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Abstract
In the present thesis I focused on the study of the phenomenology arising from

a class of string models called sequestered compactifications, which were born with
the aim of getting low-energy SUSY from strings. This is not an easy task if com-
bined with cosmological constraints, since the mechanism of moduli stabilization
fixes both the scale of supersymmetric particles and the scale of moduli, which tend
to be of the same order. However, if on the one hand supersymmetric particles with
TeV mass are desired in order to address the electroweak hierarchy problem, on the
other hand the cosmological moduli problem requires the moduli to be heavier than
100 TeV. The specific setup of sequestered compactifications makes this hierarchy
achievable, at least in principle: as in these models the visible sector is located on a
stack of D3-branes at singularities, a physical separation between the visible degrees
of freedom and the SUSY-breaking sources takes place. Such decoupling translates
into a hierarchy between the scale of SUSY-breaking and the spectrum of super-
symmetric particles. Interestingly, moduli are the four-dimensional manifestation
of the existence of extra-dimensions. Since they are only gravitationally coupled,
they could decay late in the history of the universe, affecting in a significant way
its cosmological evolution. Possible deviations of the cosmological observables from
the values predicted by the standard Hot Big Bang Theory constitute an interesting
alternative for the discovery of new physics beyond the Standard Model, which is
complementary to the particle physics search. For this reason in addition to SUSY-
breaking in sequestered models, I also studied several cosmological scenarios arising
from them, such as production of non-thermal dark matter and dark radiation,
reheating from moduli decay and inflation.
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Chapter 1

State of the Art

The higgs boson has been for a long time the last missing block of the Standard Model
of particle physics (in the following Standard Model or SM) [5]. With the announce-
ment of the discovery of a new particle in 2012 [6, 7], whose mass is around 125

GeV and quantum numbers compatible with those of the theorized higgs boson [8],
the scientific community has finally been allowed to celebrate the affirmation of this
theory. The Standard Model describes all known particles1 and their interactions
through three out of the four known forces in nature: the electromagnetic force, the
weak force and the strong force. Fermionic particles compose the so-called matter
of the universe, and are called leptons and quarks. They are organized in three
different families, of which the first one contains the lightest and stable particles,
such as the electron. Forces are mediated by bosonic particles called gauge bosons:
photon, gluons and the bosons W± and Z.

The Standard Model is an extraordinarily successful scientific theory: to the
extent that we can compute physical quantities to make predictions which can be
experimentally verified, it has passed every single test. To give an idea of the
amazing agreement between Standard Model predictions and experimental data, in
Tab. 1.1 we report measured and predicted values for the masses of the W± and Z
bosons, which highlight an impressive accord [5].

In order to locate the Standard Model within a wider scientific context, it is
worth recalling that it represents a specific example of a general tool, called quan-
tum field theory, which allows to describe the physics of relativistic particles at the
quantum level. Quantum field theory represents one of the two main pillars on
which the whole understanding of the universe is currently based, and it is useful

1Except for the fact that the Standard Model does not succefully describe massive neutrinos.

3



Measured values (GeV) SM predictions (GeV)
Mass of W± boson 80.376± 0.033 80.363± 0.006
Mass of Z boson 91.1876± 0.0021 91.1880± 0.0020

Table 1.1: Predicted and measured values for the masses of W± and Z [5]. The
measured value of W± is taken from LEP2 results [9].

to describe the physics taking place at small distances: in particular the Standard
Model describes the physics taking place up to 10−17 cm. On the other hand, the
second main pillar is General Relativity [10], which describes at the classical level
the fourth force of nature: gravity. Given the weakness of the force of gravity, which
becomes relevant only when extremely large amounts of mass are taken into account,
General Relativity is useful to describe the physics involving the largest scales of the
universe. The agreement between predictions of General Relativity and experiments
has been tested to a high degree of accuracy [11].

The Standard Model supplemented by General Relativity is commonly inter-
preted as an Effective Field Theory (EFT) which is valid up to the energies explored
at the Large Hadron Collider (LHC) outside Geneve (MEW ∼ 100 GeV). To be pre-
cise, the description provided by the Standard Model is expected to break down
not far beyond the electroweak scale MEW, while the effective description of gravity
provided by General Relativity is supposed to be a valid approximation all the way
up to the Planck scale MP ∼ 1018 GeV (or some other cut-off scale below MP at
which the four-dimensional description of General Relativity ceases to be valid, as it
happens for example in theories with extra-dimensions). As we will see in the next
sections, there are many good arguments in support of the idea that new physics
should appear at energies just above MEW.

According to the Hot Big Bang Theory, in its early stage the universe was com-
posed by a hot and dense thermal bath of relativistic particles, whose temperature
decreased following its expansion. As the temperature of the thermal bath can be
put in correspondence with the age of the universe, it turns out that the electroweak
energy scale MEW corresponds to a tiny age: tEW = 2×10−11 sec. As a consequence,
the EFT composed by General Relativity plus the Standard Model is perfectly suit-
able to describe the evolution of the entire universe from a tiny fraction of a second
after the Big Bang (tEW) to the present. The Hot Big Bang Theory is the cosmo-
logical counterpart of the Standard Model of particle physics.
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Despite its outstanding success, the Standard Model (and consequently also the
Hot Big Bang Theory) is definitely incomplete, since at least it fails to describe
gravity at the quantum level. More in detail, there are two main gaps which have to
be covered in order to get a comprehensive understanding of the physics governing
the universe. On the one hand, the first and more fundamental gap is the absence of
a quantum theory of gravity. Quantum gravitational effects become essential either
when a big amount of energy density is confined in a small region of space (as in
black holes or in the universe at tP ≃ 10−44 sec), or when the physics taking place
at the smallest distances ℓP ≃ 10−34 cm is considered2. The second gap on the other
hand, is the lack of comprehension of the physics taking place between MEW and
MP, which however should be consistently described in the framework of quantum
field theory. From a cosmological point of view this second gap translates into a lack
of understanding of the evolution of the universe before tEW. Hopefully, very soon
new experimental data coming from the second run of the LHC will thin the fog
out, driving us towards the right way among the myriads of alternatives available
at the moment for the physics beyond the Standard Model.

There are a few main principles which have played a role of guidance in the
development of the current understanding of the universe, and that are extensively
used also in the investigation for new physics. The first one is the principle of ne-
cessity. As we remarked above, Standard Model is a specific example of a more
general tool: quantum field theory, whose birth is exactly due to the necessity of
unifying quantum mechanics and special relativity into a single framework. Indeed,
quantum mechanics is not able to describe relativistic particles, since it does not
provide the possibility of creating and/or annihilating particles, which is instead
allowed by the equivalence between energy and mass of special relativity, along with
the Heisenberg’s uncertainty principle. Similarly, a conceptual obstruction is en-
countered as soon as one tries to formulate a quantum version of General Relativity,
since the prescriptions dictated by quantum field theory to quantize it lead to a non-
renormalizable theory [12, 13]. Given that this obstacle appears to be unavoidable,
it suggests that probably a completely new tool is needed exactly in the same way
as quantum field theory was needed in order to describe relativistic particles. As we
will explain in more detail in Sec. 1.3, the only known candidate theory providing a
description of gravity at the quantum level, and containing all the building blocks
of the Standard Model, is string theory [14, 15, 16, 17, 18].

2As mentioned before, the description of General Relativity can actually break down at distances
larger than ℓP.
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The second principle comes out from a very intuitive observation: physics at
different length scales (which correspond to different energy scales) do not affect
each other. This is a quite obvious point, since clearly it is not necessary to under-
stand quantum mechanics in order to play ping-pong, as well as it is not needed to
appreciate the dynamics of quarks within nuclei in order to study the chemical fea-
tures of a material. Physical phenomena operating at different energy scales simply
decouple from each other. This concept is ubiquitous in physics at every level of
complexity, and it is often referred to as naturalness. The naturalness principle is
also incorporated in quantum field theory [19, 20, 21], in which context for instance
the authors of [22] were able to predict the mass of the charm quark, only by using
naturalness arguments. This idea is strictly related to that of effective field theory:
let us assume to know the renormalizable lagrangian of an effective theory, like for
instance the Standard Model. It is possible to compute loop corrections to the pa-
rameters of the lagrangian (e.g. the masses of particles), as a function of the cut-off
Λ. The energy scale at which the corrections get larger than the measured values of
some of the parameters defines ΛUV: at this scale either some degree of fine-tuning
is needed in order to cancel off different loop contributions and keep the value of
the parameters equal to the measured one, or new physics intervenes, altering the
low-energy description. The latter option is the natural one, and it essentially relies
on some underlying symmetry of the complete theory, which keeps the corrections
small. This idea works perfectly well in the Standard Model, where for instance
the chiral symmetry keeps fermionic masses small, with a single major exception:
the higgs mass. Such a breakdown is due to the generic UV sensitivity of scalar
particles, and it is a further reason to consider the Standard Model unsatisfactory.
Naturalness has probably been the main guidance principle in the search for new
physics beyond the electroweak scale MEW in the last decades.

Strictly related to the idea of naturalness, there is the problem of hierarchies
of the fundamental scales of nature, also known as Dirac’s naturalness. This issue
arises as a consequence of simple dimensional analysis in physics, according to which
dimensionless quantities should be of order one. Such a problem was first noticed by
Dirac, who was interested in understanding the origin of the hierarchy between the
proton mass and the Planck mass: mproton/MP ∼ 10−18. It is commonly accepted
that every time dimensional analysis dramatically fails to predict the ratio between
two scales of nature, the hierarchy should be explained in a dynamical way. In the
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particular case at hand the solution is asymptotic freedom of QCD, which gives

mproton

MP

≃ e
− a

g2s ∼ 10−18 , (1.1)

where a is a order one coefficient, while gs is the strong coupling constant3. On the
other hand the hierarchy between the electroweak scale and the Planck scale

MEW

MP

∼ 10−16 , (1.2)

still needs an explanation.

Finally, it is worth mentioning a trend which is manifest in the development of
the physics in the last century. Starting from the unification of electricity and mag-
netism into a single description through Maxwell’s equations [23], to end with the
unification of weak and electromagnetic forces in the Standard Model, it is possible
to recognize a general tendency pointing towards the unification of all interactions.
This observation has been deeply exploited in the search for new physics, in order
to fill the gap between MEW and MP.

In the present Chapter we first give a brief description of the state of the art,
both in particle physics and in cosmology, in Sec. 1.1. Afterwards we describe the
possible alternatives for the physics beyond the current understanding in Sec. 1.2,
focusing specially on the role played by supersymmetric theories. Finally we will
report a brief introduction to the main concepts of string theory in Sec. 1.3.

1.1 Current Understanding

1.1.1 Standard Model of Particle Physics

The Standard Model of particle physics [5] is a quantum field theory based on the
gauge group

GSM = SU(3)col × SU(2)L × U(1)Y . (1.3)

3In the rest of the thesis gs will denote the string coupling constant, except where differently
specified.
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The gauge theory based on SU(3)col describes strong interactions and it is called
Quantum Chromo-Dynamics (QCD), while the SU(2)L×U(1)Y component describes
electroweak (EW) interactions. Matter particles are organized in three families of
quarks and leptons, as summarized in Tab. 1.2, transforming under the gauge groups
as reported in Tab. 1.3.

Field 1st family 2nd family 3rd family

mass (in GeV) mass (in GeV) mass (in GeV)

ui quarks u c t

(1.5− 3.3)× 10−3 1.14− 1.34 169.1− 173.3

di quarks d s b

(3.5− 6)× 10−3 0.07− 0.13 4.13-4.37

leptons e µ τ

0.51× 10−3 1.05× 10−1 1.78

neutrinos νe νµ ντ

< 2× 10−9 < 0.19× 10−3 < 18.2× 10−3

Table 1.2: Families of matter particles of the SM. We report the respective masses
measured in GeV. Uncertainties on quark masses are predominantly theoretical,
since they do not exist in free-states. The bounds on neutrino masses can be sharp-
ened by making assumptions on the nature of their mass terms.

The most interesting feature of the strong sector is asymptotic freedom, which
explains the hierarchy in eq. (1.1). The coupling constant of strong interactions
depends on the energy Q as

α2
s(Q) ≡

g2s(Q)

4π
=

1

1 +
11Nc−2Nf

12π
log
(

Q2

Λ2
QCD

) , (1.4)

where Nc = 3 is the number of colors, Nf is the number of kinematically accessible
quark flavours (e.g. Nf = 5 at Q = MZ) and from measurements it turns out that
ΛQCD ≃ 200 MeV [5]. In the limit Q2 → ∞ the strong coupling constant vanishes,
giving rise to asymptotic freedom. At low Q2 on the other hand, QCD is in the
strong regime and quarks are constrained to form bound states called hadrons, such
as the proton, the pions, etc..
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Field SU(3)col SU(2)L U(1)Y U(1)em

Qi =

uiL
diL

 3 2 1
6

+2/3

−1/3


uiR 3 1 −2

3
+2/3

diR 3 1 1
3

−1/3

Li =

νi
eiL

 1 2 −1
2

 0

−1


eiR 1 1 1 −1

H =

H−

H0

 1 2 −1
2

−1

0



Table 1.3: Matter particles of the SM. The index i runs over the three families in
Tab. 1.2.

The dynamics of the electroweak sector is much more involved than that of the
strong one. SM is a chiral theory, i.e. left and right components of the fermionic
fields transform differently under the gauge groups, as it can be observed in Tab. 1.3.
The chiral nature of the SM interactions is reflected in the fact that mass terms are
forbidden for all the fermions of the theory as a consequence of gauge invariance.
The higgs field is a complex field transforming as a doublet under SU(2)L and its
dynamics is determined by the scalar potential

VHiggs = λ

(
|H|2 − v2

2

)2

, (1.5)

whose minimum is given by ⟨|H|2⟩ = v2

2
. The higgs VEV triggers a spontaneous

symmetry breaking of the group of electroweak interactions down to the group of
symmetry of the electromagnetism

SU(2)L × U(1)Y → U(1)EM . (1.6)

The ElectroWeak Symmetry Breaking mechanism (EWSB) is also called higgs mech-
anism. Using gauge invariance it is possible to show that without loss of generality

9



the higgs field can be written (in the unitary gauge) as

H(x) =

(
0

v√
2
+ h0(x)√

2

)
, (1.7)

where h0(x) is the unique, electrically neutral, physical scalar excitation about the
higgs vacuum. As a consequence of the higgs mechanism, three higgs degrees of
freedom are swallowed by the gauge bosons W± and Z, which become massive.
Moreover, through the Yukawa couplings

LYuk = Y ij
U Q

i
ujRH

∗ + Y ij
D Q

i
djRH + Y ij

L L
i
ejRH + h.c. , (1.8)

the higgs mechanism gives mass to all the fermions of the theory, except the neutri-
nos. The fermion masses are given by

mf =
yf√
2
v , (1.9)

where v = 170 GeV, while yf is an eigenvalue of the proper Yukawa matrix among
those appearing in eq. (1.8).

The Yukawa couplings in eq. (1.8) are the most general compatibly with gauge
invariance and renormalizability, and they feature an accidental invariance under
the global symmetries baryon number B and lepton number L. A clear manifes-
tation of the conservation of the baryon number is the proton lifetime, which is
constrained by the Kamiokande experiment to be τproton > 1032 − 1033 years [24],
while lepton number conservation4 puts a strict bound on processes such as µ→ eγ,
whose branching ratio is currently Br(µ→ eγ) < 5.7× 10−13 [25]. The hypercharge
assignments of Tab. 1.3 are dictated by anomaly cancellation.

A crucial point in the phenomenology of the SM is that the fields enumerated in
Tab. 1.3 form a basis of gauge eigenstates, which does not diagonalize the mass ma-
trices obtained through the Yukawa couplings in eq. (1.8). In order to get the mass
eigenstates it is necessary to diagonalize them by unitary transformations V U,D,L

L ,
V U,D,L
R acting on the left and right handed fermions respectively. Eventually the
W± bosons couple to the quarks through the Cabibbo-Kobayashi-Maskawa (CKM)

4Lepton number is actually violated by neutrino oscillations.
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matrix, which is not diagonal

|VCKM| =
∣∣∣V U

L

(
V D
L

)†∣∣∣ =
0.9742 0.226 0.0036

0.226 0.9733 0.042

0.0087 0.041 0.99913

 , (1.10)

and produces a mixing of the quark flavors. On the other hand the CKM matrix does
not appear in the couplings of the Z boson with quarks, and this fact is reflected
in the absence of flavour-changing neutral currents. A similar mixing does not
happen in the lepton sector of the SM, as a consequence of the fact that neutrinos
are massless. The CKM matrix has complex entries, but many of them can be
eliminated by re-parametrization of the fields. Eventually a single phase turns out
to be physical, producing CP-violation in the SM. A second source of CP-violation
is the θ-term

Lθ =
θ

32π2
GµνG̃

µν , (1.11)

which can be added to the SM lagrangian, where Gµν is the field strength of QCD.
Although this term is a total derivative, it can contribute to physical processes
through gauge instantons. Since it would give a contribution to the electric dipole
moment of the neutron, which is highly constrained, the value of θ has to be minus-
cule: θ < 10−10. This unexplained high degree of fine-tuning required to match the
experimental data is known as Strong CP Problem.

1.1.2 Standard Model of Cosmology

As already discussed in the introduction to the chapter, the Standard Model of
cosmology is based on the Standard Model of particle physics supplemented by
General Relativity, which describes gravity at the classical level in terms of the
dynamics of the space-time metric gµν . The equations of motion for the metric
tensor can be inferred by the Einstein-Hilbert action, which reads5

SEH =
M2

P

2

∫
d4x

√
−gR , (1.12)

where g = det (gµν) and R is the Ricci scalar associated to the space-time metric gµν .
MP denotes the reduced Planck mass, which in terms of the universal gravitational

5We neglect the cosmological constant here.
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constant G can be written as

M2
P =

1

8πG
≃ 2.4× 1018 GeV . (1.13)

From the action in eq. (1.12) it is possible to infer the famous Einstein’s equation

Rµν −
1

2
Rgµν = 8πGTµν , (1.14)

where Tµν is the energy-momentum tensor and Rµν is the Ricci tensor.

The Standard Model of cosmology [26], also called Hot Big Bang Theory, assumes
that the universe started in a hot and dense state. As the universe expanded, the
thermal bath cooled and progressively became less dense. One of the most exciting
discoveries in cosmology dates back to 1998, when two independent projects [27, 28]
observed that currently the universe is expanding at an accelerate rate. The basic
observation about the universe is that it is isotropic and homogeneous at large spatial
scales, above the size of the largest observed structures i.e. supercluster of galaxies,
which can reach a diameter of tens of Megaparsec [29]. As the observations suggest
that space is essentially flat [30], isotropy and homogeneity allow us to write the
metric of the expanding universe as

ds2 = dt2 − a2(t)dx2 , (1.15)

which is called Friedmann-Robertson-Walker (FRW) metric6. The entire dynamics
of the universe is described by the evolution of the time-dependent scale factor a(t).
Since the universe expands, a(t) is an increasing monotonic function of the time.
The rate of expansion is written in terms of the Hubble parameter

H(t) =
ȧ(t)

a(t)
, (1.16)

whose current value H0
7 defines the Hubble law

v = H0r , (1.17)

where v is the speed of a far galaxy and r is its distance from the Earth. The
reciprocal of the current values of the Hubble constant gives an estimate of the age
of the universe, which is approximately t0 = H−1

0 ≃ 14× 109 yrs.
6The FRW in eq. (1.15) is written in the case of flat universe.
7The subscript 0 is usually used to denote current values of physical quantities in cosmology.
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Depending on the source of energy which dominates the universe in a given
epoch, the scale factor has a different time-dependence, as reported in Tab. 1.4

Source of Energy a(t) Hubble parameter

Radiation ∼ t1/2 1
2t

Matter ∼ t2/3 2
3t

Vacuum Energy ∼ eHt const.

Table 1.4: Scale factor as a function of time, depending on the source of energy
dominating the universe in a given epoch.

The dynamics of the scale factor is dictated by the Einstein’s equation. Assuming
that the equation of state of the universe takes the perfect fluid form

p = wρ , (1.18)

and using the FRW metric in eq. (1.15) it is possible to rewrite the Einstein’s
equation as

H2 =
8πG

3
(ρmatter + ρradiation + ρΛ + ρcurv) ,

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p) , (1.19)

where ρi denote the contributions to the total energy density of the universe ρ coming
from different sources, and the derivatives are taken with respect to t. Equations in
(1.19) are called Friedmann’s Equations. In the first Friedmann’s equation we also
included a contribution ρcurv due to the curvature of the universe, to be as generic
as possible, even if observations show that it is negligibly small [30]. In terms of the
critical value of the energy density ρc = 3

8πG
H2

0 = 5 × 10−6 GeV/cm3, it is possible
to define the current fractions of energy density

Ωi =
ρi,0
ρc

, (1.20)

in terms of which the first Friedmann’s equation takes the nice form

H2 =
8πG

3
ρc

[
Ωmatter

(a0
a

)3
+ Ωradiation

(a0
a

)4
+ ΩΛ + Ωcurv

(a0
a

)2]
. (1.21)
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A few observations about eq. (1.21) are in order. First, at the current epoch the
various components sum up exactly to one. The second observation is that from
the scaling of the different sources of energy density, it is possible to understand the
sequence of the dominating ones. At the very early stages of the universe, when
a ≪ a0, radiation dominated. Subsequently matter started to dominate at the age
tmatter = 105 yrs. The vacuum energy, also called Cosmological Constant Λ, has
started his period of domination very late, at the age of tΛ ≃ 7 × 109 yrs. The
parameters Ωi represent the current fractions of the energy density, which are

Ωradiation ≈ 5× 10−5 , Ωmatter ≃ 0.27 , ΩΛ ≃ 0.73 , |Ωcurv| < 0.005 , (1.22)

so that currently the universe is dominated by the Cosmological Constant Λ, with
a minor contribution from matter, divided into baryonic matter and Dark Matter
(DM) in the following proportions

Ωbaryons ≃ 0.046 , ΩDM ≃ 0.23 . (1.23)

DM is presumably composed by stable massive particles not included in the
SM, which do not interact electromagnetically and strongly. These compose clumps
of energy density which account for most of the mass of galaxies and clusters of
galaxies. There are several experimental evidences for its existence, which also
provide estimates for its abundance, namely

1. Accurate reconstructions of the mass distributions in clusters of galaxies is
obtained through the observations of gravitational lensing of the light coming
from further galaxies [31, 32].

2. X-ray observations of clusters just after their collisions show that most of
baryons are in a hot, ionized intergalactic gas. The total mass of clusters
exceeds the mass of baryons in luminous matter by an order of magnitude [33].

3. The study of the motion of stars at the periphery of galaxies gives further
motivations for DM. Assuming circular motion, the dependence of the velocity
v(R) on the distance R from galactic center follows the Newton’s law

v(R) =

√
GM(R)

R
. (1.24)

Observationally, v(R) = const. sufficiently far away from the center, and this
deviation from the expectations can be explained by assuming that luminous
matter is embedded into dark clouds of larger size [34].
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4. Another possibility is to measure the speed of galaxies in galactic clusters and
use the virial theorem to infer the gravitational potential and hence the total
mass in the cluster itself. It turns out that the estimated total mass by far
exceeds the sum of masses of individual galaxies in clusters. This discrepancy
can be explained if most of the mass is due to DM which is distributed smoothly
over the cluster.

The presence of DM in the universe is quite important for our own existence, since
it turns out that without it the universe today would still be pretty homogeneous,
and as a consequence large scale structures (like galaxies and clusters of galaxies)
would have never formed. DM can be of three different types, depending on the
mass mDM of the particles which compose it: if mDM > 30KeV it is called Cold
Dark Matter (CDM), while if mDM = 1 − 10KeV then it is called Warm Dark
Matter (WDM), if mDM < 1 KeV it is called Hot Dark Matter (HDM). In the
present work we will deal with CDM. In this case, one of the best candidates for
DM is represented by Weakly Interacting Massive Particles (WIMP’s). In fact the
abundance of DM is roughly given by8

ρDM

s0
≈ ⟨σv⟩−1 , (1.25)

where ρDM is the energy density of DM, s0 is the current value of the density of
entropy and ⟨σv⟩ is the annihilation cross section for DM particles. If the annihi-
lation cross section is of the same order of magnitude as that of weakly interacting
particles ⟨σv⟩ ∼ 10−8 GeV−2, the abundance of DM roughly matches the observed
value. This observation is usually called the WIMP miracle.

The estimate in eq. (1.25) contains a concept which is fundamental in the un-
derstanding of the thermal history of the universe: as the expansion of the universe
H equals the rate of interaction of a given particle Γ then the particle freezes-out,
decoupling from the thermal bath. This concept is useful to determine the abun-
dance of CDM, as well as for instance the epoch of neutrino decoupling.

The standard cosmological model which includes CDM and dark energy with
abundances close to those reported in eq. (1.22) and eq. (1.23) is called ΛCDM.
We summarize the key events in the thermal history of the the universe, according
to the ΛCDM, (see also Tab. 1.5)

8The entropy density s is often used to measure the number of particles Ni of a given particle
species in a comoving volume, since in case of entropy conservation s ∼ a−3, and then Ni = ni/s,
where ni is the number density of particles.
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• Baryogenesis - The universe features an asymmetry between observed matter
and antimatter9, which can be quantified through the ratio

η =
nb
s0

≃ 8× 10−10 , (1.26)

where nb is the number density of baryonic particles. Since we do not have
experimental access to the energies at which baryogenesis presumably took
place, we do not know which physical process has produced the asymmetry in
eq. (1.26), despite many mechanisms have been proposed.

• Electroweak Phase Transition - Assuming that the universe was reheated
at a temperature above MW, when the thermal bath reached a temperature
of about 100 GeV, the electroweak phase transition occurred [39, 40, 41, 42],
causing the higgs field to get a VEV. As a consequence the electroweak group
SU(2)L ×U(1)Y got broken to the electromagnetism one U(1)em and the par-
ticles of the SM became massive.

• QCD Phase Transition - Above 150 MeV quarks were asymptotically free,
and the thermal bath was composed by a phase of matter called Quark Gluon
Plasma. Around the temperature of 150 MeV strong interactions became
relevant and the quarks were suddenly constrained to form hadrons.

• DM Freeze-Out - Assuming that DM is of the cold type and that it is
composed of Wimp’s, it decoupled at a temperature around 1 MeV.

• Neutrino decoupling - Since neutrinos interacted with the thermal bath
only through weak interactions, the same estimate as for WIMP DM holds,
with a minor correction, so that the freeze-out took place at a temperature
around 0.8 MeV.

• Electron-Positron annihilation - Electrons and positrons annihilated soon
after neutrino decoupling at a temperature of 0.5 MeV, slightly reheating the
photon thermal bath. As a consequence the energy density of neutrinos ρν is
related to that of photons ργ as

ρν =
7

8
Neff

(
4

11

)4/3

ργ , (1.27)

9We ignore the possible existence of compact objects made of antimatter, such that there is no
asymmetry as in eq. (1.26). Such compact objects are predicted in some models [35, 36] and do
not contradict observations [37, 38].
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whereNeff is the effective number of neutrinos, and this expression is valid after
neutrino decoupling. The effective number of neutrinos after e+e− annihilation
in the SM is Neff,SM = 3.046.

• Big Bang Nucleosynthesis (BBN) - At a temperature of about 300 KeV,
light elements started to be formed. This is the furthest epoch of which we have
proper and detailed comprehension [43, 44], both from a phenomenological and
from a theoretical point of view.

• Recombination - At a temperature of about 0.3 KeV the neutral hydrogen
formed via the reaction e−+p+ → H+γ, since its reverse reaction had become
disfavored.

• Photon Decoupling - Before recombination the photons were coupled to
the rest of the plasma essentially through Thomson scattering e−+γ → e−+γ.
The sharp drop in the free electron density after recombination made Thomson
scattering inefficient and the photons decoupled at 0.25 eV. As a consequence,
they started their free-stream through the universe, and are today observed as
the Cosmic Microwave Background (CMB).

The CMB consists of free-streaming photons which last-scattered about 400000
years after the birth of the universe. They have an excellent black-body spectrum
with temperature [45]

T0 = 2.725± 0.001K . (1.28)

This spectrum is almost perfectly uniform in all directions, so that we can infer that
the universe at photon decoupling was almost perfectly isotropic and homogeneous.
Small perturbations to this uniformity have been measured to be of order δT

T0
∼

10−5 [46, 47, 48, 49].
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Event Time t Temperature T

Baryogenesis ? ?

EW Phase Transition 2× 10−11 sec 100 GeV

QCD Phase Transition 2× 10−5 150 MeV

DM Freeze-Out ? ?

Neutrino Decoupling 1 sec 1 MeV

Electron-Positron annihilation 6 sec 500 KeV

Big Bang Nucleosynthesis (BBN) 3 min 100 KeV

MatteRRadiation Equality 60× 103 yrs 0.75 eV

Recombination 260− 380× 103 yrs 0.26− 0.33 eV

Photon Decoupling 380× 103 yrs 0.23− 0.28 eV

Dark energy-Matter equality 9× 109 yrs 0.33 meV

Present 13.8× 109 yrs 0.24 meV

Table 1.5: Key events in the thermal history of the universe.

1.2 Beyond the Standard Paradigm

1.2.1 Beyond the Standard Model of Particle Physics

We start by listing all the problems featured by the Standard Model of particle
physics:

1. Observational issues. The Standard Model does not describe

• Gravity,

• Dark energy,

• Dark matter,

• Neutrino masses.

2. Theoretical issues.

• Electroweak Hierarchy Problem - This problem is two-fold: the first issue
is to understand the physical origin of the hierarchy between the scales
MEW and MP, while the second issue is to understand how it is possible
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to keep this hierarchy stable against quantum corrections. In fact, as
we mentioned in the introduction to the chapter, in general scalar fields
are not protected by any symmetry, and then they can receive arbitrarily
large quantum corrections to their mass. This is the case for the higgs
field, which receives quadratic corrections of the form

δm2
Higgs ≃

yt
8π2

Λ2
cutoff , (1.29)

where Λcutoff is the energy scale at which physics beyond the SM appears,
ranging from MEW to MP, while yt ∼ 1 is the Yukawa coupling of the
largest correction due to the top quark. If Λcutoff ≃ MP the fine-tuning
required in order to keep the higgs mass light is of the same order of the
ratio MEW/MP ∼ 10−16.

• Strong CP Problem - As we mentioned in Sec. 1.1.1, a term as in eq.
(1.11) can be added to the SM lagrangian, and the angle θ is severely
constrained by the experimental bounds on the electric dipole moment of
the neutron: θ < 10−10. The lack of a dynamical mechanism to this huge
fine-tuning of θ is known as Strong CP Problem.

• Gauge Coupling Unification - The running of the Renormalization Group
(RG) makes gauge coupling constant evolve in such a way that they tend
to meet at a high scale. However, in the Standard Model the gauge
coupling unification is not sufficiently precise to imply that it is not simply
an accident.

• Arbitrariness - There are many arbitrary parameters in the lagrangian
of the SM, whose values have to be inserted by hands, in order for the
predictions to match with the experimental data. These parameters in-
clude the number of families of the SM, the masses of fermions (excluding
neutrinos) which span a range of five order of magnitude (from me ≃ 0.5

MeV to mt ≃ 170 GeV.) and are intimately related to Yukawa couplings,
CKM angles, neutrinos masses and mixing angles. All these parameters
deserve a deeper explanation in terms of dynamical mechanisms which
fix their values to the physical ones. Analogously, also the higgs scalar
potential is assumed to have the form given in eq. (1.5) with no good
reason, in order to produce the electroweak symmetry breaking.
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Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry which mixes bosonic and fermionic
degrees of freedom of a theory. In its ten-dimensional version, supersymmetry is an
essential ingredient of string theory, since it avoids the presence of tachyons in the
string massless spectrum. Moreover, as we discuss in Sec. 1.3, two-dimensional
worldsheet supersymmetry is crucial in order for string theory to admit space-time
fermions.

Four-dimensional global supersymmetry has been the main candidate for physics
beyond the Standard Model for decades, mainly due to its ability to address the hi-
erarchy problem [50, 51]. The simplest supersymmetric extension of the Standard
Model of particle physics is the Minimal Supersymmetric Standard Model (MSSM),
whose chiral spectrum is summarized in Tab. 1.6. Essentially it provides a doubling
of the degrees of freedom of the SM: to each SM particle corresponds a superpart-
ner with different spin and equal mass. An exception is represented by the higgs
sector, where an additional higgs doublet along with its superpartner doublet are
required for the consistency of the theory, in order to get anomaly cancellation.
All the fields in Tab. 1.6 can be accommodated in N = 1 chiral supermultiplets.
In addition to the fields in Tab. 1.6 there are also vector multiplets composed of
the gauge bosons B,W 0,W±, gi and the respective gauginos B̃, W̃ 0, W̃±, g̃i, where
i = 1, . . . , 8 since gluons and gluinos transform in the adjoint representation 8 of
SU(3)col. The fermionic fields B̃ and W̃ are called bino and wino respectively.

The Yukawa couplings between matter fermions and the higgs field are given by
the minimal phenomenologically viable superpotential

WMSSM = uiY ij
U Q

jHu − d
i
Y ij
D Q

jHd + eiY ij
L L

jHd + µHuHd , (1.30)

so that the masses of leptons and quarks are determined as usual by the higgs mech-
anism. Eq. (1.30) contains also an explicit mass term for the higgs, which is called
µ-term and determines the mass of higgsinos. The µ-term is required in order to
get a phenomenologically satisfactory EW symmetry breaking. The superpotential
in eq. (1.30) is not the most generic renormalizable and gauge invariant superpo-
tential: terms violating B and L have been excluded in order to avoid rapid proton
decay. All the terms excluded violate an additional symmetry of the MSSM, called
R-parity, under which SM particles are even and their superpartners are odd. R-
parity can be interpreted as a discrete Z2 subgroup of the symmetry U(1)B−L, which
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Names spin 0 spin 1/2 SU(3)col, SU(2)L, U(1)Y

squarks, quarks Qi (ũiL d̃iL) (uiL diL) ( 3, 2 , 1
6
)

(×3 families) ui ũi ∗R ui †R ( 3, 1, −2
3
)

d
i

d̃i ∗R di †R ( 3, 1, 1
3
)

sleptons, leptons Li (ν̃i ẽiL) (νi eiL) ( 1, 2 , −1
2
)

(×3 families) ei ẽi ∗R ei †R ( 1, 1, 1)

higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2
)

Table 1.6: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.
The spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-
component Weyl fermions. The index i runs over the three families.

is spontaneously broken to Z2 by the VEV of a scalar with charge 2 under B−L. R-
parity has important consequences from a phenomenological point of view, since it
implies that the Lightest Supersymmetric Particle (LSP) is stable and consequently
it could be a viable candidate for DM.

Supersymmetry must be spontaneously broken in nature, since a selectron with
mass mẽ ≃ 0.5 MeV has not been observed. Regardless of the explicit mechanism
of SUSY-breaking, its effects can be parametrized in terms of the soft-terms, i.e.
additional mass terms and cubic interactions [52]

Lsoft =
1

2

(∑
a

Maλaλa + c.c.

)
−m2

ijC
iC

j−

−
(
AijkYijkC

iCjCk +BHdHu + c.c.
)
, (1.31)

where Ma are the masses of the gauginos of the MSSM, mij are the masses of the
scalar fields Ci of the MSSM, Aijk are called A-terms and B is called B-term. More-
over we defined YKij ≡ Y ij

K , where K = U,D,L. The lagrangian in eq. (1.31)
explicitly breaks supersymmetry, since it introduces mass terms only for the super-
partners of the SM particles. The minimal model of SUSY-breaking with universal
soft-terms: M1 = M2 = M3 = M , mij ∝ δij, Aijk = Aiδjk, is called Constrained
Minimal Supersymmetric Standard Model (CMSSM) or Minimal Supergravity Model
(mSUGRA).
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There are many theoretical motivations to look at supersymmetry as a good
candidate for the physics beyond the SM.

• It potentially solves the hierarchy problem, in fact the divergent diagrams are
exactly canceled by the analogous diagrams involving the superpartners, in
the case of unbroken supersymmetry. When supersymmetry is spontaneously
broken by soft-terms, the quadratic divergences are still eliminated, but there
are non-vanishing logarithmic divergences. The hierarchy problem is addressed
provided that the mass of squarks is not far beyond 1 TeV.

• If R-parity is present, the LSP constitute a good candidate for DM.

• Provided that the masses of gauginos and higgsinos lie around the TeV scale,
the MSSM provides a unification of the coupling constants at the GUT scale
MGUT = 2×1016 GeV. Scalars do not contribute to gauge coupling unification
since they enter the equations of the renormalization group for gauge couplings
only at two-loops order.

It is worth recalling that the higgs potential in the MSSM takes the form

VHiggs =
1

8

(
g21 + g22

) (∣∣H0
d

∣∣2 − ∣∣H0
u

∣∣2)2 + (BH0
dH

0
u + h.c.

)
+

+
(
m2
Hd

+ |µ|2
) ∣∣H0

d

∣∣2 + (m2
Hu

+ |µ|2
) ∣∣H0

u

∣∣2 . (1.32)

EWSB requires that a linear combination of H0
u and H0

d has negative squared mass
in the origin H0

u = H0
d = 0. Requiring also that the scalar potential is bounded from

below translates into the conditions10

µ2 =
m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
− m2

Z

2
,

sin (2β) =
2 |Bµ|

m2
Hd

−m2
Hu

+ 2µ2
, (1.33)

where tan β is determined by the ratio between the VEVs of the two higgs doublets

tan β =
⟨H0

u⟩
⟨H0

d⟩
. (1.34)

The conditions in eq. (1.33) are not trivially satisfied by the scalar potential in
eq. (1.32). However EWSB can be triggered by radiative corrections to m2

Hu
, which

10From the first condition in eq. (1.33) it is possible to infer the so-called µ-problem: µ is a
supersymmetric quantity but in order to get a satisfactory SUSY-breaking it has to be of the same
order of mHu , mHd

, which are non-supersymmetric quantities.
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receives negative contributions from one-loop diagrams involving the top squark. As
a consequence also the higgs mechanism finds a dynamical explanation in the MSSM.

The EWSB can produce a mixing among the gauge eigenstates of the MSSM,
whose superpartner mass spectrum is given by the

• Gluinos - g̃i transform in the adjoint representation 8 of SU(3)col, so they do
not mix with any other particle of the MSSM.

• Neutralinos - Neutral higgsinos
(
H̃0
u, H̃

0
d

)
and neutral gauginos

(
B̃, Z̃0

)
com-

bine to form neutral mass eigenstates called neutralinos Ñi, where i = 1, . . . , 4.
If the lightest neutralino is also the LSP, it can play the role of DM in super-
symmetric theories which preserve R-parity.

• Charginos - Charged higgsinos
(
H̃+
u , H̃

−
d

)
and charged gauginos

(
W̃+, W̃−

)
combine to form two mass eigenstates with charge ±1, called charginos C̃±

i ,
where i = 1, 2.

• Squarks and sleptons - In principle all the scalars with the same electric charge,
R-parity and color quantum numbers can mix with each other. Fortunately
only squarks of the third generation actually mix, due to the large Yukawa
coupling yt ∼ 1. It turns out that the mass eigenstates effectively coincide
with gauge eigenstates for all scalars except for the stop, whose left and right
components (t̃L, t̃R) mix and give rise to the physical stops (t̃1, t̃2).

• Higgs fields - Once EWSB has taken place, three out of the four higgs degrees of
freedom become the longitudinal polarization of the electroweak bosons Z,W±.
The remaining five degrees of freedom are: two CP-even neutral scalars h0, H0,
one CP-odd neutral scalar A0, two charged scalars H±. h0 turns out to be the
lightest one, and then it plays the role of the SM higgs field. The tree-level
masses are given by

m2
A0 = 2|µ|2 +m2

Hu
+m2

Hd
, (1.35)

m2
h0,H0 =

1

2

(
m2
A0 +m2

Z ∓
√(

m2
A0 −m2

Z

)2
+ 4m2

Zm
2
A0 sin

2(2β)

)
, (1.36)

m2
H± = m2

A0 +m2
W , (1.37)

According to these expression mh0 < mZ0 , but loop-corrections to the lightest
higgs mass can raise its value up to 125 GeV.
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Supergravity

Supersymmetry, as described in the previous section, is a global symmetry. Interest-
ingly, as soon as we promote the parameter of a supersymmetry transformation to a
space-time dependent function, general coordinate transformations are included in
the theory, which becomes a theory of gravity [12, 13, 53], and it is called N = 1

supergravity. From a field theoretical point of view, the inclusion of gravity can be
described by an additional multiplet, which is called gravity multiplet. It contains
the mediator of the gravitational interactions: a spin 2 massless particle called gravi-
ton gµν and its superpartner, a spin 3/2 massless particle called gravitino ψµα (where
α = 1, 2 is a spinorial index). The gravitino plays the role of the gauge field of local
supersymmetry.

A supergravity theory can be completely determined starting from the following
three functions of the chiral superfields Φi:

1. The Kähler potential K(Φi,Φ
i
): it is a real function which determines the

kinetic terms of the chiral fields.

2. The holomorphic superpotential W (Φi): along with the Kähler potential it
determines the scalar potential of the supergravity theory.

3. The gauge kinetic functions fa(Φi): they are holomorphic functions of the
chiral superfields Φi, which determine the kinetic terms of the gauge bosons
and their couplings to axions.

As for global supersymmetry, also the local one has to be spontaneously broken
in order to match observations. Local supersymmetry breaking produces the anal-
ogous of the higgs mechanism: a scalar field in the hidden sector acquires a VEV
which breaks the local supersymmetry. The fermionic superpartner (goldstino) of
this scalar field is swallowed by the massless gravitino, which acquires mass. This
local SUSY-breaking is called Super-Higgs mechanism. From a phenomenological
point of view it is interesting to notice that local SUSY-breaking automatically gen-
erates soft-terms in the global supersymmetric lagrangian, realizing the so-called
gravity mediated SUSY-breaking. Usually, the scale of SUSY-breaking is roughly
given by the gravitino mass.

Unfortunately, even if local supersymmetry automatically includes gravity, it is
neither a finite theory nor a renormalizable one, meaning that it does not provide
an UV completion of General Relativity.
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GUT Theories

As we have seen in Sec. 1.2.1, in supersymmetric models gauge coupling unification
is achieved at the scale MGUT. Another kind of models which provide gauge cou-
pling unification are Grand Unified Theories (GUT theories)11 [54]. They assume
that the SM gauge group is actually contained in a larger simple group GGUT which
is spontaneously broken to GSM around the GUT scale by a higgs-like mechanism.
In this picture, at energies above MGUT gauge couplings are unified into a single
value: the gauge coupling associated to the GUT group. In the last decades differ-
ent alternatives have been studied in the context of GUT theories, the most relevant
ones being those with gauge groups SU(5), SO(10) or E(6).

For example in the SU(5) GUT, each SM fermionic generation fits into a re-
ducible SU(5) representation 5 + 10. It provides the existence of 24 bosons, of
which 12 are the SM ones, while the remaining 12 transform as SU(2)L doublets
and SU(3)col triplets. The higgs sector is composed by a 24 scalar fields transform-
ing in the representation 24 of SU(5). The VEVs acquired by some of these fields
trigger the symmetry breaking which leads to the SM gauge group. An interesting
point about GUT theories is that, since quarks and leptons fit into the same GUT
multiplets, they can transform into each other by emission/absorption of a heavy
gauge boson, giving rise to lepton/baryon number violation. These interactions are
clearly suppressed by the mass of the heavy bosons, giving rise to a proton lifetime
of about τproton,SU(5) ≃ 4 × 1029 yrs, which is quite below the super-Kamiokande
lower bound τproton ≃ 1032 − 1033, so that the simplest SU(5) GUT is ruled out.

GUT theories with different gauge groups have similar features, with increas-
ingly more involved higgs sectors and symmetry breaking patterns. For example
the breaking of SO(10) to GSM requires a “GUT-Higgs” transforming in the adjoint
representation 45 of SO(10), plus additional scalar fields transforming in the rep-
resentation 16. Analogously, the lowest-dimensional non-trivial representation of
E(6) is the 27, which contains the representation 16 of SO(10), since it decomposes
as

27 = 16+ 10+ 1 . (1.38)

Symmetry breaking in E(6) models is triggered by the VEVs of the “GUT-Higgs”
field in the adjoint representation of E(6) and of the scalar fields in the 27. A

11From which the subscript in the unification scale MGUT.

25



possible symmetry breaking patters is given by

E(6) −→ SU(3)col × SU(3)L × SU(3)R −→ GSM , (1.39)

where the intermediate gauge group, in which the QCD symmetry is treated on
equal footing with left-right symmetries, is called trinification model.

The most interesting GUT models are the supersymmetric versions, since they
provide a much better agreement with the experimental values for the Weinberg
angle and the proton lifetime.

Further Alternatives

We mention a couple of alternatives to supersymmetric theories:

1. Brane-world and large extra-dimensions - The possibility that there exist more
dimensions than those that we naively observe is a very old idea. In the ’20s in
fact, T. Kaluza and O. Klein attempted to unify gravity with electromagnetism
by postulating the existence of a circular fifth dimension [55, 56], whose radius
is small enough to escape the detection. The idea of extra-dimensions turns
out to be completely natural in string theory, where there are six curled up
extra-dimensions, which are usually assumed to be very small. There is a
further alternative, according to which extra-dimensions are large enough to
be in the detection range of the LHC, called Brane-World Scenario. In this
scenario the SM particles are confined in a four-dimensional subspace of a
higher-dimensional space-time. Such a subspace is called brane. On the other
hand, gravitons can move freely in the full higher dimensional space-time, so
that in this picture the weakness of the gravitational interaction with respect
to the other forces can be explained by its dilution. For example, assuming
that there exist n extra-dimensions compactified to circles with radii R, then
the Planck scale can be written as

M2
P = 8πM2(2πR)n , (1.40)

where M is the (n+ 4)-dimensional Planck scale. The hierarchy problem can
be addressed by assuming a large R, so that the value of M is lowered to 1

TeV. Unfortunately the large value of R has not a dynamical explanation in
this scenario.

2. Strong dynamics - A possible alternative solution to the hierarchy problem
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is by assuming that the higgs field is not an elementary particle, but a bound
state resulting from some yet-unknown strong dynamics [21]. In this picture
the hierarchy between MEW and MP can be explained in the same way as the
hierarchy in eq. (1.1) between the proton mass mp ∼ 1 GeV and the Planck
scale MP. Models of physics beyond the SM built following the idea that some
strong dynamics is hiding behind the higgs boson usually go under the name
of Technicolor Models. Despite their attractiveness, these model do not seem
to feature phenomenological viable patterns for fermion masses and mixings.

1.2.2 Beyond the Standard Model of Cosmology

Despite its undeniable success, the Standard Model of cosmology contains many
problems:

1. Initial singularity - Tracing back the scale factor a(t) using the Einstein’s
equation, in the Standard Model of cosmology it inevitably ends up in a sin-
gularity: all the energy of the universe is supposed to be concentrated in a
single point at t = 0. This is a clear signal of the breakdown of General Rela-
tivity in the very early universe, when the energy was concentrated in such a
small region that both quantum mechanics and gravity had important effects.
This problem can only be cured within a quantum theory of gravity, and it is
beyond the scope of the present work.

2. Horizon problem - The high uniformity of the CMB temperature is unex-
plained within the Hot Big Bang Theory: tracing back the evolution of the
universe just using General Relativity and the Standard Model, it is possible
to check that at photon decoupling there were many patches that could have
never been in causal contact.

3. CMB anisotropies - As we discussed in Sec. 1.1.2 the uniformity of the CMB
is astonishing: anisotropies in its temperature have a tiny size with respect to
the background temperature T0: δT

T0
∼ 10−5. However, such deviations from

uniformity can not be produced within the Standard Model of cosmology.

4. Flatness problem - As we mentioned in Sec. 1.1.2, the universe today appears
to be extremely flat, with |Ωcurv| < 0.005. However, even a tiny curvature in
the very early universe would have increased to large values at present time,
so that a huge fine-tuning of order ρcurv

ρc
(tPlanck) ∼ 10−61 would be required in

order match the current bounds.
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5. Monopole problem - According to GUT theories, topological defects such as
monopoles would have been created in the early universe. Since they are stable
objects, they should be still present to date in such a quantity that they would
dominate the energy density of the universe. However, experimental searches
for topological defect have failed, setting stringent bounds on their energy
density in the universe.

Finally we should emphasize that the thermal cosmological history depicted in
Sec. 1.1.2 is completely understood and experimentally tested only from the Big
Bang Nucleosynthesis on. In particular

• If there is a unification mechanism as in GUT theories, additional phase tran-
sitions may have occurred in the universe, provided that it was reheated to a
sufficiently high temperature.

• There are several mechanisms proposed for baryogenesis, but none of them
has found an experimental validation. It is commonly accepted that baryo-
genesis happened at some stage after inflation, since otherwise the baryon
asymmetry would have been smoothed out by the exponential expansion of
the universe. In order to get baryon asymmetry the Sakharov conditions have
to be met [57]: i) baryon number violation, ii) C and CP violation, iii) ther-
mal non-equilibrium (or CPT violation). Among the several mechanisms for
baryogenesis we mention the electroweak mechanism [58, 59, 60], which makes
use of the non-perturbative baryon and lepton number violation in the SM,
the GUT mechanism, which exploits the baryon and lepton number violation
intrinsic in GUT theories, and the Affleck-Dine mechanism [61], which utilizes
the dynamics of MSSM flat directions to develop a baryon asymmetry. All
the proposed mechanisms (including the electroweak one) make use of physics
beyond the Standard Model.

• It is commonly accepted that the decoupling of neutrinos at a temperature
of about 1 MeV gave rise to a neutrino background similar to the CMB12,
but with a smaller temperature of about Tν,0 ≃ 1.95 K. Unfortunately, it is
very hard to observe the cosmic neutrino background, due to the weakness of
neutrino interactions.

