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Chapter 1

Introduction

The development of network technology, sensors and portable electronic de-
vices with increasing computational power, memory and connectivity at the
same time with decreasing cost, size and energy consumption, has opened
up new application scenarios. The possibility of transforming entire cities in
smart organisms able of improving the quality of life, the environment, the ef-
fectiveness of services (e.g. tourism, social, health, transport...) creates new
business opportunities. The diffusion of sensors and devices to generate and
collect data is capillary. The infrastructure that envelops the smart city has
to react to the contingent situations and to changes in the operating environ-
ment. At the same time, the complexity of a distributed system, consisting
of huge amounts of components fixed and mobile, can generate unsustainable
costs and latencies to ensure robustness, scalability, and reliability, with type
architectures middleware. A critical point, therefore, is to exploit the intrin-
sic decentralization of the system by distributing much control as possible,
leaving and aggregating the data collected on the device itself if necessary
for processing in a distributed manner. To do this, the distributed system
must be able to self-organize and self-restore adapting its operating strategies
to optimize the use of resources and overall efficiency. This work involved
the study of models, methods and algorithms to produce infrastructure soft-
ware for decentralized control. It can generate self-organizing networks for
smart city, with the use of techniques that maintain network security from
existing innovative approaches. The infrastructure must offer efficient rout-
ing, management, research and automated analysis of the data collected and
distributed, and must be able to scale to networks with millions of devices.

The management of huge amounts of data distributed across multiple
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sites is becoming more and more important. Peer-to-peer systems (P2P)
can offer solutions to face the requirements of managing, indexing, searching
and analyzing data in scalable and self-organizing fashions, such as in cloud
services and big data applications, just to mention two of the most strategic
technologies for the next years. To this purpose P2P systems should overcome
some drawbacks, such as the issue of the traffic load unbalancing across
their autonomous and heterogenous nodes. Moreover, most P2P systems
become popular in the literature, such as Chord and Tapestry, are inefficient
in processing multi-dimensional exact and range queries over any arbitrary
combination of data attributes because their indexing models do not support
natively these kind of multi-dimensional queries.

In this thesis we present G-Grid, a multi-dimensional distributed data
indexing able to efficiently execute arbitrary multi-attribute exact and range
queries in decentralized P2P environments. Moreover G-Grid guarantees
the completeness of the query results like any DBMSs. In G-Grid data can
be distributed on various autonomous peers, without a centralized manage-
ment. Peers organize themselves by local interactions among neighbors, and
the total decentralization of control makes it suitable for intra-organisational
applications, e.g. distributed data center of a single company, and inter-
organisational applications, e.g. Bitcoin. G-Grid is adaptive regarding dy-
namic changes in network topology. G-Grid is a foundational structure and
can be effectively used in a wide range of application environments, including
grid computing, cloud and big data domains. We present several experiments
to compare G-Grid with recent and efficient P2P structures presented in liter-
ature. The results show that G-Grid further improves network management
and traffic overlay.

This efforts have focused primarily on improving the number of hops and
the number of structure maintenance messages. However, the massive use of
these P2P networks caused the emerging problem of the traffic load balanc-
ing. Two of the main causes that create inequalities in the traffic distribution
are the non-uniform distribution of data and the hierarchical structures. In
fact, G-Grid is basically organized as a binary tree and this causes an unbal-
anced traffic load, overburdening the peers as much as they are close to the
tree root. To equally balance the load on this kind of hierarchical P2P sys-
tems, rather than imposing globally some load balancing rules, we seamless
integrated a ring-based overlay in G-Grid that leads to the emergent prop-
erty of self-balancing. Experiments show how drastically the new integrated
overlay, which lead to the new P2P systems we call G-Grid Chord, improve
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the balancing according to an almost uniform load distribution among nodes.
Nevertheless we detected in the last improvement on the structure a huge

growing of maintenance system traffic into the network, so we decided to
made a further step to enhance the G-Grid structure introducing a bit of
randomness. It is obtained by merging G-Grid Chord with a Small World
network. The Small World networks whereas are structures of compromise
between order and randomness. These networks are derived from social net-
works and show an almost uniform traffic distribution. There are, in fact, a
lot of algorithms introducing a bit of randomness to produce huge advantages
in efficiency, cutting maintenance costs, without losing efficacy. Experiments
show how this new hybrid structure obtains the best performance in traffic
distribution and it a good settlement for the overall performance on the re-
quirements desired in the modern data systems.

This thesis starts with Chapter 2 on P2P Networks, with an application
studied initially on autonomic security. Chapter 3 describes the basic version
of G-Grid and its features. Chapter 4 presents the evolution of G-Grid using
the organised overlay Chord to improve load balancing. Finally in Chapter 5
we describe the last improvement of the G-Grid structure produced by the
merging with the Small World network principles. At the end of each chap-
ter there are experiments that show the concrete performances of the new
introduced improvements.

In closing, the Appendix A is described the work developed during the
PhD at the cole Polytechnique Fdrale de Lausanne, Switzerland, as collabo-
ration with the Distributed Information Systems Laboratory (LSIR) directed
by Prof. Karl Aberer.
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Chapter 2

Peer-to-Peer Networks

Peer-to-Peer (P2P) networks are virtual communities on the Internet where
participants directly connect with one another or where they use an interme-
diate service to directly connect with one another. Usually, in this distributed
application architectures all the participants, called peers, are equally privi-
leged and have the same capabilities and responsibilities. Unlike the client-
server model, in which the client makes a service request and the server
fulfils the request, the P2P network model allows each peer to function as
both client and server. Each peer makes a portion of their resources, such as
processing power, disk storage, network bandwidth or simply data, directly
available to other network peers, without the need for central organization
by servers or stable hosts [117].

P2P systems can be used to provide anonymized routing of network traf-
fic, massive parallel computing environments, distributed storage and other
functions. Typically, P2P applications allow users to control many param-
eters of operation: how many member connections to seek or allow at one
time; whose systems to connect to or avoid; what services to offer; and how
many system resources to devote to the network. Some simply connect to
some subset of active nodes in the network with little user control, however.

Although uses for the P2P networking topologies have been explored since
the days of ARPANET, the advantages of the P2P communications model
did not become obvious to the general public until the late 1990s, when music-
sharing P2P applications like Napster appeared. Napster and its successors,
like Gnutella, and more recently, BitTorrent, cut into music and movie indus-
try profits and changed how people thought about acquiring and consuming
media. Most P2P programs indeed are focused on media sharing and P2P is
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therefore often associated with software piracy and copyright violation.

Today, there is a huge amount of P2P systems. Their growing success is
owed to the spread broadband and ADSL flat increasingly accessible.

2.1 P2P Architectures

P2P networks are designed around the notion of equal peer nodes simulta-
neously functioning as both clients and servers to the other nodes on the
network. P2P networks generally implement some form of virtual overlay
network on top of the physical network topology, where the nodes in the
overlay form a subset of the nodes in the physical network. Data is still
exchanged directly over the underlying TCP/IP network, but at the appli-
cation layer peers are able to communicate with each other directly, via the
logical overlay links, each of which corresponds to a path through the under-
lying physical network. Overlays are used for indexing and peer discovery,
and make the P2P system independent from the physical network topology.
Based on how the nodes are linked to each other within the overlay network,
and how resources are indexed and located, P2P networks come in three
flavors [5, 57, 151]:

• Unstructured networks

• Structured networks

• Semi-structured or hybrid networks

We see specifically what are these categories’ features.

2.1.1 Unstructured Networks

Unstructured P2P networks do not impose a particular structure on the
overlay network by design, but rather are formed by nodes that randomly
form connections to each other [35, 103]. Examples of unstructured P2P
protocols are the following:

• Gnutella: the first open and decentralized P2P network for file sharing
created by Justin Frankel of Nullsoft [113];
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• Gossip protocols: style of computer-to-computer communication pro-
tocol inspired by the form of gossip seen in social networks. The term
epidemic protocol is sometimes used as a synonym for a gossip protocol,
because gossip spreads information in a manner similar to the spread
of a virus in a biological community [30];

• Kazaa: P2P file sharing application using the FastTrack protocol li-
censed by Joltid Ltd. and operated as Kazaa by Sharman Networks [74,
36].

Because there is no structure globally imposed upon them, unstructured
networks are easy to build and allow for localized optimizations to different
regions of the overlay [22]. Also, because the role of all peers in the network
is the same, unstructured networks are highly robust in the face of high rates
of “churn” – that is, when large numbers of peers are frequently joining and
leaving the network [55, 119].

However the main limitations of unstructured networks also arise from
their lack of structure. In fact, when a peer wants to find a desired informa-
tion in the network, the search query must be flooded through the network
to find as many peers as possible that share the data. Flooding causes a
very high amount of traffic in the network, uses more peer resources – like
CPU/memory by requiring every peer to process all search queries –, and
does not ensure that the desired information will always be found and de-
livered. Furthermore, since there is no correlation between a peer and the
content managed by it, there is no guarantee that flooding will find a peer
that has the desired information. Popular content is likely to be available at
several peers and any peer searching for it is likely to find the same thing.
But if a peer is looking for rare data shared by only a few other peers, then
it is highly unlikely that search will be successful [119].

2.1.2 Structured Networks

In structured P2P networks the overlay is organized into a specific topology.
This makes the search for a resource in the network extremely efficient –
typically approximating O(log N), where N is the number of nodes in the
network –, even if the resource is rare.

Usually the structured P2P networks employ a Distributed Hash Table
(DHT) [110, 129], in which a variant of consistent hashing is used to assign
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ownership of each resource to a particular peer [60, 28]. This enables peers to
search for resources on the network using a hash table: that is, (key, value)
pairs are stored in the DHT, and any peer can retrieve the value associated
with a given key [93, 81]. Other design structures are overlay rings and
d-Torus [12].

In order to route traffic efficiently through the network, nodes in a struc-
tured overlay must maintain lists of neighbors that satisfy specific criteria.
This makes them less robust in networks where nodes frequently join and
leave the overlay [79, 71]. More recent evaluation of P2P resource discovery
solutions under real workloads have pointed out several issues in DHT-based
solutions such as high cost of advertising/discovering resources and static
and dynamic load imbalance [11].

However DHTs are used in several notable distributed networks such as:

• BitTorrent: protocol for P2P file transfer [24] that makes many small
data requests over different IP connections to different machines, in-
stead of a single TCP connection to a single machine. BitTorrent down-
loads in a random or in a “rarest-first” [69] approach that ensures high
availability with respect to sequential downloads. This protocol pro-
vides no way to index torrent files;

• Kad network: P2P network which implements the Kademlia over-
lay protocol [82], that specifies the structure of the network and the
exchange of information through node lookups, using UDP;

• Storm botnet: famous P2P remotely controlled network of Microsoft
Windows computer [54] used a modified version of the eDonkey/Overnet
communications protocol [123];

• YaCy: free P2P search engine without main server with indices and
where each Linux-server with an installed YaCy separate downloads,
indexes the Web and processes user queries to search for documents
throw other servers in the YaCy network. YaCy uses DHT for defined,
simple and effective allocation documents between nodes: nodes calcu-
late (key; value) pairs for all documents in the network and then use
these pairs for looking for and getting required file by participating in
required DHT [95];

• Coral Content Distribution Network (CoralCDN): P2P content
distribution network that offers high performance and meets huge de-
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mand in accessing web contents. CoralCDN automatically replicate
content as a side effect of users accessing it and avoid creating hot
spots. It achieves this through Coral, a latency-optimized hierarchical
indexing infrastructure based on a distributed “sloppy” hash table [37].

Some prominent research projects in structured P2P networks include:

• Chord project: distributed lookup protocol that maps a key onto a
node that stores a particular data item, characterized by that key [125].
Chord uses a variant of consistent hashing [59] to assign keys to nodes.
Chord is routing a key through a sequence of O(logN) other nodes
toward the destination, where N is the nodes in the network;

• PAST storage utility: large-scale, distributed, persistent storage sys-
tem based on Pastry P2P overlay network [115, 116, 32]. Pastry im-
plements a DHT where the (key; value) pairs are stored in a redundant
P2P network;

• P-Grid: self-organized and emerging overlay network which can ac-
commodate arbitrary key distributions, providing storage load-balancing
and efficient search by using randomized routing [3, 2];

• CoopNet: content distribution system for off-loading serving to peers
who have recently downloaded the file. It assigns peers to other peers
who are locally close to its neighbors – same IP prefix range. If multiple
peers are found with the same file the system chooses the fastest node
of that peer’s neighbors [101].

DHT-based networks have also been widely utilized for accomplishing
efficient resource discovery for grid computing systems, as it aids in resource
management and scheduling of applications [109, 108].

2.1.3 Hybrid Networks

Hybrid systems, like Spotify [64], combine P2P and client-server princi-
ples [29]. A common hybrid model is to have a central server that helps
peers find each other. There are a variety of hybrid models, all of which
make trade-offs between the centralized functionality provided by a struc-
tured server/client network and the node equality afforded by the pure P2P
unstructured networks. Tipically, this systems distribute their peers into two
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groups: clients nodes and overlay nodes. Each peer is able to act according
the momentary need of the network and can become part of the overlay used
to coordinate the P2P structure, such as in the Gnutella protocol.

Currently, hybrid models have better performance than either pure un-
structured networks or pure structured networks because certain functions,
such as searching, do require a centralized functionality but benefit from the
decentralized aggregation of nodes provided by unstructured networks [143].

2.2 P2P Applications

The most popular application of the P2P principle is the file-sharing, that
made P2P popular. The use of P2P file-sharing software, such as BitTorrent
clients, is responsible for the bulk of P2P internet traffic. From 2004 on,
such networks form the largest contributor of global network traffic on the
Internet.

In P2P networks, clients both provide and use resources. This means
that, potentially, the content serving capacity of P2P networks can actually
increase as more users begin to access the content, especially with protocols
that require users to share, such as BitTorrent. This property is one of the
major advantages of using P2P networks because it makes the setup and run-
ning costs very small for the original content distributor [72, 127]. Sharing
computational power is mainly used for problem solving or complex calcu-
lations. Some examples are SETI@Home [?], the Great Internet Mersenne
Prime Search (GIMPS) [138], Distributed.net [1].

Some multimedia applications use P2P protocols, like P2PTV and PDTP [131],
for the diffusion of high data streams generated in real time. Usign trasmis-
sion bandwidth of individual peers there are not required huge server per-
formances, but that peers are provided with high bandwidth connections in
both reception and trasmission.

Other P2P applications are P2P-based digital cryptocurrencies, like for
examples Bitcoin [92] and alternatives such as Peercoin [122], and so on.

2.3 Security and trust in P2P networks

P2P systems pose some challenges also from a computer security perspective.
What makes this particularly dangerous, however, is that P2P applications
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act as servers as well as clients, meaning that they can be more vulnerable to
remote exploits [133], like routing attacks and handling corrupted data and
malware.

Since each node plays a role in routing traffic through the network, ma-
licious users can perform a variety of routing attacks or denial of service
attacks. Examples of common routing attacks include:

• incorrect lookup routing: whereby malicious nodes deliberately for-
ward requests incorrectly or return false results,

• incorrect routing updates: where malicious nodes corrupt the rout-
ing tables of neighboring nodes by sending them false information,

• incorrect routing network partition: where when new nodes are
joining they bootstrap via a malicious node, which places the new node
in a partition of the network that is populated by other malicious nodes.

On the other hand, the prevalence of malware varies between different
P2P protocols. Studies analyzing the spread of malware on P2P networks
found, for example, that 63% of the answered download requests on the
Limewire network contained some form of malware, whereas only 3% of the
content on OpenFT contained malware. Another study analyzing traffic
on the Kazaa network found that 15% of the 500,000 file sample taken were
infected by one or more of the 365 different computer viruses that were tested
for [46].

Corrupted data can also be distributed on P2P networks by modifying
files that are already being shared on the network. For example, on the
FastTrack network, the Recording Industry Association of America (RIAA)
managed to introduce malicious code into downloads and downloaded files
in order to deter illegal file sharing [121]. Consequently, the P2P networks of
today have seen an enormous increase of their security and file verification
mechanisms. Modern hashing, chunk verification and different encryption
methods have made most networks resistant to almost any type of attack,
even when major parts of the respective network have been replaced by faked
or nonfunctional hosts [120].

Some P2P networks (e.g. Freenet) place a heavy emphasis on privacy and
anonymity – that is, ensuring that the contents of communications are hid-
den from eavesdroppers, and that the identities/locations of the participants
are concealed. Public key cryptography can be used to provide encryption,
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data validation, authorization, and authentication for data/messages. Onion
routing and other mix network protocols (e.g. Tarzan) can be used to provide
anonymity [133].

2.3.1 Intellectual Property and Network Neutrality

Although P2P networks can be used for legitimate purposes, rights holders
have targeted P2P over the involvement with sharing copyrighted material.
Companies developing P2P applications have been involved in numerous le-
gal cases, primarily in the United States, primarily over issues surrounding
copyright law [45]. Two major cases are Grokster vs RIAA and MGM Stu-
dios, Inc. v. Grokster, Ltd.1. In both of the cases the file sharing technology
was ruled to be legal as long as the developers had no ability to prevent the
sharing of the copyrighted material. Moreover, controversies have developed
over the concern of illegitimate use of P2P networks regarding public safety
and national security. When a file is downloaded through a P2P network, it
is impossible to know who created the file or what users are connected to the
network at a given time.

P2P applications present one of the core issues in the network neutrality
controversy. Internet service providers (ISPs) have been known to throttle
P2P file-sharing traffic due to its high-bandwidth usage [120]. Compared
to Web browsing, e-mail or many other uses of the internet, where data is
only transferred in short intervals and relative small quantities, P2P file-
sharing often consists of relatively heavy bandwidth usage due to ongoing
file transfers and swarm/network coordination packets. ISPs rationale was
that P2P is mostly used to share illegal content, and their infrastructure
is not designed for continuous, high-bandwidth traffic. On the other hand,
critics point out that P2P networking has legitimate legal uses, and that this
is another way that large providers are trying to control use and content
on the Internet, and direct people towards a client-server-based application
architecture. The client-server model provides financial barriers-to-entry to
small publishers and individuals, and can be less efficient for sharing large
files. As a reaction to this bandwidth throttling, several P2P applications
started implementing protocol obfuscation, such as the BitTorrent protocol
encryption [53]. Techniques for achieving “protocol obfuscation” involves
removing otherwise easily identifiable properties of protocols, such as deter-

1http://www.copyright.gov/docs/mgm/
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ministic byte sequences and packet sizes, by making the data look as if it
were random. The ISP’s solution to the high bandwidth is P2P caching,
where an ISP stores the part of files most accessed by P2P clients in order
to save access to the Internet.

The promotion of network neutrality is no different than the challenge
of promoting fair evolutionary competition in any privately owned environ-
ment, whether a telephone network, operating system, or even a retail store.
Government regulation in such contexts invariably tries to help ensure that
the short-term interests of the owner do not prevent the best products or ap-
plications becoming available to end-users. The same interest animates the
promotion of network neutrality: preserving a Darwinian competition among
every conceivable use of the Internet so that the only the best survive [139].

2.4 An application to Autonomic Security

At first, to study the properties of some structured P2P networks, we de-
veloped a simulator applied to the topic of network security, working with
the telecommunications engineering research team of the Prof. Callegati2

(Alma Mater Studiorum – University of Bologna). This work was partially
supported by the Italian MIUR Project Autonomous Security in the PRIN
2008 Programme.

