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UNIVERSITÀ DEGLI STUDI DI BOLOGNA

DIPARTIMENTO DI FISICA E ASTRONOMIA
Dottorato di Ricerca in Astronomia

CICLO XXVIII

on the luminous and dark matter
distribution in early-type galaxies

Dottorando
LORENZO POSTI

Relatore
Dr. CARLO NIPOTI

Correlatori
Prof. LUCA CIOTTI

Dr. MASSIMO STIAVELLI

Coordinatore
LAURO MOSCARDINI

Esame finale anno 2015

Settore Concorsuale: 02/C1 – Astronomia, Astrofisica, Fisica della Terra e dei Pianeti
Settore Scientifico-Disciplinare: FIS/05 – Astronomia e Astrofisica





Contents

1 Introduction 5
1.1 Mass distribution in galaxies . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Baryons and dark matter . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Mass as a driver for evolution . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Galaxy mass estimators . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Early-type galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Mass from tracers of the gravitational potential . . . . . . . . . . 9
1.2.2 Shape and internal dynamics . . . . . . . . . . . . . . . . . . . . . 12

1.3 Scaling relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Integral Field Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Action-angle variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Overview of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 Action-based distribution function models . . . . . . . . . . . . . 21
1.6.2 Dynamical models for nearby early-type galaxies . . . . . . . . . . 21
1.6.3 Size and velocity dispersion evolution of early-types and their dark

matter haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Dynamical models 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Collisionless dynamics . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 Symmetries in galactic potentials and classical integrals . . . . . . 26
2.1.4 Third integral of motion . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Continuous models: distribution function . . . . . . . . . . . . . . . . . . 29
2.2.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Spherical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Axisymmetric systems . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Three-integral DFs . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Continuous models: Jeans equations . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Multi-gaussian expansions and Jeans anisotropic models . . . . . 39

2.4 Discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Orbit-based models . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



2 CONTENTS

2.4.2 Particle-based models . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Time evolution: N -body simulations . . . . . . . . . . . . . . . . . . . . 46

3 Action-based distribution functions for spheroids: the f(J) models 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Power-law models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Logarithmic potentials . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Two-power models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Worked Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Cores and cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Isochrone model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Cored isothermal sphere . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Self-consistent models for early-type galaxies in the CALIFA Survey 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Action-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 The Distribution Function . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 The CALIFA survey . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Sample description . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Action-based galaxy models in observable space . . . . . . . . . . . . . . 76
4.4.1 From the DF to the observables . . . . . . . . . . . . . . . . . . . 77
4.4.2 The physical meaning of the model’s parameters . . . . . . . . . . 78
4.4.3 Generating mock data . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.1 Light distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Models’ intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Dynamical evolution of early-type galaxies and their haloes 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Methods and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Computational tools . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Definitions of the structural and kinematical properties of dark

matter haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 Behaviour of the different size and velocity dispersion proxies . . . 103
5.2.4 Virial expectations for the halo mass-velocity dispersion and mass-

size relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Scaling relations of dark matter haloes as functions of redshift . . . . . . 106

5.3.1 Mass-velocity dispersion: the measured correlation and evolution . 108
5.3.2 Mass-size: the measured correlation and evolution . . . . . . . . . 110

5.4 Evolution of individual haloes . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS 3

5.4.1 Evolution of simulated dark haloes in the mass-velocity dispersion
and mass-size planes . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.2 Comparison with simple dry merger models . . . . . . . . . . . . 112
5.5 Implications for the size evolution of early-type galaxies . . . . . . . . . . 119

5.5.1 The stellar-to-halo mass relation (SHMR) . . . . . . . . . . . . . 119
5.5.2 The stellar-to-halo size relation (SHSR) . . . . . . . . . . . . . . . 121
5.5.3 Size evolution of early-type galaxies: comparing models with ob-

servations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.4 Velocity dispersion evolution of early-type galaxies: comparing

models with observations . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Conclusions & Future prospects 129
6.1 Dynamical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Application to massive galaxies . . . . . . . . . . . . . . . . . . . 130
6.1.2 Application to other systems . . . . . . . . . . . . . . . . . . . . . 131
6.1.3 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Galaxy evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.1 The role of dark haloes in centrals and satellites . . . . . . . . . . 134
6.2.2 Model galaxy formation . . . . . . . . . . . . . . . . . . . . . . . 135

Bibliography 137

A Analytical expression for the radial action in the Hernquist sphere 147

B Velocity ellipsoids of the galaxy models in Chapter 4 149

C Galaxies’ inclination 151



4 CONTENTS



Chapter1
Introduction

1.1 Mass distribution in galaxies

1.1.1 Baryons and dark matter

A long standing problem in Astrophysics is that large bound structures such as galaxies
and galaxy clusters appear to have more mass than what can be accounted for by the
stars and gas which emits the observed radiation. Even though not unique, the most
popular solution to this conundrum is that galaxies and galaxy clusters are embedded
within haloes much larger than the host stellar system, which are made of non-emitting
matter interacting only gravitationally with gas and stars: this additional source of mass,
which lives outside of the Standard Model of Particle Physics, is called dark matter. If
it does exist, such invisible matter must be composed of weakly self-interacting and
very massive elementary particles with respect to ordinary baryonic particles such as
electrons and protons (see Fermi-LAT Collaboration, 2015). The Planck Collaboration
et al. (2014) gave probably the most convincing argument for the existance of such
non-emitting dark matter with observations of the cosmic microwave background: the
amount of baryonic matter (i.e., stars, gas, dust, compact objects) that is in the Universe
is about 16% of the total amount of gravitationally interacting matter. This ratio is
usually called cosmological baryonic fraction.

In general, the fraction of baryonic over total mass is a function of both i) time,
since it is not constant over the lifetime of a bound structure, and ii) position in the
Universe, i.e., it is different in general from object to object. In the so-called hierarchical
clustering scenario (see White & Rees, 1978) dark matter structures started collapsing
before the baryon-radiation decoupling. Galaxy formation starts when baryons fall into
the potential well of such dark haloes: at the centre of the halo, where the gravity
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6 Introduction

is stronger, the gas dissipates efficiently, cools and eventually forms stars. How many
baryons w.r.t. dark matter particles are present in a given structure at a given time
depends on the evolutionary history of the system: violent processes, such as feedback
from supernovae and from the central Active Galactic Nucleus (AGN), can expel some
of the gas out of the potential well; while encounters and mergers with other structures
bring in new material that becomes gravitationally bound to the system. The major
source of uncertainty in determining what is the baryonic fraction of a given object at
a given time is that while the evolution of the dark matter content is solely influenced
by gravity, for which sophisticated and accurate models exist (see e.g., Mo & White,
1996; Springel, Frenk, & White, 2006), the evolution of the baryonic component is
strongly dependent on many details of gas physics, which are still poorly modeled and
understood.

1.1.2 Mass as a driver for evolution

The largest bound structures that are in the Universe today, i.e., the galaxy clusters, are
embedded in coronae of very hot gas (107 − 108 K) which can be detected from its X-
ray or Sunyaev & Zeldovich (1970) emission (see e.g., Sarazin, 1986; Birkinshaw, 1999).
Such hot and diffuse gas typically amounts to about 90% of the total baryonic content
of the cluster, leaving just about 10% of the baryonic mass in stars, which are mostly
confined in galaxies (Voit, 2005). This is likely not going to change much in time since
the very deep potential wells of the clusters (with masses around 1014 − 1015M�) make
the cooling time of the hot atmospheres much longer than the Hubble time, implying
that gas condensation is very unlikely and therefore star formation is negligible (except
at the cluster’s centre). The potential well of a typical galaxy is instead of the order
of 1012 − 1013M�, which typically allows for efficient conversion of gas into stars (at
least in the absence of quenching mechanisms, i.e. processes that stop star formation.
e.g., Peng et al., 2010). This, in the lifetime of a galaxy, ultimately leads to a stellar
content dominating over the gaseous content: typically the gas-to-stellar mass fraction
in elliptical galaxies is up to about ∼ 10 − 20% (see e.g., Binney & Merrifield, 1998)
and also in late-types with stellar mass & 109M� the stellar mass dominates over the
gas mass (see e.g., Papastergis et al., 2012).

The mass distribution of cosmological structures is most likely the major driver of its
evolution. Galaxies have largely assembled by mergers, which are more likely for more
massive dark haloes (e.g., Fakhouri, Ma, & Boylan-Kolchin, 2010), and their mass, size
and other structural properties have been following very different evolutionary tracks
depending on how matter is distributed in them. Also star-formation and other complex
baryonic processes are strongly influenced by the total mass of the system: in very
massive galaxies, star formation tends to be strong, episodic, short-lasting and taking
place when the Universe was young; for galaxies with smaller mass, star formation tends
to be mild, long-lasting and accompanying most of the galaxy lifetime. So, how much
luminous and dark matter there is in a galaxy is a direct tracer of the galaxy evolution.

The distribution of matter in galaxies and galaxy clusters can also be used to probe
cosmological models of structure formation on different scales. Since the total mass of
such stellar systems is typically dominated by their dark matter haloes, whose evolution



1.2 Early-type galaxies 7

is mainly driven by gravity and not by complex gas physics phenomena, measurements
of the total mass of galaxies and galaxy clusters are fundamental for a statistical com-
parison with an analogous populations predicted by a given model. For instance, the
number of galaxies of given mass per unit volume of the Universe gives constraints on
the baryonic and non-baryonic mass functions on large scale; while the number of Milky
Way satellites of given mass gives constraints on the cosmological models on smaller
scales.

1.1.3 Galaxy mass estimators

Many techniques have been developed in order to measure the mass of galaxies in the
Universe. The three most used approaches are i) inferring the mass distribution only
from the light distribution, usually using stellar population models, ii) deriving the
gravitational field from strong and/or weak graviational-lensing observations and iii)
using the Doppler shifts and broadenings of stellar and/or gaseous lines to trace the
underlying potential well (see e.g., the review by Courteau et al., 2014). The first
measures only the mass in stars and not the total mass of the system, but is the easiest
and faster method and has been applied extensively also at high redshift. However,
it has some uncertainties and the results vary significantly if the stellar population
model’s details are varied. While the second is the most accurate in measuring the mass
within a fixed radius, but the lensing signal can be detected only for special geometrical
configurations. The third method, on the other hand, is by far the most popular since
it can be applied to all galaxies for which spectroscopical observations are available
and it is sufficiently accurate in recovering the mass distribution of the system. The
analysis of the spectral lines provides information on the motion of the objects which
emitted the lines. This allows for the reconstruction of their motion using a kinematical
model, which characterizes e.g., the galaxy’s rotation velocities and velocity dispersion
in a parametric way. On top of that, one can seek for a dynamical model in which
the system’s gravitational potential is modeled and it is responsible for the observed
kinematics. With the latter it is possible to characterize the system’s orbital distribution
and hence give robust estimates of the dynamical, i.e., total, mass distribution.

1.2 Early-type galaxies

The distribution of galaxies in the Universe appears to be bimodal in many aspects:
the optical morphology (either disc-like or elliptical), the colour (either blue or red), the
amount of warm/cold gas (either rich or poor), the amount of hot gas (either poor or
rich), the age of their stellar populations (either young or old), the star-formation activ-
ity (either star-forming or passive), the environment in which the galaxy lives (either
low-density or high-density), the tendency of hosting an AGN (either moderate or signi-
ficant). Elliptical, red, warm/cold-gas-poor, hot-gas-rich, old, passive, with high probab-
ility of being clustered and of hosting an AGN are called early-type galaxies, as opposed
to the late-type galaxies. These galaxies have typically assembled most of their stellar
mass very early-on and their subsequent evolution, either quiescent or driven by episodic
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826 M. Cappellari et al.

Figure 5. Morphology of slow-rotators ETGs sorted by increasing λR. Postage stamps of the SDSS DR7 and INT red–green–blue composite images of slow
rotators in the ATLAS3D sample. The image of each galaxy was scaled so that the plot side is equal to 10Re, where Re is the projected half-light radius given
in Table 3. From left to right and from top to bottom the panels are sorted according to their specific stellar angular momentum, as measured by the parameter
λR given in Paper III. The galaxy name is given at the top of each panel and the morphological classification from HyperLeda at the bottom. At this scale
slow-rotator ETGs appear generally featureless except for the synchrotron jet in NGC 4486 and obvious signs of interactions in NGC 1222, NGC 3414 and
NGC 5557. The only significant flat galaxy in this class is NGC 4550, while two other galaxies NGC 3796 and NGC 4528 show evidence of bar perturbations,
which is typically associated to stellar discs. All these three objects contain counter-rotating stellar discs (Paper II). (This figure is better appreciated on a
computer screen rather than on printed paper.) A version of Figs 5 and 6 sorted by name is available at http://purl.org/atlas3d.

circles, with ellipticity given by the galaxy photometry and the po-
sition angle defined by the stellar kinematics (see appendix B of
Cappellari et al. 2007). In addition, when galaxies are barred, the
SAURON survey has shown that the kinematics are generally still
aligned with the position angle of the galaxy photometry at large
radii PAphot (Krajnović et al. 2008), which defines the position of the
line-of-nodes of the disc. These requirements, which derive from
our experience with the SAURON survey (de Zeeuw et al. 2002),
lead to the following optimized observing strategy, which we sys-
tematically applied for the SAURON observation of the ATLAS3D

sample.

(i) When Re ≤ 30 arcsec take a single SAURON field and orient
the SAURON major axis with the large radii PAphot.

(ii) When Re > 30 arcsec then we take a mosaic of two SAURON
fields. Given the size of the SAURON field of 33 × 41 arcsec2, the
criterion of maximizing the area of the largest isophote, of axial
ratio q′, enclosed within the observed field-of-view, becomes

(a) if q′ < 0.55 the SAURON long axis is aligned with PAphot

and the mosaic is made by matching the two SAURON pointings
along the short side;

(b) if q′ ≥ 0.55 the SAURON short axis is aligned with PAphot

and the mosaic is made by matching the two SAURON pointings
along the long side.

At the time of the SAURON observations the only photometry
available to us for the whole sample was from 2MASS. We adopted
the Re provided by the 2MASS XSC, which is determined via

growth curves within elliptical apertures. Specifically, in terms of
the XSC catalogs parameters, we defined

Re
2MASS = MEDIAN(j r eff, h r eff, k r eff)

√
k ba, (6)

as the median of the three 2MASS values in the J, H and Ks band,
where the factor

√
k ba takes into account the fact that the 2MASS

values are the semimajor axes of the ellipses enclosing half of the
galaxy light and we want the radius of the circle with the same area.
This R2MASS

e was compared to the RRC3
e provided by the RC3 cata-

logue and measured via growth curves within circular apertures. The
two values correlate well, with an observed rms scatter of 0.12 dex
in Re, which implies an error of about 22 per cent in each Re de-
termination (assuming they have similar errors). However there is
a general offset by a factor RRC3

e ≈ 1.7 R2MASS
e between the two

determinations (Fig. 8). The rms scatter in the RRC3
e –R2MASS

e corre-
lation is close to the one (0.11 dex) we obtain when comparing RRC3

e

to 46 values determined using growth curves in the I band for the
SAURON survey (Cappellari et al. 2006; Kuntschner et al. 2006).
In that case however the offset in the values is negligible (factor
0.95). We conclude that the 2MASS Re determinations have com-
parable accuracy to the RC3 and SAURON determination, when
they are increased by a factor of 1.7 to account for the differences
in the observed photometric band and in the depth of the photome-
try data. All three values are consistent with having a similar error
of ≈22 per cent in Re. This rather large error is consistent with
the findings of Chen et al. (2010) from another extensive com-
parison of Re values. To further improve the accuracy we adopted

C© 2011 The Authors, MNRAS 413, 813–836
Monthly Notices of the Royal Astronomical Society C© 2011 RAS
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Figure 1.1: Sample of 36 early-type galaxies drawn from the ATLAS3D survey. The images
are red-green-blue composites from observations with the Isaac Newton Telescope and the
Sloan Digital Sky Survey Data Release 7 (SDSS DR7, Abazajian et al., 2009). The name
of the galaxy and the morphological classification from the HyperLeda database (at http:

//leda.univ-lyon1.fr/) are shown respectively on top and bottom of each image. The scale
of each panel is 10Re×10Re, where Re is the effective radius. Figure adapted from Cappellari
et al. (2011a).

http://leda.univ-lyon1.fr/
http://leda.univ-lyon1.fr/


1.2 Early-type galaxies 9

mergers, is characterized by a mild growth stellar mass and by star formation or AGN
activity triggered by occasional gas accretion. Most of the early types that we observe
in the local Universe appear to be smooth and not disturbed both in optical, where the
stars dominate the light, and in X-ray, where their hot (106 − 107 K) gaseous atmo-
spheres emit via bremsstrahlung. This indicates that they have likely not experienced a
violent evolution in the last billion years, but instead they have gone through a quiescent
evolutionary phase. Figure 1.1 shows some local Universe early types (taken from the
ATLAS3D sample; Cappellari et al., 2011a) as they appear in optical wavelenghts.

1.2.1 Mass from tracers of the gravitational potential

1.2.1.a Cold and warm gas as a tracer

In the local Universe, for those early-types for which no lensing signal can be detected
(see e.g., the Sloan Lens ACS Survey, for some cases in which strong lensing features are
present, Bolton et al., 2006) the total mass distribution is best measured by analysing
the motion of some visible objects in the galaxy’s potential. The objects on which one
studies the action of the potential are usually called tracers. For late-type galaxies the
obvious choice is the cold neutral gas, which is ubiquitus and conspicuous and whose
kinematics can be probed with 21 cm observations of the hyperfine transition of the
nautral hydrogen atoms with radio telescopes. Such emission line has proved to be ideal
to study the dynamics of spiral galaxies and over the years improved radio telescopes
have helped in shedding some light in how their luminous and dark mass is distributed
(see e.g., de Blok et al., 2008). Gaseous discs extend typically much more than optical
discs and easily reach the regions where the dark matter is expected to dominate the
mass budget, therefore these measurements are of great importance if one is willing to
decompose the matter distribution in dark and luminous (see e.g., van Albada et al.,
1985). Similarly, bright emission lines such as the Hα Balmer recombination line can be
used to probe the kinematics of the warm phase of ionised hydrogen at high redshift,
where the 21 cm can not be detected (see e.g., Förster Schreiber et al., 2009).

1.2.1.b Planetary nebulae, globular clusters and hot gas as tracers

Emission lines of cold and/or warm gas are not present in early-types, hence the tracers
of the potential must be of some other kinds. Planetary nebuale produce bright emission
lines that can be typically observed out to the very outskirts of an elliptical galaxy (out
to about 5−8 effective radii, see e.g., Cortesi et al., 2013; Gerhard, 2013). The planetary
nebula is a phase in the final stages of the life of old stars (1M� ≤ M . 8M�) and it
is characterized by extremely bright emission lines produced by the expanding stellar
envelope, especially a forbidden line of the doubly-ionised oxygen (in visual bands). The
radial velocities of such stars can be accurately determined by these bright lines and
typically used to probe the galaxy’s net rotation. If no bright emission line is available,
absorption line produced by the atmospheres of stars can be used to derive the kinemat-
ics. Similarly to planetary nebulae, globular clusters appear as point-like objects in the
halo of early types and can be observed out to about 4 effective radii. In typical nearby
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early-types, the radial velocities of some hundreds of star clusters can be estimated from
the ionised calcium triplet (in near-infrared bands, see e.g., Romanowsky et al., 2009).
Dealing with discrete kinematic information can be more difficult w.r.t. the continuous
information coming from, e.g., gas emission lines (for instance, the determination of the
velocity dispersion along the line-of-sight is often difficult with those tracers), indeed
ad-hoc discrete dynamical models have been developed to efficiently deal with such data
(see Section 2.4). Planetary nebulae have proved to be essential tracers of the potential
of early types in the outskirts, since they naturally trace the dynamics of the stars in the
galaxy (being them old stars) and since they are visible even where the galaxy’s surface
brightenss is faint. Converseley, globular clusters do not trace the stellar kinematics
equally well since those on orbits plunging closer to the galactic centre are likely to be
tidally disrupted, leaving intact only clusters with lesser radial excursion. Therefore,
the orbits of the observed globular clusters will be more biased towards circular orbits
and typically also a simultaneous determination of their (completeness-corrected) dens-
ity profile is needed. Another noteworthy approach for recovering the dynamical mass
of early types up to several effective radii (∼ 2− 4) is by measuring the X-ray emission
from their hot gaseous coronae. With some assuptions on the geometry of the system,
one can generate a dynamical model for the galaxy by assuming that the hot gas is in
hydrostatic equilibrium in the galactic gravitational potential (e.g., Das et al., 2010).
Two main drawbacks can be associated with this technique: first, the X-ray luminosity
can be dominated by point sources (e.g., X-ray binaries) so the measured temperatures
do not necessarily trace the underlying potential and second, inflow and outflows often
disturb the hot corona so that the assumption of hydrostatic equilibrium is questionable.

1.2.1.c Stars as tracers

Stars are, however, the tracers most often used to determine the mass distribution in
early-type galaxies. From long-slit spectra along the major axis (see e.g., Davies et al.,
1983) to modern Integral Field Spectrographs which spatially resolve the galaxy stellar
kinematics on the plane of the sky (see e.g., Cappellari et al., 2011a; Sánchez et al., 2012),
the analysis of absorption lines produced by unresolved stars within the galaxy (typically
in the visual bands encompassing the H and K lines of ionised calcium) has a long history
in characterizing the dynamics of early types. Their mass is measured studying how the
stars move through the system along a given line-of-sight, i.e., recovering the line-of-
sight velocity distribution (losvd) from the observed stellar absorption lines. In these
systems the stellar surface brightness falls off rapidly from the centre (approximately as
I ∼ exp(−R1/4), where I is the surface brightenss and R is the distance from the centre,
see de Vaucouleurs, 1948) and the signal-to-noise of the stellar spectrum becomes too
small for any reliable determination of the kinematics at about 1 − 3 effective radii.
Where the signal-to-noise is large enough, the galaxy’s line-of-sight velocity distribution
(losvd) can be determined from the integrated stellar spectra. At a given position on
the sky, the observed spectrum is given by the luminosity-averaged sum of the spectra
of each star that falls into the resolution element of the instrument, which is Doppler-
shifted according to the star’s line-of-sight (LOS) velocity. If the intrinsic emission of all
the stars in that position of the sky is known, then the observed integrated spectrum is
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Mass, anisotropy and IMF of NGC 5846 669

panel) are plotted. These show that the DM mass exceeds that of
the stars (fDM > 0.5 by definition) at 1Re for the contracted models
and ∼2Re for the non-contracted ones.

The DM fractions within 1Re are of the order of fDM ∼ 0.25 for
the normal DM solutions and fDM ∼ 0.4 for the contracted halo
ones. This result is consistent with the typical central DM fractions
measured with large statistical sample analyses from either galaxy
dynamics and virial analysis (Tortora et al. 2009; Thomas et al.
2009; Napolitano et al. 2010; Grillo 2010), or lensing studies (Auger
et al. 2010; Tortora et al. 2010) using a Salpeter IMF.

In all cases presented in Fig. 6, typical uncertainties in derived
dynamical quantities are plotted. As pointed out in Section 5.2,
it is clear that all models are generally consistent within typical
uncertainties. This reflects the stability of the virial solution against
different assumptions of anisotropy that are compatible with the
observed kinematics.

The dynamical M/L within Re (ϒ�=11–13; see Table 1) is consis-
tent with previous analyses from the ATLAS3D project (Cappellari
et al. 2013a), wherein a value of M/Lr = 8.1 was found. Once con-
verted to the V band (see Section 2.2), this corresponds to M/LV

∼ 12.5. Our M/L estimate is lower than K+00 (i.e. M/LB ∼ 11 at
Re ), once the latter is converted to the V band and corrected to a
common distance. This may be a consequence of their assumption
of a cored halo, which tends to show a flatter M/L(r) than the cuspy
NFW profiles used in this work.

However, in the central region, our vcirc models are domi-
nated by the stellar component that peaks around 0.5 Re with
∼330 − 350kms−1. This is almost consistent with the findings
of ATLAS3D (361 km s−1; Cappellari et al. 2013b), but lower than
the K+00 model solution. This is shown in Fig. 7, where we see
that we agree with K+00 outside 1Re despite the smaller radial cov-
erage of their star-only model, which does not allow comparison
of the results at large radii. The central discrepancies between this
and the previous two studies reflect the slightly larger stellar mass

Figure 7. Comparison with previous analyses. The GC fiducial model from
this work (stars+GCs, orange curve) is compared with previous star-only
inferences (K+00, red curve, and ATLAS3D, red star), a PN model from
Deason et al. (2012), and with an X-ray model from Das et al. (2008). See
text for a detailed discussion.

normalization, compared to our estimate, that they both inferred
(i.e. ϒ� ∼ 9.5 and ϒ� ∼ 9.2, respectively, for K+00 and ATLAS3D

at the same galactocentric distance and converted to V band). This
may be a consequence of the poor constraints on the overall dark
halo derived from their radially confined kinematics.

The study of Deason et al. (2012) is the one more closely related
to our work in terms of data and model extent (see Fig. 7). Their
analysis differs in that they do not fit the stellar component, but
instead provided the solutions for both a Chabrier and a Salpeter
IMF. In our analysis, we resolve this ambiguity by explicitly fitting
for the IMFs and find that a heavier stellar mass normalization is
favoured over Chabrier IMF.

Comparing our results to the Deason et al. (2012) solution with
a Salpeter IMF, we only find agreement for fDM(5Re). This is a
consequence of their smaller total stellar mass, which may be due
to the limited radial extent of their selected SB profile compared to
that used here.

In Fig. 7, the Deason et al. (2012) vcirc profile is steeper and higher
than all other models within 2.5Re. This may reflect their adoption
of a constant slope to describe the tracer density profile that is not a
good representation of the central galaxy regions. On larger scales,
their vcirc also shows a steep decline that is significantly tilted with
respect to our NFW model-based profile. This implies a slightly
lower total mass. For example, our total mass estimate (∼1.6 ×
1012 M�) is ∼30 per cent larger than theirs at 5Re. Furthermore,
the PNe dispersion profile is slightly lower at all radii (see e.g.
P+13), which they model using an average anisotropy of β = 0.2.
This value is lower than that of the RGCs presented herein. Both
of the above push their model towards lower values for the overall
mass.

Finally, Fig. 7 also includes the X-ray model of Das et al. (2008).
Their circular velocity is consistent with the central region estimates
from dynamical studies, but it diverges from 2Re onwards. It is
possible that the disturbed X-ray structure in this system (Machacek
et al. 2011) is not suitable for equilibrium analysis.

6 C O N C L U S I O N S

We have presented the first self-consistent Jeans model analysis of
red and blue GC subpopulations including a dispersion–kurtosis
analysis to break the degeneracies between dark matter, anisotropy
and IMF applied to the giant galaxy NGC 5846.

The two GC subpopulations are accurately separated using their
colour distribution and careful evaluation of their colour mix as a
function of radius. A conservative separation allows us to improve
the kinematics of the RGCs and BGCs. These turn out to be decou-
pled, with the velocity dispersion profile of the RGCs flattening to
210 kms−1 outside 3Re (Re = 81 arcsec), and the velocity disper-
sion profile of the BGCs also flattening, but being ∼40 kms−1 larger
than that of the RGCs. The kurtosis (κ) profiles of the two subpop-
ulations are fairly similar within R � 3Re, where they both show
κ ∼ −0.5, which is consistent with the outermost stellar data points
from long slit spectroscopy. At larger radii they diverge with RGCs
increasing towards κ ∼ 1 and BGC gently decreasing towards
κ ∼ −1. The kurtosis values for the two subpopulations differ
at the ∼2σ level at the largest radius probed.

We have modelled the kinematic data assuming a standard NFW
profile, including the effect of adiabatic contraction (Gnedin et al.
2004) and allowing the anisotropy parameter to vary with radius up
to a constant value, after confirming that orbital isotropy, β = 0,
in the centre (see also Cappellari et al. 2007) provides a very good
match to the dispersion and kurtosis data for both RGCs and BGCs.
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Figure 1.2: Circular velocity profile for the elliptical galaxy NGC 5846 with different methods.
Stellar kinematics from Kronawitter et al. (2000, red band) and Cappellari et al. (2013, red
star), X-ray dynamical model in hydrostatic equilibrium from Das et al. (2008, violet band),
dynamical model constrained with planetary nebulae from Deason et al. (2012, green band)
and constrained with stars+globular clusters in the SAGES Legacy Unifying Globulars and
GalaxieS (SLUGGS) survey from Napolitano et al. (2014, yellow band). Figure adapted from
Napolitano et al. (2014).

the convolution between such intrinsic emission and the LOSVD, so that one can hope
to recover the latter by solving an inversion problem. Such inverse problem is far from
easy to resolve and it is often ill-conditioned (since deconvolutions tend to amplify the
noise). However, many methods have been developed to solve this crucial problem: the
method that is currently the most popular consists of the following steps

(i) assume some given templates for the stellar intrinsic emission (usually templates
for single stellar populations)
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(ii) parametrize the LOSVD, typically with an expansion in Gauss-Hermite functions
up to order 4 or more (see Gerhard, 1993; van der Marel & Franx, 1993)

(iii) use a penalized likelihood recovery algorithm (see Merritt, 1997) to invert the
convolution problem, so that for large signal-to-noise also the higher moments of
the expansion are important, whereas for small signal-to-noise one effectively fits
a Gaussian (only the order 0, 1 and 2 of the Gauss-Hermite expansion are fitted).

An optimal and very popular implementation of this scheme was proposed by Cappellari
& Emsellem (2004).

In Figure 1.2 an example of comparison among estimates of the circular velocity
curve (which can be readily translated into total mass profile since v2

circ(r) = GM(r)/r)
is presented for the elliptical galaxy NGC 5846. All the methods indicate that this galaxy
is dominated by dark matter already within the effective radius (e.g., the ATLAS3D

collaboration estimates a mass-to-light ratio in r-band of ∼ 8.1, see Cappellari et al.,
2013). Also, the two methods which probe the outermost regions of the galaxy agree
in indicating that this dominance increases with radius (by roughly a factor of ∼ 2
in mass-to-light ratio from 1 to 5 effective radii, see e.g., Napolitano et al., 2014).
Some discrepancies in the innermost part can be ascribed to different calibrations and
sensible differences in the modeling techniques used, while the peculiar shape of the
circular velocity curve inferred from the hot X-ray halo probably suggests that such
atmosphere is not in hydrostatic equilibrium and maybe that unresolved X-ray binaries
are responsible for a significant fraction of the observed X-ray flux. However, the various
methods describe the total mass distribution of the galaxy in qualitative agreement.

1.2.2 Shape and internal dynamics

As Figure 1.1 illustrates, many early-type galaxies appear flat on the sky. The shape
of their isophotes, i.e., curves of equal surface brightness, is to first order elliptical and
one may wonder what are the intrinsic shapes of such galaxies.

The problem of understanding the intrinsic shape of galaxies from the observations
is not easy to solve, since the flattening of the observed isophotes (ξ = b/a, where a and
b are, respectively, the semi-major and semi-minor axis of the isophote) is due both to
an intrinsic flattening of the stellar system1 q and to the inclination of the line-of-sight i,
which for axisymmetric galaxies is the angle between the line-of-sight and the symmetry
axis. Such degeneracy between q and i is difficult to break and typically one derives
results on one with some reasonable assumptions on the other. If the galaxy is oblate,
then

ξ = cos2 i+ q2 sin2 i. (1.1)

The probability distribution of observed axis ratios P (ξ) will be given by integrating
over all the possible intrinsic axis ratios q and inclinations i, hence

P (ξ) =

∫
dq P (q)P (ξ|q), (1.2)

1 I assume here that galaxies are axisymmetric for simplicity, but the results can be generalized to
triaxial systems (see Lambas, Maddox, & Loveday, 1992)
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where P (ξ|q) is the conditional probability of observing a projected axial ratio ξ given
that a galaxy is intrinsically flattened by q. P (ξ|q) is a function of the inclination angle
i. Following Lambas, Maddox, & Loveday (1992, see also Binney & Merrifield 1998
§4.3.3) one can invert (1.2) and determine P (q) from the observed P (ξ) by assuming
that galaxies are seen at random angles. The main result from a large sample (' 20000)
of diverse galaxies, is that the observed distribution of disc galaxies’ shapes is produced
by a homogeneous population of very thin stellar discs (axial ratio < 0.2). Lenticular
galaxies are somewhat similar to spirals, while ellipticals have a broader q distribution
with a peak at about q ' 0.6

Since the observed distribution of early-type shape is not consistent with discs ran-
domly oriented on the sky, it is natural to ask whether the physical mechanism that
makes their shape flattened and long-lived is the same as for late-types. For the latter,
we know that a significant net rotation is present and is supporting the galaxies against
gravity: in fact most stars in the stellar disc are on nearly circular orbits. For a long
time before the mid ‘70s, also ellipticals where thought to be fast-rotating spheroidal ob-
jects, whose shape is due to a flattening by rotation (see e.g., Gott, 1973; Larson, 1975).
Our understanding of such objects changed drastically when the first observations of
stellar rotation curves in ellipticals showed that they rotate significantly less than ex-
pected (see Bertola & Capaccioli, 1975; Illingworth, 1977). Binney (1978) proposed that
the flattening of the ellipticals’ shape is due to an anisotropy of the velocity dispersion
tensor, rather than to the net streaming motion. This implies that the support against
gravity in these system is not given by rotation, but it is given by a dynamical pressure
term, coming from the random motion of stars, whose magnitude is different in different
directions.

Illingworth (1977) and Binney (1978) introduced the V/σ-ε diagram, where ε ≡ 1−ξ
is the observed ellipticity, to study ratio of the amount of rotational kinetic energy to
that in random motions. Traditionally V/σ was measured from observations as V/σ ≡
Vmax/σ0, where Vmax is the peak of the rotation curve and σ0 is the central velocity
dispersion. However, Binney (2005) introduced a new definition, based on the Tensor
Virial Theorem (e.g., Binney & Tremaine, 2008, §4.8.3), in which both the streaming
velocity and the velocity dispersion are light-averaged on the sky (see Section 4.4.2.c
and in particular equation 4.15). Figure 1.3 shows a collection of such data taken from
the ATLAS3D sample of early-types (see Emsellem et al., 2011). Roughly all galaxies
have V/σ < 1, whereas spiral galaxies have V/σ > 2, so for these objects rotation is not
the most important factor in determining the observed ellipticity. A substantial fraction
of them lies below the curve in which rotating, oblate galaxies with isotropic velocity
tensor sit. When seen edge-on, systems with anisotropic velocity dispersions are found
below that curve (see e.g., Cappellari et al., 2007).

1.3 Scaling relations

Early-type galaxies are known to closely follow some well-defined, empirical scaling
laws such as luminosity-velocity dispersion (Faber & Jackson, 1976), size-surface bright-
ness (Kormendy, 1977), Fundamental Plane (Djorgovski & Davis, 1987; Dressler et al.,
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Figure 1.3: The ATLAS3D sample of early-type galaxies in the rotational support plane:
V/σ versus ellipticity ε = 1 − b/a. Points in red are for galaxies classified as slow rotators,
while those in blue are for fast rotating galaxies (see Emsellem et al., 2007). The black solid
curve is the locus of points occupied by oblate isotropic rotators seen edge-on as in Binney
(2005). I acknowledge the ATLAS3D collaboration for making their data publicly available at
http://www-astro.physics.ox.ac.uk/atlas3d.

