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Abstract

Ambient Intelligence (AmI) is a muldisciplinary area which refers to environments

that are sensitive and responsive to the presence of people and objects. The rapid

progress of technology and simultaneous reduction of hardware costs characteriz-

ing the recent years have enlarged the number of possible AmI applications, thus

raising at the same time new research challenges. In particular, one important

requirement in AmI is providing a proactive support to people in their everyday

working and free-time activities. To this aim, Computer Vision represents a core

research track since only through suitable vision devices and techniques it is possi-

ble to detect elements of interest and understand the occurring events. The goal of

this thesis is presenting and demonstrating efficacy of novel machine vision research

contributes for different AmI scenarios: object keypoints analysis for Augmented

Reality purpose, segmentation of natural images for plant species recognition and

heterogeneous people identification in unconstrained environments.
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Chapter 1

Introduction

1.1 Ambient Intelligence and smart environments

The rapid progress of technology and the simultaneous reduction of hardware costs

characterizing the last decades have made computers more and more present in

everyday life. Initially dedicated to very specific applications, microprocessors are

now embedded in various common equipments/objects and used, more or less con-

sciously, by a wide range of population. Moreover, computer and portable devices

with different capabilities and interfaces are increasingly becoming part of our

home, cities and working places since sensors, actuators and processing units can

nowadays be purchased at very affordable prices. The challenge is now to go a step

forward making these technological facilities ”smart”, i.e. sensitive and reactive

to the presence of people and objects.

The main idea is to embed technology in the environment, enriching it with the

capability of detecting/recognizing objects and people in a scene and adapting

itself to user specific needs and preferences [60]. This ability is usually referred to

as Ambient Intelligence (AmI): in an intelligent ambient, technology can be net-

worked and used with the coordination of highly effective and efficient software.

In particular, software is not only responsible for events and relevant contexts un-

derstanding in a specific environment, but must also take sensible decisions in real

time or a posteriori [116].

On hardware side, the physical infrastructure which supports a generic AmI sys-

tem is referred to as smart environment [44]. The electronics devices placed inside

1



Chapter 1. Introduction 2

the environment must be user friendly, not intrusive, ubiquitous, sensitive, adap-

tive responsive and, obviously, smart. In a smart environment, devices work in

concert to support people in carrying out their usual activities, tasks and rituals

in an easy, natural way using information and intelligence that is hidden in the

network connecting such devices.

The popularity of AmI greatly increased in recent years not only due to much

higher affordability of devices but also because of the increasing presence of con-

nectivity. Such feature allowed in particular the concept of the Internet of Things

(IoT) [87], which has tied in closely with the popularization of AmI. In IoT, phys-

ical objects or ”things” are embedded with electronics, software, sensors and net-

work connectivity thus enabling these objects to collect and exchange informa-

tion. Furthermore, in the IoT definition, objects should be sensed and controlled

remotely across existing network infrastructure, creating opportunities for more

direct integration between the physical world and computer-based systems, thus

resulting in improved efficiency, accuracy and economic benefit.

With reference to AmI, we can point out many examples of intelligent (or smart)

environments: a home where lighting, heating, security and entertainment sys-

tems are automatically managed depending on the presence or the absence of

people inside or outside, a factory where equipment can interact with workers

and maintenance technicians, a museum where technology can help the fruition

of the exhibition giving real time information to a certain user, a smart school

where students can avail themselves of assisted learning with modern instruments,

a public park or game reserve where technology helps visitors in understanding

the surrounding nature and all the kind of applications that are typically placed

in smart city contexts [34, 138].

Without moving here into details of the above mentioned examples, the reader

can easily notice that AmI is a multidisciplinary area which embraces a variety

of pre-existing fields like Artificial Intelligence and Robots, Sensors Network, Hu-

man Computer Interaction, Multi-Agent Systems and Pervasive Computing and

Communication. While such areas are offering to AmI designers various ideas to

enrich the user experience with novel and useful services, it is undeniable that

Computer Vision represents a valuable enabling science for AmI in order to reveal

and understand human behavior in its different social settings thus providing rich

information in an unobtrusive modality. Computer Vision has applications for

ambient assisted living [3], human-computer interaction [80, 140], surveillance and

identification [153], abnormal event detection [117] and for many more challenges



Chapter 1. Introduction 3

falling under the domain of AmI [137].

The main focus of this thesis is about how machine vision and novel techniques

can support AmI in its peculiar application. To this end, we will illustrate in the

next chapters some significant research contributes in different scenarios whereas

in the following part of this introductory chapter we are going to deeply discuss

main links between AmI and Computer Vision, in order to further emphasize the

role of Computer Vision.

1.2 The role of Computer Vision in AmI

As explained in Section 1.1, a digital environment is able to support people in their

life in a proactive and sensible way [11]. To pursue such goal, vision and sensor

networks play a decisive role [116], providing techniques to acquire information

from the environment, detect the presence of elements in a scene and understand

the occurring events. As illustrated in Figure 1.1, vision networks can offer a vari-

ety of inferences from the event and human activities of interest [4]. The acquired

information and data are transferred to high-level reasoning modules for knowl-

edge accumulation in applications involving behavior monitoring or for reacting

to specific situations. Another type of interaction between vision and higher-level

application context may involve visualization of events or human actions which

can take the form of video distribution or avatar-based visual communication [5].

In both kinds of interfaces, two-way communication between vision/data process-

ing modules and high-level reasoning/visualization modules can enable effective

information acquisition by guiding vision to the features of interest and validating

the vision outputs based on prior knowledge, context and accumulated behavior

models.

While many novel sensory modalities are offering to AmI applications designers

new possibilities to realize these goals, Computer Vision remains the most impor-

tant modality in providing rich information in an unobtrusive way [137]. Here-

inafter we provide a short overview of the latest trends in algorithm and application

development based on visual inputs and Computer Vision processing.

� Distributed vision algorithms: dealing with a large number of cameras have

been a hot topic for Computer Vision research in recent years. Neverthe-

less, many multi-camera algorithms presuppose that digital content captured
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Figure 1.1: The role of vision and sensor networks in interaction with high-level
reasoning and visualization modules (figure from [116]).

from all cameras is transmitted in a loss-less fashion to a central processor

that finally processes the received data to solve the problem or perform the

required task. This hypothesis is not realistic for emerging wireless camera

networks, which may contain processing units with reduced capability, bat-

teries with degraded duration and antennas with limited power. Therefore,

methods for topology estimation, camera calibration and visual tracking are

necessary to cope with this new type of computationally constrained devices

and cameras [129].

� Vision - based people tracking and biometric recognition: human pose track-

ing is a key enabling technology for a lot of applications, such as the analysis

of human activities for perceptive environments and innovative man-machine

interfaces. Despite years of research, 3D human pose tracking remains a chal-

lenging problem. Pose estimation and tracking is currently possible in con-

strained environments with multiple cameras and under limited occlusions

and scene clutter. Monocular 3D pose tracking in unconstrained environ-

ment is much more difficult, but recent results are promising. In these areas,

important contributions come from biometric recognition research [116].

� Human behavior understanding: human behavior has been a focus of Com-

puter Vision research for a long time, mostly on a personal signal level, where
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the face and body of a person are tracked and analyzed for a specific purpose.

Automatic classification of human behavior involves understanding of bodily

motion, gestures and signs, analysis of facial expressions and other affective

signals. On a higher level, these signals are integrated with the contextual

properties of an application domain, to constrain the otherwise immense vari-

ation in expressive human behavior. Research now moves towards analysis

in more natural settings with uncontrolled conditions, adding more stringent

real time constraints and most importantly, interaction dynamics. The rel-

ative position of people in interaction, their postures, gestures, non-verbal

behavior and the way they respond to each other carry significant social clues

which are essential to correctly infer contextual properties of the interaction.

The recently flourishing field of social signal processing is very relevant for

AmI researchers, as it attempts to systematically categorize these signals,

developing tools for their automatic recognition [137].

� Object detection, recognition, tracking and segmentation: a smart envi-

ronment must respond effectively not only according to the presence and

behavior of people that are inside it, but also according to presence and

movements of generic objects (especially in video surveillance applications).

For example, one sub-area in the context of AmI concerns the support of

moving objects, i.e. to monitor the course of events while an object crosses

a smart environment and intervene if the environment should provide assis-

tance [116]. For this purpose, a smart environment has to employ methods

of knowledge representation and spatio-temporal reasoning. Moreover, as

well as people recognition and tracking, Computer Vision has to deal with

realistic and unconstrained conditions.

1.3 Computer Vision and AmI: main research

contributes

As illustrated in Section 1.2, AmI includes many different concrete applications

and Computer Vision performs a crucial role in each of them. By enriching an

environment with vision devices and providing suitable algorithms it is possible

to obtain awareness and responsiveness to the presence of humans and objects,

in a user friendly, interactive and efficient way. On one hand, each application
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requires specific solutions and dedicated vision techniques to deal with occurring

environmental conditions and use cases. On the other hand, techniques must be

scalable, efficient and reusable in order to adapt to evolving requirements.

In this thesis, we will provide different research contributes falling under different

AmI scenarios: in Chapter 2 we will examine the Augmented Reality field pro-

viding a novel technique for keypoint selection and ranking [26, 27] in order to

build compact but effective object models and offer support for real time object

recognition and pose estimation, in Chapter 3 we will investigate segmentation of

natural images and we will apply it to leaf segmentation thus providing a novel

approach to extract accurately the leaf shape in loosely controlled conditions [148].

Finally, in Chapter 4 we will tackle the problem of heterogeneous face recognition

focusing on recognition from sketch. In particular, we will show how simple but

effective shape features could help in the process of suspect identification [25].

Each of the previous mentioned scenarios has strong connections with AmI. In the

following subsections we are going to illustrate the main features of such topics

thus summarizing the research contexts, whereas in Chapters 2, 3 and 4 we will

describe in details each single research contribute.

1.3.1 Object keypoints analysis to support Augmented Re-

ality

Providing a universally accepted definition about the meaning of Augmented Real-

ity (AR in the following) is quite difficult since in the literature different alternative

definitions about such topic are reported and used. Relying upon the Handbook of

Augmented Reality [62] we can define AR as a real time direct or indirect view of

a physical real-world environment that has been enhanced/augmented by adding

virtual computer-generated information to it. AR is both interactive and regis-

tered in 3D as well as it combines real and virtual objects. It is important to

specify that AR can be potentially applied to all human senses, including not only

sight but also taste, hearing, touch, and smell: under this point of view we can

define AR as an enrichment of the human sensory perception by building informa-

tion, generally handled and conveyed electronically, that would not be perceived

with the five senses.

Because of the necessary requirements for its use, both in terms of functional-

ity and computing power, AR had initially a limited diffusion and was used in
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particular contexts, such as the military field, medical research and education.

Nowadays the scenario has radically changed: thanks to the increasing presence of

enabling technologies [181], AR can be applied in manifold AmI contexts [47]. Po-

tentially, any object that surrounds us could be enhanced by appropriate virtual

information. Among others, the most important application fields are military,

emergency services, art and cultural heritage, games, tourism, education, trade,

entertainment, industrial systems, design, construction, surgery, etc.

Figure 1.2: Different types of enabling technologies for AR, from left to right:
head-mounted device (figure from [173]), smartphone (figure from [171]), special
projection device (figure from [174]).

Taking advantage of the Azuma research contribute [12], we can define an AR

system to have the following properties: it combines real and virtual objects in

a real environment, it has to interact and provide real time experience, it has to

register and align real and virtual objects with each other. In other words, AR

aims at simplifying the user’s life by bringing virtual information not only to his

immediate surroundings, but also to any indirect view of the real environment,

such as live video stream. Furthermore, it enhances the user’s perception of the

tangible world and the interaction with it.

It is important not to confuse the concepts of Augmented Reality and Virtual

Reality among them: to this aim, Milgram [114] defined a continuum of real-to-

virtual environments in which AR is one part of the general area of Mixed Reality

(Figure 1.3).

In Augmented Virtuality (where real objects are added to virtual ones) and Vir-

Figure 1.3: The Reality-Virtuality Continuum defined by P. Milgram in [114].

tual environments (or Virtual Reality) the surrounding environment is virtual. On
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the contrary, in Augmented Reality the surrounding environment is the real one.

Certain AR applications also require removing real objects from the perceived

environment, in addition to adding virtual objects. For example, an AR visualiza-

tion of a building that stood at a certain location might remove the building that

exists there today. Some researchers refer to the task of removing real objects as

mediated or diminished reality, but we consider it a subset of AR.

Regarding to this thesis, we will focus on AR without dealing with augmented

virtuality or virtual environments. In particular, special attention will be paid

to the vision-based AR, where the analysis of a certain scene is performed taking

video frames (or images, generally speaking) coming from cameras and the sen-

sorial perception of the augmented content is given through appropriate viewer

devices like head-mounted displays or glasses, smartphone/tablet displays or spe-

cial projection devices (see Figure 1.2).

In such scenario, object detection and pose estimation represent the main building

blocks of any possible application, since only a correct pose recovery makes pos-

sible the correct projection of a certain augmented content depending on the user

perspective. In the so-called marker-based applications some artificial landmarks

as 2D-bar codes, beacons, pictorial markers, etc. [62, 126] are employed to simplify

such operation. Nonetheless, markers cannot be always used thus making object

recognition and pose estimation very challenging. The standard approach in mark-

erless scenario takes advantage of keypoint detection and descriptor matching in

order to find correspondences between the real time scene/object and an already

arranged object model. Such method has been proved to work well in many dif-

ferent contexts but suffers especially when dealing with resource-constrained plat-

forms such as mobile devices. To tackle the problem, we introduce and describe

in Chapter 2 a novel technique to reduce the set of detected keypoints only to the

main salient ones, thus employing the related descriptors for the following match-

ing and pose estimation tasks. Moreover, in Chapter 2 we will prove also that our

approach offers an effective solution for different AR scenarios like maintenance

and tourist applications.

1.3.2 Segmentation of natural images

Image segmentation is the process of partitioning a digital image into multiple and

non-overlapping regions (segments). Segments are typically regions or categories

related to different objects or parts of objects. At the end of segmentation process,
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each pixel is assigned to a different category. When each category has a specific

meaning connected to the real world (a car, a cat, a person, etc.) we refer to such

process also as semantic segmentation.

Differently from object detection where the ideal output is represented by the

minimal bounding box that includes a certain object, in image segmentation the

ideal output is composed by all the pixels that constitute the object of interest

thus isolating it from the clutter or the background . Points belonging to the same

segmented region are similar with respect to some characteristic or computed prop-

erty, such as color, intensity, or texture. Adjacent regions/image parts are instead

significantly different with respect to the same characteristic(s) [13, 143]. The

main goal of segmentation is to decompose the image into parts in order to allow

further and more complex investigation. For example, starting from a segmented

image it is straightforward to extract boundaries and shapes of segmented objects

as well as classify the image depending on the object classes detected in the image

itself.

A huge literature contribution about general purpose segmentation have been pro-

posed in the last three decades, nonetheless some open problems related to seg-

mentation of natural images and images from outdoor environments still remain.

Segmentation of natural images is an important preliminary step in many AmI

applications such as analysis of green urban environment, recognition of plant

species for professional and educational purposes, detection of illness/malforma-

tion of plants in agricultural plantation and so on. In such AmI applications,

segmentation covers a crucial role since a pixel-level precision is required to lo-

cate the object of interest or a part of it (see Figure 1.4). For example, a good

segmentation is decisive in plant recognition since accurate leaf shape needs to be

extracted whereas in illness detection some specific colored areas which represent

a warning about the presence of a disease must be revealed. Once segmentation is

completed, proper actions or specific analysis can be carried out: e.g. , recognition

of the given plant or alerting professionals to fix the detected disease. Unfortu-

nately, segmentation has to be usually performed on images taken under irregular

and/or unsupervised illumination conditions, thus making such task quite com-

plex.

In Chapter 3 we will focus our attention on plant species identification by propos-

ing a robust and accurate method for segmenting specular objects acquired under

loosely controlled conditions. In particular, we will refer to a concrete case study

based on leaves since leaf segmentation plays a crucial role for plant identification,
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Figure 1.4: Natural image segmentation examples from CVPPP2015 challenge.

and accurately capturing the local boundary structures is critical for the success

of the recognition in state-of-the-art applications. Popular techniques are based

on Expectation-Maximization and estimate the color distributions of the back-

ground and foreground pixels of the input image. As we show, such approaches

suffer in presence of shadows and reflections thus leading to inaccurate detected

shapes. Classification-based methods are more robust because they can exploit

prior information, however they do not adapt to the specific capturing conditions

for the input image. Methods with regularization terms are prone to smooth the

segments boundaries, which is undesirable. We will show we can get the best of the

EM-based and classification-based methods by first segmenting the pixels around

the leaf boundary, and use them to initialize the color distributions of an EM

optimization. We show that this simple approach results in a robust and accurate

method.

1.3.3 Heterogeneous identification in unconstrained envi-

ronments

Surveillance and people identification are relevant tasks in Ambient Intelligence

discipline [116]. Numerous and different biometric traits can be exploited in order
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to recognize a person or a class of people, thus originating different biometric

systems with different level of reliability depending on the trait [185]:

� biometric systems based on static elements such as fingerprint, face, palm-

print, hand veins, iris, ear and DNA;

� biometric systems based on dynamic/behavioral traits such as gait, voice,

signature, keystroke and gesture;

� biometric systems based on recognition of chemical or organic aspects such

as scent and virus presence.

In the recent years, due to the technology advances and the increased demand

for security and reduction of human costs, biometric applications have been con-

stantly increasing. Most common biometric sensing modalities available today

fall into one of three categories: contact, contact-less and at-a-distance [162]. In

contact-based systems the user is required to touch the sensor (e.g. fingerprint

or signature acquisition) whereas in contact-less or at-a-distance systems the user

can stay at a predetermined distance from the sensor (e.g. iris, face or gait recog-

nition).

Contact-based identification systems are probably the most widespread but they

require an high level of cooperation by the user itself. Moreover, since a physical

contact with the system needs to be carried out in order to acquire biometric sam-

ples, such recognition procedure is usually perceived as strongly invasive. Due to

these reasons, contact-based systems and related biometric traits are not effective

in Ambient Intelligence contexts [162]. In a smart environment the information

about people are acquired through cameras or at-a-distance devices and identifica-

tion must be performed in an unobtrusive and contact-less way, with a minimal or

no-cooperation offered by users. Therefore, the main reliable biometric trait that

can be exploited in such scenarios results to be face, since its acquisition can be

totally transparent to the monitored user while he/she is walking or doing his/her

activities.

With reference to surveillance, one emerging trend in Ambient Intelligence and

smart environment is face recognition through heterogeneous sources [92] [56].

Standard face recognition is usually performed by comparing a photo against a

gallery of images. However, such general approach is not always applicable espe-

cially when surveillance has to be carried out nighttime or in unconstrained/crowded



Chapter 1. Introduction 12

environments. In these scenarios, alternative technologies are employed to capture

subject face: thermal images, near infrared images and sketches/identikit provided

by eyewitnesses (see Figure 1.5). For this reason, new heterogeneous matching

techniques need to be studied and implemented in order to perform matching

across different face modalities, thus enabling face recognition in challenging and

unusual situations.

In particular, recognition from a face sketch is an interesting problem from the

(a) (b) (c)

Figure 1.5: Subject acquisition from different sources: (a) RGB camera, (b)
infrared camera and (c) manual sketch/identikit.

point of view of possible practical applications. Usually, a face sketch is realized

by a forensic artist based on the verbal description provided by an eyewitness. In

other words, in such scenario the acquiring device is not a camera or a special

video surveillance device but a physical person who assists to a criminal event and

then provides his memories to the police. In the standard approach, recognition

is performed either by broadcasting the identikit to the population with the hope

that someone could recognize the depicted subject or by manually comparing the

identikit against the already available mug shot photo databases. In Chapter 4

we propose a novel and automatic technique to compare sketches and real photos

by extracting common features which enable an heterogeneous, fast and scalable

matching.



