
Alma Mater Studiorum · Università di Bologna
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Abstract

This thesis is the result of a Ph.D. program in Alto Apprendistato carried

out at the Dipartimento di Informatica - Scienza e Ingegneria (DISI) of the

University of Bologna and at the company devDept Software.

With regard to the professional side of my Individual Training Project, I

developed technical and scientific skills in 3D geometry of curves and surfaces,

CAD, and Finite Element Analysis (FEA). Regarding the academic side, I

investigated CAD aspects in the field of Isogeometric Analysis (IGA) on both

single and hybrid multipatch physical domains.

Simulations are performed in classical FEA systems, which require the con-

version of designs, made by CAD systems, into finite element meshes. IGA

is a new approach that aims to unify the worlds of CAD and FEA by using

the same geometry for analysis as what is used for modeling. That is, the

same set of basis functions are adopted both to describe the computational

geometry in the CAD tool, and to span the solution space for FEA.

The traditional FEA pipeline works on meshes and the most advanced IGA

systems work on NURBS or T-spline geometries. Hybrid geometric models

(i.e., models in which mesh and NURBS entities coexist), are an emergent

way to represent a solid object, but in most CAD systems mesh and NURBS

geometries cannot interact with each other, and conversions to a common

representation are often needed.

In this thesis, we investigate how IGA can be applied on 2D and 3D hybrid

models made by both mesh and NURBS entities without requiring laborious

and time consuming conversion processes.
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Introduction

This work reports my experience within the Ph.D. program in Alto Ap-

prendistato carried out at the Dipartimento di Informatica - Scienza e In-

gegneria (DISI) of the University of Bologna. The Alto Apprendistato work

contracts were recently started by the Regione Emilia-Romagna to strengthen

the relationship between university and industry. They offer to Ph.D stu-

dents the possibility to attend high level formation activities provided by the

university, while working full time with high level technologies provided by

a company. An Individual Training Project (ITP) is approved by both the

educational institution and the workplace.

In particular, the aim of my ITP was twofold: from the professional side,

it required me to develop technical and scientific skills in 3D geometry of

curves and surfaces, CAD, and Finite Element Analysis (FEA), and from

the academic side, the ITP required me to investigate CAD aspects in the

field of isogeometric analysis.

The company where I have been working is devDept Software, which

produces and distributes Eyeshot, a 3D graphics CAD/CAM/CAE/FEM

component for the Microsoft development platforms. These acronyms re-

spectively stand for Computer Aided Design, Manufacturing, Engineering

and Finite Element Method. Most of the clients are software houses special-

ized in various sectors and they use Eyeshot for 3D modeling, analysis and

visualization.

CAD is the use of computer technology for design: it allows for the cre-

v



vi INTRODUCTION

ation, modification, analysis and optimization of precision drawings and geo-

metric modeling. CAD softwares replace manual drafting with an automated

process. Just like the most important CAD applications, Eyeshot can be used

both for two-dimensional and three-dimensional modeling, and it is based on

Non-Uniform Rational B-splines (NURBS). NURBS are a mathematical rep-

resentation that is very convenient for free-form surface modeling, they can

exactly represent all conic sections and thanks to their flexibility and preci-

sion, they are widely used in CAD systems to describe curves and surfaces.

Eyeshot also integrates a FEA component, based on the finite element

method, that solves problems in structural and solid mechanics. It can per-

form linear elastic analysis to determine the behavior of structures and solids

subjected to forces.

The FEM technique is a very successful computational method applied

for the solution of Boundary Value Problems (BVP). It has its origins in the

later 1950s through researches in the field of aerospace engineering, and since

then it has been studied extensively and applied in engineering analysis in

the CAE industry. Many CAE systems based on FEM were already mature

when, about twenty years later, the first CAD programs started to appear.

But now CAD is a much bigger industry than CAE, and many CAD systems

are capable of executing calculations and analysis typical of CAE systems.

FEM subdivides a whole problem domain into simpler parts, called finite

elements, and thus requires the generation of a mesh that approximates the

original geometry.

Finite element analyses are often conducted on models with very complex

geometries, which require that the system first generates a mesh from the

given CAD geometry to approximate the physical domain and then applies

the analysis to the mesh. It is estimated that about 80% of overall analysis

time is devoted to mesh generation.

Isogeometric analysis (IGA) is a new approach, introduced by Hughes
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Cottrell and Bazilevs in 2005, see [34], that aims to unify the worlds of CAD

and FEA. The key idea is to use for analysis the same geometry used for

modeling. That is, the same set of basis functions adopted to describe the

computational geometry in the CAD tool, e.g., NURBS, are used also to

span the solution space for FEA.

In the IGA context, the conversion of the CAD design into a mesh suitable

for FEA analysis is thus no more necessary. Skipping the mesh generation

process provides a significant reduction of time, and the results are more

accurate due to the use of the exact geometry instead of its approximation.

Since its introduction, IGA has become a focus of research within both the

fields of FEA and CAD and it has attracted a lot of interest from the scientific

community.

The problem of conversion between precise and approximate geometries is

present also in the CAD context. In fact, most CAD systems allow both mesh

and NURBS geometry representations, but only entities having the same

representation can interact with each other. Therefore, to have interaction

between entities of different types, a conversion to a common representation

is needed. The conversion from mesh to NURBS is still a challenging task

which is based on reverse engineering, while the conversion from NURBS

to mesh is called tessellation, these two processes are time consuming and

often cause loss of information. Both representations are fundamental and

in many cases they are not interchangeable: NURBS can describe curved ge-

ometries exactly, and meshes are very simple objects, easy to manipulate and

CAD applications can usually manage very large quantities of them without

problems. Recently, the use of meshes for the representation of objects has

become very popular thanks to the wide use of 3D scanner devices.

In several practical applications, while modeling in a CAD system, there

are geometries that cannot be entirely represented with NURBS entities. An

example of this comes from the wrinkled patterns present on the handles
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of many tools or on some shoes bottom: these geometries present severe

difficulties when described with precise surfaces, while they can be easily

represented by mesh entities. They are often integrated in more complex

models containing other geometries that can be described exactly, and it

would be counterproductive to approximate the exact geometries converting

them into meshes.

We will denote by hybrid geometry models those models in which mesh

and NURBS representations coexist. In addition to models with wrinkled

pattern meshes and NURBS surfaces, hybrid geometries arise also when part

of the model is a digital representation of a physical object: 3D scanners

generate mesh geometries, and applying reverse engineering to convert them

is time consuming and not always necessary. These are just some examples

of a wide range of situations in which it is important for CAD systems to

support hybrid geometries.

It would be very beneficial to have true interoperability between mesh and

precise geometry in a CAD system, in which mesh and NURBS geometries

can interact with each other. In such a system, it must be possible to create

a solid object where some faces are NURBS and some others are meshes,

to trim a surface with a mesh and vice versa, and to create a fillet between

a surface and a mesh. Also, given an object in mesh representation, the

system should be able to create the mold geometry and perform other CAD

operations without converting the mesh to a precise representation.

On the other hand, being able to manage without any conversion, the

representation of hybrid models would be of great benefit in the FEA systems.

The traditional FEM pipeline works on meshes and the most advanced IGA

systems work on NURBS or T-spline geometries.

One of the contributions of this thesis is to apply isogeometric analysis

to solve BVPs on multi-patch hybrid 2D and 3D physical domains, consti-

tuted by mesh and NURBS patches. For the numerical examples, we used
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GeoPDEs [20], an open source suite of tools for applications in IGA that has

been suitably extended to support multipatch and hybrid geometries.

The thesis is organized in three main parts: the first (from Chapter 1 to 3)

introduces the geometry representations and the basics of FEM and IGA, the

second (Chapters 4 and 5) presents how we applied IGA for problems defined

on different kinds of geometry, and the last part (Chapter 6) describes how I

accomplished the professional requirements of my ITP working at DevDept

Software.

In particular, Chapter 1 introduces the discrete and parametric geome-

tries used to represent the surfaces on which we applied IGA. These include:

NURBS geometries, analytic geometries and polygonal meshes of rectangular

elements.

Chapter 2 provides an overview on the BVPs used for the analysis. In

particular, we present the classical Poisson problem, the Laplace-Beltrami

problem, for surfaces embedded in R3, and the linear elasticity problem,

since the latter is the class of problems solved by the FEM component of

Eyeshot.

Chapter 3 presents the isogeometric analysis: NURBS geometries are

treated as basis for the analysis and the Galerkin method for IGA is intro-

duced. IGA on multi-patch and hybrid geometries is introduced, and some

methods added to GeoPDEs to handle multi-patch physical domains are pre-

sented.

Chapter 4 collects the examples of IGA applied to geometries made of one

patch. Exploiting the potentialities of IGA to treat independently the basis

functions for the geometry and the ones for the approximating subspace, we

investigated the combinations between three different representations of the

geometry (mesh, NURBS and analytic) and three choices of basis functions

for the approximating space (nurbs, spline and piecewise polynomial func-

tions represented in Bézier form). Then we compared the behavior of each
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geometry/solution pair under refinements of the domain.

Chapter 5 provides IGA examples on multi-patch geometries. It con-

tains preliminary examples applied on hybrid geometries and explains how

to use the method we developed to make two adjacent surfaces compatible,

a necessary condition for the analysis.

Chapter 6 concludes the thesis describing how I fulfilled the professional

aims of my ITP at DevDept Software. It provides an overview on some of

the topics and functionalities I studied and implemented at work both on

the CAD and on the FEM libraries of Eyeshot. Having worked full-time at

DevDept Software for four years, this overview is far from being exhaustive.

I selected and reported only a few algorithms developed in Eyeshot that are

very useful when modeling a 3D complex NURBS geometry, before a possible

application of FEM analysis. Future works will investigate the possibility to

integrate IGA into Eyeshot.



Chapter 1

Geometry description: NURBS

and polygonal meshes

To digitally represent a shape, it is necessary to know how to represent a

geometry with a mathematical model, in terms of curves, surfaces and solids.

NURBS are mathematical representations that can accurately describe any

kind of shape: from a simple 2D line, conic section, or curve, to a complex 3D

free-form solid or surface. Thanks to their flexibility and precision, NURBS

have been widely used in engineering design, and became industry standard

in CAD systems.

In classical FEM, geometries are described using polygonal meshes (mainly

triangular and quadrilateral meshes) which approximate the exact geometry

on which the analysis is carried out. Typically, the exact geometry of the

physical domain is designed in a CAD system using NURBS geometries and

then it is converted into a polygonal mesh model through a laborious mesh

generating algorithm.

IGA is based on the isoparametric concept, which uses the same basis

functions both to represent the geometry and to approximate the solution.

In particular, NURBS-based IGA adopts NURBS basis functions for the

1



2 1. Geometry description: NURBS and polygonal meshes

description of the geometry and the approximation of the solution space.

Thus, IGA allows to solve PDE-based problems on exact geometric domains,

avoiding to approximate them with polygonal meshes like in classical FEM.

This can be done using NURBS geometries for a wide range of domains.

However, in practical applications the geometry is often defined by mul-

tiple patches joined together: a geometric model represented by a collection

of connected surface elements is called B-Rep (Boundary Representation).

Moreover, the patches in a B-rep can be hybrid, which means that adjacent

patches can be NURBS, modeled with a CAD system, and polygonal meshes,

obtained for instance by a 3D scanner. We will refer to hybrid NURBS and

mesh geometries as Extended B-rep.

This chapter introduces the types of geometric descriptions that we will

use to model the physical domains in our applications of IGA: NURBS,

meshes and how they can coexist in a hybrid geometry. A more detailed

overview on NURBS can be found in [26, 47].

1.1 Parametric representation

In a parametric representation of a compact, connected and oriented Ri-

mannian manifold Ω ⊂ Rd, each coordinate of a point on Ω is represented

separately as an explicit function of a vector-valued independent variable

ξ̂ = (ξ̂1, . . . , ξ̂k) ∈ Rk, where d > k > 1. The set of all such functions de-

fines a geometrical mapping or parameterization, from a parameter domain

Ω̂ ⊂ Rk to the manifold Ω:

F : Ω̂ −→ Ω

ξ̂ 7−→ ξ := F (ξ̂).
(1.1)

The mapping F is assumed to be smooth with piecewise smooth inverse

F−1 : Ω −→ Ω̂. Fig. 1.1 represents a geometrical mapping F for k = 2 and
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d = 3. The parameter space is Ω̂ ⊂ R2, the physical space is Ω ⊂ R3, and

the inverse of F is F−1.

Figure 1.1: Example of geometrical mapping F : Ω̂ −→ Ω and its inverse

F−1, with the parameter space Ω̂ ⊂ R2 and the physical space Ω ⊂ R3. In

red, a point of the parameter space ξ̂ = (u, v) ∈ Ω̂ and its image under F

ξ := F (u, v) ∈ Ω.

The Jacobian of the parameterization F , denoted with Ĵ , it is a d × k

matrix, defined as

Ĵi,j(ξ̂) :=
∂Fi

∂ξ̂j
(ξ̂), i = 1, . . . , d, j = 1, . . . , k, (1.2)

that is, for a surface with k = 2, d = 3 and ξ̂ = (u, v):

Ĵ(u, v) =


∂Fx
∂u

∂Fx
∂v

∂Fy
∂u

∂Fy
∂v

∂Fz
∂u

∂Fz
∂v

 . (1.3)

We introduce the first fundamental form of the mapping, which represents
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the induced metric on the manifold:

Ĝ : Ω̂ −→ Rk×k, Ĝ(ξ̂) := (Ĵ(ξ̂))T Ĵ(ξ̂), (1.4)

where (Ĵ(ξ̂))T is the transpose of Ĵ(ξ̂), and the square root of its determinant:

ĝ : Ω̂ −→ R, ĝ(ξ̂) :=

√
det(G(ξ̂)). (1.5)

We observe that if k = d, then Ĵ(ξ̂) ∈ Rd×d, and ĝ(ξ̂) := det(J(ξ̂)).

The same functions can be defined on the manifold as follows:

J : Ω −→ Rd×k, J(ξ) := Ĵ(ξ̂) ◦ F−1(ξ̂), (1.6)

G : Ω −→ Rk×k, G(ξ) := Ĝ(ξ̂) ◦ F−1(ξ̂), (1.7)

g : Ω −→ R, g(ξ) := ĝ(ξ̂) ◦ F−1(ξ̂). (1.8)

Let φ be a real-valued C0 function on the manifold Ω, in virtue of the

invertibility of the geometrical mapping, we can write:

φ(ξ) = φ̂(ξ̂) ◦ F−1(ξ̂), (1.9)

where φ̂(ξ̂) := φ(F (ξ̂)). This makes it possible to avoid the distinction be-

tween the function φ, defined on the physical domain Ω, and the function φ̂,

defined on the parameter domain Ω̂.

As shown in Fig. 1.2, k gives the dimension of the manifold: for k = 1

the manifold is a curve, for k = 2 a surface and for for k = 3 a volume. When

d > k, Ω is a lower dimensional manifold embedded in the physical space Rd.

In this work on BVP problems, we will focus on physical domains Ω that

are planar surfaces in R2 or surfaces embedded in R3.

In the following, we will define B-spline and NURBS basis functions as

suitable bases to represent the parametric geometry introduced in Eq. (1.1).

Then we will briefly review the representations of NURBS curves and sur-

faces.
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Figure 1.2: Examples of parametric geometries with different values of k and

d. The parameter spaces Ω̂ are on the left and the physical spaces Ω are on

the right.
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1.2 B-spline basis functions

Let’s consider a partition Ξ of a bounded and closed interval [a, b] ⊂ R:

Ξ := {xi}k1, a ≡ x0 < x1 < · · · < xk < xk+1 ≡ b. (1.10)

This partition generates the k + 1 subintervals:

Ii = [xi, xi+1[, for i = 0, . . . , k − 1 and Ik = [xk, xk+1]. (1.11)

The nodes are often referred to as knots, and the partition is called knot

vector. Each subinterval defined in (1.11) is called knot span or element of

the partition. So the number of elements of the partition Ξ is Ne = k + 1.

Let m be a positive integer and let M = (m1, . . . ,mk) be a vector with

integer components such that 1 ≤ mi ≤ m for all i = 1, . . . , k.

The space of polynomial splines of order m and degree p = m − 1, with

knot vector Ξ and multiplicity vector M , is defined as:

S(Pm−1,M,Ξ) := {s : [a, b]→ R :

∃ s0, . . . , sk ∈ Pm−1 : s|Ii = si, i = 0, . . . , k

Djsi−1(xi) = Djsi(xi), j = 0, . . . ,m− 1−mi, i = 0, . . . , k},
(1.12)

where Pm−1 is the space of polynomials of degree ≤ m− 1.

The multiplicity vector M determines the degree of smoothness of a spline

function at the knots. If all the multiplicities mi = 1, the spline is of class

Cm−2 at xi, that is the maximum order of continuity. If all mi = m, the spline

can have a discontinuity at xi. Thus, in the special case of M = (m, . . . ,m),

the space S(Pm−1,M,Ξ) coincides with the space of piecewise polynomials

PPm−1(Ξ), while if M = (1, . . . , 1) the spline space reduces to the space of

spline functions with simple nodes x1, . . . , xk, denoted by Sm(Ξ). It holds

Pm−1 ⊂ Sm(Ξ) ⊂ PPm−1.

Let K be the sum of the multiplicities, K =
∑k

i=1mi, then S(Pm−1,M,Ξ)

is a space of dimension m+K, see [40].
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To define a basis for this space, we introduce the notion of extended

partition Ξ∗ associated with Ξ, which is defined as the extended knot vector

Ξ∗ = {ξi}2m+K
i=1 such that:

• ξ1 ≤ ξ2 ≤ · · · ≤ ξ2m+K

• ξm ≡ a, ξm+K+1 ≡ b

• (ξm+1, ξm+2, . . . , ξm+K) = (x1, . . . , x1︸ ︷︷ ︸
m1

, x2, . . . , x2︸ ︷︷ ︸
m2

, . . . , xk, . . . , xk︸ ︷︷ ︸
mk

)

An extended knot vector is said to be open if the extra nodes are coin-

cident, i.e. the first and last knots have multiplicity m. In the following,

we will use geometries with open knot vectors. When the knots are equally

spaced in the parameter space, the knot vector is called uniform, otherwise

it is non-uniform.

Given an extended partition Ξ∗ associated with the space S(Pm−1,M,Ξ),

the set of B-spline {Ni,m(x̂)}m+K
i=1 is defined by the following recursive formula,

starting from piecewise constants for m = 1:

Ni,1(x̂) =

1 if ξi ≤ x̂ < ξi+1,

0 otherwise,
(1.13)

and for l = 2, . . . ,m:

Ni,l(x̂) =


x̂−ξi

ξi+l−1−ξi
Ni,l−1(x̂) + ξi+l−x̂

ξi+l−ξi+1
Ni+1,l−1(x̂) if ξi ≤ ξi+l,

0 otherwise.
(1.14)

By convention, 0/0 is considered equal to zero.

The m+K B-spline functions defined by Eq. (1.13) and (1.14) constitute

a basis for S(Pm−1,M,Ξ). Then we can define a spline function of the space

S(Pm−1,M,Ξ) as:

s(x̂) =
m+K∑
i=1

Ni,m(x̂)ci, (1.15)
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where ci ∈ R are scalar coefficients.

B-Splines basis functions have the following important properties:

1. They are non-negative over the entire domain.

2. They are locally supported: the support of a basis function of order m

is made of m knot spans. More precisely:

Ni,m(x̂) = 0 ∀ x̂ 6∈ [ξi, ξi+m).

At any given knot span [ξi, ξi+1), there are only m non-zero functions:

Ni−m+1,m, . . . , Ni,m.

3. They form a partition of unity, i.e.

m+K∑
i=1

Ni,m(x̂) = 1 ∀ x̂ ∈ [a, b].

As mentioned, a B-spline of order m has degree p = m−1. Fig. 1.3 shows

an example of B-spline basis functions of order 4 associated to the open, non-

uniform knot vector Ξ∗ = (0, 0, 0, 0, 0.25, 0.5, 0.5, 0.7, 0.7, 0.7, 1, 1, 1, 1) and

their class of continuity at knots with different multiplicities. The multiplicity

vector of Ξ∗ is M = (1, 2, 3).

1.3 Refinement tools

Refinement processes allow to enrich the basis of functions maintaining

the geometry intact. There are three kinds of refinement techniques for spline

used in IGA: h, p and k-refinement. They are based on the techniques of

knot insertion and degree elevation, that will be introduced here.

• Knot Insertion

Knot insertion consists of adding one or more knots to a knot vector.



1.3 Refinement tools 9

Figure 1.3: Univariate B-spline basis functions of order 4 (and degree 3) for

the knot vector Ξ∗. They are of class C2 at the knot 0.25 that has multiplicity

1, of class C1 at 0.5 that has multiplicity 2, and of class C0 at 0.7 that has

multiplicity equal to the degree p = 3.
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Let Ξ∗ be a knot vector and let ξ̂ ∈ [a, b] be a knot to be inserted, such

that ξl ≤ ξ̂ ≤ ξl+1. Then the new knot vector after knot insertion will

be:

Ξ̂∗ = {ξ̂i}2m+K+1
i=1 , with ξ̂i =


ξi i ≤ l

ξ̂ i = l + 1

ξi−1 i ≥ l + 2

. (1.16)

The new space S(Pm−1, M̂ , Ξ̂∗) has dimension K + m + 1, and if the

function f ∈ S(Pm−1,M,Ξ), then f ∈ S(Pm−1, M̂ , Ξ̂∗). According to

the Boehm’s formula, the new basis of B-spline for S(Pm−1, M̂ , Ξ̂∗) is

given by:

Ni,m(x̂) =


N̂i,m(x̂) i ≤ l −m,
ξ̂ − ξ̂i

ξ̂i+m − ξ̂i
N̂i,m(x̂) +

ξ̂i+m−1 − ξ̂
ξ̂i+m−1 − ξ̂i+1

N̂i+1,m(x̂) l −m+ 1 ≤ i ≤ l

N̂i+1,m(x̂) i ≥ l + 1.

,

(1.17)

and the new coefficients are:

ĉi =


ci i ≤ l −m+ 1,

λici + (1− λi)ci−1 l −m+ 2 ≤ i ≤ l,

ci−1 i ≥ l + 1,

(1.18)

where λi = ξ̂−ξ̂i
ξ̂i+m−1−ξ̂i

.

Inserting new knots in an existing knot vector is called knot refinement.

In particular, h-refinement is the process of dividing every knot span

into two halves by inserting a new knot between two existing knots.

Fig. 1.4 shows the effect of the application of h-refinement to the knot

vector given in Fig. 1.3.
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As new knots are inserted without changing the geometry, the result is

a richer basis for the solution space.

Figure 1.4: Applying the h-refinement process to the knot vector

Ξ∗ = (0, 0, 0, 0, 0.25, 0.5, 0.5, 0.7, 0.7, 0.7, 1, 1, 1, 1), we get the knot vector

Ξ̂∗ = (0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.5, 0.6, 0.7, 0.7, 0.7, 0.85, 1, 1, 1, 1). The

new knots are indicated in black.

• Degree Elevation

Degree elevation is achieved by elevating the degree of the basis func-

tions used to represent the geometry. No new knots are added to the

knot vector, but the multiplicity of each knot is increased by one, in

order to preserve the same continuity at the knots in the original ge-

ometry.
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If the original partition is:

Ξ∗ = (a, . . . , a︸ ︷︷ ︸
m

, ξ1, . . . , ξ1︸ ︷︷ ︸
m1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
mk

, b, . . . , b︸ ︷︷ ︸
m

), with K =
k∑
i=1

mi,

the new partition after degree elevation is:

Ξ̂∗ = (a, . . . , a︸ ︷︷ ︸
m+1

, ξ1, . . . , ξ1︸ ︷︷ ︸
m1+1

, . . . , ξk, . . . , ξk︸ ︷︷ ︸
mk+1

, b, . . . , b︸ ︷︷ ︸
m+1

),

in which the total number of knots is 2(m+1)+K+k. The associated

vector space S(Pm, M̂ , Ξ̂∗) has dimension m+ 1 +K + k.

The algorithm of degree elevation for splines consists of three steps:

1. Subdivision of the spline into piecewise Bézier polynomials. This

can be achieved by inserting the internal knots until they all have

multiplicity equal to the degree.

2. Degree elevation of each polynomial, which modifies only the co-

efficients.

3. Knot removal of the internal knots in excess, until the original

continuity is reached.

