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Abstract

The present thesis concerns large covariance matrix estimation via composite
minimization under the assumption of low rank plus sparse structure. Exist-
ing methods like POET (Principal Orthogonal complEment Thresholding)
perform estimation by extracting principal components and then applying a
soft thresholding algorithm. In contrast, our method recovers the low rank
plus sparse decomposition of the covariance matrix by least squares mini-
mization under nuclear norm plus /1 norm penalization. This non-smooth
convex minimization procedure is based on semidefinite programming and
subdifferential methods, resulting in two separable problems solved by a sin-
gular value thresholding plus soft thresholding algorithm.

The most recent estimator in literature is called LOREC (Low Rank and
sparsE Covariance estimator) and provides non-asymptotic error rates as well
as identifiability conditions in the context of algebraic geometry. Our work
shows that the unshrinkage of the estimated eigenvalues of the low rank com-
ponent improves the performance of LOREC considerably. The same method
also recovers covariance structures with very spiked latent eigenvalues like
in the POET setting, thus overcoming the necessary condition p < n. In
addition, it is proved that our method recovers structures with intermediate
degrees of spikiness, obtaining a loss which is bounded accordingly.

Then, an ad hoc model selection criterion which detects the optimal
point in terms of composite penalty is proposed. Empirical results coming
from a wide original simulation study where various low rank plus sparse
settings are simulated according to different parameter values are described
outlining in detail the improvements upon existing methods. Two real data-
sets are finally explored highlighting the usefulness of our method in practical
applications.

Keywords: covariance matrix, nuclear norm, thresholding, low rank
plus sparse decomposition, unshrinkage.
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Chapter 1

Introduction

The present thesis concerns large dimensional covariance matrix estimation.
Estimation of population covariance matrices from samples of multivariate
data is of interest in many high-dimensional inference problems - princi-
pal components analysis, classification by discriminant analysis, inferring a
graphical model structure, and others. Depending on the different goal the
interest is sometimes in inferring the eigenstructure of the covariance ma-
trix (as in PCA) and sometimes in estimating its inverse (as in discriminant
analysis or in graphical models). Examples of application areas where these
problems arise include gene arrays, fMRI, text retrieval, image classification,
spectroscopy, climate studies, finance and macro-economic analysis.

The theory of multivariate analysis for normal variables has been well
worked out, see, for example, Anderson (|2]). However, it became apparent
that exact expressions were cumbersome, and that multivariate data were
rarely Gaussian. The remedy was asymptotic theory for large samples and
fixed relatively small dimensions.

In recent years, datasets that do not fit into this framework have become
very common, the data are very high-dimensional and sample sizes can be
very small relative to dimension. The most traditional covariance estimator,
the sample covariance matrix, is shown to be dramatically ill-conditioned
in a large dimensional context, where the process dimension p is closer to
or even larger than the sample dimension n, even in the case that the true
covariance matrix is well-conditioned. Some solutions to this drawback have
been proposed in the asymptotic context (for example [75] [15] [45]). An
alternative recent approach is by numerical optimization, which provides in
the non-asymptotic context, some solutions improving upon the mentioned
ones.

As described in the existing literature, two key properties of the matrix
estimation process assume a particular relevance in large dimensions:

1. well conditioning, i.e. numerical stability;

2. identifiability.
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Both properties are crucial for the theoretical recovery and the practical use
of the estimate. A bad conditioned estimate suffers from collinearity and
causes its inverse, the precision matrix, to amplify dramatically any error
in the data. A large dimension may cause the impossibility to identify the
unknown covariance structure and the difficulty to interpret the results.

The first property is strongly related to regularization techniques. A
basic reference in this respect is Tibshirani (1996) ([108]), where the LASSO
estimation algorithm in the context of regression models was first proposed.
The second property can be ensured by dimensionality reduction methods,
which can be used to reduce the parameter space dimensionality.

Regularization approaches to large covariance matrices estimation have
therefore started to be presented in the literature, both from theoretical
and practical points of view. Some authors propose shrinkage towards the
identity matrix (|75]), others consider tapering the sample covariance matrix,
that is, gradually shrinking the off-diagonal elements toward zero (|54]). At
the same time, a common approach is to encourage sparsity, either by a
penalized likelihood approach ([53]) or by thresholding the sample covariance
matrix ([100]).

For this reason, our research studies a specific regularization problem un-
der the assumption of low rank plus sparse decomposition for the covariance
matrix. Such a problem is solved exploiting non-smooth convex optimization
methods. This approach allows to properly address both reconditioning and
dimensionality reduction issues and is proved to be effective even in a large
dimensional context.

Our dissertation moves from a detailed outline of asymptotic approaches.
In Chapter 2, we provide a thorough description of the motivation to our
work and a review of some relevant asymptotic methods for covariance esti-
mation. Maximum likelihood estimators and unbiased finite estimators are
described ([2]). Specific treatment to the conditioning problem for covari-
ance matrix estimates is given. The covariance shrinkage estimator derived
by Ledoit and Wolf in the general asymptotic framework is described (|75]).
Sparse covariance estimators are shown together with the underlying as-
sumptions and the estimation error rates, with particular reference to the
thresholding estimator of [15]. POET (Principal Orthogonal complEment
Thresholding) estimator ([45]), which combines Principal Component Anal-
ysis and thresholding algorithms, is analyzed in detail.

In Chapter 3, we define the regularization problem above mentioned. It
is a nuclear norm plus /1 norm approximation problem, and works under the
assumption of low rank plus sparse structure for the covariance matrix. It
is composed by a least squares loss and a composite non-smooth penalty,
which is the sum of the nuclear norm of the low rank component and the /3
norm of the sparse component.

The numerical rationale behind the problem formulation is provided. It
is shown how this problem can be recast from the point of view of numerical



analysis as a semi-definite program (SDP). Non standard optimization tools,
as subgradient minimization methods, are needed to solve it. We describe
the most recent solution algorithm and point out its effectiveness.

In Chapter 4, we provide a wide review of existing non-asymptotic meth-
ods. The evolution path of the most recent works is figured out. The most
recent developments of the numerical approach under the assumption of low
rank plus sparse structure for the covariance matrix are described, starting
from the basic contribution by Chandraskeran et al. (|30]) which first proves
the exact recovery of the covariance matrix in the noiseless context. This
result is achieved minimizing a specific convex non-smooth objective, which
is the sum of the nuclear norm of the low rank component and the [; norm
of the sparse component.

Then, the first approximate solution to recovery and identifiability in the
noisy context, coming from [1], is described. In the following, the extension
of [30] providing the first exact solution of the numerical problem in the
noisy graphical model setting ([31]) is shown in detail. In that context, the
objective is a least square loss penalized by the above mentioned composite
penalty, and its optimization allows to recover the inverse covariance matrix.
In conclusion, the extension of this framework to the covariance matrix es-
timation context, coming from [77], is explained. The resulting estimator is
called LOREC (LOw Rank and sparsE Covariance estimator).

In the last chapter (Chapter 5), an improvement over the solution de-
scribed in [77] is proposed, based on the unshrinkage of the estimated eigen-
values of the low rank component. Luo’s approach is completed by deriving
the rates of the sparse component estimate, and the conditions for its posi-
tive definiteness and invertibility. In addition, the rates of LOREC under the
conditions of POET, and, more importantly, in a context where the eigen-
values of the low rank component are allowed to grow with p® « € [0,1]
(generalized spikiness context) are provided.

In the following, we show the results of our procedure on both simulated
and real data sets. We illustrate a new model selection criterion which
is proved to be effective in our context. An original simulation study is
presented where extensive simulation results are pointed out, as well as the
simulation algorithm and the estimation assessment framework.

In the end, the performance of our new proposed estimator is compared
to the one of LOREC and POET under various settings. Two real examples
are provided where our model is effective respect to the competitors. In par-
ticular, the second example is a banking supervisory data set which collects
supervisory reporting indicators of the most relevant Euro Area banks. We
explicitly thank the Supervisory Statistics Division of the European Central
Bank, where the author spent a semester as a PhD trainee, for the allowance
to use these data in anonymous form for research purposes.

The Conclusions (Chapter 6) sum up the main findings of our research.
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Chapter 2

Covariance matrix estimation:
state of the art

In this chapter, a short review of existing solutions to the problem of co-
variance matrix estimation is provided. Particular attention is given to the
two properties displayed in the Introduction (well conditioning and identifi-
ability) and to the performance of existing methods in the large dimensional
context. An exhaustive review can be found in Pourhamadi (2013) ([95]).

This Chapter shows a path across existing estimators aimed at outlining
the two mentioned features (well conditioning and identifiability) for each
estimation setting, especially when p is very large compared to the sample
size n or even larger. This is why, for each estimator, a detailed discussion of
the asymptotic framework and the assumptions needed to ensure consistency
(i.e. the convergence to the theoretical covariance matrix) is provided.

Existing approaches to the estimation problem are described in this
Chapter, while non-asymptotic approaches will be the object of next chap-
ters. The description of past approaches is intended to display the main is-
sues encountered by existing methods, with particular reference to the large
dimensional context, and the reasons why we need to develop an alternative
numerical approach to the covariance estimation problem.

The first paragraph (2.1) is devoted to covariance matrix estimation un-
der the assumption of normality for the data. The maximum likelihood
estimator, i.e. the sample covariance matrix, is introduced and justified.
The unbiased sample covariance matrix, under the assumption of fixed n, is
then outlined. A specific remark on the asymptotic distribution of the sam-
ple covariance matrix under the assumption of independence and identical
distribution for the data concludes the section.

In the second paragraph (2.2) the conditioning properties of the sam-
ple covariance matrix are explored. The reason why the sample covariance
matrix is bad-conditioned when the dimension is close to the sample size
is deeply explained and analyzed, as well as the reason why the inverse
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covariance matrix dramatically amplifies the estimation error in case of bad-
conditioning.

The third paragraph (2.3) widely describes a successful attempt to ad-
dress the problem of reconditioning the sample covariance matrix when the
dimension is larger than the sample size: the shrinkage estimator by Ledoit
& Wolf (|75]). Their motivations, their results and their asymptotic context
are properly highlighted, trying to retain the key elements of their approach.

The fourth paragraph (2.4) briefly outlines existing sparsity estimators,
with particular reference to the thresholding estimator by Bickel & Levina
(]15]), which is described in detail with respect to model assumptions and
convergence rates. There we point out the strong link between sparsity
assumptions and shrinkage thresholding. That family of estimators shows
how it is possible to use sparsity to recondition the covariance estimate and
to significantly reduce the number of parameters.

The fifth paragraph (2.5) describes covariance matrices estimator based
on factor model assumptions. A brief overview of factor model specifications
and underlying assumptions across history is provided, discussing the dif-
ferent asymptotic contexts. The relationship between Principal Component
Analysis (PCA, [72]) and factor modelling (see [59]) is crucial in this respect.
Finally, POET estimator (|45]), based on the assumption of approximate fac-
tor model with a sparse residual matrix, is widely illustrated, pointing out
the crucial assumptions for consistency and identifiability.

In [45], the population covariance matrix is assumed to be the sum of a
low rank and a sparse component. POET works under the assumption of
sparse residual covariance matrix and pervasive eigenvalues of the low rank
component (as p — o0). This structure is particularly convenient in a large
dimensional context, and tackles both the issues mentioned above, as we
will widely explain. For the same reasons, the factor analysis assumption is
a key to approach covariance estimation in large dimensions. The asymp-
totic correspondence between PCA and factor estimation is there established
according to the underlying assumptions and then exploited.

Before starting, we describe the basic matrix terminology. We restrict
our analysis to the real case. The spectral theorem ensures that, when M
is a positive semidefinite squared p - dimensional real matrix with rank r,
there exists an orthogonal p x r matrix U and a diagonal r x r matrix A such
that

M =UAU" =) Nuguj, (2.1)
i=1
which is the eigenvalue decomposition of M. Scalars Ay, ..., A, are called

the eigenvalues of M and are strictly larger than 0. The r columns of U are
the eigenvectors of M. If M is symmetric, the eigenvalues coincide with the
singular values o1, which are the square roots of the eigenvalues of M "M,
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i.e. the absolute values of the eigenvalues of M. A fortiori, this happens if
M is a covariance matrix, which is symmetric and positive definite.

The relevant norms we are going to use throughout the entire thesis are
(see also [62]):

o ||M||2 = \/Omaz(M'M) is the spectral norm of M, which is its largest

singular value.

¢ ||M|| = max; ;|m;j| is the infinity norm of M, which is the largest
entry in magnitude.

o |[M||p = trace(M'M) = /37>, m?j is the Frobenius norm of M,
which is the square root of the sum of the entries of M.

o ||M||, = trace(VM'M) = ¥  0;, sum of the singular values of
M .||M]||« is called nuclear norm. If M is a Positive SemiDefinite ma-
trix (PSD), ||M]||. = tr(M), because the eigenvalues and the singular
values exacly coincide.

[[M[[x = >, > [mij]: sum of the absolute values of the entries of M.

For a p-dimensional vector x, the relevant norms for our purpose are:

e ||z]]2 = 1/>°, 22, the Euclidean norm of z.

o |[z]li =37, |z;|, the Iy norm of z.

¢ ||7||cc = max; |z;|, the maximum norm of z.

2.1 Sample covariance matrix estimators

In this paragraph we focus on the most used estimator of the covariance
matrix: the sample covariance matrix. First, we will derive it as the maxi-
mum likelihood estimator of the covariance matrix under the assumption of
multivariate normality for our data (2.1.1). Maximum likelihood estimators
are consistent when n — oo. This is why we then derive the unbiased covari-
ance estimator under the assumption of n finite (2.1.2), which is a slightly
modified version of the sample covariance matrix. These two estimators
asymptotically converge when n — oo, under the assumption of p fixed. In
the end of this paragraph, we give a flash about the behaviour of this esti-
mator under the assumption of independence and identical distribution for
our data when n — oo (2.1.3).

Our main reference for this argument is the famous book by Anderson

(12D)-
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2.1.1 The Maximum Likelihood covariance estimator

Suppose we have a sample (z1,...z,), from a real-valued p—dimensional
normal random variable z ~ N,(u*,¥*), with p < n. The p x p matrix
¥ = E((x — p*)(x — p*)’) is real positive definite and symmetric, while
w* = E(z)is a p x 1 vector.

The density of z is the following:

1
a2 = (2m) W1 exp | 5o - S - )

where p* is a p x 1 vector and ¥* is a p x p invertible (positive definite)
matrix.
The likelihood function is

n
Lt =) = [ Nl =) =
=1
1 1 "
— (27T)—§pn|2*|—§n exp _1/2 Z($Z o N*)/E*_1($i _ M*)
=1
The log-likelihood is then

n

* % 1 1 * 1 * *— *
log (", %) = —5pnlog 2m — onlog [B°] — 5 > (wi — u*)'S* " (i — ).
i=1

We denote by iy and )y . the vector and the positive definite matrix
maximizing log L. They are the maximum likelihood estimators of p* and
>*. Since log L is an increasing function of L, log L and L share the same
maximum respect to our parameter estimates.

The following important theorem holds:

Theorem 2.1.1. Ifzy,...x, constitute a sample from N (u*,3*) withp < n,
the maximum likelithood estimators of p* and ¥X* are fiyyp = T = %Z;;l T;
and Syp = LS (xi — Z)(w; — &) respectively.

The proof can be found in Anderson (1958), page 67 and following. It ex-
ploits the properties of the arithmetic mean and of positive definite matrices.
The key argument is that log L can be rewritten in the following way:

1 1 1 1
—5Pn log 27 — 3 log |X*| — §tr2*_1D - 5”(11% — w2 Nz — Y,

where D =" (v — &)(z; — T)'.
In order to perform maximization, the necessary assumption is that »*
is a positive definite matrix. This condition is necessary to ensure that the
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term n(x; — u*)X* "1 (x; — u*) achieves a maximum for 4* = z and the term
log |X*| — tr(E* D) achieves a maximum for £* = 1 D.

ML estimators show a number of interesting optimality properties. In
particular, they are consistent and asymptotically efficient ([34]). A theorem
by Cramer ensures that fips;, and Sz are minimum variance (asymptoti-
cally) unbiased estimators. These properties hold if and only if n — oc.

Note that also the condition p < m is necessary in order to perform
maximization. In order to see this point, we need to recall a basic theorem

(12], p.77):

Theorem 2.1.2. The mazimum likelihood estimator fip;p, = T = % S i,
from N(u*,X*), is distributed according to N (u*, %E*) and independently
of Sy = % = LS (i — @) (z — 7). nY is distributed according to
o 11 ziz, where z; ~ N(0,X%), and z1, ..., z,—1 are independent.

This theorem states that under the multivariate normality assumption
for the data, n3 is the sum of n — 1 squared p dimensional matrices having
rank 1. If p > n, n3 will never have full rank p.

In addition, it has been shown by Wishart ([113]) that D = nY is a
matrix-valued stochastic process having the following distribution:

|D|l (n=P=1) exp (—3tr(2*1D))
p(p ) n .
22" [Ti=y Tl (n + 1= 0)]

which is a Wishart distribution with v = n —1 degrees of freedom, where
INGEN r'~le~®dz is the usual Gamma function. The proof is reported
in |2| (p.252 and following). It exploits massively the linear transforms of
random variables, and is based on the properties of Gram-Schmidt orthogo-
nalization algorithm.

This results was first derived for a bi-variate distribution by Fisher (|51])
where the distribution of the correlation coefficient (first defined by Karl
Pearson in [91]) was also derived.

fDE") =

prﬂ.

We can now understand why p < n is a necessary condition. If n < p,
f(D]¥*) is no longer a density, such that it is no longer possible to derive the
asymptotic distribution for )y (i.e., all the usual optimality properties of ML
estimators are lost). In fact, |D| would be zero, and the distribution would
thus be degenerate, having null measure in RP*P everywhere. Note also that
if n = p+1 f(D|X*) has not a mode, analogously to the x? distribution
with two degrees of freedom.

In the same way, denoting by 7' the quantity T' = (Z — u*)W =4z — u*),
where W = £ it has been shown by Hotelling ([64]) that

v—p—1

2
17~ p,v—p+1,
vp
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where F'is Fisher’s distribution with p and v — p+ 1 degrees of freedom
(v =n—1). T? s called Hotelling’s T-squared distribution. It is non-singular
if and only if both j and S are non-singular, i.e. if ¥* is positive definite
and v —p+ 1> 0 (equivalent to n > p).

So, both the sample mean and the sample covariance matrix are ML
estimators of the true mean and the true covariance matrix if and only if
the true covariance matrix is positive definite and the dimension p is strictly
smaller than the sample size n. In particular, the distribution of the sample
covariance matrix is 5 Wishart(X*,n—1). This means that 3 is biased if
is finite. Note that thls dlstrlbutlon does not change even when the true mean
w* is known, unless Z is replaced by the true p*. In that case, the degrees
of freedom are n and the resulting estimator (2 Y7 (z; — p*)(z; — p*)') is
unbiased.

2.1.2 The unbiased covariance estimator: fixed n context

In order to derive the finite sample unbiased estimator of the covariance
matrix, the key result is Theorem 2.1.2 about the distribution of D = ny =
S (zi — Z)(x; — )’ shown above.

A corollary of that theorem states:

Corollary 2.1.1. Let z1,...,z,(n > p) be independently distributed, each
according to N (u*,%*). The distribution of 3, = LS (@i — ) (2 — ) s
Wishart(X*,v), where v =n — 1.

This result means that 3, = (=25) 30 (;—Z)(2;—2)" is the unbiased
estimator of the covariance matrix when the dimension n is finite. This
estimator will be the input of our new estimation procedure in Chapter 4.
Clearly, o1 and 3, converge asymptotically to the same estimator.

We are now going to derive the asymptotic (normal) distribution of the
sample covariance matrix in the more general case of IID data.

2.1.3 Covariance matrix estimation: the IID data context

Let us suppose z; ~ IID(u", E*) = 1...,n. We want to derive the
asymptotic distribution of 3, = Z?: ( — Z)/(z; — Z). Under the IID
hypothesis, we have:

E(xa}) = Bz E(af) = % + p*p”,
Vi(xizh) = V(x;) + V(x;) = XF + XF = 2%*,

Our target can be rewritten as the sum of three components:

%Z(azi—a’:)(azi—a’:)’ Z 22@—’+ —/
=1

=1 =1
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. _ prob
Since Y, %"= p*, we have that

N T 4

—2% E =4 E = oz + 37 = —77.
- n . n
=1 i=1

converges in probability as follows:

__y prob

R (2.2)

!
X, .
Now, the first component )" | = can be rewritten as

1 ()

So, for the Central Limit theorem, we have

1 &zl — (5 + p'p) crr 1 /
—> = ZN(ppt + 3,280,
NLD — Vn n

Recalling (2.2), we have that

o distrib 1
S, —_N(Z*,25%). 2.
N 2) (23)

These results find confirmation in [58].

2.2 The sample covariance matrix: conditioning prop-
erties

We are now going to briefly talk about matrix conditioning. Let us suppose
p and n are fixed. If n > p, the expected value of ¥,—, 1 is X*, and the

o2 4ot o
(94 %94955) * This highlights

(n—lll) ij

why the variance of 3, increases as the true condition number of ©* increases.
If the condition number ¢ = 042 /0min increases, the correlation between
the components x; and z; increases, because X* is closer to collinearity.
Consequently, V (6y,;;) increases, because 02}2 is closer to its maximum, which
is 0507, (for the Cauchy-Schwartz inequality).

Coming back to the main point, it is crucial to study the behaviour of
the sample eigenvalues. In the matrix estimation context there is a relevant
issue about numerical conditioning, i.e. the behaviour of sample maximum

and minimum singular values, of a p x n data matrix X.

entries of its covariance matrix are V(6y,;) =

Theorem 2.2.1 (Theorem (|39])). Given natural numbers n,p withp < n+1
let X be a p X n matriz with i.1.d. Gaussian entries that have zero-mean
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and variance % Then the largest and smallest singular values opin(X) and

Omaz(X) are such that

t2
max{Pr[Amax21+\/§+t],Pr[)\mmgl— B—t}}gexp{ nt },
n n 2

for any t > 0.

This theorem was proved by using arguments from random matrix theory
and the geometry of Banach spaces. It is an essential result to provide a
probabilistic bound for the error distance ||, — X*||2, where £, = L X'X =
LS~ aal
n =11

In fact, the following Lemma holds:

Lemma 2.2.1. Let ¢ = ||X*||2. Given any 6 > 0 and ¢ > 0 with ¢ < 8¢,

let the number of samples n be such that n > 64(§;¢2. Then we have that

Pr([, — 2|2 > 8] < 2e o
" 2= 00= 20 Tggy? )

This Theorem is based on a specific assumption on 1, the largest eigen-
value of ¥*. By appropriately setting the parameter ¢, we can obtain the
probabilistic bound accordingly.

This Lemma relies on the fact that the spectral norm is unitarily invari-
ant, such that it is possible to assume a diagonal structure for S without
loss of generality and then apply the previous theorem 2.2.1.

It is remarkable that without further assumptions, 3, is not invertible if
p > n (since it is perfectly collinear, having clearly at most rank n, and for
the rest null eigenvalues). Even if p < n, in the case the ratio p/n is less than
1 but not negligible, the estimated (maximum and minimum) eigenvalues
are numerically unstable, since the probabilistic bound is too large. This
may result in bad conditioning (i.e. too large condition number) for Sh.
This is why in the Big Data context, when p is very large, it is frequent to
have an ill-conditioned sample covariance matrix, since it is difficult to have
enough observation to keep the ratio p/n negligible ([75]).

The example in figure (2.1) clearly outlines the described drawback. The
eigenvalues of the covariance matrix of a simulated n X p process ¢; =
N, (0, %I), p =100 , n = [10, 50, 100, 500, 1000, 10000] are plotted. The fig-
ure displays how the dispersion of the eigenvalues decreases as p/n decreases.
All distributions tend to the Marcenko-Pastur distribution, which is proved
to be the limiting distribution of the eigenvalues of IID random variables (in
the Kolmogorov asymptotic framework, see [79]). The rank is always equal
to min(p,n — 1). If p = n, the matrix is thus singular.

We have provided this simple example to state that without further as-
sumption on the eigen-structure (values and vectors) of ¥*, the condition
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Figure 2.1: Eigenvalues of the sample covariance matrix of e; = Np(0, 1),
p =100, n varying

p < n is unavoidable in order to guarantee the positive definiteness (and
thus the invertibility) of our covariance estimate. Anyway, the recovery of
the eigen-structure of a covariance matrix is strongly related to the underly-
ing assumptions and to the asymptotic context.

We now enumerate three parameter settings relevant for our dissertation:

1. p and n fixed: this is the case of 2n_1, and all numerical estimators
we will analyze in next chapters (|31], [1], [77],[15])

2. p fixed, n — oo: this is the case of ﬁ]ML, or of the approximate factor
model (]29])

3. Bo — c when n — oo: here we find the General asymptotic framework,
used by Ledoit and Wolf to ensure the consistency of their estimator
(|75]), and the Kolmogorov asymptotic framework (where also p — 00).
Also consistency properties of the thresholding estimator (|15]) and of
POET estimator (|45]) are derived under a similar framework, where a
function of p and n tends to 0 while n — co. See for more explanations
sections (2.4) and (2.5).

In the second context, with fixed p and n, the outlined results concern-
ing numerical conditioning for the sample covariance matrix hold, and the
condition p < n is unavoidable without further assumptions to derive finite
sample bounds. This is why one of the aims of the present work is trying
to exploit results from the third asymptotic framework (in terms of model
assumptions) to establish bounds under the finite sample context dropping
the condition p < n.
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2.2.1 Matrix conditioning as an ill-posed inverse problem

We are now explaining in detail why a bad-conditioned sample matrix is a
fatal drawback for us. The reason stands in the consequences deriving from
the inversion of a bad-conditioned matrix.

Let us now consider the standard linear system Ax = b, where A is p X p,
and z, b are p x 1. If our aim is to derive b (the output), we are solving
the direct problem. If our aim is to derive x (the input), we are solving the
inverse problem. If A is full rank, Cramer’s theorem is ensuring that the
inverse problem has exact solution z* = A~'h. Otherwise, if A has rank
r < p, we need to solve the least squares problem

min ||Azx — b
xE%RP H . H27
and we have

T

] |uib]

i=1

p
|Az* —b|> = > [[ufd]]”.
i=r+1

This fundamental result was proved in [40].
How much is solution the z* reliable? Hadamard(|57]) outlined the three
characteristics of a well-posed problem:

e existence: the problem admits one solution
e uniqueness: the problem has at most one solution
e stability: the problem is not sensitive to data perturbation.

In our context, if A is full rank, the inverse problem may be ill-posed since
it violates the stability condition. If A is not full rank, the inverse problem is
ill-posed since it violates the existence and the uniqueness condition (there
are only approximate solutions, no exact ones). The least squares system
serves for identifying in any case a solution even if there would be none.

Anyway, (2.1) and (2.4) enable us to understand why the inverse of bad-
conditioned matrices are numerically unstable. The solution of the direct
problem is Az = UAU'z = >"P_| A\;(u}z)u;, which dampens the components
corresponding to the smallest eigenvalues of A. On the contrary, (2.4) shows
us that the solution of the inverse problem amplifies the effects of the same

components. If we assume that b is perturbed, i.e. b. = b+ ¢, we note that
Te=a "+, ‘qif;‘ui. So, if A is bad conditioned (i.e. we have very small
eigenvalues), the effect of data perturbation is amplified, and the solution

may not be effectively usable in applications.
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This is why Picard (|93]) elaborated a condition under which the inverse
solution is reliable. It states that z* = Y. ‘u/\—iblul < oo if and only if
|u;b| decays more rapidly than the corresponding A; for all ¢, which occurs if
A; > 7 Vi, where 7 is the threshold at which the singular values are levelled

by the noise.

If this condition is violated, a regularization method, like the truncated
singular value decomposition (TSVD, see [55]) or Tikhonov’s regression method
(]109]) or other regression methods (like the ridge one), are needed. This is
why the nonasymptotic approach for covariance matrix estimation essentially
consists in specifying appropriate regularization problems under suitable con-
ditions for deriving improved error rates, as we will widely describe in the
following chapters.

Note that there is a huge literature dealing with the distribution of eigen-
values. We mention again Marcenko-Pastur law, which describes the be-
haviour of the singular values of a rectangular random matrix having Gaus-
sian entries (|79]). Tracy and Widom (|107]) found the limiting distribution
of the singular values of a large dimensional random Hermitian matrix. John-
stone (|70]) found out the limiting distribution of the largest eigenvalue in
principal component analysis (for n < p, under the assumption of indepen-
dent normality for the columns of the data matrix) which is proportional to
a Wishart of order 1. A recent work by Chiani (|33]) derived the exact dis-
tribution of the largest eigenvalues for real Wishart matrices and Gaussian
Orthogonal Ensembles.

The work in |70], in particular, outlined that for large p it can be easier
to recover the top r eigenvalues if they are particularly spiked, because the
distribution of the (r 4+ 1)-th eigenvalue is bounded by a Tracy-Widom law
of lower dimensions (n x (p — r) respect to n x p). Thus, the (r 4+ 1)-th
eigenvalue of a set of p eigenvalues where r are spiked is stochastically smaller
than the largest eigenvalue of a setting of (p — r) < p variables non-spiked.
This fact suggests that large dimensions (p — oo) can help the recovery of
strong eigenvalues and somehow justifies the use of "scree-plot" to choose
the number of eigenvalues.

There are also some results on the distribution of the smallest eigenvalues.
We refer to [8] for a general review.

All in all, the problem of reconditioning our covariance matrix estimate
is approached differently according to the related asymptotic context. In
Chapter 4 we will focus on the non-asymptotic context, outlining various
solutions recently provided. Now, we will focus on the description of key
covariance estimators in the asymptotic context where both p and n are
allowed to tend to co. The estimator we are about to describe belongs to the
class of shrinkage estimators ([68]) which represent a widely used approach
in this context as an effective regularization method. It is relevant to note
that the distributional assumption of normality is no longer needed, since
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the approach we are going to describe is distribution-free.

2.3 Shrinkage towards the identity: Ledoit and Wolf’s
approach

Ledoit and Wolf were the first to derive in [75] a consistent estimator of the
covariance matrix in a new asymptotic framework, called general asymptotic
framework. They proposed a way to temper the numerical instability of sam-
ple eigenvalues, explicitly reconditioning them by shrinkage. The adoption
of a new asymptotic framework was needed to ensure the shrinkage inten-
sity to be positive, avoiding it to vanish in the limit. Their estimator is
also Bayesian in nature, since it is a combination of a priori and sample
information. They call it Empirical Bayesian estimator.
The motivating result of their analysis it reported below.

Theorem 2.3.1. The eigenvalues are the most dispersed diagonal elements
that can be obtained by rotation of a symmetric matriz.

The proof exploits the invariance by rotation of trace.

This causes that the largest sample eigenvalues are positively biased,
while the smallest are negatively biased, and the bias increases in p/n (re-
call Theorem 2.2.1). The pattern of sample eigenvalues depends on the
Marcenko-Pastur distribution, which holds in the Kolmogorov asymptotic
framework. As described, under Kolmogorov asymptotics the ratio p/n tends
to a specific constant, while both p and n tend to infinity.

Here we report the solution proposed by Ledoit and Wolf to the described
problem. Their idea is to shrink the sample covariance matrix towards the
identity matrix, solving the following optimization problem (thus recondi-
tioning the eigenvalues):

min E[||X — 2% %]
p1,P2
s.t.X = p11, + ,022,1.

where p; and po are nonrandom coefficients.
The theoretical solution to this problem is the optimal linear shrink-

age estimator

2 o .

B
Yiw = —pul + =% 2.5
,72 ,72 n ( )

with E[|[Spw — %2 = 25, where:
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w=<X,1>;

o = ||=F — pI|%;

B = E[||Sn — ZF|;
v = E[||Sn — pI|P).

Their derivation exploits the natural Pythagorean relationship
a? + % =42 (2.6)

In this view, the ratio B—z is called optimal shrinkage intensity.

The most important interpretation of this approach for our purposes is
the following. It is well known (Theorem 2.2.1) that the sample eigenvalues
of IID data have bounded error respect to the true ones, so that, under the
condition p < n (p and n fixed), %E( PN = 1—1) P L\, Le. the trace of
>* is unbiasedly estimated.

At the same time, theorem 2.3.1 shows that sample eigenvalues have a
larger dispersion around their grand mean respect to the true ones (assuming
that the eigenvectors are reliable). From (2.6) we can argue that

> (- M)2] =

i=1

1
-F
p

D=

(= + B, — S|P

i.e. the excess dispersion of the sample eigenvalues is the error of the sample
covariance matrix. This is why here the authors bound [||%, — %|%] by
bounding %E [Zle(j\i — ,u)Q], where p = 1.

So, Y pw implicitly does the reconditioning of eigenvalues, since

62 a? . .
ANiLw = —p+ —Ai, Vi=1,...,p.
Y Y

%E[ le(j\i7LW —p)?] is equal to 0‘72, and is even smaller than the dispersion
of the true ones, for the reasons described above. Note that this method is
very similar in its meaning to the maxlog — det heuristics for nuclear norm
minimization (see [49]).

2.3.1 General Asymptotics

In order to derive a feasible estimator, we now need to get into a new
asymptotic framework, since the optimal shrinkage intensity 52 vanishes as
|2, — %*||? vanishes when n — oo in the standard asymptotic framework
(as proved in paragraph 2.1.3, see convergence (2.3)). This fact, when p is
closer to n or even larger, is inconsistent with reality. So, a new asymptotic
framework, called General Asymptotics, is needed, where 52 is not vanishing.
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Counsider n = 1,2,... indexing a sequence of statistical models, and for
every n, X, is a p, X n matrix of n iid observations on a system of p,, random
zero mean variables with covariance matrix >,.

The following assumption characterizes this context:

A1. There exists a constant Ky independent of n such that p,/n < Kj.

It is remarkable that in this setting p can change and even go to infinity,
but it is not required. Differently from the Kolmogorov asymptotic frame-
work (the one of Marcenko-Pastur Law), it is not even necessary this ratio
tends to a finite constant.

Two further assumptions are needed to derive a consistent estimator of
Yrw. If ¥, = TyA, T, the product Y,, = I} X,, is a set of uncorrelated
variables spanning the same space as the original variables. The following
restrictions on the higher moments of Y, are imposed:

A2. There exists a constant Ky independent of n such that

1 & .
— E El(yi1)°] < Ko,
Pr =

A3.
lim ﬁzz',j,k,l € QnCov(yiryj1, yrryn) 0
n—so0 n? Cardinal of@, N

where @, denotes the set of all the quadruples that are made of four
distinct integers between 1 and py,.

Assumption 2 states that the eighth moment of y is bounded (on average).
Agsumption 3 states that products of uncorrelated random variables are
themselves uncorrelated (on average, in the limit). In the case when general
asymptotics degenerate into standard asymptotics (p/n — 0); Assumption
3 is trivially verified as a consequence of Assumption 2.

For what previously stated, Assumption 3 is verified when random vari-
ables are normally or even elliptically distributed, since the sample covariance
of (uncorrelated) normal variables is asymptotically unbiased. Anyway, A3
is much weaker than that situation.

These assumptions are specifically needed to derive the sample counter-
parts of u,y2, B2.

Note that these two assumptions heavily involve the eigenstructure (eigen-
values and eigenvectors) of the true covariance matrix. Here we need to
impose restrictions on eighth moments, for the particular nature of their op-
timal weights. Anyway, the need to control the pervasiveness of the latent
structure in the covariance matrix is crucial for model recovery. We also
underline how much latent factorial assumptions can impact on covariance
estimation. This is why we are going to specifically discuss the relationship
between factor modelling and covariance estimation in paragraph (2.5).

Under these assumptions, Ledoit and Wolf approach the study on the
consistency of their estimator. In their context, the reference norm is ||Al|,, =
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pintr(AA’ ), such that the identity matrix has always norm one, and the refer-

ence cross product is < Ay, Ay >,= pintr(AlA’z). The problem of obtaining
meaningful absolute rates in high dimensions is another relevant issue. As
we will see, in [45] the authors derive asymptotic rates for the relative error
matrix (and not the covariance matrix itself). Instead, under the nonasymp-
totic setting (Chapter 4), we will obtain finite absolute rates, even under the
same assumptions of [45].

We are now going to show why the sample covariance matrix is not
consistent in this context, differently from the finite p context, where the
covariance matrix is asymptotically consistent under the assumption of nor-
mality. The authors show that quantities u, =< X, I >,a2 = ||Z, — pn1||?,
B2 = E[||Sn—2nl], 72 = E[||%, — I ||?] are bounded in the general asymp-
totic framework when n — oo. Then, they prove the following important
Theorem:

Theorem 2.3.2. Define 02 = Var(
n — o0, and we have:

pin P El(y2)?). 0% is bounded as

. S 21 _Pn, o 2
Jim B|% = 2" = == (uy + 67)-

This result states that the sample covariance matrix is not consistent
under the general asymptotic framework, since its expected loss is lower
bounded by 22 (2 ), which does not usually vanish. (Recall that 62 vanishes
asymptotically under the assumption of normality, for convergence (2.2)).

