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Chapter 1

Introduction

1.1 Statistical Mechanics

Statistical Mechanics studies the collective behaviour of systems made up of

a large number of elementary components. The interesting phenomena emerge

from the interactions among the elementary components of the system, while if

each elementary component acts independently of the other ones their collec-

tive behaviour is a trivial superposition. The Statistical Mechanics formalism

reveals that very simple microscopic interactions, when sufficiently strong, can

produce critical phenomena at the macroscopic level (phase transitions, namely

discontinuities of some physical observable in the thermodynamic limit).

The classical examples come from Physics: the transition from water to ice

is characterized by an abrupt change of the density of the system at 0 Celsius

temperature; the transition from a paramagnetic to a ferromagnetic material

is characterized by an abrupt change of the magnetisation at the Curie tem-

perature. In both examples the elementary components of the system are the

molecules constituting a certain material. But it can be interesting to apply

the Statistical Mechanics models also to other fields. In Computer Science and

Neuroscience, the (artificial) neural networks are systems of interconnected neu-

rons that exchange messages [58]. In Biology the bird flocks are an example of

1



2 1.1. Statistical Mechanics

collective behaviour [15]. A possible approach to Socio-Economic Sciences is to

consider interconnected groups of people that exchange trends, information and

opinions (see [22] for an example of application): the social networks actualize

this concept. Bouchaud’s approach to study Economics and economical crisis

is of this type [20, 19] (in particular he affirms that a scientific revolution is

needed: real data should be taken into account when they contradict classical

economics assumptions). In a few words the Statistical Mechanics approach is

actually multidisciplinary and can be interesting for a large number of applica-

tions.

1.1.1 Boltzmann-Gibbs measure

In the Statistical Mechanics of equilibrium, a probability is assigned to each

possible configuration of the elementary components. Then the statistical be-

haviour of the physical observables is studied when the number of elementary

components goes to infinity (thermodynamic limit).

Definition 1.1. The elementary components of the system are indexed by a

finite set Λ. The possible configurations of each elementary component are

collected in a set S (we assume S finite). Therefore the possible microscopic

configurations of the system are represented by the vectors of Ω = SΛ.

A Hamiltonian H : Ω→ (−∞,∞] is introduced: it assigns an energy to each

microscopic configuration, modelling all the interactions among the elementary

components. At the equilibrium, the associated Boltzmann-Gibbs probability

measure is considered on the space of microscopic configurations:

PBG(C) =
1

Z e−βH(C) ∀ C ∈ Ω , (1.1)

where Z is the normalizing factor (called partition function) and β ∈ [0,∞)

is a parameter (called inverse temperature). We will usually absorb β in the

Hamiltonian. In this framework any observable O : Ω→ R is a random variable

with respect to the Boltzmann-Gibbs probability measure.
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Because of the definition (1.1), the more likely microscopic configurations are

those with the lowest energy. On the contrary configurations with infinite energy

have zero probability: they can be excluded from the space of configurations Ω

at the beginning. We will usually do so in this thesis; but for this introductory

discussion it is convenient to keep Ω = SΛ.

A justification of the Boltzmann-Gibbs distribution is out of our purposes:

for particle systems it is related to Boltzmann entropy, to the ergodic hypoth-

esis and the equivalence of ensembles (see [42] for an analysis of foundations of

Statistical Mechanics). However it is interesting to observe that the Boltzmann-

Gibbs distribution maximizes the information entropy given the expected en-

ergy, namely PBG realizes

max
{
−
∑

C
P(C) log P(C)

∣∣∣
∑

C
P(C) = 1 ,

∑

C
P(C)H(C) = U0

}

for any fixed energy U0 ∈ [minH, 1
|Ω|
∑
CH(C)] and a suitable β ≥ 0. In other

words, imagine that the expected energy of the system is measured: there are

several probability distributions that are consistent with this expected energy,

but the Boltzmann-Gibbs distribution describes the system as random as it can

be satisfying only the energy constraint.

1.1.2 Phase transitions

The most interesting phenomena in Statistical Mechanics are phase transi-

tions. At finite volume Λ any expected observable

〈O〉BG =

∑
C∈SΛ O(C) e−βH(C)
∑
C∈SΛ e−βH(C)

is obviously an analytic function of the inverse temperature β. But since the

systems studied in Statistical Mechanics are made up of a large number of

elementary components, one is interested in the thermodynamic limit, that is

the limit as |Λ| → ∞. After having chosen a proper way to let Λ go to infinity,
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the system is said to exhibit a phase transition if the limiting generating function

(called pressure)

p(β) := lim
Λ↗∞

1

|Λ| logZΛ(β) = lim
Λ↗∞

1

|Λ| log
∑

C∈SΛ

e−βHΛ(C)

is not analytic at some critical inverse temperature β = βc . Observe that the

derivatives of logZ(β) are the cumulants of minus the energy:

∂

∂β
logZ = 〈−H〉BG ,

∂2

∂β2
logZ = 〈H2〉BG − 〈H〉2BG , . . .

Therefore there is a phase transition if in the thermodynamic limit some cu-

mulant of the energy is not continuous with respect to β ∈ [0,∞) (while the

function p itself is always continuous being concave). In the case H depends an-

alytically on some parameters (e.g. magnetic field, chemical potential, . . . ), also

the analyticity of the generating function p with respect to those parameters

can be investigated.

A beautiful link between Algebra, Complex Analysis and Statistical Mechan-

ics is given by the fact that phase transitions are strictly related to complex zeros

of the partition function (the main example is the Lee-Yang theorem [71, 88]).

To get an idea of this fact, assume that the Hamiltonian takes non-negative

integer values up to N = O(|Λ|) and rewrite the partition function as a poly-

nomial:

ZΛ(z) =

N∑

k=0

CΛ(k) zk ,

by setting z := e−β and CΛ(k) = card{C ∈ Ω | H(C) = k} (assume maxk logCΛ(k) =

O(|Λ|)). By the Fundamental Theorem of Algebra ZΛ(z) has N complex zeros

zΛ,p and rewrites as

ZΛ(z) = CΛ(N)
N∏

p=1

(z − zΛ,p) .
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If a complex stripe centred along a positive real interval (a, b) + i(−δ, δ) is free

of zeros of ZΛ for any Λ, then 1
|Λ| logZΛ(z) is a uniformly bounded sequence

of analytic functions on the compact subsets of the stripe, therefore by the

Vitali-Porter theorem [91] its limit p(z) is analytic for z ∈ (a, b).

1.1.3 Interactions and graphs

When the space of configurations is a product space (Ω = SΛ), and the

Hamiltonian writes as a sum on the elementary components

H(C) =
∑

i∈Λ
Hi(Ci) ∀ C = (Ci)i∈Λ ∈ Ω ,

then the system is called non-interacting, since its elementary components are

independent according to the Boltzmann-Gibbs measure. An elementary but

meaningful observation is that phase transitions do not occur in non-interacting

systems:

p(β) = lim
Λ↗∞

1

|Λ|
∑

i∈Λ
pi(β) ,

where each pi(β) = log
∑
C1∈S e

−βHi(C1) is an analytic function, hence p is ana-

lytic provided that the Cesaro-limit can be interchanged with the series.

Often systems with pairwise interactions are considered, namely

H(C) =
∑

i∈Λ
Hi(Ci) +

∑

i,j∈Λ
Hi,j(Ci, Cj) ∀ C = (Ci)i∈Λ ∈ Ω .

It is natural to represent these systems on graphs: Λ is the vertex set, while the

pairs (i, j) such that Hi,j is not identically zero are the edges corresponding to

the interactions. In Physics 2 or 3-dimensional regular lattices are usually con-

sidered, since the particles interact according to their distance in the Euclidean

space. For other collective phenomena instead sparse random graphs are more

suitable: there are different methods to build random graphs [59] that have

characteristic features observed in real-world networks [9, 77], as the presence

of hubs and the small-word properties. Models on the complete graph (namely
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the graph where each pair of vertices is connected) are usually considered as

a first approximation in Physics, while for the emerging applications they play

an important role since the behaviour on the complete graph is often similar to

the behaviour on sparse random graphs.

1.1.4 A fundamental example: Ising models

One of the most popular examples in Statistical Mechanics is the Ising model.

Consider a system made up of spin variables that can take only two opposite

values: the space of configurations is Ω = {−1,+1}Λ, where Λ indexes the

spins. It can be shown that the most general Hamiltonian H : Ω → R writes,

in a unique way, as

H(σ) = −
∑

X⊆Λ

JX
∏

i∈X
σi ∀σ ∈ Ω ,

with JX ∈ R . In the case of pairwise interactions, the Hamiltonian reduces to

H(σ) = −
∑

i∈Λ
hi σi −

∑

i,j∈Λ
i6=j

Ji,j σiσj ∀σ ∈ Ω ,

with hi, Ji,j ∈ R . It is clear from the definition of the Hamiltonian that if

Jij > 0 the configurations with σi = σj are favoured, while if Jij < 0 the

configurations with σi = −σj are favoured.

Assume zero external field: hi = 0 for all i ∈ Λ. When Jij ≥ 0 for all pairs

(i, j), the system is called a ferromagnet : all the spins tend to imitate with one

another; when Jij ≤ 0 for all pairs (i, j) the system is called an antiferromagnet ;

when the Jij follow a symmetric distribution around 0 the system is called a

spin glass.

In ferromagnets a phase transition can occur [84,47] and it is characterized

by the divergence of the second derivative of p(β, h) with respect to the field

h; precisely below the critical temperature two states coexist, one characterized

by most positive spins and the other one by most negative spins. Many results
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are available for Ising ferromagnets: they satisfy useful correlation inequalities

[48, 66, 44, 49], the complex zeros of the partition function in the variable z =

e−2βh are located on the unit circle [71, 88]; the exact solutions (see [12] for a

review) for uniform J ≥ 0 are studied in details on the complete graph, on

the 1 and 2-dimensional lattice [79, 65, 98], on a large class of random graphs

[26, 29, 30].

Spin glasses are much more complicated. Usually the Jij are taken as i.i.d.

Gaussian random variables and this disorder is quenched with respect to the

thermal fluctuations. The model on finite-dimensional lattices was introduced

in [34]. The model on the complete graph (SK model [92]) has been studied for

several decades by physicists and mathematicians (see [75,93,82] and references

therein). On the complete graph a phase transition occurs: at low temperature

several states coexist, they cannot be characterized in terms of simple sym-

metries and they are organized in a hierarchical (ultrametric) structure. The

exact solution of the model was first proposed by Parisi, but it took several years

to prove the validity of the Parisi’s formula [94, 52, 2, 54] and the ultrametric

picture [81, 51, 1, 89].

1.2 Monomer-dimer models

Monomer-dimer models were introduced in Physics to describe phenomena

like the adsorption of a diatomic gas on a monoatomic layer [85] or the be-

haviour of a fluid mixture of molecules of two different sizes [40]. They are

studied in Mathematical and Theoretical Physics [55, 64, 99], in Combinatorics

and Computer Science [74, 63], in the applications to Social Sciences [11].

While the Ising model is equivalent to a lattice gas model where monoatomic

particles deposit on the vertices of a graph, the monomer-dimer model can

be informally described in terms of sticks (diatomic particles) that deposit on

the edges of a graph. The occupied edges are the dimers, while the empty
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vertices are the monomers. The space of configurations is Ω = {0, 1}E, where

E indexes the edges; but since different sticks cannot overlap on the same vertex

(hard-core interaction), some configurations are forbidden. Instead of defining

a Hamiltonian that takes the value +∞ at these forbidden configurations, we

prefer to restrict the space of configurations, which will not be a product space

anymore:

Ω′ =
{
α ∈ {0, 1}E

∣∣ αeαe′ = 0 ∀ e, e′ ∈ E, |e ∩ e′| = 1
}
.

It is crucial to keep in mind that the hard-core interaction is now encoded in

the space of configurations, therefore even when the Hamiltonian is only a sum

of individual contributions the system is interacting.

To introduce a Hamiltonian for monomer-dimer models, we analyse the phys-

ical phenomenon of a diatomic gas, let say oxygen, that is adsorbed on a surface

of a monoatomic material X. When a molecule of oxygen O2 is adsorbed, its

two atoms deposit on two neighbouring atoms X of the surface. No overlapping

of different molecules of oxygen is allowed: this is the hard-core interaction due

to the repulsive part of the van der Waals potential. Now the surface can be

represented as a planar graph G, where every vertex corresponds to an atom

X. The adsorbed molecules of oxygen form a monomer-dimer configuration

on G: the adsorbed molecules O2 are the dimers, while the atoms X free of

oxygen are the monomers. Encoding the hard-core interaction in the space of

configurations, a simple Hamiltonian describes the system taking into account

only the dimer potential of every edge:

H(α) = −
∑

e∈E
he αe ∀α ∈ Ω′ . (1.2)

As already said, the van der Waals potential is repulsive at very short distance,

preventing different molecules of oxygen from overlapping. But at a longer

distance the van der Waals potential becomes attractive, pushing the molecules
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of oxygen to remain close one another. At too long distance instead the van

der Waals potential is negligible. See fig.1.1. Depending on the lattice spacing

Figure 1.1: The van der Waals potential as a function of the distance r between

two molecules.

r of the adsorbing material X, the attractive component of the van der Waals

potential plays different roles. If r is larger than req but not too much, then a

Hamiltonian that take into account this attractive interaction is

H(α) = −
∑

e∈E
he αe −

∑

e,e′∈E
e∼e′

Jee′ αeαe′ ∀α ∈ Ω′ , (1.3)

with Jee′ > 0 (e ∼ e′ means that the two edges are not incident but connected

by a third edge). If instead r is much larger than req, then this attractive in-

teraction is too weak and can be neglected: the system is well described by the

previous Hamiltonian (1.2). If r is smaller that req, then there is even more

repulsion among molecules and Jee′ should be chosen as positive numbers. Fi-

nally if r oscillates around req, some Jee′ can be positive and some Jee′ can

be negative: one could observe an interesting phenomenon analogous to spin

glasses.

The hard-core interaction alone (J ≡ 0) is not sufficient to cause a phase

transition in monomer-dimer models. This remarkable fact was proved in great

generality by Heilmann and Lieb [56, 55], by locating the complex zeros of

the partition function. A probabilistic method instead was used by van den
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Berg [14]. When an attractive component is added to the interaction, things

change and phase transitions can emerge [57,6]. Also in the pure dimer problem

(zero monomer activity: all the vertices occupied by a dimer) phase transitions

are possible, as suggested by the Arctic Circle theorem [62].

On planar graphs the exact solution of the pure dimer problem was found

by Kasteleyn, Fisher, Temperley [64, 39, 95], in terms of the Pfaffian of the

adjacency matrix of a directed graph; the transfer matrix method was proposed

by Lieb [73]. Recently this solution has been extended to include the presence

of monomers at the boundary [45]. Heilmann and Lieb [55] provided a recursive

formula for the monomer-dimer partition function, that permits to obtain some

exact solutions, for example on the complete graph and on a large class of

random graphs [4].

In this thesis we mainly deal with mean-field versions of the monomer-dimer

model, with the exception of chapter 7. A non-zero monomer activity is always

considered. For an introduction to pure dimer models (also known as perfect

matching problems) on planar lattices we suggest [67].

1.2.1 Results obtained in this thesis

Mean-field monomer-dimer models, on sparse random graphs or on the com-

plete graph, can be considered as an approximation of finite-dimensional physi-

cal models. On the other hand they have a particular interest for the emerging

applications to Computer Science and Social Sciences [11], since the real-world

networks are often modelled by particular families of random graphs [9,77,59].

Zdeborová and Mézard [99] gave a complete picture of the monomer-dimer

model with pure hard-core interaction on sparse random graphs: using the

theoretical physics approach of cavity method they compute the replica sym-

metric solution of the model and they verify its stability. In [4] we provided

a complete rigorous proof of Zdeborová-Mézard’s solution, starting from the

previous work [18]. Our proof is based on the Heilmann-Lieb recursion [55] for
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the partition function, combined with some alternating correlation inequalities

on trees.

As shown by Heilmann and Lieb [55, 56], the hard-core interaction is not

sufficient to cause a phase transition in monomer-dimer models. In [8,6,7,5] we

study monomer-dimer models on the complete graph and in particular in the

first three of these works we add an attractive interaction to the hard-core one.

We provide the solution of this model, showing that a phase transition occurs

when the attractive interaction in sufficiently strong. The phase transition is

studied in details: the monomer (or dimer) density is the order parameter and

a coexistence curve separates a dimer phase from a monomer phase; at the

critical point (where the coexistence curve stems) the critical exponents are

the standard mean-field ones and the central limit theorem breakdowns, since

the fluctuations are of order N3/4. The study of these fluctuations is based on

the works by Ellis and Newmann [35, 36] for mean-field spin models, with the

fundamental difference that our space of configurations is not a product space

due to the monomer-dimer hard-core interaction: to decouple this interaction

we use a representation of the partition function in terms of Gaussian moments.

Finite-dimensional monomer-dimer models (and more general hard-rods mod-

els) are still interesting also for applications to Physics, in the theory of liq-

uid crystals (see e.g. [32, 46, 83]). In [57] Heilmann and Lieb proposed some

monomer-dimer models on Z2 with attractive interactions that favour the pres-

ence of clusters of neighbouring parallel dimers. They show by a reflection

positivity argument that these systems exhibit a phase transition: at low tem-

peratures a spontaneous order in the orientation of the dimers appears. On

the other hand the authors conjecture that their models do not have a complete

translational order: namely it is equally likely to observe a dimer attached to the

left or to the right of a given vertex x, under local perturbations of the system

sufficiently far from x. These two properties, the orientational order together

with the absence of translational order, characterize liquid crystals. In [3] we
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did not solve the Heilmann-Lieb conjecture, which is open since 1979, but we

proved the absence of translational order in a different framework, when the

dimer potential favours one of the two orientations of dimers on the lattice Z2.

Our proof is based on cluster expansion methods and starts from the Letawe’s

thesis [72].

Here there is a brief description of the chapters that follow. In the chap-

ter 2 we introduce the mathematical definitions and some general properties of

monomer-dimer models, like the Gaussian representation for the partition func-

tion and the absence of phase transitions when only the hard-core interaction

in considered. In the chapters from 3 to 5 we study the monomer-dimer model

on the complete graph: in chapter 3 the interaction is purely hard-core, while

in chapters 4, 5 an imitative/attractive component of the interaction is added.

In the chapter 6 the pure hard-core monomer-dimer model is studied on a class

of random graphs. Finally in the chapter 7 we study a monomer-dimer model

on the lattice Z2 with imitative interaction in the orientations, which origins

from one of the Heilmann-Lieb liquid crystal models.



Chapter 2

Definitions and general results

Let G = (V,E) be a finite undirected graph with vertex set V and edge set

E ⊆ {ij ≡ {i, j} | i ∈ V, j ∈ V, i 6= j} .

Definition 2.1 (Monomer-dimer configurations). A set of edges D ⊆ E is

called a monomer-dimer configuration, or a matching, if the edges in D are

pairwise non-incident. The space of all possible monomer-dimer configurations

on the graph G is denoted by DG.

Given a monomer-dimer configuration D, we say that every edge in D is

occupied by a dimer, while every vertex that does not appear in D is occupied

by a monomer. The set of monomers associated to D is denoted by MG(D) or

simply M(D).

Remark 2.2. We can associate an occupation variable αij ∈ {0, 1} to each

edge ij ∈ E : the edge ij is occupied by a dimer iff αij takes the value 1. It is

clear that monomer-dimer configurations are in one-to-one correspondence with

vectors α ∈ {0, 1}E satisfying the following constraint:

∀ i ∈ V
∑

j∼
G
i

αij ≤ 1 , (2.1)

where j ∼
G
i means that ij ∈ E. Therefore, with a slight abuse of notation, we

denote by DG also the set of α ∈ {0, 1}E that satisfy eq. (2.1).

13
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Figure 2.1: The bold edges in the left figure form a monomer-dimer configura-

tion on the graph, while those in the right figure do not.

The condition (2.1) guarantees that at most one dimer can be incident to any

given vertex i, namely two dimers cannot be incident. This fact is usually re-

ferred as hard-core interaction or hard-core constraint or monogamy constraint.

We also introduce an auxiliary variable

αi := 1−
∑

j∼i
αij ∈ {0, 1} (2.2)

for each vertex i ∈ V : the vertex i is occupied by a monomer iff αi takes the

value 1.

The definition of monomer-dimer configurations is already quite rich in it-

self. Indeed non-trivial combinatorial questions can be asked, as “How many

monomer-dimer configurations, possibly with a given number of dimers, exist

on a given graph G?”. This combinatorial problem is known to be NP-hard

in general, but there are polynomial algorithms and exact solutions for specific

cases [64, 74, 63, 55, 4].

In Statistical Mechanics a further structure is introduced: we consider a

Gibbs probability measure on the set of monomer-dimer configurations. There

are several choices for the measure, depending on how we decide to model the

interactions in the system.
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2.1 Pure hard-core interaction

The first possibility is to take into account only the hard-core interaction

among particles and assign a dimer activity wij ≥ 0 to each edge ij ∈ E and a

monomer activity xi > 0 to each vertex i ∈ V .

Definition 2.3 (Monomer-dimer models). A monomer-dimer model on G is

given by the following probability measure on DG:

µG(D) :=
1

ZG

∏

ij∈D
wij

∏

i∈M(D)

xi ∀D ∈ DG , (2.3)

where the normalizing factor, called partition function, is

ZG :=
∑

D∈DG

∏

ij∈D
wij

∏

i∈M(D)

xi . (2.4)

The dependence of the measure on the activities wij, xi is usually implicit

in the notations. When we consider the complete graph with N vertices, the

subscript G is usually substituted by N .

Remark 2.4. It is worth to notice that the definition 2.3 is slightly redundant

for two reasons. First one can consider without loss of generality monomer-

dimer models on complete graphs only: a monomer-dimer model on the graph

G = (V,E) coincides with a monomer-dimer model on the complete graph with

N = |V | vertices, by taking wij = 0 for all pairs ij /∈ E.

Secondly one can set without loss of generality all the monomer activities

equal to 1: the monomer-dimer model with activities (wij, xi) coincides with

the monomer-dimer model with activities (
wij

xixj
, 1), since

∏

i∈M(D)

xi =

(∏

i∈V
xi

) ∏

i/∈M(D)

1

xi
=

(∏

i∈V
xi

) ∏

ij∈D

1

xi xj
.

Vice versa if the dimer activity is uniform on the graph then it can be set

equal to 1: the monomer-dimer model with activities (w, xi) coincides with the

monomer-dimer model with activities (1, xi√
w
), since

w|D| = w
N−|M(D)|

2 = wN/2
(

1√
w

)|M(D)|
.
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Remark 2.5. The following bounds for the pressure (logarithm of the partition

function) will be used several times:

∑

i∈V
log xi ≤ logZG ≤

∑

i∈V
log xi +

∑

ij∈E
log
(
1 +

wij
xi xj

)
. (2.5)

The lower bound is obtained considering only the empty monomer-dimer con-

figuration (a monomer on each vertex of the graph): ZG ≥
∏

i∈V xi . The upper

bound is obtained using the fact that any monomer-dimer configuration is a

(particular) set of edges:

∏

i∈V
x−1
i ZG =

∑

D∈DG

∏

ij∈D

wij
xi xj

≤
∑

D⊂E

∏

ij∈D

wij
xi xj

=
∏

ij∈E

(
1 +

wij
xi xj

)
.

An interesting fact about monomer-dimer models is that they are strictly

related to Gaussian random vectors.

Proposition 2.6 (Gaussian representation [8, 97]). The partition function of

any monomer-dimer model over N vertices can be written as

ZN = Eξ

[ N∏

i=1

(ξi + xi)

]
, (2.6)

where ξ = (ξ1, . . . , ξN) is a Gaussian random vector with mean 0 and covariance

matrix W = (wij)i,j=1,...,N and Eξ[ · ] denotes the expectation with respect to ξ.

Here the diagonal entries wii are arbitrary numbers, chosen in such a way that

W is a positive semi-definite matrix.

Proof. The monomer-dimer configurations on the complete graph are all the

partitions into pairs of any set A ⊆ {1, . . . , N}, hence

ZN =
∑

D∈DN

∏

ij∈D
wij

∏

i∈M(D)

xi =
∑

A⊆{1,...,N}

∑

P partition
of A into pairs

∏

ij∈P
wij

∏

i∈Ac

xi . (2.7)

Now choose wii for i = 1, . . . , N such that the matrix W = (wij)i,j=1,...,N is

positive semi-definite1. Then there exists an (eventually degenerate) Gaussian

1For example one can choose wii ≥
∑

j 6=i wij for every i = 1, . . . , N .
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vector ξ = (ξ1, . . . , ξN) with mean 0 and covariance matrix W . And by the

Isserlis-Wick rule (see theorem 3.10)

Eξ

[∏

i∈A
ξi

]
=

∑

P partition
of A into pairs

∏

ij∈P
wij . (2.8)

Substituting (2.8) into (2.7) one obtains

ZN = Eξ

[ ∑

A⊆{1,...,N}

∏

i∈A
ξi
∏

i∈Ac

xi

]
= Eξ

[ N∏

i=1

(ξi + xi)

]
. (2.9)

Heilmann and Lieb [55] provided a recursion for the partition functions of

monomer-dimer models. As we will see this is a fundamental tool to obtain

exact solutions and to prove general properties.

Proposition 2.7 (Heilmann-Lieb recursion [55]). Fixing any vertex i ∈ V it

holds:

ZG = xi ZG−i +
∑

j∼
G
i

wij ZG−i−j . (2.10)

Here G − i denotes the graph obtained from G deleting the vertex i and all its

incident edges.

The Heilmann-Lieb recursion can be obtained directly from the definition

(2.4), exploiting the hard-core constraint: the first term on the r.h.s. of (2.10)

corresponds to a monomer on i, while the following terms correspond to a

dimer on ij for some j neighbour of i. Here we show a proof that uses Gaussian

integration by parts.

Proof [8]. Set N := |V |. Introduce zero dimer weights whk = 0 for all the

pairs hk /∈ E, so that ZG ≡ ZN . Following the proposition 2.6, introduce an

N -dimensional Gaussian vector ξ with mean 0 and covariance matrix W . Then

write the identity (2.6) isolating the vertex i :

ZG = Eξ

[ N∏

k=1

(ξk+xk)

]
= xi Eξ

[∏

k 6=i
(ξk+xk)

]
+ Eξ

[
ξi
∏

k 6=i
(ξk+xk)

]
. (2.11)
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Now apply the Gaussian integration by parts (theorem 3.10) to the second term

on the r.h.s. of (2.11):

Eξ

[
ξi
∏

k 6=i
(ξk+xk)

]
=

N∑

j=1

Eξ[ξiξj] Eξ

[
∂

∂ξj

∏

k 6=i
(ξk+xk)

]
=
∑

j 6=i
wij Eξ

[ ∏

k 6=i,j
(ξk+xk)

]
.

(2.12)

Notice that summing over j 6= i in the r.h.s. of (2.12) is equivalent to sum over

j ∼
G
i, since by definition wij = 0 if ij /∈ E. Substitute (2.12) into (2.11):

ZG = xi Eξ

[∏

k 6=i
(ξk + xk)

]
+
∑

j∼i
wij Eξ

[ ∏

k 6=i,j
(ξk + xk)

]
. (2.13)

To conclude the proof observe that (ξk)k 6=i is an (N − 1)-dimensional Gaussian

vector with mean 0 and covariance (whk)h,k 6=i. Hence by proposition 2.6

ZG−i = Eξ

[∏

k 6=i
(ξk + xk)

]
. (2.14)

And similarly

ZG−i−j = Eξ

[ ∏

k 6=i,j
(ξk + xk)

]
. (2.15)

The main general result about monomer-dimer models is the absence of

phase transitions, proved by Heilmann and Lieb [55]. This result is obtained

by localizing the complex zeros of the partition functions far from the positive

real axes.

Theorem 2.8 (Zeros of the partition function [55]). Consider uniform monomer

activity x on the graph and arbitrary dimer activities wij. The partition func-

tion ZG is a polynomial of degree N in x, where N = |V |. The complex zeros

of ZG are purely imaginary:

{x ∈ C |ZG(wij , x) = 0} ⊂ i R . (2.16)

Furthermore they interlace the zeros of ZG−i for any given i ∈ V , that is:

a1 ≤ a′1 ≤ a2 ≤ a′2 ≤ · · · ≤ a′N−1 ≤ aN , (2.17)
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where −ia1, . . . ,−iaN are the zeros of ZG and −ia′1, . . . ,−ia′N−1 are the imagi-

nary parts of the zeros of ZG−i. The relation (2.17) holds with strict inequalities

if wij > 0 for all i, j ∈ V .

Proof. Set

QG(x) := i−NZG(ix) =
∑

D∈DG

(−1)|D|
∏

ij∈D
wij x

|M(D)|

which is a polynomial of degree N with real coefficients (and leading coefficient

1). It is sufficient to prove that the zeros of QG are real and that, given i ∈ V ,

they interlace the zeros of QG−i: that is (2.17) is satisfied where a1, . . . , aN are

the zeros of QG and a′1, . . . , a
′
N−1 are the zeros of QG−i.

Assume that wij > 0 for all i, j ∈ V ; the general results will easily follow by

a continuity argument.

The result can be proved by induction on the number of vertices N . For

N = 0 and for N = 1 the result is trivially true. Let N ≥ 2 and assume the

result is true for every graph having at most N−1 vertices. The Heilmann-Lieb

recursion gives for all x ∈ C

QG(x) = xQG−i(x) −
∑

j∈Vr{i}
wij QG−i−j(x) . (2.18)

From the induction assumption it follows that for every j ∈ V r {i} the N − 2

zeros of QG−i−j are real and strictly interlace the N − 1 zeros of QG−i, which

are also real. Since for every j ∈ V r {i}, wij > 0 and QG−i−j has same degree

and same leading coefficient, it is easy to prove that also the N − 2 zeros of

Si :=
∑

j∈Vr{i}wijQG−i−j are real and strictly interlace the N − 1 zeros of

QG−i. We can easily deduce the sign of Si(x) when x is a zero of QG−i. As a

consequence, using (2.18), we know the sign of QG(x) when x is a zero of QG−i.

It is easy to conclude that QG has N real zeros that are strictly interlaced by

the zeros of QG−i.

Corollary 2.9 (Absence of phase transitions). Consider dimer activities ww
(N)
ij

and monomer activities xx
(N)
i and assume they are chosen in such a way that
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p := limN→∞
1
N

logZN exists. Then the function p is analytic in the variables

(w, x) ∈ (0,∞)2 and the derivatives ∂h+k

∂hw ∂kx
can be interchanged with the limit

N →∞.

Proof. Let us consider ZN(wij, x). The general result will follow since ZN(wwij, xxi)

coincides up to a factor that does not affect the Gibbs measure with ZN(
wij

xixj
, x√

w
).

Fix x > 0. Let ε ∈ (0, x) and set U := (ε,∞) + i R. By the theorem 2.8 the

holomorphic function x 7→ ZN(wij, x) does not vanish on the simply connected

open set U , then pN := 1
N

logZN(wij, x) is holomorphic on U . Furthermore the

sequence pN is uniformly bounded on the compact sets K ⊂ U , since

|ZN(wij , x)| =
N∏

k=1

|x− iak| ≥ εN , |ZN(wij, x)| ≤ ZN
(
wij, sup

K
|x|
)
.

Then by the Vitali-Porter theorem [91], the sequence pN converges uniformly on

U to an holomorphic function p. And by the Weierstrass theorem the derivatives

∂k

∂kx
can be interchanged with the limit N →∞.

2.2 Hard-core and imitative interactions

Beyond the hard-core constraint it is possible to enrich monomer-dimer mod-

els with other kinds of interaction. Assign a monomer activity xi > 0 to each

vertex i ∈ V , a dimer activity wij ≥ 0 and imitation coefficients J ′ij, J
′′
ij, J

′′′
ij ∈ R

to each edge ij ∈ E.

Definition 2.10 (Monomer-dimer models). A monomer-dimer model on G is

given by the following Gibbs probability measure on DG:

µG(D) :=
1

ZG

∏

ij∈D
wij

∏

i∈M(D)

xi
∏

ij∈E :
i/∈M(D), j /∈M(D)

eJ
′
ij

∏

ij∈E :
i∈M(D), j∈M(D)

eJ
′′
ij

∏

ij∈E :
i/∈M(D), j∈M(D)

eJ
′′′
ij

(2.19)

for all D ∈ DG. The partition function ZG is defined so that
∑

D∈DG
µG(D) = 1.
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The dependence of the measure on the coefficients wij , xi, Jij is usually

implicit in the notations. When we consider the complete graph with N vertices,

the subscript G is usually substituted by N .

When all the Jij’s take the value zero this model is the pure hard-core

model introduced in the previous section. Positive values of the J ′ij, J
′′
ij favour

the configurations with clusters of dimers and clusters of monomers.

Sometimes it is convenient to rewrite to measure µG(D) in the Hamiltonian

form 1
ZG
e−HG(D). This is possible by setting xi =: ehi, wij =: ehij and

−HG(α) :=
∑

ij∈E
hijαij +

∑

i∈V
hiαi +

+
∑

ij∈E

(
J ′ij(1− αi)(1− αj) + J ′′ijαiαj + J ′′′ij (1− αi)αj + J ′′′ijαi(1− αj)

)

(2.20)

for all α ∈ DG.

Remark 2.11. Let us analyse the redundancies in the definition 2.10. First

a monomer-dimer model on the graph G = (V,E) coincides with a monomer-

dimer model on the complete graph with N = |V | vertices, by taking wij = 0

and J ′ij = J ′′ij = J ′′′ij = 0 for all pairs ij /∈ E.

Secondly the monomer and dimer activities can be reduced from (wij, xi) to

(
wij

xi xj
, 1) or from (w, xi) to (1, xi√

w
), as shown by the remark 2.4. Moreover also

the imitation coefficients can be reduced from (J ′ij, J
′′
ij, J

′′′
ij ) to (J ′ij − J ′′′ij , J ′′ij −

J ′′′ij , 0), since

αi(1− αj) + (1− αi)αj = −αiαj − (1− αi)(1− αj) + 1 .

If the imitation coefficients J ′, J ′′ are uniform on the graph G, then a further

reduction is possible to remain with only one imitation coefficient, for example

from (hi, J
′, J ′′) to

(
hi + (J ′′ − J ′) degG i,

J ′+J ′′

2
, J

′+J ′′

2

)
, since

∑

ij∈E
(αi + αj) =

∑

i∈V
αi degG i .
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The Gaussian representation and the recursion relation found for the pure

hard-core case can be extended to the imitative case, even if the resulting ex-

pressions are not as limpid as the previous ones.

Proposition 2.12. The partition function of any monomer-dimer model over

N vertices can be written as

ZN = Eξ

[ ∑

A⊂{1,...,N}

∏

i∈A
ξi
∏

i∈Ac

xi
∏

i∈A,j∈A
eJ

′
ij/2

∏

i∈Ac,j∈Ac

eJ
′′
ij/2

∏

i∈A,j∈Ac

or v.v.

eJ
′′′
ij /2
]
, (2.21)

where ξ = (ξ1, . . . , ξN) is a Gaussian random vector with mean 0 and covariance

matrix W = (wij)i,j=1,...,N and Eξ[ · ] denotes the expectation with respect to ξ.

The diagonal entries wii are arbitrary numbers, chosen in such a way that W

is a positive semi-definite matrix. Moreover we set J ′ii = J ′′ii = J ′′′ii = 0 .

The proof is the same as proposition 2.6. It is interesting to observe that,

when all the ξi’s are positive, the sum inside the expectation on the r.h.s. of

(2.21) is the partition function of an Ising model.

Proposition 2.13. Fixing any vertex i ∈ V it holds:

ZG = xi Z̃G−i +
∑

j∼
G
i

wij Z̃G−i−j , (2.22)

where:

• in the partition function Z̃G−i the monomer activity xk is replaced by

xk e
J ′′

ik and the dimer activity wkk′ is replaced by wkk′ e
J ′′′

ik +J ′′′
ik′ for all ver-

tices k, k′ (notice that only the neighbours of i really change their activi-

ties);

• in the partition function Z̃G−i−j the monomer activity xk is replaced by

xk e
J ′′′

ik+J ′′′
jk and the dimer activity wkk′ is replaced by wkk′ e

J ′
ik+J ′

ik′
+J ′

jk+J ′
jk′

for all vertices k, k′ (notice that only the neighbours of i or j really change

their activities).
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The relation (2.22) can be obtained directly from the definition: the first

term on the r.h.s. corresponds to a monomer on i, while the following terms

correspond to a dimer on ij for some j neighbour of i.

The hard-core interaction is not sufficient to cause a phase transition, but

adding also the imitative interaction the system can have phase transitions [23,

24,57,6]: in the chapters 4, 5 we will study this phase transition on the complete

graph. To locate the complex zeros of the partition function in presence of

imitation is an open problem.
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Chapter 3

Hard-core interaction on the

complete graph

This chapter is based on the joint work [8]. We consider a monomer-

dimer model with pure hard-core interaction (see section 2.1), we fix a

uniform dimer activity on the complete graph, while we choose i.i.d. ran-

dom monomer activities.

Under quite general hypothesis on the distribution of the activities, we show

that this model is exactly solvable and does not present a phase transition (in

agreement with the general results by Heilmann and Lieb [55, 56]). Precisely

we prove that in the thermodynamic limit the pressure density exists and is

given by a one-dimensional variational principle, which admits a unique solution

(theorem 3.2). The problem becomes accessible by the use of a Gaussian rep-

resentation for the partition function, then a careful application of the Laplace

method leads to the solution.

A particular case is obtained when the monomer activity is also uniform on

the vertices. Thus we obtain the solution of the deterministic monomer-dimer

model on the complete graph, which was previously studied by Heilmann and

Lieb [55] using the Hermite polynomials.

25
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Let w > 0. Let xi > 0, i ∈ N, be independent identically distributed random

variables. In order to keep the logarithm of the partition function of order N , a

normalization of the dimer activity as w/N is needed. Therefore in this chapter

we will denote

ZN =
∑

D∈DN

( w
N

)|D| ∏

i∈M(D)

xi . (3.1)

µN will denote the corresponding Gibbs measure and 〈 · 〉N will be the expected

value with respect to µN . Notice that now the partition function is a random

variable and the Gibbs measure is a random measure.