12Assuming that the universe was reheated at a temperature larger than 1 MeV.
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Inflation

Problems 2., 3., 4., 5. in the previous list can all be cured at once by assuming
that the universe underwent a period of exponential expansion at very early stages,
when the age of the universe was about tinf ∼ 10−34 sec [62, 63, 64]. Such period is
called inflation. Inflation explains the uniformity of CMB temperature since, in this
picture, regions of the universe which apparently have never talked to each other,
were in causal contact in the very early stages before the accelerated expansion.
Inflation provides also a fascinating explanation to the origin of the anisotropies
observed in the CMB [65, 66]: according to the inflationary paradigm quantum fluc-
tuations taking place in the universe during inflation have been stretched out by
the accelerated expansion, resulting in the tiny anisotropies observed in the CMB
temperature [67, 49]. Interestingly, also the presence of large scale structures in
the universe can be explained as the result of the evolution of quantum fluctua-
tions in the early universe under the action of inflation: a perfectly homogeneous
and isotropic universe would not give rise to galaxies and stars. Finally, inflation
addresses also the flatness and monopole problems, since the accelerated expansion
would drive the universe towards flatness, diluting any possible unwanted relics like
topological defects.

The simplest model of inflation requires the presence of a scalar field ϕ, called
inflaton, minimally coupled to gravity, so that the action reads

Sinf =

∫
d4x

√
−g
[
M2

P

2
R+

1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (1.41)

where V (ϕ) is the scalar potential. Assuming that the scalar field is homogeneous
ϕ(x, t) ≡ ϕ(t), it behaves like a perfect fluid whose equation of state can be written
as

wϕ =
pϕ
ρϕ

=
ϕ̇/2− V

ϕ̇/2 + V
. (1.42)
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The equations of motion for the inflaton and for the scale factor read

ϕ̈+ 3Hϕ̇+ ∂ϕV = 0 ,

H2 =
1

3

(
1

2
ϕ̇2 + V (ϕ)

)
,

ä

a
= H2

(
1− ϕ̇2

H2

)
. (1.43)

Eq. (1.43) shows that a period of accelerated expansion can be sustained for a quite
long time if

ϵ =
M2

P

2

(
∂ϕV

V

)2

≪ 1 , η =M2
P

∂2ϕ,ϕV

V
≪ 1 . (1.44)

The conditions in eq. (1.44) are called slow-roll conditions. In the slow-roll regime
the Hubble parameter is almost constant, and the space-time is approximately de
Sitter:

H2 ≈ V

3
∼ const. , a(t) ∼ eHt . (1.45)

As already mentioned, at the classical level inflation would produce a completely
uniform universe, which is not what we observe. The formation of large scale struc-
tures and of the anisotropies of the CMB are consequences of the quantum fluctua-
tions of the inflaton δϕ and of the metric δgµν around the homogeneous background
during inflation (labeled with a bar)

ϕ(x, t) = ϕ(t) + δϕ(x, t) , gµν(x, t) = gµν + δgµν(x, t) . (1.46)

For practical purposes, after having eliminated redundant degrees of freedom, it
turns out that there are three relevant perturbations: one scalar perturbation R

and two tensor perturbations h = h+, h×13. Two important statistical measures of
the primordial fluctuations are the power spectra of R and h, which can be defined
as

∆2
s =

k3

2π2
PR(k) , ⟨RkRk′⟩ = (2π)3δ (k+ k′)PR(k) , (1.47)

∆2
t =

k3

π2
Ph(k) , ⟨hkhk′⟩ = (2π)3δ (k+ k′)Ph(k) , (1.48)

where the subscript k denotes a mode of the Fourier expansion of R and h, and
13+ and × refer to the two polarizations of a gravitational wave.
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k = |k|. In the slow-roll approximation, the power spectra turn out to be [68, 69]

∆2
s(k) =

H2
∗

(2π)2
H2

∗

ϕ̇2
∗
, ∆2

t (k) =
8

M2
P

(
H∗

2π

)2

, (1.49)

where the subscript ∗ denotes that the quantities have been computed at the horizon
exit of a given mode k after the end of inflation: k = a∗H∗. Given that the amplitude
of scalar perturbations has been measured to be ∆2

s ∼ 10−9, it is possible to define
the tensor-to-scalar ratio r

r =
∆2
t

∆2
s

, (1.50)

in terms of which the energy scale of inflation reads

V 1/4 ≃
( r

0.01

)1/4
1016 GeV . (1.51)

For a detailed survey of the observed values of the inflationary parameters we refer
to the Planck 2015 analysis [67], where it is shown that the tensor-to-scalar ratio is
bounded to be r ≲ 0.1, while the scalar spectrum is nearly scale invariant, being the
spectral index ns defined as

ns = 1 +
d ln∆2

s

d ln k
≃ 0.96 . (1.52)

We shall emphasize that inflation is still an hypothesis, whose predictions have
been repeatedly confronted and found to be in agreement with cosmological observa-
tions. Among these we would like to emphasize the impressive agreement between
the predicted angular power spectrum of CMB temperature fluctuations and the
observed one. The most striking correspondence between observations and infla-
tionary predictions is probably the fact that all the Fourier modes of perturbations
generated during inflation have the same phase [70, 71]. This fact permits to rule
out many competing alternatives to inflation.

1.3 String Theory

All the alternatives for the physics beyond the Standard Model described so far have
been inspired by the principle of naturalness and by the search for the unification
of forces, but they do not provide a new conceptual framework in which gravity can
be conciliated with quantum mechanics. To date, the most promising candidate
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as a theory of quantum gravity is string theory. In a first approach string theory
can be defined as a theory in which the elementary objects are not point-like as in
particle physics, but rather they are one-dimensional objects with typical length ℓs,
sweeping out a two-dimensional surface, called the worldsheet Σ. Since strings have
not been observed in particle accelerators, it is necessary to assume that ℓs is smaller
than the scales currently explored in experiments. Different patterns of vibration of
the strings effectively produce the crowd of particles of the SM or extensions thereof.

Interestingly, the quantization of string theory produces the unavoidable presence
of a spin-two particle in the massless spectrum [72], which behaves like a graviton:
gravity is naturally included in string theory at the quantum level. The reason why
string theory works nicely as a theory of quantum gravity is intuitive: the typical
length ℓs acts as an intrinsic cut-off for the theory, eliminating the divergences
encountered in the straightforward quantization of General Relativity. Furthermore,
although not completely clear at a first glance, string theory potentially contains
also all the building blocks necessary to reproduce the SM in the low-energy limit,
such as non-abelian gauge interactions, chiral fermions in three families, and so
on. For this reason string theory is supposed to be a framework in which all the
interactions can be finally unified. A further nice feature of string theory is that
it does not contain any unknown parameter except the string length ℓs, so that all
the SM parameters (like the number of generations, the Yukawa couplings, etc.)
have to be determined by the dynamics of the theory itself. On the cosmological
side, inflation can be naturally accommodated in the low-energy limit of string
theory, since it contains many fundamental scalar fields which can play the role
of the inflaton. More in detail, all the alternative scenarios for physics beyond
the Standard Models of particle physics and cosmology described in Sec. 1.2 can be
potentially embedded in string theory as low-energy effective field theories. However,
a honest observations is that a completely consistent model which reproduces all the
experimentally established observations has not been found to date, although we are
getting closer and closer.

1.3.1 Basic Facts About Strings

Strings naturally come in two types: open strings, with two free end-points, and
closed strings, with no end-points. They respectively sweep out worldsheets with
and without boundaries. The two-dimensional worldsheet Σ swept out by strings
can be locally parametrized by the coordinates (τ, σ). Σ embeds in a generically D-
dimensional space-time through a set of functionsXM(τ, σ), whereM = 0, . . . , D−1.
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The dynamics of strings is described by the Polyakov action [14, 16]

SP = − 1

4πα′

∫
Σ

d2x
√
− det g gab(τ, σ)∂aX

M∂bX
NηMN , a = 1, 2 , (1.53)

where gab is a metric on Σ and ηMN is the Minkovski metric on the D-dimensional
space-time, while ℓs = 2π

√
α′. The Polyakov action in eq. (1.53) features several

symmetries:

• global D-dimensional space-time Poincaré invariance,

• invariance under 2-dimensional local worldsheet coordinate re-parametrization,

• invariance under local rescaling of the 2-dimensional metric (Weyl invariance).

Fixing the invariance under the local coordinate re-parametrization (light-cone gauge),
it is possible to see that only oscillations orthogonal to the worldsheet are physical,
so that the dynamics described by the Polyakov action reduces to that of D− 2 free
massless scalar fields. Solving the equations of motion for this system gives rise to
a tower of infinite decoupled harmonic oscillators, which correspond to the oscilla-
tions of the string. Finally, the quantization of the system leads to the spectrum of
space-time particles in string theory.

In the perturbative regime, string interactions from the worldsheet point of view
can be treated in a way similar to that used in particle physics. Scattering amplitudes
between asymptotic states corresponding to different particles can be computed as
a quantum path integral, summing over all the possible topologies of the worldsheet
which interpolate between the asymptotic states:

⟨out| evolution |in⟩ =
∑

worldsheets

∫
[DX]e−SP[X]OinOout , (1.54)

where the vertex operators Oin/out encode the information about in and out asymp-
totic states. Similarly to what happens in particle physics, each “Feynman diagram”
can be built by combining a set of basic string interactions vertices, each of which
is weighted with a suitable power of the string coupling gs ≪ 1. Since string theory
does not contain unknown arbitrary parameters except ℓs, gs has to be dynamically
determined by the theory itself. Indeed, it is given by the VEV of a scalar field
which is always present in the massless string spectrum, namely the dilaton ϕ:

gs = e⟨ϕ⟩ . (1.55)
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The perturbative expansion for closed strings is obtained by adding handles to the
worldsheet, while the expansion for open strings is obtained by adding boundaries.
Each “Feynman diagram” is weighted in the perturbative expansion by g−χs , where
χ is the genus of χ of the Σ, namely

χ = 2− 2g − nb , (1.56)

for a worldsheet with g handles and nb boundaries. Given the structure of the basic
interaction vertices, closed strings are always present in an interacting theory, while
the presence of open strings is not mandatory.

The Weyl invariance plays a central role in the dynamics of string theory. In fact,
the requirement that this symmetry is not an anomalous one in the quantum theory
determines the dimension of the space-time D. As soon as a non-trivial background
is considered (as an example a metric different from Minkovski for theD-dimensional
space-time), the theory described by the Polyakov action becomes an interacting
one and it is not exactly solvable. However, it can be studied perturbatively around
the free theory, and the parameter governing the perturbative expansion is α′/R2,
where R denotes the typical length-scale of variation of the space-time fields14. As
a consequence, string theory in a general background features a double expansion:
the genus-expansion controlled by gs and the α′-expansion governed by α′/R2.

Spectrum

In order to get fermions in the spectrum of string theory, it is necessary to con-
sider a generalization of the Polyakov action, such that the 2-dimensional theory is
supersymmetric. Consequently new fermionic degrees of freedom ψM are included
as the superpartners of the bosonic fields XM . In this picture, the requirement of
Weyl anomaly cancellation fixes the dimension of the space-time to ten. Depending
on the way of quantizing it, string theory leads to five different possibilities for the
spectrum, whose massless components are summarized in Tab.s 1.7 and 1.8. Typi-
cally, the spectrum is given by a tower of string states, whose spacing is determined
by the unique unknown parameter of the theory

M2
n ≃ nM2

s ≡ n

ℓ2s
, (1.57)

14A more clear definition will be given in Sec. 1.3.2.
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where Ms = 1/ℓs is the string scale. Since we are interested in the physics taking
place at distances larger than the string length, we have to consider the effective
field theory of massless string states, corresponding to energies E ≪ Ms. The
acronyms NS and R in Tab.s 1.7 and 1.8 refer to different possibilities for the choice
of fermionic boundary conditions:

1. Neveu-Schwarz (NS): ψiL/R(τ + σ + ℓs) = −ψiL/R(τ + σ),

2. Ramond (R): ψiL/R(τ + σ + ℓs) = ψiL/R(τ + σ),

where ψiL/R denote respectively the the left-movers and right movers degrees of free-
dom. Boundary conditions can be chosen independently for left and right movers,
and the two sectors have to be glued together in a way that preserves the modular
invariance of the partition function (this step is called GSO projection). Modular
invariance is a crucial property for string theory, since it is the underlying mathe-
matical structure which allows it to behave properly as a quantum theory of gravity.
More in detail:

• Type II string theory - There are two Type II string theories: Type IIA and
Type IIB. Both of them contain only closed strings, and they differ in the way
of performing the GSO projection. Left and right sectors are treated on equal
footing in Type II string theories: both sectors contain bosonic and fermionic
degrees of freedom. The massless spectrum is divided into four sectors: NSNS,
NS-R, R-NS and RR. The NSNS is common to Type IIA and Type IIB and
contains the ten-dimensional metric gMN , the dilaton ϕ and the two-form field
BMN . The RR sector contains form-fields, whose degrees are different in Type
IIA and Type IIB. Both theories contain two gravitinos and dilatinos, which
have opposite chiralities in Type IIA and the same chiralities in Type IIB. In
the former case the massless spectrum features a ten-dimensional N = (1, 1)

supersymmetry, while in the latter case the massless spectrum features a ten-
dimensional N = (2, 0) supersymmetry. Massless spectra coincide with those
of the ten-dimensional Type IIA and Type IIB supergravity theories.

• Heterotic theories - Also Heterotic theories contain only closed strings, but in
this case left and right sectors are not treated on equal footing: the left sector
contains only bosonic degrees of freedom, while the right one contains both
bosonic and fermionic degrees of freedom. Due to the GSO projection, it turns
out that there are two consistent ways to get a modular invariant partition
function: in the first case the field AaM in Tab. 1.8 is the vector potential
of a SO(32) gauge theory, while in the second case it is the vector potential
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Type IIA

Sector 10-dimensional field

NSNS ϕ, BMN , gMN

NS-R λ1α̇, ψ1
M α̇

R-NS λ2α, ψ2
M α

RR CM , CMNP

Type IIB

Sector 10-dimensional field

NSNS ϕ, BMN , gMN

NS-R λ1α, ψ1
M α

R-NS λ2α, ψ2
M α

RR C0, CMN , CMNPQ

Table 1.7: Type IIA and Type IIB massless spectrum.

Heterotic

Sector 10-dimensional field

NS ϕ, BMN , gMN

R λα, ψM α

NS AM

R λα̇

Type I

Sector 10-dimensional field

Closed spectrum

NSNS ϕ, gMN

NS-R + R-NS λα, ψM α

RR CMN

Open spectrum

NS AM

R λα̇

Table 1.8: Heterotic and Type I massless spectrum.

of a E8 × E8 gauge theory. λaα̇ is the corresponding gaugino. Both AaM and
λaα̇ transform in the adjoint representation of the gauge group. The massless
spectrum contains a single gravitino ψM α and dilatino λα, corresponding to
ten-dimensional N = (1, 0) supersymmetry.

• Type I theory - Type I theory is a theory of unoriented open and closed strings.
Unorientedness is crucial in order to get a consistent theory, since otherwise
Type I strings would suffer from RR tadpoles. The field AM reported in
Tab. 1.8 is the vector potential of a SO(32) gauge theory, coming from the open
sector. λaα̇ is the corresponding gaugino. Both AaM and λaα̇ transform in the
adjoint representation of the gauge group. The massless spectrum contains a
single gravitino ψM α and dilatino λα, and eventually the theory features a ten-
dimensional N = (1, 0) supersymmetry, corresponding to Type I supergravity.
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1.3.2 String Phenomenology

In spite of the fact that string theory is supposed to be a fundamental theory of
nature providing a framework in which all the interactions are unified, during the
last forty years its study has lead to many developments in several areas of physics,
and its application goes well beyond that expected from a theory of quantum grav-
ity. The birth of AdS/CFT in 1997 for instance [73, 74] has made string theory
a useful tool to explore corners of physics which apparently are completely dis-
connected from quantum gravity. For example the AdS/CFT correspondence has
applications in condensed matter physics [75] and in the physics of strong inter-
actions at high temperatures and densities [76]. Furthermore, the study of string
theory has led to important developments also in mathematics, the most important
of which is the discovery of mirror symmetry [77, 78]. Remarkably, using string
theory, Strominger and Vafa were able to exactly reproduce the known result for
the Bekenstein-Hawking black-hole entropy [79], giving support to the idea that it
is the correct microscopic description of gravity. Consequently, string theory can be
fairly described using prof. M. Greene’s words: to date string theory is not simply
a “theory of string-like elementary particles”, but rather a

magnificent theoretical framework that interrelates a very wide range of topics in
physics and mathematics15.

Nevertheless, string theory is primarily supposed to be a fundamental theory of
nature, which is able to unify all the interactions at the quantum level. In order to
study the truthfulness of this claim, it is necessary to connect the ten-dimensional
picture to the four-dimensional one, which is the goal of the branch of string theory
usually referred to as string phenomenology [18]. This is done by assuming that
six out of the ten dimensions are curled up to form a compact space, whose typi-
cal size is smaller than the distances currently explored in the particle accelerators,
so that extra-dimensions escaped the detection so far. As it is intuitive, the four-
dimensional physics depends on the details of the geometry and of the topology
of the compact space, but unfortunately there are an infinite number of possible
choices for it. Given that a selection principle for the compact space is missing so
far, it is very difficult to get predictions from string theory. Phenomenological re-
quirements like four-dimensional supersymmetry can help to restrict the choice to a
certain class of compact spaces, called Calabi-Yau manifolds [81, 82], but still there
is a huge number of spaces of this kind. Connecting string theory to the real world

15Citation taken from [80].
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then seems a quite difficult task.

Historically, Heterotic theories have been the first ones to be studied with the in-
tention of connecting the ten-dimensional picture to the real world [83, 84, 85]. This
is because they contain non-abelian gauge symmetries in their massless spectrum,
and upon compactification they can give rise to a four-dimensional chiral theory.
On the other hand Type II theories did not appear that promising at first, since
they neither feature a non-abelian sector in their massless spectrum, nor they give
rise to chiral theories in four dimensions. Nevertheless, the search for the right com-
pactification space is quite hard in Heterotic theories, since SM fields arise directly
from the closed massless string spectrum, whose fields inhabit the whole compact
space and depend on its details [86, 87, 88, 89, 90]. This way of dealing with string
phenomenology is usually called top-down approach.

With the advent of D-branes in 1995 [91], it was realized that four-dimensional
chiral theories can be obtained also in Type II string theories. Indeed, SM fields
can arise from the open string sector which is supported by D-branes [92]. D-branes
also constitute a source for RR fluxes, so that they allow the field strengths for the
form-fields to acquire non-vanishing VEVs. Furthermore, with the introduction of
D-branes, there is also a major advantage from a technical point of view: since they
can be located in small regions of the compact space, interesting physical quantities
of the SM arising from them should be independent of the details of the whole com-
pact space. It is then possible to locally build a D-branes configuration which gives
rise to a visible sector with the desired phenomenological properties, and eventually
embed it into a global compact space in a consistent way [93, 94, 95, 96, 97]. This
is the approach to string phenomenology used in the present work, and it is usually
referred to as bottom-up approach.

Given the difficulty of choosing a precise compact space, the best approach to
string phenomenology is to look for physical effects which are shared by large classes
of compactifications. It is useful to notice that, regardless of the specific choice
of the compact space, all string compactifications come with a large number of
gravitationally coupled scalar fields, called moduli, which are singlets under the SM
group. Such fields are the four-dimensional manifestation of the existence of extra-
dimensions. Depending on their masses moduli can play a significant role in the
cosmological evolution of the universe, and can give rise to observable effects. It
is important to remark that the observation of any of these effects would not prove
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the correctness of string theory. This in fact can only be established either by the
direct observation of strings or by the observation of a physical effect which can
arise exclusively by string theory. Nevertheless, the (non-)observation of physical
effects due to moduli can help us to understand whether a given class of models is
representative of the physical reality or not, and to drive us towards the right way in
the never-ending search for a fundamental theory of nature. On the theoretical side,
string theory provides the unique available framework in which one can explicitly
test if a given model describing some aspects of nature can be consistently embedded
in a quantum theory of gravity.

Effective Action for Type II Closed Superstrings

As we discussed in the previous section, in the present work we use the bottom-up
approach to string phenomenology, hence we are interested in Type II string theo-
ries. In this section we review some basic facts about their low-energy limit, showing
explicitly the effective actions for the closed massless fields in Tab. 1.7.

In the string frame the bosonic effective action for massless states of Type II
string theories takes the form

SIIB =
1

2κ210

∫
d10x

√
−g [LNSNS + LRR + LCS] + Sloc , (1.58)

where the term Sloc takes into account possible local sources, and κ210 = ℓ8s
4π

. The
NSNS term is given by

LNSNS = e−2ϕ

[
R + 4∂Mϕ∂

Mϕ− 1

12
|H3|2

]
, (1.59)

where the field strength of the Kalb-Ramond field

H3 = dB2 , (1.60)

is a three-form. The RR piece takes the form

LRR = −1

2

∑
p

1

p!
|Fp|2 , (1.61)

where p = 0, 2, 4 in Type IIA, while p = 1, 3, 5 in Type IIB. Fp are the field strengths
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(also called fluxes) of the RR forms, defined as

Fp = F̂p −H3 ∧ Cp−3 , (1.62)

where F̂p = dCp−1. In Type IIB F5 is constrained to be self-dual:

F5 = ∗10F5 . (1.63)

Finally the Chern-Simons term can be written as

LCS,IIA = −1

2
B2 ∧ F4 ∧ F4 , (1.64)

LCS,IIB = −1

2
C4 ∧H3 ∧ F3 . (1.65)

It is useful to introduce an alternative convention for the RR fields, called the
democratic formulation [98]. This convention consists in replacing eq. (1.61) with

LRR =
1

2

∑
p

|Fp|2 , (1.66)

where p = 0, 2, 4, 6, 8, 10 in Type IIA, and p = 1, 3, 5, 7, 9 in Type IIB. In order to
halve the propagating degrees of freedom, it is necessary to impose a self-duality
constraint:

Fp = (−1)Int(
p
2 ) ∗10 F10−p , (1.67)

which automatically includes the constraint on F5 in eq. (1.63).

Gauge transformations of form-fields, which leave the fluxes invariant, can be
written as

B2 → B′
2 = B2 + dλ1 , Cp → C

′

p = Cp + dλp−1 −H3 ∧ λp−3 , (1.68)

where λk denotes a k-form. Equations of motion and Bianchi identities for fluxes
are reported in Sec. 2.1.2.
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Chapter 2

Flux Compactifications and Model
Building

As we have pointed out in Sec. 1.3.1, in the present thesis we use the bottom-up ap-
proach to string phenomenology. We consider Type II String Theories, in which SM
gauge interactions take place on D-branes localized in a small region of the compact
space [97, 18]. Roughly, in these constructions it is possible to separate global issues
(i.e. moduli stabilization) from local ones (i.e. the search for a D-branes configura-
tion reproducing the MSSM or proper extension thereof) as we will describe more
accurately in Sec. 2.2.2.

We have already observed in Sec. 1.3.1 that the quantization of string theory
gives rise naturally to the string scale, defined as

Ms =
1

ℓs
, (2.1)

which is the only unknown parameter of string theory and determines the spacing
of the tower of string states. In order to connect string theory with the real world,
we are interested in the physics taking place at energies below the string scale (or
equivalently, at distances larger than the string length ℓs)

E ≪Ms , (2.2)

so that only massless modes of the string spectra are excited. As pointed out in
Sec. 1.3.1, massless fields of Type II string spectra correspond to Type II Super-
gravity spectra, so that eq. 2.2 is called supergravity approximation. Supergravity
spectra and the corresponding effective actions of Sec. 1.3.2 are the starting point
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for the compactification procedure.

Given the nice features of N = 1 four-dimensional supersymmetric theories that
we reviewed in Sec. 1.2.1, we look for a class of compactifications which preserve
N = 1 in four dimensions. In the first part of the present chapter, Sec. 2.1, we
briefly review the properties that such a compact space has to satisfy, starting from
the most generic possibility and showing how phenomenological arguments along
with our poor computational skills restrict the choice of the internal space to a very
specific kind of manifolds. We conclude the section by reporting the effective action
for the four-dimensional effective theory which arises from the compactification. In
the second part of the chapter, Sec. 2.2, we recall basic notions about D3-branes
at singularities, which represent the D-branes setup used in the present thesis to
embed the visible sector into string compactifications. We conclude the section with
an explicit example of a consistent string compactification.

2.1 Flux Compactifications

The first phenomenological requirement that we ask for is the maximal symmetry
of the four-dimensional space, which allows us to write the most general expression
for the ten-dimensional metric in the form

ds2 = e2A(y)g̃µνdx
µdxν + gmndx

mdxn , (2.3)

where A(y) is the warp-factor, which depends only on the internal coordinates col-
lectively denoted by y. g̃µν is a maximally symmetric four-dimensional metric and
gmn is a six-dimensional metric on the internal space. Maximal symmetry of the
four-dimensional space restricts the choice of g̃µν to a Minkovski, dS4 or AdS4 met-
ric. Greek indexes µ, ν refer to four-dimensional coordinates, while italic indexes
m,n refer to internal coordinates.

In order not to break the maximal symmetry of the four-dimensional space, the
VEVs of all the fermionic fields have to vanish. Furthermore, in order to have
unbroken supersymmetry in four dimensions, it is also required that the VEVs of
the supersymmetric variations of the fermionic fields vanish. In Type II theories
there are two gravitinos ψAM (A = 1, 2) and two dilatinos λA (A = 1, 2), where
uppercase italic indexes M,N refer to ten-dimensional coordinates. Given these
phenomenological requirements, two possibilities can be explored. In Sec. 2.1.1 we
review the simplest one of them, leaving the analysis of the most generic possibility
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to the subsequent sections.

2.1.1 Calabi-Yau Compactifications

In the simplest case, only the metric has a non-trivial background along the internal
space χ [83]. Demanding vanishing VEVs for the supersymmetric variations of the
gravitinos and the dilatino leads to

⟨δψAM⟩ = ∇Mϵ
A , ⟨δλA⟩ = /∂ϕ ϵA , (2.4)

where the slash denotes a contraction with a ten-dimensional gamma matrix: /∂ =

∂MΓM 1, while ϵA are the parameters of the supersymmetric transformation.

It is a well known result that Type II string compactifications with a non-trivial
background only for the metric along the internal manifold lead to an unwarped
Minkovski four-dimensional space, with a Calabi-Yau manifold as internal space.
Indeed, the first condition in eq. (2.4) translates into the requirement of the existence
of two covariantly constant spinors on the ten-dimensional space-time

∇Mϵ
A = 0 , (2.5)

whose four-dimensional component reads

k +∇mA∇mA = 0 . (2.6)

Integrating eq. (2.6) on a compact space leads to A = 0, which implies a vanish-
ing four-dimensional curvature k = 0. On the other hand, in order to study the
constraints arising from the internal components of eq. (2.5), it is necessary to
decompose ϵA as

ϵ1IIA = ξ1+ ⊗ η+ ⊕ ξ1− ⊗ η− ,

ϵ2IIA = ξ2+ ⊗ η− ⊕ ξ2− ⊗ η+ , (2.7)

in the Type IIA case, such that Γϵ1IIA = ϵ1IIA and Γϵ2IIA = −ϵ2IIA, where ξ1,2− =
(
ξ1,2+

)∗
and η− = (η+)

∗. η is a six-dimensional Weyl spinor, while ξ is a four-dimensional
Weyl spinor. We denote both the chiralities under Γ5 and under γ by the subscripts

1For all the expressions involving spinors in higher dimensions we refer to Appendix B of [15].
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±: Γ5ξ
A
± = ±ξ± and γη± = ±η±2. In the Type IIB case instead

ϵAIIB = ξA+ ⊗ η+ ⊕ ξA− ⊗ η− , A = 1, 2 , (2.8)

so that ΓϵAIIB = ϵAIIB.

As a consequence the internal component of eq. (2.5) can be written as

∇mη± = 0 , (2.9)

which implies that the internal manifold χ has to admit a covariantly constant
spinor. This constraint can be rephrased into the condition that χ must have SU(3)
holonomy, or equivalently, that it is Ricci-flat: Rij = 0. Such manifolds are called
Calabi-Yau (CY) spaces.

CY manifolds3 are both complex and Kähler 4, so that we can always choose a
complex basis zi (i = 1, 2, 3) in which the metric has only mixed components. The
Kähler form is defined as

J = igijdz
i ∧ dzj , (2.10)

and it is closed: dJ = 0. Moreover, a CY manifold possesses a unique closed
(3, 0)-form, which we denote by Ω. In general a CY space can be defined as a
Kähler manifold which admits a closed and globally defined (3, 0)-form Ω and a
closed and globally defined (1, 1)-form J . These can be written also in terms of the
covariantly constant spinors which satisfy eq. (2.9):

Jij = ∓2iη†±Γijη± , Ωijk = −2iη†−Γijkη+ . (2.11)

The entire cohomology structure can be summarized in the Hodge diamond for CY
2Γ5 and γ are the chirality matrices respectively in four (space-time) and six (internal) dimen-

sions.
3In this thesis we always deal with internal manifolds of complex dimension 3.
4A CY manifold is also symplectic.
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manifolds, which takes the form

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1

0 0

0 h(1,1) 0

1 h(1,2) h(1,2) 1

0 h(1,1) 0

0 0

1

(2.12)

The first observation is that on a CY manifold the only undetermined h(i,j) are h(1,1)

and h(1,2). This feature considerably simplifies the compactification procedure. Since
there are not harmonic 1-forms and harmonic 5-forms, then J∧Ω = 0. Furthermore,
since h(3,0) = 1, there is a unique Ω, then Ω∧Ω and J∧J∧J have to be proportional.
We follow the convention:

J ∧ J ∧ J =
3i

4
Ω ∧ Ω . (2.13)

Unfortunately CY compactifications feature the presence of many massless scalar
fields in the low-energy spectrum, which are called moduli and span a manifold called
moduli space. They are related to the possible deformations of the size and of the
shape of the submanifolds of the internal space which do not cost any energy, and
manifest themselves in the EFT as flat directions of the scalar potential. In order
to infer the structure of the moduli space it is necessary to look for deformations hij
of the background metric ⟨gij⟩ which preserve the Ricci-flat condition

R(⟨gij⟩+ hij) = 0 . (2.14)

Since we are not interested in deformations which can be reabsorbed through a
general coordinate transformation, it is necessary to fix the gauge, for instance by
imposing ∇ihij = 0. Such deformations can be divided into two categories:

1. Deformations with mixed indexes hij: eq. (2.14) implies that ∆hij = 0, namely
hij is a harmonic (1, 1)-form. The number of linearly independent deformations
with mixed indexes then is counted by the Hodge number h(1,1), and they
correspond to different choices of the Kähler class. It is possible to expand the
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deformation

hij = i

h(1,1)∑
I=1

tI(x) (ωI)ij , (2.15)

where ωI is a basis of harmonic (1, 1)-forms. The fields tI(x) are real scalar
fields, called Kählermoduli and they depend only on the four-dimensional
coordinates. In order to ensure that the resulting metric is positive-definite
the following conditions have to be imposed∫

γ∈χ
J > 0 ,

∫
Σ∈χ

J ∧ J > 0 ,

∫
χ

J ∧ J ∧ J > 0 , (2.16)

where γ denotes any curve in χ and Σ denotes any surface in χ. The conditions
in eq. (2.16) define a cone in the linear space spanned by tI , which is called
Kähler cone or Kählermoduli space.

2. Deformations with non-mixed indexes hij: eq. (2.14) implies that ∆hij = 0,
which means that hij is a harmonic (2, 0)-form. Since CY manifolds feature
h(2,0) = 0, it is useful to relate this kind of deformations to (1, 2)-forms as
follows

hij =
h(1,2)∑
A=1

i

||Ω||2
U
A
(x) (χA)iij Ω

ij
j , (2.17)

where χA is a basis of H(1,2), Ω is the holomorphic (3, 0)-form and ||Ω||2 =
1
3!
ΩijkΩ

ijk. The four-dimensional fields UA are called complex structure mod-
uli, since they parametrize deformations of the complex structure. This can be
understood as follows: as soon as we deform the metric with hij, in order for
the new metric to be Kähler , there must be a basis in which it can be written
with mixed indexes components only. Since holomorphic transformations do
not affect the index structure, the only transformation that can remove non-
mixed components is a transformation of the complex structure.

The presence of such massless fields is strongly disliked from a phenomenological
point of view, for a couple of reasons. The first one is that they would mediate long
distance interactions, which are not observed in nature. The second one is that since
all the parameters of the four-dimensional EFT depend on the VEVs of the mod-
uli, without fixing them it would be impossible to get predictions from string theory.
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Finally, a few words about four-dimensional supersymmetry in Type II CY com-
pactifications. Starting from a ten dimensional spinor, it is possible to decompose
its 16 representation as

SO(10) −→ SO(6)× SO(1, 3) −→ SU(3)× SO(1, 3)

16 (4,2) + (4,2′) (3,2) + (3,2′) + (1,2) + (1,2′) ,

which implies that the four-dimensional theory preserves a N = 2 supersymmetry,
given that there are two ten-dimensional gravitinos both in Type IIA and in Type
IIB. N = 2 supersymmetry in four dimensions is strongly unwelcome, since it does
not lead to a chiral theory and then precludes the possibility of getting a realistic
four-dimensional low-energy theory. Consequently, additional ingredients are needed
in the compactification, in order to break supersymmetry further to N = 1.

2.1.2 Basic Definitions About Fluxes

An alternative which has been extensively studied in the last decade is the pos-
sibility to allow for a non-trivial background also for some of the ten-dimensional
p-forms fields of the massless string spectrum, in addition to the metric. Such com-
pactifications are called flux compactifications [99, 100, 101, 102, 103, 104, 105]. It
turns out that fluxes back-react on the geometry of the compact space, so that
Calabi-Yau manifolds are no longer solutions of the supersymmetry conditions,
and it is necessary to re-analyze the constraints coming from requiring vanish-
ing VEVs for the supersymmetric variations of dilatinos and gravitinos. The so-
lutions to these requirements, supplemented by the request of breaking half of
the supersymmetry from N = 2 to N = 1 in the four-dimensional EFT, are
typically less constrained manifolds, ranging from complex manifolds to confor-
mal Calabi-Yau’s. We discuss such solutions in Sec. 2.1.3. In addition, the non-
trivial background of the form-fields also constrains the shape of the submanifolds
of the compact space, leading to the stabilization of some of the moduli and giv-
ing them a large mass, as we will review in Sec. 2.2.1. Flux compactifications
have been extensively studied also in the context of generalized complex geome-
try [106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116]. In the present section we
review some basic notions about fluxes in string theory.

In order to preserve the four-dimensional maximal symmetry, fluxes can either be
only present along the internal directions of the ten-dimensional space-time, or they
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have to fill out the four-dimensional space-time (which is only possible for four-forms
at least). As a consequence the NSNS flux H3 can only be internal, while F4 and F5

can fill out the four-dimensional space for Type IIA and Type IIB respectively. In
the following we assume that these requirements are satisfied.

Bianchi identities for fluxes in the democratic formulation introduced in Sec. 1.3.2
take the form

dH3 = 0 , dFp −H3 ∧ Fp−2 = 0 , (almost everywhere) , (2.18)

where the note “almost everywhere” is to include possible sources. If these are
present the right hand side of eq. 2.18 is modified by delta functions with support
on the source world-volume (i.e. D-branes and/or O-planes). In presence of sources
p-form fields are not well-defined, so that the integral of the corresponding field
strength over a cycle can be different from zero, i.e. there is a non-vanishing flux.
Non-vanishing fluxes can arise also in the absence of sources, as soon as the cycle
supporting them is a non-contractible one. In general, non-vanishing fluxes have to
obey a Dirac quantization condition, which reads

1

(2π)2α′

∫
Σ4

H3 ∈ Z
1(

2π
√
α′
)p−1

∫
Σp

F̂p ∈ Z , (2.19)

where Σp denotes a non-contractible p-cycle. As a consequence of Hodge and
Poincaré duality there are as many 2-cycles as 4-cycles, while 3-cycles come in dual
pairs, as summarized in Tab. 2.1 where we also provide a basis for the corresponding
(co-)homology groups. (αÂ, β

B̂) form a real, symplectic basis on H3.

Cohomology

group
Dimension

Basis of

harmonic forms

Basis of

non-trivial cycles
Indexes

H(1,1) h(1,1) ωI DI I, J,K, ...

H(2,2) h(1,1) ω̃I dI I, J,K, ...

H(2,1) h(2,1) χA AA A,B,C, ...

H(3) 2h(2,1) + 2 (αÂ, β
B̂) (AÂ, B

B̂) Â, B̂, Ĉ, ...

Table 2.1: Basis of the cohomology group of a CY manifold and their Poincaré dual
non-trivial cycles.
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It is possible to define electric and magnetic fluxes for each field strength as
follows

1

(2π)2α′

∫
AÂ

H3 = mÂ ,
1

(2π)2α′

∫
BÂ

H3 = eÂ , Â = 1, . . . ,
h3

2
,

1

(2π)2α′

∫
AÂ

F̂3 = mÂ
RR ,

1

(2π)2α′

∫
BÂ

F̂3 = eRR Â , (2.20)

1

2π
√
α′

∫
dI

F̂2 = mI
RR ,

1(
2π

√
α′
)3 ∫

DI

F̂4 = eRR I , I = 1, . . . , h2 .

On a CY manifold the relevant cohomology groups decompose as

H3 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 , H2 = H1,1 , (2.21)

since there are not (2, 0) or (0, 2)-forms. Note that we did not define the integrals
of F̂1 and F̂5 because there are not non-trivial 1- and 5-cycles in CY manifolds.
Poincaré dualities are encoded in the following relations∫

AB̂

αÂ =

∫
χ

αÂ ∧ βB̂ = −
∫
BÂ

βB̂ = δB̂
Â
,∫

dJ

ωI =

∫
χ

ωI ∧ ω̃J = −
∫
BI

ω̃J = δJI . (2.22)

2.1.3 Supersymmetry Conditions

In the presence of non-vanishing fluxes the supersymmetry conditions in eq. (2.4)
get much more complicated:

δψAM = ∇Mϵ
A +

1

4
/HMPϵA +

1

16
eϕ
∑
n

/F nΓMPnϵA ,

δλA =

(
/∂ϕ+

1

2
/HP
)
ϵA +

1

8
eϕ
∑
n

(−1)n (5− n) /F nPnϵA , (2.23)

where the 2× 2 matrices P and Pn are different in Type IIA and Type IIB. In Type
IIA P = Γ and Pn = Γn/2σ1, while for Type IIB P = −σ3 and Pn = σ1 if n+1

2
is

even, and Pn = iσ2 if n+1
2

is odd. σi are the Pauli matrices. The sum runs over
n = 0, 2, 4, 6, 8, 10 for Type IIA, and over n = 3, 5, 7, 9 for Type IIB.

Interestingly, supersymmetry conditions in eq. (2.23) split into two requirements.
The first is a topological requirement, while the second one is a constraint on the
differential structure of the compact space. Let us analyze them more in detail.
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a) Topological condition - The topological condition consists in requiring the ex-
istence of a globally well defined spinor. It can be easily understood in terms
of the structure group of the internal manifold [117, 118, 119, 120, 121, 122,
123, 101]. The structure group of a manifold is the group of transforma-
tions required to patch the orthonormal frame bundle in such a way that some
structures are preserved on it. For instance, on a Riemannian six-manifold, the
structure that has to be preserved is the metric, and this requirement automat-
ically reduces the structure group from the general coordinate transformations
group GL(6) to SO(6). As soon as new structures are introduced on the man-
ifold, further restrictions on the structure group take place. In the case of
string compactifications, as long as we require some preserved supersymmetry
in four dimensions, or even in the case in which all the supersymmetries are
spontaneously broken by fluxes in the four-dimensional EFT, supercurrents
have to be globally well defined on the compactification space. This means
that the internal manifold must admit as many globally defined spinors as the
number of supercurrents is. A globally well defined non-vanishing spinor exists
only if the structure group of the compact space is reduced to SU(3). This
can be easily understood, since the spinor representation in six dimensions is
in the 4 of SO(6) ≃ SU(4). Under SU(3) this can be decomposed as

4 → 3+ 1 , (2.24)

so that if the structure group is reduced to SU(3), then the orthonormal frame
patchings admit a singlet, namely a globally well defined spinor. It is possible
to decompose also vectors, 2-forms and 3-forms under SU(3), and we get
respectively

Vector : 6 → 3+ 3 ,

Two-form : 15 → 8+ 3+ 3+ 1 ,

Three-form : 20 → 6+ 6+ 3+ 3+ 1+ 1 , (2.25)

from which we realize that there are also a non-vanishing globally well defined
real 2-form and a non-vanishing globally well defined complex 3-form. They
correspond to the Kähler 2-form J and to the holomorphic 3-form Ω which
are present also in the case of CY manifolds, as we pointed out in Sec. 2.1.1.
We conclude that the topological condition leads to the same results of the
fluxless case. A manifold whose structure group is reduced to SU(3) is called
SU(3)-structure manifold [124, 125, 126].
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b) Differential condition - The differential condition consists in imposing the con-
ditions in eq. (2.23). As we have reviewed in Sec. 2.1.1, in the fluxless case
they boil down to the requirement of reduced SU(3) holonomy for the internal
manifold, which is equivalent to require the existence of a covariantly constant
spinor ∇η± = 0 on the compact space. In general on a SU(3)-structure man-
ifold, it is possible to find a connection Γ′ such that the covariant derivative
∇′(Γ′) (possibly with a non-vanishing torsion) [127, 128, 129]

– is compatible with the metric: ∇′g = 0,

– has reduced SU(3) holonomy: ∇′η± = 0,

where η± is the six-dimensional spinor of eq.s (2.7) and (2.8). In other words
a CY space is a particular example of a SU(3)-structure manifold, in which
the globally well defined spinor is also covariantly constant with respect to the
Levi-Civita connection.

The torsion tensor associated with the new connection Γ′ can be decomposed as

Tmn
p ∈ Λ1 ⊗

(
su(3)⊕ su(3)⊥

)
, (2.26)

where Λ1 is the space of 1-forms and we used the decomposition so(6) = su(3) ⊕
su(3)⊥. Since its relevant action is on the SU(3)-invariant component of η±, the
su(3) piece can be ignored. The corresponding decomposition is called intrinsic
torsion T 0

mn
p and takes the form

T 0
mn

p ∈ Λ1 ⊗ su(3)⊥ = (3⊕ 3̄)⊗ (1⊕ 3⊕ 3̄)

= (1⊕ 1)⊕ (8⊕ 8)⊕ (6⊕ 6̄)⊕ 2 (3⊕ 3̄) (2.27)

W1 W2 W3 W4,W5

W1, . . . ,W5 are the five torsion classes appearing in the covariant derivative of
the globally well defined spinor, which characterize the differential properties of the
SU(3)-structure manifold [127, 128, 129]. As inferable from eq. (2.27), W1 is a
complex scalar, W2 is a complex 2-form, W3 is a real primitive (1, 2) + (2, 1)-form,
while W4 and W5 are real vectors. Depending on which component of the intrinsic
torsion is non-zero, the internal space deviates from being a CY manifold. This can
be clearly seen by writing down the exterior derivatives of the Kähler 2-form J and
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Manifold Vanishing torsion class

Complex W1 = W2 = 0

Symplectic W1 = W3 = W4 = 0

Kähler W1 = W2 = W3 = W4 = 0

Calabi-Yau W1 = W2 = W3 = W4 = W5 = 0

“Conformal” Calabi-Yau W1 = W2 = W3 = 3W4 − 2W5 = 0

Table 2.2: Vanishing torsion classes in special SU(3)-structure manifolds.

of the holomorphic 3-form Ω in terms of the torsion classes:

dJ =
3

2
Im
(
W1Ω

)
+W4 ∧ J +W3 , (2.28)

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω . (2.29)

In the fluxless case we know that the internal space is a CY manifold and that both
J and Ω are closed forms, so that all the torsion classes vanish. A SU(3)-structure
manifold ranges from being a CY manifold when W1 = · · · = W5 = 0 to being
simply a complex manifold when only W1 = W2 = 0. In Tab. 2.2 we report more
details.

N = 1 Supersymmetry

The main message from the previous section is that the presence of fluxes back-
reacts on the geometry of the compact space, making some components of the torsion
different from zero, so that the manifold is no longer a CY space. Furthermore, non-
vanishing fluxes can break supersymmetry. In order to study the four-dimensional
N = 1 Minkovski vacua which are compatible with flux compactifications, it is
necessary to impose a relation between the four-dimensional spinor ξA (A = 1, 2)
in eq.s (2.7) and (2.8). The only possible choice which allows to preserve the four-
dimensional maximal symmetry is to take the four-dimensional spinors proportional
to each other

a(y)ξ1+ = b(y)ξ2+ = ξ+ , (2.30)
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where the proportionality complex functions a and b depend on the internal coordi-
nates y. Then it is possible to decompose the ten-dimensional spinors as

ϵ1IIA = ξ+ ⊗ (aη+)⊕ ξ− ⊗ (aη−) ,

ϵ2IIA = ξ+ ⊗
(
bη−
)
⊕ ξ− ⊗ (bη+) , (2.31)

and

ϵ1IIB = ξ+ ⊗ (aη+)⊕ ξ− ⊗ (aη−) ,

ϵ2IIB = ξ+ ⊗ (bη+)⊕ ξ− ⊗
(
bη−
)
. (2.32)

Using eq. (2.31) and (2.32) to impose the supersymmetry conditions in eq. (2.23)
provides a set of relations between the torsion, the fluxes, the cosmological constant
and the warp factor, which describe how the four-dimensional N = 1 supersym-
metric vacuum sits in the underlying N = 2 EFT. Since a and b are two complex
parameters, and since one degree of freedom can be fixed by the normalization:
|a|2+ |b|2 = eA, where A is the warp factor, while a second one is redundant and can
be fixed by a gauge choice [109, 103], then all N = 1 flux vacua are parametrized
by a couple of angles α and β as follows

a = eA/2 cosαei
β
2 , b = eA/2 sinαe−i

β
2 . (2.33)

In Tab.s 2.3 and 2.4 we report the results for Type IIA and Type IIB respectively.
We can discuss them separately:

• Type IIA - In Type IIA, as can be observed in Tab. 2.3, there are two classes
of solutions:

(A) It corresponds to a solution with the NSNS flux and the singlet com-
ponents of RR fluxes. It features W1 = W2 = 0, but W3 ̸= 0 and
W5 = 2W4 = ∂ϕ, meaning that the compact space is complex but it is
not even Kähler or symplectic.

(BC) It is a solution with only RR fluxes, and W1 = W3 = W4 = 0, such
that the compact space is symplectic. It corresponds to the dimensional
reduction of an M-theory solution on a seven-dimensional manifold with
G2 holonomy.

We can conclude that the introduction of fluxes in Type IIA causes a sub-
stantial back-reaction on the geometry of the compact space, which deviates
significantly from being a CY manifold.
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IIA a = 0 or b = 0 (A) a = b eiβ (BC)

1 W1 = H
(1)
3 = 0 .

F
(1)
0 = ∓F (1)

2 =

= F
(1)
4 = ∓F (1)

6 .
F

(1)
2n = 0 .

8 generic β β = 0

W2 = F
(8)
2 =

= F
(8)
4 = 0 .

W+
2 = eϕF

(8)
2 ;

W−
2 = 0 .

W+
2 = eϕF

(8)
2 + eϕF

(8)
4 ;

W−
2 = 0 .

6 W3 = ∓ ∗6 H(6)
3 . W3 = H

(6)
3 = 0 .

3
W5 = 2W4 =

= ∓2iH
(3)
3 = ∂ϕ ;

∂A = ∂a = 0 .

F
(3)
2 = 2iW5 = −2i∂A = 2

3
i∂ϕ ;

W4 = 0 .

Table 2.3: Possible N = 1 vacua in IIA. We defined W+
2 = Re(W2) and W−

2 =
Im(W2).

• Type IIB - In Type IIB there are three5 different classes of solutions, as
shown in Tab. 2.4:

(A) This class of solutions is very similar to class (A) of Type IIA. In par-
ticular the vanishing torsion classes are again W1 = W2 = 0, so that the
internal manifold is complex. In Type IIB all components of RR fluxes
are zero.

(B) This class of solutions is the most interesting one. One of its main prop-
erties is that it allows for the RR five-form and for both RR and NSNS
3-forms. The latter are related by a Hodge duality. It is convenient to
define the three-form flux

G3 = F3 − ie−ϕH3 = F̂3 − τH3 , (2.34)

where τ = C0+ ie
−ϕ is the axio-dilaton. The constraint eϕF (6)

3 = ∓∗H(6)
3

translates into the fact that G3 is Imaginary Self Dual (ISD), namely

∗6G3 = iG3 . (2.35)

Finally, since in the class (B) there are not non-vanishing fluxes in the
5Actually the classes are four. There is an additional class called (ABC). We refer to [129] for

more details.
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IIB a = 0 or b = 0 (A) a = ±ib (B) a = ±b (C)

1 W1 = F
(1)
3 = H

(1)
3 = 0.

8 W2 = 0.

6 F
(6)
3 = 0 ;

W3 = ± ∗H(6)
3 .

W3 = 0 ;
eϕF

(6)
3 = ∓∗H(6)

3 .
H

(6)
3 = 0 ;

W3 = ±eϕ∗F (6)
3 .

3
W5 = 2W4 =

= ∓2iH
(3)
3 = 2∂ϕ ;

∂A = ∂a = 0 .

eϕF
(3)
5 = 2

3
iW5 =

= iW4 = −2i∂A =
= −4i∂ log a ;
∂ϕ = 0 .

±eϕF (3)
3 = 2iW5 =

= −2i∂A =
= −4i∂ log a =

= −i∂ϕ .

F eϕF
(3)
1 = 2eϕF

(3)
5 =

= iW5 = iW4 = i∂ϕ .

Table 2.4: Possible N = 1 vacua in IIB.

singlet representation, then G(0,3)
3 = 0.

(BNF) This sub-class features W1 = W2 = W3 = 0, and 3W4 = 2W5 = 6∂A,
so that the manifold is a conformal Calabi-Yau space, accordingly to
Tab. 2.2. Non-vanishing torsion classes source a slight deviation from
a CY space, since the metric can be written then as

ds2 = e2Aηµνdx
µdxν + e−2Ag̃mndx

mdxn , (2.36)

where g̃mn is a CY metric. The conformal factor e−2A is the inverse
of the warp factor and, as we will discuss below, in the limit of
large volume, it can be safely neglected. As a consequence, all the
mathematical tools developed for CY compactifications can be used
in this case to compute the four-dimensional effective field theory.

(BF) In this case W4 = W5, so the internal manifold is not a conformal
CY, even if it is still complex. Furthermore it features a non-constant
holomorphic dilaton τ . This class gives rise to F-theory solutions.

