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English abstract

This thesis addresses the statistical modeling of turbulence, focusing on
three main aspects: the critical transition from laminarity to turbulence,
the e�ects of the so-called intermittency and the energy dynamics of a
turbulent �ow.

The central part of the thesis consists of six papers. The �rst four papers
(Papers A, B, C, D) have been already published. They have been written in
collaboration with the research group in Physics of the Condensed Matter
of the Commissariat à l'Énergie Atomique et aux Énergies Alternatives
(CEA) in Saclay, Paris and constitute the �rst part of the thesis. Papers E,
F were developed during a six-months visiting period at the Department of
Mathematics of the University of Aarhus (Denmark) under the supervision
of Ole Barndor�-Nielsen and Jürgen Schmiegel, and constitute the second
part. A detailed description of the contents of each paper is reported in
Section 1.3; here in the following we shall provide an overview of the whole
work.

In Part I we develop two new indices (O,R) to quantify the proxim-
ity to critical transitions in stochastic dynamical systems, with particular
attention to the transition from laminarity to turbulence in �uids (Paper
A). The two indices are tested on two toy models and then applied to the
detection of the turbulent transition in a magnetised �uid. Motivated by
the fact that similar stylised features are observed in turbulent and �nancial
time series, we employ the indices O,R to detect critical events in �nancial
markets.

We de�ne a third index Υ, which quanti�es the e�ects of intermittency
and does not require very long time series. This index turns out to be
e�ective in recovering the structure of the turbulent �ow (Papers B, C).
In Paper D we show that Υ is also sensitive to the turbulent behavior
of �nancial markets, providing a possible early warning indicator of the
proximity to critical events.

In Part II we introduce a new local observable as the arrival times of
tracer particles at a particular point in the �uid as a proxy of the turbulent
velocity �eld (Paper E). We model the universal self-organising structure of
this observable in an e�ective and parsimonious way, through the Normal
Inverse Gaussian (NIG) distribution and the introduction of a Stochastic
Equivalence Class (SEC).

In the second paper of Part II (Paper F), we address the continuous-time
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dynamics of the energy budget of the turbulent �eld analised in Paper E. We
consider a global observable, the turbulence intensity, in the framework of
ambit stochastics, which is suitable for modeling spatio-temporal stochastic
processes featuring intermittency. We show that this observable can be
characterised as the exponential of a stochastic integral on a Lévy basis,
under the assumption that the energy transmission across time scales is
a multiplicative cascade process. The model is estimated based on the
NIG �t to the marginal distribution of the time series and on second-order
multiplicative correlations and then validated using third-order correlations.

For copyright reasons, Paper A and Paper D can be displayed in their
�nal form, but not with the journal format. For the print version of the
two papers, see [20] and [19].
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Riassunto

La presente tesi è incentrata sulla modellazione statistica della tur-
bolenza, con particolare attenzione a tre aspetti: la transizione critica da
�usso laminare a turbolento, gli e�etti dell'intermittenza e la dinamica del
bilancio energetico di un �usso turbolento. La parte centrale della tesi è
costituita da sei articoli. I primi quattro articoli (Paper A, B, C, D), tutti
giÃ pubblicati, sono stati prodotti in collaborazione con il gruppo di ricerca
in Fisica della Materia Condensata del Commissariat á l'Énergie Atomique
et aux Énergies Alternatives (CEA) situato a Saclay (Parigi), e costituiscono
la prima parte della tesi. I Paper E, F sono stati sviluppati durante un peri-
odo, della durata di sei mesi, trascorso come visiting Ph.D. student presso il
Dipartimento di Matematica dell'Università di Aarhus (Danimarca), sotto
la supervisione dei Pro�. Ole Bardnor�-Nielsen e Jürgen Schmiegel, e cos-
tituiscono la seconda parte. In Sez. 1.3 si trova una descrizione dettagliata
dei contenuti di ciascun articolo; qui riportiamo invece una visione di in-
sieme dell'intera tesi.

Nella Parte I vengono sviluppati due nuovi indici (O,R) per quanti�-
care la prossimità di un sistema dinamico ad una transizione critica, con
particolare attenzione alla transizione da laminarità a turbolenza nei �u-
idi (Paper A). I due indici sono testati su due modelli ideali e, in seguito,
utilizzati per la rilevazione della transizione turbolenta in un �uido mag-
netizzato. Sfruttando il fatto che le serie storiche turbolente e �nanziarie
presentano un insieme di fatti stilizzati comuni ad entrambe, gli indici O,R
sono impiegati per rilevare eventi critici in serie storiche di indici �nanziari.

Viene de�nito un terzo indice, Υ, avente come caratteristica principale
quella di riuscire a cogliere gli e�etti dell'intermittenza senza richiedere il
campionamento di serie storiche molto lunghe, spesso di�cili da ottenere,
riuscendo così a ricostruire in maniera e�cace la struttura del �usso tur-
bolento (Paper B, C). Nel Paper D si mostra che questo indice è sensibile
anche a comportamenti turbolenti dei mercati ri�essi da indici �nanziari,
costituendo quindi un possibile indicatore di prossimità ad eventi critici.

Nella Parte II viene introdotto un nuovo osservabile locale come proxy
del campo di velocità turbolenta: tale osservabile è costituito dalla sequenza
dei tempi di misura di uno strumento sensibile alla distribuzione di parti-
celle di tracciante passivo rilasciate nel �uido, legata a sua volta al campo
di velocità (Paper E). Si mostra che questo osservabile presenta una strut-
tura di auto-organizzazione che ammette una modellazione parsimoniosa
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ed universale, mediante la distribuzione Normal Inverse Gaussian (NIG) e
l'introduzione di una Classe di Equivalenza Stocastica (SEC).

Nel secondo articolo di questa parte (Paper F) viene caratterizzata la
dinamica a tempo continuo del bilancio energetico del campo turbolento
analizzato nel Paper E. In questo caso si considera un osservabile glob-
ale, ovvero l'intensità della turbolenza, nel contesto modellistico dell' am-
bit stochastics, particolarmente adeguato per descrivere processi stocastici
spazio-temporali caratterizzati da intermittenza. Viene dimostrato che, as-
sumendo che la propagazione di energia attraverso le diverse scale sia un
processo a cascata moltiplicativa, questo osservabile può essere caratteriz-
zato come l'esponenziale di un integrale stocastico di una base di Lévy. Il
modello è stimato a partire dalla distribuzione marginale della serie storica
e dalla struttura di correlazione a due tempi, e in seguito validato tramite
la correlazione a tre tempi.

Per ragioni di copyright, Paper A e Paper D possono essere allegati nella
loro versione de�nitiva, ma non nel formato della rivista. Per la versione di
stampa, si vedano [20] e [19].
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Chapter 1

Introduction

1.1 Overview on turbulence

The aim of this section is to provide a synthetic introduction to the
phenomenology and to the basic theoretical concepts about turbulence. In
particular, we describe the main physical facts about the phenomenon with-
out highly technical elements, while we highlight which of these facts have
a statistical counterpart. For more detail, see, for example, the interesting
and pedagogic review contained in [21].

An apocriphal story attributes to the German physicist Werner Heisen-
berg this sentence:

�When I meet God, I am going to ask him two questions: Why relativity?
And why turbulence? I really believe he will have an answer for the �rst.�.

A very similar quote is also attributed to the English matematician Horace
Lamb, involving a comparison with Quantum Electrodynamics. Although
we cannot be sure that these were the real words of the two scientists,
these anecdotes have become famous among the researchers studying tur-
bulence, as a demonstration of how complex and elusive this phenomenon
still appears nowadays.

Turbulence is a physical phenomenon which can arise in the motion of
a �uid, but also of a plasma or of a super�uid, even though with di�erent
features. Turbulence in �uids was the �rst to be observed and studied,
and is the object of investigation of this thesis. On the other hand, the
motion of a �uid is not necessarily turbulent and, all the more so, we can

9



10 CHAPTER 1. INTRODUCTION

identify three types of �ows: laminar, transitional and turbulent. In order to
provide a graphical example, the visualisation of a turbulent jet is displayed
in Fig. 1.1. Starting from the left of the image, we can observe the three
�ow regimes. The transition from one regime to another is controlled by a
combination of the �ow parameters, known as the Reynolds number, which
will be introduced later in this section.

Figure 1.1: Transition from laminar to turbulent �ow.

Laminar �ow:

- deterministic

- smooth

- regular velocity
pro�le

Transitional �ow:

- deterministic
chaos

- ∼ periodic

- regular vortices

Turbulent �ow:

- stochastic �eld

- irregular
activity

- vortices at all
scales

The laminar �ow takes its name from the fact that the moving �uid
can be thought of as a pile of in�nitesimal sheets (or laminae): the velocity
pro�le is smooth and deterministic, while the mixing of matter or physical
properties (e.g. the momentum) is negligible. A practical example of a
strongly laminar �ow is a layer of honey sliding on a slightly inclined plane:
it is clear that its motion will be slow and regular, with no vortices inside
the �uid. If the Reynolds number is too high to sustain a laminar motion,
a transitional motion arises: this is characterised by deterministic chaos,
so that quasi-periodic vortices or travelling waves can appear. If also the
chaotic motion cannot be supported anymore, the �ow becomes further dis-
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organised: the velocity �eld becomes a stochastic �eld, in which no periodic
or regular structures can be recognised. The activity in time of this �eld
appears very irregular, even though a degree of organisation is preserved
through the developement of continuously dissipating vortices. These in-
troduce locally coherent structures at di�erent time and spatial scales, thus
generating a complex spatio-temporal correlation structure.

Figure 1.2: Transition from laminar to turbulent �ow in the smoke of incense bars.

A simple, yet impressing real-world image of the transitions can be ob-
tained observing the smoke from a cigarette or from an incense bar, as the
one shown in Fig. 1.2. However, turbulence is an ubiquitous phenomenon
which, given the right conditions, a�ects the motion of any �uid at very
di�erent spatial scales, sometimes producing noticeable e�ects, as shown in
Fig. 1.3, 1.4: for example, the helices of an airplane produce a sequence
of vortices known as 'wake turbulence', possibly a�ecting the stability of
following aircrafts.
Another example is the wake turbulence developing in wind farms, where it
can decrease the e�ciency of the wind turbines located downstream to the
wake-generating ones (see, for example, [22]). For these reasons, besides the
pure research objective, a deeper understanding of the phenomenon or an
e�ective way to model it in detail are required and continuously searched,
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Figure 1.3: Wake turbulence from an airplane ([28]).

so that the e�ects of turbulence on the stability or e�ciency of mechanical
systems can be quanti�ed and taken into account.

Figure 1.4: Wake turbulence in a wind farm in Denmark.
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The Reynolds number

As already stated, the transition from laminar to turbulent motion
is controlled by a non-dimensional parameter of the �ow, introduced by
George Stokes in 1851, but named after Osborne Reynolds, who made it
popular in his paper [31] published in 1883. In his work, Reynolds describes
a simple experiment in which the transition to turbulence is observed in-
jecting ink into a container �lled with water (as in Fig. 1.5), modulating
the diameter of the pipe and the velocity of injection.

Figure 1.5: Reynolds' experimental apparatus.

By means of this experiment, Reynolds was able to compute the critical
thresholds at which the transitions to chaos and to turbulence take place.
In general, the Reynolds number is obtained as the ratio of the inertial
forces to the viscous forces acting in the �uid and its expression depends on
the geometry of the domain. For a pipe with diameter D and a mean �ow
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velocity V , for a �uid with kinematic viscosity ν, the Reynolds number is

Re =
V D

ν
.

The observed typical values of the parameter for a pipe �ow are:

Re < 2300 : laminar �ow

2300 < Re < 4000 : transitional �ow

Re > 4000 : turbulent �ow.

The so-called fully developed turbulence is obtained when Re→∞ and can
be observed in the atmosphere or in the ocean. Any arti�cial experimental
setup has a necessarily �nite Re, and one of the crucial problems when
reproducing turbulence in a laboratory experiment is to reach values of the
Reynolds number high enough to reproduce fully developed turbulence in
good approximation.

The Navier-Stokes equation

The main observable of the motion of a �uid is the �uid velocity �eld
v(x, t). The evolution in time of the velocity vector is governed by the
equation introduced by Navier in 1839 in [26]. The Navier-Stokes equation
for an incompressible �uid is

∂tv + v · ∇v = −∇p+ ν∇2v

∇ · v = 0.

The properties and even the existence of solutions of this equation are still
unknown and the latter can be solved only numerically, through the so-
called Direct Numerical Simulation (DNS), which is extremely demanding
from a computational point of view, so that it is di�cult to obtain large
samples of the observables.

The second term in the l.h.s. is the advective term, nonlinear in the
velocity �eld, responsible for the energy transfer in the �uid. The second
term on the r.h.s. is the dissipative term, proportional to the kinematic
viscosity of the �uid, responsible for the energy dissipation. When the
viscosity of the �uid is very large, or the other parameters de�ning the
Reynolds number are small enough, the dissipative term dominates the
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equation and the nonlinear e�ects are negligible. On the other hand, when
the mean velocity of the �uid is large enough, the equation is dominated by
the nonlinear term, which is responsible for the critical transition to a less
organised motion. In view of this, turbulence could be seen as a mechanism
to dissipate the energy injected in the system when the friction due to the
kinematic viscosity of the �uid molecules is not su�cient to the purpose.

Measuring turbulence: Eulerian and Lagrangian

approach

The description of the velocity �eld of a continuum, thus including �uids,
can be given in two di�erent frameworks, named Eulerian and Lagrangian
approach. Following the Eulerian approach, the observer is located at �xed
points in space and records the time evolution of the �eld in each point:
if required, also the spatial structure of the �eld can be recovered. In this
way, the total acceleration acting on a �uid particle is given by the local
variation of the velocity �eld

dv(x, t)

dt
=
∂v(x, t)

∂t
.

On the other hand, in the Lagrangian approach the observer follows a
single �uid particle along its trajectory. In this way, he samples the shocks
coming from the surrounding of the particle in di�erent points at di�erent
times. Thus, the total acceleration requires the inclusion of ad advective
term

dv(x, t)

dt
=
∂v(x, t)

∂t
+ v · ∇v.

In practice, Lagrangian sampling is more complicated to obtain than
the Eulerian sampling, but it can be obtained through DNS and in some
cases it may be necessary or useful to go back and forth between the two
frameworks. In this sense, a bridge between Eulerian and Lagrangian ap-
proach is given by the Taylor's 'frozen turbulence hypothesis', discussed in
[36]:

�If the velocity of the air stream which carries the eddies is very much
greater than the turbulence velocity, one may assume that the sequence of

changes in v at a �xed point are simply due to the passage of an
unchanging pattern of turbulent motion over the point.�
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In few words, if the mean �ow is fast enough with respect to the typical
magnitude of the �uctuations, the following transformation is possible and
often useful to pass from space to time domain and vice-versa

v(t) = v
( x
V

)
,

where v is the component of v along the mean �ow direction, V = E[v] and
x is measured at t = 0 upstream to the point at which v is measured.

Empirical facts and basic theory

The nonlinear e�ects that appear when the advective term is dominant
give raise to a great variety of empirical facts. Since their quantitative ob-
servation has been made easier in recent years thanks to more advanced
experimental and computational devices, thus requiring appropriate statis-
tical analysis. Moreover, once the �ow experiences the transition to turbu-
lence, the velocity �eld becomes stochastic, so that a statistical approach
is the most natural way to model the phenomenon, as will be pointed out
later in this section.

From a physical point of view, one of the main features of turbulence, as
already anticipated, is its capability to dissipate the kinetic energy injected
in the system. The anomalous dissipation is linked to the irregular activity
of the turbulent velocity �eld, which results in vorticity �uctuations and in
vortex stretching. This leads to the continuous formation and dissipation
of small vortices (or eddies) shaped as �laments, characterised by extreme
values of the intensity of the velocity vector and responsible for the brief
and local peaks of kinetic energy dissipation.

Also the di�usivity of a turbulent �uid is anomalous. It is well known
that the di�usion of a passive tracer in a still �uid follows the Fourier's heat
law. The variance of the trajectories of an ensemble of passive particles
released in the �uid at time t0 is V [~x] ∼ t2 (ballistic regime) at small
intervals from t0, while it reaches the so-called di�usive limit V [~x] ∼ t for
time intervals large enough. It is observed that the variance of such an
ensemble released in a turbulent �uid shows anomalous scaling, resulting in
a hyper-di�usivity.
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Spectra

One of the most important empirically observed facts is the typical
shape of the spectrum of the turbulent velocity �eld. The main feature dis-
played by turbulent spectra is an interval of wave numbers, named inertial
(sub)range, such that the spectral density has a constant negative slope,
approximatively equal to -5/3. This feature appears when the Reynolds
number is large enough, leading to a neat separation between the large
scales and the small, molecular scales.

Figure 1.6: Energy transmission mechanism in turbulence.

An example of the typical aspect of a turbulent spectrum in space, as
a function of the wave number, is shown if Fig. 1.6: this shape has been
associated with a direct cascade of energy, which is a natural hypothesis in
systems described by nonlinear equations and was �rst introduced in turbu-
lence theory by Richardson in [32]. At small wave numbers we observe the
large structures which arise due to the injection of energy in the �uid: these
vortices progressively break into smaller eddies, thus losing some of their
kinetic energy and transferring it to a smaller scale. This process continues
across the whole inertial range (which, at relatively low Re can be very thin
or completely missing) until the so-called Kolmogorov scale, or viscous scale
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η is reached: at this point, the kinetic energy propagated from the large
scales through the inertial range is �nally dissipated by the intermittent
eddies. Since turbulence is a continuous phenomenon, the smallest active
scales are usually much larger than the smallest possible scale, that is the
molecular one: in order to detect the �ow features associated to anomalous
dissipation, the sampling frequency should be larger than the one delim-
iting the Kolmogorov scale. It is worth to mention that, due to Taylor's
hypothesis, we can observe an analogous behavior in the spectra computed
from time series data.

Time series

Investigation in the time domain, rather than in the frequency domain,
makes the stochastic nature of turbulence more evident and lets us notice
some statistical features of the �ow. Suppose we deal with a single reali-
sation of an Eulerian measurement of the main component of the velocity
vector, that is a univariate time series v(t), sampled at a frequency falling in
the dissipative range in a stationary turbulent �ow. Suppose also that the
time series is long enough to build sequences of increments [v(t+ s)− v(t)]
such that the lag s ranges from the dissipative to the largest scale.

The inspection of the velocity time series will reveal the presence of
clusters of high-frequency activity, which is a �ngerprint of the peaks of
anomalous dissipation, due to the passage of the small eddies. This phe-
nomenon takes the name of intermittency, in reference to the intermittent
activity of the eddies, even though it produces a great variety of e�ects also
from the statistical point of view. First of all, these activity clusters in-
troduce local changes in the variance of v(t), while their irregular nature
makes such changes stochastic: this means that the data generating pro-
cess is modulated by stochastic volatility, which translates in conditional
heteroskedasticity in the sample time series.

Moreover, both the velocity and the increment series at di�erent lags
display long-range dependence, which can be quanti�ed through the Hurst
exponent, often taking values di�erent from H = 1/2, corresponding to the
case of short memory. These two facts suggest that, in order to obtain a
stochastic model for the Eulerian time series, we need to rule out both linear
and Markovian or semi-Markovian processes. In addition, it is observed
that, in the inertial range, the moments of the increments, also referred to
as structure functions in turbulence, display a multifractal and universal
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scaling :
Sn(s) = E{[v(t+ s)− v(t)]n} ∝ |t|ζ(n).

Another evident property of turbulent velocity time series and of their incre-
ments is the non-Gaussianity. The increment process displays asymmetric
distributions with heavy tails, linked to the excess of extreme events due to
the intermittency. Both the skewness and the kurtosis change with the lag,
but the densities tend to converge to Gaussian-like shapes as s→∞.

It is clear, observing this plurality of stylised features, that also the
statistical modeling of the phenomenon, besides the deterministic physical
solution of the problem, can be very challengy.

This empirical features makes clear not only that the deterministic
knowledge about turbulence is strongly limited by the nonlinearity of the
Navier-Stokes equation, but also that even the statistical modeling of the
phenomenon can be extremely challengy.

Kolmogorov theory

The acknowledgment that a statistical approach is essential in the study
of turbulence is largely due to Kolmogorov, who published in [24] his cele-
brated theory based on two similarity hypotheses, often denoted 'K41'. Kol-
mogorov starts from the assumption of local homogeneity and local isotropy
of turbulence, considering a �ow with high Re. Moreover, he obtains an
explicit expression for the average kinetic energy dissipation ε. The main
contribution of that paper is the statement of the two hypotheses of simi-
larity of turbulence:

H1 : for locally isotropic turbulence the distribution function of the veloc-
ity depends only on ε and the kinematic viscosity ν.

H2 : if the velocity �eld is sampled with spatial increments l > η, the
distribution function depends only on ε and not on the viscosity.

Here η is the already mentioned Kolmogorov scale, that is the spatial scale
of the smallest pulsations of the �ow, below which the energy is directly
dissipated by viscosity.

Kolmogorov also predicts a universal scaling relation for the variogram,
i.e. the structure function of order 2, and thus for the spectrum:

S2(l) = C2ε
2
3 l

2
3

E(k) = Cε
2
3k−

5
3 .
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Under the assumptions and the hypotheses considered by Kolmogorov, the
scaling relation for the variogram can be extended to structure functions
of any order, i.e. Sn(l) = Cnε

n
3 l

n
3 . All the constants Cn are universal. In

1962 Kolmogorov publishes a re�ned version of his original theory, denoted
'K62' and presented in [25], to include further results by Obukhov (see
[27]) and to keep into account some observations received by Landau. We
do not discuss the re�nement of K41 here, but it is worth to mention the
new assumption that ln ε ∼ N(µ, σ2), where ε is the instantaneous energy
dissipation.

In observed turbulence, the scaling relations found in K41 are approxi-
matively true in the inertial range, as we can easily observe from data. In
general, it is well known that the predictions of K41 and K62 on the �ow
statistics can never be observed in real data: Gaussian velocity increments,
Markovian evolution of the Lagrangian velocity, universal scaling in spectra
and structure functions, lognormal kinetic energy dissipation cannot cover
the complex variety of features displayed by turbulent velocity time series.
All these aspects show important deviations from Kolmogorov's predictions
in real data and it is widely recognised that intermittency is responsible
for such deviations, so that an actual challenge is to model the intermittent
pulsation of the eddies and the consequent statistical features of the velocity
�eld.

1.2 Data

All the papers contain and are often motivated by real data analysis.
We sketch here the experimental setting and the structure of the resulting
datasets.

The data, provided by the CEA, are realizations of the von Kármán Ex-
periment (VKE), in which a turbulent �ow is produced in a closed cylindric
vessel. The turbulent velocity vector is sampled in time on a plane grid
passing for the vertical axis of the cylindric vessel.

The VKE produces a so-called von Kármán �ow, by means of two
counter-rotating co-axial impellers. This con�guration allows us to reach
very high Reynolds numbers (Re ∼ 106) using a compact experimental
setup. The resulting �ow is stationary in mean, strongly inhomogeneous
and anisotropic. This implies that sampling the velocity �eld in di�erent
points in space results in mean-stationary time series virtually produced in
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di�erent turbulent experiments. The main feature of the von Kármán �ow
is that it develops an equatorial shear layer with local properties similar to
the ones obtained in much larger experiments at high Re designed to study
homogeneous isotropic turbulence.

A schematic view of the instrumentation used to produce the von Kár-
mán �ow is displayed in Fig. 1.7. The dimensions are expressed as a ratio
with respect to the radius of the cylindric vessel containing the �uid, which
has a real dimension R=100 mm. The �ow is produced by two disks, each
one carrying 16 blades; the height of the blades is 20 mm and their curvature
radius is Rc = 46.25 mm.

Figure 1.7: Schematic view of the VKE, Fig. from [16].

The disks are put in motion by two impellers, rotating at typical frequen-
cies around 10 Hz. The frequencies of the two impellers, f1 and f2, can be
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equal or di�erent, producing slightly di�erent �ows. The two impellers have
a power of 1.8 kW, thus leading to a maximum torque of 11.5 N·m. Given
the structure of the vessel and the two frequencies, the Reynolds number
of the experiment can be easily controlled, since it can be expressed as

Re =
π(f1 + f2)R

2

ν
.

Since the rotation can be directed forward or backward and the blades are
not straight, two di�erent kinds of �ow can be obtained and are marked by
a (−) or a (+):

(−) the advancing face of the blades is the concave one and the �ow is
called anti-contrary;

(+) the advancing face is the convex one and the �ow is called contrary.

These two con�gurations correspond to di�erent forcing conditions; some
modi�cations can also be induced in the �ow geometrically, by insertion of
an annulus in the equatorial region, thus increasing the magnitude of the
�uctuations.

The �uid used in this experiment is a mixture of water and glycerol in
di�erent concentrations and at temperatures between 15◦C and 35◦C, so
that the viscosity can vary, producing a range of possible Reynolds number
50 ≤ Re ≤ 1.2 · 106.

The problem is axysimmetric and symmetric towards rotations of π
with respect to every radial axis passing for the centre of the vessel (Rπ-
symmetry).

Mean �ow topology and �ow regimes

The topology of the mean �ow is governed by a parameter de�ned by
the forcing condition and called rotation number, expressed as

θ =
f1 − f2
f1 + f2

.

Two cases can be recognised, depending on whether the two frequencies
are equal or not:
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θ = 0 corresponds to an exactly counter-rotating system, characterized by
exact Rπ-symmetry: two toric recirculation cells develop and are sep-
arated by an azimuthal shear layer. In this case the system has a O(2)
symmetry.

θ 6= 0 : the �ow changes breaking the symmetric circulation. When θ = θc,
where θc is a critical value of the parameter depending on the forcing
and on the geometry of the experiment, a single cell forms in the
vessel. When θ 6= 0 the system has a SO(2) symmetry.

A synthetic view of the two con�gurations is shown in �g. 1.8:

Figure 1.8: Mean �ow topology for θ = 0 and θ 6= 0, Fig. from [16].
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Depending on the chosen values for the experimental parameters, a wide
range of Re can be investigated, as shown in Table 1.1.

C µ at 15◦C µ at 30◦C ρ Re range
99% 1700 580 1260 50 - 2 000
93% 590 210 1240 130 - 5 600
85% 140 60 1220 550 - 19 000
81% 90 41 1210 840 - 28 000
74% 43 20 1190 1 800 - 56 000
0% 1.1 0.8 1000 570 000 - 1 200 000

Table 1.1: Dynamic viscosity µ (10−3 Pa·s) at various temperatures, density
ρ (kg·m−3) at 20◦C and achievable Reynolds number range for various mass
concentrations C of glycerol in water.