Chapter 2

Saliency-based Keypoint

Selection and Ranking

2.1 Introduction

Keypoints and local descriptors are nowadays largely used for image classification,

object detection and recognition, object localization and tracking, image regis-

tration and multi-view vision. In the context of object detection/matching, the

reference model of a given object can be created by extracting a set of keypoints

(e.g. , Harris [73], FAST [134], Shi-Tomasi [145], SUSAN [152], Difference of Gaus-

sians [105]) and associating to each of them a local descriptor (e.g. , SIFT [105],

SURF [14], BRIEF [30]). When the object has to be searched/matched in/against

a given test image, a new set of keypoints and related descriptors is extracted and

the two sets are matched to consolidate a similarity score. This basic approach

works well for some applications but it is not always applicable to real time sce-

narios especially when low performance computing architectures are involved. In

fact, even if time-efficient keypoint detectors and descriptors are used, the po-

tential very large number of resulting keypoints can require heavy computational

demands for the matching phase. Decreasing the number of keypoints reduces the

matching complexity but this strategy is effective only if the retained keypoints

are stable across different instances of the same object and at the same time the

associated descriptors are sufficiently discriminant to avoid increasing matching

errors.

13
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In this chapter we present a new approach to select good keypoints for object de-

tection and matching based on their saliency, under moderate viewpoint and light

changes. Keypoint selection is performed through a training stage starting from

one or multiple images (views) of the given object. Keypoint saliency is defined

in terms of keypoint detectability and descriptor repeatability and distinctiveness.

Even though the proposed approach is independent of the keypoint detector and

local descriptor, FAST detector [132, 133] and BRIEF descriptor [30] are here used

to maximize efficiency thus enabling real time applications.

The chapter includes a summary of systematic experiments conducted on the pro-

posed selection approach and a comparison with state-of-the-art methods. We

prove the effectiveness of our technique in a typical real time Augmented Reality

scenario, where keypoint matching is used to effectively recover the camera view-

point thus enabling different possible applications.

The chapter is organized as follows: in Section 2.2 we review the literature about

object detection and description whereas a general overview of the proposed ap-

proach for detection/matching is presented in Section 2.3. In Section 2.4 we pro-

vide a formal definition of keypoint saliency and we introduce the keypoint se-

lection scheme while Section 2.5 presents the experiments carried out to evaluate

the approach. Finally, in Section 2.6 we propose different case studies where our

saliency evaluation framework could be applied.

2.2 Related work

Local image structures like corners and blobs (here addressed with the equiva-

lent term of keypoint) are crucial elements for a variety of computer vision tasks

such as tracking, localization, simultaneous location and mapping (SLAM), image

matching and recognition. Therefore, detection and description of such structures

represent one of the main issues examined by machine vision scientists in the last

three decades: a countless amount of different techniques have been introduced in

literature. Moreover, due to the increasing need of real time performance to deal

with live video stream and mobile devices with restricted computational capabil-

ities, efficiency and speed recently assumed considerable priority becoming a key

evaluation factor.

In Subsection 2.2.1 and Subsection 2.2.2, short but thoroughly overviews of the

main contributes for keypoint detection and description are presented, respectively.
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Finally, in Subsection 2.2.3 studies about keypoint quantitative characterization

will be reviewed (main methods are also summarized in Table 2.1 for keypoint

detection and Table 2.2 for keypoint description).

2.2.1 Keypoint detection

In image understanding, the main approaches to identify keypoints are multi-scale

corner and blob detection. A corner is a point which presents two dominant and

different edge directions in its local neighborhood whereas a blob is a region that

differs in brightness or color properties compared to other surrounding regions.

In general, localization of blob structures tends to be less accurate than corner

detection. Indeed, corners can be identified by a single point while blobs can be

only localized by their (often irregular) boundaries and the keypoint is approx-

imately placed in the local extrema inside the blob/region. On the other hand,

scale of a corner is ill-defined whereas a blob detector provides useful information

about blob detected scale [165]. Even though corners and blobs can be considered

as two sides of the same coin, different techniques have been investigate for their

detection.

With reference to finding keypoints through blob detection, the main and qual-

ified machine vision methods are based on partial differential equations (PDE).

Among others, the main ones are Laplacian-of-Gaussians (LoG), Difference-of-

Gaussians (DoG), Harris-Laplacian and Hessian-Laplace [113]. In LoG the image

is convolved by a Gaussian kernel at a certain scale to give a scale-space repre-

sentation and then a scale-normalized Laplacian operator is computed to infer the

local maxima/minima whereas DoG represents a good and faster to compute ap-

proximation for LoG. Harris-Laplace combines the Harris operator with the scale

selection mechanism presented in [102] while Hessian-Laplace detector usually re-

turns more interest regions than Harris-Laplace at a slightly lower repeatability

[69].

Beside techniques based on PDE analysis, in the literature we can find template-

based blob detectors too. In such approaches, binary comparison and decision

tree classification are carried out to investigate interest structures in the image.

Among them we have ORB [136], BRISK [98] and FREAK [6] detectors and we

will give notions about them in Subsection 2.2.2 since their main contribution is

about keypoint description.

With reference to corners and accordingly to the taxonomy recently reported
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in [99], corner detection methods can be grouped in three different categories:

gradient-based, template-based and contour-based techniques.

Gradient-based methods have been the first in chronological order to be studied.

Among them, we can find the very popular Harris corner extraction [73] based

on the first order Taylor expansion of the second derivative of the local sum of

squared differences (SSD). Furthermore, literature proposes some Harris-inspired

methods with different cornerness measures such as the Shi-Tomasi [145] and the

KLT detector [164]. In [145] a different interpretation of the eigenvalues based on

a threshold is carried out while in [164] the proposed point is selected by analyzing

how well the given feature can be tracked. Since the analysis proposed by such

methods for gradient-based cornerness evaluation requires a considerable compu-

tational effort, different solutions have been introduced in [107] (LOCOCO) and

[106] (S-LOCOCO) where integral images and interpolation are employed to re-

duce the computational load required for Gaussian derivative, cornerness response

and non-maximum suppression.

Another way to detect corners in images is comparing the intensity of a given

pixel and pixels in its neighborhood. Literature usually refers to such approach

with the name of template-based corner detection, where the template is a mask

to be centered on the central pixel in order to locate sorrounding pixels. The

main approach falling in such category is SUSAN [152] where the intensity of each

pixel inside the circular template is subtracted to the intensity of the central pixel

and points with absolute intensity difference smaller than a given threshold are

considered as corners. Similar template-based approaches have been recently pro-

posed by involving machine learning and decision trees to speed-up the detection

process. Among them, FAST [132, 133] represents currently the state-of-the-art.

FAST concerns the use of a circular template: instead of computing intensity dif-

ferences as SUSAN, a point is considered a corner by the FAST approach if and

only if at least S contiguous pixels in the circle are darker or brighter than the in-

tensity value of the central pixel and a threshold. To enhance repeatability, FAST

has been improved by increasing the thickness of the template thus leading to the

FAST-ER method [134]. Another derivation of FAST is the AGAST detector [109]

where an adaptive and generic accelerated template-based test is carried out by

finding the optimal decision tree in an extended configuration space.

A third more tricky category for corner detection is the previous mentioned contour-

based which finds a wider applicability in shape analysis rather than keypoint

matching, thus making them not so appropriate for our purpose. Methods falling
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in this class try to rely on contour and find interest points by analyzing the max-

imum curvature in the planar edge curves. Therefore, after performing steps as

curve smoothing and curvature estimation, the extracted corner points are mainly

located in binary edge maps. Main contour-based approaches for curvature esti-

mation are determinant of gradient correlation matrices [204], anisotropic direc-

tional derivatives representation [146], hyperbola fitting [187] and junction detec-

tion [193].

Detector type Based on Proposed methods

Corner detection

Gradient

Template

Contour

Harris [73], KLT [164], Shi-Tomasi [145],

LOCOCO [107], S-LOCOCO [106]

SUSAN [152], FAST [133],

FAST-ER [134], AGAST [109]

DoG-curve [204], ANDD [146],

Hyperbola fitting [187], ACJ [193]

Blob detection

PDE

Template

LoG, DoG, DoH, Hessian-Laplacian [113],

SIFT [105], SURF [14]

ORB [136], BRISK [98],

FREAK [6]

Table 2.1: Summary of the main keypoint detectors at the state-of-the-art.

2.2.2 Keypoint description

One of the best quality techniques nowadays available in literature for keypoint

description is Scale-Invariant Feature Transform (SIFT) [105]. SIFT method first

includes a rotation and scale invariant keypoint detection through Difference of

Gaussians (DoG) (see Subsection 2.2.1). Then, a 128-components vector is built

by computing a grid of histograms of oriented gradients. The vector is finally nor-

malized in order to improve invariance to illumination and affine changes. Thanks

to its structure, SIFT descriptor is characterized by a high discriminative power
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and robustness to changes of illumination and viewpoint. On the other hand SIFT

is rather slow to compute and match, thus making it not so appropriate for real

time applications.

To address real time flaws, another gradient-based descriptor has been introduced:

its name is Speeded Up Robust Feature (SURF) [14]. SURF offers significantly

lower computational time without affecting recognition accuracy if compared to

SIFT. SURF performs keypoint detection by identifying image blobs through the

computation of the Hessian matrix determinant while descriptor is obtained by

summing Haar wavelet responses at the region of interest.

Different alternatives to decrease time cost of SIFT-based matching are based on

dimensionality reduction in order to obtain shorter descriptors. This is done by

employing Principal Component Analysis (PCA) or Local Discriminat Analysis

(LDA) thus leading to SIFT-like approaches as PCA-SIFT [90] and Gradient Lo-

cation and Orientation Histogram (GLOH) [112]. PCA-SIFT reduces descriptors

from 128 to 36 dimensions whereas dimensionality reduction compromises descrip-

tor distinctiveness. On the other hand, GLOH provides better distinctiveness and

uses PCA to shorten descriptor at the price of greater processing time.

Attempts to introduce faster SIFT-like methods by employing dimensionality re-

duction, values quantization [28, 166, 188] or hashing [142, 156] did not succeed

enough mainly because of the required computation of the full descriptor through

floating-point calculation before doing post-processing optimization, thus having

great impact on the spent time. Moreover, distance between floating-point vector

is usually determined through the Euclidean distance which negatively affects the

overall matching cost.

To deal with the problem of expensive floating-point computation, different ap-

proaches involving computation of compact binary strings from image patches

have been investigated. The first noticeable contribution falling in such area is Bi-

nary Robust Independent Elementary Features (BRIEF) [29, 30]. Single bits of a

BRIEF descriptors are obtained by comparing intensities of pixel belonging to the

smoothed region of interest: such technique provides a remarkable speed-up not

only in terms of descriptor building but also during matching, since the similarity

measure between two binary vectors - i.e. the Hamming distance - can be quickly

computed through a bitwise XOR followed by a bitcount. Furthermore, signifi-

cant storage saving is favored by adopting binary vectors instead of floating-point

structures.

Further approaches have been then examined in order to increase robustness to
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scale and rotation of BRIEF without loosing in speed efficiency. Among others,

Oriented FAST and Rotated BRIEF (ORB) [136], Binary Robust Invariant Scal-

able Keypoints (BRISK) [98] and Fast Retina Keypoints (FREAK) [6] are the

main contributes. ORB is a fusion of FAST and BRIEF algorithms with peculiar

modifications to enhance performance. Specifically, keypoint are detected by us-

ing FAST with the addition of accurate orientation component plus Harris corner

filter [73] to perform non-maxima suppression of interest points. BRIEF descrip-

tors are then steered according to the orientation of detected keypoints to provide

tolerance to viewpoint changes. Similar idea is at the base of BRISK where a com-

bination of AGAST [109] for keypoint detection and a DAISY-affine [163] pattern

for description are employed whereas FREAK adopts a geometric pattern that

recall the human retina.

As the reader can notice, recent attempts to provide discriminative and robust

binary descriptors are mostly based on FAST and BRIEF as core detection and

description algorithms respectively, plus encapsulation of scale and rotation infor-

mation aiming to more viewpoint invariance. In our work we adopt FAST and

BRIEF too, but instead of modifying the ”nature” of such methods we attempt

to discover the ”strongest” descriptors by quantitatively characterizing their reli-

ability through the saliency measure illustrated in Section 2.4.

Descriptor type Based on Proposed methods

Non-binary

Gradient

Gradient and

dim. reduction

SIFT[105], SURF[14]

PCA-SIFT [90], GLOH [112]

Binary Patches/Template
BRIEF [29, 30], ORB [136],

FREAK [6], BRISK [98]

Table 2.2: Summary of the main keypoint descriptors at the state-of-the-art.

2.2.3 Keypoint quantitative characterization

The quantitative characterization of keypoint, the definition of keypoint saliency

and the effectiveness of local descriptors have been widely investigated in recent
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years. Usually, the definition of keypoint saliency takes into account different as-

pects such as robustness with respect to deformations or descriptor distinctiveness.

For example, Amit and Geman [7] defined a training procedure to select special

points which are likely to be found at certain places in the object but rarely in

the background. However they did not consider the robustness of associated lo-

cal descriptors. The concept of robustness of local object appearance represented

as probability density function has been investigated by Fergus et al. [55] and

Sim and Dudek [147]. Moreover, Pope and Lowe [128] attempted to give an esti-

mation of descriptor detectability and distinctiveness by calculating how often it

appears in the learning process. Another memory-based approach was proposed

by R.C. Nelson [118] that relies on the combination of an associative memory

with a Hough-like evidence technique. Ohba and Ikeuchi [122] proposed an eigen-

based selection of robust descriptors according to their variation with respect to

deformations and suggested selection of unique descriptors by checking their dis-

tinctiveness compared to other descriptors extracted from training images. In the

approaches proposed by Agarwal and Roth [2] and Weber et al. [186] a clustering

algorithm is adopted to select patterns most often appearing during the train-

ing stage. Dorkó and Schmid [139] trained a classifier for each object part and

proposed a selection of scale invariant feature descriptors to determine the most

discriminant ones, whereas Zhang and Kosecká [201] introduced a hierarchical ap-

proach where a refinement stage is adopted to select only the most discriminative

SIFT features and a simple probabilistic model integrates the evidence from indi-

vidual matches.

The previously cited approaches allow to effectively determine the most discrimi-

nant local appearances for a given object class. Nevertheless, most of them do not

explicitly consider the intra-class saliency of local appearances in order to estab-

lish a ranking of them. A relevant work that quantitatively characterizes keypoint

robustness has been proposed by Comer and Draper [43]: their approach tries to

determine if a point is repeatable using a generalized linear model (GLM) which is

able to predict which points will repeat according to 17 different attributes. The

authors used different keypoint detectors such as Lowe’s keypoint detector [105]

and Harris-Affine keypoint detector [73, 111].

Differently from [43] our saliency analysis is not based only on the evaluation

of keypoint detection response but it also considers associated local descriptor

discriminating power. The literature contributions closest to our approach are

the interesting (and inspiring) work introduced by Carneiro et al. [36, 37] and the



Chapter 2. Saliency-based Keypoint Selection and Ranking 21

classification-based prediction of local descriptors matchability recently introduced

by Hartmann et al. [74]. Analogously to our approach, [37] and [36] adopted a

training phase where geometric and brightness transformations are used to esti-

mate keypoint/descriptor robustness and to define their saliency. Furthermore,

as in [74], our aim is to find out in advance best candidates for matching. How-

ever, our approach deviates from [37], [36] and [74] in several directions illustrated

below.

� We propose a simplified saliency definition and a different matching schema

to boost efficiency and enable real time operation on low performance archi-

tectures; [37] and [74] use a keypoint classifier to filter out (also from the test

image) unwanted keypoints and [37] uses a regressor to estimate probability

values given in input to a keypoint-assignment validator. On the contrary

we perform keypoint selection only during the model computation (train-

ing), and our approach relies on simple NN pairing followed by RANSAC

consolidation.

� In [74] a training phase is carried out by learning the probability of a given

local descriptors to exceed a matching threshold during NN search. On

the contrary, our approach does not rely on matching probability against

thresholds.

� We focus on recently introduced keypoint detection (FAST) and local de-

scriptors (BRIEF) while experiments in [37] have been performed by using

(more accurate but less efficient) SIFT (as well as [74]) and Phase-based

local descriptor.

� In our definition of distinctiveness, with the aim of maximizing keypoint/de-

scriptor inter-class diversity, we consider different keypoints of the same im-

ages, while in [37] ”negative” examples are randomly selected from a separate

set of images. We believe our choice is more effective to filter out from the

object model those keypoints/descriptors of the object which are similar to

each other, in order to reduce the probability of false assignments.
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2.3 Keypoint detection and matching: approach

overview

The proposed approach belongs to the field of object detection and matching

by keypoint detection and local descriptors comparison. A full overview of the

method is reported in Figure 2.1. A training set is composed by a single reference

image Iref of the object acquired in neutral viewpoint and lighting conditions

and by a set of N generated images I1, I2, ..., IN which depict the same object or

scene under different conditions. A generic transformed image I l is obtained by

applying a transformation Transfl, belonging to the set of transformations T , to

the reference image as follows:

I l = Transfl(I
ref ) (2.1)

The nature of Transfl function is strongly related to the type of transformations

characterizing the target application and could be a 2D homography, a 3D projec-

tion, a light changing function or a combination of the previous ones.

The training phase starts with the keypoints detection on the reference image

Iref . Each keypoint is then mapped on the transformed images (through the

known Transfl functions), thus obtaining a set of reference keypoints and their

projections. Keypoint descriptors are then computed for all keypoints and a global

analysis is performed to rank the keypoints by saliency and select the m-best ones

to create the object model. Matching a test image I test against an object model is

carried out by detecting the keypoints and computing descriptors from I test and

matching them against the model keypoints.

Considering that we are interested in real time detection/matching, recently pro-

posed FAST and BRIEF have been adopted as detector and descriptor algorithms,

respectively (see Section 2.2). FAST keypoint detection involves simple compu-

tations considering only the brightness of the surrounding pixels, whereas BRIEF

binary descriptors can be easily extracted through straightforward brightness tests

and efficiently matched by bitwise operators.

Saliency evaluation relies on the estimation of keypoint distinctiveness, repeata-

bility and detectability properties:

� Distinctiveness quantifies the difference between a given keypoint descriptor

and other keypoint descriptors of the same object. Note that distinctiveness
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Figure 2.1: Overview of the proposed detection/matching method: a prelimi-
nary training stage is performed for saliency-based keypoint ranking and selec-
tion. The most salient keypoint descriptors which form the object model are
the only keypoints matched against test images.

of a keypoint is strongly related to its local descriptor;

� Repeatability quantifies the difference between a given keypoint descriptor

and corresponding descriptors of projected keypoint on transformed images.

Hence, repeatability estimates invariance of local descriptor under different

conditions (e.g. , viewpoint and lighting). Here too, the repeatability of a

keypoint is strongly related to its local descriptor;

� Detectability quantifies the aptitude of a given keypoint to be detected under

various viewpoint and lighting changes. Unlike distinctiveness and repeata-

bility, detectability of a keypoint is based only on its detection properties

(independently of the associated descriptor). For the FAST algorithm this

is expressed by a score estimating the corner strength.

A highly distinctive, repeatable and detectable keypoint is an excellent candidate

for the matching phase. On the contrary, a point with a low saliency is poorly

representative and it could lead to false positive matches. Therefore, focusing on

the most salient keypoints not only reduces the computation load but can also

improve keypoint matching accuracy. As previously described, saliency evaluation
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exploits various images taken under different conditions of viewpoint and lighting.

To overcome well-known problems of RGB color space when dealing with light

changes, according to other authors ([64, 178, 179]) we propose to operate in the

Opponent color space [178], defined as follows:
O1

O2

O3

 =


R−G√

2
R+G−2B√

6
R+G+B√

3

 (2.2)

The intensity information is encoded by O3 whereas the color information is repre-

sented by O1 and O2. Due to the subtraction in O1 and O2, such components are

shift-invariant with respect to light intensity. Our experimental results confirm

that Opponent color space (OCS in the following) is more effective than RGB

space.

