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Chapter 1

Introduction

Energy dissipation and angular momentum conservation are universally recognized
as the key ingredients for the formation of discs in every astrophysical context. It is
therefore likely that the assembly of galaxy discs is due, at least in a large fraction,
to the energy loss of dissipative gaseous material, with a significant amount of net
angular momentum in the direction perpendicular to the plane of the forming disc.
Accretion can come either from hot gas, condensing after the radiative loss of part
of its thermal energy, or from gas that was cold from the beginning and dissipates
part of its kinetic energy (either in shocks or in turbulent cascades) as a consequence
of its impact onto the disc.

In Sec. 1.1 of this Introduction we give a general overview of the current under-
standing of mass accretion onto the discs of spiral galaxies, from an observational
and a theoretical point of view. In Sec. 1.2 the angular momentum that must be
associated to mass accretion is briefly discussed, with equal attention for well un-
derstood aspects and open issues, from a global and a local perspective.

Finally, in Sec. 1.3, we state the aim of this Thesis and we give an outline of the
work presented in the following Chapters.

1.1 Mass accretion

1.1.1 Observational overview

Indirect evidence from chemical evolution

The first clear observational indications that the discs of spiral galaxies need con-
tinuous accretion of metal-poor gas from the intergalactic medium, came from the
study of the chemical enrichment of the interstellar medium due to stellar evolution
and nucleosynthesis. Theoretical predictions can be readily obtained for the metal-
licity evolution of a galaxy, or galactic region, in the absence of mass exchange with
the surrounding medium (the closed-box scenario, e.g. Tinsley 1980). Early studies
(e.g. van den Bergh 1962; Pagel & Patchett 1975) immediately realized that the
metallicity distribution of long-lived stars in the solar neighbourhood, as computed
under this hypothesis, is remarkably different from the observed one, in the sense
that there are much less metal-poor stars with respect to predictions (the so-called
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G-dwarf problem), while a much better agreement is found when continuous accre-
tion of metal-poor gas from the intergalactic medium (IGM) is accounted for (e.g.
Larson 1972; Tinsley 1980 and references therein). Our understanding of the chem-
ical evolution of the solar neighbourhood has become significantly more complex,
after the recent discovery of the impact of stellar migration on the local metallicity
distribution of stars (e.g. Edvardsson et al. 1993; Sellwood & Binney 2002a), but
still requires continuous accretion of metal-poor gas from the IGM (e.g. Schönrich
& Binney 2009), which is now recognized as a key ingredient for the metallicity evo-
lution of spiral galaxies in general (e.g. Pagel 2009; Matteucci 2012 and references
therein).

Besides stellar metallicities, independent chemical evidence in favour of accretion
comes from the chemical composition of the interstellar medium (ISM) of the Milky
Way (e.g. Vilchez & Esteban 1996) and of external spiral galaxies (e.g. Moustakas
et al. 2010; Sánchez et al. 2014). These measurements can be difficult, since they
rely on the detection of faint auroral lines (e.g. Pagel 2009) or, as an alternative, on
not trivial calibrations (e.g. Pilyugin 2007; Kobulnicky & Kewley 2004; Marino et al.
2013). In the Milky Way, good proxies for ISM abundances can be obtained from
the photospheric abundances of Cepheid stars, which are very young and therefore
a fair tracer of the composition of the ISM (e.g. Luck & Lambert 2011; Genovali
et al. 2015). On the other hand, theoretical predictions can be easily made for gas-
phase abundances. The closed-box model predicts them to increase with the gas
mass fraction (i.e. gas over gas plus stars). Since the gaseous mass surface density
in spiral galaxies declines less rapidly than the stellar one (van der Kruit & Freeman
2011), the consequent prediction is that the metallicity of the ISM should be a
declining function of radius, which is in qualitative agreement with observations.
The predicted abundance gradients, however, are too shallow with respect to the
observed ones and therefore metal-poor gas accretion is needed (e.g. Phillipps &
Edmunds 1991, though see Skillman 1998).

Chemical evolution arguments have been also recently applied to the evolution
of galaxies as a whole. While global models have a limited accuracy due to their
very crude assumptions (for instance, that the whole galaxy can be described by
one single metallicity), they have the advantage to be applicable to large samples
and therefore offer the possibility of looking for statistically significant correlations.
Star forming galaxies have been found to lie on a tight mass metallicity relation
(Tremonti et al. 2004; Gallazzi et al. 2005), with more massive galaxies being more
metal-rich. Since more massive galaxies also have the smallest gas fraction (Evoli
et al. 2011), this is in qualitative agreement with the closed-box predictions. How-
ever, a quantitative comparison again shows inconsistency: lower metallicities are
generally found, with respect to a closed-box, the effect being the strongest for
galaxies with the lowest stellar mass (Tremonti et al. 2004; Dalcanton 2007). This
metal deficiency is predicted, on very general theoretical grounds, as a consequence
of gas exchanges between the galaxy and its environment (Edmunds 1990). Indeed,
the mass metallicity relation has been explained fairly well by models including both
inflows and outflows (e.g. Lilly et al. 2013; Peng & Maiolino 2014). Furthermore,
the scatter of the relation has been discovered to correlate with the star formation
rate (Mannucci et al. 2010) and even better with the gaseous content of galaxies
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(Bothwell et al. 2013), so that a three parameter relation exists (the so-called fun-
damental metallicity relation), which is also found to be remarkably invariant with
redshift (Belli et al. 2013).

Star formation and the gas consumption problem

Irrespective of chemical evolution, a strong indication that the discs of spiral galaxies
need continuous gas accretion from the IGM comes from their gas content and star
formation rates. At the present time, spiral galaxies typically form stars at a rate
such that, in the absence of substantial replenishment, the present reservoir of cold
gas within star forming discs would be exhausted on short timescales (of the order
of a few Gyr) (Kennicutt 1983; Bigiel et al. 2011; Kannappan et al. 2013). Inter-
estingly, spiral galaxies that are actively forming stars today show similar levels of
star formation during the majority of their evolution (Leitner 2012) and nonetheless
their content of cold gas has not been varying much during the same amount of time
(Zafar et al. 2013). Since stars form out of cold gas, this is possible only admitting
that the cold gas reservoir is continuously replenished. This simple argument can be
made quantitative, considering that the amount of cold gas and the star formation
rate of spiral galaxies are strictly related to each other (Kennicutt & Evans 2012 and
references therein). When this relation is taken into account, the accretion history
and the star formation history of a whole galaxy or of individual regions can be
reconstructed backwards in time, turning out to be related to each other and both
mildly declining with increasing time (Fraternali & Tomassetti 2012).

Considerations about gas consumption likely provide the most clean view to
quantify accretion across the evolution of spiral galaxies. Nonetheless, we stress
that the chemical arguments that we have discussed above always retain a crucial
importance. Chemical evolution, in fact, provides the key additional information
that the accreting gas has to be metal-poor (e.g. Tosi 1988b). This has the im-
portant implication that metal-rich material ejected by stars and returned to the
ISM, despite possibly giving a contribution to the total accretion rate (Leitner &
Kravtsov 2011), cannot give account for the whole amount of gas needed to explain
the observed properties of star-forming galaxies (e.g. Sánchez Almeida et al. 2014
and references therein).

Imprints of gas accretion on gaseous discs

The amount, structure and kinematics of cold (potentially star-forming) gas in and
around spiral galaxies is most directly investigated by means of radio observations
of the 21 cm emission line of neutral hydrogen (see Sancisi et al. 2008 for a review).
A very common property of the discs of spiral galaxies is the presence of large
amounts of cold gas, extending much farther out than the optical stellar disc (e.g.
Broeils & Rhee 1997). The gaseous outskirts of spirals are often characterized by
morphological and kinematical disturbances (e.g. Briggs 1990; Schoenmakers 1999;
Garćıa-Ruiz, Sancisi & Kuijken 2002). The origin of these features is unclear. It
has been argued, on dynamical arguments, that some of these structures cannot be
long-lived and are rather likely to be erased by shear on a few orbital times (Baldwin,
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Lynden-Bell & Sancisi 1980). If they are transient phenomena, they could be the
manifestation of relatively frequent interaction or accretion events.

Dwarf galaxies constitute a particularly interesting scientific case for accretion:
due to their low masses, they are expected to show the most dramatic (and therefore
easily detectable) dynamical response to the impact of infalling material. Interest-
ingly, morphological and kinematical distortions are commonly found in low-mass
galaxies (Lelli, Verheijen & Fraternali 2014a); furthermore, asymmetries have been
shown to be quantitatively related to recent starbursting events (Lelli, Verheijen &
Fraternali 2014b), as expected if they were both a consequence of recent accretion.

Complementary evidence comes again from chemistry: Sánchez Almeida et al.
(2015) found a spatial connection, in starbursting dwarf galaxies, between recent
intense star formation events and a drop in gas phase metallicity, which could be
easily explained if accretion of metal-poor gas has occurred very recently (less than
one rotational period). Similarly, Reichard et al. (2009) found a connection between
low gas-phase metallicity and lopsidedness, as expected if the asymmetries were due
to accretion.

The origin of the cold gas

In principle, galaxies can acquire the gas that is needed to sustain star formation
either from direct accretion of cold gas or from the cooling of hot gaseous haloes
surrounding the disc (e.g. Sánchez Almeida et al. 2014).

Clearly, the most direct evidence for cold gas accretion on spiral galaxies would
be the detection of cold gas outside of them, in the process of being accreted. Several
galaxies are known to have HI-rich companions and it is possible that some of them
will interact and eventually merge with the central galaxy; however, the accretion
rate due to these events is insufficient to sustain the current level of star formation
in spirals (Di Teodoro & Fraternali 2014). Some accretion can in principle come
from purely gaseous clouds (without stars). It has long been known that the Milky
Way is surrounded by the so-called high-velocity clouds (HVCs, Oort 1970). These
clouds of cold, dense, metal-poor gas have a very different kinematics with respect to
the Galactic disc, suggestive of an infall motion towards the Milky Way, and for this
reason they have been considered the first direct evidence for accretion of cold gas
from the IGM. Similar clouds have also been found very close to other spiral galaxies
(e.g. van der Hulst & Sancisi 1988); however, there is no sign of HI complexes with
similar properties at larger galactocentric distances (Fraternali 2009), contrary to
what expected if HVCs originated in the IGM. A purely internal origin of HVCs
(Bregman 1980) has been excluded as well, because of the low metallicity of these
clouds (van Woerden & Wakker 2004), but it is possible that they arise from the
interaction of the circumgalactic medium with gas ejected from the disc (Fraternali
et al. 2015). Nevertheless, the accretion rate associated to HVCs does not seem to
be enough to sustain the observed star formation rate of the Milky Way (Putman,
Peek & Joung 2012), though the contribution of ionized gas is still debated (Lehner
& Howk 2011). It is therefore possible that an important contribution to accretion
comes from very diffuse gas, with column densities below the sensitivity of current
instruments (NHI � 1019 cm�2, e.g. Oosterloo et al. 2007).

Diffuse gas can be probed in absorption, along the sightlines to distant quasars. It
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is well known that the intergalactic space is permeated by relatively cold (T � 104K)
gaseous clouds with column densities as low as logpNHI{cm�2q � 12.5 (the so-
called Ly-α forest), though a large fraction of this gas may be unrelated to star
forming galaxies (Penton, Stocke & Shull 2004). Nonetheless, studies based either
on the Ly-α absorption line (e.g. Prochaska et al. 2011) or on absorption from
low-ionization metal species (in particular MgII, e.g. Churchill et al. 2013) have
provided evidence for the presence of cold gas in the circumgalactic medium of
galaxies (i.e. within their virial radius). Unfortunately, it cannot be established,
in most cases, whether this gas is actually infalling onto the galaxies or not. For
geometrical reasons, a very clean test can be done only for those absorptions that
are detected in the stellar spectrum of the galaxy itself; indeed, many outflows have
been discovered in this way (Rubin et al. 2014), while inflowing motions are more
difficult to detect (Rubin et al. 2012). The key information, however, comes again
from metallicity: outflows, in fact, should be metal-enriched, while inflowing gas
has to be metal-poor. Lehner et al. 2013 studied an HI-selected sample of Lyman-
limit systems, with 16   logpNHI{cm�2q   19, and provided convincing evidence
that their metallicity distribution is bimodal, with possibly outflowing metal-rich
gas and possibly inflowing metal-poor material being found with approximately
the same frequency, though a clear physical explanation for the spatial coexistence
of these two markedly different phases still needs to be fully investigated. It is
finally important to notice that, even admitting that some gas is really cold and
inflowing, it is likely, given its very low density, that it will be ablated away during
the interaction with the hot gas that is also present around massive galaxies, being
therefore incorporated into the hot halo itself (Binney 2004). If this is the case, or if
no cold accretion occurs at all, additional mechanisms should be invoked to explain
the condensation of cold gas out of the hot medium (e.g. Kaufmann et al. 2009;
Marinacci et al. 2010a).

1.1.2 The theoretical context

Hierarchical structure formation

Cosmology gives us a fairly clear understanding of the general assembly of structures
in our Universe (e.g. Mo, van den Bosch & White 2010 and references therein), at
least concerning the dark matter, which is believed to dominate the matter con-
tent of the Universe (Planck Collaboration 2014) and to interact (with itself and
everything else) almost exclusively through gravitation (e.g. Randall et al. 2008).
The formation of a highly non-uniform matter distribution out of an initially almost
uniform one is due to the amplification, driven by gravitational instability, of pri-
mordial gaussian isentropic fluctuations imprinted on the cosmological background
well before recombination. The amplitude of fluctuations is distributed in Fourier
space in such a way that low mass structure are assembled earlier than the more
massive ones (hierachical structure formation).

Given its small contribution to the total matter content of the Universe, ordinary
matter (“baryons”) is expected to fall into the potential wells of the dark matter
and to passively follow similar assembly paths; a significant gravitational role of
baryons is expected only at late stages and and in the central regions of dark mat-
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ter haloes (adiabatic contraction, Blumenthal et al. 1986). Therefore, as long as
gravity is the dominant force acting on them, baryonic structures should form in a
hierarchical fashion as well. The most massive known baryonic structures (galaxy
clusters) are indeed the youngest observed ones (e.g. Allen, Evrard & Mantz 2011
and references therein); however, the same is not true for galaxies, with the more
massive being older than the less massive (downsizing, Cowie et al. 1996). This
clearly indicates that physics other physical processes, in addition to gravitation,
become very important at galaxy mass scales.

Virialization and galaxy formation

The simple linear analysis of gravitational instability ceases to be valid when the
overdensity associated to a growing perturbation becomes comparable to the back-
ground density. This roughly corresponds to the turn-around time, when the effects
of self-gravity overtake the Hubble flow and the mass enclosed within the perturba-
tion separates from the general expansion, starting to collapse towards its centre.
The subsequent evolution is usually understood in terms of idealized models of grav-
itational collapse (e.g. Gunn & Gott 1972; Cole & Lacey 1996). The evolution of
dark matter and baryons becomes very different at this stage.

Since dark matter is collisionless (does not interact with itself or other particles
other than through gravitation), its settlement into a virialized structure is a long
and complex process involving, for each ‘shell’ of given initial radius, several passages
through the centre and through other shells (shell crossing, e.g. Fillmore & Goldreich
1984), implying abrupt changes of the gravitational potential, which favour the onset
of violent relaxation (Lynden-Bell 1967). Furthermore, dark matter is dissipationless
(cannot give up its energy to other particles and in particular to the electromagnetic
field), therefore it conserves its total energy and its final equilibrium can be relatively
easily predicted, for a given cosmology, as a function of its mass M and its formation
epoch. In particular, its size (the virial radius) scales with M1{3H�2{3, where H is
the Hubble constant at the time of virialization (e.g. Mo, Mao & White 1998), while
the proportionality constant depends on the cosmological parameters (e.g. Eke, Cole
& Frenk 1996).

Baryons, on the other side, can be described as a collisional fluid. They cannot
undergo shell crossing and any baryonic ‘shell’ will instead violently collide with
the previously collapsed material. Depending on the geometry and clumpiness of
accretion, the kinetic energy of the infall will either be instantaneously converted
into thermal energy by means of a large-scale virial shock, or it will feed turbulent
motions that are rapidly thermalized in a series of smaller shocks (Voit et al. 2003).
In the absence of dissipative processes (see below), the baryons will thus reach, on
a timescale close to the free-fall time, the equilibrium configuration of a hot ionized
halo (corona) of large size (comparable to the virial radius) and large temperature
(the virial temperature), proportional to the depth of the dark matter potential well.
However, baryons are also dissipative: they can lose part of their energy, transferring
it to the electromagnetic field through radiative processes, therefore cooling, losing
pressure support and collapsing down to radii much smaller than the virial radius.
If, during or after the collapse, the conditions for further fragmentation and star
formation are met, a galaxy forms at the very centre of the dark matter halo (White
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& Rees 1978).

Cold and hot mode accretion

As discussed in Rees & Ostriker (1977), the key quantity that determines galaxy
formation is the gas cooling time, which is in turn determined by the density (gov-
erned by cosmology and by the non-linear collapse theory) and by its temperature,
through the cooling function. The cooling function has a highly non linear shape 1,
a property that has been proposed by Rees & Ostriker (1977) as the origin of the
masses and sizes of the galaxies that we observe today.

If the cooling time is much larger than the Hubble time, the gaseous hot halo
(corona) will effectively have a non-dissipative behaviour: cooling will not be effec-
tive and, consequently, galaxy formation will be prevented. As an opposite limiting
case, if the cooling time is shorter than the free-fall time, shock-heating does not
even occurr: in fact, any hypothetical shock-heated gas would cool and collapse
to the centre so rapidly that it would not be able to sustain the shock front itself
(Binney 1977), a scenario known today as cold mode accretion. In the intermediate
range, a shock will develop and a galaxy will progressively form out of the cooling
of the corona (hot mode accretion).

Analytic calculations (e.g. Birnboim & Dekel 2003) suggest that the boundary
between cold mode and hot mode accretion is set, at each time, by the halo mass,
with low mass galaxies accreting via cold mode and massive galaxies via hot mode.
Since the halo mass increases with time due to mergers and diffuse accretion, massive
galaxies likely switched from cold mode accretion at early epochs to hot mode at
later times. For the most massive galaxies, a stage should be reached when cooling
is so inefficient that accretion and consequently star formation are halted.

The detailed distinction between cold mode and hot mode accretion can be more
complex than the simple sketch given above, considering that realistic accretion
does not to occur in a spherically symmetric fashion, but along filaments (Dekel
& Birnboim 2006). In some hydrodynamical cosmological simulations (Dekel et al.
2009) such filaments are able to penetrate deeply into the halo, directly bringing cold
gas to the central galaxy, while in others (Nelson et al. 2013) they are mostly ablated
away by thermal conduction, during the interaction with the hot halo surrounding
the galaxy. Similarly, minor mergers can in principle transfer both the stars and
the cold gas of relatively small galaxies to a bigger one; however, while the stellar
component will be distorted by tidal interactions and finally incorporated into the
central object (e.g. Ibata et al. 2001), the gaseous component can undergo ram-
pressure stripping and ablation, ending in the hot halo rather than in the cold ISM
of the central galaxy (e.g. Bland-Hawthorn et al. 2007).

Missing baryons

The hot mode accretion scenario predicts that some fraction of the baryons associ-
ated to massive dark matter haloes resides in hot coronae. As a consequence, the

1This results from a combination of different radiative processes including brehmsstrahlung,
hydrogen and helium recombination and, for a non-primordial composition, collisionally excited
emission lines of other species.
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baryonic mass in the other phases (stars and cold gas) should be less than the total
amount of baryons for a given dark matter halo. This fact is indeed confirmed by
observations and is known as the missing baryons problem (e.g. Nicastro, Mathur &
Elvis 2008). The designation as a “problem” is justified by the fact that the direct
detection of hot coronae surrounding galaxies is quite challenging, especially for spi-
ral galaxies, and it has been achieved so far in just a few cases (e.g. Anderson &
Bregman 2011; Dai et al. 2012; Bogdán et al. 2013a). Furthermore, the determina-
tion of the total mass of hot haloes depends on assumptions on their structure and
there is still no consensus on whether they comprise the whole theoretical baryonic
budget or not (Anderson & Bregman 2010).

Not all the missing baryons are necessarily expected to reside within haloes.
Some of them may have been expelled, in the form of winds, from either star for-
mation or AGN feedback. An indication in this direction is given by the halo mass
- stellar mass relation, as derived either from abundance matching (e.g. Behroozi,
Conroy & Wechsler 2010) or with more direct methods, including satellite kine-
matics and weak gravitational lensing (Dutton et al. 2010). Apparently, the stellar
mass of galaxies of every morphological type never exceeds � 30% of the baryonic
mass nominally associated to their dark matter haloes and even lower fractions are
found for massive ellipticals and for low-mass galaxies in general. When cold gas
is accounted for, the detected baryonic mass increases significantly, especially for
low-mass galaxies (Papastergis et al. 2012), but it is still very far from the nominal
value, implying that the remaining is either hot or truly missing gas. Since the
potential wells of low-mass galaxies are not deep enough to retain hot gas, the latter
possibility is the most likely. A possible explanation is that the baryons “missing”
from low-mass haloes have been removed by feedback at early times (Silk, Wyse &
Shields 1987). Note that early feedback, originated in low-mass haloes, may even
prevent some gas to enter the virial radius of more massive structures formed at later
times (preventive feedback, Lu, Mo & Wechsler 2015). Processes like this may be
related to the same mechanisms driving the so-called re-ionization of the Universe
(e.g. Beńıtez-Llambay et al. 2015).

Quenching and morphology

We conclude this overview by quickly addressing the important open question of why
galaxies with a given mass (and therefore similar halo temperatures and cooling
times) form stars effectively or not, depending on the morphology (with spirals
forming stars at much higher rates than ellipticals with similar masses).

This effect may be related the morphology-density relation (Dressler et al. 1997);
indeed, quenching of star formation in galaxies may be partly (though not entirely)
due to environmental effects (Peng et al. 2010). An alternative could be that, for
some reason, feedback is particularly effective for ellipticals (McNamara & Nulsen
2007). Finally, an explanation can be looked for in the physics of heating and
cooling; in this case, either ellipticals have an additional source of heating, capable
to counteract the cooling rate of the hot gas (e.g. by dynamical heating due random
motions of the stars, Posacki, Pellegrini & Ciotti 2013), or, conversely, spirals dispose
of an additional cooling mechanism for the hot gas. One possibility in the latter
direction is the scenario of supernova-driven gas accretion (Marinacci et al. 2010a),

8



a form of positive feedback, where the cooling of the coronal gas is triggered by
the interaction with cold clouds ejected by the disc as a consequence of multiple
supernova explosions.

1.2 Angular momentum assembly

1.2.1 Global angular momentum content

Tidal torques and the Fall relation

The origin of angular momentum in galaxies has been a hotly debated topic around
the middle of the last century. It was unclear, for instance, whether it could be
the manifestation of a primordial vorticity field (von Weizsäcker 1948). Theoreti-
cal efforts became more focused after convincing arguments were given by Peebles
(1969) for the fact that gravitationally bound structures in our Universe acquire
their angular momentum during their collapse, as a consequence of the coupling of
their quadrupole moment with the tidal field of the surrounding density distribution
(tidal torques).

A prediction of the tidal torque theory, applied to the current cosmological
paradigm, is that the spin parameter of dark matter haloes λ � l

a
|ε|{GM (l and

ε being the specific angular momentum and specific energy, respectively) should be
distributed as a lognormal (Barnes & Efstathiou 1987), with   λ ¡� 0.035 and a
dispersion of 0.23 dex (Macciò, Dutton & van den Bosch 2008).

Because of the virial theorem, the specific energy |ε| of a dissipationless dark
matter halo should scale with its mass divided by its virial radius (see Sec. 1.1.2).
If coupled with the narrow range of predicted spin parameters, this implies that the
specific angular momentum l of dark matter haloes should scale with their mass M
as M2{3. This relation can be easily scaled down to galaxies, reading:

l�9flf�
2
3� M

2
3� (1.1)

where f� and fl are the mass and specific angular momentum of a galaxy, respec-
tively, in units of those of the host dark matter halo (Romanowsky & Fall 2012). In
the simplistic view that these coefficients do not vary from one galaxy to another,
galaxies are expected to follow a power law relation of the form:

l�9Mα
� (1.2)

with α � 2{3. We will refer to (1.2) as to the Fall relation, for reasons that will
become immediately clear in the following.

Morphology and angular momentum

In a pioneering work, Fall (1983) studied the link between mass and angular mo-
mentum of galaxies, looking for an observational confirmation of the theory above.
He found that spirals and ellipticals galaxies followed two relations of the type (1.2),
both with a slope very close to the theoretical value α � 2{3, but with a normaliza-
tion offset of a factor � 6 at disfavour of ellipticals. This finding has been recently
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confirmed by Romanowsky & Fall (2012). These authors propose that two distinct
universal relations hold for discs and spheroids, with a common slope α � 0.6 and
different normalizations (lower for spheroids than for discs). Since spiral and lentic-
ular galaxies are constituted of a disc a spheroid (the bulge), the position of these
objects in the pM�, l�q should be a function of the bulge-to-disc ratio, in nice agree-
ment with observations. While the common slope of the proposed relations is very
close to the theoretical prediction, the different normalizations of discs and spheroids
suggest that angular momentum assembly followed very different paths for the two
kinds of objects.

For about one decade, the attention of the community was focused on how to
explain the high angular momentum content of spirals. The reason is that, in the
first hydrodynamical cosmological simulations, baryons were found to transfer a sub-
stantial fraction of their angular momentum to the dark matter halo through dy-
namical friction (Navarro & White 1994; Navarro & Steinmetz 1997), a fact known
as the angular momentum catastrophe, or global angular momentum problem (not
to be confused with the local one, see next Section). The situation appears much
ameliorated in more recent simulations (e.g. Guedes et al. 2011), possibly due to
the increase of numerical resolution (which beats down the efficiency of dynamical
friction, Kaufmann et al. 2007), though other effects are generally believed to con-
tribute (Fall 2002; Piontek & Steinmetz 2011). In particular, energy injected into
the gas by supernova explosions (star formation feedback) can prevent the formation
of gaseous clumps, further reducing the efficiency of dynamical friction (Sommer-
Larsen, Gelato & Vedel 1999), or selectively expel the low-angular momentum gas
from the halo, therefore enhancing the average specific angular momentum of the
remaining material (Governato et al. 2010, see also next Section).

Of course, once the solution of the global angular momentum for spirals is
achieved (by any means), the problem is turned back on how to explain the relatively
low specific angular momentum content of ellipticals (and spheroids). Several pos-
sibilities have been investigated, based either on physical arguments (Romanowsky
& Fall 2012) or on hydrodynamical cosmological simulations (Genel et al. 2015;
Pedrosa & Tissera 2015), including biased collapse, repeated mergers and AGN
feedback, though no explanation appears to be particularly compelling.

A major conundrum

Irrespective of morphology and normalization, the most puzzling problem, in our
opinion, is how to explain the slope of the Fall relation or even why it is a power-law
at all. In fact, as we have already pointed out, the general theoretical relation (1.1)
reduces to the observed form (1.2) only if the mass and angular momentum fractions
f� and fl are approximately constant with M�. However, studies on the stellar mass-
halo mass relation (see Sec. 1.1.2) indicate that at least f� is not constant and even a
strongly non-linear function of M�. If not compensated by some fine-tuned variation
of fl, this effect should introduce a strong distortion in the Fall relation, in sharp
contrast with observations. Despite the prominence of the paradox, no significant
effort has still been done, to our knowledge, to unravel it. We point out, however,
the work by Dutton & van den Bosch (2012), who, though without addressing the
problem directly, provide potentially useful insight on the interplay between f� and
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fl, based on both theory and observations.

Other scaling relations

Spiral galaxies are known to follow a relatively simple universal structure of galaxy
discs (a radially declining exponential, Freeman 1970) and a regular rotation pattern
(flat rotation curve, Begeman, Broeils & Sanders 1991). This allows the theoretical
derivation of additional scaling relations and in particular the mass-size and the
mass-velocity relations (Mo, Mao & White 1998), together with their evolution with
time.

In contrast with the Fall relation, the mass-size and the mass-velocity relation
involve either structure or kinematics separately and for this reason their observa-
tional counterparts have been studied in much more detail, in the Local Universe
(e.g. Tully & Fisher 1977 McGaugh 2012; Shen et al. 2003; Courteau et al. 2007)
and, more recently, at high redshift (e.g. Barden et al. 2005; Miller et al. 2012; Fathi
et al. 2012).

Much insight can in principle be gained from the comparison between theory and
observations. For instance a possible tension appears to be present between the pre-
dicted and observed slopes of the mass-velocity relation (also known as Tully-Fisher
relation, from the pioneering work by Tully & Fisher 1977), which is now known
to hold with a very small scatter and on a large mass dynamic range, especially
when the cold gaseous mass is taken into account (baryonic Tully-Fisher relation,
McGaugh 2012). Furthermore, current observations are compatible with no evolu-
tion of the Tully-Fisher relation out to z � 1 (Miller et al. 2011) and with small
or no evolution at higher redshift (Miller et al. 2012), though observational uncer-
tainties are still too large to discriminate between different scenarios. The current
understanding of the evolution of the mass-size relation is also very similar in this
respect (Trujillo et al. 2006).

When comparing theory with observations, it is however very important to keep
in mind that the conversion of simple models (like the one by Mo, Mao & White
1998) into testable predictions relies on simplifying assumptions, most notably about
the values of f� and fl

2, which, as we have already discussed, are unlikely to be
constant from one galaxy to another. Furthermore, the physics of shock heating and
radiative cooling is naturally expected to introduce a time delay between accretion
on the halo and accretion on the star forming disc, suggesting that a simple causal
connection between the disc mass and the halo mass, evaluated at the same time,
may not be an appropriate assumption (and similarly for the angular momentum).
This in turn suggests that more refined parametrizations (for instance, explicitly
taking the cooling time into account) would be of some help in putting theory and
observations on a simple common ground.

At the same time, there are other independent empirical relations that, on the
contrary, suggest a tight connection between galaxies and their haloes. For instance,
Kravtsov (2013) claims evidence for the effective radii of galaxies being � 70 times
smaller than the virial radii of the host haloes, irrespective of morphology. Another
very important example is the relation between the mass and the star formation

2md and jd{md, respectivelty, in the notation of Mo, Mao & White (1998).
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rate of star forming galaxies (the main sequence, e.g. Elbaz et al. 2011): the ratio
of star formation rate over stellar mass (specific star formation rate) appears to
be roughly independent on stellar mass and increasing with redshift (Speagle et al.
2014). While the latter fact is obvious, considering the decline of star formation
rate and the corresponding growth of stellar mass in the Universe (e.g. Wilkins,
Trentham & Hopkins 2008), the former has been interpreted as an evidence for a
direct connection between dark matter accretion and star formation (e.g. Lilly et al.
2013).

Inside-out growth

There is at least one theoretical prediction that is general enough to be relatively
straightforwardly tested against observations. According to the tidal torque theory,
material with higher specific angular momentum falls into dark matter haloes at
later times. In the case of cold mode accretion, this directly implies later accretion
onto the galaxy discs. For hot mode accretion, the high-angular momentum rotating
gas will be stored in the outer regions of the corona, with lower density and longer
cooling timescales. Therefore, in any case, the outskirts of spiral galaxies, which have
the highest angular momentum content, are expected to form later. This implies
that spiral galaxies should grow in size while they grow in mass (inside-out growth).
Similarly to what we have seen for gas accretion (Sec. 1.1.1), this idea was originally
introduced in the theory of galaxy evolution on the basis of chemical evolution
arguments and it was found of great help in explaining the abundance gradients of
spiral galaxies (e.g. Larson 1976; Matteucci & Francois 1989). However, more direct
methods are now available to observationally constrain inside-out growth.

A very interesting indication is the detection of negative radial gradients in the
ages of resolved stellar populations, which can be derived either by means of integral
field spectroscopy (González Delgado et al. 2014) or, for very nearby galaxies, of
resolved colour-magnitude diagrams (e.g. Gogarten et al. 2010; Barker et al. 2011).
Note, however, that, similarly to what happens for the metallicity distribution of the
stars in the solar neighbourhood (Sec. 1.1.1), the information on spatially resolved
ages can be contaminated by the effect of stellar radial migration. Focusing on the
spatial distribution of very young stars, one can in principle overcome this problem,
though obtaining information only on the evolution at very recent times (e.g. Muñoz-
Mateos et al. 2007).

A strong indication in favour of inside-out growth also comes from the study
of scaling relations at different redshifts (see above). In fact, considering than the
present-day largest galaxies are also the most massive ones (Shen et al. 2003), if
galaxies had been growing in mass while keeping a constant size, then galaxies of
a given observed stellar mass should be larger at high redshift than today. On the
contrary, there is consensus on the fact they are either smaller or approximately of
the same size (e.g. Trujillo et al. 2006).

We will come back on these and related topics in more detail in Chapter 2.
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1.2.2 The angular momentum distribution

Detailed angular momentum conservation

Mestel (1963) argued that, within a protogalactic cloud, the timescale for viscous
transport is always longer than the free-fall time. This implies that, during the
collapse, the angular momentum distribution (that is, the amount of mass per unit
specific angular momentum ψ � dM{dl) will be conserved (detailed angular momen-
tum conservation). While the total mass and the average specific angular momen-
tum, which we have been talking about so far, are just the first two moments of ψ,
the whole function in principle encloses an uncountably larger amount of additional
information on the initial conditions out of which galaxies have formed.

To a first approximation (i.e. assuming an exponential radial mass distribution,
with a flat rotation curve), the angular momentum distribution of discs is easily
seen to follow the simple functional form:

ψ � dM

dl
9 l expp�lq (1.3)

with l is expressed in suitable units. A distribution of the kind of (1.3) was used by
Mestel (1963) to infer the properties of the original protogalactic cloud.

