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ABSTRACT  

Aim: To assess if the intake of levodopa in patients with Parkinson‟s Disease (PD) changes 

cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional 

MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we 

hypothesize that the strongest changes in FC will involve the motor network, which is the 

most impaired in PD.  

Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, 

normal cognitive and affective status, were included. Exclusion criteria were: moderate-

severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter 

abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner 

(1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was 

computed from four regions of interest: right and left supplementary motor area (SMA) and 

right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence 

(w-PDC) was computed in the inverse space after the removal of EEG gradient and 

cardioballistic artifacts.  

Results and discussion: fMRI group analysis shows that the intake of levodopa increases 

hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-

motor network itself, attention network and default mode network. w-PDC analysis shows 

that EEG connectivity among regions of the motor network has the tendency to decrease after 

the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to 

increase their outflow toward the rest of the brain. These findings, even if in a small sample of 

patients, suggest that other resting state physiological functional networks, beyond the motor 

one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the 

affected networks could benefit from the intake of levodopa.   
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1. INTRODUCTION  

1.1 PARKISNON‟S DISEASE 

Parkinson‟s disease (PD) is characterized by asymmetrical Parkinsonism (association of 

bradykinesia with either hypertonia, resting tremor, or postural instability), progressive 

worsening, and initial benefit from levodopa. PD is primarily a disease of the elderly, slightly 

preponderant in males. Its prevalence increases with age from about 0.9% among persons 65 

to 69 years old to 5% among persons 80 to 84 years old (de Rijk, Tzourio et al. 1997). Three 

levels of diagnostic confidence are differentiated: Probable, Possible and Definite. Whereas 

the first two categories are based on clinical criteria alone, the diagnosis of Definite requires 

neuropthological confirmation (Gelb, Oliver et al. 1999). Concerning response to treatment, 

94-100% of patients whose diagnosis was confirmed by autopsy responded to levodopa 

(Hughes, Daniel et al. 1993; Louis, Klatka et al. 1997). The impact of this molecule on the 

course of PD is so important, that a whole issue of the journal “Movement Disorder” (Mov 

Disord., Jan 2015, Volume 30, Issue 1) has been recently dedicated to this topic.  

1.2 FUNCTIONAL CONNECTIVITY  

Biswal and colleagues demonstrated for the first time (1995) that brain regions that are 

functionally related, show temporal correlations in the low frequency component of the 

hemodynamic signal. Functional interactions between brain regions activity, as measured 

using electrophysiological or hemodynamic signals, can be characterized in several ways. On 

the one hand, functional connectivity (FC), the most widely used metrics, measures the 

statistical dependency between different signals obtained by correlation analysis. However, 

such strategy does not account for the direction of the information flow and cannot therefore 

infer causality relationships. On the other hand, effective or directed connectivity investigates 

directional relationships and aims at describing causal influences. Effective connectivity can 

be investigated using model-driven techniques such as structural equation modeling 
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(Tomarken and Waller 2005) and dynamic causal modeling (Friston, Harrison et al. 2003) 

data-driven techniques such as Granger-causal modeling (Granger 1969), or by recording the 

response of remote areas to focal stimulation of a given brain region (cortico-cortical evoked 

potentials; (Keller, Bickel et al. 2011)). Connectivity studies can be applied among a set of 

predefined relevant brain regions selected by the investigator, between one seed region and 

the rest of the brain or at the whole brain scale, using the spatial resolution of the recording 

technique. A detailed description of the various approaches used for measuring connectivity is 

available in studies comparing them to better understand the specific limitations of each 

technique (Astolfi, Cincotti et al. 2005; Smith, Miller et al. 2011; Plomp, Quairiaux et al. 

2014). The results obtained by such connectivity analysis between all pairs of brain regions 

can be represented in so-called connectivity matrices. Graph topological analysis is then 

increasingly applied to reduce the complexity of the data and extract meaningful 

characteristics of the networks (Bullmore and Sporns 2009).  