In this work [20] we proposed new distributed data mining algorithms
to recognize network attacks against a set of devices from statistic data
generated locally by each device according to the standard Simple Network
Management Protocol (SNMP) available in each modern operating systems.
The idea is to place an autonomous mining resource in each network node
that cooperates with its neighbors in a P2P fashion in order to reciprocally
improve their detection capabilities. Differently from existing security so-
lutions, which are based on centralized databases of attack signatures and
transmissions of huge amount of raw traffic data, in this solution the network
nodes exchange local knowledge models of few hundred bytes. The approach
efficacy has been validated performing experiments with several types of at-
tacks, with different network topologies and distributions of attacks so as to
also test the node capability of detecting unknown attacks.

2http://www.unibo.it/Faculty/default.aspx?UPN=franco.callegati%40unibo.

it
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2.4.1 P2P Data Mining Classifiers for Decentralized
Detection of Network Attacks

Data mining aims to automatically discover new knowledge from huge amount
of data useful to explain or predict unknown phenomenon. Most of the cur-
rent techniques have been developed for centralized systems where all the
available data is collected in a single site. However, the growing need to
apply these techniques to large data sets distributed over the network, has
led to the deployment of distributed data mining algorithms [78, 62, 26, 77,
84, 85, 86, 90]. Recently several distributed data mining algorithms have
been introduced, however the best approaches are inadequate to work in
decentralized systems where nodes are in general autonomous and may ar-
bitrarily leave and join the system, for instance because belong to different
organizations or people.

We introduced two novel distributed classification algorithms taking in-
spiration from a well-known centralized algorithm called AdaBoost [39]. Ad-
aBoost has been used for distributed analysis and in parallel processing so
far. The previous approaches deal with performance improvements aspects
and data aggregation. In this work, the new AdaBoost algorithms are used
to generate and share knowledge models across network of autonomous re-
sources.

We then show how these algorithms have been applied to network security
in which an attacker attacks a single or a group of host. In particular, we have
investigated a collaborative behavior between network entities in which each
one does not share huge amount of raw data, as it happens in decentralized
systems, but rather sharing only knowledge models. The shared knowledge
models, which consist only of few hundred bytes, are locally generated from
local data according to the Simple Network Monitoring Protocol (SNMP),
available in every operating systems. [19] achieved optimal results generating
knowledge models according to an unsupervised solution, in which, differently
from this new contribution, we shared SNMP data among peers.

The cooperation among peers benefits are mainly in the exchange of
knowledge models. In the first place, this produces a strong decrease of
the traffic amount in the network, for example with respect to the exchange
of raw records. The latter would probably achieve the same result or bet-
ter, but the records of which each peer derives its knowledge models with
the mining algorithm can be huge and very dynamic – constantly changing.
When the network have been distributed knowledge models generated by
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centralized data, these may no longer be valid because the environmental
situation changes rapidly. This is true as far as the network is extensive
and real. Exchanging the models the system exchange the same knowledge,
because the mining algorithm is the same for each node, but in a higher level
and more convenient. This is an advantage for the scalability of the system:
if the network is very large, leading all records at each node or in a central
node to be analyzed is not convenient, also in terms of consistency, in modern
dynamic scenarios. The knowledge models are useful to nodes that receive
them because they represent guidelines to judge – in this example, classify –
their raw data – in particular in this example data generated by the SNMP
– according mining models derived from other data, that carriers new infor-
mation. We want to reach the results obtained grouping into a single node
all raw data for a centralized analysis and handing out the global knowledge
models. This in many practical situations it is not possible for obvious rea-
sons: dynamic environments, huge amount of raw data that changes quickly
and continuously, very large networks, etc.

2.4.2 Literature on Distributed Data Mining

Extracting information from very large distributed data-bases is a big chal-
lenge for data mining. Many databases are too big to be collected at a single
site, and centralized training could be very slow in these specific cases. Today
some databases are inherently distributed and cannot be unified for a long
list of reasons.

For example, in a real-time environment, large amounts of data could
be collected so often and in different patterns, which in the time required
to make them consistent in a single structure would have lost their validity.
As well, in distributed environments, it may happen that the effectiveness
of certain information is limited to a single environment, so if you collected
them all in a single database, some data may lose consistency.

Therefore it is very difficult to be able to design a single classification
algorithm under these constraints. For example, the classification model
construction to detect credit card frauds needs a huge strictly distributed
data set. In addition, there are some databases having a large amounts of
new data, available periodically or in real time. Re-training a new model on
an entire data set it is both inefficient and expensive since each at time there
is a significant increase or a change of data.

Some researchers have proposed the use of classification techniques to
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solve this problem. In general, standard algorithms have been developed,
such as adding incremental induction on training of decision trees [130] and
implementing an incremental ruled-based learner [23]. Another idea proposed
is to parallelize learning algorithms – such as the parallel rule induction [105],
the construction of decision trees [16] and association rules [4, 50].

An alternative way is to combine multiple classifiers: this approach is also
known as “the meta-learning”. [21] proposed to train classifiers on different
training set partitions. [15] used a statistical method to combine classifiers
with voting, trained on a part of the original training set. The combination
advantage is so the system can use many learning algorithms but every single
algorithm is independent of the other one. [42] present a parallelization of
AdaBoost [39] balancing workload on the “master-worker” strategy. [34]
studied two new techniques using AdaBoost to combine classifiers. In the
first case, they only choose samples from the complete weighted training
set to create classifiers are expected to be “weaker” than one trained from
the complete training set. However, boosting can still increase the overall
accuracy of the voted ensemble after many rounds. In the second case, they
regard the AdaBoost weight updating formula as a way of assigning weights
to classifiers in a weighted voting ensemble. With this approach, they have
an opportunity to reuse old classifiers on new data sets and learn a new
classifier to concentrate on portions of the new data where the old classifiers
perform poorly.

These techniques use distributed and online learning techniques, and have
been developed on JAM [126], a framework of data mining Agent-based sys-
tems. In general, the characteristics of software agents, such as autonomy,
adaptability and decision-making, match very well to distributed system re-
quirements, and also to distributed data mining.

2.4.3 AdaBoostM1 Algorithm

AdaBoostM1 [40] is a widely used method, designed for classification. It is
a meta-algorithm which uses different classification models according to a
learning technique called boosting [137].

Let assume that the learning algorithm is able to handle instances with
a weight, represented by a positive number (we will review this assumption
later). The weighted instances change the way it calculates the classifier
error: in this case, error is the sum of the weights of misclassified instances,
divided by the total weight of all the instances, instead of the fraction of
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misclassified instances. At each iteration, the learning algorithm focus on a
particular set of instances, which has the highest weight. These records are
important because there is a greater incentive to classify them properly. The
C4.5 algorithm [106, 107, 63] is a learning method that can handle weighted
instances.

The algorithm starts assigning the same weight to every instance of the
training set, then calls the learning algorithm, which builds a classifier and
assigns a new weight to each instance, based on the outcome of his analysis:
the weight of instances correctly classified will be decreased and the weight
of misclassified instances is increased. This produces a subset of “easy”
instances, with low weight, and a subset of “hard” instances, with higher
weight. In successive iterations, the generated classifiers focus their evalua-
tion on “hard” instances and up to date the weights. It is possible to get
different situations, for example, instances could become easier, or otherwise
continuously increase their weight. After each iteration, the weights reflect
how many times each instance has been misclassified by the classifiers pro-
duced up to that point. Maintaining a measure of the “difficulty” in each
instance, this procedure provides an effective way to generate complementary
classifiers.

How much weight should be changed after each iteration? It depends on
the error of the overall classification. In particular, if e (a fraction between
zero and one) denotes the error of a classifier with weighted data, then the
weights of correctly classified instances will be updated as follows:

weighti+1 ← weighti ×
e

1− e

while misclassified instances will remain unchanged. This obviously does
not increase the weight of misclassified instances, as stated earlier. However,
after all weights have been updated, they are normalized so the weight of each
misclassified instance increases and that of each correctly classified instance
decreases. Whenever the error on training data is weighted equal to or greater
than 0.5, the current classifier is deleted and the algorithm stops. The same
thing happens when the error is zero, because otherwise all the weights of
the instances would be cancelled.

After the training session, we obtain a set of classifiers. In order to
evaluate them, there is a voting system. A classifier that performs well on
the training set (e close to zero) receives a high mark, while a classifier that
performs bad (e close to 0.5) receives a low mark. In particular, the following
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equation is used for the assignment of votes:

vote = − log
e

1− e
,

which always returns a positive number. This formula also explains why
the perfect classifiers on the training set must be eliminated: in fact, when
e is equal to zero the weight of the vote is not defined. To classify a new
instance you have to add the votes of all the classifiers and the class obtains
the highest score is assigned to the instance.

At the beginning, we assumed that the learning algorithm is able to han-
dle weighted instances. If not, however, it is possible to generate a set of
unweighted instances by the weighted ones through resampling. Instead of
changing the learning algorithm, it creates a new set replicating instances,
proportional to their weight. As a result, high weight instances will be repli-
cated frequently, while low weight instances could be not sampled. Once new
set of data becomes large as the original, it replaces the method of learning.

Algorithm 1 AdaBoostM1 pseudocode.

Input: D1(i) = 1/m, ∀ i instances.

for t = 1→ T do
Call a learner using distribution Dt

Get back a classifier ct : X → Y
Calculate error of ct, et =

∑
i:ct(xi)6=yi

Dt(i)
if et = 0 ∧ et > 0.5 then

T = t− 1;
end if
Set a vote of ct as vt = et/(1− et)

Set Dt+1 = Dt(i)
Nt
×
{

vt if ct(xi) = yi
1 otherwise

where Nt is a normalization constant.
end for

Output: the predicted class
arg cfin(x) = arg maxy∈Y

∑
t:ct(xi)=yi

log(1/vt)

A disadvantage of this procedure is given by the loss of information result-
ing from the repeal of some low weight instances from the data set. However,
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this can be turned into an advantage. When the learning algorithm generates
a classifier whose error is greater than 0.5, the process of boosting must end if
we use weighted data directly, but if you use a resampled data set, you could
still produce a classifier with an error less of 0.5 generating a new resampled
data set, maybe with a different seed. Resampling can be performed also
when using the original version of the algorithm with weighted instances.

2.4.4 Distributed AdaBoostM1-MultiModel

In a distributed environment, mining algorithms, which are placed on ev-
ery monitor node, create models of knowledge based on their training data.
Exchanging models between neighbors they increase their knowledge.

Figure 2.1: Each (red) node runs Distributed AdaBoostM1-MultiModel al-
gorithm spreading all the models to its (blue) neighbors.
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During the first iteration of the algorithm, each monitor node runs the
AdaBoostM1 algorithm on its training set. The result is a series of classifi-
cation models – i.e., decision trees (assuming to use C4.5 mining algorithm).
In this first phase, each mining engine does not care about their neighbors.

Once all nodes have generated models based on their local data, the
algorithm continues with the next phase: knowledge sharing. Each node
obtain the result of the previous iteration of every neighbors, the knowledge
models previously built according to local data now are going to be changed
according to the new neighbors data. In this way, in the global system, there
is an exchange of information not in the form of data, but of classifiers, which
offer an higher level of abstraction and less network traffic - since a model is
smaller than a data set. In this context, however, we do not examine issues
related to network communication between nodes, because the execution of
the algorithm is simulated in a static way.

After that, classifiers collected from neighbors are added to classifiers gen-
erated on the local data to extend the knowledge of each monitor node. This
knowledge is evaluated on a the test set of instances. Each test instance re-
ceives the class label that gets the most votes from all the available classifiers
in the monitor node.

2.4.5 Distributed AdaBoostM1-SingleModel

This section describes a variant of the above algorithm which avoid the mul-
tiplication of the classification models on every monitor node. In scenarios
where too much knowledge models are shared the Distributed AdaBoostM1-
MultiModel algorithm might have issues such as: slowing down operations
and a decreasing the accuracy of the results. The number of models in each
node increases depending on the number of neighbors, causing a slowdown
during the test to evaluate each record. The accuracy decreases as each
model focuses on only a few attacks, received during the training of each
node, and then those models do not know a particular attack issue a wrong
result. When these models are the majority then the node can not detect
the attack because good grades are the minority.

In order to fix the described issues we developed an algorithm which
shares only a single model to every neighbor. The algorithm shares the best
model rather than all the generated ones. The models generation remains
unchanged, it follows the classical AdaBoostM1 algorithm. What changes
is the sharing phase: when a node asks new models from its neighbors,
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Figure 2.2: Each (red) node runs Distributed AdaBoostM1-SingleModel al-
gorithm spreading only the best model to its (blue) neighbors.

the neighbors share only one model, the one who obtained the best score
during the boosting phase. The monitor node itself, during the new instance
evaluation, does not consider all the models generated locally, but it chooses
the best one among the local ones, and the best classifiers of its neighbors.
The evaluation of new instances is done on a shorter list of models, and this
reflects an improved efficiency in terms of transmission models to neighbors
and during the evaluation of new instances.

2.4.6 Experiments Setup

This section describes the experiments and the obtained results by applying
the AdaBoostM1 to SNMP data gathered during attacks and normal net-
work traffic. From fourteen SNMP parameters collected in a given time and
during both attacks and normal network traffic, we want to be able to realize
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Algorithm 2 Distributed algorithm pseudocode.

Input: m = maximum number of models generated by each node.
for each node do

Generate m knowledge models on local training set with AdaBoostM1.
for each neighbor do

Get m′ neighbor models and add to its own knowledge base (1 ≤
m′ ≤ m).

end for
Evaluate test set on its own knowledge models.

end for

for the Single-Model variant of the algorithm: m′ = 1.

whether or not attacks are happening and possibly we want to distinguish be-
tween them. We considered a scenario in which a set of monitoring stations,
each of which collects raw data on network traffic, control a set of protected
machines (i.g. servers, workstations...). The gathered information is provided
through SNMP. Each monitor machine has a SNMP agent running to collect
SNMP data on a protected machine. The collected SNMP informations are
organized into categories in a tree structure, known as MIB (Management
Information Base): in this case, we consider the data related to TCP and
IP network protocols, such as inbound and outbound packet counts. These
MIBs represent the current state of the TCP/IP stack protected machine.

The idea is to analyze the given data through mining techniques to obtain
classification models letting us understanding whether or not network attacks
are happening. Since each of the monitoring stations collect data from a
limited group of machines, it might be useful to gather such a data through
a P2P network and use distributed data mining techniques: in this way each
station can use the knowledge from its neighbors to expand and complete its
own.

We considered 6758 observations as our data set, made with SNMP on a
single machine. Each observation consists of the values of the 14 attributes
listed in Table 2.1 [19]. The collection of these observations has been divided
into 6 sessions of different network traffic conditions, listed in Table 2.2. Data
are classified according to the session during which they were collected, so
that only one session corresponds to regular traffic and each other to different
type of attack. These are well known attacks, recognized also by current IDS,
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Table 2.1: Relevant Variables Considered from SNMP Data

Features Derived from SNMP Data

Number of processes in TCP listen state
Number of open TCP connections (any possible TCP state)
Number of TCP connections in time-wait state
Number of TCP connections in established state
Number of TCP connections in SYN-received state
Number of TCP connections in FIN-wait state
Number of different remote IP addresses with an open TCP connection
Remote IP address with the highest number of TCP connections
Remote IP address with the second highest number of TCP connections
Remote IP address with the third number of TCP connections
Local TCP port with the highest number of connections
Number of connections to the preceding TCP port
Local TCP port with the second highest number of connections
Number of TCP RST segments sent out

so the results can be compared with them to evaluate the level of accuracy.

To obtain accurate information from the experiments, it was necessary
to perform simulations with different parameters. In particular, we tried as
many as possible combinations of network topologies, data distributions, and
mining algorithms, to see the trend of results. We considered these groups
of parameters: those related to the algorithm, those related to the network
topology, and those related to the data distribution. For each simulation,
the main considered outcome was the accuracy of classification, calculated
as the average percentage of test data, which are correctly classified by each
node.

The algorithms used in the experiments are Distributed AdaBoostM1-
MultiModel and Distributed AdaBoostM1-SingleModel. As stated above,
they are the same mining algorithm (AdaBoostM1) that changes the ex-
changing knowledge with neighbors. In the first case, all the models gener-
ated locally are shared with each neighbor, in the last case, there is only one
shared model for each monitor-node, that one got the lowest generalization
error on the training set, that is the most accurate model.

Parameters of both algorithms are the following:
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• as basic classifier to generate the models we used C4.5 [106, 107, 63], a
decision tree algorithm. The confidence threshold for pruning was set
at 0.3, and the minimum number of instances in the leaf of the trees
was 2;

• the maximum number of models generated during boosting is 10;

• a single iteration was made for the exchange of models with the neigh-
bors. This means that the shared knowledge is limited only to monitor-
nodes that are just a “hop” from the current one. However, it’s possible
to increase the iterations of the algorithm to grow the knowledge base
to second level neighbors and above. The results of these experiments
will be studied in future work;

• the data distributor allocates to each node all instances of a number
of randomly picked classes. Both training and test set are distributed
according to this logic and independently from each other: so each node
may have one or more classes in both training and test set.

The centralized case, bringing all of the training data set on a single site,
with all types of attacks shown in Table 2.2, leads to an accuracy greater
than 99%. This case, however, involves considerable cost in terms of network
traffic, time and also requires a wide and general knowledge of the network,
very difficult in modern systems.

We analyzed instead a case where the training sets are distributed in the
network. Each node is trained only on certain attacks, not all, and then tested
on different attacks to show how the accuracy changes, betweens knowledge

Table 2.2: Simulated Traffic Sessions

Number Description

0 Normal traffic
1 Denial of Service
2 Distributed Denial of Service
3 TCP Port Scanning using different techniques: FIN, SYN,

ACK, WINDOW, NULL, XMAS
4 SSH Denial of Service
5 SSH Brute Force
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models sharing cases, according to the two algorithms presented in this work,
and without models sharing. In the first case, the improvement is evident in
all the graphics, since the case in which nodes are trained only on the half
of the attack classes and tested on the other half. The unknown attacks are
detected thanks to the neighbors models received.

2.4.7 Simulation Results

Now we show some significant results that have been identified among the
many performed simulations. In particular, the x-axis are arranged in order
of increasing the number of training sessions and, in order of decreasing, the
number of test sessions (6 - x). Training sessions as well as test ones are
randomly selected from those available, with no repeats, but it’s possible
some sessions are in both sets, for each node.

The random number generator used to distribute the sessions at the nodes
is controlled by a seed set as a parameter, which has been changed ten times,
with values ranging from 100 to 109, for each simulation. Each value shown
in the following graphs is therefore the average of ten simulations.

Figure 2.3: Accuracy of Distributed AdaBoostM1-MultiModel algorithm in
a Ring Network and a Grid Network both of 64 nodes.
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Figure 2.3 represents the trend of the accuracy of the Distributed AdaBoostM1-
MultiModel algorithm on a ring network (with two neighbors per node) and
a grid network (with four neighbors per node), as the number of training
sessions. When the training sessions of each node grow, so the accuracy sig-
nificantly improves. In particular, when the number of training sessions is
three, half of those available, the accuracy is already around 90%. In this sce-
nario, this means it’s enough each node knows the half of the attacks to get a
good accuracy with the help of neighbors, that is the exchange of knowledge
models. However, a slightly better result is obtained in the ring network than
in the grid network, so a higher number of neighbors can negatively influence
the accuracy of nodes. This depends on the knowledge models shared by
neighbors: in fact, some neighbors who don’t know certain kinds of attacks
provide models that do not work well. Hence, as a future work, it is neces-
sary to find a way to evaluate the goodness of the models coming from the
neighbors.

Figure 2.4: Accuracy of Distributed AdaBoostM1-SingleModel algorithm in
a Ring Network and a Grid Network both of 64 nodes.