1987), central black-hole mass-bulge mass (Magorrian et al., 1998), central black-hole
mass-velocity dispersion (Ferrarese & Merritt, 2000; Gebhardt et al., 2000) and central
black-hole mass-Sérsic index (Graham et al., 2001) relations. Such correlations hold on
a large dynamical range, from dwarf ellipticals and bulges of normal galaxies to giant
ellipticals. Therefore, the picture of early-types appear to be that of a very homogen-
eous population, in which large systems are self-similar scaled-up versions of smaller
ones. In this respect, all these scaling laws set very tight constraints on any proposed
galaxy formation model and can be exploited to give clues about how galaxies form and
evolve. For instance, in the hierarchical structure formation scenario, galaxies form by
subsequent mergers of smaller systems, though it is still unclear how such hierarchy of
mergers can produce such an homogeneous class of objects with respect to their global
structure, dynamics and properties of the stellar populations (see e.g., Nipoti, Londrillo,
& Ciotti, 2003). In the following I will focus on the global properties of early-types as
stellar systems and therefore I shall not consider the presence of the central supermassive
black-hole (see e.g., Ciotti, 2009, for an extensive discussion).

http://www-astro.physics.ox.ac.uk/atlas3d
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From the Scalar Virial Theorem (see e.g., Binney & Tremaine, 2008, §4.8.3) it follows
that for a galaxy in a steady-state, whose dynamical mass is M , effective radius is Re

and the central stellar velocity dispersion is σ0,

M = K
Reσ

2
0

G
, (1.3)

where G is the gravitational constant and the factor K is often called virial coefficient,
which varies from galaxy to galaxy and depends on the the system’s internal dynamics,
velocity anisotropy and geometry (see e.g., Ciotti, 2009). The Fundamental Plane is a
correlation between the effective radius Re, central velocity dispersion σ0 and the total
luminosity L in some band. From (1.3), this can be interpreted as

L =
K

Υ
Reσ

2
0, (1.4)

where Υ ≡ M/L is the total mass-to-light ratio in some given band in which L is
measured. Whereas for any virialized galaxy its structural properties will be related as
in equations (1.3)-(1.4), every galaxies would have a different constant K and a different
value for the mass-to-light ratio Υ in general. Indeed the ratio K/Υ varies systematically
with the galaxy’s luminosity (the so-called tilt of the FP; see e.g., Ciotti, 2009), but still
early types lie very close to the plane. This is remarkable coincidence since, in principle,
the scatter of the FP could be arbitrarily large.

Recently Cappellari et al. (2013) gave important new insights on the FP by showing
that a large sample of early-type galaxies (the ATLAS3D sample) adhere to an even
tighter correlation, i.e., the Mass Plane, which is essentially equation (1.3) where K is
similar for all galaxies. In their study, they estimated the total mass from the stellar
kinematics by generating state-of-the-art dynamical models (see Section 2.3.1). Figure
1.4 shows the distribution of that sample of early-types in the Mass Plane M ∝ σ2

eRe,
where σe is the velocity dispersion within the effective radius. Each galaxy is coloured by
its mass-to-light ratio Υ which, however, is not observed and is model-dependent, as well
as the dynamical mass M . Nonetheless, Figure 1.4 shows that different galaxies with
different Υ still lie on the same scaling law, which could be indicative of an homologous
population of objects with different Initial Stellar Mass functions (IMF, see Ciotti, 2009;
Cappellari et al., 2012).

The FP and other scaling relations are observed to evolve with redshift only in their
normalization and not in their slope (see e.g., La Barbera et al., 2003; Jørgensen et al.,
2006). The evolution in normalization is such that, at fixed stellar mass, galaxies at
higher z are more compact. The scaling relations are actually observed to evolve very
similarly to the expectations of simple cosmological models (see e.g., Mo, Mao, & White,
1998; Mo, van den Bosch, & White, 2010). The evolution of a population of galaxies
initially on the FP will evolve on sequences parallel to the FP, so to mantain its slope, but
not parallel to the FP at any time, since e.g., the galaxies’ average size grows. Whether
this picture is completely consistent with current formation scenarios is still matter
of debate, since hierarchical dry (i.e., gas-less) mergers tend to disrupt some observed
scaling relations (e.g., the luminosity-velocity dispersion and size-surface brightness;
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Figure 1.4: The ATLAS3D sample of early-type galaxies in the Mass Plane: a + 2 log σe +
logRe versus dynamical mass logM . Here σe is the stellar velocity dispersion measured within
the effective radius and a is a constant. Each galaxy is coloured accordingly to its mass-
to-light ratio. The black solid line is the one-to-one relation with ±0.2 dex (black dashed
lines). I acknowledge the ATLAS3D collaboration for making their data publicly available at
http://www-astro.physics.ox.ac.uk/atlas3d.

Nipoti, Londrillo, & Ciotti, 2003). A key ingredient to reconcile the hierarchical scenario
with the persistance of the scaling laws could be the presence of dark matter haloes. For
instance, Mo, Mao, & White (1998) argued that they are responsible for building and
maintaining the scaling laws of disc galaxies (such as the Tully & Fisher, 1977, relation)
and there are also some important clues on the imprint of the dark matter haloes on the
scaling relations of galaxy clusters (see Lanzoni et al., 2004) and on evolutionary trends
of galaxies (see e.g., Stringer et al., 2014).

1.4 Integral Field Spectroscopy

The advent of Integral Field Spectroscopy (IFS) has recently rejuvenated the study of the
internal dynamics of galaxies. When an IFS is attached to an optical (or near-infrared)
telescope, it allows to obtain simultaneously multiple spectra at different locations on the

http://www-astro.physics.ox.ac.uk/atlas3d
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sky, so that the time-cost of an observation where many spectra have to be recorded is
greatly reduced. The advantage of IFS with respect to older Multi-Object Spectrographs
is that their design driver is to have the best possible spatial resolution when the multiple
spectra are taken at adjacent regions on the sky, so that the final image will actually
be a cube in x− y on the sky plane and z as spectral dimension (much like a common
data-cube of a 21 cm radio observation). The three main technologies used to realize
such instruments are

(i) lenslet array : the field of view is focused on the lenslet array, which performs the
spatial sampling. Each lens produces an image which is later dispersed by a grism.
Examples of this technique are the “Traitment Intégral des Galaxies par l’Etude
de leurs Raises” (TIGER, Bacon et al., 1995) and the “Spectroscopic Areal Unit
for Research on Optical Nebulae” projects (SAURON, Bacon et al., 2001).

(ii) image slicer : an array of mirrors is placed on the field of view, each mirror reflects
different slices of the image onto different pupil mirrors which re-image such slices
into several classical long-slits from which the spectra are extracted. Examples
of this technique are the K-band Multi-Object Spectrograph (KMOS, Sharples et
al., 2013) and the Multi Unit Spectroscopic Explorer project (MUSE, Bacon et
al., 2010).

(iii) fibre bundles : the field of view is populated with a bundle of optical fibres, which
separately collect the light and send it to a dispersing element. Example of this
techniques are the PMAS/PPaK instrument used in the “Calar Alto Legacy In-
tegral Field Area” survey (CALIFA, Verheijen et al., 2004; Sánchez et al., 2012),
the “Sydney-AAO Multi-object Integral field spectrograph” (SAMI, Croom et al.,
2012) and the “Mapping nearby Galaxies at Apache Point Observatory” survey
(MaNGA, Bundy et al., 2015).

Having spectra at different adjacent locations on the sky allows for the study of spa-
tially resolved galaxy properties, at a spatial resolution determined by the size of the
so-called spaxel, i.e., single resolution element. For instance, such instruments allows for
the detailed study of the spatially resolved stellar and gas kinematics and star formation,
gradients in element abundances, ages and other stellar population properties. In partic-
ular, the determination of the stellar kinematics on entire images of early-type galaxies
is fundamental in the study of their internal dynamics, since it gives an unpreceden-
ted number of kinematic constraints on the models which would take an unreasonable
amount of time to obtain with classical slit spectroscopy.

The SAURON and ATLAS3D projects (Cappellari et al., 2011a) have exploited
the power of such IFS and designed a new extensive picture of early-type galaxies.
Amongst their important results there are: i) early-types can be subdivided into two
main kinematic classes of fast-rotators and slow-rotators, depending on their total an-
gular momentum; ii) the stellar kinematics within the effective radius is consistent with
a constant mass-to-light ratio and a small dark matter fraction; iii) axisymmetric, one-
component dynamical models in which the vertical velocity dispersion is everywhere
equal to that in the radial direction provides a good representation of the stellar kin-
ematics within the effective radius; iv) the ratio between the stellar mass, derived from
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stellar population models with fixed parameters, and the dynamical mass, derived from
the observed stellar kinematics, systematically increases as the dynamical mass-to-light
ratio increases (this was interpreted by Cappellari et al., 2012, as an indication of a
variation of the stellar initial mass function as the dynamical mass increases). Their
results have been obtained with dynamical models based on the Jeans (1919) equations
and their observations trace the galaxy’s dynamics out to ∼ Re. Moreover, the spectral
range sampled is quite limited (about ∼ 500aa), while modeling a stellar population
would benefit also from a larger spectral coverage. An obvious way to improve and
cross-check their results would be employing an Integral Field Unit with a much wider
spatial and spectral coverage (e.g., PMAS/PPaK instrument) and by using more general
and predictive models (e.g., distribution function models; see Section 2.2).

From the wide panorama of Integral Field Spectroscopic surveys, CALIFA stands
out for having released data for the larger sample of diameter-selected galaxies of all
Hubble types (about 600, see Sánchez et al., 2012, however MaNGA will enlarge the
sample to about 10000) and larger field of view w.r.t. ATLAS3D, SAMI and MaNGA for
instance. The CALIFA galaxy sample is ideal to study the internal dynamics of local
galaxies, since the spectral range probed covers the whole optical domain (unlike e.g.,
ATLAS3D) which allows for the analysis of many different spectral features. Moreover
for the diameter-selected galaxies, high-quality stellar kinematics can be extracted out
to typically 2− 3Re, which is currently unprecedented.

1.5 Action-angle variables

In this Section I will briefly report some classical notions about integrable dynamical
systems and angle-action coordinates. The formalism and notions here introduced are
going to be extensively used in Chapters 3-4, where I present a novel family of dynamical
models and I present applications to early-type galaxies in the nearby Universe. The
most inspirational textbook, where all the following propositions can be found, is Arnold
(1978), while most of the notations are taken from Binney & Tremaine (2008).

The time evolution of an N -dimensional dynamical system is governed by Hamilton’s
equations

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
,

(1.5)

where H = 1
2
||p||2 +Φ is the Hamiltonian, (p,q) are a generic set of canonical momenta

and positions and Φ is the gravitational potential2. Any function I : R2N −→ R such
that

dI

dt
= 0, (1.6)

2 Where I adopted the convention in which the mass is unity.
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is said to be an integral of motion. For any functions f, g : R2N+1 −→ R their Poisson
bracket is

{f, g} :=
∂f

∂q
· ∂g
∂p
− ∂f

∂p
· ∂g
∂q
. (1.7)

Obviously, {f, f} = 0 for any f : R2N+1 −→ R. If I1, I2 are integrals of motion and
{I1, I2} = 0, then I1, I2 are said to be in involution. Suppose there exist N integrals
of motion I1, . . . , IN in involution, i.e., so that all their mutual Poisson brackets vanish,
then the dynamical system is said to be integrable and viceversa. Each of the integrals
in involution reduce the dimensionality of the space accessible to the motion by one,
i.e., orbits are confined to a manifold in R6 in which N functions are constant. Because
of this property, such integrals are also said to be isolating integrals.

The only set of N integrals of motion in involution that can be completed with a
set of conjugate positions are called actions J and their conjugate positions are called
angles θθθ. It can be shown that i) the angle variables are 2π-periodic, ii) the canonical
transformation from the original (p,q) to the action-angle coordinates (J, θθθ) is unique
and iii) that the space where the orbits are confined is diffeomorphic to an N -torus
in R2N on which (J, θθθ) are the natural coordinate frame. In action-angle coordinates
Hamilton’s equations read

dJ

dt
= −∂H

∂θθθ
= 0,

dθθθ

dt
=
∂H

∂J
≡ ΩΩΩ(J),

(1.8)

because the actions are integrals of motion. From the former it follows that the Hamilto-
nian is a function of the actions only H = H(J), from the latter it follows that the
angles increase linearly with time at a rate ΩΩΩ which is a function of tha actions only, i.e.,
θθθ(t) = θθθ(0) +ΩΩΩ(J)t. Ωi for each i = 1, . . . , N are the so-called characteristic frequencies
or simply frequencies associated with the corrsponding angle and action (θi, Ji).

On the N -torus, the Poincarè invariant P vanishes

P =

∫
Σ

dθθθ · dJ = 0, (1.9)

since each action Ji is constant on each 2-surface Σ on the N -torus. Hence, the N -torus
is said be a null torus. The line integral

∮
γi

p · dq performed on a curve γi ⊂ R6 on
which the i-th angle varies in the range 0 ≤ θi ≤ 2π while all the other are constants, is∮

γi

p · dq = Ji

∫
γi

dθi = 2πJi. (1.10)

This result is insensitive to which path γi is actually used to perform the integration and
depends only on the topology of the torus. This is because if one selects another path
τi on which θi ∈ [0, 2π], the difference of the two integrals is equal to the integral of the
closed line γi − τi which is equal to a surface integral by Green’s theorem that vanishes
for the same reason equation (1.9) does. For this reason in principle one could always
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choose to integrate along an invariant curve parametrized by t 7→ λ(t) in the original
(p,q) space so that

Ji =
1

π

∫ λmax

λmin

pi dqi, (1.11)

where λmin and λmax are the minumum and maximum of the curve parametrization.
Lastly, one of the most important properties of the action integrals is that they are
adiabatic invariants, meaning that they do not change when the potential is stressed on
timescales longer than the dynamical time. This property, which derives from the fact
that (J, θθθ) are canonical, makes the action integrals even more unique w.r.t. all the other
isolating integrals of motion. In the study of the dynamics of galaxies this characteristic
can be crucial if one wishes to study perturbed or multi-component systems.

For axisymmetric integrable potentials, one of the three actions quantifies the extent
of the orbit’s oscillation in the radial direction and I shall call it Jr; another one quantifies
the extent of the orbit’s excursion orthogonal to the equatorial plane and I shall call it
Jz; finally, the last one is the component of the angular momentum about the symmetry
axis and I shall call it Jφ ≡ Lz. Throughout this Thesis I will adopt this convention.

1.6 Overview of this Thesis

This Thesis discusses how the distribution of luminous and dark matter in early-type
galaxies affects their evolution and dynamics. The main goals of the research conducted
in the present Thesis are two: i) introducing a novel approach to the generation of
equilibrium dynamical models to understand the detailed distribution of mass in nearby
early-type galaxies and ii) investigating the role of dark-matter haloes in driving the
time-evolution of the structural parameters of a population of early-types such as mass,
size and velocity dispersion. For the first task, analytic computations together with
numerical integrations are used to build the models and to project them in the observable
space to be compared with observations of galaxies with photometry from the Sloan
Digital Sky Survey (SDSS) and spectroscopy from the CALIFA collaboration. For the
second task, numerical N -body models of the formation and evolution of a dark matter
halo population in a cosmological context are used; then, the haloes are populated
with galaxies with analytic prescriptions and such model galaxies are compared with a
collection of diverse observations of early-type galaxies in the redshift range 0 ≤ z ≤ 2.5
(galaxy sizes come from many surveys including SDSS and Great Observatories Origins
Deep Survey3, while the velocity dispersions at high redshift come from high-resolution
spectrographs mounted on 8m-class telescopes).

In Chapter 2 a brief general introduction to collisionless dynamics is provided. The
basic mathematical tools and notations used to characterize the dynamical state of a
stellar system are introduced. Continuous and discrete models are described and their
differences are discussed. Finally, numerical models for the time evolution of stellar
systems are introduced.

3 GOODS, see Giavalisco et al. (2004).
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1.6.1 Action-based distribution function models

In Chapter 3 I present a novel approach to the design of distribution functions of spher-
oidal galaxy components. The distribution functions depend on the positions and ve-
locities through the action integrals (Section 1.5) and are tailored for spherical and
axisymmetric potentials. The models are three-integral, so that they represent general
equilibrium configurations for axisymmetric systems. They are built on simple mathem-
atical ansatz on the distribution function (i.e., that is a two-power law of the actions),
which is motivated by robust dimensional arguments. We demonstrate the flexibility
of our approach by designing distribution functions which yield potential-density pairs
remarkably similar to that of classical models such as the Hernquist (1990), Jaffe (1983)
and Navarro, Frenk, & White (1996) spheres.

Dynamical models for galaxies are easily generated and observables computed via
integration in phase-space (Section 2.2.1) can readily be fitted to observations of stellar
systems. Generalization to flattened and rotating models is trivial in the formalism of
Binney (2014).

1.6.2 Dynamical models for nearby early-type galaxies

In Chapter 4 I apply the self-consistent action-based distribution function models of
Chapter 3 to a sample of three early-type galaxies in the CALIFA survey. This serves
as a proof-of-concept of the applicability of such newly developed dynamical models to
galaxies observed with Integral Field Spectrographs. CALIFA is an ideal galaxy survey
from which to draw the small sample of interest since, for each galaxy, high-quality
velocity maps are measured up to typically 2−3Re, where the dark matter component is
expected to dominate the mass budget. The selected sample is heterogeneous in Hubble
type (two ellipticals and one lenticular) and on the amount of rotational over random
motion (one slow rotator and two fast rotators). The models are a generalization of those
described in Chapter 3 to include adjustable flattening and rotation. Each model is self-
consistent and axisymmetric and is specified by eight free parameters. For simplicity,
the presentation is limited to models in which the dark matter follows the light profile,
i.e., the mass-to-light ratio is constant with radius.

I establish a connection between the model’s parameters and the physical observ-
ables, such as the surface brightness and the kinematics. Of the eight free parameters,
two specify the model’s surface brightness; four govern the model’s orbital anisotropy
and the flattening of its isophotes close to the centre and in the outskirts; finally, two
vary the amplitude and steepness of the model’s rotation curve. Additionally, two para-
meters are used to scale the model in physical units, while the inclination angle of the
line-of-sight is estimated directly from the photometry of the galaxies. The free para-
meters are then adjusted so that the models are tailored to reproduce simultaneously the
surface brightenss, from r-band SDSS images, and the velocity and velocity dispersion
maps of each galaxy, from the CALIFA survey.
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1.6.3 Size and velocity dispersion evolution of early-types and
their dark matter haloes

In Chapter 5 I study the evolution of a population of early-type galaxies and their dark-
matter haloes in a cosmological N -body simulation. This technique is ideal to study
the statistical properties of a homogeneous population of collisionless systems and, in
particular, I focus on their mass, size and velocity dispersion. Since there is growing
observational evidence that the stellar density of early-types scales with the mean density
of the Universe at the time of galaxy formation, I investigate the possible imprint that
the cosmological evolution of dark matter haloes has left on galaxy evolution.

Since early-types are observed to adhere to tight scaling laws as well as the dark-
matter haloes are expected to do, it is natural to ask whether the observed evolution
of the galaxies’ scaling laws is somehow driven by that of the haloes. To address this
question, I analyse the mass-size and mass-velocity dispersion correlations for the dark
haloes and accurately derive parametrizations for their evolution. The haloes follow
well-defined evolutionary tracks on the mass-size and mass-velocity dispersion planes
from z ' 2.5 to z = 0 and I study whether those tracks can be explained by analytic
models in which the halo growth is due to dry mergers.

The implications for galaxy evolution are then investigated by populating the haloes
with galaxies under simple, but justified prescriptions. I use models for the so-called
stellar-to-halo mass relation from the literature which I integrate with expectations from
simple cosmological models (see Mo, Mao, & White, 1998) for e.g., the stellar-to-halo size
relation. This model allows to follow the average size and velocity dispersion of the model
galaxy population from z ' 2.5 to z = 0 in the simulation. I compare the expectations
of this models with a collection of photometric and spectroscopic observations of passive
and massive galaxies from z ' 2.5 to z = 0.



Chapter2
Dynamical models

In this Chapter I will briefly introduce the methods by which the dynamics of an early-
type galaxy can be characterized. I will summarize the theoretical foundations of the
methods I will be using to model galaxies in the next Chapters, then I will introduce both
the modeling techniques used in Chapters 3-5 and other popular ones to which one can
compare. The discussion is arranged as follows: first, steady-state models are presented
and I first focus on those that model continuously the mass density and the gravitational
potential and then on those which generate model galaxies as superposition of a finite
number of discrete elements; finally, I briefly introduce a class of non-stationary models
which follow the galaxy evolution.

2.1 Introduction

2.1.1 Collisionless dynamics

A system composed of many stars orbiting in the same potential well would have an
internal dynamics different depending on whether the motion of a star is influenced by
the short-range collisions with other stars. If the cumulative effect of all the encounters
is that of changing significantly the orbit that the star would have had in a smooth
gravitational field, then the system is called collisional and its properties are completely
insensitive to the initial conditions, since the many collisions have completely changed
the structure of the system. In astronomy, dense star clusters are an example of such
systems. On the other hand, if encounters do not alter significantly the motion of a star,
then the orbits of each star are governed not by the exact locations of the other stars in
the system, but instead by the overall gravity field made by those stars. These systems
are called collisionless of which galaxies are a perfect astronomical example.

23
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To quantify the importance of collisions in the dynamical evolution of a stellar sys-
tem, one usually computes the time that it takes for a star of mass m, orbiting in the
system of N other stars at velocity v, to change its speed by ||∆v|| ∼ ||v||, i.e., the time
to change its speed by of the order itself. Such time will be called two-body relaxation
time or simply relaxation time and can be shown to be (see e.g., Binney & Tremaine,
2008, §1.2.1)

trelax ∼
N

8 lnN
tcross, (2.1)

where tcross ∼ R/V is the crossing time, i.e., the typical time required to pass through
the system, and R and V are some system’s characteristic length and velocity scales.
For a galaxy whose length and velocity scales are R ∼ 5 kpc and V ∼ 220 km/s and
which contains some 1011 stars, the relaxation time is trelax ' 2.5 × 106 tH, where tH is
the Hubble time. Hence, stellar encounters are not driving the galaxy dynamics and the
galaxy itself is said to be a collisionless gravitational system.

While it seems to be un-practical to follow each stars’ orbit in the galaxy’s potential,
it is customary to adopt a probabilistic approach at the problem and to focus on the
probability of finding a star orbiting around a given position x, in the three dimensional
configuration space, and a given velocity v, in the three dimensional velocity space1.
Since any orbit’s domain is the six dimensional phase space, i.e.,

Γ ⊆ R6 : ∀γγγ ∈ Γ, ∃ (x,v) ∈ R3 × R3 : γγγ = (x,v), (2.2)

and given that the phase-space volume element is dΓ = dx dv, I define the system’s
distribution function (hereafter DF) as

f : Γ× R −→ R+, (2.3)

so that f(x,v, t) dx dv is the probability of finding a star in a given phase-space volume
element dx dv at time t. In order to be a meaningful representation of such a probability,
the DF must be positive-definite and normalized so that the probability that the star
can be found in the whole phase-space volume is the total mass of the system M :∫

Γ

f(x,v, t) dx dv = M. (2.4)

The time evolution of the DF is regulated by Liouville (1838) theorem, which encapsu-
lates the conservation of volumes in phase space:

∂f

∂t
+
∂f

∂x
· ẋ +

∂f

∂v
· v̇ = 0, (2.5)

i.e., the total derivative df(x,v, t)/dt (often called Lagrangian derivative, see e.g., Bin-
ney & Tremaine, 2008, §F.1.2) vanishes along an orbit in phase space. Equation (2.5) is
also referred as the collisionless Boltzmann equation (hereafter CBE) or Vlasov equation
and using Hamilton’s equations it can be re-arranged as:

∂f

∂t
+
∂f

∂x
· v − ∂f

∂v
· ∂Φ

∂x
= 0, (2.6)

where H = ||v||2/2+Φ(x, t) is the Hamiltonian and Φ(x, t) is the gravitational potential.

1 For the purpose of this introduction I can assume, without loss of generality, that the star’s mass
is unity and hence that the usual Lagrangian canonical coordinates (q,p) = (x,v).
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2.1.2 Equilibrium

A particular class of solutions to the CBE are the configurations of dynamical equilibrium
(or steady-state or stationary solutions), in which the phase-space density f does not
depend explicitly on time t, i.e., f = f(x,v). It can be shown that any stady-state
solution of the CBE is constant along all the orbits in phase space, so it is an integral of
motion (1.6), and therefore the dynamical equilibrium configurations are those in which
also the DF itself is an integral of motion.

It is unclear whether galaxies can effectively be represented by stationary config-
urations: complex phenomena involving baryonic physics (such as dissipation, star-
formation, winds and spiral arms) and not (such as mergers, tidal interactions and
rotating bars) are very likely to push a stellar system away from a steady-state. Even
so, equilibrium models have a fundamental role to play in the dynamics of galaxies, the
main reason being that out-of-equilibrium configurations, e.g., in which the potential is
also a function of time Φ = Φ(x, t), are best studied via perturbing equilibrium states
(e.g., Arnold, 1978).

Collisionless systems are driven to dynamical equilibrium states by phenomena such
as phase mixing (see e.g, Binney & Tremaine, 2008, §4.10.2) and violent relaxation (see
Lynden-Bell, 1967): the former is able to “diffuse” clumps in phase space as time goes
by, so that averages of the DF computed within fixed and finite volumes of phase space
decrease with time before reaching a (almost) constant value; the latter can alter the
energies of the stars widening the range of allowed orbits. These processes have net
effects analogous to those produced by collision-induced relaxation in an ordinary gas
(even if gravitational systems do not tend to maximum-entropy steady-states2) as they
make the galaxy reach an almost stationary configuration.

A fundamental tool in the attempt to build steady-state models of galaxies is the
following theorem due to Jeans (1915).

Theorem (Jeans). f : Γ×R −→ R+ is a steady-state solution of the CBE (2.6) if and
only if it depends on the phase-space coordinates only through integrals of motion, i.e.,
f(x,v, t) = f [I1(x(t),v(t)), · · · , IN(x(t),v(t))], where dIj/dt = 0, ∀ j = 1, · · · , N .

Proof. If f is a steady-state solution, then it is also an integral of motion (1.6). Con-
versely, if f(x,v, t) = f [I1(x(t),v(t)), · · · , IN(x(t),v(t))], where Ij is an integral of
motion (1.6) for all j = 1, · · · , N , then

df

dt
=

N∑
j=1

∂f

∂Ij

dIj
dt

= 0. (2.7)

Since any function of only integrals of motion is also another integral of motion,
Jeans’ theorem would be unhelpful in the study of galaxies if it wasn’t for a more

2 Unlike ideal gases, for which from first principles it is to be expected that the system is inclined
towards a (unique) maximum entropy state, for a gravitational system such a maximum entropy con-
figuration does not exists, since for any stellar system with finite mass and total energy it is always
possible to find re-distribution of stars with larger entropy (see e.g., Binney & Tremaine, 2008, §4.10.1).
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restrictive result that directly derives from it. I shall call the following Lynden-Bell
(1962b) theorem, but it is also known as Strong Jeans theorem (Binney 1982a and also
Binney & Tremaine, 2008, §4.2).

Theorem (Lynden-Bell). The DF of any integrable stellar system depends on phase-
space coordinates only through isolating integrals of motion.

A system with N degrees of freedom (dof) for which all the orbits are regular (quasi-
periodic3) admits N isolating integrals of motion and it is therefore integrable4. Galaxies
are three-dof systems, but in general it is difficult to determine whether the nature of the
orbits of its stars is regular or chaotic. For instance, stars living on stellar discs are on
(nearly) circular orbits which are regular, though the presence of resonances, due e.g., to
the rotation speed of the galaxy, can induce chaotic behaviour on the stars’ orbits (e.g.,
resonant trapping, see Binney & Tremaine, 2008, §3.7.2). Hence, a typical approach one
can follow is assuming that all the motion of stars in a galaxy is on regular orbits and
studying to what extent such integrable systems resemble real galaxies in observable
space. More general configurations in which not all orbits are regular are best studied
either numerically (e.g., Binney & Spergel, 1982) or by perturbation theory starting from
a known integrable configuration (e.g., Laskar, 1990; Gerhard & Saha, 1991; Binney &
Tremaine, 2008, §3.7.1).

In the following Sections I will describe methods for generating dynamical equilib-
rium models focusing on systems that are integrable and self-consistent, i.e., such that
the distribution of the luminous matter (the tracers) contributes to the total potential.
However, globular clusters (e.g., Côté et al., 2003), planetary nebulae (e.g., Méndez
et al., 2001) and also extended X-ray haloes (Humphrey et al., 2006) have extensively
been used as (almost) mass-less tracers of the potential of massive ellipticals and several
works have proved it to be a successful method to estimate the total distribution mass
in such galaxies (see Section 1.2.1). The models developed below can also be applied to
these non self-gravitating systems.

2.1.3 Symmetries in galactic potentials and classical integrals

Even if galaxies are fairly complex systems they usually possess evident spatial sym-
metries that can be exploited when looking for a (stationary) potential Φ = Φ(x) that
characterizes them. For instance, disc galaxies are to first order axisymmetric about
the axis orthogonal to the disc plane, while globular clusters and clusters of galaxies are
to first order spherically symmetric. Elliptical and lenticular galaxies appear to have
nearly spheroidal or ellipsoidal isodensity surfaces (e.g., Binney & Merrifield, 1998, §4.3).
For these objects, which have likely undergone some relaxation process, it seems to be
adequate to adopt potentials stratified on ellipsoidal surfaces (see Binney & Tremaine,
2008, §2 for a comprehensive review of galactic potentials).

3 An orbit is quasi-periodic if the trajectory is a quasi-periodic function: a function f : Γ×R −→ R
is quasi-periodic if for any sequence βn ∈ Rn, there is a subsequence αn ⊂ βn such that the sequence
of functions fn(x) = f(x+ αn) for n ∈ N converges uniformly in the limit n→ +∞.

4 The Hamilton-Jacobi equation for that system is separable is some coordinates.
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An isolated system where the total potential is time-independent, Φ = Φ(x), con-
serves its energy: H = H(x,v) = E, where E is a constant. Any symmetry of time and
space under which the potential is invariant implies a conservation law for the system5.
So, any equilibrium configuration of interest in galactic dynamics with a time-invariant
potential will have at least one isolating integral of motion, the energyH. Other isolating
integrals can be readily obtained for systems with special symmetries.

The simplest class of potentials is that of central potentials Φ = Φ(||x||), for which
equipotential and corresponding isodensity surfaces are stratified on spheres. In this case
the motion is restricted onto a plane, since the angular momentum vector L = x× v is
conserved. This gives three additional isolating integrals of motion that are the three
components of L. Axisymmetric potentials where Φ = Φ(R, z) in cylindrical coordinates
(R, φ, z) being z in the direction of the symmetry axis, admit only another isolating
integral which is the component of the angular momentum about the symmetry axis Lz.
For these systems, the equipotential surfaces are stratified on spheroids flattened on the
z direction, in contrast with triaxial potentials which are stratified on ellipsoids in three
dimensions and have all the three semi-axes different. Such systems do not posses any
spatial symmetry and therefore no other isolating integral except H is known in general.

Isolating integrals such as the energy, the components of the angular momentum or
their combinations are usually referred as classical integrals. This is because they are
the isolating integral that one can promptly derive from geometrical symmetries of the
system. Non-classical integrals are, on the other hand, conserved quantities that are not
directly related to time- or rotation-invariance of the potential. With this classification
the action integrals would be in general considered non-classical.

2.1.4 Third integral of motion

2.1.4.a Clues from orbit integration

The phase space Γ is six-dimensional as well as the configuration space and, therefore,
the number of degrees of freedom is three for such systems. Any isolating integral
reduces by one the dimensions of the surface in phase space on which the orbits lives.
The maximum number of isolating integrals for stellar system is hence five, so that the
orbit is confined to a one-dimensional curve in phase space. The minimum number of
isolating integrals is, instead, one: the energy H.

Integrable systems have at least three isolating integrals, so that the orbit is diffeo-
morphic to a torus in phase space. However, for axisymmetric potentials, which play
a special role of interest in galactic dynamics, only two classical isolating integrals are
known, so one wonders if these systems are in general integrable or not. While the most
general configuration is that of a non-integrable system, for which orbits are higher-
dimensional manifolds in phase space, it is natural to ask whether for some potentials
of interest in galactic dynamics there are integrable configurations. In that case, there
must be an additional third non-classical integral of motion I3 that makes the Hamilton-

5 From a more formal point of view: if the Lagrangian L admits a cyclic variable, i.e., any generalized
coordinate qi such that ∂L/∂qi = 0, then the quantity ∂L/∂q̇i, where q̇i = dqi/dt, is an integral of
motion (see e.g., Landau & Lifshitz, 1969).
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Jacobi equation separable together with H and Lz. One way to address that question is
by numerically integrate orbits in a given potential and then characterize them in either
regular or chaotic. The seminal works by Contopoulos (1963) and Ollongren (1962) were
the first to establish that axisymmetric galactic potentials possess regular orbits which
can not be completely specified by their values of energy and angular momentum and
Contopoulos (1960) gives an analytic expression of the third integral in the form of an
ansymptotic power series. For instance, Figure 2.1 shows two orbits in the meridional
plane of an axisymmetric logarithmic potential (see Binney & Tremaine, 2008, §2.3.2)
which have been integrated for several dynamical times. These two orbits have the same
values of the classical integrals of motion H and Lz, yet they look very different. In
particular, one seems to have a larger radial excursion, i.e. Rmax−Rmin, while the other
has a much larger vertical excursion zmax. Hence, specifying only H and Lz does not
uniquely characterize the orbit. Nevertheless, the two orbits appear regular and not
chaotic and, as a matter of fact, they do not fill the whole region available for their
motion, defined by the zero-velocity curve on the meridional plane, because they are
confined by their respective invariant curves6 (see Richstone, 1982; Binney & Tremaine,
2008, §3.2.1). This suggests that a third isolating non-classical integral of motion is con-
served by these orbits, since only for a three-integral system all the orbits are regular.
Their Poincarè surfaces of section, for (R, vR) at z = 0 and vz > 0, are shown in Figure
2.2. The series of the consequents7 for both orbits lie on two smooth invariant curves,
which is the intersection of the two orbital torii with the (R, vR) plane.

2.1.4.b Clues from observations

The most convincing argument which favors the introduction of a third isolating integral
of motion from observations of both the Milky Way and external galaxies is that of the
velocity ellipsoids (see e.g., Binney & Tremaine, 2008, §4.1.2 for a definition of velocity
ellipsoids). The old stars in the solar neighbourhood are known from a very long time
to have a different kinematics in the radial and vertical directions (Kapteyn, 1922;
Oort, 1932). From modern measurements with dedicated surveys, we know now that
the radial velocity dispersion of giant stars distant from the Sun less than than 2.5
kpc is roughly two times that in the vertical direction (Sharma et al., 2014; Binney
et al., 2014). Conversely, in external galaxies the velocity ellipsoids are not directly
observables, since the lack of proper motion measurements does not allow to estimate
the velocity dispersion in directions other than that of the line-of-sight. Nonetheless,
they can be reasonably inferred from e.g., line-of-sight velocity dispersion measurements
along the major and minor axis: van der Marel (1991) computed the ratio of the line-
of-sight velocity dispersion at distance r along the major and minor axis both for the
observed galaxies and for some oblate two-integral models. The main result is that those
two-integral models are inconsistent with observations and the measured discrepancy is
larger for flatter galaxies. Another technique that has been used to assess the geometry

6 A curve γ ⊂ Γ is said to be an invariant curve if the orbit through a point in γ remains in γ at
all times.

7 The consequents are the intersections of the orbit’s trajectory with the plane of the surface of
section at z = 0 when the orbit is rising along the z-axis, i.e., vz > 0.
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Figure 2.1: Two orbits in the meridional plane for a logarithmic potential Φ(R, z) =
v2c
2 ln(R2 + z2/q2) with vc = 220 km/s and q = 0.8 integrated for about 10 Gyr. The two

orbits share the same energy H and vertical component of the angular momentum Lz which
are equal to those of the circular orbit Hc and Lc at R = 8 kpc in the equatorial plane. Despite
having two equal classical integrals of motion, the two orbits appear much different. None of
them fills entirely the region allowable for motion defined by the zero-velocity curve (black
line), meaning that they are both confined within a well-defined invariant curves (see also
Richstone, 1982).

of the velocity ellipsoids is inferring them by fitting accurate two- and three-integral
dynamical models to spectroscopic data (see e.g., Emsellem, Dejonghe, & Bacon, 1999;
Cappellari et al., 2007): the overall results is that they are far from spherical.