The process of performing degree elevation from p to p + 1 is also

called p-refinement. The parameterization is unchanged and, like h-

refinement, p-refinement does not change the geometry, but only the

dimension of the space. Fig. 1.5 shows the effect of the application of

p-refinement to the spline given in Fig. 1.3.

• k-Refinement

k-refinement is carried out as a combination of p-refinement and h-

refinement, that is, first elevating the degree of the basis functions and

then inserting new knots. It results in curves with high continuity,

with a smaller increase in the number of knots with respect to pure
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Figure 1.5: Applying the p-refinement process to the knot vector

Ξ∗ = (0, 0, 0, 0, 0.25, 0.5, 0.5, 0.7, 0.7, 0.7, 1, 1, 1, 1), we get the knot vector

Ξ̂∗ = (0, 0, 0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1). The new

knots are indicated in black.
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p-refinement. The name k-refinement has been introduced in [34], and

unlike p-refinement and h-refinement, this process has no analogue in

classical FEM.

Given the degree p = 2 basis functions with knot vector (0, 0, 0, 1, 1, 1),

Fig. 1.6 shows the difference between the application of knot inser-

tion first and degree elevation afterwards, and the application of k-

refinement, which consists of performing degree elevation first and then

knot insertion: the two processes in fact do not commute. The first

process results in many functions that are C1 across the element bound-

aries, while k-refinement gives a smaller number of functions, each of

which is Cp−1 across the element boundaries. This is even more evident

in Fig. 1.7, where we applied three times the k-refinement process to

get functions of degree 5.

All the functions preserve maximal Cp−1 continuity across element

boundaries only if the initial knot vector does not have internal knots.

Refinement methods can be applied to NURBS geometries of dimension k

simply by refining all the k knot vectors of the parametric domain. While it is

possible to refine a mesh locally, due to the tensor product nature of B-spline

basis functions, refinement is a global procedure for B-spline geometries. This

sometimes leads to superfluous knots and control points, which means, as we

will see, superfluous elements in isogeometric analysis. In order to overcome

this limitation, alternative technologies such as T-splines, hierarchical B-

splines and isogeometric spline forests have been proposed [4, 50, 51].

1.4 Spline curves, surfaces and solids

Let Ξ = (x1, . . . , xk) be a knot vector, and let M = (m1, . . . ,mk) be the

vector of multiplicities associated to Ξ, with K =
∑k

i=1 mi.
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Figure 1.6: On the left: applying applying knot insertion and then order

elevation to the knot vector Ξ∗ = (0, 0, 0, 1, 1, 1) we get the knot vector

Ξ∗ = (0, 0, 0, 0, 1
2
, 1

2
, 1, 1, 1, 1). On the right: applying k-refinement to the

same knot vector, we get the knot vector Ξ∗ = (0, 0, 0, 0, 1
2
, 1, 1, 1, 1) gives

a smaller number of functions, each of which is Cp−1 across the element

boundaries..
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Figure 1.7: Same comparison as in Fig. 1.6, applying k-refinement three

times to get functions of degree 5.

A parametric spline curve of order m in Rd is a vector function with d

components

C(x̂) =


x1 = c1(x̂)

...

xd = cd(x̂)

 =
m+K∑
i=1

Ni,m(x̂)Pi, (1.19)

where ci(x̂) for i = 1, . . . , d are spline functions defined in Eq. (1.15), Ni,m(x̂)

are B-splines defined in Eq. (1.14), and Pi ∈ Rd are called control points.

Due to the properties of basis functions, spline curves are of class Cm−1 at

knots, unless there are repeated knots: repeating a knot mi times decreases

the number of continuous derivatives by mi.

Spline curves don’t interpolate the control points in general. A curve

is interpolatory at the first and last control points when the knot vector is

open, and at an internal control point if the knot vector has a knot with

multiplicity m− 1.

The polyline connecting the control points of a curve, given by a piecewise

linear interpolation of the control points, is referred to as control polygon.

Spline curves have the property of affine invariance: an affine transformation

of a spline curve is obtained by applying the same transformation to the

control points.
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Fig. 1.8 and 1.9 show the application of h and p-refinement to spline

curves.

Figure 1.8: Three steps of h-refinement applied to the simple B-spline curve

of p = 2 and knot vector Ξ∗ = (0, 0, 0, 1, 1, 1), displayed on the left. The

control polygon of the original curve is red, while the ones of the refined

curves are black.

Figure 1.9: Three steps of p-refinement applied to the simple B-spline curve

of p = 3 and knot vector Ξ∗ = (0, 0, 0, 0, 0.5, 1, 1, 1, 1), displayed on the left.

The control polygon of the original curve is red, while the ones of the refined

curves are black.

We can construct multivariate B-spline basis functions and spline surfaces

starting from univariate B-spline basis functions using the tensor product.

Let’s consider two univariate spline functions spaces, namely S(Pm−1,M, U)

and S(Pn−1, N, V ), with knot vectors U = (u1, . . . , uk) and V = (v1, . . . , vl),

and multiplicity vectors M = (m1, . . . ,mk) and N = (n1, . . . , nl), such that

K =
∑k

i=1mi and L =
∑l

i=1 ni.

If {Pi,j}, i = 1, . . . ,m+K, j = 1, . . . , n+ L is a control net of points in
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Rd, a spline surface of order (m,n) is defined as

S(û, v̂) =
m+K∑
i=1

n+L∑
j=1

Ni,m(û)Nj,n(v̂)Pi,j, (1.20)

where Ni,m and Nj,n are the univariate B-spline basis functions of order m

and n associated with the knot vectors U and V .

If all Pi,j ∈ R2, S(û, v̂) is on the XY plane, while if Pi,j ∈ R3, then S(û, v̂)

can be a surface in R2.

Similarly, we can define solids. Given three knot vectors U = (u1, . . . , uk),

V = (v1, . . . , vl) and Z = (z1, . . . , zs), and a control lattice {Pi,j,t}, i =

1, . . . ,m + K, j = 1, . . . , n + L, k = 1, . . . , o + S, a B-spline solid of order

(m,n, o) is defined by

S(û, v̂, ŵ) =
m+K∑
i=1

n+L∑
j=1

o+S∑
t=1

Ni,m(û)Nj,n(v̂)Nt,o(ŵ)Pi,j,t. (1.21)

The properties of surfaces and solids are bivariate and trivariate gener-

alizations of those of curves. The basis functions are linearly independent,

pointwise non-negative, locally supported and form a partition of unity.

1.5 Bernstein polynomials and Bézier curves

We will now introduce a set of basis functions {Bi,p(x̂)}pi=0 given by the

classical pth-degree Bernstein basis polynomials, defined as:

Bi,p(x̂) =

(
p

i

)
x̂i(1− x̂)p−i, (1.22)

where x̂ ∈ [0, 1] and
(
p
i

)
is the binomial coefficient:(

p

i

)
=

p!

i!(p− i)!
. (1.23)

The Bernstein basis polynomials {Bi,p(x̂)}pi=0 form a basis for Pp, the space

of polynomials of degree ≤ p. A linear combination of Bernstein basis poly-
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nomials with coefficients ci ∈ R

b(x̂) =

p∑
i=0

Bi,p(x̂)ci (1.24)

is a Bernstein polynomial.

As we used B-spline basis functions to define spline curves in Eq. (1.19),

we can use the Bernstein polynomials to define parametric Bézier curves as

follows:

C(x̂) =

p∑
i=0

Bi,p(x̂)Pi, (1.25)

where the geometric coefficients Pi ∈ Rd are called control points.

We remark that a B-spline basis function Ni,p+1 of order p+ 1, restricted

to the interval [0, 1] without internal knots, coincides with a Bernstein basis

polynomial or degree p. Thus, the set of B-spline basis functions {Ni,p+1}p+1
i=1

reduces to the set {Bi,p(x̂)}pi=0 when we consider the extended knot vector of

the form:

Ξ∗ = {0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (1.26)

Therefore, Bézier curves defined in Eq. (1.25) are particular cases of B-spline

curves defined in Eq. (1.19).

A spline geometry can always be decomposed into C0-connected Bézier

segments, that are called Bézier patches if the geometry represents a surface.

Algorithms to get the piecewise Bézier form of a spline geometry can be found

in [47]. They use the knot insertion process described in Section 1.3: each

interior knot is inserted until it has multiplicity p. We will use Bézier curves

in Chapter 4 to approximate the solution of some boundary value problems.

1.6 NURBS

NURBS are a popular modeling primitive suitable to represent both an-

alytic shapes such as conics and quadrics, and free-form geometries like car
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parts, engines or ship hulls. They are a generalization of polynomial splines

and of rational and non-rational Bézier curves.

In the following, we will introduce NURBS curves and surfaces. For the

creation and manipulation of NURBS geometries in our figures and examples,

we used the NURBS toolbox created by Mark Spink [54], in its extended

version created for GeoPDEs [20].

1.6.1 NURBS curves

We will now define Non-Uniform Rational B-Splines (NURBS), which are

a generalization of B-splines.

Let Ξ = {xi}ki=1 be a knot vector for the interval [a, b] ⊂ R. Let

M = (m1, . . . ,mk) be the vector of multiplicities associated to Ξ, with

K =
∑k

i=1mi and let {Ni,m(x)}m+K
i=1 be the B-spline basis functions.

Given a vector of weights W = (w1, . . . , wk) such that wi > 0, we define

a NURBS function as:

r(x̂) =

∑m+K
i=1 ciwiNi,m(x̂)∑m+K
i=1 wiNi,m(x̂)

, ci ∈ R. (1.27)

The space of the NURBS functions, denoted with R(Pm−1,M,Ξ,W ), has

dimension m+K.

Let {Pi}m+K
i=1 be a set of control points in Rd, a parametric NURBS curve

of order m is defined by:

C(x̂) =

∑m+K
i=1 wiPiNi,m(x̂)∑m+K
i=1 wiNi,m(x̂)

. (1.28)

Setting the rational B-spline of order m:

Ri,m(x̂) =
wiNi,m(x̂)∑m+K

i=1 wiNi,m(x̂)
,

Eq. (1.28) becomes:

C(x̂) =
m+K∑
i=1

Ri,m(x̂)Pi. (1.29)
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The set of rational B-Splines {Ri,m(x̂)}m+K
i=1 constitutes a basis for the

space R(Pm−1,M,Ξ,W ). They possess all the properties of the B-spline basis

functions, and if all the weights wi are equal to 1, they reduce to B-splines,

i.e. Ri,m(x̂) ≡ Ni,m(x̂).

From a geometrical point of view, NURBS entities in Rd are projective

transformations of B-spline entities in Rd+1.

If all the weights of the control points of a curve are equal, they have equal

influence on the shape of the curve. Increasing the weight of one control point

gives it more influence and has the effect of ”pulling” the curve toward that

point, as shown in Fig. 1.10.

NURBS can be used to represent conic sections exactly. For instance,

the top left curve of Fig. 1.10 is a NURBS circle, defined on the knot vector

Ξ∗ = (0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1).

1.6.2 NURBS surfaces

Analogously to the curves case, the rational basis functions for surfaces

and solids are defined respectively as:

Rm,n
i,j (û, v̂) =

wi,jNi,m(û)Mj,n(v̂)∑n+L
i=1

∑m+K
j=1 wi,jNi,m(û)Mj,n(v̂)

(1.30)

and

Rm,n,o
i,j,k (û, v̂, ŵ) =

Ni,m(û)Mj,n(v̂)Lk,o(ŵ)wi,j,k∑m+K
i=1

∑n+L
j=1

∑o+S
k=1 Ni,m(û)Mj,n(v̂)Lk,o(ŵ)wi,j,k

. (1.31)

To have a compact notation that does not depend on the dimension of

the manifold, we will denote NURBS basis functions by Ri(x̂), where i is a

multi-index and x̂ is a point of the parameter space Ω̂ ⊂ Rk. Given a set of

control points Bi ∈ Rd, a NURBS geometry is a piecewise rational function

and it is defined by the parameterization:

F : Ω̂ −→ Ω

x̂ 7−→ F (x̂) =
∑
i

Ri(x̂)Bi.
(1.32)
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Figure 1.10: The geometric meaning of weights. Three NURBS curves of

degree 2 that have the same knot vector and control points, with different

weight vector W . Control points with greater weights pull the curves toward

them.
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This notation avoids distinguishing between curves, surfaces and solids.

A parametric NURBS surface of order m along the u direction and n

along the v direction is a bivariate rational vector function of the form:

S(û, v̂) =

∑n+L
i=1

∑m+K
j=1 wijPi,jNi,n(û)Nj,m(v̂)∑n+L

i=1

∑m+K
j=1 wijNi,n(û)Nj,m(v̂)

(1.33)

Defining the rational basis functions as in Eq.(1.30), we can rewrite the

surface as:

S(û, v̂) =
m+K∑
i=1

n+L∑
j=1

Rm,n
i,j (û, v̂)Pi,j. (1.34)

Designing shapes using NURBS geometries is very intuitive. Commercial

and free CAD system offer many simple and effective tools to model surfaces.

Here we will briefly describe three tools that can be used to design surfaces

starting from curves: extrusion surfaces, ruled surfaces and revolution sur-

faces.

Extrusion surfaces

Given a vector E and a NURBS curve C(x̂) =
∑m+K

i=1 Ri,m(x̂)Pi with knot

vector U∗ and weights {wi}m+K
i=1 , an extrusion surface is obtained by sweeping

the curve along the vector. It is defined as:

S(û, v̂) =
m+K∑
i=1

2∑
j=1

Rm,2
i,j (û, v̂)(v̂)Pi,j, (1.35)

it has degree (m−1, 1), control points Pi,1 = Pi and Pi,2 = Pi+E with weights

wi1 = wi2 = wi, and knot vector U∗ along the u direction and V ∗ = [0, 0, 1, 1]

along the v direction.

Ruled surfaces

Let C(x̂) =
∑m+K

i=1 Ri,m(x̂)Bi and C1(x̂) =
∑m+K

i=1 Ri,m(x̂)Ti be two NURBS

curves, both with degree m− 1 and knot vector U∗, and weights respectively

{w[1]
i }m+K

i=1 and {w[2]
i }m+K

i=1 . The ruled surface between C and C1 is obtained

by linear interpolation between every two corresponding points on C and C1.
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It has degree (m− 1, 1), and it is defined as:

S(û, v̂) =
m+K∑
i=1

2∑
j=1

Rm,2
i,j (û, v̂)Pi,j, (1.36)

where the control points of the surface are Pi,1 = Bi and Pi,2 = Ti, the

weights are wi,1 = w
[1]
i and wi,2 = w

[2]
i and the knot vectors are U∗ along the

u direction and V ∗ = [0, 0, 1, 1] along the v direction.

Two curves that have the same degree and knot vector like C and C1,

are said to be compatible. There are algorithms that turn non-compatible

curves into compatible ones using knot insertion and degree elevation, thus

making it possible to build ruled surfaces between non-compatible curves.

Revolution surfaces

Given a curve on the ZX-plane C(x̂) =
∑m+K

j=1 Rj,m(x̂)Pj with knot vector

V ∗, revolving it of 360 degrees around the Z-axis gives a revolution surface

of degree (2,m− 1), defined as:

S(û, v̂) =
9∑
i=1

m+K∑
j=1

R3,m
i,j (û, v̂)Pi,j. (1.37)

The control points Bi,j of the surface are obtained rotating the control points

Pj of the curve around the Z-axis of 45(i − 1) degrees, the weights are

wi,1 = wiwj, with wi = [1,
√

2
2
, 1,

√
2

2
, 1,

√
2

2
, 1,

√
2

2
, 1]. The knot vectors are

U∗ = [0, 0, 0, 1
4
, 1

4
, 1

2
, 1

2
, 3

4
, 3

4
, 1, 1, 1] along the u direction and V ∗ along the v

direction.

Fig. 1.11 shows an example of each kind of surface described above.

1.7 Quad meshes

Polygonal meshes are simple and very common representations of geome-

tries in computer graphics. A large number of applications in geometric
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Figure 1.11: The two curves c1 and c2 (top left), an extrusion surface using

c1 (top right), a revolution surface obtained by revolving c1 around the Z-

axis(bottom left) and a ruled surface between c1 and c2 (bottom right).
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modeling, computer graphics, mechanical engineering, simulation and archi-

tecture are based on polygonal meshes [6], and FEM is one of these applica-

tions.

The constituents of a polygonal mesh are:

• Vertices, that are points in R3. They can also be referred to as nodes.

• Edges, that are straight-line segments connecting two vertices.

• Facets, that are polygons bounded by a closed set of edges. They can

also be referred to as faces, or elements in the FEM context.

We assume all our meshes to be conforming meshes, in which any two

facets may share either a single vertex, or an entire edge. In other words,

there cannot be T-junctions between two edges.

An edge shared by two incident facets is said to be internal, while an edge

with just one incident facet is said to be boundary. A vertex of a boundary

edge is also said to be boundary, otherwise it is said to be internal.

Discrete functions can be defined on a mesh by associating values either

to the vertices or to the facets.

A triangle mesh is a mesh in which all facets are triangles, while a quad

mesh is a mesh in which all the facets are quadrilateral.

The literature for triangle meshes is extensive. In the last several years the

advantages of quadrilateral meshes for many applications have been pointed

out, and significant progress was made in quadrilateral mesh generation and

processing [7, 8, 18].

Eyeshot uses only triangular meshes in the computer graphics and ge-

ometry processing context, while, as we will see in Section 6.2, in the FEM

context it supports also quad meshes. Fig. 1.12 shows three examples of

polygonal meshes.

In the numerical examples of this thesis we will use quad meshes. To

apply isogeometric analysis on them, we will interpret meshes as NURBS
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Figure 1.12: A triangular mesh (left) and two quadrilateral meshes (center

and right).

surfaces of degree (1,1), since it is always possible to describe a quad mesh

as the union of one or more such NURBS surfaces.

Among the three refinement techniques introduced in Section 1.3, h-

refinement is commonly applied also to meshes. h-refinement can be per-

formed by splitting the existing faces into smaller ones: it increases the

number of nodes and elements of a mesh.

1.8 Extended B-rep

In several circumstances, some complicated models can be generated by

combining multiple patches of simpler geometries. Geometries partitioned

into two or more non-overlapping subdomains are called multipatch geome-

tries and can be described using boundary representations, often abbreviated

as B-rep, in which a solid is represented as a collection of connected surface

elements.

In a B-rep model a solid is represented in terms of its bounding entities,

such as:

• Vertices, that are points in R3.
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• Edges, that are bounded, non-self-intersecting curves:

C : I −→ R3,

where I = [t0, t1] ⊂ R.

Every edge is bounded by two vertices, C(t0) and C(t1), that can also

be coincident.

• Loops, that are ordered alternating sequences of vertices and edges.

Each loop defines a non-self-intersecting closed space curve, which may

be a boundary of a face.

• Faces, that are finite, connected, non-self-intersecting regions of a closed,

orientable surface bounded by one or more loops (at least an outer loop,

and one or more inner loops if the face has holes).

A B-rep data structure B is formed by:

• a set of geometric data G = (V,E, F ) containing information of the

vertices V (points in R3), edges E (curves in R3) and faces F (surfaces

in R3),

• a set of topological data T providing the relationships among the geo-

metric objects.

Fig. 1.13 shows an example of B-rep and some of its constituents.

In many situations we have hybrid geometries, in which some patches are

described by mesh representations and other patches are NURBS. For this

kind of geometries, we introduce a representation called Extended B-rep,

that aims at closing the gap between parametric and discrete geometry in

the representation of solid objects.

We will define a Mesh-Face as an open mesh delimited by a closed polyg-

onal curve. This polygonal curve will be considered as the loop of the Mesh-

Face and all the lines of the polygonal curve will be edges of the B-Rep data

structure.
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Figure 1.13: From left to right: a B-rep model, one face of the model is

displayed in yellow, the faces of the model are displayed in different colors,

the edges of the model are displayed in different colors.

An Extended B-Rep data structure is a representation scheme

Be = (Ge, T )

where Ge = (V,E, Fe) and the set of possible faces Fe admits also Mesh-

Faces.

Fig. 1.14 shows an example of the usage of Extended B-reps to create a

prototype that replicates a real cuneiform tablet.
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Figure 1.14: Top left: the original cuneiform tablet. Top right: the point

cloud produced by a 3D scanner. Center: the molds for the prototype are Ex-

tended B-reps. Bottom: the prototype that replicates the cuneiform tablet.



Chapter 2

Boundary value problems and

the Galerkin method

A Boundary Value Problem (BVP) is described by a differential equation

and a set of additional constraints that the solution must satisfy on the

boundary of the domain in which the problem is specified.

These problems arise in many physical and engineering fields, and they

can be used to model several physical phenomena.

In this chapter we will introduce three elliptic BVPs: the Poisson problem,

linear elasticity problems and the Laplace-Betrami problem.

2.1 The Poisson’s equation

We will see how a BVP can be transformed into its weak form through

the simple case of the Poisson’s equation,

−∆u = f, (2.1)

where ∆ is the Laplace operator, that in two dimensions is defined by

∆u =
∂2u

∂x2
+
∂2u

∂y2

31
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and f is a function defined on a bounded domain Ω of R2, which is a bounded,

open and connected set of R2. When f is the identically zero function, the

equation (2.1) is called Laplace’s equation.

These equations have both infinitely many solutions unless some bound-

ary conditions are defined on the boundary ∂Ω of Ω. There are different

kinds of boundary conditions, such as the Dirichlet condition and the Neu-

mann condition. A Dirichlet BVP has the form

−∆u = f in Ω

u = g on ∂Ω.
(2.2)

A Neumann BVP has the form

−∆u = f in Ω

∂u

∂n
= h on ∂Ω,

(2.3)

where n is the outward pointing normal vector to ∂Ω, ∂u
∂n

is the normal

derivative of u on ∂Ω, defined by

∂u

∂n
= ∇u(x, y) · n(x, y), (2.4)

and ∇u is the gradient of u

∇u(x, y) =

 ∂u
∂x

(x, y)

∂u
∂y

(x, y)

 .
A BVP can have mixed boundary conditions: if ΓD ⊂ ∂Ω and ΓN ⊂ ∂Ω

form a partition of ∂Ω, there are Dirichlet conditions on ΓD and Neumann

conditions on ΓN . In general, the strong formulation of an elliptic BVP is:

−∆u = f in Ω

u = g on ΓD

∂u

∂n
= h on ΓN ,

(2.5)
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where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅, that is, ΓD and ΓN form a non

overlapping partition of the boundary ∂Ω.

The Poisson and Laplace’s equations are used to model a variety of physi-

cal situations such as the heat transfer, electrostatics and gravitation. In the

heat conduction context, the unknown u represents the distribution of tem-

perature on a heat-conducting material occupying a domain Ω ⊂ R2. The

plate is insulated on the top and bottom, so the problem is two-dimensional.

Since the equations does not depend on time, the problems modeled are the

stationary heat flow for the Laplace’s equation, and the stationary heat flow

with a heat source or sink for the Poisson’s one.

Dirichlet boundary conditions indicate that at each point (x, y) ∈ Ω the

temperature is held fixed at g(x, y). Neumann boundary conditions indicate

that the heat flux (i.e. the flow of heat energy) across the boundary is equal

to h. In particular, homogeneous Neumann conditions imply that also the

boundary ∂Ω is insulated.

The accurate description of a physical material requires the introduction

of the thermal conductivity κ in the non-dimensional equations presented

in (2.5). From now on we will consider the following form of the Poisson’s

equation:

−κ∆u = f in Ω (2.6)

in which κ is positive by definition. For heterogeneous materials, the thermal

conductivity is not constant and the PDE in (2.6) is replaced by the following

non-linear equation:

−∇ · (κ∇u) = f in Ω (2.7)

where ∇· is the divergence operator defined by

∇ · u =
∂u

∂x
+
∂u

∂y
.
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Thus, the strong formulation of a non-linear BVP is:

−∇ · (κ∇u) = f in Ω

u = g on ΓD

∂u

∂n
= h on ΓN .

(2.8)

The divergence of the gradient is the laplacian

∇ · ∇u = ∇ ·

 ∂u
∂x

∂u
∂y

 =
∂2u

∂x2
+
∂2u

∂y2

so, when κ is constant

−∇ · (κ∇u) = −κ∇ · ∇u = −κ∆u.

While the Dirichlet BVP has a unique solution, either existence or uniqueness

fails for a Neumann BVP of the form

−κ∆u = f in Ω

κ
∂u

∂n
= h on ∂Ω.

The equation indicates that the heat energy added or taken away from the

interior of Ω is regulated by f and the boundary condition states that the heat

flux into Ω across ∂Ω is regulated by h. Since the system is in equilibrium,

the total amount of heat flux must be zero, and this is expressed by the

compatibility condition ∫
Ω

f +

∫
∂Ω

h = 0.