There are two interesting exceptions:

e when — 0, we fall into the standard asymptotic context, where
the sample covariance matrix is consistent. The only difference is that
more general case p = o(n) is allowed, i.e. p is allowed to be unbounded
and grow towards infinity;

Pn
n

e 2 — 0 and 2 — 0. p2 implies that most of the random variables
have vanishing variances, i.e. there are O(n) asymptotically degenerate
variables. So, if the number of nondegenerate random variables is
NOT negligible with respect to the number of observations, the sample
covariance matrix is not consistent.

Inconsistency is due to the disequilibrium between the number of data-
points np, and the number of parameters p,(p, + 1)/2. This is a key point
in our analysis, which is unsolved by the approach of Ledoit and Wolf. In
fact, they write there is no DIRECT consistent estimator of the covariance
matrix under the general asymptotics. Their strategy is to derive a consistent
estimator of their theoretical estimator, which is proved to have the minimum
risk among all the linear combinations of I}, and >, and is shown to be better
conditioned than the sample covariance matrix.
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So, shrinkage matters unless 2% is negligible respect Z—z, i.e. if the dis-

persion of sample eigenvalues is much larger than 2.
To conclude this section, we are now going to explain how Ledoit and
Wolf derive a consistent estimator for Xy .

They introduce sample counterparts of their key quantities:

My, =< in,l >n,
d% = |3 — mn[||2’

n
b = Il = Zall,
k=1

b2 = min(b?,d?),

n»-n

2 2 2
Qp, :dn _bn7

where 2", denote the k — th column of X,,.

All these sample counterparts are consistent in the general asymptotic
framework, i.e. they converge to ,u%, oz,%, 7%, 72 respectively in quadratic
mean.

Then, their feasible consistent estimator is

N b2 a .
n n

This estimator is consistent in the general asymptotic framework respect

to Yrw, i.e. they share the same asymptotic expected loss. Thus, the
232
expected quadratic loss O‘,y’g can be consistently estimated in quadratic mean

by aig%

)y Lw 1s shown to have an important optimality property: it has the same
asymptotic risk as the theoretical optimal linear combination of S, and I,
with random coefficients. In addition, its condition number is proved to be
bounded in probability, which is very important for practical use.

The approach by Ledoit and Wolf is undoubtedly very elegant. How-
ever, there is still one main difficulty: their estimator is excessively better
conditioned than the true covariance matrix, i.e. it is often too biased, for
the presence of the identity matrix in the estimator. This is why another
major point of our dissertation will deal with the need of "unshrinking" the
estimated eigenvalues.

In fact, the numerical issue is not the only relevant reason for desiring a
well conditioned estimate of the covariance matrix. Deep statistical reasons
lie behind this need: we suppose that the true covariance matrix X* is well
conditioned, that is there is no multi-collinearity among our p variables. In
this respect, a well conditioned estimate is crucial also for fitting purposes,
i.e. to improve the statistical properties of the estimate.
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We recall the previous skrinkage estimator by the same authors (|74])
in the market portfolio context. There, the authors specify for the covari-
ance matrix a single-index model (consistently with the basic theory of asset
prices, see [103]), which is essentially a one-factor latent model, and then
estimate the covariance matrix deriving the optimal shrinkage intensity to-
wards the single-index as described. This single index covariance matrix
estimator is an interesting contact point between latent variable models and
shrinkage methods.

Before passing to the analysis of factor-based covariance matrix estima-
tors (paragraph (2.5)), we now briefly outline the covariance estimators based
on pure sparsity assumptions, with particular reference to the use of shrink-
age thresholding. In this context, sparsity means that our true covariance
matrix has a prevalence of zeros.

2.4 Sparse covariance matrix estimation

In this section we list the most relevant estimators based on a pure sparsity
assumption, which can be effective for reducing the number of parameters
and reconditioning the estimate, removing unnecessary off-diagonal correla-
tions. If p/n — ¢ € (0,1) (general asymptotic framework) the eigenvalues
of 3, follow the Marcenko-Pastur law, supported on (1 — /¢)2, (1 + /¢)2.
If p/n does not tend to a constant, we do not have any guarantee. For this
reason, enforcing sparsity can be a key for obtaining a full rank estimate in
high dimensions, even when n < p + 1. However, there are lots of different
types of sparsity assumptions, methods and asymptotic frameworks to prove
consistency.

The natural context which gave rise to the concept of sparsity lies in
a data-set showing a clear index ordering among variables. This condition
arises easily for spatial data, when the variables are geographical areas for
which a proximity matrix is naturally defined. Applications include spec-
troscopy and climate data.

For this kind of data, several methods have been developed. Banding
the covariance matrix, by appropriately defining a banding parameter, is
one effective solution. In that approach (|14]), the matrix reference class is
¥* € U(ep), where

U(Eo):{z*ERpo:0<€0§Ai(E*)§661<+OO,
ma, ali— gl > kY < CETE 2.8
SOMCIRENEEE 28)

which is the class of matrices having uniformly bounded eigenvalues and
banded covariance.

For any ¥* € U(¢), the natural ordering among variables is therefore
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enforced imposing:

{=%: o < M, max{D>_|of|7: [i — j| > k} < Ck™*,Vk > 0,¥i}.  (2.9)
J -

This condition prescribes that the further two variables are, the lower their
correlation is. Matrices obeying this condition are "approximately bandable"
matrices.

These assumptions are made for the nature of banding operator, which
is defined for any matrix M as: By(M) = [m4;1(|i — j| < k)]. It is straight-
forward that the banding operator would be perfectly effective if

i — 4] >k — ol = 0.

Choosing k = O((lo%)ﬂal“)) the banding operator By (3,) is shown to
consistently estimate ¥* with rate O((lo%)z(aa“) ).

This approach can be indifferently applied to the covariance matrix or to
the Cholesky factor of the inverse covariance matrix. In [20], minimax prop-
erties for the rates of convergence of covariance estimators having (2.8) as
matrix reference class are provided both for operator (spectral) and Frobe-
nius norms. There the authors show that the described approach achieves
sub-optimal rates. Among other possible solutions, we mention tapering,
which is gradually shrinking the off-diagonal elements to zero (|54]), and
alternative uses of the Cholesky factor of the precision matrix (|114][66]).

When there is no natural ordering among variables, the banding ap-
proach becomes ineffective. This situation includes the vast majority of
cases, including recent relevant applications to gene expression arrays. This
is why the same authors (Bickel and Levina) developed in [15] a very el-
egant theory to make their previous work on banding methods applica-
ble to this case. That approach is based on the thresholding of sample
covariance matrices, where the hard thresholding operator is defined as
Ts(M) = m;;1(|m;j| > s). Ts(M) preserves preserve the positive definiteness
of M if and only if A\, (M) > s:

1T — Toll < 5 ¢— Amin(M) > s. (2.10)

This happens because v'Ts(M)v > v Mv — s > A\pin — 8.

Note that the hard thresholding operator is implicitly based on the mini-
mization of the [g norm of 3*, which is simply the number of non-null entries.
This norm is not convex, and so it is hard to establish a unique minimum.
This is why alternative thresholding operators have been developed. The
most used, central to our discussion in following chapters, is the soft thresh-
olding operator: Ts(M) = sign(m;j)maz(|m;;| —s,0). Note that the thresh-
olding parameter s can be constant or entry-dependent, i.e. s;;. Another
relevant shrinkage operator is the adaptive one, where s;; = T(miimjj)l/ 2
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(]18]). A generalized shrinkage function which encompasses the described
ones was defined in [100].

Coming back to the covariance estimation problem, Bickel and Levina es-
tablish a contact point between the class of "thresholdable" and "bandable"
matrices, in order to be able to exploit the results of [14].

They define for 0 < ¢ < 1 the uniformity class of matrices invariant under
permutations:

p
(Tt <M, D ol <alp), Vil (2.11)
j=1

where cg(p) is a constant not depending on p.

Note that if ¢ = 0, the condition becomes Z;’:l o517 =22 Lof; # 0).
Here we can consider M as a constant. In paragraph (5.1) we will relax this
assumption.

In [15], the authors prove that, if a matrix ¥* satisfies (2.11) for ¢ > a+L17
which is equivalent to 1 —¢ > 757, then ¥* satisfies also (2.9) and belongs
to the class of approximately bandable matries (2.8).

We mention a technical result (in bold), which will be crucial for the
discussion of our contributions in Chapter 5. The sample covariance matrix
3, satisfies the following property:

1
max |63 — o35 = O ( ng) : (2.12)
17J

n

under losp — 0.

As a consequence, under the condition ¢ > a+r1 the loss of the thresholded

matrix Ts(in) is bounded and vanishes asymptotically when 10% — 0:

(1-0)/
ITs(50) — 5| < O ((1051’) 1 2) . (2.13)

The banding and the thresholding methods are non-likelihood ones. The
Frobenius norm as reference loss gives two advantages respect to a likelihood
function. First, the Frobenius norm is the analogous for matrices of the o
norm for vectors. Second, Frobenius loss is model free, as the covariance
matrix. These methods allow to ignore the underlying distribution for the
data, which can be an advantage in high dimensions.

In addition, [80] and [19] describe two very effective non likelihood meth-
ods employing sparsity for precision matrix estimation in the multivariate
Gaussian setting, where the likelihood is known. However, likelihood meth-
ods are still useful for the precision matrix especially, for their connection to
graphical modelling (see [31]).
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To sum up, sparsity models are useful tools to improve covariance es-
timation. In fact, in high dimensions we often have few pairs of variables
showing a particularly large (idiosyncratic) covariance. On the other hand, a
sparsity assumption may not be enough, especially in high dimensions, since
the covariances are too large to be modelled by a purely sparse matrix, for
the reasons outlined in paragraph (2.2) and because our target is probably
not sparse. This is why factor-analysis and PCA based covariance estima-
tors play a relevant role, for their ability to significantly reduce the problem
dimension, as we are about to describe.

2.5 Factor analysis based estimator

This paragraph is devoted to the analysis and description of the factor model
approach to covariance matrix estimation. This topic assumes a particular
relevance in a large dimensional context, when the dimension p is very large,
because p/n may be difficult to keep negligible, as enough n could not be
available.

The first who defined the concept of factor model was Spearman (1904)
([102]), in a psycometric study about the measurement of intelligence. The
main problem was: "how to explain most of the variance of a set of cor-
related variables by approximating them with a smaller set of uncorrelated
variables?" In this specification, the covariance matrix resulted in the sum
of a lower ranked matrix and a diagonal residual matrix, where all the co-
variances are explained by the factors, while the presence of the error term
implies that there are residual variances unexplained by the factors.

A general factor model setting for ¥* can be described as follows:

SF = L* 4 % (2.14)

We can write L* = BB, with B = UD'/2, where U is a p X r matrix, D is
a r x r diagonal matrix dj; > 0,Vj=1,...,r, r <p.

A generalized static factor model for a p—dimensional vector x;, ¢ =
1,...,n, is the following:

ri=Bfi+e=1+c¢,
E(f)=0,V(f) = L
E(e) =0,V (e) = 5%
E({f)=0.

where f; is a r x 1 vector, and x;,1;, €; are p X 1 vectors.
In this framework, 3, is the p X p sample covariance matrix computed
on the n generated data. For i = 1,...,n, l; = Bf; is called common part

of z;, €; is called idiosyncratic part.
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Note that L* has rank r and is positive semidefinite, while S* and ¥*
are full rank and positive definite.

The reason why a factor model assumption for the data is effective in
this context is two-fold:

e model (2.14) prescribes for the covariance matrix a decomposition into
a r—ranked matrix (r < p) and a full rank residual matrix. Specify-
ing a low rank matrix means reconditioning the eigenvalues, since we
replace a p-ranked probably ill-conditioned matrix (see section (2.2))
with a semidefinite positive r— ranked matrix, well conditioned by
definition. At the same time, the full rank rank residual component
ensures that the estimate is positive definite. So, imposing this struc-
ture to a large covariance matrix means reconditioning its eigenvalues,
not using the identity matrix as a shrinkage target (as in |75]), but
removing the strongest correlations from the raw (sample) estimate,
thus shrinking down its condition number.

e model (2.14) significantly reduces the number of parameters, by replac-
ing p(p+1)/2 parameters with p(r+1) only. This approach overcomes
the problem of identifiability in the large dimensional context, by rel-
evantly reducing the parameter space dimension.

Anyway, model (2.14) is the most general definition. Different model
settings impose different assumptions on L* and S*. Key assumptions for our
purpose, which is to exploit effectively a factor model structure for covariance
matrix estimation, mainly concern the eigenvalues of L*, which reflect upon
the eigenvalues of X*.

We are going to briefly recall the historical path of factor modelling by
the description of three main steps (for an extended overview, see [59]):

e the classical factor model, with p fixed, n — oo. This specification
was due to [102], and its development was then possible thanks to the
pioneeristic work on Principal Component Analysis by Hotelling [65].
Its main characteristic is the imposition of a diagonal structure to the
residual covariance matrix S* (paragraph (2.5.1)).

e the approximate factor model, where nonzero residual correlation is
allowed, i.e. S* is no longer diagonal. This advance was due to Cham-
berlain and Rothschild ([29]), and is based on the assumption of lim-
itedness for A\,y1 (the (r + 1)—th eigenvalue of ¥*) as n goes to oo (p
here is still fixed). This approach allowed to effectively use PCA for
recovering ¥* (paragraph (2.5.3)).

e factor modeling with sparse residual ([45]), where specific assumptions
on L* and S* are made. The eigenvalues of L* are assumed to be
pervasive while p as well as n) tends to oo (spikiness property). On
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the contrary, the largest eigenvalue of S* vanishes asymptotically. This
approach impacts on the covariance matrix estimate allowing to reduce
even more the parameter space dimension, still employing the PCA of
S together with a thresholding algorithm for the sparse component
(paragraph (2.5.4)).

2.5.1 Strict factor model

We are now going to explore this first specification, which is called strict or
classical factor model. In this specification, we have that

X =Bf+e, (2.15)

where X and € are p x 1 random vectors, B is a p times r matrix also called
loading matrix, f is the 7 X 1 random vector of latent variables.

Under all previously outlined assumptions, E(X) = 0. Defining ¥* =
E(XX"), this model leads to the following model on the covariance matrix:

S =L+ §* (2.16)

with L* = BB’. The identifiability condition imposes B'S* !B to be di-
agonal. It is necessary because the strict factor model is equivariant under
orthogonal transforms, and this results in an identifiability issue. Note that
the condition E(fe¢') = B holds. Bf is the common part, while € is the
idiosyncratic (or unique, or specific) part of the model.

For each component X;i =1,...,p, Var(X;) can be disentangled in two
B2 . . . ) .
components. Zég_;_ L is the portion of variance of X;, ¢ = 1,...,p explained
7 Sll

by the factors. It is also called communality of X;. $& is the portion of
variance of X; unexplained by the factors. It is also called idiosyncratic
component of X;.

The ratio between communality and total variance for each X;, ¢ =
1,...,p is very important for the interpretation of factor models (FM), as
well as, if S* is not diagonal, the ratio between the sum of residual covari-
ances and the total sum of covariances. The proportion of variance explained
by the model describes the goodness of fit and the covariance matrix between
the factors and the observed variables, equal to B, outlines the most relevant
variables in the composition of factors.

As explained, if we impose S* diagonal we impose all the covariances to
be explained by the factors. This assumption is clearly inappropriate in a
large dimensional context. Specifying a pure factor model structure is there
quite far from being effective. We have already explained that if p is large
the sample covariance matrix is likely to be bad-conditioned. For this reason,
it is likely that factors are not enough to explain covariances, and that the
diagonal assumption for the residual covariance matrix is too strict. For an
overview of factor analysis in large dimensions, see [7].
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FM estimation has been a relevant problem in the literature. It is well
known that factor analysis moves out from principal component analysis
(PCA), but PCA without further assumptions is not a consistent estimator
for the factor model, as we are going to explain.

2.5.2 PCA and factor analysis

Let us A be a p x p matrix, with [|A[|Fr, = D7 >0 A% Tts spectral
decomposition is

p p
i=1

1=1

where /\u;, i = 1,...,p are the principal directions, ordered respect to the
magnitude of associated eigenvalues. The first to address PCA was Pearson
(1901) (]92]), and the idea was then refined by Hotelling (1933) (|65]). They
found out that the best approximation property is possessed by principal
components, that is, the linear combinations of observed variables which
maximize the explained variance are subsequently the first, the second, ...,
the last principal component. In formula,

min  ||X — Z||pres Z = AX +— Z = PCA,(X),
Z,rank(Z)<r

where PC'A,(X) is the (2.1) truncated to the r—th eigenvalue.
The underlying approximation problem comes from linear algebra. If

zi = uin F1 +up b + ...+ wi By

with F' = [Fy,...,F.], E(F) =0, V(F) = I, r < p, we can write:

I 1 2
min — 3" |[z; — zilla = —[|X — 2|3, =
N n

1 1
= — X/—U,F 2 = — X—F/U 2
’I’L|| ||F7‘0 n” ||Fro7

where X is our n x p data matrix, U = [uj...u,] is a r X p matrix and
F =[F;...F,] is r x n. If we post-multiply all terms by X’ we obtain
L mingy [|X'X — X'F'U||%,,, which can also be viewed as mingy ||%, —
X'FU|%,, -

As we can understand from one of the expressions above, since orthogonal
projections have the best approximation property, || X —F'U||%,, is minimum
if F'U is the principal component set of X truncated to the r—th one. Under
the condition r = p, Z = X. Since X and X'X have the same column (and
row) spaces, the same holds also using the first » PCs of $,. This is why if
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we want to approximate S, withar <p matrix, the first solution we think
about is the extraction of its principal components up to the r—th.

Unfortunately, the approximation problem in the FM setting is different
from the PCA one, because in the factor model setting there are also relevant
issues concerning identifiability and estimation. In fact, we immediately en-
counter relevant problems using this method to estimate strict factor models
(SFM), because we would have § = 32, — > =1 Aiti;0; which cannot estimate
S* since it is exactly the sum of residual principal components (from r+1—th
to p—th), and so will never be diagonal. This is coherent with the fact that
PCA subsequently maximizes the variance explained by the factors, and
not the covariances. Therefore, without further assumptions, extracting r of
p components means that the residual matrix will be non-diagonal, and so
that our SFM estimator will be inconsistent (|5]).

For this reason, lots of factor model specifications and estimation meth-
ods have been proposed. Some methods using iteratively PCA for FM es-
timation, like the principal factors method, have been developed. Unfortu-
nately, they require an a priori choice of the number of factors to be included
in the model, and they usually are very inefficient for large scale problems.
In addition, the principal factors method is not scale-equivariant, that is,
it is not equivariant under linear transforms of the data. As an alterna-
tive, Maximum Likelihood methods can be used, requiring the assumption
of multivariate normal distribution for the data.

Hence, a natural question arises: how can we establish an asymptotic
convergence between PCA and factor analysis (FA)? Which assumptions
are needed? Identifying a factor model structure via PCA requires specific
assumptions on the eigenvalues of ¥*, which can be imposed as a result of
appropriate assumptions on L* and S* .

2.5.3 Approximate factor model

The above mentioned problem problem was first faced by Chamberlain &
Rothschild in [29]. They were the first to define an approximate factor struc-
ture, i.e. a structure where the residual matrix is allowed to be non-diagonal.
Model (2.14) with this assumption is called approximate factor model. In
this context, the key condition is a bound on the (r 4+ 1)—th eigenvalue of
matrix X*, which results in a bound for the largest eigenvalue of S*. This
condition is necessary to establish the asymptotic equivalence between PCA
and FA. Therefore, the two main points discussed so far, i.e. the need to over
come the diagonal structure of S* and the need of estimating consistently a
factor model via a standard method as PCA, can find a common solution.
This theory was born in the field of portfolio pricing theory. When S*
is diagonal, model (2.14) is a strict factor model (SFM) structure. Ross
(199]) derived the SFM structure in the context of capital asset pricing. He
showed that if 3X* is a covariance matrix referred to asset prices and has such
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a structure, the mean expected return is linear (i.e. a linear combination of
factors) because of the absence of arbitrage opportunities, that is, E(e) = 0.
He proved that the SFM structure can be asymptotically recovered when
n — oo with bounded error by Principal Components. However, if we impose
a diagonal structure for S*, the number of factors needed to ensure that S*
is diagonal would increase too much when n — oco .

Suppose X7 is a sequence of matrices for n — oco. If ¥* is positive semi-
definite and sup,, Az 41 (the (r +1)—th eigenvalue of ¥7,) is finite, we refer
to (2.14) across n as an approximate factor model (AFM) structure.

Chamberlain and Rothschild proved in [29] that the main characteriza-
tion of the approximate factor structure needed to perform FM estimation
via PCA is:

Sup Asx r41 finite,
n

i.e. r of p eigenvalues of ¥* diverge when n — oco. This result means that
under these assumptions the error between the PCA truncated to the r— th
component and the theoretical mean (the deterministic part of the model)
is asymptotically bounded by Asx »41. The proof exploits these assumptions
and the properties of the matrix B'B + I.

The outlined assumption works as an identification condition for the ap-
proximate factor model: the authors showed that this condition is sufficient
for the existence of an approximate factor model structure. More, they
showed that the approximate factor structure is uniquely identified extract-
ing the top r principal components of 3,,, and that the error is bounded by a
function of Agx »41 (and a parameter controlling the trade-off between mean
and variance of the process).

This pioneeristic work opened the path for a wide literature on FM es-
timation exploiting PCA as an asymptotic estimator. It is an asymptotic
approach where n — oo, differently from the following ones (as the POET
approach), where p varies together with n. We also highlight that a similar
condition to the sufficient condition here reported is essential to the estima-
tion of dynamic factor models, as explained in [52].

For sake of completeness we mention two other famous factor model
specifications in the economic context: the three factor model by Fama and
French ([42]) and the approximate dynamic factor model by Stock and Wat-
son (|105]) (used for economic forecasts).

By the way, the work by Chamberlain and Rothschild allows for the
presence of residual covariances, but does not specify any structure for the
matrix S*. As explained, in large dimensional real data analysis the assump-
tion of diagonal residual matrix is not acceptable. The data generating pro-
cess becomes so complex that assuming no idiosyncratic correlation among
variables is very unrealistic. However, setting specific assumptions on the
residual component, defining a particular structure, has become a central
topic in the recent statistical literature. This is why the concept of sparsity
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for the residual matrix (i.e. the presence of non-zero elements in selected
positions) came out.

At the same time, the number of parameters becomes so large that iden-
tifiability issues arise, especially when n is not so large. Allowing for the
presence of non-zero residual covariance, preserving model identifiability, is
one of the major challenges in this field, as we will study in deep in Chapter
4.

Sparsity assumptions are motivated by the following two reasons:

e a strong interpretability issue supports this approach. Factor model
approach finds out a small set of uncorrelated latent (unobserved) vari-
ables able to explain most of the correlations among a large set of ob-
served variables. It means that, by removing the correlations due to
some common explaining factors, we are able to identify those pairs
of variables which are so correlated that their residual covariance is
still non-zero. This can be particularly helpful in a few application
contexts, such as hypothesis testing, portfolio analysis, and macroeco-
nomic analysis. We are thus able to identify also block-wise correlation
structures. The sparsity pattern of the covariance matrix becomes a
key to data interpretation, as well as the covariance between variables
and factors, in order to understand the nature of variables and their
relationship.

e an identifiability issue. The number of parameters is now p(r + 1) + s,
s < p(p+1)/2, which is still pretty fewer than p(p 4+ 1)/2 , allowing
a more flexible interpretation and a better conditioning (a sparse esti-
mate is better conditioned than the sample covariance matrix, since it
is further from collinearity).

However, exploring conditions ensuring identification of FM with specific
sparsity assumptions on the residual component is a really hard task.

2.5.4 POET estimator

We are now going to describe a very recent contribution to covariance matrix
estimation. Fan, Liao and Micheva in their paper ([45]) provide in the time
series setting a large covariance matrix estimator which plays a central role
for our dissertation. Their estimator, called POET (Principal Orthogonal
complEment Thresholding estimator), is a PCA-based estimator, but it also
has the characteristics of a sparsity-based estimator. The underlying model
assumptions prescribe an approximate factor model for the data, thus allow-
ing to reasonably use the truncated PCA of the sample covariance matrix.
Furthermore, at the same time, they impose sparsity in the sense of [15] (see
paragraph (2.4)) to the residual matrix.
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If we refer to (2.14), S* is approximately sparse in the sense of (2.9),
while L* has a small number of very spiked eigenvalues, growing with p at
rate O(p), and the rest of eigenvalues are asymptotically negligible. This
feature, i.e. the pervasiveness of a few spiked eigenvalues, is the distinctive
trait of their model, which allows to consistently recover L* via PCA. At
the same time, they recover the sparse component imposing a bound on
the approximate sparsity parameter (2.11), which allows them to recover
S* applying a thresholding algorithm to the orthogonal complement of the
truncated PCA.

Deriving the performance of the most recent numerical estimator we will
describe in Chapter 4 under the outlined conditions of POET estimator,
comparing both performances, is one of the main goals of our thesis. A
related one is the attempt to relax in some way the assumption of spikiness
for the eigenvalues of L*, developing an appropriate estimator.

We immediately outline that rank choice in this context is a relevant
issue, which is typical for rank minimization programs, like PCA. Rank min-
imization allows to improve conditioning, reduce the number of parameters
and compress information, thus improving interpretability, which is crucial
in high dimensions. However, we know that covariance estimators based on
pure rank minimization suffer from rank deficiency (see for example [119]
and [11]). What is more, rank is a non-convex function, and this causes
the impossibility to give any mathematical guarantee for model recovery.
In POET setting, the authors select the latent rank of truncated PCA us-
ing standard criteria from Bai and Ng (2002) ([6]). We will show in our
simulations (Chapter 5) that POET can suffer from rank deficiency in high
dimensions. Another relevant application exploiting PCA structure is [71],
where the authors impose the presence of one leading principal component
and select a subset of variables by a method called sparse PCA. Recovery is
performed given that % — 0, but p, can be much larger than n. Even if
this model is effective for some time series data (like ECG data), imposing
the latent rank equal to 1 is not usually appropriate.

We now describe in detail the model setting of POET, keeping model
structure (2.14) in mind. Here we will use T" instead of n, since we are in a
time series model setting.

We report the two main features of POET setting. The spectral decom-
position of 3¥* (positive definite symmetric squared p-dimensional matrix) is
UAU’. The columns of U and B (both p x r matrices) are denoted by wu;
and l;j, j=1,...,r, respectively.

Proposition 2.5.1 ([45] Proposition 1). All the eigenvalues of the r x r
matriz B'B are bounded away from O for all large p. Under the assumptions
cov(ft) = I and B'B diagonal (canonical condition of SFM) we have:

A =GP < IS, <7
A< ISl g >
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In addition, for j <r, liminf, . ||b;||?/p > 0.

This proposition prescribes that the eigenvalues of the low rank com-
ponent L* (equal to BB') are pervasive, i.e. they grow at rate O(p) while
p — oo. This entails that the top r eigenvalues of >* are pervasive, while
the remaining p — r asymptotically vanish. The largest eigenvalue of S* is
the relevant bound for the top r eigenvalues of 3* minus the corresponding
ones of L* as well as for the remaining p — r eigenvalues of ¥* . Note that
in the setting of AFM (|29]), differently from here, p is fixed.

Proposition 2.5.2 ([45] Proposition 2). Under the assumptions of Propo-
sition 1, if ||b;||5—; are distinct, then ||lu; — b;/||bj|[|| = O(p~Y|S*|))-

This proposition states that if the columns of B are distinct, the distance
between the top r eigenvectors of ¥* and the normalized eigenvectors of L*
are bounded by a rate proportional to p~!||S*||.

Proposition 1 and 2 together state that matrix U and matrix B are
approximately the same if [|S*|| = o(p).

Now, the thresholding estimator by Bickel and Levina ([15]) described in
(2.4) comes into play. The outlined bound is ensured imposing an approxi-
mate sparse structure on S*. Sparsity parameter (2.11) is defined for some
q € [0, 1] as follows:

my = I&&;{Z loi;]9. (2.17)
J<p

For standard properties of matrix norms, we have:

1—q

p
1871 < (1871 < max D Jsi|(siisjs) =) = O(my), (2.18)
1=1

given that s;; are bounded Vi. So, |[S*|| < O(my).

It is now clear that if m, = o(p), the PCA of 2, allows to perfectly
identify the eigenvalues and the eigenvectors of ¥* under these assumptions.
In particular, the first r principal components of ¥* are approximately the
same as the factor loadings. We emphasize the relevance of this point, which
represents one of the most important innovations in [45]. Here the asymptotic
equivalence between PCA and factor analysis is established by applying a
conditional (to factors) sparsity model to the residual matrix, provided that
p is enough large. The assumption m, = o(p) will be modified in order to
study the case of generalized spiked eigenvalues.

The key point in their proof is that under these assumptions the eigen-
values of B’S ™' B are bounded. Thus, the relative norm of ||% — %, defined
as |2 — 3|z = p~ V2|28 Y2 — [|| pro, is bounded, cancelling out the
curse of high dimensionality introduced by B (see paragraph (2.2), Theorem
2.2.1).
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As in [15], the sparse component S* is then consistently estimated by
thresholding, relying on the results described in section (2.4). They define
for each i # j an adaptive threshold ([18]) of the form

7ij = Cor\/0y,

where
1 lo
or— 4 g(p)
VP
and
1 T
Z S’ltsjt 32] 9
t:l
with
1 X
Sij = Z§z‘t-§jt
T t=1
and

Sit = Tit — lit,

where [;; = Bgfg“ is estimated via the PCA of 3, up to the r—th component.

This approach holds for sufficiently large C' > 0. wr (which is the uniform
rate of convergence of max;j<,, j<p |8i; — 5|, as in [15] and [18]) is a decreasing
sequence in p and T. Note that term ip is due to the estimation of the
unknown factors and is usually unavoidable.

Any generalized thresholding function A(z) (including the soft-thresholding
operator) such that h;;(2) = 0 when |z| < 735 and |h;(2) — 2| < 745 otherwise
(see (|3])) can be effectively used. Note that thresholding is applied only on
the off-diagonal elements. The thresholded estimate of the residual matrix
S* is thus ST = hyj ().

The sequential approach to compute POET estimator is the following.
First, perform PCA on f]n, extracting the top r components (eigenvalues
and eigenvectors). So, Ly = U,AU’, where A, is a r x r diagonal matrix
containing the top r eigenvalues of En, and Uy is the p x r matrix containing
the associated eigenvectors. lj; = b7 ft is thus simply the i x t entry of L.
S* is estimated by applying as described an adaptive thresholding step on
the matrix S = Up—rAp—+U,_, (the principal orthogonal complement of n),
where A,,_, contains the remaining p—r eigenvalues, and U,_, the associated
eigenvectors. This is why POET contains in its name the thresholding of
the principal orthogonal complement. Here is the expression of POET:

¢ S\
Yporers = Li + S5

As pointed out in the introduction to this paragraph, the rank choice is a
relevant issue. The number of diverging eigenvalues, i.e. the latent rank r is
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determined in a data-driven way minimizing appropriate penalty functions
which were first described in [6]. These functions of p and T must satisfy the
following conditions: ¢(T,p) = o(1) and min,; g(7,p) — oo. In this way,
POET is estimated with a data-driven rank 7. We refer to [45]|, paragraph
(2.4), for the details.

POET is a non-parametric estimator. At the same time, it requires some
distributional assumptions to perform consistent recovery. We now list for
sake of completeness the most relevant technical assumptions on factors and
residuals:

1. Strictly Stationarity of (e, fi)i>1.

2. Non-correlation between € and fi, Apin(S™) > c1, [|S*|]1 < c2,
minvar(ejrejt) > c1.

3. Tails of f; and e;:
P(leit| > s) < exp(—s/b1)™, i<n
P(fjil > s) < exp(=s/b2)"™,  j<r

We note that bounds on the minimum eigenvalue and the /; norm of S*
are needed. Further assumptions include strong mixing between the sigma-
algebras generated by [(f¢, €:) : t < 0] and [(ft, €) : t > T and some regular-
ity conditions to estimate loadings and factor scores.

Most of these assumptions will not be necessary in our numerical context.
Anyway, we will use part of them to study the behaviour of our numerical
estimator in the POET context. Part of the technical conditions were derived
in a previous paper by Fan, Fan and Lv ([44]). There, the authors analyze the
same setting deriving the correspondence between PCA and factor analysis
without thresholding the residual component. Another paper by Fan, Fan
and Lv (|43]) studied the same setting but with observable factors.

The two main theorems of [45] state that, under all described assumptions
and supposing v~ = 3r; '4-1.5r5 Ly L1, log(p) = o(TV/6) and T = o(p?),
we have: A

187 = 87 = Op(wy*my)

. 1
X poeri — X|s = Op <@ + mpw;_q> (2.19)

HiPOET,f - E*Hmax = Op(wT)

If mpwflp_q = o(1), S;r and po g7, are non-singular with probability ap-
proaching 1:
1SF1 = 5*71| = Oplwy Tmy)

&1 - 1—
||EPOET,f» =X 1||:OJD(WT “my)
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The assumption T' = o(p?) is necessary to estimate the r71" factor load-
ings. It means that recovery is effective until plogp > T. The assumption
log(p) = o(T7/%) is necessary for recovering the sparse component.

For the following of our dissertation we report two technical results of
[45] describing model-based relationships (in bold). The first one, which was
proved in [44], prescribes, under all described assumptions, that the following
claims hold:

max
ij<r

T

1

T > fitfie — B(fiefi)
t=1

=0, (%) (2.20)

T

1 lo

T E sitSjt — E(sitSjt)|= Op (%) (2.21)
t=1

T

1 lo

T > fiesie|= Op (%) . (2.22)
t=1

Thanks to this result, it is possible to prove that, under all described

assumptions, ||, — ¥*|| = o(p) with a rate proportional to O(%), i.e. the

r—th largest eigenvalue of 3, grows at rate O(p) with probability approach-
ing 1:

max
ij<r

max
ij<r

3 * p
Sp—X"|=0—= ). 2.23
£ -3l =0 () 223

For the following of our study, we here define the generalized pervasive-
ness context for a € (0, 1] as follows (|45, p. 656):

Definition 2.5.1. The eigenvalues of X* follow a «-generalized spikiness
structure if and only if all the eigenvalues of the r x r matriz p~*B'B are
bounded away from 0 and co as p — 0.

If o =1, we fall into the POET setting.

Applications of POET are very wide. We explicitly mention applications
on financial data. In Chapter 5, we will show an application to banking
supervisory data where the performance of our numerical estimator will be
compared to the one of POET.

We shall use repeatedly these results on the sample covariance matrix for
proving the rates of our numerical estimator under POET assumptions and
in the generalized spikiness context. Non-asymptotic large covariance matrix
recovery under generalized assumptions for the eigenvalues of the low rank
matrix is one of the goals of the rest of our thesis. In fact, POET approach
is elegant and effective, but spikiness in real applications is not so usual.
What is more, in this way it is difficult to catch the proportion of variance
explained by the factors, since the model does not provide any attention
to that. In addition, when p is not enough large, the errors could be still
correlated (as pointed in the discussion of [45] by Montanari).
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To conclude, we note that rank selection also represents a relevant issue.
If p is large, setting a large rank would cause the estimate to be non-positive
definite, while setting a small rank would cause a too relevant variance loss.
Using IC criteria from Bai and Ng (2002), as pointed out in the discussion of
[45] by Yu and Samworth, if the eigenvalues are not really spiked at rate O(p),
the probability to underestimate the latent rank does not asymptotically
vanish. This is why we are going to derive a method intrinsically detecting
the latent rank, without applying any existing criterion. We are going to do
that in the non-asymptotic context, where the absolute losses are bounded
given finite values for relevant parameters.



Chapter 3

Covariance regularization and
convex analysis: numerical and
computational aspects

The aim of the present chapter is to explain the rationale behind the numeri-
cal methods needed to estimate the covariance matrix under the assumption
of approximate factor model with sparse residual for the data.

Such a data structure has become very popular in recent years and has
found relevant applications in various fields like, among others, image re-
construction, MRI (Magnetic Resonance Imaging) data, financial portfolio
selection and electrical engineering. The statistical challenge lies in the need
to estimate a latent structure summarizing a huge number of variables, even
starting from a number of observations comparable or smaller.

