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Introduction and motivation

One of the most promising and emerging medical imaging modalities is Microwave Imaging (MWI).

MWI involves the illumination of the portion of the body under investigation and resultant

backscattered signals is exploited to generate images of the internal structures of the body. The

main characteristics that suggest its deep study are low-power, low-cost, tissue-penetrating, focus-

able, non-ionizing imaging modality with also therapeutic capabilities. Most of this MWI research

to date has been accomplished in simulation and laboratory studies, with only limited translational

research into the clinical environment.

In this thesis we aim to develop an experimental phantom used to collect data and compare

them with the results obtanied in the simulations.

The work is organized as follow: a brief introduction on breast cancer (chapter 1) and on

key-concept on electromagnetism and antenna theory (chapter 2) is given; chapter 3 is devoted

to an introduction on MWI theoretical basis and a description on the state-of-the-art regarding

algorithms and clinical translation. In chapter 4 the simulation process is detailed and in chapter

5 the reconstruction results are discussed. Chapter 6 shows an experimental setup suitable for

collecting data and the resulting reconstruction images.

In appendix is briefly detailed a classification method based on a deep learning technique using

a mammographic dataset.
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Chapter 1

Basic foreword on breast: anatomy,

cancer pathology and screening

In this chapter an introduction to breast cancer is provided, together with a basic foreword on

methodologies to diagnose the disease by means of the commonly accepted screening procedures.

1.1 Breast Cancer

The human body is made up of trillions of cells. These cells are living, that is they grow, split into

new cells and die in an ordinary cycle. Though there are many different types, cancer begins when

cells start to generate new daughter cells out of control in a localized part of the body and this is

due to a damaged DNA. When a cell is a normal cell and DNA gets damaged, the cell itself either

repairs the damage or dies. In cancer cells, the damaged DNA is not repaired, but the cell does

not die like it should. Instead, this cell goes on making new cells that the body does not need.

Unfortunately these new cells all have the same damaged DNA as the parent cell does. Breast

cancer is a malignant tumor that starts in the cells of the breast. A malignant tumor is a cluster

of cancer cells that can grow into surrounding tissues or spread to other areas of the body. This

spreading is also called metastasis disease. Independently where a cancer has spread, it is always

named by the place where it started. For example, breast cancer that has spread to the lung is

still called breast cancer, not lung cancer [57]. This disease occurs almost entirely in women, but

men can get it, too.

In figure 1.1 some incidence1 statistics is given for breast cancer in the United States: more

than 230.000 new cases is the preview for the year 2015 that corresponds to about the 14% of all

new cancer cases. The estimated deaths are more than 40.000, the 6.8% of the total occurring

1Incidence is the number of new cases arising in the given period
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1.2 Breast Anatomy

deaths caused by cancer. The percentage survival rate at 5 years, between year 2005 and 2011,

had been almost 90%.

Breast cancer is the second leading cause of cancer death in women after lung cancer and the

chance that breast cancer will be responsible for a woman’s death around the 3%.

Figure 1.1: USA breast cancer statistics for year 2015. [1]

1.2 Breast Anatomy

To fully understand the difference with cancerous tissues it may help to have some basic knowledge

about the normal structure of the mammal. Woman’s breast functionality is to produce milk to

feed newborn babies, inside it there are, in general, 15 to 20 sections, called lobes where milk

is produced. Each lobe is made of many smaller sections called lobules. Milk from lobe is then

carried to the nipple through little vessels called ducts. Skin surrounding the internal is about 1

mm to 3 mm. Fibrous tissue and fat fill the spaces between the lobules and ducts. Fat can be

found in three different regions: subcutaneous, just under the skin, retro-mammary in the back

of the breast, and intra-glandular between the glandular structures. Minor presence have nerves,

vascular and lymphatic tissue as well as a small number of lymph nodes inside the mammal.

Figure 1.2 shows a cross section in which all breast tissues are detailed.

1.3 Pathology

The most of initial development of the cancer occurs inside the glandular tissue, this can be either

lobes or ducts. Regarding the starting location, we have an invasive lobular carcinoma (ILC) or

invasive ductal carcinoma (IDC). About 10% of all invasive breast cancers are ILC while about 80%

are IDC, as reported incidence based on the documentation of about 190,000 women with breast

cancer in the Surveillance, Epidemiology, and End Results (SEER) program (www.seer.cancer.gov).

The remaining 10% is cancer that originates in the pectoralis muscle, fat, or connective tissue in

the breast and is referred to as sarcoma.

3



1.3 Pathology

Figure 1.2: Cross sectional image of the normal breast [40]: 1. Chest wall 2. Pectoralis muscles
3. Lobules 4. Nipple 5. Areola 6. Milk duct 7. Fatty tissue 8. Skin

More precise taxonomy can be defined also if cancer remains confined, in situ, like ductal

carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS) or has attacked the surrounding tissue

or even has spread away using lymph nodes and blood vessels to move away. In figure 1.3 are

shown the evolution stages of a normal ductal cell transforming in a invasive ductal cancer cell.

Risk factor

There are many risk2 factors to develop breast cancer, some are linked to items that cannot be

prevented as age (higher probabilities are in women older than 55 years) or gender (male has a

probability 100 times smaller to get the disease even if he could) or even race and ethnicity (African

woman above 45 have a major risk). Also breast density affects the risk,this condition will more

detailed in the next section because it also affects the accuracy of screening examinations. Other

risks are linked to the life style: drinking alcohol, getting hormones or not having a physical activity

are considered risk factors. Unfortunately these are only risks, no one can tell if the disease will

be got or when it will happen.

2A risk factor is anything that affects your chance of getting a disease, such as cancer.
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1.4 Breast density assessment

Figure 1.3: DCIS: Evolutionary representation of cell mutations [2]

1.4 Breast density assessment

The breast, as told before, is mostly made of fatty and fibro-glandular tissue with the relative

proportions of the two varying in a wide range. Attempts to develop a reproducible quantitative

method of assessing breast density began in the early 1980s. Visual estimation of the percent-

age of the breast occupied by breast tissue has been used frequently, with the most common

method having six categories, where fibro-glandular tissue occupies > 75%, 50–75%, 25–50%,

10–25%, < 10%, or none of the breast [10]. The American College of Radiology (ACR) developed

the Breast Imaging-Reporting and Data System (BI-RADS), which is becoming the standard of

mammography-reporting terminology and assessment and recommendation categories [47]. The

BI-RADS classifies mammographic density into four categories: Breast Density by Mammography

• BI-RADS category 1: breast with the density of fat,

• BI-RADS category 2: fatty breast with scattered fibroglandular densities,

• BI-RADS category 3: heterogeneously dense breast,

• BI-RADS category 4: dense breast.
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1.5 Screening: motivation and modalities

ACR cat.1 ACR cat.2

ACR cat.3 ACR cat.4

Figure 1.4: Representative mammograms shown from MRI sagittal slice. From (a) to (d) are
displayed the increasing values of the four BI-RADS categories [66]

1.5 Screening: motivation and modalities

Breast cancer is sometimes found after symptoms appear, but many women with early breast cancer

have no symptoms therefore getting the recommended screening tests before any symptom appears

is extremely important. When diagnosing and monitoring cancer, the evaluation of radiological

image data is an important source of objective information. Such evaluation includes the detection

and classification of suspicious lesions as well as the classification of tumor tissue under treatment.

Identifying and categorizing abnormality relies on a set of consistent criteria based on image

features to which the human visual system will respond with particular sensitivity. Many imaging

modalities help radiologists making their decisions on the basis of the appearance of a tumor mass

while monitoring dynamic changes[57]. Some common methodologies are now detailed with a

special interest for mammography and magnetic resonance imaging (MRI) because the former will

be used in the chapter 7 for the classification stage and the latter will be used in chapter 6 to

produce a realistic phantom for the simulated data. A summary of whole diagnosing techniques is

even reported in figure 1.8.
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1.5 Screening: motivation and modalities

Figure 1.5: Mammography and breast compression [57]

1.5.1 Mammography

A mammograms is a 2D imaging method that makes use of X-rays to investigate breast disease.

Early x-ray mammography (1950s) used a direct exposure film, this required an high dose of

radiation having low contrast and poor diagnostic quality [11]. With continuous refinement and

with the regulations dictated from ACR , mammography became the standard methodologies to

screening and finally the advent of full field digital mammography (FFDM) allowed a low-cost,

low-dose, rapid acquisition and better quality imaging technology worldwide used up-today. In

FFDM The x-rays do not go through tissue as easily as those used for routine bones x-rays (chest,

arm, legs) and this helps improve the image quality. The goal of a screening mammogram is to find

breast cancer when too small to be felt palpable by a human. Finding breast cancers early, that

is before they have grown and spread, greatly improves a woman’s chance for successful treatment

and keeps alive. As an accepted standard 2 pictures are taken for each breast: the mediolateral

oblique (MLO) view and the craniocaudal (CC) view. In figure 1.6 is shown the way to obtain

the two projections.

Mammography can also be used as diagnostic tool to perform further evaluation of abnormal-

ities identified by palpation or screening mammography. In this case additional projections and

magnifications might be included.

7



1.5 Screening: motivation and modalities

Figure 1.6: How are get CC and MLO views in mammography (http://ars.els-
cdn.com/content/image/)

Drawbacks

Unfortunately one in four women will attend their first mammogram and never return again [9].

Clearly, the screening experience itself is discouraging many women from receiving the benefit of

screening. One year after the single screening experience, the cancers found among these women

will be just as large and just as lethal as the cancers found among women who never use screening.

The simulation data suggest that this will double the risk of cancer death among these women.

Many women find mammography unpleasant and stressful and this is mainly due to the breast

compression. Moreover screening is not without its negative consequences and mammography

suffers of common mistakes known as “false-positives” and ”false-negative” results.

False-negative results A false-negative mammogram appears normal even though breast dis-

ease is present. Overall, screening mammograms do not find about 1 in 5 breast cancers [citations

needed]. False negatives occur more often among women with dense breasts. Breasts often be-

come somewhat less dense with increasing of the age, so false negatives are more common among

younger women. False-negative results can delay treatment and give a false sense of security for

the woman.
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1.5 Screening: motivation and modalities

False-positive results A false-positive mammogram looks abnormal but no disease is actually

present. False-positive results are more common in women who are younger, have dense breasts,

have had breast biopsies, have breast cancer in the family, or are taking estrogen. About half the

women getting annual mammograms over a 10-year period will have a false- positive finding. The

odds of a false-positive finding are highest for the first mammogram, and are lower on subsequent

mammograms. Abnormal mammograms lead a follow-up treatment like biopsies and other medical

interventions among women who subsequently are not found to have cancer. One widely quoted

study, by Elmore [19], “estimate[d] that among women who do not have breast cancer, 18.6%

will undergo a biopsy after 10 mammograms.” Women who have past mammograms available for

comparison halves their odds of a false-positive finding.

1.5.2 MRI

Magnetic resonance imaging (MRI) is based on the physical principle of nuclear magnetic resonance

(NMR). In 1971 Damadian showed that relaxation times in NMR experiments on rats differed

between healthy and malignant tissue [17]. One year later the first magnetic resonance images

were produced by Lauterbur. He showed that using magnetic gradients it was possible to locate

the origin of a radio signal emitted by nuclear spins within an excited body [36]. From there

onwards, the study of MRI has rapidly grown: image quality, tissue discrimination and imaging

speed have largely improved meanwhile. The first in vivo MRI study of the breast has been

reported by Ross in 1982 [51] showing the potential of breast MRI to detect lesions. However,

image contrasts between normal tissue and malignant lesions were poor and only large lesions were

detected: the sensitivity of breast MRI was comparable to that of mammography at a much higher

costs. [41] The value of breast MRI changed radically when contrast agents based on gadolinium

were for the first time injected intravenously to detect breast cancer [20]. These contrast agents

are diamagnetic and shorten the T1 (spin-lattice) relaxation time of surrounding tissue [21]. This

leads to an enhancement at T1-weighted images and signal changes that can also be observed over

time.

Recommendations MRI is mainly used in women who have been diagnosed with breast cancer,

to help measuring its the size and look for any other lesions in the breast. It also can be used to

look at the opposite breast, to be sure that it does not contain any tumors. The American Cancer

Society has advised women at high risk for breast cancer to have breast MRI screening along with

a yearly screening mammography [26].

MRI is not recommended as a screening tool by itself because it can miss some cancers that

a mammogram would detect (false-negative), moreover although MRI can find some cancers not

seen on mammograms, it is also more likely to find something that turns out to be false-positive and
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1.5 Screening: motivation and modalities

Figure 1.7: Breast MRI

that need a follow-up to check out the presence of cancer. This is why MRI is not recommended as

a screening test for women at average risk of breast cancer, as it would result in unneeded biopsies

and other tests in many of these women.[57]. Figure ?? depicts a typical magnetic resonance of

the breast.

1.5.3 Ultrasound

Ultrasouond is an imaging modality inherited from US Navy in 1950s formerly used to differentiate

breast cysts from masses. It uses a small transducer probe coupled with an ultrasound gel spread

on the skin. Sound waves beyond the human auditory threshold (i.e. > 20 KHz) are transmitted

from probe to the body by means of the gel and picks up the echoes as they bounce back from

body tissues. This echoes are converted into a visual image on a computer screen. This test is

painless and does not expose to radiation. Breast ultrasound is most often used to evaluate breast

problems that are found during a mammogram or physical exam, and to guide a needle biopsy of

a suspicious mass. In someone with a breast tumor, it may also be used to look at lymph nodes

under the arm. Although ultrasound is less sensitive than MRI (the ability to detect tumors is

lower), it has become a valuable tool to use along with mammograms because it’s widely available,

non-invasive, and costs less than other options. As with any breast imaging, breast ultrasound

depends on the level of skill and experience of the doctor interpreting the images and, if handheld

transducer is used (recently some automated configurations have been made available), a good

image optimization relies on the skill and experience of the person doing the scan [28].
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1.5 Screening: motivation and modalities

1.5.4 Other combined methods

Microwave imaging and Dynamic Optical Breast Imaging (DOBI) are thought to support mam-

mography in making decisions. Both are low cost, non-invasive, fast execution, without ionizing

radiation and do not need the breast compression.

DOBI

DOBI diagnostic equipment is innovative, non-invasive, which does not require ionizing radiation

emissions and that uses optical technology for the early detection of breast cancer in young women.

It is a safe exam that uses light in the visible spectrum to illuminate the breast tissue and identify

tumor lesions at an early stage.

It is a diagnostic method particularly innovative, able to detect changes of vascularization (angio-

genesis) that surround the tumor lesion. Therefore, while mammography and breast ultrasound

are diagnostic tests that study the changes in the shape and density of the tissues (morphological

examinations).

Dobi, such as breast MRI, is a functional examination, that provides information about the changes

that occur in the mammary gland for the presence of a specific lesion. It is a very rapid examination

taking about 10 minutes to be completed with a good performance in differencing benign from

malignant lesions.

Microwave imaging

MWI reached popularity amongst researcher when it had been demonstrated that there is an

high contrast between healthy and malignant tissues on electrical permittivity and conductivity

and this contrast can be higher with respect to x-ray imaging. Compared to the other methods

here reported, MWI is not at the same stage even though many algorithms have been developed:

unfortunately very low number of prototypes have been implemented and tested in a clinical

environment.

11
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Figure 1.8: Summary of breast imaging techniques
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Chapter 2

Electromagnetism review and antenna

theory

2.1 Maxwell’s equations

The electromagnetic field can be described by the well known Maxwell’s equations which relate

the fields with their sources, below reported in differential (local) form:

∇× ~E = −∂
~B

∂t
, (2.1a)

∇× ~H =
∂ ~D

∂t
+ ~J , (2.1b)

∇ · ~D = ρe, (2.1c)

∇ · ~B = 0 (2.1d)

All quantities have a spatial and temporal dependence, hence ~E = ~E (~r, t) with ~r in meters e

t in seconds. The ~E , ~D , ~H and ~B, are the vector fields that describe the whole electromagnetic

field and are named electric field (V/m volts per meter), electric flux density (C/m2 Coulombs per

square meter), magnetic field (A/m Ampere per meter), magnetic flux density (Wb/m2 Weber per

square meter). The sources are ρ volumetric electric charge density expressed in C/m3 (Coulomb

per cubic meter) and ~J the current charge density expressed in A/m2 (Ampere per square meter).

It is known that the presence of a medium affects the electromagnetic field through three differ-

ent ways, electric polarization, magnetic polarization and electric conduction but in the Maxwell’s

equation , that are valid for all electromagnetic phenomema, no information is given about the

medium. It has been demonstrated that not all the twelve scalar quantities, corresponding to each
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2.1 Maxwell’s equations

component of each field, can be solved using (2.1a-d) but only six. This suggests that other rela-

tions should be present for the vector fields. In general the electric flux density and the magnetic

flux density are a function of the electric and magnetic fields:

~D = F ( ~E , ~H ) (2.2a)

~B = G( ~E , ~H ) (2.2b)

These relations are called constitutive equations and give the remaining six equations needed

to completely solve 2.1d. For most materials the operators F and G are linear, moreover the

electric flux density depends only from electric field and magnetic flux density depends only from

the magnetic field:

~D = F ( ~E ) (2.3a)

~B = G( ~B) (2.3b)

The electromagnetic properties of a medium are reflected in the following three equations:

~D = ε ~E = ε0εr ~E (2.4a)

~B = µ ~H = µ0µr ~H (2.4b)

~J = σ ~E (2.4c)

The ε values is the electrical permittivity (F/m Farad per meter) and µ (H/m Henry per

meter)is the magnetic permeability. These equations let us to make a classification of a medium

based on the three quantities that appear in them. Because our interest is not on magnetic

materials, the classification based on µ will not be exhaustive.

Spatial classification: if any of the quantity ε, σ , µ depends as a function of the spatial

coordinates (i.e. ε = ε(x, y, z)), the medium is called inhomogeneous.

Classification based on ~D and ~B directions: if ~D is parallel to the direction of ~E and ~B is

parallel to the direction of ~H the medium is called isotropic otherwise another form of the (2.2a-b)

must be given in tensorial notation: ~Dx

~Dy

~Dz

 =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 ~Ex
~Ey
~Ez

 (2.5)
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This can be expressed in a more compact way as:

~D = ¯̄ε ~E (2.6a)

~B = ¯̄µ ~H (2.6b)

Classification based on frequency dependence: if the electrical parameters depend on frequency,

ε = ε(ν) , σ = σ(ν) the medium is called dispersive.

Classification based on the value of the conductivity: if σ > 0 the medium is said lossy, if

σ →∞ then the medium is called Perfect Electric Conductor (PEC).