2.2 Continuous models: distribution function

Spherical, axisymmetric or triaxial stellar systems can be described with appropriate
choices for the DF. A system with three integrals of motion would admit only quasi-
periodic orbits, since a canonical transformation to angle-action coordinates is always
possible (see Section 1.5). That is, any orbit is diffeomorphic to a three-dimensional
torus in phase space which can be described by means of angle-action coordinates.
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Figure 2.2: Surfaces of section for the same orbits as in Figure 2.1. The consequents of
the two orbits lie on two different smooth invariant curves, indicating the conservation of an
additional integral of motion w.r.t. H and Lz.

Further isolating integrals exist if any ratio between the characteristic frequencies Ωi

(see equation 1.8 and Section 1.5) is commensurable like, for instance, in the case of
Kepler’s potential Φ ∝ r−1 (see Binney, 1982b).

2.2.1 Observables

The DF completely specifies the dynamical state of a stellar system since it gives access
to the probability of finding a star at a given position in phase space. Typical observable
quantities such as the mass- or luminosity-density, the mean velocity of stars along a
given line-of-sight or their velocity dispersion along the same line-of-sight are readily
computed by integration in phase space (e.g., Binney & Tremaine, 2008, §4.1.2).

The mass density at any fixed position x is given by the integral

ρ(x) =

∫
d3v f(x,v), (2.8)
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the mean velocity v is

v(x) =
1

ρ(x)

∫
d3v v f(x,v), (2.9)

and the components of the velocity-dispersion tensor σij for i, j = 1, 2, 3 are given by

σ2
ij(x) =

1

ρ(x)

∫
d3v (vi − vi)(vj − vj) f(x,v), (2.10)

which can be also written as σ2
ij = vivj − vivj. Spectroscopy can be used to probe the

target’s line-of-sight velocity distribution by carefully analyzing the shift of the spectral
lines w.r.t. rest frame laboratory lines. Typically, the first and second velocity-moments
of the DF can be inferred by high-quality spectra. In principle, the observed line-of-sight
velocity distribution can be used to probe the probability distribution of the velocity of
the stars v at the position x

Px(v) =
f(x,v)

ρ(x)
. (2.11)

2.2.2 Spherical systems

The first attempts of modeling stellar systems by seeking a functional form for the DF
were made under assumptions of spherical symmetry about a hundred years ago. Two
approaches can be followed:

(i) make an ansatz on the functional form of the DF, derive observables and compare
with observations,

(ii) or derive a density-potential pair (ρ,Φ) from observations and then invert equation
(2.8) to get f .

The energy H is an isolating integral of motion, therefore models for which the
DF depends solely on H, i.e., f = f(H), are physically plausible and are called ergodic
models (see Binney & Tremaine, 2008, §4.2.1 and §4.3). To this category belong popular
models such as Plummer (1911) and King (1966) which have proved to be very successful
in the field of modeling globular clusters. f = f(H) systems with H = ||v||2/2 + Φ(r),
where the potential Φ is central (r is the spherical radial coordinate), have equi-phase-
space-density surfaces that overlap with equi-energetic surfaces, which are spheres since
the system is spherical. Defining v ≡ ||v||, we then have that the density distribution is
also spherical8

ρ(r) = 4π

∫
dv v2 f(H) = 4π

∫ −Φ

0

dH f(H)
√

2(H − Φ). (2.12)

Models in which the DF is ergodic can not have streaming motions since f depends only
on the absolute values of the velocities and not on their sign, therefore the integrals (2.9)

8 Here I have implicitly assumed that the system extends to infinity and that the potential is zero
at infinity.
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always vanish. For the same reasoning also the off-diagonal terms of the velocity disper-
sion tensor vanish and the only terms which survive are those in which the integrand
in (2.10) are even functions of the velocities, i.e., only the diagonal terms. Moreover,
the diagonal terms are also equal to each other, since in the DF the three velocities all
appear on the same footing:

σ2
ij(r) = σ2(r)δij, where σ2(r) =

4π

3ρ(r)

∫ −Φ

0

dH f(H) [2(H − Φ)]3/2 (2.13)

Such spherically symmetric, non-rotating and isotropic models are of theoretical interest
since f = f(H) can be chosen so that the integrals in (2.12)-(2.13) are analytically
tractable.

The dependence of the DF on another isolating integral of motion in spherical sym-
metry, i.e., the magnitude of the angular momentum L, generalizes spherical models to
be anisotropic, i.e., so that the velocity dispersion is not the same in all directions9.
Then, the DF would be f = f(H,L). For a spherical galaxies to be also spherically
symmetric in all its properties (e.g., σij(x)), the DF can not depend on any component
of L along a preferred direction, therefore two-integral models of the kind f = f(H,L)
are the most general for completely spherically symmetric systems10. Models of this
type are for instance the Michie (1963) and Osipkov-Merritt models (Osipkov, 1979;
Merritt, 1985). For anisotropic models one usually defines the anisotropy parameter β
which quantifies the model’s bias towards more radial or more circular orbits:

β ≡ 1−
σ2
θ + σ2

φ

2σ2
r

, (2.14)

where I have abbreviated σi = σi,i for the three diagonal components of σij. With this
definition, isotropic models have β = 0, models with β = 1 have all radial orbits and
models with β → −∞ have purely circular orbits. How the DF depends on the angular
momentum L determines the behaviour of the anisotropy parameter as a function of
radius β = β(r). For instance, DFs of the type f(H,L) = L−2βF (H) generate systems
with constant anisotropy β; Osipkov-Merritt models have, instead, anisotropy increasing
from β → 0 at the centre to β → 1 at the system’s outskirts (e.g., Binney & Tremaine,
2008, §4.3.2b).

Instead of deriving observables given a specific DF, one can try to infer f from
the observed luminosity density by inverting equation (2.8). With the assumption of
spherical symmetry one can deproject the observed luminosity density of a given stellar
system and compute the intrinsic three-dimensional luminosity density ν(r). If the
system’s mass-to-light ratio Υ ≡M/L is constant with radius, then the mass density is
ρ(r) = Υν(r). The system is also self-consistent if the gravitational potential is

∆Φ = 4πGρ, (2.15)

9 σij has at least two different eigenvalues, which makes the three-dimensional velocity ellipsoid
non-spherical.

10 As a counter-example of a three-integral f = f(H,L,Lz) that generates a system with a spherical
density ρ(r) which has a net rotation about the z axis see Lynden-Bell (1960).
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being G the gravitational constant and ∆ the Laplace operator. A classical and very
important result in galaxy dynamics is the following: under certain conditions, it is
possible to find an ergodic DF that generates the self-consistent potential-density pair
(ρ,Φ). Eddington (1916) proved that using an Abel (1826) transform on equation (2.12)
one can solve for the ergodic DF

f(E) =
1√
8π2

d

dE

∫ E
0

dΨ√
E −Ψ

dρ

dΨ
, (2.16)

where E ≡ −H and Ψ ≡ −Φ are the relative energy and potential, respectively11. The
condition which must be satisfied so that the DF is positive-definite is that

∫ E
0

dΨ(E −
Ψ)−1/2 ρ′(Ψ) is an increasing function of E . Given self-consistent potential-density pairs
such as that of the Hénon (1959) isochrone, the Jaffe (1983) and the Hernquist (1990)
models, it is possible to solve equation (2.16) analytically to yield corresponding positive-
definite ergodic DFs (e.g., Binney & Tremaine, 2008, §4.3.1a). A generalization of
equation (2.16) to spherical anisotropic systems is not trivial, but in some cases of
interest, such as constant-anisotropy models f(H,L) = L−2βF (H) and Osipkov-Merritt
models, analytical expressions for the two-integral DF which generates an given (ρ,Φ)
can be derived (e.g., Binney & Tremaine, 2008, §4.3.2).

2.2.3 Axisymmetric systems

If the potential Φ(x) is non-spherical, but symmetric around the z-axis, then Lz = Rvφ
is an isolating integral of motion, while L is not. For these systems the DF must depend
on at least the energy and the z-component of the angular momentum.

Galaxies that appear axisymmetric in projection are often found to have a dynamically-
important net rotation around their symmetry axis. The disc of spiral galaxies is mostly
made by stars on nearly circular orbits with a coherent sense of rotation and recently
it was shown that dynamically-important streaming motions are present also in most
axisymmetric early-type galaxies (e.g., Emsellem et al., 2004). Hence, models with non-
vanishing mean rotation around their symmetry axis are of great interest. For any
axisymmetric potential the DF of the system will generally be a function of Lz and H,
i.e., f = f(H,Lz), which can be always separated in an odd f− and an even component
f+ with respect to the argument Lz

f(H,Lz) = f+(H,Lz) + f−(H,Lz) (2.17)

where

f+(H,Lz) =
f(H,Lz) + f(H,−Lz)

2

f−(H,Lz) =
f(H,Lz)− f(H,−Lz)

2
.

(2.18)

11 The relative energy and potential of a system which does not extend to infinity would be E ≡
−H + Φ0 and Ψ ≡ −Φ + Φ0, where Φ0 is an arbitrary additive constant.
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The mass density is readily obtained as

ρ(R, z) =
4π

R

∫ −Φ

0

dH

∫ R
√

2(H−Φ)

0

dLz f+(H,Lz). (2.19)

The odd part f− does not contribute to the mass density (equation 2.8) since f− is odd
vφ and hence

∫
d3v f− = 0. Conversely, the even part f+ does not contribute to the net

streaming motion in the azimuthal direction, which is

vφ =
1

ρ

∫
d3v vφ f(H,Lz) =

1

ρ

∫
dvR

∫
dvz

∫
dvφ vφ f−(H,Lz). (2.20)

The mean velocities along the radial and vertical directions, vR and vz respectively,
vanish also for f = f(H,Lz) models. Moreover, their second velocity-moments would
be equal in the radial and vertical directions, i.e., σR=σz, while that on the azimuthal
direction would generally differ from the previous two, i.e.,

σ2
φ =

1

ρ

∫
dvR

∫
dvz

∫
dvφ (vφ − vφ)2 f+(H,Lz). (2.21)

For such two-integral axisymmetric models, the pressure acting on any direction of the
meridional plane (R, z) is the same and it is different from that acting in the azimuthal
direction. All their mixed velocity moments, i.e., the off-diagonal terms of σ2

ij, vanish
since the DF is even in both vR and vz, therefore the sections of the velocity ellipsoids in
the meridional plane are circles everywhere on the plane. For these systems the velocity
ellipsoid is said to be aligned with the cylindrical coordinates, since σ2

ij is diagonal in
that coordinate frame. Popular two-integral f = f(H,Lz) models are, for instance, the
Fricke (1952) and Evans (1994) power-law galaxies.

Amongst the observables of interest in galaxy dynamics, only the odd part f− af-
fects the system’s rotation and viceversa. This is one of the most useful properties of
two-integral DFs for axisymmetric galaxies: in pronciple the observed rotation pattern
completely determines f−, while f+ is unaffected by the galaxy’s streaming motion and
can be constrained using the observed light and velocity dispersion distribution. Many
authors attempted to generalize Eddington’s inversion formula (2.16) to the axisymmet-
ric case12 (see e.g., Lynden-Bell, 1962a; Hunter, 1975; Dejonghe, 1986; Hunter & Qian,
1993) and others have constructed realistic galaxy models fully exploiting observations
to constrain the even and odd parts two-integral models (see e.g., Binney, Davies, &
Illingworth, 1990; van der Marel et al., 1994; Dehnen, 1995): typically a model is fit-
ted to the (de-)projected luminosity density and the potential of the stellar component
is computed via Poisson’s equation (2.15), while the observed velocity dispersions give
constraints only on the mass implied by f+ and not on its functional form; then, the odd
part f− is fitted to the observed streaming velocities. Despite being a very successful
approach, one of the major cons of such method is that it is unable to rule-out more
general solutions such as three-integral f = f(H,Lz, I3) model, where I3 is the third
isolating non-classical integral of motion.

12 The most general solution to the problem of inverting equation (2.19) is that of Hunter & Qian
(1993), which gives f(H,Lz) via a contour-integration of ρ(R,Φ) on the complex plane.
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Moreover, another issue of axisymmetric two-integral models is that since σR = σz,
flattened oblate models can be made only via large azimuthal velocities, hence implying
a bias towards large-Lz orbits (because of the tensor virial theorem, see e.g., Binney &
Tremaine, 2008, §4.8.3). Conversely, generating very prolate galaxies would require a
suppression of large-Lz orbits, which eventually breaks the DF positive-definiteness.

2.2.4 Three-integral DFs

2.2.4.a Classical integrals

General finite analytical expressions of a third isolating integral of motion (see Section
2.1.4) for axisymmetric potentials do not exist, however there are some specific and
useful cases in which it is possible to work them out. For instance, Lynden-Bell (1962c)
uses the separability of the Hamilton-Jacobi equation in several coordinate frames for
a limited set of potentials and he is able to derive analytical formulae for three isolat-
ing integrals. Later, several attempts have been made at modeling galaxies employing
Lynden-Bell’s potentials with remarkable success (e.g., for massive round ellipticals,
see Stiavelli & Bertin, 1985; Bertin, Saglia, & Stiavelli, 1988). The most general result
about separability is that of Stäckel (1890), who showed that the most general coordinate
frame which separates the Hamilton-Jacobi equation is the confocal ellipsoidal coordin-
ates. Hence, if a potential is separable in confocal ellipsoidal coordinates, it is said to
be of the Stäckel form. In his seminal paper, de Zeeuw (1985) studied in detail galaxy
potentials of the Stäckel form and constructed both axisymmetric and triaxial three-
integral models. The Stäckel separability can be used both to generate self-consistent
axisymmetric and triaxial three-integral models by specifying the DF (e.g., Dejonghe
& de Zeeuw, 1988; Evans, de Zeeuw, & Lynden-Bell, 1990) and by generalizing Edding-
ton’s formula (2.16) to f = f(H,Lz, I3) models (see Dejonghe & Laurent, 1991). Also
numerical approximations of the DF constrained by observables, such as those obtained
via quadratic programming (see Dejonghe, 1989), have had some success in modeling
elliptical galaxies (e.g., Emsellem, Dejonghe, & Bacon, 1999).

2.2.4.b Action integrals

If the system is integrable, three action integrals exist (see Section 1.5). They are special
isolating integrals of motion and so it is tempting to generate dynamical models whose
distribution function depends on action integrals. Historically, though, actions have
always been cumbersome to compute for generic axisymmetric potentials, but several
recent works have drastically changed the situation giving modellers many reliable meth-
ods to accurately estimate actions in axisymmetric and triaxial potentials (see Section
4.1).

The two main advantages of using actions as arguments for the DF, i.e., f = f(J)
where J = (Jr, Jφ, Jz), are the following:

(i) actions are adiabatic invariants. This implies that they are independent on slow
changes of the potential and, therefore, that a given orbit will be weighted with
the same probability by f(J) even if the potential slowly changes.
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Figure 2.3: Two surfaces of constant energy in action space (Jr, |Jφ|, Jz) for an isochrone
potential. The three axes are in units of

√
GMb, where M is the mass and b is the scale radius

of the isochrone. The bigger surface (blue) is at higher energy (E = −GM/10b) and farther
from the centre, the smaller (red) is at lower energy (E = −GM/5b) and closer to the centre.

(ii) the mass of the system can be computed at the outset. The volume occupied by
a subset of phase space Ω ⊆ Γ is

∫
Ω

d3xd3v = (2π)3
∫

Ω
d3J, hence the total mass

of the system with DF f(J) is M = (2π)3
∫

d3J f(J) where, for axisymmetric
systems, Jr, Jz ∈ [0,+∞[ and Jφ ∈ ]−∞,+∞[.

The second property, for instance, makes it convenient to use action-based DFs to
generate multi-component models, since the mass of each component is immediately
computed even without knowledge of the total potential of the system13.

A general procedure to build DFs which depend on action integral is that proposed
by Binney (1987, see also Binney & Tremaine 2008 §4.6). Given f = f(J), the mass of
stars with energy between E and E + dE is

dm(E) = (2π)3dE

∫
Θ

dJφdJz

Ωr

f(J), (2.22)

where Θ = {(Jr, Jφ, Jz) ∈ [0,+∞[×[−∞,+∞[×[0,+∞[: H(J) = E} and Ωr = ∂H/∂Jr.

13 When energy and angular momentum are used, this can not be accomplished since the integration
volume of the mass integral depends on the potential.
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If there exist a function s = s(J) so that

f(J) = s(J)F (E), (2.23)

where F (E) is an ergodic DF and s(J) is a shift function which redistributes the prob-
ability of orbits on the same surface of constant energy in action-space, then the mass of
stars dm(E) given by (2.22) would be the same as that of F (E) (see Binney & Tremaine,
2008, §4.3.1) if ∫

Θ

dJφdJz

Ωr

=

∫
Θ

dJφdJz

Ωr

s(J). (2.24)

Equation (2.24) formally states that the redistribution of orbits happens on surfaces of
constant energy.

Figure 2.3 shows two surfaces of constant energy in action space for an isochrone
sphere (Hénon, 1959), for which the energy is an analytic function of the actions (see
Gerhard & Saha, 1991). In the spherical limit, L = Jz + |Jφ| and the surfaces are almost
triangular. The shift function s(J) redistributes the probability of the orbits on those
surfaces leaving, therefore, unchanged the density profile. Binney (2014), for instance,
used a linear action-rescaling to act as a shift function on equal-energy surfaces and,
starting from the ergodic F (E) for the isochrone (Hénon, 1960), he is able to generate
self-consistent flattened, anisotropic rotating models.

2.3 Continuous models: Jeans equations

Observations of galaxies can only give constraints on the projected luminosity density
and on the line-of-sight velocity distribution at some location on the plane of the sky.
Thus, comparisons of theoretical models with observations of real galaxies typically
involve only the velocity moments of the DF. Given a DF, it is straightforward to
compute the velocity moments via integration on the velocity space (see Section 2.2.1),
while given observed moments such as ρ(x) and v(x) it is not easy to compute a positive-
definite DF which is a stationary solution of the CBE (see Sections 2.2.2- 2.2.3). Even if
a DF can be found by an inversion similar to Eddington’s (2.16), the solution is typically
not unique and it is often problematic to show its positive-definiteness (see Dejonghe,
1986, for a review).

Jeans (1919) was the first to apply to stellar dynamics the equations that James
Clerk Maxwell had derived in the context of fluid dynamics. For that reason I shall
call the following the Jeans equations or equations of stellar hydrodynamics. To derive
them, one has to take the velocity-moments of the CBE (2.6). The zeroth moment is
obtained by integrating equation (2.6) over the velocity space14, which yields

∂ρ

∂t
+
∑
i

∂ (ρvi)

∂xi
= 0. (2.25)

14 ∂

∂t

∫
d3v f+

∑
i

(∫
d3v vi

∂f

∂xi
− ∂Φ

∂xi

∫
d3v

∂f

∂vi

)
= 0 where the partial time-derivative can safely

be taken outside the integration as well as the potential since it is independent of vi. The last term
vanishes because of the divergence theorem and the fact that f → 0 for |v| → +∞ (e.g., Binney &
Tremaine, 2008, §4.8 and Appendix B).
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The first-order velocity-moments of the CBE are instead obtained by multiplying equa-
tion (2.6) by vj and then integrating over the velocity space15

∂(ρvj)

∂t
+
∑
i

∂ (ρvivj)

∂xi
+ ρ

∂Φ

∂xj
= 0. (2.26)

The above three equations for j = 1, 2, 3 can be rearranged by subtracting equation
(2.25) multiplied by vj and using σ2

ij = vivj − vivj

ρ
∂vj
∂t

+
∑
i

[
ρvi

∂vj
∂xi

+
∂
(
ρσ2

ij

)
∂xi

]
+ ρ

∂Φ

∂xj
= 0. (2.27)

Equations (2.25)-(2.27) define an incomplete set of equations since four equations do not
uniquely determine the nine unknowns vj and σij, even assuming that (ρ,Φ) are known.
From this it follows that in general the Jeans equations can not be used directly to infer
the DF from (ρ,Φ). The closure of this system of differential equations can be achieved
though, provided that some assumptions are made on the DF itself: e.g., for ergodic
f = f(H) (see Binney & Mamon, 1982), for axisymmetric two-integral f = f(H,Lz) (see
Magorrian & Binney, 1994; Arnold, 1995) and, more generally, for any Stäckel potential
(see van de Ven et al., 2003).

Typically equations (2.25)-(2.27) are used to construct dynamical models as follows:
some assumptions must be made on the system’s geometry (inclination and symmetries)
and on anisotropy (shape and orientation of the velocity ellipsoid and arguments of the
DF) in order to get expressions for the line-of-sight first and second velocity-moments as
a function of (ρ,Φ); one de-projects the galaxy’s surface brightness taken from photomet-
ric observations (with the assumed geometry) to infer the three-dimensional luminosity
density and then, with a further assumption on the mass-to-light ratio, one is able to re-
cover the mass density and the potential by solving Poisson’s equation (2.15). With this
procedure one recovers the model’s line-of-sight velocity distribution up to, typically,
second-order. This provides enough information to fit the model to the observations
and if the quality of the fit is not considered sufficiently good, then one can vary the
model’s inclination or mass-to-light ratio and compute a new model.

The success of such an approach is due to the fact that it is relatively easy to generate
a dynamical model given any photometric observation of a galaxy. This is because the
method is able to find a solution for any given light profile and potential (see e.g.,
Emsellem, Monnet, & Bacon, 1994). Though, there is no guarantee that such solution
is physical, since in general there is no positive-definite DF which generates the wanted
velocity-moments with the given potential-density pair. The check of the positivity of
the inferred DF should be always made a posteriori with an independent method (e.g.,
the Hunter & Qian 1993 inversion). Although fast and relatively easy to compute, the
major drawback of this kind of modeling is that when a satisfactory fit is found it is

15 ∂

∂t

∫
d3v vjf +

∑
i

(∫
d3v vivj

∂f

∂xi
− ∂Φ

∂xi

∫
d3v vj

∂f

∂vi

)
= 0. Then by applying the divergence

theorem the last term can be rearranged as ∂Φ/∂xi
∫

d3v f ∂vj/∂vi = ∂Φ/∂xi δijρ (e.g., Binney &
Tremaine, 2008, §4.8 and Appendix B).
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FIG. 1.ÈContour maps of the WFPC2 I-band image of NGC 4342 at two di†erent scales : 32@@] 32@@ (left panel ) and 8@@] 8@@ (right panel ). Superimposed
are the contours of the MGE model of the intrinsic surface brightness convolved with the HST PSF (see ° 3).

image. The presence of the nuclear disk is evident from the
highly Ñattened, disky isophotes inside 1A.0.

2.2. Kinematic Data
Using the ISIS spectrograph mounted at the 4.2 m

William Herschel Telescope (WHT) at La Palma, BJM98
obtained long-slit spectra of NGC 4342 along both the
major and the minor axes. The spectra have a resolution of

km s~1 and were obtained with a slit width ofpinstr\ 9 1A.0
under good seeing conditions with a PSF FWHM of 0A.80
(major axis) and (minor axis). After standard reduction,0A.95
the parameters (c, V , p, that best Ðt the VPs wereh3, h4)determined using the method described in van der Marel
(1994). These parameters quantify the Gauss-Hermite (GH)

expansion of the velocity proÐle L(v) as introduced by van
der Marel & Franx (1993) :

L(v)\ c
p

a(w)
C
1 ] ;

j/3

4
h
j
H

j
(w)
D

, (1)

where

w4 (v[ V )/p (2)

and

a(w) \ 1

J2n
e~w2@2 . (3)

Here v is the line-of-sight velocity, are the Hermite poly-H
jnomials of degree j, and are the Gauss-Hermite coeffi-h

j

FIG. 2.ÈObserved rotation velocities V and velocity dispersions p (as determined from the best-Ðtting Gaussian function ; see text) along the major axis of
NGC 4342 obtained with the WHT (crosses) and the FOS ( Ðlled circles). The gradient of the rotation velocity and the central velocity dispersion increase
considerably with the 4 times higher spatial resolution of the FOS. See BJM98 for details on the data.

Figure 2.4: I-band photometric contours of NGC 4342, taken with Hubble Space Telescope,
at two different scales: 32× 32 (left panel) and 8× 8 (right panel) arcseconds. Superimposed
are the (smooth) MGE contours convolved with the proper Point Spread Function. In this
case, the position angle is the same for all the Gaussian components, which implies that the
galaxy model is axisymmetric. Figure adapted from Cretton & van den Bosch (1999).

not possible to rule out more general models with different geometry or anisotropy, and
also in the cases where a reasonably good fit is not achieved it is difficult to say which
models with less restrictive assumptions would provide a better representation to the
data.

2.3.1 Multi-gaussian expansions and Jeans anisotropic models

One of the most successful application of the Jeans equations in generating dynamical
models is that of the Multi-Gaussian Expansion (MGE) method of Emsellem, Monnet,
& Bacon (1994, see also Cappellari 2002). The basic idea, which is however due to
Bendinelli (1991), is expanding the observed projected surface brightness of a galaxy in
a series of two-dimensional Gaussians. This set of (non-orthogonal) basis functions is
of particular interest in astronomy since de-projections and especially convolutions with
the Point Spread Function are computed analytically. The galaxy surface brightness Σ
is expanded as

Σ(x, y) =
n∑
k=1

Lk
2πσ2

kqk
exp

[
−x

2
k + y2

k/q
2
k

2σ2
k

]
, (2.28)

where (x, y) is the position on the sky, Lk, σk and qk are the total luminosity, standard
deviation and observed flattening of the k-th Gaussian. Assuming that the Point Spread
Function can be written as a sum of circular Gaussians Π(R) ∝∑j exp(−2R2/σj), the
convolution Σc ≡ Σ ∗ Π is written in an analogous way to (2.28) (see e.g., Emsellem,
Monnet, & Bacon, 1994).

For each k-th Gaussian component of the MGE, the three-dimensional luminosity
density ν(x) can be analytically derived by assuming that ν(x) is stratified on triaxial
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ellipsoids and the total potential is computed using Poisson’s equation with a constant
mass-to-light ratio Υ (see e.g., Monnet, Bacon, & Emsellem, 1992; Emsellem, Monnet,
& Bacon, 1994; Cappellari, 2002).

With a sufficiently large number of Gaussians it is possible to achieve fits of any
desired accuracy to the surface brightness of different kinds of galaxies, from round
ellipticals, to flat lenticulars to triaxial ellipticals with isophotal twist (e.g., Cappellari,
2002). Figure 2.4 shows, as an example, a comparison between the I-band photometry
of the S0 galaxy NGC 4342 with a MGE with up to eleven Gaussians from Cretton &
van den Bosch (1999). In their MGE, they assumed that the position angle of every
Gaussian component is the same, leading, therefore, to an axisymmetric model with a
two-integral DF. With this choice the density and the potential will be axisymmetric,
the radial and vertical dispersion would be equal σR = σz and the velocity ellipsoids
will be aligned with the cylindrical coordinates, i.e., vRvz = 0. The equations (2.27)
reduce to a system of two differential equations with two unknowns16. The only variable
left undetermined is how v2

φ divides in streaming motion vφ
2 and azimuthal pressure σ2

φ.
The most popular approach is to decompose the two contribution with an additional
parameter as was introduced by Satoh (1980): by comparing to the isotropic rotator
case, in which σR = σz = σφ, he introduced the parameter 0 ≤ k ≤ 1 as

vφ
2 = k2

(
v2
φ − v2

R

)
, (2.30)

where σ2
R = v2

R = σ2
z = v2

z . For k = 1, the model reduces to the isotropic rotator since

equation (2.30) implies vφ
2 − v2

φ = σ2
φ = σ2

R; if k = 0, the model has no streaming
motions, but only azimuthal anisotropy.

Motivated by observational indications that the velocity ellipsoids of the majority of
the (fast-rotating) ellipticals are flattened in the meridional plane and mostly aligned
as the spheroidal coordinates (see Figure 2.5 and Cappellari et al., 2007), Cappellari
(2008) generalized the axisymmetric MGE formalism to generate dynamical models
with constant anisotropy in the meridional plane17. The assumptions of alignment of
the principal axes of the velocity ellipsoids with the R- and z-axes and that v2

R = bv2
z ,

where b > 0 is a constant, allow to generate models with more radial pressure than
vertical along the model’s major and minor axes. Together with an MGE model for
the photometry and an assumption on the total mass of the system (e.g., a constant
mass-to-light ratio), the so-called Jeans Anisotropic Multi-gaussian expansion (JAM)

16

∂(ρσ2
R)

∂R
+ ρ

(
σ2
R − v2φ
R

+
∂Φ

∂R

)
= 0,

∂(ρσ2
z )

∂z
+ ρ

∂Φ

∂z
= 0,

(2.29)

where σR(= σz) and v2φ are the two unknowns.
17 If there exists a DF consistent with such a Jeans models, it must depend on three isolating integrals

since σz 6= σR.
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study the scatter in the Fundamental plane (van Albada, Bertin &
Stiavelli 1995; Lanzoni & Ciotti 2003; Riciputi et al. 2005), to
measure the deviations of the gas kinematics from circular veloc-
ities (Bertola et al. 1995; Cinzano et al. 1999; Corsini et al. 1999;
Young, Bureau & Cappellari 2008) and to estimate the masses of su-
permassive black holes (Magorrian et al. 1998; van der Marel et al.
1998; Cretton & van den Bosch 1999; Joseph et al. 2001). Although
these models have been largely superseded by Schwarzschild (1979)
orbit-superposition method, when good kinematic data are available
and the maximum generality is required, they are becoming useful
to study the M/L and rotation of galaxies at high redshift, where
the data quality still does not justify more sophisticated approaches
(van der Marel & van Dokkum 2007a,b; van der Wel & van der
Marel 2008).

2.3 Shape and orientation of the velocity ellipsoid in galaxies

To explore the possibility of making a simple but sufficiently realis-
tic assumption on the shape and orientation of the velocity ellipsoid
in the meridional plane of axisymmetric galaxies, we need to un-
derstand what that shape is expected to be.

2.3.1 Theory

A qualitative insight into the orientation of the velocity ellipse
in real galaxies can start from the analysis of the special case of
separable potentials (de Zeeuw 1985). In an axisymmetric oblate
separable potential, the equations of motion for the stellar obits
can be separated in a prolate spheroidal coordinates system (λ,
φ, ν) which also defines the boundaries of the orbits. In other
words, the orbital motions can be written as the linear combination
of two independent oscillations in λ and ν, plus a non-uniform
rotation around the symmetry axis. For this reason, the velocity
ellipse is aligned with the coordinate system and the cross-term
vλvν vanishes (Eddington 1915; de Zeeuw & Hunter 1990). The
prolate spheroidal coordinates are characterized by the fact that
they tend to be aligned with the cylindrical coordinates (R, z, φ) at
small radii and with the polar ones (r, θ , φ) at large radii. Separable
potentials are characterized by a central constant-density region.
The cylindrical alignment happens in that region, as the stars there
tend to move like an harmonic oscillator. For these reasons, one
expects the velocity dispersion ellipse to be cylindrically aligned at
small radii and radially aligned at large radii.

The gravitational potential of real galaxies is not of the separable
form. Separable potentials are in fact necessarily characterized by
smooth analytic centres, while real galaxies possess central singu-
larities due to cusped density profiles (e.g. Ferrarese et al. 1994;
Lauer et al. 1995) and supermassive black holes (Magorrian et al.
1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000). Still, numer-
ical integrations of orbits in non-separable axisymmetric potentials
show that most of them are still bounded by curves, which quali-
tatively resemble the spheroidal coordinates (e.g. Richstone 1982;
Dehnen & Gerhard 1993; Cretton et al. 1999). For this reason, one
can expect the velocity dispersion ellipse to behave in real galaxies
in a way that is qualitatively similar to the separable case. Numerical
calculations confirm this fact in non-separable triaxial and axisym-
metric potentials (Merritt 1980; Dehnen & Gerhard 1993). In the
limit of a point mass, the velocity ellipsoid has to be spherically
aligned for symmetry. This suggests that at small radii, where the
supermassive black hole or the stellar cusp dominates, the velocity
ellipsoid in real galaxies should be more spherically oriented than
in the separable case.

2.3.2 Observations

The DF of a stationary system is a function of the three separable
integrals of motion (Jeans 1915). In general, it cannot be recovered
from real galaxies without at least another three-dimensional ob-
servable quantity. This quantity is now being provided by integral-
field observations of the stellar kinematics (e.g. Emsellem et al.
2004), which allow the stellar line-of-sight (LOS) velocity distri-
bution to be measured at every position of the galaxy image on
the sky. We used these observations, in combination with orbit-
based three-integral axisymmetric models, to measure the shape
and orientation of the velocity ellipsoid at every position within the
meridional plane (within Re), for a sample of 25 early-type galaxies
(Cappellari et al. 2007). Fig. 1 qualitatively summarizes the main
findings of that paper regarding the shape of the velocity dispersion
ellipsoid for the fast-rotator galaxies: (i) the ellipsoids qualitatively
behave like in separable potentials and already near 1Re they are es-
sentially spherically oriented and (ii) the axial ratio of the ellipsoids
varies gradually as a function of the polar angle, in such a way that
the ellipsoid has nearly the same shape on both the equatorial plane
(where the density is the highest) and the symmetry axis. The net
effect is that to first order the global anisotropy of the galaxies can
be described as a simple flattening of the velocity ellipsoid in the
z-direction (v2

z < v2
R).

2.4 Choice of the coordinate system for the Jeans solution

One can think of three physically motivated choices of the coordi-
nates system in which to align the velocity ellipsoid, for a unique
solution of the axisymmetric Jeans equations. In this section, we
examine advantages and problems of each one in turn.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

R

z

Figure 1. Qualitative description of the shape and orientation of the velocity
ellipsoid in the meridional plane (R, z) of the fast-rotator early-type galaxies
(derived from Cappellari et al. 2007). The ellipses show the intersection
of the velocity ellipsoid with the (vR, vz) plane. The solid lines show a
representative prolate spheroidal system of coordinates. The dashed line is a
representative iso-density contour. The ellipsoids are aligned in spheroidal
coordinates, but the axial ratio of the ellipses varies with the polar angle in
such a way that the shape and orientation of the ellipsoids are similar on
both the equatorial plane and the symmetry axis.
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Figure 2.5: Schematic representation of the obervations of Cappellari et al. (2007). The
velocity ellipsoids of the majority of (fast-rotating) early-type galaxies i) tend to be aligned
with the ellipsoidal coordinates and ii) tend to be flattened in the vertical direction both along
the model’s major and minor axis. Figure adapted from Cappellari (2008).

models can be used to constrain the galaxy’s inclination and vertical anisotropy

βz ≡ 1− σ2
z

σ2
R

, (2.31)

by comparing the observed line-of-sight second velocity-moment with the quantity

vRMS ≡
√
v2
‖ + σ2

‖, (2.32)

where v‖ and σ‖ are respectively the line-of-sight mean velocity and velocity dispersion.
Once the line-of-sight second velocity-moment is fitted to the data, the Satoh (1980)
decomposition allows to determine the amount of streaming motion w.r.t. the azimuthal
pressure.
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2.4 Discrete models

So far I have considered continuous dynamical models. In this Section I will briefly
describe an alternative approach that treats the DF as a superposition of discrete com-
ponents. The two major branches of this approach are i) the models in which the DF is
recovered as a superposition of discrete DFs for individual orbits, i.e., orbit-based meth-
ods, and ii) those in which particles are assigned to trace the probability distribution of
stars.

Briefly, both methods have the advantage w.r.t. continuous models that they are
more flexible in constructing equilibrium configurations also for non-axisymmetric and
triaxial potentials. Moreover, unike Jeans models, the final outcome will always be
physical in the sense that the underlying (unknown) DF is assured to be nowhere neg-
ative. The major drawback of discrete models is that the number of free parameters
which must be constrained is of the order of the number of orbits/particles, i.e., typic-
ally 105 − 106. Other than the observables, some further constraints are usually added
in order to reduce such enormous freedom, but for typical applications the number of
free parameters actually fitted by the routines is no less than a few hundreds. Since
marginalizations over so many dimensions is unfeasible, it is extremely difficult to study
the possible degeneracies on such parameters.

Both of these two methods typically involve computation of many orbits, which can
be efficiently done numerically. However, the computational cost of such approaches
normally exceeds that of DF or Jeans models by orders of magnitude.