(C) This class is S-dual to class (A), hence it has only RR fluxes and the same
vanishing torsion classes: W1 = W2 = 0.

We can conclude that as soon as fluxes are introduced into the compactification,
they back-react on the geometry so that typically the internal manifold is far from
being a CY space. As we argued, the most interesting class of solutions is the Type

55



IIB (BNF) class, to which we refer for simplicity as warped compactifications [130,
131, 132, 94, 133, 134], since it leads to warped (or conformal) CY manifolds. In
this case, the conformal factor is the inverse of the warp factor, and in the large
radius limit it can be written as

e2A ∼ 1 +O
(
gsNα

′2

R4

)
, (2.37)

where N measures the units of three-form flux G3, while R is the radius of the com-
pact space (assuming it is isotropic). Hence, in the large radius limit, corrections
to the CY metric can be safely neglected, and the KK reduction can be performed
using the mathematical tools we illustrated in Sec. 2.1.1, in particular the mod-
uli space can be approximated with that of a CY manifold. Even if this is a very
good approximation in the large volume regime, a proper computation of the moduli
space should include the warping [135, 136, 137, 138, 139, 140, 141, 142, 143]. In the
present work we focus on warped compactifications, and we perform computations
in the large volume regime, in order to trust the supergravity approximation, so
that we can also safely neglect warping effects on the moduli space of the conformal
CY manifold.

Any additional object introduced in the compactification can further back-react
on the geometry, possibly destroying the warped compactification solution. For in-
stance, let us recall what supersymmetries are preserved by sources for fluxes, such as
D-branes and O-planes. In general D-branes and O-planes preserve supersimmetries
whose transformation parameters are related in the following way

ϵ1 = Γ⊥ϵ2 , (2.38)

where Γ⊥ denotes the product of ten-dimensional gamma matrices in the directions
orthogonal to the source itself. It turns out that in general the product of six or two
gamma matrices in euclidean space has eigenvalue ±i, so that D3/D7-branes and
O3/O7-branes preserve supersymmetries of the type a = ±ib. Such supersimmetries
correspond exactly to those preserved in warped compactifications, as reported in
Tab. 2.4 (the minus sign is the right one for anti D3-branes). On the other hand
the products of 4 gamma matrices have eigenvalue ±1, so that D5/D9-branes and
O5/O9-planes preserve supersimmetries of the class Type IIB (C). For this reason,
in this thesis we consider warped compactifications with D3/D7-branes and O3/O7-
branes.
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2.1.4 Equations of Motion

After having determined the class of internal manifolds which admit a N = 1 su-
persymmetric solution, we have to check that in such backgrounds the equations of
motion of string theory can be satisfied. We have already observed that in the flux-
less case, the integrated equations of motion in eq. (2.6) let us rule out warped CY
compactifications. In this section we review some generic constraints arising from
the integrated equations of motion in presence of fluxes. As we will observe, the first
consequence is the necessity to introduce sources for fluxes in the compactification.

The relevant constraints for the ten-dimensional bosonic massless fields of Type
IIB strings are:

• Einstein’s equation,

• Equation of motion for the dilaton,

• Bianchi identities for fluxes,

• Equations of motion for fluxes,

As a first step, let us focus on the constraints coming from RR fields. Due to
the self-duality constraint in eq. (1.67) it turns out that the equations of motion for
the RR fields, which take the form

d (∗10Fp) +H3 ∧ ∗10Fp+2 = 0 , (2.39)

are contained into the Bianchi identities

dFp −H3 ∧ Fp−2 = 0 . (2.40)

Every time we have to impose differential conditions such as in eq. (2.40) on a
compact manifold we face with constraints coming from their integrated version, as
a consequence of the Gauss’ law. The simplest example in quantum field theory
arises in presence of a scalar field ϕ with a source J on a compact space χ. The
equations of motion are of the form 2ϕ = −J , hence they constrain the integral of
the source to vanish

∫
χ
J = 0. The same happens when we consider the constraints

in eq. (2.40). As reported in Tab. 2.4, due to supersymmetry F3 ∼ ∗6H3, and then
from eq. (2.40) we can immediately infer that the compactification is inconsistent,
since the integral of dF5 on the compact space χ vanishes, while the integral ofH3∧F3

is positive definite. This kind of inconsistency can be avoided in string theory due
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to the presence of BPS sources, like O3-planes, which contribute to the right hand
side of eq. (2.40) with the right sign. Including the contributions coming both from
D3-branes and from O3-planes, which are sources for the D3-brane density charge,
the Bianchi identity reads

dF5 −H3 ∧ F3 =
(
2π

√
α′
)4
ρloc
3 , (2.41)

where ρloc
3 is the dimensionless D3 charge density of the localized sources. In general

it can be written as

ρloc3 = µ3

∑
a

πa6 + µ3Q3

∑
a

πa,Op
6 , (2.42)

where πa6 and πa,Op are six-forms Poincaré dual to the supports of D3-branes and
O3-planes respectively. For D3-branes the coefficient µ3 is given by

µ3 =
1

(2π)3 (α′)2
, (2.43)

while for a O3-plane Q3 = −1
2
. We are finally led to the schematic tadpole cancella-

tion condition:

ND3 −
1

2
NO3 +

1

(2π)4 α′2

∫
χ

H3 ∧ F3 = 0 , (2.44)

which is a constraint on the number of sources present in the compactifications. In
eq. (2.44) we are neglecting possible contributions to the D3-charge density arising
from D7-branes. We will provide more details on tadpole cancellation in a compact-
ification in Sec. 2.2.3.

It is also possible to get a constraint on the geometry of the compact space
from the integrated equations of motion in a way which does not make use of the
supersymmetry conditions of Sec. 2.1.3, but with the only assumption of warped
metric as in eq. (2.36)6 [94]. In fact, Poincaré invariance and self-duality of F5

constrain the form of F5 itself:

F5 = (1 + ∗10)
(
dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

)
, (2.45)

where α is a generic function which depends only on the internal coordinates, col-
lectively denoted by y. Subtracting from eq. (2.45) the trace of the non-compact

6Here we assume that the metric has the warped form of (2.36), but g̃mn is not necessarily CY.
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components of the Einstein’s equation we get (in the Einstein frame)

∇̃2
(
e4A − α

)
=
e2A+ϕ

6
| ∗6 G3 − iG3|2 + e−6A|∂

(
e4A − α

)
|2+

+ (4π2α′)4e2A
[
1

2

(
T ii − T µµ

)loc − T3ρ
loc
3

]
, (2.46)

where Tij is the stress tensor of the localized sources defined in the usual way as

Tij = − 2√
−g

δSloc

δgij
. (2.47)

Since the left-hand-side of eq. (2.46) has to vanish upon integration on a com-
pact space, we can observe that a warped compactification to a four-dimensional
Minkovski space is possible only if:

1. the warp factor and the five-form potential are related: e4A = α,

2. G3 is ISD: ∗6G3 = iG3,

3. the BPS condition 1
2

(
T ii − T µµ

)loc
= T3ρ

loc
3 holds, where T3 =

(
2π

√
α′
)−4

is the
D3-brane tension.

Condition 3. holds for BPS objects like D3-branes and O3-planes. Also D7-branes
satisfy this condition, since as we have previously observed, they preserve the same
N = 1 supersymmetry of D3-branes. Condition 1. implies that the five-form F5 is
constrained to be of the same form as in warped compactifications of Tab. 2.4, while
condition 2. ensures that the 3-form G3 has to be ISD, again as in warped com-
pactifications. We infer that the constraints from the equations of motion in case
of a warped metric as in eq. (2.36) lead almost to the same background geometry
that we got from supersymmetry conditions, assuming that all the localized sources
present in the compactification are BPS objects. The slight difference is that super-
symmetry constraints allow neither for a non-vanishing singlet component G(0,3)

3 of
the three-form flux nor for a non-vanishing non-primitive (1, 2) component of G3,
while equations of motion do. The non-primitive (1, 2) component of G3 is always
absent on a CY manifold, because there are not non-trivial five-forms. On the other
hand the G(0,3)

3 component can be used to break supersymmetry in a controllable
way, as we explain below.

Finally, let us come back to the Einstein’s equation and to the equation of motion
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for the dilaton. In the Einstein frame they read

R̃ij =
(4π2α′)

4

4
e2ϕ∂[iτ∂j] + (2π)7

(
TD7
ij − 1

8
g̃ijT

D7

)
,

∇̃2τ = ieϕ
(
∇̃τ
)2

− 4(2π)7e−2ϕ 1√
−g

δSD7

δτ
, (2.48)

where TD7
ij is the stress tensor of D7-branes (TD7 is its trace) and SD7 is the D7-

branes action. In the absence of the G(0,3)
3 component of the 3-form flux, and also in

the absence of D7-branes in the compactification, the background solution is exactly
the same as in warped compactifications of Tab. 2.4. G

(0,3)
3 can be used to break

supersymmetry from N = 1 to N = 0. However, from eq. (2.48) we immediately
realize that, as soon as we introduce D7-branes into the compactification, the inter-
nal space is no longer a warped CY, since it is not Ricci-flat R̃ij ̸= 0. In order for
the constraints arising from the integrated equations of motion to be satisfied, the
dilaton field has to acquire a dependence on the internal coordinates. This means
that we are bound to consider F-theory solutions, lying in the class (BF ) of super-
symmetric solutions of Tab. 2.4. In the following we will work in a halfway case,
since we will compute the spectrum of the EFT assuming that the internal space
is a conformal CY, but at the same time we will introduce a restricted number of
D7-branes (which are usually needed for the consistency of the compactification, as
we will see for example in Sec. 2.2.3), so that we can consider the right hand sides
of eq.s (2.48) as small perturbations of the conformal CY background. At the same
time, in order to get SUSY-breaking in a controllable way, also the G(0,3)

3 component
of the three-form flux has to be a small perturbation of the warped compactification.

2.1.5 Moduli Space and Kaluza-Klein Reduction

In order to get the four-dimensional spectrum of the compactification, it is neces-
sary to perform a Kaluza-Klein (KK) reduction of the ten-dimensional theory on a
compact internal manifold χ. This procedure typically gives rise to a tower of states,
called Kaluza-Klein (KK) states whose masses scale as7 mn ∼ nMs/R, where R is
the radius of the compact space. R can be rewritten in terms of the volume V of the
compact space as R = ℓsV1/6. As we have have observed in Sec. 1.3 Ms ∼MPV−1/2,
so that the KK states masses are given by

Mn ∼ nMP

V2/3
. (2.49)

7In this rough estimate we assume that the compactification manifold is isotropic.
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Since massive KK states have not been observed in nature, we are interested in the
EFT which is valid below the scale at which the massive KK states are excited

E ≪MKK ≃ MP

V2/3
, (2.50)

namely we consider only massless KK fields, which correspond to harmonic forms of
the compact internal space [144]. Eq. (2.50) is called KK approximation. In order
to trust the supergravity approximation we require V ≫ 1, then there is a hierarchy
between the string scale and the KK scale

MKK ≪Ms ≪MP . (2.51)

The computation of the four-dimensional spectrum requires the knowledge of the
moduli space of the compact manifold, and this is exactly the reason why it is nec-
essary to restrict the study to the class of warped compactifications in Tab. 2.4. In
the other cases the moduli space is poorly known. As we stressed in the last section,
even in the conformal CY case the moduli space is not exactly the same as in CY
manifolds, but assuming that the warping effects are small corrections we can safely
use the mathematical tools of Sec. 2.1.1 to compute the spectrum.

The first step is to expand the ten-dimensional form-fields in the basis provided
in Tab. 2.1, and we get [145]

B2(x, y) = B2(x) + bI(x)ωI , C0(x, y) = C0(x) , C2(x, y) = C2(x) + cI(x)ωI ,

C4(x, y) = DI
2(x) ∧ ωI + V Â(x) ∧ αÂ − YÂ(x) ∧ β

Â + ρI(x)ω̃
I , (2.52)

where the fields on the left hand sides of the equations represent the ten-dimensional
fields, which depend both on the four-dimensional coordinates x and on the internal
coordinates y. On the other hand, the coefficients of the expansions which depend
only on the four-dimensional coordinates x, are four-dimensional fields. Along with
the fields tI(x) and UA(x) in the expansions of eq.s (2.15) and (2.17), the fields
B2(x), bI(x), C0(x), C2(x), cI(x), DI

2(x), V Â(x), YÂ(x), ρI(x) and the graviton
gµν(x) constitute the four-dimensional spectrum of the KK reduction8. They can be
organized in N = 2 supermultiplets as follows

• 1 gravity multiplet: (gµν , V
0),

8Due to the self-duality of the five-form F5 it is necessary to eliminate half of the degrees of
freedom in the expansion of C4(x, y). We choose to eliminate DI

2(x) and YÂ(x). We further discuss
this point in Sec. 2.1.6.
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• h(2,1) vector multiplets: (V A, UA),

• h(1,1) hypermultiplets: (tI , bI , cI , ρI),

• 1 double-tensor multiplet: (B2, C2, ϕ, C0).

The four-dimensional action can be obtained simply by inserting the expansion of the
ten-dimensional field in the ten-dimensional supergravity action and then integrating
over the internal compact space. The result is

S
(4D)
IIB =

∫
d4x

[
−1

2
R ∗4 1 +

1

4
ReMÂB̂F

Â ∧ F B̂ +
1

4
ImMÂB̂F

Â ∧ ∗4F B̂−

−GABdU
A ∧ ∗4dU

B −GIJdt
I ∧ ∗4dtJ − 1

4
dlnK ∧ ∗4dlnK − 1

4
dϕ ∧ ∗4dϕ−

− 1

4
e2ϕdC0 ∧ ∗4dC0 − e−ϕGIJdb

I ∧ ∗4dbJ − eϕGIJ

(
dcI − C0db

I
)
∧ ∗4

(
dcJ − C0db

J
)
−

− 9GIL

4K

(
dρI −

1

2
KIJK

(
cJdbK − bJdcK

))
∧ ∗4

(
dρL − 1

2
KLMN

(
cMdbN − bMdcN

))
−

− K2

144
e−ϕdB2 ∧ ∗4dB2 −

K2

144
eϕ (dC2 − C0dB2) ∧ ∗4 (dC2 − C0dB2)+

+
1

2

(
dbI ∧ C2 + cIdB2

)
∧
(
dρI −KIJKcJdbK

)
+

1

4
KIJKcIcJdB2 ∧ dbK

]
, (2.53)

where F Â = dV Â and MÂB̂ can be written as

MÂB̂ = F ÂB̂ + 2i
(ImF)ÂĈ X

Ĉ (ImF)B̂D̂X
D̂

XÂ (ImF)ÂB̂X
B̂

, (2.54)

and XÂ, FÂ are the periods of the holomorphic 3-form Ω(U). FÂB̂ is the period
matrix defined as

XÂ =

∫
χ

Ω ∧ βÂ , FÂ =

∫
χ

Ω ∧ αÂ , FÂB̂ =
∂FÂ

∂XB̂
, (2.55)

so that in general the holomorphic 3-form can be expanded as

Ω(U) = XÂ(U)αÂ −FÂ(U)β
Â . (2.56)

Interestingly, FÂ can be seen as the derivative of a holomorphic prepotential FÂ =
∂F
∂XÂ

. As a consequence the metric GAB on the space of complex structure deforma-
tions

GAB =
∂

∂UA

∂

∂U
B
Kcs , (2.57)

is completely determined by the holomorphic prepotential F and the space of com-
plex structure deformations is a special Kähler manifold. In factKcs is the Kähler po-
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tential of the space of complex deformations, and

Kcs = −ln
[
−i
∫
χ

Ω ∧ Ω

]
= −ln

[
i

(
X
ÂFÂ −XÂF Â

)]
, (2.58)

On the other hand, GIJ is the metric on the space of Kähler deformations, and
it takes the form

GIJ =
3

2K

∫
χ

ωI ∧ ∗6ωJ = −3

2

(
KIJ

K
− 3

2

KIKJ

K2

)
, (2.59)

where we have defined

KIJK =

∫
χ

ωI ∧ ωJ ∧ ωK , KIJ =

∫
χ

ωI ∧ ωJ ∧ J ,

KI =

∫
χ

ωI ∧ J ∧ J , K =

∫
χ

J ∧ J ∧ J = KIJKv
IvJvK . (2.60)

Let us notice that with these conventions the volume V of the compact space (mea-
sured in units of string length ℓs = 2π

√
α′) is given by

V =
K
6
, (2.61)

As expected, the bare compactification of the ten-dimensional supergravity on a CY
space gives us a N = 2 supersymmetric theory in four dimensions. In the next
section we will review how to reduce it to N = 1 theory.

2.1.6 N = 1 EFT from Type IIB Orientifolds

In Sec. 2.1.3 we have observed that a broad set of fluxes configurations is compatible
with a N = 1 four-dimensional supersymmetric EFT, and as we already stressed,
we restricted our study to the class warped compactifications in Tab. 2.4 because,
in the limit of large volume for the compact space, their moduli space reduces to
that of a CY manifold and then it is possible to safely perform the KK reduction.
Furthermore, in Sec. 2.1.4 we have noticed that, in order to satisfy the constraints
coming from the integrated equations of motion, the compactification must include
negative tension sources for the D3-brane charge density, namely O3-planes. Very
interestingly, these two observations nicely fit together. In fact, as we mentioned at
the end of Sec. 2.1.3 the introduction of O3/O7-planes is compatible with supersym-
metric solutions in the class of warped compactifications, so that on the one hand
they leave us with a N = 1 low-energy theory, and on the other hand it is possible
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to keep trusting the EFT. From a practical point of view, the N = 1 spectrum is
obtained by truncating the N = 2 spectrum of the previous section, projecting out
the state which are not invariant under an involution introduced by the presence of
the O-planes. In the present section we briefly review this procedure following [146].

As a first step we require that χ is symmetric under an action σ such that:

1. it leaves invariant the four-dimensional non-compact space-time,

2. it is involutive σ2 = 1,

3. it is isometric: σg = g,

4. it is holomorphic: σJmn = Jm
n,

5. it acts on the holomorphic 3-form as σ∗Ω = −Ω,

where Jmn = Jmpg
pn is the complex structure, and σ∗ is the pull-back of σ. σ can

be interpreted as a reflection with respect to a fixed plane, which is the O-plane.
Since it leaves the four-dimensional space-time invariant, O-planes have to span
the non-compact directions. Let us notice that the requirement of holomorphicity
in principle allows all even-dimensional O-planes, but in order to lie in the class
of warped compactifications, we additionally require condition 5., which leaves out
O5/O9-planes. In fact, in complex coordinates zk, we can write Ω ∝ dz1∧dz2∧dz3.
Because of condition 5., we have two possibilities: either one single complex coor-
dinates gets reversed under σ, or all the complex internal coordinates get reversed
under σ. The first possibility implies that the O-plane spans 8 dimensions (namely
it is a O7-plane), while the second possibility means that the O-plane spans 4 di-
mension (namely it is a O3-plane). Hence σ is compatible with supersymmetry in
presence of O3/O7 planes.

The spectrum of the N = 2 theory can be consistently truncated by the action
of the operator

OO3/O7 = (−1)FL Ωpσ , (2.62)

where Ωp is the usual world-sheet parity, while FL is the space-time fermion number
in the left moving sector. We summarize the parity of the Type IIB ten-dimensional
bosonic fields under the action of Ωp and (−1)FL in Tab. 2.5.
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ϕ g B2 C0 C2 C4

(−1)FL + + + − − −

Ωp + + − − + −

Table 2.5: Parity of the Type IIB ten-dimensional bosonic fields under the action
of Ωp and (−1)FL .

cohomology groups dimensions basis indexes

H
(1,1)
+ H

(1,1)
− h

(1,1)
+ h

(1,1)
− ωi ωι i, j, k ι, κ, λ

H
(2,2)
+ H

(2,2)
− h

(2,2)
+ h

(2,2)
− ω̃i ω̃ι i, j, k ι, κ, λ

H
(2,1)
+ H

(2,1)
− h

(2,1)
+ h

(2,1)
− χα χa α, β, γ a, b, c

H
(3)
+ H

(3)
− 2h

(2,1)
+ 2h

(2,1)
− + 2 (αα, β

β) (αâ, β
b̂) α, β, γ â, b̂, ĉ

Table 2.6: Splitting of the cohomology groups under the action of σ∗, with relative
dimensions and basis.

Since σ is an involution, then the cohomology groups of the CY manifold splits
into two eigenspaces under the action of σ∗, corresponding to the eigenvalues ±1

H(p,q) = H
(p,q)
+ ⊕H

(p,q)
− . (2.63)

In Tab. 2.6 we report the dimensions of the cohomology groups, and also the splitting
of the relative basis, which plays a crucial role in the truncation of the N = 2

spectrum.

All the split indexes run from 1 to the dimension of the relative eigenspace of
the cohomology group. Again, (αα, ββ) and (αα̂, β

β̂) form symplectic basis for the
corresponding cohomology groups, namely the only non-vanishing intersections are∫

χ

αα ∧ ββ = δβα ,

∫
χ

αâ ∧ β b̂ = δb̂â . (2.64)

It is easy now to infer the orientifolded spectrum of the four-dimensional EFT.

• ϕ(x, y) and C0(x, y) are invariant under OO3/O7 and then the four-dimensional
fields ϕ(x) and C0(x) remain in the spectrum. They combine into the axio-
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dilaton field:

S = e−ϕ − iC0 , (2.65)

which is the four-dimensional notation for the dilaton field.

• Since B2(x, y) are odd under the combined action of (−1)FL Ωp, only the odd
components under the action of σ∗ remain in the spectrum. Their expansions
look like

B2(x, y) = bi(x)ωi , C2(x, y) = ci(x)ωi . (2.66)

• C4(x, y) is even under the combined action of (−1)FL Ωp, then only the even
components under σ∗ remain in the spectrum. Its expansion looks like

C4(x, y) = Di
2(x) ∧ ωi + V α(x) ∧ αα + Yα(x) ∧ βα + ρi(x)ω̃

i . (2.67)

• Since the action of σ∗ is holomorphic, then only the even components under
σ∗ of the Kähler form J remain in the spectrum

J = ti(x)ωi . (2.68)

• Given that the action of σ leaves the metric invariant, while Ω is odd under the
action of σ∗, then only the odd components of the complex structure moduli
remain in the spectrum, and the expansion of the metric perturbation in eq.
(2.17) takes the form

hij =

h
(2,1)
−∑
a=1

i

||Ω||2
U
a
(x) (χa)iij Ω

ij
j . (2.69)

The surviving fields constitute a N = 1 EFT, and they assemble into the multi-
plets reported in Tab. 2.7

A few observations are in order at this point. First, notice that the four-
dimensional forms B2(x) and C2(x) are projected out of the N = 1 spectrum. Fur-
thermore, the non-vanishing of the scalar fields cι and bι are related to the presence
of O7-planes. In fact, since O-planes are fixed loci under the orientifold involution,
in presence of only O3-planes all the tangent vectors are odd under the action of σ.
As a consequence the expansions in eq. (2.66) are not admitted. On the contrary,

66



Multiplets Number Fields

gravity multiplet 1 gµν

vector multiplets h
(2,1)
+ V α

h
(2,1)
− Ua

chiral h
(1,1)
+ (ti, ρi)

multiplets h
(1,1)
− (bι, cι)

1 (ϕ,C0)

Table 2.7: Orientifolded spectrum arranged in N = 1 multiplets.

if also O7-planes are present in the compactification, then it is possible to get har-
monic forms with the correct transformation behavior so that the expansions in eq.s
(2.66) are admitted, and the scalar fields cι and bι take part of the spectrum.

The four-dimensional effective action can be computed by performing again a KK
reduction of the orientifolded spectrum. Since it is just a long but straightforward
operation, we mention only a couple of key points:

• Once we take into account the orientifold projection, the metric on the complex
structure deformations space becomes

Gab =
∂

∂Ua

∂

∂U
b
Kcs , Kcs = −ln

[
i
(
X
âFâ −X âF â

)]
, (2.70)

• Due to the orientifold the following intersection numbers vanish

Kijλ = Kικλ = Kiκ = Kι = 0 , (2.71)

and then the metric on the Kähler deformations space takes the form

Gij = −3

2

(
Kij

K
− 3

2

KiKj

K2

)
, Gικ = −3

2

Kικ

K
, Giκ = Gιj = 0 , (2.72)

where

Kij = Kijkt
k , Kικ = Kικlt

l , Ki = Kijkt
jtk , K = Kijkt

itjtk . (2.73)

• The self-duality condition of F5 can be imposed by adding to the four-dimensional
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action the following total derivative

δS(4) =
1

4
dV α ∧ dYα +

1

4
dDi

2 ∧ dρi . (2.74)

the equations of motion for Di
2 and Yα (or equivalently for ρi and V α) coincide

with the self-duality condition and then it is possible to eliminate Di
2 and Yα

(or ρi and V α) by inserting their equations of motion into the action. The
choice of eliminating the former or the latter corresponds to the choice of
expressing the four-dimensional action in terms of linear or chiral multiplets
respectively. Since we want to express the four-dimensional action in terms of
chiral multiplets, we choose to eliminate Di

2 and Yα.

We report the four-dimensional action expressed in terms of chiral multiplets.

S(4) =

∫
d4x

[
−1

2
R ∗4 1−GabdU

a ∧ ∗4dU
b −Gijdt

i ∧ ∗4dtj −
1

4
dlnK ∧ ∗4dlnK−

− 1

4
dϕ ∧ ∗4dϕ− 1

4
e2ϕdC0 ∧ ∗4dC0 − e−ϕGικdb

ι ∧ ∗4dbκ−

− eϕGικ(dc
ι − C0db

ι) ∧ ∗4(dcκ − C0db
κ)−

− 9Gij

4K2

(
dρi −

1

2
Kiικ(c

ιdbκ − bιdcκ)

)
∧ ∗4

(
dρj −

1

2
Kjικ(c

ιdbκ − bιdcκ)

)
+

+
1

4
ImMαβF

α ∧ ∗4F β +
1

4
MαβF

α ∧ F β − V ∗4 1
]
, (2.75)

where Fα = dV α and Mαβ is the same as in eq. (2.54) but evaluated in Uα = U
β
= 0

to take into account the orientifold projection. The scalar potential turns out to be
semi-definite positive, and it takes the form

V =
18ieϕ

K2
∫
χ
Ω ∧ Ω

(∫
χ

Ω ∧G3

∫
χ

Ω ∧G3 +Gab

∫
χ

χa ∧G3

∫
χ

χb ∧G3

)
. (2.76)

The next step is to bring the four-dimensional action in eq. (2.75) in the standard
N = 1, which boils down the the choice of the proper coordinates on the moduli
space such that it can be written as

S(4) =−
∫
d4x

[
1

2
R ∗4 1 +KIJDM

I ∧ ∗4DM
J
+

+
1

2
RefαβF κ ∧ ∗4F λ +

1

2
ImfαβF κ ∧ F λ + V ∗4 1

]
, (2.77)
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where

V = eK
(
KIJDIWDJW − 3|W |2

)
+

1

2
(Ref)−1αβDαDβ . (2.78)

In eq.s (2.77) and (2.78) M I denotes collectively all complex scalars of the the-
ory and KIJ is a Kähler metric which satisfies KIJ = ∂I∂JK(M,M), where K is
the Kähler potential of the theory. The Kähler covariant derivative takes the form
DIW = ∂IW + (∂IK)W .

It is necessary to find a complex structure on the moduli space such that the
metric of the action in eq. (2.75) is manifestly Kähler . It turns out that the coor-
dinates Ua on the space of the complex structure deformations are already proper
Kähler coordinates and Gab is the corresponding Kähler metric. On the contrary,
the remaining fields need a non-trivial redefinition [146, 147]:

S = e−ϕ − iC0 , Gι = cι + iSbι ,

Ti =
1

2
Ki(t

i)− ζi(S, S,G,G) + iρi , (2.79)

where Ki is defined in eq. (2.73), while

ζi = − 1

2(S + S)
KiκλG

κ(G−G)λ . (2.80)

ρi are axionic fields. Since they correspond to the integral of C4 over the four-
cycles of the compact manifold, the N = 1 EFT inherits a shift symmetry under
the transformations

ρi → ρi + ρ̃i , ρ̃i = const. , (2.81)

from the gauge symmetry in eq. (1.68) of the ten-dimensional theory. Also the field
C0 is an axion. It inherits the same shift symmetry as the fields ρi as a consequence
of the gauge symmetry of the ten-dimensional C0(x, y) field. As a consequence ρi
and C0 do not enter the expression for the tree-level Kähler potential K0, which in
terms of the coordinates in eq. (2.79) can be written as

K0 = −2lnV − ln
(
S + S

)
− ln

(
−i
∫
χ

Ω ∧ Ω

)
, (2.82)

where in order to emphasize the physical meaning of K, which is essentially the
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volume of the compact space, we redefined

V ≡
K
(
t(Ti + T i, S + S,Gκ −G

κ
)
)

6
, (2.83)

where V is the volume of the CY space measured in the Einstein frame and in string
units ℓs = 2π

√
α′. Even if it is not always possible to invert eq. (2.79) in order to get

ti(S, T,G), in eq. (2.82) we should regard V as a function of (S+S, Ti+T i, Gκ−Gκ
),

where these combinations of the fields S, Ti, Gκ are due to the shift-symmetry of ax-
ions of eq. (2.81).

In the simplest case with h(1,1)+ = 1, so that one single Kähler field T parametrizes
the volume of the compact space, eq. (2.79) can be solved explicitly for t and the
final result is

−2lnK = −3ln
[
T + T +

1

2(S + S)
K1κλ(G−G)κ(G−G)λ

]
. (2.84)

An interesting point is that the moduli space takes the diagonal form

M = Mh
(1,2)
−

cs ×Mh
(1,1)
− +1

k , (2.85)

where each component is a Kähler manifold. In [143] the author computed the
Kähler potential taking into account warping effects from the very beginning, and
he showed that warping effects deform the Kähler component of the moduli space.
As we will observe in Sec. 2.2.2, the introduction of the visible sector supported
on D3-branes at singularities spoils the product structure of the moduli space at
subleading order in the volume expansion. In the simplified case with Gι = 0

the tree-level moduli space undergoes a further split, since the first term depends
only on the Kähler moduli, while the second term depends only on the axio-dilaton.
Such splitting is however broken as soon as quantum corrections to the tree-level
Kähler potential in eq. (2.82) are considered.

The tree-level Kähler potential K0 in eq. (2.82) obeys the no-scale structure
condition, which takes the form

KIJ
0

∂K0

∂M I

∂K0

∂MJ

= 3 , (2.86)

where the sum runs over the moduli (Ti, Gκ). Eq. (2.86) implies that the scalar
potential in eq. (2.78) is positive semi-definite.
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The gauge kinetic functions can be written as

fαβ = − i

2
Mαβ

∣∣
Uα=U

α
=0

, (2.87)

where Mαβ is reported in eq. (2.54). It turns out that fαβ are holomorphic in Ua,
as it should be. Finally the scalar potential in eq. (2.76) can be inferred from a
tree-level superpotential of the form

W0(S, U
a) =

∫
χ

Ω ∧G3 , (2.88)

which is called Gukov-Vafa-Witten (GVW) superpotential [148]. As we will see in
detail in Sec. 2.2, the generation of this superpotential, which can be traced back to
the presence of fluxes, gives mass to some of the moduli of the compactification. No-
tice that Kähler moduli do not appear in W0, as a consequence of its holomorphicity
and of the shift-symmetry in eq. (2.81) of axion fields.

2.2 Model Building

The aim of the present section is to show how it is possible to build a semi-realistic
model of particle physics starting from the EFT built in Sec. 2.1.6. There are two
main issues in doing model building following the bottom-up approach [97]:

• Global issues: as we already mentioned, moduli are massless scalar fields which
are unwelcome from a phenomenological point of view, since on the one hand
they would mediate a fifth force which is not observed in nature, and on
the other hand all the parameters of the action in eq. (2.77) depend on the
their VEVs, so that without fixing them it is not possible to get predictions
from string theory. The procedure used to fix the moduli is called moduli
stabilization and it is the main subject of Sec. 2.2.1.

• Local issues: as we argued, in the bottom-up approach to string phenomenol-
ogy, the visible sector is localized on stacks of D-branes wrapping some cycles
in the compact space. It is anyway necessary to look for a D-branes config-
uration which reproduces the desired extension of the SM. This is the main
subject of Sec. 2.2.2.

Given that the visible sector is localized in a small region of the compact space,
a nice feature of these models is that they allow to get some degree of decoupling
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between global and local issues, depending on the details of the model. However
in the end, in order to embed the local D-branes configuration within a global con-
struction, it is necessary to perform all the consistency checks which are required to
ensure that the compactification is well-defined. We will report an explicit example
in Sec. 2.2.3.

2.2.1 Moduli Stabilization

The present section is organized as follows: in the first part we show how it is
possible to stabilize many moduli by simply using the presence of fluxes in the
compactification. Kähler moduli remain unfixed, and in order to stabilize them it is
necessary to introduce quantum corrections to the tree-level scalar potential as we
show in the second part of the section. Finally, we analyze the moduli stabilization
procedure which is extensively used in the present thesis: the Large Volume Scenario.

Tree-level Moduli Stabilization by Fluxes

The first step consists in analyzing the effects of the presence of fluxes on the spec-
trum of the EFT [94, 149, 150, 151, 152, 153, 154].

As we have seen in Sec. 2.1.6 the presence of fluxes generate a tree-level super-
potential which depends on complex structure moduli Ua and on the dilaton S, as
in eq. (2.88). On the contrary, the dependence on the complex structure moduli is
encoded in Ω and the dependence on the axio-dilaton field is explicit in the definition
of G3. It is useful to report the expressions for the covariant derivatives

DSW0 =
i

2
eϕ
∫
χ

Ω ∧G3 + iGικb
ιbκW0 , DTiW0 = KTiW0 = −2

ti

K
W0 ,

DGιW0 = KGιW0 = 2iGικb
κW0 , DUaW0 = i

∫
χ

χa ∧G3 , (2.89)

where we used also that DUaΩ = iχa.

The resulting tree-level scalar potential in eq. (2.76) can be rewritten in a much
easier form as

VO(V−2) = eK
(
|DSW0|2 + |DUW0|2

)
, (2.90)

where the first term in the bracket corresponds to the first term in the bracket of eq.
(2.76), while the second term corresponds to the second term in eq. (2.76). The sum
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over the Kähler moduli does not appear due to the no-scale structure of eq. (2.86),
which makes the Kähler moduli dependent terms in the bracket vanish. The only
Kähler moduli dependence lies into the prefactor eK ∼ V−2, which induces a run-
away in the Kähler directions, as it can be easily understood in the simplest example
of a single Kähler modulus T , which implies V =

(
T + T

)3/2. This prefactor also
fixes the order of VO(V−2) in the volume expansion. The only allowed global minimum
is then at VO(V−2) = 0, namely at

DSW0 =

∫
χ

Ω ∧G3 = 0 , DUaW0 = i

∫
χ

χa ∧G3 . (2.91)

The two conditions in eq. (2.91) correspond to having a ISD G3DSW0 = 0

DUaW0 = 0
⇒

G
(0,3)
3 = 0

G
(1,2)
3 = 0

⇒ ∗6G3 = iG3 . (2.92)

Given that F-terms govern the breaking of supersymmetry, and they are defined as

F i = eK/2KijDjW , (2.93)

the minimum in eq. (2.91) is clearly supersymmetric if the additional requirement
is satisfied:

DTiW0 = DGκW0 ∝ W0 = 0 , (2.94)

which translates into G
(0,3)
3 = 0, since W0 =

∫
χ
G3 ∧ Ω3. As expected, the ISD

condition supplemented with G
(0,3)
3 = 0 corresponds exactly to the class of warped

compactifications in Tab. 2.4.

The masses of complex structure moduli and of the axio-dilaton field are deter-
mined by the flux energy density, which is

mUa ∼ mS ≃
∫
Σ3

F3 ≃
∫
Σ3

H3 ∼
α′

R3
=
MP

V
, (2.95)

where Σ3 denotes a generic a three-cycle inside χ.

Eq. (2.92) implies the existence of a landscape of vacua, since it gives rise to
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2h(1,2)+2 real equations, which have hundreds or thousands of solutions for (S, U)9,
once the parameter space given by (mâ, eâ,m

â
RR, eRR â) ∈ Z4 is scanned.

We can conclude that the presence of fluxes allows for the stabilization of complex
structure moduli Ua and the axio-dilaton S at supersymmetric global minima, for
which eq.s (2.92), (2.94) hold. This is an intuitive result, since for a given set
of fluxes (mâ, eâ,m

â
RR, eRR â) ∈ Z4 there exist only a limited number of complex

structures and values of the axio-dilaton field which constrain G3 to have only (2, 1)

non-vanishing component. On the other hand, it is also intuitive that the presence
of fluxes does not stabilize Kähler moduli, since the ISD condition in eq. (2.35)
is invariant under a rescaling of the internal metric contained into ∗6, and then a
rescaling of the size of the internal cycles is allowed.

Corrections beyond Tree Level

The presence of fluxes allows to stabilize complex structure moduli and the axio-
dilaton, but it leaves the Kähler directions flat as a consequence of the no-scale
structure of eq. (2.86). Nevertheless, there exist various corrections which break the
no-scale structure and then produce a non-vanishing potential for the Kähler moduli.
In particular, due to the non-renormalization theorem which protects the superpo-
tential from perturbative corrections [155, 156, 157], we can write schematically

W = W0 +Wnp , K = K0 +Kp +Knp , (2.96)

where the subscript np stands for “non-perturbative”, while the subscript p stands
for “perturbative”. W0 and K0 are the tree-level results, respectively given in eq.
(2.88) and eq. (2.82).

As we have mentioned in Sec. 1.3, string theory naturally contains two different
dimensionless expansion parameters: the string coupling constant gs and the string-
over-internal-size α′

R2 . The first one governs the strength of string interactions, while
the second one governs the effects due to the one-dimensional nature of strings. As
a consequence two different expansions are allowed in the EFT descending from
compactifications. In the perturbative approach which we are using, both of them
have to be small. Non-perturbative corrections instead are due to either D3-brane
instantons or gaugino condensation on stacks of D7-branes. At the moment they

9In the sensible range of parameters, namely for s ≫ 1, since it fixes the string coupling constant
to small values, as required in the perturbative approach.
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are well understood only from a four-dimensional point of view.

The corrections we are going to introduce break both four-dimensional super-
symmetry and the no-scale structure, in order to generate a non-vanishing scalar
potential for the Kähler moduli. From a ten-dimensional perspective this amounts
to allow for non-vanishing components G(3,0)

3 , G(1,2)
3 , G(0,3)

3 of the three-form flux. As
we will observe in Sec. 2.2.1, such corrections produce a subleading effect in the ef-
fective field theory, since the scalar potential for Kähler moduli is generated at order
O (V−3), while the supersymmetric stabilization due to fluxes takes place at order
O (V−2). As a consequence, in the large volume regime V ≫ 1 they can be consid-
ered as small perturbations around the supersymmetric background in the class of
warped compactifications considered in Tab. 2.4, and the EFT is self-consistent.

α′-corrections - The tree-level ten dimensional action of Type IIB supergravity
in eq. (1.58) receives corrections coming from higher derivatives operators schemat-
ically of the form

SIIB =S0,tree + (α′)
3
S0,(3) + · · ·+ (α′)

n
S0,(n) + SCS,tree+

+ Sloc,tree + (α′)
2
Sloc,(2) + · · ·+ (α′)

n
Sloc,(n) , (2.97)

where

S0,tree =
1

2κ210

∫
d10x

√
−g [LNSNS + LRR] , (2.98)

as defined in eq. (1.58), while SCS,tree =
1

2κ210

∫
d10x

√
−gLCS. Each subscript within

brackets (i) denotes the i-th order correction in the α′-expansion. α′-corrections to
the local action give a non-vanishing potential for D7-branes, but not for D3-branes.
In particular it turns out that the (α′)2 Sloc,(2) correction produces an effective D3-
branes charge for D7-branes [94]. We focus on the leading α′-correction (α′)3 S0,(3).
Supersymmetry and invariance under worldsheet parity constrain S0,(3) to take the
schematic form [158]

(α′)
3
S0,(3) ∼

1

2κ210

∫
d10x

√
−g
[
R4 +R3

(
G3G3 +G3G3 +G3G3 + F 2

5 + (∇τ)2
)
+

+R2
(
G4

3 +G2
3G

2

3 + · · ·+ (∇G3)
2 + (∇F5)

2 + . . .
)
+

+R
(
G6

3 + · · ·+G2
3 (∇G3)

2 + . . .
)
+G8

3 + . . .
]
, (2.99)
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where the precise tensorial structure is fully known only for a few contributions [159,
160, 161]. For example, the tensorial structure of the R4 term is completely under-
stood [162, 147]. It can be written as the combination

J0 = t8t8R4 − 1

8
ϵ10ϵ10R4 , (2.100)

where t8 is defined in [163, 16, 164]10, while ϵ10 is the totally antisymmetric tensor
in 10 dimensions. The correction in eq. (2.100) gives rise to a correction of the
Kähler potential of the form [147]

K ⊃ −2 log

(
V +

ξ
(
S + S

)3/2
2

)
, (2.101)

where

ξ = −(α′)3 ζ(3)χ(χ)

25/2(2π)3
, (2.102)

and ζ(3) ≃ 1.202 is the Riemann zeta function computed in 3, while χ(χ) is the
Euler characteristic of the CY manifold χ considered, which can be written in terms
of the Hodge numbers as

χ(χ) = 2
(
h(1,1) − h(1,2)

)
. (2.103)

In [165] further α′-corrections at the same order (α′)3 have been computed. We
report on them in Sec. 6.3. Furthermore, in [164] the authors showed that the
orientifold planes present in the compactification can affect (α′)3-correction in eq.
(2.101) by shifting the Euler characteristic in eq. (2.102) in the following way

χ(χ) −→ χ(χ) + 2

∫
χ

D3
O7 , (2.104)

where DO7 is the class Poincaré dual to the divisor wrapped by the O7-plane. This
correction does not introduce qualitative changes in the moduli stabilization proce-
dure, and consequently in this work we ignore it.

String Loop Corrections - The effective ten-dimensional action of Type IIB
strings receives additional corrections from string loop effects, both in the bulk part
and in the local one. Such corrections, which are poorly understood, are governed

10For the explicit definition of t8 in terms of the metric see for example Appendix A of [164]
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by the string coupling constant gs. In the bulk part of the ten-dimensional action
they first appear at order (α′)3, so that they can be though about as a further gs-
expansion of each term in the action SIIB in eq. (2.97), starting from (α′)3 S0,(3).
String loop corrections have been computed for Type IIB orientifolds on tori with
D5/D9mand D3/D7-branes in [166, 167]. Starting from those results, it is possible
to guess the volume and dilaton dependence of string loop corrections in the case
of a generic CY [168, 169, 170, 171]. In general there are two contributions to the
Kähler potential:

• The first contribution comes from the exchange between D3-branes (or O3-
planes) and D7-branes (or O7-planes) of closed strings which carry KK mo-
mentum. For this reason they are labelled with a index KK:

δKKK
(gs) = − 1

128π4

h(1,1)∑
i=1

CKK
i (U,U)

(
ailt

l
)

Re(S)V
, (2.105)

where CKK
i are complicate unknown functions of the complex structure moduli

which can be computed explicitly only with a full stringy computation. ailtl

is a linear combination of the two-cycles volumes ti.

• The second contribution from string loops comes from the exchange of winding
strings between intersecting stacks of D7-branes (or between intersecting D7-
branes and O7-planes). It takes the form

δKW
(gs) = − 1

128π4

h(1,1)∑
i=1

CW
i (U,U)

(ailtl)V
, (2.106)

where again CKK
i are complicate unknown functions of the complex structure

moduli which can be computed explicitly only with a full stringy computation.
ailt

l is a linear combination of the two-cycles volumes ti.

Non-perturbative effects - As we already mentioned, non-perturbative effects
are well understood only from a four-dimensional point of view. In case non-
perturbative effects take place, the superpotential can be written as [172, 173, 174,
175, 105, 176]

W =W0 +
∑
j=1

Aj(ϕ, S, U)e
−ajTj , (2.107)
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where the sum takes into account all the contributions from both D3-brane instan-
tons and from gaugino condensation on stacks of D7-branes. ϕ collectively denotes
the (possibly present) open strings degrees of freedom associated with the stack of
D7-branes on which gaugino condensation takes place. In general A(ϕ, S, U) is an
unknown function of ϕ, U, S. More in detail:

a) D3 branes instantons - They can be obtained by wrapping Euclidean D3-
branes on 4-cycles of the compact space χ. In this case it turns out that
aj = 2π. Such superpotential is generated only if precisely two fermionic zero
modes are present on the world volume of the Euclidean D3branes. In F-theory
and M-theory such condition can be rephrased in terms of the arithmetic genus
χ of the divisor Σ wrapped by the Euclidean M5-branes [177]

χ(Σ) = h(0,0) − h(0,1) + h(0,2) − h(0,3) = 1 . (2.108)

In Type IIB theory a similar condition can be formulated under some specific
circumstances. It is important to notice that the zero-modes counting can be
substantially modified in presence of three-form fluxes and orientifolds [172,
178, 179, 175]. For example it has been shown in [173] that the component
G

(1,2)
3 of the three form flux can lift some zero modes.

b) Gaugino condensation on stacks of D7-branes - We consider a stack
of space-time filling D7-branes wrapped around a 4-cycle D in the internal
space. The relevant physics is given by the open string spectrum on the D7-
branes world volume. There are several possibilities. We mention two of them
[174, 175]:

– Pure N = 1 Yang-Mills theory with gauge group G. In this case gaugino
condensation generates a non-perturbative contribution to the superpo-
tential of the form

Wnp ∼ Λ3 = e
− 8π2

bg2 = e−2πVol(D) , (2.109)

where we used that Vol(D) = Re(T ) = 4π
g2

and b is the β-function of g:

1

g2(µ)
=

1

g20
− b

16π2
log

(
ΛUV

µ2

)
, (2.110)

where g0 =
√

4π
Re(T ) is the bare gauge coupling fixed at ΛUV, while µ is a

generic energy scale.
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– N = 1 Supersymmetric QCD (SQCD) with gauge group SU(Nc) and NF

matter fields Q, Q̃ in the representations NF

(
Nc ⊕N c

)
. In this case a

superpotential of the form

Wnp = (Nc −NF )

(
Λb

detQQ̃

) 1
Nc−NF

, (2.111)

is generated if Nc > NF , where b = 3Nc−NF is the β-function of SQCD.
Λ is the energy scale at which the VEV of QQ̃ breaks the gauge group
SU(Nc) to SU(Nc−NF ). If Nc ≤ NF no non-perturbative superpotential
is generated.

As a final comment, let us remark that it is not possible to generate a non-
perturbative effect on a geometric cycle which also supports a stack of D7-branes
giving rise to the visible sector [180]. This is a consequence of the chirality of the
MSSM (or some extensions thereof) which makes the Kähler modulus T associated
to the 4-cycle wrapped by D7-branes charged under an anomalous U(1). As a conse-
quence of gauge invariance of the superpotential, the non-perturbative contribution
can only have the following schematic form [181]

Wnp ∼

(∏
i

ϕihidden

)(∏
j

ϕjvisible

)
e−aT . (2.112)

However, since the visible fields are required to have vanishing VEV, such a non-
perturbative contribution to the superpotential can not arise. This is argument
pushes towards the possibility of building the visible sector on top of a singularity of
the compact space, where this problem can be avoided, as we will see in Sec. 2.2.3.

Large Volume Scenario

The Large Volume Scenario (LVS) provides a quite generic way to stabilize Kähler moduli
by using an interplay of non-perturbative and α′-corrections, which break the no-
scale structure of eq. (2.86) [182]. In this picture both the dilaton S and the complex
structure moduli U are stabilized at tree-level, as already explained in Sec. 2.2.1. In
the simplest version of the LVS the volume of the compact space takes the so called
“swiss cheese” form:

V = αbτ
3/2
b −

h
(1,1)
+∑
i=2

αiτ
3/2
i , (2.113)
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where τb = Re(Tb) and τi = Re(Ti) govern the size of the so called “big” 4-cycle and
“small” 4-cycles, such that τb ≫ τi. Since the big cycle is much larger than the small
ones, the volume in dominated by its value. αb, αi are constants determined by the
intersection numbers of the compact space. In the following we will fix αb = αi = 1,
unless differently specified. Non-perturbative effects due to E3-instantons or gaugino
condensation on stacks of D7-branes take place on the small cycles, so that the
superpotential takes the form

W =W0(U, S) +

h
(1,1)
+∑
i=2

Ai(U, S, ϕ)e
−aiTi , (2.114)

while the Kähler potential

K = −2 log

(
V +

ξ̂

2

)
− log

(
S + S

)
+ log

(
i

∫
χ

Ω ∧ Ω

)
, (2.115)

where we have included the leading α′-corrections introduced in Sec. 2.2.1. Notice
that in order to use LVS it is necessary that ξ in eq. (2.102) is negative, namely the
CY manifold needs to have more complex structure moduli than Kähler moduli [182]:
h
(1,2)
− > h

(1,1)
+ .