2.4 Definition of keypoint saliency

In this section we introduce a quantitative characterization of keypoints saliency

in terms of repeatability, distinctiveness and detectability. We define with xi =

(ui, vi) ∈ Iref a keypoint selected by the detection algorithm d (in our case the

FAST approach) and with si the keypoint strength (i.e. , amount of cornerness)

computed by the algorithm d itself. The set of all keypoints of the reference image

Kd(I
ref ) is then:

Kd(I
ref ) = {(xi, si) : xi ∈ Iref , i = 1, . . . , J} (2.3)

For each xi we define with descr : (R2,RS ×RS) ⇒ RL the function that com-

putes BRIEF descriptor for a keypoint xi according to the image patch P (xi) of

size S × S centered on xi.

Given the nature of BRIEF, bi = descr(xi, P (xi)) is a binary vector. There-

fore, two binary vectors bi and bj are compared by using the Hamming distance

H(bi, bj) that can be computed very efficiently through a bitwise XOR operation

followed by a bit count.
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2.4.1 Distinctiveness

The distinctiveness D(xi) of a keypoint xi ∈ Kd(I
ref ) is proportional to the

diversity among the descriptor of xi and the descriptors of other keypoints xj ∈
Kd(I

ref ), j 6= i in the same image. Formally, we estimate the distinctiveness as

follows:

D(xi) =
1

L · (#Kd(Iref )− 1)

∑
xj∈Kd(I

ref )
j 6=i

H(bi, bj) (2.4)

being L the descriptor length and #Kd(I
ref ) > 1 the total number of keypoints

detected on Iref . D(xi) takes a value in the range [0, 1], where 1 denotes maximum

distinctiveness.

2.4.2 Repeatability

The repeatability of a keypoint xi ∈ Kd(I
ref ) is proportional to the similarity

among its descriptor bi and the descriptors of corresponding keypoints under a set

of given transformations. It is defined as follows:

R(xi) = 1− 1

L ·#T
∑

xl
i=Transfl(xi)
Transfl∈T

H(bi, b
l
i) (2.5)

being #T the cardinality of the set T and bli = descr(xli, P (xli)). R(xi) takes a

value close to 1 when a keypoint is highly repeatable.

2.4.3 Detectability

The detectability of a keypoint depends of the score values returned by the key-

point detection algorithm. If detection is performed with FAST, the score is the

corner strength. The detectability of a keypoint xi ∈ Kd(I
ref ) is simply an aver-

age (normalized in the range [0, 1]) over the scores of all keypoints in the original

image and its transformed versions:

F (xi) =
1

#T
∑

xl
i=Transfl(xi)
Transfl∈T

sli (2.6)
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where sli is the strength score related to xli and returned by a detection algorithm.

2.4.4 Saliency

Detectability, distinctiveness and repeatability are combined in order to determine

the keypoint saliency, as shown in Figure 2.2. More precisely, for each keypoint

xi ∈ Kd(I
ref ), its saliency is:

S(xi) = ωRR(xi) + ωDD(xi) + ωFF (xi) (2.7)

where ωR, ωD and ωF are weights assigned to repeatability, distinctiveness and de-

tectability, respectively. Optimal values for the weights can be computed by trial

and error during experimentations by using a validation set. It is worth noting

Figure 2.2: Detectability, distinctiveness and repeatability are combined in order
to obtain a final value of saliency for each keypoint.

that even if detectability and repeatability can be quite correlated, both the con-

tributions are important: the former is crucial to maximize the probability that

the detection algorithm will find the keypoint of interest in new images, the latter

to maximize the probability that two corresponding keypoints match under the

metrics associated to the chosen descriptors. In other words, while detectability is
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related to keypoint stability under transformation, repeatability and distinctive-

ness are related to the discriminant power of descriptors. The keypoints of the

image can be ranked according to saliency, resulting in the following ordered set

K∗d(Iref ):

K∗d(Iref ) = {x∗1,x∗2, . . . ,x∗#Kd(Iref )
: S(x∗1) ≥ x∗2 ≥ . . . ≥ S(x∗#Kd(Iref )

)} (2.8)

Equivalently, we define the m most salient points as:

Km
d (Iref ) = {x∗1,x∗2, . . . ,x∗m : S(x∗1) ≥ x∗2 ≥ . . . ≥ S(x∗m)} (2.9)

The best choice for the value m is related to the specific application in order to

achieve at the same time good matching accuracy and speed, as properly shown

in Section 2.5.

2.5 Experimental evaluation

Many experiments have been carried out on various real images acquired under

different conditions of viewpoint and lighting. In particular:

� a first round of experiments has been carried out on small datasets with the

aim of tuning parameters and selecting the most effective color space;

� a second round of experiments is then performed (without further adjusting

parameters) on a larger dataset to validate results;

� our approach is then compared with other state-of-the-art techniques includ-

ing the native ranking of FAST detector and the ranking method proposed in

[74]. A direct comparison with the approach by Carneiro et al. [37] would be

interesting too, but the authors report their results on proprietary datasets

(currently not available) and the re-implementation of their method is quite

complex and the risk of an inexact implementation is high.

2.5.1 Dataset and evaluation criterion

For the first round of experiments we focus our evaluation on public and com-

monly used datasets (see Figure 2.3). In particular, Wall and Graffiti datasets
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([30, 112, 113, 177]) are typical benchmarks to evaluate keypoint robustness against

viewpoint changes while Book dataset ([183, 183]) is employed to analyze keypoint

robustness against lighting changes.

For the second round of experiments we use the recently introduced BigBIRD [149]

dataset, which contains a larger amount of objects acquired under different view-

points and lighting conditions. In the following we briefly describe these datasets

and the associated ground truth information.

Wall and Graffiti datasets (see Figure 2.3) consist of 6 images, where the first one

is acquired under standard conditions and the remaining 5 images are acquired

under different viewpoints (with increasing variation). According to other works,

the first image of each dataset has been used as reference image whereas the re-

maining 5 images have been considered for matching. For each transformed image

the ground truth homography matrix [177] corresponding to the transformation

with respect to the reference image is given, thus allowing the ground truth key-

point correspondence to be easily computed. When working with Graffiti and Wall

datasets, for each reference image we generated 80 artificial transformations to be

used for the training phase: the variations considered are random homographic

transformations within predefined parameter ranges.

Book dataset has been selected from Phos database [172] and contains 45 images

taken under different conditions of natural light (overexposure, underexposure,

directional).

The first image acquired in standard conditions (normal exposure) has been con-

sidered as reference image. Unlike for Wall and Graffiti, here generating artificial

light changes (including shadows) for training is complex and could lead to pro-

duce unrealistic variations. Therefore the 44 images have been split in two sets:

the first set (29 images) has been used for training, while the remaining 15 images

for testing.

BigBIRD dataset [149] consists of 125 objects each of them acquired under differ-

ent poses by varying the camera angle and the rotation plan. We selected a total

of 100 objects by leaving out objects with very poor or no texture information.

For each object we selected one frontal reference image plus 5 rotated images with

increasing rotation angle. As described for Wall and Graffiti, also for each Big-

BIRD object we exploit ground truth homography matrices to map points between

reference and rotated images. Moreover, for our training we use the same number

of artificial transformations (80).
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Figure 2.3: Datasets used for matching accuracy evaluation under different
conditions of viewpoint and lighting: Wall, Graffiti, Book and BigBIRD object
example. Column shows for each dataset: a) the reference images, b) an image
with moderate variation, c) an image with high variation.

For each dataset, a training phase has been carried out to detect and rank key-

points for each reference image Iref and the corresponding transformations. Ac-

cording to the previously introduced notation, the m most salient keypoints are

denoted by Km
d (Iref ).

Then for each test image I test we extract all keypoints Kd(I
test) and we evaluate

the accuracy of our detection/matching approach based on average Hamming dis-

tance and recall.

The average Hamming distance is defined as:

Havg(I test) =
1

m

∑
xi∈Km

d (Iref )

H(bi, b̃i) (2.10)

where x̃i = Trasftest(xi) is the position corresponding to xi in the test image ac-

cording to the known transformation binding I test to Iref and b̃i = descr(x̃i, P (x̃i)).

The recall metrics is computed pairing Km
d (Iref ) and Kd(I

test) by nearest-neighbor
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Hamming distance and by evaluating the amount of correct pairing. We associate

each xi ∈ Km
d (Iref ) to the keypoint yj ∈ Kd(I

test) such that:

H(bi, b̂j) = min
yk∈Kd(Itest)

H(bi, b̂k) (2.11)

being b̂j = descr(yj, P (yj)) the BRIEF descriptor of yj.

Since the mapping function between reference and test images is known we can

distinguish between correct and false matches. In particular, according to Mikola-

jczyk and Schmid [112], a match is considered correct if the spatial overlap between

the regions covered by the two keypoint descriptors is larger than a given threshold

εs. Therefore, recall is defined as:

recall =
# correct matches

m
(2.12)

It is worth noting that the two metrics used, even if related, consider different as-

pects. In fact, when computing the average Hamming distance we do not extract

keypoint by FAST approach on I test but we compute the descriptors at the posi-

tions corresponding to the projection of Iref keypoints; so this metrics highlights

the descriptor matching but discounts potential errors due to keypoint detection.

On the contrary, when estimating recall, we compute correspondences by nearest

neighbor between the two sets of keypoints (both detected by FAST) and this

takes into account false detection and false pairing of keypoints.

Tests have been repeated for different values of m: from 1% to 100% of the total

number of keypoints with step 1%. This allows to evaluate the effect of selecting

different amounts of keypoints.

2.5.2 Color spaces: OCS vs RGB

To evaluate the pros/cons of OCS, we used the Book dataset. Figure 2.4 a)

shows the Hamming distance reported as percentage with respect to the descrip-

tor length. For both RGB and OCS the increasing trend of the curves proves that

the most salient keypoints are the most stable with respect to image variations.

As expected, results confirm that by using OCS instead of RGB, BRIEF descrip-

tors result more similar and therefore more invariant to light changes. The good

performance obtained by using OCS induced us to use such color space for the

rest of the experiments.
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(a)

(b)

(c)

(d)

Figure 2.4: Average percentage Hamming distance by varying the percentage of
keypoints; (a) the graph refers to average values over all reference-test pairs of
Book dataset when using RGB and OCS space; (b) (c) (d) the graphs refer to
average values over all reference-test pairs of Book, Wall and Graffiti datasets
when using our saliency-based ranking and FAST score ranking (b) (c) (d).
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2.5.3 Saliency evaluation: effectiveness of keypoint selec-

tion

In this set of experiments we compare our saliency-based ranking with respect to

FAST score-based ranking (according to the notation used, FAST scores are the si

introduced in Section 2.4). Results obtained on Wall, Graffiti and Book datasets,

reported in Figure 2.4 b), c) and d) respectively, show an increasing trend of the

Hamming distances thus proving that the most salient keypoints (those in the

first positions of the ranking) are more likely to match under the image variations.

Ranking keypoints according to their FAST scores leads to a somewhat analogous

trend but in this case the curve is more flat and, especially for small values of m,

the reduction in the average Hamming distance is less relevant. Of course, when

100% keypoints are used, ranking is irrelevant and the two curves converge. The

preliminary results on Wall, Graffiti and Book allowed us to define optimal values

for the basic parameters: ωR = 1, ωD = 1 and ωF = 2. For the rest of experiments

we keep these values fixed.

The same type of experiment has been repeated for 100 BigBIRD objects (see

Figure 2.6). Here too we note that our ranking is more effective than FAST-score,

and we can observe (for our approach) an increased trend of the distances after

an initial decrease. It is worth noting that BigBIRD objects typically consist of

small objects (i.e. , canned food) with respect to Wall, Graffiti and Book images

and the number of relevant keypoint is much smaller.

Figure 2.5 shows the recall values on Book, Wall and Graffiti datasets. Here

the decreasing trend proves that the most salient descriptors are detectable with

more stability thus leading to a lower number of false matches. For example,

for Wall dataset, working with the 10%-most salient keypoints results in a recall

of about 45%, while using the whole set of keypoint reduces the recall to about

20%. It is worth noting that the recall values are quite different for the three

datasets and in particular are higher for Book and lower for Graffiti. This is

due to the relative difficulty of the dataset. In particular, Graffiti confirms to be

challenging for BRIEF descriptors, leading to low average recall. In [30] a higher

recall is reported on this dataset. However, the comparison of our result with [30]

is misleading, since in [30] the recall value has been computed by pairing keypoints

according to ground truth data.
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(a)

(b)

(c)

Figure 2.5: Recall value averaged over all reference-test pairs for Book a) Wall
b) and Graffiti c) datasets, plotted as a function of keypoints percentage.

Figure 2.6: Average percentage Hamming distance by varying the percentage
of keypoints on 100 BigBIRD objects: the graph refers to average values over
all reference-test pairs when using our saliency-based ranking and FAST score
ranking.
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2.5.4 Saliency evaluation: comparison with the state-of-

the-art

In this set of experiments we compare our saliency-based ranking against the FAST

score-based ranking and against the ranking method proposed by Hartmann et

al. in [74] for matchability prediction. In particular, they train a random forest

classifier able to return a list of keypoints ordered by matchability score of SIFT

descriptors. We use such classifier to produce a list of keypoints for each BigBIRD

object. Then, we compare the average Hamming distances of BRIEF descriptors

computed for the matchability-based ordered list of keypoints with our saliency-

based and FAST score-based ordered lists. To avoid implementation differences for

[74] we used the code kindly made available by the authors. Results are reported

in Figure 2.7 and show that keypoints ranking according to our saliency yields a

more stable set of descriptors.

As the reader can argue, curves in Figure 2.7 are not convergent and trends of

Figure 2.7: Comparison with state-of-the-art: the graph refers to Hamming
average distance values over all reference-test pairs of BigBIRD objects when
using our saliency-based ranking, FAST score ranking and the very recently
proposed ranking based on ”matchability” properties of keypoints.

light blue and red curves are not the same as Figure 2.6. This is due to different

reasons: on one hand, [74] was originally designed to operate with SIFT detector

thus leading to a different set of keypoints with respect to FAST. On the other hand

in this experiment we were forced to truncate the saliency-based and FAST score-

based lists in order to make them numerically comparable with the matchability-

based list of [74], thus eliminating the tails of the light blue and red curves.
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2.5.5 Saliency evaluation: average processing time

In this section we briefly illustrate time performance of the training stage of our

approach. For efficiency on test images please refer to Section 2.6.

To carry out the training phase, the following operations are required: FAST de-

tection, BRIEF computation and evaluation of detectability, repeatability and dis-

tinctiveness on 80 different transformed images. Considering that each BigBIRD

object has an average of 750 detected FAST keypoints, the required average pro-

cessing time on a workstation Intel i7-2720QM 2.20 GHz with 8 GB of RAM to

complete the training phase of a single object is ∼ 23 seconds.

2.6 Pose estimation in AR with salient keypoints

2.6.1 A first case study: maintenance application

In this section we apply the proposed saliency evaluation to real time pose estima-

tion for vision-based Augmented Reality, with a special attention to maintenance

application. In particular, we are interested in detecting ”natural” object markers

in order to estimate the pose of the object with respect to the camera in order

to superimpose information of interest to the captured image. In this section we

consider as case of study the AR-based maintenance task of two elements with

substantial differences in local appearances and textures: a water heater and a PC

motherboard (see Figure 2.8).

In the above mentioned scenarios the user is expected to interact with a mobile

device (e.g. , tablet or smartphone) whose camera takes live pictures of the object

and useful pictorial information is superimposed (at the proper location) to guide

maintenance. Since the viewpoint changes are moderate, our approach finds here

an ideal application. In particular, the object of interest (i.e. , the front panel of

a water heater or a motherboard) can be considered as a simple planar object and

therefore estimating its pose is equivalent to compute a homographic transforma-

tion.

Given a set of keypoint correspondences we can extract the homography matrix

through the RANSAC algorithm [57]. We compare three cases:

(A) all FAST keypoints are considered;
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(B) only 15% m-best keypoints ranked according to FAST score are considered;

(C) only 15% m-best keypoints ranked according to our saliency-based approach

are considered.

In all the above cases, (initial) keypoint correspondences are found by nearest

neighbor. In the C case a single reference image is used to generate 80 synthetic

viewpoint changes and produce keypoints ranking. Figure 2.10 and Figure 2.11

compare the results on different test images.

(a) (b)

(c) (d)

Figure 2.8: Reference images (a and c) and a test images (b and d) of a water
heater and a PC motherboard.

Although RANSAC is somewhat robust against outliers, the advantages of us-

ing only robust keypoints is here evident in terms of precision of the recovered

viewpoint transformation. We also note how our saliency-based ranking leads to

consolidate a higher number of inliers and therefore a better viewpoint estimation

with respect to the FAST-score based selection.

We repeated the previous test by random selecting 100 frames from a video taken

by moving a tablet in front of the objects. The ground truth pose (for evaluation

purposes) has been obtained by manually labeling the four panel corners. Then,
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Figure 2.9: Average processing time (milliseconds) required for frame analysis
and pose estimation.

automatic pose recovery has been carried out by approaches A, B and C, respec-

tively. The resulting accuracy, here quantified in terms of average corner distance

with respect to the ground truth position, increases when using only the most

salient keypoints. In particular, with respect to case A: the average distance is

32% lower in B and 56% lower in C for the water heater and 7% lower in B and

50% lower in C for the motherboard.

In terms of computation, the processing time needed to estimate pose for a single

frame can be split in: i) FAST detection; ii) RGB to OCS conversion; iii) BRIEF

descriptors computation; iv) Keypoints matching; v) RANSAC homography esti-

mation. The stages whose computing time depends on the number of keypoints

are iv) and v). Figure 2.9 shows the average processing time for a single frame

analysis as function of the keypoints percentage. For this experiment we used a

tablet device: Samsung ATIV Smart PC (Intel Atom Processor Z2760 1.5 Ghz).

Even if the code (written in C# for .NET) was not highly optimized, by selecting

the 10%-best keypoints we can process about 5 frames per second. We are con-

fident that with proper optimization we can significantly improve the frame rate.

On the contrary, for this application, if all keypoints are used the efficiency would

be about one order of magnitude worse.

2.6.2 A second case study: smart museum tour

As discussed in the introductive chapter, the growth of mobile devices equipped

with high quality displays, high resolution cameras and high processing capabilities

allows new computer vision applications to be deployed. An example of such new

possible application is represented by tourism, arts and intelligent buildings where
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10: Water heater transformation recovery through RANSAC algorithm
by taking as input: b) all FAST keypoints; d) 15% m-best keypoints ranked
according to FAST score, f) 15% m-best keypoints ranked according to our
saliency-based approach. Yellow segments a), c) and e) denote initial keypoint
pairing and orange segments b), d) and f) final RANSAC inliers; the green
rectangle denotes the homographic transformation inferred by RANSAC.

user-experience could be enhanced through interactive content and Augmented

Reality. In this section we design a specific application to perform an augmented

museum tour and we extend and apply our saliency framework by including an

object recognition phase to be carried out before pose estimation.

A number of AR solutions in the field of cultural heritage and mobile multime-

dia guides have been recently proposed [35, 48, 49, 115]. Authors of [115] and

[48] introduced an exhaustive overview of the main challenges related to concep-

tion, implementation, testing and assessment of a smart museum. In PALM-Cities

Project [35] technologies such as NFC and QR Codes have been adopted to han-

dle the interaction with the user whereas in [115] an hybrid approach based on

markerless tracking plus a rotation sensor is used to allow free movements of the

user mobile device.

Here we extend the approach illustrated in Section 2.3 with a (pre)matching phase

which is applied to the painting recognition and pose estimation. Similarly to
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: PC motherboard transformation recovery through RANSAC al-
gorithm by taking as input: b) all FAST keypoints; d) 15% m-best keypoints
ranked according to FAST score, f) 15% m-best keypoints ranked according
to our saliency-based approach. Yellow segments a), c) and e) denote initial
keypoint pairing and orange segments b), d) and f) final RANSAC inliers; the
green rectangle denotes the homographic transformation inferred by RANSAC.