Let us suppose the population covariance matrix of our data is the sum
of a low rank and a sparse component. Suppose we have a data matrix
X = [x45], where ¢ = 1,...,n are the observations and j = 1,...,p are the
variables. The p— dimensional random vector x has a low rank plus sparse
structure if its covariance matrix X* satisfies the following relationship:

Y*=L"+ 5%, (3.1)
where:

e L* is a positive semidefinite symmetric p X p matrix with at most rank
r L p;

e S*is a positive definite p X p sparse matrix with at most s < p(p—1)/2
nonzero elements.

Let us suppose L* = UDU’ = BB', where B = UDY2 Uisapxr
matrix, D is a r X r diagonal matrix, with d;; > 0, Vj = 1,...,r. Suppose
that our p x 1 random vector X;, ¢ = 1,...,n, has the following structure:

37
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X; = Bf; + €, (3.2)
with
fi = Ny(0,1;); 3.3)
€ = p(O’ S*)a

where f; is a r x 1 random vector, and ¢; is p X 1 random vector.

X, is assumed to be a zero mean random vector, without loss of generality.
S, = %Z?:l X, X! = %X’X is the p x p sample covariance matrix, where
X is the n x p data matrix.

If we set x = X, it is easy to observe that x follows a low rank plus
structure:

E(za') = E(Bf +€)(Bf +¢)) =
= E(B'f'fB)+ E(Bfé)+ E(eB'f') + E(e€’) = (3.5)
=BB +S5*=%*

under the usual assumption f L €, i.e. cov(f,e) = E(fe') = E(ef’) =0
(r x p null matrix).

If we assume a normal distribution for f and €, we know that the matrix
W :=3%, — (BB'+S5*) is a re-centered Wishart noise, i.e. it is distributed as
a zero-mean Wishart (refer to Chapter 2 paragraph (2.1) for detailed expla-
nations on the Wishart distribution). However, the normality assumption is
not essential in the finite sample context.

The main aim of this Chapter and of the entire work is to provide an
alternative approach to covariance matrix estimation respect to POET un-
der a similar data structure, deriving the necessary assumptions to perform
identifiability and recovery. This approach is based on numerical analysis,
and exploits the theory of non-smooth convex optimization provided by [98]
and |[28|.

As suggested by the data structure, the method we are going to describe
should at the same time consistently estimate the covariance matrix and
catch sparsity and spikiness in the best possible way. The starting point for
our study is offered by numerical analysis, which summarizes the problem
of our interest in a natural way. As discussed in the previous chapter, this
approach has several advantages, like a better conditioning (for the presence
of the low rank component), a smaller number of parameters (pr + s against
p(p—2—1))7 a better interpretability of the output, both on the low rank side
(degree of covariance explained by the factors) and on the sparse side (the
sparsity pattern maps the most relevant relationships among variables).

However, even if the numerical problem can be efficiently solved by using
subgradient techniques, it is not straightforward to investigate the statistical
properties of these estimators. Non standard tools of algebraic geometry
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(|60]) are required to derive identifiability conditions, as well as relevant
results of random matrix theory are necessary to establish consistency ([39]).
It is relevant that the statistical performance in terms of the covariance
matrix as a whole and in terms of the two components (rank and sparsity
pattern) separately considered are not necessarily aligned. As we will see,
the loss function here depends on the Lagrangian dual theory of non-smooth
function, thus implying that the loss function of the two components (sparse
and low rank) separately considered is referred to the sum (i.e. the estimated
covariance matrix), thus differing from the usual (Frobenius) loss of the
estimated covariance matrix.

Our problem can essentially be stated as
1
win S ||(L + 5) = b, + Arank(L) + plIS]lo, (3.6)

where ||S||o is the number of nonzero elements, and rank(L) can be seen as
||diag(D)||o, given that L* = UDU’. This is a combinatorial problem, which
is known to be NP-hard, since both rank(L) and [|S||p are not convex. A
very well known convex relaxation of problem (3.6) is

1
tip 5/1(L + 5) = Zallbry + ML + plIS, (37)

where A and p are non-negative threshold parameters. [|S|[1 = 21", 37 [s4]
is the I; norm of S, while ||L||« = >0, |di| = i_; di = ||diag(D)|| is the
nuclear norm of L*. Basic references are [108] for the former and [46] for the
latter.

More in detail, the study and implementation in statistics of the nuclear
norm [, is due to [49]. Problem (3.7) is a penalized least squares program,
where the penalty is composite and non-smooth. For the reasons explained
before, problem (3.7) is also often referred to as a regularization problem.
From a numerical point of view, it is an approximate unconstrained inverse
matrix problem with two unknowns, L and S. The key to its solution will
be to disentangle the problem in two easier related problems, one in L and
the other in S. We will deal with the constrained version of (3.7), imposing
that S and L + S are positive definite, and L is positive semidefinite.

In this Chapter, we are going to describe the genesis of problem (3.6),
showing how the /; and [, heuristics came out. [36] proved that for most
underdetermined systems the /1 norm detects the sparsest solution, while [97]
proved that the nuclear norm solution is the one with minimum guaranteed
rank. In section (3.1) the rationale behind both problems is analyzed from
the numerical point of view. In section (3.2) the computational aspects
related to solving problem (3.7) are shown.
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3.1 Nuclear norm and /; norm regularization: an
historical review

In this section we are going to describe the numerical approach to covari-
ance matrix estimation. The key argument for this approach rises from the
need of regularizing the covariance matrix. Respect to the PCA based ap-
proach of [45], this alternative provides a way to numerically estimate the
two components and their sum, without imposing the pervasive condition
on the eigenvalues of L* (and ¥*). The other main issue of POET approach
is that the rank is chosen according to some information criteria, while we
would like an approach automatically detecting BOTH the low rank and the
sparsity pattern.

Combinatorial problem (3.6) is the most natural way to formalize this
search. However, (3.6) is computationally intractable, and can be approached
replacing the composite non convex penalty Arank(L)+pl||S||o with the com-
posite non smooth penalty A||L||« + p||S||1. We can say that the numerical
approach here essentially consists in model selection via convex optimiza-
tion, where convexity is needed to achieve a unique minimum. The statis-
tical properties of estimates will be derived using the tools of non-smooth
mathematical analysis and random operator theory (functional analysis).

We are now going to briefly describe the history of this minimization (or
optimization or regularization) problems, showing the various context where
{1 and nuclear norm regularization problems arose. We start with [; norm
(3.1.1) and we proceed with [, norm (3.1.2). In (3.1.3) we then describe how
the combined use of both heuristics came out.

3.1.1 Cardinality minimization problem: /; norm heuristics

As outlined also in Chapter 2, a central role in numerical analysis is played
by ill-posed inverse problems (paragraph (2.2)). The genesis of the [; norm
problem dates back to the problem of recovering a sparse vector from an
observed full vector. The most famous appearance comes probably from
[108] in the context of regression modelling.

In that famous paper by Robert Tibshirani (1996), the problem of select-
ing significant regressors in the "Big Data" context, when p > n, is effectively
solved by shrinking towards zero the irrelevant regression coefficients. The
resulting estimator of regression coefficients is called LASSO (Least Absolute
Shrinkage and Selection Operator). The LASSO problem can be formalized
in the following terms:
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p
subject toz bj] <t.
J

where ¢ is a tuning parameter.

Assuming without loss of generality that z; = 0 for all j = 1,...p and
that ¥ = 0, a can be omitted. The same problem is substantially equivalent
(see [22], note 1) to

1
in = |ly — Xb||rro + p|[bl]1, :
min > |ly [lFro + pl[bl11 (3.9)

where [[b[|1 = >, [b;], p is a regularization parameter depending on ¢, and :
is an arbitrary scale term chosen for computational convenience.

In the language of numerical analysis, problem (3.9), i.e. the [; reg-
ularization problem, can be intended as a quadratically constrained linear
problem (QCLP) or a quadratic program (QP).

The [; heuristics was born in the context of signal /image recovery. Tib-
shirani’s contribution was of fundamental importance in the regression con-
text, since it provided a substantial improvement not only upon OLS (in
terms of prediction accuracy and interpretability) but also upon ridge re-
gression (which is simply (3.9) with [|b|3 in place of ||b]|1, also known as
Tikhonov regression or /s regularization problem) and upon subset selection
techniques. In fact, the LASSO is more stable and interpretable.

Tibshirani showed that, under the condition X'X = I,,

~

b = sign(l;?)\i)g -, i=1,...,p,

where b0 is the usual OLS estimate, v is determined by the condition 3 bj| =
t and X is the n X p design matrix. However, this is a very special circum-
stance, and the strength and amplitude of the conditions on X under which
model selection is effective is still under investigation, as well as the validity
of solution algorithms. A very well known algorithm for LASSO estimation
is LARS (Least Angle Regression, [41]).

After Tibshirani’s contribution, the literature on model selection via Iy
minimization grew up. In [22] the problem of model selection via l; opti-
mization was formalized very elegantly.

Let us consider the linear model y = Xb + z, where y = (y1...y,)’, b is
the p— dimensional vector of coefficients and 2z = (21...2,)" is a vector of
independent errors, z; ~ N(0,02).
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In the p > n setup, it is difficult to detect which are the coefficients b;,
@ =1,...,p representing the "right" variables to determine the values in y.
A standard approach to find b is

1
in - ||y — Xb|[3 2 1
min = ly — Xbl[3 + po||b]lo, (3.10)

where ||b]|p is the number of non-zero components in b.

A number of model selection criteria in the form (3.10) has been devel-
oped. However, (3.10) is computationally intractable (NP-hard) because it
requires exhaustive search over all subsets of columns of X, thus having a
complexity of 2P (if p ~ n).

The most popular convex relaxation of (3.10) is the LASSO:

1
in —|ly — Xb 21 3.11
min |ly [l2 + po [l (3.11)
where ||b]]; = >_F_, |b;| and X is a regularization parameter which controls

the complexity of the model. We will see why problem (3.11) is the most
appropriate convex relaxation of problem (3.10).

The most important condition for recovery, as outlined in [22], is that
the predictors are not highly correlated. This is summarized in the notion of
coherence, which is the maximum correlation between unit-norm variables
and is defined here as

p0 = 3 1< XX >, (312)
1<i<j<p

i.e. the maximum inner product between pairs of predictor variables. When
the vector b has only s non-zero components, it is said to be s- sparse. In [22]
it is proved that assuming appropriate bounds for the values of p and s and
for appropriate values of A, the error distance is bounded with rate O(log p).
It is remarkable that we need to enforce the maximum inner product among
the columns of X, i.e. the maximum correlation between predictors, for
identifying the model. The bound on p is an example of restricted isometry
property, which will be necessary to bound the error for all covariance matrix
models taken into account.

The {1 minimization, as explained in [27], was first used for sparse signal
reconstruction. This technique can be effectively used in a large number of
fields, among which we mention the very recent applications of gene expres-
sion data. This setting also includes relevant applications on system control,
digital image reconstruction, sparse graphs. Suppose we want to recover a
n x 1 signal xg, from an incomplete set of measurement y = ¢z, where y is
m x 1, ¢ is m x n, with m < n. ® represents the coefficient sequence of the
signal in the appropriate basis.

The most immediate approach is by solving the Iy minimization problem:

' 1
min {[2] (3.13)



3.1. AN HISTORICAL REVIEW 43

under y = ¢z, where |[z|lo = >, 1(z; # 0).

Even if this problem would be identified if ||zgl||;, < m/2, problem (3.13)
is intractable because ||z||;, is non convex. Therefore, the most used convex
relaxation of problem (3.13) for signal detection is again the [; regularization
problem:

min ||z, under y = ¢z. (3.14)
TERM

This application is relevant, not only historically, but also because it shows
that [; heuristics started to be used far from the context of statistical mod-
elling.

Before going on with our brief historical description, it is worth under-
lining why convex relaxations make problems tractable. A standard theo-
rem of calculus states that a sufficient condition for X to be a minimum of
f(X) is that the second derivative of f(X) is strictly positive in an open
domain. Since (strictly) convex functions always have a (strictly) positive
second derivative, convexity is essential for optimization because it ensures
that we find a global optimum. If the function is strictly convex, the mini-
mizer is also unique.

In the case of a matrix function f(X), the sufficient condition becomes
the positive definiteness of the Hessian matrix of f. If the function has two
or more arguments, it must be convex respect to all arguments in order to
have a global minimum. In this way, critical points, i.e. points satisfying
df =0, are also minima. We can thus exploit the Lagrangian dual theory.

Another important application of I; heuristics, which is exactly the op-
posite respect to the signal detection problem, is the recovery of a sparse sig-
nal representation from overcomplete dictionaries in the harmonic context.
Here, the signal y (n x 1) must be recast from an overcomplete represen-
tation (overcomplete dictionary) x having dimensions m X n, with m > n.
The model in this case is: y = &z, where ® is n x m. The challenge is to
recast the orthogonal basis closest to signal y. In linear algebra, these are
underdetermined linear systems, i.e. linear systems with infinite solutions.
David Donoho ([36]) was the first to prove that among the infinite solu-
tions, {3 minimization recovers the sparsest one. The fundamental necessary
condition is the following restricted isometry property:

s
(A = ollzll2 <y /5 -ll®2]ly < (L +€)l|z]l2.

Relevant results in this field show that a number of non zero elements in x

proportional to % is usually enough to find a unique solution. Sur-

prisingly, the recovery can be successfully done for a wide range of problems
having a relatively small number of samples, until n = O(m'/*log®?(m))
([37]), if y is sparse and the observations are selected uniformly at random.

A relevant application described by Candes and Tao in (]|23]) deals with
the problem of recovering an input vector from corrupted measurements.
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Their problem is y = Af + e, where f is the unknown m x 1 input vector, y
is the observed n x 1 vector, e is the n x 1 error and A is the m x n coding
matrix. Their solution to recover f is

in ||y — Ag||:. 3.15
;g}%l}llly gllh (3.15)

This problem is also called error correction problem.

We note that here we have both approximation and recovery from highly
incomplete measurements. The recovery is effective with overwhelming prob-
ability if the size of the support of e is bounded. Theorems are proved using
the concept of restricted isometry, which impose a bound to the incoherence
(intended as the distance from being an orthonormal system) of the n input
vectors f;, where fismx1and¢=1,...,n. Their problem can be rewritten
as

min 1'¢, —t<y— Ag <t, (3.16)

where t € R™ and ¢ € R", and can be recast as a linear problem with
inequality constraints and solved efficiently using standard algorithms (|16]).
Formulation (3.16) will be very useful for our purpose.

We finally mention an important lemma (23], Lemma 3.1) which de-
scribes the necessary conditions for obtaining a unique minimizer from prob-
lem (3.15).

To sum up, /1 heuristics allowed the rise of a new sampling theory (much
fewer samples necessary than before), which results in a new data acquisition
protocol. As pointed out in [22], I; regularization can be defined as the mod-
ern least squares method, for the variety of applications and the capability
of providing solutions in the Big Data context.

To conclude this section, we give a remark on solution methods for [y
minimization problems. An exhaustive review of existing algorithms for
the [} regularization problem (with specific reference to the face recognition
context) is provided in [115]. We want to emphasize here the importance of
Iterative Shrinkage Thresholding Algorithms (IST). These algorithms were
born in the vector denoising context. The first approach to solve this issue
was to set to zero too small entries (which is exactly the shrinkage approach).
This could be done solving the usual problem:

min ¢(z) = =||Az — y||* + prC(a) (3.17)
reR? 2
If C is proper and convex and ¢ is strictly convex, then there is a unique
minimizer. If A = I, we are in the pure denoising context, and ¢(x) is always
strictly convex provided that C(z) is.

This approach moves from the work of a French mathematician, J.J
Moreau, who first proposed the concept of proximal mapping (|81], [83]).
Problem (3.17) has not to be necessarily solved using C(z) = ||z||1 ({1 norm).
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It can be solved using C(z) = ||z||2 (ridge), C(z) = ||z||lec or C(2) = ||2]|0
(lp norm).
The solution to problem (3.17) was shown to be

Tpyl = (I)g (mk - éA,(AXk - y)> (3.18)

where A'(AX), — y) is simply the gradient Vi||Az — y[|3 in z), and @ is
the thresholding operator with parameter £. This is the proximal mapping
method (recently been proved to be equivalent to the projected gradient ap-
proach, see [50]). If ¢(z) = ||z||1 (3.18) is called soft-thresholding operator, if
c(z) = ||z]|o (3.18) is called hard-thresholding operator. The basic shrinkage
solution algorithm is called ISTA (Iterative Shrinkage Thresholding Algo-
rithm, see [35]). This approach has been easily extended to the nuclear
norm regularization problem.

This algorithm can be equivalently seen in four different ways: as an
Expectation-Maximization (EM), a Minimum-Maximum (MM), a Forward-
Backward Splitting and a Separable Approximation algorithm. For details
we refer to [50].

Finally, we mention Augmented Lagrangian Methods and proximal gra-
dient algorithms, which will be crucial for the solution of our problem (3.7).
We note that in this context the ALM and the proximal gradient solution
coincide. The fastest solution algorithm, as we will see, is FISTA (Fast
Iterative Shrinkage Thresholding Algorithm, [10]).

3.1.2 Rank minimization problem: nuclear norm heuristics

We now move to briefly explain the history of [, heuristics. Its genesis and
use in statistics is much more recent than the one of /; heuristics. This topic
was first deeply studied in the PhD thesis of Maryam Fazel ([49]). That work
explains widely how [, heuristics can be used for matrix rank minimization
problems.

The first relevant application in statistics can be found in [24]. There
Iy is effectively used for exact matrix completion. The underlying problem
moves from a very well-known case study: the Netflix prize problem. The
Netflix prize was an award given to those who were able to set up the best
prediction model for movie rating. The Netflix dataset was composed by a
large number of movies and a large number of movie ratings. The statistical
problem was that most of ratings concerned a small number of movies. This
resulted in a matrix where around 99 per cent of entries were missing, since
many ratings were empty.

In this context, it is natural to seek for the low rank matrix which best
approximates the observed matrix. This equals to recover a matrix from a
sample of its entries. Suppose we have a squared p X p matrix M with rank r
having a fraction of entries missing or corrupted. Call Q the set of locations
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corresponding to the observed entries such that 4, j € € if and only if M;; is
observed. The original problem to solve is

min rank(X) subject to X; ; = M;j, (4,7) € Q. (3.19)

This problem is known to be NP-hard (rank(X) is nonconvex). Even if some
good algorithms exist ([47]), they are of very little practical use, since they
require doubly exponential computational times in p.

As Fazel shows in her thesis (|49]) an effective convex relaxation to solve
this problem is

min || X|[, subject to X; ; = M;j, (i,j) € €, (3.20)

where || X[, = 2%, ||oy(M)]] and o;(M) is the i-th largest singular values
of M. This is why for positive semidefinite X, problem (3.20) becomes:

min trace(X) subject to X; ; = M;j, (4,5) € Q, X =0, (3.21)

where the symbol = denotes positive semi-definiteness (> will denote positive
definiteness).

In [16], problem (3.21) is shown to be recast as a semidefinite program
(SDP) exploiting the fact that the dual norm of the nuclear norm is the
spectral norm. In particular, it can be written as:

1
in — .. 22
L%}ll}[l% 2(trace(W1) + trace(Ws)), s.t (3.22)
Wy L
-
|: L W2 :| = 0.

In [24], Candes and Recht define a very intuitive characterization of
the matrices it is possible to recover via this method. Consider a real-
valued rectangular matrix M. Let its singular value decomposition (SVD) be
Soi_qoiuvh. fug i =1,...,r (left singular vectors of M) and v;,i = 1,...,r
(right singular vectors of M) are selected uniformly at random from all sets
of r orthonormal vectors, the SVD is called random orthogonal model. Note
that no condition is placed on the singular values o;(M ), since their magni-
tude is not relevant for recovery.

Candes and Recht show that under the random orthogonal model, if the
number of samples n < Cp®*rlogn, M is recovered by (3.20) with very
high probability. If r < n'/®, the condition becomes n < Cp®°rlogn. The
strength of bound is proved to depend not only on p,r and n, but also on
the singular vectors of M. If the singular vectors are highly concentrated
in few positions, it becomes impossible to recover M from a sample of its
entries. This is why they define the coherence quantity for the p x r matrix
of left singular vectors U respect to the standard basis:

p
£ Pye;ll. 2
w(U) rg?;;” el (3.23)
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p(U) ranges from 1 (if v; are spanned by vectors whose entries are /1/p)
to n/r (if the basis of U contains any standard basis element). In the same
way they define pu(V') for the matrix of right singular vectors. They then
prove that under a bound on max(u(U), #(V')) and on the maximum entry
of >, <;<, ukvy, the previous bound can be generalized.

The concept of coherence, which is also referred to as incoherence (which
is the opposite) will play a central role in our covariance matrix recovery.
In [24] it is also showed which matrix subspaces satisfy these conditions
and which analytical conditions on the subgradient of ||X||, are necessary
to ensure that (3.20) is the unique minimizer (Lemma 3.1). This result,
together with the analogous one holding for the {; norm, will be a key proof
tool in the covariance matrix context.

From a mathematical point of view, we are dealing for both heuristics
(I and l,) with underdetermined linear systems. The task is to fill missing
entries, in a situation where a large fraction of entries (or elements in the
vector case) are missing. This fraction must be not too large in order to
identify the unknowns and perform an effective recovery. We note here that
the I1 norm of a vector is simply the nuclear norm I, of the diagonal matrix
containing the same vector as the main diagonal.

In the matrix case, beyond the Netflix problem, this need finds wide ap-
plication in the field of collaborative filtering, of which reccommender system
is a relevant application, as well as genomic data and image processing. All
these applications require to estimate a low rank r < p matrix to compress
information. More widely, as we have seen for the decoding linear program,
we may also be interested to relax the reconstruction problem, i.e. to re-
lax the assumption which leaves observed entries unaltered. In a statistical
perspective, the approximation problem is much more interesting, since it
implicitly assumes a model behind.

Let us call Po(X) = X;; if X;; is observed and 0 otherwise. Problem
(3.20) can easily be rewritten as

min || X[].

subject to Po(X);; = Po(M).
At the same time, we could also be interested in:

min || X || (3.24)

subject to ||Po(X) — Po(M)||r < d, where
ZObserved(i,j) ||Xij - Mij||2 = [|[Pa(X) — PQ(M)H%
Problem (3.24) is equivalent to

min || Xy — My
Observed(i,5)

subject to || X ||« < 7.
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The first form is a quadratically constrained semidefinite program (SDP),
the second one is a quadratic program (QP). As explained in [116], we ex-
plicitly note that the two problems are strictly related, since the values §
and 7 are related. These parameters reflect the level of noise present in the
input matrix. Solving one of the two, it is possible to determine the level of
noise for which the other problem shares the same solution.

There is an important difference between the reconstruction and the ap-
proximation problem. Both problems can be recast as semidefinite problems.
We will discuss computational aspects in paragraph (3.2.2). In the former,
the constraint is a linear equality, while in the latter the constraint is a
quadratic inequality. For this reason, as we will discuss, the latter one re-
quires more than one sparse SVD to be solved, differently from the former
one. In [61] there is a wide discussion on large-scale SVD methods which
can be effectively used for matrix completion problems.

The same occurs in the /; context. The reconstruction problem is a lin-
early constrained linear program, the approximation problem is a quadrati-
cally constrained linear program.

All in all, low rank approximation is the key ingredient of problem (3.20)
and (3.24). The underlying combinatorial problem is

mLin Z(EU — L;j) under rank(L) < r,
irj

which is computationally intractable (NP-hard).
In spite of that, basic theorems from linear algebra state that
min  [|A— B||2
B,rank(B)=r
and

min  [|A — Bl|Fro
B,rank(B)=r

T
2 : /

B = )\iuiui,
i=1

which is the SVD truncated to the r-th summand ([40]), when r is known.
This is why SVD is the key computational ingredient of recent algorithms.

As explained, if we replace rank(L) with [|L|[. = >27_; A;(L), the prob-
lem is made convex ([46]) and assumes the form

are both solved for

mLin Z(Eij — L;j) under || L[], < 7.
27]
A natural question arises: is problem (3.20) really minimizing the latent

rank? This crucial passage was proved in [97]. There the authors define the
general affine rank minimization problem:

minrank(X) under A(X) =b (3.25)
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where A is a linear matrix operator. The attribute "affine" means that the
rank is minimized under a system of equality constraints. This problem is
known to be NP-hard, and has lots of applications, including low rank matrix
completion and image compression problems. There is a strict parallelism
between compressed sensing (i.e. the cardinality minimization problem) and
rank minimization. In particular it is proved that, as /; heuristics provides
the sparsest solution of an underdetermined linear system, [, heuristics pro-
vides the lowest rank solution of underdetermined system (3.25). This holds
if and only if the following restricted isometry property (RIP) holds:

(1= 6n)[IX[r <[IAX)]] < (1 +6,)[[X]F, (3.26)

where 9, is the restricted isometry constant, i.e. the smallest scalar sat-
isfying (3.26). The relaxed [, version of (3.25) is shown to give the minimum
rank under suitable conditions on §, (05, < %, r>1).

These results ensure that nuclear norm heuristics recovers the minimum
rank solution. We will show in paragraph (3.2.1) why [, (and [;) are un-
doubtedly the most effective proxies of rank(L) (and ||S]|o).

An exhaustive overview of the algorithms for [, minimization is provided
in [118] with specific reference to image analysis. We mention proximal
gradient algorithms (|90]), Augmented Lagrangian (ALM) and Alternating
Direction methods (ADM) ([116]). These algorithms will be crucial for our
purposes.

In addition, we point out that matrix factorization issues can be effec-
tively exploited also for the rank minimization problem (by the so called UV
parametrization). That tool becomes very convenient when dealing with pos-
itive semidefinite matrices (PSD). In that case, the nuclear norm becomes
the trace norm, and UU’ parametrization is very easy-to-implement (|73]).
In [4], the consistency of trace norm regularization for PSD was proved very
elegantly, respect to the relationship between the regularization threshold A
and the sample dimension n.

However, we will use proximal gradient algorithms, which are more con-
venient for the particular shape of our composite problem.

3.1.3 Composite penalisation: combined use of /; norm and
nuclear norm

The nuclear norm minimization approach just described can be extended.
In order to make problem (3.24) robust to the presence of outliers, we can
assume that the input M can be approximated by L + S, where L is a low
rank matrix with rank r and S is a sparse matrix, i.e. a matrix with only a
fraction of nonzero entries. (3.24) thus becomes

1
min 2 |(L + 8) = Ml + NI + plIS|h, (3:27)
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where [|S]]; = >0, Z‘;’:l |sij|, and is surrogate of ||S||p, the number of
nonzero elements in S. This problem is called robust convex matrix com-
pletion, as pointed out in [61], where this example was mentioned as an
application of large-scale SVD methods.

We define our composite (convex non-smooth) penalty P(L,S) as

P(L,S) = LIl + plIS]]1- (3.28)

Problem (3.27) is effective for matrix completion. It comes from the
analogous matrix reconstruction problem, which aims at recovering exactly
L and S (without any quadratic penalty term). It can be thought of as a ro-
bust principal component problem, resulting in a data compression which is
robust against corrupted or missing entries. Here we allow for a small matrix
S to perturb the low rank matrix L, such that incomplete data matrix re-
construction can be performed. Applications include video surveillance, face
recognition, latent semantic indexing, ranking and collaborative filtering.

Suppose now we have a matrix M = L+ .5, where L is a low rank matrix
and S is the sparse matrix. M does not need to be squared: this technique
was born to reconstruct data matrices.

Classical Principal Component analysis solves the problem:

min ||M — L||, rank(L) < r, under L + S = M.

As we described before, this can be solved using classical principal component
pursuit (PCP), i.e. taking

T
2 : l

L= )\iuiui,
i=1

where uw; and \;, ¢ = 1,...,r, are respectively the r eigenvalues and eigen-
vectors of M.

In [25], the Robust Principal component framework is described. The
described problem is

1}1151'1||L||* +1]S||1, under L 4+ S = M.

This is a non-smooth minimization problem, since both penalties (and thus
their sum) are not convex. In the next paragraph we will analyze the nu-
merical problem, and describe possible approaches for numerical solution. In
[25], an effective and relatively fast recovery is shown to be possible only un-
der specific bounds for the rank of L, the number of non-zeros of S, and the
singular vectors of L. In particular, max; ||Ue;||2 max; ||Ve;||e max; [|UV |00
must be bounded, where e;, i = 1,...,p, are the standard basis vectors.

In following works, as we describe in Chapter 4, these conditions have
been weakened. Anyway, the approach for ensuring identifiability and re-
covery comes from the same proof strategy. We will show how this method
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can be effectively applied to covariance matrix estimation, i.e. to the noisy
context, when one additional noise term is inserted for modelling M.

Now we move to the discussion of the mathematical aspects of the low
rank plus sparse decomposition problem, coming back to our key matrix
approximation problem (3.7).

3.2 Nuclear norm and /; norm minimization: ana-
lytical and algorithmic aspects

Our aim is to perform covariance matrix estimation under the assumption
of low rank plus sparse decomposition. Such an assumption is equivalent to
assume a sparse approximate factor model for the data.

Chapter 4 will be devoted to modelling aspects behind these assumptions.
As we pointed out in previous paragraphs, applying (3.7) to the covariance
matrix setting requires several assumptions on key parameters, in order to
guarantee identifiability, recovery, positive definiteness and invertibility.

In this section, we describe the nature of problem (3.7) from the point
of view of numerical analysis (paragraph (3.2.1)) and computational anal-
ysis (paragraph (3.2.2)). The structure of the /3 norm plus nuclear norm
regularization problem is described in detail, with reference to mathematical
aspects.

3.2.1 Numerical context: a semidefinite program

Let us suppose we have a random vector x with covariance matrix X* fol-
lowing a low rank plus sparse structure (3.1). Let us call X the n x p data
matrix. Suppose X, = $,_1 is the p X p unbiased sample covariance matrix
computed on the observed data X.

Our combinatorial problem (rank minimization problem (RMP) plus car-
dinality minimization problem (CMP)) is:

1
min {I(L + 8) = Sl + Mrank(L) + plIS]lo;
under L = 0,5 = 0,L + S > 0. (3.29)

Problem (3.29) is NP-hard, since rank(L) and ||S||o are not convex. In
fact, both rank(L) and ||S||p have jumps, s.t. they are not continuous (hence
not differentiable). The constraints are for ensuring that our covariance
matrix and residual matrix estimates are positive definite, as well as the low
rank estimate is positive semidefinite. This is the algebraic counterpart of
(3.6).

According to section (3.1), the CMP can be approached via the I; heuris-
tics, the RMP via the nuclear norm heuristics.

So, problem (3.29) can be rephrased in this way:
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. 1
min f(L, §) = S I|(L+ 8) = Sl g+ ALl + plIS]1,
underL = 0,5 = 0,L + S = 0. (3.30)

where A and p are threshold parameters.

e ||S][o has been replaced by the 1y norm of S, ie. >3, > 7% [si
(Tibshirani, 1996 [108]);

e rank(L) has been replaced by the nuclear norm of L, i.e. ||L|, =
iy |di| (Fazel et al., 2001 [46]).

Since L* is a PSD (Positive Semidefinite Matrix), |[|L|[+ = >/ d;i =
||diag(D)||1 = trace(D).We can thus talk about trace norm heuristics. More
specifically, our analysis is restricted to symmetric positive semidefinite ma-
trices.

On a mathematical point of view, f(L,S) is a non-smooth convex func-
tion. It is composed by a least squares penalty (1||(L+S) —$,[|%,,), which
is a quadratic function, convex and smooth (differentiable), and a composite
penalty which is the sum of two non-smooth convex functions.

The Iy norm ||S|]1 = 327, 375, [sij| is convex if [[tS1 + (1 — #)Sa|l1 <
t||Sa]l1 + (1 — t)]|S2||1- This property descends from the properties of the
absolute value, which satisfies the Cauchy-Schwarz inequality as it is a norm
in the R! space.

The nuclear norm can be alternatively defined as ||L||, = trace(v/L'L)
([63]). In order to prove it is a convex function, we have to show:

tracer/(tLy + (1 —t)La)(tLy + (1 — t)Lo)’

< ttrace\/ L1 L} + (1 — t)tracey/ Lo L,

We develop the first term of the inequality as:

tracer/(tLy + (1 — t)La) (tLy + (1 — £)Lo)’ =

= tracey /2Ly Ly + (1 — £)2LoLh + 2t(1 — ) L1 L = A

For Cauchy-Schwarz inequality,

A < trace\/t2L1 L} + tracey/ (1 — t)2 Lo L5 + tracey/2¢(1 — t) Ly Ly =

= (U1 Lall)? + (1 = )| Lal[«)? + 26(1 — )| L] Lo |-

Now, we recall a theorem proving that ||L] La||« < ||L1]|«||L2|l« ([63]).
This result relies on the fact that the nuclear norm is unitarily invariant by
definition, i.e. |[UXV]| = ||X]||, for any U,V unitary matrices.



3.2. ANALYTICAL AND ALGORITHMIC ASPECTS 53

So,
A<ty + (1 =) La)?| | < [[tLal]s + [|(1 = ¢) Lo |,

where the last step depends again on Cauchy-Schwarz inequality, thus prov-
ing the claim.

It is easy to show that the [; norm and the nuclear norm are not differ-
entiable. If we think ||.|[« as > iy A = [|Az]l1 (where Ap is the vector of
eigenvalues of L), it is straightforward that ||.||« is not smooth if some of the
eigenvalues are 0, from the properties of the absolute value. The same holds
for [[.|]1.
ozl

oxy,

In terms of differential, we have = x|zt So, for 2 = 0, ||.|)x

does not exist. The same holds for ||.||.: % = X(X'X)"'2X, which
means that || X[, is not smooth if X is not invertible.

We can now explain in detail why /3 and [, are the best possible convex
relaxations of lp and rank respectively. The reason lies in a mathematical
argument. Relaxation (3.30) is the tightest convex relaxation of problem
(3.29). This is due to the fact that || X]||« is the convex envelope of rank(X),
and ||.||1 is the convex envelope of ||.||p. This fundamental result was proved
in Maryam Fazel’s PhD thesis. The convex envelope of a non convex function
is defined as the largest convex function being smaller or equal to the original
one. She was able to prove that the nuclear norm is the lower bound of the
solution of the original rank minimization problem ([49], p.55).

The proof is based on the so called conjugate functions. Essentially,
Fazel proves that the conjugate of the conjugate of the rank over the set
of all matrices having spectral norm less or equal to one (|| X||; < 1) is the
nuclear norm. Since the conjugate of the conjugate is known to be the convex
envelope of the function, the theorem is proved. This result is also extended
to ||.||1, since the {1 norm of a vector is simply the rank of a diagonal matrix
containing the same entries. Analogously, ||.||1 is the convex envelope of
card(z) over all vectors z s.t. ||z]|oo < 1.

This result holds for any matrix X and vector z. In our case, our search
is restricted to symmetric PSD for L, and to symmetric positive definite
matrices for Sand X =L+ S .

Therefore, problem (3.30) can be recast as a SDP (SemiDefinite Pro-
gram).

mip %H(L +5) — SnllZ, subject to||L|l, < Aand ||S| < p,  (3.31)
where S and L+ S are positive definite and L is positive semidefinite. This is
the PRIMAL problem, and is a quadratically constrained quadratic problem.
The least square penalty is a quadratic function. The composite penalty is
a non smooth function: the nuclear norm constraint involves the square root
of squared entries, thus imposing a quadratic constraint, while the [y norm
imposes a linear constraint.



54 CHAPTER 3. NUMERICAL AND COMPUTATIONAL ASPECTS

Reversely, the problem can be thought of as the following quadratically
constrained quadratic SDP program:

1
min A[[ L[] < +p]|S][1 subject to Z[|(L + 9) - SnllFre < T (3.32)

It is possible to prove that (3.31) and (3.32) are equivalent.
Since the nuclear norm is the dual of the spectral norm, i.e.

||[M]|+ = max trace(M'Y), ||Y'|| = 1

(see [16]), exploiting the SDP characterization of the nuclear norm and
putting together (3.16) and (3.22) it is possible to write:

. ’ 1 1 /
o in v1, 71, + 5 (trace(W7) + trace(Wa)) + ptrace(E E), (3.33)

Wy L

L Wy

—Zi; < Sij < Zij, Y1, j
L+S+FE=C.

B

As additional constraints, we want that S and L+ S are positive definite, and
L is positive semidefinite. This formulation was obtained by an appropriate
use of slack variables.

Form (3.33) is the SDP characterization of problem (3.30). It is a convex
problem; numerically, it is defined as a quadratically constrained quadratic
problem (QCQP, [16]). More in detail, it is composed by a linear program
(the {1 part), a quadratic (the [, part) and a least squares program (the
Frobenius loss term). As explained, the least squares penalty is a quadratic
function and thus is smooth, differently from the other two components.