A very similar idea was developed by Fall & Efstathiou (1980) to predict the
structure and kinematics of dark matter halos from those of observed galaxy discs.
Besides detailed angular momentum conservation, this work was based on the addi-
tional hypothesis that baryons and dark matter shared the same angular momentum
distributions at the time of gravitational collapse. This assumption is justified by the
fact that, before collapse, baryons and dark matter were subject to the same tidal
torques, while non-gravitational interactions (and in particular non-gravitational
torques) were most probably negligible at those epochs (see Sec. 1.1.2).

The local angular momentum problem

We are not aware of any purely theoretical derivation of the angular momentum
distribution of dark matter haloes within the tidal torque theory. However, N-
body simulations have now reached the resolution needed to address the problem
numerically, which has been done by Bullock et al. (2001) and Sharma & Steinmetz
(2005). Both these works have found ψplq to have a finite limit (or a very mild
divergence) for small values of l and a decline (with slightly different functional
forms) with increasing l.

As first discussed, for the case of dwarf galaxies, by van den Bosch, Burkert &
Swaters (2001), this distribution is very different from the one of observed discs,
which is instead characterized by a peak at a finite value of l (cfr. also the simple
estimate (1.3)). This problem is sometimes refereed to as the local angular momen-
tum problem (not to be confused with the global problem discussed in Sec. 1.2.1).
In numerical simulations, the local angular momentum problem is manifested in the
form of simulated galaxies with a too large bulge-to-disc ratio, or too slow rotation
in the inner regions, with respect to real discs (van den Bosch 2001).

Compared to dark matter (and therefore to the supposed initial state of the
baryons), galaxies lack both very low and very large angular momentum material
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and, correspondingly, they are more rich in intermediate angular momentum mate-
rial. As pointed out by Mo, van den Bosch & White (2010), this is the opposite of
what expected as a consequence of ‘viscous’ evolution (Lynden-Bell & Pringle 1974)
or, more in general, by any ‘esotermic’ process, that is a process implying either
dissipation or dynamical heating (Lynden-Bell & Kalnajs 1972). This challenges
the otherwise appealing idea that the exponential structure of disc is a product of
secular evolution (Lin & Pringle 1987), indicating that the process responsible for
the angular momentum distribution of discs has to be ‘endotermic’ instead (that is,
it requires a source different from the mechanical energy of the disc).

The most popular solution to both the global and the local angular momentum
problem is selective feedback (Governato et al. 2010, see Sec. 1.2.1), which implies a
large amount of energy injection into the gas in the inner regions. This solution was
originally proposed for dwarf galaxies, which are suspected to be prone to significant
mass ejections for independent reasons (see Sec. 1.1.2). However, some problems are
encountered with the application of the same idea to massive galaxies, which can
have very low bulge-to-disc ratios as well: in fact, unphysically large energy injection
would be required to push baryons out of the deeper potential wells of these galaxies.
Nonetheless, Brook et al. (2012) have proposed that realistic discs can be produced
also in this case, for the following reason. If a powerful outflow falls short of the
escape speed, it will be reaccreted at very large radii. Along its orbit, it will pass
through and likely interact with the hot gas. Locally, the hot gas rotates slower
than the disc (larger temperature implies a larger pressure support against gravity)
but at very large distances it will contain significant amount of angular momentum.
If part of the angular momentum of the hot gas is transferred to the outflow, the
latter will have, at the moment of reaccretion, a larger specific angular momentum
than it had at ejection. This helps to alleviate the local angular momentum problem
and to produce a final angular momentum distribution for the disc that is similar
to the observed one.

At least three extensions can be envisaged, in our view, for this promising sce-
nario. First, if turbulence is continuously fed in the corona by feedback-injected
energy, it will last for much longer than the free fall time (originally considered by
Mestel (1963) in its argument for detailed angular momentum conservation), pos-
sibly mediating some angular momentum redistribution within the hot gas before
its condensation onto the disc. Second, in addition to the interaction with the hot
medium, the mere re-accretion of outflowing material onto the disc already implies
that mass elements with different angular momentum are put in contact with each
other: from the point of view of the angular momentum distribution, this results
in the production of material with intermediate values of specific angular momen-
tum, at the expense of the extreme ones, precisely in the direction needed to solve
the local angular momentum problem. Note that this mechanism does not require
extremely large distances to be reached, nor (as a consequence) extremely large out-
flow velocities. Third, even without any feedback, the cooling of the corona onto
the disc already violates the hypothesis of detailed angular momentum conservation
(because of the already mentioned velocity difference between the two), again giving
a contribution in the desired direction (the thermal content of the corona would be
the energy source sustaining the process, in this case).
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1.3 Thesis outline

The aim of this Thesis is the development of novel methods for the study of the
mass and angular momentum assembly of the discs of spiral galaxies. We will
give the preference to those descriptions that allow theoretical predictions to be
easily derived, mostly by means of analytic techniques, and the comparison with
observations to be straightforward and of transparent interpretation.

We first consider the growth of galaxy discs from the global point of view. As
discussed in Sec. 1.2, this problem is very complex, but the robust theoretical pre-
diction can be made that galaxy discs should grow in size while they grow in mass
(inside-out growth). In Chapter 2, we show how a comparison between simple ob-
servables (the spatial distributions of the stellar mass and of the star formation rate)
can be used to derive a direct measurement of the specific mass and radial growth
rates of stellar discs. We apply our method to a sample of 35 nearby spiral galaxies
and discuss our results in the light of theoretical expectations and of other work on
the subject. Finally, we discuss the consequences of our findings for the study of the
evolution of the scaling relations of disc galaxies with cosmic time.

We then focus on the local problem of how the accretion of mass and angular
momentum on galaxy discs is distributed in space. This is much more complex,
because of the larger amount of degrees of freedom involved. However, simple dy-
namical considerations, based on angular momentum conservation, can be used to
predict the dynamical consequences of accretion, in particular the onset of radial gas
flows within the disc, with a measurable effect on observables like chemical abun-
dance gradients. In Chapter 3 we present some new and general, mostly analytic,
techniques that can be used to infer the spatially resolved accretion profile and the
local angular momentum of the accreting material from the structural and chemical
properties of observed discs. We apply our methods to the Milky Way and to one
external nearby spiral galaxy and discuss theory and observations in the context of
some possible accretion mechanisms.

Finally, we make one step towards the physical understanding of the likely source
of both the mass and the angular momentum of the discs of massive spiral galaxies.
According to the hot-mode accretion scenario described in Sec. 1.1.2, this should
be, at least at low redshift, an extended corona of shock-heated gas. As discussed
in Sec. 1.2.2, the corona is expected to retain memory of its angular momentum
distribution at the moment of collapse, which, in our view, offers a very promising
link between the theories of structure formation and galaxy formation. In Chapter
4, we present analytic methods to predict structure and kinematics of the corona
from its angular momentum distribution and discuss the implications in terms of
observational constraints and theoretical expectations. We also consider the more
general case of a baroclinic equilibrium in an arbitrary axisymmetric potential: we
describe a novel parametrization of the general solution, as well as particular cases,
and we show how structure and kinematics can be reconstructed, for these equilibria,
from the joint angular momentum/entropy distribution, with potential applications
to the study of the evolution of galactic coronae with time.

Finally, we give in Chapter 5 an overview of our work and of our findings.
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Chapter 2

The radial growth rate of stellar
discs†

Abstract

We start our investigation of the mass and angular momentum assembly
of the discs of spiral galaxies by addressing the problem from the global point
of view. As discussed in Chapter 1, a robust prediction of galaxy formation
theory is that galaxies should grow in size while they grow in mass. The
significant levels of star formation always found in the discs of spiral galaxies
clearly indicate that these structures are still growing in mass at the present
time. It is therefore very interesting to look for direct signatures of a possible
ongoing growth in size (inside-out growth). In this Chapter, we present a new
and simple method to measure the instantaneous mass and radial growth rates
of the stellar discs of spiral galaxies, based on their star formation rate surface
density (SFRD) profiles. Under the hypothesis that discs are exponential
with time-varying scalelengths, we derive a universal theoretical profile for
the SFRD, with a linear dependence on two parameters: the specific mass
growth rate νM � 9M�{M� and the specific radial growth rate νR � 9R�{R� of
the disc. We test our theory on a sample of 35 nearby spiral galaxies, for which
we derive a measurement of νM and νR. 32/35 galaxies show the signature of
ongoing inside-out growth (νR ¡ 0). The typical derived e-folding timescales
for mass and radial growth in our sample are � 10 Gyr and � 30 Gyr,
respectively, with some systematic uncertainties. More massive discs have a
larger scatter in νM and νR, biased towards a slower growth, both in mass
and size. We find a linear relation between the two growth rates, indicating
that our galaxy discs grow in size at � 0.35 times the rate at which they grow
in mass; this ratio is largely unaffected by systematics. Our results are in
very good agreement with theoretical expectations if known scaling relations
of disc galaxies are not evolving with time.

†Based on G. Pezzulli, F. Fraternali, S. Boissier & J.C. Muñoz-Mateos, 2015, MNRAS, 451,
2324.
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2.1 Introduction

The theory of cosmological tidal torques (Peebles 1969) predicts the mean specific
angular momentum of galaxies to be an increasing function of time. If applied
to spiral galaxies, in which stars are mostly distributed on a rotating, centrifugally
supported, disc, the theory suggests that the outer parts, with higher specific angular
momenta, should form later than the inner ones (Larson 1976, the so-called inside-
out formation scenario), also implying that spirals should grow in size while they
grow in mass. Apart from this quite general prediction provided by cosmology, the
details about how stellar discs form and grow in mass and size are not known from
first principles and significant observational effort is still required to shed light on
the missing links from structure formation to galaxy formation.

An invaluable input for modelers comes from some simple observed properties
of the discs of spiral galaxies, that still wait for a comparatively simple theoretical
explanation: among them, the exponential radial structure of galaxy discs (Freeman
1970), though sometimes broken at galaxy edges (e.g. Pohlen & Trujillo 2006; Erwin,
Pohlen & Beckman 2008), and the fact that they obey simple scaling relations,
including the Tully-Fisher relation between rotational velocity and mass (Tully &
Fisher 1977, see also the ‘baryonic Tully-Fisher relation’, McGaugh 2012; Zaritsky
et al. 2014), the Fall relation between angular momentum and mass (Fall 1983;
Romanowsky & Fall 2012) and a more scattered mass-size relation (e.g. Shen et al.
2003; Courteau et al. 2007), which can also be seen as a corollary of the other two.

Observations of galaxies at different redshifts indicate that stellar discs have an
exponential structure since very early epochs (Elmegreen et al. 2005; Fathi et al.
2012), while it is less clear whether scaling relations are truly universal or they evolve
with cosmic time. For example, direct measurements of the mass-size relation for
disc galaxies at various redshifts has led to claims for little or no evolution (e.g.
Ravindranath et al. 2004; Barden et al. 2005; Ichikawa, Kajisawa & Akhlaghi 2012)
as well as significant or strong evolution (e.g. Mao, Mo & White 1998; Buitrago
et al. 2008; Fathi et al. 2012). The interpretation and comparison of these pioneer-
ing studies is made non trivial by inhomogeneities among observations at different
redshifts, as well as differences in sample definitions and analysis techniques (see
e.g. Lange et al. 2015); also, several subtle issues have been shown to significantly
bias the results, most notably the selection effect due to cosmological dimming (e.g.
Simard et al. 1999) and the evolution of M/L ratios due to evolving stellar popu-
lations (e.g. Trujillo et al. 2006). The related problem of the possible evolution of
the Tully-Fisher relation, which also involves kinematic measurements, is even more
complex and controversial (e.g Vogt et al. 1997; Mao, Mo & White 1998; Miller
et al. 2011; Miller et al. 2012 and references therein).

Since these issues are of extreme importance for our understanding of galaxy
evolution, more observational effort is desirable, possibly dealing with multiple in-
dependent probes, to unveil the growth of the exponential discs of spiral galaxies.
In addition to the crucial, but often challenging, comparison of galaxy properties at
different redshifts, indirect information can be gained on the size growth of galaxy
discs from the study of their properties in the Local Universe. Efforts in this direc-
tion can be split in two categories. The first is the exploitation of fossil signals of
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the past structure of the disc: most notably, chemical enrichment (e.g. Boissier &
Prantzos 1999; Chiappini, Matteucci & Romano 2001; Mollá & Dı́az 2005; Naab &
Ostriker 2006), and properties of stellar populations, including colour gradients (e.g.
Bell & de Jong 2000; MacArthur et al. 2004; Wang et al. 2011), spectrophotometry
(e.g. Muñoz-Mateos et al. 2011; González Delgado et al. 2014) and colour-magnitude
diagrams (e.g. Williams et al. 2009; Gogarten et al. 2010; Barker et al. 2011). The
second possibility is to look for the instantaneous signal of the growth process while
it is in act. Spiral galaxies are not just passively evolving stellar systems, but keep
forming stars at a sustained rate throughout their evolution (e.g. Aumer & Binney
2009; Fraternali & Tomassetti 2012; Tojeiro et al. 2013). Therefore, the radial dis-
tribution of newly born stars is a crucial ingredient for the structural evolution of a
stellar disc and it can be used as a clean and direct probe of its growth.

Thanks to the deep UV photometry of the Galaxy Evolution Explorer (GALEX,
Martin et al. 2005), radial profiles of the star formation rate surface density (SFRD)
of nearby galaxies can now be traced out to considerable galactocentric distances
and low levels of star formation activity. SFRD profiles, as traced by the UV light
emitted by young stars, often turn out to be quite regular and, in many cases, re-
markably similar to exponentials (Boissier et al. 2007, see also Goddard, Kennicutt
& Ryan-Weber 2010). This supports the idea that star formation is tightly linked
with whatever process is responsible for the mantainance and evolution of the expo-
nential structure of galaxy discs. A closer inspection of the aforementioned SFRD
profiles reveals, in many galaxies, some deviations from the exponential shape, in
the form of a central downbending or depletion (see also Muñoz-Mateos et al. 2011).
This is also clearly seen in the SFRD of the Milky Way, as traced, for example, by the
distribution of Galactic supernova remnants (Case & Bhattacharya 1998). Indeed,
star formation becoming progressively less effective towards the centre of galaxies is
not very surprising, within the inside-out formation scenario: in the inner regions,
the bulk of gas accretion and conversion into stars occurs quite early and relatively
little residual star formation is expected to be in place there at late epochs, while
the outskirts are still in their youth. Ultimately, the observed properties of SFRD
profiles of spiral galaxies are in qualitative agreement with the inside-out paradigm
and therefore they are good candidates to enclose the signal of radial growth. Our
aim here is to give a simple quantitative description of this signal and a method to
derive a measurement of the instantaneous mass and radial growth rates of the discs
of spiral galaxies from the amplitude and shape of their SFRD profiles.

An earlier attempt in this direction has been done by Muñoz-Mateos et al. (2007).
They assumed that surface densities of both stellar mass and star formation rate
can be approximated with exponential profiles, though with different scalelengths,
implying exponential profiles for the specific star formation rate (sSFR) as well, with
sSFR increasing with radius for inside-out growing galaxies. This parametrization
was applied to a sample of nearby spiral galaxies and the results were compared
with the predictions of simple structural evolution models, providing constraints on
the inside-out process.

Here we make a step forward, proposing a method that is both simpler and more
powerful. Rather than modeling both stellar mass and SFRD with exponentials,
we assume that just stellar discs are exponential at any time, with time-varying
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scalelengths. This naturally brings us (Sec. 2.2) to predict a universal shape for the
SFRD profile with the observed properties outlined above, namely an inner depletion
and an outer exponential decline. Furthermore, our theoretical profile has a very
simple (linear) dependence on the disc mass and radial growth rates; hence, these
parameters can be directly derived from observations in a model-independent way.
We apply our method to a sample of nearby spiral galaxies described in Sec. 2.3,
discuss our analysis in Sec. 2.4 and present our results in Sec. 2.5. In Sec. 2.6 the
consequences of our findings are discussed on the issue of whether known scaling
relations for galaxy discs are evolving with time or not. In Sec. 2.7 we draw our
conclusions.

Appendices include: additional explanations to justify some of our choices (App.
2.A and 2.B), a detailed analysis of the interesting peculiar case of NGC 3621 (App.
2.C), additional calculations useful to put our work in a cosmological context (App.
2.D) and, finally, an Atlas (App. 2.E) with the details of our analysis for individual
objects in our sample.

2.2 Star formation in exponential discs

2.2.1 A simple model

Let us assume that the mass surface density Σ� of the stellar disc of a spiral galaxy
is well described, at any time, by an exponentially declining function of radius R,
identified by a radial scalelength R� and a mass M� 1, both allowed to vary with
time t:

Σ�pt, Rq � M�ptq
2πR2�ptq

exp

�
� R

R�ptq



(2.1)

Just taking the partial time derivative of (2.1) we get a very simple prediction for
the star formation rate surface density 9Σ� as a function of time and galactocentric
radius:

9Σ�pt, Rq �
�
νMptq � νRptq

�
R

R�ptq � 2




Σ�pt, Rq (2.2)

where Σ� is given by (2.1), while the quantities νM and νR are defined by:

νMptq :� d

dt
plnM�ptqq �

9M�ptq
M�ptq (2.3)

νRptq :� d

dt
plnR�ptqq �

9R�ptq
R�ptq (2.4)

We discuss them more thoroughly in Sec. 2.2.3.

2.2.2 Theoretical caveats

At least two caveats should be kept in mind when considering the elementary infer-
ence outlined in Sec. 2.2.1.

1Throughout the Chapter, when referring to a spiral galaxy, we will use the symbol M� to
denote the stellar mass of its disc component alone.
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First, by identifying 9Σ� with pBΣ�{Btq, we have implicitly neglected any contri-
bution coming from a possible net radial flux of stars, that is a term:

1

R

B
BRp2πRΣ�uR,�q

where uR,� is the net radial velocity of stars. While radial migration of stars is
widely recognized to be a fundamental ingredient of galaxy evolution, it has also
been shown (Sellwood & Binney 2002b; Roškar et al. 2012) that its main working
mechanism is basically a switch in the radial position of two stars in different circular
orbits (the so-called churning, Schönrich & Binney 2009). This process produces no
dynamical heating, no net radial flow of stars and no change in the mass distribution
of the disc. Of course, some minor contribution to radial migration are also expected
from other processes: breaks to our approximation can be expected in some cases,
mostly in the inner regions, where dynamical processes might be associated with
the formation of bars, rings and pseudobulges (e.g. Sellwood 2014) and at the outer
edge, where radial migration has been proposed to induce changes in the outer
structure of discs (Yoachim, Roškar, & Debattista 2012). More complex effects are
also possible due to the interplay between stellar dynamics, gas dynamics and star
formation; quite different approaches to this problem can be found, for example, in
Schönrich & Binney (2009), Kubryk, Prantzos & Athanassoula (2013) and Minchev,
Chiappini & Martig (2014).

Second, since stellar populations, during their evolution, return a substantial
fraction of their mass to the ISM (Tinsley 1980), it is not necessarily trivial to
connect the time derivative 9Σ� to observed values of SFRD. In the following, we will
adopt the instantaneous recycling approximation (IRA) and assume that a constant
return fraction R of the mass of a stellar population is instantaneously given back
to the ISM. Accordingly, our 9Σ� represents the reduced star formation rate surface
density and it is equal to the observed SFRD multiplied by a factor p1�Rq, although
we will often omit the attribute reduced, for brevity. More detailed studies (e.g.
Leitner & Kravtsov 2011) show that the majority of the returned mass is released
within � 1 Gyr from the birth of a population; hence, our approximation will be
valid in those galaxies, or galaxy regions, where star formation has not been varying
abruptly on timescales shorter than � 1 Gyr. As we show in Appendix 2.A, such
abrupt changes can, in principle, be taken into account by replacing R with an
effective return fraction Reff, which is higher or lower than R for abrupt quenching
or starbursting events, respectively. These may be due, for instance, to tidal or
ram pressure stripping or, viceversa, to significant recent accretion events. Similar
effects can sometimes be observationally inferred in low surface brightness regions or
in low surface brightness galaxies as a whole (Boissier et al. 2008) and may also be
related to the phenomenology of extended UV (XUV) discs (Thilker et al. 2007a).
Unfortunately, in general, neither the magnitude nor the direction of the needed
correction can be known a priori. However, these possibilities should be kept in
mind when considering peculiar features in the observed SFRD profiles of some
individual objects.
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2.2.3 Mass and radial growth rates

The quantities νM and νR, defined in (2.3) and (2.4), shall be called specific mass
growth rate and specific radial growth rate. The word specific refers to the fact that
they represent the mass and radial growth rates 9M� and 9R�, normalized to the actual
value of mass M� and scalelength R�, respectively. However, since in the following
we will deal only with specific quantities, we will often omit this attribute and refer
to them just as mass and radial growth rates, for brevity.

While νM is always positive, νR can in principle take both signs, positive values
being expected in the case of inside-out growth. At any time, the inverse of νM and
νR can be interpreted as instantaneous estimates of the timescales for the growth
of the stellar mass and scalelength, respectively (or for disc shrinking, in the case
νR   0).

We notice that νM is strictly related to another physical quantity, namely the
specific star formation rate (sSFR). More precisely, following the terminology of Lilly
et al. (2013), νM coincides with the reduced specific star formation rate of the disc,
where the word reduced (which we will omit from now on) refers to the fact that we
are including the effect of the return fraction R. Since our νM refers to the disc alone,
it should not be confused with the sSFR of a whole spiral galaxy, which is evaluated
including also the other stellar components, like the bulge. While the bulge can
give a non-negligible contribution to the total stellar mass, it usually harbours little
or no star formation: hence, the sSFR of a whole galaxy and of its disc alone can
differ significantly (Abramson et al. 2014). Also, νM should not be confused with
the local sSFR p 9Σ�{Σ�q, which is, in general, a function of galactocentric radius (e.g.
Muñoz-Mateos et al. 2007).

The analogous quantity for the stellar scalelength, the (specific) radial growth
rate νR, has been studied much less (and, as far as we know, not even clearly defined
until now). To provide a simple method for its measurement is the main aim of this
Chapter. Since νM and νR have the same physical dimensions and refer to the
two basic properties of an exponential disc, we are also interested to measure both
quantities at the same time and to attempt a comparison between them. This is
indeed a natural outcome of our method (Sec. 2.2.4) and will bring us to the most
interesting consequences of our results (Sec. 2.6).

2.2.4 Predicted properties of SFRD profiles

Our simple model predicts that, if a galaxy is observed at some particular time, its
SFRD should follow a radial profile of the form:

9Σ�pRq � M�
2πR2�

�
νM � νR

�
R

R�
� 2




exp

�
� R

R�



(2.5)

In Fig. 2.1 the predicted shape of the SFRD profile is drawn out, in dimensionless
units, for some representative situations, which differ for the sign of the radial growth
parameter νR. To achieve a fully dimensionless description of the model, we use
here, as a parameter, the dimensionless ratio νR{νM, which has the same sign of νR,
since, as pointed out in Sec. 2.2.3, νM is always positive. Also, with our adopted
dimensionless units, the curves in Fig. 2.1 compare with each other as model discs

22



-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 0  1  2  3  4  5  6

lo
g 

(. */
. 1)

R/R*

Figure 2.1: Predicted shape of the SFRD profile, in dimensionless units, for some il-
lustrative values of the radial growth rate νR: absence of radial growth (νR � 0, dot-
ted black line), inside-out growth (νR � 1{3 νM, solid red line) and disc shrinking
(νR � �1{3 νM, dashed blue line). The radius is in units of R�, the SFRD is normalized
to 9Σ1 � νMM�{2πR2

�, so that the comparison refers to discs with the same stellar mass,
scalelength and global sSFR.

that share the same mass, scalelength and global sSFR νM, but differ in the spatial
distribution of star formation, depending on the presence (and the direction) of an
evolution of the scalelength with time.

In the absence of radial evolution (νR � 0), the scalelength of the stellar disc
is constant with time, stars always form with the same spatial distribution and
the SFRD profile is an exponential as well, with the same scalelength of the already
present stellar disc. In the case of disc shrinking (νR   0) star formation is enhanced,
with respect to the previous case, in the inner regions, but it abruptly drops in the
outskirts (reaching a vertical asymptote at R{R� � p2 � νM{|νR|q). Conversely,
for inside-out growth (νR ¡ 0), the SFRD shows the characteristic depletion in
the central regions, while it is enhanced in the outskirts, where it ultimately gently
declines with increasing radius, with an asymptotic behaviour, at large radii, similar
to the one of the stellar mass distribution.

2.3 Sample and data

2.3.1 Sample definition

To define our sample, we started from the one studied by Muñoz-Mateos et al. (2011),
which consists of 42 nearby spiral galaxies observed both by Spitzer and by GALEX,
in the context of the SINGS survey (Kennicutt et al. 2003). For these and other
nearby galaxies, radial profiles have been derived and published by Muñoz-Mateos
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et al. (2009b) and Muñoz-Mateos et al. (2009a), for multi-wavelength emission rang-
ing, for most galaxies, from FIR to FUV. Such a broad range is useful to trace both
the stellar mass and the star formation rate, corrected for the effect of dust extinc-
tion. Muñoz-Mateos et al. (2009a) give radial profiles for the extinction in the UV,
as inferred from TIR/UV flux ratios.

For this work, we made use of the radial profiles of the emission in the FUV
GALEX band, corrected for extinction in the FUV (AFUV). We also used profiles
of emission in the 3.6 µm IRAC band, which we assume to be a good tracer of the
stellar mass surface density. Some contamination may arise from the 3.3 µm PAH
line, hot dust and AGB stars; however, these contributions are only expected to
be important at the small scales of individual star-forming regions and just a mild
effect persists at larger scales (Meidt et al. 2012). Furthermore, dust extinction at
this wavelength is negligible and the M/L is quite insensitive to variations in age
and metallicity, if compared to the optical bands (Meidt et al. 2014).

From the original sample of 42 galaxies, we excluded 5 galaxies (NGC 3049, NGC
3938, NGC 4254, NGC 4321, NGC 4450) for which FUV meaurements were lacking
because the GALEX FUV detector was turned off for technical reasons, one galaxy
(NGC 7552) which was not present in the Muñoz-Mateos et al. (2009a) sample and
another one (NGC 4625) for which theAFUV radial profile was constituted of only one
point. Therefore we ended up with a final sample of 35 galaxies. We have considered
some possible additional criteria to further restrict our sample. Since our main goal
is the study of the slow, continuous, evolution of the regular exponential structure
of discs, galaxies that are suspected to be undergoing violent transient events, like
interactions or mergers, could be excluded from the analysis. Furthermore, since
we make a quantitative analysis of azimuthally averaged radial profiles, we could
exclude those galaxies for which the geometrical parameters involved in the average
(inclination and position angle) are not known with good accuracy or are suspected
to be varying with radius. At least 3 galaxies (NGC 1097, NGC 1512, NGC 5194)
have a nearby companion and for at least one (NGC 1512) the adopted position
angle reproduces the outer isophotes better than the inner ones. However, it is
not clear whether such selections could be done in a completely unbiased way. Also
considering that our sample is relatively small, we decided to homogeneously analyse
the whole set of 35 galaxies. Nonetheless, the aforementioned caveats should be
kept in mind while considering our results. We adopt morphological classifications,
distances and inclinations (as derived from axis ratios) from Muñoz-Mateos et al.
(2011); these properties can also be found here in Table 2.1.

2.3.2 Stellar mass surface density

To get the stellar mass distribution, we made use of the high resolution (6 arcsec)
radial profiles at 3.6 µm from Muñoz-Mateos et al. (2009b). To convert from surface
brightness to mass surface density, we used the conversion formula:

Σ�
M@ pc�2

� 1.9� 107 cos i
I3.6µm

Jy arcsec�2
(2.6)
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Table 2.1: Basic properties of galaxies in our sample. Morphological classification, dis-
tances and inclinations (derived from axis ratios) are as in Muñoz-Mateos et al. (2011).

Galaxy RA (J2000) Dec (J2000) Morphological Type Distance cos i
h m s 0 1 2 Type T (Mpc)

NGC 0024 00 09 56.5 -24 57 47.3 SA(s)c 5 8.2 0.224
NGC 0337 00 59 50.1 -07 34 40.7 SB(s)d 7 25 0.621
NGC 0628 01 36 41.8 15 47 00.5 SA(s)c 5 11 0.905
NGC 0925 02 27 16.9 33 34 45.0 SAB(s)d 7 9.3 0.562
NGC 1097 02 46 19.1 -30 16 29.7 SB(s)b 3 15 0.677
NGC 1512 04 03 54.3 -43 20 55.9 SB(r)a 1 10 0.629
NGC 1566 04 20 00.4 -54 56 16.1 SAB(s)bc 4 17 0.795
NGC 2403 07 36 51.4 65 36 09.2 SAB(s)cd 6 3.2 0.562
NGC 2841 09 22 02.6 50 58 35.5 SA(r)b 3 14 0.432
NGC 2976 09 47 15.5 67 54 59.0 SAc pec 5 3.6 0.458
NGC 3031 09 55 33.2 69 03 55.1 SA(s)ab 2 3.6 0.524
NGC 3184 10 18 17.0 41 25 28.0 SAB(rs)cd 6 8.6 0.932
NGC 3198 10 19 54.9 45 32 59.0 SB(rs)c 5 17 0.388
IC 2574 10 28 23.5 68 24 43.7 SAB(s)m 9 4.0 0.409
NGC 3351 10 43 57.7 11 42 13.0 SB(r)b 3 12 0.676
NGC 3521 11 05 48.6 -00 02 09.1 SAB(rs)bc 4 9.0 0.464
NGC 3621 11 18 16.5 -32 48 50.6 SA(s)d 7 8.3 0.577
NGC 3627 11 20 15.0 12 59 29.6 SAB(s)b 3 9.1 0.462
NGC 4236 12 16 42.1 69 27 45.3 SB(s)dm 8 4.5 0.329
NGC 4536 12 34 27.1 02 11 16.4 SAB(rs)bc 4 15 0.421
NGC 4559 12 35 57.7 27 57 35.1 SAB(rs)cd 6 17 0.411
NGC 4569 12 36 49.8 13 09 46.3 SAB(rs)ab 2 17 0.463
NGC 4579 12 37 43.6 11 49 05.1 SAB(rs)b 3 17 0.797
NGC 4725 12 50 26.6 25 30 02.7 SAB(r)ab pec 2 17 0.710
NGC 4736 12 50 53.1 41 07 13.6 (R)SA(r)ab 2 5.2 0.813
NGC 4826 12 56 43.8 21 40 51.9 (R)SA(rs)ab 2 7.5 0.540
NGC 5033 13 13 27.5 36 35 38.0 SA(s)c 5 13 0.467
NGC 5055 13 15 49.3 42 01 45.4 SA(rs)bc 4 8.2 0.571
NGC 5194 13 29 52.7 47 11 42.6 SA(s)bc pec 4 8.4 0.804
NGC 5398a 14 01 21.6 -33 03 49.6 (R’)SB(s)dm pec 8.1 16 0.607
NGC 5713 14 40 11.5 -00 17 21.2 SAB(rs)bc pec 4 27 0.893
IC 4710 18 28 38.0 -66 58 56.0 SB(s)m 9 8.5 0.778
NGC 6946 20 34 52.3 60 09 14.2 SAB(rs)cd 6 5.5 0.852
NGC 7331 22 37 04.1 34 24 56.3 SA(s)b 3 15 0.352
NGC 7793 23 57 49.8 -32 35 27.7 SA(s)d 7 3.9 0.677
paq In the original sample, this galaxy was referred to as TOL 89, which is the

name of an HII region embedded within it.
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which is the one derived by Leroy et al. (2008), though written in different units
and modified for a K-band mass-to-light ratio equal to 0.8, instead of 0.5 2. This
ratio is subject to several uncertainties (e.g. Bell et al. 2003); our choice was made
to maximize consistency with the previous work by Muñoz-Mateos et al. (2007). We
discuss the consequences of this and other systematics in Sec. 2.4.4.

2.3.3 Star formation rate surface density

To derive the SFRD profiles, we took the low resolution (48 arcsec) radial profiles in
the FUV band from Muñoz-Mateos et al. (2009a) and corrected them for extinction
using the AFUV radial profiles at the same resolution. In that work, two estimates
of AFUV are provided, based on two slightly different dust attenuation prescriptions
by Buat et al. (2005) and by Cortese et al. (2008), the latter containing a refinement
to take additional dust heating from old stars into account. In this work we used
extinction profiles from the Buat et al. (2005) prescription. We made this choice
to maximize simplicity and reproducibility of our analysis (this recipe does not re-
quire additional information on K-band photometry). Muñoz-Mateos et al. (2009a)
showed that the two prescriptions differ significantly only for early-type galaxies
(ellipticals and lenticulars), which are absent in our sample.We verified that our
conclusions are not modified when changing the adopted prescription.

The extinction corrected profile µFUV,corr (expressed in the AB magnitude sys-
tem) was converted into a SFRD by making use of the formula:

9Σ�
M@ pc�2 Gyr�1 � p1�Rq cos i 10�0.4µFUV,corr�10.413 (2.7)

which is again consistent with Muñoz-Mateos et al. (2007). For the return fraction,
we adopted R � 0.3, which is intermediate between possible values for different
IMF choices (Leitner & Kravtsov 2011; Fraternali & Tomassetti 2012). Also the
systematics associated with (2.7) is discussed in Sec. 2.4.4.

2.4 Analysis

For each galaxy in the sample, we performed our analysis in two steps. First, we
made an exponential fit to the radial profile of the stellar mass surface density of
the disc (see Sec. 2.3.2), deriving the values for the disc mass M� and scalelength
R�. Then, keeping these parameters fixed, we fitted our theoretical profile (2.5)
to the SFRD data (see Sec. 2.3.3). This second fit is the test bed for our theory.
If successful, it provides our measurement of the two disc growth parameters: the
specific mass growth rate νM and the specific radial growth rate νR.

