
AAllmmaa  MMaatteerr  SSttuuddiioorruumm  ––  UUnniivveerrssiittàà  ddii  BBoollooggnnaa  
 
 

DOTTORATO DI RICERCA IN 
 

Ingegneria Elettrotecnica 
 

Ciclo XXVIII 
 

Settore Concorsuale di afferenza: 09/E2 
 
Settore Scientifico disciplinare: ING-IND/33 

 
 
 
 
 

INSULATION COORDINATION  
IN MODERN DISTRIBUTION NETWORKS 

 
 
 

 
Presentata da: Ing. Fabio Tossani 
 
 
 
 
Coordinatore Dottorato       Relatore 
 
 
Prof. Domenico Casadei       Prof. Carlo Alberto Nucci 
 
 

 
 
 
 

 
 

Esame finale anno 2016 
 



 
 
 
 
 
 
 



Index 1       
 
Introduction ................................................................................................................................................................. 3 

1. Lightning Induced Overvoltages on Multiconductor Lines ............................................................ 5 

1.1. Lightning Electromagnetic Pulse Appraisal .................................................................................... 5 

1.2. Lightning Electromagnetic Pulse Coupling to Multi-Conductor Lines ................................. 9 

1.2.1. The Agrawal, Price and Gurbaxani model ............................................................................... 9 

1.2.2. The LIOV Code .................................................................................................................................. 10 

1.2.3. Fields and Overvoltages due to a Stroke Location Close to the Line .......................... 12 

1.3. Transient Ground Resistance of Multiconductor Lines ............................................................ 19 

1.3.1. Inverse Laplace Transform of Sunde’s Logarithmic Formula – The Series 

Expression ......................................................................................................................................... 19 

1.3.2. Inverse Laplace Transform of Sunde’s Logarithmic Formula – The Integral 

Expression ......................................................................................................................................... 32 

1.3.3. Inverse Laplace Transform of Sunde’s Integrals ................................................................ 38 

1.4. The Response of Multi-Conductor Lines to Lightning-Originated Electromagnetic 

Pulse ............................................................................................................................................................. 43 

2. Statistical Evaluation of the Lightning Performance of Distribution Networks ................... 58 

2.1. The Lightning Performance of Overhead Distribution Lines ................................................. 58 

2.2. The Influence of Direct Strikes on the Lightning Performance of Overhead 

Distribution Lines ................................................................................................................................... 63 

2.3. The Effect of the Channel Base Current Waveform on the Lightning Performance of 

Overhead Distribution Lines ............................................................................................................... 73 

2.4. Lightning Performance of a Real Distribution Network with Focus on Transformer 

Protection ................................................................................................................................................... 89 

3. Conclusion .................................................................................................................................................... 106 

4. Appendix 1 – Inverse Laplace transform of Ground Impedance Matrix – case 1: Sunde’s 

Logarithmic formula ................................................................................................................................. 108 

5. Appendix 2 – Inverse Laplace transform of Ground Impedance Matrix – case 2: Sunde’s 

Integral formula.......................................................................................................................................... 110 

6. References .................................................................................................................................................... 117
 

 



 

 

 

 

 

 

  

 
 



Introduction  3       
 

Introduction 

Lightning is a major cause of faults on typical overhead distribution lines. These faults may 

cause momentary or permanent interruptions on distribution circuits. Power-quality 

concerns have created more interest in lightning, and as a consequence improved lightning 

protection of overhead distribution lines against faults is being considered as a way to reduce 

the number of momentary interruptions and voltage sags (IEEE Std 1410-2010, 2011).  

For the above reasons, the problem of lightning protection of overhead and buried power 

lines has been reconsidered in recent years due to the proliferation of sensitive loads and the 

increasing demand by customers for good quality in the power supply (Nucci et al., 2012). 

This leads to specific requirements concerning insulation and protection coordination, which 

need also to take into account the presence of distributed generation and of the evolving 

topology/structure of the smart grid. 

Another aspect that deserves proper attention is that in modern distribution networks there 

is an increasing number of distribution system operators interested in changing the earthing 

method from solidly grounded to resonant one. This makes it crucial to distinguish single-

phase to ground faults from other types of faults. In addition to that, the increasing 

development and wider interconnection of smart grids leads to more complex network 

structure and dynamic behaviors.  

The appropriate analysis of the response of distribution networks against Lightning Electro 

Magnetic Pulse (LEMP) requires therefore the availability of more accurate models of LEMP-

illuminated lines with respect to the past in order to reproduce the real and complex 

configuration of distribution systems including the presence of shield wires and of their 

groundings, as well as that of surge arresters and distribution transformers.  

From the distribution system operator point of view, the above models represent a 

fundamental tool for achieving the estimate of the number of protective devices and of their 

most appropriate location in order to guarantee a given minimum number of flashovers and 

outages per year. When dealing with real networks, such an optimization could require huge 

computational efforts due to the vast number of power components and feeders present in 

real power systems. This thesis thoroughly analyzes many of the possible engineering 
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simplifications that, without losing accuracy, can be adopted in the statistical evaluation of the 

lightning performance of distribution networks in order to limit computational times. 

The structure of this thesis is the following: 

Chapter one begins with a brief description of the expression adopted in this thesis for the 

evaluation of the lightning electromagnetic pulse (LEMP). The calculation of the induced 

voltages is performed by using the LIOV code (Lightning induced overvoltages) which is based 

on the coupling model by Agrawal et al (1980).  Particular attention is devoted to the effect of 

the ground conductivity on the LEMP and on the line parameters. In this regard, this thesis 

proposes two new analytical expressions for the evaluation of the inverse Laplace transform 

of the ground impedance matrix elements of a multiconductor overhead line. The first 

expression is the inverse Laplace transform of Sunde’s logarithmic formula (Sunde, 1968) and 

is given in two equivalent forms. The second expression is the inverse Laplace transform of 

the general integral expression given by Sunde (1968). The mathematical derivation of the 

latter is then extended to the classical case of a multiconductor buried line (Pollaczek, 1926) 

taking into account also the displacement currents (Sunde, 1968). 

 

Chapter two is devoted to the statistical evaluation of the lightning performance of 

distribution networks. The analysis begins with the case of a straight line and discusses the 

effect of the lightning base channel waveform and of the taking into account of direct strikes 

on the lightning performance. Finally, a procedure able to evaluate the lightning performance 

of a real medium-voltage distribution network, which includes a number of lines, transformer 

stations and surge protection devices is developed and proposed for the analysis of some real 

cases. Such a procedure allows inferring the characteristics of the statistical distributions of 

lightning-originated voltages at any point and at any phase of the network. The analysis aims 

at assessing the expected mean time between failures of MV/LV transformers caused by both 

direct and indirect lightning strikes. A heuristic technique has been specifically developed to 

reduce the computational effort despite the non-linear response of the network equipped 

with surge arresters.  

 

Chapter three concludes the thesis and summarizes the main results. 
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1. Lightning Induced Overvoltages on 

Multiconductor Lines  

1.1. Lightning Electromagnetic Pulse Appraisal 

The expressions in time domain of the electromagnetic field radiated by a vertical dipole of 

length dz’ at a height z' along the lightning channel, assumed as an antenna over a perfectly 

conducting plane, have been derived by Master & Uman (1983) by solving Maxwell's 

equations in terms of retarded scalar and vector potentials:   
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where  

− i(z', t) is the current along the channel obtained from the return-stroke current model; 

− c is the speed of light; 

− R is the distance of the electric dipole from the observation point; 

and the geometrical factors are given in Figure 1-1.  
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Figure 1-1 – Return Stroke channel 
 

By integrating expressions (1.1) along the channel one obtains the electromagnetic exciting 

field. The current distribution, as a function of height and time, is given by the so called 

return-stroke model (Nucci et al., 1990), (Rakov & Uman, 1998). 

For distances not exceeding a few kilometers, the perfect ground conductivity assumption is a 

reasonable approximation for the vertical component of the electric field and for the 

azimuthal component of the magnetic field (Zeddam & Degauque, 1990). This can be explained 

considering that the contributions of the source dipole and of its image to these field 

components add constructively and, consequently, small variations in the image field due to 

the finite ground conductivity will have little effect on the total field. On the other hand, the 

horizontal component of the electric field is appreciably affected by finite ground 

conductivity. Indeed, for such a field component, the effects of the two contributions subtract, 

and small changes in the image field may lead to appreciable changes in the total horizontal 

field (Rubinstein, 1996). Although the intensity of the horizontal field component is generally 

much smaller than that of the vertical one, within the context of certain coupling models it 

plays an important role in the coupling mechanism (Master & Uman, 1984; Cooray & De la 

Rosa, 1986; Rubinstein et al., 1989; Diendorfer, 1990; Ishii et al., 1994) and, hence, an accurate 

calculation method has to be chosen for it.  
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The exact solution for the problem of an oscillating hertzian dipole over a finite ground is due 

to Sommerfeld (1909) and in terms of magnetic vector potential is given by (Sommerfeld, 

1949)  
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where ( )I jω  is the current of the dipole in the frequency domain, ω is the angular frequency, 

J0 is the Bessel function  of the first kind of order zero, and j2 = –1. The first two terms in (1.2) 

are the components of the magnetic vector potential in case of perfect ground; the latter is the 

Sommerfeld integral, which is present only in case of lossy ground. 

The non-null components of the electromagnetic field in the frequency domain due to the 

dipole can be obtained from the magnetic vector potential by 

 

( )

( )

( )

2

2

2
2

2 2

0

1

z
r

z
z z

z

AjE j r z
r zk

AjE j r z k A
k z

AH j r z
rϕ

ωω

ωω

ω
µ

¶
, , =

¶ ¶
æ ö¶ ÷ç ÷, , = +ç ÷ç ÷ç ¶è ø

¶
, , =-

¶

 . (1.5) 

Performing this operation one obtains the electromagnetic field in frequency domain for z > 0.  

The fields in case of ideal ground can be directly transformed in time domain and are given by 

(1.1). In case of lossy ground, the following contributions should be added to (1.1): 
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  (1.6) 

The total electric and magnetic field is obtained by summing the time-domain contribution of 

each dipole, taking into account the time delays associated with finite speed of propagation of 

return stroke front and the electromagnetic fields in air. Recently (F. Delfino, Procopio, and 

Rossi 2008; F. Delfino et al. 2008) numerical techniques that can be utilized to perform these 

integrals rapidly and efficiently have been developed. However, when the evaluation of the 

LEMP for a large number of observation points is needed (e.g. when assessing the induced 

voltages in a real network or in statistical procedures) the calculation of the horizontal field 

using the exact Sommerfeld integrals is inefficient from the point of view of computer-time. 

Many simplified expressions exist, and the most commonly adopted one is that proposed 

independently by Cooray and Rubinstein (Cooray, 1992; Rubinstein, 1996) and discussed by 

Wait (1997). The Cooray-Rubinstein expression is given by  

 ( ) ( ) ( ), , , , , 0, o
r rp pE r z j E r z j cB r z jφ

γω ω ω
γ

= - = ×   (1.7) 

where 

− 0 0oγ ω µ ε=  

− 0
0

o r
jσγ γ ε ε
ε ω

= -  

− σ is the ground conductivity; 
− ( ) ( ), ,  e , 0,rp pE r z j B r z jφω ω=  are the radial component of the electric field and the 

azimuthal component of the magnetic field evaluated as the ground was a perfect 
conductor 

and c is the speed of light in vacuum.  

The second term in (1.7) is known in the literature as ‘surface impedance’ expression. The 

surface impedance expression is in good agreement with the Sommerfeld integrals solution 

for distances not closer than 50 m from the stroke location for σ = 0.01 S/m, 200 m for σ = 
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0.001 S/m (100 m if only the peak is concerned) and approximately 600 m for 0.0001 S/m. 

The error can be significant if this expression is adopted for smaller distances (Cooray, 2010). 

 

 

1.2. Lightning Electromagnetic Pulse Coupling to Multi-

Conductor Lines 

The approach adopted in this thesis stands on the transmission line theory . The basic 

assumptions of this approximation are that the response of the line is quasi-transverse 

electromagnetic (quasi-TEM) and that the transverse dimension of the line is smaller than the 

minimum significant wavelength. The line is represented by a series of elementary sections 

which is illuminated progressively by the incident electromagnetic field so that longitudinal 

propagation effects are taken into account. Different and equivalent coupling models based on 

the use of the transmission-line approach have been proposed in the literature (e.g., see C. D. 

Taylor et al. 1965; Agrawal et al. 1980; Rachidi 1993). The Agrawal model presents the 

notable advantage of taking into account in a straightforward way the ground resistivity in the 

coupling mechanism and it is the only one that has been thoroughly tested and validated using 

experimental results (Nucci & Rachidi, 2003),(Paolone et al., 2009).  

 

1.2.1. The Agrawal, Price and Gurbaxani model  

The coupling equations according to the Agrawal et al. model are given by (Agrawal et al., 

1980) 

 ( ) [ ] ( ), ' ( , ) , ,s e
i ij i x iv x t L i x t E x h t

x t
¶ ¶é ù é ùé ù+ =ê úê ú ê úë ûë û ë û¶ ¶
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  (1.9) 

where 

− ( ), ,e
x iE x h té ù

ê úë û  is the vector of the horizontal component of the incident electric field 

(calculated in absence of the line conductors) along the x axis at the conductor’s height 

hi where the sub-index i denotes the particular wire; 
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− [ ' ]ijL and [ ' ]ijC  are the matrices of the line per-unit-length inductances and 

capacitances respectively; 

− [ ( , )]ii x t is the line current vector; 

− [ ( , )]s
iv x t  is the scattered voltage vector, from which the total voltage vector[ ]( , )iv x t can 

be evaluated as 

where 
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− ( ), ,e
zE x z t  is the vertical component of the incident electric field (calculated in absence 

of the line conductors). 

Let us assume that the line is terminated on linear terminations represented by the matrices 

0,[ ]ijZ  and ,[ ]L ijZ . The boundary conditions are given by 
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1.2.2. The LIOV Code 

In the literature, several approaches have been proposed for the evaluation of the lightning 

electromagnetic pulse (LEMP) response of distribution networks (e.g., Nucci et al. (1994), 

Orzan et al. (1996), Høidalen (2003), Perez et al. (2007), Andreotti et al. (2015), Thang et al. 

(2015), and references therein). 

In this thesis the LIOV–EMTP-RV code is adopted for the calculation of the induced voltages. 

LIOV (“Lightning-induced overvoltages”) (Nucci & Rachidi, 2003), (Borghetti et al., 2004), 

(Napolitano et al., 2008) is a computer code which allows for the calculation of lightning-

induced overvoltages on multiconductor overhead lines above a lossy soil as a function of line 
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geometry, lightning current wave shape and stroke location, return-stroke velocity and soil 

resistivity. 

LIOV has been developed in the framework of an international collaboration involving the 

University of Bologna, the Swiss Federal Institute of Technology and the University of Rome 

La Sapienza. LIOV has been experimentally validated by means of tests carried out on reduced 

scale setups with NEMP (Nuclear Electromagnetic Pulse) simulators (Borghetti et al., 2004), 

LEMP (Lightning Electromagnetic Pulse) simulators (Piantini et al., 2007) and full scale setups 

illuminated by artificially initiated lightning (Paolone et al., 2009) . 

In order to analyze the response of realistic configurations such as an electrical medium and 

low-voltage distribution network to a LEMP excitation, the presence of specific line 

terminations or line discontinuities (e.g. surge arresters) is to be properly taken into account. 

To deal with the problem of lightning-induced voltages on complex systems, different 

interfacing methods between LIOV and EMTP were developed (Nucci et al., 1994), (Borghetti 

et al., 2004), (Napolitano et al., 2008).  

For the LEMP-to-line coupling solution, LIOV adopts the Agrawal et al. model, under the 

assumption that the response of the line is TEM (or quasi-TEM if the effect of the line losses is 

accounted in the surge propagation). The Agrawal et al. transmission line equations are 

solved by means of a one-dimensional Finite Difference Time Domain (FDTD) technique 

(Nucci et al., 1994), (Borghetti et al., 2004), (Napolitano et al., 2008). In particular, a second 

order FDTD scheme is adopted, according to which the line length is discretized in a finite 

number of nodes, at which scattered voltages, currents and the horizontal component of the 

external electromagnetic field are evaluated at each time step (Paolone et al., 2001), (Nucci & 

Rachidi, 2003),  (Borghetti et al., 2004), (Napolitano et al., 2008). 
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1.2.3. Fields and Overvoltages due to a Stroke Location Close to the Line 

The presence of objects nearby distribution lines may cause indirect overvoltages due to very 

close lightning return strokes. In these cases, the evaluation of the LEMP by using the Cooray-

Rubinstein approach may lead to significant errors. Furthermore, when calculating the 

incident voltage, the numerical evaluation of integral (1.10) is necessary, due to the height-

dependence of the integrand. In the following, the analysis of fields and overvoltages due to a 

return stroke close to a distribution line is presented.  

Figure 1-2 and Figure 1-4 show the vertical component of the electric field at a distance r = 10 

m from the lightning channel for a typical first stroke and subsequent stroke respectively. The 

comparison is performed at different heights above an ideal ground, showing that the vertical 

component of the electric field is strongly dependent on the height z (h in the figures). The 

mean value is also reported. In Figure 1-3 and Figure 1-5 the same comparison is shown but 

at a distance r = 20 m from the lightning channel and in Figure 1-6 and Figure 1-7 at a 

distance r = 50 m; it is clear that, as r increases, the vertical component tends to be constant 

with height. One can conclude that, if the stroke position is close to a line, the vertical 

component of the electric field has to be integrated along the coordinate z in (1.10). When the 

stroke distance is greater or equal 50 m, considering the vertical electric field constant with 

height is a good approximation. 
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TABLE 1-1 – PARAMETERS ASSUMED FOR THE RETURN STROKE CURRENTS 

 

 
Figure 1-2 – Vertical component of the electric field 
for r = 10 m, at different heights above ideal ground. 
Channel base current typical of first strokes. 
 

 
Figure 1-3 – Vertical component of the electric field 
for r = 20 m, at different heights above ideal ground. 
Channel base current typical of first strokes. 

 
Figure 1-4 – Vertical component of the electric field 
for r = 10 m, at different heights above ideal ground. 
Channel base current typical of subsequent strokes. 
 

 
Figure 1-5 – Vertical component of the electric field 
for r = 20 m, at different heights above ideal ground. 
Channel base current typical of subsequent strokes. 
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 I01 (kA) τ11 (μs) τ12 (μs) n1 I02 (kA) τ21 (μs) τ22 (μs) n2 
First stroke 28 1.8 95 2 - - - - 
Subsequent stroke 10.7 0.25 2.5 2 6.5 2 230 2 

 
 



Chapter 1 – Lightning Induced Overvoltages on Multiconductor Lines 14       
 

 
Figure 1-6 – Vertical component of the electric field 
for r = 50 m, at different heights above ideal ground. 
Channel base current typical of first strokes. 

 
Figure 1-7 – Vertical component of the electric field 
r = 50 m, at different heights above ideal ground. 
Channel base current typical of subsequent strokes. 
 

 

The accurate evaluation of the horizontal component of the electric field in the vicinity of the 

lightning channel can be performed by using Sommerfeld integrals or a FEM model such as 

the one described in (Borghetti et al., 2013), which is in very good agreement with the 

solution of Sommerfeld integrals. A time-domain formula for the calculation of the horizontal 

electric field in the vicinity of the lightning channel has been present in (Barbosa & Paulino, 

2010).  

 In Figure 1-8, the radial component of the electric field for r = 10 m, at z = 10 m above a lossy 

ground (σg = 1 mS/m, εr = 10) due to a first stroke current is shown; the black line refers to the 

FEM solution, which can be assumed as benchmark, the red one is calculated by using the 

Cooray-Rubinstein (CR) formula and the blue one by Barbosa et. al formula. The comparison 

is also reported in Figure 1-10 for the case of a subsequent stroke. The comparison is then 

repeated for r = 20 m and r = 50 m. As already mentioned, the CR formula can lead to 

significant errors if used for the evaluation of the horizontal field in the vicinity of the 

lightning channel (distance lower than 50 m). The formula by Barbosa and colleagues is, 

instead, in better agreement with the benchmark solution. 
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Figure 1-8 – Radial component of the electric field 
for r = 10 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of first 
strokes. 
 