Remark 3.1. Since the dimer weight is uniform, the Gaussian representation

of (6.1) gives simply:

ZN = Eξ

[ N∏

i=1

(ξ + xi)

]
, (3.2)

where ξ is a one-dimensional Gaussian random variable with mean 0 and vari-

ance w/N .

Indeed by proposition 2.6, ZN = Eξ

[∏N
i=1(ξi+xi)

]
where ξ = (ξ1, . . . , ξN) is an

N -dimensional Gaussian random vector with mean 0 and constant covariance

matrix1 (w/N)i,j=1,...,N . It is easy to check that ξ has the same joint distri-

bution of the constant random vector (ξ, . . . , ξ). Therefore the identity (3.2)

follows.

ZN can be expressed as an expectation in the Gaussian variable ξ; but on

the other hand ZN is a random variable dependent on the monomer weights

xi’s. To avoid confusion we rewrite (3.2) as an explicit integral in dξ:

ZN =

√
N√

2πw

∫

R

e−
N
2w

ξ2
N∏

i=1

(ξ + xi) dξ . (3.3)

Theorem 3.2. Let w > 0. Let xi > 0, i ∈ N be i.i.d. random variables.

Denote by x a random variable distributed like xi; suppose that Ex[x] <∞ and

1Notice that setting also the diagonal entries to w/N , the resulting matrix is positive

semi-definite:
∑N

i=1

∑N
j=1

(w/N) aiaj = (w/N)
(∑N

i=1
ai

)2 ≥ 0 for every a ∈ RN .
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Ex[(log x)2] <∞. Then:

∃ lim
N→∞

1

N
Ex[ logZN ] = sup

ξ≥0
Φ(ξ) ∈ R (3.4)

where

Φ(ξ) := − ξ2

2w
+ Ex[ log(ξ + x)] ∀ ξ ≥ 0 . (3.5)

Furthermore the function Φ attains its maximum at a unique point ξ∗. ξ∗ is the

only solution in [0,∞[ of the fixed point equation

ξ∗ = Ex

[
w

ξ∗ + x

]
. (3.6)

Thus the following bounds hold:

−Ex[x] +
√

Ex[x]2 + 4w

2
∨ sup

t>0

−t+
√
t2 + 4w Px(x ≤ t)

2
≤ ξ∗ ≤ √w∧Ex

[
w

x

]
.

(3.7)

In consequence of the theorem 3.2 it is not hard to prove that the system

does not present a phase transition in the parameter w > 0. It is also easy to

compute the main macroscopic quantity of physical interest, that is the dimer

density, in terms of the positive solution ξ∗ of the fixed point equation (3.6).

Therefore we state the following two corollaries before starting to prove the

theorem.

Corollary 3.3. In the hypothesis of the theorem 3.2, consider the limiting pres-

sure density p(w) := limN→∞
1
N

Ex

[
logZN(w)

]
. Then p is a smooth function

of w > 0.

Proof. By the theorem 3.2 p(w) = Φ(w, ξ∗), where Φ(w, ξ) = −ξ2/(2w) +

Ex[ log(ξ + x)] and ξ∗ = ξ∗(w) is the only positive solution of the equation

F (w, ξ) = 0 with F := ∂Φ
∂ξ

.

F is a smooth function on ]0,∞[× ]0,∞[ , because Φ is smooth as it will be

proven in the lemma 3.6. In addition ∂F
∂ξ

(w, ξ∗) 6= 0 for all w > 0, by the lemma

3.6 equation (3.13).



28

As a consequence, by the implicit function theorem (see e.g. [86]), ξ∗ is a smooth

function of w ∈ ]0,∞[ . Hence, by composition, also p(w) = Φ
(
w, ξ∗(w)

)
is a

smooth function of w ∈ ]0,∞[ .

Corollary 3.4. In the hypothesis of the theorem 3.2, the limiting dimer density

d := lim
N→∞

1

N
Ex

[〈
|D|
〉
N

]

can be computed as

d = w
d p

dw
=

(ξ∗)2

2w
. (3.8)

Proof. Set pN := 1
N

logZN and perform the change of parameter w =: eh.

Clearly d
dh

= w d
dw

and it is easy to check that

d Ex[pN ]

dh
= Ex

[〈
|D|
〉
N

]
.

By the theorem 3.2 and its corollary 3.3, Ex[pN ] converges pointwise to a smooth

function p as N → ∞ for all values of h ∈ R. A standard computation shows

that Ex[pN ] is a convex function of h. Therefore

d Ex[pN ]

dh
−−−→
N→∞

d p

dh
.

Since p(h) = Φ
(
h, ξ∗(h)

)
, where ξ∗ is the critical point of Φ and is a smooth

function of h, it is easy to compute

d p

dh
(h) =

∂Φ

∂h
(h, ξ∗) +

∂Φ

∂ξ
(h, ξ∗)

︸ ︷︷ ︸
= 0

dξ∗

dh
(h) =

(ξ∗)2

2 eh
.

Remark 3.5. In the deterministic case, namely when the distribution of the

xi’s is a Dirac delta centred at a point x, the theorem 3.2 and its corollary 3.4

reproduce the results that have already been obtained in the Proposition 6 of [6]

by a combinatorial computation. Indeed the fixed point equation (3.6) reduces

to ξ∗ = w
ξ∗+x

, whose positive solution is

ξ∗ =
−x+

√
x2 + 4w

2
. (3.9)
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As a consequence, by (3.8), the limiting dimer and monomer density are respec-

tively

d =
x2 − x

√
x2 + 4w + 2w

2w
, m = 1− 2 d =

−x2 + x
√
x2 + 4w

2w
. (3.10)

Moreover by and (3.8) the limiting pressure p = Φ(ξ∗) can be written as

p = −d− 1

2
log

2 d

w
= −1−m

2
− 1

2
log

1−m
w

. (3.11)

3.1 Proof of the convergence

Now let us start to prove the theorem 3.2. The logic structure of the proof is

divided in three main parts. First we study the basic properties of the function

Φ. Then we use the uniform law of large numbers and other observations to

show that for large N the integrated function in (3.3) can be well approximated

by eNΦ. Finally we will be able to exploit the Laplace’s method in order to

compute a lower and an upper bound for 1
N

Ex[ logZN ] .

Lemma 3.6. Φ is continuous on [0,∞[ , it is smooth on ]0,∞[ and the deriva-

tives can be taken inside the expectation. In particular for all ξ > 0 it holds

Φ′(ξ) = − ξ
w

+ Ex

[
1

ξ + x

]
; (3.12)

Φ′′(ξ) = − 1

w
− Ex

[
1

(ξ + x)2

]
< 0 . (3.13)

As a consequence Φ has exactly one critical point ξ∗ in ]0,∞[ , that is the equa-

tion (3.6) has exactly one solution in ]0,∞[ . ξ∗ is the only global maximum

point of Φ on [0,∞[ .

Proof. I. First of all Φ(ξ) is well-defined for all ξ ≥ 0. Indeed for ξ > 0

log(ξ + x)






≤ ξ + x− 1 ∈ L1(Px)

≥ 1− 1
ξ+x
≥ 1− 1

ξ
∈ L1(Px)

;
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while for ξ = 0, Ex[|log x|] ≤ Ex[(log x)2]1/2 <∞ by the Hölder inequality.

Φ is continuous at ξ = 0 by monotone convergence: log(ξ+x) decreases to log x

as ξ ↘ 0 and Ex[ log(ξ + x)] <∞ .

Let now ξ > 0 and let δ > 0 such that ξ − δ > 0. The first derivative of Φ at ξ

can be computed inside the expectation, obtaining (3.12), since the difference

quotient of ξ 7→ log(ξ + x) satisfies the dominated convergence hypothesis.

Indeed for all ξ′ ∈ ]ξ − δ, ξ + δ[

∣∣∣∣
log(ξ′ + x)− log(ξ + x)

ξ′ − ξ

∣∣∣∣ ≤ sup
ξ̃∈[ξ,ξ′]

1

ξ̃ + x
≤ sup

ξ̃∈[ξ,ξ′]

1

ξ̃
≤ 1

ξ − δ ∈ L
1(Px) .

Now the second derivative of Φ at ξ can be computed inside the expectation,

obtaining (3.13), since the difference quotient of ξ 7→ 1
ξ+x

satisfies the dominated

convergence hypothesis. Indeed for all ξ′ ∈ ]ξ − δ, ξ + δ[

∣∣∣∣
1

ξ′+x
− 1

ξ+x

ξ′ − ξ

∣∣∣∣ ≤ sup
ξ̃∈[ξ,ξ′]

1

(ξ̃ + x)2
≤ sup

ξ̃∈[ξ,ξ′]

1
(
ξ̃
)2 ≤

1

(ξ − δ)2
∈ L1(Px) .

This reasoning can be iterated up to the derivative of any order, since 1/
(
ξ̃ +

x
)k ≤ 1/

(
ξ̃
)k ≤ 1/(ξ − δ)k ∈ L1(Px) for all ξ̃ ∈ ]ξ − δ, ξ + δ[ and all k ≥ 1 .

II. In virtue of (3.13) Φ is a strictly convex function on ]0,∞[ . At the bound-

aries of this domain limξ→0+ Φ′(ξ) = Ex[x
−1] > 0 and limξ→∞Φ′(ξ) = −∞ < 0

by (3.12) and monotone converge. Therefore Φ has exactly one critical point ξ∗

in ]0,∞[ and it is the only global maximum point of Φ.

Remark 3.7. Since ξ∗ satisfies the fixed point equation (3.6), it is easy to

obtain the bounds (3.7) for ξ∗. Since ξ∗ > 0 and x > 0,

ξ∗ = Ex

[
w

ξ∗ + x

]
≤ 1

ξ∗
⇒ ξ∗ ≤ √w ; ξ∗ = Ex

[
w

ξ∗ + x

]
≤ Ex

[
w

x

]
.

Using the Jensen inequality,

ξ∗ = Ex

[
w

ξ∗ + x

]
≥ w

ξ∗ + Ex[x]
⇒ (ξ∗)2+ξ∗ Ex[x]−w ≥ 0 ⇒ ξ∗ ≥ −Ex[x] +

√
Ex[x]2 + 4w

2
.
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Finally, since ξ∗ + x > 0, it holds for all t > 0

ξ∗ = Ex

[
w

ξ∗ + x

]
≥ w

ξ∗ + t
Px(x ≤ t) ⇒ (ξ∗)2 + ξ∗ t− w Px(x ≤ t) ≥ 0 ⇒

⇒ ξ∗ ≥ −t+
√
t2 + 4w Px(x ≤ t)

2
.

Lemma 3.8. Define the random function

ΦN (ξ) := − ξ2

2w
+

1

N

N∑

i=1

log |ξ + xi| ∀ ξ ∈ R . (3.14)

This function is defined also for negative values of ξ and it takes the value −∞
at the random points −x1, . . . ,−xN . It is important to observe that

ΦN(−ξ) < ΦN(ξ) ∀ ξ > 0 . (3.15)

i. Let 0 < M <∞. Then for all ε > 0

Px

(
∀ ξ∈ [0,M ] |ΦN (ξ)− Φ(ξ)| < ε

)
−−−→
N→∞

1 . (3.16)

ii. Let 0 < m < M <∞. Then there exists λm,M > 0 such that

Px

(
∀ ξ∈ [m,M ] ΦN (−ξ) < ΦN(ξ)− λm,M

)
−−−→
N→∞

1 . (3.17)

iii. Let C ∈ R. Then there exists MC > 0 such that

Px

(
∀ ξ∈ [MC ,∞[ ΦN(ξ) < C and ΦN (ξ) < ϕ(ξ)

)
−−−→
N→∞

1 ; (3.18)

where ϕ is the following deterministic function

ϕ(ξ) := − ξ2

2w
+ log ξ +

1

ξ
(Ex[x] + 1) ∀ ξ > 0 . (3.19)

Notice that ΦN (ξ) − Φ(ξ) = 1
N

∑N
i=1 log(ξ + xi) − Ex[ log(ξ + x)] for all

ξ > 0. Since the xi, i ∈ N are i.i.d., the basic idea behind the lemma 3.8 is to

approximate ΦN with Φ by the law of large numbers. But this approximation

is needed to hold at every ξ at the same time, hence a uniform law of large

numbers is required.
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To prove the theorem 3.2 it will be important to have found a good uniform

approximation near the global maximum point ξ∗ of Φ. Far from ξ∗ instead

such a uniform approximation cannot hold: for example ΦN diverges to −∞ at

certain negative points, while, if the distribution of x is absolutely continuous

and satisfies some integrability hypothesis, it is possible to show that Φ(ξ) =

− ξ2

2w
+ Ex[ log |ξ + x|] is continuous on R. But fortunately, far from ξ∗, it will

be sufficient for our purposes to bound suitably ΦN from above.

Proof. i. For every x > 0 the function ξ 7→ log(ξ + x) is continuous on [0,M ]

compact. Moreover there is domination:

log(ξ + x)





≤ log(M + x) ∈ L1(Px)

≥ log x ∈ L1(Px)

∀ ξ ∈ [0,M ] .

Therefore (3.16) holds by the uniform weak law of large numbers (theorem 3.12).

ii. Clearly log(ξ+x) > log |−ξ+x| for all ξ, x > 0. Furthermore an elementary

computation shows that for all ξ, x, τ > 0

log(ξ + x)− log | − ξ + x| ≥ τ ⇔ eτ − 1

eτ + 1
ξ ≤ x ≤ eτ + 1

eτ − 1
ξ .

Therefore for all ξ ∈ [m,M ] and all τ > 0,

ΦN(ξ)− ΦN(−ξ) =
1

N

N∑

i=1

(
log(ξ + xi)− log | − ξ + xi|

)
≥

≥ 1

N

N∑

i=1

τ 1

(
eτ − 1

eτ + 1
ξ ≤ xi ≤

eτ + 1

eτ − 1
ξ

)
≥

≥ τ
1

N

N∑

i=1

1

(
eτ − 1

eτ + 1
M ≤ xi ≤

eτ + 1

eτ − 1
m

)
.

(3.20)

Set Iτm,M :=
[
eτ−1
eτ+1

M , e
τ+1
eτ−1

m
]
. Now by the weak law of large numbers, for all

ε > 0

Px

(
1

N

N∑

i=1

1
(
xi ∈ Iτm,M

)
> Px

(
x ∈ Iτm,M

)
− ε
)
−−−→
N→∞

1 . (3.21)
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Hence, using (3.20) and (3.21), for all τ, ε > 0

Px

(
ΦN (ξ)− ΦN (−ξ) > τ

(
Px(x ∈ Iτm,M)− ε

))
−−−→
N→∞

1 . (3.22)

To conclude observe that Iτm,M ↗ ]0,∞[ (which is the support of the distribu-

tion of x) as τ ↘ 0 . Hence there exists τ0 > 0 such that Px(x ∈ Iτ0m,M ) > 0.

Choose 0 < ε0 < Px(x ∈ Iτ0m,M) and set

λm,M := τ0
(
Px(x ∈ Iτ0m,M)− ε0

)
> 0 .

Then (3.17) follows from (3.22).

iii. For all ξ > 0 the following bound holds:

ΦN(ξ) = − ξ2

2w
+

1

N

N∑

i=1

log(ξ + xi) = − ξ
2

2w
+ log ξ +

1

N

N∑

i=1

log
(
1 +

xi
ξ

)
≤

≤ − ξ
2

2w
+ log ξ +

1

ξ

1

N

N∑

i=1

xi .

(3.23)

Now by the weak law of large numbers (no uniformity in ξ is needed here), for

all ε > 0

Px

(
1

N

N∑

i=1

xi < Ex[x] + ε

)
−−−→
N→∞

1 . (3.24)

Hence, using (3.23) and (3.24), for all 0 < ε < 1

Px

(
∀ ξ>0 ΦN(ξ) < ϕ(ξ)

)
−−−→
N→∞

1 . (3.25)

Furthermore it holds ϕ(ξ)→ −∞ as ξ →∞ . Hence for all C ∈ R there exists

MC > 0 such that

ϕ(ξ) < C ∀ ξ > MC . (3.26)

In conclusion (3.18) follows from (3.25) and (3.26).

Lemma 3.9. There exists a constant C0 <∞ such that

Ex

[(
logZN
N

)2 ]
≤ C0 ∀N ∈ N . (3.27)
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Proof. Since x 7→ (log x)2 is concave for x ≥ e, the Jensen inequality can be

used as follows:

Ex

[
(logZN)2

1(ZN ≥ e)
]

= Ex

[
(logZN)2

∣∣ZN ≥ e
]

Px(ZN ≥ e) ≤

≤
(
log Ex

[
ZN
∣∣ZN ≥ e

] )2
Px(ZN ≥ e) =

=

(
log

Ex

[
ZN 1(ZN ≥ e)

]

Px(ZN ≥ e)

)2

Px(ZN ≥ e) ≤

≤ 2
(
log Ex

[
ZN
])2

+ 2 max
p∈[0,1]

(log p)2 p .

(3.28)

Since the xi, i ∈ N are i.i.d. Ex[ZN ] equals a deterministic partition function

with uniform weights. Hence it is easy to bound it as follows:

Ex

[
ZN
]

=
∑

D∈DN

(
w

N

)|D|
Ex[x]

|M(D)| ≤
|EN |∑

d=0

(|EN |
d

)(
w

N

)d
Ex[x]

N−2d =

= Ex[x]
N

(
1 +

w

N
Ex[x]

−2

)|EN |
≤ Ex[x]

N exp

(
N − 1

2

w

Ex[x]2

)

(3.29)

(here |EN | = N(N−1)
2

denotes the number of edges in the complete graph over

N vertices). Therefore, substituting (3.29) into (3.28),

Ex

[
(logZN)2

1(ZN ≥ e)
]
≤ 2N2

(
log Ex[x] +

w

2 Ex[x]2

)2

+ 2 max
p∈[0,1]

(log p)2 p .

(3.30)

It remains to deal with the case ZN < e . When 1 < ZN < e, it holds 0 <

logZN < 1 hence trivially

Ex

[
(logZN)2

1(1 < ZN < e)
]
≤ Ex

[
(log e)2

1(1 < ZN < e)
]
≤ 1 . (3.31)

When instead ZN ≤ 1, it holds logZN ≤ 0 hence we need a lower bound for ZN .

For example, considering only the configuration with no dimers, ZN ≥
∏N

i=1 xi .
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Therefore:

Ex

[
(logZN)2

1(ZN ≤ 1)
]
≤ Ex

[(
log

N∏

i=1

xi

)2

1(ZN ≤ 1)

]
≤ Ex

[( N∑

i=1

log xi

)2]

≤ N2 Ex

[
log x

]2
+ N Ex

[
(log x)2

]
.

(3.32)

In conclusion the lemma is proved splitting Ex

[
(logZN)2

]
as Ex

[
(logZN)2

1(ZN ≥
e)
]

+ Ex

[
(logZN)2

1(1 < ZN < e)
]

+ Ex

[
(logZN)2

1(ZN ≤ 1)
]

and applying

the bounds (3.30), (3.31), (3.32).

Proof of the theorem 3.2. It remains to prove only the convergence (3.4). Fix

C < Φ(ξ∗) . Fix 0 < m < MC =: M < ∞ such that (3.18) holds and m <

ξ∗ < M : it is possible to make such a choice thanks to the bounds (3.7) for ξ∗

proven in the remark 3.7. Fix λm,M =: λ > 0 such that (3.17) holds. Let ε > 0.

Then consider the following random events depending on x1, . . . , xN

E1
N,ε := { ∀ ξ∈ [0,M ] |ΦN (ξ)− Φ(ξ)| < ε }

E2
N := { ∀ ξ∈ [m,M ] ΦN (−ξ) < ΦN(ξ)− λ }

E3
N := { ∀ ξ∈ [M,∞[ ΦN (ξ) < C , ΦN (ξ) < ϕ(ξ) }

and set EN,ε := E1
N,ε ∩ E2

N ∩ E3
N . It is convenient to split the expectation of

logZN as follows:

Ex

[
1

N
logZN

]
= Ex

[
1

N
logZN 1

(
EN,ε

)]
+ Ex

[
1

N
logZN 1

(
(EN,ε)

c
)]
.

(3.33)

In the following we are going to see that in the limit N →∞ the second term

on the r.h.s. of (3.33) is negligible, while the first term can be computed using

the Laplace’s method.

By the lemma 3.8, using the Hölder inequality and the lemma 3.9,

∣∣∣∣Ex

[
1

N
logZN 1

(
(EN,ε)

c
)] ∣∣∣∣ ≤ Ex

[(
1

N
logZN

)2]1/2

Px

(
(EN,ε)

c
)1/2 −−−→

N→∞
0 .

(3.34)
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[Upper bound ] Using the Gaussian representation (3.3), a simple upper bound

for ZN is

ZN ≤
√
N√

2πw

∫

R

e−
N
2w

ξ2
N∏

i=1

|ξ + xi| dξ =

√
N√

2πw

∫

R

eN ΦN (ξ) dξ . (3.35)

If the event EN,ε holds true, remembering also the inequality (3.15), then the

following upper bound holds:

∫

R

eN ΦN (ξ) dξ ≤

≤ 2

∫ m

0

eN ΦN (ξ) dξ +

∫ M

m

eN ΦN (ξ) dξ +

∫ M

m

eN (ΦN (ξ)−λ) dξ + 2

∫ ∞

M

eN ΦN (ξ) dξ ≤

≤ 2

∫ m

0

eN (Φ(ξ)+ε) dξ +

∫ M

m

eN (Φ(ξ)+ε) dξ +

∫ M

m

eN (Φ(ξ)+ε−λ) dξ + 2 e(N−1)C

∫ ∞

M

eϕ(ξ) dξ =

=
N→∞

O
(
eN (max[0,m] Φ+ε)

)
+ eN (Φ(ξ∗)+ε)

√
2π (1 + o(1))√
−N Φ′′(ξ∗)

+ O
(
eN (Φ(ξ∗)+ε−λ)

)
+ O

(
eN C

)
;

(3.36)

the last step is obtained by applying the Laplace’s method (theorem 3.11) to

the function Φ, which by lemma 3.6 satisfies all the necessary hypothesis. Now

since max[0,m] Φ , Φ(ξ∗)− λ and C are strictly smaller than Φ(ξ∗), it holds

r.h.s. of (3.36) ∼
N→∞

eN (Φ(ξ∗)+ε)

√
2π√

−N Φ′′(ξ∗)
. (3.37)

As a consequence of (3.35), (3.36), (3.37),

1

N
logZN 1(EN,ε) ≤ Φ(ξ∗) + ε+O

(
logN

N

)
,

where the O( logN
N

) is deterministic. Therefore for all ε > 0

lim sup
N→∞

Ex

[
1

N
logZN 1(EN,ε)

]
≤ Φ(ξ∗) + ε . (3.38)

[Lower bound ] Observe that the product
∏N

i=1(ξ+xi) is always positive for ξ ≥ 0,

while it is negative for some ξ < 0. Hence using the Gaussian representation
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(3.3), a lower bound for ZN is

ZN ≥
√
N√

2πw

(∫ ∞

0

e−
N
2w

ξ2
N∏

i=1

|ξ + xi| dξ −
∫ 0

−∞
e−

N
2w

ξ2
N∏

i=1

|ξ + xi| dξ
)

=

=

√
N√

2πw

(∫ ∞

0

eN ΦN (ξ) dξ −
∫ 0

−∞
eN ΦN (ξ) dξ

)
.

(3.39)

If the event EN,ε holds true, remembering also the inequality (3.15), then the

following lower bound holds:
∫ ∞

0

eN ΦN (ξ) dξ −
∫ 0

−∞
eN ΦN (ξ) dξ ≥

≥
∫ M

m

eN ΦN (ξ) dξ −
∫ M

m

eN (ΦN (ξ)−λ) dξ ≥

≥
∫ M

m

eN (Φ(ξ)−ε) dξ −
∫ M

m

eN (Φ(ξ)+ε−λ) dξ =

=
N→∞

eN (Φ(ξ∗)−ε)
√

2π (1 + o(1))√
−N Φ′′(ξ∗)

− eN (Φ(ξ∗)+ε−λ)

√
2π (1 + o(1))√
−N Φ′′(ξ∗)

;

(3.40)

the last step is obtained by applying the Laplace’s method (theorem 3.11) to

the function Φ, which by lemma 3.6 satisfies all the necessary hypothesis. Now

since Φ(ξ∗)+ε−λ < Φ(ξ∗)−ε for all 0 < ε < 1
2
λ , for such a choice of ε it holds

r.h.s. of (3.40) ∼
N→∞

eN (Φ(ξ∗)−ε)
√

2π√
−N Φ′′(ξ∗)

. (3.41)

As a consequence of (3.39), (3.40), (3.41), for all 0 < ε < 1
2
λ

1

N
logZN 1(EN,ε) ≥

(
Φ(ξ∗)− ε+O

(
logN

N

))
1(EN,ε) ,

where the O( logN
N

) is deterministic. Therefore, using also the lemma 3.8, for all

0 < ε < 1
2
λ

lim inf
N→∞

Ex

[
1

N
logZN 1(EN,ε)

]
≥ lim inf

N→∞

(
Φ(ξ∗)−ε+O

(
logN

N

))
Px(EN,ε) = Φ(ξ∗)−ε .

(3.42)

In conclusion the convergence Ex[ 1
N

logZN ] → Φ(ξ∗) as N → ∞ is proven by

considering (3.33) for 0 < ε < 1
2
λ , then letting N → ∞ exploiting (3.34),

(3.38), (3.42), and finally letting ε→ 0+.
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3.2 Appendix

In this appendix we state the main technical results used in this chapter.

We omit their proofs that can be found in the literature.

Theorem 3.10 (Gaussian integration by parts; Wick-Isserlis formula). Let

(ξ1, . . . , ξn) be a Gaussian random vector with mean 0 and positive semi-definite

covariance matrix C = (cij)i,j=1,...,n . Let f : Rn−1 → R be a differentiable func-

tion such that E
[∣∣ξ1 f(ξ2, . . . , ξn)

∣∣] < ∞ and E
[∣∣ ∂f
∂ξj

(ξ2, . . . , ξn)
∣∣] < ∞ for all

j = 2, . . . , n. Then:

E
[
ξ1 f(ξ2, . . . , ξn)

]
=

n∑

j=2

c1j E

[
∂f

∂ξj
(ξ2, . . . , ξn)

]
. (3.43)

As a consequence one can prove the following:

E

[ n∏

i=1

ξi

]
=

∑

P partition of
{1,...,n} into pairs

∏

{i,j}∈P
cij . (3.44)

The Gaussian integration by parts (3.43) can be found in [93]. The Wick-

Isserlis formula (3.44) follows by (3.43) using an induction argument; but it

appeared for the first time in [60].

Theorem 3.11 (Laplace’s method). Let φ : [a, b] → R be a function of class

C2. Suppose that there exists x0 ∈ ]a, b[ such that

i. φ(x0) > φ(x) for all x ∈ [a, b] (i.e. x0 is the only global maximum point

of φ);

ii. φ′′(x0) < 0 .

Then as n→∞
∫ b

a

enφ(x) dx = enφ(x0)

√
2π√

−nφ′′(x0)

(
1 + o(1)

)
. (3.45)

A formal proof of the Laplace’s method can be found in [25].
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Theorem 3.12 (uniform weak law of large numbers). Let X , Θ be metric

spaces. Let Xi, i ∈ N be i.i.d. random variables taking values in X . Let

f : X × Θ → R be a function such that f(·, θ) is measurable for all θ ∈ Θ.

Suppose that:

i. Θ is compact;

ii. P
(
f(X1, ·) is continuous at θ

)
= 1 for all θ ∈ Θ ;

iii. ∃ F : X → [0,∞] such that P
(
|f(X1, θ)| ≤ F (X1)

)
= 1 for all θ ∈ Θ and

E[F (X1)] <∞ .

Then for all ε > 0

P

(
sup
θ∈Θ

∣∣∣∣
1

n

n∑

i=1

f(Xi, θ)− E[f(X, θ)]

∣∣∣∣ ≥ ε

)
−−−→
n→∞

0 . (3.46)

The uniform law of large number appeared in [61]. It is based on the (stan-

dard) law of large numbers and on a compactness argument.
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Chapter 4

Hard-core and imitative

interactions on the complete

graph

This chapter is based on the joint works [6, 7]. We study a monomer-dimer

model with hard-core and imitative interactions (see section 2.2) on the

complete graph; we fix uniform dimer activity wij ≡ 1/N , uniform monomer

activity xi ≡ eh and uniform imitation coefficients J ′ij ≡ J ′′ij ≡ J/N ≥ 0,

J ′′′ij ≡ 0.

We show that this model is exactly solvable and, for J sufficiently large,

presents a phase transition between a high monomer density phase and a high

dimer density phase. The properties of the phase transition are studied in

details. Precisely we prove that in the thermodynamic limit the pressure density

p exists and is given by a one-dimensional variational principle in the monomer

density m (theorem 4.1), which admits two solutions when (h, J) belongs to a

curve Γ or one solution otherwise (propositions 4.5, 4.9). The order parameter

m(h, J) presents a jump discontinuity along Γ, while it is continuous but not

differentiable at the critical point (hc, Jc), its critical exponents are the mean-

field ones: β = 1/2 along the direction of Γ and 1/δ = 1/3 along any other

41
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direction (theorem 4.14).

To decouple the imitative interaction we adopt the strategy used by Guerra

for the Curie-Weiss model [53], while the exact solution of the pure hard-core

model is obtained by a combinatorial argument.

4.1 Solution of the model

Let h ∈ R and J > 0. Since the number of edges is of order N2, in order

to keep the logarithm of the partition function of order N , a normalisation of

the dimer activity as 1/N and of the imitation coefficient as J/N are needed.

Therefore in this chapter we will consider the Hamiltonian

HN(α) := −h
N∑

i=1

αi −
J

N

∑

1≤i<j≤N

(
αi αj + (1− αi) (1− αj)

)
(4.1)

for every monomer-dimer configuration on the complete graph α ∈ DN , and the

partition function

ZN :=
∑

α∈DN

N−|D| exp(−HN(α)) , (4.2)

where |D| =
∑

1≤i<j≤N αij =
(
N − ∑N

i=1 αi
)
/2 . The corresponding Gibbs

measure is

µN(α) :=
N−|D| exp(−HN(α))

ZN
∀α ∈ DN (4.3)

and the expectation with respect to the measure µN is denoted by 〈 · 〉N . In

particular, setting mN (α) := 1
N

∑N
i=1 αi, the monomer density is

〈mN〉N =
∑

α∈DN

∑N
i=1 αi
N

exp(−HN (α))

ZN
=

∂

∂h

logZN
N

. (4.4)

The main result of this section is the following theorem, where in the limit

N →∞ the model is solved in terms of a one-dimensional variational principle.

Theorem 4.1. Let h ∈ R, J ≥ 0. Then

∃ p := lim
N→∞

logZN
N

= sup
m

p̃ (m) ∈ R , (4.5)
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where the sup can be taken indifferently over m ∈ [0, 1] or m ∈ R, and

p̃ (m) := −J m2 +
1

2
J + p(0)

(
(2m− 1) J + h

)
∀m ∈ R , (4.6)

p(0)(t) := − 1− g(t)
2

− 1

2
log(1− g(t)) = −1− g(t)

2
− log g(t) + t , (4.7)

g(t) :=
1

2
(
√
e4t + 4 e2t − e2t) =

(
p(0)
)′

(t) ∀ t ∈ R . (4.8)

Furthermore the function m 7→ p̃ (m) attains its maximum in (at least) one

point m∗ ∈ ]0, 1[ , which is a solution of the the consistency equation

m = g
(
(2m− 1) J + h

)
. (4.9)

At each value of the parameters (h, J) such that h 7→ m∗(h, J) is differentiable,

the monomer density admits thermodynamic limit and precisely:

∃ lim
N→∞

〈mN〉N = m∗ ∈ ]0, 1[ . (4.10)

This result relies on two main facts:

1) for J = 0 the thermodynamic limit of the pressure per particle can be

computed explicitly and turns out to be p(0)(h);

2) for J > 0 the Hamiltonian (4.1) can be expressed as a quadratic form in

the hamiltonian with J = 0.

Therefore before proving the theorem we state and prove these two results.

Denote by Z
(0)
N and 〈mN〉(0)N respectively the partition function and the

monomer density at J = 0, namely when the system presents only the hard-core

interaction.

Proposition 4.2. Let h ∈ R. Then

∃ lim
N→∞

logZ
(0)
N

N
= p(0)(h) , (4.11)

and

∃ lim
N→∞

〈mN 〉(0)N = g(h) . (4.12)

The analytic functions p(0) and g are defined respectively by (4.7) and (4.8).
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Proof. This proposition has already been proven in the remark 3.5, by using

the Gaussian representation of the partition function and the Laplace method.

Another way to prove it is to write an explicit combinatorial expression for the

pure hard-core partition function on the complete graph (see [6]).

On the complete graph the Hamiltonian (4.1) admits a useful rewriting,

which shows that it depends on the monomer-dimer configuration α only via

the fraction of monomers mN (α).

Lemma 4.3. For all α ∈ DN ,

HN(α) = −N
(
J mN (α)2 + (h− J)mN(α) + cN

)
(4.13)

with cN := N−1
2N

J .

Proof. Using the identities analysed in the remark 2.11, the Hamiltonian (4.1)

rewrites as

HN = − N(N − 1)

2

J

N
+

−
(
h− (N − 1)

J

N

) N∑

i=1

αi − 2
J

N

∑

1≤i<j≤N
αiαj .

Then on the complete graph it holds

2
∑

1≤i<j≤N
αiαj =

( N∑

i=1

αi

)2

−
N∑

i=1

αi . (4.14)

Substituting in the previous expression one obtains

HN = −N − 1

2
J − (h− J)

N∑

i=1

αi −
J

N

( N∑

i=1

αi

)2

and since
∑N

i=1 αi = N mN (α) the identity (4.13) is proved.

Now using proposition 4.2 and lemma 4.3 we are able to prove theorem 4.1.

Our technique is the same used by Guerra [53] to solve the Curie-Weiss model

(namely the ferromagnetic Ising model on the complete graph).
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Proof of Theorem 4.1. The proof is done providing a lower and an upper bound

for the pressure per particle.

[LowerBound] Fix m ∈ R. As
(
mN(α) − m)2 ≥ 0, clearly mN (α)2 ≥

2mmN(α)−m2. Hence by lemma 4.3, using the hypothesis J ≥ 0,

−HN(α) = N
(
J mN(α)2 + (h− J)mN(α) + cN

)
≥

≥ N
(
(2J m+ h− J)mN (α) − J m2 + cN

)

thus

ZN =
∑

α

N−|D| exp(−HN(α)) ≥
∑

α

N−|D| expN
(
(2J m+ h− J)mN(α)− J m2 + cN

)
=

= eN γN (m) Z
(0)
N

(
t(m)

)

where γN(m) := −J m2 + N−1
2N

J and t(m) := 2J m+ h− J .

[UpperBound] mN takes values in the set AN := {0, 1
N
, . . . , N−1

N
, 1}. Clearly,

writing δ for the Kronecker delta,
∑

m∈AN
δm,mN (α) = 1 and F (mN(α)2) δm,mN (α) =

F (2mmN(α)−m2) δm,mN (α) for any function F . Hence by lemma 4.3,

δm,mN (α) exp(−HN (α)) = δm,mN (α) expN(J mN (α)2 + (h− J)mN(α) + cN) =

= δm,mN (α) expN
(
(2J m+ h− J)mN (α) − J m2 + cN

)

thus

ZN =
∑

α

N−|D|
∑

m∈AN

δm,mN (α) exp(−HN(α)) =

=
∑

α

N−|D|
∑

m∈AN

δm,mN (α) expN
(
(2J m+ h− J)mN (α) − J m2 + cN

)
≤

≤
∑

m∈AN

∑

α

N−|D| expN
(
(2J m+ h− J)mN(α) − J m2 + cN

)
=

=
∑

m∈AN

eN γN (m) Z
(0)
N

(
t(m)

)
≤ (N + 1) sup

m∈[0,1]

{
eN γN (m) Z

(0)
N

(
t(m)

)}
.

Therefore putting together lower and upper bound we have found:

sup
m∈[0,1]

{
eN γN (m) Z

(0)
N

(
t(m)

)}
≤ ZN ≤ (N + 1) sup

m∈[0,1]

{
eN γN (m) Z

(0)
N

(
t(m)

)}
.
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Then, taking the logarithm and dividing by N ,

0 ≤ logZN
N

− sup
m∈[0,1]

{
γN(m) +

logZ
(0)
N

(
t(m)

)

N

}
≤ log(N + 1)

N
−−−→
N→∞

0 .

Now the pressure per particle h 7→ logZ
(0)
N (h)

N
is a convex function, hence as

N → ∞ the convergence
logZ

(0)
N (h)

N
→ p(0)(h) of proposition 4.2 is uniform in h

on compact sets. Moreover γN(m) → γ(m) := −J m2 + 1
2
J uniformly in m as

N →∞. Therefore

γN(m) +
logZ

(0)
N

(
t(m)

)

N
−−−→
N→∞

γ(m) + p(0)
(
t(m)

)

and the convergence is uniform in m on compact sets. As a consequence also

sup
m∈[0,1]

{
γN(m) +

logZ
(0)
N

(
t(m)

)

N

}
−−−→
N→∞

sup
m∈[0,1]

{
γ(m) + p(0)

(
t(m)

)}
.

This concludes the proof of (4.5).

It remains to prove (4.9) and (4.10). First of all observe that

∂p̃

∂m
(m) = −2J m+ 2J g

(
(2m− 1) J + h

)
,

since (p(0))′ = g (see proposition 4.2). It holds ∂p̃
∂m

(m) > 0 for all m ≤ 0

and ∂p̃
∂m

(m) > 0 for all m ≥ 1, therefore the function m 7→ p̃ (m) attains its

global maximum inside the interval ]0, 1[ and any global maximum point m∗ is

a critical point of p̃ , i.e. satisfies equation (4.9).

Now 1
N

logZN(h, J) is a convex function of h and, as shown before, it converges

to p(h, J) = p̃ (m∗(h, J), h, J) as N →∞. Therefore, assuming that m∗(h, J) is

differentiable in h, the monomer density mN = ∂
∂h

1
N

logZN converges to ∂
∂h
p.

