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Abstract

Understanding an information processing system requires three distinct, complementary lev-

els of analysis. First, we need to understand what the system is doing, and why is it doing

it (computational level). Moreover, we need to comprehend what representations and pro-

cesses are used to achieve the desired goal (algorithmic level) and, finally, we need to discern

how these computations are physically realized (implementation level). Guided by this ap-

proach, here we investigate brain’s functioning and behavior starting from its fundamental

constituents (neurons) and from the molecular processes underlying neural dynamics (e.g.

synaptic vesicle release, ions flow and action potentials).

The world is stochastic and chaotic, and organisms have access to limited information to

take decisions and to interact with the environment. For this reason, brains are continuously

required to deal with probability distributions, and experimental evidence confirms that they

are dealing with these distributions optimally or close to optimally, according to the rules of

Bayesian probability theory. Yet, a complete understanding of how these computations are

implemented at the neural level is still missing. We assume that the ”computational” goal of

neurons is to perform Bayesian inference and to represent the state of the world e�ciently.

Starting from this assumption, we derive from first Bayesian principles two distinct models

of neural functioning, one in single neuron and one in neural populations, and we show

how known biophysics and molecular processes of neurons can be explained by the proposed

models.

Neural processes and functioning are intrinsically stochastic and noisy. Molecular sources of

variability have historically been considered as a problem for information processing in the

brain, which a↵ects reliability and e�ciency of neural functioning. Yet, in the models we

propose noise plays an original constructive role. In fact, molecular variability is exploited

by the system as a precious resource to get in correspondence with the stochastic properties

of the external world, and to actively implement inference and learning.
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One common problem in mathematical models of biological systems is fine tuning of model

parameters. In the models we propose, the parameters controlling neural functioning depend

on the statistics and the dynamical properties of the encoded stimuli. In both models, we

propose a mechanism that allows to learn these parameters locally from the experienced

sensory input, and to adapt them on-line to changes in the stimulus properties.

The models we propose suggest a new original interpretation for various biophysical quanti-

ties and processes. Action potentials, which are usually considered the paramount form of

communication between neurons, in our model of single neuron dynamics are reinterpreted

as an internal communication channel, which uses an e�cient (predictive) coding scheme to

synchronize and coordinate local calcium concentration in di↵erent regions of the neuron.

Following this new interpretation, intracellular calcium concentration is interpreted as the

most explicit representation of the external world inside the neuron. Specifically, we propose

that calcium level represents the log-odds probability ratio of a particular hidden state in

the world. Furthermore, we reinterpret synaptic vesicle release as a sampling process, which

simulates the external world given all the available information (encoded in local calcium

concentration). Finally, the neural population dynamics we propose interpret spontaneous

neural activity as a process of sampling from the prior world statistics. This interpretation

is not entirely new in the literature, but in our model we show how the generated samples

can be used to implement a Markov Chain Monte Carlo algorithm that produces inference

by sampling.

The proposed models generate various observable predictions, which match experimental

results about synaptic vesicle release, short-term synaptic potentiation, ions channels open

probability, intracellular calcium dynamics and propagation, spike rate adaptation and neural

receptive fields.
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Chapter 1

Introduction

‘Theoretical physics is the search for simple and universal mathematical descriptions of the
natural world. In contrast, much of modern biology is an exploration of the complexity and
diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that
physicists use the word, is impossible in a biological context. For others, this contrast serves
to highlight a grand challenge. I’m an optimist, and believe (along with many colleagues) that
the time is ripe for the emergence of a more unied theoretical physics of biological systems,
building on successes in thinking about particular phenomena.’

William Bialek, “Perspectives on theory at the interface of physics and biology”

1.1 Motivation and objectives

Biological systems are extremely complex and diversified. For this reason, research in living

organisms and, specifically, in Neuroscience, is usually driven by a descriptive approach, and

experiments represent the primary investigation tool in this research. In the last years, thanks

to technological development, more and more areas of the living world are becoming accessi-

ble to quantitative investigation. The increasing amount of data requires adopting tools from

1
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mathematics and physics, which become fundamental to make sense of the available informa-

tion, and to create models that capture system’s functioning and dynamics. This approach

to biological sciences tries to answer the question of “how” do living systems function, and

what are interactions and relations between di↵erent components of the systems.

Yet, a di↵erent approach is possible, which investigates the question of “why” these systems

do what they do, and what are the simple principles underlying this behavior. This alter-

native approach is not limited to the application of physics to the problem of biology. On

the contrary, it requires to extend the current boundaries of theoretical physics, and to “ask

physicists’ questions about the phenomena of life, looking for the kinds of compelling answers

that we expect in the traditional core of physics” (Bialek, 2015). This approach drove various

renowned physicist to investigate the question of life and intelligence in the past (Schrodinger

and Lewin, 1967; Rayleigh, 1907; Penrose, 2001) and, if successful, it would “reconcile the

physicists’ desire for concise, unifying theoretical principles with the obvious complexity and

diversity of life.” This would “generate theories that engage meaningfully with the myriad

experimental details of particular systems, yet still are derivable from principles that tran-

scend these details” (Bialek, 2015). The human brain is one of the most complex structures

existing in nature, and understanding the principles underlying its dynamics would set light

to how we function and what we are.

Brain activity can be modeled as a highly non-linear dynamical system, where each funda-

mental computational unit (neuron) follows some specific stochastic equations coupled with

the rest of the system. The purpose of the nervous system in every living organism is to infer

the state of the world (both internal and external to its body) given some available observa-

tions and to control muscle contraction and sweating accordingly, to maximize fitness.

In doing this, the nervous system faces several sources of stochasticity. First, the amount of

information available is limited, this a↵ecting reliability of the inference process. Moreover,

world dynamics is stochastic and often chaotic, making it challenging to predict future events
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from the current state of the world. Finally, the outcomes of our interactions with the

world are uncertain, and this uncertainty a↵ects our ability to evaluate and select actions in

di↵erent circumstances. For all these reasons, brains need to be able to deal with probability

distributions, and it is reasonable to think that evolutionary pressure drove nervous systems

to do it in an e�cient way.

Ample experimental evidence shows that brains are optimal or close to optimal when dealing

with probability distributions in various situations (Ernst and Banks, 2002a). The Bayesian

framework has proven to be very powerful in predicting human behavior in several tasks

involving perception (Wozny et al., 2010), decision making (Bogacz, 2007) and motor control

(Wolpert, 1997). However, a complete understanding of how these computations are imple-

mented at the neural level is still missing (yet, see (Ma et al., 2006)). Understanding the

neural mechanisms underlying Bayesian computations in the brain would provide a princi-

pled interpretation of brain dynamics and neural interactions. Furthermore, comprehending

how these computations are performed by neurons would help diagnose and treat patho-

logical conditions that a↵ect our perception and decision-making capabilities (Moscovitch,

1982). Finally, learning how the nervous system deals with this complex task would help

us design brain-inspired algorithms and circuits, which can be more e�cient than existing

architectures. For example, the human central nervous system can perform around 3 1014

operations per Joule (Sarpeshkar, 1998). This makes the brain approximately 100 million

times more energy e�cient than an Intel i7-860 processor, and it would allow performing all

computations currently running in Google data centers on a 2.2 Watts laptop battery.

One of the fundamental di↵erences between hardware and wetware architectures is the con-

tribute of noise and variability to the system’s functioning. In fact, silicon circuits are de-

signed to implement a deterministic function of the received inputs, and to consistently

produce reliable outputs. On the contrary, noise and stochasticity are a dominant compo-

nent of brain’s dynamics (Faisal et al., 2008). Sensory noise a↵ects how the brain receives

information from the external world. Cellular, electrical and synaptic variability influence
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information processing and communication while motor noise interferes with the execution of

movements and actions. All these di↵erent sources of variability add up and propagate in the

nervous system, producing stochastic responses to the received inputs (Tolhurst et al., 1983;

Neishabouri and Faisal, 2014b). This trial-to-trial variability has always been considered as a

limiting factor of neural functioning (Shadlen and Newsome, 1994; Abbott and Dayan, 1999;

Bialek and Setayeshgar, 2005), and it has been addressed in the literature as something that

can not be avoided (as a consequence of size-e�ciency-reliability trade-o↵s implicit in brain

architecture (Neishabouri and Faisal)) and that should be limited and neutralized as much

as possible (Bialek, 1987; Aho et al., 1988). However, there are various scenarios in which

stochasticity can improve computations and representation. For example, intentionally ap-

plying noise to continuous variables before digitalizing them allows randomizing quantization

error. This procedure, usually referred to as “dithering” (Ulichney, 1988), is often used in

audio (Pohlmann, 1985) and image (Roberts, 1962) processing to prevent the emergence of

large-scale patterns. Additionally, in the process known as “Stochastic Resonance” noise has

been shown to boost detection of weak signals (Longtin, 1993; Faisal et al., 2008; McDon-

nel and Abbott, 2008), which is useful when false negatives a↵ect animal fitness more than

false positives. Moreover, in various reinforcement learning algorithms random variables are

used to produce exploration and learning (Abbeel and Ng, 2005). Finally, a broad class of

simulation algorithms (usually referred to as Monte Carlo methods) exploits random num-

ber generation to probe stochastic real world problems that can not be solved analytically.

Variability represents a precious resource for these algorithms, to the extent that when they

are implemented in-silico most of the computational time is often spent in the generation

of random variables. For this reason, we argue that the brain, driven by millions of years

of evolutionary pressure, might have found a way to exploit intrinsic neural variability as a

resource.

Specifically, we propose that the nervous system uses neural noise to get in correspondence

with the stochastic nature of the external world. This enables us to represent and simu-
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late external events, to calculate expected values of possible actions and to select optimal

behaviors. Furthermore, noise could be used by the brain to avoid predictable (systematic)

non-optimal behaviors caused by limited available information, which could be exploited by

other living organisms. In this dissertation, we propose a model neural functioning both on

the single neuron and on a neural population level. In both models noise plays a fundamental

role, allowing to implement Bayesian computations and to deal e�ciently with a stochastic

world.

1.2 Contributions

In this dissertation, we investigate the principles governing neural dynamics, and we probe

the computational role of neural constituents in brain’s functioning. In the model we develop,

molecular sources of noise play a crucial role, as they enable the system to generate the desired

macroscopic behavior both at the level of single neuron and of neural population.

On a single neuron level, we start from some assumptions about what neurons are doing,

and what is their goal. We use Bayesian theory to derive from first principles a normative

model of neural computations and, following a top-down approach, we investigate how the

resulting algorithms can be implemented by a biophysical neuron. Specifically, we derive a

neural model of synaptic vesicle release, dendritic integration, membrane potential fluctua-

tions, action potential initiation, intracellular calcium dynamics and spike-rate adaptation.

We describe all the sub-processes of the neuron’s processing pipeline at di↵erent levels of de-

tail (computational, algorithmic and implementation level), and we show how distinct levels

of description are consistent and equivalent, providing a principled interpretation of experi-

mental observations about neural internal biophysics and dynamics. Our model predictions

match experimental in-vivo recordings, as well as the known dynamics of neural biophysical

quantities.
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The model of neural functioning we develop provides a new interpretation of known neural

quantities and processes, such as intracellular calcium concentration, synaptic communication

and action potentials. Specifically, we propose that calcium level encodes inside the neuron

the log-odds probability ratio of a specific hidden event happening in the world. In addition,

we suggest that vesicle release takes the form of a sampling process from the given encoded

probability and that action potentials serve to coordinate and synchronize calcium dynamics

in di↵erent regions of the neuron using an e�cient (predictive) coding scheme. This new

interpretation of neural functioning, if validated, can lead to a deeper understanding of

neural dynamics, and it can set a new light on brains computations on a population level.

Moreover, we show how parameters controlling neural dynamics depend on the dynamical

properties (e.g. timescale of changes) of the encoded stimulus, and we propose a model of how

these parameters can be learned and adapted on-line using the experienced sensory history.

Our predictions create a link between neural functioning and the natural properties of the

world, which is compatible with experimental results.

On the population level, we propose a model of network dynamics and learning. An Hebbian

synaptic plasticity rule allows the population of neurons to adapt to the statistics of the

encoded stimulus in order to represent information optimally. Furthermore, in the absence

of sensory drive, the proposed model autonomously generates spontaneous activity driven

by molecular noise. The given activity takes the form of a sampling process from the prior

statistics of the stimulus. In the presence of additional (feedback) sources of information, the

population is able to implement Bayesian inference by sampling and, specifically, a Markov

Chain Monte Carlo (MCMC) algorithm that infers the posterior distribution over the en-

coded stimulus given all the available information. Such a process exploits neural sources of

variability as the generative engine supporting active perception. Additionally, we propose

that the MCMC method is implemented by selectively tuning the level of noise in the popu-

lation according to the received feedback information. If this will be verified experimentally,

it implies that the brain does not only use noise as a resource, but that the local level of noise
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is also actively controlled and tuned by the brain to achieve the desired behavior in di↵erent

situations. The proposed model of neural dynamics is able to autonomously switch between

di↵erent operational regimes, and it can be extended to solve di↵erent tasks (e.g. decision

making or action selection) that require computing expected values to select the optimal be-

havior. The given model is compatible with results from the literature, and the interpretation

of spontaneous activity as sampling from the prior is supported by experimental evidence.

1.3 Structure of this dissertation

This dissertation is organized as follows. Chapter 2 introduces some background concepts,

useful to better understand the rest of the exposition. No original work is presented in this

Chapter, and all the novel results are collected in the following Chapters. Chapter 3 and

Chapter 4 are conceptually related. Chapter 3 presents an abstract (computational) model

of single neuron spike-rate adaptation. The results discussed in this Chapter inspired a de-

tailed (algorithmic-implementation) model of how these computations can be performed in

a biophysical neuron, which is explored in Chapter 4. The given model of neural function-

ing proposes a new interpretation of known biophysical quantities (e.g. intracellular calcium

concentration) and, following this new interpretation, various stages of the neural processing

pipeline are reinterpreted and discussed. Chapter 5 proposes a model of neural dynamics,

learning and computations on a population level. This Chapter is structured independently.

Some of the concepts and approaches used in this Chapter are related to the previous Chap-

ters, yet its development is autonomous and doesn’t rely on any of the results or assumptions

made in the rest of the dissertation.



Chapter 2

Background theory

‘The actual science of logic is conversant at present only with things either certain, impossible
or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true
logic for this world is the Calculus of Probabilities, which takes account of the magnitude of
the probability (which is, or which ought to be in a reasonable man’s mind).’

James Clerk Maxwell, Letter to Lewis Campbell, July 1850

2.1 Introduction

This Chapter introduces some background (non-original) information, which will help the

reader to get familiar with some of the concepts we will be referring to in the rest of the

dissertation.

We will first introduce Bayesian theory of probability, which describes how subjective beliefs

should be rationally updated to account for additional sources of evidence. We will define

the Bayes’ theorem and we will give a simple case study. We will then explore how the

Bayesian approach to probability and model evaluation naturally accounts for model com-

8
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plexity (compatibly with the Occam’s razor), and we will give a brief overview of applications

of the Bayesian framework to di↵erent problems and fields.

Moreover, we will give a brief introduction to the fundamental constituents of the brain from

a physics perspective. We will investigate the dynamics of neurons, which are the elementary

processing units of the brain, and of synapses, which control neural communication. Finally,

we will discuss molecular sources of variability in neural dynamics, and the role of neuronal

noise in brain functioning.

2.2 Bayes and the logic of science

Physics rules governing the evolution of nature are intrinsically stochastic. This makes it

impossible for us to predict the future of physical systems from their current and past state,

especially when dealing with chaotic dynamics. Moreover, we usually have access to limited

available information, this limiting our ability to infer the current configuration of the envi-

ronment and to take decisions accordingly. For these reasons, statistics plays a crucial role

in the study of nature, and each prediction we can make about the future is going to be

formulated in the form of probabilities and probability distributions.

There are two schools of statistics: frequentist and Bayesian. The frequentist approach relies

on minimal assumptions, and it is based on the hypothesis that any given experiment can be

considered as one of an infinite sequence of possible repetitions of the same experiment, each

capable of producing statistically independent results (Everitt and Skrondal, 2002). This

approach can be used to test a null hypothesis, and its outcome will be in the form of an

either “true or false” conclusion from a significance test, which measures the probability of

the null hypothesis being correct given the observed data.

On the other side, the Bayesian approach takes into account all available information about
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the system of interest, and about the generative process underlying observations. This ap-

proach can be seen as an extension of propositional logic, and it allows reasoning with propo-

sitions whose truth or falsity is uncertain. Bayesian interpretation of probability enables us

to represent a state of knowledge about a system, and to update this knowledge whenever

additional sources of evidence get available. This approach requires more assumptions than

the frequentist one, but it provides a more robust and adaptable framework to work with

probabilities. Furthermore, the frequentist approach can be derived as a limit of a Bayesian

procedure (Wald, 1950). For this reason, in the following we will focus on the Bayesian

approach to statistics, and we will introduce its fundamentals and applications.

2.2.1 The Bayes’ theorem

Bayesian probability theory is based on the Bayes’ theorem, which describes how a subjective

degree of belief should rationally change to account for additional sources of evidence. This

approach to belief updating has been introduced by Rev. Thomas Bayes (1701 - 1761), and

Pierre-Simon Laplace first proposed it’s current mathematical formulation (Laplace, 1812).

According to the Bayes’ theorem (also known as Bayes’ rule), whenever a new observation

(B) is available, the belief P (A) over the hidden event A is updated as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(2.1)

where P (B) is the marginal probability of B, P (A) is the initial belief in A (usually referred as

‘prior’) and P (B|A) is the conditional probability of B given that A is true (usually referred

to as ‘likelihood’) which depends on a generative model of causes and consequences in the

world. Finally P (A|B) is the updated belief in A after taking into account the observation

that B is true (usually referred as ‘posterior’).

The Bayes’ rule can be easily derived from the chain rule (also called product rule) of prob-
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abilities (Schum, 2001)

P (A|B)P (B) = P (A \ B) = P (B|A)P (A) (2.2)

In addition, it is possible to note that the denominator term P (B) in the Bayes’ rule can

be interpreted as a normalization term. In fact, we can write P (B) =
P

j P (B|Aj)P (Aj),

and this guarantees that P (A|B) satisfies the normalization requirement for probabilities.

Therefore, we can rewrite the Bayes Rule in a compact form as

PosteriorB(A) / LikelihoodB(A) Prior(A) (2.3)

2.2.2 A case study

The Bayes’ rule can be interpreted as a tool which allows to translate observations about

the e↵ects into probabilities about the causes generating them. In order to do so, what we

need is a causal stochastic model of the world and a prior belief, which is the probability we

attribute to each cause before observing any e↵ect.

Causes  
(B)

Hidden  
States  
(B)

Observations 
(A)

Consequences 
(A)

Figure 2.1: Graphical representation of a generative model of causes and consequences, and
how it can be used (according to the Bayes’ theorem) to infer the probability of hidden states
given observations.

We can, for example, consider an application of the Bayes’ theorem to virus testing. Suppose

we want to test a patient for a certain virus, and we use an exam that is 98% sensitive and
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99% specific. This means that, if a healthy person is tested, he will result negative 98% of

the times, while if a person a↵ected by the virus is tested he will have 99% probability of

being diagnosed positive. In this case, being healthy or a↵ected by the virus will be the set of

possible causes, while resulting positive or negative will constitute the set of possible e↵ects.

The causal model will be given by the probability of the e↵ects (being positive or negative)

for each cause (respectively 0.02-0.98 if healthy and 0.99-0.01 if a↵ected). We also know that,

in average, only one person over 100 in the population is a↵ected by the given virus. Let’s

assume we run the test, and the patient results positive. We can use the Bayes theorem to

infer the probability that the given patient is actually a↵ected by the virus:

P (a↵ected|positive) = P (positive|a↵ected) P (a↵ected)

P (positive)
=

0.98 0.01

0.0297
= 0.3̄ (2.4)

As a result, the subject who resulted positive at the test for the virus has about 0.67% prob-

ability of being actually healthy, and should be diagnosed negative in absence of additional

convincing evidence. The reason for this is the existing prior we introduced in the equation:

since only one person every hundred is a↵ected by the virus (P (a↵ected) = 0.01), the likeli-

hood introduced by the outcome of the test is still not providing enough evidence that the

patient is actually a↵ected.

In a similar situation, a doctor with a frequentist approach to statistics would have discarded

any prior information. He would have deduced that the null hypothesis (the patient be-

ing healthy) is rejected with a p-value of 0.02 and, therefore, the patient would have been

erroneously diagnosed as a↵ected by the virus.

2.2.3 Bayes’ theorem, model comparison and Occam’s razor

When fitting models to data, Bayes’ theorem can be used at two di↵erent levels of inference.

At a lower level, given a certain model M and some data to be fitted d, we can use a Bayesian
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approach to infer the distribution over the model parameters g. We can write

P (g|d,M) =
P (d|g,M)P (g|M))

P (d|M)
(2.5)

The term P (d|M) is usually referred to as evidence for M and, at this level of inference, it

can be ignored, since we are only interested in the overall parameter distribution shape and

not in the normalization term. In most cases (especially when working in high dimensional

spaces) the posterior distribution will be significantly di↵erent than zero only in a small

region centered at the values of the best parameters g⇤ that maximizes it. For this reason,

we can locally approximate this function by evaluating the Hessian with in g⇤:

H = �rrlnP (g|d,M i)|g⇤ (2.6)

and Taylor expanding the log posterior with �g = g � g⇤

P (g|d,M) ⇡ P (g⇤|d,M)e(�
1
2 �gt H �g) (2.7)

At a higher level of inference, we can use the Bayes’ theorem to infer which of two alternative

models (M1 and M2) is more plausible given the data. We will assume that each model

depends on a set of parameters g, which can have di↵erent dimensionality for the di↵erent

models. Moreover, each model is associated with a prior probability of being the correct one,

and it also comes with a prior distribution over the parameters’ space P (g). For each model,

the likelihood probability of generating the data will be given by the average of the likelihood

for di↵erent values of the parameters:

P (d|M i) =

Z

dg P (d|g,M i) P (g|M i) (2.8)

From (2.5), we can recognize that the integrated function is linearly proportional to the

posterior distribution over the model parameters. Since the Hessian is defined as the gradient
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of a logarithm, then it is invariant for scaling and, for this reason, we can approximate the

integrated function as

P (d|g,M i) P (g|M i) ⇡ P (d|g⇤,M i) P (g⇤|M i)e(�
1
2 �gt H �g) (2.9)

and, using the Laplace method (Azevedo-Filho and Shachter, 1994), we can write

P (d|M i) ⇡ P (d|g⇤,M i) P (g⇤|M i) det�
1
2

✓

H

2⇡

◆

(2.10)

where, in the mono-dimensional case, det(H) will correspond to the standard deviation �g

of the parameter posterior distribution P (g|d,M). We can note that the likelihood of each

model is expressed as the product of two terms. The first term P (d|g⇤,M i) is usually called

“best fit likelihood”, and it accounts for how well the model can explain the data given the

best available choice of the parameters g⇤. The second term P (g⇤|M i) det(H) depends both

on the prior of the parameters evaluated at the best fit value g⇤, and on how rapidly the

accuracy of the fit decays if we deviate from the optimal parameters choice. This second

term can be interpreted as an Occam’s Razor factor, in the sense that it advantages simpler

models, with fewer parameters and a smaller parameters range. The presence of this term

prevents over fitting, and it provides a principled way to compare two models with di↵erent

complexity without the need to introduce external penalty terms.

2.2.4 Applications of the Bayes’ theorem

Bayesian theory can be invoked whenever we need to infer causes/structure from consequences

and observations. In the last decades the Bayesian methods gained considerable popularity,

mainly due to developments in computational methods and to the increased availability of

big-data, and for this reason they have been successfully applied to di↵erent fields. For

example, in Physics a Bayesian approach has been used to measure the appropriateness of
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models (Hasson and Swithenby, 1999) and for hypothesis testing (Golchi and Lockhart, 2015).

In Biochemistry, Bayes’ theorem allowed to develop the GOR method (Garnier-Osguthorpe-

Robson) for the prediction of secondary structures in proteins (Garnier et al., 1996) and the

BATMAN (Bayesian tool for methylation analysis) procedure for analyzing methylated DNA

immunoprecipitation (MeDIP) profiles (Down et al., 2008). Furthermore, Bayesian inference

is used in marketing and in market research, to evaluate strategies under uncertainty and

when dealing with limited data (Rossi and Allenby, 2003; Green and Frank, 1966). In Biology,

Bayesian methods are used to infer the evolutionary history, development and relationships

among groups of organisms (phylogeny) (Suchard and Redelings, 2006; Yang, 1993). In

Medicine, the Bayes’ theorem is used for drug testing (Berry, 2006) and for diagnosis (Saaty

and Vargas, 1998). Bayesian methods are largely used in the design of intelligent learning

systems (Lauria, 2005) and in data analysis (Carlin and Louis, 1997).

Bayesian Theory has also proven to be a very powerful tool for modeling the behavior of living

organisms. Colonies of ants (Nonacs and Soriano, 1998) and bees (Biernaskie et al., 2009)

have been shown to use a Bayesian approach to foraging and social interactions. Internal

dynamics of cells and bacteria has been confirmed to implement Bayesian computations, and

to take decisions (e.g. to express a particular gene) accordingly. The Bayesian framework

has been successfully used to describe the unconscious decision-making process of Basketball

players (e.g. the probability that Kobe Briant will decide to attempt a three vs two points

shot, given the observed outcome of his recent attempts (Neiman and Loewenstein, 2011)).

More in general, Bayesian models have been successfully used to describe human behavior

under uncertainty (Körding and Wolpert, 2003). People has been shown to be Bayesian in

perceiving information (Wozny et al., 2010; Ernst and Banks, 2002b), taking decisions (Bo-

gacz, 2007; Körding and Wolpert, 2004) and controlling muscle contraction (Wolpert et al.,

1995; Wolpert, 1997). Additionally, using Bayesian assumptions about how neural activity is

decoded by other neurons allowed to explain experimental receptive fields of neurons (Gan-

guli and Simoncelli, 2010) and the structure of spontaneous brain activity in anesthetized
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animals (Berkes et al., 2011). Therefore, there is evidence suggesting that the nervous system

of living organisms is able to implement Bayesian computations. How these computations are

physically implemented in the neural architecture remains an open question, and answering

this question requires a deeper understanding of brain biophysics and dynamics.

2.3 Physics of the brain

The human brain contains, in average, 100 billion (1011) neurons. Each neuron exhibits an

internal dynamics that follows some non-linear evolution equations, and its internal state is

coupled to the dynamics of thousand of other neurons by connections called synapses, giving a

typical brain an average well over 100 trillion (1014) total connections. Synapses communicate

pieces of information, which are encoded by neurons in the form of action potentials (also

called spikes or fires). In average, a single synapse transmits between 5 and 50 spikes every

second, producing more than one quadrillion (1015) neural interactions per second. Despite

the large number of neurons and neural connections involved, it is di�cult to study the

brain using a statistical physics approach, since the system is built to continuously fluctuate

between non-equilibrium states (Williams-Garćıa et al., 2014). Moreover, the main attractor

of the system is a critical point (de Arcangelis et al., 2006). This self-organized criticality

(SOC)(Bak et al., 1987) provides the system to exhibit macroscopic properties characteristic

of critical regimes without the need of parameters’ fine tuning. For all these reasons, the

brain represents one of the most complex known physical systems, which is able to generate

very rich macroscopic behaviors, such as learning, motor control and self-awareness.

2.3.1 Neurons

Nerve cells (usually referred as “neurons”) are the fundamental units of the brain. These

cells are specialized to carry information exploiting an electrochemical process, and to com-
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municate this information to other cells through neural connections (synapses). Each neuron

is composed of three regions: 1) the dendrites, receiving and combining information from

other neurons, 2) the soma, which contains the cell nucleus and that receives information

integrated by the dendrites and 3) the axon, which propagates and communicates informa-

tion to other neurons (see Figure 2.2A). In 1952, Alan Lloyd Hodgkin and Andrew Huxley

first introduced a model of non-linear di↵erential equations describing the electrochemical

mechanism that allows propagating information through the squid giant axon (Hodgkin and

Huxley, 1952). This model, which earned them the Nobel Price in Physiology or Medicine

in 1963, investigates the flow of ions (sodium Na and potassium K) through the lipid mem-

brane of the neuron. According to the proposed model, the ions’ flow is controlled by some

voltage-gated ion channels, and it depends both on the electrical conductance of that specific

ion channels (gi) and on the reversal potential (Vi) of the considered ion type. Specifically,

the model predicts that, for each ion, we can express the membrane current Ii as

Ii = gi(Vi � V ) (2.11)

where V is the membrane potential of the neuron. Moreover, there is a flow of ions provided

by the leakage of ions through the membrane potential, which can be express in a similar

form given the leakage conductance (gl) and the reverse leakage potential (Vl). Finally, we

can add to these terms an external drive (I), which represents an external perturbation (e.g.

the input received from other neurons or some artificially injected current). The sum of the

given currents a↵ects the membrane potential Vm according to the membrane capacitance

(Cm)

Cm
dV

dt
= gK(VK � V ) + gNa(VNa � V ) + gl(Vl � V ) + I (2.12)

In their model, Hodgkin and Huxley modeled the time and voltage dependent ion conduc-

tances gK and gNa as a combination of some dimensionless quantities between 0 and 1, which

are associated with potassium channel activation (m), sodium channel activation (n), and
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sodium channel inactivation (h). The dynamics of this quantities is described by ordinary

linear di↵erential equations and, as a consequence, the membrane potential can be modeled

using a set of four coupled nonlinear di↵erential equations as follows

Cm
dV

dt
= ḡKn

4(VK � V ) + ḡNam
3h(VNa � V ) + ḡl(Vl � V ) + I (2.13)

dn

dt
= ↵n(V )(1 � n) � �n(V )n (2.14)

dm

dt
= ↵m(V )(1 � m) � �m(V )m (2.15)

dh

dt
= ↵h(V )(1 � h) � �h(V )h (2.16)

Given an appropriate choice of the functions ↵i(V ) and �i(V ), the state variables V (t),

n(t), m(t) and h(t) describes how the neuron reacts to an external perturbation I(t). If

we treat the external perturbation I as a bifurcation parameter, it is possible to show that

the given system presents a Hopf bifurcation. If the value of I is constant in time, and

lower than a certain threshold I
th

, then the system reaches a steady equilibrium. Otherwise,

if the value of I exceeds the given threshold I
th

, the system generates a limit cycle: the

membrane potential suddenly undergoes a very large fluctuation (depolarization) driven by

a constructive resonance in the fast dynamics of Calcium channels, which brings positive

Calcium ions (Na+) inside the cell. When the membrane potential reaches a very high value

(around 50 mV), the slower dynamics of Potassium channels becomes dominant, a flow of

Potassium ions (K+) leaves the cell and it drives the membrane potential back to the original

value (repolarization), ready to undergo another cycle. Each depolarization-repolarization

event is called action potential (or spike). The duration of each cycle (and, therefore, the

time interval between successive spikes) will depend on the external perturbation I. Yet, as a

consequence of the Hopf bifurcation, there is a maximum allowed cycle duration, from which

the system jumps directly to the stable attractor and the limit cycle disappears. In a similar

fashion, if the neuron is perturbed using a single pulse instead of a continuous drive, there

will be two possible outcomes: if the pulse amplitude is smaller than a certain threshold, then
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the membrane potential will produce small oscillations around the equilibrium value and then

converge again to the resting state. If, on the other side, the amplitude of the perturbation is

big enough, an action potential will be generated. The action potential is then followed by an

hyperpolarization (refractory) period, in which the membrane potential overshoots its resting

value, and the neuron is not able (or it is less likely) to generate a new spike (see Figure

2.2B). Action potentials (or spikes) are traditionally considered to be the language used by

neurons to encode and communicate information, while membrane fluctuations around the

equilibrium value are usually discarded, and they do not influence synaptic communication.

The model of neural dynamics previously described (usually referred to as Hodgkin-Huxley

model) captures the internal neural mechanisms responsible for the generation of action

potentials, and it gives a detailed description of how the membrane potential dynamics of a

neuron responds to and propagates external perturbations. Yet, in various situations we can

decide to use a simpler and less computationally expensive model, that e↵ectively captures

the membrane response of a neuron to external inputs without getting to the level of details

required by the Hodgkin-Huxley model. A popular example of this class of e↵ective neural

models is the leaky integrate-and-fire model (Burkitt, 2006). This model assumes that the

membrane potential of a neuron follows the dynamics described by the following equation:

Cm
dV

dt
= I +

E � V

R
(2.17)

if V > Vth ! spike ! V = E (2.18)

where, again, Cm is the membrane capacitance of the neuron, an R is the membrane resis-

tance. The given model proposes that the membrane potential of the neuron integrates the

received inputs over time. Furthermore, the leakage component represents an exponential

decay towards the resting value E. Finally, the model assumes that whenever the membrane

potential exceeds a threshold value Vth, the neuron generates a spike, and the membrane

potential of the neuron is reset to the resting value E. This model can be expanded with
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the addition of various terms. For example, we can express the input drive I in form of

conductance, assuming that the pre-synaptic drive will a↵ect the neuron by modulating ions

channels open probability, and the consequent flow of molecules

I =
X

wiP i(Ei � V ) (2.19)

where the sum over i represents the sum over di↵erent synapses, wi represents the synaptic

strength, P i describes the time-dependent level of activation of the synapse (i.e. the conduc-

tance of the synaptic ion channels) and Ei is the equilibrium potential for the given synapse.

