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1. INTRODUCTION 

Preterm infants are exposed to a high risk for infection by a wide range of viruses, bacteria, 

protozoa, and fungi in the neonatal period.  Infectious disease is one of the major causes of 

mortality and morbidity among newborns and it accounts alone for more than 50% of the 

deaths in infants born with gestational age <28 weeks. 

The need of intensive care with frequent invasive procedures and the immaturity and 

inexperience of the neonatal immune system are the main predisposing factors.  

However the characteristics of the preterm infants immune system are not fully understood as 

well as the factors that can influence immunity in the perinatal period. 

It has been demonstrated that preterm infants have an adequate, even higher, number of 

leukocytes and lymphocytes compared to adults; however these numbers do not reflect the 

level of immunological competence of the subjects since these cells may lack of function at 

birth. 

Lymphocytes, especially CD4+ T cells, play a crucial role in the regulation of the immune 

system. Because they are involved in the modulation of both humoral and cell-mediated 

adaptive immunity and they also have a relevant part in the control of innate immune 

response, they are often targeted as a marker of the global immune function. 

The aim of the study was to assess the functional activity of CD4+ cells at birth and at 30 

days of life and to assess the influence of the main perinatal factors in their level of activity. 

In order to investigate the CD4+ T cells fucntion we used the Immuknow® assay that 

quantifies the levels of ATP after in vitro stimulation. This test has previously only been 

tested in adults and children and this is the first study that uses this assay to assess T cell 

mediated immunity in preterm infants. 

! !
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2. THE DEVELOPMENT OF THE IMMUNE SYSTEM 

The ontogeny of immune system starts early in the embryo, continues during fetal life and is 

completed only several years after birth. [1]  

At the time of birth, the immune system has not fully matured. The adaptive immune system 

must still develop specificity and memory, which is completed only in the early childhood 

years [2]. Therefore newborns rely heavily on their innate immune response which is also 

immature. [3]. Preterm infants have even more pronounced deficiencies in both innate and 

adaptive immunity, and in the interaction between these two systems. [4,5] 

 
 

 
 

Figure 1 Leukocyte development. In grey: preterm birth. [6] 

 

2.1 Innate immunity 
 

Neutrophils 

 

At the time of birth infants have a lower number of neutrophils compared to adults. This 

deficit is more pronounced, the lower the gestational age is at birth. The pool of neutrophil 

progenitors is also small and can be readily exhausted during sepsis [7]  
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Within few hours from birth the neutrophil count peaks and then gradually decreases during 

the following 48-72 hours to reach the normal range of 7.000 –1000 cells/µL, in absence of 

complications. [8] 

It appears that not just the number of neutrophils but also their functions are impaired at birth. 

Compared to adults, neutrophils from both term and preterm infants adhere poorly to the 

endothelium due to a lack of selectin expression. which limits the recruitment of circulating 

neutrophils into the tissues.[9] Selectin expression is further reduced by perinatal stress such 

as in birth asphyxia [10]. Moreover neutrophils from both term and preterm neonates display 

a reduced deformability and have an impaired chemotactic response, migrating at only about 

half the speed traveled by adult cells. [11-13] 

 

While neutrophils from term infants achieve normal chemotactic function by 2 weeks after 

birth, postnatal neutrophil maturation proceeds very slowly in preterm infants [14] and in 

infants <34 GA is still impaired at 42 wks PCA. [15] Although minor infections may enhance 

chemotaxis in neonates, the migratory responses of neonatal neutrophils may become further 

depressed during systemic Gram-negative sepsis. [16] 

Studies have shown that preterm neutrophils also have impaired phagocytosis reduced 

opsonic activity and generate a depressed respiratory burst which is the major killing 

mechanism in neutrophils. [12,17] 

The neutrophil respiratory burst in infants born at 24–28 weeks is clearly less robust than in 

those born at 29–35 weeks and takes about 2 months to correct. However, neutrophils from 

preterm infants continue to have an overall weaker oxidative burst than adults and may not 

show any improvement in critically-ill preterm infants. [18] Neutrophils from term neonates 

have granule contents and degranulation responses similar to adults. [19]  

However, neutrophils from preterm infants have a lower capacity to release BPI, elastase, and 

lactoferrin than in adults and term infants. [12,20]  

Collectively, neutrophil line immaturities and limited function account for a substantial 

component of neonatal susceptibility to invasive bacterial infections. 
 

Monocytes and Macrophages 

 

Monocytic cells can be detected early during gestation. They are first seen in the yolk sac at 

3–4 weeks of gestation  and after few weeks they can be detected in the the fetal liver. During 

the second month of gestation, as hematopoiesis becomes established in the fetal liver, 
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monocytes are seen in high proportions and constitute nearly 70 percent of all hematopoietic 

cells. Over the next 6 weeks, as the erythroid cells predominate, this proportion falls to 1–2 

percent. The first monocytes in circulation are not seen until about the fifth month of gestation 

[21], and remain uncommon until the bone marrow becomes the predominant site of 

hematopoiesis [22]. At 30 weeks, monocytes comprise 3–7 percent of hematopoietic cells 

[23]. Term cord blood studies show a relative monocytosis, which persists during the neonatal 

period. The absolute monocyte counts tend to decline gradually from 1340–2200/µL in the 

first week to about 700 in the third week [24].   

Unlike neutrophils, the major host defense functions of monocytes in cord blood of term 

infants are largely intact. [25]. Cord blood monocytes show adherence, random migration, 

chemotaxis, bactericidal activity, phagocytosis-associated chemiluminescence, production of 

superoxide anion (O-2) and generation of hydrogen peroxide at levels comparable to adults 

[26, 27]. The ability of fetal and neonatal monocytes to kill a variety of pathogens including S. 

aureus, S. epidermidis, E. coli, and C. albicans appears to be equivalent [26, 28]. 

Information on the number and function of tissue macrophages in the neonatal period is little 

and mainly derived from autopsy studies. The size of the macrophage pool varies in different 

organ systems. In the gastrointestinal tract, macrophages appear in the lamina propria as early 

as 10 weeks of gestation and a sizable macrophage population can be seen during 

midgestation [29]. In contrast, the alveolar macrophage population remains small in the fetus 

and expands rapidly during the early neonatal period presumably as a result both from an 

influx of monocytes from the circulation as well as from clonal expansion in situ. [30]  One 

can speculate that the number of monocytes, despite being adequate at birth in a term 

newborn, can be quite low in the preterm infants. [31]   

In terms of function it appears that cytokine production is different in preterm infants: while 

IL-1 e TNFα concentrations are similar to adults, IL-12 ed IFN-γ production is impaired. 

These cytokines are necessary for the stimulation and activation of Th1 lymphocytes and to 

establish an adequate immune response against intracellular organisms and viral agents. [32]   

 

2.2 Adaptive Immunity 
 

Adaptive immunity, involving lymphocytes (B and T cells), is pathogen-specific and requires 

acquisition of immunological memory. Maturation of adaptive immunity occurs mostly after 

term birth, so all newborn infants have deficiencies in T cell activation and cytokine 
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production, B cell immunoglobulin production, and interactions between T and B cells, 

relative to adults. [6]   

 

Dendritic cells 

 

Dendritic cells (DCs) are a discrete leukocyte population with a highly developed antigen-

presenting function. Cells with a dendritic/macrophage structure are present in the yolk sac, 

mesenchyme and the liver at 4–6 weeks of gestational age. DCs are detectable in skin by 6–7 

weeks of gestation. [25]   

Cord blood-DCs represent about 0.3% of all mononuclear cells. Due to the low frequency of 

DCs in peripheral blood, most studies of neonatal DCs have been carried out using in vitro 

monocyte-derived dendritic cells (MDDCs). As for the macrophages it seems that their 

function as stimulators of lymphocytes function is impaired due to a lack of production of 

cytokines and a low expression of co-stimulatory molecules. [33].  