2.4.1 Orbit-based models

Finding a DF consistent with a given set of observables such as luminosity density and
velocity-moments is often a prohibitive task. The inversion of a (multi-dimensional)
integral equation is involved and the range of known analytical solution is limited.
Numerical schemes have helped in expanding such range: for instance, Kuijken (1995)
linearizes the inversion problem by discretizing (ρ,Φ) on a grid and then computing f
on that grid (though, smoothing is typically needed because of the noisy nature of the
discretization, but see also Merritt, 1993, 1996).

An alternative approach is characterizing the DF as a finite set of orbits which
are to be populated with as many stars as required to give a successful representation
of the observations. This approach was introduced by Schwarzschild (1979) and has
pioneered the field of orbit-based models, which was born with his work. Essentially the
idea is to seek a numerical configuration of equilibrium, given a potential-density pair,
which is consistent with the observed kinematics. Such configuration is constructed
by adding a certain number of discrete orbits, accurately integrated numerically in the
given potential, and then fitting the line-of-sight kinematics by adjusting the number
of stars on each orbit. The advantage of this approach w.r.t. DF modeling is that it
makes no assumptions on how many integrals of motion exist, which, instead, can be
verified a posteriori once the model has been computed.

Schwarzschild (1979) seminal paper can be summarized in the following five steps.
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(i) A target luminosity density must be assumed. It can be, for instance, derived
from the galaxy’s photometry using the MGE formalism (see Section 2.3.1).

(ii) Assume a given potential Φ. For instance, it can be computed with Poisson’s
equation (2.15) assuming that mass-follows-light.

(iii) Different intial conditions are spanned and large library of orbits are computed.
Each orbit in the library is integrated for many oscillations in the potential (at least
a hundred) and the time each orbit spends in a given grid-cell of the discretized
configuration space is stored. The time spent on each grid-cell can be interpreted
as the density distribution produced by each orbit when averaged over a long time.

(iv) At this stage the orbits in the library can be characterized in terms of third-
integral: orbits that do not pass in each grid-cell available to its motion are quasi-
periodic and, therefore, admit three isolating integrals of motion.

(v) Seek how many stars are needed on each orbits so that the target luminosity
density distribution and kinematics are reproduced. The non-negative number of
stars on each orbits are actually parameters that weight the probability of the
given orbit in the system

If no acceptable solution is found, then one must proceed first, by increasing the orbit
library and seeking a new solution with the larger library and second, by rejecting the
assumed potential and start again with a new Φ. This can be effectively used to give
constraints on the total potential of the observed stellar system and hence to infer the
mass distribution of dark components such as a dark halo (see e.g., Rix et al., 1997) or
a central black hole (see e.g., van der Marel et al., 1998). Of course, if the potential was
chosen to be the self-consistent one, i.e., with no other external components, in the case
where no acceptable solution is found one concludes that no equilibrium configuration
exists for the given density distribution.

For orbit-based models one can interpret the orbital weights, which are fitted to the
data, as the coefficients for an effective discrete DF

fSchw(I) =
∑
ζ

wζ(Iζ)δ(I− Iζ), (2.33)

where I = (I1, I2, I3) is a triple of generic integrals of motion, ζ is an orbit in the library
whose best fitting weight is wζ , Iζ is the value of the integrals of motions on that orbit
and δ is the Dirac-δ distribution. Having a discrete representation of the DF, it is
interesting to compare models with known DF and equation (2.33) of an orbit-based
one which produce roughly the same observables (see e.g., Thomas et al., 2004). Figure
2.6 shows the comparison of an axisymmetric two-integral Abel model18 of Dejonghe &
Laurent (1991) with a Schwarzschild’s model tailored to reproduce the same observables.

18 In general, Abel models are those in which the mass density and the DF are related by an Abel
(1826) inversion. The most general case in which such an inversion can be computed is for systems
with triaxial Stäckel (1890) potentials (see Dejonghe & Laurent, 1991).
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Figure 16. The mass weight distribution for the input oblate Abel model (top) and for the best-fitting axisymmetric Schwarzschild model (bottom). Parameters

are as in Fig. 12. The second integral of motion I2 = (1/2)L2
z � 0, where Lz is the component of the angular momentum parallel to the symmetry z-axis.

Figure 17. The orbital mass weights for the input oblate Abel model (diamonds connected by solid curves) and for the best-fitting axisymmetric Schwarzschild

model (crosses connected by dotted curves). The parameters are as in Fig. 13, except that rotation can only come from SR components, for which the two

directions of rotation are indicated separately.

∼20 per cent. Because of possible strong point-to-point fluctuations

as discussed in Section 5.4.3, we also show in Fig. 17 the orbital

mass distribution as function of each of the three integrals of mo-

tion separately by collapsing the cube in (E, I2, I3) in the remaining

two dimensions. Besides the total distribution, we show separately

the contributions from the NR component and the two opposite

rotating SR components in the input oblate Abel model (see Sec-

tion 6.3). While the compact counter-rotating SR component (blue)

is nicely reproduced by the best-fitting axisymmetric Schwarzschild

model, the mass assigned to the main SR component is too high

(∼10 per cent of the total mass), which also results in an un-

derestimation of the NR component. This is reflected in the av-

erage absolute difference in mass as function of E, which is

∼1.3 per cent. As for the triaxial case, the recovery for I2 and I3

is less good with average uncertainties of ∼2.1 and ∼2.4 per cent,

respectively.

A similar good recovery was found by Krajnović et al. (2005) for

the case of a two-integral DF f (E, Lz), which implies an isotropic

velocity distribution in the meridional plane. Thomas et al. (2004)

showed that their independent axisymmetric numerical implemen-

tation of Schwarzschild method is similarly able to recover an an-

alytical f (E, Lz). Our results show that the orbital mass weight

distribution that follows from a fully three-integral DF f (E, Lz , I3)

can be recovered as well.
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Figure 2.6: Orbital weights distribution for an oblate axisymmetric Abel model (top row, see
Dejonghe & Laurent, 1991) and for an orbit-based Schwarzschild’s model (bottom row) in the
(I2, I3) plane, where I2 = L2

z/2, which produce a very similar set of observables such as line-
of-sight velocity and velocity dispersion. The panels show sections of the three-dimensional
space of the integrals of motion (H,Lz, I3) at constant energy H, which increases from left to
right as well as the average distance of the orbit from the system’s centre (expressed by the
radius of the thin short-axis tube orbit RE in arcseconds, see van de Ven, de Zeeuw, & van den
Bosch, 2008, for details). Colour-coded is the orbital weight of the Schwarzschild’s model for
each orbit (colour-bar is on the right), while the grey areas are those prohibited to the motion
for that energy. Figure adapted from van de Ven, de Zeeuw, & van den Bosch (2008).

In the panels are shown some comparisons of sections of the integral space at constant
energy. Equation (2.33) gives a reasonable approximation to the analytic DF.

Modern versions of the Schwarzschild (1979) method have been extensively used by
different authors to model the dynamics of different objects (see e.g., Cretton & van den
Bosch, 1999; Cappellari et al., 2006; van den Bosch et al., 2008).

2.4.2 Particle-based models

An alternative approach conceptually very similar to that of orbit-based models is seek-
ing a representation of the DF not by assigning weights to orbits in phase space, but
populating orbits with particles and so effectively constructing an N-body model. This
approach was pioneered by Syer & Tremaine (1996): given a potential Φ, any observable
Y of the stellar system is given by an integration over the phase space

Y =

∫
Γ

dγγγ K(γγγ)f(γγγ), (2.34)
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where γγγ = (x,v) is a phase-space element, K = K(γγγ) is a known kernel and f is the
DF. For a system of N particles moving in a given potential, the observable would be

y(t) =
N∑
i=0

wiK[γγγi(t)], (2.35)

where wi are some positive weights assigned to each particle and the time dependence
reflect the fact that the particles are moving in the potential. The goal of the method is
to determine a set of weights wi so that the time average of the model observable 〈y(t)〉
is equal to the target Y . The more the observables Y , the more the constraints one uses
to seek the particle weights.

The core of the algorithm is that as time runs and the orbital integration proceeds,
the value of y(t) changes as well as that of 〈y(t)〉, in general. The model is often called
Made-to-Measure (M2M) because Syer & Tremaine (1996) developed a method to evolve
the weights wi so that the time-averaged observable 〈y(t)〉 gets closer to the target Y .
The equation that at each time-step computes dwi/dt is called force-of-change (FOC)
equation, which generally takes the form (see Syer & Tremaine, 1996)

dwi
dt

= −εwiG(wi), (2.36)

where ε > 0 is a small constant and G(wi) is a function that depends on the flavour of
the M2M method (see e.g., de Lorenzi et al., 2007; Dehnen, 2009; Long & Mao, 2010).
Typically, G(wi) ∝ [y(t) − Y ]/Y so that the rate of change of wi is proportional to
the distance between the target observable and that of the model at the time t. For
instance, if the target observable is the mass density at location x, then the kernel in
equation (2.34) is K(x,v) = δ(x) and the weight of each particle would be interpreted
as their masses. In this case, the FOC equation governs the variation in time of the
mass of each particle.

The system of differential equations (2.36) is, however, typically ill-conditioned since
the number of particles exceeds that of observables. If one does not impose additional
constraints on the weights, the FOC equation will make the model observable to converge
towards the targets, but wi will continue to vary even after the convergence is reached.
To remove the ill-conditioning one maximizes over a given profit function, which typically
takes the form of an entropy

S =
∑
i

wi log
wi
mi

, (2.37)

where mi are some given priors on the weights wi. The higher the number of observables
Y , the higher the number of constraints on G(wi) and hence on the weights. The orbits
of the particles are integrated for a long timescale, much longer than that on which they
typically converge i.e., ε−1.

Such data-constrained N -body model must be specified at the outset with some
prescription for the initial conditions. Typically such initial conditions are chosen so to
have a density profile similar to what is expected for the final equilibrium, while it is
rather arbitrary how to set the initial particle velocities. Fortunately Syer & Tremaine
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(1996) argue that the final equilibrium should not be affected by the specific choice of the
initial conditions (modulo that the priors are resonable, e.g., uniform for all particles).

Some of the evident advantages of M2M models w.r.t. orbit-based ones are that,
given the same level of accuracy in representing the observations, i) the particle-based
method has the nice outcome of having a full N -body realization of the model, which
can in principle be used for purposes other than fitting the data and ii) one can use
the final stage of an N -body simulation as initial conditions, for the M2M algorithm, so
that one effectively steers an N -body model to a better representation of a given set of
observables (see e.g., Bissantz, Debattista, & Gerhard, 2004).

2.5 Time evolution: N-body simulations

The study of equilibrium models is of vital importance in order to understand the dy-
namics of stellar systems in the Universe and, in particular, to understand how mass
is distributed in them. However, equilibrium configurations are by definition steady-
states and therefore give us no insight on the galaxy evolution, i.e., on its deviations
from equilibrium and on how such state was reached in the first place. The evolution
of a galaxy is primarily determined by its surroundings: interactions with neighbouring
bound structures and continuous accretion of matter determine the mass accretion his-
tory of galaxies in a statistical sense (see e.g., van den Bosch, 2002), while the detailed
evolution of the galaxy’s stellar component can be strongly influenced by the environ-
ment in a non-trivial manner (see e.g., Peng et al., 2010). While studying the dynamical
evolution of a single model galaxy can be hard (probably the only physically meaningful
way is by applying perturbation theory on some given equilibrium; see e.g., Kaasalainen,
1994), the dynamical evolution of the statistical properties of a galaxy population can
be studied in detail by means of sophisticated numerical algorithms. Since both stars
and dark matter behave as a collisionless fluid, their evolution from some specified initial
conditions and under their own gravity is a problem well suited to be addressed with
N -body numerical simulations.

N -body algorithm have revolutionized our understanding of how galaxies form and
evolve over the last 3 − 4 decades. They are normally implemented in sophisticated
computer codes that run on massively-parallel supercomputers. These codes take as
input an initial configuration of a large number of particles and follow the particle
motion under their mutual gravitational attraction. For relevant applications in the
study of galaxies the maximum number of particles that a current supercomputer can
efficiently represent (about ∼ 1010− 1011) is typically much smaller than the number of
stars involved in the galaxy’s formation and evolution process. Therefore, one simulates
the evolution of a very large number of stars with a much smaller number of massive
particles. The idea of an N -body model of a galaxy is that of following the motion
of some (possibly large) number of test particles in the field of a smooth mass density
ρ(x, t). In this sense, the N particles that are used to represent such a continuous density
field act simply as Monte-Carlo samples of the underlying DF. Hence, the individual
positions and velocities of a particle have no particular physical interst, while the whole
statistical distribution of their positions and velocities does.
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This is possible since galaxies and larger systems in the Universe are collisionless,
because their two-body relaxation time is much longer than their age (equation 2.1).
Galaxies, with a typical crossing times of tens or hundreds of Myrs, have relaxation
times that are (∼ 6−7) orders of magnitude larger than the age of the Universe. Hence,
it makes sense to study the evolution of galaxies with models that follow the motion
of test particles that move on trajectories given by the smooth potential of their own
mutual gravity. Such collisionless N -body codes simulate the evolution of galaxies for
times much shorter than relaxation time of either the real galaxy or the simulated N -
body system. These simulations can be used only to study phenomena on scales shorter
than the two-body relaxation time, e.g., on the violent relaxation (Lynden-Bell, 1967;
van Albada, 1982) or the merging (White, 1978) timescale.

At each timestep, the gravitational potential of the system is computed from the
particles configuration at that timestep using a Poisson solver (e.g., a Barnes & Hut
1986 oct-tree or a particle-mesh Hockney & Eastwood 1981), then the gravitational
forces acting on each particle are computed and are used to update the positions and
momenta of each particle up to the next timestep.

The time-dependent potential Φ(x, t) of the smooth density distribution ρ(x, t) is
related to the underlying phase-space density distribution of the system f(γγγ, t) by

Φ(x, t) = −GM
∫

dγγγ′
f(γγγ′, t)

|x− x′| , (2.38)

where γγγ′ = (x′,v′) and M the system’s total mass. Given N test particles randomly
extracted from the DF with phase-space coordinates γγγi at the beginning of the timestep
t = 0, one can define a sampling probability as fs ≡ f(γγγi, 0) and therefore write (see
Binney & Tremaine, 2008, §4.7.1)

Φ(x, t) = −GM
N

N∑
i=1

f(γγγi, t)/fs

|x− xi|
= −GM

N

N∑
i=1

f(γγγi, t)/f(γγγi, 0)

|x− xi|
. (2.39)

This is the potential generated by N point masses distributed at locations γγγi in phase
space and having mass

mi(t) =
M

N

f(γγγi, t)

f(γγγi, 0)
. (2.40)

Actually, since the sampling points are on orbits, the right-hand side is time-independent
and therefore the test particles will have the same mass at each timestep. For instance,
in M2M models the masses of the test particles are varying with time according to
(2.40), where the denominator is a sampling probability fs which is fs 6= f .

An important caveat that must be stressed when interpreting results from colli-
sionelss N -body models is that no physical sense is attached to the particles. Since by
equation (2.40) one can always choose the sampling probability as fs ≡ f(γγγi, 0) so that
the masses are constant with time, one might interpret the N particles as stars or as
clusters of stars moving through the system, instead the test particles are simply used
to probe the underlying probability density and their motion is conceptually closer to
representing the characteristic curves of the CBE (2.6), where the potential is given by
(2.39).
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Undoubtably the biggest success of N -body mothods are cosmological simulations of
structure formation, where the prescription for the initial conditions is given phenomen-
ologically by the observations of the Cosmic Microwave Background (see e.g., Frenk
et al., 1988). These simulations brought many new insights on how galaxies and dark
haloes form and evolve in the Universe (see e.g., Mo, van den Bosch, & White, 2010,
for an extensive review). The main advantage of such simulations is that they trace
extermely well the statistical properties of galaxies and haloes as a population, whereas
the interpretation of the results when a single system is considered can be tricky since
the discreteness noise can cover much of the results. In this sense, N -body simulations
such as that in Figure 2.7 can be used as an extremely powerful tool to trace the global
properties of galaxies and haloes as a whole population.
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Figure 2.7: Projected dark matter density of a 5 × 1013M� halo in a cosmological, dark-
matter only, N -body simulation along an arbitrary line-of-sight. The image has been made
by dividing the projected field into regular cells, counting how many particles are in that cell
and assigning a density to the cell as the total mass in particles divided by the area of the cell.
The density contrast between the highest (dark red) and the smallest density (dark blue) is of
about 6 orders of magnitude. The N -body simulation is that used in Chapter 5 to study the
evolution of early types and their dark matter haloes.
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Chapter3
Action-based distribution functions for
spheroids: the f (J) models

Appeared in:
L. Posti, J. Binney, C. Nipoti & L. Ciotti, 2015, MNRAS, 447, 3060

Abstract
We present an approach to the design of distribution functions that depend on the phase-
space coordinates through the action integrals. �e approach makes it easy to construct a
dynamical model of a given stellar component. We illustrate the approach by deriving distri-
bution functions that self-consistently generate several popular stellar systems, including the
Hernquist, Ja�e, and Navarro, Frenk and White models. We focus on non-rotating spherical
systems, but extension to �a�ened and rotating systems is trivial. Our distribution functions
are easily added to each other and to previously published distribution functions for discs to
create self-consistent multi-component galaxies. �e models this approach makes possible
should prove valuable both for the interpretation of observational data and for exploring the
non-equilibrium dynamics of galaxies via N-body simulations.

http://adsabs.harvard.edu/abs/2015MNRAS.447.3060P
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3.1 Introduction

Axisymmetric equilibrium models are extremely useful tools for the study of galaxies. A
real galaxy will never be in perfect dynamical equilibrium – it might be accreting dwarf
satellites, or being tidally disturbed by the gravitational field of the group or cluster to
which it belongs, or displaying spiral structure – but an axisymmetric equilibrium model
will usually provide a useful basis from which a more realistic model can be constructed
by perturbation theory.

By Jeans (1915) theorem (see Section 2.1.2), every equilibrium model can be de-
scribed by a distribution function (DF) that depends on the phase-space coordinates
(x,v) only through isolating integrals of motion. In an axisymmetric potential, most
orbits prove to be quasiperiodic, with the consequence that they admit three isolating
integrals (Arnold, 1978). Consequently, a generic DF for an axisymmetric equilibrium
galaxy is a function of three variables.

The major obstacle to exploiting this insight is that we have analytic expressions
for only two isolating integrals of motion in a general axisymmetric potential, namely
the energy E = 1

2
v2 + Φ(x) and the component of the angular momentum about the

symmetry axis, Jφ = (x×v)z. Several authors have examined model galaxies with DFs
of the two-integral form f(E, Jφ) (Prendergast & Tomer, 1970; Wilson, 1975; Rowley,
1988; Evans, 1994), but in such models the velocity dispersions σR and σz in the radial
and vertical directions are inevitably equal. This condition is seriously violated in our
Galaxy and we have no reason to suppose that the condition is better satisfied in any
external galaxy. Hence it is mandatory to extend the DF’s argument list to include a
“non-classical” integral, I3, for which we do not have a convenient expression.

Since any function J(E, Jφ, I3) of three isolating integrals is itself an isolating in-
tegral, we actually have an enormous amount of freedom as to what integrals to use as
arguments of the DF. Given that we must use at least one integral for which we lack
an expression for its dependence on (x,v), there is a powerful case for making the DF’s
arguments action integrals. These integrals are alone capable as serving as the three
momenta Ji of a canonical coordinate system – this property makes them the bedrock of
perturbation theory. Their canonically conjugate variables, the angles θi, have two re-
markable properties: (i) along any orbit they increase linearly with time at rates Ωi(J),
so

θi(t) = θi(0) + Ωi(J) t, (3.1)

and (ii) they make the ordinary phase-space coordinates periodic functions

x(θ + 2πm,J) = x(θ,J) (integer mi). (3.2)

The actions Ji also have nice properties. In particular, (i) any triple of finite numbers
(Jr, Jφ, Jz) with Jr, Jz ≥ 0 corresponds to a bound orbit with the orbit J = 0 being
that on which a star is stationary at the middle of the galaxy, and (ii) the volume of
phase space occupied by orbits with actions in d3J is (2π)3d3J. Consequently, any non-
negative function f(J) that tends to zero as |J| → ∞ and has a finite integral

∫
d3J f(J)

specifies a valid galaxy model of mass

M = (2π)3

∫
d3J f(J). (3.3)
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The actions are defined by integrals

Ji =
1

2π

∮
γi

dx · v, (3.4)

where γi is a closed path in phase space. If we require that the first action Jr quantifies
the extent of a star’s radial excursions and the third action Jz quantifies the extent
of its excursions either side of the potential’s equatorial plane, then the actions are
unambiguously defined. What we here call Jr is sometimes called JR or Ju, and what
we call Jz is sometimes called Jϑ or Jv, but no significance attaches to these different
notations. In a spherical potential Jz = L − |Jφ|, where L is the magnitude of the
angular momentum vector.

To obtain the observable properties of a model defined by f(J), for example its
density distribution ρ(x) =

∫
d3v f(J) and its velocity dispersion tensor σ2

ij(x), one
has to be able to evaluate J(x,v) in an arbitrary gravitational potential. Recently a
number of techniques have been developed for doing this (Binney, 2012a; Sanders &
Binney, 2014, 2015). Consequently, while the last word on action evaluation has likely
not yet been written, we now have algorithms that enable one to extract the observables
from a DF f(J) with reasonable accuracy.

DFs f(J) that depend on the phase-space coordinates only through the actions
were first used to model the disc of our Galaxy in an assumed gravitational potential
(Binney, 2010, 2012b). Recently Binney (2014) showed how to derive the self-consistent
gravitational potential that is implied by a given f(J) by exploring a family of flattened,
rotating models that he derived from the “ergodic” DF of the isochrone model: that is
the DF f(H) that depends on the phase-space coordinates only through the Hamiltonian
H = 1

2
v2 + Φ(x). Hénon (1960) derived the isochrone’s ergodic DF, and in the case of

the isochrone potential explicit expressions are available for J(x,v) and H(J) (Gerhard
& Saha, 1991). Substituting H(J) in f(H) Binney (2014) obtained the DF f(J) of the
isotropic isochrone model. In this Chapter we present simple analytic functions f(J)
that generate nearly isotropic models of other widely used models, such as the Hernquist
(1990), Jaffe (1983), and Navarro, Frenk, & White (1996, hereafter NFW) models.

Once a DF of the form f(J) is available for a spherical, non-rotating model, the
procedure Binney (2014) used to flatten the isochrone sphere and to set it rotating can
be used to flatten and/or set rotating one’s chosen model. So DFs for spherical models
in the form f(J) are valuable starting points from which quite general axisymmetric
models are readily constructed.

Galaxies are generally considered to consist of a number of components, such as
a disc, a bulge, and a dark halo, that cohabit a single gravitational potential. If we
represent each component by a DF of the form f(J), it is straightforward to find the
gravitational potential in which they are all in equilibrium (e.g., Piffl et al., 2014; Piffl,
Penoyre, & Binney, 2015). An analogous composition using DFs of the form f(E, Jφ, I3)
has never been achieved and may be impossible, because when components are added,
their potentials must be added, and the energies of physically similar orbits in a given
component are quite different before and after we add in the potential of another com-
ponent. For example, the orbit on which a star sits at the centre of the galaxy will have
different energies before and after addition. If E is used as an argument of the DF, the
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change in E will change the density of stars on the given orbit, which is contrary to the
fundamental idea of building up the galaxy by adding components. By contrast, the
actions of the orbit on which a star sits at the galactic centre vanish in any potential,
and if a component is defined by f(J), it contributes the same density of stars to this
orbit regardless of the external potential in which that component finds itself. This fact
is a major motivation for discovering what DF of the form f(J) is required to generate
each component of a galaxy.

The DF of an isotropic spherical model must depend on the actions only via the
Hamiltonian H(J). The dependence of f on H is readily obtained from the inversion
formula of Eddington (1916), but an exact expression for H(J) is only available for the
isochrone potential and its limiting cases, the harmonic oscillator and Kepler potentials.
Our ignorance of H(J) for potentials other than the isochrone amounts to a barrier to
the extension of the approach of Binney (2014) to model building. One way to break
through this barrier is to devise numerical approximations to H(J) and some success has
been had in this direction by Fermani (2013) and Williams, Evans, & Bowden (2014). In
this Chapter we pursue a slightly different strategy, which is to develop simple algebraic
expressions for DFs f(J) that generate self-consistent models that closely resemble
popular spherical systems. We also show that a very simple form of f(J) generates a
model that is almost identical to the isochrone sphere and we give a useful analytic
expression for the radial action as a function of energy and angular momentum for a
Hernquist sphere.

This Chapter is organised as follows. In Section 3.2 we use analytic arguments to
infer f(J) for scale-free models. These models are not physically realisable as they stand,
so in Section 3.3 we consider models that consist of two power-law sections joined at a
break radius. In Section 3.4 we extract realisable models from scale-free models by the
alternative strategy of adding a core to the system and/or tidally truncating the model.
Section 3.5 sums up.

3.2 Power-law models

Consider a gravitational potential that scales as a power of the distance from the galactic
centre, i.e. Φ(ξx) ∝ ξaΦ(x) with a 6= 0: in the limit a → 0 the gravitational potential
tends to a logarithmic potential, which is an interesting special case that we will treat
in Section 3.2.1.

An orbit in a power-law potential has time-averaged kinetic and potential energies,
K and W respectively, that are related by the virial theorem: 2K = aW . The in-
stantaneous total energy, given by the sum of the instantaneous kinetic and potential
energies, is conserved along the orbit and consequently is given by

E = K +W =
(a

2
+ 1
)
W. (3.5)

In any power-law potential we need only to study orbits of one arbitrarily chosen energy
E because each of these orbits can be rescaled to a similar orbit at any given energy
E ′. Indeed, if an orbit is rescaled by a spatial factor, i.e., x→ x′ = ξx, then the orbit’s
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total energy scales as

E → E ′ = ξaE, (3.6)

since obviously W → W ′ = ξaW . Further v2 ∝ K = 1
2
aW , so under rescaling v→ v′ =

ξa/2v.

Given the scalings derived above for x and v it follows that

J→ J′ = ξ1+a/2J. (3.7)

Thus both the energy and the actions of an orbit that is rescaled by the spatial factor
ξ are rescaled by powers of this factor.

From equations (3.6) and (3.7) we deduce that the Hamiltonian is of the form

H(J) = [h(J)]a/(1+a/2), (3.8)

where h(J) is a homogeneous function of degree one, i.e. h(ζJ) = ζh(J) for every
constant ζ. In particular, H is itself a homogeneous function of the three actions of
degree a/(1 + a/2). It is easy to check that equation (3.8) gives the correct scalings
H ∝ |J| and H ∝ |J|−2 for the harmonic oscillator (a = 2) and Kepler (a = −1)
potentials. Williams, Evans, & Bowden (2014) derive a closely related result in which a
specific form is proposed for h(J).

The homogeneous function h is strongly constrained by the orbital frequencies. In-
deed

Ωi

Ωj

=
∂H/∂Ji
∂H/∂Jj

=
∂h/∂Ji
∂h/∂Jj

. (3.9)

In a scale-free model the frequency ratio on the left is a homogeneous function of degree
zero, i.e., scale-independent, in agreement with the right side. A natural choice for h
that we will use extensively is

h(J) = Jr +
Ωφ(J)

Ωr(J)
|Jφ|+

Ωz(J)

Ωr(J)
Jz. (3.10)

In a scale-free model this is homogeneous of degree one, as required. Moreover so long
as the frequency ratios do not change rapidly within a surface of constant energy in
action space, the derivatives of h satisfy equation (3.9) to good precision.

In the definition (3.10) of h(J) the modulus of the angular momentum Jφ appears
because we are concerned with the construction of the part of the DF that is even in
Jφ. If we wish to set the model rotating, we will add to this even part an odd part as
discussed by Binney (2014).

Consider now the density distribution that generates a power-law potential. In the
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spherical case 1 we have

dΦ(r)

dr
=
∂Φ(ξr)

r∂ξ

∣∣∣∣
ξ=1

=
a

r
Φ(r). (3.12)

Hence

4πGρ =
1

r2

d

dr

(
r2 dΦ

dr

)
=

1

r2

d

dr
(arΦ) =

a+ a2

r2
Φ. (3.13)

If a = −1 we recover the expected result ρ = 0, but for a 6= 0 we obtain the polytropic
relation for index n = 1− 2/a (e.g Binney & Tremaine, 2008, §4.3.3a):

ρ ∝ |Φ|1−2/a. (3.14)

From this relation it is easy to derive the ergodic DF

f(E) ∝ E−(4+a)/2a (3.15)

from Eddington’s formula (e.g. Evans, 1994). From equations (3.8) and (3.15) it follows
that the distribution function of a power-law model is

f(J) = [h(J)]−(4+a)/(2+a). (3.16)

The DF of a power-law model is itself a power-law of the three actions and the exponent
is completely determined by that of Φ(x).

3.2.1 Logarithmic potentials

Now consider the limit a→ 0 when the scaling of Φ becomes additive

Φ(ξx) = Φ(x) + v2
c log(ξ), (3.17)

where vc is a constant that one can easily show is the circular speed. Since galaxies have
quite flat circular-speed curves, potentials of this form are very useful.

The kinetic energy K does not change on rescaling, while the potential energy W →
W ′ = W + v2

c log(ξ), so
E → E ′ = E + v2

c log(ξ). (3.18)

The invariance of K implies invariance of v under orbit rescaling, so the scaling of the
actions is

J→ J′ = ξJ = exp

(
E ′ − E
v2

c

)
J. (3.19)

1In the non-spherical case

4πGρ(ξR) =
a+ a2

ξ2r2
Φ(ξR)

+
1

ξ2r2 sin θ

∂

∂θ

(
sin θ

∂Φ(ξR)

∂θ

)
+

1

ξ2r2 sin2 θ

∂2Φ(ξR)

∂φ2

= 4πGξa−2ρ(R).

(3.11)

Consequently ρ and Φ have simple scalings with r but they are not necessarily functions of each other.
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We now use each side of this equation as the argument of a homogeneous function of
degree one, h(J), and obtain

h(J′) = exp

(
E ′ − E
v2

c

)
h(J), (3.20)

or on rearrangement
E ′ = E + v2

c log[h(J′)/h(J)]. (3.21)

Here E ′ and E are the energies of any two orbits whose actions J′ and J are proportional
to each other. We can choose to make J an orbit with vanishing energy, and we can
choose h to be the homogeneous function that satisfies h(J) = 1 as J moves over the
surface E = 0 in action space. With these choices, we have

H(J′) = v2
c log[h(J′)]. (3.22)

The ergodic DF that self-consistently generates the spherical logarithmic potential
is well known to be

f(H) = exp

(
E0 −H
σ2

)
, (3.23)

where σ2 = v2
c/2 and E0 is a constant (e.g. Binney & Tremaine, 2008, §4.3.3b). Using

equation (3.22) it follows that the ergodic DF is

f(J) = constant× [h(J)]−2. (3.24)

This result is consistent with the limit a→ 0 of equation (3.16) for a power-law model.
Note that equation (3.24) implies that the phase-space density diverges as J→ 0. It

follows that this DF unambiguously specifies the singular isothermal sphere, in contrast
to the DF (3.23), from which one can derive both cored and singular isothermal spheres
(e.g. Binney & Tremaine, 2008, §4.3.3b). It is characteristic of DFs of the form f(J)
that they uniquely and transparently specify the phase-space density both at the centre
of the model (J = 0) and for marginally bound orbits (J → ∞). From a DF that
depends on energy, by contrast, the phase-space density at the centre of the model is
implicitly specified by the boundary condition adopted at r = 0 when solving Poisson’s
equation for the self-consistent potential.

The considerations of the last paragraph apply equally to the power-law DFs (3.16):
although we used the standard form (3.15) of the energy-based DF of the polytropes
to derive this DF, it implies infinite phase-space density at the system’s centre, so it is
inconsistent with familiar cored polytropes, such as the Plummer model.

3.3 Two-power models

Any power-law model is problematic in the sense that the mass interior to radius r
diverges as r →∞ if the density declines as r−b with b ≤ 3, and the mass outside radius
r diverges as r → 0 when b ≥ 3. Hence there is no value of b for which the model is
physically reasonable at both large and small r. One way we can address this problem
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is to assume that ρ scales as different powers of radius at small and large radii. A widely
used family of models of this type is given by the density profile

ρ(r) =
ρ0

(r/rb)α(1 + r/rb)β−α
, (3.25)

where rb is the break radius (e.g., Binney & Tremaine, 2008). Three particular cases
of importance are the Jaffe (1983) model (α, β) = (2, 4), the Hernquist (1990) model
(α, β) = (1, 4), which belong to the family of Dehnen (1993) models (β = 4), and the
NFW model (α, β) = (1, 3) (Navarro, Frenk, & White, 1996). The ergodic DFs of the
Jaffe and Hernquist models are known analytic function, but that of the NFW model
is not. Our goal in this section is to find analytic functions f(J) that generate models
that closely resemble these three classic models.

In the regime r � rb the mass M(r) enclosed by the sphere of radius r is M ∝ r3−α,
so the gravitational acceleration is dΦ/dr ∝ r1−α and thus the potential drop between
radius r and the centre is

Φ(r)− Φ(0) ∝ r2−α or log(r) when α = 2. (3.26)

Setting a = 2 − α we can now employ the results we derived above for power-law
potentials to conclude that

f(J) = [h(J)]−(6−α)/(4−α). (3.27)

The Hernquist and NFW models both have α = 1 so we expect their DFs to have
asymptotic behaviour

f(J) = [h(J)]−5/3 as |J| → 0. (3.28)

A Jaffe model has α = 2, so the asymptotic behaviour of the Jaffe model’s DF as J→ 0
is given by equation (3.24).

Consider now the asymptotic behaviour of a two-power model as r → ∞. If the
model has finite mass, the potential will asymptote to the Kepler potential, Φ ∝ r−1,
so ρ ∝ |Φ|β. In the Kepler regime the dependence of the Hamiltonian on the actions is
(e.g. Binney & Tremaine, 2008, eq. 3.226a)

H(J) = [g(J)]−2, (3.29)

where g(J) is a homogeneous function of degree one. Although ρ is a simple power of
|Φ| we cannot employ the polytropic formula (3.15), because that rests on Poisson’s
equation, which does not apply in this case: the model’s envelope is a collection of test
particles that move in the Kepler potential generated by its core. We instead go back
to Eddington’s formula

f(E) ∝ d

dE

∫ E
0

dΨ√
E −Ψ

dρ

dΨ
, (3.30)

where E = −E and Ψ = −Φ. From this formula it is easy to show that ρ ∝ Ψβ implies

f(E) ∝ Eβ−3/2. (3.31)
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Combining this with equation (3.29) we conclude that for β > 3 the asymptotic beha-
viour of a double-power DF is

f(J) = [g(J)]−2β+3 as |J| → ∞. (3.32)

For the Jaffe and Hernquist models β = 4, so for these models

f(J) = [g(J)]−5 as |J| → ∞. (3.33)

Now that we have the asymptotic behaviour of f in the limits of both small and
large J, it is straightforward to devise a suitable form of the DF

f(J) =
M0

J3
0

[1 + J0/h(J)](6−α)/(4−α)

[1 + g(J)/J0]2β−3
. (3.34)

Here M0 is a constant that has the dimensions of a mass and J0 is a characteristic action.
If the two homogeneous functions are normalised such that h(J) ' g(J) ' |J|, orbits
that linger near the break radius rb have |J| ' J0. These conditions ensure that f tends
to the required powers of h and g when |J| � J0 and |J| � J0, respectively.

We use different homogeneous functions for the regimes of small and large J because
the frequency ratios in these two regimes will differ. In the Kepler regime, which is
handled by g, all frequencies are equal, so if we require an isotropic model we choose

g(J) = Jr + |Jφ|+ Jz. (3.35)

In the regime of small J, Ωr > Ωφ = Ωz, and we take h to be of the form (3.10) with a
frequency ratio that is less than unity. Unfortunately, in this regime the frequency ratio
does vary over a surface of constant energy and an exactly isotropic model cannot be
constructed using constant ratios. We simply use Ωφ/Ωr = Ωz/Ωr = 1/2, which are the
frequency ratios of a harmonic oscillator.