Di�erent ranges of Re correspond to di�erent �ow regimes, which we
report here from [30]. Since some of the regimes lead to the development
of waves, we need to introduce the wavenumber m:

Reynolds number wave number and �ow regime
Re < 175 m = 0, axisymmetric, Rπ-symmetric steady basic �ow

175 < Re < 330 m = 2, discretely Rπ-symmetric steady �ow
330 < Re < 389 m = 2, non Rπ-symmetric, equatorial-parity-broken traveling waves
389 < Re < 400 modulated traveling waves
400 < Re < 408 chaotic modulated traveling waves

408 < Re . 1000 chaotic �ow
1000 < Re . 3300 transition to turbulence

3300 < Re . 104 inertially-driven fully turbulent �ow
Re & 104 multivalued inertial turbulence regimes

Table 1.2: Main �ow regimes and corresponding intervals of the Reynolds
number.

In our analysis we shall consider only datasets produced by fully turbu-
lent �ows with Re & 104.
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Acquisition of the velocity data

Data about the evolution in time of the velocity �eld are obtained
through two di�erent techniques: Stereoscopic Particle Image Velocime-
try (SPIV) and Laser Doppler Velocimetry (LDV). Both of them measure
the velocity vector on a plane grid, so that for each point of the grid a time
series is obtained. In the following, a summary of the two methodologies is
proposed.

SPIV. The radial, axial and azimuthal components of the velocity are
measured on a 95 × 66 points grid covering a whole meridian plane. The
spatial resolution of this grid is ∆x = 2.08 mm. The sampling frequency
is 1 ≤ fs ≤ 15 Hz, thus falling in the inertial range, and the total length
of the time series goes from 400 to 27000 records. The �eld is made non-
dimensional by scaling it on a typical velocity:

v0 =
2πR(f1 + f2)

2

and then windowed in order to remove the spurious velocities on the blades
and the boundaries; at this point the resulting grid is made of 58 × 58
points. Finally, two �lters are applied: a global one, in order to remove all
the velocities v > 3v0 and a local nearest-neighbour one to remove spurious
vectors. In this way about the 1% of the time series is lost.

LDV. Measurements of the velocity �eld are obtained through a He-Ne
Flowlite Laser with λ = 632.8 nm. Either the axial or the azimuthal com-
ponent of the velocity is directly measured; the radial component is recov-
ered using ∇·v = 0, which is legitimate by the fact that the time-averaged
�eld is axisymmetric and solenoidal. The resulting data consist of the time
evolution of the velocity �eld on a 11×17 points grid, with an average data
rate of 1 kHz, providing information about the small, dissipative scales. On
the other hand, the capability of the LDV device to perform a measure of
the velocity depends on the presence of passive tracers (i.e. particles with
negligible inertia) in the �uid. More in particular, the instrument can per-
form a measurement when a particle passes through one of the grid points.
This fact prevents us to control at which times the velocity is recorded, thus
producing irregularly spaced time series.
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1.3 Conclusions

In the following we summarise the content and the main contributions
of each paper that constitutes this thesis.

Part I

Paper A addresses the problem of de�ning e�ective early warning in-
dicators for critical transitions. In the VKE framework, such indicators
reveal the relation between the experimental parameters and the nature
of the �ow (laminar, chaotic, stochastic). Our approach assumes a prior
baseline time series model for the considered observable far from the transi-
tion. In particular, we assume that, in the baseline or equilibrium state, the
continuous-time dynamics of the system can be described by an Ornstein-
Uhlenbeck (OU) process. The OU dynamics is Markovian in time and its
sample version is an AR(1) process. We also assume that there exists a
parameter of the experiment, λ, controlling the proximity of the system to
the transition, which happens at a critical value λ = λc.

A set of time series of the observable, sampled in di�erent experimental
conditions (i.e. at di�erent values of λ), is analysed by �tting the most
appropriate linear ARMA(p,q) model to each time series. The model selec-
tion is performed using the Bayesian Information Criterion (BIC). Once the
models are estimated, we quantify how �distant� each time series is from the
baseline model. To this purpose we de�ne two measures of divergence: the
total order of the model O = (p + q) and the total persistence R, given as
the sum of the absolute values of all the autoregressive and moving-average
parameters.

We validate our method considering two toy models and we apply it
to two real-world cases. The �rst toy model is a classical system featuring
bistability under the e�ect of random noise: its trajectory is obtained by
simulating an OU process with a biquadratic drift term. As a second test
case, we choose a classical 2D Ising model with a nearest-neighbor inter-
action on a square lattice. In the �rst case, the Markovian dynamics is
preserved also when approaching the critical transition, while the total per-
sistence steadily increases approaching R = 1, which is the upper boundary
of the admissible values for the parameter of a stationary AR(1) process.
On the other hand, the analysis of the Ising dynamics shows a steep increase
of both indicators near the transition.
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After preliminary testing, we apply the indicators to two real systems.
The �rst one is the von Kárm« Sodium Experiment (VKS), i.e. the same
con�guration of the VKE, but featuring a magnetised �uid instead of water:
it is possible to �nd a value (here known a priori) of the control parameter
such that a dynamo e�ect is observed. This phenomenon a�ects the time
series of the modulus of the magnetic �eld, which is chosen as the observable
of interest. The transition clearly emerges from our analysis, around the
expected value of the control parameter, with a steep divergence of both
the indicators from the baseline value. On the contrary, the analysis of an
analogous experiment in which the dynamo could not be produced, results
in a complete absence of any indication of critical transition. In the second
case, we consider the log returns of the EUR/USD exchange rate hourly
datasets. This choice is motivated by the fact that �nancial and turbulent
time series show very similar features: we investigate if the aforementioned
indicators can produce a warning for future �nancial crises of endogenous
origin. Both the indicators, but in particularO, show three sudden increases
which are followed, after a few months delay, by o�cial warnings from the
European Central Bank.

In Paper B we exploit the approach described above to obtain a detailed
characterisation of the turbulence in the SPIV data of the VKE. We assume
a linear OU equation as a reference model for the evolution of a component
of the turbulent velocity vector. This hypothesis is consistent with the
classical probabilistic theory of turbulence. We interpret the deviations
from this model as an e�ect of the intermittency, a crucial and still not
completely understood phenomenon, which arises when the turbulence is
well developed. In order to measure the deviation from the baseline model,
we introduce a new index Υ, constructed as a normalized distance between
the Bayesian Information Criterion (BIC) of the best ARMA(p,q) describing
each time series and the BIC for the AR(1) model.

After a brief review of the basics of ARMA time series modeling and
an introduction about the experimental setup and the sampling techniques,
we show that the index Υ catches many features of the turbulent �eld. We
also show that these results are stable with respect to phase randomization,
which means that the information we obtain about intermittency through
this index comes from amplitude intermittency, rather than from phase in-
termittency. Since high values of Υ correspond to higher-order models for
the time series (i.e. ARMA(p, q) with p > 1, q > 0), we argue that the de-
viations from the reference model may be explained by anomalous memory
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in the stochastic process. In view of this, we compare the performance of
Υ and of the Hurst exponent H in recovering the �ow structure. The re-
sults indicate the presence of a long memory component in the most active
turbulent regions, corresponding to high values of Υ, and no memory or
anti-persistence in the areas associated with low values of the index, with
strong gradients in highly inhomogeneous regions. We conclude that some
salient features of the analysis are preserved when considering global be-
sides local observables. Finally, we analyse �ow con�gurations displaying
multistability and we �nd that the technique is e�cient in discriminating
di�erent stability branches of the system.

Paper C contains a brief but focused discussion about the index Υ,
compared to a more traditional index of intermittency, computed from the
structure functions. In particular, we show that the two indices are pro-
portional, thus providing the same information about the turbulence. On
the other hand, Υ ranges over a wider interval of values and can be eas-
ily computed also from relatively short time series, while the higher-order
structure functions require very large samples to be estimated. Of particu-
lar interest is the capability of our index, unexpected a priori, to catch the
wandering shear layer in the bistable realization of the VKE considered for
the application.

In Paper D we jointly exploit the good performance of the index Υ,
introduced in Paper B, and the capability of the early warning indicators,
introduced in Paper A, to anticipate critical �nancial events. We consider
the daily changes in three �nancial indices, i.e. the Dow Jones, the Standard
and Poor's and the EURO STOXX 50.

The best model for the whole time series, selected with the BIC, is an
AR(1) for all the three indices. We then divide the time series in windows
of 60 days and we show that also the large majority of these subsamples
can be modeled by a stationary AR(1) process. We compute Υ for each
window and we choose Υ = 0.3 as a critical value of the index: we �nd
that such high values appear to anticipate �nancial crises of endogenous
origin. This is possibly attributed to the fact that time series of turbulent
observables and of �nancial indices sampled in �turbulent� markets share
many stylised facts, such as long memory, distribution of the increments
changing with the lag and stochastic volatility. In turbulence, all these
features are deviations from the classical theory and are tipically linked to
the e�ect of intermittency, which is caught by the index Υ, as discussed in
Papers B,C.
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Part II

In Paper E we consider the LDV dataset from the VKE: in this case
we only have j = 1, 2, · · · , 18 points in space, but the time series are much
longer, due to a high sampling frequency, which enables us to describe the
small-scale behavior of turbulence. While it can guarantee a high aver-
age sampling frequency, the device can measure the turbulent velocity only
when one of the particles released in the �uid passes through one of the
measuring points: this makes the time step irregular. In order to overcome
this problem, we consider the sequence of sampling times, also recorded by
the device, and investigate if this can be used as a turbulent observable.
In particular, the natural logarithm of the increments of the process at lag
k = 1, 2, · · · , K, denoted τ kj , can be interpreted as log-waiting times for
the next k particles to be detected by the device. We consider this vari-
able, in analogy with the more classical logarithm of the turbulent velocity
increments.

As a �rst step, we consider the Hurst exponent and the tail heaviness
of the distribution of the increments at all k. The former highlights the
long memory of the increments at all lags, with di�erent values at di�erent
lags and a peculiar behavior in each time series. Its variability among the
samples shows a minimum around k = 800. The latter is quanti�ed �tting a
stretched exponential relation both to the left and right tails and computing
the nonlinear least squares estimate of the stretching exponent. In contrast
with the classical �ndings for the velocity increments, the tail heaviness
decays with the lag starting from a near-Gaussian value and evolving into
light tails.

The main part of the paper provides a parsimonious and universal de-
scription of the waiting times. By universal we mean that we can observe a
collapse of the density of the increments at di�erent lags of series sampled
at di�erent points in space on the same law. The parsimonious description
is given by the NIG distribution, a four-parameter probability density func-
tion admitting asymmetry, non-Gaussian kurtosis and non-Gaussian tails.
We show that the NIG distribution �ts well τ kj for every j, k. We then high-
light the self-organising nature of this observable de�ning a change-of-lag
through the second and fourth order cumulants, showing that it is possible
to observe a collapse of the densities on the same law.

Paper F completes the statistical analysis of the turbulence in the VKE
considering a global observable. In particular, we compute the turbulence
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intensity over small, constant time intervals. This observable quanti�es the
instantaneous energy budget of the system and it is positive de�nite by
construction. These properties make the turbulence intensity suitable for
ambit stochastics modeling. In this framework, we assume a multiplica-
tive cascade process underlying the injection of energy across time scales.
Then, we describe the continuous-time dynamics as the exponential of the
stochastic integral of a Lévy basis, computed on the so-called ambit set.
This model is completely speci�ed once the ambit set and the Lévy basis
are known.

The probability density function of the Lévy basis is the same as the
marginal distribution of the observable, with their moments linked through
the Lebesgue measure of the ambit set. We �nd that the marginal dis-
tribution of the time series is well described by the NIG law, as already
known for the kinetic energy dissipation rate. The shape of the boundary
of the ambit set is recovered from the time scaling of two-point correlators,
a correlation measure introduced for multiplicative processes. Its volume
gives us the relationship between the moments of the Lévy basis and the
moments of the observed process. We �nd that the boundary of the ambit
set can be described by a simple polynomial equation. We also verify the
existence of a clear self-scaling property of the two-point correlators, which
is a �ngerprint of an underlying multiplicative cascade process. Finally,
we compare the empirical and the theoretical three-point correlators, as a
more stringent indication of the cascade-like nature of the energy dynamics,
observing a good matching.

Summary and main contributions

In the following we summarise the main contributions contained in each
part.

Part I

I. We introduce and validate two new early warning indicators (O,R)
of critical transition. These indicators are based on linear time series
analysis and appear to be e�ective for systems experiencing transi-
tions between two states, at least when the fundamental state can be
assumed to be the realisation of a linear Markovian stochastic process
(Paper A).
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II. We introduce a new intermittency index Υ, based on the Bayesian In-
formation Criterion, and we employ it to characterise the turbulence
in the VKE. We show that this index captures amplitude intermit-
tency and we also show that its value is linked to a slow decay of the
ACF of the time series, measured through the Hurst exponent. More-
over, we prove its e�ectiveness with respect to a traditional, physics-
based index, overcoming the problem of computing the structure func-
tions from short time series (Paper B, C).

III. We apply Υ to the early detection of critical �nancial events, �nding
that high values of the index appear before or at most together with
�nancial crises of endogenous origin (Paper D).

Part II

I. We solve the issue of the irregular sampling of the velocity �eld by in-
troducing a new local observable, the log-waiting times for the arrival
of tracer particles at the detection point of the LDV instrument. We
prove that this novel observable shares many stylised features with
turbulent velocity and that it admits a parsimonious and universal
description through the Normal Inverse Gaussian distribution and
the de�nition of a Stochastic Equivalence Class. The main discrep-
ancy with the expected behavior lays in the light-tailed distribution
of the increments, which may be justi�ed through physical arguments
(Paper E)

II. We characterise the energy budget dynamics of the VKE through the
realised volatility of the velocity �eld, which can be physically inter-
preted as the instantaneous kinetic energy of the �ow. We model this
observable by means of a multiplicative cascade process. We show
that �tting Normal Inverse Gaussian to the marginal distribution of
the observable and modeling the time-scaling of the two-point corre-
lators is su�cient to specify the model, so that the process can be
written as the exponential of a stochastic integral. We validate our
model through the self-scaling of two-point correlators and the predic-
tion of three-point correlators, �nding a very good agreement between
model and observations (Paper F).





Chapter 2

Part I

2.1 Overview on Part I

This �rst part of the thesis is focused on the statistical detection of crit-
ical transitions and of intermittency in turbulence. The work has involved
a collaboration with the research group in Physics of the Condensed Matter
at the CEA in Paris. In particular, the motivation for this part arises from
the issue of de�ning a statistical index, based on linear time series analysis,
able to detect the critical transition from laminar to turbulent �ow in the
VKE. We then extend our investigation to other systems and exploit our
�ndings to extract information from datasets concerning turbulent �ows.

In the following, we brie�y describe the underlying framework. We
consider dynamical systems that can experience a critical transition (or
phase transition) from one state to another. The state of the system is
controlled by a - possibly unobservable - parameter λ and the transition
happens when the parameter reaches a critical value λc. We argue that the
stochastic process that approximates a time series sampled in the considered
system should be di�erent as long as the system is in di�erent states.

In many cases of two-state systems, one can be thought of as the basic
state, the other as the complex state: the stochastic behavior in turbulence,
opposed to the deterministic one in laminar �ows, is an example of this fact,
where the control parameter is the Reynolds number. We start considering
cases in which we may assume a linear and Markovian evolution in time for
the system in the basic state. We can think of such systems as realisations
of an Ornstein-Uhlenbeck process, which in its discrete time version is an

33
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AR(1) process.
Concerning the sampling of the system, we discriminate two cases. In

the �rst case, the system is sampled in di�erent experiments, each of them
corresponding to a �xed value of λ: we then have a time series for each
experiment. Otherwise, the parameter changes in time during the sampling,
thus generating a single time series. Notice that the non-constant value of
the control parameter does not imply any kind of non-stationarity in the
time series, at least a priori. In the �rst case we can analyse each time
series separately, while in the second we may need to isolate portions of the
time series and analyse them sequentially with a moving window method.
In the following, we summarise the procedure and the results contained in
this part.

Detection of critical transitions

We implicitly assume an AR(1) model as our reference for systems in
their basic states. We expect that, when nonlinear e�ects become domi-
nant and the system experiences a transition, its more complex dynamics
will be better captured by more complicated processes, for example higher
order ARMA(p,q) models, selected with the Bayesian Information Criterion
(BIC). We construct two indices to summarise the features of the chosen
ARMA(p,q) model with parameters (~φ, ~θ):

O = p+ q;

R =

p∑

i=1

|φi|+
q∑

j=1

|θj|.

While doing this, we do not imply that such model is well speci�ed: on the
contrary, we expect that any simple linear model will be a misspeci�cation
for the real underlying process, thus requiring an overparameterisation and
then higher order models.

We test our method on two toy models: a bistable system and an Ising
model. The former is generated by an equation analogous to the Ornstein-
Uhlenbeck process, but featuring a biquadratic drift term, representing a
double-well potential. Here, the dynamics is forced to be stationary and
Markovian even after the transition: in this case we observe that, while the
selected process is always an AR(1), the autoregressive parameter steadily
grows to its limit value |φ| = 1, above which stationarity is not preserved.
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In the Ising model, on the contrary, we observe a steep increase in the value
of both indices corresponding to the transition as soon as λ ≥ λc.

We then apply our method to two real systems. The �rst is a variation
of the VKE, the von Kármán Sodium Experiment (VKS), in which the
vessel contains liquid sodium: when the forcing condition is strong enough,
a dynamo develops in the �uid, causing strong changes in the modulus of the
magnetic �eld, which is chosen as observable of this system. In the second
case, we consider the log returns of the EUR/USD exchange rate hourly
datasets. In this analysis, our indices appear e�ective in recovering the
dynamo e�ect and in anticipating critical events in the �nancial markets.

Assessing intermittency

In view of the results described above, we argue that, in case of turbu-
lent systems, strong deviations from the baseline Markovian linear model
may be due to intermittency, like many other well known discrepancies
between observations and the Kolmogorov theory of turbulence, above all
non-Gaussianity. In this sense, we expect that our method should at least
highlight the �uid areas with highly intermittent activity, where steady
large-scale vortices form and can break into smaller ones, feeding the en-
ergy cascade. We then focus on the SPIV datasets from the VKE at high
Re, in which the velocity �eld is sampled on a re�ned grid, with time-steps
falling in the inertial range. In this way, we have an instantaneous picture
of the �eld, or at least one of its plane sections, and also its evolution in
time.

Here, we decide to explicitly use the model misspeci�cation to de�ne a
new index Υ. Since we assume an AR(1) as the baseline model, we construct
the index as a normalised di�erence between the BIC corresponding to the
AR(1) and the BIC corresponding to the selected ARMA(p,q) model

Υ = 1− exp{|BIC(p+ 1, q)− BIC(p, q)|}/n,

where ARMA(p, q) is the reference model and n is the sample size. The
larger this discrepancy, the farther the system is expected to be from the
baseline state. The new index proves to be e�ective in recovering the �ow
structure, highlighting �uid areas characterised by strong activity.

Moreover, since from our �rst results we deduced that deviations from
the baseline model may be due to an increase of the persistence of the
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process, i.e. a slow decay of the autocorrelation function, we investigate if
long-range dependence is present in the time series and if so, what informa-
tion can provide about the �ow. Long-range dependence is associated to
fractional integration in the time series, while in continuous time we may
think, for example, of an Ornstein-Uhlenbeck-like process, but innovated
by a fractional Gaussian noise instead of a standard Wiener process. We
compute the Hurst exponent for every time series, �nding that in the most
intermittent areas it assumes values compatible with long memory, while
in areas without eddies its value is around H = 1/2 (short memory) or
smaller (anti-persistence). Its value appears well correlated to the value
of Υ, so that also the Hurst exponent appears e�ective in recovering the
�ow structure. Finally, following the suggestion of a referee, we also inves-
tigate if these �ndings are stable with respect to phase randomisation: the
phase-randomised time series produce very similar results, leading to the
idea that the index Υ captures e�ects due to amplitude rather than phase
intermittency.

The main asset of the aforementioned method is that the e�ects of inter-
mittency often requires long, high-frequency time series for the computation
of the structure functions of order n > 2. On the other hand, our index
proved to be e�ective in recovering intermittent activity from the SPIV
dataset, composed of time series of length N ∼ 5 · 103. In order to check
whether the features captured by Υ are due to intermittency or to other
phenomena, we investigate if the index can be used to obtain the intermit-
tency correction to the Kolmogorov theory. In order to do this, we compare
Υ with an intermittency index µ computed following the ESS (Extended
Self Similarity) method introduced in [34]. Since the computation of such
index requires the structure functions, it can only be used if the samples are
large enough, while Υ proved to be e�ective also on the short SPIV time
series: we now use the much longer LDV series and compare the results.
The intermittency index is obtained as follows. First, we estimate the rel-
ative scaling exponents ζ∗p from Gp(τ) ∼ 〈|δuτ |3〉ζ∗p ; then, we compute the
index as µ = ζ∗2 − 2

3
ζ∗3 . Here τ is a time increment, Gp(τ) is the structure

function of order p and δuτ = ut+τ − ut, for coherence with the notation
in the paper. We �nd that the two indices are well correlated, while Υ
ranges over a wider interval of values, making it easily interpretable. We
also consider a SPIV dataset sampled in a VKE con�guration producing a
wandering shear layer, meaning that the most intermittent part of the �ow
has two possible stable positions and switches continuously between them.
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We can see, from the graphical inspection of the spatial distribution of Υ
(Fig. 4 in [19]), the two positions captured by the index, despite the short
available time series, as a further proof of its capability to detect turbulent
activity.

Beyond turbulence

Considering the results obtained so far, we go beyond turbulence and we
analyse �nancial time series, still through our index Υ. This is motivated
by two reasons. First, the initially introduced indices O,R proved to be
e�ective in discriminating portions of �nancial time series preceding o�cial
warnings in crisis events. Moreover, as pointed out, for example, in [7],
turbulent and �nancial time series share some stylised features, possibly
due to intermittency.

Here we sketch our method. We consider the daily returns of three
stock indices over a period of at least 20 years. The idea is that, when the
�nancial system is approaching a crisis or a critical event (of endogenous
origin), the behavior of the market changes, together with the dynamics
of the time series. Since for each index we only have one time series, and
the control parameter λ is, in this case, unobservable, we need to apply a
moving window method. We choose a window of 60 days, after verifying
that our �ndings are stable for windows between 40 and 80 days.

Since each window is quite short, we expect that, even though �nancial
time series usually display complex features, a linear Markovian model may
still be appropriate, at least for sub-periods of non-critical activity. On
the other hand, departures from the simple reference model on such short
sub-samples may be indication of strong intermittency-like e�ects. Here
we do not assume a markovian model a priori, but we perform a BIC-
based model selection on each subsample, �nding that an AR(1) is the
most appropriate model at least for the 75% of the subsamples of each
index. From this, we decide to assume such model as a baseline, and we
compute the intermittency index for each sub-series. We choose Υ = 0.3
as threshold value: this choice is made after observation of the empirical
density of the values of the index. The high values appear to precede or at
most to coincide with �nancial crises of economic origin.

We leave for future work the problem of de�ning an analogous quantity
for which the asymptotic distribution can be known.
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Paper A
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Davide Faranda, Bérengère Dubrulle∗

Laboratoire SPHYNX, Service de Physique de l’Etat Condensé, DSM,
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We address the problem of defining early warning indicators of critical transition. To this purpose,
we fit the relevant time series through a class of linear models, known as Auto-Regressive Moving-
Average (ARMA(p, q)) models. We define two indicators representing the total order and the total
persistence of the process, linked, respectively, to the shape and to the characteristic decay time of
the autocorrelation function of the process. We successfully test the method to detect transitions
in a Langevin model and a 2D Ising model with nearest-neighbour interaction. We then apply the
method to complex systems, namely for dynamo thresholds and financial crisis detection.

Many experimental or natural systems undergo critical
transitions - sudden shifts from one to another dynamical
regime. In some instances, e.g. global changes in climate
science, species extinction in ecology, spin glasses, it is
of crucial importance to build early warning indicators,
i.e. estimates of the transition threshold based on finite
time-series corresponding to situations where the bifurca-
tion did not happen yet. The statistical approach to this
issue traditionally involves so-called indicators of critical-
ity [1, 2]. They are based on specific properties of ideal
statistical systems (such as the Langevin or Ising model)
near the transition: critical slowing down, modifications
of the auto-correlation function or of the fluctuations [3],
increase of variance and skewness [4], diverging suscepti-
bility [5–7], diverging correlation length. However, it is
known that, in some complex systems, these indicators
fail to detect the transition: in spin glasses, no diverging
correlation length has been found so far, and one has to
resort to finer statistical tools (such as four point dynami-
cal susceptibility [8, 9]) to detect transitions. In addition,
traditional early warning indicators may be inapplicable
in datasets containing a small number of observations
(see e.g. [10, 11]), which is usually the case in several ap-
plications where the experiment is unique (as in financial
or climate time series), difficult to repeat or to sample
for a long time (as for atmospheric measurements, lab-
oratory turbulence, etc). This suggests that indicators
based on single statistical properties may not be sufficient
for detecting transitions in complex systems, so that one
should rather consider all the information contained in
the finite-time series.

The main idea of the present letter is therefore to
introduce a class of indicators of critical transitions
based on a statistical model for the observed data when
approaching a tipping point. To be interesting for appli-
cations, these indicators must satisfy certain properties:
i) they must generalize the well-know indicators based
on single statistical properties and ii) they must be built

using a statistical model that is simple to implement
and works for limited data set. Here, we show that
these properties are satisfied for indicators based on the
auto-regressive moving-average processes of order p, q
ARMA(p, q), modeling a time series Xt(λ), experiencing
a transition at λ = λc. In the first part of the paper,
we first recall some basics on ARMA(p, q) modeling
and define corresponding early-warning indicators. We
then check that these indicators are able to detect the
transition in simple theoretical models, such as Langevin
double-well model or Ising model. We then apply our
indicators to the analysis of complex systems for the
detection of turbulent dynamo thresholds and financial
crisis.