A more extended description of the two steps is given in Secc. 2.4.1 and 2.4.2.
They are depicted, for each individual galaxy, in an Atlas, which can be found in

2The formula of Leroy et al. (2008) was based on their measured linear 3.6 µm-to-K-band flux
conversion and on an assumed K-band mass-to-light ratio. Changing the latter from 0.5 to 0.8 is
equivalent to introducing an additional factor 1.6 in the 3.6 µm-to-stellar mass conversion.
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Figure 2.2: Our analysis for the galaxy NGC 628. Upper panels Selection of the domain
where the emission at 3.6 µm is dominated by the light from the stars in the the disc: left
the inner ellipse at 33 arcsec, out of which the spiral structure appears, right the outer
ellipse at 261 arcsec, out of which the contribution from noise becomes significant. Note
that the two images have very different scale and contrast. The inner ellipse is also shown
in the right panel, to make the whole selected region visible at once. Lower-left panel
Exponential fit to the stellar mass surface density, as traced by the emission at 3.6 µm.
The vertical dashed lines mark the limits of the domain that we have selected for this fit; in
this case, the best-fitting exponential also extends further out in the outskirts. Lower-right
panel Fit of our theoretical SFRD profile to the one obtained from extinction-corrected
FUV light; a visual comparison with Fig. 2.1 is already enough to recognize this as an
inside-out growing galaxy.
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Appendix 2.E. A representative example, for the galaxy NGC 628, is reported here
for illustrative purposes (Fig. 2.2).

All our fits were performed with a standard Marquardt-Levenberg algorithm.
We also repeated the whole analysis with a different method (see Sec. 2.4.3) and
verified that our results are robust with respect to the fitting strategy.

2.4.1 Fit of exponential discs

In order to extract the disc parameters from the radial profiles described in Sec.
2.3.2, we performed a simple exponential fit, for each galaxy, on a radial domain
where the NIR emission is dominated by the disc component.

Such a domain was identified, on a case-by-case basis, considering the shape of
the 3.6 µm profile with the aid of the direct visual inspection of the 2D maps at
the same wavelength. For details about how these maps were obtained the reader is
referred to Regan et al. (2004), Dale et al. (2005) and Muñoz-Mateos et al. (2009b).
For each galaxy, the minimum and the maximum radius of our selected domain are
the semi-major axes of two concentric ellipses, with centre and orientation equal
to the ones used in the derivation of the profiles. The inner ellipse was chosen to
exclude the central bright component, if present, like a bulge, a bar, or a central
ring; the detection of spiral arms has been used in some cases as an evidence for the
prominence of the disc component in a given region. In 4 cases (NGC 2403, IC 2574,
NGC 4236, NGC 4826) we have found that the adopted centre of the ellipses did not
coincide with the peak of the 3.6 µm emission; for these galaxies, an inner ellipse was
selected with a semi-major axis equal or greater than twice the observed offset. The
outer ellipse was most of the times selected to exclude those external regions where
a contribution to the emission coming from the noise was found to be significant;
for our data, this happens at a typical value of logpI3.6 µm{Jy arcsec�2q � �6.5.

In 5 galaxies (NGC 3521, NGC 3621, NGC 4736, NGC 5055, NGC 7331) we
found a significant flattening of the 3.6 µm profile well above the noise level and
we excluded the outer region from the exponential fit for these objects. The most
striking case is NGC 4736, where the effect is probably related to the presence of a
prominent outer ring. In 3 of the above cases (NGC 3521, NGC 3621, NGC 5055)
the change of slope occurs very near to the outermost radius where a regular spiral
pattern can be seen. In the remaining two objects (NGC 3521 and NGC 7331)
the flattening is associated with an abrupt change in the geometry of the 3.6 µm
emission, with the isophotes becoming remarkably large and irregular in the outer
regions. We ignore the physical origin of this effect; nonetheless, these peculiarities
should be kept in mind in the interpretation of our results for these objects.

In most cases, our fits were performed weighting each point according to the
nominal error, quoted in the original profiles. However, this is not necessarily always
the best choice. Real galaxies are not expected to precisely follow an exponential,
since transient perturbations like spiral arms, which are by definition ubiquitous in
spiral galaxies, can sometimes overimpose oscillations on an underlying regular disc.
This effect can become particularly important in the presence of spiral arms with
a small pitch angle, tending to dominate the emission in a limited radial range. If,
for a given galaxy, points with small error bars happen to be preferentially located
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in a region dominated by spiral structure, the formal best-fitting profile will be
biased to reproduce transient features, potentially missing the overall structure of
the disc. For 7 galaxies (NGC 1097, NGC 1512, NGC 3031, NGC 3184, NGC 3351,
NGC 4569, NGC 7793) we have found that an unweighted fit provided a better
description of the overall structure of the profiles in the considered radial range.
One example (NGC 3031) is discussed in more detail in Appendix 2.B, to better
illustrate the reasons of our choice.

Although the whole procedure is slightly subjective, we verified that it gave a
better account to the observed properties of our galaxies, in the domain of interest,
with respect to a more complex global analysis, involving more components and
parameters. This approach is the most suitable for our purposes, since we are
just interested to reliably derive the disc parameters, rather than to get a detailed
structural decomposition of the whole galaxy. We verified that the parameters that
we found were stable with respect to small variations in the selection of the inner
and outer radii.

An example of our domain selection and disc-fitting procedure is given in Fig.
2.2 (upper panels and lower-left panel) for the case of NGC 628; similar images and
plots for the other galaxies can be found in the Atlas.

2.4.2 Fit of the star formation rate surface density

In the second step of our analysis, we fitted equation (2.5) to the observed SFRD
profiles, keeping fixed the structural parameters M� and R� found in the previous
step.

The SFRD profiles have a worse spatial resolution, and hence a more limited
number of independent points, with respect to the mass surface density profiles.
As a consequence, the results of the SFRD fits are more sensitive to changes in the
adopted radial domain. In order to limit the dependence of our analysis on subjective
choices, we decided to always perform the fit on the whole available domain. Not
to exclude any point from the inner regions is equivalent to assume that the bulk of
star formation is everywhere associated with the disc component. In other words,
we neglected possible star formation activity directly occurring in the bulges, which
is quite reasonable since these structures are known to be dominated by old stellar
populations. Neither we put outer limits to our domain, implying that we did
not try to model possible transient star formation episodes that might dominate
the UV emission in the outer regions, nor any kind of structural irregularity and,
most noticeably, the possible presence of warps, which are generally expected in the
periphery of discs (e.g. Briggs 1990). All the SFRD fits were performed weighting
points with their nominal errors, which were derived just propagating the errors in
the µFUV and AFUV profiles. In Fig. 2.2 (lower-right panel) the best-fitting SFRD
profile is reported for the galaxy NGC 628; similar plots are reported for all galaxies
in the Atlas.

In considering this part of the analysis, it should be kept in mind that, while the
parameters νM and νR, in the theoretical SFRD profile (2.5), are allowed to change
in the fitting process, the global slope is strongly constrained by the parameter R�,
which is held fixed to the value previously obtained from the structural fit (Sec.

29



2.4.1). Hence, notwithstanding the presence of 2 free parameters, we are by no
means able to reproduce arbitrary profiles and the fact that we can recover the
majority of SFRD distributions shall be regarded as a success of the model and
gives us confidence on the meaningfulness of the resulting best-fit parameters.

In 5 cases (NGC 1512, NGC 3521, NGC 3621, NGC 4736, NGC 5055) we clearly
detect an outer flattening in the radial profiles of both SFRD and stellar mass surface
density. This can be considered as an indication for the existence of a distinct,
relatively long-lived, outer star forming component. More detailed studies would be
necessary to clarify this point. However, we notice here that three of these galaxies
(NGC 1512, NGC 3621, NGC 5055) have been classified by Thilker et al. (2007b)
as having a Type 1 XUV disc. We also notice that sometimes (e.g. for NGC 3621)
the spatial coincidence between the two breaks is perfect, while in other cases (NGC
3521 and NGC 5055) the SFRD flattening occurs at larger radii, maybe challenging
the idea of a common origin of the two strcutures. A unique case is the one of NGC
7331, which has a very prominent flattening of the stellar mass distribution, but
an almost exponential SFRD profile, which our model is unable to account for; we
refer the reader to Thilker et al. (2007b) and Ludwig et al. (2012) for more specific
studies on this peculiar object and its surroundings. Finally, we report one case
(IC 4710) where a quite marked downbending is found, at the same radius, in both
profiles. This is not a very secure result, since the break occurs out of our chosen
outer ellipse (see Sec. 2.4.1); if confirmed, it may be an example of radial migration
in the presence of an outer cut-off in star formation efficiency, as described e.g. by
Yoachim, Roškar & Debattista (2012) (see also Sec. 2.2.2).

Despite our choice of analyzing the whole sample in a homogeneous fashion, we
recognize that more specific choices may be appropriate for those objects showing
extreme behaviours in their SFRD profiles. As an example, we discuss In Appendix
2.C one possible alternative analysis for the very peculiar case of NGC 3621.

2.4.3 A note on the fitting strategy

Our choice of separating the analysis in two steps (Secc. 2.4.1 and 2.4.2) is motivated
by the fact that the structural parameters pM�, R�q physically describe the mass
distribution of stellar discs and hence, in principle, they are best measured on the
basis of available data for Σ� alone, irrespective of the distribution of newly born
stars. Also, once such a measurement has been achieved, the fact that the SFRD
profiles can be reproduced without a further tuning of pM�, R�q provides a valuable
test for the validity of our theory.

However, we also investigated whether our results would change if our 4 param-
eters pM�, R�, νM, νRq were allowed to vary simultaneously to reproduce both the
stellar mass and the SFRD radial profiles. To this purpose, we ran, for each galaxy,
a Monte Carlo Markov Chain based on the combined likelihood of both our datasets
(Secc. 2.3.2 and 2.3.3). We then compared the resulting radial growth rates with
the ones derived with our preferred strategy, finding an excellent agreement, with a
median absolute difference of just 2 � 10�4 Gyr�1. We found some discrepancy in
just 4 cases, 2 of which within 2σ (NGC 1097 and NGC 7793) and the other 2 within
3σ (NGC 3184 and NGC 3351). Note that all these objects belong to the group for
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which an unweighted fit was found to provide a better description of the overall disc
structure (see Sec. 2.4.1), while the effect of oscillations induced by spiral structure
was not taken into account in the MCMC experiment. This probably explains even
the moderate discrepancies for this small subset. Furthermore, it shows that our
partially subjective choice of the weights, discussed in Sec. 2.4.1, has a very limited
impact on our general results.

2.4.4 Notes on systematics

We distinguish between two kinds of systematics, those affecting individual galaxies
in a different way and those affecting the whole sample more or less homogenously.

To the first group belong distance and inclination. Distance uncertainties af-
fect the physical values of the derived mass and scalelengths, while the inclination
uncertainty mainly affects the determination of the mass. Inclination also affects
the normalization of both the stellar mass and the SFRD profiles, but it does it
exactly in the same way; it is easily seen that this implies a vanishing net effect
on the estimates of νM and νR, which are also, even more obviously, completely
independent on the adopted distance. The important consequence of this is that
our method allows us to measure the specific mass and radial growth rates of discs
with greater accuracy than the mass and scalelength themselves, a fact that we will
further exploit in Sec. 2.6.

The second group of systematics comprises the mass-to-light ratio, the calibration
of the FUV-to-SFRD conversion and the return fraction R. Apart from second
order effects, like possible variations of the mass-to-light ratio and the IMF with
radius or morphological type, the main uncertainty coming from these systematics
is a common multiplicative factor for both the growth parameters, νM and νR, for
the whole sample, or, in other words, a possible global rescaling of all the derived
timescales. As examples of global systematics, we consider in some more detail the
effect of the IMF and of the return fraction. In our calibrations, we have implicitly
adopted a Salpeter IMF. To switch, for instance, to the more popular Kroupa (2001)
IMF, we should divide the M/L ratio and hence all stellar mass surface densities
by a factor 1.6 (see footnote 2, Sec. 2.3.2), while multiplying all star formation rate
surface densities by a factor 0.63 (Kennicutt & Evans 2012). The net result on
the sSFR (and hence on the estimates of νM and νR) is less than 1 %. This is
due to the fact that in both cases the impact of the IMF is essentially driven by a
common change in normalization associated to the contribution of very low mass
stars. The effect of the return fraction R is stronger: for instance, changing our
adopted R � 0.3 into R � 0.48 (which is the largest of the values suggested by
Leitner & Kravtsov 2011) would imply a reduction of all growth rates by a factor
1.35 and an equal increase of all timescales. Unfortunately, the return fraction is
a quite uncertain parameter, since it is significantly affected not only by the IMF,
but also by the details of the final-to-initial mass relation, which is very difficult to
determine observationally. However, we stress that the dimensionless ratio between
νR and νM is unaffected by any of the systematics we have discussed so far. The
importance of this fact will be highlighted in Sec. 2.6.
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Table 2.2: Best fit structural (M� and R�) and growth (νM and νR) parameters for
galaxies in our sample. Formal fitting errors are reported, not including contributions
due to distance, inclination and calibrations of conversion fomulae. Compared with stellar
mass and scalelength, the growth parameters νM and νR are less affected by systematic
effects (see Sec. 2.4.4). Out of 35 studied galaxies, 32 have a positive radial growth rate
νR.

Galaxy M� R� νM νR

p109 M@q (kpc) p10�2 Gyr�1q p10�2 Gyr�1q
NGC 0024 3.01� 0.13 1.62� 0.02 5.85� 1.03 2.51� 0.52
NGC 0337 27.7� 2.3 2.15� 0.06 11.6� 3.5 4.95� 1.72
NGC 0628 43.7� 1.4 3.64� 0.05 8.22� 0.36 2.87� 0.21
NGC 0925 11.3� 0.8 3.97� 0.11 10.3� 0.5 0.799� 0.381
NGC 1097 68.2� 8.1 6.32� 0.23 8.74� 1.04 �2.05� 0.75
NGC 1512 14.7� 2.2 2.22� 0.09 3.80� 0.81 1.22� 0.45
NGC 1566 78.0� 5.3 3.30� 0.07 8.21� 0.83 2.90� 0.44
NGC 2403 7.19� 0.22 1.51� 0.02 9.91� 0.25 2.93� 0.16
NGC 2841 92.8� 3.4 3.69� 0.05 1.62� 0.08 0.612� 0.045
NGC 2976 2.25� 0.21 0.802� 0.028 5.88� 0.57 2.04� 0.33
NGC 3031 48.3� 2.5 2.54� 0.03 1.99� 0.20 0.750� 0.118
NGC 3184 17.2� 1.6 2.42� 0.08 6.00� 0.80 1.50� 0.55
NGC 3198 32.0� 1.8 3.65� 0.07 8.05� 0.81 3.30� 0.42
IC 2574 1.21� 0.07 3.01� 0.08 12.0� 1.1 3.71� 0.70
NGC 3351 45.3� 3.4 2.86� 0.05 3.62� 0.17 0.384� 0.109
NGC 3521 54.2� 2.3 1.85� 0.03 4.75� 0.56 1.95� 0.29
NGC 3621 24.8� 1.0 1.74� 0.02 9.84� 2.05 4.18� 1.04
NGC 3627 58.2� 2.5 2.36� 0.03 4.66� 0.36 1.24� 0.21
NGC 4236 1.83� 0.10 2.77� 0.07 11.4� 0.5 4.70� 0.27
NGC 4536 27.0� 1.7 3.90� 0.09 11.2� 0.4 1.17� 0.24
NGC 4559 42.7� 1.4 4.47� 0.05 10.6� 1.0 4.10� 0.51
NGC 4569 78.3� 3.3 4.38� 0.05 2.07� 0.11 �0.02940� 0.0781
NGC 4579 87.6� 2.2 3.56� 0.03 1.70� 0.24 0.357� 0.155
NGC 4725 117� 11 5.45� 0.18 2.17� 0.25 0.831� 0.155
NGC 4736 22.8� 3.1 1.13� 0.05 4.75� 1.06 1.18� 0.52
NGC 4826 51.0� 1.3 1.96� 0.01 1.55� 0.21 �0.0850� 0.1068
NGC 5033 23.5� 2.6 3.91� 0.15 10.2� 0.7 2.09� 0.42
NGC 5055 57.4� 3.8 2.50� 0.05 4.87� 0.63 1.45� 0.34
NGC 5194 77.5� 6.1 2.75� 0.07 7.56� 0.55 1.26� 0.38
NGC 5398 4.86� 0.22 1.95� 0.03 8.77� 0.19 3.57� 0.10
NGC 5713 54.8� 6.6 1.94� 0.06 11.0� 3.6 4.54� 1.80
IC 4710 2.71� 0.22 2.13� 0.08 7.61� 1.69 1.97� 1.04
NGC 6946 46.6� 2.2 2.67� 0.05 8.31� 0.54 0.765� 0.529
NGC 7331 123� 13 2.64� 0.08 10.5� 3.8 5.02� 1.88
NGC 7793 5.10� 0.23 1.26� 0.02 9.10� 0.73 2.58� 0.46

32



log ( M  / M    )

lo
g 

( 
ν M

 / 
G

yr
−1

 )

*

9 9.5 10 10.5 11 11.5
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

Type T

lo
g 

( 
ν M

 / 
G

yr
−1

 )

0 2 4 6 8 10
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

log ( νM / Gyr−1 )

N
um

be
r

−3 −2.5 −2 −1.5 −1 −0.5
0

5

10

15

log ( M  / M    )

lo
g 

( 
ν R

 / 
G

yr
−1

 )

*

9 9.5 10 10.5 11 11.5

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

Type T

lo
g 

( 
ν R

 / 
G

yr
−1

 )

0 2 4 6 8 10

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

log ( νR / Gyr−1 )

N
um

be
r

−3 −2.5 −2 −1.5 −1 −0.5

2

4

6

8

10

Figure 2.3: The specific mass and radial growth rates νM (top) and νR (bottom) as
a function of disc stellar mass (left) and morphological type (middle) and the relative
histograms (right). Lower panels contain only the 32/35 galaxies with νR ¡ 0. Error bars
are formal fitting uncertainties. The distributions of νM and νR have some similarities (see
text), but νR values are sistematically lower by � 0.5 dex.

2.5 Results

The results of our analysis are listed in Table 2.2. The quoted errors are just
the formal fitting ones; in particular, they do not take into account systematic
uncertainties, which, as discussed in Sec. 2.4.4, might be important for the structural
parameters M� and R�, but have a limited impact on the growth parameters νM and
νR.

2.5.1 Inside-out growth

While our analysis is able to reveal both positive and negative radial growth rates,
we find that 32 galaxies, out of 35, show νR ¡ 0. Of the remaining 3 galaxies with
a formally negative radial growth rate, two (NGC 4569 and NGC 4826) have more
than 100% uncertainty in νR and hence are consistent with evolution of the stellar
scalelength in one sense or the other, or with no evolution. Incidentally, we point
out that both these galaxies are known to have peculiar properties: NGC 4569 is an
anemic spiral in the Virgo cluster, probably significantly affected by ram pressure
stripping (Boselli et al. 2006), while NGC 4826 is likely to have undergone a strongly
misaligned merger, as suggested by the presence of a counter-rotating gaseous disc
in the outskirts (Braun et al. 1994). For only one galaxy in our sample, NGC 1097,
we clearly find the signature of a shrinking of the disc. It is interesting to notice,
a posteriori, that this galaxy has a very disturbed morphology. This is likely due
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to a strong interaction with the companion NGC 1097A 3. This object is listed
as a peculiar elliptical in the RC3 catalogue (de Vaucouleurs et al. 1991), though
with ‘uncertain’ classification. In the GALEX Atlas (Gil de Paz et al. 2007), NGC
1097A is clearly visible as a clump northwest of the prominent bar of NGC 1097,
bright in NIR and NUV, faint in FUV and surrounded by an extended, FUV bright,
disc-like structure, all properties common, in the GALEX Atlas, to the bulges of
spiral galaxies. This is suggestive that the whole system may be a galaxy pair in
an advanced stage of merging. We also noted that NGC 1097 is the object with
the largest derived disc scalelength (6.32 kpc) and we verified that this result is not
changed if we exclude from the exponential fit the whole radial range occupied by
NGC 1097A. NGC 1097 has also been suggested to have undergone other significant
interactions in the recent past (Higdon & Wallin 2003). If our interpretation of a
strong interaction state, likely a merger, for this system, is correct, then there is no
surprise that it behaves differently from the regular evolution of isolated galaxies.

From these considerations, we can conclude that our findings are in excellent
agreement with the general predictions of the inside-out growth scenario for the
evolution of spiral galaxies.

2.5.2 Mass and radial growth rates

In Fig. 2.3 the mass and radial growth rates of the galaxies in our sample are plotted
against disc stellar mass and morphological type. Since we are using logarithmic
units, radial growth rates (lower panels) are reported only for those 32/35 galaxies
with νR ¡ 0 (see Sec. 2.5.1). Error bars represent formal fitting errors only. In
particular, errors on distance and inclination are not taken into account in these
plots. As discussed in Sec. 2.4.4, these additional errors can affect stellar masses,
but not νM and νR, which are only subject to a common multiplicative uncertainty
due to global calibration issues. We also give in Fig. 2.3 the histograms for the
distributions of νM and νR, binned in logarithmic intervals of 0.25 dex width.

From the upper panels of Fig. 2.3 we see that the specific mass growth rates (or
specific star formation rates, or sSFR) of the discs of our galaxies assume a relatively
narrow range of values, with most of our points clustered around νM � 0.1 Gyr�1,
which corresponds to a mass growth timescale of � 10 Gyr. This is in substantial
agreement with the typical sSFR of star-forming galaxies in the Local Universe (e.g.
Elbaz et al. 2011) and in particular with the relative constancy of the sSFR of the
discs of spiral galaxies (Abramson et al. 2014), although a more detailed comparison
would require more statistics and a careful treatment of global systematics (Sec.
2.4.4), which is beyond the scope of this work (see e.g. Speagle et al. 2014 about
subtle issues concerning the homogeneization of measurements of this kind). We
find that a small group of 6 galaxies (NGC 2841, NGC 3031, NGC 4569, NGC 4579,
NGC 4826, NGC 4725) have a particularly low sSFR, with logpνM{Gyr�1q   �1.5.
We have already recognized two of them (NGC 4569 and NGC 4826) as objects with
peculiar properties and a close to vanishing radial growth rate (see Sec. 2.5.1), but
we cannot tell whether these peculiarities have a direct physical connection with the

3Note that NGC1097A cannot be seen in our Atlas, since it has been masked out from our
3.6 µm map.
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Table 2.3: Basic statistics for our derived specific mass and radial growth rates (cfr. Fig.
2.3). Note that discs with higher masses have lower median values and a higher scatter
for both νM and νR.

M�   1010M@ M� ¡ 1010M@ All
logpνM{Gyr�1q
Median -1.05 -1.12 -1.09
Scatter 0.13 0.25 0.20

logpνR{Gyr�1q
Median -1.56 -1.87 -1.70
Scatter 0.18 0.37 0.35

low measured values of νM. However, we can see from the upper-mid panel that the
whole group of 6 slowly-evolving galaxies are also among the galaxies of the earliest
types in our sample. This may be interpreted as an indication of downsizing (e.g.
Cowie et al. 1996): galaxies with high mass and early types are more likely to have
completed most of their evolution in ancient epochs and hence to be growing with
only mild rates nowadays. Also, galaxies of high mass and early-type might be more
subject to star-formation quenching, the origin of which and its connection with
morphology is still matter of investigation (e.g Martig et al. 2009; Pan et al. 2014).

In the lower panels of Fig. 2.3 we can see the distribution of the radial growth
rates, which are the main novelty of this work. When plotted against disc mass,
the radial growth rate νR shows a quite similar distribution with respect to the one
of νM, but systematically shifted downwards by � 0.5 dex. This suggests that our
galaxies are growing in size, on average, at about 1/3 of the rate at which they are
growing in stellar mass. The histogram of νR reveals a distribution that is similarly
asymmetric, though less strongly peaked, with respect to the one of νM. More
than 50% of our galaxies are in the two bins around logpνR{Gyr�1q � �1.5, that
is 0.5 dex below the peak of the νM distribution, corresponding to a typical radial
growth timescale of � 30 Gyr. Since the radial growth rate of galaxy discs has been
studied much less than the sSFR, it is less obvious to compare our findings with the
ones of previous studies. However, we notice the typical timescale reported above
is compatible with a radial growth of � 25% in the last � 7 Gyr, very similar to
what found by Muñoz-Mateos et al. (2011). Our typical νR is also consistent with
the results from the detailed study of resolved colour-magnitude diagrams for M 33
(Williams et al. 2009), while NGC 300 seems to have been growing at about half of
this rate (Gogarten et al. 2010). However, our estimates strictly refer to the current
time and caution is mandatory in extrapolating these instantaneous measurements
to a significant fraction of the past history of these galaxies.

Apart from the global vertical shift, the distributions of galaxies in the upper-left
and bottom-left panels of Fig. 2.3 have a quite well defined common shape. In both
cases, there is a horizontal upper envelope, close to the peak of the distribution,
and a continuous increase of the scatter with increasing disc mass. Such a scatter
is asymmetric and biased towards low values of νM and νR, with the result that, on
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average, more massive discs appear to grow at a slower rate, both in mass and size,
than the less massive ones. This effect is quantified in Table 2.3, where the median
mass and radial growth rates are reported, together with the associated scatter,
for two subsamples with a derived disc mass lower or greater than 1010 M@. It is
not easy to understand, with our relatively small sample, if some simple physical
property can be invoked to explain the scatter at high disc masses. However, we
performed some simple checks and did not find any particular correlation between
the position of galaxies in our plots and special properties, including the presence
of a bar, an XUV disc, a break in the exponential profile, or indications of a warp
or an interaction. We are therefore tempted to interpret the effect as intrinsic.

2.6 Implications for the evolution of scaling rela-

tions of disc galaxies

2.6.1 The mass-radial growth connection

Among our derived quantities, the mass and radial growth rates are the least affected
by systematic uncertainties (see Sec. 2.4.4). Hence, the most reliable of our results
are those that we can derive plotting νM and νR against each other. This is also
important to understand whether the shift, that we found in Sec. 2.5.2, of a factor
� 3 between νM and νR is significant only at a statistical level or if it reflects an
evolutionary property of individual galaxies.

Indeed, this experiment (Fig. 2.4) reveals that the two growth rates are related
to each other much more strongly than they are, individually, with mass or mor-
phological type (cfr. Fig. 2.3).

The fact that masses and sizes of galaxies grow in an interlinked way is not
very surprising on its own. Hence, rather than fitting a straight line to the points
in Fig. 2.4, we prefer to seek for some simple physical explanation that can give a
quantitative account to our finding.

2.6.2 A comparison with a simple theoretical prediction

Let us assume that mass and size of the discs of spiral galaxies are connected by a
power-law (e.g. Courteau et al. 2007, Lange et al. 2015):

R� � AMα
� (2.8)

Furthermore, let us assume that the coefficients A and α are not evolving with time,
so that the relation (2.8) defines not only the present locus, but also the evolutionary
track of stellar discs. Then, from (2.8) and taking the definitions (2.3) and (2.4)
into account, it immediately follows that the specific mass and radial growth rates
should be linked by the very simple linear relation:

νR � ανM (2.9)

or, in logarithmic units:
log νR � logα � log νM (2.10)
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Figure 2.4: The relation between the specific mass growth rate and the specific radial
growth rate of galaxy discs. The points are the results of our measurements, the lines
are predictions of some simple models. The solid line is the expectation if known scaling
relations of disc galaxies are not evolving with time, the dashed line and the dot-dashed
line are for scaling relations evolving on a timescale of 100 Gyr, in one sense or the other
(see text for details). A more rapid evolution is excluded by our results.
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Independently on the value of α, equation (2.10) implies that pνM, νRq points should
lie, in a double logarithmic plot like Fig. 2.4, on a line of unitary slope; this is indeed
the slope of the solid line drawn in Fig. 2.4, which gives a quite good account for
the distribution of our datapoints. This is already suggestive that our results are
consistent with the existence of a non-evolving, power-law, mass-size relation for the
discs of spiral galaxies.

Of course, for our simple scenario to be fully predictive, not only the slope,
but also the intercept, of such a straight line should be predicted as well, which is
accomplished by specifying the expected value for α. To do this, we just combine two
well-known scaling relations for disc galaxies, the Tully-Fisher relation (McGaugh
2012), between the rotation velocity V and the mass M of a spiral galaxy:

V 9M0.25 (2.11)

and the Fall relation (Romanowsky & Fall 2012), between specific angular momen-
tum l and mass:

l 9M0.6 (2.12)

which we have discussed in detail in Chapter 1. Since exponential discs belong to a
structurally self-similar family, one also has:

R� 9 l

V
(2.13)

Substituting (2.12) and (2.11) into (2.13) we get a power-law mass-size relation of
the form (2.8), with α � 0.35. This is not far from the value 0.32 empirically derived
by Courteau et al. (2007) as an average slope for the mass-scalelength relation of disc
galaxies in the Local Universe (since it was derived in the I-band, residual effects
cannot be excluded arising from M/L variations). Shallower slopes are frequently
found by studies based on half-light radius rather than disc scalelength (see e.g.
Lange et al. 2015); this is in qualitative agreement with expectations if we consider
an obvious morphological effect (more massive galaxies tend to have more prominent
bulges and hence a smaller ratio between half-light radius and scalelength).

To define our simple model, we just retained the value α � 0.35, derived from
the Tully-Fisher and the Fall relations as explained above, and we adopted it to
draw the solid line in Fig. 2.4. Hence we see that the majority of our data-points
lie on a locus that can be independently predicted, without any free parameter, just
assuming that known scaling relations for disc galaxies hold and are not evolving at
the present time. Since these simple hypotheses are completely independent from
the way our results were derived, the agreement between the two is very unlikely
to occur by chance, or to be due to biases of any kind, and we therefore interpret
this finding as an indication for the validity of both our method and the hypotheses
themselves.

We can also consider what effect residual systematics on νM and νR could have
on our findings. As discussed in Sec. 2.4.4, the effect is an unknown common mul-
tiplicative factor for νM and νR. In the diagram shown in Fig. 2.4, this implies a
collective motion of all points along a line of unitary slope, or, equivalently, a map-
ping of the theoretical line into itself. Therefore, our conclusions are robust at least
against the most obvious systematic uncertainties.
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A word of caution is appropriate, however, against possible overinterpretation
of our model and result. In fact, the Tully-Fisher relation is known to hold better
for the whole baryonic content of spiral galaxies (McGaugh 2012), while we have
impicitly applied it just to the stellar mass of the disc. On the other side, the Fall
relation seems to hold better when the disc component is considered separately from
the bulge. Hence, it can be argued that, in deriving our predictions, we have mixed
non-homogeneous empirical evidence. A more detailed analysis, taking this aspect
into a proper account, would be interesting, but is beyond the scope of this work.

2.6.3 Evolutionary effects

In the previous Section we have seen that our results are compatible with the Tully-
Fisher and Fall relations to be not evolving with time. To quantify this statement,
we put here an upper limit on how fast a possible evolution can be in order to
be still compatible with our results. For simplicity, we focus our attention on the
evolution in normalization, although a similar analysis could be performed for the
slope evolution as well.

If, in (2.8), we allow the normalization A to change with time, then (2.9) simply
modifies into:

νR � νA � ανM (2.14)

where:

νAptq :� d

dt
plnAqptq �

9Aptq
Aptq (2.15)

is the specific growth rate of the normalization coefficient A. Of course, when
equation (2.14) is compared with our observations in the Local Universe, νA has to
be intended as evaluated at the present time.

The dashed and dot-dashed lines in Fig. 2.4 show the predictions of two mod-
els with a very mild evolution in normalization, in one sense or the other: νA �
� 0.01 Gyr�1. It is clearly seen that the predicted distribution of galaxies in the
pνM, νRq plane is extremely sensitive to the parameter νA, making this diagram a
new and powerful observational tool to constrain the evolution of scaling relations
of galaxy discs. Also, since the two additional lines are both inconsistent with the
empirical distribution, we quantitatively infer that, even admitting that scaling re-
lations are evolving with time, they are doing so on timescales that are larger than
pνA, maxq�1 � 100 Gyr, hence much larger than the Hubble time.

Strictly speaking, the statement above mainly refers to the mass-size relation
(2.8). In fact, although the Tully-Fisher relation (2.11) and the Fall relation (2.12)
are the backbone of the simple model sketched in 2.6.2, it may be considered not
trivial to draw out conclusions concerning them individually, since they both involve
kinematics, while we did not directly make use of kinematical data. However, our
results indicate that an evolution of the Tully-Fisher relation, if present, has to
be accompanied and finely balanced by an opposite evolution of the Fall relation.
Furthermore, we stress that our firm upper limit (|νA|   νA, max � 10�2 Gyr�1) only
refers to νA evaluated at the present time and hence it can only be compared with
theoretical predictions and observational determinations of the recent evolution of
A.
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It is interesting to compare our results with the predictions of simple cosmo-
logically motivated models. Following Mo, Mao & White (1998), if the mass and
angular momentum of discs are a fixed fraction of the ones of the dark matter haloes
and if the latter are still growing today 4, then a mass-size relation for discs should
hold, of the form (2.8), with α � 1{3, which is very close to our preferred value
α � 0.35 and, as we assumed, it is constant with time. On the other hand, the
normalization A should scale as H�2{3, where H is the Hubble constant. For a flat
Universe made of matter and a cosmological constant, a simple calculation yields:

νA � �2

3

d lnH

dt
� ΩmH � 2.15� 10�2 Gyr�1 (2.16)

where, in the last equality, we assumed a matter density parameter Ωm � 0.3 and
a Hubble constant H � 70 km s�1 Mpc�1. The estimate above is twice than
our upper limit νA, max and it is therefore incompatible with our empirical findings.
More refined models for the assembly of dark matter haloes give predictions that
are even worse, by a further factor 2 (see Appendix 2.D)5. The tentative indication
is therefore that baryonic processes may be very important, in shaping the scaling
relations of disc galaxies, at least at low redshift. It is remarkable, however, that
these likely complex processes can conspire with the evolution of dark matter haloes
to give rise to results as simple as the observed ones.