 
Figure 1-9 – Radial component of the electric field 
for r = 20 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of first 
strokes. 
 

 
Figure 1-10 – Radial component of the electric field 
for r = 10 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of 
subsequent strokes. 
 

 
Figure 1-11 – Radial component of the electric field 
for r = 20 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of 
subsequent strokes. 
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Figure 1-12 – Radial component of the electric field 
for r = 50 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of first 
strokes. 

 
Figure 1-13 – Radial component of the electric field 
for r = 50 m, at z = 10 m above a lossy ground (σg = 1 
mS/m, εr = 10). Channel base current typical of 
subsequent strokes. 
 

Let us now consider the geometry reported in Figure 1-14, namely a 1-km long, 10-m high 

single conductor line with matched terminations.  

In Figure 1-15, the comparison between the overvoltages at the mid-point of the line 

calculated different approaches discussed in this section is reported. The stroke distance from 

the line is d = 10 m and the ground is characterized by σg = 1 mS/m and εr = 10. The 

comparison is performed again for the two different return stroke current considered and for 

the three distances between the line and the stroke location (namely 10, 20 and 50 m). The 

overvoltages calculations are performed by using the LIOV code with the different fields 

provided as input. Considerations similar to the ones done for the horizontal electric field 

apply. As expected, the importance of integrating the vertical field along the z coordinate is 

noticeable when the distance from the line is lower than 50 m.  
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Figure 1-14 – Considered geometry 

 
Figure 1-15 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 10 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of first strokes. 
 
 

 
Figure 1-16 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 20 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of first strokes. 
 

 
Figure 1-17 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 10 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of subs. strokes. 
 

 
Figure 1-18 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 20 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of subsequent strokes. 
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Figure 1-19 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 50 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of first strokes. 
 

 
Figure 1-20 – Overvoltage at point in front of the 
stroke location. Stroke distance from the line: d = 50 
m. Lossy ground with σg = 1 mS/m and εr = 10. 
Channel base current typical of subsequent strokes. 
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1.3.    Transient Ground Resistance of Multiconductor Lines 

The effect of losses on the surge propagation along a multiconductor line illuminated by an 

external electromagnetic field has been treated in quite a few papers by representing the ground 

losses as an additional longitudinal term in the coupling equations e.g., (Rachidi et al., 1996, 1999, 

2003): the so-called ground impedance in the frequency domain, or its time-domain counter-part, 

the transient ground resistance. Several expressions for the terms of the ground impedance 

matrix have been proposed e.g., (Sunde, 1968; Carson, 1926; Pollaczek, 1931; Vance, 1978; Gary, 

1976) and, within the limits of the transmission line approximation (TL), the most accurate one is 

considered the one derived by Sunde (1968). Indeed, it can be shown that the general, more 

rigorous, expressions derived using scattering theory reduce to the Sunde approximation under 

the transmission line theory assumption (Tesche et al., 1997). So far, analytical expressions for the 

inverse Fourier transform of the Sunde formula are not available in the literature, thus, the 

elements of the ground transient resistance matrix in time domain have to be, in general, 

evaluated adopting a numerical inverse Fourier transform algorithm. A low-frequency 

approximation for the ground impedance is the well-known expression derived by Carson (1926) 

and its analytical inverse Fourier transform has been first derived by Timotin (1967) for the case 

of a single conductor line, and then extended to a multiconductor line by Orzan (1997). The 

expressions of Timotin and Orzan feature a singularity at t = 0 for the transient ground resistance 

matrix elements. Rachidi et al. (2003) showed that the singularity is due to the low frequency 

approximation of the Carson formula. Such singularity is indeed absent in the case of the Sunde 

formula, according to which the ground transient resistance tends to an asymptotic value when t 

tends to zero. Combining the asymptotic behavior of the transient ground resistance at early 

times and the Timotin/Orzan expressions for the late times, Rachidi et al. (2003) proposed an 

improved analytical formula for the transient ground resistance matrix elements. The Rachidi et 

al. formula, however, does not accurately reproduce the transition between the early time and the 

late time region where its time-derivative exhibits a discontinuity. 

 

1.3.1. Inverse Laplace Transform of Sunde’s Logarithmic Formula – The 

Series Expression 

In this section, a novel approach for calculating the transient ground resistance matrix is 

presented. This approach, compared with the previous formula of Rachidi et al. (2003), is able to 

reproduce in a more accurate way both the early time and the late time response of the transient 
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ground resistance. Such an approach stands on the analytical solution of the inverse Laplace 

transform of the Sunde logarithmic expression (Sunde, 1968), which is not affected by any 

singularity at the early times, but presents some complexities relevant to its implementation for 

late times. It will be shown that the proposed analytical formula for the transient ground 

resistance matrix can be implemented in a straightforward way in computer codes for the 

evaluation of transients in multiconductor lines.  

It is worth mentioning that recently, the frequency dependence of soil parameters has been 

accounted in lightning electromagnetic transients by using different empirical formulas (Lima & 

Portela, 2007; Visacro & Alipio, 2012; Akbari et al., 2013; Silveira et al., 2014), an issue that in this 

thesis is disregarded. 

Let us consider the power line geometry presented in Figure 1-21. The configuration assumed is a 

uniform overhead multiconductor transmission line above a finitely conducting ground 

characterized by its conductivity σg and its relative permittivity εrg. The diameter of each 

conductor measures 1 cm. 

 
Figure 1-21 – Definition of the geometry 

 

The Sunde expression for mutual ground impedance between two conductors i and j is (Sunde, 

1968) 

( )
( )0

, 2 2
0

e cos
i jh h x

g ij ij
g

jZ r x dx
x x

ωµ
π γ

¥ - +

¢ =
+ +

ò                                        (1.13) 

where hi, hj and rij are the geometrical parameters defined in Figure 1-21 and gγ is the wave 

propagation constant defined as  

( )0 0g g rgj jγ ωµ σ ωε ε= +                                                          (1.14) 
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Applying a low-frequency approximation 0( )g rgσ ωε ε>> , (1.13) reduces to the well-known Carson 

expression (Carson, 1926) 

( )
( )0

, 2
0

e cos
i jh h x

g ij ij
g o

jZ r x dx
x j x

ωµ
π ωσ µ

¥ - +

¢ =
+ +

ò                                  (1.15) 

As shown in (Rachidi et al., 1999), for typical overhead power lines and for ground conductivities 

of about 0.01 S/m, Carson approximation might fail at frequencies beyond a few MHz, and even at 

lower frequencies for poorer ground conductivity. As a result, the general expression (1.13) 

should be used to obtain more accurate results for the analysis of fast transients (such as nuclear 

electromagnetic pulse, lightning, and intentional electromagnetic interferences).  

The time domain transient ground resistance matrix elements are defined as 

,1
,
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( ) g ij

g ij
Z

t F
j
ω

ξ
ω

-
ì ü¢ï ïï ï¢ = í ýï ïï ïî þ

                                                              (1.16) 

The inverse Fourier transform of the main diagonal elements of Carson ground impedance 

matrix derived by Timotin (1967) is 

,
, ,

,
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in which 2
, 0g ii i ght µ σ=  and erfc is the complementary error function. In (Orzan, 1997), the author 

extended the Timotin expression to the case of a multiconductor line; the general term ,g ijξ ′ is 
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Chapter 1 – Lightning Induced Overvoltages on Multiconductor Lines                                                  22       
 

and 
( )
2

1 3 2 1

n

na
n

=
× ××× +

. 

As Carson approximation presents a singularity at high frequency (Rachidi et al., 1999), the 

Timotin expression is affected by a singularity at early times. This singularity has been discussed 

in many papers such as (Loyka, 1999; Loyka & Kouki, 2001); Rachidi et al., (2003) provided a 

careful treatment of such a singularity approximating the transient ground resistance at early 

times with its asymptotic value, that for the diagonal terms is given by 

( ) ,
,

' 10 lim
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g ii o
g ii
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Z
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ω π ε ε®¥
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and for the off-diagonal terms is given by 
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Diagonal Elements 

Let us consider the Sunde expression for the diagonal terms of the ground impedance matrix 

2
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The inverse Fourier transform of (1.23) is not available in the literature. One of the most accurate 

approximations of (1.23) has been derived by Sunde itself (Sunde, 1968) 
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¢ =                                                  (1.24) 

As shown in (Rachidi et al., 1999), this approximation is accurate for a wide frequency range and 

for typical ground electrical parameters. 

The early time response of (1.24) can be evaluated by using the following formula (see relevant 

Appendix for its derivation) 
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where 

( )/ 2nΓ is the Euler Gamma function of the real argument n/2; 

( )/2 1/2 / 2nI at-  is the modified Bessel function of the first kind, of the order (n/2 – 1/2) and of the 

real argument at/2. 

As shown in Appendix, the series (1.25) with m ®¥  is the inverse Laplace transform of (12) in 

the half plane of convergence defined by  

1i gh γ > .                                                                 (1.26) 

By increasing m, the formula converges up to greater times, and depending whether m is an even 

or odd number, it deviates towards lower or higher values respectively.  

The first term of (1.25) corresponds to the inverse Fourier transform of the fast-transient 

approximation derived in (Semlyen, 1981) by Semlyen and discussed by Araneo & Celozzi (2001). 

This is in agreement with the fact that increasing m in (1.25) leads to a better approximation of 

the late time response of the transient ground resistance. 

Figure 1-22 shows a comparison between the derived expression (1.25) with m = 26 and m = 150, 

the Timotin formula (1.17), the Rachidi et al. formula and the numerical inverse Fourier 

transform of the Sunde logarithmic expression evaluated with (1.24) and (1.16), for a 10-m high, 

single conductor line above a conducting ground (σg = 0.001 S/m and εrg = 10). The conductor 

diameter is 1 cm. It can be seen that the proposed formula and the inverse Fourier transform of 

the Sunde logarithmic expression are in excellent agreement until the series expansion diverges 

due to the finite number of terms assumed in the evaluation of (13).  

As shown in Figure 1-22, combining (1.25), with m = 26, and (1.17) makes it possible to 

approximate the transient ground resistance for any value of time. In this regard, for high 

accuracy results, the use of at least m = 26 in (1.25) is recommended. 
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Figure 1-22 – Comparison between the proposed expression (1.25) with m = 26 and m = 150, the Timotin formula  
(1.17), the Rachidi et al. formula and the numerical inverse Fourier transform of Z’g,ii/jω for a 10 m high, single 
conductor line above a conducting ground σg = 0.001 S/m and εrg = 10. 

 

Off-Diagonal Elements  

  In (Rachidi et al., 1999), the authors extended Sunde logarithmic expression for the off-

diagonal elements of the ground impedance matrix
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where îjh is defined by (1.19) and *ˆ
ijh  is its complex conjugate.  

Following the same procedure adopted for the diagonal elements, (see relevant Appendix) the 

early time response of (1.27) can be evaluated by the following formula: 
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where  

                                  0 0
ˆ ˆ
ij rg ijb hµ ε ε=                                             (1.29) 

and *
îjb  is its complex conjugate, and 

( )ˆ
ij ijArg bδ = .                                                          (1.30) 
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In Figure 1-23, a comparison between (1.28) with m = 26 and the numerical inverse Fourier 

transform of the logarithmic expression (1.27) is presented as a function of time. The Orzan 

formula and the formula by Rachidi et al. for the case of a multiconductor line are also shown. The 

figure refers to a double conductor line above a ground with conductivity σg = 0.001 S/m and 

relative permittivity εrg = 10. The two conductors are located at 10 m and 12 m above ground 

respectively and they are separated by a distance of 1 m. As for the case of the diagonal elements, 

the proposed analytical formula and the numerical inverse Fourier transform of (1.27) provide 

the same results until the series diverges. The divergence due to use of (1.28) with finite m can be 

overcome by the same analytical approach proposed for the diagonal elements, namely the use of 

the Orzan formula for the late time response of the transient ground resistance. 

 
Figure 1-23 – Comparison between the proposed expression (1.28) with m = 26, the Orzan formula (1.18), the 
Rachidi et al. formula and the numerical inverse Fourier transform of Z’g,ii/jω for a 10-m and 12-m high, double 
conductor line, above a conducting ground σg = 0.001 S/m and  εrg = 10, rij = 1m. 

 

Also for very poor conducting ground, the proposed analytical approach is in very good 

agreement with exact numerical solutions, at any value of time. For σg = 10-4 S/m the use of at 

least 56 terms in the formulae is recommended. 

As shown in the presented comparisons, the proposed analytical formula reproduces more 

accurately the transient ground resistance matrix elements than the formula of Rachidi et al. does.   

Petrache et al. (2005) showed that the Sunde logarithmic expression is an excellent 

approximation of the general solution of the ground impedance of a buried cable. Therefore, the 

proposed approach can be adopted also for the evaluation of transients in buried cables directly 

in the time domain avoiding the computational costs associated with numerical inverse Fourier 

transform. 

In order to show the advantages of the proposed formulation, this section shows a comparison 

between the overvoltages induced on a lossy line taking into account the losses in the surge 
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propagation using the Rachidi et al. formula, with those calculated using the proposed approach. 

To do that, let us consider two geometrical configurations illustrated in Figure 1-24. Configuration 

(a) is a single-conductor line while configuration (b) is a three phase line where the external 

conductors are 1 m distant from the central one. Each wire is situated at a height of 10 m above 

ground and has a diameter of 1 cm.  

 
Figure 1-24 – Considered line configurations: a) Single-conductor line.  

b) Three-conductor line. 
 

The ground conductivity is assumed to be σg = 10-3 S/m, if not otherwise specified, and its relative 

permittivity is set to εrg = 10. The channel-base current is typical of subsequent return strokes 

(Berger et al., 1975) with a peak value of 12 kA and a maximum time-derivative of 40 kA/μs, 

represented using the sum of two Heidler functions (Nucci et al., 1993). The stroke location has 

been assumed to be at 50 m from the line center and equidistant to the line terminations. The 

return stroke velocity is assumed to be 1.5∙108 m/s and the adopted return stroke model is the 

transmission line one (TL). The incident EM field is calculated with the analytical formulae 

described in (Napolitano, 2011) and by using the Cooray - Rubinstein formula (Cooray, 1992; 

Rubinstein, 1996). The coupling equations according to the model by Agrawal et al. for the case of 

lossy line are  
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where: 

− ( ), ,e
x iE x h té ù

ê úë û  is the vector of the horizontal component of the incident electric field; 
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− 'ijLé ùê úë û and 'ijCé ùê úë û  are the matrices of the line per-unit-length inductances and capacitances 

respectively; 

− ( ),ii x té ù
ë û is the vector of the currents; 

− ( , )s
iv x té ù

ê úë û  is the scattered voltage vector;  

− , ( )g ij tξé ù¢ê úë û  is the transient ground resistance matrix. 

The total voltages [ ]( , )iv x t are given by 
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s e
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é ù
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ò

                                            
 (1.33) 

where ( ), ,e
zE x z t  is the vertical component of the incident electric field. 

The line terminations are connected to the characteristic impedance of the line. The following 

considerations are valid also in case of line terminations open or far from the observation point. 

Before comparing the proposed formula with the one by Rachidi et al., let us first show in Figure 

1-25 the comparison between the induced voltage at the termination of a 5-km long line for the 

following two cases: transient ground resistance calculated numerically solving (1.13) and (1.16) 

and by the proposed formula (analytical). The comparison is reported for both power line 

configurations. As it can be seen from the figure, numerical and analytical formulations are in 

excellent agreement. 

It is worth noting that the implementation of the proposed formula is obtained without significant 

increase in time computation even adopting a very large number of terms of the series (the 

calculation of the exciting lightning electromagnetic field and the convolution integral in equation 

(1.31) represent, for the problem of interest, the bulk of the computation time).  

In Figure 1-26, a comparison between the induced voltages at the termination of a 5-km long, 

single conductor line (configuration a) evaluated with the Rachidi et al. formula and the proposed 

one is shown. The results associated with the case of an ideal (lossless) line are also presented. 

The attenuation effect of the transient ground resistance evaluated with the proposed formula is 

somewhat stronger compared to that obtained using the Rachidi et al. one. Specifically, the 

negative peak of the overvoltage predicted by the proposed formula is 11% lower than the one 

obtained using Rachidi et al. formula. In addition, the maximum value of the time derivative of the 

induced voltage evaluated making use of the proposed approach is 22% lower than with the use 
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of Rachidi et al. formula, and the rise time is 4% larger. In Figure 1-27, the same comparison is 

shown for a three-phase line (configuration b in Figure 1-24). While the induced voltage on an 

ideal line is not affected by the presence of the other conductors (Napolitano et al., 2015), the 

effect of the mutual transient ground resistance matrix elements is to increase the attenuation 

effect on the overvoltage. For the assumed configuration, the increasing of the number of 

conductors leads to a more significant difference between the two formulae in terms of time 

derivative and peak value of the overvoltage. 

 
Figure 1-25 – Induced voltage at the end of the line. Comparison between the proposed formula (analytical) and the 
numerical evaluation of the transient ground resistance. 5-km long line, σg =10-3 S/m, εrg = 10. 
 

 
Figure 1-26 – Induced voltage at the end of the line. Comparison between the proposed formula and the Rachidi et al. 
one. The results associated with a lossless (ideal) line are also shown for comparison. Single-conductor, 5-km long 
line, σg =10-3 S/m, εrg = 10. 
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Figure 1-27 – Induced voltage at the end of the line. Comparison between the proposed formula and the Rachidi et al. 
one. The results associated with a lossless (ideal) line are also shown for comparison. Three-phase, 5-km long line, σg 
=10-3 S/m, εrg = 10. 
 

The main factors that influence the difference between the proposed formulation and the Rachidi 

et al. one are the following: 

− Ground conductivity and relative permittivity 

In Figure 1-28, a comparison between the induced voltage at the termination of a 5-km long 

single-conductor line evaluated with the Rachidi et al. formula and the proposed algorithm is 

shown for the case of a ground conductivity σg =10-4 S/m. In this case, the voltage peak calculated 

with the new approach is 16% lower, the rise-time is 24% larger and the maximum time 

derivative is 37% lower. The lower the ground conductivity, the higher will be the difference 

between the two formulations. Opposite consideration can be drawn for the relative ground 

permittivity; an increase of the ground permittivity leads to more significant differences between 

the two formulations. 

 
Figure 1-28 – Induced voltage at the end of the line. Comparison between the proposed formula and the Rachidi et al. 
one. Single-conductor, 5-km long line, σg =10-4 S/m, εrg = 10. 
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− Current derivative 

In Figure 1-29, the same case of Figure 1-25 (shown in black) is compared with the case in which 

the overvoltages are evaluated assuming three different channel-base current waveforms, having 

same current peak amplitude of 12 kA and three different maximum time derivative, specifically 

12 and 120 kA/μs instead of 40 kA/μs. The currents are named A1, A2 and A3, respectively. 

Current A2, that is the one adopted in the calculation previously shown, is assumed as 

representative of a subsequent return stroke. The Heidler functions parameters reported in 

(Guerrieri et al., 1996) are adopted. For given values of the ground parameters, as the steepness of 

the electromagnetic source increases, the differences between the two formulation increase. A 

summary of the previous considerations is reported in Table 1-2. The values are reported in 

relative value respect to the Rachidi et al. formula. As Table 1-2 shows, significant differences in 

peak and maximum steepness can be found also for a ground conductivity of 2 mS/m when 

dealing with fast electromagnetic sources. In view of this, the adoption of the proposed approach 

is advisable when the ground conductivity is less or equal to 2 mS/m. 

 
Figure 1-29 – Induced voltage at the end of the line. Comparison between the proposed formula and the Rachidi et al. 
one for the three different return stroke current A1, A2 and A3. Single-conductor, 5-km long line, σg =10-3 S/m, εrg = 
10. 
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TABLE 1-2 – INDUCED VOLTAGES – DIFFERENCES BETWEEN THE TWO APPROACHES  

 
σg (mS/m) Current Peak Raise-Time  (dV/dt)max 

2 
A1 -1% 3% -6% 
A2 -7% 4% -14% 

A3 -9% 5% -17% 

1 

A1 -3% 8% -12% 
A2 -11% 4% -22% 

A3 -14% 9% -25% 

A2  3phase -12% 17% -30% 

0.1 
A1 -9% 14% -26% 
A2 -16% 24% -37% 

A3 -19% 26% -39% 

 

− Length of the line 

An increase of the length of the line would generally lead to more significant differences between 

overvoltages calculated using the two different formulae. 

