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Abstract

Many problems arising in several and different areas of human knowledge

share the characteristic of being intractable in real cases. The relevance of

the solution of these problems, linked to their domain of action, has given

birth to many frameworks of algorithms for solving them. Traditional solu-

tion paradigms are represented by exact and heuristic algorithms. In order

to overcome limitations of both approaches and obtain better performances,

tailored combinations of exact and heuristic methods have been studied,

giving birth to a new paradigm for solving hard combinatorial optimization

problems, constituted by model-based metaheuristics. In the present the-

sis, we deepen the issue of model-based metaheuristics, and present some

methods, belonging to this class, applied to the solution of combinatorial

optimization problems.
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1

Introduction

Let us start our exposition by considering the following three problems:

� a multinational company has to open new warehouses in a region, in order to

supply factories present in that region. Several sites are eligible to become a

warehouse. The company has to decide how many and in which sites warehouses

will be opened, in order to serve all factories with the smallest operating costs

associated;

� at the end of each month, in a ward of a hospital, shifts of nurses are established

for the following month. Since the timetable of nurses is not always sufficient for

covering the minimum of personnel presence in every shift, freelance nursing is

employed. The identification of the best assignment of shifts to nurses, in order

to reduce costs linked to the outsourced work, must be done;

� given an unknown DNA fragment, such a fragment must be sequenced, i.e. it

is necessary to find the order in which sequences of nucleotides appear in the

unknown DNA fragment. The sequencing by hybridization method, (Pevzner

and Lipshutz (169)), is one of the existing methods for DNA sequencing. If no

experimental errors occur during hybridization, reconstructing the DNA sequence

can be done in polynomial time, (Pevzner (168)). If experimental errors occur

during hybridization, the reconstruction becomes a difficult problem, (see Caserta

and Voß (61), Caserta and Voß (63) and Blum et al. (47) for some solution

methods for this problem).

1



1. INTRODUCTION

In spite of their different areas of knowledge and domain, the three presented prob-

lems have a common issue: these problems are all very difficult to solve in practice on

nontrivial instances. They represent examples of hard COPs. Many other examples

of hard COPs can be brought to the attention, each of them emerging from various

areas of expertise. All of them share the peculiarity of being difficult to treat, since the

nature of all these problems requires to treat NP-hard subproblems; this condition is

independent of the particular scope of the problem itself.

Several approaches have been developed and studied for the solution of COPs; they

can be classified in two general categories: exact and heuristic methods.

Exact methods take their origins from the field of Operations Research. They

guarantee to find an optimal solution for COPs and to prove its optimality for every

instance of the considered problem; however, because of the high increase of run time

with respect to the size of instances to be solved, the applicability of these methods is

often limited to small-size instances or instances having particular properties known a-

priori. On the other side, heuristic algorithms adopt an opposed approach with respect

to exact methods. Knowing the intrinsic hardness in solving real world instances of

COPs, heuristics renounce to the aim of identifying an optimal solution, focusing on

determining feasible solutions, having a “good” quality and computable in a reasonable

time.

Both the exact and heuristic approaches have their strengths and weaknesses. The

exact methods guarantee to identify the optimal solution of a COP, but real-world

instances have, often, a prohibitive size, that makes them intractable for these methods,

because of the high increase of run time. The heuristics do not guarantee to find the

optimal solution, but they are able to identify good quality feasible solutions for the

treated COP, in a reasonable run time. Current research within the field of the solution

of hard COPs is more and more concentrating its efforts on the integration of exact

and heuristic methods, with the aim of exploiting the strengths of both the approaches,

in such a way to cancel the weaknesses of both. The term model-based metaheuristics

comes from this idea, i.e. the idea of designing heuristic methods aware of mathematical

programming features, able to exploit these elements to improve the state of the art

for the treated problems.

The developed thesis is situated in the context of the model-based metaheuristics,

treating the application and the design of model-based metaheuristics for solving hard

2



COPs, both from a theoretical and practical point of view. The present thesis is struc-

tured in five main chapters. In chapter 2 we made a survey of the state of the art

of model-based heuristics, presenting a classification of these approaches and reporting

several works from the literature in the field. In chapter 3 we propose a Lagrangean col-

umn generation heuristic for solving the CVRP; the heuristic is able to produce both a

valid lower bound and a feasible solution for the treated CVRP instances, hence provid-

ing a procedure to preliminarily evaluate the quality of the identified feasible solutions.

In chapter 4 we study the parameter tuning problem, applied both to a Lagrangean

heuristic and to an ILS, for solving, respectively, instances of CVRP, VRPTW and

QAP. In the chapter we define the problem of identifying the best tuning of optimiza-

tion methods, introducing some algorithms designed to treat this kind of problem. We,

then, introduce the Lagrangean heuristic we developed to solve both the CVRP and

the VRPTW, detailing the problem of its tuning to obtain better quality valid lower

bounds for the treated instances. We, then, introduce the ILS paradigm, detailing the

problem of its tuning to find the best quality possible solutions for instances of QAP. In

chapter 5 we treat a real-world problem, encountered in the context of the management

of a warehouse of tiles, located in Thailand. The treated problem asks to build a model,

able to predict the duration of the queues of work for the resources operating within

the warehouse. We designed a heuristic method, able to simulate the daily working

of the resources of the warehouse, with the aim of producing a scenario in which the

duration of the queues of work is minimized, through the maximization of the use of all

available resources of the warehouse. In chapter 6 the conclusions of the exposed thesis

can be found. After the references to the related works from the literature, appendices

A.1 and B.1 can be found, in which the detailed computational results related to the

designed approaches are reported.

3
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2

Model-based Heuristics: state of

the art

2.1 The context

The combination of heuristics and exact methods in optimization has a very long his-

tory; this is not a recent phenomenon. There been no separation of heuristics re-

searchers from exact methods researchers either. One of the classic examples is mixed-

integer linear programming, in which most algorithms are essentially some combinations

of heuristics (e.g. for branching variable selection, for node selection etc.) within an

overall exact branching structure that guarantees to find the optimum solution. How-

ever, during the last years, the combination of exact and heuristic methods has gone

towards a deep exploitation of features derived from the mathematical model of the

problem to be solved; this has led to the use of algorithms originally designed for ex-

actly solving problems within heuristic contexts. Boschetti et al. (54) introduce a new

word, named matheuristics to define a relatively new class of optimization algorithms

combining metaheuristics with MP techniques. Sometimes also the term hybrid meta-

heuristics is used to identify matheuristics: in fact, they represent to all effects hybrids

of exact and metaheuristic algorithms. But it is necessary to point out that hybrid

metaheuristics encompass a wider set of methods, counting also other non-pure meta-

heuristic approaches, like combinations of metaheuristics with other metaheuristics.

During the last years, several approaches that can be classified as matheuristics have

been proposed to solve optimization problems; a huge variety of applications character-

5



2. MODEL-BASED HEURISTICS: STATE OF THE ART

izes the action of these methods. Many scientific papers and international workshops

have been devoted to this topic. Contributions given to this area are manifold and can

be classified in several manners, depending on the point of view adopted in analyzing

interactions between MP and heuristic components. We classify matheuristics in three

main classes, as shown in figure 2.1.

Figure 2.1: Classification of matheuristics

The structure of this chapter reflects the analysis of this classification; section 2.2

reviews approaches in which MP techniques are subordinate to metaheuristics, section

2.3 reviews methods in which metaheuristics are dependent on MP, while section 2.4 re-

views collaboration approaches between MP and metaheuristics. Interesting collections

about the topic of matheuristics have been also presented by Blum et al. (48), Boschetti

and Maniezzo (53), Puchinger and Raidl (180), Raidl and Puchinger (184).

2.2 MP subordinate to metaheuristics

A huge part of the contributions given to the field of matheuristics consists in using

MP, especially MIP components, for strengthening metaheuristic frameworks. In this

context the contribution of MP is fundamental for the functioning of metaheuristics,

because several elements of metaheuristics, (e.g. the definition of neighborhoods, the

solution of emerging subproblems or the definition of whole heuristic frameworks) rely

on MP components. We identified several research directions in this field. Following

subsections review each one of these directions, discussing some examples from the

literature. Interesting reviews about the integration of MP into heuristics can be found

in Dumitrescu and Stützle (102, 103).
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2.2.1 MP for neighborhood definition

This subsection presents some examples of matheuristics that use MP components to

deal with the definition of neighborhoods. Local search is a very important part of

heuristic methods, because it can improve the quality of feasible solutions; it relies on

the exploration of a neighborhood; the larger the neighborhood the more the chances of

finding improving good quality feasible solutions. The basic idea of using MP techniques

for neighborhoods is that of defining large neighborhoods and use MP methods to

explore them. In many cases, e.g. for MIP, this means defining neighborhoods that

can be represented as MIP models and exploring them using a generic MIP solver.

We can identify two mainstreams in this field: some approaches mainly rely on

well-known metaheuristics and use MP components to explore a particular customized

large neighborhood. Other methods, instead, can be defined as new local searches,

in that the MP contribution is the base for their internal functioning, giving birth to

new local search approaches. In the following five subsections we report new local

search methods, i.e. Very Large Neighborhood Search, Dynasearch, Local Branching,

Corridor Method and variable fixing-based algorithms. In the last subsection we show

some works from the literature that mainly rely on metaheuristics, (e.g. Tabu Search),

and use exact components for exploring a customized neighborhood.

2.2.1.1 Very Large Neighborhood Search

Ahuja et al. (12) introduced VLNS as a paradigm for performing local search proce-

dures, in which MIP techniques are used to define and explore neighborhoods. Local

search algorithms produce better solutions when they explore large neighborhoods; but,

because of the necessary explicit enumeration of neighboring solutions, the exploration

of the whole large neighborhood can be very time consuming and, hence, the time to

get a local optimum can be very long. The larger the neighborhood, the higher the

time to explore it. To overcome this situation, VLNS avoids the explicit exploration

of neighboring solutions, (that represents a waste of time), defining nonetheless neigh-

borhoods whose size grows exponentially with the problem dimension, (because this

permits to obtain better local optima); the explicit exploration of the neighborhood is

possible if the neighborhood exploration can be defined as a combinatorial optimization

problem itself.
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An approach developing a VLNS has been presented by De Franceschi et al. (85)

for solving a Distance-Constrained CVRP. The proposed method is an elaboration of

a refinement procedure proposed by Sarvanov and Doroshko (194). In their work Sar-

vanov and Doroshko (194) defined the neighborhood of a given solution by all possible

ways a set of removed customers can be reinserted in the solution itself. De Franceschi

et al. (85) developed a so called SERR algorithm. This is a local search algorithm in

which the neighborhood is defined by extracting a subset of customers, recombining the

order of visit through the creation of new sequences and reallocating them in the partial

solution to form a feasible, and hopefully, better solution. The reallocation problem

has been modeled by the authors as a set partitioning problem, in which it is necessary

to assign each sequence of customers to one feasible insertion point. CPLEX optimizer

has been used to find an almost-optimal integer solution for the reallocation model.

Computational results showed that SERR is able to improve results for instances of

Distance-Constrained CVRP in 22 out of 32 cases w.r.t. results reported by Gendreau

et al. (116). A similar approach in the context of the Open VRP has been presented

by Salari et al. (192). Hewitt et al. (131) proposed an IP-based local search scheme for

solving a Capacitated Fixed Charge Network Flow Problem, where IP is used to search

large neighborhoods; the neighborhood is defined according to the arc-based formula-

tion of the problem by choosing a subset of variables in the formulation, fixing the value

of all remaining variables and solving the resulting restricted model with an IP solver.

Computational results compared the proposed method against other heuristics for the

same problem, like the cycle-based TS by Ghamlouche et al. (117) and path-relinking

by Ghamlouche et al. (118); results showed the better performances obtained by the

proposed IP-based local search method. Other promising results for large neighbor-

hood search have been presented by Copado-Méndez et al. (77), where faced problems

dealt with supply chain management. The large neighborhood here defined consists in

fixing a subset of variables in the mathematical model of the problem and solving the

resulting model. Computational results of the large neighborhood have been compared

against the B&C algorithm of CPLEX; results showed that large neighborhood is able

to produce near optimal solutions in a fraction of time w.r.t. the B&C method of

CPLEX, and also its capability of identifying feasible solutions even in those cases in

which CPLEX fails to converge. Chiarandini et al. (67) presented a DP algorithm for

exploring a large neighborhood defined for treating the Graph Colouring Problem (see
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Allen et al. (14), Barnier and Brisset (34), Lewandowski and Condon (146)); the neigh-

borhood is called cyclic exchange and is composed by all solutions that can be obtained

by changing colors to elements in a cyclic manner. Computational results executed on

some instances from (4) demonstrated the better quality of final solutions obtained by

the large neighborhood w.r.t. other local search procedures. Pirkwieser and Raidl (172)

proposed a VNS (Hansen and Mladenović (128), Mladenović and Hansen (160)) inte-

grating several large neighborhoods for treating a location routing problem. Numerical

results executed on instances from (10) showed the effectiveness of the enhanced VNS

w.r.t. the state of the art. Another interesting application of VLNS has been presented

by Manerba and Mansini (154) for solving a supplier selection problem. The authors

present a MILP local search method for solving this problem. Promising results of the

proposed method against a greedy procedure by Manerba and Mansini (153) were ob-

tained in treating a set of real-world instances: the average gap of solutions obtained by

the MILP local search method w.r.t. the optimal solution of such real-world instances

corresponds to 0.09%, while the average gap of the greedy heuristic is larger than 36%.

Other interesting large neighborhood approaches have been presented by Ahuja et al.

(13), Roli et al. (190), Santos et al. (193), Schmid et al. (197).

2.2.1.2 Dynasearch

Another paradigm for performing local search is represented by Dynasearch (Congram

et al. (75)). Dynasearch wants to overcome defects of traditional local search methods,

(i.e. entrapment in local optima), by allowing several local search moves of a certain

type to be made in a single iteration; this permits to define a larger neighborhood,

that will be explored in polynomial time through dynamic programming algorithms

with the aim of identifying the best sequence of moves to be performed. Although

the idea of exploring exponential size neighborhoods was not new, (see Carlier and

Villon (59), Sarvanov and Doroshko (195)), the authors underlined how Dynasearch is

innovative, since the other methods that use dynamic programming for searching large

neighborhoods, (e.g. Balas (27), Balas and Simonetti (28), Carlier and Villon (59), Sar-

vanov and Doroshko (195)), do not explore them by considering multiple moves in one

iteration. The authors proposed a computational study of Dynasearch for solving the

Single-Machine Total Weighted Tardiness Scheduling Problem, where Dynasearch uses

a swap neighborhood; the recursion of dynamic programming defines a set of states (k,
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σ), each one representing the minimum total weighted tardiness for partial job sequence

σ(1),...,σ(k). Computational results executed on instances from Crauwels et al. (80)

revealed how Dynasearch performs better in terms of solution quality w.r.t. other local

search heuristics, one of which is a TS proposed by Crauwels et al. (80). Grosso et al.

(125) presented an enhanced Dynasearch neighborhood for the same problem tackled

by Congram et al. (75); the new neighborhood is based on the work of Congram et al.

(75) and includes the usage of other operators for the exploration. Computational re-

sults showed the effectiveness of the enhanced neighborhood w.r.t. results presented

by Congram et al. (75).

2.2.1.3 Local Branching

Like VLNS and Dynasearch, LB represents a general framework for performing local

search; it was introduced by Fischetti and Lodi (110). LB is a local search method in

which the neighborhood of an incumbent solution is defined through the introduction

of linear inequalities in the mathematical model of the problem to be solved; the in-

equalities are called local branching cuts. These cuts represent soft fixing constraints

for the variables of the model, imposing that only a predefined number of variables

can change their value; the neighborhood defined in this way corresponds to a k -opt

neighborhood, that has to be solved to optimality through the use of a MIP solver, e.g.

CPLEX. The solver is used to optimize the original mathematical model of the problem

enriched by local branching cuts, exploring, in this way, the defined neighborhood. The

nature of LB is exact, even if it is designed to improve the heuristic behavior of MIP

solvers. The introduction of branching cuts defines a tree of mathematical models; at

each node of this tree, a MIP solver is used to explore the neighborhood defined at

the node and find a possible improving incumbent solution. The aim of LB is that

of favoring early updatings of incumbent solutions, producing in this way improved

solutions at early stages of the computation. Given its exact nature, the qualities of

LB have been assessed against the usage of CPLEX optimizer. Computational results

executed on 7 instances from MIPLIB 3.0 and 22 hard instances from several authors

showed that LB obtained better results in 23 out of 29 instances, demonstrating its

effectiveness as general-purpose heuristic for MIPs. A successful application of LB has

been presented by Rodŕıguez-Mart́ın and José Salazar-González (189), where the au-

thors used LB technique to solve a Capacitated Fixed-Charge Network Design Problem.
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Computational results compared LB heuristic against a cycle-based TS by Ghamlouche

et al. (117), a path relinking procedure by Ghamlouche et al. (118) and a multilevel

cooperative TS by Crainic et al. (79); the comparison showed better performances for

the proposed LB approach. A variant of VNS relying on LB has been presented by

Fischetti et al. (112) for a FLP; the algorithm, called Diversification, Refining and

Tight-refining, proved to be particularly appropriate for MIPs in which the set of bi-

nary variables can be separated in two subsets (levels), where, if first level variables

are fixed, an easier subproblem is produced with the second-level variables. The refin-

ing phase consists in almost fixing the first-level variables to their value in the current

solution; this is realized through the addition of a branching cut to the current MIP;

a MIP solver is then used to optimize the model. If the model is not solved to proven

optimality, the tight-refining phase comes, in which also the second-level variables are

limited in their variations by the addition of other branching cuts to the model. The

diversification phase is responsible for diversifying the search through the addition of

another branching cut related to first-level variables. Computational results showed

very good performances for the presented approach w.r.t. other heuristics proposed for

solving the same problem. Liberti et al. (147) presented a method combining LB and

VNS with B&B and sequential quadratic programming to obtain an algorithm called

RECIPE for general mixed integer nonlinear programming. Other applications of LB

can be found in the following papers by Acuna-Agost et al. (11), Hansen et al. (129).

For a review of LB we refer to the work by Fischetti et al. (113).

2.2.1.4 Corridor Method

Another framework for dealing with the problem of defining effective neighborhoods is

represented by the CM, proposed by Sniedovich and Voß (199). This is a local search

method in which the structure of the neighborhood is defined according to the method

M that will be used to explore it, be it a MIP solver, DP, etc. The method M can

effectively explore the neighborhood; this is achieved through the addition of exogenous

constraints on the original problem, that define a sort of corridor around an incumbent

solution. The corridor identifies the neighborhood and the employed solver is forced

to move along it. Caserta et al. (65) proposed an application of the CM to address

a blocks relocation problem. An initial collection of stacks of blocks and a pickup

sequence for blocks are given; blocks have to be picked up following the given sequence.
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If there are other blocks above the block that has to be picked up, a pickup operation

involves the relocation of these blocks in other stacks. The blocks relocation problem

requires to find the relocation pattern for each pickup operation such that the number

of future relocation moves for blocks is minimized. The authors define a DP recursion

that identifies all possible relocation configurations that can be generated following the

known pickup sequence. Because of the exponential growth of the number of possible

states, the CM is applied to the DP recursion; the corridor imposes limitations in the

number of stacks to be considered when relocating a block and in the maximum number

of blocks per stack. The proposed method has been compared with the code developed

by Kim and Hong (138) for the same problem; computational results were given for two

sets of random generated instances, small-medium and large-scale instances. Results

showed that the proposed CM approach is effective in finding optimal solutions in short

computational time, (for small-medium size instances), and in improving the quality of

solutions, (for large-scale instances). Applications of the CM for treating the problem

of DNA sequencing have been proposed by Caserta and Voß (61) and Caserta and Voß

(63); in both these papers, the problem is modeled as an OP (210). The peculiarity of

CM implemented by Caserta and Voß (61) is the capability of adapting the width of the

corridor basing on the presence of improving solutions in the examined neighborhood: if

an improving solution is found in the neighborhood, the incumbent solution is updated

and a new corridor is defined around this new solution. Otherwise, the width of the

corridor is widened, in the hope of finding improving solutions. The corridor is formally

defined by the addition of an inequality to the mathematical model of the OP, with

a parameter that defines the width of the corridor. This method has been tested on

a benchmark of 320 instances from Blazewicz et al. (46), demonstrating of being able

to find optimal or near-optimal solutions for all instances w.r.t. the state of the art.

Other applications of the CM have been presented by Caserta et al. (64) and Caserta

and Voß (60).

2.2.1.5 Variable fixing frameworks

In previous subsections, we examined local search frameworks that define large neigh-

borhoods as optimization problems themselves, and solve neighborhood exploration

using exact methods. Often the definition of the neighborhood relies on soft fixing of

variables, i.e. the local search framework forces some variables to change their value
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without specifying what variables must do so, (e.g. LB). There are also some approaches

that make a hard fixing of variables, i.e. the method identifies specific variables that

are forced to change their value. In this subsection, some examples of local search

frameworks using hard variable fixing will be summarized.

Danna et al. (82) introduced a new local search method, called RINS. As its name

suggests, the structure of the neighborhood defined by RINS is induced by information

contained in the continuous relaxation of the MIP model of the problem. If we consider

a generic node of a B&C tree, it is possible to have two important information: the

solution of the continuous relaxation at that node and the corresponding incumbent

feasible solution. The basic idea of RINS is that of fixing values for variables that have

the same ones both in the incumbent and in the relaxed solution while optimizing on

the remaining variables; this variable fixing procedure defines the neighborhood, that

will be explored through a MIP solver. Computational results to assess qualities of

RINS approach have been executed by considering LB, modified w.r.t. Fischetti and

Lodi (110) to work in the same way as RINS, i.e. as a heuristic within a MIP tree.

Results obtained on difficult MIP models showed that RINS outperforms LB both in

generating good feasible solutions and in faster solving the neighborhood exploration. A

pre-processing technique for RINS has been proposed by Gomes et al. (124); it consists

in searching for the ideal number of variables to be fixed for producing subproblems of

controlled size.

Another framework in which neighborhood definition is based on hard variable fixing

procedures is VILS; the method has been presented by Mitrović-Minić and Punnen

(159) and it represents a local search framework for solving MIPs. The neighborhood

of a given solution x is defined according to a so called binding set ; this is a subset of the

whole set of variables, in which the value of each variable is fixed to the corresponding

value in the current solution. The definition of the binding set corresponds to the

definition of the neighborhood. The exploration of the neighborhood is made by a

generic MIP solver that optimizes on the remaining non-fixed variables. Hence, the

general framework of VILS consists in varying in a tailored way the neighborhood, i.e.

varying the dimension of the binding set, in such a way that it is possible to change

neighborhood dimension. Initially, the size of the binding set is large with small search

times for the MIP component; successively, VILS permits to intensify the local search
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by decreasing the size of the binding set and increasing the time for MIP to explore

the neighborhood.

A general heuristic framework for solving 0-1 MIPs has been proposed by Lazić

et al. (142). The method is a two-level heuristic; the first level is based upon a VNS-

like algorithm, in which hard fixing of variables is made to define the neighborhood.

After having optimized on the remaining variables, if an improving solution is found,

the second-level of optimization takes place through a VND procedure, that adds new

constraints to the formulation of the problem to explore only some parts of the solution

space. The proposed heuristic has been tested on the same instances used by Fischetti

and Lodi (110). The method has been compared against the following algorithms:

Variable Neighborhood Search Branching, (Hansen et al. (129)), LB, (Fischetti and Lodi

(110)), RINS and the usage of CPLEX MIP solver. Computational results showed that

the proposed framework is very competitive with other algorithms; it is able to improve

solutions in 8 cases out of 29. Moreover, the proposed algorithm is able to reach the best

solution results among all the other methods in 16 out of 29 cases, whereas the RINS

heuristic obtains the best result in 12 cases, Variable Neighborhood Search Branching

in 10 cases, CPLEX alone in 6 and LB in 2 cases. An extension of the approach

proposed by Lazić et al. (142) can be found in the paper of Maraš et al. (156), where

the applicability of the 0-1 heuristic is extended to general integer variables. Another

example of variable fixing heuristic can be found in the work proposed by Perboli et al.

(167) applied for solving a Two-Echelon CVRP.

2.2.1.6 MP for improving local search in metaheuristics

In this subsection, metaheuristics using MP for ameliorating local search procedures

will be reviewed. Table 2.1 summarizes some of these approaches; for each paper, the

name of its authors, the tackled problem and the adopted hybrid solution method are

identified.

Many heuristics like TS, (Glover and Laguna (121)), VNS and GAs (Reeves (185))

gain benefits from MP techniques in performing local search, both in terms of quality

of obtained solutions and in terms of computational efficiency.

For example, Yaghini et al. (215) presented a neighborhood based on a CP procedure

combined with TS for solving a capacitated p-median problem. The neighborhood of a

given solution is defined by the closure of an open median. Its exploration is made by
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solving the Linear Programming (LP) model generated from the original one by relaxing

integer constraints; CP inequalities are added to the relaxed model to strengthen it.

The solution of this strengthened LP is considered as the best neighboring solution.

The proposed method has been compared against the B&P by Ceselli and Righini (66);

results showed that the proposed TS enhanced by the CP neighborhood obtains better

performances w.r.t. Ceselli and Righini (66) in terms of solution quality. Ngueveu

et al. (162) proposed to use the solution of a b-matching problem, (Edmonds (104)),

for defining the candidate list of a TS method addressed to solve an m-peripatetic VRP;

the list is composed by the set of unused edges that are in the solution of b-matching.

Computational results executed on classic instances of VRP and TSP showed that the

hybridized TS performs better than simple TS.

Hu et al. (134) presented a hybridization of VNS and ILP to solve the Generalized

MSTP. VNS makes use of a VND procedure that combines three different neighbor-

hoods; one of these is a Global Edge Exchange neighborhood, that makes use of a DP

procedure to explore the corresponding neighborhood. Another one is called Global

Subtree Optimization neighborhood and it is explored via MIP. Several computational

tests have been performed to assess the quality of the proposed VNS method. Com-

parisons were made considering approaches proposed by Ghosh (119), Golden et al.

(122), Pop (178); results showed that the presented VNS has performances equal or

significantly better w.r.t. other heuristics. Comparisons among the different neighbor-

hoods underlined how the DP component outperforms the other ones. Other works

adopting VNS approaches enriched by MIP to strengthen local search procedures have

been presented by Prandtstetter and Raidl (179), Strodl et al. (203), Walla et al. (214).

In the context of GAs and EAs, one of the most interesting investigated issues has

been the exact recombination of parents for finding the best possible offspring. This

problem represents to GAs and EAs what the problem of searching a large neighborhood

means to the previous seen heuristics, because, given a population of solutions, the

heuristic has to move to a new, possibly better, population using a recombination

operator. The topic of generating the best possible offspring given two parent solutions

represented by binary encoding has been theoretically treated by Eremeev (106); here

the author presents some polynomial and NP-hard cases of recombination problems.

Cotta and Troya (78) introduced the concept of dynastically optimal recombination,

that deals with the usage of the problem knowledge to identify the best combination
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of the features of the ancestors; a B&B method is used within an EA as operator

to explore the potential of recombined solutions. Several MIP-based recombination

operators have been presented in the literature. Borisovsky et al. (49) proposed a MIP-

based recombination operator integrated within a GA for solving a supply management

problem; the operator has the aim of finding the best possible combination of two given

parent genotypes, simulating the mutation process with the addition of a randomness

element; the recombination problem is modeled as a MIP problem in which all variables

with zero value in both parent genotypes are fixed, except for a random subset of such

variables. Computational results reported for the tackled problem indicated the validity

of the proposed recombination operator w.r.t. the greedy-based GA reported by the

authors in the same paper. Dolgui et al. (95) implemented a similar MIP-recombination

operator for solving a problem of balancing transfer lines with multi-spindle machines.

We mention another example of integration of an exact method within a GA proposed

by Flushing and Di Caro (114); here the problem of a relay placement for wireless sensor

networks has been tackled by a decomposition process, in which, at the top level, a GA

finds possible relay placements and a MILP solver, at the bottom level, computes the

optimal flow routing for the considered relay placement.

Other examples of hybrids between exact methods and heuristics can be found

in the context of ILS (Lourenço et al. (152)). Lopes et al. (149) treated a machine

reassignment problem. This problem was proposed in the Google ROADEF/EURO

Challenge (2012), requiring to find an alternative reassignment of processes to ma-

chines that optimizes the usage of machine resources w.r.t. the initial given assign-

ment. The authors implemented different versions of ILS; in particular, two of these

versions involved the usage of an IP component to perform the perturbation phase of

ILS. Computational experiments conducted on the proposed Google ROADEF/EURO

Challenge (2012) instances showed the superiority of the IP based perturbations w.r.t.

other ILS approaches and the high degree of competitiveness against other heuristics in

the literature, e.g. the one proposed by Masson et al. (157). Other examples of hybrid

ILS methods can be found in papers by Duarte et al. (98), Umetani et al. (212) for

solving, respectively, a referee assignment problem, (Duarte et al. (99)) and a cutting

stock problem.

ACO (Dorigo et al. (96)) framework has been hybridized with MP. An example

from the literature can be found in the paper by Reimann (187), in which the author
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proposed an ACO method for solving a Symmetric TSP, in which the visibility between

all pairs of customers is defined using information derived by the calculation of the

MSTP. MSTP and visibility information are computed before the beginning of ACO;

the structural information of the presence of arcs in MSTP is used for calculating the

attractiveness of each arc. Computational tests have been executed on some instances

from TSPLIB; comparisons of the proposed method against two algorithms presented

by Le Louarn et al. (143) showed that using MSTP information permits to obtain

solutions of better quality.

Other works from the literature hybridizing exact methods and heuristics have been

presented by Fernandes and Lourenço (108) and Cabrera G et al. (57). The authors of

the first paper tackled a JSSP integrating a B&B method within a GRASP, (Feo and

Resende (107)), to solve the scheduling related to one machine. The second paper deals

with a Capacitated FLP, where a hybrid Artificial Bee Algorithm (Pham et al. (170))

is used for solving it; the usage of a MIP solver is integrated within the Bee Algorithm

for providing the cost of each bee.

Table 2.1: Summary of hybrids subordinating MP to metaheuristics

Paper Application Solution approach

Yaghini et al. (215) capacitated p-median problem TS + CP

Ngueveu et al. (162) m-peripatetic VRP TS + perfect b-matching

Hu et al. (134) generalized MSTP VNS + MIP

Strodl et al. (203) 2-dimensional loading VRP VNS + MIP

Walla et al. (214) video-on-demand balancing problem VNS + MIP

Prandtstetter and Raidl (179) car sequencing problem VNS + ILP

Borisovsky et al. (49) supply management problem GA + MIP

Dolgui et al. (95) transfer line balancing problem GA + MIP

Flushing and Di Caro (114) relay node placement problem GA + MILP

Lopes et al. (149) machine reassignment problem ILS + IP

Duarte et al. (98) referee assignment problem ILS + MIP

Reimann (187) TSP ACO + MSTP

Fernandes and Lourenço (108) job shop scheduling problem GRASP + MIP

Cabrera G et al. (57) capacitated FLP Bee Algorithm + MIP
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2.2.2 MP for generating new heuristics

In the previous subsections examples of matheuristics that use MP components to deal

with the definition of neighborhoods were discussed. In this subsection hybrids of MP

and heuristic techniques will be summarized, in which the contribution of MP permits

to define new heuristic methods. When we speak about new heuristic methods we mean

that heuristics cannot be defined without the contribution of MP; this contribution is

given by the definition of the internal functioning of heuristics, that is derived from the

functioning of MP techniques.

Angelelli et al. (16) proposed a heuristic framework relying on MIP, called Kernel

Search (KS). KS works on the MIP formulation of the problem, in particular on the so-

lution of a so called kernel problem, that corresponds to the original problem restricted

to a subset of variables. The kernel problem is iteratively solved and its size is con-

tinuously increased by the addition of new variables. The initial kernel is established

using information provided by the solution of the continuous relaxation of the original

problem. After the initialization phase, the extension phase of the kernel takes place.

During this stage, the current kernel is enlarged by the addition of variables identified

by solving a sequence of small MIPs, i.e. MIPs restricted to the previous kernel plus a

set of variables determined by the previous treated MIP problem. By working in this

way, KS can be defined as a heuristic framework because some general steps of the

algorithm must be parameterized. Applications of KS have been presented by Angelelli

et al. (16) and Angelelli et al. (15) for, respectively, a portfolio selection problem and

a multi-dimensional knapsack problem.

Other examples of heuristics rooted in MP can be found in the literature. Meth-

ods such as Lagrangean and Dantzig-Wolfe decompositions have been considered and

reinterpreted so as to define new heuristic frameworks, (see Beasley (36)). Boschetti

and Maniezzo (50) and Boschetti et al. (52) revisited Benders decomposition, (Benders

(40)), Lagrangean relaxation and Dantzig-Wolfe decomposition, (Dantzig and Wolfe

(84)), focusing on the possibility to define general frameworks for metaheuristics from

the structure of these decomposition techniques. The interest of the authors in this

issue is moved from the consideration that metaheuristics are inspired from natural

phenomena and rarely from MP. This justifies the interest of the authors in investi-

gating this methodology and in showing how, even for a basic implementation of an
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MP-based metaheuristic, it is possible to obtain state of the art performances. To val-

idate these approaches, different classes of problems have been tackled by the authors,

in particular the Single Source Capacitated Facility Location, the Membership Overlay

and the Multi-Mode Project Scheduling. An application of a Lagrangean heuristic for

solving a traffic counter location problem has been presented by Boschetti et al. (55).

2.3 Metaheuristics subordinate to MP

In this section the usage of metaheuristics to help and improve exact algorithms is

considered. This area of matheuristic contributions has been less investigated than the

previous one; it represents a relatively little explored line of research in the field. The

usage of heuristics integrated in the context of MP techniques does not limit its power

in calculating tight bounds in order to strongly prune the search tree; in fact, it is

possible to consider integration policies in which metaheuristics help MP, for example,

in performing separation procedures or pricing operations. Table 2.2 reports some of

these approaches. An interesting review of the topic has been presented by Puchinger

et al. (182).

2.3.1 Metaheuristics for separation problems

One of the investigated issues regarding the internal functioning of B&C methods cor-

responds to the treatment of the separation problem, i.e. the problem of finding valid

inequalities to be added to the current model that are able to cut off the current in-

feasible linear solution. Augerat et al. (25) presented a first proposal for dealing with

the separation problem using metaheuristics. The authors presented a B&C algorithm

for solving the CVRP, where different heuristics are proposed to treat the problem

of separating capacity constraints, ranging from simple construction to TS. A similar

approach has been proposed by Gruber and Raidl (126) to solve a MSTP. Here the

separation procedure involves so called jump inequalities; because of the difficulty of

the separation problem, to speed up the computation, two construction heuristics are

applied to find initial partitions; they are improved by a local search and, in case no

violated jump inequalities have been found, by TS. Tricoire et al. (208) proposed a

hybrid approach using VNS to provide information for deriving subsets of constraints

for the mathematical model of a Multi-Pile VRP; computational results executed on
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small-sized instances derived from the dataset proposed by Doerner et al. (94) showed

how the hybrid B&C algorithm is able to find optimal solutions for instances with up

to 44 customers in less than 2 hours.

2.3.2 Metaheuristics for pricing problems and Benders decomposition

Another application of metaheuristics within the context of MP procedures can be

found in the field of B&P methods, (Barnhart et al. (33)); here an investigated issue

regarding the internal functioning of these algorithms involves the solution of the pricing

problem, i.e. the problem of identifying new columns to be added to the mathematical

model. A hybrid B&P method has been implemented by Puchinger and Raidl (181)

for solving a Bin Packing Problem; here, the pricing problem is tackled by a four level

hierarchy of pricing methods, composed by a greedy heuristic, an EA, the usage of

CPLEX to solve, first, a restricted model of the pricing problem and then the usage of

CPLEX for solving a complete IP model. Caserta and Voß (62) used a CM-inspired

scheme for the column generation phase of a Dantzig-Wolfe algorithm used to solve a

capacitated lot sizing problem. The authors reported preliminary computational tests

by comparing results obtained by Belvaux and Wolsey (39) and Degraeve and Jans

(87) on 6 instances taken from the test set used by Trigeiro et al. (209); results showed

the good performances of the proposed method w.r.t. the other compared approaches,

especially in terms of computational time. We refer also to the works by Ribeiro Filho

and Lorena (188) and dos Santos and Mateus (97) for other applications of heuristics

for the column generation phase.

Benders decomposition also benefits from metaheuristics. Rei et al. (186) focused

on the usage of LB for accelerating Benders decomposition. The advantages of this in-

tegration come from the capability of LB to find upper bounds for the problem at hand

and to derive different additional cuts before solving the Benders master problem. Com-

putational results for the Multicommodity Capacitated Fixed-Charge Network Design

Problem demonstrated benefits of this approach. Another integration of a metaheuris-

tic within Benders decomposition can be found in the work proposed by Poojari and

Beasley (177), where Benders decomposition is hybridized with a GA for solving MIP

problems.
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Table 2.2: Summary of hybrids subordinating metaheuristics to MP

Paper Application Solution approach

Augerat et al. (25) CVRP B&C + TS

Gruber and Raidl (126) bounded diameter MSTP B&C + TS

Puchinger and Raidl (181) bin packing problem Column Generation + EA

Ribeiro Filho and Lorena (188) graph coloring problem Column Generation + GA

dos Santos and Mateus (97) crew-scheduling problem Column Generation + GRASP

2.4 Cooperation between metaheuristics and MP

The definition of the word cooperation within matheuristics could not be well identified,

because all hybrids of MP and heuristic approaches include the coexistence of these two

paradigms. In the previous sections we examined some hybrid approaches that have a

common feature: one of the two methodologies, (MP or heuristics), is subordinate to

the other one. This means that the subordinated approach deals with performing some

“tasks” that could be done by the non-subordinated one, (just think about the neigh-

borhood exploration performed by MP procedures). Here we consider as cooperative

method a framework in which MP and heuristic procedures work “at the same level”,

i.e. it does not exist a methodology that invokes the other one to solve specific emerging

subproblems. In a cooperative approach it does not exist a method that works “as a

function of” the other one. On the contrary, MP and heuristics work independently

of one another, just computing on their own and interchanging information about the

solution ongoing process and exploiting these information to internally produce new

elements hopefully useful for the solution process.

Many contributions propose algorithms in which MP and heuristics are combined

in a cooperative manner. This section presents some contributions in this area; table

2.3 reports some of the approaches that will be presented in this section.

2.4.1 Iterative cooperative approaches

In this section hybrids of MP and heuristics that iteratively exchange information will

be reviewed. Here, the whole hybrid cooperative algorithm is an iterative method, in

which at each iteration the heuristic and MP techniques are executed, one after the

other, exchanging information about the solution ongoing process.
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Archetti et al. (22) and Chouman and Crainic (68) proposed hybrids between TS

and MIP in which the two methodologies iteratively exchange information. Archetti

et al. (22) dealt with an inventory-routing problem; their approach iteratively applies

TS to explore the neighborhood of the current solution; if a better solution is found,

a MIP improvement procedure is executed, in which, first, a new assignment of routes

to time periods and, second, a new assignment of customers to routes are searched for.

The authors tested their approach on instances by Archetti et al. (20) and computa-

tional results compared the hybrid TS with optimal and heuristic solutions provided,

respectively, by Archetti et al. (20) and Bertazzi et al. (42). The performance of the hy-

brid TS is very close to optimal results, i.e. the average gap is 0.06%, and the proposed

algorithm gains better results w.r.t. the heuristic proposed by Bertazzi et al. (42).

Other computational analysis were executed to assess the contribution of using both

MIP components instead of the use of only one of the two and none. Chouman and

Crainic (68) proposed an itarative method for solving a network design problem. Here

the cooperation between TS and MIP is based on the creation of a restricted model

that a MIP solver has to solve; the restricted model is created through variable fixing

procedures, that are guided by statistical information collected by TS during its exe-

cution. Benchmark instances by Ghamlouche et al. (117) and Hewitt et al. (131) were

used as test bed; the proposed hybrid method reveals its effectiveness w.r.t. path re-

linking procedure by Ghamlouche et al. (117) and the matheuristic proposed by Hewitt

et al. (131). Pedroso and Kubo (165) tackled a lot sizing problem proposing a com-

bination of a variant of the relax-and-fix heuristic, (by Pochet and Van Vyve (176)),

and TS. The relax-and-fix heuristic consists in solving partial relaxations of the original

problem through a MIP solver; this is realized by fixing some subsets of variables and

relaxing the remaining ones. An ad-hoc variant of the classical relax-and-fix heuristic is

implemented and used to build a starting solution; then, TS explores neighborhoods of

this solution. After performing TS, the current solution is partially destructed and its

reconstruction is made by a procedure relying on the relax-and-fix heuristic. Another

iterative approach has been proposed by da Silva and Ochi (81); the authors imple-

mented an algorithm hybridizing an EA with CPLEX solver for treating a scheduling

problem, where the interaction between the two components consists in exchanging

information every time one of the two methods finds a new best solution. CPLEX

uses this information to improve its primal bound and hence remove nodes from the
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tree. If CPLEX finds a better primal bound, it gives the evolutionary algorithm this

information, converting the CPLEX solution into a priority list that is inserted into the

current population of EA.

Schmid et al. (196) proposed to hybridize a VNS component with MIP for solving

a routing problem emerging in the concrete industry. The problem requires to identify

an efficient plan for the delivery of concrete from production plants to customer con-

struction sites. The authors proposed an integer multi-commodity network flow model

for the problem, where the basis of the model is the concept of fulfillment pattern,

that identifies a set of operations that can completely fulfill the associated order. The

cooperation between VNS and MIP components works as follows: VNS generates new

patterns that are given as new components to the MIP model, that, subsequently, is

optimized. After the optimization, the resulting solution is the input for a new run of

VNS, that will try to improve this solution. Computational results were executed using

real-life data from a concrete company located in northern Italy. Interesting compar-

isons between the proposed hybrid approach and a commercial solution developed for

the same problem have been reported; comparisons assess the better quality of solu-

tions that the hybrid method can achieve w.r.t. the commercial solution relying on a

simulated annealing method. A similar approach in which a multiple VNS and an ILP

component cooperate has been presented by Pirkwieser and Raidl (171) and applied for

solving a Periodic VRPTW. Coelho et al. (74) presented a hybrid approach in which an

ALNS, (Ropke and Pisinger (191)), algorithm and the exact solution of subproblems

cooperate to solve an inventory routing problem; every time ALNS computes a new

solution, an optimization problem called Delivery Quantities is solved with the aim of

optimizing the delivery quantities associated with a given set of vehicle routes. The hy-

brid approach has been tested on instances derived from small single vehicle inventory

routing instances presented by Archetti et al. (20) and numerical results compared the

hybrid approach against optimal solutions obtained by a B&C algorithm presented by

Archetti et al. (20). Results showed that the percentage gaps of the hybrid method

w.r.t. optimal solutions are very small, obtaining an average optimality gap of 0.37%

over a set of 160 instances.