If the compatibility condition is not satisfied, the existence fails. On the

other hand, if there is a solution u for the BVP, then u+C is also a solution

for any constant C because the derivatives in the equations are not affected

by addictive constants.
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2.2 The weak form of a BVP

In this section we derive the weak form of a boundary value problem

and we will start by reminding some theorems and definitions that will be

fundamental for this derivation.

The divergence theorem states that if F is a vector field defined on the clo-

sure Ω̄ of a domain Ω ⊂ R2 that has a smooth or piecewise smooth boundary,

then ∫
Ω

∇ · F =

∫
∂Ω

F · n, (2.9)

where n is the outward-pointing unit normal vector to ∂Ω. This theorem

relates a quantity defined on the interior of a domain with another quantity

defined on its boundary.

The Green’s identity is obtained by integrating over Ω both sides of the

product rule in multiple dimensions:

∇ · (v∇u) = ∇v · ∇u+ v∆u∫
Ω

∇ · (v∇u) =

∫
Ω

∇v · ∇u+

∫
Ω

v∆u.

Applying the divergence theorem we get∫
∂Ω

v∇u · n =

∫
Ω

∇v · ∇u+

∫
Ω

v∆u,

and then replacing ∇u · n with ∂u
∂n

as in (2.4) we obtain the Green’s identity

−
∫

Ω

v∆u =

∫
Ω

∇v · ∇u−
∫
∂Ω

v
∂u

∂n
. (2.10)

Let u : Ω −→ R be a locally integrable function (i.e. integrable over every

compact subset of Ω), u is said to be weakly differentiable with respect to x

if there exists a locally integrable function g defined on Ω such that∫
Ω

gv = −
∫

Ω

u
∂v

∂x
∀v ∈ C∞0 (Ω). (2.11)



36 2. Boundary value problems and the Galerkin method

In this case g is called the weak partial derivative with respect to x of u and

is denoted by ∂u
∂x

. The weak partial derivative with respect to y is defined

similarly.

We introduce three spaces of functions: the space of square-integrable

functions

L2(Ω) =

{
v : Ω −→ R :

∫
Ω

v2 <∞
}
,

the Sobolev space

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂x
,
∂v

∂y
∈ L2(Ω)

}
, (2.12)

and its subset

H1
0 (Ω) =

{
v ∈ H1(Ω) : v = 0, on ∂Ω

}
.

We will derive the weak form of the Poisson BVP with homogeneous Dirichlet

conditions:

−∇ · (κ∇u) = f in Ω

u = 0 on ∂Ω,
(2.13)

that is problem (2.8) with g = 0 and ΓD = ∂Ω. If f is continuous and u is

a solution of (2.13), we expect that u and its first and second order partial

derivatives are continuous on Ω. And because of the boundary conditions u

must be zero on ∂Ω. So it is natural to look for a u in the subspace

C2
D(Ω̄) =

{
u ∈ C2(Ω̄) : u = 0 on ∂Ω

}
.

Let v be a function defined on Ω that we will call a test function. Multiplying

by v both sides of the Poisson’s PDE in (2.13) and integrating over Ω we

obtain

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

fv (2.14)

We will show that if Eq.(2.14) holds for every test function v for a sufficiently

large set, then the Poisson’s PDE must hold.

Let Bδ(x0, y0) be the ball centered at (x0, y0) ∈ Ω of radius δ > 0 small

enough that Bδ(x0, y0) ⊂ Ω and consider v ∈ C2
D(Ω̄) such that



2.2 The weak form of a BVP 37

(i) v(x, y) > 0 for all (x, y) ∈ Bδ(x0, y0)

(ii) v(x, y) = 0 for all (x, y) 6∈ Bδ(x0, y0)

(iii)
∫

Ω
v =

∫
Bδ(x0,y0)

v = 1.

Then for the two members of (2.14) we have∫
Ω

fv =

∫
Bδ(x0,y0)

fv −−→
δ→0

f(x0, y0)

and

−
∫

Ω

∇ · (κ∇u)v =

∫
Bδ(x0,y0)

∇ · (κ∇u)v −−→
δ→0

∇ · (κ(x0, y0)∇u(x0, y0)).

The integrals become exact equations in the limit. Therefore, if the space

of test functions contains all such functions v, and (2.14) holds for all test

functions, then the original PDE holds at every (x0, y0) in Ω. Taking C2
D(Ω̄)

as space of test functions, we will have that (2.14) holds for some u ∈ C2
D(Ω̄)

and for all test functions if and only if u is a solution for the BVP (2.13).

Applying the Green’s identity to the left-hand side of (2.14) and using

the fact that v vanishes on ∂Ω, we get

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

κ∇u · ∇v −
∫
∂Ω

κv
∂u

∂n
=

∫
Ω

κ∇u · ∇v.

This leads to an equivalent form of the BVP (2.13):

Find u ∈ C2
D(Ω̄) s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀ v ∈ C2
D(Ω̄) (2.15)

called weak form. A function u satisfies one if and only if it satisfies the

other.

The term weak is used because we want to make the weakest possible

assumptions on the functions involved, so as to include as many solutions

as possible. While the original PDE in (2.13) suggests that u ∈ C2(Ω),

the weak form refers only to the first derivatives of u and v. In the weak
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form, it is only necessary that u, v and their weak partial derivatives are in

L2(Ω), that is u, v ∈ H1(Ω), and since they both need to satisfy the Dirichlet

boundary condition, they must be in H1
0 (Ω). The weak form derived from

the strong form (2.8) with homogeneous Dirichlet boundary condition (g = 0

and ΓD = ∂Ω), can be rewritten as:

Find u ∈ H1
0 (Ω) s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀ v ∈ H1
0 (Ω) (2.16)

where f is assumed to be in L2(Ω). Since the requirements on f and on the

solution u have been considerably weakened, this is called the weak form.

Let’s now consider the Poisson BVP with inhomogeneous Dirichlet con-

ditions

−∇ · (κ∇u) = f in Ω

u = g on ∂Ω,
(2.17)

that is problem (2.8) with ΓD = ∂Ω. Let G be a known function in H1(Ω),

then w = u − G is a function in H1
0 (Ω) and the solution u has the form

u = w + G. Proceeding as in the homogeneous case, we multiply by a test

function v and integrate over Ω

−
∫

Ω

∇ · (κ(∇w +∇G))v =

∫
Ω

fv ∀ v ∈ H1
0 (Ω),

and applying the Green’s identity we get∫
Ω

κ(∇w +∇G) · ∇v −
∫
∂Ω

κv

(
∂w

∂n
+
∂G

∂n

)
=

∫
Ω

fv ∀ v ∈ H1
0 (Ω).

Since v ∈ H1
0 (Ω), the integral over the boundary vanishes leaving∫

Ω

κ(∇w +∇G) · ∇v =

∫
Ω

fv ∀ v ∈ H1
0 (Ω),

that can be rewritten as∫
Ω

κ∇w · ∇v =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v ∀ v ∈ H1
0 (Ω).
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Thus the weak form of the inhomogeneous Dirichlet problem (2.8) with ΓD =

∂Ω is:

Find u = w +G, w ∈ H1
0 (Ω),∫

Ω

κ∇w · ∇v =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v ∀ v ∈ H1
0 (Ω).

(2.18)

We will now derive the weak form of the Neumann problem

−∇ · (κ∇u) = f in Ω

κ
∂u

∂n
= h on ∂Ω,

(2.19)

which is the strong form (2.8) with ΓN = ∂Ω. Multiplying by a test function

v ∈ H1(Ω) and integrating over Ω we obtain

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

fv ∀ v ∈ H1(Ω),

and applying the Green’s identity we get∫
Ω

κ∇u · ∇v −
∫
∂Ω

κv
∂u

∂n
=

∫
Ω

fv ∀ v ∈ H1(Ω). (2.20)

So the weak form of the inhomogeneous Neumann problem is:

Find u ∈ H1(Ω) s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv +

∫
∂Ω

vh ∀ v ∈ H1(Ω).

(2.21)

If instead of inhomogeneous boundary conditions we consider homogeneous

Neumann conditions, the second integral of the right-hand side of (2.20)

would vanish because κ∂u
∂n

= 0 on ∂Ω because of the boundary conditions.

Then, the weak form of the homogeneous Neumann problem (2.8) with h = 0

and ΓN = ∂Ω is:

Find u ∈ H1(Ω) s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀ v ∈ H1(Ω). (2.22)

While the Dirichlet condition appears explicitly in the weak forms (2.16) and

(2.18) through the definition of the space H1
0 (Ω), the Neumann condition
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does not appear but is implied in (2.21) and (2.22). This is why the Dirichlet

conditions are called essential and the Neumann conditions are called natural

boundary conditions.

We will now consider a BVP with homogeneous mixed boundary condi-

tions, like the problem in Eq. (2.8), with g = 0 and h = 0. The space of test

functions is defined by

V := H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD},

as usual, to derive the weak form, we multiply the PDE for a test function v

and integrate over Ω

−
∫

Ω

∇ · (κ∇u)v =

∫
Ω

fv ∀ v ∈ V,

then we apply the Green’s identity and get∫
Ω

κ∇u · ∇v −
∫
∂Ω

κv
∂u

∂n
=

∫
Ω

fv ∀ v ∈ V.

The boundary integral can be written as∫
∂Ω

κv
∂u

∂n
=

∫
ΓD

κv
∂u

∂n
+

∫
ΓN

κv
∂u

∂n
,

where both integrals of the right-hand side vanish because of the boundary

conditions. The weak form of problem (2.8) with g = 0 and h = 0 is therefore

Find u ∈ V s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv ∀ v ∈ V. (2.23)

In an analogous manner, it can be derived that the weak form of the

problem in (2.8), with g = 0 and h 6= 0 is

Find u ∈ V s.t.

∫
Ω

κ∇u · ∇v =

∫
Ω

fv +

∫
ΓN

hv ∀ v ∈ V. (2.24)

The weak form of the inhomogeneous mixed boundary condition problem,

given by (2.8), with g 6= 0 and h 6= 0 is

Find u = w +G, w ∈ V,∫
Ω

κ∇w · ∇v =

∫
Ω

fv −
∫

Ω

κ∇G · ∇v +

∫
ΓN

hv ∀ v ∈ V.
(2.25)
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The space V is a Hilbert space (i.e. a complete inner product space), and

the weak forms (2.21), (2.22), (2.23) and (2.25) can be written in the form

Find u ∈ V, a(u, v) = l(v) ∀ v ∈ V, (2.26)

where a(·, ·) is a symmetric bilinear form on V and l is a continuous linear

functional on V .

The Riesz representation theorem, guarantees the existance of a unique

solution u for the Dirichlet and mixed BVP. In case of Neumann BVP, if a

solution exists, it is not unique [30].

2.3 Linear isotropic elasticity

We will now analyze another stationary elliptic BVP used to describe the

mechanics of solids and structures that are stressed, i.e. subjected to loads

or forces. Stresses lead to strains, which can be observed as deformations

or displacements; the aim of structural and solid mechanics is to understand

the relationships between all these variables.

Materials can be isotropic, meaning that their properties and elastic re-

sponse is the same in every direction, or anisotropic, if they vary with direc-

tion. If a model problem is subject to very small deformations, the relation-

ship between loads and deformations is linear. The problems that Eyeshot

deals with, and that we will introduce here in two dimensions, are linear,

isotropic and elastic.

The model is constituted by an elastic membrane that occupies a domain

Ω on which a load f is applied. We want to know how the membrane will

respond to that load, we want to know the entity of the deformations that

will occur. So the unknown is the displacement of each point (x, y) ∈ Ω,
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described by the vector-valued function

u(x, y) =

 u1(x, y)

u2(x, y)

 .
An isotropic material is described by two scalar quantities µ and λ, called the

Lamé moduli, that are constants if the membrane is homogeneous and that

must be measured experimentally for each material. The PDE that describes

our model, written in vector form is

−∇ · σ = f in Ω

σ = 2µε+ λtr(ε)I,

ε =
1

2
(∇u+∇uT ).

(2.27)

The quantity ε is called strain tensor, it is a measure of the local deformation

of the membrane and it can be written as

ε =
1

2
(∇u+∇uT ) =

1

2

 2∂u1
∂x

∂u1
∂y

+ ∂u2
∂x

∂u2
∂x

+ ∂u1
∂y

2∂u2
∂y

 =

 ∂u1
∂x

1
2
(∂u1
∂y

+ ∂u2
∂x

)

1
2
(∂u2
∂x

+ ∂u1
∂y

) ∂u2
∂y

 .
The tensor σ is the stress tensor and measures the elastic response to the

deformation described by the strain. Using the above expression for the

strain, σ becomes

σ = 2µε+ λtr(ε)I = 2µ

 ∂u1
∂x

1
2
(∂u1
∂y

+ ∂u2
∂x

)

1
2
(∂u2
∂x

+ ∂u1
∂y

) ∂u2
∂y

+ λ

(
∂u1

∂x
+
∂u2

∂y

) 1 0

0 1


=

 2µ∂u1
∂x

+ λ(∂u1
∂x

+ ∂u2
∂y

) µ(∂u1
∂y

+ ∂u2
∂x

)

µ(∂u1
∂y

+ ∂u2
∂x

) 2µ∂u2
∂y

+ λ(∂u1
∂x

+ ∂u2
∂y

)

 .
The divergence of a tensor is a vector whose components are the divergencies

of the rows of the tensor, so, if λ and µ are constants, (2.27) is equivalent to:

− (2µ+ λ)
∂2u1

∂x2
− µ∂

2u1

∂y2
− (µ+ λ)

∂2u2

∂x∂y
= f1,

− (µ+ λ)
∂2u1

∂x∂y
− µ∂

2u2

∂x2
− (2µ+ λ)

∂2u2

∂y2
= f2.
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Rearranging the addends of these equalities, we have

− µ(
∂2u1

∂x2
+
∂2u1

∂y2
)− (µ+ λ)(

∂2u1

∂x2
+
∂2u2

∂x∂y
) = f1,

− µ(
∂2u2

∂x2
+
∂2u2

∂y2
)− (µ+ λ)(

∂2u1

∂x∂y
+
∂2u2

∂y2
) = f2,

that leads to the more concise equivalent form

µ∆u+ (µ+ λ)∇(∇ · u) = −f. (2.28)

The right-hand side of the PDE, f , represents a body force applied on the

interior of the domain Ω. Often a load is introduced by a traction on the

boundary through Neumann boundary conditions.

In practical applications it is very common to use, instead of the Lamé

moduli µ and λ, the Young modulus E and the Poisson ratio ν. Both pairs

of constants can easily be obtained from the other using conversion formulas.

We will now derive the weak form of the BVP (2.27) with mixed homo-

geneous boundary conditions

−∇ · σ = f in Ω

u = 0 on ΓD,

σn = 0 on ΓN .

(2.29)

For this derivation it will be fundamental an alternate version of the Green’s

identity given by

−
∫

Ω

(∇ · σ) · v =

∫
Ω

σ · εv −
∫
∂Ω

v · (σn). (2.30)

As space of test functions, we will use

V = {v ∈ (H1(Ω))2 : v = 0 on ΓD},

where

(H1(Ω))2 = {v : Ω −→ R2 : v1, v2 ∈ H1(Ω)}.
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We multiply both members of the PDE by a test function v and integrate

over Ω

−
∫

Ω

(∇ · σu) · v =

∫
Ω

f · v ∀ v ∈ V,

and applying (2.30), we get∫
Ω

σu · εv −
∫
∂Ω

v · (σun) =

∫
Ω

f · v ∀ v ∈ V.

The boundary integral can be decomposed into two integrals over ΓD and

ΓN that both vanish because v is zero on ΓD and σun is zero on ΓN , thanks

to the boundary conditions. So we have∫
Ω

σu · εv =

∫
Ω

f · v ∀ v ∈ V,

which is equivalent to∫
Ω

(2µεu + λtr(εu)I) · εv =

∫
Ω

f · v ∀ v ∈ V,

and since I · εv = tr(εv), the weak form of the BVP is

Find u ∈ V,
∫

Ω

(2µεu · εv + λtr(εu)tr(εv)) =

∫
Ω

f · v ∀ v ∈ V. (2.31)

Similarly, considering only homogeneous Dirichlet conditions and inhomoge-

neous Neumann conditions (σn = h on ΓN), the weak form becomes

Find u ∈ V,
∫

Ω

(2µεu · εv + λtr(εu)tr(εv)) =

∫
Ω

f · v +

∫
ΓN

h · v ∀ v ∈ V.

(2.32)

2.4 The Galerkin method

The Galerkin method solves BVPs by computing the best approximation

to the true solution in a given finite-dimensional subspace. The Galerkin

method is based on the projection theorem, that states that if V is an inner

product space with inner product (·, ·), Vh is a finite-dimensional subspace of

V with dimension Nh and u ∈ V , then:
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(i) there is a unique vector w ∈ Vh such that

‖u− w‖ < ‖u− z‖ ∀ z ∈ Vh, z 6= w

and w is called the best approximation to u from Vh.

(ii) a vector w is the best approximation to u from Vh if and only if it

satisfies the following orthogonality condition:

w ∈ Vh, (u− w, z) = 0 ∀ z ∈ Vh (2.33)

The subscript h in Vh is related to the size of the spacial discretization of

the domain Ω.

Let {v1, . . . , vNh} be a basis of Vh, if w =
∑Nh

j=1 αjvj satisfies (2.33), then

taking z = vi we have that

(u−w, z) =

(
u−

Nh∑
j=1

αjvj, vi

)
= (u, vi)−

Nh∑
j=1

αj(vj, vi) = 0, i = 1, . . . , Nh

which means that w is determined by the following system of linear equations

in the unknowns α1, . . . , αNh :

Nh∑
j=1

(vj, vi)αj = (u, vi) i = 1, . . . , Nh. (2.34)

As we showed before, the weak form of a BVP can be written as:

Find u ∈ V, a(u, v) = l(v) ∀ v ∈ V, (2.35)

where a(·, ·) is a symmetric bilinear form on V and l is a continuous linear

functional on V . When the BVP is elliptic, a(·, ·) defines an alternate inner

product on V , called energy inner product, that is used by the Galerkin

method to find the best approximation w to the exact solution u from a

finite-dimensional subspace Vh of V .
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In matrix-vector form, the linear system of equations (2.34) can be rewrit-

ten as

KU = F, (2.36)

where K is a Nh ×Nh matrix called stiffness matrix and defined by

Kij = a(vj, vi), i, j = 1, . . . , Nh

and F is the load vector defined by

Fi = l(vi),

the approximate solution is given by

w =

Nh∑
i=1

Uivi. (2.37)

Because of (2.33), w satisfies

a(w, vi) = a(u, vi) = l(vi) i = 1, . . . , n,

and since {v1, . . . , vNh} is a basis of Vh, we can rewrite (2.35) replacing V

with its subspace Vh, obtaining the Galerkin form:

Find w ∈ Vh, a(w, v) = l(v) ∀ v ∈ Vh. (2.38)

The existence and uniqueness of a solution is guaranteed by the Lax-

Milgram theorem.

Theorem 2.4.1 (Lax-Milgram thorem). Let V be a Hilbert space and let

a(·, ·) be a bounded and V -elliptic bilinear form on V . Then:

1. there exists α > 0 such that a(v, v) > α‖v‖2 ∀ v ∈ V

2. there exists β > 0 such that a(w, v) 6 β‖w‖‖v‖ ∀w, v ∈ V.

Given a continuous linear form l(·), there exists a unique solution u ∈ V

such that:

a(u, v) = l(v) ∀ v ∈ V.
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The approximate solution found by the Galerkin method is the best ap-

proximation in the energy norm 1, and not in the original norm ‖ · ‖ of V .

That is, for w ∈ Vh, ‖u−w‖E = min
v∈Vh
‖u− v‖E, where u is the exact solution.

A fundamental result for the estimation of the discretization error is Cea’s

theorem, which states that:

‖u− w‖ 6 β

α
‖u− v‖ ∀ v ∈ Vh,

In other words, the subspace solution w is the best approximation of u in Vh,

up to the constant β
α

.

2.5 The Laplace-Beltrami problem

The Laplace operator can be generalized into the Laplace-Beltrami oper-

ator, that operates on functions defined on arbitrary Riemannian manifolds.

The Laplace-Beltrami operator allows to generalize the Poisson equation

to Riemannian manifolds of dimension k embedded in the physical space

Rd, with d > k ≥ 1. A problem described by this generalized equation is

called Laplace-Beltrami problem, and it can be applied on lower dimensional

manifolds, such as surfaces embedded in R3.

2.5.1 Tangential differential operators

In this section we will introduce the Laplace-Beltami operator on a man-

ifold Ω of dimension k embedded in the physical space Rd, with d > k ≥ 1.

Let φ : Ω −→ R be a function on Ω, and let φ̃ be the smooth extension

of φ to a neighborhood U of Ω, so that φ̃|Ω = φ.

For each ξ ∈ U, the tangential projector operator P(ξ) ∈ Rd×d is defined

as

P(ξ) := I− nΩ(ξ)⊗ nΩ(ξ), (2.39)

1The energy norm is denoted by ‖ · ‖E and defined as ‖v‖E =
√

a(v, v)
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where I is the identity tensor in Rd×d, and nΩ(ξ) is the unit normal to Ω in

Rd.

This allows to define the tangential gradient of a function φ ∈ C1(Ω) as

the projection of the gradient of its smooth extension φ̃ onto the tangent

space of Ω. That is:

∇Ωφ(ξ) := P(ξ)∇φ̃(ξ), (2.40)

where ∇ represents the usual gradient operator in Rd.

Finally, we introduce the Laplace-Beltrami operator associated to the

manifold Ω for a function φ ∈ C2(Ω) as:

∆Ωφ(ξ) := ∇Ω · (∇Ωφ(ξ)), (2.41)

where the divergence operator ∇Ω· for a vector valued function v : Ω −→ Rd

of class C1 is defined as the trace of its tangential gradient:

∇Ω · v(ξ) = tr(∇Ωv(ξ)). (2.42)

If we have a parametric representation of the manifold Ω like the one

defined in Section 1.1 with the metric ĝ defined in (1.5), we can use its

geometrical mapping F : Ω̂ −→ Ω to rewrite the tangential gradient and the

Laplace-Beltrami operator in terms of quantities in the parameter space Ω̂.

Recalling the definitions of Jacobian J and first fundamental form G of

F given in Eq. (1.2) and (1.4) respectively, the gradient of φ̃ in the physical

space is given by:

∇φ̃(ξ) =
[
Ĵ(ξ̂)Ĝ−1(ξ̂)∇̂φ̂(ξ̂)

]
◦ F−1(ξ̂), (2.43)

where ∇̂φ̂ : Ω̂ −→ Rk is the gradient operator in the parameter space.

The tangential gradient of φ is:

∇Ωφ(ξ) =
[
Ĵ(ξ̂)Ĝ−1(ξ̂)∇̂φ̂(ξ̂)

]
◦ F−1(ξ̂). (2.44)



2.5 The Laplace-Beltrami problem 49

The Laplace-Beltrami operator of a function φ : Ω −→ R can be rewritten

as:

∆Ωφ(ξ) =

[
1

ĝ(ξ̂)
∇̂ ·
(
ĝ(ξ̂)Ĝ−1(ξ̂)∇̂φ̂(ξ̂)

)]
◦ F−1(ξ̂), (2.45)

where g is the determinant of the first fundamental form, defined in Eq.

(1.5).

Finally, in view of the definition of integrals, the differential dξ used in

integrals is transformed as g(ξ̂)dξ.

2.5.2 The Laplace-Beltrami equation

Having defined the tangential differential operators, we can formulate a

BVP on the manifold Ω that generalizes the Poisson problem. Given a source

function f ∈ L2(Ω), the strong formulation of the Laplace-Beltrami problem

with homogeneous boundary conditions is:

−∆Ωu = f in Ω

u = 0 on ΓD

nΓ · ∇Ωu = 0 on ΓN ,

(2.46)

where nΓ is the unit vector normal to the boundary Γ.

Introducing the symmetric bilinear form:

a(v, w) :=

∫
Ω

∇Ωv · ∇Ωw dξ, (2.47)

the linear functional form:

l(v) :=

∫
Ω

fv dξ, (2.48)

and the test function space:

V := {v ∈ H1(Ω) : v|ΓD = 0}, (2.49)
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the weak form of the Laplace-Beltrami reads:

Find u ∈ V, a(u, v) = l(v) ∀ v ∈ V. (2.50)

We observe that, if the manifold Ω is not endowed with a boundary, then

the Laplace-Beltrami problem (2.50) is ill-posed.