Other factors such as the height of the line, the stroke location and the number of conductors 

have, in general, a minor influence on the difference between the two discussed formulae. 

 Let us finally discuss the impact of using different approaches to calculate the transient ground 

resistance on induced voltages considering also a line including a conductor with multiple ground 

terminations. In this respect, let us make reference to configuration b of Figure 1-24 with the 

presence of a fourth conductor located under the central phase, at 8.37 m above ground, with 

multiple groundings every 200 m with resistance equal to 50 Ω. The line is 4 km long with open 

terminations and the stroke location is 50 m far from the line. The base channel current waveform 

is the one suggested in (Cigré Working Group 33.01, 1991) to represent a typical negative first-

stroke with current peak Ip = 31 kA, equivalent front time tF = 3 μs, maximum steepness Sm = 26 

kA/μs and time to half value th = 75 μs. The ground conductivity is σg = 10-4 S/m. In Figure 1-30, 

the overvoltage on the central conductor calculated at the line termination is reported for the two 

different methods. The first negative peak is about 15% lower in case the proposed formula is 

adopted; the differences between the two waveforms increase with time due to the subsequent 

traveling wave reflections. Such differences are expected to be more significant if lower tF or 

higher Sm are adopted in the lightning base channel current representation. 
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Figure 1-30 – Induced voltage at the end of the line. Comparison between the proposed formula and the Rachidi et al. 
Three-conductor, 4-km long line, with neutral grounded every 200 m. σg =10-4 S/m, εrg = 10. 

  

Conclusion 

A new analytical approach for the evaluation of the transient ground resistance matrix of an 

overhead multiconductor line above a lossy ground has been proposed. The approach adopts an 

early-time analytical formula derived from the inverse Laplace transform of the Sunde 

logarithmic expression of the ground impedance matrix and the late time inverse transforms of 

Carson formula proposed by Timotin and Orzan. It has been proven that the proposed formula is 

not affected by any singularity at the early times, contrary to the previously proposed low 

frequency expressions such as the one by Timotin and its derivations. The proposed approach has 

been used for the evaluation of lightning-induced transients along a multi-conductor line. In order 

to show the advantages of the proposed formulation with respect to others recently proposed 

aimed at fixing the low frequency singularity, a comparison between the overvoltages induced on 

a lossy line according to the approach used by Rachidi et al., with those calculated using the 

proposed approach has been carried out. It was shown that for fast electromagnetic sources, 

and/or poor ground conductivities, the proposed expression provides more accurate results 

compared to the approach used by Rachidi et al.  

 

1.3.2. Inverse Laplace Transform of Sunde’s Logarithmic Formula – The 

Integral Expression 

In this section the sum of the series proposed in (Tossani et al., 2015b) is achieved and to this 

purpose a new formula for the assessment of the transient ground resistance matrix of a 

multiconductor overhead line is proposed. This new formula is the integral of the difference 
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between a modified Struve function and a modified Bessel function, of order –1 and 1 

respectively, over a finite interval.   

The expression proposed by Sunde for the diagonal elements of the ground impedance matrix is 

(Sunde, 1968) 

 0
,

1
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g ii
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hsZ s
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π γ
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¢ =   (1.34) 

where hi is the height of the i-th conductor and gγ is the wave propagation constant above a 

finitely conducting ground characterized by its conductivity σg and its relative permittivity εrg, 

defined as 

 ( )0 0g g rgs sγ µ σ ε ε= +   (1.35) 

The diagonal elements of the transient ground resistance matrix are defined as the inverse 

Laplace transform of (1.34) divided by s, and are given by (Tossani et al., 2015b) 
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where 0 0 0,  g rg i i rga b hσ ε ε µ ε ε= = .  

According to (Gustav Doetsch, 1974) theorem 30.1, the series (1.36) is the inverse Laplace 

transform of (1.34) in the half plane of convergence defined by 1i gh γ >  and it converges 

absolutely for any real time t ≥ 0. 

Using the recurrence formula for the Gamma function one gets 
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which substituted in (1.36) yields to 
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The series (1.38) can be split in two parts as follows:  
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Let us now substitute the integral definition of the modified Bessel function of real order (see 

(Abramowitz & Stegun, 1964) equation 9.6.18) in both (1.40) and (1.41). For the first series we 

obtain  
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while for the second one 
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By using the series definition of the modified Struve function 1-L and that of the modified Bessel 

function 1I  in (1.42) and (1.43) respectively (see (Abramowitz & Stegun, 1964) equations 9.6.10 

and 12.2.1), one obtains the following expression for the diagonal elements of the transient 

ground resistance matrix 
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The off-diagonal elements of the transient ground resistance matrix are given by (Tossani et al., 

2015b) 
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where, being the height of the conductors hi and hj and their mutual distance rij , we have 
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Following the same procedure adopted for the diagonal elements we can express (1.45) as 
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Considering that ijδ  is, in general, small for realistic configurations of distributions and 

transmission lines, to avoid unessential complexities (i.e. the presence of complex arguments in 

the integrand), the following approximation is proposed 
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Let us now discuss the behavior of the integrand in (1.44) and (1.47). Many accurate 

approximations for the evaluation of the modified Struve function are available such as (Luke, 

1975; Newman, 1984; Allan J. Macleod, 1993). However, the evaluation of 1 1I- -L  by separate 

computation of the Bessel and Struve functions leads to severe cancellation problems. In (Allan J. 

Macleod, 1993) the evaluation of 1 1I- -L  is carried out by using Chebyshev expansions and the 

coefficients are derived to an accuracy of 20D. The same author proposes in (Allan J. Macleod, 

1996) an algorithm for evaluating a Chebyshev series, using the Clenshaw method with Reinsch 

modification, as analyzed in (Oliver, 1977). We here make use of the coefficients given in (Allan J. 

Macleod, 1993) and the algorithm in (Allan J. Macleod, 1996) to calculate our integrand by using 

the following relation 

 1 1
2
π- = +L L  . (1.48) 
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As the argument of the exponential varies from 0 to –at, it is clear that the function being 

integrated is bounded by 1 1I- -L . Considering that for large arguments stands the following 

relevant expansion (Allan J. Macleod, 1993) 

 1 1 2 4 6
2 1 3 451I

x x xπ
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ê úë û

L    (1.49) 

one can conclude that the integrals (1.44) and (1.47) tend to zero fairly quickly as time increases. 

It is worth noting that by the substitution ' cosx x= in (1.44) and (1.47), the integral can be easily 

approximated by means of a Chebyshev-Gauss quadrature (see (Abramowitz & Stegun, 1964), 

25.4.38) making the evaluation of the transient ground resistance straightforward. 

In Figure 1-31, a comparison between (1.47) and the numerical inverse Fourier transform of 

Sunde logarithmic expression is presented as a function of time. The sum of the first 26 terms of 

(1.45) is also shown. The figure refers to a 10-m and 12-m high conductors distant 1 m to each 

other, above a conducting ground with σg = 0.001 S/m and  εrg = 10. The integration has been 

carried out adopting a simple Chebyshev-Gauss quadrature formula: 
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and the assumed number of nodes n is 64. By using 64 nodes, the evaluation of the integral is in 

good agreement with the more accurate quadgk integration method (Matlab routine) for various 

ground conductivity values and conductors height. The computational time is comparable to the 

one required for the implementation of the Bessel series, as proposed in (Tossani et al., 2015b). It 

is worth noting that the method proposed in (Tossani et al., 2015b) requires to increase the 

number of terms considered in order to obtain accurate results for very low conductivity values, a 

complication that is no longer required with this new formula. 
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Figure 1-31 – Comparison between the proposed expression (1.47), equation (1.45) with 26 terms and the numerical 
inverse Fourier transform of Z’g,ij /jω for a 10-m and 12-m high, double conductor line, above a conducting ground σg 
= 0.001 S/m and  εrg = 10. rij = 1 m. 
 

As confirmed by Figure 1-31, the proposed expression (1.47) is in excellent agreement with both 

the numerical evaluation of the inverse Fourier transform of Sunde logarithmic expression and 

series (1.45). In case the sum of the heights of the two conductors is comparable with their 

mutual distance, equation (1.46) should be used instead of (1.47). Equation (1.47) can be 

considered accurate if the following condition applies: 

 0.1ij

i j

r
h h

<
+

.  (1.52) 

In Figure 1-32 the same comparison of Figure 1-31 is reported but for two 5-m high conductors at 

a mutual distance of 2.5 m. From Figure 1-32 it can be seen that (1.47) is a good approximation 

even in the ratio in (1.52) is equal to 0.25. 

 

Figure 1-32 – Comparison between the proposed expression (1.47), equation (1.45) with 26 terms and the numerical 
inverse Fourier transform of Z’g,ij /jω for a 5-m high double conductor line, above a conducting ground σg = 0.001 S/m 
and  εrg = 10. rij = 2.5 m. 
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Conclusion 

A new integral expression for the evaluation of the transient ground resistance matrix has been 

proposed. This expression is the inverse Laplace transform of the Sunde logarithmic equation for 

the ground impedance, which has been shown to be very accurate even for fast electromagnetic 

sources and low ground conductivities. The new expression consists in the integral of the 

difference between a modified Struve function and a modified Bessel function, of order –1 and 1 

respectively, over a finite interval. The evaluation of such an integral does not present any 

complexity as many approaches for the accurate representation of the difference between these 

two modified Struve and Bessel function are available in the literature. For the fast evaluation of 

the integral, a simple procedure based on the Chebyshev-Gauss quadrature formulas has been 

adopted, making the transient ground resistance matrix evaluation very straightforward. The 

issues in the representation of the transition between early time and late time response of the line 

arising when one adopts the expressions available in the literature for the evaluation of the 

transient ground resistance matrix elements are no longer present if the proposed formula is 

used. 

 

1.3.3. Inverse Laplace Transform of Sunde’s Integrals 

This section presents the inverse Laplace transform of the most general expression for the ground 

impedance matrix of overhead multiconductor lines under TL approximation: Sunde’s integral 

formula. As already mentioned this formula is an extension of that Carson that takes also into 

account the effect of displacement currents in the ground return. All the details regarding the 

mathematical derivation of this inverse Laplace transform are reported in the relevant appendix. 

Furthermore, in the appendix, this derivation is extended to the case of buried cables. 

The inverse Laplace transform of Sunde’s integral formula for the diagonal elements of the ground 

impedance matrix is given by 
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where 0 0 0,  g rg i i rga b hσ ε ε µ ε ε= = . 

The expression for the off-diagonal elements is the following 
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where, being the height of the conductors hi and hj and their mutual distance rij ,  

0 0
ˆ

2 2
i j ij
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b jµ ε ε
æ ö+ ÷ç ÷= +ç ÷ç ÷çè ø

 and ( )ˆ
ij ijArg bδ = .    

The comparison between these new analytical expressions and the others discussed so far in this 

thesis is reported in Figure 1-33 and Figure 1-34. Both equations (1.53) and (1.54) are in perfect 

agreement with the numerical inversion of Sunde’s formula. 

 

 

Figure 1-33 – Comparison between the proposed expression (1.53), equation (1.36) with 26 terms and the numerical 
inverse Fourier transform of Z’g,ii /jω for a 10-m high, single conductor line, above a conducting ground σg = 0.001 
S/m and  εrg = 10. 
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Figure 1-34 – Comparison between the proposed expression (1.54), equation (1.45) with 26 terms and the numerical 
inverse Fourier transform of Z’g,ij /jω for a 10-m and 12-m high, double conductor line, above a conducting ground σg 
= 0.001 S/m and  εrg = 10. rij = 1 m. 
 

The analytical derivation of (1.53) and (1.54) can be extended to the case of buried cables. The 

self and mutual ground impedance of buried cables can be calculated according to Pollaczek’s 

expressions (Pollaczek, 1926). In the original form proposed by Pollaczek the displacement 

currents in the ground are neglected. Lately, in (Sunde, 1968) the case in which also displacement 

currents are taken into account has been investigated. For the underground configuration shown 

in Figure 1-35, the ground impedance matrix elements are: 
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where 0K is the modified Bessel function of the second kind and order 0, ri is the radius of the i-th 

conductor and 
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Figure 1-35 – Geometrical configuration of an underground multiconductor line 
 

 

The inverse Laplace transform for the mutual elements is reported hereafter; the diagonal 

elements are a particular case of (A2.59) and (A2.61). For a detailed derivation see the relevant 

appendix. 

Defining the Pollaczek-Sunde integral as 
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its inverse Laplace transform reads 
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where 
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and ( )0 0ij rg i jb h hµ ε ε= +  

The inverse Laplace transform of the difference between the two Bessel functions is given by: 
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1.4. The Response of Multi-Conductor Lines to Lightning-

Originated Electromagnetic Pulse 

The response of a multiconductor overhead line to an external incident electromagnetic field such 

as the one originated by a nearby lightning return stroke has been treated by several authors 

(Rusck, 1958a; Chowdhuri, 1969, 1990; Cinieri & Fumi, 1979; Eriksson et al., 1982; Yokoyama et al., 

1983; Yokoyama, 1984; Yokoyama et al., 1986; Liew & Mar, 1986; Yokoyama et al., 1989; Cinieri & 

Muzi, 1996; Rachidi et al., 1997; Andreotti et al., 1998). In case of lines with no grounded 

conductors (shield wires, neutrals), this effect has been considered as insignificant (Cinieri & 

Fumi, 1979; Chowdhuri, 1990; Cinieri & Muzi, 1996) or null (Rusck, 1958a; Yokoyama, 1984; Liew 

& Mar, 1986), (Andreotti et al., 1998), while in other studies, it has been found that the magnitude 

of the induced voltages on a multiconductor line is higher (Chowdhuri, 1969), or could be higher 

(Chowdhuri, 1990) than that on a single-conductor line of the same height above ground. The 

paper by Rachidi et al. (1997) has helped to clarify some of the mentioned disagreements, which 

in most cases were due to the use of a particular coupling model (Chowdhuri, 1969, 1990) which 

has been demonstrated not to be adequate (Nucci et al., 1995). The aim of this section is to further 

clarify some issues which were not fully covered in (Rachidi et al., 1997) and to add some more 

general considerations on the subject making reference to the coupling models proposed in the 

literature. In particular, the shielding capabilities of the line assumed by Rachidi et al. in which 

each wire is terminated on a resistance equal to its surge impedance calculated in absence of the 

other conductors is worth of further discussion, that the present section is aimed at providing. 

The second point that the present section is aimed at addressing is the effect of the ground losses 

on the surge propagation along a multiconductor line illuminated by an external field. Such an 

issue has been treated by several authors e.g. (Rachidi et al., 1996; Kannu & Thomas, 2005; Rachidi 

et al., 1999) by representing the ground losses as an additional longitudinal term in the coupling 

equations (the so-called ground impedance in the frequency domain, or its time-domain counter-

part the transient ground resistance). One conclusion of these studies is that the finite ground 

conductivity decreases the magnitude of the induced voltage at the line terminations for a stroke 

location equidistant from them. Further, in (Kannu & Thomas, 2005) the authors have correctly 

observed that the transient ground resistance effect is to slightly increase the induced voltage at 

the mid-point of the line for the same type of stroke location. In this section, some further 

elements on the above are provided, by extending the analysis to a matched multiconductor line. 
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Voltages Induced on a Three-Phase Line by an External Incident Electromagnetic Field 

Let us consider the same two configurations of (Chowdhuri, 1990) and (Rachidi et al., 1997), 

which are shown in Figure 1-36. In the first one (vertical configuration), the three conductors are 

disposed along the same vertical axis at different heights above ground (Figure 1-36.a); in the 

second (horizontal configuration), the conductors are located at the same height above the 

ground surface (Figure 1-36.b). The presence of one and two ground (or shielding) wires for 

configurations (a) and (b), respectively, is also taken into account.  The radius of each conductor is 

9.14 mm for phase conductors and 3.96 mm for the ground wires. The length of the line is 

assumed to be 1 km, if not otherwise specified. The lightning return-stroke location is assumed to 

be at 50 m from the center of the line and equidistant to the line terminations.  

 

Figure 1-36 – Considered power line configurations. (a) Vertical, (b) horizontal. Conductors numbered 1, 2 and 3 
refer to phase conductors, 4 and 5 to ground wires. 

 

The channel-base current is typical of subsequent return strokes (Berger et al., 1975) with a peak 

value of 12 kA and a maximum time-derivative of 40kA/μs, represented by using the sum of two 

Heidler’s functions (Nucci et al., 1993). The return stroke velocity is assumed to be 1.3∙108 m/s 

and the adopted return stroke model is the modified transmission line model with exponential 

decay (MTLE) (Nucci et al., 1988; Rachidi & Nucci, 1990) with a decay constant λ = 2 km. The 

incident electromagnetic field is evaluated assuming an ideal ground (perfectly conducting), if not 

otherwise specified. 

The induced voltages can be evaluated using the Agrawal et al. model (Agrawal et al., 1980), 

which are recall here for convenience: 

( ) [ ] ( ), ' ( , ) , ,s e
i ij i x iv x t L i x t E x h t

x t
¶ ¶é ù é ùé ù+ =ê úê ú ê úë ûë û ë û¶ ¶

   (1.62) 
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( ), ' ( , ) 0s
i ij ii x t C v x t

x t
¶ ¶ é ùé ùé ù + =ê ú ê úë û ë û ë û¶ ¶

     (1.63) 

where 

− ( ), ,e
x iE x h té ù

ê úë û  is the vector of the horizontal component of the incident electric field 

(calculated in absence of the line conductors) along the x axis at the conductor’s height  ih  

where the sub-index i denotes the particular wire; 

− [ ' ]ijL and [ ' ]ijC  are the matrices of the line per-unit-length inductances and capacitances 

respectively; 

− [ ( , )]ii x t is the line current vector; 

− [ ( , )]s
iv x t  is the scattered voltage vector, from which the total voltage vector[ ]( , )iv x t can be 

evaluated as 

( )
0

( , ) ( , ) , ,
ih

s e
i i zv x t v x t E x z t dz

é ù
ê úé ù é ù= - ê úê ú ê úë û ë û ê úë û
ò           (1.64) 

where  

− ( ), ,e
zE x z t  is the vertical component of the incident electric field (calculated in absence of 

the line conductors). 

Let us assume that the line is terminated on pure resistive terminations represented by the 

matrices 0,[ ]ijR  and ,[ ]L ijR . The boundary conditions are given by 

( ) ( )0,
0

(0, ) 0, 0, ,
ih

s e
i ij i zv t R i t E z t dz

é ù
ê úé ù é ù é ù=- + ê úê úê ú ë ûë ûë û ê úë û
ò        (1.65) 

( ) ( ),
0

( , ) , , ,
ih

s e
i L ij i zv L t R i L t E L z t dz

é ù
ê úé ù é ù é ù= + ê úê úê ú ë ûë ûë û ê úë û
ò                  (1.66) 

A common practice in lightning induced overvoltage calculations is to match the line ends with 

the line surge impedance in order to avoid reflections. Diversely from the case of non-illuminated 

lines, a matched impedance at the line ends does not prevent the presence of ‘bumps’, that are not 

to be ascribed to reflections, but to the effect of the so-called ‘risers’ (Nucci et al., 1993). 
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Figure 1-37 shows the voltages induced at the terminations of the three line conductors for the 

vertical configuration disregarding the presence of the ground wire. Each wire is terminated on a 

resistance equal to its characteristic impedance determined in absence of the other conductors 

(henceforth called surge diagonal matrix terminations). Hence, the line is not matched and some 

reflections arise in agreement with what previously found in (Rachidi et al., 1997; Kannu & 

Thomas, 2005). 

The same case is shown in Figure 1-38 but, this time, for a matched line, namely using a full 

matrix termination impedance as detailed in what follows. 