Ljubić et al. (148) presented a hybrid method combining a CP algorithm with

a multi-start heuristic approach to solve a network design problem. Starting from

fractional solutions obtained by CP, feasible solutions for the original problem are

23



2. MODEL-BASED HEURISTICS: STATE OF THE ART

generated by applying a constructive heuristic and, subsequently, a local improvement

method. Computational results have been reported for large instances generated by

the authors starting from real-world inputs. To assess the contribution of the MIP

component, performances of the hybrid method have been compared against results

obtained by the corresponding heuristic method, i.e. the method derived from the

hybrid one but without the MIP contribution. Results obtained by the hybrid algorithm

were better w.r.t. its heuristic variant, permitting to calculate the best solution in 14

out of 21 instances.

Other examples of iterative cooperative methods from the literature have been

proposed by Fernandes and Lourenço (109) and Archetti et al. (23).

2.4.2 Non-iterative cooperative approaches

Unlike methods shown in the previous subsection, cooperative frameworks that will be

reviewed in the present subsection are composed by two well-separated phases; in each

one of these phases one methodology is executed, and, results produced at the end of

the first phase are given as input for the second phase.

Archetti et al. (21) and Vasquez et al. (213) proposed two-phase cooperative ap-

proaches between TS and an IP; during each phase only one methodology is executed

and the cooperation is based on the usage of information provided by the first phase ex-

ecution to the second phase. Archetti et al. (21) presented a two phase method to tackle

a Split Delivery VRP; the idea at the basis of this cooperation is to use information pro-

vided by the solution space identified by TS for generating high quality solutions using

an IP component. An analysis of solutions generated by TS is made, and the relevant

features of these solutions, (e.g. the number of times a certain edge appears in all TS

solutions), are used to heuristically generate a set of promising routes. Once generated

this set, routes are used to build a restricted formulation of the problem, that will be

solved through an IP solver. Computational results given by comparing the hybrid TS

against TS presented by Archetti et al. (19) showed the effectiveness of the proposed

method. Another example of two-phase hybrid method has been presented by Vasquez

et al. (213) for solving a knapsack problem; here, the basic idea is to search around

fractional optimum of some relaxations of the original problem, as it is supposed to find

good high quality solutions in this subspace. The first phase of the algorithm consists in
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solving the linear relaxation of the problem enforced by appropriate hyperplanes; dur-

ing the second phase, TS is executed to explore the neighborhood around the solution

calculated at the end of the first phase. Taillard (207) proposed to use TS as heuristic

column generation procedure for solving a Heterogeneous Fleet VRP. TS generates a

large set of routes which is used within a set partitioning formulation of the problem;

the formulation is successively solved by CPLEX. Linear relaxation information have

been used to improve a GA in the approach proposed by Raidl (183); here, the author

implements a GA for solving a Multiconstrained 0-1 Knapsack Problem; the solution

of the linear relaxation of the model of the problem is used in different phases of GA, in

particular for making a solution feasible and for locally improving a feasible solution.

Computational tests have been executed on large sized test data proposed by Chu (73)

and Chu and Beasley (72), available from OR-library (Beasley (37, 38)); results showed

that the proposed method is able to produce lower gaps w.r.t. previous approaches pre-

sented by Hinterding (132), Chu (73) and Chu and Beasley (72). Another example of

cooperative method has been presented by Haouari and Chaouachi Siala (130) to tackle

a Steiner tree problem. Here, the authors implemented a cooperation between a La-

grangean decomposition technique and a GA; the volume algorithm by Barahona and

Anbil (32) is used to solve the Lagrangean dual problem associated to the corresponding

relaxation of the model; then, GA is executed exploiting information provided by the

previous execution of the volume algorithm, in particular produced reduced costs are

used to generate feasible solutions that will constitute a part of the initial population

for GA. Following a similar idea, a hybrid approach between Lagrangean decomposition

and EA has been proposed by Pirkwieser et al. (173) and Pirkwieser et al. (174) for

solving the Knapsack Constrained Maximum Spanning Tree Problem.

Bent and Van Hentenryck (41) presented a two-phase hybrid algorithm applied to

solve the VRPTW; the first phase deals with the minimization of the number of vehicles

to be used and the second phase aims at decreasing the total traveled distance. In the

first phase a SA, (Kirkpatrick et al. (139)), is used to minimize the number of vehicles,

while the second phase is carried out by a LNS, (Shaw (198)), using a B&B method to

explore the neighborhood.

A cooperation between Recovering Beam Search, (Della Croce et al. (89)), and

MIP has been proposed by Della Croce et al. (90) for solving a Flow Shop Problem.

The problem asks to find a sequence of jobs, to be executed on two machines, that
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minimizes the sum of all completion times of jobs. The proposed method is based

on a two-stage scheme. In a first phase, a heuristic solution is generated using RBS.

During the second phase, an iterative process of neighborhood search is executed, in

which the neighborhood of a solution is defined by choosing a particular subsequence

of jobs and optimizing the positioning of identified jobs in the identified subsequence;

jobs not belonging to the subsequence maintain the same position as in the original

sequence. The defined neighborhood is explored by means of a MILP solver. Similar

neighborhood structures have been used by Della Croce and Salassa (88) for solving a

Nurse Rostering Problem.

Other examples of cooperative methods from the literature have been proposed by

Archetti et al. (18), Pitakaso et al. (175), Ioannou et al. (135), Anghinolfi et al. (17)

and Leitner and Raidl (144).

Table 2.3: Summary of cooperating hybrids

Paper Application Solution approach

Archetti et al. (21) split delivery VRP TS + IP

Archetti et al. (22) inventory routing problem TS + MIP

Chouman and Crainic (68) multicommodity capacitated

fixed-charge network design

problem

TS + MIP

Vasquez et al. (213) 0-1 multidimensional knapsack

problem

TS + Simplex Algorithm

Haouari and Chaouachi Siala

(130)

prize collecting Steiner tree

problem

GA + Lagrangean Decomposi-

tion

Pirkwieser et al. (173) knapsack constrained maxi-

mum spanning tree problem

EA + Lagrangean Decomposi-

tion

Ioannou et al. (135) multi-TSP with Time Windows GA + DP

Pirkwieser and Raidl (171) periodic VRPTW VNS + ILP

Coelho et al. (74) inventory routing problem ALNS + MILP

Ljubić et al. (148) network design problem multi-start heuristic + CP
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A Lagrangean Column

Generation Heuristic for the

CVRP

3.1 Introduction

The VRP is the problem of supplying a set of customers using a fleet of vehicles. It was

introduced by Dantzig and Ramser (83) in 1959 and it represents one of the biggest

success stories in operations research. Data of a VRP are the set of customers to be

served, along with the cost of traveling distances between any pair of them, and the

fleet of vehicles to be used for serving customers. A central depot is used as a basis for

vehicles. The solution of a VRP asks for the construction of a set of routes starting and

ending at the depot, each performed by a single vehicle, such that all customers are

serviced, all operational constraints are satisfied and the total cost of the set of routes

is minimized.

Many problems belong to the VRP family, according to existing operational con-

straints; one of the most studied problems is the CVRP. Each customer of a CVRP

has a known request of goods and the fleet is composed by identical vehicles with a

known capacity to carry goods to customers. The CVRP calls for the design of a set

of routes such that each customer is visited exactly once, the total demand of goods

of each route does not exceed the capacity of vehicles and the total cost of the set of

routes is minimized. The CVRP is NP -hard. Given the NP -hardness of the problem,
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pure exact algorithms can be effectively applied only for solving instances of a limited

size; heuristics can be always applied to solve CVRP instances, regardless of their size.

Among the exact algorithms proposed for the CVRP, we mention methods presented

by Baldacci et al. (29), Fukasawa et al. (115) and Baldacci et al. (30). Baldacci et al.

(29) proposed a B&C algorithm based on a two-commodity network flow formulation.

Fukasawa et al. (115) presented an algorithm combining a B&C with a B&C&P based

on a two-index and SP formulations. The algorithm proposed by Baldacci et al. (30)

was based on a SP formulation strengthened by capacity and clique inequalities.

In this chapter, we describe a matheuristic algorithm to solve the CVRP. The

method relies on a CG algorithm based on a SP formulation with additional constraints

and on a subgradient optimization method based on a SC model with additional con-

straints. The pricing step of the CG implements an additive bounding procedure, (see

Fischetti and Toth (111) for details about the topic of additive bounding procedures),

able to produce new negative reduced costs columns to be added to the current core of

columns of the SP model. At the end of the CG procedure, the corresponding core of

columns is used to build a SC model with additional constraints, which has to identify

a feasible CVRP solution; the SC model is relaxed in a Lagrangean fashion and treated

via subgradient optimization; a pruning heuristic is then used to fix infeasibilities of

the subgradient solution and to obtain a feasible CVRP solution. In the following we

describe the SP and SC formulations, the additive bounding procedure used for pricing

and the Lagrangean optimization for the SC model. This chapter is organized as fol-

lows: in section 3.2 we describe the SP and SC formulations for the CVRP and some

relaxation techniques, in section 3.3 we detail the implemented matheuristic algorithm,

in section 3.4 we discuss computational results.

3.2 Mathematical formulations and relaxations

Let G = (V ′, A) be a complete graph, where V ′ = {0, 1, ..., n} is the set of n + 1

vertices and A is the set of arcs. Vertices represent customers to be supplied. Vertex 0

corresponds to the depot and we have the vertex subset V = V ′ \ {0} composed by n

vertices. Each vertex i ∈ V ′ has an associated demand qi, (we assume q0 = 0). Each

arc (i, j) ∈ A has an associated travel cost dij . We indicate with D the matrix of travel
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costs dij . We indicate with Γi ⊆ V ′ the set of successors of i in G and with Γ−1
i ⊆ V ′

the set of predecessors of i in G, ∀i ∈ V ′.
A fleet of m identical vehicles of capacity Q available at the depot has to serve

vertices. We indicate with R = (0, i1, ..., ir, 0), with r ≥ 1, a vehicle route; each

vehicle route R is a simple circuit in G passing through the depot, visiting vertices

V (R) = {0, i1, ..., ir}, V (R) ⊆ V ′, and such that the total demand of the visited

vertices does not exceed the vehicle capacity Q; each vehicle route R has a cost equal

to the sum of the travel costs of the arc set, A(R), traversed by route R.

The CVRP asks for the design of a set of m routes of minimum total cost such that

each vertex is visited exactly once by exactly one route.

3.2.1 SP formulation

In the following we show the SP formulation with additional constraints for the CVRP.

Let R be the index set of all feasible routes, and let Ri ⊂ R be the index set of routes

covering vertex i ∈ V ′. The cost associated to each route ` ∈ R is c` =
∑

(i,j)∈A(`)

dij . Let

x`, ` ∈ R, be a (0-1) binary variable equal to 1 if and only if route ` is in the optimal

solution. The CVRP formulation based on the SP model with additional constraints is

(SP ) z(SP ) = min
∑
`∈R

c`x` (3.1a)

s.t.
∑
`∈Ri

x` = 1, ∀i ∈ V (3.1b)

∑
`∈R0

x` = m, (3.1c)

x` ∈ {0, 1}, ∀` ∈ R (3.1d)

Constraints (3.1b) impose that each vertex i ∈ V has to be visited by exactly one

route. Constraint (3.1c) specifies that exactly m routes have to be selected.

3.2.2 SC formulation

In the following we show the mathematical formulation of the SC model with additional

constraints.
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(SC) z(SC) = min
∑
`∈R

c`x` (3.2a)

s.t.
∑
`∈Ri

x` ≥ 1, ∀i ∈ V (3.2b)

∑
`∈R0

x` ≤ m, (3.2c)

x` ∈ {0, 1}, ∀` ∈ R (3.2d)

Constraints (3.2b) impose that each vertex i ∈ V has to be visited by at least one

route. Constraint (3.2c) specifies that at most m routes have to be selected.

Let u = (u1, ..., un) be the non-negative vector of dual variables, where ui i =

1, ..., n are associated to constraints (3.2b). Let v be the non-positive dual variable

associated to constraint (3.2c). Hence, the dual problem of the LP relaxation of SC

can be defined as follows

(DSC) z(DSC) = max
∑
i∈V

ui +mv (3.3a)

s.t.
∑

i∈V(`)\0

ui + v ≤ c`, ∀` ∈ R (3.3b)

ui ≥ 0, ∀i ∈ V (3.3c)

v ≤ 0, (3.3d)

3.2.3 (q, i)-path and ng-path relaxations

A forward path P = (0, i1, ..., ik−1, ik) is an elementary path starting from the depot

0, visiting vertices V (P ) = {0, i1, ..., ik−1, ik} and ending at vertex ik = σ(P ). Let us

denote by A(P ) the set of arcs traversed by P and by c(P ) =
∑

(i,j)∈A(P )

dij the cost of

path P .

(q, i)-path and ng-path are two well-known techniques to obtain relaxations of

forward paths.
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A (q, i)-path is a non-necessarily elementary path starting from the depot 0, visiting

a set of vertices of total demand equal to q and ending at the vertex i. The cost f(q,

i) of the least cost (q, i)-path can be computed using DP as described by Christofides

et al. (71). A (q, i)-route is a (q, 0)-path with i as last visited vertex before arriving at

the depot 0. (q, i)-path relaxation can easily avoid 2-cycles, i.e. cycles like (0, i1, ...,

ij − 1, ij , ij + 1, ..., ik − 1, ik) where ij − 1 = ij + 1. It is possible to demonstrate that

f(q, i) is a valid lower bound on the cost c(P ) of any forward path P , such that q(P )

= q and σ(P ) = i.

ng-path relaxation is a technique introduced by Baldacci et al. (31) to obtain a valid

lower bound on the cost c(P ) of any forward path P ; the technique can be described

as follows. Let us define Ni ⊆ V as a set of selected vertices for vertex i (according

to some criterion) such that Ni 3 i and |Ni| ≤ ∆(Ni), where ∆(Ni) is a parameter

(if ∆(Ni) = 4, ∀i ∈ V , Ni contains i and the three nearest vertices to i). Using sets

Ni it is possible to associate to each forward path P = (0, i1, ..., ik − 1, ik) the subset

Π(P ) ⊆ V (P ) containing vertex ik and every vertex ir, r = 1, ..., k - 1 of P that belongs

to all sets Nir + 1 , ..., Nik associated to vertices ir + 1, ..., ik visited after ir. We can

define set Π(P ) as

Π(P ) = {ir : ir ∈
k⋂

s=r+1

Nis , r = 1, ..., k − 1}
⋃
{ik}. (3.4a)

A forward ng-path (NG, q, i) is a non-necessarily elementary path P = (0, i1, ...,

ik − 1, ik = i) starting from the depot 0, visiting a subset of vertices of total demand

equal to q such that NG = Π(P ), ending at vertex i, and such that i /∈ Π(P ′), where P ′

= (0, i1, ..., ik − 1). The cost of the least cost forward ng-path (NG, q, i) is denoted

by f(NG, q, i). We define an (NG, q, i)-route as an (NG, q, 0)-path where i is the

last vertex visited before arriving at the depot 0. The cost of the (NG, q, i)-route of

minimum cost is given by f(NG, q, i) + di0. Functions f(NG, q, i) can be computed

using DP recursions on the state space graph H = (E , Ψ) defined as

E = {(NG, q, i) : qi ≤ q ≤ Q,∀NG ⊆ Ni s.t. NG 3 i and
∑
j∈NG

qj ≤ q,∀i ∈ V ′},

(3.5a)
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Ψ = {((NG′, q′, j), (NG, q, i)) : ∀(NG′, q′, j) ∈ Ψ−1(NG, q, i), ∀(NG, q, i) ∈ E },
(3.6a)

where Ψ−1(NG, q, i) = {(NG′, q − qi, j) : ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩
Ni = NG \ {i}, ∀j ∈ Γ−1

i }.
The DP recursion for calculating f(NG, q, i) is the following

f(NG, q, i) = min
(NG′,q−qi,j)∈Ψ−1(NG,q,i)

{f(NG′, q − qi, j) + dji}, ∀(NG, q, i) ∈ E .

(3.7a)

It is possible to demonstrate that f(NG, q, i) is a valid lower bound to the cost

c(P ) of any forward path P , such that q(P ) = q and σ(P ) = i. The quality of the

lower bound calculated by ng-path relaxation strongly relies on the definition of sets

Ni ∀i ∈ V , since the set Π(P ) represents vertices that cannot be visited along the path

P = (0, i1, ..., ik − 1, ik) immediately after the vertex ik and Π(P ) is defined as the

intersection of sets Ni associated to vertices visited before ik plus vertex ik itself. A

proper definition of sets Ni permits to obtain better quality paths, aiming at avoiding

loops and, in this way, producing paths “nearer” to elementariness. Figure 3.1 shows

an example of expansion of an ng-path for a graph composed by 9 vertices, (8 plus the

depot 0). The figure also shows the composition of Ni sets. At the beginning of the

expansion, the subset Π(P ) is empty, then the extension of the path to vertex 1 and

the update of the subset Π(P ) are done, obtaining Π(P ) = {1}; then, the extension

to vertex 2 is allowed since it does not belong to the subset Π(P ); subsequently, the

corresponding update of the subset Π(P ) is done, obtaining Π(P ) = {1, 2}; after this,

the extension to vertex 3 is made, obtaining the subset Π(P ) = {1, 2, 3}; hence, the

extension to vertex 7 can be done, obtaining Π(P ) = {7}.

3.3 The algorithm

In this section we describe the implemented algorithm to solve the CVRP. The algo-

rithm is a matheuristic able to produce feasible CVRP solutions using MP methods

as a basis for ameliorating the search of good quality feasible solutions. The objective

of the algorithm is that of producing feasible CVRP solutions minimizing total travel
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Figure 3.1: Example of expansions of an ng-path

costs, while fixing the number of used vehicles to a predefined value, as shown by the

SP with additional constraints model 3.1.

The matheuristic can be divided in two main phases. During the first phase, the

algorithm applies a CG method relying on an additive bounding procedure to generate

a reduced problem RSP obtained from SP model (3.1) by replacing the route set R

with the set R′ composed by (q, i)-routes or ng-routes; at each CG iteration the linear

relaxation of the RSP problem is solved by an LP solver. When the CG ends, the

second phase of the algorithm starts. The pool of columns of the RSP model is used

to build a reduced SC model, RSC, obtained from the SC (3.2) model, to which it

is demanded to identify a minimum cost feasible CVRP solution. The RSC model

is relaxed in a Lagrangean fashion and solved via subgradient optimization; at each

iteration of the algorithm, a pruning heuristic uses the subgradient solution as a basis

for building a feasible CVRP solution, by fixing the infeasibilities of the subgradient

solution. Hence, the first phase of the matheuristic is made by the solution of the RSP

model that possibly produces a valid lower bound on the cost of the optimal CVRP

solution, while the second phase is made by the subgradient optimization of the RSC

model able to produce a feasible CVRP solution. This is summarized in algorithm

1, where at line 2 the solution of the RSP model is computed, producing as a result

the pool of columns of the reduced model; at line 3 the second phase of the method

takes place, through the construction of the Lagrangean relaxed RSC model, (using the

RSP pool of columns), and the execution of the subgradient optimization; at line 4 the
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algorithm returns the best solution found during subgradient optimization.

Algorithm 1 Lagrangean CG Heuristic

1: procedure Lagr CG Heu(D, n, m, qi, Q, α)

2: PoolC ← Column Gen RSP(D, n, m, qi, Q, LB)

3: sbest ← Lagr Heu RSC(PoolC , D, m, ittot LB, α)

4: return sbest

3.3.1 CG and additive bounding procedure

Algorithm 2 details the main operations done in the first phase of the proposed matheuris-

tic algorithm, i.e. the execution of the CG relying on an additive bounding procedure

to obtain a valid CVRP lower bound. Algorithm 2 takes as input, in order, the matrix

of travel costs D, the number of vertices n, the number of vehicles to be used m, the

vector of demands of vertices qi, ∀i ∈ V ′, and the capacity of vehicles Q; the algorithm

gives as output the pool of columns PoolF composed by (q, i)-routes or ng-routes

identified during the CG, together with the value of the calculated lower bound LB.

Before starting the CG, the pools of, respectively, (q, i)-routes and ng-routes

columns are initialized as empty sets at lines 2-3, while at line 4 the pool of columns

PoolC of the RSP model is initialized as an empty set. Each entry of the matrix of

reduced costs DRed(i, j) is initialized with travel cost D(i, j) ∀(i, j) ∈ A at line 5. A

feasible CVRP solution s calculated by a simple constructive heuristic possibly initial-

izes the core of columns of the master RSP problem at lines 8-9. The heuristic is a

simple sequential insertion, that constructs a route at a time, until the capacity of vehi-

cles Q is not violated; the next vertex to be inserted in the currently under construction

route is the unrouted vertex that minimizes the extra-mileage. When all vertices have

been inserted in exactly one route, an ejection chain procedure, (see Glover (120)), is

executed on the resulting solution, if the number of its routes is bigger than the prede-

fined value m. If the ejection chain procedure succeeds in normalizing the number of

routes to m, the created feasible CVRP solution is used to initialize the core of columns

of the master RSP problem, otherwise single vertex routes (0, i, 0), ∀i ∈ V are used as

core columns.

Lines 10-31 execute the additive bounding procedure, composed by (q, i)-route and

ng-route pricing. The core of columns of the master RSP problem is first enlarged
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Algorithm 2 CG RSP

1: procedure Column Gen RSP(D, n, m, qi, Q, LB)

2: qi r pool← ∅
3: ng r pool← ∅
4: PoolC ← ∅
5: DRed(i, j)← D(i, j) ∀i, j ∈ V ′

6: qi b feas← false

7: ng b feas← false

8: s← Create UB(D)

9: PoolC ← Init Master(s)

10: repeat

11: g ← Solve Master(PoolC , z(RSP )qi)

12: DRed← Calc Red Costs(D, g)

13: new qi r pool← Qi Route Pricing(DRed, n, qi, Q)

14: qi r pool← qi r pool ∪ new qi r pool

15: PoolC ← PoolC ∪ new qi r pool

16: if new qi r pool = ∅ then

17: LB = z(RSP )qi

18: qi b feas← true

19: until (new qi r pool 6= ∅ || time limit not exceeded)

20: if qi b feas = true then

21: PoolC ← Init Master(s)

22: repeat

23: g ← Solve Master(PoolC , z(RSP )ng)

24: DRed← Calc Red Costs(D, g)

25: new ng r pool← NG Route Pricing(DRed, n, qi, Q)

26: ng r pool← ng r pool ∪ new ng r pool

27: PoolC ← PoolC ∪ new ng r pool

28: if new ng r pool = ∅ then

29: LB = z(RSP )qi + z(RSP )ng

30: ng b feas← true

31: until (new ng r pool 6= ∅ || time limit not exceeded)

32: if ng b feas = true then

33: PoolF ← ng r pool

34: else if q b feas = true then

35: PoolF ← ng r pool

36: else

37: PoolF ← qi r pool

38: return PoolF
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with (q, i)-routes, (lines 10-19). The master RSP problem is solved with the simplex

algorithm, at line 11; reduced costs d̄ij = dij - (1/2)(gi + gj),∀(i, j) ∈ A are calculated

with respect to the current dual solution g, at line 12; hence, we compute functions

f(q, i) using reduced costs d̄ij instead of dij , at line 13. Only negative reduced costs (q,

i)-routes are used to enlarge the current core of columns of the master RSP problem;

these routes are added to the pool qi r pool of (q, i)-routes, at line 14, and to the pool

of columns PoolC of the master RSP problem, at line 15. The (q, i)-route bounding

procedure stops when no negative reduced costs (q, i)-routes can be found or when

a user-defined time limit since the beginning of the bounding procedure is exceeded.

In case the time limit is exceeded, the solution of the master RSP problem does not

produce a valid lower bound on the cost of the optimal CVRP solution, hence the

additive bounding procedure ends; otherwise, the solution of the master RSP problem

produces a valid lower bound LB = z(RSP )qi, and the procedure continues with the

execution of the additive component based on the computation of negative reduced costs

ng-routes, (lines 22-31). ng-route and sets Ni are computed using reduced costs d̄ij

derived from the valid (q, i)-route lower bound, i.e. d̄ij = dij - (1/2)(gi + gj), ∀(i, j) ∈

A. The core of columns of the master RSP problem is reinitialized in the same manner

as before the execution of the (q, i)-route-based bounding procedure, at line 21. The

master RSP problem is solved with the simplex algorithm, at line 23 and reduced costs

d̄ij = dij - (1/2)(gi + gj), ∀(i, j) ∈ A are calculated with respect to the current dual

solution g of the master problem, at line 24; hence, we compute functions f(NG, q, i)

using reduced costs d̄ij , at line 25. Negative reduced costs ng-routes are used to enlarge

the current core of columns of the master RSP problem; these routes are added to

the pool ng r pool of ng-routes, at line 26, and to the pool of columns PoolC of the

master RSP problem, at line 27. The ng-route bounding procedure stops when no

negative reduced costs ng-routes can be found or when a user-defined time limit from

the beginning of the ng-route bounding procedure is exceeded; in case no negative

reduced costs ng-routes can be found, a valid lower bound LB = z(RSP )qi+z(RSP )ng

on the optimal cost of the CVRP solution has been found.

Lines 32-37 decide what pool of columns PoolF will be used for the construction

of the RSC model. In case the ng-route bounding procedure has been executed, the

pool of ng-routes is returned; this is done even if no valid ng-route lower bound is
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found, since the quality of ng-routes is better than the quality of (q, i)-routes. On the

contrary, the pool of (q, i)-routes is returned for the construction of the RSC model.

3.3.2 The Lagrangean heuristic

The second phase of the matheuristic asks for the identification of a minimum cost

feasible CVRP solution using information derived from the output of the CG algorithm,

i.e. the pool of routes PoolF and possibly the value of a valid lower bound LB of the

optimal cost of the solution of CVRP. (q, i)-routes and ng-routes are relaxations of

feasible routes, since they respect capacity constraints, but can contain loops; hence

we need to transform all non-elementary routes produced by the additive bounding

procedure in elementary ones; moreover, if we want to have a CVRP solution, we need

to choose a subset of m elementary routes covering each vertex exactly once. To first

gain elementariness and to subsequently have a choice mechanism of elementary routes,

we implemented a heuristic method composed by a procedure to make elementary the

routes produced by the additive bounding procedure and a Lagrangean heuristic able

to produce feasible CVRP solutions via subgradient optimization. The pseudocode of

the heuristic procedure is presented in algorithm 3. The method takes as input the pool

of columns generated by the additive bounding procedure PoolC , the matrix of travel

costs D, the number of vehicles to be used m, the value of the lower bound calculated

by the additive bounding procedure LB, α, (a numerical value used to update the

value of penalties during the calculation of the subgradient vector) and ittot, the total

number of subgradient iterations; the output of the procedure is the best feasible CVRP

solution found sbest.

The first step of the heuristic consists in making elementary every non-elementary

route in the pool of columns PoolC , at line 2; this is done by generating a new route r′,

composed by all vertices of the corresponding non-elementary route r in the pool PoolC

repeated exactly once. After its construction, the route r′ is optimized to decrease the

value of total traveled distance; this is realized through the execution of a 3-opt local

search heuristic on r′. New generated routes are added to a new pool, called PoolE .

The heart of the heuristic procedure represented by algorithm 3 is the subgradient

optimization, (lines 3-11). PoolE is used to construct a RSC model obtained from SC

(3.2) model by replacing the route set R with the pool PoolE . Let PoolEi be the subset

of routes covering vertex i ∈ V . We apply the parametric relaxation for the SC model
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Algorithm 3 Lagrangean Heuristic RSC

1: procedure Lagr Heu RSC(PoolC , D, m, LB, α,it tot)

2: PoolE ← Elem Routes(PoolC)

3: λi ← 0 ∀i ∈ V ′

4: cont it← 0

5: repeat

6: Solve Lagr Dual(PoolE , λi, m)

7: xsub ← Update Penalties(PoolE , λi, α, m, LB)

8: s′ ← Pruning Heuristic(xsub, D)

9: sbest ← Update Sol(s′, D)

10: cont it← cont it+ 1

11: until (cont it < it tot || time limit not exceeded)

12: return sbest

shown by Boschetti and Maniezzo (51) to our RSC model; following this relaxation, it

is possible to replace each variable x` of the model by a new set of |V (`)\{0}| variables

yi`, i ∈ V (`) \ {0} as follows

x` =
∑

i∈V (`)\{0}

wi
w(V (`))

yi`, ` ∈ PoolE (3.8a)

where wi is a positive real weight associated with each vertex i ∈ V and w(V (`)) =∑
i∈V (`)\{0}

wi represents the total weight of column (route) ` ∈ PoolE . The resulting

mathematical formulation of the parametric relaxation of the RSC problem is

(PRSC(w)) z(PRSC)(w) = min
∑

`∈PoolE

∑
i∈V (`)\{0}

c`
wi

w(V (`))
yi` (3.9a)

s.t.
∑

`∈PoolEi

∑
h∈V (`)\{0}

wh
w(V (`))

yh` ≥ 1, ∀i ∈ V

(3.9b)

∑
`∈PoolE0

∑
h∈V (`)\{0}

wh
w(V (`))

yh` ≤ m, (3.9c)

yi` ∈ {0, 1}, ` ∈ PoolEi , i ∈ V (3.9d)
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We relax in a Lagrangean fashion both PRSC(w) constraints (3.9b) and (3.9c).

Consider a penalty vector λ = (λ1 ,..., λn, λn + 1) of n + 1 non-negative real numbers,

where λi ≥ 0, i = 1, ..., n is a real number associated to constraint (3.9b) for vertex

i ∈ V and λn + 1 ≥ 0 is associated to constraint (3.9c). We obtain the following problem

(LPRSC(λ,w))z(LPRSC)(λ,w) = min
∑

`∈PoolE

∑
i∈V (`)\{0}

(c` − λ′(V (`)))
wi

w(V (`))
yi` +

∑
i∈V

λi −mλn+1

(3.10a)

yi` ∈ {0, 1}, ` ∈ PoolEi , i ∈ V (3.10b)

where λ′(V (`)) = λ(V(`))− λn+1 and λ(V(`)) =
∑

h∈V (`)\{0}
λh.

Problem LPRSC(λ,w) is decomposable into n subproblems, one for each row i ∈ V

(LPRSCi(λ, w)) zi(LPRSC)(λ, w) = min
∑

`∈PoolEi

ci`(λ, w)yi` + λi (3.11a)

s.t. yi` ∈ {0, 1}, ` ∈ PoolEi (3.11b)

where ci`(λ, w) = (c′` − λ(V (`))) wi
w(V`)

and c′` = c` + λn+1.

We set wi = λi and add the constraint
∑

`∈PoolEi

yi` = 1,∀i ∈ V . The subproblem

LPRSCi(λ, w), i ∈ V can be rewritten as follows

(LPRSCi(λ)) zi(LPRSC)(λ) = min
∑

`∈PoolEi

c′`
λi

λ(V (`))
yi` (3.12a)

s.t.
∑

`∈PoolEi

yi` = 1, (3.12b)

yi` ∈ {0, 1}, ` ∈ PoolE (3.12c)

Hence, the overall value of the Lagrangean problem LPRSC(λ) is

z(LPRSC)(λ) =
∑
i∈V

zi(LPRSC)(λ)−mλn+1 (3.13a)
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Boschetti and Maniezzo (51) showed that any optimal solution of problem LPRSC(λ)

provides a feasible solution (u, v) of cost z(LPRSC)(λ) for the reduced dual problem

RDSC, obtained from the DSC model by replacing the route set R with the pool PoolE .

A feasible dual solution (u, v) of cost z(LPRSC)(λ) for problem RDSC can be obtained

by means of the following expressions

ui = min`∈PoolEi
{c′`φi`} i ∈ V (3.14a)

v = −λn+1 (3.14b)

where c′` = c` + λn+1 and

φi` =

{
λi

λ(V (`)) λ(V (`)) > 0
1

|V (`)\{0}| λ(V (`)) = 0
(3.15a)

The best lower bound that can be achieved using expressions (3.14) is equal to

the optimal solution cost z(RDSC) of the problem RDSC; this value can be obtained

calculating the maximum of the function z(LPRSC)(λ) with respect to λ ≥ 0, i.e.

maxλ≥0{z(LPRSC)(λ)} = z(RDSC) (3.16a)

The problem (3.16) is called Lagrangean dual, and we need to solve it to find the

optimal (or near-optimal) dual solution of cost z(RDSC). To deal with the Lagrangean

dual we implement a subgradient method that searches the space of possible values

for λ vectors and obtains the best possible lower bound. Lines 3-11 of algorithm 3

represent the pseudocode related to the execution of the subgradient method. At

line 3 each component of the λ vector is initialized to 0, ∀i ∈ V ′. At line 4 the

counter of subgradient iterations is initialized to 0. Loop 5-11 is the core of subgradient

optimization; at line 6 the Lagrangean dual problem (3.16) is solved for the given λ

vector. At line 7 the subgradient vector is calculated and used to update λ vector. Let

us indicate with J ⊂ PoolE the index subset of routes that produce minima of formula

(3.14a) ∀i ∈ V , i.e. J = {` ∈ PoolE : ` = argmin`∈PoolEi
[c′`φi`], i ∈ V }. Let (u, v) be

the dual solution of cost z(LPRSC)(λ) computed by expressions (3.14) at point λ. Let

x be the corresponding non-necessarily feasible solution of RSC computed as
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x` =


∑
i∈I`

φi` ` ∈ J

0 otherwise
(3.17a)

where I` = {i ∈ V : ui = c′`φi`}. A valid subgradient of the function z(LPRSC)(λ)

is given by the vector θ = (θ1, ..., θn, θn+1), calculated according to the following

formulas

θi = 1−
∑

`∈PoolEi

x`, i ∈ V (3.18a)

θn+1 = m−
∑

`∈PoolE0

x` (3.18b)

The vector of Lagrangean penalties λ is then updated according to the following

formulas

λi = max{0, λi + α
0.1LB∑
j∈V ′

θ2
j

θi}, i ∈ V (3.19a)

λn+1 = max{0, λn+1 − α
0.1LB∑
j∈V ′

θ2
j

θn+1} (3.19b)

where LB is the value of the lower bound calculated during the additive bounding

procedure and α is a user defined constant. Solution x, calculated following formulas

(3.17), is returned at line 7; x is referenced in the pseudocode as xsub.

xsub can be an infeasible solution. Infeasibilities are linked both to the number of

occurrences of vertices in the solution and to the number of used vehicles; in fact we

can have some vertices that are visited many times by one or more routes, while other

vertices are never visited by routes, and we can have that a bigger number of vehicles

is currently in use in xsub than the predefined number of vehicles m. The constraint on

capacity is, instead, always respected by xsub, since both (q, i)-routes and ng-routes

bounding procedures implicitly respect this constraint. Hence, we implement a pruning

heuristic with the aim of fixing infeasibilities of the subgradient solution xsub, giving
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Algorithm 4 Pruning Heuristic

1: procedure Pruning Heuristic(xsub, D)

2: x′ ← Restore Occurrences(xsub)

3: x′′ ← Restore Vehicles(x′)

4: if x′′isfeasible then

5: xF ← VND(x′′, D)

6: else

7: xF ← ∅
8: return xF

as output a minimum cost feasible CVRP solution. The pruning heuristic is invoked

at line 8 of algorithm 3; a pseudocode of the procedure is proposed in algorithm 4.

The first step of the pruning heuristic consists in normalizing the number of occur-

rences of each vertex i ∈ V , (line 2); this means that only one location will be chosen

for vertices occurring many times in the solution xsub, while vertices not present in

xsub will be inserted exactly once. The pruning heuristic determines the location of

each vertex i occurring many times to be the location with the minimum extra-mileage

for visiting i, i.e. the algorithm removes multiple occurrences of vertex i in order of

decreasing saving, as follows

saving = dpred i + di succ − dpred succ (3.20a)

where pred and succ are, respectively, the vertex preceding and following i on the

considered route. Multiple occurrences of vertex i are removed from xsub by decreasing

values of saving, calculated according to the formula (3.20a), until the number of oc-

currences is equal to 1. After the removal of multiple occurrences, vertices not present

in xsub are inserted exactly once; the pruning heuristic assigns non-visited vertices con-

sidering one route at a time, until its total demand exceeds the vehicle capacity Q; if

all routes exceed Q and we still have unrouted vertices, the algorithm keeps on creating

and filling a new route, adding it to xsub, until there are no unrouted vertices.

When all occurrences of vertices are equal to 1, the second step of the pruning

heuristic takes place, (line 3), asking to normalize the number of used vehicles of the

current solution x′. Since the SP (3.1) formulation asks for a solution with a fixed
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number of vehicles m, we implement an ejection chain procedure able to delete routes

from solution x′, until the number of remaining routes is equal to m. Routes are

considered for deletion in ascending order of number of vertices, to have a lower number

of vertices to be relocated in x′.

If the ejection chain procedure does not succeed in obtaining a solution with exactly

m routes, algorithm 4 returns an empty solution, (line (7)); otherwise, the third step of

the pruning heuristic takes place (line (5)). At this step, a VND local search is executed

on the current solution x′′ to search a feasible solution with a lower total traveled dis-

tance. The VND is made by several neighborhoods, both intra-route and inter-route,

applied in ascending order of size. The first improvement strategy is adopted during the

exploration of each neighborhood. Neighborhoods are not explored exhaustively, con-

centrating the exploration only on vertices involved in successful moves, (don′t look bits

strategy (Nagata and Bräysy (161))). Each neighborhood exploration is executed for

a maximum time limit. Inter-route neighborhoods composing the VND are 2-opt∗,

neighborhoods based on λ-interchanges (Osman (163)) and Cross-exchange (Taillard

et al. (206)). 2-opt∗ is a neighborhood involving exchanges of couple of arcs between

a couple of routes. Considered λ-interchanges are Shift(1,0), Shift(2,1) and Swap(1,1),

where, respectively, one vertex is removed from a route r1 and inserted in another route

r2, two consecutive vertices are removed from a route r1 and inserted in another route

r2 and a couple of vertices belonging to two different routes r1 and r2 are exchanged.

Intra-route neighborhoods composing VND are 2-opt and Or-opt2. VND first applies

2-opt and Or-opt2 intra-route neighborhoods on every route of the current solution x′′;

subsequently, inter-route neighborhoods are applied, in the order, 2-opt∗, Shift(1,0),

Swap(1,1), Shift(2,1) and Cross-exchange. VND continues its search until an improv-

ing solution is found with a percentage of improvement bigger than 1% with respect to

the value of the previous best solution found; otherwise, VND local search is stopped.

VND terminates its execution returning the best solution found xF , at line 5 of

algorithm 4. The pruning heuristic returns solution xF to the Lagrangean heuristic, at

line 8 of algorithm 3; here we call this solution s′. The value of the best solution ever

found sbest by the Lagrangean heuristic is possibly updated to s′ at line 9, according

to the minimum value of total traveled distance. At line 10 the counter of subgradient

iterations is updated.
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Subgradient optimization is executed until the maximum number of iterations is

not reached or until a user-defined time limit is not exceeded.

The Lagrangean heuristic we propose can be defined to all effects a metaheuris-

tic, as TS or ILS; in fact, it is an iterative higher-level method designed and able to

find, generate and use other heuristics with the aim of identifying feasible good-quality

solutions. Moreover, it is an example of usage of MP techniques, (such as CG or sub-

gradient optimization), as a basis to define heuristic frameworks and, at the same time,

identify feasible minimum cost solutions for the problem to be treated.

3.4 Computational results

In this section we report computational results of the matheuristic described previously

in this chapter. The matheuristic was coded in C++ and tests were executed on an

IntelR CoreTM i7 with 3.60GHz and 32 GB of RAM running under Windows Server 2012

64 bits. CPLEX 12.6.1 was used as LP solver for the master RSP problem. To achieve

speed up in computation times, we implemented (q, i)-route and ng-route bounding

procedures, respectively, using CUDA parallel computing platform and OpenMP, as

done by Strappaveccia (202) (see websites (1) and (5) for information related to CUDA

and OpenMP).

We set the time limit for the execution of the CG based on (q, i)-route and on ng-

route bounding procedures both to 5000 seconds. The time limit for the execution of

subgradient optimization is set to 3600 seconds, while its maximum number of iterations

is set to 400. The value of α is set to 1.5. The maximum time limit for the exploration

of each neighborhood of VND is set to 7 seconds.

We fix the cardinality of sets Ni ∀i ∈ V of ng-route bounding procedure to 8, i.e.

each set Ni is composed by vertex i and by the 7 vertices nearest to i.

To assess performances of our matheuristic related to the quality of both lower

bound and feasible solution computed, we use two datasets. One is the relatively

new dataset proposed by Uchoa et al. (211) in 2014, available at the website (3). This

benchmark is composed by 100 instances, with a size ranging from 100 to 1000 vertices.

The name of each instance is formatted as X-nA-kB, where A represents the number

of vertices of the instance including the depot, and B is the minimum possible number

of vehicles. The average route size is different for every instance. The positioning
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of the depot is randomly chosen among a central, eccentric or random position; the

distribution of remaining vertices is randomly chosen among a random, clustered or

random-clustered distribution. Several options were chosen for the demand distribution

to be used. The other dataset used for experimenting the matheuristic consists in a

new dataset, generated by us, composed by 6 instances derived from actual practice

in freight transportation. Traveled distances, demands of vertices and the capacity

of vehicles are all real world data. The size of the instances ranges from 179 to 980

vertices; the capacity is expressed in terms of volume (dm3), weight (kg) or pallets;

distances are expressed in terms of time; the number of vehicles to be used is fixed at

runtime to the number of routes belonging to the feasible CVRP solution computed by

the constructive heuristic executed at line 8 of algorithm 2. The dataset is available at

the website (7).

