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Abstrat

The present thesis onerns large ovariane matrix estimation via omposite

minimization under the assumption of low rank plus sparse struture. Exist-

ing methods like POET (Prinipal Orthogonal omplEment Thresholding)

perform estimation by extrating prinipal omponents and then applying a

soft thresholding algorithm. In ontrast, our method reovers the low rank

plus sparse deomposition of the ovariane matrix by least squares mini-

mization under nulear norm plus l1 norm penalization. This non-smooth

onvex minimization proedure is based on semide�nite programming and

subdi�erential methods, resulting in two separable problems solved by a sin-

gular value thresholding plus soft thresholding algorithm.

The most reent estimator in literature is alled LOREC (Low Rank and

sparsE Covariane estimator) and provides non-asymptoti error rates as well

as identi�ability onditions in the ontext of algebrai geometry. Our work

shows that the unshrinkage of the estimated eigenvalues of the low rank om-

ponent improves the performane of LOREC onsiderably. The same method

also reovers ovariane strutures with very spiked latent eigenvalues like

in the POET setting, thus overoming the neessary ondition p ≤ n. In

addition, it is proved that our method reovers strutures with intermediate

degrees of spikiness, obtaining a loss whih is bounded aordingly.

Then, an ad ho model seletion riterion whih detets the optimal

point in terms of omposite penalty is proposed. Empirial results oming

from a wide original simulation study where various low rank plus sparse

settings are simulated aording to di�erent parameter values are desribed

outlining in detail the improvements upon existing methods. Two real data-

sets are �nally explored highlighting the usefulness of our method in pratial

appliations.

Keywords: ovariane matrix, nulear norm, thresholding, low rank

plus sparse deomposition, unshrinkage.

iii



iv ABSTRACT



Contents

Aknowledgments i

Abstrat iii

1 Introdution 1

2 State of the art 5

2.1 Sample ovariane matrix estimators . . . . . . . . . . . . . . 7

2.1.1 The Maximum Likelihood ovariane estimator . . . . 8

2.1.2 The unbiased ovariane estimator: �xed n ontext . . 10

2.1.3 Covariane matrix estimation: the IID data ontext . 10

2.2 Conditioning properties . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Matrix onditioning as an ill-posed inverse problem . . 14

2.3 Ledoit and Wolf's approah . . . . . . . . . . . . . . . . . . . 16

2.3.1 General Asymptotis . . . . . . . . . . . . . . . . . . . 17

2.4 Sparse ovariane matrix estimation . . . . . . . . . . . . . . 21

2.5 Fator analysis based estimators . . . . . . . . . . . . . . . . 24

2.5.1 Strit fator model . . . . . . . . . . . . . . . . . . . . 26

2.5.2 PCA and fator analysis . . . . . . . . . . . . . . . . . 27

2.5.3 Approximate fator model . . . . . . . . . . . . . . . . 28

2.5.4 POET estimator . . . . . . . . . . . . . . . . . . . . . 30

3 Numerial and omputational aspets 37

3.1 An historial review . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 l1 norm heuristis . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Nulear norm heuristis . . . . . . . . . . . . . . . . . 45

3.1.3 l1 norm plus nulear norm . . . . . . . . . . . . . . . . 49

3.2 Analytial and algorithmi aspets . . . . . . . . . . . . . . . 51

3.2.1 Numerial ontext: a semide�nite program . . . . . . . 51

3.2.2 Solution methods . . . . . . . . . . . . . . . . . . . . . 55

4 Low rank plus sparse deomposition 63

4.1 Identi�ation and reovery . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Exat reovery: rank-sparsity inoherene . . . . . . . 65

v



vi CONTENTS

4.1.2 Approximate reovery: a funtional approah . . . . . 71

4.1.3 Approximate reovery: an extended algebrai approah 78

4.1.4 Approximate reovery: LOREC approah . . . . . . . 92

5 Improving LOREC 103

5.1 Theoretial advanes . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Simulation algorithm . . . . . . . . . . . . . . . . . . . 117

5.2.2 Simulated settings and omparison quantities . . . . . 119

5.2.3 A new model seletion riterion . . . . . . . . . . . . . 121

5.3 Data analysis results . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . 124

5.3.2 Real data results . . . . . . . . . . . . . . . . . . . . . 148

6 Conlusions 157



Chapter 1

Introdution

The present thesis onerns large dimensional ovariane matrix estimation.

Estimation of population ovariane matries from samples of multivariate

data is of interest in many high-dimensional inferene problems - prini-

pal omponents analysis, lassi�ation by disriminant analysis, inferring a

graphial model struture, and others. Depending on the di�erent goal the

interest is sometimes in inferring the eigenstruture of the ovariane ma-

trix (as in PCA) and sometimes in estimating its inverse (as in disriminant

analysis or in graphial models). Examples of appliation areas where these

problems arise inlude gene arrays, fMRI, text retrieval, image lassi�ation,

spetrosopy, limate studies, �nane and maro-eonomi analysis.

The theory of multivariate analysis for normal variables has been well

worked out, see, for example, Anderson ([2℄). However, it beame apparent

that exat expressions were umbersome, and that multivariate data were

rarely Gaussian. The remedy was asymptoti theory for large samples and

�xed relatively small dimensions.

In reent years, datasets that do not �t into this framework have beome

very ommon, the data are very high-dimensional and sample sizes an be

very small relative to dimension. The most traditional ovariane estimator,

the sample ovariane matrix, is shown to be dramatially ill-onditioned

in a large dimensional ontext, where the proess dimension p is loser to

or even larger than the sample dimension n, even in the ase that the true

ovariane matrix is well-onditioned. Some solutions to this drawbak have

been proposed in the asymptoti ontext (for example [75℄ [15℄ [45℄). An

alternative reent approah is by numerial optimization, whih provides in

the non-asymptoti ontext, some solutions improving upon the mentioned

ones.

As desribed in the existing literature, two key properties of the matrix

estimation proess assume a partiular relevane in large dimensions:

1. well onditioning, i.e. numerial stability;

2. identi�ability.
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2 CHAPTER 1. INTRODUCTION

Both properties are ruial for the theoretial reovery and the pratial use

of the estimate. A bad onditioned estimate su�ers from ollinearity and

auses its inverse, the preision matrix, to amplify dramatially any error

in the data. A large dimension may ause the impossibility to identify the

unknown ovariane struture and the di�ulty to interpret the results.

The �rst property is strongly related to regularization tehniques. A

basi referene in this respet is Tibshirani (1996) ([108℄), where the LASSO

estimation algorithm in the ontext of regression models was �rst proposed.

The seond property an be ensured by dimensionality redution methods,

whih an be used to redue the parameter spae dimensionality.

Regularization approahes to large ovariane matries estimation have

therefore started to be presented in the literature, both from theoretial

and pratial points of view. Some authors propose shrinkage towards the

identity matrix ([75℄), others onsider tapering the sample ovariane matrix,

that is, gradually shrinking the o�-diagonal elements toward zero ([54℄). At

the same time, a ommon approah is to enourage sparsity, either by a

penalized likelihood approah ([53℄) or by thresholding the sample ovariane

matrix ([100℄).

For this reason, our researh studies a spei� regularization problem un-

der the assumption of low rank plus sparse deomposition for the ovariane

matrix. Suh a problem is solved exploiting non-smooth onvex optimization

methods. This approah allows to properly address both reonditioning and

dimensionality redution issues and is proved to be e�etive even in a large

dimensional ontext.

Our dissertation moves from a detailed outline of asymptoti approahes.

In Chapter 2, we provide a thorough desription of the motivation to our

work and a review of some relevant asymptoti methods for ovariane esti-

mation. Maximum likelihood estimators and unbiased �nite estimators are

desribed ([2℄). Spei� treatment to the onditioning problem for ovari-

ane matrix estimates is given. The ovariane shrinkage estimator derived

by Ledoit and Wolf in the general asymptoti framework is desribed ([75℄).

Sparse ovariane estimators are shown together with the underlying as-

sumptions and the estimation error rates, with partiular referene to the

thresholding estimator of [15℄. POET (Prinipal Orthogonal omplEment

Thresholding) estimator ([45℄), whih ombines Prinipal Component Anal-

ysis and thresholding algorithms, is analyzed in detail.

In Chapter 3, we de�ne the regularization problem above mentioned. It

is a nulear norm plus l1 norm approximation problem, and works under the

assumption of low rank plus sparse struture for the ovariane matrix. It

is omposed by a least squares loss and a omposite non-smooth penalty,

whih is the sum of the nulear norm of the low rank omponent and the l1
norm of the sparse omponent.

The numerial rationale behind the problem formulation is provided. It

is shown how this problem an be reast from the point of view of numerial
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analysis as a semi-de�nite program (SDP). Non standard optimization tools,

as subgradient minimization methods, are needed to solve it. We desribe

the most reent solution algorithm and point out its e�etiveness.

In Chapter 4, we provide a wide review of existing non-asymptoti meth-

ods. The evolution path of the most reent works is �gured out. The most

reent developments of the numerial approah under the assumption of low

rank plus sparse struture for the ovariane matrix are desribed, starting

from the basi ontribution by Chandraskeran et al. ([30℄) whih �rst proves

the exat reovery of the ovariane matrix in the noiseless ontext. This

result is ahieved minimizing a spei� onvex non-smooth objetive, whih

is the sum of the nulear norm of the low rank omponent and the l1 norm

of the sparse omponent.

Then, the �rst approximate solution to reovery and identi�ability in the

noisy ontext, oming from [1℄, is desribed. In the following, the extension

of [30℄ providing the �rst exat solution of the numerial problem in the

noisy graphial model setting ([31℄) is shown in detail. In that ontext, the

objetive is a least square loss penalized by the above mentioned omposite

penalty, and its optimization allows to reover the inverse ovariane matrix.

In onlusion, the extension of this framework to the ovariane matrix es-

timation ontext, oming from [77℄, is explained. The resulting estimator is

alled LOREC (LOw Rank and sparsE Covariane estimator).

In the last hapter (Chapter 5), an improvement over the solution de-

sribed in [77℄ is proposed, based on the unshrinkage of the estimated eigen-

values of the low rank omponent. Luo's approah is ompleted by deriving

the rates of the sparse omponent estimate, and the onditions for its posi-

tive de�niteness and invertibility. In addition, the rates of LOREC under the

onditions of POET, and, more importantly, in a ontext where the eigen-

values of the low rank omponent are allowed to grow with pα, α ∈ [0, 1]
(generalized spikiness ontext) are provided.

In the following, we show the results of our proedure on both simulated

and real data sets. We illustrate a new model seletion riterion whih

is proved to be e�etive in our ontext. An original simulation study is

presented where extensive simulation results are pointed out, as well as the

simulation algorithm and the estimation assessment framework.

In the end, the performane of our new proposed estimator is ompared

to the one of LOREC and POET under various settings. Two real examples

are provided where our model is e�etive respet to the ompetitors. In par-

tiular, the seond example is a banking supervisory data set whih ollets

supervisory reporting indiators of the most relevant Euro Area banks. We

expliitly thank the Supervisory Statistis Division of the European Central

Bank, where the author spent a semester as a PhD trainee, for the allowane

to use these data in anonymous form for researh purposes.

The Conlusions (Chapter 6) sum up the main �ndings of our researh.
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Chapter 2

Covariane matrix estimation:

state of the art

In this hapter, a short review of existing solutions to the problem of o-

variane matrix estimation is provided. Partiular attention is given to the

two properties displayed in the Introdution (well onditioning and identi�-

ability) and to the performane of existing methods in the large dimensional

ontext. An exhaustive review an be found in Pourhamadi (2013) ([95℄).

This Chapter shows a path aross existing estimators aimed at outlining

the two mentioned features (well onditioning and identi�ability) for eah

estimation setting, espeially when p is very large ompared to the sample

size n or even larger. This is why, for eah estimator, a detailed disussion of

the asymptoti framework and the assumptions needed to ensure onsisteny

(i.e. the onvergene to the theoretial ovariane matrix) is provided.

Existing approahes to the estimation problem are desribed in this

Chapter, while non-asymptoti approahes will be the objet of next hap-

ters. The desription of past approahes is intended to display the main is-

sues enountered by existing methods, with partiular referene to the large

dimensional ontext, and the reasons why we need to develop an alternative

numerial approah to the ovariane estimation problem.

The �rst paragraph (2.1) is devoted to ovariane matrix estimation un-

der the assumption of normality for the data. The maximum likelihood

estimator, i.e. the sample ovariane matrix, is introdued and justi�ed.

The unbiased sample ovariane matrix, under the assumption of �xed n, is
then outlined. A spei� remark on the asymptoti distribution of the sam-

ple ovariane matrix under the assumption of independene and idential

distribution for the data onludes the setion.

In the seond paragraph (2.2) the onditioning properties of the sam-

ple ovariane matrix are explored. The reason why the sample ovariane

matrix is bad-onditioned when the dimension is lose to the sample size

is deeply explained and analyzed, as well as the reason why the inverse

5



6 CHAPTER 2. STATE OF THE ART

ovariane matrix dramatially ampli�es the estimation error in ase of bad-

onditioning.

The third paragraph (2.3) widely desribes a suessful attempt to ad-

dress the problem of reonditioning the sample ovariane matrix when the

dimension is larger than the sample size: the shrinkage estimator by Ledoit

& Wolf ([75℄). Their motivations, their results and their asymptoti ontext

are properly highlighted, trying to retain the key elements of their approah.

The fourth paragraph (2.4) brie�y outlines existing sparsity estimators,

with partiular referene to the thresholding estimator by Bikel & Levina

([15℄), whih is desribed in detail with respet to model assumptions and

onvergene rates. There we point out the strong link between sparsity

assumptions and shrinkage thresholding. That family of estimators shows

how it is possible to use sparsity to reondition the ovariane estimate and

to signi�antly redue the number of parameters.

The �fth paragraph (2.5) desribes ovariane matries estimator based

on fator model assumptions. A brief overview of fator model spei�ations

and underlying assumptions aross history is provided, disussing the dif-

ferent asymptoti ontexts. The relationship between Prinipal Component

Analysis (PCA, [72℄) and fator modelling (see [59℄) is ruial in this respet.

Finally, POET estimator ([45℄), based on the assumption of approximate fa-

tor model with a sparse residual matrix, is widely illustrated, pointing out

the ruial assumptions for onsisteny and identi�ability.

In [45℄, the population ovariane matrix is assumed to be the sum of a

low rank and a sparse omponent. POET works under the assumption of

sparse residual ovariane matrix and pervasive eigenvalues of the low rank

omponent (as p→∞). This struture is partiularly onvenient in a large

dimensional ontext, and takles both the issues mentioned above, as we

will widely explain. For the same reasons, the fator analysis assumption is

a key to approah ovariane estimation in large dimensions. The asymp-

toti orrespondene between PCA and fator estimation is there established

aording to the underlying assumptions and then exploited.

Before starting, we desribe the basi matrix terminology. We restrit

our analysis to the real ase. The spetral theorem ensures that, when M
is a positive semide�nite squared p - dimensional real matrix with rank r,
there exists an orthogonal p×r matrix U and a diagonal r×r matrix Λ suh

that

M = UΛU ′ =
r
∑

i=1

λiuiu
′
i, (2.1)

whih is the eigenvalue deomposition ofM . Salars λ1, . . . , λr are alled
the eigenvalues of M and are stritly larger than 0. The r olumns of U are

the eigenvetors of M . If M is symmetri, the eigenvalues oinide with the

singular values σ1,...,r, whih are the square roots of the eigenvalues ofM ′M ,
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i.e. the absolute values of the eigenvalues of M . A fortiori, this happens if

M is a ovariane matrix, whih is symmetri and positive de�nite.

The relevant norms we are going to use throughout the entire thesis are

(see also [62℄):

• ||M ||2 =
√

σmax(M ′M) is the spetral norm of M , whih is its largest

singular value.

• ||M ||∞ = maxi,j |mij | is the in�nity norm of M , whih is the largest

entry in magnitude.

• ||M ||F = trace(M ′M) =
√

∑

i

∑

j m
2
ij is the Frobenius norm of M ,

whih is the square root of the sum of the entries of M .

• ||M ||∗ = trace(
√
M ′M) =

∑p
i=1 σi, sum of the singular values of

M .||M ||∗ is alled nulear norm. If M is a Positive SemiDe�nite ma-

trix (PSD), ||M ||∗ = tr(M), beause the eigenvalues and the singular

values exaly oinide.

• ||M ||1 =
∑

i

∑

j |mij|: sum of the absolute values of the entries of M .

For a p-dimensional vetor x, the relevant norms for our purpose are:

• ||x||2 =
√

∑

i x
2
i , the Eulidean norm of x.

• ||x||1 =
∑p

i=1 |xi|, the l1 norm of x.

• ||x||∞ = maxi |xi|, the maximum norm of x.

2.1 Sample ovariane matrix estimators

In this paragraph we fous on the most used estimator of the ovariane

matrix: the sample ovariane matrix. First, we will derive it as the maxi-

mum likelihood estimator of the ovariane matrix under the assumption of

multivariate normality for our data (2.1.1). Maximum likelihood estimators

are onsistent when n→∞. This is why we then derive the unbiased ovari-

ane estimator under the assumption of n �nite (2.1.2), whih is a slightly

modi�ed version of the sample ovariane matrix. These two estimators

asymptotially onverge when n → ∞, under the assumption of p �xed. In

the end of this paragraph, we give a �ash about the behaviour of this esti-

mator under the assumption of independene and idential distribution for

our data when n→∞ (2.1.3).

Our main referene for this argument is the famous book by Anderson

([2℄).
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2.1.1 The Maximum Likelihood ovariane estimator

Suppose we have a sample (x1, . . . xn), from a real-valued p−dimensional

normal random variable x ∼ Np(µ
∗,Σ∗), with p ≤ n. The p × p matrix

Σ∗ = E((x − µ∗)(x − µ∗)′) is real positive de�nite and symmetri, while

µ∗ = E(x) is a p× 1 vetor.

The density of x is the following:

f(x|µ∗,Σ∗) = (2π)−
1
2
p|Σ∗|− 1

2 exp

[

−1

2
(x− µ∗)′Σ∗−1(x− µ∗)

]

.

where µ∗ is a p × 1 vetor and Σ∗
is a p × p invertible (positive de�nite)

matrix.

The likelihood funtion is

L(µ∗,Σ∗) =
n
∏

i=1

N(xi|µ∗,Σ∗) =

= (2π)−
1
2
pn|Σ∗|− 1

2
n exp

[

−1/2
n
∑

i=1

(xi − µ∗)′Σ∗−1(xi − µ∗)
]

.

The log-likelihood is then

logL(µ∗,Σ∗) = −1

2
pn log 2π − 1

2
n log |Σ∗| − 1

2

n
∑

i=1

(xi − µ∗)′Σ∗−1(xi − µ∗).

We denote by µ̂ML and Σ̂ML the vetor and the positive de�nite matrix

maximizing logL. They are the maximum likelihood estimators of µ∗ and

Σ∗
. Sine logL is an inreasing funtion of L, logL and L share the same

maximum respet to our parameter estimates.

The following important theorem holds:

Theorem 2.1.1. If x1, . . . xn onstitute a sample from N(µ∗,Σ∗) with p < n,
the maximum likelihood estimators of µ∗ and Σ∗

are µ̂ML = x̄ = 1
n

∑n
i=1 xi

and Σ̂ML = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′ respetively.

The proof an be found in Anderson (1958), page 67 and following. It ex-

ploits the properties of the arithmeti mean and of positive de�nite matries.

The key argument is that logL an be rewritten in the following way:

−1

2
pn log 2π − 1

2
log |Σ∗| − 1

2
trΣ∗−1D − 1

2
n(xi − µ∗)Σ∗−1(xi − µ∗)′,

where D =
∑n

i=1(xi − x̄)(xi − x̄)′.
In order to perform maximization, the neessary assumption is that Σ∗

is a positive de�nite matrix. This ondition is neessary to ensure that the
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term n(xi−µ∗)Σ∗−1(xi−µ∗)′ ahieves a maximum for µ∗ = x̄ and the term

log |Σ∗| − tr(Σ∗−1D) ahieves a maximum for Σ∗ = 1
nD.

ML estimators show a number of interesting optimality properties. In

partiular, they are onsistent and asymptotially e�ient ([34℄). A theorem

by Cramer ensures that µ̂ML and Σ̂ML are minimum variane (asymptoti-

ally) unbiased estimators. These properties hold if and only if n→∞.

Note that also the ondition p < n is neessary in order to perform

maximization. In order to see this point, we need to reall a basi theorem

([2℄, p.77):

Theorem 2.1.2. The maximum likelihood estimator µ̂ML = x̄ = 1
n

∑n
i=1 xi,

from N(µ∗,Σ∗), is distributed aording to N(µ∗, 1nΣ
∗) and independently

of Σ̂ML = Σ̂ = 1
n

∑n
i=1(xi − x̄)(xi − x̄)′. nΣ̂ is distributed aording to

∑n−1
i=1 ziz

′
i, where zi ∼ N(0,Σ∗), and z1, . . . , zn−1 are independent.

This theorem states that under the multivariate normality assumption

for the data, nΣ̂ is the sum of n− 1 squared p dimensional matries having

rank 1. If p ≥ n, nΣ̂ will never have full rank p.

In addition, it has been shown by Wishart ([113℄) that D = nΣ̂ is a

matrix-valued stohasti proess having the following distribution:

f(D|Σ∗) =
|D| 12 (n−p−1) exp

(

−1
2tr(Σ

∗−1D)
)

2
1
2
npπ

p(p−1)
4 |Σ∗| 12n

∏p
i=1 Γ[

1
2 (n+ 1− i)]

whih is a Wishart distribution with ν = n−1 degrees of freedom, where

Γ(t) =
∫∞
0 xt−1e−xdx is the usual Gamma funtion. The proof is reported

in [2℄ (p.252 and following). It exploits massively the linear transforms of

random variables, and is based on the properties of Gram-Shmidt orthogo-

nalization algorithm.

This results was �rst derived for a bi-variate distribution by Fisher ([51℄)

where the distribution of the orrelation oe�ient (�rst de�ned by Karl

Pearson in [91℄) was also derived.

We an now understand why p < n is a neessary ondition. If n ≤ p,
f(D|Σ∗) is no longer a density, suh that it is no longer possible to derive the

asymptoti distribution for Σ̂ (i.e., all the usual optimality properties of ML

estimators are lost). In fat, |D| would be zero, and the distribution would

thus be degenerate, having null measure in Rp×p
everywhere. Note also that

if n = p + 1 f(D|Σ∗) has not a mode, analogously to the χ2
distribution

with two degrees of freedom.

In the same way, denoting by T the quantity T = (x̄−µ∗)′W−1(x̄−µ∗),
where W = D

n−1 , it has been shown by Hotelling ([64℄) that

ν − p− 1

vp
T 2 ∼ Fp,ν−p+1,
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where F is Fisher's distribution with p and ν − p+ 1 degrees of freedom

(ν = n−1). T 2
is alled Hotelling's T-squared distribution. It is non-singular

if and only if both µ̂ and Σ̂ are non-singular, i.e. if Σ∗
is positive de�nite

and ν − p+ 1 > 0 (equivalent to n > p).

So, both the sample mean and the sample ovariane matrix are ML

estimators of the true mean and the true ovariane matrix if and only if

the true ovariane matrix is positive de�nite and the dimension p is stritly
smaller than the sample size n. In partiular, the distribution of the sample

ovariane matrix is

n
n−1Wishart(Σ∗, n−1). This means that Σ̂ is biased if n

is �nite. Note that this distribution does not hange even when the true mean

µ∗ is known, unless x̄ is replaed by the true µ∗. In that ase, the degrees

of freedom are n and the resulting estimator (

1
n

∑n
i=1(xi − µ∗)(xi − µ∗)′) is

unbiased.

2.1.2 The unbiased ovariane estimator: �xed n ontext

In order to derive the �nite sample unbiased estimator of the ovariane

matrix, the key result is Theorem 2.1.2 about the distribution of D = nΣ̂ =
∑n

i=1(xi − x̄)(xi − x̄)′ shown above.

A orollary of that theorem states:

Corollary 2.1.1. Let x1, . . . , xn(n > p) be independently distributed, eah

aording to N(µ∗,Σ∗). The distribution of Σ̂ν = 1
ν

∑n
i=1(xi− x̄)(xi − x̄)′ is

Wishart(Σ∗, ν), where ν = n− 1.

This result means that Σ̂n−1 = ( 1
n−1)

∑n
i=1(xi−x̄)(xi−x̄)′ is the unbiased

estimator of the ovariane matrix when the dimension n is �nite. This

estimator will be the input of our new estimation proedure in Chapter 4.

Clearly, Σ̂n−1 and Σ̂n onverge asymptotially to the same estimator.

We are now going to derive the asymptoti (normal) distribution of the

sample ovariane matrix in the more general ase of IID data.

2.1.3 Covariane matrix estimation: the IID data ontext

Let us suppose xi ∼ IID(µ∗,Σ∗), i = 1 . . . , n. We want to derive the

asymptoti distribution of Σ̂n = 1
n

∑n
i=1(xi − x̄)′(xi − x̄). Under the IID

hypothesis, we have:

E(xix
′
i) = E(xi)E(x′i) = Σ∗ + µ∗µ∗

′

,

V (xix
′
i) = V (xi) + V (xi) = Σ∗ +Σ∗ = 2Σ∗.

Our target an be rewritten as the sum of three omponents:

1

n

n
∑

i=1

(xi − x̄)(xi − x̄)′ =
n
∑

i=1

xix
′
i

n
− 2

n
∑

i=1

x̄
x′i
n

+
n
∑

i=1

x̄x̄′

n
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Sine

∑n
i=1

xi

n

prob→ µ∗, we have that

−2x̄
n
∑

i=1

xi
n

+

n
∑

i=1

x̄x̄′

n
= −2x̄x̄′ + x̄x̄′ = −x̄x̄′.

onverges in probability as follows:

−x̄x̄′ prob→ −µ∗µ∗′ (2.2)

Now, the �rst omponent

∑n
i=1

xix′
i

n an be rewritten as

1√
n

n
∑

i=1

(xix
′
i)√
n

So, for the Central Limit theorem, we have

1√
n

n
∑

i=1

xix
′
i − (Σ∗ + µ∗µ∗

′

)√
n

CLT→ 1

n
N(µ∗µ∗

′

+Σ∗, 2Σ∗).

Realling (2.2), we have that

Σ̂n
distrib→ 1√

n
N(Σ∗, 2Σ∗). (2.3)

These results �nd on�rmation in [58℄.

2.2 The sample ovariane matrix: onditioning prop-

erties

We are now going to brie�y talk about matrix onditioning. Let us suppose

p and n are �xed. If n > p, the expeted value of Σν=n−1 is Σ∗
, and the

entries of its ovariane matrix are V (σ̂n,ij) =
(σ∗2

ij +σ∗
iiσ

∗
jj )

(n−1) . This highlights

why the variane of Σ̂n inreases as the true ondition number of Σ
∗
inreases.

If the ondition number c = σmax/σmin inreases, the orrelation between

the omponents xi and xj inreases, beause Σ∗
is loser to ollinearity.

Consequently, V (σ̂n,ij) inreases, beause σ
∗2
ij is loser to its maximum, whih

is σ∗iiσ
∗
jj (for the Cauhy-Shwartz inequality).

Coming bak to the main point, it is ruial to study the behaviour of

the sample eigenvalues. In the matrix estimation ontext there is a relevant

issue about numerial onditioning, i.e. the behaviour of sample maximum

and minimum singular values, of a p× n data matrix X.

Theorem 2.2.1 (Theorem ([39℄)). Given natural numbers n, p with p < n+1
let X be a p × n matrix with i.i.d. Gaussian entries that have zero-mean
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and variane

1
n . Then the largest and smallest singular values σmin(X) and

σmax(X) are suh that

max

{

Pr

[

λmax ≥ 1 +

√

p

n
+ t

]

, P r

[

λmin ≤ 1−
√

p

n
− t
]}

≤ exp

{−nt2
2

}

,

for any t > 0.

This theorem was proved by using arguments from random matrix theory

and the geometry of Banah spaes. It is an essential result to provide a

probabilisti bound for the error distane ||Σ̂n−Σ∗||2, where Σ̂n = 1
nX

′X =
1
n

∑n
i=1 xix

′
i.

In fat, the following Lemma holds:

Lemma 2.2.1. Let ψ = ||Σ∗||2. Given any δ > 0 and φ > 0 with ψ ≤ 8φ,

let the number of samples n be suh that n ≥ 64pφ2

δ2
. Then we have that

Pr[||Σn − Σ∗||2 ≥ δ] ≤ 2 exp

(

− nδ2

128ψ2

)

.

This Theorem is based on a spei� assumption on ψ, the largest eigen-
value of Σ∗

. By appropriately setting the parameter ψ, we an obtain the

probabilisti bound aordingly.

This Lemma relies on the fat that the spetral norm is unitarily invari-

ant, suh that it is possible to assume a diagonal struture for Σ̂ without

loss of generality and then apply the previous theorem 2.2.1.

It is remarkable that without further assumptions, Σ̂n is not invertible if

p > n (sine it is perfetly ollinear, having learly at most rank n, and for

the rest null eigenvalues). Even if p ≤ n, in the ase the ratio p/n is less than

1 but not negligible, the estimated (maximum and minimum) eigenvalues

are numerially unstable, sine the probabilisti bound is too large. This

may result in bad onditioning (i.e. too large ondition number) for Σ̂n.

This is why in the Big Data ontext, when p is very large, it is frequent to

have an ill-onditioned sample ovariane matrix, sine it is di�ult to have

enough observation to keep the ratio p/n negligible ([75℄).

The example in �gure (2.1) learly outlines the desribed drawbak. The

eigenvalues of the ovariane matrix of a simulated n × p proess ǫi =
Np (0, 1nI), p = 100 , n = [10, 50, 100, 500, 1000, 10000] are plotted. The �g-
ure displays how the dispersion of the eigenvalues dereases as p/n dereases.

All distributions tend to the Marenko-Pastur distribution, whih is proved

to be the limiting distribution of the eigenvalues of IID random variables (in

the Kolmogorov asymptoti framework, see [79℄). The rank is always equal

to min(p, n− 1). If p = n, the matrix is thus singular.

We have provided this simple example to state that without further as-

sumption on the eigen-struture (values and vetors) of Σ∗
, the ondition
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Figure 2.1: Eigenvalues of the sample ovariane matrix of ǫi = Np(0,
1
nI),

p = 100, n varying

p ≤ n is unavoidable in order to guarantee the positive de�niteness (and

thus the invertibility) of our ovariane estimate. Anyway, the reovery of

the eigen-struture of a ovariane matrix is strongly related to the underly-

ing assumptions and to the asymptoti ontext.

We now enumerate three parameter settings relevant for our dissertation:

1. p and n �xed: this is the ase of Σ̂n−1, and all numerial estimators

we will analyze in next hapters ([31℄, [1℄, [77℄,[15℄)

2. p �xed, n→∞: this is the ase of Σ̂ML, or of the approximate fator

model ([29℄)

3.

pn
n → c when n→∞: here we �nd the General asymptoti framework,

used by Ledoit and Wolf to ensure the onsisteny of their estimator

([75℄), and the Kolmogorov asymptoti framework (where also p→∞).

Also onsisteny properties of the thresholding estimator ([15℄) and of

POET estimator ([45℄) are derived under a similar framework, where a

funtion of p and n tends to 0 while n→∞. See for more explanations

setions (2.4) and (2.5).

In the seond ontext, with �xed p and n, the outlined results onern-

ing numerial onditioning for the sample ovariane matrix hold, and the

ondition p ≤ n is unavoidable without further assumptions to derive �nite

sample bounds. This is why one of the aims of the present work is trying

to exploit results from the third asymptoti framework (in terms of model

assumptions) to establish bounds under the �nite sample ontext dropping

the ondition p ≤ n.
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2.2.1 Matrix onditioning as an ill-posed inverse problem

We are now explaining in detail why a bad-onditioned sample matrix is a

fatal drawbak for us. The reason stands in the onsequenes deriving from

the inversion of a bad-onditioned matrix.

Let us now onsider the standard linear system Ax = b, where A is p×p,
and x, b are p × 1. If our aim is to derive b (the output), we are solving

the diret problem. If our aim is to derive x (the input), we are solving the

inverse problem. If A is full rank, Cramer's theorem is ensuring that the

inverse problem has exat solution x∗ = A−1b. Otherwise, if A has rank

r < p, we need to solve the least squares problem

min
x∈Rp

||Ax− b||2,

and we have

x∗ =
r
∑

i=1

|u′ib|
λi

ui (2.4)

||Ax∗ − b||2 =
p
∑

i=r+1

||u′ib||2.

This fundamental result was proved in [40℄.

How muh is solution the x∗ reliable? Hadamard([57℄) outlined the three

harateristis of a well-posed problem:

• existene: the problem admits one solution

• uniqueness: the problem has at most one solution

• stability: the problem is not sensitive to data perturbation.

In our ontext, if A is full rank, the inverse problem may be ill-posed sine

it violates the stability ondition. If A is not full rank, the inverse problem is

ill-posed sine it violates the existene and the uniqueness ondition (there

are only approximate solutions, no exat ones). The least squares system

serves for identifying in any ase a solution even if there would be none.

Anyway, (2.1) and (2.4) enable us to understand why the inverse of bad-

onditioned matries are numerially unstable. The solution of the diret

problem is Ax = UΛU ′x =
∑p

i=1 λi(u
′
ix)ui, whih dampens the omponents

orresponding to the smallest eigenvalues of A. On the ontrary, (2.4) shows

us that the solution of the inverse problem ampli�es the e�ets of the same

omponents. If we assume that b is perturbed, i.e. bǫ = b+ ǫ, we note that

xǫ = x∗ +
∑r

i=1
|u′

iǫ|
λi
ui. So, if A is bad onditioned (i.e. we have very small

eigenvalues), the e�et of data perturbation is ampli�ed, and the solution

may not be e�etively usable in appliations.
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This is why Piard ([93℄) elaborated a ondition under whih the inverse

solution is reliable. It states that x∗ =
∑r

i=1
|u′

ib|
λi
ui < ∞ if and only if

|u′ib| deays more rapidly than the orresponding λi for all i, whih ours if

λi > τ ∀i, where τ is the threshold at whih the singular values are levelled

by the noise.

If this ondition is violated, a regularization method, like the trunated

singular value deomposition (TSVD, see [55℄) or Tikhonov's regression method

([109℄) or other regression methods (like the ridge one), are needed. This is

why the nonasymptoti approah for ovariane matrix estimation essentially

onsists in speifying appropriate regularization problems under suitable on-

ditions for deriving improved error rates, as we will widely desribe in the

following hapters.

Note that there is a huge literature dealing with the distribution of eigen-

values. We mention again Marenko-Pastur law, whih desribes the be-

haviour of the singular values of a retangular random matrix having Gaus-

sian entries ([79℄). Tray and Widom ([107℄) found the limiting distribution

of the singular values of a large dimensional random Hermitian matrix. John-

stone ([70℄) found out the limiting distribution of the largest eigenvalue in

prinipal omponent analysis (for n ≤ p, under the assumption of indepen-

dent normality for the olumns of the data matrix) whih is proportional to

a Wishart of order 1. A reent work by Chiani ([33℄) derived the exat dis-

tribution of the largest eigenvalues for real Wishart matries and Gaussian

Orthogonal Ensembles.

The work in [70℄, in partiular, outlined that for large p it an be easier

to reover the top r eigenvalues if they are partiularly spiked, beause the

distribution of the (r + 1)-th eigenvalue is bounded by a Tray-Widom law

of lower dimensions (n × (p − r) respet to n × p). Thus, the (r + 1)-th
eigenvalue of a set of p eigenvalues where r are spiked is stohastially smaller

than the largest eigenvalue of a setting of (p − r) < p variables non-spiked.

This fat suggests that large dimensions (p → ∞) an help the reovery of

strong eigenvalues and somehow justi�es the use of "sree-plot" to hoose

the number of eigenvalues.

There are also some results on the distribution of the smallest eigenvalues.

We refer to [8℄ for a general review.

All in all, the problem of reonditioning our ovariane matrix estimate

is approahed di�erently aording to the related asymptoti ontext. In

Chapter 4 we will fous on the non-asymptoti ontext, outlining various

solutions reently provided. Now, we will fous on the desription of key

ovariane estimators in the asymptoti ontext where both p and n are

allowed to tend to∞. The estimator we are about to desribe belongs to the

lass of shrinkage estimators ([68℄) whih represent a widely used approah

in this ontext as an e�etive regularization method. It is relevant to note

that the distributional assumption of normality is no longer needed, sine
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the approah we are going to desribe is distribution-free.

2.3 Shrinkage towards the identity: Ledoit andWolf's

approah

Ledoit and Wolf were the �rst to derive in [75℄ a onsistent estimator of the

ovariane matrix in a new asymptoti framework, alled general asymptoti

framework. They proposed a way to temper the numerial instability of sam-

ple eigenvalues, expliitly reonditioning them by shrinkage. The adoption

of a new asymptoti framework was needed to ensure the shrinkage inten-

sity to be positive, avoiding it to vanish in the limit. Their estimator is

also Bayesian in nature, sine it is a ombination of a priori and sample

information. They all it Empirial Bayesian estimator.

The motivating result of their analysis it reported below.

Theorem 2.3.1. The eigenvalues are the most dispersed diagonal elements

that an be obtained by rotation of a symmetri matrix.

The proof exploits the invariane by rotation of trae.

This auses that the largest sample eigenvalues are positively biased,

while the smallest are negatively biased, and the bias inreases in p/n (re-

all Theorem 2.2.1). The pattern of sample eigenvalues depends on the

Marenko-Pastur distribution, whih holds in the Kolmogorov asymptoti

framework. As desribed, under Kolmogorov asymptotis the ratio p/n tends
to a spei� onstant, while both p and n tend to in�nity.

Here we report the solution proposed by Ledoit and Wolf to the desribed

problem. Their idea is to shrink the sample ovariane matrix towards the

identity matrix, solving the following optimization problem (thus reondi-

tioning the eigenvalues):

min
ρ1,ρ2

E[||Σ − Σ∗||2]

s.t.Σ = ρ1Ip + ρ2Σ̂n.

where ρ1 and ρ2 are nonrandom oe�ients.

The theoretial solution to this problem is the optimal linear shrink-

age estimator

ΣLW =
β2

γ2
µI +

α2

γ2
Σ̂n (2.5)

with E[||ΣLW −Σ∗||2] = α2β2

γ2 , where:
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µ =< Σ, I >;

α2 = ||Σ∗ − µI||2;
β2 = E[||Σ̂n − Σ∗||2];
γ2 = E[||Σ̂n − µI||2].

Their derivation exploits the natural Pythagorean relationship

α2 + β2 = γ2. (2.6)

In this view, the ratio

β2

γ2 is alled optimal shrinkage intensity.

The most important interpretation of this approah for our purposes is

the following. It is well known (Theorem 2.2.1) that the sample eigenvalues

of IID data have bounded error respet to the true ones, so that, under the

ondition p ≤ n (p and n �xed),

1
pE(

∑p
i=1 λ̂i) =

1
p

∑p
i=1 λi, i.e. the trae of

Σ∗
is unbiasedly estimated.

At the same time, theorem 2.3.1 shows that sample eigenvalues have a

larger dispersion around their grand mean respet to the true ones (assuming

that the eigenvetors are reliable). From (2.6) we an argue that

1

p
E

[

p
∑

i=1

(λ̂i − µ)2
]

=
1

p

p
∑

i=1

(λi − µ)2 + E[||Σ̂n − Σ||2],

i.e. the exess dispersion of the sample eigenvalues is the error of the sample

ovariane matrix. This is why here the authors bound [||Σ̂n − Σ||2] by
bounding

1
pE
[

∑p
i=1(λ̂i − µ)2

]

, where µ = 1.

So, ΣLW impliitly does the reonditioning of eigenvalues, sine

λi,LW =
β2

γ2
µ+

α2

γ2
λ̂i, ∀i = 1, . . . , p.

1
pE[
∑p

i=1(λ̂i,LW −µ)2] is equal to α2

γ , and is even smaller than the dispersion

of the true ones, for the reasons desribed above. Note that this method is

very similar in its meaning to the max log− det heuristis for nulear norm
minimization (see [49℄).

2.3.1 General Asymptotis

In order to derive a feasible estimator, we now need to get into a new

asymptoti framework, sine the optimal shrinkage intensity β2 vanishes as

||Σ̂n − Σ∗||2 vanishes when n → ∞ in the standard asymptoti framework

(as proved in paragraph 2.1.3, see onvergene (2.3)). This fat, when p is

loser to n or even larger, is inonsistent with reality. So, a new asymptoti

framework, alled General Asymptotis, is needed, where β2 is not vanishing.
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Consider n = 1, 2, . . . indexing a sequene of statistial models, and for

every n, Xn is a pn×n matrix of n iid observations on a system of pn random

zero mean variables with ovariane matrix Σn.

The following assumption haraterizes this ontext:

A1. There exists a onstant K1 independent of n suh that pn/n ≤ K1.

It is remarkable that in this setting p an hange and even go to in�nity,

but it is not required. Di�erently from the Kolmogorov asymptoti frame-

work (the one of Marenko-Pastur Law), it is not even neessary this ratio

tends to a �nite onstant.