For the considered case of a lossless, homogeneous multiconductor line, the characteristic 

impedance matrix [ ]C ijZ ¢  can be simply expressed as the multiplication of the per-unit-length 

inductance matrix and the surge propagation speed. Therefore, for the case of Figure 1-38, the 

termination matrices of resistances are given by 

0, , 0[ ] [ ] [ ] [ ' ]ij L ij C ij ijR R Z c L¢= = =                    (1.67) 

where c0 is the speed of light. 

For the case of Figure 1-37, all off-diagonal terms of the termination resistance matrices are set to 

zero, while the diagonal term ii correspond to the characteristic impedance of the i-th conductor, 

evaluated in absence of other conductors (corresponding to the so-called surge diagonal matrix 

terminations).   

The difference between the results of Figure 1-37 and Figure 1-38 is due to the effect of the off-

diagonal terms of the surge impedance matrix, disregarded in the induced voltage calculation 

shown in Figure 1-37. As a matter of fact, the same partial differential equation problem defined 

by (1.62) and (1.63) leads to different solutions depending on the boundary conditions.  

Figure 1-39 shows the voltages induced on the three conductors of configuration (b) (in absence 

of the shield wires) when the off-diagonal terms of the matrix terminations are set to zero. In 

Figure 1-40, the results are shown, instead, for the case of matched terminations. Now, for such a 

case, as well as for the case of an infinitely-long line, the boundary conditions relevant to the 

terminations do not introduce any dependence among the conductors voltages. It is interesting to 

observe that the same applies for the case of an open line for which the currents in equations 

(1.65) and (1.66) are both equal to zero and therefore no dependencies among the conductors 

voltages are introduced.  
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Note that the results presented in Figure 1-37 and Figure 1-39 correspond to the same 

configuration assumed in (Rachidi et al., 1997) with surge diagonal matrix terminations.  

In Figure 1-41 and Figure 1-42, the currents relative to the cases of Figure 1-39 and Figure 1-40 

are shown, respectively. Considering that the distance between the line conductors is much 

smaller than the distance to the lightning strike location, the resulting differences between the 

induced voltages will be negligible, hence, before they could be affected by the boundary 

conditions, the induced voltages on the three conductors are equal, while the currents in each 

conductor differ from one another due to mutual coupling. 

Case of an Infinitely Long Line 

The voltages induced by an external EM field along an infinitely-long lossless line without 

discontinuities are not affected by the presence of other conductors (Rusck, 1958a; Rachidi et al., 

1997; Yokoyama, 1984), while the currents do. This is shown by the two sets of three D’Alembert 

inhomogeneous equations (1.68) and (1.69), which can be derived from the Agrawal et al. 

coupling equations (1.62) and (1.63)  (the equivalent circuit for a single conductor line is shown 

in Figure 1-43)  

( ) ( )2 2

2 2 2
0

, ,1 ( , , )
s s
i i e

x i

v x t v x t
E x h t

xx c t

é ù é ù¶ ¶ ¶ê ú ê úë û ë û é ù- = ê úë û¶¶ ¶
  (1.68) 

[ ] [ ]2 2

2 2 2
0

( , ) ( , )1 ' ( , , )i i e
ij x i

i x t i x t
C E x h t

tx c t
¶ ¶ ¶ é ùé ù- =-ê ú ê úë û ë û¶¶ ¶

                   (1.69) 

 

 

 

 

  

 
 



Chapter 1 – Lightning Induced Overvoltages on Multiconductor Lines                                                  48       
 

  
Figure 1-37 – Voltages induced at the three-conductor line 
ends of configuration (a) for surge diagonal matrix 
terminations (disregarding the presence of ground wire). 
 

Figure 1-38 – Voltages induced at the three-conductor line 
ends of configuration (a) for matched terminations 
(disregarding the presence of ground wire). 

  
Figure 1-39 – Voltages induced at the three-conductor line 
ends of configuration (b) for surge diagonal matrix 
terminations (disregarding the presence of ground wire). 

Figure 1-40 – Voltages induced at the three-conductor line 
ends of configuration (b) for matched terminations 
(disregarding the presence of ground wire). 

  
Figure 1-41 –Currents flowing at the termination of the three-
conductor line of configuration (b) for surge diagonal matrix 
terminations (disregarding the presence of ground wire). 

Figure 1-42 – Currents flowing  at the termination of the three-
conductor line of configuration (b) for matched terminations 
(disregarding the presence of ground wire). 
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For the case of the horizontal configuration, equations in (1.68) share the same forcing 

functions, while (1.69) can be written for each conductor as  

2 2
,

2 2 2
10

( , , )( , ) ( , )1 '
e n
x ii i

ij
j

E x h ti x t i x t C
tx c t =

¶¶ ¶
- =-

¶¶ ¶ å                        (1.70) 

For the assumed geometry, the capacitance matrix is: 

7.66 -1.54 -0.71
' -1.54 7.96 -1.54 pF/m

-0.71     -1.54 7.66
ijC

é ù
ê ú

é ù ê ú=ê úë û ê ú
ê ú
ë û

                                           (1.71) 

Equations (1.70) and (1.71) clearly show that the forcing function in the D’Alembert equation 

for the middle conductor is smaller than those corresponding to the external conductors. 

It is interesting now to consider the coupling model by Rachidi (1993) where only the incident 

magnetic field components appear explicitly as forcing functions in the equations 

( ), ' ( , ) 0s
i ij iv x t L i x t

x t
¶ ¶é ù é ùé ù+ =ê úê ú ê úë ûë û ë û¶ ¶

                                                (1.72) 

( )1

0

, ,
( , ) ' ( , ) '  

ih e
xs

i ij i ij
B x z t

i x t C v x t L dz
x t y

-
é ù¶¶ ¶ ê úé ù é ùé ù é ù+ =- ê úê ú ê úê ú ê úë û ë ûë û ë û¶ ¶ ¶ê úë û
ò                    (1.73) 

where 

− ( , )s
ii x té ù
ê úë û  is the scattered current vector, related to [ ]( , )ii x t , the total current vector, by the 

following expression 

( )
1

0

( , ) ( , ) ' , ,
ih

s e
i i ij yi x t i x t L B x z t dz

-
é ù
ê úé ù é ù é ù= + ê úê úê ú ê ú ë ûë û ë û ê úë û
ò                                     (1.74) 

− ( ), ,e
xB x z t and ( ), ,e

yB x z t  are the horizontal components of the incident magnetic field. 
The equivalent circuit of Rachidi model (Figure 1-44) contains only currents sources. 

Nevertheless, we will show that the predicted voltage on each conductor is again not affected 

by the presence of the others, while the currents flowing in the line conductors do. 

As for the case of the Agrawal model, the two coupled equations of Rachidi model (1.72) and 

(1.73) can be combined to derive uncoupled inhomogeneous D’Alembert equations: 
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( ) ( ) ( )2 2 2

2 2 2
0 0

, , , ,1   
ih e

i i x
v x t v x t B x z t

dz
y tx c t

é ù é ù é ù¶ ¶ ¶ê ú ê ú ê úë û ë û- = ê ú¶ ¶¶ ¶ ê úë û
ò                             (1.75)

    

    

  ( )2 2 2
1

2 2 2
0 0

( , ) ( , ) , ,1 '  
is s h e

i i x
ij

i x t i x t B x z t
L dz

y xx c t
-

é ù é ù é ù¶ ¶ ¶ê ú ê ú ê úë û ë û é ù- =- ê úê úë û ¶ ¶¶ ¶ ê úë û
ò .               (1.76) 

Assuming the same incident magnetic field for each conductor, the induced overvoltages given 

by equation (1.75) are equal while, according to (1.76), the currents will generally be different 

from one conductor to another which is by the way in perfect agreement with the fact that the 

two coupling models – Agrawal and Rachidi –  are equivalent (Nucci & Rachidi, 1995). 

Needless to add that the same development can be repeated adopting the Taylor et al. (1965b) 

model leading to the same conclusion. 

 

Figure 1-43 – Equivalent differential circuit of Agrawal et al. 
coupling model for the case of a lossless line 

 

 

Figure 1-44 – Equivalent differential circuit of Rachidi coupling 
model for the case of a lossless line 
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Case of a Finite Length Line 

Let us consider, without losing generality, the vertical configuration (Figure 1-36.a) in 

absence of the shield wire. The distributions of the voltage peak amplitudes along the line for 

the case of matched terminations (solid lines) and surge diagonal matrix terminations 

(dashed line) are shown in Figure 1-45. For the considered case, the profile of the overvoltage 

peak amplitudes in the internal part of the line is the same, independently from the type of the 

terminations. The peak distribution plots of Figure 1-45 show some minor sags nearby the 

line ends for the case of matched terminations too, which, however, have to be ascribed to the 

effect of the so-called ‘risers’. 

 
Figure 1-45 – Voltage peak amplitudes along the 
line of each conductor, for the case of perfectly 
matched terminations (solid lines) and surge 
diagonal matrix terminations (dotted lines). Vertical 
configuration. 

 
Figure 1-46 – Induced voltages at x=0 m (500m far 
from the point of the line facing the stroke location); 
comparison between an infinite line and a matched 
one. Horizontal configuration 

 

 

Figure 1-47 – Induced voltage peak amplitude along 
the line; comparison between an infinite line and a 
matched one. Horizontal configuration. 

 

Figure 1-48 – Distribution of the voltage peak 
amplitudes along the line of each conductor for the 
case of matched terminations (solid lines) and surge 
diagonal matrix terminations (dotted lines) with the 
presence of a shield wire grounded at the line 
terminations. Vertical configuration. 
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To better illustrate this effect, Figure 1-46 presents a comparison, for the case of a 

horizontally-configured line, between the overvoltage measured at x = 0m (500m away from 

the position of the line ‘facing’ the strike location) of a matched line and an infinitely long one 

(the considered length is 5 km so that, in the observed time window, there is no influence of 

the portions beyond 5 km on the presented overvoltages). In Figure 1-47 the same 

comparison is presented, this time concerning the voltage peak amplitudes along the line, 

again for a horizontally-configured line. As expected, the ‘risers’ effect results in some further 

sag of the amplitude distribution plots in the immediate vicinity of the terminations. 

For the assumed stroke location, the effect of the presence of the other conductors for the case 

of surge diagonal matrix terminations or, more in general, non-matched terminations appears 

only at the neighborhood of the line ends. This result is of interest for lightning performance 

assessment of distribution lines (Borghetti et al., 2007), in particular when the lightning 

performance has to be evaluated at a specific pole (Borghetti et al., 2009), as for some stroke 

locations there is no effect due to the presence of other conductors in the central portion of 

the line. Of course, the situation is different for a lightning return stroke located in the vicinity 

of one of the line ends. 

In Figure 1-48, the same case of Figure 1-45 is shown, but this time assuming the presence of 

a grounded wire. Since the upper wire is assumed to be grounded only at the line ends, the 

profile of the overvoltage peak amplitudes in the inner part of the line is the same of Figure 

1-45. This is an expected result since the reflected voltages/effect of risers at the line ends will 

reach these central positions at a time longer than the zero-to-peak time of the induced 

voltages. To obtain a significant shielding effect, multiple grounding along the line are 

required (Borghetti et al., 2007; Paolone et al., 2004; Munhoz Rojas, 2009; Piantini & 

Janiszewski, 2009; Silveira et al., 2011). 

Surge Propagation Losses  

Accounting for the presence of a lossy ground characterized by its conductivity σg and its 

relative permittivity εrg, the Agrawal et al. coupling equations in time domain read (Rachidi et 

al., 1999) 
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( ) [ ] ( ) [ ] ( )
0

, ' ( , ) ( , ) , ,
t

s e
i ij i g ij i x iv x t L i x t t i x d E x h t

x t
ξ t t t

t
¶ ¶ ¶é ùé ù é ù¢é ù+ + - =ê úê úê ú ê úë ûë û ë ûë û¶ ¶ ¶ò                               (1.77) 

( ), ' ( , ) 0s
i ij ii x t C v x t

x t
¶ ¶ é ùé ùé ù + =ê ú ê úë û ë û ë û¶ ¶

                                                              (1.78) 

in which ( )g ij tξé ù¢ê úë û
 is the transient ground resistance matrix. In this analysis, the wire 

impedance, the ground admittance and the line conductance have been disregarded (an 

approximation valid for typical overhead lines a few meters above the ground (Rachidi et al., 

1996)).  

Following the same procedure adopted for the case of a lossless line, (1.77) and (1.78) can be 

combined to obtain 

( ) ( )
( )( )

2 2

2 2 2
0

, ,1 ( , , ) ,
s s
i i e

x i g ij

v x t v x t
E x h t v x t

xx c t

é ù é ù¶ ¶ ¶ê ú ê ú é ùë û ë û é ù ¢- = -ê úê úë û ë û¶¶ ¶
                    (1.79) 

[ ] [ ]
( )( )

2 2

2 2 2
0

( , ) ( , )1 ' ( , , ) ,i i e
ij x i g ij

i x t i x t
C E x h t v x t

tx c t
¶ ¶ ¶ é ùé ù ¢é ù- =- -ê úê ú ê úë û ë û ë û¶¶ ¶

                      (1.80) 

where 

( ) ( ) [ ]
0

, ( , )
t

g ij g ij iv x t t i x dξ t t t
t
¶é ù é ù¢ ¢= -ê ú ê úë û ë û ¶ò

                            
 (1.81) 

The corresponding equivalent circuit is shown in Figure 1-49.  

 

Figure 1-49 – Equivalent differential circuit of Agrawal et al. coupling model for the case of a lossy line (the 
symbol �  denotes the convolution product). 
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The above equations show that the presence of the transient ground resistance matrix 

introduces in the right side of (1.79) a term ( ),' ,g iv x t , which is a function of the currents 

flowing into the line conductors and in the ground return. Therefore, even if the line is 

infinitely long or matched, the voltage induced by an external electromagnetic field in a lossy 

line is affected by the presence of the other conductors of the line.  

A comparison between the overvoltage induced on an ideal (lossless) single-conductor line, a 

lossy single-conductor line, an ideal (lossless) 3-phase line, and a lossy 3-phase line is shown 

in Figure 1-50, for a horizontal configuration and a symmetrical stroke location. The 

observation points are: a) at the line termination, b) 500 m away from the mid-point of the 

line, c) in the middle of the line. The ground conductivity is assumed to be σg =0.001 S/m and 

its relative permittivity is set to εrg =10; the incident horizontal electromagnetic field is 

evaluated with the Cooray-Rubinstein formula. 

The return stroke model and the channel-base current are the same described in Section II. 

The line is 2 km long, and it is matched taking into account the frequency dependence of the 

characteristic impedance. For the case of a homogeneous lossy ground, the characteristic 

impedance of the line is frequency dependent, so the matrix of the termination becomes: 

( ) ( )
1

' ' 'C ij ij ij ijZ Z Y Zω
-é ù é ù é ù é ù¢ =ê ú ê ú ê ú ê úë û ë û ë ûë û

                                                 (1.82) 

in which ( )g ijZ ωé ù¢ê úë û
is the ground impedance matrix 

( ) ( )( )' Re ' Im 'ij g ij ij g ijZ Z j L Zω ω ωé ù¢é ù é ù é ù= + +ê úê ú ê ú ê úë û ë û ë ûë û
                             (1.83) 

and 

' 'ij ijY j Cωé ù é ù=ê ú ê úë û ë û .                                                                   (1.84) 

For the case of frequency dependent terminations, the product of the termination matrix and 

the current vector in equations (1.65) and (1.66) turns into a convolution product, which has 

to be solved numerically. 

As can be seen from Figure 1-50, the induced voltages for the case of a three-phase ideal line 

are the same as those along a single-phase ideal line, in agreement with the analysis presented 

in the previous section. On the other hand, the induced voltage at the termination of a lossy 

single conductor line has lower peak amplitude and a longer rise-time compared to the case of 
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an ideal line. Such an effect is even more significant for the case of a three-phase lossy line. 

Contrary to what occurs at the line terminations, at the middle point (Fig 15.c) the effect of the 

transient ground resistance matrix in the coupling model is to slightly increase the peak of the 

induced voltage amplitude compared to the ideal case, in agreement with the conclusions 

reported by Kannu and Thomas for a non-matched line (Kannu & Thomas, 2005).  

Note that all the simulation results presented in Figure 1-50 have been obtained using the 

same incident field. As a result, the observed increase in Figure 1-50.c for the case of lossy 

lines can only be ascribed to the effect of the transient ground resistance, which in the 

Agrawal et al. model (Figure 1-49) is represented by the term (1.81), whose effect is to alter 

the scattered voltage with respect to the ideal case, as shown by (1.79). The observed above-

mentioned effect is stronger as the number of conductors grows.  

Let us now analyze the different effect that the transient ground resistance has on the total 

voltage in different positions along the line. Figure 1-51 refers to the same cases of Figure 

1-50, but this time the incident and scattered voltages are shown individually. The total 

voltage is given by the sum of the scattered voltage and the incident one; while the incident 

voltage remains practically unchanged when the ground is lossy (Cooray, 2008), the scattered 

voltage is clearly affected by the line losses. The effect of the transient ground resistance on 

the scattered voltage depends on the position along the line. At the point in front of the stroke 

location the effect is to weaken the reaction of the line to the external LEMP; therefore, a 

decrease of the scattered voltage magnitude results in an increase of the total voltage as 

scattered and incident voltages have different polarity. At the line terminations (for the 

considered configuration), a reduction of the scattered voltage peak results in the observed 

decrease of the total voltage peak as both scattered and incident voltages have the same 

polarity. Figures 1-50 and 1-51 further show that the transient ground resistance effect on the 

induced voltage varies as a function of the time. Initially, the line losses effect is to decrease 

the voltage peak and to increase its rise-time; as the time goes by the effect of losses is to 

increase the voltage with respect to the ideal case. 
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Figure 1-50 – Total voltages. Comparison between 
an ideal line (single phase and 3-phase), a lossy 
single-conductor line and a lossy 3-phase line; 
σg=0.001 S/m, εrg=10. Horizontal configuration, 2 
km long line matched at both ends. The incident 
horizontal EM field is evaluated using the CR 
formula for all the considered cases (lossy and 
ideal). 

Figure 1-51 – Scattered and incident voltages. 
Comparison between an ideal line (single phase and 
3-phase), a lossy single-conductor line and a lossy 
3-phase line; σg=0.001 S/m, εrg=10. Horizontal 
configuration, 2 km long line matched at both ends. 
The incident horizontal EM field is evaluated using 
the CR formula for all the considered cases (lossy 
and ideal). 
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In the case of a lossy-line the induced overvoltages along a horizontally-configured line are 

the same in all the wires, as in the case of an ideal-line; however, the multiconductor line 

response is different from the single-conductor one. This result is in agreement with those 

presented in (Kannu & Thomas, 2005).  

Conclusion 

The differences between the behavior of matched and non-matched lines concerning the 

effect of the various line conductors as well as the effect of the ground losses have been 

addressed making use of coupling models based on the transmission line theory. The cases for 

which the induced voltage on one conductor is not affected by the presence of other 

conductors are those of an infinitely long lossless line, of a lossless matched line and of a 

lossless open line. For the second case, a reduction of the amplitude of the induced voltages 

with respect to the case of an infinitely long line is observed, but only nearby the line 

terminations, and this is not due to the presence of the other conductors but to the so-called 

‘risers’, which describe the effect of the missing portion of the illuminated line beyond the line 

terminations. The response of a matched lossless multiconductor line differs from that of a 

single-conductor line at the same height only in the line currents. The effect of the nearby line 

conductors on the induced voltages is, indeed, noticeable when the ground losses are taken 

into account in the surge propagation.  

Note, finally, that the conclusions of this section remain valid for multiconductor lines 

illuminated by any arbitrary incident electromagnetic fields. 
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2.    Statistical Evaluation of the Lightning 

Performance of Distribution Networks 

2.1. The Lightning Performance of Overhead Distribution 

Lines 

The statistical procedure for the evaluation of the lightning performance of distribution lines 

adopted in this thesis is based in the application of the Monte Carlo method and on the 

calculation of the induced voltages by using the LIOV code. In each of the following sessions 

the procedure is adapted and improved starting from the standard case of a straight line. 

In this section a 10 m high, single conductor line is considered. The Monte Carlo procedure is 

described in the following steps. 