1.2.a BLOOD OXYGEN LEVEL DEPENDENT (BOLD) SIGNAL AND PHYSIOLOGICAL 

RESTING STATE NETWORKS 

The concept of brain networks originated, and has largely benefited, from the use of resting 

state functional MRI (fMRI). fMRI detects blood oxygen level dependent (BOLD) signal 

change reflecting metabolically active brain areas not only in relation to a specific physiologic 

or pathologic event (Ogawa, Tank et al. 1992), but also in resting state condition (resting 

state-fMRI or RS-fMRI).  

 FC detects zones that exhibit correlated BOLD fluctuations and, as a result, belong to 

the same functional network (Greicius, Krasnow et al. 2003). Studies in monkeys (Shmuel 

and Leopold 2008) and in humans (Fahoum, Zelmann et al. 2013) suggest that FC is related to 

neuronal processes.  
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 FC can be measured while the subject is performing a behavioral and cognitive task 

(task-related FC), or while the subject is not performing any specific task (resting state FC). 

The RSN that is mainly activated in condition of resting wakefulness and deactivated in task 

performing is called Default Mode Network (DMN) (Raichle, MacLeod et al. 2001). This 

physiological RSN is involved in self-referential thoughts and consciousness (Buckner, 

Andrews-Hanna et al. 2008) (Cavanna and Trimble 2006). The concept of “resting” is 

debatable (Centeno and Carmichael 2014). Usually subjects are instructed to lie down in the 

scanner with the eyes closed, and are invited to not sleep. 

Different methods have been developed to extract RSNs, some requiring an “a priori 

hypothesis”, like seed-based approach (Biswal, Yetkin et al. 1995), other do not (i.e., 

independent component analysis (McKeown, Makeig et al. 1998), or bootstrap analysis 

(Bellec, Rosa-Neto et al. 2010; Dansereau, Bellec et al. 2014)). Methodological aspects of 

these techniques are available in specific papers (Lemieux, Daunizeau et al. 2011; Biswal 

2012; Stefan and Lopes da Silva 2013).  

1.2.b ELECTROENCEPHALOGRAPHY (EEG) AND FUNCTIONAL CONNECTIVITY 

Functional connectivity algorithms similar to those used for fMRI BOLD signals can be 

applied to EEG current density estimations in the source space (inverse solution, (Michel, 

Murray et al. 2004) revealing brain areas that are synchronized in specific frequency bands. 

As with fMRI, such analysis can be applied to task-related (De Vico Fallani, Astolfi et al. 

2010), as well as to spontaneous resting-state activity (de Pasquale, Della Penna et al. 2010; 

Brookes, Woolrich et al. 2011). The unique advantage of EEG connectivity analysis is the 

high temporal resolution that allows studying fast fluctuations within large-scale network 

interactions and fast switches between resting-state networks. 

 Partial directed coherence (PDC) is a measure in the frequency domain that quantifies 

to what degree a power change at frequency f predicts a power change in another region at f. 
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So, PDC represents a directional rate of change in the spectral power between two regions: 

large PDC(f) indicates that increased spectral power in the source region yields a large 

increase in the destination region (Schelter, Timmer et al. 2009). However, the PDC 

calculation is independent of the signal spectral power, and therefore large PDC can occur 

from regions that show little spectral power, and vice versa. To increase the physiological 

interpretability, a new method has been developed (Plomp, Quairiaux et al. 2014), consisting 

in weighting PDC values by the instantaneous power spectral density in the source region. 

This weighting reflects the fact that activity in a source region is necessary, although not 

sufficient, in order for the source region to effectively drive activity in other regions.  

PDC can be considered as a measure of “effective connectivity”, because it gives 

information about the direction of the signal flow. However, the term “EEG functional 

connectivity (EEG-FC)” will be used hereunder, both for practical reasons, and in order to use 

the same terminology that can be found in the literature concerning PDC.  

Very few studies compared BOLD-FC and EEG-FC. For this reason, the 

electrophysiological substrate of spontaneous BOLD fluctuations constituting the basis of FC 

is still largely unknown. In animal model, the simultaneous fMRI and intracortical 

neurophysiological recording allowed the detection of correlation between slow fluctuations 

in BOLD signals and concurrent fluctuations in the underlying locally measured neuronal 

activity (Logothetis 2012) (Shmuel and Leopold 2008).  