Computational results of the matheuristic for instances by Uchoa et al. (211) are

presented in table A.1. Column Instance denotes the name of the solved instance,

while n represents the number of vertices excluding the depot. Columns 3-5 are related

to the calculated valid lower bound; column 3 is the number of used vehicles, column

4 represents the value of the lower bound and column 5 corresponds to the percentage

gap of the lower bound from the related best known solution calculated as Gap(%) =

((BestKnown−LowerBound)∗100)/BestKnown. Columns 6-8 report the best feasible

solution identified by the matheuristic during the subgradient optimization; column 6

represents the number of used vehicles, columns 7 is the value of the total traveled

distance of the feasible solution and column 8 is the percentage gap of the solution from

the corresponding best known solution calculated as Gap(%) = ((BestKnown−Heu.)∗
100)/BestKnown. Column 9 is the total execution time of the matheuristic, expressed

in seconds. Columns 10-11 report the best known solution of the instance, i.e. the

number of used vehicles and the value of the total traveled distance. Computational

results of the matheuristic for instances by (7) are presented in table A.2. Column

Instance denotes the name of the solved instance, while n represents the number of

vertices excluding the depot. Columns 3-4 report the calculated lower bound value,

i.e. column 3 represents the number of used vehicles, while column 4 is the value of

the total traveled distance. Columns 5-6 report the value of the best identified feasible

solution during subgradient optimization; column 5 is the number of used vehicles and

column 6 is the value of the total traveled distance. Column 7 represents the percentage
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gap of the lower bound from the value of the best identified feasible solution. The last

column represents the total execution time of the matheuristic, expressed in seconds.

Dash entries in columns 3-4 for both tables mean that the corresponding values have

not been calculated by the algorithm, because the CG based on (q, i)-route procedure

has exceeded the time limit of 5000 seconds, hence not obtaining a valid lower bound.

For what concerns instances by Uchoa et al. (211) the number of vehicles to be used

was fixed according to the number of used vehicles in the optimal solution, to have a

proper comparison of percentage gaps for both lower bound and heuristic solutions.

If we look at table A.1 we can see that the quality of the calculated lower bound of

instances is quite good for all instances in the dataset. We have in fact that only

for 14 out of 100 instances the matheuristic was not able to calculate a valid lower

bound; in these cases even the CG based on (q, i)-route bounding procedure did not

succeed in calculating a valid lower bound, because of its time limits. If we consider

the remaining 86 instances, we have an average percentage lower bound gap lower than

2%, that represents a good result. For what concerns the quality of the best identified

feasible solution of the matheuristic we have higher gaps from best known solutions. For

instances with size lower than 200 vertices, the average gap is lower than 4%, while this

datum increases to a value lower than 7% if we consider instances with size comprised

between 200 and 600 vertices. The percentage gap further increases being comprised

between 7% and 9% for instances with size bigger than 600 vertices. If we consider the

whole dataset we have an average gap of 6.15%.

Let us look at table A.2 for what concerns instances by (7). We can see that a

valid lower bound was not found for the 2 biggest instances. Since we do not know

a-priori what is the best solution for these instances, the calculated percentage gaps

are all related to the comparison between the valid lower bound and the value of the

best identified feasible solution. We have gaps lower than 8% for instances with size

lower than 500 vertices, while the gap increases to a 20% for instances with a number

of vertices bigger than 500.
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Parameter tuning of a

Lagrangean heuristic and an ILS

4.1 Introduction to the problem of parameter tuning

Many algorithms designed to solve optimization problems base their functioning on

the instantiation of a set of parameters. The design of each optimization algorithm is

the result of a series of choices, made to obtain the best possible performance. In this

context we can hence identify the problem of defining the parameter configurations

of an optimization algorithm, that permit to obtain optimized empirical performances

on a given set of problem instances to be solved. We call this problem the parameter

tuning problem, defined as follows, as stated by Hoos (133):

Given

� an algorithm A with parameters p1, ..., pk that affect its behaviour,

� a space C of configurations, where each configuration c ∈ C specifies values for

A’s parameters such that A’s behaviour on a given problem instance is completely

specified (up to possible randomisation of A),

� a set of problem instances I,

� a performance metric m that measures the performance of A on instance set I

for a given configuration c,
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find a configuration c′ ∈ C that results in the optimal performance of A on I

according to metric m.

Designers and simple users of parameterized algorithms very often encounter the

problem of tuning parameters, in order to optimize the empirical performances of al-

gorithms in solving a given set of problem instances. This problem can be faced by the

use of automatic methods, that analyze in a clever manner the possible configurations

of an optimization algorithm, choosing the best one. The use of automatic procedures

aims at finding the configuration of an optimization algorithm giving the best possible

performances over a set of instances. The present chapter treats the problem of tuning

parameters of optimization algorithms by using automatic methods and presents three

applications. The structure of the chapter is as follows. In section 4.2 we show some

automatic methods for parameter tuning. In section 4.3 we present the problem of

tuning the parameters of a Lagrangean metaheuristic, used to solve both the CVRP

and the VRPTW. In section 4.4 we show the problem of tuning the parameters of an

ILS heuristic applied to solve the QAP.

4.2 Automatic methods for parameter tuning

Several automatic approaches have been proposed in the literature to deal with the

problem of parameter tuning. We introduce offline configuration methods. These

approaches are made by two different phases. The first phase, called training, chooses

an algorithm configuration, given a set of instances called training set, representative

of the particular problem that has to be solved by the target algorithm. During the

second phase, called test, the chosen candidate algorithm configuration is used to solve

an unseen test set of instances of the same problem. The aim is to identify, during the

training phase, a candidate configuration that minimizes some cost measure over the

set of instances that will be seen during the test phase.

Among offline configuration methods there are racing procedures. At the basis of

racing there is the idea of sequentially evaluating candidate configurations on given

benchmark instances, and delete candidates as soon as they are too far behind the

current leader candidate, i.e. the candidate with the overall best performance at a

certain stage of the race. Birattari et al. (44) proposed the F-Race algorithm that
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closely follows the racing procedure. To overcome limitations that affect the basic F-

Race approach, some evolutions of F-Race have been proposed. One of these is called

Iterative F-Race (I/F-Race) (Balaprakash et al. (26), Birattari et al. (45)). The key

idea of this method is that of using an iterative process where, in the first stage of

each iteration, configurations are sampled from a probabilistic model M , while in the

second stage a standard F-Race is performed on the resulting sample; configurations

that survive the race are used to define and update the model M used in the following

iteration.

4.2.1 The irace package

The irace package is an automatic offline configurator of optimization algorithms, im-

plementing the iterated racing procedure, an extension of the I/F-Race presented by

Balaprakash et al. (26) and developed by Birattari et al. (45).

Iterated racing is composed by three steps:

1. sampling new configurations according to a particular distribution

2. selecting the best configurations from the newly sampled ones by means of racing

3. updating the sampling distribution in order to bias the sampling towards the best

configurations.

Each parameter to be tuned has its independent sampling distribution. When dis-

tributions are updated, sampling distributions are modified for biasing the distributions

to increase the probability of sampling, in future iterations, the values of the param-

eters of the best configurations found. After the sampling of new configurations, the

best configurations are selected by means of racing. Each race begins with a finite

set of candidate configurations. During each step of the race, the candidate configura-

tions are evaluated on a single instance. After each step, the candidate configurations

that perform statistically worse than at least another candidate are discarded; the race

continues with the remaining candidates. This iterative procedure continues until a

minimum number of surviving candidates is reached, a maximum number of instances

has been used or a predefined computational budget is reached, (the computational

budget may correspond to a computation time or to the number of experiments, where

an experiment identifies the application of a configuration to an instance). For further
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details about the implementation of iterated racing in the irace package we refer to

López-Ibánez et al. (151).

irace is distributed as an R package, built upon the race package by Birattari (43).

It has been applied for configuring several optimization algorithms. Dubois-Lacoste

et al. (100) and Dubois-Lacoste et al. (101) used irace to tune parameters of IG for

solving the permutation FSP. A bi-objective TSP was treated by López-Ibáñez and

Stützle (150) through automatic configuration of an ACO framework. de Oca et al.

(86) automatically configured a particle swarm optimization method for large-scale

continuous optimization problems.

4.3 Parameter tuning of a Lagrangean metaheuristic

In this section we present a Lagrangean metaheuristic algorithm to solve both the

CVRP and the VRPTW. We show the problem of its tuning, using the irace package

with the aim of improving the calculated valid lower bounds.

4.3.1 Target problems

Target problems of the Lagrangean metaheuristic are the CVRP and the VRPTW,

(see sections 3.1 and 3.2 of chapter 3 for an introduction and definition of the CVRP).

The VRPTW belongs to the family of VRPs and it represents one of the most studied

NP -hard problems of the VRP family.

First works on the VRPTW date back to the 1960’s, (see Golden and Assad (123),

Lenstra et al. (145) and Desrosiers et al. (93) for surveys treating early developments

of the VRPTW). The first exact algorithm proposed for the VRPTW was the B&P by

Desrochers et al. (92), later improved by Kohl et al. (141) through the addition of 2-

path inequalities to the LP relaxation of the SP formulation. Among exact approaches

for the VRPTW, we mention the ones proposed by Kohl and Madsen (140), Irnich and

Villeneuve (136), Jepsen et al. (137) and Desaulniers et al. (91).

4.3.2 Mathematical formulations and relaxations

The VRPTW is defined on a complete digraph G = (V ′, A), where V ′ = {0, 1, ..., n} is

a set of n + 1 vertices and A is the arc set. Vertex 0 corresponds to the depot, and we

define the vertex subset V = V ′ \ {0} composed by n vertices. Each vertex i ∈ V ′ has
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an associated demand qi, (we assume q0 = 0), and a time window [ei, li], where ei and

li represent the earliest and latest time to visit i. Each arc (i, j) ∈ A has an associated

travel cost dij and a travel time tij > 0, the latter including the service time at vertex

i, so the departure time at any vertex i ∈ V coincides with the end of its service. We

indicate with D the matrix of travel costs dij , and with T the matrix of travel times

tij . We indicate with Γi ⊆ V ′ the set of successors of i in G and with Γ−1
i ⊆ V ′ the set

of predecessors of i in G, ∀i ∈ V ′.
A fleet of m identical vehicles of capacity Q available at the depot has to serve

vertices. We indicate with R = (0, i1, ..., ir, 0), with r ≥ 1, a vehicle route; each

vehicle route R is a simple circuit in G passing through the depot, visiting vertices

V (R) = {0, i1, ..., ir}, V (R) ⊆ V ′, and such that (i) the total demand of the visited

vertices does not exceed the vehicle capacity Q; (ii) the vehicle leaves the depot 0 at

time e0, visits each vertex in V (R) within its time window, and returns to the depot

before l0; (iii) if the vehicle arrives at i ∈ V (R) before ei, the service is delayed to time

ei. Each vehicle route R has a cost equal to the sum of the travel costs of the arc set,

A(R), traversed by route R. Both the CVRP and the VRPTW ask for the design of a

set of at most m routes of minimum total cost, such that each vertex is visited exactly

once by exactly one route, respecting all constraints linked to the visit.

Let R be the index set of all feasible routes, and let Ri ⊂ R be the index set of routes

covering vertex i ∈ V ′. The cost associated to each route ` ∈ R is c` =
∑

(i,j)∈A(`)

dij . Let

x`, ` ∈ R, be a (0-1) binary variable equal to 1 if and only if route ` is in the optimal

solution. The formulation of both the CVRP and the VRPTW can be based on the

following SP model with additional constraints

(SP ) z(SP ) = min
∑
`∈R

c`x` (4.1a)

s.t.
∑
`∈Ri

x` = 1, ∀i ∈ V (4.1b)

∑
`∈R0

x` ≤ m, (4.1c)

x` ∈ {0, 1}, ∀` ∈ R (4.1d)
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Constraints (4.1b) impose that each vertex i ∈ V has to be visited by exactly one

route. Constraint (4.1c) specifies that at most m routes have to be selected.

Let u = (u1, ..., un) be the unrestricted vector of dual variables, where ui i =

1, ..., n are associated to constraints (4.1b). Let v be the non-positive dual variable

associated to constraint (4.1c). Hence, the dual problem of the LP relaxation of SP

can be defined as follows

(DSP ) z(DSP ) = max
∑
i∈V

ui +mv (4.2a)

s.t.
∑

i∈V(`)\0

ui + v ≤ c`, ∀` ∈ R (4.2b)

ui unrestricted, ∀i ∈ V (4.2c)

v ≤ 0, (4.2d)

A forward path P = (0, i1, ..., ik−1, ik) for the VRPTW is an elementary path

starting from the depot 0 at time e0, visiting vertices V (P ) = {0, i1, ..., ik−1, ik}
within their time windows, and ending at vertex ik = σ(P ) at time t(P ) with eσ(P ) ≤
t(P ) ≤ lσ(P ). Let us denote by A(P ) the set of arcs traversed by P and by c(P ) =∑
(i,j)∈A(P )

dij the cost of path P .

(t, i)-path is a well-known relaxation of forward paths. A (t, i)-path is a non-

necessarily elementary path starting from the depot at time e0, visiting a set of vertices

within their time windows, and ending at the vertex i at time ei ≤ t ≤ li. (t, i)-path

relaxation ignores the vehicle capacity constraint. The cost f(t, i) of the least cost

(t, i)-path can be computed using DP as described by Christofides et al. (71). A (t,

i)-route is a (t, 0)-path visiting at time t the last vertex i before arriving at the depot.

(t, i)-path relaxation can easily avoid 2-cycles, i.e. cycles like (0, i1, ..., ij − 1, ij , ij + 1,

..., ik − 1, ik) where ij − 1 = ij + 1. It is possible to demonstrate that f(t, i) is a valid

lower bound on the cost c(P ) of any forward path P , such that t(P ) = t and σ(P ) = i.

We can define the ng-path relaxation for the VRPTW. The definition of sets Π(P ) is

the same as (3.4a), where P = (0, i1, ..., ik − 1, ik) is a forward path. A forward ng-path

(NG, t, i) is a non-necessarily elementary path P = (0, i1, ..., ik − 1, ik = i) starting
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from the depot at time e0, visiting a subset of vertices within their time windows such

that NG = Π(P ), ending at vertex i at time ei ≤ t ≤ li, and suche that i /∈ Π(P ′), where

P ′ =(0, i1, ..., ik − 1). We denote by f(NG, t, i) the cost of the least cost forward

ng-path (NG, t, i). We define an (NG, t, i)-route as an (NG, t, 0)-path visiting

at time t the last vertex i before arriving at the depot. The cost of the (NG, t, i)-

route of minimum cost is given by f(NG, t, i) + di0. We can compute functions

f(NG, t, i) using DP as follows. Let Ω(t, j, i) be the subset of departure times from

vertex j to arrive at vertex i at time t when j is visited immediately before i, i.e. (i)

Ω(t, j, i) = {t′ : ej ≤ t′ ≤ min{lj , t− tji}} if t = ei, and (ii) Ω(t, j, i) = {t− tji : ej ≤
t− tji ≤ lj} if ei < t ≤ li. The state space graph H = (E ,Ψ) is defined as

E = {(NG, t, i) : ∀NG ⊆ Ni s.t. NG 3 i, ∀t, ei ≤ t ≤ li, ∀i ∈ V ′}, (4.3a)

Ψ = {((NG′, t′, j), (NG, t, i)) : ∀(NG′, t′, j) ∈ Ψ−1(NG, t, i),∀(NG, t, i) ∈ E },
(4.4a)

where Ψ−1(NG, t, i) = {(NG′, t′, j) : ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩ Ni =

NG \ {i}, ∀t′ ∈ Ω(t, j, i), ∀j ∈ Γ−1
i }.

The DP recursion for calculating f(NG, t, i) is the following

f(NG, t, i) = min
(NG′, t′, j)∈Ψ−1(NG, t, i)

{f(NG′, t′, j) + dji}, ∀(NG, t, i) ∈ E . (4.5a)

It is possible to demonstrate that f(NG, t, i) is a valid lower bound to the cost

c(P ) of any forward path P , such that t(P ) = t and σ(P ) = i, (Baldacci et al. (31)).

4.3.3 The Lagrangean metaheuristic

We describe the Lagrangean metaheuristic. The method is a matheuristic able to

produce both a valid lower bound and a feasible solution using MP methods as a basis

for ameliorating the search of good quality feasible solutions. The objective of the

algorithm is both computing tight lower bounds and feasible solutions minimizing total

travel costs, and, at the same time, minimizing the number of used vehicles.
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Algorithm 5 reports a pseudocode of the matheuristic. The algorithm is a subgradi-

ent iterative method, based on a reduced SP model, RSP, obtained from the SP model

4.1 by replacing the route set R with the set R′. The subgradient solves the Lagrangean

dual problem, computing a near optimal solution of the reduced dual problem, RDSP,

obtained from model DSP 4.2 by replacing the route set R with the set R′. Hence,

the subgradient calculates a valid lower bound on the optimal cost z(SP ). We relax in

a Lagrangean fashion both SP constraints (4.1b) and (4.1c). At each iteration of the

subgradient, a CG method relying on a bounding procedure enlarges the set of routes

R′, computing negative reduced cost columns, respectively, (q, i)-routes or (NG, q,

i)-routes for the CVRP, or (t, i)-routes or (NG, t, i)-routes for the VRPTW. During

each iteration of the subgradient, a pruning heuristic is used to fix infeasibilities of

the subgradient solution and compute a feasible solution for the problem to be solved.

The matheuristic framework is the same for both the CVRP and the VRPTW; only

the pruning heuristic and the procedure to calculate a starting feasible solution differ,

since they have to solve different problems.

At line 2 of algorithm 5, the pool of columns PoolC of the master RSP model is

initialized to an empty set. Each entry of the matrix of reduced costs DRed(i, j) is

initialized with travel cost D(i, j), ∀(i, j) ∈ A at line 3. The counter of subgradient

iterations, the counter of the number of consecutive subgradient iterations without an

improvement of the lower bound and a boolean value indicating if a valid lower bound

has been computed are initialized, respectively at lines 4, 5 and 6. The value of the

Lagrangean dual is initialized to 0, at line 7. At line 8 a starting feasible solution is

computed. For what concerns the CVRP, the method is the same as the one used

to initialize the core of columns of the master RSP problem in algorithm 2. For the

VRPTW, we used a sequential constructive method, relying on the i1 insertion heuristic

proposed by Solomon (200) as criterion for inserting vertices in routes. At line 9 we

initialize the pool of columns PoolC of the master RSP problem with single vertex routes

(0, i, 0), ∀i ∈ V . Lines 10-37 represent the heart of the Lagrangean metaheuristic.

Let PoolCi ⊂ PoolC be the subset of routes covering vertex i ∈ V . We apply the

parametric relaxation for the SC model, shown by Boschetti and Maniezzo (51), to our

RSP model. Following this relaxation, the resulting mathematical formulation of the

RSP problem is
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Algorithm 5 Lagrangean Metaheuristic

1: procedure Lagr Meta(D, T , m, n, qi, Q, αin, update rate, red rate, it tot)

2: PoolC ← ∅
3: DRed(i, j)← D(i, j) ∀i, j ∈ V ′

4: cont it← 0

5: count it no impr ← 0

6: valid lower bound← false

7: lbb ← 0

8: sbest ← Create UB(D, T )

9: PoolC ← Init Master()

10: α← αin

11: λi ← 0 ∀i ∈ V ′

12: repeat

13: g ← Solve Lagr Dual(PoolC , λi, m, lb)

14: if lb ≤ lbb then

15: count it no impr ← count it no impr + 1

16: if count it no impr = update rate then

17: α = α ∗ red rate
18: count it no impr ← 0

19: if α = 0 then

20: α← αin

21: if valid lower bound = false then

22: goto 25

23: else

24: count it no impr ← 0

25: DRed← Calc Red Costs(D, g)

26: new pool← Pricing Cols(DRed, T, n, qi, Q)

27: if new pool = ∅ then

28: if lb > lbb then

29: valid lower bound← true

30: lbb ← lb

31: else

32: PoolC ← PoolC ∪ new pool

33: xsub ← Update Penalties(PoolC , λi, α, m, lb)

34: s′ ← Pruning Heuristic(xsub, D, T )

35: sbest ← Update Sol(s′, D)

36: cont it← cont it+ 1

37: until (cont it < it tot || time limit not exceeded)

38: return sbest
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(PRSP (w)) z(PRSP )(w) = min
∑

`∈PoolC

∑
i∈V (`)\{0}

c`
wi

w(V (`))
yi` (4.6a)

s.t.
∑

`∈PoolCi

∑
h∈V (`)\{0}

wh
w(V (`))

yh` = 1, ∀i ∈ V

(4.6b)

∑
`∈PoolC0

∑
h∈V (`)\{0}

wh
w(V (`))

yh` ≤ m, (4.6c)

yi` ∈ {0, 1}, ` ∈ PoolCi , i ∈ V (4.6d)

We relax in a Lagrangean fashion both PRSP(w) constraints (4.6b) and (4.6c).

Consider a penalty vector λ = (λ1 ,..., λn, λn + 1), where λi, i = 1, ..., n is an unre-

stricted real number associated to constraint (4.6b) for vertex i ∈ V and λn + 1 ≥ 0 is

associated to constraint (4.6c). We obtain the following problem

(LPRSP (λ,w))z(LPRSP )(λ,w) = min
∑

`∈PoolC

∑
i∈V (`)\{0}

(c` − λ′(V (`)))
wi

w(V (`))
yi` +

∑
i∈V

λi −mλn+1

(4.7a)

yi` ∈ {0, 1}, ` ∈ PoolCi , i ∈ V (4.7b)

where λ′(V (`)) = λ(V(`))− λn+1 and λ(V(`)) =
∑

h∈V (`)\{0}
λh.

Problem LPRSP(λ,w) is decomposable into n subproblems, one for each row i ∈ V

(LPRSP i(λ, w)) zi(LPRSP )(λ, w) = min
∑

`∈PoolCi

ci`(λ, w)yi` + λi (4.8a)

s.t. yi` ∈ {0, 1}, ` ∈ PoolCi (4.8b)

where ci`(λ, w) = (c′` − λ(V (`))) wi
w(V`)

and c′` = c` + λn+1.

We set wi = λi and add the constraint
∑

`∈PoolCi

yi` = 1,∀i ∈ V . The subproblem

LPRSPi(λ, w), i ∈ V can be rewritten as follows
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(LPRSP i(λ)) zi(LPRSP )(λ) = min
∑

`∈PoolCi

c′`
λi

λ(V (`))
yi` (4.9a)

s.t.
∑

`∈PoolCi

yi` = 1, (4.9b)

yi` ∈ {0, 1}, ` ∈ PoolC (4.9c)

Hence, the overall value of the Lagrangean problem LPRSP(λ) is

z(LPRSP )(λ) =
∑
i∈V

zi(LPRSP )(λ)−mλn+1 (4.10a)

Any optimal solution of problem LPRSP(λ) provides a feasible solution (u, v) of

cost z(LPRSP )(λ) for the reduced dual problem RDSP, obtained from the DSP model

by replacing the route set R with the pool PoolC . A feasible dual solution (u, v)

of cost z(LPRSP )(λ) for problem RDSP can be obtained by means of the following

expressions

ui = min`∈PoolCi
{c′`φi`} i ∈ V (4.11a)

v = −λn+1 (4.11b)

where c′` = c` + λn+1 and

φi` =

{
λi

λ(V (`)) λ(V (`)) > 0
1

|V (`)\{0}| λ(V (`)) = 0
(4.12a)

The best lower bound that can be achieved using expressions (4.11) is equal to

the optimal solution cost z(RDSP ) of the problem RDSP; this value can be obtained

calculating the maximum of the function z(LPRSP )(λ) with respect to λ, i.e.

maxλ{z(LPRSP )(λ)} = z(RDSP ) (4.13a)
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The problem (4.13) is called Lagrangean dual. We need to solve it to find the op-

timal (or near-optimal) dual solution of cost z(RDSP ). The implemented subgradient

method deals with the Lagrangean dual, searching the space of possible values for λ

vectors and obtaining the best possible lower bound. At line 11 each component of the

λ vector is initialized to 0, ∀i ∈ V ′. Loop 12-37 is the core of subgradient optimization.

At line 13 the Lagrangean dual problem (4.13) is solved for the given λ vector. Lines

14-22 test if the value of the current lower bound is better than the current value of

the Lagrangean dual. If it is not, the counter of the number of consecutive iterations

without improvement is incremented and, possibly, the value of the parameter α, used

to update the vector λ, is updated. Then the algorithm generates new negative reduced

cost routes, if a valid lower bound has not yet been found, (line 22). In the case that

the current value of the lower bound is better than the current value of the Lagrangean

dual, the matrix of reduced costs is updated, (line 25), and the pricing of new nega-

tive reduced costs routes is done, (line 26). If no negative reduced costs routes can be

found, a valid lower bound has been found, and we update the value of the Lagrangean

dual, (line 30). Otherwise, we enlarge the pool of columns PoolC , (line 32). At line 33

the subgradient vector is calculated and used to update the vector λ. Let us indicate

with J ⊂ PoolC the index subset of routes that produce minima of formula (4.11a)

∀i ∈ V , i.e. J = {` ∈ PoolC : ` = argmin`∈PoolCi
[c′`φi`], i ∈ V }. Let (u, v) be the dual

solution of cost z(LPRSP )(λ) computed by expressions (4.11) at point λ. Let x be

the corresponding non-necessarily feasible solution of RSP, computed as

x` =


∑
i∈I`

φi` ` ∈ J

0 otherwise
(4.14a)

where I` = {i ∈ V : ui = c′`φi`}. A valid subgradient of the function z(LPRSP )(λ)

is given by the vector θ = (θ1, ..., θn, θn+1), calculated according to the following

formulas

θi = 1−
∑

`∈PoolCi

x`, i ∈ V (4.15a)

θn+1 = m−
∑

`∈PoolC0

x` (4.15b)
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The vector of Lagrangean penalties λ is then updated according to the following

formulas

λi = λi + α
0.1lb∑
j∈V ′

θ2
j

θi, i ∈ V (4.16a)

λn+1 = max{0, λn+1 − α
0.1lb∑
j∈V ′

θ2
j

θn+1} (4.16b)

Solution x, calculated following formulas (4.14), is returned at line 33; x is referenced

in the pseudocode as xsub.

At line 34, a pruning heuristic is invoked to fix infeasibilities of the solution xsub.

For what concerns the CVRP, the pruning heuristic works as follows. Using the

solution xsub, the heuristic selects the m routes having the corresponding highest values

in xsub. Since vertices can appear more than once in the selected m routes, among all

the routes in which a vertex appears, the heuristic assigns each vertex to the route with

the corresponding highest value in the solution xsub. If some vertices are not present

in the selected m routes, they are inserted in the current solution until the capacity

constraint of each route is not violated. If the heuristic succeeds in assigning each

vertex exactly once, a VND method as the one presented in section 3.3.2 of chapter 3

is executed, to try to improve the current feasible solution.

The pruning heuristic for the VRPTW works as follows. The heuristic selects the m

routes of xsub having the corresponding highest values. For each one of these routes, the

heuristic deletes multiple occurrences of vertices, maintaining only the first occurrence

of each vertex. Multiple occurrences of vertices along different routes are eliminated

by maintaining for each vertex, among all the routes in which the vertex appears, only

the occurrence corresponding to the route having the highest value in the solution

xsub. The respect of the capacity constraint is tested on each of the resulting routes;

if the constraint is violated for some routes, the necessary deletions of vertices from

the routes themselves are made. The remaining unrouted vertices are inserted in the

current partial solution following the i1 criterion by Solomon (200). If the heuristic

succeeds in inserting each vertex in the solution exactly once, a VND local search is

executed, using the same neighborhoods presented for the CVRP in section 3.3.2 of

chapter 3, adjusted for treating time window constraints.
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After the execution of the pruning heuristic, at line 35 the current best feasible

solution ever found sbest is possibly updated to the feasible solution s′, if the total

traveled distance is lower, for an equal number of used vehicles, or if the number of

used vehicles is lower. The subgradient method stops when the maximum number of

iterations is reached or when a time limit is exceeded. The Lagrangean metaheuristic

returns the best feasible solution found sbest.

4.3.4 The parameter tuning problem

Let us consider parameter α of algorithm 5. This parameter is used to update the

vector of Lagrangean penalties λ, as shown by formulas (4.16). Since it is involved in

the update of λ, α is hence responsible for the solution of the Lagrangean dual problem,

that has the aim of computing the highest possible valid lower bound searching the space

of the vectors λ. The value of α varies during subgradient iterations, adapting to the

improvement of the value of the current lower bound. An initial predefined value is

established for α, (line 10). If for a certain consecutive number of iterations the value of

the current lower bound does not improve the value of the Lagrangean dual, the value

of α is reduced of a predefined rate, (line 17), and, when the value of α is very close

to 0, the initial predefined value is reassigned to α, (line 20). Hence, we can identify

three higher level parameters that control the updating of α, i.e.

� the initial value of α, αin;

� the number of consecutive subgradient iterations without improvement of the

lower bound, count it no impr;

� the reduction rate of α, red rate.

We experimented if it could be possible to improve the quality of the valid lower

bounds computed by the subgradient method through a proper tuning of these three

parameters. The considered applications of the Lagrangean metaheuristic’s parameter

tuning deal with the solution of the CVRP and the VRPTW. We use the irace package

to treat this parameter tuning problem. The Lagrangean metaheuristic was coded in

C++ and all computational tests have been executed on an IntelR CoreTM i3 with

2.40GHz and 4 GB of RAM, running under Windows 7 64 bits.
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The first application we analyze is the one related to the CVRP. The subgradient

is stopped after 800 iterations, or if the time limit of 6 hours is reached. We fix the

cardinality of sets Ni ∀i ∈ V of ng-route bounding procedure to 7, (each set Ni is

composed by vertex i and by the 6 vertices nearest to i). Table 4.1 summarizes the

characteristics of the three parameters to be tuned, i.e. the name of the parameters,

the type, and the ranges of values chosen for tuning each parameter; the table reports

the initial chosen ranges of values for the tuning of the parameters.

Table 4.1: Characteristics of the initial chosen ranges for parameters related to α

Name Type Range

αin Real [1,0, 2,0]

count it no impr Integral [15, 30]

red rate Real [0,2, 0,6]

The used default configuration, i.e. the non-tuned configuration, for the three

parameters to be tuned is shown in table 4.2.

Table 4.2: Default configuration of the parameters related to α

αin count it no impr red rate

1,5 15 0,4

The test set of instances of the CVRP we are interested to solve is the one proposed

by Uchoa et al. (211), (we consider only instances with a total number of vertices lower

than 400, because of memory problems in managing bigger sizes). The training set

used by irace during its training phase has been created from scratch, by considering

the first 50 vertices for each instance in the test set and using them to generate a new

corresponding instance to be added to the training set. We decided not to use the other

test sets from the literature of the CVRP since, in our opinion, the created training set

can summarize quite well characteristics of the test set, while the other test sets are

quite different from each other, hence not providing a proper basis for the tuning. We

implemented several pricing procedures for the CG, i.e. the ng-route, the (q, i)-route

and the (q, i)-route with 2-cycles bounding procedures, (this last one corresponds to

the (q, i)-route procedure not avoiding the creation of 2-cycles in routes). Hence, we
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executed three separate parameter tuning sessions of irace, each one dedicated to the

tuning of the Lagrangean metaheuristic with the corresponding pricing procedure. The

established number of experiments of irace for each session is 1000.

The tuned configurations of the three parameters obtained by irace, using the ranges

shown in table 4.1, for, respectively, the ng-route, the (q, i)-route and the (q, i)-

route with 2-cycles pricing for solving the CVRP did not improve the quality of the

valid lower bounds with respect to the use of the default configuration of table 4.2.

This is documented in table 4.3, that shows the percentage average lower bound gaps

from best known solutions, obtained, respectively, with the default configuration and

with the tuned configurations, for every pricing procedure. We can see that the gaps

obtained using the tuned configurations are bigger than the gaps obtained by the default

configuration.

Table 4.3: Comparison between percentage average lower bound gaps from best known solutions

before and after tuning for instances by (211)

Before tuning After tuning

ng-route (q, i)-route (q, i)-route 2-cycles ng-route (q, i)-route (q, i)-route 2-cycles

13,56 12,84 5,26 21,44 9,58 6,21

Given the obtained results, we analyze if it could be possible to obtain better quality

valid lower bounds, for solving the CVRP, by changing the considered ranges of values,

used by irace for the tuning of the Lagrangean metaheuristic. Hence, we tried to enlarge

the considered ranges, shown in table 4.1, by the creation of new ranges for the tuning;

these ranges are reported in table 4.4.

Table 4.4: Characteristics of the enlarged ranges for parameters related to α

Name Type Range

αin Real [0,7, 2,5]

count it no impr Integral [10, 30]

red rate Real [0,1, 0,7]

The tuning of the Lagrangean metaheuristic with irace for, respectively, the ng-

route, the (q, i)-route and the (q, i)-route with 2-cycles pricing for solving the CVRP,

62



4.3 Parameter tuning of a Lagrangean metaheuristic

using the enlarged ranges of table 4.4, gave as output the configurations of parameters

shown in tables 4.5, 4.6 and 4.7.

Table 4.5: Tuned configuration of the parameters related to α for ng-route pricing for the CVRP

αin count it no impr red rate

0,73 29 0,65

Table 4.6: Tuned configuration of the parameters related to α for (q, i)-route pricing for the CVRP

αin count it no impr red rate

0,86 22 0,67

Table 4.7: Tuned configuration of the parameters related to α for (q, i)-route with 2-cycles pricing

for the CVRP

αin count it no impr red rate

1,1 26 0,63

The obtained computational results related to the calculated valid lower bounds

before and after the tuning of parameters for, respectively, the ng-route, the (q, i)-

route and (q, i)-route with 2-cycles pricing, using the configurations of tables 4.5,

4.6 and 4.7, are reported in tables B.1, B.2 and B.3. The first column of each table

shows the name of the solved instance. The second column represents the number

of vertices of the instance, (excluding the depot). Columns 3-5 report computational

results of the valid lower bound obtained by the Lagrangean metaheuristic before the

tuning of parameters, i.e. the number of used vehicles, the value of the total traveled

distance and the percentage gap from the best known solution, calculated as Gap(%) =

((BestKnown−LowerBound)∗100)/BestKnown. Columns 6-8 report computational

results of the valid lower bound obtained by the Lagrangean metaheuristic after the

tuning of parameters, i.e. the number of used vehicles, the value of the total traveled

distance and the percentage gap from the best known solution. Column 9 reports

the total execution time in seconds of the algorithm. Columns 10-11 show details

of the best known solution, i.e. the number of used vehicles and the total traveled
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distance, (best known solution values are taken from the website (3)). Underlined

entries of the tables identify the values improved by the tuning. To facilitate the

comprehension of the results and understand the effectiveness of the tuning process,

we summarize the obtained results through correlation plots. The x coordinate of each

point in the correlation plot represents the value of the lower bound obtained before

the tuning, while the y coordinate is the value of the lower bound after the tuning.

Figures B.7, B.8 and B.9 show correlation plots of, respectively, ng-route, (q, i)-

route and (q, i)-route with 2-cycles pricing. By looking at correlation plots, we can see

that, generically, points lie along or over the bisection line, meaning that performances

obtained with tuned configurations are better than results obtained before tuning.

We can verify this fact also by looking at table 4.8, that shows percentage average

lower bound gaps from best known solutions before and after the tuning for every

pricing procedure. We can see that average lower bounds significantly decrease after

the tuning of parameters, meaning that performances considerably improve. We can,

hence, note that the obtained results are significantly better than the results obtained

with the tuned configurations, calculated by irace using the first proposed ranges of

values of table 4.1. This demonstrates that the enlarging of the ranges considered by the

tuning can potentially find new, better configurations, able to significantly improve the

performances of the algorithm to be tuned; moreover, this shows that, often, the human

intuition of limiting the search of good configurations to a restricted neighborhood of

the default used configuration can be a bad choice, prefering, hence, to consider wider

neighborhoods of parameter configurations. For completeness of explanation, tables

B.4, B.5 and B.6 report the related heuristic computational results of the Lagrangean

metaheuristic, obtained before and after the tuning of the parameters, (dash entries

in the tables mean that the pruning heuristic did not succeed in assigning each vertex

exactly once, hence not obtaining a feasible solution).

Table 4.8: Comparison between percentage average lower bound gaps from best known solutions

before and after tuning for instances by Uchoa et al. (211)

Before tuning After tuning

ng-route (q, i)-route (q, i)-route 2-cycles ng-route (q, i)-route (q, i)-route 2-cycles

13,56 12,84 5,26 5,31 4,72 5,53
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To assess the performances of the tuned algorithm, we tested the tuned Lagrangean

metaheuristic also on instances of test sets A, B, P, (Augerat et al. (24)), E, (Christofides

and Eilon (70)), and M, (Christofides et al. (69)); all these instances are available at

website (2)). Figures B.10, B.11 and B.12 show correlation plots comparing valid

lower bounds computed with the default configuration and tuned configurations, for

each of the three pricing procedures. Table 4.9 shows percentage average lower bound

gaps before and after the tuning with irace. These results confirm the effectiveness of

the tuning process of irace in improving the quality of the valid lower bounds. Corre-

sponding detailed lower bound computational results can be found in tables B.7, B.8

and B.9, while tables B.10, B.11 and B.12 report heuristic results of the Lagrangean

metaheuristic.

Table 4.9: Comparison between percentage average lower bound gaps from best known solutions

before and after tuning for instances A, B, P, E, M

Before tuning After tuning

ng-route (q, i)-route (q, i)-route 2-cycles ng-route (q, i)-route (q, i)-route 2-cycles

3,51 5,6 9,23 3,51 5,61 9,22

The second application of the Lagrangean metaheuristic parameter tuning deals

with the solution of the VRPTW. The subgradient is stopped after 700 iterations, or

if the time limit of 6 hours is reached. We fix the cardinality of sets Ni ∀i ∈ V of

ng-route bounding procedure to 7, i.e. each set Ni is composed by vertex i and by

the 6 vertices nearest to i. The default configuration for the three parameters to be

tuned is shown in table 4.2. The test sets of instances of the VRPTW we are interested

to solve are the 100 vertices test set proposed by Solomon (200) and the 200 vertices

test set by Gehring & Homberger’s benchmark, available at (8). The training set used

by irace is composed by the 25 and the 50 vertices instances derived from instances

by Solomon (200); they are composed by, respectively, the first 25 and 50 vertices of

each instance by Solomon (200), available at (9). As for the CVRP, we executed three

separate parameter tuning sessions of irace, each one dedicated to the tuning of the

Lagrangean metaheuristic with the corresponding pricing procedure. The established

total number of experiments of irace for each session is 1000. The considered ranges of

values for the parameters to be tuned are the ones reported in table 4.1.
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The tuning of irace of the Lagrangean metaheuristic with, respectively, the ng-

route, the (t, i)-route and the (t, i)-route with 2-cycles pricing for solving the VRPTW

gave as output the following configurations, shown, respectively, in tables 4.10, 4.11

and 4.12.

Table 4.10: Tuned configuration of the parameters related to α for ng-route pricing for the VRPTW

αin count it no impr red rate

1,29 25 0,33

Table 4.11: Tuned configuration of the parameters related to α for (t, i)-route pricing for the

VRPTW

αin count it no impr red rate

1,17 17 0,63

Table 4.12: Tuned configuration of the parameters related to α for (t, i)-route with 2-cycles pricing

for the VRPTW

αin count it no impr red rate

1,01 17 0,61

Comparisons between the computational results of the valid lower bounds obtained

with tuned configurations of parameters and with the default one, previously shown

in table 4.2, for the Lagrangean metaheuristic with, respectively, the ng-route, the (t,

i)-route and the (t, i)-route with 2-cycles pricing for, respectively, tests sets by Solomon

(200) and Gehring & Homberger are reported in tables B.13, B.14, B.15, B.16, B.17 and

B.18. The first column of each table shows the name of the solved instance. The second

column reports the number of vertices of the instance, (excluding the depot). Columns

3-5 report computational results of the valid lower bound obtained by the Lagrangean

metaheuristic before the tuning of parameters, i.e. the number of used vehicles, the

value of the total traveled distance and the percentage gap from the best known solution,

calculated as Gap(%) = ((BestKnown− LowerBound) ∗ 100)/BestKnown. Columns

6-8 report computational results of the valid lower bound obtained by the Lagrangean
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metaheuristic after the tuning of parameters, i.e. the number of used vehicles, the value

of the total traveled distance and the percentage gap from the best known solution.

Column 9 reports the total execution time in seconds of the algorithm. Columns 10-

11 show details of the best known solution, i.e. the number of used vehicles and the

total traveled distance, (best known solution values for, respectively, the instances by

Solomon (200) and by Gehring & Homberger are taken from (9) and (8)). To facilitate

the comprehension of the results and to understand the effectiveness of the tuning

process, we summarize the obtained results through correlation plots. Figures B.1,

B.2 and B.3 show correlation plots for valid lower bounds of the instances by Solomon

(200) before and after tuning with irace for, respectively, the ng-route, the (t, i)-route

and the (t, i)-route with 2-cycles pricing. As you can see by looking at correlation

plots, lower bound values obtained with the default configuration, i.e. before tuning,

are worse than values obtained after tuning with irace, for each of the three pricing

procedures; in fact, we have that the majority of points of each correlation plot lies

over or along the bisection line. We can verify this fact also by looking at table 4.13,

that shows percentage average lower bound gaps from best known solutions before and

after tuning for every pricing procedure.

Table 4.13: Comparison between percentage average lower bound gaps from best known solutions

before and after tuning for instances by Solomon (200)

Before tuning After tuning

ng-route (t, i)-route (t, i)-route 2-cycles ng-route (t, i)-route (t, i)-route 2-cycles

4,7 7,3 13,73 4,7 6,47 11,27

The improvement of the quality of the valid lower bound is confirmed also by tests

made on 200 vertices instances by Gehring & Homberger. Figures B.4, B.5 and B.6

show the distribution of valid lower bounds, while table 4.14 reports percentage average

lower bound gaps from best known solutions before and after tuning for every pricing

procedure. For completeness of explanation, tables B.19, B.20, B.21, B.22, B.23, B.24

report the detailed computational results related to the heuristic solution computed by

the Lagrangean metaheuristic before and after the tuning of the parameters.
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Table 4.14: Comparison between percentage average lower bound gaps from best known solutions

before and after tuning for instances by Gehring & Homberger

Before tuning After tuning

ng-route (t, i)-route (t, i)-route 2-cycles ng-route (t, i)-route (t, i)-route 2-cycles

35,41 38,01 53,04 35,43 34,93 43,51

We tested if it could be possible to further improve the obtained results, by executing

the tuning of the parameters using the enlarged ranges of values, proposed in table 4.4,

used for tuning the Lagrangean metaheuristic for the CVRP. We executed the tuning

process with irace, using the enlarged ranges, but the results we obtained did not

significantly improve the already obtained results; for this reason, we do not report

these results.