 

T-Lymphocytes 

 

The thymus arises at about six weeks of gestation from the third branchial arch, with the 

cortex arising from its ectodermal layer and the medulla from the endoderm. Lymphoid cells 

migrate over the next 2–3 weeks, initially from the yolk sac and fetal liver, and then from the 

bone marrow to colonize the fetal thymus [34]. These prothymocytes interact with the stroma, 

proliferate actively, and are triggered to differentiate with expression of the first T-cell-

specific surface molecules (e.g., CD2, and later CD4 and CD8) [35,36]. A clear delineation of 

the thymic cortical and medullary regions occurs at 12 weeks of gestation; Hassall’s 

corpuscles appear shortly thereafter [37,38]. The most immature thymocytes are found in the 

subcapsular cortical region, and cells move into the deeper layers as they mature [37]. The 

early prothymocytes do not express CD3, the T-cell receptor (TCR), CD4, or CD8 and are 

often referred to as triple-negative thymocytes [39]. The progeny continue to divide and 

rearrange their TCR genes, and since these cells express both CD4 and CD8, they are now 

called double-positive [37,39]. They undergo positive selection by self-major 

histocompatability complex (MHC) restriction, and more than 95 percent (about 50 million) 

cells die each day during this stage [39]. Negative selection occurs next, and is mediated by 

the bone marrow-derived antigen-presenting cells (APC) (e.g.,dendritic cells and 

macrophages), which eliminate autoreactive cells either by clonal deletion or clonal anergy 
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[40]. As these thymocytes mature and reach the medulla, they express only one of the CD4 or 

CD8 antigens. These single-positive T-cells migrate from the thymus to the peripheral 

lymphoid organs at about 14 weeks of gestation [37]. By 15 weeks, human thymocytes 

express a complete set of TCRs [37, 41]. During fetal life, thymus is the largest lymphoid 

tissue in terms of body proportions. It is about two thirds its mature weight at birth, and 

reaches its peak mass at around 10 years of age. Subsequently, it continues to involute and is 

replaced by adipose tissue [42]. 

From 19 weeks of gestation T-cell subpopulations gradually increase in number and continue 

to rise after birth to peak at about 6–9 months. The numbers subsequently decline, and adult 

levels are finally reached at 6–7 years of age [43]. In term neonates, CD4+ cells constitute a 

higher proportion of T-cells than adults. CD8+ cells, on the other hand, are fewer both in 

terms of their absolute number and as a percentage of total T-cells. Therefore the CD4/CD8 

ratio is as high as 4.9:1 during the perinatal period, and declines to adult values of 

approximately 2:1 only by 4 years of age [43].  

Preterm infants have a significantly higher number of CD4+ T-cells while the number of 

CD8+ T-cells does not seem to change with gestational age [44].  

Around 80–90% of T-cells in cord blood are naïve lymphocytes (CD45RA) compared with 

only 40–60% of in the adults. The percentage of memory T-cells (CD45RO) increases in 

healthy infants during the first few years, but reaches adult levels only later in life [45].  

Cord blood T-cells from premature infants have a limited capacity for mitogen-induced 

proliferation but these defects are corrected by full-term [45,46].  

Neonatal concentrations of pro-inflammatory cytokines such as IL-1, IL-6, TNF-α, IFN-α, 

and IFN-β are comparable to adults, and also increase similarly during sepsis [47,48]. 

Premature infants, however, produce lower amounts of TNF-α and IFN-α compared to those 

born at term [49,50]. Among the cytokines involved in adaptive immunity, only IL-2 

concentrations are comparable; on the opposite IL-4, IL-5, IL-10, IL-15 and IFN-γ are known 

to be significantly lower than adults [49-52].  

 

CD4+ cells 

 

During development, naive T-cells differentiate into distinct effector T-helper (Th) subsets, a 

process in which cytokines play a critical role. These differentiated T-cells were originally 

categorically designated Th1 and Th2 cells based on distinct functional properties and the 

cytokines that drive their development [53]. Th1 type cytokines, such as IFN-γ and IL-2 play 
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a key role in initiating early resistance to pathogens, and induction of cell-mediated immunity. 

Th2 cytokines drive the system toward immune tolerance rather than toward defense from 

microbial infections. Accumulating evidence suggests that Th1 responses in newborns are 

compromised at several steps, including deficient production of Th1 type cytokines by 

neonatal CD4+ T-cells and hyporesponsiveness of neonatal macrophages to stimulation by 

IFN-γ. These deficiencies contribute to the apparently weak cellular immunity in newborns 

biased towards a Th2 type response [54]. However neonatal T-cells respond well to certain 

antigens such as tetanus/diphtheria toxoids, influenza, and mycobacterial antigens [46]. In 

response to superantigens, cord blood T-cells produce lesser amounts of IL-2 and, unlike adult 

T-cells, are unable to respond if restimulated with the superantigen. [55] The predominant 

Th2 phenotype in utero followed by a Th1 switch after  birth is believed to be a key process to 

maintain a high level of immunologic suppression in both the mother and the fetus to enable 

continuation of pregnancy. 

Th17 cells are a distinct CD4+ population  that have been shown to play a pathogenic role in 

allergic, autoimmune and other chronic inflammatory diseases [56,57]. The main 

characteristic of Th17 cells is IL-17 production, a cytokine that promotes pathogen clearance 

by enhancing neutrophil recruitment to sites of infection and activating macrophages [56-58].  

 

CD8+ cells 

 

Cytotoxic lymphocytes (CTLs) are CD8+ cells specialized in the defense against intracellular 

infections and also involved in allograft rejection and tumor cell surveillance [59]. CTLs 

utilize two well-established mechanisms for cell lysis, one involving release of extracellular 

mediators (such as the pore-forming perforin/granzyme system), and a second fas/fas ligand 

dependent pathway that leads to target cell apoptosis [60]. 

CTL cytotoxicity is evident by 18 weeks of gestation, but is far less efficient that adult cells 

even at term (<20% of adult CTL activity) [61]. Perforin expression in neonatal CTLs is about 

30% of adult levels. Circulating inhibitors such as a-fetoprotein and prostaglandins may also 

lead to lower CTL activity in neonates [62].  

 

γδT-Cells  

 

The γδ T-cells are a separated functional subset that generally do not express neither CD4 nor 

CD8 on their surface [63]. These cells are detectable in the fetal thymus and liver at 6–8 
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weeks of gestation, and are nearly 10% of the peripheral blood T-cells at 16 weeks [64]. 

Subsequently, the numbers decline gradually to reach about 3% at term [65]. 

These cells are present mainly on skin and mucosal surfaces [63]. Although the exact 

functions of these T-cells are not well understood, they can lyse target cells with the 

perforin/granzyme system like the cytotoxic T-cells, and can secrete cytokines like IFN-γ and 

TNF-α upon activation. The cytotoxicity of neonatal γδ T-cells appears to be significantly less 

than adults [66].  

 

T-regulatory Cells (Tregs) 

 

T regs are a specialized subpopulation of CD4+ T cells can inhibit the proliferation of other 

immune cells. They exert a regulatory effect on immune cells by suppressing the proliferation 

of naïve T cells, the effector function of differentiated CD4 and Cd8 T cells and the function 

of NK cells, B cells, macrophages, osteoclasts and dendritic cells. [67] 

T regs play a crucial role in establishing and maintaining self tolerance and immune 

homeostasis [68]; during pregnancy they´re involved in the maternal-fetal tolerance and 

recent studies support the concept that a normal pregnancy is associated with and elevation in 

the number of T reg cells.[69] Tregs appear to be elevated in preterm infants with a significant 

inverse correlation with GA [70]. 

 

B Lymphocytes 

 

Pre-B-cells can be identified in the fetal liver as early as 7 weeks of gestation, and in the 

marrow by 12 weeks. sIgM+ B-cells are found in the fetal liver by 9 weeks and in the bone 

marrow, peripheral blood, and spleen by 12 weeks. B-cells with sIgA, sIgG, and sIgD 

isotypes appear between 10 and 12 weeks. There is also increased traffic to the lymphoid 

tissues, and by 22 weeks, the proportion of B-cells in the spleen, peripheral blood, and bone 

marrow is similar to that in adults. By 30 weeks, there are no detectable pre-B-cells in the 

fetal liver, and bone marrow becomes the exclusive site for B-cell maturation. Plasma cells 

are not generally found until 20 weeks’ gestation. IgM/IgD+ B-cells populate the lymphnodes 

by 16–17 weeks’ gestation and the spleen by 16–21 weeks. In fetal lymph nodes, primary 

nodules develop around the follicular dendritic cells by 17 weeks’ gestation [71]. 

