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Abstra
t

The present thesis 
on
erns large 
ovarian
e matrix estimation via 
omposite

minimization under the assumption of low rank plus sparse stru
ture. Exist-

ing methods like POET (Prin
ipal Orthogonal 
omplEment Thresholding)

perform estimation by extra
ting prin
ipal 
omponents and then applying a

soft thresholding algorithm. In 
ontrast, our method re
overs the low rank

plus sparse de
omposition of the 
ovarian
e matrix by least squares mini-

mization under nu
lear norm plus l1 norm penalization. This non-smooth


onvex minimization pro
edure is based on semide�nite programming and

subdi�erential methods, resulting in two separable problems solved by a sin-

gular value thresholding plus soft thresholding algorithm.

The most re
ent estimator in literature is 
alled LOREC (Low Rank and

sparsE Covarian
e estimator) and provides non-asymptoti
 error rates as well

as identi�ability 
onditions in the 
ontext of algebrai
 geometry. Our work

shows that the unshrinkage of the estimated eigenvalues of the low rank 
om-

ponent improves the performan
e of LOREC 
onsiderably. The same method

also re
overs 
ovarian
e stru
tures with very spiked latent eigenvalues like

in the POET setting, thus over
oming the ne
essary 
ondition p ≤ n. In

addition, it is proved that our method re
overs stru
tures with intermediate

degrees of spikiness, obtaining a loss whi
h is bounded a

ordingly.

Then, an ad ho
 model sele
tion 
riterion whi
h dete
ts the optimal

point in terms of 
omposite penalty is proposed. Empiri
al results 
oming

from a wide original simulation study where various low rank plus sparse

settings are simulated a

ording to di�erent parameter values are des
ribed

outlining in detail the improvements upon existing methods. Two real data-

sets are �nally explored highlighting the usefulness of our method in pra
ti
al

appli
ations.

Keywords: 
ovarian
e matrix, nu
lear norm, thresholding, low rank

plus sparse de
omposition, unshrinkage.
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Chapter 1

Introdu
tion

The present thesis 
on
erns large dimensional 
ovarian
e matrix estimation.

Estimation of population 
ovarian
e matri
es from samples of multivariate

data is of interest in many high-dimensional inferen
e problems - prin
i-

pal 
omponents analysis, 
lassi�
ation by dis
riminant analysis, inferring a

graphi
al model stru
ture, and others. Depending on the di�erent goal the

interest is sometimes in inferring the eigenstru
ture of the 
ovarian
e ma-

trix (as in PCA) and sometimes in estimating its inverse (as in dis
riminant

analysis or in graphi
al models). Examples of appli
ation areas where these

problems arise in
lude gene arrays, fMRI, text retrieval, image 
lassi�
ation,

spe
tros
opy, 
limate studies, �nan
e and ma
ro-e
onomi
 analysis.

The theory of multivariate analysis for normal variables has been well

worked out, see, for example, Anderson ([2℄). However, it be
ame apparent

that exa
t expressions were 
umbersome, and that multivariate data were

rarely Gaussian. The remedy was asymptoti
 theory for large samples and

�xed relatively small dimensions.

In re
ent years, datasets that do not �t into this framework have be
ome

very 
ommon, the data are very high-dimensional and sample sizes 
an be

very small relative to dimension. The most traditional 
ovarian
e estimator,

the sample 
ovarian
e matrix, is shown to be dramati
ally ill-
onditioned

in a large dimensional 
ontext, where the pro
ess dimension p is 
loser to

or even larger than the sample dimension n, even in the 
ase that the true


ovarian
e matrix is well-
onditioned. Some solutions to this drawba
k have

been proposed in the asymptoti
 
ontext (for example [75℄ [15℄ [45℄). An

alternative re
ent approa
h is by numeri
al optimization, whi
h provides in

the non-asymptoti
 
ontext, some solutions improving upon the mentioned

ones.

As des
ribed in the existing literature, two key properties of the matrix

estimation pro
ess assume a parti
ular relevan
e in large dimensions:

1. well 
onditioning, i.e. numeri
al stability;

2. identi�ability.

1



2 CHAPTER 1. INTRODUCTION

Both properties are 
ru
ial for the theoreti
al re
overy and the pra
ti
al use

of the estimate. A bad 
onditioned estimate su�ers from 
ollinearity and


auses its inverse, the pre
ision matrix, to amplify dramati
ally any error

in the data. A large dimension may 
ause the impossibility to identify the

unknown 
ovarian
e stru
ture and the di�
ulty to interpret the results.

The �rst property is strongly related to regularization te
hniques. A

basi
 referen
e in this respe
t is Tibshirani (1996) ([108℄), where the LASSO

estimation algorithm in the 
ontext of regression models was �rst proposed.

The se
ond property 
an be ensured by dimensionality redu
tion methods,

whi
h 
an be used to redu
e the parameter spa
e dimensionality.

Regularization approa
hes to large 
ovarian
e matri
es estimation have

therefore started to be presented in the literature, both from theoreti
al

and pra
ti
al points of view. Some authors propose shrinkage towards the

identity matrix ([75℄), others 
onsider tapering the sample 
ovarian
e matrix,

that is, gradually shrinking the o�-diagonal elements toward zero ([54℄). At

the same time, a 
ommon approa
h is to en
ourage sparsity, either by a

penalized likelihood approa
h ([53℄) or by thresholding the sample 
ovarian
e

matrix ([100℄).

For this reason, our resear
h studies a spe
i�
 regularization problem un-

der the assumption of low rank plus sparse de
omposition for the 
ovarian
e

matrix. Su
h a problem is solved exploiting non-smooth 
onvex optimization

methods. This approa
h allows to properly address both re
onditioning and

dimensionality redu
tion issues and is proved to be e�e
tive even in a large

dimensional 
ontext.

Our dissertation moves from a detailed outline of asymptoti
 approa
hes.

In Chapter 2, we provide a thorough des
ription of the motivation to our

work and a review of some relevant asymptoti
 methods for 
ovarian
e esti-

mation. Maximum likelihood estimators and unbiased �nite estimators are

des
ribed ([2℄). Spe
i�
 treatment to the 
onditioning problem for 
ovari-

an
e matrix estimates is given. The 
ovarian
e shrinkage estimator derived

by Ledoit and Wolf in the general asymptoti
 framework is des
ribed ([75℄).

Sparse 
ovarian
e estimators are shown together with the underlying as-

sumptions and the estimation error rates, with parti
ular referen
e to the

thresholding estimator of [15℄. POET (Prin
ipal Orthogonal 
omplEment

Thresholding) estimator ([45℄), whi
h 
ombines Prin
ipal Component Anal-

ysis and thresholding algorithms, is analyzed in detail.

In Chapter 3, we de�ne the regularization problem above mentioned. It

is a nu
lear norm plus l1 norm approximation problem, and works under the

assumption of low rank plus sparse stru
ture for the 
ovarian
e matrix. It

is 
omposed by a least squares loss and a 
omposite non-smooth penalty,

whi
h is the sum of the nu
lear norm of the low rank 
omponent and the l1
norm of the sparse 
omponent.

The numeri
al rationale behind the problem formulation is provided. It

is shown how this problem 
an be re
ast from the point of view of numeri
al
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analysis as a semi-de�nite program (SDP). Non standard optimization tools,

as subgradient minimization methods, are needed to solve it. We des
ribe

the most re
ent solution algorithm and point out its e�e
tiveness.

In Chapter 4, we provide a wide review of existing non-asymptoti
 meth-

ods. The evolution path of the most re
ent works is �gured out. The most

re
ent developments of the numeri
al approa
h under the assumption of low

rank plus sparse stru
ture for the 
ovarian
e matrix are des
ribed, starting

from the basi
 
ontribution by Chandraskeran et al. ([30℄) whi
h �rst proves

the exa
t re
overy of the 
ovarian
e matrix in the noiseless 
ontext. This

result is a
hieved minimizing a spe
i�
 
onvex non-smooth obje
tive, whi
h

is the sum of the nu
lear norm of the low rank 
omponent and the l1 norm

of the sparse 
omponent.

Then, the �rst approximate solution to re
overy and identi�ability in the

noisy 
ontext, 
oming from [1℄, is des
ribed. In the following, the extension

of [30℄ providing the �rst exa
t solution of the numeri
al problem in the

noisy graphi
al model setting ([31℄) is shown in detail. In that 
ontext, the

obje
tive is a least square loss penalized by the above mentioned 
omposite

penalty, and its optimization allows to re
over the inverse 
ovarian
e matrix.

In 
on
lusion, the extension of this framework to the 
ovarian
e matrix es-

timation 
ontext, 
oming from [77℄, is explained. The resulting estimator is


alled LOREC (LOw Rank and sparsE Covarian
e estimator).

In the last 
hapter (Chapter 5), an improvement over the solution de-

s
ribed in [77℄ is proposed, based on the unshrinkage of the estimated eigen-

values of the low rank 
omponent. Luo's approa
h is 
ompleted by deriving

the rates of the sparse 
omponent estimate, and the 
onditions for its posi-

tive de�niteness and invertibility. In addition, the rates of LOREC under the


onditions of POET, and, more importantly, in a 
ontext where the eigen-

values of the low rank 
omponent are allowed to grow with pα, α ∈ [0, 1]
(generalized spikiness 
ontext) are provided.

In the following, we show the results of our pro
edure on both simulated

and real data sets. We illustrate a new model sele
tion 
riterion whi
h

is proved to be e�e
tive in our 
ontext. An original simulation study is

presented where extensive simulation results are pointed out, as well as the

simulation algorithm and the estimation assessment framework.

In the end, the performan
e of our new proposed estimator is 
ompared

to the one of LOREC and POET under various settings. Two real examples

are provided where our model is e�e
tive respe
t to the 
ompetitors. In par-

ti
ular, the se
ond example is a banking supervisory data set whi
h 
olle
ts

supervisory reporting indi
ators of the most relevant Euro Area banks. We

expli
itly thank the Supervisory Statisti
s Division of the European Central

Bank, where the author spent a semester as a PhD trainee, for the allowan
e

to use these data in anonymous form for resear
h purposes.

The Con
lusions (Chapter 6) sum up the main �ndings of our resear
h.
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Chapter 2

Covarian
e matrix estimation:

state of the art

In this 
hapter, a short review of existing solutions to the problem of 
o-

varian
e matrix estimation is provided. Parti
ular attention is given to the

two properties displayed in the Introdu
tion (well 
onditioning and identi�-

ability) and to the performan
e of existing methods in the large dimensional


ontext. An exhaustive review 
an be found in Pourhamadi (2013) ([95℄).

This Chapter shows a path a
ross existing estimators aimed at outlining

the two mentioned features (well 
onditioning and identi�ability) for ea
h

estimation setting, espe
ially when p is very large 
ompared to the sample

size n or even larger. This is why, for ea
h estimator, a detailed dis
ussion of

the asymptoti
 framework and the assumptions needed to ensure 
onsisten
y

(i.e. the 
onvergen
e to the theoreti
al 
ovarian
e matrix) is provided.

Existing approa
hes to the estimation problem are des
ribed in this

Chapter, while non-asymptoti
 approa
hes will be the obje
t of next 
hap-

ters. The des
ription of past approa
hes is intended to display the main is-

sues en
ountered by existing methods, with parti
ular referen
e to the large

dimensional 
ontext, and the reasons why we need to develop an alternative

numeri
al approa
h to the 
ovarian
e estimation problem.

The �rst paragraph (2.1) is devoted to 
ovarian
e matrix estimation un-

der the assumption of normality for the data. The maximum likelihood

estimator, i.e. the sample 
ovarian
e matrix, is introdu
ed and justi�ed.

The unbiased sample 
ovarian
e matrix, under the assumption of �xed n, is
then outlined. A spe
i�
 remark on the asymptoti
 distribution of the sam-

ple 
ovarian
e matrix under the assumption of independen
e and identi
al

distribution for the data 
on
ludes the se
tion.

In the se
ond paragraph (2.2) the 
onditioning properties of the sam-

ple 
ovarian
e matrix are explored. The reason why the sample 
ovarian
e

matrix is bad-
onditioned when the dimension is 
lose to the sample size

is deeply explained and analyzed, as well as the reason why the inverse

5
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ovarian
e matrix dramati
ally ampli�es the estimation error in 
ase of bad-


onditioning.

The third paragraph (2.3) widely des
ribes a su

essful attempt to ad-

dress the problem of re
onditioning the sample 
ovarian
e matrix when the

dimension is larger than the sample size: the shrinkage estimator by Ledoit

& Wolf ([75℄). Their motivations, their results and their asymptoti
 
ontext

are properly highlighted, trying to retain the key elements of their approa
h.

The fourth paragraph (2.4) brie�y outlines existing sparsity estimators,

with parti
ular referen
e to the thresholding estimator by Bi
kel & Levina

([15℄), whi
h is des
ribed in detail with respe
t to model assumptions and


onvergen
e rates. There we point out the strong link between sparsity

assumptions and shrinkage thresholding. That family of estimators shows

how it is possible to use sparsity to re
ondition the 
ovarian
e estimate and

to signi�
antly redu
e the number of parameters.

The �fth paragraph (2.5) des
ribes 
ovarian
e matri
es estimator based

on fa
tor model assumptions. A brief overview of fa
tor model spe
i�
ations

and underlying assumptions a
ross history is provided, dis
ussing the dif-

ferent asymptoti
 
ontexts. The relationship between Prin
ipal Component

Analysis (PCA, [72℄) and fa
tor modelling (see [59℄) is 
ru
ial in this respe
t.

Finally, POET estimator ([45℄), based on the assumption of approximate fa
-

tor model with a sparse residual matrix, is widely illustrated, pointing out

the 
ru
ial assumptions for 
onsisten
y and identi�ability.

In [45℄, the population 
ovarian
e matrix is assumed to be the sum of a

low rank and a sparse 
omponent. POET works under the assumption of

sparse residual 
ovarian
e matrix and pervasive eigenvalues of the low rank


omponent (as p→∞). This stru
ture is parti
ularly 
onvenient in a large

dimensional 
ontext, and ta
kles both the issues mentioned above, as we

will widely explain. For the same reasons, the fa
tor analysis assumption is

a key to approa
h 
ovarian
e estimation in large dimensions. The asymp-

toti
 
orresponden
e between PCA and fa
tor estimation is there established

a

ording to the underlying assumptions and then exploited.

Before starting, we des
ribe the basi
 matrix terminology. We restri
t

our analysis to the real 
ase. The spe
tral theorem ensures that, when M
is a positive semide�nite squared p - dimensional real matrix with rank r,
there exists an orthogonal p×r matrix U and a diagonal r×r matrix Λ su
h

that

M = UΛU ′ =
r
∑

i=1

λiuiu
′
i, (2.1)

whi
h is the eigenvalue de
omposition ofM . S
alars λ1, . . . , λr are 
alled
the eigenvalues of M and are stri
tly larger than 0. The r 
olumns of U are

the eigenve
tors of M . If M is symmetri
, the eigenvalues 
oin
ide with the

singular values σ1,...,r, whi
h are the square roots of the eigenvalues ofM ′M ,
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i.e. the absolute values of the eigenvalues of M . A fortiori, this happens if

M is a 
ovarian
e matrix, whi
h is symmetri
 and positive de�nite.

The relevant norms we are going to use throughout the entire thesis are

(see also [62℄):

• ||M ||2 =
√

σmax(M ′M) is the spe
tral norm of M , whi
h is its largest

singular value.

• ||M ||∞ = maxi,j |mij | is the in�nity norm of M , whi
h is the largest

entry in magnitude.

• ||M ||F = trace(M ′M) =
√

∑

i

∑

j m
2
ij is the Frobenius norm of M ,

whi
h is the square root of the sum of the entries of M .

• ||M ||∗ = trace(
√
M ′M) =

∑p
i=1 σi, sum of the singular values of

M .||M ||∗ is 
alled nu
lear norm. If M is a Positive SemiDe�nite ma-

trix (PSD), ||M ||∗ = tr(M), be
ause the eigenvalues and the singular

values exa
ly 
oin
ide.

• ||M ||1 =
∑

i

∑

j |mij|: sum of the absolute values of the entries of M .

For a p-dimensional ve
tor x, the relevant norms for our purpose are:

• ||x||2 =
√

∑

i x
2
i , the Eu
lidean norm of x.

• ||x||1 =
∑p

i=1 |xi|, the l1 norm of x.

• ||x||∞ = maxi |xi|, the maximum norm of x.

2.1 Sample 
ovarian
e matrix estimators

In this paragraph we fo
us on the most used estimator of the 
ovarian
e

matrix: the sample 
ovarian
e matrix. First, we will derive it as the maxi-

mum likelihood estimator of the 
ovarian
e matrix under the assumption of

multivariate normality for our data (2.1.1). Maximum likelihood estimators

are 
onsistent when n→∞. This is why we then derive the unbiased 
ovari-

an
e estimator under the assumption of n �nite (2.1.2), whi
h is a slightly

modi�ed version of the sample 
ovarian
e matrix. These two estimators

asymptoti
ally 
onverge when n → ∞, under the assumption of p �xed. In

the end of this paragraph, we give a �ash about the behaviour of this esti-

mator under the assumption of independen
e and identi
al distribution for

our data when n→∞ (2.1.3).

Our main referen
e for this argument is the famous book by Anderson

([2℄).
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2.1.1 The Maximum Likelihood 
ovarian
e estimator

Suppose we have a sample (x1, . . . xn), from a real-valued p−dimensional

normal random variable x ∼ Np(µ
∗,Σ∗), with p ≤ n. The p × p matrix

Σ∗ = E((x − µ∗)(x − µ∗)′) is real positive de�nite and symmetri
, while

µ∗ = E(x) is a p× 1 ve
tor.

The density of x is the following:

f(x|µ∗,Σ∗) = (2π)−
1
2
p|Σ∗|− 1

2 exp

[

−1

2
(x− µ∗)′Σ∗−1(x− µ∗)

]

.

where µ∗ is a p × 1 ve
tor and Σ∗
is a p × p invertible (positive de�nite)

matrix.

The likelihood fun
tion is

L(µ∗,Σ∗) =
n
∏

i=1

N(xi|µ∗,Σ∗) =

= (2π)−
1
2
pn|Σ∗|− 1

2
n exp

[

−1/2
n
∑

i=1

(xi − µ∗)′Σ∗−1(xi − µ∗)
]

.

The log-likelihood is then

logL(µ∗,Σ∗) = −1

2
pn log 2π − 1

2
n log |Σ∗| − 1

2

n
∑

i=1

(xi − µ∗)′Σ∗−1(xi − µ∗).

We denote by µ̂ML and Σ̂ML the ve
tor and the positive de�nite matrix

maximizing logL. They are the maximum likelihood estimators of µ∗ and

Σ∗
. Sin
e logL is an in
reasing fun
tion of L, logL and L share the same

maximum respe
t to our parameter estimates.

The following important theorem holds:

Theorem 2.1.1. If x1, . . . xn 
onstitute a sample from N(µ∗,Σ∗) with p < n,
the maximum likelihood estimators of µ∗ and Σ∗

are µ̂ML = x̄ = 1
n

∑n
i=1 xi

and Σ̂ML = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′ respe
tively.

The proof 
an be found in Anderson (1958), page 67 and following. It ex-

ploits the properties of the arithmeti
 mean and of positive de�nite matri
es.

The key argument is that logL 
an be rewritten in the following way:

−1

2
pn log 2π − 1

2
log |Σ∗| − 1

2
trΣ∗−1D − 1

2
n(xi − µ∗)Σ∗−1(xi − µ∗)′,

where D =
∑n

i=1(xi − x̄)(xi − x̄)′.
In order to perform maximization, the ne
essary assumption is that Σ∗

is a positive de�nite matrix. This 
ondition is ne
essary to ensure that the
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term n(xi−µ∗)Σ∗−1(xi−µ∗)′ a
hieves a maximum for µ∗ = x̄ and the term

log |Σ∗| − tr(Σ∗−1D) a
hieves a maximum for Σ∗ = 1
nD.

ML estimators show a number of interesting optimality properties. In

parti
ular, they are 
onsistent and asymptoti
ally e�
ient ([34℄). A theorem

by Cramer ensures that µ̂ML and Σ̂ML are minimum varian
e (asymptoti-


ally) unbiased estimators. These properties hold if and only if n→∞.

Note that also the 
ondition p < n is ne
essary in order to perform

maximization. In order to see this point, we need to re
all a basi
 theorem

([2℄, p.77):

Theorem 2.1.2. The maximum likelihood estimator µ̂ML = x̄ = 1
n

∑n
i=1 xi,

from N(µ∗,Σ∗), is distributed a

ording to N(µ∗, 1nΣ
∗) and independently

of Σ̂ML = Σ̂ = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′. nΣ̂ is distributed a

ording to

∑n−1
i=1 ziz

′
i, where zi ∼ N(0,Σ∗), and z1, . . . , zn−1 are independent.

This theorem states that under the multivariate normality assumption

for the data, nΣ̂ is the sum of n− 1 squared p dimensional matri
es having

rank 1. If p ≥ n, nΣ̂ will never have full rank p.

In addition, it has been shown by Wishart ([113℄) that D = nΣ̂ is a

matrix-valued sto
hasti
 pro
ess having the following distribution:

f(D|Σ∗) =
|D| 12 (n−p−1) exp

(

−1
2tr(Σ

∗−1D)
)

2
1
2
npπ

p(p−1)
4 |Σ∗| 12n

∏p
i=1 Γ[

1
2 (n+ 1− i)]

whi
h is a Wishart distribution with ν = n−1 degrees of freedom, where

Γ(t) =
∫∞
0 xt−1e−xdx is the usual Gamma fun
tion. The proof is reported

in [2℄ (p.252 and following). It exploits massively the linear transforms of

random variables, and is based on the properties of Gram-S
hmidt orthogo-

nalization algorithm.

This results was �rst derived for a bi-variate distribution by Fisher ([51℄)

where the distribution of the 
orrelation 
oe�
ient (�rst de�ned by Karl

Pearson in [91℄) was also derived.

We 
an now understand why p < n is a ne
essary 
ondition. If n ≤ p,
f(D|Σ∗) is no longer a density, su
h that it is no longer possible to derive the

asymptoti
 distribution for Σ̂ (i.e., all the usual optimality properties of ML

estimators are lost). In fa
t, |D| would be zero, and the distribution would

thus be degenerate, having null measure in Rp×p
everywhere. Note also that

if n = p + 1 f(D|Σ∗) has not a mode, analogously to the χ2
distribution

with two degrees of freedom.

In the same way, denoting by T the quantity T = (x̄−µ∗)′W−1(x̄−µ∗),
where W = D

n−1 , it has been shown by Hotelling ([64℄) that

ν − p− 1

vp
T 2 ∼ Fp,ν−p+1,



10 CHAPTER 2. STATE OF THE ART

where F is Fisher's distribution with p and ν − p+ 1 degrees of freedom

(ν = n−1). T 2
is 
alled Hotelling's T-squared distribution. It is non-singular

if and only if both µ̂ and Σ̂ are non-singular, i.e. if Σ∗
is positive de�nite

and ν − p+ 1 > 0 (equivalent to n > p).

So, both the sample mean and the sample 
ovarian
e matrix are ML

estimators of the true mean and the true 
ovarian
e matrix if and only if

the true 
ovarian
e matrix is positive de�nite and the dimension p is stri
tly
smaller than the sample size n. In parti
ular, the distribution of the sample


ovarian
e matrix is

n
n−1Wishart(Σ∗, n−1). This means that Σ̂ is biased if n

is �nite. Note that this distribution does not 
hange even when the true mean

µ∗ is known, unless x̄ is repla
ed by the true µ∗. In that 
ase, the degrees

of freedom are n and the resulting estimator (

1
n

∑n
i=1(xi − µ∗)(xi − µ∗)′) is

unbiased.

2.1.2 The unbiased 
ovarian
e estimator: �xed n 
ontext

In order to derive the �nite sample unbiased estimator of the 
ovarian
e

matrix, the key result is Theorem 2.1.2 about the distribution of D = nΣ̂ =
∑n

i=1(xi − x̄)(xi − x̄)′ shown above.

A 
orollary of that theorem states:

Corollary 2.1.1. Let x1, . . . , xn(n > p) be independently distributed, ea
h

a

ording to N(µ∗,Σ∗). The distribution of Σ̂ν = 1
ν

∑n
i=1(xi− x̄)(xi − x̄)′ is

Wishart(Σ∗, ν), where ν = n− 1.

This result means that Σ̂n−1 = ( 1
n−1)

∑n
i=1(xi−x̄)(xi−x̄)′ is the unbiased

estimator of the 
ovarian
e matrix when the dimension n is �nite. This

estimator will be the input of our new estimation pro
edure in Chapter 4.

Clearly, Σ̂n−1 and Σ̂n 
onverge asymptoti
ally to the same estimator.

We are now going to derive the asymptoti
 (normal) distribution of the

sample 
ovarian
e matrix in the more general 
ase of IID data.

2.1.3 Covarian
e matrix estimation: the IID data 
ontext

Let us suppose xi ∼ IID(µ∗,Σ∗), i = 1 . . . , n. We want to derive the

asymptoti
 distribution of Σ̂n = 1
n

∑n
i=1(xi − x̄)′(xi − x̄). Under the IID

hypothesis, we have:

E(xix
′
i) = E(xi)E(x′i) = Σ∗ + µ∗µ∗

′

,

V (xix
′
i) = V (xi) + V (xi) = Σ∗ +Σ∗ = 2Σ∗.

Our target 
an be rewritten as the sum of three 
omponents:

1

n

n
∑

i=1

(xi − x̄)(xi − x̄)′ =
n
∑

i=1

xix
′
i

n
− 2

n
∑

i=1

x̄
x′i
n

+
n
∑

i=1

x̄x̄′

n
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Sin
e

∑n
i=1

xi

n

prob→ µ∗, we have that

−2x̄
n
∑

i=1

xi
n

+

n
∑

i=1

x̄x̄′

n
= −2x̄x̄′ + x̄x̄′ = −x̄x̄′.


onverges in probability as follows:

−x̄x̄′ prob→ −µ∗µ∗′ (2.2)

Now, the �rst 
omponent

∑n
i=1

xix′
i

n 
an be rewritten as

1√
n

n
∑

i=1

(xix
′
i)√
n

So, for the Central Limit theorem, we have

1√
n

n
∑

i=1

xix
′
i − (Σ∗ + µ∗µ∗

′

)√
n

CLT→ 1

n
N(µ∗µ∗

′

+Σ∗, 2Σ∗).

Re
alling (2.2), we have that

Σ̂n
distrib→ 1√

n
N(Σ∗, 2Σ∗). (2.3)

These results �nd 
on�rmation in [58℄.

2.2 The sample 
ovarian
e matrix: 
onditioning prop-

erties

We are now going to brie�y talk about matrix 
onditioning. Let us suppose

p and n are �xed. If n > p, the expe
ted value of Σν=n−1 is Σ∗
, and the

entries of its 
ovarian
e matrix are V (σ̂n,ij) =
(σ∗2

ij +σ∗
iiσ

∗
jj )

(n−1) . This highlights

why the varian
e of Σ̂n in
reases as the true 
ondition number of Σ
∗
in
reases.

If the 
ondition number c = σmax/σmin in
reases, the 
orrelation between

the 
omponents xi and xj in
reases, be
ause Σ∗
is 
loser to 
ollinearity.

Consequently, V (σ̂n,ij) in
reases, be
ause σ
∗2
ij is 
loser to its maximum, whi
h

is σ∗iiσ
∗
jj (for the Cau
hy-S
hwartz inequality).

Coming ba
k to the main point, it is 
ru
ial to study the behaviour of

the sample eigenvalues. In the matrix estimation 
ontext there is a relevant

issue about numeri
al 
onditioning, i.e. the behaviour of sample maximum

and minimum singular values, of a p× n data matrix X.

Theorem 2.2.1 (Theorem ([39℄)). Given natural numbers n, p with p < n+1
let X be a p × n matrix with i.i.d. Gaussian entries that have zero-mean
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and varian
e

1
n . Then the largest and smallest singular values σmin(X) and

σmax(X) are su
h that

max

{

Pr

[

λmax ≥ 1 +

√

p

n
+ t

]

, P r

[

λmin ≤ 1−
√

p

n
− t
]}

≤ exp

{−nt2
2

}

,

for any t > 0.

This theorem was proved by using arguments from random matrix theory

and the geometry of Bana
h spa
es. It is an essential result to provide a

probabilisti
 bound for the error distan
e ||Σ̂n−Σ∗||2, where Σ̂n = 1
nX

′X =
1
n

∑n
i=1 xix

′
i.

In fa
t, the following Lemma holds:

Lemma 2.2.1. Let ψ = ||Σ∗||2. Given any δ > 0 and φ > 0 with ψ ≤ 8φ,

let the number of samples n be su
h that n ≥ 64pφ2

δ2
. Then we have that

Pr[||Σn − Σ∗||2 ≥ δ] ≤ 2 exp

(

− nδ2

128ψ2

)

.

This Theorem is based on a spe
i�
 assumption on ψ, the largest eigen-
value of Σ∗

. By appropriately setting the parameter ψ, we 
an obtain the

probabilisti
 bound a

ordingly.

This Lemma relies on the fa
t that the spe
tral norm is unitarily invari-

ant, su
h that it is possible to assume a diagonal stru
ture for Σ̂ without

loss of generality and then apply the previous theorem 2.2.1.

It is remarkable that without further assumptions, Σ̂n is not invertible if

p > n (sin
e it is perfe
tly 
ollinear, having 
learly at most rank n, and for

the rest null eigenvalues). Even if p ≤ n, in the 
ase the ratio p/n is less than

1 but not negligible, the estimated (maximum and minimum) eigenvalues

are numeri
ally unstable, sin
e the probabilisti
 bound is too large. This

may result in bad 
onditioning (i.e. too large 
ondition number) for Σ̂n.

This is why in the Big Data 
ontext, when p is very large, it is frequent to

have an ill-
onditioned sample 
ovarian
e matrix, sin
e it is di�
ult to have

enough observation to keep the ratio p/n negligible ([75℄).

The example in �gure (2.1) 
learly outlines the des
ribed drawba
k. The

eigenvalues of the 
ovarian
e matrix of a simulated n × p pro
ess ǫi =
Np (0, 1nI), p = 100 , n = [10, 50, 100, 500, 1000, 10000] are plotted. The �g-
ure displays how the dispersion of the eigenvalues de
reases as p/n de
reases.

All distributions tend to the Mar
enko-Pastur distribution, whi
h is proved

to be the limiting distribution of the eigenvalues of IID random variables (in

the Kolmogorov asymptoti
 framework, see [79℄). The rank is always equal

to min(p, n− 1). If p = n, the matrix is thus singular.

We have provided this simple example to state that without further as-

sumption on the eigen-stru
ture (values and ve
tors) of Σ∗
, the 
ondition
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Figure 2.1: Eigenvalues of the sample 
ovarian
e matrix of ǫi = Np(0,
1
nI),

p = 100, n varying

p ≤ n is unavoidable in order to guarantee the positive de�niteness (and

thus the invertibility) of our 
ovarian
e estimate. Anyway, the re
overy of

the eigen-stru
ture of a 
ovarian
e matrix is strongly related to the underly-

ing assumptions and to the asymptoti
 
ontext.

We now enumerate three parameter settings relevant for our dissertation:

1. p and n �xed: this is the 
ase of Σ̂n−1, and all numeri
al estimators

we will analyze in next 
hapters ([31℄, [1℄, [77℄,[15℄)

2. p �xed, n→∞: this is the 
ase of Σ̂ML, or of the approximate fa
tor

model ([29℄)

3.

pn
n → c when n→∞: here we �nd the General asymptoti
 framework,

used by Ledoit and Wolf to ensure the 
onsisten
y of their estimator

([75℄), and the Kolmogorov asymptoti
 framework (where also p→∞).

Also 
onsisten
y properties of the thresholding estimator ([15℄) and of

POET estimator ([45℄) are derived under a similar framework, where a

fun
tion of p and n tends to 0 while n→∞. See for more explanations

se
tions (2.4) and (2.5).

In the se
ond 
ontext, with �xed p and n, the outlined results 
on
ern-

ing numeri
al 
onditioning for the sample 
ovarian
e matrix hold, and the


ondition p ≤ n is unavoidable without further assumptions to derive �nite

sample bounds. This is why one of the aims of the present work is trying

to exploit results from the third asymptoti
 framework (in terms of model

assumptions) to establish bounds under the �nite sample 
ontext dropping

the 
ondition p ≤ n.
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2.2.1 Matrix 
onditioning as an ill-posed inverse problem

We are now explaining in detail why a bad-
onditioned sample matrix is a

fatal drawba
k for us. The reason stands in the 
onsequen
es deriving from

the inversion of a bad-
onditioned matrix.

Let us now 
onsider the standard linear system Ax = b, where A is p×p,
and x, b are p × 1. If our aim is to derive b (the output), we are solving

the dire
t problem. If our aim is to derive x (the input), we are solving the

inverse problem. If A is full rank, Cramer's theorem is ensuring that the

inverse problem has exa
t solution x∗ = A−1b. Otherwise, if A has rank

r < p, we need to solve the least squares problem

min
x∈Rp

||Ax− b||2,

and we have

x∗ =
r
∑

i=1

|u′ib|
λi

ui (2.4)

||Ax∗ − b||2 =
p
∑

i=r+1

||u′ib||2.

This fundamental result was proved in [40℄.

How mu
h is solution the x∗ reliable? Hadamard([57℄) outlined the three


hara
teristi
s of a well-posed problem:

• existen
e: the problem admits one solution

• uniqueness: the problem has at most one solution

• stability: the problem is not sensitive to data perturbation.

In our 
ontext, if A is full rank, the inverse problem may be ill-posed sin
e

it violates the stability 
ondition. If A is not full rank, the inverse problem is

ill-posed sin
e it violates the existen
e and the uniqueness 
ondition (there

are only approximate solutions, no exa
t ones). The least squares system

serves for identifying in any 
ase a solution even if there would be none.

Anyway, (2.1) and (2.4) enable us to understand why the inverse of bad-


onditioned matri
es are numeri
ally unstable. The solution of the dire
t

problem is Ax = UΛU ′x =
∑p

i=1 λi(u
′
ix)ui, whi
h dampens the 
omponents


orresponding to the smallest eigenvalues of A. On the 
ontrary, (2.4) shows

us that the solution of the inverse problem ampli�es the e�e
ts of the same


omponents. If we assume that b is perturbed, i.e. bǫ = b+ ǫ, we note that

xǫ = x∗ +
∑r

i=1
|u′

iǫ|
λi
ui. So, if A is bad 
onditioned (i.e. we have very small

eigenvalues), the e�e
t of data perturbation is ampli�ed, and the solution

may not be e�e
tively usable in appli
ations.
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This is why Pi
ard ([93℄) elaborated a 
ondition under whi
h the inverse

solution is reliable. It states that x∗ =
∑r

i=1
|u′

ib|
λi
ui < ∞ if and only if

|u′ib| de
ays more rapidly than the 
orresponding λi for all i, whi
h o

urs if

λi > τ ∀i, where τ is the threshold at whi
h the singular values are levelled

by the noise.

If this 
ondition is violated, a regularization method, like the trun
ated

singular value de
omposition (TSVD, see [55℄) or Tikhonov's regression method

([109℄) or other regression methods (like the ridge one), are needed. This is

why the nonasymptoti
 approa
h for 
ovarian
e matrix estimation essentially


onsists in spe
ifying appropriate regularization problems under suitable 
on-

ditions for deriving improved error rates, as we will widely des
ribe in the

following 
hapters.

Note that there is a huge literature dealing with the distribution of eigen-

values. We mention again Mar
enko-Pastur law, whi
h des
ribes the be-

haviour of the singular values of a re
tangular random matrix having Gaus-

sian entries ([79℄). Tra
y and Widom ([107℄) found the limiting distribution

of the singular values of a large dimensional random Hermitian matrix. John-

stone ([70℄) found out the limiting distribution of the largest eigenvalue in

prin
ipal 
omponent analysis (for n ≤ p, under the assumption of indepen-

dent normality for the 
olumns of the data matrix) whi
h is proportional to

a Wishart of order 1. A re
ent work by Chiani ([33℄) derived the exa
t dis-

tribution of the largest eigenvalues for real Wishart matri
es and Gaussian

Orthogonal Ensembles.

The work in [70℄, in parti
ular, outlined that for large p it 
an be easier

to re
over the top r eigenvalues if they are parti
ularly spiked, be
ause the

distribution of the (r + 1)-th eigenvalue is bounded by a Tra
y-Widom law

of lower dimensions (n × (p − r) respe
t to n × p). Thus, the (r + 1)-th
eigenvalue of a set of p eigenvalues where r are spiked is sto
hasti
ally smaller

than the largest eigenvalue of a setting of (p − r) < p variables non-spiked.

This fa
t suggests that large dimensions (p → ∞) 
an help the re
overy of

strong eigenvalues and somehow justi�es the use of "s
ree-plot" to 
hoose

the number of eigenvalues.

There are also some results on the distribution of the smallest eigenvalues.

We refer to [8℄ for a general review.

All in all, the problem of re
onditioning our 
ovarian
e matrix estimate

is approa
hed di�erently a

ording to the related asymptoti
 
ontext. In

Chapter 4 we will fo
us on the non-asymptoti
 
ontext, outlining various

solutions re
ently provided. Now, we will fo
us on the des
ription of key


ovarian
e estimators in the asymptoti
 
ontext where both p and n are

allowed to tend to∞. The estimator we are about to des
ribe belongs to the


lass of shrinkage estimators ([68℄) whi
h represent a widely used approa
h

in this 
ontext as an e�e
tive regularization method. It is relevant to note

that the distributional assumption of normality is no longer needed, sin
e
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the approa
h we are going to des
ribe is distribution-free.

2.3 Shrinkage towards the identity: Ledoit andWolf's

approa
h

Ledoit and Wolf were the �rst to derive in [75℄ a 
onsistent estimator of the


ovarian
e matrix in a new asymptoti
 framework, 
alled general asymptoti


framework. They proposed a way to temper the numeri
al instability of sam-

ple eigenvalues, expli
itly re
onditioning them by shrinkage. The adoption

of a new asymptoti
 framework was needed to ensure the shrinkage inten-

sity to be positive, avoiding it to vanish in the limit. Their estimator is

also Bayesian in nature, sin
e it is a 
ombination of a priori and sample

information. They 
all it Empiri
al Bayesian estimator.

The motivating result of their analysis it reported below.

Theorem 2.3.1. The eigenvalues are the most dispersed diagonal elements

that 
an be obtained by rotation of a symmetri
 matrix.

The proof exploits the invarian
e by rotation of tra
e.

This 
auses that the largest sample eigenvalues are positively biased,

while the smallest are negatively biased, and the bias in
reases in p/n (re-


all Theorem 2.2.1). The pattern of sample eigenvalues depends on the

Mar
enko-Pastur distribution, whi
h holds in the Kolmogorov asymptoti


framework. As des
ribed, under Kolmogorov asymptoti
s the ratio p/n tends
to a spe
i�
 
onstant, while both p and n tend to in�nity.

Here we report the solution proposed by Ledoit and Wolf to the des
ribed

problem. Their idea is to shrink the sample 
ovarian
e matrix towards the

identity matrix, solving the following optimization problem (thus re
ondi-

tioning the eigenvalues):

min
ρ1,ρ2

E[||Σ − Σ∗||2]

s.t.Σ = ρ1Ip + ρ2Σ̂n.

where ρ1 and ρ2 are nonrandom 
oe�
ients.

The theoreti
al solution to this problem is the optimal linear shrink-

age estimator

ΣLW =
β2

γ2
µI +

α2

γ2
Σ̂n (2.5)

with E[||ΣLW −Σ∗||2] = α2β2

γ2 , where:
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µ =< Σ, I >;

α2 = ||Σ∗ − µI||2;
β2 = E[||Σ̂n − Σ∗||2];
γ2 = E[||Σ̂n − µI||2].

Their derivation exploits the natural Pythagorean relationship

α2 + β2 = γ2. (2.6)

In this view, the ratio

β2

γ2 is 
alled optimal shrinkage intensity.

The most important interpretation of this approa
h for our purposes is

the following. It is well known (Theorem 2.2.1) that the sample eigenvalues

of IID data have bounded error respe
t to the true ones, so that, under the


ondition p ≤ n (p and n �xed),

1
pE(

∑p
i=1 λ̂i) =

1
p

∑p
i=1 λi, i.e. the tra
e of

Σ∗
is unbiasedly estimated.

At the same time, theorem 2.3.1 shows that sample eigenvalues have a

larger dispersion around their grand mean respe
t to the true ones (assuming

that the eigenve
tors are reliable). From (2.6) we 
an argue that

1

p
E

[

p
∑

i=1

(λ̂i − µ)2
]

=
1

p

p
∑

i=1

(λi − µ)2 + E[||Σ̂n − Σ||2],

i.e. the ex
ess dispersion of the sample eigenvalues is the error of the sample


ovarian
e matrix. This is why here the authors bound [||Σ̂n − Σ||2] by
bounding

1
pE
[

∑p
i=1(λ̂i − µ)2

]

, where µ = 1.

So, ΣLW impli
itly does the re
onditioning of eigenvalues, sin
e

λi,LW =
β2

γ2
µ+

α2

γ2
λ̂i, ∀i = 1, . . . , p.

1
pE[
∑p

i=1(λ̂i,LW −µ)2] is equal to α2

γ , and is even smaller than the dispersion

of the true ones, for the reasons des
ribed above. Note that this method is

very similar in its meaning to the max log− det heuristi
s for nu
lear norm
minimization (see [49℄).

2.3.1 General Asymptoti
s

In order to derive a feasible estimator, we now need to get into a new

asymptoti
 framework, sin
e the optimal shrinkage intensity β2 vanishes as

||Σ̂n − Σ∗||2 vanishes when n → ∞ in the standard asymptoti
 framework

(as proved in paragraph 2.1.3, see 
onvergen
e (2.3)). This fa
t, when p is


loser to n or even larger, is in
onsistent with reality. So, a new asymptoti


framework, 
alled General Asymptoti
s, is needed, where β2 is not vanishing.
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Consider n = 1, 2, . . . indexing a sequen
e of statisti
al models, and for

every n, Xn is a pn×n matrix of n iid observations on a system of pn random

zero mean variables with 
ovarian
e matrix Σn.

The following assumption 
hara
terizes this 
ontext:

A1. There exists a 
onstant K1 independent of n su
h that pn/n ≤ K1.

It is remarkable that in this setting p 
an 
hange and even go to in�nity,

but it is not required. Di�erently from the Kolmogorov asymptoti
 frame-

work (the one of Mar
enko-Pastur Law), it is not even ne
essary this ratio

tends to a �nite 
onstant.

Two further assumptions are needed to derive a 
onsistent estimator of

ΣLW . If Σn = ΓnΛnΓ
′
n, the produ
t Yn = Γ′

nXn is a set of un
orrelated

variables spanning the same spa
e as the original variables. The following

restri
tions on the higher moments of Yn are imposed:

A2. There exists a 
onstant K2 independent of n su
h that

1

pn

pn
∑

i=1

E[(yni1)
8] ≤ K2,

A3.

lim
n→∞

p2

n2

∑

i,j,k,l ∈ QnCov(yi1yj1, yk1yl1)

Cardinal ofQn
= 0.

where Qn denotes the set of all the quadruples that are made of four

distin
t integers between 1 and pn.
Assumption 2 states that the eighth moment of y is bounded (on average).

Assumption 3 states that produ
ts of un
orrelated random variables are

themselves un
orrelated (on average, in the limit). In the 
ase when general

asymptoti
s degenerate into standard asymptoti
s (p/n → 0); Assumption

3 is trivially veri�ed as a 
onsequen
e of Assumption 2.

For what previously stated, Assumption 3 is veri�ed when random vari-

ables are normally or even ellipti
ally distributed, sin
e the sample 
ovarian
e

of (un
orrelated) normal variables is asymptoti
ally unbiased. Anyway, A3

is mu
h weaker than that situation.

These assumptions are spe
i�
ally needed to derive the sample 
ounter-

parts of µ,γ2, β2.
Note that these two assumptions heavily involve the eigenstru
ture (eigen-

values and eigenve
tors) of the true 
ovarian
e matrix. Here we need to

impose restri
tions on eighth moments, for the parti
ular nature of their op-

timal weights. Anyway, the need to 
ontrol the pervasiveness of the latent

stru
ture in the 
ovarian
e matrix is 
ru
ial for model re
overy. We also

underline how mu
h latent fa
torial assumptions 
an impa
t on 
ovarian
e

estimation. This is why we are going to spe
i�
ally dis
uss the relationship

between fa
tor modelling and 
ovarian
e estimation in paragraph (2.5).