Theory. Let us consider a series of observations Xt

of an observable with unknown underlying dynamics,
controlled by a parameter λ. We further assume that
for λ < λc the time series Xt(λ) represents a station-
ary phenomenon. The critical threshold λc is defined
through the condition that for λ ≥ λc, there is a bifur-
cation, in the sense that there exists no smooth transfor-
mation of the physical measure through the transition.
Since Xt(λ) is stationary, we may then model it by an
ARMA(p(λ), q(λ)) process such that for all t:

Xt(λ) =

p∑

i=1

φi(λ)Xt−i + εt +

q∑

j=1

θj(λ)εt−j (1)

with εt ∼WN(0, σ2) - where WN stands for white noise
- and the polynomials φ(z) = 1 − φ1zt−1 − · · · − φpzt−p
and θ(z) = 1 − θ1zt−1 − · · · − θqzt−q, with z ∈ C, have
no common factors. Notice that, hereinafter, the noise
term εt will be assumed to be a white noise, which is a
very general condition [12]. For a general stationary time
series, this model is not unique. However there are sev-
eral standard procedures for selecting the model which
fits at best the data. The one we exploit in this paper
is the Box-Jenkis procedure [13]. We chose the lowest
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p and q such that the residuals of the series filtered by
the process ARMA(p, q) are delta correlated. This fixes
p and q, and thus our statistical model. There are other
model selection procedures based on information criteria
(Bayesan or Akaike information criteria). Unfortunately,
in our case none of them gives clear indications for dis-
criminating the model to be used as it is not clear which
range p and q must be tested to get reliable results. Intu-
itively, p and q are related to memory lag of the process,
while the coefficients φi(λ) and θi(λ) represent the per-
sistence: the higher their sum (in absolute value), the
slower the system is forgetting its past history. In the
sequel, we now present early warning indicators based on
these parameters.

Early-warning indicators. Far from the transition,
the time series of a generic physical observable can be de-
scribed by an ARMA(p, q) model with a reasonably low
number of p, q parameters and coefficients. On the other
hand, for λ → λc, the critical value corresponding to
a transition, the statistical properties (such as the shape
and/or the persistence of the autocorrelation function) of
the system change, leading to different characteristics of
the ARMA(p, q) model which can describe the data series
or to an inadequacy of the model itself. Specifically, sev-
eral changes in the dynamics occur near the transition,
as the system is allowed to explore a larger portion of
the phase space with higher excursions in the direction
of the new stable state. First, the distributions of the
observables become skewed towards the maxima or the
minima, depending on the direction of the shift. Second,
the system may experience a critical slowing down with
diverging memory effects. This phenomenon is tradition-
ally quantified by the autocorrelation function (ACF) of
the time series Xt defined (assuming a zero-mean pro-
cess) as:

ACF(h) = E[Xt+hXt]/E[X2
t ]. (2)

Far from the transition, the ACF tends to be 0 after
a finite number of lags h̄. As λ → λc, critical in-
crease of memory of the system makes h̄ → ∞. The
ARMA(p(λ), q((λ)) model of the corresponding time se-
ries will then be characterized by two properties:

• ∑p
i=1 |φi| and

∑1
j=1 |θj | increase for λ→ λc as the

direct consequence of h̄→∞.

• p + q increases for λ → λc because of additional
new time scales associated to the trajectories mov-
ing towards the potential barrier between the two
attracting states.

This rather simple observation allows us to define two
indicators: O(λ) = p(λ) + q(λ), which diverges for λ →
λc, and the total persistence of the process:

R(λ) =

p∑

i=1

|φi(λ)|+
q∑

i=1

|θi(λ)|

which also show a divergent behavior at the transition,
unless O(λ) = 1. In this latter case R(λ) = φ1 → 1
for λ → λc. These indicators present several advan-
tages with respect to the traditional ones reported, for
example, in [1]. First, by computing the functional
form for p(λ) and q(λ) and for the coefficients φi(λ)
and θi(λ) one has also an effective statistical toy model
for describing the phenomenon and to produce data
with analogous statistical properties. This may be
very useful for series or data which can hardly be
reproduced (laboratory experiments) or integrated by
new observations (climate datasets, stock market titles).
Second, if several series at different λ’s are available, one
can extrapolate the characteristics of the process at not
yet measured λ’s. This property can be very useful for
devising new experiments knowing the possible location
of the transitions. Third, if the transition is marked by
the fact that R(λ) → O(λ) rather than by a divergence
of O(λ), one may argue that the potential landscape
for the observable X does not change significantly when
approaching the transition and therefore a Langevin
reduction to a double well system is possible. If, on the
contrary, the order changes significantly approaching the
transition, such a low dimensional reduction is not ap-
propriate and one should be very careful in pursuing such
a model as shown, for a relevant climatic example, in [14].

A toy model for critical transitions. We start consid-
ering a classical system featuring bistability under the
effect of random noise, i.e.

dX = −V ′(X)dt+ εdW (3)

with potential V (X) = aX4−bX2+λX, where λ ≥ 0 and
W is a Wiener process with unit variance. We consider
system (3) for values of λ such that, in the determinis-
tic limit, it features two stable fixed points (X̄1 < 0 and
X̄2 > 0) and an unstable fixed point X̃. The asymptotic
behavior of the system can be assessed in terms of the
solution of a Fokker-Plank equation [15]. Here we are
rather interested in the finite-time behavior and we con-
sider only the simulations such that the noise does not
push the system across the bifurcation, i.e. the system is
confined in one of the two wells. For this system we per-
form the following numerical experiments: for each value
of λ we compute an ensemble of 500 trajectories X(λ)
finding, for each of them, the best ARMA(p(λ), q(λ)) in
the sense specified by the Box-Jenkins procedure [13].
Then, 〈O(λ)〉 and 〈R(λ)〉 have been computed, here 〈·〉
stands for the ensemble average.
In Fig. 1-a we report the results of this analysis, which
clearly show that the average order is not affected in
this case and 〈O(λ)〉 ' 1, whereas the transition is well
highlighted by 〈R(λ)〉 which approaches 〈O(λ)〉 = 1 for
λ → λc . There is a simple way to understand this be-
havior by linking the orders p, q and of the coefficients φi
to the autocorrelation function ACF (see [12]- Chapter
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FIG. 1: (a):〈O〉 and 〈R〉 for the system defined in Eq. 3.
Each error-bar represents the average of 15 realizations and
the standard deviation of the mean. b) ACF for (λ−λc)/λc =
−0.271. c) ACF for (λ− λc)/λc = −0.05 .

3 for more details). The orders are linked to the func-
tional form of the ACF whereas the values of φi depend
on the decay rate. In the case of system given by Eq. 3,
the shape of the ACF is exponential both far from the
transition (Fig 1-b) and when approaching it (Fig 1-c).
However, in the latter case, the decay is much slower,
this causing the increase R(λ)→ 1.

The Ising model. As a second test of the indicator, we
consider a classical 2-D Ising dynamics with a nearest-
neighbor interaction on a square lattice of size L. At
each site j, a discrete spin is allowed to have two values
σj ∈ {+1,−1}. The energy of the configuration is given
by the Hamiltonian:

H = −J
∑

neighbors

σiσj (4)

under the interaction J . We consider only the case J = 1
and evolve the system by using Metropolis algorithm [16].
A second order phase transition is expected at the tem-
perature T = Tc = 2/ ln(1 +

√
2) ' 2.269. To apply our

early warning indicators, we performed 100 simulations
for a square lattice of size L = 256 at different T > Tc.
We checked that our results do not depend sensitively
on the size of the lattice, provided that L > 128. Af-
ter discarding 100000 time iterations necessary to reach
a clearly identifiable stationary state, for each tempera-
ture, an ensemble of 15 time series consisting of 200000
time units of H(t, T ) is analyzed with the procedure de-
scribed above. Stationarity has been tested performing
a Dickey-Fuller test on each time series. The results for
〈O〉 and 〈R〉 are reported in Fig. 2. It is evident that
〈O〉 and 〈R〉 increase when moving towards the critical
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FIG. 2: 〈O〉 and 〈R〉 for the system defined in Eq. 4, L=256.
Each error-bar represents the average of 15 realizations and
the standard deviation of the mean.

temperature Tc. In this case, not only the persistence of
the correlations R, but also the number of terms O nec-
essary to describe the process increases. This means that
the transition cannot be modeled by a simple Langevin
equation as other time scales become important. In other
words, this transition is associated to a non-trivial un-
known potential landscape.

An example of complex system. Up to now we have
analyzed toy systems, extensively studied both analyt-
ically and numerically and for which the threshold are
analitically predictable. However, interesting systems,
such as turbulence or finance, lie on another level of com-
plexity and one naturally wonders whether the technique
provides reliable results. We focus on the data of the Von
Kármán Sodium (VKS) experiment, a successful attempt
to get a transition to dynamo in a laboratory turbulent
liquid-metal experiment. The control parameter for the
transition is the magnetic Reynolds number Rm. The
interesting characteristic of this experiment is that sev-
eral dynamo and no dynamo configurations have been
obtained by changing the material of the impellers and
of the cylinder [7, 17]. Here we focus on two different
configurations: (i) one producing a well-documented sta-
tionary dynamo at Rm ≈ 44, thereby providing a fair
test of our method and (ii) one that failed to produce
the dynamo within the accessible values of Rm. The time
series is constructed using the modulus of the magnetic
field |B|(t) as a function of time t, measured within six
detectors in the core of the vessel. From this, we extract
the quantities O and R, averaged over the six detectors.
The results are plotted in Fig. 3: the main figure for
the configuration (i), the inset for the configuration (ii).
They depend quantitatively on the sensors chosen, but
not qualitatively as the transition is always detected at
the same Rm. The transition is very net in terms of di-
vergence of O and R and can be located at Rmf = 47,
when the dynamo is observed. In the non-dynamo case,
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FIG. 3: Averaged O and R for the Von Karman - Sodium
experiment. Solid lines refer to the experiments for increas-
ing values of Rm. Inset: same as the main figure but for a
configuration where the dynamo has not been observed.

no sign of transition is visible.

Financial crisis. We conclude by discussing the per-
formances of the ARMA early warning indicators applied
to the EUR/USD exchange rate hourly datasets (Figure
4-b). The chosen observable is the log-return of the time
series, a quantity commonly examined in finance as the
series obtained this way do not contain non-stationarities:

R(t) = log(Xt)− log(Xt−1).

Here Xt is the EUR/USD exchange hourly rate. Monthly
values for O and R have been extracted from the time se-
ries of R(t) and results are shown in figure 4-a. Our anal-
ysis can be safely performed on these series since they are
stationary, as it results from the Dickey-Fuller test [18].
The technique clearly points to three distinct warnings
(marked by the red dotted lines). Interestingly, they are
followed after a few months delay, by official warnings
of the European Central Bank (ECB). The first warning
corresponds to the Sub-prime American crisis, the sec-
ond to the Greek crisis, and the third one to the Irish
crisis. The crisis for the real market falls immediately af-
ter the ECB announcements. If we compare these results
with the ones arising from physical systems, the warning
seems to appear too early. We may argue that indicators
which provide similar warnings are available also at the
ECB. The time between the early warning discover and
the ECB announcements may serve to the ECB for trying
corrections and avoid an immediate financial crisis which
is announced only when the crisis itself is unavoidable.
Similar behaviors have been discovered for early warn-
ing indicators applied to financial datasets, as reported
in [19, 20] .

Discussion. In this work we have proposed a new
method to detect early warnings of critical transitions via
a statistical approach which allows also for incorporat-
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FIG. 4: Upper panel: Average O and R for the log-return
series R(t) of the EUR/USD hourly exchange rate. Central
panel: EUR/USD hourly exchange rate. Lower panel: R(t).
Red dotted lines correspond to early warning of the crisis.
Black continuous lines correspond to actions taken by the
ECB.

ing the information of several statistical indicators anal-
ysed in [2]. Here, we exploit the properties of linear (i.e.
stationary and invertible) autoregressive moving-average
processes, denoted ARMA(p(λ), q(λ)), being λ the sys-
tem control parameter. More specifically, we have de-
fined two indicators representing the total order and the
total persistence of the stochastic process. An increase
of the former is indicative of the impossibility to repre-
sent the data series in a parsimonious way, thus leading
to the idea that the linearity hypothesis fails and the de-
cay of the autocorrelation function of the process is no
longer exponential; an increase of the latter is linked to
a longer decay time of the correlation, and can be due
to the increase of the total order or just of the persis-
tence itself. The two phenomena are very different and,
up to our knowledge, the traditional indicators exploit
only the increase of the memory of the system (criti-
cal slowing down) to identify the threshold λc. Here,
the possibility of detecting substantial modifications to
the shape of the autocorrelation function via the change
in the orders p, q, allows for understanding whether re-
ductions to simple low dimensional models are relevant
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or not for describing the dynamics. We have combined
these two indicators to detect critical transitions both in
models and in real systems. In all the cases considered,
the behavior of the indicators has shown to be an effec-
tive way to investigate the proximity of the system to a
critical transition; thus, they seem to be a useful tool to
study critical transitions, since their estimation involves
well-known, standard statistical techniques characterized
by a low computational cost and applicable to relatively
short time series.
The application to finance seems promising. It would be
interesting to extend this approach to other financial in-
dicators as well as to climate data. On a theoretical level,
one could use the technique to understand how transi-
tions are modified when systems originally in equilib-
rium are driven out of equilibrium by forcing-dissipation
mechanisms, starting from conceptual toy model of out-
of-equilibrium Ising dynamics [21, 22].
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We introduce a novel way to extract information from turbulent datasets by applying
an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes
well beyond the analysis of the mean flow and of the fluctuations and links the behavior
of the recorded time series to a discrete version of a stochastic differential equation
which is able to describe the correlation structure in the dataset. We introduce a new
index ϒ that measures the difference between the resulting analysis and the Obukhov
model of turbulence, the simplest stochastic model reproducing both Richardson
law and the Kolmogorov spectrum. We test the method on datasets measured in a
von Kármán swirling flow experiment. We found that the ARMA analysis is well
correlated with spatial structures of the flow, and can discriminate between two
different flows with comparable mean velocities, obtained by changing the forcing.
Moreover, we show that the ϒ is highest in regions where shear layer vortices are
present, thereby establishing a link between deviations from the Kolmogorov model
and coherent structures. These deviations are consistent with the ones observed
by computing the Hurst exponents for the same time series. We show that some
salient features of the analysis are preserved when considering global instead of
local observables. Finally, we analyze flow configurations with multistability features
where the ARMA technique is efficient in discriminating different stability branches
of the system. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896637]

I. INTRODUCTION

For a long time, experimentally testable predictions of turbulence properties have been in-
fluenced by available measurements. For example, hotwire velocity measurements have motivated
statistical analysis of turbulent spectra or velocity increments computation, allowing the evaluation of
Kolomogorov direct or refined similarity hypothesis.1 More recently, new sophisticated instruments
and acquisition techniques, such as the Particle Image Velocimetry (PIV) and the Laser Doppler
velocimetry (LDV), have made possible to measure instantaneous velocity fields with resolution
equivalent to that of Large Eddy Simulations.2–4 With these high quality datasets, it is now possible
to reconstruct the large scale flow dynamics and compute global observables even in relatively
complex geometries such as in the non-homogenous, non-isotropic von Kármán flow.5, 6 As more
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spatial and temporal scales are becoming accessible to measurements, it is important to extract all
the possible information from a statistical analysis of the data as it may eventually lead to test new
theoretical predictions. In that respect, the integrated information obtained by measuring spectral
features may not be sufficient to distinguish the contributions of different scales. Moreover, filter
response functions used in spectral analysis may introduce spurious effects on the fast scales hiding
an intricate structure.7 Since present accessible measurements now give access to a large range of
spatial scales, it therefore seems more promising to focus on turbulence properties in the physical
space.

Alternative statistical description of turbulence in the physical space actually date back to
Kolmogorov and Obukhov1, 8 and motivated formulation of stochastic models for the time evolution
of turbulent observables. A now classical example is the Lagrangian stochastic model for the velocity
of a passive tracer proposed by Thomson.9 In that model, the inertial range of Lagrangian turbulent
velocity is described through a Langevin equation, involving parameters that are determined via the
so-called Well Mixed Condition (WMC). This model is in fact equivalent to an autoregressive process
of order 1, usually denoted AR(1) or ARMA(1, 0) (see below) (ARMA = Auto Regressive Moving
Average). Recent experiments however indicate that this simple model does not work for the velocity
increments, which cannot be described by a simple standard Brownian motion as suggested by
Obukhov.10 Indeed, non normal corrections originate from long correlations due to the intermittent
character of turbulent flows. There are several models that suggest a more refined description,
based, e.g, on the Rapid Distorsion Theory,11 on the account of the two-point two-time Eulerian
acceleration-acceleration correlation,12 on temporal memory kernel.13 These approaches lead to
excellent approximations of the experimentally determined velocity pdf’s, although an analytic
solution for the model is still not available (for a review see Refs. 14 and 15). However, it is not clear
whether these models directly correspond to the features really observed in turbulent experiments
or, in other words, how far is a real experiment from the theoretical idealization.

To answer this question, as well as optimizing the information available from experimental
measurements, it is mandatory to consider a more refined statistical analysis, able to account for
temporal memory effects as well as velocity dependent diffusion coefficients. A good candidate is
given by analysis in terms of ARMA(p,q) processes that have already been used to study problems
ranging from geophysics to social science and finance.16, 17 This analysis aims to represent the
statistical properties of a time series Xt using a model in which the value at time t is a combination
of the p previous observations of the series—the so-called auto-regressive part AR(p) - and q noise
terms - the moving average part MA(q)—with p and q chosen to be the lowest order to describe
the series (see below). We observe that ARMA(p, q) processes are also good candidates to describe
turbulent experimental data, since high p orders correspond to high temporal memory and high
q orders correspond to a complicated structure of the diffusion coefficients. In the present paper,
we will apply the ARMA modeling technique to large datasets obtained in the (inhomogeneous,
anisotropic) von Kármán flow to illustrate the potential of this method.

The von Kármán experiment, in which the flow is generated in between two counter-rotating
coaxial impellers, is a simple way to obtain experimentally a large Reynolds number (Re ∼ 106)
in a compact design.18 In the equatorial shear layer, fluctuations are large and exhibit similar local
properties as in large Reynolds number experimental facilities devoted to homogeneous turbulence.
Away from the shear layer, one observes a decrease of the turbulence intensity. Overall, the flow is
strongly turbulent, so that the instantaneous velocity fields, measured by means of a PIV system,
strongly differ in a non-trivial manner from their time average.6 Although significant advancements
in understanding the physics of this system by statistical analysis19 and from statistical mechan-
ics approaches20 have been made, several features of the flow remain unexplained and require
further investigations. These include the nature of the phase transition recently discovered in the
fully turbulent regime,19 the forcing dependent stability of steady states21 or the asymmetry of
the torque probability distribution in different forcing conditions.22, 23 These features are based on
both local measurements (such as velocity measurements using PIV or LDV techniques) or global
measurements, such as total angular momentum, energy or torque applied to the rotating disks by
the turbulence (drag friction). For any of these local and global measurements, we will define the
ARMA(p, q) model which better represents the data, keeping in mind that the simplest model
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explaining the Kolmogorov turbulent spectra is the ARMA(1,0) model (see below). We then try to
answer the following questions:! How far is a von Kármán flow velocity time series from an ARMA(1, 0) model?! Can inhomogeneous anisotropic turbulence be better described by other ARMA(p, q) models

and for which orders?! Is there a spatial organization of ARMA(p, q) reflecting the spatial distribution of velocity
inhomogeneities?! Do different flow configurations correspond to different ARMA(p, q) models?! At a pure statistical level, is there an amount of information that the ARMA modeling can
extract with respect to other techniques?

The main achievement of the paper is to suggest that these questions can be positively answered
with a rather simple analysis. Moreover, once the order p, q is identified, one has immediately a
criterion to build continuous stochastic models similar to the ones introduced in Refs. 11 and 22 for
the quantities analyzed. Our aim is thus to define a general technique which can be then used to
analyze and critically extract information from any turbulence experiment. In the present paper we
underline the general procedure, leaving specific applications to future publications. The paper is
organized as follows: first we give an overview to present the relevance of the Obukhov model, then
describe ARMA(p, q) models for turbulence by giving a survey of their statistical and mathematical
properties. Then we present the experimental set up and the quantities analyzed with the algorithm.
Finally, we present and discuss the results obtained, outlining perspectives for the analysis of general
turbulent datasets.

II. ARMA MODELS OF TURBULENCE

A. From the Obukhov model to an ARMA(1, 0) process

The celebrated phenomenological theories of Kolmogorov and Obukhov1, 8 aimed to represent
the complex phenomena of turbulence with a simple stochastic model. Thomson9 was able to show
that, in the inertial subrange, passive tracer Lagrangian velocities can be modeled by a Langevin
equation (or Ornstein-Uhlenbeck process) with known coefficients; when discretizing this equation
for simulation purposes, one can formally write it as an autoregressive process of order 1, usually
denoted AR(1) or ARMA(1, 0). In particular, in the unidimensional case, the evolution of the velocity
and of the position of a tracer particle (u, x) can be described by the stochastic differential equations:

du = a(x, u, t)dt + b(x, u, t)dW, (1)

dx = u dt, (2)

where dW are the increments of a Wiener process. In the same paper the determination of the
coefficients a and b is discussed and it is found that, in Gaussian homogeneous turbulence, a = − u

TL
,

where TL is the Lagrangian decorrelation timescale, while b =
√

C0ε, where C0 is a universal
constant and ε is the mean kinetic energy dissipation rate. This can be written, as suggested in
Ref. 24, in terms of macroscopic quantities:

ε = 2σ 2
u

C0TL
, (3)

where σ 2
u is the fluid velocity variance (equal to the Eulerian variance) and can be seen as a measure

of the turbulence intensity. Once the coefficients are known, one can write a discrete version of the
Langevin equation (1):

$u = − u
TL

$t +
√

C0ε$W. (4)
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We are now considering a discrete-time stochastic difference equation, so we can use a discrete-time
index t ∈ Z and, rearranging, Eq. (4) reads

ut =
(

1 − $t
TL

)
ut−1 +

√
C0ε$W. (5)

Denoting
(

1 − $t
TL

)
= φ,

√
C0ε$t = σ and recalling that {$W } are the increments of a Wiener

process, the equation can be rewritten as follows:

ut = φut−1 + εt , (6)

where {εt} are independent variables, normally distributed. Equation (6) is the expression of an
AR(1) process. To show that it is the simplest physical model which agrees both with Richardson
law and the inertial range scaling proposed by Kolmogorov, it is sufficient to note that in an AR(1)
process, the expected values of the velocity and the position scale in time, respectively, as

E[u2(t)] ∼ t, E[x2(t)] ∼ t3. (7)

The second property is the Richardson law. Then, defining δu =
√

E[u2(t)] and ( =
√

E[x2(t)], we
get from Eq. (7) δu ∼ (1/3 which can be seen as an equivalent of the Kolmogorov scaling.

B. Generalization: ARMA(p, q) model for turbulence

The ARMA(1, 0) leads to a Markovian evolution for the Lagrangian turbulent velocity, and is
unable to describe the intermittency or memory that have been shown to exist in real flows. In most
laboratory turbulent flows, available datasets are time series of values of a physical observable at
a fixed point or obtained by tracking Lagrangian particles. In our case, time series are obtained at
fixed points in space; in this work, no spatial velocity profiles are studied. This historically moti-
vated the shift of paradigm from space velocity increments to time velocity increments defined as
δuτ = u(t + τ ) − u(t) and motivated computations of the time structure function. Of course, in
situations where measurements are made on the background of a strong mean velocity U, scale
velocity increments and time velocity increments can be directly related through the Taylor hy-
pothesis ( = Uτ . In situations such that the fluctuations are of the same order than the mean flow,
however, the Taylor hypothesis fails. A suggestion has been made by Pinton and Labbé25 to then
resort to a local Taylor Hypothesis, in which ( =

∫
dtu(t) where u is the local rms velocity. This is

equivalent to consider a scale such that ( ∼ τδuτ and may be seen as equivalent to modifying the
space Kolmogorov refined hypothesis into a time hypothesis.

A natural generalization to take into account these features is thus to consider higher order
ARMA(p, q) models, exhaustively treated, in example, in Ref. 26. A summary of useful notions
about ARMA(p, q) modeling is provided in the Appendix. An ARMA(p, q) model corresponds to
discrete time, stationary stochastic processes {Xt} such that, for all t:

Xt =
p∑

i=1

φi Xt−i +
q∑

j=1

ϑ jεt− j + εt . (8)

Here {εt} is assumed to be a white noise of variance σ 2 and the polynomials φ(z) = 1 − φ1zt−1 − · · ·
− φpzt−p and ϑ(z) = 1 + ϑ1zt−1 + · · · + ϑqzt−q, with z ∈ C, have no common factors. Notice the
white noise assumption is a very general condition and X(t) will be normally distributed, resulting
by a linear combination of independent and identically distributed random variables.

From a physical point of view Eq. (8) is the natural extension of the ARMA(1,0) model
corresponding to the Obukhov model by introducing a temporal memory structure: Intuitively, the
autoregressive part of the process expresses a dependence of the value of the process at time t on a
linear combination of its own p previous values, while the moving average component introduces, at
time t, a linear dependence of the q previous values of the noise term. The quantification of memory
effect in real turbulent flows will then be made through fits of the data by an ARMA(p, q) model,
and measurements of how far this model is from the ARMA(1,0) model. For this, we first need to
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define the notion of best ARMA(p, q) fit, and then the notion of distance between the ARMA(1,0)
and a given ARMA(p, q).

C. Model selection and characterization via correlation analysis

The main idea of time series analysis through ARMA models is to select the linear model that
fits the data in the most parsimonious way, so that diagnosis of the nature of the generating process,
forecasting or Monte Carlo simulations can be performed. Model selection is a non-trivial step of the
procedure that can be addressed essentially by two means: through correlation analysis or through
information based criteria, such as the Bayesian Information Criterion (BIC) described below.

For very simple processes, one can get access to the time dependence structure through com-
putation of the auto-correlation function (ACF) and of the partial autocorrelation function (PACF)
formally defined in the Appendix. In particular, for a MA(q) process, the theoretical ACF is char-
acterized by q non-zero peaks, while the PACF decays exponentially or as a damped trigonometric
function; for AR(p) processes the PACF is characterized by p non-zero peaks while the ACF decays
exponentially. Hence, this fact allows to rule out or confirm the validity of an AR(p) or MA(q)
hypothesis by a simple inspection of the ACF and PACF.