2.2 Time Harmonic Field

If the electromagnetic field is in co-sinusoidal form containing a single frequency (also said to be

time harmonic) then we can express it in the following way:

~E (~r, t) = E0(r)cos(ωt+ φ0(r)) (2.7)

and applying Euler’s formula:

~E (r, t) = E0(r)Re(ej(ωt+φ0(r)) = Re(E(r)ejωt) (2.8)

the quantity containing the amplitude and the initial phase depending only from the spatial coor-

dinates

E(r) = E0(r)ejφ0 (2.9)

is called phasor. This way of solving Maxwell’s equations for E(r) is referred as working in the

frequency domain, in fact applying the Fourier transform of (2.5) where ω has been replaced with

the selected operating frequency ω0, we obtain:

~E (~r, ω) = Re

(∫ +∞

−∞
E(r)ejω0te−jωtdt

)
= Re

(
E(r)

∫ +∞

−∞
ejω0te−jωtdt

)
= Re

(
E(r)δ(ω − ω0)

)
= Re

(
E(r)

)
(2.10)

In the important case of the frequency (or spectral) domain, the Maxwell’s equations can be
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2.2 Time Harmonic Field

written as follows:

∇× E(r) = −jωB(r), (2.11a)

∇×H(r) = jωD(r) + J(r), (2.11b)

∇ ·D(r) = ρe(r), (2.11c)

∇ ·B(r) = 0 (2.11d)

When we deal with dispersive media, the dielectric properties ε and σ depend on the frequency.

In the frequency domain this leads to a complex-value of permittivity as we will demonstrate below.

This dependence is modeled by several formulas, such as the Cole-Cole or Debye one. In this work

the breast tissues will be modeled using the following Debye’s formula [7]:

ε(ω) = ε∞ +
ε∞ − εs
1 + jωτ

= ε∞ +
∆ε

1 + jωτ
(2.12)

εs represents the permittivity in presence of a static field (ω → 0) and ε∞ corresponds to

ω → ∞, τ is the relaxing time, a parameter characteristic of the medium of the order of the

picoseconds. Moreover in a conducting medium, where the Ohm’s law is valid, some induced

currents may arise:

Ji(r) = σE(r) (2.13)

in this case the equation 2.11b for a linear, isotropic medium where 2.4 hold, becomes:

∇×H(r) = jωεE(r) + σE(r) + J0(r) (2.14)

where the total current density J(r) has been replaced by the sum of the density impressed currents

J0(r) with the conduction density current given by the above Ohm’s law. Now using some algebraic

ability diving by µr and taking the curl on both sides in equation 2.11a, substituting the expression

of ∇×H(r) given from equation 2.11b, and recalling that 1/c2 = µ0ε0

∇× 1

µr
∇× E(r) = −jωµ0

(
jωεE(r) + σE(r) + J0(r)

)
= ω2µ0ε0

(
εr +

σ

jωε0

)
E(r)− jωµ0J0(r)

=
ω2

c2

(
εr +

σ

jωε0

)
E(r)− jωµ0J0(r) (2.15)

If we highlight the quantity present at the second row of 2.15
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2.2 Time Harmonic Field

εc = ε0

(
εr +

σ

jωε0

)
(2.16)

calling it complex-value dielectric permittivity, this leads to rewrite 2.15 in the well known vector

wave equation form:

∇×∇× E(r) = ω2µεcE(r)− jωµJi(r) (2.17)

Same considerations can be done to retrieve the vector wave equation for H, that reads:

∇×∇×H(r) = ω2µεcH(r) +∇× Ji(r) (2.18)

To uniquely solve these equations in an unbounded medium the Silver-Muller radiation conditions

must be provided [49], in this case the solution of the vector wave equation can be expressed in

the following integral form:

E(r) = jωµ

∫
V

J0(r’) ¯̄G(r’, r)dV (2.19a)

H(r) = −
∫
V

∇× J0(r’) ¯̄G(r’, r)dV (2.19b)

it is noteworthy that the volume integral is extended to regions where the impressed currents are

present. The ¯̄G is the dyadic Green tensor as defined in [60]:

¯̄G(r’, r) = − 1

4π

[
¯̄I +

1

k2
∇∇

]
e−jk|r’−r|

|r’− r|
(2.20)

where k = ω
√
µε is the wavenumber expressed in [m−1] and is the solution of the vector wave

equation where the excitation is provided from an elementary current source:

∇×∇× ¯̄G(r’, r)− k2 ¯̄G(r’, r) = Iδ(r’− r) (2.21)

In its general form the dyadic Green function has nine independent components (nonionic)

because an impressed current coming along an axis gives rise to three distinct components of the

field along the 3 coordinate axis.

The expression for the scalar Green function in 2-dimensions is:

G(r’, r) = − i
4
H

(2)
0 (k|r’− r|) (2.22)

where H
(2)
0 is the Hankel function of 0-order and type 2, while its expression in 3-dimensions
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2.3 Antenna characteristics

is:

G(r’, r) = − 1

4π

e−jk|r’−r|

|r’− r|
(2.23)

2.3 Antenna characteristics

Basically antennas are used to send and receive signals in form of electromagnetic waves. There

are several types of antennas based on their particular use and there are common quantities that

completely define their working behavior reported by standard IEEE publications[]. The most

important parameter is the power density, the active power radiated per unitary surface observed

in the far-field region, that is on a sphere whose radius is at least:

rfar-field >
2D2

λ
(2.24)

where D is the highest geometrical dimension of the antenna and λ the source wavelength. The

total power radiated in a lossless medium is:

PT =

∫
Sr

||E||2

2η
dSr =

∫
4π

||E||2

2η
r2dΩ (2.25)

where η is the vacuum impedance. The quantity:

IR(θ, φ) ≡ ||E||
2

2η
r2 (2.26)

is called radiation intensity and can also be seen as:

IR(θ, φ) =
dPT
dΩ

(2.27)

The radiation intensity is a continuous function defined on a compact set so it admits maximum

and minimum, in particular there exists al least one maximum direction:

IR(θM, φM) (2.28)

We define the radiation function in this way:

f(θ, φ) =

√
IR(θ, φ)

IR(θM, φM)
=
||E(r, θ, φ)||
||E(r, θM, φM)||

6 1 (2.29)

This function is extremely useful to characterize in a compact way how an antenna radiates,

in particular if:
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f(θ, φ) = 0 (2.30)

we say it is a zero-direction for the antenna, that is the antenna does not radiate in this

direction. The radiation surface is a 3D plot that shows how the field strength is distributed along

the space. Making a projection onto a plane containing the origin we obtain a 2D graph called

radiation diagram and this is plotted onto a polar diagram that indicates the magnitude of the

response in any direction. The center of the diagram is a point referred to as the origin. This is

surrounded by a curve whose radius at any given point is proportional to the magnitude of the

property measured in the direction of that point. In figure 2.1 the dipole radiation diagram, for

the E-plane determined by the maximum irradiation direction and the polarization direction is

displayed .

Figure 2.1: Half-wavelength dipole polar plot for the E-plane.

Directivity, efficiency and gain

While the transmitting power depends on the generator outside the antenna, the directivity func-

tion is an antenna characteristic quantity and is defined as:

d(θ, φ) =
4πIR(θ, φ)

PT
(2.31)

The directivity, D, is simply the value of the directivity function computed along the maximum

and measures the ability to radiate into a particular direction:
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D =
4πIR(θM , φM)

PT
=

4πIR(θM , φM)∫
4π
IR(θ, φ)dΩ

> 1 (2.32)

For an omni-directional purpose it is desirable to have D ' 1, while for a point to point link is

required D � 1.

The materials an antenna is made up, both conductors and dielectrics, are not ideal but rather

lossy and the power radiated is always less than the feeding power coming from the source:

Psource = PJoule antenna + Pradiated (2.33)

To characterize the losses, under the assumption that they are mainly due to the antenna, the

transmission efficiency is introduced and defined as:

ηt =
Pradiated

Psource

=
Pradiated

PJoule antenna + Pradiated

≤ 1 (2.34)

Efficiency does not depend on the directivity, that is an antenna can be very directive but with a

very low efficiency so useless in practice.

The gain function is defined merging the above definitions:

g(θ, φ) =
4πIR(θ, φ)

Psource

= ηt · d(θ, φ) (2.35)

the Gain is the maximum of the gain function:

G =
4πIR(θM , φM)

Psource

= ηt ·D (2.36)

2.3.1 S-parameters definition

In the antenna domain it is used to define the electromagnetic signal in term of scattering param-

eters (S-parameters) that refers to traveling waves instead of voltage and currents read in a port,

so they substitute the standard H,Y and Z parameters.

In a one-port network we define the ratio from the incident wave a and the reflected wave b as

S11 =
b

a
= Γ (2.37)

This is a complex value because it contains both amplitude and phase and is called reflection

coefficient or even return loss if expressed in dB:

return loss = 10 log10 |S11| ≤ 0 (2.38)
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This coefficient is useful to characterize the bandwidth of a transmitting antenna: it is com-

monly accepted to refer as operational bandwidth the frequency range in which the return loss is

lower than -3 dB or -10 dB based on the scope.

For a two-port network, saying a the input signals and b the output signals we write:

b1 = S11a1 + S12a2 (2.39a)

b2 = S21a1 + S22a2 (2.39b)

in this case the S-parameters are defined as follows:

S11 =
b1

a1

∣∣∣∣
a2=0

, S12 =
b1

a2

∣∣∣∣
a1=0

, S21 =
b2

a1

∣∣∣∣
a2=0

, S22 =
b2

a2

∣∣∣∣
a1=0

(2.40)

We can also write 2.39 in a matrix form(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
(2.41)

What is true for two-port networks is similarly true for n-port networks and the S-parameters take

the form of Smn In this case the number of measurements required for characterizing these more

complex networks goes up as the square of the number of ports.

Finally the network is said reciprocal if the S-matrix is symmetric, that is if it holds:

Sij = Sji (2.42)
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Chapter 3

Microwave imaging

In this chapter the theoretical basis of MWI are detailed and some results involving the electrical

properties of the breast tissues are given. Some reconstruction techniques are presented along with

the one used to obtain our results. Finally some existing prototypes are illustrated.

3.1 Theoretical basis

Theoretical and experimental basis of microwave imaging relies upon that an inhomogeneity in

the constitutive electromagnetic parameters of a material, electrical permittivity and conductivity,

will cause an incident electromagnetic field to be scattered. Figure 3.1 shows how a basic MWI

system works: the microwave imaging system is embedded inside a background medium which is

characterized by the permittivity εbg and conductivity σbg and the circular area in the center of

the antenna group represents the imaging domain. This domain is irradiated by a transmitting

antenna and the total field may be measured by one or more antennas positioned outside the

domain. When an object with contrast in the constitutive parameters is positioned inside the

imaging domain, a scattered field will arise [61]. The response collected from the others receiving

antennas is the superposition of the incident field and the scattered field

Etot = Einc + Escat (3.1)

The process followed to produce the images starting from the collected data are summarized below:

- preliminary assessment of the scattering scenario;

- noise and artifacts reduction;

- image reconstruction;
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Figure 3.1: Basic schema on microwave imaging system works

3.2 Dielectrical properties of breast tisses: an open issue

The exact knowledge of the breast tissues dielectric properties is fundamental to produce a correct

image but also permits the design of the devices involved in the measurement process along with

the production of realistic phantoms, used in testing procedure to correctly mimic the microwaves

propagation inside the tissues. Therefore along time several research groups efforts were devoted

to study these properties.

The first systematic study can be ascribed to Chaudhary [13] around 1980. He measured

ex-vivo the tumoral and normal breast dielectric properties at 25◦ in the range 3 MHz - 3 GHz

obtaining that the contrast value between the two classes was almost 5:1 for the permittivity (see

figure 3.2) and 4.7:1 for the conductivity.

In the 90th Campbell [12] made a fixed frequency study, 3.2 GHz, using a resonant cavity. Its

results showed a sharp contrast between tumoral and fatty tissue, but almost null between benign

and malignant tissues, concluding that the use of dielectric properties could not be conclusive to

discriminate between them. Moreover healthy tissues had a wide range of variability, 9.8 to 46 for

the relative permittivity and 7 - 49 S/m for the conductivity.

The following studies of Joines [32] and C. Gabriel [21, 22, 23, 24] highlighted that high per-

mittivity values of the tissues were due to high concentration of water like in muscles and tumoral

tissue. Low water content tissues like fat and normal tissue have lower permittivity. Joines

measurement span in the radiofrequency (RF) range to the low MW range 50-900 MHz but are

important because he attempt to separate glandular from the adipose tissue. The corresponding

results stated a large dielectric property contrast between malignant and mammary tissue as much

as 4:1 and 7:1 for permittivity and conductivity, respectively. Figure 3.3 show Joines results while

figure 3.4 shows the Gabriel’s ones.

Choi [15] research made in the range 0.5 - 30 GHZ showed an high contrast between normal

and tumoral tissue.

The most comprehensive study on this topics, performed ex-vivo, has been undoubtedly re-
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3.2 Dielectrical properties of breast tisses: an open issue

Figure 3.2: Relative permittivity of breast malignant and healthy tissue versus frequency in the
Chaudhary’s study.

alized in 2007 by Lazebnik and made available through two articles [37, 38] still a reference for

most MWI studies. The first study involved an high number of samples of normal tissue obtained

from breast reduction, biopsy or mastectomy carried out short time before using an open-ended

coaxial probe, the second one treated also tumoral tissue. The goal was to characterize the breast

dielectric properties in the microwaves range 0.5-20 GHz and correlate the measurements with

the specimen histopathological analysis. The tissue composition was quantified in terms of per-

centages of adipose, fibroconnective and glandular tissues. The study of distributions of sample

tissue compositions demonstrates that the dielectric properties of breast tissue are primarily deter-

mined by the adipose content of each tissue sample. Final results of the analyses show that ”the

microwave-frequency dielectric-properties contrast between malignant breast tissues and normal

adipose tissues is large, ranging up to a 10:1”; on the contrary the dielectric-properties contrast

between malignant and normal fibroglandular breast tissues is considerably lower and no more

than approximately 10%. Figure 3.5 shows the permittivity (left) and conductivity (right) values

for low, medium and high adipose content tissue along with the tumoral one versus the microwave

frequency obtained by Lazebnik.

Recently Meaney [44] put in seriuos discussion the procedure on how results of Lezebnik above

described are obtained, in particular those stating the low contrast between low-adipose tissues

and tumor. Its article demonstrate that an open ended dielectric probe can not give an accurate

estimate of tissue properties over a heterogeneous sensing volume 2 to 3 mm below the surface of
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Figure 3.3: Joines results in frequency range 50-900 MHz for relative permittivity (left) and
conductivity (right). Black line represents the tumor tissue values and white line is for normal
tissue.

the probe because the material within the first few hundred microns exerts the dominant influence

on the estimated properties and how the probe perceives them.

When the open-ended coaxial probe does not recover an appropriately averaged property es-

timate in the layered test configuration its fidelity is affected. If used to measure the dielectric

properties of more randomly arranged heterogeneous mixtures of tissue like the breast, which

commonly has infiltrations of fibroglandular tissue interwoven within a matrix of adipose cells, can

produce incorrect values. Adipose tissue is more predominant in the breasts of many women, it is

largely homogeneous and easily sampled. Fibroglandular breast tissue is more challenging. Joines

results, even if conducted in a small range are more conclusive than that reached from Lazebnik

where it is not return the compositional averages of the tissue specimens evaluate.

The exact contrast between normal and cancerous tissue is, at present, an open issue and more

research is still to be followed.

3.3 MWI reconstruction methods

Research in MWI can be divided mainly into linear methods radar-like imaging and microwave

tomography (MWT) that uses a non-linear approach. In both techniques, the scattered field is

measured at several observation points outside the object under test. The linear methods are easier

and do not take into account mutual scattering inside the breast tissues and their capabilities are

limited to the detection and localization of breast abnormalities.
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Figure 3.4: Comparison between high water content and low water content of relative permittivity
(left) and conductivity (right) versus frequency obtained by Gabriel.

3.3.1 Tomographic method

In MWT image reconstruction, a nonlinear inverse scattering problem must be solved to retrieve a

map of the dielectric properties of the target [46] either in 2D or 3D. In this situation the solution

is iteratively adjusted so that the magnitude and phase of the measurements predicted using

the transmitted waveforms as known inputs converge as closely as possible with those actually

observed. This difference from actual measured data and the predicted ones is mathematically

treated as the search of the minimum of a functional. It is therefore required a numerical solver,

known in literature as forward solver, and a good starting point, an a priori knowledge that helps

the optimal convergence and the time needed to produce an image can be critical. This implies a

great importance of a preliminary assessment of the scattering scenario. Another known limitation

is due to the resolution of an ill-posed problem and the cost function is not convex so it is subject

to false solutions and some regularization procedures, such as Tikhonov, are required [49].

An example of a non-linear method based on the Gauss-Newton (GN) minimization algorithm

is now briefly detailed.

GN method tries to estimate the spatial distribution of the electrical parameters inside the imaging

domain using the complex square wave-number:

k2(r) = ω2µ0ε(r) + jωµ0σ(r) (3.2)

The wave-number distribution is obtained after solving:
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Figure 3.5: Permittivity and conductivity values obtained by Lazebnik [38]. The data represents
the values for cancerous tissue (black line) and normal tissue obtained from cancer surgeries with
low, medium and high content of adipose tissue (red, green, and blue lines, respectively). For
each tissue type, the data for the 25 percentile is given by the dashed line and the data for the 75
percentile by the solid line.

k2 = argmin{||Emeas − Ecalc(k2)||22} (3.3)

where Emeas is the measurements vector and Ecalc vector has been calculated from the forward

solver. Image reconstruction is reached considering the log-phase variations and the difference is

made between a situation with and without a target:

Emeas
lp =

[
log|Emeas

target| − log|Emeas
empty|

phase(Emeas
target)− phase(Emeas

empty)

]
(3.4)

For calculated data we have:

Ecalc
lp (k2) =

[
log|Ecalc(k2)| − log|Ecalc(k2

0)|
phase(Ecalc(k2)− phase

(
Ecalc(k2

0

)] (3.5)

In this expression k2
0 represents the known distribution when the target is not present. Once

defined this parameter, we deal with the following minimization problem:

k2 = argmin{||Emeas
lp − Ecalc

lp (k2)||22} (3.6)

The solution is then obtained using a forward solver to compute the Maxwell’s equation and the

minimization is reached using the GN method. The non-linear expression of the field is written in

term of the wavenumber distribution and can be locally treated as a first order Taylor’s expansion:
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Ecalc
lp (k2

n+1) = Ecalc
lp (k2

n) + J(k2
n)(k2

n+1 − k2
n) (3.7)

J is the Jacobian matrix and n represents the iterations number. Now we can express the global

minimization in term of many linear problems of local minimization. GN works in five steps:

1. the forward solver is used to calculate the electric field in the imaging domain starting from

the parameters defining the wavenumber k2
n and stopping if the convergence criterion is achieved

or the maximum iteration number is reached;

2. calculate the Jacobian for the actual distribution k2
n;

3. finding the Newton’s direction dn solving:

Emeas
lp − Ecalc

lp (k2
n) = J(k2

n)dn (3.8)

using the Tikhonov regularization algorithm, with λ regularization parameter:

(JTJ + λI) = JT (Emeas
lp − Ecalc

lp (k2
n)) (3.9)

4. calculate the Newton step that satisfies:

αn = argmin{||Emeas
lp − Ecalc

lp (k2
n + αndn)||22} (3.10)

5. update the parameters:

k2
n+1 = k2

n+1 + αndn) (3.11)

An improvement of this algorithm is reached through the Conjugate Gradient (CG) algorithm,

which makes use only of the Jacobian instead of the JTJ computation, avoiding the huge matrix

product.