Measuring different signals, FC studies performed on invasive EEG recordings can 

give complementary insight on functional connectivity of brain network. Such studies are 

ethically feasible for diseases, like epilepsy and PD, which require the implantation of 

intracranial electrodes.  
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1.2.c FUNCTIONAL CONNECTIVITY AND PARKISNON‟S DISEASE 

In the last decades, dysfunctions in the temporal patterning of neuronal discharge have been 

shown to be involved in the development of parkinsonian symptoms (Marsden and Obeso 

1994; Obeso, Rodriguez et al. 1997; Brown and Marsden 1999). Studies in patients 

undergoing functional neurosurgery suggest the existence of an excessive synchronization of 

neurons in the subthalamic nucleus (STN) and globus pallidus (Hurtado, Gray et al. 1999; 

Levy, Hutchison et al. 2000; Levy, Hutchison et al. 2002; Brown 2003) particularly evident in 

the beta band from 13 to 30 Hz. This synchronization is reduced by treatment with levodopa 

(Marsden, Werhahn et al. 2000; Brown, Oliviero et al. 2001; Levy, Ashby et al. 2002; Priori, 

Foffani et al. 2002; Williams, Tijssen et al. 2002). Treatment with levodopa is instead 

associated with synchronization in the gamma band (Cassidy, Mazzone et al. 2002; Williams, 

Tijssen et al. 2002; Foffani, Priori et al. 2003). The finding of frequency- and dopaminergic 

state-dependent coherence between population activity in STN, globus pallidus internus and 

cerebral cortex suggests that these spectral changes in oscillatory activity are at least in part a 

network phenomena. With this assumption, abnormal synchronized neuronal activity in the 

basal ganglia is linearly coupled to activity in the cortex, particularly the motor cortex. Basal 

ganglia disease leads to motor dysfunctions through effects on its executive motor projection 

sites, the motor areas of the cerebral cortex and brainstem. Oscillatory synchronization within 

and between cortical areas is increasingly recognized as a key mechanism in motor 

organization (Leocani, Toro et al. 1997; Farmer 1998; Gerloff, Richard et al. 1998; Andres, 

Mima et al. 1999; Ohara, Mima et al. 2001; Serrien and Brown 2002; Serrien and Brown 

2003; Serrien, Fisher et al. 2003). 
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1.3 AIM 

The aim of this study is to assess if the administration of levodopa to patients with PD 

changes cerebral FC, as revealed by simultaneous recording of hemodynamic (fMRI) and by 

electrical (EEG-PDC) signals. Particularly we hypothesize that the highest changes in FC will 

involve the motor network, which is the most impaired in PD.  

The simultaneous acquisition of EEG and fMRI will allow a better understanding of 

the relationship between functional fMRI and effective EEG connectivity. 
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2. METHODS  

Between January and December 2012 the EEG-fMRI machinery and competences were 

settled at the IRCSS Istituto delle Scienze Neurologiche di Bologna (DIBINEM, Dipartimento 

di Scienze Biomediche e Neuromotorie) (see Appendix).  

2.1 SUBJECTS AND EXPERIMENTAL DESIGN 

Between January 2013 and May 2013 eight patients were recruited at the IRCSS Istituto delle 

Scienze Neurologiche di Bologna (DIBINEM, Dipartimento di Scienze Biomediche e 

Neuromotorie), when meeting the following inclusion criteria:  1) diagnosis of Parkinson‟s 

disease "probable" (at least 3 years of disease); 2) L-dopa therapy (other drugs as 

dopaminergic agents or MAO inhibitors stopped a week before). Exclusion criteria were 1) 

moderate-severe rest tremor; 2) L-dopa induced dyskinesia; 3) evidence of gray or white 

matter abnormalities on conventional MRI (i.e. ischemic lesions); 4) contraindications for MR 

scan (e.g. metallic prosthesis, claustrophobia.). No healthy controls were included, as the goal 

of the study was to compare connectivity patterns before and after the subministration of L-

dopa (i.e. patients themselves without assuming L-dopa are considered as controls). All 

participants provided written informed consent with a protocol approved by the local Ethics 

Committee. 