Thus to prove (4.10) it suffices to compute this derivative:

∂p

∂h
=

d

dh
p̃
(
m∗(h, J), h, J

)
=

∂p̃

∂m
(m∗)

︸ ︷︷ ︸
= 0

∂m∗

∂h
+
∂p̃

∂h︸︷︷︸
= (p(0))′

= g
(
(2m∗−1) J+h

)
= m∗ .
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4.2 Study of the phase transition

In this section we study the properties of the solution provided by theorem

4.1. We divide the analysis in three subsections. In subsection 4.2.1 we study

all the stationary points of the function m 7→ p̃ (m, h, J). One of them will

be the global maximum point m∗ we are interested in, since it represents the

monomer density. We provide their complete classification, regularity proper-

ties and asymptotic behaviour as functions of the parameters h and J . As a

consequence in subsection 4.2.2 we are able to identify the region where there

exists a unique global maximum point m∗. The function m∗ is single-valued

and smooth on the plane (h, J) with the exception of a implicitly defined curve

Γ union its endpoint (hc, Jc); along Γ the order parameter m∗ presents a jump

discontinuity: this fact has a crucial physical role since it represents the coexis-

tence of two different thermodynamic phases and in physical jargon we say that

a phase transition occur. The point (hc, Jc) is the critical point of the system,

where m∗ is continuous but not differentiable. In subsection 4.2.3 we compute

the critical exponents that characterizes the behaviour of m∗ near (hc, Jc).

4.2.1 Analysis of the stationary points

Let us identify the stationary points of the function p̃ (m, h, J) defined by

(4.6). Remembering that (p(0))′ = g, one computes

∂p̃

∂m
(m, h, J) = −2J m + 2J g

(
(2m− 1)J + h

)
(4.15)

∂2p̃

∂m2
(m, h, J) = −2J + (2J)2 g′

(
(2m− 1)J + h

)
(4.16)

Since 0 < g < 1, it follows that for every J > 0, h ∈ R

∂p̃

∂m
(m, h, J) > 0 ∀m ∈ ]−∞, 0] ,

∂p̃

∂m
(m, h, J) < 0 ∀m ∈ [1,∞[ . (4.17)
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Therefore p̃ (· , h, J) attains its maximum in (at least) one point m = m∗(h, J) ∈
]0, 1[ , which satisfies

∂p̃

∂m
(m, h, J) = 0 i.e. m = g

(
(2m− 1)J + h

)
, (4.18)

∂2p̃

∂m2
(m, h, J) ≤ 0 i.e. g′

(
(2m− 1)J + h

)
≤ 1

2J
. (4.19)

The stationary points are characterized by equation (4.18), which can not be

explicitly solved. Anyway their properties and a rough approximation of their

values can be determined by studying inequality (4.19), which admits explicit

solution.

The next proposition displays the intervals of concavity/convexity of the

function m 7→ p̃ (m, h, J). Set

Jc :=
1

4 (3− 2
√

2)
≈ 1.4571 . (4.20)

Proposition 4.4. For 0 < J < Jc and h ∈ R

∂2p̃

∂m2
(m, h, J) < 0 ∀m ∈ R .

For J ≥ Jc and h ∈ R

∂2p̃

∂m2
(m, h, J)





< 0 iff m < φ1(h, J) or m > φ2(h, J)

> 0 iff φ1(h, J) < m < φ2(h, J)

,

where for i = 1, 2

φi(h, J) :=
1

2
− h

2J
+

1

4J
log ai(J) , (4.21)

ai(J) :=
−( 1

(2J)2
+ 8

2J
− 4) + (−1)i (2− 1

2J
)
√

1
(2J)2

− 12
2J

+ 4

4
2J

. (4.22)

Observe that φ1(h, J) ≤ φ2(h, J) for all h ∈ R, J ≥ Jc and equality holds iff

J = Jc (since a1(Jc) = a2(Jc)).

Proof. It follows from the expression (4.16) through a direct computation done

in lemma 4.17 of the Appendix, taking t = (2m− 1)J + h and c = 1
2J

.
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Using the previous proposition we can determine how many, of what kind

and where the stationary points of p̃ (· , h, J) are.

Proposition 4.5 (Stationary points: classification). The equation (4.18) in m

has the following properties:

1. If 0 < J ≤ Jc and h ∈ R, there exists only one solution m(h, J). It is the

maximum point of p̃ (· , h, J).

2. If J > Jc and ψ2(J) < h < ψ1(J), then there exist three solutions

m1(h, J), m0(h, J), m2(h, J). Moreover m1(h, J) < φ1(h, J) andm2(h, J) >

φ2(h, J) are two local maximum points, while φ1(h, J) < m0(h, J) <

φ2(h, J) is a local minimum point of p̃ (· , h, J).

3. If J > Jc and h > ψ1(J), there exists only one solution m2(h, J). More-

over m2(h, J) > φ2(h, J) and it is the maximum point of p̃ (· , h, J).

4. If J > Jc and h = ψ1(J), there exist two solution m1(h, J), m2(h, J) .

Moreover m1(h, J) = φ1(h, J) is a point of inflection, while m2(h, J) >

φ2(h, J) is the maximum point of p̃ (· , h, J).

5. If J > Jc and h < ψ2(J), there exists only one solution m1(h, J). More-

over m1(h, J) < φ1(h, J) and it is the maximum point of p̃ (· , h, J).

6. If J > Jc and h = ψ2(J), there exist two solutions m1(h, J), m2(h, J) .

Moreover m2(h, J) = φ2(h, J) is a point of inflection, while m1(h, J) <

φ1(h, J) is the maximum point of p̃ (· , h, J).

Here φ1, φ2 are defined by (4.21), while for i = 1, 2 and J ≥ Jc

ψi(J) := J +
1

2
log ai(J)− 2J g

(1
2

log ai(J)
)
, (4.23)

where ai and g are defined respectively by (4.22) and (4.8). Observe that

ψ2(J) ≤ ψ1(J) for all J ≥ Jc and equality holds iff J = Jc.
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Figure 4.1: Number and nature of the stationary points of the function m 7→
p̃ (m, h, J) in the regions of the plane (h, J).

Proof. Fix h ∈ R, J > 0 and to shorten the notation set G(m) := ∂p̃
∂m

(m, h, J),

observing it is a continuous (smooth) function.

• Suppose J ≤ Jc. By proposition 4.4, G′(m) ≤ 0 for all m ∈ R and equality

holds iff (J = Jc and m = φ1(h, Jc) = φ2(h, Jc) ). Hence G is strictly decreasing

on R. On the other hand by (4.17), G(m) < 0 for all m ≤ 0 and G(m) > 0

for all m ≥ 1. Therefore there exists a unique point m (m ∈ ]0, 1[ ) such that

G(m) = 0.

• Suppose J > Jc. By proposition 4.4, G is strictly decreasing for m ≤ φ1(h, J),

strictly increasing for φ1(h, J) ≤ m ≤ φ2(h, J) and again strictly decreasing

for m ≥ φ2(h, J). On the other hand by (4.17), G(m+) > 0 for some point

m+ < φ1(h, J) and G(m−) > 0 for some point m− > φ2(h, J). Therefore:

( ∃ (a unique) m1 ∈ ]−∞, φ1(h, J)] s.t. G(m1) = 0 ) ⇔ G(φ1(h, J)) ≤ 0 ;

( ∃ (a unique) m2 ∈ [φ2(h, J),∞[ s.t. G(m2) = 0 ) ⇔ G(φ2(h, J)) ≥ 0 ;

( ∃ (a unique) m0 ∈ [φ1(h, J), φ2(h, J)] s.t. G(m0) = 0 ) ⇔ G(φ1(h, J)) ≤ 0 , G(φ2(h, J)) ≥ 0 .
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And now, using identity (4.15) and definitions (4.21), (4.23)

G(φ1(h, J)) <
(=)

0 ⇔ g
(
(2φ1(h, J)− 1)J + h

)
<
(=)

φ1(h, J) ⇔ h <
(=)

ψ1(J)

and similarly G(φ2(h, J)) >
(=)

0 ⇔ h >
(=)

ψ2(J) .

The first • allows to conclude in case 1., while the second • allows to conclude in

all the other cases. Notice that the nature of the stationary points of p̃ (· , h, J)

is determined by the sign of the second derivative ∂2p̃
∂m2 studied in proposition

4.4.

Figure 4.2: Plots of the function m 7→ p̃ (m, h, J) for different values of the

parameters h, J . In particular cases 1., 3., 4., 2. of proposition 4.5 are repre-

sented.

A special role is played by the point (hc, Jc), where we set

hc := ψ1(Jc) = ψ2(Jc) =
1

2
log(2

√
2− 2)− 1

4
≈ −0.3441 , (4.24)

indeed in the next sub-sections it will turn out to be the critical point of the
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system. It is also useful to define

mc := φ1(hc, Jc) = φ2(hc, Jc) = 2−
√

2 ≈ 0.5857 , (4.25)

tc := (2mc − 1)Jc + hc =
1

2
log(2

√
2− 2) ≈ −0.0941 . (4.26)

The computations are done observing that a1(Jc) = a2(Jc) = 2
√

2 − 2 and

g(1
2
log(2

√
2− 2)) = 2−

√
2.

Remark 4.6. We notice that mc is the (unique) solution of equation (4.18) for

h = hc and J = Jc, that is m(hc, Jc) = mc. Indeed a direct computation using

(4.8) shows

g
(
(2mc − 1)Jc + hc

)
= g

(
tc
)

= mc.

Observe that as a consequence mc is a solution of equation (4.18) for all (h, J)

such that h− hc = (1− 2mc)(J − Jc).

In the next proposition we analyse the regularity of the solutions of equation

(4.18).

Proposition 4.7 (Stationary points: regularity properties). Consider the sta-

tionary points of p̃ (· , h, J) defined in proposition 4.5: m(h, J), m1(h, J), m0(h, J), m2(h, J)

for suitable values of h, J . The functions

µ1(h, J) :=





m(h, J) if 0 < J ≤ Jc , h ∈ R

m1(h, J) if J > Jc , h ≤ ψ1(J)

, (4.27)

µ2(h, J) :=






m(h, J) if 0 < J ≤ Jc , h ∈ R

m2(h, J) if J > Jc , h ≥ ψ2(J)

, (4.28)

µ0(h, J) :=





m(h, J) if 0 < J ≤ Jc , h ∈ R

m0(h, J) if J > Jc , ψ2(J) ≤ h ≤ ψ1(J)

(4.29)

have the following properties:

i) are continuous on the respective domains;
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ii) are C∞ in the interior of the respective domains;

iii) for i = 0, 1, 2 and (h, J) in the interior of the domain of µi

∂

∂h
p̃ (µi(h, J), h, J) = µi ,

∂

∂J
p̃ (µi(h, J), h, J) = −µi (1− µi) ;

(4.30)

∂µi
∂h

=
2µi (1− µi)

2− µi − 4J µi (1− µi)
,

∂µi
∂J

= (2µi − 1)
∂µi
∂h

. (4.31)

Proof. i) First prove the continuity of µ1. Observe that by propositions 4.5,

4.4:

• for (h, J) in D1 := {(h, J) | (0 < J ≤ Jc, h ∈ R) or (J > Jc, h ≤ ψ2(J))} ,

µ1(h, J) is the only maximum point of p̃ (· , h, J) on the interval [0, 1] ;

• for (h, J) in D2 := {(h, J) | J ≥ Jc, h ≤ ψ1(J)} , µ1(h, J) is the only

maximum point of p̃ (· , h, J) on the interval [0, φ1(h, J)] .

Hence by the Berge’s maximum theorem [78], continuity of the functions p̃ and

φ1 implies continuity of the function µ1 on the sets D1 and D2. As D1 and D2

are both closed subsets of R × R+, by the pasting lemma µ1 is continuous on

their union

D1 ∪D2 = {(h, J) | (0 < J ≤ Jc, h ∈ R) or (J > Jc, h ≤ ψ1(J))} .

A similar argument proves the continuity of µ2 and µ0.

ii) Now prove the smoothness of µ1, µ2, µ0 in the interior of their domains. Set

G(m, h, J) := ∂p̃
∂m

(m, h, J). As just seen m = µ1(h, J), µ2(h, J), µ0(h, J) are

continuous solutions of

G(m, h, J) = 0 ,

for values of h, J in the respective domains. Observe that G ∈ C∞(R×R×R+)
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and by propositions 4.4, 4.5 it can happen





∂G

∂m
(m, h, J) = 0

G(m, h, J) = 0

⇔





J ≥ Jc , (m = φ1(h, J) or m = φ2(h, J))

G(m, h, J) = 0

⇔

⇔





J ≥ Jc, m = φ1(h, J)

h = ψ1(J)

or





J ≥ Jc, m = φ2(h, J)

h = ψ2(J)

.

m = µ1(h, J) can fall only within the first case, while m = µ2(h, J) can fall

only within the second case. Therefore by the implicit function theorem [86]

µ1, µ2, µ0 are C∞ on the interior of the respective domains.

iii) Let i = 0, 1, 2 and (h, J) in the interior of the domain of µi. Using (4.6),

(p(0))′ = g and the fact that µi(h, J) satisfies equation (4.18), compute

∂

∂h
p̃ (µi, h, J) = −2J

∂µi
∂h

+ (p(0))′
(
(2µi − 1)J + h

)
(2J

∂µi
∂h

+ 1)

= −2J
∂µi
∂h

+ µi (2J
∂µi
∂h

+ 1) = µi ;

and similarly ∂
∂J
p̃ (µi, h, J) = µ2

i − µi .

Using the fact that µi(h, J) satisfies equation (4.18) compute

∂µi
∂h

=
∂

∂h
g
(
(2µi − 1)J + h

)
= g′

(
(2µi − 1)J + h)

)
(1 + 2J

∂µi
∂h

)

⇒ ∂µi
∂h

=
g′
(
(2µi − 1)J + h

)

1− 2J g′
(
(2µi − 1)J + h

) ;

and similarly ∂µi

∂J
=

(2µi−1) g′
(
(2µi−1)J+h

)

1−2J g′
(
(2µi−1)J+h

) . Then observe that g′ = 2 g (1−g)/(2−
g) (identity (4.49) in the Appendix), hence since µi(h, J) satisfies equation (4.18)

g′
(
(2µi − 1)J + h

)
=

2µi (1− µi)
2− µi

;

substituting this in the previous identities concludes the proof.

To end this subsection we study the asymptotic behaviour of the stationary

points of p̃ (· , h, J) for large J .
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Proposition 4.8 (Stationary points: asymptotic behaviour). Consider the sta-

tionary points m1(h, J), m0(h, J), m2(h, J) defined in proposition 4.5 for suit-

able values of h, J .

i) For all fixed h ∈ R

m1(h, J) −−−→
J→∞

0 , m2(h, J) −−−→
J→∞

1 , m0(h, J) −−−→
J→∞

1

2
.

ii) Moreover for all fixed h ∈ R

J m1(h, J) −−−→
J→∞

0 , J (1−m2(h, J)) −−−→
J→∞

0 .

iii) And taking the sup and inf over h ∈ [ψ2(J), ψ1(J)]

sup
h
m1(h, J) −−−→

J→∞
0 , inf

h
m2(h, J) −−−→

J→∞
1 .

Proof. i) First observe from the definition (4.23) that ψ2(J) → −∞, ψ1(J) →
∞ as J → ∞. Hence for any fixed h ∈ R there exists J̄ > 0 such that

ψ2(J) < h < ψ1(J) for all J > J̄ . This means that the limits in the statement

make sense.

Now remind that by proposition 4.5, for J > J̄

m1(h, J) < φ1(h, J) < m0(h, J) < φ2(h, J) < m2(h, J) .

Observe from the definition (4.21) that φ1(h, J)→ 1
2
, φ2(h, J)→ 1

2
as J →∞.

It follows immediately that also m0(h, J)→ 1
2

as J →∞.

Moreover definition (4.21) entails that J
(

1
2
−φ1(h, J)

)
→∞ , J

(
φ2(h, J)− 1

2

)
→

∞ as J →∞. Exploit the fact that m1(h, J) is a solution of equation (4.18):

m1(h, J) = g
(
(2m1(h, J)− 1) J + h

)
≤ g

(
(2φ1(h, J)− 1) J + h

)
=

= g
(
− 2J (

1

2
− φ1(h, J)) + h

)
−−−→
J→∞

0 ,

where also the facts that the function g is increasing and g(t)→ 0 as t→ −∞
are used. Since m1 takes values in ]0, 1[, conclude that m1(h, J) −→ 0 as
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J →∞. Similarly it can be shown that m2(h, J) −→ 1 as J →∞.

ii) Start observing that, by a standard computation from the definition (4.8),

t g(−t) −→ 0 and t
(
1− g(t)

)
−→ 0 as t→ +∞. Then exploit the fact that, for

fixed h and J sufficiently large, m1 = m1(h, J) is a solution of equation (4.18):

J m1 = J g
(
(2m1 − 1)J + h

)
=

=

(
(1− 2m1)J − h

)
g
(
− (1− 2m1)J + h

)

1− 2m1
+
h g
(
− (1− 2m1)J + h

)

1− 2m1
−−−→
J→∞

0

1
+
h 0

1
= 0 ,

using also that m1 → 0 as J → ∞ by i). Similarly it can be shown that

J (1−m2) −→ 0 as J →∞.

iii) Start observing that, by a standard computation from the definition (4.23),

−J + ψ1(J) −→ −∞ and J + ψ2(J) −→ ∞ as J → ∞. Then exploit the fact

that, for J > Jc and h ∈ [ψ2(J), ψ1(J)], m1 = m1(h, J) is a solution of equation

(4.18):

sup
h∈[ψ2,ψ1]

m1 = sup
h∈[ψ2,ψ1]

g
(
(2m1 − 1)J + h

)
≤ g

(
(2m1 − 1)J + ψ1(J)

)
=

= g
(
2J m1 − J + ψ1(J)

)
−−−→
J→∞

0 ,

using also the facts that g is an increasing function, g(t)→ 0 as t→ −∞, and

J m1 → 0 as J →∞ by ii). Similarly it can be shown that infh∈[ψ2,ψ1]m2 −→ 1

as J →∞.

4.2.2 Coexistence curve

In the previous subsection we have studied all the solutions of equation

(4.18), that is all the stationary points of m 7→ p̃ (m, h, J). One of them is the

point where the global maximum is attained and, because of theorem 4.1, we

are interested in this one.

Consider the points m, m1, m0, m2 defined in proposition 4.5 and look for the

global maximum point of m 7→ p̃ (m, h, J):

• for 0 < J < Jc and h ∈ R, m(h, J) is the only local maximum point,

hence it is the global maximum point;
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• for J > Jc and h ≤ ψ2(J), m1(h, J) is the only local maximum point,

hence it is the global maximum point;

• for J > Jc and h ≥ ψ1(J), m2(h, J) is the only local maximum point,

hence it is the global maximum point;

• for J > Jc and ψ2(J) < h < ψ1(J), there are two local maximum points

m1(h, J) < m2(h, J), hence at least one of them is the global maximum

point.

To answer which one is the global maximum point in the last case, we have to

investigate the sign of the following function

∆(h, J) := p̃
(
m2(h, J), h, J

)
− p̃

(
m1(h, J), h, J

)
(4.32)

for J > Jc and ψ2(J) ≤ h ≤ ψ1(J) .

Proposition 4.9 (The wall: existence and uniqueness). For all J > Jc there

exists a unique h = γ(J) ∈ ]ψ2(J), ψ1(J)[ such that ∆(h, J) = 0. Moreover

∆(h, J)





< 0 if J > Jc, ψ2(J) ≤ h < γ(J)

> 0 if J > Jc, γ(J) < h ≤ ψ1(J)

.

Proof. It is an application of the intermediate value theorem. Fix J > Jc. It

suffices to observe that

i. ∆
(
ψ2(J), J

)
< 0, because for h = ψ2(J) the only maximum point of the

function p̃ (· , h, J) is m1(h, J);

ii. ∆
(
ψ1(J), J

)
> 0, because for h = ψ1(J) the only maximum point of the

function p̃ (· , h, J) is m2(h, J);

iii. h 7→ ∆(h, J) is a continuous function, by continuity of p̃ , m1, m2 (see

proposition 4.7);
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iv. h 7→ ∆(h, J) is strictly increasing; indeed it is C∞ on ]ψ2(J), ψ1(J)[ by

smoothness of p̃ , m1, m2 (see proposition 4.7) and, by formula (4.30),

∂∆

∂h
(h, J) =

∂

∂h
p̃
(
m2(h, J), h, J

)
− ∂

∂h
p̃
(
m1(h, J), h, J

)
=

= m2(h, J)−m1(h, J) > φ2(h, J)− φ1(h, J) > 0

for all h ∈ ]ψ2(J), ψ1(J)[ .

Figure 4.3: γ separates the values of h, J for which m1(h, J) is the global max-

imum point from those for which m2(h, J) is the global maximum point of

m 7→ p̃ (m, h, J). As m1(h, J) < m2(h, J), this entails a discontinuity of the

global maximum point m∗(h, J) along the “wall” Γ.

Remark 4.10. By the previous results the global maximum point of m 7→
p̃ (m, h, J) is

m∗(h, J) :=





m(h, J) if 0 < J ≤ Jc , h ∈ R

m1(h, J) if J > Jc , h < γ(J)

m2(h, J) if J > Jc , h > γ(J)

(4.33)

where the function γ is defined by proposition 4.9. Set also

Γ := {(h, J) | J > Jc, h = γ(J)} , Γ := Γ ∪ {(hc, Jc)} . (4.34)
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Notice that proposition 4.9 guarantees that there is only a curve Γ in the plane

(h, J) where the global maximum point of m 7→ p̃ (m, h, J) is not unique.

Remark 4.11. The techniques developed in this work do not allow us to con-

clude the existence of the monomer density on the wall. Nevertheless it is easy

to show that, using Theorem 4.1, its limsup and liminf are included between

m1 and m2. In the standard mean-field ferromagnetic model (Curie-Weiss) the

existence of the magnetization on the wall (h = 0) is achieved by symmetry, a

property that we do not have in the present case.

By proposition 4.7 it follows that the functionm∗ is continuous on its domain

(R×R+)rΓ and it is C∞ on (R×R+)rΓ . The behaviour of m∗ at the critical

point (hc, Jc) will be investigated in the next subsection.

Now we investigate the main properties of the curve Γ, which we call “the

wall”. Extend the function γ defined by proposition 4.9 by

γ(J) :=





γ(J) if J > Jc

hc if J = Jc

. (4.35)

Proposition 4.12 (The wall: regularity properties). The function γ is C∞ on

]Jc,∞[ and (at least) C1 on [Jc,∞[. In particular

γ′(J) = 1−m1

(
γ(J), J

)
−m2

(
γ(J), J

)
∀ J > Jc ,

and

γ ′(Jc) = 1− 2mc = −(3− 2
√

2) .

Proof. I. First prove that the function γ ∈ C∞( ]Jc,∞[ ).

By proposition 4.9 for all J > Jc, h = γ(J) is the unique solution of equation

∆(h, J) = 0

where ∆ is defined by (4.32). Moreover ψ2(J) < γ(J) < ψ1(J). Observe that ∆

is C∞ on {(h, J) | J > Jc, ψ2(J) < h < ψ1(J)} by smoothness of p̃ and m1, m2



60 4.2. Study of the phase transition

on this region (see proposition 4.7). And furthermore, as shown in the proof of

proposition 4.9,
∂∆

∂h
(h, J) 6= 0 ∀ (h, J) s.t. h = γ(J) .

Therefore by the implicit function theorem [86] γ ∈ C∞( ]Jc,∞[ ). Now

∆(γ(J), J)) ≡ 0 ⇒ 0 =
d

dJ
∆(γ(J), J) =

∂∆

∂h
(γ(J), J) γ′(J) +

∂∆

∂J
(γ(J), J)

⇒ γ′(J) = − ∂∆
∂J

/ ∂∆
∂h

(γ(J), J) ;

by formulae (4.30) ∂∆
∂h

= m2 −m1 and ∂∆
∂J

= (m2
2 −m2)− (m2

1 −m1) ; therefore

γ′(J) = 1− (m2 +m1) (γ(J), J) .

II. Now prove that the extended function γ ∈ C1([Jc,∞[) .

First observe that γ is continuous also in Jc, indeed:

ψ2(J) < γ(J) < ψ1(J) ∀ J > Jc ⇒ lim
J→Jc+

γ(J) = hc

by definition of hc (4.24) and continuity of ψ1, ψ2. Then observe that

γ′(J) = 1− (m2 +m1) (γ(J), J) −−−−→
J→Jc+

1− 2mc

because m(hc, Jc) = mc (remark 4.6) and the functions µ1, µ2 defined in propo-

sition 4.7 are continuous. By an immediate application of the mean value the-

orem, this proves that there exists γ ′(Jc) = 1− 2mc.

Proposition 4.13 (The wall: asymptote). The function γ has an asymptote,

precisely

γ(J) −−−→
J→∞

−1

2
.

Proof. I. Consider the function ∆ defined by (4.32). The first step is to prove

that ∆(h, J) −→ 0 as J →∞, h = −1
2
. Use definitions (4.6), (4.7) and the fact

that for fixed h and J sufficiently large m1 = m1(h, J), m2 = m2(h, J) satisfy

equation (4.18), in two different ways:

p̃ (m1, h, J) = −J m2
1 +

J

2
− 1−m1

2
− log g

(
(2m1 − 1)J + h

)
+ (2m1 − 1)J + h ,

p̃ (m2, h, J) = −J m2
2 +

J

2
− 1−m2

2
− logm2 + (2m2 − 1)J + h .
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Hence, reminding that m1 → 0 and m2 → 1 as J →∞ by proposition 4.8 part

i),

∆(h, J) = p̃ (m2, h, J)− p̃ (m1, h, J) =

= J (−m2
2 + 2m2 +m2

1 − 2m1) + log g
(
(2m1 − 1)J + h

)
+

1

2
+ o(1) ,

Set δ := −m2
2 + 2m2 + m2

1 − 2m1 and t := (2m1 − 1)J + h and prove that in

general

J δ + log g(t) −−−→
J→∞

h ; (4.36)

in particular it will follow that for h = −1
2

∆
(
− 1

2
, J
)
−−−→
J→∞

0 . (4.37)

Now proving (4.36) is equivalent to prove exp(Jδ) g(t) −→ exp(h) as J → ∞;

and using definition (4.8)

eJδ g(t) = eJδ
√
e4t + 4e2t − e2t

2
=

√
e2(Jδ+2t) + 4e2(Jδ+t) − eJδ+2t

2
−−−→
J→∞

eh ,

because, since J m1 → 0 and J (1−m2)→ 0 as J →∞ by proposition 4.8 part

ii),

Jδ + 2t = J
(
− (1−m2)

2 +m2
1 − 2m1 − 1

)
+ 2h −−−→

J→∞
−∞ ,

Jδ + t = J
(
− (1−m2)

2 +m2
1

)
+ h −−−→

J→∞
h .

II. Remember that by definition of γ in proposition 4.9

∆
(
γ(J), J

)
= 0 ∀ J > Jc ; (4.38)

hence using (4.37) will not be hard to prove that γ(J) −→ −1
2

as J →∞. Let

ε > 0. By (4.37) there exists J̄ε > Jc such that

∣∣∆
(
− 1

2
, J
)∣∣ < ε ∀ J > J̄ε . (4.39)

Now by the mean value theorem for all J > Jc and h ∈ [ψ2(J), ψ1(J)],

∣∣∆(h, J)−∆
(
− 1

2
, J
)∣∣ ≥ inf

[ψ2(J),ψ1(J)]

∣∣∂∆
∂h

(· , J)
∣∣ ∣∣h+

1

2

∣∣ .
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Furthermore by identity (4.30) and proposition 4.8 part iii)

inf
[ψ2(J),ψ1(J)]

∣∣∂∆
∂h

(· , J)
∣∣ = inf

[ψ2(J),ψ1(J)]
(m2 −m1) (· , J) ≥

≥ inf
[ψ2(J),ψ1(J)]

m2(·, J) − sup
[ψ2(J),ψ1(J)]

m1 (·, J) −−−→
J→∞

1 .

Therefore there exist J̄ such that

∣∣∆(h, J)−∆
(
− 1

2
, J
)∣∣ ≥ 1

2

∣∣h+
1

2

∣∣ ∀ J > J̄, h∈ [ψ2(J), ψ1(J)] . (4.40)

Choosing h = γ(J) in (4.40), by (4.38), (4.39) one obtains that for all J >

max{J̄ , J̄ε}
∣∣γ(J) +

1

2

∣∣ ≤ 2
∣∣∆(γ(J), J)−∆

(
− 1

2
, J
)∣∣ < 2ε .

4.2.3 Critical exponents

As observed in remark 4.10 the global maximum point m∗(h, J) is a contin-

uous function on (R×R+) r Γ, but it is smooth only outside the critical point

(hc, Jc). In this section we study the behaviour of the solutions of equation

(4.18) near the critical point, with particular interest in the function m∗.

As usual the notation f = O(g) as x → x0 means that there exists a

neighbourhood U of x0 and a constant C ∈ R such that |f(x)| ≤ C |g(x)| for all

x ∈ U . The notation f ∼ g as x→ x0 means that f(x)/g(x) −→ 1 as x→ x0.

Finally f = o(g) as x→ x0 means that f(x)/g(x) −→ 0 as x→ x0.

We call critical exponent of a function f at a point x0 the following limit

lim
x→x0

log |f(x)− f(x0)|
log |x− x0|

.

The main result of this section is the following:

Theorem 4.14. Consider the global maximum point m∗(h, J) of the function

m 7→ p̃ (m, h, J) defined by (4.6).

i) m∗ is continuous on (R × R+) r Γ and smooth on (R × R+) r Γ, where

Γ = Γ ∪ {(hc, Jc)} and the “wall” curve Γ is the graph of the function γ

defined by proposition 4.9.
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ii) The critical exponents of m∗ at the critical point (hc, Jc) are:

β = lim
J→Jc+

log |m∗(δ(J), J)−mc|
log(J − Jc)

=
1

2

along any curve h = δ(J) with δ ∈ C2([Jc,∞[), δ(Jc) = hc, δ
′(Jc) =

1− 2mc (i.e. if the curve is tangent to the “wall” in the critical point);

1

δ
= lim

J→Jc

log |m∗(δ(J), J)−mc|
log |J − Jc|

=
1

3

1

δ
= lim

h→hc

log |m∗(h, δ(h))−mc|
log |h− hc|

=
1

3

along any curve h = δ(J) with δ ∈ C2(R+), δ(Jc) = hc, δ
′(Jc) 6= 1− 2mc

or along a curve J = δ(h) with δ ∈ C2(R), δ(hc) = Jc, δ
′(hc) = 0 (i.e. if

the curve is not tangent to the “wall” in the critical point).

iii) Denote by m∗(h±, J) := limh′→h±m
∗(h′, J). The critical exponent of

m∗(h+, J) and m∗(h−, J) at the critical point (hc, Jc) along the “wall”

h = γ(J) is still

β = lim
J→Jc+

log |m∗(γ(J)+, J)−mc|
log(J − Jc)

=
1

2

β = lim
J→Jc+

log |m∗(γ(J)−, J)−mc|
log(J − Jc)

=
1

2

Proof. As observed in remark 4.10, the global maximum point m∗ is expressed

piecewise using the two local maximum points µ1, µ2 and inherits their conti-

nuity properties outside Γ and their regularity properties outside Γ. Thus part

i) of the theorem is already proved by proposition 4.7.

The proof of the other parts of the theorem, regarding the behaviour of m∗ at

the critical point (hc, Jc), is long and rather technical, then we sketch only the

major points. For the benefit to the reader, the remaining parts of the proof

are given in Appendix B.

In the following proposition we find the fundamental equation characterizing

the behaviour of the solutions of equation (4.18) near the critical point (hc, Jc).
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Proposition 4.15. Here for h ∈ R, J > 0 let m = m(h, J) be any solution of

the consistency equation (4.18):

m = g
(
(2m− 1)J + h

)
.

Then m is continuous at (hc, Jc) and furthermore, setting t := (2m− 1)J + h,

it satisfies

(t− tc)3 − κ1 (J − Jc) (t− tc)− κ2 %(h, J) +O
(
(t− tc)4

)
= 0 (4.41)

as (h, J)→ (hc, Jc), where we set κ1 := 3 Jc

J
(2−mc), κ2 := 3 J2

c

J
(2−mc) and

%(h, J) := h− hc + (2mc − 1)(J − Jc) . (4.42)

Proof. I. First show that m is continuous at (hc, Jc). Exploit equation (4.18)

for m(h, J) and use continuity and monotonicity of g: as (h, J)→ (hc, Jc)

lim supm(h, J) = lim sup g
(
(2m(h, J)− 1) J + h

)
= g
(
(2 lim supm(h, J)− 1) Jc + hc

)
,

lim inf m(h, J) = lim inf g
(
(2m(h, J)− 1) J + h

)
= g
(
(2 lim infm(h, J)− 1) Jc + hc

)
.

Thus lim supm(h, J) and lim inf m(h, J) are both solution of equation µ =

g
(
(2µ+ 1)Jc + hc

)
. But this solution is unique by proposition 4.5, and it is mc

by remark 4.6. Therefore

lim sup
(h,J)→(hc,Jc)

m(h, J) = lim inf
(h,J)→(hc,Jc)

m(h, J) = mc .

II. Make a Taylor expansion of the smooth function g at the point tc (see (4.8),

(4.26)). By identities (4.49), (4.50), (4.51) and since g(tc) = mc it is easy to

find

g(t) = mc +
1

2Jc
(t− tc)−

1

6J2
c (2−mc)

(t− tc)3 +O
(
(t− tc)4

)
(4.43)

as t→ tc. Now choose t := (2m− 1)J + h. Then g(t) = m and

t− tc = %(h, J) + 2J (m−mc) , (4.44)

where %(h, J) := h−hc+(2mc−1)(J−Jc). Now (4.41) follows from (5.73).
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Given the previous expansion, the proof of part ii) of the theorem 4.14 is

rather technical and it is contained in the proposition 4.21 of the Appendix (and

in the other results of the Appendix B).

The part ii) of the theorem describes the critical behaviour of the local

maximum points along curves of class C2. Notice that “the wall” γ belongs to

C1([Jc,∞[) ∩ C∞(]Jc,∞[) by proposition 4.12, but we did not manage to prove

that it is C2 up to Jc. Anyway we are interested in the behaviour along this

coexistence curve, which separates two different phases of the system. This is

provided by part iii) of the theorem 4.14. To prove it let start with the following

proposition, which is bases on corollary 4.19 and lemma 4.18 in the Appendix.

Proposition 4.16. Consider the “wall” curve h = γ(J) defined by (4.35) and

proposition 4.9. There exist r > 0, C1 < ∞, C2 > 0 such that for all J ∈
]Jc, Jc + r[ .

C2 ≤
µ2(γ(J), J)−mc√

J − Jc
≤ C1 , C2 ≤

mc − µ1(γ(J), J)√
J − Jc

≤ C1

Proof. Observe that by definition, on the curve h = γ(J), J ≥ Jc, both the

local maximum points µ1(h, J), µ2(h, J) exist.

As γ ∈ C1([Jc,∞[) (see proposition 4.12), the existence of the lower bound

C2 > 0 is guaranteed by corollary 4.19 part 2).

Only the existence of an upper bound C1 < ∞ has to be proven. Fix

J > Jc and shorten the notation by mi = mi(γ(J), J) = µi(γ(J), J) and ti :=

(2mi − 1) J + γ(J) for i = 1, 2. By proposition 4.15, t1, t2 satisfy equation

(4.41). The Taylor expansion with Lagrange remainder of γ is (see proposition

4.12)

γ(J) = hc + (1− 2mc) (J − Jc) + γ′′(J̄) (J − Jc)2 , with J̄ ∈ ]Jc, J [ ;

notice γ′′(J̄) (J−Jc)2 is not necessarily a O
(
(J−Jc)2

)
, because we do not know

the behaviour of γ′′ as J → Jc, but for sure it is a o(J − Jc) as J → Jc.

Thus (see identities (4.42), (4.44)):

%(h, J) = γ′′(J̄) (J − Jc)2 and ti − tc = 2J (mi −mc) + γ′′(J̄) (J − Jc)2
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and equation (4.41) becomes:

(ti − tc)3 − κ1 (J − Jc) (ti − tc)− κ2 γ
′′(J̄) (J − Jc)2 +O

(
(ti − tc)4

)
= 0 ,

which entails

(mi −mc)
3 − κ1

(2J)2
(J − Jc) (mi −mc)−

κ2

(2J)3
γ′′(J̄) (J − Jc)2 (1 + o(1))+

+O
(
(mi −mc)

4
)

= 0 . (4.45)

Distinguish two cases.

1) If γ′′(J̄) (J − Jc)2 = O
(
(mi −mc)

4
)

(along a sequence), then (4.45) rewrites

(mi −mc)
3 − κ1

(2J)2
(J − Jc) (mi −mc) +O

(
(mi −mc)

4
)

= 0 , (4.46)

which, dividing by mi −mc and solving, gives

mi −mc = ±
√
κ1

2J
(J − Jc)

1
2 +O

(
(mi −mc)

3
2

)
;

hence mi−mc ∼
√
κ1/(2J) (J−Jc)1/2, proving the result (along the sequence).

2) Now suppose (mi−mc)
4 = o

(
γ′′(J̄) (J−Jc)2

)
(along a sequence), then (4.45)

rewrites

(mi −mc)
3− κ1

(2J)2
(J − Jc)

︸ ︷︷ ︸
=: p

(mi −mc)−
κ2

(2J)3
γ′′(J̄) (J − Jc)2 (1 + o(1))

︸ ︷︷ ︸
=: q

= 0 .

(4.47)

Claim ∆ := ( q
2
)2 + (p

3
)3 ≤ 0. Suppose by contradiction ∆ > 0. Then the cubic

equation (4.47) has only one real solution: for i = 1, 2

mi −mc = u+ + u− with u± =
3

√

−q
2
± 2

√(q
2

)2
+
(p
3

)3
.

Observe that q and p are written only in terms of J , so that u+ + u− at the

main order do not depend implicitly on mi. Therefore m1 −mc and m2 −mc

must have the same sign for every J > Jc small enough. But this contradicts
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proposition 4.5 and lemma 4.18, which ensures that in a right neighbourhood

of Jc

m2 −mc > φ2 −mc > 0 while m1 −mc < φ2 −mc < 0 .