Other algorithms such as genetic algorithm, distorted Born approximation, Rytov approxima-

tion are also used for non-linear imaging reconstruction purpose but are beyond the scope of this

work. The interested reader is referred, for example, to [49].

3.3.2 Linear methods

As previously told linear imaging methods aim to generate a map describing the microwave energy

after the scattering with breast tissues: in this approach a particular location in the volume to be

measured is isolated, and data is taken for each individual voxel. The ability of these systems to

detect malignancies relies on the increased backscatter caused by unhealthy tissue. The primary

advantages of this approach are two-fold: there is no need for complex inversion techniques and
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simple time-gating methods can be used to reduce noise and multiple scattering effects.

Delay-and-sum (DAS) algorithm. In a confocal breast imaging system, UWB pulses are

generated by an antenna located on or near the surface of the breast. The backscattered waveform

at that particular antenna location is then collected and stored in a computer. The set of N

backscattered signals are then time-shifted to achieve coherent addition for a specific focal point

within the breast. The focal point is then scanned throughout the breast by adjusting the relative

amount of time-shift applied to each backscattered signal calculating the speed signal depending

on the mean values of the electrical parameters. Figure 3.6 shows the working idea of DAS.

Figure 3.6: Simple delay-and-sum [59].

An improvement of DAS is suggested by Klemm [34] using a curved hemispherical antenna

array where data are collected in a multistatic fashion. This signal contains not only information

about the lesion but also other unneeded components coming from the skin and mutual coupling.

To cancel this clutter the whole system is turned around its center and a second data set is acquired.

Constant signal will appear at the same time and will be erased while tumor signals will appear

at different time unless it is located in the center.

Other linear algorithms. Other algorithms falling in linear approach are the Delay-Multiply-

And-Sum (DMAS): again a variation of the DAS algorithm where a multiplication step is added

following the principle that multiplication can reduce the noise and increasing the signal providing

a better resolution image.

Since the simple delay-and-sum beamformer described above does not have the ability to com-

pensate for dispersion and other frequency-dependent propagation effects, Li developed a mi-

crowave imaging via space-time (MIST) beamforming system [39]. Like the confocal system, each
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3.4 The TR-MUSIC algorithm

element of an antenna array both transmits an UWB pulse into the breast of a patient lying in the

supine position and measures the backscattered waves. Just as in the delay-and-sum beamformer,

the MIST beamformer performs spatial focusing by time-aligning these backscattered waves. Addi-

tionally, however, the MIST beamformer compensates for frequency-dependent propagation effects

and optimally discriminates against artifacts and noise and this is achieved through the use of a

frequency dependent filter in each channel [59].

As an alternative to MIST, Fear and Sill have developed a similar system that has been termed

Tissue Sensing Adaptive Radar (TSAR). Like MIST, it seeks to address the shortcomings of the

simple confocal system; however, there are a few fundamental differences between the two. For

example, in the TSAR system, the patient lies prone and the pendulous breast is scanned from

surrounding locations. Additionally, the TSAR system uses less complicated clutter reduction

methods than MIST [59].

3.4 The TR-MUSIC algorithm

The reconstruction procedure, as told, involves the resolution of an inverse problem. We afford

this problem using a linear technique called Time Reversal MUltiple Signal Classification (TR-

MUSIC) and developed by Devaney in [27] having now some renew attention in MWI breast

cancer community.

Time reversal

If we assume that the involved signals are expressible using the Fourier transform:

X(t) =
1

2π

∫ +∞

−∞
X(t)e−iωtdω

having

X̃(ω) =

∫ +∞

−∞
X(t)e−iωtdt

this ensures we can perform all operations in the frequency domain.

Consider an array of N antennas, centered at the space points Rj, j = 1, .., N in which are embed-

ded one or more scatterers (or targets) settled in positions Xi, i = 1, ..,M . Making the simplifying

assumptions that the antennas are point sources and the targets are ideal point scatterers and ne-

glecting all multiple scattering between targets, we obtain the expression of the field radiated by

the j-th antenna and incident in the r position:
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3.4 The TR-MUSIC algorithm

Ej
inc(r, ω) = G(r,Rj;ω)ej(ω) (3.12)

where G(r,Rj;ω) is the 2 dimensional free space propagator whose expression in term of hankel

function has been already defined 2.22.

The total scattered field, collected in the same position, due to all scatterers reads:

Ej
scatt(r, ω) =

M∑
m=1

ej(ω)G(r,Xm;ω)τm(ω)G(Xm,Rj;ω) (3.13)

where τm(ω) is the scattering strength of the m-th target and ej(ω) is excitation amplitude of

the j-th antenna. When all antennas are simultaneously excited using the voltage ej(ω), the total

incident and scattered fields are given by:

Einc(r, ω) =
N∑
j=1

Ej
scatt(r, ω) =

N∑
j=1

G(r,Rj;ω)ej(ω) (3.14)

Escatt(r, ω) =
N∑
j=1

Ej
scatt(r, ω) =

N∑
j=1

M∑
m=1

τm(ω)G(r,Xm;ω)ej(ω)G(Xm,Rj;ω) (3.15)

We assume that the field read to l-th antenna port is given only by the scattered field, so that:

vl(ω) =
N∑
j=1

Ej
scatt(Rl, ω) =

N∑
j=1

M∑
m=1

G(Rl,Xm;ω)τm(ω)G(Xm,Rj;ω)ej(ω) (3.16)

To express the above equation in a compact form, the N-dimensional Green vector function

gm(ω) is introduced: any vector element represent the green propagator from the m-th scatterer

to any antenna:

gm(ω) =
[
G(R1,Xm;ω), G(R2,Xm;ω), ..., G(RN ,Xm;ω)]T (3.17)

the contribution of the m-th single scatterer referred to all antennas is given by the B-matrix:

Bm(ω) = τm(ω)gm(ω)gm(ω)T (3.18)

summing up to all the scatterers contribution, we obtain:

A(ω) =
M∑
m=1

τm(ω)gm(ω)gm(ω)T (3.19)

and it is possible to re-write 3.16 as:
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3.4 The TR-MUSIC algorithm

v(ω) = A(ω)e(ω) (3.20)

A(ω) is the so called Multistatic response matrix (MSR) and is the propagator matrix, while

e(ω) represents the excitation voltage of the antennas:

e(ω) = [e1(ω), e2(ω), ..., eN(ω)] (3.21)

From the MSR-matrix it is defined the time-reversal matrix (TRM) [27] as follows (the explicit

dependence from ω is by now omitted):

T = A†A = A∗A (3.22)

A† is the Hermitian matrix of A and A∗ is the complex-conjugate, the last equality is simply

derived from the symmetric behavior of the green function that reflects on the MSR. The TRM is

Hermitian and non-negative hence it possesses a complete set of orthonormal eigenvectors having

non-negative eigenvalues.

3.4.1 MUSIC

The MUSIC algorithm [56] is a way to extract the range of a self-adjoint linear operator, say L

. In this case is well known [35] that L has a diagonal representation and the eigenvalues are all

non-negative: let λ1 ≥ λ2... ≥ λN the eigenvalues defined in an ordered way and v1, v2, .., vn the

corresponding eigenvectors.

Suppose that λM+1...λN are all zero, the corresponding eigenvectors vM+1..vN , span the null space

of L. It can also happen that these eigenvalues are almost zero but below the noise level of the

system described by L. Then these eigenvectors form a base for, or equivalently span, the noise

subspace of L [14]. The projection operator P, defined over the noise subspace is thus defined:

P =
∑
k>M

vkvk
T (3.23)

where the bar stands for the ordinary complex conjugate operation e the superscript T denotes

the transpose of the eigenvector. The signal subspace is orthogonal to the noise subspace for an

auto-adjoint operator, so any vector f is in the signal subspace if the value of its projection onto

the noise subspace is zero

||Pnoisef || = 0 (3.24)

or
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3.4 The TR-MUSIC algorithm

1

||Pnoisef ||
=∞ (3.25)

The MUSIC algorithm makes use of the fact that the TRM is a projection operator onto the

subspace of CN : the complex conjugates of the Green function vector span the signal subspace S,

while the noise subspace S is spanned by all eigenvectors with null eigenvalue.

< G∗m,Vm′ >=< V∗m′ ,Gm >= 0 (3.26)

where m′ is the index over all the eigenvectors with null eigenvalues. Defining Ak the Steering

matrix as the MSR-matrix of the trial point rk inside the investigation domain:

Ak = GkτmGT
k (3.27)

where Gk = [G(R1,Rk), G(R2,Rk), ..., G(RN ,Rk)]
T , finally making use of 3.25 we can define

the pseudospectrum quantity:

Ψ =
1

|P(Ak)|2
=

1∣∣∣ N∑
m′=M+1

< Ak,Vm′ >
∣∣∣2 (3.28)

The pseudospectrum value peaks in correspondence of the presence of a scatterer.

3.4.2 MUSIC for the monostatic configuration

In the monostatic case studied (in literature also called multi-monostatic [53]), a single antenna is

moving on a circle and the reflected value of the signal is then collected on N discrete point Rl. In

this situation the MSR-matrix can not be obviously formed and the field value read at the antenna

port of the l-th position is:

vl(ω) = Escatt(Rl, ω) =
M∑
m=1

G(Rl,Xm;ω)τm(ω)G(Xm,Rl;ω)ej(ω) (3.29)

then the vector of voltage output from the N antenna positions can be defined as

v(ω) = [v1, v2, ..., vN ]T (3.30)

and can be expressed in term of Monostatic Response Vector

v(ω) = A(ω)e(ω) (3.31)
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3.5 Multifrequency

and A(ω) = [A1, A2, ..., AN ]T . In this case, instead of dealing with the projection over noise

sub-space, we use the projection over the signal sub-space S [58]:

|P[Ak(ω)]|2 = |(I−Q)[Ak(ω)]|2 (3.32)

where Q)[·] is the projection operator over S and Ak(ω) is the steering vector defined as the

Monostatic Response Vector in the trial points rk belonging to the investigation domain.

In this case we can avoid the computation of the TRM since:

|(I−Q)[Ak(ω)]|2 = | < Ak(ω),A(ω) > |2 (3.33)

and finally the pseudospectrum can be computed as:

Ψ(rk, ω]) =
1

1− |P(Ak)|2
=

1

1− | < Ak(ω),A(ω) > |2
(3.34)

This expression can easily be seen as the correlation between the two vectors, the collected

signal vector and the steering vector, in the CN computed as standard inner products. Defining:

cos(η) =
| < Ak(ω),A(ω) > |
||Ak(ω)|| ||A(ω)||

(3.35)

it is possible to rewrite 3.25 as follows:

Ψ(rk, ω]) =
1

1− |P(Ak)|2
=

1

1− || cos(η)||2
(3.36)

without having to deal with the TRM.

The resulting image is now straightforward: if the two vectors define the same direction in the

complex hyper-space, the resulting cosine is near one and the denominator approximate to zero

hence the psudospectrum peaks, if they are orthogonal the cosine is zero and the psudospectrum

reach the value of 1.

3.5 Multifrequency

To improve the resolution of the image and to counteract emerging artifacts, a multiple frequencies

version of MUSIC as in [3] is here adopted and the performance of three different combination

methods are evaluated and compared to determine the more suitable:

Wide-band (WB) Music algorithm [65]:
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ΨWB =

[∑
i

1

Ψ(ωi)

]−1

(3.37)

Geometrical mean (GM) Music algorithm:

ΨGM = N

√√√√ N∏
i

Ψ(ωi) (3.38)

Interferometric (I) Music algorithm [53]:

ΨGM =

[∣∣∣∣ log(
∏
i

|| cos η||)
∣∣∣∣
]−1

(3.39)

3.6 Existing MWI systems

In literature some MWI systems are detailed and though used instruments, coupling medium, an-

tenna type and arrangement are different, they share the same architecture that can be synthesized

into three main components:

• a set of antennas operating as transmitters and receivers, placed in direct contact with the

breast or in proximity by a means of coupling medium;

• front-end devices able to generate and capture the signal in the microwave range;

• back-end devices where data acquisition is stored and the image reconstruction is performed.

When the method of the reconstruction uses radar tecnique (UWB) these systems might adopt

different antennas configuration and the ways the operate are mainly three:

1) monostatic: a single antenna is used as transmitter and receiver and is moved around the

breast;

2) bistatic: two antennas are present and rotate around the breast;

3) multistatic: many antennas are concurrently present and transmit in turn.

Many groups worldwide have been developed different prototypes devoted to the early detection

of breast cancer. In our objective to reproduce a full breast cancer MWI, we referred to all work

actually available, but the most important one is devoted to the team from the Dartmouth college

led by Meaney [43] where the system has been used to collect real data from a number of patients.

This system in its first edition, was able to operate in a frequency band ranging from 300

MHz to 1 GHz, later improved to 0.5-3 GHz and the image reconstruction uses the algorithm of

Gauss-Newton in 2D. This system uses 32 acquisition channels along with 16 monopole antennas

in vertical position that can be put either in RX mode or TX mode. The array is able to produce

images from the inner position to outer position determined by the nipple. The array is linked to
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3.6 Existing MWI systems

the front-end electronics made by:

• heterodyne receiver;

• 200 kHz D/A board;

• function generator;

• mw source.

Data acquisition is performed by a canonical PC. The presence of a network switch guarantees the

shift of the transmitting antenna. To obtain a multislice imaging of the breast the antennas can

move along the vertical direction.

In the first edition the coupling medium used to minimize the mismatch with the mean permittivity

of the breast was a saline solution then substituted with a glycerin-de ionized water solution at 88%:

this choice also guarantees a low conductivity estimated in 0.1 S/m at 1 GHz without drawbacks

when in contact with the human skin. Moreover tuning this value it is possible to best reproduce

the four BI-RADS category (see section 1.4) of the breast density. The full system layout in the

actual configuration is showed in figure 3.7.

An exhaustive treatment concerning existing prototypes, system setup, algorithm reconstruc-

tion and published results can be found in [25].
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3.6 Existing MWI systems

Figure 3.7: The MWI acquisition system of the Dartmouth college.
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Chapter 4

Synthetic data simulation

In this chapter the simulation software is presented along with the numerical methods used to

obtain the approximate solution. Then the procedure followed to realize a simulated scenario and

how to manage it to perform a parametric study is detailed. Finally, the characteristic of all the

models involved in the reconstruction stage are discussed and some performance indications to

build efficient models are given.

4.1 Numerical solutions

Maxwell’s equations can be solved analytically only in very few simple cases where we have the so

called “closed form solutions” but their great ability to predict the behavior of the electromagnetic

field is actually essential to design any experimental setup or for any needed outcome. The advent

of computer technology was a strong impulse to study and develop numerical methods for their

solution and the increasing capabilities of the hardware led to more versatility and accuracy in the

solution methods. Figure 4.1 displays a summary of the most used numerical methods adopted

in the computational electromagnetism.

Actually there are three major ways to perform electromagnetic simulations, that is the nu-

merical computation of the electromagnetic field by means of the computers: the finite difference

method (FDM), the finite elements method (FEM) and the method of moments (MoM).

4.1.1 FDM

The FDM is a numerical procedure for converting partial differential equations of a boundary-value

problem into a set of algebraic equations that can be used to compute an approximate solution.

Among the numerical methods, the FD method was the first to appear and its simplicity makes it

very robust and efficient and it has been widely used in several engineering fields. Its application to
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4.1 Numerical solutions

the analysis of electromagnetic problems was empowered by the development of a unique scheme

for the discretization of the time - domain Maxwell’s equations, which is known as the finite

difference time - domain (FDTD) method. The basic idea of the finite difference method is to

approximate the differentiation operators in the partial differential equations. This approximation

can be obtained directly from the definition of the derivative:

f ′(x) =
df

dx
=
f(x+ dx)− f(x)

dx
≈ f(x+ ∆x)− f(x−∆x)

2∆x
(4.1)

In the one-dimensional case ∆x represents the step of uniformly divided space.

4.1.2 MoM

MoM, instead of solving the Maxwell’s equations in differential form, is intended to solve the so

called EFIE/MFIE, electric or magnetic field integral equation, moving the governing equation

of a boundary - value problem into a matrix equation that can be solved using computers. Its

predominant use is in an open region such as wave scattering and antenna radiation.

4.1.3 FEM

FEM is a numerical procedure to convert partial differential equations into a set of linear algebraic

equations to obtain approximate solutions to boundary-value problems. But, instead of approxi-

mating the differential operators, it approximates the solution of a partial differential equation [31].

The basic concept in the physical FEM, whose fundamental contribution is due to M.J. Turner and

R.W. Clough [62], is the subdivision of the mathematical model into disjoint (non-overlapping)

components of simple geometry called finite elements. The response of each element is expressed in

terms of a finite number of degrees of freedom characterized as the value of an unknown function,

or functions, at a set of nodal points [50]. The response of the mathematical model is then consid-

ered to be approximated by that of the discrete model obtained by connecting or assembling the

collection of all elements. Unlike finite difference models, finite elements do not overlap in space.

In the mathematical interpretation of the FEM, this property goes by the name disjoint support

or local support. Because FEM is a discretization method, the number of degrees of freedom of a

FEM model can be very high but is necessarily finite. They are collected in a column vector called

u. This vector is generally called the degree of freedom (DOF) vector or state vector.

Below the FEM Solution Process Procedures:

1. divide structure into elements with nodes, this is the discretization or meshing step;

2. connect (union or assembly) the elements at the nodes to form an approximate system of

equations for the whole structure (forming element matrices);
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4.2 COMSOL modeling

3. solve the system of equations involving unknown quantities at the nodes (e.g., electric field);

4. Calculate desired quantities (e.g., S-parameters) at selected elements.

Figure 4.1: Computational methods for solving Maxwell’s equations

4.2 COMSOL modeling

The tools for numerical modeling are today essential for the researchers because they allow the

optimization of the design process without complications and at a very low cost. This work,

compared to the experimental one, permit the validation of the prototypes, easy customization

of the need functionalities and has a great predictive power. COMSOL multiphysics has been

used to solve the forward electromagnetic problem and this software belongs to FEM category.