Two further assumptions are needed to derive a onsistent estimator of

ΣLW . If Σn = ΓnΛnΓ
′
n, the produt Yn = Γ′

nXn is a set of unorrelated

variables spanning the same spae as the original variables. The following

restritions on the higher moments of Yn are imposed:

A2. There exists a onstant K2 independent of n suh that

1

pn

pn
∑

i=1

E[(yni1)
8] ≤ K2,

A3.

lim
n→∞

p2

n2

∑

i,j,k,l ∈ QnCov(yi1yj1, yk1yl1)

Cardinal ofQn
= 0.

where Qn denotes the set of all the quadruples that are made of four

distint integers between 1 and pn.
Assumption 2 states that the eighth moment of y is bounded (on average).

Assumption 3 states that produts of unorrelated random variables are

themselves unorrelated (on average, in the limit). In the ase when general

asymptotis degenerate into standard asymptotis (p/n → 0); Assumption

3 is trivially veri�ed as a onsequene of Assumption 2.

For what previously stated, Assumption 3 is veri�ed when random vari-

ables are normally or even elliptially distributed, sine the sample ovariane

of (unorrelated) normal variables is asymptotially unbiased. Anyway, A3

is muh weaker than that situation.

These assumptions are spei�ally needed to derive the sample ounter-

parts of µ,γ2, β2.
Note that these two assumptions heavily involve the eigenstruture (eigen-

values and eigenvetors) of the true ovariane matrix. Here we need to

impose restritions on eighth moments, for the partiular nature of their op-

timal weights. Anyway, the need to ontrol the pervasiveness of the latent

struture in the ovariane matrix is ruial for model reovery. We also

underline how muh latent fatorial assumptions an impat on ovariane

estimation. This is why we are going to spei�ally disuss the relationship

between fator modelling and ovariane estimation in paragraph (2.5).

Under these assumptions, Ledoit and Wolf approah the study on the

onsisteny of their estimator. In their ontext, the referene norm is ||A||n =
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1
pn
tr(AA′), suh that the identity matrix has always norm one, and the refer-

ene ross produt is < A1, A2 >n=
1
pn
tr(A1A

′
2). The problem of obtaining

meaningful absolute rates in high dimensions is another relevant issue. As

we will see, in [45℄ the authors derive asymptoti rates for the relative error

matrix (and not the ovariane matrix itself). Instead, under the nonasymp-

toti setting (Chapter 4), we will obtain �nite absolute rates, even under the

same assumptions of [45℄.

We are now going to show why the sample ovariane matrix is not

onsistent in this ontext, di�erently from the �nite p ontext, where the

ovariane matrix is asymptotially onsistent under the assumption of nor-

mality. The authors show that quantities µn =< Σn, I >,α
2
n = ||Σn−µnI||2,

β2n = E[||Σ̂n−Σn||2], γ2n = E[||Σ̂n−µI||2] are bounded in the general asymp-

toti framework when n → ∞. Then, they prove the following important

Theorem:

Theorem 2.3.2. De�ne θ2n = V ar( 1
pn

∑pn
i=1E[(yni1)

2]). θ2n is bounded as

n→∞, and we have:

lim
n→∞

E[||Σ̂n −Σn||2] =
pn
n
(µ2n + θ2n).

This result states that the sample ovariane matrix is not onsistent

under the general asymptoti framework, sine its expeted loss is lower

bounded by

pn
n (µ2n), whih does not usually vanish. (Reall that θ2n vanishes

asymptotially under the assumption of normality, for onvergene (2.2)).

There are two interesting exeptions:

• when

pn
n → 0, we fall into the standard asymptoti ontext, where

the sample ovariane matrix is onsistent. The only di�erene is that

more general ase p = o(n) is allowed, i.e. p is allowed to be unbounded
and grow towards in�nity;

• µ2n → 0 and θ2n → 0. µ2n implies that most of the random variables

have vanishing varianes, i.e. there are O(n) asymptotially degenerate

variables. So, if the number of nondegenerate random variables is

NOT negligible with respet to the number of observations, the sample

ovariane matrix is not onsistent.

Inonsisteny is due to the disequilibrium between the number of data-

points npn and the number of parameters pn(pn + 1)/2. This is a key point

in our analysis, whih is unsolved by the approah of Ledoit and Wolf. In

fat, they write there is no DIRECT onsistent estimator of the ovariane

matrix under the general asymptotis. Their strategy is to derive a onsistent

estimator of their theoretial estimator, whih is proved to have the minimum

risk among all the linear ombinations of Ip and Σn and is shown to be better

onditioned than the sample ovariane matrix.
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So, shrinkage matters unless

pn
n is negligible respet

γ2

µ2 , i.e. if the dis-

persion of sample eigenvalues is muh larger than

pn
n .

To onlude this setion, we are now going to explain how Ledoit and

Wolf derive a onsistent estimator for ΣLW .

They introdue sample ounterparts of their key quantities:

mn =< Σ̂n, I >n,

d2n = ||Σ̂n −mnI||2,

b̄2n =

n
∑

k=1

||xn.kxn
′

.k − Σ̂n||,

b2n = min(b̄2n, d
2
n),

a2n = d2n − b2n,

where xn.k denote the k − th olumn of Xn.

All these sample ounterparts are onsistent in the general asymptoti

framework, i.e. they onverge to µ2n, α
2
n, β

2
n, γ

2
n respetively in quadrati

mean.

Then, their feasible onsistent estimator is

Σ̂LW =
b2n
d2n
mnIn +

a2n
d2n

Σ̂n (2.7)

This estimator is onsistent in the general asymptoti framework respet

to ΣLW , i.e. they share the same asymptoti expeted loss. Thus, the

expeted quadrati loss

α2β2

γ2 an be onsistently estimated in quadrati mean

by

a2nb
2
n

d2n
.

Σ̂LW is shown to have an important optimality property: it has the same

asymptoti risk as the theoretial optimal linear ombination of Σ̂n and In
with random oe�ients. In addition, its ondition number is proved to be

bounded in probability, whih is very important for pratial use.

The approah by Ledoit and Wolf is undoubtedly very elegant. How-

ever, there is still one main di�ulty: their estimator is exessively better

onditioned than the true ovariane matrix, i.e. it is often too biased, for

the presene of the identity matrix in the estimator. This is why another

major point of our dissertation will deal with the need of "unshrinking" the

estimated eigenvalues.

In fat, the numerial issue is not the only relevant reason for desiring a

well onditioned estimate of the ovariane matrix. Deep statistial reasons

lie behind this need: we suppose that the true ovariane matrix Σ∗
is well

onditioned, that is there is no multi-ollinearity among our p variables. In
this respet, a well onditioned estimate is ruial also for �tting purposes,

i.e. to improve the statistial properties of the estimate.
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We reall the previous skrinkage estimator by the same authors ([74℄)

in the market portfolio ontext. There, the authors speify for the ovari-

ane matrix a single-index model (onsistently with the basi theory of asset

pries, see [103℄), whih is essentially a one-fator latent model, and then

estimate the ovariane matrix deriving the optimal shrinkage intensity to-

wards the single-index as desribed. This single index ovariane matrix

estimator is an interesting ontat point between latent variable models and

shrinkage methods.

Before passing to the analysis of fator-based ovariane matrix estima-

tors (paragraph (2.5)), we now brie�y outline the ovariane estimators based

on pure sparsity assumptions, with partiular referene to the use of shrink-

age thresholding. In this ontext, sparsity means that our true ovariane

matrix has a prevalene of zeros.

2.4 Sparse ovariane matrix estimation

In this setion we list the most relevant estimators based on a pure sparsity

assumption, whih an be e�etive for reduing the number of parameters

and reonditioning the estimate, removing unneessary o�-diagonal orrela-

tions. If p/n → c ∈ (0, 1) (general asymptoti framework) the eigenvalues

of Σ̂n follow the Marenko-Pastur law, supported on (1 − √c)2, (1 +
√
c)2.

If p/n does not tend to a onstant, we do not have any guarantee. For this

reason, enforing sparsity an be a key for obtaining a full rank estimate in

high dimensions, even when n < p + 1. However, there are lots of di�erent
types of sparsity assumptions, methods and asymptoti frameworks to prove

onsisteny.

The natural ontext whih gave rise to the onept of sparsity lies in

a data-set showing a lear index ordering among variables. This ondition

arises easily for spatial data, when the variables are geographial areas for

whih a proximity matrix is naturally de�ned. Appliations inlude spe-

trosopy and limate data.

For this kind of data, several methods have been developed. Banding

the ovariane matrix, by appropriately de�ning a banding parameter, is

one e�etive solution. In that approah ([14℄), the matrix referene lass is

Σ∗ ∈ U(ǫ0), where

U(ǫ0) =
{

Σ∗ ∈ Rp×p : 0 < ǫ0 ≤ Λi(Σ
∗) ≤ ǫ−1

0 < +∞,
max

j
{
∑

i

|σ∗ij | : |i− j| > k} ≤ Ck−α
}

, (2.8)

whih is the lass of matries having uniformly bounded eigenvalues and

banded ovariane.

For any Σ∗ ∈ U(ǫ0), the natural ordering among variables is therefore
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enfored imposing:

{

Σ∗ : σ∗ii ≤M, max
j
{
∑

i

|σ∗ij |q : |i− j| > k} ≤ Ck−α,∀k > 0,∀i
}

. (2.9)

This ondition presribes that the further two variables are, the lower their

orrelation is. Matries obeying this ondition are "approximately bandable"

matries.

These assumptions are made for the nature of banding operator, whih

is de�ned for any matrix M as: Bk(M) = [mij1(|i− j| ≤ k)]. It is straight-
forward that the banding operator would be perfetly e�etive if

|i− j| > k → σ∗ij = 0.

Choosing k = O(( log pn )
1

2(α+1) ) the banding operator Bk(Σ̂n) is shown to

onsistently estimate Σ∗
with rate O(( log pn )

α
2(α+1) ).

This approah an be indi�erently applied to the ovariane matrix or to

the Cholesky fator of the inverse ovariane matrix. In [20℄, minimax prop-

erties for the rates of onvergene of ovariane estimators having (2.8) as

matrix referene lass are provided both for operator (spetral) and Frobe-

nius norms. There the authors show that the desribed approah ahieves

sub-optimal rates. Among other possible solutions, we mention tapering,

whih is gradually shrinking the o�-diagonal elements to zero ([54℄), and

alternative uses of the Cholesky fator of the preision matrix ([114℄[66℄).

When there is no natural ordering among variables, the banding ap-

proah beomes ine�etive. This situation inludes the vast majority of

ases, inluding reent relevant appliations to gene expression arrays. This

is why the same authors (Bikel and Levina) developed in [15℄ a very el-

egant theory to make their previous work on banding methods applia-

ble to this ase. That approah is based on the thresholding of sample

ovariane matries, where the hard thresholding operator is de�ned as

Ts(M) = mij1(|mij | ≥ s). Ts(M) preserves preserve the positive de�niteness
of M if and only if λmin(M) > s:

||Ts − T0|| ≤ s←→ λmin(M) > s. (2.10)

This happens beause v′Ts(M)v ≥ v′Mv − s ≥ λmin − s.
Note that the hard thresholding operator is impliitly based on the mini-

mization of the l0 norm of Σ∗
, whih is simply the number of non-null entries.

This norm is not onvex, and so it is hard to establish a unique minimum.

This is why alternative thresholding operators have been developed. The

most used, entral to our disussion in following hapters, is the soft thresh-

olding operator: Ts(M) = sign(mij)max(|mij |−s, 0). Note that the thresh-
olding parameter s an be onstant or entry-dependent, i.e. sij . Another

relevant shrinkage operator is the adaptive one, where sij = τ(miimjj)
1/2
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([18℄). A generalized shrinkage funtion whih enompasses the desribed

ones was de�ned in [100℄.

Coming bak to the ovariane estimation problem, Bikel and Levina es-

tablish a ontat point between the lass of "thresholdable" and "bandable"

matries, in order to be able to exploit the results of [14℄.

They de�ne for 0 ≤ q < 1 the uniformity lass of matries invariant under

permutations:

{

Σ∗ : σ∗ii ≤M,

p
∑

j=1

|σ∗ij|q ≤ c0(p), ∀i
}

, (2.11)

where c0(p) is a onstant not depending on p.

Note that if q = 0, the ondition beomes

∑p
j=1 |σ∗ij |q =

∑

i,j 1(σ
∗
ij 6= 0).

Here we an onsider M as a onstant. In paragraph (5.1) we will relax this

assumption.

In [15℄, the authors prove that, if a matrix Σ∗
satis�es (2.11) for q > 1

α+1 ,

whih is equivalent to 1− q > α
α+1 , then Σ∗

satis�es also (2.9) and belongs

to the lass of approximately bandable matries (2.8).

We mention a tehnial result (in bold), whih will be ruial for the

disussion of our ontributions in Chapter 5. The sample ovariane matrix

Σ̂n satis�es the following property:

max
i,j
|σ̂ij − σ∗ij| = O

(

√

log p

n

)

. (2.12)

under

log p
n → 0.

As a onsequene, under the ondition q > 1
α+1 the loss of the thresholded

matrix Ts(Σ̂n) is bounded and vanishes asymptotially when

log p
n → 0:

||Ts(Σ̂n)− Σ∗|| ≤ O
(

(

log p

n

)(1−q)/2
)

. (2.13)

The banding and the thresholding methods are non-likelihood ones. The

Frobenius norm as referene loss gives two advantages respet to a likelihood

funtion. First, the Frobenius norm is the analogous for matries of the l2
norm for vetors. Seond, Frobenius loss is model free, as the ovariane

matrix. These methods allow to ignore the underlying distribution for the

data, whih an be an advantage in high dimensions.

In addition, [80℄ and [19℄ desribe two very e�etive non likelihood meth-

ods employing sparsity for preision matrix estimation in the multivariate

Gaussian setting, where the likelihood is known. However, likelihood meth-

ods are still useful for the preision matrix espeially, for their onnetion to

graphial modelling (see [31℄).
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To sum up, sparsity models are useful tools to improve ovariane es-

timation. In fat, in high dimensions we often have few pairs of variables

showing a partiularly large (idiosynrati) ovariane. On the other hand, a

sparsity assumption may not be enough, espeially in high dimensions, sine

the ovarianes are too large to be modelled by a purely sparse matrix, for

the reasons outlined in paragraph (2.2) and beause our target is probably

not sparse. This is why fator-analysis and PCA based ovariane estima-

tors play a relevant role, for their ability to signi�antly redue the problem

dimension, as we are about to desribe.

2.5 Fator analysis based estimator

This paragraph is devoted to the analysis and desription of the fator model

approah to ovariane matrix estimation. This topi assumes a partiular

relevane in a large dimensional ontext, when the dimension p is very large,
beause p/n may be di�ult to keep negligible, as enough n ould not be

available.

The �rst who de�ned the onept of fator model was Spearman (1904)

([102℄), in a psyometri study about the measurement of intelligene. The

main problem was: "how to explain most of the variane of a set of or-

related variables by approximating them with a smaller set of unorrelated

variables?" In this spei�ation, the ovariane matrix resulted in the sum

of a lower ranked matrix and a diagonal residual matrix, where all the o-

varianes are explained by the fators, while the presene of the error term

implies that there are residual varianes unexplained by the fators.

A general fator model setting for Σ∗
an be desribed as follows:

Σ∗ = L∗ + S∗. (2.14)

We an write L∗ = BB′
, with B = UD1/2

, where U is a p× r matrix, D is

a r × r diagonal matrix djj > 0, ∀j = 1, . . . , r, r ≪ p.

A generalized stati fator model for a p−dimensional vetor xi, i =
1, . . . , n, is the following:

xi = Bfi + ǫi = li + ǫi,

E(f) = 0, V (f) = Ir;

E(ǫ) = 0, V (ǫ) = S∗;

E(ǫ′f) = 0.

where fi is a r × 1 vetor, and xi, li, ǫi are p× 1 vetors.

In this framework, Σ̂n is the p × p sample ovariane matrix omputed

on the n generated data. For i = 1, . . . , n, li = Bfi is alled ommon part

of xi, ǫi is alled idiosynrati part.
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Note that L∗
has rank r and is positive semide�nite, while S∗

and Σ∗

are full rank and positive de�nite.

The reason why a fator model assumption for the data is e�etive in

this ontext is two-fold:

• model (2.14) presribes for the ovariane matrix a deomposition into

a r−ranked matrix (r ≪ p) and a full rank residual matrix. Speify-

ing a low rank matrix means reonditioning the eigenvalues, sine we

replae a p-ranked probably ill-onditioned matrix (see setion (2.2))

with a semide�nite positive r− ranked matrix, well onditioned by

de�nition. At the same time, the full rank rank residual omponent

ensures that the estimate is positive de�nite. So, imposing this stru-

ture to a large ovariane matrix means reonditioning its eigenvalues,

not using the identity matrix as a shrinkage target (as in [75℄), but

removing the strongest orrelations from the raw (sample) estimate,

thus shrinking down its ondition number.

• model (2.14) signi�antly redues the number of parameters, by repla-

ing p(p+1)/2 parameters with p(r+1) only. This approah overomes

the problem of identi�ability in the large dimensional ontext, by rel-

evantly reduing the parameter spae dimension.

Anyway, model (2.14) is the most general de�nition. Di�erent model

settings impose di�erent assumptions on L∗
and S∗

. Key assumptions for our

purpose, whih is to exploit e�etively a fator model struture for ovariane

matrix estimation, mainly onern the eigenvalues of L∗
, whih re�et upon

the eigenvalues of Σ∗
.

We are going to brie�y reall the historial path of fator modelling by

the desription of three main steps (for an extended overview, see [59℄):

• the lassial fator model, with p �xed, n → ∞. This spei�ation

was due to [102℄, and its development was then possible thanks to the

pioneeristi work on Prinipal Component Analysis by Hotelling [65℄.

Its main harateristi is the imposition of a diagonal struture to the

residual ovariane matrix S∗
(paragraph (2.5.1)).

• the approximate fator model, where nonzero residual orrelation is

allowed, i.e. S∗
is no longer diagonal. This advane was due to Cham-

berlain and Rothshild ([29℄), and is based on the assumption of lim-

itedness for λr+1 (the (r + 1)−th eigenvalue of Σ∗
) as n goes to ∞ (p

here is still �xed). This approah allowed to e�etively use PCA for

reovering Σ∗
(paragraph (2.5.3)).

• fator modeling with sparse residual ([45℄), where spei� assumptions

on L∗
and S∗

are made. The eigenvalues of L∗
are assumed to be

pervasive while p as well as n) tends to ∞ (spikiness property). On
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the ontrary, the largest eigenvalue of S∗
vanishes asymptotially. This

approah impats on the ovariane matrix estimate allowing to redue

even more the parameter spae dimension, still employing the PCA of

Σ̂n together with a thresholding algorithm for the sparse omponent

(paragraph (2.5.4)).

2.5.1 Strit fator model

We are now going to explore this �rst spei�ation, whih is alled strit or

lassial fator model. In this spei�ation, we have that

X = Bf + ǫ, (2.15)

where X and ǫ are p× 1 random vetors, B is a p times r matrix also alled

loading matrix, f is the r × 1 random vetor of latent variables.

Under all previously outlined assumptions, E(X) = 0. De�ning Σ∗ =
E(XX ′), this model leads to the following model on the ovariane matrix:

Σ∗ = L∗ + S∗
(2.16)

with L∗ = BB′
. The identi�ability ondition imposes B′S∗−1B to be di-

agonal. It is neessary beause the strit fator model is equivariant under

orthogonal transforms, and this results in an identi�ability issue. Note that

the ondition E(fǫ′) = B holds. Bf is the ommon part, while ǫ is the

idiosynrati (or unique, or spei�) part of the model.

For eah omponent Xi,i = 1, . . . , p, V ar(Xi) an be disentangled in two

omponents.

∑
j B

2
ij

Σ∗
ii

is the portion of variane of Xi, i = 1, . . . , p explained

by the fators. It is also alled ommunality of Xi.
Sii

Σ∗
ii
is the portion of

variane of Xi unexplained by the fators. It is also alled idiosynrati

omponent of Xi.

The ratio between ommunality and total variane for eah Xi, i =
1, . . . , p is very important for the interpretation of fator models (FM), as

well as, if S∗
is not diagonal, the ratio between the sum of residual ovari-

anes and the total sum of ovarianes. The proportion of variane explained

by the model desribes the goodness of �t and the ovariane matrix between

the fators and the observed variables, equal to B, outlines the most relevant

variables in the omposition of fators.

As explained, if we impose S∗
diagonal we impose all the ovarianes to

be explained by the fators. This assumption is learly inappropriate in a

large dimensional ontext. Speifying a pure fator model struture is there

quite far from being e�etive. We have already explained that if p is large

the sample ovariane matrix is likely to be bad-onditioned. For this reason,

it is likely that fators are not enough to explain ovarianes, and that the

diagonal assumption for the residual ovariane matrix is too strit. For an

overview of fator analysis in large dimensions, see [7℄.
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FM estimation has been a relevant problem in the literature. It is well

known that fator analysis moves out from prinipal omponent analysis

(PCA), but PCA without further assumptions is not a onsistent estimator

for the fator model, as we are going to explain.

2.5.2 PCA and fator analysis

Let us A be a p × p matrix, with ||A||Fro =
∑n

i=1

∑n
j=1A

2
ij . Its spetral

deomposition is

A = UΛU ′ =
p
∑

i=1

λiu
′
iui =

p
∑

i=1

(
√
λiu

′
i)(
√
λiui),

where

√
λiui, i = 1, . . . , p are the prinipal diretions, ordered respet to the

magnitude of assoiated eigenvalues. The �rst to address PCA was Pearson

(1901) ([92℄), and the idea was then re�ned by Hotelling (1933) ([65℄). They

found out that the best approximation property is possessed by prinipal

omponents, that is, the linear ombinations of observed variables whih

maximize the explained variane are subsequently the �rst, the seond, . . .,
the last prinipal omponent. In formula,

min
Z,rank(Z)≤r

||X − Z||Fro, Z = AX ←→ Z = PCAr(X),

where PCAr(X) is the (2.1) trunated to the r−th eigenvalue.

The underlying approximation problem omes from linear algebra. If

zi = ui1F1 + ui2F2 + . . .+ uirFr,

with F = [F1, . . . , Fr]
′
, E(F ) = 0, V (F ) = Ir, r ≪ p, we an write:

min
ui,zi

1

n

n
∑

i=1

||xi − zi||2 =
1

n
||X − Z||2Fro =

=
1

n
||X ′ − U ′F ||2Fro =

1

n
||X − F ′U ||2Fro,

where X is our n × p data matrix, U = [u.1 . . . u.r] is a r × p matrix and

F = [F.1 . . . F.r] is r × n. If we post-multiply all terms by X ′
, we obtain

1
n minF,U ||X ′X − X ′F ′U ||2Fro, whih an also be viewed as minF,U ||Σ̂n −
X ′FU ||2Fro .

As we an understand from one of the expressions above, sine orthogonal

projetions have the best approximation property, ||X−F ′U ||2Fro is minimum

if F ′U is the prinipal omponent set of X trunated to the r−th one. Under
the ondition r = p, Z = X. Sine X and X ′X have the same olumn (and

row) spaes, the same holds also using the �rst r PCs of Σ̂n. This is why if
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we want to approximate Σ̂n with a r < p matrix, the �rst solution we think

about is the extration of its prinipal omponents up to the r−th.
Unfortunately, the approximation problem in the FM setting is di�erent

from the PCA one, beause in the fator model setting there are also relevant

issues onerning identi�ability and estimation. In fat, we immediately en-

ounter relevant problems using this method to estimate strit fator models

(SFM), beause we would have Ŝ = Σ̂n−
∑r

j=1 λ̂iûiû
′
i whih annot estimate

S∗
sine it is exatly the sum of residual prinipal omponents (from r+1−th

to p−th), and so will never be diagonal. This is oherent with the fat that

PCA subsequently maximizes the variane explained by the fators, and

not the ovarianes. Therefore, without further assumptions, extrating r of
p omponents means that the residual matrix will be non-diagonal, and so

that our SFM estimator will be inonsistent ([5℄).

For this reason, lots of fator model spei�ations and estimation meth-

ods have been proposed. Some methods using iteratively PCA for FM es-

timation, like the prinipal fators method, have been developed. Unfortu-

nately, they require an a priori hoie of the number of fators to be inluded

in the model, and they usually are very ine�ient for large sale problems.

In addition, the prinipal fators method is not sale-equivariant, that is,

it is not equivariant under linear transforms of the data. As an alterna-

tive, Maximum Likelihood methods an be used, requiring the assumption

of multivariate normal distribution for the data.

Hene, a natural question arises: how an we establish an asymptoti

onvergene between PCA and fator analysis (FA)? Whih assumptions

are needed? Identifying a fator model struture via PCA requires spei�

assumptions on the eigenvalues of Σ∗
, whih an be imposed as a result of

appropriate assumptions on L∗
and S∗

.

2.5.3 Approximate fator model

The above mentioned problem problem was �rst faed by Chamberlain &

Rothshild in [29℄. They were the �rst to de�ne an approximate fator stru-

ture, i.e. a struture where the residual matrix is allowed to be non-diagonal.

Model (2.14) with this assumption is alled approximate fator model. In

this ontext, the key ondition is a bound on the (r + 1)−th eigenvalue of

matrix Σ∗
, whih results in a bound for the largest eigenvalue of S∗

. This

ondition is neessary to establish the asymptoti equivalene between PCA

and FA. Therefore, the two main points disussed so far, i.e. the need to over

ome the diagonal struture of S∗
and the need of estimating onsistently a

fator model via a standard method as PCA, an �nd a ommon solution.

This theory was born in the �eld of portfolio priing theory. When S∗

is diagonal, model (2.14) is a strit fator model (SFM) struture. Ross

([99℄) derived the SFM struture in the ontext of apital asset priing. He

showed that if Σ∗
is a ovariane matrix referred to asset pries and has suh



2.5. FACTOR ANALYSIS BASED ESTIMATORS 29

a struture, the mean expeted return is linear (i.e. a linear ombination of

fators) beause of the absene of arbitrage opportunities, that is, E(ǫ) = 0.
He proved that the SFM struture an be asymptotially reovered when

n→∞ with bounded error by Prinipal Components. However, if we impose

a diagonal struture for S∗
, the number of fators needed to ensure that S∗

is diagonal would inrease too muh when n→∞ .

Suppose Σ∗
n is a sequene of matries for n→∞. If Σ∗

is positive semi-

de�nite and supn λΣ∗
n,r+1 (the (r+1)−th eigenvalue of Σ∗

n) is �nite, we refer

to (2.14) aross n as an approximate fator model (AFM) struture.

Chamberlain and Rothshild proved in [29℄ that the main harateriza-

tion of the approximate fator struture needed to perform FM estimation

via PCA is:

sup
n
λΣ∗

n,r+1 �nite,

i.e. r of p eigenvalues of Σ∗
diverge when n → ∞. This result means that

under these assumptions the error between the PCA trunated to the r− th

omponent and the theoretial mean (the deterministi part of the model)

is asymptotially bounded by λΣ∗
n,r+1. The proof exploits these assumptions

and the properties of the matrix B′B + I.

The outlined assumption works as an identi�ation ondition for the ap-

proximate fator model: the authors showed that this ondition is su�ient

for the existene of an approximate fator model struture. More, they

showed that the approximate fator struture is uniquely identi�ed extrat-

ing the top r prinipal omponents of Σn, and that the error is bounded by a

funtion of λΣ∗
n,r+1 (and a parameter ontrolling the trade-o� between mean

and variane of the proess).

This pioneeristi work opened the path for a wide literature on FM es-

timation exploiting PCA as an asymptoti estimator. It is an asymptoti

approah where n → ∞, di�erently from the following ones (as the POET

approah), where p varies together with n. We also highlight that a similar

ondition to the su�ient ondition here reported is essential to the estima-

tion of dynami fator models, as explained in [52℄.

For sake of ompleteness we mention two other famous fator model

spei�ations in the eonomi ontext: the three fator model by Fama and

Frenh ([42℄) and the approximate dynami fator model by Stok and Wat-

son ([105℄) (used for eonomi foreasts).

By the way, the work by Chamberlain and Rothshild allows for the

presene of residual ovarianes, but does not speify any struture for the

matrix S∗
. As explained, in large dimensional real data analysis the assump-

tion of diagonal residual matrix is not aeptable. The data generating pro-

ess beomes so omplex that assuming no idiosynrati orrelation among

variables is very unrealisti. However, setting spei� assumptions on the

residual omponent, de�ning a partiular struture, has beome a entral

topi in the reent statistial literature. This is why the onept of sparsity
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for the residual matrix (i.e. the presene of non-zero elements in seleted

positions) ame out.

At the same time, the number of parameters beomes so large that iden-

ti�ability issues arise, espeially when n is not so large. Allowing for the

presene of non-zero residual ovariane, preserving model identi�ability, is

one of the major hallenges in this �eld, as we will study in deep in Chapter

4.

Sparsity assumptions are motivated by the following two reasons:

• a strong interpretability issue supports this approah. Fator model

approah �nds out a small set of unorrelated latent (unobserved) vari-

ables able to explain most of the orrelations among a large set of ob-

served variables. It means that, by removing the orrelations due to

some ommon explaining fators, we are able to identify those pairs

of variables whih are so orrelated that their residual ovariane is

still non-zero. This an be partiularly helpful in a few appliation

ontexts, suh as hypothesis testing, portfolio analysis, and maroeo-

nomi analysis. We are thus able to identify also blok-wise orrelation

strutures. The sparsity pattern of the ovariane matrix beomes a

key to data interpretation, as well as the ovariane between variables

and fators, in order to understand the nature of variables and their

relationship.

• an identi�ability issue. The number of parameters is now p(r+1)+ s,
s ≪ p(p + 1)/2 , whih is still pretty fewer than p(p + 1)/2 , allowing

a more �exible interpretation and a better onditioning (a sparse esti-

mate is better onditioned than the sample ovariane matrix, sine it

is further from ollinearity).

However, exploring onditions ensuring identi�ation of FM with spei�

sparsity assumptions on the residual omponent is a really hard task.

2.5.4 POET estimator

We are now going to desribe a very reent ontribution to ovariane matrix

estimation. Fan, Liao and Miheva in their paper ([45℄) provide in the time

series setting a large ovariane matrix estimator whih plays a entral role

for our dissertation. Their estimator, alled POET (Prinipal Orthogonal

omplEment Thresholding estimator), is a PCA-based estimator, but it also

has the harateristis of a sparsity-based estimator. The underlying model

assumptions presribe an approximate fator model for the data, thus allow-

ing to reasonably use the trunated PCA of the sample ovariane matrix.

Furthermore, at the same time, they impose sparsity in the sense of [15℄ (see

paragraph (2.4)) to the residual matrix.
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If we refer to (2.14), S∗
is approximately sparse in the sense of (2.9),

while L∗
has a small number of very spiked eigenvalues, growing with p at

rate O(p), and the rest of eigenvalues are asymptotially negligible. This

feature, i.e. the pervasiveness of a few spiked eigenvalues, is the distintive

trait of their model, whih allows to onsistently reover L∗
via PCA. At

the same time, they reover the sparse omponent imposing a bound on

the approximate sparsity parameter (2.11), whih allows them to reover

S∗
applying a thresholding algorithm to the orthogonal omplement of the

trunated PCA.

Deriving the performane of the most reent numerial estimator we will

desribe in Chapter 4 under the outlined onditions of POET estimator,

omparing both performanes, is one of the main goals of our thesis. A

related one is the attempt to relax in some way the assumption of spikiness

for the eigenvalues of L∗
, developing an appropriate estimator.

We immediately outline that rank hoie in this ontext is a relevant

issue, whih is typial for rank minimization programs, like PCA. Rank min-

imization allows to improve onditioning, redue the number of parameters

and ompress information, thus improving interpretability, whih is ruial

in high dimensions. However, we know that ovariane estimators based on

pure rank minimization su�er from rank de�ieny (see for example [119℄

and [11℄). What is more, rank is a non-onvex funtion, and this auses

the impossibility to give any mathematial guarantee for model reovery.

In POET setting, the authors selet the latent rank of trunated PCA us-

ing standard riteria from Bai and Ng (2002) ([6℄). We will show in our

simulations (Chapter 5) that POET an su�er from rank de�ieny in high

dimensions. Another relevant appliation exploiting PCA struture is [71℄,

where the authors impose the presene of one leading prinipal omponent

and selet a subset of variables by a method alled sparse PCA. Reovery is

performed given that

pn
n → 0, but pn an be muh larger than n. Even if

this model is e�etive for some time series data (like ECG data), imposing

the latent rank equal to 1 is not usually appropriate.

We now desribe in detail the model setting of POET, keeping model

struture (2.14) in mind. Here we will use T instead of n, sine we are in a

time series model setting.

We report the two main features of POET setting. The spetral deom-

position of Σ∗
(positive de�nite symmetri squared p-dimensional matrix) is

UΛU ′
. The olumns of U and B (both p × r matries) are denoted by uj

and b̃j , j = 1, . . . , r, respetively.

Proposition 2.5.1 ([45℄ Proposition 1). All the eigenvalues of the r × r
matrix B′B are bounded away from 0 for all large p. Under the assumptions

cov(ft) = Ir and B′B diagonal (anonial ondition of SFM) we have:

|λj − ||b̃j ||2| ≤ ||S∗||, j ≤ r
|λj | ≤ ||S∗||, j > r.
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In addition, for j ≤ r, lim infp→∞ ||b̃j ||2/p > 0.

This proposition presribes that the eigenvalues of the low rank om-

ponent L∗
(equal to BB′

) are pervasive, i.e. they grow at rate O(p) while
p → ∞. This entails that the top r eigenvalues of Σ∗

are pervasive, while

the remaining p − r asymptotially vanish. The largest eigenvalue of S∗
is

the relevant bound for the top r eigenvalues of Σ∗
minus the orresponding

ones of L∗
as well as for the remaining p − r eigenvalues of Σ∗

. Note that

in the setting of AFM ([29℄), di�erently from here, p is �xed.

Proposition 2.5.2 ([45℄ Proposition 2). Under the assumptions of Propo-

sition 1, if ||b̃j ||rj=1 are distint, then ||uj − b̃j/||b̃j |||| = O(p−1||S∗||).

This proposition states that if the olumns of B are distint, the distane

between the top r eigenvetors of Σ∗
and the normalized eigenvetors of L∗

are bounded by a rate proportional to p−1||S∗||.
Proposition 1 and 2 together state that matrix U and matrix B are

approximately the same if ||S∗|| = o(p).

Now, the thresholding estimator by Bikel and Levina ([15℄) desribed in

(2.4) omes into play. The outlined bound is ensured imposing an approxi-

mate sparse struture on S∗
. Sparsity parameter (2.11) is de�ned for some

q ∈ [0, 1] as follows:

mp = max
i≤p

∑

j≤p

|σij |q. (2.17)

For standard properties of matrix norms, we have:

||S∗|| ≤ ||S∗||1 ≤ max
i

p
∑

i=1

|sij |q(siisjj)(
1−q
2

) = O(mp), (2.18)

given that sii are bounded ∀i. So, ||S∗|| ≤ O(mp).

It is now lear that if mp = o(p), the PCA of Σ̂n allows to perfetly

identify the eigenvalues and the eigenvetors of Σ∗
under these assumptions.

In partiular, the �rst r prinipal omponents of Σ∗
are approximately the

same as the fator loadings. We emphasize the relevane of this point, whih

represents one of the most important innovations in [45℄. Here the asymptoti

equivalene between PCA and fator analysis is established by applying a

onditional (to fators) sparsity model to the residual matrix, provided that

p is enough large. The assumption mp = o(p) will be modi�ed in order to

study the ase of generalized spiked eigenvalues.

The key point in their proof is that under these assumptions the eigen-

values of B′Σ−1B are bounded. Thus, the relative norm of ||Σ̂−Σ||, de�ned
as ||Σ̂−Σ||Σ = p−1/2||Σ−1/2Σ̂Σ−1/2− Ip||Fro, is bounded, anelling out the

urse of high dimensionality introdued by B (see paragraph (2.2), Theorem

2.2.1).
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As in [15℄, the sparse omponent S∗
is then onsistently estimated by

thresholding, relying on the results desribed in setion (2.4). They de�ne

for eah i 6= j an adaptive threshold ([18℄) of the form

τij = CωT

√

θij,

where

ωT =
1√
p
+

√

log(p)

T

and

θ̂ij =
1

T

T
∑

t=1

(ŝitŝjt − ŝij)2,

with

ŝij =
1

T

T
∑

t=1

ŝitŝjt

and

ŝit = xit − l̂it,

where l̂it = b̂ri f̂
r
t is estimated via the PCA of Σ̂n up to the r−th omponent.

This approah holds for su�iently large C > 0. ωT (whih is the uniform

rate of onvergene ofmaxi≤p,j≤p |ŝij−sij|, as in [15℄ and [18℄) is a dereasing
sequene in p and T . Note that term

1√
p is due to the estimation of the

unknown fators and is usually unavoidable.

Any generalized thresholding funtion h(z) (inluding the soft-thresholding
operator) suh that hij(z) = 0 when |z| ≤ τij and |hij(z)−z| ≤ τij otherwise
(see ([3℄)) an be e�etively used. Note that thresholding is applied only on

the o�-diagonal elements. The thresholded estimate of the residual matrix

S∗
is thus ŜT

r̂ = hij(ŝij).

The sequential approah to ompute POET estimator is the following.

First, perform PCA on Σ̂n, extrating the top r omponents (eigenvalues

and eigenvetors). So, L̂r̂ = UrΛrU
′
r, where Λr is a r × r diagonal matrix

ontaining the top r eigenvalues of Σ̂n, and Ur is the p× r matrix ontaining

the assoiated eigenvetors. l̂it = b̂ri f̂
r
t is thus simply the i × t entry of L̂.

S∗
is estimated by applying as desribed an adaptive thresholding step on

the matrix Ŝ = Up−rΛp−rU
′
p−r (the prinipal orthogonal omplement of Σ̂n),

where Λp−r ontains the remaining p−r eigenvalues, and Up−r the assoiated

eigenvetors. This is why POET ontains in its name the thresholding of

the prinipal orthogonal omplement. Here is the expression of POET:

Σ̂POET,r̂ = L̂r̂ + ŜT
r̂ .

As pointed out in the introdution to this paragraph, the rank hoie is a

relevant issue. The number of diverging eigenvalues, i.e. the latent rank r is
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determined in a data-driven way minimizing appropriate penalty funtions

whih were �rst desribed in [6℄. These funtions of p and T must satisfy the

following onditions: g(T, p) = o(1) and minp,t g(T, p) → ∞. In this way,

POET is estimated with a data-driven rank r̂. We refer to [45℄, paragraph

(2.4), for the details.

POET is a non-parametri estimator. At the same time, it requires some

distributional assumptions to perform onsistent reovery. We now list for

sake of ompleteness the most relevant tehnial assumptions on fators and

residuals:

1. Stritly Stationarity of (ǫt, ft)t≥1.

2. Non-orrelation between ǫt and ft, λmin(S
∗) > c1, ||S∗||1 < c2,

min var(ǫitǫjt) > c1.

3. Tails of ft and ǫt:

P (|ǫit| > s) ≤ exp(−s/b1)r1 , i ≤ n

P (|fjt| > s) ≤ exp(−s/b2)r2 , j ≤ r.

We note that bounds on the minimum eigenvalue and the l1 norm of S∗

are needed. Further assumptions inlude strong mixing between the sigma-

algebras generated by [(ft, ǫt) : t ≤ 0] and [(ft, ǫt) : t ≥ T ] and some regular-

ity onditions to estimate loadings and fator sores.

Most of these assumptions will not be neessary in our numerial ontext.

Anyway, we will use part of them to study the behaviour of our numerial

estimator in the POET ontext. Part of the tehnial onditions were derived

in a previous paper by Fan, Fan and Lv ([44℄). There, the authors analyze the

same setting deriving the orrespondene between PCA and fator analysis

without thresholding the residual omponent. Another paper by Fan, Fan

and Lv ([43℄) studied the same setting but with observable fators.

The two main theorems of [45℄ state that, under all desribed assumptions

and supposing γ−1 = 3r−1
1 +1.5r−1

2 +r−1
3 +1, log(p) = o(T γ/6) and T = o(p2),

we have:

||ŜT
r̂ − S∗|| = Op(ω

1−q
T mp)

||Σ̂POET,r̂ −Σ∗||Σ = Op

(√
p log p

T
+mpω

1−q
T

)

(2.19)

||Σ̂POET,r̂ − Σ∗||max = Op(ωT )

If mpw
1−q
T = o(1), ŜTr̂ and Σ̂POET,r̂ are non-singular with probability ap-

proahing 1:

||ŜT−1
r̂ − S∗−1|| = Op(ω

1−q
T mp)

||Σ̂−1
POET,r̂ − Σ∗−1||=Op(ω

1−q
T mp)
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The assumption T = o(p2) is neessary to estimate the rT fator load-

ings. It means that reovery is e�etive until p log p ≫ T . The assumption

log(p) = o(T γ/6) is neessary for reovering the sparse omponent.

For the following of our dissertation we report two tehnial results of

[45℄ desribing model-based relationships (in bold). The �rst one, whih was

proved in [44℄, presribes, under all desribed assumptions, that the following

laims hold:

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitfjt −E(fitfjt)

∣

∣

∣

∣

= Op

(

1√
T

)

(2.20)

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

sitsjt −E(sitsjt)

∣

∣

∣

∣

= Op

(

log p√
T

)

(2.21)

max
i,j≤r

∣

∣

∣

∣

1

T

T
∑

t=1

fitsjt

∣

∣

∣

∣

= Op

(

logp√
T

)

. (2.22)

Thanks to this result, it is possible to prove that, under all desribed

assumptions, ||Σ̂n − Σ∗|| = o(p) with a rate proportional to O( p√
T
), i.e. the

r−th largest eigenvalue of Σ̂n grows at rate O(p) with probability approah-

ing 1:

||Σ̂n −Σ∗|| = O

(

p√
T

)

. (2.23)

For the following of our study, we here de�ne the generalized pervasive-

ness ontext for α ∈ (0, 1] as follows ([45℄, p. 656):

De�nition 2.5.1. The eigenvalues of Σ∗
follow a α-generalized spikiness

struture if and only if all the eigenvalues of the r × r matrix p−αB′B are

bounded away from 0 and ∞ as p→∞.