This proves ∆ ≤ 0. And now adapting to equation (4.47) the step ii. of the

proof of corollary 4.19, ∆ ≤ 0 entails (along the sequence)

m−mc = O
(
(J − Jc)

1
2

)
.

This completes the proof of the proposition.

To conclude the proof of the part iii) of theorem 4.14, it suffices to have the

previous proposition and observe that

m∗(γ(J)+, J) = m2(γ(J), J) , m∗(γ(J)−, J) = m1(γ(J), J)

for all J > Jc, by proposition 4.9 and continuity of m1, m2.

4.3 Appendix: properties of the function g

We study the main properties of the function g defined by (4.8), which are

often used in the chapter 4. Remind

g(t) =
1

2
(
√
e4t + 4 e2t − e2t) ∀ t ∈ R .

Standard computations show that g is analytic on R, 0 < g < 1, limh→−∞ g(t) =

0, limh→∞ g(t) = 1, g is strictly increasing, g is strictly convex on ]−∞, log(2
√

2−2)
2

]

and strictly concave on [ log(2
√

2−2)
2

,∞[ , g( log(2
√

2−2)
2

) = 2−
√

2.

Solving in h the equation g(t) = k for any fixed k ∈ ]0, 1[ , one finds the

inverse function:

g−1(k) =
1

2
log

k2

1− k ∀k ∈ ]0, 1[ . (4.48)

It is useful to write the derivatives of g in terms of lower order derivatives of g

itself. For the first derivative, think g as (g−1)−1 and exploit (4.48):

g′(h) =
1

(g−1)′(k)
∣∣k=g(t)

=
2 k (1− k)

2− k ∣∣k=g(t)
=

2 g(t) (1− g(t))
2− g(t) (4.49)
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Then for the second derivative, differentiate the rhs of (4.49) and substitute

(4.49) itself in the expression:

g′′ =
2 g′

2− g
(
1− 2 g +

g (1− g)
2− g

)
=

2 g′ (1− 2 g) + (g′)2

2− g . (4.50)

The same for the third derivative: differentiate the rhs of (4.50) and substitute

(4.50) itself in the expression:

g′′′ =
1

2− g
(
2 g′′(1− 2 g + g′)− 4 (g′)2 + g′

2 g′ (1− 2 g) + (g′)2

2− g
)

=

=
g′′ (2− 4 g + 3 g′)− 4 (g′)2

2− g .

(4.51)

Lemma 4.17. For c > 6− 4
√

2 ,

g′(t) < c ∀ t ∈ R .

For 0 < c ≤ 6− 4
√

2 ,

g′(t)





< c iff t < 1
2

logα−(c) or t > 1
2

logα+(c)

> c iff 1
2

logα−(c) < t < 1
2

logα+(c)

,

where

α±(c) :=
−(c2 + 8c− 4) ± (2− c)

√
c2 − 12c+ 4

4 c
.

Proof. Investigate for example the inequality g′(t) < c. By (4.49) clearly 0 <

g′ < 2, hence the inequality is trivially true for c ≥ 2 and false for c ≤ 0.

Using identity (4.49) one finds

g′ < c ⇔ 2 g2 − (2 + c) g + 2c > 0 ;

this is a second degree inequality in g with ∆ = c2 − 12c+ 4.

If 6− 4
√

2 < c < 6 + 4
√

2, it is verified for any value of g.

If instead c ≤ 6− 4
√

2 or c ≥ 6 + 4
√

2, it is verified if and only if

g(t) <
2 + c−

√
c2 − 12c+ 4

4
=: s−(c) or g(t) >

2 + c +
√
c2 − 12c+ 4

4
=: s+(c) .
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For 0 < c < 2, s±(c) ∈ ]0, 1[ hence one can apply g−1, which is strictly

increasing:

t < g−1(s−(c)) or t > g−1(s+(c)) .

This concludes the proof because identity (4.48) and standard computations

show that

g−1(s±(c)) =
1

2
logα±(c) .

4.4 Appendix: critical exponents

Let us prove the results used in subsection 4.2.3 to compute the critical

exponents.

Lemma 4.18. Consider the inflection points φ1, φ2 of p̃ defined by (4.21).

Their behaviour at the critical point (hc, Jc) along any curve δ ∈ C1([Jc,∞[),

with δ(Jc) = hc, is

φ1(δ(J), J)−mc√
J − Jc −−−−→

J→Jc+
−C ,

φ2(δ(J), J)−mc√
J − Jc −−−−→

J→Jc+
C .

where C = 4
√

2/(2Jc) > 0.

Proof. For i = 1, 2 and J ≥ Jc definition (4.21), observing that (2mc − 1)J =

−hc + (2mc − 1) (J − Jc) + tc , gives

2J
(
φi(δ(J), J)−mc

)
=

1

2
log ai(J)− tc − (δ(J)− hc)− (2mc − 1)(J − Jc) .

Now the definition (4.22) may be rewritten as

ai(J) = (2J − 2− 1

8J
)

︸ ︷︷ ︸
=: b(J)

∓ 4 (
1

2
− 1

8J
)

√
J − 3−2

√
2

4
︸ ︷︷ ︸

=: c(J)

√
J − Jc .

Thus, exploiting log(x+ y) = log x+ log(1 + y/x) = log x+ y/x+O((y/x)2) as

y/x→ 0, 1
2

log b(Jc) = tc and log b(J) differentiable at J = Jc,

1

2
log ai(J)− tc =

1

2

log b(J)− log b(Jc)

(J − Jc)
(J − Jc) ∓

1

2

c(J)

b(J)

√
J − Jc +O(J − Jc)

= ∓ 1

2

c(J)

b(J)

√
J − Jc +O(J − Jc) .



70 4.4. Appendix: critical exponents

To conclude put things together and use also δ differentiable at Jc:

2J
φi(δ(J), J)−mc√

J − Jc =
1
2

log ai(J)− tc√
J − Jc

− δ(J)− hc√
J − Jc

− (2mc − 1)
√
J − Jc

= ∓1

2

c(J)

b(J)
+O(

√
J − Jc ) −−−−→

J→Jc+
± 4
√

2 .

Next corollary gives a first bound for the critical exponents.

Corollary 4.19. Here for h ∈ R, J > Jc let m = m(h, J) be any solution of

the consistency equation (4.18).

1) There exist r1 > 0, C1 < ∞ such that for all (h, J) ∈ B
(
(hc, Jc), r1

)
with

J > Jc

|m−mc| ≤ C1

(
|h− hc|

1
3 + |J − Jc|

1
3

)
.

2) Assume that m pointwise coincides with one of the local maximum points m1,

m2 (see proposition 4.5). There exist r2 > 0, C2 > 0 such that for all (h, J) ∈
B
(
(hc, Jc), r2

)
with J > Jc and h = δ(J) for some δ ∈ C1([Jc,∞[), δ(Jc) = hc

|m−mc| ≥ C2 |J − Jc|
1
2 .

Proof. 1) Set t := (2m − 1)J + h. By proposition 4.15, t satisfies equation

(4.41), which can be treated as a third degree algebraic equation in t− tc:

(t− tc)3−κ1 (J − Jc)︸ ︷︷ ︸
=: p

(t− tc)−κ2 %(h, J) +O
(
(t− tc)4

)
︸ ︷︷ ︸

=: q

= 0 .

Analyse the real solutions of this equation. Set ∆ := ( q
2
)2 + (p

3
)3 and observe

that ( q
2
)2 > 0 while (p

3
)3 < 0 as we are assuming J > Jc.

i. If ∆ > 0, the only real solution of (4.41) is

t− tc = u+ + u− with u± = 3

√
−q

2
± 2
√

∆ .

On the other hand

∆ > 0 ⇒
(p
3

)3
= O

((q
2

)2) ⇒ ∆ = O
((q

2

)2)
.
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Therefore, reminding also definition (4.42),

t− tc = O
((q

2

) 1
3
)

= O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
+O

(
(t− tc)

4
3

)
,

hence t− tc = O
(
(h−hc)

1
3

)
+O

(
(J−Jc)

1
3

)
because (t− tc)

4
3
−1 → 0 as (h, J)→

(hc, Jc) .

ii. If ∆ = 0 or ∆ < 0 there are respectively two or three distinct real solutions

of (4.41) and, from their explicit form, it is immediate to see that they all satisfy

t− tc = O
(

2

√
−p

3

)
= O

(
(J − Jc)

1
2

)
.

Conclude that for any possible value of ∆,

t− tc = O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
.

Now, as observed in (4.44), t− tc = h− hc + (2mc − 1)(J − Jc) + 2J (m−mc).

Therefore also m−mc = O
(
(h− hc)

1
3

)
+O

(
(J − Jc)

1
3

)
, and this concludes the

proof of the first statement.

2) Now consider the two maximum points m1, m2. By proposition 4.5

m1 < φ1 < φ2 < m2

where φ1, φ2 are the inflection points defined by (4.21). Hence applying lemma

4.18 one finds:

m2 −mc√
J − Jc

>
φ2 −mc√
J − Jc

−→ C ,
mc −m1√
J − Jc

>
mc − φ1√
J − Jc

−→ C ,

as J → Jc+ and h = δ(J) with δ(Jc) = hc and δ differentiable in Jc. And this

proves the second statement.

The next lemma tells us in which region of the plane (h, J) described by

figure 4.1 a curve passing through the point (hc, Jc) lies.

Lemma 4.20. Let δ ∈ C2([Jc,∞[) such that δ(Jc) = hc, δ
′(Jc) =: α. There

exists r > 0 such that for all J ∈ ]Jc, Jc + r[
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• if α = 1− 2mc, ψ2(J) < δ(J) < ψ1(J) ;

• if α < 1− 2mc, δ(J) < ψ2(J) ;

• if α > 1− 2mc, δ(J) > ψ1(J) .

Proof. I. Observe that ai(J) is continuous for J ≥ Jc and smooth for J >

Jc. Moreover g′(1
2
log ai(J)) = 1

2J
by definition (4.22) and lemma 4.17, and

g(1
2
log ai(Jc)) = g(tc) = mc by definition (4.26) and remark 4.6. Then differen-

tiating definition (4.23) at J > Jc,

ψ′i(J) = 1−2 g(
1

2
log ai(J))+

1

2

a′i(J)

ai(J)

(
1− 2J g′(

1

2
log ai(J))

︸ ︷︷ ︸
=0

)
−−−→
J→Jc

1−2mc .

Hence an immediate application of the mean value theorem shows that for

i = 1, 2 there exits ψ′i(Jc) = 1− 2mc .

II. Differentiating definition (4.22) at J > Jc shows that a′1(J)→ −∞, a′2(J)→
+∞ as J → Jc+, while ai(J)→ 2

√
2− 2 as J → Jc. Hence

ψ′′i (J) = − g′(1
2

log ai(J))
a′i(J)

ai(J)
= − 1

2J

a′i(J)

ai(J)
−−−−→
J→Jc+






+∞ for i = 1

−∞ for i = 2

.

The result is provided comparing the first order Taylor expansions at Jc with

Lagrange remainder of ψ1, ψ2 and δ.

The following proposition essentially contain the proof of part ii) of theorem

4.14.

Proposition 4.21. Let (h, J) → (hc, Jc) along a curve h = δ(J) with δ ∈
C2(R+), δ(Jc) = hc, δ

′(Jc) =: α or along a curve J = δ(h) with δ ∈ C2(R),



Chapter 4. Hard-core and imitative interactions on the complete graph 73

δ(hc) = Jc, δ
′(hc) = 0, then

µ1(h, J)−mc ∼






−C (J − Jc)
1
2 if h = δ(J), α = 1− 2mc and J > Jc

Cα (J − Jc)
1
3 if h = δ(J), α < 1− 2mc

C∞ (h− hc)
1
3 if J = δ(h)

µ2(h, J)−mc ∼





C (J − Jc)
1
2 if h = δ(J), α = 1− 2mc and J > Jc

Cα (J − Jc)
1
3 if h = δ(J), α > 1− 2mc

C∞ (h− hc)
1
3 if J = δ(h)

where C = 1
2Jc

√
3(2−mc) , Cα = 1

2Jc

3

√
3
2
Jc(2−mc)(2mc − 1 + α) , C∞ =

1
2Jc

3
√

3Jc(2−mc) . To complete the cases, along the line h = hc+(1−2mc)(J−
Jc), when J ≤ Jc

µ1(h, J) = µ2(h, J) = mc.

Proof. Fix (h, J) on the curve given by the graph of δ and in the rest of the

proof denote by m a solution of the consistency equation (4.18), i.e. m =

g
(
(2m − 1)J + h

)
. Furthermore when necessary m is assumed to be a local

maximum point of p̃ . Set t := (2m− 1)J + h. By proposition 4.15, t− tc → 0

as (h, J) → (hc, Jc) and it satisfies (4.41). Solve this equation in the different

cases.

i) Suppose h = δ(J) with α = 1 − 2mc. Hence h − hc = (1 − 2mc)(J − Jc) +

O
(
(J − Jc)2

)
. Observe that by (4.42), (4.44)

%(h, J) = O
(
(J − Jc)2

)
and t− tc = 2J (m−mc) +O

(
(J − Jc)2

)
.

Hence equation (4.41) becomes

(t− tc)3 − κ1 (J − Jc) (t− tc) +O
(
(J − Jc)2

)
+O

(
(t− tc)4

)
= 0 .

Observe that if J > Jc by corollary 4.19 part 2),

(J − Jc)
1
2 = O(t− tc) ;
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therefore when J > Jc the previous equation rewrites

(t− tc)3 − κ1 (J − Jc) (t− tc) +O
(
(t− tc)4

)
= 0 .

This one simplifies in

t = tc or (t− tc)2 − κ1 (J − Jc) +O
(
(t− tc)3

)
= 0 ,

giving t = tc or, as we are assuming J > Jc,

t− tc = ±√κ1 (J − Jc)
1
2 +O

(
(t− tc)

3
2

)
.

This entails

m−mc = ±
√
κ1

2J
(J − Jc)

1
2 +O

(
(J − Jc)2

)
+O

(
(m−mc)

3
2

)

and dividing both sides by m−mc, since (m−mc)
1
2 → 0, one finds

m−mc ∼ ±
√
κ1

2J
(J − Jc)

1
2 . (4.52)

ii) Suppose J = δ(h) with δ′(hc) = 0. Hence J −Jc = O
(
(h−hc)2

)
. (4.42) and

(4.44) give

%(h, J) = h−hc+O
(
(h−hc)2

)
and t−tc = 2J (m−mc)+h−hc+O

(
(h−hc)2

)
.

Hence equation (4.41) becomes

(t− tc)3 − κ2 (h− hc) +O
(
(h− hc)2

)
+O

(
(t− tc)4

)
= 0 .

giving

t− tc = 3
√
κ2 (h− hc)

1
3 +O

(
(h− hc)

2
3

)
+O

(
(t− tc)

4
3

)
.

This entails

m−mc =
3
√
κ2

2J
(h− hc)

1
3 +O

(
(h− hc)

2
3

)
+O

(
(m−mc)

4
3

)

and dividing both sides by m−mc, since (m−mc)
1
3 → 0, one finds

m−mc ∼
3
√
κ2

2J
(h− hc)

1
3 . (4.53)



Chapter 4. Hard-core and imitative interactions on the complete graph 75

iii) Suppose h = δ(J) with α 6= 1−2mc. Hence h−hc = α (J−Jc)+O
(
(J−Jc)2

)
.

Observe that by (4.42), (4.44)

%(h, J) = (α + 2mc − 1)(J − Jc) +O
(
(J − Jc)2

)
,

t− tc = 2J (m−mc) + (α+ 2mc − 1)(J − Jc) +O
(
(J − Jc)2

)
.

Hence equation (4.41) becomes

(t−tc)3−κ1 (J − Jc)︸ ︷︷ ︸
=: p

(t−tc)−κ2 (α + 2mc − 1) (J − Jc) +O
(
(J − Jc)2

)
+O

(
(t− tc)4

)
︸ ︷︷ ︸

=: q

= 0 .

This third order equation has ∆ := ( q
2
)2 + (p

3
)3 > 0 for |J − Jc| small enough,

indeed if J < Jc then p > 0, while if J > Jc then by corollary 4.19 part 1)

(t− tc)4 = O
(
(J − Jc)

4
3

)
= o(J − Jc) hence

q = −κ2 (α + 2mc − 1) (J − Jc) + o
(
J − Jc

)
⇒

(q
2

)2
+
(p
3

)3
=

κ2
2

4
(α+ 2mc − 1︸ ︷︷ ︸

6=0

)2 (J − Jc)2 (1 + o(1))− κ3
1

27
(J − Jc)3 > 0 .

Then, using Cardano’s formula for cubic equations: t− tc = u+ + u− with

u± =
3

√

−q
2
± 2

√(q
2

)2
+
(p
3

)3
= 3

√
−q

2
±
∣∣q
2
| +O

(∣∣p
3

∣∣ 12) ;

hence

t− tc = 3
√−q +O

(∣∣p
3

∣∣ 12) =

= 3
√
κ2 (α + 2mc − 1) (J − Jc)

1
3 +O

(
(J − Jc)

2
3

)
+O

(
(t− tc)

4
3

)
+O

(
(J − Jc)

1
2

)
.

This entails

m−mc =
3
√
κ2 (α + 2mc − 1)

2J
(J − Jc)

1
3 +O

(
(J − Jc)

1
2

)
+O

(
(m−mc)

4
3

)

and dividing both sides by m−mc, since (m−mc)
1
2 → 0, one finds

m−mc ∼
3
√
κ2 (α + 2mc − 1)

2J
(J − Jc)

1
3 . (4.54)
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Now by propositions 4.5, 4.7 and lemma 4.20, µ1 and µ2 are solutions of the

consistency equation (4.18) defined near (hc, Jc) along the curves h = δ(J)

respectively with α ≤ 1− 2mc and α ≥ 1− 2mc. Moreover for α = 1− 2mc and

J > Jc sufficiently small, by lemma 4.18,

µ2 −mc > φ2 −mc > 0 while µ1 −mc < φ1 −mc < 0 .

These facts together with (4.52), (4.53), (4.54) allow to conclude the proof.



Chapter 5

Law of large numbers, central

limit theorem and violations

This chapter is based on the joint work [5]. We continue the study of the

monomer-dimer model with hard-core and imitative interactions on the

complete graph that has been presented in the chapter 4. While in the chapter

4 the deterministic limit of the average number of monomers is studied, here we

study the distributional limits of the number of monomers (with respect to the

Gibbs measure). Precisely we prove that a law of large numbers holds outside

the coexistence curve Γ, where instead the limiting distribution is a convex

combination of two Dirac deltas representing the two phases (theorems 5.1, 5.2).

Moreover we prove that a central limit theorem holds outside Γ∪(hc, Jc) : at the

critical point a normalisation by N−3/4 is required and the limiting distribution

is Ce−cx
4
dx (theorems 5.1, 5.3).

We follow the Gaussian convolution method introduced by Ellis and New-

man for the mean-field Ising model (Curie-Weiss) in [35,36,37] in order to deal

with the imitative potential. Here an additional difficulty stems from the fact

that even in the absence of imitation the system keeps an interacting nature:

to decouple the hard-core interaction we use the Gaussian representation of the

partition function (see 2.6). We mention that recently the fluctuations of the

77
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Ising model on random graphs have been studied in [31].

The fundamental quantity is the number of monomers in a given monomer-

dimer configuration, hence we set

SN (α) :=
N∑

i=1

αi ∀α ∈ DN . (5.1)

The fraction of monomers is mN(α) := 1
N
SN(α) .

Let h ∈ R and J ≥ 0. In this chapter, like in the previous one, we consider

the Hamiltonian

HN(α) := −N
(
(h− J)mN(α) + J mN (α)2

)
(5.2)

for every monomer-dimer configuration on the complete graph α ∈ DN , and the

partition function

ZN :=
∑

α∈DN

N−|D| exp(−HN(α)) , (5.3)

where |D| =
∑

1≤i<j≤N αij =
(
N − ∑N

i=1 αi
)
/2 . The corresponding Gibbs

measure is

µN(α) :=
N−|D| exp(−HN(α))

ZN
∀α ∈ DN (5.4)

and the expectation with respect to the measure µN is denoted by E[ · ]µN
. The

pressure density is denoted by pN := 1
N

logZN .

The aim of the present chapter is to describe the limiting distribution of the

random variable SN with respect to the measure µN , in a suitable scaling when

N →∞ . From now on δx is the Dirac measure centered at x, N (m, σ2) denotes

the Gaussian distribution with mean m and variance σ2 and
D→ denotes the

convergence in distribution with respect to the Gibbs measure µN as N →∞ .

First of all consider the case J = 0, where the only interaction is the hard-

core one. It is convenient to introduce the following notations:

Z
(0)
N := ZN

∣∣∣
J=0

, p
(0)
N := pN

∣∣∣
J=0

, µ
(0)
N := µN

∣∣∣
J=0

. (5.5)
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Recall from the proposition 4.2 that for all h ∈ R

lim
N→∞

p
(0)
N = p(0)(h) (5.6)

and

lim
N→∞

E
µ

(0)
N

[mN ] = lim
N→∞

∂pN
∂h

∂p(0)

∂h
= g(h) , (5.7)

where the limiting functions are analytic and defined by

p(0)(h) := −1− g(h)
2

− 1

2
log(1− g(h)) = −1− g(h)

2
− log g(h) + h (5.8)

and

g(h) := eh
√
e2h + 4− eh

2
. (5.9)

At J = 0 the law of large numbers and the central limit theorem hold true.

Precisely

Theorem 5.1. At J = 0 the followings hold:

mN
D→ δg(h) (5.10)

and
SN −N g(h)√

N

D→ N
(

0,
∂g

∂h
(h)

)
. (5.11)

Notice that, even if J = 0, (5.11) is not a consequence of the standard central

limit theorem, indeed SN is not a sum of i.i.d. random variables because of the

presence of the hard-core interaction. The theorem 5.1 follows from the recent

results of Lebowitz-Pittel-Ruelle-Speer [70]. A different proof is given in the

next section.

Now consider the case J > 0. Recall from the theorem 4.1 that

lim
N→∞

pN = sup
m
p̃(m) (5.12)

where

p̃(m) := −J m2 + p(0)
(
(2m− 1)J + h

)
∀m ∈ R . (5.13)
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The points where the function p̃ reaches its maximum satisfy the following

consistency equation:

m = g((2m− 1)J + h) . (5.14)

The analysis of (5.14) allows to identify the region where there exists a unique

global maximum point m∗(h, J) of p̃. The function m∗ is single-valued and

continuous on the plane (h, J) with the exception of an open curve Γ defined

by an implicit equation h = γ(J). Moreover m∗ is smooth outside Γ ∪ (hc, Jc).

Instead on Γ there are two global maximum points m1(J) = m1(γ(J), J) and

m2(J) = m2(γ(J), J) : choosing m1 < m2, they correspond to the dimer and

the monomer phase respectively. The curve Γ plays a crucial physical role since

it represents the coexistence of two different thermodynamic phases and its

endpoint (hc, Jc) is the critical point of the system. Outside Γ, by differentiating

the expression (5.12) with respect to the external field h, one obtains that the

maximum pointm∗ is the limit of the average monomer density mN with respect

to the Gibbs measure:

lim
N→∞

EµN
[mN ] = lim

N→∞

∂pN
∂h

=
d

dh
p̃(m∗) = m∗(h, J) . (5.15)

We observe that in the standard mean-field ferromagnetic model (Curie-Weiss

model) the existence of the limiting magnetization on the coexistence curve

(zero external field) is achieved by a symmetry argument (spin flip), a property

that we do not have in the present case.

Consider the asymptotic behaviour of the distribution of the number of

monomers SN with respect to the Gibbs measure µN . The law of large numbers

holds outside the coexistence curve Γ, while on Γ its breakdown results in a

convex combination of two Dirac deltas. Precisely

Theorem 5.2. i) In the uniqueness region (h, J) ∈
(
R×R+

)
\ Γ, it holds

mN
D→ δm∗ . (5.16)
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ii) On the coexistence curve (h, J) ∈ Γ, it holds

mN
D→ %1 δm1 + %2 δm2 , (5.17)

where %l = bl
b1+b2

, bl = (−λl(2−ml))
−1/2 and λl = ∂2p̃

∂m2 (ml) , for l = 1, 2.

Remark 5.1. We notice that, on the contrary of what happens for the Curie-

Weiss model, the statistical weights %1 and %2 on the coexistence curve are in

general different, furthermore they are not simply given in terms of the second

derivative of the variational pressure p̃ .

The first fact can be seen numerically, and analytically one can compute

lim
J→∞

%1(J)

%2(J)
=

1√
2
. (5.18)

Indeed, by exploiting the formula (p(0))′′ = g′ = 2g(1−g)/(2−g) (see Appendix

4.3), the ratio %1/%2 rewrites as

%1

%2
=

√
(2−m2)− 4J m2 (1−m2)

(2−m1)− 4J m1 (1−m1)
. (5.19)

The second fact can be interpreted as follows: the relative weights %l have

two contributions reflecting the presence of two different kinds of interaction.

The first contribution λl is given by the second derivative of the variational

pressure (5.13), while the second contribution 2 − ml comes from the second

derivative of the pressure of the pure hard-core model.

The central limit theorem holds outside the coexistence curve Γ and the

critical point (hc, Jc). At the critical point its breakdown results in a different

scaling N3/4 and in a different limiting distribution Ce−cx
4
dx . Precisely

Theorem 5.3. i) Outside the coexistence curve and the critical point (h, J) ∈
(
R× R+

)
\
(
Γ ∪ (hc, Jc)

)
, it holds

SN −Nm∗
N1/2

D→ N
(
0, σ2

)
(5.20)

where σ2 = −λ−1 − (2J)−1 > 0 and λ = ∂2p̃
∂m2 (m

∗) < 0 .
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ii) At the critical point (hc, Jc), it holds

SN −Nmc

N3/4

D→ C exp

(
λc
24
x4

)
dx (5.21)

where λc = ∂4p̃
∂m4 (mc) < 0, mc ≡ m∗(hc, Jc) and C−1 =

∫
R

exp(λc

24
x4)dx .

5.1 Hard-core interaction on the complete graph

A basic ingredient of all the proofs is the knowledge of the properties of

the moment generating function of SN with respect to the Gibbs measure at

J = 0. However, compared with spin models, monomer-dimer models have an

additional feature: the problem at J = 0 is itself non trivial in the sense that the

Gibbs measure is not a product measure. We start by deriving the properties

of the partition function of the model at J = 0 that will be used during all the

proofs.

For given u, t ∈ R and η ≥ 0, let us consider

Z
(0)
N

(
u+

t

Nη

)
=
∑

D∈DN

N−|D| exp
((
u+

t

Nη

)
SN(D)

)
(5.22)

In order to obtain an asymptotic expansion of (5.22), which allows us to

obtain its scaling properties, we will use a connection between the monomer-

dimer problem and Gaussian moments. The Gaussian representation of the

partition function on the complete graph (see eq. (3.3)) in this case gives:

Proposition 5.2. The following representation of the partition function holds

Z
(0)
N

(
u+

t

Nη

)
=

√
N

2π

∫

R

(
ΨN(x)

)N
dx , (5.23)

where

ΨN(x) :=
(
x+ eu+ t

Nη
)
e−

x2

2 . (5.24)

The above integral representation allows to use an extension of the Laplace

method (see theorem 5.4 in the Appendix), to obtain a useful asymptotic ex-

pansion of Z
(0)
N (u+ t

Nη ). Precisely
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Proposition 5.3. For a given u, t ∈ R and η ≥ 0

Z
(0)
N

(
u+

t

Nη

)
≡ exp

(
N p

(0)
N

(
u+

t

Nη

))
∼

N→∞
exp

(
N p(0)

(
u+

t

Nη

))
√

1

2− g(u)
(5.25)

where p(0) and g are defined respectively in (5.8) and (5.9).

Proof. Use proposition 5.2 and check that the function ΨN defined in (5.24)

satisfies the hypothesis of Theorem 5.4, with x̂N = e−(u+t/Nη)g(u + t/Nη) .

By means of the stationarity condition x̂2
N + eu+t/Nη

x̂N − 1 = 0, one finds

log ΨN(x̂N ) = p(0)(u+ t/Nη) and ∂2

∂x2 log ΨN (x̂N) = −2 + g(u+ t/Nη).

We will show that the previous proposition gives immediately Theorem 5.1.

On other hand, in the case J > 0 we need additional information about the

convergence of p
(0)
N to p(0).

Proposition 5.4. For each k ∈ {0, 1, 2, . . .}, ∂k

∂hk p
(0)
N (h) converges uniformly to

∂k

∂hk p
(0)(h) on compact subsets of R.

Proof. The location of the complex zeros h ∈ C of the partition function Z
(0)
N (h)

was described in the work of Heilmann and Lieb in [55]: the theorem 2.8 shows

that these zeros satisfy <(eh) = 0, that is =(h) ∈ π
2

+ πZ . Set U := R +

i
(
− π

4
, π

4

)
⊂ C . The analytic function Z

(0)
N (h) does not vanish on the simply

connected open set U , hence p
(0)
N (h) ≡ 1

N
logZ

(0)
N (h) is a well-defined analytic

function on U . Moreover the sequence
(
p

(0)
N (h)

)
N∈N

is bounded uniformly in N

and in h ∈ K, for every K compact subset of U ; indeed

∣∣p(0)
N (h)

∣∣ ≤ 1

N

∣∣ log
∣∣Z(0)

N (h)
∣∣ ∣∣ +

2π

N
,

from the definition of Z
(0)
N it follows immediately

1

N
log
∣∣Z(0)

N (h)
∣∣ ≤ 1

N
logZ

(0)
N

(
sup
h∈K
<(h)

)
,

and on the other hand, since Z
(0)
N is a polynomial in the variable eh, using the

Fundamental Theorem of Algebra and thank to the choice of U , it follows

1

N
log
∣∣Z(0)

N (h)
∣∣ ≥ inf

h∈K
e<(h)

√
2

2
.
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Thus, the claim is a consequence of the Vitali-Porter and Weiestrass Theorems

[91].

Proof of the Theorem 5.1. For each u ∈ R and η ≥ 0 we define

SN,η,u :=
SN − u
Nη

. (5.26)

In order to prove the two statements of the Theorem 5.1, namely the law of large

numbers (5.10) and the central limit theorem (5.11), it is enough to compute

the limit of the moment generating function of SN,η,u for η = 1, u = 0 and for

η = 1
2
, u = g(h) respectively.

Consider the moment generating function of SN,η,u with respect to the Gibbs

measure µ
(0)
N with external field h, namely for all t ∈ R

φSN,η,u
(t) :=

∑

D∈DN

µ
(0)
N (D) et SN,η,u(D) . (5.27)

By (5.22) one can rewrite (5.27) as

φSN,η,u
(t) = e−tu/N

η Z
(0)
N (h + t

Nη )

Z
(0)
N (h)

. (5.28)

Using proposition 5.3 for the numerator and the denominator of (5.28) one gets

Z
(0)
N (h+ t

Nη )

Z
(0)
N (h)

∼
N→∞

expN

(
p(0)
(
h+

t

Nη

)
− p(0)(h)

)
(5.29)

Setting η = 1 and u = 0 and using the Taylor expansion p(0)(h + t
N

) −
p(0)(h) = t

N
∂
∂h
p(0)(h) +O(N−2) and ∂

∂h
p(0) = g, we obtain

lim
N→∞

φSN,1,0
(t) = et g(h) ∀ t ∈ R (5.30)

which implies (5.10).

In the case of the central limit theorem, setting η = 1
2

and u = g(h), the

leading order is provided by the Taylor expansion of p(0)(h + t√
N

) up to the

second order

p(0)
(
h+

t√
N

)
= p(0)(h) +

t√
N

∂

∂h
p(0)(h) +

t2

2N

∂2

∂h2
p(0)(h) +O(N−

3
2 ) ,
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and then we obtain

lim
N→∞

φS
N, 12 ,g(h)

(t) = e
t2

2
∂

∂h
g(h) ∀ t ∈ R (5.31)

which implies (5.11) and completes the proof.

5.2 Hard-core and imitative interactions on the

complete graph

The strategy in the case J > 0 follows the general method of Ellis and

Newman [35], namely, in order to overcome the obstacle of the quadratic term

in the interaction, we consider the convolution of the Gibbs measure µN with a

suitable Gaussian random variable. Let us start by two simple lemmas.

Lemma 5.5. For all integer N , let WN and YN be two independent random

variables. Assume that WN
D→W , where

E eitW 6= 0 ∀t ∈ R .

Then YN
D→ Y if and only if WN + YN

D→W + Y .

Lemma 5.6. Let W ∼ N (0, (2J)−1) be a random variable independent of SN

for all N ∈ N. Then given η ≥ 0 and u ∈ R, the distribution of

W

N1/2−η +
SN −Nu
N1−η (5.32)

is

CN exp
(
N FN

( x

Nη
+ u
))

dx , (5.33)

where C−1
N =

∫
R

exp
(
N FN ( x

Nη + u)
)
dx and

FN (x) := −Jx2 + p
(0)
N (2Jx+ h− J) . (5.34)

Proof. Given θ ∈ R ,

P

{
W

N1/2−η +
SN −Nm
N1−η ≤ θ

}
= P

{√
NW + SN ∈ E

}
(5.35)
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where E = (−∞, θN1−η +Nm].

The law of
√
NW+SN is given by the convolution of the Gaussian N (0, N(2J)−1)

with the distribution of SN w.r.t. the Gibbs measure µN :

P

{√
NW + SN ∈ E

}
=

(
J

πN

) 1
2
∫

E

dt EµN
exp

(
− J

N

(
t− SN

)2
)

=

1

ZN

(
J

πN

) 1
2
∫

E

dt exp

(
− J

N
t2
)
Z

(0)
N

(
2Jt

N
+ h− J

)
,

(5.36)

where the last equality follows from (5.22). Making the change of variable

x = (t−Nu)/N1−η in (5.36), we obtain:

P
{√

NW+SN ∈ E
}

= CN

∫ θ

−∞
dx exp

(
−JN

( x

Nη
+u
)2
)
Z

(0)
N

(
2J
( x

Nη
+u
)
+h−J

)

(5.37)

and the integrated function can be rewritten as (5.33).

The core of the problem is the convergence of the sequence of measures

determined by (5.33) for suitable values of η and u. Thus, we are interested in

the limit of quantities of the form

∫

R

exp
(
N FN

( x

Nη
+ u
))

ψ(x) dx (5.38)

where ψ is an arbitrary bounded continuous function. Clearly, the results de-

pend crucially on the scaling properties of FN near its maximum point(s). By

(5.34), (5.13) and (5.6) we know that

lim
N→∞

FN(x) = p̃(x) ∀x ∈ R . (5.39)

However, the study of the asymptotic behaviour of the integral (5.38) requires

stronger convergence results provided by propositions 5.3 and 5.4.

Given a sequence of functions fN : R→ R, for any x, y ∈ R we define

∆fN (x; y) := fN (x+ y)− fN(y). (5.40)
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Let µ ≡ µ(h, J) be a maximum point of p̃ and denote by 2k the order of the

first non zero derivative at µ. Hence, making a Taylor expansion, one finds as

N →∞
N ∆p̃(xN−

1
2k ;µ) =

λ

(2k)!
x2k +O

(
N−

1
2k

)
(5.41)

where λ = ∂2k

∂m2k p̃(µ) < 0.

The next proposition relates the asymptotic behaviors of N ∆FN and N ∆p̃.

Proposition 5.7. For any x, y ∈ R and η ≥ 0,

lim
N→∞

exp
(
N
(
FN (xN−η + y)− p̃(xN−η + y)

))
= c(y) (5.42)

where c(y) :=
(
2− g(2Jy + h− J)

)−1/2
. Hence,

N
(
∆FN(xN−η; y)−∆p̃(xN−η; y)

)
→

N→∞
0 . (5.43)

Proof. Keeping in mind the definitions (5.34), (5.13) and using Proposition 5.3

we get (5.42). Then (5.43) is a straightforward consequence.

The next two propositions allow us to control the integral (5.38) in the limit

N →∞.

Proposition 5.8. Set M := max{p̃(x)|x ∈ R}, let C be a closed subset of R

which contains no global maximum points of p̃. Then there exists ε > 0 such

that

e−NM
∫

C
eNFN (x)dx = O(e−Nε) as N →∞. (5.44)

Proof. Observe that the sequence of functions (p
(0)
N )N∈N is uniformly Lipschitz

with constant 1, namely for all h, h′ ∈ R and N ∈ N

|p(0)
N (h)− p(0)

N (h′)| ≤ |h− h′| , (5.45)

since ∂
∂h
p

(0)
N = E

µ
(0)
N

(mN ) ∈ [0, 1] . From (5.45) and definition (5.34) we get

lim
|x|→∞

sup
N
FN(x) = −∞ (5.46)
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and

sup
N

∫

R

eFN (x)dx <∞ . (5.47)

Fixed ε1 > 0, by (5.46) we can pick a number A ∈ R sufficiently large such that

sup
x∈OA

FN(x)−M ≤ −ε1 ∀N ∈ N (5.48)

where OA ≡ {x ∈ R : |x| > A}. Furthermore C \ OA is compact (or possibly

empty) and then, by proposition 5.4, there exist ε2 > 0 and N̄ such that

sup
x∈C\OA

FN (x)−M ≤ −ε2 ∀N > N̄ . (5.49)

Thus setting ε := min(ε1, ε2) we get

sup
x∈C

FN (x)−M ≤ −ε ∀N > N̄ (5.50)

Hence, for N > N̄ ,

e−NM
∫

C
eN FN (x)dx ≤ e−NM e(N−1)(M−ε)

∫

C
eFN (x)dx

≤ e−Nε e−(M−ε)
∫

R

eFN (x)dx .

(5.51)

The last is uniformly bounded in N by (5.47) and this completes the proof.

In the rest of this section ∂kf(x) denotes the kth-derivative of a function f

at the point x.