In addition, we can add to the model a stochastic component, for example a white noise term

dw. By adding these terms to our equation, we can write

Cm
dV

dt
=

X

wiP i(Ei � V ) +
E � V

R
+ dw (2.20)

if V > Vth ! spike ! V = E (2.21)

Finally, since we are dealing with an e↵ective model, we can further combine the model

parameters and write

⌧m
dV

dt
=

X

wiP i(Ei � V ) + (E � V ) + dw (2.22)

if V > Vth ! spike ! V = E (2.23)

where ⌧m is the timescale for the exponential decay of the membrane potential to its resting

value. The leaky integrate-and-fire model is largely used in the literature because it is analyt-

ically tractable (Rudolph and Destexhe, 2006), it is computationally inexpensive to simulate

(Hansel et al., 1998) and, despite being a very simple model, it is able to capture most

variability of neural spiking activity (given an appropriate choice of the model parameters)

(Jolivet, 2004; Burkitt and Clark, 1999; Mihalaş and Niebur, 2009).
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Figure 2.2: A. Visual representation of neural anatomy. B. Diagram representing the time-
course of neural membrane potential during a spike event and its di↵erent phases.

2.3.2 Synapses

Neurons communicate information through structures called synapses (Eccles, 2013). Specif-

ically, synapses usually convert electrical activity in the pre-synaptic axon (membrane fluc-

tuations and spikes) into the release of chemicals called neurotransmitters, which bind to

receptors in the dendrites of the post-synaptic cells. The binding of neurotransmitters can

control the conductivity of ions channels in the receiving cell (and a consequent ionic cur-

rent) or, alternatively, it can initiate a secondary messenger pathway that can either excite

or inhibit the post-synaptic neuron. This mechanism enables di↵erent neurons to communi-

cate and, given its complexity and the large variety of neurotransmitters, ions channels and

receptors involved, it is considered by many to be the chief processing unit of the brain (see

Figure 2.3A). It should be mentioned that another class of synapses exists, usually referred

to as electrical synapses (in comparison to the previously described chemical synapses) (Con-

nors and Long, 2004). These synapses exploit a very small gap junction between neurons,

which is permeable to electric current, and they allow to propagate electric signals. The main

advantage of these synapses is that they are very fast, but they enable much less processing

compared to a chemical synapse and, for this reason, they are relatively rare in vertebrates’
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nervous systems.

Synapses are highly plastic, and their evolution over time is largely responsible for memory

formation and adaptation in the brain (Lynch, 2004). Synaptic plasticity is a very rich and

complex behavior, it can manifest itself on di↵erent timescales (long or short term adapta-

tion) and it is usually classified as either potentiation (when high activity strengthens the

synapse) or depression (when repetitive spikes inhibit its activity). There are several mecha-

nism contributing to changes in synaptic strength over time (e.g. density of neurotransmit-

ters, probability of neurotransmitter release and responsiveness of the post-synaptic cell to

neurotransmitters), and synaptic adaptation strongly depends both on the activity history of

the synapse, and on the joint dynamics of the pre-synaptic and post-synaptic neurons. One

of the earliest models of synaptic adaptation was introduced by Donald Hebb in 1949, who

stated that “When an axon of cell A is near enough to excite a cell B and repeatedly or per-

sistently takes part in firing it, some growth process or metabolic change takes place in one

or both cells such that A’s e�ciency, as one of the cells firing B, is increased” (Hebb, 1961).

This means that, whenever a neuron is e�ciently driving the activity of another neuron, the

connection between the two neurons gets strengthened. This concept has been reformulated

by Carla Shatz’s in the famous statement “Cells that fire together, wire together” (Schatz,

1992; Doidge, 2007). On a first order approximation, this can be interpreted as a correlation

learning: when the activity of pre and post-synaptic neurons is correlated (spikes are close

in time), then the synapse strength is increased. A simple example of such a rule is given by

the following equation:

�wij = ⌘xixj (2.24)

where w represents the strength of the synapse connecting neuron i with neuron j, ⌘ is a

learning rate and xi is the level of activation of neuron i. In this case, the activity of neurons

is binned using a certain time window, usually of the order of few milliseconds. Yet, the

problem with this rule is that it can not distinguish causality: according to this equation,

if the post-synaptic spike proceeds the pre-synaptic one by a very short time there will still
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be learning, and the connection strength will increase. Yet, in this case it would be wrong

to assume that the pre-synaptic neuron successfully drove the post-synaptic dendrite, and

potentiation should not take place. To overcome this problem, a new class of plasticity rules

has been introduced, referred to as Spike-Timing-Dependent Plasticity (STDP) (Caporale

and Dan, 2008; Roberts and Bell, 2002). According to these rules, the synaptic change

depends on the relative time between pre-synaptic and post-synaptic spike, which is referred

to as Inter-Spike-Interval (ISI). The learning is usually asymmetric for positive and negative

Inter-Spike-Intervals: When a post-synaptic spike follows a pre-synaptic one, there will be

potentiation of the synapse (according to the relative time di↵erence), while if the order of

the spikes is inverted synaptic depression will take place (see Figure 2.3B). Synapses, together

with neurons, represent the fundamental units constituting the nervous system, and having

an accurate dynamical model describing their behavior is fundamental in order to understand

the functioning of the brain on a larger scale. On the other side, it is very di�cult to deeply

understand neurons’ and synapses’ dynamics without understanding their computational role

in brain’s functioning and, therefore, without putting them in the big picture of a working

nervous system.
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Figure 2.3: A. Visual representation of a synapse and its anatomy. B. Diagram of an example
of Spike-Timing-Dependent Plasticity (STDP) rule.
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2.3.3 Noise in the brain

Human behavior is intrinsically variable. During repeated trials, our response to a constant

stimulus/task is di↵erent each time and unpredictable. This behavioral variability (observed

in perception, decision making and motor control tasks) can be attributed to three di↵erent

causes: a) Even if we try to create a controlled environment and to keep the stimulus/task

constant, in each trial there will be some environmental di↵erences. This can a↵ect our

behavior in a significant way, given the chaotic nature of neural dynamics. b) The initial

state of the nervous system will be di↵erent at the beginning of each trial, and this will a↵ect

the whole trajectory of brain’s evolution during the task. c) Brain dynamics is intrinsically

noisy, referring to the Oxford English Dictionary definition of noise as ‘random or irregular

fluctuations or disturbances which are not part of a signal ... or which interfere with or obscure

a signal or more generally any distortions or additions which interfere with the transfer of

information.’

There are various sources of noise a↵ecting neural dynamics, which can be categorized into

five main groups: sensory, cellular, electrical, synaptic and motor noise (Faisal et al., 2008).

1) Sensory noise refers to the stochastic nature of external stimuli. For example, in chemi-

cal sensing (smell/taste) thermodynamic fluctuations a↵ect the binding of molecules to the

corresponding receptors (Bialek and Setayeshgar, 2005) or, in vision, quantum properties of

photons determines their absorption and counting by photoreceptors, which takes the form

of a Poisson process (Bialek, 1987). 2) Cellular noise underlies variability of internal neural

functioning. Given the same input current, the stochastic nonlinear dynamics of the neuron

will produce a variable response to the received stimulation. This a↵ects how di↵erent synap-

tic inputs are integrated, and it generates trial-to-trial variability in the timing of actions

potentials on the order of milliseconds (Tolhurst et al., 1983). This variability is captured,

for example, by the stochastic term we introduced in the integrate-and-fire neural model in

equation (2.21). 3) Electrical noise refers to the fluctuations in the membrane potential of
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the neuron, caused by the stochastic nature of ions channels and pumps responsible for con-

trolling the flow of ions through the neural membrane (Derksen and Verveen, 1966). These

fluctuations will a↵ect the threshold for initiating action potentials, as well as the propaga-

tion of action potentials through the axon. 4) Synaptic noise relates to the variability in

how signals are transmitted from one neuron to the other (Kleppe and Robinson, 2006). As

described in 2.3.2, electrical signals in the pre-synaptic neuron are communicated to post-

synaptic neurons using neurotransmitters. These neurotransmitters are usually contained in

synaptic vesicles (see Figure 2.3), and in some cortical neurons there can be very few of these

vesicles (up to only one). The presence of a pre-synaptic spike will a↵ect the probability

of releasing a vesicle, and the actual release of one or more vesicles will be stochastic and

unpredictable. Moreover, the response of the post-synaptic neuron to the release of neuro-

transmitters will also be stochastic, since the binding of neurotransmitters to receptors is

controlled by thermodynamics. 5) Motor noise identifies all the sources of variability intro-

duced by the motor neurons (which carry information from the central nervous system to the

muscles), and by the conversion of electrical impulses into forces in the muscles (Frank et al.,

2006). Since our only way to interact with the world is through muscles and sweating, motor

variability constitutes a fundamental component of behavioral variability. All these sources

of noise combined make neural dynamics highly stochastic and unpredictable. Furthermore,

this stochasticity propagates and accumulates through di↵erent stages of neural processing.

Noise in the brain represents a limit, since it a↵ects information transfer and reliability of

neural computations. The brain uses various approaches to minimize negative e↵ects of

noise on neural processing, the main ones being redundancy and prior knowledge. Using

redundant encoding of information enables the brain to average signals encoding the same

information. This, thanks to the central limit theorem, allows to increase the signal-to-noise

ratio and to improve information encoding (Kandel et al., 2000). Additionally, redundant

muscles are often used to control one single joint. In these cases, it has been shown that the

brain co-activates di↵erent muscles in such a way that minimizes variability of the movement
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execution given specific muscles variabilities (Haruno and Wolpert, 2005). On the other

side, having a prior knowledge about the structure of both noise and the encoded stimuli

allows to separate one from the others, and to extract relevant information from highly noisy

signals. Various sensory signals are highly structured (Barlow, 1961) and, for this reason,

filters (neurons receptive fields) that match these structures enables the brain to extract

more accurate information about the state of the world from the observed neural activity

(Adelman et al., 2003).

Noise has been historically always treated as a problem for neural processing (Shadlen and

Newsome, 1994). Yet, neural variability can actually have some beneficial e↵ects on brain

dynamics. In other fields, many ways have been discovered in which noise can be used to

improve the performance of a system. For example, “stochastic resonance” is a mechanism

that allows enhancing the performance of a system in detecting some target events. By adding

noise to a weak signal, the probability of exceeding the detection threshold is increased, and

such a mechanism has been discovered in cat visual neurons (Longtin et al., 1991) and in

other living systems. A further example of noise’s benefits is the process called “dithering”,

which allows randomizing quantization errors generated by the digitalization of continuous

variables. This method is widely used in image (Roberts, 1962) and audio (Pohlmann, 1985)

processing, since it prevents the rise of unwanted large-scale patterns in compressed files.

Another possible function of noise is to produce exploration, and to improve learning of an

unknown territory. For example, most reinforcement learning algorithms exploit random

variables to explore alternative states (Abbeel and Ng, 2005) and to avoid getting stuck in

local minima. For this reason, we argue that noise and neural variability can play a crucial

role in brain functioning and, in the next Chapters, we will try to show how neural noise can

be exploited as a resource by the nervous system.
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Adaptation in single neuron

‘It is hard to see how one could begin to develop a quantum-theoretical description of brain
action when one might well have to regard the brain as “observing itself” all the time!’...
‘Beneath all this technicality is the feeling that it is indeed “obvious” that the conscious
mind cannot work like a computer, even though much of what is involved in mental activity
might do so.’

Roger Penrose, “The Emperor’s New Mind”, 1989

3.1 Introduction

Our sensory systems are continuously recalibrating their sensitivity, to account for changes in

the environment (e.g. luminance of a scene) or in the observer (e.g. development or disease).

This recalibration process is often referred to as adaptation, and involves di↵erent stages of

the perception pipeline, from low-level sensing (e.g. sensitivity to brightness of photoreceptors

(Stockman et al., 2006)) to abstract representations (e.g. identification of facial features in

the cortex (Webster et al., 2004)). This suggests that adaptation operates at di↵erent levels

of neural coding as a general neural mechanism (Laughlin, 1989), and an abstract model of

27
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neural adaptation could be able to explain how it a↵ects neural computations in di↵erent

regions of the brain.

Neural adaptation mechanisms have been phenomenologically well described in the past (Kim

and Rieke, 2001; Baccus and Meister, 2002; Chander and Chichilnisky, 2001; Zaghloul et al.,

2005; Benucci et al., 2013), yet no complete understanding of its computational role and bio-

physical implementation is known. A key challenge is that biological neurons perform their

computations locally as a dynamical system, without any external supervision (using only

information directly available to the neuron) and in real-time “on-the-go”. Here, we inves-

tigate the computational role of adaptation in neural information encoding. Specifically, we

interpret adaptation as an inference problem and, using a generative model for the stochastic

dynamics of the encoded stimulus, we derive a normative model of neural adaptation which

can be implemented by a biophysical neuron.

Barlows e�cient coding hypothesis (Barlow, 1961) states that neural coding should be adapted

to the natural properties of the stimulus encoded, in order to represent it as e�ciently as pos-

sible (in terms of Shannon information) under biophysical (Faisal et al., 2005) and metabolic

(Laughlin et al., 1998; Sengupta et al., 2013) constraints. This can be achieved by minimizing

correlation and redundancy in neural activity, which limits information capacity. Under this

hypothesis, the information theory framework has been successfully exploited to link global

statistics of natural stimuli (e.g. statistics of natural images) to properties of neural coding

(e.g. receptive fields) (Adelman et al., 2003; Ganguli and Simoncelli, 2010). However, sen-

sory information often presents a correlation structure (both in space and time), and global

statistics of natural stimuli (e.g. luminance levels) typically di↵er from their local distribu-

tions. For this reason, according to Barlows e�cient coding hypothesis, we can assume that

neurons try to adapt their encoding scheme online to the local statistics of the stimuli. In this

sense, we can interpret adaptation as an ongoing inference process: a neuron infers on-line

the current value of the encoded stimulus, and it uses this information to adapt its response

function accordingly in order to maximize encoding e�ciency. Under this assumption, we
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can exploit a Bayesian theory framework to link dynamical properties of natural stimuli (e.g.

timescale on which stimulus change) to properties of neural adaptation (e.g. amplitude and

timescale of adaptation).

Starting from a generative model of the stimulus stochastic dynamics and exploiting Bayesian

probability theory, we derive a normative model of neural adaptation that links properties of

adaptation to the time structure of the encoded stimulus (Ticchi and Faisal, 2014). We as-

sume that, to infer the current value of the stimulus, neurons exploit both observations about

their own spiking history and the prior knowledge about the stimulus dynamical properties.

We mathematically solve the inference problem and we show that, under some biophysically

reasonable assumptions, the optimal solution can be approximated by a first-order linear dif-

ferential equation, which can be implemented by neurons ion-channels dynamics. Our model

provides various quantitative predictions, which are in good agreement with experimental

results about spike rate adaptation in V1.

3.2 Methods

We take a normative approach, and we assume that the computational goal of neural adap-

tation is to maximize information encoded by a neuron (per spike event) about a certain

hidden variable. This hidden variable follows a stochastic dynamics (e.g. random walk or

stochastic jump process) with some specific dynamical properties (e.g. timescale on which

the value changes, prior distribution mean, prior distribution standard deviation). In order

maximize encoding e�ciency, the neuron exploits its own spiking history to infer on-line the

instantaneous mean of the encoded hidden variable, and it uses the inferred value as divisive

gain normalization to control its response function. This provides the neuron to encode only

deviations of the hidden variable from the predicted value (predictive coding (Boerlin et al.,

2013)) instead of representing the value itself. By doing this, neural adaptation reduces cor-
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relation in the spiking activity of the neuron (coding redundancy), this maximizing entropy

of the information channel and, therefore, information capacity. Moreover, this mechanism

guarantees the average firing rate of the neuron to remain close to the desired value (which

depends on neural biophysical and metabolic constraints), while the value of the encoded

variable can span various orders of magnitude while dynamically changing.

In order to infer the instantaneous value of the encoded variable, the neuron will exploit both

the recent observations about its own spiking activity and some prior knowledge about the

dynamical properties of the encoded stimulus. Whenever a new observation is available (a

spike event is generated, preceded by a certain inter spike interval), this information is used

to estimate the value of the hidden variable that is driving neural activity. Furthermore,

as time elapses, prior knowledge about the time structure of the stimulus is used to update

the current estimation (distribution) of the given variable, to account for the increase in

uncertainty derived from the stochastic dynamics of the stimulus. Finally, the updated

distribution (specifically its mean value) is used by the neuron to tune its response function

(using divisive gain normalization), and to control the generation of next spike event.

It is interesting to note that, in our model, neural adaptation only relies on the spiking history

of the given neuron to infer the current value of the hidden variable. Since the spiking activity

of a pre-synaptic neuron is known by a post-synaptic neuron decoding it, then the proposed

encoding scheme is nonambiguous, and can be decoded optimally by a post-synaptic neuron.

The adapting neuron would potentially have access to additional sources of information

regarding the current value of the hidden variable (e.g. its membrane potential or synaptic

activation level), but using these quantities in the inference process would make the encoding

scheme ambiguous and impossible to be decoded optimally.

The full mathematical solution to the problem is relatively complicated (see supplementary

material), and its implementation is computationally expensive. In fact, it requires to encode

the full posterior distribution in each moment in time and to update it in each iteration,
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which represents a complicated task for a biophysical neuron. We show that, under the

biophysically reasonable assumption that the average inter spike interval is shorter than the

timescale on which the stimulus changes, the posterior distribution of the hidden variable

can be approximated using a gamma distribution. In this case, the inference problem can be

rewritten in the form of flow equations for the parameters of the gamma distribution, which

can be implemented by the internal dynamics of the neuron.

3.2.1 The model

We model the adaptation process as composed of two sub-processes: a. the neuron uses its

own activity to infer the instantaneous stimulus statistics and then b. it adapts its internal

response properties accordingly to maximize information transfer to downstream neurons.

In a., the neuron infers the posterior distribution over the future expected synaptic input

drive I, which is the variable encoded by the neuron. For convenience, we will express

the input drive I in units of firing rate, assuming that in absence of adaptation the input

drive would imply a particular firing rate of the neuron (or a certain probability density to

generate a spike event at each moment in time). To infer the distribution of I, the neuron

exploits both the information contained in its own spiking history and some prior knowledge

about the dynamical properties of the stimulus. The neuron may have access to additional

sources of information about I available within the cell, e.g. membrane potential fluctuations

or individual synaptic drives. Yet, the goal of the proposed adaptation mechanism is to

implement predictive coding and, for this reason, we need to avoid decoding ambiguities

(Fairhall et al., 2001). Therefore, we will base the adaptation process only on quantities that

can be observed by the external decoder, i.e. by the post-synaptic neuron.

We show that, for a broad class of input dynamics, the inferred posterior is well described by

a gamma distribution, and we derive the evolution equations for the distribution parameters.

Under the ecologically reasonable assumption that the input stimulus changes on a time-scale
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longer than the average inter-spike interval, we find the dynamics of the inference process to

be well described by first order di↵erential equations. We argue that these equations can be

implemented by the internal dynamics of the neuron, and that the inferred quantities can

be used by the neuron to regulate its response behavior accordingly (Turrigiano, 2008). We

also show how weighted temporal integration may enable postsynaptic neurons to decode the

information encoded in the spiking activity of a presynaptic Bayesian adapting neuron.

Our model uses divisive gain normalization, which is a widely documented mechanism for

gain control both on the single neuron and population level (Olsen et al., 2010; Wark et al.,

2007). Specifically, we propose that neurons will use the inferred distribution of I to calculate

its mean c (i.e. the expected value of the input in the immediate future) and use this value

to scale (adapt) the output firing rate ⌫:

⌫ = I
µo

c
(3.1)

where I is the input drive of the neuron (in units of firing rate) and µo is the ideal firing rate,

which depends on neural biophysical constraints (e.g. metabolic cost of generating action

potentials (Sengupta et al., 2013) and maximum peak firing rate, due to refractory period

(Yeomans, 1979)). The resulting value ⌫ will correspond to the instantaneous probability

density of the neuron to generate a spike event or, equivalently, with the average firing rate of

the neuron. Equation (3.1) provides the neuron to maintain its average firing rate close to the

desired value µo and, therefore, to maximize information transfer under neural biophysical

constraints. To maximize information capacity of the information channel between pre-

synaptic and post-synaptic neurons, Information Theory prescribes maximizing the entropy

of spiking activity: Each spike event should be ideally as independent as possible from the

preceding history of spikes. In our model of neural adaptation, this condition translates into

the mean of the future firing rate ⌫ being independent of the spiking history (as inferred

by an external observer), thanks to (3.1). Each spike event will therefore encode new non-
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redundant information (Hosoya et al., 2005; Rao and Ballard, 1999; Boerlin et al., 2013), and

spiking activity will e�ciently reflect unpredicted changes in the stimulus, thus implementing

predictive coding (Fig. 3.1A).

In the first part of the derivation we will assume that, ideally, the adapting neuron knows

everything about the dynamical properties of the input; then, in Section 3.2.6, we will show

how adaptation parameters can be learned on-line and locally.

3.2.2 Inferring the input drive from neural spiking activity

In order to infer the instantaneous input drive I we consider an ideal observer, who exploits

both the likelihood encoded in the inter-spike intervals of the neuron and some prior knowl-

edge about the input dynamics to infer the posterior distribution over I. We approximate the

spiking behavior of the single neuron by an inhomogeneous Poisson process. This approxi-

mation provides a good description of the variability observed in neural spiking (Shadlen and

Newsome, 1994; Faisal et al., 2008). However, more detailed spiking models (Kass and Ven-

tura, 2001) could be used in the future, to investigate how specific features of neural behavior

(such as limits set by absolute and relative refractory periods) a↵ects model predictions.

In the first part of this section we assume that the neuron is not adapting, and that the

instantaneous firing rate is directly proportional to the input drive ⌫ = I. Later, in Section

3.2.4, we will show how the derived inference mechanism can be extended to an adapting

neuron.

Let D(⌫) be the posterior belief about the input ⌫ = I. Whenever a new spike (and its

inter-spike interval ⌧) is observed, the current posterior distribution becomes the prior for

a new inference iteration. In particular, we know that the inter-events distribution of a

Poisson process is exponentially distributed and, therefore, given the observation ⌧ , the

normalised likelihood distribution over the unknown rate ⌫ = I will be gamma distributed,
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with parameters ↵L = 2 and �L = ⌧ :

L⌧ (⌫) = ⌧ 2⌫e�⌫⌧ = g(⌫ ; ↵L = 2, �L = ⌧) ; g(⌫; ↵, �) =
�↵

�(↵)
⌫↵�1e��⌫

The mean and variance of the Gamma distribution can be calculated, respectively, as

µL =
↵L

�L

=
2

⌧
; �2

L =
↵L

�2

L

=
2

⌧ 2
(3.2)

The gamma distribution is the conjugate prior of the exponential distribution (Gelman et al.,

2003) and, therefore, if the prior is gamma distributed, we can exploit the properties for the

product of Gamma distribution to prove the following relation between the parameters of

the prior Dt and of the posterior Dt+⌧ :

Dt+⌧ (⌫) =K L⌧ (⌫)Dt(⌫) = g(⌫; ↵L + ↵t � 1, �L + �t) = g(⌫; ↵t+⌧ , �t+⌧ ) (3.3)

In terms of mean and variance, whenever a new inter-spike interval is observed, the parameters

of the Gamma distribution are update as follows:

µt+⌧ =
↵t + ↵L

�t + �L

=

µ2
t

�2
t

+ 1
µ

t

�2
t

+ ⌧
; �2

t+⌧ =
↵t + ↵L

(�t + �L)2
=

µ2
t

�2
t

+ 1

( µt

�2
t

+ ⌧)2
(3.4)

We can now consider the regime when the time-scale over which the input is changing is

bigger than the average inters-spike interval

< ⌧ >t ⌧ 1

ri
(3.5)

where < · · · >t denotes averaging over time and ri is defined as the inverse of the time-scale

on which the encoded stimulus changes. This assumption is compatible with experimental

observations: the average inter-spike interval of cortical neurons is usually within the range
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50ms < ⌧ < 1s (Roxin et al., 2011), while the time scale on which the statistics of the

stimuli changes (e.g. we enter and exit a dark tunnel) is usually on the time scale of seconds.

In addition, the given assumption is justified by the fact that a neuron would evidently be

ine↵ective in representing variables that changes faster than its own firing rate. It is possible

to show that condition (3.5) implies �2

t ⌧ �2

L = 2

⌧2
or, equivalently, µ

t

�2
t

= �t � �L = ⌧ . In

the given regime, we can Taylor expand (3.4):

µt+⌧ =µ⌧ +
�2

t

µt

(1 � µt⌧) � �4⌧

µ2

(1 � µ⌧)

✓

1 +O

✓

�2

t ⌧

µt

◆◆

(3.6)

�2

t+⌧ =�2

t +
�4

t

µ2

t

(1 � 2µt⌧)

✓

1 +O

✓

�2

t ⌧

µt

◆◆

(3.7)

From now on, we will only consider the first order term of the expansion. Equations (3.6)

and (3.7) describe how the posterior distribution over I = ⌫ is updated according to a new

observed inter-spike interval. Yet, the dynamic of the input I is stochastic and unknown,

this introducing additional uncertainty about the current value of I. If we do not receive any

new information for a long time, the entropy of the posterior belief D(I) will increase, and

the distribution will eventually converge to the global prior input statistics P (I). How this

information loss takes place and how it a↵ects the posterior distribution D(⌫) depends on

the underlying dynamics of the input.

3.2.3 Exploiting prior knowledge about the temporal structure of

the input

We use a stochastic jump process as the generative model for the dynamics of the input

drive I = ⌫. Specifically, we consider a hidden Poisson process with rate ri and assume that,

whenever an event takes place, the value of the input I is set to a new random value, sampled

from a Gamma distribution with parameters ↵i and �i.
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The distribution g(I ; ↵i, �i) represents the prior statistics of I, and the value of I = ⌫t

remains constant as long as there is no event in the underlying Poisson process. We will use

this model because of its mathematical simplicity and its flexibility in describing di↵erent

processes. We also tried alternative generative models for the input dynamics (e.g. modified

Wiener process) and we achieved consistent analytical results, which will not be reported

here for brevity.

In the stochastic jump model, the probability of a jump taking place during an infinitesimal

time interval ⌧ is ri⌧ , and the updated belief Dt+⌧ (⌫) is a weighted mixture of the posterior

at time t Dt(⌫) and of the input statistics P (⌫) = g(⌫;↵i, �i), with weight ri⌧ .

Dt+⌧ (⌫) =(1 � ri⌧)Dt(⌫) + ri⌧P (⌫) = (1 � ri⌧)g(⌫ ; ↵t, �t) + ri⌧g(⌫ ; ↵i, �i) (3.8)

We approximate the resulting distribution in equation (3.8) to a Gamma distribution with

matching mean and variance. In general, a weighted sum of Gamma distributions is not

necessarily Gamma distributed. However, as a consequence of condition (3.5), it always

holds that ri⌧ ⌧ 1. Thus, making the approximation accurate with negligible consequences.

Under this assumption, we can exploit the equations for mean and variance of a weighted

mixture of distributions

E(X) = E[E(X|✓)] ; Var(X) = E[Var(X|✓)] + Var(E[X|✓]) (3.9)

in order to write the flow equations for the mean and variance of the approximated posterior

Gamma distribution D(⌫)

µt+⌧ =(1 � ri⌧)µt + ri⌧µi = µt + ri⌧(µi � µt) (3.10)

�2

t+⌧ =(1 � ri⌧)(µ
2

t + �2

t ) + ri⌧(µ
2

i + �2

i ) � ((1 � ri⌧)µt + ri⌧µi)
2 (3.11)

In the considered regime (3.5) of a slow changing external input ri⌧ ⌧ 1, we can expand
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equation (3.11) as follows:

�2

t+⌧ = �2

t + (�2

i � �2

t + (µt � µi)
2)ri⌧ +O(r2i ⌧

2) (3.12)

Therefore, integrating both the e↵ects of the information gain (3.6)(3.7), derived from the

observation of the inter-spike interval ⌧ , and the information loss (3.10)(3.12), caused by the

unknown input dynamics during the time interval ⌧ , whenever a new inter-spike interval ⌧ is

observed the belief about the input value ⌫ is updated as follows:

µt+⌧ =µt +
�2

t

µt

(1 � µt⌧) + ri⌧(µi � µt) (3.13)

�2

t+⌧ =�2

t +
�4

t

µ2

t

(1 � 2µt⌧) + ri⌧(�
2

i � �2

t + (µt � µi)
2) (3.14)

In each moment in time, the posterior distribution over the input drive I = ⌫ will be given

by Dt(⌫) = g(⌫;↵t, �t) where ↵t =
µ2

t

�2
t

and �t =
µ

t

�2
t

.

3.2.4 From inference to neural adaptation

We can now introduce adaptation by rescaling the firing rate of the neuron as in (3.1):

⌫⇤ = ⌫
µo

c
(3.15)

where c is the mean of the inferred posterior distribution over the input drive I. Consider

two neurons which receive the same input I: the non-adapting neuron will respond with

an instantaneous Poisson firing rate ⌫, the adapting neuron with a Poisson firing rate ⌫⇤,

according to the adaptation driven rescaling. In (3.13) and (3.14) ⌧ represents a sample from

an exponential distribution with mean ⌫�1. Yet, in the adapting neuron we will observe

the value ⌧⇤, which is a sample from the scaled exponential distribution with mean ⌫⇤�1 =



38 Chapter 3. Adaptation in single neuron

(⌫ µ
o

c
)�1. We can therefore replace ⌧ with ⌧⇤

µ
o

c
in (3.13) and (3.14)

ct+⌧⇤ =ct +
�2

t

ct
(1 � µo⌧⇤) + ri⌧⇤(µi � ct) (3.16)

�2

t+⌧⇤ =�2

t +
�4

t

c2t
(1 � 2µo⌧⇤) + ri⌧⇤(�

2

i � �2

t + (ct � µi)
2) (3.17)

The conversion term µ
o

c
has not been introduced in the substitution of the second ⌧ with

⌧⇤ in both (3.16) and (3.17). The reason is that the information loss depends only on the

absolute elapsed time and on the underlying input dynamics, and not on the process from

which the inter-spike interval is sampled.

3.2.5 Approximate inference: Steady state solution of the poste-

rior variance

To simplify the proposed inference mechanism, we will now reduce the system of coupled

equations (3.16) and (3.17) to a single equation describing the evolution of ct, which can be

potentially implemented by biochemical or electrical processes inside the neuron.

To this end, we investigate the behaviour of �2

t and approximate it as a function of ct. We

first derive the stationary solution �2

e of equation (3.17), that satisfies

<
�4

t

c2t
(1 � 2µo⌧⇤) + ri⌧⇤(�

2

i � �2

t + (ct � µi)
2) >= 0. (3.18)

Using Ito’s Lemma we can exploit the relation < ⌧⇤ >= 1

µ
o

and, as ⌧⇤ appears only as a linear

term inside equation (3.17), we can write

�4

t

c2t

✓

1 � 2µo
1

µo

◆

+ ri
1

µo

(�2

i � �2

t + (ct � µi)
2) = 0 (3.19)
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The only positive solution of this equation being

�2

e =
�c2t ri + ct

p
ri

p

µo4(ct � µi)2 + c2t ri + 4µo�2

i

2µo

(3.20)

We can now recall condition (3.5) which, translated to the dynamics of the adapting neuron,

becomes < ⌧⇤ > ⌧ 1

r
i

. BY exploiting the relation < ⌧⇤ >= 1

µ
o

, we can write ri ⌧ µo. Using

this relation we expand (3.20) to first order in
q

r
i

µ
o

�2

e ⇡ ct

s

ri ((ct � µi)2 + �2

i )

µo

(3.21)

�

2
i

!1
===) �2

e ⇡ ct

s

ri�2

i

µo

(3.22)

The expansion for �2

i � (ct �µi)2 is not completely justified. In fact, by definition, ct tracks

⌫ and P (c) ⇡ P (⌫). Therefore, < (ct � µi)2 >⇡ �2

i .

In the following, we will show that the linear approximation �2

e _ ct is reasonable indepen-

dently of the value of �2

i . The reason is that for small �2

i the parameter ct will have small

oscillations around its mean value µi and, therefore, a linear approximation will be good

enough for our purposes.

First, we can consider the case of big �2

i , e.g. �2

i = µ2

i , that represent the situation of an

exponentially distributed prior. In this regime, the function can be reasonably approximated

by a linear function in ct in all the region of interest.