For the sake of simplicity we consider the case in which h(1,1)+ = 2, h(1,1)− = 0, and
we denote the Kähler modulus associated to the small cycle T2 ≡ Ts. Analysing the
F-terms scalar potential in an inverse volume expansion, one finds that the leading
contribution scales as V−2. This is generated by the flux superpotential W0 and
is positive semi-definite as in eq. (2.90), despite the subleading corrections to the
Kähler potential

VO(V−2) =
1

2sV2

[
4s2|DSW0|2 +KUaUbDUaW0DUb

W 0

]∣∣∣
ξ=0

, (2.116)

where the subscript ξ = 0 denotes that α′-corrections can be neglected at this level
of approximation. This potential fixes the dilaton and the complex structure moduli
at a supersymmetric minimum located at

DSW0|ξ=0 = 0 , DUaW0

∣∣
ξ=0

= 0 , ⟨W0⟩ ≡ W0 . (2.117)

The Kähler moduli are stabilised using α′ corrections toK (3.3) and non-perturbative
corrections to W0 as in eq. (3.1) which give rise to O(V−3) contributions to the scalar
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potential of the form

VO(V−3) =
1

2s

[
8

3
(asAs)

2√τs
e−2asτs

V
− 4asAsW0τs

e−asτs

V2
+

3ξ̂W 2
0

4V3

]
, (2.118)

where as a generic feature of LVS, the axion field in the exponents of the non-
perturbative effect is stabilized in such a way that the scalar potential in eq. (2.118)
admits a minimum11. The last term in the bracket is due to α′-corrections. The
scalar potential in eq. (2.118) admits an AdS global minimum which breaks SUSY.
Minimisation with respect to τs yields

e−asτs =
3
√
τsW0

4asAsV
(1− 4ϵs)

(1− ϵs)
with ϵs ≡

1

4asτs
∼ O

(
1

lnV

)
≪ 1 . (2.119)

On the other hand, minimisation with respect to τb gives

τ 3/2s ≃ ξ̂

2
. (2.120)

From eq. (2.119) we infer that the minimum of the LVS scalar potential lies at
exponentially large volume V ≫ 1. Furthermore, since V ∼ easτs and τs ∼ ξ̂, we
understand that the existence of a hierarchy is determined by the smallness of the
string coupling constant gs ≪ 1 in the perturbative regime. A nice feature of LVS
is that W0 does not require to be fine-tuned in order to get a minimum, as it hap-
pens in the KKLT setup [149], where W0 ∼ e−τ , where τ is the size of the four cycle
which governs the volume of the compact space. Unfortunately the minimum in eq.s
(2.119) and (2.120) is not de Sitter, so that for the compactification to reproduce the
real world some additional ingredients need to be added. Further ingredients are also
required in order to embed the visible sector into the compactification, since this can
not be supported on a four-cycle whose size is stabilized through non-perturbative
effects, as the small cycles in the LVS setup.

Let us briefly summarise the main properties of LVS relevant for soft SUSY-
breaking:

• Hierarchy of scales: LVS leads to a hierarchy of scales for masses and soft-
terms [158]. In Planck units (MP is the reduced Planck mass), the string scale

11The first term in the scalar potential of eq. (2.118) has to be positive, while the second one
has to be negative.
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is (see Appendix A of [158] for the derivation of the exact prefactors)

Ms =
g
1/4
s MP√
4πV

, (2.121)

the Kaluza-Klein scale is

MKK ≃ MP√
4πV2/3

, (2.122)

and the gravitino mass is12

m3/2 = eK/2|W | =

(
g
1/2
s

2
√
2π

)
W0MP

V
+ . . . , (2.123)

where the dots indicate suppressed corrections in the inverse volume expansion.
Most of the moduli receive a mass of order m3/2 except for the volume mode
whose mass is mV ≃ m3/2/

√
V . Hence there is a natural hierarchy of scales

Ms ≫MKK ≫ m3/2 ≫ mV for the flux superpotential W0 taking generic values
between 1− 100.

• Bottom-up model building: The D-brane configuration of the visible sector is
localised in a particular corner of the bulk geometry, allowing for a realisation
of the bottom-up approach to string model building [97]. The structure of
soft-terms does not depend on the gauge theory realised in the visible sector
but only on the type of D-brane configuration (e.g. branes at singularities, D7-
branes in the geometric regime) as in the modular approach to string model
building. The realisation of the visible sector on a cycle different from the one
supporting non-perturbative effects allows to achieve compatibility of chirality
and moduli stabilisation [180, 183].

• SUSY breaking: Assuming a D-brane configuration that leads to the MSSM,
the effective field theory allows to analyse the structure of soft-masses. In
particular, the pattern of soft masses depends on the location and type of the
MSSM D-brane construction in the CY orientifold compactification. If the
MSSM is located at a divisor geometrically separated from the main sources
of SUSY breaking in the bulk, e.g. on a shrinking divisor, there can be a
hierarchical suppression of the soft masses below the gravitino mass and the
lightest modulus [184]. If the dominant source of SUSY breaking is in the
proximity of the visible sector brane configuration (as it happens if the F-term

12We set the VEV of the Kähler potential for complex structure moduli such that eKcs/2 = 1.
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of the modulus of the cycle wrapped by the SM brane breaks SUSY), the soft
masses are of order the gravitino mass with only mild suppressions [158, 185,
186, 187].

Generically moduli masses tend to be of order the gravitino mass, as we have
seen in eq. (2.95) and (2.123). In view of the Cosmological Moduli Problem (CMP)
which sets a lower bound on moduli masses of order 100 TeV [188, 189, 190], it is
often desirable to have soft masses well below the gravitino/moduli masses although
achieving this requires a special mechanism at play. We will refer to models which
have hierarchically suppressed soft masses (not just by loop factors) as sequestered
models.13 Depending on the location of SM particles and the value of the CY volume,
we distinguish three interesting LVS scenarios for SUSY breaking:

1. Unsequestered GUT scale string models: Motivated by unification, if
one takes the string scale to be close to the GUT scale 1014− 1016 GeV, where
the range in the volume captures the uncertainty about high-scale threshold
corrections, then the volume is of order V ≃ 103−107 for gs ≃ 0.1. This implies
a large gravitino mass, m3/2 ≃ 1010 − 1014 GeV, i.e. unobservable sparticles,
unless the flux superpotential is tuned to extremely small values (tuning of
up to W0 ∼ 10−10) to get TeV soft-terms.14 So the generic situation without
tuning W0 is that soft-terms are at an intermediate scale, roughly in the range
1010−1014 GeV. This scenario is safe from the CMP. The string landscape can
in principle address the hierarchy problem.

2. Unsequestered intermediate scale strings: Requiring TeV scale soft-
terms in an unsequestered setting leads to a volume of order V ≃ 1014 for
W0 ∼ 10, implying an intermediate string scale, Ms ≃ 5 · 1010 GeV. This
scenario addresses the hierarchy problem, although unification has to work
differently from the MSSM (see [192, 193, 194] for concrete string examples
with intermediate scale unification). Its spectrum of soft-terms at the elec-
troweak scale has been studied in [195]. It suffers from the CMP since the
volume modulus mass is slightly below 1 MeV.

3. Sequestered high scale string models: There can be special situations
in which the soft-terms are hierarchically smaller than the gravitino mass,
referred to as sequestered scenarios [184]. In LVS this happens in configu-
rations in which the Standard Model degrees of freedom are localised in the

13A similar suppression appears also in the context of realisations of the KKLT scenario [191].
14TeV scale soft masses in this scenario would lead to light moduli which suffer from the CMP

since mV ≃ 10 GeV.
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extra dimensions, such as in models where the visible sector arises from open
strings on D3-branes at a singularity. In particular, in this setup the F-term
of the Standard Model cycle vanishes and the dominant F-terms are associ-
ated with other moduli (the volume modulus, the dilaton and other Kähler
and complex structure moduli). However the dominant F-terms couple very
weakly to the visible sector because of their bulk separation, and this pro-
duces a hierarchy between the soft-terms and the gravitino mass. Typically
gaugino masses are of order M1/2 ≃ m3/2/V , whereas scalar masses can be
as suppressed as the gaugino masses or hierarchically larger by a power V1/2

(leading to a Split-SUSY scenario in this last case). This makes these models
very attractive for phenomenology since they feature TeV scale soft-terms and
no CMP for V ≃ 107 and W0 ≃ 50 which give M1/2 ≃ 1 TeV, m3/2 ≃ 1010

GeV and mV ≃ 5 · 106 GeV. The unification scale in these models is set by
the winding scale MW = 2π

√
πgsMP/V1/3 [196, 197] which turns out to be

of the same order of the standard GUT scale. The appearance of this hier-
archical suppression of soft masses is subject to the structure of the effective
supergravity. Changes to the EFT at loop or non-perturbative level (see for
instance [185, 186, 198, 199, 200]) can lead to desequestering. In Sec. 3.3 we
comment more explicitly on possible sources for desequestering and focus for
the remainder of this paper on constructions where these desequestering effects
can be absent.

In this work we focus our attention on sequestered models, hence we need to
introduce D3-branes at singularities.

2.2.2 Visible Sector

As we already discussed, the visible sector in Type IIB can be obtained through a
D-branes configuration [201]. In order to get a sequestered scenario as described
in the last section, we focus on space-time filling D3-branes configurations. The
spectrum of a D3-brane is summarized in Tab. 2.8. The fields in Tab. 2.8 fill out
a U(1) multiplet of N = 4 four-dimensional supersymmetry. As a consequence,
the worldvolume theory of a D3-brane is not chiral, and the same happens for the
straightforward generalization to a stack of ND3 D3-branes, whose spectrum can be
arranged in U(ND3)

15 multiplets of N = 4 supersymmetry. The only known way
to allow for chirality in the case of space-time filling D3-branes, is by placing the
stack on top of a singularity inside the compact space [202, 203, 204, 205, 206, 97].

15Assuming that the space-time is not filled by 3-planes. If the four-dimensional space-time is
filled by O3-planes, then also the gauge groups SO(ND3) and Sp(ND3) could be obtained.
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Sector 4D field

NS 1 Gauge Boson: Aµ
NS 6 Real Scalars: ϕi

RR 4 Majorana Fermions: λα

Table 2.8: Spectrum of a D3-brane worldvolume theory.

D3-branes at singularities constitute the quintessential realization of the bottom-up
approach, since the visible degrees of freedom arise from a single point in the com-
pact space. In this case a net separation between gauge degrees of freedom and bulk
ones take place, allowing to tackle moduli stabilization and D-branes model building
almost independently. The separation is more accentuated if D7 flavour branes are
absent in the compactification, since they would couple directly visible fields to the
bulk. For this reason we avoid the presence of D7-flavour branes, and we assume
that the MSSM comes from a D3-branes construction.

As an example of the power of the bottom-up approach we report a very simple
argument to deduce the volume scaling of the Kähler matter metric of visible scalar
fields [181]. As it is well known, physical Yukawa couplings Ŷαβγ take the form

Ŷαβγ = eK/2
Yαβγ√
K̃αK̃βK̃γ

, (2.124)

in terms of the holomorphic Yukawa couplings Yαβγ and of the Kähler matter metric
(assuming it is flavour diagonal) K̃α. Since physical Yukawa couplings should be
generated by gauge interactions taking place on top of the D3-branes which corre-
spond to a single point in the compact space, then it is reasonable to assume that
they do not depend on the volume of the compactification space. This translates
into the following volume scaling for the Kähler matter metric

K̃α ≈ 1

V2/3
. (2.125)

As we will observe in the next section, this is exactly the scaling obtained by per-
forming the Kaluza-Klein reduction.

From a geometrical point of view, the most intuitive description of D3-branes
at singularities can be given in terms of the del Pezzo divisor hosting them, in the
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non-singular (or “blow-up”) limit [207]. A del Pezzo surface dPn (0 ≤ n ≤ 8) is a
four-cycle inside the CY manifold which contains several non-trivial two-cycles Hi.
In general, for a dPn surface, the non-vanishing Hodge numbers are given by

h
(0,0)
dP = 1 , h

(1,1)
dP = n+ 1 , h

(2,2)
dP = 1 , (2.126)

so that the Euler characteristic of a dPn is χ(dPn) = n+3. In the non-singular limit
dPn can be wrapped by D7-branes, Hi can be wrapped by D5-branes, while 0-cycles
inside dPn can support D3-branes. In general, not every D-branes configuration is
a stable one: only BPS states are minimum-energy states and then they are stable.
A stack of D3-branes forms a stable configuration if placed at a smooth point of a
CY manifold, but D-branes get recombined into fractional branes if placed on top
of a singularity. Fractional branes configurations can be described as a stable bound
states of D3/D5/D7-branes respectively wrapping the 0/2/4-cycles of the del Pezzo
divisor hosting the D-branes configuration. Alternatively, these bound states can
be interpreted as D7-branes with some quantized magnetic flux F , and non-trivial
configurations of F can be thought of as lower dimensional branes bound to the
stack of ND3 D3-branes [207].

Dimensional Reduction

In order to study the EFT arising from a stack of ND3 D3-branes, it is necessary to
perform a Kaluza-Klein reduction [146], as we already reviewed for the bulk theory in
Sec. 2.1.5. The action governing the dynamics of a stack of ND3 D3-branes contains
two contributions. The first one is the non-abelian Dirac-Born-Infeld (DBI) action,
which in the string frame reads

SDBI = −µ3

∫
W
d4ξ Tre−ϕ

√
−det [φ∗Tµν + 2πα′Fµν ] detQn

m , (2.127)

where

Tµν = Eµν + Eµn
(
Q−1 − δ

)nm
Emν , E = g +B , (2.128)

µ3 has already been introduced in eq. (2.43), W denotes the D3-brane space-time
filling worldvolume, ξ collectively denotes the coordinates on W and φ : W ↪→M is
the embedding map of the D3-branes into the ten-dimensional space-time M . Fµν
denotes the field strength of the U(ND3) gauge theory described by the D3-branes
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configuration. Moreover we define

Qn
m = δnm + 2iπα′ [ϕn, ϕk]Ekm , n,m = 1, . . . , 6 , (2.129)

where the six scalar fields ϕi parametrize the position of the D3-brane inside the
compact space, and transform in the adjoint representation of U(ND3). The DBI
action provides the coupling between the opens strings degrees of freedom and the
NSNS fields of the bulk theory.

The second contribution to the D3-branes action is given by the Chern-Simon
action, which reads

SCS = µ3

∫
W

Tr

(
φ∗

(
e2iπα

′ iϕiϕ
∑
q even

Cqe
B

)
e2πα

′F

)
, (2.130)

where iϕ denotes the interior multiplication of a form with the field ϕn, which can
be written as

iϕCq =
1

q!

q∑
k=1

(−1)k+1ϕn (Cq)ν1...νk−1nνk+1...νq
dxν1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxνq , (2.131)

where the differential with the ̂ is omitted. The CS action provides the coupling
between the opens strings degrees of freedom and the RR fields of the bulk theory.

The KK reduction is a quite long procedure and it contains many subtleties.
Here we just want to emphasize the main points:

• As a first step it is necessary to compute the pull-back of the ten-dimensional
fields g and B which appear in the actions in eq.s (2.127) and (2.130). How-
ever, in order to capture all the degrees of freedom arising from a D3-branes
configuration, it is necessary to perturb the background map φ. Schematically

φ → φ+ δφ , (2.132)

so that δφ takes into account the fluctuations of the D3-brane in the directions
orthogonal to its world-volume. Such a procedure is called normal coordinate
expansion.

• It is necessary to expand the square root of the determinant of the field Qn
m,
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taking into account the non-abelian nature of the fields ϕi, which leads to√
detQi

j = 1 +
i

4πα′ [ϕ
m, ϕn]ϕk∂kBnm + (πα′)

2
gmngpq [ϕ

p, ϕm] [ϕn, ϕq] + . . . ,

(2.133)

where the . . . denote fields which vanish after taking the trace in the la-
grangian.

• In the KK reduction of the Chern-Simon action, the 4-form C4 is expanded
around its background value, which is determined by the condition α = e4A.
We allow for small perturbations around this background value, which means
taking into account a small, non-ISD component for G3. As a consequence
the solution breaks supersymmetry and deviates from the class of warped
compactifications in Tab. 2.4. We assume that this is a very small departure
from the supersymmetric background, so that we can treat it perturbatively,
without destroying the solution.

• Once the reduction has been performed, it is necessary to recast all the expres-
sions in terms of chiral superfields, and then it is necessary to find a complex
structure which is compatible with the N = 1 supersymmetry. It turns out
that the complex structure J of the compact space is compatible with N = 1

supersymmetry. A key point in this step is that a mixing between complex
structure moduli and open strings degrees of freedom takes place, so that
Kähler moduli need to be redefined differently from eq. (2.79), as follows [146]

Ti =
1

2
Ki − ζi + 4iπ2 (α′)

2
µ3 (ωi)mn Tr

[
ϕm
(
ϕ
n − i

2
U
a
(χa)

n
p ϕ

p

)]
, (2.134)

where the trace is performed on the gauge indexes. In the case of a single
Kähler modulus T , the moduli space takes the same form as in eq. (2.82), but
with a different K ≡ K(S, T,G, U, ϕi):

−2logK = − 3log
[
T + T + ζ1 + 12iπ2 (α′)

2
µ3 (ω1)mn Tr

(
ϕmϕ

n
)
+

+ 3π2 (α′)
2
µ3

(
(ω1)mn U

a
(χa)

n
p Tr (ϕmϕp + h.c.)

)]
. (2.135)

From the Kähler potential in eq. (2.135) it is possible to infer the same scaling
behaviour of eq. (2.125) can be inferred for the Kähler matter metric:

K̃mn ≈ (ω1)mn
T + T

. (2.136)
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Notice that in eq. (2.135) the complex structure moduli mix with the Kähler moduli
in K so that the moduli space is no longer of the diagonal form as in eq. (2.85). If
warping effects are takes into account as in [143], then an additional correction with
the same volume scaling of the Kähler matter metric in eq. (2.136) can appear. In
the present work we neglect this possibility.

D3-branes at Singularities

Every time a manifold features a discrete symmetry, it is possible to build a new
manifold by identifying points under the corresponding transformation. The possi-
ble fixed points under the action of the transformation are singularities of the new
compactification manifold, called orbifold singularities. Orbifold singularities are
the simplest singularities which can be encountered, and in particular C3/Z3 which
is equivalent to a dP0 surface whose size is shrinked to zero, is an orbifold singularity.
In such a singularity fractional branes have to form a representation of Z3, namely
the Z3 action has to act by interchanging fractional branes placed at three image
points. A D3-brane then splits into 3 fractional branes, each of which carrying 1/3

of the original D3-brane mass.

The interesting feature of singularities, from a phenomenological point of view,
is that by placing a stack of D3-branes on top of a singular point in the compact
space it is possible to get a chiral spectrum, starting from a non-chiral N = 4

supersymmetric theory. There is also an additional reason to consider such models.
As we discussed in Sec. 2.2.1, it is not possible to conciliate the stabilization of the
size of an internal 4-cycle of the manifold with chirality, which is an essential feature
of our world [180]. As a consequence it is not possible to both build the visible sector
on top of a stack of branes wrapping a 4-cycle in the geometric regime (as the “small”
cycle in the simplest LVS setup), and stabilize it through non-perturbative effects
like E3-instantons or gaugino condensation on D7-branes. A possible way out is
represented by D3-branes at singularities constructions. In fact, let us assume that
the visible gauge sector is hosted by a stack of D7-branes wrapping a 4-cycle (whose
associated Kähler modulus is Tvis) inside the compact space. The chiral nature of
the observable world implies the existence of anomalous U(1)’s, under which the
modulus Tvis is charged. We assume for the simplicity of the argument that there is
only a single anomalous U(1), so that Tvis transforms as

δλTvis = Tvis + iQTvisλ , (2.137)
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where QTvis is the charge of the modulus Tvis under the anomalous U(1), and λ is
the parameter of the transformation. It generates a D-term scalar potential which
schematically takes the form

VD ∼

(∑
i

ci
∣∣Φi

vis

∣∣2 − ξ

)2

, (2.138)

where Φi
vis represent the visible scalar fields, ci denotes generic coefficients and ξ is

the Fayet-Iliopoulos term, depending on Tvis. This part of the scalar potential fixes
Tvis such that the combination

∑
i ci |Φi

vis|
2
= ξ, leaving as many flat directions as

the number of visible fields charged under the anomalous U(1). This degeneracy is
then lifted by subleading supersymmetry breaking effects, which contribute to scalar
potential with terms like m2 |Φi

vis|
2. In order for the visible fields not to roll down to

charge or color breaking minima, the mass squared m2 has to be positive. In such
a way the visible scalar fields are fixed at Φi

vis = 0, which implies also ξ = Tvis = 0.
As a consequence the size of the 4-cycle which supports the visible sector is fixed at
zero size: the singularity is obtained in a dynamical way. We will study the details
of such a model in Chap. 3.

Interestingly, from the previous argument it is also possible to infer the tree-level
contribution of Tvis to the Kähler potential. Indeed, the D-term scalar potential in
eq. (2.138) arises from an anomalous U(1) which get massive due to the Green-
Schwarz mechanism. It is possible to compute that the mass of such a field is given
by the string scale m2

U(1) ≃M2
s , and since

m2
U(1) ≃M2

P

∂

∂T vis

∂

∂Tvis
K(Tvis + T vis) , (2.139)

then the leading contribution to the Kähler potential is given by

K ⊃ λvis

(
Tvis + T vis + qvisVvis

)2
V

, (2.140)

where qvis is the charge of the modulus Tvis under the anomalous U(1), while Vvis is
the corresponding vector multiplet.

Crucially, models of D3-branes at singularities can be adjusted to support a
realistic visible sector. We report here the gauge theories which is possible to get
in presence of a stack of space-time filling D3-branes, placed on top of a generic
R6/Zn singularity. In terms of N = 1 supersymmetry, the fields in eq. (2.141)
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can be arranged in U(ND3) vector multiplets, and three adjoint chiral multiplets Φr,
whose components are 6 real scalar fields ϕi transforming in the 6 of SU(4) ≃ SO(6)

plus 4 adjoint fermions transforming in the 4 of SU(4). As soon as a stack of ND3

D3-branes is considered, the states reported in Tab. 2.8 for the single D3-brane case
have to be supplemented by a Chan-Paton matrix λ:

Aµ = λaAaµ , ϕi = λAψa i , λα = λaλaα , (2.141)

where each λa transforms in the Lie algebra of U(ND3). The representation of the
Lie algebra in which they transform determines the nature of the four-dimensional
fields, and it is given by the action of Zn.

The action of Zn on fermions and scalars is given respectively by the matrices

Rferm = diag
(
e2πia1/n, e2πia2/n, e2πia3/n, e2πia4/n

)
,

Rscal = diag
(
e2πib1/n, e2πib2/n, e2πib3/n

)
, (2.142)

where

a1 + a2 + a3 + a4 = 0 modn ,

b1 = a2+a3 , b2 = a1 + a3 , b3 = a1 + a2 , (2.143)

Furthermore, the action of Zn needs to be embedded on the Chan-Paton indexes.
The embedding is provided by the matrix

γθ, 3 = diag
(
1n0 , e

2πi/n1n1 , . . . , e
2π(n−1)i/n1nn−1

)
, (2.144)

where
∑

i ni = n and the matrices 1ni
are the ni × ni unit matrices. The spectrum

of the gauge theory living on D3-branes at a Zn singularity is obtained by keeping
the states of the N = 4 theory in eq. (2.141) which are invariant under the Zn
action. This is defined on the states as follows

• Gauge bosons:

λ = γθ, 3λγ
−1
θ, 3 , (2.145)

• Fermions:

λ = e2πiaα/nγθ, 3λγ
−1
θ, 3 , α = 1, . . . , 4 , (2.146)
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• Complex scalars:

λ = e−2πibr/nγθ, 3λγ
−1
θ, 3 , r = 1, 2, 3 . (2.147)

The spectrum is finally given by

Vectors
n−1∏
i=0

U(ni) ,

Complex scalars
3∑
r=1

n−1∏
i=0

(ni, ni−br) , (2.148)

Fermions
4∑

α=1

n−1∏
i=0

(ni, ni+aα) .

In general this spectrum is not supersymmetric, unless b1 + b2 + b3 = 0, in which
case a4 = 0 and the fermions corresponding to α = 4 turn out to transform as
gauginos (in the adjoint representation of U(ni)), while the fermions correspond-
ing to α = 1, 2, 3 transform in the same bifundamental representations as complex
scalars. In this case complex scalars and fermions fill out a set of chiral multiplets,
while gauge bosons and gauginos compose vector multiplets of the resulting N = 1

supersymmetric theory. The condition b1 + b2 + b3 = 0 corresponds to the require-
ment that the Zn action is contained in SU(3), as expected given that it gives rise
a supersymmetric theory.

We are interested in the case n = 3, with ND3 = 3 D3-branes at singularities
each of which splits into 3 fractional branes placed at image points under the Z3

action, so that ni = 3 for each i = 0, 1, 2. Generically the spectrum reported in eq.
(2.148) is not free from anomalies, and it is necessary to include D7 flavour branes
in the compactification in order to erase them. However, in the specific case with
n = 3 and ni = 3 for i = 0, 1, 2 anomalies cancel off automatically [97]. The gauge
group in this case is that of a trinification model :

G = SU(3)col × SU(3)L × SU(3)R , (2.149)

and the spectrum arise from the following 27 states

3
[
(3,3,1), (1,3,3), (3,1,3)

]
. (2.150)

Finally, since there is only a trivial overall U(1) which decouples, the hypercharge has
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to arise from the SU(3)L×SU(3)R sector. The main problem with this model is that
the structure of Yukawa couplings always generates a wrong hierarchy for fermion
masses of the form (M,M, 0), with two heavy and one massless generations [201,
181].

2.2.3 An Explicit Global Model

In the present section we exhibit an explicit global embedding of the D3-branes at
singularities setup, in which all the concistency conditions have been checked [208].
In particular we require that:

• moduli stabilization is performed in the LVS setup,

• the visible sector is supported by D3-branes at singularities,

• the compactification is self-consistent.

We consider Type IIB warped compactifications with O3/O7-planes. Since we re-
quire the gauge theory of the visible sector to be SU(N), the singularity has to lie
away from the O7-plane. As a consequence it is necessary to look for a CY manifold
which contains two singularities, exchanged by the orientifold action whose fixed
locus is an O7-plane. As we have discussed, LVS moduli stabilization requires at
least a couple of additional 4-cycles, so that the minimal setup should contain at
least four 4-cycles. Finally, as explained in Sec. 2.2.2, it is required not to have D7
flavour branes, in order to maximize the effect of decoupling between gauge and
bulk degrees of freedom. In order to get anomaly cancellation D3-branes have to be
placed on top of C3/Z3 singularities.

In [208] the authors considered a scan among CY manifolds which are hypersur-
faces in four dimensional toric ambient spaces [209, 210, 211, 212, 213, 214, 215],
looking for one which satisfies the above requirements. From a technical point of
view, since a C3/Z3 singularity is equivalent to a dP0 singularity [207], the authors
looked for a CY containing two dP0 divisors exchanged by the orientifold involution.
They eventually checked that the point of the moduli space where these del Pezzo
divisors shrink to zero size lies inside the Kähler cone.

The CY manifold χ considered contains three non-intersecting dP0 divisors: D4,
D7, D8. A basis for H(1,1) can be chosen as

Γb = D6 +D7 = D4 +D5 , Γq1 = D4 , Γq2 = D7 , Γs = D8 , (2.151)
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where the subscripts b and s refer respectively to the “big” and “small” cycles of LVS,
while qi refer to the cycles supporting the visible sector.

The volume of this CY takes the form

V =
1

9

√
2

3

(
τ
3/2
b −

√
3
(
τ 3/2q1

+ τ 3/2q2
+ τ 3/2s

))
, (2.152)

where

τq1 = Vol(D4) =
9

2
t2q1 , τq2 = Vol(D7) =

9

2
t2q1 ,

τs = Vol(D8) =
9

2
t2s , τb = Vol(D6 +D7) =

27

2
t2b . (2.153)

In this setup there are two O7-planes, as reported in Tab. 2.9.

O7-planes Homology class in χ

O71 DO71 = D6 +D7 = Γb

O72 DO72 = D8 = Γs

Table 2.9: O7-planes of the configuration.

Here we summarize the D-branes/O-planes configuration of the model:

• There are two non-intersecting O7-planes: one in the homology class Γb and
one in the homology class Γs.

• In order to cancel the D7-charge generated by O7-planes, four D7-branes are
placed on top of each O7-plane. This generates two hidden sectors SO(8) ×
SO(8), which can give rise to gaugino condensation.

• The visible sector is achieved by placing three D3-branes on top of the two
singularities exchanged by the orientifold involution. In this way the gauge
theory obtained is a trinification model SU(3)3, which can be further broken
to the MSSM gauge group [208].

As we have seen in Sec. 2.1.4 it is necessary to cancel the D3-branes charge.
This is achieved taking into account the D3-branes charge generated by the pres-
ence of D7-branes. Schematically, the condition that is satisfied by the D-branes
configuration takes the following form

Qquiver
D3 +Q

(b)
D3 +Q

(s)
D3 +Qfluxes = 0 , (2.154)
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where Qquiver
D3 takes into account the contributions from the fractional D3-branes

placed at the singularities, while Q(b)/(s)
D3 correspond to the contributions from D7-

branes and O7-planes in the homology class Γb and Γs respectively.

The Kähler potential of the EFT is given by

K = −2log

(
V +

ξ̂

2

)
− log

(
S + S

)
+ log

(
i

∫
χ

Ω ∧ Ω

)
+

+

(
TSM + T SM + qSMVSM

)2
V

+

(
G+G+ qGVG

)2
V

+ K̃αC
αC

α
, (2.155)

where we defined the invariant cycle DSM = D4 +D7 such that

TSM = τSM + iaSM , τSM =
1

2

∫
DSM

J ∧ J , aSM =

∫
DSM

C4 , (2.156)

and the anti-invariant cycle D− = D4 −D7 so that

G = b+ ic , b =

∫
D̂−

B2 , c =

∫
D̂−

C2 . (2.157)

Finally qSM, qG are the charges of the moduli TSM and G under the anomalous U(1)’s
with vector multiplets VSM and VG as we already discussed in the last section.

Finally, an important point is to check whether it is possible to get a non-
perturbative effect at least on top of the small cycle, in order to perform Kähler moduli
stabilization in the LVS setup. As we reviewed in Sec. 2.2.1, the presence of chiral
states on the stack of D7-branes in the homology classes Γs and Γb, can destroy the
possibility of having gaugino condensation. The simplest way to avoid this issue is
by setting to zero on both stacks of D7-branes the gauge flux

F = F −B , (2.158)

where F denotes the gauge flux of the D7-brane gauge theory. In general this is
not a straightforward step, since once the condition F = 0 is imposed on one stack
of D7-branes, it could be not possible to impose the same condition on the second
stack. However, in the properly chosen configuration of [208] this is not the case,
due to the fact that the two divisors belonging to the homology classes Γs and Γb

have no intersections. There are two possibilities:

1. If the field B is chosen such that Fs = 0 and Fb ̸= 0, then no non-perturbative
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effect for Tb is generated. In this case it is possible to get a dS vacuum, since
the non-vanishing flux on Γb induces a non-zero U(1) charge for Tb. As a
consequence a D-term in the scalar potential is generated, whose interplay
with the F-term part of the scalar potential leads to an uplifting contribution
of the usual AdS vacuum of LVS. This kind of solution is that explicitly built
in [208]. Further details on the de Sitter mechanism are provided in Sec. 3.1.2.

2. If the field B is chosen in such a way that F = 0 on both Γs and Γb, depending
on the details of the model a non-perturbative effect for Tb can be generated,
but in general it is not possible to get a dS vacuum without the introduction of
new elements in the compactification, such as anti-branes at the tip of warped
throats [149] or new non-perturbative effects taking place on an additional
singularity placed on top of the O7-plane [216]. In Sec. 3.1.2 we take into
account the latter possibility. A global construction for such a de Sitter sector
is still lacking.

In the case 1. the superpotential takes the schematic form

W = W0 + Ae−asTs , (2.159)

which is the proper one in order to use LVS for Kähler moduli stabilization.
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Part II

Supersymmetry Breaking in
Sequestered Models
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Chapter 3

Sequestered de Sitter String Models:
Soft-Terms

The simplest models of low energy supersymmetry as a solution to the hierarchy
problem are in tension with the latest LHC results (see e.g. [217] and references
therein) which are moving the bounds for sparticle masses beyond the TeV scale.
We are then either in a situation where we accept two to three orders of magnitude
of tuning as still ‘natural’, or we are at a very particular corner in the MSSM pa-
rameter space with less fine-tuning (e.g. natural SUSY [218, 219, 220], compressed
spectra [221, 222], RPV models [223, 224]), or we need alternatives to the conven-
tional MSSM. Given this, there are various avenues to explore for addressing the
electroweak hierarchy problem:

1. The simplest MSSM models (e.g. CMSSM) need to be modified at low energies
to account for particular corners in the MSSM parameter space with reduced
fine-tuning. Or, one step further, extensions of the MSSM including extra
matter and/or interactions at the TeV scale may relax the tuning of the MSSM
(see e.g. [225]).

2. The MSSM is the correct description for beyond the Standard Model physics
but the hierarchy problem is addressed by different amounts of fine-tuning
through the multiverse just like the cosmological constant problem [226], where
we can distinguish the following classes:

(a) The simplest models of low energy SUSY are realised with some two to
three orders magnitude of fine-tuning.

(b) One just keeps the appealing features of low-energy SUSY of realising the
correct DM density and gauge coupling unification whereas the hierarchy
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problem is no longer addressed. This proposal is commonly referred to
as Split-SUSY [227] where gauginos are at the TeV scale while the scalar
superpartners are hierarchically heavier.

(c) DM and gauge coupling unification are achieved by other mechanisms
and the SUSY particles are at a scale far above the electroweak scale
such as an intermediate scale.

3. One can consider alternative solutions to the hierarchy problem such as com-
posite models or extra-dimensional models.

Each of these scenarios has its own virtues and demerits. The first one aims at
avoiding fine-tuning in the parameter space of the MSSM, but without a principle
on why to favour a particular extension in a UV theory, it is in some sense a tuning
in theory space which is as appealing as fine-tuning in parameter space, the others
simply accept some sort of tuning.1 Given this state of affairs, we are left with
the unpleasant situation that at present the best argument in favour of low-energy
SUSY is that other alternatives, like large extra dimensions or composite models,
are looking even worse.

This is a golden opportunity for string theoretical scenarios to play a role. Being
the only explicit scenarios that provide a UV completion of the Standard Model, they
should be able to address the problems of the scenarios mentioned above, provide
guidance towards their explicit realisation and maybe even suggest other alternative
avenues.

Consistent string theories are typically supersymmetric. Unfortunately, low-
energy SUSY or the MSSM are not a prediction of string theory and its potential
discovery or lack of will not directly test string theory. Moreover for a high string
scale of order 1016 GeV (as hinted by standard MSSM unification and recent in-
flationary observations [231]), obtaining at the same time low-energy SUSY can be
a challenge for model building. Another important feature is the string landscape
which can potentially have an impact on the hierarchy problem. These are very im-
portant issues which can impact LHC and future collider observations. They need
to be addressed systematically and within a complete string framework, as we do in
one specific example in the present chapter.

1Particular interesting corners of parameter space for soft-terms can be obtained by invok-
ing principles such as precision gauge coupling unification [228] or by identifying pattern in un-
derlying UV theories (e.g. realisation of natural SUSY and compressed spectra in the Heterotic
mini-landscape [229, 230]).
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Fortunately progress in the understanding of SUSY breaking in string compact-
ifications is maturing right on time to play a role. Several scenarios in which most
of the string moduli have been stabilised with SUSY breaking and computable soft-
terms have emerged [191, 232, 233, 234, 235, 236, 237, 238]. Some of them are also
consistent with cosmological constraints such as the CMP and the realisation of
de Sitter (dS) vacua. In particular, the LARGE Volume Scenario (LVS) [182], on
which we focus, allows for several of the above SUSY breaking scenarios in which
soft-terms can be explicitly computed. Moreover, LVS is an ideal framework to build
globally consistent MSSM-like chiral models for explicit CY compactifications with
all closed string moduli stabilised [183, 208, 194, 239]. It is also possible to obtain
dS vacua from supersymmetric effective actions [216, 208] and the string landscape
allows for a controllable fine-tuning of the cosmological constant and potentially the
electroweak hierarchy problem.

In this chapter our focus shall be on sequestered models, in order to explore the
possibility of getting low-energy SUSY from string compactifications. In [184] it was
realised that soft-terms can potentially be sensitive to the mechanism responsible
for achieving a dS minimum. Lack of a controlled understanding of the way to get
dS vacua made it difficult to present a complete analysis of the SUSY phenomenol-
ogy. Recently there has been progress in obtaining dS vacua from supersymmetric
effective actions [216, 208, 194, 239, 240]. In this chapter we work out this depen-
dence on the uplifting mechanism in sequestered models. As previously, we assume
an MSSM spectrum from the local D-brane configuration for simplicity. To perform
the lengthy soft-term computations we have developed a code called LargeVol.2

We explicitly compute all soft-terms for sequestered scenarios identifying dif-
ferent cases depending on the mechanism to obtain dS vacua and the moduli-
dependence of the Kähler metric for matter fields. Broadly, we find two classes
of models: scenarios in which all soft-terms are of order m3/2/V and scenarios
where gaugino masses and A-terms are of this order but scalar masses are of order
m3/2/V1/2. In both cases the numerical coefficients of the soft-terms are determined
by background fluxes and therefore can be tuned by scanning through the land-
scape. This provides an explicit mechanism for the (small) tuning that might be
necessary to confront LHC data. In the first class of models the spectrum is similar

2LargeVol is a Mathematica Package useful to analyse the phenomenology of various Type IIB
supergravity theories. It computes and minimises the scalar potential following the LVS mechanism
for moduli fixing. LargeVol can calculate F-terms and soft-terms generated via both supergravity
and anomaly mediation.
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to standard MSSM spectra with soft-terms of the same order but with the potential
of extra non-universal flux dependent contribution. The second one gives a universal
Mini-Split scenario with negligible non-universalities.

The rest of this chapter is organised as follows. Sec. 3.1 contains the detailed
setup that leads to sequestered LVS models and a presentation of two mechanisms to
obtain dS vacua. We then compute the leading order expressions of the associated
F-terms and soft-masses for these scenarios in Sec. 3.2 before concluding in Sec. 3.4.
Finally in Sec. 3.3 we comment on possible sources of desequestering. This chapter
is based on [1].

3.1 Sequestered LVS Scenarios

After having introduced many ingredients needed to build a phenomenologically
viable compactification, let us summarize a setup in Type IIB CY flux compactifi-
cations with O3/O7-planes that leads to moduli stabilisation à la LVS and a visible
sector sequestered from SUSY breaking:

• The simplest LVS vacua can be obtained for a CY with negative Euler num-
ber and at least one blow-up of a point-like singularity [170], as explained in
Sec. 2.2.1. For these manifolds the volume V is of Swiss-cheese type as in eq.
(2.113). In the explicit case of Sec. 2.2.3 the intersection numbers are given in
eq. (2.152), but the results of this Chapter are independent of the particular
values of αi.3

• The visible sector can be realised with appropriate D-brane configurations
on blow-up moduli. Concrete D-brane realisations with D3/D7 branes at
del Pezzo singularities can lead to interesting gauge/matter extensions of the
MSSM. As qualitatively discussed in Sec. 2.2.2 the size of the associated four-
cycle can shrink to zero value due to D-term stabilisation. Because of this
shrinking, the F-term of the corresponding blow-up Kähler modulus is vanish-
ing at leading order giving rise to a sequestered scenario. We report all the
details of this mechanism in Sec. 3.1.1 In order to get the maximal degree of
sequestering, in this work we consider D3-branes at singularities constructions
without D7 flavour branes.

3It is possible to implement LVS in CYs which have a more general volume form [170] but this
does not alter the structure of soft-masses and so we do not consider these cases.
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• In order to realise a dS vacuum one introduces further ingredients in the com-
pactification. Here we concentrate on two options: (i) Hidden sector matter
fields on the large cycle which acquire non-zero F-terms because of D-term fix-
ing [208]; (ii) E(-1) instantons at a second singularity whose blow-up mode de-
velops non-vanishing F-terms due to new dilaton-dependent non-perturbative
effects [216]. These mechanisms will be discussed respectively in Sec. 3.1.2 and
in Sec. 3.1.2.

The setup with de Sitter scenario arising from matter fields on the large cycle has
been realised in concrete CY orientifold compactifications with D3(/D7) branes at
singularities [208, 194, 239] that satisfy all global consistency conditions (e.g. tad-
pole cancellation), as reported in Sec. 2.2.3.

The minimal setup that allows this realisation includes at least four Kähler mod-
uli: a ‘big’ four-cycle Tb controlling the size of the CY volume, a ‘small’ blow up
mode Ts supporting non-perturbative effects, the visible sector cycle TSM and its
orientifold image G. These last two moduli are associated to two del Pezzo divisors
which collapse to zero size due to D-term fixing4 and are exchanged by the orien-
tifold involution. This setup leads to h1,1+ = 3 and h1,1− = 1 with the Kähler moduli
already reported in eq. (2.15).

N = 1 Supergravity Effective Field Theory

In this section we review the low energy effective action relevant for our construc-
tion in the language of 4D N = 1 supergravity. Including de Sitter and matter
contributions, the superpotential takes the following form

W =W0(U, S) + As(U, S) e
−asTs +WdS +Wmatter . (3.1)

As explained in Sec. 2.2.1, the prefactor As(U, S) depends on both complex structure
moduli U and the dilaton S, and it is an O(1) function.5 The term WdS involves the
contribution from the mechanism used to obtain a dS vacuum (see Sec. 3.1.2) while
Wmatter is the visible sector superpotential

Wmatter = µ(M)HuHd +
1

6
Yαβγ(M)CαCβCγ + · · · , (3.2)

4The positivity of soft scalar masses for visible sector fields fixes all remaining flat-directions
after D-term stabilisation [208].

5The dependence on S and U -moduli is structurally different, i.e. the dependence on the dilaton
is generated when including the backreaction of sources and warping on the geometry [241].
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where we denoted the moduli as M and the MSSM superfields as Cα. Moreover,
the dots refer to higher dimensional operators. We also separated the two higgs
doublets Hu and Hd from the rest of matter fields in the moduli-dependent µ-term.
Because of the holomorphicity of W and the perturbative shift symmetry of the
axionic components of the Kähler moduli, the Yukawa couplings and the µ-term
can depend only on S and U at the perturbative level with the T -moduli appearing
only non-perturbatively. We discuss this dependence in more detail in Sec. 3.2 and
3.3.

For the reasons explained in Sec. 2.2.2 [181, 184], we assume the following form
of the Kähler potential which describes the regime for the visible sector near the
singularity

K = −2 ln

(
V +

ξ̂

2

)
− ln(2s) + λSM

τ 2SM
V

+ λb
b2

V
+KdS +Kcs(U) +Kmatter , (3.3)

where ξ̂ ≡ ξs3/2, the λ’s are O(1) coefficients, Kcs(U) is the tree-level Kähler po-
tential for complex structure moduli and KdS encodes the dependence on the sector
responsible for obtaining a dS vacuum (see Sec. 3.1.2). The matter Kähler potential
Kmatter is taken to be

Kmatter = K̃α(M,M)C
α
Cα + [Z(M,M)HuHd + h.c.] . (3.4)

We assume at this stage that the matter metric is flavour diagonal beyond the
leading order structure which was highlighted in [242].6 The only exception is that
we allow for the higgs bilinear to appear in Kmatter which we parameterise with the
function Z. Note that K̃α is the matter metric for the visible sector which we will
parameterise as [184]

K̃α =
fα(U, S)

V2/3

(
1− cs

ξ̂

V
+ K̃dS + cSMτ

p
SM + cbb

p

)
, p > 0 , (3.5)

where we have used K̃dS to parameterise the dependence on the dS mechanism
(details will be given in Sec. 3.2.2). The c’s are taken as constants for simplicity
while p is taken to be positive in order to have a well-behaved metric in the singular
limit b, τSM → 0. As they can in principle depend on U and S, we comment in due

6Subleading flavour off-diagonal entries which can in principle appear [243] are taken to be
absent. This is motivated by the appearance of additional anomalous U(1) symmetries in D-brane
models, in particular also in the context of del Pezzo singularities [193].
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course on the influence on the soft-terms of such a dependence. The appearance
of the higgs bilinear and its potential parametrisation are discussed in Sec. 3.2.3
when we analyse the µ-term in this scenario. In general the functions fα(U, S)
could be non-universal. Such non-universality can have interesting phenomenological
implications (e.g. mass hierarchies among families of sfermion masses needed for a
realisation of natural SUSY). As we are interested in soft-terms arising for D-branes
at singularities, we take the gauge kinetic function to be

fa = δaS + κa TSM , (3.6)

where δa are universal constants for Zn singularities but can be non-universal for
more general singularities.

3.1.1 Moduli Stabilisation

As outlined earlier in this section, we stabilise the moduli following the LVS pro-
cedure. The complex structure moduli and the dilaton are fixed at tree-level by
background fluxes while the Kähler moduli are fixed using higher order corrections
to the effective action [239]. In this section we first explain the D-term stabilization
if detail, and then we perform the F-term stabilization taking into account both the
effects coming from the de Sitter sector, and the small shift of the supersymmetric
minimum DSW0 = DUaW0 = 0 due to non-perturbative and α′-corrections which
induces a non-vanishing IASD component of the three-form flux G3.

D-term Stabilisation

The Kähler moduli where the visible sector D-brane configuration is located are
stabilised using D-terms which are the leading order contribution to the potential.
Remaining flat directions are stabilised using subleading F-term contributions. To
set the notation, let us review D-term stabilisation [208]. The moduli TSM and G

are charged under two anomalous U(1) symmetries with charges q1 and q2. The
corresponding D-term potential reads

VD =
1

2Re(f1)

(∑
α

q1α
∂K

∂Cα
Cα − ξ1

)2

+
1

2Re(f2)

(∑
α

q2α
∂K

∂Cα
Cα − ξ2

)2

, (3.7)

where f1 and f2 are the gauge kinetic functions of the two U(1)s. The Fayet-
Iliopoulos (FI) terms are given by (see appendix of [244] for the exact numerical
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factors)

ξ1 = − q1
4π

∂K

∂TSM

= −q1λSM

4π

τSM
V

, (3.8)

ξ2 = − q2
4π

∂K

∂G
= −q2λb

4π

b

V
. (3.9)

The vanishing D-term condition fixes therefore aSM and b in terms of visible sector
matter fields. The remaining flat directions are fixed by subleading F-term contri-
butions which give vanishing VEVs to the Cα if they develop non-tachyonic soft
masses from SUSY breaking [208].7 Hence the D-term potential (3.7) vanishes in
the vacuum since it is fixed to a supersymmetric minimum at ξ1 = ξ2 = 0. This
corresponds to the singular limit τSM = b = 0. In turn, the axions aSM and c are
eaten up by the two U(1) gauge bosons in the process of anomaly cancellation.

F-term Stabilisation

F-terms stabilization proceeds as explained in Sec. 2.2.1. The de Sitter sector gen-
erates a correction to the minimum in eq. (2.120)

τ 3/2s =
ξ̂

2
[1 + fdS(ϵs)] , (3.10)

where fdS is a subdominant function of ϵs = 1
4asτs

which depends on the particular
mechanism used to obtain a dS vacuum, as reported below. The relation (3.10)
implies that at the minimum (neglecting fdS)

ξ̂ ≃ 1

4 (asϵs)
3/2

∼ O
[
(lnV)3/2

]
≫ 1 . (3.11)

Given that the potential (2.118) depends on S and U (via As(U, S) and s-dependent
α′ effects), the minimum (2.117) is slightly shifted from its supersymmetric locus.
This shift is fundamental for the soft-term computation in sequestered scenarios
since non-vanishing F-terms of U and S at subleading order can actually provide
the main contribution to soft-terms [184].

7If the soft scalar masses of some Cα are tachyonic, they develop non-zero VEVs (which could
be phenomenologically allowed for some Standard Model singlets) that, in turn, induce non-zero
FI-terms [239]. However τSM and b would still be fixed in the singular regime since their VEVs
would be volume-suppressed [239].
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Shift in the Minimum

Let us try to estimate the shift of S and U from their supersymmetric minimum
(2.117) because of α′ and non-perturbative effects. The Kähler covariant derivative
of the total superpotential evaluated at the minimum (2.119) and (3.10) reads (we
neglect O(ϵs) effects)

DSW ≃ DSW0|ξ=0 −
3ξ̂W0

4sV
[1 + ϵss∂s lnAs(U, S)] . (3.12)

Since we do not know the functional dependence of As(U, S) and since the WdS term
in eq. (3.1) can also potentially shift the dilaton minimum, it is not possible for
us to compute this shift explicitly. We will parameterise it by using the parameter
ωS(U, S) defined as

DSW = −3ωS(U, S)

4

ξ̂W0

sV
. (3.13)

The dependence of As(U, S) on the complex structure moduli is also responsible
for shifting the U -moduli from their supersymmetric minimum. After imposing the
minimisation conditions, the total DUW looks like (denoting u ≡ Re(U))

DUW ≃ DUW0|ξ=0 −
3ξ̂W0

4V
ϵs∂u [Kcs(U) + lnAs(U, S)] , (3.14)

and so we can parameterise this shift by ωUa(U, S) as

DUaW = −3ωUa(U, S)

4

ξ̂W0

sV
⇒ DUaW =

ωUa(U, S)

ωS(U, S)
DSW ∼ O(V−1) , (3.15)

where both ωS and ωUa are expected to be O(1) functions of S and U . Note that
both functions ωS/Ua depend also on the dS mechanism. These corrections give rise
to O (V−4) contributions to the scalar potential, and then as already mentioned the
EFT is self-consistent. They generate a non-vanishing IASD and G(0,3)

3 components
of the three-form flux G3, which can be seen as small perturbations around the
supersymmetric background.

3.1.2 Scenarios for de Sitter Vacua

In this section we review two mechanisms which can lead to dS vacua in LVS.
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Figure 3.1: Pictorial sketch of our CY setup for dS vacua from hidden matter fields.

Case 1: dS Vacua from Hidden Matter Fields

In the LVS setting, dS vacua can arise if some hidden matter fields acquire non-
vanishing F-terms which provide a positive definite contribution to the scalar po-
tential [208]. The models constructed in [208] provide globally consistent explicit
examples of string models with a semi-realistic visible sector, moduli stabilisation
and a positive cosmological constant (see Fig. 3.1 for a pictorial sketch of this setup).