Proposition 5.9. Let µ be a maximum point of p̃, let 2k be the order of the

first non-zero derivative of p̃ at µ. Given δ, ε > 0, there exists N ε such that for

all N > N ε

N ∆FN
(
xN−

1
2k ;µ

)
≤

2k−1∑

j=1

ε xj + Lδ,ε x
2k ∀x, |x| < δN

1
2k (5.52)

where

Lδ,ε :=
∂2kp̃(µ) + ε

(2k)!
+ δ

sup[µ−δ,µ+δ] |∂2k+1p̃|+ ε

(2k + 1)!
. (5.53)
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In particular, since ∂2kp̃(µ) < 0, one can choose δ, ε > 0 such that Lδ,ε < 0, and

then the sequence of functions

exp
(
N ∆FN (xN−

1
2k ;µ)

)
1
(
|x| < δN

1
2k

)
(5.54)

turns out to be dominated by an integrable function of x .

Proof. The Taylor expansion of FN at the point µ gives

N ∆FN (xN−
1
2k ;µ) =

2k−1∑

j=1

∂jFN(µ)

j!
N1−j/2k xj +

∂2kFN(µ)

(2k)!
x2k +

∂2k+1FN(ξ)

(2k + 1)!
N−

1
2k x2k+1

(5.55)

where ξ ∈ (µ, µ+ xN−
1
2k ). We claim that for any j ∈ {1, . . . , 2k − 1}

∂jFN (µ)N1−j/2k →
N→∞

0 . (5.56)

Indeed, by (5.43)

N
(
∆FN(xN−

1
2k ;µ)−∆p̃(xN−

1
2k ;µ)

)
→

N→∞
0 , (5.57)

that is, by substituting (5.55) and (5.41) into (5.57),

2k−1∑

j=1

∂jFN(µ)

j!
N1−j/2k xj +

∂2kFN(µ)− ∂2kp̃(µ)

(2k)!
x2k + O

(
N−

1
2k

)
→

N→∞
0 ,

(5.58)

hence using proposition 5.4, we get

2k−1∑

j=1

∂jFN(µ)

j!
N1−j/2k xj →

N→∞
0 (5.59)

which implies (5.56) since x is arbitrary. Thus (5.56) gives the control of the

terms of order up to 2k − 1 in (5.55). The last two terms in (5.55) can be

grouped together observing that |x|2k+1 < x2kδN
1
2k ; then the estimate (5.52) is

obtained using the uniform convergence of ∂2kFN , ∂2k+1FN on the compact set

[µ− δ, µ+ δ], which is guaranteed by proposition 5.4.
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Proof of the Theorem 5.2. Denote byM = {µl}l=1,...,P the set global maximum

points of p̃ and let kl and λl be as in (5.41). Set M := maxm p̃(m) = p̃(µl) for

each l = 1, . . . , P . From the analysis of p̃ and using the properties of the

function g, it turns out that kl do not depend on l and precisely

(
M, k

)
=





(
{m∗(h, J)}, 1

)
if (h, J) ∈ (R× R+) \

(
γ ∪ (hc, Jc)

)

(
{mc}, 2

)
if (h, J) = (hc, Jc)

(
{m1(J), m2(J)}, 1

)
if (h, J) ∈ γ .

(5.60)

The argument described below applies in all the cases proving respectively

(5.16) and (5.17). Keeping in mind (5.60), we proceed with the computation

of the limiting distribution of the monomer density mN = SN/N . By lemmas

5.5 and 5.6 with η = 0 and u = 0, it suffices to prove that for any bounded

continuous function ψ

∫

R

eN FN (x)ψ(x)dx
∫

R

eN FN (x)dx

→

P∑
l=1

ψ(µl)bl

P∑
l=1

bl

. (5.61)

For each l = 1, . . . , P let δl > 0 such that the sequence of functions (5.54),

with µl in place of µ, is dominated by an integrable function. We choose δ̄ =

min{δl | l = 1, . . . , P}, decreasing it (if necessary) to assure that 0 < δ̄ <

min{|µl − µs| : 1 ≤ l 6= s ≤ P}. Denote by C the closed set

C := R \
P⋃

l=1

(µl − δ̄, µl + δ̄) ;

by proposition 5.8 there exists ε > 0 such that as N →∞

e−NM
∫

C
eN FN (x)ψ(x)dx = O(e−Nε) . (5.62)
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For each l = 1, . . . , P we have

N
1
2k e−NM

∫ µl+δ̄

µl−δ̄
eN FN (x)ψ(x) dx =

= eN(FN (µl)−M)

∫

|w|<δ̄N
1
2k

exp
(
N ∆FN

(
wN−

1
2k ;µl

))
ψ
(
wN−

1
2k + µl

)
dw

(5.63)

where the equality follows from the change of variable x = µl + wN−
1
2k and

∆FN is defined in (5.40).

Since M ≡ p̃(µl), from (5.42) we know that

lim
N→∞

eN (FN (µl)−M) =
1√

2− g(2Jµl + h− J)
=

1√
2− µl

(5.64)

where the last equality follows from the fact that µl must satisfy the consistency

equation (5.14).

By Proposition 5.9 we can apply the dominated convergence theorem to the

integral on the r.h.s. of (5.63), then by (5.43) and (5.41) we obtain

lim
N→∞

N
1
2k e−NM

∫ µl+δ̄

µl−δ̄
eN FN (x) ψ(x) dx =

=
1√

2− µl

∫

R

exp
( λl

(2k)!
w2k
)
ψ(µl) dw .

(5.65)

Making the change of variable x = w(−λl)
1
2k in the r.h.s. of (5.65) and using

(5.62) we obtain

lim
N→∞

N
1
2k e−NM

∫

R

eN FN (x)ψ(x)dx =

P∑

l=1

1√
2− µl

(−λl)−
1
2k ψ(µl)

∫

R

exp
(
− x2k

(2k)!

)
dx .

(5.66)

The analogous limit for the denominator of (5.61) follows from (5.66) by choos-

ing ψ = 1. This concludes the proof of the Theorem 5.2.

Proof of the Theorem 5.3. Keeping in mind (5.60), let us start by proving the

following
∫

R

exp
(
N FN

(
xN−

1
2k +m∗

))
ψ(x) dx

∫

R

exp
(
N FN

(
xN−

1
2k +m∗)

)
dx

→

∫

R

exp
( λ

(2k)!
x2k
)
ψ(x) dx

∫

R

exp
( λ

(2k)!
x2k
)
dx

(5.67)
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for any bounded continuous function ψ. We pick δ > 0 such that the sequence

of functions (5.54) is dominated by a integrable function. By proposition 5.8

there exists ε > 0 such that as N →∞

e−NM
∫

|x|≥δN
1
2k

exp
(
N FN

(
xN−

1
2k +m∗

))
ψ(x) dx = O

(
N

1
2k e−Nε

)
(5.68)

where M = maxm p̃(m). On the other hand as |x| < δN1/2k

e−NM
∫

|x|<δN
1
2k

exp
(
N FN

(
xN−

1
2k +m∗

))
ψ(x) dx =

= e(FN (m∗)−M)

∫

|x|<δN
1
2k

exp
(
N ∆FN

(
xN−

1
2k ;m∗

))
ψ(x) dx .

(5.69)

Thus, by proposition 5.9 we can apply the dominated convergence theorem, and

then by (5.64), (5.43) and (5.41) we obtain

lim
N→∞

e−NM
∫

|x|<δN
1
2k

exp
(
N FN

(
xN−

1
2k +m∗

))
ψ(x) dx =

=
1√

2−m∗
∫

R

exp
( λ

(2k)!
x2k
)
ψ(x) dx

(5.70)

which, combined with (5.68), implies (5.67).

For k = 2, by lemmas 5.5 and 5.6 with η = 1/4 and u = m∗, the convergence

(5.67) is enough to obtain (5.21).

For k = 1, by lemmas 5.5 and 5.6 with η = 1/2 and u = m∗, since W ∼
N (0, (2J)−1), the equation (5.67) implies that the random variable SN converges

to a Gaussian whose variance is σ2 = (−λ)−1 − (2J)−1, provided that

(−λ)−1 − (2J)−1 =
λ+ 2J

−2λJ
> 0 (5.71)

where λ = ∂2

∂m
p̃(m∗) . Considering the function g defined in (5.9), we have that

∂2

∂m
p̃(m∗) + 2J = (2J)2 g′(2Jm∗+ h− J). Since g′ > 0 and λ < 0 the inequality

(5.71) holds true.

5.3 Appendix

The usual Laplace method [25] deals with integrals of the form
∫

R

(
ψ(x)

)n
dx
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as n goes to infinity. In this appendix we prove a slight extension of the previous

method where ψ can depend on n.

Theorem 5.4. For all n ∈ N let ψn : R → R . Suppose there exists a compact

interval K ⊂ R such that ψn > 0 on K, so that

ψn(x) = efn(x) ∀x ∈ K .

Suppose that fn ∈ C2(K) and

a) fn →
n→∞

f uniformly on K ;

b) f ′′n →
n→∞

f ′′ uniformly on K .

Moreover suppose that:

1) maxK fn is attained in a point x̂n ∈ int(K) ;

2) lim supn→∞
(
sup

R\K log |ψn| −maxK fn
)
< 0 ;

3) maxK f is attained in a unique point x̂ ∈ K ;

4) f ′′(x̂) < 0 ;

5) lim supn→∞
∫

R
|ψn(x)| dx < ∞ .

Then,
∫

R

(
ψn(x)

)n
dx ∼

n→∞
enfn(x̂n)

√
2π

−n f ′′(x̂) . (5.72)

In the proof we use the following elementary fact:

Lemma 5.10. Let (fn)n be a sequence of continuous functions uniformly con-

vergent to f on a compact set K . Let (In)n and I be subsets of K such that

maxx∈In, y∈I dist(x, y)→ 0 as n→∞ . Then

• maxIn fn →
n→∞

maxI f ;

• arg maxIn fn →
n→∞

arg maxI f , provided that f has a unique global maxi-

mum point on I .
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Proof of the Theorem 5.4. Since x̂n is an internal maximum point for fn (hy-

pothesis 1), f ′n(x̂n) = 0 and for all x ∈ K

fn(x) = fn(x̂n) +
1

2
f ′′n(ξx,n) (x− x̂n)2 with ξx,n ∈ (x̂n, x) ⊂ K . (5.73)

Fix ε > 0. Since f ′′n →
n→∞

f ′′ uniformly on K, there exists Nε such that

|f ′′n(ξ)− f ′′(ξ)| < ε ∀ ξ ∈ K ∀n > Nε . (5.74)

Since f ′′ is continuous in x̂, there exists δε > 0 such that B(x̂, δε) ⊂ K and

|f ′′(ξ)− f ′′(x̂)| < ε ∀ ξ : |ξ − x̂| < δε . (5.75)

By the lemma 5.10 x̂n →
n→∞

x̂, because x̂ is the unique maximum point of f on

K (hypothesis 3). Thus there exists N̄δε such that

|x̂n − x̂| <
δε
2
∀N > N̄δε . (5.76)

Therefore for n > Nε ∨ N̄δε and x ∈ B(x̂, δε) it holds:

|ξx,n − x̂| ≤ |ξx,n − x|+ |x− x̂| ≤ |x̂n − x|+ |x− x̂|
(5.76)
<

δε
2

+
δε
2

= δε ⇒

|f ′′n(ξx,n)− f ′′(x̂)| ≤ |f ′′n(ξx,n)− f ′′(ξx,n)|+ |f ′′(ξx,n)− f ′′(x̂)|
(5.74),(5.75)

< ε+ ε = 2ε .

By substituting into (5.73) we obtain that for n > Nε ∨ N̄δε and x ∈ B(x̂, δε)

fn(x)





≤ fn(x̂n) + 1
2

(
f ′′(x̂) + 2ε

)
(x− x̂n)2

≥ fn(x̂n) + 1
2

(
f ′′(x̂)− 2ε

)
(x− x̂n)2

. (5.77)

Now split the integral into two parts:

∫

R

(
ψn(x)

)n
dx =

∫

B(x̂n,δε)

enfn(x̂n) dx +

∫

R\B(x̂n,δε)

(
ψn(x)

)n
dx . (5.78)

• To control the second integral on the r.h.s. of (5.78) we claim that there

exists ηδε > 0 and N∗δε such that

log |ψn(x)| < fn(x̂n)− ηδε ∀x ∈ R \B(x̂n, δε) ∀N > N∗δε ; (5.79)
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namely lim supn→∞ supx∈R\B(x̂n,δε) log |ψn(x)| − fn(x̂n) < 0 . Indeed:

lim sup
n→∞

sup
x∈R\B(x̂n,δε)

log |ψn(x)| − fn(x̂n) =

(
lim sup
n→∞

sup
x∈K\B(x̂n,δε)

fn(x)− fn(x̂n)
)
∨
(

lim sup
n→∞

sup
x∈R\K

log |ψn(x)| − fn(x̂n)
)

=

(
sup

x∈K\B(x̂,δε)

f(x)− f(x̂)

)
∨
(

lim sup
n→∞

sup
x∈R\K

log |ψn(x)| − fn(x̂n)
)

where the last identity holds true by the lemma 5.10. Moreover supx∈K\B(x̂,δε) f(x)−
f(x̂) < 0 since x̂ is the unique maximum point of the continuous function f

on the compact set K (hypothesis 3); while lim supn→∞ supx∈R\K log |ψn(x)| −
fn(x̂n) < 0 by the hypothesis 2. This proves the claim.

Now using (5.79) and the hypothesis 5, there exist C and N such that for all

n > N ∨N∗δε

∫

R\B(x̂n,δε)

∣∣ψn(x)
∣∣n dx ≤ e(n−1)(fn(x̂n)−ηδε )

∫

R

|ψn(x)| dx

≤ C en(fn(x̂n)−ηδε ) .

(5.80)

• To study the first integral on the r.h.s. of (5.78), choose ε ∈ (0, ε0], where

f ′′(x̂) + 2ε0 < 0 (hypothesis 4). By (5.77), since we can compute Gaussian

integrals, we find an upper bound:

∫

B(x̂n,δε)

enfn(x) dx ≤ enfn(x̂n)

∫

R

e
n
2

(f ′′(x̂)+2ε) (x−x̂n)2 dx

= enfn(x̂n) 1√
−n

2
(f ′′(x̂) + 2ε)

∫

R

e−x
2

dx

= enfn(x̂n)

√
2π

−n (f ′′(x̂) + 2ε)

(5.81)
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and a lower bound:
∫

B(x̂n,δε)

enfn(x) dx ≥ enfn(x̂n)

∫

B(x̂n,δε)

e
n
2

(f ′′(x̂)+2ε) (x−x̂n)2 dx

= enfn(x̂n) 1√
−n

2
(f ′′(x̂) + 2ε)

∫

B
(
0, δε
√
−n

2
(f ′′(x̂)−2ε)

) e−x
2

dx

= enfn(x̂n)

√
2π

−n (f ′′(x̂)− 2ε)
(1 + ωn,ε,δε)

(5.82)

where ωn,ε,δε → 0 as n→∞ and ε is fixed.

In conclusion, by (5.78), (5.80), (5.81), (5.82) we obtain that for ε ∈ (0, ε0]

and n > Nε ∨ N̄δε ∨N ∨N∗δε it holds:

∫
R

(
ψn(x)

)n
dx

enfn(x̂n)
√

2π
−nf ′′(x̂)

≤
√

f ′′(x̂)

f ′′(x̂) + 2ε
+ C

√
−n f

′′(x̂)

2π
e−n ηδε

→
n→∞

√
f ′′(x̂)

f ′′(x̂) + 2ε
→
ε→0

1 ;

and:

∫
R

(
ψn(x)

)n
dx

enfn(x̂n)
√

2π
−n f ′′(x̂)

≥
√

f ′′(x̂)

f ′′(x̂)− 2ε
(1 + ωn,ε,δε) − C

√
−n f

′′(x̂)

2π
e−n ηδε

→
n→∞

√
f ′′(x̂)

f ′′(x̂)− 2ε
→
ε→0

1 ;

hence (5.72) is proved.



Chapter 6

Hard-core interaction on locally

tree-like random graphs

This chapter is based on the work [4]. We consider monomer-dimer models

with pure hard-core interaction (see section 2.1) living on some particular

random graphs, that we will define properly in the following. The class of

diluted graphs that we cover is the same for which the ferromagnetic Ising

model was rigorously solved by Dembo and Montanari [26, 28], using the local

weak convergence strategy developed in [10]. The fundamental feature of these

random graphs is that locally they have a tree-like structure. Examples of

“famous” graphs in this class are the Erdős-Rényi graphs and the configuration

models, which provide a random graph with any prescribed degree sequence [59].

We fix a uniform monomer activity x and uniform dimer activity w = 1. We

show that these monomer-dimer models are exactly solvable and do not present

a phase transition (in agreement with the general results by Heilmann and

Lieb [55,56]). Precisely we prove that in the thermodynamic limit the monomer

density exists and is expressed as the expectation of a random variable X,

whose distribution is determined as the unique solution of a fixed point equation

(theorem 6.1). Moreover we deduce the existence of the pressure density in the

thermodynamic limit and we obtain an expression in terms of X (theorem 6.2).

97
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Therefore we provide a rigorous proof of the conjectures made by Zdeborová

and Mézard [99], and partially studied in [18, 90]. Previously the problem of

matchings on sparse random graphs had been already considered in [63, 13].

In order to exploit the locally tree-like structure of the considered graphs,

we use some alternating correlations inequalities for monomer-dimer models

(lemma 6.3): they are a great tool to pass from global quantities to local quan-

tities. In this way we reduce ourselves to study the root monomer probability

on a random tree. This problem is approached by means of the Heilmann-Lieb

recursion on trees.

Let x > 0. Let G = (V,E) be a finite graph. In this chapter we will denote

ZG(x) =
∑

D∈DG

xN−2|D| , (6.1)

µG,x will denote the corresponding Gibbs measure and 〈 · 〉G,x will be the ex-

pected value with respect to µG,x. As usual the pressure density is

pG(x) :=
1

|V | logZG(x) , (6.2)

and the monomer density is

mG(x) :=
〈 |V | − 2|D|

|V |
〉

G,x
= x

∂pG
∂x

(x) , (6.3)

Notice that when G is a random graph the partition function, the pressure

density and the monomer density are random variables and the Gibbs measure

is a random measure.

We state here the main results of this chapter, even if the definitions about

the class of graphs that we treat will be clarified later.

Theorem 6.1 (Monomer density limit, see also [90]). Let (Gn)n∈N be a sequence

of finite random graphs, which:

i. is locally convergent to the unimodular Galton-Watson tree T (P, %);
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ii. has asymptotic degree distribution P with finite second moment (equiva-

lently % <∞).

Consider the monomer-dimer model on the graphs Gn, n ∈ N. Then almost

surely for all x > 0 the monomer density

mGn(x) −−−→
n→∞

E[Y (x)] . (6.4)

The function x 7→ E[Y (x)] is analytic on R+. The law of the random variable

Y (x) is defined as:

Y (x)
D
=

x2

x2 +
∑∆

i=1Xi

, (6.5)

where ∆ has distribution P and is independent of (Xi)i∈N , (Xi)i∈N are i.i.d.

copies of X, the distribution of X is the only solution supported in [0, 1] of the

following fixed point distributional equation:

X
D
=

x2

x2 +
∑K

i=1Xi

, (6.6)

where K has distribution % and is independent of (Xi)i∈N.

Theorem 6.2 (Pressure density limit). Let (Gn)n∈N be a sequence of random

graphs, which:

i. is locally convergent to the unimodular Galton-Watson tree T (P, %);

ii. has asymptotic degree distribution P with finite second moment;

iii. is uniformly sparse.

Then almost surely for every x > 0

pGn(x) −−−→
n→∞

E
[
log
(
x+

∆∑

i=1

Xi(x)

x

)]
− P

2
E
[
log
(
1 +

X1(x)

x

X2(x)

x

)]
(6.7)

where ∆ has distribution P and is independent of (Xi)i∈N , (Xi)i∈N are i.i.d.

copies of X, the distribution of X is the only solution supported in [0, 1] of the

fixed point distributional equation

X
D
=

x2

x2 +
∑K

i=1Xi

,

where K has distribution % and is independent of (Xi)i∈N.
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6.1 Preliminary results

It is useful to introduce the following notation for the probability of a

monomer on a given vertex o ∈ V :

Mx(G, o) := 〈1o∈M(D)〉G,x . (6.8)

Now the monomer density can be rewritten as

mG(x) =
1

|V |
∑

o∈V
Mx(G, o) . (6.9)

Following [18] we introduce a recursion relation for the probability Mx(·)
that will be extensively used in the sequel; this is a rewriting of the recursion

relation for the partition function Z·(x) that appears in [55].

Lemma 6.1. The family of functions Mx(G, o) fulfils the relation

Mx(G, o) =
x2

x2 +
∑

v∼oMx(G− o, v)
. (6.10)

Proof. Following the Heilmann-Lieb recursion (see proposition 2.7), it holds:

ZG(x)Mx(G, o) =
∑

D∈DG : o∈M(D)

x|M(D)| = xZG−o(x) ,

and:

ZG(x) = xZG−o(x) +
∑

v∼o
ZG−o−v(x) .

Therefore one obtains:

Mx(G, o) =
xZG−o(x)

xZG−o(x) +
∑

v∼o ZG−o−v(x)
=
(
1 +

∑

v∼o

ZG−o−v(x)

xZG−o(x)

)−1

=

=
(
1 + x−2

∑

v∼o
Mx(G− o, v)

)−1

=
x2

x2 +
∑

v∼oMx(G− o, v)
.

Iterating the recursion relation (6.10), one obtains the squared recursion

relation

Mx(G, o) =
(
1 +

∑
v∼o

1

x2 +
∑

u∼v, u 6=oMx(G− o− v, u)
)−1

. (6.11)
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In the next lemma we allow the monomer activity to take complex values,

precisely those of the open half-plane

H+ = {z ∈ C | <(z) > 0} .

This has no physical or probabilistic meaning, but it is a technique to obtain

powerful results at real positive monomer activities by exploiting complex anal-

ysis. This lemma already appeared in [18] and in particular point ii can be seen

also as a consequence of theorem 4.2 in [55].

Lemma 6.2. i. If z ∈ H+, then z−1Mz(G, o) ∈ H+

ii. The function z 7→ Mz(G, o) is analytic on H+

iii. If z ∈ H+, then |Mz(G, o)| ≤ |z|/<(z)

Proof. Note that H+ is closed with respect to the operations w 7→ w−1 and

(w1, w2) 7→ w1 + w2.

[i , ii ] Proceed by induction on the number N = |V | of vertices of the graph

G. For N = 1 the graph G coincides with its vertex o, hence Mz(G, o) = 1.

Therefore for z ∈ H+, z−1Mz(G, o) = z−1 ∈ H+ andMz(G, o) ≡ 1 is obviously

an analytic function of z.

Suppose now the statements i and ii hold for any graph of N − 1 vertices and

prove them for the graph G of N vertices. By lemma 6.1:

Mz(G, o) =
z2

z2 +
∑

v∼oMz(G− o, v)
=

z

z +
∑

v∼o z
−1Mz(G− o, v)

By inductive hypothesis, for z ∈ H+ and for every v ∼ o, z−1Mz(G−o, v) ∈ H+

andMz(G− o, v) is an analytic function of z. Therefore

z +
∑

v∼o z
−1Mz(G− o, v) ∈ H+ (in particular it is 6= 0)

so that z−1Mz(G, o) ∈ H+ and Mz(G, o) is an analytic function of z (as it is

the quotient of non-zero analytic functions).
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[iii ] Use lemma 6.1, then apply the elementary inequality |z + w| ≥ <(z + w)

and conclude using point i :

|Mz(G, o)| =
∣∣∣

z

z +
∑

v∼o z
−1Mz(G− o, v)

∣∣∣ ≤ |z|
<(z) +

∑
v∼o<

(
z−1Mz(G− o, v)

)
︸ ︷︷ ︸

> 0

≤ |z|
<(z)

.

In the graph G, given o ∈ V and r ∈ N, we denote by [G, o]r the ball of

center o and radius r, that is the (connected) subgraph of G induced by the

vertices at graph-distance ≤ r from the vertex o. A tree is a connected graph

with no cycles. If the graph G is locally a tree near the vertex o, the next lemma

allows to bound the operator Mx(·, o) from above/below by cutting away the

“non-tree” part of G at even/odd distance from o.

Lemma 6.3 (Correlation inequalities on a locally tree-like graph).

If [G, o]2r is a tree, then Mx(G, o) ≤Mx([G, o]2r) .

If [G, o]2r+1 is a tree, then Mx(G, o) ≥Mx([G, o]2r+1) .

Proof. Proceed by induction on the distance r ∈ N from the origin o.

For r = 0, the graph [G, o]0 is the isolated vertex o hence

Mx(G, o) ≤ 1 =Mx([G, o]0) .

Assume now the result holds for 2r and prove it for 2r + 1 (with r ≥ 0).

Suppose [G, o]2r+1 is a tree. Note that [G, o]2r+1 − o =
⊔
v∼o[G− o, v]2r , where

[G − o, v]2r is a tree for every v ∼ o. As in general Mx(H, v) depends only

on the connected component of the graph H which contains the vertex v, it

follows:

Mx([G, o]2r+1− o, v) =Mx([G− o, v]2r) .

And by the induction hypothesis

Mx(G− o, v) ≤Mx([G− o, v]2r) .
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Then using lemma 6.1 two times one obtains:

Mx(G, o) =
x2

x2 +
∑

i∼oMx(G− o, i)
≥ x2

x2 +
∑

i∼oMx([G− o, i]2r)

=
x2

x2 +
∑

i∼oMx([G, o]2r+1− o, i)
=Mx([G, o]2r+1) .

Induction from 2r − 1 to 2r (with r ≥ 1) is done analogously.

6.2 Solution on trees

The next proposition describes the behaviour of our model on any finite

tree. It is an easy consequence of lemma 6.3.

Proposition 6.4. Let T be a locally finite tree rooted at o. Consider the

monomer-dimer model on the finite sub-trees induced by the vertices in the first

r generations T (r) ≡ [T, o]r, r ∈ N. Then:

i. r 7→ Mx(T (2r), o) is monotonically decreasing

ii. r 7→ Mx(T (2r + 1), o) is monotonically increasing

iii. Mx(T (2r), o) ≥Mx(T (2s+ 1), o) ∀ r, s ∈ N

Proof. Let r, s ∈ N.

[i ] Consider the graph T (2r + 2). Cutting at distance 2r from o, one obtains

[T (2r + 2), o]2r = T (2r) which is a tree. Hence by lemma 6.3

Mx(T (2r + 2), o) ≤Mx(T (2r), o) .

[ii ] Consider the graph T (2r+3). Cutting at distance 2r+1 from o, one obtains

[T (2r + 3), o]2r+1 = T (2r + 1) which is a tree. Hence by lemma 6.3

Mx(T (2r + 3), o) ≥Mx(T (2r + 1), o) .

[iii ] Consider the graph T (2r + 1). Cutting at distance 2r from o, one obtains

[T (2r + 1), o]2r = T (2r) which is a tree. Hence by lemma 6.3

Mx(T (2r + 1), o) ≤Mx(T (2r), o) .
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Now if r ≤ s, combining point i. and this third inequality, one finds

Mx(T (2r), o) ≥Mx(T (2s), o) ≥Mx(T (2s+ 1), o) ;

while if s ≤ r, combining point ii. and the third inequality, one finds

Mx(T (2s+ 1), o) ≤Mx(T (2r + 1), o) ≤Mx(T (2r), o) .

As a consequence of proposition 6.4 we obtain that on any locally finite

rooted tree there exist limr→∞Mx(T (2r), o) , limr→∞Mx(T (2r + 1), o) and

moreover

0 ≤ lim
r→∞
Mx(T (2r + 1), o) = sup

r∈N

Mx(T (2r + 1), o) ≤

≤ inf
r∈N

Mx(T (2r), o) = lim
r→∞
Mx(T (2r), o) ≤ 1 .

A natural question is if these two limits coincide or not. In the next propo-

sition we prove that they are analytic functions of the monomer activity x,

therefore it will suffice to show that they coincide on a set of x’s admitting a

limit point to conclude that they coincide for all x > 0. First we state the

following lemma of general usefulness.

Lemma 6.5. Let (fn)n∈N be a sequence of complex analytic functions on U ⊆ C

open. Suppose that

• for every compact K ⊂ U there exists a constant CK <∞ such that

sup
z∈K
|fn(z)| ≤ CK ∀n ∈ N ;

• there exist U0 ⊆ U admitting a limit point and a function f on U0 such that

fn(z) −−−→
n→∞

f(z) ∀ z ∈ U0 .

Then f can be extended on U in such a way that

fn(z) −−−→
n→∞

f(z) ∀ z ∈ U ;

moreover the convergence is uniform on compact sets and f is analytic on U .
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Proof. By hypothesis (fn)n∈N is a family of complex analytic functions on U ,

which is uniformly bounded on every compact subset K ⊂ U . Therefore by

Montel’s theorem (e.g. see theorems 2.1 p. 308 and 1.1 p. 156 in [69]), each

sub-sequence (fnm)m∈N admits a further sub-sequence (fnmp
)p∈N that uniformly

converges on every compact subset K ⊂ U to an analytic function f (σ), where

σ = (nmp)p∈N . On the other hand by the second hypothesis one already knows

that

∀ z ∈ U0 ∃ lim
n→∞

fn(z) .

Thus by uniqueness of the limit, all the f (σ)’s coincide on U0 . Hence, as U0

admits a limit point in U , by uniqueness of analytic continuation all the f (σ)’s

coincide on the whole U . Denoting f their common value, this entails that

∀ z∈U ∃ lim
n→∞

fn(z) = f(z) .

Proposition 6.6. Let T be a locally finite tree rooted at o. Consider the

monomer-dimer model on the sub-trees T (r), r ∈ N. Then the functions

x 7→ lim
r→∞
Mx(T (2r), o) , x 7→ lim

r→∞
Mx(T (2r +1), o)

are analytic on R+.

Proof. Set fr(z) := Mz(T (2r), o) and gr(z) := Mz(T (2r + 1), o). By lemma

6.2 (fr)r∈N is a family of complex analytic functions on H+, and it is uniformly

bounded on every compact subset K ⊂ H+:

sup
z∈K
|fr(z)| ≤ sup

z∈K

|z|
<(z)

<∞ ∀ r ∈ N .

On the other hand by proposition 6.4 one already knows that

∀x>0 ∃ lim
r→∞

fr(x) .

The result for (fr)r∈N then follows by lemma 6.5. The same reasoning holds for

the sequence (gr)r∈N.
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Now we define an important class of random trees. We will prove that for

these trees the previous limits on even and odd depth almost surely coincide at

every monomer activity.

Definition 6.7 (Galton-Watson random tree). Let P = (Pk)k∈N , % = (%k)k∈N

be two probability distributions over N . A Galton-Watson tree T (P, %) is a

random tree rooted at o and defined constructively as follows.

Let ∆ be a random variable with distribution P , let (Kr,i)r≥1, i≥1 be i.i.d. ran-

dom variables with distribution % and independent of ∆ .

1) Connect the root o to ∆ offspring, which form the 1st generation

2) Connect each node (r, i) in the rth generation to Kr,i offspring; all together

these nodes form the (r + 1)th generation

Repeat recursively the second step for all r ≥ 1 and obtain T (P, %). We denote

T (P, %, r) the finite sub-tree of T (P, %) induced by the first r generations.

A special case of Galton-Watson tree is when % = P , which we simply denote

T (%) := T (%, %) and T (%, r) := T (%, %, r) . If instead the offspring distributions

satisfy P :=
∑∞

k=0 k Pk <∞ and

%k =
(k + 1)Pk+1

P
∀k ∈ N ,

we call T (P, %) a unimodular Galton-Watson tree.

In the following when we consider a Galton-Watson tree we suppose it is

defined on the probability space (Ω,F ,P) and we denote E[ · ] the expectation

with respect to the measure P. Remember that when the monomer-dimer model

is studied on a random graph G, then the measure µG,x is a random measure

and therefore the probability Mx(G, o) is a random variable.

Theorem 6.3. Let T (%) be a Galton-Watson tree such that % :=
∑

k∈N
k %k <

∞ . Consider the monomer-dimer model on the finite sub-trees T (%, r), r ∈ N.
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Then almost surely for every x > 0

∃ lim
r→∞
Mx(T (%, r), o) =: X(x) .

The random function x 7→ X(x) is almost surely analytic on R+ .

The distribution of the random variable X(x) is the only solution supported in

[0, 1] of the following fixed point distributional equation:

X
D
=

x2

x2 +
∑K

i=1Xi

, (6.12)

where (Xi)i∈N are i.i.d. copies of X, K has distribution %, (Xi)i∈N and K are

independent.

Proof. To ease the notation we drop the symbol % as T := T (%) and T (r) :=

T (%, r). By proposition 6.4 there exist the two limits

X+(x) := lim
r→∞
Mx(T (2r), o) , X−(x) := lim

r→∞
Mx(T (2r + 1), o) ,

moreover 0 ≤ X− ≤ X+ ≤ 1 and by proposition 6.6 the functions x 7→ X+(x)

and x 7→ X−(x) are analytic on R+. The theorem is obtained by the following

lemmas.

Lemma 6.8. Given x > 0, X+(x) and X−(x) are both solutions of the following

fixed point distributional equation:

X
D
=
(
1 +

∑K
i=1(x

2 +
∑Hi

j=1Xi,j)
−1
)−1

, (6.13)

where (Xi,j)i,j∈N are i.i.d. copies of X, (Hi)i∈N are i.i.d. with distribution %, K

has distribution %, (Xi,j)i,j∈N, (Hi)i∈N and K are mutually independent.

We will write u← v to denote “u son of v in the rooted tree (T , o)”. We will

indicate Tu(r) the sub-tree of T induced by the vertex u and its descendants until

the rth generation (starting counting from u). Using lemma 6.1 and precisely

equation (6.11) one finds, with the notations just introduced,

Mx(T (2r + 2), o) =
(
1 +

∑
v←o

(
x2 +

∑
u←vMx(T (2r + 2)− o− v, u)

)−1 )−1

=
(
1 +

∑
v←o

(
x2 +

∑
u←vMx(Tu(2r), u)

)−1 )−1

D
=
(
1 +

∑K
i=1

(
x2 +

∑Hi

j=1Mx(Ti,j(2r), o)
)−1 )−1

,
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where (Ti,j(2r))i,j∈N are i.i.d. copies of T (2r), independent of (Hi)i∈N and K.

Now since Mx(T (2r), o)
a.s.−−−→
r→∞

X+(x), it holds also

Mx(T (2r), o)
D−−−→

r→∞
X+(x) ,

and moreover, thanks to the mutual independence of
(
Mx(Ti,j(2r), o)

)
i,j∈N

,

(Hi)i∈N , K , by standard probability arguments1

( (
Mx(Ti,j(2r), o)

)
i,j∈N

, (Hi)i∈N , K
) D−−−→

r→∞

(
(X+

i,j)i,j∈N , (Hi)i∈N , K
)
,

where (X+
i,j)i,j∈N are i.i.d. copies of X+(x), independent of (Hi)i∈N and K.

Then for any bounded continuous function φ : [0, 1]→ R

E[φ(X+(x))] = lim
r→∞

E[φ
(
Mx(T (2r + 2), o)

)
]

= lim
r→∞

E

[
φ

((
1 +

∑K
i=1

(
x2 +

∑Hi

j=1Mx(Ti,j(2r), o)
)−1 )−1

)]

= E

[
φ

((
1 +

∑K
i=1(x

2 +
∑Hi

j=1X
+
i,j)
−1
)−1
)]

.

Namely X+(x) is a solution of distributional equation (6.13).

In an analogous way it can be proven that also X−(x) is a solution of distribu-

tional equation (6.13).

Lemma 6.9. Almost surely for all x > 0 X+(x) = X−(x) .

By proposition 6.4 X+(x) ≥ X−(x). By lemma 6.8 X+(x) and X−(x) are

both solutions of equation (6.13). Therefore, taking
(
(X+

i,j)i,j∈N , (X−i,j)i,j∈N

)

1equivalence between convergence in distribution and convergence of the characteristic

functions (e.g. see theorems 26.3 p. 349 and 29.4 p. 383 in [16]) can be used.
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independent of
(
(Hi)i∈N , K

)
, one obtains:

E[|X+(x)−X−(x)|] = |E[X+(x)]− E[X−(x)]| =

=
∣∣E
[(

1 +
∑K

i=1(x
2 +

∑Hi

j=1X
+
i,j)
−1
)−1]

+

− E
[(

1 +
∑K

i=1(x
2 +

∑Hi

j=1X
−
i,j)
−1
)−1]∣∣

=
∣∣E
[

∑K
i=1(x

2 +
∑Hi

j=1X
−
i,j)
−1 −∑K

i=1(x
2 +

∑Hi

j=1X
+
i,j)
−1

(
1 +

∑K
i=1(x

2 +
∑Hi

j=1X
+
i,j)
−1
)(

1 +
∑K

i=1(x
2 +

∑Hi

j=1X
−
i,j)
−1
)
]∣∣

=
∣∣E
[(∑K

i=1

∑Hi

j=1(X
+
i,j −X−i,j)

(x2 +
∑Hi

j=1X
−
i,j) (x2 +

∑Hi

j=1X
+
i,j)

)
·

·
(
1 +

∑K
i=1(x

2 +
∑Hi

j=1X
+
i,j)
−1
)−1 (

1 +
∑K

i=1(x
2 +

∑Hi

j=1X
−
i,j)
−1
)−1]∣∣

≤ 1

x4
E
[∑K

i=1

∑Hi

j=1 |X+
i,j −X−i,j |

]
=

% 2

x4
E[|X+(x)−X−(x)| ] ,

where the last equality is true by independence.

If x >
√
% , the contraction coefficient is %2/x4 < 1. Therefore for all x >

√
%

E[|X+(x)−X−(x)|] = 0 , i.e. X+(x) = X−(x) a.s.

As Q is countable it follows that

(
X+(x) = X−(x) ∀x ∈ ]

√
%,∞[ ∩Q

)
a.s.

Now remind that by proposition 6.6 X+(x), X−(x) are analytic functions of

x > 0. Hence, as Q is dense in R, this entails that

(
X+(x) = X−(x) ∀x > 0

)
a.s.

by uniqueness of the analytic continuation.

As a consequence
(
∃ limr→∞Mx(T (r), o) = X+(x) = X−(x) ∀x > 0

)
a.s. We

call X(x) this random analytic function of x.