On the other hand, our results show no tension with observations of scaling rela-
tions at moderate redshift. Recent results indicate that the Tully-Fisher relation is
compatible with small or no evolution at least up to z � 1 (Miller et al. 2011), while,
to our knowledge, no similar studies are available yet concerning the Fall relation.
Concerning the mass-size relation, we can mention the representative findings of
Trujillo et al. (2006), which are compatible (within errors) both with the model by
Mo, Mao & White 1998 discussed above and with no evolution up to z � 1. To tell
the difference between different scenarios, more precise measurements at moderate
redshift would be needed. In the meanwhile, a sensitive local diagnostics like the
one that we have proposed here can serve as a valuable complement to pioneering
observational campaigns in the distant Universe.

2.7 Summary

In this Chapter, we have developed, from very simple assumptions, a model that
predicts a universal shape for the radial profile of the star formation rate surface
density (SFRD) of spiral galaxies. This model accounts for the basic properties
of observed profiles and naturally includes a parametrization of the growth of the
stellar discs. As a consequence, we have devised a novel method to measure the
instantaneous mass and radial growth rates of stellar discs, based on their SFRD

4In this case, the ‘virialization redshift’ of Mo, Mao & White (1998) is z � 0.
5Mo, Mao & White (1998) also considered that a halo can have stopped accreting material at

a ‘virialization redshift’ z ¡ 0. Simple scalings can be applied, in this case, only to those galaxies
that have stopped forming stars accordingly, while stellar discs growing in quiescent haloes at
z � 0, if they exist, are clearly governed by processes other than cosmological.
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profiles. We have applied our method to a sample of 35 nearby spiral galaxies 6.
Our main results are:

(i) For most of the galaxies in our sample, the SFRD profile is satisfactorily re-
produced by our model, in such a way that we could measure the mass and
radial growth rates νM and νR of their stellar discs.

(ii) Virtually all galaxies show the signature of inside-out growth (νR ¡ 0).

(iii) Typical timescales for the mass and radial growth of our stellar discs are of
the order of � 10 Gyr and � 30 Gyr, respectively, with some uncertainty due
to systematic effects.

(iv) The mass and radial growth rates appear to obey a simple linear relation, with
galaxy discs growing in size at � 0.35 times the rate at which they grow in
mass. Compared with the individual timescales given above, this dimensionless
ratio is very robust against systematic uncertainties.

(v) The distribution of galaxies in the pνM, νRq plane is a sensitive diagnostics for
the evolution of scaling relations of galaxy discs.

(vi) Our results are in very good agreement with a simple model, without free
parameters, based on the universality of the Tully-Fisher relation and the Fall
relation, suggesting that they are not evolving with time. Possible residual
evolution is constrained to occur on timescales that are much larger than the
age of the Universe.

APPENDICES

2.A The effect of the return fraction

The assumption of a constant return fraction breaks whenever the instantaneous
recycling approximation does. In general, at a given observed time t0, the time
derivative of the stellar mass surface density Σ� is related to the instantaneous star
formation rate surface density SFRD through the equation:

BΣ�
Bt pt0q � SFRDpt0q �

» t0
tbirth

BR
Bt pt0 � t1qSFRDpt1qdt1 (2.17)

where tbirth denotes the birth time of the considered galaxy, or disc, or disc annulus,
and R is the time dependent return fraction. The detailed dependence of R on time
changes with the chosen IMF, but it can be suitably approximated by:

Rptq � R8 �
"
t{tR p0   t   tRq

1 pt ¡ tRq (2.18)

6An application to the Milky Way will be presented in Sec. 3.5.4 of Chapter 3.
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where R8 is the asymptotic value of the return fraction (the one that we simply
denote with R in the manuscript), and tR is of the order of 1 Gyr. Putting (2.18)
in (2.17) one gets:

BΣ�
Bt pt0q � SFRDpt0q �R8   SFRD ¡tR pt0q (2.19)

where

  SFRD ¡tR pt0q :� 1

tR

» t0
t0�tR

SFRDpt1qdt1 (2.20)

is the star formation rate surface density averaged in the last tR � 1 Gyr.

Equation (2.19) can also be rewritten:

BΣ�
Bt pt0q � p1�Reffpt0qqSFRDpt0q (2.21)

with:
Reffpt0q
R8

�   SFRD ¡tR pt0q
SFRDpt0q (2.22)

Equation (2.21) clarifies that the effective return fraction Reff is the quantity that
shall be used in the definition of the reduced star formation rate surface density
(used in our applications and in others) if the effect of non instantaneous recycling
is taken into account.

On the other hand, equation (2.22) shows that Reff is largely insensitive to the
long term star formation history of a given region (and hence, in particular, to the
total stellar mass) and it rather depends on the details of its recent star formation
history. In particular, Reff � R8 whenever the star formation rate of the considered
annulus has not varied much during the last tR � 1 Gyr, irrespective of the previous
evolution, and it is significantly lower (greater) than R8 only when a significant
starburst (abrupt quenching) has occurred on such a short timescale.

For example, a recent starburst or quenching event, ocurring on a timescale
tA   tR, could be approximately modeled as:

SFRDpt1q � SFRDpt0q �
"
σ pt0 � tR   t1   t0 � tAq
1 pt0 � tA   t1   t0q (2.23)

with σ   1 for a starburst and σ ¡ 1 for quenching. In this case, the prediction for
Reff is:

Reffpt0q
R8

� σ � p1� σqtA
tR

(2.24)

Even if events of both kinds are likely to be occurring in some cases, their de-
scription would require a detailed study on a case-by-case basis. In fact, opposite
situations (starburst or quenching) have opposite effects on the estimate of Reff

and the magnitude of such effect is sensitive to the details of the phenomenon it-
self (in the example above, the timescale tA and the intensity σ), implying that no
reasonably general priors can be imposed without introducing a bias on the results.
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Figure 2.5: The combined effect of radially-varying measurement errors and spiral struc-
ture for NGC 3031. Upper panels: the map of the 3.6 µm emission (the two images have
the same scale and contrast); lower panel : the stellar mass surface density profile, with
the best fit exponentials obtained using error-based weights (red dashed line) and uniform
weights (blue solid line). In all panels, the orange lines mark the disc-dominated region
selected for the fit. The magenta line and ellipse mark the radius where a bump occurs in
the profile of Σ�. A prominent couple of spiral arms clearly dominate the emission at this
very same radius.
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2.B The choice of the weights

To illustrate our choice of the weights in fitting the stellar mass surface density pro-
files, we report in Fig. 2.5 (lower panel) the best-fitting exponential disc for NGC
3031 using both nominal weights and uniform weights. The two fits are quite differ-
ent and in particular they have different stellar scalelengths: R� � 170.9 arcsec and
R� � 145.4 arcsec, respectively. The nominally weighted fit better reproduces the
inner region, where the errors are the smallest, out to a radius of � 500 arcsec, where
the profile clearly shows a bump. The presence of this feature has the obvious effect
of making the inner portion of the profile shallower than the outer one, which results
in a larger derived best-fitting scalelength. The physical origin of this occurrence
can be found by looking at the 3.6 µm map of this galaxy, which is shown in Fig.
2.5 (upper panel). The same image is reported here twice, with the same scale and
contrast. In the left panel, ellipses are overlaid to mark the region selected for the
fit (see the Atlas for a clearer view of this selection). The right panel also displays
the ellipse at 489 arcsec; this is the radius where the bump in the profile occurs and
it is marked by a vertical dotted magenta line in the lower panel of Fig. 2.5 as well.
The comparison between all the panels of Fig. 2.5 clarifies that the bump in the
profile is due to the presence, at that radius, of a prominent couple of spiral arms
with a small pitch angle.

In our view, such a perturbation is the probable reason why the observed profile
is deviating from an exponential. A proper analysis should take this effect into
account, in addition to random deviations due to measurement errors. Related to
this, we should point out that, in this context, simple quantitative proxies for the
quality of the fits, like, for instance, the reduced χ2, are not necessarily as informative
as usually assumed, simply because deviations from an exponential profile, in spiral
galaxies, are not only due to measurement errors, but to physical oscillations as
well. A correct Bayesian analysis, in a situation like this, would be the definition of
a more sophisticated model, with additional parameters to describe spiral structure,
to be explored with an MCMC sampling using a likelihood based on nominal errors.
However, a realistic modelization of spiral structure in galaxies is beyond the scope
of our work. In our opinion, a uniform weighting, if performed only when necessary
and on a carefully selected radial range, can be considered a fairly good choice for
our purposes and avoids over-weighting regions that are dominated by transient
perturbations.

2.C The tentative double disc of NGC 3621

NGC 3621 is probably the most extreme case, in our sample, of a spiral galaxy with
a stellar disc apparently described by two exponentials with different scalelengths.
Furthermore, its SFRD profile shows a change of slope as well, in the same sense
(flattening) of the stellar profile and at the very same radius R � 225 arcsec. NGC
3621 is also known for a remarkable flattening of the metallicity profiles of both the
gas (Bresolin, Kennicutt & Ryan-Weber 2012) and the stars (Kudritzki et al. 2014),
occurring around R25 � 290 arcsec.

These indications of a double-component nature led us to repeat our analysis,
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Figure 2.6: The double-disc analysis for NGC 3621. The radial profiles of the surface
density of stellar mass (left panel) and star formation rate (right panel) are fitted with the
theoretical model for the evolution of exponential discs (Secc. 2.2, 2.4), but the two regions
inside and outside R � 225 arcsec are analyzed independently. The best fit parameters
are reported in Table 2.4. The two components are apparently evolving towards the
constitution of one single smooth disc on a timescale of � 30 Gyr (see text for details).

Table 2.4: Double-disc analysis of NGC 3621: best-fit parameters

M� R� νM νR

p109 M@q (kpc) p10�2 Gyr�2q p10�2 Gyr�2q

Inner disc 24.9� 1.1 1.74� 0.02 7.03� 0.15 2.67� 0..08

Outer disc 11.0� 1.3 5.99� 0.26 9.84� 0.19 �1.62� 0.36

described in Sec. 2.4, separately for the two regions inside and outside our observed
transition radius. As shown in Fig. 2.6, this experiment gives a result of very good
quality 7.The best-fit parameters are reported in Table 2.4 8. While the structural
parameters of the inner disc are equal (by construction) to the estimates from the
single-disc analysis (cfr. Table 2.2), the mass and radial growth rates are both
smaller, compared with the single-disc estimates, and their ratio is nearer to the
theoretical value (Sec. 2.6.2).

Interestingly, the inner disc, which has the smaller scalelength R�, has a positive
specific radial growth rate (νR ¡ 0), while the opposite is true for the outer disc. If
sustained in time, this trend goes in the direction of smoothing out the difference in
the slopes of the two stellar mass profiles, possibly bringing the two discs towards a
common scalelength on a timescale:

tsmooth �
ln
�
R�,out

R�,in

	
νR,in � νR,out

� 28.8 Gyr (2.25)

7We recall that the slope of SFRD profiles is not a free parameter, being fixed by the indepen-
dently derived value of R�.

8Note that M� here has just the formal meaning of the parameter of equation (2.1): the actual
masses of the two discs are smaller, since both of them have a limited radial extent.
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An impressively similar timescale is the one independently obtained from the specific
mass growth rates:

t1smooth �
ln
�
M�,out

M�,in

	
νM,in � νM,out

� 29.1 Gyr (2.26)

This coincidence is not trivial at all (not even the sign of tsmooth and t1smooth is
a priori obvious) and implies that the two discs are also tending to a common
normalization. This tentatively reinforces the idea that the two components are
slowly evolving towards the constitution of a single smooth structure (though, of
course, it may well be that the process will stop before its completion due to some
form of star formation quenching).

2.D ΛCDM scaling relations with an evolving den-

sity contrast

Besides the dependence on the Hubble constant, the normalization A of the mass-
size relation is also proportional to ∆

�1{3
vir , where ∆vir is the density contrast of

collapsed structures, with respect to the critical density, at the time of virialization.
This dependence is often neglected, since ∆vir is generally regarded to as a universal
constant9. Eke, Cole & Frenk (1996) suggested that this assumption may be inac-
curate in the presence of a cosmological constant. The resulting dependence of ∆vir

on redshift has been parametrized analytically by Bryan & Norman (1998). Taking
this effect into account, we obtain the following refined prediction for νA:

νA � �2

3

d lnH

dt
� 1

3

d ln ∆vir

dt

�
�

1� 2ΩΛp41� 39ΩΛq
8π2 � 82ΩΛ � 39Ω2

Λ



ΩmH

� 4.18 � 10�2 Gyr�1

(2.27)

where ΩΛ � 1 � Ωm � 0.7 is the density parameter of the cosmological constant.
The predicted value of νA is therefore, in this case, 4 times larger than our upper
limit.

9This is, for instance, the basis of the “R200” parametrization for the virial radii of dark matter
haloes.
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2.E Atlas

This Atlas contains the details of our analysis for individual objects in our
sample. For each galaxy, the upper panels are maps of the emission at 3.6 µm.
Overlaid ellipses correspond to the limits of the radial range where the exponen-
tial fit to the 3.6 µm profile was performed (lower-left panel). The lower-right
panel shows the observed SFRD profile, together with the best-fitting theoret-
ical model.
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NGC 0024. 3.6 µm fit range: 9–201 arcsec. Special caution may be due for this object, which is the most
inclined in our sample (i � 77�).
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NGC 0337
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NGC 0337. 3.6 µm fit range: 0–75 arcsec. This is the most distant galaxy in our sample (D � 25 Mpc) and
therefore the one with the worst spatial resolution.
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NGC 0628. 3.6 µm fit range: 33–261 arcsec.
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NGC 0925
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NGC 0925. 3.6 µm fit range: 57–273 arcsec.

NGC 1097

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 0  100  200  300  400

lo
g 

* (
M

!
 p

c-2
)

Radius (arcsec)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400

lo
g 

SF
RD

 (M
!

 p
c-2

 G
yr

-1
)

Radius (arscec)

NGC 1097. 3.6 µm fit range: 105–333 arcsec; unweighted. Note that NGC 1097A (lying north-west of the
bar) has been masked out from the map. This system is very likely to be a pair in an advanced phase of merging
(see main text for details).
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NGC 1512

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4

 0  100  200  300  400  500  600  700

lo
g 

* (
M

!
 p

c-2
)

Radius (arcsec)

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 0  100  200  300  400  500  600  700

lo
g 

SF
RD

 (M
!

 p
c-2

 G
yr

-1
)

Radius (arscec)

NGC 1512. 3.6 µm fit range: 69–195 arcsec; unweighted. The extended outer flattening, visible in both
profiles, may be related to some interaction with NGC 1510 (out of the image, in the south-west direction).
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NGC 1566. 3.6 µm fit range: 27–249 arcsec. Two very prominent arms may be related to the step-like shape
of the outer 3.6 µm profile.
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NGC 2403
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NGC 2403. 3.6 µm fit range: 33–513 arcsec. The inner ellipse is chosen to compensate for a small offset in
the adopted centre.
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NGC 2841. 3.6 µm fit range: 27–309 arcsec.
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NGC 2976
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NGC 2976. 3.6 µm fit range: 0–264 arcsec, which is the whole available domain. A normal weighted fit gives
a good account to the overall profile notwithstanding the presence of a prominent bump.

NGC 3031

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

 0  200  400  600  800  1000

lo
g 

* (
M

!
 p

c-2
)

Radius (arcsec)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  200  400  600  800  1000

lo
g 

SF
RD

 (M
!

 p
c-2

 G
yr

-1
)

Radius (arscec)

NGC 3031. 3.6 µm fit range: 213–783 arcsec; unweighted. The bulge is very prominent, but the disc-dominated
region is clearly traced by the appearence of spiral arms.
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NGC 3184
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NGC 3184. 3.6 µm fit range: 21–213 arcsec; unweighted. As for NGC 3031, the disc-dominated region is
readily recognized thanks to the prominent spiral structure.
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NGC 3198. 3.6 µm fit range: 15–225 arcsec.
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IC 2574
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IC 2574. 3.6 µm fit range: 51–363 arcsec. The inner ellipse is chosen to compensates for a central offset. This
is the nearest galaxy in our sample (just 4 Mpc from us), hence the possibility to see small scale oscillations in
both profiles.
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NGC 3351. 3.6 µm fit range: 99–267 arcsec unweighted. The inner ellipse encloses a prominent central ring.
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NGC 3521
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NGC 3521. 3.6 µm fit range: 33–129 arcsec. Out of 129 arcsec, the 3.6 µm profile suddenly becomes shallower
and the isophotes assume a peculiar boxy shape. Note that the SFRD profile starts to flatten at much larger
radii.
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NGC 3621. 3.6 µm fit range: 0–225 arcsec. The ellipse at 225 arcsec is shown in both images, with the same
scale but different contrast, to better show the emission of the inner disc (left) and the outer disc (right). Both
profiles show an abrupt outer flattening starting from this radius.
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NGC 3627
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NGC 3627. 3.6 µm fit range: 45–265 arcsec.
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NGC 4236. 3.6 µm fit range: 45–351arcsec. The inner ellipse is chosen to compensate for an offset in the
centre position.
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NGC 4536
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NGC 4536. 3.6 µm fit range: 33–219 arcsec.
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NGC 4559. 3.6 µm fit range: 27–237 arcsec.
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NGC 4569
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NGC 4569. 3.6 µm fit range: 27–267 arcsec; unweighted.
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NGC 4579. 3.6 µm fit range: 39–213 arcsec.
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NGC 4725
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NGC 4725. 3.6 µm fit range: 75–333 arcsec.
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NGC 4736. 3.6 µm fit range: 33–231 arcsec. An extended ring is the probable origin of the outstanding outer
flattening, which is also visible, though less prominent, in the SFRD profile.
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NGC 4826
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NGC 4826. 3.6 µm fit range: 39–351 arcsec. The inner ellipse is chosen both to comprise the bulge and to
compensate for a central offset.
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NGC 5033. 3.6 µm fit range: 51–303 arcsec. Even if spiral structure can be traced down to very small radii,
the inner arms appear to be embedded into a bright spheroidal component, which we exclude from our fit of
the disc.
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NGC 5055
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NGC 5055. 3.6 µm fit range: 27–243 arcsec. The disc region traced by spiral arms is well described by an
exponential. A second disc component, with a greater scalelength and no prominent spiral structure, seems to
be present at the periphery. The SFRD follows theoretical expectations out to a remarkably large radius and
then in turn exhibits a flattening.
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NGC 5194. 3.6 µm fit range: 21–363 arcsec. Considering its strong interaction with NGC 5195 (masked out
in the northern region of the map), this galaxy shows a surprisingly regular behaviour.
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NGC 5398
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NGC 5398. 3.6 µm fit range: 0–87 arcsec.
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NGC 5713. 3.6 µm fit range: 9–99 arcsec.
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IC 4710

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  50  100  150

lo
g 

* (
M

!
 p

c-2
)

Radius (arcsec)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  50  100  150

lo
g 

SF
RD

 (M
!

 p
c-2

 G
yr

-1
)

Radius (arscec)

IC 4710. 3.6 µm fit range: 0–99 arcsec. A hint is present for a common downbending in both stellar mass and
SFR surface densities.
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NGC 6946. 3.6 µm fit range: 57–321 arcsec.
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NGC 7331
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NGC 7331. 3.6 µm fit range: 15–153 arcsec. Out of 153 arcsec, the 3.6 µm profile abruptly flattens and the
isophotes have a very peculiar geometry. The SFRD profile is nearly exponential out to very large radii, but
our model fails to reproduce its large scalelength.
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NGC 7793. 3.6 µm fit range: 9–303 arcsec; unweighted.
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Chapter 3

Accretion, radial flows and
abundance gradients in spiral
galaxies†

Abstract

In this Chapter, we consider the local aspects of the accretion of mass and
angular momentum on the discs of spiral galaxies. The spatial distribution of
mass and angular momentum accretion rates are of great importance for the
evolution of discs, but still largely unknown. However, the physical connection
between the two can be useful to reconstruct them indirectly. It is well known
that even a very small angular momentum mismatch between the accreting
gas and the disc inevitably drives radial gas flows within the disc itself. This
effect has a large impact on the reconstruction of the mass accretion profile
and on the prediction of chemical abundance gradients; since the latter are
observable, they can be used to put constraints on the spatial structure and the
dynamics of accretion on spiral galaxies. Here we provide a generalization of
existing analytic techniques for the study of this problem and we apply them
to the Milky Way and to a nearby spiral galaxy (NGC 628). We consider
different models: with or without radial flows and including or not inside-out
growth (cfr. Chapter 2). We find that models with neither radial flows nor
inside-out growth compare very badly with observations. Inside-out growing
models without radial flows perform better, but still fail to give the correct
steepness of gradients. Radial flows, with or without inside-out growth, can
explain the observed gradients if the metal-poor gas is accreted at large radii
and rotates with � 70� 85% of the rotational velocity of the disc.

3.1 Introduction

As we have seen in Chapter 1, continuous accretion of metal poor gas is known to be
a crucial ingredient in the evolution of spiral galaxies, from a wide variety of evidence
(e.g. Pagel & Patchett 1975; Fraternali & Tomassetti 2012; Zafar et al. 2013; Sánchez
Almeida et al. 2014 and references therein), but, unfortunately, direct observations

†Based on G. Pezzulli & F. Fraternali, 2015, MNRAS, in press.
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of the actual accretion process has proven to be very elusive (e.g. Sancisi et al. 2008,
Di Teodoro & Fraternali 2014 and references therein), with the consequence that
the spatial distribution of the accretion is largely unknown, even for our own Galaxy
at the present time, let alone for external galaxies and on cosmological timescales.
Hence, indirect inference from observed properties of galaxies is still necessary.

Models for the evolution of spiral galaxies, and of our own Galaxy in particular,
have always taken great advantage from simple parametrizations of the accretion rate
surface density as a function of time and radius (e.g. Pagel 2009; Matteucci 2012
and references therein). In order to constrain this function from observations, a
powerful and widely used approach is the requirement, for every annulus with given
galactocentric radius R, that the integral over time of the accretion rate surface
density at R equals the total present-time observed baryonic surface density there.

One problem of the above method is that it implicitly assumes that the material
accreting on a galaxy disc at some radius will keep staying there for the whole
galactic history (the so-called independent annuli approach). This occurrence is in
general very unlikely, being in contradiction with a basic dynamical requirement,
namely angular momentum conservation. In fact, as it was first emphasized by
Mayor & Vigroux (1981), whenever the specific angular momentum of the accreting
material is not exactly equal to that of the disc in the point of impact (which would
be a fine-tuned coincidence), radial flows will inevitably onset within the disc in
order for total angular momentum to be conserved. This implies the break of the
independent annuli assumption and, in particular, of the link between the total mass
in a given annulus and the integral over time of the mass accretion rate there.

A direct detection of net radial motions in the gaseous discs of spirals would
be very valuable, since it would give constraints on the dynamics of the accretion
process onto spiral galaxies. Unfortunately, the velocities predicted as a consequence
of the aforementioned effect are so low that they are barely measurable and, most
importantly, it is still not clear how they could be observationally distinguished from
spurious effects driven by non-axisymmetric disturbances (Wong, Blitz & Bosma
2004). Therefore, indirect methods are necessary, which are able to capture the
integrated signal of such low velocities across the whole history of a galaxy disc.
Chemical evolution provides the desired alternative, since, at any given time, the
distribution of metals in the interstellar medium (ISM) depends on the whole history
of enrichment and dilution that each gas element has undergone throughout its path
across the galaxy.

A considerable amount of work has been devoted to the effect of radial flows on
chemical evolution, and in particular on the development of abundance gradients
(e.g. Lacey & Fall 1985; Goetz & Koeppen 1992; Portinari & Chiosi 2000; Cavichia
et al. 2014; Kubryk, Prantzos & Athanassoula 2015, among many others), some-
times in conjunction with other mechanisms, like inside-out formation (cfr. Chapter
2) and radial variations (either smooth or discontinuous) in the normalization of
the star formation law (e.g. Clarke 1989; Chamcham & Tayler 1994; Spitoni &
Matteucci 2011), both in the Local Universe and at high redshift (Mott, Spitoni &
Matteucci 2013). Several mechanisms can in principle contribute to the onset of
ordered radial gas flows within the discs of spirals (e.g. Lacey & Fall 1985; Thon
& Meusinger 1998) and turbulence can cause additional transport of metals (e.g.
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Yang & Krumholz 2012; Petit et al. 2015), but order of magnitude estimates sug-
gest angular momentum deficit in accretion to be the dominant process, or one of
the dominant processes, in this respect (Bilitewski & Schönrich 2012). However,
only few works, to our knowledge, have so far implemented radial flows that are
consistent with angular momentum conservation.

In their seminal work, Mayor & Vigroux (1981) considered the extreme case of
infall of gas completely devoid of angular momentum. Lacey & Fall (1985) improved
the angular momentum equation allowing for non-vanishing rotation in the accreting
material, but they did not use it in their models, preferring simpler parametrizations
of the radial velocity.

Two major improvements came in the field with the work by Pitts & Tayler
(1989), though both of them maybe received somewhat less consideration than they
were worth of.

First, these authors introduced the fundamental concept of effective accretion,
which is the amount of gas that has to come at a given annulus at a given time
in order to sustain a given structural evolution. The effective accretion, rather
than the accretion itself, is the quantity that can be directly constrained by the
present-day structure of galaxies (e.g. its integral over time equals the present-day
baryonic surface density) and which should, therefore, be preferentially chosen as a
starting point for semi-analytic models of galaxy evolution. In general, the effective
accretion needs to be decomposed in two contributions, direct accretion from the
IGM and an internal contribution due to radial flows, a problem which we refer to
as mass flux decomposition. To better appreciate the importance of this, it may be
useful to consider that fixing an accretion profile, rather than the profile of effective
accretion, in a set of models with radial flows, has the consequence that different
models will have a different final structure (e.g. models with inward radial flows will
be more centrally concentrated) and therefore they cannot all succeed in satisfying
observational structural requirements (e.g. Lacey & Fall (1985); Tosi (1988a); Goetz
& Koeppen (1992)). The approach based on effective accretion, instead, guarantees
that all the models match the same structural constraints and therefore allows to
validate or discard radial flow models on the basis of chemical information. Note
that in this way the accretion profile is a prediction, rather than an input, of a model
with radial flows.

As a second improvement, Pitts & Tayler (1989) provided some analytic solutions
to the mass flux decomposition problem as a function of the angular momentum of
the infalling material. Their solutions, however, were valid only for some very special
values of the angular momentum and did not allow a continuum of models to be
explored.

The mass flux decomposition problem has been recently reconsidered, from a
numerical point of view, by Bilitewski & Schönrich (2012), who solved a discretized
version of the equation of angular momentum conservation and were able to compute
a fine grid of models. Implementing their technique into the detailed Milky Way
evolution model by Schönrich & Binney (2009), they provided the current benchmark
for the dynamical properties of accreting material on our own Galaxy.

In this work, we build upon the analytic approach of Pitts & Tayler (1989)
and we generalize it. In Sec. 3.2 we discuss a minimal model for the evolution
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of spiral galaxies and we investigate the consequences of the independent-annuli
assumption on the chemical evolution of spiral galaxies. In Sec. 3.3 we give the
general analytic solution to the mass flux decomposition problem as a function of
the angular momentum of the accreting material. We also discuss its implications
for the reconstruction of radial flows and accretion profiles, both in general and
for a Milky-Way like example. In Sec. 3.4 we propose a novel method, based on
characteristic lines, to compute chemical evolution in the presence of radial flows and
we compare it with other computational techniques. We then discuss the impact of
the angular momentum of the accreting material on gas-phase abundance gradients
and we use observational data to put constraints on the dynamical properties of
gas accretion onto the disc of the Milky Way. In Sec. 3.5 we combine our analysis
with the results of Chapter 2. In particular, we show how structural and chemical
information can be combined to disentangle the effects of inside-out growth and
radial flows on the development of abundance gradients in spiral galaxies. Again,
the application to the Milky Way is discussed in detail. In Sec. 3.6 we describe an
application to the external spiral galaxy NGC 628, which is taken from the same
sample analyzed in Chapter 2 and for which recent determinations of gas-phase
abundances were available. We draw out our conclusions in Sec. 3.7.

In the Appendices, some more theoretical discussion can be found about angular
momentum and accretion in a couple of very different scenarios (App. 3.A and 3.B),
as well as some additional investigation about the effect of the metallicity of the
IGM (App. 3.C).

3.2 A minimal model for the evolution of galaxy

discs

Before looking at more complex situations, we consider in this Section the simplest
possible model for the evolution of a galaxy disc. We just make elementary as-
sumptions, based on few general properties of the discs of spiral galaxies and simple
enough to allow for an analytic description. We use dimensionless units when pos-
sible, but also give an illustrative example with parameters chosen to be plausible
for the Milky Way.

3.2.1 Exponential discs obeying the Kennicutt-Schmidt law

As basic structural requirements, we ask that stellar discs have an exponential radial
mass distribution (cfr. (2.1)):

Σ�pt, Rq � M�ptq
2πR2�

e�
R
R� (3.1)

and form stars according to the Kennicutt-Schmidt law:

9Σ� � AΣN
g (3.2)

The fiducial parameters of the Kennicutt-Schmidt law are N � 1.4 and A �
0.11375, if surface densities are measured in M@ pc�2 and times in Gyr. These
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values are taken from Kennicutt (1998), with A corrected for a helium factor equal
to 1.36 and then multiplied by a factor p1 � Rq, with an assumed return fraction
R � 0.3, to take into account material returned from stars to the ISM during stellar
evolution. Note that this implies that our 9Σ� represents the net (or reduced) star
formation rate surface density, rather than the instantaneous one.

Equations (3.1) and (3.2) imply that also the gas distribution is exponential:

Σgpt, Rq � Mgptq
2πR2

g

e
� R
Rg (3.3)

with a scalelength that is larger than the one of the stars, according to:

Rg � NR�

while the total gas mass Mg is linked to the global star formation rate 9M� by the
equation:

9M� � ÂMN
g (3.4)

with:

Â :� A

N2p2πR2
gqN�1

(3.5)

Equation (3.4) resembles in form the Kennicutt-Schmidt law, with the important
differences that it refers to masses, rather than surface densities, and its normal-
ization Â is not universal, but a function of the scalelength. For a fiducial stellar
scalelength R� � 2.5 kpc, which should be similar to the value appropriate for
our Galaxy, it is Rg � 3.5 kpc (see also Schönrich & Binney 2009) and therefore

Â � 0.16187, if masses are measured in units of 109 M@ and times in Gyr.
Finally, we consider the simple case of an exponentially declining star formation

history:

9M�ptq � M�,8
t�

e�
t
t� (3.6)

where M�,8 is the asymptotic value of the stellar mass and t� is the star formation
decline timescale. Equations (3.6) and (3.4) imply that the gaseous mass is also
exponentially declining with time, but with a larger timescale tg � Nt� and an
initial value Mg,0 linked to the other parameters by the relation:

M�,8 � ÂMN
g,0t� (3.7)

The two independent parameters of the model, M�,8 and t�, can be uniquely
constrained, for a given galaxy, from the global properties of that galaxy at the
present time. In particular, the quantity x � t0{t�, t0 being the age of the disc, can
be inferred from observations by inverting the relation:

x

ex � 1
� t0ÂM

N
g pt0q

M�pt0q (3.8)

and M�,8 can then be found by the means of (3.7). In our fiducial example, we
consider a 12 Gyr aged disc with a stellar mass M� � 4 � 1010M@ and a gaseous
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Figure 3.1: The global star formation rate 9M� (solid black line), gas consumption rate
p� 9Mgq (dashed red line) and gas accretion rate 9Macc (dotted blue line) for our fiducial
model of the Milky Way. Note the relatively slow decline of all these quantities and the
similar evolution of the star formation rate and the gas accretion rate.

mass Mg � 6 � 109 M@. The resulting parameters of the model are t� � 12.5 Gyr
and M�,8 � 6.5� 1010 M@.

In Fig. 3.1 we show the resulting predicted star formation history, together with
the gas consumption rate and the accretion rate implied by the other two. Note that
the star formation rate and the accretion rate follow a very similar evolution and
are only mildly declining with time, in agreement with the findings by Fraternali &
Tomassetti (2012).

3.2.2 Effective accretion rate surface density

Following Pitts & Tayler (1989), we define the effective accretion rate surface density
as:

9Σeffpt, Rq :� B
BtpΣ� � Σgqpt, Rq (3.9)

which is the amount of gas that is needed at a given time t and a given radius R
in order to sustain a given structural evolution. This material can either directly
come from the IGM, or through the disc via radial flows, or, in general, from a
combination of the two routes (Pitts & Tayler 1989, Schönrich & Binney 2009).
This fact is conveniently formalized by the equation of conservation of mass. If,
in the evolution of the gas component, a sink term 9Σ� and a source term 9Σacc

are accounted for, to describe star formation and accretion, respectively, then the
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continuity equation can be written:

9Σeff � 9Σacc � 1

2πR

Bµ
BR (3.10)

where:
µ :� 2πRΣguR (3.11)

is the radial gaseous mass flux, uR being the net radial velocity of the gas.
If an independent annuli approach is adopted, then radial flows are neglected,

the second term in the r.h.s. of (3.10) vanishes and therefore 9Σacc � 9Σeff. In general,
however, a different accretion profile is needed, a problem which we will come back
to in Sec. 3.3.2.

All the considerations above are fully general and do not dependent on the
particular structural evolution model under consideration. In the particular case
of an exponential disc obeying the Kennicutt-Schmidt law (Sec. 3.2.1), equation
(3.9) reads:

9Σeff �
9M�ptq

2πR2�
e�

R
R� �

9Mgptq
2πR2

g

e
� R
Rg (3.12)

where all the functions and parameters are as specified in Sec. 3.2.1. If radial flows
are neglected, (3.12) gives the accretion profile at any time in our minimal model.