− A large number of lightning events is randomly generated. Each event is characterized 

by three parameters Ip, tf, and the distance y from the line. The first two values 

characterize the lightning current waveform and are assumed to follow the log-normal 

probability distributions adopted by Cigré for negative downward first strokes (Cigré 

Working Group 33.01, 1991). The parameters of the statistical distribution are shown 

in Table 2-1; a correlation coefficient between Ip and tf equal to 0.47 is assumed. The 

distance y from the line center is assumed to be uniformly distributed between the line 

and a certain distance ymax of 1 km beyond which it is supposed that none of the 

lightning events could cause a flash on the line. The events are discriminated between 

direct and indirect ones according to the electro-geometric (EGM) model (IEEE Std 

1410-2010, 2011). 

− Each of the indirect events is simulated by using the LIOV code and the maximum 

induced voltage value on the line is evaluated by approximating the return stroke base 

channel current as a linear ramp increasing for a duration tf, followed by a flat top of 

amplitude Ip. The return stroke velocity is assumed equal to half the speed of light in 

vacuum.  
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TABLE 2-1 PARAMETERS OF LOG-NORMAL DISTRIBUTION FOR NEGATIVE DOWNWARD FIRST STROKES 

 

− At each event, the length of the line is dynamically adapted so that no effect of the 

termination (reflections if open, risers if matched) could affect the overvoltage peak 

value at the mid-point of the line. In particular, defining Tmax as the time at which the 

maximum of the overvoltage occurs, and 2x as the length of the line, the following 

condition must be satisfied 
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As in this procedure Tmax have to be estimated a priori, a precautionary value must be 

assumed in order to properly evaluate the overvoltage peak also in case of events 

characterized by very large tf values. Further details will be provided later in the 

discussion. 

− the number of annual insulation flashovers per 100 km of distribution line is obtained 

as 

 max200p g
tot

nF N y
n

= ×   (2.2) 

− where n is the number of events generating induced voltages larger than the insulation 

level – here assumed being equal to the line critical flashover voltage (CFO), multiplied 

by a factor equal to 1.5, as in the IEEE Standard – and Ng is the annual ground flash 

density. In all the calculation performed in this thesis Ng = 1 flash/km2/yr is assumed. 

The value ymax to be assumed for the procedure can be estimated as follows. First, one can 

approximate the maximum value of the overvoltage that may be induced by the highest Ip of 

the currents distribution by using the simplified formula by Rusck (1958a, 1977) for the case 

Parameter 
Median 

Standard deviation 

(of the natural logarithm of the population) 

(Ip ≤ 20 kA) (Ip > 20 kA) (Ip ≤ 20 kA) (Ip > 20 kA) 

Ip (kA) 61 kA 33.3 kA 1.33 0.605 

tf (μs) 3.83 μs 0.533 
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of ideal ground and one by Darveniza (2007) for the case of a lossy ground. Second, the 

minimum ymax required for the simulation is selected as the distance at which the voltage 

induced by the lightning with the highest peak current Ip does not exceed 1.5 CFO of the line. 

The Rusck formula is given by the following expression 

 
( )

0 2
max 0 0

11
2 1 0.5 /

p
p

I h vV Z
y c v c

æ ö÷ç× ÷ç ÷ç= + ÷ç ÷ç ÷ç - ÷è ø
  (2.3) 

where Z0 = 30 Ω, h is the line height, v is the return stroke speed and c0 is the speed of light in 

vacuum.  The Darveniza’s correction for lossy ground can be obtained by substituting 

0.15 1/ gh h σ= +  in (2.3). In Figure 2-1, the plot of ymax as a function of the maximum value 

of the induced voltage on the line is shown. The dashed curves are relevant to the case of a 

340 kA current, while the solid ones to the 99% percentile of a distribution of 200 000 events 

(134 kA). The curves are plotted for different values of the ground conductivity, namely  σg = 

∞, σg = 10 mS/m and σg = 1 mS/m. 

 

Figure 2-1 – Choice of the minimum ymax value for the Monte Carlo procedure as a function of max voltage 
amplitude 

 

In Figure 2-2 the lightning performance of an infinite line calculated by means of the 

procedure described so far is shown. The number of events is 200 000 for the cases of infinite 

and 10 mS/m ground conductivity and 20 000 for the case of 1 mS/m. The number of events 

required to have an efficient estimation of the number of flashovers per year every 100 km of 
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line is lower for the case of higher ground conductivity (Borghetti et al., 2007). The curves in 

Figure 2-2 are obtained by combining the results obtained with ymax = 1 km for the lowest 

values of CFO and with ymax = 0.5 km for the highest ones. More precisely, the resulting curve 

is equal to the one calculated with ymax = 1 km until it intersects the one obtained with ymax = 

0.5 km, as specified as follows 

 

 

Figure 2-2 – Indirect lightning performance of an infinite line 
 

In Figure 2-3 the plot of the induced voltage time to peak as a function of the raise time tf of 

the lightning base channel current is shown for different values of the ground conductivity 

and different maximum distance of the stroke locations adopted in the Monte-Carlo 

procedure. A very strong correlation can be observed for the case of the lossless line for both 

cases of ymax = 1 km and ymax =500 m. A reduction of the correlation can be observed as the 

ground conductivity decreases. The correlation between the two observed parameters is 

highly dependent on the maximum distance from the line; the induced voltage time to peak of 

the events closest to the line are more correlated to the current raise time respect to the 

farther ones. 
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a)   

b)   

c)   

Figure 2-3 – Induced voltage time to peak as a function of the raise time tf of the lightning base channel current. 
a) lossless ground, b) σg = 10 mS/m, c) σg = 1 mS/m. Max distance from the line ymax is 1 km for figs. on the left and 

500 m for those on the right. 
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2.2. The Influence of Direct Strikes on the Lightning 

Performance of Overhead Distribution Lines 

The flashover rate of overhead distribution lines due to lightning is affected, in principle, by 

both direct and indirect strikes. Since direct lightning flashes, even those characterized by 

strokes of rather low current amplitude, are expected to produce overvoltages greater than 

the insulation levels of overhead distribution lines, most studies on the lighting performance 

of distribution lines focus on the effects of the overvoltages induced by indirect strikes only. 

The accurate evaluation of the indirect lightning performance of distribution lines, i.e. the 

flashover rate due to lightning strikes hitting the ground nearby the line, requires the use of 

elaborate models of the coupling between the lightning electromagnetic pulse (LEMP) and the 

overhead line, especially when realistic line configurations are analyzed (IEEE Std 1410-2010, 

2011). Recent papers addressed the issue of the lightning performance of distribution lines 

appraisal taking into account both direct and indirect lightning events (Mikropoulos & Tsovilis, 

2013; Chen & Zhu, 2014). In some cases indeed, the taking into account of both direct and 

indirect events appears of interest, especially when the distribution systems configuration 

makes it worth the analysis of suitable protection means also for the case of direct strikes. 

This section addresses the problem of evaluating the lightning performance of specific points 

of medium voltage distribution networks, in order to ascertain the possibility of leaving some 

distribution transformers not equipped with surge arresters (SA). Such a possibility is of 

interest for the utilities that have to undertake a major upgrade of surge arresters e.g., as a 

consequence of the change of the grounding method from grounded neutral to resonant one 

(Napolitano et al., 2014), (Borghetti et al., 2014). The analysis is accomplished taking into 

account both indirect and direct events. 

The lightning performance of an electric power line can be expressed by means of a curve 

providing the number of events per year as a function of the insulation level of the line; the 

number of events is given per unit length of line if straight line configuration are analyzed 

(IEEE Std 1410-2010, 2011), or for the whole system if real topologies are considered 

(Borghetti et al., 2007, 2009). 

If the rate of flashovers along the whole line is of interest, independently from the their 

locations, the effect of the direct strikes can be accounted for by simply adding the rate of 

direct strikes to the indirect lightning performance, as each direct strike to the line is 

supposed to cause a flashover. In this section, as it is the lightning performance of specific 
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points of a distribution network that is of interest, in principle the above consideration does 

no longer apply, and therefore the response of the line to direct strikes is also evaluated by 

means of a computer model. Monte Carlo procedure starts from the random generation of a 

large number of lightning events with waveshape parameters as proposed by the Cigré 

probability distributions (Cigré Working Group 33.01, 1991), followed by the evaluation of the 

response on the line to each event. The events are discriminated between direct and indirect 

ones according to the electro-geometric model suggested in (Borghetti et al., 2007). The 

response of the line to indirect strikes is simulated by means the LIOV-EMTP-rv code. The 

response to the direct strikes is calculated by means of the EMTP-rv thanks to surge current 

sources, in order to take into account the effect of the current injected by the direct strike and 

by means of the LIOV code in order to account for the electromagnetic field generated by the 

direct strike.  

Let us consider a single straight line. The line is composed by three overhead conductors of 

diameter equal to 1 cm and assumed horizontally placed at 9.3 m above ground. The distance 

between subsequent poles is 35 m. The pole configuration is illustrated in Figure 2-4.  

Figure 2-5 shows the considered line topology. The overall length of the line is 3.5 km and the 

lightning strike is assumed to hit the central phase. 

 

Figure 2-4 – Pole configuration. 
 

 

 
Figure 2-5 – Line topology: O1: observation point; 
blue circles: surge arresters locations; cross: middle 
point of the line. 
 

 

At each pole of the line the flashovers are simulated with EMTP-rv by means of ideal switches 

between the line conductors and the grounding resistance. The flashover switches close 

according to the disruptive effect criterion (Darveniza & Vlastos, 1988). In particular, a 

flashover occurs if the integral D becomes greater than a constant value DE. D is given by the 

following expression 
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where v(t) is the voltage at the pole insulator, V0 is the minimum voltage to be exceeded 

before any breakdown process can start, k is a dimensionless factor, and t0 is the time at 

which |v(t)| becomes greater than V0. The parameters of the disruptive effect criterion are 

reported in table 2-2 and are chosen according to the values proposed in (De Conti et al., 

2010) from the results of laboratory tests performed on a 15 kV pin-type ceramic insulator 

alone and in series with a 40 cm of wood. A set of three surge arrester is installed every 10 

spans. The voltage-current characteristic of the adopted 15-kV class surge arresters is shown 

in Figure 2-6. The poles not equipped by surge arresters are assumed to provide a grounding 

resistance equal to 400 Ω. The surge arresters are assumed to be grounded with a resistance 

equal to 10 Ω and the effect of soil ionization at the grounded poles is accounted by using 

Weck’s approximation (Cigré Working Group 33.01, 1991). The poles are assumed to be made 

of concrete. 

 
 

TABLE 2-2 – PARAMETERS ASSUMED FOR THE DE MODEL 

 Disruptive Effect model parameters 
CFO (kV) V0 (kV)  k DE (kVμs) 

100 90 1 60.9 
165 132 1 255 

 

 
Figure 2-6 – Voltage-current characteristic of the 
adopted SA. 
 

 

A channel-base current with a peak value of 31 kA and a maximum time-derivative of 26 

kA/μs, assumed as typical of a first negative return stroke, is simulated by using the Cigré 

current functions (Cigré Working Group 33.01, 1991); the channel impedance is assumed 

equal to 1 kΩ. The LEMP is calculated assuming that the lightning return stroke current 

propagates along a straight vertical path according to the transmission line (TL) model. The 

stroke location in the LEMP calculation is assumed to be 10 m far from the line, in order to 

avoid numerical singularities. The soil conductivity, equal to 0.001 S/m, is taken into account 

in the electromagnetic field calculation by means of the Cooray-Rubinstein formula (Cooray, 

1992; Rubinstein, 1996). The effect of the soil conductivity is neglected in the surge 

propagation along the line. 
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Figure 4 shows overvoltages calculated at the stricken point of the line due to a direct event, 

under the assumptions of absence of SA and flashovers. The solid thin line represents the 

direct overvoltage when the effect of the LEMP is neglected. This thesis is focused on the study 

of negative flashes only; therefore, the polarity of the overvoltage is negative. The thin dashed 

line in Figure 2-7 represents the effect of the LEMP 10 m far the line, whose polarity is 

opposite to the direct overvoltage. The LEMP effect on the direct overvoltage, therefore, 

appears to slightly decrease the voltage amplitude at the stricken point. Farther from the 

observation point, the peak of the induced voltage is expected to reduce quickly. At 350 m 

from the stricken point, the effect of the LEMP is no more appreciable if the line is not 

equipped with SA and flashovers are neglected. 

 
Figure 2-7 – Direct overvoltage and LEMP effect on the stricken point in absence of SA and flashovers. 
 

Figure 2-8 shows the overvoltage at a point 350 m far from the direct strike (point O1 in 

Figure 2-5) obtained by disregarding the effects of the LEMP. Figure 2-8.a flashovers are 

disregarded, while in Figure 2-8.b they are taken into account. The effect of the flashovers 

along the line is to decrease the peak of the overvoltage at point O1. In Figure 2-9 the same 

calculation is repeated taking into account the LEMP. The comparison between the two 

figures shows that the influence of the LEMP on the line response to a direct strike is more 

evident in presence of flashovers. 
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a) 

 
b) 
Figure 2-8 – Overvoltage at observation point O1, in 
absence of LEMP: a) disregarding flashover 
occurrence, b) considering flashover occurrence. 

a)  

b) 
Figure 2-9 – Overvoltage at observation point O1, 
with LEMP effect: a) disregarding flashover 
occurrence, b) considering flashover occurrence. 

 

Monte Carlo Simulations 

A large number ntot of lightning events is randomly generated. Each event is characterized by 

four parameters: lightning current amplitude Ip, time to peak tf and stroke location with 

coordinates x and y. The events are assumed to follow the Cigré log-normal probability 

distributions (Anderson & Eriksson, 1980), (Cigré Working Group 33.01, 1991) for negative 

first strokes, with a correlation coefficient between tf and Ip equal to 0.47. The lightning 

current waveshape is assumed to have a linear front with a flat top. 

The expected annual numbers of events Fp that causes overvoltages with amplitude larger 

than a given value V is: 

  p g
tot

i dn
F A N

n
n

=
+                                                       (2.5) 

where ni is the number of the considered indirect events generating induced voltages larger 

than V, np is the number of the considered direct events generating induced voltages higher 
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than that value, ntot is the number randomly generated events, A is the striking area and Ng is 

the annual ground flash density. In this section Ng = 1 flash/km2/yr has been assumed. 

Figure 2-10 shows the top view of a 3.5 km long line and the stroke locations generated by the 

Monte Carlo method. ntot is 20000, 2368 of which are direct strikes to line conductors. The 

events are generated uniformly over a 1.75 km2 area, whose borders are 500 m far from the 

line. Due to the symmetry of the geometry, the overall striking area A is equal to 3.5 km2. The 

line ends are assumed to be open. The occurrence of flashovers is simulated according to the 

criterion illustrated in the previous section. 

The lighting performance of the central point of the line under the assumption of distance 

between consecutive SA equal to 350 m is reported in Figure 2-11, as the annual number of 

the direct and indirect events having amplitude higher than the value in abscissa. The 

estimation of the lighting performance against direct overvoltages has been repeated without 

and with the LEMP effect, with the outcome of a worst performance in the latter case.  

 

Figure 2-10 – Location of Monte Carlo events (blue: indirect events, red: direct events). 
 

 

Figure 2-11 – Annual number of overvoltages in the central point of the line having amplitude higher than the 
value in abscissa, due to indirect events and direct events calculated with and without LEMP, distance between 
consecutive SA 350 m. 
 

The inverse of the annual number of events having amplitude larger than the withstand 

voltage of the generic component connected to the line conductor gives the mean time 

between failures (MTBF). The MTBF values for the unprotected central point for different 
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distances between SA and a single value of withstand voltage equal to 150 kV are reported in 

Table 2-3. In Table 2-3 the effect of the direct events is evaluated without the LEMP. The 

MTBF due to direct strokes evaluated with the LEMP effect is 52.9 years with d = 70 m, 18.7 

years with d = 140 m, 13.1 years with d = 210 m, 10.0 years with d = 280 m, 8.13 years with d 

= 350 m. 

Table 2-4 reports the annual number of flashovers per year in at least one of the three phases 

per 100 km of line, with and without LEMP for different SA configurations. In Table 2-5, an 

analogous comparison is reported with the events causing a fault in at least two different 

phases. 

TABLE 2-3 – MTBF (IN YEARS) AT MIDPOINT OF THE LINE FOR DIFFERENT DISTANCES BETWEEN CONSECUTIVE SURGE ARRESTERS, 
 WITHSTAND VOLTAGE OF 150 KV 

 without 
SA 

with SA  

d=70 m d=140 m d=210 m d=280 m d=350 m 

direct + indirect 1.4 53.4 21.3 14.8 11.4 8.8 

direct only 2.4 53.4 21.3 14.9 11.6 9.1 

indirect only 3.2 inf inf 1430 520 229 

 

TABLE 2-4 – FLASHOVER RATE DUE TO DIRECT EVENTS FOR DIFFERENT DISTANCES BETWEEN CONSECUTIVE SURGE ARRESTERS 

 without 
SA 

with SA  

d=70 m d=140 m d=210 m d=280 m d=350 m 

without LEMP 11.8 10.0 11.1 11.4    11.6    11.7 

with LEMP 11.8 9.0 10.5    11.3    11.5    11.6 

 

TABLE 2-5 – FLASHOVER RATE ON DIFFERENT PHASES DUE TO DIRECT EVENTS FOR DIFFERENT DISTANCES  BETWEEN CONSECUTIVE 
SURGE ARRESTERS 

 without 
SA 

with SA  

d=70 m d=140 m d=210 m d=280 m d=350 m 

without LEMP 11.8 4.3 8.1 9.4 10.2 10.8 

with LEMP 11.8 3.9 7.8 9.4 10.4 10.8 

 

 

Statistical Analysis Of The Overvoltages And Flashovers Due To The Direct Strikes 

In what follows, some statistical results are shown relevant to a population of 2000 

lightning current waveshapes, with a linear front and a flat top, generated by using the Monte 

Carlo method with peak amplitude and front time following the Cigré probability 
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distributions. Each event is supposed to randomly hit one of the three conductors at the pole 

located in the mid-point of the line. The lightning channel impedance is assumed to be very 

large respect to that of the stricken poles. The following figures show the probability that the 

overvoltage peak exceeds 150 kV, assumed to be representative of the withstand voltage of a 

device connected to a point of the line not equipped by SA, for both cases of LEMP disregarded 

and accounted. The probability is evaluated as the ratio of the events giving overvoltage peak 

amplitude exceeds 150 kV, and it is illustrated for each pole and each phase. The voltages are 

referred to the ground, which potential rises due to the grounding resistance. Two cases with 

different distances between the arresters are shown: 70 m and 350 m. As the comparison 

between Figure 2-12 and Figure 2-13 shows, the probability of exceeding a given withstand 

voltage along the line is different if the LEMP is taken into account or not in the overvoltage 

calculation. In particular, the effect of the LEMP is to weaken the lightning performance of far 

points of the line from the stricken pole and to improve the one of the closer points. The 

performance of phase number one and three are the most influenced by the LEMP, while that 

of phase two appears to be the less affected. After three or four SA, the exceeding of the 

assumed withstand voltage of 150 kV is not observed. Figure 2-14 and Figure 2-15 refer to 

distance between SA equal to 350 m.  

The flashover probability along the line in case the LEMP is disregarded is shown in Figure 

2-16 and Figure 2-18, the case it is taken into account is shown in Figure 2-17 and Figure 

2-19. The probability is reported, for each pole and each phase, as the ratio of direct events for 

which the DE is exceeded. 

 
Figure 2-12 – Probability of overvoltages greater than 
150 kV along the line due to direct strike at 1750 m, LEMP 
neglected and SA every 70 m. 

   
Figure 2-13 – Probability of overvoltages greater than 
150 kV along the line due to direct strike at 1750 m, LEMP 
accounted and SA every 70 m. 
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Figure 2-14 – Probability of overvoltages greater than 

150 kV along the line due to direct strike at 1750 m, LEMP 
neglected and SA every 350 m. 

 
Figure 2-15 – Probability of overvoltages greater than 

150 kV along the line due to direct strike at 1750 m, LEMP 
accounted and SA every 350 m. 

 
Figure 2-16 – Probability of flashovers along the line due 
to a direct strike at 1750 m, LEMP neglected and SA every 

70 m. 
 