At birth, the proportion of B-cells is similar to that of adults, but the absolute number of B-

cells is significantly higher [72]. The number peaks at about 3–4 months of age, and then 
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declines to adult levels by 6–7 years of age [73]. Preterm infants have comparable B-cell 

numbers to the term infants [74]. However, the number is smaller in growth-retarded infants. 

It has been shown that the fetus and the neonate are capable, although at a lower intensity than 

adults, of mounting antigen-specific antibody responses. [75,76]. 

It appears that the interval from birth is a more important determinant of antibody response 

than the gestational age. Both preterm and term infants immunized with diphtheria toxoid at 

0–10 days of age had poorer responses than similarly immunized adults, but the response was 

better when vaccination was deferred until 1–2 months of age [77] suggesting that is the 

neonatal environment that plays a role in the expansion of the immune capacity [25]. 

Serum Ig levels remain very low until 18–20 weeks’ gestation. Most of the newborn’s serum 

immunoglobulins are derived from active transplacental transfer of maternal IgG during the 

third trimester [78]. For these reason while in the full-term neonate serum IgG levels are equal 

or even higher than maternal serum IgG levels, in the preterm the levels are lower. 

After birth immunoglobulins follow a normal catabolism process and reach the lowest 

concentrations between 3 and 5 months of age when the infant start to produce his/her own Ig.  

This nadir is more pronounced and occurs earlier in preterm infants. 

The serum levels of IgA, IgM and IgE are very low even in term infants, since these do not 

cross the placenta. However, when faced with an intrauterine infection, the fetus is definitely 

capable of producing appreciable amounts of IgM [79].  

 

NK cells 

 

NK cells can be detected as early as 6 weeks of gestation, and the number then increases 

progressively until birth. In cord blood, 10–15% of all lymphocytes are NK cells, which is 

comparable to adult peripheral blood [80]. However fetal NK cells have a significantly lower 

cytolytic activity against tumor cell target cell lines than adults and even at term, the cytolytic 

activity is only 50–80% of adult levels [81]. 

 

The Mucosal Immune System 

 

Peyer’s Patches (PP) and Other Organized Lymphoid Tissue 

 

Peyer’s patch precursors can be detected in fetal ileum at 11 weeks as aggregates of  CD4+ 

lymphoid cells [82,83]. At birth, the organized lymphoid compartment is naive but 
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structurally complete, and the predominant activity involves proliferative expansion [84]. The 

number of PP increases from about 60 at birth to over 200 by 12–14 years [85]. Appendiceal 

lymphoid follicles enlarge rapidly after birth following bacterial colonization and 

translocation [86]. The first IgA+ plasma cells appear at 2 weeks after birth and then increase 

to adult levels at 4–5 months. [25] 

 

Lymphocytes in the Lamina Propria and Intra-Epithelial Compartments 

 

B-cells can be seen in the lamina propria at 14 weeks gestation [83]. The fetal intestinal B-

cells are mainly IgM+ and IgG+ cells [87]. After birth, the IgM+ plasma cell population 

expands faster and at the same time microbial stimulation induces B-cells to undergo IgA 

class switch in both the lamina propria and organized lymphoid tissue [88]. IgA+ plasma cells 

are first seen in the lamina propria during the second postnatal week [89]. The number of  

IgA+ cells in the mucosa reach adult levels at 2 years, although serum IgA concentrations 

reach adult levels only during the second decade [90].  

Intestinal T-cells can be identified from 12–14 weeks of gestation [91]. Several T cells 

precursors can be seen in the fetal intestine, suggesting that T-cells may develop locally in an 

extra-thymic pathway and B-cells may play a role in the development and selection of the T-

cells. [83,84,91,92] 

 

Secretory Immunoglobulins 

 

Secretory immunoglobulins, IgA and IgM, play an important role in mucosal defense. 

Secretory IgA (sIgA) can be detected in mucosal secretions 1–8 weeks after birth [93,94] 

while sIgM appear transiently during early infancy [94]. 

sIgA levels rise during the neonatal period to reach an initial peak (as measured in saliva) at 

4–6 weeks both in full-term and preterm infants.  Despite  sIgA concentrations being lower in 

premature infants, when chronological age is corrected for prematurity, sIgA concentrations 

become similar to matched full-term infants [95,96]. Salivary IgA levels continue to rise up to 

18 months of age [96]. A transient nadir in sIgA has been inconsistently recorded at 3–6 

months [94,97,98]. 

Secreted immunoglobulins also change qualitatively during the first year. There is a switch 

from monomeric IgA to polymeric sIgA sometime during the first year, indicating maturation 

of the secretory immune system [99], or alternatively, increasing exposure to exogenous 
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antigens [100]. The relative amounts of IgA subclasses in mucosal secretions also changes 

during infancy. At birth, sIgA1 is the dominant subclass but sIgA2 increases rapidly by 6 

months of age [97].  

During the neonatal period, colostrum provides an important alternative source of sIgA [101] 

and sIgA levels seem to be higher in colostrum and milk of mothers of preterm neonates 

[102].  

 

Intestinal Macrophages and Dendritic Cells 

 

Macrophages first appear in the developing intestine at 11– 12 weeks of gestation, increase 

rapidly between 12–22 weeks then continue to expand at a slower pace through early 

childhood [87,103,104]. These cells play a critical host defense role in being the first 

phagocytic cells of the innate immune system to encounter luminal bacteria that breach the 

epithelium and reach the lamina propria [105]. This is essential for sick and preterm neonates 

who are predisposed to bacterial translocation due to an abnormally permeable gut epithelial 

barrier, immaturity of the local adaptive immune system and low secretory IgA production 

[86,106] and therefore rely on intestinal macrophages ability to eliminate previously unknown 

bacteria through phagocytosis and intracellular killing. 

Intestinal macrophages are derived from circulating monocytes, which are recruited to the 

mucosa under the influence of various epithelial and mesenchymal cell-derived 

chemoattractants [105,107]. Because neither intestinal macrophages nor their precursor 

monocytes have the ability to undergo clonal expansion [105], the only mechanism available 

for the development and maintenance of the gut macrophage pool is through the continuous 

recruitment and differentiation of blood monocytes.  
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3. PRETERM BIRTH AND IMMUNITY  

The development of the fetal/neonatal immune system can be influenced by many perinatal 

factors that can either elicit maturation or induce immunosuppresion.  

3.1 Antenatal glucocorticoids 
!

Since the 1970s antenatal steroids have been administered to pregnant women at risk of 

preterm birth in order to induce lung maturation in the fetus and it has been demonstrated that 

the use of corticosteroids reduces the risk of neonatal death, respiratory distress syndrome, 

cerebroventricular haemorrhage, necrotising enterocolitis, infectious morbidity, need for 

respiratory support in preterm infants [108]. However glucocorticoids have an important role 

in the suppression of the immune system by acting on glucocorticoid receptors of leukocytes 

and thus interfering with the transcription of pro-inflammatory factors and cytokine 

production [109]. Even though the effects of exogenous glucocorticoids on the developing 

immune system have not been extensively studied in humans, animal studies suggest that 

glucocorticoids exposure results in long-lasting alterations to physiological and cellular 

responses of the offspring [110]. 

Studies have shown a reduction in lymphocyte number in preterm neonates after antenatal 

corticosteroids with an overall increase in total leukocyte count, specifically an increase in 

neutrophils.[111] but data on the association between antenatal steroids and increased risk of 

early and late onset sepsis are conflicting and not conclusive. 

It has been speculated that the effects of steroids on the immune system are dependent on the 

levels these molecule reach in the plasma and therefore the number and the timing of steroid 

administration can be determinat for the immunomodulatory effect [112]. 