Generically, the choice of B2 which cancels the Freed-Witten anomaly on the
small cycle Ts, leads to non-vanishing gauge fluxes on the big cycle Tb. As a con-
sequence, Tb acquires a non-zero U(1)-charge qb generating a moduli-dependent FI-
term. The D-term potential becomes (focusing for simplicity on a single matter field
ϕdS with Kähler metric KdS = s−1|ϕdS|2 [245, 246] and U(1)-charge qϕ)

VD =
1

2Re(fb)

(qϕ
s
|ϕdS|2 − ξb

)2
, (3.16)

where fb = Tb (neglecting S-dependent flux corrections) and the FI-term is given by

ξb = − qb
4π

∂K

∂Tb
=

3qb
8π

1

V2/3
, (3.17)

Therefore the total scalar potential takes the form

Vtot = VD + VF =
1

2V2/3

(
qϕ
s
|ϕdS|2 −

3qb
8πV2/3

)2

+
1

s
m2

3/2|ϕdS|2 + VO(V−3) , (3.18)

where m3/2 is the gravitino mass as in eq. (2.123) and VO(V−3) is given in (2.118).
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If the two U(1)-charges qϕ and qb have the same sign, ϕdS develops a non-vanishing
VEV

qϕ
s
|ϕdS|2 = ξb −

m2
3/2V2/3

qϕ
. (3.19)

Substituting this VEV in (6.42) we obtain

Vtot = VD,0 +
3qb

16πqϕ

W 2
0

sV8/3
+ VO(V−3) , (3.20)

where the new positive contribution can lead to an LVS dS vacuum while the D-term
potential gives rise only to a subleading effect of order

VD,0 =
m4

3/2V2/3

2q2ϕ
∼ O

(
V−10/3

)
. (3.21)

Following [208], we can minimise the total scalar potential (3.20) with respect to τs
and V , finding the following value of the vacuum energy (neglecting the subleading
effect of VD,0)

⟨Vtot⟩ ≃
3W 2

0

8sa
3/2
s ⟨V⟩3

[
δ V1/3 −

√
ln

(
⟨V⟩
W0

)]
, (3.22)

where

δ =
1

18π

qb a
3/2
s

qϕ
≃ 0.02

(
qb a

3/2
s

qϕ

)
. (3.23)

A cancellation of the vacuum energy at O(V−3) requires therefore to tune W0 so
that (a subleading tuning is needed to cancel also VD,0)

[
ln

(
⟨V⟩
W0

)]3/2
= δ3 ⟨V⟩ ∼ 5 · 10−6 ⟨V⟩ ⇔ |ϕdS|2 =

27s

4a
3/2
s V

√
ln

(
⟨V⟩
W0

)
∼ 1

V√ϵs
.

(3.24)

For natural O(1) values of all underlying parameters, this relation gives a minimum
for V at order 106 − 107 (see [208]). In [247] the authors showed that this de Sitter
scenario can be generically obtained in presence of D7-branes with non-zero gauge
flux, which lead to a T-brane configuration [248]. Expanding the D7-branes action
around the T-brane background gives a positive definite term in the scalar potential,
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Figure 3.2: Pictorial view of our CY setup for dS vacua from non-perturbative effects
at singularities.

which can be used to get a de Sitter vacuum.

Case 2: dS Vacua from Non-perturbative Effects at Singularities

Reference [216] provided a novel method for obtaining LVS dS vacua (see Fig. 3.2 for
a pictorial sketch of this setup). The additional contribution to the scalar potential
needed to achieve a positive cosmological constant arises from non-perturbative
effects at singularities (like gaugino condensation on spacetime filling D3-branes or
E(-1) instantons). These effects generate a new contribution to the superpotential
in eq. (3.1) of the form

WdS = AdS(U, S) e
−adS(S+κdSTdS) . (3.25)

Because of the presence of an additional Kähler modulus, the Kähler potential (3.3)
has to be supplemented with

KdS = λdS

τ 2dS
V
, (3.26)
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with τdS = Re(TdS). This blow-up mode can be fixed in the singular regime by
minimising the hidden sector D-term potential (focusing for simplicity on canonically
normalised hidden fields ϕh,i with charges qh,i under an anomalous U(1))

VD =
1

2Re(fh)

(∑
i

qh,i|ϕh,i|2 − ξh

)2

, (3.27)

where fh = S (neglecting TdS-dependent corrections) and the FI-term is given by
(qdS is the U(1)-charge of TdS and from now on we set λdS = 1 for simplicity)

ξh = −qdS
4π

∂K

∂TdS

= −qdS
4π

τdS
V
. (3.28)

In fact, the total scalar potential takes the leading order form (after fixing the axionic
phase of TdS) [216]

Vtot =
1

2s

(∑
i

qh,i|ϕh,i|2 +
qdS
4π

τdS
V

)2

+
(κdSadSAdS)

2

s

e−2adS(s+κdSτdS)

V
+ VO(V−3) ,

(3.29)

where the second term comes from the new superpotential (3.25) and VO(V−3) is
given in (2.118). Minimisation with respect to τdS gives

qdS
4π

τdS
V

= −
∑
i

qh,i|ϕh,i|2 +
adSκdS

qdS
(κdSadSAdS)

2 e−2adSs . (3.30)

Assuming that model-dependent contributions from F-terms of hidden matter fields
fix some ϕh,i at non-zero VEVs such that ⟨

∑
i qhid,i|ϕhid,i|2⟩ = 0 but AdS ̸= 0,8 and

substituting the VEV (3.30) in (3.29) we obtain at leading order

Vtot = VD,0 +
(κdSadSAdS)

2

s

e−2adSs

V
+ VO(V−3) . (3.31)

Given that the dilaton is fixed by a ratio of flux quanta, the extra positive-definite
contribution can easily be tuned to obtain a dS minimum. Following [216], a can-
cellation of the vacuum energy at O(V−3) requires to tune 3-form fluxes such that(

κdSadSAdS

W0

)2

e−2adSs =
9

32

ϵsξ̂

V2
. (3.32)

8In order to make WdS gauge invariant, AdS has to depend on the ϕh,i which can develop non-zero
VEVs for appropriate hidden field F-term contributions, giving AdS ̸= 0 with τdS in the singular
regime [216].
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On the other hand, the D-term potential gives rise only to a subleading effect of
order

VD,0 =
1

2s

(
adSκdS

qdS

)2

(κdSadSAdS)
4 e−4adSs ∼ O

(
V−4

)
. (3.33)

3.2 F-terms and Soft-terms

In this section we list the leading order contributions to the F-terms relevant for the
computation of all soft-terms, and we also report the subleading corrections to the
F-terms in a subsection. After defining our parametrisation for the Kähler matter
metric in local and ultra-local scenarios, we then calculate the soft-terms.

3.2.1 Summary of F-terms

The general supergravity expression for an F-term is [249, 250]

F I = eK/2KIJDJW . (3.34)

The exact expressions for the F-terms are rather complicated. Considerable simpli-
fications occur if we perform an expansion in V−1 and ϵs. We also factor out the
gravitino mass which is given by the following expression

m3/2 = eK/2|W | = g
1/2
s MP

2
√
2π

W0

V

[
1− ξ̂

2V
(
1 + 3ydSϵs +O(ϵ2s)

)
+O

(
1

V2

)]
, (3.35)

where ydS = 1 for the dS case 1 of Sec. 3.1.2 while ydS = 1+
√
2a

3/4
s

κdSadS
for the dS case 2

of Sec. 3.1.2. The leading order F-terms for Tb and Ts turn out to be (we show the
first subleading correction only for F Tb since its dominant term does not contribute
to the soft-term because of the no-scale structure)

F Tb

τb
≃ −2m3/2

(
1 +

xdS

a
3/2
s V√ϵs

)
,

F Ts

τs
≃ −6m3/2ϵs , (3.36)

where xdS = −45/16 for the dS case 1 of Sec. 3.1.2 while xdS ∼ O(1/V) for the dS
case 2 of Sec. 3.1.2, as reported below. Because of the shift from their supersym-
metric minimum, also S and U develop non-vanishing F-terms whose leading order
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expressions are

F S

s
≃ 3ω′

S(U, S)

8a
3/2
s

m3/2

Vϵ3/2s

, FUa ≃ −K
UaU

b

2s2

ω
U

b(U, S)

ω′
S(U, S)

F S ≡ βU
a

(U, S)F S , (3.37)

where ω′
S(U, S) ≡ 3− 2ωS(U, S) with ωS as defined in (3.13) and βUa are unknown

O(1) functions of U and S. Additional non-zero F-terms are associated to fields
responsible to achieve a dS solution. For the dS case 1 of Sec. 3.1.2 there is an
F-term associated to ϕdS

F ϕdS

ϕdS

≃ m3/2 , (3.38)

with ϕdS given in (3.24) (up to an irrelevant phase). On the other hand, in the dS
case 2 of Sec. 3.1.2 the blow-up mode TdS has a non-vanishing F-term (using the
condition (3.32))

F TdS ≃ 3

4
√
2a

3/4
s

m3/2

ϵ
1/4
s

. (3.39)

Finally, the F-terms associated to the MSSM cycles TSM and G vanish:

FG = F TSM = 0 . (3.40)

This result is crucial for sequestering since the dominant F-terms are then associ-
ated with moduli which couple weakly to the visible sector via Planck-suppressed
interactions.9

Subleading Corrections to F-terms

In the present section we first describe the shift of the LVS minimum after including
an extra term responsible to achieve a dS vacuum, and then provide subleading
corrections to F-terms. As described in Sec. 3.1.2, the mechanism which realises a
dS vacuum gives rise effectively to an extra term of the form

VdS =
r

Vm
with r > 0 and m < 3 . (3.41)

9TSM and G can develop non-zero F-terms only in the presence of tachyonic scalar masses [239].
However, also in this case, their contribution to soft-terms turns out to be negligible.
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We are interested in minimising the combined system

V = VO(V−3) + VdS , (3.42)

with the additional constraint of vanishing vacuum energy. This constraint relates
the coefficient r with the tunable flux parameters in the LVS potential such as W0

or gs. A concrete dS scenario, such as the ones in Sec. 3.1.2, typically fixes r by
construction with only moderate tuning. However the real tuning can be achieved
by simply tuning the flux superpotential and the string coupling in agreement with
the flux landscape.

The expressions for the moduli VEVs are largely independent on the way to get
dS vacua. In fact, the relation (2.119) is generic whereas the expression (3.10) for
the VEV of τs depends on the way to get a dS vacuum. The exact minimum for τs
is given by

τ 3/2s =
ξ̂

2

(1− ϵs)
2

(1− 4ϵs)

1

1 + 2m
m−3

ϵs
=
ξ̂

2
[1 + fdS(ϵs)] , (3.43)

and so the function fdS is fdS = 18ϵs + 297ϵ2s in the case of dS vacua from hidden
matter fields (m = 8/3), while fdS = 3ϵs + 12ϵ2s for the case of non-perturbative
effects at singularities (m = 1). Note that as a consequence of the shift in τs, also
the overall volume in (2.119) is shifted and, as the shift is in the exponential, this
shift can be parametrically large.

Equipped with the minimum, we can evaluate the F-terms. To simplify the
notation we factor out an overall factor of the gravitino mass m3/2 which is given
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by (3.35). The F-terms turn out to have the following expressions:

F Tb

τb
= −2m3/2

[
1 +

9ξ̂ϵs
4V

m− 1

m− 3 + 2mϵs
+O

(
1

V2

)]
, (3.44)

F Ts

τs
= −2m3/2

[
3ϵs

(1− ϵs)
− ξ̂

2V

(
1− 9ϵs

2

m− 1

m− 3
+O

(
ϵ2s
))]

, (3.45)

F S

s
=

3ω′
S

8a
3/2
s

m3/2

Vϵ3/2s

[1 +O (ϵs)] , (3.46)

FU = −K
UaUb

2s2

ωUb

ω′
S

F S ≡ βUa F S , (3.47)

F ϕdS = ϕdSm3/2

[
1 +O

(
1

V

)]
, (3.48)

F TdS =
3

4
√
2a

3/4
s

m3/2

ϵ
1/4
s

[1 +O (ϵs)] . (3.49)

3.2.2 Local and Ultra-local Scenarios

Our analysis of soft-terms will distinguish between two classes of models: local and
ultra-local. This classification is motivated by locality arguments already discussed
in Sec. 2.2.2: the Kähler matter metric should scale as K̃α ∼ V−2/3 at leading order.
In the present section we expand the constraint on the Kähler matter metric coming
from the structure of physical Yukawa couplings in eq. (2.124) at subleading order,
and we get (for τSM = b = Cα = 0)

K̃α = hα(U, S) e
K/3 ≃ hα(U, S) e

Kcs/3

(2s)1/3V2/3

(
1− ξ̂

3V
+

1

3
KdS

)
, (3.50)

where hα(U, S) is an unknown function of U and S and in the approximation we focus
on the first subleading order corrections, e.g. neglecting higher order corrections of
O
(
1/V8/3

)
. Note that this result has the same volume scaling of our formula for

the matter metric (3.5) which for τSM = b = 0 reduces to

K̃α =
fα(U, S)

V2/3

(
1− cs

ξ̂

V
+ K̃dS

)
≡ fα(U, S)K̃ . (3.51)

As found in [184], our soft-term computation is sensitive to the form of K̃α− be-
yond leading order in a V−1 expansion. There is no reason to expect that (3.50) still
holds beyond leading order since we cannot use locality to fix the form of K̃α (al-
though there is some evidence from perturbative string computations [199]). It was
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noted in [184] that the relation (3.50) has interesting implications for the soft-terms.
Guided by this, we organise our analysis of models into two classes of phenomeno-
logical models:

• Local: We call a scenario ‘local’ if (3.50) holds only to leading order in V−1;

• Ultra-local: We call a scenario ‘ultra-local’ if (3.50) holds exactly.

If we parameterise K̃dS as K̃dS = cdSKdS, comparing (3.50) with (3.51), we find that
in the ultra-local case

fα(U, S) =
hα(U, S) e

Kcs/3

(2s)1/3
and cs = cdS =

1

3
. (3.52)

Subleading deviations from the approximation in (3.50) can be accounted for by
small changes in cs and cdS at the appropriate subleading order.

3.2.3 Soft-terms

We now proceed to compute all soft-terms distinguishing between ultra-local and
local scenarios. Throughout this section we work to leading order in V−1 and ϵs.

• Gaugino masses

The general expression for gaugino masses in gravity mediation is

Ma =
1

2Re (fa)
F I∂Ifa , (3.53)

where fa = δaS+κa TSM is the gauge kinetic function as in (3.6). As F TSM = 0,
we obtain universal gaugino masses, M1 = M2 = M3 = M1/2, which are
generated by the dilaton F-term. Potential non-universalities can arise through
anomaly mediated contributions which turn out to be subleading (see Sec. 3.3
for more details). The leading order expression for the gaugino masses is

M1/2 =
F S

2s
≃ 3ω′

S(U, S)

16a
3/2
s

m3/2

Vϵ3/2s

∼ O

(
m3/2

(lnV)3/2

V

)
≪ m3/2 . (3.54)

Note that this leading order result depends on the shift of the dilaton minimum
induced by α′ and non-perturbative effects (see Sec. 3.1.1). We neglect possible
phases of gaugino masses. We will return to this question in the context of
the low-energy analysis of soft-terms [2].
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• Scalar masses

Scalar masses in gravity mediation receive both F- and D-term contributions.
Let us study them separately, presenting their leading order expressions.

1. F-term contributions
Assuming a diagonal Kähler matter metric as in (3.4), the general expres-
sion for the F-term contributions to scalar masses in gravity mediation
is [250]

m2
α

∣∣
F
= m2

3/2 − F IF
J
∂I∂J ln K̃α . (3.55)

Local limit : In the local limit we obtain universal scalar masses, m2
α = m2

0

∀α, where

m2
0

∣∣
F
≃ m2

3/2 −
(
F Tb

2

)2

∂2τb ln K̃ ≃

≃ 15

2

(
cs −

1

3

)
m2

3/2τ
3/2
s

V
∼ m3/2M1/2 , (3.56)

The dominant contribution to this expression comes from the F-term of
Tb. More precisely, the leading term of F Tb in (3.36) together with the
leading term of K̃ in (3.51) give a contribution which cancels against
m2

3/2 in (3.56) because of the underlying no-scale structure. The first
non-vanishing term in (3.56) originates from the leading term of F Tb to-
gether with the first subleading correction to K̃. On the other hand, the
subleading correction to F Tb in (3.36) yields a contribution suppressed by
ϵs, and so turns out to be negligible.

Scalar masses are universal since they get generated by the F-term of Tb.
Non-universal effects can arise from F S and FUa but they are volume
suppressed since they would give contributions of order m2

3/2/V2. If cs >
1/3, the scalar masses are non-tachyonic.

Ultra-local limit : An interesting feature of (3.56) is that it vanishes if
one takes the ultra-local limit cs = 1/3.10 In fact, there is a general argu-
ment [184] which guarantees the vanishing of m2

0 at O(V−3). Using (3.50)
10We neglect potential higher order corrections at this stage.
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(the defining property of ultra-local models) in the general expression for
the F-term contributions to scalar masses (3.55) we find

m2
α

∣∣
F
= −1

3
VF,0 − F IF

J
∂I∂J lnhα(U, S) , (3.57)

where we used the fact that VF = KIJF
IF

J − 3m2
3/2. Recalling that

V0 = VF,0 + VD,0 and setting the cosmological constant to zero (in the dS
constructions of Sec. 3.1.2 we showed how to cancel V0 at O(V−3) but
this can in principle be done at any order in the V−1 expansion), VF,0 can
be traded for VD,0, and we so shall include it in our analysis of D-term
contributions to scalar masses.

On the other hand, if the functions hα(S, U) are not constants, there is a
non-vanishing contribution from the F-terms of the dilaton and the com-
plex structure moduli at O(V−2). Using (3.37), the S and U -dependent
contribution to scalar masses turns out to be

m2
α

∣∣
F
= −M2

1/2s
2
(
∂2s + βU

a

∂ua,s + βU
a

βUb∂ua,ub

)
lnhα ∼ O

(
M2

1/2

)
,

(3.58)

where M1/2 is the gaugino mass in (3.54). Note that this contribution
is generically non-universal and might also give rise to tachyonic scalars
depending on the explicit functional dependence of the functions hα(U, S).

2. D-term contributions
Assuming a diagonal Kähler matter metric as in (3.4), the general expres-
sion for the D-term contributions to scalar masses in gravity mediation
is [251]

m2
α

∣∣
D
= K̃−1

α

∑
i

g2iDi∂
2
ααDi − VD,0 . (3.59)

Given that this result depends on the value of the D-term potential at the
minimum, this contribution depends on the way to achieve a dS vacuum.
As explained in Sec. 3.1.1, the VEV of the D-term potential associated
to visible sector U(1)s is vanishing in the absence of tachyonic scalars.11

11Even in the presence of tachyonic scalars, the contribution to scalar masses from visible sector
D-terms turns out to be a negligible effect since visible matter fields, τSM and b would still be
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dS case 1 : In the dS case 1 of Sec. 3.1.2 the relevant D-term is the one
associated with the anomalous U(1) living on the big cycle. As can be
seen from (3.21), VD,0 scales as V−10/3 which is subdominant with respect
to the first term in (3.59) that gives

m2
0

∣∣
D
=

qb
2fα(U, S)

DdS1∂τbK̃α =
m2

3/2

3s
|ϕdS|2 =

=
6ϵs
ω′
S

m3/2M1/2 ∼ O

(
m2

3/2

√
lnV
V

)
, (3.60)

once we impose the condition (3.24) to have a vanishing cosmological
constant at O(V−3). In the local limit, this result is suppressed with
respect to the F-term contribution (3.56) by a factor of ϵs. On the other
hand, in the ultra-local limit, this D-term contribution dominates over
the F-term one given in (3.58) which scales as m2

3/2ϵ
2. Hence it leads to

universal and non-tachyonic scalar masses.

dS case 2 : In the dS case 2 of Sec. 3.1.2 the relevant D-term is the one
associated with the anomalous U(1) which belongs to the hidden sector
responsible for achieving a dS vacuum. In this case both terms in (3.59)
have the same scaling since

m2
0

∣∣
D
=

qdSV2/3

2sfα(U, S)
DdS2∂τdSK̃α − VD,0 =

=
cdS
s
DdS2qdS

τdS
V

− VD,0 = (2cdS − 1)VD,0 . (3.61)

As can be seen from (3.33), VD,0 scales as V−4. Hence in the local limit
the D-term contribution is subleading with respect to the F-term one
given in (3.56) which scales as V−3. In the ultra-local limit the F-term
contribution to scalar masses is given by (3.57). Adding −VF,0/3 = VD,0/3

to (3.61) we find that the total D-term contribution to scalar masses
vanishes in the ultra-local limit once we impose cdS = 1/3 as in (3.52)
since

m2
0

∣∣
D
= 2

(
cdS −

1

3

)
VD,0 = 0 for cdS =

1

3
. (3.62)

Hence scalar masses get generated by F-terms also in the ultra-local limit.
Their expression is given in (3.58) and scales as V−4.

stabilised at zero at leading order.
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Summary of the results for scalar masses

Let us summarise our results for soft scalar masses. The expression for
m2

0 in the local limit does not depend on the way to obtain a dS vacuum
since in each case it is given by the F-term contribution (3.56) that scales
as V−3. Scalar masses are non-tachyonic if cs > 1/3 and universal. On
the other hand, the result for the ultra-local limit depends on the dS
mechanism. In the dS case 1 of Sec. 3.1.2, scalar masses get generated
by the D-term contribution (3.60) which has again an overall V−3 scaling
but with an ϵs suppression with respect to the local case. Scalar masses
turn out to be non-tachyonic and universal. On the contrary, in the dS
case 2 of Sec. 3.1.2, the main contribution to scalar masses comes from
F-terms and it is given by (3.58) which scales as V−4. This result could
potentially lead to tachyonic and non-universal scalar masses depending
on the exact functional dependence of the functions hα(U, S).

• A-terms
For the current discussion, we assume that the Yukawa couplings Yαβγ receive
no non-perturbative contributions from the Kähler moduli and are hence only
functions of the complex structure moduli and the dilaton Yαβγ = Yαβγ(U, S).
The trilinear A-terms in gravity mediation receive both F- and D-term contri-
butions. The D-term contributions turn out to be zero for vanishing VEVs of
visible sector matter fields [251]. On the other hand, the general formula for
the F-term contribution is [250]

Aαβγ = F I∂I

[
K + ln

(
Yαβγ(U, S)

K̃αK̃βK̃γ

)]
=

= F I∂I

[
K − 3 ln K̃ + ln

(
Yαβγ(U, S)

fαfβfγ

)]
, (3.63)

where the holomorphic Yukawas Yαβγ(U, S) do not depend on the Kähler mod-
uli because of their axionic shift symmetry. Let us present the expression for
Aαβγ at leading order in V−1 and ϵs.
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Local limit : In the local limit we find

Aαβγ =−
[
1− sβU

a

∂uaKcs −
6

ω′
S

(
cs −

1

3

)
−

−s∂s,u ln
(

Yαβγ
fαfβfγ

)]
M1/2 ∼ O

(
M1/2

)
, (3.64)

with ∂s,u ≡ ∂s + βU
a
∂ua . Note that there is a cancellation at O(V−1) between

K and 3 ln K̃ in (3.63). The dominant contributions to (3.64) come from the
F-terms of Tb, S and U .

Ultra-local limit : In the ultra-local limit defined by (3.50), the contribution to
Aαβγ from F Tb vanishes, as can be seen at leading order in (3.64) by setting
cs = 1/3 and fα = hα e

Kcs/3(2s)−1/3. In this limit, the general expression (3.63)
simplifies to

Aαβγ = s∂s,u ln

(
Yαβγ(U, S)

hαhβhγ

)
M1/2 ∼ O

(
M1/2

)
. (3.65)

• µ̂ and Bµ̂ terms

Let us discuss different effects that can contribute to the superpotential and
Kähler potential higgs bi-linear terms. Whether they are present or not is
model dependent and a concrete realisation or combination of various mecha-
nisms might not be possible. The following list should be understood as a list
of possible effects that can lead to a non-vanishing µ-term. The canonically
normalised µ̂ and Bµ̂-terms receive contributions from both Kähler potential
and superpotential effects. Let us discuss these two different effects separately.

1. Kähler potential contributions

Non-zero µ̂ and Bµ̂ get generated from a non-vanishing prefactor Z in
the matter Kähler potential (3.4) [252, 253]. Their general expression in
gravity mediation is [250, 251]

µ̂ =
(
m3/2Z − F

I
∂IZ

)(
K̃HuK̃Hd

)−1/2

Bµ̂ = Bµ̂|F + Bµ̂|D , (3.66)
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where

Bµ̂|F =
{
2m2

3/2Z −m3/2F
I
∂IZ +m3/2F

I
[
∂IZ − Z∂I ln

(
K̃HuK̃Hd

)]
−F IF

J
[
∂I∂JZ − ∂IZ∂J ln

(
K̃HuK̃Hd

)]}(
K̃HuK̃Hd

)−1/2

, (3.67)

Bµ̂|D =
(
K̃HuK̃Hd

)−1/2
(∑

i

g2iDi∂Hu∂Hd
Di − VD,0Z

)
. (3.68)

Motivated by the fact that we are at the singular regime, we take Z of
the same form as the matter metric (3.5) with fα(U, S) replaced by a dif-
ferent unknown function of S and U which we denote γ(U, S). We stress
that Z = γ(U, S)K̃ is just the simplest ansatz for Z given our present
knowledge but its form could in general be different from K̃α.12

Let us compute the leading expressions (in an expansion in V−1 and ϵs)
for both µ̂ and Bµ̂ in the local and ultra-local limit.

Local limit : In the local limit we find

µ̂ =
γ√

fHufHd

[
6

3ω′
S

(
cs −

1

3

)
− s∂s,u ln γ

]
M1/2 ∼ O

(
M1/2

)
, (3.69)

where again there is a cancellation at O(V−1) between the term propor-
tional to m3/2 in (3.66) and the leading order contribution from F

T b
∂T b

Z.
The dominant contributions to (3.69) come from the F-terms of Tb, S and
U . On the other hand, the Bµ̂-term behaves as the soft scalar masses
since both F- and D-term contributions can be rewritten as

Bµ̂|F,D =
γ√

fHufHd

m2
0

∣∣
F,D

. (3.70)

Recalling our results for m2
0, we realise that in the local limit the leading

contribution to Bµ̂ comes from F-terms and scales as m2
0|F in (3.56).

Hence the final result for Bµ̂ is

Bµ̂ =
γ√

fHufHd

5
(
cs − 1

3

)
ω′
S

m3/2M1/2 ∼ O

(
m2

3/2

(lnV)3/2

V

)
. (3.71)

Ultra-local limit : Similarly to the ultra-local limit for K̃α defined by
12However in models with a shift-symmetric higgs sector fHu = fHd

= γ [254, 255, 256, 257, 258].
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(3.50), we can define also an ultra-local limit for Z = γ(U, S)K̃ as
Z ≡ z(U, S) eK/3 which implies

γ(U, S) =
z(U, S) eKcs/3

(2s)1/3
and cs = cdS =

1

3
. (3.72)

In this limit the F-term of Tb does not contribute to µ̂ whose expression
simplifies to

µ̂ = −z s∂s,u ln γ√
hHuhHd

M1/2 ∼ O
(
M1/2

)
. (3.73)

In this ultra-local case the expression (3.67) for Bµ̂|F gives

Bµ̂|F =
z√

hHuhHd

[
σ(U, S)M2

1/2 −
1

3
VF,0

]
, (3.74)

where σ(U, S) is a complicated O(1) function of S and U which looks like

σ(U, S) =
1

9

(
1− sβUa∂uaKcs

)
[1− 3s∂s,u ln (hHuhHd

)] +

+ s∂s,u ln (hHuhHd
) s∂s,u ln z−

− s2
[
∂s ln z ∂s,u ln ∂sz + βUa∂ua ln z ∂s,u ln ∂uaz

]
.

Recalling that V0 = VF,0 + VD,0 = 0, VF,0 can be traded for VD,0, and so
we shall include it in our analysis of D-term contributions to Bµ̂.

(a) In the dS case 1 of Sec. 3.1.2, the D-term generated Bµ̂ is

Bµ̂|D =
z√

hHuhHd

m2
0

∣∣
D
=

=
z√

hHuhHd

6ϵs
ω′
S

m3/2M1/2 ∼ O

(
m2

3/2

√
lnV
V

)
, (3.75)

where we used the result in (3.60). This term dominates over the
F-term contribution given in (3.74).

(b) In the dS case 2 of Sec. 3.1.2, the D-term generated Bµ̂ is vanishing
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since

Bµ̂|D =
z√

hHuhHd

m2
0

∣∣
D
=

=
z√

hHuhHd

2

(
cdS −

1

3

)
VD,0 = 0 for cdS =

1

3
, (3.76)

where we used the result in (3.62). Thus in this case Bµ̂ is generated
purely by F-terms and it is given by (3.74) without the term propor-
tional to VF,0 that we included in the D-term contribution. Hence
the final result for Bµ̂ is

Bµ̂ =
z√

hHuhHd

σ(U, S)M2
1/2 ∼ O

(
M2

1/2

)
. (3.77)

2. Superpotential contributions

Let us discuss the contributions to µ̂ and Bµ̂ from µ ̸= 0 in Wmatter given
by (3.2). Their general expression in gravity mediation reads [250]

µ̂ =
µ eK/2(

K̃HuK̃Hd

)1/2 , (3.78)

Bµ̂ =
µ eK/2(

K̃HuK̃Hd

)1/2 [F I
(
KI + ∂I lnµ− ∂I ln

(
K̃HuK̃Hd

))
−m3/2

]
.

(3.79)

Non-perturbative effects : Non-perturbative effects can generate in the
low-energy action an effective µ-term of the form (up to prefactors)

W ⊃ e−aTHuHd ⇒ µeff = e−aT , (3.80)

if the cycle τ = Re(T ) is in the geometric regime [259] or

W ⊃ e−b(S+κT )HuHd ⇒ µeff = e−b(S+κT ) , (3.81)

if the cycle τ = Re(T ) is in the singular regime, i.e. τ → 0 [260]. Note
that there are two distinct classes of non-perturbative contributions lead-
ing to the above EFT coupling: if the higgs bi-linear is forbidden by
anomalous U(1) symmetries, charged instanton contributions for instance
via ED3 can realise such a coupling [259, 260]. Alternatively, if the higgs-
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bilinear is forbidden by an approximate global symmetry of the local
model, this global symmetry is broken by compactification effects. For
the latter case, ref. [200] studied the topological conditions under which
non-perturbative effects of the form (3.80) and (3.81) contribute to the
effective action. If T is a bulk cycle, the coupling (3.80) is always gen-
erated but in our case it would be negligible since this effect would be
proportional to e−V2/3 . On the other hand, if T is the blow-up of a local
singularity, the couplings (3.80) and (3.81) get generated only if this di-
visor shares a homologous two-cycle with the blow-up mode TSM of the
MSSM singularity. This condition is not satisfied if either T or TSM is a
very simple divisor like a dP0 which has been used in the explicit global
models of [208] and [239].

If in both cases the appropriate conditions are satisfied, both (3.80) and
(3.81) would lead to a non-vanishing contribution which can be parame-
terised as follows

µ̂ ≃ cµ,W (U, S)

Vn+ 1
3

and Bµ̂ ≃ cB,W (U, S)

Vn+ 4
3

, (3.82)

where in (3.80) we have set T = Ts and a = nas with n > 0, while in
(3.81) we have parameterised b = nas recalling that s ≃ τs from (3.10).
cµ,W and cB,W are constants which absorb the dependence on the pref-
actor of the instanton contribution, the complex structure moduli and
the dilaton. Note that for different values of n non-perturbative effects
could generate µ̂ and Bµ̂ in the complete range interesting for MSSM
phenomenology regardless of the size of the other soft-terms. However
these effects can be in competition with Kähler potential contributions
for n ≥ 5/3.

Background fluxes : Primitive (1, 2) IASD fluxes can generate µ̂ for D3-
branes at singularities [261, 262, 146]. However, given that their contri-
bution is proportional to the F-terms of the complex structure moduli,
this effect has already been included in the contributions from the Kähler
potential. In other words, direct computations of soft terms by reducing
the D3-brane action in a fluxed background show that µ = 0 [146].
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3. Anomalous U(1) symmetries

A term proportional to HuHd in K or W could be forbidden in the pres-
ence of an anomalous U(1) symmetry. In this case, the only way to
generate a higgs bilinear would be to multiply this term by an operator
involving a U(1)-charged field which makes the whole contribution gauge
invariant. As already discussed above, the only closed string moduli that
can lead to such an effect are Kähler moduli.

Alternatively, the U(1)-charged field could be an open string mode Φ

appearing in K and W in a gauge invariant combination of the form (Λ
denotes the appropriate moduli-dependent cut-off)

K ⊃
(
Φ

Λ

)m
HuHd , W ⊃ Φm

Λm−1
HuHd . (3.83)

Thus the field Φ has to be an MSSM singlet since a higgs bilinear gets
generated only when Φ develops a non-zero VEV breaking the U(1) sym-
metry. However, as can be seen from eqs. (3.7) and (3.8), D-term sta-
bilisation fixes the VEV of Φ in terms of τSM: |Φ|2 ∝ τSM/V , and so
the couplings in (3.83) would give rise to effective µ and Z-terms which
depend only on closed string moduli

Zeff ∝ 1

Λm

(τSM
V

)m/2
, µeff ∝ 1

Λm−1

(τSM
V

)m/2
. (3.84)

Once the cut-off Λ is explicitly written in terms of T -moduli, one could
plug (3.84) into the standard supergravity formulae to work out the final
contribution to µ̂ and Bµ̂. The result will depend on the VEV and the
F-term of TSM. As discussed in [239], Φ needs to receive tachyonic con-
tribution from soft terms in order for TSM to develop a non-zero VEV. If
this condition is satisfied, τSM ∼ V−1 implying F TSM ∼ V−2 for the local
case and τSM ∼ V−3 implying F TSM ∼ V−4 for the ultra-local case. This
effect corresponds to switching on an FI-term, and so to breaking the
anomalous U(1) by moving slightly away from the singularity. However
in both cases the VEV of τSM is smaller than unity, and so we are still
consistently in the singular regime.

Given that all these results are clearly model-dependent and require
physics beyond the MSSM, at this stage we do not pursue these options
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in more detail and leave them for future work. Let us just mention that
the only case where the effective µ-term in (3.84) does not depend on Λ

is for m = 1. In this situation µ̂ would scale as V−4/3 in the local case
and as V−7/3 in the ultra-local case. If instead Φ does not receive tachy-
onic contributions from soft terms, another option would be to consider
models where Φ develops a non-zero VEV because of radiative effects.

3.2.4 Summary of Soft-terms

Let us summarise our results for the soft-terms in the two cases to obtain dS vacua
(see also Table 3.1). Given that in each case the gaugino masses turn out to have
the same value, we will use M1/2 as a useful parameter which can be rewritten as

M1/2 = c1/2m3/2

m3/2

MP

[
ln

(
MP

m3/2

)]3/2
, (3.85)

where c1/2 is a flux-dependent tunable coefficient. We will state our results for the
model-independent case where µ̂ and Bµ̂ are generated from moduli induced Kähler
potential contributions. If these contributions are absent (for example if these terms
are forbidden by anomalous U(1) symmetries), then µ̂ and Bµ̂ can take different
values because of model-dependent contributions from either K or W as previously
discussed. Let us discuss the local and ultra-local limits separately.

Local limit : In the local limit, the soft-terms turn out to be the same in both dS
mechanisms (all the c’s are flux-dependent parameters)

m2
0 = c0m3/2M1/2 , Aαβγ = (cA)αβγM1/2 ,

µ̂ = cµ,K ZM1/2 , Bµ̂ = cB,K Z m
2
0 . (3.86)

Ultra-local limit : In the ultra-local limit, the soft-terms take different forms in
the two dS cases (again all the c’s are flux-dependent coefficients which are distinct
in different scenarios)

1. dS vacua from hidden matter fields

m2
0 = c0

m3/2M1/2

ln
(
MP/m3/2

) , Aαβγ = (cA)αβγM1/2 ,

µ̂ = cµ,K ZM1/2 , Bµ̂ = cB,K Z m
2
0 ; (3.87)
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Soft term Local Models Ultra Local dS1 Ultra Local dS2

M1/2 c1/2m3/2
m3/2

MP

[
ln
(

MP

m3/2

)]3/2
m2
α c0m3/2M1/2 c0

m3/2M1/2

ln(MP/m3/2)
(c0)αM

2
1/2

Aαβγ (cA)αβγM1/2

µ̂
cµ,K ZM1/2 (contribution from K)

cµ,W
MP

Vn+1
3

(contribution from W )

Bµ̂
cB,K Z m

2
0 (contribution from K)

cB,W
M2

P

Vn+4
3

(contribution from W )

Table 3.1: Summary of soft-terms for different sequestered scenarios for the two dS
mechanisms discussed in the text: hidden sector matter (dS1) and non-perturbative
effects at singularities (dS2). All soft terms are hierarchically smaller than m3/2.
Gaugino masses, A-terms and the µ̂-term take the same value in each case whereas
scalar masses and hence the Bµ̂-term are model-dependent. The coefficients c are
flux dependent and can generically take different values in each scenario presented
here while n is a positive model-dependent parameter. They can be tuned to com-
pare with data. Local and ultra-local 1 cases give a Split-SUSY spectrum while
ultra local 2 implies a standard MSSM spectrum with soft-masses of the same order
and possible small non-universalities due to the flux dependent parameters c.

2. dS vacua from non-perturbative effects at singularities

mα = (c0)αM1/2 , Aαβγ = (cA)αβγM1/2 ,

µ̂ = cµ,K ZM1/2 , Bµ̂ = cB,K ZM
2
1/2 . (3.88)

Clearly, the local limit and the dS case 1 for the ultra-local limit correspond to
typical (mini-)Split-SUSY scenarios whereas the dS case 2 for the ultra-local limit
reproduces a standard MSSM picture with universal gaugino masses and soft masses
all of the same order. If the flux dependent coefficients for the scalar masses are
universal (c0)α = c0, a standard CMSSM scenario emerges. Non-universalities in
the flux dependent coefficients can lead to interesting soft-term patterns such as
in NUHM or natural SUSY scenarios. We discuss the dark matter phenomenology
related to these scenarios in Chap. 4 [2].
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For illustrative purposes, we just mention here two simple benchmark models for
the dS case 2 in the ultra-local limit. Setting all the β’s to zero, we find

Benchmark model 1: hα = z = 1

mα ≃ 0 ∀α , Aαβγ = (cA)αβγM1/2 , µ̂ =
M1/2

3
, Bµ̂ = µ̂2 , (3.89)

where (cA)αβγ = s∂s lnYαβγ. This reproduces a typical gaugino mediation sce-
nario [263, 264].

Benchmark model 2: fα = γ = 1

mα = m0 =
M1/2√

3
∀α , A = −

√
3m0 , µ̂ ≃ m0

ln
(
MP/m3/2

) , Bµ̂ = m2
0 , (3.90)

if the holomorphic Yukawas do not depend on S. This leads to a typical natural
SUSY scenario for example if we allow mHu to be slightly larger than m0 together
with a light third generation [265]. This can be done by considering the more general
case with non-zero β’s and allowing for a U -dependence in fα. The ln

(
MP/m3/2

)
suppression of µ̂ with respect to m0 comes from subleading contributions to µ̂ from
F Ts .

3.3 Possible Sources of Desequestering

There is a general belief that in any supergravity theory once SUSY is broken all
sparticles should get a mass at least of the order of the scale determined by the split
in the gravity multiplet. In particular, all soft masses are expected to be of order
the gravitino mass. Furthermore, if for some reason some of the sparticle masses
are found to be smaller than m3/2 at tree level, since SUSY no longer protects these
masses against quantum corrections, they should be lifted to a loop factor times
m3/2. So soft masses are expected to be at most one order of magnitude lighter
than the gravitino mass but not much smaller.13 Effects which tend to push the soft
masses to the scale of the gravitino mass are referred to as sources of desequestering.
In this section we will argue that our models can be stable against desequestering
effects.

13This separation between m3/2 and soft masses occurs for example in the case of mirage (mixed
moduli and anomaly) mediation [266, 267].
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3.3.1 Loop Corrections

For sequestered string scenarios, it is natural to expect that loop corrections bring
soft masses to a magnitude of order a loop factor times m3/2. However there can be
exceptions since the couplings can be Planck suppressed. A detailed calculation of
loop corrections to the mass of bulk scalars like the volume modulus (its tree level
mass mV ∼ m3/2/V1/2 is hierarchically smaller than m3/2) was presented in [268].

The size of loop corrections can be estimated by realising that, if SUSY is broken,
loop corrections to the mass should be given by the heaviest particles circulating in
the loop (or the cut-off scale) which is the Kaluza-Klein scale MKK ∼ MP/V2/3. In
the absence of SUSY there is a need of a SUSY breaking insertion (a spurion field
representing the relevant F-term) in the loop and the correction to the mass is at
most

δm = αloop

MKKm3/2

MP

∼ αloop

W0

V5/3
≪ αloopm3/2 , (3.91)

with αloop ∼ g2/(16π2) a loop factor. Note that the ratio δm/m ∼ αloopV−1/6 is very
small and therefore the volume modulus mass is stable against loop corrections.

For matter fields located at the Standard Model brane, loop corrections should be
even further suppressed. The effective field theory on the brane is supersymmetric
and feels the effects of SUSY breaking in the bulk only via Planck suppressed cou-
plings. Therefore masses as small as Msoft ∼ W0/V2 are still stable under standard
loop corrections (since volume suppressed brane-bulk couplings imply δMsoft ≪ δm).

Over the years explicit calculations have been performed estimating loop cor-
rections to soft masses in no-scale and general gravity mediated models. See for
example [269, 270] in which loop corrections to scalar and gaugino masses were
estimated in supergravity and M-theory frameworks with results of order δm ∼
αloopm

2
3/2/MP ∼ αloopMP/V2. More recently, explicit calculations for gravitino loop

contributions to gaugino masses was performed in [271]. The diagrams are quadrat-
ically divergent and proportional to the gravitino mass:

δM1/2 =
m3/2

16π2

(
Λ2

M2
P

+ . . .

)
, (3.92)

where Λ is the cut-off scale and the dots represent subleading logarithmically di-
vergent terms. In string theory we expect that Λ ≤ Ms ∼ MP/V1/2 which then
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corrects the gaugino masses to order δM1/2 ≤ αloopMP/V2 which is smaller than the
sequestered gaugino masses M1/2 ∼MP/V2.

This behaviour of sequestered models motivated the work of Randall and Sun-
drum to introduce anomaly mediation. However, as we will illustrate below, the
approximate no-scale structure of LVS makes anomaly mediated corrections to soft-
terms subleading (they vanish identically for no-scale models) in generic points of
parameter space.

3.3.2 Anomaly Mediated Contributions

In this section we examine anomaly mediated contributions to soft-terms and com-
pute their strength in the dS constructions discussed in Sec. 3.1.2. The anomaly
mediated gaugino masses [272] are given by14

Manom
1/2 =

g2

16π2

[
(TR − 3TG)m3/2 + (TG − TR)F

I∂IK +
2TR
dR

F I∂I ln det K̃αβ

]
,

(3.93)

where TG,R are the Dynkin indexes of the adjoint representation and the matter
representation R of dimension dR (summation over all matter representations is
understood). Assuming that the Kähler metric for matter fields can be written as
K̃αβ = δαβfαK̃, the expression (3.93) reduces to

Manom
1/2 =

g2

16π2

[
(TR − 3TG)m3/2 + (TG − TR)F

I∂IK+

+
2TR

K̃
F I∂IK̃ +

2TR
dR

dR∑
α=1

F I∂I ln fα

]
. (3.94)

In the local case, we find that the leading order anomaly mediated contribution can
be written in terms of the modulus dominated gaugino mass M1/2 given in (3.54)

Manom
1/2 =

g2

16π2

[
(TR − TG)

(
1− sβUa∂uaKcs

)
−

−4TR
ω′
S

(
cs −

1

3

)
+

2sTR
dR

dR∑
α=1

∂s,u ln fα

]
M1/2, (3.95)

14Note that there is a certain discussion on the validity of this formula [273]. For the purpose of
the present chapter we assume that the standard derivation from field theory or string theory [274]
is valid.
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with ω′
S as defined below (3.37). For the ultra-local case we find instead

Manom
1/2 =

g2

16π2

[(
TR
3

− TG

)(
1− sβUa∂uaKcs

)
+

2sTR
dR

dR∑
α=1

∂s,u lnhα

]
M1/2 . (3.96)

Therefore in both cases the anomaly mediated contribution is loop suppressed with
respect to the moduli mediated one. This result is the consequence of the approxi-
mate no-scale structure of LVS models.

A more careful analysis is needed for a very particular point in the underlying
parameter space: ω′

S → 0, i.e. in the very tuned situation where the F-term of the
dilaton is vanishing at leading order because of a special compensation between the
contribution to F S from DSW and DTbW . In this case the leading contribution to
gaugino masses given in (3.54) is zero and the first non-vanishing moduli mediated
contribution can be estimated to scale as Mnew

1/2 ∼ m3/2

√
lnV/V . On the other

hand, the anomaly mediated contribution scales as Manom
1/2 ∼ cMnew

1/2 where c =

c′
(

g2

16π2

)
lnV and c′ denotes a numerical factor arising from evaluating (3.96) exactly.

For g ≃ 0.1 and V ≃ 5 · 106 (the value needed to get Mnew
1/2 approximately around

the TeV-scale), c is roughly of order c′ × 10−3. Depending on the exact value of c′,
which is beyond the scope of this analysis, we can achieve competing contributions
from moduli mediation and anomaly mediation.

3.3.3 Moduli Redefinitions

Desequestering can also potentially occur due to moduli redefinitions which might
be necessary order by order in perturbation theory. This desequestering effect can
for example arise due to a shift of the local cycle τSM → τSM + α lnV which has the
effect of making the soft-terms of the same order as the gravitino mass [185, 186].

Such moduli redefinitions depend on the structure of the D-brane configuration.
In particular, it has been argued that redefinitions are absent for configurations
involving only D3-branes at orbifold singularities but are present for D3-branes at
orientifold singularities and in cases with both D3- and D7-branes (see [185]).

We emphasise that desequestering occurs only if the moduli redefinition leads to
a change in the functional form of the Kähler potential. Arguments suggesting a
change in the functional form were presented in [185] but an explicit computation
of such a change is still not available in the literature. Some recent explicit compu-
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tations of the Kähler potential [275, 276] have shown that perturbative corrections
can be such that, along with a field redefinition, there is also an additional term
generated in the Kähler potential. In these cases, however, the two effects conspire
to leave the functional form of the Kähler potential invariant. More detailed studies
of perturbative corrections to the Kähler potential are crucial to get a comprehensive
understanding of the relationship between moduli redefinitions and desequestering.

3.3.4 Superpotential Desequestering

Apart from potentially destroying the hierarchy between soft masses and m3/2, var-
ious subleading effects can have important phenomenological consequences. Inter-
esting constraints arise from non-perturbative terms in the superpotential involving
visible sector fields [198]. Superpotential terms of the type

Ŵ =
(
µ̂HuHd + λ̂uijQ

iujHu + λ̂dijQ
idjHd + λ̂uijL

iejHd

)
e−asTs , (3.97)

would lead to flavour violation and CP-violation via A-terms with a strength sen-
sitive to the hierarchy between soft masses and m3/2. For M2

soft ∼ m2
3/2/Vn the

strength of CP and flavour violation induced by A-terms would be

δ ∼ Vn10−16
( v

100 GeV

)
, (3.98)

with v equal to the higgs VEV. CP violation and FCNC bounds then require V <

105. This gives a slight tension with our results but there can be several ways
around this issue. The estimate (3.98) is based on effective field theory arguments;
it assumes generic order one coefficients for the superpotential terms in (3.97). A
string computation of the coefficients was done in [200]. This indicates that the
coefficients are suppressed unless the Standard Model cycle and the cycle on which
the instanton is supported share a homologous two-cycle. The presence of flavour
symmetries [193, 277, 278, 181] in the visible sector can also alleviate this tension.

3.4 Conclusions

In this chapter we have analysed soft-terms for LVS sequestered models with dS
moduli stabilisation. These models are particularly attractive for phenomenological
reasons: the string scale is around the GUT scale, soft masses are at the TeV scale
and the lightest modulus is much heavier than the bound imposed by the CMP. The
volume of the compactification is of order V ∼ 107 in string units and the visible
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sector can be localised on D3-branes at a singularity.

The pattern of soft terms for these models has been previously studied in [184].
In this chapter we have deepened the analysis of [184] by studying the effect on
soft terms of the sector responsible to realise a dS vacuum, and by classifying in
a systematic way any possible correction to the leading no-scale structure of soft
terms. In particular, given that soft terms depend on the moduli-dependence of the
Kähler metric for matter fields K̃α, we defined two possible limits for K̃α: Local
scenarios where K̃α is such that the visible sector Yukawa couplings Yαβγ do not
depend on V only at leading order in an inverse volume expansion, and Ultra-local
scenarios where Yαβγ are exactly independent on V at all orders.15 Moreover, due to
the present lack of explicit string computations of K̃α, we parameterised its depen-
dence on the dilaton and complex structure moduli as an unknown function fα(U, S).

The computation of soft terms has produced a wide range of phenomenological
possibilities depending on the exact moduli-dependence of the matter Kähler metric
and the way to achieve a dS vacuum. We considered two dS realisations based on
supersymmetric effective actions: dS case 1 where hidden sector matter fields living
on a bulk cycle develop non-vanishing F-terms because of D-term fixing, and dS
case 2 where the blow-up mode of a singularity different from the visible sector one
develops non-zero F-terms due to non-perturbative effects. Broadly speaking, we
found two classes of models:

1. Split-SUSY : Local models and ultra-local models in the dS case 1 yield gaug-
ino masses and A-terms which are suppressed with respect to scalar masses:
M1/2 ∼ m3/2ϵ≪ m0 ∼ m3/2

√
ϵ≪ m3/2 for ϵ ∼ m3/2/MP ≪ 1. For volumes of

order of 107 in string units these models provide a version of the Split-SUSY
scenario with a ‘largish’ splitting between gauginos and scalars (according to
current experimental bounds). Non-universalities are present but suppressed
by inverse powers of the volume.

2. Standard MSSM : For ultra-local models in the dS case 2, all soft-terms are
of the same order: M1/2 ∼ m0 ∼ m3/2ϵ ≪ m3/2. Therefore these models
include the CMSSM parameter space and its possible generalisations since each
soft-term comes along with a tunable flux-dependent coefficient. Moreover,
depending on the exact functional dependence of the Kähler metric for matter

15Evidence in favour of ultralocality has been obtained from explicit string computations in
toroidal orbifolds [199]. The case of realistic CY compactifications remains to be explored.
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fields, these models can also feature non-universalities which are constrained
by the experimental bounds on flavour changing neutral currents.

Let us stress again that the exact numerical coefficients of the soft terms are
functions of the dilaton and complex structure moduli which are fixed in terms of
flux quanta. Hence soft terms vary as one scans through the string landscape. This
crucial property of our scenarios gives supersymmetric models the freedom to per-
form any tuning which is needed for phenomenological reasons. In particular, it is
low energy SUSY that addresses the hierarchy problem by stabilising the higgs mass
at the weak scale, while scanning through the landscape provides small variations
in the size of soft terms as necessary to reproduce all the detailed features of exper-
imental data. This tuning at low energies can be viewed as a choice of parameters
in the high scale theory. There is a large freedom of choice in the high scale theory
which is however not arbitrary since this freedom is provided by the theory itself
(by having a computable landscape of vacua).