[115], in our application the user is expected to enjoy paintings in a markerless

environment by interacting with a mobile device (e.g. tablet, smartphone or smart

glasses) provided with a camera that captures videos of paintings under different

conditions (i.e. , moderate changes of viewpoint and lighting).

Once a painting has been recognized and its pose has been retrieved the applica-

tion can properly superimpose to the live camera view useful pictorial or textual

information concerning the painting itself (see Figure 2.12 for an example).

An overview of the approach is presented in Figure 2.13: during the training phase

we use a single reference image of each painting to compute the painting model

including only the most salient keypoints. Models are then stored in a database

which is made available to the user’s mobile device.

In this study we consider ten famous paintings (see Figure 2.14). For each paint-

ing p we downloaded the reference image Irefp from the web and printed it on

paper (A3 format). Paintings were then hanged to the walls of our lab to simulate
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Figure 2.12: Example of augmented information geometrically coherent with
the painting pose.

Figure 2.13: Overview of the proposed application based on keypoint saliency
evaluation.

Figure 2.14: The ten famous paintings we consider in our study.



Chapter 2. Saliency-based Keypoint Selection and Ranking 41

a museum room.

For each reference image, we generated 80 artificial transformations to be used for

the training phase: the variations considered are random homographic transfor-

mations within predefined parameter ranges.

Test was performed using a smart device and capturing videos of each printed

painting while moving in front of the painting. For each video we selected 30

frames characterized by different lighting and pose conditions, hence our test set

is composed of 300 images (see Figure 2.15 for some examples).

We performed two different experiments: the former to evaluate recognition ac-

curacy and the latter to evaluate the correctness of the estimated pose. In both

these experiments our saliency-based ranking is compared to a standard FAST

score-based ranking. For each test image I test, the painting recognition phase is

implemented as follows:

� all keypoints are extracted (FAST) and their local descriptors (BRIEF) com-

puted;

� for each painting model Irefp , characterized by its m-most salient keypoints

Km
d (Irefp ):

– we associate each keypoint in Km
d (Irefp ) to the keypoint in I test with

smallest Hamming distance (between BRIEF descriptors);

– we enforce geometrical constraints among keypoint correspondences us-

ing RANSAC [57] to filter out outliers;

– the set of inliers returned by RANSAC is then used to compute a sim-

ilarity score Φ between I test and Irefp as follows:

Φ(I test, Irefp ) =
# Ransac Inliers

#Km
d (Irefp )

(2.13)

� finally, recognition is performed according to maximum similarity.

Tests have been repeated for n = 300 and for different values of m ranging from

1% to 100% of the total number of keypoints. This allows to evaluate the effect

on recognition of progressive reduction of the keypoint number.

In Table 2.3 we show the recognition rate obtained by considering only the most

salient descriptors when our saliency-based ranking and a standard FAST-scores

ranking are applied. In general we can observe that our method is more effective
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Samples of the dataset used in our case study: (a) and (d) are
the reference images of two different paintings, (b), (c), (e), (f) are test frames
acquired live with a tablet.

than the FAST-scores based one. Moreover it turns out that by applying our

saliency evaluation a lower percentage of keypoints is sufficient to reach top per-

formance with respect to FAST-scores ranking (only 4% of the keypoints for our

approach versus 15% for FAST-scores). A second evaluation has been carried out

m-most

salient keypoints[%]

”Saliency”

recognition rate[%]

”FAST”

recognition rate[%]

1 74.58 53.75

2 92.5 80.42

3 97.92 90.83

4 98.75 90

5 98.75 94.17

10 97.92 95.83

15 96.67 97.92

20 97.08 97.92

100 88.75 88.75

Table 2.3: Recognition results for keypoints selection based on saliency and
FAST-scores.

to assess correctness and computational load of pose estimation. Since a painting
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Painting transformation recovery through RANSAC algorithm by
taking as input: (b) all FAST keypoints; (d) 5% m-best keypoints ranked accord-
ing to FAST score, (f) 5% m-best keypoints ranked according to our saliency-
based approach. Yellow segments (a), (c) and (e) denote initial keypoint pairing
and orange segments (b), (d) and (f) final RANSAC inliers; the green rectangle
denotes the homographic transformation inferred by RANSAC.

can be considered as a full planar object, pose is computed by estimating a homo-

graphic transformation through the RANSAC algorithm given a set of keypoint

correspondences with the reference model. Figure 2.16 shows the result of pose

estimation for a painting sample by considering three different cases: (a) model

including all keypoints, (b) only 5% m-best keypoints selected according to FAST

scores and (c) only 5% m-best keypoints selected according to our approach.

Although RANSAC is somewhat robust with respect to outliers, the advantages of

using only relevant keypoints are here evident in terms of precision of the recovered

viewpoint transformation. We also note how our ranking leads to consolidate a

higher number of inliers and therefore a better viewpoint estimation with respect

to the FAST-scores based selection. To numerically quantify pose estimation accu-

racy we manually marked (as ground truth) the four painting corners both for each

reference image and each test frame. A pose is then considered correct when the

projected painting corners (according to the estimated homography) have a spatial



Chapter 2. Saliency-based Keypoint Selection and Ranking 44

distance from the corresponding ground truth lower than a prefixed threshold. In

the graph of Figure 2.17 a) we show the percentage of ”correct pose” estimation

averaged over all 300 tests images.

We can easily note that, in both cases, the curves have an increasing trend up

to a relatively small value m of best keypoints and then start decreasing. The

optimal percentage of keypoint falls in the range [5%, 20%] in our approach, and

in [15%, 30%] when selection is performed according to FAST scores.

Figure 2.17 b) shows the average processing time for a single frame analysis as

function of the keypoints percentage. For this experiment we used a Samsung

ATIV Smart PC (Intel Atom Processor Z2760 1.5 Ghz) tablet device, the same

employed in the previous case study. Even if the code (written in C# for .NET)

was not highly optimized, by selecting a percentage of keypoints below 5% we

can provide a frame rate from 3 to 5 frame/s, ensuring, at the same time, good

accuracy in terms of object recognition and pose estimation.
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(a)

(b)

Figure 2.17: (a) Average percentage of correct poses by varying the percentage
of the keypoints ranked both according to FAST-scores and our saliency-based
approach; (b) Average processing time (milliseconds) required for a single frame
analysis including painting recognition and pose estimation on Intel Atom Pro-
cessor Z2760 1.5 Ghz.





Chapter 3

Leaf Segmentation under Loosely

Controlled Conditions

3.1 Introduction

Studying the identity, the evolution and the worldwide distribution of plant species

is a core activity in many nature-related fields such as agriculture, ecology and

botany. The availability of basic information about plants and their thorough tax-

onomy is therefore essential. However, such knowledge is often unreachable not

only for citizens but also for field experts like scientists and farmers, thus making

identification of plants impracticable for common people as well as professionals

[85].

Nowadays such situation is going to change. Recently, new tools to make world’s

herbaria accessible to anyone have been introduced, supported by the increasing

presence of digital devices. Moreover, high volumes of data are now online and

ready to be exploited by specialist and non-specialist.

One of the basic needs for plant scientists in order to carry out their work is dis-

covering whether a certain species has been already classified and, if so, knowing

the name of the species itself [15]. The standard approach does not involve visual

recognition systems but it consists in manually navigating taxonomic trees node

by node, by answering a multitude of questions, often ambiguous. Such manual

technique results in remarkable waste of time for specialists and it is basically

infeasible for inexpert users.

In order to speed-up the process and make it simpler, Computer Vision can be of

47
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great help by offering automatic techniques to match a given plant image against a

gallery and recognize the species amongst all the possible candidates. By combin-

ing vision-based plant identification with commonly used devices such as smart-

phones/tablets it is possible to offer new instruments to specialists and at the same

time help citizen and not-professional stockholders in enjoying knowledge about

plant recognition, thus helping them in understanding the surrounding nature.

In Section 3.2 we discuss challenges of leaf segmentation and recognition for plant

identification whereas in Section 3.3 we review main contributes at state-of-the-

art. Then, in Section 3.4 we detail our proposal to accurately segment leaves. In

Section 3.5 we present the dataset we used for experimental evaluation and we

show benefits of our approach over the state-of-the-art.

3.2 Leaf segmentation for plant recognition

Extracting accurately the shape of a leaf is a crucial step in image-based plant

identification systems. The partial or total absence of textures on leaf surface and

the high color variability of leaves belonging to same species make shape as the

main recognition element [1, 15, 84, 85, 96]. Common techniques to represent leaf

shape are based on multiscale curvature measures computed using differential or

integral techniques since curvature is an essential property of a shape [96]. For

such reason, accurate leaf segmentation plays a decisive role in the leaf recognition

process.

Even though many general segmentation methods [8, 42, 45, 54, 135, 144, 175]

have been proposed in the last decades, leaf segmentation presents specific chal-

lenges. In particular, a pixel-level precision is required in order to highlight fine

scale boundary structures and discriminate similar global shapes. Moreover, even

if the input image can typically be taken in controlled conditions, where the leaf

is the only visible object over a white background, the user taking the picture is

not necessarily an expert and the conditions are often not ideal: the leaf exhibits

specular reflections, casts shadows, the background is never exactly white and is

usually non-uniform, and the image can be blurry.

Recent leaf recognition applications in loosely conditions [96, 154] rely on the

Expectation-Maximization algorithm to separate the color distributions of the

foreground and the background pixels. Despite their efficiency, they do not assure
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Figure 3.1: Leaves segmentation under loosely controlled conditions (best
viewed in color). First column: Leaf images with the presence of shadows and
irregular light. Second column: Segmentation result obtained by the Leafsnap
method [96] with included post-processing procedure for stems and false posi-
tives suppression. Third column: Results obtained by our classification-based
approach without any post-processing Last column: Input image masked with
our segmentation. Red and orange colors are used to mark false positives and
false negatives, respectively (ground truth does not include stems). We provide
many other visual results in the Appendix A.

robustness to shadows and specular reflections thus leading to incorrect bound-

aries. In this chapter we introduce a new solution by training a pixel-wise classifier

that learns filter responses associated to background and foreground regions in

images of leaves. Similar classifiers have been recently used in different fields like

medical applications [150] showing great performance for linear and curvilinear

structures segmentation.

As shown in Fig. 3.1 and as proved in Section 3.5, we observed benefits when train-

ing our classifier by considering as positive (leaf) and non-positive (background)

training samples only those pixels located in the neighborhood of the leaf bound-

ary. Our classification-based method is more robust to the presence of shadows
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and irregular light thus offering contours that better fit to the real shape.

After applying the classifier to a given input image, we threshold the score map to

get segments which belong to foreground or background with a high level of prob-

ability. These segments allow us to infer precious color and spatial information

about the leaf and provide a support for a suitable initialization of EM algorithm,

which yields to a very fine pixel-wise segmentation robust to shadows and specu-

larities.

3.3 Related work

Leaf segmentation represents a core activity for plant identification and research

about such topics is constantly rising from the past ten years [1]. Even though

great effort has been devoted to object segmentation on images in the Computer

Vision history [8], leaves require a precise segmentation and/or boundary detection

to effectively describe shape and its local structures. Since a detailed overview of

general-purpose segmentation is beyond our scope, we focus here mainly on state-

of-the-art of leaf segmentation. Moreover, we provide a review of the emerging

results about filters response learning for some specific tasks like detection of

curvilinear structures.

3.3.1 Supervised and unsupervised environments

Various leaf segmentation approaches related to different environmental condi-

tions have been proposed. Image binarization with a fixed threshold, also known

as “Otsu’s method” [125], demonstrated good accuracy for leaf images acquired in

supervised setups characterized by uniform light conditions and white background,

as those included in the FLAVIA dataset [191], the Swedish leaf dataset [155], Lab

image category of the Leafsnap dataset and the scan image category from the

ImageCLEF plant identification challenges [85] (see Figure 3.2).

Very different solutions have been introduced for leaf segmentation on images ac-

quired in unsupervised conditions like those included in recent ImageCLEF chal-

lenges [66, 67, 85], with natural background or photo image categories, where no

assumptions are made about the background behind the leaf during image acqui-

sition (see Figure 3.3). A number of automatic [38, 119, 196, 197] and interac-
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(a) (b) (c) (d)

Figure 3.2: Example of leaf images acquired in supervised setups: (a) FLAVIA
dataset [191], (b) Swedish leaf dataset [155], (c) Lab image category of the Leaf-
snap dataset, (d) scan image category from the ImageCLEF plant identification
challenges [85].

Figure 3.3: Example of leaf images acquired in unsupervised setups [66].

tive [10, 39, 40, 197] approaches have been presented to solve leaf segmentation

in unconstrained setups. In [38] two different semi-automatic and automatic seg-

mentation approaches based on Mean-Shift and K-Means clustering in RGB color

space are introduced whereas in [196] a combination of shape, color and texture

features are used for plant identification. In [39] polygonal shape models of leaves

are employed as prior offering very good support in unsupervised conditions but

limiting its applicability to modeled species. A similar approach based on the use

of semantic information and guided active contour segmentation has been later

presented in [40]. As very recently illustrated in [68], due to the considerable

challenge of leaf segmentation and recognition against natural background, user

supervision and interaction are recommended during the process to produce reli-

able input images and initialize the segmentation.
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3.3.2 Semi-supervised environments

Regarding to leaf segmentation under semi-supervised conditions (conditions we

deal with in this chapter), several automatic approaches have been already pre-

sented and tested. Most promising ones [15, 96] are based on the use of EM [21]

in color space to estimate foreground and background pixel clusters. As shown

in [154], standard EM and its extensions outperform other techniques as graph-

based image segmentation [54], Mean Shift [42], GrabCut [135], segmentation by

weighted aggregation (SWA) [144], multiscale normalized cut [45]. Particular im-

provements have been demonstrated by EM when dealing with images taken with

mobile devices under various pose and illumination conditions, see the Field or

User image categories of [96]. However, as reported in [154], EM-based methods

Figure 3.4: Example of leaf images acquired in semi-supervised conditions[96].

do not assure robustness to shadows, specular reflections and requires the adop-

tion of ad hoc solutions also for certain particular leaves such as pine leaves, thus

proving the weakness of EM initialization.

In this chapter, we show that our classification-based initialization for background

and foreground color distribution represents a better solution for the problem at

hand. Cascade classifiers [141] exhibit good performance in localization thus al-

lowing a better discrimination of points with similar appearance, as those placed

across object contours. Advantages offered by the learning of filter responses have

been recently proved in different fields like biomedical images, aerial images and

general-purpose contour detection [150]. We aim to apply a similar idea for leaf

segmentation, by combining prior knowledge with learning and the adaptability

of EM-based methods.
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3.4 Proposed segmentation method

Let I(x) be an image of a leaf, and x ∈ R2 an image pixel location. Leaf segmen-

tation can be carried out by computing the probability distribution of all pixels x

and representing it as the mixture of two Gaussians:

p(I(x)|Θ) =
2∑
i=1

ωi pi(I(x) | Θi) Θi = {µi,Σi} , (3.1)

where I(x) is the color of image I at location x, and Θ1 = {µ1,Σ1} and Θ2 =

{µ2,Σ2} are the parameters of the foreground—the leaf—and background color

distributions, respectively. ω1 and ω2 weight these two Gaussian distributions.

One way to infer such distributions is to apply K-Means or Expectation-Maximization

as in [15, 96], thus computing the parameters and weights of the two Gaussians

for the given image and using them for pixel-wise segmentation. [96] considers

only the saturation and value color components for EM clustering and a shared

covariance matrix is used. However, in practice, some drawbacks appear in this

formulation due to challenging leaves like pine needles, false positives detection

related to shadows and false negatives detection related to specularities. To tackle

such problems, some manually-defined assumptions are made about cluster regions

and pixel weights (see Fig. 2 in [96]). Furthermore, post-processing operations

are carried-out to remove false positive detections due to shadows and irregular

backgrounds, at the risk of hurting the final leaf shape.

To assure more robustness to shadows and specularities, our solution is to pre-train

a pixel-wise classifier by learning a function y(·) such that:

y(f(x, I)) =

1 if x is on the leaf surface,

−1 otherwise,
(3.2)

where f(x, I) is a feature vector computed from a neighborhood surrounding x in

image I.

By performing a simple thresholding of the score map returned by the classifier we

detect segments that belong with high probability to foreground and background.

These segments are then exploited to properly initialize a standard EM algorithm

thus leading to a final and accurate leaf segmentation. Furthermore, we will show

that our learning assures independence from leaf species, since the same classifier

is used for all species and no ad hoc solutions are required when challenging species
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have to be treated.

In the remainder of this section we firstly illustrate our pixel-wise classifier by

showing our training that focuses on leaf boundary. Then, we describe how we

produce and employ segments to initialize the EM algorithm thus leading to the

final segmentation.

3.4.1 Pre-trained pixel-wise classifier

To train our pixel-wise classifier we employ a similar approach to [150]. Given a set

of training samples {(fi, yi)}i=1,...,n where fi = f(xi, Ii) ∈ RJ is the feature vector

corresponding to a point xi in image Ii and yi ∈ {1,−1} is the label associated to

xi, we use GradientBoost and regression trees [75] to approximate y(f(x, I) by a

function of the form:

ϕ(f(x, I)) =
K∑
k=1

αkhk(f(x, I)) , (3.3)

where hk : RJ → R are weak learners and αk ∈ R are weights.

As shown in Fig. 3.5, we focus our attention on the leaf boundaries by selecting

only samples in their neighborhoods. We extract from each training image the

leaf contour from the ground truth segmentation and simply thicken this contour

with standard morphology dilation. Function ϕ is built iteratively by minimizing

an exponential loss function L of the form:

L =
n∑
i=1

L(yi, ϕ(f(x, I))) , (3.4)

where L = e−yiϕ(f(x,I)). We also experimented with the log loss function with

similar results.

We use a set of convolutional filters learned from the training images as described

in [150]. The RGB images are converted into the LUV color space and we learn a

different filter bank for each channel.
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(a) (b) (c) (d)

Figure 3.5: Example of images used for training: (a) a leaf image, (b) its man-
ually defined ground truth segmentation, (c) the leaf contour extracted from
the segmentation, (d) thicker contour obtained by simple dilation. We train
our classifier by selecting positive (leaf) and negative (non-leaf) feature samples
computed on image (a) that lie on the thicker contour only.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Segmentation pipeline: (a) Input image Itest, (b) score map obtained
by applying our pre-trained classifier at each pixel location, (c) pixels belonging
to background with high probability (black), (d) pixels belonging to foreground
with high probability (white), (e) coarse leaf segmentation obtained using the
prior Θ1start ,Θ2start built from images (c) and (d), (f) final leaf segmentation
after EM optimization from this initialization. Since our training is focused on
leaf boundary, high probability background and foreground pixels are more likely
to be found near the leaf boundary thus guiding and improving the following
final segmentation.

3.4.2 Score map thresholding and segmentation

Our segmentation pipeline is summarized in Fig. 3.6. We apply the classifier de-

scribed above to each pixel location of a given unknown test image Itest. This pro-

vides a score map that we then threshold using two different thresholds to detect
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pixels that belong to foreground and background with a high level of probability.

With these pixels at hand we initialize an EM algorithm to estimate foreground

and background cluster parameters Θ1 and Θ2 by working in the saturation-value

color space.

This allows us to compute good initial estimates for Θ1 and Θ2, the mean and

covariances of the colors over the leaf and over the background. This is by contrast

with [96], which has to initialize the EM segmentation with the same values for

all the images. The other difference with [96] is that we can consider as unlabeled

data only the pixels that are in the neighborhood of the detected leaf boundary.

This allows to keep focusing on segmenting correctly the pixels around the leaf

boundary, and in practice it is enough to get a good segmentation of the other

pixels, which are easier to classify.