In Figure 2.4 there lines represents the same simulations but with the
Distributed AdaBoostM1-SingleModel algorithm: the results are very similar
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Figure 2.5: Accuracy of Distributed AdaBoostM1-SingleModel algorithm in
two types of regular networks (Ring and Grid, with 64 nodes) adding in each
one different percentages of random links, respectively 10%, 15% and 20%.

to those of the previous algorithm, but this one have better performance, as
less network traffic, because exchanges only one model instead of all, and
as faster evaluation of new instances, because each node collects a number
of models equal to the number of its neighbors plus one (the best model
generated on local data set): O(log n) instead of O(m log n), where n is the
maximum depth of decision trees and m is the number of models generated
in boosting process in every node of network.

Figure 2.5 shows the Distributed AdaBoostM1-SingleModel algorithm
dealing with six irregular networks, derived from the previous two regular
topologies, namely the ring and the grid. The first three networks come
from the same ring network of the previous simulations with the addition of
10%, 15% and 20% of random links between nodes. Added random links are
created between nodes previously not connected and to increase the degree

31



Figure 2.6: False Positive Rates between Normal Traffic and Attacks with
Distributed AdaBoostM1-SingleModel algorithm in a Ring Network of 64
nodes.

of network connectivity as the indicated percentage. The result shows the
increase of links don’t significantly affect the accuracy of the recognition of
the attacks.

Finally, Figure 2.6 and Figure 2.7 show the false positive rates derived
from the simulations of Figure 2.4 with the Distributed AdaBoostM1-SingleModel
algorithm, respectively for the ring network and the grid network. The line
of points identified with squares represents the percentage of false alarms,
that is normal traffic recognized as attack by the system. When training ses-
sions are few (one or two) there are quite high peaks, especially in the grid
network, the peak is close to 4%, due to the fact that many nodes may have
never seen the session of the normal traffic, because sessions are distributed
casually by the data distributor, and therefore may not be able to recognize
it, with the help of neighbors too. On the contrary, as shown by the line
of diamonds, the unidentified attacks always remain around 0.1%. The last
line of points, identified by triangles, represents the false attacks compared
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Figure 2.7: False Positive Rates between Normal Traffic and Attacks with
Distributed AdaBoostM1-SingleModel algorithm in a Grid Network of 64
nodes.

to attacks detected. If it were high it would means the system is not able
to detect enough attacks, therefore is bad. In this case, this line is usually
below 0.1%, so false alarms detected by the system are a very small part
compared to all correctly detected attack.

Figure 2.8 shows two samples of decision trees generated by the algorithm
C4.5 (weka.classifiers.trees.J48) implemented in WEKA with the same
parameters used in the simulations. The first and largest tree is generated
with all the six attack classes, the smaller one instead is generated with three
attack classes, in particular “0”,“2” and “5”. We calculate the amount of
network traffic generated by our distributed algorithms in the worst case.
We consider the size of the decision tree generated by all classes of attack:
about 1 Kbyte. The average size of the models however is much smaller
because in general it is generated by a smaller number of classes. In the grid
network there are 64 nodes, each node has 4 neighbors, and the Distributed
AdaBoostM1-MultiModel algorithm shares up to 10 models (decision trees),
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so the total amount of bytes flowing in our system, in worst case, is:

10× 4× 64 = 2560Kbyte

We consider also a centralized situation, where all the data are reached by
a single node to analyze them and after distribute the generated model to
the entire network. We consider the best case to highlight the benefits of
our approach. Each node has accordingly the data related to only one attack
class: about 1100 of the 6758 data set observations, corresponding in general
to 100 Kbytes. To reach a node from any point of a ring network (simpler
than a grid network), the data takes a average of N/4 hops (64/4 = 16). The
network has 64 nodes as above, so:

100× 16× 64 = 102400Kbyte

At this number, which is already two orders of magnitude larger than our
worst case, we must add the traffic produced by the distribution of the gen-
erated knowledge model (1 Kbyte) to every node of the network.

1× 16× 64 = 1024Kbyte

This simple estimate shows the benefit of our work in network traffic, com-
pared to a centralized solution.

2.4.8 Conclusions

We introduced two distributed data mining algorithms called Distributed
AdaBoosM1-MultiModel and Distributed AdaBoostM1-SingleModel. Both
algorithms and the underlaying framework for the generation of several net-
works and attack scenarios have been fully implemented as new components
of WEKA3. Both algorithms work in purely decentralized scenarios where
nodes exchange only local knowledge models of few bytes rather than huge
amount of network traffic as performed by most of existing solutions. In par-
ticular each network node extracts and shares knowledge models from local
SNMP data.

The models produced by a node, against a certain type of attack become
useful for another node not previously aware of that attack. This allows

3Data Mining open source tool developed by the University of Waikato (NZ);
http://www.cs.waikato.ac.nz/ml/weka/
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nodes to be able to recognize unknown attacks and even to prevent them. The
knowledge sharing allow each node to build a more complete knowledge base,
compared to that produced using only their local data. The experimental
results show that both algorithms can provide accurate classifications, even
in case of unknown attacks, moreover the best performance are not far from
the ideal solution where all data are centralized in a single machine, which
for this reason cannot scale as the network dimension increase.

The algorithms can be extended in several directions that are beyond the
scope of this work, such as dealing also with malicious nodes interested in
exchanging bad knowledge to reduce the global accuracy or improving the
knowledge in order to identify bot-nets as well.

Finally, this work, as well as bringing new contributions in the topic of
distributed data mining applied to autonomic security, has been very useful
to study various properties of P2P networks, in order to develop the overlays
explained in the next chapters.
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Figure 2.8: Decision tree samples generated by WEKA using C4.5 algorithm
(weka.classifiers.trees.J48).
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Chapter 3

Multi-dimensional Data
Indexing for Efficient Routing
and Content Delivery in P2P
Networks

P2P networks emerged as a computing paradigm for locating and managing
contents distributed over a large number of autonomous peers. Autonomy
implies that peers are not subject to central coordination. Each peer plays
at least three roles, either as (i) a server of data and services, (ii) a client of
data and services; and/or (iii) a router to manage network messages. P2P
systems realize several of the desirable properties of emergent systems, in-
cluding self-organization, which provides the ability to self-administer, scal-
ability, which enables support large number of users and resources without
performance degradation, and to support robustness, which makes the sys-
tem fault-tolerant in the event of peer failures or leaving [89].

Moreover, because of the peers autonomy, P2P networks have a compa-
rable behavior to complex dynamic organisms. For example, local changes in
the molecular structure of a chemical compound may aggregate to yield al-
together a new compound: a global property emerges generally from a series
of simple local interactions. The same phenomenon may also occurs in the
content distribution as autonomous peers interact independently with each
other in a P2P system. Thus, in addition to scalability, our goal is to seek
structures for P2P systems which exhibit emergence and self-organization
properties characteristic of complex systems, where local interactions and
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peers autonomy lead to a global organizational structure with excellent per-
formance features.

In most of the actual P2P structures, the multi-dimensional range query
are executed by attribute aggregation. For example, we have a table of
song records with three attributes: author, year and genre. The aggregation
of these attributes produces a unique key, as “Madonna-1994-R&B”. If we
follow the order of the attributes in the key for our queries – i.e. we want
search all the songs of Madonna or, all the songs of Madonna published
in 1994 –, it works well. If we want instead obtain all the R&B songs of
Madonna, the key becomes useless and we will check one by one all the keys.
This is not acceptable for distributed databases with a huge amount of data.

We present G-Grid as a foundational structure devised to build multi-
dimensional indexes even in a decentralized context, and able to support algo-
rithms for data-mining functions, such as clustering, or distributed databases
for P2P networks or, in business distributed environments, such as server
farms for grid, cloud computing and big data domains.

G-Grid lets us execute efficiently multi-dimensional range query. Fur-
thermore, in G-Grid data can be distributed easily on various peers and with
a good degree of storage resources distribution. The structure evolves in a
totally independent way, so we can use G-Grid for P2P applications develop-
ment because each peer does not need a global knowledge of the network. The
shape is not imposed a priori and the interactions among peers increase the
peers knowledge on the topology of the network. The performance does not
deteriorate with increasing number of peers, so its scalability helps to build
large data sources. Since G-Grid is a flexible and suitable overlay for P2P
environments, we aim to create a large distributed database in a dynamic
context.

Today, most databases are centralized and placed on powerful servers.
In a context where the input/output of peers is not frequent, for example
the server farm of a company, we can deliver on some small computers the
company’s database via G-Grid peers. This could reduce the required num-
ber of centralized and dedicated powerful servers, which do not use most of
the computational capacity. The new concepts introduced by G-Grid lend
themselves well to the growing use of virtualization techniques. We could not
spend or invest in centralized powerful servers to handle a whole database
and deliver it directly on many client computers to reduce the resources ded-
icated entirely to a single database. In fact, all these machines provide a
storage capacity much larger than a main-frame and also do not waste their
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resources, but rather they will use the most of their entire computational
capacity.

3.1 Related works on P2P Data Structures

Content to be shared in P2P systems can be conceptually represented as
a single relational table, with multiple data attributes, horizontally parti-
tioned (distributed) among peers. Differently from traditional distributed
databases, in P2P systems there is no entity which is aware of the global
distribution scheme. This means that P2P systems’ actors must efficiently
cooperate any time data must be edited (e.g. inserted/updated/deleted) or
queried. The efficiency of P2P system is evaluated according to the following
parameters: complexity in terms of hops per data editing/query, complexity
in terms of number of links per single node.

First generation P2P systems, also named unstructured P2P systems, such
as Gnutella [56, 96] and its descendants (e.g. Kazaa and Morpheous) provided
a valued service for many users but their routing mechanism, which was based
on message flooding and a time-to-live parameter, could easily congest the
network in case of data intensive applications, due to their exponential costs
in terms of routing hops. This problem, together with the fact that query
completeness was not guaranteed, allowed hybrid systems such as WinMX
and Emule to take the scene. In those systems P2P only takes place during
file download, while several servers are in charge to manage and update a
catalog of the shared content. The presence of centralized servers made it
possible to shut down WinMX for copyright issues.

Researches in the field of distributed systems brought to the development
of structured systems which allow query completeness at logarithmic costs.
Building on previous work in uni-dimensional distributed data structures,
such as RP* [75], LH* [76] and ADST [31], several new approaches were
proposed. The most famous and cited are Chord [124], Tapestry [150, 149],
Pastry [114] and P-Grid [2]. These new systems did indeed improve perfor-
mance and extended the flexibility of search by allowing querying by con-
tent. All these systems require O

(
log n

)
hops and O

(
log n

)
links per node.

Viceroy [80], FissionE [70], SONAR [118], SKY [148] and Moore [49] achieve
O
(
log n

)
hops with O

(
1
)

links but have restricted or absent load balancing
capability.

Most of the cited systems are based on Distributed Hash Table (DHT),
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where keys and data are stored in the nodes of the network using a hash
function. The use of a hash function limits those systems to single-attribute
queries, restricting thus the range of possible of applications in a P2P envi-
ronment. Besides, the lack of locality brought by hash prevents those systems
to efficiently support range queries. In Family Tree, [144] solve the problem
of designing an ordered, distributed structure with O

(
1
)

links and O
(
log n

)
performance for search and update operations without using hash, and there-
fore allowing efficient range querying. However the resulting structure usage
is limited to single dimension spaces.

Recently decentralized routing and data management problems in ad hoc
networks have been deeply investigated. Some authors have contributed to
the development in sensor networks of approaches typical of database sys-
tems, such as solutions based on multi-dimensional distributed indexing like
DIM [73], PRDS [140], and also with distributed hashing like DIFS [47] that
facilitates range searches on a single key. These solutions share some pecu-
liarities, in fact they organize the sensed data in the network according to
structures typical of database systems, in particular using structures capable
of indexing multi-dimensional or multi-attribute data. In DIM and PRDS,
each sensor is an index node, thus the number of index nodes in the sensor
network depends on the size of the network. P2P data structures evolved
in ad-hoc, sensors, wireless, smart cities networks. However, these applica-
tions differ by the aims of G-Grid because they have constraints of physical
proximity between nodes, and a limited availability of energy (e.g. devices
with rechargeable batteries) and computing (e.g. processors smaller and less
powerful than those of data centers). In addition, these networks must first
build the transport layer by physical routing because there is already not a
P2P existing network, as for example TCP/IP.

In the real world many P2P applications require richer query semantics,
involving several attributes, comparable to those available in centralized re-
lational DBMSs. Multi-dimensional structures have been extensively inves-
tigated over the last 20 years where the main goal is to support efficiently
complex range queries over multiple attributes. A literature survey in this
area is available in [41], while two specific structures, IBGF and NIBGF, have
been presented by [97, 99]. These structures have been designed for environ-
ments where both control and data are centralized, and significant perfor-
mance improvements have been achieved for both partial and complete range
queries. In centralized systems, range queries over a set of attributes may
be processed using single-attribute structures with acceptable performance,
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despite the large number of local accesses to disk. The same queries in P2P
systems turn out to be singularly cost-prohibitive, unless a multi-dimensional
structure is available, as each local data access will now give rise to several
network messages. Dynamic pure P2P networks will naturally amplify the
severity of the costs because of continuous changes in the content, its dis-
tribution, and the underlying network topology. G-Grid starts from IBGF
to allow distribution of multi-dimensional data among peers in a network.
Moreover we develop the managing of the peers autonomy and the dynamic
evolution of the overlay, i.e. join and leaving of peers.

RAQ [94] can handle range-queries in multi-dimensional space, support-
ing such queries in at most O

(
log n

)
hops and requiring O

(
log n

)
links per

node. Like us, it works by splitting the data space into regions and maps
those regions in a binary tree. The main differences from G-Grid are that in
their solution each partition (region) holds a single data and that nodes are
only responsible for leaf regions (there is no nesting at regions).

Skiptree [6] is a scalable distributed data structure that allows storage
of keys in multi-dimensional spaces and the execution of both exact match
and range queries. It uses a distributed partition tree as well, partitioning
the data space into regions and assigning leaf regions to network nodes.
Differently from similar tree-based solutions (like ours or RAQ) the partition
tree in Skiptree is only used to define an order relationship which is then
used for the routing mechanism and link maintenance. Routing and links are
therefore independent from the shape (and the possible unbalanced shape)
of the partition tree. Skiptree maintains O

(
log n

)
links at each node and

guarantees an upper bound of O
(
log n

)
messages for point and range queries.

This result is also get by [147].
Among the most recent literature [145, 134, 48, 33], SkipCluster [142, 141]

is a hierarchical P2P overlay network. SkipCluster is derived from Skip
graphs [8] and SkipNet [52], but it has a two-tier hierarchical architecture.
The basic idea is to group the peers in the cluster, according to two levels:
in the low level there are peers in a cluster, seen as a single entity, while in
high-level clusters are considered as atomic entity that are connected to other
clusters. A cluster is a set of peers which have in common the most significant
part of the peer identifier. Each cluster has a manager peer called “super-
peer”. The super-peer is responsible for the connections between its cluster
and the others, and for maintaining the routing table of the peers inside
its own cluster. Therefore, the super-peer is the only access to the cluster
outside. In this overlay, the average number of hop grows logarithmically
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with respect to the number of network peers.
We compare our architecture with SkipCluster because it is capable of

supporting both exact-match and multi-dimensional range queries, as G-
Grid.

3.2 G-Grid

G-Grid is a distributed multi-dimensional data structure. The earlier propos-
als for P2P structure, such as Chord[124], Pastry[114] and P-Grid[2], handle
only one dimensional data, but this limits the query expressiveness. This
is even more evident in unstructured P2P implementations, which predomi-
nantly are able to perform only exact-match queries.

G-Grid aims to improve the query expressiveness, but at the same time
seeking to rely on a robust system, and providing efficient routing protocols
and quick searches. At the moment, it is necessary to make available the
major DBMS properties in distributed P2P environments, trying to offer
a query expressiveness close to SQL. G-Grid moves towards this direction,
introducing a method to index multi-dimensional data and providing the
basis to perform more sophisticated queries, such as range-queries in hyper-
spaces and join.

G-Grid can be used in application domains such as clustering, or dis-
tributed databases for P2P networks or, in business distributed environments,
such as server farms for grid and cloud computing and big data domains. For
example, G-Grid could be useful in a datacenter where each peer is a server
that manages hundreds or thousands of regions of the data space. Each peer
manages portions of the G-Grid tree, even not contiguous ones, and is linked
to the other peers according to the G-Grid overlay network. The G-Grid
structure creates a distributed index that leaves data in their nodes and al-
lows distributed search such as exact match and range queries, involving an
arbitrary number of attributes (multi-dimensional). All of the operations
above are executed with a logarithmic routing cost from one server to others
with respect to the number of peer in the overlay network.

3.2.1 Structure and Features

The data space has many dimensions as data attributes. G-Grid splits the
space according to the positioning of the data in regions, and the same data
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Figure 3.1: A G-Grid partition example in the binary tree representation of
the partition and in 2D space.

are placed in a tree structure (see Figure 3.1), where each node represents a
region, or a portion of the hyper-space. The tree is binary, each node either is
a leaf or has two children. The children represent regions that are subspaces
of the parent node region. The root node represents the entire hyper-space
and every descendant node is a subspace of it.

The G-Grid binary tree has two main properties:

• Space property: all the regions located at the same level of the tree
never intersect.

• Coverage property: given two regions, if one is included in the other,
then they have a family relationship in the tree.

The hyper-rectangle in which the data are placed is limited, particularly
for each dimension Di we have [minD0,maxD0[, ..., [minDn,maxDn[. Each
region is bound to have a minimum and maximum quantities of elements in
it, in particular the maximum is called bucket-size.

When a region exceeds the number of elements, it is halved with a split
operation, whose final result can be seen in Figure 3.2. On the opposite,
if the objects in a region are less then 1/3 of the bucket-size the region
collapses into the parent node, but if, after this, the parent node exceeds the
bucket-size, then this re-runs the split. At the end of these operations, each
region must respect the constraints imposed on the quantity of items. The
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Figure 3.2: Effect of a split operation on a region.

split operation cuts the region by half and this is performed on a dimension
selected cyclically from all the dimensions of the data. For example, if we
have a three–dimensional space, X, Y and Z, the first split is performed on
the X, the second on the Y and the third on the Z, then it starts again from
X, and so on. The splits run recursively until the bucket-size constraint is
satisfied. Starting from the root node, the regions are increasing or decreasing
depending on the input/output of data in G-Grid, so the tree grows or shrinks
dynamically.

Similar split mechanisms have been introduced since 1970 with data in-
dexing structures for centralized databases [98] and ensures that in each
region of G-Grid there are at least 1/3 of bucket-size data. The experimental
data show that regions tend to be occupied on average for about 2/3 of the
bucket-size. This result can positively influence the P2P, in fact, if we assign
one or more regions to each peer, the data load is distributed in a uniform
way and this is a desirable property in P2P systems. This property remains
valid regardless of the bucket-size value.

Each region is uniquely identified by a binary string G. Length(G) is the
function that returns the number of digits of the binary string, representing
the depth of the region in the tree. This number indicates also how many
split operations have been executed to create that region. The size of this
subspace, relative to the entire data space, is 1/2Length(G). G indicates the
position of the region in the space as well as the location of the node within
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the tree. The binary string G is given by “*”, representing the root node,
followed by binary digits as many as the depth of the region in the tree. As
we already mentioned, the tree is binary then each node, except the leaves,
has links to two children. Starting from the root node, we traverse the tree
by consulting the binary string G. Starting from the most significant one,
each digit provides the way to go inside the tree: more precisely, 0 move to
the left child and 1 to the right one. If we analyze the data space, a region
that splits is divided into two regions: recalling Figure 3.2, the first region is
the original one on which we made the split and represents the parent node
in the tree, the second instead is a subspace and the son of the previous node.
If the child occupies the left side of the cut it is the left child node and its
binary digit is 0, otherwise it is 1.

Figure 3.3: Location of a point in the binary tree and in the hyper-space of
G-Grid.