On the contrary, if we consider small �2

i , we lose the desired linear behaviour of the function

in the given region. However, for small �2

i , ct will be mainly concentrated around its mean

value µo. Moreover, we can see that the derivative

@c
t

�2

e =
ct

p
r(2ct � 2µi)

2
p

µo (c2t � 2ctµi + µi
2 + �2

i )
+

p
ri

p

µo (c2t � 2ctµi + µi
2 + �i)

µo

(3.23)
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which, if evaluated in ct = µi, becomes

@c
t

�2

e =

p

ri�2

ip
µo

(3.24)

This meaning that the linear approximation in ct

�2

e ⇡ �2

e |ct
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e |ct
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p
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(ct � µo) (3.25)

=

p

ri�2

ip
µo

ct (3.26)

is a reasonable around the mean value ct ⇡ µi. For this reason, from now on we will accept

this linear approximation, and for our purposes we will define �2

e = k ct where

kµ
i

,�2
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,µ
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,r
i

=
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(3.27)
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Z 1
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�2

e

c
dc (3.28)

to evaluate the given function we can Taylor Expand �2

e around µi, which is the mean value

of P , and get
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which leads to
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We can now use the moments generating function of the Gamma distribution

mgf(t) =

✓

1 � t

�

◆�↵

(3.31)
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to calculate the n-order moment of the distribution

Mn
µ

i

= < (c � µi)
n >P (3.32)

given

Mn
0

= < cn >P= @n
t mgf(t)|t=0

(3.33)

Finally, we can write

Mn
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�n
(3.34)
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�2n�2

i

µn�2

i

(3.36)

At this point, we can explicitly calculate the terms @4

c�
2

e |µi

using equation 3.21
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Substituting each explicit term in equation 3.29, we can now write
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and, simplifying,
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The full series expansion would be exact if dealing with a gaussian distribution, but four our

purposes will be su�cient, as for small values of the variance regime the gamma distribution

converges to the Gaussian. If we calculate the first three terms of the expansion explicitly,

we get

kµ
i

,�2
i

,µ
o

,r
i

⇡ 9

8

p

ri�2

ip
µo

(3.47)

and we can write

�2

e ⇡ kµ
i

,�2
i

,µ
o

,r
i

ct ⇡ 9

8

p

ri�2

ip
µo

ct (3.48)

It is possible to show that using higher order terms in the Taylor expansion would only a↵ect

the multiplicative factor 9

8

, and not the structure of the term. However, for the purposes

of our neuron model, the approximation (3.22) will be su�cient: Figure 3.1B shows how

the expansion in (3.21) and the linear approximations in (3.22) and (3.48) compare with the

full analytical stationary solution (3.20). Furthermore, In Figure 3.1C, the approximation

in (3.48) is compared with the exact values, calculated simulating in silico the stochastic
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process and inferring the exact posterior distribution from the Bayes’ formula (without any

approximation). The model accurately predicts the simulated values and the power law

dependence on the input properties ri and �2

i for small values of ri.

Our approximation relies on assumption (3.5), which imposed an upper limit on ri. For this

reason, the model predictions diverges from the exact values for large values of ri, as can

be observed in 3.1C. Given the overall low firing rates of neurons in cortex (0.1 � 20 Hz)

compared to their peak firing rates (60 � 300 Hz), we consider this approximation to hold

for most scenarios. The linear dependence �2

e _ ct in (3.22) greatly simplify our evolution

equation for ct. In fact, by combining (3.48) with (3.16), we can write a closed form evolution
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Figure 3.1: (A) Neuronal responses of a non-adapting (orange) and an ideally adapting
(green) neuron driven by the same input. The adapting neuron represents unpredicted
changes in the input instead of the input itself. (B) The �2

e approximations of equation (3.21)
(green line), (3.22) (blue line) and (3.48) (orange line) are compared with the exact solution
in (3.20) (black dashed line). Parameters �2

i = 100s�2, µo = 10s�1, µi = 10s�1, ri = 0.01s�1.
(C) The approximated expected value (continuous line) for the term h�2

t /ctic
t

= 9/8
p

ri�2

i /µo

(as in (3.48)), is compared with the simulation results (error bars), computed by simulating
the stochastic system in silico and inferring the exact Bayesian posterior D(⌫) (without any
approximation). For large values of ri, condition (3.5) is violated and, as expected, the sim-
ulation results diverge from the model predictions. Parameters used in the simulation are
µo = 10s�1 and µi = 10s�1.
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equation for the mean of the inferred posterior distribution about the instantaneous input ct:
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(3.49)

Equation (3.49) describes how the inference about the mean of the future input c (made by

an ideal observer) evolves according to the observed inter-spike intervals ⌧⇤ of our adapting

neuron. The given equation, expressed in (3.49) in form of finite-di↵erences, can be also

rewritten in form of di↵erential equation as

dct
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= kµ
i
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i
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o
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i
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8

s

ri�2

i

µo

(3.50)

Crucially, this is a relatively simple first order di↵erential equation, and could potentially be

computed by simple biological mechanisms (linear chemical reaction kinetics) in neurons. In

fact, c could potentially represent a biophysical quantity of the neuron internal dynamics,

e.g. the concentration of some ion or neuro-transmitter, which acts on the neural response

to the stimuli by scaling its spiking response rate. This action may take place both in the

synaptic connections, the dendrite or where the spike initiation process takes place at the

axon hillock. Additionally, we can predict that the concentration c of this putative physical

quantity will follow the following physiologically testable dynamics: whenever perturbed it

converges exponentially to its equilibrium value with time scale ri. Moreover, whenever a

spike takes places the concentration increases by value K1
c
, while a continuous leakage brings

the concentration down with a rate K2
c
.

3.2.6 Local, on-line learning of optimal model parameters

As mentioned, all the parameters in equation (3.49) depend on the dynamical properties of

the encoded stimulus. This means that, to produce optimal adaptation, the neuron needs to
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fine-tune its adaptation properties to match the time structure of its input. Specifically, ri

corresponds to the inverse of the time scale on which the input ⌫t changes, µi represents the

average input value and �2

i is the variability of the input ⌫t, i.e. a measure of the range of

variation of the input. Finally, µo is the desired neural firing rate that the adaptation process

tries to maintain in order to maximize information transfer.

We propose a model that enables a neuron to learn the optimal adaptation parameters locally

and online, without the need of any external supervision and exploiting neuron’s spiking

activity. This allows the neuron to simultaneously solve two di↵erent tasks: a) The neuron

learns the optimal adaptation parameters from the time structure of the input (long time

scale). b) It uses the learnt parameters to adapt optimally to the local statistics of the input

(short time scale) in order to encode information e�ciently.

In order to derive how the model parameters should evolve, we can write

ct+⌧ =ct + k̂t (1 � µo⌧) + r̂t⌧(µ̂t � ct) (3.51)

where (k̂, r̂, µ̂) are now time dependent parameters. Their dynamics is regulated by evolu-

tion equations that, ideally, converges to optimal values (kµ
i

,�2
i

,µ
o

,r
i

, ri, µi). These optimal

parameters result in the neural adaptation to be optimal given input dynamics: In order to

maximize information transfer to optimally encode information, the aim of neural adaptation

is to maximise the entropy of the inter spike interval distribution in every moment in time.

This implies that each single spike event ⌧i needs to be independent from the past spiking

history of the neuron, encoded both in the variables ct and ⌧j<i. In the following, we will

show how we can exploit this property in order to derive internal dynamics for the parameters

(k, ri, µi) that results in them converging to the optimal values. In particular, we will exploit



46 Chapter 3. Adaptation in single neuron

the conditions

< c >=< ⌫i >= µi = µ̂ (3.52)

Corr(⌧, ct+⌧ � µ̂) = 0 (3.53)

Corr(⌧i, ⌧i�1

) = 0 (3.54)

where Corr is the correlation function, ⌧ = ⌧i and ⌧i�1

represent, respectively, the last and

the next to last observed inter-spike intervals. First, it is easy to show that condition (3.52),

is satisfied by the evolution equation

µ̂t+⌧ = µ̂t + ↵µ(ct � µ̂t) (3.55)

where the parameter ↵µ controls the velocity at which µ̂ is converging to the optimal value

µi. Analogously, we can consider condition (3.53) and the properties

r̂t > ri ) Corr(⌧, ct � µ̂t) < 0 ) < ⌧(ct � µ̂t) >t < 0 (3.56)

to derive the evolution equation for r̂

r̂t+⌧ = r̂t + ↵r(⌧(ct � µ̂t)) (3.57)

where, again, ↵r controls the convergence velocity of r̂ to ri. Finally, we can consider condition

(3.54) and the properties

k̂t >
9

8

s

ri�2

i

µo

) Corr(⌧i, ⌧i�1

) < 0 ) < ⌧i⌧i�1

� µ2

o >t < 0 (3.58)

to derive the evolution equation for k̂

k̂t+⌧
i

= k̂t + ↵k(⌧i⌧i�1

� µ2

o) (3.59)
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where ↵k controls the convergence velocity of k̂ to kµ
i

,�2
i

,µ
o

,r
i

. The evolution equations

(3.55),(3.57) and (3.59) provide the internal parameters of the neuron (k̂, r̂, µ̂) to adapt

to the dynamical properties of the input (ri, µi, �2

i ) and to converge to the optimal configura-

tion. The proposed model, currently expressed in form of finite di↵erence equations, can be

rewritten as a linear system of 4 coupled first-order non-homogeneous di↵erential equations

with multiplicative delta function terms (Nedeljkov and Oberguggenberger, 2012)

dct
dt

= k̂t (�(t � t
spike

) � µo) + r̂t(µ̂t � ct) (3.60)

µ̂t

dt
= ↵µ�(t � t

spike

)(ct � µ̂t) (3.61)

r̂t
dt

= ↵r(ct � µ̂t) (3.62)

k̂t
dt

= ↵k((tspike i

� t
spike i-1

) � �(t � t
spike

) µ2

o) (3.63)

where “spike i” is the last observed spike at time t, µo is the desired firing rate for the neuron,

↵µ ↵r and ↵k are parameters controlling parameters adaptation rates and ct is the variable

controlling neural adaptation (according to equation (3.1)). The given system can be poten-

tially implemented by the internal dynamics of a biological neuron, where the parameters are

stored in form of ions or neurotransmitters concentration.

3.2.7 Sanity check: Testing approximated model predictions

To test our model of neural adaptation, we compared the predictions of our adaptation

dynamics with the results of optimal Bayesian computations, implemented in-silico by nu-

merically computing the exact posterior distribution D(⌫) and Bayes’ equation without any

approximation. In particular, we implment a Markov Chain Monte Carlo process reproduc-

ing the stochastic dynamics of the input value ⌫t and we simulated the spiking activity of the

neuron by generating samples from a Poisson process with rate ⌫
t

c
t

, where ct is the internal
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adaptation parameter of the neuron. After every spike event, we adapted the parameter ct

according to equation (3.49). We used the evolution equations (3.55), (3.57) and (3.59) to

adapt on-line the internal parameters (µ̂, r̂, k̂) to the input dynamical properties. Simulta-

neously, we computed the exact Bayesian posterior distribution D(⌫) and we adapted this

distribution after each spike event according to the exact Bayes’ equation, assuming a com-

plete knowledge of the input dynamical properties, of the neural spiking activity and of the

time dependent parameter ct regulating neural spiking activity. Finally, we compared the

predictions of our adaptation model ct with the average of the exact posterior distribution

D(⌫t).

The model proved to be able to learn autonomously the optimal configuration for the inter-

nal parameters (µ̂, r̂, k̂) from the input dynamical properties (time-scale of weeks, see Fig.

3.2ABC) and to compute near-to-optimal inference of the posterior mean (time-scale of sec-

onds, see Fig. 3.2F ; R2 value between approximate and exact posterior mean consistently

> 0.95). It is interesting to note that the approximated model, which captured most of the

variability of the exact inference solution, necessitate much less computational power to be

solved compared to the original inference problem, which requires to encode the full posterior

distribution in each moment in time, and to update it in each iteration. Furthermore, the

adapting neuron proved to be able to encode the value of the input drive I more accurately

than the non adapting neuron, exploiting the same number of spikes (see Fig. 3.2F; MSE

respectively 5s�2 and 11s�2).

3.2.8 Decoding

The proposed model of neural adaptation allows to e�ciently encode information using a non-

trivial coding scheme. The given coding scheme belongs to the category of predictive coding,

since it uses spikes to encode only new non-redundant information. This increases entropy

of the information channel (by reducing inter-spike-intervals correlation) and it maximizes
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Figure 3.2: The neuron adapts internal parameters locally and on-line to the temporal struc-
ture of the input. Simulations results for evolution of hyperparameters µ̂ (A), r̂ (B) and
k̂ (C), following equations (3.55), (3.57) and (3.59). The parameters (solid lines) consis-
tently converge to the optimal values (dashed lines). Simulation parameters: µi = 10s�1,
ri = 0.1s�1, �2

i = 10s�2, µ
0

= 10s�1. The time-scale of hyperparameters adaptation is
compatible with experimental observations (Sernagor et al., 2001). (D) Raster plot of a
non-adapting neuron and (E) of our ideal adapting neuron , encoding the input in fig. 3.2F.
(F) The plot represents the encoded input drive (black dashed line), the optimally decoded
non-adapting neuron (orange line)(MSE = 11s�2) and the optimally decoded adapting neu-
ron (blue line)(MSE = 5s�2). It can be noted that the adapting neuron represents the
input drive more accurately then the non-adapting one using the same number of total
spikes. In addition, the approximated value c (green line) inferred from the activity of the
adapting neuron using equation 3.49 (R2 = 0.96) is compared with the exact Bayesian de-
coding (blue line), this further validating the used approximations. Simulation parameters
µi = 10s�1, ri = 0.1s�1, �2

i = 10s�2, µ
0

= 10s�1. It can be noted that adaptation takes place
on the time-scale of individual inter-spike intervals.

information encoded per spike event. But if, on one side, the e�ciency of the proposed code

has been tested against a non adapting encoding scheme (fig. 3.2), the practicability of its

implementation in the brain depends on the ability of other neurons to decode its message

e�ciently. For this reason, we will here investigate how the information encoded by a pre-

synaptic adapting neuron (according to the proposed model) can be e�ciently decoded by a

post-synaptic neuron.
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Equation (3.49) describes how the message of neural spikes can be decoded. Coincidentally,

the given equation defines a dynamics that matches the membrane potential of a Leaky

Integrate and Fire neural model (Burkitt, 2006)

Cm
dv(t)

dt
= Il(t) + I!(t) ; Il = �Cm

⌧m
(v(t) � V

0

) , Is = Ks�(t � ts) (3.64)

The equation describes the evolution of the membrane potential v, where I! represents the

synaptic current driving the neuron, Il is the leakage current and Cm is the membrane

capacitance. If tuned to have the right parameters, the membrane potential of a leaky

integrate and fire post-synaptic neuron will match the internal dynamics of the adaptation

parameter c in the pre-synaptic neuron and, as a consequence, it will correspond to the hidden

variable encoded by the spiking activity of the adapting neuron. Membrane fluctuations

are then transformed into spikes by the Integrate and Fire spiking initiation mechanism:

whenever the membrane potential reaches a certain threshold a spike event is generated, and

the potential is re-set to the resting value. We can make this consistent with our model

of neural adaptation by assuming that the adaptation variable c controls the probability of

generating new spikes either by modulating the threshold for spike initiation, or by generating

an additional flow of ions through the membrane, which a↵ects the membrane potential

(Smith et al., 2002). This would make the proposed model of neural adaptation consistent

when implemented in series by successive neurons in the brain.

Being able to decode the adapting neuron enables us to compare its performance (in accu-

rately encoding a hidden variable) with a non-adapting neuron. We encoded the same hidden

variable using either an adapting (according to our model) or a non-adapting (inhomogeneous

Poisson) neuron and, in both cases, we constrained the number of total spike events produced

by the neuron (fig. 3.2. The adapting neuron, when decoded, revealed to be able to describe

the hidden variable much more accurately then the non-adapting one by exploiting the same

number of total spikes.
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The Leaky Integrate and Fire model is widely used in the literature to describe neural dy-

namics (Moreno-Bote and Parga, 2006; Lindner et al., 2002). The fact that this simple model

of membrane potential dynamics can optimally decode the e�cient coding scheme we propose

is a promising result. It supports the hypothesis that the proposed model of neural adap-

tation could be implemented in the brain to increase encoding e�ciency, and it potentially

provide a new interpretation for the computational role underlying the Leaky Integrate and

Fire model.

3.3 Testable predictions

The model of neural adaptation we propose provides various quantitative predictions, that

link properties of adaptation to the time structure of the encoded stimulus. For example, the

model links the timescale of stimulus changes and the mean and variance of the prior distri-

bution stimulus to the timescale adaptation, amplitude and equilibrium point of adaptation.

Moreover, the proposed model quantitatively predicts neural level of adaptation following a

certain spike train history, and how adaptation parameters are modified when the time struc-

ture of the stimulus changes (couplings between adaptation parameters generates non-trivial

dynamics in converging to the new equilibrium solution).

Furthermore, the given model can be used to predict the average response (over various

stochastic repetitions) of an adapting neuron encoding a particular trajectory of the hidden

variable. In the following, we will mathematically derive the time course of the firing rate

of a neuron when the encoded latent variable is a Heaviside theta, and we will compare our

model predictions with experimental observations.
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3.3.1 Predicting the time course of neural spiking rate

We can use equation (3.49) to derive some quantitative predictions about firing rate adapta-

tion following a jump in the neural driving input. An example of this is the time course of

the firing rate of a retinal neuron when we exit a dark gallery on a sunny day. The neuron,

adapted to a low light regime, will first present a very high firing rate. However, after some

seconds, the sustained high firing rate of the neuron will allow it to infer that the luminance

of the environment has changed. The neuron will adapt to the new regime, and the spiking

activity of the neuron will slowly decay to a lower, e�cient and sustainable value. We can

use our model of neural adaptation to predict properties (time scale and shape) of this time

course (Ticchi and Faisal, 2015). Specifically, we will predict the time course of the firing

rate of a neuron after a jump, averaged over di↵erent stochastic repetitions. We will do it

using the temporal properties of the stimulus, without introducing any free parameter.

We first assume that, before the input change, the neuron is in a steady state (i.e. < ct+⌧ >=<

ct >). We will denote the equilibrium value of c before the input jump with cb. Under the

steady state hypothesis and using eq. (3.49), it is possible to show that the value cb can be

expressed as a function of the average inter spike interval at the equilibrium ⌧b:

cb = k
1 � µo⌧b
ri⌧b

+ µi (3.65)

Additionally, by definition, if we identify the value of the drive pre-jump with the variable

Db, we can write

⌧b =
cb
Db

⌧o (3.66)

where ⌧o is the inverse of the desired neural firing rate µo, as determined by metabolic and

biophysical constraints of the neuron. By combining equations 3.65 and 3.66, it is possible

to show that the value of cb can be expressed as a function of the input Db by solving the
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following equation:

c2b
⌧ori
k

+ cb⌧o
⇣

µo � riµi

k

⌘

� Db = 0 (3.67)

It is interesting to note that, in the considered regime (equation (3.5)), we have

ri << µo = ⌧�1

o (3.68)

In this situation, the solution of equation 3.67 becomes cb = Db which, according to eq. 3.66,

translates into ⌧b = ⌧o. The given approximation correspond to a stimulus which changes on

a very long timescale. As a consequence, the neuron is able to accurately infer the value of

the input before next jump, and the inference process is very accurate.

We can now focus on what happens after a jump in the input drive D, which set it to a new

value Da. Right after the jump, the instantaneous average interspike interval will be

⌧a =
c

Da

⌧o =
Db

Da

⌧o (3.69)

In this situation, eq. 3.49 will no longer be at the equilibrium, and will start converging to a

new value of c (c ! ca). Do investigate the time course of c, we can simplify equation 3.49

in the regime of eq. 3.68

ct+⌧ = ct + kµ
i

,�2
i

,µ
o

,r
i

(1 � µo⌧) ; kµ
i

,�2
i

,µ
o

,r
i

=
9

8

s

ri�2

i

µo

(3.70)

Exploiting the finite di↵erence approximation for the time derivative, under the assumption

of small average inter spike interval ⌧t we can write

⌧t @tct = k (1 � µo⌧t) (3.71)
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Figure 3.3: The plot visualizes solutions of equation (3.78) for di↵erent initial conditions
(ft=0

= ⌧o Db/Da). Parameters used are 9

8

1

ˆD
a

�
i

µ
i

p
riµo = 2.

and, using eq. 3.69, we get

⌧t @t⌧t =
⌧o
Da

k (1 � µo⌧t) (3.72)

In order to transform our equation for the average inter-spike interval ⌧t into an equation for

the firing rate ⌫t =
1

⌧
t

, we use the relation

⌧t @t⌧t = � 1

⌫3

t

@t⌫t (3.73)

to write an equation describing the timecourse of ⌫t

@t⌫t = ⌫2

t

k

µoDa

(µo � ⌫t) (3.74)

The given equation describes the time course of the instantaneous firing rate after a jump

(either positive or negative) in the input drive (see fig 3.3). The equation depends on some

properties of the stimulus encoded k, on the desired firing rate of the neuron µo and on Da,

which is the input drive currently experienced by the neuron.
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3.3.2 Linear transformation in the input space

We expect the considered model to be invariant under linear coordinate transformations in the

space of the input drive D (as long as the internal neural variable c is changed accordingly).

To make this property more explicit, we can express Da as follows

Da = µi D̂a (3.75)

where µi is the time-average of the input drive, and D̂a is a variable with unitary mean,

which describes the instantaneous value of the input as compared to its average value. By

doing this, every linear coordinate transformation will be reflected in µi and not to D̂a.

We can now expand k in eq. 3.74, and get

@t⌫t = ⌫2

t

9

8

1

D̂a

�i

µi

r

ri
µ3

o

(µo � ⌫t) (3.76)

It is possible to note that our final equation depends now only on the ratio between the

standard deviation of the input drive and its mean (�i

µ
i

). This quantity is invariant under

linear transformation in the space of the input drive and, consequently, our model is invariant

under these transformations, as expected. Other quantities appearing in the given equation

are D̂a (instantaneous input drive - relative to the mean value µi), ri (rate on which the input

drive change), µo (desired firing rate of the neuron).
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3.3.3 Linear transformation in the output space

We can investigate how the model is a↵ected by a linear transformation in the output space

(neural firing rate). We express the instantaneous firing rate ⌫t as follows

⌫t = µo ⌫̂t (3.77)

where µo is the desired firing rate. By doing this, we can write

@t⌫̂ = ⌫̂2

t

9

8

1

D̂a

�i

µi

p
riµo(1 � ⌫̂t) (3.78)

It is possible to note that µo doesn’t completely disappear from the equation. This means

that the model is not invariant to linear transformations in the output (neural firing rate)

space. The reason is that adaptation is driven by inference, and inter-spike intervals carry

the information used by the inference process. For this reason, the higher neural firing rate

is, the faster inference and adaptation will be implemented.

3.4 Results

To experimentally test our model predictions (equation (3.78)), we collaborated with Mat-

teo Carandini (University College London, UK) and Andrea Benucci (Riken Brain Science

Institute, Japan), who generously shared with us their data from Benucci et al. (2013). The

database consists of in-vivo recordings of the response of a population of cat V1 neurons

to a stimulus with random orientations. We analyzed the given database to extract the

time-course of neural adaptation following a jump (Heaviside theta) in the stimulus, and we

compared our findings with the predictions of our model. In order to fit the parameters of

the model, we exploited the known dynamical properties of the stimulus used during the

experiment. Therefore, our predictions are achieved without fitting any free parameter of the
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model to the data.

3.4.1 Experimental setting

A 10x10 electrode array was used to record the spiking activity from V1 of anesthetized

cats. Electrode sites were spaced 400 m apart, and activity of neurons was recorded for 6

consecutive seconds in each experiment, for a total of 7 experiments. The temporal resolution

of the recording was 8.3 ms. Neural responses were characterized using sequences of static

gratings with random orientation and phase, each presented for 32 ms. Axis of preferred

orientation were then divided evenly into 12 bins, each pooling the activity of neurons with

similar orientation preferences. Responses of each bin (neural pool) were then normalized

(see figure 3.4).
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Figure 3.4: Visualization of the data we used to test our model, which was generously shared
with us by the authors of (Benucci et al., 2013). Color code represents activation level of
di↵erent neural pools from cat V1 in response to the stimulus provided. Responses are scaled
to a value of 1 at the preferred orientation and 0 at the orthogonal orientation. Neural pools
are ordered on the y-axes according to the center of their receptive fields (see fig.3.5). The
value of the stimulus provided (grid orientation) is represented by a black line.

3.4.2 Data analysis

By applying regression to these responses, the tuning curves for each of the bins of preferred

orientation were extracted (see fig. 3.5).
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Figure 3.5: The figure represent the receptive field of cat V1 neural pools extracted from data
in fig.3.4. Red dots represent the center of the respective tuning curves. The grids used as
stimulus in the experiment are non-directional and, as a consequence, neural tuning curves
are invariant for 180 rotations. Neural pools are ordered according to the position of their
receptive field centers.

To extract the time-course of adaptation from the given database, we considered (for each

neural pool) a window of orientations centered at the respective tuning curve center, and

with variable width. When the stimulus is outside the relevant region, the pool activity is

low, and adaptation acts to increase spiking activity. If, in this regime, the stimulus changes

to a new value within the relevant region, activity will suddenly rise, induced both the highly

driving stimulus and by the low inherited level of adaptation. At the same time, neural

adaptation gets into play and pool activation starts decreasing towards a sustainable regime

for the neurons, following a certain time-course. Our aim is to compare this time-course

with the time-course predicted by our model of neural adaptation. To do this, each time

the stimulus entered inside the relevant region we started recording the trajectory of pool

activation, and we recorded as long as the stimulus was inside the given region. We repeated

the same process for all the neurons (fig. 3.6). We finally took all the trajectories from all

di↵erent neurons and we calculated their mean and standard error as a function of time.

Di↵erent trajectories can have di↵erent lengths (according to how long the stimulus stays

inside the relevant region), and at each moment we averaged only the trajectories longer

than the considered time.
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Data from Benucci, A. et al. Nat Neurosci (2013). 
Figure 3.6: Visual representation of data processing used to extract relevant information
from the given dataset. For each neuron, we considered a relevant window (centered either
at the tuning curve center or at the orthogonal orientation). We then recorded all the neural
activation trajectories, starting when the stimulus entered in the relevant window and ending
when it first exited the given region. We repeated the same process to collect trajectories for
all the neural pools. We superimposed all the trajectories by synchronizing the initial times
(when the stimulus entered the relevant window). We then calculated mean and standard
error of all the trajectories in each moment in time, to extract the average time-course of
adaptation.

By doing this, we extracted the average neural activation following a jump of the stimulus,

from a region far from the receptive field center to a region close to it. By combining di↵erent

trajectories, we discarded information about the specific amplitude of each stimulus jump

preceding adaptation. Nevertheless, we decided to average all the trajectories together to

increase statistical significance, by relying on the fact that the superposition of solutions of

our model equation (3.74) will be well approximated by a solution of the same equation.

Moreover, the stimulus could assume di↵erent values while remaining inside the relevant

region. Yet, we discarded these changes, relying on the fact that positive and negative jumps

within the relevant region will statistically sum to zero.
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3.4.3 Validating model predictions on experimental results

We repeated the same procedure utilizing di↵erent relevant windows. We used di↵erent

windows widths (specifically 24, 48 and 72) and we considered either a window centered at

the center of the neural pool’s tuning curve, or the complement region. By doing this, we

investigated the average time-course of adaptation following either positive or negative jumps

of the neural input drive (according to where we centered the relevant window), as well as

jumps of di↵erent amplitude (according to the varying window width).

For each tested condition (width and window center) we compared the extracted time-course

to the analytical predictions from our normative model (fig. 3.7). Since our model relates

properties of neural adaptation to the time-structure of the encoded stimulus, we used the

dynamical properties of the stimulus used in the experiment to fix all the parameters of our

adaptation equation (3.74). Specifically, we used the expanded form given in 3.78:

@t⌫t = ⌫2

t

9

8

1

D̂a

�i

µi

r

ri
µ3

o

(µo � ⌫t) (3.79)

and we set ri to 31.25 s�1, which is the inverse of the interval used in the experiment to

update the grid orientation (32 ms). We extracted the value of the ratio between standard

deviation and mean of the input drive (�i

µ
i

) from the same ratio calculated over the neural

response (0.1). We did this by exploiting the fact that the given ratio is preserved for linear

transformations over the input space, and that the e↵ect of adaptation over this ratio should

be negligible given the random nature of the stimulus jumps. We made various in-silico

simulations to verify the validity of the given approximation. We set the value of desired

firing rate of the neuron µo to the average firing rate of cat V1 neurons (10 s�1) (Legendy and

Salcman, 1985).Finally, We approximated the value of the normalized instantaneous input

drive D̂a to be constant (1), being impossible to extract the value from the experimental

setting. Furthermore, since the ratio between standard deviation and mean of the input

drive (�i

µ
i

) was estimated to be around (0.1), the instantaneous value of the normalized input
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drive D̂a would not deviate more than 10% from 1 in most cases.

Using the given parameters, we solved the finite-di↵erence equation 3.79 to derive the time-

course of adaptation (following jumps in the input drive with di↵erent amplitudes and direc-

tions), and we compared our model predictions with the experimental results in fig. 3.7.

As we can see from fig. 3.7, analytical predictions from our model are compatible with ex-

perimental results in all the considered scenarios (except from 3.7 D, where the very low

input drive received by the neuron generates a pathological behavior related to network sus-

tained dynamics). Specifically, we can see that solutions of equation 3.79 for di↵erent initial

conditions match both the shape and the timescale of experimental adaptation trajectories.

Moreover, fig. 3.7 shows that model predictions capture experimental time-course of adap-

tation better than exponential fits (the shared decay constant of the exponential fits was

selected as to best predict the set of 6 di↵erent conditions. This finding is supported by a

consistently higher variability of the data explained by the model predictions (generalized

R2 in fig. 3.7 condition A=0.57, B=0.87, C=0.64, E=0.61, F=0.79) compared to the expo-

nential fits (generalized R2 in fig. 3.7 condition A=0.24, B=0.77, C=0.64, E=0.54, F=0.71).

Specifically, the presence of the term ⌫2 in equation 3.78 provides the solution of the equa-

tion to decay faster for large starting values, and slower for small ones. This is visible in

fig. 3.3, where it is possible to note an asymmetry of the solutions for normalized starting

values larger or smaller than one. The given property matches experimental results, where

the decay following a positive jump in the input drive has a smaller time-scale than the ones

corresponding to a negative jump. This supports the fact that our principled model captures

some non-trivial properties of neural adaptation time-course, which are not captured by other

popular phenomenological models like the exponential decay, often used in the literature to

describe adaptation dynamics (Dean et al., 2008; Westerman and Smith, 1984).
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Figure 3.7: Time-course of adaptation (normalized neural activity) from in vivo recordings
of cat V1 (blue error bars) (Benucci et al., 2013) is compared with analytical predictions
from our model (green line) (equation (3.78), fig. 3.3). Red lines represent exponential
fits, in which the shared decay constant was chosen as to best predict the set of 6 di↵erent
conditions. Di↵erent plots refer to di↵erent relevant window sizes and locations (as described
in the top-right diagrams). All the parameters in the analytical model were fixed using
dynamical properties (timescale of change, distribution and dynamical range) of the stimulus
used in the experimental setting. Plots A, B and C represent time-course of adaptation
relative to a relevant window centered at the tuning curve center of the neural pools. Plots
D, E and F refer to a relevant window centered at the orthogonal orientation. We can note
that in plots A, B, C, E and F analytical predictions match both timescale and shape of
adaptation (generalized R2 A=0.57, B=0.87, C=0.64, E=0.61, F=0.79). In addition model
predictions explain experimental data consistently better than the exponential fit (generalized
R2 A=0.24, B=0.77, C=0.64, E=0.54, F=0.71), which is often used in the literature to fit
adaptation (Dean et al., 2008; Westerman and Smith, 1984). Experimental results in plot
D show a non-adaptive behavior, which di↵ers from the predictions of our model. In the
discussed plot, the relevant window is very small and centered at the orthogonal orientation.
As a consequence, the neuron receives a very low input drive and and resilient network e↵ects
become dominant, introducing an inertial component to neural activity decay.
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3.5 Biophysical implementation

The proposed model of neural adaptation (3.2.6) consists of a linear system of 4 coupled

first-order non-homogeneous di↵erential equations with multiplicative delta function terms

(Nedeljkov and Oberguggenberger, 2012)

dct
dt

= k̂t (�(t � t
spike

) � µo) + r̂t(µ̂t � ct) (3.80)

µ̂t

dt
= ↵µ�(t � t

spike

)(ct � µ̂t) (3.81)

r̂t
dt

= ↵r(ct � µ̂t) (3.82)

k̂t
dt

= ↵k((tspike i

� t
spike i-1

) � �(t � t
spike

) µ2

o) (3.83)

where “spike i” is the last observed spike at time t, µo is the desired firing rate for the neuron,

↵µ ↵r and ↵k are parameters controlling parameters adaptation rates and ct is the variable

controlling neural adaptation according to equation (3.1)

⌫t = It
µo

ct
(3.84)

where It is the instantaneous input drive received by the neuron and ⌫t is the resulting spiking

rate after adaptation (or the instantaneous probability density of generating a spike event).