The DF (3.34) is infinite on the orbit J = 0 of a star that is stationary at the
model’s centre. Cuspy models such as the Hernquist, Jaffe and NFW models do have
such centrally divergent DFs, while in other cored systems the phase space density
reaches a finite maximum. Cored systems will be treated in Section 3.4.

3.3.1 Technicalities

Here we touch on some technical issues that arise when one sets out to recover the
observable properties of a model from the DF that defines it. The first step is to
normalise the DF to the desired total mass by evaluating the integral (3.3). When
the DF depends only on the function h(J) defined by equation (3.10) [i.e., the case
g(J) = h(J)] with the frequency ratios ω ≡ Ωφ/Ωr = Ωz/Ωr taken to be constant, it
is convenient to change coordinates from (Jr, Jφ, Jz) to (Jr, L, Jz) and integrate out Jz,
and then to change coordinates to (h, L) and integrate out L. Then one finds

M

(2π)3
=

∫
dh f(h)

∫ h/ω

0

dLL =
1

2ω2

∫ ∞
0

dhh2f(h). (3.36)
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Table 3.1: The ratio of the half-mass radius rh to the scale radius r0, defined by equation
(3.38), for the f(J) Isochrone, f(J) Hernquist and f(J) Jaffe models. For comparison we list
also the ratio rh/rb, where rb is the break radius, of the corresponding classical models.

Isochrone Hernquist Jaffe

rh/r0 3.4 2.42 0.76
rh/rb 3.06 2.41 1

In the more general case, when h(J) 6= g(J), the integral (3.3) cannot be reduced to
one-dimension. Equation (3.36) can be written

M

(2π)3
= M0

∫
d3y

[1 + 1/h(y)](6−α)/(4−α)

[1 + g(y)]2β−3
, (3.37)

where y ≡ J/J0. The integral in equation (3.37) is dimensionless and depends only on
the model’s parameters α, β and on the forms of the homogeneous functions h and g. It
can therefore be computed at the outset. Then the value of M0 can be set that ensures
that the model has whatever mass is required.

The physical scales of the models are determined by the action scale J0 and by the
mass scale M0, so the natural length scale is

r0 ≡
J2

0

GM0

. (3.38)

In following sections we will present f(J) analogues of three classic models that have
a finite mass: the Hernquist, Jaffe and isochrone models. For our analogue models the
top row of Table 3.1 gives the ratio rh/r0 of half-mass radius to the scale radius defined
by equation (3.38). The second row gives for the classical models the ratio of rh to the
break radius, and we see that for the Hernquist model r0 = rb to good precision, while
in the other two cases the difference between r0 and rb is less than 25 per cent.

Once f(J) has been normalised, we are able to determine the potential Φ(x) that the
model self-consistently generates by the iterative procedure described by Binney (2014).

3.3.2 Worked Examples

3.3.2.a The Hernquist model

The Hernquist (1990) model is an interesting example both because it is a widely used
model and because we can derive its ergodic DF as a function of the actions for compar-
ison with the f(J) model given by equation (3.34) with (α, β) = (1, 4), which hereafter
we refer to as f(J) Hernquist model.

In Appendix A we derive an analytic expression for Jr = Jr(H,L) in the spherical
Hernquist potential. By numerically inverting this expression, we arrive at H = H(Jr, L)
for the Hernquist sphere. Combining this with the sphere’s ergodic DF, which was given
already by Hernquist (1990), we have the exact f = f [H(J)]. In Fig. 3.1 we show surfaces
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Figure 3.1: The red full curves show surfaces on which the DF of the classical isotropic
Hernquist sphere is constant in the (Jr, L) plane of action space, while the black dashed
curves show surfaces on which the corresponding f(J) distribution function is constant.

in action space on which this DF is constant together with surfaces on which DF of
the f(J) Hernquist model is constant. The differences are small but apparent and arise
because the surfaces of constant energy are not exactly planar.

Fig. 3.2 compares the radial profiles of density, circular speed and radial component
of velocity dispersion in the exact isotropic model and in the f(J) Hernquist model.
The largest discrepancy is in the velocity dispersion and reflects the fact that the model
is significantly radially biased around r0. The long-dashed curve in Fig. 3.3 shows that
the f(J) Hernquist model has a slight radial bias at all radii by plotting the anisotropy
parameter

βa = 1−
σ2
φ + σ2

z

2σ2
r

. (3.39)

By virtue of the adopted form of g (equation 3.35), βa → 0 in the Keplerian regime.
Even though the potential is not harmonic at the centre, still the model tends to isotropy
also at small radii, which justifies our simple choice for h(J).

3.3.2.b The Jaffe model

The Jaffe (1983) model behaves as Hernquist’s at large radii, while tending to ρ ∝ r−2

close to the centre. Fig. 3.2 shows the radial profiles of the f(J) Jaffe model defined by
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Figure 3.2: Density (top panels), circular velocity (central panels), and radial velocity dis-
persion (bottom panels) profiles for the classical isotropic Hernquist sphere (normalized to rb,
green dashed line) and for the f(J) Hernquist model (normalized to r0, black solid line) in
the left panels and for classical isotropic Jaffe sphere (blue dashed line) and for the f(J) Jaffe
model (black solid line).
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Figure 3.3: Anisotropy profiles for f(J) Hernquist, f(J) Jaffe, f(J) NFW, f(J) isochrone
and f(J) isothermal models. The profiles are normalized to r0 (eq. 3.38).

setting (α, β) = (2, 4) in the DF (3.34), and compares them with the classical isotropic
model. The discrepancies in σr are due to the slight radial bias of the f(J) model around
r0. The full curve in Fig. 3.3 shows that this bias actually quite mild – |βa| < 0.1.

3.3.2.c NFW halo

The NFW model has β = 3 with the consequence that its mass diverges logarithmically
as r → ∞ and its potential is never Keplerian. Consequently, the reasoning used to
construct a DF above equation (3.34) does not apply. If we nevertheless adopt equation
(3.34) with (α, β) = (1, 3), we obtain a DF that implies that as J →∞ the mass with
actions less than J diverges like log J . Asymptotically the circular speed of the standard
NFW model is

vc ∼
√

log(1 + r/r0)

r
, (3.40)

so in this model the action of a circular orbit is Jφ ∼
√
r log r. This shows that mass

diverging like log J in action space corresponds, to leading order, to divergence of the
mass in real space like log r. Hence it is plausible that the DF (3.34) with (α, β) = (1, 3)
generates a model similar to the NFW model.

Computation of ρ(r) for the f(J) model with (α, β) = (1, 3) bears out this expecta-
tion. However the slope of the model’s density profile at large r is slightly steeper than
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Figure 3.4: Same as Fig. 3.2, but for the classical isotropic NFW sphere and for the
f(J) NFW model defined by equation (3.41) on the left panels and for the classical isotropic
isochrone sphere and for the f(J) isochrone model on the right panels.
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desired, and a better fit to the classical NFW profile is obtained by adopting

f(J) =
M0

J3
0

[1 + J0/h(J)]5/3

[1 + g(J)/J0]2.9
. (3.41)

Fig. 3.4 shows the radial profiles of the classical NFW model and those of the model
generated by the DF (3.41), which we shall call f(J) NFW model. The dotted curve
in Fig. 3.3 shows that this model is mildly radially biased at radii larger than r0 and it
becomes very slightly tangentially biased for r < r0. These anisotropies account for the
difference between the σr profiles of the f(J) and classical NFW models.

3.4 Cores and cuts

In the last section we addressed the problematic nature of power-law models – that
their mass diverges at either small or large radii – by introducing separate slopes of the
dependence of f on J at small and large J. The recovered models had central density
cusps similar to those of the Hernquist, Jaffe and NFW models. If a homogeneous core
is required, the natural DF to adopt is

f(J) =
M0

J3
0

1

[1 + g(J)/J0]2β−3
, (3.42)

for then the phase-space density has the finite value M0/J
3
0 at the centre of the model,

and the asymptotic density profile is expected to be ρ ∝ r−β. For β ≤ 3 the system has
infinite mass, so for these models we taper the DF by subtracting a constant from the
value given by equation (3.42)

f(J) 7→ f ′(J) = max [0, f(J)− f(Jt)] , (3.43)

where Jt is some large action, which defines a truncation radius

rt =
|Jt|2
GM

. (3.44)

3.4.1 Isochrone model

Fig. 3.4 compares the density profiles of the model equation (3.42) generates for β = 4
(black curves) with those of the isochrone (Hénon, 1960). The two models are extremely
similar, so we shall refer to the model generated by the DF (3.42) when β = 4 as the
f(J) isochrone model. The density profiles of the two models are essentially identical,
but at r ' r0 σr is slightly smaller in the f(J) isochrone than in the classical isochrone
because the f(J) isochrone is mildly radially biased near r0 – the thin full curve in
Fig. 3.3 shows βa(r) for this model. It is non-zero because in action space surfaces of
f(J) do not quite coincide with surfaces of constant H(J), as the upper panel of Fig. 3.5
shows by plotting contours of f and H. For the isochrone potential we have an analytic
expression for the frequency ratio Ωφ/Ωr as a function of L. The lower panel of Fig. 3.5
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Figure 3.5: Surfaces of constant H(J) (red) and of constant f(J) black in action space for
two f(J) isochrone models with different choice of the function g appearing in the DF (3.42).
In the upper panel g is Jr + L whereas in the lower panel it is Jr + (Ωφ/Ωr)L where the
frequency ratio is a function of L.
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shows that the constant-energy and constant-DF contours are more closely aligned when
the argument of the homogeneous function uses the exact frequency ratio.

Given that the exact DF of the isochrone is a complicated function of J, it is aston-
ishing that the trivial DF (3.42) provides such a good approximation to it.

3.4.2 Cored isothermal sphere

In Section 3.2.1 we derived an approximation (3.24) to the DF of the singular isothermal
sphere. Here we modify this model into one that is numerically tractable by (i) adding
a core, and (ii) tapering its density at large radii so the model’s mass becomes finite.
Then the DF is

f(J) =
M0

J3
0

max
(
0, [1 + J0/h(J)]2 − [1 + J0/h(Jt)]

2
)
, (3.45)

where h(J) is given by equation (3.10) with both frequency ratios set to 1/
√

2 and
Jt = (0, vcrt, 0). As full curves in Fig. 3.6 show, this DF generates a model that has a
core that extends to r0 and a density profile that plunges to zero near the truncation
radius rt. The short-dashed curve in Fig. 3.3 shows the model’s anisotropy parameter
βa, which is always small (|βa| < 0.04).

An ergodic model with a simple functional form of ρ(r) to which we can compare
our f(J) model has

ρ(r) =
v2

c

2πG(r2 + r2
b)

e−r
2/r2t . (3.46)

The dashed curve in the left panel-hand of Fig. 3.6 shows that the model defined by the
DF (3.46) provides an excellent fit to the density profile of our f(J) model. Curiously, in
the f(J) model σr(r) is more nearly constant within rt than in either of the models with
analytic density profiles. The dashed curve in the right-hand panel of Fig. 3.6 shows
that the model defined by the DF (3.46) has a significantly deeper central depression
in σr than the f(J) model.

3.5 Conclusions

Studies of both our own and external galaxies will benefit from the availability of a
flexible array of dynamical models of galactic components such as disc, bulge and dark
halo. The construction of general models of this type is rather straightforward when
one decides to start from an expression for the component’s DF as a function of the
action integrals Ji. In this Chapter we have illustrated this fact by deriving simple
analytic forms for DFs that self-consistently generate models that closely resemble the
isochrone, Hernquist, Jaffe, NFW and truncated isothermal models. In previous papers
Binney (2010, 2012b) has given simple analytic DFs that provide excellent fits to the
structure of the Galactic disc, so now DFs are available for all commonly occurring
galactic components.
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Figure 3.6: Same as Fig. 3.2, but for the truncated isotropic cored isothermal sphere
(equation 3.46) and for the f(J) truncated isothermal model (top-left density, top-right circular
velocity, bottom radial velocity dispersion). We show the location of the truncation radius
defined by equation (3.44).
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Our models are tailored to minimise velocity anisotropy at both small and large
radii. In all of them the anisotropy parameter βa peaks at intermediate radii. The peak
is by far sharpest in the f(J) isochrone, but even in this model βa stays below 0.25.

Our presentation has been elementary in the sense that we have confined ourselves
to spherical, almost isotropic components that live in isolation. However, Binney (2014)
showed that given a near-ergodic DF f(J) of a component such as those presented here,
it is trivial to modify it so it generates a system that is flattened by velocity anisotropy,
or by rotation, or by a combination of the two. Equally important, when the DF of an
individual component is given as f(J), it is straightforward to add components. Such
addition was exploited by Piffl et al. (2014) in a study of the contribution of dark matter
to the gravitational force on the Sun: in that study the models fitted to data comprised
a sum of DFs f(J) for the disc and the stellar halo. The dark halo was assigned a
density distribution rather than a DF, but Piffl, Penoyre, & Binney (2015) represent
the dark halo by the f(J) NFW model, making the Galaxy a completely self-consistent
object. A key point for such work is that the mass of each component can be specified
at the outset.

Our approach has several points of contact with that of Williams, Evans, & Bowden
(2014) and Evans & Williams (2014), who derive approximations to H(J) for models
that are defined by DFs of the form f(E,L). In particular, they show that for their
models better approximations to the iso-energy surfaces in action space can be obtained
if one’s homogeneous function has as its argument the sum of a linear function of the
actions, as used here, and a small term ε

√
LJr. We expect that the anisotropy of our

models could be enhanced by adding such a term.
In addition to assisting in the dynamical interpretation of observations of galaxies,

the models that the present work makes possible could provide useful initial conditions
for N-body simulations. The first step would be the construction of a self-consistent
galaxy model from a judiciously chosen DF. Then one could Monte-Carlo sample the
action space using the DF as the sampling density, and torus mapping (e.g. Binney
& McMillan, 2011) could be used to generate an orbital torus at each of the selected
actions. Finally some number n of initial conditions (x,v) would be selected on each
torus, uniformly space in the angles θi. The resulting simulation would be in equilibrium
to whatever precision had been used in the solution of Poisson’s equation, and it would
experience a “cold start” (Sellwood, 1987). Moreover, given that it would be possible
to evaluate the original DF at any phase-space point, the model would lend itself to the
method of perturbation particles (Leeuwin et al., 1993) in which the simulation particles
represent the difference between a dynamically evolving model and an underlying equi-
librium rather than the whole model. This method has been little used in the past on
account of the lack of interesting models with known DFs, which is precisely the need
that we have here supplied.
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Chapter4
Self-consistent models for early-type galaxies
in the CALIFA Survey

Based on:
L. Posti, G. van de Ven, J. Binney, C. Nipoti, L. Ciotti et al.

in preparation

Abstract
A galaxy’s mass distribution and orbital anisotropy can be constrained by making use of In-
tegral Field spectroscopy together with state-of-the-art dynamical models. Here we present
the �rst application of self-consistent, continuous models with distribution functions (DFs)
depending on the action integrals to a sample of nearby early-type galaxies. Two ellipticals
and one lenticular have been selected from the CALIFA survey and we �t their surface-
brightness distribution and Integral Field-kinematics to our action-based models. Each one
is self-consistent, axisymmetric and produces a unique set of observables by specifying less
than ten free parameters. �e spatially-resolved kinematics of the CALIFA Survey gives
solid constraints in the models’ parameter space and we �t the galaxies’ surface brightness
to within the e�ective radius, we recover kinematic signatures such as V/σ and we estimate
dynamical masses in agreement with other dynamical modelling approaches. For the �rst
time, we self-consistently derive orbital anisotropy pro�les for these galaxies. �e resemb-
lance of the models’ to the galaxies’ observables is striking in the round elliptical case and
becomes less pronounced as the stellar disc grows importance along the Hubble sequence.
As a future improvement of the present study, we will consider more realistic galaxy models
by adding a stellar disc and a dark ma�er halo component for whichDFs that are functions
of the actions already exist.
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4.1 Introduction

The mass of a galaxy is arguably the most important property that shapes the evolu-
tionary path of the galaxy across its lifetime. How mass is distributed in galaxies at
each stage of their life is, therefore, one of the main questions of modern astronomy.
More massive systems have stronger interactions with the environment which ultimately
leads to a larger mass increase via mergers with other collapsed structures and smooth
accretion from the cosmic web. The mass distribution of galaxies has historically been
measured using spectroscopic observations, since spectroscopy has the unique advantage
of tracing the kinematics of the emitters (either gas, stars, planetary nebulae etc.) and
hence allowing for a sensible reconstruction of the galaxy’s gravitational potential.

The study of the internal dynamics of early-type galaxies has been rejuvenated by
the advent of Integral Field spectroscopy, which allows for spatially resolving the projec-
ted kinematics of the galaxy on the two-dimensional sky plane. Pioneering projects such
as TIGER (Bacon et al., 1995) have led the way for a complete kinematical character-
ization of early-type galaxies with projects such as SAURON (Bacon et al., 2001) and
ATLAS3D (Cappellari et al., 2011a), of a wider sample of galaxies including also gas-rich
late-types with projects such as CALIFA (Sánchez et al., 2012), SAMI Galaxy Survey
(Bryant et al., 2015) and MaNGA (Bundy et al., 2015), and of distant young galaxies
with projects such as SINS (Förster Schreiber et al., 2009) and KMOS3D (Wisnioski et
al., 2015). Among these projects, SAURON and ATLAS3D have invested the greatest
effort in the accurate characterization of the internal dynamics of early types and on the
measurements of fundamental galaxy properties such as mass and mass-to-light ratio.
For this purpose, they have explored a wide variety of dynamical models, ranging from
one-component axisymmetric models based on the Jeans (1915) equations with constant
anisotropy, the so-called “Jeans Anisotropic Multi-Gaussian Expansion” (hereafter JAM
models Cappellari, 2008; Scott et al., 2015), to JAM models with the inclusion of a dark
matter halo (Cappellari et al., 2013), to Schwarzschild (1979) axisymmetric (Cappellari
et al., 2006) and triaxial (van den Bosch et al., 2008) orbit-based models.

All of the state-of-the-art techniques used to generate dynamical models for early
types have the common assumption of dynamical equilibrium and that the distribution
function (hereafter, DF) depends on three integrals of motion. For instance, observa-
tions by Oort (1932) of the vertical kinematics of stars in the solar neighbourhood and
kinematic observations along the major- and minor-axis of some nearby bright ellipticals
by van der Marel (1991), have built a compelling case for ruling out two-integral DF
models, both for the Milky Way and external galaxies. When Integral Field spectroscopy
became available, it was soon realized that DFs of the type f = f(E,Lz), where E is
the energy and Lz is the component of the angular momentum about the symmetry axis
(e.g., Hunter & Qian, 1993; Evans, 1994), do not yield reasonable fits for the observed
spatially-resolved line-of-sight velocity distribution of galaxies. Hence, one must allow
the DF to depend on a third non-classical integral of motion I3(x,v) (see e.g., Emsellem,
Dejonghe, & Bacon, 1999). Analytic expressions of I3 as a function of the phase-space
coordinates (x,v) are generally not known (with notable exceptions e.g., Lynden-Bell,
1962c; de Zeeuw, 1985; Stiavelli & Bertin, 1985; Dejonghe & de Zeeuw, 1988) and nu-
merical approximations must be devised (see classic results e.g., Contopoulos, 1960;
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Ollongren, 1965).

Jeans’ strong theorem (see Section 2.1.2) binds the DF to depend on the phase-space
coordinates only through isolating integrals of motion. If a given potential admits three
isolating integrals of motion, then angle-actions coordinates (θθθ,J) exist (e.g., Arnold,
1978). (θθθ,J) is the only couple of canonical variables for which the conjugate momenta
J are integrals of motion: dJi/dt = 0 for i = 1, 2, 3. Hence, a physically plausible
model will always be generated by employing the action integrals as arguments of the
DF. Binney (2010, 2012b) showed that one can use action integrals as arguments of a
“quasi-isothermal” DF to generate equilibrium models for our Galaxy and that such
models provide excellent fits to a wide range of observables (see e.g., Bovy & Rix, 2013;
Piffl et al., 2014). Historically the action integrals of realistic galactic potentials have al-
ways been cumbersome to compute, even with advanced calculators. Only recently there
have been quite some effort to overcome this obstacle and methods like adiabatic ap-
proximation (Binney, 2010), the so-called torus machine (Kaasalainen & Binney, 1994;
McMillan & Binney, 2008), the so-called Stäckel Fudge (Binney, 2012a; Sanders & Bin-
ney, 2015) and generating function methods (Bovy, 2014; Sanders & Binney, 2014) have
finally filled this gap.

Binney (2014) showed that if we know how the HamiltonianH depends on the actions
(e.g., in the case of the isochrone potential, see Hénon, 1959) it is possible to flatten
(and set rotating) spherical ergodic systems by simply shuffling orbits on a surface of
constant energy in action space. The density distribution of the resulting (rotating)
flattened model will be (approximately) the same as that of the parent spherical model.
However, precise knowledge of how the Hamiltonian depends on the actions is available
only in some specific cases (isochrone and scale-free potentials, see Williams, Evans, &
Bowden, 2014) and one may want to use numerical approximations to H(J) as a more
general solution (see e.g., Fermani, 2013).

Slightly different is the approach that we used in Chapter 3 of this Thesis to build
spherical models for different component of interest in galaxy dynamics (see also Willi-
ams & Evans, 2015a). We make the simple ansatz that the DF is a two-power function
of the action integrals, so that we have a mathematically simple model, and we justify
the ansatz with dimensional arguments. The model parameters can be chosen so to
have final density distribution extremely similar to that of e.g., the isochrone, Hernquist
(1990) or Navarro, Frenk, & White (1996) spheres. The usefulness of these f(J) models
for spheroidal galactic components is two-fold: (i) the action-based formalism makes it
easy to generate multi-component self-consistent models, (ii) they are extremely flexible
in terms of anisotropy, flattening and rotation. The former arises from the fact that the
actions, other than isolating integrals of motion, are also adiabatic invariants; therefore,
the functional dependence of the DF on J will not be altered when adding a new com-
ponent to the total potential. The latter follows from an orbit-shuffling scheme similar
to that of Binney (2014).

This Chapter aims at illustrating the power of such scheme by generating realistic
models of early-type galaxies and comparing them with Integral Field observations from
the CALIFA survey. Our galaxy models have full control on the density, anisotropy
profile and rotation curve. For simplicity we limit ourselves to study one-component self-
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consistent axisymmetric models, which we generate by flattening the spherical models
presented in Chapter 3. We do not include either a disc or a dark matter halo compon-
ent, but we do allow for a dark matter distribution which follows that of the galaxy’s
luminosity density. As a testbed for our action-based models, we have chosen three
different early-type galaxies with a different amount of rotational support and disc-to-
total ratio, for which we expect a different quality in the final fits to the models. For
the present proof of concept we do not employ any automatic best-fitting algorithm,
as we obtain reasonable fits to the total galaxy kinematics and brightness by simply
“hand-picking” models in the parameter space.

The Chapter is organized as follows: in Section 4.2 we present the family of action-
based f(J) models; Section 4.3 presents the sample of galaxies from the CALIFA survey
that we consider in this work; in Section 4.4 we derive the models’ observables, we discuss
the physical meaning of the free parameters and we describe how we generate mock
observations; in Section 4.5 we apply the models to the galaxies, first by comparing
the light distributions and then the kinematics, and finally we derive some intrinsic
properties of our galaxy models, such as mass and anisotropy profiles; Section 4.6 wraps
up and concludes.

4.2 Action-based models

In this work we will consider equilibrium models for stellar systems generated by an
analytical DF which depends on phase-space coordinates through the three action in-
tegrals. They are a generalization of the self-consistent isochrones introduced by Binney
(2014) and full details are given in Chapter 3. Similar action-based models have also
been independently developed by Williams & Evans (2015a), who later used them to
constrain the Milky Way’s stellar halo (Williams & Evans, 2015b).

4.2.1 The Distribution Function

A self-consistent, axisymmetric and flattened equilibrium model is generated by the
following DF

f+(J) =
M0

J3
0

[1 + J0/h(J)]A

[1 + g(J)/J0]B
, (4.1)

where

h(J) = Jr + δh,φ|Jφ|+ δh,zJz,

g(J) = Jr + δg,φ|Jφ|+ δg,zJz,
(4.2)

are two homogeneous functions of degree one with δh,φ, δh,z, δg,φ, δg,z ≥ 0, (Jr, Jφ, Jz)
are respectively the radial, azimuthal and vertical actions, 0 < A < 3 and B > 3 are
constants and M0 > 0 and J0 > 0 are respectively a mass and an action scale as in
Chapter 3.

The DF (4.1) is an even function of the azimuthal action Jφ, which is the component
of the total angular momentum in the direction the symmetry axis Lz, and thus produces
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non-rotating models. Though, rotation can be introduced by adding an odd component
f−(J) to the function f+(J) (see e.g., Lynden-Bell, 1960). Then the total DF becomes

f(J) = f+(J) + kf−(J), (4.3)

where 0 ≤ k ≤ 1 is a constant which specifies the model’s level of rotation, from no
rotation k = 0 to maximally rotating k = 1. A natural choice for the odd part is
f−(J) = sgn(Jφ)f+(J). However, this choice produces a discontinuity for orbits with
Jφ → 0 and completely suppresses counter-rotating orbits even at the centre of the
model. So it is more physical to employ a function which smoothly goes from −1 to 1
around the origin, thus allowing for the presence of orbits with Jφ < 0 near the origin,
as it should be, physically. In addition, it is expedient to have a tunable parameter that
controls the steepness of the slope at Jφ = 0. A function that accomplishes just that is

f−(J) = tanh

(
χJφ
J0

)
f+(J), (4.4)

where χ is a free parameter, which specifies the steepness of the rotation curve near the
origin: the larger the value, the more steeply the curve rises.

4.3 Data

4.3.1 The CALIFA survey

CALIFA is an Integral Field survey of a sample of up to 600 galaxies of all Hubble
types in the local Universe (0.005 ≤ z ≤ 0.03). The main selection criteria is an
angular isophotal diameter (45′′ ≤ D25 ≤ 80′′, where D25 is the diameter of the isophote
at the 25th magnitude in r-band, see Sánchez et al., 2012). The complete sample is
representative of galaxies with stellar masses in the range 9.4 ≤ logM∗/M� ≤ 11.4
(the volume-corrected luminosity and mass functions are recovered better than 95%,
see Walcher et al., 2014). The Integral Field Unit PMAS/PPaK (Verheijen et al., 2004;
Roth et al., 2005) covers a field of view of 74′′× 64′′ with a hexagonal fibre bundle. The
spatial sampling of the instrument is of 1′′, that over-samples the spatial resolution of
about a factor of three (see Husemann et al., 2013).

In this work, we have used observations conducted with the instrumental setup
which employs the V1200 grating, which is a medium-resolution grating (R ' 1650 at
' 4500Å) that covers the range 3400−4750Å and yields high-quality maps of the stellar
kinematics.

4.3.2 Sample description

The sample of three galaxies considered in this study is drawn from the public Data
Release 2 (DR2) of the CALIFA collaboration (Garcia-Benito et al., 2015). We focus
only on early-type galaxies (roughly 20% of the DR2 sample) for which stellar kinemat-
ics has been estimated by the CALIFA collaboration using an implementation of the
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Table 4.1: Sample of CALIFA galaxies studied in this work. Both the absolute magnitude in
r-band Mr (uncorrected for dust extinction) and the effective radius Re come from a growth
curve analysis of the SDSS r-band image.

Galaxy Hubble Redshift Re Mr

Type [arcsec]

NGC 6125 E1 0.0158 21.8 −22.86
NGC 2592 E4 0.0066 9.9 −20.72
NGC 6427 S0 0.011 8.3 −21.37

penalized Pixel-Fitting (pPXF) method of Cappellari & Emsellem (2004). Briefly, the
spaxels have been re-binned on a Voronoi mesh to achieve a signal-to-noise & 20 with the
method of Cappellari & Copin (2003), the stellar templates are the Indo-U.S. spectral
libraries (Valdes et al., 2004) and the penalized likelihood maximization was performed
on gaussians line-of-sight velocity distributions (hereafter, losvds). The method is
described in detail in Falcòn-Barroso et al. in preparation.

For the purpose of this work, we have chosen to focus on three objects with very
different morphology and kinematics:

(i) NGC 6125: E1 morphology, slow rotator,

(ii) NGC 2592: E4 morphology, fast rotator,

(iii) NGC 6427: S0 morphology, fast rotator,

where the distinction between the slow and fast rotators is as in Emsellem et al. (2007,
see also Section 4.4.1). With this diverse sample we explore different photometric and
kinematic morphologies and we expect different results in the quality of the represent-
ation with one-component f(J) models.

In Table 4.1 we give a brief characterization of the sample of three galaxies considered
in this work.

4.4 Action-based galaxy models in observable space

In this work, for simplicity, we consider self-consistent mass-follows-light models, i.e.,
we force the total (luminous plus dark-matter) mass to be distributed as the light in
the galaxy. Once we have fitted our one-component models to the galaxies described in
Section 4.3.2, we would have an estimate of the dynamical mass-to-light ratio. Several
previous works (e.g., Cappellari et al., 2013) have argued that such simple models fit
kinematical observations of early-type galaxies, typically up to the effective radius, as
well as models in which the dark-matter fraction is allowed to vary with radius. However,
more realistic models of galaxies should allow for the inclusion of a self-consistent dark
halo. The formalism in which one writes down a DF as a function of the actions is
ideal to do just that: finding the self-consistent total potential for the two components
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is no more difficult than doing it for a one-component system (see Binney & Piffl, 2015).
For the scope of the present paper, we prefer to stick with the simpler one-component
mass-follows-light models which have a more restricted parameter space.

The parametrization (4.3) of the DF enables one to generate an interestingly large
variety of galaxy models. In what follows, we first present and discuss the models and
we identify the physical meaning of each free parameter. We describe the procedure
used to generate Integral Field-like observables from our continuous models and, then,
we discuss the regions of parameter space which are populated by the more realistic
galaxy models that DF (4.3) can produce.

Throughout the paper we define the effective radius Re to be the radius of a circular
aperture containing half the total light of the system.

4.4.1 From the DF to the observables

Given a DF of the form f(J) the system’s mass density is

ρ(x) =

∫
d3v f [J(x,v)]. (4.5)

Assuming a constant mass-to-light ratio Υ ≡M/L it follows

I(x⊥) =
1

Υ
Σ(x⊥) =

1

Υ

∫
dx‖ ρ(x), (4.6)

where I is the surface brightness, x‖ ≡ x · ŝ is the component of the position vector
parallel to the line-of-sight normalized vector ŝ, x⊥ ≡ x − x‖ŝ is that perpendicular
and Σ(x⊥) is the surface mass density on the sky plane. The first and second velocity
moments of the DF projected on the sky plane are (see Binney & Tremaine, 2008,
§4.1.2)

v‖(x⊥) =

∫
dx‖ ρ(x) ŝ · v

Σ(x⊥)
, (4.7)

σ2
‖(x⊥) =

∫
dx‖ ρ(x) (ŝ · σσσ2 · ŝ + u2)

Σ(x⊥)
, (4.8)

where the bar over the quantity Q means

Q ≡
∫

d3vQf(x,v)

ρ(x)
, (4.9)

v is the mean velocity, u ≡ ŝ · v− v‖ and σ2
i,j(x) ≡ vivj − vivj is the velocity dispersion

tensor. Along the same line-of-sight it is possible to compute the probability distribution
of the velocities perpendicular to the sky plane

P (v‖,x⊥) =

∫
dx‖d

2v⊥f [J(x,v)]

Σ(x⊥)
. (4.10)

This quantity is the losvd, which is also often called line-profile because it gives the
Doppler-shifted profile of the line resulting from a system of monochromatic emitters
(all with the same emissivity) having DF f(J).
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In principle, the losvd along a given line-of-sight is the model’s quantity closer to
the real observable in Integral Field spectroscopy, which is the profile of a given line in
the galaxy spectrum. One may be tempted to compare equation (4.10) with the observed
line profile, however many authors (see e.g., Cappellari et al., 2013) have noticed that
for typical Integral Field observations the spectral resolution is not high enough to get
a full characterization of the losvd. In particular, for stellar kinematics one gets better
results by simply fitting a Gaussian to the losvd, instead of performing an expansion in
Gauss-Hermite functions (see Gerhard, 1993; van der Marel & Franx, 1993). Moreover,
Cappellari et al. (2013) notice that the best empirical approximation to the velocity
second moment is often given by the quantity

vRMS ≡
√
v2 + σ2, (4.11)

where v and σ are the mean and standard deviation of the Gaussian which best fits the
losvd. We also define vRMS,e = 〈

√
v2 + σ2〉e and, following Emsellem et al. (2007), the

parameter

λRe ≡
〈R|v|〉e
〈RvRMS〉 e

, (4.12)

where 〈·〉e is a light-weighted average within the effective ellipse. λRe is often used to
quantify the rotational support of galaxies and their total angular momentum, and also
to separate different kinematic classes, such as fast and slow rotators (see Emsellem et
al., 2007).

When measuring line profiles with a telescope, the flux at each location on the sky is
influenced also by the neighbouring pixel in such a way that is often parametrized with
a so-called Point Spread Function (hereafter PSF). The PSF is a function such that the
actual flux measured by the telescope at a given location x⊥ on the sky is given by the
convolution of the intrinsic flux at x⊥ and the PSF. For a given model, one can take into
account such instrumental effect by integrating the light-weighted line profiles within
the PSF Π(x⊥),

Pbs(v‖,x⊥) =

∫
d2x′⊥Σ(x′⊥)P (v‖,x

′
⊥)Π(x⊥ − x′⊥)∫

d2x′⊥Σ(x′⊥) Π(x⊥ − x′⊥)
. (4.13)

Here we have assumed that the PSF is the same at each wavelenght, i.e., Π does not de-
pend on v‖, but one can easily relax the assumption by substituting Π(x⊥) 7→ Π(v‖,x⊥).
Equation (4.13) includes the effect of beam smearing in equation (4.10).

4.4.2 The physical meaning of the model’s parameters

Here we describe how different parameters in our models affect different observables.
Even if we find that some degeneracies are still present when comparing f(J) models
to observations, we show in the following that it is still possible to constrain different
models’ parameters with different observables.



4.4 Action-based galaxy models in observable space 79

4.4.2.a The radial density profile

The parameters A and B determine the system’s density profile: for instance, for spher-
ically symmetric systems with ρ(r) ∝ r−α for r → +∞ and ρ(r) ∝ r−β for r → 0, we
find (see Section 3.3):

A = (6− α)/(4− α),

B = 2β − 3.
(4.14)

The reason for this resides in the fact that for an ergodic stellar system, i.e., in which
the DF depends only on the orbit’s energy, the radial density profile is determined by
the number of stars per unit energy (see e.g., Binney & Tremaine, 2008, §4.4). The
dependence that the f(J) models have on the action integrals, i.e., via the homogeneous
functions h and g in equation (4.2), is so that the (planar) surfaces of equal phase-space
density in action space are remarkably close to that of equal-energy, making the system
almost ergodic (see Figures 3.1 and 3.5 in Chapter 3).

In addition, the two parameters M0 and r0 ≡ J2
0/GM0 are used to scale up the model

to the physical dimensions of each galaxy.

4.4.2.b Anisotropy and flattening

The parameters δδδ = (δh,φ, δh,z, δg,φ, δg,z), which are the coefficients of the actions in the
homogeneous functions h and g (4.2), are responsible for populating the system with
different kinds of orbits. Close to the system’s centre, where ||J||/J0 is large, the actions
are typically smaller than J0 and the probability of finding a star at that location is
given by h(J) and is independent of g(J). Viceversa for the system’s outskirts. Close
to the centre, if one chooses δh,φ = Ωφ/Ωr and δh,z = Ωz/Ωr, where Ωi ≡ ∂H/∂Ji
are the orbital frequencies, the surfaces in action-space where the DF is constant are
also isoenergetic. For instance, the models presented in Chapter 3 were constructed by
employing constant frequency ratios in both the homogeneous functions h and g and
the models they generated were almost ergodic (see Figures 3.1 and 3.5 in Chapter 3).