4.4 Parameter tuning of an ILS

In this section we present an ILS to solve the QAP. We show the problem of the tuning

of ILS, using the irace package, with the aim of improving the value of the feasible

solution computed by ILS.

4.4.1 Target problem

The QAP is one of the most difficult combinatorial optimization problems. The problem

asks to assign a set of n facilities to a set of n locations, given distances between the

locations and flows between the facilities; the aim is that of assigning each facility to

exactly one location and viceversa, in such a way that the sum of the product between

flows and distances is minimal. Let Φ = {1, ..., n} be an index set of the facilities and

Λ = {1, ..., n} be an index set of the locations. Furthermore, let D = [dih], i, h = 1, ...,

n be the matrix of distances between each pair of locations and let F = [fjk], j, k = 1,

..., n be the matrix of flows between each pair of facilities. A 0/1 binary variable xij

takes value 1 if facility i is assigned to location j, 0 otherwise. We can define the QAP

as the following problem
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(QAP ) z(QAP ) = min
n∑

i,j=1

n∑
h,k=1

dihfjkxijxhk (4.17a)

s.t.
n∑
i=1

xij = 1, j = 1, ..., n (4.17b)

n∑
j=1

xij = 1, i = 1, ..., n (4.17c)

xij ∈ {0, 1} (4.17d)

Many practical problems like backboard wiring (201), hospital layout (105) and

many others can be represented as QAPs. The theoretical and practical interest of

the problem has given rise during the years to several algorithms, both exact and

heuristic. The most effective exact techniques presented in the literature include those

of Mautor and Roucairol (158), Hahn et al. (127) and Brüngger et al. (56). Among

heuristic approaches we recall the SA of Connolly (76), the TS of Taillard (205) and of

Battiti and Tecchiolli (35), the GRASP of Pardalos and Resende (164), the Ant System

algorithm of Maniezzo (155) and the ILS of Stützle (204).

4.4.2 The ILS

ILS is an iterative method that uses an embedded heuristic to build a sequence of

solutions, leading to far better solutions than if one were to use repeated random trials

of that heuristic (152). The key idea of ILS is that of using an iterative mechanism

alternating the phases of local search and perturbation, with the aim of achieving a

good trade-off between intensification and diversification of the search within the space

of solutions of the problem to be treated. Intensification has to be guaranteed by the

local search, permitting to identify local minima, while diversification is made by the

perturbation, that moves the search towards possibly unexplored areas of the solution

space. We can summarize the main steps of ILS by the following algorithm 6.

The algorithm builds an initial solution at line 2; at line 3 a local search procedure

is executed to try to improve the quality of the initial solution s0. Loop 4-8 is the

heart of ILS, alternating the perturbation and the local search phase. The acceptance
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Algorithm 6 Iterated Local Search

1: procedure ILS

2: s0 ← Generate Initial Solution()

3: s* ← Local Search(s0)

4: do

5: s’ ← Perturbation(s*, history)

6: s*’ ← Local Search(s’)

7: s* ← Acceptance Criterion(s*, s*’, history)

8: while termination condition not met

9: return s*

criterion at line 7 decides if consider or not the current solution as a starting point for

the new perturbation/local search iteration. The algorithm ends when the termination

condition is satisfied, giving as output the best solution ever found s∗.

4.4.3 The parameter tuning problem

Let us consider algorithm 6. The design of the ILS depends on the instantiation of

three different parameters, that give rise to different implementations of the algorithm:

� the choice of the local search procedure;

� the choice of the perturbation procedure;

� the choice of the acceptance criterion.

Different implementations of the ILS lead to different computed feasible solutions,

of better or worse quality. The problem we treat is that of identifying the proper

design of the ILS, able to produce the best-quality feasible solutions possible. The

target problem of the ILS we are interested to solve is the QAP. As for the Lagrangean

metaheuristic, we treat the problem of tuning the ILS using the irace package.

The move that we consider in applying a local search procedure for the QAP is

the exchange of two elements of a given solution. The local search parameter can be

instantiated using one of the following local search procedures:

� first improvement hill climbing with equal neighbor comparator; it is a first im-

provement hill climbing that considers as improving neighbor a solution with a

fitness lower than or equal to the fitness of the current solution;
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� first improvement hill climbing with non equal neighbor comparator; it is a first

improvement hill climbing that considers as improving neighbor a solution with

a fitness lower than the fitness of the current solution;

� best random hill climbing with equal neighbor comparator; it is a procedure that

randomly chooses, at each iteration, one of the best solutions in the neighborhood

and updates the current solution if the fitness of the chosen neighbor is lower than

or equal to the fitness of the current solution;

� best random hill climbing with non equal neighbor comparator; it is a procedure

that randomly chooses, at each iteration, one of the best solutions in the neigh-

borhood and updates the current solution if the fitness of the chosen neighbor is

lower than the fitness of the current solution;

� simple hill climbing with equal neighbor comparator; it is a best improvement

hill climbing that considers as improving neighbor a solution with a fitness lower

than or equal to the fitness of the current solution;

� pure first improvement 2-opt; it executes 2-opt exchanges between elements of a

solution, accepting the first found improvement;

� pure best improvement 2-opt; it executes 2-opt exchanges between elements of a

solution, accepting the best found improvement;

� tabu search, using best improvement 2-opt.

The perturbation parameter can be instantiated using one of the following proce-

dures:

� restart; this perturbation consists in reinitializing at random the solution when a

maximum number of iterations with no improvement is reached;

� multiple exchange; this perturbation is realized by multiple exchanges of elements

in the current solution;

� repeated multiple perturbation; it consists in applying a perturbation many times

in a row.

The acceptance criterion parameter can be realized by one of the following criteria:
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� accept always; it always accepts a solution;

� accept better; it accepts a solution if it is better than the current one;

� accept better or equal; it accepts a solution if it is better than or equal to the

current one;

� accept simulated annealing; it permits to accept even worse solutions, only with

a certain probability.

All computational tests have been executed on a machine with an IntelR CoreTM

i3 with 2.40 GHz and 4 GB of RAM, running under Windows 7 64 bits.

The ILS was coded in C++, using the ParadisEO framework, (Cahon et al. (58)),

to design the different procedures of local search, perturbation and acceptance criteria.

The initial solution s0 of the ILS corresponds to the permutation (1, ..., n). The

termination criterion of the ILS corresponds to a maximum time limit, expressed in

seconds, equal to the size of the instance to be solved divided by 5.

The used default configuration of the ILS consists in using:

� pure first improvement 2-opt as local search procedure;

� multiple exchange as perturbation;

� accept simulated annealing as acceptance criterion.

The test set of instances of the QAP we are interested to solve is composed by

the instances (tai27e01-tai27e20), (tai45e01-tai45e20), (tai75e01-tai75e20), (tai125e01-

tai125e20), (tai175e01-tai175e20), (tai343e01-tai343e20) and (tai729e01-tai729e10) pro-

posed by Taillard, (available at (6)), and by the structured instances proposed by Pel-

legrini et al. (166).

Two separate tuning sessions of irace have been conducted on the ILS, one addressed

to improve the performances of the ILS in solving the test set by Taillard and the other

one for the test set by Pellegrini et al. (166).

For what concerns the instances by Taillard, we composed the training set used by

irace with a half of the instances of each set (tai27e01-tai27e20), (tai45e01-tai45e20),

(tai75e01-tai75e20), (tai125e01-tai125e20), (tai175e01-tai175e20) and (tai343e01-tai343e20).
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The test set is composed by the remaining instances. The established number of ex-

periments of irace is 50000.

The tuning of the ILS addressed to solve the instances by Taillard gave as output

the following configuration of parameters:

� pure best improvement 2-opt as local search procedure;

� repeated multiple perturbation as perturbation, where the multiple exchange per-

turbation is executed for a random number of times, (the number of executions

is chosen in the interval [6,26]);

� accept simulated annealing as acceptance criterion.

Obtained computational results related to the best identified feasible solutions of

the ILS before and after the tuning of the parameters are reported in table B.25. The

first column reports the name of the solved instance. The second column shows the

number of facilities and locations of the instance. Columns 3-4 report computational

results of the best feasible solution found by the non-tuned ILS, i.e., respectively, the

value of the objective function and the percentage gap from the best known solution.

Columns 5-6 report computational results of the best feasible solution found by the

tuned ILS, i.e., respectively, the value of the objective function and the percentage gap

from the best known solution. Column 7 shows the value of the best known solution

of the corresponding instance, (dash entries mean that the best known solution is not

known). To facilitate the understanding of the results and the effectiveness of the

tuning process, we summarize the obtained results through the correlation plot, shown

in figure B.13. Here, the x coordinate of each point in the correlation plot corresponds

to the value of the objective function obtained by the non-tuned ILS, while the y

coordinate represents the value of the objective function obtained by the tuned ILS.

We can observe that the majority of the points in the correlation plot lies along or under

the bisection line; this means that the tuning of the ILS has improved the quality of

the best feasible solutions found. This assertion is also confirmed by the data reported

in table 4.15, that shows percentage average heuristic gaps from best known solutions

obtained before and after the tuning with irace; we have, in fact, that the percentage

average gap obtained by the non-tuned ILS is higher than the gap obtained by the

tuned ILS, of more than one percent.
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Table 4.15: Comparison between percentage average heuristic gaps from best known solutions

before and after tuning for instances by Taillard

Before tuning After tuning

14,64 11,15

For what concerns the structured instances by Pellegrini et al. (166), we composed

the training set used by irace with a half of the instances of each set of structured

instances of size 60, 80 and 100; the test set is composed by the remaning instances.

The established number of experiments of irace is 50000.

The tuning of the ILS addressed to solve the instances by Pellegrini et al. (166)

gave as output the following configuration of parameters:

� pure best improvement 2-opt as local search;

� repeated multiple perturbation as perturbation; multiple exchange perturbation

is executed for an increasing number of applications, starting from 10 to 14;

� accept always as acceptance criterion.

Figure B.14 and table 4.16 summarize the comparison between heuristic computa-

tional results obtained by the ILS before and after the tuning with irace. By looking

at the correlation plot we can see that, for the most part, points lie along the bisection

line. Table 4.16 shows percentage average heuristic gaps from best known solutions

obtained before and after the tuning with irace; we can see that the tuned ILS gives

as output slightly better heuristic results with respect to the non-tuned version of the

algorithm. The detailed obtained computational results related to the best identified

feasible solutions of the ILS before and after the tuning of the parameters are reported

in table B.26.

Table 4.16: Comparison between percentage average heuristic gaps from best known solutions

before and after tuning for instances by Pellegrini et al. (166)

Before tuning After tuning

0.92 0.57
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5

A scheduling predictive model for

the management of a warehouse

5.1 Introduction

In this chapter we deal with a real-world application to the case of a warehouse of tiles

located in Thailand. The warehouse is used both as a storage and as a distribution

point to commercialize tiles. The problem asks to minimize the duration of the queues

of process of a set of resources, operating in the warehouse. We developed a model

representing the daily work flow that characterizes the warehouse. The aim of the

developed model is that of providing a scenario, in which the utilization of the resources

available in the warehouse is maximized, in such a way that the duration of the queues of

process can be minimized. To design such a model of the daily work flow, we developed

a heuristic algorithm, representing the operating of the resources in the warehouse,

with the aim of maximizing the degree of utilization of the available resources.

This chapter is organized as follows. In section 5.2 we report the physical organi-

zation of the warehouse, detailing the different areas and resources of the warehouse,

and the logical organization of its daily work flow. In section 5.3 we deeply analyze the

treated problem and we show the developed heuristic method to deal with the intro-

duced problem. In section 5.4 we comment some output data of the algorithm, in the

light of what seen in the previous sections.
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5.2 The warehouse: organization and functioning

The warehouse we are interested to deal with stores and organizes the distribution of

tiles. Tiles physically lie in the warehouse inside boxes. Boxes are physically grouped

together, to form full pallets.

The warehouse is subdivided in storage areas. Each storage area is logically divided

into blocks. Each block permits the storage of full pallets in several positions. Because

of the kind of good, the full pallets of tiles are stored, within each position, as stacks,

hence, following a LIFO policy for their removal.

The preparation area is the site of the warehouse where pallets are moved for being

subjected to the quality checks of the goods, before their delivery to the customers.

The preparation area is divided in locations, each one with a known capacity to store

full pallets, expressed in terms of the number of stockable full pallets.

A so called ready to ship area is available in the warehouse; full pallets are moved

from the preparation area towards this site to be grouped together to form the ship-

ments of delivery to customers, and to be physically loaded on trucks for the delivery.

In the warehouse, a site called picking bay is present; within this place, the composi-

tion of full pallets from several non-full pallets happens. The picking bay has associated

a so called picking bay buffer area, where the non-full pallets requested by the picking

bay are temporarily stored.

If some non-full pallets remain in the picking bay buffer and these are useless for

other orders, these are moved towards a site called racks, where there is the storage of

non-full pallets.

The warehouse has also a site where it is possible to manually pick goods, that here

we call trim area.

The warehouse is equipped with several resources, that guarantee its operating.

The great part of the resources is composed by forklifts. Each forklift has a set of areas

and roles of competence, that define its operating in the warehouse, (e.g., a forklift

can operate in the storage areas 1, 2, and 5, for transporting full pallets from one of

these areas to the preparation area). The forklifts of the warehouse are often shared by

several areas, and a role can be covered by many forklifts. The goods of the warehouse

can be also manually picked by human operators, that carry them from the so called

trim area to supply the picking bay.
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Besides storing the tiles, the warehouse is also responsible for the management of

the orders and the organization of the delivery of the goods to the customers. The so

called Warehouse Management System, (WMS), is the system that daily deals with the

management of the orders and the organization of the deliveries. During the working

day, the WMS receives the requests of goods by the customers. The orders are composed

by many articles, each one of these specifying the requested quantity of goods, expressed

in terms of the number of required boxes of tiles.

To satisfy and complete the articles of the orders, the WMS creates a set of so called

missions. Each mission corresponds to the movement of goods within the warehouse.

The WMS divides the requested quantity of goods by the full pallet quantity of the

article; the result corresponds to the necessary number of full pallets, while the remain-

der is the quantity for picking. The WMS creates as many missions as the number

of necessary full pallets of the article; these missions correspond to the carriage of a

full pallet, matching the request of the article, from a particular storage area of the

warehouse to the preparation area. The remainder quantity is lower than the quantity

composing a full pallet of the article, and these goods are not directly carried towards

the preparation area.

The assembly of the remainder quantity is made within the picking bay area. In

this case, the goods are moved towards the picking bay, passing through the picking bay

buffer. The management system of the picking bay buffer verifies the pending picking

order requests in the picking bay and the available stock present both in the picking bay

buffer and in the picking bay, possibly generating the transfers to supply the picking

bay buffer. If the pending picking order requests of the picking bay cannot be satisfied

by the currently available stock of both the picking bay buffer and the picking bay, the

corresponding missions are created to make the transfers of goods. If the corresponding

article is required for the first time, a transfer of a full pallet from the storage areas

of the warehouse towards the picking bay buffer happens; otherwise, a transfer from

the racks, (the site of the warehouse with non-full pallets), to the picking bay buffer is

required.

When the full pallet (or the non-full pallet) arrives at the picking bay buffer, the

requested remainder quantity of goods is brought to the picking bay; here, according to

the orders, the remainder quantities are assembled together to form a new Unit Load,

(UL), that can be carried from the picking bay to the preparation area. If there is
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leftover content of the used full pallet (or the non-full pallet) at the picking bay buffer,

and this content is useless for the other pending picking order requests, it is carried

from the picking bay buffer to the racks.

Besides using the picking bay buffer to provide non-full quantities of goods, the

manual picking can happen; here a human operator manually brings the requested

quantity of an article from the trim area to the picking bay, where this last one will

be assembled together with the other non-full quantity of product, according to the

orders.

When the goods arrive at the preparation area, (be it from the picking bay or

directly from the storage areas), the products are subjected to quality checks, to assess

they are not damaged. At the end of these controls, the goods are ready to be delivered

to customers. The WMS organizes the deliveries of the goods creating proper shipments.

A shipment is composed by many orders grouped together. The composition of the

shipments is started at the preparation area; here, the pallets belonging to the same

shipment are placed in contiguous locations, following a LIFO policy for their removal,

(let us point that each location of the preparation area can contain, at the same time,

only pallets that belong to exactly one shipment). When all pallets belonging to the

same shipment are present in the preparation area and all quality checks are ended,

the pallets of the shipment are carried to the ready to ship area, where the physical

loading of the pallets on the trucks is made.

Figure 5.1 provides a schema of the functioning of the warehouse.

The movement of a pallet, (be it full or non-full), involving the storage areas, the

picking bay buffer, the racks, the preparation area and the ready to ship area is managed

as a mission. Missions are assigned to forklifts. The WMS creates and, successively,

assigns the missions to be done to the proper forklifts, according to their area and role

of competence. One mission can be executed by exactly one forklift. Each forklift can

manage a priority queue of missions, according to which the mission that is the first in

the queue is the first mission to be executed, and following the other ones. The queue

has a predefined length, beyond which the forklift cannot take charge of other missions.

During the working day, the WMS continuously receives requests of goods by the

customers. These requests are scheduled by the WMS through the creation of proper

missions, to complete the orders. When a request is scheduled, the created missions

enter in a state called waiting, since they have to wait for a proper available forklift
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Figure 5.1: Schema of the functioning of the warehouse
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to execute them. As soon as the proper forklifts are available, the assignment of the

missions to the proper forklifts is made, following the order of scheduling of the related

requests, i.e. the missions that are assigned before are the ones associated to the

requests scheduled before. When a mission is assigned to a forklift, it enters the last

position of the priority queue of the forklift, making a state transition, from waiting

to active. Each forklift executes the missions according to their order in its priority

queue.

Before scheduling the new arriving requests, the WMS executes several checks on

the status of the operating of the warehouse. These checks aim at controlling both

the current levels of stored goods and the degree of occupation of the locations of the

preparation area. If the levels of stored goods are sufficient to satisfy the new arriving

requests and the degree of occupation of the preparation area permits the preparing

of new shipments, the new arriving requests are scheduled through the creation of

missions, (see the paragraph above for the waiting and active missions). If the levels are

not sufficient or the degree of occupation of the preparation area is high, the schedule

of the requests does not happen; it is postponed to the moment in which there will

be the right conditions for both the level of stored goods in the storage areas and

the occupation of the preparation area. These non-scheduled requests compose the so

called portfolio of the orders, i.e. the set of the orders of the customers waiting for

their execution. In this case, a priority order is given to all non-scheduled requests of

the portfolio, according to their order of arrival to the WMS. The scheduling of these

requests will happen when right conditions will be met, following the priority order.

5.3 The problem and the proposed algorithm

In section 5.2 we detailed the internal functioning of the warehouse of interest. One

of the issues arising in the context of the operating of the warehouse deals with the

minimization of the duration time of the queues of the missions of each available forklift

of the warehouse. We developed a model representing the daily work flow that charac-

terizes the warehouse. The aim of the developed model is that of providing a scenario,

in which the utilization of the forklifts available in the warehouse is maximized, in such

a way that the duration of the queues of missions can be minimized. To design such a
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model of the daily work flow, we developed a heuristic algorithm, representing the op-

erating of the forklifts in the warehouse. We tried to minimize the duration time of the

queues of missions through the achievement of two basic conditions of the algorithm,

i.e.

� the maximization of the degree of use of the available forklifts;

� the early schedule of the non-scheduled requests.

The algorithm must be able to predict, at any time during the working day, the

duration of the queues of missions, knowing the operating status of the available forklifts

at that time, the set of the current active and waiting missions and the set of non-

scheduled requests of the portfolio, present in the WMS at that time. The result of the

prediction can be used to measure the real performances of the available resources of

the warehouse. This can be a method for identifying possible delays or inefficiencies of

the real functioning of the warehouse, hence providing a key performance indicator of

the system, for improving the quality of the daily work flow of the warehouse.

The algorithm for predicting the duration of the queues is, in its essence, a pure

heuristic approach, dealing with the schedule and the assignment of the missions to

the compatible available forklifts, that can perform the requested carriage of goods.

At the basis of the algorithm there is the modeling of the concept of mission. Since

the algorithm has to take into account also the non-scheduled requests of the portfolio,

and the related missions have not yet been created by the WMS, we estimated them

by creating as many missions as the number of necessary full pallets to complete the

requests. We define the state of these missions as forecast. The actual version of

the algorithm models the carriage of full pallets both from the storage areas to the

preparation area and from the preparation area to the ready to ship area. The algorithm

developed so far does not consider the management of the picking bay and the trim

areas, hence keeping into account only the forklifts as resources. The actual version

of the algorithm considers only the degree of occupation of the preparation area as

criterion for the scheduling of the requests of the portfolio, (the algorithm assumes

that the levels of stored goods are always sufficient for satisfying the requests). The

output of the algorithm consists in the log of the operations made by each forklift, and

by the timestamps of the movements of goods within the preparation area.
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We base the functioning of the algorithm on the modeling of the mission. This

concept can be articulated through the representation of the life cycle of the mission.

The life cycle of the mission is defined by the different states a mission can assume and

by the transitions that regulate each change of state. A summary of the life cycle of

the mission can be the following.

“Each forecast mission has to be assigned to a forklift, that performs it. When the

mission has been performed through the carriage of the corresponding full pallet to the

preparation area, the forklift starts waiting for an empty position in the preparation

area, where to store the carried pallet. As soon as a position is found, the forklift

stores the pallet and starts the execution of the following mission, while the stored pallet

waits for the completion of the related shipment. When the shipment is completed, the

locations occupied by the shipment are emptied by appropriate forklifts; they execute

the corresponding missions to carry the pallets of the completed shipment towards the

ready to ship area. When all the pallets of the shipment arrive there, they are physically

loaded on the trucks for the delivery to the customers.”

Figure 5.2 shows the detailed life cycle of the mission at the base of the developed

algorithm. The rectangles represent the states in which a mission can stand, while

the rhombuses correspond to the events that induce the corresponding change of state.

The explanation and the understanding of the life cycle permit the explanation of the

developed algorithm. In the following subsections, we will discuss the life cycle of the

mission, by showing the details of the transitions of the states. Each paragraph is

dedicated to the explanation of one or more transitions of the life cycle, shown in figure

5.2.
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5.3.1 Transition from the forecast state to the waiting for assignment

state

The state corresponding to the beginning of the life cycle of a mission is named forecast

state, (rectangle with number 1 in figure 5.2). As we explained before, the missions in

this state are associated to the requests in the portfolio of the warehouse, waiting for

being scheduled for their subsequent execution.

The event of the scheduling of any forecast mission marks the transition from the

forecast state to the state, that here we call waiting for assignment, (corresponding

to the previously introduced waiting state, rectangle with number 2 in figure 5.2), in

which the mission starts waiting for an appropriate available forklift to perform it.

Each forecast mission has a priority, associated to the corresponding non-scheduled

request, (we recall that a priority is given to all non-scheduled requests). The devel-

oped algorithm considers the forecast missions in descending order of priority. When

a forecast mission reaches the current highest priority, the algorithm checks the satisfi-

ability of some conditions, before making the transition from the forecast state to the

waiting for assignment state. These conditions are related to the level of occupation of

the locations of the preparation area.

As we explained before, besides the quality checks of goods, in the preparation area

orders are organized and grouped together to form the shipments, ready to be loaded on

trucks at the ready to ship area. The pallets belonging to the same shipment are stored

within contiguous locations, and each location is reserved for storing pallets belonging

to exactly one shipment.

Before executing the transition from the forecast state to the waiting for assignment

state for the considered mission, the algorithm verifies if there is at least one free

location in the preparation area, to be reserved for the shipment to which the considered

mission belongs. We define a free location as a location that is completely empty, and

that is useless for storing pallets for the currently present shipments in the preparation

area.

The developed algorithm checks the uselessness of each empty location by verify-

ing, for all shipments currently present in the preparation area, if and which other

contiguous locations they need to be completed. If an empty location is not needed for

completing shipments, it can be defined free.
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To better understand the concept of free location, figure 5.3 shows an example of

empty and useless locations within a preparation area, composed by 10 locations. Each

location in the example can contain 6 pallets. Three shipments are already present in

the preparation area; these are the shipments 1, 2 and 3, that need in total, respectively,

20, 16 and 21 pallets. The first 4 locations are reserved for shipment 1, the fifth is empty

and not assigned, (n.a.), the sixth and the seventh are reserved for shipment 2, and

the last 3 locations are dedicated to shipment 3. Let us assume that the shipments 1

and 3 have to be completed by the arrival of other full pallets, while the shipment 2

has already been completed, and the release of its reserved locations has been started

from the fifth location. The shipment 1 has to be completed, but it has a sufficient

available total capacity for storing all its pallets. On the contrary, the shipment 3 does

not have it. When the seventh location, (the green and orange one), will be released by

the shipment 2, the shipment 3 will need to occupy it to satisfy its total pallet request.

The fifth location, (and also the sixth one), will not, hence, be used by the already

present shipments in the preparation area; they are free and they can be reserved for

the shipment to which the considered forecast mission belongs.

The presence of free locations for the scheduling of forecast missions avoids wait-

ing times for the forklifts, that will carry the related pallets to the preparation area,

(waiting times extend the duration of the queues of missions of the forklifts, hence

compromising the aim of the algorithm to minimize the duration of the queues). To

have the certainty of the correctness of the control of the free locations, the algorithm

checks if the following precondition is satisfied, i.e. if all shipments related to each

currently scheduled, (active and waiting), mission are present in the preparation area.

If this condition is satisfied, the correctness of the control is immediately assured.

Figure 5.3: Example of useless location in the preparation area

When a forecast mission is considered for scheduling, the developed algorithm con-

trols each empty location in the preparation area, with the aim of identifying a sequence

of contiguous free locations sufficient to contain all the pallets related to the shipment
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of the considered forecast mission. The found sequence of contiguous free locations is

immediately reserved to the interested shipment. If no sequence of free locations is

found, the considered forecast mission remains in the forecast state, keeping on waiting

for free locations. If the shipment to which the considered mission belongs is already

present in the preparation area, the algorithm checks if there is one available position

within the reserved locations; in case, the scheduling of the mission happens, otherwise

the mission remains in the forecast state, waiting for new free locations to be occupied

by its shipment.

The adoption of this criterion permits to schedule a mission when there is the

certainty that its execution will not block the work flow of the forklift; in fact, the

forklift will not have to wait for an available location in the preparation area, since

there are sufficient locations for receiving the requested pallet of good. The avoidance

of waiting times is useful to minimize the completion times of the queues of missions

of the forklifts.

5.3.2 Transition from the waiting for assignment state to the active

for preparation area state

When a mission stands in the state of waiting for assignment, it waits for a compatible

forklift, (operating in the area and for the role required by the mission), that can

carry the requested pallet of goods from the storage areas to the preparation area.

The assignment event marks the transition from the state of waiting for assignment

to the state here called active for preparation area, (corresponding to the previously

introduced active state, rectangle with number 3 in figure 5.2), in which the mission is

assigned to a forklift, that will perform it, through the carriage of the requested pallet

towards the preparation area.

The assignment criterion has the aim of maximizing the degree of utilization of

the forklifts, maintaining, at the same time, a balanced workload among the forklifts,

compatibly with the constraints on the maximum number of assignable missions. The

developed algorithm considers each mission waiting for assignment, following the time

of scheduling of the missions, starting from the currently first scheduled one. Hence,

the implemented assignment criterion assigns the currently earliest scheduled mission

to the compatible forklift, having the currently lower number of active missions in its

queue. If such a forklift is found, the algorithm makes the assignment; otherwise, the
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mission remains in the state of waiting for assignment, waiting for the right conditions

for the assignment.

The adoption of this criterion for assigning the missions to forklifts has the aim of

maximizing the degree of use of the forklifts, avoiding situations in which a forklift is

more used than the other ones.

5.3.3 Transitions from the active for preparation area state to the in

preparation area state

When a mission has been assigned to a compatible forklift, it enters the last position

of its priority queue of active missions. The forklift executes the missions in the queue

from the first to the last one. When a mission becomes the first in the queue, the forklift

starts its execution, and the mission changes its state from active for preparation area

to the state execution for preparation area, (rectangle with number 4 in figure 5.2).

This state represents the execution of the considered mission.

When the forklift arrives at the preparation area, it has to store the pallet of the

considered mission. The state of the mission representing the arrival at the preparation

area is waiting for preparation area, (rectangle with number 5 in figure 5.2). In this

state, the forklift has to wait for an available position in the preparation area, where

to store the pallet, according to the shipment to which the considered mission belongs.

The developed algorithm controls each empty location of the preparation area, with

the aim of identifying a sequence of contiguous free locations sufficient to contain all the

pallets related to the shipment of the considered mission. The found sequence of free

contiguous locations is immediately reserved to the interested shipment. If no sequence

of free locations is found, the forklift keeps on waiting for a free location where to store

the pallet. If the shipment to which the considered mission belongs is already present

in the preparation area, the algorithm checks if there is one available position within

the reserved locations. In case, the forklift stores the pallet in the available position;

this event is modeled through a change of the state of the corresponding mission, from

waiting for preparation area to in preparation area, (rectangle with number 6 in figure

5.2). At the same time, the forklift can start the execution of the next mission in its

priority queue. If there is not an available position within the reserved locations, the

forklift keeps on waiting for a free location where to store the pallet.
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5.3.4 Closure of a shipment and removal of pallets

Each time a pallet is stored in the preparation area, the developed algorithm verifies if

the related shipment has been completed, i.e. if all the requested pallets of the shipment

are present in the preparation area. If the shipment has been completed, its reserved

locations have to be released, by carrying one pallet at a time from the preparation

area towards the ready to ship area. The policy of management of each location of the

preparation area is LIFO, i.e. the first pallet to be brought away is the last stored.

As soon as one location is completely released, the algorithm verifies if that loca-

tion is useful for other shipments, already present in the preparation area, that need

other free locations to store their pallets. To favor a useful release of locations of the

completed shipment, the algorithm orders the release of the reserved locations, start-

ing from the location juxtaposing the one reserved to the shipment with the earlier

scheduling time. Hence, the removal of the pallets from the interested locations starts

from the first location in the order, following a LIFO policy to remove the pallets of

each location. The possible immediate reservation of empty locations is made to favor

both the work flow of the forklifts, and the early schedule of the forecast missions,

permitting the reservation of the locations to the interested shipment.

The physical removal of the pallets of a completed shipment is made by the forklifts,

that, as for the carriage of pallets from the storage areas to the preparation area,

transport the pallets towards the ready to ship area of the warehouse. The release

operations follow the established order of the locations, removing the pallets of each

location with a LIFO policy; hence, the removal operations of the completed shipment

starts from the last stored pallet of the first location in the order.

The waiting for ready to ship area, (rectangle with number 7 in figure 5.2), is the

state, representing the condition in which a pallet waits for a compatible forklift for the

carriage to the ready to ship area. When such a forklift is available, according to the

constraints on the maximum number of assignable missions, the considered mission is

assigned to the forklift, entering the last position of the priority queue of the forklift.

The assignment event corresponds to a transition of state for the mission, from waiting

for ready to ship area to active for ready to ship area, (rectangle with number 8 in

figure 5.2).
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When each mission of the completed shipment is assigned, the remaining pallets of

the shipment are considered for assignment following the LIFO policy for each location,

following the established order of release for the locations. When the assigned mission

becomes the first in the priority queue of the active missions of the forklift, the physical

removal of the corresponding pallet from the preparation area and the begin of the car-

riage towards the ready to ship area take place; this event is modeled with a transition

of state of the interested mission, from active for ready to ship area to execution for

ready to ship area, (rectangle with number 9 in figure 5.2). When the forklift arrives

at the ready to ship area, it unloads the carried pallet and the life cycle of the related

mission ends; at this point, the forklift can start the execution of the following active

mission in its queue of priority.

5.3.5 A pseudocode

Algorithm 7 is a basic pseudocode of the designed algorithm, showing the main steps of

the method. The algorithm takes as input, in the order, the current time of launch of

the algorithm t cur, the total number of missions n, (including the currently active and

waiting missions and the forecast missions associated to the requests in the portfolio),

the list of the missions mis, the list of the available resources/forklifts of the warehouse

res, the status of the preparation area p area, the list of the shipments shipm, the

current maximum priority of the forecast missions max pr and the current minimum

schedule time for the waiting missions min t sched.

The designed algorithm is composed by two main nested loops. The external loop,

(lines 3-34), models the passing of time. The internal loop, (lines 5-32), controls the

state of each mission in the current considered moment of time. Hence, the algorithm

controls, at each moment, the state of all the missions.

The granularity of time considered by the algorithm is at the level of seconds,

i.e. the progress is made of one second at a time. At line 2 we initialize the time

time to the time of launch of the algorithm, and we set the number of ended missions

cnt mis to 0. The external loop starts at line 3. Within this loop, all the missions

are analyzed, one second at a time. We initialize the counter of the missions m to 0,

at line 4. The internal loop starts at line 5. Within this loop, each mission, mis[m],

is analyzed. Lines 6-9 model the transition of a mission in the forecast state to the

waiting for assignment state. If the considered forecast mission has a priority equal to
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the current maximum priority of the forecast missions, (line 6), the algorithm checks

the satisfiability of the conditions shown in paragraph 5.3.1, for the transition of state,

(method V erify Schedule, at line 7). If the conditions are satisfied, the transition to

the state waiting for assignment is made, keeping track of the time of scheduling of the

mission, (field t sched, at line 8).

Since the transition of state of mis[m], we possibly update the value of the current

maximum priority of the forecast missions, at line 9. Lines 10-13 model the transition

of a mission in the waiting for assignment state to the active for preparation area

state. If the considered mission has a scheduling time equal to the current minimum

schedule time of the waiting missions, (line 10), the algorithm controls if there is a

compatible available forklift to which assign the mission, according to what explained

in paragraph 5.3.2, (method V erify Assignment at line 11). If the assignment is done,

the transition to the state active for preparation area is made, (line 12) and the value

of the current minimum schedule time of the waiting missions is updated, (line 13).

Lines 14-15 model the transition of a mission in the active for preparation area

state to the execution for preparation area state. If the considered active mission is the

first active mission in the queue of priority of its forklift, (line 14), the forklift starts

the execution of the mission, changing its state to execution for preparation area, and

keeping track of the starting execution time, (field t beg pa at line 15).

Lines 16-17 model the transition of a mission in the execution for preparation area

state to the waiting for preparation area state, corresponding to the arrival of the related

pallet to the preparation area. The algorithm verifies if the execution of the mission

is ended, by controlling if the passed time from its beginning is equal to the mission

execution time, (line 16). If the execution is ended, the algorithm changes the state of

the mission to the state waiting for preparation area, (line 17). The waiting for available

locations, the storage and the closure of a complete shipment in the preparation area

are modeled by the algorithm at lines 18-21.

The algorithm checks the state of occupation of the preparation area for every

mission in the waiting for preparation area state, as explained in paragraph 5.3.3, (line

19). If an available position is present, the algorithm executes the storage of the pallet,

and immediately controls if the related shipment has been completed, (line 20). If

this is the case, the release of the interested locations starts; the state of the mission

associated to the last stored pallet of the first location to be released is changed to the
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state waiting for ready to ship, (line 21, see paragraph 5.3.4 for the details about this

transition).

Lines 22-25 model the transition of a mission in the state waiting for ready to ship

area to the state active for ready to ship area. If the assignment to a forklift is done,

the state of the mission is changed, (line 24), and the state of the mission associated

to the new last stored pallet of the location is changed, to the state waiting for ready

to ship area; this means that the pallet is considered for assignment, (line 25). Lines

26-28 model the execution of the active mission for the carriage of the related pallet to

the ready to ship area. If the considered mission is the first active mission in the queue

of its forklift, it starts the execution of the mission, changing its state to execution for

ready to ship area, and keeping track of the starting execution time (line 27).

Each time a pallet is removed from the preparation area, the algorithm checks if the

related location is empty; in case, the method verifies if the location can be reserved

for other shipments, (method Extend Shipment at line 28).

Lines 29-30 model the end of the life cycle of the mission, coinciding with the

arrival at the ready to ship area. In this case, the number of ended missions cnt mis

in incremented by 1, (line 30).

At line 31 we increment by 1 the counter of the missions m, to switch to the next

mission. The stop condition of the internal loop is given by the analysis of all the

missions, (line 32), and it coincides with the end of the analysis of all the missions in

a particular moment. At line 33 we increment by 1 the time.

The algorithm stops its execution when all the missions end.

5.4 Output data of the algorithm

In this section, we show a detail of the output of the developed algorithm for an instance

of the presented problem. The data of the treated instance are the following:

� 156 missions, (37 active for preparation area, 13 waiting for preparation area and

106 forecast);

� one preparation area, composed by 10 locations, each one with capacity equal to

6;
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Algorithm 7 Algorithm for Predicting Duration Times of Queues

1: procedure Pred Times Q(t cur, n, mis, res, p area, shipm, max pr,

min t sched)

2: time← t cur, cnt mis← 0

3: repeat

4: m← 0

5: repeat

6: if mis[m].st = forecast and mis[m].pr = max pr then

7: if V erify Schedule(mis[m], p area, time) = true then

8: mis[m].st← wait ass, mis[m].t sched← time

9: Update Max Priority(max pr)

10: if mis[m].st = wait ass and mis[m].t sched = min t sched then

11: if V erify Assignment(mis[m], res) = true then

12: mis[m].st← active pa

13: Update Min T Sched(min t sched)

14: if mis[m].st = active pa and mis[m].first in q = true then

15: mis[m].st← ex pa, mis[m].t beg pa← time

16: if mis[m].st = ex pa and time−mis[m].t beg pa = mis[m].t ex pa then

17: mis[m].st← wait pa

18: if mis[m].st = wait pa then

19: if V erify Prep Area(mis[m], p area, shipm) = true then

20: if Close Shipment(mis[m].ship) = true then

21: mis[shipm[mis[m].ship].first mis].st← wait rts

22: if mis[m].st = wait rts then

23: if V erify Assignment(mis[m], res) = true then

24: mis[m].st← active rts

25: mis[shipm[mis[m].ship].next mis].st← wait rts

26: if mis[m].st = active rts and mis[m].first in q = true then

27: mis[m].st← ex rts, mis[m].t beg rts← time

28: Extend Shipment(p area, shipm)

29: if mis[m].st = ex rts and time − mis[m].t beg rts = mis[m].t ex rts

then

30: cnt mis← cnt mis+ 1

31: m← m+ 1

32: until (m < n)

33: time← time+ 1

34: until (cnt mis < n)
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� 7 available forklifts, each one managing a priority queue of active missions with

a maximum predefined length equal to 10.

Figure 5.4 shows the log of the operations made by the forklift with the acronym

WHD-35. The log identifies the details of the missions executed by the forklift, i.e. in

the order, the mission id, the acronym of the shipment to which the mission belongs,

the area and the role required by the mission, (the role WHDOM: FULL PALLET

corresponds to the carriage of full pallets from the storage areas to the preparation

area), the time of scheduling of the mission, the time of assignment of the mission to

the forklift, the time in which the execution of the mission has been started and the

time of end of the execution of the mission.

The time of launch of the algorithm is 13:01:46. As we can see, the first ten missions

in the log have been scheduled before the time of launch; at the beginning of the

algorithm, they are waiting missions.

When the algorithm starts, these missions are immediately assigned to the forklift,

and their execution respects the order of their scheduling time. We can note a very

little delay of less than one minute between the end of the mission 33 and the beginning

of the execution of the mission 56. This is due to the lack of sufficient positions

in the preparation area for the shipment SH002, to which mission 33 belongs. At

time 13:34:46, a contiguous location of the shipment SH002 is still occupied by the

pallets belonging to another shipment. This location becomes completely empty at

time 13:35:22; hence, at this time, the location can be used by shipment SH002, and the

forklift can store the carried pallet of the mission 33; then, the forklift can immediately

start the execution of the next mission, the mission 56.

The missions starting from mission 177 until the last mission in the log are forecast

missions. We can see that the time of scheduling of these missions is equal to the time

of their assignment, meaning that their creation happens when the system can support

their execution, to avoid a premature scheduling potentially introducing an overload of

scheduled missions.
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Figure 5.4: Log of the missions executed by forklift WHD-35
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6

Conclusions

In the present thesis we investigated the topic of model-based heuristics, applied to the

solution of COPs, both from a theoretical and a practical point of view. The current

scientific research dealing with the solution of hard COPs is concentrating the efforts

on the design of these algorithms, with the aim of improving the state of the art of

the solution of COPs, through the design of tailored integrations of exact and heuristic

techniques, able to overcome the weaknesses of one another.

We made a survey of the scientific literature, related to the development of model-

based heuristics for treating hard COPs. We provided a classification of hybrids of

mathematical programming and heuristic techniques, in three main classes: mathe-

matical programming techniques subordinated to heuristics, heuristics subordinated to

mathematical programming methods and cooperation between heuristics and mathe-

matical programming. For each identified class, we provided some examples from the

scientific literature, dealing with the solution of several COPs.

We proposed a Lagrangean CG heuristic for the solution of the CVRP; the algorithm

is able to produce both a valid lower bound and feasible solutions for the treated

instances. We introduced the CVRP, showing one possible mathematical formulation

for the problem, based on a SP formulation, (where each column corresponds to a

route). We introduced some state space relaxation techniques for the problem, ((q,

i)-path and ng-path relaxations), and we presented the Lagrangean CG heuristic. The

method relies on a CG procedure, where the master problem is solved by a LP solver

and the pricing step consists in identifying new negative reduced costs columns/routes

through the calculation of (q, i)-path or ng-path relaxations using the reduced costs
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of the arcs. At the end of the CG, we have a valid lower bound, and the columns of

the obtained master problem are used to build a SC model, solved through subgradient

optimization; the infeasibilities of the subgradient solution are fixed, and a feasible

CVRP solution is built during each iteration of the subgradient.

We studied the parameter tuning problem, applied to the tuning of a Lagrangean

heuristic for solving the CVRP and the VRPTW. We introduced the tuning problem,

and some methods from the literature designed to treat this issue; in particular, we

introduced racing procedures, and the irace package implementing the iterated racing

procedure. We introduced the VRPTW, and one possible mathematical formulation,

based on a SP model. We showed some state space relaxation techniques for the prob-

lem, ((t, i)-path and ng-path relaxations), and we presented the Lagrangean heuristic.