The choice has been made, among other electromagnetic simulation software, for its multi-physics

environment, in fact future step of this research might also need to handle other fields such as heat

transfer or plasma and to be ”modeled” in conjunction with microwaves propagation.

What we refer as the term ”model”? Commonly we deal with the term ”model” as an object

that accurately reproduce, in scale, the original. In our sense model is intended in a mathematical

point of view: a simplification of the original physical problem but that preserves its fundamental

behavior under study, that is to model the statistical outcome of a coin toss we do not take in

account gravity, friction and other physical aspects.

4.2.1 Space dimensionality

The process of modeling start in COMSOL by choosing the dimensionality of the problem, typical

2D or 3D as we used in our case, even if 2D axis symmetric can be set if the geometry allows

it, that is geometry can be obtained revolving a cross section around an axis. In this case a real

3D geometry has a greatly simplified computational complexity meaning lower computer power,

memory requirements and time to solve. Figure 4.2 shows the COMSOL user interface for the

specification of the model dimensionality.
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4.2 COMSOL modeling

Figure 4.2: COMSOL user interface: space dimensionality of the model

4.2.2 Interface and study

The next choice involves the type of physics describing the scenario, this relates the model with

the partial differential equations governing the phenomenon. COMSOL names RF module the

case where the general field of electromagnetic waves are solved. Moreover, inside this interface

one must choose the type of study to perform, in our particular case where the E field has to be

evaluated, the natural choice has been electromagnetic waves, frequency domain. In this selection

the electromagnetic field is solved using phasors whose theory has already been detailed in chapter

2.

Figure 4.3: COMSOL choice about the type of physics and the related studies

4.2.3 The geometry

After defining the scope of the simulation, the setup of the geometry must be given, where for

geometry we refer to all the real objects inside the scenario. In fig 4.4 is displayed a resulting

geometry used to model a realistic breast.

After adding all the objects it is necessary to call the finalization process that consists in

forming a union or an assembly, in this step each object has been divided into domains, boundaries
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4.2 COMSOL modeling

Figure 4.4: An example of geometry generated using the COMSOL internal CAD

or edges. This is particularly needed when objects are collocated inside each other or when there

are intersections between them.

Commonly we have to deal with a possible infinite domain and suitable boundary conditions

must be provided: it is therefore mandatory to add a particular material whose characteristic is

to be total absorbing at any frequency. Clearly this material is not a real material and is known

as perfectly matching layer (PML) and was firstly proposed by Berenger [8]; its job is basically to

null the field at a finite distance reducing any kind of ”non-physical” reflections and a common

assumption is to set its thickness to be few wavelength of the radiation. Having to deal with the

PML one must ensure that field really vanish at the end of the computational domain because this

could affect the correctness of the solution. In fig 4.5 we can see a correct use of the PML where

the field at the boundary is null, if the field should not vanish the solution could contain unwanted

reflections due to the finite dimension of the simulated scenario.

4.2.4 Assigning material to the objects

After completing the addition of the objects it is necessary to specify the materials they are made

up. It is possible to choose them from a material library or add a new material having specific

properties. In fig 4.6 are shown the properties for the copper taken, for example, from the material

library and linked to the surfaces constituting the antenna dipole. The green check marks on left

assure that all the needed properties used by the study to solve the equations are correctly stated.
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4.2 COMSOL modeling

Figure 4.5: PML is correctly set: at the boundaries the filed is null.

4.2.5 Mesh

The meshing procedure is one of the most important feature we have to care about: meshing

means dividing the domain into smaller sub-domains in which the solution can be approximated

by elementary basis functions that can be constant, linear or even of higher order [16]. Depending

on the element order of magnitude in the model, a finer or coarser mesh is required to resolve the

solution. In general finer meshing is needed when the solution change due to the geometry of the

objects, that is a complicated geometry with several edges or fine details. A good practice is to

remove such details if they do not influence the solution because they produce a lot of unnecessary

mesh elements. Another important consideration is that to resolve a wave properly, it is necessary

to use about 10 linear (or five 2nd order) elements per wavelength. For 2D problems the elements

are triangles and for 3D they are tetrahedra, they are obtained from three nodes joined by three

edges, these edges and can be either straight lines or curvilinear. The user is requested to set

the minimum and maximum element size for each domain or boundary, if the default meshing

provided by the software is not adequate, otherwise the process is completely software-driven. An

inadequate meshing leads, usually, to bad solutions of the problem and frequently the convergence

is not guaranteed. Finally a good mesh represents the right trade-off between a greater number

of meshing elements and the speed of convergence, so having a lower number of elements does not

always correspond to a faster solution. In figure 4.7 can be seen the fine meshing on the antenna

arms while a coarse mesh on the domain.
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Figure 4.6: Specification of the electrical properties of the material of the object. The green
check-mark assures that all the needed information are correctly set

Figure 4.7: Meshing: different objects are meshed using different element size

4.2.6 Lumped port

A particular element one has to deal with in the RF module is the ’Lumped port’. Such element

is used to simulate how active transmitters are fed. Concretely when the study does not involve

the modes inside a transmission line, all the parts that contribute to the feeding can be neglected,

they are indeed not added to the scenario, using the approximation of Lumped ports.

This port is not as accurate as the ordinary port in terms of calculating S-parameters, but it

is easier to use. The lumped port must be applied between two metallic objects separated by a

distance much smaller than the wavelength, that is a local quasi-static approximation must be

justified. This is because the concept of port or gap voltage breaks down unless the gap is much

smaller than the local wavelength. In transmission line theory voltages and currents are dealt with
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rather than electric and magnetic fields, so the lumped port provides an interface between them.

When a lumped port specified as an input port (the antenna is in TX mode) the software calculates

the impedance, Zport and S11 S-parameter for that port [16] which are given by the relations:

Zport =
Vport
Iport

(4.2a)

S11 =
Vport − Vin

Vin
(4.2b)

4.2.7 Antenna modeling

Dipole antenna

Our work starts with modeling and characterizing a dipole antenna. This kind of antenna is mainly

used in some MWI prototypes as described in chapter 3. This consideration and the ease with

which it is possible to find on the market at a low price such antennas working in the microwave

range, made the dipole our first choice. It is well known that the dipole is resonant in air at

half-wavelength [6], in a coupling medium used to reduce the mismatch with mean properties of

the tissues constituting the breast, this again holds true but the resulting wavelength is shorten

by a factor of 1√
ε
, the dependence of µ is ignored as we deal with non-magnetic materials.

Our implementation (see figure 4.8) has be realized with two thin metallic rods that have

a sinusoidal voltage difference applied between them and a lumped port is used to simulate the

feeding components. The standard dipole antenna is a narrow band antenna because it has only

one resonant frequency in the range where we expect to work with (harmonics appear higher),

this characteristic should make it not suitable for Ultra Wide Band (UWB) application that is the

antenna can radiate efficiently in a broad range of frequencies. Another lacking characteristic is

the directivity, in particular the radiation pattern is omni-directional causing much of the power

to be radiated far from the investigating domain. In the following we will show that these features

permit anyway a good quality of reconstruction either using simulated or experimental data.

Vivaldi antenna

To overcome the limiting features of the standard dipole many researchers considred uwb and

directive antennas. A particular interest has been put on Vivaldi antennas [55, 52] whose char-

acteristics are to be wide-band and moderately directive. We start from the COMSOL library

Vivaldi antenna model designed to be used in air ¡nd whose geometry is displayed in figure 4.9:

the tapered slot is patterned with a perfect electric conductor ground plane on the top of the

dielectric substrate and a simple exponential function, e0.044x is adopted to create the tapered slot
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Figure 4.8: Dipole antenna geometry. The arm length is defined to be, in air, a quarter of the
wavelength of the cosinusoidal impressed current. A spherical PML is used to limit the solution
domain

curves. The tapering procedure aids to achieve a wide-band behavior. One end of the slot is open

to air and the other end is finished with a circular slot. On the bottom of the substrate, the shorted

50 Ω microstrip feed line is modeled as PEC surfaces. The entire modeling domain is bounded by

a perfectly matched layer to stop the computation of the solution at finite distance.

Figure 4.9: Vivaldi antenna. A spherical PML is used to limit the solution domain
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Point source for 2D model

The point source has been implemented to speed-up the forward computation needed for the

tomographic approach and to reach higher frequencies in the simulation designed for detecting the

profile of extended targets. Given the high requirements of the non linear approach we decided to

simplify the geometry moving toward a 2D model, because even if time might not matter like in

linear approach, a 3D geometry at high frequency requires a very fine element meshing and keep

the geometry fairly close to the realistic dimension of the breast and tumor is memory consuming

and can easily exceeds 64 GByte of RAM. The point source is managed in COMSOL as an out-of-

plane line of current that can be excited at a desired frequency. Figure 4.10 shows on the left the

geometry of a 2D model: black spot is the line current out-of-plane, on the right the corresponding

meshing to produce nodes and edges on which the Helmholtz equation must be solved.

a b

Figure 4.10: (a) geometry and (b) meshing for a 2D scenario with a point source.

4.3 MATLAB automation

COMSOL Multiphysics can be connected with MATLAB through the LiveLink interface. This

interface makes available a scripting environment where it is possible to control the flow of programs

such as implementing nested loops using for or while commands, making use of the conditional

model settings with if or switch statements, or handling exceptions using try and catch. These are

basic examples but all the object models can be navigated into. Moreover all the results can be

easily accessed and extracted to be used in the MATLAB workspace or saved for future use. Using

this feature MATLAB scripts have been built with the capability to generate several configurations
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where the important parameters of the simulations were changed and the results stored for the

post-processing activities.

4.4 Homogeneous breast model

The breast for 2D approach has been modeled with a cylinder with 50 mm radius having a skin

layer 2 mm thick while the tumor is a cylinder of 2.5 mm radius. The height of the two cylinders

is always kept at least 4 wavelength long to minimize the diffraction effects. The breast is also

immersed in a coupling medium with fixed relative permittivity εr = 10 and very low conductivity

σ = 0.05S/m. The relative permittivity of the breast is modeled using the following Debye

parameters 2.12 to take into account its variation versus the frequency used:

ε∞ = 7, εsup = 10, τ = 7 ps, σb = 0.15 S/m (4.3)

so the mean εr in our range is about 10. The skin is represented in the geometry as the cylindrical

layer before the internal section of the breast with fixed relative epsilon and εr = 36 and σ = 4S/m.

Debye parameters for the tumor are:

ε∞ = 4, εsup = 54, τ = 7 ps, σt = 0.7 S/m (4.4)

corresponding to a mean εr in our range about 50. These values give an almost constant contrast

factor εscat : εbreast = 5 : 1. No inhomogeneities are considered other than the tumor. Table 4.1

summarize the geometrical and physical parameters used to model the homogeneous breast.

4.5 A breast of intermediate complexity

As it will be showed in the next section, the reconstruction of a tumor in an homogeneous medium

is of good quality but this can not be said for a real breast model where the fibroglandular tissue

has very similar electrical properties of the tumor tissue. To investigate the behavior of a scenario

having an intermediate complexity a third simulation model has been introduced. In particular a

fibroglandular island with a rugged profile is used. The profile is a 5-pointed star with the edges

smoothed, the analytic polar equation of the curve expressed in mm is:

ρ = 25 ·
(
1 + 0.2 cos(5θ)

)
(4.5)

At first, the model has been implemented following the identical COMSOL model used in the

case of the homogeneous breast in 3-dimensions and detailed in section 4.4, but due to the high
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4.6 A real breast modeling

Table 4.1: Summary of the parameters used for homogeneous breast modeling in COMSOL. The
electrical parameters modeled with the Debye dispersion model are referred to the illumination
frequency* ν = 2 GHz

Parameter Symbol Value or expression

coupling medium radius rdomain 100 mm
coupling medium permittivity εbck 10
coupling medium conductivity σbck 0.05 S/m

breast radius rb 50 mm
breast Debye parameters [ ε∞, εsup, τ, σ ] [7, 10, 7 ps, 0.15 S/m ]
breast relative permittivity* εb 9.97
breast conductivity* σs 0.18

skin thickness lskin 2 mm
skin relative permittivity εs 36
skin conductivity σs 4 S/m

tumor radius rs 2.5 mm
tumor Debye parameters [ ε∞, εsup, τ, σ ] [4, 54, 7 ps, 0.7 S/m ]
tumor relative permittivity* εb 53.6
tumor conductivity* σt 1.19 S/m

antenna radius ra 2 mm
illumination frequency range ν 1-5 GHz

frequencies needed for perform the correct study that require too much memory, it has been

converted in 2D. The resulting geometry is displayed in figure 4.11.

In this case the real behavior of the transmitting antenna is replaced with a line current point-

source Iexc, and the S-parameters of the receiving antennas, if any, are replaced with integral mean

of the E over a suitable surface divided by the excitation current:

Sn1 =

∫
Ωn

Ez dΩn

Iexc

∫
Ωn

dΩ

(4.6)

4.6 A real breast modeling

After a very simple breast model, but with the advantage that the architecture can be easily

replicated in an experimental phantom, where only the skin layer has been added other that

the tumor in an homogeneous breast, a real breast model has been approached. This model is

available from a public on-line repository (http://uwcem.ece.wisc.edu/phantomRepository.html -
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4.6 A real breast modeling

(a) (b)

Figure 4.11: Model in 2D with a rugged fibroglandular structure depicted in blue and a scatterer
in red: (a) the scatterer is outside the fibroglandular tissue(b) the scatterer is inside the fibroglan-
dular tissue. The small surrounding circles are the line current out of plane. The skin layer has
been removed. [Dimensions are in mm]

UWCEM) where a number of anatomically-realistic MRI-derived numerical breast phantoms can

be retrieved. The breast tissues in these phantoms have the realistic ultra wide-band dielectric

properties reported in [37] and used for simulation in the microwave range.

4.6.1 Dataset definition

The breast phantoms are derived from series of T1-weighted magnetic resonance images of patients

in a prone position. Each phantom is comprised of a 3D grid of cubic voxels, where each voxel is

0.5 mm× 0.5 mm× 0.5 mm. The breast model includes a 1.5-mm-thick skin layer, a 1.5-cm-thick

subcutaneous fat layer at the base of the breast, and a 0.5-cm-thick muscle chest wall. At least

one phantom for each category breast density (see § 1.4) is provided and 3 text files are provided

to describe the breast properties.

breastInfo.txt This files contains the number of the patient under examination, the geometrical

dimension of the breast and the density assessment reported in the ’classification’ row:
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4.6 A real breast modeling

breast ID=012204

s1=316

s2=352

s3=307

classification=2

mtype.txt This file gives tissue type information for each voxel in the grid. The file has only

a single column of data and each row represents a different voxel in the grid. The data file was

generated using the following ordering of grid cell:

for k=1:s3

for j=1:s2

for i=1:s1

......

end

end

end

So the total number of voxels can be computed as (s1× s2× s3).

Each row contains one of the media numbers given in Table 1. The coupling media number is

assigned to all voxels outside the breast. The muscle media number is assigned to all voxels in the

chest wall region. Media numbers associated with normal breast tissue are assigned to all voxels

within the breast interior and the subcutaneous fat layer at the base of the breast. The normal

breast tissue in the breast phantom is divided into seven tissue types, ranging from the highest-

water-content fibroglandular tissue with the highest dielectric properties (media number = 1.1), to

the lowest-water-content fatty tissue with the lowest dielectric properties (media number = 3.3).

There is also a transitional region (media number = 2) with intermediate dielectric properties.

Figure 4.12 shows the tissue type distribution for coronal, sagittal and transverse planes with the

origin based on the center of the volume.

pval.txt This file is a single column file of the same length as mtype.txt where a value between 0

and 1 has been recorded. This value represents the fraction between the 2 lines in which the tissue

type is placed. It can easily seen as a weighted sum between the two values that define the range

in which a tissue type is settled. As an example, suppose pval = 0.12 for a fibroglandular-2 tissue

labeled as mtype = 1.2. The dielectric properties values associated fall in the region bounded from

above by the group1-high red-dotted curve and from below by the group1-median black curve as

can be seen in figure 4.13. The corresponding Debye parameters for the voxel are computed using

the values reported in Table 4.3

51



4.6 A real breast modeling

Table 4.2: Media number for the breast tissues in MRI-derived numerical phantom

Tissue Media number
Coupling medium -1
Skin -2
Muscle -4
Fibroglandular-1 1.1
Fibroglandular-2 1.2
Fibroglandular-3 1.3
Transitional 2
Fatty-1 3.1
Fatty-2 3.2
Fatty-3 3.3

(a) Slice YZ (b) Slice XZ (c) Slice XY

Figure 4.12: Tissue distribution slice for a patient with classification ACR 2 extracted from an
mtype.txt file.
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4.6 A real breast modeling

Figure 4.13: The dielectric properties of normal breast tissue. The seven tissue-type re-
gions bounded by the curves in this graph are labeled with the media numbers reported in Ta-
ble 4.3. From top to bottom, the curves correspond to the following eight cases: maximum,
group1-high, group1-median, group1-low, group3-high, group3-median, group3-low, and minimum.
(http://uwcem.ece.wisc.edu/MRIdatabase/)

param = pval ∗ upper value + (1− pval) ∗ lower value (4.7)

In the case we want to estimate ε∞

ε∞ = 0.12 ∗ 14.20 + (1− 0.12) ∗ 13.81 = 13.86 (4.8)

Figure 4.14 shows the pval distribution for coronal, sagittal and transverse plane with the

origin based on the center of the volume.

4.6.2 Adding the real phantom to COMSOL

With the aid of matlab and using the three files above described, one file for any illumination

frequency used in the simulation has been created, containing the relative permittivity and the

conductivity for each voxel thus to mimic the exact behavior of the breast placed under illumina-

tion. COMSOL is non able to accept this kind of file as produced, in fact the standard procedure
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(a) Slice YZ (b) Slice XZ (c) Slice XY

Figure 4.14: Pval slice distribution for a patient with classification ACR 2

Table 4.3: Single-pole Debye parameters from all the tissues in the mtype.txt file. Valid in the
range 3Ghz - 10GHz

ε∞ ∆ε τ (ps) σ (S/m)

minimum 2.309 0.092 13 0.005

group3-low 2.848 1.104 13 0.005

group3-median 3.116 1.592 13 0.050

group3-high 3.987 3.545 13 0.080

group1-low 12.99 24.40 13 0.397

group1-median 13.81 35.55 13 0.738

group-high 14.20 40.49 13 0.824

maximum 23.20 46.05 13 1.306

skin 15.93 23.83 13 0.831

muscle 21.66 33.24 13 0.886

to define the material properties of objects is to add a geometry, let COMSOL to define domains,

boundaries and edges and then assign to those the desired materials. This cannot be done with a

file which:

(a) is defined in voxel coordinates;

(b) has an enormous number of elements whose material has to be set

COMSOL, indeed, makes available the use of interpolation functions to overcome this limitation

when dealing with materials whose properties change at very small scales.