3.2.3 Metallicity evolution with independent annuli

In a model with independent annuli, the metallicity evolution of each annulus is
governed by the equation:

BX̃i

Bt �
9Σ�
Σg

� X̃i

9Σacc

Σg

(3.13)

where X̃i � Xi{yi is the abundance by mass of an element i, normalized on its yield
yi. Strictly speaking, equation (3.13) is an approximation, because, consistently with
out treatment of star formation (see Sec. 3.2.1), it assumes instantaneous recycling.
For this reason, it can be considered reliable only to predict the abundances of α
elements, which are produced by short-lived stars. Furthermore, (3.13) can only be
straightforwardly applied to abundances in the ISM; the spatial distribution of stellar
abundances, in fact, is known to be severely affected by stellar radial migration
(e.g. Schönrich & Binney 2009; Kubryk, Prantzos & Athanassoula 2013; Minchev,
Chiappini & Martig 2014). However, restricting our attention to α elements in the
ISM will not prevent us to draw significant conclusions.

If X̃i � 0 at t � 0, the explicit solution for (3.13) is:

X̃ipt, Rq � e�σpt,Rq
» t

0

eσpt
1,Rq 9Σ�

Σg

pt1, Rqdt1 (3.14)

where we introduced the dimensionless coordinate:

σpt, Rq :�
» t

0

9Σacc

Σg

pt1, Rqdt1 (3.15)

Notice that σ increases with time at different rates with varying R, implying
different timescales for chemical evolution at different radii.
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3.2.4 Independent-annuli chemical evolution of exponential
discs

The independent-annuli metallicity evolution of the minimal model of Sec. 3.2.1 is
conveniently computed in terms of the dimensionless time and space coordinates:

τ :� t

t1
ρ :� R

R1

(3.16)

where:

t1 :� N

N � 1
t� R1 :� N

N � 1
R� (3.17)

In our fiducial model, t1 � 43.8 Gyr and R1 � 8.75 kpc.
Under the independent-annuli assumption, 9Σacc is given by (3.12) (see Sec. 3.2.2),

and therefore the coordinate σ defined in (3.15) is:

σpτ, ρq � q0e
�ρp1� e�τ q � τ

N � 1
(3.18)

where q0 � Ât1M
N�1
g,0 {N2, which is a dimensionless parameter. In the fiducial model,

q0 � 37.5
Note that the coordinate (3.18) is time-increasing (and thus, well defined) for

τ � ρ   lnppN � 1qq0q. The reason is that outside this domain (3.12) formally
describes an effective wind and therefore cannot be used as an accretion term into
(3.13) anymore. Our fiducial model matches the requirement for its present age out
to more than 20 kpc, which is large enough for a comparison with observations.
Within this domain, the metallicity evolution (3.14) reads:

X̃ipτ, ρq � q0e
�σpτ,ρq�ρ

» τ
0

eσpτ
1,ρq�τ 1dτ 1 (3.19)

with σ given by (3.18).
Equation (3.19) gives the general evolution of the abundance profiles for an

exponential disc obeying the Kennicutt-Schmidt law with an exponentially declining
SFH, in the absence of radial flows. It provides a family of self-similar solutions for
each value of the dimensionless parameter q0.

In Fig. 3.2 we show, for the fiducial value q0 � 37.5, the resulting profile, in
dimensionless units, for some values of the dimensionless time τ . In the units of the
fiducial model, the maximum radius shown is Rmax � 17.5 kpc, while the present
time is τ � 0.27, corresponding to a profile between the solid blue line and the
dashed black line.

As a consequence of the exponential structure of the disc and of the Kennicutt-
Schmidt law, chemical enrichment in this model proceeds on longer timescales at
larger radii (formally, σ increases with τ more rapidly for smaller values of ρ, see
(3.18)). As shown in Fig. 3.2, the inner regions relatively quickly tend towards
an approximately common equilibrium, while enrichment at the periphery proceeds
much slower, with the outermost annuli being progressively less evolved and more
metal-poor. As a result, this class of models predicts, at early times, a negative
abundance gradient throughout the disc and, at late times, a progressive flattening
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Figure 3.2: Evolution of abundance profiles, in dimensionless units, for an exponential
disc forming stars according to the Kennicutt-Schmidt law. The scaling for the Milky
Way is R1 � 8.75 kpc and τ � 0.27. Progressive flattening and even gradient inversion
occur at late times, contrary to observations. No radial flows, nor inside-out formation,
are included in this model.

in the inner regions and even the development of an inverted gradient there. This
prediction is at strong variance with the observed properties of spiral galaxies today
(e.g. Moustakas et al. 2010; Sánchez et al. 2014) and suggests that a major revision
of one or more of our hypotheses is necessary.

The most arbitrary of our assumptions is probably equation (3.6). However, we
repeated our calculations with a very different star formation history (vanishing,
rather than peaking, for t � 0) and we verified that this does not significantly alter
the behaviour shown in Fig. 3.2, which is more likely driven by the radial structure
of the disc and of the accreting material.

More effective, in this sense, is to remove the hypothesis, implicit in Sec. 3.2.1,
that the stellar scalelength R� is constant with time. This route is tightly linked to
the inside-out formation scenario (e.g. Larson 1976), which predicts a rather different
distribution of accretion (and therefore of metal dilution) and is indeed the most
commonly invoked mechanism to explain abundance gradients in spiral galaxies (e.g.
Matteucci & Francois 1989; Mollá, Ferrini & Dı́az 1997; Boissier & Prantzos 1999;
Chiappini, Matteucci & Romano 2001; Naab & Ostriker 2006; Pilkington et al.
2012). The other way to significantly alter the accretion profile is the removal of
the independent-annuli assumption (see Sec. 3.1). This is the main topic of this
work and will be discussed in detail in Secc. 3.3 and 3.4. Our combined approach
to inside-out growth and radial flows will be discussed in Sec. 3.5.
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3.3 Angular momentum, accretion and radial flows

3.3.1 General context and basic equations

The classical theory of galaxy formation (White & Rees 1978) predicts that spiral
galaxies accrete a substantial part of their mass from the cooling of large and hot
gas reservoirs (coronae), which have been detected in X-ray emission around local
spiral galaxies, including the Milky Way (Anderson, Bregman & Dai 2013; Bogdán
et al. 2013a; Bogdán et al. 2013b; Miller & Bregman 2015). Due to their large
(close to virial) temperatures, these structures likely have a non-negligible pressure
support against gravity and therefore they are expected to rotate at less than the
centrifugal speed at each point; this results in a local angular momentum deficit at
the moment of accretion on the centrifugally-supported disc. Other channels, like
accretion from filaments (Dekel & Birnboim 2006) or minor mergers (Di Teodoro &
Fraternali 2014) can bring some cold gas directly to the disc; material accreted in
these ways is not even expected to always rotate in the same sense of the galaxy.
An average local angular momentum deficit in accretion is therefore a quite general
expectation.

The basic equation describing the dynamical consequences of accretion onto a
rotating disc has been first introduced, in the context of galaxy evolution, by Mayor
& Vigroux (1981) and then improved by Lacey & Fall (1985). For our purposes, it
can be conveniently rewritten, in terms of the radial mass flux µ defined in (3.11),
as:

µ � �2παR2
9Σacc (3.20)

where we introduced the dimensionless parameter α, which is a measure of the local
angular momentum deficit of the infalling material with respect to the disc:

α :� ldisc � lacc

R Bldisc

BR
(3.21)

Since Bldisc{BR is always positive, the parameter α is positive whenever lacc   ldisc

and the radial mass flux is therefore directed inwards. In the typical case of a flat
rotation curve, (3.21) reduces to:

α � 1� Vacc

Vdisc

(3.22)

The simplest situation in which a prediction for α can be made is the case of
accretion from an isothermal corona in a logarithmic potential, for which we have:

α � 1�
d

1� δ
c2
s

V 2
disc

(3.23)

where cs is the isothermal sound speed of the hot gas and δ is the logarithmic
derivative of the equatorial density of the corona:

δ � � B ln ρ

B lnR
(3.24)
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We will address this topic in much more detail in Chapter 41. We can notice here
that, already in the ideal case described by (3.23) and (3.24), α is constant with
R only if the coronal density follows a power-law along the equator, which in gen-
eral will not be true. Furthermore, the shape of the function α can be altered
by hydrodynamical interactions between the lower layer of the hot corona and the
cold extraplanar gas that circulates near the disc in the so-called galactic fountain
(Marinacci et al. 2010a; Marasco, Fraternali & Binney 2012). We discuss this spe-
cific problem in some more detail in Appendix 3.A. In Appendix 3.B, we propose
instead some back-of-the-envelope calculations to gain some insight on the more
complex problem of cold-mode accretion. In general, however, α is likely a non-
trivial function of both space and time; while more theoretical and observational
efforts are still required to deepen our understanding in this respect, it is useful to
develop a method to evaluate the impact on galaxy evolution of the local angular
momentum of the accreting material, under general conditions.

3.3.2 The general mass flux decomposition

As already mentioned (Sec. 3.1, Sec. 3.2.2), the observed structural properties of
spiral galaxies do not give us direct constraints on the accretion rate surface density
9Σacc, but just on the effective accretion rate 9Σeff, which should then be decomposed
in two contributions: direct accretion from IGM 9Σacc and a radial mass flux µ (the
mass flux decomposition problem).

If the equation of angular momentum conservation (3.20) is taken into account,
the continuity equation (3.10) becomes a linear differential equation for the unknown
µ, whose solution is:

µpt, Rq � 1

hpt, Rq
�
µ0 � 2π

» R
R0

R1hpt, R1q 9Σeffpt, R1qdR1



(3.25)

where h is the dimensionless auxiliary function:

hpt, Rq � exp

"» R
R0

dR1

R1αpt, R1q
*

(3.26)

while R0 is an arbitrary radius and µ0 � µpR0q is an integration constant. We recall
that 9Σeff is specified by the considered structural evolution model, according to
(3.9), while α describes the angular momentum of the accreting material, according
to (3.21). Once the radial mass flux µ is known from (3.25), the accretion rate
surface density 9Σacc is readily computed from (3.20):

9Σacc � � µ

2παR2
(3.27)

while the radial velocity uR immediately comes from equation (3.11):

uR � µ

2πRΣg

(3.28)

1See, for instance, the lower-right panel of Fig. 4.2
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This completes the solution of the mass flux decomposition problem.
Note that, imposing the condition that the total accretion rate is finite, it follows

form (3.20) that the radial mass flux must vanish both at the origin and at infinity,
provided that α is a limited function there; in particular, in all but pathological
cases, it is safe to assume R0 � 0 and µ0 � 0 2. We can also see as a consequence,
by integrating the continuity equation (3.10), that the total accretion rate:

9Macc �
» �8

0

2πR 9ΣaccdR

always equals the total effective accretion rate. In other words, taking the detailed
angular momentum distribution of accreting material into account does not alter
the total needed amount of accretion from the IGM, but it affects the way such
accretion is distributed in space.

The solution given by (3.25) and (3.26) can be applied to all galaxy models where
the net (azimuthally averaged) radial gas flows are dominated by accretion and
angular momentum conservation; it provides the mass flux decomposition (and in
particular the correct accretion profile) for any desired structural evolution (encoded
in 9Σeff) and dynamical properties of accreting material (encoded in α), by the means
of explicit quadrature formulae.

3.3.3 Particular cases

A particularly simple case is the one where α is a function of time only. This encom-
passes the majority of the cases considered so far in the literature, which effectively
assume α to be constant with both time and space. If α does not dependent of
radius, the solution (3.25), (3.26) reads:

p�µqpt, Rq � 2πR� 1
αptq

» R
0

R11� 1
αptq 9Σeffpt, R1qdR1 (3.29)

An interesting property of (3.29) is that, whenever the effective accretion rate
9Σeff is (or can be approximated by) an analytic function of radius:

9Σeff �
¸
k

akR
k (3.30)

then the derived accretion rate 9Σacc is an analytic function of radius as well:

9Σacc �
¸
k

ak
1� pk � 2qαR

k (3.31)

For the simple exponential model described in Sec. 3.2.1, (3.29) becomes:

p�µqpt, Rq � 9M�ptqf
�

1

αptq ,
R

R�



� 9Mgptqf

�
1

αptq ,
R

Rg



(3.32)

2Note that, if α is limited near the origin, the definition of h (3.26) is formally singular for
R0 � 0; however, notice also that R0 can be kept arbitrary (and finite) here, since the dependence
on it cancels out in (3.25) for µ0 � 0.
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where f is derived from the lower incomplete Euler gamma function γ:

fpa, xq :� x�aγp2� a, xq �
8̧

k�0

p�1qk
k!

xk�2

a� k � 2
(3.33)

while the accretion rate surface density is given by:

9Σaccpt, Rq �
9M�ptq

2πR2�
g

�
1

αptq ,
R

R�



�

9Mgptq
2πR2

g

g

�
1

αptq ,
R

Rg



(3.34)

with:

gpa, xq :� ax�p2�aqγp2� a, xq �
8̧

k�0

p�1qk
k!

a

a� k � 2
xk (3.35)

The expressions above further simplify for some particular integer values of a,
or particular fractional values of α. Completely obvious is the case α � 0 (i.e.
a Ñ �8), where it is µ � 0 and 9Σacc � 9Σeff, as expected. Less trivial particular
cases are essentially those originally found and described by Pitts & Tayler (1989)
3. Our approach allows us to explore, with the same simplicity coming from an
analytic formulation, the whole continuum of possible values of α.

There are of course other cases admitting a simplified treatment. For instance,
the one where α is a linear function of radius:

αpRq � α0

�
1� R

Rα



(3.36)

corresponds to the following simple form for the auxiliary function:

hpRq � K

�
1� Rα

R


� 1
α0

(3.37)

where K is a constant such that hpR0q � 1. Note that the coefficients α0 and Rα

can be a function of time. Note also that Rα can be negative, but in this case there
is a critical radius |Rα|, where corotation occurs, out of which a separate solution is
formally needed, associated to an outward radial flow.

3.3.4 Application to the minimal galaxy evolution model

As an illustrative example, we discuss here the application of our analytic mass flux
decomposition to the fiducial model of Sec. 3.2.1.

Fig. 3.3 reports the accretion profile (upper panel), the inward radial mass flux
p�µq (middle panel) and the inward radial velocity p�uRq (lower panel), computed
at the present time for some values of the angular mismatch parameter α, assumed
to be constant with R 4.

The case α � 0 is for fine-tuned local angular momentum balance between
accretion and the disc. In this case, there are no radial flows and the accretion rate

3Some differences arise not from the decomposition, but from the details or their assumed 9Σeff.
4Note that no assumption is necessary here about the dependence of α on time.
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Figure 3.3: Illustrative mass flux decomposition for the fiducial model (Sec. 3.2.1), at
the present time, for different values of the angular momentum mismatch parameter α.
Upper panel: accretion rate surface density (in logarithmic scale). Middle panel: inward
radial mass flux. Lower panel: inward radial velocity. For α � 0, there are no radial flows
and accretion coincides with the effective accretion. For larger α, accretion from the IGM
preferentially occurs in the outer regions, from which the gas is then brought inwards by
radial flows.
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surface density (solid blue line) is equal to the effective accretion rate surface density
(3.12).

Slightly larger values of α already have a significant impact on the shape of
the accretion profile. The qualitative effect is a depletion of the needed accretion
in the inner regions and a corresponding enhancement in the outskirts. This is
a redistribution effect, since the total accretion rate is independent of α (see Sec.
3.3.2). The magnitude of the effect rapidly increases with increasing α: already for
α � 0.2 (corresponding, for a flat rotation curve, to material accreting with 80% of
the rotational velocity of the disc), the needed accretion at 20 kpc is increased by
more than one order of magnitude.

The increasing change in the shape of the accretion profile is associated to the
onset of an increasingly large inward radial mass flux: the material falling down in
the outskirts then travels radially within the disc, to reach the inner regions where
it is needed to sustain the structural evolution of the disc. While the overall shape
of the radial mass flux profile is mainly dictated by general boundary condition
requirements (see Sec 3.3.2), the precise position of the peak is in general a function
of α. However, it always coincides with the boundary between the inner region,
where accretion is depleted with respect to the effective accretion, and the outer one,
where it is enhanced. This fact is completely general, being an obvious consequence
of the continuity equation (3.10).

The predicted radial velocity pattern is a non-trivial function of both radius and
α (besides, of course, of time, as all the involved quantities), implying that the full
calculation is always required for a model with radial flows to be compatible with an-
gular momentum conservation. The predicted magnitude of radial velocities is very
low, of the order of 1 km/s or less, which is not directly accessible to observations,
but important for chemical evolution (see Sec. 3.1 and the next Section).

All the trends reported in Fig. 3.3 are in very good agreement with the ones
found by Bilitewski & Schönrich (2012) by means of numerical techniques.

3.4 Chemical evolution with radial flows

In the presence of radial flows, equation (3.13) is no longer valid and it has to be
replaced with the following equation:

BX̃i

Bt � uR
BX̃i

BR �
9Σ�
Σg

� X̃i

9Σacc

Σg

(3.38)

This is a partial differential equation, the solution of which is usually approached
by the means of numerical finite-difference techniques. Equation (3.38), however,
has the special property of being linear in the unknown X̃i. This allows it to be
solved in a much simpler, more stable and less numerically demanding way, which
is the method of characteristics.

3.4.1 The method of characteristics

The method of characteristics consists of the reduction of a linear partial differential
equation into a combination of two sets of ordinary differential equations. The first
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Figure 3.4: Illustrative application of the method of characteristics to the fiducial model
of Sec. 3.2.1, when radial flows are included as in Sec. 3.3.4. Left panels: The characteristic
lines, along which metallicity evolution can be computed independently. Right panels: The
resulting logarithmic abundance profiles, at different epochs; the solid blue line is for the
present time. Different rows are for different values of the angular momentum mismatch
parameter: α � 0 (upper panels), α � 0.1 (middle panels) and α � 0.2 (lower panels).
The case α � 0 (no radial flows) is equivalent to the independent-annuli assumption (cfr.
Fig. 3.2). Negative gradients are already predicted for small, but non vanishing, values of
α.
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set defines characteristic lines, which are the loci, in the computational domain,
along which the information propagates that is relevant to the solution of the prob-
lem. The second set encodes such an information propagation and describes the
evolution of the unknown field along individual characteristic lines.

In our particular case, characteristic lines, in the pt, Rq computational plane, are
the integral curves of the radial velocity field uR: that is, they are the solutions of
the equation:

dRchar

dt
� uR (3.39)

The left-hand side of (3.38) is easily recognized as the total time derivative of X̃i

along the characteristic lines defined by (4.52). This implies that, when restricted
along characteristics, (3.38) formally reduces to (3.13) and therefore that the metal-
licity evolution along each characteristic can be independently computed by the
means of the explicit quadrature formulae (3.14) and (3.15).

In this way, the problem of including radial gas flows into chemical evolution
is reduced to replacing a model with independent annuli with a model with inde-
pendent characteristics, essentially keeping the same computational difficulty. Note,
however, that the independence of characteristic lines strictly relies on our simpli-
fying assumptions and in particular on the instantaneous recycling approximation
(Sec. 3.2.3). For our approach to be extended to elements produced by long-lived
stars (among all, iron), some interaction should be accounted for between different
lines, within a distance given by |uR| times the relevant stellar lifetimes; further-
more, the distance travelled by the stars themselves, due to stellar radial migration,
should be taken into account as well in this case.

From a mathematical point of view, our approach is similar to the one by Ed-
munds & Greenhow (1995), although these authors did not include any accretion
term in their equations, neither as a dynamical driver of radial flows, nor as a source
for dilution of metals, while our formalism includes both effects in a natural way.

Physically, characteristics may be regarded as shrinking gaseous rings (for α ¡ 0),
though attention should be paid to the fact that the matter they are constituted
of is not fixed but continuously changing with time: at each radius, novel material
is acquired from the IGM, while some other mass is left behind, deposited into the
stellar component due to star formation.

3.4.2 Application to the minimal model

In Fig. 3.4 we illustrate the application of the method of characteristics to the
chemical evolution of the minimal model of Sec. 3.2.1, with radial flows induced
by a local angular momentum mismatch, as described in Sec. 3.3.4, assuming some
values of α, which we take here to be constant with both space and time, increasing
from α � 0 (upper panels) to α � 0.2 (lower panels). In the left panels, the
characteristic lines are drawn in the pt, Rq plane, while the right panels show the
computed logarithmic abundance profiles, as a function of radius R, for different
times.

For α � 0, there are no radial flows (uR � 0 everywhere) and therefore, according
to (4.52), characteristic lines are lines of constant radius. This case is, of course,
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coincident with the independent annuli model. In fact, the abundance profile shown
in the upper right panel is just the same as Fig. 3.2, but with dimensional units for
space and time and a logarithmic scale for the abundances. As already pointed out,
the predicted abundance profile at the present time (the solid blue line) is in very
strong disagreement with observations.

For α � 0.1 and α � 0.2, small, but non-negligible, inward radial gas flows
onset (cfr. Fig. 3.3, lower panel). Accordingly, characteristic lines now connect
radii that are no more constant, but decreasing with time. From the right panels,
we see that even a small deviation from perfect corotation between the accreting
material and the disc has a dramatic impact on the predicted abundance profiles. A
very small value of the angular momentum mismatch parameter α � 0.1 is already
able to completely remove the inner gradient inversion, which was plaguing the
independent annuli model. Furthermore, the steepness of the resulting profile is
strongly dependent on α.

3.4.3 Origin of the steepening effect

Both the mathematical and the physical origin of the described behaviour can be
relatively easily understood (see also Chamcham & Tayler 1994 on this).

From a mathematical point of view, the origin is two-fold. First, as described in
Sec. 3.3.4 (Fig. 3.3, upper panel) increasing α implies a modification of the accre-
tion profile. Depleted accretion in the inner regions means a reduced dilution and
therefore higher metallicity there, while the opposite is true in the outskirts, going
in the direction of creating or steepening abundance gradients. Furthermore, radial
flows tend to bring inwards metals produced at large radii, further increasing the
enrichment of the inner regions at the expenses of the outer ones.

From a physical point of view, the two effects are tightly linked to each other and
they can be understood altogether. In our approach, in fact, all the models share
the same structural evolution and therefore the same amount of gas arriving at each
radius and time. The only difference is in the path that is followed by gas elements
to come to their present position: directly from the IGM, and therefore unpolluted,
in the case α � 0, or through a more complex path, in the other cases, including a
travel within the disc, where primordial material gets mixed with higher metallicity
gas and polluted by ongoing star formation.

3.4.4 The role of boundary conditions

A major feature of Fig. 3.4 is that, when α � 0, the domain where abundances
are predicted appears to be shrinking with time. Such a behaviour is a logical
outcome of our chosen computational method: at each time, the maximum radius
where abundances are predicted is the one reached, at that time, by the outermost
considered characteristic: in the shown example, the one starting at t � 0 from a
radius Rmax � 20 kpc. Points lying, in the pt, Rq plane, above and to the right
of such a line are not reached by any characteristic and therefore the information
needed to compute the metallicity evolution is not available there.
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Figure 3.5: Similar to Fig. 3.4, but showing the two alternative strategies to extend the
predicted abundance profiles to the whole computational domain, in the illustrative case
α � 0.2. Upper panels: The boundary-extension strategy, where the pt, Rq plane is filled
with additional characteristics starting from the maximum radius Rmax at different times;
this is equivalent to the classical approach, with radial accretion of primordial material
from the outer boundary, and predicts a sharp steepening of gradients at the disc periphery.
Lower panels: The domain-extension strategy, where the additional characteristics start
at the initial time t � 0, but from larger radii; the outer profiles in this case are the
smooth continuation of the ones in Fig. 3.4. Note that the characteristics of the boundary
extension strategy are the same of the domain-extension strategy, but cut along the vertical
black solid line (lower-left panel).

83



A simple solution to this drawback is to fill the gap in the pt, Rq plane with ad-
ditional characteristics, as shown, for the illustrative case α � 0.2, in the upper-left
panel of Fig. 3.5. At variance with the lines already shown in Fig. 3.4, lower-left
panel, all of which start at the same time t � 0 but from different radii, these
additional lines all start from the same radius R � Rmax but at different times.
This method, which we refer to as the boundary-extension strategy, allows the full
calculation of the metallicity evolution, provided that some value is chosen for the
normalized abundance X̃i at the starting point of the added lines, which coincides
with the outermost considered radius Rmax. This strategy is the equivalent, within
the characteristic framework, of the one adopted in classical finite-difference calcu-
lations, where some boundary condition needs to be stated for the metallicity of the
material incoming from the chosen outer edge of the model.

The upper-right panel of Fig. 3.5 shows the predictions of the boundary-extension
strategy, if accretion of primordial material is allowed to occur at R � Rmax. Profiles
computed in this way show a sharp steepening in the outer regions. The illustrative
example shown here is an extreme case, the effect being milder for a non-primordial
composition of the IGM. For instance, if we assumed X̃i,IGM � 0.1, all predicted
abundances would be slightly higher and the profiles in the upper-right panel of Fig.
3.5 would tend, for RÑ Rmax, to logpX̃iq � �1.0 instead of logpX̃iq � �8.

The solution discussed above is not the only possibility. The precise location
and extent of the information gap in the pt, Rq plane clearly depends on the choice
of the initial radius for the outermost characteristic Rmax. Since this is in general
largely arbitrary, it is useful to look at the results for different choice of Rmax. In
particular, a suitably large value of Rmax should in principle allow to fill any desired
region of the pt, Rq plane in a natural way. This is shown in the lower-left panel
of Fig. 3.5, where characteristics start from radii as large as Rmax � 30 kpc and
allow predictions out to R � 20 kpc at t � 12 Gyr, without the need of particular
assumptions on boundary condition 5.

The abundance profiles predicted by this domain-extension strategy are reported
in the lower right panel of Fig. 3.5. In this case, the predicted abundance profiles are
a smooth continuation of the one in Fig. 3.4 (lower-right panel) and no steepening
is predicted in the outer regions.

The difference between the predictions of the two methods, which may be thought
of as the extremes of a continuum of intermediate possibilities, can be very clearly
understood by looking at the corresponding characteristic line diagrams. Comparing
the two left panels of Fig. 3.5, in fact, we see that the set of characteristics used in
the boundary-extension method are the same of the domain-extension one, but cut
along the line of constant radius R � 20 kpc. This has the consequence of ignoring
the initial metallicity evolution, occurring along the cut portion of the lines, and
therefore of underestimating the metallicity in the outer regions.

We cannot say that one method is definitely better than the other, since we
do not know, in general, whether and how much radial accretion, in real galaxies,

5The reader may remember from Sec. 3.2.4 that our fiducial model without radial flows formally
develops a wind outside 20 kpc. When radial flows are considered, however, the accretion profile
remains positive out to large radii already for small values of α and can therefore be safely used
in (3.13) and in (3.15).
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Figure 3.6: Abundance gradients, in the fiducial model, as a function of the angular
momentum mismatch parameter α. Horizontal lines are Milky Way measurements for
oxygen (upper line) and magnesium (lower line) in Cepheids (Luck & Lambert 2011). The
predicted gradient (solid red line) is very sensitive to the rotational velocity of accreting
gas; observations constrain it in a quite narrow range, of about p72�2q% of the rotational
velocity of the disc.

directly occurs from an outer boundary. However, irrespectively of the adopted
choice, it should be emphasized that the method of characteristics is the simplest
way to clearly identify the region where predictions on abundance profiles, in a
given galaxy evolution model, are dominated by effects associated with the choice
of boundary conditions. This is potentially of great importance in the modelling
of the outskirts of spiral galaxies, where theoretical predictions often disagree with
each other and with observations.

3.4.5 Calibration from observed gradients

For a quantitative comparison with observations, we consider the domain extension
technique, so that predictions do not depend on the choice of Rmax, provided that
it is large enough. In our application, we never found an extension to be necessary
farther out than 40 kpc.

In Fig. 3.6 the predictions are shown (solid red curve) of our fiducial model for
the present-day abundance gradient, computed between 5 and 17 kpc, as a func-
tion of the angular momentum mismatch parameter α. We compare our predictions
with the observed gradient, measured in the same radial range by Luck & Lambert
(2011) for two representative α elements, oxygen and magnesium, in Cepheid stars
in the Milky Way 6. Being very young stars, Cepheids are a fair tracer of ISM

6These values are also in agreement with the recent findings by Genovali et al. (2015), who
unfortunately did not measure oxygen abundances, but report abundance gradients of various
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abundances, while oxygen and magnesium are among those elements that are pre-
dominantly produced by Type II supernovae (SN) and therefore they are negligibly
affected by time-delay effects, which are not included in our calculations. Besides
observational uncertainties, the difference between the observed gradients for oxy-
gen and magnesium may be partially due to a different dependence of the stellar
yields on metallicity. Since our formalism does not take these details into account,
our predictions can just be compared with the finite-width range defined by the
two observed values. However, the predicted gradient is so sensitive to the angular
momentum of accreting material that α is nonetheless constrained in a very narrow
range, between 0.26 and 0.30. In the approximation of a flat rotation curve, (equa-
tion (3.22)), this means that metal-poor gas is accreted onto the Milky Way with an
average rotational velocity equal to 70 � 74% the rotational velocity of the disc, in
very good agreement with the estimate by Bilitewski & Schönrich (2012). Inverting
(3.23), this would correspond to a coronal temperature Tcorona � 1.8{δ � 106 K,
where δ is defined as in (3.24) assuming a circular speed Vdisc � 220 km{s and a
mean molecular weight µm � 0.6.

3.5 Inside-out models with radial flows

3.5.1 Structural constraints to inside-out growth

Radial flows are not the only possibility to explain abundance gradients in spiral
galaxies, the main alternative being inside-out growth of discs (see references in Sec.
3.2.4).

As we have extensively discussed in the previous Chapters, the angular momen-
tum build-up of galaxies, predicted by the theory of tidal torques (Peebles 1969;
White 1984) is believed to be a major ingredient in determining the structure of
galaxy discs (Fall & Efstathiou 1980; Mo, Mao & White 1998), which are generally
expected to grow in size with time (e.g. Firmani & Avila-Reese 2009; Brooks et al.
2011), though the details depend on the particular accretion and merger histories of
individual galaxies (Aumer, White & Naab 2014). On the other hand, the angular
momentum assembly of spiral galaxies is also expected to drive radial flows within
the disc, if the local aspects of angular momentum accretion are taken into account
(Sec. 3.3.1). It is therefore likely that inside-out growth and radial flows, rather than
being alternative, are both at work in real galaxies. However, the problem arises of
how to break the degeneracies of a combined approach and to tell what contribution
to the development of abundance gradients comes from inside-out growth and radial
flows separately.

In close resemblance to what we have done in Sec. 3.2 for a simpler model, we
propose to constrain the structural evolution (in this case, the inside-out growth) of a
spiral galaxy by making use of its observed structural properties (e.g. the present-day
distribution of gas, stars and star formation rate). As we have seen in Chapter 2, the
radial profile of the star formation rate surface density (SFRD) is a particularly good
tracer of inside-out growth. We can therefore use it to fix the relevant parameters

α-elements with a median value of �0.05 dex kpc�1.
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independently of chemical information and, in this way, we can fix the contribution
of inside-out growth to the development of abundance gradients with no further
freedom. In the following, we apply this idea to case of the Milky Way, while
in Sec. 3.6 we discuss an application to the external galaxy NGC 628. For the
case of the Milky Way, in order to facilitate the comparison with previous work on
the subject, we will first adopt a formalism inspired by the classical semi-analytic
models of inside-out growth (e.g. Matteucci & Francois 1989, Boissier & Prantzos
1999, Chiappini, Matteucci & Romano 2001), while in Sec. 3.5.4 we will consider a
formalism more adherent to our own findings of Chapter 2.

Following the classical works mentioned above, we assume the effective accretion
rate surface density to be an exponentially decreasing function of time, but with a
timescale that is an increasing function of radius:

9Σeffpt, Rq � Σ8pRq
taccpRq exp

�
� t

taccpRq



(3.40)

where Σ8 is the asymptotic total (baryonic) mass surface density of the disc and
tacc is the radially dependent accretion timescale. To parametrize Σ8, we require
the total baryonic mass of the disc to have an exponential radial distribution at late
times and therefore:

Σ8pRq � M8
2πR28

e�
R
R8 (3.41)

while for the accretion timescale tacc we choose, as customary, a linearly increasing
function of radius:

taccpRq � tacc,0

�
1� R

Racc



(3.42)

This model has 4 parameters pM8, R8, tacc,0, Raccq, which we constrain making a fit
to observed properties of the Galactic disc today.

Our main observational constraint is the present-day SFRD profile of the Milky
Way, as traced by the distribution of SN remnants (Case & Bhattacharya 1998).
Since this is only given in dimensionless units, we scale it to the solar value, which
we estimate applying the Kennicutt-Schmidt law (3.2) to a gas surface density of
10 M@ pc�2 (Binney & Merrifield 1998, note that we included a correction for
helium). The SFRD profile derived in this way is also consistent with several other
estimates of the SFRD in our Galaxy (e. g. Fraternali & Tomassetti 2012 and
references therein)7. We also require that the mass surface density of stars at the
solar radius (R@ � 8.5 kpc), is Σ�pR@q � p37.1 � 1.2q M@ pc�2 (Read 2014) and
that the stellar scalelength today is R� � p2.5 � 0.25q kpc. This last constraint
is chosen in such a way that the nominal 2σ interval coincides with the range of
possible values 2� 3 kpc quoted by Binney & Tremaine (2008).

For each set of parameters, equations (3.40) and (3.2) can be integrated in time,
yielding the surface density of stars and gas (and thence of star formation rate) at
each time and radius. Then, by the means of χ2 minimization, we select the model
that better matches the observational requirements. In Fig. 3.7 the comparison is

7Note, however, that the Case & Bhattacharya (1998) profile has been recently questioned by
Green (2015), who propose a more centrally concentrated distribution.
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Figure 3.7: Calibration of the inside-out growth parameters on the observed SFRD pro-
file. Points with error bars are measurements for the Milky Way based on the distribution
of SN remnants (Case & Bhattacharya 1998). The solid line is our model. See text for
further details.

shown between the model and observed SFRD profile at the present time. The
model present-day stellar mass surface density at the solar radius is Σ�pR@q �
36.0 M@ pc�2, while the present-day stellar scalelength is R� � 2.9 kpc. The
inferred infall timescale virtually vanishes at the origin (formally, tacc,0 � 22 Myr)
and then linearly increases with radius with a slope of 1.1 Gyr{kpc.