Here we move from the isotropic and almost ergodic models of Chapter 3 by varying
the parameters δδδ from the local frequency ratios. We adopt constant δδδ so that surfaces
of equal-phase space density will still be planar, but typically tilted from the isoenergetic
ones. Varying δh,φ and δh,z will alter the probability of having e.g., circular over radially
oscillating orbits for regions close to the system’s centre; viceversa, when varying δg,φ

and δg,z, one will be altering the model’s orbital composition at the outskirts. This
ultimately translates into modifications of the system’s anisotropy: since the DF (4.1)
is invariably a decreasing function of the actions1, δh,z > 1 will suppress the probability
of vertically oscillating orbits close to the system’s centre, reducing the vertical pressure

1

∂f(J)

∂Ji
= −

 ∂g(J)
∂Ji

B
J0

1 + g(J)/J0
+

∂h(J)
∂Ji

A
h(J)

1 + h(J)/J0

 f(J) < 0

always for i = r, φ, z and for h and g as in equation (4.2).
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and making the model flattened, while δh,φ < 1 will enhance the probability of large-
angular momentum orbits close to the centre, raising the azimuthal pressure and making
the model tangentially biased (see Binney, 2014, Chapter 3).

General choices for the values of δδδ tilt the planes defined by h(J) and g(J) with
respect to surfaces of constant energy. This, for instance, implies that the model’s
density profile will depend also on the form of the homogeneous functions h and g.
However, we empirically find that deviations in the spherically averaged density profile
ρ(r) between models with the same parameters except for δδδ are modest.

4.4.2.c Rotational support

The parameters k and χ govern the model’s rotation. k controls the amount of ordered
streaming motions in the azimuthal direction and determines the amplitude of the ro-
tation curve, χ controls its shape. Following Binney (2005), one can introduce the
quantity

V

σ
≡


〈
v2
‖

〉
e〈

σ2
‖

〉
e

1/2

. (4.15)

This indicator of the amount of rotational support of galaxies was introduced by Binney
(2005) to supersede classical V/σ ≡ vmax/σ0.5, where vmax is the peak of the rotation
curve and σ0.5 is the mean line-of-sight velocity dispersion within Re/2 (see e.g., Bertola
& Capaccioli, 1975; Illingworth, 1977; Davies et al., 1983). V/σ as in equation (4.15)
comes from the Tensor Virial Theorem (e.g., Binney & Tremaine, 2008, §4.8.3) and it is
tailored for Integral Field data. The parameters k and χ that control rotation, together
with the parameter δg,φ that controls the azimuthal pressure, allow us to adjust the
model’s V/σ to our liking. Figure 4.1 shows the effect of varying χ for different models
which share the other free parameters except δg,φ. In order to exemplify the incidence
that χ has on the model’s rotation curve, we generated three models with the same V/σ
by adjusting the amount of azimuthal over radial and vertical pressure, i.e., varying δg,φ.
Figure 4.1 shows that, for a fixed V/σ, the larger χ, the closer the peak of the projected
velocity is to the centre.

Figure 4.2 shows how the line profiles are affected if one sets rotating an azimuthally
biased f(J) model in the manner described by equations (4.3)-(4.4). The double peaked
line profile, out from the centre, is given by the bias towards more circular orbits (both
models shown in Figure 4.2 tend to isotropy to the centre). The rotating model has
mean v‖ > 0 which is due to a dramatic suppression of one of the two peaks of the
non-rotating line profile (in particular, the one with approaching velocities) by the tanh
function (4.4). The non-Gaussianity of the line profiles at all radii is apparent by the
comparison with the best fitting Gaussian and with the expansion in Gauss-Hermite
functions (up to order 30, see Gerhard, 1993, and also van der Marel & Franx 1993).
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Figure 4.1: Effect of varying χ on f(J) models, while keeping the same radial density profile
and a constant V/σ ' 0.15. The plot shows the line-of-sight velocity normalized to the vRMS

within the effective radius (edge-on projection) of three f(J) models with χ = 1/10 (red solid
line), χ = 1 (blue dashed line) and χ = 10 (black dot-dashed line). For all the models k = 1
and we impose V/σ = 0.15 by varying δg,φ, i.e., adjusting the relative amount of azimuthal
pressure.

4.4.3 Generating mock data

Since the advent of Integral Field spectrographs, models of early-type galaxies can be-
nefit from the constraints coming from measurements of the spatially resolved stellar
kinematics from stellar absorptions lines. Observations such as those of the CALIFA
survey give us the ability to characterize the losvd at each spatial element (usually
referred as spaxel). However, even in bright galaxies it can be hard to characterize the
losvd since far from the centre the signal-to-noise is typically of the order S/N . 10.
So, usually it is preferred to collapse some neighbouring spaxels into a larger spatial
bin in order to increase the signal-to-noise, at the expense of the spatial resolution.
The most popular method to re-bin an IFU image is that introduced by Cappellari &
Copin (2003), who use a Voronoi tessellation to optimally re-bin the IFU spaxels. This
method generates a final re-binned grid such that the signal-to-noise in each bin is above
an arbitrary threshold.

A direct comparison between our action-based models and Integral Field observa-
tions is possible only provided one uses the same methodology and the same assumptions
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Figure 4.2: Line profiles (equation 4.10) of two flat and tangentially biased f(J) models
(with the same A,B,δδδ). We have projected both the models edge-on and we have computed
the line profiles at three different locations on the equatorial plane z ' 0: at R ' 0, R ' Re

and R ' 10Re. The top panel is for the non-rotating model, while the bottom panel is for the
rotating model. In both panels, the black solid curves are the model’s line profiles, the blue
thin curve is the best Gaussian fit, while the dashed red line is the best fit with Gauss-Hermite
functions up to order 30 (see Gerhard, 1993). For reference, the rotation curve of the latter
model is not much different from the blue dashed line in Figure 4.1.
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as the observers do to get their results. In this spirit, we applied Cappellari & Copin
(2003) method to bin our smooth projections of the DF moments (4.6)-(4.8), assuming a
Poissonian noise on the intensity maps. Figure 4.3 shows line-of-sight velocity and velo-
city dispersion Voronoi re-binned maps for representative f(J) models in the parameter
space (δg,φ, δg,z). The models have the same (A,B, δh,φ, δh,z, χ, k) = (5/3, 5, 1/2, 1/2, 1, 1)
and their location on the plane corresponds to the model’s (δg,φ, δg,z). For the purpose
of showing the effect of varying (δg,φ, δg,z) on the models’ observable kinematics, we have
also fixed the inclination of the line-of-sight to be 90◦, i.e., an edge-on projection. We
construct the re-binned grid from the surface brightness map (equation 4.6), light av-
erage the first and second projected moments (equations 4.7-4.8) and normalize to the
model’s vRMS within the effective radius. We also overplot isophotal contours equally
spaced in logarithm.

Flattened models require δg,z > δg,φ (see also Binney, 2014) so that the DF deters
orbits with large vertical excursion, while typically δg,z < δg,φ produces prolate models.
For maximally rotating configurations (k = 1) with fixed shape of the velocity curve
(here χ = 1), V/σ increases as the azimuthal pressure increases and the models become
tangentially biased, i.e., δg,φ → 0. For a fixed value of δg,φ, models with smaller δg,z tend
to suppress very radial orbits, resulting in a net increase of the model’s V/σ. While for
very low V/σ models (δg,φ, δg,z → +∞) the shape of the iso-σ‖ contours closely follows
that of the isophotes, for fast rotating models σ‖ falls off further away from the symmetry
axis, where v‖ is large. Hence, the iso-σ‖ contours tend to be prolate even for systems
with oblate light distribution.
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Figure 4.3: Mock observations of f(J) models as in equations (4.1)-(4.3) with fixed (A,B, δh,φ, δh,z, χ, k) = (5/3, 5, 1/2, 1/2, 1, 1) and
inclination of 90◦ (edge-in projection). The model’s location on the plane is given by its (δg,φ, δg,z). Line-of-sight velocity (left) and
velocity dispersion (right) Voronoi re-binned maps are shown with superposed isophotal contours equally spaced in logarithm. The
velocity maps are normalized to vRMS,e, i.e., the light-averaged vRMS within the effective radius. The colour maps extend from −2Re to
+2Re.
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4.5 Applications

In this Section we present the comparison between the data and the models’ observables.
The stellar kinematics data for the three galaxies is from the CALIFA collaboration,
the photometric data that we use to constrain the models’ light distribution is from
r-band SDSS images. We estimate the galaxies’ inclination from the observed global
isophotal ellipticity ε ≡ 1 −

√
〈y2〉/〈x2〉 (see e.g., Emsellem et al., 2007) by assuming

that the distribution of intrinsic axis ratio q ≡ b/a for both fast and slow rotators is a
Gaussian with mean and standard deviation (µ, σ) = (0.25, 0.14) for fast rotators and
(µ, σ) = (0.63, 0.09) for slow rotators (see Weijmans et al., 2014). For oblate galaxies the
inclination angle i w.r.t. the symmetry axis, the intrinsic axis ratio q and the observed
ellipticity ε satisfy (e.g., Binney & Merrifield, 1998)

(1− ε)2 = cos2 i+ q2 sin2 i. (4.16)

With equation (4.16) it is possible to estimate the probability distribution of seeing
a galaxy at a given inclination i, given the observed ellipticity and the distribution
of intrinsic axis ratios for a large sample of fast and slow rotators (e.g., that of the
ATLAS3Dsample in Weijmans et al., 2014). In Appendix C we show the resulting full
probability distribution of inclinations for each galaxy. Here we are interested in the
most probable values: i ' 20◦ for NGC 6125, i ' 40◦ for NGC 2592 and i ' 70◦ for
NGC 6427. For our models we assumed inclination values of, respectively, i = 20◦,
i = 40◦ and i = 90◦ (in the models for the lenticular galaxy NGC 6427 we explored
edge-on projections in order to maximize the effect of flattening and rotation).

The general procedure that we use to find the best model candidate to represent
each galaxy is the following:

(i) we assume a given inclination and, for simplicity, we use models that tend to be
isotropic in the centre, i.e., δh,φ = δh,z = 1/2,

(ii) we look for the best A and B parameters to represent the surface brightness profile,

(iii) we adjust the parameters δg,φ, δg,z to match the isophotes’ flattening at large radii,

(iv) we set k and χ accordingly to the galaxy’s rotation curve,

(v) we go back to step (iii) and adjust δg,φ, δg,z again to get the best match with the
kinematic 2D maps and the isophotal shape.

We do not employ any automatic best-model finding scheme: the aim of this work
is to show that models with a DF f(J) are able to generate realistic observables that
closely match galaxy observations. In a future work, we will set up an automatic best-
fitting algorithm, but for the moment we decided to “hand-pick” models in the multi-
dimensional parameter space using the steps described above. It has been possible to
reach such a quality in matching the data because of the simple connections that exists
among the model’s parameters and observables (see Section 4.4.2).

The main limitation of the models here presented is the fact that they are a one-
component bulge-like stellar distribution. However, most of the fast rotating ellipticals
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show strong evidence of having two kinematically distinct stellar components: a bulge
and a disc. A separate DF (likely of the form quasi-isothermal, e.g., Binney, 2012b)
should be added to the DF (4.3) in order to improve the comparisons. In fact, Piffl,
Penoyre, & Binney (2015) and Binney & Piffl (2015) already showed the ease with which
stellar components can be added in a self-consistent fashion if one uses f(J) DFs: this
is because the functional form of the DF does not change as one adds components.

The best models’ parameters can be found in Table 4.2.

4.5.1 Light distribution

Using SDSS r-band images, we derived the galaxies’ surface-brightness profile via growth-
curve analysis employing circular apertures (as in Lyubenova et al. in preparation). The
background contamination is computed from a sample of pixels uniformly scattered over
the whole image, for which the mode is estimated after clipping the high and low tails
of the pixels’ intensity distribution. After flux-calibration, we integrate the light coming
from circular apertures centred on the brightest pixel and we stop integrating where
the flat part of the growth curve is reached, which we consider the edge of the galaxy
(typically at ' 10Re). Figure 4.4 shows the agreement between the surface brightness
distribution of the three galaxies with their respective best f(J) models. The isophotal
shape is matched to good accuracy, though by construction the models are not able to
catch non axisymmetric features such as the position angle variations (isophotal twist-
ing) in the inner 20− 10 arcsec for NGC 2592 and NGC 6427. NGC 6125’s photometry,
morphologically classified as E1, is unsurprisingly well matched by the f(J) model: in-
deed, the normalized light profiles agree within 20% up to ∼ Re, though more flux seem
to be present at larger radii in the observed profile (maybe due to some contamination,
see residuals plot in Figure 4.4).

We are able to get a fairly realistic representation of the fast rotating E4 galaxy
NGC 2592 in terms of both isophotal shape and light profile (within 20% up to ∼ Re).
This is the best case to study how realistic Binney (2014) flattening scheme is: the
quality of the agreement with our hand-picked model demonstrates the usefulness of
such method. However, the disky isophotes of the fast rotating S0 galaxy NGC 6427
unsurprisingly pose an extreme challenge for two-power f(J) DF: the lack of circular
orbits for R & Re in our models makes it difficult to reproduce the isophotes of a very
flattened S0 galaxy. Nonetheless, we are still able to find a very good agreement between
the surface-brightness profiles (within 30− 40% up to ∼ 3− 4Re).
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Table 4.2: Parameters of the best models. The set of DF parameters used to fully specify the models, as in equations (4.1)-(4.3); we
also specify the inclination which we define as the angle between the line-of-sight w.r.t. the symmetry axis (in degrees, 0 is face-on, 90
is edge-on).

Dimensionless DF parameters Scale parameters Projection

Model name A B δh,φ δh,z δg,φ δg,z χ k M0/M� r0/kpc inclination

f(J) NGC 6125 9/5 11/2 1/2 1/2 1/2 1/2 4 4/5 2.14× 109 9.48 20◦

f(J) NGC 2592 2 5 1/2 1/2 10−2 1 1 1 2.57× 107 0.5 40◦

f(J) NGC 6427 5/3 5 1/2 1/2 10−4 1/2 1/2 1 1.53× 108 0.34 90◦
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Figure 4.4: Top row: SDSS r-band surface-brightness contours for the three galaxies in the sample (from left to right, NGC 6125,
NGC 2592 and NGC 6427, black lines) compared with that of the best f(J) models (red lines). Both the data and the model’s contours
are spaced by 0.5 mag arcsec−2. Bottom row: surface brightness profiles, normalized to the effective radius, for the three galaxies in
the sample (blue solid line), compared to that of the best f(J) models (red dashed line). Both profiles have been obtained performing
a growth-curve analysis. We compute the residuals of the surface brightness profile as (data - model)/data. In all the panels we have
convolved the models’ surface brightness distribution with a Gaussian PSF with FWHM=1 arcsec.
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4.5.2 Kinematics

The CALIFA collaboration’s pipeline extracts first and second moment of the losvd
from stellar absorption lines over a Voronoi re-binned grid. We use this information
to compute v‖ and σ‖ for our models using the same re-binned grid. We estimate the
galaxy’s kinematic axis using the method of Krajnović et al. (2006) which efficiently
computes the kinematic position angle2. Along the galaxy’s major axis we extract
v‖ and we estimate the systemic velocity so to symmetrize the peaks of the velocity
curve’s approaching and receding sides. We compare the v‖ and σ‖ profiles along the
major axis to that of the model: Figure 4.5 shows such comparison. When observing
with a given spatial resolution, the system’s rotation and velocity dispersion will be
effectively averaged over a region larger than the actual spatial resolution because of
beam smearing. This typically results in a smaller estimate of the velocity and a larger
one of the velocity dispersion (see e.g., Epinat et al., 2010). To mimic such effect, we
convolved our models’ kinematic maps with a Gaussian Point Spread Function (PSF)
having a Full Width at Half Maximum (FWHM) of ' 2.7 arcsec (see Garcia-Benito et
al., 2015).

We scale the models’ profile so to match vRMS,e. This match defines a scale of velocity
vu for the model. Together with the spatial scale Ru given by the match between the
model’s and galaxy’s effective radius, we define the model’s mass scale as

Mu =
Ruv

2
u

G
. (4.17)

Figure 4.6 shows the comparison between the two-dimensional line-of-sight velocity
and velocity dispersion maps, with also the residuals maps, for the three CALIFA
galaxies and the corresponding best f(J) models. For the sake of clarity, we plot the
isophotes coming from a Multi Gaussian Expansion (MGE) over the observed maps,
instead of the r-band SDSS contours. Our best models do a very good job at reproducing
the galaxies’ kinematics, with the largest errors on v‖ and σ‖ maps of the order of 50 km
s−1. The largest discrepancy here is due to some asymmetries in the galaxies’ dispersion
maps, e.g., the north-east bins of NGC 6125. Apart from these small non-axisymmetric
deviations, it is safe to say that axisymmetric single-component action-based models
can fit to good accuracy the kinematics of these galaxies.

2We acknowledge use of the routine fit kinematic pa in http://www-astro.physics.ox.ac.uk/

~mxc/software.

http://www-astro.physics.ox.ac.uk/~mxc/software
http://www-astro.physics.ox.ac.uk/~mxc/software
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Figure 4.5: Top row: profiles of mean line-of-sight velocity along the major axis for the three galaxies in the sample (from left to right,
NGC 6125, NGC 2592 and NGC 6427, red points) compared to that of the best f(J) models (blue points). The models’ profile are
matched so that vRMS,e is the same as that of the galaxies. Bottom row: same as the top row, but for the line-of-sight velocity dispersion.
In deriving all the profiles for the models we have applied a correction that mimics the effect of the so-called beam smearing in the IFU
observations, that is we have convolved the synthetic velocity maps with a Gaussian symmetric PSF having a FWHM' 2.7 arcsec.



4.5 Applications 91

NGC 6125
E1; slow rotator

v
∥
d
a
ta

v: [-55,45]

NGC 2592
E4; fast rotator

v: [-142,142]

NGC 6427
S0; fast rotator

v: [-180,180]

v
∥
m
od
el

re
si
d
u
a
ls

¢v: [0,28] ¢v: [0,37] ¢v: [0,52]

¾
∥
d
at
a

v: [160,248] v: [52,227] v: [27,194]

¾
∥
m
od
el

re
si
d
u
al
s

¢v: [0,50] ¢v: [0,55] ¢v: [0,35]

Figure 4.6: Kinematic comparison of galaxies and f(J) models. The panels are arranged as follows:
each column is for a given galaxy and the two nine-panels blocks refer to the maps of the line-of-sight
velocity (top) and velocity dispersion (bottom). In each block, the top row shows the kinematic maps
of the galaxies, with overplotted MGE contours of their surface brightness; the central row shows the
kinematic maps of the models, with overplotted isophotal contours; while the bottom row shows the
corresponding residuals maps. The red segment on the top row panels is of the same size of Re of the
galaxies. We use two color scales, one for the residuals maps (grey) and one for the v‖ and σ‖ maps
(blue-red), with minimum and maximum values in km/s written for each galaxy.
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Table 4.3: Results table. (i) Mf(J) is the total mass of the f(J) model. (ii) Υr,f(J) is the ratio between Mf(J) and the total r-band
luminosity of the galaxy computed from the absolute magnitudes in r-band (see Table 4.1) and assuming M�

r = 4.64 (see Blanton &
Roweis, 2007). (iii) Mvir is the virial mass estimator as in equation (4.19). (iv) λRe,f(J) is the angular momentum parameter (4.12) for
the f(J) models. (v) (V/σ)f(J) is equation (4.15) for the f(J) models. (vi) λRe,obs is the same as (iv) but for the observed galaxies. (vii)
(V/σ)obs is the same as (v) but for the observed galaxies.

Galaxy Model Mf(J) Υr,f(J) Mvir λRe,f(J) (V/σ)f(J) λRe,obs (V/σ)obs

[M�] [(M/Lr)�] [M�]

f(J) NGC 6125 3.5× 1011 3.7 4× 1011 0.09 0.09 0.1 0.09

f(J) NGC 2592 6× 1010 4.3 5.6× 1010 0.4 0.37 0.43 0.43

f(J) NGC 6427 1.1× 1011 4.34 6.5× 1010 0.43 0.42 0.37 0.36
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4.5.3 Models’ intrinsics

4.5.3.a Mass

The spherically-averaged total dynamical mass profiles that we infer for the three galax-
ies in our sample are shown in Figure 4.7. Under the assumption of mass-follows-light
models, we can compute the model galaxy’s mass profile up to about ten effective radii,
where the relative mass increase begins to be negligible as a function of radius. We com-
pare with total stellar mass estimates by González Delgado et al. (2015) for which the
entire wavelength range observed by the CALIFA collaboration is used (3650−7300Å).
Our estimated total mass is always significantly larger than the stellar mass of about
a factor 1.5 − 2, meaning that the contribution of dark matter to the total mass is
non-negligible. This is a robust result of our work since the errors in the stellar masses
estimated by González Delgado et al. (2015) take into account several unknowns typical
of stellar population analysis, for instance the stellar Initial Mass Function.

The mass, size and velocity dispersion of a virialized galaxy are related by the Scalar
Virial Theorem (SVT) as

M = K
Reσ

2
e

G
. (4.18)

Here K is a structural parameter which is generally different from galaxy to galaxy. A
simple estimate of the total mass of a galaxy can be obtained with some assumptions
on the parameter K: the most simple and common choice is to set a constant K = 5
for all galaxies (see e.g., Cappellari et al., 2013), but other choices are possible (see e.g.,
Peralta de Arriba et al., 2014). We shall therefore use the following definition for the
virial mass estimator:

Mvir = 5
Reσ

2
e

G
. (4.19)

We find that the total masses of our model galaxies are very similar to those com-
puted with such a virial estimator: indeed they are all within a factor ∼ 1.7 from the
corresponding Mvir.

We also compare our mass estimates with those obtained with orbit-based two-
component (dark matter + stars) Schwarzschild (1979) models for the same objects (see
Zhu et al. in preparation). These models give excellent fits to the galaxies’ kinematics
and the total dynamical mass within the effective radius is in very good agreement with
our estimate based on f(J) models (the worst case is the S0 galaxy, NGC 6427, for
which the masses agree within 50%).
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Figure 4.7: Total mass of the best f(J) models for the three galaxies as a function of radius in units of the models’ effective radii. The
red solid line shows the mass enclosed within the spherical radius r of the three galaxies, the black diamond is the mass enclosed within
Re estimated with Schwarzschild (1979) models and the grey band is the corresponding mass profile with 1-σ error, the yellow star is the
total stellar mass given by the SED fitting with errorbars accounting for differences in the stellar population analysis (including stellar
Initial Mass Function variations, see González Delgado et al., 2015), the blue square is the virial estimate (4.19) of the total mass.
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in the equatorial plane, as a function of the cylindrical radius for the models described in Table
4.2.

4.5.3.b Anisotropy

Figure 4.8 shows the profiles of the anisotropy parameter on the equatorial plane of the
three best f(J) models. We adopt two definitions of the anisotropy in our axisymmetric
models: the ratio between tangential and radial dispersion β = 1− σ2

φ/σ
2
R and the ratio

between vertical and cylindrical radial dispersion βz = 1 − σ2
z/σ

2
R. Close to the centre,

all the models tend to isotropy, except for f(J) NGC 2592 which has some mild radial
bias. In this model, the vertical pressure is always small compared to the radial, while
at radii of the order of the effective radius there is significant azimuthal pressure which
tangentially biases the model’s orbital distribution (within Re/2) and contributes to the
model’s rotation. At large radii the vertical pressure starts dominating significantly over
the radial pressure the models f(J) NGC 6125 (up to βz ∼ −0.5) and f(J) NGC 6427
(up to βz ∼ −1). Similarly, the model with the most pronounced rotational support,
i.e., f(J) NGC 6427, has significant azimuthal bias out to about 2Re. The models of the
two fast rotating galaxies have a sharp decline in σφ w.r.t. σr for r > Re, since almost all
the motion in the azimuthal direction gets ordered by the effect of the parameters k and
χ (see Section 4.4.2). For the model of the slow rotator the azimuthal dispersion always
slightly dominates over the radial, but almost never over the vertical. In Appendix B
we show the velocity ellipsoids of the best f(J) models in Table 4.2.



96 Self-consistent models for early-type galaxies in the CALIFA Survey

4.6 Summary and Conclusions

We have generated self-consistent axisymmetric and rotating models with DFs depend-
ing on the action integrals for three early-type galaxies in the CALIFA Survey. We
have modeled three galaxies different in morphology (E1, E4 and S0) and in kinematics
(both slow and fast rotators) so to prove the flexibility of the f(J) family of models.
We match the observed light distribution (in r-band) and spatially-resolved kinematics
(up to ∼ 2 − 3Re) with a typical mismatch of 10 − 20%. With the ansatz that the
mass-to-light ratio is constant with radius, we derive intrinsic properties for the three
galaxies such as total mass distribution and anisotropy. Our estimates of the dynam-
ical mass enclosed within the effective radius are in agreement with orbit-based discrete
models for the same galaxies and both yield mass-to-light ratios of about Υr ∼ 4. Our
galaxy models are, by construction, isotropic close to the centre and their rotation is
supported by a substantial tangential bias in their orbital distribution further out. For
the purpose of showing the potential of modeling stellar systems with action-based DFs,
we did not go through a quest for the best model in our multi-dimensional parameter
space, but instead we showed how easy it is to get reasonable fits by understanding
which parameter has the major effects on which observable. In this sense, the models
that we addressed as “best models” should be intended as locating a neighbourhood in
the parameter space on which a proper systematic search of the best-fitting model must
be run if one wants an accurate characterization of the galaxies.

This study sets as a benchmark for distribution function models of external galaxies
and shows how closely one could match observables with one-component models. Un-
surprisingly, we find a very different quality in the fits for the round E1 and for the
lenticular S0 since, by construction, the models presented here do not contain a stellar
disc. Such an addition is prompt and easy in the f(J) formalism, as several works have
already proved (see Piffl, Penoyre, & Binney, 2015; Binney & Piffl, 2015). Even though
the match to the spatially-resolved kinematics of the S0 galaxy NGC 6427 is remarkable
considering that the best model is a flattened rotating bulge, adding a quasi-isothermal
DF (see Binney, 2010) to that of f(J) NGC 6427 will lead to better fits of especially
the light distribution. The only issue is that one has to perform a clever and systematic
search through a parameter space which has several additional dimensions with the one
considered in this work (e.g., as done by Binney & Piffl, 2015). More realistic models
of galaxies should allow also for a general dark matter distribution, which should be as
well modeled as an independent f(J) component (see Chapter 3 and Piffl, Penoyre, &
Binney, 2015). This will allow for a self-consistent characterization of the galaxy’s dark
halo and provide an independent test for the estimates of mass-to-light ratios within
Re obtained with orbit-based discrete models and with moment based models (see Cap-
pellari et al., 2006, 2013). We hope to report soon on such an extension of the present
application.

A great advantage of generating dynamical models by specifying the DF is that
the full losvd can be modeled, instead of fitting just its first and second moments.
In the context of local early-types whose stellar kinematics is traced by Integral Field
spectroscopy, the data quality is typically not high enough to give significant constraints
on further moments of the losvd and often just the first two are used (e.g., Cappellari
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et al., 2013). Hence, in this work we did not exploit the power of equation (4.10) and
we adopted a similar approach to that of Cappellari et al. (2006, 2013), i.e., fitting v‖
and σ‖ maps. However, three-integral f(J) DFs would be very useful for instance for
recovering masses of supermassive black holes at the centres of massive galaxies, where
very high resolution spectra give considerable constraints on the non-Gaussianity of the
lines. In that context, f(J) models are handy since (i) the system’s total mass can
be specified at the outset (see Chapter 3), (ii) the addition of an external source of
gravity at the centre (e.g., a black hole) does not alter the functional form of the DF.
On the contrary, DFs depending on energy and angular momentum are modified by the
addition of external potentials (e.g., van der Marel et al., 1994).

A sensible step forward in the present work will be generating a synthetic data-cube
which accounts for the losvd of the model at each location on the sky. An effect that
is still poorly understood in the context of stellar kinematics with Integral Field units
is the beam smearing. f(J) models can be used to study what is the contribution to
the line’s broadening (and shift) coming from stars orbiting nearby and falling within
the PSF at a given location on the sky. If not properly taken into account, one could
mis-interpret very broadened lines as due to a large stellar velocity dispersion, without
considering the contribution from stars at different speeds within the same aperture.
This could be critical especially for low spatial resolution (see e.g., Epinat et al., 2010).

DF models are a valid alternative to the more popular Schwarzschild (1979), made-
to-measure (M2M, Syer & Tremaine, 1996) and JAM (Cappellari, 2008) models since
they are self-consistent and allow for general anisotropy, unlike JAM, and they are
continuous and characterized by only a handful of free parameters, unlike Schwarzschild
or M2M. The field of investigating the dynamics of galaxies by specifying a mathematical
form for the DF is now rejuvenated by the use of action integrals as arguments for
the DF. This work adds nearby early-type galaxies to the list of systems that can be
potentially modeled with great accuracy with f(J) DFs.
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Chapter5
Dynamical evolution of early-type galaxies
and their haloes

Appeared in:
L. Posti, C. Nipoti, M. Stiavelli & L. Ciotti, 2014, MNRAS, 440, 610

Abstract
Early-type galaxies (ETGs) are observed to be more compact, on average, at z & 2 than at
z ' 0, at �xed stellar mass. Recent observational works suggest that such size evolution
could re�ect the similar evolution of the host dark ma�er halo density as a function of the
time of galaxy quenching. We explore this hypothesis by studying the distribution of halo
central velocity dispersion (σ0) and half-mass radius (rh) as functions of halo mass M and
redshi� z, in a cosmological Λ-CDM N -body simulation. In the range 0 . z . 2.5, we �nd
σ0 ∝M0.31−0.37 and rh ∝M0.28−0.32, close to the values expected for homologous virialized
systems. At �xedM in the range 1011M� . M . 5.5 × 1014M� we �nd σ0 ∝ (1 + z)0.35

and rh ∝ (1 + z)−0.7. We show that such evolution of the halo scaling laws is driven by
individual haloes growing in mass following the evolutionary tracks σ0 ∝ M0.2 and rh ∝
M0.6, consistent with simple dissipationless merging models in which the encounter orbital
energy is accounted for. We compare the N -body data with ETGs observed at 0 . z . 3 by
populating the haloes with a stellar component under simple but justi�ed assumptions: the
resulting galaxies evolve consistently with the observed ETGs up to z ' 2, but the model has
di�culty reproducing the fast evolution observed at z & 2. We conclude that a substantial
fraction of the size evolution of ETGs can be ascribed to a systematic dependence on redshi�
of the dark ma�er haloes structural properties.

http://adsabs.harvard.edu/abs/2014MNRAS.440..610P
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5.1 Introduction

Since early studies in the ’70s, we know that early-type galaxies (ETGs) adhere to some
empirical scaling relations, such as the luminosity-velocity dispersion (Faber & Jack-
son, 1976), size-surface brightness (Kormendy, 1977), Fundamental Plane (Djorgovski
& Davis, 1987; Dressler et al., 1987), black-hole mass-bulge mass (Magorrian et al.,
1998), black-hole mass-velocity dispersion (Ferrarese & Merritt, 2000; Gebhardt et al.,
2000) and black-hole mass-Sérsic index (Graham et al., 2001; Graham & Driver, 2007)
relations. Such correlations, some of which were first used as distance estimators to help
building the distance scale ladder, have given the astrophysical community important
clues about the possible scenarios of galaxy formation (e.g., Ciotti, 2009). In this re-
spect, the stellar mass-size relation has currently a special role, because galaxy sizes and
masses can be measured out to z ' 2.5− 3. With such data available, different authors
found indications that the population of ETGs undergoes a significant size evolution
from z ' 3 to z ' 0, such that present-day galaxies have, on average, significantly
larger sizes than higher z galaxies of similar stellar mass (see e.g., Stiavelli et al., 1999;
Ferguson et al., 2004; Daddi et al., 2005; Trujillo et al., 2006; Cimatti et al., 2008; van
der Wel et al., 2008; van Dokkum et al., 2008; Saracco, Longhetti, & Andreon, 2009;
Cassata et al., 2011; Damjanov et al., 2011; Krogager et al., 2013). For the current
galaxy formation models it is still challenging and non-trivial to explain such behaviour
of massive ETGs. Various mechanisms have been proposed to explain the observed size
evolution, including dry (i.e., dissipationless) major and minor merging (see Khochfar
& Silk, 2006; Nipoti et al., 2009b; Naab, Johansson, & Ostriker, 2009; Hopkins et al.,
2009b; López-Sanjuan et al., 2012; Laporte et al., 2013; Sonnenfeld, Nipoti, & Treu,
2013) and feedback-driven expansion (see e.g., Fan et al., 2008, 2010; Ragone-Figueroa
& Granato, 2011; Ishibashi, Fabian, & Canning, 2013). Currently, the issue is far from
being resolved and further observations, together with more comprehensive theoretical
models, are desirable.

Recently, Carollo et al. (2013, see also Poggianti et al. 2013) argued that the median
size growth of ETGs of stellar mass 1010.5M� ≤ M∗ ≤ 1011M� could be due to the
dilution of the sample of galaxies quenched at early times in a population of bluer
and larger galaxies that have been quenched much later. In the sample of ETGs with
M∗ > 1011M� the same authors find indications of intrinsic size evolution, which can not
be explained with the dilution of the population. In other words, Carollo et al. (2013)
find evidence that not all the progenitors of local quenched-ETGs can be identified with
the compact quiescent ETGs observed at z ' 1 − 2, because a substantial fraction of
present-day ETGs have stopped forming stars much later than the higher-z ETGs. An
interesting conclusion of Carollo et al. (2013) is that the stellar density of ETGs scales
with the mean density of the Universe at the time of quenching. This suggests that the
host halo evolution could be the main driver of the galaxy evolution, in the sense that
the redshift-dependence of the properties of an ETG results similar to that of its host
halo (see also Stringer et al., 2014).

The natural tool to explore such halo-galaxy connection would be a large-scale,
high-resolution, cosmological simulation jointly following the evolution of dark matter
(hereafter DM) and baryons, including star formation and feedback. However, given



5.2 Methods and definitions 101

the well known uncertainties and technical issues still present in this method (see e.g.,
Kereš et al., 2012; Vogelsberger et al., 2012; Hopkins, Narayanan, & Murray, 2013), we
adopt here a simpler approach, trying to extract useful information on the evolution of
ETGs studying the behaviour of a population of DM haloes in a DM-only cosmological
simulation. We focus our attention on the scaling laws of DM haloes in a Λ-CDM
Universe and in particular on their size and velocity dispersion evolution. Our aim is
trying to understand whether the evolution of the haloes is somehow similar to that of
ETGs which are expected to be hosted in such haloes. Therefore, we will also try to
compare our N -body data with available observations of ETGs, populating haloes with
galaxies under simple but justified assumptions.

This Chapter is organized as follows: in Section 5.2 we present the methods of
our investigation and we set the stage with all the definitions and simple theoretical
expectations; in Section 5.3 we show our results on the scaling relations of the dark-halo
population; in Section 5.4 we trace the merger histories of individual haloes which are
representative for the entire population; in Section 5.5 we link the dark-halo properties
with those of the ETGs and compare the predicted size and velocity dispersion evolution
with recent observations; Section 5.6 summarizes and concludes.

5.2 Methods and definitions

5.2.1 Computational tools

We performed a cosmologicalN -body simulation with the publicly available code Gadget-
2 (Springel, 2005, see also Springel, Yoshida, & White 2001) in a standard Λ-CDM flat
Universe where the matter density, dark-energy density and Hubble constant are, re-
spectively, Ω0,m = 0.28, Ω0,Λ = 0.72 and H0 = 70 km s−1 Mpc−1. In the run we simulated
the evolution of 5123 ' 1.3× 108 particles of mass Mpart ' 1.5× 109M�/h, from z = 99
to z = 0, in a cosmological comoving box of side l = 128 Mpc/h, where h is the reduced
Hubble constant h = H0/100 km s−1 Mpc−1. The initial conditions of the simulation
were generated using a modified version of the publicly available code Grafic2 (see
Bertschinger, 2001). We used a softening length of ∼ 1 kpc/h throughout the simula-
tion. The simulation was run on 72 cores on the UDF Linux cluster at STScI (Baltimore)
and took about 6 days to complete. We produced 16 snapshots equally spaced in log a,
where a(t) = (1 + z)−1 is the cosmic scale factor, from z ' 2.5 to z = 0.