To find out where a data record is placed in the hyper-space, we have
to create the binary string G of the region in which it is, according to the
value of the data record attributes (see Figure 3.3). The candidate region
is the one that has the longest common prefix between the region G and
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the binary string of the data record. Each region G shows a very specific
area within the hyper-space and, in particular, it has a size proportional to
1/2Length(G), hence increasing the depth in the tree we increase the granularity
of the key location and for Length(G)→ +∞ geometrically we get a point.
G is arbitrarily set by the node issuing the query/insertion/elimination of
data, then if Length(G) is shorter than the target region depth, the last
node that receives the query message, if it has children nodes, recalculates
the query region G with the query message attributes and go on. In fact, if
we consider a record p on a node X that is not a leaf, the insertion checks
whether there is a descendant node of X that might be a better candidate
to contain p, perhaps recalculating the G of p with a length value consistent
with the depth of the tree explored at that time. The tree is always explored
recursively, and if we analyze the scenario in a P2P environment, where each
peer is responsible for at least one region, this would have connections with
its parent and its sons.

The insert and remove query walk through the tree and each peer along
the walking receives the request from its parent, evaluates if the binary string
of the data record is in its region, recalculating the binary string since the
depth of the tree if it can not know it a priori, and if that fails it forwards
the request to both the children. This recursive mechanism shows how this
structure works well in P2P environments, because each step requires the in-
teraction of only two entities: parent and son nodes. Regardless of whether
working in a distributed or centralized structure, basic operations are per-
formed exploring a binary tree and the only difference is that in distributed
environment this tree is split into parts assigned to autonomous nodes.

The advantage of the G-Grid structure is that it allows to perform in-
sertions, deletions, and queries in time proportional to O(logN) where N
is the number of regions. The number of regions in a binary tree of height
m is 2m and the maximum number of hops that a message needs to reach
a target region from a source region in this tree is 2m, so this number is
logarithmic with respect to the number of regions in the tree. In addition,
with the learning mechanism which will be explained later, this time can be
further reduced to become sub-logarithmic. In other words, the efficiency
of DBMSs is exported to distributed environments by virtue of the limited
number of hops1 required to complete any operation.

This is a fundamental property that can be found in DBMS and that in

1The number of gateways that separate the source host from the destination host.
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the field of distributed avoids to make too many hops to process a distributed
query, while reducing both the network traffic and the response time.

3.2.2 G-Grid in P2P Environments

After describing the structure from a general point of view, we show the
advantages that this structure brings in distributed environments, and in
particular focusing on scenarios in which participants are autonomous self-
organizing agents, as in P2P. When distributing the binary tree of G-Grid
into the peers, each peer is associated with one or more regions, i.e. one
or more nodes of the binary tree. Therefore each peer is responsible for
several portions of the hyper-space. The assumptions on the environment
are the following: a physical network connects peers, each having a unique
physical address, and each dimension of the hyper-rectangle of the data space
is limited. If a peer decides to participate in the G-Grid overlay and can’t
contact any other peer within the network, it will take the region of the root
node, which controls the entire hyper-space. When a participant agent (peer)
is starting, it hasn’t any reference to other nodes to communicate with, so
we have to provide for the creation of a common boot-strap list with some
valid contacts.

Under these assumptions, we ask the following question: why G-Grid is
well suited for P2P networks? By analyzing the evolution of regions of the
tree, we observe that it expands and contracts dynamically depending on
the data inserted and removed, and the only operations taken on the regions
are split and collapse. These two operations require the involvement of at
most two nodes, just what decentralized self-organizing networks need. P2P
networks evolve dynamically over time and this affects the positioning of
regions on the nodes, but the movements and interactions always involve no
more than two peers. For this property in G-Grid each node does not need a
comprehensive knowledge of the network and of how the tree is shaped, but
only portions of local information. Moreover, as we already mentioned, G-
Grid is able to load the regions for 2/3 of the bucket-size in average and with
a low variance, so the amount of resources that the nodes have to assign to
data is well distributed among the peer. In G-Grid not all peers hold regions,
in particular there are two types of peer:

• C–Peer : Client Peer,

• S–Peer : Structure Peer.
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Both can do the same operations on G-Grid (query, data insert and re-
move), the difference is that S–Peers routing table is more sophisticated and
they implement concretely the services, C–Peers instead perform their op-
erations via S–Peers. Essentially an S–Peer has the same functionality of a
C–Peer, but it has the resources and mechanisms that implement the G-Grid
distributed data structure. An S–Peer holds one or more tree fragments and
nodes of this structure pointing to specific regions, and is responsible for their
maintenance. The nodes can be connected to other regions held by S–Peers,
in this case we put a node pointer in the tree (see Figure 3.4). The S–Peers
must keep the connections to their remote parent and sons up to date and
consistent. These structural links, shown in Figure 3.4, build the paths that
evolve over time in the P2P network.

Figure 3.4: Internal link structure (left) and network path (right) of an S–
Peer tree

To load the data on the network, each S–Peer has a maximum number of
regions that may hold and if it exceeds this threshold, the S–Peer delegates
some regions according to the decreasing size, through a C–Peer contact list
accumulated over time. When a peer wants to be involved in G-Grid network,
it enters as C–Peer, then it can become S–Peer through the delegation of at
least one region by a C–Peer or S–Peer that exceeds the threshold. When
an S–Peer wants to leave the network, before disconnecting, it delegates all
its regions to a C–Peer or to an S–Peer that have relationships with the
regions to acquire. This mechanism requires the involvement of only two
entities, thus preserving the full autonomy of the peers and the completely
decentralized network evolution.
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Each peer, regardless of the role it plays in the network, has a routing
table, that is a list with references to other peers, pairs region / physical
address (G, IP) for the S–Peers, IP only for the C–Peers. The filling of
this table occurs when the peer contacts or perceives the existence of other
peers. For example, when a peer receives a request the message contains some
information about the sender. Every peer doing a request does not know a
priori the corresponding node and this is due to the fact that messages are
relayed through multiple intermediaries in the network and also if this were
not true, the peer should possess a comprehensive knowledge of network that
is not pragmatically possible on Internet. For this we can say that each peer
feels only the existence of a part of the whole network, but this view often
does not fully reflect the reality because the entities may leave the network, or
not answer as a result of faults. Therefore, the more requests are performed
on the network, the more knowledge about the network is acquired by the
peers.

But how can we derive new knowledge at each request? In G-Grid the
learning mechanism provides to sender and receiver information about all the
intermediate nodes. This works as follows: each intermediary attaches his
reference on the message, in this way also the intermediaries increase their
knowledge about the network, even if the first node receiving the message
learns less than those closest to the receiver. This solution is possible and
scalable because in G-Grid the number of hops to deliver a message is sub-
logarithmic with respect to the number of nodes so the message will not reach
a size large enough to waste the bandwidth of the communication channel.

Analyzing the routing table of a C–Peer, we find IP of C–Peer and S–
Peer, the formers are useful in the future if the entity will be transformed
into S–Peer and the latter act as an access point to the G-Grid network
for services. Why do we find this configuration in S–Peer routing table?
Is it not enough that they hold only structural links? These are only a
subset of the entire routing table because while nodes are querying there is
a learning process in the network. These references may be useful as a form
of redundancy but they also have an additional purpose. We stated that in
G-Grid the transactions perform at most a logarithmic number of hops, with
respect to the number of S–Peer. Let us consider what happens when a node
wants to contact the handler of a certain area of the hyper-space, due to its
intrinsically limited view of the entire binary tree, it starts scanning. In the
worst cases it can start to scan the entire hyper-space, or can forward the
request to the root node, who has a vision of the entire hyper-space and if the
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required area is not in its region, then the root node will forward the request
to the child who has assigned the required region. The child recursively
performs the same operation, which will end when the message reaches the
required region. This process is made possible by the fact that each node can
contact the root node via structural links, going up the tree through links
to parent nodes. However, this path can be reduced considerably thanks to
the learning mechanism: to perform an operation, which we do not know a
priori who will exactly involve, a peer may contact the S–Peer that has a
region that is a superset of the requested area. This concept can be exposed
as trying to find the S–Peer connection that holds the G with the prefix
larger than the G of the request data record. For example: if a peer holds as
S–Peer connections the root node * and nodes *010 - *1001 - *01011, if the
request is *010110010010111, the peer does not send the request to the root
but involves directly the node *01011, which is a superset of the requested
region and either it holds that specific area or one of its descendants does.
This mechanism reduces the number of hops with the increasing network
knowledge owned by the peer. This advantage is opposed by the entry/exit
of participants in the G-Grid network, which are seen as disruptive actions
on the entire system.

3.2.3 Performance Analysis

Once the network has settled, the number of records stored on average by
regions tends to the value 2b/3, where b is the bucket size. This value was
determined empirically. The simulation manages exact match queries and
record insertions and incorporates both the region splitting mechanism and
the learning capability. Moreover it can be configured with some parameters,
such as the region bucket size b and the rate of insertions with respect to
queries insertions

queries
. In the experiments the structure evolves and dynamically

grows starting from one peer and by generating operations randomly. In
essence, G-Grid is a stochastic system with complex behavior where each
state of the system depends on the preceding one, but the set of the possible
states evolves dynamically over time growing very quickly and making hard
any analysis based on traditional formal methods, such as Markov chains.

However we discuss in some detail the split probability, which can help
predicting the growth of the system and finding important theoretical results
related to the average path length (APL) to deliver any message in the system.

For space reasons we present here only the simplest version which well
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Figure 3.5: The approximated theoretical split probability compared with a
simulation

approximates the above-mentioned probability for very low values of the
bucket size.

Split Probability Definition: let t be any instant in time in the life of
a G-Grid structure G and let us denote the following variables:

• Nt = records at the instant t randomly distributed in G

• Mt = regions/peers in G at the instant t

• b = the region bucket size

then the split probability is the probability that a record insertion at time t
happens in a region already full with b records, namely:

Ps(Nt,Mt, b) =
1

fmax − fmin + 1
·

fmax∑
i=fmin

i

Mt

(3.1)

where fmin and fmax, which are the minimum and maximum number of
full regions respectively, are the following:
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fmin = max(Nt −Mt · (b− 1), 0) fmax = floor

(
Nt − b

3
·Mt

2
3
· b

)
(3.2)

Figure 3.5 illustrates a numeric comparison between the formula 3.1 punc-
tually measured and an experiment conducted with b = 6 where the system
grows up to more than 1500 peers. The empirical curve is simply the ratio
of the full regions number and the total regions number in G-Grid. The
formula 3.1, as we saw before, only requires the total number of regions.
The two split probabilities oscillate until there are less than 50 peers, then
both of them stabilize with a difference around 2.5%; in all experiments the
stabilization occurs always independently on the rate insertions

queries
. When new

records come in, the split probability increases because the regions begin to
saturate. When some regions split, because they have a number of records
greater than the bucket size, the split probability decreases. Once the net-
work has settled, the probability of split tends to the value 2b/3, where b
is the bucket size. Experiments have also confirmed an average storage uti-
lization per region equals to 2b/3, that is the number of records stored on
average by regions.

The rate insertions
queries

instead is determining for the APL in the system, in fact
if the rate remains constant the APL tends to grow, but less than logarithmi-
cally with respect to the number of peers. This effect is due to the learning
capability which reduces the logical distances in the system by creating new
links. Finally, we verified experimentally that if the rate insertions

queries
changes

like O( 1
M2

t
) then the APL in the system tends quickly to 1 (see Figure 3.6).

The insertions cause an increase of APL as the network grows and each peer
reduces its global knowledge of the network. The queries do not change the
network, but only increase the knowledge mentioned above. If the number
of queries grows quadratically with respect to the number of peer insertions
then the probability that G-Grid, thanks to learning mechanism, generates
a complete graph (e.g. each node is connected with all the others) tends to
1 when the number of nodes tends to infinity. In several realistic scenarios
the number of queries is more than quadratic with respect to the number of
users/machines, for instance in the World Wide Web each user access may
originate in cascade many messages and queries. Also the execution of more
traditional queries, such as joins and range queries, can generate that number
of requests.
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Figure 3.6: When insertions
queries

≈ 1
M2

t
the average path length to deliver messages

tends to 1

3.2.4 Robustness

The G-Grid allows peers to connect and disconnect autonomously from the
structure. C-peers can connect and disconnect without an impact on the
overall G-Grid structure, except perhaps that responses to their already ini-
tiated requests will not have a return address. On the other hand, a non-
anticipated disconnection of an S–Peer may make the S–Peer’s objects and
local routing table inaccessible. Thus, it is important that S–Peer return
local information to the system through a non-catastrophic disconnection.

An orderly disconnection is one where an S–Peer hands over its con-
tent to another peer to preserve data accessibility and routing information.
There are two possibilities: (i) merging its local information (both objects
and routing table) with its parent S–Peer or with a child S–Peer., or, (ii)
requesting a C–Peer as a replacement. The choice is determined based on
policies which will enhance the overall performance of the system. These
policies must be selected and developed during the implementation of the
system.

A disorderly disconnection of a S–Peer occurs in catastrophic situa-
tions such as computer crashes or physical network problems. Objects in the
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S–Peer become inaccessible and routing through the S–Peer is no longer pos-
sible. Depending on the network topology, a disorderly disconnection could
cause the G-Grid partitioning into two disjoint component. To enhance ro-
bustness of the system, one approach is through duplication of information
in S–Peers. Besides the associated information integrity problems, duplica-
tion does not eliminate the problem of G-Grid partitioning, it only reduces
the likelihood of its occurrence. Our approach is to avoid altogether dupli-
cation and rely on the learning mechanism of the system, which establishes
incrementally links between the various S–Peers as the level of interaction in-
creases, and thus provides multiple routes to get to S–Peers. To what extent
does the learning mechanism reduce the likelihood of G-Grid partitioning?
Our preliminary experimental results show that the likelihood of partitioning
is practically nil. What will be the effect on performance and availability of
data in combining both duplication and the learning mechanism? Answers
to these questions require an extensive robustness analysis, which we intend
to do in the future.

After a disorderly disconnection, an S–Peer may rejoin the G-Grid either
as a C–Peer or as an S–Peer. If it chooses the former approach, it will have
to issue direct insertion requests for all its objects to the G-Grid system.
In the latter, it will have to wait for an interaction with another S–Peer
and then integrate its content through the normal partitioning process. The
choice depends on who implements the system who should consider values
like the time of disconnecting a peer and the rate of input/output peer in
the network. In fact, the first choice is better when the network has a low
dynamism (aka low rate of input/output peer) and peers stay out for a short
time, this means that a S–Peer could easily return to play its role if the
network do not have a lot of changes during his absence.

As indicated in 3.2.2, an important concept in the G-Grid is the peers’
ability to learn other peers’ local routing tables during search operations.
When a peer interacts with other peers – e.g. querying –, its local routing
table grows and improves its capability to find the most efficient route to its
target objects. Clearly, learning content-based routing tables is an emergent
property in that the minimum path to a target peer is discovered without
having to encode into the system a minimum path algorithm.
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3.3 Experiments

In this section we show the performance results of our proposal in four sim-
ulated application scenarios. The simulator is used to test the traffic distri-
bution on large-scale networks of 10,000 nodes over PeerSim [87], a testbed
for large-scale P2P networks. The traffic distribution parameter is very im-
portant because it shows how the working traffic is evenly distributed on
network peers. We observed also other important parameters such as the
number of hops, the number of messages exchanged to maintain the overlay
structure – called system messages –, and the number of connections failed
because of busy memory, due to the architecture of the data structures. The
basic G-Grid and G-Grid with Learning [100, 88] are two versions of our
algorithm implemented in the simulator and tested to obtain performance
on commonly accepted benchmarks. As a first element of comparison, we
selected the SkipCluster algorithm [142], as proposed and a new version that
implements in addition to the overlay HiGLoB [132]. We applied the features
of load balancing of HiGLoB to balance the number of peers contained in
each cluster.

The experimental environment is a Linux virtual machine with 6 CPUs
at 2GHz and 6GB of RAM for the simulations. The program is developed in
Java, as the simulator PeerSim. We have defined a class that implements the
interface of the node provided by PeerSim, which manages events such as the
arrival of messages or internal events defined by the user. In our experiments,
for each node, we connected the overlay to be tested, as G-Grid, and another
level of transport provided by the simulator natively. We have also created
controls that the system runs periodically, according to a configuration file,
allowing the generation of query, the connection/disconnection of nodes, and
writing a snapshot of the network in a database. Each parameter, nodes and
controls, is read from the configuration file. For any other technical details
please visit the website of the simulator2.

In all scenarios, we start from a single node network and connect quickly
10,000 nodes. The nodes create the desired structure by exchanging messages
with other peers in the network. When all nodes joined the network we start
to run 100.000 random queries. We observe the system state and store it
into a database every 10,000 queries. While these parameters are common
in every scenarios, the differences among the scenarios are listed below.

2http://peersim.sourceforge.net
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1. The first scenario includes only query executions. The network struc-
ture does not change after the last node join. The number of nodes
reaches 10,000 linearly and remains the same for all the rest of the
simulation.

2. In the second scenario, after the initial configuration of the network,
one peer joins the network every 100 queries. This behavior increases
the starting network (10,000 nodes) by 10%. This is intended to test the
behaviour of a growing network, intuitively, new nodes could introduce
longer search paths and increase the number of system messages

3. In the third scenario, after the initial configuration of the network,
there is one node connection or disconnection every 100 queries, with
50% probability. This means that, every 100 queries, the simulator
randomly adds or removes a peer from the network. The number of
nodes fluctuates around the starting value of 10,000. This is intended
to give additional stress to the system, because peer removal changes
the structure and can impose longer path traversals

4. In the last scenario, every 100 queries, there is a number of peer join
equal to the square root of the number of queries run up to that mo-
ment. This is in some way similar to scenario 2, but with greater
growth.

In every simulation we assume a uniformly distributed load in the network
nodes.

3.4 Results

It is worth to observe that, despite the differences among the various scenar-
ios, the results were really similar. For this reason we will comment only the
results of the first scenario. We also want to emphasize the improvements
introduced by G-Grid, without dwelling on the particulars of the networks,
since our experiments show that these improvements are guaranteed in any
kind of p2p network.

In the Figures, the horizontal axis represents time, and the marks are the
cumulative numbers of queries issued in the system during the experiments.
In Figure 3.7 the vertical axis represents the total number of messages issued
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Figure 3.7: Overlay structure messages traffic.

in the system in the unit time, as a result of the querying activity, to maintain
the overlay structure. The basic version of SkipCluster requires few messages,
less than 200 in a 10,000 nodes network, to create the overlay structure,
instead the introduction of HiGLoB increases considerably that value. We
observe that the basic version of G-Grid has a low cost, almost zero, due
to the binary tree structure on which it is based. The management cost is
found in the delegation of the regions leading to the creation of new nodes
in the S-peer tree. The cost of G-Grid with Learning and basic G-Grid is
the same because the changes due to learning are sent in piggyback on query
messages. SkipCluster with HiGLoB requires more overlay messages than
basic SkipCluster, because the HiGLoB internal structures keeping/updating
the histogram of the clusters requires a heavy exchange of overlay messages.

Figure 3.8 shows the average number of hops per peer. Each peer mea-
sures the number of necessary connections to achieve the wanted data. Dur-
ing the simulation starting phase, the number of query messages sent by each
peer is very low, so the measured value becomes interesting only after the
initial phase of adjustment. When more queries are performed, we get closer
to the expected average. We noted, in fact, that the version of G-Grid with
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Figure 3.10: Number of links per peer needed to maintain the overlay struc-
ture in scenario 1.

Learning, tends to the theoretical value 2. This value is justified by the fact
that, since the network does not change its composition, with a large number
of queries, each peer has knowledge of the entire network structure, so using
only a step (hop) to reach the solution and one for the return.