 
Figure 2-17 – Probability of flashovers along the line due 

to a direct strike at 1750 m, LEMP accounted and SA 
every 70 m. 

  
Figure 2-18 – Probability of flashovers along the line due 
to a direct strike at 1750 m, LEMP neglected and SA every 

350 m. 

 
Figure 2-19 – Probability of flashovers along the line due 

to a direct strike at 1750 m, LEMP accounted and SA 
every 350 m. 
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Conclusion 

This section has presented a procedure to evaluate the lightning performance of a distribution 

line, due to both direct and indirect strokes. The response of the line to direct strokes requires 

to be suitably evaluated for the lightning performance of specific points of the line. Simulation 

results obtained by means of a Monte Carlo procedure applied to a typical configuration of 

distribution line show that the occurrence of flashovers at the pole insulators is very low if the 

number of surge arresters along the path from the observed point to the stricken one is 

greater than four. For portions of the line far enough from the stricken point the contribution 

of the LEMP to the overvoltage appears to be not negligible. These results are useful for the 

evaluation of the lightning performance if the intrinsically complex configuration of a real 

distribution network is of interest or if specific points of the network are observed, e.g. when 

the upgrade of the protection has to been undertaken. 
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2.3. The Effect of the Channel Base Current Waveform on the 

Lightning Performance of Overhead Distribution Lines 

This section deals with the calculation of the expected annual number of flashovers in an 

overhead line due to both direct and indirect strikes (lightning performance).  

As known, lightning originated voltages along the lines exhibit peaks, front time and more in 

general wave shapes that are influenced by the waveform of the relevant lightning current. 

Different functions have been proposed in order to represent the typical lightning current 

waveform. The most commonly used are: the one adopted by (Cigré Working Group 33.01, 

1991) and the one proposed by Heidler (1985). Other functions that can be found in the 

literature are the classical double exponential (Bruce & Golde, 1941), others derived from it 

e.g., (Jones, 1977), the combination of multiple Heidler functions e.g. (Nucci & Rachidi, 1989) 

and more recent ones, e.g. (Javor & Rancic, 2011). Functions for multi-peaked waveforms have 

been also proposed in (De Conti & Visacro, 2007; Javor, 2012). 

For the calculation of the induced voltages along overhead lines due to indirect strikes, 

several analytical equations have been derived thanks to simplified representations of the 

channel base current waveforms, i.e. the step waveform (used by Rusck to derive his classical 

formula (Rusck, 1958b)) and the linearly rising current, linear ramp with flat top (trapezoidal) 

or with drooping tail, as in e.g., (Høidalen, 2003; Andreotti et al., 2013; Paulino et al., 2015). 

The use of these analytical equations limits the analysis to the case of single lines.  

For the case of studies relevant to distribution networks with surge arresters (SAs) and other 

non-linear components, the adoption of numerical models of the coupling between the 

lightning electromagnetic pulse (LEMP) and line conductors (e.g., the Agrawal et al. (1980) 

model) is preferred. However, even if the numerical approach is adopted, for the statistical 

assessment of the lightning performance of distribution lines by using Monte Carlo 

simulations e.g., (Borghetti et al., 2007, 2009), a simplified representation of the current 

waveform is usually adopted in order to reduce the computational time. 

It is known that the waveform of the voltages due to direct strikes in absence of corona 

phenomena and/or flashovers does reproduce the one of the originating current, as the 

voltage waveform is given by the current one times the surge impedance of the line, while for 

the case of voltages induced by indirect strikes the similarity between lightning current and 

voltage waveforms is less straightforward (Nucci & Rachidi, 2014). As a matter of fact Figure 
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2-20 reports the induced voltages in a single conductor overhead line calculated by using 

different lightning current functions (namely trapezoidal, Heidler and Cigré) with the same 

peak amplitude Ip of 31.1 kA and equivalent front times 30 / 0.6ft t=  variable from 1 μs to 8 μs 

(t30 is the interval from 30 to 90 percent amplitude intercepts on the wavefront). The Heidler 

and Cigré waveforms have wavetail time to half value th = 75 μs. For the Cigré waveform the 

calculations are repeated for maximum front steepness Sm = 26 kA/μs and for Sm values that 

change as a function of tf.  

Table 2-6 shows the differences of the maximum voltages calculated by using the Heidler and 

Cigré waveforms with respect to the corresponding values calculated by adopting the 

trapezoidal waveform. These differences may be more evident in the presence of non-linear 

power components connected to the line, which is worth investigating. 

Hence, the main aim of this section is the analysis of the influence of different lightning 

current functions on the lightning performance of distribution lines, calculated by using the 

Monte Carlo method described in (Borghetti et al., 2007), (Borghetti et al., 2009), taking into 

account also the presence of surge arresters and an accurate representation of the insulators 

flashovers. This analysis is useful in order to evaluate the effects of a simplified representation 

of the current waveform on the final results.  

Since both Heidler and Cigré functions are characterized by more than two parameters 

(whilst the trapezoidal one is completely defined by Ip and tf), an additional purpose of this 

section is to present the extension of the Monte Carlo approach presented in (Borghetti et al., 

2007) that allows the adoption of these current functions. 
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TABLE 2-6 - PERCENTAGE DIFFERENCES BETWEEN THE MAXIMUM VOLTAGES CALCULATED BY USING THE HEIDLER AND CIGRÉ 
WAVEFORMS WITH RESPECT TO THE MAXIMUM VOLTAGES CALCULATED BY USING THE TRAPEZOIDAL WAVEFORM. 

 

 

 

 
Figure 2-20 – Induced voltages calculated at the midpoint of a 10 km-long 10 m-high overhead single-conductor 
ideal line over an ideal soil due to a strike at a distance of 100 m in front of the midpoint of the line.  Different 
channel base current waveforms: a) trapezoidal; b) Heidler with parameter N = 2; c) Cigré with fixed Sm; d) Cigré 
with variable Sm. 

 
  

 
tf 

1 μs 2.4 μs 3.8 μs 5.2 μs 6.6 μs 8 μs 

Heidler -2.1% -5.3% -7.1% -8.0% -8.7% -9.3% 

Cigré  
fixed Sm 

-0.22% -1.2% -0.17% 1.8% 3.9% 6.10% 

Cigré 
variable Sm 

-0.73% -0.95% -0.94% -0.79% -0.63% -0.47% 
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In this section the analysis is limited to the assessment of the lightning performance of a single 

overhead line. 

A large number ntot of lightning events is randomly generated. Each event is characterized by 

the parameters that describe the current waveform at the channel base and the coordinates of 

the stroke location. Only negative first strokes are taken into account; the effects of the 

presence of positive flashes and of subsequent strokes in negative flashes on the line lightning 

performance are assumed negligible. The stroke locations are assumed to be uniformly 

distributed within striking area A, having a size large enough to contain the entire line and all 

the lightning events that could cause voltages larger than the minimum voltage value of 

interest for the analysis. 

Each lightning event is classified as either a direct strike to a line conductor or as an indirect 

strike by using a lightning incidence model. For all the calculations of this thesis, the electro-

geometric model suggested in (IEEE Std 1410-2010, 2011) is adopted. 

For each pole of the line the overvoltages due to both indirect and direct strikes are calculated 

using the LIOV–EMTP-RV code. 

For the entire line, the expected annual numbers of events Fp that cause overvoltages with 

amplitude larger than a given value V is: 

 p g
tot

i dn
F A N

n
n

=
+   (2.6) 

where ni and nd are the number of indirect events and direct events, respectively, that generate 

overvoltages larger than V and Ng is the annual ground flash density.  

The estimation of the mean time between failures (MTBF) expected at specific poles of the line, 

generally of interest for the protection of the transformer connected to that specific pole, is 

calculated as the inverse of the Fp value given by (2.6) with ni and nd evaluated by comparing 

the overvoltage at the pole with the withstand voltage of the connected transformer.  

Calculation of the overvoltages due to indirect lightning events 

In this section the LEMP is calculated by using the analytical formulation presented by 

Napolitano (2011) with the assumption that the lightning return stroke current propagates 

along a straight vertical channel according to the transmission line (TL) model. This analytical 

formulation allows for the representation of a generic waveshape of the lightning current at 
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the channel base. The assumed value for the return-stroke propagation speed is 1.5·108 m/s 

(0.5 of the speed of light). 

The lossy ground effect on the LEMP are accounted by means of the Cooray-Rubinstein 

formula (Cooray, 1992; Rubinstein, 1996; Cooray, 2002). The bus steady state voltage at the 

utility frequency is taken into account by using the procedure described in (Napolitano et al., 

2014).  

Calculation of the overvoltages due to direct lightning events 

Each randomly-generated strike classified as a direct event is represented by a current source 

connected to the pole closest to its location coordinates. The surge impedance of the lightning 

channel is assumed much larger than that of the line and, therefore, neglected. 

Direct strikes to distribution overhead lines are always expected to cause flashovers at line 

insulators, unless very close SAs are installed (IEEE Std 1410-2010, 2011), even in presence of 

ground wires (Nakada et al., 2003; Miyazaki & Okabe, 2009). The overvoltages at buses not 

equipped by SAs are greatly influenced by the occurrence of flashovers at the line insulators 

and by the number of SAs along the path from the stricken point to the observed buses. 

In both the simulations relevant to direct and indirect strikes, at each pole of the line the 

flashovers are simulated with EMTP-rv by means of ideal switches between the line 

conductors and the grounding resistance. The flashover switches close according to the 

disruptive effect (DE) criterion (Darveniza & Vlastos, 1988). In particular, a flashover occurs if 

the integral D becomes greater than a constant value DE. Integral D is given by the following 

expression 

 
0

0( )
t k

t
D v t V dté ù= -ë ûò   (2.7) 

where v(t) is the voltage at the pole insulator, V0 is the minimum voltage to be exceeded before 

any breakdown process can start, k is a dimensionless factor, and t0 is the time at which |v(t)| 

becomes greater than V0.  

The poles not equipped by surge arresters are assumed to provide a grounding resistance 

equal to 400 Ω. The surge arresters are represented by their specific non-linear voltage current 

characteristic and are assumed to be grounded with a resistance R0 = 10 Ω. The effect of soil 

ionization at the grounded poles is accounted by using the Weck’s approximation (Cigré 

Working Group 33.01, 1991): 
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with the limiting current 
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where soil breakdown gradient E0 is equal to 400 kV/m. 

Multivariate Distribution Of Lightning Current Parameters 

Typical lightning channel base current waveforms are defined by the following parameters: 

peak Ip, front time tf, maximum front steepness Sm and wavetail time to half value th. The 

correlation between these parameters has been recently reviewed by Rakov et al. in (CIGRE 

WG C4.407, 2013). In particular, in direct current measurements relatively strong correlation 

is observed between the current rate-of-rise characteristics and current peak. 

The application of the Monte Carlo method requires the knowledge of the multivariate 

distribution of the lightning current parameters. Let us assume that every parameter follows 

the log-normal probability distribution. 

Let 1, , nx x¼  be n jointly Gaussian random variable (in this case they are the four natural 

logarithms of Ip, tf, Sm and th). The multivariate normal distribution is said to be non-

degenerate when the symmetric covariance matrix K  is positive definite. In this case the 

probability density function is 

 T 1
1

1 1( , , ) exp ( ) ( )
2(2 ) | |

n n
f x x

π
-æ ö÷ç¼ = - - - ÷ç ÷çè ø

x μ K x μ
K

  (2.10) 

where x is a real n-dimensional column vector, μ  is the corresponding mean vector and K  is 

the determinant of K . 

The ij-th off-diagonal element of K  is given by correlation coefficient ρij between xi and xj 

multiplied by the product of their two corresponding standard deviations (i.e., σxi and σxj), 

whilst the ii-th diagonal element is equal to variance 2
ixσ of random variable xi. 

Let be 1-=Q K , the conditional variance of nx  is  

 
 

https://en.wikipedia.org/wiki/Positive-definite_matrix
https://en.wikipedia.org/wiki/Determinant


Chapter 2 – Statistical Evaluation of the Lightning Performance of Distribution Networks 79 
  

 ( ) ( )1
2

1| 1,=Var ,
nx n

nn
nx x

Q
xσ *

- =¼   (2.11) 

and the conditional mean of nx  is 
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where Qnj is the nj-th element of matrix Q. 

The Monte Carlo random generation of a quadruple of lightning current parameters values is 

obtained by applying the following steps, where 1 2 3, , ,k k k kZ Z Z Z+ + +  are four standard normal 

variates. 

Step 1) for the calculation of an Ip value: 

1.1) ( )ln lnexp
p pp I I kI Zµ σ= + × ; 

Step 2) for the calculation of a tf value: 

2.1) ln ftσ * , ln mSσ * , ln ht
σ *  are calculated by using (2.11); 

2.2) ln ftµ* is calculated by using (2.12); 

2.3) ( )ln ln 1exp
f ff t t kt Zµ σ* *

+= + × ; 

Step 3) for the calculation of a Sm value: 

3.1) ln mSµ*  is calculated by using (2.12); 

3.2) ( )ln ln 2exp
m mm S S kS Zµ σ* *

+= + × ; 

Step 4) for the calculation of a th value: 

4.1) ln ht
µ*  is calculated by using (2.12); 

4.2) ( )ln ln 3exp
h hh t t kt Zµ σ* *

+= + × . 

A complete set of the data required for the Monte Carlo generation procedure is provided by 

Berger & Garbagnati (1984) and is reported in Table 2-7 and Table 2-8. For each parameter y, 
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Table 2-7 provides median value y  ( )ln lny yµ =  and ln yσ .  Table 2-8 provides correlation 

coefficients 
1 2ln lny yρ  between parameters y1 and y2.  

The parameters of the distribution relevant to the front duration Tcr is given instead of the 

ones relevant to tf. Since (Cigré Working Group 33.01, 1991) provides both the parameters of 

Tcr (the same as Table 2-7) and of tf ( ft =3.8 µs, ln ftσ = 0.55) obtained from almost the same set 

of experimental measurements used in (Berger & Garbagnati, 1984), the implemented Monte 

Carlo procedure generates the values of Tcr  according to step 2). The values relevant to tf are 

obtained by multiplying each value of Tcr by the ratio between ft  and crT  provided by (Cigré 

Working Group 33.01, 1991). 

 

TABLE 2-7 - STATISTICAL PARAMETERS OF THE LOG-NORMAL DISTRIBUTIONS FOR NEGATIVE DOWNWARD FIRST STROKES (Berger 
& Garbagnati, 1984) 

Parameter Median value Standard deviation 
of the parameter logarithm (base 10) 

Ip 30 kA 0.26 
Tcr 5.5 µs 0.31 
Sm 12 kA/µs 0.26 
th 75 µs 0.26 

 

 
TABLE 2-8 - CORRELATION COEFFICIENTS BETWEEN PARAMETERS (Berger & Garbagnati, 1984) 

Parameter Ip Tcr Sm th 
Tcr 0.37 1   
Sm 0.36 -0.21 1  
th 0.56 0.33 0.1 1 

 

For a given quadruple of values for Ip, tf, Sm and th, the procedures implemented in order to 

obtain the corresponding values of the parameters of the Cigré function and of the Heidler 

function are shown in the following two Subsections.   

Cigré function 

The current waveform is (Cigré Working Group 33.01, 1991): 
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where 
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This formulation presents some numerical issues if 1n<  or 55n> . In case a Monte Carlo 

event presents a value of n out of these bounds, the value of Sm is adjusted as  

 
1.01 /   if 1

12 /   if 55
m p f

m p f

S I t n

S I t n

= <

= >
  (2.15) 

As this procedure can lead to small errors on the resulting current peak, the current is 

normalized to the desired peak value. 

Table 2-9 compares the expected median value of the parameters with those obtained by 

20,000 current waveforms calculated by using the Cigré function. The small deviations in the 

Cigré model are due to the corrections previously mentioned. 

TABLE 2-9 - MEDIAN VALUES OF THE PARAMETERS OBTAINED FROM (2.13) AND FROM THE GA COMPARED TO THE EXPECTED 
VALUES GIVEN IN (Berger & Garbagnati, 1984). 

 Ip (kA) tf (μs) Sm (kA/μs) th (μs) 

Expected 30.0 3.80 12.0 75.0 

Cigré 30.0 3.89 13.1 74.7 

Heidler 30.0 3.81 12.0 75.4 
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Heidler function 

The Heidler function is (Heidler, 1985) 
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  (2.16)            

It is completely defined by four parameters, i.e. 0 1 2,  ,   and I Nt t , which cannot be obtained 

from the values  pI * , ft * , mS *  and ht
*  by analytical equations. Therefore, as in e.g. 

(Chandrasekaran & Punekar, 2014; Bermudez et al., 2002), a procedure based on the use of the 

Matlab genetic algorithm (GA) has been developed. 

The objective of the algorithm is to determine a set of values 0 1 2,  ,   and I Nt t such as to 

minimize the following fitness function  

 1 2 3
pc p fc f hc h

p f h

I I t t t tf c c c
I t t

* * *

* * *

- - -
= + +   (2.17) 

where pcI , fct  and hct are the peak value, the equivalent front time and the time to half value of 

the current calculated at every iteration of the algorithm. Parameters c1, c2 and c3 are the 

weights ascribed to the relative errors of the three parameters pI * , ft * , and ht
* , respectively. 

The algorithm is stopped if the relative errors on the three parameters satisfy all the three 

following conditions  

 0.5% ;   0.5% ;   1%pc p fc f hc h

p f h

I I t t t t
I t t

* * *

* * *

- - -
< < <   (2.18) 

The possible values of N are limited to the integer values 2, 3 or 4. At first the values of c1, c2 

and c3 are equal to each other. The initial population size and the maximum number of 

generations are set to 50 and 100, respectively, and they are subsequently enlarged in case 

any of the conditions of (2.18) is not satisfied. If after some tens of attempts, conditions (2.18) 

are still not satisfied, then the time to half value is penalized by means of a reduction of c3 

with respect to c1 and c2. At the end of this procedure, only for 10 out of 20,000 events the 

constraint on th is not satisfied, while the constraints relevant to peak and equivalent front 

time are always fulfilled. 
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Table 2-9 compares the expected median value of the parameters with those obtained by 

20,000 current waveforms calculated by using Heidler function (2.16) with the parameter 

given by the GA. The mean errors resulting on 20,000 Heidler waveforms are: 0.004% for Ip, 

0.17% for tf and 0.21% for th). Although the Sm is not taken directly into account by the GA, 

also the relevant median value is in close agreement with the expected one. 

The next figures represent the plot of the induced voltage time to peak as a function of the 

raise time tf of the lightning base channel current for different types of return stroke currents. 

The ground conductivity is σg = 10-3 S/m. The Cigré and Heidler function present a higher 

mean rise time with respect to the case of a trapezoidal current waveform, but a higher 

correlation between induced voltage time to peak and equivalent raise time tf. 

 

Heidler n = 2 – 10     Cigré 

  

Heidler n = 2 – 4     Trapezoidal 

Figure 2-21 – Induced voltage time to peak as a function of the raise time tf of the lightning base channel current. 
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Perspective lightning performance of the distribution line  

As already mentioned, a three phase overhead line is considered, straight in shape. The 

conductors are assumed horizontally placed at 9.3 m above ground, with diameter equal to 1 

cm. The distances between the lateral conductors and the central one are 1.5 m and 0.7 m. In 

all the calculations of this section the assumed soil conductivity is σg = 10-3 S/m.  

Striking area A is chosen as a 1-km band from the line. Number of lightning events n is 20,000. 

Direct events nd are 1,208. Indirect events nd are 18,792.  

Figure 2-22 shows the annual number of overvoltages of the line with length equal to 2 km for 

the three different current waveshapes adopted caused by indirect events only. Such a result is 

here denoted as the perspective lightning performance of the distribution line, as the 

calculations are run in absence of surge arresters and by neglecting the insulators flashovers 

along the line. The steady state voltage at the utility frequency is not taken into account. Figure 

2-22 shows that the choice of different current waveshapes has a limited impact on the 

estimation of the perspective lightning performance. It is worth mentioning that the lowest 

curve is obtained by using the Heidler function. 