We treated the tuning of the Lagrangean heuristic with the irace package, with the aim

of improving the quality of the calculated valid lower bound for the solved instances.

The computational results reveal the capability of the irace package of improving the

quality of the calculated valid lower bounds, hence confirming our intuition that, with

a tailored tuning of the Lagrangean heuristic, we could be able to improve the qual-

ity of the valid lower bounds. We further investigated the parameter tuning problem,

considering the tuning of an ILS method, applied for solving instances of the QAP.

The obtained computational results permit us to improve the quality of the heuristic

solutions, calculated by the ILS on the studied QAP instances.

We presented a real-world problem, emerging in the context of the daily functioning

of a warehouse commercializing tiles, located in Thailand. The problem asked for the

prediction of the duration of the queues of process of the resources, operating in the

warehouse. We showed the physical and logical organization of the warehouse, and

the resources operating within it. We detailed the problem and the heuristic method

we designed to treat it. The developed heuristic does not deal with all the aspects

of the daily functioning of the warehouse, (e.g. the management of the picking bay);

hence we can imagine future extensions of the algorithm, able to manage all currently

non-treated aspects of the operating of the warehouse.
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iterated f-race: An overview. In Experimental methods for the analysis of optimization

algorithms, pages 311–336. Springer, 2010. 49

[46] Jacek Blazewicz, Ceyda Oguz, Aleksandra Swiercz, and Jan Weglarz. DNA sequencing

by hybridization via genetic search. Operations Research, 54(6):1185–1192, 2006. 12
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time behavior of two-phase local search. Annals of mathematics and artificial intelligence,

61(2):125–154, 2011. 50

104



REFERENCES

[102] Irina Dumitrescu and Thomas Stützle. Combinations of local search and exact algorithms.

In Applications of Evolutionary Computing, pages 211–223. Springer, 2003. 6
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[204] Thomas Stützle. Iterated local search for the quadratic assignment problem. European

Journal of Operational Research, 174(3):1519–1539, 2006. 69

[205] E Taillard. Robust taboo search for the quadratic assignment problem. Parallel comput-

ing, 17(4):443–455, 1991. 69
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A. CHAPTER 3

Table A.1: Lagrangean column generation computational results for instances by Uchoa et al.

(211)

Instance n Lower Bound Heuristic Time(s) Best known

Veh. Dist Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 27236,77 1,28 26 28201 2,21 20 26 27591

X-n106-k14 105 14 26187,32 0,66 14 26947 2,22 40 14 26362

X-n110-k13 109 13 14694,68 1,85 13 15296 2,17 18 13 14971

X-n115-k10 114 10 12540,72 1,62 10 13068 2,52 111 10 12747

X-n120-k6 119 6 13011,53 2,40 6 13889 4,18 62 6 13332

X-n125-k30 124 30 55115,93 0,76 30 57399 3,35 26 30 55539

X-n129-k18 128 18 28676,22 0,91 18 30264 4,57 24 18 28940

X-n134-k13 133 13 10646,85 2,47 13 11462 5,00 135 13 10916

X-n139-k10 138 10 13302,41 2,12 10 13826 1,74 41 10 13590

X-n143-k7 142 7 15350,37 2,23 7 16510 5,16 944 7 15700

X-n148-k46 147 47 42938,17 1,17 47 44624 2,71 13 47 43448

X-n153-k22 152 23 20812,73 1,92 23 21775 2,62 119 23 21220

X-n157-k13 156 13 16721,29 0,92 13 17086 1,24 31 13 16876

X-n162-k11 161 11 13682,19 3,22 11 14417 1,97 258 11 14138

X-n167-k10 166 10 20284,21 1,33 10 22043 7,23 85 10 20557

X-n172-k51 171 53 45075,16 1,17 53 46542 2,05 33 53 45607

X-n176-k26 175 26 47166,72 1,35 26 49878 4,32 92 26 47812

X-n181-k23 180 23 25256,09 1,22 23 26034 1,82 27 23 25569

X-n186-k15 185 15 23771,67 1,55 15 25789 6,81 192 15 24145

X-n190-k8 189 8 16675,39 1,79 8 17737 4,46 568 8 16980

X-n195-k51 194 53 43720,09 1,14 53 45777 3,51 71 53 44225

X-n200-k36 199 36 58130,54 0,76 36 60630 3,50 90 36 58578

X-n204-k19 203 19 19235,99 1,68 19 20249 3,50 195 19 19565

X-n209-k16 208 16 30056,56 1,96 16 32686 6,62 77 16 30656

X-n214-k11 213 11 10680,91 1,61 11 12342 13,69 1597 11 10856

X-n219-k73 218 73 117210,87 0,33 73 117918 0,27 10 73 117595

X-n223-k34 222 34 39889,25 1,35 34 42334 4,69 78 34 40437

X-n228-k23 227 23 25032,67 2,76 23 27221 5,75 472 23 25742

X-n233-k16 232 17 18851,61 1,97 17 20427 6,22 1641 17 19230

X-n237-k14 236 14 26749,28 1,08 14 29009 7,27 138 14 27042

X-n242-k48 241 48 81955,57 0,96 48 86136 4,09 89 48 82751

X-n247-k47 246 51 36806,79 1,25 51 38242 2,60 512 51 37274

X-n251-k28 250 28 38218,06 1,20 28 40506 4,71 69 28 38684

X-n256-k16 255 17 18513,56 1,94 17 19344 2,46 910 17 18880

- datum not available.
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A.1 Computational results

Table A.1: Lagrangean column generation computational results for instances by Uchoa et al.

(211)

Instance n Lower Bound Heuristic Time(s) Best known

Veh. Dist Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n261-k13 260 13 26129,19 1,61 13 28572 7,58 4172 13 26558

X-n266-k58 265 58 74718,07 1,01 58 79356 5,14 104 58 75478

X-n270-k35 269 36 34710,82 1,64 36 36823 4,34 171 36 35291

X-n275-k28 274 28 21041,72 0,96 28 22104 4,04 66 28 21245

X-n280-k17 279 17 32706,02 2,38 17 36550 9,09 1970 17 33503

X-n284-k15 283 15 19994,7 1,14 15 21764 7,60 1619 15 20226

X-n289-k60 288 61 94300,62 0,89 61 100784 5,92 342 61 95151

X-n294-k50 293 51 46427,53 1,57 51 50046 6,10 564 51 47167

X-n298-k31 297 31 33795,06 1,27 31 37502 9,56 391 31 34231

X-n303-k21 302 21 21111,32 2,91 21 22856 5,11 4635 21 21744

X-n308-k13 307 13 25154,86 2,72 13 27728 7,23 4254 13 25859

X-n313-k71 312 72 93215,66 0,88 72 98118 4,33 375 72 94044

X-n317-k53 316 53 78120,53 0,30 53 79660 1,67 42 53 78355

X-n322-k28 321 28 29301,72 1,85 28 32535 8,98 722 28 29854

X-n327-k20 326 20 27083,79 1,71 20 30120 9,30 417 20 27556

X-n331-k15 330 15 30696,13 1,31 15 33368 7,28 625 15 31103

X-n336-k84 335 86 137850,69 0,94 86 144727 4,00 400 86 139165

X-n344-k43 343 43 41442,08 1,50 43 45720 8,67 141 43 42073

X-n351-k40 350 40 25569,23 1,41 40 30068 15,93 2572 40 25936

X-n359-k29 358 29 50988,46 1,01 29 56420 9,53 1442 29 51509

X-n367-k17 366 17 22336,13 2,09 17 24302 6,52 7385 17 22814

X-n376-k94 375 94 147246,7 0,32 94 148988 0,86 39 94 147713

X-n384-k52 383 53 65220,92 1,21 53 69932 5,92 396 53 66021

X-n393-k38 392 38 37803,61 1,22 38 41213 7,69 294 38 38269

X-n401-k29 400 29 65493,43 1,13 29 70494 6,42 7040 29 66243

X-n411-k19 410 19 19160,84 2,83 19 21550 9,29 9395 19 19718

X-n420-k130 419 130 106817,76 0,91 130 111683 3,60 184 130 107798

X-n429-k61 428 62 64717,81 1,20 62 69531 6,15 418 62 65501

X-n439-k37 438 37 35837,32 1,53 37 38200 4,96 291 37 36395

X-n449-k29 448 29 54236,22 2,03 29 64131 15,85 9772 29 55358

X-n459-k26 458 26 23582,03 2,48 26 26825 10,93 7390 26 24181

X-n469-k138 468 140 220596,76 0,66 140 228232 2,77 2797 140 222070

X-n480-k70 479 70 88619,73 1,02 70 94417 5,45 262 70 89535

X-n491-k59 490 60 65802,44 1,25 60 72049 8,13 6800 60 66633

X-n502-k39 501 39 68579,55 0,97 39 70912 2,40 657 39 69253

- datum not available.
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Table A.1: Lagrangean column generation computational results for instances by Uchoa et al.

(211)

Instance n Lower Bound Heuristic Time(s) Best known

Veh. Dist Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n513-k21 512 21 23270,19 3,85 21 26356 8,90 10532 21 24201

X-n524-k153 523 156 153794,37 0,59 156 156168 0,94 2583 156 154711

X-n536-k96 535 97 94188,89 0,98 97 99274 4,36 2292 97 95122

X-n548-k50 547 50 86230,91 0,68 50 93861 8,11 488 50 86822

X-n561-k42 560 - - 100,00 42 46610 9,01 6406 42 42756

X-n573-k30 572 - - 100,00 30 53207 4,78 7598 30 50780

X-n586-k159 585 159 189145,47 0,73 159 196469 3,11 3691 159 190543

X-n599-k92 598 94 107423,07 1,28 94 115246 5,91 873 94 108813

X-n613-k62 612 - - 100,00 62 66313 10,93 7862 62 59778

X-n627-k43 626 43 61538,37 1,33 43 69987 12,22 2641 43 62366

X-n641-k35 640 35 62640,92 1,88 35 71426 11,88 6408 35 63839

X-n655-k131 654 131 106512,99 0,25 131 108278 1,40 168 131 106780

X-n670-k130 669 134 145436,75 0,86 134 152275 3,80 8368 134 146705

X-n685-k75 684 - - 100,00 75 76869 12,34 7450 75 68425

X-n701-k44 700 - - 100,00 44 90359 9,80 7224 44 82292

X-n716-k35 715 - - 100,00 35 47917 10,09 8055 35 43525

X-n733-k159 732 160 134667,47 1,25 160 144023 5,62 2395 160 136366

X-n749-k98 748 - - 100,00 98 86245 11,00 8057 98 77700

X-n766-k71 765 - - 100,00 71 123763 7,92 7999 71 114683

X-n783-k48 782 - - 100,00 48 80622 10,86 8635 48 72727

X-n801-k40 800 40 72827,58 1,03 40 82690 12,37 6251 40 73587

X-n819-k171 818 173 157049,94 0,98 173 165758 4,51 2950 173 158611

X-n837-k142 836 142 192506,36 0,91 142 204607 5,32 1367 142 194266

X-n856-k95 855 95 88472,16 0,72 95 93017 4,38 1279 95 89118

X-n876-k59 875 - - 100,00 59 108414 8,72 8630 59 99715

X-n895-k37 894 - - 100,00 38 60878 12,38 7139 38 54172

X-n916-k207 915 208 327370,25 0,75 208 339828 3,03 1766 208 329836

X-n936-k151 935 - - 100,00 159 141636 6,41 8624 159 133105

X-n957-k87 956 87 84956,7 0,83 87 92238 7,66 2911 87 85672

X-n979-k58 978 - - 100,00 58 130721 9,67 8629 58 119194

X-n1001-k43 1000 - - 100,00 43 81520 12,07 8623 43 72742

- datum not available.
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A.1 Computational results

Table A.2: Lagrangean column generation computational results for instances of CVRP available

at (7)

Instance n Lower Bound Heuristic Gap(%) Time(s)

Veh. Dist Veh. Dist.

mat179 178 9 662989,81 9 701141 5,44 445

mat344 343 10 83601,23 10 90657 7,78 6746

mat382 381 22 12021,46 22 12989 7,45 5433

mat544 543 31 16682,05 31 20857 20,02 10544

mat827 826 - - 41 27731 - 7493

mat980 979 - - 47 53346 - 8589

- datum not available.
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Table B.1: Valid lower bounds before and after tuning for ng-route pricing for instances by Uchoa

et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 27221,01 1,34 26 27221,41 1,34 36 26 27591

X-n106-k14 105 14 25480,58 3,34 14 25477,81 3,35 277 14 26362

X-n110-k13 109 13 14676,09 1,97 13 14676,88 1,96 49 13 14971

X-n115-k10 114 10 12483,50 2,07 10 12488,28 2,03 318 10 12747

X-n120-k6 119 6 12938,80 2,95 6 12938,78 2,95 144 6 13332

X-n125-k30 124 30 55286,81 0,45 30 55279,49 0,47 155 30 55539

X-n129-k18 128 18 28410,94 1,83 18 28411,23 1,83 82 18 28940

X-n134-k13 133 13 10640,59 2,52 13 10640,77 2,52 686 13 10916

X-n139-k10 138 10 13301,16 2,13 10 13302,43 2,12 186 10 13590

X-n143-k7 142 7 15269,44 2,74 7 15250,41 2,86 5190 7 15700

X-n148-k46 147 47 43114,87 0,77 47 43115,99 0,76 36 47 43448

X-n153-k22 152 23 20939,89 1,32 23 20870,93 1,65 329 23 21220

X-n157-k13 156 13 16722,80 0,91 13 16721,21 0,92 166 13 16876

X-n162-k11 161 11 13680,91 3,23 11 13681,12 3,23 2288 11 14138

X-n167-k10 166 10 20194,17 1,76 10 20194,33 1,76 805 10 20557

X-n172-k51 171 53 45224,67 0,84 53 45224,64 0,84 250 53 45607

X-n176-k26 175 26 44819,49 6,26 26 46312,86 3,14 490 26 47812

X-n181-k23 180 23 25103,26 1,82 23 25099,90 1,83 137 23 25569

X-n186-k15 185 15 23775,82 1,53 15 23777,15 1,52 1279 15 24145

X-n190-k8 189 8 14506,31 14,57 8 16280,24 4,12 2844 8 16980

X-n195-k51 194 53 43808,96 0,94 53 43810,05 0,94 198 53 44225

X-n200-k36 199 36 58029,24 0,94 36 58028,02 0,94 379 36 58578

X-n204-k19 203 19 19181,41 1,96 19 19182,64 1,95 1453 19 19565

X-n209-k16 208 16 30056,44 1,96 16 30047,06 1,99 419 16 30656

X-n214-k11 213 11 10675,48 1,66 11 10672,62 1,69 7018 11 10856

X-n219-k73 218 73 117207,45 0,33 73 117206,88 0,33 72 73 117595

X-n223-k34 222 34 39886,39 1,36 34 39887,40 1,36 209 34 40437

X-n228-k23 227 23 0,00 100,00 23 25093,05 2,52 2324 23 25742

X-n233-k16 232 17 18839,29 2,03 17 18802,37 2,22 7860 17 19230

X-n237-k14 236 14 26691,01 1,30 14 26404,93 2,36 538 14 27042

X-n242-k48 241 48 82030,46 0,87 48 82025,02 0,88 217 48 82751

X-n247-k47 246 51 0,00 100,00 51 36618,24 1,76 1405 51 37274

X-n251-k28 250 28 38106,77 1,49 28 38103,94 1,50 450 28 38684

X-n256-k16 255 17 18203,80 3,58 17 18203,56 3,58 9541 17 18880

X-n261-k13 260 13 25520,57 3,91 13 25884,86 2,53 18012 13 26558
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Table B.1: Valid lower bounds before and after tuning for ng-route pricing for instances by Uchoa

et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n266-k58 265 58 74853,66 0,83 58 74855,61 0,82 81 58 75478

X-n270-k35 269 36 34658,54 1,79 36 34660,21 1,79 929 36 35291

X-n275-k28 274 28 20751,07 2,32 28 21023,69 1,04 475 28 21245

X-n280-k17 279 17 0,00 100,00 17 0,00 100,00 5298 17 33503

X-n284-k15 283 15 18105,29 10,49 15 19614,97 3,02 3103 15 20226

X-n289-k60 288 61 94583,59 0,60 61 94156,44 1,05 1281 61 95151

X-n294-k50 293 51 46461,69 1,50 51 46464,20 1,49 626 51 47167

X-n298-k31 297 31 33776,89 1,33 31 33777,29 1,33 730 31 34231

X-n303-k21 302 21 20885,40 3,95 21 20979,26 3,52 12529 21 21744

X-n308-k13 307 13 0,00 100,00 13 24100,19 6,80 8639 13 25859

X-n313-k71 312 72 91329,35 2,89 72 93311,31 0,78 1226 72 94044

X-n317-k53 316 53 76314,62 2,60 53 75932,14 3,09 285 53 78355

X-n322-k28 321 28 29294,24 1,87 28 29294,85 1,87 2356 28 29854

X-n327-k20 326 20 26800,25 2,74 20 27066,64 1,78 2056 20 27556

X-n331-k15 330 15 30625,47 1,54 15 30479,36 2,01 1607 15 31103

X-n336-k84 335 86 130765,49 6,04 86 138232,57 0,67 1268 86 139165

X-n344-k43 343 43 41458,68 1,46 43 41448,61 1,48 273 43 42073

X-n351-k40 350 40 0,00 100,00 40 25582,89 1,36 7246 40 25936

X-n359-k29 358 29 0,00 100,00 29 49578,75 3,75 1984 29 51509

X-n367-k17 366 17 8014,62 64,87 17 0,00 100,00 13144 17 22814

X-n376-k94 375 94 147246,11 0,32 94 147251,11 0,31 234 94 147713

X-n384-k52 383 53 65248,26 1,17 53 65235,16 1,19 1749 53 66021

X-n393-k38 392 38 37628,94 1,67 38 37768,58 1,31 1035 38 38269
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Table B.2: Valid lower bounds before and after tuning for (q, i)-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 27077,67 1,86 26 27079,31 1,85 35 26 27591

X-n106-k14 105 14 25409,14 3,61 14 25409,72 3,61 94 14 26362

X-n110-k13 109 13 14509,36 3,08 13 14510,49 3,08 55 13 14971

X-n115-k10 114 10 12345,75 3,15 10 12346,23 3,14 105 10 12747

X-n120-k6 119 6 12783,15 4,12 6 12783,69 4,11 159 6 13332

X-n125-k30 124 30 55210,67 0,59 30 55197,68 0,61 68 30 55539

X-n129-k18 128 18 28364,52 1,99 18 28363,93 1,99 84 18 28940

X-n134-k13 133 13 10561,83 3,24 13 10562,53 3,24 182 13 10916

X-n139-k10 138 10 13051,59 3,96 10 13052,04 3,96 141 10 13590

X-n143-k7 142 7 14902,30 5,08 7 14896,25 5,12 499 7 15700

X-n148-k46 147 47 43016,96 0,99 47 43018,51 0,99 41 47 43448

X-n153-k22 152 23 19780,67 6,78 23 20856,93 1,71 151 23 21220

X-n157-k13 156 13 16580,74 1,75 13 16581,08 1,75 137 13 16876

X-n162-k11 161 11 13390,30 5,29 11 13391,08 5,28 361 11 14138

X-n167-k10 166 10 19787,86 3,74 10 19788,15 3,74 240 10 20557

X-n172-k51 171 53 45115,97 1,08 53 45115,86 1,08 120 53 45607

X-n176-k26 175 26 44822,83 6,25 26 45855,27 4,09 307 26 47812

X-n181-k23 180 23 25009,27 2,19 23 25009,13 2,19 130 23 25569

X-n186-k15 185 15 23424,27 2,99 15 23424,49 2,98 410 15 24145

X-n190-k8 189 8 14637,63 13,79 8 15855,11 6,62 759 8 16980

X-n195-k51 194 53 43683,18 1,23 53 43684,85 1,22 100 53 44225

X-n200-k36 199 36 57944,39 1,08 36 57944,42 1,08 128 36 58578

X-n204-k19 203 19 19038,00 2,69 19 19038,74 2,69 347 19 19565

X-n209-k16 208 16 29698,14 3,12 16 29697,65 3,13 266 16 30656

X-n214-k11 213 11 10025,89 7,65 11 10515,55 3,14 991 11 10856

X-n219-k73 218 73 117207,35 0,33 73 117207,51 0,33 86 73 117595

X-n223-k34 222 34 39657,59 1,93 34 39659,39 1,92 189 34 40437

X-n228-k23 227 23 23688,58 7,98 23 24690,83 4,08 465 23 25742

X-n233-k16 232 17 18506,87 3,76 17 18523,66 3,67 802 17 19230

X-n237-k14 236 14 26381,26 2,44 14 26172,14 3,22 439 14 27042

X-n242-k48 241 48 81857,25 1,08 48 81859,65 1,08 181 48 82751

X-n247-k47 246 51 0,00 100,00 51 35992,07 3,44 556 51 37274

X-n251-k28 250 28 37806,23 2,27 28 37799,95 2,29 303 28 38684

X-n256-k16 255 17 17947,60 4,94 17 17948,22 4,94 1122 17 18880

X-n261-k13 260 13 25154,94 5,28 13 25063,32 5,63 1914 13 26558
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Table B.2: Valid lower bounds before and after tuning for (q, i)-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n266-k58 265 58 74436,30 1,38 58 74440,50 1,37 63 58 75478

X-n270-k35 269 36 34390,66 2,55 36 34391,31 2,55 447 36 35291

X-n275-k28 274 28 20826,14 1,97 28 20737,26 2,39 294 28 21245

X-n280-k17 279 17 23407,31 30,13 17 30911,58 7,73 1411 17 33503

X-n284-k15 283 15 0,00 100,00 15 19144,66 5,35 1041 15 20226

X-n289-k60 288 61 89595,11 5,84 61 94265,59 0,93 398 61 95151

X-n294-k50 293 51 46098,00 2,27 51 46098,53 2,27 400 51 47167

X-n298-k31 297 31 33431,58 2,34 31 33432,58 2,33 445 31 34231

X-n303-k21 302 21 19578,47 9,96 21 20762,38 4,51 1733 21 21744

X-n308-k13 307 13 0,00 100,00 13 23534,10 8,99 2130 13 25859

X-n313-k71 312 72 93352,58 0,74 72 92155,36 2,01 306 72 94044

X-n317-k53 316 53 77628,01 0,93 53 75267,30 3,94 229 53 78355

X-n322-k28 321 28 28855,82 3,34 28 28857,64 3,34 642 28 29854

X-n327-k20 326 20 25248,24 8,37 20 26651,53 3,28 894 20 27556

X-n331-k15 330 15 29566,89 4,94 15 29642,95 4,69 1126 15 31103

X-n336-k84 335 86 128453,26 7,70 86 137486,82 1,21 624 86 139165

X-n344-k43 343 43 41193,63 2,09 43 41194,81 2,09 208 43 42073

X-n351-k40 350 40 0,00 100,00 40 25065,60 3,36 1349 40 25936

X-n359-k29 358 29 0,00 100,00 29 49598,41 3,71 1008 29 51509

X-n367-k17 366 17 15442,91 32,31 17 0,00 100,00 2722 17 22814

X-n376-k94 375 94 147063,60 0,44 94 147061,89 0,44 199 94 147713

X-n384-k52 383 53 64790,46 1,86 53 64786,50 1,87 726 53 66021

X-n393-k38 392 38 36705,81 4,08 38 37457,98 2,12 331 38 38269
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B. CHAPTER 4

Table B.3: Valid lower bounds before and after tuning for (q, i)-route with 2-cycles pricing for

instances by Uchoa et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 26786,56 2,92 26 26787,44 2,91 68 26 27591

X-n106-k14 105 14 25184,70 4,47 14 25185,92 4,46 102 14 26362

X-n110-k13 109 13 13923,46 7,00 13 13924,20 6,99 68 13 14971

X-n115-k10 114 10 11976,00 6,05 10 11976,97 6,04 124 10 12747

X-n120-k6 119 6 12307,12 7,69 6 12303,68 7,71 157 6 13332

X-n125-k30 124 30 54995,84 0,98 30 54981,77 1,00 51 30 55539

X-n129-k18 128 18 27829,73 3,84 18 27830,12 3,84 73 18 28940

X-n134-k13 133 13 10171,78 6,82 13 10171,26 6,82 161 13 10916

X-n139-k10 138 10 12157,73 10,54 10 12158,07 10,54 148 10 13590

X-n143-k7 142 7 14302,39 8,90 7 14268,62 9,12 341 7 15700

X-n148-k46 147 47 42340,09 2,55 47 42343,67 2,54 44 47 43448

X-n153-k22 152 23 20790,19 2,03 23 20715,76 2,38 134 23 21220

X-n157-k13 156 13 16299,50 3,42 13 16245,04 3,74 139 13 16876

X-n162-k11 161 11 12734,46 9,93 11 12734,76 9,93 302 11 14138

X-n167-k10 166 10 19087,12 7,15 10 19084,62 7,16 230 10 20557

X-n172-k51 171 53 44607,29 2,19 53 44579,33 2,25 106 53 45607

X-n176-k26 175 26 46084,92 3,61 26 46229,80 3,31 180 26 47812

X-n181-k23 180 23 24541,94 4,02 23 24399,76 4,57 116 23 25569

X-n186-k15 185 15 22797,90 5,58 15 22798,15 5,58 321 15 24145

X-n190-k8 189 8 15868,46 6,55 8 15575,89 8,27 529 8 16980

X-n195-k51 194 53 43353,08 1,97 53 43354,01 1,97 166 53 44225

X-n200-k36 199 36 57663,10 1,56 36 57162,44 2,42 131 36 58578

X-n204-k19 203 19 17960,92 8,20 19 17960,74 8,20 302 19 19565

X-n209-k16 208 16 28768,90 6,16 16 28769,52 6,15 261 16 30656

X-n214-k11 213 11 9860,26 9,17 11 9872,17 9,06 826 11 10856

X-n219-k73 218 73 116507,04 0,93 73 116507,19 0,93 85 73 117595

X-n223-k34 222 34 38970,08 3,63 34 38971,07 3,63 175 34 40437

X-n228-k23 227 23 24528,62 4,71 23 24103,28 6,37 335 23 25742

X-n233-k16 232 17 17786,97 7,50 17 17677,71 8,07 724 17 19230

X-n237-k14 236 14 25630,33 5,22 14 25617,73 5,27 506 14 27042

X-n242-k48 241 48 81058,69 2,05 48 81055,76 2,05 207 48 82751

X-n247-k47 246 51 36642,74 1,69 51 36329,94 2,53 420 51 37274

X-n251-k28 250 28 36915,15 4,57 28 36909,83 4,59 271 28 38684

X-n256-k16 255 17 17159,80 9,11 17 17161,25 9,10 874 17 18880

X-n261-k13 260 13 24753,49 6,79 13 24512,32 7,70 1316 13 26558
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B.1 Computational results

Table B.3: Valid lower bounds before and after tuning for (q, i)-route with 2-cycles pricing for

instances by Uchoa et al. (211)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n266-k58 265 58 73690,95 2,37 58 73693,95 2,36 53 58 75478

X-n270-k35 269 36 33613,33 4,75 36 33614,51 4,75 237 36 35291

X-n275-k28 274 28 20148,93 5,16 28 20120,35 5,29 294 28 21245

X-n280-k17 279 17 30016,15 10,41 17 29655,25 11,48 1257 17 33503

X-n284-k15 283 15 18073,43 10,64 15 18432,00 8,87 958 15 20226

X-n289-k60 288 61 93590,43 1,64 61 93226,09 2,02 213 61 95151

X-n294-k50 293 51 45188,54 4,19 51 45191,25 4,19 345 51 47167

X-n298-k31 297 31 32646,74 4,63 31 32582,70 4,82 461 31 34231

X-n303-k21 302 21 20121,87 7,46 21 19870,56 8,62 1317 21 21744

X-n308-k13 307 13 22731,99 12,09 13 22910,70 11,40 2159 13 25859

X-n313-k71 312 72 92444,56 1,70 72 92359,04 1,79 287 72 94044

X-n317-k53 316 53 72934,39 6,92 53 76678,01 2,14 294 53 78355

X-n322-k28 321 28 27952,08 6,37 28 27952,40 6,37 417 28 29854

X-n327-k20 326 20 25916,72 5,95 20 25812,32 6,33 1025 20 27556

X-n331-k15 330 15 29390,75 5,51 15 29203,70 6,11 1345 15 31103

X-n336-k84 335 86 137468,60 1,22 86 137078,70 1,50 441 86 139165

X-n344-k43 343 43 40217,74 4,41 43 40219,96 4,40 111 43 42073

X-n351-k40 350 40 24734,83 4,63 40 21787,00 16,00 1012 40 25936

X-n359-k29 358 29 49210,90 4,46 29 47775,60 7,25 937 29 51509

X-n367-k17 366 17 20182,22 11,54 17 20863,33 8,55 2915 17 22814

X-n376-k94 375 94 146294,28 0,96 94 146269,38 0,98 254 94 147713

X-n384-k52 383 53 63702,76 3,51 53 63705,63 3,51 583 53 66021

X-n393-k38 392 38 36340,89 5,04 38 36331,35 5,06 257 38 38269
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B. CHAPTER 4

Table B.4: Feasible solution values before and after tuning for ng-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 28185 2,15 26 27978 1,40 26 27591

X-n106-k14 105 14 26810 1,70 14 26932 2,16 14 26362

X-n110-k13 109 13 15118 0,98 13 15127 1,04 13 14971

X-n115-k10 114 10 12767 0,16 10 12767 0,16 10 12747

X-n120-k6 119 6 13569 1,78 6 13533 1,51 6 13332

X-n125-k30 124 30 56669 2,03 30 56463 1,66 30 55539

X-n129-k18 128 18 29480 1,87 18 29693 2,60 18 28940

X-n134-k13 133 13 11260 3,15 13 11265 3,20 13 10916

X-n139-k10 138 10 13806 1,59 10 13812 1,63 10 13590

X-n143-k7 142 7 16143 2,82 7 16299 3,82 7 15700

X-n148-k46 147 46 44209 1,75 46 44290 1,94 47 43448

X-n153-k22 152 22 22277 4,98 23 21511 1,37 23 21220

X-n157-k13 156 13 17089 1,26 13 17082 1,22 13 16876

X-n162-k11 161 11 14279 1,00 11 14270 0,93 11 14138

X-n167-k10 166 10 21409 4,14 10 21308 3,65 10 20557

X-n172-k51 171 52 47145 3,37 52 47260 3,62 53 45607

X-n176-k26 175 26 49135 2,77 26 48813 2,09 26 47812

X-n181-k23 180 23 25862 1,15 23 25936 1,44 23 25569

X-n186-k15 185 15 24926 3,23 15 24864 2,98 15 24145

X-n190-k8 189 8 17603 3,67 8 17573 3,49 8 16980

X-n195-k51 194 52 46351 4,81 52 46732 5,67 53 44225

X-n200-k36 199 36 59981 2,40 36 60165 2,71 36 58578

X-n204-k19 203 19 20114 2,81 19 20075 2,61 19 19565

X-n209-k16 208 16 32058 4,57 16 32129 4,80 16 30656

X-n214-k11 213 11 12010 10,63 11 12177 12,17 11 10856

X-n219-k73 218 73 117802 0,18 73 117779 0,16 73 117595

X-n223-k34 222 34 41408 2,40 34 41513 2,66 34 40437

X-n228-k23 227 23 26604 3,35 23 26529 3,06 23 25742

X-n233-k16 232 17 20074 4,39 17 19991 3,96 17 19230

X-n237-k14 236 14 28047 3,72 14 28222 4,36 14 27042

X-n242-k48 241 48 85108 2,85 48 85153 2,90 48 82751

X-n247-k47 246 50 38476 3,22 50 38359 2,91 51 37274

X-n251-k28 250 28 40272 4,11 28 40190 3,89 28 38684

X-n256-k16 255 17 19201 1,70 17 19288 2,16 17 18880

X-n261-k13 260 13 28151 6,00 13 28031 5,55 13 26558
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B.1 Computational results

Table B.4: Feasible solution values before and after tuning for ng-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n266-k58 265 58 77742 3,00 58 78410 3,88 58 75478

X-n270-k35 269 36 36669 3,90 36 36565 3,61 36 35291

X-n275-k28 274 28 22004 3,57 28 21836 2,78 28 21245

X-n280-k17 279 17 35887 7,12 17 35289 5,33 17 33503

X-n284-k15 283 15 21608 6,83 15 21383 5,72 15 20226

X-n289-k60 288 61 100153 5,26 61 99571 4,65 61 95151

X-n294-k50 293 50 54616 15,79 50 55336 17,32 51 47167

X-n298-k31 297 31 35320 3,18 31 35607 4,02 31 34231

X-n303-k21 302 21 22764 4,69 21 22783 4,78 21 21744

X-n308-k13 307 13 27238 5,33 13 27461 6,20 13 25859

X-n313-k71 312 72 98949 5,22 72 97357 3,52 72 94044

X-n317-k53 316 53 79575 1,56 53 79484 1,44 53 78355

X-n322-k28 321 28 32291 8,16 28 32432 8,64 28 29854

X-n327-k20 326 20 29624 7,50 20 29164 5,84 20 27556

X-n331-k15 330 15 32574 4,73 15 33028 6,19 15 31103

X-n336-k84 335 85 145875 4,82 85 145038 4,22 86 139165

X-n344-k43 343 43 46139 9,66 43 49335 17,26 43 42073

X-n351-k40 350 40 28073 8,24 40 28594 10,25 40 25936

X-n359-k29 358 29 55088 6,95 29 54571 5,94 29 51509

X-n367-k17 367 17 24434 7,10 17 24284 6,44 17 22814

X-n376-k94 375 94 148414 0,47 94 148430 0,49 94 147713

X-n384-k52 383 53 68917 4,39 53 69320 5,00 53 66021

X-n393-k38 392 38 40885 6,84 38 40772 6,54 38 38269
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B. CHAPTER 4

Table B.5: Feasible solution values before and after tuning for (q, i)-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 28133 1,96 26 28037 1,62 26 27591

X-n106-k14 105 14 26903 2,05 14 26812 1,71 14 26362

X-n110-k13 109 13 15155 1,23 13 15143 1,15 13 14971

X-n115-k10 114 10 12827 0,63 10 12860 0,89 10 12747

X-n120-k6 119 6 13815 3,62 6 13750 3,14 6 13332

X-n125-k30 124 30 56982 2,60 30 56791 2,25 30 55539

X-n129-k18 128 18 29735 2,75 18 29669 2,52 18 28940

X-n134-k13 133 13 11208 2,67 13 11276 3,30 13 10916

X-n139-k10 138 10 13881 2,14 10 13889 2,20 10 13590

X-n143-k7 142 7 16382 4,34 7 16481 4,97 7 15700

X-n148-k46 147 46 44778 3,06 46 44927 3,40 47 43448

X-n153-k22 152 22 22408 5,60 22 22129 4,28 23 21220

X-n157-k13 156 13 17212 1,99 13 17184 1,83 13 16876

X-n162-k11 161 11 14303 1,17 11 14269 0,93 11 14138

X-n167-k10 166 10 21653 5,33 10 21567 4,91 10 20557

X-n172-k51 171 52 46619 2,22 52 47014 3,09 53 45607

X-n176-k26 175 26 49198 2,90 26 49000 2,48 26 47812

X-n181-k23 180 23 25771 0,79 23 25933 1,42 23 25569

X-n186-k15 185 15 25438 5,36 15 25371 5,08 15 24145

X-n190-k8 189 8 17528 3,23 8 17566 3,45 8 16980

X-n195-k51 194 52 46358 4,82 52 46732 5,67 53 44225

X-n200-k36 199 36 61005 4,14 36 61166 4,42 36 58578

X-n204-k19 203 19 20249 3,50 19 20088 2,67 19 19565

X-n209-k16 208 16 32399 5,69 16 32430 5,79 16 30656

X-n214-k11 213 11 12675 16,76 11 12458 14,76 11 10856

X-n219-k73 218 73 117810 0,18 73 117795 0,17 73 117595

X-n223-k34 222 34 41741 3,22 34 41887 3,59 34 40437

X-n228-k23 227 23 26529 3,06 23 26597 3,32 23 25742

X-n233-k16 232 17 20110 4,58 17 20014 4,08 17 19230

X-n237-k14 236 14 28543 5,55 14 28625 5,85 14 27042

X-n242-k48 241 48 85314 3,10 48 85193 2,95 48 82751

X-n247-k47 246 50 38261 2,65 50 38036 2,04 51 37274

X-n251-k28 250 28 40210 3,94 28 40499 4,69 28 38684

X-n256-k16 255 17 19407 2,79 17 19438 2,96 17 18880

- datum not available.
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B.1 Computational results

Table B.5: Feasible solution values before and after tuning for (q, i)-route pricing for instances by

Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n261-k13 260 13 28967 9,07 13 28900 8,82 13 26558

X-n266-k58 265 - - - - - - 58 75478

X-n270-k35 269 36 36872 4,48 36 37030 4,93 36 35291

X-n275-k28 274 28 21990 3,51 28 21965 3,39 28 21245

X-n280-k17 279 17 35772 6,77 17 35497 5,95 17 33503

X-n284-k15 283 15 21661 7,09 15 21633 6,96 15 20226

X-n289-k60 288 61 100562 5,69 61 98797 3,83 61 95151

X-n294-k50 293 50 55862 18,43 50 56079 18,89 51 47167

X-n298-k31 297 31 36866 7,70 31 36466 6,53 31 34231

X-n303-k21 302 21 22957 5,58 21 22713 4,46 21 21744

X-n308-k13 307 13 27428 6,07 13 27495 6,33 13 25859

X-n313-k71 312 72 97659 3,84 72 98302 4,53 72 94044

X-n317-k53 316 53 79399 1,33 53 79329 1,24 53 78355

X-n322-k28 321 28 32969 10,43 28 32881 10,14 28 29854

X-n327-k20 326 20 29901 8,51 20 29584 7,36 20 27556

X-n331-k15 330 15 33381 7,32 15 33381 7,32 15 31103

X-n336-k84 335 85 147660 6,10 85 145798 4,77 86 139165

X-n344-k43 343 - - - - - - 43 42073

X-n351-k40 350 40 29168 12,46 40 29335 13,11 40 25936

X-n359-k29 358 29 55625 7,99 29 55518 7,78 29 51509

X-n367-k17 366 17 24466 7,24 17 24403 6,97 17 22814

X-n376-k94 375 94 148710 0,67 94 148598 0,60 94 147713

X-n384-k52 383 53 69328 5,01 53 69530 5,31 53 66021

X-n393-k38 392 38 41367 8,10 38 41329 8,00 38 38269

- datum not available.
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B. CHAPTER 4

Table B.6: Feasible solution values before and after tuning for (q, i)-route with 2-cycles pricing for

instances by Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n101-k25 100 26 28136 1,98 26 28077 1,76 26 27591

X-n106-k14 105 14 26885 1,98 14 26986 2,37 14 26362

X-n110-k13 109 13 15233 1,75 13 15269 1,99 13 14971

X-n115-k10 114 10 12892 1,14 10 12901 1,21 10 12747

X-n120-k6 119 6 13878 4,10 6 13795 3,47 6 13332

X-n125-k30 124 30 56990 2,61 30 56477 1,69 30 55539

X-n129-k18 128 18 30124 4,09 18 30393 5,02 18 28940

X-n134-k13 133 13 11446 4,86 13 11393 4,37 13 10916

X-n139-k10 138 10 14248 4,84 10 14150 4,12 10 13590

X-n143-k7 142 7 16509 5,15 7 16519 5,22 7 15700

X-n148-k46 147 46 44698 2,88 46 45433 4,57 47 43448

X-n153-k22 152 23 21661 2,08 22 24344 14,72 23 21220

X-n157-k13 156 13 17376 2,96 13 17494 3,66 13 16876

X-n162-k11 161 11 14381 1,72 11 14476 2,39 11 14138

X-n167-k10 166 10 22036 7,19 10 21920 6,63 10 20557

X-n172-k51 171 52 47503 4,16 52 47755 4,71 53 45607

X-n176-k26 175 26 49690 3,93 26 49251 3,01 26 47812

X-n181-k23 180 23 26058 1,91 23 26069 1,96 23 25569

X-n186-k15 185 15 25665 6,30 15 25797 6,84 15 24145

X-n190-k8 189 8 17652 3,96 8 17675 4,09 8 16980

X-n195-k51 194 52 47250 6,84 52 47013 6,30 53 44225

X-n200-k36 199 - - - 36 62932 7,43 36 58578

X-n204-k19 203 19 20435 4,45 19 20384 4,19 19 19565

X-n209-k16 208 16 32558 6,20 16 32454 5,87 16 30656

X-n214-k11 213 11 13044 20,15 11 13138 21,02 11 10856

X-n219-k73 218 73 117851 0,22 73 117869 0,23 73 117595

X-n223-k34 222 34 42292 4,59 34 42605 5,36 34 40437

X-n228-k23 227 23 26817 4,18 23 26687 3,67 23 25742

X-n233-k16 232 17 20348 5,81 17 20255 5,33 17 19230

X-n237-k14 236 14 28825 6,59 14 28792 6,47 14 27042

X-n242-k48 241 48 85621 3,47 48 85650 3,50 48 82751

X-n247-k47 246 50 38494 3,27 50 38532 3,38 51 37274

X-n251-k28 250 28 40466 4,61 28 40676 5,15 28 38684

X-n256-k16 255 17 19491 3,24 17 19588 3,75 17 18880

- datum not available.
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B.1 Computational results

Table B.6: Feasible solution values before and after tuning for (q, i)-route with 2-cycles pricing for

instances by Uchoa et al. (211)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