Note that in the ultra-local case the two ways to achieve a dS vacuum give rise
to a different pattern of soft terms. This can intuitively be understood as follows:
the depth of the LVS AdS vacuum is of order m2

3/2ϵ, and so any extra term which
yields a dS solution has to be of this order of magnitude. In turn, if the field ϕ

responsible for dS uplifting is not decoupled from the visible sector, scalar masses
of order m3/2

√
ϵ are expected to arise because of this new contribution to the scalar

potential. This is actually what happens in the dS case 1 since ϕ lives on a bulk
cycle, and so it is not decoupled from the visible sector. On the other hand, in
the dS case 2 ϕ lives on a singularity which is geometrically separated from the one
supporting the visible sector. This gives rise to an effective decoupling between ϕ

and the visible sector, resulting in suppressed scalar masses.

We would also like to emphasise that our analysis for the dS case 1, together
with [208] (which provided visible sector models embedded in moduli stabilised com-
pact CYs), provides a very comprehensive study of SUSY breaking in string theory.

The soft terms which are more complicated to estimate are the µ̂ and Bµ̂-terms
since they receive contributions from both the Kähler potential and the superpoten-
tial. Moreover, these contributions could generically be forbidden in models with
branes at singularities because of the presence of anomalous U(1) symmetries. In
this case, effective µ̂ and Bµ̂-terms could still be generated due to non-perturbative
corrections (e.g. D-brane instantons) or matter fields which develop non-vanishing
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VEVs. However in this last case, besides the need to go beyond the MSSM by includ-
ing additional matter fields, any prediction for µ̂ and Bµ̂-terms would necessarily
be model-dependent.

Overall, we are living exciting times with plenty of feedback from experiments. A
detailed study of the phenomenology of the general sequestered scenarios mentioned
above will be presented in a follow-up article [2].
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Part III

Non-Standard Cosmology
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Chapter 4

Non-Thermal Dark Matter

4.1 Motivation for Non-thermal Dark Matter

One of the main particle physics candidates for DM is a stable neutralino χ which
emerges as the lightest supersymmetric particle (LSP) in several scenarios beyond
the Standard Model. The DM relic abundance is generically assumed to be pro-
duced thermally by the following process: the LSP is in a thermal bath in the early
universe, subsequently drops out of thermal equilibrium and freezes-out at temper-
atures of order Tf ≃ mDM/20 when DM annihilation becomes inefficient.

However, we have no direct observational evidence of the history of the universe
before Big Bang Nucleosynthesis (BBN) for temperatures above TBBN ≃ 3 MeV.
There is therefore no reason to assume a very simple cosmological history charac-
terised by just a single period of radiation dominance from the end of inflation until
BBN. In fact, the presence of a period of matter domination between the end of
inflation and BBN could completely change the final prediction for the DM relic
density if the reheating temperature at the end of this period of matter dominance
is below Tf [279, 280, 281, 282, 283, 284].

This non-thermal picture emerges generically in UV theories like string theory
due to the ubiquitous presence of gravitationally coupled scalars [188, 189, 285, 286,
287, 288, 289]. During inflation these fields, called moduli, get a displacement from
their minimum that is in general of order MP [290]. After the end of inflation, when
the Hubble constant reaches their mass, H ∼ mmod, they start oscillating around
their minimum and store energy. Redshifting as matter, they quickly dominate the
energy density of the universe which gets reheated when the moduli decay. Being
only gravitationally coupled, the moduli tend to decay very late when H ∼ Γ ∼
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m3
mod/M

2
P. The corresponding reheating temperature

Trh ∼
√
ΓMP ∼ 0.1mmod

√
mmod

MP

, (4.1)

has to be larger than TBBN in order to preserve the successful BBN predictions.1 This
requirement sets a lower bound on the moduli masses of order mmod ≳ 1.3 × 105

GeV [188, 189, 285].

Generically in string compactifications SUSY-breaking effects develop a mass for
the moduli and generate by gravity or anomaly mediation soft terms of order Msoft.
Due to their common origin, the mass of the lightest modulus mmod is therefore
related to the scale of the soft terms as Msoft = κmmod. Given the cosmological
constraint mmod ≳ 1.3 × 105 GeV, only models with κ ≪ 1 can allow for low-
energy SUSY to solve the hierarchy problem. Values of κ ∼ O(10−2) can come
from loop suppression factors [191, 235, 238, 293] while much smaller values κ ∼
O(10−3− 10−4) can arise due to sequestering effects [184, 1]. For Msoft ∼ O(1) TeV,
the corresponding reheating temperature becomes

TR ∼ Msoft

κ3/2

√
Msoft

MP

∼ κ−3/2 O(10−2) MeV , (4.2)

which for 10−2 ≲ κ ≲ 10−4 is between O(10) MeV and O(10) GeV. This is below the
freeze-out temperature for LSP masses between O(100) GeV and O(1) TeV which
is Tf ∼ O(10− 100) GeV. Therefore any DM relic density previously produced via
the standard thermal mechanism gets erased by the late-time decay of the lightest
modulus. In this new scenario, the LSP gets produced non-thermally from the mod-
ulus decay.

From a bottom-up perspective, non-thermal cosmological histories can also en-
large the available parameter space of different DM models consistent with direct
and indirect detection experiments, due to the presence of the additional parameter
TR. This is appealing as it is very hard to reproduce a correct thermal relic density
in the CMSSM/mSUGRA (see for instance [294]) since a bino-like LSP tends to
overproduce DM (apart from some fine-tuned cases like stau co-annihilation and
A-funnel or in the case of precision gauge coupling unification [228]) while for a
higgsino- or wino-like LSP the relic density is in general underabundant (except for

1Trh has also to be lower than the temperature above which the internal space decompacti-
fies [291, 292].
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cases like well tempered bino/higgsino or bino/wino DM [295]).

The purpose of this chapter is to study the production of Non-Thermal DM
in the CMMS, where the free parameters are: the standard parameters of the
CMSSM/mSUGRA [296, 297, 298, 299], i.e. the universal scalar mass m, univer-
sal gaugino mass M and trilinear coupling A defined at the GUT scale, tan β and
the sign of µ, with in addition the reheating temperature TR from the decay of the
lightest modulus. We shall follow the RG running of these parameters from the
GUT to the electroweak (EW) scale and require a higgs mass mh ≃ 125 GeV,
a correct radiative EW symmetry breaking (REWSB) and no DM non-thermal
overproduction. We shall then focus on the points satisfying all these require-
ments and we will impose on them several phenomenological constraints coming
from LEP [300, 301, 302, 303], LHC [304, 305, 306, 307, 308], Planck [49], Fermi
(pass 8 limit) [309], XENON100 [310], CDMS [311], IceCube [312] and LUX [313].
Moreover we shall focus only on cases where the LSP has a non-negligible higgsino
component since bino-like DM requires a very low reheating temperature which is
strongly disfavoured by dark radiation bounds in the context of many string mod-
els [314]. Interestingly we shall find that the constraints from Fermi and LUX are
very severe and do not rule out the entire non-thermal CMSSM parameter space
only for reheating temperatures TR ≳ O(1) GeV. The best case scenario is realised
for TR = 2 GeV where a higgsino-like LSP with a mass around 300 GeV can saturate
the observed DM relic abundance. For larger reheating temperatures the LSP bino
component has to increase, resulting in strong direct detection bounds which allow
only for cases with DM underproduction. Values of TR above 1 GeV require values
of κ ∼ O(10−3 − 10−4) which can be realised only in models where the CMSSM is
sequestered from the sources of SUSY breaking [184, 1]. In these models the contri-
bution to gaugino masses from anomaly mediation turns out to be negligibly small
and hence is distinct from other scenarios [191, 235, 238, 293] where contributions
from anomaly mediation are significant and where a wino LSP can be realised. Apart
from DM, these models are very promising since they can be embedded in globally
consistent CY compactifications [183, 208, 239], allow for TeV-scale SUSY and suc-
cessful inflationary models [315, 316, 317], do not feature any CMP,2 are compatible
with gauge coupling unification and do not suffer from any moduli-induced gravitino
problem [319, 320]. Non-standard thermal history using CMSSM was considered in
ref. [321] where the entropy due to the decay of the inflaton reduces the thermal
relic abundance. In this work, however, we consider that the DM particles from

2Ref. [318] provides a significant bound on moduli masses and the number of e-foldings during
inflation which can be a challenge for many models.
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the moduli decay constitute the DM abundance and the thermal DM abundance
contribution to the net DM content is negligible since Tr is not required to be very
close to Tf .

In Sec. 4.2 we discuss CMSSM Soft-Terms, in Sec. 4.3 we analyze the non-thermal
CMSSM, in Sec. 4.4 we discuss our results.

4.2 CMSSM Soft-Terms

In a UV completion of the MSSM like string theory, SUSY is spontaneously broken
by some dynamical mechanism which generates particular relations between the soft
terms via gravity, anomaly or gauge mediation. In the case when the soft terms are
universal at the GUT scale, they are given by the scalar mass m, the gaugino mass
M , the trilinear coupling A and the bilinear higgs mixing B. We can generically
parameterise these soft terms and the µ parameter at the GUT scale as:

m = a |M | , A = b M , B = c M , µ = d M , (4.3)

where, in a stringy embedding, the coefficients a, b, c and d are functions of the
underlying parameters while the gaugino mass M sets the overall scale of the soft
terms in terms of the gravitino mass m3/2. In order to perform a phenomenological
analysis of this scenario one has to follow the renormalisation group (RG) evolu-
tion of these soft terms from the GUT to the EW scale and impose the following
constraints: a correct REWSB, a higgs mass of order mh ≃ 125 GeV, no DM over-
production and no contradiction with flavour observables and with any experimental
result in either particle physics or cosmology.

A viable REWSB can be obtained if at the EW scale the following two relations
are satisfied:

µ2 =
m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
− m2

Z

2
, (4.4)

where:

sin(2β) =
2|Bµ|

m2
Hd

+m2
Hu

+ 2µ2
. (4.5)

Given that the requirement of a correct REWSB fixes only the magnitude of µ
leaving its sign as free, the parameters (4.3) are typically traded for the standard
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CMSSM/mSUGRA parameters:

m = a |M | , A = b M , tan β ≡ ⟨H0
u⟩

⟨H0
d⟩
, sign(µ) , (4.6)

where one runs m, M and A (or a, b and M in our case) from the GUT to the EW
scale with a particular choice of tan β and sign(µ). eq. (4.4) and (4.5) then give
the value of B and µ at the EW scale. This is the way in which typical spectrum
generators operate.3 The boundary values of B and µ at the GUT scale which give
a correct REWSB can be obtained by running back B and µ from the EW to the
GUT scale. In this way we obtain the values of the coefficients c and d. In a viable
UV model, these values of c and d have to be compatible with the values allowed
by the stringy dynamics responsible for SUSY breaking and the generation of soft
terms. The expressions in eq. (4.4) and (4.5) are tree level relations. We use loop
corrections to these relations in our calculations.

4.3 Non-thermal CMSSM

As motivated in Sec. 4.1, we shall consider scenarios where the LSP is produced
non-thermally like in the case of string compactifications where the reheating tem-
perature TR from the decay of the lightest modulus is generically below the thermal
freeze-out temperature [286, 287, 288, 289]. This reheating temperature represents
an additional parameter which has to be supplemented to the standard free param-
eters of the CMSSM (a, b, M , tan β and the sign of µ). We call this new scenario
the ‘non-thermal CMSSM’ which is characterised by the following free parameters:
TR, a, b, the gaugino mass M , tan β and the sign of µ.

4.3.1 Non-thermal Dark Matter Relic Density

The abundance of DM particles χ produced non-thermally by the decay of the
lightest modulus is given by [281]:

(nDM

s

)NT

= min

[(nDM

s

)
obs

⟨σannv⟩Th
f

⟨σannv⟩f

√
g∗(Tf )

g∗(TR)

(
Tf
TR

)
, Ymod BrDM

]
, (4.7)

where g∗ is the number of relativistic degrees of freedom, ⟨σannv⟩Th
f ≃ 2×10−26cm3 s−1

is the annihilation rate at the time of freeze-out needed in the thermal case to re-
3Here we use SPheno v3.3.3 [322, 323].
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produce the observed DM abundance:(nDM

s

)
obs

=
(
ΩDMh

2
)
obs

(
ρcrit

mDMsh2

)
≃ 0.12

(
ρcrit

mDMsh2

)
, (4.8)

whereas the yield of particle abundance from modulus decay is:

Ymod ≡ 3TR
4mmod

∼
√
mmod

MP

. (4.9)

BrDM denotes the branching ratio for modulus decays into R-parity odd particles
which subsequently decay to DM.

The expression in eq. (4.7) leads to two scenarios for non-thermal DM:

1. ‘Annihilation scenario’: in this case the DM abundance is given by the first
term on the right-hand side of eq. (4.7) and the DM particles undergo some
annihilation after their initial production by modulus decay. In order to avoid
DM overabundance one needs

⟨σannv⟩f ≥ ⟨σannv⟩Th
f

√
g∗(Tf )

g∗(TR)

(
Tf
TR

)
. (4.10)

Given that TR < Tf and g∗(TR) < g∗(Tf ), this scenario requires ⟨σannv⟩f >
⟨σannv⟩Th

f as in the case of thermal underproduction. This condition is satis-
fied by a higgsino- or wino-like LSP but not by a pure bino-like LSP which
would generically lead to non-thermal overproduction (apart from the afore-
mentioned cases). However, given that we shall focus on models with just
gravity mediated SUSY breaking (contributions from anomaly mediation are
subleading) and universal gaugino masses at the GUT scale as in [184, 1], the
LSP can never be wino-like due to the RG running of the gauginos. Bino is
the lightest gaugino. Moreover a wino-like LSP has a significantly larger an-
nihilation cross section than a higgsino-like LSP resulting in a strong conflict
with Fermi bounds for sub-TeV wino-like DM [324]. In this context, the ‘An-
nihilation scenario’ requires a higgsino-like DM. Let us finally point out that
the non-thermal DM relic density can be written in terms of the thermal one
as:

ΩNT
DMh

2 =

√
g∗(Tf )

g∗(TR)

(
Tf
TR

)
ΩT

DMh
2 , (4.11)
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where NT stands for Non-Thermal, while T means Thermal. For 5 GeV <

Tf < 80 GeV (corresponding to 100 GeV < mDM < 1.6 TeV), the top, the
higgs, the Z and the W± are not relativistic, giving g∗(Tf ) = 86.25 and:

ΩNT
DMh

2 = 0.142

√
10.75

g∗(TR)

(
mDM

TR

)
ΩT

DMh
2 . (4.12)

2. ‘Branching scenario’: in this case the DM abundance is given by the second
term on the right-hand side of eq. (4.7) and the DM particles are produced
directly from the modulus decay since their residual annihilation is inefficient.
In this case both large and small cross sections can satisfy the DM content since
the annihilation cross section does not have any impact on the DM content.
This scenario is very effective to understand the DM and baryon abundance
coincidence problem [325]. Given that in general we have BrDM ≳ 10−3 4, in
order not to overproduce DM for LSP masses of order hundreds of GeV, one
needs Ymod ≲ 10−9. This condition requires a very low reheating temperature:

TR ≲ 10−9mmod = 10−9κ−1Msoft . (4.13)

For Msoft ∼ O(1) TeV and κ ∼ O(10−2 − 10−4) we find TR ≲ O(10) MeV.
In order to obtain such a low reheating temperature one has in general to
consider models where the modulus coupling to visible sector fields is loop
suppressed [289]. However in this case it is very challenging to avoid a large
modulus branching ratio into hidden sector light fields like stringy axions [326,
327, 4] and so typically dark radiation is overproduced [314]. Therefore the
‘Branching scenario’ does not seem very promising from the phenomenological
point of view.

4.3.2 Collider and CMB Constraints

Due to the considerations mentioned above, if the LSP is bino-like we generically
get DM overproduction also in the non-thermal case. The CMSSM boundary con-
dition requires bino to be the lightest among the gauginos. We shall therefore look
for particular regions in the non-thermal CMSSM parameter space where the LSP
has a non-negligible higgsino component. We have developed a Monte Carlo pro-
gramme to find the regions of this parameter space where the LSP is higgsino-like,

4In this case, the dominant decay mode of moduli is gauge Bosons, ϕ → gg. However the
gauginos appear in three body final state, i.e., ϕ → g g̃g̃ with BrDM ≳ 10−3 [325].
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(a) (b)

Figure 4.1: Correlation between a = m/M and b = A/M for different LSP compo-
sitions (left) and DM thermal relic densities (right) in the region where the LSP is
at least 10% higgsino.

the higgs mass is around 125.5 GeV,5 REWSB takes place correctly and the following
phenomenological constraints are satisfied:

• LEP [300, 301, 302, 303] and LHC [304, 305, 306, 307, 308] constraints on
neutralino and chargino direct production: mDM ≳ 100 GeV;

• LHC [304, 305, 306, 307, 308] bounds on gluino and squark masses: mg̃ ≳ 1300

GeV;

• LHC constraints from flavour physics: BR(Bs → µ+µ−) [328] and the con-
straint on BR(b→ sγ) [5];

• Planck data on DM relic density [49].

To avoid complications with the applicability of the standard Spheno version, we
restrict our scan on the following parameter ranges: tan β = 1 to 55, a = 0 to 10,

b = −5 to 5, and the universal gaugino mass at the high scale M = 0.3 − 3 TeV.
The results are shown in Figs. 4.1-4.3 for positive µ (the LSP relic density has been
calculated using micrOMEGAS v3 [329]).

The plots in Fig. 4.1 show the points surviving the above constraints in the A/M -
m/M plane (at the GUT scale). The points fit into a V-shaped band illustrating

5Both ATLAS and CMS give values of the higgs mass between 125 and 126 GeV. In what
follows, we will consider ranges of values in this region, allowing to some extent for the uncertainty
in the spectrum generators as well. Allowing for a larger uncertainty in the higgs mass does not
alter the following results qualitatively.
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(a) (b)

Figure 4.2: Correlation between a = m/M and b = A/M for different values of tan β
(left) and gaugino mass (right) in the region where the LSP is at least 10% higgsino.

a slight hierarchy between scalar and gaugino masses (m ≳ 5M) and values of A
almost symmetric around A ≃M . The regions shown in the plot are mostly for TR
rather smaller than Tf which keeps mostly the focus point regions in the allowed
parameter space. The coannihilation and A-funnel regions can also contribute to
the allowed parameter space but they are very fine tuned. The V-shape of our plots
is caused by the focus point region which can be obtained by setting µ ∼ mZ in
the EWSB condition with loop corrections. In fact, the dependence of µ2 on A, M
and m arises through m2

Hu
which depends on the UV soft terms in the following

way: M2(f(Q) + g(Q)A/M + h(Q)(A/M)2 + e(Q)(m/M)2), where f , g, h and e

depend on dimensionless gauge and Yukawa couplings (e also includes the tadpole
correction from the stop loop) and Q is the SUSY breaking scale [330]. A leading
order cancellation in this expression, as needed to achieve a small µ-term in eq.
(4.4), gives a V-shaped band in the A/M -m/M plane. We also apply the higgs
mass constraint in this parameter space which depends on the square of Xt ≡
At − µ cot β [331] and X2

t preserves the V-shape due to its dependence on (A/M)2.
To illustrate the allowed parameter range and to illustrate different aspects of

the surviving points, we show the following plots (for positive sign of µ):

1. In Fig. 4.1, the colour codes illustrate the percentage of higgsino-like neutralino
on the left plot and the neutralino contribution to the thermal DM relic density
on the right. Note that in most of the points the neutralinos contribute only
a small percentage of the total DM relic density and other DM candidates,
such as axions, have to be present. The thermal DM relic density is close
to the observed Planck value only in a small region corresponding to an LSP
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that is approximately 50% bino and 50% higgsino. However, as we will see in
the next section, after imposing indirect detection constraints from Fermi, the
only region which survives is the one where thermal DM is underabundant (by
about 10% of the observed relic density). On the other hand, as we shall see in
the next section, non-thermal higgsino-like DM can lead to larger relic densities
which can saturate the Planck value for reheating temperatures around 2 - 3
GeV.

2. The colour codes in Fig. 4.2 illustrate the dependence on tan β on the left
plot and different values of gaugino masses on the right plot with well-defined
domains for different ranges of gaugino masses inside the V-shaped band. Note
that tan β tends to have larger values as expected from the fit of mh and the
parameter ranges in this scan. Smaller values of A/M and m/M are preferred
for larger gaugino mass due to RG flow of masses to fit the experimental value
of mh.

3. For Fig. 4.3 the colours illustrate on the left the different values of the typ-
ical scale of SUSY particles MSUSY, defined here as the averaged stop mass
M2

SUSY = mt̃1mt̃2 . Notice that MSUSY is around 4 - 5 TeV. In principle, we
could explore values larger than 5 TeV however it would bring us beyond the
level of applicability of the spectrum generator SPheno we have been using
which assume similar values for all soft terms. An analysis for a Split-SUSY-
like case with larger differences between sfermions and gaugino masses would
be required in that case but this goes beyond the scope of this article. The
colours on the right plot illustrate the dependence on the higgs mass for which
we have taken mh = 125, 125.5, 126 GeV respectively. Note that for mh = 126

GeV there are allowed points only on the left of the V-shaped band because
of the above mentioned cut-off on MSUSY. Generally speaking we see that by
allowing a larger range for the higgs mass, we widen the V-shaped region.

4.3.3 Direct and Indirect Detection Constraints

In the figures above we have set µ > 0 but their pattern does not change for µ <
0. The next step is to impose the following phenomenological constraints for the
separate case of positive and negative µ since the DM direct detection cross section
depends on sign(µ):

1. Fermi bounds on DM indirect detection [309];
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(a) (b)

Figure 4.3: Correlation between a = m/M and b = A/M for different values of the
averaged stop mass MSUSY (left) and the higgs mass (right) in the region where the
LSP is at least 10% higgsino.

2. IceCube [312] and XENON100 [310] bounds for spin dependent DM direct
detection;

3. LUX [313], CDMS [311] bounds on spin independent DM direct detection.

• Results for positive µ.
If we impose the above constraints, indirect detection bounds turn out to be
very severe. Using the new Fermi bounds (pass 8 limit) coming from data
collected until 2014 (the pass 7 limit includes only data until 2012), we do not
find any allowed point for TR ≲ 2 GeV.

In Fig. 4.4 we show the results for different reheating temperatures. The red
points show the parameter space where we saturate the DM content measured
from Planck [49]. We find more allowed points for TR = 10 GeV compared
to TR = 2 GeV since the ratio of Tf/TR becomes smaller for large TR, and
so a smaller annihilation cross section is needed, resulting in a better chance
to satisfy the bounds from Fermi. We only see the large higgsino dominated
regions for smaller TR since in this case a larger annihilation cross section is
needed to saturate the DM content. For larger TR, an LSP with a smaller
higgsino component becomes allowed (higher bino component) and this re-
gion appears for smaller values of gaugino mass. We finally mention that the
Planck constraints on indirect detection through DM annihilation during the
recombination epoch are less stringent than those of Fermi for our scenarios.

Fig. 4.5 shows the spin independent and spin dependent WIMP-nucleon cross
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(a) (b)

(c) (d)

Figure 4.4: Case with µ > 0: m/M vs A/M after imposing LEP, LHC, Planck and
Fermi constraints (left) and corresponding LSP composition (right) for mh = 125.5
- 126 GeV and TR = 2, 10 GeV.
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(a) (b)

Figure 4.5: Case with µ > 0: correlation between a = m/M and b = A/M after
imposing LEP, LHC, Planck and Fermi (pass 8 limit) constraints with the corre-
sponding spin independent (left) and spin dependent (right) WIMP-nucleon cross
section for mh = 125.5 GeV and TR = 10 GeV.

section after imposing LEP, LHC, Planck and Fermi constraints for TR = 10

GeV. IceCube bounds rule out the orange and red regions of the right-hand
side plot of Fig. 4.5.

Fig. 4.6 shows the inclusion of LUX bounds on the spin independent direct
detection constraints which rule out most of the points in Fig. 4.5 apart from
a region corresponding to LSP masses around 300 GeV which is at the border
of detectability.

Moreover, for TR = 2 GeV there are red points which saturate the observed
DM content. In this case the neutralinos are becoming more pure higgsinos
in order to enhance the annihilation cross section and the Fermi constraint
becomes harder to avoid but there are still regions allowed by both direct and
indirect detection searches. There are more green points for TR = 10 GeV
since the annihilation cross section becomes smaller due to bino mixing which
means a larger allowed region after using Fermi data but the constraint from
the direct detection becomes more stringent (due to bino-higgsino mixing in
the LSP) and so there are no red points which saturate the observed DM
content.6 For the points shown in Fig. 4.6, the GUT values c = B/M and
d = µ/M are around 0.6 and 1 respectively.

6The direct detection exclusion however depends on various uncertainties, e.g. strange quark
content of proton, form factor etc. [332].
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(a) (b)

Figure 4.6: Case with µ > 0: correlation between a = m/M and b = A/M after
imposing LEP, LHC, Planck, Fermi and LUX bounds for mh = 125.5 - 126 GeV and
TR = 2, 10 GeV.

• Results for negative µ.

The results for the negative µ case are shown in Figs. 4.7 and 4.8.

Note that under the same conditions the allowed parameter space for µ < 0 is
larger than the one for µ > 0. This can be understood as follows [333, 334]:
σχ̃0

1−p is dominated by the t-channel h, H exchange diagrams which mostly
arise from down type (s-quark) interaction:

Ad ∝ md

(
cosα

cos β

FH
m2
H

− sinα

cos β

Fh
m2
h

)
, (4.14)

where α is the higgs mixing angle, Fh = (N12 − N11 tan θW )(N14 cosα +

N13 sinα) and FH = (N12 − N11 tan θW )(N14 sinα − N13 cosα) using χ̃0
1 =

N11B̃ +N12W̃ +N13H̃1 +N14H̃2. For µ < 0, the ratio N14/N13 is positive and
this amplitude can become small due to cancellations if:

N14

N13

= −tanα +m2
h/m

2
H cotα

1 +m2
h/m

2
H

, (4.15)

is satisfied (for tanα < 0). In Fig. 4.8 there are more allowed points compared
to Fig. 4.6 even if there are still no points which saturate the observed DM
content for TR = 10 GeV due to stringent direct detection constraints. For the
points shown in Fig. 4.8, the GUT scale values of B and µ are still both of
order M .
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(a) (b)

(c) (d)

Figure 4.7: Case with µ < 0: a versus b after imposing LEP, LHC, Planck and Fermi
(pass 8 limit) bounds (left) and LSP composition (right) for mh = 125.5 - 126 GeV
and TR = 2, 10 GeV.
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(a) (b)

Figure 4.8: Case with µ < 0: correlation between a = m/M and b = A/M after
imposing LEP, LHC, Planck, Fermi (pass 8 limit) and LUX for mh = 125.5 - 126
GeV and TR = 2, 10 GeV.

4.4 Discussion of Results

4.4.1 Analysis of the Allowed Parameter Space

We are now in a position to put all our results together and explain the effect
of each experimental bound on our parameter space. In the end we shall analyse
the spectrum of superpartners that appears for the points surviving all the phe-
nomenological constraints. All the observables analysed in this section have been
computed numerically using micrOMEGAS v3 [329] linked to SPheno v3.3.3 [322, 323].

Fig. 4.9 shows the relation between the spin independent WIMP-nucleon cross
section and the LSP mass. Depending on TR there is a different upper bound for
neutralino masses which is given by the Planck constraint on DM. For larger values
of TR, the non-thermal relic density decreases, and so heavier neutralinos can pass
the Planck constraint on the DM relic density. On the other hand, for larger TR the
parameter space for standard thermal DM (orange band) becomes also larger. Note
that LUX 2013 results exclude at 90% most of the parameter space and the next
round of results (LUX 300 days) will be able to probe the remaining regions (the
light blue points below the LUX line).

In the scenario we considered, the gaugino masses are unified at the GUT scale
and therefore the evolution of electroweakinos is totally dominated by the RG flow.
This implies that the LSP can only be higgsino- or bino-like (or a mixed combination
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of them). The largest contributions to the thermal averaged annihilation rates are
given by (see for example [295] and references therein):

⟨σeffv⟩ =
g42

512πµ2

(
21 + 3 tan2 θW + 11 tan4 θW

)
, (4.16)

for higgsino-like neutralinos (in the limit MW ≪ µ) annihilating into vector bosons
through chargino or neutralino interchange, and:

⟨σeffv⟩ =
∑
f

g42 tan
2 θW

(
T3f −Qf

)4
r(1 + r2)

2πm2
f̃
(1 + r)4

, (4.17)

for bino-like LSP annihilation into fermion-antifermion (T3f and Qf are the third
component of isospin and the fermion charge and r = M2

1/m
2
f̃
). This process is

driven at tree level by the t-channel exchange of a slepton f̃ . In the case where the
LSP is a mixed composition of higgsino and bino, the expression of the annihilation
rate is an interpolation between (4.16) and (4.17). Fig. 4.9 shows also the effect of
Fermi bounds. As suggested by Fig. (4.16)) and Fig. (4.17), the most constrained
regions are those with smaller LSP masses. The grey band corresponds to points
excluded by LEP bounds on chargino direct production.

Fig. 4.10 shows the amount of non-thermal DM relic density provided by the
LSP in terms of its mass, together with the bounds from indirect detection and
LUX. The Planck value of the DM content can be saturated in the region which is
not ruled out by direct detection bounds only for TR = 2 GeV. Given that for larger
TR the amount of LSP DM gets smaller, the cases with TR > 2 GeV require multi-
component DM. Combining Fig. 4.9 and Fig. 4.10, we find that the LUX allowed
regions, indirect detection limits and the abundance of LSP DM are correlated for
different TR. The allowed regions, where the observed DM content is saturated,
depend on TR but they are generically around mDM ≃ 300 GeV.

In Fig. 4.11, we show the Planck constraints on indirect detection through DM
annihilation during the recombination epoch. We use WW final states correspond-
ing to an efficiency factor feff = 0.2 [335]. Even going all the way to the cosmic
variance bound, these constraints turn out to be less stringent than those coming
from Fermi and LUX. On the other hand, Fig. 4.11 shows the correlation between
the LSP composition and the bounds coming from both direct and indirect detec-
tion. Concerning Fermi and Planck limits on DM annihilation, these bounds allow
almost all possible combinations of bino/higgsino neutralinos. The restrictions com-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Spin independent cross section versus LSP mass for µ > 0 (left) and µ <
0 (right). The light blue points are not ruled out by indirect detection experiments.
We show mχ up to 800 GeV.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Non-thermal DM abundance predictions versus LSP mass for µ > 0
(left) and µ < 0 (right) and TR = 2, 5, 10 GeV. The light blue points are not ruled
out by indirect detection experiments while only the yellow points are allowed by
LUX 2013 results.
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ing from the ff and WW channels depend on the neutralino composition: for a
higgsino-like LSP, the most stringent constraint is due to annihilation into vector
bosons, while for a bino-like LSP the main constraint comes from annihilation into
a fermion-antifermion pair.

The LUX constraints in Fig. 4.11 reduce the parameter space to the region where
the LSP is mostly higgsino-like. This could be a bit puzzling since the WIMP-
nucleon cross section is dominated by the higgs exchange channel:

σχ−p ∝
a2
H̃
(g′aB̃ − g aW̃ )2

m4
h

, (4.18)

where aH̃ , aB̃ and aW̃ are respectively the higgsino, bino and wino LSP components.
According to this expression, the cross section is enhanced when the higgsino com-
ponent increases. However in Fig. 4.11 direct detection bounds allow only points
which are mainly higgsino-like. The reason of this effect is in the effective coupling
χ̃χ̃h which for a bino-like LSP looks like:

Cχ̃χ̃h ≃
mZ sin θW tan θW

M2
1 − µ2

(M1 + µ sin 2β) , (4.19)

where for moderate to large tan β the second term is negligible and µ > M1. Hence
this coupling is dominated byM1. On the other hand, the coupling for a higgsino-like
LSP is:

Cχ̃χ̃h ≃
1

2
(1± sin 2β)

(
tan2 θW

mZ cos θ

M1 − |µ|
+
mZ cos θ

M2 − |µ|

)
, (4.20)

where ± is for the Hu and Hd components and µ < M1. Contrary to the bino-
like case, this coupling is inversely proportional to M1. Thus the WIMP-nucleon
cross section grows in the regions where the LSP is higgsino-like and M1 is small or
where the LSP is bino-like and the gaugino mass is large. If we compare Fig. 4.2
(right) which shows the distribution of gaugino masses along the V-shaped band,
with Fig. 4.4 (right) and 4.7 (right), we realise that the region with a smaller cross
section is the one at the bottom of the V-shaped band where gaugino masses are big
and the LSP is very higgsino-like. The region where the LSP is more bino-like has
smaller gaugino masses and the cross section is larger. Fermi constraints however
become more stringent in the case with more higgsino content due to larger annihi-
lation cross section. The competition between LUX and Fermi constraints produces
the allowed parameter space where the Planck value of the DM content is saturated
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for TR = 2 GeV.

Finally, in Fig. 4.11 there is a change of behaviour of the thermal averaged cross
section for masses around 130 GeV. The reason is the following: this region is (as
can be shown in the plot) higgsino-like, but the masses are closer to MW and ⟨σv⟩
is no longer described by (4.16) but by something like (with x = µ/mW ):

⟨σeffv⟩ ∼
9g4

16πm2
W

x2

(4x2 − 1)2
. (4.21)

In Fig. 4.12, we show the spectra of SUSY particles for the allowed regions of Fig. 4.6
(blue points below the LUX line). We find that sleptons, staus, higgses, all other
scalar masses and gluinos are rather heavy since they are between about 2 and 7 TeV.
The lightest and second to lightest neutralino and the lightest chargino are around
280-340 GeV while all other neutralinos and charginos are heavy. The allowed region
for TR = 2 GeV is shown on the left side of the vertical line with the label TR = 2

GeV where the points situated exactly on the line satisfy all the constraints including
the current DM content as measured by Planck. Similarly, the allowed region for
TR ≥ 5 GeV is shown on the left side of the vertical line with the label TR ≥ 5 GeV
even if there are no points in this region which saturate the current DM content.
Notice that the spectrum is essentially independent of the reheating temperature
TR and the hierarchy between the different sparticles is robust.

4.4.2 Astrophysical Uncertainties

The direct detection cross section can involve various uncertainties, e.g. strange
quark content of proton, form factor, local DM density and LSP contribution to
the total amount of observed DM abundance. The local density can be 0.1-0.7
GeV/cm3 [336]. There could also be astrophysical uncertainties in the indirect de-
tection results beyond what has been considered so far. Recently, it is mentioned
in [337, 338] that if the thermal neutralinos do not produce the entire amount of cold
DM, the direct and indirect detection cross sections should be reduced by R and
R2 respectively with R ≡ Ωh2/0.12. Possible bounds arising from Fermi are now
almost negligible since they are suppressed by R2. Once the suppression factor R
is taken into account, Fermi, Planck and other indirect detection experiments have
lower impacts. Concerning the effect on LUX and other direct detection bounds,
the cross section is now reduced by R which is equivalent to multiplying the effec-
tive couplings in eq. (4.19) and eq. (4.20) by

√
R. This clearly introduces a new

parameter in the discussion performed in the previous section.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Comparison between detection constraints from Planck, Fermi and
LUX for µ > 0 (left) and µ < 0 (right). We have set feff = 0.2. We show mDM up
to 900 GeV.
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(a) (b)

Figure 4.12: The mass spectra of superpartners for allowed points shown in Fig. 4.6
for different values of TR.

If we assume such a reduction in the cases where ΩNT
DMh

2 ≤ 0.12, more parameter
space could be allowed for multi-component DM regions as shown in Fig. 4.13.
The pink region is disallowed by Fermi data. The TR dependence of the region
constrained by Fermi in Fig. 4.13 is due to the fact that the factor R is now a
function of TR

R =
ΩNT

DMh
2

0.12
≃ Tf
TR

ΩT
DMh

2

0.12
. (4.22)

R becomes larger for smaller values of TR (=2 GeV) and the Fermi constraint be-
comes important. The region below the dashed line satisfied present LUX limits. In
particular this implies that the region with lighter neutralinos is now unconstrained
by LUX. This region typically corresponds to more bino component in the LSP as
shown in Fig. 4.4 (right) and 4.7 (right). We have therefore a different situation
compared to before, because now neutralinos with a larger bino component are al-
lowed.

Let us stress, however, that the prediction for the region where ΩNT
DMh

2 saturates
the DM content remains unchanged, i.e. only the case TR = 2 GeV contains points
which are still allowed by all data and saturate the DM content with an LSP mass
around 300 GeV. This new factor R helps us to extract more parameter space for
the multi-component DM scenarios. However, the DM simulations need to establish
the validity of the assumption that proportions of various DM components in the

161



(a) (b)

Figure 4.13: R × σSI
n,p−χ̃0

1
vs mχ̃0

1
for TR = 2, 5 GeV. R is defined in the text. More

parameter space is allowed.

early universe is maintained even after the large scale structures are formed.

4.5 Conclusions

Non-thermal DM scenarios emerge in UV theories like string theory due to the
presence of gravitationally coupled scalars which decay at late times when they are
dominating the energy density of the universe. In such models the reheating temper-
ature due to moduli decays is typically below the freeze-out temperature, TR < Tf

when assuming an MSSM particle as main DM constituent.

In this chapter we have studied the non-thermal version of the CMSSM/mSUGRA
and contrasted it with both particle physics and astrophysical experimental con-
straints. The experimental information available at this moment, including the well
known value of the higgs mass, is enough to rule out the vast majority of the non-
thermal CMSSM parameter space. There is still a small region which is consistent
with all observations and is at the edge of detection by both astrophysics and parti-
cle physics experiments, resulting in a very interesting situation for beyond the SM
physics.

In our determination of the allowed parameter space we have used constraints
from collider experiments (LEP, LHC), cosmic microwave background observations
(Planck) and direct and indirect DM searches (Fermi, XENON100, IceCube, LUX,
CDMS). We have found that the most restrictive constraints come from Fermi and
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LUX which single out a small region of the non-thermal CMSSM parameter space
corresponding to a higgsino-like LSP with a mass around 300 GeV that can saturate
the observed DM abundance for TR ≃ 2 GeV while larger reheating temperatures
require additional contributions to the present DM abundance. These results are
summarised in Fig. 4.10 which shows the comparison between the cases of positive
and negative µ.

This non-thermal scenario leads to a clear pattern of SUSY particles. In partic-
ular, the fact that the LSP is higgsino-like makes the lightest chargino, the lightest
neutralino and next to lightest neutralino to be almost degenerate in mass. This
kind of scenario can be probed at the LHC using monojet plus soft leptons plus
missing energy [339, 340], monojet signal [341] and two Vector Boson Fusion jets
and large missing transverse energy [341]. On the other hand, all the other super-
partners are much heavier and beyond the LHC reach but accessible to potential
future experiments such as a 100 TeV machine.

It is worth mentioning that non-thermal CMSSM scenarios with TeV-scale soft
terms and reheating temperatures around 1 - 10 GeV can emerge in string models
where the visible sector is sequestered from the sources of SUSY breaking [184, 1].
In a subset of the parameter range these string scenarios lead to Msoft ∼ MPϵ

2 ≪
mmod ∼MPϵ

3/2 ≪MGUT ∼MPϵ
1/3 and TR ∼MPϵ

9/4 where ϵ ≃ m3/2/MP ≪ 1. For
ϵ ∼ 10−8, one obtains TeV-scale soft terms, MGUT ∼ 1016 GeV, TR ∼ 1 − 10 GeV
and mmod ∼ 106 GeV for m3/2 ∼ 1010 GeV.

We point out that our analysis is based on the CMSSM/mSUGRA for which all
superpartners are expected to be at similar masses close to the TeV scale. In this
sense we restricted ourselves to scalar masses lighter than 5 TeV which is the range
of validity of the codes we have used to perform our analysis.

There are several additional ways to generalise the analisys:

• Consider non-universal extensions of the CMSSM. Small departures from uni-
versality, even though strongly constrained by flavour changing neutral cur-
rents, allow more flexibility in the parameter space and will slightly enhance
the allowed region.

• Consider sfermions heavier than 5 TeV as in the split SUSY case. This is not
only an interesting phenomenological possibility but is also the other class of
scenarios that were derived in the string compactifications studied in [184, 1].
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• Consider MSSM scenarios with R-parity violation and late decaying moduli
fields. This class of models has not been studied in detail and given the fact
that even with R-parity conservation there seems to be a need for other sources
of DM such as axions or axinos, this should be a possibility worth studying.

• Consider explicit D-brane models which tend to generate models beyond the
standard MSSM (see for instance [193, 277, 201] for such models).

It is encouraging that new planned experiments such as upcoming LUX result
and XENON1T will be enough to rule out the rest of the allowed parameter space,
independent of the upcoming LHC run. Clearly also new LHC runs and future
planned colliders will be crucial for this class of models. Combining astrophysical
and collider measurements is probably the most efficient way to constrain beyond
the SM physics and this article is a clear illustration of this strategy.
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Chapter 5

Dark Radiation in Sequestered
Models

5.1 Introduction

According to the cosmological Standard Model (SM), neutrinos were in thermal
equilibrium at early times and decoupled at temperatures of order 1 MeV. This de-
coupling left behind a cosmic neutrino background which has been emitted much
earlier than the analogous cosmic microwave background (CMB). Due to the weak-
ness of the weak interactions, this cosmic neutrino background cannot be detected
directly, and so goes under the name of ‘dark radiation’. Its contribution to the total
energy density ρtot is parameterised in terms of the effective number of neutrino-like
species Neff as:

ρtot = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
. (5.1)

The SM predictions for Neff are Neff = 3 during Big Bang Nucleosynthesis (BBN)
and Neff = 3.046 at CMB times since neutrinos get slightly reheated when electrons
and positrons annihilate. Any departure from these values would be a clear signal
of physics beyond the SM due to the presence of extra dark radiation controlled by
the parameter ∆Neff ≡ Neff −Neff,SM.

Given that Neff is positively correlated with the present value of the Hubble con-
stant H0, the comparison between indirect estimates of H0 from CMB experiments
and direct astrophysical measurements of H0 could signal the need for extra dark
radiation. The Planck 2013 value of the Hubble constant is H0 = (67.3±1.2) km s−1
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Mpc−1 (68% CL) [30] which is in tension at 2.5σ with the Hubble Space Telescope
(HST) value H0 = (73.8 ± 2.4) km s−1 Mpc−1 (68% CL) [342]. Hence the Planck
2013 estimate of Neff with this HST ‘H0 prior’ is Neff = 3.62+0.50

−0.48 (95% CL) which
is more than 2σ away from the SM value and gives ∆Neff ≤ 1.07 at 2σ.

However the HST Cepheid data have been reanalysed by [343] who found the
different value H0 = (70.6 ± 3.3) km s−1 Mpc−1 (68% CL) which is within 1σ of
the Planck 2015 estimate H0 = (67.3 ± 1.0) km s−1 Mpc−1 (68% CL) [49]. Hence
the Planck 2015 collaboration performed a new estimate of Neff without using any
‘H0 prior’ and obtaining Neff = 3.13 ± 0.32 (68% CL) [30] which is perfectly con-
sistent with the SM value and gives ∆Neff ≤ 0.72 at around 2σ. This result might
seem to imply that extra dark radiation is ruled out but this naive interpretation
can be misleading since larger Neff corresponds to larger H0 and there is still an
unresolved controversy in the direct measurement of H0. In fact the Planck 2015
paper [49] analyses also the case with the prior ∆Neff = 0.39 obtaining the result
H0 = (70.6± 1.0) km s−1 Mpc−1 (68% CL) which is even in better agreement with
the new HST estimate of H0 performed in [343]. Thus we stress that trustable direct
astrophysical measurements of H0 are crucial in order to obtain reliable bounds on
Neff .

Neff is also constrained by measurements of primordial light element abundances.
The Planck 2015 estimate of Neff based on the helium primordial abundance and
combined with the measurements of [344] is Neff = 3.11+0.59

−0.57 (95% CL) giving
∆Neff ≤ 0.65 at 2σ [49]. However measurements of light element abundances are
difficult and often affected by systematic errors, and so also in this case there is still
some controversy in the literature since [345] reported a larger helium abundance
that, in turn, leads to Neff = 3.58 ± 0.50 (99% CL) which is 3σ away from the SM
value and gives ∆Neff ≤ 1.03 at 3σ. Due to all these experimental considerations,
in the rest of this chapter we shall consider ∆Neff ≲ 1 as a reference upper bound
for the presence of extra dark radiation.

Extra neutrino-like species can be produced in any beyond the SM theory which
features hidden sectors with new relativistic degrees of freedom (dof ). In particular,
extra dark radiation is naturally generated when reheating is driven by the decay
of a gauge singlet since in this case there is no a priori good reason to suppress the
branching ratio into hidden sector light particles [326, 327, 346].
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This situation is reproduced in string models of the early universe due to the
presence of gravitationally coupled moduli which get displaced from their minimum
during inflation, start oscillating when the Hubble scale reaches their mass, quickly
come to dominate the energy density of the universe since they redshift as matter
and finally reheat the universe when they decay [286, 287, 288, 289]. In the presence
of many moduli, the crucial one is the lightest since its decay dilutes any previous
relic produced by the decay of heavier moduli.

Two important cosmological constraints have to be taken into account: (i) the
lightest modulus has to decay before BBN in order to preserve the successful BBN
predictions for the light element abundances [188, 189, 285]; (ii) the modulus decay to
gravitinos should be suppressed in order to avoid problems of DM overproduction be-
cause of gravitinos annihilation or modifications of BBN predictions [319, 320]. The
first constraint sets a lower bound on the lightest modulus mass of order mmod ≳ 30

TeV, while a straightforward way to satisfy the second constraint is mmod < 2m3/2.

However in general in string compactifications the moduli develop a mass be-
cause of supersymmetry (SUSY) breaking effects which make the gravitino massive
via the super higgs mechanism and generate also soft-terms of order Msoft. Because
of their common origin, one has therefore mmod ∼ m3/2 ∼ Msoft. The cosmological
lower bound mmod ≳ 30 TeV then pushes the soft-terms well above the TeV-scale
ruining the solution of the hierarchy problem based on low-energy SUSY. An intrigu-
ing way-out is given by Type IIB string compactifications where the visible sector is
constructed via fractional D3-branes at singularities [97, 181, 208, 239]. In this case
the blow-up modulus resolving the singularity is fixed at zero size in a supersymmet-
ric manner, resulting in the absence of local SUSY breaking effects. SUSY is instead
broken by bulk moduli far away from the visible sector singularity. Because of this
geometric separation, the visible sector is said to be ‘sequestered’ since the soft-
terms can be suppressed with respect to the gravitino mass by ϵ = m3/2

MP
≪ 1 [184].

A concrete example of sequestered SUSY breaking is given by the Type IIB
LARGE Volume Scenario (LVS) with D3-branes at singularities, which is charac-
terised by the following hierarchy of masses [184]:

M1/2 ∼ m3/2ϵ≪ mmod ∼ m3/2

√
ϵ≪ m3/2 . (5.2)

This mass spectrum guarantees the absence of moduli decays to gravitinos and allows
for gaugino masses M1/2 around the TeV-scale for mmod ∼ 107 GeV and m3/2 ∼ 1010
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GeV. On the other hand, SUSY scalar masses m0 are more model dependent since
their exact ϵ-dependence is determined by the form of the Kähler metric for visible
sector matter fields and the mechanism responsible for achieving a dS vacuum. The
general analysis of [1] found two possible ϵ-scalings for scalar masses: (i) m0 ∼M1/2

corresponding to a typical MSSM-like scenario and (ii) m0 ∼ mmod ≫M1/2 resulting
in a Split-SUSY-like case with heavy squarks and sleptons.

Following the cosmological evolution of these scenarios, reheating takes place due
to the decay of the volume modulus which produces, together with visible sector par-
ticles, also hidden sector dof which could behave as extra dark radiation [326, 327].
Some hidden sector dof are model dependent whereas others, like bulk closed string
axions, are always present, and so give a non-zero contribution to ∆Neff . In fact, as
shown in [314], the production of axionic dark radiation is unavoidable in any string
model where reheating is driven by the moduli decay and some of the moduli are
stabilised by perturbative effects which keep the corresponding axions light. Note
that light closed string axions can be removed from the low-energy spectrum via
the Stückelberg mechanism only for cycles collapsed to zero size since in the case of
cycles in the geometric regime the combination of axions eaten up by an anomalous
U(1) is mostly given by open string axions [314].

R-parity odd visible sector particles produced from the lightest modulus decay
subsequently decay to the lightest SUSY particle, which is one of the main DM
candidates. Due to their common origin, axionic dark radiation and neutralino DM
have an interesting correlation [314]. In fact, by combining present bounds on Neff

with lower bounds on the reheating temperature Trh as a function of the DM mass
mDM from recent Fermi data, one can set interesting constraints on the (Neff ,mDM)-
plane. [314] found that standard thermal DM is allowed only if ∆Neff → 0 while the
vast majority of the allowed parameter space requires non-thermal scenarios with
higgsino-like DM, in agreement with the results of [2] for the MSSM-like case.

Dark radiation production for the MSSM-like case has been studied in [326, 327]
which showed that the leading decay channels of the volume modulus are to visible
sector higgses via the Giudice-Masiero (GM) term and to ultra-light bulk closed
string axions. The simplest model with two higgs doublets and a shift-symmetric
higgs sector yields 1.53 ≲ ∆Neff ≲ 1.60, where the window has been obtained by
varying the reheating temperature between 500 MeV and 5 GeV, which are typical
values for gravitationally coupled scalars with masses in the rangemmod ≃ (1÷5)·107
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GeV. These values of ∆Neff lead to dark radiation overproduction since they are in
tension with current observational bounds.1 Possible way-outs to reduce ∆Neff in-
volve models with either a larger GM coupling or more than two higgs doublets.