Lemma 6.10. Given x > 0, the random variable X(x), satisfying the distribu-

tional equation (6.13), satisfies also the distributional equation (6.12).



110 6.2. Solution on trees

Using lemma 6.1 and precisely equation (6.10), one finds

Mx(T (r + 1), o) =
x2

x2 +
∑

v←oMx(T (r + 1)− o, v) =
x2

x2 +
∑

v←oMx(Tv(r), v)
D
=

x2

x2 +
∑K

i=1Mx(Ti(r), o)
,

where (Ti(r))i∈N are i.i.d. copies of T (r), independent of K.

Now since Mx(T (r), o)
a.s.−−−→
r→∞

X(x) (by definition, which is possible thanks to

lemma 6.9), it holds also

Mx(T (r), o)
D−−−→

r→∞
X(x) ,

and moreover, thanks to the independence of
(
Mx(Ti(r), o)

)
i∈N

, K ,

( (
Mx(Ti(r), o)

)
i∈N

, K
) D−−−→

r→∞

(
(Xi)i∈N , K

)
,

where (Xi)i∈N are i.i.d. copies of X(x), independent of K.

Then for any bounded continuous function φ : [0, 1]→ R

E[φ(X(x))] = lim
r→∞

E[φ
(
Mx(T (r + 1), o)

)
] = lim

r→∞
E
[
φ
( x2

x2 +
∑K

i=1Mx(Ti(r), o)
)]

= E
[
φ
( x2

x2 +
∑K

i=1Xi

)]
.

Namely X(x) is a solution of distributional equation (6.12).

Lemma 6.11. For a given x > 0, the distributional equation (6.12) has a

unique solution supported in [0, 1].

Let Y be a random variable taking values in [0, 1] and such that

Y
D
=

x2

x2 +
∑K

i=1 Yi
,

where (Yi)i∈N are i.i.d. copies of Y , independent of K. Observe that:

x2

x2 +
∑K

i=1 Yi
≤ 1

D = =

Y Mx(T (0), o)
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Therefore there exist (Y ′i )i∈N i.i.d. copies of Y and (Mx(T (0), o)i)i∈N i.i.d.

copies ofMx(T (0), o) such that

Y ′i ≤ Mx(T (0), o)i ∀ i ∈ N .

Let K ′
D∼ % independent of (Y ′i )i∈N , (Mx(T (0), o)i)i∈N . Applying the function

x2

x2+
∑K′

i=1( · )
, which is monotonically decreasing in each argument, to each term

of the previous inequality one finds

x2

x2 +
∑K ′

i=1Mx(T (0), o)i
≤ x2

x2 +
∑K ′

i=1 Y
′
i

D = D =

Mx(T (1), o) Y

Therefore there exist (Mx(T (1), o)i)i∈N i.i.d. copies ofMx(T (1), o) and (Y ′′i )i∈N

i.i.d. copies of Y such that

Mx(T (1), o)i ≤ Y ′′i ∀ i ∈ N .

Let K ′′
D∼ % independent of (Mx(T (1), o)i)i∈N , (Y ′′i )i∈N . Applying the function

x2

x2+
∑K′′

i=1( · )
, which is monotonically decreasing in each argument, to each term

of the previous inequality one finds

x2

x2 +
∑K ′′

i=1 Y
′′
i

≤ x2

x2 +
∑K ′′

i=1Mx(T (1), o)′i

D = D =

Y Mx(T (2), o)

Proceeding with this reasoning one obtains that for any r ∈ N there exist

Mx(T (r), o)∼
D
=Mx(T (r), o), Y (r) D= Y such that

Mx(T (2r + 1), o)∼ ≤ Y (2r+1) and Y (2r) ≤ Mx(T (2r), o)∼

D ←−
−

as r →∞ D ←−
−

X−(x) X+(x)

Since by lemma 6.9 X+(x) = X−(x) = X(x) a.s., it follows2 that Y
D
= X(x) .

2A squeeze theorem for convergence in distribution holds: if Xn ≤ Yn, Y ′
n ≤ X ′

n,
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Corollary 6.12. Let T (P, %) be a Galton-Watson tree such that % :=
∑

k∈N
k %k <

∞ . Consider the monomer-dimer model on the sub-trees T (P, %, r), r ∈ N.

Then almost surely for every x > 0

∃ lim
r→∞
Mx(T (P, %, r), o) =: Y (x) .

The random function x 7→ Y (x) is a.s. analytic on R+.

The distribution of the random variable Y (x) is

Y (x)
D
=

x2

x2 +
∑∆

i=1Xi

,

where ∆ has distribution P and is independent of (Xi)i∈N , (Xi)i∈N are i.i.d.

copies of X, the distribution of X is the only solution supported in [0, 1] of the

following fixed point distributional equation:

X
D
=

x2

x2 +
∑K

i=1Xi

,

where K has distribution % and is independent of (Xi)i∈N.

Proof. We drop the symbols P, % as T ∗ := T (P, %) and T ∗(r) := T (P, %, r).

Observe that T ∗−o =
⊔
v←o T ∗v and the random trees (T ∗v )v←o are i.i.d. Galton-

Watson trees of the type T (%). Using lemma 6.1

Mx(T ∗(r + 1), o) =
x2

x2 +
∑

v←oMx(T ∗(r + 1)− o, v) =
x2

x2 +
∑

v←oMx(T ∗v (r), v)

By theorem 6.3 for any v son of o, limr→∞Mx(T ∗v (r), o) almost surely ex-

ists, it is analytic, and its distribution satisfies equation (6.12). Therefore

Yn
D
= Y ′

n
D
= Y for all n ∈ N and Xn

D−−−−→
n→∞

X , X ′
n

D−−−−→
n→∞

X then Y
D
= X .

To prove it work with the CDFs: FX′

n

(x) ≤ FY ′

n

(x) = FYn
(x) ≤ FXn

(x) ∀x ∈ R,

FX′

n

(x) −−−−→
n→∞

FX(x) and FXn
(x) −−−−→

n→∞
FX(x) for every x continuity point of FX . Since

FY ′

n

= FYn
= FY , by the classical squeeze theorem it follows that FY (x) = FX(x) for every x

continuity point of FX . Now since FX and FY are right-continuous and the continuity points

of FX are dense in R, one concludes that FY = FX .
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limr→∞Mx(T ∗(r), o) almost surely exists and is analytic, in fact

lim
r→∞
Mx(T ∗(r), o) =

x2

x2 +
∑

v←o limr→∞Mx(T ∗v (r), v)

D
=

x2

x2 +
∑∆

i=1Xi

,

where (Xi)i∈N are i.i.d. copies of the solution supported in [0, 1] of equation

(6.12) , ∆ has distribution P and is independent of (Xi)i∈N .

Corollary 6.13. In the hypothesis of corollary 6.12, almost surely for every

z ∈ H+

∃ lim
r→∞
Mz(T (P, %, r), o) =: Y (z) .

The random function z 7→ Y (z) is almost surely analytic on H+ and the con-

vergence is uniform on compact subsets of H+.

Proof. Set fr(z) := Mz(T (P, %, r), o). By lemma 6.2 (fr)r∈N is a sequence of

complex analytic functions on H+, uniformly bounded on compact subsets. On

the other hand by corollary 6.12 (fr)r∈N a.s. converges pointwise on R+. Then

the result follows from lemma 6.5.

6.3 From trees to graphs

Let Gn = (Vn, En), n ∈ N be a sequence of finite random graphs, defined

on a probability space (Ω,F ,P). We introduce now the main class of graphs

studied in this paper. The idea is to fix a radius r and draw a vertex v uniformly

at random from the graph Gn: for n large enough we want a large fraction of

the balls [Gn, v]r to be (truncated) Galton-Watson trees.

Definition 6.14 (Locally tree-like random graphs). The random graphs se-

quence (Gn)n∈N locally converges to the unimodular Galton-Watson tree T (P, %)

if for any r ∈ N and for any (T, o) finite rooted tree with at most r generations

1

|Vn|
∑

v∈Vn

1
(
[Gn, v]r ∼= (T, o)

) a.s.−−−→
n→∞

P
(
T (P, %, r) ∼= (T, o)

)
. (6.14)
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Here ∼= denotes the isomorphism relation between rooted graphs.

Remark 6.15. The following statements are equivalent:

i. (Gn)n∈N locally converges to T (P, %)

ii. a.s. for all r ∈ N and (T, o) finite rooted tree with at most r generations

1

|Vn|
∑

v∈Vn

1
(
[Gn, v]r ∼= (T, o)

)
−−−→
n→∞

P
(
T (P, %, r) ∼= (T, o)

)

iii. a.s. for all r ∈ N and F bounded function, invariant under rooted graph

isomorphisms,

1

|Vn|
∑

v∈Vn

F
(
[Gn, v]r

)
1([Gn, v]r is a tree) −−−→

n→∞
E
[
F
(
T (P, %, r)

)]

iv. a.s. for all r ∈ N and (B, o) finite rooted graph with radius ≤ r

1

|Vn|
∑

v∈Vn

1
(
[Gn, v]r ∼= (B, o)

)
−−−→
n→∞

P
(
T (P, %, r) ∼= (B, o)

)

v. a.s. for all r ∈ N and F bounded function, invariant under rooted graph

isomorphisms,

1

|Vn|
∑

v∈Vn

F
(
[Gn, v]r

)
−−−→
n→∞

E
[
F
(
T (P, %, r)

)]

Observe that local convergence of random graphs (Gn)n∈N to the random tree

T (P, %) is, in measure theory language, a.s.−weak convergence of random mea-

sures (νr,n)n∈N to the measure νr for all r ∈ N, where:

νr,n(B, o) :=
1

|Vn|
∑

v∈Vn

1
(
[Gn, v]r ∼= (B, o)

)
∀ (B, o) ∈ G (r) ,

νr(B, o) := P
(
T (P, %, r) ∼= (B, o)

)
∀ (B, o) ∈ G (r) .

and G (r) is the countable set of finite rooted graphs with radius ≤ r, consid-

ered up to isomorphism. From this point of view, this remark gives different

characterisations of the weak convergence of measures, valid in general for mea-

sures defined on a discrete countable set (in particular the equivalences ii⇔ iii
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and iv ⇔ v can be seen as consequences of the Portmanteau theorem, e.g. see

theorem 2.1 p.16 in [17]).

Remark 6.16. In a graph G the degree of a vertex v, denoted degG(v), is the

number of neighbours of v. If (Gn)n∈N locally converges to T (P, %), then P is

the empirical degree distribution of Gn in the limit n→ ∞. Indeed the degree

is a local function (degG(v) = deg[G,v]1(v)) and clearly an indicator function is

bounded, hence by remark 6.15 almost surely for every k ∈ N

1

|Vn|
∑

v∈Vn

1(degGn
(v) = k) −−−→

n→∞
P(degT (P,%)(o) = k) = Pk .

Definition 6.17. The random graphs sequence (Gn)n∈N is uniformly sparse if

lim
l→∞

lim sup
n→∞

1

|Vn|
∑

v∈Vn

degGn
(v)1(degGn

(v) ≥ l) = 0 a.s.

Remark 6.18. If (Gn)n∈N is uniformly sparse and locally convergent to T (P, %),

|En|
|Vn|

−−−→
n→∞

1

2
P a.s.

To prove it write 2 |En|
|Vn| = 1

|Vn|
∑

v∈Vn
degGn

(v) , then fix l ∈ N and split the

right-hand sum in two parts, concerning the degrees respectively smaller and

grater than l. To the first part we may apply the local convergence hypothesis

(remark 6.15):

1

|Vn|
∑

v∈Vn

degGn
(v)1(degGn

(v) ≤ l)
a.s.−−−→
n→∞

E[ degT (P,%)(o)1(degT (P,%)(o) ≤ l)]

−−−→
l→∞

E[degT (P,%)(o)] = P .

To the second part we apply the uniform sparsity hypothesis:

lim
l→∞

lim sup
n→∞

1

|Vn|
∑

v∈Vn

degGn
(v)1(degGn

(v) ≥ l+1) = 0 a.s.

Example 6.19. An Erdős-Rényi random graph Gn is a graph with n vertices,

where each pair of vertices is linked by an edge independently with probability

c/n. The sequence (Gn)n∈N is uniformly sparse and locally converges to the
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unimodular Galton-Watson tree T (P, %) with P = % = Poisson(c). For proof

and further examples see [27, 26].

We are now able to prove the main result of this chapter.

Proof of the Theorem 6.1. Set T ∗ := T (P, %) and T ∗(r) := T (P, %, r).

Let r ∈ N and v ∈ Vn. If [Gn, v]2r+1 is a tree, then lemma 6.3 permits to localize

the problem:

Mx(Gn, v) 1([Gn, v]2r+1 is a tree)






≤ Mx([Gn, v]2r, v) 1([Gn, v]2r+1 is a tree)

≥ Mx([Gn, v]2r+1, v) 1([Gn, v]2r+1 is a tree)

Now work with the right-hand bounds and take the averages over a uniformly

chosen vertex v. First let n → ∞ using the hypothesis of local convergence

(see remark 6.15) and then let r →∞ using the results on Galton-Watson trees

(corollary 6.12) and dominated convergence: almost surely for all x > 0

1

|Vn|
∑

v∈Vn

Mx([Gn, v]2r, v) 1([Gn, v]2r+1 is a tree) −−−→
n→∞

E
[
Mx(T ∗(2r), o)

]
↘
r→∞

E[Y (x)]

and similarly

1

|Vn|
∑

v∈Vn

Mx([Gn, v]2r+1, v) 1([Gn, v]2r+1 is a tree) −−−→
n→∞

E
[
Mx(T ∗(2r + 1), o)

]
↗
r→∞

E[Y (x)] .

On the other hand observe that a.s. for all x > 0

∣∣ 1

|Vn|
∑

v∈Vn

Mx(Gn, v)−
1

|Vn|
∑

v∈Vn

Mx(Gn, v) 1([Gn, v]2r+1 is a tree)
∣∣ ≤

1

|Vn|
∑

v∈Vn

(
1− 1([Gn, v]2r+1 is a tree)

)
−−−→
n→∞

1− P(T ∗(2r + 1) is a tree) = 0 .

Therefore, reasoning with lim inf and lim sup, one finds that almost surely for

all x > 0 there exists

lim
n→∞

1

|Vn|
∑

v∈Vn

Mx(Gn, v) = E[Y (x)] .
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Remembering the identity (6.9), the proof is concluded, except for the analyt-

icity of x 7→ E[Y (x)] which will follow from the next corollary.

Corollary 6.20. In the hypothesis of theorem 6.1, almost surely for all z ∈ H+

mGn(z) −−−→
n→∞

E[Y (z)] , (6.15)

where the random variable Y (z) is defined in corollary 6.13. The function z 7→
E[Y (z)] is analytic on H+ and the convergence is uniform on compact subsets

of H+ . As a consequence almost surely for all k ≥ 1 and z ∈ H+

dk

dzk
pGn(z) −−−→

n→∞

dk−1

dzk−1

E[Y (z)]

z
. (6.16)

Proof. By lemma 6.2 (mGn)n∈N is a sequence of complex analytic functions on

H+, which is uniformly bounded on compact subsets K ⊂ H+:

sup
z∈K
|mGn(z)| ≤ 1

|Vn|
∑

v∈Vn

sup
z∈K
|Mz(Gn, o)| ≤ sup

z∈K

|z|
<(z)

<∞ ∀n ∈ N .

On the other hand by theorem 6.1 (mGn(x))n∈N a.s. converges pointwise on R+

to E[Y (x)]. Then lemma 6.5 applies: E[Y (z)] is analytic in z ∈ H+ and a.s.

mGn(z) −−−→
n→∞

E[Y (z)] uniformly in z ∈ K for every compact K ⊂ H+.

This entails also the convergence of derivatives (e.g. see theorem 1.2 p. 157

in [69]).

The existence and analyticity of the monomer density in the thermodynamic

limit entails the same properties for the pressure per particle. Only the addi-

tional assumption of uniform sparsity is required.

Corollary 6.21. Let (Gn)n∈N be a sequence of random graphs, which:

i. is locally convergent to the unimodular Galton-Watson tree T (P, %);

ii. has asymptotic degree distribution P with finite second moment;

iii. is uniformly sparse.
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Then almost surely for every x > 0

pGn(x) −−−→
n→∞

p(a) +

∫ x

a

E[Y (t)]

t
dt (6.17)

where a > 0 is arbitrary, p(a) = limn→∞ pGn(a) a.s., and Y (t) is the random

variable defined in theorem 6.1.

The function x 7→ p(a) +
∫ x
a

E[Y (t)]
t

dt is analytic on R+ .

Proof. From theorem 6.1, using the fundamental theorem of calculus and dom-

inated convergence, it follows immediately that a.s. for every x > 0, a > 0

pGn(x)− pGn(a) =

∫ x

a

∂pGn

∂t
(t) dt −−−→

n→∞

∫ x

a

E[Y (t)]

t
dt (6.18)

By theorem 6.1 the function x 7→ E[Y (x)] is analytic on R+, therefore the

integral function x 7→
∫ x
a

E[Y (t)]
t

dt is analytic on R+ too.

To conclude it remains to prove that almost surely for all x > 0

∃ lim
n→∞

pGn(x) .

Use the bounds for the pressure of remark 2.5 to estimate

pGn(x)− pGn(a)





≤ pGn(x) − log a

≥ pGn(x) − log a− |En|
|Vn| log(1 + 1

a2
)

(6.19)

Put together (6.18), (6.19), remind |En|/|Vn| a.s.−−−→
n→∞

P/2 and obtain that a.s.

for all x > 0

lim inf
n→∞

pGn(x) ≥ log a+

∫ x

a

E[Y (t)]

t
dt ,

lim sup
n→∞

pGn(x) ≤ log a+
P

2
log(1 +

1

a2
) +

∫ x

a

E[Y (t)]

t
dt .

Therefore a.s. for all x > 0

0 ≤ lim sup
n→∞

pGn(x)− lim inf
n→∞

pGn(x) ≤ P

2
log(1 +

1

a2
) −−−→

a→∞
0 ,

which entails existence of limn→∞ pGn(x) and completes the proof.
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Corollary 6.22. In the hypothesis of corollary 6.21, if P > 0, almost surely

the pressure density limn→∞ pGn is an analytic function of the monomer density

limn→∞mGn.

Proof. Set pn := pGn , p := limn→∞ pn and mn := mGn , m := limn→∞mn.

By theorem 6.1 and corollary 6.21 on an event of probability 1 the monomer

density m and the pressure p are analytic functions of the monomer activity

x > 0. Now a direct computation shows that

x
∂mn

∂x
(x) =

〈|M(D)|2〉Gn,x − 〈|M(D)|〉2Gn,x

|Vn|
≥ 0 .

But a more precise lower bound is provided by theorems 7.3 and 7.6 in [55]:

x
∂mn

∂x
(x) ≥ |Vn||En|

x2
(
1−mn(x)

)2
and 1−mn(x) ≥

2

x2 + 2

|En|
|Vn|

,

hence

x
∂mn

∂x
(x) ≥ 4 x2

(x2 + 2)2

|En|
|Vn|

−−−→
n→∞

2 x2

(x2 + 2)2
P .

By corollary 6.20 it follows:

x
∂m

∂x
(x) ≥ 2 x2

(x2 + 2)2
P > 0 .

Thus m is an analytic function of x with non-zero derivative, so that it is

invertible and its inverse is analytic (e.g. see theorem 6.1 p. 76 of [69]). In

other words x can be seen as an analytic function of m. Since the composition

of analytic functions is analytic, it is proved that p is an analytic function of

m.

We are ready to proof the second main theorem of this chapter.

Proof of the Theorem 6.2. By theorem 6.1 and corollary 6.21 one already knows

that almost surely there exist limn→∞ x
∂pGn

∂x
(x) =: m(x) and limn→∞ pGn(x) =:

p(x) and that

p(x) = p(a) +

∫ x

a

m(t)

t
dt , i.e. x

∂p

∂x
(x) = m(x) . (6.20)



120 6.3. From trees to graphs

Applying remark 2.5 to Gn and passing to the limit exploiting remark 6.18, one

obtains the following bounds

log x ≤ p(x) ≤ log x+
P

2
log(1+

1

x2
) , thus lim

x→+∞
p(x)− log x = 0 . (6.21)

Now set

p̃(x) := E
[
log
(
x+

∆∑

i=1

Xi

x

)]
− P

2
E
[
log
(
1 +

X1

x

X2

x

)]
.

In order to prove that p(x) = p̃(x) it will suffice to show that p̃ shares the two

previous properties. Hence split the proof in two lemmas.

Lemma 6.23. For every x > 0

x
∂p̃

∂x
(x) = m(x) .

The random complex function z 7→ X(z) = limr→∞Mz(T (%, r), o) is a.s.

analytic on H+ by corollary 6.13 and it is bounded by a deterministic function

by lemma 6.1: |X(z)| ≤ |z|
<(z)

. As a consequence also its derivative at z0 ∈ H+ is

bounded by a deterministic constant, precisely fixing r > 0 such that B(z0, r) ⊂
H+ the integral representation (e.g. see theorem 7.3 p. 128 in [69]) gives

∣∣dX
dz

(z0)
∣∣ =

∣∣ 1

2πi

∫

S(z0,r)

X(z)

(z − z0)2
dz
∣∣ ≤ 1

r
max
S(z0,r)

|z|
<(z)

=: c(z0) .

It follows that the random functions under expectation in the expression of p̃

are differentiable with integrable derivatives:

∣∣x ∂

∂x
log
(
x+

∆∑

i=1

Xi

x

)∣∣ =
∣∣x+

∑∆
i=1(

∂Xi

∂x
− Xi

x
)

x+
∑∆

i=1
Xi

x

∣∣ ≤ x+ ∆ (c(x) + 1
x
)

x
∈ L1(P),

∣∣x ∂

∂x
log
(
1 +

X1

x

X2

x

)∣∣ =
∣∣
∂X1

∂x
X2

x
+ X1

x
∂X2

∂x
− 2 X1

x
X2

x

1 + X1

x
X2

x

∣∣ ≤ 2c(x)
1

x
+ 2

1

x2
.

Thus one may apply Lebesgue’s dominated convergence theorem and take the

derivative under expectation, finding:

x
∂p̃

∂x
(x) = E

[
x+

∑∆
i=1(

∂Xi

∂x
− Xi

x
)

x+
∑∆

i=1
Xi

x

]
− P

2
E

[ ∂X1

∂x
X2

x
+ X1

x
∂X2

∂x
− 2 X1

x
X2

x

1 + X1

x
X2

x

]
.
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Now reordering terms and setting

I0 := E
[ x

x+
∑∆

i=1
Xi

x

]

I1 := −E
[ ∑∆

i=1
Xi

x

x+
∑∆

i=1
Xi

x

]
+ P E

[ X1

x
X2

x

1 + X1

x
X2

x

]

I2 := E
[ ∑∆

i=1
∂Xi

∂x

x+
∑∆

i=1
Xi

x

]
− P E

[ X1

x
∂X2

∂x

1 + X1

x
X2

x

]

one may write x ∂p̃
∂x

= I0 + I1 + I2 . Observe that I0 = m(x) by theorem 6.1.

Then showing that I1 = I2 = 0 will prove the lemma.

Start proving that I1 = 0. First condition on the values of ∆, use the fact that

(Xi)i∈N are i.i.d. and independent of ∆ and K, and exploit the hypothesis of

unimodularity (i.e. d Pd = P%d−1 ∀ d ≥ 1):

E
[ ∑∆

i=1
Xi

x

x+
∑∆

i=1
Xi

x

]
=

∞∑

d=0

d∑

i=1

E
[ Xi

x

x+
∑d

i=1
Xi

x

]
Pd =

∞∑

d=0

d E
[ Xd

x

x+
∑d

i=1
Xi

x

]
Pd

=

∞∑

d=1

P E
[ Xd

x

x+
∑d

i=1
Xi

x

]
%d−1 = P E

[ XK+1

x

x+
∑K+1

i=1
Xi

x

]
,

then exploit the fact that X/x
D
= (x+

∑K
i=1Xi/x)

−1:

P E
[ XK+1

x

x+
∑K+1

i=1
Xi

x

]
= P E

[ X2

x

(X1

x
)−1 + X2

x

]
= P E

[ X1

x
X2

x

1 + X1

x
X2

x

]
.

This proves I1 = 0. An analogous reasoning proves that I2 = 0; one should

only observe that the family of couples (Xi ,
∂Xi

∂x
)i∈N can be chosen i.i.d. and

independent of ∆ and K (it suffices to work on i.i.d. trees (T (%)i)i∈N).

Lemma 6.24.

lim
x→+∞

p̃(x)− log x = 0 .

A direct computation and the dominated convergence theorem give

p̃(x)− log x = E
[
log
(
1 +

∆∑

i=1

Xi

x2

)]
− P

2
E
[
log
(
1 +

X1X2

x2

)]
−−−→
x→∞

0 ,

indeed the function x 7→ X(x)/x is bounded in [0, 1] for all x ≥ 1.
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Now lemmas 6.23, 6.24 together with formulae (6.20), (6.21) allow immediately

to conclude the proof of the theorem:

p(x)− p(a) =

∫ x

a

m(t)

t
dt = p̃(x)− p̃(a) ⇒

p(x)−p(a) + log a︸ ︷︷ ︸
→ 0 as a→∞

= p̃(x)−p̃(a) + log a︸ ︷︷ ︸
→ 0 as a→∞

⇒ p(x) = p̃(x) .

6.4 Numerical estimates

To conclude we consider the particular case when the graphs sequence (Gn)n∈N

locally converges to T (P, %) with P = % = Poisson(2) (e.g. this is the case of

Gn Erdős-Rényi with c = 2), and we show an approximate plot of the monomer

density m(x) := lim
n→∞

mGn(x).

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à
à

ì
ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ò
ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò
ò

ææ

depth 4

depth 6

depth 5

depth 3

complete graph

binary tree

monomer density

monomer activity x

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

Figure 6.1: The figure displays upper (even depths) and lower (odd depths)

bounds for the monomer density m versus the monomer activity x, in the Erdős-

Rényi case with c = 2. The binary tree (continuous line) and the complete graph

(dashed line) cases (treated in [55]) are also shown.

We describe briefly how to obtain it. The distributional recursion X =d

x2/(x2 +
∑K

i=1Xi) with K ∼ P = Poisson(2) is iterated a finite number r of
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times with initial values Xi ≡ 1. The obtained random variable X(r) represents

the monomer density on a truncated Galton-Watson tree T (P, P, r) (lemma

6.1). If X is the fixed point of the equation, we know that X(2r) ↘ X,

X(2r + 1)↗ X as r →∞ (proposition 6.4, theorem 6.3) and that E[X] is the

asymptotic monomer density on (Gn)n∈N (theorem 6.1).

For values of x = 0.01, 0.1, 0.2, . . . , 2, the random variablesX(r), r = 3, 4, 5, 6

are simulated numerically 10000 times and an empirical mean is done in order

to approximate E[X(r)]. The results are plotted as circles, squares, diamonds,

triangles connected by straight lines.

The dot at 0.216074 on the vertical axes corresponds to the exact value of the

monomer density when the monomer activity x → 0, supplied by the Karp-

Sipser formula [63] or by its extension due to Bordenave, Lelarge, Salez [18].

Therefore the graph of the monomer density x 7→ E[X] = lim
n→∞

mGn(x) starts

from (0, 0.216074) and lays between the diamonds and triangles curves.
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Chapter 7

A liquid crystal model on the

2D-lattice

This chapter is based on the work [3]. We study a particular monomer-dimer

model with hard-core and imitative interactions on the 2-dimensional

lattice1 Z2. This model favours one orientation of the dimers (e.g. the hori-

zontal one), both via a chemical potential and via a short-range imitation: we

choose different potentials µh, µv for horizontal and vertical dimers and we con-

sider an imitation potential J > 0 for pairs of neighbouring collinear dimers.

We prove that when the parameters satisfy

µh > −J and µv < −
5

2
J , (7.1)

the system has the properties of a liquid crystal: namely, at low temperatures,

it displays a long-range order in the orientation of its molecules, while there is

no complete ordering in their positions. In other words: clearly the choice of the

dimer potentials results in more horizontal than vertical dimers, on the other

hand a local perturbation of the system does not influence the position (left or

right) of the horizontal dimer attached to a distant vertex.

1By the lattice Z2, we mean the graph with vertex set Z2 and edge set E(Z2) composed

by the pairs of vertices having euclidean distance 1
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Onsager [80] was the first to propose hard-rods models in order to explain

the existence of liquid crystals. In 1979 Heilmann and Lieb [57] proposed two

monomer-dimer models (named I and II ) on the lattice Z2, where short-range

attractive interactions among parallel dimers are considered beyond the hard-

core interaction. They claimed that these systems are liquid crystals. In par-

ticular they proved the presence of a phase transition, by means of a reflection

positivity argument [41]: at low temperature there is orientational order. More-

over they conjectured the absence of complete translational ordering for their

models. A proof of this conjecture for the model I was announced in [57] by

Heilmann and Kjær, but never appeared. Letawe, in her thesis [72], claimed

to prove the conjecture by cluster expansion methods, but some proofs are

missing and the result was not published. Numerical simulations related to

the Heilmann-Lieb conjecture are performed in [83]. We also mention that,

in absence of attractive interaction, systems of sufficiently long hard-rods were

proved to display a phase transition and behave like liquid crystals by Disertori

and Giuliani [32], using a two scales cluster expansion and the Pirogov-Sinai

theory. In presence of attractive interaction, but without monomers, a quantum

dimer model was recently proved to have a crystalline phase by Giuliani and

Lieb [46]. Our result is in agreement with the Heilmann-Lieb conjecture. Indeed

the model studied in this chapter is obtained from the model I of Heilmann and

Lieb [57], but while they suppose

µh = µv =: µ and µ > −J , (7.2)

we assume very different horizontal and vertical potentials as in (7.1). This

choice of the parameters allows us to work with cluster expansion methods, by

defining our polymers starting from regions of vertical dimers, instead of con-

tours.

A monomer-dimer configuration on the lattice Z2 is represented by an oc-
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cupation vector α ∈ {0, 1}E(Z2) satisfying the hard-core constraint

∑

y: (x,y)∈E(Z2)

α(x,y) ≤ 1 ∀x ∈ Z2 . (7.3)

Dimers on Z2 may have two different orientations: vertical (v-dimers) or hori-

zontal (h-dimers), according to the orientation of the occupied edge. Let Λ be

a finite sub-lattice of Z2. Consider a horizontal boundary condition2, namely we

assume that every site of Z2 \ Λ has a h-dimers (with either free or fixed posi-

tions). Denote by Dh
Λ the set of monomer-dimer configurations on Λ (we allow

also dimers toward the exterior3) which are compatible with the selected hor-

izontal boundary condition. The Hamiltonian, or energy, of a monomer-dimer

configuration is defined as

HΛ :=
µh + J

2
#

{
sites of Λ with

monomer

}
+
µh − µv

2
#

{
sites of Λ with

v-dimer

}
+

+
J

2


#





sites of Λ̄ with h-dimer

but h-neighbor also to a v-

dimer or a monomer



+ #





sites of Λ̄ with v-dimer

but v-neighbor also to a h-

dimer or a monomer






 .

(7.4)

We assume that the parameters appearing in the Hamiltonian satisfy

µh > −J , µh ≥ µv , J > 0 . (7.5)

In this way, if the horizontal boundary condition with free positions is chosen4,

then the ground states in Dh
Λ (i.e. the configurations minimizing the energy

under the given condition) are exactly the configurations where every site has

a h-dimer. The partition function of the system is

Zh
Λ :=

∑

α∈Dh
Λ

e−βHΛ(α) (7.6)

2The external boundary of Λ is ∂extΛ := {x ∈ Z2 \ Λ |x neighbor of y ∈ Λ}. The internal

boundary of Λ is instead ∂Λ ≡ ∂intΛ := {x ∈ Λ |x neighbor of y ∈ Z2 \ Λ}. We set Λ̄ :=

Λ ∪ ∂extΛ .
3Namely we allow dimers having one endpoint in Λ and one in Z2 \ Λ .
4Also fixed positions work, provided that the positions of the two h-dimers at the endpoints

of each horizontal line of Λ allow a pure dimer configuration on that line.
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where the parameter β > 0 is the inverse temperature.

Remark 7.1. We want to show that the Hamiltonian (7.4) essentially corre-

sponds to the model I introduced by Heilmann and Lieb in [57], except for

the important fact that we allow the horizontal and vertical dimer potentials

µh, µv to be different, while they take µh = µv = µ . We can introduce another

Hamiltonian (that maybe is written in a more natural way; see fig.7.1):

H̃Λ := − µh #{h-dimers in Λ } − µv #{v-dimers in Λ } +

− J #

{
pairs of neighboring

collinear dimers in Λ

}
(7.7)

Figure 7.1: The same monomer-dimer configuration on the lattice Λ and the

corresponding energies in accordance to the Hamiltonian (7.4) (on the left) and

to the Hamiltonian (7.7) (on the right). A horizontal boundary condition is

drawn in grey.

The monomer-dimer model I in [57] is given by the Hamiltonian (7.7) with

µh = µv = µ, when Λ is a rectangular lattice of even sides lengths with periodic

boundary conditions (torus). It is easy to show that when Λ is a torus the two

Hamiltonians (7.4), (7.7) describe the same model; indeed they only differ by

an additive constant which does not affect the Gibbs measure:

H̃Λ +
µh + J

2
|Λ| = HΛ (7.8)
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since

|Λ| − 2 #{h-dimers in Λ } = |Λ| −#

{
sites in Λ with

h-dimer

}
=

= #

{
sites in Λ with

monomer

}
+ #

{
sites in Λ with

v-dimer

}
;

2 #{v-dimers in Λ } = #

{
sites in Λ with

v-dimer

}
;

|Λ| − 2 #

{
pairs of neighboring

collinear dimers in Λ

}
= |Λ| −#





sites in Λ with h-dimer (v-dimer)

and h-neighbor (v-neighbor) to an-

other h-dimer (v-dimer)



 =

= #

{
sites in Λ with

monomer

}
+ #






sites in Λ with h-dimer (v-dimer)

and h-neighbor (v-neighbor) also to

something different




 .

On the other hand when Λ has horizontal boundary conditions the two Hamil-

tonians (7.4), (7.7) are not exactly equivalent. Indeed it holds5

H̃Λ +
µh + J

2
|Λ| + J

2
#

{
sites in ∂int

v
Λ with-

out h-dimer

}
= HΛ (7.9)

when the following conventions are adopted in the definition (7.7): if only half

a dimer is in Λ while the other half is in Z2 \Λ, it counts 1
2
; if only one dimer of

a pair of neighboring collinear dimers is in Λ, while the other one is in Z2 \ Λ,

this pair counts 1
2
.

The monomer-dimer model that we have introduced, in a certain region

of the parameters corresponding to large horizontal potential, small vertical

potential and low temperature, behaves like a liquid crystal. This means that

the model exhibits an order in the orientation of the molecules (dimers), while

there is no complete order in their positions.

The following results will give a precise mathematical meaning to these

statements. First we introduce some observables attached to the sites, asking

questions as “Is there a horizontal dimer at site x?”, “If so, is it positioned to

5∂v, ∂h denote respectively the vertical, horizontal component of the boundary; e.g. ∂vΛ :=

{x ∈ Λ |x h-neighbor of y ∈ Z2 \ Λ} and ∂hΛ := {x ∈ Λ |x v-neighbor of y ∈ Z2 \ Λ}.
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the left or to the right of x?”. To measure the absence or presence of some kind

of order, at a microscopic level we study the expectations and the covariances

of these quantities according to the Gibbs measure, while at a macroscopic level

we introduce a suitable order parameter and study its expectation and possibly

its variance6.

Define the following local observables7

fh,x := 1
(
x has a h-dimer

)
, fv,x := 1

(
x has a v-dimer

)
; (7.10)

fl,x := 1
(
x has a left-dimer

)
, fr,x := 1

(
x has a right-dimer

)
. (7.11)

Clearly fh,x = fl,x + fr,x and fh,x + fv,x ≤ 1 . In the following we denote the

Gibbs expectation of any observable f by

〈f〉hΛ :=
1

Zh
Λ

∑

α∈Dh
Λ

f(α) e−βHΛ(α) .

We denote by N the minimal distance between any two vertical components

of the boundary of Λ and our only assumption on the shape of Λ is that N →∞
as Λ ↗ Z2 . To fix ideas one could think that Λ is a rectangle (in this case N

would be simply its horizontal side length), but actually we will need to consider

also non-simply connected regions.

There exists β0 > 0 depending on µh, µv, J only and N0(β) depending on

β, µh, J only such that the following results hold true.

Theorem 7.1 (Microscopic expectations). Assume that J > 0, µh +J > 0 and

2µv + 5J < 0. Let β > β0. Let Λ ⊂ Z2 finite having N > N0(β). Let x ∈ Λ

such that disth(x, ∂Λ) > N0(β). Then

〈fl,x〉hΛ ≥
1

2
− e−β

µh+J

2 , 〈fr,x〉hΛ ≥
1

2
− e−β

µh+J

2 . (7.12)

6When the expectation of the order parameter is zero but the variance is not, a small

perturbation can lead to a spontaneous order of the system.
7We say that the site x has a left-dimer if there is a dimer on the bond

(
x, x − (1, 0)

)
, a

right-dimer if there is a dimer on the bond
(
x, x + (1, 0)

)
.
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As a consequence:

〈fh,x〉hΛ ≥ 1− 2 e−β
µh+J

2 ; (7.13)

∣∣ 〈fr,x〉hΛ − 〈fl,x〉hΛ
∣∣ ≤ 2 e−β

µh+J

2 . (7.14)

Theorem 7.2 (Microscopic covariances). Assume that J > 0, µh + J > 0 and

2µv +5J < 0. Let β > β0. Let Λ ⊂ Z2 finite such that N > N0(β). Let x, y ∈ Λ

such that disth(x, ∂Λ) > N0(β), disth(y, ∂Λ) > N0(β) and disth(x, y) > N0(β).