Even basic G-Grid shows a rather low average number of hops. Both
versions of SkipCluster has a hops average of slightly less than the logarithmic
value of the network dimension.

In Figure 3.9 we measured the average traffic standard deviation for peer
as the ratio between the standard deviation and the average of messages
routed from each node of the network. We observe that after an initial
phase the traffic standard deviation of both G-Grid algorithms is greater
than both SkipCluster algorithms. All overlays have a value that remains
on the same order of magnitude, the average is around 15. The version of
HiGLoB SkipCluster distinguishes oneself from SkipCluster basic version of
about one unit. At least, G-Grid basic version, and even better G-Grid with
Learning, offers a lower average traffic standard deviation.

In Figure 3.10 we obtained information on the amount of memory required
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for the maintenance of each structure. Large number of links necessarily in-
volves high amount of memory to store them. In every scenario the situation
is the same: the worst overlay is represented by G-Grid with Learning, be-
cause the number of links increases as the number of executed queries. In
fact, for each query, each peer discovers and creates links with the other
nodes through which the query is passed. This leads to have a number of
links equal to the size of the network, in the steady state. The upward trend
of the links will arrive at 10000 after a very large number of queries. The
basic version of G-Grid has the least number of links per node due to its
binary tree structure. At last we note that the introduction of HiGLoB in
SkipCluster decreases the number of links of the structure by one third, close
to the value observed for basic G-Grid.

A new scalable self-organising data structure for P2P networks is intro-
duced. This structure enables efficient multi-dimensional search based on
partial range queries. We have also illustrated how peers can exploit the
properties of these structures to learn dynamically both the distribution of
content and the network topology, and thereby, provide algorithms for effi-
cient processing of range queries. In the worst case, search costs for a single
object, measured as the number of hops over peers, are less than logarithmic
in the number of peers. But, for many realistic workloads of insertions of
new objects and retrievals, such as those currently taking place on the web,
the average is equal or less than 3 hops, independently on the wideness of the
P2P network. We have also sketched out an aspect which is seldom treated in
P2P literature, namely the possibility of merging independently constructed
data structures in a single unifying structure.

This work summarizes the idea of achieving virtual DBMSs from P2P
systems as a set of emergent services, but which abide by the same desirable
properties of centralized DBMSs, namely, data integrity and consistence,
transaction processing and a complete SQL expressiveness. Now, let see how
it is possible to improve some performance results with an hybrid overlay.
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Chapter 4

Self-Balancing of Traffic Load
in a Hierarchical
Multidimensional P2P System

The P2P technologies have begun to attract the interest of the scientific
community relatively late compared to their use. In the late 90’s many P2P
applications could be found on the Internet and these have always enjoyed
a high capillarity among worldwide users. Then it was discovered that this
technology were very promising for networks efficiency, distribution and shar-
ing of resources. Such networks are dynamic, completely decentralized and
characterized by high autonomy.

Today there is a tendency to study networks seen not merely as telem-
atic networks, but as recurrent structures that we can encounter, in some
way, in several aspect of daily life, such as: the aggregation of the neurons
of the human brain, the connections that form human knowledge within a
society of people, the properties and structures of ecosystems, the dynamics
of spreading news. This new ideas are defining the “science of networks” [18],
a new discipline that studies the structure of the networks in all its different
forms, from a general point of view, analyzing their properties and how they
affect the daily reality. For its own nature the science of networks involves
several scientific disciplines.

The main applications that have affected the world of P2P were primarily
oriented to distributed file systems and grid computing. In particular, the
early distributed file systems allowed only simple lookups of file directories
by file name. In the meanwhile, the scientific literature was proposing to
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increase efficiency and operativity by adding some kind of structure.

A P2P network without an organized structure uses the broadcast to al-
low the comunication among peer. In this way, however, the network becomes
overloaded quickly and communication is neither efficient nor scalable. The
adoption of organized structures in P2P networks avoids the use of broadcast
and decreases network traffic. They build routing tables more efficient, espe-
cially in static environments. The advent of a highly dynamicity in networks
caused the decline of the efficiency of the structures. However, also in a static
environment, the traffic can be unbalanced on the network when there are
some peers that are overloaded and others that are instead underloaded. This
is typical in tree structure. G-Grid is a distributed data structure for P2P
networks, that creates multi-dimensional indexes on P2P networks, making
the basic operations research (including range-query) and database editing
very efficiently, despite the fact that its structure is not imposed a priori.
Its strength makes the structure very flexible, but at the moment its biggest
flaw is the computational load balancing of the peer, because its structure is
a binary tree.

Now we try to improve drastically load balancing in G-Grid by seamless
integrating a new ring-based routing algorithm, as a self-emergent property.

4.1 Reasons for the Improvements

Peer-to-peer networks have attracted the interest of the scientific community
because they offer features that other communication paradigms fail to offer.

Current solutions allow to search efficiently, without consuming unneces-
sary bandwidth with broadcast messages, and even in some proposals also
to treat multi-dimensional data. The possibility of treating these networks
as distributed DBMS, or systems in which we can issue something similar
to SQL queries and get support to consistency checking and transactions,
still seems a goal to reach and research is currently going in this direction.
The addition of an overlay structure in modern P2P networks is the key to
upgrade them. This means that now the location of data on the peer is
regulated for content and criteria, whereas previously each node could hold
all kinds of data, and this was not conducive to the development of efficient
routing algorithms. The research, even if the peer does not have a global
knowledge of the topology, is aided by this structure which helps through
the collaboration of nodes, to have more precise information on the alloca-
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tion of data.

The “datum-node” assignment is performed by DHT [10, 58], and each
structured system implements its own DHT as needed [104, 128]. The gen-
eral idea is to assign a key to each datum by a specific function (usually by
hashing), then the set of keys is partitioned and each node is responsible for
one of these partitions. The function that links the key-node assignment is
surjective and the routing algorithm is closely related to it. In fact, usually
every node holds references to its neighbors, which will have subspaces close
to that of its competence. The relationship between datum and key is dic-
tated by a bijective function, which must be a common reference point for
all nodes. When a node receives a request for a specific key, it checks if this
is part of its subspace of competence, in the contrary case it forwards the
message to a neighbor, which is selected according to the routing algorithm.

Multi-dimensional structures have been extensively investigated over the
last 20 years where the main goal is to support efficiently complex range
queries over multiple attributes. A literature survey in this area is available
in [146],

In G-Grid (3.2), the tree is always explored recursively, and if we analyze
the scenario in a P2P environment, where each peer is responsible for at
least one region, this would have connections with its father and its sons.
The insert and remove queries walk through the tree and each peer along
the walking receives the request from its parent, evaluates if the G of the
record is in its region, recalculating the G since the depth of the tree if it
can not know it a priori, and if that fails it forwards the request to both
the children. This recursive mechanism shows how this structure works well
in P2P environments, because each step requires the interaction of only two
entities: father and son nodes. Regardless of whether working in a distributed
or centralized structure, basic operations are performed exploring a binary
tree and the only difference is that in distributed environment this tree is
split into parts assigned to autonomous nodes.

The advantage of the G-Grid structure is that it allows to perform inser-
tions, deletions, and queries in time proportional to O(logN) where N is the
number of regions. In addition, with the learning mechanism which will be
explained later, this time can be furtherly reduced to become sub-logarithmic.
In other words, the efficiency of DBMSs is exported to distributed environ-
ments by virtue of the limited number of hops1 required to complete any

1The number of gateways that separate the source host from the destination host.
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operation.
This is a fundamental property that can be found in DBMS and that in

the field of distributed avoids to make too many hops to a query, reducing
hence the response time.

4.2 Treelog Routing Algorithm and Alterna-

tive Load Balancing Methods in G-Grid

Until now we showed the advantages of G-Grid over other P2P architec-
tures and analyzed the benefits that it brings to the management of data
distributed over a wide network. Unfortunately there are still some open
questions to be solved. Each node in G-Grid can determine with a simple
computation if a search can be done in its subtree or must be forwarded to
its parent node. If we analyze in deep the routing algorithm we note that in
G-Grid the data search time is sub-logarithmic on the average, but the peers
that are on the top of the tree are heavily overloaded, because tree traversals
mostly require to go up towards the root before going down towards the tar-
get. The recursive tree exploration mechanism generates a load distribution
grows exponentially with decreasing depth, this means that the load of a
parent node on the average doubles that of its children. A corresponding
data structure has already been proposed by Widmayer [66] with the same
problems.

It is reasonable to observe that if the peers have some kind of awareness
of the network structure this phenomenon can be mitigated. A possible
improvement could be to make available to each node some information about
the position in the tree structure of other nodes, not directly descendant or
ascendant, and this requires introducing additional links. In this section
we introduce this new kind of links, importing ideas from Chord ring, and
discuss in deep how it is integrated in the G-Grid structured overlay.

4.2.1 Isomorphism of a Chord Ring on G-Grid

Computational load balancing of different cooperating entities is not a simple
task. This problem has many facets and the solution depends on the type
of communications forwarded to the various peers. The network traffic and
the amount of computation within the nodes are dictated by random time–
dependent variables. To simplify the problem we will make some assumptions

64



on the kind of randomness. The random process of querying peers has three
orthogonal aspects: distribution of the peers that run queries, distribution
of the peers that hold the queries’ response, and distribution of data among
the peers. Our first simplification is to assume, according to most of the
P2P literature, that each peer in the network has about the same amount
of data in its memory and both the query requesting peers and the query
responding peers are uniform with respect to the data space. The relaxing
of these condition will be a natural evolution of the present research.

When devising our solution to the unbalancing caused by the tree struc-
ture, we were inspired by a major advance in P2P research: Chord [125].
The outstanding feature of this proposal is the ring structure, which intro-
duces additional links to obtain a better traffic distribution among peers. In
G-Grid [100], the routing explores the binary tree through structural links,
which connecting the nodes that have direct connections – e.g. parent-son –
among their regions. In Figure 4.1 we can see an example of how a message
traverses the network. In this case, for sake of clarity, each node has got a
single region. Black circles represent physical nodes that hold regions within
data, while the white circles are logical nodes of the data space, that are not
part of the structure, because they do not hold any data. These are included
and managed by the first physical node met going up the tree, following the
links to parent nodes. For example, the node *11, which is beside D and is
a white circle, is managed and incorporated by node *1.

Since the query distribution is uniform, it is more likely that the node
that runs a query is in the deepest parts of the tree, because these nodes
are more numerous than those closer to the root. The same for the target
node. We see that the G-Grid operations require a logarithmic number of
hops relative to the number of peers. For most requests, query messages
start from the lower part of the tree, climb up to the root, or nearby, and
climb down again to the recipient. In Figure 4.1, we see what happens when
node E is looking for the query region *10101. E sends the query message
to A that is its first physical parent node. A routes the query to B, B to
D, and D to F , that contains the query region *10101, since it has no child
nodes in the tree and its address *101 has the longest prefix in common with
the requested data *10101. This behavior overloads exponentially the nodes
that are closer to the root. This is also due to the fact that the regions of
the upper part of the tree manage a wider subspace (see Figure 4.2), so they
are more likely involved during routing.

Our proposal is to connect all peers by a ring structure, building an iso-
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Physical Node (S-Peer)

Logical Node

E - *001

C - *01

A - *

B - *1

D - *10

F - *101 G - *111

E is looking for *10101
   A, B, D, F = 4 hops

*11

Figure 4.1: Example of a request routing in G-Grid.

morphism of the Chord ring structure within the G-Grid binary tree. More-
over, creating logarithmic links between nodes, in addition to the ring struc-
ture, we prevent an imbalanced load distribution over the structural links.
The logarithmic links are precisely the link category that makes Chord a net-
work structure in which the load is evenly distributed. At the same time, the
number of messages’ hops remains logarithmic with respect to the number
of nodes.

The construction of a ring on all S–Peers imposes a total order relation
on them. The amount of order relations that we can impose is factorial
with respect to the number of nodes and is not a trivial choice, since the
elements that we want order are independent peers without a global view
of the network. Moreover, we want manage an autonomic system where the
control is highly decentralized, so we have to find a relationship that joins all
peers, regardless of the network shape, which can change dynamically over
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E - *001

C - *01

A - *

B - *1

D - *10 F - *101

G - *111

E is looking for *10101
   A, B, D, F = 4 hops

Figure 4.2: Example of the same request routing of Figure 4.1 in G-Grid
hyper-space.

time. In particular, the nodes to be ordered within the ring are the only
S–Peers, the active part of the G-Grid structure. An S–Peer forwards the
messages to their destination and is responsible for a part of the data space.

Each S–Peer has a physical address, therefore we could order them ac-
cording to this attribute, but this is not appropriate because these addresses
are dynamic and change over time on the Internet.

One feature that is common to all S–Peers is the fact that each of them
holds at least one region. We can suppose that each S–Peer holds a region
R, and, possibly, other regions RI that can all be included in R, or rather all
regions RI where RI ∈ R : RI ⊃ R. In Figure 4.3, the S–Peer D has a sub-tree
formed by S–Peers (black dots, e.g. F), which represent the regions that have
a relationship with it, and C–Peers nodes (white dots). In particular, D has
a region RD and manages the node F (owner of the region RF ), which have
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E - *001

C - *01

A - *

B - *1

D - *10

F - *101 G - *111

*11

RD  ⊂  RF

Figure 4.3: Example of a sub-tree owned by S–Peer D in G-Grid tree struc-
ture.

a parent-son relationship with the higher level node D. This is the coverage
property of G-Grid: we can say that a generic region RX belong to S–Peer
Y, in other words RX = RY of Y or RX ∈ RY of Y, if and only if the binary
string GY – e.g. *10 for D – of the region RY is the longer prefix, compared
to the binary string GX of RX , among all the binary strings of the regions R
of other peers in the G-Grid tree structure. This means that we just need to
know the binary string GY of the region RY of the peer Y to know if Y may
contain a generic region R. In the case in which Y is not the holder of region
R, it forwards the request through its parent structural link. Ideally, if we
know all the region binary strings G of the peers, we know the entire network
structure. However, we state that the more region binary strings we know,
the more the probability of finding at the first time the target region owner
is high. Moreover, the more the network structure awareness increases, the
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more the average number of hops per request decreases.
Under the assumptions made, that every peer has a single sub-tree, we

saw that the identifier of the region R of a peer is an important reference for
the region querying. Moreover, it guarantees the uniqueness of the attribute
assigned to the peer, so we can use it to build a total order among the S–
Peers. This means finding a total order among all the possible regions of
the data space and it is not trivial because the regions themselves are n-
dimensional spaces. The G-Grid binary tree can help us because it is the
dual representation of the regions present in the data space, and then the
regions’ sorting leads to the same result. The total order relations of binary
trees are well known [102, 25] and, in this work, we analyze the post-order
sorting [112, 135] (see Figure 4.4).

Proposition 1. If the nodes of a binary tree are sorted according to the total
order relation post-order, then if node X descends from node Y, it necessarily
holds X < Y. The opposite is not necessarily true, that is X < Y does not
mean that X is necessarily a descent of Y.

Figure 4.4: Post-order sorting of a binary tree.

We place the peer on the ring following the above mentioned connection,
applied to the peers’ regions. This connection is useful for region search
because of the Proposition 1, derived from both spatial and coverage proper-
ties of G-Grid. To allow the reachability from any source node to any target
node, it is necessary to close the ring. The total order on a finite set deter-
mines there there will be a top node and a bottom node. Then the ring is
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closed linking the top element to the bottom one. See the arch from 7 to 1
in Figure 4.4. After linking the S–Peers ring, we add logarithmic links, as in
Chord. Scanning the ring for in the direction of the increasing order, each
tree node has a link to its successor in line and to all of those in consecutive
positions, that are power of two. Each node has a logarithmic number of
links compared to the number of nodes of the ring. Figure 4.5 shows an
example, for simplicity of representation in this case every S–Peer holds a
single region.

Figure 4.5: Isomorphism of a Chord ring on G-Grid tree structure.

Each S–Peer manages a sub-tree regions. This condition is not required
for the positioning of the regions. The peer is handled as a logical unit that
manages a sub-tree, holds its connections, both structural (G-Grid tree) and
logarithmic (Chord ring), and has a precise location in the ring.
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4.2.2 Treelog Routing Algorithm

Each operation carried in G-Grid, regardless of whether it is a query, insertion
or removal of data, states that it is required by a message that contains a
target attribute, that we call query region, which is the binary string G of
the region R covered by the requested operation. The S–Peers must forward
this message to the owner of this region using the query region, which will
run the requested operation and then communicate the results directly to
the requester. The physical address of the requester is always present in the
messages.

The routing algorithm is a procedure that every S–Peer performs when
receives a message, in order to deliver it to the correct target S–Peer. This
is successful whether all intermediaries cooperate.

Each region is described by a binary string G, that describes the location
of the region in the binary tree. Length(G) gets the depth of the region in
the tree, which corresponds geometrically to the granularity of the search
area. In addition, Length(G) of the query must be greater than or equal to
the Length(G) of the deepest region in the tree. This is because the query
must be contained by one region and the Length(G) of the query region can
not be greater than the Length(G) of the query itself. Calculating the binary
string with a Length(G) of the query region larger than the real one, it does
not affect the search mechanism. For example, if a query region with GX =
*100101 corresponds to a sub-space managed by the region GY = *100, the
query region will be reached even if we considered the GZ = *100101010110,
with Length(GZ) = 12, larger with respect to Length(GX) = 6. The peers do
not have a global vision of the network tree structure, then they run requests
with large length values of the query region, over-estimating the size of the
distributed data structure.

Any peer knows the status of the structure if it changes dynamically.
Given a query region and a partial view of that query region, which may not
be correct, how do we know where is the query region located in the system
structure? Moreover, how do we find out the request target node? We have
a set of possible candidates which have a binary string G of R as prefix of the
query region. We do not know a priori how many peers are in the system,
nor their location. We can not know in advance whether a node is logical or
represents a specific region owned by a S–Peer. The possible candidates are
all the nodes in the binary tree that have a prefix that fits with the G of the
query region. Fortunately, it is a small number – sub-logarithmic, compared
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to the number of S–Peers. The candidates are all directly connected by
parent-son relationship in the tree.

E - *001

C - *01

A - *

B - *1

D - *10

F - *101 G - *111

*11

S-Peer candidates E is looking for *100

*100

Query region

Figure 4.6: S–Peer candidates for a query region.

Figure 4.6 shows an example: node E is looking for the query region G =
*100 – which could also be calculated with Length(G) > 3, that is a higher
value, because the process does not change. If E could know the global binary
tree, it sees that the owner of the query region is D, but, in reality, E can
not know a priori who is the owner. We can say that the candidates are A,
B, D, and even tree node represented by the binary string G = *100, which
we do not know in advance whether it is S–Peer or C–Peer. However, E may
not be aware of the existence of A, B and D.

In Chord, each peer uses the Definition 1 to search for a query region.

Definition 1. In Chord, if we take two peers X and Y, with Y successor of
X in the ring, we can say that all the k keys such that x ≺ k � y, belong to
Y, with x belonging to X and y belonging to Y.
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The isomorphism of the ring in G-Grid has improved the load balancing,
as we will show later, but has complicated the query region search, in partic-
ular, Definition 1 does not hold anymore. All the nodes of G-Grid represent
sub-spaces and they are sorted according to the post-order relationship. As-
suming that each peer manages a single sub-tree, the following proposition
holds.

Proposition 2. In G-Grid Chord, given two peers X and Y, with Y successor
of X in the ring, we can not say that all the R regions such that x ≺ r � y
belong to Y, but only a non–empty subset of these.

In other words, while Chord is a pure ring, in G-Grid Chord the ring
is used only for message routing, when possible, otherwise the binary tree
structure is always available.