The proposed system of di↵erential equations can be potentially implemented by the internal

dynamics of a biophysical neuron exploiting the flow of ions through the membrane potential

(controlled by ion channels). To identify molecular candidates for the equation variables,

we can follow two di↵erent approaches, which reflect two di↵erent interpretations of neural

dynamics.
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A) We consider the spiking activity of the neuron to be the message communicated from

one neuron to another. This is the main interpretation used in the literature (Maass, 2002;

Averbeck et al., 2006), according to which spike events are considered to be the paramount

carrier of information inside the brain. In this case, the message transmitted by a pre-

synaptic neuron needs to be decoded by a post-synaptic neuron (Warland and Reinagel, 1997;

Arabzadeh and Panzeri, 2006). However, in order to understand the received message, post-

synaptic neurons need to be aware of the neural code used and, therefore, of the adaptation

parameters controlling pre-synaptic neuron dynamics (µ̂, r̂ and k̂). Adaptation parameters

are continuously changing, and they can’t be inferred only by observing the spiking activity

of the neuron as a consequence of the nature of the code implemented (which maximize

entropy of the information channel and removes correlation). Therefore, this would lead

to an inconsistent scenario, where neurons are communicating an encoded message without

providing to other neurons the code to understand it and use it for computations. We

could assume that these parameters are transmitted through the synapses using chemical

messengers, but this appears to us as an unlikely and unreliable solution considering what

we known about the biophysics of synapses (Zador et al., 1990; Cohen-Cory, 2002) and the

strong dependence of the message encoded to the adaptation parameters.

B) We interpret neuron action potential as an internal communication channel, which allows

propagating information through the neuron. This information is then decoded locally inside

the neuron, and only the decoded variable is communicated to other neurons. According

to this interpretation, spiking activity of the neuron encodes information using a complex

coding scheme that maximizes information per spike event (increasing metabolic e�ciency

of the communication channel). The message encoded in spikes can not be decoded by an

external observer if the neural coding parameters (which depends on the dynamical properties

of the stimulus) are not known. Yet, this information is represented inside the neuron in an

explicit form (ct), and this explicit representation is communicated to other neurons through

synapses.
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If we assume the validity of interpretation (B), we can look for a molecular candidate for

the adaptation variable ct by investigating which quantity in the neuron controls synaptic

communication. It turns out that in various Central Nervous System (CNS) neurons, the

release of vesicles of neurotransmitters into the synaptic cleft has been shown to be controlled

by the concentration of calcium at the axonal termination (Schneggenburger and Neher,

2000). This makes calcium a plausible candidate for implementing the role of ct inside the

neuron. However, in order to be seriously considered, a molecular implementation of ct should

satisfy five additional requirements:

1. It should influence the response function of the neuron by modulating the prob-

ability of generating new spikes (introducing neural adaptation). Coincidentally, cal-

cium has been observed to control neural response (gain normalization) by modulating

calcium-dependent potassium currents at the synaptic level in di↵erent regions of the

brain (e.g. cerebellar nucleus (Feng and Jaeger, 2008; Feng et al., 2013) and vestibular

nucleus (Smith et al., 2002)).

2. Its dynamics should be consistent in di↵erent regions of the neuron, and its

concentration should be proportional (yet possibly scaled) across all the neuron and in

each moment in time. Again, intra-neuron calcium concentration has been observed to

satisfy this requirement (Schiller et al., 1997; Augustine et al., 2003).

3. The candidate quantity should be compatible with the derived dynamics (equa-

tion (3.50)), which controls the evolution of the adaptation parameter according to the

recent spiking history of the neuron. The given equation corresponds to the dynamics

of a leaky integrator and, for an appropriate choice of the adaptation parameters, it

is compatible with the known time-course of calcium concentration inside the neuron

(Augustine et al., 2003; Loewenstein and Sompolinsky, 2003; Schiller et al., 1997).

4. The candidate quantity should correlate with the stimulus encoded by the neuron

and, as a consequence, with animal behavior. It has been shown in the literature that
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calcium concentration in neurons can track the stimulus encoded by the neuron (Kato

et al., 2014a) and drive behavior (e.g. eliciting food acceptance or avoidance response

(Marella et al., 2006)).

5. Altering the dynamics of the candidate quantity encoding external world inside the

neurons should a↵ect animal behavior. In this respect, it has been observed experi-

mentally that calcium channel mutations can alter synaptic release of neurotransmitters

(Ayata et al., 1999) and influence animal behavior (Kato et al., 2014a).

Therefore, calcium appears as a natural candidate for representing the adaptation variable

ct inside the neuron, and it is compatible with all the requirements predicted by our model

for this quantity. In our model of neural adaptation, ct is the variable encoding the state of

the world inside the neuron. Identifying calcium with ct can provide a new perspective on

the computational role of calcium and spikes in the working brain. According to this new

perspective, calcium is the quantity controlling local neural processing, and encoding relevant

features of the world. On the contrary, spikes only serve to encode new available information

(received by other neurons and not yet encoded by ct) and to propagate this information to

di↵erent regions of the neuron in order to improve the representation of the world by ct. This

new picture of the working neuron has consequences also on the interpretation of other neural

processes, such as on the computational role of synapses, membrane potential fluctuations,

spike generation mechanisms and ions channels dynamics, and on how they are controlled by

calcium, spikes and pre-synaptic inputs. In Chapter 4 we explore in more details this new

interpretation of neural dynamics, which is inspired and motivated by our results on neural

adaptation.
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3.6 Discussion

Starting from a generative model of the stimulus stochastic dynamics, we used Bayesian

Statistics and Information Theory to derive from first principles a normative model of how

a neuron should optimally adapt in order to encode information e�ciently. Under some

biophysically motivated assumptions, we show that the resulting model can be expressed

in form of a first-order linear non-homogeneous ordinary di↵erential equation, and that it

is consistent for various generative models of the stimulus dynamics. The proposed model

links properties of adaptation (e.g. time-scale, amplitude and equilibrium point) to the time

structure of the encoded stimulus (e.g. dynamical range and time-scale of changes). In this

way, we derive from first principles quantitative predictions that link neural dynamics and

properties of the stimulus encoded.

The stimulus encoded can evolve its structure with time (for example luminance statistics

varies in di↵erent season), and for this reason we expanded our model to enable the neuron to

learn the optimal adaptation parameters, and to update their value on-line to the experienced

stimulus. The resulting model can be expressed in form of four coupled first order non-linear

di↵erential equations: one equation controlling the neural gain and three equations controlling

the evolution of the adaptation parameters, which provide these parameters to converge to

the optimal values for a given time structure of the stimulus. The proposed model provides

the neuron both to adapt to the encoded hidden variable on a short time-scale (ms/s) and to

tune its adaptation behavior on-line to the dynamical properties of the experienced stimulus

on a longer time-scale (min/day).

We also show that the resulting coding scheme (predictive coding) can be decoded by a

post-synaptic neuron. Coincidentally, the neural dynamics required to decode the adapting

neuron is compatible with known e↵ective models of neural dynamics (leaky integrate and

fire)(Burkitt, 2006).
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As discussed in 3.3.1, our model predicts the average (over various stochastic repetitions)

time course of neural spike-rate adaptation for a particular trajectory of the encoded stim-

ulus. Model predictions revealed to be compatible with neural recordings from cat V1 (fig.

3.7), and they captured experimental deviations of firing rate time-course from an exponential

fit (often used in the literature to model spiking rate adaptation (Drew and Abbott, 2006)).

Furthermore, for a given spiking history and stimulus time structure, our model quantita-

tively predicts the instantaneous level of neural adaptation and neural firing probability.

Additionally, the proposed model allows relating properties of adaptation (i.e. time-scale

of adaptation, adaptation amplitude and adaptation equilibrium value) to properties of the

encoded stimulus (i.e. timescale on which stimulus change and mean-standard deviation of

stimulus statistics). Finally, we predict how adaptation parameters respond to a change in

the time structure of the encoded stimulus. Specifically, the predicted time course for the

adaptation parameters is often non-trivial, as a consequence of couplings in the flow equa-

tions controlling the evolution of di↵erent parameters (fig. 3.2). All these predictions can be

tested experimentally, and specific experiments can be designed to further validate the given

model, and the underlying assumptions about the computational role of neural adaptation.

The proposed mechanism of neural adaptation can be implemented by a biophysical neuron

exploiting the flow of ions through the membrane potential (controlled by ion channels), and

the given model can be used to identify candidate signaling pathways for neural adaptation

within a neuron. Identifying biophysical candidates for the mathematical quantities pre-

dicted by our system of coupled di↵erential equations would represent a further validation

of the proposed adaptation mechanism, and it would provide a deeper understanding of the

computational role of specific molecules and processes within neural dynamics.

In Section 3.5 we saw that calcium appears as a natural candidate for encoding the adaptation

variable ct inside the neuron, and that it seems to satisfy all the requirements predicted by

our model for such a quantity. This suggests that calcium might play an important role

inside the neuron, and it would imply a new interpretation of the role of calcium and Spikes
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in brain dynamics. According to this new interpretation, calcium would be the quantity

encoding the state of the world inside the brain, while spikes would only be used to internally

synchronize the concentration of calcium inside the neuron (using a special code that can

only be decoded e�ciently by the neuron itself). This would have direct consequences also on

the interpretation of other aspects of neural dynamics, and specifically on the computational

role of synapses, membrane potential fluctuations, spike generation mechanisms and ions

channels dynamics.

In Chapter 4, we will explore a new model of neural dynamics inspired by these findings,

and by the consequent new interpretation of the role of calcium and spikes in the brain.

We will develop a normative model for the dynamics of synapses, membrane potential, spike

initiation and calcium concentration inside the neuron, and we will show how these di↵erent

processes can work together to encode and communicate information e�ciently. In this new

picture, spike-rate adaptation (as discussed in this Chapter) will rise as a consequence (or

side e↵ect) of the proposed neural dynamics.



Chapter 4

Calcium Coding Theory

‘... living matter, while not eluding the “laws of physics” as established up to date, is likely
to involve “other laws of physics” hitherto unknown, which, however, once they have been
revealed, will form just as integral a part of this science as the former.’

Erwin Schrödinger, “What is Life?”, pp 68

4.1 Introduction

Spikes are traditionally considered as the key representation of information inside the brain

(Kepecs and Lisman, 2003). Spiking activity of neurons is extensively used in the literature to

extract receptive fields and tuning curves of neurons in di↵erent brain regions, investigating

what these areas are encoding about the state of the world (Cox et al., 2013), how they adapt

(David et al., 2012) and what computations they are performing (Lindeberg, 2013). Spike

events are interpreted as the letters utilized by neurons to communicate through synapses

(Shadlen and Newsome, 1994), and the relative inter-spike interval is used in the literature as

the key ingredient to investigate rules of synaptic plasticity (Markram et al., 2012). Di↵erent

70
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models of neural coding have been proposed based on spikes (e.g. rate coding or spike-time

coding)(Prescott and Sejnowski, 2008), and spiking activity of neurons is used to analyze

properties of brains’ dynamics, as spike-time correlation (De La Rocha et al., 2007) or Fano

factors (Berry and Warland, 1997).

Yet, trying to understand brains computations from spikes encounters various conceptual

and empirical problems, that are preventing the development of a consistent theory of neural

coding. The concept of tuning curves, which proved to be very helpful when investigating

representations (Piazza et al., 2004) and their transformations (Wilson et al., 2004) in dif-

ferent areas of the brain, is showing its inadequacy in capturing neural language. In this

sense, the use of rich stimuli under close loop conditions is revealing the necessity to revise

the standard concepts of representation (Fairhall, 2014). Moreover, the high trial-to-trial

variability of neural spiking response to a constant stimulus (Reich et al., 1997) challenges

our current understanding of neural computations. If, on one side, the idea that neurons are

adopting an e�cient coding scheme to represent information is widely accepted (Olshausen

and Field, 1996; Fairhall et al., 2001), how this is implemented and how this information can

be decoded e�ciently remains an open question.

Spiking activity can be measured directly, using neural recordings, or indirectly, measuring

quantities in the brain that are a↵ected by spike events, as the blood-oxygen-level-dependent

(BOLD) response (measured by fMRI)(Amano et al., 2009), or calcium concentration inside

neurons (measured by calcium imaging)(Mittmann et al., 2011). Some of these quantities

(e.g. calcium) also act as 2nd messengers (Augustine et al., 2003) mediating various internal

molecular processes inside the neuron (e.g. vesicle release (Neher and Sakaba, 2008; Borst

and Sakmann, 1996)). These quantities both influence and are influenced by the spiking

activity of the neuron, and various computational roles have been proposed for their dynamics

(Loewenstein and Sompolinsky, 2003).

In Chapter 3 (and specifically in Section 3.5) we introduce some findings involving the role
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of calcium in neural dynamics. Specifically, we identify a quantity predicted by our norma-

tive model of neural adaptation with intracellular calcium concentration, and we show that

calcium dynamics is compatible with various testable requirements of such a quantity. These

results motivate and inspire a new (subtly di↵erent) interpretation of spikes and calcium in

the working brain, which has fundamental implications linking molecular processes to neural

coding.

According to this new interpretation, intracellular calcium concentration is the primary and

most explicit form of information encoding inside the neuron. It controls synaptic commu-

nications between neurons and mediates short and long term plasticity. On the contrary,

spikes role is to synchronize and propagate information (calcium level) to di↵erent regions

within the neuron. Action potentials are very fast in spreading information to various cal-

cium hotspots, and the binary nature of their message enables the neuron to consistently

and reliably synchronize di↵erent areas avoiding error propagation. But action potentials

are also metabolically expensive (Laughlin et al., 1998; Lennie, 2003; Neishabouri and Faisal,

2011), and high firing rate can hardly be sustained for long periods (Neishabouri and Faisal,

2013). For this reason, neurons use an e�cient coding scheme to encode information with

spikes, in order to maximize information encoded per spike event. The given coding strategy

generates spikes only to encode newly available information (predictive coding (Srinivasan

and Laughlin, 1982; Rao and Ballard, 1999)), which is not already encoded in current cal-

cium concentration (i.e. it has not been communicated by previous spikes). By doing this,

spikes will update the level of calcium in all the neuron, this improving neural encoding of

the external world. The adaptive nature of this encoding makes it impossible for an external

observer to decode the spiking activity of the neuron without taking into account the cur-

rent calcium intracellular concentration, and without knowing the coding parameters, which

depend on the dynamical properties of the encoded stimulus.

To support our assumption, in this Chapter we propose a normative, yet bottom-up model

of Calcium computation, and we derive in a first-principle manner both molecular and neu-
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ral adaptation dynamics. First (section 4.3) we derive how Calcium concentration should

drive probability of vesicle release at the axonal terminations to maximize information trans-

fer, thereby predicting relationships compatible with experimental observations (Schneggen-

burger and Neher, 2000). Second (section 4.4) using a Bayesian approach we derive a nor-

mative model of how synaptic information encoded in pre-synaptic vesicles releases should

be optimally translated into post-synaptic membrane dynamics, thereby reproducing leaky

integrate-and-fire neural dynamics (Shepard, 2007). Third (section 4.5) we derive how Cal-

cium concentration can modulate the translation of subthreshold membrane dynamics into

spikes. So as to implement predictive coding, we find that local Calcium level needs to act

as divisive gain normalization of spike initiation thresholds (Louie et al., 2011). Finally (Sec-

tion 4.6) we analytically predict the local dynamics of Calcium from spiking, so as to enable

a neuron to optimally decode spiking activity. The resulting dynamics is compatible with

the known kinetics of voltage-gated Calcium channels (Loewenstein and Sompolinsky, 2003).

Our processing pipeline is derived from first Information Theoretic and Bayesian principles

and predicts both molecular and firing rate adaptation data in mammals.

According to our proposed model, the probability of initiating of a new spike in the soma/dendrites

depends both on the membrane potential (newly available information to be encoded) and

on the current level of Calcium concentration (information already encoded by the neuron).

When generated, an action potential propagates through all the neuron and it a↵ects the

flow of Calcium through the membrane, improving neural representation of the hidden vari-

able. We analytically predict how parameters controlling the flow of Calcium depends on the

dynamical properties of the stimulus encoded (e.g. timescale of changes and dynamic range),

and how they can be tuned locally and on-line to the experienced stimulus. On the other

side, the local level of Calcium a↵ects spike initiation mechanisms, acting as divisive gain

normalization by controlling Calcium-dependent currents (Smith et al., 2002). This allows

spiking activity to implement predictive coding and to represent only new non-redundant

information, which is not already encoded by previous spikes. The proposed mechanism acts



74 Chapter 4. Calcium Coding Theory

as to increase the entropy of spikes, explaining high spike-trains variability and Fano factors

(Stein et al., 2005). Furthermore, the given behavior produces spike-rate short-term adapta-

tion (as explored in Chapter 3) as a side e↵ect, since a recent intense activity of the neuron

will increase the concentration of Calcium and, as a consequence, it will reduce the probabil-

ity of generating new spikes. Analytical model predictions about spike rate adaptation are

in good agreement with results from cat V1 in-vivo recording (Benucci et al., 2013).

4.2 Representing information inside the neuron

We assume that the aim of a neuron is to represent a certain quantity vt and its variations in

time. vt describes some property of the world, i.e. a cause underlying sensory observations.

This quantity follows a stochastic dynamics, and the neuron uses all available information

to infer and track its current value. According to the proposed model, action potentials

serve to propagate information about vt through the neuron. The given information is then

represented locally in form of intracellular calcium ions concentration, and it is used to control

local processes, such as synaptic communication, neural adaptation and synaptic plasticity.

4.2.1 Calcium encodes log-odds probability ratio of hidden state

We propose that the quantity vt encoded by the neuron relates to the probability of a certain

event (also referred as filter) currently taking place in the world. The given event is described

by a hidden state xt, which can assume two possible values (xt = 1 or xt = 0). The probability

Pt of the hidden state assuming either value changes with time as we receive additional

information about the current state of xt. Specifically, we propose that the variable vt

represents the log-odds ratio (also called Logit function) Lt (Deneve, 2008; Cramer, 2003) of
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the current probability, defined as

vt = Lt(P ) = log

✓

P

1 � P

◆

= log

✓

P (xt = 1|s
0!t

P (xt = 0|s
0!t

◆

(4.1)

where s
0!t identifies the synaptic input received from the initial time 0 to the current time

t. According to our model, the log-odds probability ratio is encoded inside the neuron in

form of calcium concentration. Specifically, we assume that the log-odds ratio vt is a linear

function of the current intra-cellular calcium concentration [c]t

vt = Lt(P ) = ho + h
1

[c]t (4.2)

The variable [c]t is dimensionless, and corresponds to the current local calcium concentration

divided by a certain reference concentration [Ca2+]ref , which will vary in di↵erent regions of

the neuron

[c]t =
[Ca2+]t
[Ca2+]ref

(4.3)

Nevertheless, in the following we will refer to [c]t as calcium concentration neglecting the

reference concentration, for simplicity of discussion.

It can be noted that [c]t is necessarily positive. This requirement can be satisfied in equation

(4.2) for an appropriate choice of the parameters ho and h
1

. In fact, the log-odds ratio is

inferior bounded by a certain value, which is the Logit function of the minimum probability P

that will be inferred by the neuron if no evidence (pre-synaptic spike) about the state xt = 1

is received for a long period of time. This value P
min

will never converge to 0, since the

dynamics of the state xt is stochastic, and the probability that xt recently changed its value

from 0 to 1 (and didn’t generate any observable consequence yet) will never be negligible.

This can be also noted by equation (3.50) in Chapter 3, and will be explored in equation

(4.18) and in Section 4.6.
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4.2.2 Why the log-odds probability ratio is a good choice

The log-odds probability ratio L (also called Logit function) is the inverse of the Logistic

function

P (v) = L�1(v) = Logistic(v) =
ev

1 + ev
(4.4)

The Logistic function arises as a natural representation for the posterior probability in a

binary classification problem (Jordan, 1995). To show this, we can consider a simple case of

classification problem where the hidden state x can take 2 possible values x 2 x
0

, x
1

. Available

observations consist of a d-dimensional random vector ! = [!
1

,!
2

, ..,!d]T . P (x) represents

the marginal (prior) probability of the hidden state x, P (!|x) is the conditional (likelihood)

probability of ! given the state x and P (x|!) is the inferred (posterior) probability of the

state x given the observation !. If we observe a specific vector ! and we want to infer the

probability of the hidden state x, we can use Bayes theorem (2.2) to write

P (x
1

|!) =P (!|x
1

)P (x
1

)

P (!)
(4.5)
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1
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1

)
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1 + exp
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P (!|x0
)
⌘

� log
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P (x1)

P (x0)

⌘o (4.7)

=
1

1 + e�⇠
(4.8)

Therefore, the posterior probability P (x
1

|!) can be expressed in form of Logistic function,

given an appropriate choice of the function argument ⇠. Moreover, it is interesting to note that

the argument ⇠, which is the log-odds ratio the posterior probability, is expressed in form of a

linear sum of the log-odds ratio of the prior probability P (x
1

) and of a likelihood term, which

encodes information from the observation !. It should be noted that this likelihood term is

not the log-odds ratio of the likelihood probability P (!|x
1

), since the likelihood distribution
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is not necessarily normalized, and P (!|x
0

) 6= 1 � P (!|x
1

). If additional information about

the state of x becomes available, the new likelihood term can be computed, and added

linearly to the previously calculate log-odds ratio in a recursive process. Therefore, if a

series of independent observations are available about a certain hidden state x, the posterior

distribution can be calculated as a linear sum of the prior log-odds ratio and of all the

likelihood log-odds terms, corresponding to di↵erent observations. This allows to perform

Bayesian inference of independent variables by linear summation.

In order to predict how information generated by correlated variables should be combined

optimally to infer the probability of the hidden state x, we can go back to our previous

example, and assume that the observation vector ! is sampled from a multivariate Gaussian

distribution, with identical covariance matrix ⌃ and mean dependent on the hidden state,

respectively µ
0

or µ
1

.
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If we expand the exponent of the Gaussian, and we substitute it into the formula for the

log-odds ratio of the posterior ⇠ (equation (4.8)), we can write

⇠ = log

✓

P (x
1

)

P (x
0

)

◆

+ a+ bT! (4.10)

where

a = �1

2
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1
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0

) (4.11)

and

b = ⌃�1(µ
1

� µ
0

) (4.12)

From this result it is possible to note that, even when observations are sampled from a vector
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of correlated variables, in the Logit space we can combine linearly the log-odds likelihood

terms generated by di↵erent observations !j

⇠ = log

✓

P (x
1

)

P (x
0

)

◆

+
X

j

aj + bj!j (4.13)

where parameters aj and bj will depend on the mean, variance and correlation structure

of the variables. Furthermore, it can be noted that the log-odds likelihood term aj + bj!j

generated by the observation !j is a linear function of the value !j itself (see figure 4.1).

This is a very interesting result, as it allows implementing inference by linearly integrating

the value of the received observations, given an appropriate choice of the parameters.
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Figure 4.1: The figure represents the result of Bayesian inference in a binary classifica-
tion problem, where the class-conditional distributions (black continuous lines) are mono-
dimensional Gaussians with unit variance and means, respectively, µ

0

= �1 and µ
1

= 1. The
posterior probability (blue dashed line) is given by the logistic function 1/(1 + exp(�2x))
and the log-odds ratio (orange dashed line) is given by a linear function of the input (2x).
Figure adapted from (Jordan, 1995).

We propose that neurons use log-odds representations of probabilities to be able to optimally
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combine independent sources of information by linearly integrating them in the dendritic

tree. We know that dendrites are capable of non-linear summation of inputs. However,

often, a surprising balance of boosting and shunting mechanisms is tuned in such a way to

implement linear summation of most input combinations (Cash and Yuste, 1999). We showed

that a linear summation is su�cient to generate optimal inference also in the case when the

observed variables present a correlation structure, as long as the mean value µi depends on

the hidden state xi, but the covariance matrix ⌃ is independent.

If the covariance matrix ⌃i depends on the hidden state, or if the sources of information

to be combined present a dependence structure which goes beyond first-order correlation,

then in order to implement optimal inference in the Logit space we will have to introduce

some non-linearities, that can explain non-linearities experimentally observed in dendritic

computations (London and Häusser, 2005).

4.3 Synaptic vesicles release

According to the standard interpretation of synaptic communication, the role of chemical

synapses in the brain is to enable connected neurons to interact by translating pre-synaptic

action potentials into excitatory postsynaptic potentials (EPSP). This is implemented in four

steps:

1. The pre-synaptic action potential opens voltage-sensitive calcium channels in the presy-

naptic membrane, allowing ca+2 ions to enter the cell.

2. The increased intercellular concentration of calcium causes vesicles containing neuro-

transmitters to migrate towards the synaptic cleft, and to fuse with the neural mem-

brane.
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3. Neurotransmitter molecules are released into the synaptic cleft, and they di↵use to the

post-synaptic neuron.

4. Neurotransmitter molecules bind with some receptors on the post-synaptic neuron,

causing ions channels to open and ions to flow through the membrane, generating an

excitatory postsynaptic potential.

A B

Figure 4.2: Functional (A) and biophysical (B) illustration of a chemical synapse. When an
action potential approaches the synapse, the positive charge causes the opening of voltage-
gated calcium channels (green). Calcium pours into the synaptic button and binds to sev-
eral proteins, changing their shape. The activated proteins dynamically rearrange the blue
cytoskeleton to transport green vesicles filled with yellow neurotransmitters to the synap-
tic cleft, which is filled with red adhesion proteins. Calcium-activated (SNARE) proteins
bind to both the vesicles and the synaptic membrane, causing the vesicles to fuse with the
membrane, turning them inside out and spilling neurotransmitters into the synaptic cleft.
Neurotransmitters then bind to proteins on the receiving cell. There are several types of
receptor proteins. Sodium (Na+) channels (excitatory) respond to the neurotransmitter
Glutamate. Chloride (Cl-) channels (inhibitory) respond to the neurotransmitter GABA.
Dopamine, Serotonin, and Opioids bind to G-Protein Coupled Receptors (GPCRs) which
cause complicated phosphorylation cascades that change the metabolism of the cell.

This process is highly variable. The number of vesicles released per action potential is

stochastic, and described by a binomial distribution (the release of each vesicle is an inde-

pendent event, which can happen with probability p (Branco and Staras, 2009)). Also, the
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average number of vesicles released per spike event in the central nervous system is often

very small (usually lower than 1) (Harris and Sultan, 1995), meaning that some of the pre-

synaptic spikes will fail to be transmitted. Moreover, the probability of vesicle release has

been shown to depend not only on the number of vesicles available (Murthy et al., 1997),

but also on the spiking history of the neuron (which influence the flow of calcium through

the membrane)(Dobrunz and Stevens, 1997). This makes synaptic transmission of spike

events unreliable, and it introduces variability that propagates in successive layers of neural

processing.

As already mentioned, in Chapter 3.5 our findings inspired an alternative interpretation of

the role of calcium and spikes in neural dynamics. This new picture of the working neuron

can put a new light also on our understanding of the computational role of chemical synapses

and their functioning. According to this new perspective, synapses are not converting pre-

synaptic spikes into post-synaptic membrane fluctuations, but they are generating samples

from a distribution, which is encoded in the neuron by pre-synaptic calcium concentration.

The release of each neurotransmitter vesicle can be considered as an independent inhomoge-

neous Poisson process, whose rate is controlled by calcium. This new interpretation explains

synaptic failures and variability, as well as the low average number of vesicles released per

spike and the dependence of the release probability on the spiking history.

4.3.1 Sampling

According to the proposed interpretation of synaptic vesicle release, the log-odds ratio L(P ),

encoded in the form of calcium concentration in the pre-synaptic neuron, controls the release

of neurotransmitter vesicles into the synaptic cleft. We propose that this conversion takes the

form of a sampling process: the probability of releasing a vesicle in a reference time interval ⌧s

given the current calcium concentration is proportional to the probability of the hidden state

being positive P (xt = 1). On extended periods of time, the release of vesicles in the synapse
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will be governed by a Poisson process. The average number of vesicles released during a

certain time interval ⌧ will be linearly proportional to the number of available vesicles, to

the encoded probability P and to the ratio between the considered time interval ⌧ and the

reference time ⌧s (compatibly with a Poisson distribution). In this sense, the release of vesicles

can be interpreted as sampling: each time a vesicle is released, it represents in the brain the

realization of a world where the encoded event took place, and vice versa. By doing this, the

probability of the given event happening is encoded in form of a rate (frequency of vesicles

being released in time). Each event (vesicle released) will be interpreted as an observation by

successive neurons in the processing pipeline, which encode correlated features of the world

(events). The given neurons will then use available observations to infer the probability of the

encoded events, to represent it in form of calcium concentration and, iteratively, to generate

new samples.

Our model enables the brain to produce internal simulations of the world, where events more

likely (conditionally to the available sensory information) happens more often. Specifically,

this would predict that the probability of representing a certain feature in the brain is pro-

portional to the inferred probability of such a feature being present in the world given all

the available sensory information, which is compatible with experimental results on humans

(Wozny et al., 2010). This behavior is usually referred in the literature as “probability match-

ing in perception”, and it’s predictions are in contrast with traditional “optimal Bayesian

decision strategy” (Duda et al., 2012), which predicts that the most likely feature should be

the only one to be represented (this maximizing the likelihood of a correct perception). Fur-

thermore, our model predicts that the sampling process taking place in the brain also controls

decision making and action selection. This explains experimental observations, which show

probability matching behavior of people in choices under uncertainty (Koehler and James,

2009) (Murray et al., 2015). In addition, the given model predicts that spontaneous activity

of the brain in the absence of sensory stimuli should be consistent with the known structure

of the world: the activity (vesicle release) of di↵erent neurons should be correlated if these
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neurons encode features which are correlated in the world. Moreover, the statistics of dif-

ferent patterns of activation in the spontaneous activity regime should match the statistics

of these patterns in the world, which also correspond to the average persistence of these

patterns in the brain when neural activity is driven by natural stimuli (this also matching ex-

perimental observations (Berkes et al., 2011)). Finally, the proposed model gives a principled

explanation for the quantized nature of neurotransmitter release, which apparently reduces

information capacity of the synaptic communication channel compared to using a continuous

concentration spectrum.

The hypothesis of Bayesian sampling in the brain (Sampling Brain Hypothesis) has been

already proposed in the literature (Fiser et al., 2010; Berkes et al., 2011). Yet, for the first

time here we suggest that samples are represented by vesicles released in the synapse, and

not by spikes generated inside the neuron. This change of prospective is driven by our new

interpretation of the role of calcium and spikes in brain functioning, and it would explain

high variability and stochasticity in synaptic functioning. Furthermore, since the number of

synapses in the brain is much larger than the number of neurons, using vesicle release instead

of spikes for sampling would increase statistical reliability of the implemented simulations.

Di↵erent synapses of the same pre-synaptic neuron will implement independent sampling

processes, this reducing sampling artifacts and improving simulation accuracy (according to

the central limit theorem). The proposed sampling process plays a role that can also be in-

terpreted in a dithering prospective. Neurons encode the probability of a hidden state, which

is represented by a continuous variable between 0 and 1. However, synaptic communication

(vesicle release) is binary by nature. In each moment in time, a vesicle is either released or

not. The Bayesian maximum-likelihood approach would prescribe to always release a vesicle

for probabilities higher than 0.5. In this sense, adding variability to the process does some-

thing similar to what dithering does in video/audio processing. Specifically, stochastic vesicle

release reduces quantization error, it prevents large-scale patterns and it improves the overall

quality of the internal representation. From the binary activity of all the synapses of a given
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neuron it would be possible to accurately infer the encoded probability value. Therefore, the

information encoded by the neuron is reliably propagated to the rest of the system, which

would not happen in the case of a probability matching behavior of synapses.

The proposed model of synaptic communication requires some conditions to be verified by

the biophysical synapses. First, the release of a vesicle should generate an e↵ect on the

post-synaptic neuron that is equal for di↵erent vesicles of the same synapse, and which is

independent of the history of the synapse (therefore constant in time). This is a requirement,

since we want each sample (vesicle release) to bring a consistent message to the post-synaptic

neuron. This condition matches experimental results (Dobrunz and Stevens, 1997), which

show that the ”potency” of vesicles in central nervous system synapses is independent of

the vesicle release history of the synapse, and that it is independent of the vesicle release

probability. Additionally, in the central nervous system (specifically in hippocampal area

CA1) it has been observed that synapses contain more than ten times the concentration

of neurotransmitter necessary to saturate the post-synaptic receptors (Harris and Sultan,

1995). This result is compatible with the idea that the brain considers each vesicle release

as a sample, which brings a quantized piece of information, and whose message is consistent

in time and independent of the particular state of the brain.