Data from two patients had to be discarded: in one case due to particularly strong anxiety and 

perspiration during the acquisition (leading to strong movement artifacts on MRI and EEG 

sequences); in the other case the patient didn‟t manage to undergo the acquisition until the end 

of the session due to claustrophobia.  

Therefore data of six patients (4 male, 2 female) were analyzed. Clinical details are illustrated 

in Table 1.  
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N 
Age  

(yrs) 
Sex 

Age at  

onset (yrs) 

Side 

of  

onset 

Disease  

duration 

(yrs) 

HY 

stage 

UPDRS 

off 

UPDRS 

on 

UPDRS 

reduction 

after L-dopa 

(%) 

 

1 46 F 60 R 6 2 19 9 53 

 

2 58 M 55 L 3 2 17 6 65 

 

3 52 F 48 R 4 2 18 10 44 

 

4 46 M 41 R 5 2 17 8 53 

 

5 48 M 54 L 4 2 19 10 48 

  6 57 M 51 R 6 2 15 10 33 

Mean  

(sd) 
      

51 

(6) 
  

5 

(1) 
  

17  

(1) 

9 

(2) 

49* 

 (10) 

 

Table 1: clinical characteristics of the analyzed patients: (HY: Hoehn and Yahr stating of severity of 

Parkinson disease, UPDRS: Unifed Parkinson’s Disease Rating Scale). UPDRS value significantly 

reduced after levodopa administration (Wilcoxon test, non-parametric test as samples are not 

normally distributed  p<0.05).  

 

2.2 EEG-FMRI ACQUISITION 

Brain fMRI acquisitions were performed using a 1.5-T MR medical scanner (GE Medical 

Systems Signa HDx 15) equipped with a 8-channel phased array brain receiver coil (1.5T HD 

8 Channel High Res Head Array for the GE HDx MR System). 

The pulse sequence we used for fMRI was a pure axial GR- EPI; for each run, the first five 

volumes acquired were rejected and slices were acquired in an interleaved way (TR=3000 ms, 

TE=40 ms, flip angle=90°, number of axial slices per volume=33, number of volumes for 

run=130, FOV=24 cm, nv=128, voxel dimensions=1.875x1.875x4 mm). 

During the functional scan, subjects were asked to lay down without moving and awake with 

their eyes closed. 

A high resolution 3D structural image FSPGR (Fast SPoiled GRadient) with pure axial slices 

was acquired too (TR=12 ms, TE=5 ms, FOV=25.6 cm, nv=256, voxel dimension=1x1x1 

mm). 
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EEG was recorded simultaneously by using MR compatible equipment (BrainVision, 

Germany): BrainCap MR (64 channels), BrainAmp MR (amplifier, fiber optic cable and the 

USB2 Adapter Box), V-Amp (digital DC amplifier with 16 monopolar channels and 2 

auxiliary channels). The recording program was BrainVision Recorder and EEG acquisitions 

were performed with a resolution of 0.1μV and a sampling frequency of 5kHz. Pulse 

(heartbeat) was monitored by ECG recorded at the same sampling frequency by means of a 

specific ECG cable, as it is useful in removing the cardiac artefact from the EEG trace. 

MR compatible cap was placed on the patient‟s head before the MR scans. Impedences were 

kept below 5 KOhm.  

All patients were scanned twice in the same morning immediately before („OFF medication‟ 

condition) and after („ON medication‟ condition) L-dopa administration. To avoid possible 

systematic effects of circadian origin, all patients were scanned on the same week-day, 

starting with the first scan at the same day time of the morning. 

Each patient was examined firstly before the intake of the first daily dose of L-dopa. He 

underwent UPDRS (Unified Parkinson‟s Disease Rating Scale) testing (OFF state - without 

taking L-dopa). Then the EEG cap was placed by neurophysiopathology technicians and the 

patient was positioned in the scanner (using fixed landmarks on the head as reference for 

position). 