If α = 1, we fall into the POET setting.

Appliations of POET are very wide. We expliitly mention appliations

on �nanial data. In Chapter 5, we will show an appliation to banking

supervisory data where the performane of our numerial estimator will be

ompared to the one of POET.

We shall use repeatedly these results on the sample ovariane matrix for

proving the rates of our numerial estimator under POET assumptions and

in the generalized spikiness ontext. Non-asymptoti large ovariane matrix

reovery under generalized assumptions for the eigenvalues of the low rank

matrix is one of the goals of the rest of our thesis. In fat, POET approah

is elegant and e�etive, but spikiness in real appliations is not so usual.

What is more, in this way it is di�ult to ath the proportion of variane

explained by the fators, sine the model does not provide any attention

to that. In addition, when p is not enough large, the errors ould be still

orrelated (as pointed in the disussion of [45℄ by Montanari).
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To onlude, we note that rank seletion also represents a relevant issue.

If p is large, setting a large rank would ause the estimate to be non-positive

de�nite, while setting a small rank would ause a too relevant variane loss.

Using IC riteria from Bai and Ng (2002), as pointed out in the disussion of

[45℄ by Yu and Samworth, if the eigenvalues are not really spiked at rate O(p),
the probability to underestimate the latent rank does not asymptotially

vanish. This is why we are going to derive a method intrinsially deteting

the latent rank, without applying any existing riterion. We are going to do

that in the non-asymptoti ontext, where the absolute losses are bounded

given �nite values for relevant parameters.



Chapter 3

Covariane regularization and

onvex analysis: numerial and

omputational aspets

The aim of the present hapter is to explain the rationale behind the numeri-

al methods needed to estimate the ovariane matrix under the assumption

of approximate fator model with sparse residual for the data.

Suh a data struture has beome very popular in reent years and has

found relevant appliations in various �elds like, among others, image re-

onstrution, MRI (Magneti Resonane Imaging) data, �nanial portfolio

seletion and eletrial engineering. The statistial hallenge lies in the need

to estimate a latent struture summarizing a huge number of variables, even

starting from a number of observations omparable or smaller.

Let us suppose the population ovariane matrix of our data is the sum

of a low rank and a sparse omponent. Suppose we have a data matrix

X = [xij ], where i = 1, . . . , n are the observations and j = 1, . . . , p are the

variables. The p− dimensional random vetor x has a low rank plus sparse

struture if its ovariane matrix Σ∗
satis�es the following relationship:

Σ∗ = L∗ + S∗, (3.1)

where:

• L∗
is a positive semide�nite symmetri p×p matrix with at most rank

r ≪ p;

• S∗
is a positive de�nite p×p sparse matrix with at most s≪ p(p−1)/2

nonzero elements.

Let us suppose L∗ = UDU ′ = BB′
, where B = UD1/2

, U is a p × r
matrix, D is a r × r diagonal matrix, with djj > 0, ∀j = 1, . . . , r. Suppose
that our p× 1 random vetor Xi, i = 1, . . . , n, has the following struture:

37
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Xi = Bfi + ǫi, (3.2)

with

fi = Nr(0, Ir); (3.3)

ǫi = Np(0, S
∗), (3.4)

where fi is a r × 1 random vetor, and ǫi is p× 1 random vetor.

Xi is assumed to be a zero mean random vetor, without loss of generality.

Σ̂n = 1
n

∑n
i=1XiX

′
i =

1
nX

′X is the p × p sample ovariane matrix, where

X is the n× p data matrix.

If we set x = Xi, it is easy to observe that x follows a low rank plus

struture:

E(xx′) = E((Bf + ǫ)(Bf + ǫ)′) =

= E(B′f ′fB) + E(Bfǫ′) + E(ǫB′f ′) + E(ǫǫ′) = (3.5)

= BB′ + S∗ = Σ∗

under the usual assumption f ⊥ ǫ, i.e. cov(f, ǫ) = E(fǫ′) = E(ǫf ′) = 0

(r × p null matrix).

If we assume a normal distribution for f and ǫ, we know that the matrix

W := Σ̂n− (BB′+S∗) is a re-entered Wishart noise, i.e. it is distributed as

a zero-mean Wishart (refer to Chapter 2 paragraph (2.1) for detailed expla-

nations on the Wishart distribution). However, the normality assumption is

not essential in the �nite sample ontext.

The main aim of this Chapter and of the entire work is to provide an

alternative approah to ovariane matrix estimation respet to POET un-

der a similar data struture, deriving the neessary assumptions to perform

identi�ability and reovery. This approah is based on numerial analysis,

and exploits the theory of non-smooth onvex optimization provided by [98℄

and [28℄.

As suggested by the data struture, the method we are going to desribe

should at the same time onsistently estimate the ovariane matrix and

ath sparsity and spikiness in the best possible way. The starting point for

our study is o�ered by numerial analysis, whih summarizes the problem

of our interest in a natural way. As disussed in the previous hapter, this

approah has several advantages, like a better onditioning (for the presene

of the low rank omponent), a smaller number of parameters (pr+ s against
p(p−1)

2 ), a better interpretability of the output, both on the low rank side

(degree of ovariane explained by the fators) and on the sparse side (the

sparsity pattern maps the most relevant relationships among variables).

However, even if the numerial problem an be e�iently solved by using

subgradient tehniques, it is not straightforward to investigate the statistial

properties of these estimators. Non standard tools of algebrai geometry
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([60℄) are required to derive identi�ability onditions, as well as relevant

results of random matrix theory are neessary to establish onsisteny ([39℄).

It is relevant that the statistial performane in terms of the ovariane

matrix as a whole and in terms of the two omponents (rank and sparsity

pattern) separately onsidered are not neessarily aligned. As we will see,

the loss funtion here depends on the Lagrangian dual theory of non-smooth

funtion, thus implying that the loss funtion of the two omponents (sparse

and low rank) separately onsidered is referred to the sum (i.e. the estimated

ovariane matrix), thus di�ering from the usual (Frobenius) loss of the

estimated ovariane matrix.

Our problem an essentially be stated as

min
L,S

1

2
||(L+ S)−Σn||2Fro + λrank(L) + ρ||S||0, (3.6)

where ||S||0 is the number of nonzero elements, and rank(L) an be seen as

||diag(D)||0, given that L∗ = UDU ′
. This is a ombinatorial problem, whih

is known to be NP-hard, sine both rank(L) and ||S||0 are not onvex. A

very well known onvex relaxation of problem (3.6) is

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (3.7)

where λ and ρ are non-negative threshold parameters. ||S||1 =
∑n

i=1

∑n
j=1 |sij |

is the l1 norm of S, while ||L||∗ =
∑r

i=1 |di| =
∑r

i=1 di = ||diag(D)||1 is the

nulear norm of L∗
. Basi referenes are [108℄ for the former and [46℄ for the

latter.

More in detail, the study and implementation in statistis of the nulear

norm l∗ is due to [49℄. Problem (3.7) is a penalized least squares program,

where the penalty is omposite and non-smooth. For the reasons explained

before, problem (3.7) is also often referred to as a regularization problem.

From a numerial point of view, it is an approximate unonstrained inverse

matrix problem with two unknowns, L and S. The key to its solution will

be to disentangle the problem in two easier related problems, one in L and

the other in S. We will deal with the onstrained version of (3.7), imposing

that S and L+ S are positive de�nite, and L is positive semide�nite.

In this Chapter, we are going to desribe the genesis of problem (3.6),

showing how the l1 and l∗ heuristis ame out. [36℄ proved that for most

underdetermined systems the l1 norm detets the sparsest solution, while [97℄

proved that the nulear norm solution is the one with minimum guaranteed

rank. In setion (3.1) the rationale behind both problems is analyzed from

the numerial point of view. In setion (3.2) the omputational aspets

related to solving problem (3.7) are shown.
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3.1 Nulear norm and l1 norm regularization: an

historial review

In this setion we are going to desribe the numerial approah to ovari-

ane matrix estimation. The key argument for this approah rises from the

need of regularizing the ovariane matrix. Respet to the PCA based ap-

proah of [45℄, this alternative provides a way to numerially estimate the

two omponents and their sum, without imposing the pervasive ondition

on the eigenvalues of L∗
(and Σ∗

). The other main issue of POET approah

is that the rank is hosen aording to some information riteria, while we

would like an approah automatially deteting BOTH the low rank and the

sparsity pattern.

Combinatorial problem (3.6) is the most natural way to formalize this

searh. However, (3.6) is omputationally intratable, and an be approahed

replaing the omposite non onvex penalty λrank(L)+ρ||S||0 with the om-

posite non smooth penalty λ||L||∗ + ρ||S||1. We an say that the numerial

approah here essentially onsists in model seletion via onvex optimiza-

tion, where onvexity is needed to ahieve a unique minimum. The statis-

tial properties of estimates will be derived using the tools of non-smooth

mathematial analysis and random operator theory (funtional analysis).

We are now going to brie�y desribe the history of this minimization (or

optimization or regularization) problems, showing the various ontext where

l1 and nulear norm regularization problems arose. We start with l1 norm

(3.1.1) and we proeed with l∗ norm (3.1.2). In (3.1.3) we then desribe how

the ombined use of both heuristis ame out.

3.1.1 Cardinality minimization problem: l1 norm heuristis

As outlined also in Chapter 2, a entral role in numerial analysis is played

by ill-posed inverse problems (paragraph (2.2)). The genesis of the l1 norm

problem dates bak to the problem of reovering a sparse vetor from an

observed full vetor. The most famous appearane omes probably from

[108℄ in the ontext of regression modelling.

In that famous paper by Robert Tibshirani (1996), the problem of selet-

ing signi�ant regressors in the "Big Data" ontext, when p > n, is e�etively
solved by shrinking towards zero the irrelevant regression oe�ients. The

resulting estimator of regression oe�ients is alled LASSO (Least Absolute

Shrinkage and Seletion Operator). The LASSO problem an be formalized

in the following terms:
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(â, b̂) = min
a,b

n
∑

i=1

(yi − a−
p
∑

j

bjxij)
2

(3.8)

subjet to

p
∑

j

|bj | ≤ t.

where t is a tuning parameter.

Assuming without loss of generality that x̄j = 0 for all j = 1, . . . p and

that ȳ = 0, a an be omitted. The same problem is substantially equivalent

(see [22℄, note 1) to

min
b∈Rp

1

2
||y −Xb||Fro + ρ||b||1, (3.9)

where ||b||1 =
∑

j |bj |, ρ is a regularization parameter depending on t, and 1
2

is an arbitrary sale term hosen for omputational onveniene.

In the language of numerial analysis, problem (3.9), i.e. the l1 reg-

ularization problem, an be intended as a quadratially onstrained linear

problem (QCLP) or a quadrati program (QP).

The l1 heuristis was born in the ontext of signal/image reovery. Tib-

shirani's ontribution was of fundamental importane in the regression on-

text, sine it provided a substantial improvement not only upon OLS (in

terms of predition auray and interpretability) but also upon ridge re-

gression (whih is simply (3.9) with ||b||22 in plae of ||b||1, also known as

Tikhonov regression or l2 regularization problem) and upon subset seletion

tehniques. In fat, the LASSO is more stable and interpretable.

Tibshirani showed that, under the ondition X ′X = Ip,

b̂j = sign(b̂0j )|b̂0j − γ|, j = 1, . . . , p,

where b̂0 is the usual OLS estimate, γ is determined by the ondition

∑ |bj | =
t and X is the n × p design matrix. However, this is a very speial irum-

stane, and the strength and amplitude of the onditions on X under whih

model seletion is e�etive is still under investigation, as well as the validity

of solution algorithms. A very well known algorithm for LASSO estimation

is LARS (Least Angle Regression, [41℄).

After Tibshirani's ontribution, the literature on model seletion via l1
minimization grew up. In [22℄ the problem of model seletion via l1 opti-

mization was formalized very elegantly.

Let us onsider the linear model y = Xb + z, where y = (y1 . . . yn)
′
, b is

the p− dimensional vetor of oe�ients and z = (z1 . . . zn)
′
is a vetor of

independent errors, zi ∼ N(0, σ2).
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In the p > n setup, it is di�ult to detet whih are the oe�ients bi,
i = 1, . . . , p representing the "right" variables to determine the values in y.
A standard approah to �nd b̂ is

min
b∈Rp

1

2
||y −Xb||22 + ρσ2||b||0, (3.10)

where ||b||0 is the number of non-zero omponents in b.
A number of model seletion riteria in the form (3.10) has been devel-

oped. However, (3.10) is omputationally intratable (NP-hard) beause it

requires exhaustive searh over all subsets of olumns of X, thus having a

omplexity of 2p (if p ∼ n).
The most popular onvex relaxation of (3.10) is the LASSO:

min
b∈Rp

1

2
||y −Xb||2 + ρσ2||b||1, (3.11)

where ||b||1 =
∑p

i=1 |bi| and λ is a regularization parameter whih ontrols

the omplexity of the model. We will see why problem (3.11) is the most

appropriate onvex relaxation of problem (3.10).

The most important ondition for reovery, as outlined in [22℄, is that

the preditors are not highly orrelated. This is summarized in the notion of

oherene, whih is the maximum orrelation between unit-norm variables

and is de�ned here as

µ(X) =
∑

1≤i<j≤p

| < Xi,Xj > |, (3.12)

i.e. the maximum inner produt between pairs of preditor variables. When

the vetor b has only s non-zero omponents, it is said to be s- sparse. In [22℄
it is proved that assuming appropriate bounds for the values of µ and s and
for appropriate values of λ, the error distane is bounded with rate O(log p).
It is remarkable that we need to enfore the maximum inner produt among

the olumns of X, i.e. the maximum orrelation between preditors, for

identifying the model. The bound on µ is an example of restrited isometry

property, whih will be neessary to bound the error for all ovariane matrix

models taken into aount.

The l1 minimization, as explained in [27℄, was �rst used for sparse signal

reonstrution. This tehnique an be e�etively used in a large number of

�elds, among whih we mention the very reent appliations of gene expres-

sion data. This setting also inludes relevant appliations on system ontrol,

digital image reonstrution, sparse graphs. Suppose we want to reover a

n× 1 signal x0, from an inomplete set of measurement y = φx0, where y is
m× 1, φ is m× n, with m≪ n. Φ represents the oe�ient sequene of the

signal in the appropriate basis.

The most immediate approah is by solving the l0 minimization problem:

min
x∈Rn

||x||l0 (3.13)
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under y = φx, where ||x||0 =
∑

i 1(xi 6= 0).
Even if this problem would be identi�ed if ||x0||l0 ≤ m/2, problem (3.13)

is intratable beause ||x||l0 is non onvex. Therefore, the most used onvex

relaxation of problem (3.13) for signal detetion is again the l1 regularization
problem:

min
x∈Rn

||x||l1 under y = φx. (3.14)

This appliation is relevant, not only historially, but also beause it shows

that l1 heuristis started to be used far from the ontext of statistial mod-

elling.

Before going on with our brief historial desription, it is worth under-

lining why onvex relaxations make problems tratable. A standard theo-

rem of alulus states that a su�ient ondition for X to be a minimum of

f(X) is that the seond derivative of f(X) is stritly positive in an open

domain. Sine (stritly) onvex funtions always have a (stritly) positive

seond derivative, onvexity is essential for optimization beause it ensures

that we �nd a global optimum. If the funtion is stritly onvex, the mini-

mizer is also unique.

In the ase of a matrix funtion f(X), the su�ient ondition beomes

the positive de�niteness of the Hessian matrix of f . If the funtion has two

or more arguments, it must be onvex respet to all arguments in order to

have a global minimum. In this way, ritial points, i.e. points satisfying

df = 0, are also minima. We an thus exploit the Lagrangian dual theory.

Another important appliation of l1 heuristis, whih is exatly the op-

posite respet to the signal detetion problem, is the reovery of a sparse sig-

nal representation from overomplete ditionaries in the harmoni ontext.

Here, the signal y (n × 1) must be reast from an overomplete represen-

tation (overomplete ditionary) x having dimensions m × n, with m > n.
The model in this ase is: y = Φx, where Φ is n ×m. The hallenge is to

reast the orthogonal basis losest to signal y. In linear algebra, these are

underdetermined linear systems, i.e. linear systems with in�nite solutions.

David Donoho ([36℄) was the �rst to prove that among the in�nite solu-

tions, l1 minimization reovers the sparsest one. The fundamental neessary

ondition is the following restrited isometry property:

(1− ǫ)||x||2 ≤
√

π

2n
||Φx||1 ≤ (1 + ǫ)||x||2.

Relevant results in this �eld show that a number of non zero elements in x
proportional to

√

n
log(m) is usually enough to �nd a unique solution. Sur-

prisingly, the reovery an be suessfully done for a wide range of problems

having a relatively small number of samples, until n = O(m1/4 log5/2(m))
([37℄), if y is sparse and the observations are seleted uniformly at random.

A relevant appliation desribed by Candes and Tao in ([23℄) deals with

the problem of reovering an input vetor from orrupted measurements.
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Their problem is y = Af + e, where f is the unknown m× 1 input vetor, y
is the observed n× 1 vetor, e is the n× 1 error and A is the m× n oding

matrix. Their solution to reover f is

min
g∈Rn

||y −Ag||1. (3.15)

This problem is also alled error orretion problem.

We note that here we have both approximation and reovery from highly

inomplete measurements. The reovery is e�etive with overwhelming prob-

ability if the size of the support of e is bounded. Theorems are proved using

the onept of restrited isometry, whih impose a bound to the inoherene

(intended as the distane from being an orthonormal system) of the n input

vetors fi, where f is m×1 and i = 1, . . . , n. Their problem an be rewritten

as

min1′t, −t ≤ y −Ag ≤ t, (3.16)

where t ∈ Rm
and g ∈ Rn

, and an be reast as a linear problem with

inequality onstraints and solved e�iently using standard algorithms ([16℄).

Formulation (3.16) will be very useful for our purpose.

We �nally mention an important lemma ([23℄, Lemma 3.1) whih de-

sribes the neessary onditions for obtaining a unique minimizer from prob-

lem (3.15).

To sum up, l1 heuristis allowed the rise of a new sampling theory (muh

fewer samples neessary than before), whih results in a new data aquisition

protool. As pointed out in [22℄, l1 regularization an be de�ned as the mod-

ern least squares method, for the variety of appliations and the apability

of providing solutions in the Big Data ontext.

To onlude this setion, we give a remark on solution methods for l1
minimization problems. An exhaustive review of existing algorithms for

the l1 regularization problem (with spei� referene to the fae reognition

ontext) is provided in [115℄. We want to emphasize here the importane of

Iterative Shrinkage Thresholding Algorithms (IST). These algorithms were

born in the vetor denoising ontext. The �rst approah to solve this issue

was to set to zero too small entries (whih is exatly the shrinkage approah).

This ould be done solving the usual problem:

min
x∈Rn

φ(x) =
1

2
||Ax− y||2 + ρτC(x) (3.17)

If C is proper and onvex and φ is stritly onvex, then there is a unique

minimizer. If A = I, we are in the pure denoising ontext, and φ(x) is always
stritly onvex provided that C(x) is.

This approah moves from the work of a Frenh mathematiian, J.J

Moreau, who �rst proposed the onept of proximal mapping ([81℄, [83℄).

Problem (3.17) has not to be neessarily solved using C(z) = ||z||1 (l1 norm).
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It an be solved using C(z) = ||z||2 (ridge), C(z) = ||z||∞ or C(z) = ||z||0
(l0 norm).

The solution to problem (3.17) was shown to be

xk+1 = Φ ρ
α

(

xk −
1

α
A′(AXk − y)

)

(3.18)

where A′(AXk − y) is simply the gradient ∇1
2 ||Ax − y||22 in xk, and Φ is

the thresholding operator with parameter

ρ
α . This is the proximal mapping

method (reently been proved to be equivalent to the projeted gradient ap-

proah, see [50℄). If c(z) = ||z||1 (3.18) is alled soft-thresholding operator, if

c(z) = ||z||0 (3.18) is alled hard-thresholding operator. The basi shrinkage

solution algorithm is alled ISTA (Iterative Shrinkage Thresholding Algo-

rithm, see [35℄). This approah has been easily extended to the nulear

norm regularization problem.

This algorithm an be equivalently seen in four di�erent ways: as an

Expetation-Maximization (EM), a Minimum-Maximum (MM), a Forward-

Bakward Splitting and a Separable Approximation algorithm. For details

we refer to [50℄.

Finally, we mention Augmented Lagrangian Methods and proximal gra-

dient algorithms, whih will be ruial for the solution of our problem (3.7).

We note that in this ontext the ALM and the proximal gradient solution

oinide. The fastest solution algorithm, as we will see, is FISTA (Fast

Iterative Shrinkage Thresholding Algorithm, [10℄).

3.1.2 Rank minimization problem: nulear norm heuristis

We now move to brie�y explain the history of l∗ heuristis. Its genesis and

use in statistis is muh more reent than the one of l1 heuristis. This topi
was �rst deeply studied in the PhD thesis of Maryam Fazel ([49℄). That work

explains widely how l∗ heuristis an be used for matrix rank minimization

problems.

The �rst relevant appliation in statistis an be found in [24℄. There

l∗ is e�etively used for exat matrix ompletion. The underlying problem

moves from a very well-known ase study: the Net�ix prize problem. The

Net�ix prize was an award given to those who were able to set up the best

predition model for movie rating. The Net�ix dataset was omposed by a

large number of movies and a large number of movie ratings. The statistial

problem was that most of ratings onerned a small number of movies. This

resulted in a matrix where around 99 per ent of entries were missing, sine

many ratings were empty.

In this ontext, it is natural to seek for the low rank matrix whih best

approximates the observed matrix. This equals to reover a matrix from a

sample of its entries. Suppose we have a squared p×p matrixM with rank r
having a fration of entries missing or orrupted. Call Ω the set of loations
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orresponding to the observed entries suh that i, j ∈ Ω if and only if Mij is

observed. The original problem to solve is

min rank(X) subjet to Xi,j =Mij , (i, j) ∈ Ω. (3.19)

This problem is known to be NP-hard (rank(X) is nononvex). Even if some

good algorithms exist ([47℄), they are of very little pratial use, sine they

require doubly exponential omputational times in p.
As Fazel shows in her thesis ([49℄) an e�etive onvex relaxation to solve

this problem is

min ||X||∗ subjet to Xi,j =Mij , (i, j) ∈ Ω, (3.20)

where ||X||∗ =
∑p

i=1 ||σi(M)|| and σi(M) is the i-th largest singular values

of M . This is why for positive semide�nite X, problem (3.20) beomes:

min trae(X) subjet to Xi,j =Mij , (i, j) ∈ Ω, X � 0, (3.21)

where the symbol� denotes positive semi-de�niteness (≻ will denote positive

de�niteness).

In [16℄, problem (3.21) is shown to be reast as a semide�nite program

(SDP) exploiting the fat that the dual norm of the nulear norm is the

spetral norm. In partiular, it an be written as:

min
L,W1,W2

1

2
(trace(W1) + trace(W2)), s.t. (3.22)

[

W1 L
L′ W2

]

� 0.

In [24℄, Candes and Reht de�ne a very intuitive haraterization of

the matries it is possible to reover via this method. Consider a real-

valued retangular matrixM . Let its singular value deomposition (SVD) be

∑r
i=1 σiuiv

′
i. If ui, i = 1, . . . , r (left singular vetors ofM) and vi, i = 1, . . . , r

(right singular vetors of M) are seleted uniformly at random from all sets

of r orthonormal vetors, the SVD is alled random orthogonal model. Note

that no ondition is plaed on the singular values σi(M), sine their magni-

tude is not relevant for reovery.

Candes and Reht show that under the random orthogonal model, if the

number of samples n ≤ Cp5/4r log n, M is reovered by (3.20) with very

high probability. If r ≤ n1/5, the ondition beomes n ≤ Cp6/5r log n. The
strength of bound is proved to depend not only on p, r and n, but also on

the singular vetors of M . If the singular vetors are highly onentrated

in few positions, it beomes impossible to reover M from a sample of its

entries. This is why they de�ne the oherene quantity for the p× r matrix

of left singular vetors U respet to the standard basis:

µ(U) =
p

r
max
1≤i≤p

||PUei||. (3.23)
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µ(U) ranges from 1 (if vi are spanned by vetors whose entries are

√

1/p)
to n/r (if the basis of U ontains any standard basis element). In the same

way they de�ne µ(V ) for the matrix of right singular vetors. They then

prove that under a bound on max(µ(U), µ(V )) and on the maximum entry

of

∑

1≤i≤r ukv
′
k, the previous bound an be generalized.

The onept of oherene, whih is also referred to as inoherene (whih

is the opposite) will play a entral role in our ovariane matrix reovery.

In [24℄ it is also showed whih matrix subspaes satisfy these onditions

and whih analytial onditions on the subgradient of ||X||∗ are neessary

to ensure that (3.20) is the unique minimizer (Lemma 3.1). This result,

together with the analogous one holding for the l1 norm, will be a key proof

tool in the ovariane matrix ontext.

From a mathematial point of view, we are dealing for both heuristis

(l1 and l∗) with underdetermined linear systems. The task is to �ll missing

entries, in a situation where a large fration of entries (or elements in the

vetor ase) are missing. This fration must be not too large in order to

identify the unknowns and perform an e�etive reovery. We note here that

the l1 norm of a vetor is simply the nulear norm l∗ of the diagonal matrix

ontaining the same vetor as the main diagonal.

In the matrix ase, beyond the Net�ix problem, this need �nds wide ap-

pliation in the �eld of ollaborative �ltering, of whih reommender system

is a relevant appliation, as well as genomi data and image proessing. All

these appliations require to estimate a low rank r ≪ p matrix to ompress

information. More widely, as we have seen for the deoding linear program,

we may also be interested to relax the reonstrution problem, i.e. to re-

lax the assumption whih leaves observed entries unaltered. In a statistial

perspetive, the approximation problem is muh more interesting, sine it

impliitly assumes a model behind.

Let us all PΩ(X) = Xi,j if Xij is observed and 0 otherwise. Problem

(3.20) an easily be rewritten as

min ||X||∗

subjet to PΩ(X)i,j = PΩ(M).
At the same time, we ould also be interested in:

min ||X||∗ (3.24)

subjet to ||PΩ(X)− PΩ(M)||F ≤ δ, where
∑

Observed(i,j) ||Xij −Mij||2 = ||PΩ(X) − PΩ(M)||2F .
Problem (3.24) is equivalent to

min
Observed(i,j)

||Xij −Mij ||2

subjet to ||X||∗ ≤ τ.



48 CHAPTER 3. NUMERICAL AND COMPUTATIONAL ASPECTS

The �rst form is a quadratially onstrained semide�nite program (SDP),

the seond one is a quadrati program (QP). As explained in [116℄, we ex-

pliitly note that the two problems are stritly related, sine the values δ
and τ are related. These parameters re�et the level of noise present in the

input matrix. Solving one of the two, it is possible to determine the level of

noise for whih the other problem shares the same solution.

There is an important di�erene between the reonstrution and the ap-

proximation problem. Both problems an be reast as semide�nite problems.

We will disuss omputational aspets in paragraph (3.2.2). In the former,

the onstraint is a linear equality, while in the latter the onstraint is a

quadrati inequality. For this reason, as we will disuss, the latter one re-

quires more than one sparse SVD to be solved, di�erently from the former

one. In [61℄ there is a wide disussion on large-sale SVD methods whih

an be e�etively used for matrix ompletion problems.

The same ours in the l1 ontext. The reonstrution problem is a lin-

early onstrained linear program, the approximation problem is a quadrati-

ally onstrained linear program.

All in all, low rank approximation is the key ingredient of problem (3.20)

and (3.24). The underlying ombinatorial problem is

min
L

∑

i,j

(Σij − Lij) under rank(L) ≤ r,

whih is omputationally intratable (NP-hard).

In spite of that, basi theorems from linear algebra state that

min
B,rank(B)=r

||A−B||2

and

min
B,rank(B)=r

||A−B||Fro

are both solved for

B =

r
∑

i=1

λiuiu
′
i,

whih is the SVD trunated to the r-th summand ([40℄), when r is known.
This is why SVD is the key omputational ingredient of reent algorithms.

As explained, if we replae rank(L) with ||L||∗ =
∑r

j=1 λj(L), the prob-
lem is made onvex ([46℄) and assumes the form

min
L

∑

i,j

(Σij − Lij) under ||L||∗ ≤ τ.

A natural question arises: is problem (3.20) really minimizing the latent

rank? This ruial passage was proved in [97℄. There the authors de�ne the

general a�ne rank minimization problem:

min rank(X) under A(X) = b (3.25)
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where A is a linear matrix operator. The attribute "a�ne" means that the

rank is minimized under a system of equality onstraints. This problem is

known to be NP-hard, and has lots of appliations, inluding low rank matrix

ompletion and image ompression problems. There is a strit parallelism

between ompressed sensing (i.e. the ardinality minimization problem) and

rank minimization. In partiular it is proved that, as l1 heuristis provides

the sparsest solution of an underdetermined linear system, l∗ heuristis pro-
vides the lowest rank solution of underdetermined system (3.25). This holds

if and only if the following restrited isometry property (RIP) holds:

(1− δr)||X|F ≤ ||A(X)|| ≤ (1 + δr)||X|F , (3.26)

where δr is the restrited isometry onstant, i.e. the smallest salar sat-

isfying (3.26). The relaxed l∗ version of (3.25) is shown to give the minimum

rank under suitable onditions on δr (δ5r <
1
10 , r ≥ 1).

These results ensure that nulear norm heuristis reovers the minimum

rank solution. We will show in paragraph (3.2.1) why l∗ (and l1) are un-

doubtedly the most e�etive proxies of rank(L) (and ||S||0).
An exhaustive overview of the algorithms for l∗ minimization is provided

in [118℄ with spei� referene to image analysis. We mention proximal

gradient algorithms ([90℄), Augmented Lagrangian (ALM) and Alternating

Diretion methods (ADM) ([116℄). These algorithms will be ruial for our

purposes.

In addition, we point out that matrix fatorization issues an be e�e-

tively exploited also for the rank minimization problem (by the so alled UV
parametrization). That tool beomes very onvenient when dealing with pos-

itive semide�nite matries (PSD). In that ase, the nulear norm beomes

the trae norm, and UU ′
parametrization is very easy-to-implement ([73℄).

In [4℄, the onsisteny of trae norm regularization for PSD was proved very

elegantly, respet to the relationship between the regularization threshold λ
and the sample dimension n.

However, we will use proximal gradient algorithms, whih are more on-

venient for the partiular shape of our omposite problem.

3.1.3 Composite penalisation: ombined use of l1 norm and

nulear norm

The nulear norm minimization approah just desribed an be extended.

In order to make problem (3.24) robust to the presene of outliers, we an

assume that the input M an be approximated by L + S, where L is a low

rank matrix with rank r and S is a sparse matrix, i.e. a matrix with only a

fration of nonzero entries. (3.24) thus beomes

min
L,S

1

2
||(L+ S)−M ||2Fro + λ||L||∗ + ρ||S||1, (3.27)
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where ||S||1 =
∑p

i=1

∑p
j=1 |sij |, and is surrogate of ||S||0, the number of

nonzero elements in S. This problem is alled robust onvex matrix om-

pletion, as pointed out in [61℄, where this example was mentioned as an

appliation of large-sale SVD methods.

We de�ne our omposite (onvex non-smooth) penalty P (L,S) as

P (L,S) = λ||L||∗ + ρ||S||1. (3.28)

Problem (3.27) is e�etive for matrix ompletion. It omes from the

analogous matrix reonstrution problem, whih aims at reovering exatly

L and S (without any quadrati penalty term). It an be thought of as a ro-

bust prinipal omponent problem, resulting in a data ompression whih is

robust against orrupted or missing entries. Here we allow for a small matrix

S to perturb the low rank matrix L, suh that inomplete data matrix re-

onstrution an be performed. Appliations inlude video surveillane, fae

reognition, latent semanti indexing, ranking and ollaborative �ltering.

Suppose now we have a matrix M = L+S, where L is a low rank matrix

and S is the sparse matrix. M does not need to be squared: this tehnique

was born to reonstrut data matries.

Classial Prinipal Component analysis solves the problem:

min ||M − L||, rank(L) ≤ r, under L+ S =M.

As we desribed before, this an be solved using lassial prinipal omponent

pursuit (PCP), i.e. taking

L =

r
∑

i=1

λiuiu
′
i,

where ui and λi, i = 1, . . . , r, are respetively the r eigenvalues and eigen-

vetors of M .

In [25℄, the Robust Prinipal omponent framework is desribed. The

desribed problem is

min
L,S
||L||∗ + ||S||1, under L+ S =M.

This is a non-smooth minimization problem, sine both penalties (and thus

their sum) are not onvex. In the next paragraph we will analyze the nu-

merial problem, and desribe possible approahes for numerial solution. In

[25℄, an e�etive and relatively fast reovery is shown to be possible only un-

der spei� bounds for the rank of L, the number of non-zeros of S, and the

singular vetors of L. In partiular, maxi ||Uei||2 maxi ||V ei||2 maxi ||UV ||∞
must be bounded, where ei, i = 1, . . . , p, are the standard basis vetors.

In following works, as we desribe in Chapter 4, these onditions have

been weakened. Anyway, the approah for ensuring identi�ability and re-

overy omes from the same proof strategy. We will show how this method
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an be e�etively applied to ovariane matrix estimation, i.e. to the noisy

ontext, when one additional noise term is inserted for modelling M .

Now we move to the disussion of the mathematial aspets of the low

rank plus sparse deomposition problem, oming bak to our key matrix

approximation problem (3.7).

3.2 Nulear norm and l1 norm minimization: ana-

lytial and algorithmi aspets

Our aim is to perform ovariane matrix estimation under the assumption

of low rank plus sparse deomposition. Suh an assumption is equivalent to

assume a sparse approximate fator model for the data.

Chapter 4 will be devoted to modelling aspets behind these assumptions.

As we pointed out in previous paragraphs, applying (3.7) to the ovariane

matrix setting requires several assumptions on key parameters, in order to

guarantee identi�ability, reovery, positive de�niteness and invertibility.

In this setion, we desribe the nature of problem (3.7) from the point

of view of numerial analysis (paragraph (3.2.1)) and omputational anal-

ysis (paragraph (3.2.2)). The struture of the l1 norm plus nulear norm

regularization problem is desribed in detail, with referene to mathematial

aspets.

3.2.1 Numerial ontext: a semide�nite program

Let us suppose we have a random vetor x with ovariane matrix Σ∗
fol-

lowing a low rank plus sparse struture (3.1). Let us all X the n × p data

matrix. Suppose Σn = Σ̂n−1 is the p× p unbiased sample ovariane matrix

omputed on the observed data X.

Our ombinatorial problem (rank minimization problem (RMP) plus ar-

dinality minimization problem (CMP)) is:

min
L,S

1

2
||(L+ S)− Σn||2Fro + λrank(L) + ρ||S||0,

under L � 0, S ≻ 0, L+ S ≻ 0. (3.29)

Problem (3.29) is NP-hard, sine rank(L) and ||S||0 are not onvex. In

fat, both rank(L) and ||S||0 have jumps, s.t. they are not ontinuous (hene

not di�erentiable). The onstraints are for ensuring that our ovariane

matrix and residual matrix estimates are positive de�nite, as well as the low

rank estimate is positive semide�nite. This is the algebrai ounterpart of

(3.6).

Aording to setion (3.1), the CMP an be approahed via the l1 heuris-
tis, the RMP via the nulear norm heuristis.

So, problem (3.29) an be rephrased in this way:



52 CHAPTER 3. NUMERICAL AND COMPUTATIONAL ASPECTS

min
L,S

f(L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1,

underL � 0, S ≻ 0, L+ S ≻ 0. (3.30)

where λ and ρ are threshold parameters.

• ||S||0 has been replaed by the l1 norm of S, i.e.
∑n

i=1

∑n
j=1 |sij |

(Tibshirani, 1996 [108℄);

• rank(L) has been replaed by the nulear norm of L, i.e. ||L||∗ =
∑r

i=1 |di| (Fazel et al., 2001 [46℄).

Sine L∗
is a PSD (Positive Semide�nite Matrix), ||L||∗ =

∑r
i=1 di =

||diag(D)||1 = trace(D).We an thus talk about trae norm heuristis. More

spei�ally, our analysis is restrited to symmetri positive semide�nite ma-

tries.

On a mathematial point of view, f(L,S) is a non-smooth onvex fun-

tion. It is omposed by a least squares penalty (

1
2 ||(L+S)−Σn||2Fro), whih

is a quadrati funtion, onvex and smooth (di�erentiable), and a omposite

penalty whih is the sum of two non-smooth onvex funtions.

The l1 norm ||S||1 =
∑p

i=1

∑p
j=1 |sij| is onvex if ||tS1 + (1 − t)S2||1 ≤

t||S2||1 + (1 − t)||S2||1. This property desends from the properties of the

absolute value, whih satis�es the Cauhy-Shwarz inequality as it is a norm

in the R1
spae.

The nulear norm an be alternatively de�ned as ||L||∗ = trae(
√
L′L)

([63℄). In order to prove it is a onvex funtion, we have to show:

trae

√

(tL1 + (1− t)L2)(tL1 + (1− t)L2)′

≤ ttrae
√

L1L′
1 + (1− t)trae

√

L2L′
2

We develop the �rst term of the inequality as:

trae

√

(tL1 + (1− t)L2)(tL1 + (1− t)L2)′ =

= trae

√

t2L1L
′
1 + (1− t)2L2L

′
2 + 2t(1 − t)L1L

′
2 = A

For Cauhy-Shwarz inequality,

A ≤ trae

√

t2L1L
′
1 + trae

√

(1− t)2L2L
′
2 + trae

√

2t(1− t)L1L
′
2 =

= (t||L1||∗)2 + ((1− t)||L2||∗)2 + 2t(1− t)||L′
1L2||∗.

Now, we reall a theorem proving that ||L′
1L2||∗ ≤ ||L1||∗||L2||∗ ([63℄).

This result relies on the fat that the nulear norm is unitarily invariant by

de�nition, i.e. ||UXV || = ||X||, for any U, V unitary matries.
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So,

A ≤ ||(tL1 + (1− t)L2)
2||∗ ≤ ||tL1||∗ + ||(1 − t)L2||∗,

where the last step depends again on Cauhy-Shwarz inequality, thus prov-

ing the laim.

It is easy to show that the l1 norm and the nulear norm are not di�er-

entiable. If we think ||.||∗ as

∑r
i=1 λi = ||λL||1 (where λL is the vetor of

eigenvalues of L), it is straightforward that ||.||∗ is not smooth if some of the

eigenvalues are 0, from the properties of the absolute value. The same holds

for ||.||1.
In terms of di�erential, we have

δ||x||1
δxk

= xk|xk|−1. So, for xk = 0, ||.||1
does not exist. The same holds for ||.||∗: δ||X||∗

δX = X(X ′X)−1/2X, whih
means that ||X||∗ is not smooth if X is not invertible.

We an now explain in detail why l1 and l∗ are the best possible onvex
relaxations of l0 and rank respetively. The reason lies in a mathematial

argument. Relaxation (3.30) is the tightest onvex relaxation of problem

(3.29). This is due to the fat that ||X||∗ is the onvex envelope of rank(X),
and ||.||1 is the onvex envelope of ||.||0. This fundamental result was proved

in Maryam Fazel's PhD thesis. The onvex envelope of a non onvex funtion

is de�ned as the largest onvex funtion being smaller or equal to the original

one. She was able to prove that the nulear norm is the lower bound of the

solution of the original rank minimization problem ([49℄, p.55).

The proof is based on the so alled onjugate funtions. Essentially,

Fazel proves that the onjugate of the onjugate of the rank over the set

of all matries having spetral norm less or equal to one (||X||2 ≤ 1) is the
nulear norm. Sine the onjugate of the onjugate is known to be the onvex

envelope of the funtion, the theorem is proved. This result is also extended

to ||.||1, sine the l1 norm of a vetor is simply the rank of a diagonal matrix

ontaining the same entries. Analogously, ||.||1 is the onvex envelope of

card(x) over all vetors x s.t. ||x||∞ ≤ 1.
This result holds for any matrix X and vetor x. In our ase, our searh

is restrited to symmetri PSD for L, and to symmetri positive de�nite

matries for S and Σ = L+ S .

Therefore, problem (3.30) an be reast as a SDP (SemiDe�nite Pro-

gram).

min
L,S

1

2
||(L+ S)− Σn||2Fro subjet to ||L||∗ ≤ λ and ||S||1 ≤ ρ, (3.31)

where S and L+S are positive de�nite and L is positive semide�nite. This is

the PRIMAL problem, and is a quadratially onstrained quadrati problem.

The least square penalty is a quadrati funtion. The omposite penalty is

a non smooth funtion: the nulear norm onstraint involves the square root

of squared entries, thus imposing a quadrati onstraint, while the l1 norm

imposes a linear onstraint.