Moreover, our model predicts that, in any given moment in time, the probability of releasing

a vesicle in the reference time interval ⌧s is given by the logistic function of vt (equation

(4.4)), which is a linear function of calcium concentration [ca2+] (equation (4.2)). Therefore,

under the assumption that P is small, we can predict a specific mathematical relationship

between release probability and pre-synaptic calcium concentration

P ([c]) =
eho

+h1[c]

1 + eho

+h1[c]
(4.14)

If multiplied for the total number of available synapses and divided by an appropriate time

constant (⌧s), the release probability enables us to calculate the average vesicle release rate
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in the synapse.

⌫s =
N

⌧s
P ([c]) (4.15)

We tested this model prediction with experimental results about vesicle release rate in

synapses (Schneggenburger and Rosenmund, 2015), and for an appropriate choice of the

model parameters our predictions qualitatively matched experimental observations (figure

4.3). Assuming a linear dependence of excitatory postsynaptic potential (EPSP) on neuro-

transmitter concentration, relation (4.14) also implies a specific dependence of the average

EPSP amplitude from pre-synaptic calcium concentration. This dependence is compati-

ble with experimental results from the end-plate potential of the neuromuscular junction

of vertebrates (Dodge and Rahamimo↵, 1967). Finally, this result can be extended also to

extra-cellular calcium concentration. In fact, the flow of calcium ions through the membrane

is a stochastic process, and the rate of ions entering the membrane after a spike is propor-

tional to the concentration of ions available. Therefore, a higher concentration of calcium

outside the cell will linearly reflect into higher concentration inside the cell.

4.3.2 Short term synaptic plasticity

It has been experimentally observed that the release rate of vesicles (and consequent EPSP)

following a pre-synaptic spike event can vary over time, and depends on the recent spiking

history of the neuron (Zucker and Regehr, 2002). This major property of synaptic dynamics

is usually referred to as “short term synaptic plasticity”, and it is divided into ”short term

potentiation” and ”short term depression”.

Short term potentiation happens when a recent activation of the synapse enhances synaptic

transmission of pre-synaptic spikes. This mechanism has been known for more then 70 years

(Eccles et al., 1941), and the dominant component on very short timescales is referred to

as “facilitation”, and it is usually investigated by considering pairs of stimuli. If the inter-
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Figure 4.3: Predicted and experimental dependence of release rate of neurotransmitter vesi-
cles on intra-cellular calcium concentration at the axonal termination. (A) Our model predicts
that vesicle release rate is proportional to the release probability P ([c]), which is given by
the logistic function of calcium concentration.The graph represents the curve predicted by
our model (equations (4.14)-(4.3)), which describe the dependence of release probability on
calcium concentration. Parameters ho = �3, h

1

= 5 and [Ca2+ref ] = 1µM . (B) Experimen-
tal observations about vesicle release rate as a function intra-cellular calcium concentration.
Figure adapted from (Schneggenburger and Rosenmund, 2015).

spike interval between two successive spikes/pulses is small (hundreds of ms), the excitatory

postsynaptic potential (EPSP) evoked by the second spike/pulse will be larger then the one

from the first spike. Facilitation is often measured as a ratio between the EPSP evoked by

the two spikes, and it is usually observed to decrease almost-exponentially as a function of

the inter-spike interval.

It has been shown that in the neuromuscular junctions, an action potential can cause fa-

cilitation even if there is no transmitter release (Dudel and Ku✏er, 1961). For this reason,

we can assume that facilitation is caused by some process controlled by pre-synaptic action

potentials, yet independent from neurotransmitter secretion. This leads naturally to the

hypothesis that facilitation is controlled by the influx of Ca2+ ions in the pre-synaptic ax-
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onal termination (Catterall et al., 2013). Support for this hypothesis comes from (Katz and

Miledi, 1968).

Our model of synaptic dynamics predicts short term potentiation as a consequence of calcium

accumulating in the pre-synaptic neuron, and of the super-linear dependence of the release

probability/rate on calcium concentration for low values of P . Calcium dynamics conditional

to pre-synaptic spikes can be derived by equation (4.140) (as will be derived in details in

Section 4.6)

d
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where cosh is the hyperbolic cosine and ⌧r is the refractory period of the neuron, as we will

see in Section 4.5.3. The given equation can be rewritten as a flow equation for the log-odds

ratio vt using equation (4.2)

d
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We can consider as starting condition vs the equilibrium value veq, which is the average value

of vt given the activity of the neuron conditional to the current configuration of the external

world. Alternatively, we can consider the situation when the neuron doesn’t generate a spike

for a long period of time. In this case, vs will converge to its minimum value vm, which is

given by
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where we assume an appropriate choice of the model parameters, which guarantees the quan-

tity (vm) to be well defined. After the first pre-synaptic spike, the value of vt will increase
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from the starting value vs of a certain quantity �1
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Then, from the new value vs + �1

v it will start decreasing back to vm, according to the

di↵erential equation

d
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whose solution, for the initial condition vt=o = (vs +�1

v), is given by
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When the second spike reaches the synapse (after a time ⌧ the log-odds ratio will increase of

a quantity �2

v from the current value v⌧ , where
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i

,µ
o
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i

(4.22)

For a given log odds ratio vt, the probability of vesicle release will be given by the inverse of

the log odds probability ratio, which corresponds to the Logistic function (equation (4.4)).

In addition, as a first order approximation, we can assume that the probability of a vesicle

release depends on the maximum concentration of calcium [c] (and consequent log-odds ratio

v), which is reached immediately after the spike. Therefore, the probabilities for the first and

second spike will be given by

P
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where ⌧ is the inter spike interval between first and second spike. The average EPSP will

be proportional to probability of vesicle release. For this reason, we can calculate the ratio

between the EPSPs evoked by the second and by the first spike, which is

2nd EPSP

1st EPSP
(⌧) =
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The given result can be generalized from a pair of pre-synaptic spikes (as above) to a pair

of pulses (paired pulse ratio) or a pair of stimuli (each presented for a short period of time),

given an appropriate choice of the quantity �v, which depends on the intensity and duration

of the pulses/stimuli used in the experiment. We compared our model predictions with exper-

imental results about short-term synaptic potentiation in mouse hippocampal CA1 neurons

(Moresco, 2002) and mice hyppocampal Tc1 (Witton et al., 2015). Given an appropriate

(biophysically reasonable) choice of the model parameters, our predictions are compatible

with experimental observations about the time-course of synaptic facilitation (and specifi-

cally of the paired-pulse ratio for di↵erent inter-stimulus intervals)(figure 4.4). Moreover,
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since we assume that facilitation is controlled by calcium concentration, our model requires

the timescale of facilitation decay to match the timescale of calcium recovery inside the neu-

ron. This prediction is supported by experimental evidence (Delaney and Tank, 1994), as

the two given timescales seem to be linearly correlated (see figure 4.5).

If a brief period of synaptic activation can generate short term potentiation, sustained synap-

tic activity in time can produce an opposite behavior, called short term depression (Zucker

and Regehr, 2002). This phenomenon provides the synapse to be less responsive to incom-

ing spikes, and to reduce both vesicle release rate and excitatory postsynaptic potentials.

Evidence suggests that this behavior can be caused by depletion of available synapses to be

released (Schneggenburger et al., 2002). In fact, in the synapse there is a limited number

of available vesicles filled with neurotransmitters (tens-hundreds per synaptic bouton, ac-

cording to the neuron type (Ikeda and Bekkers, 2009; Schikorski and Stevens, 1997)), and

the replenishment of vesicles in the axonal terminal can be relatively slow (e.g. it’s 0.82

vesicles per synapse per second for hippocampal CA1 neurons in rats (Awatramani et al.,

2007)). For this reason, when high levels of activation are sustained for long periods of

time, the release of neurotransmitters in the synaptic cleft is limited by vesicle replenishment

rate (Harata et al., 2001; Abbott et al., 1997). To limit the consequences of this situation,

which in the prospective of our model can be interpreted as unwanted side-e↵ects, we assume

that the brain took some precautions: (A) Synapses with higher release probability (rate)

per single vesicle (and that are therefore more likely to get depleted) should be refurnished

with a higher number of available vesicles (Dobrunz and Stevens, 1997). By doing this, the

reserve of vesicles will be proportional to the expected maximum need, as a result of a trade-

o↵ between reliability and biophysical/metabolic costs. Experimental evidence shows that

there is considerable variability in the number of docked vesicles at individual synapses, both

across di↵erent type of synapses (Rao-Mirotznik et al., 1995; Schikorski and Stevens, 1999)

and within the same synapse type (Harris and Sultan, 1995; Zucker and Regehr, 2002). (B)

In each synaptic bouton there should be various groups of vesicles, with a di↵erent predis-
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Figure 4.4: Model predictions about short-term potentiation in synaptic transmission of
action potentials (A-C) are compared with experimental observations (B-D). All the graphs
represent the ratio between the EPSP evoked by the second and by the first pre-synaptic spike,
as a function of the inter-spike interval. (A) Curve predicted by our model of synaptic com-
munication (equation (4.25)). (B) Experimental paired-pulse ratio from mouse hippocampal
area CA1 (in-vitro). Scha↵er collaterals axons were stimulated using bipolar tungsten elec-
trodes (FHC) with enough current (50-s pulses) to reliably elicit synaptic responses. Figure
adapted from (Moresco, 2002). (C) Curve predicted by our model (equation (4.25)) plotted
in a semi-log plot. (D) Ratio between first and second field excitatory postsynaptic potential
(fEPSP) amplitudes in response to a pair of 175 A stimulations in mice hyppocampal Tc1.
Figure adapted from (Witton et al., 2015).

position to be released. In this way, reactive vesicles will make the synapse responsive in

communicating a weak stimulation. However, if a high level of activation is sustained for a
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Figure 4.5: Experimental results show correlation between the timescale of calcium dynam-
ics and synaptic potentiation decay, validating our predictions. (A) Our model predicts that
facilitation is controlled by calcium concentration and, as a consequence, the timescale of
facilitation decay should match calcium recovery. (B) Experimental observations in the cray-
fish claw opener neuromuscolar junction, showing a linear correlation between the timescales
of calcium and synaptic potentiation. Figure adapted from (Delaney and Tank, 1994).

long period of time, the residual resilient vesicles will prevent a complete depletion of the

synapse, which will still be able to partially communicate outgoing messages. Vesicles that

had recently entered the releasable pool are known to have lower release probability than

those that had been in the pool for more than 30 s (Wu and Borst, 1999). Furthermore,

resilient vesicles are known to be able to transform into responsive vesicles through a process

which is controlled by calcium concentration (Wang and Kaczmarek, 1998). (C) To avoid

depletion of synapses, calcium concentration (and corresponding log-odds ratio) in a working

neuron should usually correspond to relatively small probabilities. This implies that, most

of the time, the log-odds probability ratio v should assume negative numbers, corresponding

to release probabilities lower than 0.5 (left side of the logistic function). This would explain

an approximation often used in the literature (Stockbridge and Moore, 1984; Bertram et al.,

1996; Dodge and Rahamimo↵, 1967; Katz and Miledi, 1970), according to which the neu-
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rotransmitter release rate Nr is assumed to be proportional to the fourth power of calcium

[ca2+]4.

Nr = n [ca2+]4 (4.30)

In fact, the dependence of release probability on calcium predicted by our model (equation

(4.14)) is well approximated by the fourth power of calcium [c]4 for values of calcium con-

centration that correspond to small (negative) values of the log-odds ratio v (see figure 4.6).
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Figure 4.6: The probability of release predicted by our model (equation (4.14), blue line) is
well approximated by the fourth power of calcium concentration (equation (4.30), red line)
for small values of calcium (A). (B) For large values of calcium, neurotransmitter release
diverges in the case of the power approximation, while it converges to a finite value according
to our model. Parameters used in the plots are h

0

= �7, h
1

= 4 and n = 0.05.

Here, we introduced a model of how synapses encode and transmit information. Specifically,

we propose that the neuron encodes the log-odds ratio of the probability of a certain hidden

state in the world, and that this information is encoded in the synapse in the form of calcium

concentration. We also propose that the release of neurotransmitter vesicles into the synaptic

cleft takes the form of a sampling process, whose probability is controlled by the current log-

odds ratio. We provide a theoretical justification for our proposal, and we show that our

model can explain biophysical observations about synaptic dynamics (e.g. vesicle release
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rate, short term potentiation and timescale of facilitation,) and that it is compatible with

e↵ective models used in the literature to describe synaptic behavior. If verified, such a

model would provide a new interpretation of the computational role of calcium in synaptic

functioning, and it would deliver a principled explanation of synaptic dynamics, allowing to

better understand neural mechanisms such as short term potentiation. Additionally, a better

understanding of synaptic computations would allow developing more advanced models of

neural population dynamics, computations and learning.

In the following, we will expand our model of calcium-based neural computations to describe

the dynamics of the post-synaptic neuron. We will see how the message transmitted by

the synapse can be interpreted by the post-synaptic dendrite, and we will show how this

information can be encoded locally (exploiting calcium dynamics) and it can be spread to

di↵erent regions of the neuron in an e�cient way (exploiting spikes and a predictive coding

scheme).

4.4 Dendritic integration

The information encoded in synaptic vesicles release is used by the post-synaptic neuron to

infer the configuration of the external world and, specifically, the probability of a certain

hidden state xt. To infer such a probability, the neuron estimates on-line the instantaneous

release rate of the synapse, and it recurrently uses this quantity as an observed variable in

a binary regression problem, e�ciently combining the information received from di↵erent

synapses. This is implemented in the dendrite, which is the region of the neuron responsible

for integrating synaptic inputs (see figure 2.2).
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4.4.1 Decoding synaptic vesicles release

According to our model, vesicle release is described by an inhomogeneous Poisson process,

whose instantaneous rate ⌫s is controlled by the probability encoded in pre-synaptic calcium

concentration. Here, we assume that the aim of the post-synaptic dendrite is to infer the

posterior distribution of the instantaneous hidden rate ⌫s which generated the observed his-

tory of release events {tr}, and to calculate, represent and communicate the mean value of

this distribution. This task is solved on-line: each time a new vesicle release is observed, the

information encoded in the inter-release interval is used to update and improve the current

posterior distribution. We can recognize in this problem various similarities to the task ad-

dressed in 3.2.2, and we will use a similar approach to derive a normative model of synaptic

ions flow that allows implementing near-optimal inference. Since we are considering a Poisson

process without adaptation, we will achieve slightly di↵erent results than what was derived

in Chapter 3 (equation (3.49)). Therefore, we will briefly repeat part of the derivation here

for clarity; it is possible to make reference to 3.2.2 for more details.

We assume that the release rate ⌫s follows a stochastic dynamics. We modeled this dynamics

using either a stochastic jump process or a random walk, achieving consistent results. In

the following we will consider the case of a stochastic jump process, since it represents the

more complicated problem to be solved. Moreover, a the latter process better describes the

stochastic dynamics of calcium concentration in the pre-synaptic neuron, which presents a

sudden jump each time a spike reaches the axonal termination. The stochastic jump process

can be modeled mathematically using an underlying Poisson process with rate ri. Each time

an event takes place in the given process, ⌫s is set to a new random value, sampled from

a baseline distribution B(⌫s). For mathematical tractability, we will assume B(⌫s) to be a

Gamma distribution, with parameters ↵i and �i.

B(⌫s) = g(⌫s;↵i, �i) ; g(⌫s; ↵, �) =
�↵

�(↵)
⌫↵�1

s e��⌫
s (4.31)
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In the following, we assume that the post-synaptic dendrite exploits both the information

received by vesicle release and the knowledge of the hidden variable ⌫s stochastic dynamics

to implement optimal inference, and to update the posterior distribution online. We can

refer to Dt(⌫s) as the current posterior belief about the current release rate ⌫s. Each time

a new observation (inter-release interval) is available, this information can be used to derive

a corresponding likelihood distribution, and update Dt(⌫s) accordingly. The distribution of

inter-event intervals in a Poisson process is exponentially distributed and, as a consequence,

it can be shown that the likelihood L⌧ (⌫s) corresponding to a certain interval ⌧ observed

between two consecutive events is Gamma distributed

L⌧ (⌫s) = ⌧ 2⌫se
�⌫

s

⌧ = g(⌫s ; ↵L = 2, �L = ⌧) (4.32)

Furthermore, since the gamma distribution is the conjugate prior of the exponential distribu-

tion (Gelman et al., 2003), we can consistently express the posterior distribution both before

Dt(⌫s) and after Dt+⌧ (⌫s) the observation ⌧ in form of Gamma distribution, and write

Dt+⌧ (⌫s) =K L⌧ (⌫s)Dt(⌫s) = g(⌫s; ↵L + ↵t � 1, �L + �t) = g(⌫s; ↵t+⌧ , �t+⌧ ) (4.33)

Since we are interested in the mean value of the posterior distribution Dt(⌫s), we can use the

relation for mean and variance of a Gamma distribution

µ =
↵

�
; �2 =

↵

�2

(4.34)

and rewrite equation 4.33 in form of update equation for mean and variance of the posterior
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distribution

µt+⌧ =
↵t + ↵L

�t + �L

=

µ2
t

�2
t

+ 1
µ

t

�2
t

+ ⌧
; �2

t+⌧ =
↵t + ↵L

(�t + �L)2
=

µ2
t

�2
t

+ 1

( µt

�2
t

+ ⌧)2
(4.35)

We will now consider the assumption that the average interval < ⌧ > between two consecutive

vesicle releases is smaller than the inverse of the timescale ri on which the hidden rate ⌫s

changes.

< ⌧ > ⌧ 1

ri
(4.36)

This can be seen as a necessary condition, since the synapse would not be able to e�ciently

transmit information about a variable ⌫s whose value changes faster than the average rate of

vesicle release. Under the given assumption, we can Taylor expand equation (4.35)

µt+⌧ =µ⌧ +
�2

t

µt

(1 � µt⌧) � �4⌧

µ2

(1 � µ⌧)

✓

1 +O

✓

�2

t ⌧

µt

◆◆

(4.37)

�2

t+⌧ =�2

t +
�4

t

µ2

t

(1 � 2µt⌧)

✓

1 +O

✓

�2

t ⌧

µt

◆◆

(4.38)

In addition, as a certain time interval ⌧ elapses, there is a certain probability p ⇡ ri⌧ that

the variable ⌫s has undertaken a jump, which set it to a new value. We assume that the

post-synaptic dendrite is aware of the stochastic dynamics controlling the hidden variable ⌫s,

and that it exploits this knowledge to improve its representation. Therefore, the posterior

distribution Dt+⌧ (⌫s) after a time ⌧ will be given by a weighted mixture of the previous

posterior distribution Dt(⌫s) and of the base distribution B(⌫s)

Dt+⌧ (⌫s) = (1 � ri⌧)Dt(⌫s) + ri⌧P (⌫s) = (1 � ri⌧)g(⌫s ; ↵t, �t) + ri⌧g(⌫s ; ↵i, �i) (4.39)
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Under the assumption that < ⌧ >⌧ r�1

i , it is possible to show (see 3.2.3) that the posterior

distribution Dt+⌧ (⌫s) can still be accurately approximated using a Gamma distribution, and

exploiting the relation for mean and variance of weighted mixture of distributions

E(X) = E[E(X|✓)] ; Var(X) = E[Var(X|✓)] + Var(E[X|✓]) (4.40)

we can write a flow equation for mean and variance of the posterior distribution Dt(⌫s), which

accounts for the information loss derived by the stochastic dynamics of the hidden variable

⌫s

µt+⌧ =(1 � ri⌧)µt + ri⌧µi = µt + ri⌧(µi � µt) (4.41)

�2

t+⌧ =(1 � ri⌧)(µ
2

t + �2

t ) + ri⌧(µ
2

i + �2

i ) � ((1 � ri⌧)µt + ri⌧µi)
2 (4.42)

Where µi and �i are, respectively, mean and variance of the base distribution B(⌫s). Ex-

ploiting approximation < ⌧ >⌧ r�1

i one more time, we can expand equation (4.42) and

write

�2

t+⌧ = �2

t + (�2

i � �2

t + (µt � µi)
2)ri⌧ +O(r2i ⌧

2) (4.43)

Finally, by combining the update equations (4.37)-(4.38) that account for the information

gain derived by the observed inter-release interval ⌧ , and equations (4.41)-(4.43) that account

for the information loss derived by the stochastic dynamics of the hidden variable ⌫s, we can

write

µt+⌧ =µt +
�2

t

µt

(1 � µt⌧) + ri⌧(µi � µt) (4.44)

�2

t+⌧ =�2

t +
�4

t

µ2

t

(1 � 2µt⌧) + ri⌧(�
2

i � �2

t + (µt � µi)
2) (4.45)

Each time a new vesicle is released and received by the post-synaptic neuron, the observed

interval ⌧ between the last and the previous vesicle release is used to update the parameters
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of the Gamma distribution describing the inferred posterior Dt(⌫s). Equations (4.44)-(4.45)

describe how mean and variance of the inferred distribution are updated on-line accordingly.

To reduce our system of coupled equations to an independent finite di↵erence equation, we

can rely on condition < ⌧ >⌧ r�1

i , which implies that, in average, multiple release events

are observed before there is a change in the hidden value ⌫s. Therefore, we can assume that

the variance has time to converge to its equilibrium value, and we can approximate �2

t in

equation (4.44) with the steady state solution �2

e of equation (4.45), which satisfies

<
�4

t

µ2

t

(1 � 2µt⌧) + ri⌧(�
2

i � �2

t + (µt � µi)
2) >= 0 (4.46)

It is possible to note that we are following a similar procedure to what we did in 3.2.5.

However, we are here considering the case of a Poisson process without adaptation, which is

leading us to di↵erent results. We can solve (4.46) by applying Ito’s Lemma, and exploiting

the fact that ⌧ appears only as a linear term in the equation (4.46). Approximating < ⌧ >=

µ�1

i we can write

�4

t

µ2

t

✓

1 � 2µt
1

µt

◆

+ ri
1

µt

(�2

i � �2

t + (µt � µi)
2) = 0 (4.47)

The given equation has only one positive solution, which is

�2

e =
µtri +

q

r2
i

µ2
t

+ 4 r
i

µ3
t

⌧((µt � µi)2 + �2

i )

� 2

µ2
t

(4.48)

We can now invoke assumption < ⌧ >⌧ r�1

i one more time, which translates here into

ri ⌧ µt, and expanding to the first order in
q

r
i

µ
t

we can write
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�2

e ⇡
q

µtri(�2

i + (µt � µi)2) (4.49)

Substituting equation (4.49) in (4.44), we can rewrite the coupled system of finite-di↵erence

equations (4.44)-(4.45) into a first-order linear non-homogeneous ordinary finite-di↵erence

equation

µt+⌧ = µt +H(µt) (1 � µt⌧) + ri⌧(µi � µt) ; H(µt) =

r

ri
µt

(�2

i + (µt � µi)2) (4.50)

which describes the evolution of the posterior mean µt as new vesicles are released. The

variable µt is the quantity of interests for the post-synaptic dendrite, since it is the best

estimation of the hidden variable ⌫s given the available information and the knowledge of the

stochastic dynamics controlling the variable. The given equation can be rewritten in form of

di↵erential equation

dµt

dt
= H(µt)�(t � t

release

) � H(µt)µt + ri(µi � µt) (4.51)

The biophysics of receptors in the dendrite detect the release of a vesicle by sensing the

presence of neurotransmitters in the synaptic cleft, and the received signal is converted into

an excitatory postsynaptic current (EPSC). We propose that vesicles releases are translated

into EPSCs according to equation (4.50). Specifically, we assume that the post-synaptic

current It is a linear function of the decoded quantity It = mµt + n. It is possible to note

that, if we approximate H to be independent of µt, then we can write

dµt

dt
= H�(t � t

release

) + (H + ri)(µi
ri

ri +H
� µt) (4.52)

The given equation can be interpreted as follows: Each time a vesicle is released, the con-

centration of neurotransmitters (and, consequently, synaptic current) increases of a fixed
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quantity, which reflects into a positive jump of µi with amplitude H. Moreover, in absence

of input drive (vesicle release), a continuous-in-time di↵usion of neurotransmitters provides

synaptic current to decay exponentially and, as a consequence, µt to decay to the equi-

librium value µi
r
i

r
i

+H
with timescale H + ri. In this sense, we can interpret the original

dependence of H(µt) on µt as a consequence of non-linear couplings between neurotrans-

mitter concentration, ions concentration, instantaneous synaptic current and ions channels

open/close configuration.

Another possible approximation we can make to investigate properties of the given equation

is to consider the regime �2

i >> |µt � µi| and to discard the term µt � µi in equation (4.51),

as follows

H(µt) ⇡
r

ri
µt

�2

i (4.53)

Such an approximation in a similar scenario is discussed and motivated in 3.2.5 and in fig.

3.1B, where we show that the error introduced by the approximation is relatively small in

the region of interest. If an elevated number s of vesicles is released in a short time (and

we neglect receptors saturation e↵ects) the continuous-in-time decay of neurotransmitter will

not significantly a↵ect the postsynaptic potential immediately after the stimulus is received.

Therefore, according to approximation (4.53), the resulting max value of the EPSC after the

stimulation would satisfy the di↵erential equation

dµ

ds
=

s

ri�2

i

µt

(4.54)

whose solution predicts a power law dependence of the resulting postsynaptic current on the

number of vesicles released

µ =

✓

3

2

◆

2
3
✓

c
1

+ s
q

ri�2

i

◆

2
3

(4.55)

where c
1

is an arbitrary constant, which depends on the initial value of the potential before

the beginning of the stimulation.
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4.4.2 Combining di↵erent synapses

According to our model, the postsynaptic membrane current It evoked in the dendrite rep-

resents a linear function of the mean µt of the posterior distribution D(⌫s), which is inferred

by the neuron about the rate ⌫s controlling synaptic release. The given rate is proportional

to the probability of a certain event, which we assume to be containing some information

about the state xt encoded by the post-synaptic neuron.

According to 4.2.1, we propose that the post-synaptic neuron is going to use this information

to implement a binary classification problem, and infer the probability Pt that the hidden

event xt is currently in the active state 1. To infer this probability, the neuron exploits infor-

mation encoded in an observation vector !, which is randomly sampled from a d-dimensional

distribution P (!|x). We propose that this observation vector ! is given by the postsynap-

tic current of di↵erent branches in the dendritic tree, corresponding to di↵erent synapses

(!i = Vi). Considering how the quantity It has been generated in our model, it is reasonable

to assume that the marginal distribution !i can be well described by an o↵set Gamma dis-

tribution. The reason is that !i = Ii is a linear function of the mean µt, which is Gamma

distributed, and the space of Gamma distributions is close under scaling. For analytical

tractability, we will approximate here the Gamma distribution with a Gaussian. Di↵erent

variables !i refer to distinct events in the world, which might be correlated in their nature.

Therefore, the d-dimensional distribution D(!) will be approximated by a multivariate Gaus-

sian, with covariance matrix ⌃ and x-dependent mean vector µ(x). Again, for mathematical

simplicity, we will assume for now that ⌃ is independent on the state x. In the following this

approximation can be removed, and the consequences can be explored. We can recognize

in this situation the same task that we considered in 4.2.2, and we can proceed in a similar

fashion to derive the optimal solution (i.e. logistic regression). According to equation (4.10),
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the log-odds probability ratio ⇠ = L(P ) is given by a linear sum of the observations !i

⇠ =L(Prior) + a+ bT! (4.56)

a = � 1

2
(µ

0

+ µ
1

)T⌃�1(µ
1

� µ
0

) (4.57)

b =⌃�1(µ
1

� µ
0

) (4.58)

This result shows that, by doing a linear sum of the received dendritic currents with some

appropriate weights, the neuron can implement optimal inference of the log-odds probability

for the hidden state x. As we saw in 4.2.2, this is a promising result, since we know that

neurons are often finely tuned to implement linear summation of most input combinations

(Cash and Yuste, 1999). Additionally, it has been observed that neurons compensate for the

morphological disposition of synapses in such a way that EPSCs evoked in distal dendrites

in average a↵ect the soma as much as EPSCs generated in dendrites proximal to the soma

(Magee and Cook, 2000). This is compatible with the idea that weights used in the linear

summation of EPSCs depend on the correlation structure ⌃ between the inputs, and not

on their locations. Finally, as we saw in 4.2.2, non-linear summations can be explained by

considering in our model a covariance matrix ⌃ which is conditional on x.

In equation (4.58) we consider the case of a single logistic regression iteration. Yet, in the

neuron this inference is implemented as a continuous process: information about the hidden

state is received in each moment in time, and the value of ⇠ is updated on-line accordingly.

Thanks to the Bayesian framework used in (4.56), the equation can be implemented recur-

sively. Let’s assume for now that ⌧c is the average timescale on which the observations ! are

correlated. For now we can consider each vector !(t) at intervals of ⌧c as an independent

observation, and write

⇠t+⌧c = ⇠t + a+ bT!t+⌧c (4.59)
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which can be rewritten in di↵erential form as

d⇠t
dt

=
1

⌧c
(a+ bT!t) (4.60)

Moreover to the likelihood provided by available observations, the stochastic dynamics of the

hidden variable xt introduces a time-dependent information loss. We model this stochastic

dynamics as a Markov Chain process, following an approach first proposed in (Deneve, 2008).

According to the proposed dynamics, a positive state x
1

will turn into a negative state x
0

with rate r#, while a negative state will turn positive with rate r". According to the given

dynamics, we can write how the probability P of x being in the positive state x
1

evolves in

time
dPt

dt
= �P r# + (1 � P ) r" (4.61)

and, consequently

dL(Pt)

dt
=

d

dt
log

✓

P

1 � P

◆

= r"

✓

1 +
1 � P

P

◆

� r#

✓

1 +
P

1 � P

◆

(4.62)

or, expressing everything as a function of ⇠t = L(Pt)

d⇠t
dt

= r"
�

1 + e�⇠
�

� r#
�

1 + e⇠
�

(4.63)

By combining equations (4.60) and (4.63), we can write

d⇠t
dt

=
1

⌧c
(a+ bT!t) + r"

�

1 + e�⇠
�

� r#
�

1 + e⇠
�

(4.64)

It can be noted that, if we neglect observations ! (a, b = 0), the value of ⇠ will converge to

the solution of

r"
�

1 + e�⇠
�

= r#
�

1 + e⇠
�

(4.65)
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which is given by

Peq =
1

1 + r#
r"

(4.66)

According to equation (4.64), the membrane potential of a neuron will linearly integrate

a constant flow of ions a/⌧c and all the received input currents !t with some appropriate

weights b/⌧c. Furthermore, a potential dependent flow of ions will drive the membrane

potential to converge to the equilibrium value Peq. In (Deneve, 2008) it is shown that, under

some assumptions, this potential-dependent flow of ions approximates the leakage term in the

leaky integrate-and-fire model of neural dynamics, with the only di↵erence that the timescale

of exponential decay depends on the membrane potential, and specifically it is given by

⌧⇠ =
1

r"e�<⇠> + r#e<⇠>
(4.67)

where < ⇠ > is the average value of the log-odds likelihood. According to the proposed

model, the weights used by the neuron to integrate dendritic inputs ! depend on the mean

values µ
1

�µ
0

, on the covariance structure ⌃ and on the average timescale of autocorrelation

⌧c. By implementing this dynamics, the membrane potential fluctuations of the neuron will

infer and track the log-probability ratio of the probability Pt of the hidden state xt.

The proposed model of membrane fluctuations (which has been derived from first Bayesian

principles) is compatible with existing models of neural dynamics and, if validated, it would

provide a computational explanation of what we know about neural integration of dendritic

currents. In the following, we will see how the information encoded in the membrane fluctu-

ations can be e�ciently translated into spikes, in order to propagate it to distant regions of

the neuron, and to coordinate di↵erent local processes.
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4.5 Action potentials

There is a large variety of models describing how membrane fluctuations control action poten-

tials generation. Some models are relatively simple, as it is the case of the integrate and fire

model (Burkitt, 2006), which prescribes that every time the membrane potential Vt reaches

a certain threshold Vth a spike is generated, and the membrane potential is reset to value

Vo. Other more complicated models contemplate a dynamically changing threshold (Mihalaş

and Niebur, 2009) or they introduce some random component to the membrane fluctuations

dynamics to introduce stochasticity (Sacerdote and Giraudo, 2011). Some models substitute

the concept of threshold with a probability of spiking p(V ) which depends on the membrane

potential Vt (Jolivet et al., 2006). Some of these models are very detailed and biophysically

realistic (Hodgkin and Huxley, 1952) while others are purely e↵ective (Brette, 2005; Mihalaş

and Niebur, 2009) or they provide a principled explanation of the computational role of the

proposed dynamics in information encoding and processing (Deneve, 2008).

In the following we will not select any particular spike-initiation model. On the contrary, we

will develop an abstract framework that can be applied to any chosen dynamics, as long as the

used model produces a firing rate that reflects the membrane fluctuations of the neuron (as

is the case in (Deneve, 2008)). We will exploit some common properties shared by various

spike-initiation models, and we will apply the computational mechanism we developed in

Chapter 3 to introduce spike-rate adaptation, which allows making the spiking activity of

the neuron more e�cient by implementing a predictive code.