In the general ARMA(p, q) case, the simple correlation analysis described just above is not
insightful. The model choice and the parameters estimation can be assessed by using the procedure
introduced in Ref. 27, which also takes into account more complicated (such as integrated and
seasonal) models:

1. preliminary analysis: the series is plotted in order to identify possible trends in mean and
variance or periodic behaviors. Since here we deal with physically stationary processes, no
trends are expected;

2. identification on the basis of the estimated ACF and PACF (or applying information criteria,
such as the BIC);

3. estimation through maximum likelihood techniques;
4. diagnostic checking, that is, testing the estimated sequence for residual correlations (and

normality or other distributive hypotheses, if required).

In the following analysis we perform the second step of the procedure fitting an ensemble of
models with different (p, q) couples; we then choose the ARMA(p, q) model with the lowest total
order p + q producing not correlated residuals. The serial independence of the residuals series is
tested as described in the Appendix. As already mentioned, this phase could be based on the value
of the BIC. In this case, the information criterion is computed for each model: the best fit is the
minimum BIC after the steepest descent. The two methods provide the same results. First of all,
we tested them on a synthetic time series of 105 values simulated from an ARMA(3,1), obtaining
a correct estimation of the model with both methods. To ensure that this technique is stable also
for shorter time series, in Fig. 1 we show a BIC profile as a function of p and q for one of the
analyzed velocity samples, consisting of 600 observations: both the methods lead to the choice of
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FIG. 1. BIC values resulting from different fits of ARMA(p,q) model for a velocity time series consisting of 600 observations.
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an ARMA(7,7). All the PIV time series have length n = 600, while the typical LDV sample size is
n ∼ 5 × 105.

D. A measure of distance from Kolmogorov theory based on the Bayesian
information criterion

It is useful to concentrate the information obtained by analysis in a single index. We want to
obtain a measure of the distance of the selected ARMA(p, q) model from the ARMA(1, 0), namely
the Thomson-Obukhov model.

For a given dataset, the relative quality of a statistical model can be measured by the BIC,
defined as

B I C = −2 ln L̂ + k[ln(n) + ln(2π )], (9)

where L̂ is the likelihood function for the investigated model. For an exhaustive definition of this
quantity, see Ref. 28. Since the likelihood function is maximized when the correct model is found,
while goes to zero in case of misspecification, its logarithm grows for well-specified models, while
diverges to −∞ otherwise. Thus, the first term globally tends to become negative or to assume
small values once the best model form is identified. On the other hand, the second term grows with
the number of parameters times the sample size: so it serves as a penalization for the number of
parameters, in order to avoid overfitting. In brief, when testing an ensemble of models for a certain
dataset, the best one is identified by the minimum value of the BIC.

For a Gaussian ARMA(p, q) model, it is expressed as follows:

B I C(n, σ̂ 2, p, q) = (n − p − q) ln
[

nσ̂ 2

n − p − q

]
+ n(1 + ln

√
2π ) + (10)

+ (p + q) ln

[(∑n
t=1 X2

t − nσ̂ 2
)

p + q

]

.

Notice that n is fixed by the experiment. The sample variance σ̂ 2 is computed from the sample and
is a series-specific quantity. Thus, in order to obtain a meaningful definition of the distance from
Kolmogorov model, the BIC(n, σ̂ 2, p, q) must be normalized with respect to the Obukhov case
BIC(n, σ̂ 2, 1, 0):

ϒ = 1 − exp
{
|B I C(n, σ̂ 2, p + 1, q) − B I C(n, σ̂ 2, 1, 0)|

}
/n, 0 ≤ ϒ ≤ 1. (11)

This quantity tends to zero if the dataset is well described by the Obukhov model and tends to
one in the opposite case. We introduce the p + 1 correction to magnify small ϒ values.

III. EXPERIMENTAL SET-UP AND DATA PROCESSING

In order to illustrate and apply these concepts, we have worked with a specific axisymmetric
turbulent flow: the von Kármán flow generated by two counter-rotating impellers in a cylindrical
vessel. The experimental set-up is described in Refs. 21 and 29. Here, we consider a configuration
where the disks are exactly counter-rotating at frequency f1 = f2 = F, in the two forcing conditions
associated with the concave (resp., convex) face of the blades going forward, denoted in the sequel
by sense (−) (resp., (+)). The resulting mean velocity fields are quite similar, with two toric
recirculations separated by a mean shear layer (see Fig. 2). The forcing conditions however strongly
influence the level of fluctuations, which are much higher in the (−) case. The working fluid is water,
with viscosity ν = 1.0 × 10−6 m2 s−1. The Reynolds number is defined as

Re = 2π F R2ν−1,

where R is the cylinder radius. We introduce a cylindrical system of coordinates (x = (R,ϕ, Z ) with
its origin at the center of the cylinder and the z-axis aligned with the impeller’s rotation axis (see
Fig. 1 of Ref. 30).
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FIG. 2. Structure of the mean velocity field for θ = 0. The arrows represents directions and intensities of the velocity
components in the PIV plan averaged over time (ū, v̄). The orthogonal component w̄ is represented by the color scale. Left:
(+) sense of rotation. Right: (−) sense of rotation.

In the sequel, we analyze both local and global observables. As local observable, we will
consider the time series of the modulus of the velocity fields

(V ((x, t) = [u((x, t), v((x, t), w((x, t)]

obtained by PIV measurements. Here u is the component in the PIV plane described in terms of
R, the radial distance from the center of the cylinder; v in terms of Z, the vertical distance from
the center, and w is the normal component to the PIV plane (the azimuthal velocity in cylindrical
coordinates). For the comparisons between PIV and LDV measurements we will consider the normal
component only w. We will also address two important aspects of statistical modeling of turbulence:
the appearance of multifractal cascades, usually studied via the computation of the Hurst Exponents,
and the role of phase randomization, which permit to isolate the effects of intermittency related only
to the phase of the signals.

As global observables, we consider first the normalized kinetic energy introduced by Cortet
et al.:6

δ(t) = 〈V 2(t)〉
〈V̄ 2〉

. (12)

Here the brackets indicate the spatial average, and the bar a time average. δ(t) represents the ratio of
the total kinetic energy of the instantaneous flow to the total kinetic energy of the mean flow. As a
second global observable, we also consider the torque time series C1(t) and C2(t) experienced by the
two motors. The goal is to compare which part of information about the flow is carried by observables
built using the velocity fields (such as δ(t)) and which is carried by dissipation measurements such
as the torques.

The impeller speed F and the applied torques C1 and C2 are related to the average dissipation
rate in the experiment, ε, through the injected power P . The typical kinetic energy in the experiment,
〈V̄ 2〉, can be directly computed from the PIV data. Knowing these global quantities, it is possible to
obtain rough estimates of two typical quantities of the turbulent flow, the Kolmogorov typical length
and time scales η and tη and the Taylor typical scale λ, using the dimensional analysis inspired by
Kolmogorov1 and the identities of Taylor.31 These relations are only valid for homogeneous and
isotropic turbulence, which is not the case here: we will use them anyway to get rough estimates,
presented in Table I for experiments conducted in water at F = 5 Hz, with curved blades and under
various forcing conditions.
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TABLE I. Typical length scales of the flow, using only global average quantities and usual turbulent identities.31 Data are
obtained with curved blades in both rotation senses, for f1 = f2 = 5 Hz, using water. Two turbulent states coexist in the (−)
sense due to hysteresis,32 one with one recirculation cell and another one with two cells. The one-cell state is unstable in the
(+) direction for f1 = f2.

Sense Cells ε (m2 s−3) 〈V̄ 2〉 (m2 s−2) η (m) tη (s) λ (m)

( − ) 1 28 7.8 1.4 × 10−5 1.9 × 10−4 2.0 × 10−3

( − ) 2 9.2 2.6 1.8 × 10−5 3.3 × 10−4 2.0 × 10−3

( + ) 2 2.5 1.3 2.5 × 10−5 6.3 × 10−4 2.8 × 10−3

IV. RESULTS

We begin the analysis of the datasets by showing how the ARMA procedure, described in
Sec. II, works on two velocity series extracted at two different locations from the same PIV experi-

ment at Re = 105 and for the (+) sense of rotation. The series | (V (t)| =
√

(V (t)2 and their ACF and
PACF are represented in Fig. 3. They have been obtained by sampling the data at 15 Hz. By analyzing
the structure of the ACFs and the PACFs, one observes immediately that they do not consist of a
small number of discrete peaks out of the confidence bands. This excludes the possibility that the
series can be represented by pure AR(p) or MA(q) processes. Moreover, it is clear that a by-eye
determination of the order (p, q) is not possible.

This result is consistent with the non-Markovian behavior used to describe the torque measure-
ments via stochastic models in Refs. 11 and 22. By implementing our best fit procedure, we find
that the best ARMA model to fit the data depends on the measurement points: the series on the
left-hand side of Fig. 3 is fitted by an ARMA(1,1) model whereas the other one by an ARMA(4,2)
model. This is of course not surprising, because the von Kármán flow is highly inhomogeneous. In
the remaining of this section, we analyze the relationships between the flow inhomogeneous spatial
structure and the ARMA fit structure by mapping the ARMA parameters.

A. Velocity fields

Let us now analyze the spatial structures obtained by applying the procedure described in
Secs. II and III for a PIV field taken at Re = 2 × 105, with mean velocity field provided in Fig. 2
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FIG. 3. Two time series of |V (t)| (upper panels) with their respective ACF functions (middle panels) and PACF (lower
panels). Re + 105, (+) sense of rotation. Blue lines in the ACFs and PACFs represent the confidence bands at the 95%
confidence level. Sample frequency: 15 Hz. X-axis is in sample index.
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FIG. 4. ARMA analysis for the (+) sense of rotation. Top left: |V̄ |. Top right: | (V (t)| standard deviation. Center left: Total
order O found by fitting an ARMA(p,q) to the | (V (t)| data. Center right: Distance from the Kolmogorov model ϒ for the
| (V (t)| data. Bottom left: Sum of the autoregressive coefficient 1. Bottom right: Sum of the moving average coefficients 2.

for the (+) sense of rotation (left) and (−) (right). The two pictures look extremely similar: one can
immediately recognize the cells structure of the flows described in Sec. III.

A full overview of the quantities computed by using the ARMA analysis is presented in Fig. 4
for the (+) sense of rotation and in Fig. 5 for the (−) sense. Obviously, even if the four cells structure
presented in Fig. 2 is recovered in both the situations, the average over time of | (V (t)| denoted as |V̄ |

FIG. 5. ARMA analysis for the (−) sense of rotation. Top left: |V̄ |. Top right: | (V (t)| standard deviation. Center left: Total
order O found by fitting an ARMA(p,q) to the | (V (t)| data. Center right: ϒ for the | (V (t)| data. Bottom left: Sum of the
autoregressive coefficient 1. Bottom right: Sum of the moving average coefficients Theta.
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(top left panels) and the standard deviation of | (V (t)|(top right panels) show remarkable differences
between the two configurations. In the (+) sense of rotation the four cells structure is appreciable
whereas higher mean values and fluctuations of | (V (t)| are recorded in the proximity of the wall of
the cylinder in the (−) rotation. In this latter configuration, the fluid is pushed to the side of the
cylinder and higher turbulent fluctuations are registered, as described in Ref. 5. Let us now analyze
what happens to the quantities introduced by the ARMA analysis.

1. Order of ARMA

We start by describing the behavior of the total order O = p + q of the processes fitted for each
time series (middle left panels). In both senses of rotation, the highest orders are concentrated near
the impellers. However, differences appear in the other regions of the domain. In the (+) sense of
rotation, the highest orders are found in correspondence to the highest fluctuations. Near the center of
the cylinder the orders are low and, for some of the series, the signal is indistinguishable from noise
(order 0). In the (−) set up, the highest level of turbulent fluctuations contribute to homogenize the
behavior in larger areas such that a weak four cells structure is recognizable. This effect is probably
linked to the presence of more homogeneous fluctuations in the flow (top right panel of Fig. 5). Even
if the O color scale has been limited at p + q = 6 for comparison with the (+) situation, we underline
that much higher orders appear in the (−) setups near the impellers and, locally, at the walls of the
cylinder. High p, q orders are directly connected to the vortices introduced by the rotations of the
impellers and whose appearance is explainable in terms of Goertler instabilities.5 We will see in
Sec. IV D that these effects are recovered also for global observables.

2. Distance from Kolmogorov model

The difference between the (−) and (+) configuration is also highlighted by the results of the
ϒ computations reported in the middle right panels of Figs. 4 and 5. The distance from Kolmogorov
model is lowest and almost zero near the boundaries, where the fluctuations are modest, and increases
towards the center.

Evident differences appear if one compares ϒ values for (+) and (−) senses of rotation. As
expected, the highest values are found in the (+) case, which is the one preserving a spatial four
cells pattern in the fluctuations. This suggests that the coherent structures visualized using bubble
air seedings are responsible for deviations from the Obukhov model.

In the (−) set-up, the region of values of ϒ ≥ 0.1 clearly traces the area with maximal azimuthal
velocities. We have therefore a clear connection between coherent structures. In the present data set,
we do not observe obvious signature of the influence of the shear layer dynamics. However, by using
a much larger data set, we have been able to evidence the signature of the wandering of the shear
layer in between to metastable position. This is reported in Ref. 33.

3. Physical interpretation of ARMA(p, q) coefficients

The bottom panels refer to the sum of the coefficients 1 =
∑p

i=1 |φi | (bottom left panels) and
2 =

∑q
i=1 |ϑi | (bottom right panels). 1 and 2 may be regarded as a representation of the total

persistence of the phenomena, i.e., how much the system remembers of its past history. In order to
get a better understanding of this idea and thus obtain a physical interpretation of the AR and MA
parts of the process, we exploit, once again, Thomson’s model. Equation (1) implies a Markovian
evolution of the Lagrangian velocity in the inertial subrange, which is linked to an exponential
behavior of the ACF:

ρ(t) ∼ e− t
TL .

We can observe that the first term of the rhs of the equation contains some information about the
global correlation structure of the process, which is even more evident in the discrete time (see
Eq. (5)), since the autoregressive coefficient φ = (1 − $t

TL
) is the Taylor expansion of the exponential

ACF. We have already mentioned that |φ| is a measure of the persistence of the process; here, this
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persistence is driven by the large eddies, since TL is the Lagrangian decorrelation time scale, which
is TL - $t, with $t lying in the inertial subrange.

On the other hand, since the noise term in Eq. (1) is a standard Brownian motion, the innovations
of the time series in Eq. (5) $W , are normally identically distributed and δ-correlated. Thus, the
second term of the equation is simply a noise driving the process, with no linear dependence between
any couple of values ($Wi ,$W j ) with i .= j; this assumption is due to the fact that the stochastic
kicks come from the viscous eddies, which live in the viscous time scale τ η / $t: since the particle
samples the turbulent field with a frequency linked to a characteristic time ∼$t, the viscous eddies
are completely uncorrelated between two steps. This means that here q = 0 and the innovations of
the process are a pure (Gaussian) noise, and all the information is contained in the mean and the
variance.

In general, we may say that the AR(p) part of an ARMA(p, q) process is linked to the contribution
of the large scales and represents the persistence of the process. Notice that, if p = 1, it must be |φ|
< 1 in order to satisfy the stationarity condition; if the process is more persistent than an AR(1) with
|φ| < 1, higher values of p are required to explain all the correlation coming from the large scales.
Analogous considerations hold for the MA(q) part: if q > 0, a linear combination of previous values
of the noise appears in the equation, introducing a correlation structure in the innovation term, i.e.,
a higher persistence of the noisy contributions. This means that the small eddies do not decorrelate
completely between two sampling times, so we should assume to have eddies at all scales.

4. Comparison with high-resolution datasets (LDV)

The results obtained with the PIV technique must be validated and checked against higher tem-
poral resolution datasets. In fact, although the possibility of defining a distance from the Kolmogorov
model in the physical space rather than in the Fourier space seems appealing, we must be sure that
the results obtained with the ARMA analysis are stable with respect to an increase of resolution.

In the previous discussion, we have pointed out that the Obukhov model, representing homoge-
neous and isotropic turbulence, can be written as an ARMA(1,0) model. This corresponds to have
a purely power-law spectrum which does not contain any other features than the decay predicted
by Kolmogorov. Since Eq. (5) contains an explicit dependence on $t only for the coefficient φ, we
do not expect to see a change in the order of the process when increasing the resolution, but rather
changes in φ and ϑ coefficients. This consideration holds unless the spectrum changes slope or has
peaks for some of the frequencies we add to the spectrum by increasing the resolution. In this case
we expect to see also a change of the autoregressive and moving average polynomials.

In our analysis, we compared the PIV data for the (−) sense of rotation with the LDV experiment
performed in the same conditions. Since for the LDV series only the w component is measured, we
will compare this quantity to the same recorded for the PIV experiments. The LDV data allow for
exploring frequencies of order of the kHz, whereas the PIV is limited to a frequency of 15 Hz, so
that we extend significantly the range of frequencies analyzed. Whereas the time resolution of the
LDV data is very high, the spatial resolution is indeed low: we have w measurements only at the 18
points represented by the red crosses in the top-left panel of Fig. 6. For this reason, the quantities
obtained from the LDV analysis (left panels of Fig. 6) have been interpolated on a finer spatial grid.
Anyway, the level of details remains lower if compared with the PIV results (right panels of Fig. 6).
The top panels of Fig. 6 show a comparison between the averaged velocity field as obtained from
the LDV and the PIV analysis. They both show not only the familiar cells structure, but also that
the order of magnitude of the velocity fields is extremely close for the two different techniques. The
analysis of the orders O (reported in the central panels of Fig. 6) shows consistency between the
two techniques: the highest orders are located at the walls of the cylinder and near the impellers.
Moreover, if we average the total order on all the available points, we get O = 2.4 ± 0.7 for the
LDV and O = 1.8 ± 0.8, values compatible within a standard deviation. Finally, the analysis of ϒ

(lower panels of Fig. 6) reveals that the maxima are located, both for the PIV and the LDV, near the
walls of the cylinder around Z = 0. By computing the average of ϒ over all the points we find 0.03
± 0.02 for the LDV data and 0.02 ± 0.02 for the PIV, again consistent within a standard deviation.
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FIG. 6. Comparison between the ARMA analysis for LDV data (left) and PIV data (right) for the azimuthal component of
the velocity w. w̄ (upper panels), total order O (central panels) and distance from Kolmogorov model ϒ (lower panels); (−)
sense of rotation; Re + 105. The red crosses in the top-left panel show the locations of the measurement points for the LDV
experiment.

B. ARMA analysis of phase randomized data: Phase intermittency

Phase randomization is often used in turbulence to destroy the intermittency effects related to
Fourier phases while preserving the intermittency effect related to Fourier amplitude:34 by applying
such procedure one preserves up to the second order statistics (covariance and spectrum). It is
therefore interesting to apply the ARMA analysis to phase randomized data sets to quantify the
relative influence of phase and amplitude intermittency in turbulence.

A simple and efficient way to perform this phase randomization is to compute the Fourier
transform of the time series, then randomize the phase (while preserving the anti-symmetry of the
phase with respect to the frequency variable resulting from the real nature of the data) and going
back to the physical space by means of an inverse Fourier transform. In order to perform this
task, we have used the MATLAB code provided by Carlos Gias, based on the procedure described
in Ref. 35.

The results we present correspond to the (−) sense of rotation for the PIV data already analyzed
in Sec. IV. After generating surrogate velocity data, we compute ϒ for the phase-randomized data
and compare it with the original one. This is done in the lower panel of Fig. 7, with the original ϒ

(left) and the ϒ for phase-randomized data (right). Both panels show the same structure meaning
that most of the contribution to the intermittency parameter is associated to intermittency amplitude
through first and second order statistics (presumably through the advection and shearing effect of the
large scale flow). To get information about phase intermittency, we subtract the intermittency index
from the phase-randomized data to the original ones, obtaining $ϒ . Results of such a difference are
reported in the upper panel of Fig. 7. It is about two orders of magnitude smaller than the amplitude
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FIG. 7. Upper panel: Difference between ϒ computed for the | (V (t)| data for the (−) sense of rotation and ϒ on surrogate
date of the same experiment obtained with a phase randomization procedure. Lower panel: ϒ for the original data (left) and
for the surrogates (right).

intermittency. Its resulting spatial structure is highly organized, showing some association with
vortices. This feature may be connected with the observation that anomalous scaling, in linearly
advected hydrodynamical models, is connected to the existence of statistically preserved structures
with highly complex geometrical properties.36, 37 We leave this for future investigation.

C. Hurst exponents

A generalized version of the first equation in the system (1) can be written as

du = a(x, u, t)dt + b(x, u, t)dW 2H , (13)

where dW H is the increment of a fractional Brownian motion (fBm) and H is the so-called Hurst
exponent.38 The fBm, first introduced by Mandelbrot and Van Ness,39 is a generalization of Brownian
motion where the increments are not independent. It has zero mean and the following covariance
function:

E[WH (t)WH (s)] = 1
2

(|t |2H + |s|2H − |t − s|2H ).

The exponent H is a real number in (0, 1) and its value determines the memory of the stochastic
process. For H = 1/2, the standard Brownian motion is recovered. For 0 < H < 1/2 the process is
anti-persistent, i.e., an increase will most likely be followed by a decrease or vice-versa. Finally, for
1/2 < H < 1, the series is persistent, i.e., increases generally follow increases.

We want to investigate if the behavior displayed by the total order and total persistence of the
ARMA(p, q) and by the distance index ϒ can be better explained by the fractional nature of the
underlying stochastic process. In order to do this, we compute H for the | (V (t)| data in the (+)
sense of rotation and we compare it to ϒ in Fig. 8. The computation of the Hurst exponents follow
the methods presented in Ref. 40 which we found to be all consistent with each other. Since ϒ values
span 5 orders of magnitude while H is always of order 1, we consider the log10(ϒ). Not only the
spatial structure of H and log10(ϒ) are very similar (upper panels of Fig. 8), but also a linear relation
can be found between these two quantities (lower panel of the same figure). The linear correlation
coefficient is r = 0.70 and these results hold also for the LDV experiments with almost identical fit
coefficients and r = 0.81. From this analysis we argue that a fBm description of the phenomenon
might be used to explain the nature of the correlations in the series and it could be useful to further
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FIG. 8. Upper panels: Comparison between the Hurst exponents H (left) and the deviation from the Kolmogorov model in
log-scale log10(ϒ) (right) found by fitting an ARMA(p,q) to the | (V (t)| data for the (+) sense of rotation. Lower panel: Scatter
plot of the Hurst Exponent H and log10(ϒ). The red solid line shows a linear fit to the data.

improve the modeling of inhomogeneous and anisotropic turbulence. However, the results show that
ϒ , based only on an ARMA(p, q) estimation, is equally effective in quantifying deviations from the
Kolmogorov model which could not be due to fBm effects.

D. Global observables

An interesting question to address when dealing with spatial-temporal extended systems, is how
the information on the single trajectories is transmitted to integrated quantities. In particular, one
may ask whether the differences found in the ARMA analysis for the local observables of PIV fields
are preserved for scalar quantities, i.e., if high ARMA(p, q) orders found locally in the proximity
of the impellers and the cylinder walls give a contribution to global observables or whether they
average out. In this section we present results obtained for the quantity δ(t) introduced in Eq. (12). We
have further tested that our results are independent of the choice of the global observable, whether
derived from PIV measurements — Angular momentum — or measured independently like torques
measurements.

We have carried out the analysis on global observables at several Reynolds numbers around
Re = 105, that is in a fully turbulent regime. The typical behavior of the time series of δ(t) is
represented in Fig. 9 for the (+) sense of rotation (left), and the (−) one (right). The top panel
refers to the time series obtained by averaging the spatial velocity fields and shows no particular
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FIG. 9. Time series of δ(t) (upper panels) with their respective ACF functions (middle panels) and PACF (lower panels).
Left: (+) sense of rotation. Right: (−) sense of rotation. Re + 105. Blue lines in the ACFs and PACFs represent the confidence
bands at the 95% confidence level. Sample frequency: 15 Hz. X-axis is in sample index.

differences at first sight, as we have seen for the examples of the velocity series shown in Fig. 3.
However, the ACF (middle panels) and PACF (lower panels) are remarkably different. The ACF of
the (+) sense of rotation decays quickly and the PACF shows only one peak significantly different
from zero: an ARMA(1,0) is enough to explain the correlation structure. On the other hand, an
oscillatory behavior of both the ACF and PACF is clearly recognizable for the (−) rotation. The
orders p, q needed to decorrelate the latter time series are higher in the (−) rotation, namely p = 2, q
= 1. These results hold generally by varying Re and changing observables and point to the intrinsic
differences between the two senses of rotation.

One can notice that some characteristic features appear in the ACF of the (−) sense of rotation.
We can speculate that, for scalar quantities, the highest orders get averaged out if their contribution
is substantially different at different (r, z) as it happens for the (+) rotation. However, when the same
kind of features are present in the ACF and PACF for series at different (r, z) the contribution sums
up and is well visible in the behavior of global observables.

V. MULTISTABILITY

Another interesting question is whether the application of ARMA techniques to turbulence is
helpful to discriminate between different stability regimes. The simple guess is that by increasing
the instability of a configuration, higher orders O arise as we introduce in the system new time scales
linked to the presence of nearby attracting states. In order to check this idea, let us consider again
a von Kármán swirling flow with the same geometry described before, with the Reynolds number
fixed at Re ∼ 105. In this system, one can impose either the speeds f1 and f2 of the motors or the
torques C1, C2 and define two natural dimensionless quantities:

θ = ( f1 − f2)/( f1 + f2), γ = (C1 − C2)/(C1 + C2)

which are, respectively, the reduced impeller speed difference and the reduced shaft torque difference.
In Ref. 21, the authors found that different forcing conditions change the nature of the stability of
the steady states. Here we complete the results represented in Fig. 1 of Ref. 21, with the ARMA
analysis in terms of the quantities O and the total persistence of the process defined as

R =
p∑

i=1

|φi | +
q∑

i=1

|θi |.
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FIG. 10. Total order O and total persistence R for the von Kármán experiment under the speed control. The points represent
the averaged γ and θ obtained for each experiment.

Speed control: In this case all the turbulent flows are steady. By plotting the averaged θ ’s and γ ’s
measured in several experiments, one obtains the diagram shown in Fig. 10. The colors refer to
different O (Fig. 10, upper panel), and R (Fig. 10, lower panel). Starting both impellers at θ + 0
leads to a marginally stable state, which consists of two symmetric recirculation cells separated by
a shear layer. If one waits enough time, a fluctuation may force a jump of the system to one of the
two bifurcated states represented by the red points. The instability of the symmetric state is reflected
by the order of the ARMA processes fitted for the series of γ (t) at γ + θ + 0. For this experiment
we found O = 4 and R + 3, values definitely larger than the ones found in the bifurcated states
where always O = 1 R < 0.5. From the available data one can argue that the potential barrier—the
repellor in dynamical system—at θ = ±0.1 is somehow impenetrable as we do not get any increase
in O and R for the series γ (t) recorded at such values of θ .