In order to verify that this conclusion is not affected by the limited length of the line the same 

calculations are repeated for the case of a very long line (i.e., for each event the length is 

adjusted to be large enough to avoid the influence of the so called ‘risers’ (Nucci & Rachidi, 

2014)  at the line terminations on the overvoltage peak) and the resulting curves shown in 

Figure 2-23. The results are indeed still similar, namely the choice of different current 

waveshapes has a limited impact on the estimation of the perspective lightning performance. 

The calculation relevant to the Cigré function has been also repeated assuming the median 

value of Sm equal to 26 kA/μs (instead of 12 kA/µs) as suggested in (Cigré Working Group 

33.01, 1991). The results are very similar to the curve corresponding to the Cigré function 

already shown in Figure 2-23. 

Without surge arresters and flashovers, as expected, all direct events result in overvoltages 

greater than the maximum value in abscissa (i.e., 0.24 events/yr for the case of the 2-km long 

line and 12.08 events/100km/yr for the very long line).      
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Figure 2-22 – Comparison of the perspective indirect lighting performances calculated by using three different 
current waveshapes. Length of the line equal to 2 km.  
 

 

Figure 2-23 – Comparison of the perspective indirect lighting performances calculated by using three different 
current waveshapes. Very long line. 
 

Lightning performance of the central point of the 2 km-long line  

In this Subsection the same three-conductor line is considered with sets of three surge 

arresters installed at different distance intervals. The voltage-current characteristic of the 

adopted 15-kV class surge arresters is the same as in previous section and is shown in Figure 

2-6. The considered phase-to-phase voltage at the utility frequency is 13.8 kV. 

The distance between subsequent poles is 50 m. Also the parameters of the disruptive effect 

criterion (adopted for the representation of the flashovers in the line insulators) are the same 

of previous section and are reported in table 2-2. These parameters have been obtained in (De 

Conti et al., 2010) from the results of laboratory tests performed on a 15 kV pin-type ceramic 

insulator.  
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The presence of a transformer in the middle point of the line is assumed. The withstand 

voltage of the transformers is assumed to be constant and equal to 150 kV. In (Lopes et al., 

2013) a procedure able to take into account the withstand probability distribution of 

transformer insulation is described. 

Figure 2-24 shows the top view of the line; the position of the transformer is denoted by the 

cross in the middle of the line while the blue circles indicate the surge arrester locations. 

Distance d defines the interval between subsequent surge arresters. The length of the line is 2 

km and the number of generated events in the Monte Carlo procedure is again 20,000. Table 

2-10 and Table 2-11 show the MTBF values relevant to a transformer connected to the middle 

of the line for the two different insulators described in table 2-2, namely 165 kV and 100 kV, 

respectively.  The results are reported for the three different current waveforms and for 

different distances between consecutive SAs, namely 100 m, 200 m, 300 m and 400 m. 

 
Figure 2-24 – Top view of the line with the indication of the observation point in the middle of the line and the 
position of the SAs. 
 

TABLE 2-10 - MTBF (IN YEARS) AT MIDPOINT OF THE LINE FOR DIFFERENT DISTANCES BETWEEN CONSECUTIVE SURGE ARRESTERS, 
WITHSTAND VOLTAGE OF 150 KV. CFO OF THE INSULATORS = 165 KV. 

current 
waveform 

without SA with SA 

d = 100 m d = 200 m d = 300 m d = 400 m 

 direct indirect both direct indirect both direct indirect both direct indirect both direct indirect both 

Trapezoidal 4.28 6.55 2.59 35.5 Inf 35.5 15.5 1250 15.3 10.3 294 10.0 7.33 125 6.92 

Cigré 4.28 6.70 2.61 37.3 Inf 37.3 16.0 1250 15.8 10.7 313 10.3 7.91 105 7.36 

Heidler 4.28 6.86 2.64 39.7 Inf 39.7 16.6 1250 16.4 10.7 250 10.3 7.84 114 7.34 

 

TABLE 2-11 - MTBF (IN YEARS) AT MIDPOINT OF THE LINE FOR DIFFERENT DISTANCES BETWEEN CONSECUTIVE SURGE ARRESTERS, 
WITHSTAND VOLTAGE OF 150 KV. CFO OF THE INSULATORS = 100 KV. 

current 
waveform 

without SA with SA 

d = 100 m d = 200 m d = 300 m d = 400 m 

 direct indirect both direct indirect both direct indirect both direct indirect both direct indirect both 

Trapezoidal 4.28 13.3 3.24 53.2 Inf 53.2 16.9 1250 16.7 11.9 357 11.5 9.0 147 8.48 

Cigré 4.28 12.8 3.21 57.5 Inf 57.5 17.4 1250 17.2 12.0 313 11.6 8.98 122 8.36 

Heidler 4.28 12.8 3.21 54.3 Inf 54.3 17.2 1250 17.0 12.0 250 11.5 8.94 119 8.32 
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The adoption of a different current waveform generally results in slight differences between 

the MTBF. The higher differences, concerning the direct events only, appear to be the ones 

relevant to the case with d = 100 m and CFO = 165 kV, for which the adoption of the Heidler 

and the Cigré turn out in a 10% and 6% increase of the MTBF, respectively. By increasing the 

distance between SAs these differences tend to be negligible. Concerning the indirect events 

only, the differences are negligible for the cases of d = 100 m and d = 200 m due to the very 

low probability of exceeding the withstand voltage of the transformer. The differences turn 

out to be appreciable, instead, by increasing d, while again they are negligible if the line is 

unprotected. These variations in the results are ascribed to the effect of non-linearity 

introduced by SAs and flashover model that enhance the effect of the difference among the 

chosen current waveshapes and in particular of their front.   

The computational cost due to the assumption of more realistic current waveforms rather 

than the trapezoidal one is quite heavy. The time required to obtain the results of both Table 

2-10 and Table 2-11 relevant to indirect strikes for the case of trapezoidal current waveform 

is about 8 h and about twice the time for the two other currents waveforms. The time needed 

for the direct strikes calculation is independent of the current waveform if the induced effects 

of the LEMP are disregarded. The simulations have been carried out by a computer with two 

2.6 GHz Intel Xeon E5 eight-core processors and 64 GB of RAM, running 64-bit Windows (both 

CPU and RAM usage is lower than 30%).  

Conclusion 

This section has analyzed the influence of the choice of the function describing the current 

waveform at the base of the lightning channel on the lightning performance of power 

components connected to an overhead distribution line. To this purpose, a procedure able to 

extend the Monte Carlo method to the generation of a multivariate log-normal distribution of 

current parameters has been developed. 

 Whilst the influence of the current waveform on the perspective lightning performance (i.e. 

assuming no flashovers and no surge arresters) is somewhat limited, results with more 

significant differences are obtained when the presence of surge arresters and flashovers 

occurrence is taken into account. This is reflected in the reported calculations, see for instance 

the expected MTBF values of a transformer protected by surge arresters at the lowest 

distance considered in this section (50 m). 
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On the basis of the obtained results, it is possible to conclude that the simple trapezoidal 

current waveform represents a good compromise between computational effort and 

conservative assessment of the lighting performance, and therefore its use is recommended 

for insulation coordination studies, in particular if based on the Monte Carlo method. 
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2.4. Lightning Performance of a Real Distribution Network 

with Focus on Transformer Protection 

The frequency of lightning-caused transformer failures in overhead distribution feeders may 

be of concern especially in areas characterized by a high keraunic level e.g. (Plummer et al., 

1994; Mikropoulos et al., 2014), thus justifying specific studies in order to reduce the outage 

rate below the requested threshold. A joint research project between the Brazilian electric 

distribution utility AES Sul and two Universities, namely the Federal University of Itajubá and 

the University of Bologna, has focused on the assessment of the protection distance of surge 

arresters (SAs) in distribution networks with resonant grounding, in order the achieve the 

desired protection level of distribution transformers against lightning at affordable costs. The 

expected frequency of flashovers due to indirect strikes, i.e. lightning strikes hitting the 

ground nearby the lines, has been calculated for the case of medium voltage straight lines with 

different types of poles and the relevant results have been presented in (Borghetti et al., 2012; 

Napolitano et al., 2014).  

The lightning induced voltage calculations is performed by using the LIOV-EMTP-rv code 

(Napolitano et al., 2008; Nucci & Rachidi, 2014); a Monte Carlo procedure adapted from the 

one presented in (Borghetti et al., 2007), also described in (IEEE Std 1410-2010, 2011), is 

applied in order to calculate the expected mean time between failures (MTBF) of the MV/LV 

transformers. 

This section describes the development of such a procedure for the evaluation of the lightning 

performance of a real three-phase distribution medium voltage feeder located near Novo 

Hamburgo (Brazil). The feeder is characterized by a complex topology, with several multi-

conductor lines, MV/LV transformers and surge protection devices. 

In addition to the estimation of the indirect lightning performance (i.e. the lightning 

performance calculated only for the case of indirect strikes), in this section the analysis has 

been extended to include the effects of direct strikes.   

The developed model of the distribution network represents the specific features of the real 

network, such as the network topology, the multi-conductor line and pole configurations, the 

presence of surge protective devices. The coupling model between the lightning 

electromagnetic pulse (LEMP) and the overhead conductors takes into account the 
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characteristics of the lightning current, the return stroke model, and the LEMP propagation 

above a lossy ground. 

The Monte Carlo procedure adopted in this section includes a heuristic technique, designed 

and implemented in order to reduce the computational effort required for the analysis of 

large networks. The heuristic technique is able to deal with the non-linear response of the 

network due to the presence of SAs.  

Calculation Method 

The statistical procedure is based on the application of the Monte Carlo method and can be 

summarized as follows. A large number ntot of lightning events is randomly generated. Each 

event is characterized by four parameters: lightning current amplitude Ip, time to peak tf and 

stroke location with coordinates x and y.  

The lightning current parameters are assumed to follow the Cigré log-normal probability 

distributions (Anderson & Eriksson, 1980), (Cigré Working Group 33.01, 1991) for negative 

first strokes, with a correlation coefficient between tf and Ip equal to 0.47. The effects of the 

presence of positive flashes and of subsequent strokes in negative flashes on the lightning 

performance of the feeder are assumed to be negligible. The stroke locations are assumed to 

be uniformly distributed in a striking area, having a size large enough to contain the entire 

network and all the stroke locations of the indirect lightning events that could cause voltages 

larger than the minimum value of interest for the analysis. 

In general, e.g. (IEEE Std 1410-2010, 2011), the lightning performance is expressed by means 

of a curve providing the expected annual numbers of lightning events Fp that cause voltages 

with amplitude larger than the insulation level reported in abscissa: 

 p g
tot

n
F A N

n
=   (2.19) 

where n is the number of events that cause voltages higher than the considered insulation 

level, A is the striking area and Ng is the annual ground flash density (assumed equal to 

1 flash/km2/yr in this section).  

If referred to a single straight line, the lightning performance is usually expressed in terms of 

number of events per year per unit length of line. However, the indirect lightning performance 

of a network with complex topology (e.g. a distribution feeder with several laterals) may 

significantly deviate by the one inferred from the results obtained for the case of a single 
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straight line (Borghetti et al., 2009). Therefore, since the project that motivates the papers 

summarized in this section is focused on the protection of MV/LV transformers, the MTBF 

values are calculated by applying (2.19) to each MV bus where a transformer is connected. 

Value n is obtained by comparing the lightning voltages with the relevant withstand voltage of 

the transformer insulation that is assumed to be constant and known. In order to take into 

account the withstand probability distribution of transformer insulation a more complex 

procedure would need to be applied (Lopes et al., 2013).  

 Indirect Lightning Performance 

From the total set of ntot lightning events, the ones relevant to indirect lightning are selected 

by using a lightning incidence model for the line. As done so far in this thesis the electro-

geometric model suggested in (IEEE Std 1410-2010, 2011) is adopted. As already mentioned, 

the calculation of the induced voltages caused by indirect lightning strikes is performed by 

using the LIOV–EMTP-rv code. The LEMP is calculated by using the analytical formulation 

presented in (Napolitano, 2011) with the assumption that the lightning return stroke current 

propagates along a straight vertical channel according to the transmission line (TL) model. 

The assumed value for the return-stroke propagation speed is 1.5×108 m/s. The lightning 

current waveform at the channel base is approximated by a linear ramp up to the peak value 

Ip at time tf, followed by a constant value. Two values of the ground conductivity σg are 

considered: 10-3 and 10-2 S/m. The lossy ground effect on the LEMP are accounted by means 

of the Cooray-Rubinstein formula (Cooray, 1992; Rubinstein, 1996). The bus voltage at the 

utility frequency is taken into account by using the procedure described in (Borghetti et al., 

2012).  

In order to appraise the indirect lightning performance in a reasonably low computational 

time, a heuristic technique has been applied that avoids performing the time-domain 

simulation for events expected to be less harmful than previously calculated events that have 

not caused flashovers. The events that are believed to be not significant for the calculation of n 

without performing the corresponding time-domain simulations are those that are 

characterized by lower Ip, greater tf and greater distance between the stroke location and the 

nearest SAs than a previously calculated event that causes a current in the SAs below a 

predefined minimum value, Isa. The adopted value is Isa = 100 A so that very similar results 

both with and without the application of the heuristic procedure are obtained for a test case 

composed by a straight three-conductor line with equally spaced SAs. 
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 Direct Lightning Performance 

In order to take into account the effects of direct events on the lightning performance of the 

network, the overvoltages corresponding to each of the Monte Carlo events classified as direct 

strikes to the line are calculated by using an LIOV-EMTP-rv model. A direct strike is 

represented by a current source connected to the pole closest to the randomly-generated 

stroke location coordinates. As for the calculation of the induced voltages, the waveshape of 

the lightning currents is represented by a linear front and a flat top. The surge impedance of 

the lightning channel is assumed much larger than that of the line and, therefore, neglected. 

The LEMP effect is accounted also in case of a direct strike, assuming the stroke location 10 m 

far from the line in order to avoid numerical singularities. This approximation is justified 

since, near the stroke location, the overvoltages due to the current injection prevail over those 

induced by the LEMP. Direct strikes to distribution overhead lines are always expected to 

cause flashovers at line insulators, unless very close SAs are installed (IEEE Std 1410-2010, 

2011), even in presence of ground wires (Nakada et al., 2003; Miyazaki & Okabe, 2009). A 

larger number of flashovers along the feeder would result in a worst lightning performance of 

the line, but in an increase of MTBF of the transformers not equipped by surge protective 

devices. 

The implemented model represents the insulators flashovers by means of ideal switches that 

close according to the disruptive effect criterion (Darveniza & Vlastos, 1988): a flashover 

occurs if the time integral of the line-to-ground voltage exceeds a given value DE. The adopted 

DE values stand on the ones provided by De Conti et al. (2010), which are inferred from 

experimental tests on a pin-type ceramic insulator of the same type installed in the AES Sul 

networks. For the insulator of the central conductor, due to the its vicinity to a metallic 

crossarm brace, the same values proposed in (De Conti et al., 2010) for the insulator alone are 

assumed, i.e. DE = 60.9 kVμs and V0 = 90 kV, where V0 is the minimum voltage for the 

initiation of the breakdown process. For the insulators of the two outer conductors the 

assumed values are: DE = 255 kVμs and V0 = 164 kV, taking into account that the insulators 

are in series with a 60 cm long wooden crossarm. The latter value, larger than the value 

proposed in (De Conti et al., 2010) for insulators in series to 40 cm of wooden crossarm, has 

been obtained by assuming a per unit-length increase of the CFO due the wood equal to 250 

kV/m (as suggested in IEEE Std 1410-2010 2011) and a  reducing factor equal to 0.7 for wet 

conditions (Jacob et al., 1991). 
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Other assumptions: poles made of concrete with a grounding resistance equal to 400 Ω and 

SAs grounded with a resistance Rg equal to 10 Ω. The effect of the soil ionization at the 

grounded poles is accounted by using the Weck’s approximation (Cigré Working Group 33.01, 

1991).  

The calculations have been repeated for three different values of the environmental shielding 

factor Sf , i.e. the per-unit portion of the distribution line shielded by nearby objects (IEEE Std 

1410-2010, 2011): Sf = 0 (no shielding), Sf = 0.91 (that corresponds to the case of shielding 

provided by objects having the same height of the lines) and Sf = 1 (complete shielding 

provided by taller nearby objects). The effects on the lightning performance due the events 

that do not hit the line thanks to the environmental shielding are accounted by the calculation 

of the induced voltages caused by the associated LEMP. Multiple reflections of the current 

pulse along the stricken objects and the effects of the presence of the objects on the LEMP are 

neglected.  

For the cases with Sf greater than 0, the shielding objects are assumed to be uniformly 

distributed in the whole area and placed at distance d = 10 m from the overhead lines. The 

events with a randomly-generated stroke location at a distance di ≤ d that are expected to hit a 

nearby object rather than the line are repositioned at a distance d from the line.  

Distribution network and calculated lightning performances  

The Novo Hamburgo distribution feeder is composed by three-phase overhead lines for a total 

length of almost 13.9 km. The mean length of the spans between subsequent poles is 40 m. 

The topology shown in Figure 2-25 has been acquired from the geographic information 

system (GIS) data of the network with only small changes so to have line lengths integer 

multiples of 5 m that is the spatial integration step adopted in the FDTD procedure. The 

primary substation is located at the origin of the coordinate system. The total number of 

MV/LV transformers is 80, 55 of which are utility transformers and 25 are of private users. 

Figure 2-25 also shows the ID numbers adopted to identify the transformers in in Table 2-12 

and Table 2-13. All the lines are composed by three overhead conductors of diameter equal to 

1 cm and assumed horizontally placed at 9.3 m above ground. The rated voltage of the 

network is 13.8 kV, whilst the withstand voltages (WV) of the transformers is assumed to be 

equal to 125 kV. The voltage-current characteristic of the SA is the one already adopted in the 

previous sections. 
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Figure 2-25 – Top view of the network topology, locations and identification number of the distribution 
transformers (with different notations for the utility substations and the private users’ ones). 
 

  

In (Borghetti et al., 2014) the indirect lightning performance results obtained for the same 

network by assuming a rated voltage equal to 23.2 kV and WV = 150 kV are also reported. 

Figure 2-26 shows the top view of the network together with the indication of the locations of 

both the direct and indirect strikes considered in the Monte Carlo simulation. The total 

number of Monte Carlo events is ntot = 200 000, 14 685 of which are direct strikes to line 

conductors. The events are generated uniformly over a striking area A=19 km2 with borders 

at least 1 km far from the network (only part of A is shown in Figure 2-26). 

The number of time-domain simulated events is 60 471 out of the 185 315 indirect ones for 

the case of ground conductivity σg = 0.001 S/m and 25 409 for the case of σg = 0.01 S/m. The 

reduction in the number of simulations is due the application of the heuristic technique and 

the corresponding calculation time reduction is 67.4% and 86.3% for σg = 0.001 S/m and σg = 

0.01 S/m, respectively.  
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Figure 2-26 – Locations of the Monte Carlo events nearby the network (blue: indirect events, red: direct events).  
 

The results of the calculations reported in what follows refer to the case of σg = 0.001 S/m and 

the calculations are repeated for two different configurations of the position of SAs: 

- configuration A: the SAs are installed at the MV terminals of 31 of the 55 utility 

transformers; 

- configuration B: the SAs are installed at the MV terminals of all the 25 users’ transformers 

and of 16 of the 55 utility transformers. 

Figure 2-27 and Figure 2-28 show the MTBF values due to indirect lightning events obtained 

for the transformers without SAs for configuration A and configuration B, respectively. The 

indications of the MTBF value is omitted if larger than 700. The indirect lightning 

performance of the unprotected transformers inferred for configuration A is more uniform 

than for configuration B as a consequence of a more uniform distribution of SAs in the 

network. In configuration B, with all users’ transformers protected, some utility transformers 

are well protected against indirect lightning even without SAs. 

Areas with high density of MV/LV transformers allow taking advantage of the protection 

distance of the surge protective devices in order to avoid or defer the installation of SAs at the 

connection of some distribution transformers. This is of particular interest when there is the 

need to upgrade of all the SAs due to the planned change of the neutral earthing method from 
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solidly earthed to resonant one, as for the case of the considered distribution network. 

However, as shown by the results obtained by taking into account both indirect and direct 

events, presented later in this Section, there is such a possibility only when the surrounding 

environment is expected to significantly shield the overhead lines against the direct lightning 

strikes. 