Let us now introduce the algebraic matrix context. From an algebraic
point of view, the objects we need to identify are the following algebraic
matrix varieties:

ZL(r)={LeRP*?| L=UDU",U e RP*",D € R"*"}, (3.34)
H (s) = {S € RP*P | |support(9)| < s}, (3.35)

where .Z(r) is the variety of matrices with at most rank r, and JZ(s) is the
variety of (entrywise/elementwise) sparse matrices with at most s nonzero
elements. support(S) is the orthogonal complement of ker(S).

The tangent spaces to (3.34) and (3.35) are:

T(L*) = {UY] + Y2V’ | Y1, Vs € RP"}, (3.36)
Q(S*) = {N € RP*P | support(N) C support(S)}. (3.37)
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As pointed out in |97], the characteristics of the two varieties show a
contrastive analogy. They are both Hilbert spaces of matrices: for (3.35)
the Hilbert norm is the Euclidean one, for (3.34) is the Frobenius one. The
sparsity inducing norm is {1 for (3.35) and I, for (3.34). As we will describe in
the next section, norm additivity (||A+ B|| = ||A|| +||B||)is a key condition
for our spaces, since we need them to be as close as possible to this condition
to perform identification. Norm additivity requires disjoint support for (3.35)
and orthogonal row and column spaces for (3.34).

In [97], it was also showed that a dual formulation for the SDP charac-
terization holds. For the affine minimum nuclear norm problem (3.25), we
can write

max b’z subject to [|A*(X)|] <1 (3.38)
as well as
max b’z (3.39)
s.t.
I, A*(z2)
-
[ A*(zY I ] =0,

where A* is the dual operator of A. The first formulation is the convex one,
while the second is the numerical one which exploits the SDP charcterization
of (3.25).

We note that it is straightforward to obtain the dual version of the [y
problem (3.9) by simply reshaping formulation (3.38) accordingly. In par-
ticular, the dual norm of the operator A becomes the [, norm. The same
holds for the least squares problem in Frobenius norm. It is only necessary
to replace ||[A*(X)|| with |[|A*(X)||Fro, because the dual norm of ||.||ppe is
||-||Fro. Therefore, in order to obtain the dual characterization of our gen-
eral problem (3.30), it is sufficient to aggregate the characterizations of all
sub-problems properly reshaping the operator A for each term. The same
holds for formulation (3.39) too.

3.2.2 Solution methods

The SDP characterization of our problem allows us to apply all standard op-
timization methods. These include interior point methods (with logarithmic
barrier function) and penalty methods. A detailed review of these methods
can be found in [16]. The standard MATLAB tool to perform optimization
is called SDPT 3, and computes the optimum via infeasibile path-following
algorithm (see [101]). This method is effectively used to approach standard
low rank plus sparse recovery in the noiseless setting (see [30]). However, in
the noisy setting, the presence of the least squares term renders these stan-
dard differential methods computationally inefficient, for the use of second
derivatives in a large scale context ([16], p.54).
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In order to apply standard second-order minimization methods, we should
define and solve the Lagrangian dual problem i.e. minimize the Lagrangian
function of (3.33). This could be done using the classical method of multi-
pliers, formulating and solving the system of KKT (Karush-Kuhn-Tucker)
conditions ([106]). Unfortunately, this method would require to solve an un-
derdetermined non-linear system, by using for instance Newton methods or
logarithmic barrier functions, which can be computationally hard. More effi-
ciently, the Lagrangian method could be adapted to include constraints and
penalties (Augmented Lagrangian method). Alternatively, the Alternating
Direction method (ADM) could also be effective. In order to simplify the
nuclear norm minimization and avoid iterative computations of SVD, an-
other solution implies the use of UV-parametrization. Further details can be
found in [116], where possible gradient solutions of the affine rank minimiza-
tion problem (3.24) are analyzed. Alternative methods like interior point
methods, penalty methods and barrier methods (|16]) can also be imple-
mented ([101]). In any case, all these methods are not particularly suitable
in the large-scale context, because minimizing the quadratic loss requires the
computation of a second derivative in large dimensions, which is computa-
tionally expensive.

For this reason, recent solutions proposed in the literature are based
on first-order method approaches (exploiting only first derivatives), which
combine the use of standard differential for the smooth part and a procedure
based on the non-smooth properties of the composite penalty.

Proximal accelerated algorithms developed by Yurii Nesterov (see [88]
[87]) are the key for our problem. They are essentially augmented Lagrangian
methods (ALM) where the first order derivative of the smooth part is aug-
mented by the composite penalty (an overview for this kind of methods
is in [90]). In order to solve the non-smooth part, iterative shrinkage so-
lution (IST) methods are used. A very well known method developed for
l; linear inverse problems is FISTA (Fast Iterative Shrinkage Thresholding
Algorithm, [10]). FISTA is an accelerated algorithm derived from the pre-
vious one (named ISTA) using Nesterov’s acceleration scheme (|86]). This
approach was extended to the [, case in [17] and was named singular value
thresholding (SVT). The SVT can be accelerated using the same scheme too.

Talking about non-smooth methods, the subgradient (or subderivative)
was first defined for convex functions by Moreau and Rockafellar ([82], [98])
and was then generalized to non convex functions by Clarke (|28]). For the
use of subgradient for minimization purposes (subgradient approach) a wide
historical and methodological review is in [12].

Given a function f: I € R™ — R at point zg in the open interval I, the
subderivative of f is any vector v € R" satisfying

f(x) = f(zo) << v, — 30 > .

The set of subderivatives is called subdifferential and is denoted by ¢ f(xo).
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0f(xo) is always a non-empty compact set.

The definition of subderivative and subdifferential is analogous in the
univariate context, where I and v lie in R. There, it is possible to show that
the subdifferential is always a closed set [a,b] where a = lim__, - fl@)=f(wo)

zg T—x0
f(@)—f(=o)

and b = hmx_mg pra—

. a and b always exist with a < b. A typical
example very useful to us is the case f(x) = |z|. That function is convex
(even if not strictly) but non-differentiable at the origin, where the subdif-
ferential is equal to [-1,1]. For negative xo the subdifferential coincides with
the differential and is equal to —1, for positive zq it is the same but equal
to 1.

The subdifferential is
of(x) ={d € R": f(y) > f(2)+ < d,y —x >,y € R"}.

For our optimization problem, the subdifferentials of [, and [; are relevant
(|112]). We report both:

8||X|[« = {UU"+ W : W and X have orthogonal row and column spaces, |[W|| < 1}
(3.40)

d||z|ly = {d € R' : d; = sign(d;) fori € T, |d;| < 1,i € T,T = {1,...,n}}.
(3.41)

Note that both subdifferentials share a common structure. They are

both composed by the differential at smooth points (UV’ or sign(d;)) and

a possible contraction (W or the complement to 1/ — 1 as the case). In [97]

the optimality conditions for the affine rank minimization problem (3.25) are

described:

1. Feasibility condition (A(X) = b)

2. Unimprovability of the subdifferential at any feasible direction A*(z) €
5f(x),

where A* is the adjoint operator such that < Az,y >=< y, Az >. These
conditions ensure that problem (3.25) is solved and the nuclear norm achieves

its minimum in the feasible set (which is the set of all candidate matrices
Y). In fact it holds:

Yl 2 [[ X[+ < A%(2), Y = X >= [[X]ls+ < 2, AV = X) >= [|X]]..

The same considerations hold for the /; case with the appropriate changes.

The principles of proximal gradient method are the following. Suppose
we have a function ®(z) = f(z) + ¥(z) where f is smooth and ¥ is non-
smooth, both convex. Our problem is to minimize ®(x) over its feasible set
Z (x € Z). This minimization problem can be approached by the composite
prox-mapping (|88]):

L
Prozs (&) = argmilzl <&w > —i—?sz — &P+ Y(w)], (3.42)
we
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where z belongs to the set of points in the domain of ¥ having non-empty
subdifferential, and & belongs to the domain of f. The procedure works under
the condition of Lipschitz continuity for f (|[Af(z)—Af(y)|l2 < Lellz—yl|?,
where Ly is the Lipschitz constant).

We will approach the solution of (3.30) by minimizing (3.42). Following
[76], we are going to employ proximal gradient methods, based on the subgra-
dient approach ([88]). The problem of additional constraints will be solved
theoretically, showing that problem (3.30) with or without the constraints
is geometrically the same. Therefore we now focus on the unconstrained
problem (3.7).

Recalling (3.42), we note that the composite prox-mapping equals to
finding out the point in the subgradient of the composite penalty which
is as close as possible to the gradient of the smooth part at each feasible
point. In this respect, this approach is also a projected gradient method.
It is also a gradient method, in particular, it is a first order approximation
methods because it exploits first derivatives only. It is also a Min-Max
(MM) approach, in the sense that proximal gradient is minimized under
the assumption that the composite gradient mapping maximizes the gain in
terms of iterative minimization of our objective. For this reason, the method
works only under the assumption of Lipschitz continuity for the gradient of
our objective, i.e. under the assumption of limited variation for our objective.

Our objective function is:

1
F(L,5) = SlI(L +5) - ZnllEro + AL+ plIS]h- (3.43)
The differentiable part of (3.43) is
1
f(Las)ziu(L—i_S)_EnH%‘rm (344)
where Y, is the input of our procedure.
The matrix gradients of f are Vpf=Vgf=L+5-3,=W.

The (matrix bivariate) gradient V7, g is Lipschitz continuous with Lip-
schitz constant | = 2:

|VL,sf(Li,51) — Vi,sf(L2,52)|2 < l\/!Ll — L2 + |51 — 524,

l=2.
The first-order approximation of (3.43) is:

Qi=2((L, S), (Lt—1,8t-1)) = f(Li—1,Si—1) +
+ < Vifu-1,L—Ly—1y >+ <Vsfu-1),S = Su—1) >+

l l
510 = Ly lbrg + 518 = S lhro + ALl + pIS].
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The matrix inner product <> here is the standard < A, B >=tr(A’'B).
Note that our composite prox-gradient mapping is:

<Vife-1,L =Ly >+ <Vsfi-1),5 = Su-1) >+
+IL = Lg—y[ro + 1S = Se=1) [0 + AL« + plS1.

This formulation exploits a previous work ([69]), which develops a prox-
imal gradient method for trace norm minimization (i.e. the nuclear norm
for PSD matrices). The key is that the gradient step needed to minimize
F(L,S):

1 1
Ly=Ly1— §VLk,1,Sk = Sk—1— §Vsk,1

is the same minimizing

QQ((L7 S)? (Lt_lv St—l))'

In this respect, this method is also and augmented Lagrangian method.

Another relevant aspect is that here we have two matrix variables (L and
S). In order to perform minimization, Vr, , must belong to the subdifferen-
tial of A|[|Lx_1||« and Vg, _, must belong to the subdifferential of p||Si_1||:-
The problem would be hard to solve via subgradient methods if these two
related problems could not be approached somehow separately.

We report the step-size assumption ensuring that the optimization of Q)
is effective.

Lemma 3.2.1. Let (L,S) = d)(L,S) = ming, s Q;((L, S), (L, S)).

If the following stepsize assumption is satisfied for some | > 0:

F(vﬂg) < Ql((L7S)7(I~/7‘§))7

then for any (L, S), we have

b~
~

F(L,S)—F(L,S)>1<L—-1L, > +
g S & ez Lig g
+l<S—S,S—S>+§|L—L|F+§|S—S|F.
This passage highlights the nature of min-max approach for the method.
Standard subgradient methods have an optimal convergence rate of O(%)
([69]). This can be very low for large scale problems. Another feature of this
extended gradient approach is that it substantially improves convergence.

The key is the separability of our problem in two ones, one in variable L
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and the other one in variable S. In fact, our first-order approximation )5 is
separable in L and S:

1

L(t) = min |L — (L(4—1) — §Vf(t—1))\%m + AlIL|]« (3.45)
. 1
S(t) = min 1S — (S-1) — §Vf(t—1))|%ro + plIS|11 (3.46)

These two subproblems can be solved easily, by simple algebraic opera-
tions, making this algorithm suitable for large-scale problems. The problem
in L (3.45) can be solved by applying the SVT (Singular Value Thresholding,

[17]) to Lg—1y — 5V fu—1).

Lemma 3.2.2. (Ji and Ye (2009), Cai et al.(2010)) 7A(Y) = miny 3[|M — Y| [3-+
A|M ||« is given by T(Y) = UD)\V', where (T));; = max{0, D;; — \}. T is
called SVT (Singular Value Thresholding operator). The unique solu-

tion of (8.45) is thus the SVT of Ly_yy — %Vf(t_l).

In [17] it is proved that the SVT operator is the unique minimizer of
the [, minimization problem (3.24), because (3.24) is strictly convex and the
SVT of L is proved to belong to the subdifferential of ||L||«. Even if the SVT
was first developed for the matrix completion problem, it can be effectively
used for all nuclear norm approximation problems.

Since we can express a vector as a diagonal matrix having the same vector
as the main diagonal, Lemma 3.2.2 holds as well for the /; case:

Lemma 3.2.3. (/35/) T,(Y) = miny 3||M — Y||%+p||M||+ is given element-
wise by (T,(Y))ij = sign(Yij) max{0,|Y;; — p|}.

T,(Y) is called Soft-Thresholding operator. Therefore, (3.46) is solved
by applying soft-thresholding to S_1) — %Vf(t_l).

In origin, this algorithm was proposed in [35] to solve the LASSO reg-
ularization problem ([108]). The extension to the /; matrix norm problem
is straightforward. This algorithm has been effectively used in a number of
situations, like for instance in the graphical lasso context for sparse inverse
covariance matrix estimation (|53]).

Due to the separability property and to the use of trace norm heuristics,
our minimizer can now converge at a rate O(t) ([69]). As this cost can be
still expensive in the large-scale context, Nesterov’s acceleration scheme for
composite gradient mapping minimization problems (|87]) is applied. As a
consequence, the algorithm assumes the form ([77]):

e repeat
e set (Lo, So) = (diag(X,,), diag(3,,))/2
e Initialize L= Lo=Y; and S = S5y = £
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e Apply SVT operator to the SVD of (Y(;_1) — 1/2V(Y(4_1), Zi—1) and
set Ly = UT\U'

e Apply soft-thresholding operator to M = (Z_1) — 1/2V(Y(4_1), Zi-1)
and set Sy = T,(M).

e Set (Y(i11), Zt1)) = (Le, Se) + itt;l [(Le; St) = (Le-1,5:-1)] where
1+4/1+402

Aty1 = P)

[Le=Le—1llr | [|St=Siallr ¢
[[1+Li—1llF [[14+Se—1llr —

e until Convergence criterion

This algorithm has also been effectively used for dynamic Magnetic Reso-
nance Imaging (MRI) data ([89]). More generally speaking, also the Lipschitz
constant ! can be linearly updated during the algorithm, when there is some
suspect that [ = 2 is not appropriate ([76]).

The described algorithm is proved to converge at rate O(¢%) ([77]):

Theorem 3.2.1. Let (L, St) be the update produced by the algorithm at
iteration t. Then for anyt < 1, we have the following computational accuracy
bound:

||L0 _fJHFro“‘ ||SO _S||FT0
(t+1)2

F(L, S@) — F(L,5) <8

where (L, S) minimizes (3.7).

This results allows to highlight another advantage of this approach con-
cerning computational cost. Standard methods for SDPs like interior point

methods (IPMs) require O (%) operations, which is too expensive for

large-scale problems. This algorithm requires only O <p74€> operations. This

can be obtained multiplying the number of computations for full SVD O(p?)
(which is the one of standard least squares problems because it requires at
each iteration to solve p quadratic systems) times the square root of the
bound in Theorem 3.2.1 (at most O(p?)), divided by the square root of the
computational precision e. This cost is O(p?) smaller than the one of IPMs
given that the precision requirementis not high. This rate could be further
improved by using partial (soft) SVD methods like soft-impute, which re-
quire, if there are no missing entries, only O(p?) computations (otherwise,
in the pure [, context, even fewer: see |61], slide 15).
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Chapter 4

Covariance estimation via
low rank plus sparse
decomposition:

statistical performance

The main topic of this chapter is covariance matrix estimation under the
assumption of low rank plus sparse structure (3.1). Here we discuss recovery
and identifiability conditions for ¥* under various model assumptions. The
unifying feature of all these models is that the estimation is carried out by
composite minimization problems including (3.28), which is our composite
(convex non-smooth) penalty.

In section (4.1), existing works on matrix reconstruction or approxima-
tion using composite penalty (3.28) are discussed.

In paragraph (4.1.1), we discuss the approach to matrix reconstruction
by Chandrasekaran et al. (2011) (|30]), which minimizes a composite penalty
in the form (3.28) (apart from appropriate re-scaling of regularization pa-
rameters). Therein, the exact decomposition is performed, in a noiseless
context.

In paragraph (4.1.2), we describe the approach to matrix approximation
by Agarwal et al. (2012) ([1]), which provides a first (approximate) solution
to the problem of approximate decomposition (in the noisy context) into
approximately low rank and sparse matrices. There, both components (and
consequently their sum) are recovered by minimizing (3.7) under specific
assumptions on || L||cc-

In paragraph (4.1.3), we show the exact solution of the approximate
decomposition problem for a latent variable graphical model proposed by
Chandrasekaran et al. (2012) ([31]). In that paper the precision matrix is
estimated under model structure (3.1) by minimizing a regularized likelihood
problem including a Gaussian log-likelihood term and the composite penalty
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(3.28). It is the first exact solution to the recovery problem of both com-
ponents and their sum in the noisy context, and provides the mathematical
context for identification and exact recovery (for the inverse covariance ma-
trix). Therein, the error rates for the covariance matrix were obtained as a
consequence.

In paragraph (4.1.4), we describe the most recent covariance estimator
obtained minimizing (3.30), which is called LOREC (LOw Rank and sparsE
Covariance estimator, [77]). We provide recovery and identifiability condi-
tions for a covariance matrix (as well as its inverse) under model (3.1), fol-
lowing the results appeared in Luo (2013) (|77]). These results were obtained
adapting the mathematical setting of [31], thus giving an exact solution to
the approximate recovery problem.

4.1 Low rank plus sparse decomposition: identifi-
cation and recovery

This section is devoted to the description of existing estimators based on the
composite minimization of nuclear norm and /; norm, under the assumption
of low rank plus sparse decomposition for the covariance matrix. We have
widely described in previous chapters why the need for a regularized esti-
mate of the covariance matrix comes out. We keep in mind two keywords:
reconditioning and model parsimony.

We now distinguish two cases: the noiseless context and the noisy con-
text. In the former, we want to recover a squared p X p matrix

C=A"+ B, (4.1)

where A* is sparse having at most s nonzero elements and B* is low rank
with rank 7 < p. This is the context of paragraph (4.1.1), derived by [30],
and is for us an unavoidable preliminary step, because identifiability and
recovery were first established in that context. Here C' is simply an input
matrix.

Then we have the noisy context, where we start from an input estimate:

S=L"+ S5 +W, (4.2)

which contains an error term (noise) W distributed as a centered zero-
mean Wishart. S* is sparse having at most s nonzero elements and L*
is low rank with rank r < p. This is the context of all the following
paragraphs and models we will describe. We usually have =%, 1, that is,
the unbiased sample covariance matrix. This point is a relevant one because
this choice implies the condition n < p+ 1, which can be not appropriate in
a large dimensional context, as explained in paragraph (2.1). We will try to
overcome this issue in paragraph (5.1).
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The first attempt to identify both the low rank and the sparse component
was made in the noiseless context. The problem was set into the context of
algebraic geometry, as a deterministic (exact) recovery for general complex
non-symmetric matrices. It is easy to see that strong identifiability issues
arise, for the simultaneous recovery of the two matrices under the sum con-
straint. The identifiability issue is central in our discussion. We now start
to define the setting we are working on.

4.1.1 Exact recovery: rank-sparsity incoherence

Let us suppose we have an input matrix C € RP*P. We suppose that C
is the sum of a low rank matrix B* and sparse matrix A*, both unknown.
Which classes of low rank and sparse matrices allow to perform exact de-
composition? The aim of this paragraph is to show how to disentangle C
in the two underlying components, following the approach in [30]. This is a
decomposition problem: sufficient conditions for fundamental identifiability
and recovery are needed. We face a deterministic (purely numerical) prob-
lem, which is to find out A* and B* as well as the number and the location
of non-zeros in A* (sparsity pattern) and the rank of B*. This is why here
we have no sample dimension n: the parameters are only the the dimension
p, the number of non-zeros s and the latent rank r.

In order to perform this task, we need first to properly define the objects
to identify. As explained, the tools of algebraic geometry (a reference book
is |60]) are very useful to us. In particular we are going to exploit the basic
concept of matrix algebraic variety. Matrices A* and B* are assumed to
come from the following set of matrices:

L(r)={B € RPP | B=UDU',U € RP"", D € R"™"} (4.3)
H (s) = {A € RP*P | |support(A)| < s}. (4.4)
Z(r) is the variety of matrices with at most rank r.

H (s) is the variety of (entrywise) sparse matrices with at most s nonzero
elements, where support(A) is the orthogonal complement of ker(A).

The decomposition problem (4.1) is fundamentally ill-posed, that is, it is
not possible to find out a unique decomposition without further assumptions.
In fact, two natural identifiability problems arise:

e the low rank matrix may be itself very sparse;
e the sparse matrix may have itself very low rank.

In order to obtain a unique disentanglement, an upper bound on the
degree of sparsity of the low rank component as well as a lower bound on the
rank of the sparse component are needed. For this purpose, in [30] the notion
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of rank-sparsity incoherence is developed, which is defined as the uncertainty
principle between the sparsity pattern of a matrix and its row/column space.
In particular, quantities involving tangent spaces to algebraic varieties (4.3)
and (4.4) are needed.

Matrix sets (4.3) and (4.4) can be seen as differentiable manifolds (away
from their singularities) or as algebraic varieties, as they essentially are set
of polynomial equations. The variety of rank-constrained matrices (4.3) is
characterized by the vanishing of all (r + 1) x (r + 1) minors of B. For
this reason, since the (unknown) parameters are p? and the equations are
(p—7)2, the dimension of this variety is r(2p—r). This variety is nonsingular
everywhere except at those matrices with rank less than or equal to r — 1.
This happens because the tangent space at those points has zero measure
(and thus it is not uniquely identified). The tangent space to r - ranked
matrices is:

T(B) = {UY] + Y2V | Y1,Ys € RP*"}, (4.5)

where UDV” is the SVD decomposition of B.

The tangent space T'(B) is the space of all the matrices having the same
row or column space of B. For this reason, the dimension of T'(B) is again
r(2p —r) (if B has rank r). T(B) is a subspace of RP*P because it is closed
under addition and scalar multiplication.

The variety of sparse matrices (4.4) is the set of all the matrices having
a limited size of their support. If the number of non zero elements is equal
to s < p?, the dimension of the support is constrained by s. This is due to
the properties of null spaces and homogenous systems: since the support is
the orthogonal complement of ker(S), if ker(S)* has dimension s, ker(S9)
has dimension p? — s and S has exactly s zeros. Analogously to the low rank
case, this variety is singular everywhere except from those matrices having
a dimension of their support less than or equal to s — 1, because in that case
ker(S) has measure 0 (and thus it is not uniquely identified) in R®.

The tangent space to (4.4) is:

Q(A) = {N € RP*P | support(N) C support(A)}. (4.6)

It is the variety of all the matrices having a support contained in the one of
A. It has dimension s and it is a subspace of RP*P,

In this algebraic context, it is easy to understand why the authors of [30]
chose to estimate A* and B* solving the following optimization problem:

(A, B) = min f(4, B) = 1||Al|1 + ||Bl. under C = A" + B*. (47)

For the discussion on the opportunity of using this problem for rank-sparsity
recovery we refer to Chapter 3. This is a deterministic (recovery) problem.
Note that v is a tuning parameter depending on the relative size of ||A||;
respect to || B]|«.
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Identifiability conditions depend on relevant quantities referred to tan-
gent spaces T(B*) and Q(A*). In particular, the relevant quantity is the
product of two quantities, one for each space, describing the degree of rank-
sparsity incoherence between the rank of B* and the sparsity pattern of A*.

We define the following rank-sparsity incoherence measures between €(A*)
and T'(B*) :

T(B*)) = max Nlloo, 4.8
g( ( )) NET(B*)E?‘HNHQSlH H ( )
w(Q A*)) = max N|la. 4.9

( ( )) NEQ(A*)?T|N\\OO<1 || ||2 ( )

Note that £(T(B*)) <1, u(Q(A*)) < /p.

These quantities are the maximum infinity norm among the matrices
belonging to T'(B*) and the maximum spectral norm among the matrices
belonging to Q(A*). They arise naturally from the study of the relationship

between the rank and the sparsity pattern of one matrix. In fact, a relevant
result on (M) and (M), holds for any matrix M € RP*P:

Theorem 4.1.1. For any matriz M # 0, we have that E(M)u(M) > 1.

This results describes the deep meaning of the concept of rank-sparsity
incoherence: it is not possible for one matrix to have T'(M) with all diffuse
elements and to have diffuse spectra for Q(M). The uncertainty principle
states that a matrix M cannot have p(M) and &(M) simultaneously small.

Another relevant result involving p and £ arises analyzing the conditions
ruling the intersection between (4.5) and (4.6). If we could assume to know
the tangent spaces, a necessary and sufficient condition for exact decompo-
sition would be

QA" (7(B*) =0,

i.e. the condition of transverse intersection between the two spaces. This
conditions involves crucially quantities (4.8) and (4.9), as outlined in the
following proposition:

Proposition 4.1.1. Given two matrices A* and B*, we have that
p(AME(B*) < 1= QA" (T (B*) =0.

The smallest u(A*) and &(B*) , the closer to the condition of perfect
transversality we are, and so the easiest is the decomposition. In this case,
since we are in the noiseless context, we need perfect transversality. From
the next paragraph (4.1.2), as we set into the noisy context, we will relax this
assumption, allowing a small degree of intersection, since we allow random
perturbations for A* and B*. However, in order to perform recovery, this
degree shall be suitably bounded.
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From these results we can argue that, in order to perform recovery, we
need to control the spikiness of the eigenvalues of A* and the sparsity pat-
tern of B*. In fact, If B* is nearly sparse, A* cannot be recovered, as well as,
if A* is nearly low rank, B* cannot be recovered. An uncertainty principle
between the rank of B* and the sparsity pattern of A* holds, i.e. too sparse
low rank matrices as well as sparse matrices with too low rank cannot be
recovered. It is interesting that the magnitude of the eigenvalues of the low
rank component as well as the number of nonzeros in the sparse component
play no role for identification. The product pu(A*)¢(B*) is the rank-sparsity
incoherence measure and bounding it controls for that.

In light of Proposition 4.1.1, the two identifiability issues can be described
in a more technical way as follows:

e The low rank component is not too sparse if its row /column spaces are
NOT closely aligned to the standard basis vectors, i.e. if the maximum
projection of a standard basis vector onto the vector subspace spanned
by the columns of U is as small as possible.

e The sparse component is not low rank if it does not have too concen-
trated support, i.e. if its spectrum (set of eigenvalues) is bounded.
In other words, we want that the maximum number of non-zeros per
column to be bounded.

These technical conditions naturally arise from the geometric algebraic
setting and from the minimization context using (4.7) under the sub-gradient
approach. In fact, (4.8) and (4.9) are the dual norms of tangent spaces (4.5)
and (4.6) respectively. Optimality conditions are derived using the projected
gradient method. In that approach, a (Lagrangian) dual candidate ¢ which
belongs at the same time to the subgradient of A* and B* is sought for:

Q € ~0||A*[|y and Q € 9|| Bl

Two duals, @4 and @ p, are defined, and the conditions proving they min-
imize (4.7) are derived. For the expression of the subgradients we refer to
(3.40) and (3.41).

In principles, this method consists in projecting onto € and Q1 the sub-
gradient of Q4 and onto T and T the subgradient of Qp, where (Q4,Qp)
is a subgradient of (4.7). Differently from here, in the noisy context (para-
graphs (4.1.3), (4.1.4)) we will project the dual candidate augmented by the
gradient of the differentiable part of the objective.

We can now report the following key proposition which displays necessary
conditions for obtaining a unique minimizer via (4.7) in the noiseless context.

Proposition 4.1.2. Suppose C = A* + B*. Then, (A, B) = (A*, B*) is the
unique optimizer if the following conditions are satisfied:

1. QUAYNT(B*) =0
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2. There exists a Lagrangian dual Q@ € R™*™ such that:

[ ] PT(B*) = UV,
[ J PQ(A*) = ’)/SZQ’I’L(A*)

[Prsaynll <1

[[Pogasytlloo <7-

We note that the second claim describes necessary conditions on @ for
belonging to both subgradients simultaneously (two for each subgradient),
which is equivalent to ensure that (A, B) is an optimum. The first condition,
instead, is necessary to guarantee uniqueness.

This proposition is of fundamental importance. It basically proves that
only one dual Q € Q@ T may exist satisfying the subgradient conditions,
such that (fl, B) is the only optimum of the convex program (because only
one point provides Q(A*)T(B*) = 0).

Therefore, u(A*)¢(B*) < 1 is a necessary condition for performing re-
covery. However, a stronger necessary condition for exact recovery respect
to the one of Proposition 4.1.2 can be derived. The proof technique builds
a dual Q € Q@ T, under which the conditions of Proposition 4.1.2 for re-
covery are satisfied, and finds out the range of v for which Q satisfies all
conditions simultaneously. This proof results in the following statement:

Theorem 4.1.2. Given (4.1), if

PANEEB) <,

the unique optimum for (/1, B) is (A*, B), for~ € [1_4f(5£;2(3*), 1_3”;51(4;5(]3*)
where v = % s always inside the range as it is the geometric mean of

the extremes, and thus guarantees exact recovery of (A*, B*).

We have identified a sufficient condition for exact recovery, which is
u(A*E(B*) < %. However, in reality we do not have any knowledge on
p(A*) and £(B*). In order to make this condition somehow verifiable, in [30]
two nice more operative concepts about rank-sparsity incoherence are for-
malized, with the aim of providing useful proxies of p and . The first is the
degree of a matrix, which is defined as the maximum (degq,) Or minimum
(degmin) number of non zero entries per row/column. It is proved that

degmm(A) < N(A) < degma:c (A) (410)

The second is the concept of incoherence of a vector subspace S of R”.
Define B(S) = max; ||Pse;||2, where e; is the i -th standard basis vector.
B(S) is the maximum norm of the projection of any standard basis vector
onto S. It is proved that \/r/n < B(S) < 1, where the maximum (which is 1)

]
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is reached for any basis containing a standard basis vector, and the minimum
is reached for an Hadamard matrix, which is a matrix having entries +1/—1
and mutually orthogonal rows (see [56]). The incoherence of a matrix is
defined as:

inc(B) = max(fB(row — space(B)), B(column — space(B))).
This quantity satisfies the following property:
inc(B) < £(B) < 2ine(B). (4.11)

Therefore, a small degpq.(A*) implies a small pu(A*) and small inc(B*)
implies a small {(B*). As a consequence, the deterministic sufficient condi-
tions on exact decomposability u(A*)¢(B*) < & can be rephrased as

degmaz (A" )inc(B*) < i,

12
as well as the range for  in Theorem (4.1.2). The central value in that range
b _ 3inc(B*)
ecomes vy = m.

Finally, the authors provided in [30] a random analysis of their setting.
They define A* to follow a random sparsity model if support(A*) is selected
uniformly at random from all collections of supports of size s. In that case,
the following relevant property holds:

degmaz (A*) < ; log(p)

with high probability. Analogously, a r-ranked squared matrix B of di-
mension p is said to follow a random orthogonal model (see also [24]) if the
singular vectors U, V' € RP*" are chosen among all partial isometries in RP*"
where a partial isometry is an isometry on the orthogonal complement of the
kernel. Under this hypothesis, we have

max(r, log(p))

inc(B*) <
(B*) )

with very high probability (the symbol < is used to denote rates, with the
meaning of the "smaller or approximately equal to", as well as the symbol
> will be used with the opposite meaning). Given (4.1), if A* is drawn from
a random sparsity model and B* is drawn from a random orthogolréal model,

the conditions of Theorem 4.1.2 hold provided that s < P .
log(p)/maz(r,log (p))

We signal that this approach comes from the one by Candes and Recht
(|24]) described in paragraph (3.1.2). There, the degree of coherence between
singular vectors and the standard basis is bounded using the quantities

UU' — 20|, IVV = 2L 1o, UV
I ppH I ppH A%
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For symmetric matrices, only the first quantity is relevant. Contrastively,
the approach of [30] allows for a more unified condition, taking into account
simultaneously the row and the column spaces (that is, left and right
singular vectors).

This approach is overall very elegant, effective and algebraically founded
and provides a new environment for matrix reconstruction analysis. How-
ever, the sufficient condition provided by Theorem 4.1.2 is local, i.e. it is
not robust to perturbations of B* and A* along varieties T'(B) and Q(A).
Tangent space transversality is a linearized identifiability condition around
(A*, B*), but does not provide any guarantee even for slightly perturbed
inputs, because it only guarantees an exact solution in the noiseless context.

This is why we are now going to explore numerical methods providing
solutions to the matrix approximation problem in the noisy context.

4.1.2 Approximate recovery: a functional approach

The topic of this paragraph is the purely mathematical approach to matrix
approximation by Agarwal et al. (2012) (|1|). This is a numerical approach
based on pure functional analysis, in the general setting of complex rect-
angular matrices. Before describing it in detail, we outline the relevant
characteristics for our purpose.

First of all, the reference matrix setting is the noisy setting (4.2), from
here towards the end of our thesis. In [1], L* is allowed to be exactly or
approximately low rank and S* is allowed to be exactly or approximately
sparse. Their setting thus includes a wide set of matrix classes, including
our reference model (3.1) as a particular case. Their model is the following

X =XNL"+S5")+W,

where N is called observation operator, and is a linear mapping operator from
(S* 4+ L*) to X(L* + S*) (we define Q = L* 4+ 5%).

In our case, X = I (identity mapping). If W = 0, we fall back into
the noiseless setting. The noise W can be either deterministic or stochastic.
This setting includes a wider class of sparsity assumptions, including the
cases of element-wise and column-wise sparsity. In our reference model (4.2),
we have exact element-wise sparsity and exact low rankness with stochastic
noise. The matrix to recover, X, is a squared p X p real matrix in R? P,

The input S is the sample covariance matrix S,. We underline again
the statistical centrality of this passage, which is relevant for our purpose
also in the approach we are describing. Whenever S = En, the related
condition p < n comes out, even if (here and in the following paragraphs)
the estimation method via regularization allows p ~ n.

As we explain in paragraph (5.1), there are essentially two solutions to
this drawback: using a regularized input (for instance Xzy, see (2.7)), al-
lowing to drop the technical condition p < n, or using a method which allows
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to consistently use 3, without the need of specifying p < n. In this respect,
POET approach ([45]) is central, and we will show how it is possible to use
the POET estimation context in order to avoid the condition p < n even if
p and n are finite.

In light of this, we go on explaining the proposal of [1|. This method
consists in estimating ¥* by program (3.7) (we set aside for the moment the
three additional constraints) under specific conditions. The most relevant
one is the following: [|[L*[|oc < 4, that is, a bounded infinity norm for L*,
which controls the spikiness of the singular values of L*. This assumption
prescribes, from our point of view, that the maximum communality across
variables must be bounded. It is an analytical assumption in nature, differ-
ently from the algebraic approach aimed at bounding the degree of coherence
between singular vectors and canonical basis ([24]):

| U’ - ng loor || VV' = ng loor  1UV]oo-

Here the imposed condition is |[[UDV'||s < =, which uses the singular
values of L* as weights in the [ bound. We note that here a bound on
singular values (the eigenvalues for covariance matrices) is implicitly posed,
which is equivalent to bound the condition number of L*, differently from
the approach described in paragraph (4.1.1). This condition is weaker: no
condition is imposed on the row/column spaces of L* (only its maximum
element must be bounded) and allows for wider classes of matrices.

It is relevant that no explicit condition is placed on the sparse component:
in this purely analytical approach, recovery is performed imposing regularity
conditions on the objective function (3.7), with particular reference to the
convexity properties of the smooth and the non-smooth part jointly. So, the
sparsity pattern of S* is involved only in contrast to the spikiness pattern of
L*, by imposing a lower bound to quantity

©(A) = inf Q(S, L), (4.12)
where

P
Q(5,2) = 1Ll + 211Sils

is a weighted combination of the regularizers (p and A are non-negative
regularization parameters).

However, this approach has a relevant drawback: the approximate recov-
ery of the approximately low rank and sparse components is itself approx-
imate, because it provides not an identifiability condition, but a bound on
the radius of non-identifiability (in our setting, ||L*||c < ). The larger a,
the broader is the class of identifiable models, but the more difficult is the
recovery, especially of the sparse component. Indeed, in [1], paragraph 4,
the authors provide mini-max optimality properties for their method over
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the classes of approximately low rank and approximately sparse matrices
(which are broader than those we need).