To rewrite Eq.(2.50) in the parameter space Ω̂, we can use again the

geometrical mapping F : Ω̂ −→ Ω, together with Eq(2.44). The weak form

of problem (2.46) is:

Find û ∈ V̂ , â(û, v̂) = l̂(v̂) ∀ v̂ ∈ V̂ , (2.51)

where V̂ := {v̂ ∈ H1(Ω̂) : v̂|Γ̂D = 0},

â(v̂, ŵ) :=

∫
Ω̂

∇̂v̂ ·
(
Ĝ−1∇̂ŵ

)
ĝ dξ̂, (2.52)

and

l̂(v̂) :=

∫
Ω̂

f̂ v̂ĝ dξ̂. (2.53)

If the requirements of the Lax-Milgram lemma are satisfied, the solution

to the Laplace-Beltrami problem exists and is unique.

A priori error estimates under h-refinement for the Laplace-Beltrami

problem and other BVP on lower dimensional manifolds are given in [19].



Chapter 3

Isogeometric analysis

Isogeometric Analysis is an approximation method based on the isopara-

metric concept. It was introduced in 2005 in [34] with the purpose of uni-

fying the worlds of CAD and FEA. Simulations are performed in FEA sys-

tems, which require the conversion of designs, made with CAD systems, into

analysis-suitable formats leading to finite element meshes. This conversion

process is very laborious, and takes more than 80% of the analysis time.

Isogeometric Analysis was created to address this problem by developing a

new paradigm for FEA that uses geometric designs made by CAD systems,

without converting them into meshes. These geometric models are suitable

for both design and analysis.

Since its introduction, Isogeometric Analysis has become a focus of re-

search within both the fields of FEA and CAD and it has attracted a lot of

interest from the scientific community.

In this chapter we will present the IGA framework, using NURBS geome-

tries to represent both the geometry and the solutions of BVP.

51
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3.1 The Finite Element Method

FEM is a technique developed during the 1960s and 1970s that is widely

used to find approximate solutions to boundary value problems for partial

differential equations. As discussed in the last section, to solve a BVP, the

Galerkin method requires the solution of the linear system (2.36). For an

implementation of the method, it is crucial to choose the finite-dimensional

approximating subspace Vh in a way that guarantees that the stiffness matrix

K, the load vector F and the solution of the system can be computed effi-

ciently. In addition, the computed solution should be a good approximation

of the true solution. When in the Galerkin problem the space of piecewise

polynomial function is chosen as approximating subspace Vh, we obtain the

finite element method.

This choice implies that the domain Ω is discretized by a mesh of polyg-

onal facets (or polyhedral for tridimensional domains) denoted by Th. In

the FEM context, the polygonal facets are usually called elements and their

vertices are called nodes.

Let Th be a discretization of the domain Ω, where h ∈ R is referred to

as size of the mesh, a piecewise polynomial is a function that is defined by a

polynomial on each element Kj of the mesh. Therefore the space Vh is the

space of piecewise polynomials of degree p on Ω is defined as:

PPhp(Ω) = {vh ∈ C0(Ω̄) : vh|Kj ∈ Pp, ∀Kj ∈ Th}, (3.1)

where Pp is the space of polynomials of degree ≤ p and Ω̄ denotes the closure

of Ω.

The simplest spaces of continuous piecewise polynomial functions are the

space of piecewise linear functions PPh1 , together with PPh2 , which are of-

ten chosen as approximating subspace in practical applications. Typically,

Lagrange polynomials are used as basis functions.

Using continuous piecewise polynomial functions as approximating sub-
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space is very advantageous: working with piecewise polynomials is easy be-

cause evaluations, differentiations and integrations are simple, the resulting

stiffness matrix is sparse, and the linear system can be solved in an efficient

way.

Since the Bernstein basis Bi,p introduced in Section 1.5 constitutes a basis

for Pp, we will use it to define the space of piecewise polynomials PPhp(Ω) de-

fined in Eq. (3.1) and to simulate the standard FEM approximation method.

In fact, in standard FEM, PPhp(Ω) is often chosen as approximating space

Vh.

In the IGA context, the approximating space can be the space of NURBS

functions R(Pm−i,M,Ξ,W ) or the space of spline functions S(Pm−1,M,Ξ),

defined in Section 1.6 and 1.2 respectively.

Since NURBS functions for the solution can be defined on the partition

of the domain given by the knot vectors of the geometrical description, IGA

does not need to discretize the physical domain. This is one great advantage

of IGA over FEM.

3.2 NURBS basis for analysis

As mentioned, piecewise polynomials are widely used in classical FEA as

basis functions for the approximating space Vh. This is because they are easy

to understand, program and use in the theoretical setting.

But they are not the only possible basis. A basis that is C1 on the element

interiors, C0 on the element boundaries and complete, satisfies sufficient con-

ditions for convergence for a wide class of problems [33]. Since NURBS basis

functions meet these requirements, they ensure that isogeometric analysis

will result in convergent methods.

Let’s consider the Poisson BVP in (2.8) and let F be the NURBS param-
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eterization from the parameter space Ω̂ to the physical space Ω:

F : Ω̂ −→ Ω

ξ̂ 7−→ ξ := F (ξ̂) =
∑
i

Ri(x̂)Pi,
(3.2)

where Ri(x̂) represents a suitable NURBS basis defined in Section 1.6.

A function defined over the parametric domain ûh : Ω̂ −→ R can be

defined in terms of the same NURBS bases as:

ûh(ξ̂) =
∑
i

Ri(ξ̂)di, (3.3)

where the coefficients di are called control variables. As seen in Eq.(1.9),

we can define the function over the physical domain uh : Ω −→ R as uh =

ûh ◦ F−1, and avoid to distinguish between ûh and uh.

An element in the physical space is defined as the image of a knot span

under the NURBS mapping F . We denote the knot spans in the parameter

space by Ω̂k and their image in the physical space as Ωk, where k = 1, . . . , Ne,

with Ne being the total number of elements. An element in the physical do-

main, and the corresponding element in the parameter space are highlighted

in Fig. 3.1.

To solve the problem in (2.8), numerical methods aim to find an approx-

imation uh of the solution u. Different numerical methods are different tech-

niques for finding di such that uh is the best approximation of the solution

u.

3.3 The Galerkin method in IGA

The Galerkin method for IGA takes the same form as in Section 2.4,

but using NURBS basis functions instead of piecewise polynomials for the

solution space Vh.

Let’s consider the Poisson BVP in (2.8) with homogeneous Dirichlet

boundary conditions defined on a domain Ω ⊂ R2. The weak form of
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Figure 3.1: An element Ω̂k on the parameter space and its image Ωk in the

physical space.

the problem is given in Eq. (2.24), where the space of test function V is

H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v = 0, on ΓD} .

The Galerkin method consists of approximating the infinite-dimensional

space V by a finite-dimensional space Vh. The weak form of the discrete

problem is:

Find uh ∈ Vh such that:∫
Ω

κ(ξ)∇uh · ∇vh dξ =

∫
Ω

fvh dξ +

∫
ΓN

hvh dΓ ∀ vh ∈ Vh, (3.4)

where the discrete space Vh is defined as:

Vh = {vh ∈ H1
0,ΓD

(Ω) : vh = v̂h ◦ F−1, v̂h ∈ V̂h} (3.5)

and V̂h is the discrete space in the parametric domain, that has to be chosen.

Let Nh be the dimension of the spaces V̂h and Vh, and let {v̂i}Nhi=1 be a
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basis for V̂h. Then we can define a basis for Vh as

{vi = v̂i ◦ F−1}Nhi=1. (3.6)

Thus, the trial functions of Vh can be expressed as linear combinations of

the elements of the basis:

uh =

Nh∑
j=1

αjvj =

Nh∑
j=1

αj(v̂j ◦ F−1), (3.7)

and their gradients are:

∇uh =

Nh∑
j=1

αj∇vj =

Nh∑
j=1

αjĴ
−T (∇v̂j ◦ F−1), (3.8)

where Ĵ is the d × k Jacobian matrix of the parameterization F defined in

Eq. (1.2), and (Ĵ)−T denotes its inverse transposed.

The expressions (3.7) and (3.8) can be used to rewrite Eq. (3.4).

As we explained in Section 2.4, it is sufficient that Eq. (3.4) is verified

for any test function vi of the basis (3.6) for Vh, which yields the solution of

the linear system of equations:∫
Ω

κ(ξ)

Nh∑
j=1

αj∇vj ·∇vi dξ =

∫
Ω

fvi dξ+

∫
ΓN

hvi dΓ for i = 1, . . . , Nh, (3.9)

where f and h are the source and boundary terms, that contribute to the

right-hand side of the linear system (2.36).

Let K̂h := {Ω̂k}Nek=1 be the partition of the parameter domain Ω̂, defined

by the knot spans. This partition induces a partition of the physical domain

Ω given by Kh = {Ωk}Nek=1 = {F (Ω̂k)}Nek=1.

The integrals on Ω are mathematically equivalent to the sum of the in-

tegrals on the Ne elements of the partition of Kh defined by the knot spans.

By the transformation rules, the integrals on Ω in Eq. (3.4) can be expressed

in the parametric space as :∫
Ω

κ(ξ)∇uh·∇vh dξ =
Ne∑
k=1

∫
Ω̂k

κ(ξ̂)
(
Ĵ−T (ξ̂)(∇ûh ◦ F−1)

)(
Ĵ−T (ξ̂)(∇v̂h ◦ F−1)

)
| det Ĵ(ξ̂)| dξ̂

(3.10)
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and ∫
Ω

fvh dξ =
Ne∑
k=1

∫
Ω̂k

f(ξ̂)(v̂h(ξ̂) ◦ F−1(ξ̂))| det Ĵ(ξ̂)| dξ̂, (3.11)

since dξ = | det Ĵ(ξ̂)| dξ̂ because we assumed Ω ⊂ R2.

To compute the coefficients of the stiffness matrix and of the source and

boundary terms, the integrals of Eq. (3.9) must be numerically approximated

by quadrature rules, such as for example the Gaussian quadrature rules. For

simplicity, we will use the partition Kh to define them: a quadrature rule

is defined on every element Ω̂k, and it is determined by a set of nk nodes

and their corresponding weights, denoted by {ξ̂l,k} ⊂ Ω̂k and {wl,k} ⊂ R, for

l = 1, . . . , nk respectively.

Using the parameterization F , the integral of a function φ ∈ L1(Kk) can

be approximated as follows:∫
Ωk

φdξ =

∫
Ω̂k

φ(F (ξ̂))|det(Ĵ(ξ̂))|dξ̂ '
nk∑
l=1

wl,kφ(ξl,k)|det(Ĵ(ξ̂l,k))|, (3.12)

where ξl,k := F (ξ̂l,k).

By applying Eq.s (3.10), (3.11), (3.12) and the quadrature rules, the inte-

grals on Ω of Eq. (3.9) can be numerically approximated and the coefficients

of the stiffness matrix and of the source term can be computed as:

Ai,j '
Ne∑
k=1

nk∑
l=1

κ(ξl,k)wl,k∇vj(ξl,k) · ∇vi(ξl,k)|det(Ĵ(ξ̂l,k))|

'
Ne∑
k=1

nk∑
l=1

κ(ξ̂l,k)wl,k

(
Ĵ−T (ξ̂l,k)∇v̂j(ξ̂l,k)

)(
Ĵ−T (ξ̂l,k)∇v̂i(ξ̂l,k)

)
|det(Ĵ(ξ̂l,k))|

(3.13)

and

fi '
Ne∑
k=1

nk∑
l=1

f(ξl,k)wl,kvi(ξl,k)|det(Ĵ(ξ̂l,k))|

'
Ne∑
k=1

nk∑
l=1

f(ξ̂l,k)wl,kv̂i(ξ̂l,k)|det(Ĵ(ξ̂l,k))|,

(3.14)
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for i, j = 1, . . . , Nh. To compute the boundary term hi in Eq. (3.9), we need

a quadrature rule for boundary integrals, which is inherited from the one

defined on the entire domain that we just described.

Let Ω be a surface, assuming that each side of the parametric domain is

completely mapped into ΓD or ΓN , we can define a mapping Fb : [0, 1] −→ ΓN

as the restriction of F to the boundary. Denoting the quadrature nodes in

the reference interval by their parametric coordinates tl,k, and using for the

rest the same notation as before with a superscript or subscript b, we get the

approximation of a boundary line integral:∫
Ωbk

φdΓ =

∫
Ω̂k

φ(Fb(t))|F ′b(t))|dt '
nbk∑
l=1

wbl,kφ(ξbl,k)|F ′b(tl,k))|. (3.15)

Thus, the boundary term is given by:

hi '
Ne∑
k=1

nk∑
l=1

h(ξbl,k)w
b
l,kvi(ξ

b
l,k)|F ′b(tl,k))|. (3.16)

Let Ω ⊂ R3 be a two-dimensional manifold embedded in R3. The same

computations for the weak form of the Laplace-Beltrami problem in Eq.

(2.50) can be carried out analogously, taking into account Eq. (2.45) and the

fact that, when k < d the differential dξ is transformed to the parametric

space as ĝ(ξ̂) dξ̂ instead of as | det Ĵ(ξ̂)| dξ̂.

3.4 IGA on multipatch geometries

Typically, geometric models cannot be represented by only one surface

with rectangular topology. CAD systems use joined NURBS surfaces, called

NURBS patching, to create more complex models, that can be represented

by the B-reps introduced in Section 1.8. In this context, a single surface is

called patch, and the geometry is said to be multipatch. One curve that is

shared by two adjacent surfaces is called interface. Fig. 3.2 shows an example

of a multipatch geometry representing a pipe created in Eyeshot.
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Figure 3.2: Multipatch geometries created in Eyeshot. Top: the model rep-

resents a pipe in which the green patches are toroidal surfaces and the red

patches are cylindrical surfaces. Bottom: a more complex model representing

a car door.
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It is possible to apply IGA also on this kind of models [20, 23, 37]. Let

Ω be a multipatch domain formed by np patches P1, . . . , Pnp , we have that

Ω = ∪npl=1Pl, with Pl ∩Pm = ∅ for each l 6= m. The patches are defined by np

parameterizations Fl : Ω̂ −→ Pl like the one defined in Eq. (1.1), that have

a common parameter domain Ω̂.

To conduct IGA analyses on multipatch geometries, it is required that

the patches of the model are compatible. This means that, if two patches

Pl and Pm have a common interface Il,m = Ωl ∩ Ωm 6= ∅, the degree, knot

vectors and control points of two adjacent surfaces must coincide on their

interface Il,m. Fig. 3.3 shows a planar multipatch domain in which np = 3.

Figure 3.3: Planar multipatch geometry composed of three patches and two

interfaces.

Therefore, the parametric domains of two adjacent patches are equal at

least along one of the two directions, and refinements of one patch can prop-

agate from that patch to the next. Also the basis functions are the same
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for both patches. Hence, creating a connectivity array which identifies the

matching basis functions on each patch in one single function in the global

domain, we can build a global stiffness matrix and solve a unique linear

system that gives the results on all the patches.

Along each interface, the two solutions from two adjacent patches are

equal, and they are glued together with C0 continuity. Higher continuity

has also been implemented by applying constraint equations in the normal

direction [16].

3.4.1 IGA on multipatch geometries with GeoPDEs

GeoPDEs, the tool that we used for the applications, includes a package to

perform IGA analyses on multipatch geometries [20]. It can read multipatch

geometries from .txt files that contain information on patches, interfaces,

subdomains and boundaries. Since it is common to have adjacent patches

that have one edge in common but are not compatible, we extended GeoPDEs

with the function nrbmakecompatible that creates two compatible surfaces

starting from non-compatible ones. Here is a list of the tools we implemented

for handling multipatch geometries as physical domains:

• mp_geo_substitute_patches: reads a .txt file with a geometry and

creates a new file allowing the user to substitute one or more patches

of the pre-existing geometry with new ones. Since the method doesn’t

update the interfaces and boundaries, it can be used only if the inter-

faces and boundaries don’t change or are changed manually.

• nrbmakepolyline: creates a constant length polyline passing through

the given vertices, represented by a NURBS curve of degree 1. We

used this kind of curves to create NURBS surfaces with at least one

direction of degree 1.
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• nrbmakecompatible: starting from two nurbs surfaces (both made of a

single patch) that have one edge in common, creates two new surfaces

that are compatible along that edge. In other words, the output sur-

faces will have same degree, knot vector and control points along the

shared interface.

The signature of the method is:

[comp1, comp2] = nrbmakecompatible (srf1, srf2, side1, side2, orientation)

The input parameters are:

– the two non-compatible surfaces srf1 of degree (pU1, pV 1) and

srf2 of degree (pU2, pV 2),

– the indices side1 and side2 of the edges of each surface corre-

sponding to the shared interface,

– and the orientation of the interface (1 if the two edges have the

same direction, 0 otherwise).

The steps of the algorithm are:

– based on side1 and side2, the routine identifies in each surface

which parametric direction (u or v) will be modified. Let w1 and

w2 be the identified directions for srf1 and srf2 respectively.

– If w1 and w2 don’t have the same degree, a degree elevation

along the direction w is applied to the surface with smaller de-

gree, so that both surfaces have the same degree along w, equal

to max(pW1, pW2).

– Create a common knot vector merging the two knot vectors. If

orientation is 0, one of the two knot vectors is reversed twice in

this phase.
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– The missing knots of each knot vector are then inserted by nrbkntins

along the directions w1 and w2, creating the two compatible sur-

faces comp1 and comp2, that are returned as output parameters.

If the edges corresponding to side1 and side2 are not overlapping, the

method works anyway, creating two surfaces that have one compatible

direction.

We extended the application of IGA on multipatch domains applying IGA

also on hybrid domains, made of both mesh and NURBS patches. This was

possible because we used NURBS surfaces of degree (1,1) to represent the

mesh patches. Our examples of IGA to multipatch geometries are collected

in Chapter 5.
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Chapter 4

Numerical examples: IGA on a

single patch

In this chapter we present the results of the application of Isogeometric

Analysis to solve BVPs on different physical domains Ω represented by a

single patch in R2 or R3.

In order to solve these problems we used the tool GeoPDEs [20]. It allows

to treat the geometry and the approximating subspace independently, and

thus to use non-isoparametric approaches, in which the physical space and

the solution space do not coincide.

We used three different strategies to represent the physical domain Ω:

• The first one is through a NURBS surface.

• The second is an analytic definition of the domain.

• The third is a polygonal quad mesh defined by a NURBS surface of

degree (1,1). We used this approach in order to adopt GeoPDEs as a

solver in the classical FEM setting.

In the following, we will refer to these three different representations of the

domain respectively as nurbs, analytic and mesh.

65
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For the solution space we used NURBS, spline functions or piecewise

polynomial functions represented in Bézier form. And we will refer to these

choices of solution space as nurbs, spline and bezier, respectively.

A solution in which we used mesh for the physical domain, and B-spline

as basis functions of the solution’s space will be denoted by (mesh→ spline).

Sometimes we will also add a number after “spline” and “nurbs” that indi-

cates the degree of the B-spline or NURBS basis functions. For instance,

the case in which we used a NURBS domain of degree (3, 3) for the physical

domain, and B-spline of degree 5 as basis functions of the solution’s space,

will be denoted by (nurbs3→ spline5).

We compared different choices of physical domain and solution space

under h-refinement and p-refinement, and we measured the accuracy of the

approximate solution in terms of the number of degrees of freedom ndof ,

which is the dimension of the solution space Vh.

Let’s define the function err on Ω as the difference between the exact and

computed solutions:

err(x, y) = uex(x, y)− u(x, y) ∀(x, y) ∈ Ω. (4.1)

The L2 error is defined as:

‖err‖L2(Ω) =

(∫
Ω

|err|2
) 1

2

, (4.2)

and it will be denoted by errL2 , and the H1 error is defined as:

‖err‖H1(Ω) =
(
‖err‖2

L2(Ω) + ‖err′‖2
L2(Ω)

) 1
2
, (4.3)

and it will be denoted by errH1 .

In the discrete settings, where the parametric domain Ω̂ is discretized by

a set of grid points (xi, yj) ∈ Ω̂ with i, j = 1, · · · , N , we consider the matrix

err(xi, yj) = uex(F (xi, yj))− u(F (xi, yj)) ∀(xi, yj) ∈ Ω̂, (4.4)
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where F the geometrical mapping defined in Eq.(1.1). We define the error

err∞ as

err∞ := ‖err‖∞ = max
i

(err(i)), (4.5)

where err the vector form of the matrix defined in Eq.(4.4), and err2 as

err2 := ‖err‖2 =

(
1

N2

N2∑
i=1

err(i)2

)1/2

(4.6)

which is a weighted Euclidean vector norm that makes the error independent

of the size of the evaluation grid.

With the following examples we investigate some aspects of isogeometric

analysis techniques and compare them with classic FEA techniques. Using

GeoPDEs, we simulate the classical FEA by using mesh as physical domain

Ω (NURBS with degree (1,1)) and Bézier piecewise polynomials as solution

space.

The examples are organized as follows:

• Examples 1, 2 and 3: we applied h-refinement, p-refinement on 2D

physical domains, Ω ⊂ R2.

• Example 4: we examined the influence of parameterizations, applying

h-refinement on two different parameterizations of the same 2D physical

domain Ω ⊂ R2, and we compared the results.

• Example 5: solution of the Laplace-Beltrami problem on a surface em-

bedded in R3.
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4.1 Example 1

The first problem that will be analyzed is the BVP:

∆u = f in Ω

u = g on ∂Ω,
(4.7)

where f(x, y) = 2π2 sin(πx) sin(πy) and Ω ⊂ R2.

The exact solution of (4.7) is given by

uex(x, y) = sin(πx) sin(πy), (4.8)

which also defines the non-homogeneous Dirichlet boundary conditions g.

In this example the domain Ω is a quarter of a ring with internal radius

1 and external radius 2.

The analytic physical domain is given by the analytic function:

F (u, v) = ((u+ 1) cos(πv/2), (u+ 1) sin(πv/2)) with 0 < u, v < 1.

We obtained the nurbs domain revolving the line from (0, 1) to (0, 2)

around the Z-axis and then performing a degree elevation in the v direction

of the surface in order to get a NURBS surface S(u, v) of degree 2 in both

directions. Using the NURBS toolbox [54] the procedure is the following:

% BUILD NURBS PHYSICAL DOMAIN

l i n e = n r b l i n e ( [ 1 0 ] , [ 2 0 ] ) ;

S = nrbrevo lve ( l i n e , [ 0 0 0 ] , [ 0 0 1 ] , p i / 2 ) ;

S = nrbdege lev (S , [ 0 1 ] ) ;

The code generates a surface of degree (2, 2), with open knot vectors that

have no internal knots, and a 3× 3 control point grid:

pU = 2

pV = 2

knotVectorU = [0 0 0 1 1 1]

knotVectorV = [0 0 0 1 1 1]
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controlPoints = [ (1, 0, 1), (1/sqrt(2), 1/sqrt(2), 1/sqrt(2)),

(0, 1, 1), (1.5, 0, 1), (3/(2*sqrt(2)), 3/(2*sqrt(2)), 1/sqrt(2)),

(0,1.5, 1), (2, 0, 1), (2/sqrt(2), 2/sqrt(2), 1/sqrt(2)), (0, 2, 1)]

Since the physical domain is on the XY plane, the third component of

the above control points is the weight.

For this example, we created the geometry using procedural methods

However, GeoPDEs also allows the user to import a geometry from a .txt

file. The following frame shows the file .txt that, read with the command

geo_load, produces the same surface S (the lines that start with # are

comments).

# dimension of the geometry and number of patches

2 1

PATCH 1

# degree along U and V directions

2 2

# dimensions of the matrix of control points

3 3

# knot vector along U

0 0 0 1 1 1

# knot vector along V

0 0 0 1 1 1

# X coordinates of all the control points

1 0.707106781186548 0 1.5 1.060660171779821 0 2 1.414213562373095 0

# Y coordinates of all the control points

0 0.707106781186547 1 0 1.060660171779821 1.5 0 1.414213562373095 2

# Weights of all the control points

1 0.707106781186548 1 1 0.707106781186548 1 1 0.707106781186548 1

4.1.1 h-refinement

We compare five different test cases: (mesh→ spline1), (mesh→ spline2),

(nurbs2→ spline2), (nurbs2→ nurbs2) and (analytic→ spline2) under h-

refinement.

At every step of h-refinement, a new knot is inserted by the knot insertion

procedure in the middle of each knot span, thus splitting the elements in
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four (two for each direction) equal parts in the parametric domain. For this

geometry, this is equivalent to splitting each side of an element in half in the

physical space.