Moreover, our segmentation method allows speed optimization. Indeed, process-

ing steps from (a) to (e) represented in Figure 3.6 are carried out by working

on a downsized version of the original image thus saving processing time to per-

form classification and further operations. Mathematical model of foreground and

background color distributions obtained from the coarse segmentation are then

employed to perform the final segmentation of the leaf image at the original size.

In this two-class scenario, the posterior function which defines cluster membership

takes a linear logistic form that is efficiently computed through as follows:

p(z = 1|x) = 1/[1 + exp(β0 + βTx)], where (3.5)

z ∈ {1, 2} and (3.6)

β ≡ (µ2 − µ1)
TΣ−1, and (3.7)

β0 ≡ −
1

2
(µT2 Σ−1µ2 − µT1 Σ−1µ1) (3.8)

p(z = 2|x) = 1− p(z = 1|x) (3.9)

3.4.3 Segmentation with augmented color vectors

In Subsection 3.4.1 and Subsection 3.4.2 we illustrated our proposed solution for

leaf segmentation which involves a classification stage to build a robust starting

prior of foreground/background. Classification stage is performed by comput-

ing suitable filter responses which constitute our learned features. Then EM is
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executed to infer color distributions in saturation value color space focusing on

unlabeled 2-dimensional color vectors selected from leaf boundary.

Since EM is based only on color information, the reader can argue what could

happen if the classifier is replaced by a better initialization of EM. In particular,

it could be possible to augment color vectors by adding filter responses (i.e. ,

the fi vectors) we already adopt in our classification stage. In such scenario, the

classification step would be removed and filter responses plus color information em-

ployed to perform a direct and unique EM-based segmentation. In other words,

using augmented color vectors we do not exploit any prior information about high

probability pixels but we run only standard EM in the M + 2 dimensional space

(i.e. , M components from fi plus 2 color components) thus directly inferring

background and foreground clusters (Gaussians).

In Figure 3.7 different results for the same input image are reported. In particu-

(a) (b) (c) (d)

Figure 3.7: Segmentation with augmented color vectors and different number
G of inferred Gaussians: (a) input image, (b) segmentation with G = 2 (back-
ground/foreground), (c) segmentation with G = 3,(d) segmentation with G = 5.
Different colors are used to highlight pixels belonging to different clusters.

lar, when inferring the two Gaussians related to foreground and background using

augmented color vectors we get very ”round” and ”dilated” segmented shapes

(Figure 3.7 b)). The most probable explanation of such behavior is related to the

fact that filter responses for each pixel are computed considering pixel-centered

patches and pixels placed immediately outside the leaf offer similar responses to

pixels placed immediately inside. Therefore, EM tends to assign them to the leaf

cluster (Gaussian). On the contrary, pixel-centered patches located in plain back-

ground offer very different filter responses and its easier for EM to discriminate

them. Furthermore, in such case we deal with vectors of more than 500 com-

ponents and only 2 are related to color, thus making color information not very

influential as before. This behavior is confirmed in Figure 3.7 c) - d) where three

and five Gaussians are estimated during EM, respectively. Using more Gaussian it

is possible to highlight different regions corresponding to different filter responses.
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A different way to exploit EM and augmented feature vectors is by computing

the ratio of the probabilities (Eq. 3.5) to belong to each of the clusters to get a

continuous score. In Figure 3.8 some examples of such continuous score (second

column) are reported, compared with the score map (third column) we get from

the classification stage illustrated in Subsection 3.4.1. By using augmented fea-

Figure 3.8: Score maps obtained after EM on augmented color vectors by com-
puting the ratio of the probabilities to belong to each of the clusters (second
column) and score maps obtained through the classification stage (third col-
umn).
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ture vector to carry out EM we are not able anymore to capture local structures

like serrations, compound leaves and sharp extremities whereas score maps we get

from our classification seem more adapt to capture such local structures.

Images in second column of Figure 3.8 could theoretically substitute classification-

based score maps in our segmentation pipeline. However, it would lead to a greater

processing time for segmentation, due to the large dimension of feature vectors

which considerably degrades speed of EM. Therefore, a classification stage as de-

scribed in Subsection 3.4.1 is not only more suitable to faithfully represent local

structures of leaves but it is also faster.

3.5 Experimental evaluation

In this section, we first describe the dataset and the evaluation protocol we used for

our experiments. We then compare our method with techniques that demonstrated

state-of-the-art performance on loosely controlled conditions, Leafsnap[96] and

GrabCut [135]. In particular, we show the benefit given by our classification-

based initialization of EM as described in Section 3.4.2. Moreover we evaluate the

importance of training the classifier from samples close to the leaf boundaries. We

finally provide qualitative results of our segmentation approach.

3.5.1 Leaves dataset and performance metrics

For evaluation we use the Field image dataset publicly available online [96]. It

is made of 185 different species for a total of 7719 images acquired against solid

background and variable light conditions thus simulating typical images that a

user could provide for plant recognition.

To train our pixel-wise classifier we randomly select one image for each species and

we manually produce segmentation and thicker contour to discriminate between

positive and negative training samples placed in the neighborhood of boundary as

described in Section 3.4.1.

Since segmentation ground truth is not available and its manual production for

thousands of images would require an inestimable amount of time, we considered

a subset of the original Field dataset. Our testing set is made of 300 images: 150

images for which the EM approach of [96] performs already well thus producing

faithful segmentation in accordance with the leaf shape plus 150 more challenging
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images for which EM partially or totally fails.

185 training images are randomly selected excluding those images already used to

test the classifier. A total of 485 leaves (185 for training and 300 for testing) was

therefore manually segmented to produce the ground truth; stems and unrelated

components are not part of the ground truth in accordance to the policy employed

in [96]. 1

To compute performance indicators we rely on the publicly available and very

popular code of Berkeley Segmentation and Boundary Detection Benchmark [175].

In particular, as in [154], we evaluate the leaf segmentation results by analyzing

boundary agreement with ground truth in terms of recall, precision and F-measure

since contour is the main recognition cue in typical plant recognition systems.

3.5.2 Segmentation performance

Accuracy measures are reported in Table 3.1 and Table 3.2. Specifically, in Ta-

ble 3.1 we provide recall, precision, and the F-measure (ODS) which is the har-

monic mean of precision and recall to evaluate the trade off between these two

measures:

F-measure = 2 · precision · recall
precision+ recall

. (3.10)

Such metrics are computed for the global testing set whereas in Table 3.2 the same

results are reported when only the 150 more challenging images are considered to

highlight the benefits of our approach.

We compare the two different strategies to train the classifier and initialize the

EM segmentation: using samples from the entire image, strategy that we denote

Ours-entire, and using samples only close to the leaf boundaries, which we denote

Ours-boundary. Moreover, we report results when only the pre-trained classifier is

employed for segmentation (Classification).

The benefits of our method already appear clearly in Table 3.1, with a signifi-

cant raise of the F-measure with respect to the other methods. Even without

performing any post-processing to remove false positives, shadow and stems—we

remind here that in our ground truth stems are removed, the F-measure for the

entire image is better with respect to Leafsnap thus proving the robustness of our

1Our manual ground truth segmentation is publicly available at http://smartcity.csr.

unibo.it/leaf-segmentation/

http://smartcity.csr.unibo.it/leaf-segmentation/
http://smartcity.csr.unibo.it/leaf-segmentation/
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Image segmentation quality Leaf boundary quality

Recall Precision F-measure Recall Precision F-measure

Classification 0.701 0.480 0.570 0.702 0.778 0.738

Leafsnap 0.618 0.858 0.718 0.618 0.929 0.742

Leafsnap* 0.644 0.764 0.699 0.644 0.931 0.762

GrabCut 0.624 0.848 0.719 0.624 0.964 0.757

Ours-entire 0.690 0.800 0.741 0.690 0.940 0.796

Ours-boundary 0.692 0.822 0.752 0.693 0.944 0.799

Table 3.1: Recall, precision, and F-measure for the entire testing set (300 im-
ages). Our method provides the best trade-off between recall and precision.

Image segmentation quality Leaf boundary quality

Recall Precision F-measure Recall Precision F-measure

Classification 0.700 0.532 0.604 0.700 0.788 0.742

Leafsnap 0.560 0.777 0.651 0.560 0.884 0.686

Leafsnap* 0.614 0.703 0.656 0.614 0.903 0.731

GrabCut 0.598 0.830 0.695 0.598 0.959 0.737

Ours-entire 0.682 0.772 0.724 0.682 0.923 0.785

Ours-boundary 0.686 0.792 0.735 0.686 0.927 0.788

Table 3.2: Recall, precision and F-measure on 150 challenging images from the
testing set. Our method provides the best trade-off between recall and precision.

method to false positives. Moreover, using only samples placed on leaf boundary

to pre-train our classifier (Ours-boundary) we outperform all the other methods.

Looking at Table 3.2 where only challenging images are considered, the improve-

ments due to our method are confirmed to a greater extent. The results prove

that a post-processing based on morphological operations as erosions and dila-

tions hurts quality of boundary especially in terms of recall, thus motivating the

adoption of methods already robust to shadows and irregular light.

The behavior of different methods can be qualitatively appreciated looking at

Fig. 3.9 where results returned by Leafsnap, Leafsnap without post-processing

(marked with *), GrabCut and our method Ours-boundary are reported. As the

reader can see comparing ground truth details with real segmentations, it is con-

firmed that post-processing hurts quality of boundaries and should be avoided.

On the other hand, GrabCut tends to return round contours. With our method

some errors still remain, due to those background pixels that look strongly similar

to leaf (and vice-versa). However, our method represents a good compromise since

we do not use post-processing but at the same time we assure a good robustness
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure 3.9: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. Note that our approach strongly reduces negative effects of
irregular light and shadow regions thus offering a more well defined leaf shape
with respect to other methods that do not adapt to specific light conditions.
Red and orange colors are used to mark false positives and false negatives,
respectively (ground truth does not include stems). Best viewed in color.

to false positives. Furthermore, our contours tend to fit better with the ground

truth.

Our non-optimized MATLAB code on a 4-core virtual machine with 16GB of RAM

requires about 50 seconds to produce segmentation for one image. The majority

of time is required to do classification and produce score map whereas only few

milliseconds are required for EM segmentation. Even though at this stage we

are not able to guarantee competitive processing time, we are confident that with

proper code optimization and the use of more performing hardware like physical

machines we can reach much shorter run-times.



Chapter 4

Candidate Photo Selection for

Face Recognition from Sketch

4.1 Introduction

People identification has become today a central activity in order to provide cus-

tom services to the community and face recognition is one of the most widely

used methods to perform such task. Face is a trait that can be acquired in a

not-intrusive way and with a low degree of cooperation by users. This is one of

the main advantages that make face recognition a relevant topic not only in the

field of biometric systems but also in many AmI scenarios [82].

Face is a widely accepted biometric characteristic and usually people have no par-

ticular scruple to allow its use for identification. One of the main motivations that

could lead a subject to hide his identity is avoiding controls of law enforcements

in relation to some kind of criminal or malevolent activity. Unlike other biomet-

ric elements, the face of a suspect could be obtained in a secret way not only

through the well-known video surveillance cameras but also through a reconstruc-

tion provided by an eyewitness who was present when the criminal event occurred.

By exploiting a verbal description and the manual skills of a forensic artist, the

eyewitness may help to realize a forensic sketch (also known as identikit) of the

criminal face in order to support the identification process [65, 161].

Sketch recognition is usually carried out either by broadcasting the image to cit-

izens (hoping that someone could recognize the suspect as a familiar subject) or

comparing it with mug shot databases owned by the police where generalities and

63
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photos of a large number of subjects have been recorded during years.

The visual comparison with such large databases is of course time consuming and

difficult, so that the research community is proposing new techniques able to per-

form an automatic matching. Unfortunately, many state-of-the-art approaches for

face recognition do not allow a direct comparison between sketches and mug shot

photos since they are characterized by two distinct modalities of face representa-

tion, with uneven richness of details and texture. To overcome this modality gap,

several approaches of photo-sketch recognition have been proposed in recent years.

In spite of their excellent recognition performance on popular databases such as

CUFS and CUFSF [169, 170, 184, 203] (Figure 4.1), such approaches do not focus

on the aspect of efficiency which is a strict requirement in real applications where

the mug shot databases usually contain a very large number of images. In this

realistic scenario, finding the most similar mug shot photo to a given sketch might

require a long processing since state-of-the-art recognition techniques are rather

complex and not well-suited to deal with large-scale galleries.

In this chapter we investigate a possible solution to the problem of dealing with

Figure 4.1: Some examples of real faces (odd columns) and associated sketches
(even columns).

large galleries for face sketch recognition. In particular, we present an approach

designed to restrict the search space and based on the use of suitable shape fea-

tures.

The main advantage of our proposal is that shape features can be computed and

matched very efficiently, with a great saving of computational effort. Starting from

a given sketch, the use of shape features allows to find the most similar photos in

the gallery, thus limiting the subsequent (and more computationally demanding)

recognition to a reduced but significant portion of data. Moreover, the proposed

system overcomes the modality gap since it works on a common representation

based on edges which can be easily extracted from both photos and sketches.

Thanks to this common representation, shape descriptors of a face are quickly

computed and compared.



Chapter 4. Candidate Photo Selection for Face Recognition from Sketch 65

In the following, after a review of the state-of-the-art about face sketch recog-

nition, we show how to build and combine shape features to obtain a candidate

photo selection from a large mug shot gallery thus filtering out clearly misleading

subjects. Moreover, we show how our preliminary candidate photo selection avoids

unnecessary image processing during fine-grained recognition performed with more

complex and robust techniques. Eventually, in the last part of the chapter, we will

propose an indexing technique based on multi-space KL and shape descriptors

thus completing the path of candidate photo selection. We show that our index-

ing proposal results in a more general, efficient and scalable method for photo

retrieval from sketch on large mug shot galleries.

4.2 Related work

4.2.1 Photo-based vs sketch-based face recognition

Face recognition has been a hot research topic especially in the last three decades

[82, 207]. Various algorithms and techniques have been introduced considering

both 2D and 3D models in order to tackle intrinsic challenges such as variations

of light, viewpoint, expression, aging and occlusions due to hair and glasses. De-

spite peculiar traits of state-of-the-art methods, they share a common idea. In

particular, recognition is usually carried out by matching a probe against a gallery

and both probe and gallery are composed by homogeneous elements: a probe face

image is compared against a set of face images, a 3D model is compared against a

gallery of 3D models, and so on.

Differently from common face identification situations, sketch-based face recogni-

tion presents a completely different challenge: a drawing has to be matched against

real photos and many standard approaches cannot be always applied. Variations

of light of viewpoint do not represent big problems in sketch-based recognition,

since the face is usually represented in a canonical fashion both in sketches and

mug shot photos. Instead, the main hurdle is due to the different richness of de-

tails and textures of such images: the ”output” returned by a pencil on a paper is

quite divergent from the one returned by a camera. Moreover, the forensic artist

could misunderstand the verbal description of the eyewitness, thus introducing

grotesque or emphasized face details in the final sketch/identikit.
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To deal with the problem of face recognition from sketch, research has been focused

on two parallel directions:

1. deep understanding of the psychological mechanisms which regulate and in-

fluence the sketch production;

2. study of techniques to directly compare sketches and photos thus overcoming

the modality gap.

The second point will be exhaustively examined in Subsection 4.2.2. With refer-

ence to the first point, various studies have been realized in psychology [17, 23, 24,

50, 131] which resulted to be precursors of sketch-based recognition approaches in

Computer Vision. Providing details about them is beyond the scope of this thesis,

but it is worth noting that their focus has been posed on the surprising capability

of humans in recognizing objects and faces even when they are the result of car-

icature or crippling, thus leading to the intuition that our brain exploits exactly

such emphasized elements to carry out the recognition.

4.2.2 Generative and discriminative approaches

On the basis of the technique used to tackle the previous mentioned modality gap,

state-of-the-art methods for face recognition from sketch can be framed into two

categories: generative and discriminative approaches [20] (a summary is reported

in Table 4.1).

Generative approaches perform a preliminary conversion (synthesis) from photo to

sketch (or vice versa) and then make a comparison photo-to-photos or sketch-to-

sketches. After the initial synthesis it is possible to use traditional methods of face

recognition. To this regard, important contributions are those of Wang and Tang

[158–160, 184], which proposed several different methods for photo-to-sketch syn-

thesis and recognition like eigentransformation, Markov Random Fields (MRF),

Bayesian classifier and the use of separate texture and shape information. Liu et

al. [103] proposed a pseudo sketches generation from photographs with a method

based on local linear geometry preservation and a recognition approach based on a

Nonlinear Discriminant Analysis (KNDA), whereas Gao et al. [63] showed a sketch

synthesis method based on Hidden Markov Models (E-HMM). E-HMM have been

used also by Xiao et al. in [194]. Other contributions are due to Li et al. which
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described a generative approach robust to illumination variations [100] as well as

Zhang et al. [202]. Another scheme for photo-sketch transformation has been

illustrated by Liu et al. [104] and it is based on the Bayesian Tensor Inference.

Due to some drawbacks of generative approaches, such as the complexity of imple-

mentation and deployment, some discriminative approaches have been developed

to exploit modality independent features of photos and sketches, making possible

a direct matching. Some of them require a specific pre-processing activity in order

to standardize sketches and photos and to allow the use of specific descriptors: Uhl

and Lobo [167] performed a photometric standardization and a geometric normal-

ization before doing a direct matching with eigenanalysis, whereas Bhatt et al.

[19] described a decomposition into multi-resolution pyramid in order to conserve

high frequency information and use the extended Uniform Circular Local Binary

Pattern (UCLBP) for the matching. Yuen and Man [198] proposed a two-phase

method based on the use of local and global facial features in the first phase and on

a relevance feedback technique in the second phase. Very important contributions

come from studies of Klare and Jain [91] which described the use of Scale Invari-

ant Feature Transform (SIFT) to compute invariant descriptor for both sketch

and photos. Still Klare and Jain [92] recently published a Prototype Random

Subspace (P-RS) framework for heterogeneous face recognition which can be ap-

plied also in the photo-sketch recognition scenario. A previous heterogeneous face

recognition framework tested on optical image-infrared and sketch-photo pairs was

introduced by Lin and Tang [101]. Approach [91] was further investigated by Klare

et al. [93] leading to the creation of a Local Feature-Based Discriminant Analy-

sis (LFDA) framework, in which both sketches and photos are represented using

SIFT and Multiscale Local Binary Patterns (MLBP). Another descriptor, named

Weber’s local descriptor, was designed by Bhatt et al. [20] to perform a direct

matching. Other important contributions to direct matching came from Zhang et

al. in [203] and in [206]: in the first one a new face descriptor based on coupled

information-theoretic encoding is discussed; in the second one a comparison of

sketch recognition performances between humans and the Principal Component

Analysis (PCA) method is presented.

Previous mentioned approaches [20, 92, 93, 167] share the ability to deal with

viewed sketches as well as forensic sketches (differences between them are exhaus-

tively described in [93]). Recent studies were also conducted on composite sketches

[72, 95]. The effects of matching sketches realized by several artists are investi-

gated by Nizami et al. [121] and Zhang et al. [205].
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In real criminal identification contexts, a photo gallery could be potentially com-

posed of several thousands of items. Among the mentioned state-of-the-art ap-

proaches, only a few works report results on so large datasets [20, 72, 93]). Most

of the tests are carried out on datasets containing a number of photos exactly cor-

responding to the number of sketches in a ratio of one-to-one, with no information

about the scalability of the system with the increase of the gallery. A mug shot

photo candidate selection algorithm, able to limit the set of photos to evaluate for

a given query sketch, can significantly reduce the search time.

Approach type General idea Proposed methods

Generative
Synthesis from photo

to sketch (or viceversa)

Wang and Tang [158–160, 184],

Liu et al. [103], Gao et al. [63],

Xiao et al. [194], Li et al. [100],

Zhang et al. [202], Liu et al. [104]

Discriminative
Direct matching

(no synthesis)

Uhl and Lobo [167], Bhatt et al. [19],

Yuen and Man [198], Klare and Jain [91]

Lin and Tang [101], Klare et al. [93],

Bhatt et al. [20], Zhang et al. [203, 206]

Klare and Jain [92]

Table 4.1: State-of-the-art approaches for face recognition from sketch.