5.2.2 Definitions of the structural and kinematical properties
of dark matter haloes

In this Section we define the fundamental structural and kinematical properties of the
simulated DM haloes, such as the massM , the size r and the velocity dispersion σ. There
is not a unique method to identify a DM halo in a cosmological N -body simulation,
because, as for every non-truncated and non-isolated particle system, it is not trivial
to define the set of particles that belong to the object: various techniques have been
proposed in the astrophysical literature (e.g., friends-of-friends or spherical overdensity
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algorithms1; see Efstathiou et al., 1985; Davis et al., 1985; Lacey & Cole, 1993; Evrard
et al., 2008). The problem is relevant, because different sets of particles can lead to
different estimates of the properties of the object.

In this work, we adopted the conventions of Knollmann & Knebe (2009) and we
have used their AHF finding code. The haloes are identified from the peaks of a three
dimensional density field calculated in a grid with Adaptive Mesh Refinement (AMR).
The spherical region of radius r∆, which is centred at the centre of mass of the particles
in the highest refinement level of the AMR grid, defines the set of particles that belong
to the DM halo2 (see Knollmann & Knebe, 2009). We use a standard definition of a
halo as a certain spherical top-hat overdensity, via the formula

3M

4πr3
∆

= ∆c(z)ρc(z), (5.1)

where ρc(z) = 3H2(z)/8πG is the critical density of the Universe at redshift z, ∆c(z)
is the overdensity value at the same time, H(z) is the Hubble parameter and G is the
gravitational constant. We adopt the following definition of the critical overdensity in
a flat Universe with negligible radiation energy density:

∆c(z) = 18π2 + 82 [Ω(z)− 1]− 39 [Ω(z)− 1]2 , (5.2)

where Ω(z) = Ω0,m(1 + z)3/E(z)2 and E(z)2 = Ω0,m(1 + z)3 + Ω0,Λ, such that the haloes
identified are expected to be close to equilibrium (see Lacey & Cole, 1993; Bryan &
Norman, 1998).

Given the velocities of all particles belonging to the halo, we compute the virial
velocity dispersion of the system

σV =

[
N∑
i=1

3∑
j=1

(vi,j − v̄j)2

N

]1/2

, (5.3)

where N is the number of particles in the halo, vi,j is the j-th component of the i-th
particle’s velocity and v̄j is the j-th component of the average velocity.

The definition of the halo size is also non-trivial, since it is intimately affected by the
choice of the spherical overdensity. As a matter of fact the definition of r∆ via equation
(5.1) is based on the idea that the material surrounding the overdensity is bound to the
halo if the dynamical time of the particle is less than the Hubble time at that redshift,
so one can reasonably expect the halo of size r∆ to be in equilibrium. For this reason,
r∆ is often, but improperly, called virial radius and, in any case, in the following we
will adopt such convention. However, other definitions of the halo size are possible: for
example, the gravitational radius (i.e., the true virial radius)

rg ≡
GM

σ2
V

(5.4)

1 For a brief review of different methods see Knebe et al. (2011).
2 An unbinding procedure is also run on the haloes in order to remove the gravitationally unbound

particles inside the spherical region (see Knollmann & Knebe, 2009).
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and the half-mass radius rh, i.e., the radius of the sphere enclosing half the total mass
of the halo, M(< rh) = M/2.

We also employ a definition of the halo velocity dispersion alternative to σV: we
compute the velocity dispersion profile σ(< r) in the same fashion as the mass profile,
where the velocity dispersion is calculated as in equation (5.3) and the sum is only on
the particles within the spherical region of radius r. From the σ(< r) profile, we then
estimate the central velocity dispersion

σ0 ≡ σ (< rh) . (5.5)

We define our sample of DM haloes by selecting those for which rh > 2rconv, where
rconv is the convergence radius in the sense of Power et al. (2003), i.e., the radius within
which the two-body collisions dominate the orbital motions of the particles integrated
by the code and the density estimates are therefore unreliable. We verified that, for our
sample, the mass contained within the convergence radius is typically a small fraction of
that contained within the half-mass radius, so our measurement of σ0 should be robust.
The sample selected with the above criterion is made of ≈ 11000 DM haloes, with a
lower limit in mass Mlower ' 1.3× 1011M�.

5.2.3 Behaviour of the different size and velocity dispersion
proxies

In this section we discuss the relations between different size and velocity dispersion
estimators, in particular how the virial proxies (r∆, σV) compare to the central ones
(rh, σ0).

In this work we use σ0 and rh (see Section 5.2.2) to characterize the haloes because
it is reasonable to expect that the stellar central velocity dispersion σ∗ and the effective
radius Re of the galaxies inside such haloes are more related to the halo central quantities
than to the halo virial quantities. However, different choices would be possible. For
instance, a tight correlation between r∆ and Re has been suggested, both theoretically
(see Mo, Mao, & White, 1998) and using abundance matching techniques (see Kravtsov,
2013). In addition, it is well known that the ratio rg/rh depends only weakly on the
density profile (see Binney & Tremaine, 2008; Ciotti, 1991; Nipoti, Londrillo, & Ciotti,
2003). It is therefore interesting to verify how the different proxies correlate in our
sample of haloes and how their values depend on the choice of the critical overdensity
∆c.

In Fig. 5.1 we show the dependence of r∆, rg and rh on ∆c at z = 0 for a represent-
ative halo with M ' 1013M�. As expected from equation (5.1), the virial radius has a

perfect r∆ ∝ ∆
−1/3
c scaling. We note that also the gravitational radius scales roughly as

rg ∝ ∆
−1/3
c and this is because it depends only on virial quantities (see equation 5.4),

while the half-mass radius has slightly less steep dependence on ∆c, namely rh ∝ ∆−0.22
c .

This is an additional reason to prefer rh to r∆ in the present context. Formally, also the
quantity σV, and so σ0, depends on ∆c, but the dependence is weak: the variation is no
more than 10% in σV, when varying ∆c by an order of magnitude.
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Figure 5.1: Virial radius (red squares, see equation 5.1), gravitational radius (gray circles,
see equation 5.4) and half-mass radius (blue triangles) as functions of the critical overdensity
∆c for a M ' 1013M� halo, taken from the z = 0 snapshot of the simulation.

In Fig. 5.2 we show the distributions of the halo population at z = 0 in the σ0−σV,
rh − r∆ and rg − r∆ planes. We find that in all cases a linear correlation is in good
agreement with the distribution of the haloes in the three planes; fitting with power laws
we get σ0 ∝ σ0.97±0.01

V , rh ∝ r0.96±0.01
∆ and rg ∝ r1.1±0.01

∆ . Interestingly, for a given halo,
the ratio σ0/σV is very close to unity: the average ratio in our sample is 〈σ0/σV〉 = 1.01.
We recall that it is not a priori expected that the central quantities correlate linearly
with the virial ones. This finding indicates that the DM haloes are not systematically
non-homologous: in other words, more massive haloes are, on average, just rescaled
versions of less massive haloes (at least, as far as the relation between virial and central
quantities is concerned). The scatter around the linear relations in Fig. 5.2 can be
ascribed to some degree of non-homology at a given halo mass or to the fact that some
haloes are not completely virialized. We note also that Diemer, Kravtsov, & More (2013)
recently found that there is a remarkable homology in their cluster-sized haloes sample:
they argued that a tight relation exists between the mass and velocity dispersion profiles
of DM haloes. Moreover, they claimed that the mass-velocity dispersion relation of the
halo sample is almost insensitive to the size definition (in the range 100 < ∆c < 2500
in equation 5.1) because of such homology in the radial profiles.

For the purposes of this work, given that, on average, the central quantities (σ0,rh)
scale linearly with the virial quantities (σV,r∆), our results would be virtually unchanged
if we adopted σV, instead of σ0, and r∆ or rg, instead of rh, to characterize our haloes.
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5.2.4 Virial expectations for the halo mass-velocity dispersion
and mass-size relations

With the adopted halo definition (equation 5.2) we expect the DM haloes to be virialized
in every snapshot of the simulation from z ' 2.5 to z ' 0. It follows that, some well
known scaling laws are expected for the dark-halo population: from equation (5.4),
under the assumption of a linear proportionality between the virial radius (equation
5.1) and the gravitational radius (equation 5.4) it follows (e.g., Lanzoni et al., 2004)
that for haloes in equilibrium

M ∝ σ3
V. (5.6)

The correlation is expected to depend on redshift as

σV ∝ [E(z)M ]1/3 (5.7)

(see e.g., Evrard et al., 2008). Using equation (5.1) to define the haloes and the definition
of the critical density ρc = 3H2/8πG, for a flat Universe we get

r∆ =
[
2GM ∆c(z)−1H(z)−2

]1/3
, (5.8)

where H(z) = H0E(z). Assuming a linear dependence of the form r∆ = ξrg, where ξ
is a dimensionless constant, then the virial velocity dispersion can be written as σ2

V =
GMξ/r∆, implying

σV = ξ1/2

(
GM√

2

)1/3

∆c(z)1/6H(z)1/3. (5.9)

We have seen in Section 5.2.3 that σ0 ∝ σV, so also the mass and redshift dependence
of σ0 is expected to be given by equation (5.9). Under the assumption that rh and rg

scale linearly with r∆ (see Section 5.2.3), from equation (5.8) we have that a fixed z

rh ∝ rg ∝M1/3. (5.10)

The z-dependence of the other size proxies are also given by equation (5.8), as rg ∝ r∆

and rh ∝ r∆ (see Section 5.2.3).

5.3 Scaling relations of dark matter haloes as func-

tions of redshift

Here we present the distributions of the size and the velocity dispersion as functions of
mass and redshift for our sample of ∼ 11000 DM haloes (see Section 5.2.2) in the mass
range 1011M� ≤ M ≤ 5.5 × 1014M�. We adopt the same lower mass limit in all the
snapshots of our simulation, while we do not restrict the upper mass limit, which varies
from M ' 2.67× 1013M� at z ' 2.5 to M ' 5.5× 1014M� at z = 0.
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Figure 5.3: Distributions at z = 0 of the simulated haloes in the planes M − σ0 (panel a), M − σV (panel b), M − rh (panel c) and
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the best-fits at z ' 2.5 are plotted as blue dot-dashed lines.



108 Dynamical evolution of early-type galaxies and their haloes

5.3.1 Mass-velocity dispersion: the measured correlation and
evolution

The simulated DM halo population is well represented by the following best-fit relation:

log

(
σ0

km/s

)
= γ log

(
M

M�

)
+ b, (5.11)

where

log γ = (0.103± 0.008) log(1 + z)− (0.49± 0.002),

log b = (0.163± 0.02) log(1 + z) + (0.179± 0.006).
(5.12)

In Fig. 5.3(a) we show the distribution of the sample in the M − σ0 plane at z = 0 and
we find a best-fit correlation of the type M ∝ σ3.04±0.01

0 (i.e. γ ' 0.32). For comparison
we also show the best-fit correlation at z ' 2.5: the slope is slightly larger than that at
z = 0, i.e., γ ' 0.37, whereas the normalization is significantly higher: as we expected,
at fixed mass higher z haloes have higher velocity dispersion.

Assuming σ0 ∝ σV (see Section 5.2.3), we can compare our results with both theoret-
ical expectations, e.g., equation (5.6), and previous findings. At fixed mass M = 1012M�
we find a good agreement with equation (5.7): i.e., our sample follows3 σ0,12 ∝ E(z)0.36.
In the top panel of Fig. 5.4 we show the evolution of the central velocity dispersion
at M = 1012M� in the redshift range 0 . z . 2.5. We have chosen M = 1012M� as
a reference mass, since it is roughly the mean mass in our sample at z = 0 and it is
still well resolved (about 8× 102 particles). As expected from cosmological predictions
(equation 5.7), σ0,12 decreases with time. We find a power-law best-fit evolution of the
type σ0,12 ∝ (1 + z)0.35 and also a better representation (about two orders of magnitude
in the reduced χ2) of the results via the fitting formula log σ0 = 0.29x2 + 0.2x, where
x ≡ log(1 + z). We comment here that fixing a typical mass, say M = 1012M� as in
Fig. 5.4, means that we are analysing different haloes at different z, unlike fixing a halo
and focusing on its evolution.

To further compare the results of our simulation with theoretical predictions and
previous works, we have analysed the correlation between the mass and the virial velocity
dispersion σV. In Fig. 5.3(b) we plot the distribution of the DM haloes in the M − σV

plane. In general, there is a very good agreement with the theoretical expectation (5.6)
derived from the equilibrium assumption: the best-fit relation corresponds to M ∝
σ2.97±0.01

V . Other authors found similar results from independent simulations (see e.g.,
Evrard et al., 2008; Stanek et al., 2010; Munari et al., 2013; Diemer, Kravtsov, & More,
2013). We fitted the evolution of the normalization, at M = 1012M�, of the M − σV

correlation for our simulated haloes as a function of E(z). We find that from z ' 2.5
to z ' 0 the normalization at M = 1012M� follows σV,12 ∝ E(z)0.33, which is in
remarkably good agreement with theoretical expectations (equation 5.7). We compare
also our results with previous findings: for M = 1014M� Stanek et al. (2010) estimate
an evolution σV,14 ∝ E(z)0.34 and we find σV,14 ∝ E(z)0.35; for M = 1014.3M� Lau,
Nagai, & Kravtsov (2010) find σV,14.3 ∝ (1+z)0.49 in their non radiative case (with fixed
∆c = 500) and we find σV,14.3 ∝ (1 + z)0.36.

3 We define AX,Y ≡ AX(M = 10YM�).
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5.3.2 Mass-size: the measured correlation and evolution

The simulated DM halo population is well represented by the following best-fit relation:

log

(
rh

kpc

)
= γ log

(
M

M�

)
+ b, (5.13)

where

log γ = (−0.069± 0.01) log(1 + z) + (−0.489± 0.003),

log b = (0.02± 0.02) log(1 + z) + (0.312± 0.004).
(5.14)

The measured correlation for the simulated haloes is shown in Fig. 5.3(c). The best-fit
relation computed for this sample at z = 0 is M ∝ r3.12±0.02

h (i.e. γ ' 0.32). For
comparison, we also plot here the z ' 2.5 best-fit correlation: the slope is slightly
decreasing with redshift, down to γ ' 0.28 and the normalization in this mass range
gets lower at later times. As we expected, at fixed mass higher z haloes have smaller
size, i.e., they have higher density.

We then fit the evolution of the normalization at M = 1012M� of the M − rh

correlation as a function of redshift in the range 0 < z < 2.5: we find an evolution of
the type rh,12 ∝ E(z)−0.65, which is in good agreement with the expectations given by
equation (5.8). In the bottom panel of Fig. 5.4 our findings on the evolution in time of
rh,12 are shown: as expected (equation 5.8), we find that rh,12 increases with time. We
find a power-law best-fit rh ∝ (1 + z)−0.71 and also that a better representation of the
results is given by log rh = −0.53x2 − 0.41x, where x ≡ log(1 + z).

In Fig. 5.3(d) we plot the distribution of the DM haloes in the M−rg plane. Also in
this case we find a reasonably good agreement with the virial expectation (5.10), with a
best-fit correlation M ∝ r2.71±0.02

g . We notice here that the somehow steeper slope than
expected in Fig. 5.3(d) is due to a tail of the distribution composed of low mass haloes
(M < 1012M�) with small rg: this feature can be due to the fact that some DM haloes
are not in equilibrium, for instance, because they could have experienced a recent major
merger, and so virialization is not a good assumption for such objects.

5.4 Evolution of individual haloes

5.4.1 Evolution of simulated dark haloes in the mass-velocity
dispersion and mass-size planes

According to the halo definition here adopted (equation 5.1) the halo mass increases
monotonically with time, so studying a property of a halo as a function of its mass is
equivalent to studying the time-evolution of the same property. Here we present the
time-evolution of σ0 and rh for some individual representative haloes in our simulation,
by tracking them in the planes σ0−M and rh−M . In Fig. 5.5 we plot the evolutionary
tracks followed by a representative halo with mass M ' 5.5 × 1014M� at z = 0: we
reconstruct the growth in velocity dispersion (top panel) and size (bottom panel) as the
halo gets more massive. It is apparent that neither in the M − σ0 nor in the M − rh
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plane the halo evolves along the scaling law of slope ≈ 1/3. The actual evolution
experienced by the halo in Fig. 5.5 is significantly shallower in the M − σ0 plane, with
best-fit σ0 ∝M0.2, and steeper in the M − rh plane, with best-fit rh ∝M0.6., consistent
with the results of previous works on binary dissipationless mergers (see e.g., Nipoti,
Londrillo, & Ciotti (2003); Boylan-Kolchin, Ma, & Quataert, 2005; Hopkins et al., 2009a;
Hilz et al., 2012; Hilz, Naab, & Ostriker, 2013).

Figure 5.6 gives an overall picture of the evolution in the M − σ0 (upper panel)
and M − rh (lower panel) planes of the whole halo population. In particular, we follow
the evolution from z ' 2.5 of three objects, having M ' 1013M�, M ' 1014M� and
M ' 5.5 × 1014M� at z = 0, representative of an ETG sized halo, a group sized halo
and a cluster sized halo, respectively. Figure 5.6 indicates that the evolutionary tracks
of the whole population of DM haloes in the simulation reflect that of the halo shown in
the of Fig. 5.5, therefore we do not find clear indications of mass-dependent evolution.
In other words, the velocity dispersion grows weakly and the half-mass radius grows
strongly independently of the halo mass. The fact that the individual haloes experience
an evolution in σ0 with a shallower slope than the global σ0 ∝ M1/3 correlation (and
viceversa for the evolution in rh) is responsible for the z-evolution of the normalization
of the σ0 −M correlation, such that at fixed mass σ0 is smaller at lower z. Similarly,
the z-evolution of the normalization of the rh−M correlation is such that at fixed mass
rh is larger at lower z.

5.4.2 Comparison with simple dry merger models

In a hierarchical context, the evolution and mass assembly of haloes is often decomposed
it two main processes: diffuse accretion and mergers (e.g. Fakhouri, Ma, & Boylan-
Kolchin, 2010). According to the halo definition here adopted (equation 5.1), the halo
mass can grow in principle even in an isolated and static configuration, just because the
critical density of the Universe decreases with time (see e.g., Diemer, More, & Kravtsov,
2013). However, in a realistic cosmological context a halo experiences several mergers in
its lifetime and in many cases they dominate its mass assembly. In the following, we will
consider the case in which merging is the driving process for the structural evolution of
individual haloes and we will compare our results with predictions of simple dry merging
models.

5.4.2.a Analytic arguments

Here we present some of the analytic arguments one can use to describe the evolution
of the velocity dispersion and size of a halo which grows mainly via mergers with other
haloes. If both the mass loss in the collision and the orbital energy of the encounter are
negligible, in an equal-mass merger scenario the halo is expected to grow in size linearly
with mass, while its velocity dispersion is expected to remain constant (see e.g., Nipoti,
Londrillo, & Ciotti, 2003). Under the same hypothesis, if the evolution is dominated by
accretion of many satellites much less massive than the main halo, the velocity dispersion
is expected to decrease linearly with the mass, while the size would grow quadratically
with mass (see e.g., Naab, Johansson, & Ostriker, 2009). In a realistic merging history
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M − rh plane.
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consisting of both major and minor mergers, we expect the behaviour of rh and σ0 to
be in between those predicted by the two extreme cases illustrated above.

However the assumptions of zero orbital energy and negligible mass loss are not
necessarily realistic. Some authors have shown how the effect of mass loss could play an
important role in the evolution of the velocity dispersion and of the size of an object (see
e.g., Nipoti, Londrillo, & Ciotti (2003); Hilz et al., 2012). Also the effect of the orbital
energy on the evolution of σ0 and rh can be non-negligible (Nipoti, Treu, & Bolton,
2009a; Nipoti et al., 2012, hereafter Nipoti et al. (2012)), even if there are indications
that most halo encounters are on orbits close to parabolic (see e.g., Khochfar & Burkert,
2006). In this section we attempt to study the effect of orbital energy using the data of
our simulation.

If we know the orbital energy, we can predict analytically the merger-driven evol-
ution of the virial velocity dispersion σV: the dissipationless merging of two virialized
systems, which have kinetic energies respectively T1 = M1σ

2
V,1/2 and T2 = M2σ

2
V,2/2,

on a barycentric orbit of energy Eorb, results in a system that, when in equilibrium, has
virial velocity dispersion (see Nipoti, Londrillo, & Ciotti, 2003)

σ2
V,f =

M1σ
2
V,1 +M2σ

2
V,2

M1 +M2

− 2
Eorb

M1 +M2

, (5.15)

assuming no mass loss (the subscript f indicates the final value). As long as σ0 ∝ σV

(see Section 5.2.3), equation (5.15) can be used to predict also the evolution of σ0.
Similarly, one can predict how the size of the halo is evolving in the merging process:

assuming a linear proportionality rh ∝ rg (see Section 5.3.2 and Fig. 5.2), we have that
rh ∝M/σ2

V. We can use equation (5.15) to make predictions in the context of a simple
dry merging model: we calculate the half-mass radius of the halo at a given redshift,
then we predict its evolution calculating the ratio

rh,f

rh,1

=
M1 +M2

M1

σ2
V,1

σ2
V,f

, (5.16)

where σ2
V,f was calculated through equation (5.15) and we have taken halo 1 as reference

progenitor.

5.4.2.b Orbital parameters

To account for the contribution of Eorb in the evolution of σ0 and rh for our haloes
(i.e to apply equation 5.15), we need to extract the merger orbital parameters from
our simulation. We have reconstructed the merger histories of the haloes and then
calculated the orbital parameters of the encounters in the point-mass approximation
(hereafter PMA) of the progenitors (i.e., approximating every merging halo as a point
located in its centre of mass and having the same mass as the object; see e.g., Khochfar
& Burkert, 2006; Wetzel, 2011).

As well known, the orbit of a collision is completely characterized by two parameters,
for instance the orbital energy and the orbital angular momentum or the eccentricity
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Figure 5.7: Histograms of the orbital energies (left-hand panel) and of the eccentricities
(right-hand panel), computed in the PMA, of the mergers experienced by a M(z = 0) '
5.5 × 1014M� DM halo, from z ' 2.5 to z = 0. The orbital energies are normalized to the
internal energy T = Mσ2

V /2 of the reference halo. The dashed area, centred on the median
value, contains 80% of the counts, so that each tail of the distribution accounts only for 10%.

and the pericentric radius. Here we find convenient to characterize the orbits of our
mergers with the orbital energy Eorb and the eccentricity

e =

√
1 +

2EorbL2
orb

µ(GM1M2)2
, (5.17)

where M1 and M2 are the masses of the two colliding systems, Lorb is the norm of
the barycentric orbital angular momentum and µ ≡ M1M2/(M1 + M2) is the reduced
mass. In Fig. 5.7 we plot the histograms of Eorb and e (computed in the PMA) of the
encounters experienced by a M(z = 0) ' 5.5× 1014M� DM halo in our simulation from
z ' 2.5 to z = 0. We find that the distribution of the orbital energies has a clear peak at
Eorb ' 0 (left-hand panel of Fig. 5.7) and that of the eccentricities has a clear peak at
e ' 1 (right-hand panel of Fig. 5.7), with both distributions having non-negligible tails
both at bound orbits (e < 1 and Eorb < 0) and unbound orbits (e > 1 and Eorb > 0).
Overall, our findings are in agreement with those of Khochfar & Burkert (2006): the
large majority of the mergers happen on orbits close to parabolic.

The orbital potential energy computed in the PMA (Uorb,PMA) is always larger (in
modulus) than the actual orbital potential energy Uorb, computed for the extended
objects. As an example, one can think of a toy model in which the two particle systems
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are initially very far away, where the PMA is justified, and then they start to get nearer
and nearer up to the limit in which the centres of mass of the two system coincide: in
this limit the orbital potential Uorb in the PMA diverges, while that of the extended
system is still finite.

We tried to obtain a better estimate of the orbital energy by empirically correcting
Uorb,PMA as follows. We computed the relative distance drel of a merger as the distance
of the centres of the haloes in the snapshot before of the merging, i.e., is the latest
snapshot in which the two haloes are distinct. Calculating the distribution of drel of the
collisions in our simulation, we find that it peaks at drel ' r∆ of the biggest merging
halo. Assuming an NFW (see Navarro, Frenk, & White, 1997) profile for the dark haloes,
we made some experiments in order to evaluate the overestimate of |Uorb| in the PMA
varying the parameters of the haloes (such as mass ratio, size ratio and concentration)
and, most important, the relative distance between their centres of mass. We used
Gadget-2 to calculate the Uorb of the encounter between the two systems and we
compared it to that calculated in the PMA. We find that, quite independently of the
structural parameters of the haloes, in a range of relative distances consistent with that
measured in our simulation, Uorb ' Uorb,PMA/2.

5.4.2.c Application to N-body data

In the hypothesis that mergers are the driving mechanism for halo evolution, it is pos-
sible, with equation (5.15), to predict the evolutionary track of a halo in the M − σ0

plane across different snapshots in the simulation. For a given halo, starting from M
and σ0 of the most massive progenitor, we considered one at a time every merger in the
halo merger tree and we used for each of them equation (5.15) to predict the evolution of
σ0 after the collisions. In Fig. 5.8 (top panel) we show the evolution of a representative
halo in the σ0 −M plane and we compare it with the predictions of three dry-merging
models based on equation (5.15): the parabolic-merger model (i.e. Eorb = 0), the PMA
model (Eorb = Eorb,PMA, where Eorb,PMA is the orbital energy computed in the PMA)
and the corrected PMA model (Uorb = Uorb,PMA/2; see Section 5.4.2.b). The relative
errors of the models with respect to the N -body data (bottom panel of Fig. 5.8) in-
dicate that in the majority of the cases, the parabolic merger approximation tends to
underestimate the σ0 evolution by a factor ≈ 20 − 30%, while Eorb = Eorb,PMA model
tends to overestimate its growth up to ≈ 80%, probably due to the overestimate of
|Uorb| introduced by the PMA. When we apply the empirical correction we find a much
better agreement with the N -body data. We have checked that the resulting behaviour
is fairly independent of the halo considered (i.e., on the halo mass at z ∼ 0).

Using equation (5.16), where we compute σV,f as in equation (5.15), we are able to
predict also the evolution in size of the halo. The results are summarized in Fig. 5.9.
The parabolic merging model always tends to overestimate the actual size growth of
the halo: such trend is in agreement with the analytical expectation of strong growth
of the halo size (see Section 5.4.2.a). On the other hand, the Eorb = Eorb,PMA model
is underestimating the rh evolution. Applying the empirical correction to the orbital
energy in the PMA, we find a much better representation of the N -body data with
respect to previous cases (see the bottom panel of Fig. 5.9).
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The results above deserve a further comment: since in the code we are using energy
is conserved (see Springel, 2005), in principle, if we took into account all the possible
complications to the merging model we would reproduce the actual measured evolution.
Here we focus on the effect of one of these possible complications, namely the orbital
energy. Other authors have used this approach before, studying for example the effect of
escapers (see e.g., Nipoti, Londrillo, & Ciotti (2003); Hilz et al., 2012): in particular, Hilz
et al. (2012) found that mass loss can be very important in reproducing the size growth
of collisionless systems in binary mergers simulations. Our effort is complementary to
such works: we added a detailed study of the importance of the orbital energy, finding
that taking into account such effect in a simple dry merging model can be crucial in
order to reproduce the halo evolution in a cosmological context.

5.5 Implications for the size evolution of early-type

galaxies

In the previous sections we have described the evolution in size and velocity dispersion
of the population of DM haloes. This evolution is qualitatively similar to that of the
observed population of ETGs. The aim of this section is to compare quantitatively our
N -body data to observations. Since there are no baryons in the simulation, we need to
populate our DM haloes with galaxies, by assigning the stellar mass M∗ and the stellar
effective radius Re, which can be done using currently available prescriptions for the
stellar-to-halo mass relation (SHMR) and the stellar-to-halo size relation (SHSR).

5.5.1 The stellar-to-halo mass relation (SHMR)

A critical point in this work is the assignment of stellar masses to the dark haloes of
our N -body simulation. To do so, we need to assume a SHMR, i.e., a function that
associates a stellar mass M∗ to each given halo mass M at a given redshift z. Many
prescriptions are available at the time of this writing for this function (see e.g., Behroozi,
Conroy, & Wechsler, 2010; Wake et al., 2011; Leauthaud et al., 2012; Moster, Naab, &
White, 2013), but the detailed properties of the SHMR are still uncertain and debated.

In order to account for the uncertainties in the SHMR, we use two different models
of SHMR: Model 1, adopting the prescription of Behroozi, Conroy, & Wechsler (2010,
hereafter Behroozi, Conroy, & Wechsler, 2010) and Model 2, adopting the prescription of
Leauthaud et al. (2012, hereafter Leauthaud et al. (2012)). A graphical representation
of such models can be found in Fig. 5.10: the SHMR is plotted in different colours in the
redshift range 0 ≤ z ≤ 4. The functional forms and parameters of the two prescriptions
used here are summarized in section 3.2.1 of Nipoti et al. (2012). Throughout the
paper we adopt a Chabrier (2003) initial mass function. As in Nipoti et al. (2012), for
simplicity, we do not take into account the scatter of the SHMR: to each halo we assign
an M∗ which is the mean value of the distribution.

We consider a subset of the DM halo population presented in Section 5.2.2. We
cut our sample of objects to have a stellar mass logM∗/M� ≥ 10.5 and such that no
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Figure 5.10: Stellar mass M∗ as a function of the halo mass M and redshift according to the
prescriptions of Behroozi, Conroy, & Wechsler (2010) (top panel; here used in Model 1) and
Leauthaud et al. (2012) (bottom panel; here used in Model 2).

halo exceeds M ' 4 × 1013M�. The stellar mass lower limit is so that the population
is dominated by ETGs, since at high stellar mass the fraction of ETGs over the total
number of galaxies is larger. The halo mass upper limit is motivated by the fact that DM
haloes with mass larger than M = 4×1013M� are more likely to host groups of galaxies
than single ETGs. We notice here that even if the two models have the same upper limit
in halo mass, they have a different upper limit in stellar mass, because of the different
model of SHMR used: Model 2 has a steeper slope and a higher normalization at the
high-mass end, resulting in more massive galaxies associated to the same halo mass
with respect to Model 1. The stellar mass ranges used here are: 3.2× 1010M� ≤M∗ ≤
1.4×1011M� (corresponding to 8.5×1011M� ≤M ≤ 4×1014M� in halo mass) for Model
1 and 3.2×1010M� ≤M∗ ≤ 2×1011M� (corresponding to 9×1011M� ≤M ≤ 4×1014M�
in halo mass) for Model 2.



5.5 Implications for the size evolution of early-type galaxies 121

5.5.2 The stellar-to-halo size relation (SHSR)

After having characterized every DM halo with a stellar mass under the assumption of
a SHMR, the second step is to assign a size, namely an effective radius Re, to the stellar
component. Assuming a reasonable form for the SHSR is not trivial and at this time
there is not yet a prescription that can be taken as a reference.

However, recently Kravtsov (2013, following the theoretical work of Mo, Mao, &
White 1998 and Fall & Efstathiou 1980) argued that such relation can be measured
over a wide range of stellar masses, using abundance matching techniques to derive a
functional form. Kravtsov (2013) finds that the relation between the virial radius r∆ of
the host halo and the effective radius Re of the galaxy is linear. Such result confirms
the theoretical predictions (see Mo, Mao, & White, 1998) that the virial radius of the
halo is linearly proportional to the size of the galactic disk and that the constant of
proportionality depends of the spin parameter λ = L |E|1/2G−1M−5/2, where L is the
norm of the angular momentum of the halo, E is the total energy of the halo and G
is the gravitational constant. Moreover, the fact that both early-type and late-type
galaxies follow this linear SHSR with a scatter of ∼ 20% (see Kravtsov, 2013) can be
interpreted as the fact that the Mo, Mao, & White (1998) model not only works for disk
galaxies, but it represents a general behaviour of all types of massive galaxies.

Here we assume Re ∝ rh, where rh is the halo half-mass radius, defined in Section
5.2.2. However, in Section 5.2.3 we showed that rh ∝ r∆, on average, so our assumption is
consistent with the results of Kravtsov (2013). As a check to this hypothesis, we compare
the stellar mass-effective radius correlation for our model galaxies (i.e., M∗−Re) at z = 0
with that observed in the local Universe, taking as reference the M∗ − Re correlation
of the ETGs in the Sloan Digital Sky Survey (SDSS; Shen et al., 2003). In Fig. 5.11
we plot the distribution of the effective radius as a function of the stellar mass for our
model galaxies in Models 1 and 2 (see Section 5.5.1), and we compare it to the best-fit
relation of Shen et al. (2003). In particular, we have used Re/rh = 0.031 for Model 1 and
Re/rh = 0.042 for Model 2, which are in reasonable agreement with the expectations of
Mo, Mao, & White (1998) and the results of Kravtsov (2013), given that on average we
find rh/r∆ ' 0.82 in the simulated haloes. Overall, Fig. 5.11 shows that the distribution
of the z ' 0 model galaxies in the Re−M∗ plane is consistent with that of SDSS galaxies.
In more detail, Model 2, with a best-fit Re ∝ M0.64

∗ , appears to reproduce better the
SDSS data (best-fit Re ∝M0.56

∗ ) than Model 1 (best-fit Re ∝M0.84
∗ ).

When comparing our models to observations (see Section 5.5.3) we will assume that
the ratio Re/rh is independent of M and z. We will study only the redshift evolution
of size ratios [namely, Re(z) normalized to Re(z ' 0)], so the results are independent
of the actual value of Re/rh. We note that an underlying assumption of our models is
that baryons do not affect substantially the structural evolution of DM haloes. Though
the stellar and DM components are expected to affect each other significantly, even in
dissipationless mergers (see e.g., Hilz, Naab, & Ostriker, 2013). However, our results
are not sensitive to this effect as long as it is independent on halo mass.
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Figure 5.11: Distribution in the plane stellar mass-effective radius of the sample of model
galaxies obtained by populating the z ' 0 simulated DM haloes according to Model 1 (top
panel) and Model 2 (bottom panel). In both panels, the gray scale is proportional to the
logarithm on the number counts of haloes in the binned plane and the solid line is the best-fit
relation of Shen et al. (2003), for SDSS galaxies, with the corresponding 1σ scatter (dashed
lines).

5.5.3 Size evolution of early-type galaxies: comparing models
with observations

Here we compare the size evolution of our model galaxy sample (built from the N -body
data as described in Sections 5.5.1 and 5.5.2) with that of the observed population of
ETGs. In particular, we take as reference observational sample the collection of ETGs
in the redshift range 0 . z . 3 presented by Cimatti, Nipoti, & Cassata (2012, hereafter
Cimatti, Nipoti, & Cassata (2012)). We show such comparison in Fig. 5.12: we compute
the average size of the model galaxy sample at different times (16 snapshots of the N -
body simulation in the range 0 ≤ z ≤ 3) and we normalize it to that at the mean redshift
of the SDSS. Following Cimatti, Nipoti, & Cassata (2012), we plot the evolution in three
different mass bins. In Fig. 5.12 we are showing a sort of backward evolution: we are
normalizing our models to be in agreement with the data at z ' 0 and we follow the
evolution of the average size of the model galaxies at higher redshift. Our choice is
motivated by the fact that we anchor the models to observations in the local Universe,
which are more numerous with respect to z ' 2.5− 3 data.



5.5 Implications for the size evolution of early-type galaxies 123

Figure 5.12: Average effective radius Re as a function of redshift for simulated galaxies of
Model 1 (gray bands) and Model 2 (red bands) of the present work and for observed ETGs
of Cimatti, Nipoti, & Cassata (2012) (blue filled circles). Overplotted are also the best-fit
power-laws Re ∝ (1 + z)γ to Model 1 (gray dashed line) and Model 2 (red solid line). Each
panel refers to the indicated stellar mass interval and the radii are normalized to the average
Re of SDSS galaxies in that mass interval. The models are anchored to the lowest-z (i.e.
SDSS) observational points (see text). The vertical bars and the widths of the bands indicate
one standard deviation.