We performed five iterations of h-refinement. Before starting the refine-

ment process, we applied a few knot insertions to the surface described above,

in order to obtain a physical space that is subdivided into 4 × 8 elements,

with less elements on the radial direction. Thus the knot vectors at the first

iteration are:

knotVectorU = [0 0 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1 1]

knotVectorV = [0 0 0 0.25 0.5 0.75 1 1 1]

Fig. 4.1 shows the subdivision of the nurbs and mesh physical spaces at

the first, third and fifth iterations of h-refinement.

Figure 4.1: h-refinement of the physical domain: nurbs in the upper row,

mesh in the lower row.

As can be noted in Fig. 4.1, in case of mesh physical domain, when

we increase the number of knots, we add the new nodes (which in this case
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coincide with the control points of the mesh) along the curved sides of the

domain instead of in the midpoint of the segment between two existing knots.

This is not what knot insertion on a NURBS of degree (1,1) would do, but

we want to simulate a FEM solution, and this approach reflects better mesh

refinement in that context.

Fig.4.2 shows the exact solution and the computed solution at the first

step of h-refinement for the (nurbs2→ nurbs2) case.

Figure 4.2: Exact solution (left) and computed solution at the first step of

h-refinement for the (nurbs2→ nurbs2) case (right).

In Fig. 4.3 we show the error function err defined in Eq. (4.1) at

the last iteration of the h-refinements. The maximum errors, computed on

a 50 × 50 points grid, are err∞ = 4.304× 10−5 for (mesh→ spline2) and

err∞ = 5.609× 10−6 for (nurbs2→ nurbs2).

Throughout the h-refinement process, the number of degrees of freedom

when the solution has degree 2 passes from 32 at the first iteration to 8192

at the last one. The value of ndof represents the dimension of the stiffness

matrix of the linear system required to solve the BVP, and it is given by the

dimension of the solution space minus the number of degrees of freedom on

the boundaries, since we applied Dirichlet boundary conditions. Since the

dimension of the polynomial spline and NURBS spaces are given by m+K,
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Figure 4.3: Plot of err, defined in Eq. (4.1), for the (mesh→ spline2) (left)

and (nurbs2→ nurbs2) (right) cases.

where m is the order of the splines and K is the sum of the multiplicities of

the internal knots, the ndof for the first iteration of the (nurbs2→ spline2)

case, is given by: ndof = (3 + 3)× (7 + 3)− 28 = 32.

The log-log plot of the convergence curves for the five performed tests

is depicted in Fig. 4.4. The L2 error is shown as function of the number

of degrees of freedom ndof . The (analytic→ spline2), (nurbs2→ spline2)

and the (nurbs2→ nurbs2) cases give similar results.

Table 4.1 reports the numerical results of h-refinement.

From the corresponding rows of Tables 4.1 (a) and (b), we notice that

the basis functions of the solution spaces have the same internal knots, but

different degree, and the meshes representing the physical domain are the

same. The number of degrees of freedom ndof increases with the increase of

the degree of the solution, but the obtained result is more accurate.

The results in Tables 4.1 (c), (d) and (e) show that using NURBS or

analytic geometries, that allow to represent the physical domain Ω exactly,

improves the solution substantially with respect to the use of mesh for the

representation of the geometric domain. Both the errors errL2 and err∞ for

those cases are smaller.
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Figure 4.4: L2 error through h-refinement.
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(mesh→ spline1) h-refinement

ndof errL2 err∞

21 6.2124e-02 1.4178e-01

105 1.5450e-02 3.6480e-02

465 3.8625e-03 9.3578e-03

1953 9.6572e-04 2.2068e-03

8001 2.4144e-04 5.6303e-04

(a)

(mesh→ spline2) h-refinement

ndof errL2 err∞

32 1.4727e-02 3.5963e-02

128 1.8721e-03 4.0572e-03

512 3.9198e-04 7.4176e-04

2048 9.3903e-05 1.9048e-04

8192 2.3231e-05 4.3039e-05

(b)

(nurbs2→ spline2) h-refinement

ndof errL2 err∞

32 1.5425e-02 4.1380e-02

128 1.1618e-03 3.4999e-03

512 1.2471e-04 3.4906e-04

2048 1.4965e-05 4.7711e-05

8192 1.8513e-06 5.7747e-06

(c)

(nurbs2→ nurbs2) h-refinement

ndof errL2 err∞

32 1.4553e-02 3.9571e-02

128 1.1136e-03 3.3951e-03

512 1.2018e-04 3.4436e-04

2048 1.4443e-05 4.6713e-05

8192 1.7874e-06 5.6091e-06

(d)

(analytic→ spline2) h-refinement

ndof errL2 err∞

32 1.2939e-02 3.2295e-02

128 1.0349e-03 2.9520e-03

512 1.1332e-04 3.2569e-04

2048 1.3675e-05 4.2752e-05

8192 1.6940e-06 5.0108e-06

(e)

Table 4.1: Tables of results for h-refinement.
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4.1.2 p-refinement

In this example we make a comparison between (mesh→ spline),

(nurbs→ spline), (nurbs→ nurbs) and (analytic→ spline) under p-refi-

nement. The solutions are computed using spline or NURBS geometries of

varying degrees as basis functions. We consider five iterations of p-refinement,

from degree 2 to degree 7.

Degree elevation at each step is applied only to the solution space, and

not to the physical domain. Therefore the degree of the physical domain is

always (2,2) for nurbs and analytic domains. The physical domains nurbs

and mesh are depicted in Fig. 4.5. We inserted 4 knots in each direction in

the nurbs domain and 5 knots in the mesh domain, in order to have at the

first iteration of p-refinement a number of degrees of freedom equal to 25 for

both the considered representations.

Figure 4.5: The physical domains used for p-refinement for the mesh (left)

and nurbs (right) cases.

A graph of the error err = uex(x, y) − u(x, y), at the last iteration of

the p-refinement procedure, is shown in Fig. 4.6. The maximum errors are

err∞ = 3.7157 × 10−6 for (mesh→ spline) and err∞ = 5.480 × 10−6 for

(nurbs→ nurbs).
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Figure 4.6: Plot of err at the last step of p-refinement for the

(mesh→ spline) (left) and (nurbs→ nurbs) (right) cases.

The loglog plot of the L2 error is depicted in Fig. 4.7. Comparing the

results in Fig. 4.4 with those in Fig. 4.7, we can conclude that for this

problem using p-refinement on the nurbs or analytic domain, we can reach

the same accuracy of h-refinement with less degrees of freedom, which means

solving a smaller system of equations.

With the (analytic→ spline) case we obtain results even more precise than

those of (nurbs→ nurbs) and (nurbs→ spline).

Table 4.2 contains the numerical results on p-refinement in which degree

elevation is applied only to the solution space. The test cases in which the

domain describes the geometry exactly (nurbs and analytic) give the best

results using a smaller number of degrees of freedom.

We also tried to apply a p-refinement process in which we elevate at each

step both the physical domain and the solution space. For all the analyzed

cases, the results are identical to the ones obtained elevating only the degree

of the solution space. This is of course because degree elevation does not

modify the geometry.
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Figure 4.7: L2 error through p-refinement. The (analytic→ spline) case for

higher degrees gives the most accurate results.
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(mesh→ spline) p-refinement

ndof errL2 err∞

25 8.8384e-02 1.8381e-01

121 1.1751e-02 3.1091e-02

289 1.3200e-03 3.5102e-03

529 1.3037e-04 4.9178e-04

841 1.0184e-05 3.3377e-05

1225 8.3506e-07 3.7157e-06

(a)

(nurbs→ spline) p-refinement

ndof errL2 err∞

25 4.2863e-02 6.5495e-02

100 5.5509e-03 1.6371e-02

225 3.0268e-04 1.0025e-03

400 8.7199e-05 3.8942e-04

625 6.6786e-06 3.1572e-05

900 1.0824e-06 6.1180e-06

(b)

(nurbs→ nurbs) p-refinement

ndof errL2 err∞

25 4.1666e-02 6.4849e-02

100 5.2579e-03 1.5779e-02

225 2.6160e-04 7.5462e-04

400 7.9765e-05 3.6001e-04

625 5.1340e-06 2.5415e-05

900 9.6371e-07 5.4802e-06

(c)

(analytic→ spline) p-refinement

ndof errL2 err∞

25 4.6611e-02 7.0483e-02

100 4.7207e-03 1.3201e-02

225 2.8526e-04 4.6913e-04

400 6.4233e-05 2.5708e-04

625 1.8959e-06 1.0208e-05

900 6.8627e-07 3.3736e-06

(d)

Table 4.2: Tables of results for p-refinement. Degree elevation is applied only

to the solution space, from degree 2 (first rows) to degree 7 (last rows).
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4.2 Example 2

We now solve problem (4.7) on a different domain Ω ⊂ R2: a ruled surface

between a line and a semicircle (see Fig. 4.8).

For this geometry we don’t have an analytic description, so we only used

the nurbs and mesh representations for the physical space. In addition to

nurbs and spline, for the solution space we use also bezier, which is obtained

in GeoPDEs using splines in which all the internal knots have multiplicity

equal to the degree.

To obtain the nurbs domain, we built a ruled surface between a semicircle

and a line, and then performed a degree elevation in the v direction in order

to get a NURBS surface S(u, v) of degree 2 in both directions.

% BUILD NURBS PHYSICAL DOMAIN

arc = n r b c i r c (1 , [ 0 0 0 ] , −pi /2 , p i / 2 ) ;

l i n e = n r b l i n e ([−1 −1] , [−1 1 ] ) ;

S = nrbru led ( arc , l i n e ) ;

S = nrbdege lev (S , [ 0 1 ] ) ;

It generates a NURBS surface of degree (2, 2), with a 5× 3 control point

grid:

pU = 2

pV = 2

knotVectorU = [0 0 0 0.5 0.5 1 1 1]

knotVectorV = [0 0 0 1 1 1]

controlPoints = [ (0, -1, 1), (sqrt(2)/2, -sqrt(2)/2, sqrt(2)/2),

(1, 0, 1), (sqrt(2)/2, sqrt(2)/2, sqrt(2)/2), (0, 1, 1), (-0.5, -1, 1),

(-0.146446609406726, -0.603553390593274, 0.853553390593274),

(0, 0, 1), (-0.146446609406726, 0.603553390593274, 0.853553390593274),

(-0.5, 1, 1), (-1, -1, 1), (-1, -0.5, 1), (-1, 0, 1), (-1, 0.5, 1),

(-1, 1, 1) ]
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4.2.1 h-refinement

As in the previous example, we applied h-refinement inserting a new knot

in the middle of each knot span and we compared the results performing five

h-refinement iterations. For the (mesh→ bezier2) case, at each iteration the

new knots are inserted with multiplicity m = p = 2 in order to ensure a C0

basis everywhere.

We inserted in the basic parameterization reported above three knots

along the v direction and two knots in each knot span of the u direction.

Thus the knot vectors at the first iteration are:

knotVectorU = [0 0 0 0.1667 0.3333 0.5 0.5 0.6667 0.8333 1 1 1]

knotVectorV = [0 0 0 0.25 0.5 0.75 1 1 1]

A representation of the nurbs and mesh physical domains at iteration 1,

3 and 5 are illustrated in Fig. 4.8.

Figure 4.8: h-refinement of the ruled physical domain: nurbs in the upper

row and mesh in the lower row.
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Fig.4.9 shows the exact solution and the computed solutions at the first

step of h-refinement for the (mesh→ spline1) and (mesh→ bezier2) cases.

The solution of (mesh→ spline1) on a coarse mesh is visibly worse than the

one of (mesh→ bezier2), in which the solution space is made of piecewise

polynomials of degree 2.

Figure 4.9: Exact solution (top) and computed solutions at the first step

of h-refinement for (mesh→ spline1) (bottom left) and (mesh→ bezier2)

(bottom right) cases.

The loglog plot of the L2 error for h-refinement is depicted in Fig. 4.10.

The (nurbs2→ spline2) and the (nurbs2→ nurbs2) cases give similar re-

sults. The (mesh→ bezier2) case reaches comparable error values with a

bigger number of degrees of freedom. This is also confirmed by the results

reported in Table 4.3.
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Throughout the h-refinement process, the number of degrees of freedom

passes from around 20 to around 6000 in 5 iterations for the (mesh→ spline1),

(mesh→ spline2), (nurbs2→ nurbs2) and (nurbs2→ spline2) cases. The

same h-refinement steps on a classical FEM configuration, (mesh→ bezier2),

result in more degrees of freedom: from 77 to 24257 degrees of freedom.

Figure 4.10: L2 error under h-refinement.

Tables 4.3 (a), (b) and (c) refer to h-refinement on mesh domains. They

show that, in general, a C1 solution on Ω (b) is better than a C0 solution (c),

when they have similar number of degrees of freedom and the same degree of

the piecewise polynomials (p = 2). Using a solution space of degree p = 1 (a),

as expected, gives the worst results. Also on this problem, the best results

are obtained by the isogeometric approaches.

For the cases (mesh→ bezier2) and (nurbs2→ nurbs2), that represent

classical FEM and IGA respectively, we also analyzed the sparsity and the
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(mesh→ spline1) h-refinement

ndof errL2 err∞

15 2.1023e-01 3.5515e-01

77 5.6677e-02 1.0685e-01

345 1.4550e-02 2.8722e-02

1457 3.6640e-03 7.1585e-03

5985 9.1770e-04 1.9116e-03

(a)

(mesh→ spline2) h-refinement

ndof errL2 err∞

24 6.4027e-02 1.4153e-01

96 7.6342e-03 1.6598e-02

384 1.3246e-03 2.7618e-03

1536 3.0747e-04 7.0997e-04

6144 7.5748e-05 1.2321e-04

(b)

(mesh→ bezier2) h-refinement

ndof errL2 err∞

77 2.0500e-02 4.5280e-02

345 2.8633e-03 6.0926e-03

1457 3.7111e-04 1.0100e-03

5985 4.6869e-05 1.0307e-04

24257 5.8743e-06 1.2939e-05

(c)

(nurbs2→ nurbs2) h-refinement

ndof errL2 err∞

28 6.1601e-02 1.1949e-01

104 4.7049e-03 9.5583e-03

400 4.1640e-04 1.0734e-03

1568 4.7279e-05 1.0352e-04

6208 5.7634e-06 1.1541e-05

(d)

(nurbs2→ spline2) h-refinement

ndof errL2 err∞

28 6.9129e-02 1.3173e-01

104 5.1732e-03 1.0095e-02

400 4.4804e-04 1.1332e-03

1568 5.0565e-05 1.1046e-04

6208 6.1543e-06 1.2222e-05

(e)

Table 4.3: Tables of results for h-refinement.



84 4. Numerical examples: IGA on a single patch

condition number K(A) = ‖A‖2‖A−1‖2, where A is the stiffness matrix given

in Eq.(3.13). The graph in Fig. 4.11 shows how the condition number grows

as the mesh is refined. Throughout the h-refinement process, the stiffness

matrix tends to become ill-conditioned and this makes the linear system

more difficult to solve, in a way that direct methods are less accurate and

iterative methods are less efficient. For a fixed number of degrees of freedom,

the linear system derived from IGA is worse conditioned with respect to the

linear system derived from FEM.

Figure 4.11: Condition number K(A) of the stiffness matrix in the first four

steps of h-refinement.

In both cases the stiffness matrices are banded, sparse, and structured

matrices. Fig.4.12 shows the non-zero elements of the stiffness matrices dur-

ing h-refinement in the (mesh→ bezier2) and (nurbs2→ nurbs2) cases. As

expected, the first one has bigger matrices with more non-zero elements.

The support of the B-spline functions of order m is always m knot spans.

Thus, higher-order functions have support over much larger portions of the

domain than do classical FEA functions. But this does not lead to an in-

crease of bandwidth when using B-spline instead of FEA basis. In fact, the

bandwidth of the matrices is the same.
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Figure 4.12: Sparsity patterns of the stiffness matrices under h-refinement:

(nurbs2→ nurbs2) in the upper row and (mesh→ bezier2) in the bottom

row.
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4.2.2 p-refinement

We also analyzed the behavior of this problem under p-refinement for the

(mesh→ bezier), (nurbs→ nurbs) and (nurbs→ spline). At each iteration

we apply degree elevation only to the solution space. Fig. 4.13 shows the

mesh and nurbs domains that we maintained fixed along the p-refinement

process.

Figure 4.13: The physical domains used for p-refinement for the mesh (left)

and nurbs (right) cases.

The resulting plot of the L2 error for p-refinement is in Fig. 4.14, and

Table 4.4 contains the numerical results. The (nurbs→ spline) and the

(nurbs→ nurbs) cases give similar results, the (mesh→ bezier) case takes

more degrees of freedom.

The graph in Fig. 4.15 shows how the condition number grows as the de-

gree of the solution space increases in the (mesh→ bezier) and (nurbs→ nurbs)

cases. Also for p-refinement, for a fixed number of degrees of freedom, the lin-

ear system derived from IGA is worse conditioned with respect to the linear

system derived from FEM.

Fig.4.16 shows the non-zero elements of the banded, sparse and struc-

tured stiffness matrices during p-refinement in the (mesh→ bezier) and
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Figure 4.14: L2 error under p-refinement.

Figure 4.15: Condition number K(A) of the stiffness matrix under p-

refinement.
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(mesh→ bezier) p-refinement

ndof errL2 err∞

171 7.5961e-03 1.5257e-02

406 6.0573e-04 1.8032e-03

741 3.0040e-05 8.7155e-05

1176 1.9065e-06 6.3871e-06

1711 6.6850e-08 1.6772e-07

2346 3.5597e-09 1.4448e-08

(a)

(nurbs→ spline) p-refinement

ndof errL2 err∞

55 1.5974e-02 3.5228e-02

210 1.3533e-03 2.9206e-03

465 6.8343e-05 1.6552e-04

820 4.3123e-06 1.4118e-05

1275 3.1826e-07 7.9948e-07

1830 1.8632e-08 9.8769e-08

(b)

(nurbs→ nurbs) p-refinement

ndof errL2 err∞

55 1.5283e-02 3.2647e-02

210 1.3295e-03 2.8108e-03

465 6.0949e-05 1.5610e-04

820 3.9210e-06 1.1961e-05

1275 2.5594e-07 6.1232e-07

1830 1.4390e-08 7.5115e-08

(c)

Table 4.4: Tables of results for p-refinement. Degree elevation is applied from

degree 2 (first rows), to degree 7 (last rows).
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(nurbs→ nurbs) cases. As expected, the first one has bigger matrices with

more non-zero elements. At the fist iteration the bandwidth is 25 for both

cases.

Both cases get to an errL2 smaller than 10−2 at the third iteration: the

(mesh→ bezier) case takes more degrees of freedom than the (nurbs→ nurbs)

case (741 > 465), and the stiffness matrix is more dense (non-zero elements:

22969 > 18109).

Figure 4.16: Sparsity patterns of the stiffness matrices under p-refinement:

(nurbs→ nurbs) in the upper row and (mesh→ bezier) in the lower row.

4.3 Example 3

In this example, the BVP (4.7) is solved on a circular domain. The

classic parameterization of the disk, obtained revolving a line on the XY

plane around the Z axis, is problematic because one of the boundaries is

collapsed to the center of the disk, and two other boundaries coincide with
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the revolved line.

We used an alternative parameterization, shown in Fig. 4.17, in which

the four boundaries are the four quarters of circumference.

Figure 4.17: The circular domain and its control grid. The control points

are numbered in red.

The basic nurbs parameterization, displayed at top left of Fig. 4.18, is a

NURBS surface of degree (2, 2), with a 3 × 3 control point grid, defined as

follows:

pU = 2

pV = 2

knotVectorU = [0 0 0 1 1 1]

knotVectorV = [0 0 0 1 1 1]

controlPoints = [ (1, 0, 1),

(1/sqrt(2), -1/sqrt(2), 1/sqrt(2)), (0, -1, 1),

(1/sqrt(2), 1/sqrt(2), 1/sqrt(2)), (0, 0, 1/sqrt(2)),

(-1/sqrt(2), -1/sqrt(2), 1/sqrt(2)), (0, 1, 1),

(-1/sqrt(2), 1/sqrt(2), 1/sqrt(2)), (-1, 0, 1)]
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As in the previous sections, we realized h-refinement iterations, placing

a new knot in the middle of each knot span and compared the results. We

performed five h-refinement iterations. Fig. 4.18 shows the nurbs and mesh

physical domains at iteration 1, 3 and 5.

Figure 4.18: h-refinement of the disk physical domain: nurbs in the upper

row and mesh in the lower row.

The loglog plot of the L2 error for h-refinement is depicted in Fig. 4.19.

The (nurbs2→ spline2) and the (nurbs2→ nurbs2) cases give similar re-

sults. The (mesh→ bezier2) case, for a given number of degrees of freedom,

presents the worst accuracy among the solutions of degree p = 2.

Table 4.5 reports the numerical results on h-refinement. We observe that,

for the mesh domain, the solutions of degree 2 give more accurate results

than the one of degree 1. In addition, if we compare similar numbers of

degrees of freedom, (mesh→ spline2), which is C1 on Ω, is better than

(mesh→ bezier2), which is only C0.

In general, the IGA approach applied on nurbs domains (that can repre-
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Figure 4.19: L2 error under h-refinement.
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sent the circular geometry exactly) gives the best results.

We also analyzed the behavior of this problem under p-refinement for the

(mesh→ bezier), (nurbs→ nurbs), (nurbs→ spline) and (nurbs→ bezier)

cases. At each iteration we apply degree elevation only to the solution space.

Fig. 4.20 shows the mesh and nurbs parameterizations that we considered.

Figure 4.20: The physical spaces used for p-refinement for the mesh (left)

and nurbs (right) cases.

The resulting plot of the L2 error for p-refinement is illustrated in Fig.

4.21. The (nurbs→ spline) and the (nurbs→ nurbs) cases give similar re-

sults, the (mesh→ bezier) takes more degrees of freedom.



94 4. Numerical examples: IGA on a single patch

(mesh→ spline1) h-refinement

ndof errL2 err∞

01 4.8530e-01 4.9941e-01

09 2.4671e-01 3.1456e-01

49 7.7755e-02 1.2001e-01

225 2.0074e-02 3.3111e-02

961 5.0586e-03 8.0507e-03

(a)

(mesh→ spline2) h-refinement

ndof errL2 err∞

04 5.9744e-01 7.3020e-01

16 1.6624e-01 2.6541e-01

64 9.8864e-03 1.7882e-02

256 1.2565e-03 2.0324e-03

1024 2.4885e-04 4.2204e-04

(b)

(mesh→ bezier2) h-refinement

ndof errL2 err∞

09 2.2124e-01 3.1734e-01

49 3.8860e-02 7.9256e-02

225 4.9830e-03 1.0301e-02

961 6.4370e-04 1.3842e-03

3969 8.1138e-05 1.6450e-04

(c)

(nurbs2→ nurbs2) h-refinement

ndof errL2 err∞

04 7.4444e-01 7.9930e-01

16 1.7102e-01 2.6135e-01

64 8.3844e-03 1.4084e-02

256 7.4595e-04 1.5457e-03

1024 8.4261e-05 1.7148e-04

(d)

(nurbs2→ spline2) h-refinement

ndof errL2 err∞

04 7.5887e-01 8.1477e-01

16 1.8592e-01 2.8018e-01

64 8.8963e-03 1.4789e-02

256 7.8165e-04 1.6058e-03

1024 8.7921e-05 1.7849e-04

(e)

Table 4.5: Tables of results for h-refinement.
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Figure 4.21: L2 error for p-refinement.
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(mesh→ bezier) p-refinement

ndof errL2 err∞

81 1.8873e-02 3.8785e-02

196 1.9588e-03 5.6540e-03

361 1.5450e-04 3.5886e-04

576 1.2182e-05 4.3281e-05

841 6.8095e-07 1.8201e-06

1156 4.4306e-08 1.4464e-07

(a)

(nurbs→ spline) p-refinement

ndof errL2 err∞

25 5.4446e-02 8.1206e-02

100 3.8786e-03 7.8453e-03

225 3.6517e-04 5.7762e-04

400 2.9033e-05 7.4289e-05

625 1.7911e-06 3.2319e-06

900 2.0141e-07 4.1683e-07

(b)

(nurbs→ nurbs) p-refinement

ndof errL2 err∞

25 5.1339e-02 7.7404e-02

100 3.6933e-03 7.6208e-03

225 3.3844e-04 5.4578e-04

400 2.5899e-05 6.8338e-05

625 1.6569e-06 3.0598e-06

900 1.6921e-07 3.6482e-07

(c)

Table 4.6: Tables of results for p-refinement. Degree elevation is applied from

degree 2 (first rows), to degree 7 (last rows).
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4.4 Example 4

We now solve problem (4.7) with a different source term:

f(x, y) = ex((x2 + y2 − 1) sin(xy)− 2y cos(xy)). (4.9)

on a Γ-shaped domain Ω, represented in Fig. 4.22.