After a three plane localizer and a calibration sequence, two runs of resting state EEG-fMRI 

were acquired (6min45s and 130 volumes each) during the OFF state. Then the patient exited 

the scanner and took L-dopa (100mg) and he was tested clinically every 5−10min until the 

start of the L-dopa effect (mean time 30min) and UPDRS testing was performed, in the ON 

state. 
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The patient was repositioned in the scanner (using the previous landmarks) and two runs of 

resting state were acquired (6min45s each one, 130 volumes) during the ON state, with the 

same technical parameters as the acquisition during the OFF state. 

Finally, the high-resolution 3D structural image was acquired, during the ON state, when the 

patient was still wearing the EEG cap. 

2.3 EEG-FMRI DATA PROCESSING AND ANALYSIS 

2.3.A FMRI 

fMRI data pre- processing and processing have been performed using software tools within 

FSL (FMRIB‟s software Library, FMRIB, Oxford, Uk, http://fsl.fmrib.ox.ac.uk/fsl/ version 

4.1.4, (Jenkinson, Beckmann et al. 2012), and within AFNI (AFNI: 

http://afni.nimh.nih.gov/afni/  version AFNI_2008_07_18_1710, (Cox 1996)). Functional data 

preprocessing after physiological noise correction of raw data, was carried out using FSL 

tools. A high pass filter cut off set at 100s, the motion correction by the tool of FSL, 

MCFLIRT, the slice timing correction (interleaved), the brain extraction by BET, the spatial 

smoothing performed with a Gaussian filter of FWHM 6mm, the FILM prewhitening and the 

estimation of head motion parameters which were added as confounding variables in the 

model. 

To perform functional connectivity analyses we defined two regions of interest (ROI): the 

supplementary motor area - SMA (right and left) and the precentral gyrus (right and left) (M1 

- primary motor area); SMA is critical in initiating movements, whereas bilateral M1 are 

critical in motor execution.  

The seeds were drawn manually by a neurologist (R.G.) in the MNI space, as spheres centered 

in the coordinates reported in Table 2 and with a radius of 5mm. 

 

 

http://fsl.fmrib.ox.ac.uk/fsl/
http://afni.nimh.nih.gov/afni/
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seed x y z 

R-PG (right precentral gyrus)  23 (44.00) 59 (-8.00) 55 (38.00) 

L-PG (left precentral gyrus)  67 (-44.00) 59 (-8.00) 55 (38.00) 

R-SMA (right SMA) 42 (6.00) 63 (0.00) 63 (54.00) 

L-SMA (left SMA) 48 (-6.00) 63 (0.00) 63 (54.00) 

Table 2: Coordinates (in MNI standard space, voxels (mm)) of spherical seed’s centres) 

 

For the first-level analysis the GLM was performed considering as regressor the averaged 

time series of each seed. Z statistic images were thresholded using clusters determined by Z = 

2.3 and a family-wise-error corrected cluster significance threshold of p = 0.05 was applied to 

the suprathreshold clusters. 

Functional data were aligned to structural images (within-subject) initially using linear 

registration (FMRIB‟s Linear Image Registration Tool, FLIRT). Structural images were 

transformed to standard space using a non-linear registration tool (FNIRT), and the resulting 

warp fields applied to the functional statistical summary images. 

The second level (within-subject analysis or between-session analysis) fixed effects analysis 

combined the data of  the two resting state runs in the OFF-state and two runs in the ON-state, 

obtaining each subject's mean response. 

The third-level analysis was the group statistical analysis. We used a mixed-effects regression 

model in order to model the subject. A Paired Two-Group Difference (Two-Sample Paired T-

Test) was performed to compare the two groups. We compared, for the same group of 

patients, activations and deactivations in the connectivity with each of the four seeds, before 

(OFF state) and after (ON state) the assumption of L-dopa.  
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Finally, the z-statistic images were thresholded and underwent a clustering analysis. The 

contrasts were performed both for OFF versus ON and ON versus OFF. 