4.3 Photo and sketch pre-processing

The technique we propose for face recognition from sketch can be framed into the

category of discriminative approaches since it does not directly compare original

sketches and photos, but attempts to overcome the mentioned modality gap by

extracting shape features able to effectively represent both types of image.

In particular, we adopt a preparatory pre-processing to highlight the main fa-

cial features, successively used for shape encoding. The proposed pre-processing

procedure is structured in two sequential operations. First of all, images are nor-

malized, cropped, resized and aligned according to standard parameters to ensure

that descriptors calculated on specific positions of images will refer to the same

class of local appearances (eye, nose, chin, eyebrows, etc.). Then, edge detection

is executed on the normalized images in order to obtain new images in which only
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face edges are highlighted. Such pre-processing activity, as well as shape features

computation (Section 4.4), must be performed for each mug shot photo only once

to create or to update the face database. The same operations have also to be

carried out on the input whenever there is a new sketch of a suspect that has to

be identified. The use of such simplified representation is feasible in the context

of sketch recognition since both sketches and mug shot images are well controlled,

with a frontal pose and a uniform background, thus allowing the extraction of

reliable edge images for shape feature extraction.

In the literature many edge detection algorithms have been proposed; one of the

most used is Canny edge detector [31]. However, Canny method introduces some

artifacts, spurious elements and an unwanted fragmentation effect of faces con-

tours when performed on our sketch and photo images. Because of such issues,

we prefer to adopt the Image and Vector Processing Framework (IVPF) [94] as

edge detection environment. IVPF provides a series of operational building blocks

which execute specific image processing functions. Through a suitable graphic

user interface (GUI), the blocks can be parametrized and connected each other

to create a processing network that takes/returns images as input/output, respec-

tively. The GUI of IVPF software is depicted in Figure 4.2; in the right-hand side

of the GUI it is possible to see some of the provided basic functions.

To carry out contour extraction on real photos and sketches, two distinct process-

ing networks have been adopted in order to properly process these different type

of images. An example of such networks is reported in Figure 4.3. They are com-

posed by the same operational building blocks; the main differences are related

to the functional parameters of each block. In particular, such parameters have

been tuned in order to find the best configuration by considering some sketch and

photo test examples. The building blocks which constitute the two networks are

described below.

� ImageFromFile and LDToFile: their function is loading and saving images.

� GaussianFilter : this block performs a Gaussian filtering of the image and

its main purpose is removing small noise from the input image. The user

(network designer) needs to set some parameters such as the windows size

and variance.

� GradientOperator, NonMaximaSuppression and HysteresisThresholding : this

blocks compute the gradient map by sliding a derivative filter on the input
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Figure 4.2: GUI of the IVP Framework and a generic example of a processing
network.

image, plus a non-maxima suppression and hysteresis thresholding, thus pro-

ducing thin and not very fragmented contours. These are common steps in

contour extraction. The user can choose the derivative filter among different

options: Sobel (as we did), Prewitt and Roberts.

� Vectorization: such component transforms a binary image in a set of poly-

lines and polygons by exploiting the pixel-chain method [94]. Basically, the

contour image is scanned point by point and foreground pixels are connected

together with their neighbors according to a given connection policy (end-

line connection or junction connection).

� PolylineConnection: this final block performs an analysis of polylines in or-

der to create connections and junctions among them. Main parameters that

regulate the creation of such connections are the minimal angle, the maximal

angle, the distance between polylines, validity of intersection. For further

details we address the reader to [94].

The result of the pre-processing procedure is a normalized image containing
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the main face edges (see Figure 4.4 and Figure 4.5): the edge-based rep-

resentation allows a direct comparison between photos and sketches on the

basis of the shape features described in Section 4.4.

Figure 4.3: IPVF processing network employed for contour extraction on real
photos and sketches.

(a) (b) (c)

Figure 4.4: Differences between edge extraction from a sketch (a) using the
Canny operator (b) and the IVP Framework (c).

4.4 Shape features

With shape features we denote a class of descriptors which numerically represent

some salient characteristics of a generic shape. Shape features are core descrip-

tors in so-called Sketch-Based Image Retrieval Systems (SBIR) [22, 52, 53, 78])

where image retrieval is carried out by using a generic draw as input query. The

proposed approach presents some similarities with classic SBIR systems but also

some strategic differences. In particular, previously mentioned SBIR systems are

typically designed to distinguish shapes related to objects belonging to different
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(a) (b)

Figure 4.5: Edge images for a given sketch (b) - photo (a) pair related to a given
subject. The subsequent steps of the algorithm are performed on edge images,
thus overcoming the modality gap.

categories (e.g. , distinguish a car from an animal or a building). In our case, we

must deal with a unique object category (faces) and we need to process informa-

tion in order to discriminate amongst different elements semantically belonging

the same category (one subject from another). Consequently, it is necessary to

use specific descriptors able to capture and describe distinctive global and local

appearances. Furthermore, SBIR systems typically deal with regular and well-

defined shape contours while the proposed approach has to deal with irregular

face shapes (such as those illustrated in Figure 4.4 c) and Figure 4.5).

In the literature several shape features have been proposed, many of which are

described in an interesting survey by Yang et al. [195]. In the following part of

the chapter we will show how we employ six different shape features (some of them

inspired by [195]) for face representation. For each shape feature, a similarity mea-

sure is defined: as described in Section 4.5, given an input sketch to identify each

shape feature should be independently evaluated in order to produce a ranking

of the most similar photos according to suitable similarity (or distance) measures

between related descriptors.

4.4.1 Shape Matrix

Shape Matrix descriptor (SM in the following) is computed by superimposing an

M × N matrix on the face shape (Figure 4.6). In [195] two different version of

such feature are presented: Square Model Shape Matrix and Polar Model Shape

Matrix. Here we employ the first one: within matrix cells, each pixel (or point) can
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be uniquely classified as foreground if it belongs to a detected edge or background

pixel otherwise. So, for each cell (j, k) it is possible to determine a cell coverage

offered by the foreground pixels. Such coverage value can be expressed through a

percentage Bjk determined as follows:

Bjk =
#Fjk
#Pjk

∗ 100 (4.1)

where #Fjk represents the number of foreground pixels in a given cell (j, k) whereas

#Pjk is the total amount of pixels of the cell itself.

It is important to highlight that the dimensions of the matrix (M and N) are

fixed parameters and the matrix is stretched in order to cover all the face area. In

other words, #Pjk can vary from one image to another for the same cell (j, k): by

defining Bjk as percentage is therefore possible to compare different images.

Once each Bjk is computed, we build an M×N descriptor vector which summarizes

the coverage offered by the edges of the whole image. Similarity between a sketch

and a photo is determined by calculating the Euclidean distance between the

respective SM descriptors.

Even if we use the above described version of Shape Matrix, in order to investigate

(a) (b)

Figure 4.6: Shape Matrix: face edge image (a) and the superimposed M × N
matrix (b).

benefits of such feature we analyzed also some other variants. One of them is

computed by employing weights associated to each cell of the matrix. In particular,

the application of weights allows to assign distinct importance to different face

components. For example, by assigning higher weight to the central cells of the

matrix it is possible to confer more relevance to nose, mouth and eyes rather

than other components like hair, ears and neck during the following matching

phase. Weights are defined in the range [0...1] and are inversely proportional to
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the distance from the center of the matrix.

Another different form of such feature can be computed by introducing a coverage

threshold Th, thus modifying Eq. 4.1 as follows:

BTh
jk =

1, if Bjk ≥ Th

0, otherwise
(4.2)

In this case, the resulting feature vector is binary thus allowing the use of the

Hamming distance for feature matching rather than the Euclidean distance as in

the previous versions.

4.4.2 Beam Angle Statistics

Beam Angle Statistics descriptor (BAS in the following) was originally studied in

[9] and allows to describe curvature of object boundary, in an invariant fashion

respect to translation, rotation, scale and presence of noise. The angles considered

to compute such feature are defined by a reference point located on the contour

and other sample points located on the same contour.

Let’s consider the shape represented in Figure 4.7 and let B be the shape contour.

Figure 4.7: Beam Angle Statistics: example of beam angle of order k = 5 (figure
from [9]).

B can be seen as a connected sequence of N points Pi = (xi, yi) such that:

B = {P1, P2, ..., PN} (4.3)
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For a given point, it is possible to trace a segment which connects the point to the

other ones. The segment connecting the point Pi with the point placed k positions

forward it is called forward beam vector of order k:

Vi+k =
−−−−→
PiPi+k (4.4)

Similarly, we can define as backward beam vector the segment which connects the

point Pi with the point located k positions backwards:

Vi−k =
−−−−→
PiPi−k (4.5)

Defined the vectors Vi+k e Vi−k, the beam angle Ck(i) of order k related to the

point Pi is computed as:

Ck(i) = (θVi+k
− θVi−k

) (4.6)

where:

θVi+k
= arctan(

yi+k − yi
xi+k − xi

) θVi−k
= arctan(

yi−k − yi
xi−k − xi

) (4.7)

In this work, BAS is used to describe a face shape by considering only the external

contour. Computation of BAS is first done by sampling some of the points located

on the face boundary (Figure 4.8). At each point Pi, BAS calculates angles that Pi

forms with the forward k points and with the backward k points. These angular

values are then respectively subtracted. The complete descriptor consists of k

values corresponding to the angular moments of order 1, 2, ..., k. The left half

and the right half of a face are separately processed to make the descriptor more

robust with respect to the shape irregularity; so, the final descriptor is obtained

as a concatenation of two half descriptors.

Similarity between a sketch and a photo is determined by calculating the Euclidean

distance between the respective BAS descriptors.

4.4.3 Local Orientation Histogram

Local Orientation Histogram descriptor (LOH in the following) synthesizes infor-

mation about local orientations of face edges. Analogously to the SM feature, also

in LOH a M ×N regular matrix is superimposed on the image. The core activity

to build LOH descriptor is calculating the directional image for each cell of the

matrix. A directional image ([108] [110]) is a matrix defined over a discrete grid,
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(a) (b)

Figure 4.8: Face edge image (a) and external face contour sampling (b) used for
the computation of Beam Angle Statistics and Fourier Descriptors.

superimposed on the gray-scale image, whose elements are in correspondence with

the grid nodes. Each element is a vector lying on the xy plane. The vector direc-

tion Θij (unoriented and lying in the range [−90°,+90°[) represents the tangent to

the image edges in a neighborhood of the node and its modulus rij is determined as

a weighted sum of contrast (edge strength) and consistency (direction reliability).

Examples of directional image are reported in (Figure 4.9).

Each directional image element ij is calculated over a local window where a

gradient-type operator is employed to extract several directional estimates (2D

sub-vectors). Estimated values are averaged by least-squares minimization to con-

trol noise. This technique is more robust than the standard operators used for

computing the gradient phase angle.

The more simple and natural approach to extract the local orientation is based on

the computation of the image gradient. As we know, the gradient ∇(xi, yj) in the

point [xi, yj] of a generic image I is a two-dimensional vector [∇x(xi, yj),∇y(xi, yj)],

where ∇x and ∇y are the derivatives of I in [xi, yj] with reference to the directions

x e y. The phase angle of the gradient expresses the direction of maximal change

of pixel intensity whereas the direction Θij is orthogonal to the phase angle in

[xi, yj].

Unfortunately, the employment of the gradient is not enough to compute the di-

rectional image, for the following reasons:

� nonlinearity and discontinuity around 90°;

� estimating one single orientation represents an analysis too sensible to noise

and on the other hand it is not possible compute an average of gradients

because of the circularity of angles;
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Figure 4.9: Examples of directional image (figure from [108]).

� the concept of average orientation is not well defined (for example, average

between 5° and 175° will produce an angle of 90° even if the most correct

value would be 0°).

One elegant and simple solution to overcome the problem of angle circularity is

doubling the angle itself. Each element of the directional image D is coded by the

following vector:

dij = [rij · cos 2θij, rij · sin 2θij] (4.8)

where rij is the modulus of the vector with orientation Θij.

The directional image is computed by splitting the input image by means of n×n
windows. Therefore, each single element of the directional image is obtained as

an average of the local orientations inside the considered window. Such average

element can be computed by considering separately the two components x and y:

d̄ = [
1

n2

∑
i,j

rij · cos 2θij,
1

n2

∑
i,j

rij · sin 2θij] (4.9)

To complete the computation of the directional image in the point [xi, yj] it is

necessary to determine the dominant orientation Θij for each window as follows:

θij = 90° +
1

2
atan2(2Gxy, Gxx −Gyy), (4.10)
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Gxy =
8∑

h=−8

8∑
h=−8

∇x(xi + h, yj + k) · ∇y(xi + h, yj + k), (4.11)

Gxx =
8∑

h=−8

8∑
h=−8

∇x(xi + h, yj + k)2, (4.12)

Gyy =
8∑

h=−8

8∑
h=−8

∇y(xi + h, yj + k)2 (4.13)

where ∇x and ∇y are the gradient components. Finally, the direction reliability

rij of each orientation is:

rij =

√
(Gxx −Gyy)2 + 4G2

xy

Gxx +Gyy

(4.14)

The directional image starting from face edges is shown in Figure 4.10. Each

directional element is characterized by an orientation between 0° and 180°. This

range is discretized in k intervals; each orientation value is discretized to the closest

interval. To describe in a compact way all the orientations, LOH involves the

construction of a histogram with k bins: the l-th bin is associated to the number

of directional elements falling in the l-th interval. Repeating this procedure for

each cell and concatenating all of the M ×N histograms bins, we obtain a single

descriptor for the whole face.

Finally, as we deal with histograms, the similarity between a sketch S and a photo

(a) (b)

Figure 4.10: Local Orientation Histogram: face edge image (a) and its direc-
tional image (b).

P is determined by calculating the Kullback-Leibler divergence K between the
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respective LOH descriptors as follows:

K(HS, HP ) =
d∑
i=1

(HS(i)−HP (i))ln
HS(i)

HP (i)
(4.15)

4.4.4 Fourier Descriptors

Fourier Descriptors feature vector (FD in the following) is quite divergent from the

other shape descriptors we adopt for our candidate photo selection. As recalled

by its name, FD is a feature computed by operating in the frequency domain (or

Fourier domain) rather than in the spatial (image) domain. The use of Fourier

space provide a valiant alternative to the conventional method since it allows to

highlight appearances that could be hardly highlighted and exploited in the spatial

domain. There are important applications of FD in the field of shape representa-

tion and we will apply such idea to give a description of the face boundary.

In its original version designed by Zhang and Lu [200][199], FD feature is ob-

tained by applying the Fourier transform to the so-called shape signature, a one-

dimensional function that represents the contour of a shape. In many practical

applications, the shape signature is the centroid function, i.e. the distance of the

contour points from the centroid (xc, yc) of the object (see an example in Fig-

ure 4.11).

Considering as (x(t), y(t)) the coordinates of the N points placed on the shape

contour, the centroid function is defined as follows:

r(t) = [(x(t)− xc)2 + (y(t)− yc)2]
1
2 , t = 0, 1, ..., N − 1 (4.16)

where

xc =
1

N

N−1∑
t=0

x(t), yc =
1

N

N−1∑
t=0

y(t) (4.17)

Computing the Fourier transform of the centroid function r(t) we get coefficients

Figure 4.11: Example of centroid function computed from a simple shape (figure
from [200]).
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that we call Fourier Descriptors. The strength of this feature is that only few

coefficients at low frequency are really meaningful to give an effective description

of a shape whereas high frequency coefficient can be ignored, as proved in [199].

As shown in Figure 4.12, it is possible to carry out shape reconstruction with a dif-

ferent number of Fourier coefficients, but only a reduced number of low frequency

coefficients are required to faithfully reproduce the object shape. Therefore, by

applying Fourier transform to the centroid function we can produce a small but

expressive amount of values thus building a compact feature vector that effectively

describes the object.

Each coefficient an is computed as follows:

an =
1

N

N−1∑
t=0

r(t) exp

(
−j2πnt
N

)
n = 0, 1, ..., N − 1 (4.18)

an is a complex number with a modulus and a phase. In our application, we con-

sider only the modulus thus building a feature vector with values corresponding

to low frequencies. Moreover, the coefficients are translation invariant due to the

translation invariance of the shape signature. In order to describe the shape, the

computed Fourier coefficients have to be further normalized with reference to the

first coefficient a0 so that we can get rotation, scaling and start point invariant

feature descriptors [199].

In our proposed version, FD descriptor is computed starting with a point sampling

Figure 4.12: Shape reconstruction with a different number of Fourier coefficients.

on the face boundary, analogously to the procedure used for BAS (Figure 4.8).

Then we compute a one-dimensional function called shape signature: for each

sampled point on the face boundary, the normalized Euclidean distance with re-

spect to the face centroid is determined. Conventionally, the centroid is located
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at the center of the two eyes.

Such shape signature is then transformed to the frequency domain. Instead of

using the standard Fourier transform, we exploit the Discrete Cosine Transform

(DCT) that we found more computationally efficient without loosing in accuracy:

an =
N−1∑
t=0

r(t) cos

[
π

N

(
t+

1

2

)
n

]
n = 0, 1, ..., N − 1 (4.19)

Similarity between a sketch and a photo is determined by calculating the Euclidean

distance between the respective FD descriptors.

4.4.5 Pixel Decimal Value

Pixel Decimal Value (PDV in the following) is a very simple but effective feature.

PDV descriptor is computed by assigning to each pixel a decimal value; such value

is obtained by a weighted sum of the pixels in its 8-neighbourhood.

Considering an image of W × H pixels, the final PDV descriptor will consist of

W × H values, one for each image pixel. The value associated to each pixel is

computed as follows: a weight, corresponding to an increasing power of 2 (see

Figure 4.13), is assigned to each pixel of the 8-neighborhood. Then, the final

value is obtained by summing the weights assigned to the foreground pixels (i.e.

the black pixels in the edge image).

Similarity between a sketch and a photo is determined by calculating the Euclidean

distance between the respective PDV descriptors.

Figure 4.13: An example of Pixel Decimal Value descriptor computation.
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4.4.6 Local Binary Pattern

Local Binary Pattern feature (LBP in the following) was originally introduced

with the aim of providing a description of images texture [123]. Thanks to its dis-

criminative power, to its computational simplicity, in addition to the robustness

with respect to variations in illumination, LBP has soon become a very popular

approach in various face recognition applications. In contrast with the common

use of LBP in the context of face recognition, in our proposed approach the LBP

descriptor is not computed on original sketches and photos but only on their edged

images (in accordance with other illustrated shape features).

The basic version of LBP operator assigns to each pixel of the image a binary

value depending on the composition of the neighborhood of the pixel itself. Let pc

be a pixel and p a pixel of its 3 × 3 neighborhood as represented in Figure 4.14.

If p has a value greater or equal to pc then the value 1 is assigned to p, otherwise

Figure 4.14: LBP computation on a grayscale image of a face (figure from [168]).

0. Collecting such binary digits as a sequence, we get a binary number of 8 digits:

the correspondent value in the decimal system represents the final value associated

to the reference pixel pc. Such procedure is similar to PDV feature computation,

but differently from PDV here we consider the difference between pixels (and not

their belonging to foreground (edge) or background).

Such basic version of LBP has an inconvenience related to the size of the neigh-

borhood, since it would be required to use a fixed or variable size depending on

the specific application. For this reason, LBP operator has been extended in order

to handle neighborhoods of different sizes. In particular, in the new version a

circular neighborhood has been introduced thus replacing the previous illustrated

3 × 3 mask, as represented in Figure 4.15. When using a circular neighborhood,
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Figure 4.15: Circular neighborhood to compute LBP (figure from [168]).

two new parameters have to be considered: the number of sample points P and

the radius R of the circle. Furthermore, interpolation is used to infer the value of

a sample point that is placed across multiple pixels. After the definition of param-

eters P and R, the previously illustrated method is used to associate to a given

pixel pc its corresponding binary value, taking advantage of the interpolation to

determine the grayscale value of undefined pixel.