The exact solution is given by

uex(x, y) = ex sin(xy), (4.10)

and we use it to set the non-homogeneous Dirichlet boundary conditions g.

Figure 4.22: Γ-shaped domain.

We considered two different parameterizations of this domain, shown in

Fig. 4.23: in the first (left), called geoK, we repeat the internal knots to

obtain the C0-continuity in the corners, and in the second (right), named

geoCP , we use repeated control points, which allows for maintaining C1

continuity in the corners. They both represent a NURBS surface of degree

(2, 2), with 5× 3 and 4× 3 control point grids respectively.

Here is a detailed description of geoK:
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Figure 4.23: The domains geoK and geoCP with their control grids. The

control points are numbered in red.

pU = 2

pV = 2

knotVectorU = [0 0 0 0.5 0.5 1 1 1]

knotVectorV = [0 0 0 1 1 1]

controlPoints = [ (-1, -1, 1), (-1, 0, 1), (-1, 1, 1),

(0, 1, 1), (1,1,1), (-0.5, -1, 1), (-0.5, 0, 1),

(-0.5, 0.5, 1), (0, 0.5, 1), (1, 0.5, 1), (0, -1, 1),

(0, -0.5, 1), (0, 0, 1), (0.5, 0, 1), (1, 0, 1) ]

The geoCP domain parameterization is given by:

pU = 2

pV = 2

knotVectorU = [0 0 0 0.5 1 1 1]

knotVectorV = [0 0 0 1 1 1]

controlPoints = [ (-1, -1, 1), (-1, 1, 1), (-1, 1, 1),

(1,1,1), (-0.5, -1, 1), (-0.5, 0, 1), (0, 0.5, 1),

(1, 0.5, 1), (0, -1, 1), (0, 0, 1), (0, 0, 1), (1, 0, 1) ]

An analytic description of this geometry is not known, so we only used

the nurbs and mesh definitions for the physical domain. For the solution

space we used nurbs, spline and bezier.
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4.4.1 h-refinement on geoK and geoCP

We performed five h-refinement iterations. A representation of the nurbs

and mesh physical spaces at iteration 1, 3 and 5 can be seen in Fig. 4.24 for

geoK geometry and in Fig. 4.25 for geoCP geometry.

Figure 4.24: h-refinement of the Γ-shaped physical domain geoK: nurbs in

the upper row and mesh in the lower row.

In Fig. 4.26 the exact solution and the solution obtained at the first

iteration of h-refinement in the (mesh→ bezier2) case are illustrated for

geoK geometry.

For both geoK an geoCP , throughout the h-refinement process, the num-

ber of degrees of freedom passes from around 10 to around 2000 in 5 itera-

tions in the (mesh→ spline1), (nurbs2→ nurbs2) and (nurbs2→ spline2)

cases. Adding the same knots in a C0-continuous domain results in much

more degrees of freedom: (mesh→ bezier2) goes from 21 to 8001 degrees of

freedom.

The loglog plot of the L2 error for h-refinement is depicted in Fig. 4.27 for
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Figure 4.25: h-refinement of the Γ-shaped physical domain geoCP : nurbs in

the upper row and mesh in the lower row.

geoK and geoCP geometry. The (nurbs2→ spline2) and the (nurbs2→ nurbs2)

cases give identical results. The (mesh→ bezier2) and (nurbs2→ bezier2)

cases have the biggest number of degrees of freedom and the smallest error.

Tables 4.7 and 4.8 report the numerical results of h-refinement for geoK

and geoCP geometries, respectively. The solutions using IGA on nurbs do-

mains obtain better results, even if for this example also the mesh domains

represent the geometry exactly. In all the previous examples we noted that

the (nurbs2→ spline2) and (nurbs2→ nurbs2) cases gave similar results:

for this example, the two results are identical, for both the geometries geoK

and geoCP . This is because these parameterizations are non-rational, that

is, all the control points have unitary weights, thus the nurbs and spline

solution spaces coincide.
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Figure 4.26: Computed (mesh→ bezier2) and exact solutions for geoK ge-

ometry at the first iteration of h-refinement.
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Figure 4.27: L2 error under h-refinement on geoK (top) and geoCP (bot-

tom).
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(mesh→ spline1) h-refinement

ndof errL2 err∞

03 7.4730e-02 1.9888e-01

21 1.9657e-02 8.0192e-02

105 4.6932e-03 2.2104e-02

465 1.1443e-03 5.2775e-03

1953 2.8350e-04 1.1461e-03

(a)

(mesh→ bezier2) h-refinement

ndof errL2 err∞

21 6.9296e-03 1.5115e-02

105 9.0330e-04 2.1441e-03

465 1.1380e-04 2.5802e-04

1953 1.4249e-05 3.1893e-05

8001 1.7814e-06 4.4507e-06

(b)

(nurbs2→ nurbs2) h-refinement

ndof errL2 err∞

10 1.1130e-02 2.5985e-02

36 1.2958e-03 3.4674e-03

136 1.5463e-04 3.8367e-04

528 1.9026e-05 4.7227e-05

2080 2.3676e-06 6.2163e-06

(c)

(nurbs2→ spline2) h-refinement

ndof errL2 err∞

10 1.1130e-02 2.5985e-02

36 1.2958e-03 3.4674e-03

136 1.5463e-04 3.8367e-04

528 1.9026e-05 4.7227e-05

2080 2.3676e-06 6.2163e-06

(d)

Table 4.7: Tables of results for h-refinement on geoK parameterization.
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(mesh→ spline1) h-refinement

ndof errL2 err∞

03 1.4957e-01 4.1091e-01

21 5.1749e-02 1.7265e-01

105 1.2544e-02 5.9303e-02

465 2.9198e-03 1.2417e-02

1953 7.0155e-04 3.0016e-03

(a)

(mesh→ bezier2) h-refinement

ndof errL2 err∞

21 1.6172e-02 3.8833e-02

105 2.4988e-03 7.1787e-03

465 3.1703e-04 8.3576e-04

1953 3.9679e-05 1.0967e-04

8001 4.9778e-06 1.7838e-05

(b)

(nurbs2→ nurbs2) h-refinement

ndof errL2 err∞

08 5.9258e-02 1.7738e-01

32 7.2541e-03 2.3754e-02

128 8.2921e-04 2.4444e-03

512 1.0031e-04 2.9442e-04

2048 1.2394e-05 4.1533e-05

(c)

(nurbs2→ spline2) h-refinement

ndof errL2 err∞

08 5.9258e-02 1.7738e-01

32 7.2541e-03 2.3754e-02

128 8.2921e-04 2.4444e-03

512 1.0031e-04 2.9442e-04

2048 1.2394e-05 4.1533e-05

(d)

Table 4.8: Tables of results for h-refinement on geoCP parameterization.
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4.4.2 Comparison between geoK and geoCP

In Fig. 4.28 we compare the L2 errors obtained with the two different

parameterizations of the Γ-shaped domain throughout the h-refinement pro-

cess. In all the cases, the parameterization with repeated knots geoK obtains

the best results.

Figure 4.28: L2 error for h-refinement in (mesh→ spline1),

(mesh→ bezier2) and (nurbs2→ nurbs2) cases.

As expected, (mesh→ spline1) provides the less accurate results. Let an

accuracy threshold be fixed at 10−5. We can observe that (mesh→ spline1)

does not reach the threshold. The IGA solution (nurbs2→ nurbs2) reaches

the given threshold exploiting less degrees of freedom with respect to the

FEM classical solution (mesh→ bezier2).
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We will not go through the details of the p-refinement process. We only

report, in Fig. 4.29, the comparison of the L2 errors obtained with the two

different parameterizations geoK and geoCP under p-refinement from degree

2 to degree 7. Also in this case, the parameterization with repeated knots

always obtains the best results.

Figure 4.29: L2 error for p-refinement in (mesh→ bezier) and

(nurbs→ nurbs) cases.

4.5 Example 5

In this section we will solve the Laplace-Beltrami problem (2.46) on a

single patch surface representing a piece of the unitary sphere embedded in

R3. We used a beta version of GeoPDEs that allows to solve BVPs on lower

dimensional manifolds.

We set the source function:

f(φ, θ) = sin(αφ) sin(βθ)

[
α2

sin2(θ)
+ β2 − β cos(θ) cos(βθ)

sin(θ) sin(βθ)

]
, (4.11)

where φ := atan2
(
x
y

)
, θ := arccos

(
z
r

)
. The exact solution in spherical

coordinates is given by:

u(φ, θ) = sin(αφ) sin(βθ), (4.12)
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and we used it to impose Dirichlet boundary conditions. In particular, we

solved the problem for α = 3, β = 4 and r = 1.

For the physical domain, we used a NURBS surface of degree (2,2) to rep-

resent the nurbs domain and a NURBS surface of degree (1,1) to represent the

mesh domain. We consider three cases: (mesh→ spline2), (mesh→ bezier2)

and (nurbs→ spline2).

We performed five iterations of h-refinement and compared the results.

Fig. 4.30 shows different subdivisions of the physical domains.

Figure 4.30: nurbs (top row) and mesh (bottom row) physical domains at

different iterations of the h-refinement process. In the top left image, the red

points are the control points of the NURBS surface.

The exact and computed solutions are shown in Fig. 4.31. It can be

noted that, as expected, the solutions computed at the first iteration are not

precise in all the three cases.

Fig. 4.32 and Table 4.9 show the errors at different steps of the h-

refinement process. As expected, IGA applied on the nurbs representation

gives better results.
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Figure 4.31: Computed solutions at the first and last iterations of the h-

refinement process for (mesh→ spline2) (first row), (mesh→ bezier2) (sec-

ond row), and (nurbs→ spline2) (third row). The exact solution is illus-

trated in the fourth row.
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To get an error smaller than 10−3, the (nurbs→ spline2) case takes 3

iterations and 64 degrees of freedom, the (mesh→ spline2) case takes 4

iterations and 256 degrees of freedom and the (mesh→ bezier2) case is the

worst, with 4 iterations and 961 degrees of freedom.

Figure 4.32: Plot of err values at different iterations of the h-refinement

process for (mesh→ spline2) (first row), (mesh→ bezier2) (second row),

and (nurbs→ spline2) (third row).
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(mesh→ spline2) h-refinement

ndof errL2 err∞

01 2.0957e-01 5.4916e-01

04 7.9492e-02 1.9033e-01

16 1.5335e-02 3.6164e-02

64 2.6998e-03 8.0745e-03

256 6.1944e-04 2.2081e-03

(mesh→ bezier2) h-refinement

ndof errL2 err∞

01 2.0957e-01 5.4916e-01

09 4.8563e-02 1.3174e-01

49 1.1232e-02 2.8589e-02

225 2.6000e-03 8.8861e-03

961 6.2974e-04 1.8611e-03

(nurbs→ spline2) h-refinement

ndof errL2 err∞

01 2.0201e-01 5.3050e-01

04 9.1471e-02 1.7894e-01

16 1.0039e-02 2.6220e-02

64 8.6420e-04 2.2633e-03

256 9.6604e-05 2.4482e-04

Table 4.9: Table of results for h-refinement.



Chapter 5

Numerical examples: IGA on

multipatch hybrid geometries

In this chapter we apply IGA to solve BVPs on multipatch domains. The

multipatch representation corresponds to a decomposition of the computa-

tional domain into non-overlapping subdomains also called patches in the

geometrical framework. In the examples of Sections 5.1 and 5.2 we investi-

gate the solution of BVPs on multipatch domains in which the patches are

all represented by the same kind of geometry (mesh or nurbs). In particular,

in Example 1 we introduce the formalism for the multipatch configuration

in GeoPDEs. Then, in Sections 5.3 and 5.4, we propose to use multipatch

hybrid physical domains, made of both mesh and nurbs patches, handling

a C0 join between patches. Finally, in Sections 5.5, 5.6 and 5.7, we solve

a Laplace-Betrami problem on three 3D hybrid domains representing two-

dimensional manifolds embedded in R3. The requirement of compatibility

between patches along the interfaces will be satisfied in all the cases.

To compute a total accuracy error, we consider the 2-norm of the vector of

the errors on each patch. For instance, the L2 error in a multipatch example
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112 5. Numerical examples: IGA on multipatch hybrid geometries

on a domain Ω made of n patches will be computed as:

errL2 := ‖err‖L2(Ω) =

(
n∑
i=1

‖err‖2
L2(Pi)

) 1
2

, (5.1)

where ‖err‖L2(Pi) is the L2 error on the i-th patch, defined by Eq. (4.2).

The global errors errH1 , err∞ and err2 are obtained analogously from the

individual errors on the patches.

GeoPDEs can read multipatch geometries from .txt files that contain

information on patches, interfaces, subdomains and boundaries.

For the sake of clarity, in our examples the domain partition used to set

the quadrature rule always coincides with the knot-spans in the geometry

read from the files.

As solution space, we used the space of spline functions of degree (2,

2). This implies that, unless there are knots with double multiplicity, the

solution is of class C2 on both directions inside each patch. Along each

interface, the two solutions from two adjacent patches are equal, and they

are glued together with C0 continuity.

For the multipatch case, the number of degrees of freedom ndof is the

sum of the number of degrees of freedom of the patches, minus the degrees

of freedom along each interface, which must be counted only once. If Dirich-

let boundary conditions are applied, also the degrees of freedom along the

boundary need to be subtracted from the total count.

5.1 Example 1

We consider the BVP in form (4.7) with the source term given in Eq.

(4.9), defined on the same domain of the example in Section 4.4, illustrated

in Fig. 4.22. The Γ-shaped domain will be represented through a multipatch

geometry composed of three non- overlapping patches: P1, P2 and P3 as
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shown in Fig. 5.1. This partition implies the presence of two interfaces: I1

shared by P1 and P2, and I2 shared by P2 and P3.

The boundary of the domain is composed by all the edges of the patches

that are not interfaces, and we applied Dirichlet boundary conditions.

Figure 5.1: Γ-shaped multipatch domain: patches and interfaces on the left,

boundaries on the right.

We solved the BVP on the mesh and nurbs physical domains shown in

Fig. 5.2, and compared the results obtained using spline2 as solution space,

i.e. the space of spline functions of degree (2, 2).

The mesh multipatch domain is constituted by three NURBS patches of

degree (1,1). To create the mesh domain, we simply obtained each patch by

the extrusion of a line. We chose to always extrude a left-to-right line in a

bottom-to-top direction. Therefore all the patches have the same structure,

with the u direction along the x-axis and the v direction along the y-axis.

Since the parametric directions on the patches coincide, the orientation flag

of the two interfaces is equal to 1.

Then we refined the three patches to obtain the domain shown in Fig.5.2

(left). To refine this domain in a fashion that satisfies the compatibility

requirement, it is not necessary to refine all the three patches in the same

way. To make sure that the meshes of two patches coincide on the shared
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Figure 5.2: Γ-shaped physical domain: mesh on the left and nurbs on the

right, together with the isocurves at the knot values (u, v).

interface, it is sufficient to apply the same refinement to patches P1 and

P2 along the u direction, and to patches P2 and P3 along the v direction.

Therefore P2 is a mesh of 4× 5 vertices, while the meshes P1 and P3 have

respectively 4× i and j×5 vertices, with arbitrary i and j. For this example

we set i and j both equal to 2,

To obtain the nurbs domain, we extruded the same three lines and then

we elevated the degree of each patch in both directions before performing

the knot insertion, in order to get internal knots with single multiplicity (see

Fig.5.2 (right)).

We will now inspect the geometry file gamma.txt for the nurbs physical

domain. The first line is:

2 3 2 1

These four numbers respectively represent:

• the dimension of the geometry,

• the number of patches that constitute the domain,

• the number of interfaces, each one connecting two patches,
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• the number of subdomains, formed by the union of patches. In our

examples it is always equal to 1.

Then the three patches are defined. They are:

# PATCH P1

2 2 # degree U degree V

5 3 # ctrl pts U ctrl pts V

0 0 0 0.33 0.67 1 1 1 #knotVectorU

0 0 0 1 1 1 #knotVectorV

# control points: X coordinate in the first row, Y on the second, weight W on the third

-1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0

-1 -1 -1 -1 -1 -0.5 -0.5 -0.5 -0.5 -0.5 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# PATCH P2

2 2 # degree U degree V

5 6 # ctrl pts U ctrl pts V

0 0 0 0.33 0.67 1 1 1 #knotVectorU

0 0 0 0.25 0.5 0.75 1 1 1 #knotVectorV

# control points: X coordinate in the first row, Y on the second, weight W on the third

-1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0

0 0 0 0 0 0.125 0.125 0.125 0.125 0.125 0.375 0.375 0.375 0.375 0.375...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0 -1 -0.833 -0.5 -0.167 0

...0.625 0.625 0.625 0.625 0.625 0.875 0.875 0.875 0.875 0.875 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

# PATCH P3

2 2 # degree U degree V

3 6 # ctrl pts U ctrl pts V

0 0 0 1 1 1 #knotVectorU

0 0 0 0.25 0.5 0.75 1 1 1 #knotVectorV

# control points: X coordinate in the first row, Y on the second, weight W on the third

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5

0 0 0 0.125 0.125 0.125 0.375 0.375 0.375 0.625 0.625 0.625 0.875 0.875 ...

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0.5 1

...0.875 1 1 1

1 1 1 1

After the definition of the patches, in the file gamma.txt there is the

definition of the two interfaces. To define an interface, five integer values are
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needed:

• patch1: the index of the first patch to which the edge belongs

• side1: the local index of the edge in the first patch

• patch2: the index of the second patch to which the edge belongs

• side2: the local index of the edge in the second patch

• orientation: a flag equal to 1 if the two edges have the same orienta-

tion, 0 otherwise

To assign the side index to an edge, GeoPDEs uses an edge numbering of

the parametric domain shown in Fig. 5.3, which is inherited by the physical

domain.

Figure 5.3: Edge numbering in the parametric domain, used to define inter-

faces and boundaries.

Since interface I1 is shared by edge 4 of P1 and edge 3 of P2, interface

I2 is shared by edge 2 of P2 and edge 1 of P3 and in each interface the edges

have the same direction, the file reads like this:

# INTERFACE I1

1 4
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2 3

1

# INTERFACE I2

2 2

3 1

1

We only have one subdomain that contains all the patches:

# SUBDOMAIN 1

1 2 3

At last, the boundaries are defined. All the edges that are not part of

an interface, are part of a boundary. Each boundary is constituted by one

or more edges from different patches, and the definition of boundaries in the

geometry file is similar to the one of interfaces, with the only difference that

boundaries don’t need the orientation flag.

# BOUNDARY 1

1

1 2

# BOUNDARY 2

1

3 3

# BOUNDARY 3

1

1 3

# BOUNDARY 4

2

1 1

2 1

# BOUNDARY 5

2

2 4

3 4

# BOUNDARY 6
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1

3 2

As expected, since this geometry is not curved, mesh and nurbs give

identical results, shown in Fig. 5.4 and listed in Table 5.1.

Figure 5.4: Computed solutions for mesh (top left) and nurbs (top right),

and exact solution (bottom).

The number of degrees of freedom ndof is given by the sum of the degrees

of freedom on each patch, minus the degrees of freedom along the interfaces

I1 and I2 (5+6=11). Since we applied Dirichlet boundary conditions, we

also need to subtract the number of degrees of freedom on the boundaries.

Recalling that the dimension of a spline space is given by the sum m + K,

where m is the order of the splines and K is the sum of the multiplicities of
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(mesh→ spline2) (nurbs→ spline2)

ndof 26 26

errL2 8.0781e-03 8.0781e-03

errH1 7.5858e-02 7.5858e-02

err∞ 2.2469e-02 2.2469e-02

err2 9.6084e-03 9.6084e-03

Table 5.1: Table of results for mesh and nurbs physical domains.

the knots, we have that the degrees of freedom are 15 for P1, 30 for P2 and 18

for P3. Thus, the number of degrees of freedom is: ndof = 63−11−26 = 26.

5.2 Example 2

In this section we solve the BVP in form (4.7) with the source term given

in Eq. (4.9) on a physical domain that, unlike the Γ-shaped domain used in

Section 5.1, has curved boundaries.

We used the mesh and nurbs physical domains shown in Fig. 5.5, and

compared the results obtained using spline2 as solution space in both cases.

The structure of the B-Rep of this physical domain is the same of the one

in Example 1: that is, the three patches share the same two interfaces and six

boundaries. Therefore, in order to change only the geometry of each patch,

we used the routine mp_geo_substitute_patches, introduced in Section 3.4.

We impose that, as in Example 1, the u direction is from left to right

and the v direction is from bottom to top in all the three patches. We

created patch P1 making a ruled surface between a semicircle and a line,

patch P2 extruding a left-to-right line in a bottom-to-top direction and patch

P3 making a ruled surface between a bottom-to-top line and a bottom-to-

top semicircle. Since the surfaces created by nrbruled are ruled along the
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Figure 5.5: Physical domain: mesh on the left and nurbs on the right. We

highlighted the boundaries in the mesh image and the interfaces in the nurbs

image.

v direction, P3 had initially the directions swapped with respect to the

ones of P3 of Section 5.1. In order to get the same orientation and to

use mp_geo_substitute_patches, we swapped the directions of P3 through

nrbtransp.

As in Section 5.1, the v direction of P1 and the u direction of P3 are not

constrained by the joining and can change without affecting the geometry of

the other patches and interfaces. In this case we added an internal knot to

the u direction of P3.

The approximated solutions of the BVP on this multipatch domain are

shown in Fig. 5.6 and th error results are reported in Table 5.2. The solution

computed considering the nurbs domain gives better results than the one on

the mesh domain, especially along the curved part of the domain. Fig. 5.7

shows the error function err, defined in Eq. (4.1), for the mesh and nurbs

cases.
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Figure 5.6: Computed solutions for mesh (top left) and nurbs (bottom left),

and exact solution for mesh (top right) and nurbs (bottom right).

Figure 5.7: Plot of err, defined in Eq. (4.1) as the difference between the

exact and computed solutions, for the mesh (left) and nurbs (right) cases.
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mesh nurbs

ndof 48 64

errL2 1.7305e-02 6.6116e-03

errH1 3.2304e-01 1.6259e-01

err∞ 5.9361e-02 3.0097e-02

err2 1.6338e-02 7.0207e-03

Table 5.2: Table of results for mesh and nurbs physical domains.

5.3 Example 3

In this section we solve the BVP in form (4.7) with the source term given

in Eq. (4.9) on a hybrid physical domain, that is a geometry made by mesh

and nurbs patches joined together, shown in Fig. 5.8.

Figure 5.8: Patches and interfaces of the physical domain. P1 and P3 are

nurbs patches of degree (2,1) and (2,2) respectively, and P2 is a mesh patch.

In order to build the geometry in Fig. 5.8 we started from the six curves

shown in Fig. 5.9, generated using nrbline, nrbcirc and nrbmakepolyline.
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Figure 5.9: Six curves used to build the patches.

The code below creates from the curves three non-compatible patches

with two overlapping edges, that are shown in Fig. 5.10:

P1 = nrbruled( c1 , c2 ) ;

P2 = nrbcoons(c2, c6, c5, c3);

srf = nrbruled( c3, c4 ) ;

srf= nrbdegelev (srf, [0 1]);

srf = nrbtransp(srf);

[~, ~, knots] = kntrefine (srf.knots, [1 1], [2 2], [1 1]);

P3 = nrbkntins(srf, knots);

Patch P1 is obtained making a ruled surface between the semicircle c1

and the polyline c2. Patch P2 is a bilinearly blended Coons surface patch

created with nrbcoons from the curves c2, c6, c5 and c3, that define the

boundaries. Patch P3 is a ruled surface between and the polyline c3 and

the semicircle c4 to whom we applied nrbtransp to swap the directions and

nrbkntins to refine the knot vectors.

From those patches we built three compatible patches using:

[P1comp, P2comp1] = nrbmakecompatible(P1,P2, 4, 3,1);

[P3comp, P2comp2] = nrbmakecompatible(P3,P2comp1, 1, 2,1);
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Figure 5.10: Physical domain, before (left) and after (right) applying the

compatibility routine.

Then we created a new file compatibleGeo.txt for the new hybrid ge-

ometry starting from a copy of the gamma.txt file containing the physical

domain of Example 1:

mp_geo_substitute_patches(’copy_gamma.txt’,...