To quantify the significant variation in connectivity with the seeds, brain areas showing 

increased connectivity were defined on the basis of AAL atlas (Tzourio-Mazoyer, Landeau et 

al. 2002), Broadman areas were identified according to the overlapping between AAL areas 

and Broadman areas as defined in in an atlas included in WFU Pickatlas 3.0.4 (Lancaster, 

Woldorff et al. 2000; Maldjian, Laurienti et al. 2003). 

We did not explore whether the variations of brain connectivity correlate with the disease 

severity because of the homogeneity of the UPDRS motor score in the OFF state. 

2.3.b EEG  

Patients underwent 63 channels EEG recording (reference electrode Cz). Brain Vision 

Analyser software (Brain Products, Munich, Germany) was used for off-line correction of the 

gradient artifact and filtering of the EEG signal (Allen, Josephs et al. 2000). A 50-Hz low-

pass filter was also applied to remove the remaining artifact. The ballistocardiogram artifact 

and eye-movements and blinking artifacts were removed by independent component analysis 

(Benar, Aghakhani et al. 2003). Then, EEG signals were down-sampled to 250 Hz. The so 

obtained EEG signals, both in OFF period and ON period, were examined by visual 

inspection to remove sections containing muscular artifacts and sleep patterns. In both 

condition, the artifact-free sections were concatenated. 

2.3.b.1 REGIONAL ELECTRICAL SOURCE IMAGING (ESI) 

The forward model consisted in a simplified realistic head model with consideration of skull 

thickness (Locally Spherical Model with Anatomical Constraints [LSMAC] (Birot, Spinelli et 

al. 2014; Megevand, Spinelli et al. 2014)). From a template MNI brain MRI, around 5,000 

solution-points were distributed equally in the gray matter, which represented the solution 

space. A linear distributed inverse solution with biophysical constraints was used to calculate 
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the three-dimensional (3D) current density distribution (Local Auto-Regressive Averages 

[LAURA]), (Grave de Peralta Menendez, Murray et al. 2004). The brain was parcelled into 82 

regions of interest (ROIs) using the automated anatomic labeling (AAL) digital atlas 

(Tzourio-Mazoyer, Landeau et al. 2002) coregistered with the MNI brain using the inverse 

segmentation matrix obtained in SPM8 (www.fil.ion.ucl.ac. uk/spm).  

2.3.b.2 WEIGHTED PARTIAL DIRECTED COHERENCE 

For each patient we calculated the power spectral density (PSD) using the Fast Fourier 

Transform (FFT). The PDC results (for both ON and OFF epochs) were analyzed for each 

frequency band. To determine the PSD for each voxel in the inverse space, FFT was 

computed for each scalp electrode, and source estimation was then applied to this frequency-

domain complex data. The mean PSD for each patient was computed and normalized (0–1) 

across regions and frequencies (1–40 Hz) by subtracting the minimum power and dividing by 

the range. PDC was computed using a multivariate autoregressive model (MVAR) of order 

10. PDC is defined in terms of MVAR coefficients transformed to the frequency domain. In 

this study, PDC values were scaled (in the same way as the ST) and multiplied by the spectral 

power (weighted PDC, wPDC). A full description of the wPDC method used can be found in 

previous work (Plomp, Quairiaux et al. 2014; Coito, Plomp et al. 2015). For each subject, we 

computed the wPDC for each epoch and frequency. We analyzed then the average wPDC for 

each subject in 3 frequency bands: theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz). For 

each of these bands, we computed the summed outflow (Coito et al, 2015). We then assessed 

the whole-brain connectivity from each region. For specifically investigating the motor cortex 

interactions, we analysed the connectivity results only in between the left and right precentral 

gyrus and SMA regions. For each patient, the summed outflow of each region at each time 

point of the OFF segments was compared to each time point of the ON segments with a 

nonparametric test (Mann-Whitney-Wilcoxon, p < 0.05). EEG and ESI analysis were carried 

out using the freely available software Cartool (brainmapping.unige.ch/cartool) and Matlab 

http://www.fil.ion.ucl.ac/
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(MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, 

Massachusetts, United States). For some figures, we used a modified version of the e-

connectome toolbox (He, Dai et al. 2011). 
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3. RESULTS  

 

3.1 FMRI 

A statistically significant increased connectivity with all four seeds was found for the contrast 

ON vs. OFF state with different extent and within different areas. Figure1 shows group 

analysis results, overlapped to the MNI template. 