54 CHAPTER 3. NUMERICAL AND COMPUTATIONAL ASPECTS

Reversely, the problem an be thought of as the following quadratially

onstrained quadrati SDP program:

min
L,S

λ||L||∗ ≤ +ρ||S||1 subjet to
1

2
||(L+ S)− Σn||2Fro ≤ τ. (3.32)

It is possible to prove that (3.31) and (3.32) are equivalent.

Sine the nulear norm is the dual of the spetral norm, i.e.

||M ||∗ = max trae(M ′Y ), ||Y ′|| = 1

(see [16℄), exploiting the SDP haraterization of the nulear norm and

putting together (3.16) and (3.22) it is possible to write:

min
S,L,E,W1,W2

γ1′nZ1n +
1

2
(trae(W1) + trae(W2)) +

1

p
trae(E′E), (3.33)

[

W1 L
L′ W2

]

� 0.

−Zij ≤ Sij ≤ Zij,∀i, j

L+ S +E = C.

As additional onstraints, we want that S and L+S are positive de�nite, and

L is positive semide�nite. This formulation was obtained by an appropriate

use of slak variables.

Form (3.33) is the SDP haraterization of problem (3.30). It is a onvex

problem; numerially, it is de�ned as a quadratially onstrained quadrati

problem (QCQP, [16℄). More in detail, it is omposed by a linear program

(the l1 part), a quadrati (the l∗ part) and a least squares program (the

Frobenius loss term). As explained, the least squares penalty is a quadrati

funtion and thus is smooth, di�erently from the other two omponents.

Let us now introdue the algebrai matrix ontext. From an algebrai

point of view, the objets we need to identify are the following algebrai

matrix varieties:

L (r) = {L ∈ Rp×p | L = UDU ′, U ∈ Rp×r,D ∈ Rr×r}, (3.34)

K (s) = {S ∈ Rp×p | |support(S)| ≤ s}, (3.35)

where L (r) is the variety of matries with at most rank r, and K (s) is the
variety of (entrywise/elementwise) sparse matries with at most s nonzero
elements. support(S) is the orthogonal omplement of ker(S).

The tangent spaes to (3.34) and (3.35) are:

T (L∗) = {UY ′
1 + Y2V

′ | Y1, Y2 ∈ Rp×r}, (3.36)

Ω(S∗) = {N ∈ Rp×p | support(N) ⊆ support(S)}. (3.37)
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As pointed out in [97℄, the harateristis of the two varieties show a

ontrastive analogy. They are both Hilbert spaes of matries: for (3.35)

the Hilbert norm is the Eulidean one, for (3.34) is the Frobenius one. The

sparsity induing norm is l1 for (3.35) and l∗ for (3.34). As we will desribe in
the next setion, norm additivity (||A+B|| = ||A||+ ||B||)is a key ondition

for our spaes, sine we need them to be as lose as possible to this ondition

to perform identi�ation. Norm additivity requires disjoint support for (3.35)

and orthogonal row and olumn spaes for (3.34).

In [97℄, it was also showed that a dual formulation for the SDP hara-

terization holds. For the a�ne minimum nulear norm problem (3.25), we

an write

max b′z subjet to ||A∗(X)|| ≤ 1 (3.38)

as well as

max b′z (3.39)

s.t.

[

Im A∗(z)
A∗(z)′ In

]

� 0,

where A∗
is the dual operator of A. The �rst formulation is the onvex one,

while the seond is the numerial one whih exploits the SDP harterization

of (3.25).

We note that it is straightforward to obtain the dual version of the l1
problem (3.9) by simply reshaping formulation (3.38) aordingly. In par-

tiular, the dual norm of the operator A beomes the l∞ norm. The same

holds for the least squares problem in Frobenius norm. It is only neessary

to replae ||A∗(X)|| with ||A∗(X)||Fro, beause the dual norm of ||.||Fro is

||.||Fro. Therefore, in order to obtain the dual haraterization of our gen-

eral problem (3.30), it is su�ient to aggregate the haraterizations of all

sub-problems properly reshaping the operator A for eah term. The same

holds for formulation (3.39) too.

3.2.2 Solution methods

The SDP haraterization of our problem allows us to apply all standard op-

timization methods. These inlude interior point methods (with logarithmi

barrier funtion) and penalty methods. A detailed review of these methods

an be found in [16℄. The standard MATLAB tool to perform optimization

is alled SDPT 3, and omputes the optimum via infeasibile path-following

algorithm (see [101℄). This method is e�etively used to approah standard

low rank plus sparse reovery in the noiseless setting (see [30℄). However, in

the noisy setting, the presene of the least squares term renders these stan-

dard di�erential methods omputationally ine�ient, for the use of seond

derivatives in a large sale ontext ([16℄, p.54).
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In order to apply standard seond-order minimization methods, we should

de�ne and solve the Lagrangian dual problem i.e. minimize the Lagrangian

funtion of (3.33). This ould be done using the lassial method of multi-

pliers, formulating and solving the system of KKT (Karush-Kuhn-Tuker)

onditions ([106℄). Unfortunately, this method would require to solve an un-

derdetermined non-linear system, by using for instane Newton methods or

logarithmi barrier funtions, whih an be omputationally hard. More e�-

iently, the Lagrangian method ould be adapted to inlude onstraints and

penalties (Augmented Lagrangian method). Alternatively, the Alternating

Diretion method (ADM) ould also be e�etive. In order to simplify the

nulear norm minimization and avoid iterative omputations of SVD, an-

other solution implies the use of UV-parametrization. Further details an be

found in [116℄, where possible gradient solutions of the a�ne rank minimiza-

tion problem (3.24) are analyzed. Alternative methods like interior point

methods, penalty methods and barrier methods ([16℄) an also be imple-

mented ([101℄). In any ase, all these methods are not partiularly suitable

in the large-sale ontext, beause minimizing the quadrati loss requires the

omputation of a seond derivative in large dimensions, whih is omputa-

tionally expensive.

For this reason, reent solutions proposed in the literature are based

on �rst-order method approahes (exploiting only �rst derivatives), whih

ombine the use of standard di�erential for the smooth part and a proedure

based on the non-smooth properties of the omposite penalty.

Proximal aelerated algorithms developed by Yurii Nesterov (see [88℄

[87℄) are the key for our problem. They are essentially augmented Lagrangian

methods (ALM) where the �rst order derivative of the smooth part is aug-

mented by the omposite penalty (an overview for this kind of methods

is in [90℄). In order to solve the non-smooth part, iterative shrinkage so-

lution (IST) methods are used. A very well known method developed for

l1 linear inverse problems is FISTA (Fast Iterative Shrinkage Thresholding

Algorithm, [10℄). FISTA is an aelerated algorithm derived from the pre-

vious one (named ISTA) using Nesterov's aeleration sheme ([86℄). This

approah was extended to the l∗ ase in [17℄ and was named singular value

thresholding (SVT). The SVT an be aelerated using the same sheme too.

Talking about non-smooth methods, the subgradient (or subderivative)

was �rst de�ned for onvex funtions by Moreau and Rokafellar ([82℄, [98℄)

and was then generalized to non onvex funtions by Clarke ([28℄). For the

use of subgradient for minimization purposes (subgradient approah) a wide

historial and methodologial review is in [12℄.

Given a funtion f : I ∈ Rn → R at point x0 in the open interval I, the
subderivative of f is any vetor v ∈ Rn

satisfying

f(x)− f(x0) ≤< v, x− x0 > .

The set of subderivatives is alled subdi�erential and is denoted by δf(x0).
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δf(x0) is always a non-empty ompat set.

The de�nition of subderivative and subdi�erential is analogous in the

univariate ontext, where I and v lie in R. There, it is possible to show that

the subdi�erential is always a losed set [a, b] where a = limx→x−

0

f(x)−f(x0)
x−x0

and b = limx→x+
0

f(x)−f(x0)
x−x0

. a and b always exist with a ≤ b. A typial

example very useful to us is the ase f(x) = |x|. That funtion is onvex

(even if not stritly) but non-di�erentiable at the origin, where the subdif-

ferential is equal to [-1,1℄. For negative x0 the subdi�erential oinides with
the di�erential and is equal to −1, for positive x0 it is the same but equal

to 1.
The subdi�erential is

δf(x) = {d ∈ Rn : f(y) ≥ f(x)+ < d, y − x >, y ∈ Rn}.

For our optimization problem, the subdi�erentials of l∗ and l1 are relevant

([112℄). We report both:

δ||X||∗ =
{

UU ′ +W :W andX have orthogonal row and olumn spaes, ||W || ≤ 1
}

(3.40)

δ||x||1 =
{

d ∈ R1 : di = sign(di) for i ∈ T, |di| ≤ 1, i ∈ T, T = {1, . . . , n}
}

.
(3.41)

Note that both subdi�erentials share a ommon struture. They are

both omposed by the di�erential at smooth points (UV ′
or sign(di)) and

a possible ontration (W or the omplement to 1/− 1 as the ase). In [97℄

the optimality onditions for the a�ne rank minimization problem (3.25) are

desribed:

1. Feasibility ondition (A(X) = b)

2. Unimprovability of the subdi�erential at any feasible diretion A∗(z) ∈
δf(x),

where A∗
is the adjoint operator suh that < Ax, y >=< y,Ax >. These

onditions ensure that problem (3.25) is solved and the nulear norm ahieves

its minimum in the feasible set (whih is the set of all andidate matries

Y ). In fat it holds:

||Y ||∗ ≥ ||X||∗+ < A∗(z), Y −X >= ||X||∗+ < z,A(Y −X) >= ||X||∗.

The same onsiderations hold for the l1 ase with the appropriate hanges.

The priniples of proximal gradient method are the following. Suppose

we have a funtion Φ(x) = f(x) + Ψ(x) where f is smooth and Ψ is non-

smooth, both onvex. Our problem is to minimize Φ(x) over its feasible set
Z (x ∈ Z). This minimization problem an be approahed by the omposite

prox-mapping ([88℄):

ProxΦ,z(ξ) = argmin
w∈Z

[

< ξ,w > +
Lf

2
||z − ξ||2 +Ψ(w)

]

, (3.42)
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where z belongs to the set of points in the domain of Ψ having non-empty

subdi�erential, and ξ belongs to the domain of f . The proedure works under
the ondition of Lipshitz ontinuity for f (||∆f(x)−∆f(y)||2 ≤ Lf ||x−y||2,
where Lf is the Lipshitz onstant).

We will approah the solution of (3.30) by minimizing (3.42). Following

[76℄, we are going to employ proximal gradient methods, based on the subgra-

dient approah ([88℄). The problem of additional onstraints will be solved

theoretially, showing that problem (3.30) with or without the onstraints

is geometrially the same. Therefore we now fous on the unonstrained

problem (3.7).

Realling (3.42), we note that the omposite prox-mapping equals to

�nding out the point in the subgradient of the omposite penalty whih

is as lose as possible to the gradient of the smooth part at eah feasible

point. In this respet, this approah is also a projeted gradient method.

It is also a gradient method, in partiular, it is a �rst order approximation

methods beause it exploits �rst derivatives only. It is also a Min-Max

(MM) approah, in the sense that proximal gradient is minimized under

the assumption that the omposite gradient mapping maximizes the gain in

terms of iterative minimization of our objetive. For this reason, the method

works only under the assumption of Lipshitz ontinuity for the gradient of

our objetive, i.e. under the assumption of limited variation for our objetive.

Our objetive funtion is:

F (L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1. (3.43)

The di�erentiable part of (3.43) is

f(L,S) =
1

2
||(L+ S)− Σn||2Fro, (3.44)

where Σn is the input of our proedure.

The matrix gradients of f are ∇Lf = ∇Sf = L+ S − Σn =W.
The (matrix bivariate) gradient ∇L,S is Lipshitz ontinuous with Lip-

shitz onstant l = 2:

||∇L,Sf(L1, S1)−∇L,Sf(L2, S2)||2 ≤ l
√

|L1 − L2|2F + |S1 − S2|2F ,

l = 2.
The �rst-order approximation of (3.43) is:

Ql=2((L,S), (Lt−1, St−1)) = f(Lt−1, St−1) +

+ < ∇Lf(t−1), L− L(t−1) > + < ∇Sf(t−1), S − S(t−1) > +

+
l

2
|L− L(t−1)|2Fro +

l

2
|S − S(t−1)|2Fro + λ||L||∗ + ρ|S|1.
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The matrix inner produt <> here is the standard < A,B >= tr(A′B).

Note that our omposite prox-gradient mapping is:

< ∇Lf(t−1), L− L(t−1) > + < ∇Sf(t−1), S − S(t−1) > +

+|L− L(t−1)|2Fro + |S − S(t−1)|2Fro + λ||L||∗ + ρ|S|1.

This formulation exploits a previous work ([69℄), whih develops a prox-

imal gradient method for trae norm minimization (i.e. the nulear norm

for PSD matries). The key is that the gradient step needed to minimize

F (L,S):

Lk = Lk−1 −
1

2
∇Lk−1

, Sk = Sk−1 −
1

2
∇Sk−1

is the same minimizing

Q2((L,S), (Lt−1, St−1)).

In this respet, this method is also and augmented Lagrangian method.

Another relevant aspet is that here we have two matrix variables (L and

S). In order to perform minimization, ∇Lk−1
must belong to the subdi�eren-

tial of λ||Lk−1||∗ and ∇Sk−1
must belong to the subdi�erential of ρ||Sk−1||1.

The problem would be hard to solve via subgradient methods if these two

related problems ould not be approahed somehow separately.

We report the step-size assumption ensuring that the optimization of Ql

is e�etive.

Lemma 3.2.1. Let (Ľ, Š) = dl(L̃, S̃) = minL,S Ql((L,S), (L̃, S̃)).
If the following stepsize assumption is satis�ed for some l > 0:

F (Ľ, Š) ≤ Ql((L,S), (L̃, S̃)),

then for any (L,S), we have

F (L,S)− F (Ľ, Š) ≥ l < L̃− L, Ľ− L̃ > +

+l < S̃ − S, Š − S̃ > +
l

2
|Ľ− L̃|2F +

l

2
|Š − S̃|2F .

This passage highlights the nature of min-max approah for the method.

Standard subgradient methods have an optimal onvergene rate ofO( 1√
t
)

([69℄). This an be very low for large sale problems. Another feature of this

extended gradient approah is that it substantially improves onvergene.

The key is the separability of our problem in two ones, one in variable L
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and the other one in variable S. In fat, our �rst-order approximation Q2 is

separable in L and S:

L(t) = min
L
|L− (L(t−1) −

1

2
∇f(t−1))|2Fro + λ||L||∗ (3.45)

S(t) = min
S
|S − (S(t−1) −

1

2
∇f(t−1))|2Fro + ρ||S||1 (3.46)

These two subproblems an be solved easily, by simple algebrai opera-

tions, making this algorithm suitable for large-sale problems. The problem

in L (3.45) an be solved by applying the SVT (Singular Value Thresholding,

[17℄) to L(t−1) − 1
2∇f(t−1).

Lemma 3.2.2. (Ji and Ye (2009), Cai et al.(2010)) τλ(Y ) = minM
1
2 ||M − Y ||2F+

λ||M ||∗ is given by τλ(Y ) = UDλV
′
, where (Tλ)ii = max{0,Dii − λ}. Tλ is

alled SVT (Singular Value Thresholding operator). The unique solu-

tion of (3.45) is thus the SVT of L(t−1) − 1
2∇f(t−1).

In [17℄ it is proved that the SVT operator is the unique minimizer of

the l∗ minimization problem (3.24), beause (3.24) is stritly onvex and the

SVT of L is proved to belong to the subdi�erential of ||L||∗. Even if the SVT

was �rst developed for the matrix ompletion problem, it an be e�etively

used for all nulear norm approximation problems.

Sine we an express a vetor as a diagonal matrix having the same vetor

as the main diagonal, Lemma 3.2.2 holds as well for the l1 ase:

Lemma 3.2.3. ([35℄) Tρ(Y ) = minM
1
2 ||M − Y ||2F+ρ||M ||∗ is given element-

wise by (Tρ(Y ))ij = sign(Yij)max{0, |Yij − ρ|}.

Tρ(Y ) is alled Soft-Thresholding operator. Therefore, (3.46) is solved
by applying soft-thresholding to S(t−1) − 1

2∇f(t−1).

In origin, this algorithm was proposed in [35℄ to solve the LASSO reg-

ularization problem ([108℄). The extension to the l1 matrix norm problem

is straightforward. This algorithm has been e�etively used in a number of

situations, like for instane in the graphial lasso ontext for sparse inverse

ovariane matrix estimation ([53℄).

Due to the separability property and to the use of trae norm heuristis,

our minimizer an now onverge at a rate O(t) ([69℄). As this ost an be

still expensive in the large-sale ontext, Nesterov's aeleration sheme for

omposite gradient mapping minimization problems ([87℄) is applied. As a

onsequene, the algorithm assumes the form ([77℄):

• repeat

• set (L0, S0) = (diag(Σn), diag(Σn))/2

• Initialize L = L0 = Y1 and S = S0 = Z1
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• Apply SVT operator to the SVD of (Y(t−1) − 1/2∇(Y(t−1), Zt−1) and
set Lt = UTλU

′

• Apply soft-thresholding operator to M = (Z(t−1) − 1/2∇(Y(t−1), Zt−1)
and set St = Tρ(M).

• Set (Y(t+1), Z(t+1)) = (Lt, St) +
αt−1
αt+1

[(Lt, St) − (Lt−1, St−1)] where

αt+1 =
1+
√

1+4α2
t

2 .

• until Convergene riterion ||Lt−Lt−1||F
||1+Lt−1||F + ||St−St−1||F

||1+St−1||F ≤ ǫ.

This algorithm has also been e�etively used for dynami Magneti Reso-

nane Imaging (MRI) data ([89℄). More generally speaking, also the Lipshitz

onstant l an be linearly updated during the algorithm, when there is some

suspet that l = 2 is not appropriate ([76℄).

The desribed algorithm is proved to onverge at rate O(t2) ([77℄):

Theorem 3.2.1. Let (Lt, St) be the update produed by the algorithm at

iteration t. Then for any t ≤ 1, we have the following omputational auray

bound:

F (L(t), S(t))− F (L̂, Ŝ) ≤ 8
||L0 − L̂||Fro + ||S0 − Ŝ||Fro

(t+ 1)2

where (L̂, Ŝ) minimizes (3.7).

This results allows to highlight another advantage of this approah on-

erning omputational ost. Standard methods for SDPs like interior point

methods (IPMs) require O
(

p6

log(ǫ)

)

operations, whih is too expensive for

large-sale problems. This algorithm requires only O
(

p4√
ǫ

)

operations. This

an be obtained multiplying the number of omputations for full SVD O(p3)
(whih is the one of standard least squares problems beause it requires at

eah iteration to solve p quadrati systems) times the square root of the

bound in Theorem 3.2.1 (at most O(p2)), divided by the square root of the

omputational preision ǫ. This ost is O(p2) smaller than the one of IPMs

given that the preision requirementis not high. This rate ould be further

improved by using partial (soft) SVD methods like soft-impute, whih re-

quire, if there are no missing entries, only O(p2) omputations (otherwise,

in the pure l∗ ontext, even fewer: see [61℄, slide 15).
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Chapter 4

Covariane estimation via

low rank plus sparse

deomposition:

statistial performane

The main topi of this hapter is ovariane matrix estimation under the

assumption of low rank plus sparse struture (3.1). Here we disuss reovery

and identi�ability onditions for Σ∗
under various model assumptions. The

unifying feature of all these models is that the estimation is arried out by

omposite minimization problems inluding (3.28), whih is our omposite

(onvex non-smooth) penalty.

In setion (4.1), existing works on matrix reonstrution or approxima-

tion using omposite penalty (3.28) are disussed.

In paragraph (4.1.1), we disuss the approah to matrix reonstrution

by Chandrasekaran et al. (2011) ([30℄), whih minimizes a omposite penalty

in the form (3.28) (apart from appropriate re-saling of regularization pa-

rameters). Therein, the exat deomposition is performed, in a noiseless

ontext.

In paragraph (4.1.2), we desribe the approah to matrix approximation

by Agarwal et al. (2012) ([1℄), whih provides a �rst (approximate) solution

to the problem of approximate deomposition (in the noisy ontext) into

approximately low rank and sparse matries. There, both omponents (and

onsequently their sum) are reovered by minimizing (3.7) under spei�

assumptions on ||L||∞.

In paragraph (4.1.3), we show the exat solution of the approximate

deomposition problem for a latent variable graphial model proposed by

Chandrasekaran et al. (2012) ([31℄). In that paper the preision matrix is

estimated under model struture (3.1) by minimizing a regularized likelihood

problem inluding a Gaussian log-likelihood term and the omposite penalty

63
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(3.28). It is the �rst exat solution to the reovery problem of both om-

ponents and their sum in the noisy ontext, and provides the mathematial

ontext for identi�ation and exat reovery (for the inverse ovariane ma-

trix). Therein, the error rates for the ovariane matrix were obtained as a

onsequene.

In paragraph (4.1.4), we desribe the most reent ovariane estimator

obtained minimizing (3.30), whih is alled LOREC (LOw Rank and sparsE

Covariane estimator, [77℄). We provide reovery and identi�ability ondi-

tions for a ovariane matrix (as well as its inverse) under model (3.1), fol-

lowing the results appeared in Luo (2013) ([77℄). These results were obtained

adapting the mathematial setting of [31℄, thus giving an exat solution to

the approximate reovery problem.

4.1 Low rank plus sparse deomposition: identi�-

ation and reovery

This setion is devoted to the desription of existing estimators based on the

omposite minimization of nulear norm and l1 norm, under the assumption

of low rank plus sparse deomposition for the ovariane matrix. We have

widely desribed in previous hapters why the need for a regularized esti-

mate of the ovariane matrix omes out. We keep in mind two keywords:

reonditioning and model parsimony.

We now distinguish two ases: the noiseless ontext and the noisy on-

text. In the former, we want to reover a squared p× p matrix

C = A∗ +B∗, (4.1)

where A∗
is sparse having at most s nonzero elements and B∗

is low rank

with rank r < p. This is the ontext of paragraph (4.1.1), derived by [30℄,

and is for us an unavoidable preliminary step, beause identi�ability and

reovery were �rst established in that ontext. Here C is simply an input

matrix.

Then we have the noisy ontext, where we start from an input estimate:

Σ̂ = L∗ + S∗ +W, (4.2)

whih ontains an error term (noise) W distributed as a entered zero-

mean Wishart. S∗
is sparse having at most s nonzero elements and L∗

is low rank with rank r < p. This is the ontext of all the following

paragraphs and models we will desribe. We usually have Σ̂ = Σ̂n−1, that is,

the unbiased sample ovariane matrix. This point is a relevant one beause

this hoie implies the ondition n ≤ p+1, whih an be not appropriate in

a large dimensional ontext, as explained in paragraph (2.1). We will try to

overome this issue in paragraph (5.1).
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The �rst attempt to identify both the low rank and the sparse omponent

was made in the noiseless ontext. The problem was set into the ontext of

algebrai geometry, as a deterministi (exat) reovery for general omplex

non-symmetri matries. It is easy to see that strong identi�ability issues

arise, for the simultaneous reovery of the two matries under the sum on-

straint. The identi�ability issue is entral in our disussion. We now start

to de�ne the setting we are working on.

4.1.1 Exat reovery: rank-sparsity inoherene

Let us suppose we have an input matrix C ∈ Rp×p. We suppose that C
is the sum of a low rank matrix B∗

and sparse matrix A∗
, both unknown.

Whih lasses of low rank and sparse matries allow to perform exat de-

omposition? The aim of this paragraph is to show how to disentangle C
in the two underlying omponents, following the approah in [30℄. This is a

deomposition problem: su�ient onditions for fundamental identi�ability

and reovery are needed. We fae a deterministi (purely numerial) prob-

lem, whih is to �nd out A∗
and B∗

as well as the number and the loation

of non-zeros in A∗
(sparsity pattern) and the rank of B∗

. This is why here

we have no sample dimension n: the parameters are only the the dimension

p, the number of non-zeros s and the latent rank r.

In order to perform this task, we need �rst to properly de�ne the objets

to identify. As explained, the tools of algebrai geometry (a referene book

is [60℄) are very useful to us. In partiular we are going to exploit the basi

onept of matrix algebrai variety. Matries A∗
and B∗

are assumed to

ome from the following set of matries:

L (r) = {B ∈ Rp×p | B = UDU ′, U ∈ Rp×r,D ∈ Rr×r} (4.3)

K (s) = {A ∈ Rp×p | |support(A)| ≤ s}. (4.4)

L (r) is the variety of matries with at most rank r.
K (s) is the variety of (entrywise) sparse matries with at most s nonzero
elements, where support(A) is the orthogonal omplement of ker(A).

The deomposition problem (4.1) is fundamentally ill-posed, that is, it is

not possible to �nd out a unique deomposition without further assumptions.

In fat, two natural identi�ability problems arise:

• the low rank matrix may be itself very sparse;

• the sparse matrix may have itself very low rank.

In order to obtain a unique disentanglement, an upper bound on the

degree of sparsity of the low rank omponent as well as a lower bound on the

rank of the sparse omponent are needed. For this purpose, in [30℄ the notion
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of rank-sparsity inoherene is developed, whih is de�ned as the unertainty

priniple between the sparsity pattern of a matrix and its row/olumn spae.

In partiular, quantities involving tangent spaes to algebrai varieties (4.3)

and (4.4) are needed.

Matrix sets (4.3) and (4.4) an be seen as di�erentiable manifolds (away

from their singularities) or as algebrai varieties, as they essentially are set

of polynomial equations. The variety of rank-onstrained matries (4.3) is

haraterized by the vanishing of all (r + 1) × (r + 1) minors of B. For

this reason, sine the (unknown) parameters are p2 and the equations are

(p−r)2, the dimension of this variety is r(2p−r). This variety is nonsingular
everywhere exept at those matries with rank less than or equal to r − 1.
This happens beause the tangent spae at those points has zero measure

(and thus it is not uniquely identi�ed). The tangent spae to r - ranked

matries is:

T (B) = {UY ′
1 + Y2V

′ | Y1, Y2 ∈ Rp×r}, (4.5)

where UDV ′
is the SVD deomposition of B.

The tangent spae T (B) is the spae of all the matries having the same

row or olumn spae of B. For this reason, the dimension of T (B) is again
r(2p− r) (if B has rank r). T (B) is a subspae of Rp×p

, beause it is losed

under addition and salar multipliation.

The variety of sparse matries (4.4) is the set of all the matries having

a limited size of their support. If the number of non zero elements is equal

to s ≪ p2, the dimension of the support is onstrained by s. This is due to
the properties of null spaes and homogenous systems: sine the support is

the orthogonal omplement of ker(S), if ker(S)⊥ has dimension s, ker(S)
has dimension p2−s and S has exatly s zeros. Analogously to the low rank

ase, this variety is singular everywhere exept from those matries having

a dimension of their support less than or equal to s− 1, beause in that ase

ker(S) has measure 0 (and thus it is not uniquely identi�ed) in Rs
.

The tangent spae to (4.4) is:

Ω(A) = {N ∈ Rp×p | support(N) ⊆ support(A)}. (4.6)

It is the variety of all the matries having a support ontained in the one of

A. It has dimension s and it is a subspae of Rp×p
.

In this algebrai ontext, it is easy to understand why the authors of [30℄

hose to estimate A∗
and B∗

solving the following optimization problem:

(Â, B̂) = min
A,B

f(A,B) = γ||A||1 + ||B||∗ under C = A∗ +B∗. (4.7)

For the disussion on the opportunity of using this problem for rank-sparsity

reovery we refer to Chapter 3. This is a deterministi (reovery) problem.

Note that γ is a tuning parameter depending on the relative size of ||A||1
respet to ||B||∗.
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Identi�ability onditions depend on relevant quantities referred to tan-

gent spaes T (B∗) and Ω(A∗). In partiular, the relevant quantity is the

produt of two quantities, one for eah spae, desribing the degree of rank-

sparsity inoherene between the rank of B∗
and the sparsity pattern of A∗

.

We de�ne the following rank-sparsity inoherene measures between Ω(A∗)
and T (B∗) :

ξ(T (B∗)) = max
N∈T (B∗),||N ||2≤1

||N ||∞, (4.8)

µ(Ω(A∗)) = max
N∈Ω(A∗),||N ||∞≤1

||N ||2. (4.9)

Note that ξ(T (B∗)) ≤ 1, µ(Ω(A∗)) ≤ √p.
These quantities are the maximum in�nity norm among the matries

belonging to T (B∗) and the maximum spetral norm among the matries

belonging to Ω(A∗). They arise naturally from the study of the relationship

between the rank and the sparsity pattern of one matrix. In fat, a relevant

result on µ(M) and ξ(M), holds for any matrix M ∈ Rp×p
:

Theorem 4.1.1. For any matrix M 6= 0, we have that ξ(M)µ(M) ≥ 1.

This results desribes the deep meaning of the onept of rank-sparsity

inoherene: it is not possible for one matrix to have T (M) with all di�use

elements and to have di�use spetra for Ω(M). The unertainty priniple

states that a matrix M annot have µ(M) and ξ(M) simultaneously small.

Another relevant result involving µ and ξ arises analyzing the onditions
ruling the intersetion between (4.5) and (4.6). If we ould assume to know

the tangent spaes, a neessary and su�ient ondition for exat deompo-

sition would be

Ω(A∗)
⋂

T (B∗) = 0,

i.e. the ondition of transverse intersetion between the two spaes. This

onditions involves ruially quantities (4.8) and (4.9), as outlined in the

following proposition:

Proposition 4.1.1. Given two matries A∗
and B∗

, we have that

µ(A∗)ξ(B∗) < 1⇒ Ω(A∗)
⋂

T (B∗) = 0.

The smallest µ(A∗) and ξ(B∗) , the loser to the ondition of perfet

transversality we are, and so the easiest is the deomposition. In this ase,

sine we are in the noiseless ontext, we need perfet transversality. From

the next paragraph (4.1.2), as we set into the noisy ontext, we will relax this

assumption, allowing a small degree of intersetion, sine we allow random

perturbations for A∗
and B∗

. However, in order to perform reovery, this

degree shall be suitably bounded.
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From these results we an argue that, in order to perform reovery, we

need to ontrol the spikiness of the eigenvalues of A∗
and the sparsity pat-

tern of B∗. In fat, If B∗
is nearly sparse, A∗

annot be reovered, as well as,

if A∗
is nearly low rank, B∗

annot be reovered. An unertainty priniple

between the rank of B∗
and the sparsity pattern of A∗

holds, i.e. too sparse

low rank matries as well as sparse matries with too low rank annot be

reovered. It is interesting that the magnitude of the eigenvalues of the low

rank omponent as well as the number of nonzeros in the sparse omponent

play no role for identi�ation. The produt µ(A∗)ξ(B∗) is the rank-sparsity
inoherene measure and bounding it ontrols for that.

In light of Proposition 4.1.1, the two identi�ability issues an be desribed

in a more tehnial way as follows:

• The low rank omponent is not too sparse if its row/olumn spaes are

NOT losely aligned to the standard basis vetors, i.e. if the maximum

projetion of a standard basis vetor onto the vetor subspae spanned

by the olumns of U is as small as possible.

• The sparse omponent is not low rank if it does not have too onen-

trated support, i.e. if its spetrum (set of eigenvalues) is bounded.

In other words, we want that the maximum number of non-zeros per

olumn to be bounded.

These tehnial onditions naturally arise from the geometri algebrai

setting and from the minimization ontext using (4.7) under the sub-gradient

approah. In fat, (4.8) and (4.9) are the dual norms of tangent spaes (4.5)

and (4.6) respetively. Optimality onditions are derived using the projeted

gradient method. In that approah, a (Lagrangian) dual andidate Q whih

belongs at the same time to the subgradient of A∗
and B∗

is sought for:

Q ∈ γ∂||A∗||1 andQ ∈ ∂||B||∗.

Two duals, QA and QB , are de�ned, and the onditions proving they min-

imize (4.7) are derived. For the expression of the subgradients we refer to

(3.40) and (3.41).

In priniples, this method onsists in projeting onto Ω and Ω⊥
the sub-

gradient of QA and onto T and T⊥
the subgradient of QB, where (QA, QB)

is a subgradient of (4.7). Di�erently from here, in the noisy ontext (para-

graphs (4.1.3), (4.1.4)) we will projet the dual andidate augmented by the

gradient of the di�erentiable part of the objetive.

We an now report the following key proposition whih displays neessary

onditions for obtaining a unique minimizer via (4.7) in the noiseless ontext.

Proposition 4.1.2. Suppose C = A∗ +B∗
. Then, (Â, B̂) = (A∗, B∗) is the

unique optimizer if the following onditions are satis�ed:

1. Ω(A∗)
⋂

T (B∗) = 0
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2. There exists a Lagrangian dual Q ∈ Rn×n
suh that:

• PT (B∗) = UV ′

• PΩ(A∗) = γsign(A∗)

• ||P(T (B∗)⊥)|| < 1

• ||PΩ(A∗)⊥ ||∞ < γ.

We note that the seond laim desribes neessary onditions on Q for

belonging to both subgradients simultaneously (two for eah subgradient),

whih is equivalent to ensure that (Â, B̂) is an optimum. The �rst ondition,

instead, is neessary to guarantee uniqueness.

This proposition is of fundamental importane. It basially proves that

only one dual Q̂ ∈ Ω
⊕

T may exist satisfying the subgradient onditions,

suh that (Â, B̂) is the only optimum of the onvex program (beause only

one point provides Ω(A∗)
⋂

T (B∗) = 0).
Therefore, µ(A∗)ξ(B∗) < 1 is a neessary ondition for performing re-

overy. However, a stronger neessary ondition for exat reovery respet

to the one of Proposition 4.1.2 an be derived. The proof tehnique builds

a dual Q̂ ∈ Ω
⊕

T , under whih the onditions of Proposition 4.1.2 for re-

overy are satis�ed, and �nds out the range of γ for whih Q̂ satis�es all

onditions simultaneously. This proof results in the following statement:

Theorem 4.1.2. Given (4.1), if

µ(A∗)ξ(B∗) <
1

6
,

the unique optimum for (Â, B̂) is (A∗, B∗), for γ ∈
[

ξ(B∗)
1−4µ(A∗)ξ(B∗) ,

1−3µ(A∗)ξ(B∗)
µ(A∗)

]

,

where γ =
√

3ξ(B∗)
2µ(A∗) is always inside the range as it is the geometri mean of

the extremes, and thus guarantees exat reovery of (A∗, B∗).

We have identi�ed a su�ient ondition for exat reovery, whih is

µ(A∗)ξ(B∗) < 1
6 . However, in reality we do not have any knowledge on

µ(A∗) and ξ(B∗). In order to make this ondition somehow veri�able, in [30℄

two nie more operative onepts about rank-sparsity inoherene are for-

malized, with the aim of providing useful proxies of µ and ξ. The �rst is the
degree of a matrix, whih is de�ned as the maximum (degmax) or minimum

(degmin) number of non zero entries per row/olumn. It is proved that

degmin(A) ≤ µ(A) ≤ degmax(A). (4.10)

The seond is the onept of inoherene of a vetor subspae S of Rn
.

De�ne β(S) = maxi ||PSei||2, where ei is the i -th standard basis vetor.

β(S) is the maximum norm of the projetion of any standard basis vetor

onto S. It is proved that
√

r/n ≤ β(S) ≤ 1, where the maximum (whih is 1)
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is reahed for any basis ontaining a standard basis vetor, and the minimum

is reahed for an Hadamard matrix, whih is a matrix having entries +1/−1
and mutually orthogonal rows (see [56℄). The inoherene of a matrix is

de�ned as:

inc(B) = max(β(row − space(B)), β(column − space(B))).

This quantity satis�es the following property:

inc(B) ≤ ξ(B) ≤ 2inc(B). (4.11)

Therefore, a small degmax(A
∗) implies a small µ(A∗) and small inc(B∗)

implies a small ξ(B∗). As a onsequene, the deterministi su�ient ondi-

tions on exat deomposability µ(A∗)ξ(B∗) < 1
6 an be rephrased as

degmax(A
∗)inc(B∗) <

1

12
,

as well as the range for γ in Theorem (4.1.2). The entral value in that range

beomes γ =
√

3inc(B∗)
degmax(A∗) .

Finally, the authors provided in [30℄ a random analysis of their setting.

They de�ne A∗
to follow a random sparsity model if support(A∗) is seleted

uniformly at random from all olletions of supports of size s. In that ase,

the following relevant property holds:

degmax(A
∗) ≤ s

p
log(p)

with high probability. Analogously, a r-ranked squared matrix B of di-

mension p is said to follow a random orthogonal model (see also [24℄) if the

singular vetors U, V ∈ Rp×r
are hosen among all partial isometries in Rp×r

,

where a partial isometry is an isometry on the orthogonal omplement of the

kernel. Under this hypothesis, we have

inc(B∗) �
√

max(r, log(p))

p

with very high probability (the symbol � is used to denote rates, with the

meaning of the "smaller or approximately equal to", as well as the symbol

� will be used with the opposite meaning). Given (4.1), if A∗
is drawn from

a random sparsity model and B∗
is drawn from a random orthogonal model,

the onditions of Theorem 4.1.2 hold provided that s � p1.5

log(p)
√

max(r,log (p))
.

We signal that this approah omes from the one by Candes and Reht

([24℄) desribed in paragraph (3.1.2). There, the degree of oherene between

singular vetors and the standard basis is bounded using the quantities

||UU ′ − r

p
Ip||∞, ||V V ′ − r

p
Ip||∞, ||UV ′||∞.
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For symmetri matries, only the �rst quantity is relevant. Contrastively,

the approah of [30℄ allows for a more uni�ed ondition, taking into aount

simultaneously the row and the olumn spaes (that is, left and right

singular vetors).

This approah is overall very elegant, e�etive and algebraially founded

and provides a new environment for matrix reonstrution analysis. How-

ever, the su�ient ondition provided by Theorem 4.1.2 is loal, i.e. it is

not robust to perturbations of B∗
and A∗

along varieties T (B) and Ω(A).
Tangent spae transversality is a linearized identi�ability ondition around

(A∗, B∗), but does not provide any guarantee even for slightly perturbed

inputs, beause it only guarantees an exat solution in the noiseless ontext.

This is why we are now going to explore numerial methods providing

solutions to the matrix approximation problem in the noisy ontext.

4.1.2 Approximate reovery: a funtional approah

The topi of this paragraph is the purely mathematial approah to matrix

approximation by Agarwal et al. (2012) ([1℄). This is a numerial approah

based on pure funtional analysis, in the general setting of omplex ret-

angular matries. Before desribing it in detail, we outline the relevant

harateristis for our purpose.

First of all, the referene matrix setting is the noisy setting (4.2), from

here towards the end of our thesis. In [1℄, L∗
is allowed to be exatly or

approximately low rank and S∗
is allowed to be exatly or approximately

sparse. Their setting thus inludes a wide set of matrix lasses, inluding

our referene model (3.1) as a partiular ase. Their model is the following

X = ℵ(L∗ + S∗) +W,

where ℵ is alled observation operator, and is a linear mapping operator from

(S∗ + L∗) to ℵ(L∗ + S∗) (we de�ne Ω = L∗ + S∗).
In our ase, ℵ = I (identity mapping). If W = 0, we fall bak into

the noiseless setting. The noise W an be either deterministi or stohasti.

This setting inludes a wider lass of sparsity assumptions, inluding the

ases of element-wise and olumn-wise sparsity. In our referene model (4.2),

we have exat element-wise sparsity and exat low rankness with stohasti

noise. The matrix to reover, Σ∗
, is a squared p× p real matrix in Rp×p

.

The input Σ̂ is the sample ovariane matrix Σ̂n. We underline again

the statistial entrality of this passage, whih is relevant for our purpose

also in the approah we are desribing. Whenever Σ̂ = Σ̂n, the related

ondition p ≤ n omes out, even if (here and in the following paragraphs)

the estimation method via regularization allows p ∼ n.
As we explain in paragraph (5.1), there are essentially two solutions to

this drawbak: using a regularized input (for instane Σ̂LW , see (2.7)), al-

lowing to drop the tehnial ondition p ≤ n, or using a method whih allows
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to onsistently use Σ̂n without the need of speifying p ≤ n. In this respet,

POET approah ([45℄) is entral, and we will show how it is possible to use

the POET estimation ontext in order to avoid the ondition p ≤ n even if

p and n are �nite.

In light of this, we go on explaining the proposal of [1℄. This method

onsists in estimating Σ∗
by program (3.7) (we set aside for the moment the

three additional onstraints) under spei� onditions. The most relevant

one is the following: ||L∗||∞ ≤ α
p , that is, a bounded in�nity norm for L∗,

whih ontrols the spikiness of the singular values of L∗
. This assumption

presribes, from our point of view, that the maximum ommunality aross

variables must be bounded. It is an analytial assumption in nature, di�er-

ently from the algebrai approah aimed at bounding the degree of oherene

between singular vetors and anonial basis ([24℄):

‖ UU ′ − r

p
Ir ‖∞, ‖ V V ′ − r

p
Ir ‖∞, ||UV ′||∞.

Here the imposed ondition is ||UDV ′||∞ ≤ α
p , whih uses the singular

values of L∗
as weights in the l∞ bound. We note that here a bound on

singular values (the eigenvalues for ovariane matries) is impliitly posed,

whih is equivalent to bound the ondition number of L∗
, di�erently from

the approah desribed in paragraph (4.1.1). This ondition is weaker: no

ondition is imposed on the row/olumn spaes of L∗
(only its maximum

element must be bounded) and allows for wider lasses of matries.