The example in Figure 4.5 shows the meaning of Proposition 2: consider
the peer D, the peer G and, respectively, their binary strings RD = *10 and
RG = *111. Along the ring, from D to G, we encounter different logical
nodes, which represent the regions in post-order *1100 - *1101 - *110 - *1110
- *1111 - *111. Only *1110 - *1111 - *111, however, belong to the node G,
while *1100 - *1101 - *110 are sub-spaces managed by B, which has as a
binary string GB = *1. The distribution of the regions in the nodes is not
known a priori, since it depends on the shape of the tree and its evolution.
A peer can not know in advance who will be the message last recipient, but
can only guess (see S–Peer candidates in Figure 4.5).

Because of these considerations, we developed the treelog routing algo-
rithm, which uses the Chord routing mechanisms adapting the search of query
regions to the dual structure of G-Grid, according to what Definition 1 and
Proposition 2 state. The pseudo-code of the Algorithm 3 describes the ac-
tions that each peer executes when receiving a message whose query region
is not under its responsibility.

This procedure requires the following input parameters:

• selfG - The G of the region R of the peer which is currently processing
the message and received the message to forward.

• links - The routing table: a set of links to other S–Peer accumulated
over time. Basically it is a two-column table in which the first is the G
of the region R of the peer and the second is its physical address. The
latter can be retrieved via the function physicalAddress(G).
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Algorithm 3 – Find next hop - Treelog routing algorithm
Input: msg.
Output: physical address of the peer for the next hop or NO ROUTE error.

if selfG = msg.bestCandidate then
msg.phase← 2

end if

if msg.phase = 1 then
bestCandidate← msg.targetG
if selfG is prefix of msg.targetG then

while bestCandidate is not in links and Length(bestCandidate) >
Length(selfG) do

remove first right digit from bestCandidate
end while
if bestCandidate = selfG then

bestCandidate = “*”
end if

else
while bestCandidate is not in links and Length(bestCandidate) >

1 do
remove first right digit from bestCandidate

end while
end if
if Length(bestCandidate) > Length(msg.bestCandidate) then

msg.bestCandidate← bestCandidate
end if
if msg.bestCandidate is not in orderedLogLinks[N ] then

return physicalAddress(msg.bestCandidate)
else if msg.bestCandidate ≺ orderedLogLinks[0] then

return physicalAddress(bestCandidate)
else

for i← 1 to orderedLogLinks.length do
if msg.bestCandidate ≺ orderedLogLinks[i] then

return physicalAddress(orderedLogLinks[i− 1])
end if

end for
end if

else if msg.phase = 2 then return physicalAddress(selfG parent node)
end if
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• orderdLogLinks[N] - A subset of the routing table: it is a vector of
N links ordered by the relation of post-order. The first element is selfG.
Basically they are the Chord logarithmic links of the peer.

• msg - The received message. If it involves a region that is not the
responsibility of this peer, it must therefore be forwarded. The most
important message attributes for the routing are:

msg.targetG query region,

msg.phase set to 1 upon creation, it allows to know the state of the
request,

msg.bestCandidate indicates what is at present the best candidate
found by intermediaries could hold msg.targetG.

The output of the algorithm can be:

• the physical address of the next S–Peer to which the message will be
forwarded. In the event that the expedition fails, for example, because
the recipient is disconnected, the peer updates the routing table and
re-runs Algorithm 3.

• a NOROUTE error, if the procedure does not succeed in finding a
suitable peer, i.e. there are no possible routes to reach the destination
through the treelog algorithm. In this case the current S–Peer com-
municates the error to the sender of the message, the one who created
it.

The algorithm tries to find the recipient by the logarithmic links. When
the recipient, designated in a set of possible candidates, is not correct, then
the peer route the message through the G-Grid standard routing. Each
intermediate S–Peer that processes the query message executes the treelog
algorithm. The more S–Peers processes the request and the more likely is
that someone knows the recipient, because if a S–Peer has not the exact
information on the recipient, might have information that approaches it.

The general algorithm so works in two phases, which indicate the status
of the current request with the attribute msg.phase: if it has a value of 1
means that the search for the recipient is on the logarithmic links; it is 2
instead if the search is via the G-Grid structural links.
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Phase 1
For a generic hop, through logarithmic links, first step aims to get the
best candidate that peer intermediaries have found so far. Each peer
has a routing table updated over time. In this phase, the peer searches
links in the routing table, that may be candidates for msg.targetG,
that are peers that have a prefix of msg.targetG in the binary string
G of their region R. This binary string is placed in the attribute
msg.bestCandidate if and only if it is larger - compared with the Length(G),
indicating the depth of the tree - than the current value.

When the selfG of the current peer is equal to msg.bestCandidate, there
are two possibilities:

- the region request is held by the current peer so the final recipient
is reached;

- msg.bestCandidate is not the correct recipient, but it could still be
one of its children peers in the tree. The correct recipient derives
hence from the current candidate, so if structural links are consis-
tent, the message arrives at its destination through msg.bestCandidate
peer.

Furthermore the attribute msg.bestCandidate could, at this point, in-
dicating a deeper node of the real owner. This case is solved by the
algorithm in the following way: if a peer receives a message that is still
in phase 1 and msg.bestCandidate is previous than the first logarithmic
link of the current S–Peer, then it go to phase 2.

Phase 2
In the event that the peer do not hold any such link, then the root node
is considered as the best candidate, because in the worst case it reaches
all the nodes. In this case it uses the structural links parent-son among
nodes.

The average number of hops is sub-logarithmic respect to the number of
peers, because each intermediary transfers a part of its network knowledge
on the query message. The mechanism allows a S–Peer to indicate the best
candidate. Without the phase 1, this knowledge would not be distributed on
the request and the load becomes unbalanced. The treelog routing algorithm
mixes the Chord routing mechanisms with those of G-Grid: each helps to
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improve the defects of the other. In particular, Chord helps to balance the
load on the peers, while G-Grid ensures that each message is properly de-
livered to destination – if structural links are consistent. The more network
knowledge is hold by peers, the higher is the probability that intermediaries
indicate candidates closer to the recipient.

The learning mechanism, introduced in [100], helps to increase awareness
and to discover peers joined the network recently, but does not identify the
disconnected peers. In the following sections, we give some indication to
identify the inconsistent connections.

Finally, we summarize the properties introduced by the treelog algorithm
with the following Proposition:

Proposition 3. Necessary and sufficient condition for the correct routing:
each peer must hold consistent structural links (parent-son), which is a small
number compared to the number of peers of the network. The average number
of hops for queries and load balancing is strongly influenced by the degree of
knowledge that peers have on the network. Each peer must then maintain
links to the peer that has processed messages and their intermediaries.

4.2.3 Cooperative Construction of Logarithmic Link

When a node becomes S–Peer has some structural link – certainly a link
to the parent node that delegated the regions – and a collection of links
to S–Peers. We stated that the treelog routing algorithm needs new links,
the logarithmic links, which connect the peer with each ring node that is
reachable in a logarithmic number of hops respect to the total number of
peers in the ring.

Analyzing a single routing table, we can not know its logarithmic links.
Each S–Peer should know the global state of the network, moment by mo-
ment, to know who is the S–Peer successor on the ring, who the following
after 2 positions, 4 positions, 8, and so on. This is not possible because each
peer can not have a global view of the network instantly. The received in-
formation often may be incorrect due to the dynamics of the network. Each
S–Peer knows a portion of the state of the network and to build its logarith-
mic links, has to cooperate with its neighbors to achieve a fairly consistent
network knowledge. Through the exchange of their local information, the S–
Peers can compare different views of the network, which differ between them
and with the actual state of the network. Deducting reliable information on
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targeted portions of the network, S–Peers may discover the location of their
logarithmic links.

Figure 4.7: Deduction of logarithmic links from S–Peer neighbors.

In Figure 4.7, we see that the logarithmic links of different S–Peers have
relationships with each other. In the example there are 8 nodes: analyzing
the logarithmic links of node A and assuming that A knows his successor B,
A can get all its remaining logarithmic links, which are in order B - C - E. In
fact, A has already its first logarithmic link by hypothesis, that is B, obtains
C asking to B its first logarithmic link and, once achieved C, asks to C the
second logarithmic link that is E. From this reasoning, we can see that there
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are defined relationships between the different nodes logarithmic links. The
Proposition 4 summerizes that property.

Proposition 4. If X is an integer that represents the position of an S–
Peer inside the ring and loglink(X,n) is a function that returns the n-
logarithmic link of the S–Peer that is placed at the X position of the ring,
then loglink(X,n) = loglink(X + 2n−2, n − 1), for each n ∈ N such that
n ≥ 2.

Proof.

We introduce the function loglink : N+×N+−{1} → N+, defining a generic
logarithmic link as:

loglink(X,n)
def
= (X + 2(n−1)) mod P (4.1)

where P is the number of the peers in the ring. We prove the following
identity for each n ∈ N such that n ≥ 2:

loglink(X,n) = loglink(X + 2n−2, n− 1) (4.2)

We define the function:

SUC(X)
def
= loglink(X, 1) = X + 1 (4.3)

Base case for n
If we take three S–Peers, A, B and C, in sequence on the Chord ring built in
G-Grid, and starting from 1, then their positions on the ring are respectively
1, 2 and 3. We can verify that:

loglink(1, 2) = loglink(2, 1) = C (4.4)

then the position of C is 3.
From the Equations 4.3 and 4.4, we obtain:

loglink(1, 2) = SUC(2) = C (4.5)

The Equation 4.5 states that 4.2 is true for n = 2.
We prove by induction that:

loglink(X, 2) = loglink(SUC(X), 1)⇒ loglink(X+1, 2) = loglink(X+2, 1)
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Using Definition 4.1:

X + 1 + 21 = X + 2 + 20

Recursive case for n
We need to prove that:

loglink(X,n) = loglink(X+2n−2, n−1)⇒ loglink(X,n+1) = loglink(loglink(X,n), n)

Using Definition 4.1:

X + 2n = loglink(X + 2n−1, n)

= X + 2n−1 + 2n−1

= X + 2n

This proves by induction principle that Equation 4.2 is true for each n ∈ N
such that n ≥ 2.

Hence an S–Peer can obtain its logarithmic links from its neighbors. Due
to the dynamic nature of the network in time, some logarithmic links may
become invalid, therefore they provide incorrect information to the neighbors,
who rely on them to build their own logarithmic links. The Proposition 5
provides guidelines to solve this problem.

Proposition 5. Sufficient condition for the correctness of the logarithmic
links of a set of S–Peers is that every S–Peer has its own SUC(X) connection
correct. If this condition is satisfied, everyone can properly get its logarithmic
links from the neighbors with a number of queries O(log(2L)) = O(L), where
L is the tree depth.

Proof.

Equation 4.1 can be rewritten as:

loglink(X,N) = X + 2(n−1)

= X + 1 + 2(n−1) − 1
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the last part is a geometric series, replacing this, and considering Equa-
tion 4.3, we obtain the follows identities:

loglink(X,N) = X + 1 +
n−2∑
k=0

2k

= SUC(X) +
n−2∑
k=0

2k

= SUC(X) + 1 +
n−2∑
k=1

2k

= SUC(SUC(X)) +
n−2∑
k=1

2k

= . . .

from this progression we see as each logarithmic link can be expressed by
different SUC links and, if these are correct and consistent then higher loga-
rithmic links are consistent too.

If Y is the successor node of a node X and Z is the successor node of Y,
when Y goes offline, X will consider as its new successor Z because this is
actually its second logarithmic link, after its successor. A node disconnection
causes the rebuilding of all the logarithmic links of each node of the network.

To decide when to stop the logarithmic link building, each peer must check
if the last link added to the routing table does not point to a node already
connected. A detailed discussion of these aspects is beyond the scope of this
thesis. Empirically, if N, the number of peers, is known the ideal number of
logarithmic links per peer is logN .

Propositions 4 and 5 give the guidelines to develop the Algorithm 4,
which derives logarithmic links from neighbors in a logarithmic number of
steps with respect to the number of peers in the network. It also follows
the guidelines issued by Proposition 5. The Algorithm 4 is based on the
function requestMySUC(), which returns the successor of the caller, that is
the post-order S–Peer successor in the ring. The Algorithm 4 assumes, like
Proposition 5, that requestMySUC() returns a reliable value for all callers.
The consistency of all the logarithmic links greater than 1 depends on this
assumption and on the cooperation of all peers.
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Algorithm 4 – Build logarithmic links

requestMySUC() – return caller successor
requestLogLink(X, Y) – request at peer X its Y-th logarithmic link

Initialization
selfG← G of the region R of current S–Peer that start this procedure
orderedLogLinks[n]← ∅
orderedLogLinks[0]← requestMySUC()
i← 0
nextLogLink ← requestLogLink(orderedLogLinks[i],i + 1)
while orderedLogLinks[i] ≺ nextLogLink do

orderedLogLinks[i + 1]← nextLogLink
i← i + 1
nextLogLink ← requestLogLink(orderedLogLinks[i],i + 1)

end while

The Algorithm 5 implements the requestMySUC(): the caller requests
its successor to its parent. The requestMySUC() function generates the
message msg and sends it to the parent. Any other peer that receives that
message must execute the same function. A mechanism of recursive de-
scendant calls is triggered: starting from the latter, each peer, through its
structural links, forwards the request to its neighbor peer that promises to
be the best successor of the first caller. Each peer performs this mechanism
unless it finds itself to be the right successor of the first caller, in that case
it communicates its own address directly to the first caller. Figure 4.8 shows
an example: (1) the node C asks to its parent, node A, which is its successor;
(2-4) node A explores the part of the tree on the right respect to node C
and finds the bottom-left node in it, that is node F; (5) node F communi-
cates its own address to node C as its successor. The number of hops is
sub-logarithmic with respect to the number of peers in the network. The
reliability of the function requestMySUC() is related to the structural links
reliability, which is controlled by G-Grid structure algorithm.

Figures 4.13, 4.14 and 4.15 (at the end of this chapter) show an example
of how each peer in the network builds its logarithmic links. All peers run
the Algorithm 4, but the correct knowledge is not distributed among all
peers after the first iteration. Several iterations are needed because each
peer at each iteration exchanges information with a small subset of peers,
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Algorithm 5 – Find successor - requestMySUC()

Input: msg

Initialization
selfG← G of the region R of current S–Peer that receive msg
links← all links of the routing table

supSubset ← elements of links that have G ∈ ]msg.requestG, selfG[ by
using post-order relation
if supSubset = ∅ then

send a new message to address msg.senderPhysicalAddress notifying
that successor(msg.requestG) is selfG
else

order ascending supSubset by post-order relation
forward msg to physicalAddress(the first element of supSubset)

end if

whose cardinality is logarithmic with respect to the total number of network
peers. The Algorithm 4 runs at periodic intervals and the overall speed of
knowledge growth is influenced by the order of execution of the algorithm in
the different peers. The system is completely decentralized, so we can not
make any assumption on the order in which the operations are executed by
the different peers.

Experimental results show that regardless the execution order of the Algo-
rithm 4 the number of iterations necessary to create the full set of logarithmic
links is O(logN), where N is the total number of network peers.

Figures 4.13, 4.14 and 4.15 denote the convergence speed of the system
to a valid global structure and give a hint for the reason of the logarithmic
behavior. Individual peers can not build all its logarithmic links, but through
cooperation, with a low number of interactions – logarithmic with respect to
the number of peers – we can create an isomorphism of Chord ring on G-Grid.

In summary, the cooperation is essential to balance the load. Since P2P
networks can be highly dynamic, each peer must updated periodically its
links. The execution of Algorithm 4 is important not for the individual
peers, but for the global network load balancing. The maximum number of
hops for successor finding is proportional to the tree depth – bounded above
to 2 times the tree depth. The same applies for the maximum number of
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Figure 4.8: Finding the successor node in the ring by G-Grid structural links.

hops to build the logarithmic links.

4.2.4 Peer Joins and Exits Into the Network

The join and exit of peers, as we have seen, require an effort to maintain
the system load balancing. The dynamism of the network can also invalidate
part of the links and thus increase the number of hops necessary for message
routing.

In the original G-Grid definition, the join of a new peer does not require
a significant modification of the overlay network structure. If a peer X sends
a request to a newly joined peer Y (i.e. before all the links are set for it),
the search could stop to an ancestor of Y, because many peers are still not
aware of the existence of Y. This fact has a negative impact on performances
since it pushes part of the load towards the root.
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Exits are even more problematic because they make some links outdated.
A peer that exits the network notifies its intention only to their close neigh-
bors in the tree, those that are bound by structural links. Notify the exit
by broadcasting would be impractical for scalability. In G-Grid Chord every
time that a peer joins or exits the entire Chord-like overlay structure must
re-build all the logarithmic links among peers. In G-Grid, the only way to
decide the elimination of an outdated link from the routing table of a peer is
by direct contact, after the expiring by timeout of several attempts of sending
a message.

If G is the binary string representing a region of the G-Grid tree structure,
Left(G, i) is its left prefix of size i, with i ∈ N+. For example, if (G, L) =
*010100110 with L = 9, then Left(G, 3) = *010. Let us suppose that the
peer X sends a message to the peer Q to find a datum in its query region GQ.
If X receives the response from Y, instead of Q, this means that Y – that has
the query region GY with Length(GY ) < Length(GQ) – contains the query
region GQ. At this point X must update its routing table. In particular, X
must delete all the links to peers that have Left(G, i) equals to Left(GQ, i)
with i > Length(GY ) and i < Length(GQ), that are all the nodes directly
included between Y and Q.

More information can be extrapolated from the responses to queries and
from the algorithm which maintains the logarithmic links. Every time a
peer makes a query, that message performs a certain path to the recipient,
who processes the response and sends it directly to the sender. The answer
message, in addition to the requested data, has two important parameters:
the G of the peer that actually responded to the query, and the query region
of the request. These attributes reveal the peer that manages effectively the
query region investigated. Hence all the links on the routing table of the
peer sender have prefix of the query region binary string, with an L greater
than that one of the peer responded to the query, these links are outdated
because otherwise the answer would come from one of those query regions.

Figures 4.9 shows an example: if the region query is *1011 and *1 answers,
then the links to the query regions *10 and *101 in the routing table are
outdated. This information is obtained from the queries, which, together
with the learning mechanism, are a vehicle for knowledge of the network
status. From these statements we can affirm that the greater the traffic in
a G-Grid network, more knowledge of the network spreads and enhance the
performance of load balancing and reducing the number of hops of requests.
However, the greater the hops, the more widespread is the knowledge of the
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Figure 4.9: Discovery of outdated links from queries.

network status. By the experiments results we see that these two aspects are
in balance.

In addition to query answers, we can increase the detection of outdated
links using the management algorithm of logarithmic links. The first logarith-
mic link to a peer is the link to his successor on the ring. We have previously
shown that this link is quite reliable, so all the links in the routing table that
are between the G of the peer itself and that one of its successor are, with
high probability, outdated and thus will be deleted. For example, if *1111
receives as successor *1, then *11 and *111 are considered outdated.

Detecting the outdated links is much more difficult than finding a new
peer, so these mechanisms will be reinforced in further work, in order to make
network knowledge more consistent for peers. The system would be more
robust in scenarios with a high dynamism rate, when the inputs and outputs
of the peers are frequent. We have obtained, however, good results with
these techniques for scenarios with a sufficiently high dynamism rate. The
more the network knowledge for peers is extensive and correct, the lower the
rate of outdated links in the system, and consequently improves the message
routing.
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4.3 Experiments

In this section we show the performance results of our proposal in four sim-
ulated application scenarios. The simulator is used to test the traffic distri-
bution on large-scale networks of 10,000 nodes over PeerSim [87], a testbed
for large-scale P2P networks. These are the measures that we analized in the
experiments:

- total number of system messages, which indicate how the system must
work in addition to keep the overlay with respect to the useful traffic;

- number of hops, which tells us how average load generates a query on
the network, how heavy is an average of a query in terms of traffic.
Decreased by the presence of structured overlay;

- relative standard deviation (RSD), to measure the traffic on each node.
To compare different situations due to different systems, we display the
RSD, which is the ratio between the standard deviation and the average
number of messages routed from each node of the network.