The interpolation function can be activated providing a text spreadsheet file either in 2 or in 3

dimensions. In our case the file provided is even too much detailed, this situation prevents a fast

computational time and to overcome it a down-sample of the files containing permittivity and

conductivity distributions is made.
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(a) Slice YZ (b) Slice XZ (c) Slice XY

Figure 4.15: Epsilon slice for a patient with classification ACR 2 for an illumination frequency
of 3 GHz

At this point a suitable geometry is needed to assign this material whose electrical properties

are defined in term of two interpolation functions. The main idea is to perform a segmentation of

the skin and use the pectoralis muscles line to close the surface, then create a stereo lithography

(STL) file that COMSOL should import. STL files are text files that represent solid objects whose

surface have been discretized by triangles and contain the 3 spatial coordinates for each of the 3

vertices and the information about the normal to the defined surface. Unfortunately the STL file

generated in such way cannot be imported inside COMSOL even after some smoothing activities

using standard software available on the Internet. Several issues happens, the most common is

that after a correct import procedure the simulator can not finalize the geometry either as form

union or assembly. More uncommon, but very tedious, is that during the angular spanning some

antenna positions fail to converge. In figure 4.17 (a) the segmentation procedure to build the

breast and visualized with Meshlab, (b) a large number of sharp surfaces are clearly visible after

the import stage inside COMSOL.

Scatterer addition

All the MRI phantoms provided by UWCEM repository refer only to healthy breasts. To investi-

gate the backscattered signal of unhealthy tissues a tumor has to be added and this is performed

for any illumination frequency according to the Debye’s formula.

The corresponding Debye’s parameters are the same used in the Table 4.2. The 3-D shape chosen

for the tumor is a sphere whose radius is rtumor = 5 mm.

55



4.6 A real breast modeling

Figure 4.16: Relative permittivity slice down-sampled 4 times for a patient with classification
ACR 2 using an illumination frequency of 3 GHz.

Figure 4.18: A coronal slice of the permittivity with a r=5 mm tumor added

This procedure is performed outside COMSOL so that the spatial distribution of the electrical

parameters are imported when the tumor is already present. In figure 4.18 is shown a coronal

slice of the permittivity taken approximatively in the center of the breast.
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4.6 A real breast modeling

(a) Skin-pectoralis segmentation (b) Import result

Figure 4.17: Geometry of a real breast import in COMSOL (b) after skin-pectoralis segmentation
and some smoothing procedures (a)

4.6.3 Conformal cup

In order to activate a systematic study where the simulation parameters are modified we must

ensure that convergence is reached when a new simulation is run. As told before there are some

situations that stop the simulation with errors.

Moreover when moving an antenna around a real breast the distance between the antenna and

the skin layer is not fixed and this is source of cluttering when performing the reconstruction. To

overcome this situation a conformal cup can be considered as breast holder.

The cup has been designed using the information provided in [30] where an accurate study for

the anatomical characterization of the breast is given by means of a number of parameters which

describe breast shape, diameter and length.

Patients subject to computed tomography (CT) have been divided in four categories across four

bra increasing cup sizes from ’A’ to ’D’. The acquired data shows that the breast shape can be

generally characterized by the breast effective diameter, which gradually decreases from posterior

to anterior.

We referred to cup size ’C’ whose profile is well described using third-order polynomial, below the

values of the parameters:

a = −20.452, b = +24.397, c = −13.686, d = +13.585 (4.9)

These parameters are referred to a profile normalized to 1 using as normalization factor the
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mean value of the breast sagittal length z0 = 9 cm, so the function describing the cup becomes;

f(x) =
1

2
·
[
a ·
( x
z0

)3

+ b ·
( x
z0

)2

+ c ·
( x
z0

)
+ d
]

(4.10)

Factor 1
2

is due because we design half profile, the other is obtained by symmetry.

Now we have to find an analytical expression for a junction, this function has to have the vertical

derivative with the x-axis intersection because we will obtain the full 3D cup by revolving along the

x-axis. So that the choice falls upon an arc of a parabolic curve with the symmetry axis parallel

to the x-axis:

x = a1y
2 + b1y + c1 (4.11)

Vertical derivative requires:

yv = − b1

2a1

= 0 ⇒ b1 = 0 (4.12)

The two unknown parameters a1 and c1 are computed by imposing the continuity of the function

and the first derivative calculated in the junction point z0.

This definition can not be applied directly to the phantom model: the cup does not fit perfectly

the COMSOL interpolated function that defines the material electric properties.

To overcome this limitation the skin is replaced inside the mtype.txt file and substituted with

the coupling medium type, then a new 3rd-order polynomial function is used to define the skin

line. Moreover the pectoralis muscles are not included in the breast line for this reason they are

replaced into the mtype.txt by the coupling medium tissue value too. Muscles are modeled inside

the simulation software. Finally another line is used for the cup definition using a best fit procedure

to keep fixed its thickness. The 2D work-plane and the resulting full 3D model with a permittivity

slice interpolation function added is shown in figure 4.19

The whole procedure to define a real breast inside a containment cup model is summarized in

figure 4.20.

4.7 Performance evaluation and scalability

In order to complete the described simulations two workstations have been employed, the less

powerful is equipped with 32 GByte of RAM and an Intel Core I7-3770 at 3.40 GHz CPU with 4

cores, the more powerful has 64 GByte of ECC-RAM and can be expanded up to 256 GByte, the

CPU is an Intel Xeon E5-2420V2 at 2.20 GHz with six cores but the mother board is dual CPU

capable so another one can be hosted. Both workstations are equipped with NVidia GPU graphic
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(a) 2D Workplane
(b) Revolved geometry

Figure 4.19: Breast MRI full model: (a) 2D work plane to define the breast internal area, skin
depth and containment cup (b) wire-frame rendering of the resulting 3D simulated model along
with a permittivity slice.

cards to speed-up the 3D rendering.

At the moment COMSOL does not include the GPUs support so it is not possible to benefit of

their acceleration on calculus; this mainly due because the GPUs performances are not stable, so

changing the physics, boundary conditions, geometry or whatever else can produce completely dif-

ferent results. Moreover the direct solvers used inside COMSOL are very useful to handle strongly

coupled smaller size multiphysics problems, but they also require a lot of memory. Currently,

dedicated general purpose GPUs have about 5-16 GB of internal memory. This corresponds to

small problem sizes for the direct solvers, in the range where they do not yield a high scalability

on GPUs.

As alternative COMSOL makes available the clustering option but the requirements for the

Windows environment (costly Windows server licensing) or the skill needed in a Linux Red

Hat/Debian/Ubuntu environment along with the suggested, but not mandatory, similar hardware

characteristics has discouraged this implementation.

The main idea to overcome this limitation has been to implement a kind of load-balancing

between the two workstations. The main simulation involved a parametric study where many

values of the model are changed such as the tumor position inside the breast, the contrast factor,

the tumor size. A computer program capable of producing a configuration file list, where each row
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Figure 4.20: Schematic COMSOL real 3D unhealthy-breast model generation procedure

represents a configuration to be run, has been realized. The COMSOL model has been placed in a

network share as well as the configurations file list and a MATLAB ”looper” script is used to set the

correct parameters inside the simulator through the LiveLink connection. To overcome the possible

run of the same configuration a kind of locking method is used: any untouched configuration is

labeled as ’TODO’, when it is being working the label changes to ’LOCKED’ and finally, after

the results have been written, the status label is changed to ’DONE’. If errors occur the label is

changed in ’COMSOL ERROR’ and makes possible further investigations or re-run.

At the highest frequencies many 3D configurations exceed the limit of 32 GByte, in this case

either a slow swapping on the local hard disk arise or the workstation entirely hangs. The looper

accepts as input parameter the frequency range suitable for the workstation leaving to the other

the ”dirty” job.
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Table 4.4: COMSOL 2D and 3D model performance comparison on Xeon Intel Xeon E5-2420V2
with 64 GByte of RAM. The operating frequency (ν), the running time, the memory needed and
degree of freedom (DOF) solved for are also reported.

Model Dim ν Time Memory DOF

Vivaldi 3D 1 GHz 4.30 min 6 GB 2.1 M
Vivaldi 3D 2 GHz 7.20 min 14 GB 2.8 M
Vivaldi 3D 3 GHz 23 min 40 GB 6.9 M
Dipole 3D 2 GHz 2 min
5-points 2D 5 GHz 11 sec 1.6 GB 0.5 M
5-points 2D 10 GHz 22 sec 2.5 GB 1.0 M

4.7.1 Running time

The time needed to finish a single run varies with the operating frequency but is quite similar for

both workstations. The single run corresponds to set an operating frequency, fixing the antenna

position respect to the breast and wait COMSOL to calculate the solution for the E field in the

specified domain. The running time for the 3D homogeneous breast model illuminated by a dipole

antenna working at 1 GHz is roughly 4 minutes and needs about 12 GByte of RAM. The same

model run at 4 GHz is considerably slower and memory consuming: it takes 35 minutes and 50

GBytes of RAM are mandatory.

This 3D model could run at higher frequencies only after a rationale build of the domain and of

the two cylinders mimic the breast and the tumor. To ensure that no diffraction effects arise,

these cylinders are kept always at least four wavelength long but when the operating frequency

increases the wavelength decreases accordingly. We can exploit this fact reducing the cylinders’

heights and the coupling medium domain radius and make their geometrical dimensions dependent

on the frequency: in these conditions the simulation can reach the limit 5 GHz where all the 64

GByte are allocated.

The model built to evaluate the feasibility to reconstruct a fibroglandular island needs an high

number of field points and an high illumination frequency. The available hardware in not powerful

enough to run such model and a 2D approach has therefore to be followed. Figure 4.4 shows

elapsed time, memory requirements and number of degrees of freedom solved for a some 2D and

3D simulated models at some operating frequencies.
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Chapter 5

Reconstruction of simulated data

In this chapter the simulated results are presented for the homogeneous and inhomogeneous breast.

A comparison between monostatic and multistatic architecture based on homogeneous scenario is

made. Denoising procedure and metrics to evaluate the reconstructed images used are detailed.

5.1 Cluttering removal and filtering

The scattered signal coming from the tumor is generally weaker than the antenna internal re-

flections and reflections coming from the skin layer and other internal tissues. Performing the

reconstruction without a proper filtering procedure leads to inadequate results because the por-

tion of clutter signal is the predominant in the whole signal.

Several clutter-rejection procedures have been proposed in literature: when working in time-domain

a time-gating approach is followed to eliminate the first back-scattered signal because it is mainly

due to the skin reflections. Other works rely on filtering methods that try to estimate the clutter

signal at a given position and subtract it from the actual measurements. Alternatively, some

procedures employ a differential scheme where two sets of measurements corresponding to two

different rotations of the system are subtracted from each other but this is strongly dependent

from the breast geometry and moreover it might subtract useful back-scattered signal coming from

the tumor. When working in the frequency domain the pole splitting algorithm is applied to the

radar signal [42] to remove the skin contribution and a subspace-based algorithm exploiting the

singular value decomposition (SVD) has been used to remove generic artifacts [18].

5.1.1 Monostatic filtering

In our configuration we exploit the symmetry coming from the adopted central geometry in an

homogeneous medium: if no tumor is added S11 is a constant complex value while, when a tumor id
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added, a small perturbation in the signal appears. In the monostatic case the filtering procedure

simply consists in subtracting the mean value of the signal collected at the N positions: this

procedure removes the constant background signal and points out the tumor

Sclean = Sraw− < S > (5.1)

In figure 5.1 is shown the results of this operation: the difference enhances the small pertur-

bation caused by presence of the scatterer at 180 deg. This ’clean’ signal is later used to perform

the reconstruction.

Figure 5.1: On top S11 raw collected signal, and on bottom same signal filtered with average
trace subtraction. Blue line is the real part of the signal and red line is the imaginary part.

5.1.2 Multistatic filtering

The multistatic configuration can not permit a simple subtraction of the mean value of the S-

matrix. In this case we have to filter out the unwanted components of skin reflection and antennas

internal reflection such as in the monostatic case togther with the mutual couplings typical to this

configuration. This coupling is due to the direct incident field generated by the actual transmitting

antenna towards the receiving ones, this field excites the standing antennas that might re-irradiate

adding much more cluttering.

To find a suitable filter we make use again of the central symmetric geometry of the whole system.

With the aid of figure 5.2 where 8 antennas are used for explanatory purpose, we see that the

previous filter is equal to compute the average value on the main diagonal, that is the reflection

coefficients Snn, and subtract the value from it.

Now consider the S12 coefficient: its value should be the same for each first neighbors as it is

clear if we think the value collected at each port as the ”optical round trip path” of the signal,
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Figure 5.2: Independent elements in a multistatic central symmetric geometry

that is:

S12 = S23 = S34 = S45 = S56 = S67 = S78 (5.2)

these equalities hold true also for the reversed order of the index, this guarantees the symmetry

of the resulting S-matrix. The reasoning can be applied for all the remaining S-coefficients: figure

5.2 shows all the combinations for the 8 antennas system and figure 5.3 shows the form of resulting

S-matrix. As can easily be seen only 5 independent elements appear in the form of a Toeplitz-

symmetric matrix, that is a matrix whose diagonal elements are constant. The relation between

an N-th order matrix and the number of the independent elements Nind is given by:
forNeven : Nind =

N

2
+ 1,

forNodd : Nind =
N + 1

2

To estimate the equivalent of the < S > in the multistatic environment we make use of a

linear operator, we called diagonal-mean: a Toeplitz-symmetric matrix whose elements are the

average-value of the diagonal in which they stay

< S >' diagonalMean(S) (5.4)

The effect produced by this filtering can be seen in 5.4, the cleaned matrix enhance the presence
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Figure 5.3: Independent elements in a multistatic central symmetric geometry with 8 antennas:
each color represent a different element

of a scatterer. It is noteworthy that, examining the scale value reported on the right of the figures,

the filtered signal is two orders of magnitude greater than the raw collected one.

5.2 Evaluation of the reconstruction and metrics

MUSIC algorithm identifies the target position in the point corresponding to the maximum of the

pseudospectrum and the reconstructed target should be represented by a Dirac delta function of

infinite value, but in real reconstruction its form is a spread curve with a finite maximum.

In order to evaluate the performance achievable by the detection system different metrics are

employed:

· Full-Width-Half-Maximum (FWHM);

· Spatial displacement (SD);

· Signal-to-Noise Ratio (SNR).

5.2.1 Spatial metrics

In many cases the reconstructed target shape is not symmetrical with respect to its maximum, thus

we choose the centroid of the curve at Half Maximum (HM) as estimation of target position. The

computation of the spatial metrics is performed in the maximum variance configuration obtained

through the PCA (Principal Component Analysis) method.
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(a) S (b) < S > (c) Sclean = S− < S >

Figure 5.4: Multistatic Filtering procedure: (a) the raw collected S-matrix, (b) the filter ma-
trix computed using the diagonalMean linear operator, (c) the clean signal used to perform the
reconstruction

PCA is a statistical method mainly used to reduce the dimensionality of a problem retaining as

much information as desired based on the variance [33]. Geometrically speaking is an orthogonal

transformation based upon the computation of the eigenvalues and eigenvectors to change the basis

such that the data are better defined and their structure can be highlighted.

In figure 5.5 is detailed how the spatial metrics are derived: the X(x, y) point is the exact

location of the target, while C(x, y) represent the centroid of the spread curve cut at HM. The

target spread expresses the degree of resolution reached and is the defined as:

FWHMρ,φ = 2 · β
√
λ1,2 (5.5)

where λ1,2 are the eigenvalue of the PCA transformation. For a confidence interval of 95%, β = 1.96.

The SD measures the error in tumor localization and accounts for the difference between the

real position X(x, y) of the tumor and the centroid C(x, y) in the new coordinate system defined

by PCA:

SDρ,φ = Xρ,φ − Cρ,φ (5.6)

5.2.2 Contrast metric

The standard deviation σ can be expressed as usual in term of the FWHM:

σρ,φ =
FWHMρ,φ

2
√

2 ln(2)
(5.7)

by means of σ we define the useful area given by the signal and the background signal given
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Figure 5.5: Spatial metrics definition using PCA

by the clutter. As reported in figure 5.6 the signal area is:

Asignal(ρ, φ) ≤ 3σρ,φ (5.8)

while the clutter area is defined as:

3σρ,phi ≤ A noise(ρ, φ) ≤ 6σρ,φ (5.9)

and the SNR is computed as the mean value of the pseudospectrum evaluated in the signal

area over the mean value in the clutter area:

SNR =

1

Ns

∑
ri∈signal

Ψ(ri)

1

Nc

∑
ri∈noise

Ψ(ri)
(5.10)

where Ns and Nc are respectively the number of points in the signal area and in the noise area.

As the spread occurs mainly in the radial direction ρ, in the following the φ-metrics will be

neglected when displaying results.
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Figure 5.6: Spatial metrics definition using PCA

5.3 Homogeneous breast model in monostatic configura-

tion

The breast model used in the simulation has been already detailed in the previous chapter and

the operating conditions are summarized in table 4.1. In the following the reconstruction results

are discussed changing some parameters that can affect the reconstruction in a real environment.

Figure 5.7 shows the geometry model realized with COMSOL.

5.3.1 Working Frequency

We aim to identify and locate the scatterer varying the illumination frequency, to evaluate the

reconstructions and finally to select the best frequency range. The investigated range is from ν =

1 GHz to ν = 5 GHz. The reconstructed pseudospectra, as a function of the varying frequency,

are shown in figure 5.8.

Looking at the image series in this figure, it can be observed that as frequency increases the

reconstructed spot size decreases, this effect is due to the improvement of the spatial resolution.

However, at high frequencies some artifacts appear and we expect a corresponding worse SNR

value, defined as the ratio between mean value in signal area and mean value in clutter area.

The metric values reported table 5.1 show an increasing resolution from lower frequencies to higher

ones, in particular, in the range from 1 GHz to 2 GHz, the spread determined from the FWHM is

almost halved, from 2 GHz to 5 GHz it decreases slowly.

Looking at SNR values, in the range [2, 4] GHz we have the higher ratio reaching the maximum

value at 3 GHz; over 4 GHz clutter value becomes relevant. Finally we reported the Spatial

Displacement (SD) metrics, that is error that the algorithm makes to reconstruct the exact location

of the target and computed as the difference between the simulated position, chosen as the center of

the scatterer, and the reconstructed one given by the imaging point with pseudospectrum highest
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5.3 Homogeneous breast model in monostatic configuration

Figure 5.7: COMSOL model for the monostatic configuration. Dipole antenna, cylindrical breast
and tumor, skin layer and PML are detailed

value. SD is always much lower than the resolution at any frequency.