’compatibleGeo.txt’, [1 2 3], [P1comp P2comp2 P3comp])

The results obtained by solving the BVP on the geometry represented by

compatibleGeo.txt are listed in Table 5.3 and shown in Fig. 5.11.

ndof 94

errL2 3.7972e-03

errH1 1.1037e-01

err∞ 1.8716e-02

err2 4.2991e-03

Table 5.3: Table of results.
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Figure 5.11: Exact solution (left), computed solution (center) and their dif-

ference err (right) on a hybrid domain.

5.4 Example 4

In general, non-trivial geometries require to apply the compatibility pro-

cedure more than once for each interface. This example describes such a

scenario.

We solve the BVP in form (4.7) with the source term given in Eq. (4.9)

on the physical domain represented in Fig. 5.12.

Figure 5.12: Patches and interfaces of the physical domain. P1 and P3 are

both nurbs patches of degree (2,2), and P2 is a mesh patch.
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The non compatible patches P1, P2 and P3 that constitute the physical

domain are obtained from the nine curves illustrated in Fig 5.13 using the

following code:

c1 = nrbcirc( 0.5 , [ -2 0.5 0 ] , pi/2 , 3*pi/2) ;

pnts = [-2 -1.3 -1 ;

1 0.8 1 ;

0 0 0 ];

c2 = nrbmak(pnts,[0 0 0 1 1 1]);

pnts = [-2 -1.6 -1.3 -1 ;

0 -0.1 0.2 0 ;

0 0 0 0 ];

c3 = nrbmak(pnts,[0 0 0 0.5 1 1 1]);

c4 = nrbmakepolyline([[-1,1]; [-0.8,0.7]; [-0.9,0.2]; [-1,0]]);

P1 = nrbcoons( c1, c4, c2, c3);

c5 = nrbreverse(c4,1);

c6 = nrbmakepolyline([[-1 1]; [-0.5 1.1]; [0 1]]) ;

c7 = nrbmakepolyline([[-1,0]; [-0.7,-0.2]; [-0.2,-0.1]; [0,0]]);

c8 = nrbmakepolyline([[0,0]; [0.2, 0.3]; [0,1]]);

P2 = nrbcoons(c7, c6, c5, c8);

c9 = nrbcirc( 0.5 , [ 0.5 0.5 0 ] , -pi/2 , pi/2) ;

srf = nrbruled( c8, c9 ) ;

srf= nrbdegelev (srf, [0 1]);

srf = nrbtransp(srf);

[~, ~, knots] = kntrefine (srf.knots, [1 1], [2 2], [1 1]);

P3 = nrbkntins(srf, knots);

The physical domain Ω is thus composed of P1 and P3 which are nurbs

patches of degree (2, 2), and P2 which is a mesh patch (represented by a

NURBS with degree (1,1)). This model contains two interfaces:

• I1, shared by P1 and P2. I1 is along c4 and c5, which are overlap-

ping sides of patches with opposite directions. This implies that the
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Figure 5.13: Nine curves used to build patches P1, P2 and P3. The arrows

indicate the direction of the curves: c4 and c5 are overlapping with opposite

directions. c1, c2, c3 and c4 are used to create P1, c5, c6, c7 and c8 are used

for P2, c8 and c9 for P3.

orientation flag of I1 in the geometry file is 0.

• I2 shared by P2 and P3 along c8. Its orientation flag in the geometry

file is 1.

To get three compatible patches out of the three patches created by the

code above, it is not sufficient to apply nrbmakecompatible twice like in the

previous example. Three calls to nrbmakecompatible are necessary:

[P1comp, P2comp] = nrbmakecompatible(P1, P2, 4, 1, 0);

[P3comp, P2comp1] = nrbmakecompatible(P3, P2comp, 1, 2, 1);

[P1comp1, P2comp2] = nrbmakecompatible(P1comp, P2comp1, 4, 1, 0);

Fig. 5.14 shows the effects on the non-compatible patches (top left) after

each application of the routine nrbmakecompatible. The first call produces

two compatible surfaces P1comp and P2comp, which are not compatible with

P3 (top right). After the second call, P2comp1 and P3comp are compatible,

but not compatible with P1 (bottom left). The third call makes all the
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patches compatible (bottom right).

Figure 5.14: Step by step results of multiple applications of

nrbmakecompatible to provide the compatibility of the three patches.

The obtained results are listed in Table 5.4 and shown in Fig. 5.15.

5.5 Example 5

In this section we will solve a Laplace-Beltrami problem on a multipatch

hybrid geometry, representing a quarter of cylindrical surface of unitary ra-

dius embedded in R3.

The physical domain is composed of three patches:

• P1 is a nurbs surface of degree (2, 1) which describes a cylindrical

geometry exactly.
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ndof 120

errL2 3.5305e-03

errH1 9.0607e-02

err∞ 1.4286e-02

err2 3.6923e-03

Table 5.4: Table of results.

Figure 5.15: Computed solution (top left), exact solution (top right) and

their difference err (bottom) on a hybrid domain.
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• P2 is a narrow blending surface of degree (2, 1) that connects P1 and

P3.

• P3 is a mesh patch. It has degree (2, 1) because of the compatibility

on the interface, but all the knots along the u direction are repeated

two times, thus P3 is geometrically a quad mesh.

Figure 5.16: Physical domain represented by hybrid multipatch geometry.

The elements grids are 9× 1 for P2 and 9× 9 for P1 and P3.

The source function of this Laplace-Beltrami problem is:

f(x, y, z) = β

((απ
L

)2

g1(x, y)− g2(x, y)

)
g3(z), (5.2)

where

• g1(x, y) = (1− cos(arctan
(
x
y

)
))(1− sin(arctan

(
x
y

)
)),

• g2(x, y) = cos(arctan
(
x
y

)
)+sin(arctan

(
x
y

)
)−4 cos(arctan

(
x
y

)
) sin(arctan

(
x
y

)
),
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• g3(z) = sin(
(
απ
L

)
z)

• α = 5, β = 1 and L = 1.

As a basis for the solution space, we adopted B-spline functions of degree

2. The exact solution is:

u(x, y, z) = βg1(x, y)g3(z), (5.3)

and it is displayed in Fig. 5.17, together with the computed solution.

Figure 5.17: Computed (left) and exact (right) solutions for the Laplace-

Betrami problem.

Fig. 5.18 shows the error err := uex − u and Tables 5.6 and 5.5 show all

the other errors.
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Figure 5.18: Plot of err for the Laplace-Betrami problem.

patch errL2 errH1 err∞ err2

1 2.2124e-03 9.9587e-02 5.8165e-03 1.7789e-03

2 3.5514e-04 2.9490e-02 2.3178e-03 1.0061e-03

3 2.2092e-03 9.9671e-02 5.3368e-03 1.7799e-03

Table 5.5: Table of results on each patch.

ndof 357

errL2 3.1467e-03

errH1 1.4395e-01

err∞ 8.2271e-03

err2 2.7102e-03

Table 5.6: Table of results.
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5.6 Example 6

We solve the same Laplace-Beltrami problem of Example 5, on a multi-

patch hybrid geometry, composed by an open free-form surface patch and a

mesh patch.

The nurbs patch is a NURBS surface of degree (3,3) generated as a bi-

linearly blended Coons surface patch from the four NURBS curves shown in

Fig. 5.19, that define its boundary. More information on Coons surfaces can

be found in [47].

Figure 5.19: Curves (left) used to build a Coons surface (right).

The mesh patch has only three points of the boundary in common with

the boundary of the surface, as shown in Fig. 5.20.

To apply IGA, the patches need to be coincident and compatible along

the interfaces. In this case, instead of creating a third patch to join the two

existing ones (like the blending surface of Example 5), we slightly changed

the geometry of the nurbs patch to create a common interface. To do so,

we elevated the degree of the mesh patch and translated the control points
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Figure 5.20: Two views of the hybrid multipatch geometry: the mesh and

nurbs patches are not compatible.

along the boundary of the nurbs patch in order to make them coincident

with the control points along the boundary of the mesh patch. This results

in two compatible patches shown in Fig. 5.21.

We performed knot insertions in each knot span, in order to have a 10×10

elements grid on each Bézier patch, as in Fig. 5.22.

We applied IGA on the hybrid physical domain in Fig. 5.22, imposing

homogeneous Dirichlet boundary conditions.

The result of the analysis is displayed in Fig. 5.23. Since we don’t have

an exact solution on this geometry, we cannot provide an analysis of the error

similar to the ones carried out in the previous examples.
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Figure 5.21: Two views of the hybrid multipatch geometry: the mesh and

nurbs patches are compatible.

Figure 5.22: Two views of the refined hybrid multipatch physical domain.
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Figure 5.23: Two views of the result of IGA applied to the hybrid multipatch

physical domain.
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5.7 Example 7

In this section we solve a more realistic example of the application of IGA

on a multipatch hybrid geometry. The BVP is the same Laplace-Beltrami

problem of Example 5, with different values of the constants, namely α = 5,

β = 1 and L = 10.

The geometry on which we applied the problem is composed by a lid

represented by an open free-form NURBS surface, with a knob represented

by a mesh patch. Supposing that the geometry has an axis of symmetry, we

solved the problem on half of the model, which is a technique used often in

the analysis of symmetric models.

The mesh patch representing one half of the knob is shown in Fig. 5.24.

Figure 5.24: The mesh patch representing one half of the knob.

The nurbs patch is a NURBS surface of degree (3,3) generated by the

revolution of a degree 3 NURBS curve around the Z axis. The two patches

are not compatible and the mesh patch has only three points of the boundary

in common with the boundary of the surface, as shown in Fig. 5.25.

To make the patches compatible in order to apply IGA, we slightly

changed the geometry of the nurbs patch to create a common interface. To

do so, we elevated the degree of the mesh patch and translated the control



138 5. Numerical examples: IGA on multipatch hybrid geometries

Figure 5.25: The mesh and nurbs patches are not compatible.

points along the boundary of the nurbs patch in order to make them coin-

cident with the control points along the boundary of the mesh patch. This

results in two compatible patches shown in Fig. 5.26.

We applied IGA on the hybrid physical domain in Fig. 5.26, imposing

homogeneous Dirichlet boundary conditions.

The result of the analysis is displayed in Fig. 5.27. Since we don’t have

an exact solution on this geometry, we cannot provide an analysis of the error

similar to the ones carried out in the previous examples.
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Figure 5.26: The mesh and nurbs patches are made compatible.

Figure 5.27: The result of IGA applied to the hybrid multipatch physical

domain.
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Chapter 6

CAD and FEM at devDept

Software

Since January 2012 I have been working at devDept Software, a software

house founded in 2006. devDept Software’s flagship product, Eyeshot, is a

3D graphics, CAD and FEM control for .NET Framework.

With different product editions, Eyeshot allows to use Mesh, Solid, and

NURBS surface modeling technologies. Mesh and NURBS surfaces can co-

exist in the same model as individual entities. Eyeshot’s library does not

have hybrid functions to make mesh and NURBS entities interact with each

other, nor a structure that can contain both kind of entities to represent

an extended B-rep like the ones introduced in Section 1.8. Therefore, users

typically adopt either mesh or NURBS modeling, depending on their specific

needs.

Eyeshot FEM edition performs classical FEA to solve linear elasticity

problems, introduced in Section 2.3.

During these years at devDept Software, I contributed to the growth

of Eyeshot NURBS and FEM libraries by designing and implementing new

features while enhancing pre-existing ones. I also reinforced the unit testing

141
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system and handled support requests submitted by Eyeshot’s users, that are

programmers from across the world.

Listing all my contributions to the library would be a difficult (and proba-

bly pointless) task. This chapter presents an overview on some of the features

and algorithms to which I dedicated my time at work, in the past years during

the Ph.D. program.

6.1 Eyeshot CAD

The CAD and NURBS library is the part of Eyeshot in which, being

a mathematician, I obtained the best results and that I found more inter-

esting. In the following sections we will see how curves and surfaces can be

represented in Eyeshot, and some fundamental methods to manipulate them.

6.1.1 Geometry representations in Eyeshot

In Eyeshot there are different ways to define curves and surfaces [25].

The interface ICurve groups all the properties and methods of the classes

of entities that represent curves, which are:

• Point,

• Line,

• Circle, with the derived class Arc,

• Ellipse, with the derived class EllipticalArc,

• Curve, that defines a NURBS curve,

• LinearPath, that defines a polyline,

• CompositeCurve, that groups a set of subsequent ICurves.
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These classes share many properties (domain, start and end points, start

and end tangent) and methods, such as PointAt() to evaluate a curve at a

parameter value, Project() to find the orthogonal projection of a 3D point

on a curve, or TrimAt() that trims a curve at a parameter value.

Even if all these entities could be described using NURBS curves, keep-

ing them in separated classes is very helpful since some algorithms, such as

the evaluation or the projection of a point, are quicker and more precise if

implemented for special curves than for the more general NURBS curves. It

is always possible to convert a special curve into a NURBS curve using the

method GetNurbsForm().

Analogously, there are different classes of surface entities. They all derive

from the class of NURBS surfaces called Surface and they are:

• PlanarSurface,

• TabulatedSurface, that defines surfaces obtained by extruding a curve

called Directrix along a vector called Generatrix,

• RevolvedSurface, that defines surfaces obtained by revolving a curve

called Generatrix around an Axis. It has the following derived classes:

– SphericalSurface,

– ToroidalSurface,

– ConicalSurface,

– CylindricalSurface.

A diagram of the Surface class and its dependencies is shown in Fig. 6.1.

Also for special surfaces, it is possible to obtain the generic NURBS form

using the method GetGeneric(). The opposite operation, i.e. getting a

special curve or surface from a NURBS one, is not always possible and it is

performed by the method Promote().
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Figure 6.1: Class diagram of Eyeshot’s surface classes.

To represent a single surface in Eyeshot, a user can also employ the mesh

representation. The Mesh entities are triangular meshes that can be defined

through an array of 3D points called Vertices and an array of indices called

Triangles, that defines the triangles of the mesh pointing to the array of its

vertices.

A solid model composed of many NURBS surface patches can be repre-

sented as a B-rep using the entity Solid3D.

Eyeshot does not have a structure to represent extended B-reps made of

both Mesh and Surface entities, introduced in Section 1.8. Since Eyeshot is

not a hybrid system, the CAD libraries for Mesh and Surface entities are

completely independent. The library for surfaces is richer: some methods,

such as intersection, offset and fillet, can be performed among surfaces, but

not among meshes.
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6.1.2 Point projection and inversion on curves and sur-

faces

Projecting a 3D point P on an entity e (that can be a curve denoted by

C or a surface denoted by S) is the process of finding the closest point Q on

e such that the segment connecting P and Q is perpendicular to e at Q.

Point inversion is applied to a point P that is assumed to be on e to find

the parameter of the domain of e corresponding to P . For a curve C the

domain is an interval D = [u0, u1] ⊂ R, and the output of point inversion is

the parameter value u ∈ D such that C(u) = P . For a surface S the domain

is DU ×DV = [u0, u1]× [v0, v1] ⊂ R2, and the output of point inversion is a

parametric pair (u, v) ∈ DU ×DV such that S(u, v) = P .

Point projection and point inversion are important processes in geometric

modeling and computer graphics, they are widely used by more complex

algorithms and they have numerous applications in CAD related topics. In

Eyeshot both operations can be performed by the method Project().

For instance, when a user needs to interactively select one entity from

among several others represented on screen, he/she clicks somewhere near

that entity, and the system finds out which entity has been selected by pro-

jecting the clicked point on all the entities and choosing the entity closest to

the point. Other contexts in which point projection and inversion are funda-

mental are fitting and intersection problems, reconstructing curves, collision

detection and shape registration [10, 39, 46].

As pointed out in [35], point projection algorithms experience stability

and performance issues, and there still is no perfect algorithm that satisfies

high accuracy, robustness and efficient computation time simultaneously.
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6.1.2.1 Point projection for curves

Our algorithm uses Newton iterative method to find the parameter value

u such that minimizes the distance between P and C(u). If this distance is

smaller than a defined tolerance tol1, we consider P to be on C.

Newton’s method, also known as Newton-Raphson method, aims to find

successively better approximations to the roots of a real-valued equation or

system of equations. In our case, C(u) is an orthogonal projection of P on

C if u is a zero of the dot product function:

f(u) = C ′(u) · (C(u)− P ). (6.1)

Figure 6.2: Projection of the point P on the curve C: the vectors C ′(u) and

(C(u)− P ) are perpendicular at the orthogonal projection.

The method needs a start value u0 and if we denote by ui the parameter

obtained at the ith Newton iteration, the (i+ 1)th iteration gives:

ui+1 = ui −
f(ui)

f ′(ui)
= ui −

C ′(ui) · (C(ui)− P )

C ′′(ui) · (C(ui)− P ) + |C ′(ui)|2
. (6.2)

The iteration method stops if one of the following convergence criteria is met:

• point coincidence, that can only happen if P is on C:

|(C(ui)− P )| ≤ tol1, (6.3)
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• the cosine between the tangent and the vector C(ui)−P is zero (within

a small tolerance tol2):

|C ′(ui) · (C(ui)− P )|
|(C(ui)− P )||C ′(ui)|

≤ tol2, (6.4)

• the parameter does not change significantly:

|(ui+1 − ui)C ′(ui)| ≤ tol1. (6.5)

The success of the method heavily depends on the initial value, and choos-

ing a good initial value is a fundamental but not easy problem. As suggested

in [47], we solve this problem by repeating the Newton iteration starting from

different initial values. In particular, we decompose the curve C in its Bézier

patches and perform the iteration starting from five equally spaced initial

points on each patch. Then we return as result the parameter corresponding

to the closest orthogonal projection.

Special algorithms are implemented for ICurves such as Line, Circle, Arc,

Ellipse and EllipticalArc.

To test our method, we built an application that evaluates the normal

vectors (n1, . . . , nm) to C at m different parameters (u1, . . . , um), and given

a distance d, it computes the points (C(u1) + dn1, . . . , C(um) + dnm) and

projects them back on the curve C. We can check the result of the projec-

tion method by checking if the return parameters are within tolerance from

(u1, . . . , um). Some screenshots of this application are shown in Fig. 6.3.

6.1.2.2 Point projection for surfaces

Point projection and inversion for surfaces are analogous. Given a 3D

point P , we want to find a point (u, v) in the parametric space such that the

segment between S(u, v) and P is perpendicular to S, or has zero length in

the case of point inversion.
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Figure 6.3: Eyeshot’s application to test point projection on curves. The user

can decide for each curve the number of points to project and the distance

of the points form the curve. The points are drawn in green, and they are

connected to the projections (black points) by a pink segment. If one point

is not projected at the parameter used to compute the normal, a red point

is drawn, and the failure count is incremented. In the bottom image, the

application reports five failures, but looking at the picture we see that the

red points are all close to the curve’s self-intersection point, and that the

projections are all correct.
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Defining the vector function:

r(u, v) = S(u, v)− P, (6.6)

we use the Newton’s method to find the zeros of the non-linear system of

equations:  f(u, v) = r(u, v) · Su(u, v) = 0

g(u, v) = r(u, v) · Su(u, v) = 0.
(6.7)

Defining:

δi =

 ∆u

∆v

 =

 ui+1 − ui
vi+1 − vi

 ,

Ji =

 fu fv

gu gv

 =

 |Su|2 + r · Suu Su · Sv + r · Suv
Su · Sv + r · Svu |Sv|2 + r · Svv


and

ki = −

 f(ui, vi)

g(ui, vi)

 ,
at the ith iteration we must solve the following linear system of equations in

the unknown δi

Jiδi = ki. (6.8)

From the solution of the system, we get the (i+ 1)th iteration as:

ui+1 = ∆u+ ui

vi+1 = ∆v + vi.
(6.9)

The convergence criteria are:

• point coincidence, that can only happen if P is on C:

|(S(ui, vi)− P )| ≤ tol1, (6.10)
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• the cosine between the tangents and the vector S(ui, vi) − P are zero

(within a small tolerance tol2):

|Su(ui, vi) · (S(ui, vi)− P )|
|(S(ui, vi)− P )||Su(ui, vi)|

≤ tol2, (6.11)

|Sv(ui, vi) · (S(ui, vi)− P )|
|(S(ui, vi)− P )||Sv(ui, vi)|

≤ tol2, (6.12)

• the parameters do not change significantly:

|(ui+1 − ui)Su(ui, vi) + (vi+1 − vi)Sv(ui, vi)| ≤ tol1. (6.13)

Also for surfaces, we used to apply the decomposition in Bézier patches

and perform the iteration starting from a grid of 3× 3 equally spaced initial

points on each patch. This was not sufficient to have good results on some

of the surfaces that we tested, so we tried to increase the number of initial

points on each patch. But this slowed down the process dramatically and

did not guarantee an accurate result on all surfaces.

Then we proposed to iteratively subdivide the patches into two children

and perform the Newton iteration on each child. The iteration stops if the

result is equal to the one obtained on the parent patch or if we reached the

heuristically determined maximum of eighth level of subdivision. In the end

we compare the results and return the pair of parameters that corresponds

to the closest orthogonal projection.

To reach this level of accuracy, the method became really slow. In or-

der to avoid applying this method unless it is strictly necessary, we im-

plemented special projection methods for special surfaces: exploiting the

geometric properties of planar, tabulated and revolved surfaces we obtained

quick and reliable algorithms. In addition, to speed up the method on generic

surfaces, we tested some criteria to eliminate a patch: we looked for condi-

tions to exclude the possibility that a patch or one of its children could

contain a perpendicular projection, if a patch satisfies such conditions we

stop subdividing it and avoid to perform many Newton’s iterations.
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We adopted the criterium proposed by Selimovic in [52], which, com-

bined with a criterion that uses the bounding box of each patch, gives us

satisfactory results in terms of both accuracy and computation time.

Fig. 6.4 and 6.5 show some images of the results obtained by an applica-

tion to test projections analogous to the one for curves. It allows us to check

results of point projection and inversion on surfaces.

6.1.3 Surface-Surface Intersection and Surface Section

The problem of computing the intersection curves between two surfaces

is essential in various CAD, computer graphics, and geometric modeling ap-

plications. This problem is often referred to as SSI, which stands for surface-

surface intersection. It is considered to be among the basic but difficult

problems in CAD, and hence it has been studied extensively to obtain accu-

rate and efficient solutions [2, 36, 42]. Fig. 6.6 shows a typical SSI case.

Eyeshot’s algorithm for SSI is a marching method: each intersection curve

is obtained by stepping from a given point of the curve in the direction of

tangent vectors, collecting a sequence of points on the curve and interpolating

them at the end of the process.

In the following, we will describe Eyeshot’s procedure to find the inter-

section of two surfaces F and G.

The first step of the algorithm reparameterizes the two surfaces changing

their 2D parametric domains. We sum the distances between the control

points in each row and column of the control lattice, and resize the 2D

domain so that the dimension in the u direction is equal to the length of the

longest row of control legs, and in the v direction to the length of the longest

column. This reparameterization aims to avoid having surfaces with a 2D

domain not proportioned with with the 3D dimensions of the surface, which

can lead to problems, especially if the intersection process is followed by the

trimming of the surfaces.
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Figure 6.4: Eyeshot’s application to test point projection on surfaces applied

on a ruled surface between two helices. The user can decide for each surface

the number of points to project along the u and v directions, and the distance

of the points form the surface. The points to project are drawn in green, and

they are connected to the projections (black points) by a pink segment. If

one point is not projected on the 2D point used to compute the normal, a

red point is drawn, and the failure count is incremented.
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Figure 6.5: Eyeshot’s application to test point projection on surfaces applied

on a ruled surface between two curves with the same start and end points.

On top, an arrow indicates the part of the surface in which our projection

method still has some projection problems. There are four wrong results,

displayed in the zoomed bottom image.
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Figure 6.6: Surface-surface intersection between a green toroidal pipe and a

red ruled surface. The intersection curve is depicted in yellow.

Then, we find the initial points of the intersection curves. To do so, we

intersect all the boundaries of F with G and all the boundaries of G with F .

The initial points (and also the marching points) can be approximated points

that don’t lie on either surface. For this reason, these points go through a

process called point refinement, that relaxes the points onto the intersection

curve using the Newton-Raphson iteration. More details on this can be found

in [2].

Starting from the initial point P0, successive intersection points on the

curve can be generated by stepping in the direction prescribed by the local

differential geometry of the curve. Assuming that F and G are not tangent

at P0, the step direction is given by the cross product of the normals of F

and G at P0.