What is also unknown is whether these effects are transient or persist into childhood and 

beyond. 

 

3.2 Perinatal infection and inflammation 
 

Intrauterine inflammation is the principal cause of preterm birth [113-115]. Intrauterine 

inflammation can be caused by bacteria ascending from the birth canal, crossing the placenta 

or membranes or transferred into the amniotic cavity during amniocentesis [113,116]. 
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Intrauterine inflammation is inversely correlated with gestational age and can be detected in 

up to  83% of infants weighing less than 1000 g at birth while in 10% of infants greater than 

2500 g [116]. Intrauterine inflammation affects as many as 30% of all neonates born at ≤34 

weeks gestation [117]. 

Clinical and experimental studies demonstrate that bacteria or pro-inflammatory mediators in 

amniotic fluid can be inspired or swallowed by the fetus to elicit a fetal inflammatory 

response (FIRS), characterized by an increase in fetal plasma IL-6, C-reactive protein, IL-1, 

IL-8, and GM-CSF [118-120]. Human studies have shown that lymphocytes are activated 

during infections in utero, indicating that fetal adaptive immune response is at least partly 

responsive [121]. Fetuses and neonates exposed to intrauterine inflammation have increased 

Th1 cells and increased levels of IFN-γ, indicating a potential shift from Th2 to Th1 of the 

fetus[6]. The shift to Th1 cytokines may lead to membrane rupture because normal term labor 

is partially an inflammatory event, with an increase in the production of Th1 cytokines TNF-

α, IFN-γ, IL-1β, and prostaglandins in the fetal membranes and amniotic fluid [122]. 

Intrauterine inflammation also increases production of these cytokines [123] and 

prostaglandins [124]. Studies performed on animal models show that intra-amniotic 

lipopolysaccharide (LPS) infusion increases the number of immune cells (including 

monocytes, neutrophils, and lymphocytes) in fetal lung tissue. [125] 

Moreover, repeated doses of LPS into the amniotic cavity of sheep, at 2 and 7 days before 

preterm delivery, cause a reduction in IL-6 secretion in fetal sheep when compared to a single 

dose of LPS showing that repeated pro-inflammatory exposures induce tolerance in preterm 

sheep [125]. This tolerance effect clearly demonstrates modulation of the immune system in 

response to the initial stimulus. 

Intrauterine inflammation increases the risk of early-onset sepsis, likely because at least some 

of these postnatal infections originated in utero. However, intrauterine inflammation 

decreases the risk of late-onset sepsis [126] potentially because these infants experience 

immune “maturation” by the earlier (intrauterine) exposure to infection, or because they 

require less respiratory support and accompanying invasive care. 

 

3.3 Mode of delivery 
 

Differences in microbial colonization of infants at birth, as a consequence of the mode of 

delivery, seem to play a crucial role in the development of the immune system. 
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Infants delivered by caesarean section have lower diversity of gut microflora at 3 days of age 

than those delivered vaginally [127]. 

Recently it has been stressed the importance of  the host microbiome for the optimal 

development of the individuals and it appears that  caesarean section may contribute to a 

myriad of postnatal diseases, simply by influencing gastrointestinal colonization at birth [6]. 

It has also been documented that more than a half of women who deliver by cesarean section 

are not in labor at the time of delivery [128] and that newborn monocyte expression of TLR-2 

and -4, critical mediators of innate immunity, is reduced in the absence of labor [129]. By 

lacking of an adequate immunological stimulus that comes from labor and vaginal delivery, 

newborns can therefore potentially be exposed to the risk of infection.  

 

3.4 Respiratory distress syndrome (RDS) and mechanical ventilation (MV) 
 

Preterm infants are born before the completed development and maturation of the lung 

therefore virtually all the preterm infants can present with RDS: a thick blood-gas barrier, 

immature airway epithelium and a reduced surfactant production that lead to poor compliance, 

reduced ability for gas exchange and increased work of breathing and eventually need for  

MV [130,131]. Mechanical ventilation of the neonatal lungs can cause ventilation-induced 

lung injury (VILI). The shear stress, inspiratory volume, air pressure, and oxygen 

concentration of ventilation are believed to cause epithelial cell damage, which contributes to 

protein leak into the airways, inhibiting the function of surfactant and increasing 

inflammatory cell infiltration [130, 132,133].  

The iatrogenic damange of the lung leads primarily to the activation of the innate immunity as 

demonstrated by the evidence of increased blood levels of neutrophils and monocytes and  

Cytokines such as IL-1, IL-6, IL-8 e TNF-α [130]. Neutrophils migrate thus into the airways 

becoming the most common inflammatory cell infiltrate [130,134].  

However, adaptative immunity is also influenced by RDS and MV. It has been observed an 

increased number of activated T lymphocytes (expressing the CD54 marker) together with a 

reduced total lymphocytes count in the blood of infants with RDS [135]. 

It appears that lymphocytopenia of preterm infants with RDS affects primarly the CD4+ cells 

subset [136]. However the mechanisms that cause lymphocytopenia are not known and have 

been only hypothesized. A possible explanation is that activated T cells are recruited from 

bloodstream to the injured lungs as demonstrated by the elevated concentration of CD4+ cells 
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in the lung interstitium of infants with RDS [137]. Another hypothesis is that lymphocytes of 

infants with RDS are more likely to undergo aptoptosis phenomena compared to healthy 

infants as seen for lymphocytes of septic infants. Lymphocytopenia could thus be the result of 

an anti-inflammatory mechanism to compensate the significant immunological activation 

induced by lung injury.  

A study performed on animal models showed that RDS and MV led to a significant 

inflammatory status of the lung as much as to a significant peripherical immunosuppression 

attested by a reduced lymphocytes responsiveness to mythogens and reduced cytokine 

production [138]. Another study showed that surfactant administration does not improve the 

immunodepression status [139]. However these data are not confirmed yet by studies 

perfomed in human newborns.  

 

3.5 Enteral nutrition 
 

The intestine can be considered the largest immune organ in the body since it hosts the 

majority of lymphocytes and other immune cells. In newborn infants the development of a 

normal intestinal flora and the exposure to dietary antigens play a key role in the the 

generation of appropriate immune responses and the development of immune regulatory 

networks; however the mechanisms by which the microbes influence the phenotype and 

function of lymphoid cells associated with GALT are largely unknown. The Th1-Th2 balance 

is thought to be influenced by microbial exposure and it is likely that there is an optimum 

flora in early life that can promote a healthy intestine and optimize its immune function [140]. 

Moreover the intestine of neonates is more permeable than that of the adult and hence more 

susceptible to transfer and uptake of potentially harmful lumen antigens, including pathogens. 

Colostrum and milk-feeding can influence the maturation of the developing intestinal 

epithelium and immunophenotypic differences in lymphocyte subsets following exposure to 

maternal milk have been reported such a decrease in CD4+:CD8+ cells ratio and an increase 

in IFN-γ and NK cells [141, 142].  

Breast milk also contains immunosuppressive factors such as IL-10 and TGF-β that may 

facilitate tolerance induction to harmless food antigens and antigens associated with 

commensal bacteria [143].  

Moreover maternal lymphocytes in human milk play an important role in modulating neonatal 

immune response and there are experimental evidence confirming that milk lymphocyte can 
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attach and traverse the neonatal intestine and can remain locally within the intestine or 

migrate to enter the circulation [144]. 
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4. EVALUATION OF GLOBAL CELL-MEDIATED IMMUNITY 

T-Lymphocytes, and CD4+ cells in particular, play a crucial role in the regulation of the immune 

system. Because they´re involved in the modulation of the adaptive immunity both humoral and cell-

mediated and they have also a relevant part in the control of innate immune response, they´re often 

targeted as a marker of the global immune function. Despite its importance and the abundance of T-

lymphocyte assays that exist, the development of a standardized measurement of global cell-mediated 

immunity has been difficult. Typically, absolute lymphocyte counts (ALC) and CD4+ T-lymphocyte 

counts are the only clinical assessment of immune status and immune reconstitution [145,146]. While 

these measurements accurately measure and track the number of T-lymphocytes, they do not reflect 

cell function. 