The binary patterns 0-1 that we obtain computing LBP can be classified as uni-

form and non-uniform. In Figure 4.16 we can appreciate some examples of uniform

patterns. A pattern is uniform when it contains up to two 0-1 transitions (e.g. ,

Figure 4.16: LBP: examples of uniform patterns (figure from [168]).

the patterns 10000011, 11110000, 00000000 are uniform). Uniform patterns are

important because considering only them it is possible to obtain a large save of

memory during processing. Indeed, the number of all possible patterns is 2P but

the number of all possible uniform patterns is only limited to P (P−1)+2. To bet-

ter understand the meaning, we can look at Figure 4.17: considering a grayscale

face image, the number of uniform patterns (represented as white dots) is largely

smaller than the number of non-uniform ones.

Computing LBP for the entire image leads to a feature vector that can be repre-

sented as a histogram. The feature vector is obtained by dividing the image in

k2 sub-windows and for each sub-window we build a histogram where bins take

into account the number of occurrences of different uniform patterns. A histogram

is therefore composed by P (P − 1) + 3 bins: P (P − 1) bins for patterns with 2
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(a) (b) (c)

Figure 4.17: LBP: uniform patterns (b) and non-uniform patterns (c) from a
grayscale face image (figure from [168]).

transitions, 2 bins for patterns with no transitions and only 1 bin to take account

of non-uniform patterns. Histograms from each sub-window are finally normalized

and concatenated thus obtaining the final image-related histogram, as illustrated

in Figure 4.18.

As the reader should have noticed, previous examples refer to grayscale images of

Figure 4.18: LBP: histograms which compose the final feature vector (figure
from [168]).

the face. In our sketch recognition scenario, LBP is instead applied to edge images

of the face subject, accordingly to other mentioned shape features. Being LPB

quite sensitive to image texture and to noise presence, it is necessary to introduce

a new parameter: a grayscale threshold. The main goal of such threshold is filter

out those pixels that even if not completely white can be anyway considered as

background, thus not involving them in the LBP computation as foreground.

As mentioned before, the final feature vector is obtained by concatenating his-

tograms from each sub-window. Even if we have already defined a histogram dis-

tance to determine similarity between a sketch and a photo (see Subsection 4.4.3),

we employ here the Euclidean distance between LBP descriptors. Indeed, such

descriptors are composed by several thousands of elements thus making histogram

distance computationally demanding and inefficient.
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4.5 Feature fusion for candidate photo selection

In our system we aim at comparing a sketch of an unknown subject with a mug shot

photo gallery of already recorded subjects. The main purpose of such comparison

is returning a candidate photo list of the most similar photos to the given sketch.

Such candidate list can be used either as is by police enforcements in order to carry

out a rough and manual evaluation of possible suspects or employed as input data

for a more accurate and conclusive recognition (as we will see in Section 4.8).

In this latter scenario, the system could produce the final recognition result in a

shorter time since only a reduced set of photos instead of the whole gallery has to

be analyzed.

As illustrated in Section 4.4, we have at our disposal six distinct shape features.

Given an input sketch, each single feature can scan the gallery separately thus

returning a ranking of the most similar photos according to specific similarity

measure. On the other hand, we need to define a fusion technique in order to

merge partial results provided by each shape feature and return the final candidate

list according to all shape features.

Literature provides different different methods for features fusion [168], as reported

in the list below.

� Fusion at feature level: descriptor vectors concerning each single shape fea-

tures are combined to obtain a unique final vector which describes the subject

face. Features fusion is carried out before the matching phase.

� Fusion at score level: different matching algorithms are used for each features

thus returning different scores. Scores are then combined to generate the final

global score.

� Fusion at rank level: each shape feature provides its own photo ranking

based on the reference sketch and then rankings are fused to obtain the final

global ranking.

� Fusion at decision level: each feature expresses a ”preference” (vote) about

the most similar photo to the given sketch and then preferences are combined

to get the finale vote for each photo.

Potentially, all the above mentioned techniques are well suited for our purpose,

but the most interesting one is the fusion at rank level. Indeed, we want to obtain
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a ranking of the most similar photos to the given sketch, expecting the correct

subject to be in the top positions of the ranking. This allows the creation of

a candidate list, where only the top-N results are selected either for further re-

finements or for the final recognition. Under this point of view, the best fusion

technique turns out to be the borda count [180].

When adopting borda count, the final ranking is obtained by combining the rank-

ings provided by each single shape feature (an overview of the general idea is

reported in Figure 4.19). A decreasing vote is assigned to the first bCount images

in each ranking: if we have bCount photos that must be evaluated, the photo that

results to be ranked in position j according to a certain shape feature will get a

score number equal to N − j. Effects of the parameter bCount on the accuracy

are evaluated in Section 4.7.

Single rankings are fused with a straightforward sum of scores for each rank posi-

tion. Moreover, since shape features have different level of reliability, we employ

weights to assign distinct levels of importance to each ranking. This is a common

strategy in multi biometric systems where weights are experimentally determined

according to single classification accuracy of each biometric trait. As reported in

Figure 4.19, we experimentally determined BAS, FD and LOH as shape features

with higher weights since they proved to be more accurate than the others.

Figure 4.19: Candidate photo selection overview: feature fusion is carried out
through borda count voting procedure.
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4.6 Sketch and photo datasets

As illustrated in Section 4.2, face recognition from sketch is a relatively new and

peculiar research area in the wider field of face recognition. Because of such novelty,

finding proper datasets for performance evaluation turns out to be not a so easy

task. On one hand, sketches of various subjects are necessary together with real

mug shot photos of the same subjects to perform true and false matching. On the

other hand, large galleries of mug shot photos are required in order to simulate

real scenarios with at least several thousands of potential candidates. Since both

sketches and mug shot photos are jealously and secretely kept by law enforcement

agencies, for our purpose we must rely on publicly released databases containing

photo-sketch pairs.

With reference to publicly available sketches, it is important to distinguish between

three categories: viewed sketches, semi-forensic sketches and forensic sketches.

Such sketches are produced by means of different procedures:

� viewed-sketches are drawn by a professional artist while looking directly at

a person (or at a real photo of the person itself);

� semi-forensic sketches are realized by a professional artist who first looks at

a person (or at a real photo of the person itself) and after a time laps of

some minutes draws the portrait by relying only on his/her memory;

� forensic sketches are realized by a forensic artist based on the description of

an eyewitness by relying on his/her recollection of the criminal event.

Because of their nature, viewed sketches stand out to be good quality images which

look quite similar to real photos. On the contrary forensic sketches are picked

up from crime investigation activity and turn out to be very challenging. Some

instances of forensic sketches are affected by a very poor quality thus making the

recognition very challenging also for a human eye. Finally, semi-forensic sketches

simulate the forensic context since the sketch artist is not allowed to view the

digital image while preparing the sketch.

For our experimental evaluation, we employ 188 viewed sketches from CUHK

[184] and 123 from AR [184] (for a total of 311 viewed-sketches), 65 semi-forensic

sketches from IIITD datasets [20] and 50 real mug shot photos collected from

the web (Table 4.2). In Figure 4.20, the reader can visually appreciate different
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examples of the previously mentioned categories.

With reference to mug shot galleries, it is rather difficult to find public face datasets

Dataset name Description Number of elements

CUHK [184] Viewed sketches 188

AR [184] Viewed sketches 123

IIITD [20] Semi-forensic sketches 65

Mug shots Forensic sketches 50

Table 4.2: Viewed, semi-forensic and forensic sketches used in our experiments.

adapt for this scenario. The previous mentioned sketch datasets include exactly

those photos which are associated to sketches: if we compose our gallery only with

such photos, we would get a gallery made up of ∼ 400 elements, therefore not

suitable to carry out large scale tests. Taking into account such issue, we created

a mixed database of photos, collecting well-controlled and mug shot-like images

from various sources: 188 images from CUHK [184] and 123 from AR [184] (paired

to viewed sketches), 65 images from IIITD (paired to semi forensic sketches) [20],

the 50 real mug shot photos associated to forensic sketches plus photos collected

from other datasets. In particular we took 114 photos from CVL [176], 100 from

PUT [88], 1194 from FERET [203], 6387 from FRGC [127] for a total of 8221 mug

shot-like photos in our gallery (Table 4.3).

Dataset name Corresponding to sketch ? Number of elements

CUHK [184] Yes 188

AR [184] Yes 123

IIITD [20] Yes 65

Mug shots Yes 50

CVL [176] No 114

PUT [88] No 100

FERET [203] No 1194

FRGC [127] No 6387

Table 4.3: Mug shot photos from different datasets we used to compose our
gallery.



Chapter 4. Candidate Photo Selection for Face Recognition from Sketch 89

(a)

(b)

(c)

Figure 4.20: Different types of sketch (second row), with associated mug shot
photos (first row): (a) viewed sketches from CUHK and AR datasets [184] , (b)
semi-forensic sketches from IIITD dataset [20] and (c) forensic sketches collected
from the web.
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4.7 Candidate photo selection performance

In this section we report accuracy of sketch-based photo retrieval from the gallery.

In particular, we employ our six shape features (see Section 4.4) to scan the gallery

linearly and we build a final candidate set according to rank-level fusion described

in Section 4.5.

All the parameters related to shape features have been optimized on a disjoint

training set and the same values have been used in all the tests reported in this

section. Considering the aim of the proposed technique, the performance are re-

ported in terms of the percentage of the gallery that must be considered to retrieve

95%, 99% and 100% of the real photos associated to the query sketches.

Some preliminary tests have been carried out on the CUHK subset of sketches to

evaluate the performance of the proposed technique as a function of the parameter

bCount representing the number of photos to vote in order to produce the final

ranking. The results obtained are summarized in Table 4.4. The results show that

increasing the value of bCount determines a slight increment of the percentage

needed to find 95% of the real photos, but significantly reduces the values related

to 99% and 100%. We found that 5000 represents a good choice and such value

will be used in the subsequent experiments.

Further tests have been executed to evaluate the behavior of the proposed tech-

bCount 95% 99% 100%

1000 3.68% 32.76% 32.84%

2000 3.97% 24.53% 35.92%

3000 4.79% 20.35% 23.95%

4000 5.02% 13.70% 24.25%

5000 5.60% 12.27% 20.59%

6000 5.53% 15.41% 19.42%

7000 6.83% 16.62% 19.09%

8000 6.83% 16.58% 19.01%

Table 4.4: Percentage of data to consider to retrieve a given percentage (95%,
99% and 100%) of the photo associated to the test sketches, as a function of
bCount.

nique with different kind of sketches. In Figure 4.21 the percentage of correct

photos retrieved as a function of the percentage of database considered is reported

for different sets of sketches: CUHK and AR, IIITD and Forensic. The results
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clearly show that the first set contains easier images, while the difficulty in re-

trieving the correct photo increases when semi-forensic or forensic sketches are

considered, as also highlighted in many works in the literature. Despite of the

complexity of the task, the proposed shape features proved to be effective in re-

ducing the search space.

The scalability of the proposed technique has been analyzed by evaluating the per-

Figure 4.21: Percentage of correct photos retrieved as a function of the percent-
age of gallery considered for the AR+CUHK, IIITD and Forensic sketches.

Figure 4.22: Percentage of correct photos retrieved as a function of the per-
centage of gallery considered. The results are reported for increasing size of the
gallery (from 1000 mug shot to 8000).

formance as a function of the gallery size (see Figure 4.22). The results obtained

are encouraging: as expected, a smaller gallery produces better results, but over-

all the performance are not significantly affected by the increment of number of

mug shot photos. As to the efficiency of the proposed technique, the average time

needed to compute the shape features for a single image is about 131 msec., while

matching the descriptors of two images takes about 1 msec. on a PC Intel(R)
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Xeon(R) CPU E31245 @ 3.30 GHz.

Finally, as qualitative result, we provide visual examples in Figure 4.23 of rank-

ings obtained for different input sketches. In these examples, the real photo pairs

are retrieved in the first position, but it is worth highlight also that the subse-

quent mug shot photos present a visible and clear visual similarity with the input

sketches.

Figure 4.23: An example of the photo ranking provided by our proposed ap-
proach: a query sketch is given for each type of sketch (viewed, semi-forensic
and forensic) and the five most similar photos according to our algorithm are
reported.

4.8 Fine-grained recognition on the candidate set

In Section 4.7 we reported accuracy in face photo retrieval given an unknown

sketch and a gallery of photos as input. Starting from the retrieved photos, it

could be possible to execute a further step to produce the final recognition re-

sult. This can be done manually through a visual comparison or automatically, as

we show next, through a fine-grained recognition technique. In other words, the

recognition pipeline is made up of two steps: first we employ shape features to

filter out photos which do not look like the probe sketch, then we use a suitable
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recognition technique to produce the final result by taking into account only the

candidate set built in the first step.

Such pipeline provides two important processing benefits. On one hand, the first

step can be performed in a relatively short time thanks to the low computational

demand of shape features, thus allowing a fast preliminarily scan of the entire

gallery. On the other hand, fine-grained recognition can be carried out through a

more computationally demanding and accurate technique thus focusing only on a

very reduced set of elements (photo candidates) without paying longer processing

time that would be instead required if using the same fine-grained technique on

the whole gallery. What needs to be evaluated now is the accuracy drop - if any

- when combining shape features and fine-grained technique instead of using the

fine-grained technique only.

Some techniques we could adopt here have been illustrated in Section 4.2, e.g.

[20, 72, 91]. Unfortunately, code is not publicly available and their implementation

from scratch would be prone to errors. However, in [72, 91] SIFT-like descriptors

emerged to be quite effective for the purpose of face recognition from sketch. For

these reasons, we adopt Speeded-Up Robust Feature (SURF) descriptors as fine-

grained algorithm for a quantitative evaluation.

In the following, we show recognition rate accuracy when considering an increasing

percentage of the indexed photos for a given face sketch. The photo gallery and

probe sketches are the same described in Section 4.6: 8221 mug shot-like photos

and 3 different type of sketches (viewed from CUHK and AR, semi-forensic from

IIITD and forensic collected from the web). Given a sketch of an unknown subject

that has to be identified, candidate photo selection is first carried out by using

our shape features as illustrated in Section 4.5. Fine-grained recognition is then

performed through SURF descriptors by taking into account only a reduced per-

centage of the total retrieved and ordered photos.

Fine-grained recognition accuracy is reported in different charts of Figure 4.24 for

viewed, semi-forensic and forensic sketches. Rank-1, Rank-5, Rank-10, Rank-15

and Rank-20 SURF recognition accuracy are showed by varying the considered

portion of retrieved and ordered data (as percentage of the entire gallery). Even

though the three sketch classes are marked by very different levels of challenge

and not comparable recognition rates, it is proved that performing the fine-grained

recognition technique on a very reduced set of photos yields to better recognition

results rather than considering the entire gallery without any candidate selection

(i.e. 100% portion of data). In particular, the graphs seem to agree in identifying
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approximately at 10% the best portion of retrieved and ordered data within which

expect the true photo associated with the given sketch, thus proving effectiveness

of our shape features-based candidate selection method.

Shape features allow a fast scan of the gallery since shape descriptors matching

is 25 times faster than SURF descriptors matching on the same computing plat-

form (whereas time required to compute six shape descriptors is comparable to

the time required to compute a single SURF descriptor) and they are also effective

in filtering out those photos which can negatively affect recognition accuracy of a

fine-grained algorithm, thus helping good candidates to emerge.

4.9 MKL-based indexing structure for sketch recog-

nition

4.9.1 Indexing structures on large-scale image databases

Recognition speed is negligible when a photo gallery includes only few hundreds

of samples as in publicly available research-purpose datasets. However, it becomes

a critical problem with real mug shot galleries, where a potentially huge number

of candidates is represented (e.g. , the gallery we built for our experiments and

described in Section 4.6). As mentioned in Section 4.2, to the best of our knowl-

edge only few state-of-the-art methods provide performance results with such very

large galleries [20, 72, 93]. Moreover, photo indexing techniques capable to reduce

search space for sketch recognition are still missing.

A first solution to this problem has been proposed in Section 4.5. In particu-

lar, we employed efficient shape features to preliminary scan the gallery and filter

out misleading subjects for a given sketch. More specifically, in order to shrink

the search space, the sketch is compared against each photo with a linear scan.

Shape descriptors similarity is then computed thus producing a candidate list of

the most similar subjects. In this section, we extend such idea by proposing an

MKL-tree indexing method [59] in order to reduce the search space when a new

sketch (query) has to be matched against a gallery of photos. As before, we use

shape features to describe both sketches and photos thus overcoming the modality

gap. However, instead of employing shape features to perform a linear search on

the entire gallery, here we illustrate an MKL-based indexing schema where most
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(a)

(b)

(c)

Figure 4.24: Recognition rate using SURF on a) viewed sketches (CUHK and
AR), b) semi-forensic sketches (IIITD) and c) forensic sketches. Rank-1, 5,
10, 15 and 20 are reported as a function of the percentage of candidate photos
retrieved through shape features analysis.
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similar photos are retrieved in a time that is near constant with increasing gallery

size, by taking advantage of trees and dimensionality reduction properties.

Efficient and accurate image retrieval through proper indexing structures on large-

scale image databases has been widely explored during years yielding to countless

approaches. A complete review of such techniques is out of the scope of this doc-

ument; in the following we focus our attention to indexing techniques for face

photo matching with special attention to forensic contexts [81], which are small

but challenging subsets in the field of general-purpose image retrieval.

Despite great effort has been spent to create indexing techniques related to other

biometrics features such as fingerprint [18, 32], iris [51] and multi biometric pat-

terns [71], only few indexing approaches has been introduced as support for face

recognition on large galleries. Bag of Words technique [46, 151] [120], which con-

stitutes the state-of-the-art for many image retrieval systems, showed recognition

drawbacks when applied to faces because of low capabilities in handling intraclass

and interclass variations [120]. A more reliable and inspiring method has been

presented in [192] for celebrity face retrieval where local facial features are em-

ployed for a first index-based scan of a web-scale photo gallery and then global

features are used to re-rank the previous returned candidate set, thus offering a

scalable and accurate system. Furthermore, recently introduced hashing-based in-

dexing [76] has been proposed for face recognition [86, 89] on common available

photo datasets but to the best of our knowledge no indexing techniques have been

explored for face recognition from sketch where heterogeneous matching between

sketch and photos has to be handled.

Another relevant aspect related to face indexing is represented by the dimension

of feature descriptors. In face recognition literature, many different discriminative

features have been shown to describe faces [79, 97, 124, 157, 189, 190]. However,

their high dimensionality makes them not suitable to build state-of-the-art index-

ing structures as R-trees and k-D trees [70, 77, 182] since they are affected by the

curse of dimensionality [16]: the algorithm does not scale well to high-dimensional

data, typically due to needing an amount of time or memory that is exponential

in the number of dimensions of the data. This problem is usually handled by

applying a dimensionality reduction technique to decrease the number of data di-

mensions thus allowing indexing with standard techniques. Different strategies

for dimensionality reduction have been introduced to deal with static and globally

correlated datasets [61, 83] and for real applications where datasets usually do not

comply with such conditions [41, 130].
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4.9.2 MKL transform

As mentioned previously, the ”dimensionality curse” problem is usually dealt with

by applying a dimensionality reduction technique: the feature vectors to be in-

dexed are first reduced to a lower dimensionality by means of the Karhunen-Loève

(KL) transform [61] and then indexed with a traditional data structure.

The KL transform is, among all the unitary transformations for dimensionality

reduction, the one which guarantees the best Euclidean distance preservation. In

other words, it minimizes the mean-square approximation error, defined as the

mean distance between the points belonging to the training set and their back-

projections from the reduced space.

Given P = {xi ∈ Rn | i = 1, ...,m} a set of m, n-dimensional data points be-

longing to the dataset, the k-dimensional eigenspace associated to P is denoted as

SP = [x̄P ,ΦP ,ΛP ], where: x̄P is the mean vector, CP is covariance matrix of P ,

ΛP ∈ Rk×k is the matrix of the largest eigenvalues of CP and ΦP ∈ Rn×k (projec-

tion matrix) is the matrix of the eigenvectors of CP corresponding to the largest

eigenvalues. Starting from this formulation we can define the following notions:

� y = ΦT
P (x− x̄P ) is the projection of x ∈ Rn into the eigenspace SP .