Under these assumptions, Ledoit and Wolf approa
h the study on the


onsisten
y of their estimator. In their 
ontext, the referen
e norm is ||A||n =
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1
pn
tr(AA′), su
h that the identity matrix has always norm one, and the refer-

en
e 
ross produ
t is < A1, A2 >n=
1
pn
tr(A1A

′
2). The problem of obtaining

meaningful absolute rates in high dimensions is another relevant issue. As

we will see, in [45℄ the authors derive asymptoti
 rates for the relative error

matrix (and not the 
ovarian
e matrix itself). Instead, under the nonasymp-

toti
 setting (Chapter 4), we will obtain �nite absolute rates, even under the

same assumptions of [45℄.

We are now going to show why the sample 
ovarian
e matrix is not


onsistent in this 
ontext, di�erently from the �nite p 
ontext, where the


ovarian
e matrix is asymptoti
ally 
onsistent under the assumption of nor-

mality. The authors show that quantities µn =< Σn, I >,α
2
n = ||Σn−µnI||2,

β2n = E[||Σ̂n−Σn||2], γ2n = E[||Σ̂n−µI||2] are bounded in the general asymp-

toti
 framework when n → ∞. Then, they prove the following important

Theorem:

Theorem 2.3.2. De�ne θ2n = V ar( 1
pn

∑pn
i=1E[(yni1)

2]). θ2n is bounded as

n→∞, and we have:

lim
n→∞

E[||Σ̂n −Σn||2] =
pn
n
(µ2n + θ2n).

This result states that the sample 
ovarian
e matrix is not 
onsistent

under the general asymptoti
 framework, sin
e its expe
ted loss is lower

bounded by

pn
n (µ2n), whi
h does not usually vanish. (Re
all that θ2n vanishes

asymptoti
ally under the assumption of normality, for 
onvergen
e (2.2)).

There are two interesting ex
eptions:

• when

pn
n → 0, we fall into the standard asymptoti
 
ontext, where

the sample 
ovarian
e matrix is 
onsistent. The only di�eren
e is that

more general 
ase p = o(n) is allowed, i.e. p is allowed to be unbounded
and grow towards in�nity;

• µ2n → 0 and θ2n → 0. µ2n implies that most of the random variables

have vanishing varian
es, i.e. there are O(n) asymptoti
ally degenerate

variables. So, if the number of nondegenerate random variables is

NOT negligible with respe
t to the number of observations, the sample


ovarian
e matrix is not 
onsistent.

In
onsisten
y is due to the disequilibrium between the number of data-

points npn and the number of parameters pn(pn + 1)/2. This is a key point

in our analysis, whi
h is unsolved by the approa
h of Ledoit and Wolf. In

fa
t, they write there is no DIRECT 
onsistent estimator of the 
ovarian
e

matrix under the general asymptoti
s. Their strategy is to derive a 
onsistent

estimator of their theoreti
al estimator, whi
h is proved to have the minimum

risk among all the linear 
ombinations of Ip and Σn and is shown to be better


onditioned than the sample 
ovarian
e matrix.
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So, shrinkage matters unless

pn
n is negligible respe
t

γ2

µ2 , i.e. if the dis-

persion of sample eigenvalues is mu
h larger than

pn
n .

To 
on
lude this se
tion, we are now going to explain how Ledoit and

Wolf derive a 
onsistent estimator for ΣLW .

They introdu
e sample 
ounterparts of their key quantities:

mn =< Σ̂n, I >n,

d2n = ||Σ̂n −mnI||2,

b̄2n =

n
∑

k=1

||xn.kxn
′

.k − Σ̂n||,

b2n = min(b̄2n, d
2
n),

a2n = d2n − b2n,

where xn.k denote the k − th 
olumn of Xn.

All these sample 
ounterparts are 
onsistent in the general asymptoti


framework, i.e. they 
onverge to µ2n, α
2
n, β

2
n, γ

2
n respe
tively in quadrati


mean.

Then, their feasible 
onsistent estimator is

Σ̂LW =
b2n
d2n
mnIn +

a2n
d2n

Σ̂n (2.7)

This estimator is 
onsistent in the general asymptoti
 framework respe
t

to ΣLW , i.e. they share the same asymptoti
 expe
ted loss. Thus, the

expe
ted quadrati
 loss

α2β2

γ2 
an be 
onsistently estimated in quadrati
 mean

by

a2nb
2
n

d2n
.

Σ̂LW is shown to have an important optimality property: it has the same

asymptoti
 risk as the theoreti
al optimal linear 
ombination of Σ̂n and In
with random 
oe�
ients. In addition, its 
ondition number is proved to be

bounded in probability, whi
h is very important for pra
ti
al use.

The approa
h by Ledoit and Wolf is undoubtedly very elegant. How-

ever, there is still one main di�
ulty: their estimator is ex
essively better


onditioned than the true 
ovarian
e matrix, i.e. it is often too biased, for

the presen
e of the identity matrix in the estimator. This is why another

major point of our dissertation will deal with the need of "unshrinking" the

estimated eigenvalues.

In fa
t, the numeri
al issue is not the only relevant reason for desiring a

well 
onditioned estimate of the 
ovarian
e matrix. Deep statisti
al reasons

lie behind this need: we suppose that the true 
ovarian
e matrix Σ∗
is well


onditioned, that is there is no multi-
ollinearity among our p variables. In
this respe
t, a well 
onditioned estimate is 
ru
ial also for �tting purposes,

i.e. to improve the statisti
al properties of the estimate.
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We re
all the previous skrinkage estimator by the same authors ([74℄)

in the market portfolio 
ontext. There, the authors spe
ify for the 
ovari-

an
e matrix a single-index model (
onsistently with the basi
 theory of asset

pri
es, see [103℄), whi
h is essentially a one-fa
tor latent model, and then

estimate the 
ovarian
e matrix deriving the optimal shrinkage intensity to-

wards the single-index as des
ribed. This single index 
ovarian
e matrix

estimator is an interesting 
onta
t point between latent variable models and

shrinkage methods.

Before passing to the analysis of fa
tor-based 
ovarian
e matrix estima-

tors (paragraph (2.5)), we now brie�y outline the 
ovarian
e estimators based

on pure sparsity assumptions, with parti
ular referen
e to the use of shrink-

age thresholding. In this 
ontext, sparsity means that our true 
ovarian
e

matrix has a prevalen
e of zeros.

2.4 Sparse 
ovarian
e matrix estimation

In this se
tion we list the most relevant estimators based on a pure sparsity

assumption, whi
h 
an be e�e
tive for redu
ing the number of parameters

and re
onditioning the estimate, removing unne
essary o�-diagonal 
orrela-

tions. If p/n → c ∈ (0, 1) (general asymptoti
 framework) the eigenvalues

of Σ̂n follow the Mar
enko-Pastur law, supported on (1 − √c)2, (1 +
√
c)2.

If p/n does not tend to a 
onstant, we do not have any guarantee. For this

reason, enfor
ing sparsity 
an be a key for obtaining a full rank estimate in

high dimensions, even when n < p + 1. However, there are lots of di�erent
types of sparsity assumptions, methods and asymptoti
 frameworks to prove


onsisten
y.

The natural 
ontext whi
h gave rise to the 
on
ept of sparsity lies in

a data-set showing a 
lear index ordering among variables. This 
ondition

arises easily for spatial data, when the variables are geographi
al areas for

whi
h a proximity matrix is naturally de�ned. Appli
ations in
lude spe
-

tros
opy and 
limate data.

For this kind of data, several methods have been developed. Banding

the 
ovarian
e matrix, by appropriately de�ning a banding parameter, is

one e�e
tive solution. In that approa
h ([14℄), the matrix referen
e 
lass is

Σ∗ ∈ U(ǫ0), where

U(ǫ0) =
{

Σ∗ ∈ Rp×p : 0 < ǫ0 ≤ Λi(Σ
∗) ≤ ǫ−1

0 < +∞,
max

j
{
∑

i

|σ∗ij | : |i− j| > k} ≤ Ck−α
}

, (2.8)

whi
h is the 
lass of matri
es having uniformly bounded eigenvalues and

banded 
ovarian
e.

For any Σ∗ ∈ U(ǫ0), the natural ordering among variables is therefore
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enfor
ed imposing:

{

Σ∗ : σ∗ii ≤M, max
j
{
∑

i

|σ∗ij |q : |i− j| > k} ≤ Ck−α,∀k > 0,∀i
}

. (2.9)

This 
ondition pres
ribes that the further two variables are, the lower their


orrelation is. Matri
es obeying this 
ondition are "approximately bandable"

matri
es.

These assumptions are made for the nature of banding operator, whi
h

is de�ned for any matrix M as: Bk(M) = [mij1(|i− j| ≤ k)]. It is straight-
forward that the banding operator would be perfe
tly e�e
tive if

|i− j| > k → σ∗ij = 0.

Choosing k = O(( log pn )
1

2(α+1) ) the banding operator Bk(Σ̂n) is shown to


onsistently estimate Σ∗
with rate O(( log pn )

α
2(α+1) ).

This approa
h 
an be indi�erently applied to the 
ovarian
e matrix or to

the Cholesky fa
tor of the inverse 
ovarian
e matrix. In [20℄, minimax prop-

erties for the rates of 
onvergen
e of 
ovarian
e estimators having (2.8) as

matrix referen
e 
lass are provided both for operator (spe
tral) and Frobe-

nius norms. There the authors show that the des
ribed approa
h a
hieves

sub-optimal rates. Among other possible solutions, we mention tapering,

whi
h is gradually shrinking the o�-diagonal elements to zero ([54℄), and

alternative uses of the Cholesky fa
tor of the pre
ision matrix ([114℄[66℄).

When there is no natural ordering among variables, the banding ap-

proa
h be
omes ine�e
tive. This situation in
ludes the vast majority of


ases, in
luding re
ent relevant appli
ations to gene expression arrays. This

is why the same authors (Bi
kel and Levina) developed in [15℄ a very el-

egant theory to make their previous work on banding methods appli
a-

ble to this 
ase. That approa
h is based on the thresholding of sample


ovarian
e matri
es, where the hard thresholding operator is de�ned as

Ts(M) = mij1(|mij | ≥ s). Ts(M) preserves preserve the positive de�niteness
of M if and only if λmin(M) > s:

||Ts − T0|| ≤ s←→ λmin(M) > s. (2.10)

This happens be
ause v′Ts(M)v ≥ v′Mv − s ≥ λmin − s.
Note that the hard thresholding operator is impli
itly based on the mini-

mization of the l0 norm of Σ∗
, whi
h is simply the number of non-null entries.

This norm is not 
onvex, and so it is hard to establish a unique minimum.

This is why alternative thresholding operators have been developed. The

most used, 
entral to our dis
ussion in following 
hapters, is the soft thresh-

olding operator: Ts(M) = sign(mij)max(|mij |−s, 0). Note that the thresh-
olding parameter s 
an be 
onstant or entry-dependent, i.e. sij . Another

relevant shrinkage operator is the adaptive one, where sij = τ(miimjj)
1/2
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([18℄). A generalized shrinkage fun
tion whi
h en
ompasses the des
ribed

ones was de�ned in [100℄.

Coming ba
k to the 
ovarian
e estimation problem, Bi
kel and Levina es-

tablish a 
onta
t point between the 
lass of "thresholdable" and "bandable"

matri
es, in order to be able to exploit the results of [14℄.

They de�ne for 0 ≤ q < 1 the uniformity 
lass of matri
es invariant under

permutations:

{

Σ∗ : σ∗ii ≤M,

p
∑

j=1

|σ∗ij|q ≤ c0(p), ∀i
}

, (2.11)

where c0(p) is a 
onstant not depending on p.

Note that if q = 0, the 
ondition be
omes

∑p
j=1 |σ∗ij |q =

∑

i,j 1(σ
∗
ij 6= 0).

Here we 
an 
onsider M as a 
onstant. In paragraph (5.1) we will relax this

assumption.

In [15℄, the authors prove that, if a matrix Σ∗
satis�es (2.11) for q > 1

α+1 ,

whi
h is equivalent to 1− q > α
α+1 , then Σ∗

satis�es also (2.9) and belongs

to the 
lass of approximately bandable matries (2.8).

We mention a te
hni
al result (in bold), whi
h will be 
ru
ial for the

dis
ussion of our 
ontributions in Chapter 5. The sample 
ovarian
e matrix

Σ̂n satis�es the following property:

max
i,j
|σ̂ij − σ∗ij| = O

(

√

log p

n

)

. (2.12)

under

log p
n → 0.

As a 
onsequen
e, under the 
ondition q > 1
α+1 the loss of the thresholded

matrix Ts(Σ̂n) is bounded and vanishes asymptoti
ally when

log p
n → 0:

||Ts(Σ̂n)− Σ∗|| ≤ O
(

(

log p

n

)(1−q)/2
)

. (2.13)

The banding and the thresholding methods are non-likelihood ones. The

Frobenius norm as referen
e loss gives two advantages respe
t to a likelihood

fun
tion. First, the Frobenius norm is the analogous for matri
es of the l2
norm for ve
tors. Se
ond, Frobenius loss is model free, as the 
ovarian
e

matrix. These methods allow to ignore the underlying distribution for the

data, whi
h 
an be an advantage in high dimensions.

In addition, [80℄ and [19℄ des
ribe two very e�e
tive non likelihood meth-

ods employing sparsity for pre
ision matrix estimation in the multivariate

Gaussian setting, where the likelihood is known. However, likelihood meth-

ods are still useful for the pre
ision matrix espe
ially, for their 
onne
tion to

graphi
al modelling (see [31℄).
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To sum up, sparsity models are useful tools to improve 
ovarian
e es-

timation. In fa
t, in high dimensions we often have few pairs of variables

showing a parti
ularly large (idiosyn
rati
) 
ovarian
e. On the other hand, a

sparsity assumption may not be enough, espe
ially in high dimensions, sin
e

the 
ovarian
es are too large to be modelled by a purely sparse matrix, for

the reasons outlined in paragraph (2.2) and be
ause our target is probably

not sparse. This is why fa
tor-analysis and PCA based 
ovarian
e estima-

tors play a relevant role, for their ability to signi�
antly redu
e the problem

dimension, as we are about to des
ribe.

2.5 Fa
tor analysis based estimator

This paragraph is devoted to the analysis and des
ription of the fa
tor model

approa
h to 
ovarian
e matrix estimation. This topi
 assumes a parti
ular

relevan
e in a large dimensional 
ontext, when the dimension p is very large,
be
ause p/n may be di�
ult to keep negligible, as enough n 
ould not be

available.

The �rst who de�ned the 
on
ept of fa
tor model was Spearman (1904)

([102℄), in a psy
ometri
 study about the measurement of intelligen
e. The

main problem was: "how to explain most of the varian
e of a set of 
or-

related variables by approximating them with a smaller set of un
orrelated

variables?" In this spe
i�
ation, the 
ovarian
e matrix resulted in the sum

of a lower ranked matrix and a diagonal residual matrix, where all the 
o-

varian
es are explained by the fa
tors, while the presen
e of the error term

implies that there are residual varian
es unexplained by the fa
tors.

A general fa
tor model setting for Σ∗

an be des
ribed as follows:

Σ∗ = L∗ + S∗. (2.14)

We 
an write L∗ = BB′
, with B = UD1/2

, where U is a p× r matrix, D is

a r × r diagonal matrix djj > 0, ∀j = 1, . . . , r, r ≪ p.

A generalized stati
 fa
tor model for a p−dimensional ve
tor xi, i =
1, . . . , n, is the following:

xi = Bfi + ǫi = li + ǫi,

E(f) = 0, V (f) = Ir;

E(ǫ) = 0, V (ǫ) = S∗;

E(ǫ′f) = 0.

where fi is a r × 1 ve
tor, and xi, li, ǫi are p× 1 ve
tors.

In this framework, Σ̂n is the p × p sample 
ovarian
e matrix 
omputed

on the n generated data. For i = 1, . . . , n, li = Bfi is 
alled 
ommon part

of xi, ǫi is 
alled idiosyn
rati
 part.
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Note that L∗
has rank r and is positive semide�nite, while S∗

and Σ∗

are full rank and positive de�nite.

The reason why a fa
tor model assumption for the data is e�e
tive in

this 
ontext is two-fold:

• model (2.14) pres
ribes for the 
ovarian
e matrix a de
omposition into

a r−ranked matrix (r ≪ p) and a full rank residual matrix. Spe
ify-

ing a low rank matrix means re
onditioning the eigenvalues, sin
e we

repla
e a p-ranked probably ill-
onditioned matrix (see se
tion (2.2))

with a semide�nite positive r− ranked matrix, well 
onditioned by

de�nition. At the same time, the full rank rank residual 
omponent

ensures that the estimate is positive de�nite. So, imposing this stru
-

ture to a large 
ovarian
e matrix means re
onditioning its eigenvalues,

not using the identity matrix as a shrinkage target (as in [75℄), but

removing the strongest 
orrelations from the raw (sample) estimate,

thus shrinking down its 
ondition number.

• model (2.14) signi�
antly redu
es the number of parameters, by repla
-

ing p(p+1)/2 parameters with p(r+1) only. This approa
h over
omes

the problem of identi�ability in the large dimensional 
ontext, by rel-

evantly redu
ing the parameter spa
e dimension.

Anyway, model (2.14) is the most general de�nition. Di�erent model

settings impose di�erent assumptions on L∗
and S∗

. Key assumptions for our

purpose, whi
h is to exploit e�e
tively a fa
tor model stru
ture for 
ovarian
e

matrix estimation, mainly 
on
ern the eigenvalues of L∗
, whi
h re�e
t upon

the eigenvalues of Σ∗
.

We are going to brie�y re
all the histori
al path of fa
tor modelling by

the des
ription of three main steps (for an extended overview, see [59℄):

• the 
lassi
al fa
tor model, with p �xed, n → ∞. This spe
i�
ation

was due to [102℄, and its development was then possible thanks to the

pioneeristi
 work on Prin
ipal Component Analysis by Hotelling [65℄.

Its main 
hara
teristi
 is the imposition of a diagonal stru
ture to the

residual 
ovarian
e matrix S∗
(paragraph (2.5.1)).

• the approximate fa
tor model, where nonzero residual 
orrelation is

allowed, i.e. S∗
is no longer diagonal. This advan
e was due to Cham-

berlain and Roths
hild ([29℄), and is based on the assumption of lim-

itedness for λr+1 (the (r + 1)−th eigenvalue of Σ∗
) as n goes to ∞ (p

here is still �xed). This approa
h allowed to e�e
tively use PCA for

re
overing Σ∗
(paragraph (2.5.3)).

• fa
tor modeling with sparse residual ([45℄), where spe
i�
 assumptions

on L∗
and S∗

are made. The eigenvalues of L∗
are assumed to be

pervasive while p as well as n) tends to ∞ (spikiness property). On
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the 
ontrary, the largest eigenvalue of S∗
vanishes asymptoti
ally. This

approa
h impa
ts on the 
ovarian
e matrix estimate allowing to redu
e

even more the parameter spa
e dimension, still employing the PCA of

Σ̂n together with a thresholding algorithm for the sparse 
omponent

(paragraph (2.5.4)).

2.5.1 Stri
t fa
tor model

We are now going to explore this �rst spe
i�
ation, whi
h is 
alled stri
t or


lassi
al fa
tor model. In this spe
i�
ation, we have that

X = Bf + ǫ, (2.15)

where X and ǫ are p× 1 random ve
tors, B is a p times r matrix also 
alled

loading matrix, f is the r × 1 random ve
tor of latent variables.

Under all previously outlined assumptions, E(X) = 0. De�ning Σ∗ =
E(XX ′), this model leads to the following model on the 
ovarian
e matrix:

Σ∗ = L∗ + S∗
(2.16)

with L∗ = BB′
. The identi�ability 
ondition imposes B′S∗−1B to be di-

agonal. It is ne
essary be
ause the stri
t fa
tor model is equivariant under

orthogonal transforms, and this results in an identi�ability issue. Note that

the 
ondition E(fǫ′) = B holds. Bf is the 
ommon part, while ǫ is the

idiosyn
rati
 (or unique, or spe
i�
) part of the model.

For ea
h 
omponent Xi,i = 1, . . . , p, V ar(Xi) 
an be disentangled in two


omponents.

∑
j B

2
ij

Σ∗
ii

is the portion of varian
e of Xi, i = 1, . . . , p explained

by the fa
tors. It is also 
alled 
ommunality of Xi.
Sii

Σ∗
ii
is the portion of

varian
e of Xi unexplained by the fa
tors. It is also 
alled idiosyn
rati



omponent of Xi.

The ratio between 
ommunality and total varian
e for ea
h Xi, i =
1, . . . , p is very important for the interpretation of fa
tor models (FM), as

well as, if S∗
is not diagonal, the ratio between the sum of residual 
ovari-

an
es and the total sum of 
ovarian
es. The proportion of varian
e explained

by the model des
ribes the goodness of �t and the 
ovarian
e matrix between

the fa
tors and the observed variables, equal to B, outlines the most relevant

variables in the 
omposition of fa
tors.

As explained, if we impose S∗
diagonal we impose all the 
ovarian
es to

be explained by the fa
tors. This assumption is 
learly inappropriate in a

large dimensional 
ontext. Spe
ifying a pure fa
tor model stru
ture is there

quite far from being e�e
tive. We have already explained that if p is large

the sample 
ovarian
e matrix is likely to be bad-
onditioned. For this reason,

it is likely that fa
tors are not enough to explain 
ovarian
es, and that the

diagonal assumption for the residual 
ovarian
e matrix is too stri
t. For an

overview of fa
tor analysis in large dimensions, see [7℄.
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FM estimation has been a relevant problem in the literature. It is well

known that fa
tor analysis moves out from prin
ipal 
omponent analysis

(PCA), but PCA without further assumptions is not a 
onsistent estimator

for the fa
tor model, as we are going to explain.

2.5.2 PCA and fa
tor analysis

Let us A be a p × p matrix, with ||A||Fro =
∑n

i=1

∑n
j=1A

2
ij . Its spe
tral

de
omposition is

A = UΛU ′ =
p
∑

i=1

λiu
′
iui =

p
∑

i=1

(
√
λiu

′
i)(
√
λiui),

where

√
λiui, i = 1, . . . , p are the prin
ipal dire
tions, ordered respe
t to the

magnitude of asso
iated eigenvalues. The �rst to address PCA was Pearson

(1901) ([92℄), and the idea was then re�ned by Hotelling (1933) ([65℄). They

found out that the best approximation property is possessed by prin
ipal


omponents, that is, the linear 
ombinations of observed variables whi
h

maximize the explained varian
e are subsequently the �rst, the se
ond, . . .,
the last prin
ipal 
omponent. In formula,

min
Z,rank(Z)≤r

||X − Z||Fro, Z = AX ←→ Z = PCAr(X),

where PCAr(X) is the (2.1) trun
ated to the r−th eigenvalue.

The underlying approximation problem 
omes from linear algebra. If

zi = ui1F1 + ui2F2 + . . .+ uirFr,

with F = [F1, . . . , Fr]
′
, E(F ) = 0, V (F ) = Ir, r ≪ p, we 
an write:

min
ui,zi

1

n

n
∑

i=1

||xi − zi||2 =
1

n
||X − Z||2Fro =

=
1

n
||X ′ − U ′F ||2Fro =

1

n
||X − F ′U ||2Fro,

where X is our n × p data matrix, U = [u.1 . . . u.r] is a r × p matrix and

F = [F.1 . . . F.r] is r × n. If we post-multiply all terms by X ′
, we obtain

1
n minF,U ||X ′X − X ′F ′U ||2Fro, whi
h 
an also be viewed as minF,U ||Σ̂n −
X ′FU ||2Fro .

As we 
an understand from one of the expressions above, sin
e orthogonal

proje
tions have the best approximation property, ||X−F ′U ||2Fro is minimum

if F ′U is the prin
ipal 
omponent set of X trun
ated to the r−th one. Under
the 
ondition r = p, Z = X. Sin
e X and X ′X have the same 
olumn (and

row) spa
es, the same holds also using the �rst r PCs of Σ̂n. This is why if
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we want to approximate Σ̂n with a r < p matrix, the �rst solution we think

about is the extra
tion of its prin
ipal 
omponents up to the r−th.
Unfortunately, the approximation problem in the FM setting is di�erent

from the PCA one, be
ause in the fa
tor model setting there are also relevant

issues 
on
erning identi�ability and estimation. In fa
t, we immediately en-


ounter relevant problems using this method to estimate stri
t fa
tor models

(SFM), be
ause we would have Ŝ = Σ̂n−
∑r

j=1 λ̂iûiû
′
i whi
h 
annot estimate

S∗
sin
e it is exa
tly the sum of residual prin
ipal 
omponents (from r+1−th

to p−th), and so will never be diagonal. This is 
oherent with the fa
t that

PCA subsequently maximizes the varian
e explained by the fa
tors, and

not the 
ovarian
es. Therefore, without further assumptions, extra
ting r of
p 
omponents means that the residual matrix will be non-diagonal, and so

that our SFM estimator will be in
onsistent ([5℄).

For this reason, lots of fa
tor model spe
i�
ations and estimation meth-

ods have been proposed. Some methods using iteratively PCA for FM es-

timation, like the prin
ipal fa
tors method, have been developed. Unfortu-

nately, they require an a priori 
hoi
e of the number of fa
tors to be in
luded

in the model, and they usually are very ine�
ient for large s
ale problems.

In addition, the prin
ipal fa
tors method is not s
ale-equivariant, that is,

it is not equivariant under linear transforms of the data. As an alterna-

tive, Maximum Likelihood methods 
an be used, requiring the assumption

of multivariate normal distribution for the data.

Hen
e, a natural question arises: how 
an we establish an asymptoti



onvergen
e between PCA and fa
tor analysis (FA)? Whi
h assumptions

are needed? Identifying a fa
tor model stru
ture via PCA requires spe
i�


assumptions on the eigenvalues of Σ∗
, whi
h 
an be imposed as a result of

appropriate assumptions on L∗
and S∗

.

2.5.3 Approximate fa
tor model

The above mentioned problem problem was �rst fa
ed by Chamberlain &

Roths
hild in [29℄. They were the �rst to de�ne an approximate fa
tor stru
-

ture, i.e. a stru
ture where the residual matrix is allowed to be non-diagonal.

Model (2.14) with this assumption is 
alled approximate fa
tor model. In

this 
ontext, the key 
ondition is a bound on the (r + 1)−th eigenvalue of

matrix Σ∗
, whi
h results in a bound for the largest eigenvalue of S∗

. This


ondition is ne
essary to establish the asymptoti
 equivalen
e between PCA

and FA. Therefore, the two main points dis
ussed so far, i.e. the need to over


ome the diagonal stru
ture of S∗
and the need of estimating 
onsistently a

fa
tor model via a standard method as PCA, 
an �nd a 
ommon solution.

This theory was born in the �eld of portfolio pri
ing theory. When S∗

is diagonal, model (2.14) is a stri
t fa
tor model (SFM) stru
ture. Ross

([99℄) derived the SFM stru
ture in the 
ontext of 
apital asset pri
ing. He

showed that if Σ∗
is a 
ovarian
e matrix referred to asset pri
es and has su
h
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a stru
ture, the mean expe
ted return is linear (i.e. a linear 
ombination of

fa
tors) be
ause of the absen
e of arbitrage opportunities, that is, E(ǫ) = 0.
He proved that the SFM stru
ture 
an be asymptoti
ally re
overed when

n→∞ with bounded error by Prin
ipal Components. However, if we impose

a diagonal stru
ture for S∗
, the number of fa
tors needed to ensure that S∗

is diagonal would in
rease too mu
h when n→∞ .

Suppose Σ∗
n is a sequen
e of matri
es for n→∞. If Σ∗

is positive semi-

de�nite and supn λΣ∗
n,r+1 (the (r+1)−th eigenvalue of Σ∗

n) is �nite, we refer

to (2.14) a
ross n as an approximate fa
tor model (AFM) stru
ture.

Chamberlain and Roths
hild proved in [29℄ that the main 
hara
teriza-

tion of the approximate fa
tor stru
ture needed to perform FM estimation

via PCA is:

sup
n
λΣ∗

n,r+1 �nite,

i.e. r of p eigenvalues of Σ∗
diverge when n → ∞. This result means that

under these assumptions the error between the PCA trun
ated to the r− th


omponent and the theoreti
al mean (the deterministi
 part of the model)

is asymptoti
ally bounded by λΣ∗
n,r+1. The proof exploits these assumptions

and the properties of the matrix B′B + I.

The outlined assumption works as an identi�
ation 
ondition for the ap-

proximate fa
tor model: the authors showed that this 
ondition is su�
ient

for the existen
e of an approximate fa
tor model stru
ture. More, they

showed that the approximate fa
tor stru
ture is uniquely identi�ed extra
t-

ing the top r prin
ipal 
omponents of Σn, and that the error is bounded by a

fun
tion of λΣ∗
n,r+1 (and a parameter 
ontrolling the trade-o� between mean

and varian
e of the pro
ess).

This pioneeristi
 work opened the path for a wide literature on FM es-

timation exploiting PCA as an asymptoti
 estimator. It is an asymptoti


approa
h where n → ∞, di�erently from the following ones (as the POET

approa
h), where p varies together with n. We also highlight that a similar


ondition to the su�
ient 
ondition here reported is essential to the estima-

tion of dynami
 fa
tor models, as explained in [52℄.

For sake of 
ompleteness we mention two other famous fa
tor model

spe
i�
ations in the e
onomi
 
ontext: the three fa
tor model by Fama and

Fren
h ([42℄) and the approximate dynami
 fa
tor model by Sto
k and Wat-

son ([105℄) (used for e
onomi
 fore
asts).

By the way, the work by Chamberlain and Roths
hild allows for the

presen
e of residual 
ovarian
es, but does not spe
ify any stru
ture for the

matrix S∗
. As explained, in large dimensional real data analysis the assump-

tion of diagonal residual matrix is not a

eptable. The data generating pro-


ess be
omes so 
omplex that assuming no idiosyn
rati
 
orrelation among

variables is very unrealisti
. However, setting spe
i�
 assumptions on the

residual 
omponent, de�ning a parti
ular stru
ture, has be
ome a 
entral

topi
 in the re
ent statisti
al literature. This is why the 
on
ept of sparsity
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for the residual matrix (i.e. the presen
e of non-zero elements in sele
ted

positions) 
ame out.

At the same time, the number of parameters be
omes so large that iden-

ti�ability issues arise, espe
ially when n is not so large. Allowing for the

presen
e of non-zero residual 
ovarian
e, preserving model identi�ability, is

one of the major 
hallenges in this �eld, as we will study in deep in Chapter

4.

Sparsity assumptions are motivated by the following two reasons:

• a strong interpretability issue supports this approa
h. Fa
tor model

approa
h �nds out a small set of un
orrelated latent (unobserved) vari-

ables able to explain most of the 
orrelations among a large set of ob-

served variables. It means that, by removing the 
orrelations due to

some 
ommon explaining fa
tors, we are able to identify those pairs

of variables whi
h are so 
orrelated that their residual 
ovarian
e is

still non-zero. This 
an be parti
ularly helpful in a few appli
ation


ontexts, su
h as hypothesis testing, portfolio analysis, and ma
roe
o-

nomi
 analysis. We are thus able to identify also blo
k-wise 
orrelation

stru
tures. The sparsity pattern of the 
ovarian
e matrix be
omes a

key to data interpretation, as well as the 
ovarian
e between variables

and fa
tors, in order to understand the nature of variables and their

relationship.

• an identi�ability issue. The number of parameters is now p(r+1)+ s,
s ≪ p(p + 1)/2 , whi
h is still pretty fewer than p(p + 1)/2 , allowing

a more �exible interpretation and a better 
onditioning (a sparse esti-

mate is better 
onditioned than the sample 
ovarian
e matrix, sin
e it

is further from 
ollinearity).

However, exploring 
onditions ensuring identi�
ation of FM with spe
i�


sparsity assumptions on the residual 
omponent is a really hard task.

2.5.4 POET estimator

We are now going to des
ribe a very re
ent 
ontribution to 
ovarian
e matrix

estimation. Fan, Liao and Mi
heva in their paper ([45℄) provide in the time

series setting a large 
ovarian
e matrix estimator whi
h plays a 
entral role

for our dissertation. Their estimator, 
alled POET (Prin
ipal Orthogonal


omplEment Thresholding estimator), is a PCA-based estimator, but it also

has the 
hara
teristi
s of a sparsity-based estimator. The underlying model

assumptions pres
ribe an approximate fa
tor model for the data, thus allow-

ing to reasonably use the trun
ated PCA of the sample 
ovarian
e matrix.

Furthermore, at the same time, they impose sparsity in the sense of [15℄ (see

paragraph (2.4)) to the residual matrix.
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If we refer to (2.14), S∗
is approximately sparse in the sense of (2.9),

while L∗
has a small number of very spiked eigenvalues, growing with p at

rate O(p), and the rest of eigenvalues are asymptoti
ally negligible. This

feature, i.e. the pervasiveness of a few spiked eigenvalues, is the distin
tive

trait of their model, whi
h allows to 
onsistently re
over L∗
via PCA. At

the same time, they re
over the sparse 
omponent imposing a bound on

the approximate sparsity parameter (2.11), whi
h allows them to re
over

S∗
applying a thresholding algorithm to the orthogonal 
omplement of the

trun
ated PCA.

Deriving the performan
e of the most re
ent numeri
al estimator we will

des
ribe in Chapter 4 under the outlined 
onditions of POET estimator,


omparing both performan
es, is one of the main goals of our thesis. A

related one is the attempt to relax in some way the assumption of spikiness

for the eigenvalues of L∗
, developing an appropriate estimator.

We immediately outline that rank 
hoi
e in this 
ontext is a relevant

issue, whi
h is typi
al for rank minimization programs, like PCA. Rank min-

imization allows to improve 
onditioning, redu
e the number of parameters

and 
ompress information, thus improving interpretability, whi
h is 
ru
ial

in high dimensions. However, we know that 
ovarian
e estimators based on

pure rank minimization su�er from rank de�
ien
y (see for example [119℄

and [11℄). What is more, rank is a non-
onvex fun
tion, and this 
auses

the impossibility to give any mathemati
al guarantee for model re
overy.

In POET setting, the authors sele
t the latent rank of trun
ated PCA us-

ing standard 
riteria from Bai and Ng (2002) ([6℄). We will show in our

simulations (Chapter 5) that POET 
an su�er from rank de�
ien
y in high

dimensions. Another relevant appli
ation exploiting PCA stru
ture is [71℄,

where the authors impose the presen
e of one leading prin
ipal 
omponent

and sele
t a subset of variables by a method 
alled sparse PCA. Re
overy is

performed given that

pn
n → 0, but pn 
an be mu
h larger than n. Even if

this model is e�e
tive for some time series data (like ECG data), imposing

the latent rank equal to 1 is not usually appropriate.

We now des
ribe in detail the model setting of POET, keeping model

stru
ture (2.14) in mind. Here we will use T instead of n, sin
e we are in a

time series model setting.

We report the two main features of POET setting. The spe
tral de
om-

position of Σ∗
(positive de�nite symmetri
 squared p-dimensional matrix) is

UΛU ′
. The 
olumns of U and B (both p × r matri
es) are denoted by uj

and b̃j , j = 1, . . . , r, respe
tively.

Proposition 2.5.1 ([45℄ Proposition 1). All the eigenvalues of the r × r
matrix B′B are bounded away from 0 for all large p. Under the assumptions

cov(ft) = Ir and B′B diagonal (
anoni
al 
ondition of SFM) we have:

|λj − ||b̃j ||2| ≤ ||S∗||, j ≤ r
|λj | ≤ ||S∗||, j > r.
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In addition, for j ≤ r, lim infp→∞ ||b̃j ||2/p > 0.

This proposition pres
ribes that the eigenvalues of the low rank 
om-

ponent L∗
(equal to BB′

) are pervasive, i.e. they grow at rate O(p) while
p → ∞. This entails that the top r eigenvalues of Σ∗

are pervasive, while

the remaining p − r asymptoti
ally vanish. The largest eigenvalue of S∗
is

the relevant bound for the top r eigenvalues of Σ∗
minus the 
orresponding

ones of L∗
as well as for the remaining p − r eigenvalues of Σ∗

. Note that

in the setting of AFM ([29℄), di�erently from here, p is �xed.

Proposition 2.5.2 ([45℄ Proposition 2). Under the assumptions of Propo-

sition 1, if ||b̃j ||rj=1 are distin
t, then ||uj − b̃j/||b̃j |||| = O(p−1||S∗||).

This proposition states that if the 
olumns of B are distin
t, the distan
e

between the top r eigenve
tors of Σ∗
and the normalized eigenve
tors of L∗

are bounded by a rate proportional to p−1||S∗||.
Proposition 1 and 2 together state that matrix U and matrix B are

approximately the same if ||S∗|| = o(p).

Now, the thresholding estimator by Bi
kel and Levina ([15℄) des
ribed in

(2.4) 
omes into play. The outlined bound is ensured imposing an approxi-

mate sparse stru
ture on S∗
. Sparsity parameter (2.11) is de�ned for some

q ∈ [0, 1] as follows:

mp = max
i≤p

∑

j≤p

|σij |q. (2.17)

For standard properties of matrix norms, we have:

||S∗|| ≤ ||S∗||1 ≤ max
i

p
∑

i=1

|sij |q(siisjj)(
1−q
2

) = O(mp), (2.18)

given that sii are bounded ∀i. So, ||S∗|| ≤ O(mp).

It is now 
lear that if mp = o(p), the PCA of Σ̂n allows to perfe
tly

identify the eigenvalues and the eigenve
tors of Σ∗
under these assumptions.

In parti
ular, the �rst r prin
ipal 
omponents of Σ∗
are approximately the

same as the fa
tor loadings. We emphasize the relevan
e of this point, whi
h

represents one of the most important innovations in [45℄. Here the asymptoti


equivalen
e between PCA and fa
tor analysis is established by applying a


onditional (to fa
tors) sparsity model to the residual matrix, provided that

p is enough large. The assumption mp = o(p) will be modi�ed in order to

study the 
ase of generalized spiked eigenvalues.

The key point in their proof is that under these assumptions the eigen-

values of B′Σ−1B are bounded. Thus, the relative norm of ||Σ̂−Σ||, de�ned
as ||Σ̂−Σ||Σ = p−1/2||Σ−1/2Σ̂Σ−1/2− Ip||Fro, is bounded, 
an
elling out the


urse of high dimensionality introdu
ed by B (see paragraph (2.2), Theorem

2.2.1).



2.5. FACTOR ANALYSIS BASED ESTIMATORS 33

As in [15℄, the sparse 
omponent S∗
is then 
onsistently estimated by

thresholding, relying on the results des
ribed in se
tion (2.4). They de�ne

for ea
h i 6= j an adaptive threshold ([18℄) of the form

τij = CωT

√

θij,

where

ωT =
1√
p
+

√

log(p)

T

and

θ̂ij =
1

T

T
∑

t=1

(ŝitŝjt − ŝij)2,

with

ŝij =
1

T

T
∑

t=1

ŝitŝjt

and

ŝit = xit − l̂it,

where l̂it = b̂ri f̂
r
t is estimated via the PCA of Σ̂n up to the r−th 
omponent.

This approa
h holds for su�
iently large C > 0. ωT (whi
h is the uniform

rate of 
onvergen
e ofmaxi≤p,j≤p |ŝij−sij|, as in [15℄ and [18℄) is a de
reasing
sequen
e in p and T . Note that term

1√
p is due to the estimation of the

unknown fa
tors and is usually unavoidable.

Any generalized thresholding fun
tion h(z) (in
luding the soft-thresholding
operator) su
h that hij(z) = 0 when |z| ≤ τij and |hij(z)−z| ≤ τij otherwise
(see ([3℄)) 
an be e�e
tively used. Note that thresholding is applied only on

the o�-diagonal elements. The thresholded estimate of the residual matrix

S∗
is thus ŜT

r̂ = hij(ŝij).

The sequential approa
h to 
ompute POET estimator is the following.

First, perform PCA on Σ̂n, extra
ting the top r 
omponents (eigenvalues

and eigenve
tors). So, L̂r̂ = UrΛrU
′
r, where Λr is a r × r diagonal matrix


ontaining the top r eigenvalues of Σ̂n, and Ur is the p× r matrix 
ontaining

the asso
iated eigenve
tors. l̂it = b̂ri f̂
r
t is thus simply the i × t entry of L̂.

S∗
is estimated by applying as des
ribed an adaptive thresholding step on

the matrix Ŝ = Up−rΛp−rU
′
p−r (the prin
ipal orthogonal 
omplement of Σ̂n),

where Λp−r 
ontains the remaining p−r eigenvalues, and Up−r the asso
iated

eigenve
tors. This is why POET 
ontains in its name the thresholding of

the prin
ipal orthogonal 
omplement. Here is the expression of POET:

Σ̂POET,r̂ = L̂r̂ + ŜT
r̂ .

As pointed out in the introdu
tion to this paragraph, the rank 
hoi
e is a

relevant issue. The number of diverging eigenvalues, i.e. the latent rank r is
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determined in a data-driven way minimizing appropriate penalty fun
tions

whi
h were �rst des
ribed in [6℄. These fun
tions of p and T must satisfy the

following 
onditions: g(T, p) = o(1) and minp,t g(T, p) → ∞. In this way,

POET is estimated with a data-driven rank r̂. We refer to [45℄, paragraph

(2.4), for the details.

POET is a non-parametri
 estimator. At the same time, it requires some

distributional assumptions to perform 
onsistent re
overy. We now list for

sake of 
ompleteness the most relevant te
hni
al assumptions on fa
tors and

residuals:

1. Stri
tly Stationarity of (ǫt, ft)t≥1.

2. Non-
orrelation between ǫt and ft, λmin(S
∗) > c1, ||S∗||1 < c2,

min var(ǫitǫjt) > c1.

3. Tails of ft and ǫt:

P (|ǫit| > s) ≤ exp(−s/b1)r1 , i ≤ n

P (|fjt| > s) ≤ exp(−s/b2)r2 , j ≤ r.

We note that bounds on the minimum eigenvalue and the l1 norm of S∗

are needed. Further assumptions in
lude strong mixing between the sigma-

algebras generated by [(ft, ǫt) : t ≤ 0] and [(ft, ǫt) : t ≥ T ] and some regular-

ity 
onditions to estimate loadings and fa
tor s
ores.

Most of these assumptions will not be ne
essary in our numeri
al 
ontext.

Anyway, we will use part of them to study the behaviour of our numeri
al

estimator in the POET 
ontext. Part of the te
hni
al 
onditions were derived

in a previous paper by Fan, Fan and Lv ([44℄). There, the authors analyze the

same setting deriving the 
orresponden
e between PCA and fa
tor analysis

without thresholding the residual 
omponent. Another paper by Fan, Fan

and Lv ([43℄) studied the same setting but with observable fa
tors.

The two main theorems of [45℄ state that, under all des
ribed assumptions

and supposing γ−1 = 3r−1
1 +1.5r−1

2 +r−1
3 +1, log(p) = o(T γ/6) and T = o(p2),

we have:

||ŜT
r̂ − S∗|| = Op(ω

1−q
T mp)

||Σ̂POET,r̂ −Σ∗||Σ = Op

(√
p log p

T
+mpω

1−q
T

)

(2.19)

||Σ̂POET,r̂ − Σ∗||max = Op(ωT )

If mpw
1−q
T = o(1), ŜTr̂ and Σ̂POET,r̂ are non-singular with probability ap-

proa
hing 1:

||ŜT−1
r̂ − S∗−1|| = Op(ω

1−q
T mp)

||Σ̂−1
POET,r̂ − Σ∗−1||=Op(ω

1−q
T mp)
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The assumption T = o(p2) is ne
essary to estimate the rT fa
tor load-

ings. It means that re
overy is e�e
tive until p log p ≫ T . The assumption

log(p) = o(T γ/6) is ne
essary for re
overing the sparse 
omponent.

For the following of our dissertation we report two te
hni
al results of

[45℄ des
ribing model-based relationships (in bold). The �rst one, whi
h was

proved in [44℄, pres
ribes, under all des
ribed assumptions, that the following


laims hold:

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitfjt −E(fitfjt)

∣

∣

∣

∣

= Op

(

1√
T

)

(2.20)

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

sitsjt −E(sitsjt)

∣

∣

∣

∣

= Op

(

log p√
T

)

(2.21)

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitsjt

∣

∣

∣

∣

= Op

(

logp√
T

)

. (2.22)

Thanks to this result, it is possible to prove that, under all des
ribed

assumptions, ||Σ̂n − Σ∗|| = o(p) with a rate proportional to O( p√
T
), i.e. the

r−th largest eigenvalue of Σ̂n grows at rate O(p) with probability approa
h-

ing 1:

||Σ̂n −Σ∗|| = O

(

p√
T

)

. (2.23)

For the following of our study, we here de�ne the generalized pervasive-

ness 
ontext for α ∈ (0, 1] as follows ([45℄, p. 656):

De�nition 2.5.1. The eigenvalues of Σ∗
follow a α-generalized spikiness

stru
ture if and only if all the eigenvalues of the r × r matrix p−αB′B are

bounded away from 0 and ∞ as p→∞.

If α = 1, we fall into the POET setting.

Appli
ations of POET are very wide. We expli
itly mention appli
ations

on �nan
ial data. In Chapter 5, we will show an appli
ation to banking

supervisory data where the performan
e of our numeri
al estimator will be


ompared to the one of POET.