Torque control: By imposing the torque control one gets access to new attracting states, located
in correspondence to the repellor found in the speed control. The results for the torque control have
been obtained by analyzing time series of θ (t) and the results in terms of O and R are reported in
Fig. 11. Before commenting on the new states, we begin by analyzing the states which are attracting
in both the configurations. In Ref. 21, the authors assert that the properties of the attracting states
in the speed control set up are analogous to the ones found for the torque control. However, by
applying the ARMA analysis, we found, as one would expect, remarkable differences. In particular,
the symmetric state (which was marginally stable in the speed control) is now stable as one can go
to the bifurcated states in a continuous way. This is confirmed by the low values of O and R found
for the torque control where O = 1 (Fig. 11(a), found in correspondence of γ + 0.005 and θ + 0)
and R < 1 (Fig. 11(b)). The bifurcated states have a different characteristic order (typically O = 2)
and persistence (typically 1 < R < 2). These are not linked to the presence of transitions, as they
persist further away from the unstable range of parameters. They are linked to the modifications in
the dynamics induced by the change of control which affects also the stable regions in a fine way,
which has not been discussed in Ref. 21 but is evident by applying the ARMA technique capabilities.
Let us now comment on the new states which appear in the torque control in correspondence to
the repellor for the speed control. These states feature multistability as detailed in Ref. 21. In terms
of ARMA analysis they are characterized by higher orders (green branches in the upper panel of
Fig. 11 with O = 3), and persistence (black branches of the lower panel in Fig. 11). Even if an
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FIG. 11. (a) Total order O and (b) total persistence R for the von Kármán experiment under the torque control. The points
represent the averaged γ and θ obtained for each experiment.

order is found for multistable time series, an ARMA model cannot just be stuck to the data in this
case, as it will not reproduce a multistable behavior, but rather a process with one stable state whose
correlation properties are similar to the ones found for the multistable time series.

This example clearly shows that one can find, far from the bifurcation, a typical ARMA(p, q)
process (O = 1 for the speed control and O = 2 for the torque control) which describe the data-sets
whereas p and q are evidently modified by the stability properties. We remark that one must pay
extraordinary care when the goal is to find a model for the data-set.

VI. FINAL REMARKS

In this paper we have shown how to extract information from turbulent data-sets by applying
an ARMA statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of
the fluctuations; in fact, it is possible to link the behavior of the recorded time series to a discrete
version of a stochastic differential equation which is able to describe the correlation structure in the
data-set. We have tested the method on data-sets produced by the experiments on the von Kármán
swirling flow, already analyzed in several publications.

We have shown how the anisotropies and inhomogeneities present in real experiments as well as
the finite resolution of the data-sets influence the order p, q of the process which better describes the
data. We find that data are suitably described by ARMA(p, q) processes whose orders are generally
different from the Obukhov model although with a very limited number of auto-regressive and
moving average terms (generally p, q = 1 or 2). We have introduced a new index 0 ≤ ϒ ≤ 1 to
measure and quantify this difference. The value of ϒ increases in areas where large scale coherent
structures are present. It would be interesting to rely the statistics of ϒ to the computation of refined
statistics of velocity increments, possible only for time high-resolved experiments.41 In particular,
we aim to compare ϒ with classical intermittency parameters based on structure functions. This
idea follows from the hypothesis first proposed by Laval et al.42 that intermittency propagates in
direct interactions between large and small scales, rather than in cascades. Preliminary analysis
carried on the LDV data-sets show that there is a linear proportionality between ϒ and the classical
intermittency parameters defined on the velocity increments.
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The inhomogeneous structure of the PIV experiments is reflected by the range of different orders
p, q found in our analysis: a great part of the flow can be described in terms of noise, whereas higher
orders concentrate around cells ((+) sense of rotation) or near the walls ((−) rotation). The analysis
of global observables shows that most of the information about the local structure of the flow is
preserved, including the differences found between the two senses of rotation. This correspondence
between local and global quantities is very important and it will be further exploited for challenging
systems for which only global observables are available as in the SHREK data-sets experiment with
super-fluid Helium.43

We have also checked our results against the change in time resolution by comparing them
against the LDV experiments, whose average sampling frequency is order of the kHz. Not only
the values of O found with this technique are consistent, but also the values of ϒ and the spatial
structures observed. Finally, we have commented on the effects of multistability on the ARMA
analysis by considering two different kind of forcings for the von Kármán experiment.

In the Obukhov model, the coefficients of the stochastic model are given from the turbulence
theory, resulting in a simple Langevin equation which describes the process in the continuous
time. Here, we have applied estimation methods to obtain a parametric description in the discrete
time, but the passage to continuous time stochastic differential equations is not trivial for a general
ARMA(p, q) process. Obtaining an expression of the model’s parameters in terms of physical
quantities of turbulence theory is presently not possible. In fact, it is likely that the MA(q) part of
our processes represents the contribution of the shortest time scales detectable with the available
techniques. One way to test this idea is to verify that only the structure of the MA(q) part of the
process changes by changing only small scales feature of the flow. In order to do that, we are
currently testing impellers with a fractal structure. Preliminary analysis show that MA(q) orders are
different between fractal and non-fractal impellers whereas the AR(p) do not change. Details will
be reported in a future publication.

Several generalizations of ARMA models exist and they allow for taking into account the
possible multi-fractal behavior of turbulence. The comparison of the Hurst exponent and the ϒ

index suggests that it will be interesting to extend the analysis to fractional integrated ARMA or
ARFIMA(p, H, q) models. The first ones can be appropriated for studying problems of non-stationary
turbulence44 whereas a SARMA models analysis could be suitable for studying problems of wave
turbulence.45
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APPENDIX: THEORETICAL SURVEY ON ARMA MODELING

We have already mentioned, in the definition of the ARMA(p, q) process, that {Xt} must be
stationary. Usually, two definitions of stationarity are given when treating discrete time stochastic
processes: strong stationarity implies stationarity of the whole joint probability distribution of the
stochastic process, while weak stationarity requires the first two moments of the process to be
finite and constant in time. The results about ARMA(p, q) processes are usually proved requiring
weak stationarity, that is of course implied by strong stationarity; in our data analysis we will
assume stationarity on a physical basis, by studying the system when the dynamics has reached well
identifiable stationary states.

First of all, we observe that Eq. (8) can be written in a very compact form, introducing the
backward operator B such that B j Xt = Xt− j , j ∈ Z:

φ(B)Xt = ϑ(B)εt . (A1)

If ϑ(z) ≡ 1 the process reduces to an AR(p), if φ(z) ≡ 1 the process is said to be a MA(q) process.
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Formally, existence and uniqueness of a stationary solution {Xt} of Eq. (A1) are satisfied if and
only if

φ(z) .= 0 ∀ |z| = 1. (A2)

Two other important features of a discrete time stochastic process are causality and invertibility.
Causality refers to the possibility of recovering the value of the process at time t as a function of
the innovations εs, with s ≤ t. Formally, {Xt} is causal if there exists a succession of absolutely
summable coefficients {ψ j} so that the process at time t can be written as

Xt =
∞∑

j=0

ψ jεt− j (A3)

which implies, in terms of the auto-regressive polynomial:

φ(z) .= 0 ∀ |z| ≤ 1. (A4)

Invertibility could be regarded as the property specular to causality, so {Xt} is invertible if the series
of the innovations {εt} can be recovered from the process. This requires the existence of a succession
of summable coefficients {π j}, which allows us to write

εt =
∞∑

j=0

π j Xt− j (A5)

and in this case, condition (A4) is required on the moving-average polynomial:

ϑ(z) .= 0 ∀ |z| ≤ 1. (A6)

In case of the presence of d unit roots in the auto-regressive polynomial, the process becomes
non-stationary; however, the d-differenced process (1 − B)dXt can be stationary. In particular, if
(1 − B)dXt is an ARMA(p, q) process, Xt is said to be an ARIMA(p, d, q) process (where the
“I” stands for integrated); the particular case of an AR(1) with φ = 1 reduces to the well-known
random walk. Taking the differences of a time series is a drastic operation and a careful testing for the
presence of unit roots must be performed if this kind of non-stationarity (also called stochastic trend)
is supposed to exist. The most used test to this purpose is the Augmented Dickey-Fuller test; notice
that a unit root in the moving average can also be taken into account through the hypothesis that the
innovations are an integrated autoregressive process. Extensions to more complicated models can be
found in literature, but these basics ARIMA processes are sufficient for the data analysis proposed
in the present work.

The main idea of time series analysis through ARMA models is to select the linear model
that fits the data in the most parsimonious way, so that diagnosis of the nature of the gener-
ating process, forecasting or Monte Carlo simulations can be performed. Model selection is a
non-trivial step of the procedure and should be discussed after the introduction of some fun-
damental tools for the investigation of the time-dependence structure of the stochastic process.
This issue can be addressed through spectral analysis, decomposition of the time series in trend,
cyclical, periodical, and irregular components and, most of all, correlation analysis. In this ap-
proach the dependence structure is studied analyzing the global and the partial autocorrelation
functions.

The (global) auto-covariance function (ACVF) at lag h of a zero-mean stochastic process is
defined as

γ (h) = E[Xt+h Xt ] (A7)

and, when normalized over the variance, gives the (global) ACF:

ρ(h) = γ (h)
γ (0)

. (A8)
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The concept of PACF is less intuitive; formally, it can be written as

α(0) = 1,
(A9)

α(h) = φhh h = 1, 2, . . . ,

where φhh is the last component of φh = 7−1
h γh with 7h = [γ (i − j)]h

i, j=1 and γ h = [γ (1), . . . ,
γ (h)]′. In practice, the PACF quantifies the correlation between the prediction errors at lag 0 and h,
given that it can be shown that the conditional expected value is the best linear predictor:

φhh = C O R R[Xh − P(Xh |X1, . . . , Xh−1), X0 − P(X0|X1, . . . , Xh−1)].

For very simple processes, the ACF and the PACF give strong hints about the time dependence
structure. In particular, for a MA(q) process, the theoretical ACF is characterized by q non-zero
peaks, while the PACF decays exponentially or as a damped trigonometric function; for AR(p)
processes specular considerations are valid. On the (+), if the process is characterized by both
autoregressive and moving-average polynomials, few information can be obtained by a simple by-
eye evaluation of the ACF and PACF. In this case, statistical information criteria must be used; one
of the most widely known is the BIC, which will be presented after the introduction of the concept
of estimation for ARMA(p, q) models.

Given a parametric hypothesis ARMA(p, q) for a time series, the corresponding discrete-
time equation is fitted to the data and all the parameters are estimated with maximum likelihood
techniques, well described also in the more practical volume.46 At this point, two sets {φ̂ j }p

j=1 and
{ϑ̂ j }q

j=1 of estimated parameters are available, as well as a time series of estimated residuals {ε̂}
of the same length of the original time series; if the tested ARMA(p, q) fits the data, {ε̂} must be
a sequence of independent random variables. Notice that, if the orders p and q are too high, the
time series is over-fitted, so the analyst must be careful in choosing the most parsimonious model in
terms of number of parameters. Thus, once the residual sequence has been obtained, inference must
be made on the null hypothesis H0 of uncorrelated residuals. At this point, the sample ACF ρ̂( j) is
computed; then, one of the most used test statistics is the Ljung-Box Test:

QL B = n(n + 2)
h∑

n− j

ρ̂( j)2

n − j
∼H0 χ2(h), (A10)

where n is the length of the time series and h is a fixed number of lags at which the sample ACF
is computed. If H0 is not rejected at a given level (usually α = 0.01 or α = 0.05), the tested
ARMA(p, q) fits the time series.

As already mentioned, in case of complex or high-order processes, ACF and PACF are not
sufficient to obtain a hint on the possible order (p, q) at glance; in this case, some different hypothetical
ARMA(p, q) models can be fitted and for each one the BIC is computed:

B I C = (n − p − q) ln
[

nσ̂ 2

n − p − q

]
+ n(1 + ln

√
2π ) + (A11)

+ (p + q) ln

[(∑n
t=1 X2

t − nσ̂ 2
)

p + q

]

.

This quantity is minimized by the most parsimonious model providing a good fit to the time series.
However, an other possibility is to fit many different ARMA(p, q) models and choose the one for
which the null hypothesis of uncorrelated residuals is not rejected and the total number (p + q) of
parameters is minimum.
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We suggest an approach to probing intermittency corrections to the Kolmogorov law in turbulent flows based
on the autoregressive moving-average modeling of turbulent time series. We introduce an index ϒ that measures
the distance from a Kolmogorov-Obukhov model in the autoregressive moving-average model space. Applying
our analysis to particle image velocimetry and laser Doppler velocimetry measurements in a von Kármán swirling
flow, we show that ϒ is proportional to traditional intermittency corrections computed from structure functions.
Therefore, it provides the same information, using much shorter time series. We conclude that ϒ is a suitable
index to reconstruct intermittency in experimental turbulent fields.
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Introduction. One of the few exact results known for
isotropic, homogeneous, and mirror-symmetric turbulence is
the 4/5 law derived by Kolmogorov. It links the longitudinal
velocity increments δu� = u(x + �) − u(x) to the mean rate
of energy dissipation 〈ε〉 via

〈
δu3

�

〉 = − 4
5 〈ε〉�, (1)

where angular brackets denote averaging. This exact relation
was generalized by Kolmogorov [1] as a scaling law δu� ≡
(ε�)1/3, where ≡ means has the same statistical properties.
Should ε be a nonstochastic constant, the scaling law would
imply self-similar behavior for the structure functions of order
p, Sp(�) = 〈δup

� 〉, which would scale like

Fp(�) ∼ εp/3�p/3. (2)

For p = 3, we recover the 4/5 law. For p = 2, this equation
predicts a second-order structure function that varies like �2/3.
By a Fourier transform, this is equivalent to a one-dimensional
energy spectrum scaling with wave number k as E(k) ∼ k−5/3,
also known as the Kolmogorov spectrum [2,3]. Both the 4/5
law and the Kolmogorov spectrum have been measured and
checked in many natural and laboratory isotropic turbulent
flows [4]. More generally, Eq. (2) predicts a linear law for the
exponent of the structure functions ζ (p) = d ln Fp(�)/d ln � =
p/3. However, as pointed out by Landau and recognized by
Kolmogorov [1], there is no reason to assume that ε is a
constant over space and/or time, so it should rather be viewed
as a stochastic process, which depends upon the scale � at
which it is measured ε ≡ ε(�). In such a case, the correct
scaling of the structure function is rather

Fp(�) ∼ 〈ε(�)p/3〉�p/3. (3)

This modified law predicts correction to the linear law
ζ (p) = p/3, which is connected to the intermittent nature
of the dissipation. For example, a log-normal model for the
dissipation (a suggestion by Landau and Obukhov) implies

*davide.faranda@cea.fr

quadratic corrections for the ζ (p). Other models have been
suggested and lead to different corrections [5–7]. Intermittency
corrections up to p = 4 have been measured in a variety of
experimental and numerical flows and appear to be robustly
consistent from one experiment to another (see, e.g., the review
of [8]). Corrections for larger values of p are subject to
resolution and statistical convergence issues: The larger the
scaling exponent, the larger the statistical sampling must be in
order to capture the rare events. There is presently no general
consensus about the behavior of intermittency corrections at
large order. This hinders progress in the understanding of
the statistical properties of the energy dissipation. In this
Rapid Communication we suggest an approach to probing
intermittency corrections based on the autoregressive moving-
average (ARMA) modeling of turbulent time series. We
introduce an index ϒ that measures the distance from a
Kolmogorov-Obukhov model in the ARMA space. Applying
our analysis to velocity measurements in a von Kármán
swirling flow, we show that this index is proportional to
the traditional intermittency correction computed from the
structure function and provides the same information, using
shorter time series.

Intermittency parameters. In most laboratory turbulent
flows, data sets are time series of values of a physical
observable at a fixed point or obtained by tracking Lagrangian
particles. This motivated the shift of paradigm from space
velocity increments to time velocity increments defined as
δuτ = u(t + τ ) − u(t) and motivated measurements of time
structure functions Gp(τ ) = 〈(δuτ )p〉 and its local exponent
χp = d ln Gp(τ )/d ln τ . In situations where measurements
are made on the background of a strong mean velocity U ,
scale velocity increments and time velocity increments can
be directly related through the Taylor hypothesis � = Uτ .
When fluctuations are of the same order as the mean flow,
however, the Taylor hypothesis fails. A suggestion has been
made in [9] to then resort to a local Taylor hypothesis, in
which � = ∫

dtu(t), where u is the local rms velocity. This
is equivalent to considering a scale such that � ∼ τδuτ and
may be seen as equivalent to modifying the space-refined
Kolmogorov hypothesis into a time hypothesis δuτ ≡ (ετ )1/2,

1539-3755/2014/90(6)/061001(4) 061001-1 ©2014 American Physical Society
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which leads to

Gp(τ ) ∼ 〈εp/2〉τp/2. (4)

Such scaling is equivalent to the scaling obtained using the
Lagrangian structure function. In any case, we may define the
intermittency as the deviation of the local exponents ζ ∗

p = ζp

(space increments) or ζ ∗
p = χp (time increments) with respect

to a linear behavior and may be quantified to first order by the
parameter

μ = ζ ∗
2 − 2

3ζ ∗
3 . (5)

This factor is proportional to the logarithm of the β parameter
of the log-Poisson model [5,6], or to the μ parameter of the log-
normal model [1]. It is also valid when the scaling exponents
have been computed using extended self-similarity (ESS) [10],
which is especially interesting in situations where turbulence
is inhomogeneous and when the Taylor hypothesis does not
hold. In the following, we compare this intermittency index
with another one, built in a purely statistical framework.

Indeed, Thomson [11] showed that, in the Lagrangian
framework, the time-refined Kolmogorov hypothesis is in
fact equivalent to a stochastic description in terms of an
Ornstein-Uhlenbeck process with suitable drift and noise term

du = − u

T
dt +

√
C0εdW, (6)

where T is a decorrelation time scale, C0 is a universal
constant, and ε is the mean dissipation. Indeed, taking into
account the definition of the particle position x, dx = udt, we
get a scaling of the time averages of velocity and position as

u2(t) ∼ t, x2(t) ∼ t3. (7)

The second property is the Richardson law. Then, defining
δu = [u2(t)]1/2 and � = [x2(t)]1/2, we get from Eq. (7) δu ∼
�1/3, which leads to the space-refined Kolmogorov hypothesis.

The discrete-time version of Eq. (6) can be written as

ut = φut−1 + ψt, (8)

where t is a discrete-time label, dW are the increments of
a Brownian motion, φ = (1 − �t

T
), and ψt are independent

variables, normally distributed. Equation (8) is the expression
of an autoregressive process of order one, denoted by AR(1).
Such a model is described by a single decorrelation time.
So it cannot describe real flows intermittency, which involves
a whole range of time scales corresponding to the turnover
times of the turbulent eddies with memory effects. To capture
these effects, it is mandatory to consider a projection of
the velocity data on higher-order ARMA(p,q) models. This
enables a quantification of intermittency effects as a distance
with respect to the insufficient AR(1) model in this space.

Intermittency as a distance in ARMA space. A stationary
time series Xt is said to follow an ARMA(p,q) process if it
satisfies the discrete equation

Xt =
p∑

i=1

φiXt−i + εt +
q∑

j=1

θj εt−j , (9)

with εt ∼ NW (0,σ 2), where NW stands for white noise and the
polynomials φ(z) = 1 − φ1zt−1 − · · · − φpzt−p and θ (z) =
1 − θ1zt−1 − · · · − θqzt−q , with z ∈ C, have no common

factors. Notice that the noise term εt will be assumed to be
a white noise, which is a general condition [12]. We ensure
unicity by applying the Box-Jenkis procedure [13]: We choose
the lowest p and q such that the residuals of the series filtered
by the process ARMA(p,q) are not correlated. To define a
suitable distance in the space of ARMA(p,q) models, we
introduce the Bayesian information criterion CBI , measuring
the relative quality of a statistical model, as

CBI = −2 ln L̂(n,σ̂ 2,p,q) + k[ln(n) + ln(2π )], (10)

where L̂(n,σ̂ 2,p,q) is the likelihood function for the in-
vestigated model, k = p + q, and n is the length of the
sample. The variance σ̂ 2 is computed from the sample and
is a series-specific quantity. The normalized distance between
the fit ARMA(p + 1,q) and the Kolmogorov AR(1) model
is then defined as the normalized difference between the
CBI (n,σ̂ 2,p + 1,q) and the AR(1) CBI (n,σ̂ 2,1,0):

ϒ = 1 − exp{|CBI (p + 1,q) − CBI (1,0)|}/n. (11)

The p + 1 serves to magnify ϒ near zero. Note that 0 � ϒ �
1: It goes to zero if the data set is well described by an AR(1)
model and tends to one in the opposite case. In the case of
velocity increments time series, it measures deviations from
the Kolmogorov model.

Application to turbulent data. We apply the index defined
in Eq. (11) to velocity time series obtained in a von Kármán
turbulent swirling flow. The experimental setup consists of
two sets of blades mounted on two counterrotating coaxial
impellers at the top and bottom of a cylindric vessel of diameter
R = 0.1 m. The operating fluid is water and the rotation
frequency of the impellers can reach F = 15 Hz, resulting in
large Reynolds numbers (Re = 2πFR2ν−1 ∼ 106). A detailed
description of the experiment can be found in [14–16]. Two
techniques are used to measure the fluid velocity on a grid:
the particle interferometry velocimetry (PIV) and the laser
Doppler velocimetry (LDV), mapped on a regular sampling
time applying a sample-and-hold algorithm. The stereoscopic
PIV measures the three components of the velocity field in a
plane, while the LDV measurements provide the out-of-plane
velocity component Vφ in a plane. The PIV produces regularly
sampled time series at intervals of 0.1 s over a sample size
at most of order 104 and a spatial resolution of the order of
1 mm, i.e., 10–100 times larger than the dissipation scale.
The LDV time series are sampled over a time scale of the
order of 0.001 s, producing a sample size up to 106 data on
a grid of spatial resolution of the order of 1 cm. Given these
resolution constraints, we compute spatial (temporal) velocity
increments for the PIV (LDV) data. The idea is to compute
at each spatial grid location the classical intermittency index
μ, compare it to ϒ , and see how they vary. All the analyses
presented in this Rapid Communication are done using three
components for the PIV and Vφ for the LDV. Since the von
Kármán flow is inhomogeneous and anisotropic with large
fluctuations [16], we expect that the time and space velocity
structure functions depend on the measurement points. This is
illustrated in Fig. 1 for the second- and fourth-order spatial and
time structure functions. For the spatial case, deviations from
the Kolmogorov scaling (solid lines) are small for the spatial
structure functions, near the symmetry plane Z = 0. This plane
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FIG. 1. (Color online) (a) Space structure function Fp(�) of order
2 in black and of order 4 in blue (gray) at two PIV grid points of
coordinates R = −0.10, Z = −0.14 (circles) and R = 0.98, Z =
0.70 (crosses). (b) Time structure function Gp(τ ) of order 2 in black
and of order 4 in blue (gray) at two LDV grid points of coordinates
R = 0, Z = 0.35 (circles) and R = 0.52, Z = 0.61 (crosses). Lines
represent the Kolmogorov predictions: solid is Eulerian with �2/3 and
τ 2/3 in black and �4/3 or τ 4/3 in blue (gray) and dotted is Lagrangian
with τ in black and τ 2in blue (gray).

is the location of an intense shear layer and has traditionally
been used to perform isotropic homogeneouslike measure-
ments. Outside this plane, deviations from the Kolmogorov
scaling are large. For the time case, one observes two distinct
behaviors: Outside the shear layer, where a mean velocity
is well defined, one observes close to Eulerian-Kolmogorov
scaling at the smallest time increments τp/3; in the shear layer,
where no Taylor hypothesis holds, the scaling is closer to
Lagrangian scaling τp/2. However, as already noted by [9] and
shown in Fig. 2, the relative scaling exponents ζ ∗

p computed

as Gp(τ ) ∼ 〈|δuτ |3〉ζ ∗
p (ESS method) are in most of the flow

close to the universal scaling exponents found by [8], in a
variety of homogeneous turbulent flows, even those with no
obvious inertial range. Using these ESS scaling exponents
to compute the μ index, we may then draw a map of the
intermittency and compare it with ϒ . This is done in Fig. 3
for an LDV experiment at Re ∼ 105. The spatial patterns
look indeed similar. Moreover, the plot of ϒ as a function
of μ [Fig. 3(c)] evidences a linear relation between them; the
linear regression represented by the red line leads to a linear
correlation coefficient r � 0.69. This means that ϒ traces
the same intermittency characteristics as the time structure
functions. The comparison of ϒ with the intermittency index
μ computed for spatial structure functions is also informative:
Because of convergency issues, we have to use a data set
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FIG. 2. (Color online) Plot of ζ ∗
p computed for the LDV exper-

iments. Different lines correspond to different measure points. Red
(gray) spots mark the scaling exponents reported in [8].

of about 105–106 data points to converge the estimate of μ,
while only 103 are needed to converge ϒ . To illustrate this,
we use the longest data set available: 9000 velocity fields
of a PIV experiment performed at Re � 5 × 104. At this
value, the von Kármán flow experiences the equivalent of a
phase transition [17], with time wandering of the shear layer
in between Z = 0.3 and −0.3. This corresponds to a very
large time intermittency and is detected by the ϒ index as
shown in Fig. 4, under the shape of two patches at R � 0,
Z = 0.3 and R � 0, Z = −0.3. This pattern is unique to the
phase transition and is not present in other PIV experiments
[18]. Besides, one observes a fairly symmetric structure, with
maxima corresponding to the flow’s four-cell structure. The
time intermittency prevents the convergence of the spatial
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061001-3



RAPID COMMUNICATIONS

FARANDA, DUBRULLE, DAVIAUD, AND PONS PHYSICAL REVIEW E 90, 061001(R) (2014)

−0.5 0 0.5

−0.5

0

0.5

R

Z

 

 

0

0.02

0.04

0.06

0.08

10
−6

10
−4

10
−2

10
0

10
−2

10
0

Υ

µ

 

 

(a)

(b)

FIG. 4. (Color online) (a) Index ϒ computed for a PIV exper-
iment. The intermittency ϒ maxima are localized near the walls
and trace the position of the time wandering shear layer at R = 0.
(b) Scatter plot of ϒ vs μ, the former displaying a much greater
sensitivity than the traditional intermittency index, despite the short
length of the time series.

structure functions, resulting in a lack of symmetry of the
μ field (not shown). As a result, μ fluctuates over a decade
around a value of about 0.05, while ϒ spans several orders of
magnitude, as can be seen in Fig. 4(b). This shows that ϒ is a
more sensitive tool to detect intermittency than μ.