4.1 Leukocytes count and lymphocyte subsets 
!

The determination of lymphocyte population in preterm in term newborns is important for the 

evaluation of the immune status in a population that is particularly exposed to the risk of 

infection. Moreover these investigations help understanding the lymphocyte development and 

maturation. What is known from the studies so far published is that preterm infants’ 

lymphocyte subsets are different from those of the term newborns and the latter have different 

values compared to children and adults. However most of the studies report relative instead of 

absolute values, which may lead to data misinterpretation. In fact, the absolute values are not 

affected by the relative frequencies of other subsets and constitute a more reliable indicator of 

the physiological immune status. [147]. The limitation of early flow cytometric technology 

also complicates the interpretation of data obtained in the past and the sample size of 

population are often either small or do not take into account preterm infants with extremely 

low gestational age (23-26 weeks). Juretic and colleagues [148] reported a lower percentage 

but a higher absolute number of T lymphocytes in cord blood compared to adult due to a 

higher absolute lymphocyte number in neonatal blood. While term infants showed reduced 

values of CD8+ cells but similar percentage of CD4+ cells compared to adults, preterm 

infants showed a significantly lower percentage of CD4+ to term newborns and adults. A 

lower percentage of  T cells in infants was also documented by Peoples et al [149] and the 

authors found that the percentage of total T cells did not differ between term and preterm 

infants. Interestingly, despite the percentage of CD4+ T-helper cells also being significantly 

lower in the combined neonatal group (term+preterm) compared with adults, only the term 

group's CD4+ cells were significantly lower than adults and this percentages was also 
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somewhat reduced compared with the preterm group. When compared with preterm infants, 

term infants had also a lower percentage of CD8+ T cells. Both CD4+ and CD8+ memory 

cells were reduced in neonates compared to adults but did not different between term and 

preterm infants. NK cells were increased in neonates compared to adults. Conversely another 

study showed a reduced absolute count in lymphocyte, T cells and CD4+ subset in extremely 

preterm infants compared to late preterm and term infants [150]. The most elegant study was 

performed in 2012 on a large population of 117 preterm and 94 term infants (31-35 weeks) 

[147]. The authors showed that preterm infants have a low percentage of neutrophils and a 

high percentage of total lymphocytes with a relative high proportion of T cells (both CD4+ 

and CD8+) and low proportion of B and NK cells. But when they analyzed the absolute 

number of leukocytes they demonstrated that compared to term infants, preterms have rather a 

marked leukopenia involving all the subsets (lymphocyte, granulocytes, monocytes) with a 

significant positive correlations between these groups and GA. Treg cells were the only subset 

that was higher in preterm infants with a significant inverse correlation between these group 

and GA. These cells play a crucial role in establishing and maintaining maternal-fetal 

tolerance during pregnancy and the authors hypothesize that they can exert their regulatory 

effect by suppressing the proliferation of naïve T cells. 

!

Figure 2 Absolute count of immune cells in cord blood samples [147] 
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4.2 Measuring T cell immune function: Immuknow® assay 
!

T-lymphocytes are fundamental in establishing an adequate the immune response. T-

lymphocyte antigen recognition elicits a series of events such as intracellular energy 

production, calcium flux, phosphorylation of intracellular signal transduction proteins and 

ultimately de novo protein production. The characteristics and functions of the mediators 

produced by T-lymphocytes vary according to the context and nature of the inducing 

stimulation by the antigen-presenting cell, lymphoid milieu and stimulation history. The 

processes following T cells activation include cytokine/chemokine production, degranulation, 

cytotoxicity, proliferation, and eventual apoptosis or activation-induced cell death [151]. 

 Recently, several assays have been developed in order to study T cells function ex-vivo. New 

flow cytometry techniques allowed to measure different intra- and extra-cellular events that 

follow T-cells activation: calcium flux can be detected by using fluorescently labeled 

calcium-sensitive dye [152]; phosphorylation induced by stimulation can be quantified by 

using phosphoantibodies [153]; degranulation can be measured  by detecting the cell-surface 

expression of CD107 from cytotoxic granules [154] and ultimately cytotoxicity can be 

evaluated by measuring cell lysis by measuring the loss of fluorescent dye from target cells 

[155]. Cytokine production can also be measured by many techniques including molecular 

approaches for mRNA quantitation (RT-PCR or RNase protection), ELISA and ELISPOT for 

detection of secreted protein, and intracellular staining with flow cytometry for single-cell 

cytokine detection [151].  

Immuknow® assay has been introduced clinically over the past several years to evaluate 

global cell-mediated immunity by assessing the ability of CD4+ T-lymphocytes to respond to 

mitogenic stimulation by PHA in vitro. This test quantifies the amount of ATP (adenosine 

triphosphate) produced following overnight stimulation [156]. Immuknow® assay also 

requires an in vitro stimulation with mythogens aswell as the previously mentioned 

techniques, but it targets a key molecule. ATP is a basic energy source within cells, its 

production marks the initial step of T-lymphocyte activation and is an essential requirement 

for all lymphocytes functions following activation. ATP is a useful metabolic marker as it is 

produced within minutes to hours of initial stimulation and is necessary for cellular function 

regardless of eventual effector function. It can also be measured quantitatively using a 
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luciferin/luciferase bioluminescence system. Therefore it is a highly suitable marker for T-

lymphocyte activation and a clinical evaluation of global T-lymphocyte function [151].  

Immuknow® has been approved by the FDA in 2002 for the assessment T-lymphocyte 

function in immunosuppressed patients. The assay has been adapted to the clinical setting in 

its use of a small volume of whole blood, assuring that lymphocyte stimulation takes place in 

the presence of any drugs that may reside in the patient's system. This approach also 

eliminates the need for purification of mononuclear cells. In the assay, blood is diluted and 

added to microwells along with PHA and stimulated for 15–18 hours. The next day, the cells 

are isolated using magnetic particles coated with anti-CD4 antibody and then washed and 

lysed to liberate intracellular ATP produced in response to stimulation. ATP is quantified 

using a luciferin/luciferase reaction that is subsequently read in a luminometer. Light 

production is converted to ng/ml of ATP after extrapolation from a standard calibration curve. 

This standardization assures accuracy of repeat tests on the same patient over time as well as 

comparable results between laboratories. [151].  The process is schematic shown in figure 3. 

!

Figure 3: Immuknow® assay schematic laboratory procedure [151]. 

 

The first clinical trial was performed between 2002 and 2003 at the Univeristy of Alabama, 

Maryland on both healthy (n = 155) and immunosuppressed (n = 127) transplant patients by 

Kolwaski and colleagues [156]. The authors identified 3 zones of immune competence: ATP 

value (ng/ml)  <225 characterized a low immune response while levels of 226–525 or > 525 
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indicate a moderate or strong response, respectively. These cut-off are still the conventional 

reference values for the evaluation of the immune response in the adults. Afterwards the same 

group of researchers assessed the relative risk of infection and rejection of 504 solid organ 

transplant recipients (heart, kidney, kidney-pancreas, liver and small bowel) using the 

ImmuKnow assay [157].  Blood samples were taken from recipients at established intervals 

after transplantion and compared with the clinical course (stable, rejection, infection). The 

authors reported that a recipient with an immune response value of 25 ng/ml ATP was 12 

times more likely to develop an infection than a recipient with a stronger immune response 

and that a recipient with an immune response of 700 ng/ml ATP was 30 times more likely to 

develop cellular rejection than a recipient with a lower immune response value. They 

suggested new reference cut-off: <130 ng/mL for the risk of infection and >450 ng/mL for the 

risk of rejection. Since then, several studies have investigated the clinical utility of 

ImmuKnow. What became apparent was that a high ATP level, thought to represent under-

immunosuppression, did not associate well with acute rejection events [158]. Even though the 

association was higher between risk for infection with very low ATP levels each study is 

heterogeneous from the other, differing in characteristics such as type of organ transplant, 

immunosuppression protocols, timing of ImmuKnow assay to event, and the measure of the 

event [159].  

