters of the mortar. Further 

experimental investigations should be necessary to get more precise correlation 

rules. 

- Other possible models for the interpretation of the X-drill method could be 

proposed, using other theoretical frameworks like fracture mechanics, plasticity or 

limit analysis.  

- Further experimental campaigns could be carried out in order to investigate the 

possible causes of the appearance of an initial bias ܯ଴ on the reading of the torque 

during the test execution. Appropriate measures should be carried out in order to 

limit the effects of this phenomenon and to improve the precision of its evaluation. 

The experimental campaign carried out on core samples and joint specimens extracted 

from the walls has provided promising results that could be further complemented with 

the following studies: 

- More combinations of material components could be explored in the laboratory, in 

order to enlarge the experimental database for a better calibration of the MDT 

technique. 

- Besides the comparison between BT on core samples and shear tests on triplets, it 

would be interesting a comparison with other experimental tests aimed at evaluating 

the shear behaviour of mortar, like shear tests on couplets or diagonal compression 

tests on wallets. 

- It would be interesting to carry out a comparison between the results from BT of 

core samples and those from the in-situ shear-jack test. 

- The evaluation of the tensile strength of mortar from flexure tests should be 

investigated better, since the available standards (fib 2013; EN 1992-1-1:2005 2005; 

D.M. 14/01/2008 2008) provide different empirical formulas yielding very different 

results. 

As for the numerical simulation of the MDT experimental technique, the following 

suggestions for future work can be presented: 

- Carrying out numerical analyses with improved constitutive laws, like those 

including the effect of both initial and residual friction behaviour of the material. 

This improvement would provide numerical results more realistic and more in 

agreement with those obtained from experimental tests on triplets. 
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- Comparing the numerical results obtained in this work with those derived from other 

micro-modelling strategies. For example, simplified micro-modelling could be used, 

i.e. replacing the whole mortar joint with an interface element. Another alternative 

could be the use of detailed micro-modelling, i.e. introducing the discretization of 

both the mortar joint by continuum elements and the brick-mortar discontinuity by 

interface elements. 
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