Note that with the formalism adopted here the stellar disc is only approximately
exponential at any given time. In Sec. 3.5.4 we will present a treatment where the
stellar disc is strictly exponential at all times, built upon the theory presented in
Chapter 2. Another alternative, adopted by Bilitewski & Schönrich (2012), is to
assume that the disc of gas (rather than stars) is exponential at all times; in this
case the SFRD is exponential as well (because of the Kennicutt-Schmidt law) and
in particular there can never be a depletion of star formation at small radii.

3.5.2 Accretion and radial flows in an inside-out model

In Fig. 3.8, the mass flux decomposition, computed as described in Sec. 3.3.2, is
reported as a function of the angular momentum mismatch parameters α (3.21),
in a similar fashion to Fig. 3.3, but now for the inside-out growing model derived
above.

The upper panel shows the predicted present-day accretion profiles for different
values of α (assumed to be constant with radius). The first thing to be noticed is
that accretion in this case always peaks at a finite galactocentric radius (at variance
with the non inside-out case, where it always had its maximum at the origin, cfr.
Fig. 3.3, upper panel). This is a distinctive feature of an inside-out growing model,
which is also clearly reflected in the observed star formation rate surface density
profile (Fig. 3.7). Furthermore, the radius where maximum accretion occurs is an
increasing function of α. This is because, when some local angular momentum deficit
is taken into account, accretion preferentially occurs at large radii, from which fresh
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Figure 3.8: Similar to Fig. 3.3, but for an inside-out model of the Galaxy (Sec. 3.5.1).
Note that a linear scale is adopted here for all the plots. The accretion profile has a marked
peak at a finite radius, like the profile of star formation (Fig. 3.7). With increasing α, the
peak of accretion moves outwards and progressively strong radial flows develop at large
radii, bringing the gas, accreted in the outskirts with low angular momentum, towards the
inner star formation peak.
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gas is then brought inwards by radial flows.

The inwards radial mass flux p�µq, consistently predicted by the mass-flux de-
composition, is shown in the middle panel of Fig. 3.8. According to the general
property pointed out in Sec. 3.3.4, the position of the peak of p�µq coincides with
the radius outside which the predicted accretion is enhanced with respect to the ef-
fective one. The peak radius is larger now with respect to the non inside-out growing
case: radial flows in this model bring inwards material that has been accreted, with
relatively low angular momentum, at very large radii.

Finally, in the lower panel of Fig. 3.8 the predicted present-day patterns are
reported for the inward radial velocity of gas, as a function of radius, for different
values of α. Again, these show a non-trivial trend, which is also strongly varying
with α and it is different from the one predicted in the non inside-out model (Fig.
3.3), especially in the inner and outer regions. This indicates that each particular
structural evolution model requires its own mass flux decomposition, for radial flows
to be compatible with angular momentum conservation; such a decomposition can
always be easily achieved by means of the explicit formulae given in Sec. 3.3.2.

3.5.3 Abundance gradients in inside-out models with radial
flows

We finally apply the methods described in Sec. 3.4 to compute the abundance gra-
dients in an inside-out model in the presence of accretion-induced radial flows. We
adopt the domain-extension strategy and we assume α to be constant with both
space and time.

A technical digression is due here for completeness. Since our inside-out model
has a formally vanishing gas density at the disc birth, then (3.11) formally implies
infinite radial velocities at t � 0, which is obviously unphysical. Pitts & Tayler
(1996) studied this problem with hydrodynamical simulations and concluded that,
when very strong accretion occurs onto a disc with very low surface density, cen-
trifugal equilibrium is rapidly, but not immediately, achieved, with the consequence
that the physically motivated radial mass flux is smaller than the one predicted by
(3.20). In our models, these conditions occur only at very early times and at very
large radii and are thus expected to have a very limited impact (see also Chamcham
& Tayler 1994). We performed several experiments, adopting different strategies to
ensure a physically meaningful velocity field, and we verified that the results that
we provide in the following are insensitive to the details of the adopted scheme.

As in Sec. 3.4.5, we compare the model predictions with the observed present-day
α-element abundance gradient in Cepheid stars. Fig. 3.9, which is the analogue of
Fig. 3.6, reports this comparison for the inside-out case. With respect to the previous
model, the model with inside-out growth predicts a steeper gradient for any given
value of α. This is because inside-out growth itself has the well known effect of
steepening abundance gradients. As a consequence, the range for the parameter α
inferred from observations is shifted towards lower, but still non vanishing, values
for the angular momentum mismatch parameter. The derived interval is 0.19 ¤ α ¤
0.26, corresponding, in the approximation of a flat-rotation curve for the disc, to
cold gas accreting on the disc of the Galaxy with 74�81% of the rotational velocity
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Figure 3.9: Similar to Fig. 3.6, but for an inside-out model of the Galaxy (Sec. 3.5.1).
Slightly lower values of α are needed in this case to explain the observed abundance gradi-
ents, corresponding to accreting material rotating with as much as 81% of the rotational
velocity of the disc.

of the disc. Also this finding is in very good agreement with Bilitewski & Schönrich
(2012), despite their very different approach to inside-out growth.

3.5.4 The effect of the inside-out growth parametrization

We consider here how the results of the previous Section are affected by the details
of the parametrization of the inside-out growth and of the SFRD profile. To this
purpose, we adopt the here the novel approach that we have introduced in Chapter
2. Furthermore, we replace the SFRD profile by Case & Bhattacharya (1998) with
a more recent determination, based on the revision of the distribution of Galactic
supernova remnants, proposed very recently by Green (2015). His new data and
updated analysis indicate that the inner shape of the SFRD profile of the Milky
Way is very well described by a linear radial increase, followed by an exponential
decline. This is in excellent agreement with the expectation for an exponential disc
with a time-increasing scalelength (cfr. equation (2.5) in Chapter 2). The central
value of the SFRD is not easy to determine with precision, because the central
region of the Milky Way can only be observed in projection, together with material
lying at all galactocentric distances between R � 0 and R � R@. As shown by
Green (priv. comm.), the observed longitudinal distribution is compatible with a
range of possibilities, which, in terms of our parametrization (2.5), correspond to
with νR{νM being comprised between 0.35 and 0.5. For our simple application here,
we adopt the value 0.43, in the middle of the allowed range. With this choice, the
distribution of SNR is reproduced by our theoretical SFRD profile (2.5) if R� �
2.43 kpc, which is in turn in the middle of the allowed range for the scalelength
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Figure 3.10: Similar to Fig. 3.9, but adopting the revised SFRD profile of Green (2015)
and the parametrization of inside-out described in Chapter 2. The allowed values of α are
slightly smaller in this case than in the model of Sec. 3.5.3.

of the Milky Way. Adopting the same stellar mass and global star formation rate
of Sec. 3.2.1, the specific mass and radial growth rates are νM � 5 � 10�2 Gyr�1,
νR � 2.15 � 10�2 Gyr�1, respectively, which are similar to the values measured in
external galaxies (cfr. Table 2.2).

To compute a chemical evolution model, we adopt here the same star formation
history of the fiducial model (see Sec. 3.2.1), while to describe the radial growth we
assume that the ratio between νM and νR is constant and equal to the present-day
value. In Fig. 3.10, predicted gradients are given for this model as a function of the
angular momentum mismatch parameter. The allowed values of α are in this case
0.15   α   0.21, slightly smaller than those found in Sec. 3.5.3 and corresponding
to a rotational velocity of the accreting material between 79� 85% of the rotational
velocity of the disc. We can therefore conclude that even significant changes in the
adopted SFRD profile and in the parametrization of the inside-out growth have a
limited impact on the inferred angular momentum of the material accreting on the
disc the Milky Way.

3.6 Application to NGC 628

As we have shown in Chapter 2, the external perspective that we have of nearby
spiral galaxies allows us to have a much cleaner view of their global structure,
compared to our own Milky Way (see also Sec. 3.5.4). This allows a much easier
determination of the parameters of inside-out growth. On the other hand, gas-
phase abundance gradients of external galaxies are more difficult to determine with
accuracy. In fact, as we have discussed in Sec. 1.1.1, direct measurements are possible
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only in few cases, while indirect measurements can be subject to calibration issues.
For an illustrative application of our methods, we consider here the case of

NGC628 (M74), for which we have measured the inside-out growth parameters in
Chapter 2 (cfr. Fig. 2.2 and Table 2.2), while direct measurements of gas-phase
abundances have been published for this galaxy by Berg et al. 2015 in the context
of the CHAOS project.

For the present application, we adopt the distance D � 7.2 Mpc determined by
Dyk, Li & Filippenko (2006). According to Sec. 2.4.4, this implies a revision of the
mass to M� � 2 � 1010 M@ and of the scalelength R� � 2.4 kpc, while the specific
mass and radial growth rate remain unaffected and equal to νM � 8.22�10�2 Gyr�1,
νR � 2.87 � 10�2 Gyr�1, respectively (Table 2.2). Following the same treatment
described in Sec. 3.2.1, we adopt an exponentially declining SFH. This turns out to
be virtually constant with time: the formally derived timescale is t� � 440 Gyr, as
derived from (3.8), assuming an age t0 � 12 Gyr and requiring the right hand-side
to be equal to t0νM � 0.9864, as implied by (3.4) and the definition of νM (2.3).
Finally, as we did in Sec. 3.5.4 for the Milky Way, we parametrize the growth of
the stellat scalelength with time by assuming that the ratio νM{νR is constant and
equal to the measured value.

In Fig. 3.11, we show, for this model, the predicted present-day abundance pro-
files for different values of the angular momentum mismatch parameter α, overlaid
on the empirical determinations by Berg et al. (2015). The vertical scale of theo-
retical profiles is set for an oxygen yield y � 0.005. Datapoints have a large scatter
at any given radius, which, as suggested Berg et al. (2015), may be due to residual
uncertainties in the determination of electron temperatures. Despite this limitation,
we can recognize a slight preference for models with a positive value of α, tentatively
indicating that gas can be accreting on this galaxy with a local rotational velocity
as low as 60% of the one of the disc.

3.7 Summary

The gas accreting onto the discs of spiral galaxies is likely to rotate, on average, at
a lower speed with respect to the disc itself. This is especially true if the accretion
comes from a hot reservoir, which must rotate more slowly than the disc, because of
its partial pressure support against gravity. We will discuss this effect in much more
detail in Chapter 4 (see also Appendix 3.A below). A similar effect is also likely
for cold-mode accretion, based on geometrical grounds (see for instance Appendix
3.B below). The local angular momentum mismatch in accretion drives inward
radial flows within the disc, due to angular momentum conservation, with at least
two important consequences on structural and chemical evolution models. First,
the accretion profile, as indirectly inferred from the observed structure of discs, is
severely altered, in the sense of an enhancement of the required accretion in the
outer regions and a corresponding depletion in the inner ones. Second, the spatial
distribution of heavy elements is profoundly affected, in the sense of the creation or
a strong steepening of abundance gradients. Abundances are observable and can be
used to shed light on accretion and radial flows, which are still not (see Sec. 3.1).
In this Chapter, we addressed the computation of accretion profiles, radial flows
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Figure 3.11: Comparison of predicted and the observed radial profiles of the abundance of
α-elements in the ISM of NGC 628. Inside-out growth parameters have been fixed to those
required to reproduce the SFRD profile of this galaxy (cfr. Fig. 2.2). Different lines are for
some different values of the angular momentum mismatch parameter α; data-points are
direct measurements of oxygen gas-phase abundances by Berg et al. (2015). Observations
suggest a preference for α ¡ 0 and therefore some angular momentum deficit in accretion,
though the large scatter of datapoints at fixed radius does not allow firm conclusions to
be drawn.

and abundance gradients, as a function of the angular momentum of the accreting
material, from an analytic point of view.

The advantages of an analytic treatment come at the cost of simplifying assump-
tions. In particular, we assumed metallicity-independent yields and the instanta-
neous recycling approximation; we also did not address stellar radial migration and
mechanisms of radial mixing other than those due to angular momentum conserva-
tion. These simplifications limit the predictive power of our chemical analysis to the
abundance profile of α-elements in the interstellar medium. However, this observ-
able is so remarkably sensitive to the angular momentum of the infalling material
that it is very useful to extract the associated information by means of a simple and
easily controllable machinery.

Our work and findings can be summarized as follows.

1. We considered the simplest possible model for the evolution of a galaxy disc –
namely an exponential disc, with constant scalelength, obeying the Kennicutt-
Schmidt law – and we have shown that, as long as radial gas flows are neglected,
it is incompatible with the observed abundance gradients of spiral galaxies.

2. We provided the general exact solution to the problem of decomposing the gas
flows, needed to sustain galaxy evolution, into direct accretion from the IGM
and radial flows within the disc (equations (3.25) to (3.28)), which can be
applied to any axisymmetric, non-viscous model for the structural evolution
of a disc and to any angular momentum distribution of the accreting material;
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we emphasize that with this approach both the accretion profile and the radial
velocity pattern are model predictions, rather than model assumptions.

3. We proposed a novel method, based on characteristic lines, to solve the equa-
tion of metallicity evolution in the presence of radial flows, which makes the
computation of gas-phase α-element abundance profiles very easy and allows
the influence of boundary conditions on the steepness of outer gradients to be
traced straightforwardly.

4. We suggested a strategy to disentangle the contributions of inside-out growth
and radial flows in determining the steepness of abundance gradients: inside-
out growth parameters can be fixed to those required to reproduce non-chemical
observables and in particular the shape of the SFRD profile, which is partic-
ularly sensitive to the structural evolution of the disc; the contribution of
inside-out growth to abundance gradients is thus fixed and residual discrep-
ancies with observations, if present, can then be used to constrain the needed
amount of radial flows.

Given their simplicity and generality, these methods can be readily applied to any
future model of the evolution of our Galaxy or of external spiral galaxies, provided
that radial flows are dominated by angular momentum conservation.

Simple illustrative models, calibrated on the Milky Way, require, to match ob-
servations, a rotational velocity for the accreting material comprised between 70%
and 85% of the rotational velocity of the disc, in very good agreement with previous
estimates. Once this effect is taken into account, a picture emerges in which a sig-
nificant part of the accretion of cold gas occurs in the outskirts of the disc and it is
then brought inwards by radial flows, towards the inner regions where it is required
to sustain star formation.

We have also presented an application to the nearby external spiral galaxy NGC
628, taking advantage of our own measurement of the inside-out growth parameters
of this galaxy, as derived in Chapter 2. The results are compatible with those that
we have found for the Milky Way, though with a larger uncertainty, mainly due to
issues in the observational determination of gas-phase abundances.

APPENDICES

3.A Angular momentum and radial flows in fountain-

driven accretion

We briefly sketch here the basic ingredients for the study of accretion-induced radial
flows in the context of the theory of fountain-driven accretion (Marinacci et al.
2010a; Marinacci et al. 2011; Marasco, Fraternali & Binney 2012).

In this scenario, clouds of cold gas are ejected out of the plane of the disc as a
consequence of star formation feedback and then fall back onto the disc, attracted by
its gravity (the mechanism of galactic fountain, e.g. Melioli et al. 2008). During their
orbit, fountain clouds necessarily interact with the corona. The velocity difference
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between the two media drive the onset of the Kelvin-Helmholtz instability and the
creation of a turbulent wake, where mixing between cold fountain gas and hot coronal
gas occurs. The resulting mixture has an intermediate temperature and metallicity
between the disc and the corona and, because of the dependence of the cooling
function from these quantities, this implies e reduction of the cooling time of coronal
gas, which is therefore able to cool and accrete onto the disc.

Fig. 3.12 is a diagram of the involved phases and processes. Three regions are
considered: the disc, the (upper) corona and an intermediate layer, where the inter-
action between the two occurs, the thickness of which is set by the vertical extent of
the galactic fountain. In the intermediate layer, we distinguish two spatially mixed
phases: a cold clumpy phase, constituted of fountain clouds together with coronal
material condensing on them (this phase is observed in HI as extraplanar gas), and
a hot diffuse phase, which is the lower part of the corona, in direct contact and
interaction with the cold clouds. Thin black arrows indicate mass exchanges be-
tween different phases; to each of them a (not shown) advective angular momentum
exchange is also associated, equal to the mass flux multiplied by the specific angular
momentum of the upstream region: for instance, the net angular momentum gain of
the disc is 9Ldisc � p 9Mout� 9Maccqlcold� 9Moutldisc. In addition, there is a non advective
angular momentum exchange, marked with a thick magenta arrow, between the cold
and the hot phase in the intermediate layer: this is predicted by the Marinacci et al.
(2011) theory and its outcome is to set an equilibrium angular momentum difference
between the cold and the hot phase:

lcold � lhot � p∆lqeq (3.43)

which allows the condensation of coronal gas on fountain clouds to become effective.
Here p∆lqeq � Rp∆V qeq, whereR is the galactocentric radius of the considered region
and p∆V qeq � 75 km{s is the equilibrium velocity lag predicted by the theory. The
mass flux from the upper corona to the lower corona is the one required to balance
mass loss suffered by the hot phase as a consequence of fountain-driven accretion
(in practice, it is driven by the imbalance between pressure and gravity due to the
disappearance of part of the underlying hot material). According to Fraternali &
Binney (2008), the angular momentum exchange between the cold and the hot phase
is very efficient and it brings the system towards an approximate equilibrium in few
dynamical times. During this time, we may assume that the fountain ejection rate
9Mout does not change very much, nor the mass reservoir of the upper corona will be

significantly eroded and therefore an approximately stationary state is a reasonable
assumption on such timescales. Angular momentum balance for the hot and cold
phases therefore give:"

9Macclcorona � 9Lint � 9Macclhot

9Moutldisc � 9Macclhot � 9Lint � p 9Mout � 9Maccqlcold

(3.44)

which, together with (3.43), can be solved for lcold, lhot, 9Lint. In particular, we find:

lcold �
9Moutldisc � 9Macclcorona

9Mout � 9Macc

(3.45)

96



DISC

Cold 
clouds

CORONA

Hot medium

INTERACTION
LAYER

Figure 3.12: Schematic diagram of the accretion of coronal material onto the disc,
according to the theory of Marinacci et al. (2011). After an initial transfer of angular
momentum, the interaction with cold fountain clouds triggers the condensation of a part
of the hot medium.

Note that the angular momentum of the cold accreting gas does not depend on
the equilibrium lag p∆lqeq, which, however, sets the rotation velocity of the lower
corona and the magnitude of non-advective angular momentum exchanges within
the interacting layer.

In the approximation of a flat rotation curve (3.22), the angular momentum
mismatch parameter reads:

αcold :� 1� lcold

ldisc

� η

1� η
αcorona (3.46)

with obvious meaning of αcorona, while

η :� 9Macc{ 9Mout (3.47)

depends on the condensation efficiency and on the orbital time of the fountain clouds.
Note that η can vary with position within the disc. More in general, all the discussion
above is radial dependent and all masses and angular momenta should be accordingly
translated into the corresponding surface densities.

According to (3.20), the radial mass flux is therefore given by:

µ � �2πR2αcoldp 9Σout � 9Σaccq (3.48)

which, considering (3.46) and (3.47), can also be written:

µ � �2πR2αcorona
9Σacc (3.49)
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Therefore, despite the fact that cold material accretes onto the disc with a spe-
cific angular momentum that can be very different from the one of the upper corona
(equation (3.46)), the induced radial flows within the disc are nonetheless the same
that one would have if the coronal material was accreting onto the disc directly
(equation (3.49)), with the galactic fountain basically acting as a catalyst for accre-
tion.

This conclusion is just a first approximation, the validity of which is limited by
our numerous simplifying assumptions. Among them, we underline that our basic
diagram (Fig. 3.12) can be read locally (as we did) only provided that the orbital
radial excursion of each fountain is small compared with its starting radius. While
this is nearly correct for moderate ejection velocities (Fraternali & Binney 2006;
Spitoni, Recchi & Matteucci 2008), it will not be true in detail (Marasco, Fraternali
& Binney 2012) and it will fail for a very powerful fountain, so that some level of
distortion to (3.49) is indeed expected in general, the magnitude of which requires a
dedicated study. The key prediction remains, however, that the main regulator for
the radial flows in the disc has to be looked for in the angular momentum distribution
of the upper corona, which is the ultimate source of mass and angular momentum
in the model, but of which we still have a rather scant knowledge. To deepen our
understanding of this important topic will be the main aim of Chapter 4 of this
Thesis.

3.B Angular momentum accretion on a disc from

random orbits

We consider here an extremely idealized description of angular momentum and ac-
cretion in a cold mode scenario. While a realistic description would be much more
complex than, the treatment below can be useful to gain some insight on the basic
geometrical ingredients that are relevant to this problem.

Let us consider a disc on which particles are accreting, coming from infinity from
all possible directions, but globally carrying a net angular momentum in the ‘vertical’
direction orthogonal to the disc. We want to study how this angular momentum is
deposited on the disc at different radii. In particular, we ask how does the average
specific vertical angular momentum of particles, impacting the disc at some radius,
compare with the value appropriate for centrifugal balance there 8.

We make the very crude approximation of keeping, for the gravitational field, the
monopole term only and we approximate particle trajectories with parabolic orbits
in a Keplerian potential. These can be written as:

R � l2

GMp1� cospθ � ψqq (3.50)

where pR, θq are polar coordinates in the plane of the orbit, centered on the focus,
where the attracting mass M lies, l is the modulus of the angular momentum vector

8We will omit the attribute ‘specific’ from now on, for brevity. Note that the proper angular
momentum of particles can be replaced by the specific one in all the averages, provided that the
particles share the same mass.
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and G is the gravitational constant. Without loss of generality, we can assume θ to
increase with time in sψ � π, ψ � πr 9. The orientation parameter ψ P r�π, πr sets
the location of the vertex with respect to a reference direction where θ � 0.

To identify an orbital plane, we can use the couple (u, χ) with χ P r0, πr giving
the direction of the line of nodes, while u P r�1, 1s is defined by:

u :� lz
l

(3.51)

where lz is the vertical component of the angular momentum. Note that |u| is equal
to the cosine of the inclination of the orbital plane with respect to the disc and that
changing the sign of u is equivalent to changing the direction of motion of a particle
within an orbit. Also note that there is a one-to-one relation between the angular
momentum vector and the set pl, u, χq. For each angular momentum vector, we
define a polar coordinate system in the orbital plane as described above, fixing, as
the reference direction θ � 0, an arbitrary orientation of the line of nodes. Then the
generic orbit is fully specified by the 4 parameters pl, u, χ, ψq. Of these, l sets the
scale of the orbit, while the 3 coordinates pu, χ, ψq together determine the radiant
position and the initial projected motion of a particle.

The distribution f of the infalling particles is conveniently given as a function
of pl, u, χ, ψq. We assume that it can be written as:

fpl, u, χ, ψq � f0plqf1puq
2π2

(3.52)

where f0 is some normalized function (

» �8

0

f0plqdl � 1), while:

f1puq �
"

0 if �1   u   0
1 if 0   u   1

(3.53)

This choice for f is the appropriate one for particles that arrive at random from
all possible radiants with all possible directions, while carrying a positive vertical
angular momentum. In other words, for any given angular momentum l, we give
equal weight to all possible orbits, but allow them to be followed in one sense only.
Of course, other choices for f are possible, if one wants to allow for anisotropic
accretion or for some particles having lz   0. We discuss anisotropic accretion in
the end. On the other hand, counter-rotating accretion is hardly avoided in realistic
situations and, if accounted for, it would even reinforce our final result, as it can be
easily verified.

We now consider how does a particle distribution look like from the point of view
of the disc. From (3.50), individual particles impact the disc at a radius:

R �

$''&
''%

l2

GMp1� cospπ � ψqq if �π   ψ   0

l2

GMp1� cosψq if 0   ψ   π
(3.54)

9In other words: we look at the orbital plane from the semispace containing the angular mo-
mentum vector and we adopt an angular coordinate increasing counterclockwise as usual.
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so that specular orbits, with orientation parameters ψ differing by π, meet the disc
in specular positions and thus at the same radius R. Taking this duplication into
account, we equivalently choose one or the other of equations (3.54) to define, in the
particle parameter space, a coordinate change pl, u, χ, ψq Ñ pl, u, χ,Rq which then
induces the density transformation:

f Ñ f 1 � 2
Bψ
BRf

The transformed density f 1 is the distribution of particles having the angular mo-
mentum vector associated to pl, u, χq and impacting the disc at the radius R. With
our position (3.52), it reads:

f 1pl, u, χ,Rq � f0plqf1puq
π2R

c
l2

GMR

�
2� l2

GMR


� 1
2

if l2   2GMR and vanishes otherwise. Averaging over pl, u, χq and using (3.51) and
(3.53), we can finally compute the average vertical angular momentum of particles
joining the disc at radius R:

  lz ¡ pRq
lcircpRq �

³2
0
f0p
?
GMRxqa x

2�xdx

2
³2
0
f0p

?
GMRxq?
2�x dx

(3.55)

where in the integrals I made the variable change x � l2{GMR and lcircpRq �?
GMR is the angular momentum of a particle on a circular orbit at radius R.

The ratio (3.55) depends on the angular momentum distribution f0. To provide
an application, we again consider here the simplest possible situation, in which f0

is uniform as well, up to some maximum angular momentum lmax, that is:

f0plq � 1

lmax

for 0   l   lmax and vanishing elsewhere. Then (3.55) greatly simplifies, at least for
small enough radii R   Rmax � l2max{2GM :

  lz ¡ pRq
lcircpRq �

³2
0

a
x

2�xdx

2
³2
0

1?
2�xdx

� π

4
?

2
  1

The ratio for R ¡ Rmax is even lower than this (we do not report the details here,
for the sake of brevity).

As a minimal robustness test, we can also consider another simple angular mo-
mentum distribution:

f0plq � 2l

l2max

for 0   l   l2max and vanishing otherwise. The choice of a distribution biased
towards high angular momenta is made to go in the direction that might be expected
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according to the theory of inside-out growth of galaxy discs. The result in this case,
again for small enough radii, is:

  lz ¡
lcirc

�
³2
0

x?
2�xdx

2
³2
0

a
x

2�xdx
� 4

?
2

3π

which is again less than unity.
Finally, as an extreme case, we can consider the result for a simple anisotropic

distribution, which is also biased towards low orbit inclinations and high values of
lz, obtained replacing (3.53) with:

f1puq �
"

0 if �1   u   0
2u if 0   u   1

With this choice, the ratio   lz ¡ {lcirc further increases by a factor 4/3, still not
enough to make it greater than unity.

It is probably not worth to insist too much on the details of the angular momen-
tum distribution, since there are more relevant reasons why the presented model
cannot be directly applied to galaxies (most obvioulsy, the choice of the poten-
tial). However, the elementary calculations above suggest that, at least in simple
situations, material accreting on to a disc from independent orbits locally rotates,
on average, slower than what needed for centrifugal balance, with the consequence
that inward radial motions will be necessary, after accretion, if equilibrium is to
be reached. This situation, which is a natural outcome of hot mode accretion (see
Chapter 4), might then be appropriate to the cold scenario as well, with accreting
particles finding their way towards the disc without interacting with each other.

3.C The effect of the IGM metallicity

We briefly consider here what is the impact, on predicted abundance profiles, of
assuming a non-vanishing metallicity of the IGM. This is easily included by replacing
(3.14) with:

X̃ipt, Rq � e�σpt,Rq
» t

0

eσpt
1,Rq
�

9Σ�
Σg

pt1, Rq � X̃IGMpt1q
9Σacc

Σg

pt1, Rq
�
dt1 (3.56)

In Fig. 3.13 the resulting predictions are reported for the inside-out model for the
Milky Way described in Sec. 3.5.4, with α � 0.2. The normalized IGM metallicity
X̃IGM is assumed to linearly increase with time, up to a maximum value between 0
(primordial composition) and 1 (pre-enrichment equal to the integrated yield). The
upper panel and lower panel are for models computed with the domain extension
strategy and the boundary extension strategy, respectively (Sec. 3.4.4). 10.

A non vanishing metallicity of the IGM has the obvious effect of increasing the
general level of chemical enrichment in the ISM, but it also has some impact on the

10Note that assuming X̃IGM to be different from zero already at t � 0 would induce a discontinu-
ity in the profiles computed with the boundary extension strategy. This would be both unphysical
and in disagreement with observations.
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Figure 3.13: Dependence of abundance profiles on boundary conditions, for an inside-out
model of the Milky Way with α � 0.2 (see Sec. 3.5.4). Predictions are given obtained with
the domain extension strategy (upper panel) and the boundary extension strategy (lower
panel). Different lines are for different metallicities of the IGM (normalized to the yield).
The ‘reference’ straight line, put to guide the eye, has a slope of �0.05 dex{kpc, equal
to the median abundance gradient of α-elements in Milky Way Cepheid stars, mostly at
galactocentric distances between 5 and 15 kpc (Genovali et al. 2015).
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shape of metallicity distributions. With the domain extension strategy, abundance
profiles always gently decline with radius, with the tendency to become shallower
with increasing XIGM. In contrast, models computed with the boundary extension
strategy show a wider variety of behaviours, ranging from a very strong steepening
(for primordial IGM composition) to an outer flattening (for high enough IGM
metallicity).

Note that the enrichment of the accreting gas can be partially due to mixing
of the IGM with metals produced in the disc itself and then ejected in the halo by
AGN or supernova feedback.
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Chapter 4

Angular momentum and entropy
in models of rotating coronae†

Abstract

In the last part of this Thesis, we attempt a modeling of the likely source
of both the mass and the angular momentum of galaxy discs, which, for mas-
sive galaxies like the Milky Way, should be an extended corona of gas with a
large (nearly virial) temperature. Theory (cfr. Chapter 1) provides predictions
for the angular momentum distribution of these structures, while comparison
with observations requires the knowledge of their density distributions and
rotation curves. In this Chapter, we address for the first time the problem
of reconstructing the structure and the rotation of a hot gas, in equilibrium
in a given gravitational potential, from the knowledge of its angular momen-
tum distribution. We first consider the idealized case of an isothermal gas in
a logarithmic potential, for which we derive the general solution as well as
physically interesting special cases. We find that, already in this very crude
approximation, a cosmologically motivated angular momentum distribution,
scaled to parameters plausible for the Milky Way, produces models compat-
ible with a scenario in which the accretion of coronal material can sustain
both the inside-out growth of the disc (cfr. Chapter 2) and the radial gas
flows required to explain the observed abundance gradients (cfr. Chapter 3).
We then consider the more general case of baroclinic equilibria in a generic
axisymmetric potential. We describe a novel parametrization for baroclinic
equilibria as well as a new class of self-similar solutions. We show that baro-
clinic equilibria can be reconstructed from the knowledge of the joint angular
momentum/entropy distribution, provided that suitable boundary conditions
are known either on the vertical axis or on the equatorial plane.

4.1 Introduction

According to the standard theory of galaxy formation (Rees & Ostriker 1977; White
& Rees 1978), massive galaxies should be surrounded by large and massive haloes

†A significant part of this work has been carried out during a visiting period at the Rudolf Peierls
Centre for Theoretical Physics, University of Oxford, under the supervision of James Binney and
Ralph Schönrich.
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of ionized gas (coronae), with very low density and a temperature close to the virial
value (cfr. Chapter 1). These coronae are expected to form out of primordial gas
that has been shock-heated after accretion on massive dark matter haloes. Because
of its very large cooling time (comparable to the Hubble time), the coronal gas
around a Milky-Way sized spiral galaxy can cool and accrete onto the central disc
only very slowly and only if aided by physical processes which nature is still debated,
like some form of thermal instability (e.g. Maller & Bullock 2004, though see Binney,
Nipoti & Fraternali 2009 and Nipoti & Posti 2014), or some form of positive star
formation feedback (Marinacci et al. 2010a).

Besides being predicted by the theory, coronae have been recently observed
around spiral galaxies (e.g. Anderson, Bregman & Dai 2013). However, their de-
tailed structure and kinematics are still out of reach of the current instrumentation.
As a consequence, only crude models have been used to interpret the data, based
on very simple assumptions, in particular spherically symmetric hydrostatic equi-
librium, in the absence of rotation (e.g. Gatto et al. 2013; Miller & Bregman 2015).
While these simplifications are justified, from an observational point of view, by the
lack of kinematical data, there are strong reasons to believe that coronae should
contain a large amount of angular momentum as well. According to the theory
discussed in Chapter 1, hot extended coronae should be made of material that has
been accreted on the halo more recently with respect to the already assembled disc
and therefore, following the theory of tidal torques (Peebles 1969; White 1984), they
should have a larger amount of specific angular momentum. Furthermore, if coronae
are the mass sources of the disc (as expected by the hot-mode accretion scenario,
cfr. Chapter 1), they must also be sources of their angular momentum, in order to
sustain the observed inside-out growth of star-forming discs (cfr. Chapter 2 and ref-
erences therein). Since angular momentum growth is a key ingredient to understand
the evolution of spiral galaxies (both from a theoretical and observational point of
view), it is important to develop theoretical models and testable predictions for the
angular momentum content of galactic coronae.