In a meta-analysis published in 2012 [160], the authors concluded that current evidence 

suggests that ImmuKnow assay is not able to identify individuals at risk of infection or 

rejection.  They stated that additional studies are still needed to clarify the usefulness of this 

test for identifying risks of infection and rejection in transplant recipients. Literature focusing 

on the pediatric population is limited and there are no data on newborns both at term and 

preterm. In 2005 Hooper and colleagues collected samples from 50 healthy children of 

different ages and 37 kidney transplant recipients [161]. The mean population age was 9,1 

years and only 5 children were <3 years old. Data were compared with values from adult 

population and the authors demonstrated that the ATP levels of children >12 years were 

similar to those of the adults. On the opposite, children <12 years and transplants recipients 

had lower values. The authors suggested new cutoffs for the pediatric population: >395 ATP 

ng/mL for a strong response and <175 ng/mL  for a low response as reported in figure 4. 

A more recent study was performed on healthy children <3 years[163]. Mean ATP levels 

were 376 ng/mL, in accordance to the data provided by Hooper and colleagues. As for the 

adults, following studies provided heterogeneous results: some authors found strong 
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correlations between Immuknow and both risk of infection and rejection [164] while others 

questioned the clinical utility of Immuknow [165]. 

 

 

 

Figure 4 Immuknow® immunological zones for adults and children [162] 
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5. RESEARCH PROJECT 

5.1 Abstract 

Background. Neonatal immune system is not fully developed at birth; newborns have an 

adequate leukocytes and lymphocytes count at birth but these cells lack of function. 

Objective. To assess the functional activity of T-cells at birth and at 30 days of life and the 

influence of the main perinatal factors in a population of preterm infants. 

Design. A prospective longitudinal study was carried out in a population of 59 preterms. 

Fifteen healthy adults were included as a control group. Blood samples were collected at birth 

and at 30 days of life to evaluate CD4+ T cell activity using the Immuknow® assay.  

Results. CD4+ T cell activity at birth and at 30 days of life were significantly lower compared 

with adult controls (p < .001). Twins showed lower activity compared to singletons (p= .005). 

Infants born to vaginal delivery had higher CD4+ T cell activity compared to those born to c-

section (p=0.031); infants born after pPROM  showed a higher activity at birth (p= .002). Low 

levels of CD4+ T cells activation at birth were associated with necrotizing enterocolitis 

developement in the first week of life (p=.049). 

Conclusions. Preterm infants show a lack in CD4+ T cells activation at birth. Perinatal factors 

such as intrauterine inflammation, mode of delivery, zygosity can influence the levels of 

adaptative immune activity at birth and can contribute to expose these infants to serious 

complications such as NEC. 

5.2 Introduction 

Although immune system development begins early during fetal life, its maturation is not 

completed at birth, as confirmed by the increased susceptibility of newborns and preterm 

infants to infectious diseases.  

The immune system of the fetus/newborn should protect the infant against infections at the 

maternal-fetal interface but should also avoid the potentially harmful pro-inflammatory/Th 1 

cell-response that can induce a detrimental reaction between mother and fetus. Thus, the 

suppression of pro-inflammatory response helps the infant in the transition from the (sterile) 

intra-uterine environment to the foreign antigen-rich environment of the outside world. 

Therefore this inability, that has been long-time interpreted as a deficiency of the immature 

immune system, can actually represent a biologically advanced response. 
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The abnormalities of neonatal immune system are mostly related to a functional deficit of 

their components. Newborns and especially preterm infants have higher leukocyte and 

lymphocyte counts compared to adults[166]; however these cells show a lack of function at 

birth as a consequence of the inexperience of the adaptive immune system due to the lack of 

strong antigenic exposure in utero. This is confirmed by the decreased number of memory T 

and B cells and the increased number of naïve T and B cells into the neonatal 

bloodstream[167].  

In oder to measure the functional activity of T-cells during the third trimester of gestation we 

evaluated a group of preterm infants at birth and after 30 days of life with the Immuknow® 

assay. This immunological test measures the level of intracellular adenosine triphosphate 

(ATP) after in vitro stimulation with phytohemoagglutinin (PHA) as marker of CD4+ T cells 

activity. It has been used in adult subjects at risk for infection, however this assay has been 

rarely utilized in children and never tested in newborns or preterm infants. 

The aim of study was to investigate the peripheral blood CD4+ T cell activation in response to 

in vitro stimulation with PHA in order to assess the basal condition of the adaptive immune 

system at birth, its development in the first month of life and the influence of the main 

perinatal factors in a population of preterm infants. 

5.3 Methods 

Population  

A prospective longitudinal study was carried out between November 2013 and July 2015 at 

the Neonatal Intensive Care Unit (NICU) of St. Orsola-Malpighi General Hospital in 

Bologna, Italy.  

All the infants with gestational age (GA) ≤ 30 weeks and birth weight (BW) < 1500 g 

admitted at birth to the unit were considered elegible to the study. Infants with congenital 

malformations, congenital infections or born to a mother with pregnancy complications 

(immunosuppressive disorders, diabetes mellitus or infections during or preexisting the 

pregnancy) were excluded.  

Before enrollment in the study, written informed consent was obtained from each infant’s 

parents.  

Fifteen healthy adults were also included as a control group. 
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Study design 

Whole blood samples were collected in the first day of life and at 30 days of life from each 

patient to evaluate the pattern of lymphocytes subpopulations and the level of in vitro CD4+ T 

cell activity. Anamnestic and clinical data were prospectively collected during the hospital 

stay. 

Sepsis was defined as presence of clinical signs of infection (worsening of respiratory 

dynamics, apnea and increased oxygen requirement, cardiovascular instability with 

tachycardia or bradycardia, poor perfusion, hypotonia, shock), elevation of infections markers 

(white cell count, CRP, procalcitonin) and a positive blood culture. Necrotizing enterocolitis 

(NEC) was defined according to Bell’s modified criteria. [168] 

The study was approved by the Sant’Orsola Hospital Research Ethics Committee (CIMPre 

study, 114/2012/U/Oss). 

Assessment of CD4+ T cell activity  

CD4+ T cell immune response was measured using the Immuknow® assay according to the 

package insert by the Microbiology and Virology Laboratory of Bologna University Hospital. 

Blood was collected in sodium heparin tubes.  

Briefly, 250 µL of whole blood was diluted with sample diluent, added to wells of a 96-well 

microtiter plate and incubated for 15-18 h with PHA in 37°C in 5% CO2. Magnetic particles 

coated with anti-human CD4 antibodies were introduced to the wells, and using a strong 

magnet, CD4+ T-cells were positively selected and separated. Then, the cells were lysed to 

release intracellular ATP. Released ATP was measured using luciferin/ luciferase and a 

luminometer. 

CD4+ T cell immune response was defined as the quantity of intracellular ATP (ng/ml) 

produced after stimulation with PHA. 

Statistical analysis 

Statistical analysis was performed by IBM SPSS (Statistical Package for Social Sciences, 

version 20).  



! 27!

Data distribution was checked for normality by the Shapiro-Wilk test. Being data not 

normally distributed, non-parametric tests were used. Univariate analyses were performed in 

order to evaluate which clinical variables were related to ATP values at birth and at one 

month of life: Mann Whitney and Kruskall-Wallis test were used for categorical variables and 

Spearman correlation test for continuous variables. Regression analysis was performed using 

as independent variables all those variables which proved to be significant in the univariate 

analysis. Statistical significance was defined as a P value < 0.05. 

 

5.4 Results 

Seventy-three eligible infants were admitted to NICU during the study period. Fourteen 

infants (19,1%) were excluded because they either fulfilled the exclusion criteria (4 congenital 

heart disease, 4 polymalformations) or blood samples could not be collected within the first 

day of life (4 infants died and 2 were transferred from our unit in the first days of life).  

Prenatal data and their correlations with CD4+ activity are shown in Table 1A and 1B.  