Then:

∣∣〈fl,x fl,y〉hΛ − 〈fl,x〉hΛ 〈fl,y〉hΛ
∣∣ ≤ 9m

16
e−

m
4

(dist
Z2 (x,y)−1) , (7.15)

∣∣〈fr,x fr,y〉hΛ − 〈fr,x〉hΛ 〈fr,y〉hΛ
∣∣ ≤ 9m

16
e−

m
4

(dist
Z2 (x,y)−1) , (7.16)

∣∣〈fl,x fr,y〉hΛ − 〈fl,x〉hΛ 〈fr,y〉hΛ
∣∣ ≤ 9m

16
e−

m
4

(dist
Z2 (x,y)−1) . (7.17)

The definition of m is clarified in the Appendix (lemma 7.15); anyway it can be

sufficient to know that m = e−β
µh+3J

2 (1 + o(1)) as β →∞.

The density of lattice sites occupied by h-dimers/v-dimers is respectively:

νh :=
1

|Λ|
∑

x∈Λ
fh,x , νv :=

1

|Λ|
∑

x∈Λ
fv,x . (7.18)

A parameter measuring the orientational order of the dimers is

∆orient. := νh − νv . (7.19)

Corollary 7.2 (Orientational Order Parameter). Assume that J > 0, µh +J >

0 and 2µv +5J < 0. Let β > β0. Let Λ ⊂ Z2 finite, having N > 2N0(β) . Then

〈∆orient.〉hΛ ≥
(
1− 2

N0(β)

N

) (
1− 4 e−β

µh+J

2

)
. (7.20)

Hence

lim
β↗∞

lim inf
Λ↗Z2

〈∆orient.〉hΛ = 1 . (7.21)
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The corollary 7.2 shows that fixing β sufficiently large and then choosing Λ

sufficiently big (more precisely the distance N between vertical components of

∂Λ must be large enough), the average density of sites occupied by h-dimers is

arbitrarily close to 1 : in other terms the system is oriented along the horizontal

direction. The majority of sites is occupied by h-dimers. But there can still be

some freedom, indeed we may distinguish the h-dimers in two classes according

to their positions: a h-dimer is called even (resp. odd) if its left endpoint has

even (resp. odd) horizontal coordinate. The density of lattice sites occupied by

even/odd h-dimers is respectively:

νeven :=
1

|Λ|
∑

x∈Λ
1
(
x has an even h-dimer

)
=

2

|Λ|
∑

x∈Λ
xh even

fr,x ,

νodd :=
1

|Λ|
∑

x∈Λ
1
(
x has an odd h-dimer

)
=

2

|Λ|
∑

x∈Λ
xh even

fl,x .
(7.22)

A parameter measuring the translational order of the h-dimers is

∆transl. := νeven − νodd . (7.23)

Corollary 7.3 (Translational Order Parameter. Part I). Assume that J > 0,

µh + J > 0 and 2µv + 5J < 0. Let β > β0. Let Λ ⊂ Z2 finite such that

N > 2N0(β) . Then

∣∣〈∆transl.〉hΛ
∣∣ ≤

(
1− 2

N0(β)

N

)
2 e−β

µh+J

2 + 2
N0(β)

N
(7.24)

Hence

lim
β↗∞

lim sup
Λ↗Z2

∣∣〈∆transl.〉hΛ
∣∣ = 0 . (7.25)

Corollary 7.4 (Translational Order Parameter. Part II). Assume that J > 0,

µh + J > 0 and 2µv + 5J < 0. Let β > β0. Let Λ ⊂ Z2 finite such that

N > 2N0(β) . Then

〈
(∆transl.)

2
〉h
Λ
−
(
〈∆transl.〉hΛ

)2 ≤ 1

|Λ|
9m

(1− e−m
4 )2

+
N0(β)

N

(
6− 8

N0(β)

N

)
.

(7.26)
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Hence for fixed β > β0

lim
Λ↗Z2

〈
(∆transl.)

2
〉h
Λ
−
(
〈∆transl.〉hΛ

)2
= 0 . (7.27)

The corollaries 7.3, 7.4 show that fixing β sufficiently large and then choosing

Λ sufficiently big (in particular the distance between different components of ∂vΛ

must be big enough), the mean value and the variance of the difference between

the density of even h-dimers and the density of odd h-dimers are arbitrarily

close to zero. In other terms, at large but finite β, there is not a spontaneous

translational order for the h-dimers.

Remark 7.5. The bounds (7.24) hold for any kind of horizontal boundary

conditions, but in some particular cases it is possible to obtain a better result

by a symmetry argument. Assume that Λ is a rectangle with N + 1 sites in

each horizontal side. If N + 1 is odd, by choosing horizontal dimers with free

positions at the boundary one obtains

〈∆transl.〉hΛ = 〈νeven〉hΛ − 〈νodd〉hΛ = 0 (7.28)

for all parameters β, J, µh, µv . To prove it consider the reflection on Λ with

respect to the vertical axis at distance N
2

from ∂vΛ: this transformation in-

duces a bijection T : Dh
Λ → Dh

Λ . It is easy to check that HΛ(T (α)) = HΛ(α) ,

νeven(T (α)) = νodd(α) , νodd(T (α)) = νeven(α) for all α ∈ Dh
Λ .

On the other hand if N + 1 is even, by choosing periodic boundary conditions

one still obtains

〈∆transl.〉per.
Λ = 0 (7.29)

for all parameters β, J, µh, µv . To prove it one can consider the reflection on

Λ with respect to two vertical axis at distance N+1
2

from each other: it induces

a bijection from D
per.
Λ to itself having all the previous properties.
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7.1 Polymer representation

In this section we show how to rewrite the partition function Zh
Λ as a poly-

mer partition function of type (7.94). This representation will be suitable for

applying the cluster expansion machinery (see Appendix 7.5) in a regime of

large horizontal potential, small vertical potential and low temperature.

We start by isolating the “few” vertical dimers. Associate to each monomer-

dimer configuration α ∈ Dh
Λ the set

V = V (α) := {x ∈ Λ | x has a v-dimer according to α} .

Partition V into its connected components (as a sub-graph of the lattice8 Z2):

V =

n⋃

i=1

Si , Si ∈ SΛ ∀ i , distZ2(Si, Sj) > 1 ∀ i 6= j

where the family SΛ is defined by

S ∈ SΛ
def⇔ S ⊆ Λ , S 6= ∅ , S connected (as a sub-graph of Z2) ,

every maximal vertical segment of S has an even number

of sites ,

S does not contains those sites of ∂int
v Λ that necessarily

have a h-dimer because of the boundary conditions.

(7.30)

The knowledge of the set V (or equivalently of S1, . . . , Sn) does not determine

completely the configuration α of the system, since on Λ \ V there can be both

h-dimers and monomers. Anyway a fundamental feature of the model is that

the system on Λ\V can be partitioned into independent 1-dimensional systems.

Introduce the family LΛ(V ) defined by

L ∈ LΛ(V )
def⇔ L is a maximal horizontal line of Λ \ V . (7.31)

8On any graph the distance between two objects is defined as the length of the shortest

path connecting them. In particular distZ2(S, S′) := infx∈S, y∈S′ distZ2(x, y) for all S, S′ ⊂ Z2

and distZ2(x, y) := |xh − yh|+ |xv − yv| for all x = (xh, xv), y = (yh, yv) ∈ Z2 .
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The Hamiltonian (7.4) rewrites as

HΛ =

n∑

i=1

(
µh − µv

2
|Si| +

J

2
|∂hSi| +

J

2
|∂vSi ∩ ∂Λ|

)
+

+
∑

L∈LΛ(∪iSi)



µh + J

2
#

{
sites of L with

monomer

}
+
J

2
#





sites of L with h-dimer

but h-neighbor also to a

monomer or to ∪iSi







 .

Hence the partition function (7.6) rewrites as (see fig.7.2)

Zh
Λ =

∑

n≥0

1

n!

∑

S1,...,Sn∈SΛ
dist(Si,Sj)>1∀i6=j

n∏

i=1

e−β(
µh−µv

2
|Si|+ J

2
|∂hSi|+ J

2
|∂vSi∩∂Λ|)

∏

L∈LΛ(∪iSi)

ZL

(7.32)

where ZL is the monomer-dimer partition function of the line L, considered as

a sub-lattice of the 1-dimensional lattice Z, with suitable boundary conditions:

ZL :=
∑

αL∈DL

e−βHL(αL) eIl,xl
(αxl

) eIr,xr(αxr ) . (7.33)

An explanation of the notations introduced in (7.33) is required. DL denotes

the set of monomer-dimer configurations on L (dimers can only be horizontal,

external dimers at the endpoints of L are allowed);

HL :=
µh + J

2
#

{
sites of L with

monomer

}
+
J

2
#






sites of L with dimer

but h-neighbor also to a

monomer




 ;

xl, xr denote respectively the left, right endpoint of the line L (which eventually

may coincide): observe9 that because of (7.31)

⋃

L∈LΛ(∪iSi)

xl(L) =

((
∪i ∂ext

r Si
)
∩ Λ

)
t
(
∂lΛ \ ∪i ∂lSi

)
, (7.34)

⋃

L∈LΛ(∪iSi)

xr(L) =

((
∪i ∂ext

l Si
)
∩ Λ

)
t
(
∂rΛ \ ∪i ∂rSi

)
; (7.35)

9∂l, ∂r denote respectively the left, right component of the vertical boundary; e.g. ∂lΛ :=

{x ∈ Λ |x− (1, 0) ∈ Z2 \ Λ} and ∂rΛ := {x ∈ Λ |x + (1, 0) ∈ Z2 \ Λ}.
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Figure 7.2: A monomer-dimer configuration on Λ and the corresponding regions

S1, S2, S3 and lines L1, . . . , L15 ∈ LΛ(∪iSi). Given the positions of the regions,

the configurations on the lines are mutually independent: the arrows represent

the energy contributions of type J/2. A horizontal boundary condition is drawn.

finally10

if xl ∈ ∪i ∂ext
r Si ⇒ Il,xl

:=
(
−∞ −β J

2
0
)

if xl ∈ ∂lΛ , on xl−(1, 0) it is fixed a l-dimer ⇒ Il,xl
:=
(
−∞ 0 −β J

2

)

if xl ∈ ∂lΛ , on xl−(1, 0) it is fixed a r-dimer ⇒ Il,xl
:=
(
0 −∞ −∞

)

if xl ∈ ∂lΛ , on xl−(1, 0) there is a free h-dimer ⇒ Il,xl
:=
(
0 0 −β J

2

)

(7.36)

10The possible states of a site x ∈ L are three: “l”=left-dimer namely a dimer on

the bond
(
x, x − (1, 0)

)
, “r”=right-dimer namely a dimer on the bond

(
x, x + (1, 0)

)
,

“m”=monomer. Here we think Il,xl
, Ir,xr

as vectors: Il,xl
=
(
Il,xl

(l) Il,xl
(r) Il,xl

(m)
)

and Ir,xr
=
(
Ir,xr

(l) Ir,xr
(r) Ir,xr

(m)
)

.
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and, similarly,

if xr ∈ ∪i ∂ext
l Si ⇒ Ir,xr :=

(
−β J

2
−∞ 0

)

if xr ∈ ∂rΛ , on xr+(1, 0) it is fixed a r-dimer ⇒ Ir,xr :=
(
0 −∞ −β J

2

)

if xr ∈ ∂rΛ , on xr+(1, 0) it is fixed a l-dimer ⇒ Ir,xr :=
(
−∞ 0 −∞

)

if xr ∈ ∂rΛ , on xr+(1, 0) there is a free h-dimer ⇒ Ir,xr :=
(
0 0 −β J

2

)
.

(7.37)

The 1-dimensional systems described by ZL, L ∈ LΛ(∪iSi) , are studied in the

Appendix 7.4.

In the form (7.32) of Zh
Λ, the weight of the regions (S1, . . . , Sn) is not a

product of the weights of each region Si, because of the lines L connecting

different regions. Therefore the regions Si ∈ SΛ are not a good choice for a

polymer representation of the model. In order to decouple some regions from

some other ones, it is possible to do a simple trick. It is convenient to deal in

different ways with the endpoints lying on ∂extSi and those on ∂Λ; hence given

a line L ∈ LΛ(∪iSi) we set

εl,xl
:= 1

(
xl ∈ (∪i ∂ext

r Si) ∩ Λ
)
, ηl,xl

:= 1− εl,xl

(7.34)
= 1 (xl ∈ (∂lΛ) \ ∪i ∂lSi) ;

εr,xr := 1
(
xr ∈ (∪i ∂ext

l Si) ∩ Λ
)
, ηr,xr := 1− εr,xr

(7.35)
= 1 (xr ∈ (∂rΛ) \ ∪i ∂rSi) .

Using the notations of the Appendix 7.4, given a line L ∈ LΛ(∪iSi) we intro-

duce the two vectors representing the boundary conditions outside its endpoints

xl, xr :

Bl,xl
:=
(
eIl,xl

(l) eIl,xl
(r) e−β

µh+J

4
+ Il,xl

(m)
)
, Br,xr :=




eIr,xr(l)

eIr,xr(r)

e−β
µh+J

4
+ Ir,xr(m)


 ;

then to shorten the notation we set

bl,xl
:=

1√
λ1

Bl,xl
E(1)

r , br,xr :=
1√
λ1

E
(1)
l Br,xr .
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Now define

RL :=
ZL

λ
|L|
1 b

ηl,xl
l,xl

b
ηr,xr
r,xr

− bεl,xl
l,xl

bεr,xr
r,xr

(7.38)

and, using L as an abbreviation for LΛ(∪iSi), rewrite the quantity
∏

L∈L
ZL

by means of elementary algebraic tricks:

∏

L∈L

ZL

λ
|L|
1

=
∏

L∈L

((
RL + b

εl,xl
l,xl

bεr,xr
r,xr

)
b
ηl,xl
l,xl

bηr,xr
r,xr

)

=

(
∏

L∈L

b
ηl,xl
l,xl

bηr,xr
r,xr

)
∑

K ⊆L

(
∏

L∈K

RL

)


∏

L∈L \K
b
εl,xl
l,xl

bεr,xr
r,xr



 .

By identities (7.34), (7.35) it holds

∏

L∈L

b
ηl,xl
l,xl

bηr,xr
r,xr

=




∏

x∈∂lΛ\∪i∂lSi

bl,x






∏

x∈∂rΛ\∪i∂rSi

br,x




∏

L∈L \K
b
εl,xl
l,xl

bεr,xr
r,xr

=

(
∏

x∈(∪i∂ext
r Si)∩Λ

x/∈ supp K

bl,x

) (
∏

x∈(∪i∂ext
l Si)∩Λ

x/∈ supp K

br,x

)
;

By substituting into the previous formula and thinking K = {L1, . . . , Lp}, we

find out11

∏

L∈L

ZL

λ
|L|
1

=

(
∏

x∈∂vΛ\∪i∂vSi

bl/r, x

)
·

·
∑

p≥0

1

p!

∑

L1,...,Lp∈L

Lh 6=Lk ∀h 6=k

(
p∏

k=1

RLk

) (
∏

x∈(∪i∂ext
v Si)∩Λ

x/∈∪kLk

br/l, x

)
.

(7.39)

Now substitute (7.39) into (7.32), using also the fact that |Λ| =
∑n

i=1 |Si| +

11In the first product on the r.h.s. of (7.39) the shorten notation bl/r,x means: take bl,x if

x ∈ ∂lΛ, take br,x if x ∈ ∂rΛ; notice that ∂lΛ and ∂rΛ are disjoint for N > 1. In the last

product instead the shorten notation br/l,x means: take br,x if x ∈ ∂ext

l
Si only, take bl,x if

x ∈ ∂ext
r

Si only, and take the product br,x bl,x in the case that x belongs to both ∂ext

l
Si and

∂ext
r Sj .
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∑
L∈LΛ(∪iSi)

|L|, and obtain:

Zh
Λ = λ

|Λ|
1

(
∏

x∈∂vΛ

bl/r, x

)
·

·
∑

n≥0

1

n!

∑

S1,...,Sn ∈SΛ
dist(Si,Sj)>1 ∀i6=j

n∏

i=1

(
e−β(

µh−µv
2
|Si|+ J

2
|∂hSi|)

λ
|Si|
1

∏

x∈∂vΛ∩∂vSi

e−β
J
2

bl/r, x

)
·

·
∑

p≥0

1

p!

∑

L1,...,Lp ∈LΛ(∪iSi)
Lk 6=Lh ∀k 6=h

(
p∏

k=1

RLk

) (
∏

x∈(∪i∂
ext
v Si)∩Λ

x/∈∪kLk

br/l, x

)
.

(7.40)

The next step is to partition
⋃n
i=1 Si ∪

⋃p
k=1 Lk into connected components as

a sub-graph of Z̃2, where Z̃2 is the lattice obtained from Z2 by removing all the

vertical bonds incident to the lines Lk :

n⋃

i=1

Si ∪
p⋃

k=1

Lk =

q⋃

t=1

suppPt ,

Pt ∈PΛ ∀t , dist
Z̃2(suppPt, suppPs) >1 ∀t 6= s

where the family PΛ (yes, it is finally our family of polymers! see fig.7.3) is

defined by:

PΛ :=
{
P ≡

(
(Si)i∈I , (Lk)k∈K

) ∣∣ (Si)i ∈PSΛ , (Lk)k ∈PLΛ(∪iSi)
}
,

(7.41)

(Si)i∈I ∈PSΛ
def⇔





0 ≤ |I| <∞

Si ∈ SΛ ∀i

distZ2(Si, Sj) > 1 ∀i 6= j ,

(7.42)

(Lk)k∈K ∈PLΛ(∪i∈ISi) def⇔





0 ≤ |K| <∞, |I|+ |K| ≥ 1

Lk ∈ LΛ(∪iSi) ∀k

Lk 6= Lh ∀k 6= h

(∪iSi) ∪ (∪kLk) connected in Z̃2 .

(7.43)
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Figure 7.3: The first three pictures represent three different examples of poly-

mers P ∈PΛ. The set represented in the last picture is not a unique polymer

since it is not connected in Z̃2 (even if it is connected in Z2).

The identity (7.40) now rewrites as

Zh
Λ = CΛ

∑

q≥0

1

q!

∑

P1,...,Pq∈PΛ

q∏

t=1

%Λ(Pt)
∏

t<s

δ(Pt, Ps) (7.44)

by setting, for all P, P ′ ∈PΛ with P =
(
(Si)i∈I , (Lk)k∈K

)
,

CΛ := λ
|Λ|
1

∏

x∈∂vΛ

bl/r, x , (7.45)

%Λ(P ) :=

(
1

|I|!
∏

i∈I

(
e−β(

µh−µv
2
|Si|+ J

2
|∂hSi|)

λ
|Si|
1

∏

x∈∂vΛ∩∂vSi

e−β
J
2

bl/r, x

))
·

·
(

1

|K|!
∏

k∈K
RLk

) (
∏

x∈(
⋃

i∈I∂ext
v Si)∩Λ

x/∈
⋃

k∈KLk

br/l, x

)
,

(7.46)

δ(P, P ′) :=






1 , if dist
Z̃2(P, P ′) > 1

0 , otherwise

. (7.47)
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The identity (7.44) finally shows that the partition function Zh
Λ , up to a factor

CΛ, admits a polymer representation of the form (7.94).

It is convenient to bound the polymer activity %Λ by a simpler quantity.

Using the proposition 7.18 plus the lemmas 7.16, 7.17 and the fact that |∂hSi| ≥
2, one finds:

%Λ(P ) ≤ %̃(P ) :=

(
1

|I|!
∏

i∈I
e−β(

µh−µv
2
|Si|+ J)

)(
1

|K|!
∏

k∈K
e−m|Lk| γLk

)
(7.48)

with the γL’s defined by the equation (7.93).

7.2 Convergence of the cluster expansion

In the previous section we rewrote our partition function Zh
Λ as a polymer

partition function up to a factor CΛ (see formula (7.44)). In this section we

will find a region of the parameters space µh, µv, J where the condition (7.95)

is verified by our model at low temperature, so that the general theorem 7.4

about the convergence of the cluster expansion will apply to our case.

Theorem 7.3. Assume that J > 0, µh +J > 0 and 2µv +5J < 0 . By choosing

a(P ) :=
m

2
| suppP | ∀P ∈PΛ (7.49)

the conditions

∑

P∈PΛ
suppP3x

%̃(P ) ea(P ) ≤ m

8
∀x ∈ Λ , (7.50)

∑

P∈PΛ
δ(P,P ∗)=0

%̃(P ) ea(P ) ≤ a(P ∗) ∀P ∗∈PΛ (7.51)

hold true, provided that β > β0 and N > N0(β) (N is the minimum distance

between two vertical components of ∂Λ). Here β0 > 0 depends on µh, µv, J only,

while N0(β) depends on β, µh, J only; they do not depend on Λ, P ∗, x .
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Corollary 7.6. Assume that J > 0, µh+J > 0 and 2µv+5J < 0 . Suppose also

that β > β0 and N > N0(β). Denote by CPΛ the set of clusters12 composed by

polymers of PΛ . Then the partition function (7.6) rewrites as

Zh
Λ = CΛ exp

( ∑∗

(Pt)t∈CPΛ

UΛ

(
(Pt)t

))
(7.52)

where we denote
∑∗

(Pt)t∈CPΛ
:=
∑

q≥0
1
q!

∑
(Pt)

q
t=1∈CPΛ

and

UΛ(P1, . . . , Pq) := u(P1, . . . , Pq)

q∏

t=1

%Λ(Pt) . (7.53)

Remind that CΛ is defined by (7.45), %Λ is defined by (7.46) and u is defined by

(7.97), (7.47). Furthermore for all E ⊆PΛ it holds

∑∗

(Pt)t∈CPΛ
∃t:Pt∈E

∣∣UΛ

(
(Pt)t

)∣∣ ≤
∑

P∈PΛ
P∈E

|%Λ(P )| ea(P ) (7.54)

where a is defined by (7.49).

Proof. The corollary follows from the general theory of cluster expansion (the-

orem 7.4), since Zh
Λ admits a polymer representation (7.44) and satisfies the

Kotecky-Preiss condition ((7.51), |%Λ| ≤ %̃ ).

For ease of reading, in the following of this section we will denote

∑∗

(Si)i

:=
∑

n

1

n!

∑

(Si)n
i=1∈PSΛ

and
∑∗

(Lk)k

:=
∑

p

1

p!

∑

(Lk)p
k=1∈PLΛ(∪iSi)

where PSΛ, PLΛ(∪iSi) are the projections of the polymer set PΛ defined in

(7.42), (7.43). The next lemmas provide the entropy estimates that will be

needed in the proof of theorem 7.3.

Lemma 7.7. If ∪iSi 6= ∅, namely n ≥ 1, then

∑∗

(Lk)k

1 ≤ 4
∑

i |Si| . (7.55)

12As explained in the Appendix 7.5, using the definition (7.47) for δ, a family of polymers

(P1, . . . , Pq) is a cluster iff ∪q
t=1

suppPt is connected in Z̃2.
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Proof. Fix p ≥ 0 and denote by PL
(p)
Λ (∪iSi) the set of (Lk)

p
k=1 ∈PLΛ(∪iSi).

Given (Lk)
p
k=1 ∈ PL

(p)
Λ (∪iSi), each line Lk has at least one endpoint on

∪i∂ext
v Si , since (∪iSi) ∪ (∪kLk) have to be connected in Z̃2. Therefore the

number of ways to choose each Lk is at most
∑

i |∂ext
v Si| ≤ 2

∑
i |Si| . Since the

Lk, k = 1, . . . , p, must be all distinct, it follows that

∣∣∣PL
(p)
Λ (∪iSi)

∣∣∣ ≤
(
2
∑

i
|Si|
) (

2
∑

i
|Si| − 1

)
· · ·
(
2
∑

i
|Si| − p+ 1

)
.

Therefore

∑∗

(Lk)k

1 =
∑

p

1

p!

∣∣∣PL
(p)
Λ (∪iSi)

∣∣∣ ≤
∑

p

(
2
∑

i |Si|
p

)
= 22

∑
i |Si| .

Lemma 7.8. Let x ∈ Z2. For all s ≥ 2

#
{
S ⊂ Z2 connected

∣∣ |S| = s , S 3 x
}
≤ 16

3
44s . (7.56)

Proof. Given a connected graph G and one of its vertices x, there exists a walk

in G that starts from x and crosses each edge exactly twice13. Therefore

#
{
S ⊂ Z2 connected

∣∣ |S| = s , S 3 x
}
≤

≤
2s∑

e=s−1

#
{
S connected sub-graph of Z2

∣∣ |edges of S| = e , S 3 x
}

≤
2s∑

e=s−1

#
{
walks in Z2 that start from x and have lenght 2e

}

≤
2s∑

e=s−1

42e ≤ 44s+2

3
.

Lemma 7.9. Let A ⊂ Z2 finite. For all s ≥ 2, 1 ≤ d <∞

#
{
S ⊂ Z2 connected

∣∣ |S| = s , disth(S,A) = d
}
≤ 32

3
|A| 44s . (7.57)

13This can be easily proven by induction on the number of edges.



144 7.2. Convergence of the cluster expansion

Here disth(S,A) := infx∈S, y∈A disth(x, y) and the horizontal distance between

x = (xh, xv), y = (yh, yv) ∈ Z2 is defined as

disth(x, y) :=





|xh − yh| if xv = yv

+∞ if xv 6= yv

. (7.58)

Proof. Observe that disth(S,A) = d if and only if there exists a horizontal line

L, |L| = d+1, having one endpoint on ∂vA and the other one on ∂vS . Therefore:

#
{
S ⊂ Z2 connected

∣∣ |S| = s , disth(S,A) = d
}
≤

≤
∑

L horiz. line, |L|=d+1,
∂vA3 one endpt. of L

#
{
S ⊂ Z2 connected

∣∣ |S| = s , ∂vS 3 other endpt. of L
}

≤ 2|∂vA| #
{
S ⊂ Z2 connected

∣∣ |S| = s , S 3 0
}
≤ 2|A| 16

3
44s .

For the last inequality we have used the lemma 7.8.

Lemma 7.10. Let n ≥ 1 . Let T be a tree over the vertices {1, . . . , n} . Let

si ≥ 2 for all i = 1, . . . , n and dij ≥ 2 for all (i, j) ∈ T .

Then given A ⊂ Z2 and 1 ≤ d <∞

#
{
(Si)

n
i=1 ∈PSΛ

∣∣ disth(S1, A) = d , |Si| = si ∀i ,

disth(Si, Sj) = dij ∀(i, j)∈T
}
≤

≤ |A|
n∏

i=1

(
32

3
44si s

degT (i)
i

)
;

(7.59)

while given x ∈ Z2

#
{
(Si)

n
i=1 ∈PSΛ

∣∣ S1 3 x , |Si| = si ∀i ,

disth(Si, Sj) = dij ∀(i, j)∈T
}
≤

≤
n∏

i=1

(
32

3
44si s

degT (i)
i

)
.

(7.60)

Here degT (i) denotes the degree of the vertex i in the tree T .

Proof. Let start by proving the inequality (7.59) by induction on n. If n = 1,

then the tree T is trivial and (7.59) is already provided by the lemma 7.9. Now
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let n ≥ 2, assume that (7.59) holds for at most n − 1 vertices and prove it for

n . It is convenient to think that the tree T is rooted at the vertex 1 and denote

by j ← i the relation “vertex j is son of vertex i in T ” and by T (i) the sub-tree

of T induced by the vertex i together with its descendants. Then, denoting by

NT ,1
(
A, d; (si)i∈T , (dij)(i,j)∈T

)
the cardinality on the l.h.s. of (7.59), it holds

NT ,1
(
A, d; (si)i∈T , (dij)(i,j)∈T

)
=

=
∑

S1∈SΛ, |S1|=s1
disth(S1,A)=d

∏

v←1

NT (v),v

(
S1, d1v; (si)i∈T (v), (dij)(i,j)∈T (v)

)
.

Since T (v) has at most n− 1 vertices, the induction hypothesis gives

NT (v),v

(
S1, d1v; (si)i∈T (v), (dij)(i,j)∈T (v)

)
≤ s1

∏

i∈T (v)

(
32

3
44si s

degT (v)(i)

i

)
.

Then by substituting in the previous identity, bounding degT (v)(i) by degT (i)

and using the lemma 7.9, one obtains:

NT ,1
(
A, d; (si)i∈T , (dij)(i,j)∈T

)
≤ |A|

∏

i∈T

(
32

3
44si s

degT (i)
i

)
.

This concludes the proof of (7.59).

In order to prove the inequality (7.60), denote by N ′T ,1
(
x; (si)i∈T , (dij)(i,j)∈T

)

the cardinality on the l.h.s. of (7.60) and observe that

N ′T ,1
(
x; (si)i∈T , (dij)(i,j)∈T

)
=

∑

S1∈SΛ, |S1|=s1
S13x

∏

v←1

NT (v),v

(
S1, d1v; (si)i∈T (v), (dij)(i,j)∈T (v)

)
.

By (7.59) we already know that

NT (v),v

(
S1, d1v; (si)i∈T (v), (dij)(i,j)∈T (v)

)
≤ s1

∏

i∈T (v)

(
32

3
44si s

degT (v)(i)

i

)
.

Then by substituting in the previous identity, bounding degT (v)(i) by degT (i)

and using the lemma 7.8, one obtains:

N ′T ,1
(
x; (si)i∈T , (dij)(i,j)∈T

)
≤
∏

i∈T

(
32

3
44si s

degT (i)
i

)
,

which proves (7.60).
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of the theorem 7.3. According to the definition (7.47), the condition δ(P, P ∗) =

0 implies that suppP ∩ [suppP ∗]1 6= ∅ , where [A]1 := {x ∈ Z2 | distZ2(x,A) ≤
1} . Therefore

∑

P∈PΛ
δ(P,P∗)=0

%̃(P ) ea(P ) ≤
∑

x∈[suppP ∗]1

∑

P∈PΛ
supp P3x

%̃(P ) ea(P )

≤ 4 | suppP ∗| max
x∈Λ

∑

P∈PΛ
suppP3x

%̃(P ) ea(P ) .

Thus, by choosing a(P ) := m
2
| suppP | for all P ∈PΛ, the inequality (7.51) will

be a consequence of (7.50).

We have to prove the inequality (7.50). It is worth to write down explicitly

the quantity we will work with (see the definitions (7.48) and (7.49)):

%̃(P ) ea(P ) =

(
1

n!

n∏

i=1

e−(β
µh−µv

2
−m

2 )|Si|−βJ

)(
1

p!

p∏

k=1

e−
m
2
|Lk| γLk

)

for all P ∈ PΛ, P =
(
(Si)

n
i=1, (Lk)

p
k=1

)
. Notice that if suppP 3 x, the site x

may belong either to a region Si or to a line Lk; hence we can split the sum on

the l.h.s. of (7.50) into two parts:

∑

P∈PΛ
supp P3x

%̃(P ) ea(P ) = Σ1 + Σ2 with: (7.61)

Σ1 :=
∑∗

(Si)i
∪iSi3x

(
∏

i

e−(β
µh−µv

2
−m

2 )|Si|−βJ

)
∑∗

(Lk)k

∏

k

e−
m
2
|Lk| γLk

(7.62)

Σ2 :=
∑∗

(Si)i

(
∏

i

e−(β
µh−µv

2
−m

2 )|Si|−βJ

)
∑∗

(Lk)k
∪kLk3x

∏

k

e−
m
2
|Lk| γLk

. (7.63)

During all the proof o(1) will denote any function ω = ω(β, µh, J) such that

ω → 0 as β → ∞ and ω depends only on β, µh, J (in particular it does not

depend on the choices of Λ ⊂ Z2, x ∈ Z2, P ∈PΛ).

I. Study of the term Σ1.
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We fix a family of regions (Si)
n
i=1 that contains the point x; we also assume

that PLΛ(∪iSi) is non-empty, otherwise the contribution to Σ1 is zero. By the

lemma 7.7 it holds

∑∗

(Lk)k

∏

k

e−
m
2
|Lk| γLk

≤ 4
∑

i |Si| max
(Lk)k

∏

k

e−
m
2
|Lk| γLk

(7.64)

where the maximum is taken over all (Lk)k ∈ PLΛ(∪iSi) . The factor γLk

can take two values (see formula (7.93)), both smaller than 1 for β sufficiently

large (uniformly with respect to Lk), since each line Lk must have at least one

endpoint on ∪i∂ext
v Si to ensure that (∪iSi) ∪ (∪kLk) is connected in Z̃2.

Obviously n ≥ 1 in order for ∪ni=1Si to contain the point x. It is convenient

to consider separately the case n = 1 and the case n ≥ 2 :

Σ1 = Σ′1 + Σ′′1 .

The case n = 1 is easy to deal with, simply by bounding the r.h.s. of (7.64) by

4|S| and using the lemma 7.8. Precisely:

Σ′1 :=
∑

S∈SΛ
S3x

e−(β
µh−µv

2
−m

2 )|S|−βJ
∑∗

(Lk)k

∏

k

e−
m
2
|Lk|γLk

≤
∑

S∈SΛ
S3x

e−(β
µh−µv

2
−m

2 )|S|−βJ 4|S|

≤
∑

s≥2
even

16

3
44s e−(β

µh−µv
2
−m

2 )s−βJ 4s

=
16

3
410 e−β (µh−µv+J) (1 + o(1)) .

(7.65)

Now assume n ≥ 2. Fix a family of lines (Lk)
p
k=1 ∈ PLΛ(∪iSi) . We can

consider the graph G ≡ G
(
(Si)i, (Lk)k

)
with vertices i ∈ {1, . . . , n} and edges

k ∈ {1, . . . , p} : the edge k joins the two vertices i, j iff the line Lk has one

endpoint on ∂ext
v Si and the other one on ∂ext

v Sj . In the graph G there can be

multiple edges, loops and pseudo-edges with a single endpoint. The graph G is

connected (it follows from definition 7.43), hence G admits at least one spanning
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sub-tree T . And clearly, since each factor e−
m
2
|Lk| γLk

is smaller than 1,

p∏

k=1

e−
m
2
|Lk| γLk

≤
∏

k∈T
e−

m
2
|Lk| γLk

≤
∏

(i,j)∈T
e−

m
2

(disth(Si,Sj)−1) γSi,Sj

where γS,S′ :=
(

1
2
e−βJ + e−β

µh+J

2
(disth(S,S′)−1)

)
(1 + o(1)) . Therefore:

max
(Lk)k

∏

k

e−
m
2
|Lk| γLk

≤ max
T tree over
{1,...,n}

∏

(i,j)∈T
e−

m
2

(disth(Si,Sj)−1) γSi,Sj
(7.66)

Now using (7.64) and (7.66) we can bound Σ′′1 :

Σ′′1 :=
∑

n≥2

1

n!

∑

(Si)
n
i=1

∪iSi3x

(
n∏

i=1

e−(β
µh−µv

2
−m

2 )|Si|−βJ

)
∑∗

(Lk)k

∏

k

e−
m
2
|Lk| γLk

≤
∑

n≥2

∑

T tree over
{1,...,n}

1

n!

∑

(Si)n
i=1

∪iSi3x

(
n∏

i=1

e−(β
µh−µv

2
−m

2
−log 4)|Si|−βJ

)
·

·
∏

(i,j)∈T
e−

m
2

(disth(Si,Sj)−1) γSi,Sj

(7.67)

where in the sums we keep implicit that (Si)
n
i=1 ∈PSΛ.

Substitute into (7.67) the entropy bound14 (7.60). Since ∪iSi 3 x, but not

necessarily S1 3 x, an extra factor n appears. Moreover observe that |Si| is

even and ≥ 2 (see the definition (7.30)) and disth(Si, Sj) ≥ 2 . Then:

Σ′′1 ≤
∑

n≥2

∑

T tree over
{1,...,n}

n

n!

∑

(si)i=1,...,n

si even ≥2

∑

(dij )ij∈T

dij≥2

(
n∏

i=1

32

3
44si s

degT (i)
i

)
·

·
(

n∏

i=1

e−(β
µh−µv

2
−m

2
−log 4)si−βJ

)
∏

(i,j)∈T
e−

m
2

(dij−1) γdij

(7.68)

where γd :=
(

1
2
e−βJ + e−β

µh+J

2
(d−1)

)
(1 + o(1)) .

Given n ≥ 2 and δ1, . . . , δn ≥ 1, the number of trees T over the vertices

{1, . . . , n} with given degrees degT (i) = δi ∀i = 1, . . . , n is exactly15

(n− 2)!

(δ1 − 1)! · · · (δn − 1)!

14The families of regions (Si)
n
i=1

such that disth(Si, Sj) =∞ for at least one edge (i, j) ∈ T
give zero contribution to the sum, therefore we do not need to worry about them.

15This is an improvement of the well-known Cayley’s formula.
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if
∑n

i=1(δi − 1) = n − 2 and zero otherwise. Furthermore the number of edges

of T is n− 1. Therefore the bound (7.68) leads to

Σ′′1 ≤
∑

n≥2

(
32

3
e−βJ

∑

s≥2
even

e−(β
µh−µv

2
−m

2
−5 log 4)s

∑

δ≥1

sδ

(δ − 1)!

)n
·

·
(
∑

d≥2

e−
m
2

(d−1) γd

)n−1

.

(7.69)

The sum over s gives, as β →∞,

∑

s≥2
even

e−(β
µh−µv

2
−m

2
−5 log 4)s

∑

δ≥1

sδ

(δ − 1)!
=

=
∑

s≥2
even

s e−(β
µh−µv

2
−m

2
−5 log 4−1)s = 2 e2 410 e−β(µh−µv) (1 + o(1)) .

(7.70)

The sum over d gives, as β →∞,

∑

d≥2

e−
m
2

(d−1) γd =

=

(
∑

d≥2

e−
m
2

(d−1) e
−βJ

2
+
∑

d≥2

e−
m
2

(d−1) e−β
µh+J

2
(d−1)

)
(1 + o(1))

=
( 1

1− e−m
2

e−βJ

2
+ o(1)

)
(1 + o(1)) = eβ

µh+J

2 (1 + o(1))

(7.71)

where we used the fact that 1− e−m
2 = 1

2
e−β

µh+3J

2 (1 + o(1)) (see lemma 7.15).

Substituting (7.70), (7.71) into (7.69), one obtains

Σ′′1 ≤
∑

n≥2

(
226e2

3
e−β(µh−µv)+β

µh+J

2 (1 + o(1))

)n
e−β

µh+J

2 (1 + o(1)) . (7.72)

Assume µh − µv > µh+J

2
. Then for β sufficiently large (7.72) becomes:

Σ′′1 ≤
(

226e2

3
e−β(µh−µv)+β

µh+J

2

)2

e−β
µh+J

2 (1 + o(1))

=
252e4

9
e−β 2(µh−µv)+β

µh+J

2 (1 + o(1)) .