Figures 5.9 and 5.10 show, respectively, the FWHMρ and SNR trend when the illumination

frequency is changed.

5.3.2 Multifrequency

The single-frequency approach suffers from the trade-off between high resolution and artifact lim-

itations. The reconstruction made at different frequencies can be combined to outperform the

results of the single-frequency case. In this study we use the GM combination method whose

definition has been given in 3.38.

Figure 5.11 show the resulting image from the combination in the range [2-4] GHz and table

shows the corresponding metrics. Both FWHM and SNR reach better values than the correspond-

ing single-frequency reconstruction. The GM-MUSIC metric errors are defined as the standard

errors computed on ten measures after we have perturbed the system with white Gaussian noise
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5.3 Homogeneous breast model in monostatic configuration

Figure 5.8: Pseudospectra frequency evolution from 1 GHz to 5 GHz

with SNR=10 dB. In the following study all results will be therefore given using this combination

method.

5.3.3 Tumor position

The objective is to identify and locate the target varying its position. The study is performed

investigating three positions:

near center: X = (10, 0) mm;

half radius: X = (25, 0) mm;

Table 5.1: Spatial and contrast metrics varying the illumination frequency in the range 1 GHz -
5 Ghz

frequency FWHMρ [mm] SDρ [mm] SNR [dB]

1 GHz 18.2 ± 1.2 1.4 ± 0.7 4.3 ± 0.6
2 GHz 12.9 ± 0.5 1.0 ± 0.3 4.6 ± 0.5
3 GHz 10.1 ± 0.3 0.7 ± 0.2 6.5 ± 0.2
4 GHz 10.0 ± 0.6 0.5 ± 0.3 5.6 ± 0.2
5 GHz 9.8 ± 0.3 1.1 ± 0.1 3.6 ± 0.3
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5.3 Homogeneous breast model in monostatic configuration

Figure 5.9: FWHMρ versus the illumination frequency from 1 GHz to 5 GHz with 0.2 GHz step.

Figure 5.10: SNR versus the illumination frequency from 1 GHz to 5 GHz with 0.2 GHz step.

near skin: X = (40, 0) mm.

The simulation is performed using the frequency in the optimal range ν = [2-4] GHz and the

corresponding pseudospectrum is evaluated. Results are given using GM combination method.

Figure 5.12 displays the images and table 5.3 shows the resulting metrics.

Metrics exhibit a performance degradation gradually moving from the inner to the outer po-

sition of the breast, this happens because the measure is affected by skin reflections near the

boundary. The best position of the scatterer is near the center of the breast because a similar

contribution is received from the moving antenna.

Table 5.2: Spatial and contrast metrics using GM combination method.

FWHMρ [mm] SDρ [mm] SNR [dB]

GM 9 ± 1 0.8 ± 0.1 8.1 ± 0.1
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Figure 5.11: The resulting GM-MUSIC pseudospectrum combining frequency in [2, 4]GHz range

Figure 5.12: GM pseudospectrum changing the tumor positions. From left to right: (a)near
center, (b)half radius, (c)near skin

5.3.4 Tumor size

The goal is to identify and locate the scatterer varying its dimension. We want evaluate how

the reconstruction is affected moving from a small tumor towards a larger one settled in the

intermediate position between the skin and the center of the breast. We choose three different

sizes:

small tumor: r = 2.5 mm;

medium tumor: r = 5 mm;

large tumor: r = 7.5 mm.

Figure 5.13 shows the resulting reconstruction obtained with GM combination method in the

frequency range [2-4]GHz and table 5.4 summarizes the metrics results.
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5.3 Homogeneous breast model in monostatic configuration

Table 5.3: Spatial and contrast metrics varying the tumor position using GM Music combination
method

position FWHMρ [mm] SDρ [mm] SNR [dB]

near center 6 ± 1 0.2 ± 0.1 9.5 ± 0.1
half radius 9 ± 1 0.8 ± 0.1 8.1 ± 0.1
near skin 11 ± 1 4.4 ± 0.5 4.1 ± 0.1

Figure 5.13: GM pseudospectrum changing the tumor size. From left to right: (a)small tumor,
(b)medium size tumor, (c)large tumor

Obviously the FWHM increases with the tumor size since the FWHM is related to target size.

We also note that when spread increases the signal reduces and the SNR decreases along with the

tumor size.

5.3.5 Tumor-background contrast ratio (TBR)

In this study we investigate the effect of the TBR, that is how metrics are affected when the

medium where the tumor is embedded changes. In a real scenario this corresponds at looking for

a tumor in 3 different tissues. Inside the adipose tissue, inside an intermediate tissue or inside a

fibroglandular tissue.

Table 5.4: Spatial and contrast metrics varying the tumor size.

tumor size FWHMρ [mm] SDρ [mm] SNR [dB]

small 9 ± 1 0.8 ± 0.1 8.1 ± 0.1
medium 12 ± 1 0.4 ± 0.1 6.2 ± 0.1
large 13 ± 1 0.8 ± 0.1 5.4 ± 0.1
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5.3 Homogeneous breast model in monostatic configuration

Figure 5.14: GM pseudospectrum for different TB-ratio values

To model these tissues in the frequency range needed to perform a multi-frequency combination

the Debye dispersion model is again adopted. The following parameters are used to modify the tb

ratio:

adipose: [ε∞ = 5.1, εsup = 8.3, τ =, 13 ps, σ = 0.05 S/m] ε̄ = 5
intermediate: [ε∞ = 7, εsup = 10, τ =, 13 ps, σ = 0.15 S/m] ε̄ = 10
fibroglandular: [ε∞ = 36, εsup = 48, τ =, 13 ps, σ = 0.40 S/m ] ε̄ = 34

which represents the changing background, while the Debye parameters of the tumor are kept

fixed:

tumor: [ε∞ = 4, εsup = 46, τ =, 6 ps, σ = 0.7 S/m ] ε̄ = 50

In the range [2-4] GHz permittivity with using the above Debye parameters can be considered

almost constant and is referenced as ε̄ in the last column. Thus the TB-ratio decreases from fat

to fibroglandular in the following manner:

tumor : fat = 10:1

tumor : intermediate = 5:1

tumor : fibroglandular = 5:3

Figure 5.14 shows the pseudospecrum images obtained using GM combination method in the

frequency range [2-4] GHz for a 2.5 mm tumor placed in the half-breast position and the corre-

sponding metrics are reported in table 5.5. We can conclude that the algorithm performance is

equal for high and medium contrasts but degrades for low values of the TBR.
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Table 5.5: Spatial and contrast metrics varying TBR using GM Music combination method

TB ratio FWHMρ [mm] SDρ [mm] SNR [dB]

10:1 9 ± 1 0.8 ± 0.1 8.1 ± 0.1
5:1 9 ± 1 0.6 ± 0.1 8.1 ± 0.1
5:3 9 ± 1 -1.1 ± 0.5 4.2 ± 0.1

Figure 5.15: GM pseudospectrum for different breast size

5.3.6 Breast size

We decided to take into account the natural variability in breast size, therefore the algorithm has

been tested changing this parameter to evaluate its performance in detection and localization. To

simulate different size the breast radius rb has been modified in following manner:

small breast size: rb = 50 mm,

medium breast size: rb = 65 mm,

large breast size: rb = 80 mm.

the target location has been modify accordingly to remain in the half-radius position:

small breast size: x=(25,0) mm,

medium breast size: x=(32.5,0) mm,

large breast size: x=(40,0) mm.

Figure 5.15 shows the resulting GM-MUSIC pseudospectrum of each breast size, computed

using the frequency range [2-4] GHz and the relative metrics are specified in table 5.6 . From the

study of the metrics we can conclude that the algorithm has same performance at different breast

sizes in a perfectly homogeneous medium.
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Table 5.6: Spatial and contrast metrics varying the breast size using GM Music combination
method

FWHMρ [mm] SDρ [mm] SNR [dB]

small breast 9 ± 1 0.8 ± 0.1 8.1 ± 0.1
medium breast 9 ± 1 0.6 ± 0.1 7.9 ± 0.1
large breast 9 ± 1 0.8 ± 0.1 7.0 ± 0.1

5.4 Monostatic and multistatic configurations

This section is devoted to a comparison between monostatic and multistatic (figure 5.16) ap-

proaches to gather information about their behavior in localization and detection in an homoge-

neous medium.

In this study the monostatic model is designed, an antenna is placed 2 mm far from the skin layer

and used as transmitter and receiver at the same time, rotating over 20 different positions around

the breast so that the angular step is 18 ◦ and S11 is numerically evaluated at each corresponding

position.

In the multistatic scenario, 20 fixed antennas are settled in same positions where monostatic

data have been previously collected: every antenna, in turn, acts as transmitter while the others

are only receiving the scattered signal, thus to build up the full S-matrix. Both configurations are

investigated along the frequency interval scanned from 1 GHz to 3 GHz with 0.2 GHz step.

All the following cases presented have been obtained by corrupting the scattered field with an

additive white complex Gaussian noise with signal-to-noise ratio SNR = 10 dB.

Finally, we outline that the reconstruction in the multistatic case has been performed using only

the eigenvector corresponding to the strongest not null eigenvalue of the TR matrix.

5.4.1 Architectures comparison

Both architectures have their advantages and drawbacks. Just to point out some of them, in mono-

static there is a quite simple electronics and signal collection system, on the contrary multistatic

has to deal with the multiple interconnections between the transmitting and the receiving elements

and additional electronics devices, causing noise, must be introduced.

A simple multistatic configuration can also take advantage of the standing antennas and conse-

quently no need to move any radiating parts. In the monostatic case a rotational stage around the

breast has to be introduced, this increases the acquisition time due to the mechanical movements

but permits to change the number of the data points collected. Monostatic has only one antenna so

there are no interference between the radiating parts that causes mutual couplings but multistatic
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Figure 5.16: Multistatic architecture with meshing: the tumor is depicted in blue and around
the breast modeled as cylinder are settled standing dipole antennas.
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can exploit the indications coming from the full S-matrix.

Finally we outline that monostatic holds more choices in antenna design having no need to

keep small the dimension of the antenna.

5.4.2 Multifrequency

We investigated the best combination method GM-Music, WB-Music and I-music defined in 3.5

changing the tumor position for both monostatic and multistatic approach to determine the one

which performs better. The tumor coordinates are the same detailed in the previous section. To

best aggregate data from now the inner position is named P1, the half-radius position P2 and

the outer near-skin position P3. Figure 5.17 shows the pseudospectrum images for the three

combination methods in the monostatic configuration using 11 frequencies in the range [1-3] GHz

and 20 field points with tumor settled in P3, while figure 5.18 for the multistatic one under the

same combination conditions.

(a) GM (b) WB (c) I

Figure 5.17: Monostatic pseudospectrum using different combination methods in P3 using 11
frequencies and 20 field points. (a) GM-Music (b) WB-Music (c) I-Music.

The metric results for all 3 combination methods are given in table 5.7 and 5.8.

Comparing these values we see that GM-Music combination method performs better than the

other two methods and therefore its use in previous study and in the following is justified. The

FWHM and SNR graphs for the two configurations as a function of the tumor position are displayed

in figure 5.19.

For both configurations the FWHM improves moving from the outer position toward the inner

position but monostatic performs better from 5% to 25%. Multistatic SNR is strongly dependent

from the tumor position and the inner position gives best result while monostatic exhibits a weaker

position dependence lightly increasing towards the skin.
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(a) GM (b) WB (c) I

Figure 5.18: Multistatic pseudospectrum using different combination methods in P3 using 11
frequencies and 20 field points. (a) GM-Music (b) WB-Music (c) I-Music.

Table 5.7: Spatial and contrast metrics varying the tumor position for the three combination
methods in monostatic configuration.

GM WB I

FWHM [mm] SNR [dB] FWHM [mm] SNR [dB] FWHM [mm] SNR [dB]

P1 7.7 ± 0.3 5.2 ± 0.1 7.6 ± 0.2 2.1 ± 0.1 13.0 ± 0.9 3.4 ± 0.4
P2 10.3 ± 0.3 5.4 ± 0.1 10.3 ± 2.3 2.1 ± 0.1 16.1 ± 0.7 3.4 ± 0.4
P3 13.9 ± 0.4 5.9 ± 0.1 13.8 ± 0.4 2.5 ± 0.1 17.6 ± 0.3 4.4 ± 0.1

5.4.3 Noise robustness

To evaluate the robustness of the two configurations to real noisy environment we have corrupted

the data increasing the noise power. The results are summarized in table 5.9. Looking at figure

5.20 where data are displayed in a more explicit graphical way we note that SNR in the multistatic

configuration exhibits more robustness to noise, while FWHM can be considered constant within

the errors.

5.4.4 Number of field points

The goal of this study is evaluate an optimal field points number to be collected having anyway a

good quality in the reconstruction metrics. This is a crucial point either in simulation, where adding

a new collected point in multistatic and monostatic configuration means more time to accomplish

the solution, or in real environment where only the multistatic configuration is affected. New

antennas for the multistatic scenario, as detailed in the architecture comparison section, implies

a more complicated electronics, system layout design and higher cost for cables and devices. We
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Table 5.8: Spatial and contrast metrics varying the tumor position for the three combination
methods in multistatic configuration.

GM WB I

FWHM [mm] SNR [dB] FWHM [mm] SNR [dB] FWHM [mm] SNR [dB]

P1 10.2 ± 0.1 8.8 ± 0.2 9.5 ± 0.1 3.7 ± 0.1 12.2 ± 0.1 4.5 ± 0.1
P2 11.1 ± 0.1 6.3 ± 0.4 10.6 ± 0.1 2.9 ± 0.1 13.2 ± 0.1 3.8 ± 0.1
P3 14.2 ± 0.1 2.8 ± 0.1 14.1 ± 0.1 1.2 ± 0.1 17.8 ± 0.1 3.0 ± 0.1

(a) FWHM (b) SNR

Figure 5.19: FWHM comparison for monostatic and multistatic configuration versus the tumor
position

lower the number of collected field points from 20 to 4. Table 5.10 summarizes the results while

figure 5.21 holds the comparison plot. Monostatic metrics are strongly dependent from number

of fields point and to higher number corresponds a better performance. For multistatic we have

a great improvement in FWHM from 4 collected points to 8 collected points, but a slow increase

from 8 to 20. Multistatic SNR increase slowly from 4 to 8 field points but decreases from 8 to

20. This is mainly due to the fact that a high number of antennas raises the mutual coupling and

could be harmful to the reconstruction. Figure 5.21 shows the reconstruction images obtained

with GM combination method for both configurations.
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(a) FWHM (b) SNR

Figure 5.20: (a)FWHM and (b) SNR comparison for monostatic and multistatic configuration
versus noise

Table 5.9: Noise robustness comparison for Monostatic and Multistatic configuration. Note:
Noise Power Level (NPL) is the ratio between the signal power and the noise power, to an higher
value of NPL corresponds a lower power of the added noise.

Monostatic Multistatic

NPL FWHM [mm] SNR [dB] FWHM [mm] SNR [dB]

10 dB 10 ± 1 5.4 ± 0.1 11 ± 1 6.30 ± 0.04
8 dB 11 ± 1 4.7 ± 0.2 12 ± 1 6.30 ± 0.05
6 dB 11 ± 2 3.9 ± 0.2 12 ± 1 6.20 ± 0.07
4 dB 12 ± 2 3.1 ± 0.2 12 ± 1 5.9 ± 0.1
2 dB 13 ± 3 2.4 ± 0.2 12 ± 1 5.6 ± 0.2

5.5 Inhomogeneous breast

As detailed in chapter four, we also have studied an inhomogeneous breast where, other than

tumor, a fibroglandular island with a rugged profile is added (see figure 4.11). This approach has

as primary goal the localization and detection of the tumor in a more realistic and challenging

environment where the clutter signal produced by the fibroglandular structures is predominant

over the tumor signal. The fibroglandular island is modeled as an extended target. The star shape

has been chosen in compliance with the work of Hou-Solna and Zhao [29]. In their work the authors

show that the TR-Music linear method along with a suitable propagator is capable to reconstruct

the shape of an extended target embedded in a homogeneous background.

TR-Music states [27] that if the number of the point-like scatterers is less than the antennas
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Table 5.10: Reconstruction metrics versus the number of field points collected

Monostatic Multistatic

FWHM [mm] SNR [dB] FWHM [mm] SNR [dB]

4 f.p. 40 ± 7 3 ± 1 32 ± 6 3 ± 1
8 f.p. 28 ± 3 4.6 ± 0.5 17 ± 1 3.2 ± 0.1
10 f.p. 13.9 ± 0.4 5.9 ± 0.2 14.1 ± 0.1 2.8 ± 0.1

(a) FWHM (b) SNR

Figure 5.21: (a) FWHM and (b) SNR comparison for monostatic and multistatic configuration
versus the field points collected.

number, the resulting not null eigenvalues are equal to this number. A reconstruction of any

scatterer can be performed using, individually, each corresponding eigenvector and making the

scalar product with the steering vector of the imaged domain point.

For extended scatterers whose sizes are comparable to or larger than the resolution of the array

the above analysis is not valid anymore. The response matrix has a more complicated structure.

Even for a single extended scatterer, there will be many non-zero eigenvalues. In order to define a

criterion to classify the dimension of the extended scatterer, we can refer to the metric of FWHM

that is a measure of the support of the point spread function.

This is in general depending on the illumination wavelength and on the field points number.

This means that a scatterer could be interpreted as ”small” at lower frequencies and ”extended” at

higher frequencies. The number of the non-zero eigenvalues increases with MW frequency because

the perceived size of the target get larger. Figure 5.23 shows clearly this behavior.

In this situation each eigenvector does not have clear physical interpretation and does not

correspond to the illumination vector of a point on the target: an extended target can not be seen
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Monostatic 4 f.p. Monostatic 8 f.p. Monostatic 20 f.p.

Multistatic 4 f.p. Multistatic 8 f.p. Multistatic 20 f.p.

Figure 5.22: Monostatic (top row) and Multistatic (bottom row) reconstruction with increasing
field points.
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(a) point target

(b) small target

(c) extended target

Figure 5.23: Eigenspectrum examples in terms of wavelength compared to the target size: (a)
point target, (b) small target (target size is a little fraction of the wavelength), (c) extended target
(its size is comparable or larger than the wavelength). On x-axis the eigenvalue number on y-axis
the log-magnitude [29].
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as a collection of point targets. Considering the eigenvalues as an ”ensamble”, they can contribute

to define the exterior boundary of the extended target, defining the signal subspace.

5.5.1 Imaging algorithm for extended target

This algorithm inherits the MUSIC (§ 3.4.1) framework to determine the TRM adding some

changes we explain in the following.