X-n261-k13 260 13 28976 9,10 13 28981 9,12 13 26558

X-n266-k58 265 - - - - - - 58 75478

X-n270-k35 269 36 37557 6,42 36 37314 5,73 36 35291

X-n275-k28 274 28 21960 3,37 28 22067 3,87 28 21245

X-n280-k17 279 17 36179 7,99 17 36251 8,20 17 33503

X-n284-k15 283 15 21704 7,31 15 21752 7,54 15 20226

X-n289-k60 288 61 100213 5,32 61 100141 5,24 61 95151

X-n294-k50 293 51 49713 5,40 51 49744 5,46 51 47167

X-n298-k31 297 31 38081 11,25 31 37594 9,82 31 34231

X-n303-k21 302 21 22956 5,57 21 22753 4,64 21 21744

X-n308-k13 307 13 27613 6,78 13 27711 7,16 13 25859

X-n313-k71 312 72 98693 4,94 72 98108 4,32 72 94044

X-n317-k53 316 53 79528 1,50 53 79508 1,47 53 78355

X-n322-k28 321 28 34585 15,85 28 33734 13,00 28 29854

X-n327-k20 326 20 30100 9,23 20 30104 9,25 20 27556

X-n331-k15 330 15 33134 6,53 15 33260 6,94 15 31103

X-n336-k84 335 85 146387 5,19 85 147930 6,30 86 139165

X-n344-k43 343 - - - - - - 43 42073

X-n351-k40 350 40 30002 15,68 40 30083 15,99 40 25936

X-n359-k29 358 29 56122 8,96 29 55904 8,53 29 51509

X-n367-k17 366 17 24655 8,07 17 25020 9,67 17 22814

X-n376-k94 375 94 148850 0,77 94 148999 0,87 94 147713

X-n384-k52 383 53 70549 6,86 53 70796 7,23 53 66021

X-n393-k38 392 38 41574 8,64 38 42034 9,84 38 38269

- datum not available.
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B. CHAPTER 4

Table B.7: Valid lower bounds before and after tuning for ng-route pricing for instances A, B, P,

E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 757,62 3,36 5 757,71 3,35 1 5 784

A-n33-k5 32 5 651,94 1,37 5 651,94 1,37 1 5 661

A-n33-k6 32 6 726,56 2,08 6 726,57 2,08 2 6 742

A-n34-k5 33 5 742,69 4,54 5 742,87 4,52 2 5 778

A-n36-k5 35 5 772,10 3,37 5 772,15 3,36 2 5 799

A-n37-k5 36 5 656,27 1,90 5 656,32 1,90 2 5 669

A-n37-k6 36 6 922,57 2,79 6 922,60 2,78 2 6 949

A-n38-k5 37 5 694,70 4,84 5 694,77 4,83 2 5 730

A-n39-k5 38 5 799,48 2,74 5 799,59 2,73 3 5 822

A-n39-k6 38 6 800,20 3,71 6 800,32 3,69 10 6 831

A-n44-k6 43 6 925,46 1,23 6 925,59 1,22 7 6 937

A-n45-k6 44 6 924,41 2,08 6 924,07 2,11 5 6 944

A-n45-k7 44 7 1111,84 2,98 7 1111,99 2,97 7 7 1146

A-n46-k7 45 7 898,45 1,70 7 898,54 1,69 10 7 914

A-n48-k7 47 7 1044,79 2,63 7 1044,92 2,62 9 7 1073

A-n53-k7 52 7 988,42 2,14 7 988,53 2,13 14 7 1010

A-n54-k7 53 7 1132,62 2,95 7 1132,71 2,94 13 7 1167

A-n55-k9 54 9 1054,22 1,75 9 1054,41 1,73 10 9 1073

A-n60-k9 59 9 1322,22 2,35 9 1322,27 2,34 16 9 1354

A-n61-k9 60 9 1009,86 2,33 9 1010,01 2,32 9 9 1034

A-n62-k8 61 8 1249,88 2,96 8 1249,90 2,96 20 8 1288

A-n63-k9 62 9 1578,85 2,30 9 1578,90 2,30 16 9 1616

A-n63-k10 62 10 1284,42 2,25 10 1284,46 2,25 18 10 1314

A-n64-k9 63 9 1366,70 2,45 9 1366,80 2,44 20 9 1401

A-n65-k9 64 9 1146,02 2,38 9 1146,07 2,38 12 9 1174

A-n69-k9 68 9 1125,97 2,85 9 1126,10 2,84 20 9 1159

A-n80-k10 79 10 1724,33 2,19 10 1724,50 2,18 35 10 1763

B-n31-k5 30 5 611,60 8,99 5 611,61 8,99 6 5 672

B-n34-k5 33 5 744,10 5,57 5 744,12 5,57 6 5 788

B-n35-k5 34 5 825,30 13,58 5 825,30 13,58 6 5 955

B-n38-k6 37 6 712,98 11,43 6 713,00 11,43 6 6 805

B-n39-k5 38 5 509,29 7,23 5 509,32 7,23 9 5 549

B-n41-k6 40 6 797,71 3,77 6 797,72 3,77 7 6 829

B-n43-k6 42 6 698,14 5,91 6 698,16 5,91 9 6 742

B-n44-k7 43 7 858,87 5,51 7 858,91 5,51 9 7 909

136



B.1 Computational results

Table B.7: Valid lower bounds before and after tuning for ng-route pricing for instances A, B, P,

E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n45-k5 44 5 684,90 8,80 5 684,08 8,91 14 5 751

B-n45-k6 44 6 652,23 3,80 6 652,25 3,80 8 6 678

B-n50-k7 49 7 664,24 10,36 7 664,26 10,36 13 7 741

B-n50-k8 49 8 1254,78 4,36 8 1254,47 4,38 14 8 1312

B-n51-k7 50 7 960,82 6,90 7 960,85 6,89 13 7 1032

B-n52-k7 51 7 675,74 9,54 7 675,78 9,53 17 7 747

B-n56-k7 55 7 628,83 11,06 7 628,85 11,05 19 7 707

B-n57-k7 56 7 1125,00 2,43 7 1124,99 2,43 20 7 1153

B-n57-k9 56 9 1498,88 6,20 9 1499,01 6,19 16 9 1598

B-n63-k10 62 10 1444,52 3,44 10 1444,57 3,44 20 10 1496

B-n64-k9 63 9 805,86 6,40 9 805,91 6,40 17 9 861

B-n66-k9 65 9 1250,78 4,96 9 1250,51 4,98 35 9 1316

B-n67-k10 66 10 985,04 4,55 10 985,10 4,54 20 10 1032

B-n68-k9 67 9 1179,34 7,28 9 1179,32 7,29 27 9 1272

B-n78-k10 77 10 1157,98 5,16 10 1158,05 5,16 34 10 1221

E-n22-k4 21 4 373,49 0,40 4 373,50 0,40 120 4 375

E-n23-k3 22 3 555,50 2,37 3 555,50 2,37 113 3 569

E-n30-k3 29 3 478,19 10,45 3 478,19 10,45 200 3 534

E-n33-k4 32 4 802,60 3,88 4 802,63 3,88 577 4 835

E-n51-k5 50 5 516,94 0,78 5 516,99 0,77 15 5 521

E-n76-k7 75 7 661,80 2,96 7 661,82 2,96 56 7 682

E-n76-k8 75 8 717,15 2,43 8 717,19 2,42 34 8 735

E-n76-k10 75 10 811,68 2,21 10 811,70 2,20 22 10 830

E-n76-k14 75 14 1001,65 1,90 14 1001,69 1,89 12 14 1021

E-n101-k8 100 8 785,36 3,64 8 785,45 3,63 143 8 815

E-n101-k14 100 14 1044,52 2,11 14 1044,64 2,10 43 14 1067

M-n101-k10 100 10 804,56 1,88 10 804,58 1,88 25 10 820

M-n121-k7 120 7 1024,60 0,91 7 1024,53 0,92 303 7 1034

M-n151-k12 150 12 989,57 2,51 12 989,78 2,48 435 12 1015

M-n200-k16 199 16 1249,67 1,91 16 1249,74 1,90 530 16 1274

M-n200-k17 199 17 1249,62 1,99 17 1249,62 1,99 610 17 1275

P-n20-k2 19 2 210,00 2,78 2 210,00 2,78 2 2 216

P-n21-k2 20 2 209,96 0,49 2 210,01 0,47 3 2 211

P-n22-k2 21 2 214,50 0,69 2 214,50 0,69 3 2 216

P-n22-k8 21 8 601,25 0,29 8 601,25 0,29 16 8 603

P-n23-k8 22 8 527,89 0,21 8 527,47 0,29 1 8 529
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B. CHAPTER 4

Table B.7: Valid lower bounds before and after tuning for ng-route pricing for instances A, B, P,

E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n40-k5 39 5 448,19 2,14 5 448,21 2,14 7 5 458

P-n45-k5 44 5 499,63 2,03 5 499,68 2,02 10 5 510

P-n50-k7 49 7 542,01 2,16 7 542,04 2,16 10 7 554

P-n50-k8 49 8 614,36 2,64 8 614,09 2,68 4 8 631

P-n50-k10 49 10 686,34 1,39 10 686,35 1,39 7 10 696

P-n51-k10 50 10 732,84 1,10 10 732,88 1,10 6 10 741

P-n55-k7 54 7 549,41 3,27 7 549,44 3,27 14 7 568

P-n55-k10 54 10 674,58 2,80 10 674,63 2,79 9 10 694

P-n55-k15 54 15 966,99 2,23 15 965,33 2,39 3 15 989

P-n60-k10 59 10 734,75 1,24 10 734,78 1,24 12 10 744

P-n60-k15 59 15 957,97 1,04 15 958,07 1,03 7 15 968

P-n65-k10 64 10 780,57 1,44 10 780,61 1,44 15 10 792

P-n70-k10 69 10 808,87 2,19 10 808,99 2,18 16 10 827

P-n76-k4 75 4 586,05 1,17 4 586,09 1,17 203 4 593

P-n76-k5 75 5 614,32 2,02 5 614,36 2,02 97 5 627

P-n101-k4 100 4 666,70 2,10 4 666,76 2,09 583 4 681

138



B.1 Computational results

Table B.8: Valid lower bounds before and after tuning for (q, i)-route pricing for instances A, B,

P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 728,13 7,13 5 728,15 7,12 1 5 784

A-n33-k5 32 5 643,39 2,66 5 643,41 2,66 2 5 661

A-n33-k6 32 6 702,63 5,31 6 702,63 5,31 4 6 742

A-n34-k5 33 5 729,27 6,26 5 729,31 6,26 4 5 778

A-n36-k5 35 5 763,27 4,47 5 763,35 4,46 4 5 799

A-n37-k5 36 5 638,74 4,52 5 638,82 4,51 5 5 669

A-n37-k6 36 6 906,81 4,45 6 906,90 4,44 4 6 949

A-n38-k5 37 5 671,00 8,08 5 671,06 8,07 5 5 730

A-n39-k5 38 5 794,20 3,38 5 794,23 3,38 5 5 822

A-n39-k6 38 6 786,16 5,40 6 786,23 5,39 5 6 831

A-n44-k6 43 6 911,68 2,70 6 911,74 2,70 6 6 937

A-n45-k6 44 6 895,91 5,09 6 895,64 5,12 3 6 944

A-n45-k7 44 7 1103,08 3,75 7 1103,10 3,74 6 7 1146

A-n46-k7 45 7 890,68 2,55 7 890,74 2,54 7 7 914

A-n48-k7 47 7 1030,36 3,97 7 1030,42 3,97 9 7 1073

A-n53-k7 52 7 973,86 3,58 7 973,96 3,57 11 7 1010

A-n54-k7 53 7 1113,51 4,58 7 1113,55 4,58 11 7 1167

A-n55-k9 54 9 1020,40 4,90 9 1020,42 4,90 9 9 1073

A-n60-k9 59 9 1304,44 3,66 9 1304,59 3,65 11 9 1354

A-n61-k9 60 9 996,71 3,61 9 996,71 3,61 7 9 1034

A-n62-k8 61 8 1222,65 5,07 8 1222,72 5,07 17 8 1288

A-n63-k9 62 9 1564,69 3,18 9 1564,74 3,17 12 9 1616

A-n63-k10 62 10 1266,04 3,65 10 1266,11 3,64 13 10 1314

A-n64-k9 63 9 1351,58 3,53 9 1351,61 3,53 17 9 1401

A-n65-k9 64 9 1131,64 3,61 9 1131,79 3,60 10 9 1174

A-n69-k9 68 9 1111,09 4,13 9 1111,13 4,13 17 9 1159

A-n80-k10 79 10 1706,18 3,22 10 1706,26 3,22 25 10 1763

B-n31-k5 30 5 525,89 21,74 5 525,92 21,74 4 5 672

B-n34-k5 33 5 720,05 8,62 5 720,07 8,62 4 5 788

B-n35-k5 34 5 805,58 15,65 5 805,63 15,64 5 5 955

B-n38-k6 37 6 671,42 16,59 6 671,37 16,60 8 6 805

B-n39-k5 38 5 476,79 13,15 5 476,80 13,15 6 5 549

B-n41-k6 40 6 732,34 11,66 6 732,34 11,66 5 6 829

B-n43-k6 42 6 650,43 12,34 6 650,43 12,34 7 6 742

B-n44-k7 43 7 821,38 9,64 7 821,30 9,65 6 7 909
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B. CHAPTER 4

Table B.8: Valid lower bounds before and after tuning for (q, i)-route pricing for instances A, B,

P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n45-k5 44 5 649,26 13,55 5 649,29 13,54 9 5 751

B-n45-k6 44 6 592,45 12,62 6 592,47 12,62 5 6 678

B-n50-k7 49 7 631,93 14,72 7 632,00 14,71 9 7 741

B-n50-k8 49 8 1205,35 8,13 8 1205,37 8,13 10 8 1312

B-n51-k7 50 7 913,01 11,53 7 913,04 11,53 8 7 1032

B-n52-k7 51 7 628,69 15,84 7 628,70 15,84 10 7 747

B-n56-k7 55 7 599,23 15,24 7 599,23 15,24 13 7 707

B-n57-k7 56 7 1058,40 8,20 7 1058,45 8,20 6 7 1153

B-n57-k9 56 9 1428,38 10,61 9 1428,41 10,61 10 9 1598

B-n63-k10 62 10 1406,60 5,98 10 1406,71 5,97 14 10 1496

B-n64-k9 63 9 766,00 11,03 9 766,00 11,03 13 9 861

B-n66-k9 65 9 1216,50 7,56 9 1216,47 7,56 15 9 1316

B-n67-k10 66 10 967,07 6,29 10 967,12 6,29 14 10 1032

B-n68-k9 67 9 1142,65 10,17 9 1142,74 10,16 17 9 1272

B-n78-k10 77 10 1117,70 8,46 10 1117,78 8,45 23 10 1221

E-n22-k4 21 4 371,22 1,01 4 371,22 1,01 6 4 375

E-n23-k3 22 3 539,41 5,20 3 539,51 5,18 11 3 569

E-n30-k3 29 3 464,25 13,06 3 464,27 13,06 11 3 534

E-n33-k4 32 4 793,04 5,03 4 793,13 5,01 23 4 835

E-n51-k5 50 5 512,54 1,62 5 512,63 1,61 12 5 521

E-n76-k7 75 7 660,73 3,12 7 660,77 3,11 32 7 682

E-n76-k8 75 8 716,04 2,58 8 716,11 2,57 27 8 735

E-n76-k10 75 10 811,22 2,26 10 811,28 2,26 19 10 830

E-n76-k14 75 14 999,48 2,11 14 999,52 2,10 11 14 1021

E-n101-k8 100 8 782,54 3,98 8 782,59 3,98 64 8 815

E-n101-k14 100 14 1042,12 2,33 14 1042,27 2,32 34 14 1067

M-n101-k10 100 10 780,63 4,80 10 780,71 4,79 51 10 820

M-n121-k7 120 7 1012,60 2,07 7 1012,57 2,07 122 7 1034

M-n151-k12 150 12 986,98 2,76 12 987,06 2,75 130 12 1015

M-n200-k16 199 16 1240,22 2,65 16 1240,36 2,64 97 16 1274

M-n200-k17 199 17 1240,32 2,72 17 1240,38 2,72 202 17 1275

P-n20-k2 19 2 209,51 3,00 2 209,54 2,99 2 2 216

P-n21-k2 20 2 207,87 1,48 2 207,87 1,48 2 2 211

P-n22-k2 21 2 212,31 1,71 2 212,31 1,71 2 2 216

P-n22-k8 21 8 601,25 0,29 8 601,25 0,29 3 8 603

P-n23-k8 22 8 528,34 0,12 8 527,33 0,32 1 8 529
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B.1 Computational results

Table B.8: Valid lower bounds before and after tuning for (q, i)-route pricing for instances A, B,

P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n40-k5 39 5 444,39 2,97 5 444,43 2,96 6 5 458

P-n45-k5 44 5 495,03 2,94 5 495,06 2,93 9 5 510

P-n50-k7 49 7 539,76 2,57 7 539,81 2,56 9 7 554

P-n50-k8 49 8 612,28 2,97 8 611,95 3,02 3 8 631

P-n50-k10 49 10 683,23 1,83 10 683,23 1,83 6 10 696

P-n51-k10 50 10 729,28 1,58 10 729,30 1,58 4 10 741

P-n55-k7 54 7 547,15 3,67 7 547,19 3,66 12 7 568

P-n55-k10 54 10 672,68 3,07 10 672,70 3,07 9 10 694

P-n55-k15 54 15 961,96 2,73 15 959,34 3,00 2 15 989

P-n60-k10 59 10 731,75 1,65 10 731,81 1,64 12 10 744

P-n60-k15 59 15 954,39 1,41 15 954,42 1,40 8 15 968

P-n65-k10 64 10 776,86 1,91 10 776,88 1,91 13 10 792

P-n70-k10 69 10 807,82 2,32 10 807,85 2,32 14 10 827

P-n76-k4 75 4 585,17 1,32 4 585,19 1,32 67 4 593

P-n76-k5 75 5 613,08 2,22 5 613,17 2,21 47 5 627

P-n101-k4 100 4 662,12 2,77 4 662,09 2,78 150 4 681
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B. CHAPTER 4

Table B.9: Valid lower bounds before and after tuning for (q, i)-route with 2-cycles pricing for

instances A, B, P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 691,08 11,85 5 691,04 11,86 4 5 784

A-n33-k5 32 5 608,55 7,93 5 608,61 7,93 4 5 661

A-n33-k6 32 6 671,77 9,46 6 671,87 9,45 4 6 742

A-n34-k5 33 5 672,64 13,54 5 672,65 13,54 4 5 778

A-n36-k5 35 5 732,06 8,38 5 732,08 8,38 6 5 799

A-n37-k5 36 5 615,84 7,95 5 615,87 7,94 6 5 669

A-n37-k6 36 6 868,69 8,46 6 868,84 8,45 5 6 949

A-n38-k5 37 5 628,86 13,85 5 628,89 13,85 5 5 730

A-n39-k5 38 5 770,43 6,27 5 770,53 6,26 6 5 822

A-n39-k6 38 6 736,52 11,37 6 736,61 11,36 6 6 831

A-n44-k6 43 6 880,82 6,00 6 880,85 5,99 7 6 937

A-n45-k6 44 6 847,40 10,23 6 847,37 10,24 4 6 944

A-n45-k7 44 7 1065,73 7,00 7 1065,74 7,00 7 7 1146

A-n46-k7 45 7 851,56 6,83 7 851,59 6,83 7 7 914

A-n48-k7 47 7 997,22 7,06 7 997,26 7,06 8 7 1073

A-n53-k7 52 7 916,05 9,30 7 916,15 9,29 12 7 1010

A-n54-k7 53 7 1077,92 7,63 7 1078,00 7,63 11 7 1167

A-n55-k9 54 9 975,13 9,12 9 975,15 9,12 9 9 1073

A-n60-k9 59 9 1251,41 7,58 9 1251,50 7,57 11 9 1354

A-n61-k9 60 9 955,76 7,57 9 955,80 7,56 7 9 1034

A-n62-k8 61 8 1182,12 8,22 8 1182,27 8,21 15 8 1288

A-n63-k9 62 9 1517,65 6,09 9 1517,77 6,08 12 9 1616

A-n63-k10 62 10 1185,44 9,78 10 1185,83 9,75 14 10 1314

A-n64-k9 63 9 1277,99 8,78 9 1278,10 8,77 15 9 1401

A-n65-k9 64 9 1097,05 6,55 9 1097,11 6,55 12 9 1174

A-n69-k9 68 9 1048,50 9,53 9 1048,60 9,53 18 9 1159

A-n80-k10 79 10 1652,50 6,27 10 1652,56 6,26 24 10 1763

B-n31-k5 30 5 515,71 23,26 5 515,71 23,26 3 5 672

B-n34-k5 33 5 667,09 15,34 5 667,17 15,33 4 5 788

B-n35-k5 34 5 779,70 18,36 5 779,70 18,36 5 5 955

B-n38-k6 37 6 654,77 18,66 6 654,77 18,66 5 6 805

B-n39-k5 38 5 452,65 17,55 5 452,74 17,53 6 5 549

B-n41-k6 40 6 712,38 14,07 6 712,38 14,07 6 6 829

B-n43-k6 42 6 633,66 14,60 6 633,68 14,60 7 6 742

B-n44-k7 43 7 803,56 11,60 7 803,59 11,60 6 7 909
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B.1 Computational results

Table B.9: Valid lower bounds before and after tuning for (q, i)-route with 2-cycles pricing for

instances A, B, P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n45-k5 44 5 612,17 18,49 5 612,25 18,48 9 5 751

B-n45-k6 44 6 572,05 15,63 6 572,06 15,63 5 6 678

B-n50-k7 49 7 614,56 17,06 7 614,63 17,05 9 7 741

B-n50-k8 49 8 1176,67 10,31 8 1176,71 10,31 8 8 1312

B-n51-k7 50 7 898,59 12,93 7 898,60 12,93 9 7 1032

B-n52-k7 51 7 602,66 19,32 7 602,73 19,31 10 7 747

B-n56-k7 55 7 579,65 18,01 7 579,68 18,01 13 7 707

B-n57-k7 56 7 1040,17 9,79 7 1040,20 9,78 5 7 1153

B-n57-k9 56 9 1400,26 12,37 9 1400,32 12,37 10 9 1598

B-n63-k10 62 10 1374,41 8,13 10 1374,68 8,11 14 10 1496

B-n64-k9 63 9 746,70 13,28 9 746,78 13,27 13 9 861

B-n66-k9 65 9 1175,21 10,70 9 1175,22 10,70 16 9 1316

B-n67-k10 66 10 941,72 8,75 10 941,96 8,72 15 10 1032

B-n68-k9 67 9 1120,95 11,88 9 1121,19 11,86 17 9 1272

B-n78-k10 77 10 1090,68 10,67 10 1090,80 10,66 23 10 1221

E-n22-k4 21 4 343,91 8,29 4 343,91 8,29 6 4 375

E-n23-k3 22 3 492,88 13,38 3 492,90 13,37 7 3 569

E-n30-k3 29 3 445,01 16,66 3 445,07 16,65 9 3 534

E-n33-k4 32 4 776,62 6,99 4 776,69 6,98 19 4 835

E-n51-k5 50 5 494,52 5,08 5 494,56 5,07 12 5 521

E-n76-k7 75 7 629,95 7,63 7 630,00 7,62 30 7 682

E-n76-k8 75 8 688,61 6,31 8 688,70 6,30 25 8 735

E-n76-k10 75 10 784,83 5,44 10 784,89 5,43 20 10 830

E-n76-k14 75 14 974,27 4,58 14 974,44 4,56 12 14 1021

E-n101-k8 100 8 758,01 6,99 8 757,96 7,00 64 8 815

E-n101-k14 100 14 1023,00 4,12 14 1023,16 4,11 34 14 1067

M-n101-k10 100 10 760,29 7,28 10 760,42 7,27 46 10 820

M-n121-k7 120 7 977,05 5,51 7 976,88 5,52 110 7 1034

M-n151-k12 150 12 926,30 8,74 12 926,38 8,73 131 12 1015

M-n200-k16 199 16 1172,79 7,94 16 1172,80 7,94 72 16 1274

M-n200-k17 199 17 1172,68 8,03 17 1172,70 8,02 199 17 1275

P-n20-k2 19 2 199,50 7,64 2 199,51 7,63 2 2 216

P-n21-k2 20 2 195,86 7,18 2 195,94 7,14 2 2 211

P-n22-k2 21 2 199,95 7,43 2 199,98 7,42 2 2 216

P-n22-k8 21 8 584,87 3,01 8 584,91 3,00 3 8 603

P-n23-k8 22 8 522,20 1,29 8 522,20 1,29 1 8 529
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B. CHAPTER 4

Table B.9: Valid lower bounds before and after tuning for (q, i)-route with 2-cycles pricing for

instances A, B, P, E, M

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n40-k5 39 5 430,32 6,04 5 430,42 6,02 6 5 458

P-n45-k5 44 5 478,52 6,17 5 478,58 6,16 8 5 510

P-n50-k7 49 7 527,34 4,81 7 527,37 4,81 8 7 554

P-n50-k8 49 8 596,52 5,46 8 596,38 5,49 2 8 631

P-n50-k10 49 10 665,22 4,42 10 665,25 4,42 6 10 696

P-n51-k10 50 10 715,29 3,47 10 715,32 3,47 5 10 741

P-n55-k7 54 7 532,79 6,20 7 532,83 6,19 11 7 568

P-n55-k10 54 10 657,50 5,26 10 657,52 5,26 8 10 694

P-n55-k15 54 15 929,20 6,05 15 928,65 6,10 2 15 989

P-n60-k10 59 10 702,43 5,59 10 702,49 5,58 11 10 744

P-n60-k15 59 15 939,66 2,93 15 939,69 2,92 7 15 968

P-n65-k10 64 10 754,96 4,68 10 755,00 4,67 13 10 792

P-n70-k10 69 10 782,36 5,40 10 782,47 5,38 15 10 827

P-n76-k4 75 4 547,20 7,72 4 547,27 7,71 62 4 593

P-n76-k5 75 5 576,33 8,08 5 576,46 8,06 47 5 627

P-n101-k4 100 4 630,16 7,47 4 628,14 7,76 130 4 681
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B.1 Computational results

Table B.10: Feasible solution values before and after tuning for ng-route pricing for instances A,

B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 784 0,00 5 784 0,00 5 784

A-n33-k5 32 5 661 0,00 5 661 0,00 5 661

A-n33-k6 32 6 742 0,00 6 742 0,00 6 742

A-n34-k5 33 5 778 0,00 5 778 0,00 5 778

A-n36-k5 35 5 807 1,00 5 812 1,63 5 799

A-n37-k5 36 5 669 0,00 5 669 0,00 5 669

A-n37-k6 36 6 949 0,00 6 949 0,00 6 949

A-n38-k5 37 5 730 0,00 5 731 0,14 5 730

A-n39-k5 38 5 825 0,36 5 822 0,00 5 822

A-n39-k6 38 6 833 0,24 6 831 0,00 6 831

A-n44-k6 43 6 937 0,00 6 937 0,00 6 937

A-n45-k6 44 6 960 1,69 6 955 1,17 6 944

A-n45-k7 44 7 1146 0,00 7 1146 0,00 7 1146

A-n46-k7 45 7 914 0,00 7 914 0,00 7 914

A-n48-k7 47 7 1081 0,75 7 1086 1,21 7 1073

A-n53-k7 52 7 1017 0,69 7 1015 0,50 7 1010

A-n54-k7 53 7 1172 0,43 7 1167 0,00 7 1167

A-n55-k9 54 9 1073 0,00 9 1073 0,00 9 1073

A-n60-k9 59 9 1358 0,30 9 1359 0,37 9 1354

A-n61-k9 60 9 1044 0,97 9 1035 0,10 9 1034

A-n62-k8 61 8 1300 0,93 8 1299 0,85 8 1288

A-n63-k9 62 9 1636 1,24 9 1632 0,99 9 1616

A-n63-k10 62 10 1320 0,46 10 1318 0,30 10 1314

A-n64-k9 63 9 1425 1,71 9 1417 1,14 9 1401

A-n65-k9 64 9 1178 0,34 9 1178 0,34 9 1174

A-n69-k9 68 9 1164 0,43 9 1164 0,43 9 1159

A-n80-k10 79 10 1783 1,13 10 1786 1,30 10 1763

B-n31-k5 30 5 672 0,00 5 672 0,00 5 672

B-n34-k5 33 5 788 0,00 5 788 0,00 5 788

B-n35-k5 34 5 955 0,00 5 955 0,00 5 955

B-n38-k6 37 6 806 0,12 6 805 0,00 6 805

B-n39-k5 38 5 549 0,00 5 549 0,00 5 549

B-n41-k6 40 6 829 0,00 6 829 0,00 6 829

B-n43-k6 42 6 745 0,40 6 745 0,40 6 742

- datum not available.
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B. CHAPTER 4

Table B.10: Feasible solution values before and after tuning for ng-route pricing for instances A,

B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n44-k7 43 7 909 0,00 7 909 0,00 7 909

B-n45-k5 44 5 751 0,00 5 751 0,00 5 751

B-n45-k6 44 6 691 1,92 6 683 0,74 6 678

B-n50-k7 49 7 741 0,00 7 741 0,00 7 741

B-n50-k8 49 8 1321 0,69 8 1320 0,61 8 1312

B-n51-k7 50 7 1033 0,10 7 1032 0,00 7 1032

B-n52-k7 51 7 747 0,00 7 748 0,13 7 747

B-n56-k7 55 7 707 0,00 7 707 0,00 7 707

B-n57-k7 56 7 1230 6,68 7 1189 3,12 7 1153

B-n57-k9 56 9 1610 0,75 9 1602 0,25 9 1598

B-n63-k10 62 10 1507 0,74 10 1524 1,87 10 1496

B-n64-k9 63 9 868 0,81 9 868 0,81 9 861

B-n66-k9 65 9 1322 0,46 9 1327 0,84 9 1316

B-n67-k10 66 10 1041 0,87 10 1043 1,07 10 1032

B-n68-k9 67 9 1283 0,86 9 1283 0,86 9 1272

B-n78-k10 77 10 1244 1,88 10 1230 0,74 10 1221

E-n22-k4 21 4 375 0,00 4 375 0,00 4 375

E-n23-k3 22 3 569 0,00 3 569 0,00 3 569

E-n30-k3 29 3 534 0,00 3 534 0,00 3 534

E-n33-k4 32 4 835 0,00 4 835 0,00 4 835

E-n51-k5 50 5 521 0,00 5 521 0,00 5 521

E-n76-k7 75 7 689 1,03 7 684 0,29 7 682

E-n76-k8 75 8 739 0,54 8 737 0,27 8 735

E-n76-k10 75 10 845 1,81 10 851 2,53 10 830

E-n76-k14 75 14 1036 1,47 14 1042 2,06 14 1021

E-n101-k8 100 8 824 1,10 8 822 0,86 8 815

E-n101-k14 100 14 1086 1,78 14 1086 1,78 14 1067

M-n101-k10 100 10 820 0,00 10 820 0,00 10 820

M-n121-k7 120 7 1036 0,19 7 1036 0,19 7 1034

M-n151-k12 150 12 1042 2,66 12 1042 2,66 12 1015

M-n200-k16 199 16 1473 15,62 16 1481 16,25 16 1274

M-n200-k17 199 16 1602 25,65 16 1515 18,82 17 1275

P-n20-k2 19 2 216 0,00 2 216 0,00 2 216

P-n21-k2 20 2 211 0,00 2 211 0,00 2 211

P-n22-k2 21 2 216 0,00 2 216 0,00 2 216

- datum not available.
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B.1 Computational results

Table B.10: Feasible solution values before and after tuning for ng-route pricing for instances A,

B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n22-k8 21 8 603 0,00 8 603 0,00 8 603

P-n23-k8 22 8 529 0,00 8 529 0,00 8 529

P-n40-k5 39 5 458 0,00 5 458 0,00 5 458

P-n45-k5 44 5 510 0,00 5 510 0,00 5 510

P-n50-k7 49 7 554 0,00 7 554 0,00 7 554

P-n50-k8 49 8 646 2,38 8 650 3,01 8 631

P-n50-k10 49 10 697 0,14 10 697 0,14 10 696

P-n51-k10 50 10 743 0,27 10 741 0,00 10 741

P-n55-k7 54 7 572 0,70 7 572 0,70 7 568

P-n55-k10 54 10 698 0,58 10 700 0,86 10 694

P-n55-k15 54 - - - - - - 15 989

P-n60-k10 59 10 747 0,40 10 744 0,00 10 744

P-n60-k15 59 15 968 0,00 15 974 0,62 15 968

P-n65-k10 64 10 803 1,39 10 801 1,14 10 792

P-n70-k10 69 10 843 1,93 10 843 1,93 10 827

P-n76-k4 75 4 600 1,18 4 599 1,01 4 593

P-n76-k5 75 5 632 0,80 5 632 0,80 5 627

P-n101-k4 100 4 684 0,44 4 681 0,00 4 681

- datum not available.
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B. CHAPTER 4

Table B.11: Feasible solution values before and after tuning for (q, i)-route pricing for instances

A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 784 0,00 5 784 0,00 5 784

A-n33-k5 32 5 661 0,00 5 661 0,00 5 661

A-n33-k6 32 6 742 0,00 6 742 0,00 6 742

A-n34-k5 33 5 778 0,00 5 778 0,00 5 778

A-n36-k5 35 5 807 1,00 5 799 0,00 5 799

A-n37-k5 36 5 669 0,00 5 669 0,00 5 669

A-n37-k6 36 6 949 0,00 6 949 0,00 6 949

A-n38-k5 37 5 730 0,00 5 730 0,00 5 730

A-n39-k5 38 5 823 0,12 5 822 0,00 5 822

A-n39-k6 38 6 833 0,24 6 833 0,24 6 831

A-n44-k6 43 6 937 0,00 6 939 0,21 6 937

A-n45-k6 44 6 955 1,17 6 955 1,17 6 944

A-n45-k7 44 7 1146 0,00 7 1146 0,00 7 1146

A-n46-k7 45 7 914 0,00 7 914 0,00 7 914

A-n48-k7 47 7 1073 0,00 7 1073 0,00 7 1073

A-n53-k7 52 7 1010 0,00 7 1017 0,69 7 1010

A-n54-k7 53 7 1174 0,60 7 1174 0,60 7 1167

A-n55-k9 54 9 1073 0,00 9 1073 0,00 9 1073

A-n60-k9 59 9 1358 0,30 9 1358 0,30 9 1354

A-n61-k9 60 9 1041 0,68 9 1037 0,29 9 1034

A-n62-k8 61 8 1302 1,09 8 1310 1,71 8 1288

A-n63-k9 62 9 1636 1,24 9 1629 0,80 9 1616

A-n63-k10 62 10 1326 0,91 10 1319 0,38 10 1314

A-n64-k9 63 9 1416 1,07 9 1425 1,71 9 1401

A-n65-k9 64 9 1178 0,34 9 1184 0,85 9 1174

A-n69-k9 68 9 1167 0,69 9 1167 0,69 9 1159

A-n80-k10 79 10 1804 2,33 10 1801 2,16 10 1763

B-n31-k5 30 5 672 0,00 5 672 0,00 5 672

B-n34-k5 33 5 788 0,00 5 788 0,00 5 788

B-n35-k5 34 5 955 0,00 5 955 0,00 5 955

B-n38-k6 37 6 805 0,00 6 805 0,00 6 805

B-n39-k5 38 5 549 0,00 5 549 0,00 5 549

B-n41-k6 40 6 829 0,00 6 829 0,00 6 829

B-n43-k6 42 6 742 0,00 6 744 0,27 6 742

- datum not available.
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B.1 Computational results

Table B.11: Feasible solution values before and after tuning for (q, i)-route pricing for instances

A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n44-k7 43 7 909 0,00 7 909 0,00 7 909

B-n45-k5 44 5 752 0,13 5 756 0,67 5 751

B-n45-k6 44 6 692 2,06 6 694 2,36 6 678

B-n50-k7 49 7 741 0,00 7 741 0,00 7 741

B-n50-k8 49 8 1322 0,76 8 1324 0,91 8 1312

B-n51-k7 50 7 1035 0,29 7 1032 0,00 7 1032

B-n52-k7 51 7 748 0,13 7 748 0,13 7 747

B-n56-k7 55 7 707 0,00 7 707 0,00 7 707

B-n57-k7 56 7 1202 4,25 7 1210 4,94 7 1153

B-n57-k9 56 9 1606 0,50 9 1603 0,31 9 1598

B-n63-k10 62 10 1512 1,07 10 1510 0,94 10 1496

B-n64-k9 63 9 874 1,51 9 868 0,81 9 861

B-n66-k9 65 9 1320 0,30 9 1320 0,30 9 1316

B-n67-k10 66 10 1049 1,65 10 1058 2,52 10 1032

B-n68-k9 67 9 1285 1,02 9 1289 1,34 9 1272

B-n78-k10 77 10 1227 0,49 10 1227 0,49 10 1221

E-n22-k4 21 4 375 0,00 4 375 0,00 4 375

E-n23-k3 22 3 569 0,00 3 569 0,00 3 569

E-n30-k3 29 3 534 0,00 3 534 0,00 3 534

E-n33-k4 32 4 835 0,00 4 835 0,00 4 835

E-n51-k5 50 5 521 0,00 5 521 0,00 5 521

E-n76-k7 75 7 691 1,32 7 689 1,03 7 682

E-n76-k8 75 8 739 0,54 8 738 0,41 8 735

E-n76-k10 75 10 848 2,17 10 842 1,45 10 830

E-n76-k14 75 14 1043 2,15 14 1045 2,35 14 1021

E-n101-k8 100 8 823 0,98 8 826 1,35 8 815

E-n101-k14 100 14 1085 1,69 14 1086 1,78 14 1067

M-n101-k10 100 10 820 0,00 10 820 0,00 10 820

M-n121-k7 120 7 1043 0,87 7 1044 0,97 7 1034

M-n151-k12 150 12 1044 2,86 12 1046 3,05 12 1015

M-n200-k16 199 16 1533 20,33 16 1505 18,13 16 1274

M-n200-k17 199 16 1698 33,18 16 1571 23,22 17 1275

P-n20-k2 19 2 216 0,00 2 216 0,00 2 216

P-n21-k2 20 2 211 0,00 2 211 0,00 2 211

P-n22-k2 21 2 216 0,00 2 216 0,00 2 216

- datum not available.
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B. CHAPTER 4

Table B.11: Feasible solution values before and after tuning for (q, i)-route pricing for instances

A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n22-k8 21 8 603 0,00 8 603 0,00 8 603

P-n23-k8 22 8 529 0,00 8 529 0,00 8 529

P-n40-k5 39 5 458 0,00 5 458 0,00 5 458

P-n45-k5 44 5 510 0,00 5 510 0,00 5 510

P-n50-k7 49 7 554 0,00 7 554 0,00 7 554

P-n50-k8 49 8 646 2,38 8 647 2,54 8 631

P-n50-k10 49 10 700 0,57 10 702 0,86 10 696

P-n51-k10 50 10 745 0,54 10 741 0,00 10 741

P-n55-k7 54 7 575 1,23 7 571 0,53 7 568

P-n55-k10 54 10 698 0,58 10 698 0,58 10 694

P-n55-k15 54 - - - - - - 15 989

P-n60-k10 59 10 747 0,40 10 745 0,13 10 744

P-n60-k15 59 15 973 0,52 15 974 0,62 15 968

P-n65-k10 64 10 796 0,51 10 801 1,14 10 792

P-n70-k10 69 10 838 1,33 10 843 1,93 10 827

P-n76-k4 75 4 595 0,34 4 599 1,01 4 593

P-n76-k5 75 5 636 1,44 5 629 0,32 5 627

P-n101-k4 100 4 682 0,15 4 684 0,44 4 681

- datum not available.
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B.1 Computational results

Table B.12: Feasible solution values before and after tuning for (q, i)-route with 2-cycles pricing

for instances A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

A-n32-k5 31 5 784 0,00 5 784 0,00 5 784

A-n33-k5 32 5 661 0,00 5 661 0,00 5 661

A-n33-k6 32 6 742 0,00 6 742 0,00 6 742

A-n34-k5 33 5 778 0,00 5 778 0,00 5 778

A-n36-k5 35 5 807 1,00 5 799 0,00 5 799

A-n37-k5 36 5 669 0,00 5 669 0,00 5 669

A-n37-k6 36 6 949 0,00 6 952 0,32 6 949

A-n38-k5 37 5 730 0,00 5 730 0,00 5 730

A-n39-k5 38 5 823 0,12 5 826 0,49 5 822

A-n39-k6 38 6 833 0,24 6 833 0,24 6 831

A-n44-k6 43 6 942 0,53 6 942 0,53 6 937

A-n45-k6 44 6 999 5,83 6 977 3,50 6 944

A-n45-k7 44 7 1148 0,17 7 1146 0,00 7 1146

A-n46-k7 45 7 917 0,33 7 914 0,00 7 914

A-n48-k7 47 7 1084 1,03 7 1073 0,00 7 1073

A-n53-k7 52 7 1020 0,99 7 1017 0,69 7 1010

A-n54-k7 53 7 1172 0,43 7 1174 0,60 7 1167

A-n55-k9 54 9 1073 0,00 9 1074 0,09 9 1073

A-n60-k9 59 9 1359 0,37 9 1354 0,00 9 1354

A-n61-k9 60 9 1057 2,22 9 1063 2,80 9 1034

A-n62-k8 61 8 1314 2,02 8 1314 2,02 8 1288

A-n63-k9 62 9 1644 1,73 9 1631 0,93 9 1616

A-n63-k10 62 10 1323 0,68 10 1328 1,07 10 1314

A-n64-k9 63 9 1434 2,36 9 1428 1,93 9 1401

A-n65-k9 64 9 1186 1,02 9 1193 1,62 9 1174

A-n69-k9 68 9 1169 0,86 9 1167 0,69 9 1159

A-n80-k10 79 10 1813 2,84 10 1797 1,93 10 1763

B-n31-k5 30 5 672 0,00 5 672 0,00 5 672

B-n34-k5 33 5 788 0,00 5 788 0,00 5 788

B-n35-k5 34 5 955 0,00 5 955 0,00 5 955

B-n38-k6 37 6 805 0,00 6 806 0,12 6 805

B-n39-k5 38 5 549 0,00 5 549 0,00 5 549

B-n41-k6 40 6 832 0,36 6 830 0,12 6 829

B-n43-k6 42 6 742 0,00 6 742 0,00 6 742

- datum not available.
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B. CHAPTER 4