(7.73)

II. Study of the term Σ2.
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The ideas are not far from those seen for Σ1. We fix a family of regions

(Si)
n
i=1 and we assume that there exists (Lk)k ∈PLΛ(∪iSi) such that ∪kLk 3 x ,

otherwise the contribution to Σ2 is zero. Clearly the line Lx ∈ LΛ(∪iSi) that

contains x is unique. It is convenient to consider separately four cases:

Σ2 = Σ′2 + Σ′′2 + Σ′′′2 + Σ′′′′2 .

In Σ′2 we assume n = 0, namely ∪iSi = ∅ ; then Lx have to be a maximal

horizontal line of Λ . In Σ′′2 we assume n = 1, namely there is a unique region

S and Lx may have one endpoint on ∂ext
v S and one on ∂vΛ or both on ∂ext

v S .

In Σ′′′2 we assume n ≥ 2 and Lx has one endpoint on ∪i∂ext
v Si and one on ∂vΛ

or both on the same ∂ext
v Si. In Σ′′′′2 we assume n ≥ 2 and Lx has one endpoint

on ∂ext
v Si and one on ∂ext

v Sj with i 6= j.

By methods similar to those already seen for Σ1, one can prove that

Σ′2 ≤ e−
m
2
N (1 + o(1)) ; (7.74)

Σ′′2 ≤
225
√

2

3
e−β (µh−µv)+β

µh+2J

2 (1 + o(1)) ; (7.75)

Σ′′′2 ≤
252e4

√
2

9
e−β 2(µh−µv)+β

2µh+3J

2 (1 + o(1)) ; (7.76)

Σ′′′′2 ≤
252e4

9
e−β 2(µh−µv)+β(µh+2J) (1 + o(1)) . (7.77)

We refer to the Arxiv version of the paper for the details.

In conclusion, by using the estimates (7.65), (7.73), (7.74), (7.75), (7.76),

(7.77), and the fact that m = e−β
µh+3J

2 (1+o(1)) (see lemma 7.15), if we assume
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µh − µv > µh+J

2
, we find that:

1

m

∑

P∈PΛ
suppP3x

%̃(P ) ea(P ) =

= eβ
µh+3J

2

(
Σ′1 + Σ′′1 + Σ′2 + Σ′′2 + Σ′′′2 + Σ′′′′2

)
(1 + o(1))

≤
(

224

3
e−β(µh−µv)+β

µh+J

2 +
252 e4

9
e−β 2(µh−µv)+β

µh+2J

2 +
1

m
e−

m
2
N

+
225.5

3
e−β(µh−µv)+β

2µh+5J

2 +
252.5 e4

9
e−β 2(µh−µv)+β

3µh+6J

2

+
252 e4

9
e−β 2(µh−µv)+β

3µh+7J

2

)
(1 + o(1))

=

(
1

m
e−

m
2
N +

225.5

3
eβ(µv+ 5J

2
)

)
(1 + o(1))

(7.78)

where N is the minimum distance between two different vertical components of

∂Λ and o(1)→ 0 as β →∞ (uniformly with respect to N).

Now we assume that µv + 5J

2
< 0. Thus there exists β0 > 0 such that for

all β > β0 the function 1 + o(1) on the r.h.s. of (7.78) is < 2 and the term

225.5

3
eβ(µv+ 5J

2
) ≤ 1/32 . There exists16 also N0(β) such that for all N > N0(β)

the term 1
m
e−

m
2
N ≤ 1/32 . Therefore if µv + 5J

2
< 0 (which entails also the

previous condition µh − µv >
µh+J

2
), then the inequality (7.78) implies that

∑

P∈PΛ
supp P3x

%̃(P ) ea(P ) ≤ m

8

for β > β0 and N > N0(β) . This concludes the proof.

7.3 Proofs of the liquid crystal properties

In this section we will finally prove that the model behaves like a liquid

crystal, as stated at the beginning of this chapter, by means of the cluster

expansion results obtained in the previous sections.

16N0 = 2

m log 32

m .
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Proof of the theorem 7.1. We will prove the inequality (7.12) for fl,x . That

one for fr,x can be proved analogously; then (7.13) and (7.14) follow since

fx = fl,x + fr,x .

Observe that

〈fl,x〉hΛ =
Zh

Λ\x

Zh
Λ

,

where Zh
Λ\x is the partition function over the lattice Λ\x with horizontal bound-

ary conditions including a left-dimer at the site x. Since N > N0(β) and

disth(x, ∂Λ) > N0(β), both partition functions satisfy the hypothesis of the

corollary 7.6. Hence by the cluster expansion (7.52) the partition functions

rewrite as

Zh
Λ = CΛ exp

( ∑∗

(Pt)t∈CPΛ

UΛ

(
(Pt)t

))
,

Zh
Λ\x = CΛ\x exp

( ∑∗

(Pt)t∈CPΛ\x

UΛ\x
(
(Pt)t

))
.

By applying the definition (7.45),

CΛ\x
CΛ

=
br,x−(1,0) bl,x+(1,0)

λ1

.

Now consider a polymer P ∈ PΛ ∪PΛ\x . Keeping in mind the definitions of

polymer (7.41) and polymer activity (7.46), observe that17

if disth(suppP, x) > 1 ⇒ P ∈PΛ ∩PΛ\x , %Λ(P ) = %Λ\x(P ) .

Therefore:

∑∗

(Pt)t∈CPΛ\x

UΛ\x
(
(Pt)t

)
−

∑∗

(Pt)t∈CPΛ

UΛ

(
(Pt)t

)
≥

≥ −
∑∗

(Pt)t∈CPΛ\x

∃t: disth(suppPt, x)≤1

∣∣UΛ\x
(
(Pt)t

)∣∣ −
∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1

∣∣UΛ

(
(Pt)t

)∣∣ .

17The condition disth(suppP, x) > 1 guarantees that suppP ⊆ Λ \ x and that the polymer

P does not include any line Lk having one endpoint on x±(1, 0), nor any region Si containing

these points.
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And by the inequalities (7.54) and (7.50) applied to both Zh
Λ, Zh

Λ\x ,

∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1

∣∣UΛ

(
(Pt)t

)∣∣ ≤
∑

P∈PΛ
disth(suppP,x)≤1

%̃(P ) ea(P ) ≤ 3
m

8
;

∑∗

(Pt)t∈CPΛ\x

∃t: disth(suppPt, x)≤1

∣∣UΛ\x
(
(Pt)t

)∣∣ ≤
∑

P∈PΛ\x

disth(suppP,x)≤1

%̃(P ) ea(P ) ≤ 2
m

8
.

In conclusion one obtains:

〈fl,x〉hΛ =
Zh

Λ\x

Zh
Λ

≥ br, x−(1,0) bl, x+(1,0)

λ1
exp

(
−5

m

8

)

=
1

2

(
1− e−β

µh+J

2 (1 + o(1))
)
,

where the last identity follows from the fact that λ1 br,x−(1,0) bl,x+(1,0) = E
(1)
l Br,x−(1,0)Bl,x+(1,0)E

(1)
r =

1√
2
(1 − a

2
(1 + o(1))) 1√

2
(1 − a

2
(1 + o(1))) (by lemma 7.17, since there is a left-

dimer fixed at x according to Zh
Λ\x), λ1 = 1 + ab

2
(1 + o(1)) (proposition 7.13),

and e−5m/8 = 1− 5
8
ab (1+o(1)) (lemma 7.15). Finally, since o(1)→ 0 as β →∞

and o(1) does not depend on the choice of x and Λ, one may obtain the desired

inequality eventually increasing β0 .

Proof of the corollary 7.2. Set ϕΛ,N0 := #{x ∈ Λ | disth(x, ∂Λ) > N0} / |Λ| .
By the theorem 7.1, bound (7.13), using also fv,x ≤ 1− fh,x, one obtains:

〈∆orient.〉hΛ =
1

|Λ|
∑

x∈Λ

(
〈fh,x〉hΛ − 〈fv,x〉hΛ

)
≥ ϕΛ,N0(β)

(
1− 4 e−β

µh+J

2

)
.

On the other hand:

ϕΛ,N0 ≥ min
L maximal

horiz. line of Λ

ϕL,N0 = min
L maximal

horiz. line of Λ

|L| − 2N0(β)

|L| = 1− 2
N0(β)

N
.

Proof of the corollary 7.3. Set ϕΛ,N0 := #{x ∈ Λ | disth(x, ∂Λ) > N0} / |Λ| .
By the theorem 7.1, bound (7.14),

∣∣〈∆transl.〉hΛ
∣∣ ≤ 2

|Λ|
∑

x∈Λ,
xh even

∣∣〈fr,x〉hΛ − 〈fl,x〉hΛ
∣∣ ≤ ϕΛ,N0(β) 2e−β

µh+J

2 + 1− ϕΛ,N0(β) .

On the other hand we have already observed in the proof of the corollary 7.2

that ϕΛ,N0 ≥ 1− 2N0/N .
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Proof of the theorem 7.2. We will prove the inequality (7.15). (7.16) and (7.17)

can be proved analogously. First of all observe that, since 0 ≤ fl,x, fl,y ≤ 1,

∣∣〈fl,x fl,y〉hΛ − 〈fl,x〉hΛ 〈fl,y〉hΛ
∣∣ ≤ log

( 〈fl,x fl,y〉hΛ
〈fl,x〉hΛ 〈fl,y〉hΛ

∨ 〈fl,x〉hΛ 〈fl,y〉hΛ
〈fl,x fl,y〉hΛ

)
. (7.79)

Now observe that:

〈fl,x fl,y〉hΛ =
Zh

Λ\x,y

Zh
Λ

, 〈fl,x〉hΛ =
Zh

Λ\x

Zh
Λ

, 〈fl,y〉hΛ =
Zh

Λ\y

Zh
Λ

,

where Zh
Λ\x , Zh

Λ\y , Zh
Λ\x,y are the partition function respectively over the lattices

Λ\x , Λ\y , Λ\x, y , with horizontal boundary conditions including a left-dimer

respectively at the site x , at the site y , at both sites x, y . Therefore

〈fl,x fl,y〉hΛ
〈fl,x〉hΛ 〈fl,y〉hΛ

=
Zh

Λ Z
h
Λ\x,y

Zh
Λ\x Z

h
Λ\y

. (7.80)

Since N > N0(β) , disth(x, ∂Λ) > N0(β) , disth(y, ∂Λ) > N0(β) , disth(x, y) >

N0(β), all four partition functions satisfy the hypothesis of the corollary 7.6.

Hence by the cluster expansion (7.52) the partition functions rewrites as

Zh
Λ = CΛ exp

( ∑∗

(Pt)t∈CPΛ

UΛ

(
(Pt)t

))
,

Zh
Λ\x = CΛ\x exp

( ∑∗

(Pt)t∈CPΛ\x

UΛ\x
(
(Pt)t

))
,

Zh
Λ\y = CΛ\y exp

( ∑∗

(Pt)t∈CPΛ\y

UΛ\y
(
(Pt)t

))
,

Zh
Λ\x,y = CΛ\x,y exp

( ∑∗

(Pt)t∈CPΛ\x,y

UΛ\x,y
(
(Pt)t

))
.

(7.81)

By applying the definition (7.45), it holds

CΛ CΛ\x,y
CΛ\x CΛ\y

= 1 . (7.82)

Now consider a polymer P ∈ PΛ ∪PΛ\x ∪PΛ\y ∪PΛ\x,y . Keeping in mind

the definitions of polymer (7.41) and polymer activity (7.46), observe that:

if disth(suppP, x) > 1 , disth(suppP, y) > 1 ⇒

P ∈PΛ ∩PΛ\x ∩PΛ\y ∩PΛ\x,y , %Λ(P ) = %Λ\x(P ) = %Λ\y(P ) = %Λ\x,y(P ) ;
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and that18:

if disth(suppP, x) ≤ 1 , disth(suppP, y) > 1 ⇒

P ∈
(
PΛ ∩PΛ\y

)
\
(
PΛ\x ∪PΛ\x,y

)
, %Λ(P ) = %Λ\y(P ) or

P ∈
(
PΛ\x ∩PΛ\x,y

)
\
(
PΛ ∪PΛ\y

)
, %Λ\x(P ) = %Λ\x,y(P ) or

P ∈PΛ ∩PΛ\x ∩PΛ\y ∩PΛ\x,y , %Λ(P ) = %Λ\y(P ) , %Λ\x(P ) = %Λ\x,y(P ) ;

and the case disth(suppP, x) > 1, disth(suppP, y) ≤ 1 is clearly symmetric to

the previous one. Therefore:

∑∗

(Pt)t∈CPΛ

UΛ

(
(Pt)t

)
−

∑∗

(Pt)t∈CPΛ\x

UΛ\x
(
(Pt)t

)
+

−
∑∗

(Pt)t∈CPΛ\y

UΛ\y
(
(Pt)t

)
+

∑∗

(Pt)t∈CPΛ\x,y

UΛ\x,y
(
(Pt)t

)
≤

≤
∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣UΛ

(
(Pt)t

)∣∣ +
∑∗

(Pt)t∈CPΛ\x

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣UΛ\x
(
(Pt)t

)∣∣ +

+
∑∗

(Pt)t∈CPΛ\y

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣UΛ\y
(
(Pt)t

)∣∣ +
∑∗

(Pt)t∈CPΛ\x,y

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣UΛ\x,y
(
(Pt)t

)∣∣ .

(7.83)

It is crucial to observe that given a cluster (Pt)t ∈ CPΛ , since ∪t suppPt have

to be connected in Z2 ,

distZ2(x, y) ≤ distZ2(∪t suppPt, x) +
∑

t

| suppPt| − 1 + distZ2(∪t suppPt, y) .

Hence, assuming that distZ2(∪t suppPt, x) ≤ 1 , distZ2(∪t suppPt, y) ≤ 1 , it

18The first possibility, namely P polymer only of the lattices that contain x, happens when

suppP 3 x or P includes a region Si containing x − (1, 0) . The second possibility, namely

P polymer only of the lattices that do not contain x, happens when P includes a line Lk

with one endpoint on x ± (1, 0) . The last possibility happens when P includes a region Si

containing x + (1, 0) (and does not verify the other conditions).
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follows

∏

t

%̃(Pt) =

=
∏

t

1

nt! pt!
exp

(
−βµh − µv

2

nt∑

i=1

|Si| −m
pt∑

k=1

|Lk| − βJ nt
)

= exp

(
−m

4

∑

t

| suppPt|
)
·

·
∏

t

1

nt! pt!
exp

(
−
(
β
µh − µv

2
− m

4

) nt∑

i=1

|Si| −
3m

4

pt∑

k=1

|Lk| − βJ nt
)

≤ exp
(
−m

4
(distZ2(x, y)− 1)

) ∏

t

%̃∗(Pt)

where Pt =
(
(Si)

nt
i=1, (Lk)

pt

k=1

)
for all t and %̃∗(Pt) is defined as the factor ap-

pearing in the product over t at the penultimate step. By defining a∗(P ) :=

m
4
| suppP | , we have that %̃∗(P ) ea∗(P ) is essentially equivalent to %̃(P ) ea(P ) : we

can follow exactly the proof of the theorem 7.3 up to the inequality (7.78) and

prove that the Kotecky-Preiss conditions (7.50), (7.51) hold also with %̃∗ , a∗ and

m/16 in place of %̃ , a and m/8 (eventually increasing β0). Therefore, defining

Ũ∗
(
(Pt)t

)
:= u

(
(Pt)t

) ∏
t %̃∗(Pt) , by the general theory of cluster expansion the

inequality (7.54) holds also with Ũ∗, %̃∗ and a∗ in place of UΛ, %Λ and a . As a
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consequence:

∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣UΛ

(
(Pt)t

)∣∣ ≤
∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣u
(
(Pt)t

)∣∣ ∏

t

%̃(Pt) ≤

≤ e−
m
4

(dist
Z2 (x,y)−1)

∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣u
(
(Pt)t

)∣∣ ∏

t

%̃∗(Pt)

= e−
m
4

(dist
Z2 (x,y)−1)

∑∗

(Pt)t∈CPΛ

∃t: disth(suppPt, x)≤1
∃t′: disth(suppPt′ , y)≤1

∣∣Ũ∗
(
(Pt)t

)∣∣

(7.54)

≤ e−
m
4

(dist
Z2 (x,y)−1)

∑

P∈PΛ
disth(suppP, x)≤1

%̃∗(P ) ea∗(P )

(7.50)

≤ e−
m
4

(dist
Z2 (x,y)−1) 3

m

16
.

(7.84)

The same reasoning can be repeated also for the clusters in CPΛ\x, CPΛ\y and

CPΛ\x,y . Thus, by (7.80), (7.81), (7.82), 7.83, (7.84), one finally obtains:

〈fl,x fl,y〉hΛ
〈fl,x〉hΛ 〈fl,y〉hΛ

=
Zh

Λ Zh
Λ\x,y

Zh
Λ\x Z

h
Λ\y
≤ exp

(
e−

m
4

(dist
Z2 (x,y)−1) (3 + 2 + 2 + 2)

m

16

)
.

The same bound can be shown to hold also for the inverse ratio
〈fl,x〉hΛ 〈fl,y〉hΛ
〈fl,x fl,y〉hΛ

,

hence by (7.79) we conclude that:

∣∣〈fl,x fl,y〉hΛ − 〈fl,x〉hΛ 〈fl,y〉hΛ
∣∣ ≤ e−

m
4

(dist
Z2 (x,y)−1) 9m

16
.

Proof of the corollary 7.4. Since ∆transl. = 2
|Λ|
∑

x∈Λ,
xh even

(fr,x − fl,x) , the variance

of ∆ rewrites as:

〈
(∆transl.)

2
〉h
Λ
−
(
〈∆transl.〉hΛ

)2
=

4

|Λ|2
∑

x,y∈Λ
xh,yh even

Cx,y

with

Cx,y :=
(
〈fr,x fr,y〉hΛ − 〈fr,x〉hΛ 〈fr,y〉hΛ

)
+
(
〈fr,x〉hΛ 〈fl,y〉hΛ − 〈fr,x fl,y〉hΛ

)
+

+
(
〈fl,x〉hΛ 〈fr,y〉hΛ − 〈fl,x fr,y〉hΛ

)
+
(
〈fl,x fl,y〉hΛ − 〈fl,x〉hΛ 〈fl,y〉hΛ

)
.
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By the theorem 7.2, for x, y ∈ Λ such that disth(x, ∂Λ) > N0(β), disth(y, ∂Λ) >

N0(β) and disth(x, y) > N0(β), it holds

Cx,y ≤ 4
9m

16
e−

m
4

(dist
Z2 (x,y)−1) .

Hence:

〈
(∆transl.)

2
〉h
Λ
−
(
〈∆transl.〉hΛ

)2 ≤ 4
9m

16|Λ|2
∑

x,y∈Λ
x 6=y

e−
m
4

(dist
Z2 (x,y)−1) + 1−ϕΛ,Λ,N0(β) ,

where we set

ϕΛ,Λ′,N0 :=
#{(x, y)∈Λ×Λ′ | disth(x, ∂Λ) ∨ disth(y, ∂Λ

′) ∨ disth(x, y)>N0}
|Λ| |Λ′| .

Now observe that

ϕΛ,Λ,N0 ≥ min
L,L′ maximal
horiz. lines of Λ

ϕL,L′,N0 ≥ min
L,L′ maximal
horiz. lines of Λ

(|L| − 2N0) (|L′| − 4N0)

|L| |L′|

≥
(

1− 2
N0

N

)(
1− 4

N0

N

)
,

hence 1− ϕΛ,Λ,N0 ≤ N0/N (6− 8N0/N) . And on the other hand:

∑

x,y∈Λ
x 6=y

e−
m
4

(dist
Z2 (x,y)−1) ≤ |Λ|

∑

x∈Z2

x 6=0

e−
m
4

(dist
Z2 (x,0)−1) =

= |Λ|
∑

d≥1

4d e−
m
4

(d−1) = |Λ| 4

(1− e−m
4 )2

.

7.4 Appendix: 1D systems

Consider a finite line L, that is a finite connected sub-lattice of Z. Consider

a monomer-dimer model on L given by the following partition function:

ZL =
∑

α∈DL

e−βHL(α) eIl(αxl
) eIr(αxr ) .

DL denotes the set of monomer-dimer configurations on L (allowing also exter-

nal dimers at the endpoints of L); the Hamiltonian is defined as

HL =
µh + J

2
#

{
sites of L with

monomer

}
+
J

2
#

{
sites of L with dimer but neigh-

bor to monomer in L

}
.



Chapter 7. A liquid crystal model on the 2D-lattice 159

xl, xr denote the left and the right endpoint of L respectively; Il, Ir represent the

interaction among the configuration on L and the boundary condition outside

its endpoints.

This one-dimensional system can be described by a transfer matrix T over

the three possible states of a site, l ≡“left-dimer”, r ≡“right-dimer”, m ≡“monomer”:

T ≡




T (l, l) T (l, r) T (l,m)

T (r, l) T (r, r) T (r,m)

T (m, l) T (m, r) T (m,m)


 :=




0 1
√
ab

1 0 0

0
√
ab a


 , (7.85)

where to shorten the notation we set
√
a := e−β

µh+J

4 the transfer contribution

of a monomer19,
√
b := e−β

J
2 the transfer contribution of a site with a dimer but

neighbor to a monomer. Two vectors are also needed to encode the boundary

conditions:

Bl ≡
(
Bl(l) Bl(r) Bl(m)

)
:=
(
eIl(l) eIl(r)

√
a eIl(m)

)
,

Br ≡




Br(l)

Br(r)

Br(m)


 :=




eIr(l)

eIr(r)

√
a eIr(m)


 .

(7.86)

Proposition 7.11. The partition function of the system rewrites as a bilinear

form:

ZL = Bl T
|L|−1Br . (7.87)

Proof. According to the previous definitions it is clear that for every configura-

tion α ∈ {l, r,m}|L|

1(α ∈ DL) e−βHL(α) =

=
√
a
1(α1=m)

T (α1, α2) T (α2, α3) . . . T (α|L|−1, α|L|)
√
a
1(α|L|=m)

.

19The transfer energy of a monomer is half the energy of a monomer because it appears

during two “transfers”.
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Therefore

ZL =
∑

α∈{l,r,m}|L|

Bl(α1) T (α1, α2) T (α2, α3) . . . T (α|L|−1, α|L|) Br(α|L|)

= Bl T
|L|−1Br .

Assume for the moment that the transfer matrix T is diagonalizable. De-

note by λ1, λ2, λ3 its eigenvalues and by E
(1)
r , E

(2)
r , E

(3)
r , E

(1)
l , E

(2)
l , E

(3)
l the cor-

responding right (column) eigenvectors and left (row) eigenvectors, normalized

so that E
(i)
l E

(i)
r = 1 for i = 1, 2, 3.

Corollary 7.12.

ZL =
∑

i=1,2,3

λ
|L|−1
i BlE

(i)
r E

(i)
l Br . (7.88)

Proof. Since we are assuming that T is diagonalizable, it holds T = P DP−1

where D is the diagonal matrix of eigenvalues, P is the matrix with the right

eigenvectors on the columns, P−1 has the left eigenvectors on the rows. Then

T |L|−1 = P D|L|−1P−1 and

Bl T
|L|−1Br = (Bl P )D|L|−1 (P−1Br) =

3∑

i=1

(BlE
(i)
r )λ

|L|−1
i (E

(i)
l Br) .

Now our purpose is to diagonalise the transfer matrix T when β is large.

Proposition 7.13. For all β > 0 the transfer matrix T is diagonalizable over

R. Its eigenvalues are

λ1 = 1 +
ab

2
(1 + o(1))

λ2 = −1 +
ab

2
(1 + o(1))

λ3 = a− ab− a3b (1 + o(1))

(7.89)

as β →∞ .
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Proof. The eigenvalues λ1, λ2, λ3 are the (complex) roots of the characteristic

polynomial of T , that is

p(λ) := det(λI − T ) = −ab+ (λ− a)(λ2 − 1) .

For all β > 0 it turns out that p has 3 distinct real roots20, hence T is diago-

nalizable over the reals.

As β → ∞, p(λ) → λ(λ2 − 1) hence λ1 → 1 , λ2 → −1 , λ3 → 0 . Thus it

is convenient to write λ1 = 1 + ε1 , λ2 = −1 + ε2 , λ3 = a + ε3 with εi → 0

as β → ∞ for i = 1, 2, 3. Now expand the polynomial p in powers of εi and

truncate it at the first order:

0 = p(λ1) = −ab+ (1− a+ ε1) (2ε1 + ε2
1) = −ab+ 2ε1 (1 + o(1))

⇒ ε1 =
ab

2
(1 + o(1)) ;

0 = p(λ2) = −ab+ (−1− a + ε) (−2ε2 + ε2
2) = −ab+ 2ε2 (1 + o(1))

⇒ ε2 =
ab

2
(1 + o(1)) ;

0 = p(λ3) = −ab+ ε3

(
(a+ ε3)

2 − 1
)

= −ab− ε3 (1 + o(1))

⇒ ε3 = −ab (1 + o(1)) .

In order to find the following order of λ3, now one can write λ3 = a−ab (1+ ε′3)

with ε′3 → 0 as β →∞ and repeat the procedure:

0 =
p(λ3)

−ab = 1 + (1 + ε′3)
(
a2 (1 + o(1))− 1

)
= a2 (1 + o(1))− ε′3 (1 + o(1))

⇒ ε′3 = a2 (1 + o(1)) .

20The discriminant of the cubic is ∆ = 18a(1−b) + 4a2(1−b) + a2 + 4− 27a2(1−b), which

is strictly positive for all 0 ≤ a, b ≤ 1, (a, b) 6= (1, 0).
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Proposition 7.14. The right eigenvectors of the transfer matrix T are

E(1)
r =

1√
2




1− a
2
(1 + o(1))

1− a
2
(1 + o(1))

√
ab (1 + o(1))




E(2)
r =

1√
2




1 + a
2
(1 + o(1))

−1− a
2
(1 + o(1))

√
ab (1 + o(1))




E(3)
r =




−a
√
ab (1 + o(1))

−
√
ab (1 + o(1))

1 + a (1 + o(1))




(7.90)

and moreover

E(2)
r (1) + E(2)

r (2) +
√
abE(2)

r (3) =
ab

2
√

2
(1 + o(1))

E(3)
r (2) +

√
abE(3)

r (3) = −a2
√
ab (1 + o(1))

as β → ∞. The left eigenvectors are obtained by a simple transformation:

E
(i)
l = σ

(
E

(i)
r

)
for i = 1, 2, 3, where

σ




v1

v2

v3


 :=

(
v2 v1 v3

)
.

Proof. The right eigenvectors Er associated to the eigenvalue λ are the non-zero

solutions of the linear system

(λI − T )Er = 0 ⇔ Er =




λ(λ− a)
λ− a
√
ab


 t , t ∈ R .

And the left eigenvectors El associated to the same eigenvalue λ are the non-zero

solutions of the linear system

El (λI − T ) = 0 ⇔ El =
(
λ− a λ(λ− a)

√
ab
)
t , t ∈ R .
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The desired normalization ElEr = 1 can be obtained by choosing

t =
√

2λ(λ− a) + ab

in both cases. Now to conclude the proof it is sufficient to exploit the estimates

of the eigenvalues given by the proposition 7.13.

The formula (7.88) together with the estimates of propositions 7.13, 7.14 give

us a complete control on the one-dimensional system on L at low temperature,

for every choice of the boundary conditions.

We concentrate on providing an estimation of the quantity RL defined by

(7.38), since it is needed in the section 7.1. We have to distinguish three cases,

according to where the endpoints of L lie.

Lemma 7.15. The ratios of the eigenvalues of the transfer matrix T are

λ2

λ1

= −1 + ab (1 + o(1)) ,
λ3

λ2

= −a + ab (1 + o(1))

as β →∞. In particular setting m := − log
∣∣λ2/λ1

∣∣ it holds

e−m = 1− e−β
µh+3J

2 (1 + o(1)) as β →∞ . (7.91)

Proof. It follows immediately from the proposition 7.13.

Lemma 7.16. If xl ∈ ∂ext
r Sj, then as β →∞

BlE
(1)
r =

√
b√
2

(1 + o(1))

BlE
(2)
r = −

√
b√
2

(1 + o(1))

BlE
(3)
r =

√
a (1 + o(1)) .

If xr ∈ ∂ext
l Sj, then the same estimates hold for E

(1)
l Br , E

(2)
l Br , E

(3)
l Br respec-

tively.

Proof. If xl ∈ ∂ext
r Sj then by (7.36) and (7.86) the vector describing the bound-

ary condition on the left side of the line L is Bl =
(
0
√
b
√
a
)

. Then the es-

timates for BlE
(i)
r , i = 1, 2, 3, are computed using the proposition 7.14.
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Lemma 7.17. If xl ∈ ∂lΛ, then as β →∞

BlE
(1)
r =






1√
2

(
1− a

2
(1 + o(1))

)
if the h-dimer on xl−(1, 0) has fixed position

√
2
(
1− a

2
(1 + o(1))

)
if the h-dimer on xl−(1, 0) has free position

BlE
(2)
r =





− 1√
2

(
1 + a

2
(1 + o(1))

)
if the h-dimer on xl−(1, 0) is fixed to the left

1√
2

(
1 + a

2
(1 + o(1))

)
if the h-dimer on xl−(1, 0) is fixed to the right

ab
2
√

2
(1 + o(1)) if the h-dimer on xl−(1, 0) has free position

BlE
(3)
r =





−a2
√
ab (1 + o(1)) if the h-dimer on xl−(1, 0) is fixed to the left

−a
√
ab (1 + o(1)) if the h-dimer on xl−(1, 0) is fixed to the right or free

If xr ∈ ∂rΛ, then the same estimates hold respectively for E
(1)
l Br , E

(2)
l Br , E

(3)
l Br

after substituting: xl−(1, 0) by xr+(1, 0) , “left” by “right” and “right” by “left”.

Proof. If xl ∈ ∂lΛ then by (7.36) and (7.86) the vector describing the boundary

condition on the left side of the line L is: Bl =
(
0 1

√
ab
)

if a left-dimer

is fixed on xl− (1, 0); Bl =
(
1 0 0

)
if a right-dimer is fixed on xl− (1, 0);

Bl =
(
1 1

√
ab
)

if on xl−(1, 0) there is a h-dimer with free position. Then

the estimates for BlE
(i)
r , i = 1, 2, 3, are computed using the proposition 7.14.

Proposition 7.18. Denote by o(1) any function ω(β, µh, J) that goes to zero

as β → ∞ and does not depend on the choice of the line L nor on Λ. Then

for every line L ∈ LΛ(∪jSj), Sj ∈ SΛ pairwise disconnected, Λ ⊂ Z2 finite, it

holds

|RL| ≤ e−m|L| γL (7.92)
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where the quantity γL can be chosen as follows:

γL :=






(
e−βJ

2
+ e−β

µh+J

2
|L|
)

(1 + o(1)) if xl ∈ ∪i∂ext
r Si , xr ∈ ∪i∂ext

l Si

e−β J
2√

2
(1 + o(1)) if xl ∈ ∪i∂ext

r Si , xr ∈ ∪i∂rΛ

or vice versa xl ∈ ∪i∂lΛ , xr ∈ ∪i∂ext
l Si

1 + o(1) if xl ∈ ∂lΛ , xr ∈ ∂rΛ

(7.93)

Proof. • Suppose xl ∈ ∂ext
r Si and xr ∈ ∂ext

l Sj . The definition (7.38) and the

corollary 7.12 give

λ1RL =
ZL

λ
|L|−1
1

− BlE
(1)
r E

(1)
l Br

=

(
λ2

λ1

)|L|−1

BlE
(2)
r E

(2)
l Br +

(
λ3

λ1

)|L|−1

BlE
(3)
r E

(3)
l Br .

By the lemma 7.15 |λ3/λ1| ≤ a |λ2/λ1| when β is sufficiently large. Therefore,

using also the estimates of lemma 7.16, one finds

|RL| ≤
∣∣∣∣
λ2

λ1

∣∣∣∣
|L|−1(

b

2
+ a|L|

)
(1 + o(1)) .

• Suppose now xl ∈ ∂ext
r Sj and xr ∈ ∂rΛ . The definition (7.38) and the corollary

7.12 give

λ
1/2
1 RL =

ZL

λ
|L|−1
1 E

(1)
l Br

− BlE
(1)
r

=

(
λ2

λ1

)|L|−1
BlE

(2)
r E

(2)
l Br

E
(1)
l Br

+

(
λ3

λ1

)|L|−1
BlE

(3)
r E

(3)
l Br

E
(1)
l Br

.

By the lemma 7.15 |λ3/λ1| ≤ a |λ2/λ1| when β is sufficiently large. Therefore,

using also the estimates of lemmas 7.16, 7.17, one finds

|RL| ≤
∣∣∣∣
λ2

λ1

∣∣∣∣
|L|−1

√
b√
2

(1 + o(1)) .

• Suppose now xl ∈ ∂lΛ and xr ∈ ∂rΛ . The definition (7.38) and the corollary
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7.12 give

RL =
ZL

λ
|L|−1
1 BlE

(1)
r E

(1)
l Br

− 1

=

(
λ2

λ1

)|L|−1
BlE

(2)
r E

(2)
l Br

BlE
(1)
r E

(1)
l Br

+

(
λ3

λ1

)|L|−1
BlE

(3)
r E

(3)
l Br

BlE
(1)
r E

(1)
l Br

.

By the lemma 7.15 |λ3/λ1| ≤ a |λ2/λ1| when β is sufficiently large. Therefore,

using also the estimates of lemma 7.17, one finds

|RL| ≤
∣∣∣∣
λ2

λ1

∣∣∣∣
|L|−1

(1 + o(1)) .

7.5 Appendix: cluster expansion

In this Appendix we state the main results about the general theory of clus-

ter expansion used in this paper. The cluster expansion method permits to

rewrite the logarithm of the partition function of a polymer system as a power

series of the polymer activities. This expansion entails analyticity results and

simplifies considerably the study of the correlation functions, that can be ex-

pressed in terms of ratios of partition functions. Clearly the cluster expansion

cannot hold in general on the whole space of parameters: it converges only when

the polymer activities are small enough to compete with the entropy. A rigorous

study of the conditions of convergence dates back to [43, 50, 87], by means of

Kirkwood-Salsburg type of equations. In this paper we use a criterion proposed

by Kotecky and Preiss [68] in 1986. Afterwards this criterion was compared to

the previous ones, was improved and simplified in [21,33,38,76,96] (for a clear

and modern treatment we suggest for example the last work).

Let P be a finite set, called the set of polymers. Let % : P → C, called

the polymer activity, and δ : P ×P → {0, 1}, called the polymer hard-core
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interaction, such that δ(P, P ) = 0 and δ(P, P ′) = δ(P ′, P ) for all P, P ′ ∈ P.

Consider the polymer partition function:

Z :=
∑

P′⊆P

∏

P∈P′

%(P )
∏

P,P ′∈P′

P 6=P ′

δ(P, P ′)

=
∑

q≥0

1

q!

∑

P1,...,Pq∈P

q∏

t=1

%(Pt)
∏

t<s

δ(Pt, Ps) .

(7.94)

A family of polymers (P1, . . . , Pq) is called compatible if δ(Pt, Ps) = 1 for all

t 6= s ; otherwise it is called incompatible. Observe that in the partition function

Z only the compatible families of polymers give non-zero contributions.

A family of polymers (P1, . . . , Pq) is called a cluster if the graph with vertex set

{1, . . . , q} and edge set {(t, s) | δ(Pt, Ps) = 0} is connected.

Theorem 7.4. Suppose that there exists a : P → [0,∞[ , called size function,

such that the Kotecky-Preiss condition is satisfied, namely:

∑

P∈P

δ(P,P ∗)=0

|%(P )| ea(P ) ≤ a(P ∗) ∀P ∗∈P . (7.95)

Then:

logZ =
∑

q≥0

1

q!

∑

P1,...,Pq∈P

(
q∏

t=1

%(Pt)

)
u(P1, . . . , Pq) (7.96)

where the series on the r.h.s. is absolutely convergent and

u(P1, . . . , Pq) :=
∑

G=(V,E) connected graph

V={1,...,q}
E⊆{(t,s) | δ(Pt,Ps)=0}

(−1)|E| . (7.97)

Moreover, for all E ⊆P

∑

q≥0

1

q!

∑

P1,...,Pq∈P

∃ t:Pt∈E

∣∣∣∣
q∏

t=1

%(Pt)

∣∣∣∣ |u(P1, . . . , Pq)| ≤
∑

P∈P
P∈E

|%(P )| ea(P ) . (7.98)

It is worth to observe that if (P1, . . . , Pq) is not a cluster then u(P1, . . . , Pq) =

0. Therefore only the clusters of polymers (that are infinitely many) give non-

zero contributions to the expansion (7.96) of logZ.
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[99] L. Zdeborová, M. Mézard, “The number of matchings in random graphs”,

Journal of Statistical Mechanics 5, P05003 (2006)


	Introduction
	Statistical Mechanics
	Boltzmann-Gibbs measure
	Phase transitions
	Interactions and graphs
	A fundamental example: Ising models

	Monomer-dimer models
	Results obtained in this thesis


	Definitions and general results
	Pure hard-core interaction
	Hard-core and imitative interactions

	Hard-core interaction on the complete graph
	Proof of the convergence
	Appendix

	Hard-core and imitative interactions on the complete graph
	Solution of the model
	Study of the phase transition
	Analysis of the stationary points
	Coexistence curve
	Critical exponents

	Appendix: properties of the function g
	Appendix: critical exponents

	Law of large numbers, central limit theorem and violations
	Hard-core interaction on the complete graph
	Hard-core and imitative interactions on the complete graph
	Appendix

	Hard-core interaction on locally tree-like random graphs
	Preliminary results
	Solution on trees
	From trees to graphs
	Numerical estimates

	A liquid crystal model on the 2D-lattice
	Polymer representation
	Convergence of the cluster expansion
	Proofs of the liquid crystal properties
	Appendix: 1D systems
	Appendix: cluster expansion

	Acknowledgements
	Bibliography