 

 birth  
(59 infants) 

30 days of life 
(39 infants) 

Gestational age, weeks, median (range) 28 (22.7-30)  27.9 (23.3-30) 
GA: 23-24 weeks, n (%) 8 (13.5)  5 (12.8) 
GA: 25-27 weeks, n (%) 19 (32.2)  15 (38.5) 
GA: 28-30 weeks, n (%) 32 (54.3)  19 (48.7) 
Birth weight, median (range) (g)  995 (393-1500) 952 (535-1500) 
Gender Male, n  (%) 33 (55.9) 23 (59.0) 
Singleton, n  (%) 38 (64.4) 25 (64.1) 
SGA n (%) 10 (16.9) 6 (15.4) 
Vaginal delivery, n (%) 28 (47.5) 19 (48.7) 
pPROM***, n (%) 15 (25.4)  9 (23.0)  
Prenatal steroids n(%) 48 (81.3) 33 (84.6) 
Table 1A. Characteristics of study population. GA: gestational age; SGA: small for gestational age; AGA: 
appropriate for gestational age; ***pPROM: prolonged Premature Rupture of Membranes (> 18 hours passed 
between the rupture and the onset of labor/delivery).  
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Samples were obtained at 30 days of life from 39/59 (66,1%) of the recruited newborns, the 

remaining 20/59 (33,8%) encountered death or were transferred to other hospitals before 30 

days of life. 

 

 birth  
(59 infants) p value 30 days of life  

(39 infants) p value 

GA: 23-24 weeks 89 (62-242)  
 
p= .741 

13 (3-253)  
 
p=.029 

GA: 25-27 weeks 109.5 (44-733) 109.5 (3-383) 
GA: 28-30 weeks 85 (66-569) 236 (57-365) 
male sex 182.9±157.1  

p= .091 
170.5±123.0  

p= .326 female sex 110.5 ±140.6 187.1±105.3 
singleton 163 (6-733)  

p= .005 
178 (3-383)  

p= .731 
twins 84 (26-153) 168.5 (10-365) 

SGA 106.8±121.1  
p= .255 

175.7±96.0  
p= .770 AGA 164.3±158.7 177.2±120 

vaginal delivery 123 (15-733)  
p= .031 

123.5 (3-383)  
p= .795 caesarean delivery 83.5 (6-352) 215.5 (3-292) 

pPROM*** 197 (52-336)  
p= .002 

185.5 (65-383)  
p= .343 no pPROM*** 87 (6-733) 168.5 (3-365) 

prenatal steroids 169.9±162.5  
p= .140 

189.0±116.4  
p= .159 no prenatal steroids 79.0±52.3 117.0±95.4 

Table 1B. Intracellular ATP values ng/ml expressed as median (range) of the study population. ***pPROM: 
prolonged Premature Rupture of Membranes (>18 hours passed between the rupture and the onset of 
labor/delivery). 

 

 

Lymphocyte subsets 

The pattern of lymphocytes subpopulations at birth and at 30 days of life are reported in Table 

2. While the absolute number of CD4+ did not correlate to the value of intracellular ATP at 

birth (p=.831) a significant positive correlation was observed at 30 days of life (p=.011).   
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Birth (59 infants) 30 days (39 infants) 

WBC (n) 7350 (1170-119200)  10700 (4030-34650)  
N (n) 1814 (283-97744)  4267 (908-23562)  
N (%) 24,8 (4,3-88)  42 (8,9-75)  
L (n) 3775 (903-10775)  4141 (557-10098)  
L (%) 60 (6-86,8)  40 (4,4-74)  
Pan T (CD3+) 2875 (668-8404,5)  2865 (701-5481)  
Pan T (%) 73,9 (47-88)  64,5 (36-84) 
CD4+/ml 1954 (388-6680,5)  1982 (438-4725) 
CD4+ (% L tot) 54 (32-73) 45,5 (20-69)  
CD8+ml 673 (172-2312)  729,5 (198-2650,5)  
CD8+ (% L tot) 18 (8-32)  16 (8-45)  
CD4+/CD8+ 2,92 (1,37-7,38)  2,67 (0,77-6,25)  
NK/ml 242,25 (35,6-1536)  442,75 (15-1371)  
NK (% L tot) 7 (1-24)  9,5 (1-42)  
Pan B/ml 501 (60,56-3770)  829,35 (210-3635,3)  
Pan B (%) 15 (2-30,6)  22,9 (9-41)  

Table 2. Lymphocytes subpopulations at birth and at 30 days of age of infants enrolled in the study 

 

 

CD4+ T cell activity in preterm newborn at birth and 30 days of age compared to adult 

controls  

While there were no significant differences in levels of activation of CD4+ T cells at birth vs 

30 days of life (median: 100 ng/ml [range: 6-733 ng/ml] vs. 168,50 ng/ml [range: 3-383 

ng/ml]; p=.142), both these values were significantly lower compared with adults controls (p 

< .001) as shown in Figure 1. 
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Figure 1: CD4+ T cell activity in preterm infants and in adult controls 

 

Perinatal factors and CD4+ activity 

The univariate analysis showed no significant correlation was between levels of ATP at birth 

and GA, BW, gender, intrauterine growth retardation (IUGR), and use of prenatal steroids 

(Table 1). The twenty-one twins showed significantly lower levels of intracellular ATP at 

birth compared to the remaining 38 singleton infants; this difference was no longer significant 

at 30 days of life (Table 1 and fig 2A). 

 

A" B"

C"

Figure 2. : Levels of ATP at birth. A: in 
twins and singletons; B: pPROM vs other 
conditions of delivery; C: in patients with 
and without NEC. 
""
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Infants born to vaginal delivery had higher levels of CD4+ activity at birth compared to those 

born to c-section (median 123 ng/ml vs. 83 ng/ml, p=0.031); no difference was found at 30 

days of life.  

Fifteen out of 59 preterm infants were born to mothers with pPROM (prolonged premature 

rupture of membranes > 18 hrs); these infants showed a higher activity of CD4+ T cells at 

birth compared to the 44 remaining infants (p= .002); this difference disappeared at 30 days of 

life. (Table 1 and fig 2B).  

A multivariate analysis was performed including those variables which proved to be 

significant in the univariate analysis (pPROM and singleton/twin pregnancy): both pPROM 

and singleton pregnancy were independently associated with increased ATP levels at birth.  

 

Morbidity during the first 30 days of hospital stay and CD4+ activity 

A significant positive correlation was found between CD4+ activity at 30 days of life and GA 

(p= .029). The study population was stratified into three GA groups (23-24, 25-27, 28-30 

weeks of GA) for the analysis.  

While the level of intracellular ATP at birth was not different among the three groups, 

differences were observed at 30 days of life (Table 1).  The mean levels of intracellular ATP 

decreased from birth to 30 days of life in the group with GA  23-24 weeks (p= .080), were 

similar in the group of infants born at 25-27 weeks of GA (p= 1.000) and increased 

significantly in the group of infants born at 28-30 weeks of GA (p= .026). 

No correlation was found between CD4+ activity, both at birth and at 30 days of life, and 

mechanical ventilation, patency of ductus arteriosus, early onset sepsis, late onset sepsis, 

postnatal steroids, antibiotics use, type of enteral nutrition and death.  
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Figure 3: Levels of ATP at 30 days in different GA groups 

Five out of 59 preterm infants developed NEC ≥ stage 3 during the first week of life: these 

infants had significantly lower values of ATP at birth compared to the 55 infants without NEC 

(p= .049), Fig 2C. No difference in CD4++ activity was found groups at 30 days of life . 

 

Short term outcomes and CD4+ activity 

No influence of CD4+ T cell activity on short term outcome (IVH-Intraventricular 

hemorrhage; PVL- periventricular leukomalacia; ROP-retinopathy of prematurity; BPD-

Bronchopulmonary Dysplasia; death) was shown, both at birth and at 30 days of life. 

 

5.5 Discussion 

Neonatal immune system is not fully developed at birth and newborns are therefore exposed 

to the risk for infection by a wide range of viruses, bacteria, protozoa, and fungi. This 

weakness can be partly attributed, to the lack of preexisting immunological memory and 

competent adaptive immunity. Newborn infants have deficiencies in T-cell activation and 

cytokine production, B-cell immunoglobulin production, and interactions between T and B-

cells, relative to adults.[6]   

T-Lymphocytes, especially CD4+ T cells, play a crucial role in the regulation of the immune 

system. Because they are involved in the modulation of both humoral and cell-mediated and 
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they have also a relevant part in the control of innate immune response, they are often targeted 

as a marker of the global immune function. 