Discussion. We have introduced an intermittency index ϒ

that can be interpreted as a statistical distance between the

best-fit linear ARMA model for a turbulent time series and the
simplest possible process, i.e., AR(1). We have compared such
an index with a classical intermittency index μ = ζ ∗

2 − 2
3ζ ∗

3 .
In statistically converged LDV series, the two parameters are
linearly related, with a regression coefficient R � 0.69. In
shorter PIV time series, ϒ catches important characteristics
of the mean flow in situations where μ cannot be computed
due to a lack of convergence. Therefore, the main advantage
of this index is the applicability to cases in which no big
data sets are available. Moreover, ARMA models contain the
information on nonlocal interactions between large and small
scales in the parameters φi and θi . In general, the AR(p)
part of an ARMA(p,q) process is the contribution of the
large scales and represents the persistence of the process.
If the process is more persistent than AR(1) with |φ| < 1,
higher values of p are required to explain all the correlation
coming from the large scales. Analogous considerations hold
for the MA(q) part. When � 	 � there is a clear separation
between large and small scales. On the other hand, when
their magnitude is similar such separation is not ensured
anymore [18]. Our results reinforce the hypothesis of [19]
that intermittency propagates in direct interactions between
large and small scales, rather than in cascades. Finally, our
method can be used to validate models based on the stochas-
tic differential equation [20] with respect to experimental
data.
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Abstract

We address the problem of defining early warning indicators of financial crises. To
this purpose, we fit the relevant time series through a class of linear models, known
as Auto-Regressive Moving-Average (ARMA(p, q)) models. By running such a fit
on intervals of the time series that can be considered stationary, we first determine
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the typical ARMA(p, q). Such a model exists over windows of about 60 days and
turns out to be an AR(1). Then, we define a distance Υ from such typical model
in the space of the likelihood functions and compute it on short intervals of stocks
indexes. Such a distance is expected to increase when the stock market deviates from
its normal state for the modifications of the volatility which happen commonly before
a crisis. We observe that Υ computed for the Dow Jones, Standard and Poor’s and
EURO STOXX 50 indexes provides an effective early warning indicator which allows
for detection of the crisis events that showed precursors.

Keywords: Stochastic modeling, Tipping points detection, Extreme events
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1 Introduction

In the late ’70s, a succession of currency crises generated interest in Early warning indica-

tors [22, 23]. Over the year, the indicators spread more generally to financial and economic

crisis, generating methodological debates [17, 15]. Traditional statistical approach to this

issue are based on specific properties of ideal statistical systems near critical transition: crit-

ical slowing down, modifications of the auto-correlation function or of the fluctuations [13],

increase of variance and skewness [18], diverging susceptibility [21, 4, 20], diverging correla-

tion length (see the book [25] for a comprehensive review). However, in many cases, these

approaches fail to detect the financial crisis. First of all, such methods are attractor based,

i.e. they assume that the system can be well described by relating the observation at the

time t with the observation at the time t+ τ by an empirical deterministic law describing

a stationary state of the system (the so called attractor). This approach fails in describing

financial data because, such processes involve a family of time scales rather than a single

scale τ , [9, 3]. A second origin for the failure of traditional early warning indicators is

due to the presence of human feed-backs on the system i.e. the constant attempt to keep

economy in a state fit to make profits. Such feed-backs create some delays between the

first early warning signals and the time at which the crisis is observed. In addition, tradi-

tional early warning indicators may be inapplicable in datasets containing a small number

of observations (see e.g. [14]), which is usually the case in financial time series. This sug-

gests that indicators based on single statistical properties are not well suited for financial

analysis and that crisis detection must involve indicators based on global properties of the

whole stochastic process. Here, we build a class of indicators based on the auto-regressive

moving-average processes of order p, q ARMA(p, q), widely used to model and forecast the

behavior of financial time series. We remark that the goal of this paper will not be to find

the best model to describe stock indexes and make predictions: this would require at least

the estimation of fractionally integrated (ARFIMA(p, d, q)) or conditionally heteroskedas-

tic (GARCH(p)) models, among others. We will rather assess a typical ARMA(p, q) model

able to capture the general features of the analyzed stock market and define the early

warning indicators as deviations from such a model in a suitable likelihood space. In the

first part of the paper, we recall some basics on ARMA(p, q) modeling and define corre-
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sponding early-warning indicators. We then check that these indicators are able to detect

the transition in theoretical financial models. We conclude the paper by presenting and

discussing the results of the analysis for some stock indexes.

2 The method

Let us consider a series Xt of an observable with unknown underlying dynamics. We

further assume that for a time scale τ of interest, the time series Xt1 , Xt2 , ..., Xtτ represents

a stationary phenomenon. Since Xt is stationary, we may then model it by an ARMA(p, q)

process such that for all t:

Xt =

p∑

i=1

φiXt−i + εt +

q∑

j=1

θjεt−j (1)

with εt ∼ WN(0, σ2) - where WN stands for white noise - and the polynomials φ(z) =

1−φ1zt−1− · · · −φpzt−p and θ(z) = 1− θ1zt−1− · · · − θqzt−q, with z ∈ C, have no common

factors. Notice that, hereinafter, the noise term εt will be assumed to be a white noise,

which is a very general condition [7]. For a general stationary financial time series, this

model is not unique. However there are several standard procedures for selecting the model

which fits at best the data. The one we exploit in this paper is the Box-Jenkis procedure

[5]. We choose the lowest p and q such that the residuals of ARMA(p, q) fit are uncorre-

lated: to this purpose, we perform a Ljung-Box test for the absence of serial correlation

(see, for example, [7]). This fixes p and q, and thus our statistical model. There are other

model selection procedures based on information criteria (Bayesan or Akaike information

criteria). We tested, that they all give clear indications for discriminating the model and

that they provide qualitatively the same results of the Box-Jenkis procedure. Intuitively, p

and q are related to memory lag of the process, while the coefficients φi and θi represent the

persistence: the higher their sum (in absolute value), the slower the system is forgetting

its past history.

Our definition of early warning indicators requires first the identification of the basic

ARMA(p,q) process (with p and q fixed) which is best suited to describe a Stock index, for
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a time interval such that it can be considered stationary. This basic process plays the role

of an attractor in the sense that it contains the information related to the dynamical prop-

erties of the system. With respect to the common attractors used in dynamical systems

theory, dynamical indicators as the Lyapunov exponents are replaced by the coefficients

φi and θj and the analogous of the attractor dimension is the number of terms p and q

to be considered. We will comment on these analogies and on the possibility of choosing

a reliable ARMA(p,q) for stock market indexes in the next section. Now we turn to the

ARMA based definition of the early warning indicators.

ARMA based Early warning indicators We consider a given Stock index, that is

assumed to faithfully reflect the financial or economic conjuncture. In the absence of crisis,

such index can be considered as stationary over a given time interval τ and can be fitted

by a reference ARMA model. When crisis approach, the volatility of the index increases,

and the best ARMA model describing the market will deviate from the basic one. The

strongest the crisis, the larger the deviations will be. This suggest to introduce an early

warning indicator as a suitable distance in the ARMA space from the reference model. For

this, we introduce the Bayesian information criterion (BIC), measuring the relative quality

of a statistical model, as:

BIC = −2 ln L̂(n, σ̂2, p, q) + k[ln(n) + ln(2π)], (2)

where L̂(n, σ̂2, p, q) is the likelihood function for the investigated model and in our case

k = p + q and n the length of the sample. The variance σ̂2 is computed from the sample

and is a series-specific quantity.

We can define a normalized distance between the referece ARMA(p, q) and any other

ARMA(p, q) model as the normalized difference between the BIC(n, σ̂2, p + 1, q) and the

ARMA(p, q) BIC(n, σ̂2, p, q):

Υ = 1− exp {|BIC(p+ 1, q)−BIC(p, q)|} /n. (3)

with 0 ≤ Υ ≤ 1: it goes to zero if the dataset is well described by an ARMA(p, q) model

and tends to one in the opposite case.
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It has been already observed that such indicators perform well in different physical

systems, providing more information than the usual ones, based on the critical slow down

due to the increase of correlations in the systems at the transition. These analyses have

been reported in [12] where indicators similar to Υ have been used to model different

physical systems: Ising and Langevin models, climate and turbulence.

3 Assessment of the reference model

We now perform the analysis on different stock indexes: the Dow Jones, the Standard &

Poor’s and the EURO STOXX 50. We consider databases of such indexes from January

1st 1990 to June 30th 2014 containing daily observations. The considered EURO STOXX

50 series is slightly longer (January 1st 1986 to June 30th 2014).

We first determine the time interval on which the series can be considered stationary.

We run the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for a unit root on the

time series with increasing τ for τ > 10 days. The test is successful for 10 < τ < 90

days but, as expected, results depend on how close to a crisis the window is taken. In

order to preserve enough statistical information we chose a time window τ = 60 days. We

tested that results presented are in fact stable for 40 < τ < 80 days. We then compute for

each index the reference ARMA(p, q) model using a statistical strategy : for each window

{Xt, ...Xt+τ} for t = 1, 2, ..., T − τ , being T the total length of the series, we fit the best

ARMA(p, q) describing the series in this time lag. We then count the frequency of all

ARMA(p,q) that have the same total order p + q and compute histograms of p + q. This

is shown in Fig. 1 for each of the three indexes. From the figure, we see that there is a

peak of probability around p+ q = 1. Since p and q are integers, and since we exclude pure

moving average (MA(1)) fits, this means that the most probable model has p = 1, q = 0.

So, for each index, we choose the reference model as an AR(1).

Once the reference model is established, we can now compute the Υ indicator over all

the time series, and see how it perform over a database of financial crises and by comparison

with other financial indicators linked to the volatility of the markets. We thus consider the

database [1] which reports the crises between 1940 and 1999, and the database [19] for the
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Figure 1: Assessment of the best ARMA(p,q) model. The histograms represent the number

of times (normalized to 1) that a certain p+q ARMA order appear as best fit for sub-series

of the originals in running windows of τ = 60 days. Left panel: analysis for the Dow Jones

index. Central panel: analysis for the Standard & Poor’s index. Right panel: analysis for

the EURO STOXX 50 index.

most recent ones. Naturally, we do not expect to get early warning indicators for crises

connected to exogenous shocks, such as natural disasters (hurricanes, floods, earthquakes)

or terrorism (Oklahoma bombs or September 11th 2001 events). The early warning, if any,

should appear before the corresponding crisis.

4 Analysis

For the daily series of the Dow Jones, the Standard & Poor’s and the EURO STOXX 50

indexes, we compute the quantity Υ defined in Eq. (3) using a running time windows of

τ = 60 days. At day t + τ we associate the Υ index computed using the observations

{Xt, ..Xt+τ}. We then smooth Υ data by using the moving average method with span of 5

days. We consider only values of Υ > 0.3.

For the Dow Jones index results are shown in Figure 2. The upper panel shows the series

of Dow Jones from January 1st 1990 to June 30th 2014, the central panel the daily changes

of the Dow Jones index and the lower panel Υ early warning indicator (blue), thresholded

as described before. The red stars indicate crisis of economical origins as derived from the

databases [1], whereas yellow stars refer to crisis of non-economical origin. Early warnings

provided by Υ are empirically associated to the respective crisis by red lines. Question
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marks represent early warnings not associated to effective economical crises. The first

thing to remark is that more than one warning is associated to the same crisis and that

the interval between the early warning and the crisis is not constant. If we compare these

results with the ones arising from physical systems and discussed in [12], the warnings

for financial crises seem to appear too early with respect to what observed in controllable

physical systems. The main difference of markets with respect to natural systems is that

the former feel and react to the effect of the crisis by delaying its emergence until the time

an official institution points to an economical problem. This usually happens when the

crisis itself is unavoidable. For the Dow Jones time series, the matching between crisis and

early warnings seem satisfactory although some warnings are of difficult interpretation.

A slightly different scenario appears when the Standard & Poor’s stock index analysis

is considered, as reported in Fig. 3. For this index some crises are well anticipated by an

increase on Υ, some others instead are not captured. In order to explain the difference

between the Dow Jones and the Standard & Poor’s behavior we have to recall the way they

are constructed: The major difference between them is that the Dow Jones includes a price-

weighted average of 30 stocks whereas the Standard & Poor’s is a market value-weighted

index of 500 stocks. We can speculate that for indexes computed on a larger number of

companies, crisis early warnings may be averaged out. In fact, if a relevant number of them

will not suffer the effects of the crisis, no warning will be provided. Another possibility is

that not all these companies have access to latest speculations on the market and therefore

most of them cannot react in advance producing no early warnings at all.

The latter analysis concerns the EURO STOXX 50 index, extensevily analysed in [6],

and it is reported in Fig. 4. As for the Dow Jones, the number of stocks considered is quite

limited and crisis are well highlighted. We can remark that the average delay between early

warning and crisis is shorter for the EURO STOXX than for the American indexes. This

might be due to the fact that the European market usually follows the warnings and the

speculations happening on the American side.
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Figure 2: Early detection of crisis based on the Dow Jones stock index analysis. Upper

panel: the series of Dow Jones from January 1st 1990 to June 30th 2014. Central panel:

daily changes of the Dow Jones index, red stars indicate crisis of economical origin found

in the databases [1, 19], yellow stars refer to crisis of non-economical origin. Lower panel:

Υ early warning indicator (blue) associated to the respective crisis by red lines. Question

marks represent early warnings not associated to effective economical crisis. See text for

more descriptions.
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Figure 3: Early detection of crisis based on the Standard & Poor’s stock index analysis.

Upper panel: the series of Standard & Poor’s from January 1st 1990 to June 30th 2014.

Central panel: daily changes of the Standard & Poor’s index, red stars indicate crisis of

economical origin found in the databases [1, 19], yellow stars refer to crisis of non-economical

origin. Lower panel: Υ early warning indicator (blue) associated to the respective crisis by

red lines. Question marks represent early warnings not associated to effective economical

crisis. See text for more descriptions.
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Figure 4: Early detection of crisis based on the EURO STOXX 50 index analysis. Upper

panel: the series of EURO STOXX 50 from January 1st 1986 to June 30th 2014. Central

panel: daily changes of the EURO STOXX 50 index, red stars indicate crisis of economical

origin found in the databases [1, 19], yellow stars refer to crisis of non-economical origin.

Lower panel: Υ early warning indicator (blue) associated to the respective crisis by red

lines. Question marks represent early warnings not associated to effective economical crisis.

See text for more descriptions.
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5 Discussion

We have introduced an early warning indicator Υ for financial crises of economical origin

based on the ARMA models. The indicator provides, for each day, a [0-1] distance with

respect to a reference model ARMA(p, q) which is able to fit the data on a certain window

τ far from the crisis events.

The first result of the paper is that it is possible to statistically deduct such ARMA(p,q)

model which turns out to be the simple AR(1) often emerging in the description of natural

phenomena driven by a Langevin equation, such as heavy particles in gas [2], polymers

[24] and even turbulence [10]. We strongly remark that such model is not the best model

to describe all the data of a specific index, but is the best one on a certain window τ

chosen as parameter of the method. In some sense, the introduction of this model plays

the role of the attractor of a physical system: attractor dimension is replaced by the total

terms p and q needed to describe the series and Lyapunov exponents are linked to the

magnitude of coefficients φi and θi. In physical systems crisis happen when the system

departs from its attractor and explore new portions of the phase space. In terms of ARMA

processes, crises happen when the model departs from the reference one and the series

is fitted by other orders than p, q. It has been reported in [12] that this picture is true

for physical systems ranging from toy models (Ising dynamics, Langevin problem) up to

complex systems (turbulent flows).

For stock indexes, the indicator is useful for most of the crises reported in the databases,

at least for the years we tested ( 1990 - 2014). The Υ indicator has different response

functions according to the indexes to which it is applied. The larger the number of stocks

used to construct the index, the lower is the early warning power of Υ. We have conjectured

that such phenomenon is due to the fact that in indexes including more companies early

effects of the crisis get averaged out either because some companies is not interested by the

crisis, either because they do not have at their disposal any instruments to figure it out.

The instruments currently used to keep track of the markets volatility have been in-

troduced by the CBOE (Chicago Board Options Exhange). Among such indexes, one of

the most used is the VIX [16], which measures the expected volatility at 30 days for the
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Standard & Poor’s. This index has been created for the investors to have an information on

the pure volatility of the market in the next month. In some sense, the VIX index should

feel the modification of the markets and anticipate their change. However, as reported by

CBOE [11, 8] VIX was not devised to predict stock prices, the direction of the market and

highs or lows. Moreover, our Υ indicator is entirely based on the available data, rather on

a forecast as the CBOE indexes. For a such a reason Υ will not be used as a substitute

for the VIX index but rather as a completely different financial tool. As explained in [16],

the VIX index is used to foresee on a month window the change of volatility in the mar-

ket, not systemic changes in the behavior of the market. When a statistical comparison

between the two indexes is done, the two indexes appear to be not correlated and they do

not have the same statistical behavior: by construction the VIX index possess the same

long memory and correlation structures of the S& P data series, whereas Υ consists of a

series of peaks whose significance appears only when the original data series deviates from

the AR(1) model. Υ therefore does not replace the VIX indexes: it is intended to forecast

market shocks on the long term and not to foresee short terms volatility fluctuations.
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Chapter 3

Part II

3.1 Overview on Part II

This second part of the thesis consists of two papers, developed during
a visiting period at the Department of Mathematics of the University of
Aarhus (Denmark), under the supervision of Pro�. Ole Barndor�-Nielsen
and Jürgen Schmiegel, who is also co-author of both papers.

The object of this part is the statistical analysis of the �ne structure
of turbulence, thus assessing features displayed at small scales, exploiting
the LDV high-frequency data. In particular, we construct a novel turbulent
observable and we show that it can be used as a proxy of the turbulent
velocity �eld. In order to do this, we prove that the time series of this
new variable shear various stylised features with turbulent velocity time
series. We provide a statistical description of the e�ects of intermittency
and of the universal features of the observable over a large range of time
scales. The main advantage of this variable is that it overcomes the prob-
lem of LDV measurements mentioned in Sec. 1.2, providing information
at the maximum available sampling frequency. Moreover, we characterise
the continuous-time dynamics of the energy budget of the system. This is
done starting from the computation of the realised volatility of the veloc-
ity �eld, interpreted as the kinetic energy of the �ow. In the framework of
ambit stochastics, we show that this quantity evolves in time as a multiplica-
tive cascade process, thus providing a powerful link between the statistical
modeling of turbulence and the underlying physical process.
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Particle arrival time and waiting time

Here, we still rely on datasets sampled in the VKE, in particular a panel
of time series sampled in a �ow with Re ∼ 105. More in detail, we have 18
time series of the vertical component of the velocity �eld, sampled through
the LDV technique for a total time T = 3600 s at an average rate of order
∼ 1 kHz, so that the sample size of each time series ranges from around
1.5 to 2.5 million high-frequency data. This allows us to investigate the
structure of turbulence at very small time scales.

As already mentioned in Sec. 1.2, the drawback of this kind of data
acquisition technique is the fact that the LDV tool samples the local ve-
locity when one of the passive tracer particles released in the �uid passes
through the grid point. This prevents us from controlling the time step,
which is also why the time series have di�erent sample sizes. In order
to extract the maximum possible information from this dataset, we have
to overcome this problem, without �ltering the time series, which could
change the properties of the data. In order to do this, we decide to exploit
the sequence of recording times of the LDV instrument instead of the ve-
locity: the intuition is that, since the tracers follow the streamlines exactly,
when a small, intermittent eddy passes through the recording point, the
velocity spikes correspond to a high number of particles carried in a small
time, thus resulting in frequent sampling and small time steps between sub-
sequent measurements. This variable can be also seen as the sequence of
arrival times of the tracer particles: in our procedure, we consider the �rst
di�erences of this sequence at lags k = 1, · · · , K, so that for each lag we
can physically interpret them as the waiting times for the next k particles
to arrive at the grid point.

We start from an exploratory analysis in order to assess the stationarity
of such increments and then to check if they share some of the stylised fea-
tures displayed by turbulent velocity time series. The increment sequences
are stationary and all of them present long-memory traits, quanti�ed by the
Hurst exponent: its value is always H > 1/2 and changes in a smooth way
with the lag. We also observe clearly non-Gaussian pdf's, with asymmetry
and kurtosis changing with the lag. As a �rst step to characterise the shape
of these distributions, we limit our analysis to the tail heaviness, quanti-
�ed by �tting a stretched exponential p(τ) ∝ exp{aτ b} and estimating the
stretching exponent b. In velocity increments, small values, corresponding
to heavy tails, are usually observed, together with a trend to increase at
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increasing lags and approaching the Gaussian limit b = 2. In this case, in-
stead, we observe Gaussian tales at k = 1 in all the samples, and increasing
values, corresponding to light tails, at increasing lags.

About this fact, we may argue that velocity spikes due to eddies are
linked to particle clusters and so to small waiting times. On the other
hand, the smallest possible time step that can be recorded by the instru-
ment is limited and such small values may be not much smaller than the
ones characterising the centre of the density, so that extreme values in the
velocity may be correlated to almost average values in the waiting times.
This problem still requires further investigation both from a statistical and
physical point of view in order to be fully understood.

A more complete characterisation of the density of the increments is
obtained through the NIG distribution. This is a four-parameter probability
density function which can be thought of as a Normal distribution whose
variance is allowed to vary randomly. This density admits both negative
and positive asymmetry and non-Gaussian kurtosis, including the Normal
distribution (and others) as a special case. For more details, see Appendix
B in Paper F and references therein. We �t the NIG to all the increment
sequences and we estimate the parameters through maximum likelihood,
obtaining good �tting in all cases. However, while asymmetry and kurtosis
usually vary in a smooth way with the lag for the velocity increments, the
same behavior is not observed here.

The NIG thus provides a parsimonious model for this process, at least
from a marginal point of view, at all lags. However, as already stated,
the variation of the estimated NIG parameters is such that no common
behavior is recognisable, making this description experiment-speci�c. On
the other hand, the universal nature of turbulence has been empirically
recognised at least since spectral (or variogram) estimations are available
and theoretically predicted in K41, even if only approximatively and in the
inertial range. Further attempts to extend universal scaling relations out of
the inertial range while keeping into account intermittency e�ects include
the concepts of Extended Self-Similarity (ESS) and its generalised version
(GESS), see [11]-[14] and [34] for more detail and rigor.

Here, rather than �nding universal scaling relations in the increment
statistics, we assess universality in terms of a time change, or change of
lag. Notice that each of our original series, and thus their increments, are
sampled in di�erent points of a strongly inhomogeneous and anisotropic
�ow, so that we can consider them as sampled in completely di�erent ex-
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periments. Loosely speaking, we look for some relationship that maps the
lag sequence of one increment process to the lags of another, so that the
distribution of the appropriately normalised samples at lags linked through
the time change are identical. We show that such a universal structure
can be successfully recovered, as already known for turbulent velocity and
�nancial time series, over a very large range of lags.

Other than providing a detailed description of important features of the
turbulence in the VKE, the main contribution of this analysis is that we
show how the sequence of measurement times of the instrument can be
exploited to obtain knowledge about the turbulence structure, overcoming
the problem of the irregular sampling of the velocity without �ltering the
velocity time series. Future extensions of this work may include an e�ort to
better understand the relationship between this observable and the velocity
�eld. Moreover, a global observable can be built from these series, as the
total number of measurements counted in a certain time step through all
the points of the grid: such observable, which takes integer values, displays
long memory and overdispersion, leading to the idea that might be itself
a global turbulent observable, which we leave for future investigation, also
given its analogy with integer-valued spread measures in �nance.

Energy dynamics and ambit stochastics

In the last part of the thesis, we assess the continuous-time dynamics
of the energy budget of the same �ow considered above. In particular, we
build a global positive de�nite observable from the original time series, as
the normalised global realised volatility of the velocity �eld. Physically, it
is interpreted as the normalised instantaneous kinetic energy of the whole
�ow (actually, the contribution from the sampled grid points), also known
as turbulence intensity. As already mentioned, in turbulent �ows the en-
ergy is propagated from large to small scales through a direct cascade: we
look for �ngerprints of such energy cascade by assuming a multiplicative
cascade model in the framework of the ambit stochastics. This is a re-
cently developed branch of stochastic processes (see, for example, [9] for
recent advancements) that allows us, in general, to write a spatio-temporal
stochastic process {Yt(x)}t∈R at point x and time t in the form

Yt(x) = µ+

∫

At(x)

h(x, ξ, t, s)σs(ξ)L(dξ, ds) +

∫

Dt(x)

q(x, ξ, t, s)as(ξ)dξ, ds.
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Here At(x), Dt(x) are ambit sets, containing information on the dependence
structure and usually estimated through sample correlations; h, q are de-
terministic weight functions. If At(x) = A + (t, x) they are convolutions;
σt ≥ 0, at are time-stationary stochastic �elds, σt being the volatility �eld;
L is a Levy basis.

It is clear that such framework is much more versatile than assuming an
Ornstein-Uhlenbeck process for the continuous-time evolution of the observ-
able. The present case admits some simpli�cations. Since our observable is
positive de�nite, we can model its logarithm in this framework, so that the
observable will be characterised as the exponential of a stochastic integral.
In particular, we assume a multiplicative cascade model as the one proposed
in [33] for the energy dissipation ε, which can be expressed as

δ(t) = exp

{∫

A′(t)
Z(da)

}
.

Such model is speci�ed once the shape of the ambit set A′(t) and the Lévy
basis Z are determined. The �rst is estimated by the scaling in time of two-
point multiplicative correlations and contains the information about the
dependence structure of the process; once this is known, only the marginal
distribution of the Lévy basis is required. We have no physical prescription
for the distribution of ln δ(t), while we know from K62 that the expected
distribution for the natural logarithm of the dissipation is Gaussian. Notice
that, if we could assume Gaussian components for the velocity �eld, we
would have a prescription on the distribution of the intensity; since the
Gaussian hypothesis is not satis�ed by turbulence because of intermittency,
we exploit once again the versatility of the NIG distribution.