The traffic distribution parameter is very important because it shows how
the traffic is evenly distributed on network peers. We observed also other
important parameters such as the number of hops, the number of messages
exchanged to maintain the overlay structure - called system messages -, due
to the architecture of the data structures.

We show the behavior of the new overlay structure we described above
and implemented in the simulator, called G-Grid Chord. As a first element
of comparison, we selected the recent (2011) SkipCluster algorithm [142], as
proposed by Xu et al., and a new version that implements in addition the
overlay HiGLoB [132]. We applied the features of load balancing of HiGLoB,
described in [132], to balance the number of peers contained in each cluster.

The experimental environment is a Linux virtual machine with 6 CPUs
at 2GHz and 6GB of RAM for the simulations. The program is developed in
Java, as the simulator PeerSim. We have defined a class that implements the
interface of the node provided by PeerSim, which manages events such as the
arrival of messages or internal events defined by the user. In our experiments,
for each node, we connected the overlay to be tested and another level of
transport provided by the simulator natively. We have also created controls
that the system runs periodically, according to a configuration file, allowing
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the generation of query, the connection / disconnection of nodes, and writing
a snapshot of the network in a database. Each parameter, nodes and controls,
is read from the configuration file. For any other technical details please visit
the website of the simulator http://peersim.sourceforge.net.

In all scenarios, we start from a single node network and connect im-
mediately after 10,000 nodes. The nodes create the desired structure by
exchanging messages with other peers in the network. When all nodes joined
the network we start to run 100,000 random queries. We observe the system
state and store it into a database every 10,000 queries. While these parame-
ters are common in every scenarios, the differences among the scenarios are
listed below.

1. The first scenario includes only query executions. The network struc-
ture does not change after the last node join. The number of nodes
reaches 10,000 linearly and remains the same for all the rest of the
simulation.

2. In the second scenario, after the initial configuration of the network,
one peer joins the network every 100 queries. This behavior increases
the starting network (10,000 nodes) by 10%. This is intended to test the
behavior of a growing network, intuitively, new nodes could introduce
longer search paths and increase the number of system messages;

3. In the third scenario, after the initial configuration of the network,
every 100 queries, the simulator randomly adds or removes a peer with
50% probability. The number of nodes fluctuates around the starting
value of 10,000. This is intended to give additional stress to the system,
because peer removal changes the structure and can impose longer path
traversals;

4. In the last scenario, every 100 queries, there is a number of peer join
equal to the square root of the number of queries run up to that mo-
ment. This is in some way similar to scenario 2, but with greater
growth.

In every simulation we assume a uniformly distributed load in the network
nodes.
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4.4 Results

It is worth to observe that, despite the differences among the various scenar-
ios, the results were really similar. For this reason we will comment only the
results of the first scenario. We also want to emphasize the improvements
introduced by G-Grid Chord, without dwelling on the particulars of the net-
works, since our experiments show that these improvements are guaranteed
in a wide range of operating condition.
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Figure 4.10: Overlay structure messages traffic.

In the Figures, the horizontal axis represents time, and the marks are the
cumulative numbers of queries issued in the system during the experiments.

In Figure 4.10 the vertical axis represents the total number of messages
issued in the system in the unit time, as a result of the querying activity,
to maintain the overlay structure. The basic version of SkipCluster requires
few messages, less than 200 in a 10,000 nodes network, to create the over-
lay structure, while the introduction of HiGLoB increases considerably that
value. SkipCluster with HiGLoB requires more overlay messages than basic
SkipCluster, because the HiGLoB internal structures keeping/updating the
histogram of the clusters requires a heavy exchange of overlay messages. G-
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Grid Chord requires a bigger number of system messages (about three times
SkipCluster with HiGLoB) because of the large cost of maintaining the ring
structure.
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Figure 4.11: Average number of hops per peer.

Figure 5.5 shows the average number of hops per peer. Each peer mea-
sures the number of necessary connections to obtain the wanted data. During
the simulation starting phase, the number of query messages sent by each
peer is very low, so the measured value becomes interesting only after the
initial phase of adjustment. When more queries are executed, we reach the
standard operating condition. Both versions of SkipCluster have a hops av-
erage slightly less than the logarithm of the network size. The important
result is that G-Grid Chord improves by one third the already good result
of SkipCluster.

Figure 5.6 shows the Relative Standard Deviation (RSD) of the traffic in
the peers. We observe that both SkipCluster overlays have the same slowly
increasing behavior, around 15 for the base version and 16 for HiGLoB. The
G-Grid Chord value is around 2: this indicates that the traffic with G-Grid
Chord is much more balanced among nodes. In particular, from the sim-
ulation, it comes out that the 95% of nodes has a load less than 160 with
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Figure 4.12: Traffic standard deviation for peer.

SkipCluster HiGLoB and 213 with G-Grid Chord. In relative terms, dividing
by the respective load average, we find that 95% of nodes in SkipCluster have
a load under 1.45. Analogously, the 95% of nodes in G-Grid Chord have a
load under 2.73. If I want to ensure an adequate dimensioning of the system
I have to size the channels to cover at least 95% of cases, with SkipCluster
I have a much greater need to support the traffic because it is not predictable.

From the results obtained we see that the load distribution is much im-
proved compared to other overlays, and tends to a lower value. Moreover,
the average number of links, S–Peer and C–Peer networks, which have nodes
is greater than the other overlays: this means that each peer has a greater
knowledge of the network status.

We have set up an overlay that allows to update the routing tables of
each peer, reducing by one third the average number of hops. This overlay
system is not bound to the binary tree structure, so it can exploit shortcuts,
avoiding the crowding of high levels of the tree, those close to the roots, and
prevents load imbalance as saw in RSD results.
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Regardless of the model used, we can see that increasing the number of
peers, the load distribution improves and this is a good feature in terms of
scalability. However there is still work to do in terms of memory because
now the peers hold a number of connections that tends to be linear with
respect to the number of peers in the network. For these considerations, we
can say that this work has laid the foundations for better load distribution
in P2P networks and make G-Grid a valid framework for the development of
distributed databases and systems.

The next step is to find a way to improve the structure management
without losing the load balancing properties. In the next chapter we propose
a further evolution of G-Grid that achieves this goal.
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Figure 4.13: Example of logarithmic links construction – incoming peers.
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Figure 4.14: Example of logarithmic links construction – iteration 1.
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Figure 4.15: Example of logarithmic links construction – iteration 2.
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Chapter 5

A Bit of Randomness to Build
Distributed Data Indexing
Structures With Network Load
Balancing

The information request has become a driving force for the global economy
and academic research. This has led people to pool data individually owned
before, to create huge communication and sharing networks. A network ar-
chitecture that fit conveniently to these requirements is the P2P architecture:
a set of users that are all at the same hierarchical level, unlike client-server
systems. In P2P systems, each user can provide its own data, and can lever-
age the network to search for data shared by other users.

The increasing use of P2P systems has attracted the attention of re-
searchers in computer networks that started to observe their evolution and
to make improvements. Users growing, and then information increasing, they
observed the main problem is to get data, if there are present in the network,
in a finite and short as possible number of operations. When a user requires
an information that does not own, she sends a request message for that infor-
mation along the network. In a modern network, where the information are
highly distributed and the devices are a lot, the requests messages creates
a traffic load that limits the bandwidth. For this reason, most of the latest
P2P architectures are structured and organized in order to avoid broadcast
and limit the number of steps (hops) needed to achieve the information into
the network. A network structured scheme, that we can call overlay, allows
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to keep the number of hops in the system approached to the logarithm of
the number of network nodes. Maintaining an organized overlay is necessary
for the network peers, that are connected users, to get the information in a
efficient way. However the structure maintenance needs an additional mes-
sage exchange over the network, which produces network traffic. In addition,
each peer joins into or exits from the network forces an overlay update that
can need time and extra traffic load. The overlay messages must be limited
despite the peers’ dynamism: this feature can be achieved optimizing the
number of hops for each message [132, 68].

Another evaluation parameter is the traffic balancing over the network.
Any peer could have more information than others, or simply highly re-
quested information, focusing most of the traffic on the network sectors that
maintain these data. This real and recurring situations lead to bottlenecks
in the network, due to that peers have to satisfy much many requests then
others: their own resources would be committed for a long time and slow
down the response time and the global performances of the system.

We present an evolution of the work presented in the previous chapter,
which leads to the proposal of a new structured overlay, called G-Grid Small
World[91], that balances the network traffic load on P2P systems with a
number of overlay messages that does not condition the network load. This
feature is important for the system scalability. We introduced a randomness
level in the overlay structure that facilitates and reduces the maintaining of
network links among peers. These improvements make G-Grid architecture
an excellent solution to build decentralized self-organizing P2P systems. The
applications can be from the media streaming to the sensors networks, from
the company intra-organizational networks to the inter-organizational net-
works. We show some experiments in which we compare our P2P structure
with the previous ones and with other literature proposals to demonstrate
the improving of load balancing, as well as enhancements in main features,
such as the number of hops and the cost of structure maintaining.

5.1 Related Works on P2P Load Balancing

The P2P networks expansion focused researchers’ study on their architec-
tures, in order to build more efficient systems improving some technical fea-
tures. The most advanced overlay structures [115, 7, 65, 100, 90] have differ-
ent characteristics from each other, some are completely structured, others
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less, leading to different evaluation parameters.
Fuzzynet [44, 38] is a semi-organized mono-dimensional overlay network,

based on the theory of small world networks [136, 61, 67]. The algorithm
used to create the small world network is the Oscar algorithm [43]. Oscar is
an algorithm applied to data networks with non-uniform keys distribution.
Fuzzynet introduced changes concerning the entry and search of information
in the network. The search of information is made via a “Greedy” algorithm
that should return the right solution. However, the Greedy algorithm could
not find the requested information since, by definition, it could stop the
researches with negative results – information not found – if it does not find
steps for improvement. The success rate indicated by the developers is 96%.
The entry of a datum occurs in two stages. First it determines on which
node saving the datum, then it propagates backup copies of the datum in
the neighbor nodes. In this way, the requests for that datum must not reach
a single specific peer but can return the first found replica. Since this has
problems with information consistency in the various replicas, the authors
proposed to assign a time-to-live to data. This overlay leads low costs of peer
connection – the creation of links – and zero cost of peer disconnection.

Mercury [14] is an organized overlay network supporting multi-attribute
range queries. Mercury organizes its data by creating an overlay ring, called
“hub”, for each attribute. Each data has a number of copies equal to the
number of its attributes, each saved in the respective hub. The requests
start from the more binding attribute in the generated query. Each node
within the hub has links with next and previous ones in the ring and a set
of long-range links. When a new peer joins the network chooses randomly a
hub to connect itself in the relative ring structure. When a peer wants leave
the network have to restore before the ring of its hub. A problem common
to all these systems is that the work load is unbalanced [9].

A proposal to solve the problem of load distribution is HiGLoB [132],
that stands for Histogram-based Global Load Balance. This framework pro-
vides guidelines on how to divide the data in a network to balance the work
load. HiGLoB is constituted by two elements: the histogram that shows
how the load is divided on the network nodes and the load balancer. Each
peer divides the network into many areas as the number of its neighbors,
without overlapping. Each network peer creates its own histogram with the
zone information gathered from their neighbors, such as data load, traffic
distribution, or other parameters that you want to distribute fairly. Then
it sends information to the neighbors about its parameters to update their
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histograms. Depending on how evolves its own diagram, peers may change
zone to balance the network. This framework leads to an increase of the over-
lay messages exchanged between the peer. To limit this increase the authors
proposed the inclusion of a threshold for the cascade histogram update.

In G-Grid, when a peer want to send a message to a peer at the same
depth in the tree, the request must go up the tree to the root and then
descend down to the recipient peer. This causes more traffic in the nodes
close to the root respect to the peers of the tree leaves that are contacted
only by messages that have them as recipients.

SkipCluster also presents the same problem. Each super-peer, the only
peer capable to forward messages outside the cluster, has to manage more
messages than cluster internal peers, that pass only intra-cluster communica-
tions. As we can see from the results provided in [142], the traffic distribution
depends strongly on the cluster size.

Mercury aims to improve the traffic distribution building long-range links,
not at random, but with more unloaded peers. For this, each peer need to
know the traffic distribution of the network. It can do that by sending random
walkers that gather information on traffic load. More walkers are generated
greater is the approximation of the traffic distribution in the entire network.
In contrast, if there are too many walkers these increase the system messages
number for the maintenance of the overlay. Besides the number also the
frequency with which a peer updates its knowledge on the traffic distribution
affects the cost of network maintaining.

To make uniform the resource utilization of peers we can analyze the load
distribution on individual peers [38, 17]. The idea stems from the observa-
tion of bottlenecks due to non-uniformity of elements kept for each peer.
For example, when peers divided areas of interest in a rather symmetrical
manner, the majority of elements concentrates, according to their key, in
a single area. This leads to greatest load on the machine that keeps such
data. P2P networks also have stakeholders which can be very different from
each others: in current networks the latest generation computers are side
by side to a few years ago computers, and there are mobile devices that
communicate with stable devices. The bottleneck previously mentioned is
accentuated if the peer with the majority of the elements is an old computer
with limited processing capabilities. The solutions proposed focus on partic-
ular variables, such as the peer storage, the bandwidth and computational
capabilities. However it is not possible to unify simultaneously all factors,
then in the first instance we try to be homogeneous the load distribution.
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Consequently, a uniform load distribution would lead to a uniform traffic dis-
tribution in the network. In the above example, if the elements of a network
were placed uniformly on the responsibility areas of each peer, the traffic
would be balanced.

5.2 G-Grid Improvements

In this section we present the improvements to the G-Grid overlay structure
we developed and described in chapters 3 and 4. Moreover, we need to
understand how its behavior changes, operating on storage and structure,
to improve the weaknesses and to achieve the last overlay version, that is a
trade-off between efficiency and effectiveness.

5.2.1 Load Distribution in G-Grid

The critical point of the basic version of G-Grid is the load distribution. In
fact, being a tree structure, the nodes closer to the root are in charge of the
routing of a large number of messages. To better understand we describe in
detail the path of the messages from the leaf nodes, to reach the root.

Each leaf node handles only messages that are addressed to itself and that
it creates. The nodes belonging to the level up to the leaves collect messages
addressed to them and routing the messages that leave and reach the leaf
nodes. As we climb the tree, we see that the traffic increases on each nodes
level, because, in addition to managing the messages in which the node itself
is the sender or recipient, they must perform the routing of all messages of
lower levels. So, the greater the number of underlying layers to a node, the
greater the traffic routing that it have to manage. Up to the root node, which
manages the messages of all the lower nodes, allowing to reach the opposite
sides of the tree structure.

5.2.2 G-Grid with Learning

A first way to improve the performance of G-Grid, is to propose a solution
which does not require additional management costs. The version of G-Grid
“with Learning” has the ability to acquire the structure of the network itself.
We need that every message sent on the network stores a list of the nodes

101



that it has gone through. In this way, each peer that performs the routing
of the message may acquire the nodes contained in the list.

In a stable network, a large number of query messages would bring the
entire system structure to all peers. In this way, each peer builds internally
a copy of the G-Grid tree and thus has connections with all peers of the
network. Moreover, the tree structure requires a few space of storage because
a node identifier is made by the identifier of the parent node followed by a
single digit, ‘0’ or ‘1’. Knowing the entire network, each node can send
messages directly to the recipient - routing unicast - without requiring routing
information to peers intermediates.

Obviously, this situation occurs if there are a high number of queries
uniformly distributed in the network. If a node is reached by a few queries is
likely that it is not known to all peers in the network. Therefore, the number
of hop, ideally equal to 1 (the recipient is contacted in unicast), is slightly
higher due to the non-uniformity of the query generated in the system. The
increase in the number of hops is not a serious problem, because from 1
to about 2 does not involve large delays in reaching the recipient of the
message. The problem, once again, remains the load distribution. In the
ideal situation, where all peers know the complete structure of the network,
the traffic distribution would not be a problem. In fact, always using the
direct connections, the messages is directly sent to the destination node, then,
with a uniform distribution of query, we have a uniform traffic distribution
in the network.

If a peer does not know the entire network, uses some intermediate nodes
to deliver messages. The problem is accentuated during the entry of a new
peer in the network. Initially, a peer just entered the network is a C-Peer
and is connected only with an S-Peer, then will charge it with every request.
This leads to a non-uniform load distribution. In areas in which the network
has high dynamics, precisely when the node input frequency in the network
is higher compared to the number of queries, the distribution is not uniform
at all.

5.2.3 G-Grid with Chord Ring

The improvements made by the G-Grid with Learning decreases the average
number of hops of the system, leading, however, to a non-uniform load dis-
tribution on the network. Since the uniform distribution of the load is a key
point in distributed systems, we step back, starting from the basic version
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of G-Grid, to show the improvements that focus on load distribution. We
applied primarily an overlay to the basic structure of the G-Grid. We see the
merits and defects.

The first overlay applied to G-Grid is Chord [125]. The choice of this
overlay was guided by the results of good load distribution of literature [125,
27, 13, 111].

Chord allows you to arrange the nodes on a ring structure, sorted in
ascending order according to the node identifier. Each node has a link with
each of the peer that are located at an exponential distance from it, on the
ring. That is, each node has the following neighbors, as nodes with a direct
link: the next node on the ring, the second next node, then the fourth, the
eighth, and so on, as seen in the example shown in Figure 5.1.

Figure 5.1: Chord network structure example.

In Chord, the routing algorithm allows to quickly reach the area sur-
rounding the recipient of the message. The messages, in fact, are sent to
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the farther peer whose identifier does not exceed the goal to be achieved,
and so on, until the recipient peer. For implementation details of the Chord
architecture the reader is referred to bibliographical notes.

We describe now how we have applied the Chord ring to the structure
of G-Grid. First, we organize the peers as a ring. G-Grid has a binary
tree basic structure, in order to transform the tree in a ring must define a
node order in the tree. The peers that are part of the ring are the only
S-peers. The order of the peers is chosen using a graph criterion: we order,
before the left son node, then the right one, and then the parent node. The
criterion is recursively along the tree, from the root node to the leave nodes.
In Figure 5.2 we see an example of sorting the nodes of a G-Grid tree.

Figure 5.2: Sorting the G-Grid regions tree according the Chord ring.

Once you have defined the peer order is necessary to connect the nodes
and create exponential links to create the Chord structure. Each peer, instead
of searching one by one all the nodes that will become its neighbors, uses a
more efficient mechanism to get this connections. Generally, for each peer,
its n exponential neighbor is the n−1 exponential link of its n−1 exponential
neighbor. In this way, when a peer find its first neighbor, to get its second
neighbor, asks the first exponential link to its first neighbor. Then asks the
second exponential link to its second neighbor to obtain the third neighbor,
and so on. In this way the cost of routing table building of each peer that
enters the ring has a complexity of O(log n), where n is the number of nodes
of the network.

Thanks to this structure the system obtains an improvement in load dis-
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tribution, as can be seen later in the result section. However emerges a
critical point: the maintaining cost of the structure. Each time that a peer
joins in the structure, this must first find its right place in the ring. Then it
have to build the exponential links. The problem is the construction of the
exponential links because it is not limited to the peer neighbors links, but to
every peer of the network. In fact, the exponential links of the other peers
may change after the peer join. All peers so have to check and recalculate
their neighbors after the peer join. These operations should be performed
even when occurs a peer leave. The maintenance of the structure creates
a high traffic on the network. This critical point has led to a further over-
lay for G-Grid, to maintain a good traffic distribution with lower network
maintaining costs, in front of the modern networks dynamism.