1) TRM is computed starting from the simulated or experimental S-matrix data;

2) eigenvalues spectrum and corresponding eigenvectors are computed;

3) the MUSIC projection P is evaluated for each eigenvector having non-zero eigenvalue, using

the free space propagator G defined in (2.22);

4) the strength of the i-th eigenvector is evaluated as the square root of its eigenvalue, λi and

for each obtained pseudospectrum we define a weight wi as follow:

wi =
√
λi (5.11)

5) we define a cutoff threshold to discard some eigenvectors: only the eigenvectors whose weight

is over this value are taken into account to produce the final image;

6) the resulting pseudospectrum is computed as:

Ψ =
1

1−
∑

iwiPi
(5.12)

Actually we use an empirical method to define the threshold value by setting it at the 20% of

the maximum value. The weighting method is justified by taking into account the definition of the

TRM matrix. The eigenvalues are proportional to the square magnitude of scattered field, that is

a measure of a scattered power. The square root is proportional to the amplitude of the scattered

field.

5.5.2 Model description

An array of 80 antennas is placed on a circle line whose radius is 100 mm and each element is

equally spaced from its neighbor. The background relative permittivity εb is set to 5 and the

conductivity is set to 0.05 S/m. Within the breast there is a fibroglandular island whose polar

equation is given by 4.5, the maximum value of its radius is 30 mm while the minimum is 20

mm and and a circular scatterer whose radius is 5 mm. The fibroflandular and tumor dielectric

parameters are modeled using the Debye formula (2.12) and already reported in table 4.1. In a

first model where the tumor is outside the fibroglandular tissue, see Figure 4.11 (a) fibroglandular
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dielectric parameters are set equal to those of the tumor. In the second model where the tumor

is placed inside the fibroglandular, the fibroglandular dielectric parameters are instead fixed to a

percentage of the tumor ones, ranging from 15% to 50%.

5.5.3 Role of the frequency

As previously told, the illuminating frequency determines how the system ”sees” the target: when

the frequency increases the corresponding wavelength decreases accordingly and the apparent size

of the target becomes larger. As expected, a long tail in the eigenspectrum appears. Figure 5.24

shows the TRM eigenvalues spectrum when the frequency is increased from the lower 1 GHz value

to the higher value 10 GHz with a corresponding long tail.

(a) 1 GHz (b) 3 GHz (c) 10 GHz

Figure 5.24: TRM eigenspectrum obtained with different illumination frequency. At higher
frequency a long tail appears: (a) 1 GHz, (b) 3 GHz and (c) 10 GHz.

5.5.4 The eigenvectors role

As told, the reconstruction of the extended target should be performed combining the pseudospec-

trum obtained from several eigenvectors. Increasing this number the edges of the targets will

appear with a better definition. The resulting pseudospectrum of our simulation can be examined

in figure 5.25. With one eigenvector only the position of the tumor is visible with a low contrast.

When adding more eigenvectors the edges become more clear and the dynamics gets better. The

best reconstruction appears when 19 eigenvectors are concurrently used, after this value more clut-

ter is introduced and the star edges become indistinct with a lower contrast. The resulting SNR is

reported in Table 5.11: this value reflects the reconstruction and improves from one eigenvector

up-to 19 doubling, then it becomes to decrease.
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1 Eigenvectors 3 Eigenvectors 6 Eigenvectors

11 Eigenvectors 19 Eigenvectors 58 Eigenvectors

Figure 5.25: Reconstructed pseudospectrum obtained with 10 GHz illumination frequency and
using an increasing number of eigenvectors computation.

Table 5.11: SNR evaluation corresponding to pseudospectrum reconstruction using a different
number of eigenvectors.

N◦ Eigennvectors SNR [dB]
1 3± 1
3 3± 1
6 4± 1
11 5± 1
19 6± 1
58 4± 1
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5.5.5 The role of field points and the monostatic approach

We investigated how resolution is affected by the number of field points, in particular figure

5.26 shows the difference between the reference 80 field points of the model with an halved field

points reconstruction when illumination frequency is 10 GHz in both simulations. In the latter

case the threshold limits to 15 the number of eigenvectors used to compute the pseudospectrum

corresponding to 37,5% of the total eigenvectors available. The optimal reconstruction with 80

antenna’s uses 19 eigenvectors, that is the 24%. Visual inspection shows that the star edges are

not sharp and more clutter appears if the number of fields points is reduced. This result appears

in contrast with the previous study where is shown that multistatic performance suffers when the

number of the antennas in increased. It is worth remarking that the illuminating sources are here

modeled as ideal current sources. This suggests that a trade-off between field points number and

number of antenna has to be afforded.

(a) 40 fields point (b) 80 field points

Figure 5.26: Reconstruction at 10GHz: (a) 40 field points and 15 eigenvectors, (b) 80 field points
and 19 eigenvectors

Furthermore the monostatic configuration can not be used when rugged fibroglandular islands

are added. Figure 5.27 is obtained using the monostatic approach by getting the Snn value from

the 80 field point S-matrix at 10 GHz and only clutter appears.

5.5.6 Scatterer inside the fibroglandular structure

We have settled the scatterer inside the fibroglandular structure to evaluate the resulting recon-

struction. The parameters used in the model are the same as the previously exposed model except
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Figure 5.27: Monostatic reconstruction at 10 GHz: S11 is extracted from the 80 field points
S-matrix.

for the dielectric parameters of the fibroglandular structure that has been changed from a minimum

value of about 15% with respect to the tumor (ε = 8) up-to 50% (ε = 25).

Figure 5.28 shows the reconstruction varying the illumination frequency from 1 GHz to 5 GHz

in the lower contrast case: increasing the frequency the star edges get sharper but the tumor is

not detected.

Figure 5.29 shows the reconstruction obtained in the higher contrast situation: at 2 GHz the

tumor is detected and at 10 GHz only the star edges are present. The GM-MUSIC combination

shows both the fibroglandular tissue and the tumor inside it.

The range of frequency further explored is lower than the previous study and it has been

fixed in the interval from 1.0 GHz to 1.5 GHZ. The reason is in the resulting high value of the

conductivity of the fibroglandular that, above this limit, extinguishes the tumor backscattered

signal. We investigated the contrast limit in which the tumor signal can be revealed. Furthermore

we evaluated the scattered power from the tumor and compared it with the power of the clutter

signal due to the presence of the fibroglandular. In order to do this we defined the following

scattering matrices:

S: full field matrix when both fibroglandular and tumor are present,

Sno tumor: when only the fibroglandular is present,

Sempty: only homogeneous medium is present.

Figure 5.30 shows the COMSOL configuration whose solution allows the S-matrix.

The above S-matrices are individually obtained from COMSOL simulations. By difference we
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Figure 5.28: Recostruction at different frequencies when tumor is inside the fibroglandular tissue:
εtumor = 50, εfbg = 25, εmedium = 5, σfbg = 0.4σtumor. The tumor is not detected

define the tumor signal S-matrix and the clutter signal matrix:

Sscatt = S − Sno tumor (5.13)

Sclutter = Sno tumor − Sempty (5.14)

From these S-matrices, following the canonical procedure, we computed two time reversal

matrices and the corresponding eigenspectra.

TRscatt = S†scatt ∗ Sscatt ⇒ λscatt

TRclutter = S†clutter ∗ Sclutter ⇒ λclutter

(5.15)

As explained in § 5.5.1, the eigenvalues magnitude are a measure of the scattered power. The

trend of the maximum eigenvalue magnitude is studied versus the illumination frequency and the

fibroglandular relative permittivity.

5.5.7 The fibroglandular relative permittivity

We perform a new study at low frequency, because, as showed, only in this illuminating condition

the tumor is detected, by changing the relative permittivity of the fibroglandular tissue.

Figure 5.31 shows the results: when the fibroglandular relative permittivity is low εfibro = 8

the tumor is correctly detected with a good SNR = 8 dB, increasing this value to 11 the detection
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5.5 Inhomogeneous breast

Figure 5.29: Recostruction made at 2 GHz and 10 GHz when tumor is inside the fibroglandular
tissue: εtumor = 50, εfbg = 8, εmedium = 5, σfbg = 0.15σtumor. The tumor is detected along with
some edges the of fibroglandular structure.

is still performed but with lower SNR value and equals to 5 dB, when fibroglandular relative

permittivity reaches the value of 16 the target is no longer detected and only cluttering appears.

5.5.8 The maximum eigenvalue

This study aims to quantify the variation of the magnitude of the maximum eigenvalue of the TR

matrices defined in (5.15), that is considering clutter the signal emerging from the fibroglandular

tissue. As told, this study is performed in the frequency range 1.0-1.5 GHz where the backscattered

signal of the tumor can be revealed and varying the fibroglandular relative permittivity. Figure

5.32 helps to describe the results obtained. On the left we see the magnitude curve for the tumor

eigenvalue: best performance are reached when εfibro = [5 − 11] where we have maximum values

at about 1.1-1.3 GHz, outside this permittivity range the magnitude decreases either at higher or

at lower frequency value. When we move towards higher value of the permittivity the eigenvalue

magnitude tends to rapidly lower and to be a constant in all frequencies interval. Examining

the clutter eigenvalue behavior on the right graph we note that high values of εfibro = [27 − 16]

correspond to high eigenvalue magnitude, almost constant till the 1.3 GHz frequency then it

decreases exponentially. Low values of εfibro = [5 − 11] correspond to low and almost constant

eigenvalue magnitude. We choose the illumination frequency of 1.3 GHz to show the trend of the

magnitude versus the fibroglandular relative permittivity as shown in Figure 5.33: at low εfibro the

tumor eigenvalue dominates, until the crossing value at about 10 where clutter eigenvalue becomes

stronger. This behavior is confirmed by the MUSIC presudospectrum reconstruction.
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5.5 Inhomogeneous breast

(a) S (b) Sno tumor (c) Sempty

Figure 5.30: COMSOL simulation setup to obtain the S matrix in the corresponding scenario:
(a) fibroglandular and tumor , (b) only fibroglandular and (c) homogeneous scenario

Figure 5.31: Reconstruction of the scenario changing the fibroglandular relative permittivity at
low frequencies 1.1-1.2 GHz: (a) the target is detected with SNR = 8 dB, (b) the target is still
detected with a lower SNR = 5 dB, (c) the target is not detected.
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5.5 Inhomogeneous breast

(a) tumor maximum eigenvalue (b) clutter maximum eigenvalue

Figure 5.32: Maximum eigenvalue magnitude versus the illumination frequency. Each curve is
obtained varying the fibroglandular relative permittivity: (a) TRtumor, (b) TRclutter.

Figure 5.33: Tumor and clutter maximum eigenvalue magnitude versus the fibroglandular relative
permittivity for a fixed illumination frequency at 1.3 GHz.
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Chapter 6

Experimental data

The simulation analysis helped us to design an operating experimental setup. The study of the

collected data helps to point out differences or similarities arising with the results obtained in the

simulated framework. This chapter details how the experimental setup as been built: framework,

materials and instruments. Then is presented the data acquisition procedure for the monostatic

approach and an improvement for this framework is introduced. A second framework for multistatic

approach is suggested.

6.1 Experimental scenario

The design of the experimental scenario mainly shares the same concepts described in chapter 3

and followed by all leading groups involved in breast MWI. As told before, to reduce the effects

due to the mismatch between the mean permittivity of the breast internal tissue, the mammals

have to be immersed in a cup filled with a matching fluid.

To perform the 2D reconstruction a sufficient height of the system must be kept, therefore it

has been chosen a cylindrical plastic tank whose dimensions are 50 cm in height and 55 cm in

diameter, used as container and limiting the scenario as PML does. Two more plastic cylinders

have been used: the larger is 60 cm in height and 11 cm in diameter representing the breast. The

cap of this cylinder is fixed on the bottom of the tank, so making quite easy the rotational stage.

The second one is the tumor cylinder and has the same height of the breast cylinder, exactly how it

happens in the simulation scenario, and its diameter is 15 mm having the lower end closed to avoid

any leakage of liquid. To keep fixed the interaxial distance, d = 33 mm, between these cylinders

two guides cable, similar to that shown in figure 6.1, are used.

Unfortunately this choice limits to only one scattering position in which tumor can be placed.

A wooden board lies on the top of the tank and screwed on it. The big hole complete the rotational

movement of the breast cylinder keeping fixed the distance with the transmitting antenna and its
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6.1 Experimental scenario

Figure 6.1: The cable guide keeps the tumor cylinder in rest.

vertical axis perpendicular to the tank basis. Three other holes are realized on the board to dive

the antenna into a suitable position.

Figure 6.2 shows a schematic top-view of the breast phantom. The thickness of the outer

cylinder is about 2 mm, and should mimic the skin layer: though its relative permittivity is not

exactly known, in this experimental condition is a very raw approximation, in fact plastics have a

relative low permittivity (http://www.engineeringtoolbox.com/) that can be stated in the range

of 2 ∼ 6 far from the value of 36 used in the simulation process. A corresponding low conductivity

of the plastic with respect to the skin makes this setup a more favorable condition. Finally on

the wood board, around the breast cylinder is placed a goniometric indicator with 1 mm precision

used to manually read the angle of rotation.

Figure 6.2: Schematic top-view of the phantom

This prototype, dubbed Archimede, has been fully developed and built by the Medical Imaging

Group of the Physics and Astronomy Department of the University of Bologna. A detailed view
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6.2 Instruments

is in 6.3 (a) and the improved version (b), in the following detailed.

(a) (b)

Figure 6.3: Full view of the monostatic imaging system: (a) Archimede first version, (b) Achille,
the improved version.

6.2 Instruments

The instruments used for this monostatic data collection are a dipole antenna, an high precision

coaxial cable designed for microwave range, a vector network analyzer (VNA) and a personal

computer (PC).
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6.2 Instruments

6.2.1 Dipole

The dipole antenna is a ANT-24G-905-SMA developed by RS Solution. This is an outdoor antenna

therefore suitable to be dived into liquid environments. An excerpt of its data sheet is reported in

table 6.1 and figure 6.4 shows how is manufactured.

Figure 6.4: Dipole Antenna: ANT-24G-905-SMA

Table 6.1: Dipole antenna: excerpt of data-sheet

length 30 cm
Frequency (Center/Band) 2.4 GHz

Frequency Range 2.4 GHz ∼ 2.5 GHz
Number of Bands 1

Gain 5 dB
connector type SMA male-rp

6.2.2 VNA

High-frequency network analysis involves incident, reflected and transmitted waves moving along

transmission lines. It is helpful to think of traveling waves along a transmission line in terms of a

light-wave analogy: when light hits a material some part is reflected and some transmitted. VNA

measures the proportion between the power transmitted and the power reflected in terms of the

S-parameters already detailed in the section 2.3. A schematic block on how VNA accomplishes

this task is given in figure 6.5.

Copper Mountain S5048 VNA has been used to collect and deliver data. It is two-ports fully

vectorial, meaning that amplitude and phase of the signals are both collected: two reflection

coefficients, S11 and S22, and two transmission coefficients, S21 and S12 can be simultaneously

measured. In table 6.2 are summarized its most important characteristics.

Prior to its use this device must be calibrated following the steps provided by the software.

The two N-type ports are tested with three adapters: shorted, open and close. This operation has

been performed using the Agilent 85032B/E calibration kit.
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6.3 Experimental setup in monostatic configuration

Figure 6.5: Schematic block of VNA operation.

Table 6.2: Copper Mountain S5048 characteristics: excerpt of data-sheet.

Frequency range 20 kHz to 4.8 GHz
Measured parameters S11, S21, S12, S22

Sweep types Linear frequency, log frequency, segment, power sweep
Dynamic range 120 dB (10 Hz)

Measurement speed 250 µs per point at 85 dB dynamic range
Output power adjustment range −50 dBm to +5 dBm

6.2.3 Personal Computer

The PC is directly linked to the VNA via an USB 2 connection and is used to hold the proprietary

software deployed with the VNA and to record the data measured. It also holds the MATLAB

reconstruction routines and the LABVIEW visual integrated environment along with the VNA

virtual instruments driver to manage an automated acquisition in the improved version.

6.3 Experimental setup in monostatic configuration

Due to the simple phantom feature, the system has been only tested by changing the contrast factor

between the breast and the inner tumor. The system is designed to replicate a typical monostatic

scenario: the phantom is manually rotated for 360 degrees relative to the stationary dipole thus

to simulate a circular antenna movement around the breast circumference as it happens in a real

situation. For reading convenience, data are collected in 18 different positions corresponding at
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6.3 Experimental setup in monostatic configuration

Figure 6.6: Copper Mountain S5048 VNA: front view

20 degrees of angular step. The imaging domain radius corresponds to the breast radius, that is

rbreast = 55 mm and the dipole turns around a circle whose radius is rdpos = 68 mm.

6.3.1 Air-Water configuration

To test the system, a huge contrast between the breast permittivity εb and the tumor one εs

was initially considered: the tank and breast cylinders has been left out-of-liquid and the tumor

cylinder has been filled with water. In these experimental conditions the TB ratio is:

εb : εb = 80 : 1 (6.1)

To apply the multi-frequency combination of the pseudospectrum using the GM-Music algo-

rithm, other frequencies must be chosen. In particular we focus on the resonant frequencies visible

in figure 6.7 where the reflection coefficient is showed in a log-magnitude graph versus a wide

range of source frequency.

The first peak, below 1 GHz, is discarded due to the poor reconstruction resolution, limiting

the working range in [1, 4.2] GHz.

The reconstructions made at single frequencies show the same trend seen using synthetic data

and the resulting metrics are shown in Table 6.3 where the mean value and the standard error

are estimated making multiple acquisitions. The experimental results in air show that to lower

frequencies corresponds larger FWHM, wider delocalization and higher contrast, while at high

frequencies we encounter small FWHM, but less contrast due to emerging artifacts as it happened

in the simulated scenario.

The best frequency range is ν = [2, 4] GHz, known result by simulations and confirmed by

experimental measures. Using this information, the GM-MUSIC pseudospectrum is computed in
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6.3 Experimental setup in monostatic configuration

Figure 6.7: VNA return loss graph response for the dipole antenna. The resonant frequencies
are used for the multi-frequency reconstruction.

the same range. The GM-Music metrics are reported in table 6.5, showing that for this algorithm

lower contrast and smaller FWHM than the single-frequency case. Even in the experimental

condition the localization metrics remains much smaller than spatial the resolution.

6.3.2 Measures with oil as background medium

After making calibration measures in air, we fill the phantom with seed oil whose relative per-

mittivity can be variable in the range 2-3 depending on proportion and type of chosen seeds. To

perform the assessment of the new scenario, the S11 signal produced by the water scatterer in the

two different backgrounds is compared. Figure 6.9 shows the resulting return loss diagram.