Due to this tension with dark radiation overproduction, different models have
been studied in the literature. [348] showed how sequestered LVS models where the
CY volume is controlled by more than one divisor are ruled out since they predict
huge values of extra dark radiation of order ∆Neff ∼ 104. On the other hand, [349]
focused on non-sequestered LVS models where the visible sector is realised via D7-
branes wrapping the large cycle controlling the CY volume.2 In this way, the decay
rate of the lightest modulus to visible sector gauge bosons becomes comparable to
the decay to bulk axions, and so the prediction for ∆Neff can become smaller. In
fact, the simplest model with a shift-symmetric higgs sector yields ∆Neff ≃ 0.5 [349].
However this case necessarily requires high-scale SUSY since without sequestering
Msoft ∼ m3/2 (up to loop factors), and so from (5.2) we see that the cosmological
bound mmod ∼ m3/2

√
ϵ ≳ 30 TeV implies Msoft ∼ m3/2 ≳ (30TeV)2/3M

1/3
P ∼ 109

GeV. Moreover in this case the visible sector gauge coupling is set by the CY volume
V , α−1

SM ∼ V2/3 ∼ 25, and so it is hard to achieve large values of V without introduc-
ing a severe fine-tuning of some underlying parameters. A possible way-out could
be to consider anisotropic compactifications where the CY volume is controlled by
a large divisor and a small cycle which supports the visible sector [350, 351, 183].

In this chapter we take instead a different point of view and keep focusing on
sequestered models as in Chap. 3 [326, 327], since they are particularly promis-
ing for phenomenological applications: they are compatible with TeV-scale SUSY
and gauge coupling unification without suffering from any cosmological moduli and
gravitino problem, they can be embedded in globally consistent CY compactifica-
tions [208, 239] and allow for successful inflationary models [315, 316, 317] and
neutralino non-thermal DM phenomenology [2]. Following the general analysis of
SUSY breaking and its mediation to the visible sector performed in Chap. 3 [1] for
sequestered Type IIB LVS models with D3-branes at singularities, we focus on the
Split-SUSY case where squarks and sleptons acquire a mass of order the lightest
modulus mass: m0 = cmmod with c ∼ O(1). We compute the exact value of the
coefficient c for different Split-SUSY cases depending on the form of the Kähler met-

1Radiative corrections to the modulus coupling to higgs fields do not give rise to a significant
change in the final prediction for ∆Neff [347].

2Another option involves flavour D7-branes wrapped around the volume divisor and intersecting
the visible sector D3-branes localised at a singularity [349].
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ric for visible sector matter fields and the mechanism responsible for achieving a dS
vacuum. We find that the condition c ≤ 1/2, which allows the new decay channel to
SUSY scalars, can be satisfied only by including string loop corrections to the Kähler
potential [171, 169]. However this relation holds only at the string scale Ms ∼ 1015

GeV whereas the decay of the lightest modulus takes place at an energy of order
its mass mmod ∼ 107 GeV. Hence we consider the Renormalisation Group (RG)
running of the SUSY scalar masses from Ms to mmod and then compare their value
to mmod whose running is in practice negligible since moduli have only gravitational
couplings. Given that also the RG running of SUSY scalar masses is a negligible
effect in Split-SUSY-like models, we find that radiative corrections do not alter the
parameter space region where the lightest modulus decay to SUSY scalars opens up.

We then compute the new predictions for ∆Neff which gets considerably reduced
with respect to the MSSM-like case considered in [326, 327] since the branching ratio
to visible sector particles increases due to the new decay to squarks and sleptons and
the new contribution to the decay to higgses from their mass term. We find that
the simplest model with a shift-symmetric higgs sector can suppress ∆Neff to values
as small as 0.14 in perfect agreement with current experimental bounds. Depending
on the exact value of m0 all values in the range 0.14 ≲ ∆Neff ≲ 1.6 are allowed.
Interestingly ∆Neff can be within the allowed experimental window also in the case
of vanishing GM coupling Z = 0 since the main suppression of ∆Neff comes from
the lightest modulus decay to squarks and sleptons. Given that a correct realisation
of radiative Electro-Weak Symmetry Breaking (EWSB) in Split-SUSY-like models
requires in general a large µ-term of order m0, the lightest modulus branching ratio
into visible sector dof is also slightly increased due to its decay to higgsinos. How-
ever this new decay channel yields just a negligible correction to the final prediction
for dark radiation production.

In Sec. 5.2 we analyze the predictions for axionic dark radiation. We present our
conclusions in Sec. 5.3. This chapter is based on [4].

5.2 Dark Radiation in Sequestered Models

As already argued in Sec. 5.1, the production of dark radiation is a generic feature
of string models where some of the moduli are fixed by perturbative effects [314]. In
fact, if perturbative corrections fix the real part of the modulus T = τ+iψ, the axion
ψ remains exactly massless at this level of approximation due to its shift symmetry,
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leading to mτ ≫ mψ. Hence very light relativistic axions can be produced by the
decay of τ , giving rise to ∆Neff ̸= 0.

5.2.1 Dark Radiation from Moduli Decays

Following the cosmological evolution of the Universe, during inflation the canonically
normalised modulus Φ gets a displacement from its late-time minimum of order MP.
After the end of inflation the value of the Hubble parameter H decreases. When
H ∼ mΦ, Φ starts oscillating around its minimum and stores energy. During this
stage Φ redshifts as matter, so that it quickly comes to dominate the energy density
of the Universe. Afterwards reheating is caused by the decay of Φ which takes place
when:

3H2 ≃ 4

3
Γ2
Φ , (5.3)

where ΓΦ is the total decay rate into visible and hidden dof :

ΓΦ = Γvis + Γhid = (cvis + cvis) Γ0 , with Γ0 ≡ 1

48π

m3
Φ

M2
P

. (5.4)

The corresponding reheating temperature is given by:

Trh =

(
30 ρvis

π2g∗(Trh)

) 1
4

, (5.5)

where ρvis = (cvis/ctot) 3H
2M2

P with ctot = cvis + chid. Using (5.3) and (5.4) Trh can
be rewritten as:

Trh ≃ 1

π

(
5cvisctot

288g∗(Trh)

)1/4

mΦ

√
mΦ

MP

. (5.6)

This reheating temperature has to be larger than about 1 MeV in order to preserve
the successful BBN predictions.

In the presence of a non-zero branching ratio for Φ decays into hidden sector dof,
i.e. for chid ̸= 0, extra axionic dark radiation gets produced, leading to [326, 327]:

∆Neff =
43

7

chid
cvis

(
g∗(Tdec)

g∗(Trh)

)1/3

, (5.7)

where Tdec ≃ 1 MeV is the temperature of the Universe at neutrino decoupling with
g∗(Tdec) = 10.75. The factor in brackets is due to the fact that axions are very weakly
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coupled (they are in practice only gravitationally coupled), and so they never reach
thermal equilibrium. Therefore, given that the comoving entropy density g∗(T )T 3a3

is conserved, the thermal bath gets slightly reheated when some species drop out
of thermal equilibrium. Note that the observational reference bound ∆Neff ≲ 1

implies:

cvis ≳ 3 chid for Trh ≳ 0.2GeV , (5.8)

where we have used the fact that g∗(Trh) = 75.75 in the window 0.2GeV ≲ Trh ≲
0.7GeV while g∗(Trh) = 86.25 for Trh ≳ 0.7GeV.

5.2.2 Light Relativistic Axions in LVS Models

Let us summarise the main reasons why axionic dark radiation production is a
typical feature of sequestered LVS models:

• Reheating is driven by the last modulus to decay which is τb since the moduli
mass spectrum takes the form (the axion ψSM is eaten up by an anomalous
U(1)):

mτb ∼ m3/2

√
ϵ≪ mτs ∼ mψs ∼ mS ∼ mU ∼ m3/2 ≪ mτSM ∼

m3/2√
ϵ

∼Ms ,

(5.9)

where ϵ = m3/2/MP ∼ W0/V ≪ 1. Given that gaugino masses scale as M1/2 ∼
m3/2ϵ, TeV-scale SUSY fixes mτb around 107 GeV which in turn, using (5.6),
gives Trh around 1 GeV.3 Note that mτb ≪ m3/2, and so sequestering addresses
the gravitino problem since the decay of the volume modulus into gravitinos
is kinematically forbidden.

• Given that axions enjoy shift symmetries which are broken only by non-
perturbative effects, the axionic partner ψb of the volume mode τb is sta-
bilised by non-perturbative contributions to the superpotential of the form
W ⊃ Ab e

−abTb ∼ e−V2/3 ≪ 1. These tiny effects give rise to a vanishingly
small mass m2

ψb
∼ e−V2/3 ∼ 0. Hence these bulk closed string axions are in

practice massless and can be produced from the decay of τb [326, 327].

• Some closed string axions can be removed from the 4D spectrum via the Stück-
elberg mechanism in the process of anomaly cancellation. However, the com-

3As in standard Split-SUSY models, we require TeV-scale gauginos for DM and gauge coupling
unification. In MSSM-like models we focus on low-energy SUSY to address the hierarchy problem.
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bination of bulk axions eaten up by an anomalous U(1) is mostly given by an
open string mode, and so ψb survives in the low-energy theory (the situation
is opposite for axions at local singularities) [314].

5.2.3 Volume Modulus Decay Channels

The aim of this section is to compute the ratio chid/cvis which is needed to predict
the effective number of extra neutrino-like species ∆Neff using (5.7).

Decays into Hidden Sector Fields

Some hidden sector dof are model dependent whereas others are generic features of
LVS models. As pointed out above, bulk closed string axions are always a source of
dark radiation. On top of them, there are local closed string axions which however
tend to be eaten up by anomalous U(1)s (this is always the case for each del Pezzo
singularity) and local open string axions (one of them could be the QCD axion [208,
239]) whose production from τb decay is negligibly small [326]. Moreover the decay of
τb into bulk closed string U(1)s is also a subdominant effect [326]. Model dependent
decay channels involve light dof living on hidden D7-branes wrapping either Db or
Ds and hidden D3-branes at singularities which are geometrically separated from
the one where the visible sector is localised. However, as explained in [326], the only
decay channels which are not volume or loop suppressed are to light gauge bosons
on the large cycle and to higgses living on sequestered D3s different from the visible
sector. Given that the presence of these states is non-generic and can be avoided
by suitable hidden sector model building, we shall focus here just on τb decays into
bulk closed string axions.

The corresponding decay rate takes the form [326, 327]:

ΓΦ→aa = Γ0 ⇒ chid = 1 , (5.10)

where Φ and a are, respectively, the canonically normalised real and imaginary
parts of the big modulus Tb. This result can be derived from the tree-level Kähler
potential:

K ≃ −3 ln

(
Tb + T b

2

)
, (5.11)
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which gives a kinetic lagrangian of the form:

Lkin =
3

4τ 2b
(∂µτb∂

µτb + ∂µψb∂
µψb) . (5.12)

After canonical normalisation of τb and ψb:

Φ

MP

=

√
3

2
ln τb ,

a

MP

=

√
3

2

ψb
⟨τb⟩

, (5.13)

and expanding Φ as Φ = Φ0 + Φ̂, the kinetic lagrangian (5.12) can be rewritten as:

Lkin =
1

2
∂µΦ̂∂

µΦ̂ +
1

2
∂µa∂

µa−
√

2

3

Φ̂

MP

∂µa∂
µa , (5.14)

which encodes the coupling of the volume modulus to its axionic partner. Integrating
by parts and using the equation of motion 2Φ̂ = −m2

ΦΦ̂ we obtain the coupling:

LΦaa =
1√
6

m2
Φ

MP

Φ̂aa , (5.15)

which yields the decay rate (5.10).

Decays into Visible Sector Fields

The dominant volume modulus decays into visible sector dof are to higgses via
the GM coupling Z. Additional leading order decay channels can be to SUSY
scalars and higgsinos depending respectively on m0 and µ̂. On the other hand, as
explained in [326, 327], τb decays into visible gauge bosons are loop suppressed, i.e.
cΦ→AA ∼ α2

SM ≪ 1, whereas decays into matter fermions and gauginos are chirality
suppressed, i.e. cΦ→ff ∼ (mf/mΦ)

2 ≪ 1. The main goal of this section is to compute
the cubic interaction lagrangian which gives rise to the decay of the volume modulus
into higgses, higgsinos, squarks and sleptons.

Decay into Scalar Fields

Let us first focus on the volume modulus decays into visible scalar fields which are
induced by the τb-dependence of both kinetic and mass terms in the total effective
lagrangian L = Lkin − V . Lkin is determined by the leading order Kähler potential:

K ≃ −3 ln

(
Tb + T b

2

)
+

2

Tb + T b

[
fα(U, S)C

α
Cα + (ZHuHd + h.c.)

]
, (5.16)
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where we included only the leading term of the Kähler matter metric K̃α in (3.5).
Writing each complex scalar field as Cα = ReCα+iImCα

√
2

, the canonically normalised
real scalar fields look like:

h1 = λuReH
+
u h2 = λdReH

−
d h3 = λdReH

0
d h4 = λuReH

0
u

h5 = λdImH
0
d h6 = λuImH

0
u h7 = λuImH

+
u h8 = λdImH

−
d

σα = λαReCα χα = λαImCα where λi ≡

√
fi(U, S)

⟨τb⟩
. (5.17)

Keeping only terms which are at most cubic in the fields and neglecting axion-scalar-
scalar interactions, we can schematically write the kinetic lagrangian as Lkin =

Lkin,quad + Lkin,cubic where:

Lkin,quad =
1

2
∂µΦ̂∂

µΦ̂ +
1

2
∂µa∂

µa+
1

2
∂µhi∂

µhi +
1

2
∂µσα∂

µσα +
1

2
∂µχα∂

µχα ,

while the cubic part can be further decomposed as Lkin,cubic = LΦaa+LΦhh+LΦCC ,
with LΦaa given in (5.15) and:

LΦhh = − 1

MP

√
6

[
∂µΦ̂hi∂

µhi + Φ̂∂µhi∂
µhi + Z∂µΦ̂

4∑
i=1

(−1)i+1 (h2i∂
µh2i−1 + h2i−1∂

µh2i)

]
,

and:

LΦCC = − 1

MP

√
6

(
σα∂µσ

α∂µΦ̂ + χα∂µχ
α∂µΦ̂ + Φ̂∂µσα∂

µσα + Φ̂∂µχα∂
µχα
)
.

In addition to the LVS part, the scalar potential contains also the following terms:

V ⊃ 1

2
m2

0 (σασ
α + χαχ

α) +
1

2

(
µ̂2 +m2

0

)
hih

i +Bµ̂
4∑
i=1

(−1)i+1h2i−1h2i . (5.18)

Since the soft-terms depend on the volume modulus, we can expand them as:

µ̂2 ∝ τ−αb ⇒ µ̂2(Φ̂) = µ̂2

(
1− α

√
2

3

Φ̂

MP

)
,

m2
0 ∝ τ−βb ⇒ m2

0(Φ̂) = m2
0

(
1− β

√
2

3

Φ̂

MP

)
,

Bµ̂ ∝ τ−γb ⇒ Bµ̂(Φ̂) = Bµ̂

(
1− γ

√
2

3

Φ̂

MP

)
, (5.19)
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where α, β and γ depend on the specific scenario. This expansion leads to new cubic
interactions coming from the terms of the scalar potential in (5.18):

V ⊃ − 1

MP

√
6

[
γm2

0 Φ̂ (σασ
α + χαχ

α) +
(
αµ̂2 + βm2

0

)
Φ̂hih

i+

+ 2γBµ̂ Φ̂
4∑
i=1

(−1)i+1h2i−1h2i

]
.

Including the relevant cubic interactions coming from the kinetic lagrangian and
integrating by parts, we obtain a total cubic lagrangian of the form:

Lcubic =
1

MP

√
6

[
Φ̂hi2h

i + Φ̂ (σα2σ
α + χα2χ

α) +
(
αµ̂2 + βm2

0

)
Φ̂hih

i +

+ γm2
0 Φ̂ (σασ

α + χαχ
α) +

(
Z2Φ̂ + 2γBµ̂ Φ̂

) 4∑
i=1

(−1)i+1h2i−1h2i

]
.

The leading order expressions of the equations of motion are:

2σα = −m2
0σα 2h2i−1 = −

(
µ̂2 +m2

0

)
h2i−1 + (−1)iBµ̂ h2i i = 1, . . . , 4

2χα = −m2
0χα 2h2j = −

(
µ̂2 +m2

0

)
h2j + (−1)jBµ̂ h2j−1 j = 1, . . . , 4 ,

which have to be supplemented with:

2Φ̂ = −m2
ΦΦ̂ 2a = −m2

aa ≃ 0 . (5.20)

Plugging these equations of motion into Lcubic, the final result becomes:

Lcubic = − 1

MP

√
6

[(
µ̂2 (1− α) +m2

0 (1− β)
)
Φ̂hih

i + (1− γ)m2
0 Φ̂ (σασα + χαχα)

+
(
2Bµ̂ (1− γ) + Z m2

Φ

)
Φ̂

4∑
i=1

(−1)i+1h2i−1h2i

]
, (5.21)

from which it is easy to find the corresponding decay rates using the fact that:

L1 = λ
m2

MP

Φϕϕ ⇒ ΓΦ→ϕϕ = λ1Γ0 , λ1 = 6λ2
(
m

mΦ

)4
√
1− 4

(
mϕ

mΦ

)2

,

(5.22)

L2 = λ
m2

MP

Φϕ1ϕ2 ⇒ ΓΦ→ϕ1ϕ2 = λ2Γ0 , λ2 =
λ1
2

for mϕ1 = mϕ2 = mϕ .

(5.23)
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Decay into Higgsinos

The decay of the volume modulus into higgsinos is determined by expanding the
higgsino kinetic and mass terms around the VEV of τb and then working with canon-
ically normalised fields. The relevant terms in the low-energy lagrangian are:

L ⊃ iH̃†
i σ

µ∂µH̃
i

(
1−

√
2

3

Φ̂

MP

)
− µ̂

2

(
H̃+
u H̃

−
d − H̃0

uH̃
0
d

)(
1− α√

6

Φ̂

MP

)
+ h.c. .

(5.24)

After imposing the equations of motion, we get the following cubic interaction la-
grangian:

Lcubic ⊃
α

2
√
6

µ̂

MP

Φ̂
(
H̃+
u H̃

−
d − H̃0

uH̃
0
d

)
+ h.c. . (5.25)

The corresponding decay rates take the form:

ΓΦ→H̃+
u H̃

−
d
= ΓΦ→H̃0

uH̃
0
d
=
α2

4

(
µ̂

mΦ

)2
(
1− 4

(
µ̂

mΦ

)2
)3/2

Γ0 . (5.26)

5.2.4 Dark Radiation Predictions

It is clear from (5.21) and (5.26) that the volume modulus branching ratio into
visible sector dof depends on the size of the soft-terms. Hence the final prediction
for dark radiation production has to be studied separately for each different visible
sector construction.

MSSM-like Case

Firstly we consider MSSM-like models arising from the ultra-local dS2 case where
all soft-terms are suppressed relative to the volume modulus mass:

m2
0 ≃M2

1/2 ≃ Bµ̂ ≃ µ̂2 ∼ M2
P

V4
≪ m2

Φ ∼ M2
P

V3
. (5.27)

Let us briefly review the results for dark radiation production which for this case
have already been studied in [326, 327].

Given that all soft-terms are volume-suppressed with respect to mΦ, only the last
term in (5.21) gives a non-negligible contribution to the volume modulus branching
ratio into visible sector fields. Thus the leading Φ decay channel is to MSSM higgses
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via the GM coupling. Using (5.23), we find:

ΓΦ→hh = cvisΓ0 with cvis = 4× Z2

2

√
1− 4

(µ̂2 +m2
0)

m2
Φ

≃ 2Z2 . (5.28)

Plugging this value of cvis together with chid = 1 (see (5.10)) into the general ex-
pression (5.7) for extra dark radiation, we obtain the window:

1.53

Z2
≲ ∆Neff ≲ 1.60

Z2
, (5.29)

for 0.2GeV ≲ Trh ≲ 10GeV. Clearly this gives values of ∆Neff larger than unity for
Z = 1. Using the bound (5.8), we see that we need cvis ≳ 3 in order to be consistent
with present observational data, implying Z ≳

√
3/2 ≃ 1.22.

Split-SUSY-like Case

Let us now analyse dark radiation predictions for Split-SUSY-like scenarios arising
in the dS1 (both local and ultra-local) and local dS2 cases. In these scenarios the
hierarchy among soft-terms is (considering µ and Bµ-terms generated by K):

M2
1/2 ≃ µ̂2 ∼ M2

P

V4
≪ m2

0 ≃ Bµ̂ ≃ m2
Φ ∼ M2

P

V3
. (5.30)

The main difference with the MSSM-like case is that now Bµ̂ and m2
0 scale as m2

Φ. In
order to understand if volume modulus decays into SUSY scalars are kinematically
allowed, i.e. R ≡ m2

0/m
2
Φ ≤ 1/4, we need therefore to compute the exact value

of mΦ and compare it with the results derived in Sec. 3.2.3. It turns out that mΦ

depends on the dS mechanism as follows:

dS1 : m
2
Φ =

9

8asτs

m2
3/2τ

3/2
s

V
dS2 : m

2
Φ =

27

4asτs

m2
3/2τ

3/2
s

V
. (5.31)

Let us analyse each case separately:

• Local and ultra-local dS1 cases : Even if the F-term contribution to scalar
masses in eq. (3.56) for the local case can be made small by appropriately
tuning the coefficient cs, the D-term contribution to m2

0 given by (3.59) cannot
be tuned to small values once the requirement of a dS vacuum is imposed.
Hence for both local and ultra-local cases, m2

0 cannot be made smaller than
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the value of eq. (3.59) giving:

m2
0 ≥ 2m2

Φ ⇒ R ≥ 2 , (5.32)

which is clearly in contradiction with the condition R ≤ 1/4 that has to be
satisfied to open up the decay channel of Φ into SUSY scalars. Therefore the
decay of Φ into squarks and sleptons is kinematically forbidden.

Decay to Higgses

Similarly to the MSSM-like case, Φ can still decay to higgs bosons via the GM
term in (5.21). Given that mΦ < m0, when Φ decays at energies of order mΦ,
EWSB has already taken place at the scale m0.4 The gauge eigenstates hi
i = 1, ..., 8 given in (5.17) then get rotated into 8 mass eigenstates. 4 higgs
dof which we denote by A0, H0, H± remain heavy and acquire a mass of order
m2
Hd

≃ m2
0, and so the decay of Φ into these fields is kinematically forbidden.

The remaining 4 dof are the 3 would-be Goldstone bosons G0 and G± which
become the longitudinal components of Z0 and W±, and the ordinary SM
higgs field h0. The Φ decay rate into light higgs dof can be obtained from
the last term in (5.21) by writing the gauge eigenstates in terms of the mass
eigenstates as [51]:

h1 = ReG+ sin β +ReH+ cos β , h2 = −ReG+ cos β +ReH+ sin β ,

h3 =
√
2vd + h0 sin β +H0 cos β , h4 =

√
2vu + h0 cos β −H0 sin β ,

h5 = −G0 cos β + A0 sin β , h6 = G0 sin β + A0 cos β ,

h7 = ImG+ sin β + ImH+ cos β , h8 = ImG+ cos β − ImH+ sin β ,

(5.33)

where vu ≡ ⟨H0
u⟩, vd ≡ ⟨H0

d⟩ and tan β ≡ vu/vd. Since in Split-SUSY-like
models tan β ∼ O(1) in order to reproduce the correct higgs mass [352, 353],
the interaction lagrangian simplifies to:

Lcubic ⊃
Z

2
√
6

m2
Φ

MP

Φ̂
[(
h0
)2

+
(
G0
)2

+
(
ReG+

)2
+
(
ImG+

)2 −
−
(
A0
)2 − (H0

)2 − (ReH+
)2 − (ImH+

)2]
. (5.34)

Neglecting interaction terms involving heavy higgses, (5.34) gives a decay rate
4As we shall show later on, RG flow effects do not modify these considerations qualitatively.
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of the form:

Γ
(GM)
Φ→hh,GG = d1Γ0 with d1 ≃ 4× Z2

4
≃ Z2 . (5.35)

Decay to Higgsinos

Φ can also decay to higgsinos via the interaction lagrangian (5.25). We need
only to check if this decay is kinematically allowed. In Split-SUSY-like models
EWSB takes place at the scale m0 where the following relations hold:

µ̂2 =
m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
− m2

Z

2
, sin (2β) =

2|Bµ̂|
m2
Hd

+m2
Hu

+ 2µ̂2
. (5.36)

In the case of universal boundary conditions for the higgs masses, i.e. mHu =

mHd
= m0 at the GUT scale, the µ̂-term has necessarily to be of order the

scalar masses m0 since for tan β ∼ O (1) the first EWSB condition in (5.36)
simplifies to:

µ̂2 ≃
m2
Hd

tan2 β − 1
≃ m2

0 , (5.37)

given that m2
Hu

runs down to values smaller than m2
Hd

due to RG flow effects.
On the other hand, µ̂ could be much smaller than m0 for non-universal bound-
ary conditions, i.e. if mHu ̸= mHd

at the GUT scale. In fact, in Split-SUSY
models m2

Hu
is positive around the scale m0, and so the first EWSB condition

in (5.36) for µ̂≪ m0 becomes:

m2
Hd

≃ m2
Hu

tan2 β . (5.38)

This condition can be satisfied at the scale m0 for a proper choice of boundary
conditions at the GUT scale with mHu > mHd

. Let us point out that, if µ̂ is
determined by Kähler potential contributions (see Tab. 3.1), µ̂ is suppressed
with respect to m0 but, if µ̂ is generated by non-perturbative effects in W ,
µ̂ can be of order m0. In this case, the parametrisation of the µ̂-term (5.19)
reproduces the correct τb-dependence of the non-perturbatively induced µ̂-term
if α = 3n+ 1.5 If we parameterise the ratio between µ̂ and mΦ as c̃ ≡ µ̂/mΦ,
the decay of Φ into higgsinos is kinematically allowed only for c̃ ≤ 1/2. Using

5If the instanton number is n = 1, the µ̂-term can easily be of order mΦ since cµ,W is a flux-
dependent tunable coefficient. For example, setting ξ = as = 1 and gs = 0.1, the requirement
µ̂ ≃ mΦ implies that cµ,W ≃ W0/(4V1/6). For W0 ≃ 10 and V ≃ 107 we get cµ,W ≃ 0.2.
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(5.26), this decay rate takes the form (where we set n = 1 ⇔ α = 4):

ΓΦ→H̃H̃ = d2Γ0 with d2 ≃ 8c̃2
(
1− 4c̃2

)3/2
. (5.39)

Dark radiation prediction

Plugging cvis = d1 + d2 into (5.7) with chid = 1 we get the following general
result:

3.07

Z2 + d2
≲ ∆Neff ≲ 3.20

Z2 + d2
. (5.40)

Considering c̃ = 1/
√
10 which maximises d2 ≃ 0.37 we find that for 0.2GeV ≲

Trh ≲ 10GeV this prediction yields values of ∆Neff larger than unity for Z = 1.
Consistency with present observational data, i.e. ∆Neff ≲ 1, requires Z ≳ 1.68.

• Local dS2 case: The situation seems more promising in this case since in the
local limit the D-term contribution to m2

0 is volume-suppressed with respect
to m2

Φ since it scales as m2
0|D ∼ O (V−4) [1]. In this case it is therefore

possible to tune the coefficient cs to obtain R ≤ 1/4. By comparing the
second term in (5.31) with (3.56), this implies that cs has to be tuned so
that

(
cs − 1

3

)
≤ 9

10 asτs
, where asτs ∼ 80 in order to get TeV-scale gaugino

masses [1]. However the condition m2
0 > 0 to avoid tachyonic masses translates

into
(
cs − 1

3

)
> 0, giving rise to a very small window:

0 <

(
cs −

1

3

)
≤ 9

10 asτs
≃ 0.01 . (5.41)

Given that cs should be extremely fine-tuned, it seems very unlikely to open
this decay channel. However the total Kähler potential, on top of pure α′ cor-
rections, can also receive perturbative string loop corrections of the form [171]:

Kloop =
gsCloop

V2/3

(
1 + kloop

√
τs
τb

)
, (5.42)

where Cloop and kloop are two O(1) coefficients which depend on the complex
structure moduli. Due to the extended no-scale structure [169], gs effects do
not modify the leading order scalar potential, and so the mass of the volume
modulus is still given by (5.31). However, in order to reproduce a correct
ultra-local limit (3.50), we need to change the parametrisation of the Kähler
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matter metric from (3.51) to:

K̃ =
1

V2/3

(
1− cs

ξ̂

V
− cloop

gsCloop

V2/3

)
, (5.43)

where we introduced a new coefficient cloop and we neglected kloop-dependent
corrections in (5.42) since they are subdominant in the large volume limit
τs ≪ τb. The new ultra-local limit is now given by cs = cloop = 1/3.

These new cloop-dependent corrections in (5.43) affect the final result for scalar
masses and can therefore open up the Φ decay channel to SUSY scalars. In
fact, the result (3.56) for scalar masses in the local case gets modified to:

m2
0

∣∣
F
=

15

2

m2
3/2τ

3/2
s

V

[(
cs −

1

3

)
− 8gsCloop

15

(
cloop −

1

3

)
V1/3

ξ̂

]
. (5.44)

The two terms in square brackets are of the same order for gs ≃ 0.1 and
V ∼ 107 which is needed to get TeV-scale gauginos, and so they can compete
to get R ≤ 1

4
. As an illustrative example, if we choose cs = 1/3 and natural

values of the other parameters: Cloop = as = 1, ξ = 2 and cloop = 0 (non-
tachyonic scalars require cloop < 1/3 for cs = 1/3), the ratio between squared
masses becomes:

R =
8

81
g3/2s V1/3 . (5.45)

As can be seen from Fig. 5.1, there is now a wide region of the parameter space
where the Φ decay to SUSY scalars is allowed.

We finally point out that gs corrections to the Kähler matter metric affect the
result for scalar masses only in the local case since in the ultra-local limit m0

is generated by effects (D-terms for dS1 and F-terms of S and U -moduli for
dS2) which are sensitive only to the leading order expression of K̃α.

Let us now analyse the final prediction for dark radiation production for Split-
SUSY-like models where the decay channel of Φ into SUSY scalars is kinematically
allowed.

Dark Radiation Results

We start by parameterising the scalar mass m0 in terms of the volume mode mass
mΦ as m0 = cmΦ and the µ̂-term as µ = c̃ mΦ so that the corresponding kinematic
constraints for Φ decays into SUSY scalars and higgsinos become c ≤ 1

2
and c̃ ≤ 1

2
.
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Figure 5.1: The green region in the (gs, V) parameter space gives R ≤ 1/4, and so
the decay channel of Φ into SUSY scalars is kinematically allowed.

Parameterising also the Bµ̂-term as in (3.86) and using the fact that for Split-
SUSY-like models we have in (5.19) β = γ = 9/2 and α = 4,6 the leading order
cubic lagrangian is given by the sum of (5.21) and (5.25):

Lcubic ≃
7c2

2
√
6

m2
Φ

MP

Φ̂

[
σασα + χαχα +

(
1 +

6c̃2

7c2

)
hih

i+

+2Z

(
cB,K − 1

7c2

) 4∑
i=1

(−1)i+1h2i−1h2i

]
+

+ c̃

√
2

3

mΦ

MP

Φ̂
(
H̃+
u H̃

−
d − H̃0

uH̃
0
d

)
+ h.c.. (5.46)

Contrary to the MSSM-like case, now the decay of the volume modulus into squarks
and sleptons through mass terms is kinematically allowed and also the decay rate
into higgses is enhanced due to mass terms and Bµ̂ couplings. Using (5.22), the
total decay rate into squarks and sleptons reads:

ΓΦ→σσ,χχ = c0Γ0 with c0 = N × 49 c4

4

√
1− 4c2 , (5.47)

where N = 90 is the number of real scalar dof of the MSSM,7 except for the higgses.
6We focus on the case where the µ̂-term is generated by non-perturbative effects in W since

when µ̂ is generated by K, it turns out to be very suppressed with respect to m0, i.e. c̃ ≪ 1, and
so it gives rise to a negligible contribution to the branching ratio of Φ.

712 dof for each left handed squark doublet (3 families), 6 dof for each right handed squark
(6 squarks), 4 dof for each left handed slepton doublet (3 families), 2 dof for each right handed
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On the other hand, the decay rate into higgs bosons receives contributions from
both mass and GM terms. Using (5.22) we obtain:

Γ
(mass)
Φ→hh = c1Γ0 with c1 = 8× 49 c4

4

(
1 +

2c̃2

7c2

)2√
1− 4(c2 + c̃2) , (5.48)

where 8 is the number of MSSM real higgs dof while using (5.23) we get:

Γ
(GM)
Φ→hh = c2Γ0 with c2 = 4× Z2

2

(
7cB,Kc

2 − 1
)2√

1− 4 c2 . (5.49)

The decay rate into higgsinos is given again by (5.39) and thus the total Φ decay
rate into visible sector fields becomes:

Γvis = ΓΦ→σσ,χχ + Γ
(mass)
Φ→hh + Γ

(GM)
Φ→hh + ΓΦ→H̃H̃ = cvisΓ0 , (5.50)

where cvis = c0 + c1 + c2 + d2 . (5.51)

The final prediction for dark radiation production is then given by (5.7) with chid = 1,
g∗(Tdec) = 10.75 and g∗(Trh) = 86.25 for Trh ≳ 0.7GeV.8 The results are plotted in
Fig. 5.2 where we have set cB,K = 1, Z = 1 and we are considering a conservative
case in which the decay into higgsinos is negligible, i.e. c̃ = 0. For c > 0.2, the vast
majority of the parameter space yields ∆Neff ≲ 1, in perfect agreement with present
experimental bounds with a minimum value ∆Neff |min ≃ 0.14 at c ≃ 1/

√
5.

It is interesting to notice that, contrary to the MSSM-like case, dark radiation
overprodution can now be avoided if the GM term is absent or it is very suppressed.
In fact even for Z = 0, ∆Neff ≲ 1 if c ≳ 0.23, as a consequence of the fact that in this
region of the parameter space almost the whole suppression of ∆Neff is due to the
decay into scalar fields. The predictions for ∆Neff for different values of the GM cou-
pling Z = 0 (blue line), Z = 1 (red line) and Z = 2 (green line) are shown in Fig. 5.3.

For c̃ ̸= 0 ∆Neff is even further suppressed than what is shown in Fig. 5.2
and 5.3 but the correction is at the percent level in the interesting region where
the decay into scalars dominates Γvis. For example including the effect of decays
into higgsinos and setting c̃ ≃ 1/

√
10 to maximise the decay rate into higgsinos, the

slepton (3 families).
8The results do not change significantly for g∗(Trh) = 75.75 which is valid for 0.2GeV ≲ Trh ≲

0.7GeV.
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correction δ∆Neff |min to ∆Neff |min turns out to be:

δ∆Neff |min

∆Neff |min

≃ 0.03 . (5.52)

Figure 5.2: Dark radiation production in Split-SUSY-like models for Trh ≳ 0.7GeV
and c̃ = 0.

Note that ∆Neff can be further suppressed by choosing cB,K > 1, namely by
enhancing the contribution due to the Bµ̂-term. However the decay scale mΦ is just
slightly larger than the EWSB scale m0 where the 4 dof of the two higgs doublets get
rotated into the heavy higgs mass eigenstates A0, H0, H±, the SM higgs h0 and the
longitudinal components G0, G± of the vector bosons Z,W±. Hence the Bµ̂-term
gets reabsorbed into the mass terms for A0, H0, H± and h0, G0, G±, and so varying
cB,K does not enhance Γvis which receives its main contributions from the decay
into squarks, sleptons and heavy higgses through the mass term (assuming that is
kinematically allowed) and into all higgs dof via the GM term. These considerations
will become more clear in the next section where we will take into account corrections
due to RG flow effects. A possible way-out could be the separation between the
EWSB scale and the volume modulus mass, which translates into requiring c ≪ 1.
However this choice would imply m2

0 ≪ m2
Φ ∼ Bµ̂ which would be a quite unnatural

situation from a top-down perspective since mΦ and m0 have the same volume
scaling.
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Figure 5.3: Predictions for ∆Neff in Split-SUSY-like models with c̃ = 0 for Z = 0
(blue line), Z = 1 (red line) and Z = 2 (green line).

RG Flow Effects

The results obtained above have to be corrected due to RG flow effects from the
string scale to the actual scale mΦ where the modulus decay takes place [347]. How-
ever these corrections do not alter qualitatively our results since Φ interacts only
gravitationally and the running of squarks and sleptons in Split-SUSY models is
almost absent [353]. For sake of completeness, let us study these RG flow effects in
detail.

The soft-terms m0, µ̂ and Bµ̂ entering in the interaction lagrangian (5.21) are
just boundary conditions for the RG flow and should instead be evaluated at the
scale mΦ where the light modulus Φ decays. The RG equations for the first and
second generation of squarks and sleptons are given by:

m2
α = m2

0 +
3∑

a=1

cα,aKa , (5.53)

where cα,a is the weak hypercharge squared for each SUSY scalar and the RG run-
ning contributions Ka are proportional to gaugino masses [51]. Given that in Split-
SUSY-like models gaugino masses are hierarchically lighter than scalar masses, the
RG running of first and second generation squarks and sleptons is a negligible effect.
Thus we can consider their mass at the scale mΦ as still given by m0 to a high level
of accuracy.

The situation for the third generation is slightly trickier since there are additional
contributions from large Yukawa couplings. Using mSUGRA boundary conditions,
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the relevant RG equations become (ignoring contributions proportional toM1/2) [51]:

16π2 d

dt
m2
Q3

= Xt +Xb , 16π2 d

dt
m2
u3

= 2Xt , 16π2 d

dt
m2
d3

= 2Xb , (5.54)

16π2 d

dt
m2
L3

= Xτ , 16π2 d

dt
m2
e3
= 2Xτ , (5.55)

which are coupled to those involving higgs masses:

16π2 d

dt
m2
Hu

= 3Xt +Xb , 16π2 d

dt
m2
Hd

= 3Xb +Xτ . (5.56)

The quantities Xi look like:

Xt = 2|yt|2
(
m2
Hu

+m2
Q3

+m2
u3

)
+ 2|at|2 , (5.57)

Xb = 2|yb|2
(
m2
Hu

+m2
Q3

+m2
d3

)
+ 2|ab|2 , (5.58)

Xτ = 2|yτ |2
(
m2
Hu

+m2
L3

+m2
e3

)
+ 2|aτ |2 , (5.59)

where yi are the Yukawa couplings and ai are the only sizable entries of the A-
term couplings. Given that for sequestered scenarios the A-terms scale as M1/2 [1],
the contribution 2|ai|2 can be neglected with respect to the first term in each Xi.
Moreover Xt, Xb and Xτ are all positive, and so the RG equations (5.54) and (5.55)
drive the scalar masses to smaller values at lower energies. This has a two-fold
implication:

• When m0 > mΦ, RG running effects could lower m0 to values smaller than
mΦ/2 so that the decay channel to SUSY scalars opens up at the scale mΦ.
However this never happens since RG effects are negligible.

• When m0 ≤ mΦ/2, no one of the scalars becomes heavier than the volume
modulus if R < 1

4
at the boundary energy scale. On the other hand, RG

running effects could still lower the scalar masses too much, suppressing the
Φ decay rate to SUSY scalars. However this does not happen since RG effects
are negligible.

In Split-SUSY-like models a correct radiative realisation of EWSB requires a low
value of tan β [353], which implies yb, yτ ≪ yt. In turn, Xb and Xτ give rise to a
tiny effect, and so the running of m2

Hd
, m2

d3
, m2

L3
and m2

e3
turns out to be negligible.
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In the end, the only relevant RG equations become:

16π2 d

dt
m2
Q3

≃ Xt , 16π2 d

dt
m2
u3

≃ 2Xt , 16π2 d

dt
m2
Hu

= 3Xt . (5.60)

We performed a numerical computation of the RG running, using as boundary
conditions m0 = Bµ̂1/2 = µ̂ = 107 GeV and Ma = 103GeV at the GUT scale
MGUT = 2 × 1016 GeV and tan β ≃ 1.4. We also used that the stop left-right
mixing is given by χt = At − µ̂ cot β ≃ −m0/tan β, being At ≃ M1/2 ≪ m0. We
used SusyHD [354] to run the Yukawa couplings from the top mass scale up to m0

combined with SARAH [355] to run them from m0 up to the GUT scale.9 These
runnings have been computed at order one loop. Using the values of the Yukawa
couplings obtained at the GUT scale, we have been able to compute the running of
scalars, µ̂, Bµ̂ and the GM coupling Z down to the scale of the decay mΦ. Fig. 5.4
shows the running of scalar masses while Fig. 5.5 showns the running of m2

Hu
and

m2
Hd

. The running of µ̂ and Bµ̂ is almost negligible. We clarify that our purpose
here is not to study EWSB in full detail but to understand which kind of behaviour
we should expect for the running of soft-terms from the GUT scale to mΦ using
boundary conditions which are consistent with EWSB.

Figure 5.4: Running of the scalar masses.

Due to RG running effects each of the scalars has a different mass at the scale
mΦ, and so the exact prediction for ∆Neff becomes:

∆Neff =
43

7
R
(
g∗(Tdecay)

g∗(Treheat)

)1/3

, (5.61)

9We are grateful to J. P. Vega for useful discussions about this point.
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Figure 5.5: Running of the higgs masses.

where:

R =
Γ0

ΓΦ→σσ,χχ + ΓΦ→hh + ΓΦ→H̃H̃

. (5.62)

The decay rate into squarks and sleptons is given by:

ΓΦ→σσ,χχ =
49

4

∑
α

κα

(
mα

mΦ

)4
√
1− 4

(
mα

mΦ

)2

Γ0 , (5.63)

where the index α runs over all squarks and sleptonsmα =
(
mQ̃L

,mũR ,md̃R
,mL̃,mẽR

)
while κα is the number of dof for each scalar.10

On the other hand the decay rate into higgs dof is given by (we focus on the
case where µ̂ ≪ m0 since, as we have seen in the previous section, a large µ̂-term
gives rise just to a negligible correction to the final dark radiation prediction):

ΓΦ→hh =

 ∑
I∈{A0,H0,H±}

(
49

4

(
mI

mΦ

)4

+ Z2

)√
1− 4

(
mI

mΦ

)2

+ Z2

Γ0 . (5.64)

All quantities in (5.63) and (5.64) have to be computed at the decay scale mΦ. As
already explained in the previous section, Bµ̂ does not explicitly contribute to (5.64)
since it gets reabsorbed into the higgs masses due to EWSB. The decay of Φ into
heavy higgses A0, H0, H± through the mass term can instead contribute to ΓHiggs,
provided that mA0,H0,H±/mΦ ≤ 1/2. The mass of the heavy higgses in the limit

10It turns out that κα = (36, 18, 18, 12, 6).
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mZ ,mW± ≪ mA0 can be written as [51]:

m2
H0 ≃ m2

H± ≃ m2
A0 ≃ 2|µ̂|2 +m2

Hu
+m2

Hd
. (5.65)

The decay rate into higgsinos instead reads:

ΓΦ→H̃H̃ = 8

(
µ̂

mΦ

)2
(
1− 4

(
µ̂

mΦ

)2
)3/2

Γ0 , (5.66)

where we added the two contributions in (5.26) and we used α = 4. In (5.66)
µ̂/mΦ ̸= c̃, since µ̂ is computed at the decay scale mΦ.

We computed ∆Neff for different values of mΦ, keeping the boundary conditions
fixed at m0 = Bµ̂1/2 = µ̂ = 107 GeV and Ma = 103 GeV. The qualitative behaviour
of ∆Neff is the same as in the previous section where RG flow effects have been
ignored. The results are shown in Tab. 6.1 which shows that the dominant contri-
bution to ∆Neff is given by the decay into squarks and sleptons while the suppression
coming from decay into higgsinos is always subdominant. If mΦ ≃ 2.2 × 107GeV,
corresponding to m0/mΦ ≃ 1/

√
5, ∆Neff ≃ 0.15 which is only slightly larger then

∆Neff |min = 0.14 computed in the previous section without taking into account RG
flow effects. This is due to the fact that the running of the SUSY scalars is negligible
as can be clearly seen from Fig. 5.4.

mΦ Γscalars/Γ0 ΓHiggs/Γ0 ΓHiggsinos/Γ0 ∆Neff

2.2× 107 GeV 18.53 1.12 (∗) 0.08 0.15

3× 107GeV 9.19 1.12 (∗) 0.36 0.29

4× 107GeV 3.36 2.52 0.33 0.49

5× 107GeV 1.45 2.45 0.25 0.74

Table 5.1: Values of ∆Neff corresponding to different masses mΦ of Φ for fixed
boundary condition m0 = 107 GeV at the GUT scale. We also indicate the relative
importance of the various decay channels. In the case denoted by a (∗) the only
non-vanishing contribution to ΓHiggs is due to the decay into light higgs dof through
the GM coupling, since the decay into heavy higgs dof turns out to be kinematically
forbidden as a consequence of the RG flow: 2mA0,H0,H± > mΦ at the decay scale
mΦ. The decay into higgsinos is always a subleading effect.
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5.3 Conclusions

Extra dark radiation is a very promising window for new physics beyond the Stan-
dard Model. Its presence is a generic feature of string models where some of
the moduli are stabilised by perturbative effects since the corresponding axionic
partners remain very light and can behave as extra neutrino-like species [314].
These light hidden sector dof are produced by the decay of the lightest modu-
lus [286, 287, 288, 289, 289] leading to ∆Neff ̸= 0 [326, 327, 346].

In this chapter we performed a general analysis of axionic dark radiation produc-
tion in sequestered LVS models where the visible sector is localised on D3-branes
at singularities [97, 181, 208, 239]. These models yield a very interesting post-
inflationary cosmological history where reheating is driven by the decay of the light-
est modulus Φ with a mass of order mΦ ∼ 107 GeV which leads to a reheating
temperature of order Trh ∼ 1 GeV. The gravitino mass is much larger than mΦ

(m3/2 ∼ 1010 GeV), so avoiding any gravitino problem [319, 320]. Low-energy SUSY
can still be achieved due to sequestering effects that keep the supersymmetric part-
ners light. Gauginos are around the TeV-scale whereas squarks and sleptons can
either be as light as the gauginos or as heavy as the lightest modulus Φ depending
on the moduli dependence of the matter Kähler metric and the mechanism respon-
sible for achieving a dS vacuum [1].

The final prediction for dark radiation production due to the decay of the volume
modulus into ultra-light bulk closed string axions depends on the details of the visible
sector construction:

1. MSSM-like case:
MSSM-like models arise from the ultra-local dS2 case where the leading visible
sector decay channel of Φ is to higgses via the GM coupling Z. The simplest
model with two higgs doublets and Z = 1 gives 1.53 ≲ ∆Neff ≲ 1.60 for
500GeV ≲ Trh ≲ 5GeV [326, 327]. Values of ∆Neff smaller than unity require
Z ≳ 1.22 or more than two higgs doublets.

2. Split-SUSY-like case with m0 > mΦ/2:
Local and ultra-local dS1 cases give rise to Split-SUSY-like scenarios where
scalar masses m0 receive a contribution from D-terms which cannot be made
smaller than mΦ/2. Thus the decay of Φ into squarks and sleptons is kine-
matically forbidden. The leading visible sector decay channel of Φ is again
to higgses via the GM coupling Z. However, given that EWSB takes place
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at the scale m0 which in these cases is larger than the decay scale mΦ, the
volume mode Φ can decay only to the 4 light higgs dof. For a shift-symmetric
higgs sector with Z = 1, the final prediction for dark radiation production
is 3.07 ≲ ∆Neff ≲ 3.20. Consistency with present experimental data, i.e.
∆Neff ≲ 1, requires Z ≳ 1.68. In most of the parameter space of Split-SUSY-
like models a correct radiative EWSB can be achieved only if the µ̂-term is of
order the scalar masses. Hence, depending on the exact value of µ̂, the decay
of Φ into higgsinos could not be mass suppressed. However it gives rise just
to a negligible contribution to ∆Neff .

3. Split-SUSY-like case with m0 ≤ mΦ/2:
Given that in the local dS2 case the D-term contribution to scalar masses is
negligible, the decay of Φ into SUSY scalars can become kinematically allowed.
In fact, thanks to the inclusion of string loop corrections to the Kähler po-
tential [171, 169], a large region of the underlying parameter space features
m0 ≤ mΦ/2. Hence the final prediction for ∆Neff gets considerably reduced
with respect to the previous two cases since, in addition to decays into higgses
via the GM term, leading order contributions to the branching ratio to visible
sector particles involve decays into squarks and sleptons, decays into heavy
higgses induced by mass terms and possible decays into higgsinos depending
on the exact value of the µ̂-term. Depending on the exact value of m0, the
simplest model with Z = 1 gives 0.14 ≲ ∆Neff ≲ 1.6. Hence these models fea-
ture values of ∆Neff in perfect agreement with present observational bounds.
Note that dark radiation overproduction can be avoided even for Z = 0 due
to the new decay channels to squarks and sleptons.

We finally studied corrections to these results due to RG flow effects from the
string scale Ms ∼ 1015 GeV to the volume mode mass mΦ ∼ 107 GeV where the
actual decay takes place. However these corrections do not modify our predictions
since the RG running of SUSY scalar masses is a negligible effect in Split-SUSY-like
models and radiative corrections to mΦ are tiny since moduli are only gravitational
coupled.
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Chapter 6

Volume Inflation

6.1 Introduction

Two crucial quantities of any string compactification are the Hubble scale during
inflation H and the gravitino mass m3/2. The first sets the inflationary energy
scale Minf ∼

√
HMP which in turn is related to the tensor-to-scalar ratio r as

Minf ∼ MGUT

(
r
0.1

)1/4, whereas the second gives the order of magnitude of the soft
supersymmetry breaking terms Msoft ∼ m3/2. Given that neither primordial tensor
modes nor supersymmetric particles have been detected yet, experimental data yield
just upper and lower bounds on these two quantities:

r ≲ 0.1 ⇒ H ≲ M2
GUT

MP

∼ 1014 GeV (6.1)

Msoft ≳ 1TeV ⇒ m3/2 ≳ 1TeV . (6.2)

However H and m3/2 are not two independent quantities since in any consistent
string inflationary model the inflaton dynamics has not to destabilise the volume
mode. This is guaranteed if the inflationary energy is smaller than the energy barrier
to decompactification, i.e. H2M2

P ≲ Vbarrier, and the height of the barrier is gener-
ically set by the gravitino mass. In KKLT models Vbarrier ∼ m2

3/2M
2
P which leads

to H ≲ m3/2 [356] while in the LARGE Volume Scenario (LVS) Vbarrier ∼ m3
3/2MP

giving H ≲ m3/2

√
m3/2

MP
[357].