Table B.12: Feasible solution values before and after tuning for (q, i)-route with 2-cycles pricing

for instances A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

B-n44-k7 43 7 909 0,00 7 909 0,00 7 909

B-n45-k5 44 5 751 0,00 5 756 0,67 5 751

B-n45-k6 44 6 691 1,92 6 691 1,92 6 678

B-n50-k7 49 7 741 0,00 7 741 0,00 7 741

B-n50-k8 49 8 1317 0,38 8 1325 0,99 8 1312

B-n51-k7 50 7 1034 0,19 7 1034 0,19 7 1032

B-n52-k7 51 7 749 0,27 7 748 0,13 7 747

B-n56-k7 55 7 711 0,57 7 709 0,28 7 707

B-n57-k7 56 7 1153 0,00 7 1232 6,85 7 1153

B-n57-k9 56 9 1601 0,19 9 1604 0,38 9 1598

B-n63-k10 62 10 1531 2,34 10 1514 1,20 10 1496

B-n64-k9 63 9 880 2,21 9 867 0,70 9 861

B-n66-k9 65 9 1334 1,37 9 1329 0,99 9 1316

B-n67-k10 66 10 1039 0,68 10 1054 2,13 10 1032

B-n68-k9 67 9 1287 1,18 9 1290 1,42 9 1272

B-n78-k10 77 10 1248 2,21 10 1237 1,31 10 1221

E-n22-k4 21 4 375 0,00 4 375 0,00 4 375

E-n23-k3 22 3 569 0,00 3 569 0,00 3 569

E-n30-k3 29 3 537 0,56 3 534 0,00 3 534

E-n33-k4 32 4 835 0,00 4 835 0,00 4 835

E-n51-k5 50 5 526 0,96 5 525 0,77 5 521

E-n76-k7 75 7 689 1,03 7 692 1,47 7 682

E-n76-k8 75 8 740 0,68 8 741 0,82 8 735

E-n76-k10 75 10 855 3,01 10 857 3,25 10 830

E-n76-k14 75 14 1042 2,06 14 1051 2,94 14 1021

E-n101-k8 100 8 824 1,10 8 826 1,35 8 815

E-n101-k14 100 14 1083 1,50 14 1096 2,72 14 1067

M-n101-k10 100 10 825 0,61 10 823 0,37 10 820

M-n121-k7 120 7 1108 7,16 7 1091 5,51 7 1034

M-n151-k12 150 12 1052 3,65 12 1057 4,14 12 1015

M-n200-k16 199 16 1596 25,27 16 1589 24,73 16 1274

M-n200-k17 199 16 1715 34,51 16 1705 33,73 17 1275

P-n20-k2 19 2 216 0,00 2 216 0,00 2 216

P-n21-k2 20 2 211 0,00 2 211 0,00 2 211

P-n22-k2 21 2 216 0,00 2 216 0,00 2 216

- datum not available.
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B.1 Computational results

Table B.12: Feasible solution values before and after tuning for (q, i)-route with 2-cycles pricing

for instances A, B, P, E, M

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

P-n22-k8 21 8 603 0,00 8 603 0,00 8 603

P-n23-k8 22 8 529 0,00 8 529 0,00 8 529

P-n40-k5 39 5 458 0,00 5 458 0,00 5 458

P-n45-k5 44 5 510 0,00 5 510 0,00 5 510

P-n50-k7 49 7 557 0,54 7 556 0,36 7 554

P-n50-k8 49 8 707 12,04 8 694 9,98 8 631

P-n50-k10 49 10 701 0,72 10 702 0,86 10 696

P-n51-k10 50 10 746 0,67 10 745 0,54 10 741

P-n55-k7 54 7 575 1,23 7 571 0,53 7 568

P-n55-k10 54 10 699 0,72 10 700 0,86 10 694

P-n55-k15 54 - - - - - - 15 989

P-n60-k10 59 10 745 0,13 10 747 0,40 10 744

P-n60-k15 59 15 977 0,93 15 975 0,72 15 968

P-n65-k10 64 10 799 0,88 10 805 1,64 10 792

P-n70-k10 69 10 853 3,14 10 844 2,06 10 827

P-n76-k4 75 4 596 0,51 4 600 1,18 4 593

P-n76-k5 75 5 637 1,59 5 638 1,75 5 627

P-n101-k4 100 4 683 0,29 4 685 0,59 4 681

- datum not available.
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Table B.13: Valid lower bounds before and after tuning for ng-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 13 10 828,94

C102 100 10 821,93 0,85 10 821,93 0,85 43 10 828,94

C103 100 10 815,44 1,52 10 815,44 1,52 147 10 828,06

C104 100 10 803,16 2,62 10 803,16 2,62 531 10 824,78

C105 100 10 822,84 0,74 10 822,84 0,74 18 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 19 10 828,94

C107 100 10 820,61 1,00 10 820,61 1,00 24 10 828,94

C108 100 10 820,61 1,00 10 820,61 1,00 38 10 828,94

C109 100 10 820,13 1,06 10 820,13 1,06 123 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 54 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 241 3 591,56

C203 100 3 591,17 0,00 3 591,17 0,00 1041 3 591,17

C204 100 3 590,60 0,00 3 590,60 0,00 2155 3 590,60

C205 100 3 588,88 0,00 3 588,88 0,00 50 3 588,88

C206 100 3 588,49 0,00 3 586,93 0,27 76 3 588,49

C207 100 3 588,29 0,00 3 588,29 0,00 280 3 588,29

C208 100 3 588,32 0,00 3 588,32 0,00 289 3 588,32

R101 100 19 1609,46 2,50 19 1609,58 2,50 3 19 1650,80

R102 100 17 1439,10 3,16 17 1439,10 3,16 8 17 1486,12

R103 100 13 1244,51 3,73 13 1253,20 3,05 56 13 1292,68

R104 100 9 984,30 2,28 9 984,60 2,25 86 9 1007,31

R105 100 14 1354,69 1,63 14 1354,68 1,63 11 14 1377,11

R106 100 12 1235,97 1,28 12 1236,01 1,28 28 12 1252,03

R107 100 10 1077,12 2,49 10 1076,60 2,54 50 10 1104,66

R108 100 9 925,68 3,66 9 925,67 3,66 94 9 960,88

R109 100 11 1148,08 3,90 11 1148,31 3,89 17 11 1194,73

R110 100 10 1077,12 3,73 10 1077,04 3,74 37 10 1118,84

R111 100 10 1061,38 3,22 10 1061,24 3,24 41 10 1096,72

R112 100 9 937,42 4,55 9 937,37 4,56 65 9 982,14

R201 100 4 1205,49 3,74 4 1210,78 3,32 143 4 1252,37

R202 100 3 1087,46 8,75 3 1059,22 11,12 339 3 1191,70

R203 100 3 828,92 11,77 3 837,63 10,84 565 3 939,50

R204 100 2 701,40 15,04 2 711,99 13,75 1247 2 825,52

R205 100 3 913,04 8,18 3 927,99 6,68 467 3 994,42

R206 100 3 822,64 9,21 3 825,73 8,87 783 3 906,14
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B.1 Computational results

Table B.13: Valid lower bounds before and after tuning for ng-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R207 100 2 765,39 14,06 2 776,28 12,84 1851 2 890,61

R208 100 2 635,33 12,59 2 659,62 9,25 2351 2 726,82

R209 100 3 840,45 7,56 3 822,50 9,53 498 3 909,16

R210 100 3 839,14 10,67 3 857,60 8,70 774 3 939,37

R211 100 2 788,50 10,98 2 766,53 13,46 1172 2 885,71

RC101 100 14 1588,60 6,38 14 1588,45 6,39 7 14 1696,94

RC102 100 12 1418,00 8,80 12 1418,20 8,78 17 12 1554,75

RC103 100 11 1219,47 3,34 11 1219,59 3,34 43 11 1261,67

RC104 100 10 1076,62 5,18 10 1076,65 5,18 60 10 1135,48

RC105 100 13 1510,68 7,29 13 1508,88 7,40 16 13 1629,44

RC106 100 11 1347,65 5,41 11 1348,00 5,39 16 11 1424,73

RC107 100 11 1170,40 4,88 11 1170,41 4,88 29 11 1230,48

RC108 100 10 1059,65 7,03 10 1059,69 7,03 53 10 1139,82

RC201 100 4 1354,77 3,71 4 1354,98 3,69 104 4 1406,94

RC202 100 3 1237,00 9,42 3 1231,66 9,81 405 3 1365,65

RC203 100 3 909,78 13,32 3 921,59 12,20 1156 3 1049,62

RC204 100 3 762,17 4,54 3 752,20 5,79 1334 3 798,46

RC205 100 4 1217,35 6,19 4 1218,23 6,12 127 4 1297,65

RC206 100 3 1083,63 5,47 3 1083,61 5,47 148 3 1146,32

RC207 100 3 971,94 8,41 3 928,22 12,53 297 3 1061,14

RC208 100 3 776,68 6,21 3 775,96 6,30 420 3 828,14
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B. CHAPTER 4

Table B.14: Valid lower bounds before and after tuning for (t, i)-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 4 10 828,94

C102 100 10 821,93 0,85 10 821,93 0,85 8 10 828,94

C103 100 10 813,30 1,78 10 813,30 1,78 27 10 828,06

C104 100 10 797,54 3,30 10 797,53 3,30 46 10 824,78

C105 100 10 822,84 0,74 10 822,84 0,74 6 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 5 10 828,94

C107 100 10 820,61 1,00 10 820,61 1,00 6 10 828,94

C108 100 10 820,61 1,00 10 820,61 1,00 5 10 828,94

C109 100 10 805,43 2,84 10 805,50 2,83 24 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 18 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 41 3 591,56

C203 100 3 591,17 0,00 3 591,17 0,00 116 3 591,17

C204 100 3 580,51 1,71 3 590,54 0,01 502 3 590,60

C205 100 3 585,90 0,51 3 575,69 2,24 96 3 588,88

C206 100 3 584,36 0,70 3 587,70 0,13 130 3 588,49

C207 100 3 582,97 0,90 3 575,29 2,21 176 3 588,29

C208 100 3 556,39 5,43 3 583,61 0,80 158 3 588,32

R101 100 19 1609,43 2,51 19 1609,68 2,49 4 19 1650,80

R102 100 17 1439,10 3,16 17 1439,10 3,16 5 17 1486,12

R103 100 13 1245,50 3,65 13 1240,64 4,03 8 13 1292,68

R104 100 9 982,43 2,47 9 982,04 2,51 11 9 1007,31

R105 100 14 1354,69 1,63 14 1354,71 1,63 3 14 1377,11

R106 100 12 1235,84 1,29 12 1235,95 1,28 6 12 1252,03

R107 100 10 1075,54 2,64 10 1075,57 2,63 8 10 1104,66

R108 100 9 919,07 4,35 9 919,21 4,34 12 9 960,88

R109 100 11 1146,15 4,07 11 1146,64 4,03 4 11 1194,73

R110 100 10 1067,94 4,55 10 1068,27 4,52 7 10 1118,84

R111 100 10 1060,20 3,33 10 1060,53 3,30 8 10 1096,72

R112 100 9 930,78 5,23 9 930,78 5,23 7 9 982,14

R201 100 4 1146,72 8,44 4 1194,55 4,62 22 4 1252,37

R202 100 3 1014,16 14,90 3 1073,55 9,91 67 3 1191,70

R203 100 3 801,75 14,66 3 829,57 11,70 316 3 939,50

R204 100 2 656,90 20,43 2 695,71 15,72 424 2 825,52

R205 100 3 892,25 10,27 3 906,99 8,79 138 3 994,42

R206 100 3 800,33 11,68 3 814,82 10,08 230 3 906,14
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B.1 Computational results

Table B.14: Valid lower bounds before and after tuning for (t, i)-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R207 100 2 670,70 24,69 2 719,48 19,21 415 2 890,61

R208 100 2 629,17 13,44 2 639,04 12,08 430 2 726,82

R209 100 3 791,48 12,94 3 825,44 9,21 184 3 909,16

R210 100 3 820,93 12,61 3 835,63 11,04 238 3 939,37

R211 100 2 675,77 23,70 2 750,34 15,28 268 2 885,71

RC101 100 14 1588,50 6,39 14 1588,52 6,39 6 14 1696,94

RC102 100 12 1417,47 8,83 12 1417,68 8,82 12 12 1554,75

RC103 100 11 1213,91 3,79 11 1214,07 3,77 17 11 1261,67

RC104 100 10 1071,29 5,65 10 1071,42 5,64 23 10 1135,48

RC105 100 13 1503,31 7,74 13 1499,28 7,99 9 13 1629,44

RC106 100 11 1332,15 6,50 11 1331,58 6,54 10 11 1424,73

RC107 100 11 1155,53 6,09 11 1156,08 6,05 14 11 1230,48

RC108 100 10 1049,15 7,95 10 1049,28 7,94 15 10 1139,82

RC201 100 4 1319,94 6,18 4 1319,99 6,18 55 4 1406,94

RC202 100 3 1086,45 20,44 3 1079,59 20,95 161 3 1365,65

RC203 100 3 794,78 24,28 3 822,66 21,62 240 3 1049,62

RC204 100 3 684,57 14,26 3 683,04 14,46 256 3 798,46

RC205 100 4 1112,18 14,29 4 1101,53 15,11 96 4 1297,65

RC206 100 3 975,86 14,87 3 966,46 15,69 113 3 1146,32

RC207 100 3 846,15 20,26 3 878,17 17,24 167 3 1061,14

RC208 100 3 711,34 14,10 3 710,53 14,20 136 3 828,14
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B. CHAPTER 4

Table B.15: Valid lower bounds before and after tuning for (t, i)-route with 2-cycles pricing for

instances by Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 12 10 828,94

C102 100 10 821,93 0,85 10 821,93 0,85 26 10 828,94

C103 100 10 811,87 1,96 10 811,87 1,96 72 10 828,06

C104 100 10 793,60 3,78 10 793,70 3,77 145 10 824,78

C105 100 10 822,84 0,74 10 822,84 0,74 16 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 15 10 828,94

C107 100 10 820,61 1,00 10 820,61 1,00 19 10 828,94

C108 100 10 801,55 3,30 10 801,49 3,31 43 10 828,94

C109 100 10 778,77 6,05 10 778,77 6,05 57 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 43 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 107 3 591,56

C203 100 3 571,35 3,35 3 590,75 0,07 294 3 591,17

C204 100 3 586,11 0,76 3 581,42 1,55 568 3 590,60

C205 100 3 540,68 8,19 3 566,97 3,72 44 3 588,88

C206 100 3 564,81 4,02 3 570,73 3,02 58 3 588,49

C207 100 3 519,29 11,73 3 551,80 6,20 83 3 588,29

C208 100 3 527,24 10,38 3 549,47 6,60 102 3 588,32

R101 100 19 1609,43 2,51 19 1609,64 2,49 4 19 1650,80

R102 100 17 1439,10 3,16 17 1439,10 3,16 5 17 1486,12

R103 100 13 1236,91 4,31 13 1233,17 4,60 8 13 1292,68

R104 100 9 968,77 3,83 9 968,80 3,82 10 9 1007,31

R105 100 14 1349,53 2,00 14 1349,84 1,98 4 14 1377,11

R106 100 12 1222,14 2,39 12 1222,20 2,38 6 12 1252,03

R107 100 10 1051,96 4,77 10 1051,91 4,78 9 10 1104,66

R108 100 9 898,53 6,49 9 898,69 6,47 10 9 960,88

R109 100 11 1102,04 7,76 11 1102,24 7,74 5 11 1194,73

R110 100 10 1036,65 7,35 10 1036,78 7,33 7 10 1118,84

R111 100 10 1016,51 7,31 10 1016,63 7,30 7 10 1096,72

R112 100 9 891,59 9,22 9 891,73 9,21 8 9 982,14

R201 100 4 1061,25 15,26 4 1112,25 11,19 28 4 1252,37

R202 100 3 0,00 100,00 3 940,04 21,12 79 3 1191,70

R203 100 3 708,58 24,58 3 742,20 21,00 92 3 939,50

R204 100 2 596,86 27,70 2 622,62 24,58 283 2 825,52

R205 100 3 793,00 20,26 3 817,73 17,77 63 3 994,42

R206 100 3 735,65 18,81 3 723,37 20,17 80 3 906,14
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B.1 Computational results

Table B.15: Valid lower bounds before and after tuning for (t, i)-route with 2-cycles pricing for

instances by Solomon (200)

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R207 100 2 630,31 29,23 2 647,34 27,31 130 2 890,61

R208 100 2 598,54 17,65 2 589,10 18,95 148 2 726,82

R209 100 3 712,44 21,64 3 739,12 18,70 64 3 909,16

R210 100 3 703,71 25,09 3 730,65 22,22 75 3 939,37

R211 100 2 604,34 31,77 2 650,16 26,59 110 2 885,71

RC101 100 14 1566,22 7,70 14 1567,16 7,65 3 14 1696,94

RC102 100 12 1388,67 10,68 12 1388,86 10,67 4 12 1554,75

RC103 100 11 1162,60 7,85 11 1162,68 7,85 8 11 1261,67

RC104 100 10 1022,21 9,98 10 1022,23 9,97 8 10 1135,48

RC105 100 13 1472,80 9,61 13 1469,98 9,79 4 13 1629,44

RC106 100 11 1247,92 12,41 11 1248,38 12,38 5 11 1424,73

RC107 100 11 1093,10 11,16 11 1093,20 11,16 5 11 1230,48

RC108 100 10 1013,49 11,08 10 1013,67 11,07 7 10 1139,82

RC201 100 4 1113,46 20,86 4 1132,53 19,50 27 4 1406,94

RC202 100 3 862,37 36,85 3 911,05 33,29 61 3 1365,65

RC203 100 3 660,11 37,11 3 672,21 35,96 94 3 1049,62

RC204 100 3 575,69 27,90 3 585,18 26,71 112 3 798,46

RC205 100 4 925,46 28,68 4 947,59 26,98 31 4 1297,65

RC206 100 3 813,58 29,03 3 846,18 26,18 54 3 1146,32

RC207 100 3 732,11 31,01 3 767,59 27,66 68 3 1061,14

RC208 100 3 597,04 27,91 3 624,52 24,59 86 3 828,14
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B. CHAPTER 4

Table B.16: Valid lower bounds before and after tuning for ng-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2700,36 0,16 20 2700,36 0,16 27 20 2704,57

C1 2 2 200 18 2757,04 5,51 18 2758,20 5,47 336 18 2917,89

C1 2 3 200 18 2582,29 4,62 18 2582,37 4,62 1220 18 2707,35

C1 2 4 200 18 2424,44 8,28 18 2424,49 8,28 3667 18 2643,31

C1 2 5 200 20 2696,83 0,19 20 2696,83 0,19 45 20 2702,05

C1 2 6 200 20 2696,83 0,16 20 2696,83 0,16 62 20 2701,04

C1 2 7 200 20 2690,57 0,39 20 2690,57 0,39 102 20 2701,04

C1 2 8 200 19 2651,81 4,46 19 2652,54 4,43 212 19 2775,48

C1 2 9 200 18 2553,65 4,99 18 2553,64 4,99 503 18 2687,83

C1 2 10 200 18 2492,46 5,71 18 2492,65 5,71 1129 18 2643,51

C2 2 1 200 6 1928,79 0,14 6 1928,58 0,15 295 6 1931,44

C2 2 2 200 6 1853,29 0,53 6 1853,39 0,52 1893 6 1863,16

C2 2 3 200 6 1762,43 0,71 6 1762,41 0,71 15104 6 1775,08

C2 2 4 200 6 1539,96 9,60 6 1555,98 8,66 t.l. 6 1703,43

C2 2 5 200 6 1877,54 0,07 6 1877,54 0,07 501 6 1878,85

C2 2 6 200 6 1844,63 0,68 6 1844,67 0,68 1273 6 1857,35

C2 2 7 200 6 1845,63 0,21 6 1845,42 0,22 1506 6 1849,46

C2 2 8 200 6 1804,82 0,86 6 1805,13 0,85 1428 6 1820,53

C2 2 9 200 6 1806,31 1,30 6 1806,40 1,29 3154 6 1830,05

C2 2 10 200 6 1735,56 3,93 6 1737,32 3,83 4964 6 1806,58

R1 2 1 200 20 4719,89 1,34 20 4719,89 1,34 24 20 4784,11

R1 2 2 200 18 3914,25 3,11 18 3858,48 4,49 238 18 4039,86

R1 2 3 200 18 3184,55 5,84 18 3052,79 9,73 1291 18 3381,96

R1 2 4 200 18 2428,91 20,57 18 2384,92 22,01 3182 18 3057,81

R1 2 5 200 18 3957,01 3,67 18 3954,76 3,73 45 18 4107,86

R1 2 6 200 18 3339,20 6,81 18 3230,69 9,84 429 18 3583,14

R1 2 7 200 18 2792,20 11,36 18 2686,61 14,71 1454 18 3150,11

R1 2 8 200 18 2236,08 24,25 18 2230,53 24,44 3517 18 2951,99

R1 2 9 200 18 3550,45 5,59 18 3552,54 5,53 112 18 3760,58

R1 2 10 200 18 2854,14 13,54 18 2854,07 13,54 307 18 3301,18

R2 2 1 200 4 0,00 100,00 4 0,00 100,00 682 4 4483,16

R2 2 2 200 4 0,00 100,00 4 0,00 100,00 3880 4 3621,20

R2 2 3 200 4 0,00 100,00 4 0,00 100,00 18540 4 2880,62

R2 2 4 200 4 0,00 100,00 4 0,00 100,00 t.l. 4 1981,29

t.l. time limit exceeded
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B.1 Computational results

Table B.16: Valid lower bounds before and after tuning for ng-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 5 200 4 0,00 100,00 4 0,00 100,00 1555 4 3366,79

R2 2 6 200 4 0,00 100,00 4 0,00 100,00 5094 4 2913,03

R2 2 7 200 4 0,00 100,00 4 0,00 100,00 t.l. 4 2451,14

R2 2 8 200 4 0,00 100,00 4 0,00 100,00 t.l. 4 1849,87

R2 2 9 200 4 0,00 100,00 4 0,00 100,00 3311 4 3092,04

R2 2 10 200 4 0,00 100,00 4 0,00 100,00 3502 4 2654,97

RC1 2 1 200 18 3342,19 7,23 18 3342,37 7,23 35 18 3602,80

RC1 2 2 200 18 2975,61 8,42 18 2975,56 8,42 349 18 3249,05

RC1 2 3 200 18 2540,23 15,56 18 2517,19 16,33 1336 18 3008,33

RC1 2 4 200 18 1997,27 29,96 18 2054,50 27,95 3150 18 2851,68

RC1 2 5 200 18 3063,88 9,11 18 3063,84 9,11 110 18 3371,00

RC1 2 6 200 18 3031,34 8,83 18 3031,38 8,83 83 18 3324,80

RC1 2 7 200 18 2815,14 11,73 18 2804,55 12,06 371 18 3189,32

RC1 2 8 200 18 2541,76 17,58 18 2541,89 17,58 631 18 3083,93

RC1 2 9 200 18 2548,97 17,27 18 2547,52 17,32 670 18 3081,13

RC1 2 10 200 18 2356,75 21,45 18 2356,70 21,45 1102 18 3000,30

RC2 2 1 200 6 2823,30 8,91 6 2944,04 5,02 1088 6 3099,53

RC2 2 2 200 5 2259,17 20,04 5 0,00 100,00 6955 5 2825,24

RC2 2 3 200 4 0,00 100,00 4 0,00 100,00 21597 4 2601,87

RC2 2 4 200 4 0,00 100,00 4 0,00 100,00 t.l. 4 2038,56

RC2 2 5 200 4 0,00 100,00 4 2513,15 13,68 2860 4 2911,46

RC2 2 6 200 4 0,00 100,00 4 0,00 100,00 2873 4 2873,12

RC2 2 7 200 4 0,00 100,00 4 0,00 100,00 5280 4 2525,83

RC2 2 8 200 4 0,00 100,00 4 0,00 100,00 8203 4 2292,53

RC2 2 9 200 4 0,00 100,00 4 0,00 100,00 8764 4 2175,04

RC2 2 10 200 4 0,00 100,00 4 0,00 100,00 12812 4 2015,60

t.l. time limit exceeded
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B. CHAPTER 4

Table B.17: Valid lower bounds before and after tuning for (t, i)-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2700,35 0,16 20 2700,36 0,16 21 20 2704,57

C1 2 2 200 18 2751,58 5,70 18 2754,70 5,59 92 18 2917,89

C1 2 3 200 18 2572,50 4,98 18 2572,63 4,98 249 18 2707,35

C1 2 4 200 18 2380,53 9,94 18 2398,21 9,27 1017 18 2643,31

C1 2 5 200 20 2696,83 0,19 20 2696,83 0,19 69 20 2702,05

C1 2 6 200 20 2696,83 0,16 20 2696,83 0,16 73 20 2701,04

C1 2 7 200 20 2690,57 0,39 20 2690,57 0,39 106 20 2701,04

C1 2 8 200 19 2651,90 4,45 19 2652,34 4,44 117 19 2775,48

C1 2 9 200 18 2488,57 7,41 18 2488,66 7,41 239 18 2687,83

C1 2 10 200 18 2413,74 8,69 18 2413,08 8,72 239 18 2643,51

C2 2 1 200 6 1928,79 0,14 6 1929,33 0,11 57 6 1931,44

C2 2 2 200 6 1852,64 0,56 6 1851,48 0,63 701 6 1863,16

C2 2 3 200 6 1742,23 1,85 6 1738,44 2,06 1689 6 1775,08

C2 2 4 200 6 1541,59 9,50 6 1597,16 6,24 2440 6 1703,43

C2 2 5 200 6 1843,64 1,87 6 1831,89 2,50 481 6 1878,85

C2 2 6 200 6 1762,72 5,09 6 1741,12 6,26 471 6 1857,35

C2 2 7 200 6 1807,53 2,27 6 1806,91 2,30 574 6 1849,46

C2 2 8 200 6 1718,14 5,62 6 1710,87 6,02 947 6 1820,53

C2 2 9 200 6 0,00 100,00 6 1715,33 6,27 861 6 1830,05

C2 2 10 200 6 1603,85 11,22 6 1633,40 9,59 1356 6 1806,58

R1 2 1 200 20 4719,87 1,34 20 4719,89 1,34 45 20 4784,11

R1 2 2 200 18 3888,42 3,75 18 3856,77 4,53 221 18 4039,86

R1 2 3 200 18 3117,78 7,81 18 3101,25 8,30 572 18 3381,96

R1 2 4 200 18 2415,29 21,01 18 2393,90 21,71 695 18 3057,81

R1 2 5 200 18 3951,29 3,81 18 3948,81 3,87 72 18 4107,86

R1 2 6 200 18 3186,15 11,08 18 3235,85 9,69 293 18 3583,14

R1 2 7 200 18 2657,55 15,64 18 2728,47 13,38 226 18 3150,11

R1 2 8 200 18 2220,51 24,78 18 2207,07 25,23 265 18 2951,99

R1 2 9 200 18 3547,45 5,67 18 3545,91 5,71 38 18 3760,58

R1 2 10 200 18 2803,32 15,08 18 2798,70 15,22 77 18 3301,18

R2 2 1 200 4 3921,44 12,53 4 3990,68 10,99 420 4 4483,16

R2 2 2 200 4 0,00 100,00 4 0,00 100,00 1351 4 3621,20

R2 2 3 200 4 0,00 100,00 4 0,00 100,00 1958 4 2880,62

R2 2 4 200 4 0,00 100,00 4 0,00 100,00 3017 4 1981,29

R2 2 5 200 4 0,00 100,00 4 0,00 100,00 388 4 3366,79
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B.1 Computational results

Table B.17: Valid lower bounds before and after tuning for (t, i)-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 6 200 4 0,00 100,00 4 0,00 100,00 1616 4 2913,03

R2 2 7 200 4 0,00 100,00 4 0,00 100,00 2047 4 2451,14

R2 2 8 200 4 0,00 100,00 4 1466,00 20,75 3034 4 1849,87

R2 2 9 200 4 0,00 100,00 4 0,00 100,00 1195 4 3092,04

R2 2 10 200 4 0,00 100,00 4 0,00 100,00 1018 4 2654,97

RC1 2 1 200 18 3342,14 7,23 18 3342,22 7,23 46 18 3602,80

RC1 2 2 200 18 2972,86 8,50 18 2972,51 8,51 192 18 3249,05

RC1 2 3 200 18 2526,95 16,00 18 2483,64 17,44 382 18 3008,33

RC1 2 4 200 18 1873,05 34,32 18 2004,89 29,69 390 18 2851,68

RC1 2 5 200 18 3039,17 9,84 18 3037,25 9,90 90 18 3371,00

RC1 2 6 200 18 3006,55 9,57 18 3005,94 9,59 85 18 3324,80

RC1 2 7 200 18 2770,45 13,13 18 2778,12 12,89 77 18 3189,32

RC1 2 8 200 18 2401,98 22,11 18 2499,44 18,95 69 18 3083,93

RC1 2 9 200 18 2495,45 19,01 18 2490,06 19,18 65 18 3081,13

RC1 2 10 200 18 2315,30 22,83 18 2325,40 22,49 199 18 3000,30

RC2 2 1 200 6 2616,17 15,59 6 2608,56 15,84 428 6 3099,53

RC2 2 2 200 5 0,00 100,00 5 0,00 100,00 1295 5 2825,24

RC2 2 3 200 4 0,00 100,00 4 0,00 100,00 2382 4 2601,87

RC2 2 4 200 4 0,00 100,00 4 0,00 100,00 3241 4 2038,56

RC2 2 5 200 4 0,00 100,00 4 0,00 100,00 883 4 2911,46

RC2 2 6 200 4 0,00 100,00 4 0,00 100,00 834 4 2873,12

RC2 2 7 200 4 0,00 100,00 4 0,00 100,00 764 4 2525,83

RC2 2 8 200 4 0,00 100,00 4 0,00 100,00 1492 4 2292,53

RC2 2 9 200 4 0,00 100,00 4 0,00 100,00 1489 4 2175,04

RC2 2 10 200 4 0,00 100,00 4 0,00 100,00 1955 4 2015,60
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B. CHAPTER 4

Table B.18: Valid lower bounds before and after tuning for (t, i)-route with 2-cycles pricing for

instances by Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2700,36 0,16 20 2700,36 0,16 17 20 2704,57

C1 2 2 200 18 2753,35 5,64 18 2747,11 5,85 142 18 2917,89

C1 2 3 200 18 2566,93 5,19 18 2566,94 5,19 323 18 2707,35

C1 2 4 200 18 2377,68 10,05 18 2365,16 10,52 332 18 2643,31

C1 2 5 200 20 2696,83 0,19 20 2696,83 0,19 26 20 2702,05

C1 2 6 200 20 2696,83 0,16 20 2696,83 0,16 30 20 2701,04

C1 2 7 200 20 2690,57 0,39 20 2690,57 0,39 37 20 2701,04

C1 2 8 200 19 2564,41 7,60 19 2563,24 7,65 76 19 2775,48

C1 2 9 200 18 2438,03 9,29 18 2437,81 9,30 135 18 2687,83

C1 2 10 200 18 2341,25 11,43 18 2362,25 10,64 258 18 2643,51

C2 2 1 200 6 1928,79 0,14 6 1928,33 0,16 46 6 1931,44

C2 2 2 200 6 1849,73 0,72 6 1847,46 0,84 435 6 1863,16

C2 2 3 200 6 0,00 100,00 6 1679,76 5,37 1534 6 1775,08

C2 2 4 200 6 1492,67 12,37 6 1436,55 15,67 2072 6 1703,43

C2 2 5 200 6 0,00 100,00 6 1716,19 8,66 351 6 1878,85

C2 2 6 200 6 0,00 100,00 6 1611,93 13,21 412 6 1857,35

C2 2 7 200 6 0,00 100,00 6 0,00 100,00 554 6 1849,46

C2 2 8 200 6 0,00 100,00 6 1564,73 14,05 518 6 1820,53

C2 2 9 200 6 0,00 100,00 6 1522,66 16,80 770 6 1830,05

C2 2 10 200 6 0,00 100,00 6 0,00 100,00 796 6 1806,58

R1 2 1 200 20 4719,89 1,34 20 4719,89 1,34 16 20 4784,11

R1 2 2 200 18 3886,48 3,80 18 3913,12 3,14 86 18 4039,86

R1 2 3 200 18 2951,65 12,72 18 3037,56 10,18 227 18 3381,96

R1 2 4 200 18 2301,41 24,74 18 2342,11 23,41 328 18 3057,81

R1 2 5 200 18 3921,13 4,55 18 3920,25 4,57 26 18 4107,86

R1 2 6 200 18 3156,30 11,91 18 3114,83 13,07 107 18 3583,14

R1 2 7 200 18 2476,91 21,37 18 2560,86 18,71 197 18 3150,11

R1 2 8 200 18 0,00 100,00 18 1963,96 33,47 306 18 2951,99

R1 2 9 200 18 3390,72 9,84 18 3404,80 9,46 46 18 3760,58

R1 2 10 200 18 2518,01 23,72 18 2558,21 22,51 78 18 3301,18

R2 2 1 200 4 0,00 100,00 4 0,00 100,00 202 4 4483,16

R2 2 2 200 4 0,00 100,00 4 0,00 100,00 780 4 3621,20

R2 2 3 200 4 0,00 100,00 4 0,00 100,00 1350 4 2880,62

R2 2 4 200 4 0,00 100,00 4 0,00 100,00 2218 4 1981,29

R2 2 5 200 4 0,00 100,00 4 0,00 100,00 347 4 3366,79
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B.1 Computational results

Table B.18: Valid lower bounds before and after tuning for (t, i)-route with 2-cycles pricing for

instances by Gehring & Homberger

Instance n Before tuning After tuning Time(s) Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 6 200 4 0,00 100,00 4 0,00 100,00 896 4 2913,03

R2 2 7 200 4 0,00 100,00 4 703,67 71,29 1395 4 2451,14

R2 2 8 200 4 0,00 100,00 4 488,79 73,58 2116 4 1849,87

R2 2 9 200 4 0,00 100,00 4 0,00 100,00 693 4 3092,04

R2 2 10 200 4 0,00 100,00 4 0,00 100,00 613 4 2654,97

RC1 2 1 200 18 3286,44 8,78 18 3286,44 8,78 55 18 3602,80

RC1 2 2 200 18 2830,59 12,88 18 2778,89 14,47 209 18 3249,05

RC1 2 3 200 18 2267,75 24,62 18 2340,95 22,18 290 18 3008,33

RC1 2 4 200 18 1699,40 40,41 18 1834,93 35,65 339 18 2851,68

RC1 2 5 200 18 2949,48 12,50 18 2952,68 12,41 39 18 3371,00

RC1 2 6 200 18 2882,76 13,30 18 2894,00 12,96 98 18 3324,80

RC1 2 7 200 18 2651,16 16,87 18 2624,51 17,71 149 18 3189,32

RC1 2 8 200 18 2367,48 23,23 18 2354,85 23,64 134 18 3083,93

RC1 2 9 200 18 2328,00 24,44 18 2330,07 24,38 70 18 3081,13

RC1 2 10 200 18 2165,47 27,82 18 2131,43 28,96 76 18 3000,30

RC2 2 1 200 6 0,00 100,00 6 0,00 100,00 195 6 3099,53

RC2 2 2 200 5 0,00 100,00 5 0,00 100,00 758 5 2825,24

RC2 2 3 200 4 0,00 100,00 4 0,00 100,00 1944 4 2601,87

RC2 2 4 200 4 0,00 100,00 4 0,00 100,00 1818 4 2038,56

RC2 2 5 200 4 0,00 100,00 4 0,00 100,00 609 4 2911,46

RC2 2 6 200 4 0,00 100,00 4 0,00 100,00 345 4 2873,12

RC2 2 7 200 4 0,00 100,00 4 0,00 100,00 476 4 2525,83

RC2 2 8 200 4 0,00 100,00 4 0,00 100,00 856 4 2292,53

RC2 2 9 200 4 0,00 100,00 4 0,00 100,00 877 4 2175,04

RC2 2 10 200 4 0,00 100,00 4 0,00 100,00 984 4 2015,60
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Table B.19: Feasible solution values before and after tuning for ng-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C102 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C103 100 10 828,06 0,00 10 828,06 0,00 10 828,06

C104 100 10 824,78 0,00 10 824,78 0,00 10 824,78

C105 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C107 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C108 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C109 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C203 100 3 591,17 0,00 3 591,17 0,00 3 591,17

C204 100 3 590,60 0,00 3 590,60 0,00 3 590,60

C205 100 3 588,88 0,00 3 588,88 0,00 3 588,88

C206 100 3 588,49 0,00 3 588,49 0,00 3 588,49

C207 100 3 588,29 0,00 3 588,29 0,00 3 588,29

C208 100 3 588,32 0,00 3 588,32 0,00 3 588,32

R101 100 19 1673,31 1,36 19 1673,31 1,36 19 1650,80

R102 100 17 1528,76 2,87 17 1528,76 2,87 17 1486,12

R103 100 - - - - - - 13 1292,68

R104 100 - - - - - - 9 1007,31

R105 100 14 1445,47 4,96 14 1445,47 4,96 14 1377,11

R106 100 - - - 12 1273,91 1,75 12 1252,03

R107 100 - - - - - - 10 1104,66

R108 100 - - - - - - 9 960,88

R109 100 - - - - - - 11 1194,73

R110 100 - - - - - - 10 1118,84

R111 100 - - - - - - 10 1096,72

R112 100 - - - - - - 9 982,14

R201 100 4 1268,29 1,27 4 1266,69 1,14 4 1252,37

R202 100 - - - - - - 3 1191,70

R203 100 3 960,26 2,21 3 982,12 4,54 3 939,50

R204 100 - - - - - - 2 825,52

R205 100 3 1019,21 2,49 3 1038,72 4,45 3 994,42

- datum not available.
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Table B.19: Feasible solution values before and after tuning for ng-route pricing for instances by

Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R206 100 3 925,58 2,15 3 926,33 2,23 3 906,14

R207 100 - - - - - - 2 890,61

R208 100 2 732,19 0,74 2 932,79 28,34 2 726,82

R209 100 3 962,99 5,92 3 926,86 1,95 3 909,16

R210 100 3 994,63 5,88 3 998,41 6,29 3 939,37

R211 100 - - - - - - 2 885,71

RC101 100 - - - - - - 14 1696,94

RC102 100 - - - - - - 12 1554,75

RC103 100 11 1434,11 13,67 11 1387,63 9,98 11 1261,67

RC104 100 - - - 10 1184,65 4,33 10 1135,48

RC105 100 - - - - - - 13 1629,44

RC106 100 - - - - - - 11 1424,73

RC107 100 11 1455,97 18,33 11 1455,97 18,33 11 1230,48

RC108 100 - - - - - - 10 1139,82

RC201 100 4 1436,41 2,09 4 1477,29 5,00 4 1406,94

RC202 100 3 1727,05 26,46 3 1727,05 26,46 3 1365,65

RC203 100 3 1133,07 7,95 3 1146,63 9,24 3 1049,62

RC204 100 3 807,95 1,19 3 809,74 1,41 3 798,46

RC205 100 4 1370,11 5,58 4 1353,49 4,30 4 1297,65

RC206 100 3 1511,94 31,90 3 1453,14 26,77 3 1146,32

RC207 100 3 1398,19 31,76 3 1362,08 28,36 3 1061,14

RC208 100 3 845,80 2,13 3 850,70 2,72 3 828,14

- datum not available.