We shall use repeatedly these results on the sample 
ovarian
e matrix for

proving the rates of our numeri
al estimator under POET assumptions and

in the generalized spikiness 
ontext. Non-asymptoti
 large 
ovarian
e matrix

re
overy under generalized assumptions for the eigenvalues of the low rank

matrix is one of the goals of the rest of our thesis. In fa
t, POET approa
h

is elegant and e�e
tive, but spikiness in real appli
ations is not so usual.

What is more, in this way it is di�
ult to 
at
h the proportion of varian
e

explained by the fa
tors, sin
e the model does not provide any attention

to that. In addition, when p is not enough large, the errors 
ould be still


orrelated (as pointed in the dis
ussion of [45℄ by Montanari).
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To 
on
lude, we note that rank sele
tion also represents a relevant issue.

If p is large, setting a large rank would 
ause the estimate to be non-positive

de�nite, while setting a small rank would 
ause a too relevant varian
e loss.

Using IC 
riteria from Bai and Ng (2002), as pointed out in the dis
ussion of

[45℄ by Yu and Samworth, if the eigenvalues are not really spiked at rate O(p),
the probability to underestimate the latent rank does not asymptoti
ally

vanish. This is why we are going to derive a method intrinsi
ally dete
ting

the latent rank, without applying any existing 
riterion. We are going to do

that in the non-asymptoti
 
ontext, where the absolute losses are bounded

given �nite values for relevant parameters.



Chapter 3

Covarian
e regularization and


onvex analysis: numeri
al and


omputational aspe
ts

The aim of the present 
hapter is to explain the rationale behind the numeri-


al methods needed to estimate the 
ovarian
e matrix under the assumption

of approximate fa
tor model with sparse residual for the data.

Su
h a data stru
ture has be
ome very popular in re
ent years and has

found relevant appli
ations in various �elds like, among others, image re-


onstru
tion, MRI (Magneti
 Resonan
e Imaging) data, �nan
ial portfolio

sele
tion and ele
tri
al engineering. The statisti
al 
hallenge lies in the need

to estimate a latent stru
ture summarizing a huge number of variables, even

starting from a number of observations 
omparable or smaller.

Let us suppose the population 
ovarian
e matrix of our data is the sum

of a low rank and a sparse 
omponent. Suppose we have a data matrix

X = [xij ], where i = 1, . . . , n are the observations and j = 1, . . . , p are the

variables. The p− dimensional random ve
tor x has a low rank plus sparse

stru
ture if its 
ovarian
e matrix Σ∗
satis�es the following relationship:

Σ∗ = L∗ + S∗, (3.1)

where:

• L∗
is a positive semide�nite symmetri
 p×p matrix with at most rank

r ≪ p;

• S∗
is a positive de�nite p×p sparse matrix with at most s≪ p(p−1)/2

nonzero elements.

Let us suppose L∗ = UDU ′ = BB′
, where B = UD1/2

, U is a p × r
matrix, D is a r × r diagonal matrix, with djj > 0, ∀j = 1, . . . , r. Suppose
that our p× 1 random ve
tor Xi, i = 1, . . . , n, has the following stru
ture:

37
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Xi = Bfi + ǫi, (3.2)

with

fi = Nr(0, Ir); (3.3)

ǫi = Np(0, S
∗), (3.4)

where fi is a r × 1 random ve
tor, and ǫi is p× 1 random ve
tor.

Xi is assumed to be a zero mean random ve
tor, without loss of generality.

Σ̂n = 1
n

∑n
i=1XiX

′
i =

1
nX

′X is the p × p sample 
ovarian
e matrix, where

X is the n× p data matrix.

If we set x = Xi, it is easy to observe that x follows a low rank plus

stru
ture:

E(xx′) = E((Bf + ǫ)(Bf + ǫ)′) =

= E(B′f ′fB) + E(Bfǫ′) + E(ǫB′f ′) + E(ǫǫ′) = (3.5)

= BB′ + S∗ = Σ∗

under the usual assumption f ⊥ ǫ, i.e. cov(f, ǫ) = E(fǫ′) = E(ǫf ′) = 0

(r × p null matrix).

If we assume a normal distribution for f and ǫ, we know that the matrix

W := Σ̂n− (BB′+S∗) is a re-
entered Wishart noise, i.e. it is distributed as

a zero-mean Wishart (refer to Chapter 2 paragraph (2.1) for detailed expla-

nations on the Wishart distribution). However, the normality assumption is

not essential in the �nite sample 
ontext.

The main aim of this Chapter and of the entire work is to provide an

alternative approa
h to 
ovarian
e matrix estimation respe
t to POET un-

der a similar data stru
ture, deriving the ne
essary assumptions to perform

identi�ability and re
overy. This approa
h is based on numeri
al analysis,

and exploits the theory of non-smooth 
onvex optimization provided by [98℄

and [28℄.

As suggested by the data stru
ture, the method we are going to des
ribe

should at the same time 
onsistently estimate the 
ovarian
e matrix and


at
h sparsity and spikiness in the best possible way. The starting point for

our study is o�ered by numeri
al analysis, whi
h summarizes the problem

of our interest in a natural way. As dis
ussed in the previous 
hapter, this

approa
h has several advantages, like a better 
onditioning (for the presen
e

of the low rank 
omponent), a smaller number of parameters (pr+ s against
p(p−1)

2 ), a better interpretability of the output, both on the low rank side

(degree of 
ovarian
e explained by the fa
tors) and on the sparse side (the

sparsity pattern maps the most relevant relationships among variables).

However, even if the numeri
al problem 
an be e�
iently solved by using

subgradient te
hniques, it is not straightforward to investigate the statisti
al

properties of these estimators. Non standard tools of algebrai
 geometry
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([60℄) are required to derive identi�ability 
onditions, as well as relevant

results of random matrix theory are ne
essary to establish 
onsisten
y ([39℄).

It is relevant that the statisti
al performan
e in terms of the 
ovarian
e

matrix as a whole and in terms of the two 
omponents (rank and sparsity

pattern) separately 
onsidered are not ne
essarily aligned. As we will see,

the loss fun
tion here depends on the Lagrangian dual theory of non-smooth

fun
tion, thus implying that the loss fun
tion of the two 
omponents (sparse

and low rank) separately 
onsidered is referred to the sum (i.e. the estimated


ovarian
e matrix), thus di�ering from the usual (Frobenius) loss of the

estimated 
ovarian
e matrix.

Our problem 
an essentially be stated as

min
L,S

1

2
||(L+ S)−Σn||2Fro + λrank(L) + ρ||S||0, (3.6)

where ||S||0 is the number of nonzero elements, and rank(L) 
an be seen as

||diag(D)||0, given that L∗ = UDU ′
. This is a 
ombinatorial problem, whi
h

is known to be NP-hard, sin
e both rank(L) and ||S||0 are not 
onvex. A

very well known 
onvex relaxation of problem (3.6) is

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (3.7)

where λ and ρ are non-negative threshold parameters. ||S||1 =
∑n

i=1

∑n
j=1 |sij |

is the l1 norm of S, while ||L||∗ =
∑r

i=1 |di| =
∑r

i=1 di = ||diag(D)||1 is the

nu
lear norm of L∗
. Basi
 referen
es are [108℄ for the former and [46℄ for the

latter.

More in detail, the study and implementation in statisti
s of the nu
lear

norm l∗ is due to [49℄. Problem (3.7) is a penalized least squares program,

where the penalty is 
omposite and non-smooth. For the reasons explained

before, problem (3.7) is also often referred to as a regularization problem.

From a numeri
al point of view, it is an approximate un
onstrained inverse

matrix problem with two unknowns, L and S. The key to its solution will

be to disentangle the problem in two easier related problems, one in L and

the other in S. We will deal with the 
onstrained version of (3.7), imposing

that S and L+ S are positive de�nite, and L is positive semide�nite.

In this Chapter, we are going to des
ribe the genesis of problem (3.6),

showing how the l1 and l∗ heuristi
s 
ame out. [36℄ proved that for most

underdetermined systems the l1 norm dete
ts the sparsest solution, while [97℄

proved that the nu
lear norm solution is the one with minimum guaranteed

rank. In se
tion (3.1) the rationale behind both problems is analyzed from

the numeri
al point of view. In se
tion (3.2) the 
omputational aspe
ts

related to solving problem (3.7) are shown.
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3.1 Nu
lear norm and l1 norm regularization: an

histori
al review

In this se
tion we are going to des
ribe the numeri
al approa
h to 
ovari-

an
e matrix estimation. The key argument for this approa
h rises from the

need of regularizing the 
ovarian
e matrix. Respe
t to the PCA based ap-

proa
h of [45℄, this alternative provides a way to numeri
ally estimate the

two 
omponents and their sum, without imposing the pervasive 
ondition

on the eigenvalues of L∗
(and Σ∗

). The other main issue of POET approa
h

is that the rank is 
hosen a

ording to some information 
riteria, while we

would like an approa
h automati
ally dete
ting BOTH the low rank and the

sparsity pattern.

Combinatorial problem (3.6) is the most natural way to formalize this

sear
h. However, (3.6) is 
omputationally intra
table, and 
an be approa
hed

repla
ing the 
omposite non 
onvex penalty λrank(L)+ρ||S||0 with the 
om-

posite non smooth penalty λ||L||∗ + ρ||S||1. We 
an say that the numeri
al

approa
h here essentially 
onsists in model sele
tion via 
onvex optimiza-

tion, where 
onvexity is needed to a
hieve a unique minimum. The statis-

ti
al properties of estimates will be derived using the tools of non-smooth

mathemati
al analysis and random operator theory (fun
tional analysis).

We are now going to brie�y des
ribe the history of this minimization (or

optimization or regularization) problems, showing the various 
ontext where

l1 and nu
lear norm regularization problems arose. We start with l1 norm

(3.1.1) and we pro
eed with l∗ norm (3.1.2). In (3.1.3) we then des
ribe how

the 
ombined use of both heuristi
s 
ame out.

3.1.1 Cardinality minimization problem: l1 norm heuristi
s

As outlined also in Chapter 2, a 
entral role in numeri
al analysis is played

by ill-posed inverse problems (paragraph (2.2)). The genesis of the l1 norm

problem dates ba
k to the problem of re
overing a sparse ve
tor from an

observed full ve
tor. The most famous appearan
e 
omes probably from

[108℄ in the 
ontext of regression modelling.

In that famous paper by Robert Tibshirani (1996), the problem of sele
t-

ing signi�
ant regressors in the "Big Data" 
ontext, when p > n, is e�e
tively
solved by shrinking towards zero the irrelevant regression 
oe�
ients. The

resulting estimator of regression 
oe�
ients is 
alled LASSO (Least Absolute

Shrinkage and Sele
tion Operator). The LASSO problem 
an be formalized

in the following terms:
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(â, b̂) = min
a,b

n
∑

i=1

(yi − a−
p
∑

j

bjxij)
2

(3.8)

subje
t to

p
∑

j

|bj | ≤ t.

where t is a tuning parameter.

Assuming without loss of generality that x̄j = 0 for all j = 1, . . . p and

that ȳ = 0, a 
an be omitted. The same problem is substantially equivalent

(see [22℄, note 1) to

min
b∈Rp

1

2
||y −Xb||Fro + ρ||b||1, (3.9)

where ||b||1 =
∑

j |bj |, ρ is a regularization parameter depending on t, and 1
2

is an arbitrary s
ale term 
hosen for 
omputational 
onvenien
e.

In the language of numeri
al analysis, problem (3.9), i.e. the l1 reg-

ularization problem, 
an be intended as a quadrati
ally 
onstrained linear

problem (QCLP) or a quadrati
 program (QP).

The l1 heuristi
s was born in the 
ontext of signal/image re
overy. Tib-

shirani's 
ontribution was of fundamental importan
e in the regression 
on-

text, sin
e it provided a substantial improvement not only upon OLS (in

terms of predi
tion a

ura
y and interpretability) but also upon ridge re-

gression (whi
h is simply (3.9) with ||b||22 in pla
e of ||b||1, also known as

Tikhonov regression or l2 regularization problem) and upon subset sele
tion

te
hniques. In fa
t, the LASSO is more stable and interpretable.

Tibshirani showed that, under the 
ondition X ′X = Ip,

b̂j = sign(b̂0j )|b̂0j − γ|, j = 1, . . . , p,

where b̂0 is the usual OLS estimate, γ is determined by the 
ondition

∑ |bj | =
t and X is the n × p design matrix. However, this is a very spe
ial 
ir
um-

stan
e, and the strength and amplitude of the 
onditions on X under whi
h

model sele
tion is e�e
tive is still under investigation, as well as the validity

of solution algorithms. A very well known algorithm for LASSO estimation

is LARS (Least Angle Regression, [41℄).

After Tibshirani's 
ontribution, the literature on model sele
tion via l1
minimization grew up. In [22℄ the problem of model sele
tion via l1 opti-

mization was formalized very elegantly.

Let us 
onsider the linear model y = Xb + z, where y = (y1 . . . yn)
′
, b is

the p− dimensional ve
tor of 
oe�
ients and z = (z1 . . . zn)
′
is a ve
tor of

independent errors, zi ∼ N(0, σ2).
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In the p > n setup, it is di�
ult to dete
t whi
h are the 
oe�
ients bi,
i = 1, . . . , p representing the "right" variables to determine the values in y.
A standard approa
h to �nd b̂ is

min
b∈Rp

1

2
||y −Xb||22 + ρσ2||b||0, (3.10)

where ||b||0 is the number of non-zero 
omponents in b.
A number of model sele
tion 
riteria in the form (3.10) has been devel-

oped. However, (3.10) is 
omputationally intra
table (NP-hard) be
ause it

requires exhaustive sear
h over all subsets of 
olumns of X, thus having a


omplexity of 2p (if p ∼ n).
The most popular 
onvex relaxation of (3.10) is the LASSO:

min
b∈Rp

1

2
||y −Xb||2 + ρσ2||b||1, (3.11)

where ||b||1 =
∑p

i=1 |bi| and λ is a regularization parameter whi
h 
ontrols

the 
omplexity of the model. We will see why problem (3.11) is the most

appropriate 
onvex relaxation of problem (3.10).

The most important 
ondition for re
overy, as outlined in [22℄, is that

the predi
tors are not highly 
orrelated. This is summarized in the notion of


oheren
e, whi
h is the maximum 
orrelation between unit-norm variables

and is de�ned here as

µ(X) =
∑

1≤i<j≤p

| < Xi,Xj > |, (3.12)

i.e. the maximum inner produ
t between pairs of predi
tor variables. When

the ve
tor b has only s non-zero 
omponents, it is said to be s- sparse. In [22℄
it is proved that assuming appropriate bounds for the values of µ and s and
for appropriate values of λ, the error distan
e is bounded with rate O(log p).
It is remarkable that we need to enfor
e the maximum inner produ
t among

the 
olumns of X, i.e. the maximum 
orrelation between predi
tors, for

identifying the model. The bound on µ is an example of restri
ted isometry

property, whi
h will be ne
essary to bound the error for all 
ovarian
e matrix

models taken into a

ount.

The l1 minimization, as explained in [27℄, was �rst used for sparse signal

re
onstru
tion. This te
hnique 
an be e�e
tively used in a large number of

�elds, among whi
h we mention the very re
ent appli
ations of gene expres-

sion data. This setting also in
ludes relevant appli
ations on system 
ontrol,

digital image re
onstru
tion, sparse graphs. Suppose we want to re
over a

n× 1 signal x0, from an in
omplete set of measurement y = φx0, where y is
m× 1, φ is m× n, with m≪ n. Φ represents the 
oe�
ient sequen
e of the

signal in the appropriate basis.

The most immediate approa
h is by solving the l0 minimization problem:

min
x∈Rn

||x||l0 (3.13)
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under y = φx, where ||x||0 =
∑

i 1(xi 6= 0).
Even if this problem would be identi�ed if ||x0||l0 ≤ m/2, problem (3.13)

is intra
table be
ause ||x||l0 is non 
onvex. Therefore, the most used 
onvex

relaxation of problem (3.13) for signal dete
tion is again the l1 regularization
problem:

min
x∈Rn

||x||l1 under y = φx. (3.14)

This appli
ation is relevant, not only histori
ally, but also be
ause it shows

that l1 heuristi
s started to be used far from the 
ontext of statisti
al mod-

elling.

Before going on with our brief histori
al des
ription, it is worth under-

lining why 
onvex relaxations make problems tra
table. A standard theo-

rem of 
al
ulus states that a su�
ient 
ondition for X to be a minimum of

f(X) is that the se
ond derivative of f(X) is stri
tly positive in an open

domain. Sin
e (stri
tly) 
onvex fun
tions always have a (stri
tly) positive

se
ond derivative, 
onvexity is essential for optimization be
ause it ensures

that we �nd a global optimum. If the fun
tion is stri
tly 
onvex, the mini-

mizer is also unique.

In the 
ase of a matrix fun
tion f(X), the su�
ient 
ondition be
omes

the positive de�niteness of the Hessian matrix of f . If the fun
tion has two

or more arguments, it must be 
onvex respe
t to all arguments in order to

have a global minimum. In this way, 
riti
al points, i.e. points satisfying

df = 0, are also minima. We 
an thus exploit the Lagrangian dual theory.

Another important appli
ation of l1 heuristi
s, whi
h is exa
tly the op-

posite respe
t to the signal dete
tion problem, is the re
overy of a sparse sig-

nal representation from over
omplete di
tionaries in the harmoni
 
ontext.

Here, the signal y (n × 1) must be re
ast from an over
omplete represen-

tation (over
omplete di
tionary) x having dimensions m × n, with m > n.
The model in this 
ase is: y = Φx, where Φ is n ×m. The 
hallenge is to

re
ast the orthogonal basis 
losest to signal y. In linear algebra, these are

underdetermined linear systems, i.e. linear systems with in�nite solutions.

David Donoho ([36℄) was the �rst to prove that among the in�nite solu-

tions, l1 minimization re
overs the sparsest one. The fundamental ne
essary


ondition is the following restri
ted isometry property:

(1− ǫ)||x||2 ≤
√

π

2n
||Φx||1 ≤ (1 + ǫ)||x||2.

Relevant results in this �eld show that a number of non zero elements in x
proportional to

√

n
log(m) is usually enough to �nd a unique solution. Sur-

prisingly, the re
overy 
an be su

essfully done for a wide range of problems

having a relatively small number of samples, until n = O(m1/4 log5/2(m))
([37℄), if y is sparse and the observations are sele
ted uniformly at random.

A relevant appli
ation des
ribed by Candes and Tao in ([23℄) deals with

the problem of re
overing an input ve
tor from 
orrupted measurements.



44 CHAPTER 3. NUMERICAL AND COMPUTATIONAL ASPECTS

Their problem is y = Af + e, where f is the unknown m× 1 input ve
tor, y
is the observed n× 1 ve
tor, e is the n× 1 error and A is the m× n 
oding

matrix. Their solution to re
over f is

min
g∈Rn

||y −Ag||1. (3.15)

This problem is also 
alled error 
orre
tion problem.

We note that here we have both approximation and re
overy from highly

in
omplete measurements. The re
overy is e�e
tive with overwhelming prob-

ability if the size of the support of e is bounded. Theorems are proved using

the 
on
ept of restri
ted isometry, whi
h impose a bound to the in
oheren
e

(intended as the distan
e from being an orthonormal system) of the n input

ve
tors fi, where f is m×1 and i = 1, . . . , n. Their problem 
an be rewritten

as

min1′t, −t ≤ y −Ag ≤ t, (3.16)

where t ∈ Rm
and g ∈ Rn

, and 
an be re
ast as a linear problem with

inequality 
onstraints and solved e�
iently using standard algorithms ([16℄).

Formulation (3.16) will be very useful for our purpose.

We �nally mention an important lemma ([23℄, Lemma 3.1) whi
h de-

s
ribes the ne
essary 
onditions for obtaining a unique minimizer from prob-

lem (3.15).

To sum up, l1 heuristi
s allowed the rise of a new sampling theory (mu
h

fewer samples ne
essary than before), whi
h results in a new data a
quisition

proto
ol. As pointed out in [22℄, l1 regularization 
an be de�ned as the mod-

ern least squares method, for the variety of appli
ations and the 
apability

of providing solutions in the Big Data 
ontext.

To 
on
lude this se
tion, we give a remark on solution methods for l1
minimization problems. An exhaustive review of existing algorithms for

the l1 regularization problem (with spe
i�
 referen
e to the fa
e re
ognition


ontext) is provided in [115℄. We want to emphasize here the importan
e of

Iterative Shrinkage Thresholding Algorithms (IST). These algorithms were

born in the ve
tor denoising 
ontext. The �rst approa
h to solve this issue

was to set to zero too small entries (whi
h is exa
tly the shrinkage approa
h).

This 
ould be done solving the usual problem:

min
x∈Rn

φ(x) =
1

2
||Ax− y||2 + ρτC(x) (3.17)

If C is proper and 
onvex and φ is stri
tly 
onvex, then there is a unique

minimizer. If A = I, we are in the pure denoising 
ontext, and φ(x) is always
stri
tly 
onvex provided that C(x) is.

This approa
h moves from the work of a Fren
h mathemati
ian, J.J

Moreau, who �rst proposed the 
on
ept of proximal mapping ([81℄, [83℄).

Problem (3.17) has not to be ne
essarily solved using C(z) = ||z||1 (l1 norm).
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It 
an be solved using C(z) = ||z||2 (ridge), C(z) = ||z||∞ or C(z) = ||z||0
(l0 norm).

The solution to problem (3.17) was shown to be

xk+1 = Φ ρ
α

(

xk −
1

α
A′(AXk − y)

)

(3.18)

where A′(AXk − y) is simply the gradient ∇1
2 ||Ax − y||22 in xk, and Φ is

the thresholding operator with parameter

ρ
α . This is the proximal mapping

method (re
ently been proved to be equivalent to the proje
ted gradient ap-

proa
h, see [50℄). If c(z) = ||z||1 (3.18) is 
alled soft-thresholding operator, if

c(z) = ||z||0 (3.18) is 
alled hard-thresholding operator. The basi
 shrinkage

solution algorithm is 
alled ISTA (Iterative Shrinkage Thresholding Algo-

rithm, see [35℄). This approa
h has been easily extended to the nu
lear

norm regularization problem.

This algorithm 
an be equivalently seen in four di�erent ways: as an

Expe
tation-Maximization (EM), a Minimum-Maximum (MM), a Forward-

Ba
kward Splitting and a Separable Approximation algorithm. For details

we refer to [50℄.

Finally, we mention Augmented Lagrangian Methods and proximal gra-

dient algorithms, whi
h will be 
ru
ial for the solution of our problem (3.7).

We note that in this 
ontext the ALM and the proximal gradient solution


oin
ide. The fastest solution algorithm, as we will see, is FISTA (Fast

Iterative Shrinkage Thresholding Algorithm, [10℄).

3.1.2 Rank minimization problem: nu
lear norm heuristi
s

We now move to brie�y explain the history of l∗ heuristi
s. Its genesis and

use in statisti
s is mu
h more re
ent than the one of l1 heuristi
s. This topi

was �rst deeply studied in the PhD thesis of Maryam Fazel ([49℄). That work

explains widely how l∗ heuristi
s 
an be used for matrix rank minimization

problems.

The �rst relevant appli
ation in statisti
s 
an be found in [24℄. There

l∗ is e�e
tively used for exa
t matrix 
ompletion. The underlying problem

moves from a very well-known 
ase study: the Net�ix prize problem. The

Net�ix prize was an award given to those who were able to set up the best

predi
tion model for movie rating. The Net�ix dataset was 
omposed by a

large number of movies and a large number of movie ratings. The statisti
al

problem was that most of ratings 
on
erned a small number of movies. This

resulted in a matrix where around 99 per 
ent of entries were missing, sin
e

many ratings were empty.

In this 
ontext, it is natural to seek for the low rank matrix whi
h best

approximates the observed matrix. This equals to re
over a matrix from a

sample of its entries. Suppose we have a squared p×p matrixM with rank r
having a fra
tion of entries missing or 
orrupted. Call Ω the set of lo
ations
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orresponding to the observed entries su
h that i, j ∈ Ω if and only if Mij is

observed. The original problem to solve is

min rank(X) subje
t to Xi,j =Mij , (i, j) ∈ Ω. (3.19)

This problem is known to be NP-hard (rank(X) is non
onvex). Even if some

good algorithms exist ([47℄), they are of very little pra
ti
al use, sin
e they

require doubly exponential 
omputational times in p.
As Fazel shows in her thesis ([49℄) an e�e
tive 
onvex relaxation to solve

this problem is

min ||X||∗ subje
t to Xi,j =Mij , (i, j) ∈ Ω, (3.20)

where ||X||∗ =
∑p

i=1 ||σi(M)|| and σi(M) is the i-th largest singular values

of M . This is why for positive semide�nite X, problem (3.20) be
omes:

min tra
e(X) subje
t to Xi,j =Mij , (i, j) ∈ Ω, X � 0, (3.21)

where the symbol� denotes positive semi-de�niteness (≻ will denote positive

de�niteness).

In [16℄, problem (3.21) is shown to be re
ast as a semide�nite program

(SDP) exploiting the fa
t that the dual norm of the nu
lear norm is the

spe
tral norm. In parti
ular, it 
an be written as:

min
L,W1,W2

1

2
(trace(W1) + trace(W2)), s.t. (3.22)

[

W1 L
L′ W2

]

� 0.

In [24℄, Candes and Re
ht de�ne a very intuitive 
hara
terization of

the matri
es it is possible to re
over via this method. Consider a real-

valued re
tangular matrixM . Let its singular value de
omposition (SVD) be

∑r
i=1 σiuiv

′
i. If ui, i = 1, . . . , r (left singular ve
tors ofM) and vi, i = 1, . . . , r

(right singular ve
tors of M) are sele
ted uniformly at random from all sets

of r orthonormal ve
tors, the SVD is 
alled random orthogonal model. Note

that no 
ondition is pla
ed on the singular values σi(M), sin
e their magni-

tude is not relevant for re
overy.

Candes and Re
ht show that under the random orthogonal model, if the

number of samples n ≤ Cp5/4r log n, M is re
overed by (3.20) with very

high probability. If r ≤ n1/5, the 
ondition be
omes n ≤ Cp6/5r log n. The
strength of bound is proved to depend not only on p, r and n, but also on

the singular ve
tors of M . If the singular ve
tors are highly 
on
entrated

in few positions, it be
omes impossible to re
over M from a sample of its

entries. This is why they de�ne the 
oheren
e quantity for the p× r matrix

of left singular ve
tors U respe
t to the standard basis:

µ(U) =
p

r
max
1≤i≤p

||PUei||. (3.23)
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µ(U) ranges from 1 (if vi are spanned by ve
tors whose entries are

√

1/p)
to n/r (if the basis of U 
ontains any standard basis element). In the same

way they de�ne µ(V ) for the matrix of right singular ve
tors. They then

prove that under a bound on max(µ(U), µ(V )) and on the maximum entry

of

∑

1≤i≤r ukv
′
k, the previous bound 
an be generalized.

The 
on
ept of 
oheren
e, whi
h is also referred to as in
oheren
e (whi
h

is the opposite) will play a 
entral role in our 
ovarian
e matrix re
overy.

In [24℄ it is also showed whi
h matrix subspa
es satisfy these 
onditions

and whi
h analyti
al 
onditions on the subgradient of ||X||∗ are ne
essary

to ensure that (3.20) is the unique minimizer (Lemma 3.1). This result,

together with the analogous one holding for the l1 norm, will be a key proof

tool in the 
ovarian
e matrix 
ontext.

From a mathemati
al point of view, we are dealing for both heuristi
s

(l1 and l∗) with underdetermined linear systems. The task is to �ll missing

entries, in a situation where a large fra
tion of entries (or elements in the

ve
tor 
ase) are missing. This fra
tion must be not too large in order to

identify the unknowns and perform an e�e
tive re
overy. We note here that

the l1 norm of a ve
tor is simply the nu
lear norm l∗ of the diagonal matrix


ontaining the same ve
tor as the main diagonal.

In the matrix 
ase, beyond the Net�ix problem, this need �nds wide ap-

pli
ation in the �eld of 
ollaborative �ltering, of whi
h re

ommender system

is a relevant appli
ation, as well as genomi
 data and image pro
essing. All

these appli
ations require to estimate a low rank r ≪ p matrix to 
ompress

information. More widely, as we have seen for the de
oding linear program,

we may also be interested to relax the re
onstru
tion problem, i.e. to re-

lax the assumption whi
h leaves observed entries unaltered. In a statisti
al

perspe
tive, the approximation problem is mu
h more interesting, sin
e it

impli
itly assumes a model behind.

Let us 
all PΩ(X) = Xi,j if Xij is observed and 0 otherwise. Problem

(3.20) 
an easily be rewritten as

min ||X||∗

subje
t to PΩ(X)i,j = PΩ(M).
At the same time, we 
ould also be interested in:

min ||X||∗ (3.24)

subje
t to ||PΩ(X)− PΩ(M)||F ≤ δ, where
∑

Observed(i,j) ||Xij −Mij||2 = ||PΩ(X) − PΩ(M)||2F .
Problem (3.24) is equivalent to

min
Observed(i,j)

||Xij −Mij ||2

subje
t to ||X||∗ ≤ τ.
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The �rst form is a quadrati
ally 
onstrained semide�nite program (SDP),

the se
ond one is a quadrati
 program (QP). As explained in [116℄, we ex-

pli
itly note that the two problems are stri
tly related, sin
e the values δ
and τ are related. These parameters re�e
t the level of noise present in the

input matrix. Solving one of the two, it is possible to determine the level of

noise for whi
h the other problem shares the same solution.

There is an important di�eren
e between the re
onstru
tion and the ap-

proximation problem. Both problems 
an be re
ast as semide�nite problems.

We will dis
uss 
omputational aspe
ts in paragraph (3.2.2). In the former,

the 
onstraint is a linear equality, while in the latter the 
onstraint is a

quadrati
 inequality. For this reason, as we will dis
uss, the latter one re-

quires more than one sparse SVD to be solved, di�erently from the former

one. In [61℄ there is a wide dis
ussion on large-s
ale SVD methods whi
h


an be e�e
tively used for matrix 
ompletion problems.

The same o

urs in the l1 
ontext. The re
onstru
tion problem is a lin-

early 
onstrained linear program, the approximation problem is a quadrati-


ally 
onstrained linear program.

All in all, low rank approximation is the key ingredient of problem (3.20)

and (3.24). The underlying 
ombinatorial problem is

min
L

∑

i,j

(Σij − Lij) under rank(L) ≤ r,

whi
h is 
omputationally intra
table (NP-hard).

In spite of that, basi
 theorems from linear algebra state that

min
B,rank(B)=r

||A−B||2

and

min
B,rank(B)=r

||A−B||Fro

are both solved for

B =

r
∑

i=1

λiuiu
′
i,

whi
h is the SVD trun
ated to the r-th summand ([40℄), when r is known.
This is why SVD is the key 
omputational ingredient of re
ent algorithms.

As explained, if we repla
e rank(L) with ||L||∗ =
∑r

j=1 λj(L), the prob-
lem is made 
onvex ([46℄) and assumes the form

min
L

∑

i,j

(Σij − Lij) under ||L||∗ ≤ τ.

A natural question arises: is problem (3.20) really minimizing the latent

rank? This 
ru
ial passage was proved in [97℄. There the authors de�ne the

general a�ne rank minimization problem:

min rank(X) under A(X) = b (3.25)
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where A is a linear matrix operator. The attribute "a�ne" means that the

rank is minimized under a system of equality 
onstraints. This problem is

known to be NP-hard, and has lots of appli
ations, in
luding low rank matrix


ompletion and image 
ompression problems. There is a stri
t parallelism

between 
ompressed sensing (i.e. the 
ardinality minimization problem) and

rank minimization. In parti
ular it is proved that, as l1 heuristi
s provides

the sparsest solution of an underdetermined linear system, l∗ heuristi
s pro-
vides the lowest rank solution of underdetermined system (3.25). This holds

if and only if the following restri
ted isometry property (RIP) holds:

(1− δr)||X|F ≤ ||A(X)|| ≤ (1 + δr)||X|F , (3.26)

where δr is the restri
ted isometry 
onstant, i.e. the smallest s
alar sat-

isfying (3.26). The relaxed l∗ version of (3.25) is shown to give the minimum

rank under suitable 
onditions on δr (δ5r <
1
10 , r ≥ 1).

These results ensure that nu
lear norm heuristi
s re
overs the minimum

rank solution. We will show in paragraph (3.2.1) why l∗ (and l1) are un-

doubtedly the most e�e
tive proxies of rank(L) (and ||S||0).
An exhaustive overview of the algorithms for l∗ minimization is provided

in [118℄ with spe
i�
 referen
e to image analysis. We mention proximal

gradient algorithms ([90℄), Augmented Lagrangian (ALM) and Alternating

Dire
tion methods (ADM) ([116℄). These algorithms will be 
ru
ial for our

purposes.

In addition, we point out that matrix fa
torization issues 
an be e�e
-

tively exploited also for the rank minimization problem (by the so 
alled UV
parametrization). That tool be
omes very 
onvenient when dealing with pos-

itive semide�nite matri
es (PSD). In that 
ase, the nu
lear norm be
omes

the tra
e norm, and UU ′
parametrization is very easy-to-implement ([73℄).

In [4℄, the 
onsisten
y of tra
e norm regularization for PSD was proved very

elegantly, respe
t to the relationship between the regularization threshold λ
and the sample dimension n.

However, we will use proximal gradient algorithms, whi
h are more 
on-

venient for the parti
ular shape of our 
omposite problem.

3.1.3 Composite penalisation: 
ombined use of l1 norm and

nu
lear norm

The nu
lear norm minimization approa
h just des
ribed 
an be extended.

In order to make problem (3.24) robust to the presen
e of outliers, we 
an

assume that the input M 
an be approximated by L + S, where L is a low

rank matrix with rank r and S is a sparse matrix, i.e. a matrix with only a

fra
tion of nonzero entries. (3.24) thus be
omes

min
L,S

1

2
||(L+ S)−M ||2Fro + λ||L||∗ + ρ||S||1, (3.27)
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where ||S||1 =
∑p

i=1

∑p
j=1 |sij |, and is surrogate of ||S||0, the number of

nonzero elements in S. This problem is 
alled robust 
onvex matrix 
om-

pletion, as pointed out in [61℄, where this example was mentioned as an

appli
ation of large-s
ale SVD methods.

We de�ne our 
omposite (
onvex non-smooth) penalty P (L,S) as

P (L,S) = λ||L||∗ + ρ||S||1. (3.28)

Problem (3.27) is e�e
tive for matrix 
ompletion. It 
omes from the

analogous matrix re
onstru
tion problem, whi
h aims at re
overing exa
tly

L and S (without any quadrati
 penalty term). It 
an be thought of as a ro-

bust prin
ipal 
omponent problem, resulting in a data 
ompression whi
h is

robust against 
orrupted or missing entries. Here we allow for a small matrix

S to perturb the low rank matrix L, su
h that in
omplete data matrix re-


onstru
tion 
an be performed. Appli
ations in
lude video surveillan
e, fa
e

re
ognition, latent semanti
 indexing, ranking and 
ollaborative �ltering.

Suppose now we have a matrix M = L+S, where L is a low rank matrix

and S is the sparse matrix. M does not need to be squared: this te
hnique

was born to re
onstru
t data matri
es.

Classi
al Prin
ipal Component analysis solves the problem:

min ||M − L||, rank(L) ≤ r, under L+ S =M.

As we des
ribed before, this 
an be solved using 
lassi
al prin
ipal 
omponent

pursuit (PCP), i.e. taking

L =

r
∑

i=1

λiuiu
′
i,

where ui and λi, i = 1, . . . , r, are respe
tively the r eigenvalues and eigen-

ve
tors of M .

In [25℄, the Robust Prin
ipal 
omponent framework is des
ribed. The

des
ribed problem is

min
L,S
||L||∗ + ||S||1, under L+ S =M.

This is a non-smooth minimization problem, sin
e both penalties (and thus

their sum) are not 
onvex. In the next paragraph we will analyze the nu-

meri
al problem, and des
ribe possible approa
hes for numeri
al solution. In

[25℄, an e�e
tive and relatively fast re
overy is shown to be possible only un-

der spe
i�
 bounds for the rank of L, the number of non-zeros of S, and the

singular ve
tors of L. In parti
ular, maxi ||Uei||2 maxi ||V ei||2 maxi ||UV ||∞
must be bounded, where ei, i = 1, . . . , p, are the standard basis ve
tors.

In following works, as we des
ribe in Chapter 4, these 
onditions have

been weakened. Anyway, the approa
h for ensuring identi�ability and re-


overy 
omes from the same proof strategy. We will show how this method
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an be e�e
tively applied to 
ovarian
e matrix estimation, i.e. to the noisy


ontext, when one additional noise term is inserted for modelling M .

Now we move to the dis
ussion of the mathemati
al aspe
ts of the low

rank plus sparse de
omposition problem, 
oming ba
k to our key matrix

approximation problem (3.7).

3.2 Nu
lear norm and l1 norm minimization: ana-

lyti
al and algorithmi
 aspe
ts

Our aim is to perform 
ovarian
e matrix estimation under the assumption

of low rank plus sparse de
omposition. Su
h an assumption is equivalent to

assume a sparse approximate fa
tor model for the data.

Chapter 4 will be devoted to modelling aspe
ts behind these assumptions.

As we pointed out in previous paragraphs, applying (3.7) to the 
ovarian
e

matrix setting requires several assumptions on key parameters, in order to

guarantee identi�ability, re
overy, positive de�niteness and invertibility.

In this se
tion, we des
ribe the nature of problem (3.7) from the point

of view of numeri
al analysis (paragraph (3.2.1)) and 
omputational anal-

ysis (paragraph (3.2.2)). The stru
ture of the l1 norm plus nu
lear norm

regularization problem is des
ribed in detail, with referen
e to mathemati
al

aspe
ts.

3.2.1 Numeri
al 
ontext: a semide�nite program

Let us suppose we have a random ve
tor x with 
ovarian
e matrix Σ∗
fol-

lowing a low rank plus sparse stru
ture (3.1). Let us 
all X the n × p data

matrix. Suppose Σn = Σ̂n−1 is the p× p unbiased sample 
ovarian
e matrix


omputed on the observed data X.

Our 
ombinatorial problem (rank minimization problem (RMP) plus 
ar-

dinality minimization problem (CMP)) is:

min
L,S

1

2
||(L+ S)− Σn||2Fro + λrank(L) + ρ||S||0,

under L � 0, S ≻ 0, L+ S ≻ 0. (3.29)

Problem (3.29) is NP-hard, sin
e rank(L) and ||S||0 are not 
onvex. In

fa
t, both rank(L) and ||S||0 have jumps, s.t. they are not 
ontinuous (hen
e

not di�erentiable). The 
onstraints are for ensuring that our 
ovarian
e

matrix and residual matrix estimates are positive de�nite, as well as the low

rank estimate is positive semide�nite. This is the algebrai
 
ounterpart of

(3.6).

A

ording to se
tion (3.1), the CMP 
an be approa
hed via the l1 heuris-
ti
s, the RMP via the nu
lear norm heuristi
s.

So, problem (3.29) 
an be rephrased in this way:
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min
L,S

f(L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1,

underL � 0, S ≻ 0, L+ S ≻ 0. (3.30)

where λ and ρ are threshold parameters.

• ||S||0 has been repla
ed by the l1 norm of S, i.e.
∑n

i=1

∑n
j=1 |sij |

(Tibshirani, 1996 [108℄);

• rank(L) has been repla
ed by the nu
lear norm of L, i.e. ||L||∗ =
∑r

i=1 |di| (Fazel et al., 2001 [46℄).

Sin
e L∗
is a PSD (Positive Semide�nite Matrix), ||L||∗ =

∑r
i=1 di =

||diag(D)||1 = trace(D).We 
an thus talk about tra
e norm heuristi
s. More

spe
i�
ally, our analysis is restri
ted to symmetri
 positive semide�nite ma-

tri
es.

On a mathemati
al point of view, f(L,S) is a non-smooth 
onvex fun
-

tion. It is 
omposed by a least squares penalty (

1
2 ||(L+S)−Σn||2Fro), whi
h

is a quadrati
 fun
tion, 
onvex and smooth (di�erentiable), and a 
omposite

penalty whi
h is the sum of two non-smooth 
onvex fun
tions.

The l1 norm ||S||1 =
∑p

i=1

∑p
j=1 |sij| is 
onvex if ||tS1 + (1 − t)S2||1 ≤

t||S2||1 + (1 − t)||S2||1. This property des
ends from the properties of the

absolute value, whi
h satis�es the Cau
hy-S
hwarz inequality as it is a norm

in the R1
spa
e.

The nu
lear norm 
an be alternatively de�ned as ||L||∗ = tra
e(
√
L′L)

([63℄). In order to prove it is a 
onvex fun
tion, we have to show:

tra
e

√

(tL1 + (1− t)L2)(tL1 + (1− t)L2)′

≤ ttra
e
√

L1L′
1 + (1− t)tra
e

√

L2L′
2

We develop the �rst term of the inequality as:

tra
e

√

(tL1 + (1− t)L2)(tL1 + (1− t)L2)′ =

= tra
e

√

t2L1L
′
1 + (1− t)2L2L

′
2 + 2t(1 − t)L1L

′
2 = A

For Cau
hy-S
hwarz inequality,

A ≤ tra
e

√

t2L1L
′
1 + tra
e

√

(1− t)2L2L
′
2 + tra
e

√

2t(1− t)L1L
′
2 =

= (t||L1||∗)2 + ((1− t)||L2||∗)2 + 2t(1− t)||L′
1L2||∗.

Now, we re
all a theorem proving that ||L′
1L2||∗ ≤ ||L1||∗||L2||∗ ([63℄).

This result relies on the fa
t that the nu
lear norm is unitarily invariant by

de�nition, i.e. ||UXV || = ||X||, for any U, V unitary matri
es.
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So,

A ≤ ||(tL1 + (1− t)L2)
2||∗ ≤ ||tL1||∗ + ||(1 − t)L2||∗,

where the last step depends again on Cau
hy-S
hwarz inequality, thus prov-

ing the 
laim.

It is easy to show that the l1 norm and the nu
lear norm are not di�er-

entiable. If we think ||.||∗ as

∑r
i=1 λi = ||λL||1 (where λL is the ve
tor of

eigenvalues of L), it is straightforward that ||.||∗ is not smooth if some of the

eigenvalues are 0, from the properties of the absolute value. The same holds

for ||.||1.
In terms of di�erential, we have

δ||x||1
δxk

= xk|xk|−1. So, for xk = 0, ||.||1
does not exist. The same holds for ||.||∗: δ||X||∗

δX = X(X ′X)−1/2X, whi
h
means that ||X||∗ is not smooth if X is not invertible.

We 
an now explain in detail why l1 and l∗ are the best possible 
onvex
relaxations of l0 and rank respe
tively. The reason lies in a mathemati
al

argument. Relaxation (3.30) is the tightest 
onvex relaxation of problem

(3.29). This is due to the fa
t that ||X||∗ is the 
onvex envelope of rank(X),
and ||.||1 is the 
onvex envelope of ||.||0. This fundamental result was proved

in Maryam Fazel's PhD thesis. The 
onvex envelope of a non 
onvex fun
tion

is de�ned as the largest 
onvex fun
tion being smaller or equal to the original

one. She was able to prove that the nu
lear norm is the lower bound of the

solution of the original rank minimization problem ([49℄, p.55).

The proof is based on the so 
alled 
onjugate fun
tions. Essentially,

Fazel proves that the 
onjugate of the 
onjugate of the rank over the set

of all matri
es having spe
tral norm less or equal to one (||X||2 ≤ 1) is the
nu
lear norm. Sin
e the 
onjugate of the 
onjugate is known to be the 
onvex

envelope of the fun
tion, the theorem is proved. This result is also extended

to ||.||1, sin
e the l1 norm of a ve
tor is simply the rank of a diagonal matrix


ontaining the same entries. Analogously, ||.||1 is the 
onvex envelope of

card(x) over all ve
tors x s.t. ||x||∞ ≤ 1.
This result holds for any matrix X and ve
tor x. In our 
ase, our sear
h

is restri
ted to symmetri
 PSD for L, and to symmetri
 positive de�nite

matri
es for S and Σ = L+ S .

Therefore, problem (3.30) 
an be re
ast as a SDP (SemiDe�nite Pro-

gram).

min
L,S

1

2
||(L+ S)− Σn||2Fro subje
t to ||L||∗ ≤ λ and ||S||1 ≤ ρ, (3.31)

where S and L+S are positive de�nite and L is positive semide�nite. This is

the PRIMAL problem, and is a quadrati
ally 
onstrained quadrati
 problem.