This method descends from the previous work of a subset of the same
authors (|85]) where weighted matrix completion (respect to rows/columns)
is performed into the same mathematical setting using only the nuclear norm.
On that path, [1] represents a direct extension.

The sense of their mathematical approach is now described. The regu-
larization problem is:

. 1 X
tip f(L,8) = 5/I(L +5) = Sl by + AILIL + p2(S7),  (4.13)

where Z(S*) is a regularizer. For us, Z = ||.||1, i.e. we want to recover
exactly low rank matrices with rank r < p and exactly entry-wise sparse
matrices with at most s < p? nonzero elements. Here, non-asymptotic error
rates are given for a wider class of regularizers. For example, a related
heuristics imposes to S* columnwise (blockwise) sparsity, which is recovered
using Z(5*) = ||S*||2,1 = D_r—1 ||Sk||2, where Sy denotes the k-th column
of S*.

In general, # can be any decomposable regularizer, which is defined
respect to the pair of subspaces (M, M1) as:

RU+V) = ZU) + Z(V),
forall U € M and V € M*. Our reference norm, Z = ||.||1,, is decomposable
respect to (M (T), M(T)*), where
M(T) = {U € R"*®|Uy, = 0Y(j.k) ¢ T}
M*(T) = M(T)*

and T € {1,...,p} x {1,...,p} is an arbitrary collection of indices. In fact,
U+ U'||ly = ||U||1 + ||U'||1, for all U € M and U’ € M+,

With respect to subspace M, they defined a compatibility constant be-
tween the regularizer # and the Frobenius norm:

O(M,Z):= sup @
vem,u£0 ||U]|Fro

In our case, we have ®(M, ||.|l1) = /s.

The following norm-related quantity is then defined:
[Vllr
R(V)’

/id(%) =

as well its associated dual norm:

R*(U):= sup <V,U >
R(V)<1
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with < V,U >:= trace(V'U). The quantity describing the interaction be-
tween the low rank and the sparse component, equivalent of u(A*)£(B*) in
paragraph (4.1.3), is the following:

p(L") = ka(Z") %" (L).

Thus, the interaction between the low rank and the sparse component
is here constrained using the dual norm of # computed on L*, rescaled by
the norm-related constant k(). The general bound on the radius of non-
identifiability is thus ¢(L*) < a. Note that, analogously to POET approach,
the spikiness of the low rank component is bounded starting from the sparsity
features of the sparse components. This feature is at the same time the most
relevant weakness of this approach for our purpose, because there is not an
intrinsic bound for the dual norm of the nuclear norm assessed in S*, which is
||S*||2. For us, kg(Z*) = p, Z* = ||.||co, from which the previously described
condition [|L*||ec < & follows.

A decomposable regularizer is a norm penalizing deviations from the
model subspace M as much as possible. Using first-order Taylor series ap-
proximation, we can derive a quadratic lower bound on the quadratic error.

Defining Loss(Q) = %Hi — N(Q)||Fro, we have
Loss(Q + A) — Loss(Q) — ALoss(Q)TA = %HN(A)H%M

The Strong Convexity condition provides us a lower bound on 3|[R(A)|[%,,,
stating:

1 2 Y
Z > L
SR [0 = Sl v,

where v > 0 is the strong convexity constant.
The Restricted Strong Convexity (RSC) condition prescribes:

1 o
gHN(A)H%m > 5!\AH% — 7, 2%(A),

where v > 0, 7, depends on the mapping operator X (and decreases as
n — 0), ®(A) is defined in (4.12), and

Q(S. L) = |ILl. + 52(5).

The sample size n is not a problem until 7, is sufficient large (large as
long as v > 0). We underline the particular role of n: since this approach
provides deterministic guarantees, n serves to improve the approximation of
$IIR(A)|[%.,,, That is, the larger n, the more precise is the observation model,
and the smaller can be 7,,. However, in our particular case we have 7,, = 0
(identity operator), and v = 1. Note that ®2(A) is a measure of relative
importance of the regularizer respect to the nuclear norm.
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The RSC condition is the key to provide non-asymptotic error bound
rates, bounding the absolute losses provided that ¢(L) < a. If Z is a de-
composable regularizer, it was proved in [84] that the associated statistical
models satisfy the RSC condition. Therefore, in that case the authors proved
that it is straightforward to obtain non-asymptotic error bounds, and that
the M-estimators minimizing a composite regularizer (the loss term plus a
decomposable regularizer) converge fast. In this sense, [1] is an extension
of [84], where both the nuclear norm (which is also a decomposable reg-
ularizer) and a general decomposable regularizer represent the composite
penalty. Roughly speaking, we can say that |1]| represents the meeting point
of [85] and [84].

Another key element of this approach concerns the error composition. Let
us define Ay, =3 —¥* A =L — L*, Ag = S — §*. For Cauchy-Schwartz
inequality, [|As||%,, < [|ALl%,, + [|As||%,,- Therefore, in the noisy setting,

under the numerical approach, the quantity to lower bound is
62(L7 S) = HALH%‘TO + HASH%TO’

This choice has to be discussed. It is intuitive that bounding ||Ap||%,, +
|Ag||%,, can be quite different from bounding ||Ax||%,,. More details and
a proposal on this topic can be found in paragraph (5.1).

Given our observation model ¥ = R(S*+L*)+W , under ¢ (5*) < a and
the RSC condition, the error 62@, 5') is bounded by three terms: one in L*,
one in S*, one depending on 7,. Each term is composed by two summands:
an estimation error term, measuring the error on the subspace M, and an
approximation error term, due to the fact that approximately low rank and
sparse matrices are allowed. The second one, which was absent in previous
approaches, measures the error on the orthogonal complement M* (these
terms include \;(L*), r+1,...,p for L*, and the regularizer of the projection
of S* in the orthogonal complement, for us equal to 3, 4 ocnse) 1Skl
Since 7, = 0 and we seek for exactly low rank and sparse matrices, in our
case we do not have the third error component and we do not allow for
approximation errors.

Their general theorem states that under two specific regularity conditions
involving r, W(M, R), A, p proportionally to 7, and 7, and under lower
bounds for A and p, there are three limiting universal constants limiting
each of the three error terms. The strength on the bound depends on the
strength of the RSC condition respect to the curvature of Loss(€2). For the
entire statement, we refer to [1], p. 1182.

The bound on the curvature will be relevant also in the approach we are
going to present in paragraph (4.1.3). While here the convexity structure of
Loss(R2) is enforced via the lo norm (dual of the /3 norm) of the low rank
component, there the curvature of the low rank matrix variety is bounded,
and the Lagrangian dual subgradient approach is applied. The method we
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will present allows to identify the model, since it prescribes, following [30],
symmetric assumptions respect to BOTH components controlling entirely
the interaction of the two spaces. Here, an analytical control based only on
the regularizer (thus asymmetric) is imposed to the low rank component.
In [31], a bound on the norm of the projection onto the orthogonal comple-
ment is given for BOTH matrix spaces simultaneously. This allows perfect
identification.
If 7, = 0 and in the exact matrix setting:

e*(L,8) = X2r + p?U(M, R)?

up to constant factors. In our case W(M]||.||1) = /s. In this approach r and
s are chosen adaptively. If we choose r = rank(L*) and s = |supp(S™)|, we
have
(L, S) = N2r + p?s.

If W =0 (noiseless setting), for specialization we have

e2(L,S) = azé.
This rate is weaker respect to the one in [30], but requires weaker conditions
on L*. Anyway, mini-max properties show that in the noiseless setting the
rate Oézl—fg cannot be improved if s < p. In addition, we have to consider that
the allowed classes of low rank and sparse matrices are much wider.

The lower bounds for threshold parameters here depend on functional
norms ||N*(W)||op, and [|N*(W)||sc, as well as on v, p and a. ||[N*(W)||op is
here simply the spectral norm of the dual operator at W.

Suppose now we have a stochastic error W generated with normal entries
N(0, U—:) If we set N = I, specific threshold values can be found. Under the
described conditions, using large deviation theory and some non-asymptotic
random matrix theory results to bound ||W||,p and ||W ||, we have that for
specific threshold parameters, with very high probability, an error rate com-
posed by the noise variance times the usual two error components, function
of p,r, s and «, holds.

If we allow W to be a zero-mean Wishart, we fall back into the pure
sparse factor analysis case (3.1), which is relevant for our purpose. We now

recall it.
Let us suppose L* = UDU’ = BB’, where B = UDV2 Uisapxr

matrix, D is a r x r diagonal matrix, with dj; > 0, Vj = 1,...,r. Suppose

that our p x 1 random vector X;, ¢ =1,...,n, has the following structure:
Xi = Bfl + €5,

with
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where f; is a r x 1 random vector, and ¢; is p X 1 random vector.

X is assumed to be a zero mean random vector, without loss of generality.
The observation matrix is the sample covariance 3, = %Z?:l X;X!. The
error term W := 13" X; X! — (BB’ + S*) is a zero-mean re-centered
Wishart matrix noise.

The Corollary relative to this case is the following.

Corollary 4.1.1. Consider the factor analysis with n > p samples, and
reqularization parameters

4
A= H\/E*HQ\/E and p = 32p(S*) + ?O‘ (4.14)

where p(X*) = max;¥7,;. Then with probability greater than 1—ceexp(—cs log(p)),
any optimal solution (i}, 5’) satisfies

2
e2<ﬁ,5>Scl{uz*uﬁw(z*)“"”}+c1a—j. (4.15)

n n P

This result is derived using large deviation theory and some non-asymptotic

random matrix theory results, which allow (under the Wishart assumption)
to translate norms of W into norms of ¥*. It states that under specific thresh-
old choices, involving the spectral norm and the maximum diagonal term of
>*, the error is bounded with very high probability by three terms, one repre-
senting the degrees of freedom of L*, ||X*[|Z2 (rp is the number of loadings),
one representing all possible sparsity patterns of S*, p(E*)SIO% ~ 810%
(number of subsets of size s from RP*P), and a term deriving from the non-

identifiability issue %. As usual, the condition n > p is necessary in order

to obtain consistent estimates in factor analysis model using Sh.

Note that now we find again the usual rates [[X*||2 and p(E*)% de-
scribed in [39] and [15]. Terms ||X*||]2 and p(X*) are present for probabilistic
reasons, using standard tail bounds for random Gaussian matrices and their
product (see supplementary material to [1], p.35). This is why the threshold
parameters A and p have the shape of (4.14). The two terms are weighted by
r and s respectively: this is a major difference with the algebraic approach,
where r and s have no impact, because there, differently from here, they are
implicitly incorporated in the threshold parameters. On the contrary, the
probabilistic argument depends in that context on $,, as a whole. The con-
dition n > p is the same: however, it is easier trying to overcome it working
on 3, under specific model assumptions than using probability assumptions
on matrix W.

Finally, we mention a very interesting approach to the same problem,
in our case (exact low rank/sparse matrices, identity operator X = I): Hsu
et al. (2012) |67]. That work is based on rank-sparsity incoherence, and
uses the standard singular vector incoherence conditions of [24] deriving
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non-asymptotic rates depending on those quantities using the sub-gradient
method. In particular, since they employ the orthogonal singular vector
incoherence bound ||[UV||s, they need to impose a bound on the product

rs:
2

rs = 2logp’

This bound is not present in the algebraic approach we are going to describe
in paragraph (4.1.3), since rank-sparsity incoherence is enforced bounding
quantities related to the tangent spaces to the reference varieties (see para-
graph (4.1.1)). For a comparison between this approach and the analytical
one see [1], p.1188.

We now introduce the algebraic approach by Chandrasekaran et al. (2012)
for approximate matrix recovery.

4.1.3 Approximate recovery: an extended algebraic approach

The method we are going to describe now is the core of our thesis. This ap-
proach, by Chandrasekaran et al. (2012) ([31]), provides a numerical heuris-
tics for inverse covariance matrix estimation under the Gaussian assumption,
exploiting the tools of graphical modelling. From a certain point of view, we
could say this is the extension of the graphical lasso for sparse inverse covari-
ance estimation by Friedman, Hastie and Tibshirani ([53]). The affinities are
in the estimation target (the precision matrix), in the nature of the minimiza-
tion target (they both are likelihood methods), in the Gaussian assumption
for the data and in the use of the {; heuristics (sparsity assumptions).

In contrast, while the graphical lasso imposes sparsity on the overall
covariance matrix, the approach in |[31] uses the same assumption on the
residual component of the model. This solution is based on the strong link
between Gaussian random variables and graphical modelling such that the
Schur complement of ¥* is directly modelled. The chosen conditioning block
is a vector of r < p latent variables which are assumed to explain a large part
of the covariances among variables, and the residual covariance is supposed
to be sparse. Since the Schur complement of the covariance matrix of a
Gaussian random vector is the covariance matrix of the variables conditioned
to the the variables belonging to the conditioning block, this model results
in a low rank plus structure for the inverse covariance matrix, which is a
latent variable graphical model with sparse residual for the data (allowing for
missing edges given the latent graphical structure). The problem is solved
minimizing the log-likelihood (parameterized in the low rank and in the
sparse component) augmented by a composite penalty in the form (3.28),
where the nuclear norm regularizes the low rank component and the /1 norm
the sparse one. This is a regularized maximum likelihood program, a convex
program tractable via off-the-shelf algorithms ([111]).
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What is new, the approach in [31] is algebraic in nature, while the one in
[53] is mainly algorithmic (data approximation method). This one provides
an algebraic setting for model identifiability and consistent recovery. In addi-
tion, this method provides a double notion of consistency: an algebraic one,
which describes the correspondence between estimated and theoretical rank
and sparsity pattern, and a parametric one, which provides finite bounds
for the error rate taking into account simultaneously the low rank and the
sparse component. Finally, both consistencies allow (theoretically) r,p ~ n,
even if there is still the usual problem concerning the use of $,. Here, the
condition n > 2p is imposed in order to obtain sharper rates.

We now present the model in detail. Consider we have a finite collection
of Gaussian random variables Xp U X, where X are observed variables
and Xpy are hidden variables. Call Xp g the covariance matrix of Xo U Xy
(in this case we remove * to avoid cluttered notation). Ko g = E(_)}H is the
concentration matrix of the full model. The marginal covariance matrix 3o
is simply a submatrix of ¥p . Suppose we parameterize the model start-
ing from the concentration matrix K = EalH. The marginal concentration

matrix Ko = 251 is given by the Schur complement with respect to block
Ky
Ko=3%5'=Ko— KonKy;' Kno. (4.16)

This is a low rank plus sparse structure, where ! = § — L. The graphical
model holds because the covariance matrix of Xo|Xpg is 251. For i,j € O,
due to the joint Gaussian property, 26,1i j describes the strength of the rela-
tionship between X; and X conditional to Xp. The following relationship
holds:

cov(Xi, Xj| Xorgigy) = 0 & S5, = 0,

that is, the is edge between X; and X; is missing if the two variables are
conditionally independent. Differently from [53|, the sparse graphical model
is not imposed directly to 251, because (conditional) independence is often a
too strong assumption in high dimensions. This is why here it is assumed that
a number of latent variables Xy, |[H| < |O|, explains most of the observed
covariances among the variables in Xo. So, Ko is not sparse in general due
to extra-correlations induced from marginalization over the latent variables
Xp. The latent variables Xy are also referred to as hidden components.
The additional low rank term Ko, HKﬁlK H,0 summarizes the covariances
induced by the marginalization over Xpy. Then, it is possible to set up
a sparse graphical model on the residual concentration matrix Ky, which
summarizes the covariances among the variables in X conditioned on the
hidden components. From this model framework, a natural low rank plus
sparse decomposition for the precision matrix of the observed variables Ko
arises, in the form:

Ko=S5-1L,
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where S = Ky and L = Ko, HK;IIK m,0- This framework combines dimen-
sionality reduction (to identify latent variables) and graphical modelling (to
catch the residual covariance structure). For us, |O| =p, |[H| =7.

Under these model assumptions, the problem of identifying two matrix
varieties, one low-rank (4.3) and one sparse (4.4) naturally arises. We need
to uniquely decompose the low rank and the sparse component starting from
their sum. This problem is similar to the one presented in (4.1.1), even if
random perturbations on the data are allowed. The identification requires to
exploit the notion of geometric transversality between tangent spaces Q(Kp)
T(Ko.uKy;'Kio). We will show that, analogously to [30], if the sparse
component has a small number of nonzero elements and the low rank com-
ponent has row/column spaces not closely aligned to coordinate axes, then
the latent variable model is identifiable. However, there is one more prob-
lem to face: in the noisy context, the curvature of the low-rank variety (i.e.
its local sensitivity to perturbations) plays a relevant role. If we think the
two tangent spaces as algebraic systems, we note that the one tangent to
the low-rank variety is non-linear, while the other one is linear. For this
reason, if T(KQHK;IlKH,o) is very curve, it may be impossible to identify
L in the noisy context, since the tangent space can vary locally very fast.
Therefore, a bound on this curvature is necessary. Note that the approach
by Agarwal et al. ([1]) does not provide identifiability just because it does
not pay attention to this aspect, enforcing assumptions via a pure analytical
approach.

The regularized likelihood problem is the following;:

Sny L = argmin —I(S — L; n) + An(7]|S][1 + tr(L)) (4.17)
st.S—L>=0L >0,

(K;Y) =logdet(K) — tr(KX) (4.18)
K > 0.

It is composed by a Gaussian log-likelihood term (—I1(S —L;,)) and the
composite penalty (3.28), where the trace is the nuclear norm heuristics over
the cone of Positive SemiDefinite matrices (PSD). v is a trade-off parameter
between the trace and the /; norm. (4.17) is a regularized max-det problem
(a discussion on these problems is in [49]). Note the presence of constraints
S — L > 0and L > 0, which are tractable in this algebraic framework. This
is a variational formulation of the problem, which provides also a model
selection heuristics: the error term (log-likelihood) is penalized by the model
complexity in terms of sparsity of S and spectrum of L. The problem can
be easily solved using standard off-the-shelf solvers ([111]).

Due to the log-likelihood term, another identification problem arises. If
the log-likelihood is too curve, i.e. if the Fisher information behaves poorly
respect to the tangent spaces T'(L) and §(S) (and their sum), errors in
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the data are amplified too much, creating an additional identification issue.
Functional operator theory is crucial in this context. The curvature of Fisher
information I* as well as the curvature of the low rank variety are described
and bounded as functional operators.

A formal statement of the latent variable model selection problem is
reported below ([31]).

Definition 4.1.1. A pair of symmetric matrices (S, L) with S, L € RIOIxIO
15 an algebraically consistent estimate of a latent-variable Gaussian graphical
model given by the concentration matriz Kog if the following conditions hold:

1. The sign pattern of S is the same of Ko: sign(S;j) = sign((Ko)i;),
Vi, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of KQHKI}lKHO.

3. The concentration matrix S — L can be realized as the marginal con-
centration matriz of an appropriate latent-variable model: S — L > 0,
L >0.

Model consistency here is defined according to the following three esti-
mation features:

1. correct structural estimate of the conditional graphical model (given by
Kj) of the observed variables conditioned on the hidden components.
This feature is called "sparsistency" of standard graphical model se-
lection.

2. number of hidden components correctly estimated.
3. the model is realizable: |O U H| = |O| + |H|.

It is also defined the usual parametric consistency, which holds if the
estimates of (S, L) are close to (Ko, Ko uKp;' Kp,0) in some norm with high
probability. Parametric consistency does not imply algebraic consistency and
vice versa. Besides, the model suffers from the usual model indeterminacy
coming from a latent variable context: there are infinite Ky > 0, Ko g =
K}{’O giving rise to the same low-rank matrix Ko,HKglKH,O.

Consistently to their geometric approach (and to identifiability condi-
tions), the reference norm to assess parametric consistency is nothing but
the dual norm of the composite penalty. Given the norm

F(S, L) = AlIS][r + [[L]l, (4.19)

~ > 0, where ||L||. = tr(L) (since L is over the cone of PSD), the dual norm
of f,(S, L), which is used to bound the error, is

g-(S, L) :max{%,ﬂﬂb}. (4.20)
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Identification and recovery: technical aspects

Suppose we have n samples (Xé)?zl of the observed variables Xp. X;,i =

1,...,n, are jointly Gaussian zero-mean p - dimensional random variables.

The latent variable model holds on the marginal concentration matrix K.
We define the induced operator norm of a linear bounded operator

7 . RPXP _ RPXP 3gs:

Z = max Z(NH||,.
l ||q_)q NeRPXRIINHqSIH ( )Hq

The covariance matrix is the usual 3, = %Zyzl Xo,iX’OJ-. The log-
likelihood of K is

A

I(K;3,) = logdet(K) — tr(K%,),

function of K.
Applying Jacobi’s formula we have ([120] [121])

52 - 0 &

As a consequence,

52 g -1 —17-—1

which results in 52
wl([(; ) =—-K.

This result means that [(K;,) is strictly concave for K = 0, i.e.
—I(K;3,) is strictly convex.

Consider now the latent variable model (4.16) for Ko = (X0)~', where
S = K represents the conditional statistics of X given some extra variables
Xy, and L = KO,HKﬁlKH,O summarizes the effect of marginalization on
Xo over Xg. Respect to (S, L), I(S,L,%,) =1(S—L,%,) is jointly concave
whenever S — L > 0.

We know that Fisher information is the negative Hessian of the likelihood
function and thus controls the curvature of Fisher information operator I .

Its formulation is
I(K) = —A%logdet(K)|x = K ® K

for K 0. If K is p x p, [(K) is p? x p’.
Considered that Ko = (25)7Y, for model (4.16) we have:

I(Ko) = Ko' ® Ko' = £0 @ So. (4.21)
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This matrix is precisely the |O|? x |O|? sub matrix of

(K om),6,j)k1) = 20,5 @ Z0,m)]6,5)k,0)>

which is |O U H|? x |O U H|?, given that K o) = (S0.m) "

Bounding ]I(K'o) is crucial for obtaining consistent estimates with high
probability from (4.17).

As previously explained, the tangent space T' to the low-rank matrix
variety is locally curved at any smooth point. Results from perturbation
matrix theory are needed in order to bound the curvature of T, which may
affect the identification of the unknown varieties. The curvature of T' at
any smooth point M (symmetric and having rank less or equal to r) can

be described in terms of projection onto the row space U(M) (denoted by
Py (N)) as follows (see [9] p.15):

Prony(N) = PuryN + NPy — Pooan N Pouan

where operator P is the (bounded) projection operator and N is any squared
matrix. 7'(M) is curved because the projection changes locally around M
(differently from Q(M), which has curvature 0 at any smooth point). The
curvature is the "angle" between the tangent space at any smooth point and
the tangent space at a neighboring point.

It is therefore necessary to bound the curvature. The twisting between
two subspaces of matrices 17 and 75 is defined as:

p(T1,Tz) = ||Pr, — Pry|l22 = max |[|Pr, — Pr,(N)|l2.
[|V]]2<1

It is proved that perturbing a rank-r matrix M with a matrix A such that
[|Al]2 < § and M + A has rank r, the following two results which bound the
twisting between tangent spaces at nearby points hold:

p(T(M +8),T(M) < 2 Al (4.22)

[ Proanycllz <
where ¢ is the smaller singular value of M. So, lower bounding o, which
is for covariance matrices simply the smallest eigenvalue, means controlling
the curvature of T'. The closer o is to 0, the more curved T is locally.

Analogously to [30], quantities p(Kj) and §(K07HKI}1KH7O) play a key
role for identification. A useful Lemma links the twisting between two sub-
spaces p(T1,T») (if smaller than 1) and parameters £(77), £(T5) as follows:

E(Ty) < ——

< m[g(TI) + p(T1, Tz)].
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This allows to conclude that we consider all the neighbour subspaces 7"

satisfying p(T",T) < @ as close to T.

We can now approach the problem of local identifiability of the sparse
and the low rank component from their observed sum. Define the addition
operator A(S,L) = S + L, its adjoint Al s.t. < Az,y >=< x, Aly > for all
x,y € H, H Hilbert space (<> is the standard Euclidean inner product).
AT(S,L) = (S+ L) = S+ L (since both components are symmetric). A and
AT are both linear bounded (hence continuous) operators.

The identifiability of tangent spaces T'(L) and (S) is possible if and only
if they have a sufficient degree of transverse intersection, which means they
are sufficiently distinct. This condition depends, as described in paragraph
(4.1.1), on quantities £(7") and p(€2); in this context, since transversality is
not perfect, we need also to quantify and bound the level of transversality
between the two spaces with reference to the Cartesian product Y = Q x T
This is unavoidable to provide necessary and sufficient conditions for identi-
fiability from the Maximum Likelihood (ML) regularized program (4.17).

The minimum gain with respect to some norm |.||; on RP*P x RP*P of
the addition operator A : RP*P x RP*P — RP*P restricted to the cartesian
product Y = x T is defined as:

0T = i PyATAPy(S, L
e(Q, T, llq) (S,L)enfﬁﬁ&muq:l” Y v (S, L)llgs

where Py is the projection operator onto Y and the products are Cartesian
products.

Quantity €(2,T,||.||;) measures the level of transversality. The large
it is, the more transverse T'(L) and (S) are. The tangent spaces have a
transverse intersection if and only if

E(QvT’ ||||q) > 0.

Since we have ATA(S,L) = (S + L,S + L)and PyATAPy(S,L) =
(S+Pq(L), Pr(S)+L), this condition is equivalent to bound the projection of
each component onto the other space, in order to avoid the misidentification
of each component. This why we want (€, T, ||.||4) to be as large as possible.

As the subdifferential of the regularization function (4.19) is specified in
terms of its dual norm (4.20), the natural norm [|.||, to measure transversality
is the dual norm of the regularization function (4.20).

Given Q and T, tangent space to varieties S, L and their Cartesian
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product Y = Q x T, the following bounded linear operator properties hold:

[1Palloo < [IM]||o
1Poxlloo < [1M]loo

|1Pr(M)]]2 < 2|[M]]2
[Pro(M)]]2 < [[M]]2
-g“/(PY(M’ N)) 29‘/(M7 N)

<
.g“/(PYJ-(M’N)) < -g“/(MvN)'

These properties are used for the subgradient minimization process. Note
that the projection rule for the ||.||2 norm of the projection doubles the
corresponding norm of the argument, differently from other norms. See [96]
for more explanations.

Defining

x(€,T,v) = max {@ 2#(9)’7} ;

we can study the transversality respect to g, obtaining the following crucial
result:

Lemma 4.1.1. Given, S € Q, L € T, with ||S||lc =7 and ||L||2 = 1, and
Y =Q x T, we have:

9y (PrATAPy(S, L)) € [1 = x((,T,7), 1 + x((w, T,7)]-

In particular:
I- X(Q7 T7 ’Y) < 6(97 T7 g’}/)

This is a stochastic joint (matrix bivariate) isometry property, and is
the Restricted Isometry Property (RIP) of this model setting. It allows
to lower bound €(£2,7,g,) and to link transversality to parameters p(€2)
and &(T) even in the noisy context. For instance, if u(Q)¢(T) < 1/2 then
v € (&(T), T%w)) implies 2 and T have a transverse intersection.

It is easy to note that the smaller are ;(€2) and £(7"), the more transverse
are ) and 7', exactly as in the noiseless context of paragraph (4.1.1).

Tangent spaces in this framework are precisely defined as
Q=Q(Ko)=QS)and T = T(KonK;; ' Kuo) = T(L),

where Ko = K’Q g~ They both lie in a functional space where the inner
product is the Fisher information operator I, which is a map between RP*P
and RP**P? We want that S and L are distinguishable respect to I*, i.e. to
study the behaviour of I* restricted to 2@& 7T, in order to identify and recover
S and L by I(S — L; %,,).

In order to do that, we need to study the gains of I* restricted to 2 and
T separately, as well as their orthogonal complements Q- and T, such that
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elements in both spaces are identifiable under the map I*. Finally, conditions
to control I* restricted to the direct sum 267, in conjunction with bounds
on u and &, are provided.

The minimum gain of I* restricted to Q and Q- is given by the following
quantities:

ag= min ||Pol*Po(M)||s (4.24)
So= min  ||[PoiI* Po(M)||s (4.25)

MeQ,||M||co=1

I* is injective on 2 if ag > 0. The irrepresentability condition, which is
a sufficient identification condition for graphical lasso using l; regularization
problem, is g—ﬂ <1 —v, and is sufficient for consistent recovery of graphical
model structure using lasso ([53]). More, the local behaviour of I* (M) respect
to €2 is described by

o= max |[[I*(M)|f2.
MeQ,||M||2=1

The same holds for functional operators Pi#1*Pr(M) and PrI*Pr(M),
which describe the behaviour of I* restricted to T' and T respectively. Their
minimum gain is respectively given by:

ar = || P Pr (M) (4.26)

min min
p(T7T’)§ f(ér) MET’,‘ ‘M||2:1

dr =  min min P PL (M|, L7
p(T,T’)g@MGTQHM‘b:lH T T( )H ( )

I* injective on all tangent spaces T’ such that p(T,7T") < @ it ap > 0.
An analogous irrepresentability condition holds for the recovery of T" (solely
considered): i—? <1l-—w.

The local behaviour of I* (M) respect to 2 is described by

Br = max max [|IT*(M)]| 0o
p(T’T/)Sg MeT!||IM||so=1

Quantities Bq and S control the behaviour of I* restricted to Q@T, together
with conditions on (7T") and p(7T) coming from Lemma 4.1.1.
Let us now define:

a = min(ag, ar) (4.28)
B = min(Bq, fr) (4.29)
0 = min(dgq, 07). (4.30)

The main assumption on I*, which summarizes both sets of conditions,
is the following:
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Lemma 4.1.2. There ezists a v € (0, 3] such that 2 < 1—2v.

We can now report the Proposition of [31] describing the necessary as-
sumptions on parameters for model identification. This statement recaps
identifiability conditions related to the curvature of T'(L), to Fisher informa-
tion I* and to €(Q, T, g-).

Proposition 4.1.3 (Chandrasekaran et al. (2012) [31]). Let T be as in
(4.3), Q be as in (4.4), and let T* be the Fisher information matriz evaluated
at the true K = 251. Suppose that

woger) < & (G2

and v is in the following range:

38(2 - v)&(T) va ]
va 282 —v)p(Q)]

ve |
Then we have the two following conclusions for Y = QxT’, with min p(T,T") < @

e The minimum gain of T* restricted to Y = Q @ T is bounded below:

g-(Py AT APy (S, L)) >

| Q

min
(S;LYEY,|[S[loo=;|L||2=1

Specifically this implies for all (S,L) € Y:

g, (PyATT* APy (S, L)) > %g.y(S, L).

e The minimum effect of elements in Y = Q & T on the orthogonal
complement Y+ = Q+ @ T+ is bounded above:

|(Pyr AT APy (S, L)) (Py ATT* APy (S, L)) ™Y)||g, g, <1—v
Specifically this implies for all (S,L) € Y:

gy (Pyr ATT* APy (S, L)) < (1 — v)g, (Py ATT* APy (S, L))

Another necessary condition to ensure probabilistic consistency is a bound
on 1, the spectral norm of ¥ (1) = [|X||2). ¥ controls also I*, since it can be
noted that here ||T*||o_o = 12 (see (4.21)).

We now describe consistency properties of (4.17) in the high dimensional
setting, where p,r,n are allowed to grow simultaneously (n,r ~ p). For us,
p = |O] is the number of observed variables, » = |H| is the number of latent
variables, n is the number of samples of the observed variables Xo. Ko g
gives the latent variable graphical model whose complexity is explained by
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1(UKo)) and &(T(Ko,i)K Ki,0), describing the sparsity pattern of the
conditional graphical model among the observed variables and the diffusivity
of the extra correlations due to marginalization over the hidden variables.
Parameters «, 3, v, do not scale with other parameters and are bounded.

There is a natural trade-off between p(£2) and £(7). The classes of latent-
variable graphical models which can be identified by (4.17) depend on their
relationship, and on corresponding scalings of p,r, n.

In (4.17), v is a trade-off parameter between rank and sparsity terms, and
An is a regularization parameter, which must be suitably chosen to ensure
consistency. Since £(7") and p(2) are not known a priori, a numerical choice
for v must be done too.

We now report the main result on model selection consistency.

Theorem 4.1.3 (|31|). Let Kon denote the concentration matriz of a Gaus-
sitan model. We have n samples X;,i = 1,...,n p of the observed variables
denoted by O. Let Q = Q(Kp) and T = T(Ko,HKo,HK;IlKHp) denote the
tangent spaces at Ko and at Ko,HKQHH_lKH@ with respect to the sparse
and low-rank matrices respectively.

Assumptions: Suppose the following conditions hold:

1. The quantities () and &(T) satisfy the assumption of Proposition
4.1.8 for identifiability, and v is chosen in the range specified by Propo-
sition 4.1.3.

2. The number of samples n available is such that

p
"E
3. The reqularization A, ts chosen as
1 /p
Ap < @ o
4. The minimum nonzero singular value o of KQHK;IIKHO is bounded
as , ~
7= rpVn

5. The minimum magnitude nonzero entry 0 of K} is bounded as
1 P
0= ————1/=—.
§(T)u() V n

Conclustons: Then with probability greater than 1 — 2exp (p) we have:
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1. Algebraic consistency: The estimate (Sn,i}n) given by (4.17) is alge-
braically consistent, i.e., the support and sign pattern of S, is the same
as that of Ko, and the rank of L,, is the same as that ofKQHKI;lKH,o.

2. Parametric consistency: The estimate (Sn,ﬁn) given by the conver
program (4.17) is parametrically consistent:

0y(Sn — Ko L — Ko n K K 0) < TlT)\/g .

We can note that both components are algebraically and parametrically
consistent, given a number of conditions involving the minimum nonzero
entry of Ko and the minimum singular value of KO,HKﬁlKH,O, the number
of samples n (which are lower bounded) and the regularization parameter
An (which follows a precise scale). (S, Ly,) are thus ensured not to have
smaller support size/rank than (Ko, Ko,HKE,lKHp). The condition on the
minimum singular value is more stringent than the one on the minimum non
zero elements, because it plays a crucial role to bound the curvature of T'(L)
around Ko, HKﬁlK m,0- Relevant parameters for consistency are p,n, u, €.
This result will be the key to prove consistency of the low rank plus sparse
covariance estimator by Luo (2013) [77] we will describe in paragraph (4.1.4).

All the results hold under the conditions of Proposition 4.1.3, especially
under the condition v € [3’8(2;?5@), 25(2_"3)#(9)]. Theorem 4.1.3 is derived
using the lower end of the range for ~.

If this assumption is weakened, we have the following Corollary.

Corollary 4.1.2. Consider the same setup and notation as in Theorem
4.1.3. Suppose that the quantities () and &(T') satisfy the assumption
of Proposition 4.1.3 for identifiability. Suppose that we make the following
assumptions:

(o7

1. Let ~y be chosen to be equal to m (the upper end of the range

specified in Proposition 4.1.3), i.e. v = ﬁ

2. n = u(Q)*p.

3. Ap = M(Q)\/%.

4' o= M(Q)z p

1) Von

5. The minimum magnitude nonzero entry 6 of K¢, is bounded as 0 = \/%.

Then with probability greater than 1 — 2exp (p) we have estimates (Sn,i}n)
that are algebraically consistent, and parametrically consistent with the error
bounded as

9+(Sn — Ko, Ln — Kon Ky Kiio) = w()

S
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Theorem 4.1.3 and Corollary 4.1.2 describe the extremes of matrix classes
recoverable using program (4.17). In practice, a range of values for = is
necessary in order to ensure the stability of the sparsity pattern and the

rank, while ), is usually taken in a range of values proportional to \/% .

Recalling results (4.10) and (4.11), we can define d = deg(Kp), degree
of the conditional graphical model among the observed variables, and i =
inc(Ko.u(Ky) ' Kp,o), incoherence of the covariances due to the marginal-
ization over the latent variables. The following relations hold:

p<d, § < 2i.
Since «, 8, v, are assumed to be bounded, from Proposition 4.1.3 we have
di = 0O(1).

These conditions include non-trivial classes of latent-variable graphical
models. In particular, we mention the case of constant degree d = O(1)
and maximum incoherence \/%, with r ~ p. In this setting, the effect of
marginalization over latent variables is diffuse almost across ALL variables.
Consistent recovery is allowed also from n ~ p samples, even if condition
n > 2p is here specified following [39] in order to ensure finite bounds for
S

From this results, rates for the covariance matrix (i.e. the inverse of the
precision matrix) can be easily derived as follows.

Corollary 4.1.3. Under the same conditions of Theorem 4.1.3, we have with

probability greater than 1—2exp (p) that gy(AT[(Sn—fJn)_l—E*O]) =< ﬁ \/%.