167



B. CHAPTER 4

Table B.20: Feasible solution values before and after tuning for (t, i)-route pricing for instances

by Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C102 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C103 100 10 828,06 0,00 10 828,06 0,00 10 828,06

C104 100 10 824,78 0,00 10 824,78 0,00 10 824,78

C105 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C107 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C108 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C109 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C203 100 3 591,17 0,00 3 591,17 0,00 3 591,17

C204 100 3 590,60 0,00 3 590,60 0,00 3 590,60

C205 100 3 588,88 0,00 3 588,88 0,00 3 588,88

C206 100 3 588,49 0,00 3 588,50 0,00 3 588,49

C207 100 3 588,29 0,00 3 588,29 0,00 3 588,29

C208 100 3 588,32 0,00 3 588,32 0,00 3 588,32

R101 100 19 1673,31 1,36 19 1673,31 1,36 19 1650,80

R102 100 17 1528,76 2,87 17 1528,76 2,87 17 1486,12

R103 100 - - - - - - 13 1292,68

R104 100 - - - - - - 9 1007,31

R105 100 14 1445,47 4,96 14 1445,47 4,96 14 1377,11

R106 100 12 1274,12 1,76 - - - 12 1252,03

R107 100 - - - - - - 10 1104,66

R108 100 - - - - - - 9 960,88

R109 100 - - - - - - 11 1194,73

R110 100 - - - - - - 10 1118,84

R111 100 - - - - - - 10 1096,72

R112 100 - - - - - - 9 982,14

R201 100 4 1278,94 2,12 4 1295,96 3,48 4 1252,37

R202 100 - - - - - - 3 1191,70

R203 100 3 967,68 3,00 3 1031,03 9,74 3 939,50

R204 100 - - - - - - 2 825,52

R205 100 3 1034,63 4,04 3 1086,55 9,26 3 994,42

- datum not available.
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Table B.20: Feasible solution values before and after tuning for (t, i)-route pricing for instances

by Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R206 100 3 942,26 3,99 3 936,71 3,37 3 906,14

R207 100 - - - - - - 2 890,61

R208 100 2 791,64 8,92 2 932,79 28,34 2 726,82

R209 100 3 974,22 7,16 3 920,07 1,20 3 909,16

R210 100 3 989,56 5,34 3 1008,48 7,36 3 939,37

R211 100 - - - - - - 2 885,71

RC101 100 - - - - - - 14 1696,94

RC102 100 - - - - - - 12 1554,75

RC103 100 11 1434,11 13,67 11 1434,11 13,67 11 1261,67

RC104 100 - - - - - - 10 1135,48

RC105 100 - - - - - - 13 1629,44

RC106 100 - - - - - - 11 1424,73

RC107 100 11 1455,97 18,33 11 1455,97 18,33 11 1230,48

RC108 100 - - - - - - 10 1139,82

RC201 100 4 1569,18 11,53 4 1499,97 6,61 4 1406,94

RC202 100 3 1727,05 26,46 3 1727,05 26,46 3 1365,65

RC203 100 3 1223,47 16,56 3 1223,47 16,56 3 1049,62

RC204 100 3 815,01 2,07 3 806,21 0,97 3 798,46

RC205 100 4 1670,51 28,73 4 1374,37 5,91 4 1297,65

RC206 100 3 1511,94 31,90 3 1511,94 31,90 3 1146,32

RC207 100 3 1398,19 31,76 3 1398,19 31,76 3 1061,14

RC208 100 3 847,56 2,35 3 863,83 4,31 3 828,14

- datum not available.
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Table B.21: Feasible solution values before and after tuning for (t, i)-route with 2-cycles pricing

for instances by Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C101 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C102 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C103 100 10 828,06 0,00 10 828,06 0,00 10 828,06

C104 100 10 824,78 0,00 10 826,37 0,19 10 824,78

C105 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C106 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C107 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C108 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C109 100 10 828,94 0,00 10 828,94 0,00 10 828,94

C201 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C202 100 3 591,56 0,00 3 591,56 0,00 3 591,56

C203 100 3 591,17 0,00 3 591,17 0,00 3 591,17

C204 100 3 590,60 0,00 3 596,55 1,01 3 590,60

C205 100 3 588,88 0,00 3 588,88 0,00 3 588,88

C206 100 3 588,49 0,00 3 588,49 0,00 3 588,49

C207 100 3 588,29 0,00 3 588,29 0,00 3 588,29

C208 100 3 588,32 0,00 3 588,32 0,00 3 588,32

R101 100 19 1673,31 1,36 19 1673,31 1,36 19 1650,80

R102 100 17 1528,76 2,87 17 1528,76 2,87 17 1486,12

R103 100 - - - - - - 13 1292,68

R104 100 - - - - - - 9 1007,31

R105 100 14 1445,47 4,96 14 1445,47 4,96 14 1377,11

R106 100 12 1289,04 2,96 - - - 12 1252,03

R107 100 - - - - - - 10 1104,66

R108 100 - - - - - - 9 960,88

R109 100 - - - - - - 11 1194,73

R110 100 - - - - - - 10 1118,84

R111 100 - - - - - - 10 1096,72

R112 100 - - - - - - 9 982,14

R201 100 4 1303,97 4,12 4 1302,65 4,01 4 1252,37

R202 100 - - - - - - 3 1191,70

R203 100 3 983,94 4,73 3 985,68 4,92 3 939,50

R204 100 - - - - - - 2 825,52

R205 100 3 1133,52 13,99 3 1095,87 10,20 3 994,42

- datum not available.
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Table B.21: Feasible solution values before and after tuning for (t, i)-route with 2-cycles pricing

for instances by Solomon (200)

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R206 100 3 967,01 6,72 3 976,22 7,73 3 906,14

R207 100 - - - - - - 2 890,61

R208 100 2 932,79 28,34 2 921,87 26,84 2 726,82

R209 100 3 1017,46 11,91 3 957,17 5,28 3 909,16

R210 100 3 1041,37 10,86 3 1047,66 11,53 3 939,37

R211 100 - - - - - - 2 885,71

RC101 100 - - - - - - 14 1696,94

RC102 100 - - - - - - 12 1554,75

RC103 100 11 1434,11 13,67 11 1434,11 13,67 11 1261,67

RC104 100 - - - - - - 10 1135,48

RC105 100 - - - - - - 13 1629,44

RC106 100 - - - - - - 11 1424,73

RC107 100 11 1455,97 18,33 11 1455,97 18,33 11 1230,48

RC108 100 - - - - - - 10 1139,82

RC201 100 4 1596,02 13,44 4 1596,02 13,44 4 1406,94

RC202 100 3 1727,05 26,46 3 1663,57 21,82 3 1365,65

RC203 100 3 1223,47 16,56 3 1220,18 16,25 3 1049,62

RC204 100 3 840,45 5,26 3 824,68 3,28 3 798,46

RC205 100 4 1660,84 27,99 4 1660,84 27,99 4 1297,65

RC206 100 3 1511,94 31,90 3 1453,14 26,77 3 1146,32

RC207 100 3 1398,19 31,76 3 1362,08 28,36 3 1061,14

RC208 100 3 849,04 2,52 3 862,31 4,13 3 828,14

- datum not available.
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Table B.22: Feasible solution values before and after tuning for ng-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2704,57 0,00 20 2704,57 0,00 20 2704,57

C1 2 2 200 18 4047,23 38,70 18 4019,84 37,77 18 2917,89

C1 2 3 200 18 2908,57 7,43 18 2950,09 8,97 18 2707,35

C1 2 4 200 18 2759,76 4,41 18 2777,75 5,09 18 2643,31

C1 2 5 200 20 2987,55 10,57 20 2987,55 10,57 20 2702,05

C1 2 6 200 20 2704,36 0,12 20 2701,04 0,00 20 2701,04

C1 2 7 200 20 2701,35 0,01 20 3197,42 18,38 20 2701,04

C1 2 8 200 19 3117,98 12,34 19 3117,98 12,34 19 2775,48

C1 2 9 200 18 3392,24 26,21 18 3392,24 26,21 18 2687,83

C1 2 10 200 18 2939,84 11,21 18 2930,36 10,85 18 2643,51

C2 2 1 200 6 1931,44 0,00 6 1931,44 0,00 6 1931,44

C2 2 2 200 6 1863,16 0,00 6 1863,16 0,00 6 1863,16

C2 2 3 200 6 1785,11 0,57 6 1782,22 0,40 6 1775,08

C2 2 4 200 6 1776,38 4,28 6 1775,67 4,24 6 1703,43

C2 2 5 200 6 1878,85 0,00 6 1879,31 0,02 6 1878,85

C2 2 6 200 6 1857,35 0,00 6 1857,35 0,00 6 1857,35

C2 2 7 200 6 1849,46 0,00 6 1849,46 0,00 6 1849,46

C2 2 8 200 6 1834,35 0,76 6 1824,52 0,22 6 1820,53

C2 2 9 200 6 1839,96 0,54 6 1848,14 0,99 6 1830,05

C2 2 10 200 6 1816,29 0,54 6 1812,27 0,31 6 1806,58

R1 2 1 200 20 5361,99 12,08 20 5347,76 11,78 20 4784,11

R1 2 2 200 18 4988,98 23,49 18 4769,66 18,06 18 4039,86

R1 2 3 200 18 3824,39 13,08 18 3696,53 9,30 18 3381,96

R1 2 4 200 18 3319,79 8,57 18 3276,30 7,15 18 3057,81

R1 2 5 200 18 5024,61 22,32 18 4652,59 13,26 18 4107,86

R1 2 6 200 18 4209,84 17,49 18 4213,53 17,59 18 3583,14

R1 2 7 200 18 3444,44 9,34 18 3473,16 10,26 18 3150,11

R1 2 8 200 18 3202,46 8,48 18 3231,77 9,48 18 2951,99

R1 2 9 200 18 4273,37 13,64 18 4442,12 18,12 18 3760,58

R1 2 10 200 18 3715,72 12,56 18 3645,88 10,44 18 3301,18

R2 2 1 200 - - - - - - 4 4483,16

R2 2 2 200 4 4304,09 18,86 4 4304,09 18,86 4 3621,20

R2 2 3 200 4 3153,21 9,46 4 3559,55 23,57 4 2880,62

R2 2 4 200 4 2106,00 6,29 4 2046,10 3,27 4 1981,29

- datum not available.

172



B.1 Computational results

Table B.22: Feasible solution values before and after tuning for ng-route pricing for instances by

Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 5 200 4 3677,03 9,21 4 3811,66 13,21 4 3366,79

R2 2 6 200 4 3057,12 4,95 4 3129,14 7,42 4 2913,03

R2 2 7 200 4 2664,96 8,72 4 2589,16 5,63 4 2451,14

R2 2 8 200 4 1915,80 3,56 4 1954,10 5,63 4 1849,87

R2 2 9 200 4 3187,81 3,10 4 3256,57 5,32 4 3092,04

R2 2 10 200 4 2794,72 5,26 4 2794,50 5,26 4 2654,97

RC1 2 1 200 - - - - - - 18 3602,80

RC1 2 2 200 18 4848,85 49,24 18 4824,03 48,48 18 3249,05

RC1 2 3 200 18 3656,75 21,55 18 3653,30 21,44 18 3008,33

RC1 2 4 200 18 3248,65 13,92 18 3323,82 16,56 18 2851,68

RC1 2 5 200 18 4547,39 34,90 18 4547,39 34,90 18 3371,00

RC1 2 6 200 18 4106,07 23,50 18 4106,07 23,50 18 3324,80

RC1 2 7 200 18 4085,62 28,10 18 4085,62 28,10 18 3189,32

RC1 2 8 200 18 3602,97 16,83 18 3764,30 22,06 18 3083,93

RC1 2 9 200 18 3812,66 23,74 18 3701,26 20,13 18 3081,13

RC1 2 10 200 18 3616,50 20,54 18 3456,24 15,20 18 3000,30

RC2 2 1 200 6 3576,69 15,39 6 3576,69 15,39 6 3099,53

RC2 2 2 200 5 3458,12 22,40 5 3458,12 22,40 5 2825,24

RC2 2 3 200 4 3093,49 18,89 4 3093,49 18,89 4 2601,87

RC2 2 4 200 4 2607,69 27,92 4 2607,69 27,92 4 2038,56

RC2 2 5 200 - - - - - - 4 2911,46

RC2 2 6 200 - - - - - - 4 2873,12

RC2 2 7 200 4 3339,19 32,20 4 3339,19 32,20 4 2525,83

RC2 2 8 200 4 3060,08 33,48 4 3060,08 33,48 4 2292,53

RC2 2 9 200 4 2292,15 5,38 4 2321,25 6,72 4 2175,04

RC2 2 10 200 4 2053,56 1,88 4 2082,11 3,30 4 2015,60

- datum not available.

173



B. CHAPTER 4

Table B.23: Feasible solution values before and after tuning for (t, i)-route pricing for instances

by Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2704,57 0,00 20 2704,57 0,00 20 2704,57

C1 2 2 200 18 4047,24 38,70 18 4019,84 37,77 18 2917,89

C1 2 3 200 18 2941,13 8,64 18 2911,43 7,54 18 2707,35

C1 2 4 200 18 2829,49 7,04 18 2763,55 4,55 18 2643,31

C1 2 5 200 20 2703,85 0,07 20 2987,55 10,57 20 2702,05

C1 2 6 200 20 2703,85 0,10 20 2701,04 0,00 20 2701,04

C1 2 7 200 20 2701,35 0,01 20 3197,42 18,38 20 2701,04

C1 2 8 200 19 3230,78 16,40 19 3230,78 16,40 19 2775,48

C1 2 9 200 18 3427,62 27,52 18 3427,62 27,52 18 2687,83

C1 2 10 200 18 3529,79 33,53 18 2999,01 13,45 18 2643,51

C2 2 1 200 6 1931,44 0,00 6 1931,44 0,00 6 1931,44

C2 2 2 200 6 1863,16 0,00 6 1863,16 0,00 6 1863,16

C2 2 3 200 6 1787,46 0,70 6 1786,56 0,65 6 1775,08

C2 2 4 200 6 1788,56 5,00 6 1772,27 4,04 6 1703,43

C2 2 5 200 6 1879,31 0,02 6 1879,31 0,02 6 1878,85

C2 2 6 200 6 1858,59 0,07 6 1869,27 0,64 6 1857,35

C2 2 7 200 6 1874,00 1,33 6 1864,42 0,81 6 1849,46

C2 2 8 200 6 1852,52 1,76 6 1835,36 0,81 6 1820,53

C2 2 9 200 6 2352,25 28,53 6 2352,25 28,53 6 1830,05

C2 2 10 200 6 1816,22 0,53 6 1821,55 0,83 6 1806,58

R1 2 1 200 20 5347,76 11,78 20 5361,99 12,08 20 4784,11

R1 2 2 200 18 4769,66 18,06 18 4988,97 23,49 18 4039,86

R1 2 3 200 18 3764,71 11,32 18 3827,17 13,16 18 3381,96

R1 2 4 200 18 3280,96 7,30 18 3302,58 8,00 18 3057,81

R1 2 5 200 18 5024,61 22,32 18 5024,61 22,32 18 4107,86

R1 2 6 200 18 4174,28 16,50 18 4347,24 21,32 18 3583,14

R1 2 7 200 18 3528,80 12,02 18 3447,71 9,45 18 3150,11

R1 2 8 200 18 3203,04 8,50 18 3196,39 8,28 18 2951,99

R1 2 9 200 18 4494,69 19,52 18 4442,12 18,12 18 3760,58

R1 2 10 200 18 3732,25 13,06 18 3676,47 11,37 18 3301,18

R2 2 1 200 - - - - - - 4 4483,16

R2 2 2 200 4 4304,09 18,86 4 4304,09 18,86 4 3621,20

R2 2 3 200 4 3559,55 23,57 4 3559,55 23,57 4 2880,62

R2 2 4 200 4 2124,41 7,22 4 2183,38 10,20 4 1981,29

- datum not available.
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B.1 Computational results

Table B.23: Feasible solution values before and after tuning for (t, i)-route pricing for instances

by Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 5 200 4 3661,96 8,77 4 3624,07 7,64 4 3366,79

R2 2 6 200 4 3198,17 9,79 4 3026,45 3,89 4 2913,03

R2 2 7 200 4 2630,27 7,31 4 2668,86 8,88 4 2451,14

R2 2 8 200 4 1917,85 3,67 4 1905,11 2,99 4 1849,87

R2 2 9 200 4 3294,95 6,56 4 3301,49 6,77 4 3092,04

R2 2 10 200 4 2791,85 5,16 4 2809,83 5,83 4 2654,97

RC1 2 1 200 - - - - - - 18 3602,80

RC1 2 2 200 18 3925,33 20,81 18 4848,85 49,24 18 3249,05

RC1 2 3 200 18 3563,87 18,47 18 3760,65 25,01 18 3008,33

RC1 2 4 200 18 3293,96 15,51 18 3230,11 13,27 18 2851,68

RC1 2 5 200 18 4581,05 35,90 18 4581,05 35,90 18 3371,00

RC1 2 6 200 18 4205,97 26,50 18 4205,97 26,50 18 3324,80

RC1 2 7 200 18 4093,12 28,34 18 4093,12 28,34 18 3189,32

RC1 2 8 200 18 3764,30 22,06 18 3759,31 21,90 18 3083,93

RC1 2 9 200 18 3822,35 24,06 18 3812,66 23,74 18 3081,13

RC1 2 10 200 18 3442,20 14,73 18 3627,06 20,89 18 3000,30

RC2 2 1 200 6 3576,69 15,39 6 3576,69 15,39 6 3099,53

RC2 2 2 200 5 3458,12 22,40 5 3458,12 22,40 5 2825,24

RC2 2 3 200 4 3093,49 18,89 4 3093,49 18,89 4 2601,87

RC2 2 4 200 4 2607,69 27,92 4 2607,69 27,92 4 2038,56

RC2 2 5 200 - - - - - - 4 2911,46

RC2 2 6 200 - - - - - - 4 2873,12

RC2 2 7 200 4 3339,19 32,20 4 3339,19 32,20 4 2525,83

RC2 2 8 200 4 2608,55 13,78 4 2634,11 14,90 4 2292,53

RC2 2 9 200 4 2414,66 11,02 4 2296,14 5,57 4 2175,04

RC2 2 10 200 4 2097,58 4,07 4 2107,47 4,56 4 2015,60

- datum not available.
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B. CHAPTER 4

Table B.24: Feasible solution values before and after tuning for (t, i)-route with 2-cycles pricing

for instances by Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

C1 2 1 200 20 2704,57 0,00 20 2704,57 0,00 20 2704,57

C1 2 2 200 18 4047,24 38,70 18 4019,84 37,77 18 2917,89

C1 2 3 200 18 2891,20 6,79 18 2940,99 8,63 18 2707,35

C1 2 4 200 18 2787,27 5,45 18 2798,10 5,86 18 2643,31

C1 2 5 200 20 2703,85 0,07 20 2987,55 10,57 20 2702,05

C1 2 6 200 20 2701,04 0,00 20 2701,04 0,00 20 2701,04

C1 2 7 200 20 2701,35 0,01 20 2740,38 1,46 20 2701,04

C1 2 8 200 19 3230,78 16,40 19 3117,98 12,34 19 2775,48

C1 2 9 200 18 3427,62 27,52 18 3392,24 26,21 18 2687,83

C1 2 10 200 18 3529,79 33,53 18 3441,41 30,18 18 2643,51

C2 2 1 200 6 1931,44 0,00 6 1931,44 0,00 6 1931,44

C2 2 2 200 6 1863,16 0,00 6 1863,16 0,00 6 1863,16

C2 2 3 200 6 1832,00 3,21 6 1788,78 0,77 6 1775,08

C2 2 4 200 6 1796,35 5,45 6 1762,70 3,48 6 1703,43

C2 2 5 200 6 1894,56 0,84 6 2089,49 11,21 6 1878,85

C2 2 6 200 6 1972,56 6,20 6 1872,38 0,81 6 1857,35

C2 2 7 200 6 1904,63 2,98 6 1856,06 0,36 6 1849,46

C2 2 8 200 6 1969,42 8,18 6 1965,42 7,96 6 1820,53

C2 2 9 200 6 1930,72 5,50 6 1858,88 1,58 6 1830,05

C2 2 10 200 6 1830,22 1,31 6 1830,28 1,31 6 1806,58

R1 2 1 200 20 5361,99 12,08 20 5347,76 11,78 20 4784,11

R1 2 2 200 18 4988,98 23,49 18 4769,66 18,06 18 4039,86

R1 2 3 200 18 3897,42 15,24 18 3737,44 10,51 18 3381,96

R1 2 4 200 18 3286,83 7,49 18 3264,93 6,77 18 3057,81

R1 2 5 200 18 5024,61 22,32 18 4881,89 18,84 18 4107,86

R1 2 6 200 18 4347,24 21,32 18 4269,61 19,16 18 3583,14

R1 2 7 200 18 3479,22 10,45 18 3544,81 12,53 18 3150,11

R1 2 8 200 18 3185,71 7,92 18 3229,80 9,41 18 2951,99

R1 2 9 200 18 4442,12 18,12 18 4442,12 18,12 18 3760,58

R1 2 10 200 18 3781,51 14,55 18 3648,97 10,54 18 3301,18

R2 2 1 200 - - - - - - 4 4483,16

R2 2 2 200 4 4304,09 18,86 4 4304,09 18,86 4 3621,20

R2 2 3 200 4 3559,55 23,57 4 3559,55 23,57 4 2880,62

R2 2 4 200 4 2231,94 12,65 4 2140,27 8,02 4 1981,29

- datum not available.
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B.1 Computational results

Table B.24: Feasible solution values before and after tuning for (t, i)-route with 2-cycles pricing

for instances by Gehring & Homberger

Instance n Before tuning After tuning Best known

Veh. Dist. Gap(%) Veh. Dist. Gap(%) Veh. Dist.

R2 2 5 200 4 3574,26 6,16 4 3865,64 14,82 4 3366,79

R2 2 6 200 4 3926,62 34,80 4 3926,62 34,80 4 2913,03

R2 2 7 200 4 2677,67 9,24 4 2694,46 9,93 4 2451,14

R2 2 8 200 4 1960,71 5,99 4 1983,05 7,20 4 1849,87

R2 2 9 200 4 3201,73 3,55 4 3311,11 7,08 4 3092,04

R2 2 10 200 4 2805,80 5,68 4 2832,31 6,68 4 2654,97

RC1 2 1 200 - - - - - - 18 3602,80

RC1 2 2 200 18 4824,03 48,48 18 4848,85 49,24 18 3249,05

RC1 2 3 200 18 3559,72 18,33 18 3667,80 21,92 18 3008,33

RC1 2 4 200 18 3274,32 14,82 18 3254,28 14,12 18 2851,68

RC1 2 5 200 18 4547,39 34,90 18 4547,39 34,90 18 3371,00

RC1 2 6 200 18 4106,07 23,50 18 4106,07 23,50 18 3324,80

RC1 2 7 200 18 4085,62 28,10 18 4093,12 28,34 18 3189,32

RC1 2 8 200 18 3759,31 21,90 18 3764,30 22,06 18 3083,93

RC1 2 9 200 18 3813,68 23,78 18 3750,50 21,72 18 3081,13

RC1 2 10 200 18 3473,80 15,78 18 3615,58 20,51 18 3000,30

RC2 2 1 200 6 3576,69 15,39 6 3576,69 15,39 6 3099,53

RC2 2 2 200 5 3458,12 22,40 5 3458,12 22,40 5 2825,24

RC2 2 3 200 4 3093,49 18,89 4 3093,49 18,89 4 2601,87

RC2 2 4 200 4 2607,69 27,92 4 2607,69 27,92 4 2038,56

RC2 2 5 200 - - - - - - 4 2911,46

RC2 2 6 200 - - - - - - 4 2873,12

RC2 2 7 200 4 3339,19 32,20 4 3339,19 32,20 4 2525,83

RC2 2 8 200 4 3060,08 33,48 4 3060,08 33,48 4 2292,53

RC2 2 9 200 4 2407,24 10,68 4 2322,55 6,78 4 2175,04

RC2 2 10 200 4 2089,29 3,66 4 2125,08 5,43 4 2015,60

- datum not available.
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Table B.25: Feasible solution values before and after tuning for instances by Taillard

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

tai27e02 27 2850 0,00 2850 0,00 2850

tai27e04 27 2822 0,00 2822 0,00 2822

tai27e06 27 2814 0,00 2814 0,00 2814

tai27e08 27 2430 0,00 2430 0,00 2430

tai27e10 27 2994 0,00 2994 0,00 2994

tai27e12 27 3070 0,00 3070 0,00 3070

tai27e14 27 3568 0,00 3568 0,00 3568

tai27e16 27 3124 0,00 3124 0,00 3124

tai27e18 27 2862 3,77 2758 0,00 2758

tai27e20 27 2638 0,00 2638 0,00 2638

tai45e02 45 5734 0,00 5734 0,00 5734

tai45e04 45 7182 7,23 6698 0,00 6698

tai45e06 45 7112 7,56 6612 0,00 6612

tai45e08 45 6648 1,43 6554 0,00 6554

tai45e10 45 8286 0,00 8286 0,00 8286

tai45e12 45 7792 3,75 7510 0,00 7510

tai45e14 45 6854 0,00 6854 0,00 6854

tai45e16 45 6970 6,90 6520 0,00 6520

tai45e18 45 6906 0,00 6906 0,00 6906

tai45e20 45 6842 5,10 6510 0,00 6510

tai75e02 75 15796 9,36 15760 9,11 14444

tai75e04 75 16646 21,56 14420 5,30 13694

tai75e06 75 14978 19,50 13876 10,71 12534

tai75e08 75 15556 11,53 15824 13,45 13948

tai75e10 75 16326 15,04 15970 12,53 14192

tai75e12 75 14664 14,92 14478 13,46 12760

tai75e14 75 14634 16,11 13570 7,66 12604

tai75e16 75 14978 5,45 14498 2,07 14204

tai75e18 75 14712 8,98 15662 16,01 13500

tai75e20 75 15422 1,06 17352 13,71 15260

tai125e02 125 46462 26,34 42940 16,76 36776

tai125e04 125 41694 22,87 40136 18,28 33934

tai125e06 125 43774 23,15 41602 17,04 35546

tai125e08 125 45318 24,66 40458 11,29 36354

tai125e10 125 45926 31,60 44256 26,82 34898

tai125e12 125 38334 18,31 40198 24,06 32402
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B.1 Computational results

Table B.25: Feasible solution values before and after tuning for instances by Taillard

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

tai125e14 125 39688 29,92 36990 21,09 30548

tai125e16 125 40568 19,32 39316 15,64 33998

tai125e18 125 45634 15,24 48008 21,23 39600

tai125e20 125 36822 15,08 36702 14,71 31996

tai175e02 175 69530 35,10 67718 31,58 51464

tai175e04 175 77866 20,71 76768 19,01 64506

tai175e06 175 79668 42,86 71632 28,45 55768

tai175e08 175 71682 25,03 71776 25,19 57334

tai175e10 175 69982 34,48 61306 17,81 52040

tai175e12 175 77654 30,06 71600 19,92 59704

tai175e14 175 76618 37,47 67188 20,55 55736

tai175e16 175 75666 32,13 68910 20,33 57266

tai175e18 175 68774 31,87 59194 13,50 52152

tai175e20 175 72690 27,50 70434 23,54 57014

tai343e02 343 185840 20,66 184058 19,50 154018

tai343e04 343 196150 21,01 190310 17,41 162092

tai343e06 343 184664 28,00 175638 21,74 144274

tai343e08 343 171360 28,10 162628 21,57 133770

tai343e10 343 188398 23,27 180392 18,04 152828

tai343e12 343 188482 15,67 190128 16,68 162954

tai343e14 343 182510 21,33 178848 18,89 150428

tai343e16 343 182430 18,26 182702 18,43 154264

tai343e18 343 172428 26,14 170722 24,89 136694

tai343e20 343 191670 26,47 179040 18,14 151552

tai729e01 729 543394 15,70 513152 9,26 469650

tai729e02 729 534864 12,56 547232 15,16 475184

tai729e03 729 521724 16,49 503124 12,34 447854

tai729e04 729 510992 12,24 501728 10,20 455268

tai729e05 729 545956 14,83 514090 8,12 475466

tai729e06 729 557476 19,39 529800 13,46 466946

tai729e07 729 521600 14,77 524504 15,41 454480

tai729e08 729 493738 -40,88 488966 -41,45 835098

tai729e09 729 479628 12,20 490250 14,68 427478

tai729e10 729 527824 15,39 536726 17,33 457434
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.537000.n100.sp72.00 100 126101996 0,92 126053982 0,88 124958594

EuclideanStructured.540000.n100.sp72.00 100 113177896 1,78 111615464 0,38 111193532

EuclideanStructured.555000.n100.sp72.00 100 107122462 1,09 106945848 0,92 105972320

EuclideanStructured.587000.n100.sp72.00 100 106533484 0,92 106085166 0,50 105560170

EuclideanStructured.588000.n60.sp72.00 60 32753338 1,81 32318756 0,45 32172576

EuclideanStructured.593000.n100.sp72.00 100 125186284 0,50 125172160 0,48 124568788

EuclideanStructured.595000.n100.sp72.00 100 112653820 1,18 111905818 0,51 111334982

EuclideanStructured.603000.n60.sp72.00 60 47490820 0,51 47353132 0,22 47247944

EuclideanStructured.615000.n100.sp72.00 100 109070870 0,28 109655416 0,82 108763200

EuclideanStructured.624000.n60.sp72.00 60 38960204 1,15 38761498 0,63 38517234

EuclideanStructured.626000.n60.sp72.00 60 30571916 0,11 30773456 0,77 30537816

EuclideanStructured.631000.n60.sp72.00 60 36154494 0,49 36125564 0,41 35979406

EuclideanStructured.634000.n60.sp72.00 60 35003536 0,72 35056588 0,87 34754410

EuclideanStructured.634000.n100.sp72.00 100 102116072 1,05 101941254 0,87 101057394

EuclideanStructured.635000.n60.sp72.00 60 41101442 0,06 41412324 0,82 41074780

EuclideanStructured.637000.n100.sp72.00 100 108099550 0,97 107541876 0,44 107066066

EuclideanStructured.639000.n60.sp72.00 60 28953916 0,25 29090568 0,72 28882396

EuclideanStructured.639000.n80.sp72.00 80 63220106 0,89 63169530 0,81 62663506

EuclideanStructured.643000.n60.sp72.00 60 37748692 2,06 37157546 0,46 36986278

EuclideanStructured.643000.n100.sp72.00 100 127466438 1,07 127846016 1,37 126115736

EuclideanStructured.644000.n100.sp72.00 100 108629678 1,17 108359930 0,92 107374218

EuclideanStructured.647000.n80.sp72.00 80 64693152 0,90 64428204 0,48 64117308

EuclideanStructured.650000.n100.sp72.00 100 117999756 1,36 117261026 0,72 116421904
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.652000.n100.sp72.00 100 121745630 1,61 120809290 0,82 119822342

EuclideanStructured.654000.n80.sp72.00 80 69464896 0,71 69518152 0,79 68976650

EuclideanStructured.662000.n60.sp72.00 60 40358550 0,07 40521384 0,47 40332044

EuclideanStructured.666000.n80.sp72.00 80 75612150 1,48 74672118 0,22 74510610

EuclideanStructured.667000.n100.sp72.00 100 109498992 0,61 109477566 0,59 108839840

EuclideanStructured.669000.n60.sp72.00 60 43776704 1,96 43332014 0,93 42933788

EuclideanStructured.669000.n80.sp72.00 80 69347668 0,72 69399256 0,80 68849172

EuclideanStructured.669000.n100.sp72.00 100 111667480 1,67 110681660 0,77 109837720

EuclideanStructured.670000.n80.sp72.00 80 59125324 0,58 58877516 0,16 58783702

EuclideanStructured.671000.n100.sp72.00 100 119310922 0,94 119079614 0,75 118196026

EuclideanStructured.676000.n80.sp72.00 80 62154872 0,22 62185912 0,27 62018414

EuclideanStructured.680000.n60.sp72.00 60 30641144 0,00 30675710 0,11 30641144

EuclideanStructured.680000.n80.sp72.00 80 70017842 0,85 69776400 0,50 69429308

EuclideanStructured.681000.n100.sp72.00 100 114600792 0,77 114323690 0,53 113719688

EuclideanStructured.687000.n80.sp72.00 80 78578808 1,18 77990868 0,42 77663210

EuclideanStructured.689000.n80.sp72.00 80 69910068 1,12 69461804 0,48 69133272

EuclideanStructured.693000.n80.sp72.00 80 67560804 0,11 67807408 0,48 67483376

EuclideanStructured.697000.n60.sp72.00 60 43080364 0,57 43030930 0,46 42835112

EuclideanStructured.699000.n80.sp72.00 80 66778258 0,35 66857812 0,47 66546888

EuclideanStructured.711000.n80.sp72.00 80 68007992 1,06 67762410 0,69 67297914

EuclideanStructured.715000.n60.sp72.00 60 36009162 0,95 35781718 0,31 35671124

EuclideanStructured.720000.n60.sp72.00 60 39810798 0,69 39831060 0,74 39538250

EuclideanStructured.726000.n100.sp72.00 100 115726316 0,37 115940326 0,55 115302874

EuclideanStructured.735000.n80.sp72.00 80 67309178 0,66 67153448 0,43 66868248

EuclideanStructured.735000.n100.sp72.00 100 118332872 1,19 117405360 0,40 116941494
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.736000.n80.sp72.00 80 62540626 0,36 62589060 0,44 62313738

EuclideanStructured.737000.n80.sp72.00 80 68748714 2,16 67950346 0,97 67298018

EuclideanStructured.739000.n60.sp72.00 60 35968118 1,51 35705386 0,77 35433530

EuclideanStructured.742000.n80.sp72.00 80 70309508 1,42 69895334 0,83 69322296

EuclideanStructured.746000.n60.sp72.00 60 35828738 0,99 35680138 0,57 35477438

EuclideanStructured.747000.n100.sp72.00 100 122640342 1,51 121297418 0,40 120819810

EuclideanStructured.751000.n80.sp72.00 80 70018174 0,56 69736716 0,16 69628302

EuclideanStructured.756000.n100.sp72.00 100 108687750 2,03 106679456 0,14 106529678

EuclideanStructured.761000.n100.sp72.00 100 114485876 0,68 114376772 0,58 113712662

EuclideanStructured.771000.n100.sp72.00 100 107584292 0,83 107452776 0,71 106697124

EuclideanStructured.775000.n80.sp72.00 80 72435146 0,48 72322702 0,33 72086996

EuclideanStructured.776000.n100.sp72.00 100 103593154 0,45 103670810 0,53 103126816

EuclideanStructured.778000.n60.sp72.00 60 40249296 0,48 40206804 0,38 40056360

EuclideanStructured.783000.n100.sp72.00 100 129979286 0,86 129478756 0,47 128869952

EuclideanStructured.788000.n80.sp72.00 80 79457928 0,59 79218818 0,29 78989256

EuclideanStructured.789000.n100.sp72.00 100 108323054 2,41 107219742 1,36 105777792

EuclideanStructured.804000.n80.sp72.00 80 70080390 0,59 70520312 1,22 69669752

EuclideanStructured.807000.n80.sp72.00 80 68760398 0,68 68864506 0,83 68295996

EuclideanStructured.812000.n100.sp72.00 100 109259930 1,66 107616348 0,14 107471096

EuclideanStructured.813000.n60.sp72.00 60 43512986 0,37 43760132 0,94 43352742

EuclideanStructured.819000.n80.sp72.00 80 70837686 1,30 70425214 0,71 69929564

EuclideanStructured.822000.n60.sp72.00 60 31819780 1,20 31636398 0,61 31443972

EuclideanStructured.825000.n60.sp72.00 60 35364636 0,81 35119008 0,11 35080218

EuclideanStructured.830000.n100.sp72.00 100 133853232 1,16 132687362 0,28 132320590

EuclideanStructured.835000.n80.sp72.00 80 68025776 0,81 67735318 0,38 67477546
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.844000.n60.sp72.00 60 36884964 0,57 36783498 0,29 36677312

EuclideanStructured.846000.n60.sp72.00 60 35021910 1,76 34826330 1,19 34417590

EuclideanStructured.850000.n60.sp72.00 60 39974644 0,18 40166512 0,66 39902508

EuclideanStructured.855000.n100.sp72.00 100 109292644 1,62 108087986 0,50 107552048

EuclideanStructured.857000.n100.sp72.00 100 111862108 1,97 109989168 0,27 109696520

EuclideanStructured.860000.n80.sp72.00 80 58616222 1,05 58180258 0,30 58005768

EuclideanStructured.864000.n100.sp72.00 100 113075778 1,43 111934072 0,41 111481954

EuclideanStructured.866000.n80.sp72.00 80 58309080 0,69 58416140 0,88 57907384

EuclideanStructured.867000.n60.sp72.00 60 39171654 1,30 38997514 0,85 38667874

EuclideanStructured.868000.n100.sp72.00 100 119723126 1,10 118752686 0,28 118415460

EuclideanStructured.872000.n60.sp72.00 60 37054136 0,50 36954628 0,23 36870068

EuclideanStructured.875000.n80.sp72.00 80 75163904 0,71 75061670 0,57 74636076

EuclideanStructured.879000.n60.sp72.00 60 43076966 0,23 43164374 0,43 42979374

EuclideanStructured.881000.n80.sp72.00 80 76060066 0,69 75829002 0,39 75535750

EuclideanStructured.883000.n60.sp72.00 60 41050756 0,83 41051262 0,83 40711496

EuclideanStructured.886000.n80.sp72.00 80 68542936 0,57 68481590 0,48 68155962

EuclideanStructured.893000.n100.sp72.00 100 108693198 0,28 109125394 0,68 108391024

EuclideanStructured.896000.n100.sp72.00 100 108884394 1,54 107990798 0,71 107231972

EuclideanStructured.909000.n80.sp72.00 80 68341434 0,99 68176002 0,75 67669876

EuclideanStructured.909000.n100.sp72.00 100 124703964 0,38 125043414 0,65 124231650

EuclideanStructured.911000.n80.sp72.00 80 69885442 0,96 69375502 0,22 69222340

EuclideanStructured.911000.n100.sp72.00 100 106029516 0,52 105915974 0,41 105478438

EuclideanStructured.915000.n60.sp72.00 60 36668538 0,94 36478620 0,42 36325406

EuclideanStructured.917000.n60.sp72.00 60 37613630 1,54 37070096 0,08 37041782

EuclideanStructured.929000.n80.sp72.00 80 66916400 1,04 66750522 0,79 66229198
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.930000.n60.sp72.00 60 37844896 0,47 37825144 0,41 37669320

EuclideanStructured.933000.n100.sp72.00 100 107994914 0,76 107881640 0,66 107177774

EuclideanStructured.935000.n100.sp72.00 100 107114922 1,25 106314466 0,49 105795498

EuclideanStructured.943000.n60.sp72.00 60 35524366 2,73 34727306 0,43 34578764

EuclideanStructured.949000.n60.sp72.00 60 30424336 0,54 30422004 0,53 30261308

EuclideanStructured.957000.n60.sp72.00 60 33849878 0,01 33876844 0,09 33845074

EuclideanStructured.959000.n100.sp72.00 100 100440456 1,05 99798602 0,40 99398590

EuclideanStructured.965000.n80.sp72.00 80 79329806 2,23 78437542 1,08 77597630

EuclideanStructured.967000.n60.sp72.00 60 40371244 0,00 40650524 0,69 40371244

EuclideanStructured.967000.n80.sp72.00 80 64599918 1,62 63816742 0,39 63570754

EuclideanStructured.969000.n80.sp72.00 80 69173908 2,02 68405172 0,89 67804576

EuclideanStructured.973000.n80.sp72.00 80 65801588 0,61 65599136 0,30 65404566

EuclideanStructured.973000.n100.sp72.00 100 105241482 1,09 105157020 1,01 104105856

EuclideanStructured.975000.n100.sp72.00 100 107537190 0,51 108296584 1,22 106996400

EuclideanStructured.978000.n80.sp72.00 80 71346416 0,42 71715750 0,94 71046250

EuclideanStructured.980000.n60.sp72.00 60 42819282 0,25 42800772 0,20 42713884

EuclideanStructured.983000.n60.sp72.00 60 40309178 1,14 40037464 0,46 39853938

EuclideanStructured.985000.n60.sp72.00 60 39723738 0,37 39784402 0,53 39576096

EuclideanStructured.986000.n80.sp72.00 80 71625386 1,29 71342588 0,89 70716600

EuclideanStructured.993000.n60.sp72.00 60 38541170 0,90 38308468 0,29 38198224

EuclideanStructured.997000.n60.sp72.00 60 35564488 1,58 35438318 1,22 35011292

EuclideanStructured.997000.n100.sp72.00 100 126227344 0,23 126514398 0,46 125938958

EuclideanStructured.998000.n80.sp72.00 80 72605726 1,02 71917864 0,06 71871968

EuclideanStructured.1004000.n100.sp72.00 100 105645950 0,80 105364526 0,53 104805358

EuclideanStructured.1007000.n100.sp72.00 100 107006620 0,19 107839132 0,97 106798368
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.1008000.n60.sp72.00 60 37347368 0,83 37290976 0,68 37039266

EuclideanStructured.1013000.n60.sp72.00 60 35068114 1,30 34748834 0,38 34616592

EuclideanStructured.1014000.n80.sp72.00 80 77185256 0,99 76511412 0,11 76427306

EuclideanStructured.1016000.n100.sp72.00 100 91677864 0,46 91674316 0,46 91255840

EuclideanStructured.1020000.n60.sp72.00 60 34656006 0,84 34585986 0,64 34365724

EuclideanStructured.1024000.n80.sp72.00 80 67573116 1,07 67064944 0,31 66860022

EuclideanStructured.1025000.n60.sp72.00 60 40248378 1,03 39866462 0,07 39838860

EuclideanStructured.1027000.n80.sp72.00 80 76264644 1,01 76073382 0,76 75500308

EuclideanStructured.1028000.n100.sp72.00 100 122424956 0,79 122271470 0,66 121469650

EuclideanStructured.1033000.n80.sp72.00 80 73861196 0,72 73693142 0,49 73333202

EuclideanStructured.1037000.n60.sp72.00 60 35430734 0,55 35359380 0,34 35238550

EuclideanStructured.1045000.n100.sp72.00 100 119872700 0,86 119321714 0,40 118850020

EuclideanStructured.1051000.n60.sp72.00 60 36862240 0,94 36596722 0,22 36517482

EuclideanStructured.1052000.n80.sp72.00 80 81979508 0,40 82310766 0,80 81655890

EuclideanStructured.1058000.n80.sp72.00 80 64179788 1,05 63749886 0,37 63513850

EuclideanStructured.1059000.n80.sp72.00 80 68856214 0,41 68727802 0,22 68576168

EuclideanStructured.1060000.n60.sp72.00 60 32900334 2,01 32299808 0,15 32252200

EuclideanStructured.1070000.n100.sp72.00 100 121796680 0,95 121414144 0,63 120651046

EuclideanStructured.1077000.n60.sp72.00 60 33339518 1,09 33227680 0,75 32981098

EuclideanStructured.1083000.n80.sp72.00 80 62485176 1,51 61966678 0,67 61556782

EuclideanStructured.1085000.n100.sp72.00 100 95596682 0,07 96067074 0,56 95532018

EuclideanStructured.1089000.n100.sp72.00 100 116565038 0,71 116240904 0,43 115739778

EuclideanStructured.1091000.n60.sp72.00 60 32896204 0,43 33061144 0,93 32756782

EuclideanStructured.1091000.n80.sp72.00 80 60287916 1,29 59614158 0,16 59518042

EuclideanStructured.1093000.n80.sp72.00 80 71403942 0,34 71549870 0,54 71165068
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Table B.26: Feasible solution values before and after tuning for instances by Pellegrini et al. (166)

Instances n Before tuning After tuning Best known

Heur. Gap(%). Heur. Gap(%)

EuclideanStructured.1096000.n60.sp72.00 60 45461940 1,07 45482160 1,11 44981832

EuclideanStructured.1100000.n80.sp72.00 80 82209692 1,23 82053856 1,04 81210906

186



B.2 Charts

B.2 Charts

Figure B.1: Distribution of valid lower bounds for ng-route pricing before and

after tuning for instances by Solomon (200)
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Figure B.2: Distribution of valid lower bounds for (t, i)-route pricing before

and after tuning for instances by Solomon (200)

Figure B.3: Distribution of valid lower bounds for (t, i)-route with 2-cycles

pricing before and after tuning for instances by Solomon (200)
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Figure B.4: Distribution of valid lower bounds for ng-route pricing before and

after tuning for instances by Gehring & Homberger

Figure B.5: Distribution of valid lower bounds for (t, i)-route pricing before

and after tuning for instances by Gehring & Homberger
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Figure B.6: Distribution of valid lower bounds for (t, i)-route with 2-cycles

pricing before and after tuning for instances by Gehring & Homberger

Figure B.7: Distribution of valid lower bounds for ng-route pricing before and

after tuning for instances by Uchoa et al. (211)
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Figure B.8: Distribution of valid lower bounds for (q, i)-route pricing before

and after tuning for instances by Uchoa et al. (211)

Figure B.9: Distribution of valid lower bounds for (q, i)-route with 2-cycles

pricing before and after tuning for instances by Uchoa et al. (211)
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Figure B.10: Distribution of valid lower bounds for ng-route pricing before

and after tuning for instances A, B, P, E, M

Figure B.11: Distribution of valid lower bounds for (q, i)-route pricing before

and after tuning for instances A, B, P, E, M
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Figure B.12: Distribution of valid lower bounds for (q, i)-route with 2-cycles

pricing before and after tuning for instances A, B, P, E, M

Figure B.13: Distribution of heuristic values before and after tuning for in-

stances by Taillard
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Figure B.14: Distribution of heuristic values before and after tuning for in-

stances by Pellegrini et al. (166)
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