It is also necessary to determine a step length, that represents the distance

of each marching point from the previous one along the step vector. This

decision is critical: incorrect step size can lead to wrong intersection curves
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or non-converging point refinement if the step size is too big, and to endless

looping or less efficiency if it is too small. Eyeshot uses an adaptive method to

compute the step length using curvature estimates and an angular tolerance.

The initial step length can be reduced during the tracing.

Every time a new marching point is obtained, we use the segment con-

necting it to the previous point to check if we passed closed to another initial

point. If so, the marching stops and the last point is substituted by the initial

point. We interpolate all the points of the sequence to obtain the intersection

curve, and if there are other initial points, we restart the marching method

from them.

The point refinement process, in addition to providing a 3D point that

lies on the intersection curve, gives also the 2D coordinates of the intersection

point on each surface. So, if one or both the surfaces need to be trimmed

at the intersection, we can interpolate the sequence of 2D points to get the

parametric trim curve corresponding to the 3D intersection and use it to cut

the surface. At the end of the process, the original parameterization of the

surfaces is restored. In Fig. 6.7, the surfaces of Fig.6.6 are trimmed by the

intersection curve.

Figure 6.7: The surfaces of Fig.6.6 are trimmed by the intersection curve.
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Like many other tracing algorithms, the solution provided by this pro-

cedure might be incomplete. In particular, if there is an intersection curve

that does not have a starting point on the edge of one of the two surfaces,

the algorithm does not find that curve. To include that kind of solutions, a

loop detection algorithm is needed: we are currently implementing it and we

plan to add it to Eyeshot version 10, that will be released in January 2017.

6.1.3.1 Surface Section

The surface section problem is a special case of SSI, in which a surface

is intersected with a plane. The computation of this kind of intersections is

required for different objectives in many industries, such as surface slicing

for laminated object manufacturing and stereo lithography, NC tool path

generation, medical imaging and contour lines for geographical models.

In general, when there is an intersection between a plane pln and a sur-

face F , Eyeshot’s algorithm for surface section generates from the plane a

PlanarSurface G that is big enough to intersect F . Then, the SSI algorithm

between F and G is applied.

Recently, we developed a new method that handles plane section of spe-

cial surfaces differently. When possible, we compute analytic intersections

between special surfaces and planes avoiding to perform the tracing algo-

rithm. This method returns analytic curves like lines, circles and ellipses

instead of NURBS curves that interpolate the tracing points.

For a PlanarSurface all the sections are now lines. For a TabulatedSurface,

if the plane contains the Generatrix the section is a line, and if the plane

is parallel to the plane of the Directrix the section of the same type of the

Directrix. For a RevolvedSurface, if the plane is perpendicular to the axis

of revolution, the section is a circle or an arc, and if the plane contains the

axis of revolution, the section is of the same type of of the Generatrix curve.

Finally, for cylinders we can compute analytic sections with any plane: the
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sections are ellipses or elliptical arcs. Fig. 6.8 shows two examples of surface

sections.

Figure 6.8: Surface section: the section plane is displayed in fuchsia, and the

section curves in red.

The algorithms for point projection and SSI where already included in

Eyeshot when I started working at devDept Software. Over the years, I mod-

ified these algorithms, especially the point projection ones, to improve the

speed and accuracy. I also carried out the implementation of all the methods

for special curves and surfaces. We will now introduce two algorithms that

I added to Eyeshot: the algorithms for offsetting and filleting curves and

surfaces.

6.1.4 Offset for curves and surfaces

An offset curve (or surface) is the set of all points which are at constant

distance d along the normal vector of the base curve (or surface). Offset

generation is an important task of CAD/CAM applications, since offsets

play an important role in many areas, such as manufacturing mechanical

parts, pocket machining and Computer Numerical Control (CNC) [38, 43].

Given a curve C(u) and a surface S(u, v), their offsets are respectively
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defined as

CO(u) = C(u) + dn(u) (6.14)

and

SO(u, v) = S(u, v) + dn(u, v), (6.15)

where d is the offset distance and n(u) and n(u, v) are the unit normal vectors.

Imposing a negative offset distance is possible, and produces and offset on

the other side of the curve or surface. Fig. 6.9 shows two offsets of the same

curve with opposite signs of offset distance.

Figure 6.9: The green curve is the offset of the blue curve with distance

d = 2, the red curve is the offset of the blue curve with distance d = −3.

Offsets of special curves and surfaces, such as circles, lines, revolved and

tabulated surfaces, can be computed exactly and can be expressed in the

same format as their progenitors, thus we developed special methods for

these cases. Some examples of offsets of tabulated and revolved surfaces are

shown in Fig.6.10.
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Figure 6.10: Surface offset of tabulated (top) and revolved (bottom) surfaces.

The original surfaces are shown in pink, the offsets in blue.

For all the general cases, approximations are needed. We tried different

algorithms to compute the offset of free-form curves and surfaces, and the first

version of the algorithm added to Eyeshot was similar to the one presented in

[45]. The method has been modified later and now it consists of the following

steps:

• we compute the offset points at the knots of the original entity,

• we interpolate the offset points, and then check the error at the mid-

dle of each knot span, using point projection to measure the distance

between the two curves.

• If there are points that are not within tolerance, we add new points

where they are needed, and then repeat the interpolation and check

until all the intervals are within tolerance.

Fig. 6.11 shows the a NURBS curve and its offset. In general, the number
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of control points of the offset curve is bigger than the number of control points

of the original curve.

Figure 6.11: Top: the green curve is the offset of the blue one. Bottom

left: the curves with their control polygons, the offset curve has more control

points than the original curve. Bottom right: the segments connect the

points in which we check if the distance between the two curves is within

tolerance from the offset distance.

6.1.5 Fillet for curves and surfaces

Fillets are arc-shaped transitions between coplanar curves or between

surfaces. They are very important in geometric modeling and are widely used

to reduce stress concentrations in load-bearing models, to improve aesthetics

and aerodynamics of the parts, and to avoid sharp edges that can be easily

damaged or that can cause injury when a part is handled [27].

Unlike other methods described above, Eyeshot’s fillet function does not

have a different implementation when special curves and surfaces are in-

volved.
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The fillet method for two coplanar curves creates an arc of the desired

radius r that connects and is tangent to both of the curves. If desired, the

curves can be trimmed at the intersection point with the arc. Fig. 6.12 shows

the creation of a fillet arc between two curves, which are also trimmed by

the arc.

Figure 6.12: Top: the curves to fillet. Bottom left: the green arc is the

fillet between the red and blue curves. Bottom right: the original curves are

trimmed by the fillet arc.

The center of the fillet arc coincides with the intersection of the offsets

of the two curves with distance d = r. In general, given a radius value, two

intersecting curves can have four different fillet arcs, as shown in Fig. 6.13,

depending on the side in which each curve is offsetted.

In Eyeshot, the choice of which of the four fillets will be computed is

operated through two booleans that control the side on which each curve is

offsetted. The signature of the fillet method for curves is:

Fillet(ICurve C1, ICurve C2, double radius, bool flip1, bool flip2, ...

... bool trim1, bool trim2, out Arc fillet)



162 6. CAD and FEM at devDept Software

Figure 6.13: Top left: the red arcs are the four possible fillets that can be

obtained from the green and blue curves given a radius value. The arcs

have the same radius and the purple points are their centers. Top right and

bottom: each of the four fillet arcs is used to trim the the original curves.

The input parameters are:

• C1 and C2: the two coplanar curves to fillet,

• radius: the desired radius of the fillet arc,

• flip1 and flip2: the booleans to control which fillet to compute,

• trim1 and trim2: the booleans to control whether the curves are

trimmed by the fillet arc.

The method returns as out parameter the arc fillet.

The fillet method for surfaces creates a rolling-ball blending between two

surfaces and it is based on a marching algorithm similar to the one used for

SSI introduced in Section 6.1.3. The resulting fillet can be seen as the surface

described by an imaginary sphere of radius r rolling along the intersection

between two surfaces in such a way that it remains in simultaneous contact
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with both surfaces at points of tangency. Also for surfaces, the fillet can be

used to trim the original surfaces. Fig. 6.14 shows some examples of fillets

made with Eyeshot.

Figure 6.14: Examples of fillets (drawn in red) between two surfaces. Top

left: fillet between a cylinder and a sphere. Top right: fillet between a sphere

and an extrusion surface. Bottom left: fillet between two cylinders. Bottom

right: fillet between a planar surface and a sphere.

Given two surfaces and a radius value, the marching algorithm finds a

sequence of arcs of radius r that have their centers along the intersection

curve of the offsets to the given surfaces. Once the tracing is complete,

the fillet surface is constructed interpolating all the arcs by a process called

skinning or lofting [44, 47]. Fig. 6.15 shows the arcs used to build a fillet
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surface.

Figure 6.15: Fillet between a spherical and a planar surfaces. The brown

curves are the arcs found by the marching algorithm that have been used to

build the fillet surface, and the orange points are their centers.

Computing the offsets of two surfaces and then the intersection between

them, would make the fillet method very slow. Thus, we use a modified

version of the SSI algorithm that allows to find the intersection of the offset

surfaces directly from the non-offsetted ones, avoiding to generate the offset

surfaces [13, 32].

The signature of the fillet method for surface is similar to the one for

curves:

Fillet(Surface F, Surface G, double radius, double tol, bool flipNormalF,...

...bool flipNormalG, bool trimF, bool trimG, bool flipTrimSideF, bool flipTrimSideG,...

out Surface[] fillet)

where the parameters F, G, radius, flipNormalF, flipNormalG, trimF

and trimG have the same roles of the corresponding ones in the curves’

method, and the additional parameters are:

• tol: the tolerance to compute the intersection between the offset sur-

faces,
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• flipTrimSideF and flipTrimSideG: the booleans to control which side

of the surfaces F and G are trimmed by the fillet surface.

The out parameter fillet is an array of surfaces: one for each curve resulting

from the intersection between the offset surfaces.

Eyeshot has two other sightly different versions of the fillet method for

surfaces. The first one computes the fillets between two lists of surfaces in-

stead of just two surfaces. It is useful when a user has a B-rep or is building a

model composed of many surfaces. The second one is called VariableFillet

and allows to create variable-radius fillets. The user can decide the start and

end radiuses, and if the transition between them is linear or cubic. In this

case, the algorithm computes and lofts arcs of different radiuses depending

on their position along the intersection. Two examples of variable-radius

fillets are shown in Fig. 6.16.

Figure 6.16: Fillet between planar surfaces with constant (left) and variable

(center and right) radiuses.

6.1.6 A CAD modeling example

We will now show how the methods introduced in the previous sections

can be used in Eyeshot to create the CAD model of a hair dryer shown in
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Fig. 6.17.

Since the model is symmetric, we build half of it, and then we mirror it

along the symmetry plane to get the full model.

Figure 6.17: Hair dryer model.

Fig. 6.18 shows the creation of the body and rear of the hair dryer, and

the fillet between them.

Fig. 6.19 shows the creation of the handle.

In Fig. 6.20 the two parts created in Fig. 6.18 and Fig. 6.19 are joined

by a fillet surface.

In Fig. 6.21 an air concentrator is added.

In Fig. 6.22 all the surfaces are offsetted to create the interior part of the

model.

It can be noted that the offsets of NURBS surfaces have more isocurves

(i.e. more knots and control points) than the original surfaces. This does
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Figure 6.18: Left: the body of the hair dryer (in yellow) is a

RevolvedSurface obtained by revolving a NURBS curve, and the rear is

a SphericalSurface obtained by revolving an arc. Right: a fillet of the two

surfaces is added and displayed in yellow.

not happen to the offsets of the special surfaces (rear and some surfaces of

the handle), that are created with a special procedure.

Fig. 6.23 shows the details of some offset surfaces.

All the surfaces are then mirrored along the symmetry plane, Fig. 6.24

shows two more images of the full model.

6.2 Eyeshot FEM

Eyeshot FEM edition allows the users to solve linear elasticity problems,

introduced in Section 2.3, on 2D and 3D domains represented by meshes.

A typical problem aims to find the displacements, stresses and strains of an

object subject to forces and constraints.

The user builds a model that represents an object and applies forces,

constraints, temperatures and fixed displacements on it. Eyeshot solves the

problem using the Galerkin method, with Lagrange basis functions as basis

for the solution and solving the linear system with a direct or iterative (pre-
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Figure 6.19: Top: the same curves and fillet arc of Fig. 6.12 are joined and

extruded to create the yellow TabulatedSurface in the bottom left figure.

Bottom left: the tabulated, cylindrical and planar surfaces used to create the

handle. Bottom right: with two calls of the fillet method (one of which is

applied to a list of surfaces) the fillets to complete the handle are created.
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Figure 6.20: Top: the two groups of surfaces created above, seen form two

different points of view. Bottom: a fillet between the body and a group of

surfaces of the handle is created and displayed in yellow.
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Figure 6.21: A black air concentrator is added, created by lofting a circle

and two other NURBS curves.

Figure 6.22: A dark gray offset of each surface is created. Right: the original

surfaces have been removed to show their offsets. It can be noted that the

offsets of NURBS surfaces are more complex than the originals. This does

not happen to the offsets of special surfaces.
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Figure 6.23: Details of some offset surfaces.

Figure 6.24: Two more views of the complete hair dryer model.
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conditioned conjugate gradient) solver. At the end of the calculations, the

software displays the results and the user has to interpret them.

Figure 6.25: FEM analysis. The red arrows represent punctual loads and

the green arrows represent the nodal constraints. The colors on the mesh

represent the Von Mises stress values, that are scalar stress values combining

the principal stresses acting in different directions.

The entities that are used to build a FEM model in Eyeshot are called

FEMMesh. They are made of elements of various shapes, and they are different

from the Mesh entities introduced in Section 6.1.1, that are triangular meshes

used by the CAD system.

The geometry of a FEMMesh is defined by the properties Elements and

Vertices, in which are stored the informations on elements, nodes and con-

nectivity arrays of the model. Analysis on surfaces embedded in R3 is not

supported yet, therefore one can perform 2D-analyses on planar surfaces,

or 3D-analyses on solids. Depending on this dimension, the elements are

subdivided in Element2D, that lie on the XY-plane, or Element3D.

The supported 2D elements are:
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• Tria3: triangular elements with 3 nodes and 2 dof per node,

• Tria6: quadratic triangular elements with 6 nodes and 2 dof per node,

• Quad4: rectangular elements with 4 nodes and 2 dof per node,

• Quad8: quadratic rectangular elements with 8 nodes and 2 dof per node,

• Truss2D: linear elements with 2 nodes and 2 dof per node,

• Beam2D: linear elements with 2 nodes and 3 dof per node,

and the supported 3D elements are:

• Tetra4: tetrahedral elements with 4 nodes and 3 dof per node,

• Tetra10: quadratic tetrahedral elements with 10 nodes and 3 dof per

node,

• Hexa8: hexahedral elements with 8 nodes and 3 dof per node,

• Hexa20: quadratic hexahedral elements with 20 nodes and 3 dof per

node,

• Penta6: pentahedral elements with 6 nodes and 3 dof per node,

• Penta15: pentahedral elements with 15 nodes and 3 dof per node,

• Truss: linear elements with 2 nodes and 3 dof per node,

• Beam: linear elements with 2 nodes and 6 dof per node.

Fig. 6.26 shows a diagram of Eyeshot’s elements, and their geometry.

A Material is assigned to each element, it stores physical properties such

as the Young modulus E, the Poisson ratio ν and the coefficient of expansion

α, which, as we saw in Section 2.3, are fundamental for the analysis.
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Figure 6.26: FEM elements in Eyeshot.
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A FEMMesh model can either be imported from a .txt file or it can be

built within Eyeshot, that in addition to the mesh definition via nodes and

elements offers some mapped meshing functions. These functions allow to fill

some planar regions representing simple shapes (rectangles, circles, squares

with holes) with Tria or Quad elements, and create 3D elements by extruding

or revolving 2D meshes. A FEMMesh made of Tria3 or Tria6 elements can

also be derived from a Mesh entity, using the method ConvertToFEMMesh().

Once the geometric model is ready, loads and constraints can be applied.

The supported load types are: punctual forces or temperature loads applied

to the nodes, and pressure loads applied to the faces of the elements. Con-

straints can be applied to a node by blocking all or some of its degrees of

freedom: this implies that the displacements of a node after the application

of the loads are zero along the constrained directions.

Eyeshot solver has a pre-processing phase in which each element’s stiffness

matrix and load vector are computed and assembled in the global stiffness

matrix K and load vector F , which take into account also the boundary con-

ditions. Then the linear system KU = F is solved using a direct or iterative

method. The solution of the system gives a vector U of the displacements

of each node of the mesh. From this vector, in the post-processing phase,

we compute the strains and stresses and prepare the FEMMesh to display the

solution. In addition to the graphical display of the solution, Eyeshot can

also produce tables with the numeric results for each node and element.

When I first arrived at devDept Software, the FEM component was al-

ready been developed, and it’s only when I knew that my thesis would have

been on Isogeometric Analysis that I started working on it. My main contri-

butions to the FEM component of Eyeshot are:

• modifying the code in order to store the matrices in Compressed Sparse

Row (CSR) format, which is more efficient and less memory-consuming,
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• developing part of the mapped meshing methods, that allow users to

quickly create a FEMMesh of a simple shape.

• adding temperature and pressure loads,

• adding a preconditioning scheme to the conjugate gradient method,

• adding the possibility to use a direct solver instead of the iterative one,

• adding Truss2D and Truss elements,

• adding Beam2D and Beam elements.

Since the addition of Beam elements has been the latest, longest and most

interesting task, we will examine it more in depth.

6.2.1 Beam elements

Beams are slender structural members that offer resistance to forces and

bending under applied loads. A beam element differs from a truss element

in that a beam resists moments (twisting and bending) at the connections.

Thus, beams have rotational degrees of freedom in addition to the transla-

tional ones. In particular, Beam2D elements have three degrees of freedom:

two translational along the X and Y axes, and one rotational around the Z

axis. Beam elements have six degrees of freedom: one translational and one

rotational for each axis (X, Y and Z).

Beams are typically applied in a civil engineering context to describe

structural elements as pillars, columns or structural beams, but they can

also be used to represent parts of other mechanical or structural systems.

We developed elementary beam theory, formally known as Euler-Bernoulli

beam theory, following mainly Bhatti’s book [2].

Since beam members are represented as lines, and lines are objects with

no inherent orientation, a beam needs a local coordinate system (U, V, W)
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to control how the cross section is rotated about the beam’s longitudinal axis

(which by convention is the U axis). In 2D, the local coordinate system is

fully determined by the locations of the two nodes: the U axis is parallel to

the element’s length and the W axis is parallel to the global Z axis. In 3D,

we chose to set the V axis perpendicular to the U axis and the global Z axis,

and the W axis is obtained by the cross product U × V . When U is parallel

to Z, V is made parallel to the global Y axis. Users can change this default

setting assigning an arbitrary local coordinate system to beams, and they

can see beams with their associated coordinate system activating wireframe

visualization mode.

Figure 6.27: A beam element with rectangular hollow cross section (top) and

its local coordinate system (bottom): the the green and blue segments are

along the V and W axes, respectively.

To each beam are assigned a material and a cross section, which can be

general or have a predefined shape such as: square, rectangular, rectangular

hollow, circular, circular hollow, I-shaped, T-shaped or C-shaped (the last

two cross sections can only be used for 2D analyses, because they have only

one axis of symmetry). From the shape of the cross section we automatically
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compute some properties that are fundamental for the creation of the stiffness

matrix and the solution of the beam: cross section area A, moments of inertia

IV and IW about V and W axes, and torsional constant J . For beams with

general sections, these quantities must be supplied as input by the user.

The procedure to solve a beam problem through Eyeshot is the same as

that followed with other elements: a FEMMesh must be defined, then loads

and constraints are applied, and finally the solver is called. Internally, we

compute the stiffness matrix and load vector in local coordinates for each

beam, then we convert them in global coordinates and assemble them into

the global stiffness matrix and load vector. The solution of the linear system

gives the displacements and rotations in global coordinates for each node of

the mesh.

From this data, we compute the displacements at different equally spaced

points along each beam, in order to display the beams with their deforma-

tions. We also compute three orthogonal forces (one axial along U and two

shear forces along V and W) and three orthogonal moments (one torsion

around U and two bending around V and W) are calculated at each end of

each element. The user can decide which of these quantities to show in a

model like the one in Fig. 6.28.

Also for beams, tables with the numeric results on nodes and elements

can be produced.

After releasing the first implementation of beam elements, some cus-

tomers asked us to develop also thermal loading, punctual loads applied

to an internal point of a beam, and hinge releases, which are equivalent to

imposing that the bending moments around some axes are zero. We imple-

mented all these new features, and we are getting the correct results on the

nodes of the FEMMesh. We are still working on getting good results along the

beams when non-nodal loads or hinges are involved.
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Figure 6.28: Beam analysis. The cyan arrows represent distributed loads

and the green arrows represent the nodal constraints. The colors on the

mesh represent the displacement magnitude along each beam.
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Chapter 7

Conclusions

This thesis presents a detailed study of Isogeometric Analysis, focusing

on geometry representations and Computer Aided Design.

We provided several examples of the successful application of IGA to

solve problems defined on different kinds of geometries, 2D and 3D, single

and multipatch.

Comparing the results obtained by IGA with the ones of a conventional

FEM approach, we observed that IGA exhibits superior accuracy than FEM

if the same number of degrees of freedom is used. Therefore, FEM needs

more degrees of freedom to reach a prescribed tolerance.

Both methods use compactly supported basis functions, thus the stiffness

matrices are banded and sparse. Although the B-spline functions used by

IGA have support over larger portions of the domain than do classical FEA

functions, this does not lead to increased bandwidth of IGA in a numerical

method. We observed that, at the same iteration of h and p-refinement, the

bandwidths of the stiffness matrices of IGA and FEM are equal, even though

the FEM matrix is bigger and has more nonzero elements.

Analyzing the condition number of the stiffness matrices, we noticed that

it grows with the refinement for both methods. For a fixed number of degrees

of freedom, the condition number of IGA is higher than the one of FEM.
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Besides the examples on traditional geometries, we applied IGA on a

particular class of physical domains, that we called hybrid domains, which

are multipatch models composed of NURBS and mesh patches. Combining

precise and approximate geometries, hybrid models are an emergent way to

represent solid objects. The development of robust and performant algo-

rithms involving hybrid geometries can be the subject of future research in

the CAD field.

As for the application of IGA on hybrid geometries, the results obtained

in problems with a known exact solution showed that a satisfactory level of

precision can be achieved.

In our examples on 2D and 3D hybrid physical domains, we guaranteed C0

continuity of the solution along the interfaces between the patches. Further

research can be made in order to improve the continuity of the solution

between adjacent patches.
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[19] Dedè Luca, Quarteroni Alfio, Isogeometric Analysis for second order

Partial Differential Equations on surfaces, Computer Methods in Ap-

plied Mechanics and Engineering, Vol. 284, 2015

[20] De Falco Carlo, Reali Alessandro, Vázquez Rafael, GeoPDEs: a re-

search tool for Isogeometric Analysis of PDEs Advances in Engineering

Software, 42(12): 1020-1034, 2011.

[21] De Lorenzis Laura, Wriggers Peter, Hughes Thomas J.R., Isogeometric

contact: A review, GAMM Mitteilungen, Vol 37, No. 1, 2014.

[22] Do Carmo Manfredo P., Differential Geometry of Curves and Surfaces,

Prentice Hall, 1988.

[23] Dokken Tor, Quak Ewald, Skytt Vibeke, Requirements from Isogeomet-

ric Analysis for Changes in Product Design Ontologies, Proceedings of



186 BIBLIOGRAPHY

the Focus K3D Conference on Semantic 3D Media and Content, Sophia

Antipolis, 2010.

[24] Dokken Tor, Skytt Vibeke, Haenisch Jochen, Bengtsson Kjell, Isogeo-

metric Representation and Analysis - Bridging the Gap between CAD

and Analysis, 47th AIAA Aerospace Sciences Meeting Including The

New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5 -

8 January 2009.

[25] Eyeshot’s documentation:

http://documentation.devdept.com/90/webframe.html#topic1.html.

[26] Farin Gerald, Hoschek Josef, Kim Myung-Soo, Handbook of Computer

Aided Geometric Design, Elsevier Science B.V., 2002.

[27] Farouki Rida T., Sverrisson Ragnar, Approximation of rolling-ball blends

for free-form parametric surfaces, Computer-Aided Design, 28: 871-878,

1996.

[28] Filkins Peter C., Tuohy Seamus T., Patrikalakis Nicholas M., Compu-

tational methods for blending surface approximation, Engineering With

Computers, 9: 49-62, 1993.
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