The distribution of our model galaxies significantly overlaps with that of the observed
ETGs of Cimatti, Nipoti, & Cassata (2012), but the models suffer from a systematic
underestimate of the size growth in all the mass bins, in particular at z > 2. At z < 2
the models (especially Model 2, which is based on Leauthaud et al., 2012) are consistent
within the scatter with the observational data, suggesting that the host haloes actually
left their footprint in the stellar density at the time of galaxy quenching and that the
after-quenching evolution of the galaxies mimicked that of the haloes. To give reference
numbers, for both models, we computed the ratio Re(z ' 2.5)/Re(z ' 0) in the three
different mass bins finding that from z ' 2.5 to z ' 0 the average effective radius
increases of roughly a factor of ≈ 2 in the lowest mass bin (logM∗/M� < 10.7) and a
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factor of≈ 3 in the highest one (logM∗/M� > 10.9). For comparison, most observational
data agree on an evolution of the average effective radius of the ETG population of a
factor 2− 5 from z & 2 to the present (see e.g., Cimatti, Nipoti, & Cassata, 2012).

In Table 5.1 we report the best-fit values of γ, where Re ∝ (1 + z)γ, for both models
in the range 0 . z . 2.5 and in the three mass bins. We find values of γ similar to
those in Cimatti, Nipoti, & Cassata (2012) when they exclude the z > 2 data, while the
models fail at reproducing the observed slopes which take into account also the higher
redshift points.

Our analysis shows that, provided that the galaxy formation process produces a
linear SHSR, the observed size evolution of the population of ETGs up to z ' 2 could
be explained by the underlying size evolution of the halo population, in the sense that
quiescent galaxies mimic the host halo evolution. At z > 2 the average size of the
observed population of ETGs evolves significantly faster than predicted by our simple
models (in agreement with Cimatti, Nipoti, & Cassata (2012); Nipoti et al., 2012). This
difference at z & 2 can possibly give us some insights into the role dissipative effects,
such as star formation or active galactic nuclei (AGN) feedback: it might not be a mere
coincidence that at z ≈ 2 there are the peaks of the cosmic star formation rate (Madau
et al., 1996; Lilly et al., 1996) and of AGN activity (see e.g., Merloni & Heinz, 2008;
Gruppioni et al., 2011).

Overall, our results are in agreement with those of previous investigations (Cimatti,
Nipoti, & Cassata (2012); Nipoti et al. (2012); Newman et al., 2012), which are in a
sense complementary to the present work. For instance, we note that the approach
used here is different from that of Cimatti, Nipoti, & Cassata (2012), who (following
Nipoti et al. (2012)) treat in their model only the evolution of individual galaxies and
do not include the contribution of galaxies that have become quiescent at relatively low
redshift. In other words, when comparing models to observations, Cimatti, Nipoti, &
Cassata (2012) do not try to account for the so-called progenitor bias (see e.g., Saglia
et al., 2010; Carollo et al., 2013) because they assume that the observed population of
high-z ETGs is representative of the progenitors of present-day ETGs. Our approach,
though simple, should be more robust against the progenitor bias: in our sample of
simulated objects, at any redshift, we can have in principle both galaxies that have
just stopped forming stars (and that are identified for the first time as ETGs) and
galaxies that became quiescent much earlier. However, it must be stressed that our
model is limited by the fact that we are assuming that galaxies grow in size and mass
so that the SHMR and SHSR are reproduced at all redshifts, without having specified
any underlying physical model for such growth. In this respect, a more physically
justified approach is that of Cimatti, Nipoti, & Cassata (2012) and Nipoti et al. (2012),
who assume that the size and mass growth of ETGs is driven by dry mergers, finding
that, under this hypothesis, the SHMR inferred from observations is not necessarily
reproduced (see Nipoti et al. (2012)). In summary, our results, combined with those of
similar previous works, suggest a scenario in which, at least up to z ' 2, the observed
growth of ETGs reflects the underlying growth of their host DM haloes.
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Figure 5.13: Same as Fig. 5.11, but in the stellar mass-velocity dispersion plane. In both
panels, the solid line is the best-fit relation of Hyde & Bernardi (2009), for SDSS galaxies,
with the corresponding 1σ scatter (dashed lines).

5.5.4 Velocity dispersion evolution of early-type galaxies: com-
paring models with observations

In this Section we compare the stellar velocity dispersion evolution of our model ETGs
with that observed up to z ' 2. For such comparison we rely on the data collection of
ETGs from Belli, Newman, & Ellis (2013) and van de Sande et al. (2013). We use a very
simple recipe to get the stellar velocity dispersion of the model galaxies: consistent with
our choice for the assignment of Re (i.e., Re ∝ rh), we assume a scaling with the halo
properties of the form σ2

∗ ∝ M∗(M)/Re(rh), where we use the SHMR (Section 5.5.1)
and SHSR (Section 5.5.2) from Model 1 and 2.

We check this recipe for ETGs at z ' 0: in Fig. 5.13 it is plotted the stellar
mass-velocity dispersion relation at z ' 0 for our model ETGs which we compare to
SDSS observations data from Hyde & Bernardi (2009). Overall, both models are able to
represent fairly well the SDSS data within their uncertainties. However, we notice that
Model 2 works systematically better than Model 1 in reproducing the observed M∗−σ∗:
Model 1 is best-fitted by σ∗ ∝M0.11

∗ , while for Model 2 we find σ∗ ∝M0.2
∗ , closer to the

Hyde & Bernardi (2009) relation σ∗ ∝M0.286
∗ .

Figure 5.14 shows the average velocity dispersion (backward) evolution of our model
galaxies in the redshift range 0 . z . 2. We compute the average σ∗ as a function
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Figure 5.14: Average velocity dispersion σ∗ as a function of redshift for simulated galaxies
of Model 1 (gray bands) and Model 2 (red bands) of the present work and for observed ETGs
of van de Sande et al. (2013) and Belli, Newman, & Ellis (2013) (blue filled circles). Here
we restrict to stellar masses logM∗/M� > 10.9. Overplotted are also the best-fit power-laws
σ∗ ∝ (1 + z)δ (gray dashed line and red solid line, respectively to Model 1 and Model 2). The
models are anchored to the lowest-z (i.e. SDSS) observational points (see text), as in Fig.
5.12. The vertical bars and the widths of the bands indicate one standard deviation.

of redshift, we anchor the data from Belli, Newman, & Ellis (2013) and van de Sande
et al. (2013) to a reference value for the local Universe taken from Hyde & Bernardi
(2009) and we directly compare the backward evolution with data available for individual
ETGs. Qualitatively we find a reasonable agreement with observations of high-mass (i.e.,
logM∗/M� > 10.9) passive galaxies up to z ' 2. The predictions, expecially those of
Model 2, are able to reproduce the evolutionary trend in the observations, even though
there is significant scatter. Quantitavely, we find that Model 2 evolution is well fitted
by σ∗ ∝ (1 + z)δ, with δ = 0.43 ± 0.07, while for Model 1 we find δ = 0.28 ± 0.05.
For comparison, fitting the individual observations with a similar power-law evolution
gives us δ = 0.36±0.02, which is consistent within the uncertainties at least with Model
2. The model galaxies have decreased on average their velocity dispersion by a factor
σ∗(z ' 2)/σ∗(z ' 0) ≈ 1.4 − 1.8, for comparison van de Sande et al. (2013) quote an
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Table 5.1: Summary of the best fitting power-laws Re(z) ∝ (1 + z)γ and σ∗(z) ∝ (1 + z)δ

to our models in the range 0 . z . 2.5, for different stellar mass bins (see Section 5.5.3 and
5.5.4).

Model 1 Model 2

Stellar mass γ δ γ δ

logM∗/M� > 10.9 −0.61± 0.07 0.28± 0.05 −0.65± 0.09 0.43± 0.07

10.7 < logM∗/M� < 10.9 −0.51± 0.06 0.18± 0.05 −0.61± 0.06 0.20± 0.06

10.5 < logM∗/M� < 10.7 −0.37± 0.06 0.04± 0.05 −0.45± 0.06 0.01± 0.05

evolution in their sample of data of a factor ≈ 1.4− 1.7.

In Table 5.1 we summarize the results of fitting the velocity dispersion evolution
in both models with simple power-laws, in the range 0 . z . 2.5 and in the three
stellar mass bins considered in Section 5.5. The numbers reported in Table 5.1 and the
trends shown by Fig. 5.12 and 5.14 are also in good agreement with previous results of
the average size and velocity dispersion evolution of stellar systems in hydrodynamical
cosmological simulations (see e.g., Oser et al., 2012).

The above results on the velocity-dispersion evolution depend on the assumed as-
signement of σ∗ to haloes (i.e., σ2

∗ ∝M∗/Re). A different choice could be σ∗ ∝ σ0 (where
σ0 is the halo velocity dispersion); however, we have verified that assuming a scaling
of that type leads to a very poor comparison of the M∗ − σ∗ relation with data for the
local Universe. This suggests that the evolution of the velocity dispersion of the stellar
component is somewhat decoupled from that of the dark component: while σ0 increases
with time for individual haloes in our sample (see Fig. 5.6), viceversa σ∗ of individual
model galaxies tends to decrease as a function of time, if one assumes σ2

∗ ∝M∗/Re.

The same trend of velocity dispersion decreasing with time for individual galaxies
is found in the cosmological hydrodynamical simulations of Oser et al. (2012, Oser
private communication). However, it must be noted that Dubois et al. (2013), who
also studied the evolution of early-type galaxies using cosmological hydrodynamical
simulations, found that the velocity dispersion of individual galaxies increases with
time.

5.6 Summary and Conclusions

Motivated by the observational finding that ETGs are, on average, more compact at
higher redshift, we have explored the hypothesis that such evolution is mainly driven by
the systematic redshift-dependence of the structural properties of their host DM haloes.
Using a cosmological N -body simulation, we have followed the evolution of the structural
and kinematical properties of a DM halo population in the Λ-CDM framework, focusing
on the halo mass range 1011 .M/M� . 5× 1014. Starting from a sample of simulated
haloes, we have built a sample of model ETGs and we have compared the redshift
evolution of their sizes with that of observed galaxies.



128 Dynamical evolution of early-type galaxies and their haloes

The main results can be summarized as follows:

• At z = 0 the haloes are well represented by σ0 ∝M0.329±0.001 and rh ∝M0.320±0.002

at z = 0, where rh is the half-mass radius and σ0 is the central velocity dispersion.
These global correlations are remarkably similar to those predicted for the virial
quantities of the haloes (namely, M ∝ σ3

V and M ∝ r3
∆), meaning that there is

not significant non-homology in the halo population.

• The slopes of the M − σ0 and M − rh correlations depend only slightly on z, but
their normalizations evolve significantly with z in the sense that, at fixed mass,
higher-z haloes have smaller rh and higher σ0. For instance, at fixed M = 1012M�
we find σ0 ∝ (1 + z)0.35 and rh ∝ (1 + z)−0.71.

• The redshift evolution of the halo scaling laws is driven by individual haloes grow-
ing in mass following evolutionary tracks σ0 ∝ M0.2 and rh ∝ M0.6. So, while
individual haloes grow in mass, their velocity dispersions increase slowly and their
sizes grow rapidly.

• The size and velocity dispersion evolution of individual haloes is successfully de-
scribed by simple dissipationless merging models, in which a key ingredient is the
(typically negative) orbital energy of the encounters.

• We compare our N -body data with observations of ETGs in the redshift range
0 . z . 3, by populating the DM haloes with galaxies assigning to each halo a
stellar mass, an effective radius and a stellar velocity dispersion. We find that
the size and velocity dispersion evolution of our model galaxies is in reasonable
agreement with the evolution observed for ETGs at least up to z ' 2. At z > 2
the observed size growth is stronger than predicted by our simple models.

The above findings suggest a scenario in which the size and velocity dispersion scaling
laws of ETGs derive from underlying scaling laws of the DM haloes. Overall, the results
of the present work give further support to the idea of a halo-driven evolution of ETGs:
galaxy structural and dynamical properties are related to that of their haloes at the
time of quenching and the further ETG evolution mimics that of haloes. Of course, the
present approach is limited by the fact that we do not include a self-consistent treatment
of baryonic physics. In a forthcoming study, we plan to investigate this problem by
adding the baryonic evolution in the simulations.



Chapter6
Conclusions & Future prospects

In this Thesis I have investigated some important aspects of the dynamics and evolution
of early-type galaxies. The way in which the luminous and dark matter are distributed
in galaxies has a major role in determining the galaxy’s dynamics and evolution in
time. Observationally, the dynamics can be probed by spectroscopy, that allows for the
reconstruction of the galaxy’s kinematics, while galaxy evolution by deep photometric
and high-resolution spectroscopic observations, so that large catalogs of the progenitors
of early-types at high redshift can be made. This Thesis focuses on some theoretical
aspects that aim at reproducing and, possibly, explaining such observations.

In the following, I will separately discuss the main conclusions and prospects for
future research for i) the equilibrium dynamical models and ii) the structural evolution
of the galaxy population.

6.1 Dynamical models

Dynamical models in which the distribution function is a specified analytic functions
are, in principle, superior to any other alternative since they always generate physical
models for which any desirable information on e.g., how the mass and/or the velocities
are distributed, are at hand. Models based on the Jeans equations give typically reas-
onable fits to observations of a wider class of objects (see e.g., MGE and JAM models
in Section 2.3.1), but there is no guarantee that the best fitting model is physical (it
may may not have an underlying positive-definite DF) and even if a model which fits
nicely the observations is found, other more general classes of models can not be ex-
cluded. Particle-based and orbit-based models have typically millions/thousands of free
parameters (the particle/orbit weights); observables can constrain such parameters, but
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obvious degeneracies are difficult to break and often the solution is strongly dependent
on e.g., the orbital library chosen.

Action-based DF models can be used as a testbed for other popular dynamical mod-
els. The dependence of the DF on the three action integrals make the models extremely
flexible since their orbital distribution can be arbitrarily chosen by re-distributing the
probability of orbits with the same energy (see Section 2.2.4.b) and since it is easy to
generalize them to multiple components (because actions are adiabatic invariants and
because the mass of each component is computed upfront). In Chapter 3 I introduced
the f(J) and in Chapter 4 I showed that their flexibility allows one to find remarkable
fits with the spatially resolved kinematics of nearby massive early-type galaxies. Com-
parisons of action-based models for these galaxies with orbit-based and moment-based
(e.g., JAMs) models have proved promising: the different techniques are in qualitatively
good agreement. An interesting check on JAM models can be provided for instance by
comparing their velocity ellipsoids, which are cylindrically aligned by construction, and
that of the f(J) DF models (see Appendix B), as it has been recently suggested (see
Evans et al., 2015). Conversely, Schwarzschild models generate velocity distributions
and also a sort of “discretized DF” which can be both directly compared with those of
f(J) models.

A very well-known problem of most dynamical models is the so-called mass-anisotropy
degeneracy, namely that a set of kinematic observables can be equally fit with a self-
consistent isotropic model in which the mass-to-light ratio is a function of position or
with one that has a constant mass-to-light ratio, but an anisotropy (β eq. 2.14) which
is a function of position (see e.g., Illingworth, 1981; Binney & Mamon, 1982). This
degeneracy strongly biases results of Jeans models for which some priors on the velocity-
dispersion tensor must be assumed. A partial break of the degeneracy is achieved when
using non-Gaussian losvds to fit the data, so that also velocity-moments of order higher
than two are considered (e.g., van der Marel & Franx, 1993). The best possible approach
is, therefore, to employ a model which predicts full losvds and is always physical, in the
sense that the DF is positive-definite. Three-integral DF models, such as the action-
based f(J) models, are perfectly suitable to do so.

6.1.1 Application to massive galaxies

In Chapter 4 I showed that dynamical models in which the DF depends on the action
integrals can successfully reproduce the observed kinematics of some early-type massive
galaxies. The models I presented are made of a stellar spheroidal component and a dark-
matter component whose distribution follows that of the stars, i.e., the models have a
mass-to-light ratio constant with radius. While the presented models yield a reason-
ably good representation of the surface brightness and spatially-resolved kinematics of
roundish galaxies (e.g., NGC 6125 and NGC 2592), the quality of best-fit achieved is
sensibly lower in the case of disc-like systems (e.g., NGC 6427). The natural way to
extend the present work is to self-consistently add galaxy components such as bulge,
stellar disc and dark-matter halo and repeat the present analysis with such more realistic
models. The advantage of having DFs which take actions as arguments is that it is feas-
ible to compute the self-consistent total galaxy potential of all the components together.
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Multi-component systems when the DF of each component is known, can be generated
in an iterative way (e.g., Prendergast & Tomer, 1970; Rowley, 1988). Consider a DF
which depends on the energy amongst other integrals of motion and a star with a given
energy in the self-consistent one-component case. Now, when another component is
added the iterative algorithm tries to compute the self-consistent potential, but at each
iteration the energy of that star will change, since the potential changes, and therefore
the DF will weight that orbit differently. The advantage of the action integrals is that
they are adiabatic invariants and hence they are less sensitive to (small) changes of the
potential: the DF will weight the orbit equally at each step and the iterative algorithm
is more likely to reach convergence. If one has prescriptions to specify the DFs of the
two components as a function of the actions, the self-consistent total potential can be
robustly found by iterations. Luckily we are now living in a moment in which action-
based DFs for all the major galaxy components are available: the quasi-isothermal DFs
of Binney (2010) for the stellar discs and the work of Chapter 3 for the bulge, stellar
and dark-matter haloes. In particular, the latter have greatly widened the range of
spheroidal f(J) by generalizing the self-consistent isochrones of Binney (2014) to any
two-power density distribution.

The works in Chapters 3-4 lead the way to a systematic study of massive systems,
observed with Integral Field Units, ranging from round elliptical to spirals. Cappellari et
al. (2011b) proposed a morphological classification of galaxies different from the classical
Hubble (1936) tuning fork: the basic quantity that drives their classification is the
bulge fraction. Two-component bulge+disc f(J) models are ideal to further study the
variation of the bulge-to-disc ratio across the “ATLAS3D sequence” (see also van den
Berg, 1976) as they could provide consistency checks to the JAMs used to model such
galaxies.

6.1.2 Application to other systems

The applicability of f(J) models is not limited only to the study of massive galaxies,
but comprises also for instance

• adiabatic contraction: Blumenthal et al. (1986) pioneered the study of this phe-
nomenon, namely the response of the dark-matter halo subsequent to the infall
of baryons (see Gnedin et al., 2004, for an improved model). Multi-component
(halo+stars) f(J) models allow for much a general study of the contraction of
dark-matter haloes as a response to condensation of baryons onto different final
configurations (e.g., discs, spheroids): simple analytic recipes proposed in literat-
ure often assume special geometry and/or of the orbital distribution of the system;
instead, much more general distributions are generated by f(J) DFs for both the
dark and the baryonic components and the contraction of the system in the total
potential is mediated by the actions which are adiabatic invariants. For instance,
this methodology have already been used to quantify the amount of contraction
(and flattening induced by the stellar disc) in the dark-matter halo of the Milky
Way (see Piffl, Penoyre, & Binney, 2015; Binney & Piffl, 2015).

• dark matter haloes : the phase-space structure of dark-matter haloes has been
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widely investigated, but still a definitive answer is lacking (see e.g., Sharma &
Steinmetz, 2006; Vogelsberger et al., 2008; Wojtak et al., 2008). Recently Pontzen
& Governato (2013) argued that actions can be of use in determining whether the
haloes form through a violent relaxation phase. This is because actions are adia-
batic invariants and are (approximately) conserved during the violent relaxation
process. The f(J) formalism would improve their results by e.g., generalizing to
axisymmetric models the dark haloes and allowing for a wider range of density
profiles.

• dwarf galaxies : low mass galaxies, such as dwarf spheroidals, can as well be
modeled with action-based DFs. Typically these are very dark-matter domin-
ated systems (M/LV ∼ 100) and it is therefore crucial to have a self-consistent
multi-component dynamical model to compare with kinematic observations. Cored
isothermal truncated model (see Section 3.4.2) can be taken as a reference one-
component model, then an NFW dark halo (see Section 3.3.2.c) can be easily
added and finally the free parameters of the whole system are sought to best rep-
resent the data. For gas rich systems, such as some dwarf irregulars (e.g., Leo T,
Ryan-Weber et al., 2008), an additional external potential due to the gaseous disc
can be considered.

• globular clusters : evidences that some globular clusters, such as ω-Centauri (e.g.,
Ferraro et al., 2006) and NGC 2419 (e.g., Dalessandro et al., 2008), may have a
two-body relaxation timescale of the order of their age have been proposed. If this
is the case, then collisionless DFs can be of use in modeling their dynamics. A
King (1966) profile is, to first order, similar to that of the cored and truncated
isothermal in Section 3.4.2 and can be used to model such systems.

• super-massive black-holes : historically one of the most common method to estim-
ate the masses of the super-massive black-holes at the centre of galaxies is by
fitting dynamical models to the reproduce especially the galaxy’s kinematics at
the centre. For these studies it is crucial to have models that can make accurate
predictions on the shapes of the line profiles. f(J) models for the bulge with an ad-
ditional contribution to the gravitational field from the black hole yield predictions
for self-consistent systems that are directly comparable to the observations.

• intermediate-mass black-holes : there is growing interest on accurately measuring
the central kinematics of crowded stellar systems such as globular clusters, since
from the Magorrian et al. (1998) relation they are expected to host black-holes
of masses between 102 − 104M� (e.g., van der Marel & Anderson, 2010). A com-
mon way to estimate the masses of such objects is by measuring the line-of-sight
velocities of stars in the (croweded) central field and using them to sample the
line-of-sight velocity distribution, though some biases may be present (see e.g.,
Lützgendorf et al., 2013; Lanzoni et al., 2013). Usually, only the first two velo-
city moments are used, but there are also some indications that higher-moments
may be non-negligible (see Lützgendorf et al., 2012). Typically, spherical isotropic
Jeans models are used to determine the dynamical mass-to-light ratio and it is not
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clear whether more general models (i.e., axisymmetric and anisotropic) may give
more robust estimates. Moreover, one could exploit also proper motion measure-
ments that, coupled with the line-of-sight velocities, give constraints on the full
three-dimensional velocity distribution of the system, which can be modeled with
e.g., DF and orbit-based models, but not with moment-based ones.

6.1.3 Other applications

Models in which the DF is a function of the action integrals can be used also for other
studies, including

• non-equilibrium: states out of equilibrium are best studied by perturbation theory
starting from equilibria configurations. DF as a function of actions are ideal
for such analysis since angle-action variables are the natural coordinate system
of perturbation theory. For instance, Gerhard & Saha (1991) and Kaasalainen
(1994) use perturbed Hamiltonians as a function of the actions to study orbits
and resonances in different galaxy potentials. Now that some more knowledge
has been added on how the Hamiltonian (e.g., Williams, Evans, & Bowden, 2014)
and the DF of realistic galaxy potentials (see Chapters 3-4) can be written as a
function of the actions, there is ample room for improvement.

• stability : models which are radially biased close to the centre can be subject to bar
formation and radial orbit instability (see e.g., Fridman & Polyachenko, 1984). It is
interesting to study whether any threshold in the parameters of f(J) models exists
which separates stable and unstable configurations. In particular, generalizations
of the present models to triaxial symmetry (e.g. Sanders & Evans, 2015) are ideal
to study in detail if and where in the parameter space some unstable modes can
be generated and amplified.

• N-body simulations : any equilibrium DF can be used as a probability density
from which to draw a discrete realization in configuration space. This technique
is especially useful to build N -body models in equilibrium which can be used as
intial conditions for simulations. One way to efficiently sample the probability
distribution is by sample in action space using f(J) to get the probability of the
orbit and then map the actions into positions and velocities, i.e., J 7→ (x,v), by
torus mapping (e.g., McMillan & Binney, 2008).

• perturbation particles : Leeuwin et al. (1993) introduced an N -body method in
which the masses of the particles are variable and represent the difference between
the model’s time-evolving state and an unperturbed equilibrium state. The typical
fluctuations in the gravitational potential are much smaller than that in conven-
tional N -body models (especially close to equilibrium), since the system is always
close to equilibrium, and small perturbation are best studied. Now that equi-
librium configurations that are of practical interest in galaxy dynamics can be
realized with axisymmetric (Chapter 3) and triaxial (Sanders & Binney, 2015)
symmetry, it makes sense to adopt this method to numerically study deviations
from such interesting equilibrium states.
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6.2 Galaxy evolution

Models for the evolution of galaxies can not disregard the evolution of their host dark-
matter halo. Both the infall of baryons and the merger history of the galaxy are mediated
by their dark halo; therefore, it is resonable to expect that the dark halo population
(in a statistical sense) may leave their imprint in the evolution of the host galaxies.
In Chapter 5, I argued that indeed their evolution typically follows similar paths in
terms of average size and velocity dispersion, and in terms of evolutionary tracks in the
mass-size and mass-velocity dispersion planes. This, ultimately, can be explained as
the fact that the stellar density of passively-evolving systems reflects the mean density
of the Universe at the time of quenching (i.e., when the passive phase in the galaxy’s
evolution began, see e.g., Carollo et al., 2013). In this scenario, both the stellar-to-halo
mass relation and the stellar-to-halo size relation are tightly correlated and one may
argue that the properties of the stellar component derive simply from the size of the
dark-matter halo and from angular momentum conservation (Mo, Mao, & White, 1998;
Stringer et al., 2014). Moreover, since stars and dark matter share the same potential
well, it is natural to think that the velocity dispersion of dark-matter particles is not
much different from that of the stars in the galaxy. A linear correlation between the
velocity dispersions of the two components is, therefore, to be expected. As a result of
these arguments, the average density of the dark-matter haloes at fixed mass drives the
evolution of the average density of passive galaxies in time, which is observed as trends
in the average size and velocity dispersion of galaxy populations at different redshifts.

6.2.1 The role of dark haloes in centrals and satellites

The environment in which galaxies live has a substantial impact on the evolution of the
galaxies. In particular, galaxies living at the centre of very large dark-matter haloes,
such as those of galaxy clusters or galaxy groups, typically have an evolution which is
much more active dynamically w.r.t. the majority of galaxies. In fact, dynamical friction
is especially efficient and brings massive non-central galaxies to the centre which merge
with the central galaxy. It is, therefore, interesting to assess the question whether
centrals and satellites, i.e., galaxies not at the centre of their host halo, experience a
substantially different evolution.

Vulcani et al. (2014) uses samples of early-types selected in galaxy clusters at dif-
ferent redshifts (from nearby Universe to z ' 1) and study the average size evolution
of two separate populations of central and satellite galaxies. They find that the cent-
rals experience a much stronger evolution, as they are systematically more expanded in
nearby clusters w.r.t. to satellites at that redhsift, while both the populations lie on
the same mass-size relation at higher redshift. A tempting way to interpret these obser-
vations is that centrals experience many more mergers than satellites and, on average,
the growth of their dark-matter halo would be much stronger than that of satellites.
The technique deloped in Chapter 5 can be directly applied to test this speculation,
since it is sufficient to correctly identify central haloes, i.e., that of the whole galaxy
clusters, and sub-haloes, i.e., that of satellite galaxies, and compute the evolution of the
model galaxies as in Section 5.5. Currently, many robust methods exist to consistently
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identify haloes and sub-haloes in cosmological N -body simulations (see Onions et al.,
2012), therefore the results of such analysis would robustly quantify what is the imprint
of dark-matter on the evolution of the two galaxy populations.

6.2.2 Model galaxy formation

A natural improvement of the work I presented in Chapter 5 is including a consistent
physical treatment of the baryon physics in the N -body simulation. The condensation
of baryons is known to have important effects on the evolution of dark-matter haloes
(e.g., Blumenthal et al., 1986; Schaller et al., 2015), which typically leads to more con-
centrated haloes more conspicuously at halo masses of about 1012 − 1013M�, where the
star formation is more prominent. The issue here is, of course, that baryonic physics is
still poorly understood and the phenomenological models used in state-of-the-art cos-
mological simulations are usually fine tuned to reproduce a given set of observables.
This ultimately leads to predictions that depend on the implementation of the hydro-
dynamics and of the small scale baryon physics in the numerical code, and convergence
amongst different methods is usually a mirage.

Nevertheless, the currently most detailed simulations of structure formation do re-
produce a remarkable set of observables on different dynamical scales (see e.g., the
Illustris simulation, Vogelsberger et al. 2014, and the EAGLE simulation, Schaye et
al. 2015). It is, therefore, interesting to compare the expectations resulting from their
numerical models with simpler analytic estimates of the galaxy growth from the cos-
mological background evolution (see e.g., Wellons et al., 2015; Furlong et al., 2015). If,
for instance, their simulated galaxies experience the same size and velocity dispersion
evolution as real galaxy do from z ' 2 to z ' 3, where models based on dry mergers
fail, then perhaps we would have some insights on which dissipational process play a
key role in the evolution of massive galaxies at very early times.
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AppendixA
Analytical expression for the radial action in
the Hernquist sphere

The radial action is defined as

Jr =
1

2π

∮
prdr =

1

π

∫ r2

r1

dr

√
2E − 2Φ(r)− L2

r2
, (A.1)

where Φ(r) = −GM/(r + rb) and r1, r2 are the pericentric and apocentric radii for
the given energy E and angular momentum L, i.e., the two roots of the integrand in
equation (A.1). Introducing the dimensionless quantities s ≡ r/rb, E ≡ −Erb/GM and
l = L/

√
2GMrb, equation (A.1) can be rewritten get

Jr =

√
2GMrb

π

∫ s2

s1

ds

√
−E + Ψ(s)− l2

s2
, (A.2)

where Ψ(s) ≡ 1/(1 + s) is the relative dimensionless potential. We now change the
integration variable variable from s = (1−Ψ)/Ψ to Ψ (Ciotti, 1996), and have

Jr =

√
2GMrb

π

∫ Ψ1

Ψ2

dΨ

√
P(Ψ)

(1−Ψ)Ψ2
, (A.3)

where Ψ1 ≡ Ψ(s1), Ψ2 ≡ Ψ(s2) and

P(Ψ) = −E(1−Ψ)2 + Ψ(1−Ψ)2 − l2Ψ2 (A.4)

is a cubic in Ψ, the roots of which can be found by standard methods (e.g., Dickson,
1914). Ψ1,Ψ2 are two roots in the physical range 0 ≤ Ψ ≤ 1. Let A be the third real
root, so

P(Ψ) = (Ψ1 −Ψ)(Ψ−Ψ2)(A−Ψ). (A.5)

While it is physically obvious that two of the three real solutions of equation (A.4) are
in the range (0, 1) and the remaining one is outside (A > 1), we remark that the same
conclusion can be reached by purely algebraic arguments by using the Routh-Hurwitz
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theorem (see e.g., Gantmacher, 1959). By evaluating equations (A.4) and (A.5) at
Ψ = 0 one gets A = E/Ψ1Ψ2 > 0. By splitting into its partial fractions the integrand in
equation (A.3), it is possible to express the integral for Jr in terms of complete elliptic
integrals (see Byrd and Friedman , 1971):

Jr =

√
2GMa

π
D5

[
D1Π

(
α1, k

2
)

+D2E
(
k2
)

+

+D3K
(
k2
)

+D4Π
(
α2, k

2
)]
,

(A.6)

where K,E,Π are respectively the complete elliptic integral of the first, second and third
kind,

α1 ≡
Ψ1 −Ψ2

Ψ2

, α2 ≡
Ψ1 −Ψ2

1−Ψ2

, k2 ≡ Ψ1 −Ψ2

A−Ψ2

(A.7)

and finally
D1 = [(1− 2Ψ1)Ψ2 + Ψ1]A+ Ψ1Ψ2,
D2 = Ψ2(Ψ2 − A),
D3 = Ψ2(A− 2),
D4 = 2Ψ2(A− 1)(Ψ1 − 1),

D5 = −
√
A−Ψ2/D2.

(A.8)

We have tested the formula (A.6) for consistency by numerically integrating equation
(A.1) for a large set of orbits at different (E,L) and the numerical and analytical results
agree within the error of the employed routine.



AppendixB
Velocity ellipsoids of the galaxy models in
Chapter 4

In Figure B.1 we show the velocity ellipsoids of the f(J) models described in Chapter 4
on the meridional plane. Those of f(J) NGC 6125 and f(J) NGC 6427 align with the
spherical coordinates, while those of f(J) NGC 2592 tend to align more closely to the
cylindrical coordinates at small radii, r . rhalf where rhalf is the half-mass radius. For
the latter model, the radial dispersion is larger than the vertical on the equatorial plane
up to about 2Re (see Figure 4.8), while along the symmetry axis the vertical dispersion
is always dominant. This model has δz = 1 which implies that the DF assigns the same
probability to orbits with large vertical action and to those with large radial action.
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Figure B.1: Velocity ellipsoids in the meridional plane for the three models in Table 4.2. In each panel the major axis and the minor
axis of the ellipsoid are indicated respectively with a red and black segment, whose length is proportional to the local amount of velocity
dispersion.



AppendixC
Galaxies’ inclination

Here we present the derivation of the probability distribution of galaxies’ inclination,
given the observed ellipticity. In general, the problem of deriving the galaxy’s inclination
from the observables is degenerate with the knowledge of its intrinsic shape. Hence, for
general configurations it is not possible to derive neither the inclination nor the intrinsic
shape from the flattening of the isophotes projected on the sky. Only for special cases in
which the intrinsic shape is known, such as discs, one is able to measure accurately the
object’s inclination. Both for axisymmetric and for triaxial galaxies, dynamical models
can be fitted to the galaxies, provided that some constraints on their kinematics is
available, and the inclination is usually a free parameter that enters the fitting routine.
The obvious drawback is that this would be severely model dependent and that the
degeneracies with other model parameters are often difficult to handle.

A possible approach that one can use is a statistical one: by selecting a large sample
of similar galaxies (e.g., in morphology, in kinematics) one can recover the probability
distribution of intrinsic shape with some simple assumptions on the galaxy’s symmetry.
Early works of e.g., Lambas, Maddox, & Loveday (1992) who divided galaxies in classes
of morphological Hubble types, were recently revised by the ATLAS3D collaboration
with the critical addition of a well defined distinction between kinematic classes of
fast and slow rotators. From the volume limited sample of early-type galaxies of that
survey, Weijmans et al. (2014) estimated the probability distribution function P (q) of
the intrinsic axis ratios q ≡ b/a for that sample. They were able to compute P (q) from
the observed P (ε), being ε the ellipticity, by numerically inverting the relation between
the conditional probability P (ε|q) and the marginalized P (ε), P (q) and by assuming
random orientations. Their result is that the fast and slow rotator population can
be distinguished by having separate distributions of intrinsic axis ratios: they found
that the fast rotating galaxies are distributed as a Gaussian with mean and standard
deviation of (µ, σ) = (0.25, 0.14), while the slowly rotating galaxies as a Gaussian with
(µ, σ) = (0.63, 0.09).

Following Weijmans et al. (2014), we assume that the galaxies are oblate spheroids,
so that the rotation axis is the minor axis. Hence, it follows that the observed ellipticity
ε, the intrinsic axis ratio q and the galaxy’s inclination w.r.t. the rotation axis i satisfy

(1− ε)2 = cos2 i+ q2 sin2 i. (C.1)
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We used the work hypothesis that the fast rotators and slow rotators in our sample
are drawn from P (q) estimated by Weijmans et al. (2014) and that P (ε) for the single
galaxy is a Gaussian centred in the measured value of ε ≡ 1−

√
〈y2〉/〈x2〉 with a standard

deviation of the order of the measurement error (σ ∼ 0.01). Hence, from equation (C.1)
it follows that the cumulative probability of the inclinations F (sin i) is

F (sin i) =

∫ sin i

0

d(sin i)P (sin i) =

∫
Ω

dεdq P (ε)P (q), (C.2)

where Ω =
{

(ε, q) ∈ R2 : (1− ε)2 − 1 = sin2 i(q2 − 1)
}

. Then, the probability distribu-
tion of the galaxy’s inclination P (i) is readily obtained by derivation of (C.2). In Figure
C.1 we show the resulting probability distribution of inclination angles for the three
galaxies considered in this work.
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Figure C.1: Probability distribution of inclinations for the three galaxies.
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