The least square penalty is a quadrati
 fun
tion. The 
omposite penalty is

a non smooth fun
tion: the nu
lear norm 
onstraint involves the square root

of squared entries, thus imposing a quadrati
 
onstraint, while the l1 norm

imposes a linear 
onstraint.
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Reversely, the problem 
an be thought of as the following quadrati
ally


onstrained quadrati
 SDP program:

min
L,S

λ||L||∗ ≤ +ρ||S||1 subje
t to
1

2
||(L+ S)− Σn||2Fro ≤ τ. (3.32)

It is possible to prove that (3.31) and (3.32) are equivalent.

Sin
e the nu
lear norm is the dual of the spe
tral norm, i.e.

||M ||∗ = max tra
e(M ′Y ), ||Y ′|| = 1

(see [16℄), exploiting the SDP 
hara
terization of the nu
lear norm and

putting together (3.16) and (3.22) it is possible to write:

min
S,L,E,W1,W2

γ1′nZ1n +
1

2
(tra
e(W1) + tra
e(W2)) +

1

p
tra
e(E′E), (3.33)

[

W1 L
L′ W2

]

� 0.

−Zij ≤ Sij ≤ Zij,∀i, j

L+ S +E = C.

As additional 
onstraints, we want that S and L+S are positive de�nite, and

L is positive semide�nite. This formulation was obtained by an appropriate

use of sla
k variables.

Form (3.33) is the SDP 
hara
terization of problem (3.30). It is a 
onvex

problem; numeri
ally, it is de�ned as a quadrati
ally 
onstrained quadrati


problem (QCQP, [16℄). More in detail, it is 
omposed by a linear program

(the l1 part), a quadrati
 (the l∗ part) and a least squares program (the

Frobenius loss term). As explained, the least squares penalty is a quadrati


fun
tion and thus is smooth, di�erently from the other two 
omponents.

Let us now introdu
e the algebrai
 matrix 
ontext. From an algebrai


point of view, the obje
ts we need to identify are the following algebrai


matrix varieties:

L (r) = {L ∈ Rp×p | L = UDU ′, U ∈ Rp×r,D ∈ Rr×r}, (3.34)

K (s) = {S ∈ Rp×p | |support(S)| ≤ s}, (3.35)

where L (r) is the variety of matri
es with at most rank r, and K (s) is the
variety of (entrywise/elementwise) sparse matri
es with at most s nonzero
elements. support(S) is the orthogonal 
omplement of ker(S).

The tangent spa
es to (3.34) and (3.35) are:

T (L∗) = {UY ′
1 + Y2V

′ | Y1, Y2 ∈ Rp×r}, (3.36)

Ω(S∗) = {N ∈ Rp×p | support(N) ⊆ support(S)}. (3.37)
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As pointed out in [97℄, the 
hara
teristi
s of the two varieties show a


ontrastive analogy. They are both Hilbert spa
es of matri
es: for (3.35)

the Hilbert norm is the Eu
lidean one, for (3.34) is the Frobenius one. The

sparsity indu
ing norm is l1 for (3.35) and l∗ for (3.34). As we will des
ribe in
the next se
tion, norm additivity (||A+B|| = ||A||+ ||B||)is a key 
ondition

for our spa
es, sin
e we need them to be as 
lose as possible to this 
ondition

to perform identi�
ation. Norm additivity requires disjoint support for (3.35)

and orthogonal row and 
olumn spa
es for (3.34).

In [97℄, it was also showed that a dual formulation for the SDP 
hara
-

terization holds. For the a�ne minimum nu
lear norm problem (3.25), we


an write

max b′z subje
t to ||A∗(X)|| ≤ 1 (3.38)

as well as

max b′z (3.39)

s.t.

[

Im A∗(z)
A∗(z)′ In

]

� 0,

where A∗
is the dual operator of A. The �rst formulation is the 
onvex one,

while the se
ond is the numeri
al one whi
h exploits the SDP 
har
terization

of (3.25).

We note that it is straightforward to obtain the dual version of the l1
problem (3.9) by simply reshaping formulation (3.38) a

ordingly. In par-

ti
ular, the dual norm of the operator A be
omes the l∞ norm. The same

holds for the least squares problem in Frobenius norm. It is only ne
essary

to repla
e ||A∗(X)|| with ||A∗(X)||Fro, be
ause the dual norm of ||.||Fro is

||.||Fro. Therefore, in order to obtain the dual 
hara
terization of our gen-

eral problem (3.30), it is su�
ient to aggregate the 
hara
terizations of all

sub-problems properly reshaping the operator A for ea
h term. The same

holds for formulation (3.39) too.

3.2.2 Solution methods

The SDP 
hara
terization of our problem allows us to apply all standard op-

timization methods. These in
lude interior point methods (with logarithmi


barrier fun
tion) and penalty methods. A detailed review of these methods


an be found in [16℄. The standard MATLAB tool to perform optimization

is 
alled SDPT 3, and 
omputes the optimum via infeasibile path-following

algorithm (see [101℄). This method is e�e
tively used to approa
h standard

low rank plus sparse re
overy in the noiseless setting (see [30℄). However, in

the noisy setting, the presen
e of the least squares term renders these stan-

dard di�erential methods 
omputationally ine�
ient, for the use of se
ond

derivatives in a large s
ale 
ontext ([16℄, p.54).
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In order to apply standard se
ond-order minimization methods, we should

de�ne and solve the Lagrangian dual problem i.e. minimize the Lagrangian

fun
tion of (3.33). This 
ould be done using the 
lassi
al method of multi-

pliers, formulating and solving the system of KKT (Karush-Kuhn-Tu
ker)


onditions ([106℄). Unfortunately, this method would require to solve an un-

derdetermined non-linear system, by using for instan
e Newton methods or

logarithmi
 barrier fun
tions, whi
h 
an be 
omputationally hard. More e�-


iently, the Lagrangian method 
ould be adapted to in
lude 
onstraints and

penalties (Augmented Lagrangian method). Alternatively, the Alternating

Dire
tion method (ADM) 
ould also be e�e
tive. In order to simplify the

nu
lear norm minimization and avoid iterative 
omputations of SVD, an-

other solution implies the use of UV-parametrization. Further details 
an be

found in [116℄, where possible gradient solutions of the a�ne rank minimiza-

tion problem (3.24) are analyzed. Alternative methods like interior point

methods, penalty methods and barrier methods ([16℄) 
an also be imple-

mented ([101℄). In any 
ase, all these methods are not parti
ularly suitable

in the large-s
ale 
ontext, be
ause minimizing the quadrati
 loss requires the


omputation of a se
ond derivative in large dimensions, whi
h is 
omputa-

tionally expensive.

For this reason, re
ent solutions proposed in the literature are based

on �rst-order method approa
hes (exploiting only �rst derivatives), whi
h


ombine the use of standard di�erential for the smooth part and a pro
edure

based on the non-smooth properties of the 
omposite penalty.

Proximal a

elerated algorithms developed by Yurii Nesterov (see [88℄

[87℄) are the key for our problem. They are essentially augmented Lagrangian

methods (ALM) where the �rst order derivative of the smooth part is aug-

mented by the 
omposite penalty (an overview for this kind of methods

is in [90℄). In order to solve the non-smooth part, iterative shrinkage so-

lution (IST) methods are used. A very well known method developed for

l1 linear inverse problems is FISTA (Fast Iterative Shrinkage Thresholding

Algorithm, [10℄). FISTA is an a

elerated algorithm derived from the pre-

vious one (named ISTA) using Nesterov's a

eleration s
heme ([86℄). This

approa
h was extended to the l∗ 
ase in [17℄ and was named singular value

thresholding (SVT). The SVT 
an be a

elerated using the same s
heme too.

Talking about non-smooth methods, the subgradient (or subderivative)

was �rst de�ned for 
onvex fun
tions by Moreau and Ro
kafellar ([82℄, [98℄)

and was then generalized to non 
onvex fun
tions by Clarke ([28℄). For the

use of subgradient for minimization purposes (subgradient approa
h) a wide

histori
al and methodologi
al review is in [12℄.

Given a fun
tion f : I ∈ Rn → R at point x0 in the open interval I, the
subderivative of f is any ve
tor v ∈ Rn

satisfying

f(x)− f(x0) ≤< v, x− x0 > .

The set of subderivatives is 
alled subdi�erential and is denoted by δf(x0).
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δf(x0) is always a non-empty 
ompa
t set.

The de�nition of subderivative and subdi�erential is analogous in the

univariate 
ontext, where I and v lie in R. There, it is possible to show that

the subdi�erential is always a 
losed set [a, b] where a = limx→x−

0

f(x)−f(x0)
x−x0

and b = limx→x+
0

f(x)−f(x0)
x−x0

. a and b always exist with a ≤ b. A typi
al

example very useful to us is the 
ase f(x) = |x|. That fun
tion is 
onvex

(even if not stri
tly) but non-di�erentiable at the origin, where the subdif-

ferential is equal to [-1,1℄. For negative x0 the subdi�erential 
oin
ides with
the di�erential and is equal to −1, for positive x0 it is the same but equal

to 1.
The subdi�erential is

δf(x) = {d ∈ Rn : f(y) ≥ f(x)+ < d, y − x >, y ∈ Rn}.

For our optimization problem, the subdi�erentials of l∗ and l1 are relevant

([112℄). We report both:

δ||X||∗ =
{

UU ′ +W :W andX have orthogonal row and 
olumn spa
es, ||W || ≤ 1
}

(3.40)

δ||x||1 =
{

d ∈ R1 : di = sign(di) for i ∈ T, |di| ≤ 1, i ∈ T, T = {1, . . . , n}
}

.
(3.41)

Note that both subdi�erentials share a 
ommon stru
ture. They are

both 
omposed by the di�erential at smooth points (UV ′
or sign(di)) and

a possible 
ontra
tion (W or the 
omplement to 1/− 1 as the 
ase). In [97℄

the optimality 
onditions for the a�ne rank minimization problem (3.25) are

des
ribed:

1. Feasibility 
ondition (A(X) = b)

2. Unimprovability of the subdi�erential at any feasible dire
tion A∗(z) ∈
δf(x),

where A∗
is the adjoint operator su
h that < Ax, y >=< y,Ax >. These


onditions ensure that problem (3.25) is solved and the nu
lear norm a
hieves

its minimum in the feasible set (whi
h is the set of all 
andidate matri
es

Y ). In fa
t it holds:

||Y ||∗ ≥ ||X||∗+ < A∗(z), Y −X >= ||X||∗+ < z,A(Y −X) >= ||X||∗.

The same 
onsiderations hold for the l1 
ase with the appropriate 
hanges.

The prin
iples of proximal gradient method are the following. Suppose

we have a fun
tion Φ(x) = f(x) + Ψ(x) where f is smooth and Ψ is non-

smooth, both 
onvex. Our problem is to minimize Φ(x) over its feasible set
Z (x ∈ Z). This minimization problem 
an be approa
hed by the 
omposite

prox-mapping ([88℄):

ProxΦ,z(ξ) = argmin
w∈Z

[

< ξ,w > +
Lf

2
||z − ξ||2 +Ψ(w)

]

, (3.42)
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where z belongs to the set of points in the domain of Ψ having non-empty

subdi�erential, and ξ belongs to the domain of f . The pro
edure works under
the 
ondition of Lips
hitz 
ontinuity for f (||∆f(x)−∆f(y)||2 ≤ Lf ||x−y||2,
where Lf is the Lips
hitz 
onstant).

We will approa
h the solution of (3.30) by minimizing (3.42). Following

[76℄, we are going to employ proximal gradient methods, based on the subgra-

dient approa
h ([88℄). The problem of additional 
onstraints will be solved

theoreti
ally, showing that problem (3.30) with or without the 
onstraints

is geometri
ally the same. Therefore we now fo
us on the un
onstrained

problem (3.7).

Re
alling (3.42), we note that the 
omposite prox-mapping equals to

�nding out the point in the subgradient of the 
omposite penalty whi
h

is as 
lose as possible to the gradient of the smooth part at ea
h feasible

point. In this respe
t, this approa
h is also a proje
ted gradient method.

It is also a gradient method, in parti
ular, it is a �rst order approximation

methods be
ause it exploits �rst derivatives only. It is also a Min-Max

(MM) approa
h, in the sense that proximal gradient is minimized under

the assumption that the 
omposite gradient mapping maximizes the gain in

terms of iterative minimization of our obje
tive. For this reason, the method

works only under the assumption of Lips
hitz 
ontinuity for the gradient of

our obje
tive, i.e. under the assumption of limited variation for our obje
tive.

Our obje
tive fun
tion is:

F (L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1. (3.43)

The di�erentiable part of (3.43) is

f(L,S) =
1

2
||(L+ S)− Σn||2Fro, (3.44)

where Σn is the input of our pro
edure.

The matrix gradients of f are ∇Lf = ∇Sf = L+ S − Σn =W.
The (matrix bivariate) gradient ∇L,S is Lips
hitz 
ontinuous with Lip-

s
hitz 
onstant l = 2:

||∇L,Sf(L1, S1)−∇L,Sf(L2, S2)||2 ≤ l
√

|L1 − L2|2F + |S1 − S2|2F ,

l = 2.
The �rst-order approximation of (3.43) is:

Ql=2((L,S), (Lt−1, St−1)) = f(Lt−1, St−1) +

+ < ∇Lf(t−1), L− L(t−1) > + < ∇Sf(t−1), S − S(t−1) > +

+
l

2
|L− L(t−1)|2Fro +

l

2
|S − S(t−1)|2Fro + λ||L||∗ + ρ|S|1.
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The matrix inner produ
t <> here is the standard < A,B >= tr(A′B).

Note that our 
omposite prox-gradient mapping is:

< ∇Lf(t−1), L− L(t−1) > + < ∇Sf(t−1), S − S(t−1) > +

+|L− L(t−1)|2Fro + |S − S(t−1)|2Fro + λ||L||∗ + ρ|S|1.

This formulation exploits a previous work ([69℄), whi
h develops a prox-

imal gradient method for tra
e norm minimization (i.e. the nu
lear norm

for PSD matri
es). The key is that the gradient step needed to minimize

F (L,S):

Lk = Lk−1 −
1

2
∇Lk−1

, Sk = Sk−1 −
1

2
∇Sk−1

is the same minimizing

Q2((L,S), (Lt−1, St−1)).

In this respe
t, this method is also and augmented Lagrangian method.

Another relevant aspe
t is that here we have two matrix variables (L and

S). In order to perform minimization, ∇Lk−1
must belong to the subdi�eren-

tial of λ||Lk−1||∗ and ∇Sk−1
must belong to the subdi�erential of ρ||Sk−1||1.

The problem would be hard to solve via subgradient methods if these two

related problems 
ould not be approa
hed somehow separately.

We report the step-size assumption ensuring that the optimization of Ql

is e�e
tive.

Lemma 3.2.1. Let (Ľ, Š) = dl(L̃, S̃) = minL,S Ql((L,S), (L̃, S̃)).
If the following stepsize assumption is satis�ed for some l > 0:

F (Ľ, Š) ≤ Ql((L,S), (L̃, S̃)),

then for any (L,S), we have

F (L,S)− F (Ľ, Š) ≥ l < L̃− L, Ľ− L̃ > +

+l < S̃ − S, Š − S̃ > +
l

2
|Ľ− L̃|2F +

l

2
|Š − S̃|2F .

This passage highlights the nature of min-max approa
h for the method.

Standard subgradient methods have an optimal 
onvergen
e rate ofO( 1√
t
)

([69℄). This 
an be very low for large s
ale problems. Another feature of this

extended gradient approa
h is that it substantially improves 
onvergen
e.

The key is the separability of our problem in two ones, one in variable L
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and the other one in variable S. In fa
t, our �rst-order approximation Q2 is

separable in L and S:

L(t) = min
L
|L− (L(t−1) −

1

2
∇f(t−1))|2Fro + λ||L||∗ (3.45)

S(t) = min
S
|S − (S(t−1) −

1

2
∇f(t−1))|2Fro + ρ||S||1 (3.46)

These two subproblems 
an be solved easily, by simple algebrai
 opera-

tions, making this algorithm suitable for large-s
ale problems. The problem

in L (3.45) 
an be solved by applying the SVT (Singular Value Thresholding,

[17℄) to L(t−1) − 1
2∇f(t−1).

Lemma 3.2.2. (Ji and Ye (2009), Cai et al.(2010)) τλ(Y ) = minM
1
2 ||M − Y ||2F+

λ||M ||∗ is given by τλ(Y ) = UDλV
′
, where (Tλ)ii = max{0,Dii − λ}. Tλ is


alled SVT (Singular Value Thresholding operator). The unique solu-

tion of (3.45) is thus the SVT of L(t−1) − 1
2∇f(t−1).

In [17℄ it is proved that the SVT operator is the unique minimizer of

the l∗ minimization problem (3.24), be
ause (3.24) is stri
tly 
onvex and the

SVT of L is proved to belong to the subdi�erential of ||L||∗. Even if the SVT

was �rst developed for the matrix 
ompletion problem, it 
an be e�e
tively

used for all nu
lear norm approximation problems.

Sin
e we 
an express a ve
tor as a diagonal matrix having the same ve
tor

as the main diagonal, Lemma 3.2.2 holds as well for the l1 
ase:

Lemma 3.2.3. ([35℄) Tρ(Y ) = minM
1
2 ||M − Y ||2F+ρ||M ||∗ is given element-

wise by (Tρ(Y ))ij = sign(Yij)max{0, |Yij − ρ|}.

Tρ(Y ) is 
alled Soft-Thresholding operator. Therefore, (3.46) is solved
by applying soft-thresholding to S(t−1) − 1

2∇f(t−1).

In origin, this algorithm was proposed in [35℄ to solve the LASSO reg-

ularization problem ([108℄). The extension to the l1 matrix norm problem

is straightforward. This algorithm has been e�e
tively used in a number of

situations, like for instan
e in the graphi
al lasso 
ontext for sparse inverse


ovarian
e matrix estimation ([53℄).

Due to the separability property and to the use of tra
e norm heuristi
s,

our minimizer 
an now 
onverge at a rate O(t) ([69℄). As this 
ost 
an be

still expensive in the large-s
ale 
ontext, Nesterov's a

eleration s
heme for


omposite gradient mapping minimization problems ([87℄) is applied. As a


onsequen
e, the algorithm assumes the form ([77℄):

• repeat

• set (L0, S0) = (diag(Σn), diag(Σn))/2

• Initialize L = L0 = Y1 and S = S0 = Z1
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• Apply SVT operator to the SVD of (Y(t−1) − 1/2∇(Y(t−1), Zt−1) and
set Lt = UTλU

′

• Apply soft-thresholding operator to M = (Z(t−1) − 1/2∇(Y(t−1), Zt−1)
and set St = Tρ(M).

• Set (Y(t+1), Z(t+1)) = (Lt, St) +
αt−1
αt+1

[(Lt, St) − (Lt−1, St−1)] where

αt+1 =
1+
√

1+4α2
t

2 .

• until Convergen
e 
riterion ||Lt−Lt−1||F
||1+Lt−1||F + ||St−St−1||F

||1+St−1||F ≤ ǫ.

This algorithm has also been e�e
tively used for dynami
 Magneti
 Reso-

nan
e Imaging (MRI) data ([89℄). More generally speaking, also the Lips
hitz


onstant l 
an be linearly updated during the algorithm, when there is some

suspe
t that l = 2 is not appropriate ([76℄).

The des
ribed algorithm is proved to 
onverge at rate O(t2) ([77℄):

Theorem 3.2.1. Let (Lt, St) be the update produ
ed by the algorithm at

iteration t. Then for any t ≤ 1, we have the following 
omputational a

ura
y

bound:

F (L(t), S(t))− F (L̂, Ŝ) ≤ 8
||L0 − L̂||Fro + ||S0 − Ŝ||Fro

(t+ 1)2

where (L̂, Ŝ) minimizes (3.7).

This results allows to highlight another advantage of this approa
h 
on-


erning 
omputational 
ost. Standard methods for SDPs like interior point

methods (IPMs) require O
(

p6

log(ǫ)

)

operations, whi
h is too expensive for

large-s
ale problems. This algorithm requires only O
(

p4√
ǫ

)

operations. This


an be obtained multiplying the number of 
omputations for full SVD O(p3)
(whi
h is the one of standard least squares problems be
ause it requires at

ea
h iteration to solve p quadrati
 systems) times the square root of the

bound in Theorem 3.2.1 (at most O(p2)), divided by the square root of the


omputational pre
ision ǫ. This 
ost is O(p2) smaller than the one of IPMs

given that the pre
ision requirementis not high. This rate 
ould be further

improved by using partial (soft) SVD methods like soft-impute, whi
h re-

quire, if there are no missing entries, only O(p2) 
omputations (otherwise,

in the pure l∗ 
ontext, even fewer: see [61℄, slide 15).
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Chapter 4

Covarian
e estimation via

low rank plus sparse

de
omposition:

statisti
al performan
e

The main topi
 of this 
hapter is 
ovarian
e matrix estimation under the

assumption of low rank plus sparse stru
ture (3.1). Here we dis
uss re
overy

and identi�ability 
onditions for Σ∗
under various model assumptions. The

unifying feature of all these models is that the estimation is 
arried out by


omposite minimization problems in
luding (3.28), whi
h is our 
omposite

(
onvex non-smooth) penalty.

In se
tion (4.1), existing works on matrix re
onstru
tion or approxima-

tion using 
omposite penalty (3.28) are dis
ussed.

In paragraph (4.1.1), we dis
uss the approa
h to matrix re
onstru
tion

by Chandrasekaran et al. (2011) ([30℄), whi
h minimizes a 
omposite penalty

in the form (3.28) (apart from appropriate re-s
aling of regularization pa-

rameters). Therein, the exa
t de
omposition is performed, in a noiseless


ontext.

In paragraph (4.1.2), we des
ribe the approa
h to matrix approximation

by Agarwal et al. (2012) ([1℄), whi
h provides a �rst (approximate) solution

to the problem of approximate de
omposition (in the noisy 
ontext) into

approximately low rank and sparse matri
es. There, both 
omponents (and


onsequently their sum) are re
overed by minimizing (3.7) under spe
i�


assumptions on ||L||∞.

In paragraph (4.1.3), we show the exa
t solution of the approximate

de
omposition problem for a latent variable graphi
al model proposed by

Chandrasekaran et al. (2012) ([31℄). In that paper the pre
ision matrix is

estimated under model stru
ture (3.1) by minimizing a regularized likelihood

problem in
luding a Gaussian log-likelihood term and the 
omposite penalty

63
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(3.28). It is the �rst exa
t solution to the re
overy problem of both 
om-

ponents and their sum in the noisy 
ontext, and provides the mathemati
al


ontext for identi�
ation and exa
t re
overy (for the inverse 
ovarian
e ma-

trix). Therein, the error rates for the 
ovarian
e matrix were obtained as a


onsequen
e.

In paragraph (4.1.4), we des
ribe the most re
ent 
ovarian
e estimator

obtained minimizing (3.30), whi
h is 
alled LOREC (LOw Rank and sparsE

Covarian
e estimator, [77℄). We provide re
overy and identi�ability 
ondi-

tions for a 
ovarian
e matrix (as well as its inverse) under model (3.1), fol-

lowing the results appeared in Luo (2013) ([77℄). These results were obtained

adapting the mathemati
al setting of [31℄, thus giving an exa
t solution to

the approximate re
overy problem.

4.1 Low rank plus sparse de
omposition: identi�-


ation and re
overy

This se
tion is devoted to the des
ription of existing estimators based on the


omposite minimization of nu
lear norm and l1 norm, under the assumption

of low rank plus sparse de
omposition for the 
ovarian
e matrix. We have

widely des
ribed in previous 
hapters why the need for a regularized esti-

mate of the 
ovarian
e matrix 
omes out. We keep in mind two keywords:

re
onditioning and model parsimony.

We now distinguish two 
ases: the noiseless 
ontext and the noisy 
on-

text. In the former, we want to re
over a squared p× p matrix

C = A∗ +B∗, (4.1)

where A∗
is sparse having at most s nonzero elements and B∗

is low rank

with rank r < p. This is the 
ontext of paragraph (4.1.1), derived by [30℄,

and is for us an unavoidable preliminary step, be
ause identi�ability and

re
overy were �rst established in that 
ontext. Here C is simply an input

matrix.

Then we have the noisy 
ontext, where we start from an input estimate:

Σ̂ = L∗ + S∗ +W, (4.2)

whi
h 
ontains an error term (noise) W distributed as a 
entered zero-

mean Wishart. S∗
is sparse having at most s nonzero elements and L∗

is low rank with rank r < p. This is the 
ontext of all the following

paragraphs and models we will des
ribe. We usually have Σ̂ = Σ̂n−1, that is,

the unbiased sample 
ovarian
e matrix. This point is a relevant one be
ause

this 
hoi
e implies the 
ondition n ≤ p+1, whi
h 
an be not appropriate in

a large dimensional 
ontext, as explained in paragraph (2.1). We will try to

over
ome this issue in paragraph (5.1).
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The �rst attempt to identify both the low rank and the sparse 
omponent

was made in the noiseless 
ontext. The problem was set into the 
ontext of

algebrai
 geometry, as a deterministi
 (exa
t) re
overy for general 
omplex

non-symmetri
 matri
es. It is easy to see that strong identi�ability issues

arise, for the simultaneous re
overy of the two matri
es under the sum 
on-

straint. The identi�ability issue is 
entral in our dis
ussion. We now start

to de�ne the setting we are working on.

4.1.1 Exa
t re
overy: rank-sparsity in
oheren
e

Let us suppose we have an input matrix C ∈ Rp×p. We suppose that C
is the sum of a low rank matrix B∗

and sparse matrix A∗
, both unknown.

Whi
h 
lasses of low rank and sparse matri
es allow to perform exa
t de-


omposition? The aim of this paragraph is to show how to disentangle C
in the two underlying 
omponents, following the approa
h in [30℄. This is a

de
omposition problem: su�
ient 
onditions for fundamental identi�ability

and re
overy are needed. We fa
e a deterministi
 (purely numeri
al) prob-

lem, whi
h is to �nd out A∗
and B∗

as well as the number and the lo
ation

of non-zeros in A∗
(sparsity pattern) and the rank of B∗

. This is why here

we have no sample dimension n: the parameters are only the the dimension

p, the number of non-zeros s and the latent rank r.

In order to perform this task, we need �rst to properly de�ne the obje
ts

to identify. As explained, the tools of algebrai
 geometry (a referen
e book

is [60℄) are very useful to us. In parti
ular we are going to exploit the basi



on
ept of matrix algebrai
 variety. Matri
es A∗
and B∗

are assumed to


ome from the following set of matri
es:

L (r) = {B ∈ Rp×p | B = UDU ′, U ∈ Rp×r,D ∈ Rr×r} (4.3)

K (s) = {A ∈ Rp×p | |support(A)| ≤ s}. (4.4)

L (r) is the variety of matri
es with at most rank r.
K (s) is the variety of (entrywise) sparse matri
es with at most s nonzero
elements, where support(A) is the orthogonal 
omplement of ker(A).

The de
omposition problem (4.1) is fundamentally ill-posed, that is, it is

not possible to �nd out a unique de
omposition without further assumptions.

In fa
t, two natural identi�ability problems arise:

• the low rank matrix may be itself very sparse;

• the sparse matrix may have itself very low rank.

In order to obtain a unique disentanglement, an upper bound on the

degree of sparsity of the low rank 
omponent as well as a lower bound on the

rank of the sparse 
omponent are needed. For this purpose, in [30℄ the notion
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of rank-sparsity in
oheren
e is developed, whi
h is de�ned as the un
ertainty

prin
iple between the sparsity pattern of a matrix and its row/
olumn spa
e.

In parti
ular, quantities involving tangent spa
es to algebrai
 varieties (4.3)

and (4.4) are needed.

Matrix sets (4.3) and (4.4) 
an be seen as di�erentiable manifolds (away

from their singularities) or as algebrai
 varieties, as they essentially are set

of polynomial equations. The variety of rank-
onstrained matri
es (4.3) is


hara
terized by the vanishing of all (r + 1) × (r + 1) minors of B. For

this reason, sin
e the (unknown) parameters are p2 and the equations are

(p−r)2, the dimension of this variety is r(2p−r). This variety is nonsingular
everywhere ex
ept at those matri
es with rank less than or equal to r − 1.
This happens be
ause the tangent spa
e at those points has zero measure

(and thus it is not uniquely identi�ed). The tangent spa
e to r - ranked

matri
es is:

T (B) = {UY ′
1 + Y2V

′ | Y1, Y2 ∈ Rp×r}, (4.5)

where UDV ′
is the SVD de
omposition of B.

The tangent spa
e T (B) is the spa
e of all the matri
es having the same

row or 
olumn spa
e of B. For this reason, the dimension of T (B) is again
r(2p− r) (if B has rank r). T (B) is a subspa
e of Rp×p

, be
ause it is 
losed

under addition and s
alar multipli
ation.

The variety of sparse matri
es (4.4) is the set of all the matri
es having

a limited size of their support. If the number of non zero elements is equal

to s ≪ p2, the dimension of the support is 
onstrained by s. This is due to
the properties of null spa
es and homogenous systems: sin
e the support is

the orthogonal 
omplement of ker(S), if ker(S)⊥ has dimension s, ker(S)
has dimension p2−s and S has exa
tly s zeros. Analogously to the low rank


ase, this variety is singular everywhere ex
ept from those matri
es having

a dimension of their support less than or equal to s− 1, be
ause in that 
ase

ker(S) has measure 0 (and thus it is not uniquely identi�ed) in Rs
.

The tangent spa
e to (4.4) is:

Ω(A) = {N ∈ Rp×p | support(N) ⊆ support(A)}. (4.6)

It is the variety of all the matri
es having a support 
ontained in the one of

A. It has dimension s and it is a subspa
e of Rp×p
.

In this algebrai
 
ontext, it is easy to understand why the authors of [30℄


hose to estimate A∗
and B∗

solving the following optimization problem:

(Â, B̂) = min
A,B

f(A,B) = γ||A||1 + ||B||∗ under C = A∗ +B∗. (4.7)

For the dis
ussion on the opportunity of using this problem for rank-sparsity

re
overy we refer to Chapter 3. This is a deterministi
 (re
overy) problem.

Note that γ is a tuning parameter depending on the relative size of ||A||1
respe
t to ||B||∗.
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Identi�ability 
onditions depend on relevant quantities referred to tan-

gent spa
es T (B∗) and Ω(A∗). In parti
ular, the relevant quantity is the

produ
t of two quantities, one for ea
h spa
e, des
ribing the degree of rank-

sparsity in
oheren
e between the rank of B∗
and the sparsity pattern of A∗

.

We de�ne the following rank-sparsity in
oheren
e measures between Ω(A∗)
and T (B∗) :

ξ(T (B∗)) = max
N∈T (B∗),||N ||2≤1

||N ||∞, (4.8)

µ(Ω(A∗)) = max
N∈Ω(A∗),||N ||∞≤1

||N ||2. (4.9)

Note that ξ(T (B∗)) ≤ 1, µ(Ω(A∗)) ≤ √p.
These quantities are the maximum in�nity norm among the matri
es

belonging to T (B∗) and the maximum spe
tral norm among the matri
es

belonging to Ω(A∗). They arise naturally from the study of the relationship

between the rank and the sparsity pattern of one matrix. In fa
t, a relevant

result on µ(M) and ξ(M), holds for any matrix M ∈ Rp×p
:

Theorem 4.1.1. For any matrix M 6= 0, we have that ξ(M)µ(M) ≥ 1.

This results des
ribes the deep meaning of the 
on
ept of rank-sparsity

in
oheren
e: it is not possible for one matrix to have T (M) with all di�use

elements and to have di�use spe
tra for Ω(M). The un
ertainty prin
iple

states that a matrix M 
annot have µ(M) and ξ(M) simultaneously small.

Another relevant result involving µ and ξ arises analyzing the 
onditions
ruling the interse
tion between (4.5) and (4.6). If we 
ould assume to know

the tangent spa
es, a ne
essary and su�
ient 
ondition for exa
t de
ompo-

sition would be

Ω(A∗)
⋂

T (B∗) = 0,

i.e. the 
ondition of transverse interse
tion between the two spa
es. This


onditions involves 
ru
ially quantities (4.8) and (4.9), as outlined in the

following proposition:

Proposition 4.1.1. Given two matri
es A∗
and B∗

, we have that

µ(A∗)ξ(B∗) < 1⇒ Ω(A∗)
⋂

T (B∗) = 0.

The smallest µ(A∗) and ξ(B∗) , the 
loser to the 
ondition of perfe
t

transversality we are, and so the easiest is the de
omposition. In this 
ase,

sin
e we are in the noiseless 
ontext, we need perfe
t transversality. From

the next paragraph (4.1.2), as we set into the noisy 
ontext, we will relax this

assumption, allowing a small degree of interse
tion, sin
e we allow random

perturbations for A∗
and B∗

. However, in order to perform re
overy, this

degree shall be suitably bounded.
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From these results we 
an argue that, in order to perform re
overy, we

need to 
ontrol the spikiness of the eigenvalues of A∗
and the sparsity pat-

tern of B∗. In fa
t, If B∗
is nearly sparse, A∗


annot be re
overed, as well as,

if A∗
is nearly low rank, B∗


annot be re
overed. An un
ertainty prin
iple

between the rank of B∗
and the sparsity pattern of A∗

holds, i.e. too sparse

low rank matri
es as well as sparse matri
es with too low rank 
annot be

re
overed. It is interesting that the magnitude of the eigenvalues of the low

rank 
omponent as well as the number of nonzeros in the sparse 
omponent

play no role for identi�
ation. The produ
t µ(A∗)ξ(B∗) is the rank-sparsity
in
oheren
e measure and bounding it 
ontrols for that.

In light of Proposition 4.1.1, the two identi�ability issues 
an be des
ribed

in a more te
hni
al way as follows:

• The low rank 
omponent is not too sparse if its row/
olumn spa
es are

NOT 
losely aligned to the standard basis ve
tors, i.e. if the maximum

proje
tion of a standard basis ve
tor onto the ve
tor subspa
e spanned

by the 
olumns of U is as small as possible.

• The sparse 
omponent is not low rank if it does not have too 
on
en-

trated support, i.e. if its spe
trum (set of eigenvalues) is bounded.

In other words, we want that the maximum number of non-zeros per


olumn to be bounded.

These te
hni
al 
onditions naturally arise from the geometri
 algebrai


setting and from the minimization 
ontext using (4.7) under the sub-gradient

approa
h. In fa
t, (4.8) and (4.9) are the dual norms of tangent spa
es (4.5)

and (4.6) respe
tively. Optimality 
onditions are derived using the proje
ted

gradient method. In that approa
h, a (Lagrangian) dual 
andidate Q whi
h

belongs at the same time to the subgradient of A∗
and B∗

is sought for:

Q ∈ γ∂||A∗||1 andQ ∈ ∂||B||∗.

Two duals, QA and QB , are de�ned, and the 
onditions proving they min-

imize (4.7) are derived. For the expression of the subgradients we refer to

(3.40) and (3.41).

In prin
iples, this method 
onsists in proje
ting onto Ω and Ω⊥
the sub-

gradient of QA and onto T and T⊥
the subgradient of QB, where (QA, QB)

is a subgradient of (4.7). Di�erently from here, in the noisy 
ontext (para-

graphs (4.1.3), (4.1.4)) we will proje
t the dual 
andidate augmented by the

gradient of the di�erentiable part of the obje
tive.

We 
an now report the following key proposition whi
h displays ne
essary


onditions for obtaining a unique minimizer via (4.7) in the noiseless 
ontext.

Proposition 4.1.2. Suppose C = A∗ +B∗
. Then, (Â, B̂) = (A∗, B∗) is the

unique optimizer if the following 
onditions are satis�ed:

1. Ω(A∗)
⋂

T (B∗) = 0
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2. There exists a Lagrangian dual Q ∈ Rn×n
su
h that:

• PT (B∗) = UV ′

• PΩ(A∗) = γsign(A∗)

• ||P(T (B∗)⊥)|| < 1

• ||PΩ(A∗)⊥ ||∞ < γ.

We note that the se
ond 
laim des
ribes ne
essary 
onditions on Q for

belonging to both subgradients simultaneously (two for ea
h subgradient),

whi
h is equivalent to ensure that (Â, B̂) is an optimum. The �rst 
ondition,

instead, is ne
essary to guarantee uniqueness.

This proposition is of fundamental importan
e. It basi
ally proves that

only one dual Q̂ ∈ Ω
⊕

T may exist satisfying the subgradient 
onditions,

su
h that (Â, B̂) is the only optimum of the 
onvex program (be
ause only

one point provides Ω(A∗)
⋂

T (B∗) = 0).
Therefore, µ(A∗)ξ(B∗) < 1 is a ne
essary 
ondition for performing re-


overy. However, a stronger ne
essary 
ondition for exa
t re
overy respe
t

to the one of Proposition 4.1.2 
an be derived. The proof te
hnique builds

a dual Q̂ ∈ Ω
⊕

T , under whi
h the 
onditions of Proposition 4.1.2 for re-


overy are satis�ed, and �nds out the range of γ for whi
h Q̂ satis�es all


onditions simultaneously. This proof results in the following statement:

Theorem 4.1.2. Given (4.1), if

µ(A∗)ξ(B∗) <
1

6
,

the unique optimum for (Â, B̂) is (A∗, B∗), for γ ∈
[

ξ(B∗)
1−4µ(A∗)ξ(B∗) ,

1−3µ(A∗)ξ(B∗)
µ(A∗)

]

,

where γ =
√

3ξ(B∗)
2µ(A∗) is always inside the range as it is the geometri
 mean of

the extremes, and thus guarantees exa
t re
overy of (A∗, B∗).

We have identi�ed a su�
ient 
ondition for exa
t re
overy, whi
h is

µ(A∗)ξ(B∗) < 1
6 . However, in reality we do not have any knowledge on

µ(A∗) and ξ(B∗). In order to make this 
ondition somehow veri�able, in [30℄

two ni
e more operative 
on
epts about rank-sparsity in
oheren
e are for-

malized, with the aim of providing useful proxies of µ and ξ. The �rst is the
degree of a matrix, whi
h is de�ned as the maximum (degmax) or minimum

(degmin) number of non zero entries per row/
olumn. It is proved that

degmin(A) ≤ µ(A) ≤ degmax(A). (4.10)

The se
ond is the 
on
ept of in
oheren
e of a ve
tor subspa
e S of Rn
.

De�ne β(S) = maxi ||PSei||2, where ei is the i -th standard basis ve
tor.

β(S) is the maximum norm of the proje
tion of any standard basis ve
tor

onto S. It is proved that
√

r/n ≤ β(S) ≤ 1, where the maximum (whi
h is 1)
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is rea
hed for any basis 
ontaining a standard basis ve
tor, and the minimum

is rea
hed for an Hadamard matrix, whi
h is a matrix having entries +1/−1
and mutually orthogonal rows (see [56℄). The in
oheren
e of a matrix is

de�ned as:

inc(B) = max(β(row − space(B)), β(column − space(B))).

This quantity satis�es the following property:

inc(B) ≤ ξ(B) ≤ 2inc(B). (4.11)

Therefore, a small degmax(A
∗) implies a small µ(A∗) and small inc(B∗)

implies a small ξ(B∗). As a 
onsequen
e, the deterministi
 su�
ient 
ondi-

tions on exa
t de
omposability µ(A∗)ξ(B∗) < 1
6 
an be rephrased as

degmax(A
∗)inc(B∗) <

1

12
,

as well as the range for γ in Theorem (4.1.2). The 
entral value in that range

be
omes γ =
√

3inc(B∗)
degmax(A∗) .

Finally, the authors provided in [30℄ a random analysis of their setting.

They de�ne A∗
to follow a random sparsity model if support(A∗) is sele
ted

uniformly at random from all 
olle
tions of supports of size s. In that 
ase,

the following relevant property holds:

degmax(A
∗) ≤ s

p
log(p)

with high probability. Analogously, a r-ranked squared matrix B of di-

mension p is said to follow a random orthogonal model (see also [24℄) if the

singular ve
tors U, V ∈ Rp×r
are 
hosen among all partial isometries in Rp×r

,

where a partial isometry is an isometry on the orthogonal 
omplement of the

kernel. Under this hypothesis, we have

inc(B∗) �
√

max(r, log(p))

p

with very high probability (the symbol � is used to denote rates, with the

meaning of the "smaller or approximately equal to", as well as the symbol

� will be used with the opposite meaning). Given (4.1), if A∗
is drawn from

a random sparsity model and B∗
is drawn from a random orthogonal model,

the 
onditions of Theorem 4.1.2 hold provided that s � p1.5

log(p)
√

max(r,log (p))
.

We signal that this approa
h 
omes from the one by Candes and Re
ht

([24℄) des
ribed in paragraph (3.1.2). There, the degree of 
oheren
e between

singular ve
tors and the standard basis is bounded using the quantities

||UU ′ − r

p
Ip||∞, ||V V ′ − r

p
Ip||∞, ||UV ′||∞.
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For symmetri
 matri
es, only the �rst quantity is relevant. Contrastively,

the approa
h of [30℄ allows for a more uni�ed 
ondition, taking into a

ount

simultaneously the row and the 
olumn spa
es (that is, left and right

singular ve
tors).

This approa
h is overall very elegant, e�e
tive and algebrai
ally founded

and provides a new environment for matrix re
onstru
tion analysis. How-

ever, the su�
ient 
ondition provided by Theorem 4.1.2 is lo
al, i.e. it is

not robust to perturbations of B∗
and A∗

along varieties T (B) and Ω(A).
Tangent spa
e transversality is a linearized identi�ability 
ondition around

(A∗, B∗), but does not provide any guarantee even for slightly perturbed

inputs, be
ause it only guarantees an exa
t solution in the noiseless 
ontext.

This is why we are now going to explore numeri
al methods providing

solutions to the matrix approximation problem in the noisy 
ontext.

4.1.2 Approximate re
overy: a fun
tional approa
h

The topi
 of this paragraph is the purely mathemati
al approa
h to matrix

approximation by Agarwal et al. (2012) ([1℄). This is a numeri
al approa
h

based on pure fun
tional analysis, in the general setting of 
omplex re
t-

angular matri
es. Before des
ribing it in detail, we outline the relevant


hara
teristi
s for our purpose.

First of all, the referen
e matrix setting is the noisy setting (4.2), from

here towards the end of our thesis. In [1℄, L∗
is allowed to be exa
tly or

approximately low rank and S∗
is allowed to be exa
tly or approximately

sparse. Their setting thus in
ludes a wide set of matrix 
lasses, in
luding

our referen
e model (3.1) as a parti
ular 
ase. Their model is the following

X = ℵ(L∗ + S∗) +W,

where ℵ is 
alled observation operator, and is a linear mapping operator from

(S∗ + L∗) to ℵ(L∗ + S∗) (we de�ne Ω = L∗ + S∗).
In our 
ase, ℵ = I (identity mapping). If W = 0, we fall ba
k into

the noiseless setting. The noise W 
an be either deterministi
 or sto
hasti
.

This setting in
ludes a wider 
lass of sparsity assumptions, in
luding the


ases of element-wise and 
olumn-wise sparsity. In our referen
e model (4.2),

we have exa
t element-wise sparsity and exa
t low rankness with sto
hasti


noise. The matrix to re
over, Σ∗
, is a squared p× p real matrix in Rp×p

.

The input Σ̂ is the sample 
ovarian
e matrix Σ̂n. We underline again

the statisti
al 
entrality of this passage, whi
h is relevant for our purpose

also in the approa
h we are des
ribing. Whenever Σ̂ = Σ̂n, the related


ondition p ≤ n 
omes out, even if (here and in the following paragraphs)

the estimation method via regularization allows p ∼ n.
As we explain in paragraph (5.1), there are essentially two solutions to

this drawba
k: using a regularized input (for instan
e Σ̂LW , see (2.7)), al-

lowing to drop the te
hni
al 
ondition p ≤ n, or using a method whi
h allows



72 CHAPTER 4. LOW RANK PLUS SPARSE DECOMPOSITION

to 
onsistently use Σ̂n without the need of spe
ifying p ≤ n. In this respe
t,

POET approa
h ([45℄) is 
entral, and we will show how it is possible to use

the POET estimation 
ontext in order to avoid the 
ondition p ≤ n even if

p and n are �nite.

In light of this, we go on explaining the proposal of [1℄. This method


onsists in estimating Σ∗
by program (3.7) (we set aside for the moment the

three additional 
onstraints) under spe
i�
 
onditions. The most relevant

one is the following: ||L∗||∞ ≤ α
p , that is, a bounded in�nity norm for L∗,

whi
h 
ontrols the spikiness of the singular values of L∗
. This assumption

pres
ribes, from our point of view, that the maximum 
ommunality a
ross

variables must be bounded. It is an analyti
al assumption in nature, di�er-

ently from the algebrai
 approa
h aimed at bounding the degree of 
oheren
e

between singular ve
tors and 
anoni
al basis ([24℄):

‖ UU ′ − r

p
Ir ‖∞, ‖ V V ′ − r

p
Ir ‖∞, ||UV ′||∞.