In the literature, action potentials are usually interpreted as bits of a quantized code used

by neurons to communicate information with each other. Spikes are commonly considered as

the letters underlying neural language, and the information encoded in the spiking activity of

neurons is investigated using either information theory analysis (Bhumbra and Dyball, 2005;

Yarrow and Challis, 2012) or correlating neural dynamics with perception (Lee et al., 2013)

and behavior (Paninski and Fellows, 2004). Here, we propose a slightly di↵erently perspec-
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tive: action potentials are generated for one precise reason, which is to propagate information

from one region to the other within the neuron, and to coordinate and synchronize di↵erent

local processes. In fact, the advantage of action potentials is that they are quantized and,

as a consequence, their message is remarkably robust and consistent when propagated over

long distances and in the presence of noise. However, action potentials have the disadvantage

of being metabolically expensive (Laughlin et al., 1998). In addition, the dynamic range of

spiking rate is limited on one side (low rates) by low consequent information capacity and on

the other (high rates) by biophysical constraints, as neural refractory periods or the capacity

of mitochondria to produce ATP. For this reason, neurons use an e�cient coding scheme to

propagate information with spikes and, specifically, we propose that they use a coding strat-

egy that is predictive (Hosoya et al., 2005). Neurons internally decode information already

encoded in their spiking history, and use this information to control spike initiation mecha-

nisms. By doing this, only non-redundant new information is encoded by action potentials,

which was not already encoded in previous action potentials.

4.5.1 Gain rate normalization

Some models of spike-generation translate membrane fluctuations into spikes and firing rates

using a stochastic dynamics, while others are fully deterministic. Yet, in each model the neu-

ron receives inputs through a stochastic process, which is synaptic vesicle release. Moreover,

the input received is the last product of a (often long) processing pipeline. Each neuron re-

ceives a stochastic input, integrates it and passes it in form of a stochastic output to the next

neuron in the chain. Variability introduced by each iteration accumulates and propagates.

Therefore, it is reasonable to assume that the final relationship between neuron spiking ac-

tivity (output of the processing pipeline) and the encoded feature of the world x (input) can

be well described by an inhomogeneous Poisson process. This idea is compatible with the

rate-coding approach to information encoding in the brain (Fuglevand and Winter, 1993), yet
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other approaches are possible (Gautrais and Thorpe, 1998). In the following, we will accept

and follow the rate-coding hypothesis.

We propose that the message (hidden rate) encoded in the spiking activity of the neuron is

decoded and represented locally. This decoded message, which in Chapter 3 was referred to

as ct, will be represented here by the intracellular concentration of calcium ions [c]. It should

be mentioned that the variable ct (from Chapter 3) and [c] (used in this Chapter) represent

di↵erent quantities. In fact, they refer to two di↵erent levels of description and, as we will

see in Section 4.6, they are controlled by di↵erent dynamics. For this reason, they should not

be confuse, despite the fact that they play an analogous role in the two models. Recursively,

the instantaneous calcium concentration will interact with spike generation mechanisms, and

it will act as divisive gain normalization. Therefore, if a neuron is encoding a stimulus that

in absence of adaptation would produce a firing rate ⌫, adaptation will act in such a way

that the e↵ective firing rate of the neuron will be ⌫⇤, given by

⌫⇤
t =

⌫t
y([c])

(4.68)

where y([c]) is a function of calcium concentration. The choice of y([c]) depends on the

spike generation model we use, and on the assumptions we make about what variable (e.g.

probability P or Log-odds ratio L) controls the average firing rate of the neuron. The

case y([c]) = [c] matches equation 3.15 we used in Chapter 3, and it corresponds with

the circumstance of the log-odds ratio linearly controlling the firing rate. However, here

we want to provide a general description compatible with di↵erent spike-initiation models

and, for this reason, we don’t select a particular function y([c]). The proposed divisive

gain normalization can be implemented through di↵erent biophysical mechanisms, and the

choice of the implementation will also depend on the specific model of spike generation we are

working with. In the following we will propose a candidate implementation of this mechanism,

and we will use a normative approach to predict the potassium ions channels dynamics that
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allows to execute it.

4.5.2 Calcium dependent potassium current

The discussed gain rate normalization can be implemented through di↵erent neural mecha-

nisms. For example, various models of neural dynamics propose a dynamic spike-initiation

threshold. If working with such a model, an appropriate choice of a calcium-dependent

threshold Vth([c]) would enable the neuron to implement the desired firing-rate regulation.

Here, we propose an alternative implementation that exploits supplementary (adaptation)

ions currents to control neural excitability and normalize spiking activity. In the proposed

model we assume that the mentioned currents Ic are controlled by calcium concentration,

and they act as to balance the predictable component of dendritic input I! as follows

I
total

= I! � Ic = bT (!t � E(!|Pt)) (4.69)

where P represents the current knowledge of the neuron about the state of x that is already

encoded in the spiking history. We can express the expected dendridic currents ! given the

current knowledge P as

E(!|P ) =P

Z

!P (!|x = 1)d! + (1 � P )

Z

!P (!|x = 0)d! (4.70)

=Pµ
1

+ (1 � P )µ
0

(4.71)

=µ
0

+ P (µ
1

� µ
0

) (4.72)

Moreover, it comes by definition that, solving equation 4.64 for ! = E(!|P ), the resulting

value will track the quantity Lc, which is the log-odds ratio of the probability P . We assume

that the goal of such a mechanism is to infer the quantity � = ⇠ � Lc. It is possible to show
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that the given quantity can be inferred using the following di↵erential equation

d�t

dt
=

1

⌧c
(bT!t � bT (µ

0

+ P (µ
1

� µ
0

))) � �(r"e
�L

c + r#e
L

c) (4.73)

The given equation was developed under the approximation that, in average, |⇠�Lc| << |Lc|.

Such a condition is a consequence of the fact that both ⇠ and Lc track the same variable,

which is the log-odds ratio of the hidden state, and, therefore, their relative di↵erence should

be smaller than their absolute value.

By substituting the definitions (4.57) and (4.58) in equation (4.73), the adaptation current

Ic can be expanded as

Ic = �bT (µ
0

+ P (µ
1

� µ
0

)) = �(µ
1

� µ
0

)T⌃�1µ
0

� P (µ
1

� µ
0

)T⌃�1(µ
1

� µ
0

) (4.74)

and equation 4.73 can be rewritten as

d�t

dt
=

1

⌧c
(I! � Ic) � �(r"e

�L
c + r#e

L
c) (4.75)

The given equation represents a leaky integration of the received input currents, where the

leakage term depends on calcium concentration (Lc). According to our model, this dynamics

is implemented by the membrane potential of the neuron and, as we will see later, the

resulting value is consequently used to control the probability of generating action potentials.

Finally, information transmitted by spikes is decoded and represented locally in form of

calcium concentration [c]. Therefore, calcium level [c] represents a linear function of the best

approximation of the log-odds ratio Lc = L(P ) given the information encoded in the spiking

history of the neuron (equation (4.2)). This also implies that the current knowledge P of the

neuron about the hidden state x can be expressed as

P =
1

1 + e�(h
o

+h1[c]t)
(4.76)
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and, as a consequence, we can express the calcium-dependent ions current in equation (4.74)

as

Ic = � 1

1 + e�(h
o

+h1[c]t)
(µ

1

� µ
0

)T⌃�1(µ
1

� µ
0

) (4.77)

Equation (4.77) describes the flow of ions predicted by our model, which compensates for the

predictable (given spiking history) component of dendritic currents. Coincidentally, there is a

class of potassium (K+) channels that are regulated by calcium concentration. These calcium-

dependent potassium channels were first discovered in (Gardos, 1958) and their existence was

confirmed in (Gardos, 1958). These channels are usually referred to as ”big conductance”

(BK), ”intermediate conductance” (IK) channels or ”small conductance” (Sk) potassium

channels, according to their ions permeability. calcium-dependent potassium channels (and

especially BK channels) are known to regulate neuronal excitability, controlling interspike

intervals and spike-frequency adaptation (Vergara et al., 1998; Gu et al., 2007). Additionally,

SK channels contribute to control the medium afterhyperpolarization potential (mAHP) after

spikes (Deister et al., 2009) and, therefore, to lower neuron’s intrinsic excitability following

sustained activity.

Calcium-dependent potassium channels C can take two possible states: “open” (C
1

) or

“close” (C
0

). In the open state (C
1

) channels become permeable to potassium, allowing

K+ ions to flow passively outside the neuron returning the electrochemical gradient, gen-

erated by a higher concentration of potassium ions inside the cell. The produced current

drives the membrane potential V towards the potassium reversal potential, which is around

-90 mV (Trussell and Jackson, 1985). This has the e↵ect to hyperpolarize the cell, reducing

excitability and probability of firing.

The dynamics of a channel C can be modeled using a statistical mechanics approach (Sullivan

and Holmqvist, 1997). Driven by thermal fluctuations, the channel is free to oscillate between

open and close states. To each state it is associated an energy level ✏i, which depends on

the molecular structure of the open/close channel. Therefore, for a given temperature T, the
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partition function Z can be written as

Z =
X

i=0,1

e�
✏

i

KT (4.78)

=e�
✏0

KT + e�
✏1

KT (4.79)

and the probability of the channel being open is given by

P
open

=
e�

✏1
KT

Z
(4.80)

=
e�

✏1
KT

e�
✏0

KT + e�
✏1

KT

(4.81)

which can be rewritten as

P
open

=
1

1 + e�
✏1�✏0

KT

(4.82)

By multiplying the open probability P
open

with the number of channels N and the average

current generated by each open channel i, we can write an expression for the resulting current

IK

IK = �Ni
1

1 + e�
✏1�✏0

KT

(4.83)

Where the minus sign is generated by the outward direction of positive charges K+ or,

equivalently, by the highly negative reversal potential of potassium (-90 mV). In equation

(4.82) we can recognize the same structure we derived in equation (4.77) for the current

necessary to compensate for the expected dendritic drive. Specifically, if we assume that the

di↵erence of the energy levels ✏
1

� ✏
0

is linearly proportional to calcium concentration [c]

✏
1

� ✏
0

KT
= ho + h

1

[c]t (4.84)

the resulting current IK (4.83) matches the necessary current Ic (4.77) for an appropriate

choice of the parameters N and i. Our model predictions are compatible with experimental
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observations (fig 4.7) from single channel recordings of calcium dependent potassium channels

(specifically BK channels (Dı́ez-Sampedro, 2006) and mSlo channels (Sullivan and Holmqvist,

1997)). It should be highlighted that the given ions channel dynamics was predicted by

our model from first principles, and the existence of ions channels matching the necessary

requirement is a promising result for the proposed model of neural functioning.
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Figure 4.7: Open probability of a calcium dependent potassium channel as a function of local
calcium concentration. Model predictions are compared with experimental observations.
(A) Potassium channel open probability P , as predicted both by our normative model of
potassium ions flow (equation (4.77)) and by the proposed statistical mechanics description
of ions channels dynamics (equation (4.82)-(4.84)). Parameters used are h

0

= 0.2, h
1

= 0.4
and [Ca2+ref ] = 1µM (referring to equation (4.3)). (B) Single channel recordings of BK
channels in Chinese hamster neurons. Di↵erent lines represent open probability for di↵erent
mutations of BK channels at di↵erent Ca2+ concentrations (0.4, 0.7, 10, 20, 70, and 100 µM)
measured at +40 mV . Figure adapted from (Dı́ez-Sampedro, 2006). (C) Open probability
for di↵erent mutations of mSlo potassium channels as a function of calcium concentrations.
Values were measured at +20 mV . Figure adapted from (Sullivan and Holmqvist, 1997).

4.5.3 Action potentials initiation

We mentioned that the divisive spike-rate gain normalization mechanism in (4.68) is compati-

ble with di↵erent neural spiking models, and according to the chosen mechanism the function

y([c]) will assume a di↵erent form. Here, we want to discuss an example of such a mechanism.

The model of spike initiation we introduce here is not adapted from the literature. Yet, its
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dynamics is inspired by the interpretation of membrane fluctuations that our general model

of neural functioning introduced. The proposed model of neural spiking has been developed

as an alternative to existing models, but we want to highlight the fact that its validity is not

required for the consistency of the general framework discussed in the previous sections.

In Section 4.4.2 we have seen that a linear function of the membrane fluctuations (�) can

be interpreted as the di↵erence between the Log-probability ratio L(P ) of a certain binary

state x and its predictable component Lc, which is removed by calcium-dependent potassium

currents. For clarity, in the following we will refer to this new probability as P ⇤ and to the

corresponding Log-odds ratio as L⇤ = �. These quantities will satisfy

L⇤ = L � Lc (4.85)

where L = ⇠ is represents the log-odds probability ratio inferred from the synaptic observa-

tions !, and Lc is the log-odds ratio encoded by calcium concentration [c]. We propose that,

at each moment in time, the spiking rate will depend on the probability P ⇤ encoded by the

membrane fluctuations. Specifically, we propose that there is a reference time interval ⌧r, and

that P ⇤ represents the probability of generating an action potential in such a time window.

⌧r can also be identified with the time between the beginning of the action potential and

the end of the “absolute” refractory period of the neuron, since it’s inverse represents the

maximum spiking rate of the neuron (corresponding to P ⇤ = 1). Therefore, we can express

the spiking activity of the neuron as an inhomogeneous Poisson process, whose instantaneous

rate is given by

⌫⇤ =
P ⇤

⌧r
(4.86)

The given expression is an approximation. In fact, in a Poisson process the probability of

an event happening in a certain finite time interval is not linearly proportional to the time

duration. Moreover, the refractory and rising period will influence slow and high rate regimes

di↵erently. However, we will accept the given approximation assuming that the average firing
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rate of the neuron is much smaller than the maximum firing rate ⌫max = ⌧�1

r

< ⌫⇤ > << ⌫max = ⌧�1

r (4.87)

This assumption is biophysically reasonable, given that the average inter-spike interval of

cortical neurons is usually within the range 50ms < ⌧ < 1s (Roxin et al., 2011) while the

“relative” refractory period are usually within 7ms < ⌧ < 13ms (Chen et al., 2006) and the

”absolute” refractory period is even smaller. According to the proposed model, the rate at

which spikes are initiated is proportional to the logistic function of � = L⇤, which is a linear

function of the membrane potential V .

⌫⇤ =
1

⌧r

1

1 + e��

(4.88)

The given model describes the probability (rate) of initiating an action potential. The re-

sponse function described in equation (4.88) is compatible with existing e↵ective models

used in the literature (Keat et al., 2001) (Luo et al., 2012) (Ge↵en et al., 2009) (Kaardal

et al., 2013). Furthermore, a logistic response function is often used when building Boltz-

mann machines (Neelakanta et al., 1991). Also, it has been shown that the logistic function

corresponds to the maximum noise entropy (MNE) response of a neuron encoding a sen-

sory stimulus (Fitzgerald et al., 2011), which maximizes entropy and minimizes model bias

(equivalent to random field models in machine learning (Bouman and Shapiro, 1994)).

Implementation

We will interpret the logistic response function in 4.88 as the result of a fixed threshold model

in the presence of Gaussian membrane-potential noise. We can assume that the coupled non-

linear dynamics of ions channels and membrane potential in the neuron generates an unstable
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fixed point Vth in the membrane potential V dynamics.

dV

dt

�

�

�

�

V=V
th

= 0 (4.89)

If V is lower then the given fixed point Vth, the dynamics of the system in absence of external

inputs will drive V towards an equilibrium value V
0

< Vth. On the contrary, if V > Vth a

single cyclic oscillation (action potential) will be generated, that will eventually bring the

value of V back below Vth. We assume that the value of V is a linear function of the log-odds

ratio � = L⇤ = Logit(P ⇤) plus an additional random term

Vt = g
0

+ g
1

�t +Wt (4.90)

where Wt is a stationary Gaussian process. We will assume that, in each time t̂, the marginal

distribution D(W
ˆt) is normally distributed with zero mean µ

ˆt = 0 and constant standard

deviation �
ˆt = �w.

D(W
ˆt) = N(0, �2

w,Wˆt) (4.91)

In addition, given a pair of times t̂
1

and t̂
2

, the multivariate normal distribution D(W
ˆt1
,W

ˆt2
)

is completely determined by the covariance function

K(t̂
1

, t̂
2

) = �2

w⇢w(|t̂1 � t̂
2

|) (4.92)

where ⇢w is a correlation function. For stationarity, we assume that the function ⇢w depends

only the absolute di↵erence between the considered times. Di↵erent covariance functions

K(t
1

, t
2

) will define di↵erent processes. For example, a delta distributed function

K(t
1

, t
2

) = �2

w�t1,t2 (4.93)
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corresponds to Gaussian noise, while an exponential decaying covariance function

K(t
1

, t
2

) = �2

we
� |t1�t2|

d (4.94)

corresponds with an Ornstein-Uhlenbeck process, which is a stationary version of a Brow-

nian motion. For our purposes, we will consider a correlation function ⇢w that decays on

a timescale of ⌧r. By doing this, we can approximate our process with a series of almost

independent samples wt
i

distant ⌧r one from the other. Therefore, if in a given time t̂ the

Log-probability ratio is given by �
ˆt, according to equation (4.90) the membrane potential

can be expressed as

V
ˆt = g

0

+ g
1

�
ˆt +W

ˆt (4.95)

and the probability of generating an action potential in the window (t̂, t̂+ ⌧r] will be given

by

P ⇤(�) =

Z

✓(V
ˆt � Vth)P (W )dW (4.96)

=

Z

✓(W � (Vth � g
0

� g
1

�))P (W )dW (4.97)

=

Z 1

V
th

�g0�g1�

P (W )dW (4.98)

=

Z 1

V
th

�g0�g1�

�wN(0, 1,W )dW (4.99)

=

Z 1

��1
w

(V
th

�g0�g1�)

N(0, 1,W )dW (4.100)

=NCDF

✓

Vth � g
0

� g
1

�

�w

◆

(4.101)

where NCDF is the cumulative distribution function of the standard normal distribution.

It can be shown that

NCDF (x) =
1

2

✓

1 + erf

✓

xp
2

◆◆

⇡ 1

1 + e�qx
(4.102)
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for an appropriate choice of the parameter q, where erf represents the error function. Specif-

ically, we selected the value of q that minimizes

q = arg min

Z 1

�1

✓

1

2

✓

1 + erf

✓

xp
2

◆◆

� 1

1 + e�qx

◆

2

(4.103)

We used a gradient descent method to find the optimal value q = 1.70099 ⇡ 1.7. In figure 4.8

the two expressions in equation (4.102) are compared and their di↵erence is plotted. From

the figure it possible to see that the logistic function is a very good approximation of the

normal cumulative distribution function.
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Figure 4.8: Graphical comparison of the expressions in approximation (4.102). (A) The
logistic function (blue line) is a good approximation of the normal cumulative distribution
function (NCDF - red line) for an appropriate choice of the parameter q = 1.7. (B) The
di↵erence between the two equations is plotted for q = 1.7.

Therefore, we can substitute the logistic equation to the NCDF in (4.101)

P ⇤(�) ⇡ 1

1 + e
1.7
�

w

(V
th

�g0�g1�)

(4.104)

and, for an appropriate choice of the parameters

g
0

= Vth and g
1

=
�w

1.7
(4.105)
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we can write

P ⇤(�) ⇡ 1

1 + e��

; ⌫⇤(�) ⇡ 1

⌧r

1

1 + e��

(4.106)

which matches the desired firing rate probability (equations (4.86)-(4.88)).

4.5.4 Integrating computational and algorithmic description

In Section 4.5 (and in Chapter 3) we developed an abstract (computational) model of spike

rate adaptation. We propose that calcium concentration controls divisive gain normalization

to implement predictive coding. The resulting instantaneous firing rate is given by

⌫⇤
t =

⌫t
y([c])

(4.107)

where ⌫t would be neural firing rate in absence of adaptation, and y([c]) is a function of

current calcium concentration. The given function y([c]) depends on the quantity encoded in

the firing rate of the neuron, and on the model of neural spiking we consider. For example,

if the firing rate of the neuron is proportional to the log-odds ratio encoded in membrane

fluctuations, y([c]) will be proportional to calcium concentration [c], which encodes the Log-

odds probability ratio inferred from the spiking history. Alternatively, if neural spiking

reflects the probability P (as in the spike generation mechanism described in Section 4.5.3),

y([c]) will correspond to the Logistic function of [c] (i.e. the inferred probability).

In Sections 4.5.2 and 4.5.3 we proposed a more specific (algorithmic) model of how cal-

cium concentration can interfere with spike-generation, and how information encoded in

membrane fluctuations controls the initiation of action potentials. Specifically, we proposed

that a calcium-dependent potassium current removes the predictable component of dendritic

drive, and that the instantaneous probability (rate) of neural spikes is proportional to the
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probability P encoded in neural fluctuations.

⌫⇤ =
P ⇤

⌧r
=

1

⌧r

1

1 + e��

(4.108)

where � is a linear function of membrane potential V . We also described a simple biophysical

(implementation) model of how this spiking behaviour can be achieved exploiting neural

instability and intrinsic noise.

Here, we try to create a bridge between the di↵erent levels of analysis previously discussed,

showing that the two approaches are compatible and consistent. We introduce a new quantity

k such as

k = ⌧rµo (4.109)

where ⌧r is the refractory period and µo is the desired average firing rate of the neuron, which

depends on biophysical and metabolic constraints. As we saw previously, absolute refractory

period is usually on the scale of 1 to few ms, while the average inter-spike interval of cortical

neurons is usually within [50ms < ⌧ < 1s]. This means that k << 1, which is a property

that we will exploit in the future. k is not a probability. Yet, since 0 < k < 1, we are allowed

to consider its logistic function Lk

Lk = Log

✓

k

1 � k

◆

(4.110)

We will redefine the parameter g
0

in equation (4.105) as

g
0

= Vth + Lk (4.111)

Exploiting equation (4.104), it is possible to show that this is equivalent to leave g
0

unchanged,

and to redefine � as �+ Lk. Therefore, according to equation (4.85) we can write

� = L⇤ = L � Lc + Lk (4.112)
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According to eq. (4.108), we can express the instantaneous firing rate of the neuron as

P ⇤ =
1

1 + e��

=
1

1 + e�L+L
c

�L
k

(4.113)

We can expand

P ⇤ =
1

1 +
�

1�P
P

�

⇣

P
c

1�P
c

⌘

�

1�k
k

�

(4.114)

=
P (1 � Pc)k

P (1 � Pc)k + (1 � P )Pc(1 � k)
(4.115)

and, exploiting the regime k << 1, we can approximate

P ⇤ ⇡ Pk

Pc

(1 � Pc)

(1 � P )
(4.116)

where P is the probability of the hidden state x inferred from the dendritic input , and Pc

represents the same probability, as inferred from the spiking activity of the neuron. Therefore,

we can assume that P ⇡ Pc. We also assume that both P and Pc are in average small.

This last assumption is not completely justified from a mathematical prospective, but it is

compatible with the idea that the world is composed of a very high number of events/features,

and only a limited subset of them is occurring in every moment in time. Given these 2

assumptions we can approximate

P ⇤ ⇡ Pk

Pc

= ⌧rµo
P

Pc

(4.117)

which corresponds to an instantaneous firing rate

⌫⇤ =
P ⇤

⌧r
⇡ µo

P

Pc

(4.118)

We can note that the addiction of the term k � Lc to the log-odds ratio controlling spike
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generation (which corresponds to a shift of a quantity g
1

(Lc�k) for the membrane potential)

is compatible with the proposed divisive gain normalization rule (4.107), for

y([c]) =
1

k

1

1 + e�L
c

where k = ⌧rµo and Lc = h
0

+ h
1

[c] (4.119)

The term k = ⌧rµo provides the average firing rate of the neuron to match the desired value

µo

E(⌫⇤|Spike History) ⇡E

✓

µo
P

E(P |Spike History)
, Spike History

◆

(4.120)

⇡µo
E(P |Spike History)

E(P |Spiking History)
(4.121)

⇡µo (4.122)

In order to further validate the considered approximations, we numerically compared the de-

sired abstract behaviour (equation 4.117) with the results of our spike generation mechanism

(equations (4.108) and (4.112)). The detailed model accurately matched the abstract rule

for small values of the probability P inferred from the dendritic drive, while it represented a

reasonable approximation of the desired rule for higher values of P , especially in the region

of interest PC ⇡ P (figure 4.9).

In this section, we developed a model of neural spiking activity on three di↵erent levels of

description. On the computational level, we defined an abstract divisive spike-rate gain nor-

malization rule, which improves the e�ciency of neural spiking in transmitting information.

On the algorithmic level, we proposed a mechanism that allows combining information re-

ceived from the dendritic input (P ) with information already encoded in the recent spiking

history (Pc) by linearly summing their Log-odds ratios into the membrane potential. More-

over, we proposed that the probability of generating an action potential is controlled by the

current membrane potential V , accordingly to a logistic response function. On the implemen-

tation level, we showed how ions channels can be used to translate information encoded in
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Figure 4.9: The desired gain normalization rule (equation 4.117) is compared to the behaviour
of our model of spike initiation (equations (4.108) and (4.112)). As predicted, the detailed
model matches the abstract rule for small values of the probability P (A, P = 0.1), while for
larger values of the probability (B, P = 0.3)-(C, P = 0.6) the model is a reasonably good
approximation of the desired behaviour. k = ⌧rµo = 3 ms x 0.03 ms�1 = 0.01. It can be
noted that in the point of interest Pc = P the 2 equations match in all the scenarios, while
in the region PC ⇡ P the model is a good approximation of the abstract rule also for high
values of P .

the pre-synaptic input and in calcium concentration into membrane fluctuations that match

our algorithmic description. Furthermore, we provided a statistical mechanics description

of ions channels dynamics that enables generating the desired flow of ions through the neu-

ral membrane. Finally, we showed how we can exploit the unstable dynamics of membrane

potential as well as random membrane fluctuations (modeled using a Gaussian process) to

generate the desired response function for spike initiation.

All these di↵erent levels of descriptions have been shown to be compatible and consistent (at

least at a first order approximation), and the derived predictions about ions channel dynamics

and neural spiking have been shown to match experimental observations about neurons.

The proposed model of neural spiking predicts that the initiation of an action potential is

a highly variable process, controlled by membrane fluctuations. However, the divisive gain

mechanism allows to increase information capacity of neural spiking, and to produce an

accurate representation of the encoded variable P despite the intrinsic stochasticity of the

process. If, for example, unlikely random fluctuations produce some unwanted spike events,
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this will cause to overestimate the variable Pc (Pc > P ). Yet, as a consequence, the high

value of Pc will produce adaptation, and the activity of the neuron will be inhibited as long

as the variable Pc doesn’t converge back to the desired value P . This encoding scheme

explains very high variability observed in neural spiking response to identical stimuli, as well

as high Fano factors (Berry and Warland, 1997). At the same time, the proposed feedback

mechanism enables the neuron to accurately and reliably represent the encoded variable. The

given model proposes a new interpretation of the computational role of calcium, membrane

potential, ions channel dynamics and random membrane fluctuations, which can potentially

lead to a deeper understanding of neural computations and brain dynamics.

Up to now we assumed that the value of calcium concentration [c] is a linear function of the

Log odds ratio (Lc) of the probability Pc, which is the expected value of the probability P

conditional to the recent spiking history of the neuron. In Section 4.6 we will see how Pc and

Lc can be inferred optimally from the spiking train of the neuron using a Bayesian approach,

and how this inference process can be implemented by the intercellular concentration of

calcium, thanks to the non-linear dynamics of calcium channels.

4.6 Calcium dynamics

In Section 4.5 we introduced a model that describes how spikes are generated. We proposed

that the instantaneous probability of firing is linearly proportional to encoded probability P ,

and that the spiking activity of the neuron can be modeled using an inhomogeneous Poisson

process, with time-dependent rate ⌫⇤ given by equation (4.118)

⌫⇤ = µo
P

Pc

(4.123)

where µo is the desired firing rate of the neuron and Pc is the expected value of P conditional

to the recent spike history Pc = E(P |Spike History). We assume that the Log-odds ratio of
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the probability Pc is encoded in the neuron by calcium concentration, and its value is inferred

on-line exploiting the non-linear dynamics of calcium channels.

Here, we derive an algorithmic model of how the value Pc can be inferred from the spiking

history of the neuron. Using a Bayesian approach we derive from first principles a normative

model that describes how Pc should evolve in time, according to observed spike events. We

then derive how this dynamics can be converted into a flow equation for the Log-odds ratio

Lc = Logit(Pc) and, finally, we show how the given inference process can be implemented by

calcium concentration and ions channels.

4.6.1 Inferring the instantaneous neural spiking rate

Previously in this Chapter (and more in detail in Chapter (3)) we derived a coupled system of

finite di↵erence equations ((4.44) and (4.45)) that allow to infer on-line the mean and variance

of the posterior distribution P (⌫) over the instantaneous firing rate ⌫ of an inhomogeneous

Poisson process

µt+⌧ =µt +
�2

t

µt

(1 � µt⌧) + ri⌧(µi � µt) (4.124)

�2

t+⌧ =�2

t +
�4

t

µ2

t

(1 � 2µt⌧) + ri⌧(�
2

i � �2

t + (µt � µi)
2) (4.125)

The given system of equations was derived as an near-to-optimal solution of the original

inference problem, given some biophysically reasonable assumptions about the generative

process underlying the dynamics of ⌫. Such a model was derived under the assumption that

the instantaneous firing rate of the neuron is given by ⌫. However, in the considered case the

instantaneous rate is given by

⌫⇤ = k
⌫

Pc

where ⌫ =
P

⌧r
and k = ⌧rµo (4.126)
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which can be rewritten as

⌫⇤ = µo
⌫

⌫c
where ⌫c = E(⌫|Spike History) = µt (4.127)

In this scenario, we can proceed in a similar fashion to what we did in Chapter 3 Section 3.2.4.

In fact, an inter-spike interval ⌧ observed in a Poisson process with rate ⌫ corresponds with an

observation ⌧⇤ = ⌧ µ
t

µ
o

in a process with rate ⌫⇤, and both observations bring a corresponding

amount of information about the current value of the original variable ⌫. Therefore, we can

replace ⌧ with ⌧⇤
µ

o

µ
t

and write

µt+⌧⇤ =µt +
�2

t

µt

(1 � µo⌧⇤) + ri⌧⇤(µi � µt) (4.128)

�2

t+⌧⇤ =�2

t +
�4

t

µ2

t

(1 � 2µo⌧⇤) + ri⌧⇤(�
2

i � �2

t + (µt � µi)
2) (4.129)

We can note that the substitution ⌧ ! ⌧⇤
µ

o

µ
t

was made only in the first term of both equations

(which corresponds to the gain of information conditional to the observed spike event), while

⌧ was simply replaced by ⌧⇤ in the latter part of the expression (corresponding to the time-

dependent information loss, caused by the stochastic dynamics of ⌫).

Proceeding as in Section 3.2.5 it is possible to show that the variance term �2

t can be approx-

imated as a function of the mean µt (equation (3.48))

�2

e ⇡ 9

8
ct

s

ri�2

i

µo

(4.130)

According to the given approximation, we can write

µt+⌧⇤ = µt + km
i

,�2
i

,µ
o

,r
i

(1 � µo⌧⇤) + ri⌧⇤(µi � µt) ; k�2
i

,µ
o

,r
i

=
9

8

s

ri�2

i

µo

(4.131)
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which can be rewritten in form of di↵erential equation

d

dt
µt = km

i

,�2
i

,µ
o

,r
i

(�(t � t
spike

) � µo) + ri(µi � µt) (4.132)

4.6.2 Calcium ions flow

Equation (4.132) can be used to derive the evolution equation for the quantity Pc = ⌫c⌧r =

µt⌧r
d

dt
Pc, t = ⌧rk�2

i

,µ
o

,r
i

(�(t � t
spike

) � µo) + ri(µi⌧r � Pc, t) (4.133)

and the flow equation for the Log-odds ratio Lc = Logit(Pc). In fact

Lc = Log

✓

Pc

1 � Pc

◆

(4.134)

d

dPc

Lc =
1

Pc � P 2

c

(4.135)

and, therefore

d

dt
Lc, t =

1

Pc � P 2

c

h

⌧rk�2
i

,µ
o

,r
i

(�(t � t
spike

) � µo) + ri(µi⌧r � Pc, t)
i

(4.136)

=
1

1

1+e�L

c, t

� 1

(1+e�L

c, t

)

2



⌧rk�2
i

,µ
o

,r
i

(�(t � t
spike

) � µo) + ri(µi⌧r � 1

1 + e�L
c, t

)

�

(4.137)

=
�

1 + e�L
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=2 (1 + cosh(Lc, t))
h

⌧rk�2
i

,µ
o

,r
i

(�(t � t
spike

) � µo) + riµi⌧r
i

� ri(1 + eLc, t) (4.139)
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Similarly, using equation (4.2) we can derive the flow equation for the normalized calcium

concentration [c] = h�1

1

(Lc, t � ho)

d

dt
[c]t =2h�1

1

(1 + cosh (ho + h
1

[c]t))
h

⌧rk�2
i

,µ
o

,r
i

(�(t � t
spike

) � µo) + riµi⌧r
i

� h�1

1

ri
�

1 + e(ho

+h1[c]t)
�

(4.140)

The given calcium dynamics can be potentially implemented by calcium channels dynamics.