We obtain a very good NIG �t for the marginal distribution of ln δ(t),
with an exponential left tail. On the other hand, the two point multiplica-
tive correlations (also known as correlators) display a clear scaling in time,
which can be approximated by a simple polynomial function of the lag:
this function de�nes the shape of the ambit set. At this point, the model is
estimated and the process can be simulated, if needed. However, a model
validation is required, since our model is based on second order proper-
ties, while cascade processes leave precise �ngerprints, also on higher-order
properties. The �rst �ngerprint we look for is the self-scaling of the two-
point correlators of di�erent orders, while the second one is the capability
to predict the three-point correlator from the two-point ones. As shown in
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the data analysis section of Paper F, both �ngerprints are clearly displayed
by the considered dataset, so that our model is well speci�ed in such a way
to provide an e�ective characterisation of the continuous-time dynamics of
the energy of the �ow.
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Abstract

In this paper we discuss the statistical analysis of an inhomoge-
neous and anisotropic turbulent �ow. The analysis considers eighteen
time series from the von Kármán Experiment, sampled using the Laser
Doppler Velocimetry technique. First, we identify the recording times
of the instrument as a proxy of the turbulent velocity �eld and we con-
sider the log-increments of this process in analogy with the classical
velocity increments. We show that this variable shares some stylized
features with the velocity increments, which in turn often display many
analogies with log-returns from �nancial markets. In particular, the
increments at all lags are well �tted by densities encompassed by the
Normal Inverse Gaussian distribution. Moreover, both the process and
its increments at all scales display long memory-like behavior. On the
other hand, while the tail heaviness also changes with the lag as in
the case of turbulent velocity and �nancial markets, its value implies
Gaussian to lighter tails, rather than heavy tails with a convergence
towards Gaussianity at large scales. We discuss the universal nature
of the evolution of the densities across time scales. We show that the
densities of the log-increments of time series from di�erent points of
the inhomogeneous experiment, which are virtually di�erent turbulent
experiments, behave in a universal way in terms of a deterministic time
change.
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1 Introduction

Since the fundamental work by [18], the need for a statistical ap-
proach to the study of turbulence has become evident. The realization
of a turbulent �eld, such as the �uid velocity or a passive tracer (e.g.
the temperature), appears to be generated by a stochastic process:
thus, the characterization of any variable sampled in a turbulent ex-
periment requires a statistical approach.

In the following years, growing attention has been devoted to reach
a better understanding of the intermittency of the turbulent velocity
�eld, i.e. the presence of clusters of strong, high-frequency �uctuations
around the mean velocity. This is one of the most peculiar features of
turbulence, even though it is also known to appear in �nancial markets
data, as stochastic volatility characterizing the time series of the log
returns, as discussed, for example, in [6]. As described in [17], inter-
mittency results in an approximate multifractal and universal scaling
of the moments of the velocity increments, also known as structure
function:

Sn(s) = E[(v(t+ s)− v(t))n] ∝ |t|ζ(n), (1)

where v(t) is the main component of the three-dimensional velocity
vector at time t, ζ(n) is the multifractal exponent, depending only on
the moment order, s is a time increment falling in the inertial range.
The latter is de�ned as the interval of time scales corresponding to
frequencies such that the spectrum of the velocity �eld satis�es the
scaling relation

E(k) ∝ k−5/3.
These properties hold in the limit of very large Reynolds number,
de�ned as the non-dimensional quantity Re = UL

ν , where U is the
mean velocity, L is the linear length scale of the �ow domain and ν
is the kinematic viscosity of the �uid. Notice that a direct link exists
between these two concepts: the higher Re, the larger the interval of
time scales (or frequencies) characterized by the inertial range scaling
law.

Besides the aforementioned multifractal scaling of the structure
functions, we brie�y recall some other stylized facts de�ning intermit-
tency in turbulence.

• High-pass �ltering can highlight intermittency in a time series of
the turbulent velocity: if the �ltering frequency corresponds to a
time scale smaller than the upper limit of the dissipation range,
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the �ltered signal displays evident clusters of activity character-
ized by spikes.

• The �atness of the high-pass �ltered turbulent velocity grows
unboundedly with the �ltering frequency.

• The local slopes of the high-order structure functions show devia-
tions from the prediction of the celebrated 'K41 theory' presented
in [18].

• The energy dissipation shows a very irregular behavior, with clus-
ters of activity featured by high spikes.

• The probability density function (pdf) of the velocity increments
[v(t+ s)− v(t)] changes with the lag s. In particular, the heavi-
ness of the tails decays with the lag and, at the large scales, the
distribution converges towards a Gaussian-like distribution.

The last phenomenon has been addressed in detail in [4], where the
authors propose a more complete description of the distributions of
the velocity increments at all available time scales through the Normal
Inverse Gaussian law (NIG).

The scaling relation (1) is said to be universal because, once the
Reynolds number is high enough to let the inertial range appear, the
exponents ζ(n) are universal, with no dependence on the experimental
setup. In the past decades, many e�orts have been devoted to extend
tise concept of universality to smaller Reynolds numbers and to a set
of time scales wider than the inertial range. These include the hierar-
chical models introduced by [20] (She-Leveque Hierarchical Structure,
SLHS), the concept of Extended Self-Similarity (ESS) proposed by [7]
and [8] and its generalization (GESS) by [9] and [10].

More recently, in [5] ([2],[3],[6]) it is shown that SLHS and GESS
can be considered as the consequence of a more general concept termed
Stochastic Equivalence Class (SEC), relating the density of velocity in-
crements at di�erent scales and from di�erent experiments by applying
a change of scale. The proposed change of scale results in a collapse
of the density of velocity increments onto a universal evolution across
scales. This result complements the fact that the pdf of velocity incre-
ments can be well approximated within the class of NIG distributions
at all time scales and all amplitudes, and for a wide range of exper-
imental set-ups: NIG distributions provide a parametric description
of the density of velocity increments and the time change describes
the relationship among di�erent experiments. This framework can
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be applied to detect universality in time series sampled across di�er-
ent experiments. The purpose of the present paper is to investigate
the potential of SEC and the corresponding NIG analysis to describe
the statistics of the �ow sampled at di�erent points of a single non-
homogeneous and anisotropic experiment. Such a situation is given in
the close von Kármán �ow produced in the von Kármán Experiment
(VKE), as described by [19]. In this paper we consider a realization
of the VKE in which the velocity is sampled using Laser Doppler Ve-
locimetry (LDV), a technique that allows to obtain high frequency data
on a spatial grid, but not to control the time step. In [16] many features
of the VKE turbulent �ow have been investigated by applying linear
time series analysis and the estimation of the Hurst exponent. This
procedure was feasible because the data were collected using Stereo-
scopic Particle Image Velocimetry (SPIV), which produces regularly
spaced time series for the three components of the velocity vector.
On the other hand, LDV allows for much larger sampling frequencies.
This provides information about the small scales of turbulence and
makes robust estimation possible, but the resulting time series are not
regularly spaced.

To account for the problem of the uneven spacing of the time se-
ries, we consider the LDV sampling time instead of the velocity. The
increments of this variable at lag k can be interpreted as the waiting
times for the next k measures to be performed. This variable is not
traditionally exploited in turbulence. We argue that it can be linked
to the �ow structure, since each measurement corresponds to a distur-
bance produced by a passive tracer when it interacts with the LDV
system. Since passive tracers follow the streamlines with no deviations
due to inertia, the series of times between subsequent measurements
are directly linked to the distribution of the particles in the �ow.

In this paper we show that, besides providing a statistical descrip-
tion of the �ow in the VKE, waiting times have many features in
common with the velocity sampled in a turbulent �ow, letting us ex-
ploit the LDV information in a more complete manner. In particular,
we show that waiting times display long-range dependence and heavy
tails that vary with the lag. We also address, in detail, the evolution of
the densities of waiting times across lags from the perspective of NIG
distributions. Based on that we provide evidence of the appropriate-
ness of SEC to directly relate the statistics of the LDV measurements
at di�erent spatial locations.

The paper is structured as follows. In Section 2 we describe the
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experimental setup, the sampling technique and the resulting dataset.
We then properly de�ne the waiting times and perform an explorative
analysis. In Section 4 two main stylized facts about intermittency
are recalled, with focus on the behavior of the increments: the long
memory and the tail heaviness. As a measure of the long memory
we compute the Hurst exponent, while the tail heaviness is quanti�ed
by stretching exponents. Di�erences and analogies between waiting
times and turbulent velocity measurements are discussed. In Section
5 we brie�y introduce NIG distributions and analyse the densities of
waiting times with this �exible class of laws. Finally, we apply the
SEC framework and compare the results to the corresponding �nding
for turbulent velocity. Section 6 contains a summary of the results and
the conclusions.

2 Description of the data

We analyze eighteen datasets, consisting of recording times and
one-point measurements of the vertical component of the �uid velocity
�eld produced in the von Kármán Experiment (VKE), designed and
performed at the Commissariat Ã l'Énergie Atomique (CEA) in Paris.
A detailed review of the experiment can be found, for example, in [19],
[15] and [14]. The main feature of the VKE framework is its capability
to produce very high Reynolds numbers (Re ∼ 106) with a compact
experimental setup.

The �uid consists of a solution of water and glycerol, making it pos-
sible to modulate the viscosity, seeded with passive particles, so that
the measurements can be performed through Laser Doppler Velocime-
try (LDV). Measurements of the velocity �eld are obtained through
a He-Ne Flowlite Laser with λ = 632.8 nm. Either the axial or the
azimuthal component of the velocity is directly measured; the radial
component is recovered using ∇·v = 0, which is legitimate by the fact
that the time-averaged �eld is axisymmetric and solenoidal. The data
consist of measurements of the �eld on a 11× 17 points grid, with an
average data rate of about 0.5 kHz; however, only 18 time series are
retained discarding spurious data and boundary e�ects.

The Reynolds number of the considered experiment is Re = 105;
the �uid is water kept at a temperature θ = 20 Â◦C, with correspond-
ing kinematic viscosity ν = 1.0 · 10−6m2s−1.

The total measuring time is �xed at T = 3600 s, but the number of
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measurements in each time series depends on the number of particles
passing athrough the corresponding measuring point during the exper-
iment. This implies that the length of the time series is not �xed, as
shown in table 1.

Series Sample size Average time-step (ms)
1 2462311 1.462039
2 2181160 1.650496
3 2143198 1.679727
4 2443088 1.473544
5 2006618 1.794062
6 2292121 1.570594
7 1994104 1.805317
8 2148151 1.675859
9 2119348 1.698633
10 2060018 1.747554
11 1644393 2.189256
12 1885173 1.909638
13 1978781 1.819298
14 2116351 1.701036
15 1490146 2.415867
16 1435270 2.508236
17 1736179 2.073516
18 1633155 2.204321

Table 1: Sample size at each measuring point (labelled by time series number)
and corresponding average time-step in milliseconds.

Also, and most important, the device can perform a measurement
only when a particle passes through a grid point, so that the time step
cannot be controlled.

Let N be the length of the time series, expressed in number of mea-
surements. At each point we obtain two series, tj and vtj : vtj is the
vertical component of the velocity vector, indexed by the measuring
times tj with j = 1, . . . , N and tN = T . It is clear that vtj are irreg-
ularly spaced time series; on the other hand, tj is a regular sequence,
since j runs on the positive integers. We aim to study the behavior of
this variable. The sequence {tj}j∈N+ is increasing and can be written
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as
tj = µj + t′j

where µj = j∆t, ∆t = T/N is the average time-step and t′ is the
�uctuating part of the process. The term µj can be easily removed
to obtain a series of realizations of the stochastic disturbances {t′j}.
The resulting series are presented in Fig. (1) and Fig. (2), where
in each panel the realization of {t′j} (in seconds) is plotted against
the normalized index j/N for each of the measuring points. For a
�rst characterization, we apply basic time series analysis methods, as
described, for example, in [12] and [13].

An augmented Dickey-Fuller test has been performed to test the
unit root null hypothesis, resulting in a non-rejection with p-values
ranging from 0.56 to 0.61 for all the time series. After �rst-di�erencing,
the augmented Dickey-Fuller test is always signi�cant with all the p-
values smaller than 0.01: we may assume stationarity of the di�erenced
series.
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Figure 1: Disturbances {t′j}, series 1-9.
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Figure 2: Disturbances {t′j}, series 10-18.
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3 The increment process: waiting times

We consider the sequence of measuring times {tj}, from which we
de�ne the k-lag �rst order di�erences, k ∈ N,

∆tkj = tj+k − tj (2)

To cover a wide range of time scales, we chose the set of lags k ∈
K = {1, 10, 20, . . . , 1200}. For k = 1, {∆t1}j is the process describing
the waiting time for the next particle to pass through the measuring
point; so, for each k, {∆tk}j is the sequence of times in which the next
k particles will pass through the given grid point.

Let us consider how the new variable ∆t1 brings information about
the turbulent �eld. The intuition is that, since the particles are passive
tracers, not only their velocity will be equal to the local �uid velocity,
but also their spatial distribution will follow the streamlines, marking
the local structure of the �ow. Consider, as an example, the case of a
laminar �ow seeded with well-mixed passive particles: we would expect
a process such that the deviations from the mean of ∆t1 (and thus from
the average time-step) would be white noise. For the available dataset,
the null hypothesis of white noise for ∆t1 is rejected in a Ljung-Box
test with p-value < 2.2 · 10−16 for all the series.

Accordingly, the inspection of the global and partial autocorrela-
tion functions (hereinafter ACF and PACF, respectively) suggests the
presence of a serial dependence in the datasets. In Fig. 3 both au-
tocorrelation functions are shown for series 17; a similar behavior is
found in all the series. The values of the correlations are low, but still
signi�cantly di�erent from zero, since the con�dence bands are very
thin, due to the large sample size. This is true for a wide range of
lags, suggesting the presence of long range dependence. This idea is
con�rmed by the estimated values of the Hurst exponent of all the
eighteen series, ranging from 0.56 to 0.62 as shown in Table 2. The ex-
ponents have been computed according to the Whittle MLE estimator
(see, for instance, Section 6.1 of [11].
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Series Hurst exponent
1 0.5978067
2 0.6238351
3 0.6188352
4 0.6060019
5 0.5914473
6 0.6059191
7 0.6012453
8 0.5897616
9 0.5823103
10 0.5856560
11 0.6106381
12 0.6116846
13 0.5906467
14 0.5771938
15 0.5963672
16 0.5931036
17 0.5733799
18 0.5649695

Table 2: Hurst exponent.
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Figure 3: ACF and PACF of ∆t1, series 17.

For a �xed lag k the increments can be de�ned for overlapping
or non-overlapping observation windows. In the overlapping case, the
simple �rst-order di�erence of the series is computed, as in Equation
2. For non-overlapping increments, the di�erences are obtained from

∆̃t
k

j = tjk+1 − t(j−1)k+1, j ∈ 1, . . . , L, L = bN/kc − 1. (3)

Whatever the de�nition adopted, the variable of interest in our analysis
will be the natural logarithm of this quantity

τkj = log(∆tkj ) (4)

and centered by subtracting the sample mean from each series.
Note that non-overlapping increments series are much shorter.
On the other hand, overlapping increments introduce spurious se-

rial correlations in the datasets. This can be easily observed comparing
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the ACF and the PACF in the two cases. In Fig. 4 we show this for
the increments at lag 10 for series 17. It is clear that overlapping incre-
ments de�ne a process with a much stronger dependence, evident from
the smoothness of the series, from the linear decay of the ACF and the
high-valued spikes in the PACF with period equal to 90 lags and start-
ing from 1 at lag 1. On the contrary, the plot for the non-overlapping
increments suggests at least weak stationarity for the series, the ACF
displays long memory but no random walk-like persistence and the
PACF rapidly decays.

The main part of our analysis, presented in Section 5, aims to �t a
proper distribution to the pdf of the increments and to compare the �ts
obtained at di�erent lags at di�erent points. To prepare for that, we
run a two-sided Kolmogorov-Smirnov test under the null hypothesis of
identical distribution of overlapping and non-overlapping increments
for all the series and all k ∈ K. For all datasets and lags, the null hy-
pothesis is not rejected with p-values always larger than 0.2. Thus, we
may choose overlapping or non-overlapping increments for the density
estimation.
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Figure 4: Comparison between overlapping and non-overlapping increments
at lag 10 for series 17. Plot of the �rst 1000 data (top panels), ACF up to
lag 200 (central panels) and PACF up to lag 200 (lower panels).
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4 Preliminary analysis: long memory and

tail heaviness

For a preliminary characterization of the evolution of the densities
of increments across lags we now consider, in more detail, long memory
and heaviness of the tails. We expect an analogy to what is observed for
velocity increments (see [6] and references therein), where the densities
evolve from heavy tails at small scales/lags towards an approximate
Gaussian shape at larger scales/lags. This behavior is sometimes called
aggregational Gaussianity in the literature.

4.1 Long memory of the increments

We have already pointed out that ∆t1 is a long memory process,
with Hurst exponent larger than 0.57 for all time series. We investigate
the behavior of the Hurst exponent of the non-overlapping increments
in more detail for k ∈ K. As in the previous section, the Hurst expo-
nent is computed via Whittle MLE estimation, as in [11]. Results are
shown in Fig. (5).

While the values of the Hurst exponent are quite close to 0.6 for
the increments of all time series at lag 1, as already shown in Table (2),
the values at increasing time scales show speci�c features depending
on the sampling point in space. Three types of speci�c behavior can
be observed. For some of the datasets (1,2,3,4,5,7,9,11,12) the value of
H steadily increases with the lag. Most of the other datasets show a
plateau or a slight decrease after a steep ascent at small lags. Dataset
18 is an exception, reaching a high peak around lag 300 and then
rapidly decreasing. As a synthetic measure of these discrepancies, we
may compute the variance of H among the datasets, σ2H . As shown in
Fig. (6), this quantity varies smoothly as a function of the lag, starting
from a value one order of magnitude smaller than the ones resulting
for larger lags.

The di�erent behavior of the Hurst exponent with the lag for di�er-
ent time series might be linked to the inhomogeneous and anisotropic
nature of the �ow: [16] show that the estimated Hurst exponent for
the SPIV velocity time series traces e�ciently the local features of the
�ow.
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Figure 5: Estimated Hurst exponent for the increments of each time series
as a function of lag.
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Figure 6: Variance of H among the dataset, σ2
H , as a function of lag.

4.2 Stretched exponential tails

Besides the long memory of the process, also the shape of the dis-
tribution of the log-waiting times is expected to change with the lag,
if this variable has traits in common with the turbulent velocity. We
quantify this change by �tting a stretched exponential

p(τ) ∝ exp{aτ b} (5)

to the tails of the distributions and consider the value of the stretch-
ing exponent b. Here we consider large amplitudes that are more ex-
treme than 10% of the minimum/maximum value of the corresponding
tail. Classical �ndings for velocity increments (see [6] and references
therein) show values of the exponent growing as a function of the lag,
approaching an approximate Gaussian limit b ≈ 2 at large time scales.
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We perform the estimation of the stretching exponent b both on
the left and right tail for large amplitudes, considering values more
extreme than, respectively, the 0.1 and 0.9 percentile. Results are
summarized in Fig. (7) and (8) for the left and right tail, respectively.

As for velocity increments, the stretching exponent is an increasing
function of the lag. On the other hand, the values are systematically
larger; in particular, at lag 1 the value is always very close to b = 2, so
that the transition is from Gaussian to lighter tails, rather than from
heavy to Gaussian ones.

It is worth to mention that the �ts for the right tail result in rel-
atively small values of the residual sum of squares (RSS) for all the
series at all the lags, while for the left tail we have values increasing
with the time scale, in particular for series 9 and 18. More in detail,
the overall range of RSS is [2.37 · 10−5; 3.13] for the right tail and
[2.1 · 10−4; 41] for the left tail; the maximum values for the left tail of
datasets 9 and 18 are, respectively, 36.5 and 41, even though values
larger than 10 result also in other series at moderate and large lags.

Thus, an analysis based on the tail heaviness results in a smooth
transition from Gaussian to very fastly decaying tails. This fact is in
contrast with the results obtained in the past for the velocity incre-
ments: while the heaviness of the tails still decreases with the time
scale, for the turbulent velocity the Gaussian constitute the upper,
rather than the lower limit of the tail evolution.
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Figure 7: Estimated stretching exponent for the left tail of the distribution
of the increments of each time series as a function of lag.
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Figure 8: Estimated stretching exponent for the right tail of the distribution
of the increments of each time series as a function of lag.
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5 Parsimonious and universal descrip-

tion of the waiting times

In section 4 we gave a preliminary description of the behavior of
the waiting times addressing the long memory and the tail heaviness.

In this section, after a brief introduction to the NIG distribution,
we further investigate the distributions of waiting times. In particu-
lar, we address the universal features connecting the di�erent spatial
locations.

5.1 Normal Inverse Gaussian Distribution

The NIG distribution was introduced in [1]. This �exible four-
parameter family of distributions in the real line is given as

p(x;α, β, µ, σ) = a(α, β, µ, σ)q

(
x− µ
σ

)−1
K1

{
σαq

(
x− µ
σ

)}
eβx,

(6)
where α is a shape parameter, β a skewness parameter, µ is a location
parameter and σ is a scale parameter. Here,

q(x) =
√

1 + x2

a(α, β, µ, σ) = π−1α exp
{
σ
√
α2 − β2 − βµ

}

and K1 is the modi�ed Bessel function of the third kind and index 1.
We have that µ ∈ R, σ ∈ R+, 0 ≤ |β| < α.

The shape of the NIG distribution can be described by the sym-
metry χ and the steepness ξ, de�ned as

χ = ρξ

ξ = (1− γ)−1/2

where ρ = β/α and γ = σγ = σ
√
α2 − β2. By construction, χ ∈

(−1, 1) and ξ ∈ (0, 1). Moreover, the equation ξ = |χ| de�nes a tri-
angle in the rectangular interval (−1, 1)× (0, 1) which contains all the
possible NIG laws.The lower edge of the triangle corresponds to the
Normal distribution.

The �exibility of the pdf (6) admits asymmetric distributions (pa-
rameter χ)and heavy, semi-heavy and Gaussian tails (parameter ξ).
This feature makes it an e�ective tool to describe turbulent velocity
increments, which usually show a transition from heavy to Gaussian
tails, when moving from the smallest to the largest time scale.
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5.2 NIG �ts

The typical behavior of the log-histogram of waiting times across
lags is shown in Fig. 9, for dataset number 7 at lags k = 1, 10, 20, 100,
200, 500, 800, 1000, 1200. Most of the other spatial locations show a
similar behavior. We summarize the main features as follows.

• All datasets display a negative asymmetry at lag k = 1, which
tends to decrease for increasing lags.

• Three of the datasets, corresponding to measuring points number
4, 14 and 18, manifest a range of lags in which the distribution
is positively skewed (e.g., see Fig. 10 for the shape triangle of
series 4).

• Very large lags (k = 5000, 10000) have been additionally tested,
still not leading to normality of the distributions. The null hy-
pothesis of normality has been tested through a Pearson's chi-
squared test, leading to rejection at all levels, with p-values vir-
tually equal to 0 for all the datasets.

• The �ts appear to be good at all lags; for lags of order k ' 10
some outliers appear in the left tail of the distribution. It is
however worth to notice that the value of the log-histogram, in
these cases, is never higher than -7.

These results con�rm that a representation of the log-waiting times
distribution by the NIG law is adequate.The corresponding represen-
tation within the NIG shape triangle is exempli�ed in Fig. (10) - (11).
It appears that, for increasing lags, the distribution of the log-waiting
times tends to depart from normality. This feature, opposed to what
might be expected from the law of large numbers, re�ects the long
memory of the process. Further considerations on the distribution of
the log-waiting times, in particular on the nature of the right tail of
the distribution of large amplitude data, will be presented in the next
Subsection.
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Figure 9: Log-histograms and superimposed NIG �ts for series 7 at lags k =
1, 10, 20, 100, 200, 500, 800, 1000, 1200.
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Shape triangle for series 4
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Figure 10: NIG shape triangle for series 4, clearly showing the transition
across the half of the triangle characterized by positive asymmetry.
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Figure 11: NIG shape triangle for series 4, clearly showing the transition
across the half of the triangle characterized by positive asymmetry.
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5.3 Universality and Change of Lag

An important and interesting issue is the question whether the
evolution across lags at di�erent spatial locations can be modeled by
selecting di�erent lags at di�erent spatial locations. Such a problem
has been addressed in [2,3,6] for distributions of velocity increments.
Here, we follow this procedure.

5.3.1 Universality and the Stochastic Equivalence Class

Let u(i)(k) = τkj,(i) denote the waiting times at lag k and at spatial
location i = 1, 2, · · · , 18. The key idea exploited in [2,3,6] is the ques-
tion of the existence of deterministic functions F (i) and g(i) for each
spatial location such that the following Stochastic Equivalence Class
(SEC) is ful�lled

u(i)(k(i))

g(i)(k(i))

d
=
u(j)(k(j))

g(j)(k(j))
⇐⇒ F (i)(k(i)) = F (j)(k(j)). (7)

Here we assume that F (i) is monotonic. The existence of such a SEC
then implies a change of lags relating di�erent spatial locations k(i) =
(F (i))−1(F (j)(k(j))). It is this change of scales that results in a collapse
of the corresponding densities. Provided that such a SEC exists, one
can estimate the corresponding change of lags by using the procedure
suggested in [2,3,6]:

1. Choose a reference dataset (j), in this case series 2.

2. Compare c(i)4 (k) and c(j)4 (k) with c4 = c4/(c2)
2 and k ∈ K.

3. Choose, for each series, the couples (k1, k2) such that c(i)4 (k(i)) =

c
(j)
4 (k(j)).

4. In addition, we choose: g(j)(k) = 1 and g(i)(k(i)) =

{
c
(i)
2 (k(i))

c
(j)
2 (k(j))

} 1
2

.

5. Kolmogorov-Smirnov test with α = 0.01 for equality in distri-
bution of the scaled log-waiting times, as in the l.h.s. of Eq.
7.

According to these rules, we use the standardized fourth order cu-
mulants as the functions F and the second order cumulants as the
deterministic functions g to rescale the variable. Two remarks are in
order. A strict equality for the time change functions, as required
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at point (3), can hardly be found. It can be replaced with a looser
argument, based, for example, on the relative error:

∆ij =
|c(i)4 (k(i))− c(j)4 (k(j))|
|c(i)4 (k(i))|+|c(j)4 (k(j))|

2

. (8)

After running some di�erent test analyses, a conservative condition
∆ij < 0.2 seemed adequate to our case. In fact, the condition could be
more strict, but it appeared that this does not a�ect the conclusions
presented below.