Here the imposed 
ondition is ||UDV ′||∞ ≤ α
p , whi
h uses the singular

values of L∗
as weights in the l∞ bound. We note that here a bound on

singular values (the eigenvalues for 
ovarian
e matri
es) is impli
itly posed,

whi
h is equivalent to bound the 
ondition number of L∗
, di�erently from

the approa
h des
ribed in paragraph (4.1.1). This 
ondition is weaker: no


ondition is imposed on the row/
olumn spa
es of L∗
(only its maximum

element must be bounded) and allows for wider 
lasses of matri
es.

It is relevant that no expli
it 
ondition is pla
ed on the sparse 
omponent:

in this purely analyti
al approa
h, re
overy is performed imposing regularity


onditions on the obje
tive fun
tion (3.7), with parti
ular referen
e to the


onvexity properties of the smooth and the non-smooth part jointly. So, the

sparsity pattern of S∗
is involved only in 
ontrast to the spikiness pattern of

L∗
, by imposing a lower bound to quantity

Φ(∆) := inf
S+L=∆

Q(S,L), (4.12)

where

Q(S,L) := ||L||∗ +
ρ

λ
||S||1

is a weighted 
ombination of the regularizers (ρ and λ are non-negative

regularization parameters).

However, this approa
h has a relevant drawba
k: the approximate re
ov-

ery of the approximately low rank and sparse 
omponents is itself approx-

imate, be
ause it provides not an identi�ability 
ondition, but a bound on

the radius of non-identi�ability (in our setting, ||L∗||∞ ≤ α
p ). The larger α,

the broader is the 
lass of identi�able models, but the more di�
ult is the

re
overy, espe
ially of the sparse 
omponent. Indeed, in [1℄, paragraph 4,

the authors provide mini-max optimality properties for their method over
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the 
lasses of approximately low rank and approximately sparse matri
es

(whi
h are broader than those we need).

This method des
ends from the previous work of a subset of the same

authors ([85℄) where weighted matrix 
ompletion (respe
t to rows/
olumns)

is performed into the same mathemati
al setting using only the nu
lear norm.

On that path, [1℄ represents a dire
t extension.

The sense of their mathemati
al approa
h is now des
ribed. The regu-

larization problem is:

min
L,S

f(L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρR(S∗), (4.13)

where R(S∗) is a regularizer. For us, R = ||.||1, i.e. we want to re
over

exa
tly low rank matri
es with rank r ≪ p and exa
tly entry-wise sparse

matri
es with at most s≪ p2 nonzero elements. Here, non-asymptoti
 error

rates are given for a wider 
lass of regularizers. For example, a related

heuristi
s imposes to S∗

olumnwise (blo
kwise) sparsity, whi
h is re
overed

using R(S∗) = ||S∗||2,1 =
∑p

k=1 ||Sk||2, where Sk denotes the k-th 
olumn

of S∗
.

In general, R 
an be any de
omposable regularizer, whi
h is de�ned

respe
t to the pair of subspa
es (M,M⊥) as:

R(U + V ) = R(U) + R(V ),

for all U ∈M and V ∈M⊥. Our referen
e norm, R = ||.||l1 , is de
omposable

respe
t to (M(T ),M(T )⊥), where

M(T ) = {U ∈ Rd1×d2 |Ujk = 0 ∀(j, k) 6∈ T}

M⊥(T ) =M(T )⊥

and T ∈ {1, . . . , p} × {1, . . . , p} is an arbitrary 
olle
tion of indi
es. In fa
t,

||U + U ′||1 = ||U ||1 + ||U ′||1, for all U ∈M and U ′ ∈M⊥
.

With respe
t to subspa
e M , they de�ned a 
ompatibility 
onstant be-

tween the regularizer R and the Frobenius norm:

Φ(M,R) := sup
U∈M,U 6=0

R(U)

||U ||Fro
.

In our 
ase, we have Φ(M, ||.||1) =
√
s.

The following norm-related quantity is then de�ned:

κd(R) :=
||V ||F
R(V )

,

as well its asso
iated dual norm:

R∗(U) := sup
R(V )≤1

< V,U >
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with < V,U >:= trace(V ′U). The quantity des
ribing the intera
tion be-

tween the low rank and the sparse 
omponent, equivalent of µ(A∗)ξ(B∗) in
paragraph (4.1.3), is the following:

ϕ(L∗) = κd(R
∗)R∗(L∗).

Thus, the intera
tion between the low rank and the sparse 
omponent

is here 
onstrained using the dual norm of R 
omputed on L∗
, res
aled by

the norm-related 
onstant κd(R). The general bound on the radius of non-

identi�ability is thus ϕ(L∗) ≤ α. Note that, analogously to POET approa
h,

the spikiness of the low rank 
omponent is bounded starting from the sparsity

features of the sparse 
omponents. This feature is at the same time the most

relevant weakness of this approa
h for our purpose, be
ause there is not an

intrinsi
 bound for the dual norm of the nu
lear norm assessed in S∗, whi
h is
||S∗||2. For us, κd(R∗) = p, R∗ = ||.||∞, from whi
h the previously des
ribed


ondition ||L∗||∞ ≤ α
p follows.

A de
omposable regularizer is a norm penalizing deviations from the

model subspa
e M as mu
h as possible. Using �rst-order Taylor series ap-

proximation, we 
an derive a quadrati
 lower bound on the quadrati
 error.

De�ning Loss(Ω) = 1
2 ||Σ̂− ℵ(Ω)||Fro, we have

Loss(Ω +∆)− Loss(Ω)−△Loss(Ω)T∆ =
1

2
||ℵ(∆)||2Fro.

The Strong Convexity 
ondition provides us a lower bound on

1
2 ||ℵ(∆)||2Fro,

stating:

1

2
||ℵ(∆)||2Fro ≥

γ

2
||∆||Fro,

where γ > 0 is the strong 
onvexity 
onstant.

The Restri
ted Strong Convexity (RSC) 
ondition pres
ribes:

1

2
||ℵ(∆)||2Fro ≥

γ

2
||∆||2F − τnΦ2(∆),

where γ > 0 , τn depends on the mapping operator ℵ (and de
reases as

n→ 0), Φ(∆) is de�ned in (4.12), and

Q(S,L) := ||L||∗ +
ρ

λ
R(S∗).

The sample size n is not a problem until τn is su�
ient large (large as

long as γ > 0). We underline the parti
ular role of n: sin
e this approa
h

provides deterministi
 guarantees, n serves to improve the approximation of

1
2 ||ℵ(∆)||2Fro, That is, the larger n, the more pre
ise is the observation model,

and the smaller 
an be τn. However, in our parti
ular 
ase we have τn = 0
(identity operator), and γ = 1. Note that Φ2(∆) is a measure of relative

importan
e of the regularizer respe
t to the nu
lear norm.
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The RSC 
ondition is the key to provide non-asymptoti
 error bound

rates, bounding the absolute losses provided that ϕ(L) ≤ α. If R is a de-


omposable regularizer, it was proved in [84℄ that the asso
iated statisti
al

models satisfy the RSC 
ondition. Therefore, in that 
ase the authors proved

that it is straightforward to obtain non-asymptoti
 error bounds, and that

the M-estimators minimizing a 
omposite regularizer (the loss term plus a

de
omposable regularizer) 
onverge fast. In this sense, [1℄ is an extension

of [84℄, where both the nu
lear norm (whi
h is also a de
omposable reg-

ularizer) and a general de
omposable regularizer represent the 
omposite

penalty. Roughly speaking, we 
an say that [1℄ represents the meeting point

of [85℄ and [84℄.

Another key element of this approa
h 
on
erns the error 
omposition. Let

us de�ne ∆Σ = Σ̂ − Σ∗
, ∆L = L̂− L∗

, ∆S = Ŝ − S∗
. For Cau
hy-S
hwartz

inequality, ||∆Σ||2Fro ≤ ||∆L||2Fro+ ||∆S ||2Fro. Therefore, in the noisy setting,

under the numeri
al approa
h, the quantity to lower bound is

e2(L̂, Ŝ) = ||∆L||2Fro + ||∆S ||2Fro.

This 
hoi
e has to be dis
ussed. It is intuitive that bounding ||∆L||2Fro+
||∆S ||2Fro 
an be quite di�erent from bounding ||∆Σ||2Fro. More details and

a proposal on this topi
 
an be found in paragraph (5.1).

Given our observation model Σ̂ = ℵ(S∗+L∗)+W , under ϕR(S
∗) ≤ α and

the RSC 
ondition, the error e2(L̂, Ŝ) is bounded by three terms: one in L∗
,

one in S∗
, one depending on τn. Ea
h term is 
omposed by two summands:

an estimation error term, measuring the error on the subspa
e M , and an

approximation error term, due to the fa
t that approximately low rank and

sparse matri
es are allowed. The se
ond one, whi
h was absent in previous

approa
hes, measures the error on the orthogonal 
omplement M⊥
(these

terms in
lude λj(L
∗), r+1, . . . , p for L∗

, and the regularizer of the proje
tion

of S∗
in the orthogonal 
omplement, for us equal to

∑

j,k /∈supp(S∗) ||S∗
jk||).

Sin
e τn = 0 and we seek for exa
tly low rank and sparse matri
es, in our


ase we do not have the third error 
omponent and we do not allow for

approximation errors.

Their general theorem states that under two spe
i�
 regularity 
onditions

involving r, Ψ(M,R), λ, ρ proportionally to τn and γ, and under lower

bounds for λ and ρ, there are three limiting universal 
onstants limiting

ea
h of the three error terms. The strength on the bound depends on the

strength of the RSC 
ondition respe
t to the 
urvature of Loss(Ω). For the
entire statement, we refer to [1℄, p. 1182.

The bound on the 
urvature will be relevant also in the approa
h we are

going to present in paragraph (4.1.3). While here the 
onvexity stru
ture of

Loss(Ω) is enfor
ed via the l∞ norm (dual of the l1 norm) of the low rank


omponent, there the 
urvature of the low rank matrix variety is bounded,

and the Lagrangian dual subgradient approa
h is applied. The method we
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will present allows to identify the model, sin
e it pres
ribes, following [30℄,

symmetri
 assumptions respe
t to BOTH 
omponents 
ontrolling entirely

the intera
tion of the two spa
es. Here, an analyti
al 
ontrol based only on

the regularizer (thus asymmetri
) is imposed to the low rank 
omponent.

In [31℄, a bound on the norm of the proje
tion onto the orthogonal 
omple-

ment is given for BOTH matrix spa
es simultaneously. This allows perfe
t

identi�
ation.

If τn = 0 and in the exa
t matrix setting:

e2(L̂, Ŝ) � λ2r + ρ2Ψ(M,R)2

up to 
onstant fa
tors. In our 
ase Ψ(M ||.||1) =
√
s. In this approa
h r and

s are 
hosen adaptively. If we 
hoose r = rank(L∗) and s = |supp(S∗)|, we
have

e2(L̂, Ŝ) � λ2r + ρ2s.

If W = 0 (noiseless setting), for spe
ialization we have

e2(L̂, Ŝ) � α2 s

p2
.

This rate is weaker respe
t to the one in [30℄, but requires weaker 
onditions

on L∗
. Anyway, mini-max properties show that in the noiseless setting the

rate α2 s
p2 
annot be improved if s ≤ p. In addition, we have to 
onsider that

the allowed 
lasses of low rank and sparse matri
es are mu
h wider.

The lower bounds for threshold parameters here depend on fun
tional

norms ||ℵ∗(W )||op, and ||ℵ∗(W )||∞, as well as on γ, p and α. ||ℵ∗(W )||op is

here simply the spe
tral norm of the dual operator at W .

Suppose now we have a sto
hasti
 errorW generated with normal entries

N(0, σ
2

n ). If we set ℵ = I, spe
i�
 threshold values 
an be found. Under the

des
ribed 
onditions, using large deviation theory and some non-asymptoti


random matrix theory results to bound ||W ||op and ||W ||∞, we have that for

spe
i�
 threshold parameters, with very high probability, an error rate 
om-

posed by the noise varian
e times the usual two error 
omponents, fun
tion

of p, r, s and α, holds.
If we allow W to be a zero-mean Wishart, we fall ba
k into the pure

sparse fa
tor analysis 
ase (3.1), whi
h is relevant for our purpose. We now

re
all it.

Let us suppose L∗ = UDU ′ = BB′
, where B = UD1/2

, U is a p × r
matrix, D is a r × r diagonal matrix, with djj > 0, ∀j = 1, . . . , r. Suppose
that our p× 1 random ve
tor Xi, i = 1, . . . , n, has the following stru
ture:

Xi = Bfi + ǫi,

with

fi = Nr(0, Ir),

ǫi = Np(0, S
∗),
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where fi is a r × 1 random ve
tor, and ǫi is p× 1 random ve
tor.

Xi is assumed to be a zero mean random ve
tor, without loss of generality.

The observation matrix is the sample 
ovarian
e Σ̂n = 1
n

∑n
i=1XiX

′
i. The

error term W := 1
n

∑n
i=1XiX

′
i − (BB′ + S∗) is a zero-mean re-
entered

Wishart matrix noise.

The Corollary relative to this 
ase is the following.

Corollary 4.1.1. Consider the fa
tor analysis with n ≥ p samples, and

regularization parameters

λ = ||
√
Σ∗||2

√

p

n
and ρ = 32ρ(Σ∗) +

4α

p
(4.14)

where ρ(Σ∗) = maxjΣ
∗
jj. Then with probability greater than 1−c2exp(−c3 log(p)),

any optimal solution (L̂, Ŝ) satis�es

e2(L̂, Ŝ) ≤ c1
{

||Σ∗||2
rp

n
+ ρ(Σ∗)

s log p

n

}

+ c1
α2s

p2
. (4.15)

This result is derived using large deviation theory and some non-asymptoti


random matrix theory results, whi
h allow (under the Wishart assumption)

to translate norms ofW into norms of Σ∗
. It states that under spe
i�
 thresh-

old 
hoi
es, involving the spe
tral norm and the maximum diagonal term of

Σ∗
, the error is bounded with very high probability by three terms, one repre-

senting the degrees of freedom of L∗
, ||Σ∗|| rpn (rp is the number of loadings),

one representing all possible sparsity patterns of S∗
, ρ(Σ∗)s log pn ≈ s log p

n
(number of subsets of size s from Rp×p

), and a term deriving from the non-

identi�ability issue

α2s
p2

. As usual, the 
ondition n ≥ p is ne
essary in order

to obtain 
onsistent estimates in fa
tor analysis model using Σ̂n.

Note that now we �nd again the usual rates ||Σ∗|| pn and ρ(Σ∗)s log pn de-

s
ribed in [39℄ and [15℄. Terms ||Σ∗||2 and ρ(Σ∗) are present for probabilisti

reasons, using standard tail bounds for random Gaussian matri
es and their

produ
t (see supplementary material to [1℄, p.35). This is why the threshold

parameters λ and ρ have the shape of (4.14). The two terms are weighted by

r and s respe
tively: this is a major di�eren
e with the algebrai
 approa
h,

where r and s have no impa
t, be
ause there, di�erently from here, they are

impli
itly in
orporated in the threshold parameters. On the 
ontrary, the

probabilisti
 argument depends in that 
ontext on Σ̂n as a whole. The 
on-

dition n ≥ p is the same: however, it is easier trying to over
ome it working

on Σ̂n under spe
i�
 model assumptions than using probability assumptions

on matrix W .

Finally, we mention a very interesting approa
h to the same problem,

in our 
ase (exa
t low rank/sparse matri
es, identity operator ℵ = I): Hsu
et al. (2012) [67℄. That work is based on rank-sparsity in
oheren
e, and

uses the standard singular ve
tor in
oheren
e 
onditions of [24℄ deriving
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non-asymptoti
 rates depending on those quantities using the sub-gradient

method. In parti
ular, sin
e they employ the orthogonal singular ve
tor

in
oheren
e bound ||UV ||∞, they need to impose a bound on the produ
t

rs:

rs � p2

2 log p
.

This bound is not present in the algebrai
 approa
h we are going to des
ribe

in paragraph (4.1.3), sin
e rank-sparsity in
oheren
e is enfor
ed bounding

quantities related to the tangent spa
es to the referen
e varieties (see para-

graph (4.1.1)). For a 
omparison between this approa
h and the analyti
al

one see [1℄, p.1188.

We now introdu
e the algebrai
 approa
h by Chandrasekaran et al. (2012)

for approximate matrix re
overy.

4.1.3 Approximate re
overy: an extended algebrai
 approa
h

The method we are going to des
ribe now is the 
ore of our thesis. This ap-

proa
h, by Chandrasekaran et al. (2012) ([31℄), provides a numeri
al heuris-

ti
s for inverse 
ovarian
e matrix estimation under the Gaussian assumption,

exploiting the tools of graphi
al modelling. From a 
ertain point of view, we


ould say this is the extension of the graphi
al lasso for sparse inverse 
ovari-

an
e estimation by Friedman, Hastie and Tibshirani ([53℄). The a�nities are

in the estimation target (the pre
ision matrix), in the nature of the minimiza-

tion target (they both are likelihood methods), in the Gaussian assumption

for the data and in the use of the l1 heuristi
s (sparsity assumptions).

In 
ontrast, while the graphi
al lasso imposes sparsity on the overall


ovarian
e matrix, the approa
h in [31℄ uses the same assumption on the

residual 
omponent of the model. This solution is based on the strong link

between Gaussian random variables and graphi
al modelling su
h that the

S
hur 
omplement of Σ∗
is dire
tly modelled. The 
hosen 
onditioning blo
k

is a ve
tor of r ≪ p latent variables whi
h are assumed to explain a large part

of the 
ovarian
es among variables, and the residual 
ovarian
e is supposed

to be sparse. Sin
e the S
hur 
omplement of the 
ovarian
e matrix of a

Gaussian random ve
tor is the 
ovarian
e matrix of the variables 
onditioned

to the the variables belonging to the 
onditioning blo
k, this model results

in a low rank plus stru
ture for the inverse 
ovarian
e matrix, whi
h is a

latent variable graphi
al model with sparse residual for the data (allowing for

missing edges given the latent graphi
al stru
ture). The problem is solved

minimizing the log-likelihood (parameterized in the low rank and in the

sparse 
omponent) augmented by a 
omposite penalty in the form (3.28),

where the nu
lear norm regularizes the low rank 
omponent and the l1 norm
the sparse one. This is a regularized maximum likelihood program, a 
onvex

program tra
table via o�-the-shelf algorithms ([111℄).
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What is new, the approa
h in [31℄ is algebrai
 in nature, while the one in

[53℄ is mainly algorithmi
 (data approximation method). This one provides

an algebrai
 setting for model identi�ability and 
onsistent re
overy. In addi-

tion, this method provides a double notion of 
onsisten
y: an algebrai
 one,

whi
h des
ribes the 
orresponden
e between estimated and theoreti
al rank

and sparsity pattern, and a parametri
 one, whi
h provides �nite bounds

for the error rate taking into a

ount simultaneously the low rank and the

sparse 
omponent. Finally, both 
onsisten
ies allow (theoreti
ally) r, p ∼ n,
even if there is still the usual problem 
on
erning the use of Σ̂n. Here, the


ondition n ≥ 2p is imposed in order to obtain sharper rates.

We now present the model in detail. Consider we have a �nite 
olle
tion

of Gaussian random variables XO ∪ XH , where XO are observed variables

and XH are hidden variables. Call ΣO,H the 
ovarian
e matrix of XO ∪XH

(in this 
ase we remove

∗
to avoid 
luttered notation). KO,H = Σ−1

O,H is the


on
entration matrix of the full model. The marginal 
ovarian
e matrix ΣO

is simply a submatrix of ΣO,H . Suppose we parameterize the model start-

ing from the 
on
entration matrix K = Σ−1
O,H . The marginal 
on
entration

matrix K̃O = Σ−1
O is given by the S
hur 
omplement with respe
t to blo
k

KH :

K̃O = Σ−1
O = K0 −KO,HK

−1
H KH,O. (4.16)

This is a low rank plus sparse stru
ture, where Σ−1 = S −L. The graphi
al
model holds be
ause the 
ovarian
e matrix of XO|XH is Σ−1

O . For i, j ∈ O,
due to the joint Gaussian property, Σ−1

O,ij des
ribes the strength of the rela-

tionship between Xi and Xj 
onditional to XH . The following relationship

holds:

cov(Xi,Xj |XO\{i,j}) = 0⇔ Σ−1
O,ij = 0,

that is, the is edge between Xi and Xj is missing if the two variables are


onditionally independent. Di�erently from [53℄, the sparse graphi
al model

is not imposed dire
tly to Σ−1
O , be
ause (
onditional) independen
e is often a

too strong assumption in high dimensions. This is why here it is assumed that

a number of latent variables XH , |H| ≪ |O|, explains most of the observed


ovarian
es among the variables in XO. So, K̃O is not sparse in general due

to extra-
orrelations indu
ed from marginalization over the latent variables

XH . The latent variables XH are also referred to as hidden 
omponents.

The additional low rank term KO,HK
−1
H KH,O summarizes the 
ovarian
es

indu
ed by the marginalization over XH . Then, it is possible to set up

a sparse graphi
al model on the residual 
on
entration matrix K0, whi
h

summarizes the 
ovarian
es among the variables in XO 
onditioned on the

hidden 
omponents. From this model framework, a natural low rank plus

sparse de
omposition for the pre
ision matrix of the observed variables K̃O

arises, in the form:

K̃O = S − L,
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where S = K0 and L = KO,HK
−1
H KH,O. This framework 
ombines dimen-

sionality redu
tion (to identify latent variables) and graphi
al modelling (to


at
h the residual 
ovarian
e stru
ture). For us, |O| = p, |H| = r.

Under these model assumptions, the problem of identifying two matrix

varieties, one low-rank (4.3) and one sparse (4.4) naturally arises. We need

to uniquely de
ompose the low rank and the sparse 
omponent starting from

their sum. This problem is similar to the one presented in (4.1.1), even if

random perturbations on the data are allowed. The identi�
ation requires to

exploit the notion of geometri
 transversality between tangent spa
es Ω(KO)
T (KO,HK

−1
H KH,O). We will show that, analogously to [30℄, if the sparse


omponent has a small number of nonzero elements and the low rank 
om-

ponent has row/
olumn spa
es not 
losely aligned to 
oordinate axes, then

the latent variable model is identi�able. However, there is one more prob-

lem to fa
e: in the noisy 
ontext, the 
urvature of the low-rank variety (i.e.

its lo
al sensitivity to perturbations) plays a relevant role. If we think the

two tangent spa
es as algebrai
 systems, we note that the one tangent to

the low-rank variety is non-linear, while the other one is linear. For this

reason, if T (KO,HK
−1
H KH,O) is very 
urve, it may be impossible to identify

L in the noisy 
ontext, sin
e the tangent spa
e 
an vary lo
ally very fast.

Therefore, a bound on this 
urvature is ne
essary. Note that the approa
h

by Agarwal et al. ([1℄) does not provide identi�ability just be
ause it does

not pay attention to this aspe
t, enfor
ing assumptions via a pure analyti
al

approa
h.

The regularized likelihood problem is the following:

Ŝn, L̂n = argmin
S,L
−l(S − L; Σ̂n) + λn(γ||S||1 + tr(L)) (4.17)

s.t. S − L ≻ 0 L � 0,

l(K; Σ) = log det(K)− tr(KΣ) (4.18)

K ≻ 0.

It is 
omposed by a Gaussian log-likelihood term (−l(S−L; Σ̂n)) and the


omposite penalty (3.28), where the tra
e is the nu
lear norm heuristi
s over

the 
one of Positive SemiDe�nite matri
es (PSD). γ is a trade-o� parameter

between the tra
e and the l1 norm. (4.17) is a regularized max-det problem

(a dis
ussion on these problems is in [49℄). Note the presen
e of 
onstraints

S −L ≻ 0 and L � 0, whi
h are tra
table in this algebrai
 framework. This

is a variational formulation of the problem, whi
h provides also a model

sele
tion heuristi
s: the error term (log-likelihood) is penalized by the model


omplexity in terms of sparsity of S and spe
trum of L. The problem 
an

be easily solved using standard o�-the-shelf solvers ([111℄).

Due to the log-likelihood term, another identi�
ation problem arises. If

the log-likelihood is too 
urve, i.e. if the Fisher information behaves poorly

respe
t to the tangent spa
es T (L) and Ω(S) (and their sum), errors in
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the data are ampli�ed too mu
h, 
reating an additional identi�
ation issue.

Fun
tional operator theory is 
ru
ial in this 
ontext. The 
urvature of Fisher

information I∗ as well as the 
urvature of the low rank variety are des
ribed

and bounded as fun
tional operators.

A formal statement of the latent variable model sele
tion problem is

reported below ([31℄).

De�nition 4.1.1. A pair of symmetri
 matri
es (S,L) with S,L ∈ R|O|×|O|

is an algebrai
ally 
onsistent estimate of a latent-variable Gaussian graphi
al

model given by the 
on
entration matrix KOH if the following 
onditions hold:

1. The sign pattern of S is the same of KO: sign(Sij) = sign((KO)i,j),
∀i, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of KO,HK
−1
H KH,O.

3. The 
on
entration matrix S − L 
an be realized as the marginal 
on-


entration matrix of an appropriate latent-variable model: S − L ≻ 0,
L � 0.

Model 
onsisten
y here is de�ned a

ording to the following three esti-

mation features:

1. 
orre
t stru
tural estimate of the 
onditional graphi
al model (given by

K0) of the observed variables 
onditioned on the hidden 
omponents.

This feature is 
alled "sparsisten
y" of standard graphi
al model se-

le
tion.

2. number of hidden 
omponents 
orre
tly estimated.

3. the model is realizable: |O ∪H| = |O|+ |H|.

It is also de�ned the usual parametri
 
onsisten
y, whi
h holds if the

estimates of (S,L) are 
lose to (KO,KO,HK
−1
H KH,O) in some norm with high

probability. Parametri
 
onsisten
y does not imply algebrai
 
onsisten
y and

vi
e versa. Besides, the model su�ers from the usual model indetermina
y


oming from a latent variable 
ontext: there are in�nite KH ≻ 0, KO,H =
K ′

H,O giving rise to the same low-rank matrix KO,HK
−1
H KH,O.

Consistently to their geometri
 approa
h (and to identi�ability 
ondi-

tions), the referen
e norm to assess parametri
 
onsisten
y is nothing but

the dual norm of the 
omposite penalty. Given the norm

fγ(S,L) = γ||S||1 + ||L||∗, (4.19)

γ > 0, where ||L||∗ = tr(L) (sin
e L is over the 
one of PSD), the dual norm

of fγ(S,L), whi
h is used to bound the error, is

gγ(S,L) = max
{ ||S||∞

γ
, ||L||2

}

. (4.20)
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Identi�
ation and re
overy: te
hni
al aspe
ts

Suppose we have n samples (Xi
O)

n
i=1 of the observed variables XO. Xi, i =

1, . . . , n, are jointly Gaussian zero-mean p - dimensional random variables.

The latent variable model holds on the marginal 
on
entration matrix K.

We de�ne the indu
ed operator norm of a linear bounded operator

Z : Rp×p → Rp×p
as:

||Z||q→q = max
N∈Rp×p,||N ||q≤1

||Z(N)||q .

The 
ovarian
e matrix is the usual Σ̂n = 1
n

∑n
i=1XO,iX

′
O,i. The log-

likelihood of K is

l(K; Σ̂n) = log det(K)− tr(KΣ̂n),

fun
tion of K.

Applying Ja
obi's formula we have ([120℄ [121℄)

δ2

dK2
tr(KΣ̂n) =

δ

dK
Σ̂nI = 0.

As a 
onsequen
e,

δ2

dK2
dK log det(K) =

δ

dK
tr(K−1) = −K−1K−1,

whi
h results in

δ2

dK2
l(K; Σ̂n) = −K.

This result means that l(K; Σ̂n) is stri
tly 
on
ave for K ≻ 0, i.e.

−l(K; Σ̂n) is stri
tly 
onvex.

Consider now the latent variable model (4.16) for K̃O = (ΣO)
−1
, where

S = K0 represents the 
onditional statisti
s ofXO given some extra variables

XH , and L = KO,HK
−1
H KH,O summarizes the e�e
t of marginalization on

XO over XH . Respe
t to (S,L), l̄(S,L,Σn) = l(S−L,Σn) is jointly 
on
ave

whenever S − L ≻ 0.

We know that Fisher information is the negative Hessian of the likelihood

fun
tion and thus 
ontrols the 
urvature of Fisher information operator I .

Its formulation is

I(K) = −∆2
K log det(K)|K = K ⊗K

for K ≻ 0. If K is p× p, I(K) is p2 × p2.
Considered that K̃O

∗
= (Σ∗

O)
−1
, for model (4.16) we have:

I(K̃O) = K̃−1
O ⊗ K̃−1

O = ΣO ⊗ ΣO. (4.21)
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This matrix is pre
isely the |O|2 × |O|2 sub matrix of

I(K̃(OH),(i,j)(k,l)) = [Σ(O,H) ⊗ Σ(O,H)](i,j)(k,l),

whi
h is |O ∪H|2 × |O ∪H|2, given that K̃(OH) = (Σ(O,H))
−1
.

Bounding I(K̃O) is 
ru
ial for obtaining 
onsistent estimates with high

probability from (4.17).

As previously explained, the tangent spa
e T to the low-rank matrix

variety is lo
ally 
urved at any smooth point. Results from perturbation

matrix theory are needed in order to bound the 
urvature of T , whi
h may

a�e
t the identi�
ation of the unknown varieties. The 
urvature of T at

any smooth point M (symmetri
 and having rank less or equal to r) 
an
be des
ribed in terms of proje
tion onto the row spa
e U(M) (denoted by

PU(M)(N)) as follows (see [9℄ p.15):

PT (M)(N) = PU(M)N +NPU(M) − PU(M)NPU(M)

where operator P is the (bounded) proje
tion operator and N is any squared

matrix. T (M) is 
urved be
ause the proje
tion 
hanges lo
ally around M
(di�erently from Ω(M), whi
h has 
urvature 0 at any smooth point). The


urvature is the "angle" between the tangent spa
e at any smooth point and

the tangent spa
e at a neighboring point.

It is therefore ne
essary to bound the 
urvature. The twisting between

two subspa
es of matri
es T1 and T2 is de�ned as:

ρ(T1, T2) = ||PT1 − PT2 ||2→2 = max
||N ||2≤1

||PT1 − PT2(N)||2.

It is proved that perturbing a rank-r matrix M with a matrix ∆ su
h that

||∆||2 ≤ σ
8 and M +∆ has rank r, the following two results whi
h bound the

twisting between tangent spa
es at nearby points hold:

ρ(T (M +∆), T (M)) ≤ 2

σ
||∆||2 (4.22)

||PT (M)⊥ ||2 ≤
||∆||22
σ

, (4.23)

where σ is the smaller singular value of M . So, lower bounding σ, whi
h
is for 
ovarian
e matri
es simply the smallest eigenvalue, means 
ontrolling

the 
urvature of T . The 
loser σ is to 0, the more 
urved T is lo
ally.

Analogously to [30℄, quantities µ(K0) and ξ(KO,HK
−1
H KH,O) play a key

role for identi�
ation. A useful Lemma links the twisting between two sub-

spa
es ρ(T1, T2) (if smaller than 1) and parameters ξ(T1), ξ(T2) as follows:

ξ(T2) ≤
1

1− ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)].
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This allows to 
on
lude that we 
onsider all the neighbour subspa
es T ′

satisfying ρ(T ′, T ) ≤ ξ(T )
2 as 
lose to T .

We 
an now approa
h the problem of lo
al identi�ability of the sparse

and the low rank 
omponent from their observed sum. De�ne the addition

operator A(S,L) = S + L, its adjoint A†
s.t. < Ax, y >=< x,A†y > for all

x, y ∈ H, H Hilbert spa
e (<> is the standard Eu
lidean inner produ
t).

A†(S,L) = (S+L)′ = S+L (sin
e both 
omponents are symmetri
). A and

A†
are both linear bounded (hen
e 
ontinuous) operators.

The identi�ability of tangent spa
es T (L) and Ω(S) is possible if and only
if they have a su�
ient degree of transverse interse
tion, whi
h means they

are su�
iently distin
t. This 
ondition depends, as des
ribed in paragraph

(4.1.1), on quantities ξ(T ) and µ(Ω); in this 
ontext, sin
e transversality is

not perfe
t, we need also to quantify and bound the level of transversality

between the two spa
es with referen
e to the Cartesian produ
t Y = Ω× T .
This is unavoidable to provide ne
essary and su�
ient 
onditions for identi-

�ability from the Maximum Likelihood (ML) regularized program (4.17).

The minimum gain with respe
t to some norm ||.||q on Rp×p × Rp×p
of

the addition operator A : Rp×p × Rp×p → Rp×p
restri
ted to the 
artesian

produ
t Y = Ω× T is de�ned as:

ǫ(Ω, T, ||||q) = min
(S,L)∈Ω×T,||(S,L)||q=1

||PYA
†APY(S,L)||q,

where PY is the proje
tion operator onto Y and the produ
ts are Cartesian

produ
ts.

Quantity ǫ(Ω, T, ||.||q) measures the level of transversality. The large

it is, the more transverse T (L) and Ω(S) are. The tangent spa
es have a

transverse interse
tion if and only if

ǫ(Ω, T, ||.||q) > 0.

Sin
e we have A†A(S,L) = (S + L,S + L) and PYA
†APY(S,L) =

(S+PΩ(L), PT (S)+L), this 
ondition is equivalent to bound the proje
tion of
ea
h 
omponent onto the other spa
e, in order to avoid the misidenti�
ation

of ea
h 
omponent. This why we want ǫ(Ω, T, ||.||q) to be as large as possible.
As the subdi�erential of the regularization fun
tion (4.19) is spe
i�ed in

terms of its dual norm (4.20), the natural norm ||.||q to measure transversality

is the dual norm of the regularization fun
tion (4.20).

Given Ω and T , tangent spa
e to varieties S, L and their Cartesian
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produ
t Y = Ω× T , the following bounded linear operator properties hold:

||PΩ||∞ ≤ ||M ||∞
||PΩ⊥ ||∞ ≤ ||M ||∞

||PT (M)||2 ≤ 2||M ||2
||PT⊥(M)||2 ≤ ||M ||2

gγ(PY(M,N)) ≤ 2gγ(M,N)

gγ(PY⊥(M,N)) ≤ gγ(M,N).

These properties are used for the subgradient minimization pro
ess. Note

that the proje
tion rule for the ||.||2 norm of the proje
tion doubles the


orresponding norm of the argument, di�erently from other norms. See [96℄

for more explanations.

De�ning

χ(Ω, T, γ) = max

{

ξ(T )

γ
, 2µ(Ω)γ

}

,

we 
an study the transversality respe
t to gγ , obtaining the following 
ru
ial
result:

Lemma 4.1.1. Given, S ∈ Ω, L ∈ T , with ||S||∞ = γ and ||L||2 = 1, and
Y = Ω× T , we have:

gγ(PYA
†APY(S,L)) ∈ [1− χ((Ω, T, γ), 1 + χ((ω, T, γ)].

In parti
ular:

1− χ(Ω, T, γ) ≤ ǫ(Ω, T, gγ).

This is a sto
hasti
 joint (matrix bivariate) isometry property, and is

the Restri
ted Isometry Property (RIP) of this model setting. It allows

to lower bound ǫ(Ω, T, gγ) and to link transversality to parameters µ(Ω)
and ξ(T ) even in the noisy 
ontext. For instan
e, if µ(Ω)ξ(T ) < 1/2 then

γ ∈ (ξ(T ), 1
2µ(ω) ) implies Ω and T have a transverse interse
tion.

It is easy to note that the smaller are µ(Ω) and ξ(T ), the more transverse

are Ω and T , exa
tly as in the noiseless 
ontext of paragraph (4.1.1).

Tangent spa
es in this framework are pre
isely de�ned as

Ω = Ω(KO) = Ω(S) and T = T (KO,HK
−1
H KH,O) = T (L),

where KH,O = K ′
O,H . They both lie in a fun
tional spa
e where the inner

produ
t is the Fisher information operator I∗, whi
h is a map between Rp×p

and Rp2×p2
. We want that S and L are distinguishable respe
t to I∗, i.e. to

study the behaviour of I∗ restri
ted to Ω⊕T , in order to identify and re
over

S and L by l(S − L; Σ̂n).
In order to do that, we need to study the gains of I∗ restri
ted to Ω and

T separately, as well as their orthogonal 
omplements Ω⊥
and T⊥

, su
h that
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elements in both spa
es are identi�able under the map I∗. Finally, 
onditions
to 
ontrol I∗ restri
ted to the dire
t sum Ω⊕ T , in 
onjun
tion with bounds

on µ and ξ, are provided.
The minimum gain of I∗ restri
ted to Ω and Ω⊥

is given by the following

quantities:

αΩ = min
M∈Ω,||M ||∞=1

||PΩI
∗PΩ(M)||∞ (4.24)

δΩ = min
M∈Ω,||M ||∞=1

||PΩ⊥I∗PΩ(M)||∞ (4.25)

I∗ is inje
tive on Ω if αΩ > 0. The irrepresentability 
ondition, whi
h is

a su�
ient identi�
ation 
ondition for graphi
al lasso using l1 regularization
problem, is

δΩ
αΩ
≤ 1− ν, and is su�
ient for 
onsistent re
overy of graphi
al

model stru
ture using lasso ([53℄). More, the lo
al behaviour of I∗(M) respe
t
to Ω is des
ribed by

βΩ = max
M∈Ω,||M ||2=1

||I∗(M)||2.

The same holds for fun
tional operators P⊥
T I∗PT (M) and P ′

T I
∗PT (M),

whi
h des
ribe the behaviour of I∗ restri
ted to T and T ′
respe
tively. Their

minimum gain is respe
tively given by:

αT = min
ρ(T,T ′)≤ ξ(T )

2

min
M∈T ′,||M ||2=1

||P ′
T I

∗P ′
T (M)||2 (4.26)

δT = min
ρ(T,T ′)≤ ξ(T )

2

min
M∈T ′,||M ||2=1

||P ′⊥
T I∗P ′

T (M)||2. (4.27)

I∗ inje
tive on all tangent spa
es T' su
h that ρ(T, T ′) ≤ ξ(T )
2 if αT > 0.

An analogous irrepresentability 
ondition holds for the re
overy of T (solely


onsidered):

δT
αT
≤ 1− ν.

The lo
al behaviour of I∗(M) respe
t to Ω is des
ribed by

βT = max
ρ(T,T ′)≤ ξ(T )

2

max
M∈T ′,||M ||∞=1

||I∗(M)||∞

Quantities βΩ and βT 
ontrol the behaviour of I∗ restri
ted to Ω⊕T , together
with 
onditions on ξ(T ) and µ(T ) 
oming from Lemma 4.1.1.

Let us now de�ne:

α = min(αΩ, αT ) (4.28)

β = min(βΩ, βT ) (4.29)

δ = min(δΩ, δT ). (4.30)

The main assumption on I∗, whi
h summarizes both sets of 
onditions,

is the following:
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Lemma 4.1.2. There exists a ν ∈ (0, 12 ] su
h that

γ
α ≤ 1− 2ν.

We 
an now report the Proposition of [31℄ des
ribing the ne
essary as-

sumptions on parameters for model identi�
ation. This statement re
aps

identi�ability 
onditions related to the 
urvature of T (L), to Fisher informa-

tion I∗ and to ǫ(Ω, T, gγ).

Proposition 4.1.3 (Chandrasekaran et al. (2012) [31℄). Let T be as in

(4.3), Ω be as in (4.4), and let I∗ be the Fisher information matrix evaluated

at the true K = Σ−1
O . Suppose that

µ(Ω)ξ(T ) ≤ 1

6

(

να

β(2− ν)

)2

,

and γ is in the following range:

γ ∈
[

3β(2 − ν)ξ(T )
να

,
να

2β(2 − ν)µ(Ω)

]

.

Then we have the two following 
on
lusions for Y = Ω×T ′
, with min ρ(T, T ′) ≤ ξ(T )

2 :

• The minimum gain of I∗ restri
ted to Y = Ω⊕ T is bounded below:

min
(S,L)∈Y,||S||∞=γ,||L||2=1

gγ(PYA
†I∗APY(S,L)) ≥

α

2
.

Spe
i�
ally this implies for all (S,L) ∈ Y:

gγ(PYA
†I∗APY(S,L)) ≥

α

2
gγ(S,L).

• The minimum e�e
t of elements in Y = Ω ⊕ T on the orthogonal


omplement Y⊥ = Ω⊥ ⊕ T ′⊥
is bounded above:

||(PY⊥A†I∗APY(S,L))(PYA
†I∗APY(S,L))

−1)||gγ→gγ ≤ 1− ν

Spe
i�
ally this implies for all (S,L) ∈ Y:

gγ(PY⊥A†I∗APY(S,L)) ≤ (1− ν)gγ(PYA
†I∗APY(S,L))

Another ne
essary 
ondition to ensure probabilisti
 
onsisten
y is a bound

on ψ, the spe
tral norm of Σ (ψ = ||Σ||2). ψ 
ontrols also I∗, sin
e it 
an be

noted that here ||I∗||2→2 = ψ2
(see (4.21)).

We now des
ribe 
onsisten
y properties of (4.17) in the high dimensional

setting, where p, r, n are allowed to grow simultaneously (n, r ∼ p). For us,
p = |O| is the number of observed variables, r = |H| is the number of latent
variables, n is the number of samples of the observed variables XO. KO,H

gives the latent variable graphi
al model whose 
omplexity is explained by
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µ(Ω(KO)) and ξ(T (KO,H)K−1
H KH,O), des
ribing the sparsity pattern of the


onditional graphi
al model among the observed variables and the di�usivity

of the extra 
orrelations due to marginalization over the hidden variables.

Parameters α, β, ν, ψ do not s
ale with other parameters and are bounded.

There is a natural trade-o� between µ(Ω) and ξ(T ). The 
lasses of latent-
variable graphi
al models whi
h 
an be identi�ed by (4.17) depend on their

relationship, and on 
orresponding s
alings of p, r, n.

In (4.17), γ is a trade-o� parameter between rank and sparsity terms, and

λn is a regularization parameter, whi
h must be suitably 
hosen to ensure


onsisten
y. Sin
e ξ(T ) and µ(Ω) are not known a priori, a numeri
al 
hoi
e

for γ must be done too.

We now report the main result on model sele
tion 
onsisten
y.

Theorem 4.1.3 ([31℄). Let KOH denote the 
on
entration matrix of a Gaus-

sian model. We have n samples Xi, i = 1, . . . , n p of the observed variables

denoted by O. Let Ω = Ω(KO) and T = T (KO,HKO,HK
−1
H KH,O) denote the

tangent spa
es at KO and at KO,HKO,HH
−1KH,O with respe
t to the sparse

and low-rank matri
es respe
tively.

Assumptions: Suppose the following 
onditions hold:

1. The quantities µ(Ω) and ξ(T ) satisfy the assumption of Proposition

4.1.3 for identi�ability, and γ is 
hosen in the range spe
i�ed by Propo-

sition 4.1.3.

2. The number of samples n available is su
h that

n � p

ξ(T )4
.

3. The regularization λn is 
hosen as

λn ≍
1

ξ(T )

√

p

n
.

4. The minimum nonzero singular value σ of KO,HK
−1
H KH,O is bounded

as

σ � 1

ξ(T )3

√

p

n
.

5. The minimum magnitude nonzero entry θ of K∗
O is bounded as

θ � 1

ξ(T )µ(Ω)

√

p

n
.

Con
lusions: Then with probability greater than 1− 2 exp (p) we have:
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1. Algebrai
 
onsisten
y: The estimate (Ŝn, L̂n) given by (4.17) is alge-

brai
ally 
onsistent, i.e., the support and sign pattern of Ŝn is the same

as that ofKO, and the rank of L̂n is the same as that ofKO,HK
−1
H KH,O.

2. Parametri
 
onsisten
y: The estimate (Ŝn, L̂n) given by the 
onvex

program (4.17) is parametri
ally 
onsistent:

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) �

1

ξ(T )

√

p

n
.

We 
an note that both 
omponents are algebrai
ally and parametri
ally


onsistent, given a number of 
onditions involving the minimum nonzero

entry of KO and the minimum singular value of KO,HK
−1
H KH,O, the number

of samples n (whi
h are lower bounded) and the regularization parameter

λn (whi
h follows a pre
ise s
ale). (Ŝn, L̂n) are thus ensured not to have

smaller support size/rank than (KO,KO,HK
−1
H KH,O). The 
ondition on the

minimum singular value is more stringent than the one on the minimum non

zero elements, be
ause it plays a 
ru
ial role to bound the 
urvature of T (L)
around KO,HK

−1
H KH,O. Relevant parameters for 
onsisten
y are p, n, µ, ξ.

This result will be the key to prove 
onsisten
y of the low rank plus sparse


ovarian
e estimator by Luo (2013) [77℄ we will des
ribe in paragraph (4.1.4).

All the results hold under the 
onditions of Proposition 4.1.3, espe
ially

under the 
ondition γ ∈ [3β(2−ν)ξ(T )
να , να

2β(2−ν)µ(Ω) ]. Theorem 4.1.3 is derived

using the lower end of the range for γ.
If this assumption is weakened, we have the following Corollary.