The voltage stress on the transformers due to indirect lightning is highly dependent on the 

topological configuration of the distribution network. The indirect lightning performance of 

compact portions of the network, i.e. areas characterized by a larger number of laterals, is 

better in general than that of portions of the network with no laterals.  

Figures 2-29 to 2-31 show the MTBF values calculated for configuration A, by taking into 

account both direct and indirect lightning, for the case of Sf = 0, Sf =1, and Sf =0.91, 

respectively.  

In general, unprotected transformers installed at the ends of laterals suffer a worse lightning 

performance than that of transformers located in other parts of the network with the same 

distances from nearby SAs.  

The comparison between the results of Figure 2-27 and Figure 2-29 shows that direct strikes 

to the line conductors yield much lower and more uniform MTBF values.  

With  Sf =1 and Sf =0.91, the MTBT values of several transformers are significantly increased, 

in particular for those near to SAs, as shown by Figure 2-30 and Figure 2-31. This confirms the 

possibility to avoid the installation of SAs at some transformers if the presence of nearby 

objects prevents, at least in part, direct strikes to the line, although the comparison between 

Figure 2-27 and Figure 2-30 shows that the MTBF values of several transformers are 

significantly affected also by the induced voltages due to indirect events to objects very close 

to a line. 

Similar conclusions can be drawn from the corresponding results obtained for configuration 

B, shown in Figures 2-32 to 2-34. Figure 2-35 refers to the same case of Figure 2-29 but the 

response to direct strikes is evaluated without the LEMP. As expected, the MTBF values of 

Figure 2-35 are slightly higher than those of Figure 2-29, since the presence of the LEMP is in 

general expected to worsen the lightning performance (Tossani et al., 2015a).  
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Figure 2-27 – Configuration A. MTBF values (in years) due to indirect lightning of transformers not equipped 
with SA. σg =0.001 S/m. 
 

 

Figure 2-28 – Configuration B. MTBF values (in years) due to indirect lightning of transformers without SA. σg = 
0.001 S/m. 
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Figure 2-29 – Configuration A. MTBF (years) due to direct and indirect lightning of the transformers without SAs. 
σg = 0.001 S/m. Sf = 0. 
 

 

Figure 2-30 – Configuration A. MTBF (years) due to direct and indirect lightning of the transformers without SAs. 
σg = 0.001 S/m. Sf = 1. 
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Figure 2-31 – Configuration A. MTBF (years) due to direct and indirect lightning of the transformers without SAs. 
σg = 0.001 S/m. Sf = 0.91. 

 

 

 

Figure 2-32 –  Configuration B. MTBF (years) due to direct and indirect lightning of the transformers without SA. 
σg = 0.001 S/m. Sf = 0. 
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Figure 2-33 –  Configuration B. MTBF (years) due to direct and indirect lightning of the transformers without SA. 
σg = 0.001 S/m. Sf = 1. 
 

 
 

Figure 2-34 –  Configuration B. MTBF (years) due to direct and indirect lightning of the transformers without SA. 
σg = 0.001 S/m. Sf =0.91.  
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Figure 2-35 – MTBF (years) due to direct for the same case of Figure 2-29 but without taking into account the 
LEMP due to direct strikes. 
 

The MTBF values relevant to configuration A and B calculated for the case of σg = 0.001 S/m 

are also reported in Table 2-12 and Table 2-13, respectively, together with the relevant 

confidence intervals. These values are compared with those obtained for σg = 0.01 S/m and 

with those obtained by including the effects of direct strikes to nearby objects (Sf =1). 

The tables show that, disregarding direct events, all the transformers are well protected for 

the case of σg = 0.01 S/m and almost all the transformers have MTBF values greater than 20 

years for the case of σg = 0.001 S/m. If direct strikes to nearby objects are taken into account, 

almost all MTBF values are greater than 20 years only for the case of σg = 0.01 S/m.  

The tables show that, disregarding direct events, all the transformers are well protected for 

the case of σg = 0.01 S/m and almost all the transformers have MTBF values greater than 20 

years for the case of σg = 0.001 S/m. If direct strikes to nearby objects are taken into account, 

almost all MTBF values are greater than 20 years only for the case of σg = 0.01 S/m. Indeed, as 

already explained through this thesis, low soil conductivity significantly enhance the 

overvoltages due to indirect lightning events (Rachidi et al., 1996).  
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TABLE 2-12 – MEAN TIME BETWEEN FAILURES (YEARS) AND CONFIDENCE INTERVAL (CI). CONFIGURATION A. 

Obs. 
point 

σg =0.001 S/m σg =0.01 S/m 

Indirect events only Indirect and direct 
events (Sf =1) Indirect events only Indirect and direct 

events (Sf =1) 
MTBF CI (%) MTBF CI (%) MTBF CI (%) MTBF CI (%) 

U
ti

lit
y 

3 110 21 29 11 inf - 71 16 
4 110 20 18 8.4 350 36 36 12 
7 71 16 16 7.9 320 35 36 12 
8 39 12 7,4 5.3 160 25 18 8.3 
9 160 25 26 9.9 inf - 63 15 

15 170 26 19 8.4 770 54 35 12 
16 200 27 28 10 inf - 64 16 
18 500 44 22 9.2 inf - 37 12 
21 140 23 15 7.5 inf - 34 11 
22 33 11 14 7.2 270 32 41 13 
24 670 51 31 11 inf - 56 15 
25 74 17 13 7.1 260 31 26 10 
27 110 21 17 8.0 670 51 44 13 
32 110 20 20 8.8 720 52 48 14 
33 32 11 11 6.5 180 26 35 12 
35 65 16 17 8.0 480 43 41 13 
36 670 51 31 11 inf - 53 14 
39 83 18 20 8.7 420 40 39 12 
43 inf - 45 13 inf - 130 22 
47 120 21 16 7.7 inf - 41 12 
48 310 35 20 8.8 inf - 36 12 
49 140 23 13 7.1 inf - 40 12 
53 110 20 27 10 inf - 70 16 
54 130 23 23 9.5 inf - 64 16 

U
se

rs
 

1 60 15 12 6.9 240 30 28 10 
2 52 14 19 8.4 inf - 100 20 
3 140 23 26 9.9 inf - 65 16 
4 720 52 45 13 inf - 150 24 
5 130 22 26 10 inf - 76 17 
6 inf - 46 13 inf - 130 22 
7 91 19 26 9.9 910 59 57 15 
8 220 29 29 11 inf - 69 16 
9 53 14 12 6.7 inf - 71 16 

10 120 22 12 6.9 830 57 26 10 
11 830 57 34 11 inf - 95 19 
12 inf - 49 14 inf - 110 20 
13 53 14 12 6.9 160 25 23 9.4 
14 190 27 15 7.6 inf - 39 12 
15 590 48 21 8.9 inf - 63 16 
16 110 21 17 8.0 670 51 44 13 
17 inf - 39 12 inf - 110 20 
18 inf - 67 16 inf - 200 28 
19 88 18 17 8.1 670 51 45 13 
20 52 14 13 7.0 830 57 61 15 
21 300 34 16 7.8 inf - 69 16 
22 160 25 23 9.4 inf - 53 14 
23 17 8.0 4.8 4.2 190 27 19 8.6 
24 24 9.6 6.2 4.8 350 36 27 10 
25 11 6.5 4.8 4.3 76 17 20 8.8 
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TABLE 2-13 – MEAN TIME BETWEEN FAILURES (YEARS) AND CONFIDENCE INTERVAL (CI). CONFIGURATION B. 

Obs. 
point 

σg =0.001 S/m σg =0.01 S/m 

Indirect events only Indirect and direct 
events (Sf =1) Indirect events only Indirect and direct 

events (Sf =1) 
MTBF CI (%) MTBF CI (%) MTBF CI (%) MTBF CI (%) 

1 66 16 16 7.7 inf - 49 14 
2 36 12 10 6.2 290 34 27 10 
3 220 29 26 9.9 830 57 48 14 
4 inf - 76 17 inf - 150 24 
5 inf - 57 15 inf - 170 26 
6 34 11 12 6.9 290 33 45 13 
7 57 15 18 8.2 280 33 40 12 
9 120 21 23 9.4 inf - 58 15 

13 560 46 46 13 inf - 150 24 
15 290 34 30 11 inf - 55 15 
16 inf - 61 15 inf - 160 25 
18 inf - 41 13 inf - 85 18 
19 inf - 83 18 inf - 200 28 
20 inf - 48 14 inf - 110 21 
21 460 42 24 9.6 inf - 68 16 
22 32 11 11 6.5 170 25 25 9.8 
23 53 14 11 6.4 190 27 26 10 
24 inf - 37 12 inf - 65 16 
25 390 38 31 11 inf - 63 16 
28 200 28 24 9.7 inf - 82 18 
29 inf - 89 19 inf - 260 31 
32 73 17 17 7.9 480 43 42 13 
33 26 10 9.7 6.1 140 23 28 10 
34 86 18 21 9.0 inf - 73 17 
35 32 11 10 6.3 180 26 26 9.9 
36 670 51 29 10 inf - 41 13 
37 72 17 16 7.8 inf - 47 13 
39 39 12 11 6.5 210 28 24 9.6 
43 inf - 43 13 inf - 130 22 
44 57 15 15 7.6 500 44 46 13 
45 45 13 13 7.0 220 29 26 9.9 
47 70 16 14 7.2 560 46 30 11 
48 230 30 20 8.8 910 59 39 12 
49 160 25 15 7.5 inf - 40 12 
50 67 16 12 6.8 330 36 24 9.7 
52 81 18 15 7.5 320 35 28 10 
53 47 13 12 6.9 350 36 33 11 
54 57 15 15 7.5 360 37 34 11 
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In order to illustrate the effects of the grounding resistance of SAs, the calculations have been 

repeated for the case of Rg = 50 Ω (configuration A and σg = 0.001 S/m) instead of Rg = 10 Ω as 

in the previous calculations. Figure 2-36 compares the numbers of utility transformers 

(without SAs) that have MTBF values lower than abscissa, obtained by using the two different 

values of Rg. The comparison is carried out both for indirect events only and by taking into 

account also direct strikes (Sf = 0 and Sf =1). As expected, since MTBF values decrease by 

increasing Rg, the number of transformers characterized by very low MTBF values increases: 

e.g. for the case of Sf = 1 the number of transformers with MTBF value lower than 20 years 

increases from 13 with Rg =10 Ω to 17 with Rg = 50 Ω. 

 

Figure 2-36 – Influence of grounding resistance Rg on the number of utility transformers with MTBF value lower 
than abscissa calculated for configuration A and  σg = 0.001 S/m. 
 

Conclusion 

This section has presented the application of a Monte Carlo procedure based on the accurate 

calculation of the induced voltages provided by the LIOV-EMTP-rv code for the evaluation of 

the lightning performance of an entire real distribution feeder. The analysis includes the 

effects of direct strikes to the line conductors, taking into account also the shielding provided 

by the presence of elevated objects nearby the lines (e.g. trees and buildings). The developed 

model, which accurately represents the complex network topology and its highly non-linear 
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response due to the presence of SAs, insulation breakdown and soil ionization, allows for the 

estimation of the MTBF values of each MV/LV transformer not equipped with SAs. 

In case of open terrain lines, without shielding provided by nearby objects, the lightning 

performance is mainly determined by the direct strikes and low MTBF values are in general 

obtained for the unprotected transformers, almost independently from the network 

configuration and the distance from contiguous SAs. In case of shielding provided by nearby 

objects, which prevents direct strikes to the line, the lightning performance improves 

significantly even in case of partial shielding. In this case the LEMP effect of shielded strikes, 

i.e. strikes that would hit the line in open terrain, has a significant effect on the lightning 

performance. In particular the worst performances are those of the transformers connected at 

the end of laterals. 

The presented methodology appears a useful tool in order to select the most appropriate 

strategies for the installation of SAs in order to achieve the desired lightning performance at 

affordable costs. This is of peculiar interest for the case of the network chosen for the analysis 

in which all the SAs needs to be replaced in view of the planned change of the neutral earthing 

method from solidly earthed to resonant one. 
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3. Conclusion 

This final chapter is devoted to the main conclusions of this research activity.   

Concerning the analysis carried out on the field to line coupling to transmission lines, two new 

analytical expressions for the evaluation of the inverse Laplace transform of the ground 

impedance matrix elements of a multiconductor overhead line have been derived. The first 

expression consists of the inverse Laplace transform of Sunde’s logarithmic formula, and for it 

two equivalent forms have been proposed, namely a series expression, which is slowly 

converging at late times, ad an integral one, which instead converges fairly quickly for any 

value of time. The second expression is the inverse Laplace transform of the general integral 

expression given by Sunde.  

It has been proven that the proposed formulas are not affected by any singularity at the early 

times, contrary to the previously proposed low frequency expressions such as the one by 

Timotin and its derivations. The proposed series expression has been used for the evaluation 

of lightning-induced transients along a multi-conductor line. In order to assess the advantages 

of the proposed formulation with respect to other ones recently proposed for fixing the low 

frequency singularity, a comparison between the overvoltages induced on a lossy line 

according to the approach used by Rachidi et al., with those calculated using the proposed 

approach has been carried out. It is shown that for fast electromagnetic sources, and/or poor 

ground conductivities, the proposed expression provides more accurate results compared to 

the approach used by Rachidi et al. The observed difference on the peak of the induced 

voltages can reach 20%. The same conclusion applies also for the other two formulas 

proposed, namely the sum of the series and the inverse Laplace transform of Sunde’s integral. 

Further, the mathematical derivation of Sunde’s integral inverse Laplace transform has been 

extended to the classical case of a multiconductor buried line taking into account also the 

displacement currents. A discussion on the ground transient resistance behavior of buried 

cables by using these new expressions is beyond the scopes of this thesis and therefore will be 

subject of future investigations.  
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The second chapter has dealt with the lightning performance of distribution networks. A 

Monte Carlo procedure based on the accurate calculation of the induced voltages provided by 

the LIOV-EMTP-rv code for the evaluation of the lightning performance of a large, real, 

distribution feeder has been proposed. The analysis includes the effects of direct strikes to the 

line conductors, taking into account also the shielding provided by the presence of elevated 

objects nearby the lines (e.g. trees and buildings). The developed model accurately represents 

the complex network topology and its highly non-linear response due to the presence of SAs, 

insulation breakdown and soil ionization. Furthermore, an analysis on the influence of the 

choice of the function describing the current waveform at the base of the lightning channel on 

the lightning performance of power components connected to an overhead distribution line 

has been carried out. At this purpose, a procedure able to extend the Monte Carlo method to 

the generation of a multivariate log-normal distribution of current parameters has been 

developed. On the basis of the obtained results, it is possible to conclude that the simple 

trapezoidal current waveform represents a good compromise between computational effort 

and accurate/conservative assessment of the lighting performance, and therefore its use is 

recommended for insulation coordination studies, in particular if based on the Monte Carlo 

method. 

The proposed model allows for the estimation of the MTBF values of each MV/LV transformer 

not equipped with SAs. In case of open terrain lines, without shielding provided by nearby 

objects, the lightning performance is mainly determined by the direct strikes and low MTBF 

values are in general obtained for the unprotected transformers, almost independently from 

the network configuration and the distance from contiguous SAs. In case of shielding provided 

by nearby objects, which prevents direct strikes to the line, the lightning performance 

improves significantly even in case of partial shielding. In this case the LEMP effect of shielded 

strikes, i.e. strikes that would hit the line in open terrain, has a significant influence on the 

lightning performance. In particular the worst performances are those of the transformers 

connected at the end of laterals. 

The presented methodology appears a useful tool in order to select the most appropriate 

strategies for the installation of SAs in order to achieve the desired lightning performance at 

affordable costs. This is of peculiar interest for the case of the network chosen for the analysis 

in which all the SAs needs to be replaced in view of the planned change of the neutral earthing 

method from solidly earthed to resonant one. 
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4. Appendix 1 – Inverse Laplace transform of 

Ground Impedance Matrix – case 1: Sunde’s 

Logarithmic formula 

Let us seek the time domain expression for the ground resistance starting from the following 

inverse Laplace transform 
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Diagonal terms  

The Sunde logarithmic expression for the diagonal terms of the ground matrix can be written 

as 
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From (Abramowitz & Stegun, 1964), equation (29.3.50) 

( )
( )

1
21

1
2

exp ;  0
2 2

k
k

k

t at atL s s a I k
k a
π

Γ

-
--

-

æ ö æ ö æ ö÷ ÷ ÷ç ç çé ù+ = - × >÷ ÷ ÷ç ç çë û ÷ ÷ ÷ç ç çè ø è ø è ø
                (A.6) 

in which  

( )kΓ is Euler Gamma function of the real argument k; 

( )1/2 / 2kI at-  is the modified Bessel function of the first kind, of the order (k – 1/2) and of the 

real argument at/2. 

From (Gustav Doetsch, 1974) theorem 30.1, the inverse transform (A.1) of  (A.7) is 
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Off-diagonal terms  

The Sunde logarithmic equation for the off-diagonal terms  (Rachidi et al., 1999) can be 

written as 
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Note that in (A.9) the only term that depends on hi is bi, thus, adopting (A.7) for each term of 

(A.8) leads to 
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where 0 0
ˆ ˆ
ij rg ijb hµ ε ε=  and *

îjb  is its complex conjugate. 

After some mathematical manipulation one finally gets 
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5. Appendix 2 – Inverse Laplace transform of 

Ground Impedance Matrix – case 2: Sunde’s 

Integral formula 

Diagonal elements 

Sunde’s formula can be rewritten as follows:  
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The inverse transform of the second integral is trivial then it is left to the reader. 

By performing the substitution / gy x γ=  
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From (Prudnikov et al., 1992)vol. 5 eq 2.2.5 - 2 
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from which  follows that 
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The Heaviside and Dirac function are null unless k = t, and therefore, k in (A2.6) and (A2.7) 

must be real. 

By substituting (A2.7) in (A2.5) one gets 
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Hence, being ( )0 0 1I =   
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And finally   
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The integral presents some numerical instability issues at very late times (more than 10 µs for 

the physical cases considered so far); therefore we rewrite it as follows: 
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One can bring variable x inside the square root, so that the integrand becomes an even 

function: 
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The integration can now be performed by using Chebyshev-Gauss quadrature formula: 
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To avoid numerical instabilities at late times one can include the exponential ( )exp / 2at-  

inside the integral and we multiply and divide for the coefficient ( )2exp / 2 1at x− −  : 
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which allows for the use of more accurate routines available for the function
22 /2 1

1 1
2

at xatI x e− − − 
 

rather than evaluate the Bessel and the exponential separately (see 

Abramowitz). 
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Off-diagonal elements 

Again the integral can be split in two parts.  
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and as the inverse transform of the second one is trivial is left to the reader. 
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Setting ˆ2 ijk b y=  and reminding that k must be real, lead to a semi-infinite integral of the real 

variable k, letting y become the complex variable ˆ/ 2 ijk b . One can now use again (A2.7) to 

evaluate the inverse Laplace transform of the exponential, and (A2.12) becomes 
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Finally, the inverse Laplace transform for the off-diagonal elements reads: 
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Buried Cables – Integral component  

The procedure is similar to the case of overhead lines 
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where, after the same substitution as before, the two integral read: 
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This time, the substitution to be performed in order to make possible the inversion through 

formula (A2.7), is the following 
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from which, after some mathematical manipulation, one gets: 
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Following the same procedure adopted for the overhead lines one gets the final expression for 

the inverse Laplace transform of the integral ijJ  
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  (A2.19) 

To avoid numerical issues, one should first evaluate the real part of the function being 

integrated. 

 

Buried Cables – Bessel component  

Let us consider the integral representation of the modified Bessel Function of the Second Kind 

(Abramowitz & Stegun, 1964) eq. 9.6.24 (Note that arg( ) / 2z π<  is satisfied by the fact that 

the ILT integration path lays on the right semi-plane, Re(s) > 0) 
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The procedure is the same as before, but the substitution to be performed is the following 

 0 cosh( )ij gk d xµ ε=   (A2.21) 

This leads to the final expression for the inverse Laplace transform of the difference between 

the two Bessel functions 
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