Specifically, this implies that

& FoN— y 1 /p
(8 — L)t =Sl < @\/; (4.31)

Rates for & = S, — L,, and 7! coincide, and are proportional to \/%.

However, using the (inverse) sample covariance matrix as an input, these
results hold if and only if n > 2p.

We finally give some basic notes on the proof strategy. These concepts
will be recalled while showing the analogous proof from |77] in paragraph
(4.1.4). Standard results from [98] state that (S,, L, ) is a minimum for (4.17)
if the zero matrix belongs to the subdifferential of the objective function
evaluated at (S,, L,). The subdifferential structure of ||.||; and ||.||s is the
following. The subdifferential of the {; norm at a symmetric matrix M is:

N € 0|[M[[y < Poury(N) = sign(M), [[PonL (N)|lee < 1.
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Let M = UDU’ be a symmetric positive semidefinite matrix M. The
subdifferential of the trace function restricted to the cone of positive semidef-
inite matrices (i.e. the nuclear norm over this set) is:

N € §[tr(M) +IM50] = PT(M)(N) = UU,,PT(M)L(N) =1,

where Ips-o evaluates to 0 over the cone of PSD and to oo otherwise, and
the condition on 7'(M)~ indicates that the spectral norm of PronL(N) is
smaller or equal to 1.

The key point for proving Theorem 4.1.3 is that elements of the subdif-
ferential decompose with respect to the tangent spaces Q(M) and T'(M).

In order to solve (4.17), it is necessary to add the non-convex constraints
S e #(s)and L € Z(r). The pair (S, L) solution of this problem is proved
to be composed by smooth points of J#(s) and .Z(r) respectively. The
first-order optimality condition state that the Lagrange multipliers corre-
sponding to the additional variety constraints must lie in Q(S)* and T'(L)*,
such that the first part of the subgradient optimality conditions of (4.17)
is respected. Then, the idea is to prove that the variety-constrained pro-
gram is algebraically equivalent to the tangent-space constrained program,
where S € Q(S) and L € T(L). Finally, it is proved that tangent-space
constraints are locally inactive, such that the original problem (4.17) has the
same solution.

Therefore, the second part of the subgradient conditions (relative to the
components in QF and T) is also satisfied and the solution of the original
problem shares the same algebraic and parametric consistency properties
with the variety-constrained program.

This approach is valid if and only if the twisting between T'(L) and
T(Kp, HKglK ,0) is bounded. This why the minimum singular value of
K, HK;IIK m,0 1s lower bounded, thus providing the local identifiability of
T(L*). The entire proof exploits the basic matrix property ||M||oc < ||M||2.

We will give details on the steps needed to prove the analogous of Theo-
rem 4.1.3 into the covariance matrix context in paragraph (4.1.4).

We now outline the optimality conditions of our problem (4.17). Our
convex objective at the optimum (SQ,.Z/T/) satisfies, for some Lagrangian
multipliers Qg1 and @71, the following conditions:

SQ + i/T/ — 271 + QQL S _)‘n’Y(SHSQHh

SQ + fJT/ — in + QT/J_ € _)\n5||fJT||*

The key to derive the solution is to project Sq+Lp—3, ontoY = QxT”
and to define

Po(Sq + Ly — 3,) = Za,
PT(SQ + IiT/ — in) = Zr,
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with || Zq||lcc = Any and || Z7]| < 2X,. The bi-dimensional projection is
PyAT(Sq+ Ly — %) = Z = (Za, Zrv),

where Y = Q @ T”. This is the projected gradient method, and provides the
mathematical base to algebraically solve the numerical problem (3.30).

4.1.4 Approximate recovery: LOREC approach

This section deals with covariance matrix estimation via low rank plus sparse
decomposition. Here we describe the numerical approach of Luo (2013) ([77])
which recovers the covariance matrix via low rank plus sparse decomposition
in the noisy setting. This approach moves from the one of [31] described
in paragraph (4.1.3), and provides rates and identifiability conditions under
the same algebraic setting.

The underlying structure for ¥* is model (4.2), and the data structure
is the one described in (3.1). Model (4.2) can be thought of as a general
approximate factor model in the form

¥* = BVar(f)B' + %,

where Var(f) = I, and ¥* — X, has exactly rank r. The low rank matrix
L* = BVar(f)B' and the sparse matrix S* = 3, are symmetric (as well as
their sum 3*) . Our sample estimate Y is drawn from the noisy model

=L+ S+ W

where W is an error term.

At present, the recovery of the loading matrix B via the method we are
going to describe has not be discussed. This can be partially done only if
r = 1, where the loadings is recovered up to a constant. The factor model
assumption is here used as a useful tool to estimate the covariance matrix in
a large dimensional context.

The usual matrix spaces Z(r), # (s), T(L) and ©(S), as well as quan-
tities () and &(T), are defined as in (4.3), (4.4), (4.5), (4.6), (4.9) and
(4.8) respectively. The objective function is (3.43), which is composed by a
Frobenius loss term and composite penalty (3.28). For a discussion of math-
ematical properties of (3.43), see section (3.2). Here, we explicitly note that
the composite penalty (3.28) is simply a re-scaled version of the compos-
ite penalty used in program (4.17) (A, (v|[S||1 + tr(L))), where v = £ and
An, = A. Version (3.43) is useful to choose threshold parameters in empirical
applications. Parameter v is again the relative size of the subdifferential of
||-]|1 respect to ||.||«. We note also that the original problem (3.30), which is
our true objective, is solved in this context via (3.43), because it is proved
that the three constraints L > 0,5 = 0,L + S > 0 are inactive at the
optimum of (3.43), such that the two problems are algebraically equivalent.
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First of all, we set the basic definitions of algebraic and parametric con-
sistency into the covariance matrix context.

Definition 4.1.2. A pair of symmetric matrices (S, L) with S, L € RP*P 4s
an algebraically consistent estimate of the low rank plus sparse model (4.2)
for the covariance matrixz 3* if the following conditions hold:

1. The sign pattern of S is the same of S*: sign(Si;) = sign((S*)i;),
Vi, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of L*.
3. Matrices L+ S, S and L are such that: L+ S =0, S >0, L > 0.

Model consistency here is defined according to the following three esti-
mation features:

1. correct structural estimate of the residual covariance matrix of X con-
ditioned on the latent variables f (given by S). This feature is called
"sparsistency" of low rank plus sparse model selection.

2. number of latent variables correctly estimated.

3. the model is realizable as a covariance matrix model: L+ S is positive
definite and L is positive semi-definite. We add the condition S >~ 0,
which prescribes that also the sparse component can be interpreted as
a covariance matrix. This last condition is not necessary to ensure a
consistent estimate for »*.

Parametric consistency is defined analogously to the approach described
in paragraph (4.1.3). It holds if the estimates of (S, L) are close to (S*, L*)
in some norms with high probability. The used norms are ||.||2 for L, ||.||
for S, g,(S, L) (4.20) for L 4+ S, in application of the dual principle. Rates
in spectral and Frobenius norm are also derived for L + 5 . We recall that
parametric consistency does note imply algebraic consistency and vice versa.

We discuss now the main theorem ensuring identifiability and consistency.
This theorem is a direct application of Theorem 4.1.3, with an important
difference: in order to apply a sparsity model of the type of Bickel and
Levina (2008b) (see paragraph (2.4)) on the sparse component S*, ¥* is
imposed to be in the following matrix class:

Y eo) = {M eRP*P:0<eg < Ay(M) < ey'Vi=1,...,p}  (4.32)

which is the class of positive definite matrices having uniformly bounded
eigenvalues (A;(M),i =1,...,p, are the eigenvalues of M).

This assumption is worth some reflection. Assuming uniformly bounded
eigenvalues may conflict with the main necessary identifiability condition:
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the transversality between (2 and 7. Since the eigenvalue structures of ¥*
and S* are somehow linked, allowing class (4.32) for ¥* may cause S* to
have an high degree, and simultaneously the row/column space of L* to
have high values of incoherence (we have no spiked eigenvalues). This may
result in possible non-identifiability issues. To be clear, the merge between
the transversality conditions and the sparsity assumptions of [15] is possibly
dangerous for model identifiability.
We report now Luo’s main theorem (|77]).

Theorem 4.1.4 (Luo’s Theorem 1 [77]). Let Q = Q(S*) and T = T(L*).
Suppose X* € (4.32), n(QS*)E(T(L*)) < 1/54, and for n > p

s o (g . )

and p = Y\, where v € [9¢(T),1/(6(2))]. In addition, suppose that the
minimum singular value of L* (\.(L*)) is greater than C'g)\/fz( ) and the
smaller absolute value of the nonzero entries of S* is greater than Cgm.

THEN, with probability greater than 1—Cyp~C5, the LOREC estimator (L, S)
(minimizing (3.43)) recovers the rank of L* and the sparsity pattern of S*
exactly:

rank(L) = rank(L*) and sign(S) = sign(S*).
Moreover, with probability greater than 1—Cyp~5, the matriz losses for each
components are bounded as follows:
IL—L7a <CX,  [5— S < Cp.

We call ELOREC = Ii + S
The key model-based results for deriving consistency rates are Bickel
and Levina (2008b) ([15]) for the sample loss in infinity norm:

1
130 =¥ le <O (\/ ng) ;
n

and Davidson, K. R. and Szarek, S. J. (2001) (|39]) for the sample loss

in spectral norm:
IS0 =57 <O (\/E) ,
n

where X, = f?n_l is the p X p unbiased sample covariance matrix computed
on the observed data X.

Using the conclusions of Theorem 4.1.4, which are ||L — L*|]a < CA,
IS — S*||oo < Cp, it is possible to derive the following overall rate for

6([:, S«)2 = ||AL||%‘7“0+ ||AS||%7“0
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(Where AL = I: — L*,AS = g — S*,AE = 2LOREC — E*):

e(L,5)2<C [Q max <1ng, 1> + 2 max (logp,r)} , (4.33)
n r n

where s is the usual number of non-zero elements in S*. If r ~ logp (as it is
for exactly low rank matrix recovery), this rate coincides with the one under
the Agarwal’s approach (4.15), where a = 0, since we no longer have non-
identifiability issues. This is obtained using the lower bound &(7T') = O(, /%)

P
(see (4.11)).
From Theorem (4.1.4), Luo derives the following rates for Xrorgc:

IXrorEC — £F[]2 < C(sE(T) + 1)A = ¢

||53LOREC — | pro < C(yDSE(T) + V)N

with probability larger than 1 — Cip~2, if and only if A (X*) > 6.

The same rates hold for the inverse covariance estimate EZé REC
152oRse — 5l < C(6(T) + DA = ¢

1878 e — = rro < C(VPSE(T) + /)X

with probability larger than 1 — Cip~©2, if and only if A\pin(X*) > 26.
Here r is the true latent rank of L*  while s, differently from (4.33), is
defined as the maximum number of non zero elements per column (which
is the induced ||.||; norm). This is done to further improve error rates.
From now to the end of Chapter, parameter s will change its meaning as
explained: s = max; > & _; 1(s;; #0), j = 1,...,p. Both results are reported
as Corollaries in |77]. We will show proof details in next paragraph (5.1).

We now describe the meaning of needed assumptions. Since (3.43) con-
tains a Frobenius loss term instead of the log-likelihood, this method is no
longer a likelihood method. For this reason, there is no need here to bound
the curvature of Fisher information I*, since I* = I,,. So, referring to Propo-
sition 4.1.3, parameters «, (3, and v (see (4.28) (4.29) (4.30)) are now all
equal to 1, with v = % (see Lemma 4.1.2). On the contrary, the analogous
of Proposition 4.1.3 is still needed, because the tangent space T'(L*) is still
curve, and transversality between 7" and {2 still needs to be bounded (even
if I* has no longer impact).

Proofs are contained in |76|, which is a previous version of [77]. There it is
possible to find (at page 26) the analogous of Proposition 4.1.3, where I* has
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no longer impact. The identifiability assumption here becomes p(Q(S*){(T'(L*)) < 1/54,
which can also be rewritten, using (4.11) and (4.10), as

degmaz (S )ince(L*) < 108"
The range v € [9£(T),1/(61(22))] is obtained by Proposition 4 1.3 setting a,
B, and v equal to 1, v equal to % Note that, v = ,/9¢(T) * )) , geometric

mean of the two ends, is always inside the range, and using (4.11) and (4.10),

we can write 7 = \/ 2 % 9inc(B) degmlaz = V1 d:gi:i(z]a)). The minimum
magnitude of the non-zero entries of $* and the minimum eigenvalue of L*
(A-(L*)) are lower bounded, in order to ensure consistent recovery, and also
identifiability in the case of A\.(L*). The use of $,_1 is responsible for the
usual assumption p < n.

There is one major difference with the approach of |1] explained in (4.1.3):
here, the sparsity assumption on S* imposes that the parameter A, coming
from probabilistic analysis, must take into account both probabilistic frame-

works, the one from ||, — 2*||y (represented by \/%) and the one from

* lo
|2, — *||so (represented by 5(T) g(p ))

The parameter p = v\ has this shape to re-scale accordingly the subdif-
ferential of the sparse component. The parameter \ has this shape because,
even if we are in a deterministic context, the need of a probabilistic bound
for gV(ATEn), where E, = 3 — ©*, rises throughout the proof. If the input
is the unbiased sample covariance matrix (3 = 3,_1), the rates are the ones
above written, and the condition p < n is unavoidable. We will make some
effort to overcome this issue in paragraph (5.1), providing statistical rates
under POET assumptions and in the generalized spikiness context.

It is now easier to understand which are the possible non-identifiability
issues coming out. Differently from POET approach, where the sparsity
assumption (4.32) is imposed to the sparse component S*, LOREC approach
imposes it directly to the covariance matrix >*.

So, two conditions must hold which may be in contradiction: if the min-
imum eigenvalue of L* is too large, it is unlikely that X* is into the matrix
class (4.32). This makes the matrix class for which recovery is effective quite
unclear. In addition, the product pu(Q)&(T) is affected by this trade-off, such
that, if A.(L*) is too large, S* must be very sparse in order to respect the up-
per bound for u(Q)£(T). We will find confirmation of that in our simulation
study (Chapter 5).

Another aspect of Theorem 4.1.4 is that the two losses (in L* and S*
respectively) are bounded separately. This may result in some issues con-
cerning the overall performance represented by the loss |3 — £*||pro, as our
simulation study confirms (see (5.3.1)), because here ||Ax||2 is simply derived
using triangle inequality ||Ax|le < ||ALll2 + [|As]l2 , as well as |[|Ax]||Fro-
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More explanations and a proposal to improve LOREC estimation process on
this side is given in paragraph (5.1).

We now describe the steps used in [76] to prove Theorem (4.1.4). They
directly descend from the proof of Theorem 4.1.3 in [31], set into our context,
where the reference model is (3.1).

The chain of programs to be solved and the mathematical rationale are
showed. We start from the brief explanations given at the end of paragraph
(4.1.3). First, we need to bound the curvature of 7. So, for the equivalent
of Proposition 4.1.3, we restrict our analysis to tangent spaces satisfying
p(T,T") < &/2. We can then solve problem (3.43) with additional tangent
space constraints:

o1
lﬂngl§ll(L+S)—Enll%erAIILII*+p||5||1, (4.34)
st.85e€Q LeT,

where T'=T(L*) s.t. p(T,T") < &(T)/2.

We know that ||L||« and ||S||; are non differentiable. In order to bound
the Loss function: g, (Ag, Ar) = g,(Sq—S*, Lr—L*) = max{|S| /7, ||L]|},
where (Ag, Ar) = (Sq — S*, Ly — L*), the needed tools are:

e the projected gradient method,;
e Brouwer’s fixed point theorem (see [76], p.27).

We start recalling the subgradient conditions for |[L|[, and [|S[|;. Our
CONVEX objective at the optimum (Sq, L7) satisfies, for some Lagrangian
multipliers, Qg1 € QF and Q7 € T the following optimality conditions:

So+ Ly — S, + Q& € —M\v9]Salr

SQ + fJT - Zn + QTJ— S _)\n5|fJT|*a

where § denotes the subdifferential.

Lagrangian duality theory is a first order method. So, we need to bound
the second-order Taylor rest of ¥*. The key is to project So+ Ly — 3, onto
Y = Q x T" (where x represents here the Cartesian product), and to define

PQ(SQ + ﬁT/ — in) = Zq,
Pr(Sa + Ly — 5) = Zp,
with || Zqllcc = Any and || Z7]| < 2X,. The bi-dimensional projection is
PYAT(SQ + IiT/ — in) =7 = (ZQ, ZT/),

where Y = Q@ T” (i.e. Z is a feasible point).
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This is the projected gradient method. Then, the application of Brouwer’s
fixed point theorem allows to bound g,(P(Ag, Ar)), which in turn serves as
a limit for the error g,(Ag, Ar), thus satisfying the first half of optimality
conditions (recall (3.40) and (3.41)). This error bound is needed to prove
there is a unique minimizer, and establish parametric consistency.

Then, imposing g, (ATE,) < )1\_5’ it is possible to prove that the tangent-
space constrained problem (4.34) is equivalent to the following variety-constrained
problem

1
min L[1(L -+ 8) — S, + AL + ol1STh. (4.35)
st.SeQ, LeTy,,
where T, = T(ﬁ///), and (S///,i}//) is the solution of

M ={(S,L)|seQS), rank(L) < rank(L*),
|27 (L = L*)||l2 < E(T)A, g4(Sa — S*, Ly — L) < 117}

This serves for ensuring algebraic consistency, and holds under all the
assumptions of Theorem 4.1.4. It also allows to solve the non-convex problem
(4.35) as a convex one, linearizing the constraints.

Finally, under the same assumptions, the solution of problem (4.35) is
shown to be solution of the original problem (3.43) without any constraints.
In [31], another bound on the Taylor rest of ¥*~! is needed, since they are
dealing with the inverse. For us, the condition gV(ATEn) < %, limiting the
gy norm of E, = X* — 3, is sufficient.

Another important quantity to bound during the proof is gV(ATCT/),
where Cpv = Ppu (L*). This is needed to bound the curvature of T, as well
as the constraint || Py (L — L*)||2 < &(T)A.

During this last step, probabilistic bounds come into play. Since we need
to bound g,(ATE,), large deviation theory must be applied to ||E,||2 and
|| Enlloo- This is done using the outlined results from Bickel and Levina
(2008b) and Davidson, K. R. and Szarek, S.J. (2001). The strength
of the probabilistic bound depends on the relationship between p and n. In
particular, key ratios £ and h’% come from the probabilistic bounds of || E,, ||2

and ||E, ||« respectively. This is why A = C7 max (ﬁ\/ logl(p), \/g> The
condition p < n is unavoidable in order to obtain finite probabilistic bounds.

We have already pointed out the possible weakness of this approach re-
spect to identifiability issues, due to the need of imposing matrix class (4.32)
directly to ¥*, and not to S*. This choice causes, jointly with the identifia-
bility assumptions, uncertainty on the underlying structure of >*. Another
difficulty of Luo’s approach is that (2.8) is only partially imposed to X*,
leaving out the conditions on limited correlations. On the contrary, no ma-
trix class is actually imposed to S*, whose sparsity is recovered algebraically




4.1. IDENTIFICATION AND RECOVERY 99

(deterministically) using the standard property ||M||oo < ||M||2 exploiting
the scale parameter ~.

We find a key difference between the approaches of Luo (2013) and Chan-
drasekaran et at (2012). In the latter, ONLY the probabilistic bound for
||Enll2 is used, and the one for ||E,||s is simply derived as a consequence
using the basic relationship ||E,|lcc < |[|Ep|l2. For this reason, there we

have the following parametric rate:

9v(Sn — Ko, L, — Ko u K5 ' Kn0) < TlT)\F (4.36)
The two components are bounded jointly, exactly as in Agarwal’s approach.
In the former, the two components are approached separately, and the shape
of )\, reflects this choice.

Therefore, Luo should have imposed matrix class (4.32) together with the
covariance assumptions (see (2.8)) to S*, in order to have the desired sparsity
model. However, this would have been useless for the mathematical proof,
which requires that 3* belongs to (4.32), in order to derive the probabilistic
bound of ||Ey,||l. On the other side, in absence of specification of that
matrix class, he would have left the infinity norm rate dependent on the
spectral one, with no progress respect to Chandrasekaran et al. (2012).

The number of samples n can be O(p), thanks to probabilistic results
contained in [110], provided that n < p. In contrast, the condition n < 2p
is needed for Chandrasekaran et al.(2012), and p = O(?%), which cor-

SERS

responds to O(f—;) in the worst case (see Theorem 4.1.3). Starting from

(4.31), it is easy to show (using the lower bound n = O(%’;)) that the overall
Frobenius rate for the covariance matrix estimate in [31] is O(r'/2pn=1/2).
This occurs because the rate is there determined only by the low rank com-
ponent. The analogous rate for the low rank component under Luo’s ap-
proach is O(r/?p'/?n=1/2 max (log p, 7'/?)), which is lower (for explanations
see (4.33)). This rate can be even lower under different model specifications
using the same low rank plus sparse decomposition, as the so called spiked
covariance model of Johnstone and Lu (2009) [71] (for more details see [76]
and |77]).

To conclude this paragraph, we give some terms of comparison among
probabilistic rates respect to alternative PCA-based approaches recovering
>* under similar assumptions. In our numerical context, the strength of
probabilistic bounds depends on the relationship between the finite values
of p and n.

In [43], factors are observable and the residual component is diagonal.
There, the rate for 3 (and %,) is O(n~"/?pr), while LOREC under the
same conditions shows O(n~'/2(p 4 p'/?r1/2)) (see (4.33)). For the eigen-
value convergence rate, [43] has the same O(n~/2pr), while LOREC shows
O(n=1/2p"/2). Only LOREC provides spectral bounds. Concerning the in-
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verse, [43] has a Frobenius rate of O(n~2pr? log p'/?), while LOREC shows
again O(n~Y2(p + p/?r1/2)), which is lower. The difference occurs because
an additional error term O(p~'/2) comes out when the residuals are unob-
servable.

In the approximate sparse factor model context, it is hard to provide
absolute rates, as the spectral or the Frobenius ones, using a PCA-based
approach. This is due to the fact that the necessary pervasiveness assumption
requires large p (see paragraph (2.5)). What is more, an additional error term
O(p~'/?) comes out when the residuals are unobservable (as in [44]). When
also the factors are unobservable, as explained in [76], there is an unavoidable
additional error term O(logp). In POET setting ([45]) we find both. More,
for the just explained reasons, the rate for Y s provided only in relative
norm (see (2.19)), exactly as in [44].

This is why we will compare extensively the performance of )y pPoOET and
Srorpc in a wide simulation study (Chapter 5). As a comparison term,
we now list the main differences in the theoretical assumptions bewteen
POET and LOREC approaches:

e For POET the spectral bound is provided only on ||S*||, while for
LOREC is provided both on ||S*|| and ||X*].

e In POET setting, the r eigenvalues of p~! B’ B are bounded away from
0 and oo as p increases (pervasiveness condition). In LOREC setting,
there is only a lower bound on the minimum eigenvalue of L*.

e In LOREC setting, ALL the eigenvalues of ¥* are bounded away from
0 and infinity. In POET setting, the smallest p — r are upper bounded
by ||S*||, the largest r are approximately equal to the ones of B'B.

e In LOREC setting, Ay,q. controls for the strongness of the probability
bound, A,,;, controls for the positive definiteness of ¥ (necessary
to estimate the inverse).

e The latent rank r is exactly recovered automatically by LOREC with-
out the need for any external tool. In contrast, POET selects r using
the well known rank selection criteria by Bai and Ng (|6]).

e Concerning the sparsity pattern, LOREC needs only a lower bound on
the smaller absolute value of the non-zero entries of S*, while POET
requires

mp =max }_[sij|" = o(p)
J<p
for some ¢ € [0,1).

e Statistical performance is assessed asymptotically for POET,
non-asymptotically for LOREC. In the first case the reference norm is
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the relative norm (2.19), in the second is the Frobenius norm (relative
VS absolute rates).

As a final remark, we note that both LOREC and POET procedures are
not scale-equivariant, that is, the estimates are not equivariant under linear
transforms. For POET, this is due to the use of PCA, depending on the
sample eigenvalues (which are not scale-equivariant), and also depends on the
use of thresholding for the recovery of the sparse component. For LOREC,
this is due to the singular value thresholding of the low rank component and
to the soft thresholding of the off-diagonal elements of the sparse component.
We recall that also the factor model estimates by the principal factors method
are not scale-equivariant, still for the use of sample eigenvalues.

We are now ready to introduce a set of novelties improving upon LOREC
approach exploiting features of some of the methods we have shown through-
out our thesis. First, in the pure LOREC setting, we propose a solution to
the approximation problem caused by the separate bounding of the errors in
L* and S*. This solution involves the unshrinkage of the estimated eigen-
values at the end of the solution algorithm (composed by the singular value
thresholding of the low rank component and the soft threhsolding of the
sparse component, see (3.2.2)). This proposal is proved to be algebraically
meaningful for improving the original LOREC on the side of the overall loss
|Al|Eme and to better catch the proportion of variance explained by the low
rank component.

The other advances concern the number of necessary samples n respect
to p. In order to do that, we want to exploit the theory of approximate factor
model. So, we abandon the hypothesis ¥* € (4.32), which is not coherent
with the presence of few spiked eigenvalues. We thus link the infinity norm of
E,, to the spectral one as in the approach by Chandrasekeran et al. (2012).
We show that using the POET spikiness assumption (Proposition 2.5.1) and
imposing a sparse model for S* in the spirit of Bickel and Levina (2008b)
(S* € (2.8)) we can prove, using (2.23), that the described algebraic setting
holds with rate O(%), and simultaneously the probabilistic bound is guar-
anteed until plogp < n. Finally, we extend this result into the generalized
spikiness context of Proposition 2.5.1. We prove an updated version of (2.23)
in the a-spiked context, such that the described algebraic setting holds with
rate O( \p/—aﬁ), and simultaneously the probabilistic bound is guaranteed until
p®logp < n, with a € (0, 1].

The results we need are:

P <\|En - X > %) < Cpexp (—Cap?),

if all the assumptions under Theorem (2.19) hold, and
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P <H2n -3 > %) < Cy exp (—Cop™®),

if all the assumptions under Theorem (2.19) hold, with the difference
that Definition 2.5.1 replaces Proposition 2.5.1, for a € (0, 1].



Chapter 5

Improving LOREC: empirical
and theoretical results

In this chapter, original advances and extensions to LOREC approach are
described, with particular reference to the estimation performance and to dif-
ferent assumptions for the eigenvalues of the low rank component, in respect
to the ones of POET (|45]).

In paragraph (5.1), Luo’s approach (|77]) is completed with the rates for
the sparse component, its inverse and its positive definiteness conditions. A
more operative identifiability condition is also derived from [30]. The qual-
ity of the overall solution is improved performing the unshrinkage of the
estimated eigenvalues of the low rank component. The rates of convergence
under the spikiness assumptions of [45] and under the setting of « - general-
ized spikiness structure (Definition 2.5.1) are derived using the key tools of
[45] and [15] described in paragraphs (2.5.4) and (2.4) respectively.

Then, we show simulated and real data analysis results in support of
the proposals contained in paragraph (5.1). In particular, we focus on the
approximation improvement offered by f)New respect to fJLOREc, and on
the comparison between the performance of by New and by pogT in the POET
setting.

In paragraph (5.2.1), we describe an original simulation algorithm created
for this purpose, which is enough flexible to catch all the different situations
we need in a unique framework. The comparison quantities needed to assess
the performance of estimators are described in (5.2.2). In paragraph (5.2.3),
we show a model selection criterion specifically thought for our estimation
method.

Simulated data analysis is reported in paragraph (5.3.1). A number of
simulated data settings, partlcularly useful for assessing the performance of
)y New and compare it to the one of )y LOREC and )y POET, are described, with
the aim of testing the theoretical advances described in paragraph (5.1).
Simulations are performed with MATLAB.

103
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Real data analysis is then offered in paragraph (5.3.2) with the aim of
comparing the performance of EPOET and f?New. Two real data-sets are
taken into account: one on UK market data (publicly available) which was
used by Fan and colleagues to assess the performance of POET (|45], para-
graph 7) and a supervisory banking data-set which collects balance sheet
data for some of the most relevant Euro Area banks. For the last one,
we deeply acknowledge the Supervisory Statistics Division of the European
Central Bank, where the author spent a semester as a PhD trainee, for the
allowance to use these data in anonymous form for research purpose.

5.1 Theoretical advances

We start showing in detail the algebraic steps which allow to derive the
Frobenius rates for >* from the Conclusions in Theorem 4.1.4. The reference
is here [76], paragraph 6.

We set ¥, = 2n_1, estimation input. For the triangular inequality we
have:

1L +58 = (L + S| < ||1L = L*|| + IS = 5*|.
Using standard matrix norm properties, we obtain
1L +8 = (L + S| < |IL = L¥|| + 1S = 5*[|x,
and then
1L+ 8 — (L + S| < |11 = L[| + 5| = 5*]|oo

where s is there the maximum number of non zeros per column in S*. This
result is derived using sign(S) = sign(S*), which allows to improve upon
the standard constant p.

Setting v = 9¢(T) (its minimum), we obtain
IS LorEC — Z¥|l2 < C(sE(T) + 1)A = ¢. (5.1)
An analogous triangular inequality holds for the Frobenius rate:

1L+ 8 = (L* + 5")|Pro < [IL = L*|[Fro + 118 — 5*[|ro-

Exploiting the fact that the algebraic sum A + B, when A and B have
rank 7, has at most rank 2r (see [62]), and using previous results for S
together with the standard inequality ||A||r < /PS||A||maz, We obtain

1L+ 8 = (L* + 5*)l|Fro < V2r||L — L*|| + /D515 — 5%|oc-

Setting v = 9¢(T) (its minimum), we obtain

I3 L0rEC — ¥||Fro < C(VPSE(T) + V1), (5.2)
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For simplicity of notation, we now remove all *. Recalling Theorem 2.2.1,
we know that L + § is positive definite if and only if the minimum
eigenvalue of ¥* is larger than the spectral bound ¢. We give a
further justification of this basic result. Weyl’s Theorem (see [45] Appendix
C) prescribes that, for any matrix X, we have

A=A <|E -3 Vi=1,....p,

where 5\i, i = 1,...,p are the sample eigenvalues. This result relates the
rate of sample eigenvalues to the matrix spectral loss rate. The triangular
inequality gives o

< min( L+ ) + | = Amin| =
= Pmin (L + 8)| + Amin,
because X is positive definite. Thus,
Amin (L + 8)| > Amin(L + S) = Amin| — Amin.
Since for the Weyl’s theorem ])\mm(ﬁ + S*) — Amin| < ¢ we have
Amin(L 4 8) > 0 <= Apin > ¢. (5.3)

This proves the claim.

In order to achieve the same rate ¢ for the inverse spectral rate
(L + S)~' — %7, it is necessary that A, > 26.

In fact, the triangular inequality gives

1L +8)" =S < IL+9)7H + A (5:4)

By summing and subtracting > and using triangular inequality
L+ =IL+5-2+D)7Y <
SHE+S =)+l <
<SHE+8) =Y+ Iz =
SHEA+8 =)+ A

For the Weyl’s theorem, we have
H(IA} +5 - 2)_1" < ‘)‘mm((ﬁ + S)_l) - )‘min(z)_l‘-
For triangular inequality, we have

‘)‘min((z + S)_l) - )‘min(z)_1’ <

< Amin(L+8) ™)+ =Mk <

min
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< Amin (L +8) 7D+ A

since X is positive definite.
At the same time, for (5.1), we have

IL+8)~ =271 <o
Hence, inequality (5.4) becomes

¢ < Amin((L+8) ™) + 211

min’

We can write
|)‘mm((f1 + S)_1)| > ¢_1 - 2)\_1

man’

which allows to conclude that

IS26rec — 2 e < @<= ¢ > 2)\ ) (5.5)

min’

Using this assumption, it is possible to derive the rate for (f/ + g)_l, by
property ||[(A+E) — A~ < [|A7Y]-||E]] - [I(A+ E) 71| (see [76], p. 31-32):

L +8)" = (@) =L +8) L +5-5)(D)7 ] <

<SNEASM L+ S =S - 1) < 52 L+ S = Sl

Hence, we have
1£26rEc = 57l S C(E(T) + DA = ¢ (5.6)

By property ||[MiMs||pro < ||Mi]] - ||M2||Fro, it is straightforward to
derive

1S2m8c — 5 lFre < C(VPSE(T) + VA (5.7)

Using the same framework, we can complete Luo’s analysis with the rates
for S. From ||S — S*|| < s||S — 5%||ac, We obtain

1S — S*[l2 < CsE(T)A = ¢s. (5.8)
From ||S — S*||pro < \/]EHS' — 5*||0o, We obtain
1S = S*||Fro < C\/PSE(T)N. (5.9)

Similarly, S is positive definite if and only if Apin(S*) > ¢g. S7! has the
same rate of S if and only if ¢§1 > 2\ min ()7L
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Unshrinking the eigenvalues of the low rank component

We now approach the approximation problem due to the separate bounds for
the two components. The problem is that the combined shrinkage approach
gets closer to each component separately, but in such a way it goes further
from the overall solution, as we will show in Chapter 5. The need rises
to correct for this drawback, re-shaping )y LOREC, because the overall Loss
function used in the algebraic setting, g,, derives the overall performance
as a consequence of the two separate bounds. That means that LOREC
approach can be somehow sub-optimal for the whole covariance matrix.

We will describe a finite sample analysis, which could be referred to as a
re-optimization least squares method. From now, we will refer to the usual
objective function (3.43) where ||S||1 = ||S|1.05f = S7} b i Isigl, de.
the {1 norm excluding the diagonal. This approach is coherent with the
sparse approximate factor model (3.1) and with POET (see (2.5.4)), which
will be our reference competitor in Chapter 5.

We start from a standard result: the PCA of M truncated to the r-th
component is the r-ranked matrix best approximating M. In fact,

min  ||A — B2
B,rank(B)=r
and
min  [|A — Bl|Fro
B,rank(B)=r

are both solved for
T
i=1

which is the SVD truncated to the r-th summand ([40]), when r is known.

Suppose now that Z(#) and ¢ (3) are the varieties ensuring the algebraic
consistency of (3.30). A natural question comes out: which is the solution
(say (ﬁNew, SNew)) of the problem

N min N H(En - (L + S)H%—'ro7 (510)
LeZ(#),Se X (8)

We know that, the sample covariance matrix follows the model ¥, =
L*+ S5*+W, where W ~ Wishart(0pxp,n), given a sample X;,i =1,...,n.
We define the total loss for the generic pair L € .Z(7), S € . (5) as:

TL(L,S) = [[(Sn — (L +8)|[Fr.

In other words, we face the following question: which pair L € & (7),S €
A (8) satistying algebraic consistency shows the best approximation proper-
ties of 3,7 We prove the following original result.
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Theorem 5.1.1. Suppose that i}LOREC and S'LOREC are the LOREC solu-
tions satzsfymg Theorem 4.1.4, with ELOREC = LLOREC + SLOREC Sup-
pose that L(F), H(3) are the recovered matriz varieties, and that L =
UDU’ is the ezgenvalue decomposition of LLOREC Assume that the off-
diagonal elements of SNew are the same as the ones of SLOREC as well as
the diagonal elements of ENew are the same as the ones of ELOREC Then,
the minimum mlnLeg(r SeX (s ||( —(L+9)||%,, is achieved if and only if
Lvew = U(D+XL)U" and Zfdwg(SNew,ii) = diag(XrorEC,i) — diag(Lnew,ii),
where X is the threshold parameter. In addition, the gain in terms of spec-
tral loss is strictly positive and bounded by \.

We now prove Theorem 5.1.1. Given finite p and n we have
TL(L,S) =||L* + S* + W — L — S||F, <

< HL - L*H%'ro—i_ HS_ S*H%ro—i_ HWH%TO =A+B+C

(the signs are put in a convenient form). K
The LOREC solution is S10rpc = L+ S, L € .,2”( ), S € #(8), with

L=UDU", (5.11)

where D = D, is the diagonal eigenvalue matrix coming out from the sin-
gular value thresholding procedure, and U is the matrix of corresponding
eigenvectors. Aware of the best approximation property of PCA, our ques-
tion is the following: which is the matrix in the variety .Z(#) being closer to
the unknown r-ranked matrix L*, keeping fixed U?

The solution is straightforward: our matrix has the same eigenvectors U,
but has the original (natural) eigenvalues. This new matrix ﬁNew can be
obtained simply un-shrinking the obtained eigenvalues: ﬁNew = D) + M.
This is why term A is minimized as follows: R
minLej(f) HL — L*H%ﬂm — LNew = U(D)\ + )\IT)U/.