Corollary 4.1.2. Consider the same setup and notation as in Theorem

4.1.3. Suppose that the quantities µ(Ω) and ξ(T ) satisfy the assumption

of Proposition 4.1.3 for identi�ability. Suppose that we make the following

assumptions:

1. Let γ be 
hosen to be equal to

να
2β(2−ν)µ(Ω) (the upper end of the range

spe
i�ed in Proposition 4.1.3), i.e. γ ≍ 1
µ(Ω) .

2. n � µ(Ω)4p.

3. λn ≍ µ(Ω)
√

p
n .

4. σ � µ(Ω)2

ξ(T )

√

p
n

5. The minimum magnitude nonzero entry θ ofK∗
O is bounded as θ �

√

p
n .

Then with probability greater than 1 − 2 exp (p) we have estimates (Ŝn, L̂n)
that are algebrai
ally 
onsistent, and parametri
ally 
onsistent with the error

bounded as

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) � µ(Ω)

√

p

n
.
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Theorem 4.1.3 and Corollary 4.1.2 des
ribe the extremes of matrix 
lasses

re
overable using program (4.17). In pra
ti
e, a range of values for γ is

ne
essary in order to ensure the stability of the sparsity pattern and the

rank, while λn is usually taken in a range of values proportional to

√

p
n .

Re
alling results (4.10) and (4.11), we 
an de�ne d = deg(KO), degree
of the 
onditional graphi
al model among the observed variables, and i =
inc(KO,H(KH)−1KH,O), in
oheren
e of the 
ovarian
es due to the marginal-

ization over the latent variables. The following relations hold:

µ ≤ d, ξ ≤ 2i.

Sin
e α, β, ν, ψ are assumed to be bounded, from Proposition 4.1.3 we have

di = O(1).

These 
onditions in
lude non-trivial 
lasses of latent-variable graphi
al

models. In parti
ular, we mention the 
ase of 
onstant degree d = O(1)
and maximum in
oheren
e

√

r/p, with r ∼ p. In this setting, the e�e
t of

marginalization over latent variables is di�use almost a
ross ALL variables.

Consistent re
overy is allowed also from n ∼ p samples, even if 
ondition

n ≥ 2p is here spe
i�ed following [39℄ in order to ensure �nite bounds for

Σ̂n.

From this results, rates for the 
ovarian
e matrix (i.e. the inverse of the

pre
ision matrix) 
an be easily derived as follows.

Corollary 4.1.3. Under the same 
onditions of Theorem 4.1.3, we have with

probability greater than 1−2 exp (p) that gγ(A†[(Ŝn−L̂n)
−1−Σ∗

O]) � 1
ξ(T )

√

p
n .

Spe
i�
ally, this implies that

||(Ŝn − L̂n)
−1 −Σ∗

O||2 �
1

ξ(T )

√

p

n
. (4.31)

Rates for Σ̂ = Ŝn − L̂n and Σ̂−1

oin
ide, and are proportional to

√

p
n .

However, using the (inverse) sample 
ovarian
e matrix as an input, these

results hold if and only if n ≥ 2p.

We �nally give some basi
 notes on the proof strategy. These 
on
epts

will be re
alled while showing the analogous proof from [77℄ in paragraph

(4.1.4). Standard results from [98℄ state that (Ŝn, L̂n) is a minimum for (4.17)

if the zero matrix belongs to the subdi�erential of the obje
tive fun
tion

evaluated at (Ŝn, L̂n). The subdi�erential stru
ture of ||.||1 and ||.||∗ is the

following. The subdi�erential of the l1 norm at a symmetri
 matrix M is:

N ∈ δ||M ||1 ⇔ PΩ(M)(N) = sign(M), ||PΩ(M)⊥(N)||∞ ≤ 1.
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Let M = UDU ′
be a symmetri
 positive semide�nite matrix M . The

subdi�erential of the tra
e fun
tion restri
ted to the 
one of positive semidef-

inite matri
es (i.e. the nu
lear norm over this set) is:

N ∈ δ[tr(M) + IM�0]⇔ PT (M)(N) = UU ′, PT (M)⊥(N) � Ip,

where IM�0 evaluates to 0 over the 
one of PSD and to ∞ otherwise, and

the 
ondition on T (M)⊥ indi
ates that the spe
tral norm of PT (M)⊥(N) is
smaller or equal to 1.

The key point for proving Theorem 4.1.3 is that elements of the subdif-

ferential de
ompose with respe
t to the tangent spa
es Ω(M) and T (M).

In order to solve (4.17), it is ne
essary to add the non-
onvex 
onstraints

S ∈ K (s) and L ∈ L (r). The pair (S̃, L̃) solution of this problem is proved

to be 
omposed by smooth points of K (s) and L (r) respe
tively. The

�rst-order optimality 
ondition state that the Lagrange multipliers 
orre-

sponding to the additional variety 
onstraints must lie in Ω(S)⊥ and T (L)⊥,
su
h that the �rst part of the subgradient optimality 
onditions of (4.17)

is respe
ted. Then, the idea is to prove that the variety-
onstrained pro-

gram is algebrai
ally equivalent to the tangent-spa
e 
onstrained program,

where S ∈ Ω(S) and L ∈ T (L). Finally, it is proved that tangent-spa
e


onstraints are lo
ally ina
tive, su
h that the original problem (4.17) has the

same solution.

Therefore, the se
ond part of the subgradient 
onditions (relative to the


omponents in Ω⊥
and T⊥

) is also satis�ed and the solution of the original

problem shares the same algebrai
 and parametri
 
onsisten
y properties

with the variety-
onstrained program.

This approa
h is valid if and only if the twisting between T (L̃) and

T (K∗
O,HK

−1
H KH,O) is bounded. This why the minimum singular value of

K∗
O,HK

−1
H KH,O is lower bounded, thus providing the lo
al identi�ability of

T (L∗). The entire proof exploits the basi
 matrix property ||M ||∞ ≤ ||M ||2.
We will give details on the steps needed to prove the analogous of Theo-

rem 4.1.3 into the 
ovarian
e matrix 
ontext in paragraph (4.1.4).

We now outline the optimality 
onditions of our problem (4.17). Our


onvex obje
tive at the optimum (ŜΩ, L̂T ′) satis�es, for some Lagrangian

multipliers QΩ⊥ and QT ′⊥ , the following 
onditions:

ŜΩ + L̂T ′ − Σ̂n +QΩ⊥ ∈ −λnγδ||ŜΩ||1,

ŜΩ + L̂T ′ − Σ̂n +QT ′⊥ ∈ −λnδ||L̂T ||∗.

The key to derive the solution is to proje
t ŜΩ+L̂T ′−Σ̂n onto Y = Ω×T ′

and to de�ne

PΩ(ŜΩ + L̂T ′ − Σ̂n) = ZΩ,

PT (ŜΩ + L̂T ′ − Σ̂n) = ZT ′ ,
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with ||ZΩ||∞ = λnγ and ||ZT ′ || ≤ 2λn. The bi-dimensional proje
tion is

PYA
†(ŜΩ + L̂T ′ − Σ̂n) = Z = (ZΩ, ZT ′),

where Y = Ω⊕ T ′
. This is the proje
ted gradient method, and provides the

mathemati
al base to algebrai
ally solve the numeri
al problem (3.30).

4.1.4 Approximate re
overy: LOREC approa
h

This se
tion deals with 
ovarian
e matrix estimation via low rank plus sparse

de
omposition. Here we des
ribe the numeri
al approa
h of Luo (2013) ([77℄)

whi
h re
overs the 
ovarian
e matrix via low rank plus sparse de
omposition

in the noisy setting. This approa
h moves from the one of [31℄ des
ribed

in paragraph (4.1.3), and provides rates and identi�ability 
onditions under

the same algebrai
 setting.

The underlying stru
ture for Σ∗
is model (4.2), and the data stru
ture

is the one des
ribed in (3.1). Model (4.2) 
an be thought of as a general

approximate fa
tor model in the form

Σ∗ = BV ar(f)B′ +Σǫ,

where V ar(f) = Ir and Σ∗ − Σǫ has exa
tly rank r. The low rank matrix

L∗ = BV ar(f)B′
and the sparse matrix S∗ = Σǫ are symmetri
 (as well as

their sum Σ∗
) . Our sample estimate Σ̂ is drawn from the noisy model

Σ̂ = L∗ + S∗ +W

where W is an error term.

At present, the re
overy of the loading matrix B via the method we are

going to des
ribe has not be dis
ussed. This 
an be partially done only if

r = 1, where the loadings is re
overed up to a 
onstant. The fa
tor model

assumption is here used as a useful tool to estimate the 
ovarian
e matrix in

a large dimensional 
ontext.

The usual matrix spa
es L (r), K (s), T (L) and Ω(S), as well as quan-
tities µ(Ω) and ξ(T ), are de�ned as in (4.3), (4.4), (4.5), (4.6), (4.9) and

(4.8) respe
tively. The obje
tive fun
tion is (3.43), whi
h is 
omposed by a

Frobenius loss term and 
omposite penalty (3.28). For a dis
ussion of math-

emati
al properties of (3.43), see se
tion (3.2). Here, we expli
itly note that

the 
omposite penalty (3.28) is simply a re-s
aled version of the 
ompos-

ite penalty used in program (4.17) (λn(γ||S||1 + tr(L))), where γ = ρ
λ and

λn = λ. Version (3.43) is useful to 
hoose threshold parameters in empiri
al

appli
ations. Parameter γ is again the relative size of the subdi�erential of

||.||1 respe
t to ||.||∗. We note also that the original problem (3.30), whi
h is

our true obje
tive, is solved in this 
ontext via (3.43), be
ause it is proved

that the three 
onstraints L � 0, S ≻ 0, L + S ≻ 0 are ina
tive at the

optimum of (3.43), su
h that the two problems are algebrai
ally equivalent.
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First of all, we set the basi
 de�nitions of algebrai
 and parametri
 
on-

sisten
y into the 
ovarian
e matrix 
ontext.

De�nition 4.1.2. A pair of symmetri
 matri
es (S,L) with S,L ∈ Rp×p
is

an algebrai
ally 
onsistent estimate of the low rank plus sparse model (4.2)

for the 
ovarian
e matrix Σ∗
if the following 
onditions hold:

1. The sign pattern of S is the same of S∗
: sign(Sij) = sign((S∗)i,j),

∀i, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of L∗
.

3. Matri
es L+ S, S and L are su
h that: L+ S ≻ 0, S ≻ 0, L � 0.

Model 
onsisten
y here is de�ned a

ording to the following three esti-

mation features:

1. 
orre
t stru
tural estimate of the residual 
ovarian
e matrix of X 
on-

ditioned on the latent variables f (given by S). This feature is 
alled
"sparsisten
y" of low rank plus sparse model sele
tion.

2. number of latent variables 
orre
tly estimated.

3. the model is realizable as a 
ovarian
e matrix model: L+S is positive

de�nite and L is positive semi-de�nite. We add the 
ondition S ≻ 0,
whi
h pres
ribes that also the sparse 
omponent 
an be interpreted as

a 
ovarian
e matrix. This last 
ondition is not ne
essary to ensure a


onsistent estimate for Σ∗
.

Parametri
 
onsisten
y is de�ned analogously to the approa
h des
ribed

in paragraph (4.1.3). It holds if the estimates of (S,L) are 
lose to (S∗, L∗)
in some norms with high probability. The used norms are ||.||2 for L, ||.||∞
for S, gγ(S,L) (4.20) for L+ S, in appli
ation of the dual prin
iple. Rates

in spe
tral and Frobenius norm are also derived for L+ S . We re
all that

parametri
 
onsisten
y does note imply algebrai
 
onsisten
y and vi
e versa.

We dis
uss now the main theorem ensuring identi�ability and 
onsisten
y.

This theorem is a dire
t appli
ation of Theorem 4.1.3, with an important

di�eren
e: in order to apply a sparsity model of the type of Bi
kel and

Levina (2008b) (see paragraph (2.4)) on the sparse 
omponent S∗
, Σ∗

is

imposed to be in the following matrix 
lass:

Σ∗(ǫ0) = {M ∈ Rp×p : 0 < ǫ0 ≤ Λi(M) ≤ ǫ−1
0 ∀i = 1, . . . , p} (4.32)

whi
h is the 
lass of positive de�nite matri
es having uniformly bounded

eigenvalues (Λi(M), i = 1, . . . , p, are the eigenvalues of M).

This assumption is worth some re�e
tion. Assuming uniformly bounded

eigenvalues may 
on�i
t with the main ne
essary identi�ability 
ondition:
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the transversality between Ω and T . Sin
e the eigenvalue stru
tures of Σ∗

and S∗
are somehow linked, allowing 
lass (4.32) for Σ∗

may 
ause S∗
to

have an high degree, and simultaneously the row/
olumn spa
e of L∗
to

have high values of in
oheren
e (we have no spiked eigenvalues). This may

result in possible non-identi�ability issues. To be 
lear, the merge between

the transversality 
onditions and the sparsity assumptions of [15℄ is possibly

dangerous for model identi�ability.

We report now Luo's main theorem ([77℄).

Theorem 4.1.4 (Luo's Theorem 1 [77℄). Let Ω = Ω(S∗) and T = T (L∗).
Suppose Σ∗ ∈ (4.32), µ(Ω(S∗))ξ(T (L∗)) ≤ 1/54, and for n ≥ p

λ = C1max

(

1

ξ(T )

√

log(p)

n
,

√

p

n

)

,

and ρ = γλ, where γ ∈ [9ξ(T ), 1/(6µ(Ω))]. In addition, suppose that the

minimum singular value of L∗
(λr(L

∗)) is greater than C2λ/ξ
2(T ) and the

smaller absolute value of the nonzero entries of S∗
is greater than C3

λ
(µ(Ω)) .

THEN, with probability greater than 1−C4p
−C5

, the LOREC estimator (L̂, Ŝ)
(minimizing (3.43)) re
overs the rank of L∗

and the sparsity pattern of S∗

exa
tly:

rank(L̂) = rank(L∗) and sign(Ŝ) = sign(S∗).

Moreover, with probability greater than 1−C4p
−C5

, the matrix losses for ea
h


omponents are bounded as follows:

||L̂− L∗||2 ≤ Cλ, |Ŝ − S∗|∞ ≤ Cρ.
We 
all Σ̂LOREC = L̂+ Ŝ.
The key model-based results for deriving 
onsisten
y rates are Bi
kel

and Levina (2008b) ([15℄) for the sample loss in in�nity norm:

||Σn − Σ∗||∞ ≤ O
(

√

log p

n

)

,

and Davidson, K. R. and Szarek, S. J. (2001) ([39℄) for the sample loss

in spe
tral norm:

||Σn − Σ∗||2 ≤ O
(
√

p

n

)

,

where Σn = Σ̂n−1 is the p× p unbiased sample 
ovarian
e matrix 
omputed

on the observed data X.

Using the 
on
lusions of Theorem 4.1.4, whi
h are ||L̂ − L∗||2 ≤ Cλ,
||Ŝ − S∗||∞ ≤ Cρ, it is possible to derive the following overall rate for

e(L̂, Ŝ)2 = ||∆L||2Fro + ||∆S ||2Fro
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(where ∆L = L̂− L∗
,∆S = Ŝ − S∗

,∆Σ = Σ̂LOREC − Σ∗
):

e(L̂, Ŝ)2 ≤ C
[

rp

n
max

(

log p

r
, 1

)

+
s

n
max (log p, r)

]

, (4.33)

where s is the usual number of non-zero elements in S∗
. If r ∼ log p (as it is

for exa
tly low rank matrix re
overy), this rate 
oin
ides with the one under

the Agarwal's approa
h (4.15), where α = 0, sin
e we no longer have non-

identi�ability issues. This is obtained using the lower bound ξ(T ) = O(
√

r
p)

(see (4.11)).

From Theorem (4.1.4), Luo derives the following rates for Σ̂LOREC :

||Σ̂LOREC − Σ∗||2 ≤ C(sξ(T ) + 1)λ = φ

||Σ̂LOREC − Σ∗||Fro ≤ C(
√
psξ(T ) +

√
r)λ

with probability larger than 1− C1p
−C2

, if and only if λmin(Σ
∗) ≥ φ.

The same rates hold for the inverse 
ovarian
e estimate Σ̂−1
LOREC ,

||Σ̂−1
LOREC − Σ−1∗||2 ≤ C(sξ(T ) + 1)λ = φ

||Σ̂−1
LOREC − Σ−1∗||Fro ≤ C(

√
psξ(T ) +

√
r)λ

with probability larger than 1 − C1p
−C2

, if and only if λmin(Σ
∗) ≥ 2φ.

Here r is the true latent rank of L∗
, while s, di�erently from (4.33), is

de�ned as the maximum number of non zero elements per 
olumn (whi
h

is the indu
ed ||.||1 norm). This is done to further improve error rates.

From now to the end of Chapter, parameter s will 
hange its meaning as

explained: s = maxj
∑p

i=1 1(sij 6= 0), j = 1, . . . , p. Both results are reported
as Corollaries in [77℄. We will show proof details in next paragraph (5.1).

We now des
ribe the meaning of needed assumptions. Sin
e (3.43) 
on-

tains a Frobenius loss term instead of the log-likelihood, this method is no

longer a likelihood method. For this reason, there is no need here to bound

the 
urvature of Fisher information I∗, sin
e I∗ = Ip. So, referring to Propo-
sition 4.1.3, parameters α, β, and γ (see (4.28) (4.29) (4.30)) are now all

equal to 1, with ν = 1
2 (see Lemma 4.1.2). On the 
ontrary, the analogous

of Proposition 4.1.3 is still needed, be
ause the tangent spa
e T (L∗) is still

urve, and transversality between T and Ω still needs to be bounded (even

if I∗ has no longer impa
t).

Proofs are 
ontained in [76℄, whi
h is a previous version of [77℄. There it is

possible to �nd (at page 26) the analogous of Proposition 4.1.3, where I∗ has
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no longer impa
t. The identi�ability assumption here be
omes µ(Ω(S∗)ξ(T (L∗)) ≤ 1/54,
whi
h 
an also be rewritten, using (4.11) and (4.10), as

degmax(S
∗)inc(L∗) ≤ 1

108
.

The range γ ∈ [9ξ(T ), 1/(6µ(Ω))] is obtained by Proposition 4.1.3 setting α,

β, and γ equal to 1, ν equal to 1
2 . Note that, γ =

√

9ξ(T ) ∗ 1
(6µ(Ω)) , geometri


mean of the two ends, is always inside the range, and using (4.11) and (4.10),

we 
an write γ =
√

2 ∗ 9inc(B) 1
(6degmax(A)) =

√

3inc(B)
(degmax(A)) . The minimum

magnitude of the non-zero entries of S∗
and the minimum eigenvalue of L∗

(λr(L
∗)) are lower bounded, in order to ensure 
onsistent re
overy, and also

identi�ability in the 
ase of λr(L
∗). The use of Σ̂n−1 is responsible for the

usual assumption p ≤ n.
There is one major di�eren
e with the approa
h of [1℄ explained in (4.1.3):

here, the sparsity assumption on S∗
imposes that the parameter λ, 
oming

from probabilisti
 analysis, must take into a

ount both probabilisti
 frame-

works, the one from ||Σ̂n − Σ∗||2 (represented by

√

p
n) and the one from

||Σ̂n − Σ∗||∞ (represented by

1
ξ(T )

√

log(p)
n ).

The parameter ρ = γλ has this shape to re-s
ale a

ordingly the subdif-

ferential of the sparse 
omponent. The parameter λ has this shape be
ause,

even if we are in a deterministi
 
ontext, the need of a probabilisti
 bound

for gγ(A
†En), where En = Σ̂ − Σ∗

, rises throughout the proof. If the input

is the unbiased sample 
ovarian
e matrix (Σ̂ = Σ̂n−1), the rates are the ones

above written, and the 
ondition p ≤ n is unavoidable. We will make some

e�ort to over
ome this issue in paragraph (5.1), providing statisti
al rates

under POET assumptions and in the generalized spikiness 
ontext.

It is now easier to understand whi
h are the possible non-identi�ability

issues 
oming out. Di�erently from POET approa
h, where the sparsity

assumption (4.32) is imposed to the sparse 
omponent S∗
, LOREC approa
h

imposes it dire
tly to the 
ovarian
e matrix Σ∗
.

So, two 
onditions must hold whi
h may be in 
ontradi
tion: if the min-

imum eigenvalue of L∗
is too large, it is unlikely that Σ∗

is into the matrix


lass (4.32). This makes the matrix 
lass for whi
h re
overy is e�e
tive quite

un
lear. In addition, the produ
t µ(Ω)ξ(T ) is a�e
ted by this trade-o�, su
h

that, if λr(L
∗) is too large, S∗

must be very sparse in order to respe
t the up-

per bound for µ(Ω)ξ(T ). We will �nd 
on�rmation of that in our simulation

study (Chapter 5).

Another aspe
t of Theorem 4.1.4 is that the two losses (in L∗
and S∗

respe
tively) are bounded separately. This may result in some issues 
on-


erning the overall performan
e represented by the loss ||Σ̂−Σ∗||Fro, as our

simulation study 
on�rms (see (5.3.1)), be
ause here ||∆Σ||2 is simply derived

using triangle inequality ||∆Σ||2 ≤ ||∆L||2 + ||∆S ||2 , as well as ||∆Σ||Fro.
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More explanations and a proposal to improve LOREC estimation pro
ess on

this side is given in paragraph (5.1).

We now des
ribe the steps used in [76℄ to prove Theorem (4.1.4). They

dire
tly des
end from the proof of Theorem 4.1.3 in [31℄, set into our 
ontext,

where the referen
e model is (3.1).

The 
hain of programs to be solved and the mathemati
al rationale are

showed. We start from the brief explanations given at the end of paragraph

(4.1.3). First, we need to bound the 
urvature of T . So, for the equivalent
of Proposition 4.1.3, we restri
t our analysis to tangent spa
es satisfying

ρ(T, T ′) ≤ ξ/2. We 
an then solve problem (3.43) with additional tangent

spa
e 
onstraints:

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (4.34)

s.t. S ∈ Ω, L ∈ T ′,

where T = T (L∗) s.t. ρ(T, T ′) ≤ ξ(T )/2.
We know that ||L||∗ and ||S||1 are non di�erentiable. In order to bound

the Loss fun
tion: gγ(∆S ,∆L) = gγ(ŜΩ−S∗, L̂T ′−L∗) = max{|Ŝ|∞/γ, ||L̂||},
where (∆S ,∆L) = (ŜΩ − S∗, L̂T ′ − L∗), the needed tools are:

• the proje
ted gradient method;

• Brouwer's �xed point theorem (see [76℄, p.27).

We start re
alling the subgradient 
onditions for ||L||∗ and ||S||1. Our

CONVEX obje
tive at the optimum (ŜΩ, L̂T ) satis�es, for some Lagrangian

multipliers, QΩ⊥ ∈ Ω⊥
and QT ∈ T⊥

the following optimality 
onditions:

ŜΩ + L̂T −Σn +Q⊥
Ω ∈ −λnγδ|ŜΩ|1

ŜΩ + L̂T −Σn +QT⊥ ∈ −λnδ|L̂T |∗,

where δ denotes the subdi�erential.

Lagrangian duality theory is a �rst order method. So, we need to bound

the se
ond-order Taylor rest of Σ∗
. The key is to proje
t ŜΩ+ L̂T ′− Σ̂n onto

Y = Ω× T ′
(where × represents here the Cartesian produ
t), and to de�ne

PΩ(ŜΩ + L̂T ′ − Σ̂n) = ZΩ,

PT (ŜΩ + L̂T ′ − Σ̂n) = ZT ′ ,

with ||ZΩ||∞ = λnγ and ||ZT ′ || ≤ 2λn. The bi-dimensional proje
tion is

PYA
†(ŜΩ + L̂T ′ − Σ̂n) = Z = (ZΩ, ZT ′),

where Y = Ω⊕ T ′
(i.e. Z is a feasible point).
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This is the proje
ted gradient method. Then, the appli
ation of Brouwer's

�xed point theorem allows to bound gγ(P(∆S ,∆L)), whi
h in turn serves as

a limit for the error gγ(∆S ,∆L), thus satisfying the �rst half of optimality


onditions (re
all (3.40) and (3.41)). This error bound is needed to prove

there is a unique minimizer, and establish parametri
 
onsisten
y.

Then, imposing gγ(A
†En) ≤ λn

18 , it is possible to prove that the tangent-

spa
e 
onstrained problem (4.34) is equivalent to the following variety-
onstrained

problem

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (4.35)

s.t. S ∈ Ω, L ∈ TM ,

where TM = T (L̂M ), and (ŜM , L̂M ) is the solution of

M = {(S,L) | s ∈ Ω(S∗), rank(L) ≤ rank(L∗),

||PT⊥(L− L∗)||2 ≤ ξ(T )λ, gγ(ŜΩ − S∗, L̂T ′ − L∗) ≤ 11λ}.

This serves for ensuring algebrai
 
onsisten
y, and holds under all the

assumptions of Theorem 4.1.4. It also allows to solve the non-
onvex problem

(4.35) as a 
onvex one, linearizing the 
onstraints.

Finally, under the same assumptions, the solution of problem (4.35) is

shown to be solution of the original problem (3.43) without any 
onstraints.

In [31℄, another bound on the Taylor rest of Σ∗−1
is needed, sin
e they are

dealing with the inverse. For us, the 
ondition gγ(A
†En) ≤ λn

18 , limiting the

gγ norm of En = Σ∗ − Σn, is su�
ient.

Another important quantity to bound during the proof is gγ(A
†CT ′),

where CT ′ = PT ′⊥(L∗). This is needed to bound the 
urvature of T , as well
as the 
onstraint ||PT⊥(L− L∗)||2 ≤ ξ(T )λ.

During this last step, probabilisti
 bounds 
ome into play. Sin
e we need

to bound gγ(A
†En), large deviation theory must be applied to ||En||2 and

||En||∞. This is done using the outlined results from Bi
kel and Levina

(2008b) and Davidson, K. R. and Szarek, S.J. (2001). The strength

of the probabilisti
 bound depends on the relationship between p and n. In
parti
ular, key ratios

p
n and

log p
n 
ome from the probabilisti
 bounds of ||En||2

and ||En||∞ respe
tively. This is why λ = C1max

(

1
ξ(T )

√

log(p)
n ,

√

p
n

)

. The


ondition p ≤ n is unavoidable in order to obtain �nite probabilisti
 bounds.

We have already pointed out the possible weakness of this approa
h re-

spe
t to identi�ability issues, due to the need of imposing matrix 
lass (4.32)

dire
tly to Σ∗
, and not to S∗

. This 
hoi
e 
auses, jointly with the identi�a-

bility assumptions, un
ertainty on the underlying stru
ture of Σ∗
. Another

di�
ulty of Luo's approa
h is that (2.8) is only partially imposed to Σ∗
,

leaving out the 
onditions on limited 
orrelations. On the 
ontrary, no ma-

trix 
lass is a
tually imposed to S∗
, whose sparsity is re
overed algebrai
ally
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(deterministi
ally) using the standard property ||M ||∞ ≤ ||M ||2 exploiting

the s
ale parameter γ.
We �nd a key di�eren
e between the approa
hes of Luo (2013) and Chan-

drasekaran et at (2012). In the latter, ONLY the probabilisti
 bound for

||En||2 is used, and the one for ||En||∞ is simply derived as a 
onsequen
e

using the basi
 relationship ||En||∞ ≤ ||En||2. For this reason, there we

have the following parametri
 rate:

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) �

1

ξ(T )

√

p

n
. (4.36)

The two 
omponents are bounded jointly, exa
tly as in Agarwal's approa
h.

In the former, the two 
omponents are approa
hed separately, and the shape

of λn re�e
ts this 
hoi
e.

Therefore, Luo should have imposed matrix 
lass (4.32) together with the


ovarian
e assumptions (see (2.8)) to S∗
, in order to have the desired sparsity

model. However, this would have been useless for the mathemati
al proof,

whi
h requires that Σ∗
belongs to (4.32), in order to derive the probabilisti


bound of ||En||∞. On the other side, in absen
e of spe
i�
ation of that

matrix 
lass, he would have left the in�nity norm rate dependent on the

spe
tral one, with no progress respe
t to Chandrasekaran et al. (2012).

The number of samples n 
an be O(p), thanks to probabilisti
 results


ontained in [110℄, provided that n ≤ p. In 
ontrast, the 
ondition n ≤ 2p
is needed for Chandrasekaran et al.(2012), and p = O( p

ξ4(T )
), whi
h 
or-

responds to O(p
3

r2 ) in the worst 
ase (see Theorem 4.1.3). Starting from

(4.31), it is easy to show (using the lower bound n = O(p
3

r2
)) that the overall

Frobenius rate for the 
ovarian
e matrix estimate in [31℄ is O(r1/2pn−1/2).
This o

urs be
ause the rate is there determined only by the low rank 
om-

ponent. The analogous rate for the low rank 
omponent under Luo's ap-

proa
h is O(r1/2p1/2n−1/2 max (log p, r1/2)), whi
h is lower (for explanations

see (4.33)). This rate 
an be even lower under di�erent model spe
i�
ations

using the same low rank plus sparse de
omposition, as the so 
alled spiked


ovarian
e model of Johnstone and Lu (2009) [71℄ (for more details see [76℄

and [77℄).

To 
on
lude this paragraph, we give some terms of 
omparison among

probabilisti
 rates respe
t to alternative PCA-based approa
hes re
overing

Σ∗
under similar assumptions. In our numeri
al 
ontext, the strength of

probabilisti
 bounds depends on the relationship between the �nite values

of p and n.
In [43℄, fa
tors are observable and the residual 
omponent is diagonal.

There, the rate for Σ̂ (and Σ̂n) is O(n−1/2pr), while LOREC under the

same 
onditions shows O(n−1/2(p + p1/2r1/2)) (see (4.33)). For the eigen-

value 
onvergen
e rate, [43℄ has the same O(n−1/2pr), while LOREC shows

O(n−1/2p1/2). Only LOREC provides spe
tral bounds. Con
erning the in-
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verse, [43℄ has a Frobenius rate of O(n−1/2pr2 log p1/2), while LOREC shows

again O(n−1/2(p+ p1/2r1/2)), whi
h is lower. The di�eren
e o

urs be
ause

an additional error term O(p−1/2) 
omes out when the residuals are unob-

servable.

In the approximate sparse fa
tor model 
ontext, it is hard to provide

absolute rates, as the spe
tral or the Frobenius ones, using a PCA-based

approa
h. This is due to the fa
t that the ne
essary pervasiveness assumption

requires large p (see paragraph (2.5)). What is more, an additional error term

O(p−1/2) 
omes out when the residuals are unobservable (as in [44℄). When

also the fa
tors are unobservable, as explained in [76℄, there is an unavoidable

additional error term O(log p). In POET setting ([45℄) we �nd both. More,

for the just explained reasons, the rate for Σ̂ is provided only in relative

norm (see (2.19)), exa
tly as in [44℄.

This is why we will 
ompare extensively the performan
e of Σ̂POET and

Σ̂LOREC in a wide simulation study (Chapter 5). As a 
omparison term,

we now list the main di�eren
es in the theoreti
al assumptions bewteen

POET and LOREC approa
hes:

• For POET the spe
tral bound is provided only on ||S∗||, while for

LOREC is provided both on ||S∗|| and ||Σ∗||.

• In POET setting, the r eigenvalues of p−1B′B are bounded away from

0 and∞ as p in
reases (pervasiveness 
ondition). In LOREC setting,

there is only a lower bound on the minimum eigenvalue of L∗
.

• In LOREC setting, ALL the eigenvalues of Σ∗
are bounded away from

0 and in�nity. In POET setting, the smallest p− r are upper bounded
by ||S∗||, the largest r are approximately equal to the ones of B′B.

• In LOREC setting, Λmax 
ontrols for the strongness of the probability

bound, Λmin 
ontrols for the positive de�niteness of Σ̂ (ne
essary

to estimate the inverse).

• The latent rank r is exa
tly re
overed automati
ally by LOREC with-

out the need for any external tool. In 
ontrast, POET sele
ts r using
the well known rank sele
tion 
riteria by Bai and Ng ([6℄).

• Con
erning the sparsity pattern, LOREC needs only a lower bound on

the smaller absolute value of the non-zero entries of S∗
, while POET

requires

mp = max
i≤p

∑

j≤p

|sij |q = o(p)

for some q ∈ [0, 1).

• Statisti
al performan
e is assessed asymptoti
ally for POET,

non-asymptoti
ally for LOREC. In the �rst 
ase the referen
e norm is
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the relative norm (2.19), in the se
ond is the Frobenius norm (relative

VS absolute rates).

As a �nal remark, we note that both LOREC and POET pro
edures are

not s
ale-equivariant, that is, the estimates are not equivariant under linear

transforms. For POET, this is due to the use of PCA, depending on the

sample eigenvalues (whi
h are not s
ale-equivariant), and also depends on the

use of thresholding for the re
overy of the sparse 
omponent. For LOREC,

this is due to the singular value thresholding of the low rank 
omponent and

to the soft thresholding of the o�-diagonal elements of the sparse 
omponent.

We re
all that also the fa
tor model estimates by the prin
ipal fa
tors method

are not s
ale-equivariant, still for the use of sample eigenvalues.

We are now ready to introdu
e a set of novelties improving upon LOREC

approa
h exploiting features of some of the methods we have shown through-

out our thesis. First, in the pure LOREC setting, we propose a solution to

the approximation problem 
aused by the separate bounding of the errors in

L∗
and S∗

. This solution involves the unshrinkage of the estimated eigen-

values at the end of the solution algorithm (
omposed by the singular value

thresholding of the low rank 
omponent and the soft threhsolding of the

sparse 
omponent, see (3.2.2)). This proposal is proved to be algebrai
ally

meaningful for improving the original LOREC on the side of the overall loss

||∆||Fro
Σ , and to better 
at
h the proportion of varian
e explained by the low

rank 
omponent.

The other advan
es 
on
ern the number of ne
essary samples n respe
t

to p. In order to do that, we want to exploit the theory of approximate fa
tor

model. So, we abandon the hypothesis Σ∗ ∈ (4.32), whi
h is not 
oherent

with the presen
e of few spiked eigenvalues. We thus link the in�nity norm of

En to the spe
tral one as in the approa
h by Chandrasekeran et al. (2012).

We show that using the POET spikiness assumption (Proposition 2.5.1) and

imposing a sparse model for S∗
in the spirit of Bi
kel and Levina (2008b)

(S∗ ∈ (2.8)) we 
an prove, using (2.23), that the des
ribed algebrai
 setting

holds with rate O( p√
n
), and simultaneously the probabilisti
 bound is guar-

anteed until p log p ≪ n. Finally, we extend this result into the generalized

spikiness 
ontext of Proposition 2.5.1. We prove an updated version of (2.23)

in the α-spiked 
ontext, su
h that the des
ribed algebrai
 setting holds with

rate O( pα√
n
), and simultaneously the probabilisti
 bound is guaranteed until

pα log p≪ n, with α ∈ (0, 1].

The results we need are:

P

(

||Σn − Σ|| > p√
n

)

≤ C1 exp (−C2p
2),

if all the assumptions under Theorem (2.19) hold, and
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P

(

||Σn − Σ|| > pα√
n

)

≤ C1 exp (−C2p
2α),

if all the assumptions under Theorem (2.19) hold, with the di�eren
e

that De�nition 2.5.1 repla
es Proposition 2.5.1, for α ∈ (0, 1].



Chapter 5

Improving LOREC: empiri
al

and theoreti
al results

In this 
hapter, original advan
es and extensions to LOREC approa
h are

des
ribed, with parti
ular referen
e to the estimation performan
e and to dif-

ferent assumptions for the eigenvalues of the low rank 
omponent, in respe
t

to the ones of POET ([45℄).

In paragraph (5.1), Luo's approa
h ([77℄) is 
ompleted with the rates for

the sparse 
omponent, its inverse and its positive de�niteness 
onditions. A

more operative identi�ability 
ondition is also derived from [30℄. The qual-

ity of the overall solution is improved performing the unshrinkage of the

estimated eigenvalues of the low rank 
omponent. The rates of 
onvergen
e

under the spikiness assumptions of [45℄ and under the setting of α - general-

ized spikiness stru
ture (De�nition 2.5.1) are derived using the key tools of

[45℄ and [15℄ des
ribed in paragraphs (2.5.4) and (2.4) respe
tively.

Then, we show simulated and real data analysis results in support of

the proposals 
ontained in paragraph (5.1). In parti
ular, we fo
us on the

approximation improvement o�ered by Σ̂New respe
t to Σ̂LOREC , and on

the 
omparison between the performan
e of Σ̂New and Σ̂POET in the POET

setting.

In paragraph (5.2.1), we des
ribe an original simulation algorithm 
reated

for this purpose, whi
h is enough �exible to 
at
h all the di�erent situations

we need in a unique framework. The 
omparison quantities needed to assess

the performan
e of estimators are des
ribed in (5.2.2). In paragraph (5.2.3),

we show a model sele
tion 
riterion spe
i�
ally thought for our estimation

method.

Simulated data analysis is reported in paragraph (5.3.1). A number of

simulated data settings, parti
ularly useful for assessing the performan
e of

Σ̂New and 
ompare it to the one of Σ̂LOREC and Σ̂POET , are des
ribed, with

the aim of testing the theoreti
al advan
es des
ribed in paragraph (5.1).

Simulations are performed with MATLAB.

103
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Real data analysis is then o�ered in paragraph (5.3.2) with the aim of


omparing the performan
e of Σ̂POET and Σ̂New. Two real data-sets are

taken into a

ount: one on UK market data (publi
ly available) whi
h was

used by Fan and 
olleagues to assess the performan
e of POET ([45℄, para-

graph 7) and a supervisory banking data-set whi
h 
olle
ts balan
e sheet

data for some of the most relevant Euro Area banks. For the last one,

we deeply a
knowledge the Supervisory Statisti
s Division of the European

Central Bank, where the author spent a semester as a PhD trainee, for the

allowan
e to use these data in anonymous form for resear
h purpose.

5.1 Theoreti
al advan
es

We start showing in detail the algebrai
 steps whi
h allow to derive the

Frobenius rates for Σ∗
from the Con
lusions in Theorem 4.1.4. The referen
e

is here [76℄, paragraph 6.

We set Σn = Σ̂n−1, estimation input. For the triangular inequality we

have:

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ ||Ŝ − S∗||.
Using standard matrix norm properties, we obtain

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ ||Ŝ − S∗||1,

and then

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ s||Ŝ − S∗||∞,

where s is there the maximum number of non zeros per 
olumn in S∗
. This

result is derived using sign(Ŝ) = sign(S∗), whi
h allows to improve upon

the standard 
onstant p.
Setting γ = 9ξ(T ) (its minimum), we obtain

||Σ̂LOREC − Σ∗||2 ≤ C(sξ(T ) + 1)λ = φ. (5.1)

An analogous triangular inequality holds for the Frobenius rate:

||L̂+ Ŝ − (L∗ + S∗)||Fro ≤ ||L̂− L∗||Fro + ||Ŝ − S∗||Fro.

Exploiting the fa
t that the algebrai
 sum A + B, when A and B have

rank r, has at most rank 2r (see [62℄), and using previous results for Ŝ
together with the standard inequality ||A||F ≤

√
ps||A||max, we obtain

||L̂+ Ŝ − (L∗ + S∗)||Fro ≤
√
2r||L̂− L∗||+√ps||Ŝ − S∗||∞.

Setting γ = 9ξ(T ) (its minimum), we obtain

||Σ̂LOREC − Σ∗||Fro ≤ C(
√
psξ(T ) +

√
r)λ. (5.2)
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For simpli
ity of notation, we now remove all ∗. Re
alling Theorem 2.2.1,

we know that L̂ + Ŝ is positive de�nite if and only if the minimum

eigenvalue of Σ∗
is larger than the spe
tral bound φ. We give a

further justi�
ation of this basi
 result. Weyl's Theorem (see [45℄ Appendix

C) pres
ribes that, for any matrix Σ, we have

|λ̂i − λ| ≤ ||Σ̂− Σ|| ∀i = 1, . . . , p,

where λ̂i, i = 1, . . . , p are the sample eigenvalues. This result relates the

rate of sample eigenvalues to the matrix spe
tral loss rate. The triangular

inequality gives

|λmin(L̂+ Ŝ)− λmin| ≤
≤ |λmin(L̂+ Ŝ)|+ | − λmin| =

= |λmin(L̂+ Ŝ)|+ λmin,

be
ause Σ is positive de�nite. Thus,

|λmin(L̂+ Ŝ)| ≥ |λmin(L̂+ Ŝ)− λmin| − λmin.

Sin
e for the Weyl's theorem |λmin(L̂+ Ŝ)− λmin| ≤ φ we have

λmin(L̂+ Ŝ) > 0⇐⇒ λmin > φ. (5.3)

This proves the 
laim.

In order to a
hieve the same rate φ for the inverse spe
tral rate
||(L̂+ Ŝ)−1 − Σ−1||, it is ne
essary that λmin ≥ 2φ.

In fa
t, the triangular inequality gives

||(L̂+ Ŝ)−1 − Σ−1|| ≤ ||(L̂+ Ŝ)−1||+ λ−1
min (5.4)

By summing and subtra
ting Σ and using triangular inequality

||(L̂+ Ŝ)−1|| = ||(L̂+ Ŝ − Σ+ Σ)−1|| ≤

≤ ||(L̂+ Ŝ − Σ)−1||+ ||Σ−1|| ≤
≤ ||(L̂+ Ŝ)−1 − Σ−1||+ ||Σ−1|| =
≤ ||(L̂+ Ŝ − Σ)−1||+ λ−1

min.

For the Weyl's theorem, we have

||(L̂+ Ŝ − Σ)−1|| ≤ |λmin((L̂+ Ŝ)−1)− λmin(Σ)
−1|.

For triangular inequality, we have

|λmin((L̂+ Ŝ)−1)− λmin(Σ)
−1| ≤

≤ |λmin((L̂+ Ŝ)−1)|+ | − λ−1
min| ≤
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≤ |λmin((L̂+ Ŝ)−1)|+ λ−1
min

sin
e Σ is positive de�nite.

At the same time, for (5.1), we have

||(L̂+ Ŝ)−1 − Σ−1|| ≤ φ.

Hen
e, inequality (5.4) be
omes

φ−1 ≤ |λmin((L̂+ Ŝ)−1)|+ 2λ−1
min.

We 
an write

|λmin((L̂+ Ŝ)−1)| ≥ φ−1 − 2λ−1
min,

whi
h allows to 
on
lude that

||Σ̂−1
LOREC − Σ−1||2 ≤ φ⇐⇒ φ−1 ≥ 2λ−1

min. (5.5)

Using this assumption, it is possible to derive the rate for (L̂+ Ŝ)−1
, by

property ||(A+E)−A−1|| ≤ ||A−1|| · ||E|| · ||(A+E)−1|| (see [76℄, p. 31-32):

||(L̂+ Ŝ)−1 − (Σ)−1|| = ||(L̂+ Ŝ)−1[L̂+ Ŝ − Σ](Σ)−1|| ≤

≤ ||(L̂+ Ŝ)−1|| · ||[L̂+ Ŝ − Σ]|| · ||(Σ)−1|| ≤ 2
λ2
min

||[L̂+ Ŝ − Σ]||.
Hen
e, we have

||Σ̂−1
LOREC − Σ−1||2 ≤ C(sξ(T ) + 1)λ = φ (5.6)

By property ||M1M2||Fro ≤ ||M1|| · ||M2||Fro, it is straightforward to

derive

||Σ̂−1
LOREC − Σ−1||Fro ≤ C(

√
psξ(T ) +

√
r)λ. (5.7)

Using the same framework, we 
an 
omplete Luo's analysis with the rates

for Ŝ. From ||Ŝ − S∗|| ≤ s||Ŝ − S∗||∞, we obtain

||Ŝ − S∗||2 ≤ Csξ(T )λ = φS . (5.8)

From ||Ŝ − S∗||Fro ≤
√
ps||Ŝ − S∗||∞, we obtain

||Ŝ − S∗||Fro ≤ C
√
psξ(T )λ. (5.9)

Similarly, Ŝ is positive de�nite if and only if λmin(S
∗) > φS . Ŝ

−1
has the

same rate of Ŝ if and only if φ−1
S ≥ 2λmin(S

∗)−1
.
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Unshrinking the eigenvalues of the low rank 
omponent

We now approa
h the approximation problem due to the separate bounds for

the two 
omponents. The problem is that the 
ombined shrinkage approa
h

gets 
loser to ea
h 
omponent separately, but in su
h a way it goes further

from the overall solution, as we will show in Chapter 5. The need rises

to 
orre
t for this drawba
k, re-shaping Σ̂LOREC , be
ause the overall Loss

fun
tion used in the algebrai
 setting, gγ , derives the overall performan
e

as a 
onsequen
e of the two separate bounds. That means that LOREC

approa
h 
an be somehow sub-optimal for the whole 
ovarian
e matrix.