Models of rotating coronae can be divided in two categories, whose general prop-
erties have been extensively described in the more general context of rotating hydro-
static equilbria (e.g. Tassoul 2000). Barotropic models (e.g. Marinacci et al. 2011)
are those relying on the hypothesis that pressure and density are stratified on the
same surfaces (this is, for instance, the case of an isothermal gas). These models are
appealing because of their simplicity and of several mathematical advantages (for in-
stance, the possibility to define an effective potential to describe the centrifugal force
in a locally rotating frame). However, they are forced to obey special properties,
like the independence of the rotation velocity on the vertical coordinate (rotation on
cylinders). In contrast, baroclinic models are those where density and pressure are
allowed to be stratified independently. This is a very broad class, out of which only
few cases have been described in detail (e.g. Amendt, Lanza & Abramowicz 1989).
In the context of applications to hydrodynamics of galaxies, a great improvement
has come with the work of Barnabè et al. (2006), whose models produce a verti-
cal rotational velocity gradient similar to those observed in the gaseous haloes of
nearby spiral galaxies (e.g. Oosterloo, Fraternali & Sancisi 2007) 1. They also pro-

1Note however that, as Barnabè et al. (2006) point out, the observed cold extraplanar gas
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posed a method to compute generic baroclinic equilibria, which however produces
both meaningful and meaningless solutions (e.g. solutions with imaginary rotation
velocity), which need to be distinguished a posteriori.

Irrespective of being barotropic or baroclinic, all the above models are built by
deriving the density from the kinematics, or viceversa. Density and kinematics, in
turn, allow to compute the angular momentum distribution by mass ψ � dM{dl.
This quantity is very important, for the theoretical study of coronae, because it
is supposed to be conserved during the slow evolution of these structure (detailed
angular momentum conservation, e.g. Mestel 1963). Furthermore, it is believed to
reflect the angular momentum distribution of the dark matter (Fall & Efstathiou
1980), which is known a priori, from tidal torque theory and numerical simulations
(Bullock et al. 2001; Sharma & Steinmetz 2005).

It would therefore be useful to make the inverse exercise, namely deriving the
density distribution and the kinematics of a rotating corona from the assumption
of a given angular momentum distribution. This would help in bridging the gap
between the predictions of Cosmology (Chapter 1) and observational indications of
angular momentum assembly coming from galaxy evolution studies (cfr. Chapters
2 and 3). In Sec. 4.2 we will attempt a solution of this inversion problem, in the
very simple case of an isothermal (and therefore barotropic) corona in a logarithmic
potential.

A formally similar exercise was the one developed by Kaiser & Binney (2003).
These authors studied non-rotating, spherically symmetric hydrostatic equilibria of
hot gas in the potential well of a galaxy cluster. Instead of working with radial
profiles only, these authors built their solutions in terms of the entropy distribu-
tion by mass (specific entropy as a function of enclosed mass). If cooling occurs
on timescales longer than the sound crossing timescale, then the evolution can be
computed as a succession of quasi-static equilibria, each identified by a different
entropy distribution. Having solved the inversion problem (from entropy distribu-
tion to spatial structure) allowed the authors to give a simple analytic description
of cooling flows. Similarly, solving our inversion problem (from angular momentum
distribution to coronal structure and kinematics) could be relevant to study the evo-
lution of rotating gas undergoing viscous friction (and therefore angular momentum
redistribution) on long timescales.

In the general baroclinic context, the degrees of freedom are too many for the
inversion problem to be correctly defined in terms of just one function of one vari-
able and it requires instead to be formulated in terms of the joint angular momen-
tum/entropy distribution. This is the ideal generalization of the two simple one-
dimensional inversion problems: the non rotating case of Kaiser & Binney (2003),
based on the entropy distribution, and the barotropic rotating case based on the
angular momentum distribution. Solving this problem would in principle allow the
study of the quasi-static evolution of a rotating corona subject to quite general pro-
cesses, including cooling, viscous transport and mass exchanges with the ambient
medium (accretion from the IGM and condensation onto the disc).

cannot be in hydrostatic equilibrium, because of its relatively low temperature and also because
of the details of its kinematics (see also Marinacci et al. 2010b); therefore, it is rather likely to be
interacting with a hot medium in rotating baroclinic equilibrium.
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We attempt some steps in this direction by considering baroclinic models in two
steps. First, in Sec. 4.3 we give a general parametrization of physically meaningful
baroclinic rotating equilibria in terms of a suitably chosen function of two variables
(the specific angular momentum as a function of position in the meridional plane).
As a second step, in Sec. 4.4 we discuss how an algorithm can be devised to re-
construct a general baroclinic equilibrium given the knowledge of its joint angular
momentum/entropy distribution, supplemented by suitable boundary conditions.
Finally, the results of this work are summarized in Sec. 4.5.

4.2 Isothermal equilibria

4.2.1 Basic equations

Let us consider an isothermal gas , with sound speed cs, in rotating equilibrium in a
fixed, spherically symmetric, gravitational potential. In this Section, we will assume
for simplicity, a logarithmic potential:

Φprq � V 2
d ln

�r
r̃

	
(4.1)

where Vd is the (constant) rotational velocity of a disc in centrifugal equilibrium
within it and r̃ an arbitrary radius. Of course, in cylindrical coordinates pR, zq,
(4.1) reads:

ΦpR, zq � V 2
d ln

�?
R2 � z2

r̃



(4.2)

If the volume density in the equatorial plane at some cylindrical radius R is
equal to ρ0pRq, then, from isothermality and the vertical hydrostatic equilibrium,
we have:

ρpR, zq � ρ0pRqe�
ΦpR,zq�ΦpR,0q

c2s � ρ0pRq
�

1�
� z
R

	2

�a

2

(4.3)

where:

a :�
�
Vd
cs


2

(4.4)

is the square of the Mach number of the disc with respect to the corona and it
is inversely proportional to the temperature of the corona. The surface density at
radius R is given by:

ΣpRq � 2

» �8

0

ρpR, zqdz � 2kRρ0pRq (4.5)

with k given by:

k �
» �8

0

p1� x2q�a
2 dx (4.6)

It should be noted that k (and thence the surface density at any specified radius)
is finite provided that a ¡ 1, that is when the disc is supersonic with respect to
the corona. This sets an upper limit to the temperature of the corona in order for
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isothermal solutions to exist; however, a more stringent limit is set by the require-
ment that the mass be finite in the radial direction, as we discuss in the following.

The coronal mass enclosed inside a cylindric surface of radius R obeys the equa-
tion:

dM

dR
pRq � 2πRΣpRq � 4πkR2ρ0pRq (4.7)

The specific angular momentum l of the corona is a function of radius R only,
because of isothermality 2. Such a function also determines the local shape of the
equatorial density distribution ρ0 by means of the Euler radial equation in the equa-
torial plane, which can be written:

d ln ρ0

d lnR
pRq � a

��
lpRq
RVd


2

� 1

�
(4.8)

In particular, we see that the corona rotated slower than the disc any time its
equatorial density is a decreasing function of radius. Taking (4.7) and (4.8) into
account, mass convergence at large radii requires:

�3 ¡ lim
RÑ8

d ln ρ0

d lnR
pRq ¥ �a (4.9)

which implies a ¡ 3. Note that the definition (4.4) can also be expressed, in a more
common notation, as:

a � 3Tvir

T
(4.10)

where T is the temperature of the corona and Tvir is the virial temperature, commonly
associated to the velocity scale Vd according to:

3

2
kBTvir � 1

2
µmmpV

2
d (4.11)

where kB, µm and mp are the Boltzmann constant, the mean molecular weight and
the mass of the proton, respectively. The condition a ¡ 3 is therefore equivalent
to T   Tvir. Also note that k monotonically decreases from 1 to 0 as a increaeses
from 3 to �8 (that is, as the temperature descreases from Tvir to 0). We therefore
see from (4.7) that the mass within the cylindrical radius R never exceeds the one
comprised, within an equal spherical radius, by an ideal spherical distribution with
radial profile ρ0 (with equality holding for the virial temperature).

Mass convergence at small radii, instead, sets a lower limit to the rotation velocity
of the corona V pRq � lpRq{R, in the proximity of the origin:

V p0q
Vd

� lim
RÑ0

lpRq
RVd

¥
c

1� 3

a
(4.12)

which is always well defined and never vanishing, because of the constraint we have
just derived on a 3.

2This is a consequence of the Poincaré-Wavre theorem, which we will discuss in some more
detail in Sec. 4.3.4

3Note that velocities lower than this are actually expected in the very central regions, where the
gravitational potential significantly deviates from our logarithmic approximation (e.g. Marinacci
et al. 2011). The lower limit above is therefore better understood, in realistic cases, as a minimum
amplitude for the initial rise of the rotation curve of the corona.
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4.2.2 Dimensionless variables

The problem we are considering has so far just one physical scale (the velocity
scale Vd set by the the gravitational potential (4.1)). It can therefore be put in
dimensionless form if other two independent physical scales are introduced. A very
natural choice is to fix some mass and angular momentum scales M1 and L1 and
in particular to choose them equal to the total mass and angular momentum of the
corona, respectively 4. Note that the total mass and angular momentum are related
to the angular momentum distribution

ψ � dM{dl (4.13)

by: $'''&
'''%

M1 �
» �8

0

ψplqdl

L1 �
» �8

0

lψplqdl
(4.14)

Once M1 and L1 are fixed, we can define some scales for the specific angular
momentum, length and density:

l1 :� L1

M1

R1 :� l1
Vd

ρ1 :� M1

4πkR3
1

(4.15)

and the corresponding dimensionless variables:

λ :� l

l1
s :� R

R1

y :� ρ0

ρ1

(4.16)

Note that the mass contained within the dimensionless radius s is:

Mpsq
M1

�
» s

0

ŝ2ypŝqdŝ (4.17)

Note also that l1 is the average specific angular momentum of the corona, while
R1 is the radius where the disc has a specific angular momentum equal to this value.
To have a better idea of the physical scale associated to R1, one can consider that
(as it is easily seen) an exponential disc with a flat rotation curve has an average
specific angular momentum ld � 2VdRd, where Vd and Rd are the rotational velocity
and the scalelength of the disc, respectively. We therefore have:

R1

2Rd

� l1
ld

(4.18)

Obviously, the average angular momentum of the disc can grow with time only if the
galaxy accretes material with an angular momentum greater than ld. Therefore, the
ratio (4.18) has to be greater than unity, if the corona has to sustain the inside-out

4Note that fixing M1 and L1 to the total mass and angular momentum of the corona is a
convenient and physically meaningful, but not mandatory, choice. We will always adopt it, from
now on, if not explicitly stated otherwise. However, keeping this freedom of choice in mind will be
useful to give the correct interpretation to some of our solutions in Sec. 4.2.6.
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growth of the disc (cfr. Chapters 2 and 3). At the same time, it cannot be larger
than a few, because of the normalization of the Fall relation and the relatively small
spin parameters that are expected as an outcome of cosmological tidal torques (e.g.
Romanowsky & Fall 2012; Dutton & van den Bosch 2012). These considerations
will be of much help for the discussion of our simple coronal models in the context
of cosmology and galaxy evolution (Secc. 4.2.3 and 4.2.7).

4.2.3 A class of simple truncated models

To gain some insight on the relation between structure, kinematics and angular
momentum distribution of the corona, under our simple hypotheses, we consider
here the simplest possible situation, where the corona has the following properties
(easily seen to be equivalent):

i) a flat rotation curve

ii) a power law density distribution, truncated at a maximum radius Rmax

iii) a power law angular momentum distribution, truncated at a maximum radius
lmax

In formulae:
V pRq � wVd @R

ρ0pRq �
$&
% ρ0,1

�
R

R1


�q
R   Rmax

0 R ¡ Rmax

ψplq �
$&
% ψ1

�
l

l1


p
l   lmax

0 l ¡ lmax

(4.19)

Once the temperature parameter a is specified 5, the parameter p, describing the
shape of the angular momentum distribution, determines the value of all the other
involved quantities: $''''''''''''''''''''&

''''''''''''''''''''%

q � 2� p

w � V

Vd

�
c

1� p� 2

a

smax � Rmax

R1

� 2� p

1� p

1

w

λmax � lmax

l1
� 2� p

1� p

y1 � ρ0,1

ρ1

� p1� pq2�p
p2� pq1�pw

1�p

ψ1l1
M1

� p1� pq2�p
p2� pq1�p

(4.20)

5Note that the solutions of this family formally exist also for 1   a   3 (i.e. for Tvir   T  
3Tvir). This is possible because of the radial density truncation.

111



where R1, l1 and ρ1 are as in (4.15)
Note that it has to be p ¡ �1 to ensure that the integral of ψ gives a finite mass.

Models with �1   p   2 have q   0 and therefore the density diverges near the
origin (of course, in an integrable way), while w   1, which means sub-centrifugal
rotation. As an opposite case, models with p ¡ 2 have a vanishing central density
(and pressure) and super-centrifugal rotation (these are vortex -like solutions). The
dividing value p � 2 is for a corona with uniform equatorial density and in perfect
corotation with the disc everywhere.

Besides being very simplistic, the above models also have other potential prob-
lems, if applied to real galaxies, when the cosmological context (Chapter 1), evidence
for inside-out growth (Chapter 2) and chemodynamical arguments (Chapter 3) are
taken into account. As we have seen in Chapter 1, cosmological theory and obser-
vations suggest that the coronae around spiral galaxies are much larger than the
embedded discs. Combined with the expectation that the ratio (4.18) is of the order
of unity (Sec. 4.2.2), we infer Rmax{R1 " 1 and therefore, from the third of (4.20),
w ! 1.

If the disc has a maximum radius Rd, max, then the material accreting on it from
the corona will have an average specific angular momentum

lacc   lpRd, maxq � V Rd, max � wVdRd, max (4.21)

which compares with the average specific angular momentum of the disc as:

lacc

ld
  wRd, max

2Rd

(4.22)

If w ! 1 and the disc extends for a few scalelengths, this will not be enough to
sustain inside-out growth of the disc (cfr. Chapter 2).

Furthermore, w ! 1 implies α � 1 � w � 1, where α is the angular momentum
mismatch parameter discussed in Chapter 3. As we discussed there, much smaller
values (0.2 À α À 0.3) are required to explain abundance gradients in the Milky
Way. Given the strong dependence of gradients on this parameter, values as large as
α � 1 are likely incompatible with observations. Moreover, the inferred radial flows
could become large enough to be incompatible with the relatively regular rotation
commonly observed in the outer HI discs of massive star forming spirals (Pitts &
Tayler 1996).

4.2.4 Coronal structure for a given angular momentum dis-
tribution

In order to consider more complex situations, we want to solve the inversion problem
of deriving the structure and kinematics of the corona from an arbitrary angular
momentum distribution ψ.

The equations (4.7) and (4.8) can be rewritten as:$'''&
'''%

dl

dR
pRq � 4πkR2 ρ0pRq

ψplpRqq
dρ0

dR
pRq � a

ρ0pRq
R

��
lpRq
RVd


2

� 1

� (4.23)
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This system of two ordinary differential equations has to be supplemented by two
boundary conditions lp0q � 0 and lpRmaxq � lmax. Note that the two obvious
boundary conditions on the mass (MpRq vanishing for R � 0 and being equal to the
total mass for R � Rmax) are then recovered automatically, from the definition of ψ
(4.13). While the simple, but somewhat artificial, examples of Sec. 4.2.3 relied on
finite values of Rmax and lmax, we will focus, if possible, on the more natural choice
lpRq Ñ �8 for RÑ �8.

To put the problem in dimensionless form, we introduce, in addition to (4.16), a
dimensionless version of the (multiplicative) inverse of ψ:

gpλq :� M1

l1ψpl1λq (4.24)

This allows (4.23) to be written:$''&
''%

dλ

ds
psq � s2ypsqgpλpsqq

dy

ds
psq � a

ypsq
s

��
λpsq
s


2

� 1

�
(4.25)

The second equation of (4.25) is singular in the origin 6. This issue needs to be
addressed with an asymptotic analysis of the equations near the origin.

4.2.5 Asymptotic analysis near the origin

We start by isolating the behaviour of the function g near the origin 7:

gpλq � g1λ
�pGpλq (4.26)

g1 � 0 and Gp0q � 1.
We look for a solution of (4.25) in the form:"

λpsq � λ1s
αApsq

ypsq � y1s
βBpsq (4.27)

with λ1 � 0, y1 � 0, Ap0q � 1 and Bp0q � 1. Substituting in the first equation of
(4.25) and reading the limit for sÑ 0 gives:$&

%
β � p1� pqα � 3

y1 � αλ1�p
1

g1

(4.28)

while from the second we have:

λ2
1 lim
sÑ0

s2pα�1q � 1� p1� pqα � 3

a
(4.29)

6Note that a singularity is implied by the l2{R3 term in the radial Euler equation already. This
is therefore a quite general fact, independent of our particular choice of the potential.

7Note that the sign of the parameter p is chosen to be consistent with the particular case of
Sec. 4.2.3. Note also that the condition p ¡ �1 for the convergence of mass holds in the general
case as well, since it only depends on the behaviour of ψ for small values of l.
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Formally, (4.29) can be satisfied for α ¥ 1. However, the case α ¡ 1 can be
discarded for giving rise to the following absurd:

0 � 1� p1� pqα � 3

a
¡ 1� 3

a
¡ 0 (4.30)

where the first inequality comes from p ¡ �1 (which is required by the convergence of
mass for low angular momentum) and the second from a ¡ 3 (from mass convergence
at large radii).

We are therefore left with the case α � 1, implying:

λ1 �
c

1� p� 2

a
(4.31)

which is always well defined, since it is always p � 2 ¡ �3 and a ¡ 3. The system
(4.27) is reduced to: $&

%
λpsq � λ1sApsq
ypsq � λ1�p

1

g1

sp�2Bpsq (4.32)

with Ap0q � Bp0q � 1.
The rotation curve of the corona is given by:

V pRq
Vd

� lpRq
RVd

� λpsq
s

� λ1Apsq (4.33)

In particular the central rotation velocity is V p0q{Vd � λ1, which is given by (4.31)
and, of course, satisfies the already established inequality (4.12). Note, from (4.31)
and (4.32), that the dependence of the central properties of the corona on the pa-
rameter p is the same as described in Sec. 4.2.3.

To compute the full structure of the corona we need to find and solve the equa-
tions for the functions A and B. These can be found by inserting (4.26) and (4.32)
into (4.25): $''&

''%
dA

ds
psq � 1

s

�
BpsqA�ppsqGpλ1sApsqq � Apsq�

dB

ds
psq � pa� p� 2qBpsq

s
pA2psq � 1q

(4.34)

Note that the singularities in the right hand side of (4.34) are only apparent and
that the following limits can be found for s Ñ 0, by means of a first order Taylor
expansion: $''&

''%
A1p0q � G1p0qλ1

6� p� 2a

B1p0q � 2pa� p� 2qG1p0qλ1

6� p� 2a

(4.35)

apart in the very special case a � p6 � pq{2, which can arise for �1   p   0 and
which we will just ignore in the following, for simplicity.

For each value of a � p2�pq{6, the system (4.34), regularized by (4.35), together
with the initial conditions Ap0q � Bp0q � 1, correctly defines a Cauchy problem and
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therefore admits a unique solution, which can be computed by means of a numerical
integration. Substituting the solution in (4.32) determines the density and angular
momentum of the corona in the equatorial plane and thence everywhere. Note
that the boundary condition lp0q � 0 is automatically satisfied, while the other
one (lpRq Ñ �8 for R Ñ �8) in general will not; this last criterion can be used
to select, among the possible models, the physically meaningful ones (see next two
Sections for some examples).

4.2.6 The exponential angular momentum distribution

A simple class of angular momentum distributions is the one of exponentially trun-
cated power-laws:

ψplq � M1

l1

p1� pq1�p
Γp1� pq

�
l

l1


p
exp

"
�p1� pq l

l1

*
(4.36)

where the Γ is the complete Euler function. The distribution (4.36) differs from
the power-law distributions discussed in Sec. 4.2.3 for having a smooth, rather than
abrupt, cut-off for large values of the angular momentum. Besides their elegance and
simplicity, these distributions are also of cosmological interest, having been found
to describe both dark matter and baryons in non-radiative cosmological simulations
(Sharma & Steinmetz 2005) 8.

To provide a simple illustrative application of the methods introduced in Sec.
4.2.5, we consider here the elementary case p � 0, which, for its simplicity, is very
useful to gain insight into our methods and their outcome. Furthermore, this value
is among the most common ones found in the simulations by Sharma & Steinmetz
(2005) and coincides with the asymptotic behaviour of ψ seen in the simulations
of Bullock et al. (2001). For p � 0, (4.36) just reduces to an exponential angular
momentum distribution:

ψplq � ψ0e
� l
l1 (4.37)

with ψ0 �M1{l1.
Following the notation of Sec. 4.2.5, we need to solve:$''&

''%
dA

ds
psq � 1

s

�
Bpsqeλ1sApsq � Apsq�

dB

ds
psq � pa� 2qBpsq

s

�
A2psq � 1

� (4.38)

where λ1 �
a

1� 2{a (from (4.31)), while the limits for sÑ 0 are:$'&
'%

A1p0q � � λ1

2pa� 3q
B1p0q � �λ1

a� 2

a� 3

(4.39)

8While the non-radiative assumption is a very crude approximation for baryons in general, it
should provide a reasonable description for coronal gas, which, by definition, has not undergone
significant cooling yet.
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Figure 4.1: Dimensionless radial profile of specific angular momentum for the exponential
angular momentum distribution (4.37). The three lines are for different values of the
temperature parameter a � 3Tvir{T . All the models tend to a horizontal asymptote,
instead of approaching infinity: this is a model inconsistency, indicating that the angular
momentum distribution must be truncated at some value lmax.

which are well defined and negative for all allowed values of a ¡ 3. The system
(4.38) has to be integrated, as usual, with the initial conditions Ap0q � Bp0q � 1
and then converted into physical quantities according to (4.32), with p � 0 and
g1 � 1 (from (4.24) and (4.26)).

In Fig. 4.1 the resulting solutions are reported for the radial profiles of specific
angular momentum of the corona, for three allowed values of the parameter a (which
is related to the coronal temperature by (4.10)). A very clear property of these
models is that they fail to match the boundary condition lpRq Ñ �8 for RÑ �8,
instead displaying a horizontal asymptote at a finite value lmax. This is an internal
inconsistency of the model (4.37): it is not compatible with the total mass and
the average specific angular momentum being equal to M1 and l1, respectively. A
reasonable way to interpret this finding is that the computed solutions are associated
to an angular momentum distribution that is equal to (4.37) for low values of l, but
it is then truncated at some maximum value lmax. Since this implies a modified
normalization for both mass and angular momentum, the re-interpretation is only
possible at the cost of a suitable re-scalings (see footnote 4, Sec. 4.2.2), which we
describe in detail the next Section. Note that the existence of a maximum angular
momentum lmax is physically sensible (it would be equal to the specific angular
momentum imprinted by cosmological tidal torques on the last ‘shell’ of accreted
material) and compatible with what suggested by the simulations of Bullock et al.
(2001). Formally, a truncated exponential model is intermediate between the model
(4.37) and the model (4.19) with p � 0.
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Table 4.1: Dimensionless parameters for our illustrative coronal models with a truncated
exponential angular momentum distribution (4.40).

a
T

Tvir

ξ ω
lmax

l1

ψ0l1
M1

4 0.75 1.69 0.62 2.74 0.76
5 0.6 0.88 0.38 2.34 0.64
6 0.5 0.45 0.21 2.16 0.57

4.2.7 Truncated exponential angular momentum distribu-
tions

The general truncated exponential angular momentum distribution reads:

ψplq �
$&
% ψ0 exp

�
�ω l

l1



l   lmax

0 l ¡ lmax

(4.40)

The three parameters ψ0, ω and lmax are subject to the constraint that the total
mass is M1 and the average specific angular momentum is l1, which leave just one
degree of freedom. The resulting one-dimensional family of models is conveniently
parameterized by the quantity ξ � ωlmax{l1, in terms of which the three parameters
can be written as: $'''''''&

'''''''%

ω � 1� ξe�ξ

1� e�ξ

lmax

l1
� ξp1� e�ξq

1� p1� ξqe�ξ
ψ0l1
M1

� 1� p1� ξqe�ξ
p1� e�ξq2

(4.41)

The parameter ξ can assume all non-negative real values. When ξ varies from 0 to
�8, ω increases from 0 to 1, lmax{l1 from 2 to �8, and ψ0l1{M1 from 1{2 to 1.
Note that the limits ξ Ñ 0 and ξ Ñ �8 correspond, respectively, to the uniform
distribution discussed in Sec. 4.2.3 (with p � 0) and the non-truncated exponential
of Sec. 4.2.6, as expected.

Comparing (4.40) with (4.37), we see that the models of Sec. 4.2.6 can be trans-
lated into physically meaningful ones by means of the rescaling l1 Ñ l1{ω, which,
because of (4.16), also implies the rescaling of both axes of Fig. 4.1 λ Ñ ωλ and
sÑ ωs. The scaling factor ω appropriate to each model can be computed, through
the first of (4.41), from the appropriate value of ξ, which, in turn, is directly readable
from the horizontal asymptote in Fig. 4.1, since λmax Ñ ωλmax � ξ. In this way,
each temperature is associated to one of the models from the family of truncated
exponentials (see Table 4.1). The radial profiles of some relevant properties of these
models are plotted, after rescaling in Fig. 4.2, while a two-dimensional map of the
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Figure 4.2: Illustrative models of isothermal coronae with a truncated exponential angu-
lar momentum distribution. Model parameters are as in Table 4.1 and the physical scales
R1 and l1 as in Sec. 4.2.2. Upper panel: the specific angular momentum of the corona
in units of its global average. Lower-left panel: The rotational velocity of the corona, in
units of the one of the disc. Lower-right panel: The local angular momentum mismatch
of the corona with respect to the disc α � 1 � V {Vd, which is relevant for its dynamical
and chemical consequences on the disc, as discussed in Chapter 3 (this is just a “mirror”
version of the previous plot).
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Figure 4.3: Two-dimensional map of the density in the meridional plane for our model of
isothermal equilibrium with an exponentially truncated angular momentum distribution
and a temperature equal to one half of the virial value. Contours of logpρ{ρ1q are shown
from -5 to 0 in steps of 1. Pressure and entropy (not shown) are stratified on the same
surfaces, as a consequence of the isothermal assumption.

density 9 can be found in Fig. 4.3, for the case a � 6.
The models presented here show several improvements, if compared with the

simpler ones of Sec. 4.2.3, as it can be qualitatively seen from Fig. 4.2. Since the
rotation curve is not flat (lower-left panel), the specific angular momentum profile
has a more complex behaviour than a mere linear increase (upper-panel). More
precisely, l increases more rapidly in the inner regions than in the outskirts: this
makes it possible for the disc (which resides at small radii) to be in contact with (and
possibly accrete) coronal material with relatively high angular momentum, as needed
to explain inside-out growth. For the same reason, the parameter α � 1 � V {Vd

(lower-left panel), which sets the magnitude of the radial flows induced within the
disc as a consequence of accretion (cfr. Chapter 3), has now much smaller values,
at small R, than in the model of Sec. 4.2.3, possibly preventing the dynamical and
chemical issue that we have mentioned there. A more quantitative discussion of
these aspects is attempted in the next Section.

4.2.8 A tentative Milky-Way-like scaling

Putting our self-similar models on a precise physical scale requires the knowledge
of the total mass and angular of the corona, both of which are generally poorly
constrained. With this caveat in mind, it is nonetheless interesting to attempt a
physical scaling that may be plausible for the Milky-Way.

For the spatial scaling, we assume a disc scale-length Rd � 2.5 kpc (Jurić et al.

9The density is rescaled according to y Ñ pp1� e�ξq{ω3qy.
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2008) and a corona with twice the specific angular momentum of the disc (that
is, of the same order of the specific angular momentum of the dark matter halo,
e.g. Dutton & van den Bosch 2012 and references therein). From (4.18) we thence
derive R1 � 10 kpc and therefore the maximum displayed radius in Fig. 4.2 would
be 100 kpc, or about one half of the virial radius (Dehnen, McLaughlin & Sachania
2006). For comparison, the disc extent that we considered in our chemical models
of Chapter 3 is 2R1 � 20 kpc. The upper panel of Fig. 4.2 shows that the specific
angular momentum of the corona in this region (and therefore, the one of possibly
accreting material) easily reaches values that are larger than the global average of
the disc (in our scaling, ld{l1 � 0.5), implying that accretion from the corona is,
at least in principle, able to sustain the inside-out growth of the disc. At the same
time, we see from the lower-right panel that, within the same region, the predicted
values of the angular momentum mismatch parameter α (cfr. (3.22)) are remarkably
similar to those required to explain the abundance gradients in the disc of the Milky
Way (cfr. Fig. 3.9).

Assuming Vd � 220 km s�1 (e.g. Koposov, Rix & Hogg 2010), the average
specific angular momentum of the corona would therefore be l1 � R1Vd � 2.2 �
103 km s�1 kpc, which is very similar to what expected for Milky-Way sized haloes
(Romanowsky & Fall 2012). Assuming a halo mass Mh � 1.5 � 1012 M@ (e.g. Piffl
et al. 2014 and references therein), the mass of the corona is:

M1 � 2.3fc � 1011 M@ (4.42)

if it contains a fraction fc of the of the baryons nominally associated to the halo
(defined by the cosmological parameter Ωn{Ωm � 0.15, Planck Collaboration 2014).
For the density scaling (expressed in particle number density), (4.15) gives:

n1 � ρ1

µmmp

� 2.1fc cm�3 (4.43)

where µm � 0.6 is the mean molecular weight, mp the mass of the proton and we
have used k � 0.59, as appropriate for a � 6 (or T � 0.5Tvir), according to (4.6).
A comparison of this number with observations is not trivial, since the data are
usually interpreted assuming spherical symmetry, in contrast with our model. To
circumvent this limitation, we can compute our models at an intermediate height of
450 above the equatorial plane 10. At R � z � 5R1 � 50 kpc, corresponding to a
spherical radius r � 70 kpc, we obtain the particle number density of:

n � 2.1� 10�4fc cm�3 (4.44)

Interestingly, if the corona approximately contains the baryons nominally associated
to its dark matter halo (fc � 1), the value above is very near to the estimate derived
by Gatto et al. (2013) for this galactocentric distance.

We have therefore found that a model based on very simple assumptions agrees
surprisingly well with a variety of theoretical and observational requirements, rang-
ing from the expected mass and angular momentum content of the corona, to chemo-
dynamical constraints associated to inside-out growth and abundance gradients, to

10An average would be a natural alternative. This, however, would be affected by the severe
density drop near the vertical axis (see Fig. 4.3), a feature that, as we will show in Sec. 4.3.4, is
mainly due to our simplifying assumption of isothermality.
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independent estimates of the density of the coronal density of the Milky Way. We
recognize, however, that our models are very simple in many respects and several
refinements (like the inclusion of a more realistic gravitational potential and the
relaxation of the isothermal assumption) would be useful to draw more firm conclu-
sions.

4.3 Baroclinic equilibria

4.3.1 A constructive approach to the general baroclinic equi-
librium

I look for a general solution of the system:$''&
''%
� l2

R3
� �1

ρ

BP
BR � BΦ

BR
0 � �1

ρ

BP
Bz �

BΦ

Bz
(4.45)

with 3 unknowns pl, ρ, P q of two variables pR, zq, the gravitational potential Φ being
fixed.

I start allowing the specific angular momentum l to be an arbitrary function of
pR, zq. Then I define the effective gravitational field G:$''&

''%
GR :� �BΦ

BR � l2

R3
� gR � l2

R3

Gz :� �BΦ

Bz � gz

(4.46)

g � �∇Φ being the usual gravitational field. We can notice that the field G is
conservative (and hence it admits an effective potential) if and only if l is a function
of R only (rotation on cylinders). Also, the effective potential can be written in the
usual way Φeff � Φ � l2{p2R2q in the even more particular case that l is a global
constant. However, here we are interested in the general case in which l is arbitrary,
G is not conservative and the effective potential does not exist.

Equation (4.45) can be rewritten as:

∇P � ρG (4.47)

Let us think of it as an equation for P and look for a condition on ρ in order
for a solution to exist. Given that the meridional plane is simply connected, the
necessary and sufficient condition is that the two-dimensional field ρG is closed. This
turns into one equation on one unknown ρ, which we discuss in detail in the next
Section. Besides providing the density field ρ, solving this equation guarantees that
the equation (4.47) for the pressure P can be solved by integration along arbitrary
paths in the meridional plane, thus completing the solution of the problem (4.45).
The problem of choosing boundary conditions and of selecting physically meaningful
solutions is addressed in Sec. 4.3.3.
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4.3.2 Construction of the density and pressure fields

The closure condition for the field ρG reads:

FR
Bρ
BR � Fz

Bρ
Bz � ρ

�BGR

Bz � BGz

BR



(4.48)

where the vector field F is defined by:$&
%

FR :� Gz

Fz :� �GR

(4.49)

In the usual view of the meridional plane, F is just the effective gravitational field
G rotated by π{2 clockwise.

Equation (4.48) can be simplified dividing by ρ, defining χ :� ln ρ and noting
that the contribution of the gravitational potential Φ cancels out in the explicit
calculation of the right hand side. The result is:

FR
Bχ
BR � Fz

Bχ
Bz � ApR, zq (4.50)

where

ApR, zq :� 1

R3

Bl2
Bz pR, zq (4.51)

is a scalar field completely defined by the scalar field l; we also notice that it iden-
tically vanishes in (and only in) the case of rotation on cylinders.

The characteristic lines for equation (4.50) are the integral curves of the field F ,
that is, they are the tracks of the solutions of the equation:$''&

''%
dR

dt
ptq � FRpRptq, zptqq

dz

dt
ptq � FzpRptq, zptqq

(4.52)

Note that the characteristic lines are completely determined by the knowledge of
the potential Φ and the angular momentum field l. If χ is known to be equal to
some χ0 � ln ρ0 at some point pR0, z0q in the meridional plane, then the field χ is
known along the whole characteristic passing through that point. More precisely, if
we choose a solution of (4.52) that passes through pR0, z0q for t � 0, then the value
of χ at any other point of the same characteristic line is given by:

χpRptq, zptqq � χ0 �
» t

0

ApRpt̂q, zpt̂qqdt̂ (4.53)

or, which is the same:

ρpRptq, zptqq � ρpRp0q, zp0qq exp

�» t
0

ApRpt̂q, zpt̂qqdt̂



(4.54)

If the density is constructed in this way, then the closure condition (4.48) guar-
antees that the pressure field can be consistently computed by integrating (4.45)
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along arbitrary paths in the meridional plane. However, the integration along char-
acteristic lines is by far the most convenient choice. In fact, from equation (4.47)
and since F is orthogonal to G, characteristics are also lines of constant pressure
(isobaric lines):

P pRptq, zptqq � P pR0, z0q @t (4.55)

Equations (4.54) and (4.55) allow the reconstruction of the pressure P and den-
sity ρ across the whole meridional plane, provided that boundary conditions for them
are assigned along some suitable reference non-characteristic line 11. The same equa-
tions also guarantee that if the pressure and the density are positively defined along
the reference line, than they automatically have the same property in the whole
plane. This greatly simplifies the task of checking the physical meaningfulness of
the formal solutions built with the described strategy. However, the two fields can-
not been chosen independently, since they are related by the projection of (4.47)
along the reference line. We will address this point further in the next Section.