It is relevant that no expliit ondition is plaed on the sparse omponent:

in this purely analytial approah, reovery is performed imposing regularity

onditions on the objetive funtion (3.7), with partiular referene to the

onvexity properties of the smooth and the non-smooth part jointly. So, the

sparsity pattern of S∗
is involved only in ontrast to the spikiness pattern of

L∗
, by imposing a lower bound to quantity

Φ(∆) := inf
S+L=∆

Q(S,L), (4.12)

where

Q(S,L) := ||L||∗ +
ρ

λ
||S||1

is a weighted ombination of the regularizers (ρ and λ are non-negative

regularization parameters).

However, this approah has a relevant drawbak: the approximate reov-

ery of the approximately low rank and sparse omponents is itself approx-

imate, beause it provides not an identi�ability ondition, but a bound on

the radius of non-identi�ability (in our setting, ||L∗||∞ ≤ α
p ). The larger α,

the broader is the lass of identi�able models, but the more di�ult is the

reovery, espeially of the sparse omponent. Indeed, in [1℄, paragraph 4,

the authors provide mini-max optimality properties for their method over
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the lasses of approximately low rank and approximately sparse matries

(whih are broader than those we need).

This method desends from the previous work of a subset of the same

authors ([85℄) where weighted matrix ompletion (respet to rows/olumns)

is performed into the same mathematial setting using only the nulear norm.

On that path, [1℄ represents a diret extension.

The sense of their mathematial approah is now desribed. The regu-

larization problem is:

min
L,S

f(L,S) =
1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρR(S∗), (4.13)

where R(S∗) is a regularizer. For us, R = ||.||1, i.e. we want to reover

exatly low rank matries with rank r ≪ p and exatly entry-wise sparse

matries with at most s≪ p2 nonzero elements. Here, non-asymptoti error

rates are given for a wider lass of regularizers. For example, a related

heuristis imposes to S∗
olumnwise (blokwise) sparsity, whih is reovered

using R(S∗) = ||S∗||2,1 =
∑p

k=1 ||Sk||2, where Sk denotes the k-th olumn

of S∗
.

In general, R an be any deomposable regularizer, whih is de�ned

respet to the pair of subspaes (M,M⊥) as:

R(U + V ) = R(U) + R(V ),

for all U ∈M and V ∈M⊥. Our referene norm, R = ||.||l1 , is deomposable

respet to (M(T ),M(T )⊥), where

M(T ) = {U ∈ Rd1×d2 |Ujk = 0 ∀(j, k) 6∈ T}

M⊥(T ) =M(T )⊥

and T ∈ {1, . . . , p} × {1, . . . , p} is an arbitrary olletion of indies. In fat,

||U + U ′||1 = ||U ||1 + ||U ′||1, for all U ∈M and U ′ ∈M⊥
.

With respet to subspae M , they de�ned a ompatibility onstant be-

tween the regularizer R and the Frobenius norm:

Φ(M,R) := sup
U∈M,U 6=0

R(U)

||U ||Fro
.

In our ase, we have Φ(M, ||.||1) =
√
s.

The following norm-related quantity is then de�ned:

κd(R) :=
||V ||F
R(V )

,

as well its assoiated dual norm:

R∗(U) := sup
R(V )≤1

< V,U >
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with < V,U >:= trace(V ′U). The quantity desribing the interation be-

tween the low rank and the sparse omponent, equivalent of µ(A∗)ξ(B∗) in
paragraph (4.1.3), is the following:

ϕ(L∗) = κd(R
∗)R∗(L∗).

Thus, the interation between the low rank and the sparse omponent

is here onstrained using the dual norm of R omputed on L∗
, resaled by

the norm-related onstant κd(R). The general bound on the radius of non-

identi�ability is thus ϕ(L∗) ≤ α. Note that, analogously to POET approah,

the spikiness of the low rank omponent is bounded starting from the sparsity

features of the sparse omponents. This feature is at the same time the most

relevant weakness of this approah for our purpose, beause there is not an

intrinsi bound for the dual norm of the nulear norm assessed in S∗, whih is
||S∗||2. For us, κd(R∗) = p, R∗ = ||.||∞, from whih the previously desribed

ondition ||L∗||∞ ≤ α
p follows.

A deomposable regularizer is a norm penalizing deviations from the

model subspae M as muh as possible. Using �rst-order Taylor series ap-

proximation, we an derive a quadrati lower bound on the quadrati error.

De�ning Loss(Ω) = 1
2 ||Σ̂− ℵ(Ω)||Fro, we have

Loss(Ω +∆)− Loss(Ω)−△Loss(Ω)T∆ =
1

2
||ℵ(∆)||2Fro.

The Strong Convexity ondition provides us a lower bound on

1
2 ||ℵ(∆)||2Fro,

stating:

1

2
||ℵ(∆)||2Fro ≥

γ

2
||∆||Fro,

where γ > 0 is the strong onvexity onstant.

The Restrited Strong Convexity (RSC) ondition presribes:

1

2
||ℵ(∆)||2Fro ≥

γ

2
||∆||2F − τnΦ2(∆),

where γ > 0 , τn depends on the mapping operator ℵ (and dereases as

n→ 0), Φ(∆) is de�ned in (4.12), and

Q(S,L) := ||L||∗ +
ρ

λ
R(S∗).

The sample size n is not a problem until τn is su�ient large (large as

long as γ > 0). We underline the partiular role of n: sine this approah

provides deterministi guarantees, n serves to improve the approximation of

1
2 ||ℵ(∆)||2Fro, That is, the larger n, the more preise is the observation model,

and the smaller an be τn. However, in our partiular ase we have τn = 0
(identity operator), and γ = 1. Note that Φ2(∆) is a measure of relative

importane of the regularizer respet to the nulear norm.
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The RSC ondition is the key to provide non-asymptoti error bound

rates, bounding the absolute losses provided that ϕ(L) ≤ α. If R is a de-

omposable regularizer, it was proved in [84℄ that the assoiated statistial

models satisfy the RSC ondition. Therefore, in that ase the authors proved

that it is straightforward to obtain non-asymptoti error bounds, and that

the M-estimators minimizing a omposite regularizer (the loss term plus a

deomposable regularizer) onverge fast. In this sense, [1℄ is an extension

of [84℄, where both the nulear norm (whih is also a deomposable reg-

ularizer) and a general deomposable regularizer represent the omposite

penalty. Roughly speaking, we an say that [1℄ represents the meeting point

of [85℄ and [84℄.

Another key element of this approah onerns the error omposition. Let

us de�ne ∆Σ = Σ̂ − Σ∗
, ∆L = L̂− L∗

, ∆S = Ŝ − S∗
. For Cauhy-Shwartz

inequality, ||∆Σ||2Fro ≤ ||∆L||2Fro+ ||∆S ||2Fro. Therefore, in the noisy setting,

under the numerial approah, the quantity to lower bound is

e2(L̂, Ŝ) = ||∆L||2Fro + ||∆S ||2Fro.

This hoie has to be disussed. It is intuitive that bounding ||∆L||2Fro+
||∆S ||2Fro an be quite di�erent from bounding ||∆Σ||2Fro. More details and

a proposal on this topi an be found in paragraph (5.1).

Given our observation model Σ̂ = ℵ(S∗+L∗)+W , under ϕR(S
∗) ≤ α and

the RSC ondition, the error e2(L̂, Ŝ) is bounded by three terms: one in L∗
,

one in S∗
, one depending on τn. Eah term is omposed by two summands:

an estimation error term, measuring the error on the subspae M , and an

approximation error term, due to the fat that approximately low rank and

sparse matries are allowed. The seond one, whih was absent in previous

approahes, measures the error on the orthogonal omplement M⊥
(these

terms inlude λj(L
∗), r+1, . . . , p for L∗

, and the regularizer of the projetion

of S∗
in the orthogonal omplement, for us equal to

∑

j,k /∈supp(S∗) ||S∗
jk||).

Sine τn = 0 and we seek for exatly low rank and sparse matries, in our

ase we do not have the third error omponent and we do not allow for

approximation errors.

Their general theorem states that under two spei� regularity onditions

involving r, Ψ(M,R), λ, ρ proportionally to τn and γ, and under lower

bounds for λ and ρ, there are three limiting universal onstants limiting

eah of the three error terms. The strength on the bound depends on the

strength of the RSC ondition respet to the urvature of Loss(Ω). For the
entire statement, we refer to [1℄, p. 1182.

The bound on the urvature will be relevant also in the approah we are

going to present in paragraph (4.1.3). While here the onvexity struture of

Loss(Ω) is enfored via the l∞ norm (dual of the l1 norm) of the low rank

omponent, there the urvature of the low rank matrix variety is bounded,

and the Lagrangian dual subgradient approah is applied. The method we



76 CHAPTER 4. LOW RANK PLUS SPARSE DECOMPOSITION

will present allows to identify the model, sine it presribes, following [30℄,

symmetri assumptions respet to BOTH omponents ontrolling entirely

the interation of the two spaes. Here, an analytial ontrol based only on

the regularizer (thus asymmetri) is imposed to the low rank omponent.

In [31℄, a bound on the norm of the projetion onto the orthogonal omple-

ment is given for BOTH matrix spaes simultaneously. This allows perfet

identi�ation.

If τn = 0 and in the exat matrix setting:

e2(L̂, Ŝ) � λ2r + ρ2Ψ(M,R)2

up to onstant fators. In our ase Ψ(M ||.||1) =
√
s. In this approah r and

s are hosen adaptively. If we hoose r = rank(L∗) and s = |supp(S∗)|, we
have

e2(L̂, Ŝ) � λ2r + ρ2s.

If W = 0 (noiseless setting), for speialization we have

e2(L̂, Ŝ) � α2 s

p2
.

This rate is weaker respet to the one in [30℄, but requires weaker onditions

on L∗
. Anyway, mini-max properties show that in the noiseless setting the

rate α2 s
p2 annot be improved if s ≤ p. In addition, we have to onsider that

the allowed lasses of low rank and sparse matries are muh wider.

The lower bounds for threshold parameters here depend on funtional

norms ||ℵ∗(W )||op, and ||ℵ∗(W )||∞, as well as on γ, p and α. ||ℵ∗(W )||op is

here simply the spetral norm of the dual operator at W .

Suppose now we have a stohasti errorW generated with normal entries

N(0, σ
2

n ). If we set ℵ = I, spei� threshold values an be found. Under the

desribed onditions, using large deviation theory and some non-asymptoti

random matrix theory results to bound ||W ||op and ||W ||∞, we have that for

spei� threshold parameters, with very high probability, an error rate om-

posed by the noise variane times the usual two error omponents, funtion

of p, r, s and α, holds.
If we allow W to be a zero-mean Wishart, we fall bak into the pure

sparse fator analysis ase (3.1), whih is relevant for our purpose. We now

reall it.

Let us suppose L∗ = UDU ′ = BB′
, where B = UD1/2

, U is a p × r
matrix, D is a r × r diagonal matrix, with djj > 0, ∀j = 1, . . . , r. Suppose
that our p× 1 random vetor Xi, i = 1, . . . , n, has the following struture:

Xi = Bfi + ǫi,

with

fi = Nr(0, Ir),

ǫi = Np(0, S
∗),
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where fi is a r × 1 random vetor, and ǫi is p× 1 random vetor.

Xi is assumed to be a zero mean random vetor, without loss of generality.

The observation matrix is the sample ovariane Σ̂n = 1
n

∑n
i=1XiX

′
i. The

error term W := 1
n

∑n
i=1XiX

′
i − (BB′ + S∗) is a zero-mean re-entered

Wishart matrix noise.

The Corollary relative to this ase is the following.

Corollary 4.1.1. Consider the fator analysis with n ≥ p samples, and

regularization parameters

λ = ||
√
Σ∗||2

√

p

n
and ρ = 32ρ(Σ∗) +

4α

p
(4.14)

where ρ(Σ∗) = maxjΣ
∗
jj. Then with probability greater than 1−c2exp(−c3 log(p)),

any optimal solution (L̂, Ŝ) satis�es

e2(L̂, Ŝ) ≤ c1
{

||Σ∗||2
rp

n
+ ρ(Σ∗)

s log p

n

}

+ c1
α2s

p2
. (4.15)

This result is derived using large deviation theory and some non-asymptoti

random matrix theory results, whih allow (under the Wishart assumption)

to translate norms ofW into norms of Σ∗
. It states that under spei� thresh-

old hoies, involving the spetral norm and the maximum diagonal term of

Σ∗
, the error is bounded with very high probability by three terms, one repre-

senting the degrees of freedom of L∗
, ||Σ∗|| rpn (rp is the number of loadings),

one representing all possible sparsity patterns of S∗
, ρ(Σ∗)s log pn ≈ s log p

n
(number of subsets of size s from Rp×p

), and a term deriving from the non-

identi�ability issue

α2s
p2

. As usual, the ondition n ≥ p is neessary in order

to obtain onsistent estimates in fator analysis model using Σ̂n.

Note that now we �nd again the usual rates ||Σ∗|| pn and ρ(Σ∗)s log pn de-

sribed in [39℄ and [15℄. Terms ||Σ∗||2 and ρ(Σ∗) are present for probabilisti
reasons, using standard tail bounds for random Gaussian matries and their

produt (see supplementary material to [1℄, p.35). This is why the threshold

parameters λ and ρ have the shape of (4.14). The two terms are weighted by

r and s respetively: this is a major di�erene with the algebrai approah,

where r and s have no impat, beause there, di�erently from here, they are

impliitly inorporated in the threshold parameters. On the ontrary, the

probabilisti argument depends in that ontext on Σ̂n as a whole. The on-

dition n ≥ p is the same: however, it is easier trying to overome it working

on Σ̂n under spei� model assumptions than using probability assumptions

on matrix W .

Finally, we mention a very interesting approah to the same problem,

in our ase (exat low rank/sparse matries, identity operator ℵ = I): Hsu
et al. (2012) [67℄. That work is based on rank-sparsity inoherene, and

uses the standard singular vetor inoherene onditions of [24℄ deriving
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non-asymptoti rates depending on those quantities using the sub-gradient

method. In partiular, sine they employ the orthogonal singular vetor

inoherene bound ||UV ||∞, they need to impose a bound on the produt

rs:

rs � p2

2 log p
.

This bound is not present in the algebrai approah we are going to desribe

in paragraph (4.1.3), sine rank-sparsity inoherene is enfored bounding

quantities related to the tangent spaes to the referene varieties (see para-

graph (4.1.1)). For a omparison between this approah and the analytial

one see [1℄, p.1188.

We now introdue the algebrai approah by Chandrasekaran et al. (2012)

for approximate matrix reovery.

4.1.3 Approximate reovery: an extended algebrai approah

The method we are going to desribe now is the ore of our thesis. This ap-

proah, by Chandrasekaran et al. (2012) ([31℄), provides a numerial heuris-

tis for inverse ovariane matrix estimation under the Gaussian assumption,

exploiting the tools of graphial modelling. From a ertain point of view, we

ould say this is the extension of the graphial lasso for sparse inverse ovari-

ane estimation by Friedman, Hastie and Tibshirani ([53℄). The a�nities are

in the estimation target (the preision matrix), in the nature of the minimiza-

tion target (they both are likelihood methods), in the Gaussian assumption

for the data and in the use of the l1 heuristis (sparsity assumptions).

In ontrast, while the graphial lasso imposes sparsity on the overall

ovariane matrix, the approah in [31℄ uses the same assumption on the

residual omponent of the model. This solution is based on the strong link

between Gaussian random variables and graphial modelling suh that the

Shur omplement of Σ∗
is diretly modelled. The hosen onditioning blok

is a vetor of r ≪ p latent variables whih are assumed to explain a large part

of the ovarianes among variables, and the residual ovariane is supposed

to be sparse. Sine the Shur omplement of the ovariane matrix of a

Gaussian random vetor is the ovariane matrix of the variables onditioned

to the the variables belonging to the onditioning blok, this model results

in a low rank plus struture for the inverse ovariane matrix, whih is a

latent variable graphial model with sparse residual for the data (allowing for

missing edges given the latent graphial struture). The problem is solved

minimizing the log-likelihood (parameterized in the low rank and in the

sparse omponent) augmented by a omposite penalty in the form (3.28),

where the nulear norm regularizes the low rank omponent and the l1 norm
the sparse one. This is a regularized maximum likelihood program, a onvex

program tratable via o�-the-shelf algorithms ([111℄).
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What is new, the approah in [31℄ is algebrai in nature, while the one in

[53℄ is mainly algorithmi (data approximation method). This one provides

an algebrai setting for model identi�ability and onsistent reovery. In addi-

tion, this method provides a double notion of onsisteny: an algebrai one,

whih desribes the orrespondene between estimated and theoretial rank

and sparsity pattern, and a parametri one, whih provides �nite bounds

for the error rate taking into aount simultaneously the low rank and the

sparse omponent. Finally, both onsistenies allow (theoretially) r, p ∼ n,
even if there is still the usual problem onerning the use of Σ̂n. Here, the

ondition n ≥ 2p is imposed in order to obtain sharper rates.

We now present the model in detail. Consider we have a �nite olletion

of Gaussian random variables XO ∪ XH , where XO are observed variables

and XH are hidden variables. Call ΣO,H the ovariane matrix of XO ∪XH

(in this ase we remove

∗
to avoid luttered notation). KO,H = Σ−1

O,H is the

onentration matrix of the full model. The marginal ovariane matrix ΣO

is simply a submatrix of ΣO,H . Suppose we parameterize the model start-

ing from the onentration matrix K = Σ−1
O,H . The marginal onentration

matrix K̃O = Σ−1
O is given by the Shur omplement with respet to blok

KH :

K̃O = Σ−1
O = K0 −KO,HK

−1
H KH,O. (4.16)

This is a low rank plus sparse struture, where Σ−1 = S −L. The graphial
model holds beause the ovariane matrix of XO|XH is Σ−1

O . For i, j ∈ O,
due to the joint Gaussian property, Σ−1

O,ij desribes the strength of the rela-

tionship between Xi and Xj onditional to XH . The following relationship

holds:

cov(Xi,Xj |XO\{i,j}) = 0⇔ Σ−1
O,ij = 0,

that is, the is edge between Xi and Xj is missing if the two variables are

onditionally independent. Di�erently from [53℄, the sparse graphial model

is not imposed diretly to Σ−1
O , beause (onditional) independene is often a

too strong assumption in high dimensions. This is why here it is assumed that

a number of latent variables XH , |H| ≪ |O|, explains most of the observed

ovarianes among the variables in XO. So, K̃O is not sparse in general due

to extra-orrelations indued from marginalization over the latent variables

XH . The latent variables XH are also referred to as hidden omponents.

The additional low rank term KO,HK
−1
H KH,O summarizes the ovarianes

indued by the marginalization over XH . Then, it is possible to set up

a sparse graphial model on the residual onentration matrix K0, whih

summarizes the ovarianes among the variables in XO onditioned on the

hidden omponents. From this model framework, a natural low rank plus

sparse deomposition for the preision matrix of the observed variables K̃O

arises, in the form:

K̃O = S − L,
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where S = K0 and L = KO,HK
−1
H KH,O. This framework ombines dimen-

sionality redution (to identify latent variables) and graphial modelling (to

ath the residual ovariane struture). For us, |O| = p, |H| = r.

Under these model assumptions, the problem of identifying two matrix

varieties, one low-rank (4.3) and one sparse (4.4) naturally arises. We need

to uniquely deompose the low rank and the sparse omponent starting from

their sum. This problem is similar to the one presented in (4.1.1), even if

random perturbations on the data are allowed. The identi�ation requires to

exploit the notion of geometri transversality between tangent spaes Ω(KO)
T (KO,HK

−1
H KH,O). We will show that, analogously to [30℄, if the sparse

omponent has a small number of nonzero elements and the low rank om-

ponent has row/olumn spaes not losely aligned to oordinate axes, then

the latent variable model is identi�able. However, there is one more prob-

lem to fae: in the noisy ontext, the urvature of the low-rank variety (i.e.

its loal sensitivity to perturbations) plays a relevant role. If we think the

two tangent spaes as algebrai systems, we note that the one tangent to

the low-rank variety is non-linear, while the other one is linear. For this

reason, if T (KO,HK
−1
H KH,O) is very urve, it may be impossible to identify

L in the noisy ontext, sine the tangent spae an vary loally very fast.

Therefore, a bound on this urvature is neessary. Note that the approah

by Agarwal et al. ([1℄) does not provide identi�ability just beause it does

not pay attention to this aspet, enforing assumptions via a pure analytial

approah.

The regularized likelihood problem is the following:

Ŝn, L̂n = argmin
S,L
−l(S − L; Σ̂n) + λn(γ||S||1 + tr(L)) (4.17)

s.t. S − L ≻ 0 L � 0,

l(K; Σ) = log det(K)− tr(KΣ) (4.18)

K ≻ 0.

It is omposed by a Gaussian log-likelihood term (−l(S−L; Σ̂n)) and the

omposite penalty (3.28), where the trae is the nulear norm heuristis over

the one of Positive SemiDe�nite matries (PSD). γ is a trade-o� parameter

between the trae and the l1 norm. (4.17) is a regularized max-det problem

(a disussion on these problems is in [49℄). Note the presene of onstraints

S −L ≻ 0 and L � 0, whih are tratable in this algebrai framework. This

is a variational formulation of the problem, whih provides also a model

seletion heuristis: the error term (log-likelihood) is penalized by the model

omplexity in terms of sparsity of S and spetrum of L. The problem an

be easily solved using standard o�-the-shelf solvers ([111℄).

Due to the log-likelihood term, another identi�ation problem arises. If

the log-likelihood is too urve, i.e. if the Fisher information behaves poorly

respet to the tangent spaes T (L) and Ω(S) (and their sum), errors in
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the data are ampli�ed too muh, reating an additional identi�ation issue.

Funtional operator theory is ruial in this ontext. The urvature of Fisher

information I∗ as well as the urvature of the low rank variety are desribed

and bounded as funtional operators.

A formal statement of the latent variable model seletion problem is

reported below ([31℄).

De�nition 4.1.1. A pair of symmetri matries (S,L) with S,L ∈ R|O|×|O|

is an algebraially onsistent estimate of a latent-variable Gaussian graphial

model given by the onentration matrix KOH if the following onditions hold:

1. The sign pattern of S is the same of KO: sign(Sij) = sign((KO)i,j),
∀i, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of KO,HK
−1
H KH,O.

3. The onentration matrix S − L an be realized as the marginal on-

entration matrix of an appropriate latent-variable model: S − L ≻ 0,
L � 0.

Model onsisteny here is de�ned aording to the following three esti-

mation features:

1. orret strutural estimate of the onditional graphial model (given by

K0) of the observed variables onditioned on the hidden omponents.

This feature is alled "sparsisteny" of standard graphial model se-

letion.

2. number of hidden omponents orretly estimated.

3. the model is realizable: |O ∪H| = |O|+ |H|.

It is also de�ned the usual parametri onsisteny, whih holds if the

estimates of (S,L) are lose to (KO,KO,HK
−1
H KH,O) in some norm with high

probability. Parametri onsisteny does not imply algebrai onsisteny and

vie versa. Besides, the model su�ers from the usual model indeterminay

oming from a latent variable ontext: there are in�nite KH ≻ 0, KO,H =
K ′

H,O giving rise to the same low-rank matrix KO,HK
−1
H KH,O.

Consistently to their geometri approah (and to identi�ability ondi-

tions), the referene norm to assess parametri onsisteny is nothing but

the dual norm of the omposite penalty. Given the norm

fγ(S,L) = γ||S||1 + ||L||∗, (4.19)

γ > 0, where ||L||∗ = tr(L) (sine L is over the one of PSD), the dual norm

of fγ(S,L), whih is used to bound the error, is

gγ(S,L) = max
{ ||S||∞

γ
, ||L||2

}

. (4.20)
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Identi�ation and reovery: tehnial aspets

Suppose we have n samples (Xi
O)

n
i=1 of the observed variables XO. Xi, i =

1, . . . , n, are jointly Gaussian zero-mean p - dimensional random variables.

The latent variable model holds on the marginal onentration matrix K.

We de�ne the indued operator norm of a linear bounded operator

Z : Rp×p → Rp×p
as:

||Z||q→q = max
N∈Rp×p,||N ||q≤1

||Z(N)||q .

The ovariane matrix is the usual Σ̂n = 1
n

∑n
i=1XO,iX

′
O,i. The log-

likelihood of K is

l(K; Σ̂n) = log det(K)− tr(KΣ̂n),

funtion of K.

Applying Jaobi's formula we have ([120℄ [121℄)

δ2

dK2
tr(KΣ̂n) =

δ

dK
Σ̂nI = 0.

As a onsequene,

δ2

dK2
dK log det(K) =

δ

dK
tr(K−1) = −K−1K−1,

whih results in

δ2

dK2
l(K; Σ̂n) = −K.

This result means that l(K; Σ̂n) is stritly onave for K ≻ 0, i.e.

−l(K; Σ̂n) is stritly onvex.

Consider now the latent variable model (4.16) for K̃O = (ΣO)
−1
, where

S = K0 represents the onditional statistis ofXO given some extra variables

XH , and L = KO,HK
−1
H KH,O summarizes the e�et of marginalization on

XO over XH . Respet to (S,L), l̄(S,L,Σn) = l(S−L,Σn) is jointly onave

whenever S − L ≻ 0.

We know that Fisher information is the negative Hessian of the likelihood

funtion and thus ontrols the urvature of Fisher information operator I .

Its formulation is

I(K) = −∆2
K log det(K)|K = K ⊗K

for K ≻ 0. If K is p× p, I(K) is p2 × p2.
Considered that K̃O

∗
= (Σ∗

O)
−1
, for model (4.16) we have:

I(K̃O) = K̃−1
O ⊗ K̃−1

O = ΣO ⊗ ΣO. (4.21)
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This matrix is preisely the |O|2 × |O|2 sub matrix of

I(K̃(OH),(i,j)(k,l)) = [Σ(O,H) ⊗ Σ(O,H)](i,j)(k,l),

whih is |O ∪H|2 × |O ∪H|2, given that K̃(OH) = (Σ(O,H))
−1
.

Bounding I(K̃O) is ruial for obtaining onsistent estimates with high

probability from (4.17).

As previously explained, the tangent spae T to the low-rank matrix

variety is loally urved at any smooth point. Results from perturbation

matrix theory are needed in order to bound the urvature of T , whih may

a�et the identi�ation of the unknown varieties. The urvature of T at

any smooth point M (symmetri and having rank less or equal to r) an
be desribed in terms of projetion onto the row spae U(M) (denoted by

PU(M)(N)) as follows (see [9℄ p.15):

PT (M)(N) = PU(M)N +NPU(M) − PU(M)NPU(M)

where operator P is the (bounded) projetion operator and N is any squared

matrix. T (M) is urved beause the projetion hanges loally around M
(di�erently from Ω(M), whih has urvature 0 at any smooth point). The

urvature is the "angle" between the tangent spae at any smooth point and

the tangent spae at a neighboring point.

It is therefore neessary to bound the urvature. The twisting between

two subspaes of matries T1 and T2 is de�ned as:

ρ(T1, T2) = ||PT1 − PT2 ||2→2 = max
||N ||2≤1

||PT1 − PT2(N)||2.

It is proved that perturbing a rank-r matrix M with a matrix ∆ suh that

||∆||2 ≤ σ
8 and M +∆ has rank r, the following two results whih bound the

twisting between tangent spaes at nearby points hold:

ρ(T (M +∆), T (M)) ≤ 2

σ
||∆||2 (4.22)

||PT (M)⊥ ||2 ≤
||∆||22
σ

, (4.23)

where σ is the smaller singular value of M . So, lower bounding σ, whih
is for ovariane matries simply the smallest eigenvalue, means ontrolling

the urvature of T . The loser σ is to 0, the more urved T is loally.

Analogously to [30℄, quantities µ(K0) and ξ(KO,HK
−1
H KH,O) play a key

role for identi�ation. A useful Lemma links the twisting between two sub-

spaes ρ(T1, T2) (if smaller than 1) and parameters ξ(T1), ξ(T2) as follows:

ξ(T2) ≤
1

1− ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)].
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This allows to onlude that we onsider all the neighbour subspaes T ′

satisfying ρ(T ′, T ) ≤ ξ(T )
2 as lose to T .

We an now approah the problem of loal identi�ability of the sparse

and the low rank omponent from their observed sum. De�ne the addition

operator A(S,L) = S + L, its adjoint A†
s.t. < Ax, y >=< x,A†y > for all

x, y ∈ H, H Hilbert spae (<> is the standard Eulidean inner produt).

A†(S,L) = (S+L)′ = S+L (sine both omponents are symmetri). A and

A†
are both linear bounded (hene ontinuous) operators.

The identi�ability of tangent spaes T (L) and Ω(S) is possible if and only
if they have a su�ient degree of transverse intersetion, whih means they

are su�iently distint. This ondition depends, as desribed in paragraph

(4.1.1), on quantities ξ(T ) and µ(Ω); in this ontext, sine transversality is

not perfet, we need also to quantify and bound the level of transversality

between the two spaes with referene to the Cartesian produt Y = Ω× T .
This is unavoidable to provide neessary and su�ient onditions for identi-

�ability from the Maximum Likelihood (ML) regularized program (4.17).

The minimum gain with respet to some norm ||.||q on Rp×p × Rp×p
of

the addition operator A : Rp×p × Rp×p → Rp×p
restrited to the artesian

produt Y = Ω× T is de�ned as:

ǫ(Ω, T, ||||q) = min
(S,L)∈Ω×T,||(S,L)||q=1

||PYA
†APY(S,L)||q,

where PY is the projetion operator onto Y and the produts are Cartesian

produts.

Quantity ǫ(Ω, T, ||.||q) measures the level of transversality. The large

it is, the more transverse T (L) and Ω(S) are. The tangent spaes have a

transverse intersetion if and only if

ǫ(Ω, T, ||.||q) > 0.

Sine we have A†A(S,L) = (S + L,S + L) and PYA
†APY(S,L) =

(S+PΩ(L), PT (S)+L), this ondition is equivalent to bound the projetion of
eah omponent onto the other spae, in order to avoid the misidenti�ation

of eah omponent. This why we want ǫ(Ω, T, ||.||q) to be as large as possible.
As the subdi�erential of the regularization funtion (4.19) is spei�ed in

terms of its dual norm (4.20), the natural norm ||.||q to measure transversality

is the dual norm of the regularization funtion (4.20).

Given Ω and T , tangent spae to varieties S, L and their Cartesian
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produt Y = Ω× T , the following bounded linear operator properties hold:

||PΩ||∞ ≤ ||M ||∞
||PΩ⊥ ||∞ ≤ ||M ||∞

||PT (M)||2 ≤ 2||M ||2
||PT⊥(M)||2 ≤ ||M ||2

gγ(PY(M,N)) ≤ 2gγ(M,N)

gγ(PY⊥(M,N)) ≤ gγ(M,N).

These properties are used for the subgradient minimization proess. Note

that the projetion rule for the ||.||2 norm of the projetion doubles the

orresponding norm of the argument, di�erently from other norms. See [96℄

for more explanations.

De�ning

χ(Ω, T, γ) = max

{

ξ(T )

γ
, 2µ(Ω)γ

}

,

we an study the transversality respet to gγ , obtaining the following ruial
result:

Lemma 4.1.1. Given, S ∈ Ω, L ∈ T , with ||S||∞ = γ and ||L||2 = 1, and
Y = Ω× T , we have:

gγ(PYA
†APY(S,L)) ∈ [1− χ((Ω, T, γ), 1 + χ((ω, T, γ)].

In partiular:

1− χ(Ω, T, γ) ≤ ǫ(Ω, T, gγ).

This is a stohasti joint (matrix bivariate) isometry property, and is

the Restrited Isometry Property (RIP) of this model setting. It allows

to lower bound ǫ(Ω, T, gγ) and to link transversality to parameters µ(Ω)
and ξ(T ) even in the noisy ontext. For instane, if µ(Ω)ξ(T ) < 1/2 then

γ ∈ (ξ(T ), 1
2µ(ω) ) implies Ω and T have a transverse intersetion.

It is easy to note that the smaller are µ(Ω) and ξ(T ), the more transverse

are Ω and T , exatly as in the noiseless ontext of paragraph (4.1.1).

Tangent spaes in this framework are preisely de�ned as

Ω = Ω(KO) = Ω(S) and T = T (KO,HK
−1
H KH,O) = T (L),

where KH,O = K ′
O,H . They both lie in a funtional spae where the inner

produt is the Fisher information operator I∗, whih is a map between Rp×p

and Rp2×p2
. We want that S and L are distinguishable respet to I∗, i.e. to

study the behaviour of I∗ restrited to Ω⊕T , in order to identify and reover

S and L by l(S − L; Σ̂n).
In order to do that, we need to study the gains of I∗ restrited to Ω and

T separately, as well as their orthogonal omplements Ω⊥
and T⊥

, suh that
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elements in both spaes are identi�able under the map I∗. Finally, onditions
to ontrol I∗ restrited to the diret sum Ω⊕ T , in onjuntion with bounds

on µ and ξ, are provided.
The minimum gain of I∗ restrited to Ω and Ω⊥

is given by the following

quantities:

αΩ = min
M∈Ω,||M ||∞=1

||PΩI
∗PΩ(M)||∞ (4.24)

δΩ = min
M∈Ω,||M ||∞=1

||PΩ⊥I∗PΩ(M)||∞ (4.25)

I∗ is injetive on Ω if αΩ > 0. The irrepresentability ondition, whih is

a su�ient identi�ation ondition for graphial lasso using l1 regularization
problem, is

δΩ
αΩ
≤ 1− ν, and is su�ient for onsistent reovery of graphial

model struture using lasso ([53℄). More, the loal behaviour of I∗(M) respet
to Ω is desribed by

βΩ = max
M∈Ω,||M ||2=1

||I∗(M)||2.

The same holds for funtional operators P⊥
T I∗PT (M) and P ′

T I
∗PT (M),

whih desribe the behaviour of I∗ restrited to T and T ′
respetively. Their

minimum gain is respetively given by:

αT = min
ρ(T,T ′)≤ ξ(T )

2

min
M∈T ′,||M ||2=1

||P ′
T I

∗P ′
T (M)||2 (4.26)

δT = min
ρ(T,T ′)≤ ξ(T )

2

min
M∈T ′,||M ||2=1

||P ′⊥
T I∗P ′

T (M)||2. (4.27)

I∗ injetive on all tangent spaes T' suh that ρ(T, T ′) ≤ ξ(T )
2 if αT > 0.

An analogous irrepresentability ondition holds for the reovery of T (solely

onsidered):

δT
αT
≤ 1− ν.

The loal behaviour of I∗(M) respet to Ω is desribed by

βT = max
ρ(T,T ′)≤ ξ(T )

2

max
M∈T ′,||M ||∞=1

||I∗(M)||∞

Quantities βΩ and βT ontrol the behaviour of I∗ restrited to Ω⊕T , together
with onditions on ξ(T ) and µ(T ) oming from Lemma 4.1.1.

Let us now de�ne:

α = min(αΩ, αT ) (4.28)

β = min(βΩ, βT ) (4.29)

δ = min(δΩ, δT ). (4.30)

The main assumption on I∗, whih summarizes both sets of onditions,

is the following:
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Lemma 4.1.2. There exists a ν ∈ (0, 12 ] suh that

γ
α ≤ 1− 2ν.

We an now report the Proposition of [31℄ desribing the neessary as-

sumptions on parameters for model identi�ation. This statement reaps

identi�ability onditions related to the urvature of T (L), to Fisher informa-

tion I∗ and to ǫ(Ω, T, gγ).

Proposition 4.1.3 (Chandrasekaran et al. (2012) [31℄). Let T be as in

(4.3), Ω be as in (4.4), and let I∗ be the Fisher information matrix evaluated

at the true K = Σ−1
O . Suppose that

µ(Ω)ξ(T ) ≤ 1

6

(

να

β(2− ν)

)2

,

and γ is in the following range:

γ ∈
[

3β(2 − ν)ξ(T )
να

,
να

2β(2 − ν)µ(Ω)

]

.

Then we have the two following onlusions for Y = Ω×T ′
, with min ρ(T, T ′) ≤ ξ(T )

2 :

• The minimum gain of I∗ restrited to Y = Ω⊕ T is bounded below:

min
(S,L)∈Y,||S||∞=γ,||L||2=1

gγ(PYA
†I∗APY(S,L)) ≥

α

2
.

Spei�ally this implies for all (S,L) ∈ Y:

gγ(PYA
†I∗APY(S,L)) ≥

α

2
gγ(S,L).

• The minimum e�et of elements in Y = Ω ⊕ T on the orthogonal

omplement Y⊥ = Ω⊥ ⊕ T ′⊥
is bounded above:

||(PY⊥A†I∗APY(S,L))(PYA
†I∗APY(S,L))

−1)||gγ→gγ ≤ 1− ν

Spei�ally this implies for all (S,L) ∈ Y:

gγ(PY⊥A†I∗APY(S,L)) ≤ (1− ν)gγ(PYA
†I∗APY(S,L))

Another neessary ondition to ensure probabilisti onsisteny is a bound

on ψ, the spetral norm of Σ (ψ = ||Σ||2). ψ ontrols also I∗, sine it an be

noted that here ||I∗||2→2 = ψ2
(see (4.21)).

We now desribe onsisteny properties of (4.17) in the high dimensional

setting, where p, r, n are allowed to grow simultaneously (n, r ∼ p). For us,
p = |O| is the number of observed variables, r = |H| is the number of latent
variables, n is the number of samples of the observed variables XO. KO,H

gives the latent variable graphial model whose omplexity is explained by
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µ(Ω(KO)) and ξ(T (KO,H)K−1
H KH,O), desribing the sparsity pattern of the

onditional graphial model among the observed variables and the di�usivity

of the extra orrelations due to marginalization over the hidden variables.

Parameters α, β, ν, ψ do not sale with other parameters and are bounded.

There is a natural trade-o� between µ(Ω) and ξ(T ). The lasses of latent-
variable graphial models whih an be identi�ed by (4.17) depend on their

relationship, and on orresponding salings of p, r, n.

In (4.17), γ is a trade-o� parameter between rank and sparsity terms, and

λn is a regularization parameter, whih must be suitably hosen to ensure

onsisteny. Sine ξ(T ) and µ(Ω) are not known a priori, a numerial hoie

for γ must be done too.

We now report the main result on model seletion onsisteny.

Theorem 4.1.3 ([31℄). Let KOH denote the onentration matrix of a Gaus-

sian model. We have n samples Xi, i = 1, . . . , n p of the observed variables

denoted by O. Let Ω = Ω(KO) and T = T (KO,HKO,HK
−1
H KH,O) denote the

tangent spaes at KO and at KO,HKO,HH
−1KH,O with respet to the sparse

and low-rank matries respetively.

Assumptions: Suppose the following onditions hold:

1. The quantities µ(Ω) and ξ(T ) satisfy the assumption of Proposition

4.1.3 for identi�ability, and γ is hosen in the range spei�ed by Propo-

sition 4.1.3.

2. The number of samples n available is suh that

n � p

ξ(T )4
.

3. The regularization λn is hosen as

λn ≍
1

ξ(T )

√

p

n
.

4. The minimum nonzero singular value σ of KO,HK
−1
H KH,O is bounded

as

σ � 1

ξ(T )3

√

p

n
.

5. The minimum magnitude nonzero entry θ of K∗
O is bounded as

θ � 1

ξ(T )µ(Ω)

√

p

n
.

Conlusions: Then with probability greater than 1− 2 exp (p) we have:



4.1. IDENTIFICATION AND RECOVERY 89

1. Algebrai onsisteny: The estimate (Ŝn, L̂n) given by (4.17) is alge-

braially onsistent, i.e., the support and sign pattern of Ŝn is the same

as that ofKO, and the rank of L̂n is the same as that ofKO,HK
−1
H KH,O.

2. Parametri onsisteny: The estimate (Ŝn, L̂n) given by the onvex

program (4.17) is parametrially onsistent:

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) �

1

ξ(T )

√

p

n
.

We an note that both omponents are algebraially and parametrially

onsistent, given a number of onditions involving the minimum nonzero

entry of KO and the minimum singular value of KO,HK
−1
H KH,O, the number

of samples n (whih are lower bounded) and the regularization parameter

λn (whih follows a preise sale). (Ŝn, L̂n) are thus ensured not to have

smaller support size/rank than (KO,KO,HK
−1
H KH,O). The ondition on the

minimum singular value is more stringent than the one on the minimum non

zero elements, beause it plays a ruial role to bound the urvature of T (L)
around KO,HK

−1
H KH,O. Relevant parameters for onsisteny are p, n, µ, ξ.

This result will be the key to prove onsisteny of the low rank plus sparse

ovariane estimator by Luo (2013) [77℄ we will desribe in paragraph (4.1.4).

All the results hold under the onditions of Proposition 4.1.3, espeially

under the ondition γ ∈ [3β(2−ν)ξ(T )
να , να

2β(2−ν)µ(Ω) ]. Theorem 4.1.3 is derived

using the lower end of the range for γ.
If this assumption is weakened, we have the following Corollary.

Corollary 4.1.2. Consider the same setup and notation as in Theorem

4.1.3. Suppose that the quantities µ(Ω) and ξ(T ) satisfy the assumption

of Proposition 4.1.3 for identi�ability. Suppose that we make the following

assumptions:

1. Let γ be hosen to be equal to

να
2β(2−ν)µ(Ω) (the upper end of the range

spei�ed in Proposition 4.1.3), i.e. γ ≍ 1
µ(Ω) .

2. n � µ(Ω)4p.

3. λn ≍ µ(Ω)
√

p
n .