In Figure 5.3 is shown an example of G-Grid structure with Chord ring.

Figure 5.3: Overlapping of Chord overlay on G-Grid tree.
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5.2.4 G-Grid as Small World

In 1967 Milgram [83] performed some experiments concerning the small world
networks and their characteristics with respect to the low number of hops
needed to connect two elements in a network with a high number of elements.
The theory was reconsidered by Watts and Strogatz [136] in the Nineties,
they emphasized the fact that the small world networks are very common
in nature. The characteristics observed in these studies are mainly the low
number of hops and a fair traffic distribution. The model developed for
small world networks is perfectly suited to P2P networks, and the features
presented is chosen to be developed as an overlay for the G-Grid architecture.

The key feature of small world networks states that every node in the net-
work must be connected to some neighbor nodes and some other randomly
chosen nodes across the network. We decided to determine the neighbor
nodes as the predecessor and successor nodes of the ring created as for the
G-Grid with Chord. The ring structure provides, in fact, the completeness
in the network, because there is always at least one link to send a message
toward the destination. Once established the neighbors, we add some long-
range links to other nodes to create a small world overlay network. We used
a number of long-range links equal to the logarithmic value of the number
of peer in the network. To get these links each peer performs search queries
randomly in the network. When a search query message reaches the desti-
nation node, this connects the sender node with itself and vice-versa. An
important feature of small world networks is that the long-range links are
equally distributed in the network. If the network is stable, this feature is
respected since the peers create random queries with uniform distribution.

When peer joins in with the small world network, it has to be placed
inside a ring of S-Peers, ordered as to the structure of G-Grid with Chord.
Once inserted in the ring, the peer performs random search queries to get
its long-range links. In the case of high dynamics of the network, the peer
long-range links may not be evenly distributed in the network. In fact, when
a peer enters the network, it is unable to be contacted from others peers
with a long-range link of peers already into the system. To overcome this
problem, the new peer has to create long-range links through query messages
generated at the join phase. In this way, the peer creates links which helps
to balance and distribute the load in the network.

The advantage of this network topology, compared to the overlay which is
based on Chord, is the fact that the peer joins do not invalidate the connec-
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tions of all the other peers in the network. In fact, long-range links randomly
generated do not have a logical structure that have to be restored at each
modification. This feature saves a lot of traffic system, in particular of those
messages that were used to reconstruct the exponential links of every net-
work peer. Even the operation of peer leave does not create an huge amount
of traffic system. If a peer leaves the network, the remote peers that were
connected with it, realized that the peer is no longer there, create randomly
another long-range link to replace the lost one. The number of messages is
still admissible. Finally we state that this is the best overlay to add to G-
Grid because the peer join and leave peer operations do not involve cascade
updates, unlike what happened in G-Grid with the Chord ring.

These benefits are visible in the experiments that we show in the next
section, comparing all versions of G-Grid listed in this work to SkipCluster,
with and without the HiGLoB traffic management.

5.3 Experiments

Among the main overlays of the literature we have chosen two structures
for comparison with the G-Grid versions: SkipCluster and HiGLoB. These
structures have been implemented in the simulator of P2P networks PeerSim
[87]. In our experiments we connected to each node by the overlay specific
test, such as G-Grid, and an overlay of transport provided by the simulator in
native mode. We have also created the controls, the system runs periodically:
for example, every 10 000 query is saved a network snapshot on a database.

SkipCluster was chosen because it is one of organized structures with the
best performance among the recent ones in literature. Therefore we added to
SkipCluster HiGLoB, an overlay that helps to balance the load distribution
in the network, but increases the system maintenance traffic too. We also
analyze all the versions of G-Grid, highlight the improvements of this work
that led G-Grid Small World to be a good compromise between ordered
structure and load distribution.

The key measure that we want to evaluate here is the traffic distribution.
As we have already said, this parameter is important because it indicates
how the load is evenly distributed on the network peers. We observed also
other important measures as the average of:

- number of hops,
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- number of messages exchanged to maintain the structure (called system
messages)

- number of links of the peers, which indicates how many memory is
occupied by the data structures of the overlay.

We tested the overlays in four different scenarios. In all the scenarios we
start from a network consisting of a single element and connect quickly 10
000 nodes. The nodes create each structure by exchanging messages with
other nodes in the network. At the end of the introduction phase, we begin
to execute queries periodically, up to 100 000 queries. The observations of
the state of the network are performed each query 10 000, so 10 times.

The first scenario presents only the query execution, without changing
the structure of the network. In the second scenario, after the introduction
phase, we insert a new node every 100 queries. This increases the size of
the network, up to 11 000 nodes. In the third scenario we perform a new
connection or disconnection, in a random way – with a probability of 50%
– every 100 queries. In this case, the number of nodes oscillates around
10 000, the start number. In the last scenario, we perform a number of
connections equal to the square root of the number of queries executed up
to that moment.

5.4 Results

It is worth to observe that, despite the differences among the various scenar-
ios, the results were really similar. For this reason we will comment only the
results of the first scenario. We also want to emphasize the improvements
introduced by G-Grid, without dwelling on the particulars of the networks,
since our experiments show that these improvements are guaranteed in any
kind of P2P network.

In the Figures, the horizontal axis represents time, and the marks are the
cumulative numbers of queries issued in the system during the experiments.

In Figure 5.4 the vertical axis represents the number of messages issued
in the system in the unit time, as a result of the querying activity, to main-
tain the overlay structure. The basic version of SkipCluster requires few
messages, less than 200 in a 10,000 nodes network, to create the overlay
structure, instead the introduction of HiGLoB increases considerably that
value. SkipCluster with HiGLoB requires more overlay messages than basic
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Figure 5.4: Overlay structure messages traffic.

SkipCluster, because the HiGLoB internal structures keeping/updating the
histogram of the clusters requires a heavy exchange of overlay messages. We
observe that the basic version of G-Grid has a low cost, almost zero – the
value is around 3 –, due to the binary tree structure on which it is based. The
management cost is found in the split operation of the regions leading to the
creation of new S-Peers. The cost of G-Grid with Learning and basic G-Grid
is the same because the list of passed nodes is sent in piggyback on query
messages. We note that the G-Grid with Chord ring has the worst result
in terms of system messages number, resulting the highest. This increases
the cost of structure maintenance, because this structure is the most orga-
nized. Finally, we observe that G-Grid Small World needs a lower cost than
other organized overlay tested, that are G-Grid with Chord and SkipCluster
with HiGLoB. This because it has the ring structure and long-range links to
maintain, which are easier to restore after network changes.

Figure 5.5 shows the average number of hops per peer. Each peer mea-
sures the number of necessary connections to achieve the wanted data. Dur-
ing the simulation starting phase, the number of query messages sent by each
peer is very low, so the measured value becomes interesting only after the
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Figure 5.5: Average number of hops per peer.

initial phase of adjustment. When more queries are performed, we get closer
to the expected average. We noted, in fact, that G-Grid with Learning, tends
to the theoretical value 2. This value is justified by the fact that, since the
network does not change its composition, with a large number of queries,
each peer has knowledge of the entire network structure, so using only a step
(hop) to reach the solution and one for the return.

Even G-Grid shows a rather low average number of hops. Both versions of
SkipCluster has a hops average of slightly less than the logarithmic value of
the network dimension. The number of hops of G-Grid Chord is greater than
that of the other G-Grid versions, but still better, apart in the initial phase,
of the other overlays. This is necessary to have a better load distribution,
but in any case the data is still sub-logarithmic respect to the number of
peers. G-Grid Small World here is the worst, because the randomness of
long-range links does not help the routing as for the other overlays. However
the difference is not so high to penalize this one.

In Figure 5.6 we measured the average traffic standard deviation for peer
as the ratio between the standard deviation and the average of messages
routed from each node of the network. We observe that after an initial phase
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Figure 5.6: Traffic standard deviation per peer.

the traffic standard deviation of both G-Grid algorithms is greater than both
SkipCluster algorithms. All overlays have a value that remains on the same
order of magnitude, the average is around 15. The SkipCluster with HiGLoB
distinguishes oneself from SkipCluster of about one unit. At least, G-Grid,
and even better G-Grid with Learning, offers a lower average traffic standard
deviation. We note that G-Grid Chord and G-Grid Small World are the
overlays that have a better result. The value is about 1: this indicates a
nearly uniform distribution of traffic.

In Figure 5.7 we obtained information on the amount of memory required
for the maintenance of each structure. Large number of links necessarily in-
volves high amount of memory to store them. In every scenario the situation
is the same: G-Grid Random requires a high number of links. The number
of links is not logarithmic with respect to the size of the network, because
the peers had to store the links with the last entered nodes on the network to
distribute more evenly the long-range links. This value is, however, a fixed
value.

The worst overlay is represented by G-Grid with Learning, because the
number of links increases as the number of executed queries. In fact, for each
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Figure 5.7: Number of links needed to maintain the overlay structure.

query, each peer discovers and creates links with the other nodes through
which the query is passed. This leads to have a number of links equal to the
size of the network, in the steady state. The upward trend of the links will
arrive at 10 000 after a very large number of queries. The basic version of G-
Grid has the least number of links per node due to its binary tree structure.
At last we note that the introduction of HiGLoB in SkipCluster decreases the
number of links of the structure by one third, close to the value observed for
basic G-Grid. Moreover, we note that the number of links stored to maintain
the structure Chord above G-Grid is approximately equal to the logarithm
of the number of nodes of the network, as expected for construction.
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Chapter 6

Conclusions

Modern devices and applications manage large data distributed over mul-
tiple sites that also can move independently. The P2P tecnologies try to
provide efficient distribution, sharing and management of resources over au-
tonomous and heterogeneous peers. Most P2P systems, such as Gnutella,
Chord, Tapestry, support only queries over a single data attribute. We pre-
sented an evolution of G-Grid, a multidimensional data structure able to
efficiently execute range queries in totally decentralized P2P environments.
This structure is not imposed a priori over the network. Self-organization is
led by local interactions among peers, and the total decentralization of con-
trol makes it perfect for grid computing and server clusters. G-Grid is also
adaptive regarding dynamic changes in network topology. This robustness
makes it suitable for mobile networks. We presented several experiments to
compare G-Grid with other recent and efficient P2P structures presented in
literature.

Analyzing the results of experiments, we can get some conclusions and
suggestions for future works. First, we report the main characteristics of the
analyzed overlays. The values obtained are proportional to the size of the
network used in the experiments, each overlay changes its performance in
relation with the peer number of the network. Starting from SkipCluster, we
note that the cost to maintain the system is not high: about 1/50 of the size of
the network. This means that the peer joins and leaves in the network involve
a relatively low cost. In addition, the structure has an hop average equal to
the logarithm of the number of peers connected to the network. The number
of links required to maintain the structure is low, approximately equal to half
the value of the logarithmic network size. The measure about the traffic load,
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that is the ratio of the standard deviation and the average of the traffic load,
is a logarithmic value of the network size. This last parameter is a weakness
of SkipCluster, despite showing good performance compared to others.

SkipCluster with HiGLoB, shows an average number of links per node
less than about 1/3. This value allows to maintain a smaller number of
connections and therefore decreases the bandwidth needed. Nevertheless,
this overlay has a memory occupancy greater than SkipCluster, because each
node stores the histogram of the clusters, and equal to about 1/100 of the
network size. Moreover, to update the histogram, this overlay uses a double
number of messages with respect to those used by SkipCluster.

We note that the basic version of G-Grid is showing significant advantages
over SkipCluster. First, G-Grid has a very low maintaining cost because the
peer joins and leaves cause a change in only a node of the tree, that holds
up to three links. The number of links is a superiority of G-Grid: this value
is very low, due to the binary tree structure. The average number of hop
is lower than that of SkipCluster and it is around the logarithmic value of
the network size. The traffic distribution in G-Grid, however, gets the same
performance of SkipCluster, showing the same problem of load balancing.

G-Grid with Learning shows the same characteristics in terms of system
traffic, because the added information travels in piggyback on query mes-
sages. The improvement consists in reducing the number of hops, which, in
a stable network, tends to one. The disadvantage of Learning is the num-
ber of links that grows linearly with the network size. This requires a large
amount of memory in the nodes and a high bandwidth to maintain valid all
the links. Even in this case the traffic distribution is unbalanced between the
various peers of the network.

In G-Grid with Chord ring, we note that this overlay requires a huge
number of system messages, approximately equal to half the network size.
This brings a hop average approximately equal to half the logarithm of the
number of network peers. The number of links per peer is equal, by con-
struction, to the logarithm of the number of nodes. Although this version
degrade the performance compared to G-Grid and G-Grid with Learning, we
observe that the traffic is distributed almost equally, bringing the relative
measure to 2.

Finally, G-Grid Small World was created to get the benefits of both G-
Grid and G-Grid with Chord ring. The number of system messages is about
1/15 of the number of network nodes, so it is rather small compared to that
required by the version Chord. The number of hops increases, reaching to a
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couple of units compared to the logarithmic value of the number of nodes.
The number of links also increases: it is 1/100 of the network size. This
degradation of performance is offset by the traffic load measure that remains
around 1. This indicates an almost uniform network traffic distribution. G-
Grid Small World reaches the best traffic distribution with an acceptable
decline of other measured performance.

The analyzes and considerations presented in this thesis have shown the
features of G-Grid, in various versions, in comparison with one of the latest
similar literature overlay, that is SkipCluster. In next works we will evaluate
the performance in networks with uneven load distribution on peers, consid-
ering the behavior of these overlays in cases of non-uniform load distribution.
These simulations will be able to measure the performance of architectures in
cases closer to reality. In addition, we will evaluate the possibility to realize
the HiGLoB structure also on G-Grid. This work creates many opportunities
for the continuation of the study and analysis in realistic P2P environments.
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Appendix A

Distribution on C3P
Framework

Due to the abundance of attractive services available on the cloud, people
are placing an increasing amount of their data online on different cloud plat-
forms. However, given the recent large-scale attacks on users data, privacy
has become an important issue. Ordinary users cannot be expected to man-
ually specify which of their data is sensitive, or to take appropriate measures
to protect such data. Furthermore, usually most people are not aware of
the privacy risk that different shared data items can pose. Starting from the
study of the C3P framework, in which privacy risk is automatically calculated
using the sharing context of data items, we tried propose novel approaches
that take into account a P2P environment. To overcome ignorance of privacy
risk on the part of most users, C3P framework uses a crowdsourcing based
approach. It uses Item Response Theory (IRT) on top of this crowdsourced
data to determine the sensitivity of items and diverse attitudes of users to-
wards privacy. In this lightweight mechanism, users can crowdsource their
sharing contexts with the server and determine the risk of sharing particular
data item(s) privately. This scheme converges quickly and provides accurate
privacy risk scores under varying conditions [51].

Our new contribution was the application of this privacy framework in
a P2P environment, to improve the privacy guarantees among the network
peers and to let them contexts’ sensitivity elaboration only upon local interac-
tions, considering the information coming from neighbour peers not always
trustful. We paid particular attention to improving privacy conditions as
compared to the existing centralised solution. In addition to following the
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theory, we implemented a simulator to evaluate the performance of these
solutions and obtain results to support our ideas. A manuscript for publi-
cation based on this work here is under preparation, which is expected to
be submitted this Winter. In the following we describe some ideas on which
we worked on, assuming to have this prerequisite: we consider a network of
peers in which each peer has almost one link to another one.

The first idea was to split the storage database of Crowdsource Informa-
tion (CI) from a single server into different peers. Each peer of the network
stores some Crowdsourcing Information (CI) in its own memory. The CI
comes from the network, when other peers share them, and from the sharing
operations of the peer itself. The CI can be stored with a timestamp, so if the
memory space is limited the peer can maintain only the most updated CI.
When a peer needs to know the sensitivity value of a context item, it uses its
own CI storage. It calculates the sensitivity value using the IRT algorithm
with the owned CI. Then it decides the right privacy policy to apply to the
context item and it shares the context information in the established cloud
service with the decided privacy policy. Finally, when the privacy guarantees
are satisfied, the peer spread a new CI, arranged by its peer profile, the con-
text and the privacy policy, to the network by a gossip algorithm: it sends
the CI to its neighbors, and they do the same until the timestamp is elapsed.
When a peer receives a CI, stores it in its own CI storage: this improve the
ability to calculate the sensitivity value of context items. If the timestamp
of the Ci is not elapsed, the peer has to forward the CI to its neighbors,
decreasing the timestamp before the sending. In this scenario, every peer
calculates the context sensitivity based only on its local CI database, that is
the result of the spreading of all the information by a gossip algorithm. This
improve the privacy guarantees, because all the information are not gathered
by a single server.

We investigated a second step to improve the previous solution in terms
of network traffic and storage load. The new idea was to do not spread the
CI with a gossip algorithm but let to each peer to asks the data useful to
their specific sensitivity requests to the other network peers. Each peer of the
network stores only the CI of the sharing operations that it requires: the ones
generated from itself and the ones expressly asked the network. When a peer
needs to know the sensitivity value of a context item, it sends a request over
the network, by its neighbors, containing a number of context items, such as
to calculate the sensitivity value. This number can not be too high to do not
send a query message too large, but the context items have to be enough to
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calculate the sensitivity, that is to build an almost full matrix (contexts x
peers) for the IRT algorithm. When a peer receives a query message, it has
to check in its CI storage if there are almost an available subset of CI that
matches (almost a sufficient part of) the context items requested in the query
message. If the conditions are satisfied that peer sends the useful CI set to
the requester, otherwise not. Anyhow, the peer decreases the timestamp of
the query message and if it is not elapsed yet, the peer forwards the query
message to its neighbors. If the requester peer receives enough replies from
the network, in a specified time period, it can calculate the sensitivity value.
When the peer assigns the privacy policy to the context item, evaluating the
sensitivity result or not, it creates a new CI record that save into its storage,
for the further network queries that it could be receive. Also the CI set
received from the network can be cached into the peer’s CI storage.

An example:

1. A peer P1 that had previously shared 3 context items (C1, C2, C3) with
respectively 3 privacy policy (pp1 = 0, pp2 = 1, pp3 = 0) wants to share
a new context item C4.

2. P1 sends a request to its neighbors (es. P2, P3, P4) asking the policies
for N = 4 context items (C1, C3, C4, C5), with a timestamp.

3. P2 replies to P1 with a list of the privacy policies of M context items,
where M ≤ N and M ≥ Mmin. P2 forwards the query message to its
neighbors, only if the timestamp is not zero.

4. P3 does not have enough context items, so P3 does not reply anything
to P1, but it forwards the query message to its neighbors (until the
timestamp is not zero).

5. P1 waits until almost Z peer responses, or a timer elapsed.

6. If P1 receives almost Z peer responses, P1 can elaborate the sensitivity
of the query set.

7. P1 stores the privacy policy of C5 in its sensitivity storage.

The parameters are:

• N : number of context items in the query set, it can be variable;
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• Timestamp: number of neighbors level in which the query message is
spread;

• M : number of context items in the replies;

• Mmin: minimum number of context items asked in the replies. Mmin

should be close to N ;

• Z: minimum number of peers to elaborate sensitivity.

A.1 Requirements of the CI to calculate sen-

sitivity values

To calculate the sensitivity of a certain context item is necessary to have a
sufficient number of CI with some requirements. For example, the privacy
policies of a context item can not be the same for all the peer profiles that
shared it.

Finally, as a future work, we proposed to use some Data Mining tech-
niques to find correlation between context fields and profile policies, to detect
the sensitivity of new contexts and in general to support the sensitivity cal-
culation, specially when there are not enough local CI into a peer to calculate
a context sensitivity.
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