Suppose now )y LorecC is given, and assume that the off-diagonal ele-
ments of S are invariant. We can re-write term B as follows:

mlp ||S_ S*H%ro =

SeA ()
= min [|(£~L) = (£ = LY)l[fy, =
LeZ(#)
= min [|(£ %) — (L~ L")y, <
LeZ(#)
P P
Z(&u’ — i) + Z(ln —1;i)? (5.12)
i=1 i=1
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Term B’ is assumed to be fixed respect to L, i.e. we are assuming the
invariance of diagonal elements in S10rpc (diag(Enew) = diag(SrorEC)).-
The minimization of term B”, given that rank(L) = 7, falls back into the
previous case, i.e. B” is minimum <= Lyey, = U(DA + )\Ir)(j’.

Term C depends on the quality of the estimation input X,,, and on the
degree of correspondence with LOREC assumptions.

Consequently:

SNew,ii = Xii — LNewiis Vi.
SNew,ij = Sij, Vi # j.
We can thus define ﬁ]New = IiNew + SNew. We call I:Orig and Somg the

original LOREC estimates. We know that HﬁNew — .Z/Om'gHg =\
Recalling that Lye, = min

Led(#) |L — L*||%,,, we have
0 < [[Lorig = L*l2 = || Lnew — L*|l2 < A, (5.13)

beicause HéOMg—L*‘b < "iNew_i/Orig"2+"ﬁNew—L*"g. As a consequence,
||LNew — Lorigl|Fro = V2rA and
0< H-Z/Om'g - L*HFT’O - H-Z/New - L*HFT»O < 2r . (5]_4)

In order to quantify HS‘NW — S’OMQHFTO, we need to study the behaviour of
the term > 7 (Inew,i — lii)%. This can be re-written as

P

Z(ZANeum'i - lAOm'gJi + iOrig,ii - lu)2 <
i—1
P A P
< Z(lNew,ii —lorigii)* + Z(lom‘g,z‘z‘ —1i)%
i=1 i=1

Zle(iomgﬂ — 1;;)?Vi depends on the statistical properties of Liorec.
Zle(lNew7,~,~—lom~g7,~,~)2 = 72, for basic algebraic considerations on the trace.
It is also straightforward that ||diag(Lnew — Lorig)|l2 = A. So, recalling that

g
1S — S*||%,.,, we can write |[Snew — Sorigl|Fro = VTA

SNew = minswf(g)
and ) R
0 < |[Sorig — S*||2 = [|SNew — S™||2 < A. (5.15)

0< ||S0rig - S*HFro - ||SNew - S*HFro S \/;)\ (516)

We can now analyze the performance of Y New. Since we have no gain
from diag(i]vew), we have to subtract from ||I:New — jJOrigHF?“o the gain
from diagonal elements. At the same time, no gain comes from the diagonal
elements of S New- Hence, we can write

||2New - zA:Om'gHFro < \/;)\



110 CHAPTER 5. IMPROVING LOREC

As a consequence, recalling that SNew = miny_71+s(TL(L,S)) under the
described assumptions, we can write

0 < ||1Zn — Xrorecllz = 120 — Enewl]2 < . (5.17)

0< ||En - i:LORE‘CHFTO - ||En - i:NewHFro § \/;)\ (518)

Therefore, the real gain is terms of approximation of ¥, respect to
LOREC measured in squared Frobenius norm is bounded from 7\2.

To sum up, we pay the price of accepting a non-optimal solution in
terms of nuclear norm (we allow to increment ||,u. by rA) but we have a
best fitting performance for the whole covariance matrix, decrementing the
squared Frobenius loss by a quantity bounded from 7\%. Note that ||S|,s/
is invariant. ||S||; (considering also the diagonal) is decreased by a quantity
bounded from /rA.

We can easily write

||2New - EH%m = ||IAJNew + SNew - (L + S)H%‘ro =

0< HﬁNew =X+ Xy — EH < HﬁNew - En”%«“m + Hzn - EH%‘TQ' (5-19)

Note that the quality of the estimation input ||%, — 3|4, does not depend
on the estimation method.
Therefore, by (5.18) and (5.19), it is straightforward that

0 < |[Srorec — 3o — [ENew = [0 < A (5.20)
Analogously, it is easy to prove that
0 <||ZrorEc — 2 — |[Bnew — 2[]2 < A (5.21)
Now we recall the following expression:
I+ 8™ = () lrro = L+ S+ § - S)(@) 7Y <
< HEA+8) YL+ 8 = ZllFro - 1Z) 7M.
From (5.20) we can conclude that

0 < [|(Lrorpc+SiorEe) ™ =S | Ero =l (Lvew+Snew) ' =S 7 [Fo < 7A°.
(5.22)
Analogously, it is straight forward that

0 < ||(Lzorec + Srorec) ™ = X7 |a — [[(Lnew + Snew) ™t — 7|2 < A
(5.23)

Our study has allowed us to improve the estimation performance in a
finite sample analysis. However, the rates for I:New, SNew and f]New are



5.1. THEORETICAL ADVANCES 111

exactly the same as i}LOREc, S'LOREC and 2LOREC. Our new estimate im-
proves the statistical performance of LOREC given the sample, inheriting
all its algebraic and parametric consistency properties.

In spite of that, the un-shrinkage of the estimated eigenvalues of L relaxes
the necessary condition for positive definiteness and invertibility of S and
3. In empirical analysis, one can consider that parameters ¢ and ¢g can be
decreased by a quantity bounded from A.

LOREC and spiked eigenvalues: a relaxed sampling theory

Suppose now that the eigenvalues of L* are pervasive in the sense of Propo-
sition 2.5.1, and that all propositions and assumptions of POET approach
hold in our finite sample context.

For instance, we suppose that

)\1,...,7“(2*) > €p,
)‘T+1,~--7P(E*) S €p,

€ # 0, because the eigenvalues of p~' B'B are bounded away from 0 and oo.
Suppose that the relationship between p and n is such that all the nec-
essary conditions to prove the consistency of POET described in paragraph
(2.5.4) hold (see Theorem 2 in [45]), included the assumptions on the sparsity
structure of S*. As already said, we drop the assumption (4.32).
In particular, suppose that (2.20), (2.21), (2.22) hold, such that (2.23)
can be proved, that is,

p
pn—X2|=0—= 5.24
= -3l =0 () (5.24)
holds. This is a key model-based result (outlined in bold), because it is
necessary to prove the consistency of POET. It is proved as Lemma 5 in
[45].

(5.24) is equivalent to state that

2

P <||En|| > 01%> <1 Coe O, (5.25)
Since we have dropped the assumption (4.32), we can simply write, using
the standard norm property |||.||coc < ||.||2 as in [31] (see paragraph (4.1.3)),

p
§(T)vn

because p = yA and v has the same shape as in Theorem 4.1.4. We explicitly
note that in this way we also drop the assumption of normality for the data,
implicit in the result of [110] used by Luo to bound the spectral loss of the
unbiased sample covariance matrix.

P (llEnnm > C1&(T) ) <1 Che O, (5.26)
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So, if we plug-in this expression in the proof of Theorem 4.1.4, and we

use (5.26), we can write
(L)
An = (5( )\/ﬁ> A (5.27)

Hence, we can exploit (4.36) to conclude

0y (B — 8" Ly — L) < o (5.28)

§(T) v/n’
given that all the necessary conditions (with particular attention to the iden-
tifiability ones) of Theorem 4.1.4.

Theorem 5.1.2. Under all the assumptions of Theorem 2 in [}5] (see para-
graph (2.5.4)) and all the assumptions of Theorem 4.1.4, the LOREC esti-
mate (L, S) satisfies
Q * T * 1 p
93(Sn = 8" Lo~ 1) = gy e

It is straight forward that the success of this approach depends on the
coherence between the assumptions in both settings (POET and LOREC).
We will give specific attention to that in paragraph (5.3.1), widely describing
the necessary setup conditions for ensuring this coherence.

Counsistently to POET approach, here we can overcome the problem of
the restrictive condition p < n. In fact, we know that the probabilistic bound
is finite until plog (p) > n, because Theorem 2 in [45] prescribes p = o(n?).

Note that all the described rates for S and 3 still hold, simply updating
A accordingly to (5.27). Also the described results on the un-shrinkage and
the consequences on the requisites for positive definiteness and invertibility
still hold.

In particular, since in this context ||3, — X*||2 is o(p) with rate O(%),
we have

L p

¢ =C(s&(T) + 1)@%7

L p

In order to relax the strong assumption of pervasiveness of latent eigen-
values (Proposition 2.5.1), we set into the generalized spikiness context of
Definition 2.5.1, where o € (0,1). In order to obtain an error rate for our
numerical program under these conditions, since the nature of this approach
comes from a non-asymptotic (finite sample) analysis, we only need to study
the behaviour of the model-based quantity P(||X,, —X]||) under these assump-
tions, because the only probabilistic component derives from P(||Ey||2). In
particular, we want to generalize (5.25) showing that

P <Hzn -3 >y > <1 — Che O™ (5.29)

pa
NG
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a € (0,1].
In order to do that, the relevant argument to take into account is Lemma
5 in Fan et al. (2013), the conclusion of which is (5.24). Since Lemma 5 (as
it is) is the key to prove that under Fan’s condition (5.28) holds, the updated
version of Lemma 5 in the « - spiked context is the key to prove that
N ~ 1 po‘
Sp—8* L, — L") X ——.
9= Sk = 1) 2 ey
We remark again the difference with Luo’s approach. In his setting, he
proved that, given F, =¥, — ¥*,

P(|Eull2) < Oy (@)
P(IBule) <= 0 (W)

separately for P(||Ey||2) and P(||En||co)-

The key to prove (5.29) is to adapt claims (2.20), (2.21), (2.22) (coming
from [44]) to this setting, where the pervasiveness of latent eigenvalues has
been relaxed, applying the proof technique in [45], Appendix C, Lemma 5,
page 639.

From the fact that ||[B’S7!B|| < |cov(f)~!| (page 194 Fan (2008) [43],
Assumption (B)), (2.20) follows. This claim is unaffected by the relaxing of
Proposition 2.5.1. So, from the proof of Lemma 5, we can argue that, under
the « - spiked context, ||D1]| < O(po‘\/g), because now ||[BB’|| = O(p®).
This happens also because rlogp = o(n).

In order to show how (2.21) changes in this context, we need to recall the
key results of Bickel and Levina (2008b). Differently from Luo’s approach,
in this setting (as in the POET one) the sparsity assumption is imposed to
S*, and not to X*.

The relevant quantity m, (2.17) in Fan’s setting is o(p), in order to have
||S|| = o(p), which allows to identify the low rank component via PCA.

Here, since Definition 2.5.1 holds, we have that m, = o(p) is no longer
appropriate. We impose, in order to preserve the correspondence between the
rates of the sample and theoretical eigenvalues, the assumption m, = o(p®)
(which causes ||S|| = o(p®) in the POET setting).

Consider now the uniformity class of sparse matrices (2.11).

p
S* s < M, Z 53517 < co(p), Vi . (5.30)
j=1

We have residual variances uniformly bounded by M. This assumption here
is no longer valid, because M is no longer negligible respect to p.
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Here we can no longer write (see [15] page 2580)

Amax(s*) < mzaxz |s;'kj| < Ml_qCO(p)7
J

as Fan et al. do in their pure spikiness context.

The quantity co(p) can still be assumed not to scale with p, because we
want to have a sparse S*, but m, = o,(p®) causes that M cannot longer
be considered as a constant when p — oo. In order to normalize it, we
need to divide by p'~%, thus obtaining that m,, grows at a rate of O(p®~1)
as p increases. Plugging-in M = O(p®~!) in the proof deriving the sample
covariance rate of a matrix under class (5.30) (see [15| page 2582) we can

prove:
lo
[0~ S| <O <pa—1\/ §p>, (5.31)

which is outlined in bold as a key technical result.
Now, using (5.31), we can apply the proof tools of Lemma 5 ([45], Ap-
pendix C) to matrix D, obtaining

1Dzl < 20, (™10 ( @) =0, (p“\/ 1%) ,

because ||Dsz| < p||D||oo- Since log(p) = o(n), we can write

||Ds]] < pO,(p*~ 1O (@) =0, (p"%) : (5.32)

To conclude, we analyze (2.22):

1 « 1 & 1 - \/7 [log p
— LS| < — max | f;r| — max sipl < o) =pp*! ,
n;fzk Jk|> \/ﬁkZ:l < ‘fzk’\/ﬁ s ];‘ ]k’ > npp n

Note that here Assumption 2b) [|S*||1 < const in Theorem 2 of [45],
necessary to ensure the consistency of POET, is no longer necessary, because
rank consistency is ensured via the numerical method.

Since r = O(log (p)) and n = o(p?), we can set n = O (p) and we obtain
O(/T) = O(p~ %), because log (p) = o(p®). This method works if and only

n

max
i<r,j<p

if p = o(n?*). The rate thus becomes O (p% logp

n

Applying the tools of Lemma 5 to D3 we obtain

. [ . 1
1Dl §O<p5 /ng> O(pg) :O<pa /ogp>,
n n
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because ||B|| = O(p2). The condition log(p) = o(n) leads to:

1Dsll <0 (%) | (5.33)

Rate (5.29) is consequently proved, and we have

pa
Xp=X||=0(—=]. 5.34
1=, - s =0 (£2) (5:34
The argument follows from the combined use of tools from Fan et al. (2013),
Fan et al. (2011), Fan et al. (2008) and Bickel and Levina (2008b).

This is equivalent to state that

p (HEnH > (A%) <1 Cpe O™,

Since we have dropped the assumption (4.32) for ¥*, we can simply write,
using ||./|oo < ||-||2 and the minimum for 7 in Theorem 4.1.4,

(0%
_ 20
P (HEHHOO > cgm%) < 1— Che Car™, (5.35)
By the outlined plug-in in the proof of Theorem 4.1.4 and (5.35), exploit-
ing Chandrasekaran et al. (2012) ([31]) (see paragraph (4.1.3)), it is possible
to prove that under these assumptions we have:

~ ~ 1 p®
gy(S = S*" L —L%) X ——, 5.36
given that all the necessary conditions (with particular attention to the iden-
tifiability ones) of Theorem 4.1.4 hold.

Theorem 5.1.3. Under all the assumptions of Theorem 2 in [}5], assuming
that the latent eigen-structure of Proposition 1 and 2 (see paragraph (2.5.4))
1s replaced by the one of Definition 2.5.1, and under all the assumptions of
Theorem 4.1.4, the LOREC estimate (ﬁ, S) satisfies

R * T * 1
gV(S—S,L—L)j@

It is straight forward that the success of this approach depends on the
coherence between the relaxed spikiness assumption (Proposition 2.5.1, see
the discussion of [45] by Yu and Samworth on that) as well as all the assump-
tions in Theorem 2 of Fan et al. (2013) and the assumptions of Theorem
4.1.4.

Consequently, we can write here

A = (ﬁ%) Y (5.37)

e
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We can again overcome the problem of the restrictive condition p < n. In
this relaxed setting, the probabilistic bound is finite until p®log (p) > n,
because (5.34) holds until p® = o(n?).

Note that if a = 0, we have log (p) > n, which means p = o(n). So, in
the case of no latent eigenvalues (no spikiness), the convergence rate of the

sample covariance matrix simply becomes O( \/% ). Note that Theorem 2.2.1

gives the same result imposing p = o(n). Therefore, we can say that (5.34)
holds for o € [0,1], thus encompassing also the classic sampling context
(small and fixed data dimension). In addition, (5.36) holds also under the
no-spikiness case of Theorem 4.1.4.

All the described rates for S and 3 still hold, simply updating A accord-
ingly to (5.37). The described results on the un-shrinkage and the conse-
quences on the requisites for positive definiteness and invertibility still hold
too, consequently updated.

In particular, since in this context ||3, — X*||2 is o(p) with rate O(%),

we have
(e}

—_

p

¢ = C(s6(T) + 1)—%,

&(

L p® P
———==Cs—.
§(T) v/n vn

This approach offers an original proof setting to recover counsistently a
more relaxed (and wider) spikiness context. By plugging-in into the proof
of Luo (2013), it allows to overcome the condition p < n even using ¥,_; as
estimation input. It offers a recovery context where the rate directly depends
on the spikiness of latent eigenvalues, because the larger «, the further are
the identifiability and invertibility conditions from being satisfied, as well
as the worse is the error rate. We underline that our rates are in absolute
norms, and reflect the underlying degree of spikiness.

3

(67

¢s = Cs&(T)

However, this approach works if and only if the identifiability and con-
sistency assumptions of LOREC and POET are satisfied. In particular, the
more spiky the low rank component is, the sparsest must be the sparse com-
ponent, in order to ensure a degree of transversality sufficiently low.

Finally, we note that this theory is specifically addressed to the Big Data
context, where p > n. Sparse factor model assumptions together with the
numerical approach are the key to provide recovery in a relaxed sampling
setting, particularly useful when p is very large compared to n. This result is
obtained by a combined use of numerical analysis (finite sample) and prob-
abilistic convergence theory of the sample covariance matrix under sparse
factor model assumptions, linking the sample dimension to the spikiness of
latent eigenvalues.

We are going to verify the strength and the width of all these assumptions
as well as the validity of our theories on the performance of numerical esti-



5.2. SIMULATION SETTING 117

mators, with particular reference to the statistical advances just described,
in a wide original simulation study and in a real data analysis context.

5.2 Simulation setting

5.2.1 Simulation algorithm

Let C, S, L and W be real-valued symmetric p X p matrices. Let us consider
a framework where C is a p X p unbiased sample covariance matrix, L is
the latent low rank covariance matrix (i.e. factor-driven covariance), S is a
sparse residual covariance matrix with 2s (s < p(p—1)/2) non-zero elements
and W is an error term.

Our aim is to decompose the matrix C' (which is for us the unbiased
covariance matrix estimator) into the sum of S, L and W, satisfying the
extended "lasso" condition (5.38):

min pl[S][ + M| Lllnue + [IWllFro
sub C=S+L+W, (538)

where || - ||1 is the {; matrix norm, and || - ||,uc is the nuclear norm,
i.e. the trace of the vector of singular values, A and p are non-negative
scalars. For us, the I3 norm is here excluding the diagonal elements, that is
1S]1 = 1S])1.05f = S0} H i1 1sij], according to POET approach.

The matrices C' and S are positive definite, the matrix L is positive
semidefinite. The parameters p and A are the sparsity and spikiness thresh-
olds respectively. Our aim is to obtain the estimate S =L+ of the true
covariance matrix ¥ minimizing (5.38).

With this purpose in mind, we now describe the data generation frame-
work. First, we set to r = fp, § € [0,0.1], the rank of L. We can thus apply
to L (real-valued and symmetric) the spectral theorem:

L=UALUY, (5.39)

where:

1. Up is a p x r matrix with orthonormal columns, i.e U U, = I,

2. Ap =diag(Ap1,...,ALy)is arxr diagonal matrix, where Ar, 1,..., AL,
are real and positive, since L is positive semidefinite.

For our purpose, we immediately need to set the proportion a € [0,1]
of the total variance explained by the factors. So, in the generation frame-
work we can set tr(Ar) = Tap, where 7 € [0,00[ allows to control for the
magnitude.
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The matrix Ur, is generated applying the Gram-Schmidt algorithm to
any basis of RP and extracting r random p—dimensional columns from the
obtained matrix. This is performed pre-multiplying by a positive definite
permutation matrix the matrix I, and then applying Gram-Schmidt algo-
rithm. The matrix Ay, is generated by an algorithm (see [48]|) which returns
a diagonal matrix with fixed trace 7ap and condition number exactly equal
to c.

The sparse symmetric matrix S, which is a p X p sparse matrix with 2s
off-diagonal nonzero elements (s < p(p —1)/2), is generated as follows.

First of all, we need to split the residual variance 7(1 — o)p among the
diagonal elements of S. This problem can be solved by using the Dirich-

let probability distribution. It is sufficient to set s}, = ﬁ Then,
(871, -»Sppl(1 — ..., 1 — @)) is a Dirichlet distribution. We can gener-

ate s*, and consequently compute s. We permute the elements in diag(S)
associating the i—th largest element in diag(L) with the i—th largest element
in diag(S).

The off-diagonal elements of S are generated as follows. For each entry
i,j a number 0;; = Unif(0,d./54./55;) is generated, where J € [0,1] is
a parameter controlling for the positive definiteness of S. The larger the
dimension p is, the smaller d has to be in order to ensure positive definiteness.
Then, s;; is generated as sign(L(i, j))Unif(0,0;;) for each i, j.

Once we have generated L, we compute inc(L) (see (4.11) for the defi-
nition). Using the identifiability inequality degmaqs(S)inc(L) < ﬁ, we set
degmaz(S) = m . Using the lower bound on the minimum eigenvalue
of L A\.(L) (Theorem 4.1.4), we derive the minimum allowed non zero ele-

_ V/Zeinc(L)?A (L)

ment thTmzn = deg—(s),where p
max

-~ comes from the shape of A. From
thr,, we can derive S,,;, as the position occupied by the lowest element
larger than thry,;, in the sorted vector of the off diagonal entries of S (in
descending order). Then, a threshold thr ey is proposed as dp;s € [0, 1] times
the maximum off-diagonal element of S, from which we can derive the pro-
posed number of nonzero elements s,.,, in the same way. The number of
non zeros is then set to s = min (Syn, Sprop), and the lowest allowed element

of S is derived accordingly as thr = max (thrprop, thrmin)-

Note that s, is an approximate indication. It represents a control
procedure respect to the correspondence with the theoretical assumptions of
Theorem 4.1.4. In any case, it may happen that the maximum eigenvalue of
>, is actually more than proportional or less than proportional to \/% . In
that case, smin can give a too restrictive or a too generous indication, and
this may result in partial recovery or non-recovery of non-zeros. In addition,
the choice of ;5 is also arbitrary, and is limited by Sy, only. This procedure
is an attempt to deal with the alignment between the number of non zeros
and the magnitude of non zeros (which is relevant for recovery). The model
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selection criterion we are going to describe will appropriately signal problems
on that, recovering in case more or less non-zeros than expected.

In light of this, we can generate n replicates of our data. Given the
generated L = UpALU; and S, the data generation process is:

zi=DBu;+¢€,1=1,...,n,
where:
1. z; is a p x 1 vector;
2. B=ULD is a p x r matrix, with D = /A;
3. u; ~ N(0,1I,);
4. ¢, ~ N(0,95);
9. u; Le,i=1,...,n.

Once n replicates have been generated, we can compute the matrix C' as the
unbiased sample covariance estimator of our n replicates of z.

The spikiness threshold A is initially set to the mean eigenvalue of C'
(say A¢), while the sparsity threshold p is initially set to the average of the

off-diagonal elements of C' (pc = (@)_1 St i leig))-

5.2.2 Simulated settings and comparison quantities

After the description of our generation framework, we come back to our
statistical problem. Let us suppose that ¥ = L + S is a p X p covariance
matrix, where L is a r - ranked matrix (r < p) and S is a sparse matrix with
s non zero elements as in model (3.1). We set C' = 3, where ¥,, is now the
unbiased covariance matrix estimator f?n_l.

We take as reference setting the following one:
setting 1:

p=100,n = 1000,3 = 0.04,r =4, 7 =1, =0.7,c = 2,

§ = 0.1, 055 = 0.2,5 = 118, S0z = 732, peors = L2 = 0.045,
P

where pg = @)_1 Zf:_ll ?:i 55| and px = @)_1 Zf:_ll ?:i |oj] -

The dimension p is fixed to 100 and the sample dimension n is set to 1000.
A data-set with a larger dimension will be explored in paragraph (5.3.2).
These settings are good for comparing the performance of our NEW method
to the LOREC method. The latent rank is 4, the magnitude parameter 7 is
fixed to 1. The proportion of non-zeros is (p(p—Q_l))_ls is 2.38%.



120 CHAPTER 5. IMPROVING LOREC

The other settings we have explored are the following:
setting 2:

p=100,n = 1000, 8 = 0.03,7 = 3,7 = 3,a = 0.8, c = 4,

0 =0.1,0p5s = 0.1, 5 = 580, Spaz = 1604, peorr = 0.0072,

setting 3:
p=100,n =1000,8 =0.04,r =4, 7 =1, =0.7,c =4,

0 =0.1,0p5s = 0.1, 5 = 335, Spaz = 892, peorr = 0.0048.

In setting 2, the magnitude is increased by three times (7 passes from
1 to 3). The rank is 3, the proportion of latent variance is increased to 0.8.
The proportion of non zeros is increased to 11.72%. The condition number
c is increased to 4. This setting has quite more spiked eigenvalues.

In setting 3, the condition number c is 4, and the number of non-zeros is
increased respect to the reference setting. The proportion of non-zeros here
is 6.77%. This setting is something between setting 1 and setting 2.

The spikiness threshold A is initially set to the mean eigenvalue of 3,
As,. The sparsity threshold p is initially set to the average of the absolute
Values of the off-diagonal elements of ¥, py,, = (p(p L) )Y Z] _ilonjl-

In setting 1 we have:

2% Jn

A= |, Y2 =1, 20 4
|:10 Yn p:|7Z ) ) 07 (5 0)
1

- [42'%@,02”] i=1,...,20. (5.41)

These formulations are adapted in each setting by succesive approximations.

Lots of quantities are computed in order to describe comparatively the
performance of our NEW approach, of LOREC (Luo, 2013) and POET (Fan
et al., 2013) on the same data. The computation algorithm is described in
Section 3 (paragraph (3.2.2)), and is applied to the generated covariance
matrix »,. We call the low rank estimate L the sparse estimate S and the
covariance matrix estimate 3 = S + L.

The error norms used are the following:

e Loss = ||S = S||rro + ||L — Ll Fro,
o TotalLoss = HE — Y| Fros

o SampleT otal Loss = ||f3 — X0l Fro-
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The estimated proportion of total variance & and the residual covariance
proportion Peorr are computed.

The performance of S is assessed by using the following measures. Let
us denote by nz the number of nonzeros in S (recall that s is the number of
nonzeros in S), by fp the false non-zeros, by fn the false zeros, by fpos the
false positive and by fneg the false negative elements. We can define:

e the estimated proportion of non-zeros perc,, = nz/numvar,

e the error measure: err = 7{5;;{;,
number of off-diagonal elements,

where numvar = p(p — 1)/2 is the

e errplus = M, which is the same as err but computed for non-

zeros only, distinguishing between positive and negative in the usual
way.

Sensitivity and specificity measures are then derived, as the correct clas-
sification rates of (true) non-zeros and zero elements respectively. Sensitivity
and specificity rates are derived also for positive, zero and negative elements
separately, disentangling the error rates computing the elements classified
by mistake in each of the other two classes.

The overall error rate erry,; using the number of false zeros, false positive,
and false negative elements is also computed as erry; = %.

The condition numbers of 2, S , L are computed and compared to the
ones of ¥ and S and L. We compute the error rates for the estimated
eigenvalues of L, S, and X, and provide a comparative analysis of the gains
on the three indicated losses coming from the unshrinkage procedure for all
threshold parameters.

The vector of the eigenvalues of 3, and its Euclidean distance from the
vector of eigenvalues of X are computed, as well its condition number. The
spectral and the Frobenius losses of ¥, from 3 are calculated too.

The performance of £~ for all estimators in terms of Frobenius loss from
>~ is also investigated: InvTotalLoss = |31 — 7Y | pro.

All these statistics are computed and averaged over N = 100 replicates.

5.2.3 A new model selection criterion

We now develop a model selection criterion specifically thought for our es-
timation method. The inspiration rises from the reference norm g, used by
Luo (see (4.20)), which is the starting point of our analysis:

S — Yl o=
gy = max (H || L — LIIz) (5.42)

From (5.42), the need of rescaling both arguments of g, rises in order
to raise informative power and to detect the optimal point in the spiki-



122 CHAPTER 5. IMPROVING LOREC

ness/sparsity trade-off. For exploiting (5.42) with model selection purposes,
we need to make the two terms comparable.

How can we compare the goodness of fit of the sparse term by the es-
timated /1 norm of the sparse component and of the low rank term by the
estimated nuclear norm of the low rank component? How it is possible to
establish if their equilibrium is intrinsically balanced? In order to perform

d %, we need to find a unique

a sample comparison between ||L||2 an
comparison ground for them.
Considered that % contains a maximum norm, we can re-scale it to

the trace of S. Given that in our simulation setting
trace(S*) = (1 — a)trace(3%),

trace(S) is estimated by (1 — &)trace(,). Similarly, in order to compare
the magnitude of the two quantities, we multiply ||L||2 by 7, which is the
bound for the maximum norm of L and then divide it by the trace of L
estimated by atrace(3,,).

Our maximum criterion M C' can be therefore defined as follows:

Pl L] 115]]s0
MO — 4
C = max { atrace(Sy)’ (1 = a)trace(sy) [’ (5.43)

where 4 = £ is the ratio between the sparsity and the spikiness thresholds.
This crlterlon is by definition mainly intended to catch the proportion of
variance explained by the factors. For this reason, it tends to choose quite
sparse solutions with a small number of non zeros and a small proportion
of residual covariance. If 7 is not large enough to ensure that the largest
eigenvalue of S is not too small, there are possible problems for non zeros
recovery (identifiability problems). 7 must be large enough to guarantee the
lower bound on the minimum non zero entry of S and that its maximum

eigenvalue scales with \/% . Analogously, if ;s is too small, that is if we

allow for very small non zero off-diagonal entries in S, the method is not
able to recover them. In addition, also o and c¢ can influence the nonzero
choice, controlling the spikiness of the low rank component.

We note that the MC' method performs considerably better than the
usual cross-validation using H-fold Frobenius Loss (used in (Luo, 2013)),
since minimizing a loss based on sample approximation like the Frobenius
one causes that the parameter & is shrunk too much. Quantities p.orr and
nz are also usually underestimated in that way, unless the true s is really
low. Simulating N = 100 samples, we have that Loss, SampleT otal Loss
and TotalLoss are considerably higher using the thresholds obtained by
Frobenius cross validation, both for by LorEc and )y NEW-

On the contrary, the threshold setting which shows a minimum for M C
criterion (given that the estimate 3 is positive definite) is the best in terms
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of composite penalty, taking into account the latent low rank and sparse
structure simultaneously. MC' criterion thus offers a unique comparison
ground for both penalties simultaneously considered. Selecting thresholds
focusing on the fitting performance highlights that cross-validation is worse
than using MC criterion, also because the un-shrinkage procedure corrects
itself for the fitting performance. In addition, MC criterion takes into account
rank and sparsity pattern detection simultaneously.

For selecting the thresholds for POET estimation, the cross validation
method described in paragraph 4 of [45] is used. There, the set of resid-
uals from PCA is divided in a training and a validation set. On the first,
POET method is applied. On the second, the sample residual covariance
matrix is computed. The optimal threshold is then chosen minimizing the
average Frobenius Loss of the estimated sparse component. The training
set dimension is Nraining = n(1 — log(n)™1), the validation set dimension is
Nyalidation = T — Ntraining- For us, Ntraining = 855 and Nyalidation = 145.

For rank selection, POET procedure exploits the classical Bai and Ng
criteria, as indicated in paragraph 2.4 of [45]. The risk of underestimating
the latent rank if the eigenvalues of ¥ do not scale with p were pointed out in
the discussion of [45] by Yu and Samworth. We note that the authors used
there the Relative Error measure || — ¥||s = p~V2|[2252 Y2 — L || pro
as a reference norm, which will also be computed for LOREC and NEW.

We note that POET systematically overestimates the proportion of vari-
ance explained by the factors (given the true rank) because the eigenvalues
of ¥, are more spiky than the true ones (see Theorem 2.3.1, by Ledoit and
Wolf). The shrinkage approach corrects for that.

The condition number of L is usually smaller than c¢. This drawback
depends on Theorem 2.3.1, and unfortunately holds also for LOREC and
NEW (not only for POET). It depends on the eigenvalues of ¥,,. The ratio
between the first and the r-th largest eigenvalue of 3, tends to be smaller
than the true one, even if it can vary a lot across replicates, for large values
of r, ¢ and 7 too. In fact, we note that the r-th largest eigenvalue of >, is
usually larger than the r-th largest eigenvalue of X.

5.3 Data analysis results

In this section we describe the results of the application of our method re-
spect to the competitors under various situations. In paragraph (5.3.1), we
describe the performance of )y ~eEw in the simulated settings described in
section (5.2.1), comparing it with the one of Srorec. Particular empha-
sis is given to the advantages and the performance of unshrinkage, on which
clear indications are given. Threshold selection is performed using the model
selection criterion described in (5.2.3). All the relevant quantities described
in (5.2.2) are computed and averaged over N = 100 simulated settings. Sim-
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ulations are performed with MATLAB. The results are reported in form of
technical report.

In paragraph (5.3.2) two real examples are reported. The first is drawn
from [45], and is a UK market data-set. The second is a supervisory banking
data-set, which is derived from the balance sheet data of a list of relevant
Euro Area banks. The calculations here reported treat these data only on
the variable side, in fulfillment of confidentiality obligations. We deeply
acknowledge for that the Supervisory Statistics Division of the European
Central Bank, where the author spent a semester as a PhD Trainee, for the
allowance of these data for research purposes.

5.3.1 Simulation results

We now start analyzing the performance of Y New in comparison to the one
of Xrorpc on our reference setting (settingl), which is contained in the
following table:

P 100

c 2

tau 1

alpha 0.7

r 4

s 118

S_max 732
delta 0.1
delta_bis 0.2

First of all, we simulate one draw and compute Y1, In figures (5.1),
(5.2) and (5.3) we can see the most important features of the generated set-
ting. Figure (5.1) shows the top r = 4 eigenvalues of ¥, L and S respectively.
> and L have spiked eigenvalues linearly distributed, almost overlapped. S
has much lower eigenvalues. Figure (5.2) shows the sorted diagonal elements
of L and S. Ounly the first three variances of S are larger than the ones in
L. Figure (5.3) shows the sorted eigenvalues of ¥ and ¥,,. We note a jump
in correspondence of r = 4. The sorted eigenvalues from the fifth to the
last of both matrices are much lower. This setting is consistent to POET
assumptions too.
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Eigenvalues of Z* (blue), L* (red) and S* (magenta)
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Figure 5.1: Eigenvalues of L, S, %

Diagonal elements of S* (magenta) and L* (red)
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Figure 5.2: Sorted diagonal elements of L and S
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Eigenvalues of Zn (blue) and X (red)
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Figure 5.3: Eigenvalues of X, and X
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The thresholds p and \ are computed using formulas (5.40) and (5.41):

rho lambda

0.0047908 0.062663
0.0095817 0.12533
0.014373 0.18799
0.019163 0.25065
0.023954 0.31332
0.028745 0.37598
0.033536 0.43864
0.038327 0.50131
0.043118 0.56397
0.047908 0.62663
0.052699 0.6893

0.05749 0.75196
0.062281 0.81462
0.067072 0.87729
0.071863 0.93995
0.076654 1.0026
0.081444 1.0653
0.086235 1.1279
0.091026 1.1906
0.095817 1.2533

We perform estimation for all the threshold pairs we can obtain from
these two grids (i.e. 20 x 20 = 400).

We then compute the model selection criterion MC. The results are
shown in figure (5.4) for Syew and in figure (5.5) for S LOREC.
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Model Selection Criterion — NEW
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Figure 5.5: Model selection criterion - S1oREC
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We can see that MC criterion (5.43) is usually increasing in p and A,
with the exception of the very first thresholds in both grids. For SNEW,
the selected thresholds are p(4) = 0.0192 and A\(2) = 0.1253, for SXr0rEC
p(6) = 0.0287 and A\(3) = 0.1880.

Estimated low rank - LOREC and NEW
18 T T T

16

14+

(decreasing) A

12

10

Wil

L
0 5 10 15 20
(increasing) p

Figure 5.6: Estimated rank - ELOREC and iNEW

In figure (5.6) we have the distribution of the estimated rank for both
methods. For very small A\, we have very large estimated ranks, for very
large A we have that the rank is sometimes shrunk to 0. For the central
values of A, the rank is correctly recovered. The sparsity parameter p also
plays a role: if it is large enough, it can counterbalance the effect of A, thus
correctly estimating the true rank (r = 4, black line) even if A is large.

In figure (5.7) and (5.8) we report the differences between the Total
Losses and the Sample Total Losses of LOREC and NEW. We have that
the gain is positive everywhere, with the exception of the threshold pairs
which do not return the exact rank (because they do not satisfy the range
of Theorem 4.1.4). This pattern is more remarkable for Sample Total Loss
than for Total Loss. For both losses and each A, we note that the gain across
p never overcomes its maximum +/rA (plotted for each \).