We will des
ribe a �nite sample analysis, whi
h 
ould be referred to as a

re-optimization least squares method. From now, we will refer to the usual

obje
tive fun
tion (3.43) where ||S||1 = ||S||1,off =
∑p−1

i=1

∑p
j=i+1 |sij |, i.e.

the l1 norm ex
luding the diagonal. This approa
h is 
oherent with the

sparse approximate fa
tor model (3.1) and with POET (see (2.5.4)), whi
h

will be our referen
e 
ompetitor in Chapter 5.

We start from a standard result: the PCA of M trun
ated to the r-th

omponent is the r-ranked matrix best approximating M . In fa
t,

min
B,rank(B)=r

||A−B||2

and

min
B,rank(B)=r

||A−B||Fro

are both solved for

B =

r
∑

i=1

λiuiu
′
i,

whi
h is the SVD trun
ated to the r-th summand ([40℄), when r is known.

Suppose now that L̂ (r̂) and K̂ (ŝ) are the varieties ensuring the algebrai


onsisten
y of (3.30). A natural question 
omes out: whi
h is the solution

(say (L̂New, ŜNew)) of the problem

min
L∈L̂ (r̂),S∈K̂ (ŝ)

||(Σn − (L+ S)||2Fro? (5.10)

We know that, the sample 
ovarian
e matrix follows the model Σn =
L∗+S∗+W , where W ∼Wishart(0p×p, n), given a sample Xi, i = 1, . . . , n.

We de�ne the total loss for the generi
 pair L ∈ L̂ (r̂), S ∈ K̂ (ŝ) as:

TL(L,S) = ||(Σn − (L+ S)||2Fro.

In other words, we fa
e the following question: whi
h pair L ∈ L̂ (r̂), S ∈
K̂ (ŝ) satisfying algebrai
 
onsisten
y shows the best approximation proper-

ties of Σn? We prove the following original result.
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Theorem 5.1.1. Suppose that L̂LOREC and ŜLOREC are the LOREC solu-

tions satisfying Theorem 4.1.4, with Σ̂LOREC = L̂LOREC + ŜLOREC . Sup-

pose that L̂ (r̂), K̂ (ŝ) are the re
overed matrix varieties, and that L̂ =
ÛD̂Û ′

is the eigenvalue de
omposition of L̂LOREC . Assume that the o�-

diagonal elements of ŜNew are the same as the ones of ŜLOREC as well as

the diagonal elements of Σ̂New are the same as the ones of Σ̂LOREC. Then,

the minimum minL∈L̂ (r̂),S∈K̂ (ŝ) ||(Σn− (L+S)||2Fro is a
hieved if and only if

L̂New = Û(D̂+λIr)Û
′
and if diag(ŜNew,ii) = diag(Σ̂LOREC,ii) − diag(L̂New,ii),

where λ is the threshold parameter. In addition, the gain in terms of spe
-

tral loss is stri
tly positive and bounded by λ.

We now prove Theorem 5.1.1. Given �nite p and n we have

TL(L,S) = ||L∗ + S∗ +W − L− S||2Fro ≤

≤ ||L− L∗||2Fro + ||S − S∗||2Fro + ||W ||2Fro = A+B +C

(the signs are put in a 
onvenient form).

The LOREC solution is Σ̂LOREC = L̂+ Ŝ, L ∈ L̂ (r̂), S ∈ K̂ (ŝ), with

L̂ = ÛD̂Û ′, (5.11)

where D̂ = Dλ is the diagonal eigenvalue matrix 
oming out from the sin-

gular value thresholding pro
edure, and Û is the matrix of 
orresponding

eigenve
tors. Aware of the best approximation property of PCA, our ques-

tion is the following: whi
h is the matrix in the variety L̂ (r̂) being 
loser to
the unknown r-ranked matrix L∗

, keeping �xed Û?
The solution is straightforward: our matrix has the same eigenve
tors Û ,

but has the original (natural) eigenvalues. This new matrix D̂New 
an be

obtained simply un-shrinking the obtained eigenvalues: D̂New = Dλ + λIr.
This is why term A is minimized as follows:

minL∈L̂ (r̂) ||L− L∗||2Fro ⇐⇒ L̂New = Û(Dλ + λIr)Û
′
.

Suppose now Σ̂LOREC is given, and assume that the o�-diagonal ele-

ments of Ŝ are invariant. We 
an re-write term B as follows:

min
S∈K̂ (ŝ)

||S − S∗||2Fro =

= min
L∈L̂ (r̂)

||(Σ̂− L)− (Σ∗ − L∗)||2Fro =

= min
L∈L̂ (r̂)

||(Σ̂− Σ∗)− (L− L∗)||2Fro ≤

p
∑

i=1

(σ̂ii − σii)2 +
p
∑

i=1

(l̂ii − lii)2 (5.12)

= B′ +B′′.
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Term B′
is assumed to be �xed respe
t to L, i.e. we are assuming the

invarian
e of diagonal elements in Σ̂LOREC (diag(Σ̂New) = diag(Σ̂LOREC)).
The minimization of term B′′

, given that rank(L) = r̂, falls ba
k into the

previous 
ase, i.e. B′′
is minimum ⇐⇒ L̂New = Û(Dλ + λIr)Û

′.
Term C depends on the quality of the estimation input Σn, and on the

degree of 
orresponden
e with LOREC assumptions.

Consequently:

ŜNew,ii = Σ̂ii − L̂New,ii, ∀i.
ŜNew,ij = Ŝij, ∀i 6= j.

We 
an thus de�ne Σ̂New = L̂New + ŜNew. We 
all L̂Orig and ŜOrig the

original LOREC estimates. We know that ||L̂New − L̂Orig||2 = λ.

Re
alling that L̂New = minL∈L̂ (r̂) ||L− L∗||2Fro, we have

0 < ||L̂Orig − L∗||2 − ||L̂New − L∗||2 ≤ λ, (5.13)

be
ause ||L̂Orig−L∗||2 ≤ ||L̂New−L̂Orig||2+||L̂New−L∗||2. As a 
onsequen
e,
||L̂New − L̂Orig||Fro =

√
2rλ and

0 < ||L̂Orig − L∗||Fro − ||L̂New − L∗||Fro ≤
√
2rλ. (5.14)

In order to quantify ||ŜNew − ŜOrig||Fro, we need to study the behaviour of

the term

∑p
i=1(l̂New,i − lii)2. This 
an be re-written as

p
∑

i=1

(l̂New,ii − l̂Orig,ii + l̂Orig,ii − lii)2 ≤

≤
p
∑

i=1

(l̂New,ii − l̂Orig,ii)
2 +

p
∑

i=1

(l̂Orig,ii − lii)2.

∑p
i=1(l̂Orig,ii − lii)2∀i depends on the statisti
al properties of L̂LOREC .

∑p
i=1(l̂New,ii−l̂Orig,ii)

2 = rλ2, for basi
 algebrai
 
onsiderations on the tra
e.

It is also straightforward that ||diag(L̂New−LOrig)||2 = λ. So, re
alling that

ŜNew = minS∈K̂ (ŝ) ||S − S∗||2Fro, we 
an write ||ŜNew − ŜOrig||Fro =
√
rλ

and

0 < ||ŜOrig − S∗||2 − ||ŜNew − S∗||2 ≤ λ. (5.15)

0 < ||ŜOrig − S∗||Fro − ||ŜNew − S∗||Fro ≤
√
rλ. (5.16)

We 
an now analyze the performan
e of Σ̂New. Sin
e we have no gain

from diag(Σ̂New), we have to subtra
t from ||L̂New − L̂Orig||Fro the gain

from diagonal elements. At the same time, no gain 
omes from the diagonal

elements of ŜNew. Hen
e, we 
an write

||Σ̂New − Σ̂Orig||Fro ≤
√
rλ.
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As a 
onsequen
e, re
alling that Σ̂New = minΣ=L+S(TL(L,S)) under the

des
ribed assumptions, we 
an write

0 < ||Σn − Σ̂LOREC ||2 − ||Σn − Σ̂New||2 ≤ λ. (5.17)

0 < ||Σn − Σ̂LOREC ||Fro − ||Σn − Σ̂New||Fro ≤
√
rλ. (5.18)

Therefore, the real gain is terms of approximation of Σn respe
t to

LOREC measured in squared Frobenius norm is bounded from rλ2.

To sum up, we pay the pri
e of a

epting a non-optimal solution in

terms of nu
lear norm (we allow to in
rement ||nuc by rλ) but we have a

best �tting performan
e for the whole 
ovarian
e matrix, de
rementing the

squared Frobenius loss by a quantity bounded from rλ2. Note that ||Ŝ||off
is invariant. ||S||1 (
onsidering also the diagonal) is de
reased by a quantity

bounded from

√
rλ.

We 
an easily write

||Σ̂New − Σ||2Fro = ||L̂New + ŜNew − (L+ S)||2Fro =

0 < ||Σ̂New −Σn +Σn − Σ|| ≤ ||Σ̂New − Σn||2Fro + ||Σn − Σ||2Fro. (5.19)

Note that the quality of the estimation input ||Σn −Σ||2Fro does not depend

on the estimation method.

Therefore, by (5.18) and (5.19), it is straightforward that

0 < ||Σ̂LOREC − Σ||2Fro − ||Σ̂New − Σ|||2Fro ≤ rλ2. (5.20)

Analogously, it is easy to prove that

0 < ||Σ̂LOREC − Σ||2 − ||Σ̂New − Σ|||2 ≤ λ. (5.21)

Now we re
all the following expression:

||(L̂+ Ŝ)−1 − (Σ)−1||Fro = ||(L̂+ Ŝ)−1[L̂+ Ŝ − Σ](Σ)−1|| ≤

≤ ||(L̂+ Ŝ)−1|| · ||[L̂+ Ŝ − Σ]||Fro · ||(Σ)−1||.

From (5.20) we 
an 
on
lude that

0 < ||(L̂LOREC+ŜLOREC)
−1−Σ−1||2Fro−||(L̂New+ŜNew)

−1−Σ−1||2Fro ≤ rλ2.
(5.22)

Analogously, it is straight forward that

0 < ||(L̂LOREC + ŜLOREC)
−1 − Σ−1||2 − ||(L̂New + ŜNew)

−1 − Σ−1||2 ≤ λ.
(5.23)

Our study has allowed us to improve the estimation performan
e in a

�nite sample analysis. However, the rates for L̂New, ŜNew and Σ̂New are
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exa
tly the same as L̂LOREC , ŜLOREC and Σ̂LOREC . Our new estimate im-

proves the statisti
al performan
e of LOREC given the sample, inheriting

all its algebrai
 and parametri
 
onsisten
y properties.

In spite of that, the un-shrinkage of the estimated eigenvalues of L relaxes

the ne
essary 
ondition for positive de�niteness and invertibility of Ŝ and

Σ̂. In empiri
al analysis, one 
an 
onsider that parameters φ and φS 
an be

de
reased by a quantity bounded from λ.

LOREC and spiked eigenvalues: a relaxed sampling theory

Suppose now that the eigenvalues of L∗
are pervasive in the sense of Propo-

sition 2.5.1, and that all propositions and assumptions of POET approa
h

hold in our �nite sample 
ontext.

For instan
e, we suppose that

λ1,...,r(Σ
∗) ≥ ǫp,

λr+1,...,p(Σ
∗) ≤ ǫp,

ǫ 6= 0, be
ause the eigenvalues of p−1B′B are bounded away from 0 and ∞.

Suppose that the relationship between p and n is su
h that all the ne
-

essary 
onditions to prove the 
onsisten
y of POET des
ribed in paragraph

(2.5.4) hold (see Theorem 2 in [45℄), in
luded the assumptions on the sparsity

stru
ture of S∗
. As already said, we drop the assumption (4.32).

In parti
ular, suppose that (2.20), (2.21), (2.22) hold, su
h that (2.23)


an be proved, that is,

||Σn −Σ|| = O

(

p√
n

)

(5.24)

holds. This is a key model-based result (outlined in bold), be
ause it is

ne
essary to prove the 
onsisten
y of POET. It is proved as Lemma 5 in

[45℄.

(5.24) is equivalent to state that

P

(

||En|| ≥ C1
p√
n

)

≤ 1− C2e
−C3p2 . (5.25)

Sin
e we have dropped the assumption (4.32), we 
an simply write, using

the standard norm property |||.||∞ ≤ ||.||2 as in [31℄ (see paragraph (4.1.3)),

P

(

||En||∞ ≥ C1ξ(T )
p

ξ(T )
√
n

)

≤ 1− C2e
−C3p2 , (5.26)

be
ause ρ = γλ and γ has the same shape as in Theorem 4.1.4. We expli
itly

note that in this way we also drop the assumption of normality for the data,

impli
it in the result of [110℄ used by Luo to bound the spe
tral loss of the

unbiased sample 
ovarian
e matrix.
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So, if we plug-in this expression in the proof of Theorem 4.1.4, and we

use (5.26), we 
an write

λn =

(

1

ξ(T )

p√
n

)

= λ. (5.27)

Hen
e, we 
an exploit (4.36) to 
on
lude

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

p√
n
, (5.28)

given that all the ne
essary 
onditions (with parti
ular attention to the iden-

ti�ability ones) of Theorem 4.1.4.

Theorem 5.1.2. Under all the assumptions of Theorem 2 in [45℄ (see para-

graph (2.5.4)) and all the assumptions of Theorem 4.1.4, the LOREC esti-

mate (L̂, Ŝ) satis�es

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

p√
n
.

It is straight forward that the su

ess of this approa
h depends on the


oheren
e between the assumptions in both settings (POET and LOREC).

We will give spe
i�
 attention to that in paragraph (5.3.1), widely des
ribing

the ne
essary setup 
onditions for ensuring this 
oheren
e.

Consistently to POET approa
h, here we 
an over
ome the problem of

the restri
tive 
ondition p ≤ n. In fa
t, we know that the probabilisti
 bound

is �nite until p log (p)≫ n, be
ause Theorem 2 in [45℄ pres
ribes p = o(n2).
Note that all the des
ribed rates for Ŝ and Σ̂ still hold, simply updating

λ a

ordingly to (5.27). Also the des
ribed results on the un-shrinkage and

the 
onsequen
es on the requisites for positive de�niteness and invertibility

still hold.

In parti
ular, sin
e in this 
ontext ||Σn − Σ∗||2 is o(p) with rate O( p√
n
),

we have

φ = C(sξ(T ) + 1)
1

ξ(T )

p√
n
,

φS = Csξ(T )
1

ξ(T )

p√
n
.

In order to relax the strong assumption of pervasiveness of latent eigen-

values (Proposition 2.5.1), we set into the generalized spikiness 
ontext of

De�nition 2.5.1, where α ∈ (0, 1). In order to obtain an error rate for our

numeri
al program under these 
onditions, sin
e the nature of this approa
h


omes from a non-asymptoti
 (�nite sample) analysis, we only need to study

the behaviour of the model-based quantity P (||Σn−Σ||) under these assump-

tions, be
ause the only probabilisti
 
omponent derives from P (||En||2). In
parti
ular, we want to generalize (5.25) showing that

P

(

||Σn − Σ|| > C1
pα√
n

)

≤ 1− C2e
−C3p2α , (5.29)
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α ∈ (0, 1].
In order to do that, the relevant argument to take into a

ount is Lemma

5 in Fan et al. (2013), the 
on
lusion of whi
h is (5.24). Sin
e Lemma 5 (as

it is) is the key to prove that under Fan's 
ondition (5.28) holds, the updated

version of Lemma 5 in the α - spiked 
ontext is the key to prove that

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

pα√
n
.

We remark again the di�eren
e with Luo's approa
h. In his setting, he

proved that, given En = Σn − Σ∗
,

P (||En||2) ≤ Op

(
√

p

n

)

P (||En||∞) ≤= Op

(

√

log p

n

)

separately for P (||En||2) and P (||En||∞).
The key to prove (5.29) is to adapt 
laims (2.20), (2.21), (2.22) (
oming

from [44℄) to this setting, where the pervasiveness of latent eigenvalues has

been relaxed, applying the proof te
hnique in [45℄, Appendix C, Lemma 5,

page 639.

From the fa
t that ||B′Σ−1B|| ≤ |cov(f)−1| (page 194 Fan (2008) [43℄,

Assumption (B)), (2.20) follows. This 
laim is una�e
ted by the relaxing of

Proposition 2.5.1. So, from the proof of Lemma 5, we 
an argue that, under

the α - spiked 
ontext, ||D1|| ≤ O(pα
√

1
n), be
ause now ||BB′|| = O(pα).

This happens also be
ause r log p = o(n).
In order to show how (2.21) 
hanges in this 
ontext, we need to re
all the

key results of Bi
kel and Levina (2008b). Di�erently from Luo's approa
h,

in this setting (as in the POET one) the sparsity assumption is imposed to

S∗
, and not to Σ∗

.

The relevant quantity mp (2.17) in Fan's setting is o(p), in order to have

||S|| = o(p), whi
h allows to identify the low rank 
omponent via PCA.

Here, sin
e De�nition 2.5.1 holds, we have that mp = o(p) is no longer

appropriate. We impose, in order to preserve the 
orresponden
e between the

rates of the sample and theoreti
al eigenvalues, the assumption mp = o(pα)
(whi
h 
auses ||S|| = o(pα) in the POET setting).

Consider now the uniformity 
lass of sparse matri
es (2.11).







S∗ : s∗ii ≤M,

p
∑

j=1

|s∗ij|q ≤ c0(p), ∀i







. (5.30)

We have residual varian
es uniformly bounded by M . This assumption here

is no longer valid, be
ause M is no longer negligible respe
t to p.
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Here we 
an no longer write (see [15℄ page 2580)

λmax(S
∗) ≤ max

i

∑

j

|s∗ij| ≤M1−qc0(p),

as Fan et al. do in their pure spikiness 
ontext.

The quantity c0(p) 
an still be assumed not to s
ale with p, be
ause we
want to have a sparse S∗

, but mp = op(p
α) 
auses that M 
annot longer

be 
onsidered as a 
onstant when p → ∞. In order to normalize it, we

need to divide by p1−α
, thus obtaining that mp grows at a rate of O(pα−1)

as p in
reases. Plugging-in M = O(pα−1) in the proof deriving the sample


ovarian
e rate of a matrix under 
lass (5.30) (see [15℄ page 2582) we 
an

prove:

||Σn −Σ||∞ ≤ O

(

pα−1

√

logp

n

)

, (5.31)

whi
h is outlined in bold as a key te
hni
al result.

Now, using (5.31), we 
an apply the proof tools of Lemma 5 ([45℄, Ap-

pendix C) to matrix D2, obtaining

||D2|| ≤ pOp(p
α−1)O

(
√

log(p)

n

)

= Op

(

pα
√

log p

n

)

,

be
ause ||D2| ≤ p||D||∞. Sin
e log(p) = o(n), we 
an write

||D2|| ≤ pOp(p
α−1)O

(

√

log p

n

)

= Op

(

pα
1√
n

)

. (5.32)

To 
on
lude, we analyze (2.22):

max
i≤r,j≤p

∣

∣

∣

∣

1

n

n
∑

k=1

fiksjk

∣

∣

∣

∣

≤ 1√
n

n
∑

k=1

max
i
|fik|

1√
n
max

j

n
∑

k=1

|sjk| ≤
√

r

n
ppα−1

√

log p

n
,

Note that here Assumption 2b) ||S∗||1 < const in Theorem 2 of [45℄,

ne
essary to ensure the 
onsisten
y of POET, is no longer ne
essary, be
ause

rank 
onsisten
y is ensured via the numeri
al method.

Sin
e r = O(log (p)) and n = o(p2), we 
an set n = O (pα) and we obtain

O(
√

r
n) = O(p−

α
2 ), be
ause log (p) = o(pα). This method works if and only

if p = o(n2α). The rate thus be
omes O

(

p
α
2

√

log p
n

)

.

Applying the tools of Lemma 5 to D3 we obtain

||D3|| ≤ O
(

p
α
2

√

log p

n

)

O
(

p
α
2

)

= O

(

pα
√

log p

n

)

,
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be
ause ||B|| = O(p
α
2 ). The 
ondition log(p) = o(n) leads to:

||D3|| ≤ O
(

pα√
n

)

. (5.33)

Rate (5.29) is 
onsequently proved, and we have

||Σn − Σ|| = O

(

pα√
n

)

. (5.34)

The argument follows from the 
ombined use of tools from Fan et al. (2013),

Fan et al. (2011), Fan et al. (2008) and Bi
kel and Levina (2008b).

This is equivalent to state that

P

(

||En|| ≥ C1
pα√
n

)

≤ 1− C2e
−C3p2α .

Sin
e we have dropped the assumption (4.32) for Σ∗
, we 
an simply write,

using ||.||∞ ≤ ||.||2 and the minimum for γ in Theorem 4.1.4,

P

(

||En||∞ ≥ C1ξ(T )
pα√
n

)

≤ 1− C2e
−C3p2α . (5.35)

By the outlined plug-in in the proof of Theorem 4.1.4 and (5.35), exploit-

ing Chandrasekaran et al. (2012) ([31℄) (see paragraph (4.1.3)), it is possible

to prove that under these assumptions we have:

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

pα√
n
, (5.36)

given that all the ne
essary 
onditions (with parti
ular attention to the iden-

ti�ability ones) of Theorem 4.1.4 hold.

Theorem 5.1.3. Under all the assumptions of Theorem 2 in [45℄, assuming

that the latent eigen-stru
ture of Proposition 1 and 2 (see paragraph (2.5.4))

is repla
ed by the one of De�nition 2.5.1, and under all the assumptions of

Theorem 4.1.4, the LOREC estimate (L̂, Ŝ) satis�es

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

pα√
n
.

It is straight forward that the su

ess of this approa
h depends on the


oheren
e between the relaxed spikiness assumption (Proposition 2.5.1, see

the dis
ussion of [45℄ by Yu and Samworth on that) as well as all the assump-

tions in Theorem 2 of Fan et al. (2013) and the assumptions of Theorem

4.1.4.

Consequently, we 
an write here

λn =

(

1

ξ(T )

pα√
n

)

= λ. (5.37)
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We 
an again over
ome the problem of the restri
tive 
ondition p ≤ n. In

this relaxed setting, the probabilisti
 bound is �nite until pα log (p) ≫ n,
be
ause (5.34) holds until pα = o(n2).

Note that if α = 0, we have log (p) ≫ n, whi
h means p = o(n). So, in
the 
ase of no latent eigenvalues (no spikiness), the 
onvergen
e rate of the

sample 
ovarian
e matrix simply be
omes O(
√

1
n). Note that Theorem 2.2.1

gives the same result imposing p = o(n). Therefore, we 
an say that (5.34)

holds for α ∈ [0, 1], thus en
ompassing also the 
lassi
 sampling 
ontext

(small and �xed data dimension). In addition, (5.36) holds also under the

no-spikiness 
ase of Theorem 4.1.4.

All the des
ribed rates for Ŝ and Σ̂ still hold, simply updating λ a

ord-

ingly to (5.37). The des
ribed results on the un-shrinkage and the 
onse-

quen
es on the requisites for positive de�niteness and invertibility still hold

too, 
onsequently updated.

In parti
ular, sin
e in this 
ontext ||Σn − Σ∗||2 is o(p) with rate O( pα√
n
),

we have

φ = C(sξ(T ) + 1)
1

ξ(T )

pα√
n
,

φS = Csξ(T )
1

ξ(T )

pα√
n
= Cs

pα√
n
.

This approa
h o�ers an original proof setting to re
over 
onsistently a

more relaxed (and wider) spikiness 
ontext. By plugging-in into the proof

of Luo (2013), it allows to over
ome the 
ondition p ≤ n even using Σ̂n−1 as

estimation input. It o�ers a re
overy 
ontext where the rate dire
tly depends

on the spikiness of latent eigenvalues, be
ause the larger α, the further are
the identi�ability and invertibility 
onditions from being satis�ed, as well

as the worse is the error rate. We underline that our rates are in absolute

norms, and re�e
t the underlying degree of spikiness.

However, this approa
h works if and only if the identi�ability and 
on-

sisten
y assumptions of LOREC and POET are satis�ed. In parti
ular, the

more spiky the low rank 
omponent is, the sparsest must be the sparse 
om-

ponent, in order to ensure a degree of transversality su�
iently low.

Finally, we note that this theory is spe
i�
ally addressed to the Big Data


ontext, where p ≫ n. Sparse fa
tor model assumptions together with the

numeri
al approa
h are the key to provide re
overy in a relaxed sampling

setting, parti
ularly useful when p is very large 
ompared to n. This result is
obtained by a 
ombined use of numeri
al analysis (�nite sample) and prob-

abilisti
 
onvergen
e theory of the sample 
ovarian
e matrix under sparse

fa
tor model assumptions, linking the sample dimension to the spikiness of

latent eigenvalues.

We are going to verify the strength and the width of all these assumptions

as well as the validity of our theories on the performan
e of numeri
al esti-
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mators, with parti
ular referen
e to the statisti
al advan
es just des
ribed,

in a wide original simulation study and in a real data analysis 
ontext.

5.2 Simulation setting

5.2.1 Simulation algorithm

Let C,S,L and W be real-valued symmetri
 p× p matri
es. Let us 
onsider

a framework where C is a p × p unbiased sample 
ovarian
e matrix, L is

the latent low rank 
ovarian
e matrix (i.e. fa
tor-driven 
ovarian
e), S is a

sparse residual 
ovarian
e matrix with 2s (s≪ p(p−1)/2) non-zero elements

and W is an error term.

Our aim is to de
ompose the matrix C (whi
h is for us the unbiased


ovarian
e matrix estimator) into the sum of S,L and W , satisfying the

extended "lasso" 
ondition (5.38):

min
S,L

ρ||S||1 + λ||L||nuc + ||W ||Fro

sub C = S + L+W, (5.38)

where || · ||1 is the l1 matrix norm, and || · ||nuc is the nu
lear norm,

i.e. the tra
e of the ve
tor of singular values, λ and ρ are non-negative

s
alars. For us, the l1 norm is here ex
luding the diagonal elements, that is

||S||1 = ||S||1,off =
∑p−1

i=1

∑p
j=i+1 |sij|, a

ording to POET approa
h.

The matri
es C and S are positive de�nite, the matrix L is positive

semide�nite. The parameters ρ and λ are the sparsity and spikiness thresh-

olds respe
tively. Our aim is to obtain the estimate Σ̂ = L̂ + Ŝ of the true


ovarian
e matrix Σ minimizing (5.38).

With this purpose in mind, we now des
ribe the data generation frame-

work. First, we set to r = βp, β ∈ [0, 0.1], the rank of L. We 
an thus apply

to L (real-valued and symmetri
) the spe
tral theorem:

L = ULΛLU
′
L, (5.39)

where:

1. UL is a p× r matrix with orthonormal 
olumns, i.e U ′
LUL = Ir;

2. ΛL = diag(λL,1, . . . , λL,r) is a r×r diagonal matrix, where λL,1, . . . , λL,r
are real and positive, sin
e L is positive semide�nite.

For our purpose, we immediately need to set the proportion α ∈ [0, 1]
of the total varian
e explained by the fa
tors. So, in the generation frame-

work we 
an set tr(ΛL) = ταp, where τ ∈ [0,∞[ allows to 
ontrol for the

magnitude.
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The matrix UL is generated applying the Gram-S
hmidt algorithm to

any basis of Rp
and extra
ting r random p−dimensional 
olumns from the

obtained matrix. This is performed pre-multiplying by a positive de�nite

permutation matrix the matrix Ip, and then applying Gram-S
hmidt algo-

rithm. The matrix ΛL is generated by an algorithm (see [48℄) whi
h returns

a diagonal matrix with �xed tra
e ταp and 
ondition number exa
tly equal

to c.

The sparse symmetri
 matrix S, whi
h is a p × p sparse matrix with 2s
o�-diagonal nonzero elements (s≪ p(p− 1)/2), is generated as follows.

First of all, we need to split the residual varian
e τ(1 − α)p among the

diagonal elements of S. This problem 
an be solved by using the Diri
h-

let probability distribution. It is su�
ient to set s∗ii = sii
τ(1−α)p . Then,

(s∗11, . . . , s
∗
pp|(1 − α, . . . , 1 − α)) is a Diri
hlet distribution. We 
an gener-

ate s∗, and 
onsequently 
ompute s. We permute the elements in diag(S)
asso
iating the i−th largest element in diag(L) with the i−th largest element

in diag(S).

The o�-diagonal elements of S are generated as follows. For ea
h entry

i, j a number θij = Unif(0, δ
√
sii
√
sjj) is generated, where δ ∈ [0, 1] is

a parameter 
ontrolling for the positive de�niteness of S. The larger the

dimension p is, the smaller δ has to be in order to ensure positive de�niteness.
Then, sij is generated as sign(L(i, j))Unif(0, θij ) for ea
h i, j.

On
e we have generated L, we 
ompute inc(L) (see (4.11) for the de�-

nition). Using the identi�ability inequality degmax(S)inc(L) ≤ 1
108 , we set

degmax(S) =
1

108·inc(L) . Using the lower bound on the minimum eigenvalue

of L λr(L) (Theorem 4.1.4), we derive the minimum allowed non zero ele-

ment thrmin =

√
p
n
·inc(L)2λr(L)

degmax(S)
,where

√

p
n 
omes from the shape of λ. From

thrmin we 
an derive smin as the position o

upied by the lowest element

larger than thrmin in the sorted ve
tor of the o� diagonal entries of S (in

des
ending order). Then, a threshold thrprop is proposed as δbis ∈ [0, 1] times

the maximum o�-diagonal element of S, from whi
h we 
an derive the pro-

posed number of nonzero elements sprop in the same way. The number of

non zeros is then set to s = min (smin, sprop), and the lowest allowed element

of S is derived a

ordingly as thr = max (thrprop, thrmin).

Note that smin is an approximate indi
ation. It represents a 
ontrol

pro
edure respe
t to the 
orresponden
e with the theoreti
al assumptions of

Theorem 4.1.4. In any 
ase, it may happen that the maximum eigenvalue of

Σn is a
tually more than proportional or less than proportional to

√

p
n . In

that 
ase, smin 
an give a too restri
tive or a too generous indi
ation, and

this may result in partial re
overy or non-re
overy of non-zeros. In addition,

the 
hoi
e of δbis is also arbitrary, and is limited by smin only. This pro
edure

is an attempt to deal with the alignment between the number of non zeros

and the magnitude of non zeros (whi
h is relevant for re
overy). The model
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sele
tion 
riterion we are going to des
ribe will appropriately signal problems

on that, re
overing in 
ase more or less non-zeros than expe
ted.

In light of this, we 
an generate n repli
ates of our data. Given the

generated L = ULΛLU
′
L and S, the data generation pro
ess is:

zi = Bui + ǫi, i = 1, . . . , n,

where:

1. zi is a p× 1 ve
tor;

2. B = ULD is a p× r matrix, with D =
√
ΛL;

3. ui ∼ N(0, Ir);

4. ǫi ∼ N(0, S);

5. ui ⊥ ǫi, i = 1, . . . , n.

On
e n repli
ates have been generated, we 
an 
ompute the matrix C as the

unbiased sample 
ovarian
e estimator of our n repli
ates of z.

The spikiness threshold λ is initially set to the mean eigenvalue of C
(say λ̄C), while the sparsity threshold ρ is initially set to the average of the

o�-diagonal elements of C (ρC = (p(p−1)
2 )−1

∑p−1
i=1

∑p
j=i |cij |).

5.2.2 Simulated settings and 
omparison quantities

After the des
ription of our generation framework, we 
ome ba
k to our

statisti
al problem. Let us suppose that Σ = L + S is a p × p 
ovarian
e

matrix, where L is a r - ranked matrix (r < p) and S is a sparse matrix with

s non zero elements as in model (3.1). We set C = Σn, where Σn is now the

unbiased 
ovarian
e matrix estimator Σ̂n−1.

We take as referen
e setting the following one:

setting 1:

p = 100, n = 1000, β = 0.04, r = 4, τ = 1, α = 0.7, c = 2,

δ = 0.1, δbis = 0.2, s = 118, smax = 732, ρcorr =
ρS
ρΣ

= 0.045,

where ρS = p(p−1)
2 )−1

∑p−1
i=1

∑p
j=i |sij | and ρΣ = p(p−1)

2 )−1
∑p−1

i=1

∑p
j=i |σij | .

The dimension p is �xed to 100 and the sample dimension n is set to 1000.
A data-set with a larger dimension will be explored in paragraph (5.3.2).

These settings are good for 
omparing the performan
e of our NEW method

to the LOREC method. The latent rank is 4, the magnitude parameter τ is

�xed to 1. The proportion of non-zeros is (p(p−1)
2 )−1s is 2.38%.
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The other settings we have explored are the following:

setting 2:

p = 100, n = 1000, β = 0.03, r = 3, τ = 3, α = 0.8, c = 4,

δ = 0.1, δbis = 0.1, s = 580, smax = 1604, ρcorr = 0.0072,

setting 3:

p = 100, n = 1000, β = 0.04, r = 4, τ = 1, α = 0.7, c = 4,

δ = 0.1, δbis = 0.1, s = 335, smax = 892, ρcorr = 0.0048.

In setting 2, the magnitude is in
reased by three times (τ passes from

1 to 3). The rank is 3, the proportion of latent varian
e is in
reased to 0.8.
The proportion of non zeros is in
reased to 11.72%. The 
ondition number

c is in
reased to 4. This setting has quite more spiked eigenvalues.

In setting 3, the 
ondition number c is 4, and the number of non-zeros is

in
reased respe
t to the referen
e setting. The proportion of non-zeros here

is 6.77%. This setting is something between setting 1 and setting 2.

The spikiness threshold λ is initially set to the mean eigenvalue of Σn,

λ̄Σn . The sparsity threshold ρ is initially set to the average of the absolute

values of the o�-diagonal elements of Σn, ρΣn = (p(p−1)
2 )−1

∑p
i=1

∑p
j=i |σn,ij |.

In setting 1 we have:

λ =

[

2i

10
λΣn

√
n

p

]

, i = 1, . . . , 20; (5.40)

ρ =

[

4i
log (p)

n
ρΣn

]

, i = 1, . . . , 20. (5.41)

These formulations are adapted in ea
h setting by su

esive approximations.

Lots of quantities are 
omputed in order to des
ribe 
omparatively the

performan
e of our NEW approa
h, of LOREC (Luo, 2013) and POET (Fan

et al., 2013) on the same data. The 
omputation algorithm is des
ribed in

Se
tion 3 (paragraph (3.2.2)), and is applied to the generated 
ovarian
e

matrix Σn. We 
all the low rank estimate L̂, the sparse estimate Ŝ, and the


ovarian
e matrix estimate Σ̂ = Ŝ + L̂.

The error norms used are the following:

• Loss = ||Ŝ − S||Fro + ||L̂− L||Fro,

• TotalLoss = ||Σ̂ − Σ||Fro,

• SampleTotalLoss = ||Σ̂ − Σn||Fro.
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The estimated proportion of total varian
e α̂ and the residual 
ovarian
e

proportion ρ̂corr are 
omputed.

The performan
e of Ŝ is assessed by using the following measures. Let

us denote by nz the number of nonzeros in Ŝ (re
all that s is the number of
nonzeros in S), by fp the false non-zeros, by fn the false zeros, by fpos the
false positive and by fneg the false negative elements. We 
an de�ne:

• the estimated proportion of non-zeros percnz = nz/numvar,

• the error measure: err = fp+fn
numvar , where numvar = p(p − 1)/2 is the

number of o�-diagonal elements,

• errplus = fpos+fneg
s , whi
h is the same as err but 
omputed for non-

zeros only, distinguishing between positive and negative in the usual

way.

Sensitivity and spe
i�
ity measures are then derived, as the 
orre
t 
las-

si�
ation rates of (true) non-zeros and zero elements respe
tively. Sensitivity

and spe
i�
ity rates are derived also for positive, zero and negative elements

separately, disentangling the error rates 
omputing the elements 
lassi�ed

by mistake in ea
h of the other two 
lasses.

The overall error rate errtot using the number of false zeros, false positive,
and false negative elements is also 
omputed as errtot =

fpos+fneg+fn
numvar .

The 
ondition numbers of Σ̂, Ŝ, L̂ are 
omputed and 
ompared to the

ones of Σ and S and L. We 
ompute the error rates for the estimated

eigenvalues of L, S, and Σ, and provide a 
omparative analysis of the gains

on the three indi
ated losses 
oming from the unshrinkage pro
edure for all

threshold parameters.

The ve
tor of the eigenvalues of Σn and its Eu
lidean distan
e from the

ve
tor of eigenvalues of Σ are 
omputed, as well its 
ondition number. The

spe
tral and the Frobenius losses of Σn from Σ are 
al
ulated too.

The performan
e of Σ̂−1
for all estimators in terms of Frobenius loss from

Σ−1
is also investigated: InvTotalLoss = ||Σ̂−1 − Σ−1||Fro.

All these statisti
s are 
omputed and averaged over N = 100 repli
ates.

5.2.3 A new model sele
tion 
riterion

We now develop a model sele
tion 
riterion spe
i�
ally thought for our es-

timation method. The inspiration rises from the referen
e norm gγ used by

Luo (see (4.20)), whi
h is the starting point of our analysis:

gγ = max

(

||Ŝ − S||∞
γ

, ||L̂− L||2
)

(5.42)

From (5.42), the need of res
aling both arguments of gγ rises in order

to raise informative power and to dete
t the optimal point in the spiki-
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ness/sparsity trade-o�. For exploiting (5.42) with model sele
tion purposes,

we need to make the two terms 
omparable.

How 
an we 
ompare the goodness of �t of the sparse term by the es-

timated l1 norm of the sparse 
omponent and of the low rank term by the

estimated nu
lear norm of the low rank 
omponent? How it is possible to

establish if their equilibrium is intrinsi
ally balan
ed? In order to perform

a sample 
omparison between ||L̂||2 and

||Ŝ||∞
γ , we need to �nd a unique


omparison ground for them.

Considered that

||Ŝ||∞
γ 
ontains a maximum norm, we 
an re-s
ale it to

the tra
e of Ŝ. Given that in our simulation setting

trace(S∗) = (1− α)trace(Σ∗),

trace(Ŝ) is estimated by (1 − α̂)trace(Σn). Similarly, in order to 
ompare

the magnitude of the two quantities, we multiply ||L̂||2 by r, whi
h is the

bound for the maximum norm of L̂, and then divide it by the tra
e of L̂,
estimated by α̂trace(Σn).

Our maximum 
riterion MC 
an be therefore de�ned as follows:

MC = max

{

r̂||L̂||2
α̂trace(Σn)

,
||Ŝ||∞

γ̂(1− α̂)trace(Σn)

}

, (5.43)

where γ̂ = ρ
λ is the ratio between the sparsity and the spikiness thresholds.

This 
riterion is by de�nition mainly intended to 
at
h the proportion of

varian
e explained by the fa
tors. For this reason, it tends to 
hoose quite

sparse solutions with a small number of non zeros and a small proportion

of residual 
ovarian
e. If τ is not large enough to ensure that the largest

eigenvalue of S is not too small, there are possible problems for non zeros

re
overy (identi�ability problems). τ must be large enough to guarantee the

lower bound on the minimum non zero entry of S and that its maximum

eigenvalue s
ales with

√

p
n . Analogously, if δbis is too small, that is if we

allow for very small non zero o�-diagonal entries in S, the method is not

able to re
over them. In addition, also α and c 
an in�uen
e the nonzero


hoi
e, 
ontrolling the spikiness of the low rank 
omponent.

We note that the MC method performs 
onsiderably better than the

usual 
ross-validation using H-fold Frobenius Loss (used in (Luo, 2013)),

sin
e minimizing a loss based on sample approximation like the Frobenius

one 
auses that the parameter α̂ is shrunk too mu
h. Quantities ρcorr and

nz are also usually underestimated in that way, unless the true s is really

low. Simulating N = 100 samples, we have that Loss, SampleTotalLoss
and TotalLoss are 
onsiderably higher using the thresholds obtained by

Frobenius 
ross validation, both for Σ̂LOREC and Σ̂NEW .

On the 
ontrary, the threshold setting whi
h shows a minimum for MC

riterion (given that the estimate Σ̂ is positive de�nite) is the best in terms
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of 
omposite penalty, taking into a

ount the latent low rank and sparse

stru
ture simultaneously. MC 
riterion thus o�ers a unique 
omparison

ground for both penalties simultaneously 
onsidered. Sele
ting thresholds

fo
using on the �tting performan
e highlights that 
ross-validation is worse

than using MC 
riterion, also be
ause the un-shrinkage pro
edure 
orre
ts

itself for the �tting performan
e. In addition, MC 
riterion takes into a

ount

rank and sparsity pattern dete
tion simultaneously.

For sele
ting the thresholds for POET estimation, the 
ross validation

method des
ribed in paragraph 4 of [45℄ is used. There, the set of resid-

uals from PCA is divided in a training and a validation set. On the �rst,

POET method is applied. On the se
ond, the sample residual 
ovarian
e

matrix is 
omputed. The optimal threshold is then 
hosen minimizing the

average Frobenius Loss of the estimated sparse 
omponent. The training

set dimension is ntraining = n(1− log(n)−1), the validation set dimension is

nvalidation = n− ntraining. For us, ntraining = 855 and nvalidation = 145.

For rank sele
tion, POET pro
edure exploits the 
lassi
al Bai and Ng


riteria, as indi
ated in paragraph 2.4 of [45℄. The risk of underestimating

the latent rank if the eigenvalues of Σ do not s
ale with p were pointed out in

the dis
ussion of [45℄ by Yu and Samworth. We note that the authors used

there the Relative Error measure ||Σ̂−Σ||Σ = p−1/2||Σ−1/2Σ̂Σ−1/2 − Ip||Fro

as a referen
e norm, whi
h will also be 
omputed for LOREC and NEW.

We note that POET systemati
ally overestimates the proportion of vari-

an
e explained by the fa
tors (given the true rank) be
ause the eigenvalues

of Σn are more spiky than the true ones (see Theorem 2.3.1, by Ledoit and

Wolf). The shrinkage approa
h 
orre
ts for that.

The 
ondition number of L̂ is usually smaller than c. This drawba
k

depends on Theorem 2.3.1, and unfortunately holds also for LOREC and

NEW (not only for POET). It depends on the eigenvalues of Σn. The ratio

between the �rst and the r-th largest eigenvalue of Σn tends to be smaller

than the true one, even if it 
an vary a lot a
ross repli
ates, for large values

of r, c and τ too. In fa
t, we note that the r-th largest eigenvalue of Σn is

usually larger than the r-th largest eigenvalue of Σ.

5.3 Data analysis results

In this se
tion we des
ribe the results of the appli
ation of our method re-

spe
t to the 
ompetitors under various situations. In paragraph (5.3.1), we

des
ribe the performan
e of Σ̂NEW in the simulated settings des
ribed in

se
tion (5.2.1), 
omparing it with the one of Σ̂LOREC . Parti
ular empha-

sis is given to the advantages and the performan
e of unshrinkage, on whi
h


lear indi
ations are given. Threshold sele
tion is performed using the model

sele
tion 
riterion des
ribed in (5.2.3). All the relevant quantities des
ribed

in (5.2.2) are 
omputed and averaged over N = 100 simulated settings. Sim-
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ulations are performed with MATLAB. The results are reported in form of

te
hni
al report.

In paragraph (5.3.2) two real examples are reported. The �rst is drawn

from [45℄, and is a UK market data-set. The se
ond is a supervisory banking

data-set, whi
h is derived from the balan
e sheet data of a list of relevant

Euro Area banks. The 
al
ulations here reported treat these data only on

the variable side, in ful�llment of 
on�dentiality obligations. We deeply

a
knowledge for that the Supervisory Statisti
s Division of the European

Central Bank, where the author spent a semester as a PhD Trainee, for the

allowan
e of these data for resear
h purposes.

5.3.1 Simulation results

We now start analyzing the performan
e of Σ̂New in 
omparison to the one

of Σ̂LOREC on our referen
e setting (setting1), whi
h is 
ontained in the

following table:

p 100


 2

tau 1

alpha 0.7

r 4

s 118

s_max 732

delta 0.1

delta_bis 0.2

First of all, we simulate one draw and 
ompute Σ̂n−1. In �gures (5.1),

(5.2) and (5.3) we 
an see the most important features of the generated set-

ting. Figure (5.1) shows the top r = 4 eigenvalues of Σ, L and S respe
tively.