In fact, the intracellular calcium concentration [c] predicted in (4.140) can be interpreted as

the result of:

• a continuous in time ions flow of ions Ib

Ib / 2h�1

1

h

�⌧rk�2
i

,µ
o

,r
i

µo + riµi⌧r
i

� h�1

1

ri (4.141)

• an action potential dependent flow Iap

Iap / 2h�1

1

⌧rk�2
i

,µ
o

,r
i

�(t � t
spike

) (4.142)

• a calcium dependent flow Ic

Ic / 2h�1

1

cosh (ho + h
1

[c]t)
h

�⌧rk�2
i

,µ
o

,r
i

µo + riµi⌧r
i

� h�1

1

rie
(h

o

+h1[c]t) (4.143)

• a flow Ic�ap, which depends both on action potentials history {t
spike

} and on current

calcium concentration [c]

Ic�ap / 2h�1

1

cosh (ho + h
1

[c]t) ⌧rk�2
i

,µ
o

,r
i

�(t � t
spike

) (4.144)

Equation (4.140) describes how calcium concentration should evolve in order to decode near-
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to-optimally the information encoded in the spiking history. This allows to use action poten-

tials to reliably propagate information through the neuron, to decode and represent it locally

in form of calcium concentration and to use it to control local processes, as for example spike

rate adaptation, synaptic release and synaptic plasticity.

The proposed model requires calcium dynamics to be consistent (i.e. linearly proportional)

in di↵erent regions of the neuron. The neuron should coordinate the parameters control-

ling calcium flow in di↵erent areas, in order to synchronize calcium concentration (and the

represented message) through the neuron. Local calcium concentration will be given by

[Ca2+]t = [c]t [Ca2+]ref ; [c]t = h�1

1

(Lc � h
0

) (4.145)

where [Ca2+]ref , h1

and h
0

can vary from one region of the neuron to the other. Experimen-

tal results support this hypothesis (see fig. 4.10) showing that action potentials propagating

through the axon evoke a congruous calcium response in di↵erent locations (Schiller et al.,

1997), and that the same happens for action potentials back-propagating in various brunches

of the dendritic tree (Golding et al., 2001). This provides the time-course of calcium con-

centration in di↵erent regions to be consistent, and linearly proportional to a baseline value

(Augustine et al., 2003).

Additionally, according to the proposed model, calcium concentration plays a paramount

role in neural dynamics, as it encodes inside the neuron the state of the external world,

and it controls neural communication. For this reason, it is reasonable to assume that

modifying calcium dynamics (e.g. by genetically mutating proteins controlling ions channels

functioning) will have significant consequences on animal behaviour. This has been confirmed

by various experimental studies, which showed for example that altering calcium channels

mechanics (through G-alpha protein mutations) a↵ects the steering behavior in C. Elegans

(Kato et al., 2014b).
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(Schiller et al., 1997) (Golding et al., 2001)

Figure 4.10: Spike evoked calcium concentration is consistent in proximal and distal re-
gions of the neuron. (A) Qualitative model predictions about the time-course of calcium
concentration. We predict that spike evoked calcium concentration in di↵erent parts of the
neuron should be linearly proportional to a baseline value (equation (4.145)). (B) Calcium
action potential, propagating along the aptical axon of a cortical neuron after synaptic stim-
ulation. Results are expressed as relative change in fluorescence (�F/F ). Figure adapted
from (Schiller et al., 1997). (C-D) Calcium influx caused by strong (C) and weak (D) back-
propagation of an action potential in the dendrites of di↵erent pyramidal neurons. Figure
adapted from (Golding et al., 2001).

4.6.3 Local learning of calcium (hyper) parameters and model pre-

dictions

The proposed model for calcium evolution (equation (4.140)) is di↵erent (and more complex)

then equation (3.50) derived in Chapter 3. Yet, the two models can be considered compat-

ible and equivalent. In fact, equation (3.50) describes the evolution of an abstract quantity

(algorithmic level), which is the expected average firing rate of the neuron in the absence of

adaptation. On the contrary, (4.140) describes the flow of calcium (implementation level),

which physically represents the desired abstract value. By following the given equation, cal-

cium allows to implicitly encode the expected firing rate, and to normalize the instantaneous



4.6. Calcium dynamics 131

firing rate consistently with the abstract model. For this reason, all the considerations we

developed in Chapter 3 also apply to the model of calcium dynamics proposed here.

Specifically, it is possible to adapt the optimal parameters of calcium dynamics k, ri and

µi to the experienced stimulus and its dynamical properties (see Section 3.2.6). We can do

this by implementing the system of coupled di↵erential equations (3.61)-(3.62)-(3.63), which

enables the neuron to learn the parameters controlling calcium evolution locally and online.

d

dt
[c]t =2h�1

1

(1 + cosh (ho + h
1

[c]t))
h

⌧rk̂t (�(t � t
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) � µo) + r̂tµ̂t⌧r
i

� h�1

1

r̂t
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+h1[c]t)
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(4.146)
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(4.148)

k̂t
dt

= ↵k((tspike i

� t
spike i-1

) � �(t � t
spike

) µ2

o) (4.149)

The robustness of the proposed system of equations has been tested in-silico (figure 3.2).

The remaining parameters µo, ⌧r, h0

and h
1

represents, respectively, the desired firing rate of

the neuron (µo), the refractory period (⌧r) and the scaling and o↵set parameters of calcium

concentration (h
0

-h
1

). All these quantities are fixed by the neuron, and some of these can

change in di↵erent regions of the neuron (i.e. h
0

and h
1

) without a↵ecting the consistency of

the encoding scheme. Therefore, by implementing the given system of coupled equations the

neuron can generate a local representation of the hidden variable in di↵erent regions of the

neuron, and at the same time it can adapt the parameters controlling calcium flow to the dy-

namical properties of the encoded stimulus. This allows to adapt to the experienced stimulus

in order to improve the internal representation of the world, and to have di↵erent consis-

tent representations of the hidden variable in di↵erent regions of the neuron. We propose

that these di↵erent representations (relative to di↵erent linear transformation parameters ho

and h1) reflect the accuracy-energy-physiology requirements of di↵erent neural regions, and
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depend on the functional role of calcium in controlling the respective local processes.

Moreover, since the two levels of description (algorithmic and implementation) are equivalent,

the observable model predictions derived in Chapter 3 (Section 3.3) also apply to the model

of neural dynamics proposed here. For example, the given model predicts the time-course

of short-term neural spike-rate adaptation (Section 3.3.1), and it links adaptation dynamics

with the time structure of the encoded input (equation (3.78)). The given predictions were

tested on experimental results from cat V1 in-vivo recordings (Benucci et al., 2013)(figure

3.6), and the model was able to capture timescale and shape of spiking-rate adaptation using

only the known dynamical properties of the stochastic stimulus used in the experiment (figure

3.7).

4.7 Discussion

In this Chapter, we proposed a model of neural dynamics. We discussed our model on the

three Marr’s levels of analysis (computational, algorithmic and implementation) (Marr and

Poggio, 1976), and we showed how di↵erent levels of descriptions are consistent and equiva-

lent. For this reason, the given model suggests (new) computational interpretations of known

bio-chemical neural quantities and mechanisms, such as synaptic vesicle release, intra-cellular

calcium concentration and action potentials. Specifically, we propose that synaptic vesicle

release takes the form of a sampling process, which is controlled by the probability encoded

in calcium concentration. Consequently, we interpret dendritic integration as logistic regres-

sion, which allows inferring the probability of a hidden state x exploiting the information

encoded in the synaptic inputs. The inferred probability (and specifically its log-odds ra-

tio) is encoded in form of intracellular calcium concentration. Action potentials are used to

control local calcium concentration in di↵erent neural regions, and to propagate information

through the neuron. This is done exploiting an e�cient coding scheme (predictive coding)
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which communicates only new (non-redundant) information. The proposed dynamics ex-

plains large variability observed in neural spiking activity and, at the same time, it provides

to reliably and e�ciently communicate information. We also show how calcium channels

allow to locally decode neural spiking. According to the proposed model parameters con-

trolling calcium evolution (e.g. decay timescale) depend on the dynamical properties of the

encoded stimulus (e.g. timescale of changes), and we show how these parameters can be

learned online and locally by the neuron.

We show how these computations can be implemented by a biophysical neuron exploit-

ing neurotransmitter-activated ions channels, linear dendritic integration, calcium-activated

potassium channels, unstable membrane dynamics, randommembrane fluctuations and potential-

dependent calcium channels. All the biophysical requirements of our model are compatible

with experimental observations. Furthermore, the given model generates various observable

predictions, e.g. synaptic short-term potentiation and spike-rate adaptation, which matched

experimental results.

The new interpretation of known biophysical quantities proposed in this Chapter can po-

tentially lead to a deeper understanding of neural computations, and it can inspire models

of brain dynamics on a population level. For example, the proposed model suggests that

dendrites implement binary regression to infer the state of a hidden variable x, and that

calcium concentration encodes the log-odds ratio of the probability of such a variable. This

can lead to the derivation of a synaptic plasticity rule that enables the system to update

the integration weights on-line, and to implement dynamic logistic regression (McCormick

et al., 2012) (Penny and Roberts, 1999). Such a synaptic plasticity rule would depend on

post-synaptic calcium concentration (as observed in (Zucker, 1999; Castellani et al., 2001;

Castellani, 2005)), and it would act as coincidence detection, compatibly with Hebbian learn-

ing (Caporale and Dan, 2008).

In next Chapter, we will focus on neural network dynamics and learning. In order to develop
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a model of neural behaviour on the population level we will use a simplified model of neural

dynamics (compared to the one discussed in this Chapter). This will reduce mathematical

complexity and improve simulations tractability. However, we will base our neural population

model on some of the concepts introduced in this Chapter, such as the idea of neural sampling,

and the instrumental role of noise and random fluctuations in brain functioning.
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Figure 4.11: Calcium Coding Theory. Computational description of neural functioning.
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Figure 4.12: Calcium Coding Theory. Algorithmic description of neural functioning.
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Chapter 5

Inference by sampling from noisy

neuronal circuits

‘Pictures, propagated by motion along the fibers of the optic nerves in the brain, are the
cause of vision.’

Isaac Newton, “Opticks”, 1704

5.1 Introduction

Von Helmholtz first introduced the idea that perception may be interpreted as the continuous

unconscious process of inferring causes from their sensory e↵ects and, following this interpre-

tation, Barlow successively suggested that neural activity of sensory neurons may reflect the

belief that stimuli are present in the world. Since then, Bayesian Decision Theory (Körding

and Wolpert, 2003) has emerged as a principled way to describe our perception and behav-

ior under uncertainty, this being supported by ample psychophysics and behavioral evidence

(Wolpert et al., 1995; Ernst and Banks, 2002b; Körding and Wolpert, 2004).

138
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Bayesian Decision Theory normatively predicts that di↵erent sensory cues sharing a common

cause should be combined optimally by weighting each cue with the corresponding sensory

variability. Moreover, it predicts that also prior knowledge and sensory information, presented

as probabilities, should be combined following Bayes theorem, which requires the brain to

encode prior knowledge of the world in some form. This information can be stored by synaptic

connectivity patterns in designated regions of the brain but also, as highlighted by recent

electrophysiological evidence (Berkes et al., 2011), could be encoded by the spontaneous

activity of the same neurons which encode the state of the variable in the presence of sensory

cues.

While the neuronal correlates of cue integration and inference remain elusive (but see (Kepecs

et al., 2008)), a family of models under the name of Probabilistic Population Codes have lit the

path to how neuronal populations can perform such computations (Ma et al., 2006). These

models rely on being driven by feed-forward sensory information processing and perform in-

ference by integrating neural activity under appropriate encoding and decoding assumptions.

Here, we propose an alternative model that performs inference by sampling exploiting the

inherently noisy activity of neurons to actively generate possible solutions to the inference

problem (Ticchi and Faisal, 2012, 2013a,b). Specifically, our model is able to (a) learn the

prior statistics of the encoded stimulus. (b) In the absence of sensory drive, it generates

spontaneous activity that matches the stimulus statistics previously learned by the popula-

tion. (c) It evaluates the likelihood of the current internal representation and (d) it combines

this additional source of information with the prior knowledge, to generate neural activity

that can be interpreted as a sequence of samples from the posterior distribution. Broadly

speaking, our model combines feed-forward (sensory) information with feedback information

derived from evaluating the likelihood of its inherent noise-driven stochastic activity. For this

reason, the proposed model can work in synergy with PPC, and will be extremely valuable

whenever a feed-forward processing of sensory information is not su�cient to infer causes

from observed consequences. In this situation, our model allows inferring causes by actively
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and stochastically proposing guesses, which are then tested on sensory information.

Multiple sources of noise have been shown to contribute to cellular and behavioral trial-to-

trial variability in the brain(Faisal et al., 2008), this representing a fundamental problem

for signal processing and drastically a↵ecting the reliability of neural computations (Faisal

et al., 2005). Yet, evolution may have found a way to use these molecular sources of noise as

a resource. For example in the e↵ect of Stochastic Resonance (Longtin, 1993; Faisal et al.,

2008; McDonnel and Abbott, 2008) noise can be used to boost detection of weak sensory

signals, which is useful when false positive detection has smaller consequences evolutionarily

speaking than false negative.

We show here how noise can be used for the purpose of enabling inference and decision-

making. A broad class of inference algorithms, usually referred to as Monte Carlo Methods,

exploits random number sampling for simulating and investigating stochastic real world prob-

lems that cant be solved analytically. For these algorithms, noise and variability represent a

precious resource, to the extent that when these algorithms are implemented in-silico most of

the computational time is spent in the generation of random variables. We show how, in this

perspective, neural variability can be exploited for e�ciently generating random variables in

the brain, in order to implement this kind of algorithms. In particular, we will focus on a

specific class of Monte Carlo algorithms, named Markov Chain Monte Carlo (MCMC), which

allows performing optimal inference by generating a sequence of samples from the inferred

posterior distribution.

In order to perform Bayes optimal computations, it is first necessary to learn the statistics

of the sensory input (prior distribution) and to store this information in the brain for future

computations. Experimental evidence shows that brains are able to learn and update their

prior knowledge about the world, yet the mechanism controlling how this information is

learned, stored and accessed is still unclear. Here, we assume that this information is stored

within the same populations that encode the state of the world in the presence of sensory cues.
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In fact, behavioral and physiological results prove that neurons encoding information about

the state of the world are adapted to the stimulus statistics (Laughlin, 1983, 1981; Berkes

et al., 2011). Specifically, it has been shown that neural encoders act as to maximize the

mutual information between the state of the world and neural activity, under biological and

metabolic constraints (Ganguli and Simoncelli, 2010). We propose a biophysically plausible

model of neuronal plasticity and dynamics that, by exploiting subcellular sources of noise,

enables a cortical population to encode incoming information e�ciently and, concurrently

(simultaneously), to learn the statistical proprieties of its sensory input (Prior). Specifically,

we provide a model of how this adapted encoder can be learned from the input statistics using

a Local Hebbian synaptic plasticity rule, and we show how the stored information can be

subsequently extracted for further computations. Furthermore, we propose a biophysically

plausible implementation of a MCMC algorithm in spiking neurons, which allows to combine

the learned prior knowledge with additional sources of information, and to generate samples

from the inferred Bayesian posterior distribution. The model is compatible with experimental

results in the literature that match neural physiology, behavior, and stimulus statistics.

The neural population model here presented could potentially be integrated with the single

neuron dynamics discussed in Chapter 4, producing consistent results. However, the two

models require di↵erent levels of detail in the description of neural dynamics. Additionally,

the single neuron model presented in Chapter 4 reflects an original interpretation of various

neural processes and molecular quantities, which di↵ers from the traditional view in the

literature, and that is still waiting to be validated. For this reason, we decided to develop

the two models independently, and to use an established single neuron dynamics to build the

current population model. This enables the population model to stand autonomously from

assumptions and results in single neuron, providing the credibility of the former (population)

model not to be a↵ected by the validity of the latter (single neuron) one. Moreover, using

a simpler single neuron dynamics to build the population model increases discussion clarity

and in-silico tractability of the system.
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5.2 Learning the statistics of the world

In the following, we will investigate how a local synaptic plasticity rule can enable neuronal

populations to encode information e�ciently and, concurrently, to learn prior statistics of the

world. In our model, we consider a cortical population (e.g. V1) receiving input from sen-

sory neurons (e.g. via LGN), whose activity is conditional to the state of the external world.

Information about the sensory features of the world is encoded in the cortical population

according to 1. the response characteristics of the sensory neurons and 2. the dynamically

evolving connectivity structure between sensory and cortical neurons (synaptic connectiv-

ity pattern and weights, which determine receptive field size and location). While cortical

neurons response characteristics are well characterized experimentally, here we focus on the

dynamics of the connectivity, which is harder to probe.

5.2.1 The model

We model the spiking activity of sensory neurons as independent Poisson processes, with

mean firing rates determined by the state of the external world according to some given neu-

rons tuning curves (specifically, for the tuning curves we used Gaussian functions uniformly

distributed in the hidden variable space). Spike events in the sensory population drive the

activity of cortical neurons through synapses. We described the dynamics of synapses on a

short timescale using the variable P i
n, which represents the instantaneous activation level of

a the synapse connecting neuron i to neuron n. Each time there is a pre-synaptic spike, the

activation level P i
n increases of a fixed quantity �P while, in absence of spikes, P i

n decreases

exponentially to 0 with time constant ⌧i.

d

dt
P i
n = � 1

⌧i
P i
n + �(t � t

pre-synaptic spike

)�P (5.1)
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We model the activity of cortical neurons (driven by synapses) using a conductance-based

Leaky Integrate-and-Fire model, with the addition of white noise to mimic membrane fluc-

tuations. The state of the given neuron is represented by its membrane potential Vn, and

it is driven by the product of synaptic activation P i
n and of the connectivity strength W i

n,

which changes on a slower time-scale according to a plasticity rule (we will discuss the specific

plasticity rule later). Furthermore, each time the membrane potential Vn reaches a threshold

Vth, an action potential is generated, and Vn is reset to the equilibrium value E

⌧m
d

dt
Vn = (E � Vn) +

X

W i
nP

i
n(E

i
n � Vn) + ⌫dW ; Vn > Vth �!

✓

Spike

Vn = E

◆

(5.2)

where ⌧n represents the timescale of membrane potential decay, E is the equilibrium potential

of the neuron, Ei
n is the reversal potential for di↵erent synapses, ⌫ is a parameter controlling

the amplitude of random fluctuations and dW is white noise. The proposed system and its

in-silico behavior is described in figure 5.1.

5.2.2 Synaptic plasticity

The connectivity W n
i between sensory and cortical population is dynamic and plastic: we

propose a local Hebbian synaptic plasticity rule that enables the cortical neurons to adapt

their tuning curves to the sensory input statistics. Our aim is to maximize the mutual

information between the cortical population and the state of the world under anatomical and

metabolic constraints. We propose a simple synaptic learning rule that exploits the synaptic

activity history (represented by parameter P n
i ) and the instantaneous post-synaptic activity

to update on-line the connection weights W n
i . The strength of the synapse connecting the

pre-synaptic neuron i to the post-synaptic neuron n (described by the connection strength

or weight wn
i ) can be interpreted as reflecting a combination of the number of releasable

vesicles, release probability, active zone surface, number of active zones and responsiveness

of the active zone to released neurotransmitters, while the activation parameter P n
i can be
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Figure 5.1: Model of neural population dynamics and functioning. A) Abstract representa-
tion of the proposed system: The sensory input, conditional to the state of the world, drives
the activity of a cortical population, which encodes the state of the world. B) Probabilistic de-
scription of the model, which highlights the relations between di↵erent system’s constituents.
C) Neural implementation of the abstract model. D) Dynamics used to simulate neural pop-
ulations in-silico. Successive values of the external variable are simulated using a Markov
Chain Monte Carlo process, which generates correlated samples from a certain underlying
statistics. The spiking activity of the sensory population is modeled using independent Pois-
son processes, whose instantaneous rate is conditional to the state of the world according to
a provided receptive field. Synapses dynamics is simulated using an exponential decay of the
synaptic activation variable, which increases of a fixed quantity after each pre-synaptic spike.
Cortical neurons are modeled using a Leaky integrate-and-fire conductance-based model,
with the addition of white noise and lateral inhibition. E) Simulated behavior of the system.
The time-dependent value of the encoded world feature (green line) conditions the spiking
activity of the sensory population (200 neurons, orange dots), which in turn drives spikes
in the cortical population (20 neurons, blue dots). The position of every sensory/cortical
neuron in the ordinate axis corresponds to the center of its tuning curve in the feature space.
F) Stochastic leaky integrate-and-Fire dynamics of cortical neurons: In blue, the membrane
potential of a cortical neuron is plotted over repeated stochastic simulations driven by the
same pre-synaptic input. The dotted-green line represents the leakage potential (-54 mV)
while the dotted-orange line represents the threshold for action potential initiation (-40 mV).

interpreted as a short-time-average of the pre-synaptic firing activity (reflecting local 2nd

messengers, synaptic protein expression or upstream regulatory proteins). The proposed
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plasticity rule can be mathematically formulated as follows:

d

dt
W n

i =�(t � t
post-synaptic spike

)(↵P n
i � rW n

i ) (5.3)

d

dt
r =⇢� + �(t � t

post-synaptic spike

)⇢+ (5.4)

where r is a regularization variable, and ↵, ⇢� and ⇢+ are model parameters. According to

the proposed model, if a pre-synaptic spike precedes a post-synaptic event, P n
i will be high

when the post-synaptic neuron fires, and the synaptic strength wn
i will increase. A visual

representation of the described plasticity rule can be found in figure 5.2C.

5.2.3 Lateral Inhibition

In addition, to regulate population activity, we require a homeostatic mechanism to control

the total average firing activity of the whole cortical population in di↵erent sensory input

regimes. We implemented this regulatory mechanism by introducing lateral inhibition in the

cortical population. To achieve the desired behavior we tested three alternative approaches,

which produced consistent results: 1. We introduced a global memory parameter in the

system (e.g. local 2nd messenger signals such as Nitric Oxide concentration (Bredt and

Snyder, 1992; Artinian et al., 2012)) whose dynamics depends on the activity of the cortical

population and which acts on the neurons by modifying the threshold for spike generation

in the Integrate-and-Fire model. 2. We reset the membrane potential of all neurons to

their resting potential value whenever a spike was generated within the cortical population.

This winner-take-all behavior could be biophysically implemented through recurring lateral

inhibitory connections.3. We introduced in the population dynamics a common inhibitory

component driven by the average firing rate of the population (e.g. Implemented through an

auxiliary inhibitory population). This homeostatic mechanism plays two di↵erent roles within

the dynamics of the population, by A. Introducing competition in the activity of di↵erent
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neurons and B. enabling the system to produce spontaneous activity driven by molecular

noise in the absence of sensory input.

5.2.4 Results

The synaptic plasticity rule we propose allows a neural population to adapt its encoding

scheme to the sensory input statistics, in order to represent information e�ciently. Specifi-

cally, synaptic adaptation provides the receptive field of the cortical neurons to converge to

the optimal configuration (as defined in (Ganguli and Simoncelli, 2010)), which maximize

mutual information between neural activity and the state of the world under metabolic con-

straint. In fact, it is possible to show (Ganguli and Simoncelli, 2010) that, given a population

of spiking neurons using rate coding to represent an external variable, the tuning curves that

maximize mutual information between neural activity and world state satisfy the following

requirements: (a) the density of the neurons receptive fields in the world feature space is

proportional to the prior probability of the encoded feature, (b) the width of each tuning

curve is inversely proportional to the prior probability and (c) the gain of all the neurons is

constant, meaning that the maximum allowed firing rate is the same for each neuron. These

mathematical predictions have been confirmed by biophysical and behavioral experiments

(Ganguli and Simoncelli, 2010). The local learning rule we propose allows modifying the

synaptic connections between sensory and cortical neurons and, as a consequence, to shape

the receptive fields of the cortical population. Specifically, the given plasticity rule provides

the tuning curves of the cortical population to converge to the optimal configuration (Gan-

guli and Simoncelli, 2010) without the need of any global supervision, and to reproduce all

the previously mentioned features (see figure 5.2E-F, R2 consistently higher then 0.9). By

doing this, the cortical population is also simultaneously learning the prior distribution of the

encoded stimulus. In fact, since the population receptive fields are adapted to the statistics

of the world features, information about this statistics is implicitly encoded in the synaptic
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connections between cortical and sensory populations.
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Figure 5.2: Learning the optimal tuning curves: (A) The optimal configuration of tuning
curves is plotted for a given stimulus prior (blue line). (B) Mathematical and (C) visual
representation of the plasticity rule (TDSP) used in the simulation, which provides the neural
population to adapt its tuning curves to the experienced input statistics. W n

i represents the
weight of the synapse connecting pre-synaptic neuron i to post-synaptic neuron n. ↵ is a
learning rate parameter and r is a regulatory term. ⇢+ and ⇢� are constants. (D) The cortical
population adapts its tuning curves to the input statistics. Di↵erent colored lines represent
the tuning curves of 20 cortical neurons and their evolution in the feature space, as simulated
by our model of neural activity and plasticity. In blue, the prior distribution of the input
used in the simulations is plotted, which represents the statistics of the encoded stimulus in
the world. The activity of 20 cortical neurons receiving input from 200 sensory neurons was
simulated for few hundred minutes (simulation time) starting from a random connectivity
matrix. Optimal encoding would predict the gain of the tuning curves to be constant, the
tuning curves density to be directly proportional to the prior statistics and the tuning curves
widths to be inversely proportional to the prior distribution. (E) The inverse of the distance
between the centers of neighbor tuning curves (green dots) and the inverse of tuning curves
widths (blue dots) are plotted as a function of the position of the tuning curves centers in
the feature space, as produced by our simulations. Optimal encoding would predict that
the points lie on the prior distribution (blue line). (F) The results of the simulations for
the inverse distance between centers of neighbor tuning curves (green dots) and the inverse
tuning curves widths (blue dots) are compared to the values predicted under the optimal
encoding assumption. The comparisons provide R2 values consistently approaching 1.
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5.3 Sampling from the prior

The prior information about the input statistics (encoded in the synaptic connections driving

the cortical population) needs to be extracted in order to be accessible and used in the

inference process. For example, in the absence of relevant sensory input (e.g. eyes are closed)

the brain should be able to represent the prior belief about the world. Specifically, for the

purpose of this paper, in order to implement a Markov Chain Monte Carlo algorithm the first

ingredient we need is a sequence of random samples from the prior distribution. This is a

challenge for many other neuronal population models, as these cannot generate endogenous

activity in the absence of sensory inputs. In a no-input spontaneous activity regime, our

model neurons produce noise-driven spontaneous neural activity, in which neuronal spiking

is randomly driven by cellular noise sources (Faisal et al., 2008).

5.3.1 Spontaneous activity

If we assume that the neuronal decoder is adapted to the neural encoder and that each single

spike event is decoded independently, we can interpret the spontaneous firing patterns from

the neuronal population as samples from the learned prior distribution (see figure 5.3A).

In fact, one of the conditions necessary for an optimal encoder is that, when representing

the stimulus statistics over a long period of time, each neuron spikes in average the same

total number of spikes. Similarly, in the absence of sensory drive, all the cortical neurons

are driven by internal noise equally. Thus, the resulting firing rate is constant across the

population, and the spiking activity is comparable to what we would have if the population

were encoding a sequence of values sampled from the original statistics. Additional structure

in the stimulus dynamics (e.g. trends and correlations)(Berkes et al., 2011) could be learned

and reproduced by the population exploiting recurrent excitatory and inhibitory connections,

but this exceeds the scope of this paper and it will be examined in future works.
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5.3.2 Interpreting spontaneous activity

To interpret the role of spontaneous activity in the general picture of the working brain, we

need to make some assumptions about how this activity is used and decoded in successive

levels of brain processing. Many studies investigate how a neural decoder for Probabilis-

tic Population Codes could be implemented, and test optimality of the proposed decoding

methods (Nirenberg and Latham, 2003; Averbeck et al., 2006). From now on, for simplicity,

we will assume that the brain decodes every single spike event optimally or near optimally,

without making any assumption about how the decoding process is implemented. Moreover,

we will assume that the decoding of the spikes history during a certain time interval corre-

sponds to the normalized superposition of the beliefs about the state of the world provided

by every single event. Under these assumptions, if we decode the activity of the population

in the spontaneous activity regime, the distribution inferred by the decoder about the state

of the world will match the previously learned prior statistics. In this perspective, we can

interpret each population spike event (and the correspondent distribution inferred by the

decoder about the state of the world) as a sample from the prior distribution. We shall note

that, following this approach, each sample represents a distribution (with smaller entropy

than the original distribution we are sampling from) and not a point, as its usually the case

in the literature. In this sense, in order to go from single samples to the original distribution,

we will use the superposition of functions instead of the traditional histogram.

5.4 Inference by sampling (Markov Chain Monte Carlo)

In the absence of sensory drive, there can still be additional sources of information that

can be integrated to improve our cortical representation of the state of the world. For

example, additional information might come from comparing low-level predictions derived

from the current representation of the world state with actual experiences. This is the case
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whenever we are provided with sensory input that cant be directly exploited for driving

cortical activity, yet it can o↵er a measure of likeliness for the current cortical representation.

Such a process is analogous to what happens when we use a generative approach to infer

causes from observations: we propose various plausible causes, we derive their predictions

and we test them with the observed facts looking for the best explanation. The model

of Bayesian inference we propose allows exploiting these sources of information to generate

samples from the posterior distribution through the implementation of a Markov Chain Monte

Carlo algorithm (MCMC). As we mentioned before, in our model we will identify spike event

with a generated sample. According to the proposed algorithm, after each sample has been

generated the brain evaluates its likelihood given the additional sources of evidence, and it

uses this likelihood to condition the generation of following samples.

In particular, we explored the implementation of a MCMC algorithm driven by noise, in

which the feedback information regarding the likelihood of evaluated samples a↵ects the

generation of successive samples by tuning the level of noisiness of the cortical population.

5.4.1 Noise driven inference

As already mentioned, in absence of sensory drive the cortical population dynamics gener-

ates spontaneous activity. In this regime, recurrent lateral excitatory connections between

neurons make neural activity conditional to the current state of the system. The probability

of each neuron to spike at a given moment in time will therefore depend on the recent pop-

ulation spiking history. Specifically, recurrent excitatory connections between neurons will

reflect similarity in their receptive fields, and a neuron will be more likely to spike if it is con-

nected recently active neurons. This recurrent connectivity can be learnt exploiting temporal

correlation in the driven neural activity, and provides spontaneous activity in the population

to evolve similarly to a random walk, where the encoded variable slowly moves away from its

current value. Furthermore to recurrent connections, molecular sources of noise stimulate all
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the neurons of the cortical population equally, this superimposing a uniform spiking proba-

bility distribution over all the possible states to the one previously described. Each sample

is therefore generated from the superposition of two di↵erent distributions over the available

system states: 1) D
1

uniform over all the possible neurons and 2) D
2

, conditional to the last

sample and localized around it. The level of noise in the population activity regulates how the

two distributions are weighted when superimposed to generate the next sample. We assume

that whenever a sample is generated, its likelihood is evaluated through a forward model that

compares the sample predictions with additional sources of information (e.g. memory or sen-

sory), and that the evaluated likelihood regulates the level of noise in the neural activity. A

biophysical plausible implementation for this mechanism can rely on dopaminergic neurons,

which are known to regulate the variability of neural activity and connect di↵erent brain re-

gions. This provides that, when a state with high likelihood is sampled, the level of noise in

the population is reduced and the next state is sampled from a distribution strongly localized

around the current state. On the contrary, when a sample with low likelihood is generated,

the level of noisiness is increased, providing next sample to be generated from a distribution

with higher entropy. It can be shown that, under certain conditions, the described mechanism

is able to generate samples from the posterior distribution. Specifically, under the limit of D
2

having very small entropy and of D
1

weight being very small and proportional to the inverse

of the current sample likelihood, it is possible to show that the proposed algorithm converges

to a special case of the Metropolis-Hasting Method. Additionally, if we relax these condi-

tions, its behavior can be shown to approach optimality in some realistic working regimes.

We tested this algorithm in-silico using spiking neurons and its behavior matched the analyt-

ical optimal inference predictions (Kullback-Leibler divergence < 10�4). The main problem

with the described algorithm is its behaviour in solving high dimensional problems. In fact,

its random walk nature strongly a↵ects the performance and time required for generating

independent samples in high dimensional spaces, this restricting its e↵ectiveness to simple

problems (as for example bistable perception). For this reason, we also investigated other
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alternative MCMC algorithms and we explored their possible respective implementations.

5.4.2 Alternative algorithms

We tested an alternative MCMC implementation, which is inspired directly by the Metropolis-

Hasting method. In this algorithm, each sample is generated from a distribution conditional

on the previous sample (this easily implementable using intra-population connections), and

new samples can be rejected or accepting stochastically with probability conditional to their

likelihood. We propose an implementation of the acceptance/rejection process through co-

incidence detection followed by a gating mechanism. The model provided good agreement

with the optimal predictions, but its implementation requires ad-hoc hand-designed connec-

tion and is not particularly biophysically plausible.