From 19 weeks of gestation T-cell subpopulations gradually increase in number and continue 

to rise after birth to peak at about 6–9 months of life. The numbers subsequently decline, and 

adult levels are finally reached at 6–7 years of age [43]. In term neonates, CD4+ cells 

constitute a higher proportion of T cells than adults. CD8+ cells, on the other hand, are fewer 

both in terms of their absolute number and as a percentage of total T cells. Preterm infants 

have a significantly higher number of CD4+ T cells while the number of CD8+ T cells does 

not seem to change with gestational age [44]. Reference values for T lymphocyte count are 

established for all ages but they do not reflect cell function. 

In this study, we used the Immuknow® assay in order to investigate the function of CD4+ T 

cell at birth in a population of preterm infants. This test quantifies the levels of ATP after in 

vitro stimulation with PHA [156].  ATP is a key metabolic marker, it is produced within 

minutes to hours of initial stimulation and is necessary for cellular function regardless of 

eventual effector function and therefore it is a highly suitable marker for T-lymphocyte 

activation and a clinical evaluation of global T-lymphocyte function [151]. 

Immuknow® assay has previously only been tested in adults and children and this is the first 

study that uses this assay to assess T cell mediated immunity in preterm infants. This test 

seemed quite suitable for preterm infants since it requires a very small amount of blood to be 

performed (200-300 µl).  

Our findings show similar leukocyte and CD4+ T cells counts to previously reported studies 

in preterm population [147, 150].   

We documented a lack of association between the number of CD4 T cells at birth and their 

function (measured by intracellular ATP production) and a positive correlation between 

number and activity of CD4 T cells at 30 days of life.  This finding underlines the concept that 

the absolute number of lymphocyte cells is not always an accurate estimation of the immune 

function. Despite being within the normal range at birth, T cells can be functionally impaired 

and a functional maturation can occur over time as shown in our study. 

One of the peculiarities of Immuknow® assay is actually its independence of lymphocytes 

and CD4+ cells numbers [151,156]. 
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In his study, Kolwalski et al. [151] demonstrated that the correlation between the number of 

lymphocytes the their function is weak (r= 0,24) marking the characteristic of Immuknow® 

assay to provide a quantification of CD4+ T cells activity that is indipendent from cells 

absolute number. However, other studies performed afterwards questioned this concept since 

a positive association between white blood cell count and ImmuKnow level was observed. 

[169,170]. 

It appears that the positive correlation between number of cells and their activity is weak 

when cellfunction is impaired/immature (such as in preterm infants at birth) and becomes 

subsequently strong when these cells encounter maturation. 

We found that preterm infants have a reduced CD4+ T cell activation compared to adults: the 

values at birth are extremely low and, despite a trend towards higher values over time, they 

remain significantly low at 30 days of life. It is known that newborns, especially preterm 

infants, have deficiencies in both innate and adaptative immunity and many studies have 

demonstrated lower concentrations of cytokines such as TNF-α, IFN-α, IL-4, IL-5, IL-10, IL-

15 and IFN-γ in preterms’ blood compared to adults [49-52]. However cytokines production 

is an indirect estimation of cellular function. The present study sets the functional impairment 

of CD4+ T cells at the initial steps of T-lymphocyte activation, when ATP is produced. Since 

ATP is a basic energy source within cells, its production is an essential requirement for all 

lymphocytes functions following activation. [151] 

While there is not a clear correlation between ATP values at birth and GA, it appears that the 

level of maturation of CD4+ response varies among different classes of GA. Infants born 28-

30 weeks showed the expected maturational trend toward higher ATP values. On the opposite, 

infants born 23-24 weeks failed to develop lymphocyte activation competence and their very 

low ATP values at birth reached even lower values at 30 days of life. The reason of this 

inverted trend in unclear and this category of extremely premature infants needs to be 

carefully monitored . 

In this study twin infants showed ATP levels at birth significantly lower compared to 

singletons. This is an interesting finding and literature lacks of information on the 

immunological peculiarities of multiple pregnancies. All the twins included in the study were 

dizygotic and thus immunologically different. We hypothesized that the co-presence of twins 

in utero may induce a deeper immune tolerance that involves both fetuses and the mother in 

order to avoid the potentially harmful immune reaction between the three. Our hypothesis is 
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in accordance with previous studies that documented higher levels of Th2-cytokines in the 

blood of mothers carrying twins compared with singleton pregnancies [171] underlining the 

more profound Th1-Th2 shift that occurs in twin pregnancies. Moreover a recent study 

demonstrated that both dizygotic twins and their mothers are more prone to infection than 

monozygotic twins, singletons and their mothers. [172]  

We found that pPROM significantly increases CD4+ T cells activation at birth. It has been 

demonstrated that bacteria and pro-inflammatory mediators in amniotic fluid can elicit a fetal 

inflammatory response, documented by an increase in fetal plasma cytokines and C reactive 

protein [118-120]. Lymphocytes are activated during infections in utero, indicating that fetal 

adaptive immune response is at least partly responsive [121]. Fetuses and neonates exposed to 

intrauterine inflammation have increased Th1 cells response and increased levels of  IFN-γ, 

indicating a potential shift from Th2 to Th1 of the fetus [6, 122]. 

We have also demonstrated that CD4+ T cells activity at birth is increased in infants born 

after a vaginal delivery. Increasing evidence suggests that parturition itself is an inflammatory 

event. [173] It has also been documented that more than a half of women who deliver by 

cesarean section are not in labor at the time of delivery. [128] Our findings support the current 

knowledge that intrauterine inflammation/infection can lead to immune maturation in the 

fetus. These differences disappear at 30 days of life, most likely because all the cathegories 

(PROM vs non-PROM and vaginal delivery vs cesarean section) are exposed to the same 

extrauterine enviroment. 

In our study population the level of ATP at birth did not correlate with the risk of sepsis.  This 

is not the first study that fails to detect and association between low values of ATP and 

infection. Previous studies performed in immunocompromised adults using Immuknow® 

assay showed conflicting results [159]. In a meta-analysis published in 2012 [160], the 

authors concluded that ImmuKnow assay is not able to identify individuals at risk of infection 

or rejection after organ transplant.   

Significant positive correlations were observed between low levels of CD4+ T cells activation 

at birth and NEC development in the first week of life.  Although the etiopathogenesis of 

NEC is still a matter of debate, some authors support the involvement of innate immune 

system [174]. We hypothesize that an impairment of the adaptative immune system may also 

play a role in the altered immune reaction that leads to NEC development. CD4+ cells 

impaired function may hinder infection control in the intestinal lumen. Other mechanisms 
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may also be involved and a more detailed characterization of CD4+ T cells is needed to 

clarify their role in the NEC pathogenesis. 

This study has many limitations. The study sample is small and lacks of control groups both 

at term and with gestational age >30 weeks. 

Another major limitation is the absence of a immunophenotipic classification of CD4+ T 

cells. The evaluation of T-reg cells is crucial to understand the immunological characteristics 

of the preterm infants. These CD4+ T cells are provided with immunosuppressive functions 

and represent a high proportion of lymphocytes at birth with a significant inverse correlation 

with GA [147]. The role of T-reg cells in the modulation of the immune response is an 

expanding field of research and this data can add precious information to our findings. 

In conclusion, preterm infants show a lack in CD4+ T cells activation and fail to show a 

functionally maturation of lymphocyte over the first month of life. An impaired ability to 

respond to stimulation can contribute to expose these infants to serious complications such as 

NEC. However, the adaptative immune response can at least partially be elicited during the 

fetal life by events occurring before delivery such as pPROM or labor. Further studies in 

larger populations are needed to clarify these results and to better understand the cellular 

mechanisms that regulate neonatal adaptive immune response to pathogens. 

!  
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