The antenna behavior is affected by the presence of the background with a different relative

permittivity and the operating frequency peak, 2.45 GHz in air, is now shifted to a lower frequency

with a lower return loss. Other peaks appear at higher frequencies and should be useful for

the multifrequency combination. To assess the correct value of the permittivity we perform the

reconstruction by changing the corresponding wavenumber k = k(ε) that appears in the Green

function propagator defined in §2.22 tuning the relative permittivity along three different values:

2, 2.5 and 3. The reconstructed images are shown in figure 6.10 with the best localization and

SNR using εb = 2, a value lower respect the mean value of a breast.
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6.3 Experimental setup in monostatic configuration

Figure 6.8: Air-water reconstructed images varying the illumination frequency in the VNA range.

Table 6.3: Spatial and contrast metrics varying the illumination frequency in the range 1 GHz -
4 Ghz in air-water configuration.

frequency FWHMρ [mm] SDρ [mm] SNR [dB]

1.0 GHz 21 ± 2 5 ± 1 5 ± 1
2.0 GHz 20 ± 2 1 ± 1 5 ± 1
3.0 GHz 15 ± 1 2 ± 1 4 ± 1
4.0 GHz 15 ± 2 -2 ± 1 3 ± 1

When using vegetables oil as coupling medium the castor oil, whose relative permittivity value

is about 5, should be preferred. The assessment of this value allow us to define the TB ratio that

becomes:

εt : εb = 40 : 1 (6.2)

Clearly TBR magnitude does not still represents a real situation. We performed the single fre-

quency reconstruction and some resulting images are displayed in figure 6.11, obtained using the

same frequencies used to display figure 6.8.

The spatial and contrast metrics are shown in table 6.4 whose values represents the mean

and standard error computed on repeated measures. Oil medium performs very badly at high

frequencies and the artifact appearing at 4 GHz has greater value than the true signal while

low frequencies are improved comparing to those in air. We choose the frequency range for that

produces a useful reconstruction is 1.5-3.5 GHz having the experimental results in oil are similar

to those in air due to the high TB ratio.

In this range the GM-MUSIC pseudospectrum combining single frequencies resulting metrics

are reported in table 6.5. The GM-MUSIC has a similar contrast and larger FWHM compared

to the best reconstruction in single frequency, but it exhibits better spatial displacement than the

single-frequency.
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6.3 Experimental setup in monostatic configuration

Figure 6.9: Return loss signal as a function of frequency. Red line: water scatterer in air, red
line: water scatterer in oil.

Table 6.4: Spatial and contrast metrics varying the illumination frequency in the range 1 GHz -
4 Ghz in oil-water configuration.

frequency FWHMρ [mm] SDρ [mm] SNR [dB]

1.0 GHz 15 ± 2 -2 ± 1 7 ± 1
2.0 GHz 24 ± 2 -4 ± 1 4 ± 1
3.0 GHz 11 ± 1 1 ± 1 6 ± 1
4.0 GHz 21 ± 2 -22 ± 1 1 ± 1

6.3.3 Measures in oil with an ethyl alcohol scatterer

In order to further lower the TB ratio, the water in the scatterer cylinder in the ARCHIMEDE

phantom has been replaced with a commercial solution of ethyl alcohol at 90%. The relative

permittivity of ethyl alcohol mixture is equal ε = 28, by reference [63]. Now the TB ratio is.

εt : εb = 14 : 1 (6.3)

We compute the GM-MUSIC pseudospectrum in the frequency range 1.5-3.5 GHz. The resulting

images are summarized in figure 6.12 Table shows the metrics for the three experimental configu-

rations along with a similar simulated case has been previously illustrated: rbreast = 7.5 cm located

at half radius and with TBR = 10:1.

These data assert a good agreement between simulated and experimental data even if simulated
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6.4 Achille and Briseide: the improved phantoms

Figure 6.10: Air-water reconstruction at the illumination frequency 3 GHz, varying the back-
ground relative permittivity.

Figure 6.11: Oil-water reconstructed images varying the illumination frequency in the VNA
range.

ones are slightly better in all metrics.

6.4 Achille and Briseide: the improved phantoms

The improved version of Archimede, named Achille, has been recently deployed: an alluminium

cap is introduced on the top of the breast cylinder. This cap has been punched by several holes

of different radius and position to ensure the full repetition of the simulated tests, varying tumor

size and position and also to be able to add fiborglandular structures ()see Figure 6.13).

Externally a wooden base is constructed where a TORNLABS CR1/M-Z8 motor, see figure

6.14, (with fine pitch worm gear that provides 360◦ continuous rotation) is fixed over a small pulley.

A second pulley is joint to the alluminium cap and linked to the motor by a plastic belt to give the

movement. This motorized system is fully supervised by a custom LABVIEW graphical interface

installed on the PC: virtual instruments (VI) drive the rotational stage, collect VNA data and

perform the reconstruction using the MATLAB routines.
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6.4 Achille and Briseide: the improved phantoms

Figure 6.12: GM MUSIC presudospectrum for the three examined configuration.

Table 6.5: Spatial and contrast metrics for GM-MUSIC pseudospectrum in the three configu-
rations. For comparison purpose the last row reports the value obtained in a similar simulated
scenario having tumor radius equals to 7.5 mm and placed in half radius position. (TBR=10:1)

FWHMρ [mm] SDρ [mm] SNR [dB]

water-air 18 ± 2 2 ± 1 4 ± 2
water-oil 15 ± 2 -2 ± 1 4 ± 2
alcohol-oil 17 ± 2 -2 ± 1 3 ± 2

Simulated 13 ± 1 0.8 ± 0.1 5.4 ± 0.1

Besides Achille, as myth tells, stands Briseide, our multistatic phantom. While the first is now

acquiring data, the latter is in its very beginning. Twelve small cylinders are used to dive the

dipole antennas into the tank and two knobs are used to raise and lower the antennas giving an

appropriate longitudinal movement. A multichannel switch has also been added to the system

instrumentation to manage the antennas shift. Brisede layout is finally displayed in figure 6.15.
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6.4 Achille and Briseide: the improved phantoms

Figure 6.13: Achille top view: the holes host the tumor cylinders with different size and positions.

Figure 6.14: TORNLABS CR1/M-Z8 detailed view. It assures the automatic rotational stage
in Achille phantom.

Figure 6.15: Briseide incoming phantom for the multistatic approach.
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Appendix A

Classification

The imaging system developed at the University of Bologna, department of physics and astronomy,

presented in the previous chapter is in its early development, so that we were not able to test a

classification technique based on the images gathered in real or clinic environment. In this chapter

is presented an approach tested on a mammograms dataset and using a deep-learning technique,

the Convolutional Neural Networks (CNN). This is an unsupervised methods belonging to the

class of the artificial neural network, which aims to better mimic the human brain working model

through high-level abstractions in data by using multiple processing layers (from which the term

’deep’) with complex structures. The complete work, to which I have been co-advisor, can be

found in [45].

A.1 CNN

CNN can be traced back to Neocognitron [20] in 1980 and their first use was in digit and ob-

ject recognition and image interpretation. Since 2010 their use was impractical due to the high

computational requirements which has been overcome with the Graphics Processing Unit (GPU)

advent. They differentiate from the standard Artificial Neural Network (ANN) because its input

layer is a map, that is a bi-dimensional structure instead the standard mono-dimensional vector

( see Figure A.1). Theoretically an ANN fully connected and wide enough can learn raw images

without features extraction, however following this approach many problems arise due to the high

number of the parameters to train. Moreover traditional ANN uses a vector as input, this implies

unrolling the 2D images and concatenate the rows or the columns in a resulting vector. Thus the

topology of the input image will be ignored, loosing the intrinsic spatial correlation of neighbor

pixels.

Looking at Figure A.2, we see that one hidden layer consists of two different operation, namely

a convolution and a sub-sampling. If we consider the input image I as a N ×M matrix whose
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A.1 CNN

Figure A.1: Aritificial neural network

coordinates, pixels, contain the corresponding intensity of the image at that point, we can define

a filter as a transformation acting on the pixels intensity value of an image. The convolution is a

filtering operation defined as:

O(N,M) = I(N,M) ∗K(N,M) =
∑
l

∑
j

I(l, j)K(N − l,M − j) (A.1)

The K matrix acting on A is also known as kernel. If, as usual, the dimension of the kernel is

lesser than the dimension of I we have a local filter, that is the intensity value of a pixel of the

output matrix O depends only on a subregion of the input image I. We must take care because

the convolution process is not well defined on the borders: in this case either a padding of the

input image is needed or the convolution filter will be allowed to produce a smaller output image

and, if the kernel has dimension m× n, the resulting dimension the output matrix will be:

(M −m+ 1)× (N − n+ 1) (A.2)

The CNN adopt the latter way. Again looking at Figure A.2, we see that the input image (32 ×
32) is convolved with 6 kernels (5 × 5) providing 6 (28 × 28) new images called Feature Maps. Now

the subsampling sublayer - also known as pooling - (2 × 2) reduces the dimension of the resulting

features maps to (14 × 14) by substituting the region (2 × 2) with its mean and the new feature

maps have rows and columns halved. The subsampled feature map then receives a weighting and

trainable bias and finally propagates through an activation function. Some variants of this exist

with as few as one map per layer or summations of multiple maps [5]. Last layer unrolls the

feature maps and acts as standard ANN. Kernels are randomly initialized and are updated while
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A.2 Digital Database for Screening Mammography

training through the back-propagation algorithm [48]. A suggested variation [64] is to substitute

the subsampling stage with a non-linear max-pooling, that is instead of the mean the subsampling

takes the max value of the considered region.

Figure A.2: Convolutional Neural Network

A.2 Digital Database for Screening Mammography

The Digital Database from Screning Mammography (DDSM) is an online resource of mammo-

graphic images mantained by the University of Florida. The purpose of the project is to provide

a great database of mammograms in digital format to ease the development, evaluation and com-

parison of computer algorithms of Computer Aided Detection. The database consists of about

2600 cases, each of which contains four images, two for each breast (right MLO, CC right, MLO

left, left CC), along with some information on the patient (age, breast density) and image infor-

mation (type of scanner used for scanning, resolution space). Images that contain tumor lesions

are associated to files with information regarding the location, the type and degree of evidence of

the suspected region, thus to make a possible automated assessment of the detection algorithms

performance. Unfortunately the format in which they have been saved is very heterogeneous: they

come from an analog acquisition and later converted in digital format by means of three different

scanners causing a very wide luminosity range. Furthermore some of them are damaged in due to

dust, scratches and manual artifacts such as printed labels.
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A.3 Binary classification

A.2.1 Dataset generation

The CNN training is made by choosing two crop types, one containing the lesions, said the positive

set and one containing the normal tissue, said the negative set. Interesting lesions have 2.5 cm as

maximum dimension thus to be referred the cancer as in ”early stage”. The crops are the input

images for the CNN and their dimension has been chosen (64×64) pixels for computational issues.

To ensure that the crop side is 2.5 cm a subsampling has been performed and the resolution of

each scanner has been used to correctly compute window length L. For a scanner whose resolution

R = 43.5µm.

1. From R Computing the pixels number to have a 2.5 cm crop side:

L =
2.5 cm

R
=

2.5 cm

43.5 · 10−4
= 575 pixel (A.3)

2. update L to the nearest integer value divisible by 64:

L→ 576 (A.4)

Negative examples are extracted from the cases labeled as normal therefore without lesions. Crops

are chosen to enclose at least the 80% of the mammal and some pre-processing like median filter for

noise reduction has been performed. Masking with an adaptive threshold avoided the extraction

by the background.

Positive examples are automatically extracted using the ”overlay” text file that contains the

ground-truth information, that is for cancer cases position, dimensions and morphology of the

lesions. In our case only lesions in the range 1 cm - 2.5 cm are included. After applying the same

preprocessing steps used for the negative cases, we center the lesion in this way:

1. creating a rectangular bounding box of the lesion taking the higher of the two dimension l

2. centering the bounding box in a square window with side l;

3. centering the square window inside greater square window of side L, above computed;

4. cropping the window;

5. subsampling to generate the right size for the CNN input.

The corresponding dataset is made of 418 negative examples and 174 positive examples.

A.3 Binary classification

In general a medical test has the goal to tell if a situation is in a positive or negative condition (i.e.

pregnant or not). When a case is correctly assessed is called a true positive (TP) if it belongs to

the positive class and true negative (TN). False positive (FP) is a case belonging to the negative
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A.4 Model selection

class but associated to negative class and a false negative (FN) is a case belonging to the positive

class but included in the positive one.

The ability of this test to correctly include a positive case in the positive class is called sensitivity

and the ability to correctly include a negative case in the negative class is called specificity.

The measure of this ability is performed using the taxonomy just defined in particular:

sensitivity = TPF =
TP

TP + FN

specificity = TNF =
TN

TN + FP

TPF is acronym for True Positive Fraction and TNF for True Negative Fraction. From these is

possible define the False Negative Fraction (FNF) and the False Positive Fraction (FPF) as follows:

FNF = 1− TPF

FPF = 1− TNF

A.3.1 Receiver Operating Characteristic (ROC)

In a ROC curve the TPF is plotted as a function of the FPF for different cut-off points of a

parameter (threshold). Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold. The diagonal connecting (0,0) point with (1,1)

represents a worthless system that does not distinguish between the two classes. Best ROC curve

connects point (0,0) with point (0,1). The ROC curve can visually inspect the system performance

in the operating point but lacks a quantitative index. The Area Under the Curve (AUC or Az) is

a quantitative index used to evaluate the performance of a classifier.

A.4 Model selection

Model selection involve the choice of the optimal architecture and the tuning of the system pa-

rameters and hyper-parameters. Regarding to CNN the architectural choice concerns:

- input dimension,

- number of layers (convolution + subsampling),

- filters number and dimension,

- subsampling type: average or max,
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A.5 Classification results

- classifiers: softmax (also known as multimultinomial logistic regression) or support vector

machine (SVM).

The model parameters are:

- the values of the kernels

- the weights of fully-connected last layer.

The model hyper-parameters are:

- number of epochs for training,

- learning rate.

The architectural choice has been performed after a random shaking process similar to cross-

validation. The dataset is divided in two more sets: training set containing the 80% of the

examples and test set containing the remainder. The system is trained on the training set and the

error is computed on the test set. The procedure is repeated 10-times with a random permutation

of the examples and the final error is given averaging each iteration error.

Following these steps the resulting optimal architecture is thus defined:

- 1st layer: 5 kernels with (5× 5) dimension,

- 2nd layer: subsampling with max-pooling technique,

- 3rd layer: 3 kernels with (3× 3) dimension,

- 4th layer: subsampling with max-pooling technique,

- 5th layer: SVM classification.

and the hyper-parameters has been set in the following way:

- number of epochs = 3000,

- learning rate = 0.02.

A.4.1 Training the model

To perform a good training is important an accurate normalization process, in our case respect

to the gray level of the images. We perform the normalization by subtracting from an image its

mean value, obtaining pixels value distributed near zero. For each pixel [(1,1), (1,2)...(64,64)]

we calculate mean value and standard deviation using all images, then each pixel is normalized

subtracting this mean value and dividing by the standard deviation.

A.5 Classification results

The idea to use a CNN to detect lesion in mammographic images was previously afforded in 1996 by

Chan [54] using two approaches, with texture features and featureless: this CNN used only 1 layer

and the crop dimension was 16× 16 or 32× 32. Our approach is only featureless because does not
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Figure A.3: ROC comparison between this work and Chan work.

Table A.1: Az comparison. [54]

Az (featureless) Az (feature)
Our CNN 0.94± 0.01 /
Chan 0.83 0.87
Angelini (SVM) 0.973± 0.002 /

need further preprocessing steps. We add a second layer to the CNN and use larger crop, 64× 64,

obtaining an AZ = 0.94 ± 0.01. Figure A.3 shows the corresponding ROC curcropsves, in our

work approximatively TPF=0.9 is reached when FPF = 0.2. Other works founded in literature and

working on the same dataset exibits a slightly better behaviour, like in Angelini et.al. [4] in which

DDSM is used for extracting 5000 negative and 1000 positive crops. The classification process is

performed by means of a SVM in a featureless approach. They reach Az = 0.973 ± 0.002 and

for a TPF=0.9 the corresponding FPF is 0.07. To improve our performance a higher number of

examples should be preferable along with a better normalization process. The comparison between

these works is in Table A.1.
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Conclusions and future work

The process for building a breast cancer MWI phantom has been detailed. We develop some

simulations using COMSOL starting from a simple scenario where a tumor is embedded in an

homogeneous breast. This basic situation is gradually complicated adding a rugged fibroglandular

structure and placing the investigating tumor outside and inside this tissue. Moreover a realistic

model from MRI-derived phantom has also been simulated.

Two different approaches have been afforded inside the simulation process: monostatic and

multistatic.

The reconstruction process has been performed using a linear approach and a novel multistatic

filter for decluttering is also introduced.

An experimental phantom has been built from scratch for monostatic data acquisition: layout,

instruments and methodology has been detailed. Experimental results are obtained varying the

TB ratio.

The detection and localization in a homogenous scenario can be easily realized either in multi-

static or monostatic configuration, and in latter case simulated results are comparable with those

obtained in the experimental setup.

When fibroglandular tissue is added the detection becomes more challenging and can be reached

only when the contrast between the fibroglandular tissue and the tumor is high. Therefore the

exact knowledge of dielectric properties of the breast tissues are mandatory to further explore the

MWI. In this case our results suggest not to follow the monostatic approach if used in combination

with a linear reconstruction method. Multistatic approach has to deal with the mutual coupling

between antennas and a trade-off with number of field points must be taken into account.

The results obtained using a simulated 3D MRI-derived phantom are less conclusive and have

not been presented here.

The classification, shown in appendix as separate work, is performed using CNN, a leading

technique in industrial pattern recognition, and realized on standard mammographic images due

to the lacking of real microwave images. The classification results are better than those founded

in literature using CNN in a different way, but further insight is needed to raise the performance

to those achieved by means of other methods such SVM.
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A.5 Classification results

Future work We are already investigating an homogeneous breast from a full 3D point of view,

that is using a 3D propagator for the point-source to evaluate the MUSIC steering vector. Mie

propagator in 2D and 3D, suitable for extended targets, will also be implemented as soon as

possible and some preliminary results not included in this work are already available.

In the meanwhile the non-linear approach for the inverse problem is being afforded for 2D

simple situations.

The simulation step will be improved using other antenna types, more compact and with high

gain and directivity, such as patch antenna.

As to the experimental stage, the phantom is now improved and the acquisition and reconstruc-

tion process is fully automated using LABVIEW. The newly introduced features allow changing

the tumor size, position and number, moreover a big fibroglandular structure can be added.

The multistatic phantom is currently developed and soon will be operating, allowing a com-

parison with the already available simulated data.
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