These theoretical bounds are not in contradiction with the experimental bounds
(6.1) and (6.2), in particular for the cases of high-scale supersymmetry and small
field inflationary models with unobservable tensor modes. However the phenomeno-
logically interesting cases of low-energy supersymmetry with Msoft ≳ O(1) TeV and
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large field inflationary models with r ≳ O(0.01) would imply a high value of H
together with a small value of m3/2, in clear tension with the theoretical bounds
from volume destabilisation problems.

Several ideas have been proposed in the literature to overcome this tension be-
tween TeV-scale supersymmetry and large field inflation. Here we briefly summarise
them:

1. The relation H2M2
P ≲ Vbarrier would be independent of m3/2 in models where

the energy barrier and the gravitino mass are two uncorrelated quantities.
Racetrack superpotentials [356], models of natural inflation as in [358] or mod-
els of D-terms inflation from field-dependent Fayet-Iliopoulos [359] can provide
viable models where Vbarrier is decoupled from m3/2.

2. The KKLT bound H ≲ m3/2 and the LVS bound H ≲ m3/2

√
m3/2

MP
apply

just to the inflationary era, and so in these expression m3/2 is the gravitino
mass during inflation which might be different from the present value of the
gravitino mass. This is possible if m3/2 = eK/2|W | ≃ W0

V MP evolves just
after the end of inflation. Two viable realisations include inflationary models
where the inflaton coincides with the volume mode V so that V relaxes from
small to large values during inflation [357] or where the inflaton is a complex
structure modulus or a matter field so that W relaxes from large to small
values during inflation [360]. Another option is to consider models with two
different volume stabilisation mechanisms during and after inflation. If V
couples to the field X whose F-term drives inflation, the volume’s vacuum
expectation value (VEV) during inflation would be determined by the F-term
potential of X which however vanishes after the end of inflation when V is fixed
by a more standard KKLT or LVS mechanism. This kind of models with a
Kähler potential coupling between V and X have been studied in [361] whereas
superpotential interactions between V and X have been analysed in [362].

3. Another possible way-out to reconcile low-energy supersymmetry with high
scale inflation is to consider models where the visible sector is sequestered from
the sources of supersymmetry breaking so that the soft terms are much smaller
than the gravitino mass [184, 1]. This can be the case for compactifications
where the visible sector is localised on fractional D3-branes at singularities
which can lead to Msoft ∼ m3/2

m3/2

MP
.

Let us point out that all the solutions listed above require a high degree of tuning
except for the sequestered case which might be however not enough to completely
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remove all the tension between observable tensor modes and TeV-scale supersym-
metry. Moreover, it is technically rather complicated to provide consistent string
models where these solutions are explicitly realised. Therefore they are at the mo-
ment at the level of string-inspired toy-models without a concrete string embedding
where one can check if there is enough tuning freedom to achieve the amount of fine
tuning needed to reproduce all the desired phenomenological details.

In this chapter we shall provide a first step towards an explicit stringy embed-
ding of the case where the volume mode plays the rôle of the inflaton evolving from
small to large values after the end of inflation [357]. We will describe a possible
microscopic origin of the potential terms used in [357] to create an inflection point
at small volumes around which slow-roll inflation can occur. Moreover, we shall also
perform a deeper analysis of the relation between the position of the inflection point
and the minimum with the tuning of the flux superpotential.

Before presenting the details of our analysis, let us stress some key-features of
the model under study:

• In order to have an evolving gravitino mass, we focus on models where the in-
flaton is the volume mode V . Given that we work in an effective supergravity
theory where the Kähler potential has a logarithmic dependence on V, each
term in the inflationary potential will be a negative exponential of the canon-
ically normalised volume mode Φ ∼ lnV , i.e. V ⊃ e−kΦ. This form of the
potential is reminiscent of Starobinsky-like models which have a rather large
inflationary scale since they are at the boarder between large and small field
models [363]. However Starobinsky-like potentials feature also an inflaton-
independent constant which can never appear in cases where the inflaton is
the volume mode V since V couples to all sources of energy because of the
Weyl rescaling needed to obtain the correct effective action.1

• The best way to achieve volume inflation is therefore to consider a potential
which has enough tuning freedom to create an inflection point and then re-
alise inflation in the vicinity of the inflection point. The price to pay is that
this inflationary scenario turns out to be rather fine tuned and it is neces-
sarily a small field model with a sub-Planckian field range during inflation
∆Φ ∼ 0.4MP, unobservable tensor modes of order r ∼ 10−9 and low Hubble
scale H ∼ 1010 GeV. Hence this approach cannot solve completely the tension

1Starobinsky-like models with large r and a constant inflaton-independent constant can instead
be obtained in models where the inflaton is a Kähler modulus different from the volume mode [364].
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between large tensor modes and TeV-scale supersymmetry. Still it provides
a big step forward especially if combined with a sequestered visible sector so
that low-energy supersymmetry can be safely reconciled with a high gravitino
mass.

• In LVS models where H > m3/2

√
m3/2

MP
and the inflaton is the volume mode,

the destabilisation problem of [356] becomes an overshooting problem since
the inflaton has an initial energy which is larger than the barrier to decom-
pactification. The solution to this problem via radiation production after the
end of inflation has already been discussed in [357], and so we shall not dwell
on this issue.

• In the models under study, the Hubble scale during inflation is set by the
gravitino mass during inflation minf

3/2 which is much larger than the gravitino
mass today mtoday

3/2 due to the volume evolution. Hence the Hubble scale H
can be much larger than mtoday

3/2 since we have:

H ∼ minf
3/2

√
minf

3/2

W0MP

≫ mtoday
3/2

√
mtoday

3/2

W0MP

. (6.3)

We shall analyse both the single modulus and the two moduli case focusing on three
different visible sector realisations which lead to:

1. High-scale SUSY models : in this case the requirement of low-energy super-
symmetry is relaxed and the value of the gravitino mass both during and after
inflation is huge. The volume mode evolves from values of order 100 during in-
flation to values of order 200 after the end of inflation. The flux superpotential
has to be tuned to values of order W0 ∼ 10−5 in order to reproduce the correct
amplitude of the density perturbations. Thus the order of magnitude of the
gravitino mass during and after inflation is the same, minf

3/2 ∼ mtoday
3/2 ∼ 1011

GeV corresponding to H ∼ 1010 GeV. Due to the small value of V , in this case
the validity of the effective field theory approach is not fully under control.

2. Non-sequestered models : in these models during inflation the volume is of order
V ∼ 105 and W0 ∼ 1 giving a gravitino mass of order minf

3/2 ∼ 1014 GeV which
leads again to H ∼ 1010 GeV. After the end of inflation the volume evolves to
V ∼ 1015 as required to get TeV-scale supersymmetry since the present value
of the gravitino mass becomes mtoday

3/2 ∼ 10 TeV [158].
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3. Sequestered models : in these models inflection point volume inflation takes
place again for values of order V ∼ 105 and W0 ∼ 1 which yield minf

3/2 ∼ 1014

GeV and H ∼ 1010 GeV. After the end of inflation the volume evolves instead
to V ∼ 107 corresponding to mtoday

3/2 ∼ 1011 GeV, as required to get low-
energy supersymmetry gaugino masses in sequestered scenarios where M1/2 ∼
m3/2

m3/2

MP
∼ 10 TeV [184, 1].

This chapter is organised as follows. Sec. 6.2 is a brief review of the basic
concepts of inflection point inflation which will be used in the rest of the chapter
while in Sec. 6.3 we describe a possible microscopic origin of all the terms in the
inflationary potential which are needed to develop an inflection point at small values
of V together with a dS minimum at larger values of the volume mode. In Sec. 6.4 we
study the single modulus case presenting first an analytical qualitative description of
the inflationary dynamics and then performing an exact numerical analysis. The two
moduli case typical of LVS models is instead discussed in Sec. 6.5 before presenting
our conclusions in Sec. 6.6. This chapter is based on [3].

6.2 Inflection Point Inflation

In this section we briefly review the generic features of inflection point inflation,
closely following [365] and [366]. We summarise the main points and discuss the
tuning involved in these models.

The basic assumption is that inflation takes place around an inflection point
along some arbitrary direction in field space. The scalar potential around such an
inflection point can always be expanded as:

V = Vip

(
1 + λ1(ϕ− ϕip) +

λ3
3!
(ϕ− ϕip)

3 +
λ4
4!
(ϕ− ϕip)

4 + . . .

)
, (6.4)

where ϕip denotes the position of the inflection point. Given that we shall focus on
cases where the field excursion during the inflationary period is small, i.e. (ϕ−ϕip) ≪
1, the quartic term can be safely neglected. We therefore find that it suffices to
analyse the following potential:

V = Vip

(
1 + λ1(ϕ− ϕip) +

λ3
3!
(ϕ− ϕip)

3

)
. (6.5)
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The inflationary observables are determined by the slow-roll parameters:

ϵ =
1

2

(
V ′

V

)2

=
1

2

(
λ1 +

1

2
λ3(ϕ− ϕip)

2

)2

≃ 1

2
λ21 , (6.6)

η =
V ′′

V
= λ3(ϕ− ϕip) , (6.7)

which have to be evaluated at horizon exit where ϕ = ϕ∗. Note that in (6.6) and
(6.7) we approximated V ≃ Vip in the denominator, which is a good approximation
for small field models where (ϕ − ϕip) ≪ 1. Notice that if λ3 ≳ 1 this small field
condition has to be satisfied in order to obtain η ≪ 1. If instead λ3 is tuned such that
λ3 ≪ 1, the condition η ≪ 1 could be satisfied also for large field values but then
the approximation (6.5) would be under control only by tuning all the coefficients of
the expansion. We shall therefore focus only on the case (ϕ−ϕip) ≪ 1. The number
of e-foldings is given by:

Ne(ϕ∗) =

∫ ϕ

ϕend

dϕ√
2ϵ

=

√
2

λ1λ3
arctan

[√
λ3
2λ1

(ϕ− ϕip)

]∣∣∣∣∣
ϕ∗

ϕend

. (6.8)

In order to have enough e-foldings we need λ1 ≪ 1, which is also needed to get
ϵ ≪ 1, and (ϕ − ϕip) ≳

√
λ1 so that the arctangent does not give a small number.

Thus the slow-roll parameter η turns out to be larger than ϵ since:

ϵ ∼ λ21 ≪ η ∼ (ϕ− ϕip) ≳
√
λ1 ≪ 1 . (6.9)

Therefore the spectral index in these models is essentially given by η:

ns − 1 = 2η(ϕ∗)− 6ϵ(ϕ∗) ≃ 2η(ϕ∗) , (6.10)

By using (6.8), it is possible to rewrite the spectral index as a function of the number
of e-foldings as:

ns − 1 ≃ − 4

Ne

+
2

3
λ1λ3Ne . (6.11)

Since 1− 4
Ne

≃ 0.93 for Ne ≃ 60, it is evident that for a very small λ1 (or equivalently
a very flat inflection point) the spectral index asymptotes to 0.93. We have therefore
to use (6.11) to determine the value of λ1 that gives a value of ns in agreement with
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recent Planck data, i.e. ns = 0.9655± 0.0062 (68% CL) [67]. We find:

ns = 0.965 ⇒ λ1 = 7.92 · 10−4 λ−1
3 for Ne = 60 . (6.12)

In these small field models, the tensor-to-scalar ratio r turns out to be unobservable
since:

r = 16ϵ ≃ 8λ21 ≃ 5.01 · 10−6λ−2
3 for Ne = 60. (6.13)

Successful inflation not only gives rise to the correct spectral tilt and tensor fraction
but does so at the right energy scale. The normalisation of scalar density perturba-
tions in these models can be written as:

∆2 =
1

24π2

V

ϵ

∣∣∣∣
ϕ∗

≃ 1

12π2

Vip
λ21

≃ 2.4 · 10−9 . (6.14)

Once the parameter λ3 is fixed, (6.12) gives the value of λ1 which produces the
correct spectral index, ns = 0.965, and (6.14) fixes the value of Vip which reproduces
the observed amplitude of the density perturbations. In turn, (6.13) yields the
prediction for the tensor-to-scalar ratio r.

6.3 Microscopic Origin of the Inflationary Potential

In this section we will try to describe a possible microscopic origin of volume modulus
inflation. The tree-level stabilization of the dilaton S and of complex structure
moduli proceeds as described in Sec. 2.2.1. In particular we will consider two explicit
setups:

a) Single modulus case
In this setup we have a single Kähler modulus Tb = τb+icb where cb is an axion
field and τb controls the overall volume: V = τ

3/2
b . The canonical normalisation

of the inflaton field τb can be inferred from its kinetic terms:

Lkin =
3

4τ 2b
∂µτb∂µτb , (6.15)

so that the canonically normalised volume field can be written as:

Φ =

√
3

2
ln τb ≃

√
2

3
lnV . (6.16)

In this setup the visible sector can be realised in two different ways:
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i) The visible sector lives on a stack of D7-branes wrapping the 4-cycle
associated to τb. Given that the visible sector gauge coupling is set by τb
as α−1

vis = τb, the late-time value of the volume has to be of order 100 in
order to reproduce a correct phenomenological value of α−1

vis ≃ 25. This
model is characterised by high scale SUSY.

ii) The visible sector is localised on D3-branes at singularities obtained by
collapsing a blow-up mode to zero size due to D-term stabilisation [184, 1].
In this case the visible sector coupling is set by the dilaton, and so the
volume can take much larger values of order V ≃ 107 which lead to
TeV-scale supersymmetry via sequestering effects. In the presence of
desequestering perturbative or non-perturbative effects [185], low-energy
SUSY requires larger values of V of order V ∼ 1014.

b) Two moduli case
In this setup we start with two Kähler moduli: Tb = τb + icb and Ts = τs + ics

with τb ≫ τs. The CY volume takes the Swiss-Cheese form:

V = τ
3/2
b − τ 3/2s . (6.17)

The modulus which plays the role of the inflaton will still be τb, and so its
canonical normalisation is given by (6.16). However, in this setup the visible
sector can be realised in three different ways:

i) The visible sector lives on a stack of D7-branes wrapping τb (for an explicit
CY construction see [183]). As explained above, in this case V has to be
of order 100 for phenomenological reasons and the SUSY scale is very
high.

ii) The visible sector lives on a stack of D7-branes wrapping τs (see again [183]
for an explicit model). Given that the visible sector gauge coupling is now
independent on τb since α−1

vis = τs, the volume can take large values. A
particularly interesting value is V ≃ 1014 which leads to TeV-scale soft
terms, as in standard non-sequestered LVS models.

iii) The visible sector is localised on D3-branes at singularities (see [208, 239]
for explicit global dS models) obtained by collapsing a blow-up mode to
zero size due to D-term stabilisation. Since the gauge kinetic function of
D3-branes is given by S, V can take large values. Due to sequestering
effects, in this case TeV-scale superpartners require V ≃ 107.
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α′-corrections

If W0 ̸= 0, the no-scale structure is broken by α′3-corrections which show up in the
Kähler potential as in eq. (2.101). The contribution of the α′ correction to the
scalar potential looks like:

V = eK
(
KTbT bDTbWDT b

W − 3|W |2
)
⊃ V0 e

−
√

27
2
Φ ≡ Vα′ , (6.18)

where we have defined:

V0 =
gs
8π

3ξ̂|W0|2

4
. (6.19)

V0 is a free parameter which can be tuned to get inflection point inflation with the
right COBE normalisation and a large volume minimum.

Non-perturbative Effects

Given that non-perturbative effects are exponentially suppressed, they tend to give
rise to negligible contributions to the scalar potential. However, in the two moduli
case, Ts-dependent non-perturbative effects could lead to potentially large contribu-
tions, as in the LVS setup, described in Sec. 2.2.1. With the right normalization the
LVS potential takes the form:

V =
gs
8π

(
8a2sA

2
s

√
τse

−2asτs

3V
− 4W0asAsτse

−asτs

V2
+

3ξ̂W 2
0

4V3

)
. (6.20)

Integrating out τs from the scalar potential in eq. (6.20) we get an effective potential
which depends only on the volume V :

V =
V0
V3

[
1− 2

ξ̂a
3/2
s

(lnV)3/2
]
. (6.21)

The first term in (6.21) is just the α′ correction (6.18) whereas the second term leads
to a new non-perturbative contribution to the scalar potential:

Vnp = −κnpV0Φ3/2 e−
√

27
2
Φ with κnp =

2

ξ

(
3

8π2

)3/4

(gsN)3/2 . (6.22)

Note that κnp is another parameter that can be tuned to get inflection point inflation
with the right COBE normalisation and number of e-foldings.
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Higher Derivative α′-corrections

Additional contributions to the scalar potential from higher derivative corrections to
the 10D action have been computed in [165]. These corrections have the same higher
dimensional origin as the α′3-term (6.18). Both stem from the α′3R4 contribution
to the in 10D Type IIB action. The effect of these four derivative corrections is
to modify the equations of motion of the auxiliary fields (F-terms) thereby giving
rise to corrections to the kinetic terms, new quartic derivative couplings and more
importantly new contributions to the scalar potential. These F 4 corrections depend
on the CY topology and take the generic form:

VF 4 = − λ̂|W0|4

V4
Πit

i , (6.23)

where Πi are topological integers defined as:

Πi =

∫
X

c2 ∧ D̂i , (6.24)

with c2 the second Chern class of the CYX and D̂i is a basis of harmonic (1, 1)-forms
allowing for the usual expansion of the Kähler form J as:

J =

h1,1∑
i=1

tiD̂i , (6.25)

with ti being 2-cycle volumes. The parameter λ̂ is expected to be of order ξ̂/χ(X),
with χ(X) being the CY Euler number. For model building purposes, we will take
it to be a real negative constant.

Depending on the details of the compactification space, these new terms can take
different forms, yielding contributions to the scalar potential that scale differently
with the overall volume. In the simplest single Kähler modulus case where tb =
√
τb ≃ V1/3, the correction (6.23) takes the form:

VF 4 =
κF 4 V0
V11/3

= κF 4 V0 e
− 11√

6
Φ
, (6.26)

where we defined:

κF 4 ≡ −λ̂Πb
|W0|4

V0
. (6.27)
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The form of these corrections for the two moduli case can be derived by focusing on
the CP4

[1,1,1,6,9] case where the volume can be written in terms of the 2-cycle volumes
t1 and t5 as [367]:

V =
1

6
(3t21t5 + 18t1t

2
5 + 26t35) , (6.28)

implying that the 4-cycles are given by:

τ1 =
∂V
∂t1

= t5(t1 + 3t5) and τ5 =
∂V
∂t5

=
1

2
(t1 + 6t5)

2 . (6.29)

One can define τ4 as the linear combination:

τ4 = τ5 − 6τ1 =
t21
2

⇒ t1 =
√
2τ4 . (6.30)

Plugging t1 back into the expression for τ5, solving the equation for t5 and requiring
that t5 > 0 when τ5 ≫ τ4 we get:

t5 =
1

3
√
2
(
√
τ5 −

√
τ4) , (6.31)

from which it can be inferred that the volume has the form:

V =
1

9
√
2

(
τ
3/2
b − τ 3/2s

)
, (6.32)

where we identified τ5 ≡ τb and τ4 ≡ τs. Thus the α′-correction of (6.23) becomes:

VF 4 ≃ V0

(
κF 4

(b)

V11/3
+
κF 4

(s)

√
τs

V4

)
, (6.33)

where:

κF 4
(b)

= −λ̂Π5
|W0|4

61/3V0
and κF 4

(s)
= −λ̂

√
2

(
Π4 −

Π5

6

)
|W0|4

V0
. (6.34)

String Loop Corrections

As we have observed in Sec. 2.2.1 the Kähler potential receives string loop corrections
as in eq. (2.105) and eq. (2.106). The final contribution to the scalar potential can
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be written as:

Vgs =
h(1,1)∑
i=1

|W0|2

V2

(
g2s
(
CKK
i

)2 ∂2K0

∂τ 2i
− 2δKW

(gs)

)
. (6.35)

Noting that ∂2K0/∂τ
2
b = 3/(4τ 2b ), it turns out that in both scenarios the leading

order string loop correction looks like:

Vgs =
κgs V0
V10/3

= κgs V0 e
− 10√

6
Φ
, (6.36)

where κgs is a real tunable number.

Anti D3-branes

Anti D3-branes yield a positive contribution to the scalar potential which in general
provides a viable mechanism to realise a dS minimum. More precisely, the introduc-
tion of anti D3-branes in the compactification produces a term in the scalar potential
of the form [149]:

VD3 =
κD3 V0
V2

= κD3 V0 e
−
√
6Φ , (6.37)

where κD3 is a positive real number which can be tuned to realise inflection point
inflation.

Charged Hidden Matter Fields

The possible presence on the big cycle of a hidden sector with matter fields ϕ

charged under an anomalous U(1) leads to the generation of moduli-dependent
Fayet-Iliopoulos (FI) terms. The corresponding D-term potential reads:

VD =
1

2Re(fb)
(
qϕ|ϕ|2 − ξb

)2
, (6.38)

where fb = Tb and qϕ is the U(1)-charge of ϕ while the FI-term is given by:

ξb = − qb
4π

∂K0

∂Tb
=

3qb
8π

1

V2/3
, (6.39)
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where qb the U(1)-charge of Tb. Since supersymmetry breaking effects generate a
mass for ϕ of order the gravitino mass, the total scalar potential becomes:

V = VD + cm2
3/2|ϕ|2 +O

(
V−3

)
, (6.40)

where c is an O(1) coefficient which can be positive or negative depending on hidden
sector model building details. Integrating out ϕ leads to a new contribution which
has been used to obtain dS vacua and takes the form [208, 239]:

Vhid =
κhid V0
V8/3

= κhid V0 e
− 8√

6
Φ
, (6.41)

where κhid =
3cqbW

2
0

16πqϕV0
is a tunable coefficient.2

Total Scalar Potential

The total scalar potential that we shall consider can in general be written as:

Vtot = Vα′ + Vnp + VF 4 + Vgs + VD3 + Vhid , (6.42)

where Vα′ is the universal α′ correction (6.18), Vnp is the non-perturbative generated
potential (6.22) which is non-negligible only in the two moduli case, VF 4 are the
higher derivative effects (6.26) and (6.33), Vgs is the string loop potential (6.36),
VD3 is the contribution (6.37) from anti D3-branes and Vhid is the potential (6.41)
generated by the F-terms of charged hidden matter fields.

Let us now add all these different contributions to the total scalar potential for
the single modulus and the two moduli case separately:

a) Single modulus case
In this simple model with only a single Kähler modulus, the generic expression
for the scalar potential is:

V (Φ) = V0

(
e−

√
27
2
Φ + κgs e

− 10√
6
Φ
+ κF 4 e

− 11√
6
Φ
+ κD3 e

−
√
6Φ + κhid e

− 8√
6
Φ
)
.

(6.43)

In this setup the post-inflationary dS minimum is generated by the interplay
between the universal α′3 term and the two terms proportional to κD3 and κhid,
with the inflationary inflection point arising at smaller volumes in a region
where the first three terms in (6.43) are comparable in size.

2Note that qb and qϕ must have the same sign otherwise the minimum for |ϕ| would be at zero.
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b) Two moduli case
In the two moduli case, the total scalar potential (6.42) contains at least six
terms. However, as we shall see in the next section, we need just five tunable
parameters in order to get inflection point inflation. We shall therefore neglect
the last term in (6.42) which might be removed by a model building choice.
We stress that this choice does not affect our final results. In fact, if instead
we neglected VD3 in (6.42), we would obtain qualitatively the same results.
Thus in this case the total inflationary potential becomes:

V (Φ) = V0

[(
1− κnpΦ

3/2
)
e−

√
27
2
Φ + κgs e

− 10√
6
Φ
+ κF 4

(b)
e
− 11√

6
Φ
+ κD3 e

−
√
6Φ
]
.

(6.44)

Here we are including only the leading term of the higher derivatives correc-
tions (6.33) which is proportional to κF 4

(b)
. Hence we are assuming that the

term proportional to κF 4
(s)

is either very suppressed (a natural possibility given
its volume scaling) or exactly vanishing.

6.4 Single Field Dynamics

In this section we study the effective single field inflationary dynamics for both the
single modulus and the two moduli case. A deeper analysis of the effect of the
heavy field for the two moduli case will be performed in Sec. 6.5. In order to obtain
a phenomenologically viable model, we should require that:

1. There is an inflection point at Φip.

2. The potential is such that the COBE normalisation is satisfied and the number
of e-foldings is Ne ≃ 60.

3. There is a large volume de Sitter minimum at Φmin.

As we will see below, these requirements translate into five conditions on the scalar
potential, and so we need five tunable free parameters.

6.4.1 Analytical Discussion

As a first step, let us discuss the strategy used to determine the free parameters
in (6.43) and (6.44) in order to get inflection point inflation. The position of the
inflection point Φip and the minimum Φmin can be chosen independently with the
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only constraint (apart from Φmin > Φip) being:

Vip = e
√

3
2
Φip ≳ 103 ⇔ Φip ≳ 5 , (6.45)

in order to trust the effective field theory during inflation.

Once Φip and Φmin are chosen, we impose that the scalar potential actually
produces an inflection point and the late time minimum at the desired positions.
This can be done by scanning over flux parameters, intersections numbers and gauge
groups so that the following constraints are satisfied:

• Inflection point

(1) V ′′|Φ=Φip
= 0 (6.46)

(2) V ′ · V ′′′|Φ=Φip
=

2π2V 2

(170)2

∣∣∣∣
Φ=Φip

(6.47)

• Late time minimum

(3) V ′|Φ=Φmin
= 0 (6.48)

(4) V |Φ=Φmin
= 0 (6.49)

The first two conditions produce an inflection point at Φip with the right slope to
yield a scalar spectral tilt around ns = 0.96, while the last two conditions imply the
existence of a Minkowski minimum at Φmin. These conditions are invariant under
a rescaling of V0 in (6.43) and (6.44) since it is just an overall multiplicative factor
in the scalar potential. V0 is instead fixed by the requirement of obtaining the right
COBE normalisation given by (6.14) which can also be rewritten as:

(5) ∆2 =
1

24π2

V

ϵ

∣∣∣∣
Φ=Φ∗

≃ 1

12π2

V 3

(V ′)2

∣∣∣∣
Φ=Φip

≃ 2.4 · 10−9 . (6.50)

Given the definition of V0 in (6.19), condition (5) can be seen as a constraint on the
magnitude of the flux superpotential W0 which in Type IIB string compactifications
naturally lies in the range [0.1, 100]. We will show now how additional constraints
on Φip arise from combining this naturalness criterion with the requirement of low-
energy supersymmetry. In fact we shall carefully choose Φip so that the COBE
normalisation fixes W0 in the natural range mentioned above. Fixing W0 through
the condition (5) sets also the energy scale of the soft terms. Here we distinguish
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between two possibilities:

• Non-sequestered models : If the cycle supporting the visible sector is stabilised
in geometric regime, the soft terms are of order the gravitino mass:

Msoft ≃ m3/2 ≃
√
gs
8π

W0

Vmin

. (6.51)

This is usually referred to as the non-sequestered case which for W0 ∼ 1 leads
to TeV-scale supersymmetry only for values of the volume as large as V ∼ 1014.
This is possible for the two moduli case where the value of the visible sector
coupling does not depend on V . In the single modulus case, since α−1

vis = V2/3,
the volume has to be of order 100, resulting necessarily in a high-scale SUSY
scenario.

• Sequestered models : If the visible sector modulus is fixed in the singular regime,
the soft terms can be very suppressed with respect to the gravitino mass:

Msoft ≃
m3/2

V
≃
√
gs
8π

W0

V2
min

. (6.52)

This is usually referred to as the sequestered scenario which for W0 ∼ 1 leads
to low-energy supersymmetry only for V ∼ 107. In these sequestered models
supersymmetry is broken in the bulk of the extra-dimensions while the visible
sector lives on branes localised at a singularity. Given that in this case the
visible sector coupling is set by the dilaton, this scenario can be realised both
in the single and in the two moduli case.

The magnitude of the flux superpotential that satisfies condition (5) for a generic
inflection point Φip can be estimated by noting that at horizon exit ϵ ∼ 10−10 and
there is a percent level cancellation between the three dominant terms. This implies
that at the inflection point V ∼ 0.01 V0 e

−
√

27/2Φip , and so the Hubble scale can be
estimated as:

H =

√
Vip
3M2

P

≃ 1

10
√
3

√
V0M2

P

V3/2
ip

=

√
ξ

2πg
1/2
s

W0MP

40V3/2
ip

, (6.53)

where we used (6.19) and we restored the correct dependence on the Planck mass
MP. Using the same argument we can also estimate the amplitude of the scalar
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perturbations in (6.14) as:

1

24π2

V

ϵ

∣∣∣∣
Φ=Φ∗

≃ 1

24π2

0.01 V0 e
−
√

27/2Φip

10−10
≃ 2.4× 10−9 , (6.54)

which yields:

W 2
0 ≃ 7.58× 10−15 8π

√
gs e

√
27/2 Φip . (6.55)

Assuming gs ≃ 0.1, we conclude that only inflection points in the range Φip ∈ [6, 10]

are compatible with natural values of W0.

We can take these simple estimates further and for each Φip obeying (6.55) find
the position of the late time minimum Φmin that gives rise to TeV-scale soft masses in
both sequestered and non-sequestered scenarios. For the sequestered case we have:

gs
8π

W 2
0 e

−2
√
6 Φmin ≃ 10−30 , (6.56)

which by using (6.55) becomes:

Φmin ≃ 6.76 +
3

4
Φip . (6.57)

A similar estimate for the non-sequestered case yields:

Φmin ≃ 13.51 +
3

2
Φip . (6.58)

Hence we see that the distance between the inflection point and the minimum in the
non-sequestered case is exactly twice the corresponding distance in the sequestered
setup. The factor of two descends directly from the extra volume suppression of
(6.52) when compared with (6.51). In both cases the combination of the obser-
vational constraint on the amplitude of the density perturbations, the theoretical
bias on natural values of W0 and the requirement of TeV-scale soft terms conspire to
fix the distance between the inflationary inflection point and the late-time minimum.

Tables 6.1 and 6.2 illustrate some reference values obtained using (6.55) to fix
the inflection point for different values of W0, and then (6.58) and (6.57) to get the
late-time minimum in the non-sequestered (Tab. 6.1) and sequestered (Tab. 6.2)
scenarios respectively.

Using the values listed in Tab. 6.1 and 6.2 to estimate the Hubble scale as in
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W0 Φip Vip Φmin Vmin

0.1 7.03 5.5× 103 24.06 6.3× 1012

1 8.29 2.5× 104 25.94 6.3× 1013

10 9.54 1.2× 105 27.82 6.3× 1014

100 10.79 5.5× 105 29.70 6.3× 1015

Table 6.1: Positions of the inflection point and the late-time minimum for the
non-sequestered case obtained by requiring a correct COBE normalisation and low-
energy supersymmetry for natural values of W0 and setting gs = 0.1.

W0 Φip Vip Φmin Vmin

0.1 7.03 5.5× 103 12.03 2.5× 106

1 8.29 2.5× 104 12.97 7.9× 106

10 9.54 1.2× 105 13.91 2.5× 107

100 10.79 5.5× 105 14.85 7.9× 107

Table 6.2: Positions of the inflection point and the late-time minimum for the se-
questered case obtained by requiring a correct COBE normalisation and low-energy
supersymmetry for natural values of W0 and setting gs = 0.1.

(6.53) we get H ≃ 1010 GeV which corresponds to an inflationary scale of order 1014

GeV. This result can also be obtained numerically using the more precise values
listed in the next section.

Let us comment on the consistency of our effective field theory approach. As
derived in [368], the superspace derivative expansion is under control if m3/2 ≪MKK

which translates into the bound:

δ ≡
√
gs
2

W0

V1/3
≪ 1 . (6.59)

This bound is satisfied in each case of Tab. 6.1 and 6.2 both around the inflection
point and the late-time minimum. In fact, considering just the region around the
inflection point (V becomes larger around the minimum and so this bound is stronger
during inflation) and setting gs = 0.1, we have: δ ≃ 10−3 for W0 = 0.1, δ ≃ 10−2 for
W0 = 1, δ ≃ 5 · 10−2 for W0 = 10 and δ ≃ 0.1 for W0 = 100. Thus the superspace
derivative expansion is under control, and so higher derivative α′ corrections should
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naturally be suppressed. Therefore, as we shall show in the next section, we have
to tune the coefficient of the F 4 α′ terms (6.26) and (6.33) to large values. However
the fact that the expansion parameter δ turns out to be small, allows us to neglect
further higher derivative corrections in a consistent way.

6.4.2 Numerical Results

In this section we present a detailed numerical study of inflection point volume
inflation. We start by focusing on the non-sequestered single modulus case with
high-scale SUSY. In this case the late-time minimum is bound to be of order 100, so
that the evolution of the canonically normalised field Φ is very limited. Nevertheless,
as shown in Fig. 6.1, it is possible to get an inflection point and a late-time minimum
at the desired values. The scalar potential is plotted in Fig. 6.1. We require Φip = 3.5

and Φmin = 4.2, corresponding respectively to values of the volume Vip ≃ 72 and
Vmin ≃ 171. These values are clearly too small to trust the effective field theory
approach. However we shall still present the numerical results for this case for
illustrative purposes, and shall focus later on cases with low-energy supersymmetry
where the volume during and after inflation is larger and the supergravity effective
theory is under much better control.

Figure 6.1: Scalar potential obtained requiring Φip = 3.5 and Φmin = 4.2 in the single
modulus case with the visible sector on D7-branes wrapping the volume cycle.

In this example it is possible to reproduce the correct value of the spectral index,
as a consequence of the condition (6.47). We list in Tab. 6.3 the numerical results
obtained for different positions of the inflection point and the late-time minimum
for which we get always ns ≃ 0.96.
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(a) Inflection point. (b) Late time minimum.

Figure 6.2: Scalar potential for non-sequestered models with TeV-scale suypersym-
metry obtained requiring Φip = 7.03 and Φmin = 24.06.

Φip Φmin W0 κgs κF 4 κD3 κhid ∆Φ/MP

2.5 3.8 3× 10−5 −2.55 2.26 1.05× 10−3 −0.14 0.21

3 4 8× 10−5 −2.98 3.11 7.09× 10−4 −0.12 0.17

3.5 4.2 2× 10−4 −3.48 4.28 4.71× 10−4 −0.10 0.12

Table 6.3: Numerical results for the coefficients of the scalar potential for the single
modulus case with the visible sector on D7-branes wrapping the volume cycle.

∆Φ is the field excursion of the canonically normalised volume modulus Φ be-
tween horizon exit and the end of inflation. Since ∆Φ ∼ 0.1MP we are clearly
dealing with a small field inflationary model. Thus the tensor-to-scalar ratio is of
order r ≃ 10−10. The values of W0 reported in Tab. 6.3 are the numerical results
which satisfy the COBE normalisation. The corresponding Hubble scale in each
case is H ≃ 109 GeV which translates into an inflationary scale around 1014 GeV.

We now turn to study the two more interesting sequestered and non-sequestered
cases with larger values of the volume and TeV-scale supersymmetry. Since in both
cases the shape of the scalar potential is always qualitatively the same around the
inflection point and the late-time minimum, we plot it in Fig. 6.2 just for the non-
sequestered case.

The numerical results listed below are obtained requiring that the inflection point
and the late-time minimum are those given in Tab. 6.1 and 6.2 where we required
natural values of W0 and low-energy supersymmetry in both non-sequestered and
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sequestered cases. The tensor-to-scalar ratio turns out to be always of order r ≃
10−9. In the following tables the only inputs are Φip and Φmin, while W0, κgs , κF 4

(or κF 4
(b)

), κhid, κD3 and κnp are the numerical outputs obtained by solving (6.46)
and (6.49). As a consequence of the condition (6.47), the value of the spectral index
is ns ≃ 0.967 in each of the cases listed below.

• Single modulus case:

Let us start with the simplest single modulus case of (6.43). The numerical
results relative to the non-sequestered case with low-energy SUSY are listed
in Tab. 6.4 while those relative to the sequestered case are listed in Tab. 6.5:

Φip Φmin W0 κgs κF 4 κD3 κhid ∆Φ/MP

7.03 24.06 0.06 −31.68 253.85 7.94× 10−14 −8.11× 10−5 0.42

8.29 25.94 0.6 −53.02 710.59 7.93× 10−15 −3.76× 10−5 0.42

9.54 27.82 6.2 −88.35 1972.74 7.94× 10−16 −1.74× 10−5 0.42

10.79 29.70 62.1 −147.21 5476.08 7.94× 10−17 −8.12× 10−6 0.42

Table 6.4: Numerical results for the coefficients of the scalar potential for the non-
sequestered single modulus case with TeV-scale supersymmetry.

Φip Φmin W0 κgs κF 4 κD3 κhid ∆Φ/MP

7.03 12.03 0.07 −25.46 187.38 1.30× 10−7 −8.47× 10−3 0.39

8.29 12.97 0.79 −41.50 504.98 3.92× 10−8 −5.59× 10−3 0.38

9.54 13.91 8.14 −67.27 1346.28 1.17× 10−8 −3.68× 10−3 0.38

10.79 14.85 83.6 −108.80 3575.02 3.48× 10−9 −2.42× 10−3 0.37

Table 6.5: Numerical results for the coefficients of the scalar potential for the se-
questered single modulus case with TeV-scale supersymmetry.

• Two moduli case:

Now we turn to the two moduli setup of (6.44). The results for the non-
sequestered case are listed in Tab. 6.6 while the results for the sequestered
case are presented in Tab. 6.7.
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Φip Φmin W0 κgs κF 4
(b)

κD3 κnp ∆Φ/MP

7.03 24.06 0.07 −25.42 193.01 8.46× 10−15 8.91× 10−3 0.41

8.29 25.94 0.75 −41.34 525.04 7.83× 10−16 7.93× 10−3 0.41

9.54 27.82 7.55 −67.16 1421.51 7.29× 10−17 7.12× 10−3 0.41

10.79 29.70 75.8 −109.33 3858.01 6.82× 10−18 6.43× 10−3 0.41

Table 6.6: Numerical results for the coefficients of the scalar potential for the non-
sequestered two moduli case with TeV-scale supersymmetry.

Φip Φmin W0 κgs κF 4
(b)

κD3 κnp ∆Φ/MP

7.03 12.03 0.12 −15.55 97.00 2.48× 10−8 2.28× 10−2 0.38

8.29 12.97 1.27 −23.17 236.06 6.86× 10−9 2.02× 10−3 0.37

9.54 13.91 13.7 −34.53 572.48 1.89× 10−9 1.80× 10−2 0.37

10.79 14.85 147.9 −51.58 1390.83 5.25× 10−10 1.62× 10−2 0.36

Table 6.7: Numerical results for the coefficients of the scalar potential in the se-
questered two moduli case with TeV-scale supersymmetry.

Two important observations can be inferred from the values of the coefficients
listed in Tab. 6.1 and 6.5. The first one is that κgs is always required to be
negative. In our models the negative sign can be obtained by the interplay of
the two terms in (6.35). Moreover the presence of the inflection point is highly
sensitive to small variations of the coefficients in Tab. 6.4, 6.5, 6.6 and 6.7.
Thus in order to accurately reproduce the shape of the scalar potential in each
case, it is necessary to tune the coefficients to a much higher level of precision
than that reported in the Tables.

6.5 Two Fields Dynamics

Up to this point we have dealt exclusively with the single field limit, implicitly as-
suming that all other moduli, like the axio-dilaton, the complex structure moduli
and additional Kähler moduli, are heavier than the Hubble scale during inflation.
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While this may be arranged for in the single Kähler modulus case, it is certainly
not true for the model constructed within the LVS framework. In this section we
comment on various aspects of the two field dynamics of this model.

As shown in Sec. 6.3, the effective single field potential of (6.44) is obtained after
integrating out the small blow-up modulus τs. This procedure is valid in the vicinity
of the LVS minimum where there is a clear mass hierarchy:

m2
τs ∼

gs
8π

W 2
0

V2
min

≫ gs
8π

W 2
0

V3
min

∼ m2
τb
, (6.60)

however it fails around the inflection point where both fields are very lightm2
τs ,m

2
τb
≪

H2, implying that both will be dynamical during inflation. This is illustrated in
Fig. 6.3.
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Figure 6.3: Scalar potential (6.44) in the inflationary region, around the tuned point
(τb, τs)|ip = (1000, 20) and in the large volume region (τb, τs)|min = (2.4× 109, 16.4).

Due to the flatness of the scalar potential along both directions, the correct way
to analyse the system is by numerically solving the background field equations as
done in the original work [357]. Here we will extend the aforementioned analysis by
studying the sensitivity to the choice of initial conditions in a given potential and
by clarifying to what extent the single field results constitute a valid approximation
to the inflationary observables. The reader looking for more details of the setup is
referred to [357] as we will focus only on the results obtained.

We proceed in the same spirit of the single field analysis by choosing the coeffi-
cients that induce an inflection point along the volume direction. For concreteness
we choose (τb, τs)|ip = (1000, 20). We then consider a set of initial conditions around
that point and numerically solve the equations of motion. In Fig. 6.5 we plot the
solutions for the different choices of initial positions for the system. We assume
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throughout that the fields are released with vanishing velocities and find that the
sensitivity to the initial position, that is characteristic of inflection point models,
is magnified in the two field setup as perturbing the initial conditions by a small
amount can lead to drastically different outcomes. Starting uphill from the inflection
point tends to lead to trajectories that produce insufficient expansion. In some cases,
depending on the ratio τ ips /τmin

s , some of these trajectories can lead to the collapse
of the compact manifold to vanishing volume. For trajectories that start downhill
from the tuned point, it is easier to obtain a viable post inflationary evolution, with
the system evolving towards the LVS minimum, but the number of e-foldings de-
creases drastically with the distance from the tuned point. One is therefore led to
the conclusion that viable inflationary trajectories are obtained only in a narrow
region around τ ipb and τs ≳ τ ips .
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Figure 6.4: Trajectories around the flat inflection point at (τb, τs) = (1000, 20)
marked by the star. Blue (thicker) trajectories correspond to those evolving towards
the post-inflationary large volume minimum, while the magenta (thinner) end with
a collapsing volume modulus. Right: Magnification around the initial points. The
numbers denote the total number of slow-roll e-foldings for each trajectory.

In what concerns inflationary observables in the two field setup one expects the
projection along the inflationary trajectory (and hence the single field estimates of
Sec. 6.4) to be a good approximation to the full result. This follows directly from
the fact that the observable portion of the trajectories yielding Ne ≥ 60, is rather
straight, as can be seen by the smallness of the inverse curvature radius plotted in
Fig. 6.5. This implies that curvature and isocurvature perturbations are essentially
decoupled and that a straightforward generalisation of the single field case leads to
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an accurate estimate of the cosmological observables.3

Figure 6.5: Inverse curvature radius for trajectories leading to Ne > 60.

6.6 Conclusions

It has long been acknowledged that there is severe tension between having simul-
taneously low-scale supersymmetry and high scale inflation in supergravity models.
This is due to the fact that the inflationary energy density contributes to the moduli
potential and will in generally tend to destabilise them.

Several mechanisms to decrease or eliminate this tension have been proposed over
the years and in this work we further develop the proposal of [357]. This particu-
lar model solves the tension between TeV-scale supersymmetry and the inflationary
scale by having an evolving compactification volume between the inflationary epoch
and today. Inflation is due to an inflection point in the volume direction of the
scalar potential which also possesses a minimum at large volume where the modulus
is supposed to sit at late-time after inflation. In order to prevent overshooting it is
necessary to require that a small amount of radiation is generated after the end of
inflation. The presence of this additional radiation is well justified in the two field
model since it could be produced by the oscillations of the heavy modulus around
its minimum while in the single field model particle production could be induced by
a changing vacuum state between the end of inflation and today.

3For thorough discussion of this issue in the context of a local string inflation model see [369].
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In this chapter we described a possible microscopic origin of the inflationary
scalar potential that allows the gravitino mass to vary after the end of inflation and
at the same time features a late-time dS minimum. In particular, we provided an
explicit construction where the inflationary inflection point is generated by the inter-
play between string loops and higher derivative α′ corrections to the scalar potential.
Moreover, we supplemented the LVS construction with a new model that involves
only one Kähler modulus. While in the LVS two moduli model non-perturbative ef-
fects play a crucial rôle in determining the presence of both the inflection point and
the late-time minimum, in the single modulus model non-perturbative effects are
absent and an additional contribution arising from the F-terms of charged hidden
matter is needed. For both models we analysed the relation between the value of
the volume during inflation and at present with the size of the flux superpotential
W0. We found that if W0 takes natural values, the distance between the inflection
point and the late-time minimum is fixed.

We finally studied the full dynamics of the two field system in the LVS model and
showed that, after tuning the potential such that it features the desired inflection
point, there is a significant sensitivity to the choice of initial conditions. Perturbing
the starting positions of the fields even by a small amount can lead to a radically
different cosmological evolution. We also showed that, despite the presence of two
dynamical fields, the predictions for the cosmological observables derived in the
single field case are accurate since the field space trajectories are essentially straight
over the last 60 e-foldings of expansion.
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Part IV

Conclusions
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Chapter 7

Summary and final remarks

Let us conclude by providing a brief summary of the contents and the results re-
ported in this thesis.

In Chap. 1 we first presented a brief report of the current status of particle physics
and cosmology. We also presented a quick overview of the possible alternatives for
the physics beyond the Standard Model, focusing specially on supersymmetric the-
ories. In the second part of the same chapter we presented string theory as the best
candidate for a unified theory of all interactions, which describes also gravity at the
quantum level in a consistent way. After having described its main features, we
discussed the role of string phenomenology in the current search for new physics.

In Chap. 2 we presented an overview of the generic tools needed for the study of
string compactifications. More in detail, in the first part we have shown that some
phenomenological requirements along with our poor computational skills restrict
the choice of the compact space to a very specific class, among the infinity that are
available. We have also summarized how it is possible to get a N = 1 supersymmet-
ric effective field theory starting from the ten-dimensional action for massless string
states. In general such an effective theory features the presence of many massless
scalar fields, which are problematic from a phenomenological point of view. In the
second part of the chapter we have shown how it is possible to connect this effective
field theory with the real world. The main step is represented by moduli stabiliza-
tion, which makes moduli massive and generally breaks supersymmetry. We used
one of the most powerful techniques for moduli stabilization, which is called Large
Volume Scenario. Finally we have described how to embed a chiral gauge theory
using a stack of D3-branes on top of a singularity of the compact space. In the last
part of the section we presented an explicit example of a string compactification in
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which the visible sector is consistently embedded in a global construction, and all
the moduli are stabilized.

In Chap. 3 we have computed the soft spectrum arising from sequestered com-
patifications [1]. We have shown that it is possible to get a MSSM-like spectrum
only in a particular case in which the effective field theory is protected by an effective
symmetry. In this case all the soft-terms have the same size, and they can be around
1 TeV without causing the cosmological moduli problem. In more generic situations
the spectrum exhibits a hierarchy between gaugino masses and scalar masses, giv-
ing rise to Split-SUSY scenarios with gauginos around the TeV and scalars around
106−107 GeV. This is an interesting example of how string theory can act as a guid-
ance among the myriads of beyond the Standard Model alternatives: Split-SUSY
scenarios seem to be quite more natural than MSSM ones from a top-down perspec-
tive.

A model-independent feature of the sequestered models presented in Chap. 3 is
that the field whose VEV parameterizes the size of the compact extra-dimensions
(volume modulus) is always the lightest modulus. Due to its gravitational coupling
the volume modulus decays late in the history of the universe and can modify signif-
icantly its cosmological evolution. In particular, if it decays after the freeze-out of
thermally produced dark matter, it dilutes the previous abundance and produces a
new amount of dark matter. In Chap. 4 we performed a numerical study of the non-
thermal dark matter production in the MSSM case of Chap. 3 and we contrasted
the results with the current experimental bounds [2]. In the region of the param-
eter space which is not ruled out by experimental data, non-thermally produced
dark matter saturates the observed relic abundance if the lightest supersymmetric
particle is a higgsino-like neutralino with mass around 300 GeV and the reheating
temperature is about 2 GeV.

Relativistic degrees of freedom in the hidden sector constitute the so-called dark
radiation. The amount of dark radiation present in the universe can be constrained
by CMB and BBN experiments, since the presence of additional relativistic degrees
of freedom modifies the rate of expansion of the universe at early times. The exis-
tence of dark radiation is then a very promising window on beyond the Standard
Model physics, and it is very interesting also from a string phenomenology point
of view. Indeed, it provides a quite model-independent signature of string models,
given that its existence is uniquely due to the presence of both hidden relativis-
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tic degrees of freedom and moduli, which are the four-dimensional manifestation
of extra-dimensions. Hence it can be used either to rule out or to constrain entire
classes of string compactifications. A generic feature of sequestered models is that
the volume modulus decays into a massless axion-like field, which acts as dark ra-
diation. In Chap. 5 we have shown that in Split-SUSY scenarios the dark radiation
produced in sequestered models is within the current experimental bounds, provided
that the decay of the volume modulus into scalars is kinematically allowed [4].

In Chap. 6 we studied the microscopic origin of a model of inflation in which the
role of the inflaton is played by the volume modulus, called Volume Inflation [3].
This is a particularly interesting model because it provides a dynamical mechanism
to overcome the well known tension between TeV soft-terms and high-scale inflation.
It turns out that inflation is due to the interplay of quantum corrections to the scalar
potential (both α′ and string loop corrections) with contributions from anti-branes
and/or from charged hidden matter. They give rise to an inflection point around
which small-field inflation can take place. We have shown that requiring natural
values for the parameters of the model and TeV scale soft-terms leads to a well de-
fined relation between the value of the volume during inflation and its value in the
late-time vacuum.

Generally speaking, the major open question is to exactly reproduce the Standard
Model at low-energy from a class of string compactifications and to reconcile it
with cosmological observations. This problem can be faced in vastly different ways
depending on the desired pattern of supersymmetric particles, and hopefully in the
near future new experimental data will help us in this task. In the present thesis
we have observed how it is difficult to get a TeV MSSM spectrum, in order to solve
the hierarchy problem, even in the most favourable case in which the visible sector
is placed on top of D3-branes at singularities. Hopefully in the near future we will
understand whether it is actually worth addressing this problem or we should change
our point of view on the naturalness issues.
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