4. σ � µ(Ω)2

ξ(T )

√

p
n

5. The minimum magnitude nonzero entry θ ofK∗
O is bounded as θ �

√

p
n .

Then with probability greater than 1 − 2 exp (p) we have estimates (Ŝn, L̂n)
that are algebraially onsistent, and parametrially onsistent with the error

bounded as

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) � µ(Ω)

√

p

n
.
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Theorem 4.1.3 and Corollary 4.1.2 desribe the extremes of matrix lasses

reoverable using program (4.17). In pratie, a range of values for γ is

neessary in order to ensure the stability of the sparsity pattern and the

rank, while λn is usually taken in a range of values proportional to

√

p
n .

Realling results (4.10) and (4.11), we an de�ne d = deg(KO), degree
of the onditional graphial model among the observed variables, and i =
inc(KO,H(KH)−1KH,O), inoherene of the ovarianes due to the marginal-

ization over the latent variables. The following relations hold:

µ ≤ d, ξ ≤ 2i.

Sine α, β, ν, ψ are assumed to be bounded, from Proposition 4.1.3 we have

di = O(1).

These onditions inlude non-trivial lasses of latent-variable graphial

models. In partiular, we mention the ase of onstant degree d = O(1)
and maximum inoherene

√

r/p, with r ∼ p. In this setting, the e�et of

marginalization over latent variables is di�use almost aross ALL variables.

Consistent reovery is allowed also from n ∼ p samples, even if ondition

n ≥ 2p is here spei�ed following [39℄ in order to ensure �nite bounds for

Σ̂n.

From this results, rates for the ovariane matrix (i.e. the inverse of the

preision matrix) an be easily derived as follows.

Corollary 4.1.3. Under the same onditions of Theorem 4.1.3, we have with

probability greater than 1−2 exp (p) that gγ(A†[(Ŝn−L̂n)
−1−Σ∗

O]) � 1
ξ(T )

√

p
n .

Spei�ally, this implies that

||(Ŝn − L̂n)
−1 −Σ∗

O||2 �
1

ξ(T )

√

p

n
. (4.31)

Rates for Σ̂ = Ŝn − L̂n and Σ̂−1
oinide, and are proportional to

√

p
n .

However, using the (inverse) sample ovariane matrix as an input, these

results hold if and only if n ≥ 2p.

We �nally give some basi notes on the proof strategy. These onepts

will be realled while showing the analogous proof from [77℄ in paragraph

(4.1.4). Standard results from [98℄ state that (Ŝn, L̂n) is a minimum for (4.17)

if the zero matrix belongs to the subdi�erential of the objetive funtion

evaluated at (Ŝn, L̂n). The subdi�erential struture of ||.||1 and ||.||∗ is the

following. The subdi�erential of the l1 norm at a symmetri matrix M is:

N ∈ δ||M ||1 ⇔ PΩ(M)(N) = sign(M), ||PΩ(M)⊥(N)||∞ ≤ 1.
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Let M = UDU ′
be a symmetri positive semide�nite matrix M . The

subdi�erential of the trae funtion restrited to the one of positive semidef-

inite matries (i.e. the nulear norm over this set) is:

N ∈ δ[tr(M) + IM�0]⇔ PT (M)(N) = UU ′, PT (M)⊥(N) � Ip,

where IM�0 evaluates to 0 over the one of PSD and to ∞ otherwise, and

the ondition on T (M)⊥ indiates that the spetral norm of PT (M)⊥(N) is
smaller or equal to 1.

The key point for proving Theorem 4.1.3 is that elements of the subdif-

ferential deompose with respet to the tangent spaes Ω(M) and T (M).

In order to solve (4.17), it is neessary to add the non-onvex onstraints

S ∈ K (s) and L ∈ L (r). The pair (S̃, L̃) solution of this problem is proved

to be omposed by smooth points of K (s) and L (r) respetively. The

�rst-order optimality ondition state that the Lagrange multipliers orre-

sponding to the additional variety onstraints must lie in Ω(S)⊥ and T (L)⊥,
suh that the �rst part of the subgradient optimality onditions of (4.17)

is respeted. Then, the idea is to prove that the variety-onstrained pro-

gram is algebraially equivalent to the tangent-spae onstrained program,

where S ∈ Ω(S) and L ∈ T (L). Finally, it is proved that tangent-spae

onstraints are loally inative, suh that the original problem (4.17) has the

same solution.

Therefore, the seond part of the subgradient onditions (relative to the

omponents in Ω⊥
and T⊥

) is also satis�ed and the solution of the original

problem shares the same algebrai and parametri onsisteny properties

with the variety-onstrained program.

This approah is valid if and only if the twisting between T (L̃) and

T (K∗
O,HK

−1
H KH,O) is bounded. This why the minimum singular value of

K∗
O,HK

−1
H KH,O is lower bounded, thus providing the loal identi�ability of

T (L∗). The entire proof exploits the basi matrix property ||M ||∞ ≤ ||M ||2.
We will give details on the steps needed to prove the analogous of Theo-

rem 4.1.3 into the ovariane matrix ontext in paragraph (4.1.4).

We now outline the optimality onditions of our problem (4.17). Our

onvex objetive at the optimum (ŜΩ, L̂T ′) satis�es, for some Lagrangian

multipliers QΩ⊥ and QT ′⊥ , the following onditions:

ŜΩ + L̂T ′ − Σ̂n +QΩ⊥ ∈ −λnγδ||ŜΩ||1,

ŜΩ + L̂T ′ − Σ̂n +QT ′⊥ ∈ −λnδ||L̂T ||∗.

The key to derive the solution is to projet ŜΩ+L̂T ′−Σ̂n onto Y = Ω×T ′

and to de�ne

PΩ(ŜΩ + L̂T ′ − Σ̂n) = ZΩ,

PT (ŜΩ + L̂T ′ − Σ̂n) = ZT ′ ,
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with ||ZΩ||∞ = λnγ and ||ZT ′ || ≤ 2λn. The bi-dimensional projetion is

PYA
†(ŜΩ + L̂T ′ − Σ̂n) = Z = (ZΩ, ZT ′),

where Y = Ω⊕ T ′
. This is the projeted gradient method, and provides the

mathematial base to algebraially solve the numerial problem (3.30).

4.1.4 Approximate reovery: LOREC approah

This setion deals with ovariane matrix estimation via low rank plus sparse

deomposition. Here we desribe the numerial approah of Luo (2013) ([77℄)

whih reovers the ovariane matrix via low rank plus sparse deomposition

in the noisy setting. This approah moves from the one of [31℄ desribed

in paragraph (4.1.3), and provides rates and identi�ability onditions under

the same algebrai setting.

The underlying struture for Σ∗
is model (4.2), and the data struture

is the one desribed in (3.1). Model (4.2) an be thought of as a general

approximate fator model in the form

Σ∗ = BV ar(f)B′ +Σǫ,

where V ar(f) = Ir and Σ∗ − Σǫ has exatly rank r. The low rank matrix

L∗ = BV ar(f)B′
and the sparse matrix S∗ = Σǫ are symmetri (as well as

their sum Σ∗
) . Our sample estimate Σ̂ is drawn from the noisy model

Σ̂ = L∗ + S∗ +W

where W is an error term.

At present, the reovery of the loading matrix B via the method we are

going to desribe has not be disussed. This an be partially done only if

r = 1, where the loadings is reovered up to a onstant. The fator model

assumption is here used as a useful tool to estimate the ovariane matrix in

a large dimensional ontext.

The usual matrix spaes L (r), K (s), T (L) and Ω(S), as well as quan-
tities µ(Ω) and ξ(T ), are de�ned as in (4.3), (4.4), (4.5), (4.6), (4.9) and

(4.8) respetively. The objetive funtion is (3.43), whih is omposed by a

Frobenius loss term and omposite penalty (3.28). For a disussion of math-

ematial properties of (3.43), see setion (3.2). Here, we expliitly note that

the omposite penalty (3.28) is simply a re-saled version of the ompos-

ite penalty used in program (4.17) (λn(γ||S||1 + tr(L))), where γ = ρ
λ and

λn = λ. Version (3.43) is useful to hoose threshold parameters in empirial

appliations. Parameter γ is again the relative size of the subdi�erential of

||.||1 respet to ||.||∗. We note also that the original problem (3.30), whih is

our true objetive, is solved in this ontext via (3.43), beause it is proved

that the three onstraints L � 0, S ≻ 0, L + S ≻ 0 are inative at the

optimum of (3.43), suh that the two problems are algebraially equivalent.
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First of all, we set the basi de�nitions of algebrai and parametri on-

sisteny into the ovariane matrix ontext.

De�nition 4.1.2. A pair of symmetri matries (S,L) with S,L ∈ Rp×p
is

an algebraially onsistent estimate of the low rank plus sparse model (4.2)

for the ovariane matrix Σ∗
if the following onditions hold:

1. The sign pattern of S is the same of S∗
: sign(Sij) = sign((S∗)i,j),

∀i, j. Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of L∗
.

3. Matries L+ S, S and L are suh that: L+ S ≻ 0, S ≻ 0, L � 0.

Model onsisteny here is de�ned aording to the following three esti-

mation features:

1. orret strutural estimate of the residual ovariane matrix of X on-

ditioned on the latent variables f (given by S). This feature is alled
"sparsisteny" of low rank plus sparse model seletion.

2. number of latent variables orretly estimated.

3. the model is realizable as a ovariane matrix model: L+S is positive

de�nite and L is positive semi-de�nite. We add the ondition S ≻ 0,
whih presribes that also the sparse omponent an be interpreted as

a ovariane matrix. This last ondition is not neessary to ensure a

onsistent estimate for Σ∗
.

Parametri onsisteny is de�ned analogously to the approah desribed

in paragraph (4.1.3). It holds if the estimates of (S,L) are lose to (S∗, L∗)
in some norms with high probability. The used norms are ||.||2 for L, ||.||∞
for S, gγ(S,L) (4.20) for L+ S, in appliation of the dual priniple. Rates

in spetral and Frobenius norm are also derived for L+ S . We reall that

parametri onsisteny does note imply algebrai onsisteny and vie versa.

We disuss now the main theorem ensuring identi�ability and onsisteny.

This theorem is a diret appliation of Theorem 4.1.3, with an important

di�erene: in order to apply a sparsity model of the type of Bikel and

Levina (2008b) (see paragraph (2.4)) on the sparse omponent S∗
, Σ∗

is

imposed to be in the following matrix lass:

Σ∗(ǫ0) = {M ∈ Rp×p : 0 < ǫ0 ≤ Λi(M) ≤ ǫ−1
0 ∀i = 1, . . . , p} (4.32)

whih is the lass of positive de�nite matries having uniformly bounded

eigenvalues (Λi(M), i = 1, . . . , p, are the eigenvalues of M).

This assumption is worth some re�etion. Assuming uniformly bounded

eigenvalues may on�it with the main neessary identi�ability ondition:
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the transversality between Ω and T . Sine the eigenvalue strutures of Σ∗

and S∗
are somehow linked, allowing lass (4.32) for Σ∗

may ause S∗
to

have an high degree, and simultaneously the row/olumn spae of L∗
to

have high values of inoherene (we have no spiked eigenvalues). This may

result in possible non-identi�ability issues. To be lear, the merge between

the transversality onditions and the sparsity assumptions of [15℄ is possibly

dangerous for model identi�ability.

We report now Luo's main theorem ([77℄).

Theorem 4.1.4 (Luo's Theorem 1 [77℄). Let Ω = Ω(S∗) and T = T (L∗).
Suppose Σ∗ ∈ (4.32), µ(Ω(S∗))ξ(T (L∗)) ≤ 1/54, and for n ≥ p

λ = C1max

(

1

ξ(T )

√

log(p)

n
,

√

p

n

)

,

and ρ = γλ, where γ ∈ [9ξ(T ), 1/(6µ(Ω))]. In addition, suppose that the

minimum singular value of L∗
(λr(L

∗)) is greater than C2λ/ξ
2(T ) and the

smaller absolute value of the nonzero entries of S∗
is greater than C3

λ
(µ(Ω)) .

THEN, with probability greater than 1−C4p
−C5

, the LOREC estimator (L̂, Ŝ)
(minimizing (3.43)) reovers the rank of L∗

and the sparsity pattern of S∗

exatly:

rank(L̂) = rank(L∗) and sign(Ŝ) = sign(S∗).

Moreover, with probability greater than 1−C4p
−C5

, the matrix losses for eah

omponents are bounded as follows:

||L̂− L∗||2 ≤ Cλ, |Ŝ − S∗|∞ ≤ Cρ.
We all Σ̂LOREC = L̂+ Ŝ.
The key model-based results for deriving onsisteny rates are Bikel

and Levina (2008b) ([15℄) for the sample loss in in�nity norm:

||Σn − Σ∗||∞ ≤ O
(

√

log p

n

)

,

and Davidson, K. R. and Szarek, S. J. (2001) ([39℄) for the sample loss

in spetral norm:

||Σn − Σ∗||2 ≤ O
(
√

p

n

)

,

where Σn = Σ̂n−1 is the p× p unbiased sample ovariane matrix omputed

on the observed data X.

Using the onlusions of Theorem 4.1.4, whih are ||L̂ − L∗||2 ≤ Cλ,
||Ŝ − S∗||∞ ≤ Cρ, it is possible to derive the following overall rate for

e(L̂, Ŝ)2 = ||∆L||2Fro + ||∆S ||2Fro
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(where ∆L = L̂− L∗
,∆S = Ŝ − S∗

,∆Σ = Σ̂LOREC − Σ∗
):

e(L̂, Ŝ)2 ≤ C
[

rp

n
max

(

log p

r
, 1

)

+
s

n
max (log p, r)

]

, (4.33)

where s is the usual number of non-zero elements in S∗
. If r ∼ log p (as it is

for exatly low rank matrix reovery), this rate oinides with the one under

the Agarwal's approah (4.15), where α = 0, sine we no longer have non-

identi�ability issues. This is obtained using the lower bound ξ(T ) = O(
√

r
p)

(see (4.11)).

From Theorem (4.1.4), Luo derives the following rates for Σ̂LOREC :

||Σ̂LOREC − Σ∗||2 ≤ C(sξ(T ) + 1)λ = φ

||Σ̂LOREC − Σ∗||Fro ≤ C(
√
psξ(T ) +

√
r)λ

with probability larger than 1− C1p
−C2

, if and only if λmin(Σ
∗) ≥ φ.

The same rates hold for the inverse ovariane estimate Σ̂−1
LOREC ,

||Σ̂−1
LOREC − Σ−1∗||2 ≤ C(sξ(T ) + 1)λ = φ

||Σ̂−1
LOREC − Σ−1∗||Fro ≤ C(

√
psξ(T ) +

√
r)λ

with probability larger than 1 − C1p
−C2

, if and only if λmin(Σ
∗) ≥ 2φ.

Here r is the true latent rank of L∗
, while s, di�erently from (4.33), is

de�ned as the maximum number of non zero elements per olumn (whih

is the indued ||.||1 norm). This is done to further improve error rates.

From now to the end of Chapter, parameter s will hange its meaning as

explained: s = maxj
∑p

i=1 1(sij 6= 0), j = 1, . . . , p. Both results are reported
as Corollaries in [77℄. We will show proof details in next paragraph (5.1).

We now desribe the meaning of needed assumptions. Sine (3.43) on-

tains a Frobenius loss term instead of the log-likelihood, this method is no

longer a likelihood method. For this reason, there is no need here to bound

the urvature of Fisher information I∗, sine I∗ = Ip. So, referring to Propo-
sition 4.1.3, parameters α, β, and γ (see (4.28) (4.29) (4.30)) are now all

equal to 1, with ν = 1
2 (see Lemma 4.1.2). On the ontrary, the analogous

of Proposition 4.1.3 is still needed, beause the tangent spae T (L∗) is still
urve, and transversality between T and Ω still needs to be bounded (even

if I∗ has no longer impat).

Proofs are ontained in [76℄, whih is a previous version of [77℄. There it is

possible to �nd (at page 26) the analogous of Proposition 4.1.3, where I∗ has
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no longer impat. The identi�ability assumption here beomes µ(Ω(S∗)ξ(T (L∗)) ≤ 1/54,
whih an also be rewritten, using (4.11) and (4.10), as

degmax(S
∗)inc(L∗) ≤ 1

108
.

The range γ ∈ [9ξ(T ), 1/(6µ(Ω))] is obtained by Proposition 4.1.3 setting α,

β, and γ equal to 1, ν equal to 1
2 . Note that, γ =

√

9ξ(T ) ∗ 1
(6µ(Ω)) , geometri

mean of the two ends, is always inside the range, and using (4.11) and (4.10),

we an write γ =
√

2 ∗ 9inc(B) 1
(6degmax(A)) =

√

3inc(B)
(degmax(A)) . The minimum

magnitude of the non-zero entries of S∗
and the minimum eigenvalue of L∗

(λr(L
∗)) are lower bounded, in order to ensure onsistent reovery, and also

identi�ability in the ase of λr(L
∗). The use of Σ̂n−1 is responsible for the

usual assumption p ≤ n.
There is one major di�erene with the approah of [1℄ explained in (4.1.3):

here, the sparsity assumption on S∗
imposes that the parameter λ, oming

from probabilisti analysis, must take into aount both probabilisti frame-

works, the one from ||Σ̂n − Σ∗||2 (represented by

√

p
n) and the one from

||Σ̂n − Σ∗||∞ (represented by

1
ξ(T )

√

log(p)
n ).

The parameter ρ = γλ has this shape to re-sale aordingly the subdif-

ferential of the sparse omponent. The parameter λ has this shape beause,

even if we are in a deterministi ontext, the need of a probabilisti bound

for gγ(A
†En), where En = Σ̂ − Σ∗

, rises throughout the proof. If the input

is the unbiased sample ovariane matrix (Σ̂ = Σ̂n−1), the rates are the ones

above written, and the ondition p ≤ n is unavoidable. We will make some

e�ort to overome this issue in paragraph (5.1), providing statistial rates

under POET assumptions and in the generalized spikiness ontext.

It is now easier to understand whih are the possible non-identi�ability

issues oming out. Di�erently from POET approah, where the sparsity

assumption (4.32) is imposed to the sparse omponent S∗
, LOREC approah

imposes it diretly to the ovariane matrix Σ∗
.

So, two onditions must hold whih may be in ontradition: if the min-

imum eigenvalue of L∗
is too large, it is unlikely that Σ∗

is into the matrix

lass (4.32). This makes the matrix lass for whih reovery is e�etive quite

unlear. In addition, the produt µ(Ω)ξ(T ) is a�eted by this trade-o�, suh

that, if λr(L
∗) is too large, S∗

must be very sparse in order to respet the up-

per bound for µ(Ω)ξ(T ). We will �nd on�rmation of that in our simulation

study (Chapter 5).

Another aspet of Theorem 4.1.4 is that the two losses (in L∗
and S∗

respetively) are bounded separately. This may result in some issues on-

erning the overall performane represented by the loss ||Σ̂−Σ∗||Fro, as our

simulation study on�rms (see (5.3.1)), beause here ||∆Σ||2 is simply derived

using triangle inequality ||∆Σ||2 ≤ ||∆L||2 + ||∆S ||2 , as well as ||∆Σ||Fro.
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More explanations and a proposal to improve LOREC estimation proess on

this side is given in paragraph (5.1).

We now desribe the steps used in [76℄ to prove Theorem (4.1.4). They

diretly desend from the proof of Theorem 4.1.3 in [31℄, set into our ontext,

where the referene model is (3.1).

The hain of programs to be solved and the mathematial rationale are

showed. We start from the brief explanations given at the end of paragraph

(4.1.3). First, we need to bound the urvature of T . So, for the equivalent
of Proposition 4.1.3, we restrit our analysis to tangent spaes satisfying

ρ(T, T ′) ≤ ξ/2. We an then solve problem (3.43) with additional tangent

spae onstraints:

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (4.34)

s.t. S ∈ Ω, L ∈ T ′,

where T = T (L∗) s.t. ρ(T, T ′) ≤ ξ(T )/2.
We know that ||L||∗ and ||S||1 are non di�erentiable. In order to bound

the Loss funtion: gγ(∆S ,∆L) = gγ(ŜΩ−S∗, L̂T ′−L∗) = max{|Ŝ|∞/γ, ||L̂||},
where (∆S ,∆L) = (ŜΩ − S∗, L̂T ′ − L∗), the needed tools are:

• the projeted gradient method;

• Brouwer's �xed point theorem (see [76℄, p.27).

We start realling the subgradient onditions for ||L||∗ and ||S||1. Our

CONVEX objetive at the optimum (ŜΩ, L̂T ) satis�es, for some Lagrangian

multipliers, QΩ⊥ ∈ Ω⊥
and QT ∈ T⊥

the following optimality onditions:

ŜΩ + L̂T −Σn +Q⊥
Ω ∈ −λnγδ|ŜΩ|1

ŜΩ + L̂T −Σn +QT⊥ ∈ −λnδ|L̂T |∗,

where δ denotes the subdi�erential.

Lagrangian duality theory is a �rst order method. So, we need to bound

the seond-order Taylor rest of Σ∗
. The key is to projet ŜΩ+ L̂T ′− Σ̂n onto

Y = Ω× T ′
(where × represents here the Cartesian produt), and to de�ne

PΩ(ŜΩ + L̂T ′ − Σ̂n) = ZΩ,

PT (ŜΩ + L̂T ′ − Σ̂n) = ZT ′ ,

with ||ZΩ||∞ = λnγ and ||ZT ′ || ≤ 2λn. The bi-dimensional projetion is

PYA
†(ŜΩ + L̂T ′ − Σ̂n) = Z = (ZΩ, ZT ′),

where Y = Ω⊕ T ′
(i.e. Z is a feasible point).
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This is the projeted gradient method. Then, the appliation of Brouwer's

�xed point theorem allows to bound gγ(P(∆S ,∆L)), whih in turn serves as

a limit for the error gγ(∆S ,∆L), thus satisfying the �rst half of optimality

onditions (reall (3.40) and (3.41)). This error bound is needed to prove

there is a unique minimizer, and establish parametri onsisteny.

Then, imposing gγ(A
†En) ≤ λn

18 , it is possible to prove that the tangent-

spae onstrained problem (4.34) is equivalent to the following variety-onstrained

problem

min
L,S

1

2
||(L+ S)− Σn||2Fro + λ||L||∗ + ρ||S||1, (4.35)

s.t. S ∈ Ω, L ∈ TM ,

where TM = T (L̂M ), and (ŜM , L̂M ) is the solution of

M = {(S,L) | s ∈ Ω(S∗), rank(L) ≤ rank(L∗),

||PT⊥(L− L∗)||2 ≤ ξ(T )λ, gγ(ŜΩ − S∗, L̂T ′ − L∗) ≤ 11λ}.

This serves for ensuring algebrai onsisteny, and holds under all the

assumptions of Theorem 4.1.4. It also allows to solve the non-onvex problem

(4.35) as a onvex one, linearizing the onstraints.

Finally, under the same assumptions, the solution of problem (4.35) is

shown to be solution of the original problem (3.43) without any onstraints.

In [31℄, another bound on the Taylor rest of Σ∗−1
is needed, sine they are

dealing with the inverse. For us, the ondition gγ(A
†En) ≤ λn

18 , limiting the

gγ norm of En = Σ∗ − Σn, is su�ient.

Another important quantity to bound during the proof is gγ(A
†CT ′),

where CT ′ = PT ′⊥(L∗). This is needed to bound the urvature of T , as well
as the onstraint ||PT⊥(L− L∗)||2 ≤ ξ(T )λ.

During this last step, probabilisti bounds ome into play. Sine we need

to bound gγ(A
†En), large deviation theory must be applied to ||En||2 and

||En||∞. This is done using the outlined results from Bikel and Levina

(2008b) and Davidson, K. R. and Szarek, S.J. (2001). The strength

of the probabilisti bound depends on the relationship between p and n. In
partiular, key ratios

p
n and

log p
n ome from the probabilisti bounds of ||En||2

and ||En||∞ respetively. This is why λ = C1max

(

1
ξ(T )

√

log(p)
n ,

√

p
n

)

. The

ondition p ≤ n is unavoidable in order to obtain �nite probabilisti bounds.

We have already pointed out the possible weakness of this approah re-

spet to identi�ability issues, due to the need of imposing matrix lass (4.32)

diretly to Σ∗
, and not to S∗

. This hoie auses, jointly with the identi�a-

bility assumptions, unertainty on the underlying struture of Σ∗
. Another

di�ulty of Luo's approah is that (2.8) is only partially imposed to Σ∗
,

leaving out the onditions on limited orrelations. On the ontrary, no ma-

trix lass is atually imposed to S∗
, whose sparsity is reovered algebraially
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(deterministially) using the standard property ||M ||∞ ≤ ||M ||2 exploiting

the sale parameter γ.
We �nd a key di�erene between the approahes of Luo (2013) and Chan-

drasekaran et at (2012). In the latter, ONLY the probabilisti bound for

||En||2 is used, and the one for ||En||∞ is simply derived as a onsequene

using the basi relationship ||En||∞ ≤ ||En||2. For this reason, there we

have the following parametri rate:

gγ(Ŝn −KO, L̂n −KO,HK
−1
H KH,O) �

1

ξ(T )

√

p

n
. (4.36)

The two omponents are bounded jointly, exatly as in Agarwal's approah.

In the former, the two omponents are approahed separately, and the shape

of λn re�ets this hoie.

Therefore, Luo should have imposed matrix lass (4.32) together with the

ovariane assumptions (see (2.8)) to S∗
, in order to have the desired sparsity

model. However, this would have been useless for the mathematial proof,

whih requires that Σ∗
belongs to (4.32), in order to derive the probabilisti

bound of ||En||∞. On the other side, in absene of spei�ation of that

matrix lass, he would have left the in�nity norm rate dependent on the

spetral one, with no progress respet to Chandrasekaran et al. (2012).

The number of samples n an be O(p), thanks to probabilisti results

ontained in [110℄, provided that n ≤ p. In ontrast, the ondition n ≤ 2p
is needed for Chandrasekaran et al.(2012), and p = O( p

ξ4(T )
), whih or-

responds to O(p
3

r2 ) in the worst ase (see Theorem 4.1.3). Starting from

(4.31), it is easy to show (using the lower bound n = O(p
3

r2
)) that the overall

Frobenius rate for the ovariane matrix estimate in [31℄ is O(r1/2pn−1/2).
This ours beause the rate is there determined only by the low rank om-

ponent. The analogous rate for the low rank omponent under Luo's ap-

proah is O(r1/2p1/2n−1/2 max (log p, r1/2)), whih is lower (for explanations

see (4.33)). This rate an be even lower under di�erent model spei�ations

using the same low rank plus sparse deomposition, as the so alled spiked

ovariane model of Johnstone and Lu (2009) [71℄ (for more details see [76℄

and [77℄).

To onlude this paragraph, we give some terms of omparison among

probabilisti rates respet to alternative PCA-based approahes reovering

Σ∗
under similar assumptions. In our numerial ontext, the strength of

probabilisti bounds depends on the relationship between the �nite values

of p and n.
In [43℄, fators are observable and the residual omponent is diagonal.

There, the rate for Σ̂ (and Σ̂n) is O(n−1/2pr), while LOREC under the

same onditions shows O(n−1/2(p + p1/2r1/2)) (see (4.33)). For the eigen-

value onvergene rate, [43℄ has the same O(n−1/2pr), while LOREC shows

O(n−1/2p1/2). Only LOREC provides spetral bounds. Conerning the in-
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verse, [43℄ has a Frobenius rate of O(n−1/2pr2 log p1/2), while LOREC shows

again O(n−1/2(p+ p1/2r1/2)), whih is lower. The di�erene ours beause

an additional error term O(p−1/2) omes out when the residuals are unob-

servable.

In the approximate sparse fator model ontext, it is hard to provide

absolute rates, as the spetral or the Frobenius ones, using a PCA-based

approah. This is due to the fat that the neessary pervasiveness assumption

requires large p (see paragraph (2.5)). What is more, an additional error term

O(p−1/2) omes out when the residuals are unobservable (as in [44℄). When

also the fators are unobservable, as explained in [76℄, there is an unavoidable

additional error term O(log p). In POET setting ([45℄) we �nd both. More,

for the just explained reasons, the rate for Σ̂ is provided only in relative

norm (see (2.19)), exatly as in [44℄.

This is why we will ompare extensively the performane of Σ̂POET and

Σ̂LOREC in a wide simulation study (Chapter 5). As a omparison term,

we now list the main di�erenes in the theoretial assumptions bewteen

POET and LOREC approahes:

• For POET the spetral bound is provided only on ||S∗||, while for

LOREC is provided both on ||S∗|| and ||Σ∗||.

• In POET setting, the r eigenvalues of p−1B′B are bounded away from

0 and∞ as p inreases (pervasiveness ondition). In LOREC setting,

there is only a lower bound on the minimum eigenvalue of L∗
.

• In LOREC setting, ALL the eigenvalues of Σ∗
are bounded away from

0 and in�nity. In POET setting, the smallest p− r are upper bounded
by ||S∗||, the largest r are approximately equal to the ones of B′B.

• In LOREC setting, Λmax ontrols for the strongness of the probability

bound, Λmin ontrols for the positive de�niteness of Σ̂ (neessary

to estimate the inverse).

• The latent rank r is exatly reovered automatially by LOREC with-

out the need for any external tool. In ontrast, POET selets r using
the well known rank seletion riteria by Bai and Ng ([6℄).

• Conerning the sparsity pattern, LOREC needs only a lower bound on

the smaller absolute value of the non-zero entries of S∗
, while POET

requires

mp = max
i≤p

∑

j≤p

|sij |q = o(p)

for some q ∈ [0, 1).

• Statistial performane is assessed asymptotially for POET,

non-asymptotially for LOREC. In the �rst ase the referene norm is
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the relative norm (2.19), in the seond is the Frobenius norm (relative

VS absolute rates).

As a �nal remark, we note that both LOREC and POET proedures are

not sale-equivariant, that is, the estimates are not equivariant under linear

transforms. For POET, this is due to the use of PCA, depending on the

sample eigenvalues (whih are not sale-equivariant), and also depends on the

use of thresholding for the reovery of the sparse omponent. For LOREC,

this is due to the singular value thresholding of the low rank omponent and

to the soft thresholding of the o�-diagonal elements of the sparse omponent.

We reall that also the fator model estimates by the prinipal fators method

are not sale-equivariant, still for the use of sample eigenvalues.

We are now ready to introdue a set of novelties improving upon LOREC

approah exploiting features of some of the methods we have shown through-

out our thesis. First, in the pure LOREC setting, we propose a solution to

the approximation problem aused by the separate bounding of the errors in

L∗
and S∗

. This solution involves the unshrinkage of the estimated eigen-

values at the end of the solution algorithm (omposed by the singular value

thresholding of the low rank omponent and the soft threhsolding of the

sparse omponent, see (3.2.2)). This proposal is proved to be algebraially

meaningful for improving the original LOREC on the side of the overall loss

||∆||Fro
Σ , and to better ath the proportion of variane explained by the low

rank omponent.

The other advanes onern the number of neessary samples n respet

to p. In order to do that, we want to exploit the theory of approximate fator

model. So, we abandon the hypothesis Σ∗ ∈ (4.32), whih is not oherent

with the presene of few spiked eigenvalues. We thus link the in�nity norm of

En to the spetral one as in the approah by Chandrasekeran et al. (2012).

We show that using the POET spikiness assumption (Proposition 2.5.1) and

imposing a sparse model for S∗
in the spirit of Bikel and Levina (2008b)

(S∗ ∈ (2.8)) we an prove, using (2.23), that the desribed algebrai setting

holds with rate O( p√
n
), and simultaneously the probabilisti bound is guar-

anteed until p log p ≪ n. Finally, we extend this result into the generalized

spikiness ontext of Proposition 2.5.1. We prove an updated version of (2.23)

in the α-spiked ontext, suh that the desribed algebrai setting holds with

rate O( pα√
n
), and simultaneously the probabilisti bound is guaranteed until

pα log p≪ n, with α ∈ (0, 1].

The results we need are:

P

(

||Σn − Σ|| > p√
n

)

≤ C1 exp (−C2p
2),

if all the assumptions under Theorem (2.19) hold, and
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P

(

||Σn − Σ|| > pα√
n

)

≤ C1 exp (−C2p
2α),

if all the assumptions under Theorem (2.19) hold, with the di�erene

that De�nition 2.5.1 replaes Proposition 2.5.1, for α ∈ (0, 1].



Chapter 5

Improving LOREC: empirial

and theoretial results

In this hapter, original advanes and extensions to LOREC approah are

desribed, with partiular referene to the estimation performane and to dif-

ferent assumptions for the eigenvalues of the low rank omponent, in respet

to the ones of POET ([45℄).

In paragraph (5.1), Luo's approah ([77℄) is ompleted with the rates for

the sparse omponent, its inverse and its positive de�niteness onditions. A

more operative identi�ability ondition is also derived from [30℄. The qual-

ity of the overall solution is improved performing the unshrinkage of the

estimated eigenvalues of the low rank omponent. The rates of onvergene

under the spikiness assumptions of [45℄ and under the setting of α - general-

ized spikiness struture (De�nition 2.5.1) are derived using the key tools of

[45℄ and [15℄ desribed in paragraphs (2.5.4) and (2.4) respetively.

Then, we show simulated and real data analysis results in support of

the proposals ontained in paragraph (5.1). In partiular, we fous on the

approximation improvement o�ered by Σ̂New respet to Σ̂LOREC , and on

the omparison between the performane of Σ̂New and Σ̂POET in the POET

setting.

In paragraph (5.2.1), we desribe an original simulation algorithm reated

for this purpose, whih is enough �exible to ath all the di�erent situations

we need in a unique framework. The omparison quantities needed to assess

the performane of estimators are desribed in (5.2.2). In paragraph (5.2.3),

we show a model seletion riterion spei�ally thought for our estimation

method.

Simulated data analysis is reported in paragraph (5.3.1). A number of

simulated data settings, partiularly useful for assessing the performane of

Σ̂New and ompare it to the one of Σ̂LOREC and Σ̂POET , are desribed, with

the aim of testing the theoretial advanes desribed in paragraph (5.1).

Simulations are performed with MATLAB.

103
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Real data analysis is then o�ered in paragraph (5.3.2) with the aim of

omparing the performane of Σ̂POET and Σ̂New. Two real data-sets are

taken into aount: one on UK market data (publily available) whih was

used by Fan and olleagues to assess the performane of POET ([45℄, para-

graph 7) and a supervisory banking data-set whih ollets balane sheet

data for some of the most relevant Euro Area banks. For the last one,

we deeply aknowledge the Supervisory Statistis Division of the European

Central Bank, where the author spent a semester as a PhD trainee, for the

allowane to use these data in anonymous form for researh purpose.

5.1 Theoretial advanes

We start showing in detail the algebrai steps whih allow to derive the

Frobenius rates for Σ∗
from the Conlusions in Theorem 4.1.4. The referene

is here [76℄, paragraph 6.

We set Σn = Σ̂n−1, estimation input. For the triangular inequality we

have:

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ ||Ŝ − S∗||.
Using standard matrix norm properties, we obtain

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ ||Ŝ − S∗||1,

and then

||L̂+ Ŝ − (L∗ + S∗)|| ≤ ||L̂− L∗||+ s||Ŝ − S∗||∞,

where s is there the maximum number of non zeros per olumn in S∗
. This

result is derived using sign(Ŝ) = sign(S∗), whih allows to improve upon

the standard onstant p.
Setting γ = 9ξ(T ) (its minimum), we obtain

||Σ̂LOREC − Σ∗||2 ≤ C(sξ(T ) + 1)λ = φ. (5.1)

An analogous triangular inequality holds for the Frobenius rate:

||L̂+ Ŝ − (L∗ + S∗)||Fro ≤ ||L̂− L∗||Fro + ||Ŝ − S∗||Fro.

Exploiting the fat that the algebrai sum A + B, when A and B have

rank r, has at most rank 2r (see [62℄), and using previous results for Ŝ
together with the standard inequality ||A||F ≤

√
ps||A||max, we obtain

||L̂+ Ŝ − (L∗ + S∗)||Fro ≤
√
2r||L̂− L∗||+√ps||Ŝ − S∗||∞.

Setting γ = 9ξ(T ) (its minimum), we obtain

||Σ̂LOREC − Σ∗||Fro ≤ C(
√
psξ(T ) +

√
r)λ. (5.2)
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For simpliity of notation, we now remove all ∗. Realling Theorem 2.2.1,

we know that L̂ + Ŝ is positive de�nite if and only if the minimum

eigenvalue of Σ∗
is larger than the spetral bound φ. We give a

further justi�ation of this basi result. Weyl's Theorem (see [45℄ Appendix

C) presribes that, for any matrix Σ, we have

|λ̂i − λ| ≤ ||Σ̂− Σ|| ∀i = 1, . . . , p,

where λ̂i, i = 1, . . . , p are the sample eigenvalues. This result relates the

rate of sample eigenvalues to the matrix spetral loss rate. The triangular

inequality gives

|λmin(L̂+ Ŝ)− λmin| ≤
≤ |λmin(L̂+ Ŝ)|+ | − λmin| =

= |λmin(L̂+ Ŝ)|+ λmin,

beause Σ is positive de�nite. Thus,

|λmin(L̂+ Ŝ)| ≥ |λmin(L̂+ Ŝ)− λmin| − λmin.

Sine for the Weyl's theorem |λmin(L̂+ Ŝ)− λmin| ≤ φ we have

λmin(L̂+ Ŝ) > 0⇐⇒ λmin > φ. (5.3)

This proves the laim.

In order to ahieve the same rate φ for the inverse spetral rate
||(L̂+ Ŝ)−1 − Σ−1||, it is neessary that λmin ≥ 2φ.

In fat, the triangular inequality gives

||(L̂+ Ŝ)−1 − Σ−1|| ≤ ||(L̂+ Ŝ)−1||+ λ−1
min (5.4)

By summing and subtrating Σ and using triangular inequality

||(L̂+ Ŝ)−1|| = ||(L̂+ Ŝ − Σ+ Σ)−1|| ≤

≤ ||(L̂+ Ŝ − Σ)−1||+ ||Σ−1|| ≤
≤ ||(L̂+ Ŝ)−1 − Σ−1||+ ||Σ−1|| =
≤ ||(L̂+ Ŝ − Σ)−1||+ λ−1

min.

For the Weyl's theorem, we have

||(L̂+ Ŝ − Σ)−1|| ≤ |λmin((L̂+ Ŝ)−1)− λmin(Σ)
−1|.

For triangular inequality, we have

|λmin((L̂+ Ŝ)−1)− λmin(Σ)
−1| ≤

≤ |λmin((L̂+ Ŝ)−1)|+ | − λ−1
min| ≤
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≤ |λmin((L̂+ Ŝ)−1)|+ λ−1
min

sine Σ is positive de�nite.

At the same time, for (5.1), we have

||(L̂+ Ŝ)−1 − Σ−1|| ≤ φ.

Hene, inequality (5.4) beomes

φ−1 ≤ |λmin((L̂+ Ŝ)−1)|+ 2λ−1
min.

We an write

|λmin((L̂+ Ŝ)−1)| ≥ φ−1 − 2λ−1
min,

whih allows to onlude that

||Σ̂−1
LOREC − Σ−1||2 ≤ φ⇐⇒ φ−1 ≥ 2λ−1

min. (5.5)

Using this assumption, it is possible to derive the rate for (L̂+ Ŝ)−1
, by

property ||(A+E)−A−1|| ≤ ||A−1|| · ||E|| · ||(A+E)−1|| (see [76℄, p. 31-32):

||(L̂+ Ŝ)−1 − (Σ)−1|| = ||(L̂+ Ŝ)−1[L̂+ Ŝ − Σ](Σ)−1|| ≤

≤ ||(L̂+ Ŝ)−1|| · ||[L̂+ Ŝ − Σ]|| · ||(Σ)−1|| ≤ 2
λ2
min

||[L̂+ Ŝ − Σ]||.
Hene, we have

||Σ̂−1
LOREC − Σ−1||2 ≤ C(sξ(T ) + 1)λ = φ (5.6)

By property ||M1M2||Fro ≤ ||M1|| · ||M2||Fro, it is straightforward to

derive

||Σ̂−1
LOREC − Σ−1||Fro ≤ C(

√
psξ(T ) +

√
r)λ. (5.7)

Using the same framework, we an omplete Luo's analysis with the rates

for Ŝ. From ||Ŝ − S∗|| ≤ s||Ŝ − S∗||∞, we obtain

||Ŝ − S∗||2 ≤ Csξ(T )λ = φS . (5.8)

From ||Ŝ − S∗||Fro ≤
√
ps||Ŝ − S∗||∞, we obtain

||Ŝ − S∗||Fro ≤ C
√
psξ(T )λ. (5.9)

Similarly, Ŝ is positive de�nite if and only if λmin(S
∗) > φS . Ŝ

−1
has the

same rate of Ŝ if and only if φ−1
S ≥ 2λmin(S

∗)−1
.
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Unshrinking the eigenvalues of the low rank omponent

We now approah the approximation problem due to the separate bounds for

the two omponents. The problem is that the ombined shrinkage approah

gets loser to eah omponent separately, but in suh a way it goes further

from the overall solution, as we will show in Chapter 5. The need rises

to orret for this drawbak, re-shaping Σ̂LOREC , beause the overall Loss

funtion used in the algebrai setting, gγ , derives the overall performane

as a onsequene of the two separate bounds. That means that LOREC

approah an be somehow sub-optimal for the whole ovariane matrix.