5.3.2 Results

The behavior of c(i)4 (k) is monotonically decreasing for all the series.
The ranges of values can be very di�erent from one dataset to another,
as an e�ect of the inhomogeneity of the VKE. Fig. 12 shows c(i)4 (s) for

some datasets, compared to c(2)4 (s) for the reference dataset.
Analysing all spatial locations we formed 37837 possible combina-

tions that satis�e the condition (8).
All these combinations have been tested for equality in distribution

through a two-sided Kolmogorov-Smirnov test at a level α = 0.01. Let
us recall that, given two samples of sizem and n, with empirical cumu-
lative distribution functions Fm and Gn respectively, the Kolmogorov-
Smirnov test statistic is de�ned as:

Dmn =

(
mn

m+ n

) 1
2

sup
x
|Fm(x)−Gn(x)|.

It is clear from this equation that, when mn� m+ n, i.e. when both
samples are very large, the test statistic assumes high values, so that
the test highly tends to over-reject the null hypothesis of identical
distributions. Here we exploit the smaller sample size of the non-
overlapping increments to perform the test. The null hypothesis of
identical distribution at α = 0.01 is not rejected for 26629 on 37837
couples. This means that, despite of the looseness of condition (8) and
of the still very large sample size at small lags, we observe a collapse
of the densities in the 70% of the tested couples of sequences.
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29



6 Conclusions

We perform a statistical analysis of the turbulent �eld in a close
von Kármán �ow at a very high Reynolds number, sampled in eighteen
points in space. Thanks to the inhomogeneity of the von Kármán �ow,
the resulting time series can be considered as realizations of di�erent
turbulent experiments.

We exploit the recording times of a Laser Doppler Velocimetry de-
vice as a proxy of the turbulent �eld, using the log-waiting times in
analogy with the velocity increments in classical turbulence analysis
and with the log-returns in �nance. We show that the considered proxy
variable shares some stilyzed features both with turbulent velocity and
�nancial markets: long memory-like behavior at all lags, shape of the
pdf and tail heaviness changing with the time scale. The tail heavi-
ness displays a clear di�erence with respect to the classical �ndings,
according to which the tails can be described by a stretched exponen-
tial with stretching exponent approaching the Gaussian value b = 2
at large lags: in the case of the waiting times, the Gaussian limit is
recovered at lag 0 for all the available time series, while growing values
characterize the larger time scales, leading to light tails.

We then perform the analysis of the pdf of the log-waiting times.
We �nd that a pdf of the class of the Normal Inverse Gaussian distri-
bution describes well the log-waiting times at all lags. On the other
hand, the representation of the evolution with the lag of the shape of
the NIG density for each dataset through the shape triangle, results in
a complex and non linear (in terms of straightness of the path across
the triangle) behavior. However, if the log-waiting times are a good
proxy for the turbulent �eld, we expect to be able to recognize a uni-
versal evolution of the pdf across the time scales. To this purpose,
we introduce a deterministic time change in terms of the fourth order
cumulants of the process and we show that such time change results
in a collapse of the densities of the log-waiting times, at di�erent lags
and from di�erent samples, to tha same law over a large range of time
scales, exceeding the inertial range.

Possible further developments of the work should include a better
understanding of the physical meaning of the log-waiting times and
their relation with the turbulent velocity �eld. Moreover, an investi-
gation of the link between the universal description given in this paper
and the more classical frameworks encompassing universality but valid
only in the inertial range, such as GESS, may be appropriate, as al-
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ready been proposed in [5].
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Abstract

We model the evolution in time of the energy budget of a turbu-
lent flow, quantified by the turbulence intensity. We assume a multi-
plicative cascade as the data generating process, in analogy with the
turbulent energy dissipation. In few words, the natural logarithm of
the process can be written as the integral of a Lévy basis over an am-
bit set, a class of models proposed for the energy dissipation in [12].
The model is specified by the distribution of the Lévy basis and by
the scaling with the lag of two-point correlators. The self-scaling of
two-point correlators and the prediction of three-point correlators are
used as fingerprints to evaluate the appropriateness of the model.

1 Introduction

In this paper we characterize the energy budget of an inhomogeneous
anisotropic flow in terms of a continuous cascade process. In partic-
ular, we analyze a dataset produced in the von Kármán Experiment
(VKE), performed at the Commissariat á l’Énergie Atomique (CEA)
in Paris. The experiment consists of a realization of the von Kármán
flow, obtained with a compact experimental setup, described in detail
by [11]. This is designed to control and increase the Reynolds number
up to Re ∼ 106, in order to obtain a fully turbulent stationary flow;
the fluid is a solution of water and glycerol, so that the viscosity can
be modulated. The Reynolds number of the considered experiment is
Re = 105; the fluid is pure water at a temperature θ = 20 C and the
corresponding kinematic viscosity is ν = 1.0 · 10−6 m2s−1. The fluid is
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seeded with passive particles, exploited to sample either the axial or
the azimuthal component of the fluid velocity field on a 11× 17 point
grid by means of Laser Doppler Velocimetry (LDV). The measurement
is performed by a He-Ne Flowlite Laser with λ = 632.8 nm, with an
average data rate of ∼ 0.5 kHz when a particles crosses a grid point.
The radial component of the velocity vector is recovered using the
fact that ∇ · v = 0, since the mean velocity field is axisymmetric and
solenoidal. The time series affected by spurious data and boundary
effects are discarder, so that of the original 187, only 18 are retained;
in this paper we consider measurements of the azimuthal component
of the velocity vector.

The total duration of the experiment is fixed at T = 3600 s, but
the number of measurements in each time series depends on the num-
ber of passive tracer particles passing at the corresponding measuring
point during the experiment, due to the LDV technique. This implies
that the sample size N of the time series is not fixed, ranging from
N = 1435270 to N = 2462311, and that the time step between two
subsequent measurements of the same time series is not constant.

1.1 The turbulence intensity

A suitable measure of the global energy budget of the VKE is the
turbulence intensity, introduced in [8] as

i =

√
v2 − v2

v2 , (1)

were v is a component of the velocity vector and (·) denotes time av-
eraging. Phisically, this measures the (normalized) difference between
the average kinetic energy due to the turbulent fluctuations and the
kinetic energy of the mean field and it is scalar and positive definite
by construction.

In [8], the authors consider some different realizations of the VKE,
all sampled through Stereoscopic Particle Image Velocimetry (SPIV).
This technique produces time series of the velocity field on a 58× 58
point grid; the time series are shorter and sampled with a lower data
rate than in the LDV case, while the time step is fixed. The authors
then introduce a modified version of the turbulence intensity, taking
into account the anisotropic and inhomogeneous nature of the VKE:

δ̃(t) =
〈v2(t)〉
〈v2〉 (2)
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where 〈·〉 denotes ensamble averaging, which in this case is equivalent
to spatial averaging. This quantity is still scalar and positive definite,
but its value is instantaneous instead of global, since it measures the
contribution of the instantaneous kinetic energy of the field to the ki-
netic energy of the mean field. Let us notice that the spatial averaging
in eq. (2) makes it a global observable for the VKE.

In order to overcome the problem of the irregular sampling in time
in the available dataset, we modify Eq. (2) to obtain a regular par-
tition of the total time interval [0, T ] in each series. We choose a
constant time interval ∆t as the global average waiting time for 5 mea-
surements in the whole dataset. We verify that in this way we avoid to
consider time intervals without any measurement, with no drastic de-
crease in the length of the resulting time series and of the correspond-
ing sampling frequency. The resulting value is ∆t = 9.27 ms. We then
obtain evenly spaced time series, each of length M =

⌊
T
∆t

⌋
= 388267,

indexed by a discrete time tm = m ·∆t, m = 0, 1, · · · ,M .
Considering this partition, we replace the instantaneous value of

the kinetic energy v2(t) in the numerator of eq. (2) with the kinetic
energy resulting from the mean velocity inside each time step

v2(∆tm) =
1

n

n∑

h=1

vh,

where ∆tm = tm−tm−1 and n is the number of measurements in ∆tm.
The new expression for the turbulence intensity reads

δ(t) =
〈v2(∆tm)〉
〈v2〉 . (3)

2 Continuous cascade processes

Continuous cascade processes can be considered as special cases of
a much wider class of stochastic processes that have been termed
stochastic intermittency fields in [14]. These stochastic intermittency
fields are characterized by a nested hierarchy of correlations expressed
in terms of an ambit set together with an underlying weightfunction.
Depending on the choice of the shape of the ambit set and the weight
of the independent noise contributions, a wide range of correlations
can be modelled, including continuous cascade structures defined in
terms of scaling and self-scaling of correlators. It is these correlators
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we use as fingerprints of the underlying models in the analysis of the
data.

2.1 Model construction

The basic notion for the construction of continuous cascade processes,
widely used for the modelling of the statistics of the energy dissipa-
tion in turbulent flows, is that of an independently scattered random
measure (i.s.r.m). They provide a natural basis for describing uncor-
related noise processes in space and time (but are not restricted to
that geometry). Loosely speaking, the measure associates a random
number with any subset of the underlying space S. Whenever two
subsets are disjoint, the associated measures are independent, and the
measure of a disjoint union of sets almost certainly equals the sum of
the measures of the individual sets (see Appendix A for more detail
and rigor).

A special class of i.s.r.m.’s is that of a homogeneous Lévy basis,
where the distribution of the measure of each set is infinitely divisible
and does not depend on the localisation of the subset. In this case,
it is easy to handle integrals with respect to the Lévy basis using
the well-known Lévy-Khintchine and Lévy-Itô representation for Lévy
processes.

Let Z be a homogeneous Lévy basis on S. Then, for S′ ⊂ S we
have the fundamental relation

E

{
exp

[∫

S′
h(a)Z(da)

]}
= exp

{∫

S′
K[h(a)]da

}
, (4)

where h is a suitable deterministic function (subject to some minor
condition to ensure the existence of the above integral), and K denotes
the cumulant function of Z(da), defined by

ln E {exp(ξZ(da))} = K[ξ]da. (5)

This relation allows to explicitely calculate and model the correlation
structure of the integrated and h-weighted noise field Z.

A particular simple example is given by the model

ε(x) = exp

{∫

S′(x)
Z(da)

}
, (6)

where S′(x) ⊂ S is a finite and attached to each point x ∈ S. This
type of model has been used in [12] to model the statistics of the
energy dissipation in a turbulent flow.

4



2.2 The self-scaling property

The multiplicative structure inferent to (6) can be characterized using
k-point correlators of order ~n = (n1, . . . , nk) defined as

c~n(x1, . . . , xk) =
E {ε(x1)n1 · · · ε(xk)nk}

E {ε(x1)n1} · · ·E {ε(xk)nk} . (7)

These correlators can all be expressed in terms of volumes of overlaps
V (S′(xi) ∩ V (S′(xj), i, j = 1, . . . , k and the corresponding constants

K[ni, nj ] = K[ni + nj ]−K[ni]−K[nj ]. (8)

For k = 2 and ~n = (n1, n2) one obtains

c~n(x1, x2) = exp
{

K[n1, n2]V (S′(x1) ∩ S′(x2))
}
. (9)

Here the properties of the underlying Lévy basis are separated from
the properties of the associated sets S′ which allows to represent cor-
relators of order ~m = (m1,m2) as a scaling relation to correlators of
order ~m = (m1,m2)

c~m(x1, x2) = c~n(x1, x2)r(~m,~n) (10)

where

r(~m,~n) =
K[m1,m2]

K[n1, n2]
. (11)

This self-scaling property is independent of the shape and size of the
associated sets S′ and only depends on the properties of the underlying
Lévy basis. In the sequel we will test and verify this property for our
data-set as a first fingerprint of an underlying cascade-like structure.

2.3 3-point correlations

The second fingerprint of an underlying cascade-like structure con-
cerns the behaviour of three point correlators. For simplicity we set
E {ε(x)} = 1, i.e. K[1] = 0 without loss of generality. We also specify
the underlying space to be S = R (for the sake of simplicity) and the
associated sets S(x) = [x−L, x] where L > 0 denotes a kind of decor-
relation distance. The three point correlators of order ~n = (1, 1, 1) for
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x1 ≤ x2 ≤ x3 and x3 − x1 ≤ T can then be expressed as

c~n(x1, x2, x3) = exp
{

K[2]V (S′(x1) ∩ S′(x2)) \ S′(x3))
}

exp
{

K[2]V (S′(x2) ∩ S′(x3)) \ S′(x1))
}

exp
{

K[3]V (S′(x1) ∩ S′(x3))
}

=
c1,1(x1, x2)

c1,1(x1, x3)

c1,1(x2, x3)

c1,1(x1, x3)
c2,1(x1, x3)c1,1(x1, x1)

=c1,1(x1, x2)c1,1(x2, x3)c1,1(x1, x1)

c1,1(x1, x3)r(2,1)c1,1(x1, x3)−2. (12)

Similarly, for 0 ≤ x2−x1 ≤ T , x3−x1 > T and x3−x2 ≤ T we obtain

c~n(x1, x2, x3) = c1,1(x1, x2)c1,1(x2, x3) (13)

and for 0 ≤ x2 − x1 ≤ T , x3 − x2 > T

c~n(x1, x2, x3) = c1,1(x1, x2). (14)

In all cases, the three-point correlators of order (1, 1, 1) are completely
determined by the two-point correlators of order (1, 1) and the self-
scaling exponent r((2, 1). Equations (12), (13) and (14) are the second
fingerprint of an underlying cascade process we will confront our data
with.

3 Data analysis

In the following, we show that the turbulence intensity can be mod-
elled by a process as described in Eq. 6, so that its evolution in time
can be written as

δ(t) = exp

{∫

S′(t)
Z(da)

}
= exp

{
Z(S′(t))

}
. (15)

In this framework, we find convenient to model the natural logarithm
of the observable. An additional remark about notation is required.
The model setting illustrated in Section 2 is very general. In the
following, we focus on the purely temporal dynamics of the observable,
so we replace x with t. Moreover, since we will consider time lags
∆ = t2 − t1, we will write cn1,n2(∆) rather than cn1,n2(t1, t2).

In this section, we describe how the shape of the ambit set S′ and
the marginal distribution of the Lévy basis can be estimated from data.
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We also evaluate the appropriateness of the continuous multiplicative
cascade model through the analysis of the self-scaling of the two-point
correlators and the predictability of the three-point correlators from
the two-point correlators.

3.1 Marginal distributions

Eq. 5 implies a relation between the cumulants (or the moments)
of the Lévy basis and of the observable through the volume of the
ambit set. In particular, we have K[Z(S′(t))] = K[Z]V(S′), assuming
a stationary ambit set, so that S′(t) = S′(0) + t.

There is no physical prescription on the distribution of the turbu-
lence intensity. A visual inspection of the histogram of ln δ(t) shows
a negative asymmetry, while the log-histogram suggests a heavy, ex-
ponentially decaying left tail (see Fig. 1).

In [9], the authors discuss a similar problem concerning the kinetic
energy dissipation ε(t). On the one hand, Kolmogorov-Obukhov the-
ory prescribes a log-normal model for the energy dissipation, so that
we expect ln ε(t) ∼ N(µ, σ2). On the other hand, the histograms show
a clear non-Gaussian nature of the data. The authors consider three
possible candidate distributions: Gaussian, Stable and Normal Inverse
Gaussian (NIG), a four-parameter distribution featuring asymmetry,
anomalous kurtosis and semi-heavy tails. The NIG can be regarded
as a generalisation of the Normal distribution, in which the variance
is allowed to be random. They show that the NIG provides the best
fit among the considered models.

Following these results, we propose a NIG model for ln δ(t). The fit
is shown in Fig. 1, superimposed to the histogram and log-histogram.
We also display the maximum likelihood estimates of the parameters,
µ = 0.916, σ = 0.726, α = 5.381, β = 4.47. The fit shows a good
adaptation of the NIG also for very small values of the log-density.
Moreover, the exponential decay of the left tail is clear from the log-
histogram and the relative log-density fit. Notice that two-point cor-
relators cn1,n2 exist only if n1 + n2 < α− β, thus possibly requiring a
constrained estimation of the NIG parameters. In our case we com-
pute the correlators up to a maximum order n1 + n2 = 4, so that no
constrain is needed, since α− β = 9.851 > 4.

Let us remark that if Z ∼ NIG(α, β, µ, σ), Eq. 5 implies that
ln δ(t) ∼ NIG(α, β,V(S)µ,V(S)σ): thus, once the shape of the ambit
set S is known, the distribution of the Lévy basis is specified.
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3.2 Two-point correlators

As already mentioned in Section 2, two-point correlators can be used
to specify the model. In particular, Eq. 9 links the two-point corre-
lator at lag t2 − t1 = ∆ to the volume of the overlap of the ambit
sets S′(t1) and S′(t2). On the other hand, the ambit set is bounded
by a decreasing continuous function g(t) > 0. Then, if the correlators
display a scaling with the lag, we can relate the slope of the two-point
correlators to the boundary of the ambit set as follows

∂

∂∆
ln cn1,n2(∆) = K[n1, n2]g(−1)

(
∆

2

)
. (16)

In Fig. 2 we display the scaling of c1,1, c1,2, c2,2 in double logarith-
mic scale. The plot suggests a self-scaling property in the two-point
correlators, which we analyse further in this section.

Concerning the scaling, two behaviors can be recognised: the decay
with the lag is quadratic up to ∆ ∼ 25, while it is linear for ∆ > 25.
The maximum lag of interest for the ambit set construction, at which
decorrelation happens so that ln cn1,n2(∆) = 0, is ∆ ∼ 400. A proper
model for the scaling in time of the two-point correlators leads to the
specification of the ambit set. We verified that a combination of a
quadratic fit for 0 < ∆ ≤ 25 and a linear fit for 25 < ∆ < 400 may
be a suitable choice. Nevertheless, a discontinuity appears at lag 25,
requiring some manipulation to be removed. Since the combination
of the two models, including the intercepts, requires the estimation
of five parameters, we choose instead a polynomial fit of order 4 for
the whole interval 0 < ∆ < 400. The superposition of the resulting
model c1,1(∆) =

∑4
j=0 aj∆

j to the empirical correlator is displayed
in Fig. 3. The value of the parameters, estimated through nonlinear
least squares, are shown in Table 1.

a0 a1 a2 a3 a4

0.3290 -0.2328 0.7755 -0.0122 0.0007

Table 1: Estimated coefficients for the polynomial fit of c1,1.

As already mentioned in Section 2, two-point correlators may dis-
play self-scaling as a fingerprint of an underlying multiplicative cas-
cade process. This self-scaling relation is clear in our data, as shown
in the plot of c1,1 vs. c1,2 (Fig. 4), c1,1 vs. c2,2 (Fig. 5), c1,2 vs. c2,2
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(Fig. 6). The values of the coefficient of determination R2 for the
linear fit in the three cases are, respectively R2

1 = 0.993, R2
2 = 0.9985,

R2
3 = 0.999.

3.3 Three-point correlators

A further fingerprint, involving higher order moments, of a multiplica-
tive cascade process comes from the matching between the empiri-
cal and theoretical three-point correlators. In fact, under the model
ansatz in Eq. 6, Eq 12 - 14 give us a theoretical prediction of the
empirical value of c1,1,1 computed as in Eq. 7 with ~n = (1, 1, 1).

The comparison between the estimated three-point correlator and
its theoretical prediction under model 7, displayed in Fig. 7, shows a
good matching, resulting in a strong indication of the appropriateness
of the modeling framework proposed in Section 2.

4 Summary and conclusions

The energy budget of a turbulent flow can be measured through the
turbulence intensity. In this paper we characterise the continuous-time
dynamics of this quantity for a dataset from the von Kármán Exper-
iment. After a sketch of the experimental setting, we construct the
instantaneous global (in space) turbulence intensity. We then intro-
duce a suitable class of models for continuous multiplicative cascade
processes, specified through the marginal distribution of the available
time series and the slope of two-point correlators. We then check
the appropriateness of the model through the self-scaling property of
two-point correlators and the predictability of the three-point corre-
lator from the two-point correlators, since both are fingerprint of an
underlying multiplicative cascade model.
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Figure 3: Polynomial fit of order 4 for ln c1,1.

12



●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
1

0.
2

0.
3

0.
4

log(c1,1(∆))

lo
g(

c 1
,2
(∆

))

Figure 4: Self-scaling property: c1,1 vs. c1,2 in double logarithmic scale.
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Figure 5: Self-scaling property: c1,1 vs. c2,2 in double logarithmic scale.
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Figure 6: Self-scaling property: c1,2 vs. c2,2 in double logarithmic scale.
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A Integration with respect to a Lévy

basis

Ambit processes were introduced in [3] as a framework for tempo-
spatial modelling. These processes are defined in terms of integrals
with respect to a Lévy basis. Here, we restrict our attention to those
ambit processes defined as the stochastic integral of a deterministic
function with respect to a homogeneous Lévy basis defined on R2.

Denote by Bb
(
R2
)

the set of bounded Borel subsets of R2. A Lévy
basis Λ on R2 is an infinitely divisible, independently scattered random
measure on R2, i.e. (Λ (A))A∈Bb(R2) is a stochastic process such that:
(i) Λ (A) is infinitely divisible; (ii) Λ (A) and Λ (B) are independent
if A ∩ B = ∅; and, (iii) If A1, . . . , An ∈ Bb

(
R2
)

are disjoint and such
that ∪ni=1Ai ∈ Bb

(
R2
)
, then

Λ

(
n⋃

i=1

Ai

)
a.s.
=

n∑

i=1

Λ (Ai) .

A Lévy basis Λ on R2 is called homogeneous if Λ (A)
d
= Λ (A+ x0),

for x0 ∈ R2.
The stochastic integral ∫ fdΛ of a deterministic measurable func-

tion f : R2 → R with respect to a homogeneous Lévy basis Λ is defined
in two steps: (a) If f =

∑n
i=1 ai1Ai is a real simple function on R2

with A1, . . . , An disjoint, for A ∈ B
(
R2
)
, we define

∫

A
fdΛ =

n∑

i=1

aiΛ (Ai ∩A) .

(b) If f : R2 → R can be approximated almost everywhere (with
respect to the Lebesgue measure) by a sequence of simple functions
{fn} as in (a), provided that the limit exist, we define

∫

A
fdΛ = P − lim

∫

A
fndΛ, (17)

for A ∈ B
(
R2
)
. We say that a measurable function f : R2 → R is

Λ-integrable if the integral (17) exists.
LetK {z ‡X} := logE {exp (zX)} and C {z ‡X} := logE {exp (izX)}

denote the log-moment generating function and the log-characteristic
function, respectively, of the random variable X. The functions K and
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C will be called the kumulant and cumulant function, respectively. For
each homogeneous Lévy basis Λ, we can associate a random variable
Λ′ to Λ such that

K {z ‡ Λ (da)} = K
{
z ‡ Λ′

}
da,

and
C {z ‡ Λ (da)} = C

{
z ‡ Λ′

}
da.

The random variable Λ′ is called the Lévy seed of Λ.
The stochastic integral ∫ fdΛ and the Lévy seed Λ′ satisfy the next

relation (see [10] for a proof).

Proposition 1 Let Λ be a Lévy basis on R2 and f : R2 → R a Λ-
integrable function. Then

K

{
z ‡
∫

A
f (a) dΛ (a)

}
=

∫

A
K
{
zf (a) ‡ Λ′

}
da

and

C

{
z ‡
∫

A
f (a) dΛ (a)

}
=

∫

A
C
{
zf (a) ‡ Λ′

}
da.

For the purposes of this paper, an ambit process is a stochastic
process (Yt)t≥0 of the form

Yt =

∫

At

f ((0, t)− a) dΛ (a) ,

where A ∈ Bb
(
R2
)

and At = A+ (0, t). For a more general definition
of ambit processes and a discussion of their mathematical properties,
we refer to [6].

B Normal inverse Gaussian distribu-

tion

The normal inverse Gaussian (NIG) distribution is a four-parameter
family of continuous probability distributions whose probability den-
sity function is given by

fNIG(α,β,µ,δ) (x) =
αeδγ

π
eβ(x−µ)K1

(
δαq

(x−µ
δ

))

q
(x−µ

δ

) , (18)
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where γ = α2 − β2, q (x) =
√

1 + x2 and K1 denotes the modified
Bessel function of the second kind with index 1. The domain of vari-
ation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α.
The parameters α and β are shape parameters, µ determines the lo-
cation, and δ determines the scale. The distribution is denoted by
NIG (α, β, µ, δ).

The NIG distribution is a particular case of the GH law that
arises when λ = 1/2 in fGH(λ,χ,θ,µ,Σ,γ). However, the (λ, χ, ψ, µ,Σ, γ)-
parametrization of the GH law produces a parametrization for the NIG
distribution which differs from the above parametrization fNIG(α,β,µ,δ).
The relation between these two parameterizations can be found in [7].

The cumulant function K (z;α, β, µ, δ) = logE [exp {zV }] of a ran-
dom variable V with distribution NIG (α, β, µ, δ) is given by

K (z;α, β, µ, δ) = zµ+ δ

(
γ −

√
α2 − (β + z)2

)
. (19)

It follows immediately from this that the normal inverse Gaussian
distribution is infinitely divisible. Namely, if Xi ∼ NIG (α, β, µi, δi),
i = 1, 2, are independent random variables, then we have X1 + X2 ∼
NIG(α, β, µ1 + µ2, δ1 + δ2).

It is often of interest to consider alternative parameterizations of
the normal inverse Gaussian laws. In particular, letting α = δα and
β = δβ, we have that α and β are invariant under location-scale
changes.

Sometimes it is useful to represent NIG distributions in the so-
called shape triangle. Consider the alternative asymmetry and steep-
ness parameters χ and ξ defined by

ξ = (1 + γ)−1/2 , χ = ρξ,

where ρ = β/α and γ = δγ = δ
√
α2 − β2. These parameters are

invariant under location-scale changes. Their range defines the NIG
shape triangle

{(χ, ξ) : 0 < ξ < 1,−ξ < χ < ξ} .
When χ = 0 the NIG distribution is symmetric. Values χ > 0 indicate
a positively skewed distribution and χ < 0 a negatively skewed law.
The steepness parameter ξ measures the heaviness of the tails of the
NIG distribution. The limiting case ξ = 0 corresponds to a normal
distribution.

The NIG law has a wide range of applications. For more details
about this distribution and their applications, we refer to [1, 2, 4, 5].
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