The dynamics of the difference between the Losses of LOREC and NEW,
reported in figure (5.9), is quite more controversial. There we have some neg-
ative values even for central threshold values. This is due to the differences
between the losses of the sparse component for incorrect thresholds (see fig-
ure (5.10)) which is better for Srorpc when the latent rank is not exactly
recovered or the estimated number of non-zeros is null. On the contrary, the
difference between the losses of the low rank components is always better for
Snew than for Sroppe (see figure (5.11)).
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The settings for which we have negative differences are characterized by
a very large p which makes the sparse component too sparse. In that case,
LOREC is underestimating the number of non-zeros in the sparse compo-
nent, such that the unshrinkage gets the situation even worse. Anyway, for
the thresholds selected by MC criterion, the gains obtained via unshrinkage
are largely positive for all losses. Besides, the Loss relative to the low rank
component is always much more relevant in absolute terms respect to the
one relative to the low rank component.

We note also that if we linearly add a quantity to the eigenvalues of L
estimated via the LOREC method, we usually improve the Total Loss. This
is true even if we add a quantity larger than A (unless A is very high); how-
ever, the proportion of variance explained by the factors o and the number
of nonzeros are in that case completely missed. In fact, the strength of our
method is in the fact that the unshrinkage corrects for the underestimation of
a when LOREC method exactly recovers rank and sparsity pattern. Given
that the rank and the sparsity pattern are correctly recovered, the unshrink-
age provides the closest solution to the true ¥ and the closest proportion
of latent variance to the true «. This happens while POET overestimates
and LOREC underestimates . Ad-hoc simulations provide a confirmation.
The best estimate & is reached for the thresholds which best recover rank
and sparsity pattern. This it the same reason why the usual cross validation
method based on sample total loss has a poorer performance.

Sample Total Loss: difference LOREC-NEW
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Figure 5.7: Sample Total Loss difference - )y LorEc and )y NEW
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Total Loss: difference LOREC-NEW
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Figure 5.8: Total Loss difference - iLOREC and 2NEW
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Sparse Loss: difference LOREC-NEW
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Figure 5.10: Sparse Loss difference - 2LOREC and 2NEW

Low rank Loss: difference LOREC-NEW
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Figure 5.11: Low rank Loss difference - f]LOREc and ﬁ?NEW
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In figure (5.12) we report the plot of the estimated proportion of latent
variance o across thresholds for 3y gw (in black the true a = 0.7). We note
that for each A, & usually increases and then gets stable across p. The larger
A, the smaller &. We point out that in correspondence to the smallest values
of p the estimated « is 0, provided that A is enough large.

In figure (5.13) the proportion & is shown for Yrorgc. The shape is
exactly the same as for )y NEW, the only difference is that all the patterns
are negatively shifted.

In figure (5.14) we report the plot of the estimated proportion of residual
covariance peorr. We have inserted only the ten largest values of p. We note
that the larger is A, the lower is p.orr across sparsity thresholds. In black we
have the true peorr = 0.045.

Estimated proportion of latent variance o - NEW
0.8 T T

0.7r

0.6

0.5}

0.4r
0.3
0.2

0.1r

0 5 10 15 20
(increasing) p

Figure 5.12: Estimated proportion of latent variance - )y NEW

In figure (5.15) we report the estimated number of non-zeros across
thresholds (in black the true s = 118). In general, we have that the larger
is p, the lower is nz. The spikiness parameter \ impacts on the rate of the
decay across p: the larger it is, the slower the decay.

The error measure err, reported in figure (5.16) shows a minimum across
p for each A. The larger A, the larger is the p in correspondence to which
the minimum is attained.

The specificity measure (figure (5.17)) is larger for small A. It reaches 1
for completely diagonal sparse estimates.

The sensibility measure (5.18) is persistently larger for larger A. The
larger A, the smaller is the value of p in correspondence to which the sensi-
bility is 0, because in that case we have diagonal sparse solutions.
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Estimated proportion of latent variance a - LOREC
0.8 T T T

10
(increasing) p

Figure 5.13: Estimated proportion of latent variance - )y LOREC
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Figure 5.14: Estimated proportion of residual covariance -
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Figure 5.15: Estimated number of nonzero elements - )y Lorec and )y NEW

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Function err - LOREC

(increasing) A

(decreasing) p

20

Figure 5.16: Error measure err - X orpc and X Ngw



136 CHAPTER 5. IMPROVING LOREC

Specificity - LOREC
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Figure 5.17: Specificity - Srorpc and Sygw
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Figure 5.18: Sensibility - XAJLOREC and XAJNEW
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We can now compare the sample results of NEW and LOREC obtained
selecting the thresholds by the M C criterion (5.43).

We give some explanations about the acronyms used in the reported
tables. lambda is the vector of spikiness thresholds, sparse is the vector of
sparsity thresholds. finl is the indicator of the optimal p selected via M C,
fin2 is the indicator of the optimal A selected via M C, T'L is the Total Loss,
T L is the Sample Total Loss, rappvar is &, rappcorr is peorr, rapptrue is
Peorr- Spec is the specificity of zero elements, sens is the sensitivity of non-
zero elements.

In figure (5.19) the losses obtained (using ¥,_; as an input for our proce-
dure) are shown. The thresholds selected by MC are p = 0.0192, A = 0.1253
for f?NEW and p = 0.0287, A = 0.188 for ELOREC. The table shows that our
unshrinkage approach prevails for Loss, Total Loss and Sample Total Loss
on LOREC approach. The new method shows best fitting properties, going
closer to the estimation target.

NEW LOREC
sparse(fini) 0.0192 0.0287
lambda(fin2) 0.1253 0.188
finl 4 6
fin2 2 3
Loss(fin1,fin2) 7.217 7.3564
TL(fin1,fin2) 6.6899 6.71
TL_s(fin1,fin2) 0.7631 1.0808

Figure 5.19: Sample statistics - Losses

In figure (5.20) we can see that the NEW approach is better also for the
estimated proportion of common variance & (closer to a)) and the estimated
proportion of total residual covariance peorr = %. It shows a better perfor-
mance also for the recovery of the true number of non-zeros s. Better results
are achieved also for the err rate, for specificity and sensibility. Anyway, we
note that there is in general a specific problem on the recovery of non-zero
elements. For NEW, the 63.56% are recovered, which has to be considered
a good result. Both LOREC and NEW are particularly effective for this
aspect only for very sparse matrices.

In figure (5.21) we report the condition number and the Euclidean er-
rors of the estimated eigenvalues for the three components (the low rank,
the sparse and the whole covariance matrix). For conditioning, the NEW
approach does worse: this is price to pay to improve fitting properties
(condA, condB, condSigmapg are the condition numbers of S ,ﬁ, )y respec-
tively). NEW is on this side between the Sample covariance matrix and
LOREC estimate. Concerning the errors of estimated eigenvalues, NEW
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NEW LOREC
rappvar(fin1,fin2) 0.6973 0.6935
rapptrue 0.0045 0.0045
rappcorr(fini,fin2) 0.0025 9.89E-04
nz(fin1,fin2) 99 46
S 118 118
spec(fin1,fin2) 0.995 0.9981
sens(fin1,fin2) 0.6356 0.3136
err(fin1,fin2) 0.0135 0.0182
errplus(fini,fin2) 0.0085 0

Figure 5.20: Sample statistics - rank/sparsity measures

does better for the low rank component only (errA, errB, errSigma are the
Euclidean distance of the eigenvalues of S , ﬁ, S from the ones of S,L,Y re-
spectively). On the other side, the unshrinkage has a positive impact on the
maximum estimated eigenvalue of ¥ (mazimum.;, in figure).

NEW LOREC Sigma
condB(fin1,fin2) 1.2904 1.2956 2
condA(fin1,fin2) 2.75E+04 1.19E+04 2.26E+07
condSigma_hat(fin1,fin2) 6.42E+04 5.97E+04 9.49E+07
errB(fin1,fin2) 5.497 5.5181
errA(fin1,fin2) 0.1681 0.2324
errSigma(fini,fin2) 5.5383 5.5144
maximum_eig 21.04 20.8601 24.4886

Figure 5.21: Sample statistics - conditioning properties
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In figure (5.22) we can note that the sample covariance matrix has a
slightly smaller Euclidean error of estimated eigenvalues (errC') and Total
Loss (T LInput), but too large condition number (condC'). ac (rappvarC =
0.7314) is much larger that the true 0.7. Parameter c¢ is the ratio between
the largest and the 4-th eigenvalue of 3. The maximum eigenvalue of X,
is 21.1821, the 4-th is 16.1900. Dif fc shows the difference in Total Loss
respect to NEW and LOREC respectively.

Sample
TL_Input 6.6765
rappvarC 0.7314
errC 5.4893
c C 1.3083
condC 9.19E+07
NEW LOREC
Diff_C 0.0133 0.0334

Figure 5.22: Sample statistics - 3,

In figure (5.23) we extensively report some measures relative to spar-
sity detection. The sensitivity of positive elements (senspos) and the speci-
ficity of negative elements (specpos) are reported. For positive elements,
the misclassification rate to null elements is posnnrate and to negative el-
ements is posnegrate. The same is done for negative elements (the mis-
classification rate to positive elements is negposrate, to null elements is
negnnrate) and for null elements (the misclassification rate to positive ele-
ments is possens, to negative elements is negsens) respectively. Quantities
posrate = posnnrate+ posnegrate, negrate = negposrate+posnegrate and
nnrate = possens+negsens are the total misclassification rates derived from
the previous rates (three sums of two elements). There is a specific prob-
lem: positive (in particular) and negative elements are too often classified
as zeros. On the contrary, it is very rare that a positive element is classified
as a negative and viceversa. The error classification rates of positive and of
negative elements is lower for NEW than for LOREC. Also erry, (totrate
in figure) is lower for NEW.

In figure (5.24) we start showing some statistics across /N = 100 simula-
tions. In figures, the subscript m stands for mean across all the IV replicates,
the subscript m2 stands for standard error. We immediately note that for
NEW the rank is systematically overestimated, differently from LOREC. The
proportion of correct rank recovery is 25% against 97% (in figures rankqp,
stands for Thresholded Rank, rankezact,.,. as the percentage of ranks ex-
actly recovered). Simultaneously, in figure (5.25), we see that NEW is better
concerning all the Losses (Total Loss, Sample Total Loss and Loss). In ad-
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NEW LOREC
senspos(fini,fin2) 0.5094 0.2642
specpos(fini1,fin2) 0.7231 0.3538
posnegrate(fini,fin2) 0 0
posnnrate(fini,fin2) 0.4906 0.7358
negposrate(fini,fin2) 0.0154 0
negnnrate(fin1,fin2) 0.2615 0.6462
possens(fini,fin2) 0.0027 0.001
negsens(fini,fin2) 0.0023 8.28E-04
posrate(fini,fin2) 0.4906 0.7358
negrate(fin1,fin2) 0.2769 0.6462
nnrate(fin1,fin2) 0.005 0.0019
totrate(fin1,fin2) 0.0137 0.0182

Figure 5.23: Sample statistics - Sparsity measures

dition (figure (5.26)), NEW beats LOREC concerning the detection of the
proportion of latent variance, of residual covariance and of the number of
non zeros. Only on the error measure err NEW is slightly worse.

These findings, given that our sample estimate has rank r = 4, suggest
some considerations about the nature of our improvement. These results
show that the unshrinkage is a sample technique. Indeed, we improve upon
LOREC for all fitting measures. The fact that the estimated rank is some-
times 5 or 6 means that our technique is able to optimize the sample, finding
the ultimate cut-off before non-recovery. This allows to optimize as much as
possible fitting properties.

N=100 NEW LOREC Sigma
lambda 0.1253 0.188

sparse 0.0192 0.0287
rank_Thr_m 4.82 4.03 4
rank_Thr_m2 0.539 0.1714
rank_exact_perc 0.25 0.97

Figure 5.24: N=100 - Statistics
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N=100 NEW LOREC

TL_m 6.8335 6.864
TL_m2 0.0326 0.013
TL_m_s 0.8204 1.1703
TL_m2_s 0.7646 0.7667
Loss_m 7.4941 7.5418
Loss_m2 0.7749 0.7776

Figure 5.25: N=100 - Statistics

N=100 NEW LOREC Sigma
rappvar_m 0.6945 0.6849 0.7
rappvar_m2 0.0048 0.0049
rappcorr_m 0.0036 0.0021 0.045
rappcorr_m2  3.09E-04 2.32E-04

err_m 0.0178 0.0164

err_m?2 0.0016 0.0011

nz_m 130.87 69.71 118
nz_m2 8.1942 4.9935

Figure 5.26: N=100 - Statistics
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In figure (5.27) we can see that our NEW estimate has not an average
number of negative eigenvalues equal to 0, differently from LOREC estimate
(defSpSigma is the number of negative eigenvalues of f?) The same holds
for the estimate of the sparse component (defSpS is the number of negative
cigenvalues of S ). Since our NEW estimates of the whole covariance matrix
and of the sparse component are positive definite in the sample, we have one
more argument for the effectiveness of NEW as a sample technique. On the
other side, we can see that NEW better recovers on average the eigenvalues
of the three matrices L, .S, X.

In figure (5.28), we can see that NEW is worse for conditioning, but
better recovers the maximum eigenvalue of 3. The NEW procedure here
has a larger number of iterations respect to LOREC (Arr,, is the averaged
number of iterations).

In figure (5.29) we report some statistics about the detection of the spar-
sity pattern. We note that NEW is particularly effective for recovering both
positive and negative elements respect to LOREC in correspondence of the
chosen thresholds. The quantity senspos is the rate of correct classification
of positive elements, the quantity specpos is the rate of correct classification
of negative elements.

We explicitly note that this pattern does not depend on the criterion used
to select the thresholds. Even using the Frobenius Loss, the relationship be-
tween LOREC and NEW performance does not change. The performance is
only worse for both methods in terms of sparsity pattern (nonzero detection)
and proportion of latent variance.

N=100 NEW LOREC

defSpSigma_m 3.46 0
defSpS_m 4.4 0
defSpSigma_m2 2.2893 0
defSpS_m2 2.8674 0
errB_m 1.5085 5.261
errA_m 0.3144 0.3503
errSigma_m 5.2182 5.2584
errB_m2 2.4084 0.9299
errA_m2 0.0769 0.0703
errSigma_m?2 0.7007 0.7158

Figure 5.27: N=100 - Statistics
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N=100

condA_m
condB_m
condSigma_hat_m
condA_m2
condB_m2
condSigma_hat_m2
Arr_m

Arr_m2
maximum_eig_m
maximum_eig_m2

NEW

LOREC Sigma

3.49E+05 9.21E+03 2.26E+07

113.9113

1.3882 2

5.85E+06 4.49E+04 9.49E+07
1.61E+06 2.91E+03

65.7137 2.23E-16
6.55E+05 575.4263
58.82 44.87
1.6659 1.1604
20.9901 20.7542 24.4886
0.8463 0.8468

Figure 5.28: N=100 - Statistics

N=100
spec_m
spec_m2
sens_m
sens_m?2
Senspos_m
senspos_m2
specpos_m
specpos_m2
totrate_m

NEW
0.9896
0.0013
0.6819

0.041
0.698
0.0198
0.7144
0.0215
0.0158

LOREC
0.9966
6.48E-04
0.4524
0.0367
0.4901
0.0288
0.4352
0.0283
0.0167

Figure 5.29: N=100 - Statistics

143
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In order to test the strength of results addition, we have tried to perform
estimation using the thresholds of )y ~NEw for )y rorec and the thresholds
of 3 LOREC for by ~NEW- While the results on sparsity detection are simply
inverted, the estimated proportion of variance explained by the factors is
still better for NEW: simulating N = 100 settings, the averaged & is 0.6924
for NEW and 0.6885 for LOREC, in spite of the fact we have less favorable
thresholds for fitting performance. In addition, Loss and Total Loss are still
better for NEW, even if the performance is worse for both respect to the
original thresholds in terms of fitting.

On the same data, we have applied also POET estimation procedure.
First of all, we note that Bai and Ng criteria do not estimate the rank cor-
rectly. This is probably due to the fact the ratio £ is too low. Thus, we
set the rank to the true one (4), and we then select the sparsity thresh-
old applying the cross-validation procedure described in [45] with the hard
thresholding rule.

The results are quite worse. Due to the natural bias of sample eigen-
values, the proportion of common variance is over estimated (0.7314). The
estimated number of non-zeros is 432 (against the true 118). All the losses
(T'L TLs Loss) are quite worse than for NEW and LOREC estimates. What
is more relevant, the performance of the sparsity recovery is really low. This
happens because POET approach does not provide any algebraic consistency
framework, but only a parametric one. The relevant results for the POET es-
timate are reported in figure (5.30). In figure (5.31) we can note that POET
is not able to catch the true non-zeros (the rates of correct classification of
positive, negative and zeros are reported together with the measure erryy).

POET Sigma

TL_C 7.0287
TL_C_s 2.7323
Loss_C 8.913
rappvar_C 0.7314 0.7
rappcorr_C 3.99E-04 0.045
nz_C 432 118
err_C 0.1099
cond_Sigma_C 3.50E+04
cond S C 3.26E+03
condL_C 1.3083

Figure 5.30: POET Sample Statistics
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POET
senspos_C 0.0064
specpos_C 0
spec_C 0.9389
totrate C 0.1244

Figure 5.31: POET Sample Statistics

Rel_Err 8.44E+03 NEW
8.41E+03 LOREC
3.47E+03 POET

Figure 5.32: Relative error: NEW, LOREC and POET
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In figure (5.32), we outline the excellence of POET: the Relative Er-
ror measure, which is really better than for LOREC and NEW estimates.
This happens because the parametric consistency of POET is ensured in the
Relative norm ||.||s (see paragraph (2.5.4)).

These results highlight that the two methods (the POET and the numer-
ical one) differ for the application range. LOREC method works better for
quite sparse targets. POET method allows for a larger number of non-zeros,
given that they have a very low magnitude, because it does not provide any
algebraic consistency for the sparsity pattern.

The other settings (setting2 and setting3) show similar performances
of ENEW respect to ZLOREC and EPOET We signal that there are relevant
differences concerning the control mechanism on the number of non-zeros
and their recovery. If the smallest non-zero element of S is too small, s and
Peorr are hardly recovered. The larger the rank r and the proportion « are,
the smaller is the latent condition number ¢, the smaller must be the true
number of non-zero s in order to perform recovery, and the more difficult
is to recover s and p.or-- In addition, the parameter 7 must be suitable for

ensuring that the spectral norm of ¥, scales to \/% , in order to make the

control mechanism work. At the same time, the higher is the rank r, and the
smaller is « respect to ¢, the easier is to have non-positive definite estimates.

GIVEN that these conditions for the recovery of s are respected (obeying
to Theorem 4.1.4), the same relative performances for NEW, LOREC and
POET are observed, with particular reference to the Total Loss and the
proportion of latent variance. The unshrinkage is proven to be still useful
also for larger a and ¢ and for smaller r. Relevant results for setting2 and
setting3 are reported in figures (5.33) and (5.34) respectively.

The M C criterion for NEW and LOREC and the cross validation method
of POET are observed to work effectively. For POET, Bai and Ng criteria are
of some use only for the setting with r = 3, even if they overestimate the true
rank. For all the other settings, the criteria are monotonically decreasing in
r. For this reason, the true rank is directly imposed to POET.
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r=3,c=4
sparse(fin1)
lambda(fin2)
rank_Thr(fin1,fin2)
nz(finl,fin2)
perczeros(fini,fin2)
rappcorr(fini,fin2)
rappvar(fini,fin2)
TL_s(fin1,fin2)
TL(fin1,fin2)
Loss(fin1,fin2)

NEW
0.0164
0.1892

3

513
0.1036
0.003
0.7994
1.3487
9.3763
10.8465

Sigma

580
0.1172
0.0048

0.8

Figure 5.33: setting2: Sample Statistics

r=4,c=4
sparse(fin1)
lambda(fin2)
rank_Thr(fin1,fin2)
nz(fin1,fin2)
perczeros(fin1,fin2)
rappcorr(fin1,fin2)
rappvar(fin1,fin2)
TL_s(fin1,fin2)
TL(fin1,fin2)
Loss(fin1,fin2)

NEW
0.0113
0.0955

4

263
0.0531
0.0043
0.6976
0.6943
13.2935
13.9186

Sigma

335
0.0677
0.0072

0.7

Figure 5.34: setting3: Sample Statistics
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Up to now, we have fixed the dimension p in order to compare the per-
formances of NEW and LOREC. Varying p does not modify significantly the
contrastive performance of described estimators (except for computational
times), in the sense that the key parameter in multivariate analysis is %.

This is why in paragraph (5.3.2) we provide covariance estimation on two
real data-sets with two radically different ratios £. In the second example
we have p > n, such that we explore the performance of described estimators

also in a case somehow resembling the Big Data context.

5.3.2 Real data results

In this paragraph we show some applications of our method to two real data
sets. The first is analyzed by Fan et al. in [45], and concerns UK market data.
The second is a Euro Area supervisory banking data set, for which we thank
the Supervisory Statistics Division of the European Central Bank. On both
data sets, a direct comparison between POET and NEW is done, respect to
performance and application range. We note that in real data analysis the
relevant Loss is only the Sample Total Loss (that is, the distance from f?n)

UK market data

In the first example, UK daily market data across the year 2010 are analyzed.
The sample dimension is 7' = 252 days, such that we have 251 daily rates.
A number of p = 50 asset prices are analyzed. These assets are naturally
divided in five blocks of 10 firms (variables) corresponding to five economic
sectors (see |45| paragraph 7.1 for more explanations). The problem here
is to estimate the covariance matrix, taking into account if the different
covariance structure among and within blocks may influence the estimate.

Applying POET method using hard thresholding (the sparsity threshold
is selected via their cross-validation procedure), Fan et al. report that their
POET estimate may have rank » = 1, 2, 3 indifferently, because the estimates
share the same properties. We report the plot of sample eigenvalues in figure
(5.35).

By Bai and Ng’s criteria IC1 and IC2 (see [45] paragraph 2.4) we would
select 9 or 13 factors according to the penalty used. In fact, in the view of a
strict factor model estimation it would be necessary to have more than three
components, as outlined in [94].

We signal that it is not straight forward to select low values for the
latent rank using Bai and Ng’s criteria unless the latent eigenvalues are very
spiked. For example, in order to have # = 0, it is necessary to have an
approximately banded covariance structure. A simple experiment carried on
the sample covariance matrix over n = 1000 samples drawn by a multivariate
normal N, (0, I,), p = 100, shows that in that extreme case we obtain 7 = 0.
Otherwise, we need that the latent eigenvalues are really spiked respect to
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Eigenvalues of Zn — Fan et al. example
0.012

0.01r

0.008 -

0.006 -

0.004 -

0.002

Figure 5.35: UK market data example: sample eigenvalues

the other ones and the latent eigenvectors are really incoherent respect to
the standard basis.

However, for # = 2, they report to have 25.8% of non-zeros within blocks,
and 6.7% off-blocks. Among the surviving elements within blocks, they have
that 100% of them are positive. In contrast, among the surviving off-blocks
elements they obtain 60.3% positive and 39.7% negative.

In figure (5.36) some statistics for our unshrinkage estimate are reported.
The solution chosen by our Maximum Criterion (always ensuring that the
estimate is positive definite) is much more sparse than the POET one. The
number of surviving elements is only nz = 15 out of 1225. In addition, the
estimated rank is # = 1. The proportion of common variance is 18.89%,
the proportion of residual covariance is 0.92%. Conditioning properties are
really good.

In figure (5.36) we can find also some statistics relative to the off-blocks
and within-blocks elements. rate says that only 4.89% of the within blocks
covariances are non-zeros. rate2 says that the same percentage for off-blocks
covariances is 0.4%. All the surviving covariances within the blocks are
positive (ratepos). In contrast, three fourth of the off-blocks elements are
positive (ratepos2).

These results are worth some reflections. Using a strict factor model ap-
proach, the necessary number of factors would be larger. In [94], it is shown
that the necessary number of factors would be seven. Using an approxi-
mate factor model approach (POET), a smaller number of factors is enough.
In our thresholding approach, only one factor is surviving. This happens
because our method is not PCA based, and does not select the number of
factors according to fitting properties. On the contrary, it selects the latent
rank and the number of surviving non zeros aiming at recovering the true
rank and sparsity pattern. Thus, in our approach there is a non-negligible
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UK market data NEW

rank_Thr(fin1,fin2) 1
nz(fin1,fin2) 15
perczeros(fini,fin2) 0.0122
rappvar(fini,fin2) 0.1889
rappcorr(fini,fin2) 0.0092
TL_s(fin1,fin2) 0.0023
sparse(fin1) 9.74E-05
lambda(fin2) 6.95E-04
rate(fin1,fin2) 0.0489
rate2(fin1,fin2) 0.004
ratepos(fin1,fin2) 1
rateneg(fini,fin2) 0
ratepos2(fin1,fin2) 0.75
rateneg2(fin1,fin2) 0.25
condSigma_hat(fin1,fin2) 113.9172
condSparse(fini,fin2) 56.5862
numvar 1225

Figure 5.36: UK market data: f?NEW statistics

proportion of covariance which is thrown away. This is done in order to
recover exactly the low rank and the sparse components.

For this reason, two or three factors are maybe enough for fitting proper-
ties, but they are too many for rank/sparsity pattern detection. The thresh-
olding algorithm returns that one factor is enough for that. In order to
recover in the best possible way the two components, a relevant proportion
of covariance is lost, as outlined in figure (5.37). The residual of the min-
imization procedure contains 21.15% of covariance, while 2NEW contains
78.85%. 78.13% of the total covariance belongs to the low rank component.
Only 0.72% belongs to the sparse component. This is the reason why only
one factor is enough.

By this minimization procedure, quite surprisingly, our method shows
also a lower Sample Total Loss. We replicated POET procedure with 2
factors, and we obtained a Sample Total Loss equal to 0.028. In our case,
the same indicator is equal to 0.023. Our rank/sparsity based estimation
procedure is thus able to better approximate the sample covariance matrix.
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In conclusion, we should wonder if the block structure is strong enough to
really impact covariance estimation. In fact, this result is consistent to the
single index factor model ([74]), and to the CAPM ([104]).

sumW/sumTOT 0.2115
sumSigmahat/sumTOT 0.7875
sumLow/sumTOT 0.7813
sumSparse/sumTOT 0.0072

Figure 5.37: UK market data: f)NEW statistics

Euro Area supervisory banking data

We are now ready to estimate the covariance matrix on the Euro Area super-
visory banking data. We thank for the use of this data set the Supervisory
Statistics Division of the European Central Bank, where the author spent
a semester as a PhD trainee. Here we use the covariance matrix computed
on a selection of balance sheet indicators for some of the most relevant Euro
Area banks by systemic power. The overall number of banks (our sample
dimension) is n = 365. These indicators are the ones needed for supervisory
reporting, and include capital and financial variables.

The chosen raw variables (1039) were rescaled to the total assets of each
bank. Then, a screening based on the importance of each variable, intended
as the absolute amount of correlation with all the other variables, was per-
formed in order to remove identities. The remaining variables were p = 382.
So, here we are in the typical p > n case, where the sample covariance matrix
is completely ineffective. We report the plot of sample eigenvalues in figure
(5.38).

Our estimation method selects a solution having a latent rank equal to
6. The number of surviving non-zeros in the sparse component is 328, i.e.
the 0.45% of numuvar = 72772. Conditioning properties are inevitably very
bad. The results are reported in figure (5.39).
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The ten largest eigenavalues of I - Supervisory data

Figure 5.38: Supervisory data: sample eigenvalues

Supervisory data NEW

rank_Thr(fin1,fin2) 6
nz(fin1,fin2) 328
rappvar(fin1,fin2) 0.3247
rappcorr(fini,fin2) 0.1687
perczeros(fini,fin2) 0.0045
TL_s(fin1,fin2) 0.0337
defSpSigma(fin1,fin2) 0
defSpS(fin1,fin2) 0
condSigma_hat(fin1,fin2) 6.35E+15
condSparse(fin1,fin2) 2.78E+15
condL 3.1335

Figure 5.39: Supervisory data: results for SNEW
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Supervisory data POET

TL_C_s 0.0645
nz_C 404
perczeros 0.0056
numvar 72771
rappvar_C 0.6123
rappcorr_C 0.0161
cond_S C 1.11E+15
cond_C 6.68E+15
condL_C 2.5625
defSpSigma_C 0
defSpS_C 1

Figure 5.40: Supervisory data: results for )y POET
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We now pass to the POET procedure. Bai and Ng’s criteria do not
attain any minimum for » = 0 : 20. We thus decide to exploit the algebraic
consistency of SNEW setting the rank to 6. We perform the usual cross-
validation and obtain a POET estimate (figure (5.40)). The number of non-
zeros of POET estimate is 404 (0.56%).

Apparently, one could say that POET estimate is better: its estimated
proportion of common variance is 0.6123, and its proportion of residual co-
variance is 0.0161. On the contrary, for NEW & = 0.3247 and peorr = 0.1687.
However, a relevant question arises: how much is the true proportion of vari-
ance explained by the factors? In fact, a so high «, dependent on the use
of PCA with 6 components, causes peorr t0 be very low. This is why in the
POET procedure a preference for the low rank part is given a priori. This
pattern does not change even if we choose a lower value for the rank.

On the contrary, the NEW estimate, which depends on a double-step
iterative thresholding procedure (8 iterations), allows for a larger magnitude
of the non-zero elements in the sparse component. In fact the proportion of
lost covariance during the procedure is here 29.39%. As a consequence, via
this rank /sparsity detection the NEW procedure shows better approximation
properties respect to POET: the Sample Total Loss of the first procedure is
relevantly lower than the one of the second (0.337 VS 0.645).

For our method, the covariance structure appears so complex that a
relevant proportion of residual covariance is present. This allows us to ex-
plore the importance of variables, that is to explore which variables have the
largest systemic power (i.e. the most relevant communality) or the largest
idiosyncrasy (i.e. the most relevant residual variance).

First of all, in figure (5.41) we plot the estimated degree (number of non-
zero covariances in the residual component) sorted by variable. Only 62 out
of 382 variables have at least one non-zero residual covariance.

In figure (5.42) we report the top 6 variables by estimated degree. They
are mainly credit-based variables: financial assets through profit and loss,
central banks impaired assets, allowances to credit institutions and non-
financial corporations, cash. These variables are related to the largest num-
ber of other variables.

In figure (5.43) we report the top 5 variables by estimated communality

INEW,ii
(Gavmw
variables are debt securities, loans and advances to households, specific al-
lowances for financial assets, and advances which are not loans to central
banks, which are all fundamental variables or banking supervision.

Vi =1,...,382). The results are very meaningful: the most systemic
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Estimated degree sorted by variable - Supervisory data
35 T T T T

30 1

20 b
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Figure 5.41: Supervisory data: sorted degree by variable

Variable Deg_rank

Financial assets designated at fair value through profit or loss 34
Central banks Impaired assets [gross carrying amount] 25
Credit institutions Collective allowances for incurred but not reported losses 20
Other financial corporations Collective allowances for incurred but not reported losses 19
Cash, cash balances at central banks and other demand deposits 16
Other financial corporations Specific allowances for financial assets, collectively estim. 16

Figure 5.42: Supervisory data: top 6 by degree

In figure (5.44) we report the top 5 variables by estimated idiosyncratic
covariance proportion (%Vz =1,...,382). We note that those variables
have a marginal power in the explanation of the common covariance struc-
ture. The first two are credit card debt and collateralized loans to other
financial corporations. The others are equity instruments given to central
banks, other financial corporations and general governments respectively. All
these variables are less relevant for supervisory analysis than the previous
five.

In conclusion, our NEW procedure offers here a realistic view of the
underlying structure of variables, by allowing a largest part of covariance to

Variable Estimated communality

Debt securities 0.8414
Households Carrying amount 0.821
Non-financial corporations Specific allowances for financial assets 0.811
Loans and advances Specific allowances for financial assets, collect. est. 0.7592
Advances that are not loans Central banks 0.7439

Figure 5.43: Supervisory data: top 5 by estimated communality
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Variable

Res. Variance proportion
Credit card debt Central banks

0.9995
other collateralized loans Other financial corporations 0.9986
Equity instruments Central banks Carrying amount 0.9971
Equity instruments Other financial corporations Carrying amount 0.997
General governments Carrying amount of unimpaired assets 0.997

Figure 5.44: Supervisory data: top 5 by residual covariance proportion

be explained by the residual sparse component.
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Conclusions

The present work describes the numerical approach to covariance matrix
estimation. The main focus is on a method based on convex non smooth
optimization which assumes a low rank plus sparse decomposition for the
covariance matrix.

In this framework, the estimation is performed solving a regularization
problem where the objective function is composed by a smooth Frobenius loss
and a non smooth composite penalty. The penalty is the sum of the nuclear
norm of the low rank component and the /; norm of the sparse component.

The numerical nature and the algorithmic solutions to this problem are
outlined highlighting the connections with sub-gradient minimization and
semi-definite programming theory.

The study of the statistical properties of such a minimizer in the context
of algebraic geometry, which involves necessary conditions for recovery and
identifiability, is deeply explored, emphasising the non-asymptotic nature of
the method. Recent solutions under different hypothesis are described, in
order to understand how the exact recovery in the noisy context is possible.
The key for the exact identification of the low rank and the sparse alge-
braic matrix varieties is proved to be the rank/sparsity incoherence principle
between the two components.

We remark that the algebraic framework allows not only the usual para-
metric consistency but also the algebraic consistency of the estimate. As
a consequence, the rank and the number of residual non zeros are simul-
taneously estimated by the solution algorithm. This automatic recovery is
a crucial advantage respect to existing asymptotic methods, like the PCA-
based POET (Principal Orthogonal complEment Thresholding) estimator.
In the numerical framework, in fact, the latent rank is automatically selected
and the sparsity pattern of the residual component is recovered considerably
better, due to the algebraic consistency.

Two theoretical advances upon the most recent estimator of this family,
LOREC (LOw Rank and sparsE Covariance estimator), are proved. First,

157
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we prove that the unshrinkage of the eigenvalues of the low rank component
estimated by LOREC corrects for the systematic underestimation, due to the
thresholding procedure, of the variance proportion explained by the factors.
At the same time, the unshrinkage procedure improves fitting properties.
Second, we prove that the numerical estimator can effectively recover the
covariance matrix even in presence of spiked eigenvalues with rate O(p),
exactly as POET estimator does, requiring only n = o(p?) samples under
POET assumptions. The loss from the target is bounded in absolute norm
(in contrast to POET procedure). In addition, the recovery is effective even if
we have an intermediate degree a € [0, 1] of spikiness, and the loss is bounded
accordingly to a with the need of n = o(p?®) samples only. Besides, our work
completes LOREC approach deriving the rate of the inverse of the sparse
component and an operative (feasible) identifiability condition.

The performance of these improvements is assessed comparatively to
LOREC and POET in a wide empirical study which exploits a new original
simulation setting particularly flexible and useful for low rank plus sparse
modelling. In that context, we provide a new model selection criterion specif-
ically thought for our minimization problem. The criterion is observed to
detect the best balance between the low rank latent structure and the (resid-
ual) sparsity pattern.

Simulation results show that our method is particularly effective for re-
covering the proportion of latent variance, as well as the proportion of resid-
ual covariance and the number of non zeros, both respect to LOREC (because
of the unshrinkage and of the new model selection procedure) and respect to
POET. Moreover, our NEW method shows better fitting properties respect
to LOREC and POET under various (absolute) losses, like the composite
loss of the low rank and the sparse component (as well as each of both) and
the total loss.

Real data analysis shows that our tool is particularly useful for map-
ping the covariance structure among variables even in a large dimensional
context. The variables having the largest systemic power, that is, the ones
most affecting the common covariance structure, can be identified, as well as
the variables having the largest idiosyncratic power, that is, the ones most
characterized by the residual variance. In addition, the variables showing
the most of idiosyncratic covariances with all the other ones can be identi-
fied, thus recovering the strongest related variables. Particular forms of the
residual covariance pattern can thus be detected if present.

Our dissertation is the starting point for a number of possible research
directions. We mention here the three most relevant in our view:

e in the time series context, this procedure can be potentially extended
to covariance matrix estimation under dynamic factor models. Setting
a low rank plus sparse structure on the auto-covariance matrix at a par-
ticular lag, or on the process fully considered under the co-integration
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hypothesis, are two particularly promising options, in which the sparse
component can be an additional flexibility tool useful for modelling
large data sets;

e the extension of our procedure to the spectral matrix estimation con-
text, under various definitions of stationary process;

e the adaptation of this procedure for clustering in high dimensions. Ex-
isting factor-based methods can be improved by the use of the nuclear
norm and the relaxation offered by the sparse component.

In conclusion, our research provides a tool to automatically explore large
data sets. This tool can be potentially used in the Big data context, where
both the dimension and the sample dimension are very large. This poses
new computational and theoretical challenges, the solution of which is crucial
to further extend the power of statistical modelling and its effectiveness in
detecting patterns and underlying drivers of real phenomena.
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