We will desribe a �nite sample analysis, whih ould be referred to as a

re-optimization least squares method. From now, we will refer to the usual

objetive funtion (3.43) where ||S||1 = ||S||1,off =
∑p−1

i=1

∑p
j=i+1 |sij |, i.e.

the l1 norm exluding the diagonal. This approah is oherent with the

sparse approximate fator model (3.1) and with POET (see (2.5.4)), whih

will be our referene ompetitor in Chapter 5.

We start from a standard result: the PCA of M trunated to the r-th
omponent is the r-ranked matrix best approximating M . In fat,

min
B,rank(B)=r

||A−B||2

and

min
B,rank(B)=r

||A−B||Fro

are both solved for

B =

r
∑

i=1

λiuiu
′
i,

whih is the SVD trunated to the r-th summand ([40℄), when r is known.

Suppose now that L̂ (r̂) and K̂ (ŝ) are the varieties ensuring the algebrai
onsisteny of (3.30). A natural question omes out: whih is the solution

(say (L̂New, ŜNew)) of the problem

min
L∈L̂ (r̂),S∈K̂ (ŝ)

||(Σn − (L+ S)||2Fro? (5.10)

We know that, the sample ovariane matrix follows the model Σn =
L∗+S∗+W , where W ∼Wishart(0p×p, n), given a sample Xi, i = 1, . . . , n.

We de�ne the total loss for the generi pair L ∈ L̂ (r̂), S ∈ K̂ (ŝ) as:

TL(L,S) = ||(Σn − (L+ S)||2Fro.

In other words, we fae the following question: whih pair L ∈ L̂ (r̂), S ∈
K̂ (ŝ) satisfying algebrai onsisteny shows the best approximation proper-

ties of Σn? We prove the following original result.
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Theorem 5.1.1. Suppose that L̂LOREC and ŜLOREC are the LOREC solu-

tions satisfying Theorem 4.1.4, with Σ̂LOREC = L̂LOREC + ŜLOREC . Sup-

pose that L̂ (r̂), K̂ (ŝ) are the reovered matrix varieties, and that L̂ =
ÛD̂Û ′

is the eigenvalue deomposition of L̂LOREC . Assume that the o�-

diagonal elements of ŜNew are the same as the ones of ŜLOREC as well as

the diagonal elements of Σ̂New are the same as the ones of Σ̂LOREC. Then,

the minimum minL∈L̂ (r̂),S∈K̂ (ŝ) ||(Σn− (L+S)||2Fro is ahieved if and only if

L̂New = Û(D̂+λIr)Û
′
and if diag(ŜNew,ii) = diag(Σ̂LOREC,ii) − diag(L̂New,ii),

where λ is the threshold parameter. In addition, the gain in terms of spe-

tral loss is stritly positive and bounded by λ.

We now prove Theorem 5.1.1. Given �nite p and n we have

TL(L,S) = ||L∗ + S∗ +W − L− S||2Fro ≤

≤ ||L− L∗||2Fro + ||S − S∗||2Fro + ||W ||2Fro = A+B +C

(the signs are put in a onvenient form).

The LOREC solution is Σ̂LOREC = L̂+ Ŝ, L ∈ L̂ (r̂), S ∈ K̂ (ŝ), with

L̂ = ÛD̂Û ′, (5.11)

where D̂ = Dλ is the diagonal eigenvalue matrix oming out from the sin-

gular value thresholding proedure, and Û is the matrix of orresponding

eigenvetors. Aware of the best approximation property of PCA, our ques-

tion is the following: whih is the matrix in the variety L̂ (r̂) being loser to
the unknown r-ranked matrix L∗

, keeping �xed Û?
The solution is straightforward: our matrix has the same eigenvetors Û ,

but has the original (natural) eigenvalues. This new matrix D̂New an be

obtained simply un-shrinking the obtained eigenvalues: D̂New = Dλ + λIr.
This is why term A is minimized as follows:

minL∈L̂ (r̂) ||L− L∗||2Fro ⇐⇒ L̂New = Û(Dλ + λIr)Û
′
.

Suppose now Σ̂LOREC is given, and assume that the o�-diagonal ele-

ments of Ŝ are invariant. We an re-write term B as follows:

min
S∈K̂ (ŝ)

||S − S∗||2Fro =

= min
L∈L̂ (r̂)

||(Σ̂− L)− (Σ∗ − L∗)||2Fro =

= min
L∈L̂ (r̂)

||(Σ̂− Σ∗)− (L− L∗)||2Fro ≤

p
∑

i=1

(σ̂ii − σii)2 +
p
∑

i=1

(l̂ii − lii)2 (5.12)

= B′ +B′′.
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Term B′
is assumed to be �xed respet to L, i.e. we are assuming the

invariane of diagonal elements in Σ̂LOREC (diag(Σ̂New) = diag(Σ̂LOREC)).
The minimization of term B′′

, given that rank(L) = r̂, falls bak into the

previous ase, i.e. B′′
is minimum ⇐⇒ L̂New = Û(Dλ + λIr)Û

′.
Term C depends on the quality of the estimation input Σn, and on the

degree of orrespondene with LOREC assumptions.

Consequently:

ŜNew,ii = Σ̂ii − L̂New,ii, ∀i.
ŜNew,ij = Ŝij, ∀i 6= j.

We an thus de�ne Σ̂New = L̂New + ŜNew. We all L̂Orig and ŜOrig the

original LOREC estimates. We know that ||L̂New − L̂Orig||2 = λ.

Realling that L̂New = minL∈L̂ (r̂) ||L− L∗||2Fro, we have

0 < ||L̂Orig − L∗||2 − ||L̂New − L∗||2 ≤ λ, (5.13)

beause ||L̂Orig−L∗||2 ≤ ||L̂New−L̂Orig||2+||L̂New−L∗||2. As a onsequene,
||L̂New − L̂Orig||Fro =

√
2rλ and

0 < ||L̂Orig − L∗||Fro − ||L̂New − L∗||Fro ≤
√
2rλ. (5.14)

In order to quantify ||ŜNew − ŜOrig||Fro, we need to study the behaviour of

the term

∑p
i=1(l̂New,i − lii)2. This an be re-written as

p
∑

i=1

(l̂New,ii − l̂Orig,ii + l̂Orig,ii − lii)2 ≤

≤
p
∑

i=1

(l̂New,ii − l̂Orig,ii)
2 +

p
∑

i=1

(l̂Orig,ii − lii)2.

∑p
i=1(l̂Orig,ii − lii)2∀i depends on the statistial properties of L̂LOREC .

∑p
i=1(l̂New,ii−l̂Orig,ii)

2 = rλ2, for basi algebrai onsiderations on the trae.

It is also straightforward that ||diag(L̂New−LOrig)||2 = λ. So, realling that

ŜNew = minS∈K̂ (ŝ) ||S − S∗||2Fro, we an write ||ŜNew − ŜOrig||Fro =
√
rλ

and

0 < ||ŜOrig − S∗||2 − ||ŜNew − S∗||2 ≤ λ. (5.15)

0 < ||ŜOrig − S∗||Fro − ||ŜNew − S∗||Fro ≤
√
rλ. (5.16)

We an now analyze the performane of Σ̂New. Sine we have no gain

from diag(Σ̂New), we have to subtrat from ||L̂New − L̂Orig||Fro the gain

from diagonal elements. At the same time, no gain omes from the diagonal

elements of ŜNew. Hene, we an write

||Σ̂New − Σ̂Orig||Fro ≤
√
rλ.



110 CHAPTER 5. IMPROVING LOREC

As a onsequene, realling that Σ̂New = minΣ=L+S(TL(L,S)) under the

desribed assumptions, we an write

0 < ||Σn − Σ̂LOREC ||2 − ||Σn − Σ̂New||2 ≤ λ. (5.17)

0 < ||Σn − Σ̂LOREC ||Fro − ||Σn − Σ̂New||Fro ≤
√
rλ. (5.18)

Therefore, the real gain is terms of approximation of Σn respet to

LOREC measured in squared Frobenius norm is bounded from rλ2.

To sum up, we pay the prie of aepting a non-optimal solution in

terms of nulear norm (we allow to inrement ||nuc by rλ) but we have a

best �tting performane for the whole ovariane matrix, derementing the

squared Frobenius loss by a quantity bounded from rλ2. Note that ||Ŝ||off
is invariant. ||S||1 (onsidering also the diagonal) is dereased by a quantity

bounded from

√
rλ.

We an easily write

||Σ̂New − Σ||2Fro = ||L̂New + ŜNew − (L+ S)||2Fro =

0 < ||Σ̂New −Σn +Σn − Σ|| ≤ ||Σ̂New − Σn||2Fro + ||Σn − Σ||2Fro. (5.19)

Note that the quality of the estimation input ||Σn −Σ||2Fro does not depend

on the estimation method.

Therefore, by (5.18) and (5.19), it is straightforward that

0 < ||Σ̂LOREC − Σ||2Fro − ||Σ̂New − Σ|||2Fro ≤ rλ2. (5.20)

Analogously, it is easy to prove that

0 < ||Σ̂LOREC − Σ||2 − ||Σ̂New − Σ|||2 ≤ λ. (5.21)

Now we reall the following expression:

||(L̂+ Ŝ)−1 − (Σ)−1||Fro = ||(L̂+ Ŝ)−1[L̂+ Ŝ − Σ](Σ)−1|| ≤

≤ ||(L̂+ Ŝ)−1|| · ||[L̂+ Ŝ − Σ]||Fro · ||(Σ)−1||.

From (5.20) we an onlude that

0 < ||(L̂LOREC+ŜLOREC)
−1−Σ−1||2Fro−||(L̂New+ŜNew)

−1−Σ−1||2Fro ≤ rλ2.
(5.22)

Analogously, it is straight forward that

0 < ||(L̂LOREC + ŜLOREC)
−1 − Σ−1||2 − ||(L̂New + ŜNew)

−1 − Σ−1||2 ≤ λ.
(5.23)

Our study has allowed us to improve the estimation performane in a

�nite sample analysis. However, the rates for L̂New, ŜNew and Σ̂New are
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exatly the same as L̂LOREC , ŜLOREC and Σ̂LOREC . Our new estimate im-

proves the statistial performane of LOREC given the sample, inheriting

all its algebrai and parametri onsisteny properties.

In spite of that, the un-shrinkage of the estimated eigenvalues of L relaxes

the neessary ondition for positive de�niteness and invertibility of Ŝ and

Σ̂. In empirial analysis, one an onsider that parameters φ and φS an be

dereased by a quantity bounded from λ.

LOREC and spiked eigenvalues: a relaxed sampling theory

Suppose now that the eigenvalues of L∗
are pervasive in the sense of Propo-

sition 2.5.1, and that all propositions and assumptions of POET approah

hold in our �nite sample ontext.

For instane, we suppose that

λ1,...,r(Σ
∗) ≥ ǫp,

λr+1,...,p(Σ
∗) ≤ ǫp,

ǫ 6= 0, beause the eigenvalues of p−1B′B are bounded away from 0 and ∞.

Suppose that the relationship between p and n is suh that all the ne-

essary onditions to prove the onsisteny of POET desribed in paragraph

(2.5.4) hold (see Theorem 2 in [45℄), inluded the assumptions on the sparsity

struture of S∗
. As already said, we drop the assumption (4.32).

In partiular, suppose that (2.20), (2.21), (2.22) hold, suh that (2.23)

an be proved, that is,

||Σn −Σ|| = O

(

p√
n

)

(5.24)

holds. This is a key model-based result (outlined in bold), beause it is

neessary to prove the onsisteny of POET. It is proved as Lemma 5 in

[45℄.

(5.24) is equivalent to state that

P

(

||En|| ≥ C1
p√
n

)

≤ 1− C2e
−C3p2 . (5.25)

Sine we have dropped the assumption (4.32), we an simply write, using

the standard norm property |||.||∞ ≤ ||.||2 as in [31℄ (see paragraph (4.1.3)),

P

(

||En||∞ ≥ C1ξ(T )
p

ξ(T )
√
n

)

≤ 1− C2e
−C3p2 , (5.26)

beause ρ = γλ and γ has the same shape as in Theorem 4.1.4. We expliitly

note that in this way we also drop the assumption of normality for the data,

impliit in the result of [110℄ used by Luo to bound the spetral loss of the

unbiased sample ovariane matrix.
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So, if we plug-in this expression in the proof of Theorem 4.1.4, and we

use (5.26), we an write

λn =

(

1

ξ(T )

p√
n

)

= λ. (5.27)

Hene, we an exploit (4.36) to onlude

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

p√
n
, (5.28)

given that all the neessary onditions (with partiular attention to the iden-

ti�ability ones) of Theorem 4.1.4.

Theorem 5.1.2. Under all the assumptions of Theorem 2 in [45℄ (see para-

graph (2.5.4)) and all the assumptions of Theorem 4.1.4, the LOREC esti-

mate (L̂, Ŝ) satis�es

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

p√
n
.

It is straight forward that the suess of this approah depends on the

oherene between the assumptions in both settings (POET and LOREC).

We will give spei� attention to that in paragraph (5.3.1), widely desribing

the neessary setup onditions for ensuring this oherene.

Consistently to POET approah, here we an overome the problem of

the restritive ondition p ≤ n. In fat, we know that the probabilisti bound

is �nite until p log (p)≫ n, beause Theorem 2 in [45℄ presribes p = o(n2).
Note that all the desribed rates for Ŝ and Σ̂ still hold, simply updating

λ aordingly to (5.27). Also the desribed results on the un-shrinkage and

the onsequenes on the requisites for positive de�niteness and invertibility

still hold.

In partiular, sine in this ontext ||Σn − Σ∗||2 is o(p) with rate O( p√
n
),

we have

φ = C(sξ(T ) + 1)
1

ξ(T )

p√
n
,

φS = Csξ(T )
1

ξ(T )

p√
n
.

In order to relax the strong assumption of pervasiveness of latent eigen-

values (Proposition 2.5.1), we set into the generalized spikiness ontext of

De�nition 2.5.1, where α ∈ (0, 1). In order to obtain an error rate for our

numerial program under these onditions, sine the nature of this approah

omes from a non-asymptoti (�nite sample) analysis, we only need to study

the behaviour of the model-based quantity P (||Σn−Σ||) under these assump-

tions, beause the only probabilisti omponent derives from P (||En||2). In
partiular, we want to generalize (5.25) showing that

P

(

||Σn − Σ|| > C1
pα√
n

)

≤ 1− C2e
−C3p2α , (5.29)
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α ∈ (0, 1].
In order to do that, the relevant argument to take into aount is Lemma

5 in Fan et al. (2013), the onlusion of whih is (5.24). Sine Lemma 5 (as

it is) is the key to prove that under Fan's ondition (5.28) holds, the updated

version of Lemma 5 in the α - spiked ontext is the key to prove that

gγ(Ŝn − S∗, L̂n − L∗) � 1

ξ(T )

pα√
n
.

We remark again the di�erene with Luo's approah. In his setting, he

proved that, given En = Σn − Σ∗
,

P (||En||2) ≤ Op

(
√

p

n

)

P (||En||∞) ≤= Op

(

√

log p

n

)

separately for P (||En||2) and P (||En||∞).
The key to prove (5.29) is to adapt laims (2.20), (2.21), (2.22) (oming

from [44℄) to this setting, where the pervasiveness of latent eigenvalues has

been relaxed, applying the proof tehnique in [45℄, Appendix C, Lemma 5,

page 639.

From the fat that ||B′Σ−1B|| ≤ |cov(f)−1| (page 194 Fan (2008) [43℄,

Assumption (B)), (2.20) follows. This laim is una�eted by the relaxing of

Proposition 2.5.1. So, from the proof of Lemma 5, we an argue that, under

the α - spiked ontext, ||D1|| ≤ O(pα
√

1
n), beause now ||BB′|| = O(pα).

This happens also beause r log p = o(n).
In order to show how (2.21) hanges in this ontext, we need to reall the

key results of Bikel and Levina (2008b). Di�erently from Luo's approah,

in this setting (as in the POET one) the sparsity assumption is imposed to

S∗
, and not to Σ∗

.

The relevant quantity mp (2.17) in Fan's setting is o(p), in order to have

||S|| = o(p), whih allows to identify the low rank omponent via PCA.

Here, sine De�nition 2.5.1 holds, we have that mp = o(p) is no longer

appropriate. We impose, in order to preserve the orrespondene between the

rates of the sample and theoretial eigenvalues, the assumption mp = o(pα)
(whih auses ||S|| = o(pα) in the POET setting).

Consider now the uniformity lass of sparse matries (2.11).







S∗ : s∗ii ≤M,

p
∑

j=1

|s∗ij|q ≤ c0(p), ∀i







. (5.30)

We have residual varianes uniformly bounded by M . This assumption here

is no longer valid, beause M is no longer negligible respet to p.
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Here we an no longer write (see [15℄ page 2580)

λmax(S
∗) ≤ max

i

∑

j

|s∗ij| ≤M1−qc0(p),

as Fan et al. do in their pure spikiness ontext.

The quantity c0(p) an still be assumed not to sale with p, beause we
want to have a sparse S∗

, but mp = op(p
α) auses that M annot longer

be onsidered as a onstant when p → ∞. In order to normalize it, we

need to divide by p1−α
, thus obtaining that mp grows at a rate of O(pα−1)

as p inreases. Plugging-in M = O(pα−1) in the proof deriving the sample

ovariane rate of a matrix under lass (5.30) (see [15℄ page 2582) we an

prove:

||Σn −Σ||∞ ≤ O

(

pα−1

√

logp

n

)

, (5.31)

whih is outlined in bold as a key tehnial result.

Now, using (5.31), we an apply the proof tools of Lemma 5 ([45℄, Ap-

pendix C) to matrix D2, obtaining

||D2|| ≤ pOp(p
α−1)O

(
√

log(p)

n

)

= Op

(

pα
√

log p

n

)

,

beause ||D2| ≤ p||D||∞. Sine log(p) = o(n), we an write

||D2|| ≤ pOp(p
α−1)O

(

√

log p

n

)

= Op

(

pα
1√
n

)

. (5.32)

To onlude, we analyze (2.22):

max
i≤r,j≤p

∣

∣

∣

∣

1

n

n
∑

k=1

fiksjk

∣

∣

∣

∣

≤ 1√
n

n
∑

k=1

max
i
|fik|

1√
n
max

j

n
∑

k=1

|sjk| ≤
√

r

n
ppα−1

√

log p

n
,

Note that here Assumption 2b) ||S∗||1 < const in Theorem 2 of [45℄,

neessary to ensure the onsisteny of POET, is no longer neessary, beause

rank onsisteny is ensured via the numerial method.

Sine r = O(log (p)) and n = o(p2), we an set n = O (pα) and we obtain

O(
√

r
n) = O(p−

α
2 ), beause log (p) = o(pα). This method works if and only

if p = o(n2α). The rate thus beomes O

(

p
α
2

√

log p
n

)

.

Applying the tools of Lemma 5 to D3 we obtain

||D3|| ≤ O
(

p
α
2

√

log p

n

)

O
(

p
α
2

)

= O

(

pα
√

log p

n

)

,
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beause ||B|| = O(p
α
2 ). The ondition log(p) = o(n) leads to:

||D3|| ≤ O
(

pα√
n

)

. (5.33)

Rate (5.29) is onsequently proved, and we have

||Σn − Σ|| = O

(

pα√
n

)

. (5.34)

The argument follows from the ombined use of tools from Fan et al. (2013),

Fan et al. (2011), Fan et al. (2008) and Bikel and Levina (2008b).

This is equivalent to state that

P

(

||En|| ≥ C1
pα√
n

)

≤ 1− C2e
−C3p2α .

Sine we have dropped the assumption (4.32) for Σ∗
, we an simply write,

using ||.||∞ ≤ ||.||2 and the minimum for γ in Theorem 4.1.4,

P

(

||En||∞ ≥ C1ξ(T )
pα√
n

)

≤ 1− C2e
−C3p2α . (5.35)

By the outlined plug-in in the proof of Theorem 4.1.4 and (5.35), exploit-

ing Chandrasekaran et al. (2012) ([31℄) (see paragraph (4.1.3)), it is possible

to prove that under these assumptions we have:

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

pα√
n
, (5.36)

given that all the neessary onditions (with partiular attention to the iden-

ti�ability ones) of Theorem 4.1.4 hold.

Theorem 5.1.3. Under all the assumptions of Theorem 2 in [45℄, assuming

that the latent eigen-struture of Proposition 1 and 2 (see paragraph (2.5.4))

is replaed by the one of De�nition 2.5.1, and under all the assumptions of

Theorem 4.1.4, the LOREC estimate (L̂, Ŝ) satis�es

gγ(Ŝ − S∗, L̂− L∗) � 1

ξ(T )

pα√
n
.

It is straight forward that the suess of this approah depends on the

oherene between the relaxed spikiness assumption (Proposition 2.5.1, see

the disussion of [45℄ by Yu and Samworth on that) as well as all the assump-

tions in Theorem 2 of Fan et al. (2013) and the assumptions of Theorem

4.1.4.

Consequently, we an write here

λn =

(

1

ξ(T )

pα√
n

)

= λ. (5.37)
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We an again overome the problem of the restritive ondition p ≤ n. In

this relaxed setting, the probabilisti bound is �nite until pα log (p) ≫ n,
beause (5.34) holds until pα = o(n2).

Note that if α = 0, we have log (p) ≫ n, whih means p = o(n). So, in
the ase of no latent eigenvalues (no spikiness), the onvergene rate of the

sample ovariane matrix simply beomes O(
√

1
n). Note that Theorem 2.2.1

gives the same result imposing p = o(n). Therefore, we an say that (5.34)

holds for α ∈ [0, 1], thus enompassing also the lassi sampling ontext

(small and �xed data dimension). In addition, (5.36) holds also under the

no-spikiness ase of Theorem 4.1.4.

All the desribed rates for Ŝ and Σ̂ still hold, simply updating λ aord-

ingly to (5.37). The desribed results on the un-shrinkage and the onse-

quenes on the requisites for positive de�niteness and invertibility still hold

too, onsequently updated.

In partiular, sine in this ontext ||Σn − Σ∗||2 is o(p) with rate O( pα√
n
),

we have

φ = C(sξ(T ) + 1)
1

ξ(T )

pα√
n
,

φS = Csξ(T )
1

ξ(T )

pα√
n
= Cs

pα√
n
.

This approah o�ers an original proof setting to reover onsistently a

more relaxed (and wider) spikiness ontext. By plugging-in into the proof

of Luo (2013), it allows to overome the ondition p ≤ n even using Σ̂n−1 as

estimation input. It o�ers a reovery ontext where the rate diretly depends

on the spikiness of latent eigenvalues, beause the larger α, the further are
the identi�ability and invertibility onditions from being satis�ed, as well

as the worse is the error rate. We underline that our rates are in absolute

norms, and re�et the underlying degree of spikiness.

However, this approah works if and only if the identi�ability and on-

sisteny assumptions of LOREC and POET are satis�ed. In partiular, the

more spiky the low rank omponent is, the sparsest must be the sparse om-

ponent, in order to ensure a degree of transversality su�iently low.

Finally, we note that this theory is spei�ally addressed to the Big Data

ontext, where p ≫ n. Sparse fator model assumptions together with the

numerial approah are the key to provide reovery in a relaxed sampling

setting, partiularly useful when p is very large ompared to n. This result is
obtained by a ombined use of numerial analysis (�nite sample) and prob-

abilisti onvergene theory of the sample ovariane matrix under sparse

fator model assumptions, linking the sample dimension to the spikiness of

latent eigenvalues.

We are going to verify the strength and the width of all these assumptions

as well as the validity of our theories on the performane of numerial esti-
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mators, with partiular referene to the statistial advanes just desribed,

in a wide original simulation study and in a real data analysis ontext.

5.2 Simulation setting

5.2.1 Simulation algorithm

Let C,S,L and W be real-valued symmetri p× p matries. Let us onsider

a framework where C is a p × p unbiased sample ovariane matrix, L is

the latent low rank ovariane matrix (i.e. fator-driven ovariane), S is a

sparse residual ovariane matrix with 2s (s≪ p(p−1)/2) non-zero elements

and W is an error term.

Our aim is to deompose the matrix C (whih is for us the unbiased

ovariane matrix estimator) into the sum of S,L and W , satisfying the

extended "lasso" ondition (5.38):

min
S,L

ρ||S||1 + λ||L||nuc + ||W ||Fro

sub C = S + L+W, (5.38)

where || · ||1 is the l1 matrix norm, and || · ||nuc is the nulear norm,

i.e. the trae of the vetor of singular values, λ and ρ are non-negative

salars. For us, the l1 norm is here exluding the diagonal elements, that is

||S||1 = ||S||1,off =
∑p−1

i=1

∑p
j=i+1 |sij|, aording to POET approah.

The matries C and S are positive de�nite, the matrix L is positive

semide�nite. The parameters ρ and λ are the sparsity and spikiness thresh-

olds respetively. Our aim is to obtain the estimate Σ̂ = L̂ + Ŝ of the true

ovariane matrix Σ minimizing (5.38).

With this purpose in mind, we now desribe the data generation frame-

work. First, we set to r = βp, β ∈ [0, 0.1], the rank of L. We an thus apply

to L (real-valued and symmetri) the spetral theorem:

L = ULΛLU
′
L, (5.39)

where:

1. UL is a p× r matrix with orthonormal olumns, i.e U ′
LUL = Ir;

2. ΛL = diag(λL,1, . . . , λL,r) is a r×r diagonal matrix, where λL,1, . . . , λL,r
are real and positive, sine L is positive semide�nite.

For our purpose, we immediately need to set the proportion α ∈ [0, 1]
of the total variane explained by the fators. So, in the generation frame-

work we an set tr(ΛL) = ταp, where τ ∈ [0,∞[ allows to ontrol for the

magnitude.
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The matrix UL is generated applying the Gram-Shmidt algorithm to

any basis of Rp
and extrating r random p−dimensional olumns from the

obtained matrix. This is performed pre-multiplying by a positive de�nite

permutation matrix the matrix Ip, and then applying Gram-Shmidt algo-

rithm. The matrix ΛL is generated by an algorithm (see [48℄) whih returns

a diagonal matrix with �xed trae ταp and ondition number exatly equal

to c.

The sparse symmetri matrix S, whih is a p × p sparse matrix with 2s
o�-diagonal nonzero elements (s≪ p(p− 1)/2), is generated as follows.

First of all, we need to split the residual variane τ(1 − α)p among the

diagonal elements of S. This problem an be solved by using the Dirih-

let probability distribution. It is su�ient to set s∗ii = sii
τ(1−α)p . Then,

(s∗11, . . . , s
∗
pp|(1 − α, . . . , 1 − α)) is a Dirihlet distribution. We an gener-

ate s∗, and onsequently ompute s. We permute the elements in diag(S)
assoiating the i−th largest element in diag(L) with the i−th largest element

in diag(S).

The o�-diagonal elements of S are generated as follows. For eah entry

i, j a number θij = Unif(0, δ
√
sii
√
sjj) is generated, where δ ∈ [0, 1] is

a parameter ontrolling for the positive de�niteness of S. The larger the

dimension p is, the smaller δ has to be in order to ensure positive de�niteness.
Then, sij is generated as sign(L(i, j))Unif(0, θij ) for eah i, j.

One we have generated L, we ompute inc(L) (see (4.11) for the de�-

nition). Using the identi�ability inequality degmax(S)inc(L) ≤ 1
108 , we set

degmax(S) =
1

108·inc(L) . Using the lower bound on the minimum eigenvalue

of L λr(L) (Theorem 4.1.4), we derive the minimum allowed non zero ele-

ment thrmin =

√
p
n
·inc(L)2λr(L)

degmax(S)
,where

√

p
n omes from the shape of λ. From

thrmin we an derive smin as the position oupied by the lowest element

larger than thrmin in the sorted vetor of the o� diagonal entries of S (in

desending order). Then, a threshold thrprop is proposed as δbis ∈ [0, 1] times

the maximum o�-diagonal element of S, from whih we an derive the pro-

posed number of nonzero elements sprop in the same way. The number of

non zeros is then set to s = min (smin, sprop), and the lowest allowed element

of S is derived aordingly as thr = max (thrprop, thrmin).

Note that smin is an approximate indiation. It represents a ontrol

proedure respet to the orrespondene with the theoretial assumptions of

Theorem 4.1.4. In any ase, it may happen that the maximum eigenvalue of

Σn is atually more than proportional or less than proportional to

√

p
n . In

that ase, smin an give a too restritive or a too generous indiation, and

this may result in partial reovery or non-reovery of non-zeros. In addition,

the hoie of δbis is also arbitrary, and is limited by smin only. This proedure

is an attempt to deal with the alignment between the number of non zeros

and the magnitude of non zeros (whih is relevant for reovery). The model
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seletion riterion we are going to desribe will appropriately signal problems

on that, reovering in ase more or less non-zeros than expeted.

In light of this, we an generate n repliates of our data. Given the

generated L = ULΛLU
′
L and S, the data generation proess is:

zi = Bui + ǫi, i = 1, . . . , n,

where:

1. zi is a p× 1 vetor;

2. B = ULD is a p× r matrix, with D =
√
ΛL;

3. ui ∼ N(0, Ir);

4. ǫi ∼ N(0, S);

5. ui ⊥ ǫi, i = 1, . . . , n.

One n repliates have been generated, we an ompute the matrix C as the

unbiased sample ovariane estimator of our n repliates of z.

The spikiness threshold λ is initially set to the mean eigenvalue of C
(say λ̄C), while the sparsity threshold ρ is initially set to the average of the

o�-diagonal elements of C (ρC = (p(p−1)
2 )−1

∑p−1
i=1

∑p
j=i |cij |).

5.2.2 Simulated settings and omparison quantities

After the desription of our generation framework, we ome bak to our

statistial problem. Let us suppose that Σ = L + S is a p × p ovariane

matrix, where L is a r - ranked matrix (r < p) and S is a sparse matrix with

s non zero elements as in model (3.1). We set C = Σn, where Σn is now the

unbiased ovariane matrix estimator Σ̂n−1.

We take as referene setting the following one:

setting 1:

p = 100, n = 1000, β = 0.04, r = 4, τ = 1, α = 0.7, c = 2,

δ = 0.1, δbis = 0.2, s = 118, smax = 732, ρcorr =
ρS
ρΣ

= 0.045,

where ρS = p(p−1)
2 )−1

∑p−1
i=1

∑p
j=i |sij | and ρΣ = p(p−1)

2 )−1
∑p−1

i=1

∑p
j=i |σij | .

The dimension p is �xed to 100 and the sample dimension n is set to 1000.
A data-set with a larger dimension will be explored in paragraph (5.3.2).

These settings are good for omparing the performane of our NEW method

to the LOREC method. The latent rank is 4, the magnitude parameter τ is

�xed to 1. The proportion of non-zeros is (p(p−1)
2 )−1s is 2.38%.
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The other settings we have explored are the following:

setting 2:

p = 100, n = 1000, β = 0.03, r = 3, τ = 3, α = 0.8, c = 4,

δ = 0.1, δbis = 0.1, s = 580, smax = 1604, ρcorr = 0.0072,

setting 3:

p = 100, n = 1000, β = 0.04, r = 4, τ = 1, α = 0.7, c = 4,

δ = 0.1, δbis = 0.1, s = 335, smax = 892, ρcorr = 0.0048.

In setting 2, the magnitude is inreased by three times (τ passes from

1 to 3). The rank is 3, the proportion of latent variane is inreased to 0.8.
The proportion of non zeros is inreased to 11.72%. The ondition number

c is inreased to 4. This setting has quite more spiked eigenvalues.

In setting 3, the ondition number c is 4, and the number of non-zeros is

inreased respet to the referene setting. The proportion of non-zeros here

is 6.77%. This setting is something between setting 1 and setting 2.

The spikiness threshold λ is initially set to the mean eigenvalue of Σn,

λ̄Σn . The sparsity threshold ρ is initially set to the average of the absolute

values of the o�-diagonal elements of Σn, ρΣn = (p(p−1)
2 )−1

∑p
i=1

∑p
j=i |σn,ij |.

In setting 1 we have:

λ =

[

2i

10
λΣn

√
n

p

]

, i = 1, . . . , 20; (5.40)

ρ =

[

4i
log (p)

n
ρΣn

]

, i = 1, . . . , 20. (5.41)

These formulations are adapted in eah setting by suesive approximations.

Lots of quantities are omputed in order to desribe omparatively the

performane of our NEW approah, of LOREC (Luo, 2013) and POET (Fan

et al., 2013) on the same data. The omputation algorithm is desribed in

Setion 3 (paragraph (3.2.2)), and is applied to the generated ovariane

matrix Σn. We all the low rank estimate L̂, the sparse estimate Ŝ, and the

ovariane matrix estimate Σ̂ = Ŝ + L̂.

The error norms used are the following:

• Loss = ||Ŝ − S||Fro + ||L̂− L||Fro,

• TotalLoss = ||Σ̂ − Σ||Fro,

• SampleTotalLoss = ||Σ̂ − Σn||Fro.
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The estimated proportion of total variane α̂ and the residual ovariane

proportion ρ̂corr are omputed.

The performane of Ŝ is assessed by using the following measures. Let

us denote by nz the number of nonzeros in Ŝ (reall that s is the number of
nonzeros in S), by fp the false non-zeros, by fn the false zeros, by fpos the
false positive and by fneg the false negative elements. We an de�ne:

• the estimated proportion of non-zeros percnz = nz/numvar,

• the error measure: err = fp+fn
numvar , where numvar = p(p − 1)/2 is the

number of o�-diagonal elements,

• errplus = fpos+fneg
s , whih is the same as err but omputed for non-

zeros only, distinguishing between positive and negative in the usual

way.

Sensitivity and spei�ity measures are then derived, as the orret las-

si�ation rates of (true) non-zeros and zero elements respetively. Sensitivity

and spei�ity rates are derived also for positive, zero and negative elements

separately, disentangling the error rates omputing the elements lassi�ed

by mistake in eah of the other two lasses.

The overall error rate errtot using the number of false zeros, false positive,
and false negative elements is also omputed as errtot =

fpos+fneg+fn
numvar .

The ondition numbers of Σ̂, Ŝ, L̂ are omputed and ompared to the

ones of Σ and S and L. We ompute the error rates for the estimated

eigenvalues of L, S, and Σ, and provide a omparative analysis of the gains

on the three indiated losses oming from the unshrinkage proedure for all

threshold parameters.

The vetor of the eigenvalues of Σn and its Eulidean distane from the

vetor of eigenvalues of Σ are omputed, as well its ondition number. The

spetral and the Frobenius losses of Σn from Σ are alulated too.

The performane of Σ̂−1
for all estimators in terms of Frobenius loss from

Σ−1
is also investigated: InvTotalLoss = ||Σ̂−1 − Σ−1||Fro.

All these statistis are omputed and averaged over N = 100 repliates.

5.2.3 A new model seletion riterion

We now develop a model seletion riterion spei�ally thought for our es-

timation method. The inspiration rises from the referene norm gγ used by

Luo (see (4.20)), whih is the starting point of our analysis:

gγ = max

(

||Ŝ − S||∞
γ

, ||L̂− L||2
)

(5.42)

From (5.42), the need of resaling both arguments of gγ rises in order

to raise informative power and to detet the optimal point in the spiki-
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ness/sparsity trade-o�. For exploiting (5.42) with model seletion purposes,

we need to make the two terms omparable.

How an we ompare the goodness of �t of the sparse term by the es-

timated l1 norm of the sparse omponent and of the low rank term by the

estimated nulear norm of the low rank omponent? How it is possible to

establish if their equilibrium is intrinsially balaned? In order to perform

a sample omparison between ||L̂||2 and

||Ŝ||∞
γ , we need to �nd a unique

omparison ground for them.

Considered that

||Ŝ||∞
γ ontains a maximum norm, we an re-sale it to

the trae of Ŝ. Given that in our simulation setting

trace(S∗) = (1− α)trace(Σ∗),

trace(Ŝ) is estimated by (1 − α̂)trace(Σn). Similarly, in order to ompare

the magnitude of the two quantities, we multiply ||L̂||2 by r, whih is the

bound for the maximum norm of L̂, and then divide it by the trae of L̂,
estimated by α̂trace(Σn).

Our maximum riterion MC an be therefore de�ned as follows:

MC = max

{

r̂||L̂||2
α̂trace(Σn)

,
||Ŝ||∞

γ̂(1− α̂)trace(Σn)

}

, (5.43)

where γ̂ = ρ
λ is the ratio between the sparsity and the spikiness thresholds.

This riterion is by de�nition mainly intended to ath the proportion of

variane explained by the fators. For this reason, it tends to hoose quite

sparse solutions with a small number of non zeros and a small proportion

of residual ovariane. If τ is not large enough to ensure that the largest

eigenvalue of S is not too small, there are possible problems for non zeros

reovery (identi�ability problems). τ must be large enough to guarantee the

lower bound on the minimum non zero entry of S and that its maximum

eigenvalue sales with

√

p
n . Analogously, if δbis is too small, that is if we

allow for very small non zero o�-diagonal entries in S, the method is not

able to reover them. In addition, also α and c an in�uene the nonzero

hoie, ontrolling the spikiness of the low rank omponent.

We note that the MC method performs onsiderably better than the

usual ross-validation using H-fold Frobenius Loss (used in (Luo, 2013)),

sine minimizing a loss based on sample approximation like the Frobenius

one auses that the parameter α̂ is shrunk too muh. Quantities ρcorr and

nz are also usually underestimated in that way, unless the true s is really

low. Simulating N = 100 samples, we have that Loss, SampleTotalLoss
and TotalLoss are onsiderably higher using the thresholds obtained by

Frobenius ross validation, both for Σ̂LOREC and Σ̂NEW .

On the ontrary, the threshold setting whih shows a minimum for MC
riterion (given that the estimate Σ̂ is positive de�nite) is the best in terms
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of omposite penalty, taking into aount the latent low rank and sparse

struture simultaneously. MC riterion thus o�ers a unique omparison

ground for both penalties simultaneously onsidered. Seleting thresholds

fousing on the �tting performane highlights that ross-validation is worse

than using MC riterion, also beause the un-shrinkage proedure orrets

itself for the �tting performane. In addition, MC riterion takes into aount

rank and sparsity pattern detetion simultaneously.

For seleting the thresholds for POET estimation, the ross validation

method desribed in paragraph 4 of [45℄ is used. There, the set of resid-

uals from PCA is divided in a training and a validation set. On the �rst,

POET method is applied. On the seond, the sample residual ovariane

matrix is omputed. The optimal threshold is then hosen minimizing the

average Frobenius Loss of the estimated sparse omponent. The training

set dimension is ntraining = n(1− log(n)−1), the validation set dimension is

nvalidation = n− ntraining. For us, ntraining = 855 and nvalidation = 145.

For rank seletion, POET proedure exploits the lassial Bai and Ng

riteria, as indiated in paragraph 2.4 of [45℄. The risk of underestimating

the latent rank if the eigenvalues of Σ do not sale with p were pointed out in

the disussion of [45℄ by Yu and Samworth. We note that the authors used

there the Relative Error measure ||Σ̂−Σ||Σ = p−1/2||Σ−1/2Σ̂Σ−1/2 − Ip||Fro

as a referene norm, whih will also be omputed for LOREC and NEW.

We note that POET systematially overestimates the proportion of vari-

ane explained by the fators (given the true rank) beause the eigenvalues

of Σn are more spiky than the true ones (see Theorem 2.3.1, by Ledoit and

Wolf). The shrinkage approah orrets for that.

The ondition number of L̂ is usually smaller than c. This drawbak

depends on Theorem 2.3.1, and unfortunately holds also for LOREC and

NEW (not only for POET). It depends on the eigenvalues of Σn. The ratio

between the �rst and the r-th largest eigenvalue of Σn tends to be smaller

than the true one, even if it an vary a lot aross repliates, for large values

of r, c and τ too. In fat, we note that the r-th largest eigenvalue of Σn is

usually larger than the r-th largest eigenvalue of Σ.

5.3 Data analysis results

In this setion we desribe the results of the appliation of our method re-

spet to the ompetitors under various situations. In paragraph (5.3.1), we

desribe the performane of Σ̂NEW in the simulated settings desribed in

setion (5.2.1), omparing it with the one of Σ̂LOREC . Partiular empha-

sis is given to the advantages and the performane of unshrinkage, on whih

lear indiations are given. Threshold seletion is performed using the model

seletion riterion desribed in (5.2.3). All the relevant quantities desribed

in (5.2.2) are omputed and averaged over N = 100 simulated settings. Sim-
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ulations are performed with MATLAB. The results are reported in form of

tehnial report.

In paragraph (5.3.2) two real examples are reported. The �rst is drawn

from [45℄, and is a UK market data-set. The seond is a supervisory banking

data-set, whih is derived from the balane sheet data of a list of relevant

Euro Area banks. The alulations here reported treat these data only on

the variable side, in ful�llment of on�dentiality obligations. We deeply

aknowledge for that the Supervisory Statistis Division of the European

Central Bank, where the author spent a semester as a PhD Trainee, for the

allowane of these data for researh purposes.

5.3.1 Simulation results

We now start analyzing the performane of Σ̂New in omparison to the one

of Σ̂LOREC on our referene setting (setting1), whih is ontained in the

following table:

p 100

 2

tau 1

alpha 0.7

r 4

s 118

s_max 732

delta 0.1

delta_bis 0.2

First of all, we simulate one draw and ompute Σ̂n−1. In �gures (5.1),

(5.2) and (5.3) we an see the most important features of the generated set-

ting. Figure (5.1) shows the top r = 4 eigenvalues of Σ, L and S respetively.