Σ and L have spiked eigenvalues linearly distributed, almost overlapped. S
has mu
h lower eigenvalues. Figure (5.2) shows the sorted diagonal elements

of L and S. Only the �rst three varian
es of S are larger than the ones in

L. Figure (5.3) shows the sorted eigenvalues of Σ and Σn. We note a jump

in 
orresponden
e of r = 4. The sorted eigenvalues from the �fth to the

last of both matri
es are mu
h lower. This setting is 
onsistent to POET

assumptions too.
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Figure 5.1: Eigenvalues of L,S,Σ
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Figure 5.2: Sorted diagonal elements of L and S
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Figure 5.3: Eigenvalues of Σn and Σ
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The thresholds ρ and λ are 
omputed using formulas (5.40) and (5.41):

rho lambda

0.0047908 0.062663

0.0095817 0.12533

0.014373 0.18799

0.019163 0.25065

0.023954 0.31332

0.028745 0.37598

0.033536 0.43864

0.038327 0.50131

0.043118 0.56397

0.047908 0.62663

0.052699 0.6893

0.05749 0.75196

0.062281 0.81462

0.067072 0.87729

0.071863 0.93995

0.076654 1.0026

0.081444 1.0653

0.086235 1.1279

0.091026 1.1906

0.095817 1.2533

We perform estimation for all the threshold pairs we 
an obtain from

these two grids (i.e. 20× 20 = 400).
We then 
ompute the model sele
tion 
riterion MC. The results are

shown in �gure (5.4) for Σ̂NEW and in �gure (5.5) for Σ̂LOREC .
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Figure 5.4: Model sele
tion 
riterion - Σ̂NEW
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Figure 5.5: Model sele
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riterion - Σ̂LOREC
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We 
an see that MC 
riterion (5.43) is usually in
reasing in ρ and λ,
with the ex
eption of the very �rst thresholds in both grids. For Σ̂NEW ,

the sele
ted thresholds are ρ(4) = 0.0192 and λ(2) = 0.1253, for Σ̂LOREC

ρ(6) = 0.0287 and λ(3) = 0.1880.
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Figure 5.6: Estimated rank - Σ̂LOREC and Σ̂NEW

In �gure (5.6) we have the distribution of the estimated rank for both

methods. For very small λ, we have very large estimated ranks, for very

large λ we have that the rank is sometimes shrunk to 0. For the 
entral

values of λ, the rank is 
orre
tly re
overed. The sparsity parameter ρ also

plays a role: if it is large enough, it 
an 
ounterbalan
e the e�e
t of λ, thus

orre
tly estimating the true rank (r = 4, bla
k line) even if λ is large.

In �gure (5.7) and (5.8) we report the di�eren
es between the Total

Losses and the Sample Total Losses of LOREC and NEW. We have that

the gain is positive everywhere, with the ex
eption of the threshold pairs

whi
h do not return the exa
t rank (be
ause they do not satisfy the range

of Theorem 4.1.4). This pattern is more remarkable for Sample Total Loss

than for Total Loss. For both losses and ea
h λ, we note that the gain a
ross

ρ never over
omes its maximum

√
rλ (plotted for ea
h λ).

The dynami
s of the di�eren
e between the Losses of LOREC and NEW,

reported in �gure (5.9), is quite more 
ontroversial. There we have some neg-

ative values even for 
entral threshold values. This is due to the di�eren
es

between the losses of the sparse 
omponent for in
orre
t thresholds (see �g-

ure (5.10)) whi
h is better for Σ̂LOREC when the latent rank is not exa
tly

re
overed or the estimated number of non-zeros is null. On the 
ontrary, the

di�eren
e between the losses of the low rank 
omponents is always better for

Σ̂NEW than for Σ̂LOREC (see �gure (5.11)).
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The settings for whi
h we have negative di�eren
es are 
hara
terized by

a very large ρ whi
h makes the sparse 
omponent too sparse. In that 
ase,

LOREC is underestimating the number of non-zeros in the sparse 
ompo-

nent, su
h that the unshrinkage gets the situation even worse. Anyway, for

the thresholds sele
ted by MC 
riterion, the gains obtained via unshrinkage

are largely positive for all losses. Besides, the Loss relative to the low rank


omponent is always mu
h more relevant in absolute terms respe
t to the

one relative to the low rank 
omponent.

We note also that if we linearly add a quantity to the eigenvalues of L
estimated via the LOREC method, we usually improve the Total Loss. This

is true even if we add a quantity larger than λ (unless λ is very high); how-

ever, the proportion of varian
e explained by the fa
tors α and the number

of nonzeros are in that 
ase 
ompletely missed. In fa
t, the strength of our

method is in the fa
t that the unshrinkage 
orre
ts for the underestimation of

α when LOREC method exa
tly re
overs rank and sparsity pattern. Given

that the rank and the sparsity pattern are 
orre
tly re
overed, the unshrink-

age provides the 
losest solution to the true Σ and the 
losest proportion

of latent varian
e to the true α. This happens while POET overestimates

and LOREC underestimates α. Ad-ho
 simulations provide a 
on�rmation.

The best estimate α̂ is rea
hed for the thresholds whi
h best re
over rank

and sparsity pattern. This it the same reason why the usual 
ross validation

method based on sample total loss has a poorer performan
e.
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Sample Total Loss: difference LOREC−NEW

(increasing) ρ

Figure 5.7: Sample Total Loss di�eren
e - Σ̂LOREC and Σ̂NEW
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Figure 5.8: Total Loss di�eren
e - Σ̂LOREC and Σ̂NEW
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Figure 5.9: Loss di�eren
e - Σ̂LOREC and Σ̂NEW
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Figure 5.10: Sparse Loss di�eren
e - Σ̂LOREC and Σ̂NEW
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Figure 5.11: Low rank Loss di�eren
e - Σ̂LOREC and Σ̂NEW
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In �gure (5.12) we report the plot of the estimated proportion of latent

varian
e α a
ross thresholds for Σ̂NEW (in bla
k the true α = 0.7). We note

that for ea
h λ, α̂ usually in
reases and then gets stable a
ross ρ. The larger
λ, the smaller α̂. We point out that in 
orresponden
e to the smallest values

of ρ the estimated α is 0, provided that λ is enough large.

In �gure (5.13) the proportion α̂ is shown for Σ̂LOREC . The shape is

exa
tly the same as for Σ̂NEW , the only di�eren
e is that all the patterns

are negatively shifted.

In �gure (5.14) we report the plot of the estimated proportion of residual


ovarian
e ρ̂corr. We have inserted only the ten largest values of ρ. We note

that the larger is λ, the lower is ρ̂corr a
ross sparsity thresholds. In bla
k we

have the true ρcorr = 0.045.
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Figure 5.12: Estimated proportion of latent varian
e - Σ̂NEW

In �gure (5.15) we report the estimated number of non-zeros a
ross

thresholds (in bla
k the true s = 118). In general, we have that the larger

is ρ, the lower is nz. The spikiness parameter λ impa
ts on the rate of the

de
ay a
ross ρ: the larger it is, the slower the de
ay.
The error measure err, reported in �gure (5.16) shows a minimum a
ross

ρ for ea
h λ. The larger λ, the larger is the ρ in 
orresponden
e to whi
h

the minimum is attained.

The spe
i�
ity measure (�gure (5.17)) is larger for small λ. It rea
hes 1
for 
ompletely diagonal sparse estimates.

The sensibility measure (5.18) is persistently larger for larger λ. The

larger λ, the smaller is the value of ρ in 
orresponden
e to whi
h the sensi-

bility is 0, be
ause in that 
ase we have diagonal sparse solutions.
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Figure 5.13: Estimated proportion of latent varian
e - Σ̂LOREC
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Figure 5.14: Estimated proportion of residual 
ovarian
e -

Σ̂LOREC and Σ̂NEW
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Figure 5.15: Estimated number of nonzero elements - Σ̂LOREC and Σ̂NEW
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Figure 5.16: Error measure err - Σ̂LOREC and Σ̂NEW
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Figure 5.17: Spe
i�
ity - Σ̂LOREC and Σ̂NEW
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Figure 5.18: Sensibility - Σ̂LOREC and Σ̂NEW
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We 
an now 
ompare the sample results of NEW and LOREC obtained

sele
ting the thresholds by the MC 
riterion (5.43).

We give some explanations about the a
ronyms used in the reported

tables. lambda is the ve
tor of spikiness thresholds, sparse is the ve
tor of
sparsity thresholds. fin1 is the indi
ator of the optimal ρ sele
ted via MC,
fin2 is the indi
ator of the optimal λ sele
ted viaMC, TL is the Total Loss,

TLs is the Sample Total Loss, rappvar is α̂, rappcorr is ρ̂corr, rapptrue is
ρcorr. spec is the spe
i�
ity of zero elements, sens is the sensitivity of non-

zero elements.

In �gure (5.19) the losses obtained (using Σ̂n−1 as an input for our pro
e-

dure) are shown. The thresholds sele
ted by MC are ρ = 0.0192, λ = 0.1253
for Σ̂NEW and ρ = 0.0287, λ = 0.188 for Σ̂LOREC . The table shows that our

unshrinkage approa
h prevails for Loss, Total Loss and Sample Total Loss

on LOREC approa
h. The new method shows best �tting properties, going


loser to the estimation target.

NEW LOREC

sparse(fin1) 0.0192 0.0287

lambda(fin2) 0.1253 0.188

fin1 4 6

fin2 2 3

Loss(fin1,fin2) 7.217 7.3564

TL(fin1,fin2) 6.6899 6.71

TL_s(fin1,fin2) 0.7631 1.0808

Figure 5.19: Sample statisti
s - Losses

In �gure (5.20) we 
an see that the NEW approa
h is better also for the

estimated proportion of 
ommon varian
e α̂ (
loser to α) and the estimated

proportion of total residual 
ovarian
e ρ̂corr =
ρ
Ŝ

ρC
. It shows a better perfor-

man
e also for the re
overy of the true number of non-zeros s. Better results
are a
hieved also for the err rate, for spe
i�
ity and sensibility. Anyway, we

note that there is in general a spe
i�
 problem on the re
overy of non-zero

elements. For NEW, the 63.56% are re
overed, whi
h has to be 
onsidered

a good result. Both LOREC and NEW are parti
ularly e�e
tive for this

aspe
t only for very sparse matri
es.

In �gure (5.21) we report the 
ondition number and the Eu
lidean er-

rors of the estimated eigenvalues for the three 
omponents (the low rank,

the sparse and the whole 
ovarian
e matrix). For 
onditioning, the NEW

approa
h does worse: this is pri
e to pay to improve �tting properties

(condA, condB, condSigmahat are the 
ondition numbers of Ŝ, L̂, Σ̂ respe
-

tively). NEW is on this side between the Sample 
ovarian
e matrix and

LOREC estimate. Con
erning the errors of estimated eigenvalues, NEW
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NEW LOREC

pvar(fin1,fin2) 0.6973 0.6935

rapptrue 0.0045 0.0045

rapp rr(fin1,fin2) 0.0025 9.89E-04

nz(fin1,fin2) 99 46

s 118 118

spec(fin1,fin2) 0.995 0.9981

sens(fin1,fin2) 0.6356 0.3136

err(fin1,fin2) 0.0135 0.0182

errplus(fin1,fin2) 0.0085 0

Figure 5.20: Sample statisti
s - rank/sparsity measures

does better for the low rank 
omponent only (errA, errB, errSigma are the
Eu
lidean distan
e of the eigenvalues of Ŝ, L̂, Σ̂ from the ones of S,L,Σ re-

spe
tively). On the other side, the unshrinkage has a positive impa
t on the

maximum estimated eigenvalue of Σ (maximumeig in �gure).

NEW LOREC igma

condB(fin1,fin2) 1.2904 1.2956 2

condA(fin1,fin2) 2.75E+04 1.19E+04 2.26E+07

condSigma_hat(fin1,fin2) 6.42E+04 5.97E+04 9.49E+07

errB(fin1,fin2) 5.497 5.5181

errA(fin1,fin2) 0.1681 0.2324

errSigma(fin1,fin2) 5.5383 5.5144

maximum_eig 21.04 20.8601 24.4886

Figure 5.21: Sample statisti
s - 
onditioning properties
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In �gure (5.22) we 
an note that the sample 
ovarian
e matrix has a

slightly smaller Eu
lidean error of estimated eigenvalues (errC) and Total

Loss (TLInput), but too large 
ondition number (condC). α̂C (rappvarC =
0.7314) is mu
h larger that the true 0.7. Parameter cC is the ratio between

the largest and the 4-th eigenvalue of Σn. The maximum eigenvalue of Σn

is 21.1821, the 4-th is 16.1900. DiffC shows the di�eren
e in Total Loss

respe
t to NEW and LOREC respe
tively.

Sample

T put 6.6765

rappvarC 0.7314

errC 5.4893

c_C 1.3083

cond 9.19E+07

NEW LOREC

Diff_C 0.0133 0.0334

Figure 5.22: Sample statisti
s - Σn

In �gure (5.23) we extensively report some measures relative to spar-

sity dete
tion. The sensitivity of positive elements (senspos) and the spe
i-

�
ity of negative elements (specpos) are reported. For positive elements,

the mis
lassi�
ation rate to null elements is posnnrate and to negative el-

ements is posnegrate. The same is done for negative elements (the mis-


lassi�
ation rate to positive elements is negposrate, to null elements is

negnnrate) and for null elements (the mis
lassi�
ation rate to positive ele-

ments is possens, to negative elements is negsens) respe
tively. Quantities
posrate = posnnrate+posnegrate, negrate = negposrate+posnegrate and
nnrate = possens+negsens are the total mis
lassi�
ation rates derived from

the previous rates (three sums of two elements). There is a spe
i�
 prob-

lem: positive (in parti
ular) and negative elements are too often 
lassi�ed

as zeros. On the 
ontrary, it is very rare that a positive element is 
lassi�ed

as a negative and vi
eversa. The error 
lassi�
ation rates of positive and of

negative elements is lower for NEW than for LOREC. Also errtot (totrate
in �gure) is lower for NEW.

In �gure (5.24) we start showing some statisti
s a
ross N = 100 simula-

tions. In �gures, the subs
ript m stands for mean a
ross all the N repli
ates,

the subs
ript m2 stands for standard error. We immediately note that for

NEW the rank is systemati
ally overestimated, di�erently from LOREC. The

proportion of 
orre
t rank re
overy is 25% against 97% (in �gures rankThr

stands for Thresholded Rank, rankexactperc as the per
entage of ranks ex-

a
tly re
overed). Simultaneously, in �gure (5.25), we see that NEW is better


on
erning all the Losses (Total Loss, Sample Total Loss and Loss). In ad-
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NEW LOREC

os(fin1,fin2) 0.5094 0.2642

specpos(fin1,fin2) 0.7231 0.3538

po rate(fin1,fin2) 0 0

po rate(fin1,fin2) 0.4906 0.7358

negpo fin1,fin2) 0.0154 0

negnnrate(fin1,fin2) 0.2615 0.6462

possens(fin1,fin2) 0.0027 0.001

negsens(fin1,fin2) 0.0023 8.28E-04

po fin1,fin2) 0.4906 0.7358

negrate(fin1,fin2) 0.2769 0.6462

nnrate(fin1,fin2) 0.005 0.0019

totrate(fin1,fin2) 0.0137 0.0182

Figure 5.23: Sample statisti
s - Sparsity measures

dition (�gure (5.26)), NEW beats LOREC 
on
erning the dete
tion of the

proportion of latent varian
e, of residual 
ovarian
e and of the number of

non zeros. Only on the error measure err NEW is slightly worse.

These �ndings, given that our sample estimate has rank r = 4, suggest
some 
onsiderations about the nature of our improvement. These results

show that the unshrinkage is a sample te
hnique. Indeed, we improve upon

LOREC for all �tting measures. The fa
t that the estimated rank is some-

times 5 or 6 means that our te
hnique is able to optimize the sample, �nding

the ultimate 
ut-o� before non-re
overy. This allows to optimize as mu
h as

possible �tting properties.

N 100 NEW LOREC Sigma

lambda 0.1253 0.188

sparse 0.0192 0.0287

rank_Thr_m 4.82 4.03 4

rank_Thr_m2 0.539 0.1714

rank_exact_perc 0.25 0.97

Figure 5.24: N=100 - Statisti
s
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N=100 NEW LOREC

TL_m 6.8335 6.864

TL_m2 0.0326 0.013

TL_m_s 0.8204 1.1703

TL_m2_s 0.7646 0.7667

Loss_m 7.4941 7.5418

Loss_m2 0.7749 0.7776

Figure 5.25: N=100 - Statisti
s

N=100 NEW LOREC Si

rapp r 0.6945 0.6849 0.7

rappvar_m2 0.0048 0.0049

rappcorr_m 0.0036 0.0021 0.045

rappcorr_ 3.09E-04 2.32E-04

err_m 0.0178 0.0164

err_m2 0.0016 0.0011

nz_m 130.87 69.71 118

nz_m2 8.1942 4.9935

Figure 5.26: N=100 - Statisti
s
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In �gure (5.27) we 
an see that our NEW estimate has not an average

number of negative eigenvalues equal to 0, di�erently from LOREC estimate

(defSpSigma is the number of negative eigenvalues of Σ̂). The same holds

for the estimate of the sparse 
omponent (defSpS is the number of negative

eigenvalues of Ŝ). Sin
e our NEW estimates of the whole 
ovarian
e matrix

and of the sparse 
omponent are positive de�nite in the sample, we have one

more argument for the e�e
tiveness of NEW as a sample te
hnique. On the

other side, we 
an see that NEW better re
overs on average the eigenvalues

of the three matri
es L,S,Σ.
In �gure (5.28), we 
an see that NEW is worse for 
onditioning, but

better re
overs the maximum eigenvalue of Σ. The NEW pro
edure here

has a larger number of iterations respe
t to LOREC (Arrm is the averaged

number of iterations).

In �gure (5.29) we report some statisti
s about the dete
tion of the spar-

sity pattern. We note that NEW is parti
ularly e�e
tive for re
overing both

positive and negative elements respe
t to LOREC in 
orresponden
e of the


hosen thresholds. The quantity senspos is the rate of 
orre
t 
lassi�
ation
of positive elements, the quantity specpos is the rate of 
orre
t 
lassi�
ation
of negative elements.

We expli
itly note that this pattern does not depend on the 
riterion used

to sele
t the thresholds. Even using the Frobenius Loss, the relationship be-

tween LOREC and NEW performan
e does not 
hange. The performan
e is

only worse for both methods in terms of sparsity pattern (nonzero dete
tion)

and proportion of latent varian
e.

N=100 NEW LOREC

defS _m 3.46 0

defSpS_m 4.4 0

defSpSigma_m2 2.2893 0

defSpS_m2 2.8674 0

errB_m 1.5085 5.261

errA_m 0.3144 0.3503

errSigma_m 5.2182 5.2584

errB_m2 2.4084 0.9299

errA_m2 0.0769 0.0703

errSigma_m2 0.7007 0.7158

Figure 5.27: N=100 - Statisti
s



5.3. DATA ANALYSIS RESULTS 143

N=100 NEW LOREC S gma

condA_m 3.49E+05 9.21E+03 2.26E+07

condB_m 113.9113 1.3882 2

condSigma_hat_m 5.85E+06 4.49E+04 9.49E+07

condA_m2 1.61E+06 2.91E+03

condB_m2 65.7137 2.23E-16

condSigma_hat_m2 6.55E+05 575.4263

Arr_m 58.82 44.87

Arr_m2 1.6659 1.1604

maximum_eig_m 20.9901 20.7542 24.4886

maximum_eig_m2 0.8463 0.8468

Figure 5.28: N=100 - Statisti
s

N=100 NEW LOREC

spec_m 0.9896 0.9966

spec_m2 0.0013 6.48E-04

sens_m 0.6819 0.4524

sens_m2 0.041 0.0367

sens _m 0.698 0.4901

sens _ 0.0198 0.0288

spec _m 0.7144 0.4352

spec _ 0.0215 0.0283

totrate_m 0.0158 0.0167

Figure 5.29: N=100 - Statisti
s
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In order to test the strength of results addition, we have tried to perform

estimation using the thresholds of Σ̂NEW for Σ̂LOREC and the thresholds

of Σ̂LOREC for Σ̂NEW . While the results on sparsity dete
tion are simply

inverted, the estimated proportion of varian
e explained by the fa
tors is

still better for NEW: simulating N = 100 settings, the averaged α̂ is 0.6924
for NEW and 0.6885 for LOREC, in spite of the fa
t we have less favorable

thresholds for �tting performan
e. In addition, Loss and Total Loss are still

better for NEW, even if the performan
e is worse for both respe
t to the

original thresholds in terms of �tting.

On the same data, we have applied also POET estimation pro
edure.

First of all, we note that Bai and Ng 
riteria do not estimate the rank 
or-

re
tly. This is probably due to the fa
t the ratio

p
n is too low. Thus, we

set the rank to the true one (4), and we then sele
t the sparsity thresh-

old applying the 
ross-validation pro
edure des
ribed in [45℄ with the hard

thresholding rule.

The results are quite worse. Due to the natural bias of sample eigen-

values, the proportion of 
ommon varian
e is over estimated (0.7314). The

estimated number of non-zeros is 432 (against the true 118). All the losses
(TL TLs Loss) are quite worse than for NEW and LOREC estimates. What

is more relevant, the performan
e of the sparsity re
overy is really low. This

happens be
ause POET approa
h does not provide any algebrai
 
onsisten
y

framework, but only a parametri
 one. The relevant results for the POET es-

timate are reported in �gure (5.30). In �gure (5.31) we 
an note that POET

is not able to 
at
h the true non-zeros (the rates of 
orre
t 
lassi�
ation of

positive, negative and zeros are reported together with the measure errtot).

POET Sigma

TL 7.0287

TL_C_s 2.7323

Lo 8.913

rappvar_C 0.7314 0.7

rappcorr_C 3.99E-04 0.045

nz_C 432 118

err_C 0.1099

cond_Sigma_C 3.50E+04

cond_S_C 3.26E+03

condL_C 1.3083

Figure 5.30: POET Sample Statisti
s
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POET

senspos_ 0.0064

specpos_C 0

spec_C 0.9389

totrate_C 0.1244

Figure 5.31: POET Sample Statisti
s

Rel_Err 8.44E+03 NEW

8.41E+03 LOREC

3.47E+03 POET

Figure 5.32: Relative error: NEW, LOREC and POET
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In �gure (5.32), we outline the ex
ellen
e of POET: the Relative Er-

ror measure, whi
h is really better than for LOREC and NEW estimates.

This happens be
ause the parametri
 
onsisten
y of POET is ensured in the

Relative norm ||.||Σ (see paragraph (2.5.4)).

These results highlight that the two methods (the POET and the numer-

i
al one) di�er for the appli
ation range. LOREC method works better for

quite sparse targets. POET method allows for a larger number of non-zeros,

given that they have a very low magnitude, be
ause it does not provide any

algebrai
 
onsisten
y for the sparsity pattern.

The other settings (setting2 and setting3) show similar performan
es

of Σ̂NEW respe
t to Σ̂LOREC and Σ̂POET . We signal that there are relevant

di�eren
es 
on
erning the 
ontrol me
hanism on the number of non-zeros

and their re
overy. If the smallest non-zero element of S is too small, s and
ρcorr are hardly re
overed. The larger the rank r and the proportion α are,

the smaller is the latent 
ondition number c, the smaller must be the true

number of non-zero s in order to perform re
overy, and the more di�
ult

is to re
over s and ρcorr. In addition, the parameter τ must be suitable for

ensuring that the spe
tral norm of Σn s
ales to

√

p
n , in order to make the


ontrol me
hanism work. At the same time, the higher is the rank r, and the

smaller is α respe
t to c, the easier is to have non-positive de�nite estimates.

GIVEN that these 
onditions for the re
overy of s are respe
ted (obeying

to Theorem 4.1.4), the same relative performan
es for NEW, LOREC and

POET are observed, with parti
ular referen
e to the Total Loss and the

proportion of latent varian
e. The unshrinkage is proven to be still useful

also for larger α and c and for smaller r. Relevant results for setting2 and

setting3 are reported in �gures (5.33) and (5.34) respe
tively.

TheMC 
riterion for NEW and LOREC and the 
ross validation method

of POET are observed to work e�e
tively. For POET, Bai and Ng 
riteria are

of some use only for the setting with r = 3, even if they overestimate the true

rank. For all the other settings, the 
riteria are monotoni
ally de
reasing in

r. For this reason, the true rank is dire
tly imposed to POET.
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r=3,c=4 NEW Sigma

sparse(fin1) 0.0164

lambda(fin2) 0.1892

rank_Thr(fin1,fin2) 3 3

nz(fin1,fin2) 513 580

perczeros(fin1,fin2) 0.1036 0.1172

rappcorr(fin1,fin2) 0.003 0.0048

rappvar(fin1,fin2) 0.7994 0.8

TL_s(fin1,fin2) 1.3487

TL(fin1,fin2) 9.3763

Loss(fin1,fin2) 10.8465

Figure 5.33: setting2: Sample Statisti
s

r=4,c=4 NEW Sigma

sparse(fin1) 0.0113

lambda(fin2) 0.0955

rank_Thr(fin1,fin2) 4 4

nz(fin1,fin2) 263 335

perczeros(fin1,fin2) 0.0531 0.0677

rappcorr(fin1,fin2) 0.0043 0.0072

rappvar(fin1,fin2) 0.6976 0.7

TL_s(fin1,fin2) 0.6943

TL(fin1,fin2) 13.2935

Loss(fin1,fin2) 13.9186

Figure 5.34: setting3: Sample Statisti
s
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Up to now, we have �xed the dimension p in order to 
ompare the per-

forman
es of NEW and LOREC. Varying p does not modify signi�
antly the


ontrastive performan
e of des
ribed estimators (ex
ept for 
omputational

times), in the sense that the key parameter in multivariate analysis is

p
n .

This is why in paragraph (5.3.2) we provide 
ovarian
e estimation on two

real data-sets with two radi
ally di�erent ratios

p
n . In the se
ond example

we have p > n, su
h that we explore the performan
e of des
ribed estimators

also in a 
ase somehow resembling the Big Data 
ontext.

5.3.2 Real data results

In this paragraph we show some appli
ations of our method to two real data

sets. The �rst is analyzed by Fan et al. in [45℄, and 
on
erns UK market data.

The se
ond is a Euro Area supervisory banking data set, for whi
h we thank

the Supervisory Statisti
s Division of the European Central Bank. On both

data sets, a dire
t 
omparison between POET and NEW is done, respe
t to

performan
e and appli
ation range. We note that in real data analysis the

relevant Loss is only the Sample Total Loss (that is, the distan
e from Σ̂n).

UK market data

In the �rst example, UK daily market data a
ross the year 2010 are analyzed.
The sample dimension is T = 252 days, su
h that we have 251 daily rates.

A number of p = 50 asset pri
es are analyzed. These assets are naturally

divided in �ve blo
ks of 10 �rms (variables) 
orresponding to �ve e
onomi


se
tors (see [45℄ paragraph 7.1 for more explanations). The problem here

is to estimate the 
ovarian
e matrix, taking into a

ount if the di�erent


ovarian
e stru
ture among and within blo
ks may in�uen
e the estimate.

Applying POET method using hard thresholding (the sparsity threshold

is sele
ted via their 
ross-validation pro
edure), Fan et al. report that their

POET estimate may have rank r = 1, 2, 3 indi�erently, be
ause the estimates

share the same properties. We report the plot of sample eigenvalues in �gure

(5.35).

By Bai and Ng's 
riteria IC1 and IC2 (see [45℄ paragraph 2.4) we would

sele
t 9 or 13 fa
tors a

ording to the penalty used. In fa
t, in the view of a

stri
t fa
tor model estimation it would be ne
essary to have more than three


omponents, as outlined in [94℄.

We signal that it is not straight forward to sele
t low values for the

latent rank using Bai and Ng's 
riteria unless the latent eigenvalues are very

spiked. For example, in order to have r̂ = 0, it is ne
essary to have an

approximately banded 
ovarian
e stru
ture. A simple experiment 
arried on

the sample 
ovarian
e matrix over n = 1000 samples drawn by a multivariate

normal Np(0, Ip), p = 100, shows that in that extreme 
ase we obtain r̂ = 0.
Otherwise, we need that the latent eigenvalues are really spiked respe
t to
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Figure 5.35: UK market data example: sample eigenvalues

the other ones and the latent eigenve
tors are really in
oherent respe
t to

the standard basis.

However, for r̂ = 2, they report to have 25.8% of non-zeros within blo
ks,

and 6.7% o�-blo
ks. Among the surviving elements within blo
ks, they have

that 100% of them are positive. In 
ontrast, among the surviving o�-blo
ks

elements they obtain 60.3% positive and 39.7% negative.

In �gure (5.36) some statisti
s for our unshrinkage estimate are reported.

The solution 
hosen by our Maximum Criterion (always ensuring that the

estimate is positive de�nite) is mu
h more sparse than the POET one. The

number of surviving elements is only nz = 15 out of 1225. In addition, the

estimated rank is r̂ = 1. The proportion of 
ommon varian
e is 18.89%,

the proportion of residual 
ovarian
e is 0.92%. Conditioning properties are

really good.

In �gure (5.36) we 
an �nd also some statisti
s relative to the o�-blo
ks

and within-blo
ks elements. rate says that only 4.89% of the within blo
ks


ovarian
es are non-zeros. rate2 says that the same per
entage for o�-blo
ks


ovarian
es is 0.4%. All the surviving 
ovarian
es within the blo
ks are

positive (ratepos). In 
ontrast, three fourth of the o�-blo
ks elements are

positive (ratepos2).

These results are worth some re�e
tions. Using a stri
t fa
tor model ap-

proa
h, the ne
essary number of fa
tors would be larger. In [94℄, it is shown

that the ne
essary number of fa
tors would be seven. Using an approxi-

mate fa
tor model approa
h (POET), a smaller number of fa
tors is enough.

In our thresholding approa
h, only one fa
tor is surviving. This happens

be
ause our method is not PCA based, and does not sele
t the number of

fa
tors a

ording to �tting properties. On the 
ontrary, it sele
ts the latent

rank and the number of surviving non zeros aiming at re
overing the true

rank and sparsity pattern. Thus, in our approa
h there is a non-negligible
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U  rke  da a NEW

ra f 1

f f

perc eros 0.0122

rappvar(fin1,fin2) 0.1889

rappcorr(fin1,fin2) 0.0092

TL_s(fin1,fin2) 0.0023

sparse(fin1) 9.74E-05

lambda(fin2) 6.95E-04

rate(fin1,fin2) 0.0489

rate2(fin1,fin2) 0.004

ratepos(fin1,fin2) 1

rateneg(fin1,fin2) 0

ratepos2(fin1,fin2) 0.75

rateneg2(fin1,fin2) 0.25

condSigma_hat(fin1,fin2) 113.9172

condSparse(fin1,fin2) 56.5862

numvar 1225

Figure 5.36: UK market data: Σ̂NEW statisti
s

proportion of 
ovarian
e whi
h is thrown away. This is done in order to

re
over exa
tly the low rank and the sparse 
omponents.

For this reason, two or three fa
tors are maybe enough for �tting proper-

ties, but they are too many for rank/sparsity pattern dete
tion. The thresh-

olding algorithm returns that one fa
tor is enough for that. In order to

re
over in the best possible way the two 
omponents, a relevant proportion

of 
ovarian
e is lost, as outlined in �gure (5.37). The residual of the min-

imization pro
edure 
ontains 21.15% of 
ovarian
e, while Σ̂NEW 
ontains

78.85%. 78.13% of the total 
ovarian
e belongs to the low rank 
omponent.

Only 0.72% belongs to the sparse 
omponent. This is the reason why only

one fa
tor is enough.

By this minimization pro
edure, quite surprisingly, our method shows

also a lower Sample Total Loss. We repli
ated POET pro
edure with 2
fa
tors, and we obtained a Sample Total Loss equal to 0.028. In our 
ase,

the same indi
ator is equal to 0.023. Our rank/sparsity based estimation

pro
edure is thus able to better approximate the sample 
ovarian
e matrix.
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In 
on
lusion, we should wonder if the blo
k stru
ture is strong enough to

really impa
t 
ovarian
e estimation. In fa
t, this result is 
onsistent to the

single index fa
tor model ([74℄), and to the CAPM ([104℄).

/ 0.2115

sumSigmahat/sumTOT 0.7875

sumLow/sumTOT 0.7813

sumSparse/sumTOT 0.0072

Figure 5.37: UK market data: Σ̂NEW statisti
s

Euro Area supervisory banking data

We are now ready to estimate the 
ovarian
e matrix on the Euro Area super-

visory banking data. We thank for the use of this data set the Supervisory

Statisti
s Division of the European Central Bank, where the author spent

a semester as a PhD trainee. Here we use the 
ovarian
e matrix 
omputed

on a sele
tion of balan
e sheet indi
ators for some of the most relevant Euro

Area banks by systemi
 power. The overall number of banks (our sample

dimension) is n = 365. These indi
ators are the ones needed for supervisory

reporting, and in
lude 
apital and �nan
ial variables.

The 
hosen raw variables (1039) were res
aled to the total assets of ea
h

bank. Then, a s
reening based on the importan
e of ea
h variable, intended

as the absolute amount of 
orrelation with all the other variables, was per-

formed in order to remove identities. The remaining variables were p = 382.
So, here we are in the typi
al p > n 
ase, where the sample 
ovarian
e matrix

is 
ompletely ine�e
tive. We report the plot of sample eigenvalues in �gure

(5.38).

Our estimation method sele
ts a solution having a latent rank equal to

6. The number of surviving non-zeros in the sparse 
omponent is 328, i.e.
the 0.45% of numvar = 72772. Conditioning properties are inevitably very

bad. The results are reported in �gure (5.39).
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Figure 5.38: Supervisory data: sample eigenvalues

Super NEW

T

328

rappvar(fin1,fin2) 0.3247

rappcorr(fin1,fin2) 0.1687

perczeros(fin1,fin2) 0.0045

TL_s(fin1,fin2) 0.0337

defSpSigma(fin1,fin2) 0

defSpS(fin1,fin2) 0

condSigma_hat(fin1,fin2) 6.35E+15

condSparse(fin1,fin2) 2.78E+15

condL 3.1335

Figure 5.39: Supervisory data: results for Σ̂NEW
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Supervis POET

TL_C_s 0.06

_C

per eros 0.00 6

ar 72771

rappvar_C 0.6123

rappcorr 0.0161

cond_S_C 1.11E+15

cond_C 6.68E+15

condL_C 2.5625

defSpSigma_C 0

defSpS_C 1

Figure 5.40: Supervisory data: results for Σ̂POET
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We now pass to the POET pro
edure. Bai and Ng's 
riteria do not

attain any minimum for r = 0 : 20. We thus de
ide to exploit the algebrai



onsisten
y of Σ̂NEW setting the rank to 6. We perform the usual 
ross-

validation and obtain a POET estimate (�gure (5.40)). The number of non-

zeros of POET estimate is 404 (0.56%).

Apparently, one 
ould say that POET estimate is better: its estimated

proportion of 
ommon varian
e is 0.6123, and its proportion of residual 
o-

varian
e is 0.0161. On the 
ontrary, for NEW α̂ = 0.3247 and ρ̂corr = 0.1687.
However, a relevant question arises: how mu
h is the true proportion of vari-

an
e explained by the fa
tors? In fa
t, a so high α, dependent on the use

of PCA with 6 
omponents, 
auses ρ̂corr to be very low. This is why in the

POET pro
edure a preferen
e for the low rank part is given a priori. This

pattern does not 
hange even if we 
hoose a lower value for the rank.

On the 
ontrary, the NEW estimate, whi
h depends on a double-step

iterative thresholding pro
edure (8 iterations), allows for a larger magnitude

of the non-zero elements in the sparse 
omponent. In fa
t the proportion of

lost 
ovarian
e during the pro
edure is here 29.39%. As a 
onsequen
e, via

this rank/sparsity dete
tion the NEW pro
edure shows better approximation

properties respe
t to POET: the Sample Total Loss of the �rst pro
edure is

relevantly lower than the one of the se
ond (0.337 VS 0.645).
For our method, the 
ovarian
e stru
ture appears so 
omplex that a

relevant proportion of residual 
ovarian
e is present. This allows us to ex-

plore the importan
e of variables, that is to explore whi
h variables have the

largest systemi
 power (i.e. the most relevant 
ommunality) or the largest

idiosyn
rasy (i.e. the most relevant residual varian
e).

First of all, in �gure (5.41) we plot the estimated degree (number of non-

zero 
ovarian
es in the residual 
omponent) sorted by variable. Only 62 out

of 382 variables have at least one non-zero residual 
ovarian
e.

In �gure (5.42) we report the top 6 variables by estimated degree. They

are mainly 
redit-based variables: �nan
ial assets through pro�t and loss,


entral banks impaired assets, allowan
es to 
redit institutions and non-

�nan
ial 
orporations, 
ash. These variables are related to the largest num-

ber of other variables.

In �gure (5.43) we report the top 5 variables by estimated 
ommunality

(

l̂NEW,ii

σ̂NEW,ii
∀i = 1, . . . , 382). The results are very meaningful: the most systemi


variables are debt se
urities, loans and advan
es to households, spe
i�
 al-

lowan
es for �nan
ial assets, and advan
es whi
h are not loans to 
entral

banks, whi
h are all fundamental variables or banking supervision.
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Figure 5.41: Supervisory data: sorted degree by variable

Variable Deg_rank

F�nanc��� ������ d���e����a �� ���� 	��
� through  ����� �� ��ss 34

C������ ���k� I
 ����a �����s [ero�� c��rying amoun�t 25

Credit institution� C����c�i	� ���ow��c�� �or incurr�a �
� �o� report�a ������ 20

O���� �inanc��� corporation� C����c�i	� ���ow��c�� �or incurr�a �
� �o� report�a ������ 19

C���, c��� �����c�� �� c������ ���k� ��d ����� a�
��d a� ����� 16

O���� �����c��� c�rporation� s �c���c ����o��c�� fo� ���anc��� ������, collecti	��y estim. 16

Figure 5.42: Supervisory data: top 6 by degree

In �gure (5.44) we report the top 5 variables by estimated idiosyn
rati



ovarian
e proportion (

ŝNEW,ii

σ̂NEW,ii
∀i = 1, . . . , 382). We note that those variables

have a marginal power in the explanation of the 
ommon 
ovarian
e stru
-

ture. The �rst two are 
redit 
ard debt and 
ollateralized loans to other

�nan
ial 
orporations. The others are equity instruments given to 
entral

banks, other �nan
ial 
orporations and general governments respe
tively. All

these variables are less relevant for supervisory analysis than the previous

�ve.

In 
on
lusion, our NEW pro
edure o�ers here a realisti
 view of the

underlying stru
ture of variables, by allowing a largest part of 
ovarian
e to

Variable Estimated communality

D��� ���������� 0.8414

Households Carrying amount 0.821

Non-financial corporations Specific allowances for financial assets 0.811

Loans and advances Specific allowances for financial assets, collect. est. 0.7592

Advances that are not loans Central banks 0.7439

Figure 5.43: Supervisory data: top 5 by estimated 
ommunality
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Variable Res. Variance proportion

Credi� card ���� ��n���� ���ks 0.!!!5

o�"�� #$��������i%�� �$an& '�"�� (i�anci�� #$rp$���i$ns 0.!!86

E)*i�+ i�&��*m���& ������� ���-& ����+i�g �/$*nt 0.!!71

E)*i�+ i�&��*m���& '�"�� finan#i�� #$rp$���i$n& ����+i�0 �/$*nt 0.!!7

G������ 0$1ernmen�& ����+i�g �/$*n� $( *�impair�� �&&��s 0.!!7

Figure 5.44: Supervisory data: top 5 by residual 
ovarian
e proportion

be explained by the residual sparse 
omponent.



Chapter 6

Con
lusions

The present work des
ribes the numeri
al approa
h to 
ovarian
e matrix

estimation. The main fo
us is on a method based on 
onvex non smooth

optimization whi
h assumes a low rank plus sparse de
omposition for the


ovarian
e matrix.

In this framework, the estimation is performed solving a regularization

problem where the obje
tive fun
tion is 
omposed by a smooth Frobenius loss

and a non smooth 
omposite penalty. The penalty is the sum of the nu
lear

norm of the low rank 
omponent and the l1 norm of the sparse 
omponent.

The numeri
al nature and the algorithmi
 solutions to this problem are

outlined highlighting the 
onne
tions with sub-gradient minimization and

semi-de�nite programming theory.

The study of the statisti
al properties of su
h a minimizer in the 
ontext

of algebrai
 geometry, whi
h involves ne
essary 
onditions for re
overy and

identi�ability, is deeply explored, emphasising the non-asymptoti
 nature of

the method. Re
ent solutions under di�erent hypothesis are des
ribed, in

order to understand how the exa
t re
overy in the noisy 
ontext is possible.

The key for the exa
t identi�
ation of the low rank and the sparse alge-

brai
 matrix varieties is proved to be the rank/sparsity in
oheren
e prin
iple

between the two 
omponents.

We remark that the algebrai
 framework allows not only the usual para-

metri
 
onsisten
y but also the algebrai
 
onsisten
y of the estimate. As

a 
onsequen
e, the rank and the number of residual non zeros are simul-

taneously estimated by the solution algorithm. This automati
 re
overy is

a 
ru
ial advantage respe
t to existing asymptoti
 methods, like the PCA-

based POET (Prin
ipal Orthogonal 
omplEment Thresholding) estimator.

In the numeri
al framework, in fa
t, the latent rank is automati
ally sele
ted

and the sparsity pattern of the residual 
omponent is re
overed 
onsiderably

better, due to the algebrai
 
onsisten
y.

Two theoreti
al advan
es upon the most re
ent estimator of this family,

LOREC (LOw Rank and sparsE Covarian
e estimator), are proved. First,

157
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we prove that the unshrinkage of the eigenvalues of the low rank 
omponent

estimated by LOREC 
orre
ts for the systemati
 underestimation, due to the

thresholding pro
edure, of the varian
e proportion explained by the fa
tors.

At the same time, the unshrinkage pro
edure improves �tting properties.

Se
ond, we prove that the numeri
al estimator 
an e�e
tively re
over the


ovarian
e matrix even in presen
e of spiked eigenvalues with rate O(p),
exa
tly as POET estimator does, requiring only n = o(p2) samples under

POET assumptions. The loss from the target is bounded in absolute norm

(in 
ontrast to POET pro
edure). In addition, the re
overy is e�e
tive even if

we have an intermediate degree α ∈ [0, 1] of spikiness, and the loss is bounded
a

ordingly to α with the need of n = o(p2α) samples only. Besides, our work


ompletes LOREC approa
h deriving the rate of the inverse of the sparse


omponent and an operative (feasible) identi�ability 
ondition.

The performan
e of these improvements is assessed 
omparatively to

LOREC and POET in a wide empiri
al study whi
h exploits a new original

simulation setting parti
ularly �exible and useful for low rank plus sparse

modelling. In that 
ontext, we provide a new model sele
tion 
riterion spe
if-

i
ally thought for our minimization problem. The 
riterion is observed to

dete
t the best balan
e between the low rank latent stru
ture and the (resid-

ual) sparsity pattern.

Simulation results show that our method is parti
ularly e�e
tive for re-


overing the proportion of latent varian
e, as well as the proportion of resid-

ual 
ovarian
e and the number of non zeros, both respe
t to LOREC (be
ause

of the unshrinkage and of the new model sele
tion pro
edure) and respe
t to

POET. Moreover, our NEW method shows better �tting properties respe
t

to LOREC and POET under various (absolute) losses, like the 
omposite

loss of the low rank and the sparse 
omponent (as well as ea
h of both) and

the total loss.

Real data analysis shows that our tool is parti
ularly useful for map-

ping the 
ovarian
e stru
ture among variables even in a large dimensional


ontext. The variables having the largest systemi
 power, that is, the ones

most a�e
ting the 
ommon 
ovarian
e stru
ture, 
an be identi�ed, as well as

the variables having the largest idiosyn
rati
 power, that is, the ones most


hara
terized by the residual varian
e. In addition, the variables showing

the most of idiosyn
rati
 
ovarian
es with all the other ones 
an be identi-

�ed, thus re
overing the strongest related variables. Parti
ular forms of the

residual 
ovarian
e pattern 
an thus be dete
ted if present.

Our dissertation is the starting point for a number of possible resear
h

dire
tions. We mention here the three most relevant in our view:

• in the time series 
ontext, this pro
edure 
an be potentially extended

to 
ovarian
e matrix estimation under dynami
 fa
tor models. Setting

a low rank plus sparse stru
ture on the auto-
ovarian
e matrix at a par-

ti
ular lag, or on the pro
ess fully 
onsidered under the 
o-integration
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hypothesis, are two parti
ularly promising options, in whi
h the sparse


omponent 
an be an additional �exibility tool useful for modelling

large data sets;

• the extension of our pro
edure to the spe
tral matrix estimation 
on-

text, under various de�nitions of stationary pro
ess;

• the adaptation of this pro
edure for 
lustering in high dimensions. Ex-

isting fa
tor-based methods 
an be improved by the use of the nu
lear

norm and the relaxation o�ered by the sparse 
omponent.

In 
on
lusion, our resear
h provides a tool to automati
ally explore large

data sets. This tool 
an be potentially used in the Big data 
ontext, where

both the dimension and the sample dimension are very large. This poses

new 
omputational and theoreti
al 
hallenges, the solution of whi
h is 
ru
ial

to further extend the power of statisti
al modelling and its e�e
tiveness in

dete
ting patterns and underlying drivers of real phenomena.
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