� x
′

= ΦPy + x̄P is the back-projection, into the original space, of a vector

y ∈ Rk.

� dI(y1,y2) = ‖y1 − y2‖2 is the (Euclidean) internal-distance between two

vectors y1 , y2 belonging to the same space.

� dFS(x, SP ) =
√
‖x− x̄P‖22 − ‖ΦT

P (x− x̄P )‖22 is the distance-from-space of a

vector x ∈ Rn from a space SP .

� The reconstruction error of a vector x is the approximation resulting from

the projection/back-projection operations and it coincides with the distance

x from the space SP : dFS(x, SP ); this error can be conceived as a measure

of the appropriateness of SP to represent x.

� ε(SP ) = E[dFS(x, SP )2] =
∑n

i=k+1 λi is the mean-square error over all the

points in P and it corresponds to the sum of the n − k discarded CP ’s

eigenvalues.
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� ξ(SP ) =
∑n

i=k+1 λi∑n
i=1 λi

is percentage mean-square obtained by dividing the mean

square error by the sum of all the CP ’s eigenvalues.

With this formulation at hand, it is possible to introduce an improved version of the

KL transform: the multi-space KL transform (MKL) [33]. The MKL transform is

a generalization of the KL transform where more subspaces are created to arrange

the data points (see Figure 4.25). Each subspace represents a subset of points

having similar characteristics, thus allowing more selective features to be extracted.

Let P = {xi ∈ Rn | i = 1, ...,m} a set of m, n-dimensional vectors, then for a

Figure 4.25: Multispace KL transform example: two subspaces (S1 and S2) and
one subspace (S3) are used to represent two classes A and B, respectively.

given partition P = {P1, P2, ..., Ps} of P and for a given set K = {k1, k2, ..., ks} of

scalars such that:

�
⋃
i=1,...,s Pi = P, Pi ∩ Pj = ∅ ∀i, j = 1, ..., s , i 6= j.

� mi = card(Pi) ≥ b m
s+1
c ∀i = 1, ..., s.

� 0 < ki < min(mi, n) ∀i = 1, ..., s.

The MKL transform is defined by the set of subspaces S = {S1, S2, ..., Ss} where Si

is the eigenspace of reduced dimensionality ki obtained from the training subset Pi.

The KL transform represents a particular case of MKL, where s = 1, P = {P} and

K = {k}. A huge number of MKL transforms may be derived from the same initial

set P , by varying s, P and K; we denote with MKL solution a triplet (s,P , K).

The partition P is obtained by means of an ad hoc heuristic algorithm aimed to

minimize the percentage mean-square recognition error ξ(s,P , K), defined as the
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weighted sum of the percentage reconstruction errors related to each KL subspace

Si:

ξ(s,P , K) =

∑s
i=1(mi · ξ(Si))

m
(4.20)

4.9.3 MKL-tree and range search

MKL-tree is a disk-based hierarchical structure for n-dimensional points, where

data are stored in the leaves, while internal nodes are used to route the search.

Nodes correspond to disk blocks and represent the set of objects which are indexed

by the corresponding subtree. MKL-tree is a dynamic structure: node represen-

tation is updated as a new data point is inserted, in order to give an improved

approximation of the corresponding data subset. The tree is height-balanced: all

paths of root-leaf have the same length h. Nodes are divided into two categories:

internal nodes, containing a representation of their children and a pointer to the

corresponding disk block, and leaves, containing representations and pointers to

the indexed objects.

A KL subspace of the original space is associated to each node, root excepted. The

KL representation of the root is never calculated, since it is not useful to drive

the search. Each element of a leaf node consists of the projection into the corre-

sponding KL subspace of an indexed object and of the pointer to the disk block

in which the object is stored. Each element of an internal node corresponds to the

KL subspace associated to a child node, its mean-square error and the pointer to

the disk block in which its child is stored.

The KL subspace associated to each (internal or leaf) node is the subspace that

better represents the points in the corresponding subtree (i.e. , the subspace that

guarantees the minimum reconstruction error for the points stored in the leaves of

the subtree). As to the leaves, the related subspace is simply calculated starting

from the corresponding data points, whereas in the internal nodes, the subspace is

determined by means of a ”merging” procedure [58] which creates a representative

space starting from the KL subspaces associated to its children. However, in both

cases the space associated to a node is characterized by a dimensionality k, far

lower than the dimensionality n of the indexed data (k << n). The k value may

be constant for the whole tree or may vary among different nodes (for instance, it

could be low at leaf level and increase when moving toward the root).

The overall space required for storing a node element is (4 · ((k + 1)(n + 1) + 1))

bytes, where we consider 4 bytes for storing the pointer to the child and for the
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representation of each float value.

Nodes have a capacity, which denotes the maximum number of elements they can

contain. This value is usually different for internal nodes (MI) and leaf nodes

(ML) due to the different structure. Some constraints are imposed to control the

minimum loading factor: each internal node, root excepted, must contain at least

mI elements; each leaf node must contain at least mL elements. The ratio between

the maximum and minimum node loading factor is a parameter that must be set

at tree-creation time (e.g. , mI = MI

3
).

These constraints help in balancing the element distribution among different nodes

and allow a higher utilization of the structure to be achieved. The minimum and

maximum capacity of the leaves are related to the dimensionality k of the cor-

responding KL subspace, to the size of disk blocks and the dimensionality n of

the original data. In fact, in order to calculate the KL transform, at least k + 1

elements must be available in the leaf, thus mL > k. Moreover, the constraint

ML = 2mL > 2k is necessary to allow leaf splitting. As far as internal nodes are

concerned, the only constraint is MI = 2mI . Figure 4.26 describes the general

structure of an MKL-tree: each node of the structure is represented by a KL sub-

space, denoted by Si, which is maintained inside its parent node. Internal nodes

contain the representation of their children, while leaves contain the projections

of the indexed objects into the relative eigenspace. MI and mI are the maximum

and minimum internal-node capacity, respectively. ML and mL are the maximum

and minimum leaf capacity, respectively. The root is an internal node not having

a minimum capacity. Further details about MKL-tree data structure regarding

Figure 4.26: The general structure of an MKL-tree (figure from [59]).

node compression and algorithms for bulk loading and compression are reported

in [59].

Now we focus our attention on a specific and important managing operation: the

similarity search using the indexing structure described above. The MKL-tree
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performs approximated queries; as in the search algorithms a pruning criterion is

adopted in order to speed up the execution of the queries reducing the number

of visited nodes. This criterion, that will be better explained in the following,

causes the ”loss” of some points that, in the original space, would have fulfilled

the search criterion, producing an approximated result. The approximation in-

troduced by this algorithm and its effected will be examined and discussed in

Subsection 4.9.4. Besides, unlike what happens in traditional database systems,

where queries are typically executed by searching for records which exactly match

the searched element, in multimedia database the standard approach is to do a

search on a high dimensional space where the concept of exact match has little

meaning, and thus concepts of similarity are typically applied. The similarity

Figure 4.27: Pseudo-code of the range similarity search.

search algorithm (whose pseudo-code is reported in Figure 4.27) visits the tree
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starting from the root, by following the most promising path. To this aim, a heap

queue of the nodes to be visited is maintained, ordered according to the distance

(dFS) from the searched point. At each step of the search, the first node in the

queue is extracted: if it is an internal node, all its children, whose distance from

the searched point is lower than a threshold (given by the pruning criterion), are

inserted into the queue; if it is a leaf, its elements are evaluated with respect to

query radius (or the actual K-NN distance). The search stops as soon the first

element in queue does not fulfill the pruning criterion or the heap becomes empty.

The pruning rule is based on probabilistic criteria: a node (represented by a sub-

space S) is visited only if the dFB(p, S), denoting the smallest distance of the

query center p from its approximate bounding box, is less than a threshold (de-

pending on the query radius for range searches or on the minimum distance for

nearest-neighbor searches). The approximate bounding box of a KL subspace is

defined as the hyper-rectangle that is centered in the origin of the subspace and

whose semi-axes lengths are three times the values of the corresponding standard

deviation (which coincides with the square root of the related eigenvalue). If the

points associated to a node have a Gaussian distribution, this approach guarantees

that each point is within the bounding-box (whose size is related to the standard

deviation of the distribution) with a probability greater than 99.73%; this state-

ment is not true for other distributions but in any case, the loss of information is

very low, as confirmed by the experimental results.

The result of the search procedure is a set of objects that satisfy the search con-

dition in a reduced subspace. Due to the dimensionality reduction performed,

some of these objects could not fulfill the search condition in the original space;

therefore, a further false positive elimination step is required.

4.9.4 Fine-grained recognition on MKL-based candidate

set

MKL-tree achieves high performance thanks to its use of local data approximation

at each node. Since each MKL-tree node makes a KL dimensionality reduction of

the whole space with the aim of better representing the related points, the preci-

sion of the result is increased with respect to a global dimensionality reduction,

yielding to improved search performance. Differently from the other access meth-

ods based on dimensionality reduction (LDR, GDR), the MKL-tree is a dynamic
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structure, in which the reduced data spaces can be updated in order to better

characterize new data objects, even drawn from a different distribution. Further-

more, proper compression technique [59] allows to reduce the number of disk block

required to store the tree, thus achieving a noticeably reduction of I/O costs.

Retrieval performance and computational costs of MKL-based indexing structure

are more deeply illustrated in [59]. In this section, we investigate the use of such

indexing structure to retrieve most similar photos to a given sketch, thus enabling

fine-grained recognition only on the retrieved subset. Differently from Section 4.8

where the candidate set is obtained by comparing each photo of the gallery to

the given sketch by means of shape feature similarity, here the candidate set is

retrieved through MKL-tree and range search on it. In other words, we retrieve

a candidate set by executing a K-NN sketch-based query. By visiting the tree,

the candidate set can be retrieved in a time that is near constant with increasing

gallery size. Therefore, the index-based solution offers a shorter retrieval time

respect to the standard search illustrated in Section 4.8 where the entire gallery

must be parsed at each new sketch-based identification.

One of the main aspect to investigate is how to adapt MKL-tree to our purpose of

photo retrieval. The cost for building the MKL-tree has to be paid only once when

the tree is created for the first time. Then, it can be updated just in case when new

photos are included in the gallery. The main problem to deal with at this phase is

due to the heterogeneous composition of shape features. As illustrated in section

Section 4.4, we defined different shape features with various meaning (histogram,

Fourier transform, space distance, etc.) and they are computed separately for each

image. In order to make possible the use of a self-contained indexing structure,

we need to work with unique feature vectors associated to photos and sketches,

thus enabling the use of range search and K-NN queries in accordance with the de-

scribed in Section 4.9.3. Therefore, to build our MKL-tree we adopt the following

preliminary steps:

i) shape descriptors are computed separately for each photo of the gallery;

ii) shape descriptors are normalized so that each descriptor component falls in

the range [0, ..., 1];

iii) normalized descriptors are weighted accordingly to weights assigned to dif-

ferent shape features (see Section 4.5);
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iv) normalized and weighted shape features are concatenated in order to create

a unique shape descriptor vector.

After these preliminary steps, we have at our disposal a feature vector set with

8221 vectors, each one corresponding to a different photo in the gallery. It is worth

noting that each vector is composed by 7829 components, thus justifying the use

of an indexing structure able to deal with high-dimensional data. Once we create

the gallery-related feature set, we carry out the final tree building: we found that

a 3 level tree with a KL reduced dimension equal to 80 works well for our purpose.

In Figure 4.28 we show fine-grained recognition accuracy on viewed-sketches by

performing SURF on two different candidate sets: the one obtained by linearly

scanning the gallery thus selecting the most similar photos according to shape

features similarity (as explained in Section 4.8) and the one obtained through a

sketch-based query performed on a suitable MKL-based indexing tree. As before,

we report five different accuracy values (Rank-1, Rank-5, Rank-10, Rank-15 and

Rank-20) by varying the amount of retrieved data as percentage of the total avail-

able photos. As illustrated in Section 4.8, the best portion of retrieved data within

which expect the photo is around 10%: therefore, we consider here a range from

1% to 20% thus showing fine-grained recognition perfomance for such reduced but

significant subset.

The charts show that MKL-based indexing leads to a drop of recognition perfor-

mance. Actually, this is not totally surprising: employing shape features to scan

the gallery we perform an exact match by comparing each photo to the given

sketch. On the contrary, with MKL-based indexing we adopt dimensionality re-

duction which introduces an approximation. Moreover, the indexing tree is visited

by adopting a range search thus making the matching not exact.

However, we can consider the results offered by our MKL-tree encouraging and

worthy of further investigation: the performance drop is not unbearable and MKL

indexing leads to fine-grained accuracy that is comparable with the use of shape

features only (especially when the candidate set is composed by the 10% of most

similar photos to the given sketch). Moreover, tests prove that the average time

required to retrieve the candidate set from a skech-based query is ∼ 1 sec. (using

the same platform described in Section 4.7) and it is near constant with increas-

ing gallery size thanks to the property of MKL-tree [59]. On the contrary, using

shape features to perform linear scan the time is more than 8 time greater (sup-

posing that photo descriptors have been precomputed and stored thus paying only
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matching costs) and it is intended to grow proportionally with the gallery size,

thus highlighting computational advantages provided by our indexing tree.
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(a)

(b)

(c)

(d)

(e)

Figure 4.28: Fine-grained recognition accuracy by varying the percentage of
indexed photos considered as candidate set.
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Conclusion

Computers, portable devices and embedded processing units are becoming more

and more part of our everyday life and their functionalities are employed by a wide

range of population. To make such devices truly at the service of people, it is nec-

essary to develop and embed intelligent (smart) components inside them. What

provides intelligence is usually a specific software, that process and understand

events in order to take decisions in real time. Generally speaking, the problem

has shifted from producing hardware to producing smart hardware. In particular,

smart hardware and technology placed in the surrounding environment are re-

quired to react and interact with objects and people thus adapting to users needs

and preferences: this ability is usually denoted and with Ambient Intelligence

(AmI). Various core disciplines participate in the creation of the concepts and

applications of AmI and researchers from several areas must collaborate: sensor

networks, sociology, artificial intelligence and communication networks are some

examples.

One of the main enabling science for AmI is Computer Vision. Computer Vision

provide the ability of acquiring, processing, analyzing, and understanding images

and, in general, high-dimensional data from the real world in order to produce

numerical or symbolic information in the forms of decisions. All of this tasks are

crucial for many different AmI applications, mainly because an environment can

hardly be responsive and proactive without the ability of seeing what is happening

around. Computer Vision supplies technologies and solutions for a various appli-

cations such as ambient assisted living, human computer interaction, surveillance,

recognition and so on.

Among others, main research challenges of Computer Vision are distributed vision

107
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algorithms, vision-based people tracking, biometric recognition, human behavior

understanding, object detection, recognition, segmentation and tracking. In this

thesis we analyzed some of these areas, proposing novel techniques and approaches

and applying them to specific Ami-related contexts: keypoints reduction/selection

to support Augmented Reality, segmentation of natural images to support plant

recognition and face recognition from sketches for people identification. Despite

the diversity of such techniques and their possible applications, one important

common trait clearly appears: even though all the general discussed topics (im-

age segmentation, face recognition and object detection/tracking) have been hot

topics in Computer Vision for many years, there is still work to do because AmI

is offering new concrete challenges in real-world contexts. For example, standard

techniques for segmentation of natural images tend to fail partially or totally be-

cause of images taken in unsupervised or poorly controlled conditions, thus thus

requiring novel and improved approaches. Similar situation has been observed

for heterogeneous face recognition, where state-of-the-art recognition approaches

are not suitable to directly compare different types of image (a sketch and a real

photo) and new methods are required. Finally, despite a long research effort in the

field of object description and matching, our saliency-based ranking and selection

of keypoints demonstrate its effectiveness in terms of both matching accuracy and

processing speed making this approach feasible for real time application such as

Augmented Reality, which is an important emerging field with strong connection

with AmI. Therefore, it is evident that AmI is proposing new research problems

to Computer Vision and related solutions need to be investigated with important

attention to concrete and real applications.



Appendix A

Leaf segmentation results

(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.1: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.2: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.3: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.4: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.5: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.6: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.7: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.8: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.9: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.10: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).



Appendix A. Leaf segmentation results 119

(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.11: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.12: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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(a) Leaf image (b) Ground truth

(c) Leafsnap* [96] (d) Leafsnap [96]

(e) GrabCut [135] (f) Ours-boundary

Figure A.13: Leaves segmentation under loosely controlled conditions with dif-
ferent methods. False positives in red, false negatives in orange (best viewed in
color).
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List of scientific publications

The author contributed to the following scientific publications during the time-

frame of this PhD:

� S. Buoncompagni, A. Franco and D.Maio, ”Shape features for candidate

photo selection in sketch recognition”, 22nd International Conference on Pat-

tern Recognition (ICPR14), Stockholm (Sweden), August 2014, pp. 1728-

1733.

Abstract. Sketch recognition for forensic applications is a very challenging

task and several solutions have recently been proposed. Considering that real

mug shot databases can be very large, one important aspect to consider in this

scenario is also the efficiency of the search procedure. This work proposes

the use of shape features for a preliminary selection of the candidate photos

to be successively analyzed by more complex state-of-the-art techniques. The

proposed features can be computed and matched in a very short time, and at

the same time are able to significantly reduce the search space, thus allowing

to speed up the recognition process.

� S. Buoncompagni, D. Maio, D. Maltoni, S. Papi, ”Saliency-based keypoint

selection for fast object detection and matching”, Pattern Recognition Let-

ters, Vol. 62, September 2015, pp. 32-40.

Abstract. In this paper we present a new approach to rank and select

keypoints based on their saliency for object detection and matching under

moderate viewpoint and lighting changes. Saliency is defined in terms of de-

tectability, repeatability and distinctiveness by considering both the keypoint
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strength (as returned by the detector algorithm) and the associated local de-

scriptor discriminating power. Our experiments prove that selecting a small

amount of available keypoints (e.g., 10%) not only boosts efficiency but can

also lead to better detection/matching accuracy thus making the proposed

method attractive for real-time applications (e.g., augmented reality).

� S. Buoncompagni, D. Maio, D. Maltoni, S. Papi, ”Saliency-based keypoint

reduction for augmented-reality applications in smart cities”, Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), vol. 9281, pp. 209-217, 2015.

Abstract. In this paper we show that Saliency-based keypoint selection

makes natural landmark detection and object recognition quite effective and

efficient, thus enabling augmented reality techniques in a plethora of applica-

tions in smart city contexts. As a case study we address a tour of a museum

where a modern smart device like a tablet or smartphone can be used to recog-

nize paintings, retrieve their pose and graphically overlay useful information.

� S. Buoncompagni, D. Maio, V. Lepetit, ”Leaf segmentation under loosely

controlled conditions”, Proceedings of the British Machine Vision Confer-

ence (BMVC15), Swansea (UK), September, 2015.

Abstract. We propose a robust and accurate method for segmenting specular

objects acquired under loosely controlled conditions. We focus here on leaves

because leaf segmentation plays a crucial role for plant identification, and ac-

curately capturing the local boundary structures is critical for the success of

the recognition. Popular techniques are based on Expectation-Maximization

and estimate the color distributions of the background and foreground pixels

of the input image. As we show, such approaches suffer in presence of shad-

ows and reflections thus leading to inaccurate detected shapes. Classification-

based methods are more robust because they can exploit prior information,

however they do not adapt to the specific capturing conditions for the input

image. Methods with regularization terms are prone to smooth the segments

boundaries, which is undesirable. In this paper, we show we can get the

best of the EM-based and classification-based methods by first segmenting the

pixels around the leaf boundary, and use them to initialize the color distri-

butions of an EM optimization. We show that this simple approach results

in a robust and accurate method.
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