Σ and L have spiked eigenvalues linearly distributed, almost overlapped. S
has muh lower eigenvalues. Figure (5.2) shows the sorted diagonal elements

of L and S. Only the �rst three varianes of S are larger than the ones in

L. Figure (5.3) shows the sorted eigenvalues of Σ and Σn. We note a jump

in orrespondene of r = 4. The sorted eigenvalues from the �fth to the

last of both matries are muh lower. This setting is onsistent to POET

assumptions too.
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Figure 5.1: Eigenvalues of L,S,Σ
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Figure 5.2: Sorted diagonal elements of L and S
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Figure 5.3: Eigenvalues of Σn and Σ
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The thresholds ρ and λ are omputed using formulas (5.40) and (5.41):

rho lambda

0.0047908 0.062663

0.0095817 0.12533

0.014373 0.18799

0.019163 0.25065

0.023954 0.31332

0.028745 0.37598

0.033536 0.43864

0.038327 0.50131

0.043118 0.56397

0.047908 0.62663

0.052699 0.6893

0.05749 0.75196

0.062281 0.81462

0.067072 0.87729

0.071863 0.93995

0.076654 1.0026

0.081444 1.0653

0.086235 1.1279

0.091026 1.1906

0.095817 1.2533

We perform estimation for all the threshold pairs we an obtain from

these two grids (i.e. 20× 20 = 400).
We then ompute the model seletion riterion MC. The results are

shown in �gure (5.4) for Σ̂NEW and in �gure (5.5) for Σ̂LOREC .
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Figure 5.4: Model seletion riterion - Σ̂NEW
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Figure 5.5: Model seletion riterion - Σ̂LOREC
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We an see that MC riterion (5.43) is usually inreasing in ρ and λ,
with the exeption of the very �rst thresholds in both grids. For Σ̂NEW ,

the seleted thresholds are ρ(4) = 0.0192 and λ(2) = 0.1253, for Σ̂LOREC

ρ(6) = 0.0287 and λ(3) = 0.1880.
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Figure 5.6: Estimated rank - Σ̂LOREC and Σ̂NEW

In �gure (5.6) we have the distribution of the estimated rank for both

methods. For very small λ, we have very large estimated ranks, for very

large λ we have that the rank is sometimes shrunk to 0. For the entral

values of λ, the rank is orretly reovered. The sparsity parameter ρ also

plays a role: if it is large enough, it an ounterbalane the e�et of λ, thus
orretly estimating the true rank (r = 4, blak line) even if λ is large.

In �gure (5.7) and (5.8) we report the di�erenes between the Total

Losses and the Sample Total Losses of LOREC and NEW. We have that

the gain is positive everywhere, with the exeption of the threshold pairs

whih do not return the exat rank (beause they do not satisfy the range

of Theorem 4.1.4). This pattern is more remarkable for Sample Total Loss

than for Total Loss. For both losses and eah λ, we note that the gain aross

ρ never overomes its maximum

√
rλ (plotted for eah λ).

The dynamis of the di�erene between the Losses of LOREC and NEW,

reported in �gure (5.9), is quite more ontroversial. There we have some neg-

ative values even for entral threshold values. This is due to the di�erenes

between the losses of the sparse omponent for inorret thresholds (see �g-

ure (5.10)) whih is better for Σ̂LOREC when the latent rank is not exatly

reovered or the estimated number of non-zeros is null. On the ontrary, the

di�erene between the losses of the low rank omponents is always better for

Σ̂NEW than for Σ̂LOREC (see �gure (5.11)).
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The settings for whih we have negative di�erenes are haraterized by

a very large ρ whih makes the sparse omponent too sparse. In that ase,

LOREC is underestimating the number of non-zeros in the sparse ompo-

nent, suh that the unshrinkage gets the situation even worse. Anyway, for

the thresholds seleted by MC riterion, the gains obtained via unshrinkage

are largely positive for all losses. Besides, the Loss relative to the low rank

omponent is always muh more relevant in absolute terms respet to the

one relative to the low rank omponent.

We note also that if we linearly add a quantity to the eigenvalues of L
estimated via the LOREC method, we usually improve the Total Loss. This

is true even if we add a quantity larger than λ (unless λ is very high); how-

ever, the proportion of variane explained by the fators α and the number

of nonzeros are in that ase ompletely missed. In fat, the strength of our

method is in the fat that the unshrinkage orrets for the underestimation of

α when LOREC method exatly reovers rank and sparsity pattern. Given

that the rank and the sparsity pattern are orretly reovered, the unshrink-

age provides the losest solution to the true Σ and the losest proportion

of latent variane to the true α. This happens while POET overestimates

and LOREC underestimates α. Ad-ho simulations provide a on�rmation.

The best estimate α̂ is reahed for the thresholds whih best reover rank

and sparsity pattern. This it the same reason why the usual ross validation

method based on sample total loss has a poorer performane.
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Figure 5.7: Sample Total Loss di�erene - Σ̂LOREC and Σ̂NEW
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Figure 5.8: Total Loss di�erene - Σ̂LOREC and Σ̂NEW
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Figure 5.9: Loss di�erene - Σ̂LOREC and Σ̂NEW
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Figure 5.10: Sparse Loss di�erene - Σ̂LOREC and Σ̂NEW
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Figure 5.11: Low rank Loss di�erene - Σ̂LOREC and Σ̂NEW
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In �gure (5.12) we report the plot of the estimated proportion of latent

variane α aross thresholds for Σ̂NEW (in blak the true α = 0.7). We note

that for eah λ, α̂ usually inreases and then gets stable aross ρ. The larger
λ, the smaller α̂. We point out that in orrespondene to the smallest values

of ρ the estimated α is 0, provided that λ is enough large.

In �gure (5.13) the proportion α̂ is shown for Σ̂LOREC . The shape is

exatly the same as for Σ̂NEW , the only di�erene is that all the patterns

are negatively shifted.

In �gure (5.14) we report the plot of the estimated proportion of residual

ovariane ρ̂corr. We have inserted only the ten largest values of ρ. We note

that the larger is λ, the lower is ρ̂corr aross sparsity thresholds. In blak we

have the true ρcorr = 0.045.
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Figure 5.12: Estimated proportion of latent variane - Σ̂NEW

In �gure (5.15) we report the estimated number of non-zeros aross

thresholds (in blak the true s = 118). In general, we have that the larger

is ρ, the lower is nz. The spikiness parameter λ impats on the rate of the

deay aross ρ: the larger it is, the slower the deay.
The error measure err, reported in �gure (5.16) shows a minimum aross

ρ for eah λ. The larger λ, the larger is the ρ in orrespondene to whih

the minimum is attained.

The spei�ity measure (�gure (5.17)) is larger for small λ. It reahes 1
for ompletely diagonal sparse estimates.

The sensibility measure (5.18) is persistently larger for larger λ. The

larger λ, the smaller is the value of ρ in orrespondene to whih the sensi-

bility is 0, beause in that ase we have diagonal sparse solutions.
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Figure 5.13: Estimated proportion of latent variane - Σ̂LOREC
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Figure 5.14: Estimated proportion of residual ovariane -

Σ̂LOREC and Σ̂NEW
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Figure 5.15: Estimated number of nonzero elements - Σ̂LOREC and Σ̂NEW
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Figure 5.16: Error measure err - Σ̂LOREC and Σ̂NEW
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Figure 5.17: Spei�ity - Σ̂LOREC and Σ̂NEW
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Figure 5.18: Sensibility - Σ̂LOREC and Σ̂NEW
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We an now ompare the sample results of NEW and LOREC obtained

seleting the thresholds by the MC riterion (5.43).

We give some explanations about the aronyms used in the reported

tables. lambda is the vetor of spikiness thresholds, sparse is the vetor of
sparsity thresholds. fin1 is the indiator of the optimal ρ seleted via MC,
fin2 is the indiator of the optimal λ seleted viaMC, TL is the Total Loss,

TLs is the Sample Total Loss, rappvar is α̂, rappcorr is ρ̂corr, rapptrue is
ρcorr. spec is the spei�ity of zero elements, sens is the sensitivity of non-

zero elements.

In �gure (5.19) the losses obtained (using Σ̂n−1 as an input for our proe-

dure) are shown. The thresholds seleted by MC are ρ = 0.0192, λ = 0.1253
for Σ̂NEW and ρ = 0.0287, λ = 0.188 for Σ̂LOREC . The table shows that our

unshrinkage approah prevails for Loss, Total Loss and Sample Total Loss

on LOREC approah. The new method shows best �tting properties, going

loser to the estimation target.

NEW LOREC

sparse(fin1) 0.0192 0.0287

lambda(fin2) 0.1253 0.188

fin1 4 6

fin2 2 3

Loss(fin1,fin2) 7.217 7.3564

TL(fin1,fin2) 6.6899 6.71

TL_s(fin1,fin2) 0.7631 1.0808

Figure 5.19: Sample statistis - Losses

In �gure (5.20) we an see that the NEW approah is better also for the

estimated proportion of ommon variane α̂ (loser to α) and the estimated

proportion of total residual ovariane ρ̂corr =
ρ
Ŝ

ρC
. It shows a better perfor-

mane also for the reovery of the true number of non-zeros s. Better results
are ahieved also for the err rate, for spei�ity and sensibility. Anyway, we

note that there is in general a spei� problem on the reovery of non-zero

elements. For NEW, the 63.56% are reovered, whih has to be onsidered

a good result. Both LOREC and NEW are partiularly e�etive for this

aspet only for very sparse matries.

In �gure (5.21) we report the ondition number and the Eulidean er-

rors of the estimated eigenvalues for the three omponents (the low rank,

the sparse and the whole ovariane matrix). For onditioning, the NEW

approah does worse: this is prie to pay to improve �tting properties

(condA, condB, condSigmahat are the ondition numbers of Ŝ, L̂, Σ̂ respe-

tively). NEW is on this side between the Sample ovariane matrix and

LOREC estimate. Conerning the errors of estimated eigenvalues, NEW
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NEW LOREC

pvar(fin1,fin2) 0.6973 0.6935

rapptrue 0.0045 0.0045

rapp rr(fin1,fin2) 0.0025 9.89E-04

nz(fin1,fin2) 99 46

s 118 118

spec(fin1,fin2) 0.995 0.9981

sens(fin1,fin2) 0.6356 0.3136

err(fin1,fin2) 0.0135 0.0182

errplus(fin1,fin2) 0.0085 0

Figure 5.20: Sample statistis - rank/sparsity measures

does better for the low rank omponent only (errA, errB, errSigma are the
Eulidean distane of the eigenvalues of Ŝ, L̂, Σ̂ from the ones of S,L,Σ re-

spetively). On the other side, the unshrinkage has a positive impat on the

maximum estimated eigenvalue of Σ (maximumeig in �gure).

NEW LOREC igma

condB(fin1,fin2) 1.2904 1.2956 2

condA(fin1,fin2) 2.75E+04 1.19E+04 2.26E+07

condSigma_hat(fin1,fin2) 6.42E+04 5.97E+04 9.49E+07

errB(fin1,fin2) 5.497 5.5181

errA(fin1,fin2) 0.1681 0.2324

errSigma(fin1,fin2) 5.5383 5.5144

maximum_eig 21.04 20.8601 24.4886

Figure 5.21: Sample statistis - onditioning properties
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In �gure (5.22) we an note that the sample ovariane matrix has a

slightly smaller Eulidean error of estimated eigenvalues (errC) and Total

Loss (TLInput), but too large ondition number (condC). α̂C (rappvarC =
0.7314) is muh larger that the true 0.7. Parameter cC is the ratio between

the largest and the 4-th eigenvalue of Σn. The maximum eigenvalue of Σn

is 21.1821, the 4-th is 16.1900. DiffC shows the di�erene in Total Loss

respet to NEW and LOREC respetively.

Sample

T put 6.6765

rappvarC 0.7314

errC 5.4893

c_C 1.3083

cond 9.19E+07

NEW LOREC

Diff_C 0.0133 0.0334

Figure 5.22: Sample statistis - Σn

In �gure (5.23) we extensively report some measures relative to spar-

sity detetion. The sensitivity of positive elements (senspos) and the spei-

�ity of negative elements (specpos) are reported. For positive elements,

the mislassi�ation rate to null elements is posnnrate and to negative el-

ements is posnegrate. The same is done for negative elements (the mis-

lassi�ation rate to positive elements is negposrate, to null elements is

negnnrate) and for null elements (the mislassi�ation rate to positive ele-

ments is possens, to negative elements is negsens) respetively. Quantities
posrate = posnnrate+posnegrate, negrate = negposrate+posnegrate and
nnrate = possens+negsens are the total mislassi�ation rates derived from

the previous rates (three sums of two elements). There is a spei� prob-

lem: positive (in partiular) and negative elements are too often lassi�ed

as zeros. On the ontrary, it is very rare that a positive element is lassi�ed

as a negative and vieversa. The error lassi�ation rates of positive and of

negative elements is lower for NEW than for LOREC. Also errtot (totrate
in �gure) is lower for NEW.

In �gure (5.24) we start showing some statistis aross N = 100 simula-

tions. In �gures, the subsript m stands for mean aross all the N repliates,

the subsript m2 stands for standard error. We immediately note that for

NEW the rank is systematially overestimated, di�erently from LOREC. The

proportion of orret rank reovery is 25% against 97% (in �gures rankThr

stands for Thresholded Rank, rankexactperc as the perentage of ranks ex-

atly reovered). Simultaneously, in �gure (5.25), we see that NEW is better

onerning all the Losses (Total Loss, Sample Total Loss and Loss). In ad-
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NEW LOREC

os(fin1,fin2) 0.5094 0.2642

specpos(fin1,fin2) 0.7231 0.3538

po rate(fin1,fin2) 0 0

po rate(fin1,fin2) 0.4906 0.7358

negpo fin1,fin2) 0.0154 0

negnnrate(fin1,fin2) 0.2615 0.6462

possens(fin1,fin2) 0.0027 0.001

negsens(fin1,fin2) 0.0023 8.28E-04

po fin1,fin2) 0.4906 0.7358

negrate(fin1,fin2) 0.2769 0.6462

nnrate(fin1,fin2) 0.005 0.0019

totrate(fin1,fin2) 0.0137 0.0182

Figure 5.23: Sample statistis - Sparsity measures

dition (�gure (5.26)), NEW beats LOREC onerning the detetion of the

proportion of latent variane, of residual ovariane and of the number of

non zeros. Only on the error measure err NEW is slightly worse.

These �ndings, given that our sample estimate has rank r = 4, suggest
some onsiderations about the nature of our improvement. These results

show that the unshrinkage is a sample tehnique. Indeed, we improve upon

LOREC for all �tting measures. The fat that the estimated rank is some-

times 5 or 6 means that our tehnique is able to optimize the sample, �nding

the ultimate ut-o� before non-reovery. This allows to optimize as muh as

possible �tting properties.

N 100 NEW LOREC Sigma

lambda 0.1253 0.188

sparse 0.0192 0.0287

rank_Thr_m 4.82 4.03 4

rank_Thr_m2 0.539 0.1714

rank_exact_perc 0.25 0.97

Figure 5.24: N=100 - Statistis
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N=100 NEW LOREC

TL_m 6.8335 6.864

TL_m2 0.0326 0.013

TL_m_s 0.8204 1.1703

TL_m2_s 0.7646 0.7667

Loss_m 7.4941 7.5418

Loss_m2 0.7749 0.7776

Figure 5.25: N=100 - Statistis

N=100 NEW LOREC Si

rapp r 0.6945 0.6849 0.7

rappvar_m2 0.0048 0.0049

rappcorr_m 0.0036 0.0021 0.045

rappcorr_ 3.09E-04 2.32E-04

err_m 0.0178 0.0164

err_m2 0.0016 0.0011

nz_m 130.87 69.71 118

nz_m2 8.1942 4.9935

Figure 5.26: N=100 - Statistis
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In �gure (5.27) we an see that our NEW estimate has not an average

number of negative eigenvalues equal to 0, di�erently from LOREC estimate

(defSpSigma is the number of negative eigenvalues of Σ̂). The same holds

for the estimate of the sparse omponent (defSpS is the number of negative

eigenvalues of Ŝ). Sine our NEW estimates of the whole ovariane matrix

and of the sparse omponent are positive de�nite in the sample, we have one

more argument for the e�etiveness of NEW as a sample tehnique. On the

other side, we an see that NEW better reovers on average the eigenvalues

of the three matries L,S,Σ.
In �gure (5.28), we an see that NEW is worse for onditioning, but

better reovers the maximum eigenvalue of Σ. The NEW proedure here

has a larger number of iterations respet to LOREC (Arrm is the averaged

number of iterations).

In �gure (5.29) we report some statistis about the detetion of the spar-

sity pattern. We note that NEW is partiularly e�etive for reovering both

positive and negative elements respet to LOREC in orrespondene of the

hosen thresholds. The quantity senspos is the rate of orret lassi�ation
of positive elements, the quantity specpos is the rate of orret lassi�ation
of negative elements.

We expliitly note that this pattern does not depend on the riterion used

to selet the thresholds. Even using the Frobenius Loss, the relationship be-

tween LOREC and NEW performane does not hange. The performane is

only worse for both methods in terms of sparsity pattern (nonzero detetion)

and proportion of latent variane.

N=100 NEW LOREC

defS _m 3.46 0

defSpS_m 4.4 0

defSpSigma_m2 2.2893 0

defSpS_m2 2.8674 0

errB_m 1.5085 5.261

errA_m 0.3144 0.3503

errSigma_m 5.2182 5.2584

errB_m2 2.4084 0.9299

errA_m2 0.0769 0.0703

errSigma_m2 0.7007 0.7158

Figure 5.27: N=100 - Statistis
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N=100 NEW LOREC S gma

condA_m 3.49E+05 9.21E+03 2.26E+07

condB_m 113.9113 1.3882 2

condSigma_hat_m 5.85E+06 4.49E+04 9.49E+07

condA_m2 1.61E+06 2.91E+03

condB_m2 65.7137 2.23E-16

condSigma_hat_m2 6.55E+05 575.4263

Arr_m 58.82 44.87

Arr_m2 1.6659 1.1604

maximum_eig_m 20.9901 20.7542 24.4886

maximum_eig_m2 0.8463 0.8468

Figure 5.28: N=100 - Statistis

N=100 NEW LOREC

spec_m 0.9896 0.9966

spec_m2 0.0013 6.48E-04

sens_m 0.6819 0.4524

sens_m2 0.041 0.0367

sens _m 0.698 0.4901

sens _ 0.0198 0.0288

spec _m 0.7144 0.4352

spec _ 0.0215 0.0283

totrate_m 0.0158 0.0167

Figure 5.29: N=100 - Statistis
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In order to test the strength of results addition, we have tried to perform

estimation using the thresholds of Σ̂NEW for Σ̂LOREC and the thresholds

of Σ̂LOREC for Σ̂NEW . While the results on sparsity detetion are simply

inverted, the estimated proportion of variane explained by the fators is

still better for NEW: simulating N = 100 settings, the averaged α̂ is 0.6924
for NEW and 0.6885 for LOREC, in spite of the fat we have less favorable

thresholds for �tting performane. In addition, Loss and Total Loss are still

better for NEW, even if the performane is worse for both respet to the

original thresholds in terms of �tting.

On the same data, we have applied also POET estimation proedure.

First of all, we note that Bai and Ng riteria do not estimate the rank or-

retly. This is probably due to the fat the ratio

p
n is too low. Thus, we

set the rank to the true one (4), and we then selet the sparsity thresh-

old applying the ross-validation proedure desribed in [45℄ with the hard

thresholding rule.

The results are quite worse. Due to the natural bias of sample eigen-

values, the proportion of ommon variane is over estimated (0.7314). The

estimated number of non-zeros is 432 (against the true 118). All the losses
(TL TLs Loss) are quite worse than for NEW and LOREC estimates. What

is more relevant, the performane of the sparsity reovery is really low. This

happens beause POET approah does not provide any algebrai onsisteny

framework, but only a parametri one. The relevant results for the POET es-

timate are reported in �gure (5.30). In �gure (5.31) we an note that POET

is not able to ath the true non-zeros (the rates of orret lassi�ation of

positive, negative and zeros are reported together with the measure errtot).

POET Sigma

TL 7.0287

TL_C_s 2.7323

Lo 8.913

rappvar_C 0.7314 0.7

rappcorr_C 3.99E-04 0.045

nz_C 432 118

err_C 0.1099

cond_Sigma_C 3.50E+04

cond_S_C 3.26E+03

condL_C 1.3083

Figure 5.30: POET Sample Statistis
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POET

senspos_ 0.0064

specpos_C 0

spec_C 0.9389

totrate_C 0.1244

Figure 5.31: POET Sample Statistis

Rel_Err 8.44E+03 NEW

8.41E+03 LOREC

3.47E+03 POET

Figure 5.32: Relative error: NEW, LOREC and POET
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In �gure (5.32), we outline the exellene of POET: the Relative Er-

ror measure, whih is really better than for LOREC and NEW estimates.

This happens beause the parametri onsisteny of POET is ensured in the

Relative norm ||.||Σ (see paragraph (2.5.4)).

These results highlight that the two methods (the POET and the numer-

ial one) di�er for the appliation range. LOREC method works better for

quite sparse targets. POET method allows for a larger number of non-zeros,

given that they have a very low magnitude, beause it does not provide any

algebrai onsisteny for the sparsity pattern.

The other settings (setting2 and setting3) show similar performanes

of Σ̂NEW respet to Σ̂LOREC and Σ̂POET . We signal that there are relevant

di�erenes onerning the ontrol mehanism on the number of non-zeros

and their reovery. If the smallest non-zero element of S is too small, s and
ρcorr are hardly reovered. The larger the rank r and the proportion α are,

the smaller is the latent ondition number c, the smaller must be the true

number of non-zero s in order to perform reovery, and the more di�ult

is to reover s and ρcorr. In addition, the parameter τ must be suitable for

ensuring that the spetral norm of Σn sales to

√

p
n , in order to make the

ontrol mehanism work. At the same time, the higher is the rank r, and the

smaller is α respet to c, the easier is to have non-positive de�nite estimates.

GIVEN that these onditions for the reovery of s are respeted (obeying

to Theorem 4.1.4), the same relative performanes for NEW, LOREC and

POET are observed, with partiular referene to the Total Loss and the

proportion of latent variane. The unshrinkage is proven to be still useful

also for larger α and c and for smaller r. Relevant results for setting2 and

setting3 are reported in �gures (5.33) and (5.34) respetively.

TheMC riterion for NEW and LOREC and the ross validation method

of POET are observed to work e�etively. For POET, Bai and Ng riteria are

of some use only for the setting with r = 3, even if they overestimate the true

rank. For all the other settings, the riteria are monotonially dereasing in

r. For this reason, the true rank is diretly imposed to POET.
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r=3,c=4 NEW Sigma

sparse(fin1) 0.0164

lambda(fin2) 0.1892

rank_Thr(fin1,fin2) 3 3

nz(fin1,fin2) 513 580

perczeros(fin1,fin2) 0.1036 0.1172

rappcorr(fin1,fin2) 0.003 0.0048

rappvar(fin1,fin2) 0.7994 0.8

TL_s(fin1,fin2) 1.3487

TL(fin1,fin2) 9.3763

Loss(fin1,fin2) 10.8465

Figure 5.33: setting2: Sample Statistis

r=4,c=4 NEW Sigma

sparse(fin1) 0.0113

lambda(fin2) 0.0955

rank_Thr(fin1,fin2) 4 4

nz(fin1,fin2) 263 335

perczeros(fin1,fin2) 0.0531 0.0677

rappcorr(fin1,fin2) 0.0043 0.0072

rappvar(fin1,fin2) 0.6976 0.7

TL_s(fin1,fin2) 0.6943

TL(fin1,fin2) 13.2935

Loss(fin1,fin2) 13.9186

Figure 5.34: setting3: Sample Statistis
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Up to now, we have �xed the dimension p in order to ompare the per-

formanes of NEW and LOREC. Varying p does not modify signi�antly the

ontrastive performane of desribed estimators (exept for omputational

times), in the sense that the key parameter in multivariate analysis is

p
n .

This is why in paragraph (5.3.2) we provide ovariane estimation on two

real data-sets with two radially di�erent ratios

p
n . In the seond example

we have p > n, suh that we explore the performane of desribed estimators

also in a ase somehow resembling the Big Data ontext.

5.3.2 Real data results

In this paragraph we show some appliations of our method to two real data

sets. The �rst is analyzed by Fan et al. in [45℄, and onerns UK market data.

The seond is a Euro Area supervisory banking data set, for whih we thank

the Supervisory Statistis Division of the European Central Bank. On both

data sets, a diret omparison between POET and NEW is done, respet to

performane and appliation range. We note that in real data analysis the

relevant Loss is only the Sample Total Loss (that is, the distane from Σ̂n).

UK market data

In the �rst example, UK daily market data aross the year 2010 are analyzed.
The sample dimension is T = 252 days, suh that we have 251 daily rates.

A number of p = 50 asset pries are analyzed. These assets are naturally

divided in �ve bloks of 10 �rms (variables) orresponding to �ve eonomi

setors (see [45℄ paragraph 7.1 for more explanations). The problem here

is to estimate the ovariane matrix, taking into aount if the di�erent

ovariane struture among and within bloks may in�uene the estimate.

Applying POET method using hard thresholding (the sparsity threshold

is seleted via their ross-validation proedure), Fan et al. report that their

POET estimate may have rank r = 1, 2, 3 indi�erently, beause the estimates

share the same properties. We report the plot of sample eigenvalues in �gure

(5.35).

By Bai and Ng's riteria IC1 and IC2 (see [45℄ paragraph 2.4) we would

selet 9 or 13 fators aording to the penalty used. In fat, in the view of a

strit fator model estimation it would be neessary to have more than three

omponents, as outlined in [94℄.

We signal that it is not straight forward to selet low values for the

latent rank using Bai and Ng's riteria unless the latent eigenvalues are very

spiked. For example, in order to have r̂ = 0, it is neessary to have an

approximately banded ovariane struture. A simple experiment arried on

the sample ovariane matrix over n = 1000 samples drawn by a multivariate

normal Np(0, Ip), p = 100, shows that in that extreme ase we obtain r̂ = 0.
Otherwise, we need that the latent eigenvalues are really spiked respet to
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Figure 5.35: UK market data example: sample eigenvalues

the other ones and the latent eigenvetors are really inoherent respet to

the standard basis.

However, for r̂ = 2, they report to have 25.8% of non-zeros within bloks,

and 6.7% o�-bloks. Among the surviving elements within bloks, they have

that 100% of them are positive. In ontrast, among the surviving o�-bloks

elements they obtain 60.3% positive and 39.7% negative.

In �gure (5.36) some statistis for our unshrinkage estimate are reported.

The solution hosen by our Maximum Criterion (always ensuring that the

estimate is positive de�nite) is muh more sparse than the POET one. The

number of surviving elements is only nz = 15 out of 1225. In addition, the

estimated rank is r̂ = 1. The proportion of ommon variane is 18.89%,

the proportion of residual ovariane is 0.92%. Conditioning properties are

really good.

In �gure (5.36) we an �nd also some statistis relative to the o�-bloks

and within-bloks elements. rate says that only 4.89% of the within bloks

ovarianes are non-zeros. rate2 says that the same perentage for o�-bloks

ovarianes is 0.4%. All the surviving ovarianes within the bloks are

positive (ratepos). In ontrast, three fourth of the o�-bloks elements are

positive (ratepos2).

These results are worth some re�etions. Using a strit fator model ap-

proah, the neessary number of fators would be larger. In [94℄, it is shown

that the neessary number of fators would be seven. Using an approxi-

mate fator model approah (POET), a smaller number of fators is enough.

In our thresholding approah, only one fator is surviving. This happens

beause our method is not PCA based, and does not selet the number of

fators aording to �tting properties. On the ontrary, it selets the latent

rank and the number of surviving non zeros aiming at reovering the true

rank and sparsity pattern. Thus, in our approah there is a non-negligible
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U  rke  da a NEW

ra f 1

f f

perc eros 0.0122

rappvar(fin1,fin2) 0.1889

rappcorr(fin1,fin2) 0.0092

TL_s(fin1,fin2) 0.0023

sparse(fin1) 9.74E-05

lambda(fin2) 6.95E-04

rate(fin1,fin2) 0.0489

rate2(fin1,fin2) 0.004

ratepos(fin1,fin2) 1

rateneg(fin1,fin2) 0

ratepos2(fin1,fin2) 0.75

rateneg2(fin1,fin2) 0.25

condSigma_hat(fin1,fin2) 113.9172

condSparse(fin1,fin2) 56.5862

numvar 1225

Figure 5.36: UK market data: Σ̂NEW statistis

proportion of ovariane whih is thrown away. This is done in order to

reover exatly the low rank and the sparse omponents.

For this reason, two or three fators are maybe enough for �tting proper-

ties, but they are too many for rank/sparsity pattern detetion. The thresh-

olding algorithm returns that one fator is enough for that. In order to

reover in the best possible way the two omponents, a relevant proportion

of ovariane is lost, as outlined in �gure (5.37). The residual of the min-

imization proedure ontains 21.15% of ovariane, while Σ̂NEW ontains

78.85%. 78.13% of the total ovariane belongs to the low rank omponent.

Only 0.72% belongs to the sparse omponent. This is the reason why only

one fator is enough.

By this minimization proedure, quite surprisingly, our method shows

also a lower Sample Total Loss. We repliated POET proedure with 2
fators, and we obtained a Sample Total Loss equal to 0.028. In our ase,

the same indiator is equal to 0.023. Our rank/sparsity based estimation

proedure is thus able to better approximate the sample ovariane matrix.
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In onlusion, we should wonder if the blok struture is strong enough to

really impat ovariane estimation. In fat, this result is onsistent to the

single index fator model ([74℄), and to the CAPM ([104℄).

/ 0.2115

sumSigmahat/sumTOT 0.7875

sumLow/sumTOT 0.7813

sumSparse/sumTOT 0.0072

Figure 5.37: UK market data: Σ̂NEW statistis

Euro Area supervisory banking data

We are now ready to estimate the ovariane matrix on the Euro Area super-

visory banking data. We thank for the use of this data set the Supervisory

Statistis Division of the European Central Bank, where the author spent

a semester as a PhD trainee. Here we use the ovariane matrix omputed

on a seletion of balane sheet indiators for some of the most relevant Euro

Area banks by systemi power. The overall number of banks (our sample

dimension) is n = 365. These indiators are the ones needed for supervisory

reporting, and inlude apital and �nanial variables.

The hosen raw variables (1039) were resaled to the total assets of eah

bank. Then, a sreening based on the importane of eah variable, intended

as the absolute amount of orrelation with all the other variables, was per-

formed in order to remove identities. The remaining variables were p = 382.
So, here we are in the typial p > n ase, where the sample ovariane matrix

is ompletely ine�etive. We report the plot of sample eigenvalues in �gure

(5.38).

Our estimation method selets a solution having a latent rank equal to

6. The number of surviving non-zeros in the sparse omponent is 328, i.e.
the 0.45% of numvar = 72772. Conditioning properties are inevitably very

bad. The results are reported in �gure (5.39).
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Figure 5.38: Supervisory data: sample eigenvalues

Super NEW

T

328

rappvar(fin1,fin2) 0.3247

rappcorr(fin1,fin2) 0.1687

perczeros(fin1,fin2) 0.0045

TL_s(fin1,fin2) 0.0337

defSpSigma(fin1,fin2) 0

defSpS(fin1,fin2) 0

condSigma_hat(fin1,fin2) 6.35E+15

condSparse(fin1,fin2) 2.78E+15

condL 3.1335

Figure 5.39: Supervisory data: results for Σ̂NEW
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Supervis POET

TL_C_s 0.06

_C

per eros 0.00 6

ar 72771

rappvar_C 0.6123

rappcorr 0.0161

cond_S_C 1.11E+15

cond_C 6.68E+15

condL_C 2.5625

defSpSigma_C 0

defSpS_C 1

Figure 5.40: Supervisory data: results for Σ̂POET
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We now pass to the POET proedure. Bai and Ng's riteria do not

attain any minimum for r = 0 : 20. We thus deide to exploit the algebrai

onsisteny of Σ̂NEW setting the rank to 6. We perform the usual ross-

validation and obtain a POET estimate (�gure (5.40)). The number of non-

zeros of POET estimate is 404 (0.56%).

Apparently, one ould say that POET estimate is better: its estimated

proportion of ommon variane is 0.6123, and its proportion of residual o-

variane is 0.0161. On the ontrary, for NEW α̂ = 0.3247 and ρ̂corr = 0.1687.
However, a relevant question arises: how muh is the true proportion of vari-

ane explained by the fators? In fat, a so high α, dependent on the use

of PCA with 6 omponents, auses ρ̂corr to be very low. This is why in the

POET proedure a preferene for the low rank part is given a priori. This

pattern does not hange even if we hoose a lower value for the rank.

On the ontrary, the NEW estimate, whih depends on a double-step

iterative thresholding proedure (8 iterations), allows for a larger magnitude

of the non-zero elements in the sparse omponent. In fat the proportion of

lost ovariane during the proedure is here 29.39%. As a onsequene, via

this rank/sparsity detetion the NEW proedure shows better approximation

properties respet to POET: the Sample Total Loss of the �rst proedure is

relevantly lower than the one of the seond (0.337 VS 0.645).
For our method, the ovariane struture appears so omplex that a

relevant proportion of residual ovariane is present. This allows us to ex-

plore the importane of variables, that is to explore whih variables have the

largest systemi power (i.e. the most relevant ommunality) or the largest

idiosynrasy (i.e. the most relevant residual variane).

First of all, in �gure (5.41) we plot the estimated degree (number of non-

zero ovarianes in the residual omponent) sorted by variable. Only 62 out

of 382 variables have at least one non-zero residual ovariane.

In �gure (5.42) we report the top 6 variables by estimated degree. They

are mainly redit-based variables: �nanial assets through pro�t and loss,

entral banks impaired assets, allowanes to redit institutions and non-

�nanial orporations, ash. These variables are related to the largest num-

ber of other variables.

In �gure (5.43) we report the top 5 variables by estimated ommunality

(

l̂NEW,ii

σ̂NEW,ii
∀i = 1, . . . , 382). The results are very meaningful: the most systemi

variables are debt seurities, loans and advanes to households, spei� al-

lowanes for �nanial assets, and advanes whih are not loans to entral

banks, whih are all fundamental variables or banking supervision.
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Figure 5.41: Supervisory data: sorted degree by variable

Variable Deg_rank

F�nanc��� ������ d���e����a �� ���� 	��
� through  ����� �� ��ss 34

C������ ���k� I ����a �����s [ero�� c��rying amoun�t 25

Credit institution� C����c�i	� ���ow��c�� �or incurr�a �
� �o� report�a ������ 20

O���� �inanc��� corporation� C����c�i	� ���ow��c�� �or incurr�a �
� �o� report�a ������ 19

C���, c��� �����c�� �� c������ ���k� ��d ����� a���d a� ����� 16

O���� �����c��� c�rporation� s �c���c ����o��c�� fo� ���anc��� ������, collecti	��y estim. 16

Figure 5.42: Supervisory data: top 6 by degree

In �gure (5.44) we report the top 5 variables by estimated idiosynrati

ovariane proportion (

ŝNEW,ii

σ̂NEW,ii
∀i = 1, . . . , 382). We note that those variables

have a marginal power in the explanation of the ommon ovariane stru-

ture. The �rst two are redit ard debt and ollateralized loans to other

�nanial orporations. The others are equity instruments given to entral

banks, other �nanial orporations and general governments respetively. All

these variables are less relevant for supervisory analysis than the previous

�ve.

In onlusion, our NEW proedure o�ers here a realisti view of the

underlying struture of variables, by allowing a largest part of ovariane to

Variable Estimated communality

D��� ���������� 0.8414

Households Carrying amount 0.821

Non-financial corporations Specific allowances for financial assets 0.811

Loans and advances Specific allowances for financial assets, collect. est. 0.7592

Advances that are not loans Central banks 0.7439

Figure 5.43: Supervisory data: top 5 by estimated ommunality



156 CHAPTER 5. IMPROVING LOREC

Variable Res. Variance proportion

Credi� card ���� ��n���� ���ks 0.!!!5

o�"�� #$��������i%�� �$an& '�"�� (i�anci�� #$rp$���i$ns 0.!!86

E)*i�+ i�&��*m���& ������� ���-& ����+i�g �/$*nt 0.!!71

E)*i�+ i�&��*m���& '�"�� finan#i�� #$rp$���i$n& ����+i�0 �/$*nt 0.!!7

G������ 0$1ernmen�& ����+i�g �/$*n� $( *�impair�� �&&��s 0.!!7

Figure 5.44: Supervisory data: top 5 by residual ovariane proportion

be explained by the residual sparse omponent.



Chapter 6

Conlusions

The present work desribes the numerial approah to ovariane matrix

estimation. The main fous is on a method based on onvex non smooth

optimization whih assumes a low rank plus sparse deomposition for the

ovariane matrix.

In this framework, the estimation is performed solving a regularization

problem where the objetive funtion is omposed by a smooth Frobenius loss

and a non smooth omposite penalty. The penalty is the sum of the nulear

norm of the low rank omponent and the l1 norm of the sparse omponent.

The numerial nature and the algorithmi solutions to this problem are

outlined highlighting the onnetions with sub-gradient minimization and

semi-de�nite programming theory.

The study of the statistial properties of suh a minimizer in the ontext

of algebrai geometry, whih involves neessary onditions for reovery and

identi�ability, is deeply explored, emphasising the non-asymptoti nature of

the method. Reent solutions under di�erent hypothesis are desribed, in

order to understand how the exat reovery in the noisy ontext is possible.

The key for the exat identi�ation of the low rank and the sparse alge-

brai matrix varieties is proved to be the rank/sparsity inoherene priniple

between the two omponents.

We remark that the algebrai framework allows not only the usual para-

metri onsisteny but also the algebrai onsisteny of the estimate. As

a onsequene, the rank and the number of residual non zeros are simul-

taneously estimated by the solution algorithm. This automati reovery is

a ruial advantage respet to existing asymptoti methods, like the PCA-

based POET (Prinipal Orthogonal omplEment Thresholding) estimator.

In the numerial framework, in fat, the latent rank is automatially seleted

and the sparsity pattern of the residual omponent is reovered onsiderably

better, due to the algebrai onsisteny.

Two theoretial advanes upon the most reent estimator of this family,

LOREC (LOw Rank and sparsE Covariane estimator), are proved. First,

157
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we prove that the unshrinkage of the eigenvalues of the low rank omponent

estimated by LOREC orrets for the systemati underestimation, due to the

thresholding proedure, of the variane proportion explained by the fators.

At the same time, the unshrinkage proedure improves �tting properties.

Seond, we prove that the numerial estimator an e�etively reover the

ovariane matrix even in presene of spiked eigenvalues with rate O(p),
exatly as POET estimator does, requiring only n = o(p2) samples under

POET assumptions. The loss from the target is bounded in absolute norm

(in ontrast to POET proedure). In addition, the reovery is e�etive even if

we have an intermediate degree α ∈ [0, 1] of spikiness, and the loss is bounded
aordingly to α with the need of n = o(p2α) samples only. Besides, our work

ompletes LOREC approah deriving the rate of the inverse of the sparse

omponent and an operative (feasible) identi�ability ondition.

The performane of these improvements is assessed omparatively to

LOREC and POET in a wide empirial study whih exploits a new original

simulation setting partiularly �exible and useful for low rank plus sparse

modelling. In that ontext, we provide a new model seletion riterion speif-

ially thought for our minimization problem. The riterion is observed to

detet the best balane between the low rank latent struture and the (resid-

ual) sparsity pattern.

Simulation results show that our method is partiularly e�etive for re-

overing the proportion of latent variane, as well as the proportion of resid-

ual ovariane and the number of non zeros, both respet to LOREC (beause

of the unshrinkage and of the new model seletion proedure) and respet to

POET. Moreover, our NEW method shows better �tting properties respet

to LOREC and POET under various (absolute) losses, like the omposite

loss of the low rank and the sparse omponent (as well as eah of both) and

the total loss.

Real data analysis shows that our tool is partiularly useful for map-

ping the ovariane struture among variables even in a large dimensional

ontext. The variables having the largest systemi power, that is, the ones

most a�eting the ommon ovariane struture, an be identi�ed, as well as

the variables having the largest idiosynrati power, that is, the ones most

haraterized by the residual variane. In addition, the variables showing

the most of idiosynrati ovarianes with all the other ones an be identi-

�ed, thus reovering the strongest related variables. Partiular forms of the

residual ovariane pattern an thus be deteted if present.

Our dissertation is the starting point for a number of possible researh

diretions. We mention here the three most relevant in our view:

• in the time series ontext, this proedure an be potentially extended

to ovariane matrix estimation under dynami fator models. Setting

a low rank plus sparse struture on the auto-ovariane matrix at a par-

tiular lag, or on the proess fully onsidered under the o-integration
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hypothesis, are two partiularly promising options, in whih the sparse

omponent an be an additional �exibility tool useful for modelling

large data sets;

• the extension of our proedure to the spetral matrix estimation on-

text, under various de�nitions of stationary proess;

• the adaptation of this proedure for lustering in high dimensions. Ex-

isting fator-based methods an be improved by the use of the nulear

norm and the relaxation o�ered by the sparse omponent.

In onlusion, our researh provides a tool to automatially explore large

data sets. This tool an be potentially used in the Big data ontext, where

both the dimension and the sample dimension are very large. This poses

new omputational and theoretial hallenges, the solution of whih is ruial

to further extend the power of statistial modelling and its e�etiveness in

deteting patterns and underlying drivers of real phenomena.
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