4.3.3 Entropy, hydrostatic potential and the choice of bound-
ary conditions

Consider the a change of thermodynamic variables pP, ρq Ñ pS,Qq, defined as:$''&
''%

S :� ln

�
P

kργ




Q :� γ

γ � 1
k

1
γP

γ�1
γ

(4.56)

With a suitable choice of γ (γ � 5{3 for an ideal gas), S is the dimensionless specific
entropy (just entropy, from now on), while k is an arbitrary constant with suitable
physical dimensions 12. We can call the quantity Q hydrostatic potential, becasue
it has the same dimensions of the gravitational potential and, with the positions
(4.56), the equation of hydrostatic equilibrium (4.47) can be re-written:

∇Q � e�
S
γG (4.57)

The key points of Sec. 4.3.2 can be easily translated in the novel notation. For
instance, the evolution of the entropy along an isobaric line is:

SpRptq, zptqq � SpR0, z0q � γ

» t
0

ApRpt̂q, zpt̂qqdt̂ (4.58)

while, since characteristics and isobars coincide, equation (4.50) reads:�
gR � l2

R3


 BS
Bz � gz

BS
BR � γ

R3

Bl2
Bz (4.59)

which is equivalent to the so-called thermal wind relation (e.g. Tassoul 2000).

11That is a line not parallel to F , i.e. non orthogonal to G.
12k � P0ρ

�γ
0 where pP0, ρ0q is a thermodynamic state belonging to the adiabat where the entropy

has been arbitrarily chosen to vanish.
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The coordinates (4.56) are especially useful in the choice of the boundary condi-
tions. Let s ÞÑ xpsq � pRpsq, zpsqq be a parametrization of the reference line. Then
the hydrostatic equilibrium (4.57) projects on this line as:

dQ

ds
psq � exp

�
�Spsq

γ



Gppsq (4.60)

where Gppsq :�  Gpxpsqq, x1psq ¡ is the projection of the effective gravitational field
along the reference line 13. Note that Gp never vanishes on the reference line 14 and
therefore it has a constant sign along it. This implies that Q has its minimum value
at one extreme of such a line (which may be at infinity). If a non-negative initial
condition for Q is assigned at that end of the line, then (4.60) can be integrated,
yielding a solution for Q that is non-negative everywhere. By inverting (4.56), we
eventually find density and pressure fields that are well defined along the reference
line and therefore, because of what we have seen in Sec. 4.3.2, in the whole meridional
plane. This completes the construction of the general physically meaningful solution
to the system (4.45).

4.3.4 Geometry and rotation

We make here a brief digression on the link between rotation and the geometry of
isobaric lines, in a couple of relevant situations.

For simplicity, we consider here only the “upper” half of the meridional plane
(z ¥ 0); specular considerations clearly hold for z   0. We also assume that
Φ increases with both R and z and that gz vanishes only for z � 0. I will call
equatorial line the locus of the meridional plane defined by z � 0, the revolution of
which is the equatorial plane.

Sub-centrifugal rotation

We will say that a configuration for l is of sub-centrifugal rotation if the condition:

l2   �R3gR (4.61)

holds everywhere. From (4.49) and (4.46), this implies that Fz ¡ 0 and therefore,
from (4.52), that the height z can be used as a coordinate along each characteristic
line.

With this choice, the equation (4.52) for the shape of characteristics can be
written:

dR

dz
� FR
Fz

� �Gz

GR

� � gz
gR � l2{R3

¤ 0 (4.62)

where the equality holds only for z � 0. Note that characteristics start from the
equatorial line being orthogonal to it and then bend inwards, with a monotonic
increase in z and decrease in R 15.

13Angle parentheses denote here the ordinary scalar product.
14The reference line is non-characteristic by definition, cfr. footnote 11, Sec. 4.3.2.
15It can also be shown that, for potentials that are spherically symmetric or flatter, all these

lines end on the vertical axis at a finite value of z and hence they have a finite length.
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According to (4.54), the density changes along characteristic as:

d ln ρ

dz
pzq � �

Bl2
Bz pR, zq

R3gRpR, zq � l2pR, zq (4.63)

Note that the equatorial line is non-characteristic and therefore suitable for the
definition of boundary conditions.

Rotation on cylinders

The Poincaré–Wavre theorem (e.g. Tassoul 2000) states that a perfect gas in rotating
equilibrium in a static axisymmetric gravitational potential has an angular velocity
(as well as rotational velocity and specific angular momentum) that is independent
on height z (rotation on cylinders) if and only if it is in a barotropic configuration
(that is, with pressure and density stratified on the same surfaces); furthermore, this
is the necessary and sufficient condition for the existence of the effective potential:

ΦeffpR, zq � ΦpR, zq �
»
l2pR̂q
R̂3

dR̂ (4.64)

which is then stratified on the same surfaces as well.
It is interesting to notice how our geometrical perspective offers an alternative

proof of this well-known theorem. From (4.54) and (4.51), in fact, it immediately
follows that ρ is constant along characteristic (isobaric) lines if and only if l is
independent of z. Furthermore, from (4.52) and (4.49), characteristics are also
everywhere orthogonal to the effective gravitational field, which is the gradient of
the effective gravitational potential (4.64) (with changed sign), implying that the
latter is constant along isobaric lines as well.

Rotation on cylinders is an interesting example where the sub-centrifugal con-
dition (4.61) is, in general, not satisfied everywhere. In fact, at a fixed radius R,
the specific angular momentum l is independent of height, by definition, while the
angular momentum of centrifugal equilibrium is:

leqpR, zq �
a
�R3gRpR, zq �

c
R3
BΦ

BRpR, zq (4.65)

which, in the majority of physically interesting potentials, goes to zero as z Ñ �8.
There will therefore be some critical height zcpRq above which the fluid will start
rotating faster than the centrifugal balance requires. From (4.52), (4.49) and (4.46),
we see that the crossing point pR, zcpRqq is also a point of maximum height for the
characteristic line passing through it, after which that line (which is also an isobaric
and equidensity line) turns down to lower R and z.

The isothermal case discussed in Sec. 4.2 is an obvious example of barotropic
model. The discussion above therefore explains the shape of isobaric lines that we
have seen in Fig. 4.3 and clarifies that this is a general property of barotropic models
16. We will see in Sec. 4.3.6 example baroclinic models with a very different shape
of the isobars.

16Note, however, that the precise shape of the central cavity does depend of the choice of the
potential. Note also that in systems with a sharp spatial edge, the effect can formally occur outside
the physical boundary of the object, therefore effectively disappearing. These include, for instance,
some barotropic models of rotating stars.
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4.3.5 A class of models rotating on spheres

Consider a rotating ideal gas in (baroclinic) equilibrium in a spherical potential:

ΦpR, zq � Φ0p
?
R2 � z2q (4.66)

and suppose it is rotating with a constant fraction
?
c of the local centrifugal velocity:

l2pR, zq � cR3 BΦ

BRpR, zq � cR4

�
Φ1

0prq
r



|r�?R2�z2

(4.67)

with 0   c   1. It is readily seen that the angular velocity ω � l{R2 is constant on
spherical surfaces (which are also equipotentials).

From (4.62) and (4.66), the characteristic (isobaric) lines are easily identified by
solving:

dR

dz
pzq � �

BΦ
Bz pR, zq

BΦ
BRpR, zq � l2pR,zq

R3

� �β z
R

(4.68)

with:

β � 1

1� c
¡ 1 (4.69)

Characteristics are a family of homotetic ellipses, parametrized by the semi–major
axis (or elongation along the equator) R0 and described by:

R2 � βz2 � R2
0 (4.70)

Correspondingly, the isobaric surfaces are oblate ellipsoids17. Thanks to (4.63), the
density along each characteristic line obeys:

d ln ρ

dz
pzq � �pβ � 1qz

�
hprq
r2



|r�?R2�z2

(4.71)

where h is a dimensionless function, dependent on the choice of the potential:

hprq � 1� rΦ2
0prq

Φ1
0prq

(4.72)

Because of their shape (4.70), characteristic lines are also suitably parametrized
by the spherical radius r, as an alternative to the height z 18:

r �
?
R2 � z2 �

b
R2

0 � pβ � 1qz2 (4.73)

With this choice, (4.71) simplifies in:

d ln ρ

dr
prq � hprq

r
(4.74)

The density field is therefore given by:

ρpR, zq � ρ0pR0q exp

�
�
» R0

r

hpxq
x

dx



pR0 �

a
R2 � βz2 ; r �

?
R2 � z2q

(4.75)
where ρ0pRq :� ρpR, 0q is the equatorial density profile.

17They would have been hyperboloids in the case (which I do not develop here) f ¡ 1, corre-
sponding to the gas rotating faster than centrifugal equilibrium everywhere.

18Note that r decreases with increasing z.
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Particular cases

For some choices of the potential, the function h turns out to be a constant, so that
(4.75) further simplifies in:

ρpR, zq � ρ0p
a
R2 � βz2q

�
R2 � z2

R2 � βz2


h
2

(4.76)

To this class belong the logarithmic potential (particularly simple, with h � 2) and
all potentials proportional to some power of the spherical radius (e.g. the Keplerian
potential, with h � 3). 19.

We also give the function h computed for the NFW potential (Navarro, Frenk &
White 1997):

Φ0prq � �V 2
0

�
r

rs


�1

ln

�
1� r

rs



(4.77)

hprq � 3�
"

y2

p1� yqrp1� yq lnp1� yq � ys
*
|y� r

rs

(4.78)

which is a positive increasing function of r within the limits:

lim
rÑ0�

hprq � 1

lim
rÑ�8

hprq � 3
(4.79)

which are the values for a uniform gravitational field and the Keplerian field, re-
spectively.

4.3.6 A self-similar family of rotating coronae in a logarith-
mic potential

We now apply the formalism of the previous Section to derive a simple self-similar
(toy) baroclinic model of rotating coronae. We consider a logarithmic potential
(4.1) and, using the notation of Sec. 4.3.3, we define on the equatorial line a simple
scale–free boundary condition:

SpRq � γA ln
R

RS

(4.80)

with A ¡ 0. The radius RS is, in this self-similar model, an arbitrary choice: it does
not fix any spatial scale, but just fixes the arbitrary constant in the definition of the
entropy to be:

k � P1ρ
�γ
1 (4.81)

19Just as a curiosity, we notice that the harmonic potential (with h � 0) is the only one for which
the density comes out to be stratified with the pressure, with the consequence that cylindrical
rotation is in place. More precisely, a model like this rotates as a solid body, with an angular
velocity proportional to the proper frequency of the oscillator.

127



with P1 � P pRSq and ρ1 � ρpRSq. Introducing the dimensionless variables x �
R{RS and q � Q{V 2

d , the hydrostatic equilibrium on the equatorial plane (4.60)
reads:

dq

dx
pxq � � 1

βx1�A (4.82)

with the trivial solution:

qpxq � 1

βAxA
(4.83)

where the integration constant has been chosen in such a way that the pressure
vanishes at infinity. From (4.56), pressure and density along the equator are given
by:

P pxq
P1

� ρpxq
ρ1

� x�
γA
γ�1 (4.84)

Note that the isothermal sound speed is constant along the equatorial plane, ac-
cording to:

c2
s

V 2
d

� P pxq
ρpxqV 2

d

� P1

ρ1V 2
d

� γ � 1

γ
qp1q � γ � 1

γβA
(4.85)

where the third equality follows from (4.56) and (4.81), while the last one comes
from (4.83). Combined with (4.4) and (4.10), (4.85) can be used to expressed the
(constant) equatorial temperature T1 in units of the virial temperature Tvir:

T1

Tvir

� 3pγ � 1q
γβA

(4.86)

The equatorial temperature T1 is therefore fixed by the rotation law (parametrized
by β) and the shape of the entropy profile (parametrized by A). Note that the
temperature is constant along the equator, but not in the whole space. Thermo-
dynamic functions are easily computed in the whole meridional plane by means of
(4.76) (with h � 2, as appropriate in this case):$''''''''''&

''''''''''%

P pR, zq � P1pR2 � βz2q� γA
2pγ�1q

ρpR, zq � ρ1pR2 � z2qpR2 � βz2q�p1� γA
2pγ�1q

q

T pR, zq � T1
R2 � βz2

R2 � z2

SpR, zq � γrp1� A

2
q lnpR2 � βz2q � lnpR2 � z2qs

(4.87)

Note that isothermal lines in the meridional plane are straight lines through the ori-
gin, with the temperature increasing from the minimum value T1 along the equator
to the maximum value βT1 on the vertical axis.

In Fig. 4.4, two-dimensional maps are represented for the model (4.87), computed
with A � 1 and β � 4{3. According to (4.69), this is appropriate for c � 1{4 and?
c � 1{2, that is for a corona that rotates at one half of the local centrifugal speed

everywhere. Note the stratification of the temperature on straight lines (lower-right
panel). In units of the virial value, the temperature increases from 0.9 Tvir, on the
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Figure 4.4: Two-dimensional maps for the self-similar model (4.87) of baroclinic equi-
librium in a logarithmic potential. The example shown rotates at one half of the local
centrifugal speed everywhere. Upper left: Pressure, in logarithmic units, with contours of
logpP {P1q shown from -2.5 to 0, in steps of 0.5. Upper-right: Density, in logarithmic units,
with contours of logpρ{ρ1q from -2.5 to 0 in steps of 0.5. Lower-left: Entropy, in linear
scale, with contours from -1 to 4 in steps of 1 (note that the entropy increases outwards).
Lower right: Temperature, shown in linear scale, is stratified on straight lines and varies
from from 0.9 Tvir (on the equator) to 1.2 Tvir (on the vertical axis); contours are drawn in
equal steps of 0.05. Pressure, density and entropy are stratified on different surfaces, with
an increasing flattening, in this order. The very small, but non vanishing, temperature
gradient, has a dramatic impact on the shape of the model, especially near the vertical
axis (cfr. Fig. 4.3).
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equatorial plane, to 1.2 Tvir, on the vertical axis, with a maximum contrast β � 4{3.
A mild temperature gradient like this one already has a dramatic impact on the
stratification of the other quantities, as it is clear from a comparison with isothermal
models (cfr. Fig. 4.3 and Sec. 4.3.4)20. Furthermore, because of the baroclinic nature
of this model, pressure, density and entropy are stratified along different surfaces,
with an increasing flattening going from pressure to density to entropy.

4.4 Rotating equilibria from angular momentum

and entropy distributions

4.4.1 Problem statement

We address here the inverse problem of reconstructing the structure and kinematics
of a rotating corona from its joint angular momentum and entropy distribution:

Σ � B2M

BlBS (4.88)

More precisely, the abstract density Σ is defined by:

MpΩq :�
»

Ω

Σpl, SqdldS (4.89)

being the gaseous mass with angular momentum and entropy comprised within a
given region Ω of the pl, Sq plane. If (4.89) is re-written as an integral in the
meridional plane and Ω is allowed to be an arbitrarily small domain, we find this
useful expression for Σ 21:

ΣplpR, zq, SpR, zqq � 2πRρ
Bl
BR

BS
Bz � Bl

Bz
BS
BR
pR, zq (4.90)

where we took into account that the denominator is a positive quantity in every
stable configuration22. The same stability requirement also implies that the entropy
increases outwards, when evaluated along lines of constant angular momentum, and
therefore, for each value of l, has its minimum on the equatorial line. In other words,
Σ is non-vanishing only for S ¡ fpl2q 23, where f defines the relation between specific
angular momentum and entropy of a particular equilibrium configuration:

SpR, 0q � fpl2pR, 0qq (4.91)

We will assume that both l and S increase with R and therefore that f is a mono-
tonically increasing function of l2.

20Note that only the shape of the lines is relevant in the comparison of Fig. 4.4 with Fig. 4.3.
The normalization, in fact, has a very different meaning in the two cases, being based on the total
mass, there, and on an arbitrary radius, here.

21The proper value of Σ is actually twice of this, for symmetry reasons. However, we will focus
in the following only on the z ¡ 0 half of the meridional plane, for simplicity.

22Cfr. the second Solberg-Høiland condition, e.g. Tassoul (2000).
23We use the angular momentum squared here for later convenience.
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Figure 4.5: The abstract mass density Σ in the angular momentum-entropy pl, Sq plane,
for the same model of Fig. 4.4, with contours drawn that are equally spaced in logarithm.
Notice the ridge line, dividing the plane in an allowed and a forbidden region, approaching
which the abstract density Σ increases indefinitely.

As an example, we report in Fig. 4.5 the map of the abstract density Σ in the
pl, Sq plane for our toy baroclinic model of Sec. 4.3.6 and Fig. 4.4. Equation (4.91)
identifies the locus where the equatorial line is mapped to in the pl, Sq plane. Since,
for any given l, the minimum entropy is the one attained on the equator, the abstract
density Σ necessarily vanishes below this line. Note also that Σ apears to diverge
when this line is approached from the allowed region. We will come back to this in
Sec. 4.4.4.

Equation (4.90), together with the equations of hydrostatic equilibrium (4.45)
and the first of (4.56), form a system of 4 equations in the 4 unknowns pP, ρ, S, lq,
which should therefore be solvable, if suitable boundary conditions are defined.

4.4.2 An inductive reconstruction algorithm

We give here a sketch of how an algorithm can be devised to compute the solution
by induction. We first consider the case where the fields pP, ρ, S, lq are known, as a
function of R, at some given height z and show how they can be reconstructed in
the rest of the meridional plane. Similar arguments hold if they are instead assigned
as a function of z at given R.

Equation (4.90) can be combined with the thermal wind relation (4.59) to yield
a linear system of two equations in the two unknowns Bl{Bz and BS{Bz, the solution
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of which is: $''&
''%

Bl
Bz �

�l21C � l22lRSR
2γllR � l21SR

BS
Bz �

2γlC � l22S
2
R

2γllR � l21SR

(4.92)

where (just to simplify the notation) we have been using the positions:$''''''''''''''&
''''''''''''''%

C :� 2πRρ

Σ

l21 :� �pR3gR � l2q

l22 :� �R3gz

lR :� Bl
BR

SR :� BS
BR

(4.93)

By hypothesis, all these quantities are known at the height z. Therefore, equation
(4.92) can be integrated to give l and S at the height z � ∆z (of course, with an
accuracy that increases with decreasing ∆z). The pressure and density fields can
then be computed at z�∆z, by using the change of variables (4.56) and integrating
the vertical component of the hydrostatic equilibrium:

BQ
Bz � e�

S
γ gz (4.94)

Note that the radial component of the Euler equation:

BQ
BR � e�

S
γ

�
gR � l2

R3



(4.95)

should be satisfied automatically and can therefore be used to quantify the accuracy
of the numerical solution throughout its construction.

For completeness, we report the equations for the alternative induction strategy,
proceeding in the radial direction:$''&

''%
Bl
BR � Cl22 � l21lzSz � 2γll2z

l22Sz

BS
BR � 2γllz � l21Sz

l22

(4.96)

with: $''&
''%

lz :� Bl
Bz

Sz :� BS
Bz

(4.97)

In this case, (4.95) is used to update pressure and density, while (4.94) allows to
keep track of the accuracy.
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By definition, our induction strategy will be useful only after suitable boundary
conditions have been assigned. The natural places for this assignment to be made
are the equatorial line and the vertical axis. In both these loci, however, the relevant
equations have a non-trivial behaviour, which we therefore address in some more
detail in the following two Sections.

4.4.3 Asymptotic analysis near the vertical axis

Suppose that the sub-centrifugal hypothesis (4.61) holds and that the equilibrium
angular velocity has a finite limit for RÑ 0 24. Then the specific angular momentum
can be expanded near the vertical axis, to the second order in R, as:

lpR, zq � R2Ω2
0pzq �OpR3q (4.98)

with:

Ω2
0pzq   Ω2

0,eqpzq :� lim
RÑ0

1

R

BΦ

BRpR, zq (4.99)

If we also assume the entropy field to be regular on the vertical axis, then its radial
derivative must vanish there, implying that, for small R, S is of the form:

SpR, zq � S0pzq �R2σpzq �OpR3q (4.100)

Inserting (4.98) and (4.100) into (4.90), we obtain the limit for R Ñ 0 (and thence
for l Ñ 0), of the abstract density Σ:

Σp0, Spzqq � πρp0, zq
Ω2

0pzqS 10pzq
(4.101)

while the limit of the thermal wind relation (4.59) is:

pΩ2
0 � Ω2

0,eqqS 10 � 2gzσ � 2γΩ0Ω1
0 (4.102)

Together with the vertical hydrostatic equilibrium (4.94), equations (4.101) and
(4.102) constitute a set of 3 ordinary differential equations in the 4 unknown func-
tions pΩ2

0, S0, σ,Qq of one variable z 25. This leaves the freedom to arbitrarily assign,
for instance, the entropy profile on the vertical axis S0. The other quantities are
then determined by integration of the mentioned system, thus providing a suitable
boundary condition for the induction to proceed in the radial direction, according
to (4.96).

Of course, additional physical requirements (e.g. dynamical stability, or the sub-
centrifugal rotation) are not automatically guaranteed everywhere and can be used
a posteriori, if required, to select the physically interesting boundary conditions
among the infinite possibilities.

24Note that all spherically symmetric potentials satisfy this last condition, except, in some cases,
in the origin.

25Note that the density ρp0, zq appearing in (4.101) can be written in terms of Qp0, zq and
Sp0, zq � S0pzq by inverting (4.56).
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Figure 4.6: The abstract mass density Σpl,mq in the novel coordinate system pl,mq. Note
the much more regular behaviour, compared to Fig. 4.5, and in particular the absence of
divergency near to the equatorial plane (mapped here into the horizontal axis m � 0).

4.4.4 Regularization in the proximity of the equatorial plane

If the entropy S and the specific angular momentum l are smooth functions of pR, zq
and are symmetric with respect to the equator, then both Bl{Bz and BS{Bz vanish
for z � 0. This implies that the abstract density Σ is a divergent quantity for z Ñ 0
or (which is the same) when the ridge line in the pl, Sq plane is approached from the
allowed region (cfr. Fig. 4.5).

This problem can be circumvented with means of a suitable change of coordinates
pl, Sq ÞÑ pl,mq. For instance, the new coordinate m can be defined with the same
physical dimensions of l as:

m �
a
f�1pSq � l2 (4.103)

where f is as defined in (4.91)26. With position (4.103), m is constant (in particular,
it vanishes) for z � 0: as a consequence, its gradient is orthogonal (rather than
parallel) to the equator and the new abstract density:

Σpl,mq � 2πRρ
Bl
BR

Bm
Bz � Bl

Bz
Bm
BR

� 2mf 1pl2 �m2qΣ (4.104)

has (but in very peculiar conditions) a finite limit for z Ñ 0. As an illustration, we
show in Fig. 4.6 the map of Σpl,mq for the model of Sec. 4.3.6, which is clearly much
more regular with respect to the one in the original pl, Sq plane (Fig. 4.5).

By using the inverse of (4.103):

S � fpl2 �m2q (4.105)

26We recall that f is invertible by hypothesis.
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the thermal wind relation (4.59) can be written in the new coordinates:�
R3gR � l2 � γ

f 1pl2 �m2q


l
Bl
Bz�pR

3gR�l2qmBmBz � R3gz

�
m
Bm
BR � l

Bl
BR



(4.106)

Equations (4.104) and (4.106) can finally be combined, as in Sec. 4.4.2 to obtain the
analogs of (4.92), in the coordinates pl,mq:$''&

''%
Bl
Bz �

�l21C 1m� l22lRpllR �mmRq
pl21 � l23qllR � l21mmR

Bm
Bz � pl21 � l23qlC 1 � l22mRpllR �mmRq

pl21 � l23qllR � l21mmR

(4.107)

with: $''''''&
''''''%

C 1 :� 2πRρ

Σpl,mq

l23 :� γ

f 1pl2 �m2q
mR :� Bm

BR

(4.108)

while lR, l21 and l22 are as in (4.93).
The system (4.107) allows the solution to be found by induction in the vertical

direction, starting from boundary conditions defined on the equator. The latter
are uniquely determined by the choice of the rotation curve (or the specific angular
momentum profile) on the equator. In fact, the coordinate m is identically vanishing
by definition, the entropy S comes from l by virtue of either (4.105) or (4.91) (which
are equivalent, by construction), while the pressure can be computed, as usual, from
the integration of (4.95) and the coordinate change (4.56). Mirroring the conclusions
of Sec. 4.4.3, optional additional requirements (for instance, that a regular entropy
field is recovered near the vertical axis), can help a posteriori to select the physically
interesting solutions among all the possibilities.

4.5 Summary

In this Chapter, we have addressed the problem of how to reconstruct the struc-
ture and kinematics of a hot halo, in rotating equilibrium in a given gravitational
potential, from the knowledge of its angular momentum and entropy distribution.

This problem has several potential applications to the study of hot coronae
around spiral galaxies and in particular:

1. To link cosmological predictions, based on detailed angular momentum con-
servation, to the properties of the corona, which can be constrained observa-
tionally either directly (by future observations able to measure the rotation
of these structures) or indirectly, through constraints on angular momentum
accretion coming from structural and chemical evolution of spiral galaxies.

2. To predict the evolution of coronae as a consequence of slow processes like
viscous transport, cooling and accretion from the IGM.
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In the first part, we focused on isothermal models in a logarithmic potential.
We have shown how the density and rotational velocity can be computed from the
angular momentum distribution and temperature of the corona. Furthermore, we
considered in some more detail a couple of interesting particular cases:

1. Polynomial distributions, which are associated to a flat rotation curve and
need a sharp truncation both in the density and in the angular momentum
distributions. If put in the context of cosmology and galaxy evolution, these
models face several difficulties. In particular, they do not appear to be able
to sustain the inside-out growth of spirals and would induce too large radial
flows within the gaseous discs of spiral galaxies with respect to what suggested
by observations.

2. Exponential distributions, similar to those suggested by numerical simulations,
under the hypothesis of detailed angular momentum conservation. In order to
be self-consistent, these models need to be truncated at a maximum specific
angular momentum, which is a function of the coronal temperature. When
put on scales that are plausible for a Milky-Way sized galaxy, a model like this
shows a surprising agreement with several independent requirements, including
the global mass and angular momentum content of the corona, its ability to
sustain the inside-out growth of the disc and to induce radial flows compatible
with the observed abundance gradients.

We then discussed more general baroclinic models. We have found a novel
parametrization of the general barotropic equilibrium in a given static, axisym-
metric gravitational potential, which is improved with respect to parametrizations
by other authors in being always well-defined. We considered some special cases in
more detail and in particular a new class of analytic self-similar baroclinic models in
an arbitrary spherically symmetric potential. A comparison with isothermal models
has shown that even moderate temperature gradients can have a significant impact
on structure of the corona near the axis of rotation.

Finally, we have studied the properties of the joint angular momentum/entropy
distribution of a gas in rotating equilibrium in a given potential. We have proposed
an algorithm that allows the reconstruction of the structure and kinematics of a
gas in rotating equilibrium, starting from the knowledge of its joint angular mo-
mentum/entropy distribution and of one boundary condition, defined either on the
mid-plane or the vertical axis.
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Chapter 5

Conclusions

Spiral galaxies like our own Milky Way continuously acquire gas from the intergalac-
tic medium (IGM), which allows them to sustain significant levels of star formation
throughout their histories. During this process, they also gain angular momentum,
as predicted by the tidal torque theory and implied by observational indications of
inside-out growth. In this Thesis, we have presented novel methods for the study of
the accretion of mass and angular momentum onto the discs of spiral galaxies, both
from the global and the local point of view, and we compared theoretical predictions
with a variety of observational data.

If, as theory dictates, the average specific angular momentum of spiral galaxies is
an increasing function of time, then their discs should grow in size, while they grow
in mass (inside-out growth). In Chapter 2 we have presented a novel method for the
measurement of the specific mass and radial growth rates of stellar discs, based on
the comparison of their stellar mass surface density and star formation rate surface
density (SFRD) profiles and on the assumption that stellar discs are well described
by an exponential with a time-varying scalelength. We tested the validity of our
theory on a sample of 35 nearby spiral galaxies, for which multiwavelength data,
from FIR to FUV, were publicly available from the SINGS survey. For almost all
galaxies in our sample, we have found a positive radial growth rate, which is the
signature of ongoing inside-out growth. Only one object (NGC 1097) was found to be
undergoing significant disc shrinking, which we interpret as a possible consequence of
an ongoing merger event. The specific mass growth rates of our galaxies are similar
to those reported by studies of the main sequence of star forming discs. Interestingly,
we have found that also the specific radial growth rates lie on a sequence with a
similar shape, but systematically shifted downwards by a factor of � 3. This implies
that galaxies, on average, grow in size at about one third of the rate at which they
grow in mass. We have then shown that measurements like ours can be used to
put tight constraints on a possibly ongoing evolution of the scaling relations of disc
galaxies. Our results are compatible with independent measurements out to z � 1
and they agree very well with theoretical expectations if known scaling relations
of disc galaxies are not evolving with time. We find instead a tension with simple
models based on the assumption that galaxies evolve in lockstep with their dark
matter haloes. This suggests that baryonic processes may be regulating the rate of
mass and angular momentum accretion onto galaxy discs, at least at low redshift.
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While the masses and radii of spiral galaxies are mainly determined by the global
mass and angular momentum accretion rates, many important aspects of galaxy
evolution, most notably chemical evolution, depend on local processes and in par-
ticular on how the accretion of mass and the accretion of angular momentum are
distributed with galactocentric distance. Both these pieces of information are not
directly accessible to observations yet. However, significant insights can be gained
from structural and chemical observational constraints and from the physical link
that must exist between the accretion of mass and angular momentum, on dynamical
grounds. Accretion, in fact, induces radial gas flows within the disc, depending on
the angular momentum of the accreting material, with observable consequences on
the distribution of the heavy elements injected by stars into the interstellar medium
(ISM). Conversely, the observed distribution of α-elements in the ISM, combined
with the observed structural properties of discs, can be used to reconstruct radial
flows, the accretion profile and the local angular momentum of the accreting mate-
rial. In Chapter 3 we have presented novel methods to perform this reconstruction.
Our improvements with respect to previous work include: i) a generalization of
existing analytic solutions to arbitrary angular momentum distributions, ii) an im-
proved treatment of boundary effects, which have a key role in shaping abundance
gradients in the outskirts of spiral galaxies and iii) a prescription, based on the re-
sults of Chapter 2, to separate the effects of inside-out growth and radial flows on
the steepness of abundance gradients. By applying our methods to the Milky Way,
we have found that the material accreting on the disc of our Galaxy likely rotates
at � 70 � 85% of the rotational velocity of the disc, in agreement with previous
estimates. We also performed our analysis for one nearby spiral galaxy (NGC 628),
finding similar results, though with larger uncertainties. Our findings are consistent
with a scenario in which gaseous material is accreted onto the discs of spiral galaxies
at relatively large radii and then travels inwards within the disc, to reach the inner
regions where it is needed to sustain star formation. The local angular momentum
deficit of the accreting material with respect to the disc is in agreement with general
theoretical expectations, based on geometrical and hydrodynamical arguments. If
the accretion originates from the cooling of a hot corona surrounding the disc, then
the inferred deficit can be used to put some constraints on the temperature and the
structure of the corona.

A coherent view of the local and global processes discussed in Chapters 2 and 3
requires the understanding of the ultimate source of mass and angular momentum of
spiral galaxies. In the context of the hot-mode accretion scenario, which should hold
for massive spirals like our own, this means modeling the mass and angular momen-
tum content of hot coronae surrounding galaxy discs. According to the theory, these
are the large-scale reservoirs where mass and angular momentum are stored after
accretion from the cosmic web onto dark matter haloes and before condensation on
star forming discs. Simple theoretical models predict that coronae around galax-
ies should have an angular momentum distribution very similar to the one of dark
matter haloes, which is in turn a prediction of tidal torque theory. It is therefore
very interesting to investigate the consequences of this assumption and to consider
whether it is compatible with independent observational constraints on galaxy evo-
lution. In Chapter 4 we have studied the theoretical problem of reconstructing the
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structure and kinematics of the corona from the knowledge of its angular momentum
distribution. We have first considered the idealized case of an isothermal equilibrium
in a logarithmic potential, which is a very simple but reasonable first approximation
to a realistic situation. After describing the general solution, we applied it to some
particular angular momentum distributions. Interestingly, we have found that a
cosmologically motivated model, scaled on parameters plausible for the Milky Way,
shows an encouraging agreement with independent measurements of the coronal
density and the angular momentum content of the corona. Moreover, the rotation
curves predicted by our models are compatible with coronal accretion driving both
the inside-out growth of the disc (cfr. Chapter 2) and the radial flows required to
explain abundance gradient of the Milky Way (cfr. Chapter 3). We have also at-
tempted a study of the more general case of baroclinic equilibria in an arbitrary
axisymmetric gravitational potential. We have proposed a novel parametrization of
the general baroclinic equilibrium and discussed some interesting particular cases.
Finally, we have discussed a method for the reconstruction of the coronal structure
and kinematics, which, in this case, relies on the knowledge of the joint angular mo-
mentum/entropy distribution. Further investigation on this subject will be useful
to study the evolution of coronae under various physical processes including cooling,
viscous friction, mass accretion from the cosmic web and partial condensation on
the star forming disc.
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