The last algorithm we propose exploits memory and latent variables, identifiable with the

hidden biophysical state of the neurons. The likelihood of each spike sample condition the

state of the latent variable and, therefore, the probability of generating again the same sample

later in the future (on a certain time-scale). This algorithm is much more e�cient for dealing

with complex variable spaces and complex joint distributions similar to the ones we often

face in real world tasks, and its biophysical implementation is more reasonable than for the

Metropolis-Hasting method.

5.4.3 Results

We implemented and tested all the proposed MCMC mechanisms using our model of spiking

neurons, and the simulation results consistently matched analytical optimal inference predic-

tions for all the di↵erent algorithms (see figure 5.3B), although requiring di↵erent time scales

to converge, and to generate independent samples.
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A B

Figure 5.3: Inference by sampling. A) In the absence of sensory drive, the neural popula-
tion generates spontaneous activity as a consequence of lateral inhibition and, in average,
each neuron generates the same number of spike events. If decoded optimally (using a de-
coder adapted to the encoding scheme of the population in presence of sensory drive) each
spike event can be interpreted as a sample from the prior distribution, which corresponds to
the statistics of the stimulus in the world. The graph shows simulation results. The blue
line represents the mathematical prior, while black dots represent the probability distribu-
tion extracted from the frequency of samples observed in-silico. Kullback-Leibler divergence
7 10�5). B) A feedback system allows to evaluate the likelihood of each generated sam-
ples, and to use this information to control the generation of next samples, implementing
a Markov Chain Monte Carlo (MCMC) algorithm. The graph represents simulation results
using the MCMC algorithm based on noise discussed in the text. Blue line represents the
prior distribution (encoded by spontaneous activity in absence of feedback) and the orange
line represents the likelihood function (encoded by the feedback associated to each sample).
The green line represents the mathematical posterior (calculated using the Bayes’ equation
(2.1)) while black dots represent the distribution extracted from the number of spike events
generated in-silico by the neural population. The Kullback-Leibler divergence between the
mathematical posterior distribution and the distribution inferred in-silico is 1 10�4. Alter-
native MCMC mechanisms and their respective neural implementations (as discussed in the
text) were also simulated in-silico, and they produced consistent results.

The mechanism for performing optimal inference using MCMC we propose here is expensive

in terms of neural wiring, spikes and time required for generating independent samples, and

more e�cient solutions for implementing similar computations may be considered (Ma et al.,

2006), which rely on a feed-forward processing of information in sequential cortical layers.

However, as we already stated, in real world tasks brains often face problems that cant

be solved with the straightforward processing of known information, requiring instead an
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active role of the preceptor in generating possible solution for explaining the received input.

This is, for example, the case when we use a complex forward model of the world to test our

representation with incoming sensory information, but the map from incoming information to

world representation cant be easily inverted. In this context, MCMC o↵ers strong advantages

compared to other proposed mechanism. In fact, using MCMC algorithms we only need to

be able to evaluate the likelihood of the given samples, without knowing anything about the

global distribution and its partition function. Moreover, as already mentioned, the proposed

method requires a certain amount of time to generate reliable independent samples, free

from random walk behaviors and detached from initial conditions. Interestingly, there is

behavioral evidence that our brains face a similar time-accuracy trade o↵ when dealing with

certain perceptual or decision-making tasks (MacKay, 1982). Despite this is often attributed

to the time needed to accumulate evidence and to integrate sensory information (Usher and

McClelland, 2001), often the observed time scale is too big to justify this interpretation.

Furthermore, the given trade-o↵ has been shown to depend on variables internal to the

subject (e.g. level of focus (Förster et al., 2003), suggesting that it might be caused by some

internal process, and not only by the integration of received sensory evidence.In addition,

random walk behaviors and dependence of the response on initial conditions has often been

reported in behavioral experiments. The given observations transform the original point of

skepticism, represented by performance limits and pathologic behaivors, into an additional

source of support for the proposed model.

5.5 Discussion

We propose a model of neural population dynamics that, at the same time, allows to e�ciently

encode incoming sensory information, to generate samples from the prior distribution in

the absence of sensory input and to exploit additional (feedback) sources of information to

implement inference by sampling.
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Specifically, we propose a local Hebbian synaptic plasticity rule that allows learning the

connectivity structure and, therefore, the optimal tuning curves for the cortical neural pop-

ulation. This enables the system to e�ciently encode sensory information and, at the same

time, it provides to learn and internally encode the prior statistics of the stimulus. Our re-

sults match biophysical experimental results linking a population receptive field to the input

statistics (Ganguli and Simoncelli, 2010), and our model provides quantitative predictions

about how population tuning curves adapt to changes in the stimulus statistics.

Moreover, we propose a homeostatic mechanism that produces spontaneous activity in the

absence of direct sensory information. Under some assumptions about how population spiking

is decoded, spontaneous neural activity can be interpreted as a process generating samples

from the learned prior distribution. Our interpretation is supported by physiological results

(Berkes et al., 2011).

Finally, we propose three alternative MCMC algorithms for performing Bayesian inference,

and we develop a biophysically plausible implementation for them in spiking neurons. The

implemented algorithms consistently produced results that matched the analytical optimal

inference predictions. The proposed mechanisms, which in the current work has been used

to perform optimal inference, can also provide an explanation of how brains solve other real

world tasks both in perception and decision making, as for example cue integration (Wozny

et al., 2010) and action selection (Gurney et al., 2001).

The model of cortical computation we propose is able to autonomously switch between di↵er-

ent operational regimes (sensory encoding or spontaneous activity) according to the received

input drive. Furthermore, the proposed model exploits microscopic noise as a resource that

enables the system to get in correspondence with the statistical properties of the environ-

ment. This places subcellular sources of noise under a new light in the working-brain picture.

Noise, which has always been considered a limiting factor for neural processing and encoding,

plays a crucial role in our model of neural computations, since it represents the generative
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engine supporting active perception.

The model described in this Chapter allows implementing active perception via sampling. It

is possible to show that a similar approach can be used to solve decision making and action

selection tasks, where an active generation of solutions and a feedback evaluation of proposals

is necessary to select the best behavior.

Additionally, various populations can be used to encode di↵erent features of the world. In

this case, the correlation structure of the encoded features can be learned using recurrent

connections between the populations. This allows exploiting all the available information to

infer the state of the world and, for example, in the absence of auditory information, visual

cues can be used to condition the spontaneous activity of the population encoding sound

features (and vice-versa). By doing this, we can produce complex inference behaviors such

as cue integration.

Finally, recurrent connections within the same population can be used to learn the time

structure of world features, and the transition probabilities between di↵erent states. This

allows generating a realistic simulation of the external world inside the brain. Each time new

sensory information is available, this information is used to update the state of the simulation

accordingly, in a Bayesian fashion. On the contrary, if no additional information is available,

the internal simulation evolves in a realistic manner, respecting causality and probability

rules learned by the system about the external world (also explaining results from (Berkes

et al., 2011)). This simulation machine would allow to represent the external world, predict

future events, evaluate hypothesis and select actions and behavior according to the expected

reward.

The model developed in the current Chapter should not be considered as a description of

brain functioning. However, it should serve as a feasibility study of how a population of

neurons can exploit intrinsic neural variability to implement inference, and to simulate the

stochastic dynamics of the external world. In this sense, the achieved results can be used
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as a starting point to derive biophysically detailed model of the dynamics of specific brain

areas, and a normative description of their computational role in the working brain.



Chapter 6

Conclusion

‘As long as our brain is a mystery, the universe, the reflection of the structure of the brain
will also be a mystery.’

Santiago Ramn y Cajal, “Rules and advices on scientific investigation”, 1987

According to Marr’s tri-level hypothesis (Marr and Poggio, 1976), understanding an infor-

mation processing system requires three distinct, complementary levels of analysis. First, we

need to understand what is the system doing, and why is it doing what it does (computational

level). Moreover, we need to comprehend how the task is pursued, i.e. what representations

and processes are used to achieve the desired goals (algorithmic/representation level). Fi-

nally, we need to discern how these computations are physically realized, starting from the

fundamental constituents underlying the used architecture (implementation/physical level).

Nervous systems are able to generate extremely rich and complex behaviors, starting from

an overwhelming miscellany of microscopic constituents and interactions. For this reason,

extensive Neuroscience research has been focusing either on deriving e↵ective models of large-

scale system behaviors, or on meticulously describing local mechanisms and interactions. As

158
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these fields of research are growing, we reached a point that enables us to start combining

these di↵erent levels of description, and to link them to the computational role underlying

the observed dynamics. Recently, various works have been pursuing this goal, creating an

elegant framework that provides a principled and simple explanation of rich and complex

mechanisms (Deneve, 2008; Ganguli and Simoncelli, 2010; Neishabouri and Faisal, 2011;

Berkes et al., 2011; Neishabouri and Faisal, 2014a). Inspired by the approaches used in these

papers, we tried in this dissertation to create a top-down explanation of what is observed

about the dynamics of neurons and neural population, linking specific mechanisms to their

computational role in the brain.

6.1 Summary of thesis achievements

In this dissertation, we propose two di↵erent models: a model of single neuron functioning

and a model of neural population dynamics. The two models require a di↵erent level of detail.

For this reason, we decided to develop them independently, and we used a simple established

single neuron dynamics to build the population model. This allows the proposed models

to stand independently from reciprocal assumptions and results, and it improves discussion

clarity and in-silico tractability of the population model.

6.1.1 Single neuron

The single neuron model we propose in this dissertation describes neural functioning on

a computational, algorithmic and implementation level, and it shows how di↵erent levels

of analysis are consistent and equivalent. Using a top-down approach, we derive from first

Bayesian principles a normative description of neural behavior, and we show how the proposed

computations can be implemented by a biophysical neuron.
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On a computational level, the proposed neural dynamics allows to implement binary regres-

sion on some hidden states (dendritic integration), to propagate this information e�ciently

through the neuron (action potentials generation), to encode it locally (calcium intracellular

concentration) and to use it to generate samples from the current internal representation of

the external world (synaptic vesicle release).

On an algorithmic level, the proposed binary regression takes the form of logistic infer-

ence. The information is propagated through the neuron e�ciently using a predictive coding

scheme, which exploits local calcium concentration to implement divisive gain normalization.

The inferred probability is encoded locally by calcium concentration in form of log-odds prob-

ability ratio. Finally, local calcium concentration controls the instantaneous probability of

synaptic vesicles release.

On the implementation level, we show how the proposed algorithms can be performed by

a biophysical neuron exploiting neurotransmitter-activated ions channels, linear dendritic

integration, calcium-activated potassium channels, unstable membrane dynamics, random

membrane fluctuations and potential-dependent calcium channels. All the biophysical re-

quirements and predictions of our model are compatible with experimental observations.

The proposed model provides an original interpretation of biophysical quantities and pro-

cesses, as intracellular calcium concentration, action potentials and synaptic vesicle release.

Spiking activity, which is usually considered the paramount form of communication between

neurons, in our model takes the role of an internal information channel, which serves to co-

ordinate and synchronize local calcium concentration in di↵erent regions of the neuron. This

information channel exploits an e�cient coding scheme that is adapted to the dynamical

properties of the encoded stimulus, and the potential dependent dynamics of calcium chan-

nels allows to locally decode the message contained in it. Following this new interpretation,

intracellular calcium concentration becomes the variable encoding the state of the world

inside the neuron, and it controls synaptic communication, neural interactions, spike rate
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adaptation and synaptic plasticity. Finally, according to the proposed interpretation, synap-

tic vesicle release doesn’t serve to translate pre-synaptic spikes into excitatory post-synaptic

potentials (EPSPs). On the contrary, it actively implements a process that generates samples

from the probability encoded in synaptic calcium concentration.

The model we propose link the parameters controlling neural dynamics to the structure (e.g.

timescale of changes) of the encoded stimulus. We quantitatively predict the given relations,

and we show how the optimal parameters can be learned and tuned on-line to the experienced

sensory input. This homeostatic mechanism prevents the need for an externally-supervised

fine parameters tuning, and it enables the system to adapt to changes in the dynamical

properties of the world.

We use a top-down approach, and starting from some assumptions about the implemented

computations and the role of biophysical quantities inside the neuron we derive various ob-

servable predictions that match experimental results. For example, the model predicts short-

term synaptic potentiation as a consequence of non-linear dependence of vesicle release prob-

ability on local calcium concentration, which is compatible with experimental observations

about synaptic dynamics. Additionally, the proposed model generates quantitative predic-

tions about the time-course of spike rate adaptation following a jump in the input drive. We

experimentally validated the given prediction using in-vivo recordings from cat V1 neurons

(Benucci et al., 2013).

6.1.2 Neural population

The model of neural population dynamics we propose should be interpreted as a feasibility

study. A simple Hebbian synaptic plasticity rule and a lateral inhibition mechanism su�ce

to enable a population of spiking neurons to adapt its tuning curves to the statistic of

the encoded stimulus, and to represent information optimally given some metabolic and



162 Chapter 6. Conclusion

biophysical constraints. Moreover, in the absence of sensory information, the given population

is able to generate an internal representation of the external world (spontaneous activity)

that is compatible with the learned statistics, and which can be interpreted as a process

of generating samples from the prior distribution (active perception). Finally, the given

population can exploit additional sources of information to implement inference by sampling

and, specifically, a Markov Chain Monte Carlo (MCMC) algorithm which generates samples

from the posterior distribution. This allows to implement optimal Bayesian computations,

and to combine di↵erent sources of information e�ciently in order to infer the state of the

world.

The model of cortical computation we propose can autonomously switch between di↵erent

operational regimes (sensory encoding or spontaneous activity) according to the received

input drive. Furthermore, the system functions and evolves on two di↵erent timescales: on

a short timescale, the neural population simulates the state of the world given the available

information while, on a longer timescale, it learns the statistics of the world, and it adapts

its internal parameters accordingly.

As already mentioned, the given model should only be considered as a feasibility study, and

it doesn’t represent a detailed model of neural functioning. For this reason, we propose three

di↵erent candidate mechanisms for realizing lateral inhibition within the neural population,

and we test the implementation of three alternative MCMC methods, achieving consistent

results. The given model can be used in the future to derive more detailed and realistic

descriptions of specific brain regions and, in this case, the most appropriate MCMC method

and lateral inhibition mechanism will be selected.

Our results match biophysical experimental results linking a population receptive field to

the input statistics (Ganguli and Simoncelli, 2010), and our model provides quantitative

predictions about how population tuning curves adapt to changes in the stimulus statistics.

In addition, the interpretation of spontaneous neural activity we propose is compatible with
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experimental observations from (Berkes et al., 2011).

6.2 Common themes shared by both models

In this dissertation, we propose two separate models: a model of single neuron functioning

and a model of neural population dynamics and computations. The two models are developed

independently. However, there are some common themes that link them.

6.2.1 Noise

Both models exploit noise as a resource, and they rely on molecular sources of variability

to function properly. In the case of single neuron dynamics, molecular noise manifests itself

both at the level of vesicle release and of action potentials generation. The presence of

stochasticity in vesicle release allows synaptic communication to take the form of a sampling

process. Each vesicle release is considered as an independent sample, conditional to the

probability encoded by the neuron. Di↵erent synapses belonging to the same pre-synaptic

neuron implement independent sampling processes from the same underlying probability.

This sampling process plays a role that can also be interpreted as dithering. Neurons represent

the probability of a hidden state, which is a continuous variable between 0 and 1. Yet, the

nature of synaptic communication (vesicle release) is quantized. In each moment in time,

a vesicle is either released or not. Using a maximum-likelihood approach would prescribe

to always release a vesicle for probabilities higher than 0.5. Introducing stochasticity in the

process does something similar to what dithering does in video/audio processing. Specifically,

the presence of variability reduces quantization error, it prevents large-scale patterns and it

improves the overall quality of the internal representation. At the level of spike initiation,

stochastic membrane fluctuations (modeled as a Gaussian process) together with the unstable
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membrane potential dynamics of the neuron allow producing the desired response function.

In the case of the neural population model, membrane potential fluctuations drive and control

spontaneous population activity in the absence of sensory drive. The given fluctuations enable

the population to implement inference by sampling through a Markov Chain Monte Carlo

algorithm, and they play a role similar to what “random variables” do in the implementation

of Monte Carlo methods in-silico.

6.2.2 Learning

Another common theme to both models is learning. In fact, parameters fitting is a sensitive

argument when developing mathematical descriptions of biological systems. Often, the be-

havior of proposed models heavily relies on a fine-tuning of some model parameters. This

fine tuning must be robust to disturbances, and optimal parameters choice might depend

on external conditions and on the system environment. This is, for example, the case of the

Hodgkin-Huxley model of action potential propagation (Hodgkin and Huxley, 1952), in which

spike propagation is highly sensitive to the relative number of ions channels in the neural

membrane. Experiments showed that feedback systems enable a neuron to adapt the number

of ions channels according to the properties of the solution surrounding the cell, in order to

produce the desired behavior (Turrigiano et al., 1994). This homeostatic mechanism allows

the neuron to function reliably, and to compensate for changes in the surroundings. Simi-

larly, each biological model that requires fine tuning of environment-dependent parameters

to function should always be accompanied by a model that provides these parameters to be

tuned and maintained. For this reason, in both our models we include mechanisms that en-

able the system to update and learn model parameters locally and on-line, and to adapt these

parameters to the properties of the experienced stimuli. On a small timescale, the proposed

systems receive, encode, process and communicate information, while on a larger timescale

they learn properties of the encoded stimulus from the received input, and they adapt their
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internal parameters accordingly. In the single neuron case these parameters control internal

neural dynamics, while in the neural population model they represent the weights of synaptic

connections, which allow to optimally encode the external world and to successfully generate

samples from the prior distribution.

6.2.3 Sampling

Both models implement a process that can be interpreted as “sampling from an underlying

distribution”. This sampling behavior enables the system to “simulate” configurations of the

external world that are compatible with the received sensory information. In the presence

of limited knowledge about the current world state, instead of representing the maximum

likelihood configuration, the system decides to stochastically select di↵erent candidate states

following a probability matching behavior. Working in high-dimensional spaces and, often,

on skewed non-Gaussian distributions, this behavior allows to avoid systematic errors, and

to e�ciently calculate expected values of cost functions over these spaces. The resulting

variability of behavior also increases the fitness of the system by reducing predictability,

supporting exploration and increasing diversification within and across organisms of a certain

species, which increases the robustness of evolution to fast changes in the environment.

6.3 Applications

Technological progress is providing more accurate and powerful tools for probing and record-

ing neural dynamics, and this is overwhelming modern Neuroscience with a huge amount of

data to be processed and interpreted. For this reason, the research of simple computational

principles behind complex observed neural dynamics and interactions can help neuroscientists

build models of brain functioning without getting lost in the details of the system. Moreover,
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understanding the computational role behind observed neural dynamics is fundamental to

successfully interpret experimental results, to design adequate experiments for testing brain

theories, and to understand brain’s malfunctions and pathologies.

6.3.1 Intra-cellular calcium concentration as a gateway to brain

functioning

For example, our model of neural dynamics suggests that intracellular calcium concentra-

tion represents the most explicit representation of the external world inside the neuron and,

specifically, that calcium is linearly proportional to the log-odds probability ratio of some

hidden state, which describes the current world configuration. If this is verified, it will imply

that, to understand neural computations and representation, we should look at local calcium

concentration in di↵erent regions of the brain, and relate these quantities to the stimuli used

in the experiments. Furthermore, using spiking activity of neurons instead of calcium con-

centration would lead to confused and biased results. In fact, the coding scheme used by

neural spiking activity varies in di↵erent neurons, and it depends on the dynamical proper-

ties of the encoded stimulus. For this reason, the spiking trains of neurons often seem to

represent unpredicted changes in the encoded stimulus instead of the stimulus itself (Hughes

and Ma↵ei, 1966), and spiking response to a certain stimulus strongly depends on the history

of the stimulus (spike rate adaptation)(Benda and Herz, 2003). Paradoxically, current ex-

perimental procedures often require using complex techniques to infer neural spiking activity

from calcium concentration, which can be measured experimentally using calcium-imaging

(Mittmann et al., 2011). If the results proposed in this dissertation are validated then, in

order to understand what the neuron is saying to the rest of the system, it would be more

e�cient to just focus on the measured concentration of calcium ions.
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6.3.2 Synaptic plasticity and computations

Additionally, understanding what is the message communicated by synapses (and how this

message is used by the post-synaptic neuron) is fundamental to understand computations

in neural networks. Our research suggests that vesicle release can be modeled as an inho-

mogeneous Poisson process, whose instantaneous rate is proportional to the probability of

a certain event in the world. If validated, this can be used to derive from first principles

synaptic plasticity rules that enable the neuron to implement some desired computations,

and to associate these rules with the algorithms performed in di↵erent brain areas and by

specific neuron types.

6.3.3 From neural parameters to the structure of the world

The model we propose creates a quantitative link between parameters controlling neural

dynamics and the structure of the stimulus encoded. This bidirectional prediction allows

extracting information about the natural statistics and dynamical properties of world fea-

tures from the properties of neurons encoding them. Moreover, this quantitative link could

potentially explain experimental results and artifacts achieved using artificial stimuli whose

properties di↵er from the natural ones. Finally, being able to infer the natural properties of

stimuli from the recorded neurons would support the design of more realistic experiments,

that allow testing animals in a setting similar to the one they are adapted to.

6.3.4 A detailed, biophysical model of specific brain areas

On a population level, the model of perception and inference proposed in this dissertation

can be used as a prototypical example to derive biophysically detailed models of neural

dynamics in specific brain areas. As previously mentioned, in the current population model
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we propose three candidate mechanisms implementing lateral inhibition as well as three

alternative MCMC methods, which produce consistent results. In the future, we can consider

specific brain regions to model, and we can select the most appropriate MCMC method and

lateral inhibition mechanism accordingly. Furthermore, we can adapt the given model to

fit properties of the brain area investigated, as for example average firing rate of neurons,

timescale of synaptic filtering, size of the population, synaptic long-term plasticity, dynamics

of the encoded stimulus and properties of the population in the spontaneous activity regime.

6.3.5 Spontaneous activity

In addition, understanding the functional role of spontaneous activity in the brain can support

the development of new analysis techniques, which allow extracting valuable information

from experimental data. Some brain regions have been shown to produce a higher level of

activity in the spontaneous activity regime compared to when the animal is subject to sensory

stimulation (Berkes et al., 2011). According to our interpretation of spontaneous activity,

population activity in the absence of sensory drive carries a large amount of information about

the features encoded. This can give us hints about the hierarchic level of representation in

di↵erent brain regions, and how world causal/generative structure is represented inside the

brain.

6.3.6 Brain inspired architectures and prosthesis

As an application to technology, understanding how neurons and neural populations are able

to communicate information e�ciently, to deal with noisy molecular components and to im-

plement Bayesian computations could help us design brain-inspired architectures. In a similar

direction, understanding what is the message encoded by neurons and how this message is

communicated can help us building improved brain-machine interfaces and prosthesis.
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6.4 Future work

In the future the proposed models can be improved, and the biophysical processes allowing

to implement the desired algorithms can be further investigated. Moreover, the given models

can be applied to solve novel tasks, and they can be expanded to account for a large number

of neural populations. Finally, the models of single neuron and neural population can be

combined in a unified model, which explains neural computation on a population level starting

from the molecular dynamics of ions channels and neurotransmitters vesicles.

6.4.1 Single neuron

The single neuron model discussed in this thesis links abstract computations with the bio-

physical mechanisms that allow to implement them. In this direction, further work can

be done to develop a more detailed description of molecular interactions that generate the

desired behavior. For example, we should look for biophysical correlates of some missing

model variables, e.g. the parameters controlling calcium dynamics and the variables con-

trolling post-synaptic neurotransmitter-dependent ions channels. Our model proposes some

quantitative predictions about how these parameters control neural functioning, how they

depend on the dynamical properties of the encoded stimulus and how they evolve according

to the experienced input drive and spiking history. Guided by these quantitative predictions,

we should look in the biology of neural interactions looking for candidate quantities that

match our requirements, and we should design some experiments to test our hypothesis on

biophysical neurons.

Furthermore, the model we propose provides various quantitative predictions about neural

dynamics, starting from synaptic vesicle-release rate up to the open-close transition prob-

abilities of specific ions channels. In the future, the given model can be used to derive

additional predictions about neural functioning. Also, experiments can be designed to test
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these predictions, and to probe the validity of the underlying assumptions.

The model we propose can also be extended to describe other neural processes and phe-

nomena. For example, our model suggests that dendritic integration implements logistic

regression over a certain hidden state. Additionally, it suggests that the probability of this

hidden state is encoded in the post-synaptic neuron in form of calcium concentration, and

that the given inference process is based on the information encoded in synaptic vesicle re-

lease. These ingredients are su�cient to derive what the optimal synaptic weights should

be, and how these weights can be learned on-line exploiting pre and post-synaptic activity.

Therefore, we can derive from first principles a model of synaptic plasticity, which is con-

trolled by vesicle release and by post-synaptic calcium concentration, and which reflects into

an e↵ective spike-time dependent plasticity (STDP) rule.

6.4.2 Neural population

The model of neural population dynamics we propose in this dissertation allows generating

samples from a target posterior distribution, which is inferred using all the available sensory

information about the state of the world. This sampling process can be used to calculate

expected values of arbitrary functions over high dimensional spaces. Therefore, the given

model can be extended to solve problems that require evaluating alternative options and

choices, as for example decision making, motor control or action selections.

Moreover, the proposed model is able to learn the overall statistics of the encoded stimulus.

However, stimuli in nature often present particular structures and evolution. For example,

the position of a body free moving in space exhibits stereotypical trajectories, and knowing

the current position of the body gives us information about what its future location will

be. We can assume that these relations are learned by the population encoding the given

stimulus, thanks to recurrent excitatory and inhibitory. On a first order, this will translate
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into transition probabilities between neighbour states. If the body is in a particular location

now, it is reasonable to expect that it will be close to that position in the next future, where

the quantitative definition of “close” depends on the average velocity of the given object

in nature. On a higher order, we can expect the population to learn non-linear transition

probabilities that depend on the current and past state of the system. In the future, we can

derive a model of how these transition probabilities can be learned and implemented exploit-

ing synaptic plasticity of recurrent synaptic connections within the given neural population.

In the presence of limited sensory information, this mechanism would enable the system to

generate a representation of the world that reflects the correct statistics of the stimulus and,

at the same time, it evolves compatibly to the stochastic dynamics of the feature in the world.

Finally, in this thesis we describe the model of a single population encoding one feature of

the world. Yet, the world is made of a very large collection of features, and many of these

features are statistically correlated in nature. We can consider more than one population of

neurons encoding an equal amount of world features. The correlation between world features

will reflect into correlation in the activity of the given populations, and this correlation can be

learned by the system using synaptic connections between neurons of di↵erent populations.

Specifically, in the future we can design from first principles a Hebbian synaptic plasticity

rule that learns correlations between neural activities, and that replicates these correlations

in the spontaneous activity of the system. The given mechanism would strongly increase

the inference capabilities of the system. For example we can consider two populations, one

encoding a visual stimulus (light generated from a certain location) and one encoding an

audio stimulus (sound received from a particular position in space). We can assume that

the two stimuli are statistically correlated, e.g. they are usually generated by the same

physical object. This provides the activity of the respective populations to be correlated

and, if we use the proposed mechanism to learn and reproduce the given correlation, we

achieve some interesting behaviors. For example, if the subject closes his eyes (absence of

visual information) but he carefully listens to the object sound (audio sensory drive), then
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the visual population will generate spontaneous activity that is conditional to the activity

of the auditory population representing the sound stimulus. As a consequence, the system

will produce cue integration (Tassinari et al., 2006; Wozny et al., 2010) and it will exploit all

the available information to infer the state of the world. The desired spike-time dependent

plasticity rule needs to be able to distinguish between genuine correlation of world features,

and correlation between the dynamics of neurons caused by existing recurrent connections

(direct or indirect).

6.4.3 Combining single neuron and neural population models

If the model of single neuron functioning receives further validation from experimental testing,

it can be considered to integrate it with the model of neural population dynamics. In order

to make the two models compatible, it will be necessary to introduce some changes in the

current model of neural population dynamics.

Specifically, the neural population model currently identifies spike events with samples. How-

ever, in the single neuron model the process of sampling is physically implemented by vesicle

release. This change of perspective has one main consequence. Since each neuron communi-

cate to other neurons through independent synapses, each post-synaptic neuron will observe

a di↵erent realization of the same stochastic process (sampling). This increases stability of

the process, since the overall dynamics of the system will not be influenced by one specific

realization of the process as much as it would in the previous scenario.

Another significant di↵erence between the two models is learning. In the current population

model, learning is controlled by pre and post-synaptic spike timing. Yet, to make synaptic

adaptation compatible with the single neuron model, we should create a new plasticity rule

controlled by synaptic vesicle release (taking the place of pre-synaptic spiking in the current

model) and by post-synaptic calcium concentration (which would substitute post-synaptic
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activity). Using the given ingredients, it is possible to build a plasticity rule that generates

the desired learning, and that is e↵ectively equivalent to the Hebbian learning rule currently

used.

Finally, in the combined model, lateral inhibition will not be controlled by total population

spiking activity. Conversely, the inhibitory mechanism will depend on synaptic activity.

One or more synapses for each neuron will drive an external inhibitory system, that acts

back on the neurons of the population influencing their calcium concentration. This can

be computationally interpreted as renormalizing a probability distribution. If we know that

each neuron in the population represents a di↵erent event, and that all the given events

are mutually exclusive in the real world, then we can infer the probability of each event

independently from the available information (assuming observations relative to di↵erent

events are mutually independent), and we can normalize all the derived probabilities to sum

up to unity. This can be implemented through a dedicated population of neurons (inhibitory

population), which infers the sum of the probabilities of all the neurons from their synaptic

activity, and applies the inferred value to the probability represented by di↵erent neurons as

a divisive normalization factor.

If successfully validated, the resulting (combined) system would integrate the properties of

both the single neuron and neural population model we propose in this dissertation. It

would adapt to the properties of the encoded stimuli, and it would encode and propagate

information e�ciently. It would be able to learn the causal structure of the world, to infer

and represent its current state and to simulate its evolution. This is implemented exploiting

noise as a resource, which allows to get in correspondence with the stochastic nature of

the environment. The given model would link molecular quantities and processes inside

the neuron to their computational role in brain functioning, integrating di↵erent levels of

description. Such a model would allow investigating both the questions of “how” do neural

populations function and, more importantly, “why” do they function as they do. This can

lead in the future towards a universal neural theory (in the physics sense of the world) that,
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building on first principles, explains one of the most complex systems in nature, which is the

working brain.



‘If the human brain were so simple that we could understand it, we would be so simple that
we couldnt.’

George E. Pugh, “The Biological Origin of Human Values”, 1977
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List of symbols

[c] Intracellular calcium ions concentration, relative to reference value [ca2+]ref

µ
0

Mean synaptic input in the hidden variable is in state 0

µ
1

Mean synaptic input in the hidden variable is in state 1

µi Mean of the neural drive (firing rate in absence of adaptation)

µo Desired average neural firing rate

⌫ Instantaneous firing rate of the non-adapted neuron

⌫⇤ Instantaneous firing rate of the adapted neuron

! Observed synaptic current, used to infer the probability P of the hidden state

� Log-odds probability ratio encoded by the membrane potential (equivalent to L⇤)

⌃ Covariance matrix of the synaptic input

�e Steady state solution of the posterior variance

�i Variance of the neuronal drive (firing rate in absence of adaptation)

⌧ Inter spike interval

⌧c Correlation timescale of synaptic current
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⌧o Desired average neural inter-spike interval

⌧r Refractory period of the neuron

⇠ Log-odds probability ratio inferred using synaptic current (equivalent to L!)

c Mean of the inferred posterior distribution of the instantaneous neural input drive

Cm Membrane capacitance of the neuron

D Posterior distribution

g Gamma distribution

I Neural drive (firing rate in absence of adaptation)

Ic Calcium-dependent potassium current

Il Leakage current

I! Excitatory Post-Synaptic Current (EPSC)

L Log-odds probability ratio of the hidden event

L⇤ Log-odds probability ratio encoded by the membrane potential

Lc Log-odds probability ratio encoded by calcium concentration [c]

L! Log-odds probability ratio inferred using synaptic current

P Probability of the hidden event

P ⇤ Probability of generating a spike event in the time interval ⌧r

P i
n Activation level of the synapse connecting neuron i to neuron n

Pc Probability encoded by calcium concentration [c]
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P
open

Probability of a potassium ions channel being open

ri Timescale on which the external stimulus changes

r# Hidden state transition rate (1 ! 0)

r" Hidden state transition rate (0 ! 1)

v Latent variable encoded by the neuron. Corresponds to L

V
�

Membrane potential

V
th

Threshold potential for spike initiation

W i
n Weight of the synapse connecting neuron i to neuron n

Z Partition function of a potassium ions channel
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