The connectivity areas that showed a positive significant difference between ON state and 

OFF state, averaging all 6 patients, are displayed in hot color. Figure 1 box R-PG refers to 

connectivity with right precentral gyrus, Figure 1 box L-PG with left precentral gyrus, Figure 

1 box R-SMA with right SMA and Figure 1 box L-SMA with left SMA. Images show sagittal 

views of the main areas in which we found significant clusters of voxels.  

In details, the brain areas showing significantly stronger connectivity with the four seeds for 

the contrast ON vs. OFF states are reported in Table 3-6. 

Conversely, the group analysis showed no significant variations in connectivity for the 

contrast OFF state vs. ON state, thus there are no brain areas in which the connectivity with 

the four seeds significantly decreased after the intake of L-dopa. 

 

 

 

Figure 1 – Functional connectivity in the group analysis of ON state vs. OFF state; box R-PG 

connectivity with seed in right precentral gyrus (a: occipital cortex -green arrow-, motor areas -

orange arrow-, b: angular gyrus, c: superior parietal lobe, d: precuneus, e: superior frontal gyrus); 
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box L-PG connectivity with seed in left precentral gyrus  (a: motor areas, d: angular gyrus, f: 

cingulum, e: precuneus, b: superior frontal gyrus, c: superior parietal lobe, g: occipital cortex); box 

R-SMA connectivity with seed in right SMA (a: frontal pole – superior frontal gyrus); box L-SMA 

connectivity with seed in left SMA (a,b : motor areas, c: precuneus, d: middle/superior frontal gyrus, 

e: superior parietal lobe). 

 

 

BRAIN AREAS  
BRODMANN  

AREAS 
VOXELS 

MAX 

INTENSITY 

COORDINATES MAXIMUM 

VOXEL  

x y z 

Angular gyrus L 39, 19, 22 72 2.83 66 39 53 

Angular gyrus R 39, 19, 22 685 3.29 25 31 60 

Middle Cingulate L 31, 32, 23, 24 0 0.00 0 0 0 

Middle Cingulate R 31, 32, 23, 24 13 2.57 41 39 52 

Posterior Cingulate L 31, 23, 118 0 0.00 0 0 0 

Posterior Cingulate R 31, 23, 118 40 3.01 40 43 49 

Middle Frontal L 6, 8, 9, 10 259 2.88 56 65 60 

Middle Frontal R 6, 8, 9, 10 211 3.04 22 74 53 

Superior Frontal L 6, 8, 9, 10 132 2.97 55 69 61 

Superior Frontal R 6, 8, 9, 10 257 2.91 33 74 59 

Superior Occipital L 18, 19, 7, 31 187 2.98 53 20 48 

Superior Occipital R 18, 19, 7, 31 53 2.81 32 28 58 

Superior Parietal L 7, 19 167 2.91 59 36 61 

Superior Parietal R 7, 19 115 2.95 28 31 61 

Postcentral gyrus L 1, 2, 3, 40, 43 201 2.90 73 57 57 

Postcentral gyrus R 1, 2, 3, 40, 43 121 2.93 12 59 47 

Precentral gyrus L 3, 4, 6 15 2.54 59 64 60 

Precentral gyrus R 3, 4, 6 61 3.05 22 63 50 

Precuneus L 31, 7, 23, 29 57 2.79 50 28 61 

Precuneus R 31, 7, 23, 29 141 2.85 39 34 56 

SMA L 6 18 2.81 46 75 60 

SMA R 6 1 2.33 39 75 59 

 

 

Table 3. List of main brain areas showing a significant variation in connectivity with the right 

precentral gyrus when comparing the ON state versus the OFF state (z-statistic map, from a 2 samples 

paired t-test, p < 0.05, cluster correction). Coordinates are given in voxels, referred to the MNI space. 

Brain areas were defined on the basis of AAL atlas (N. Tzourio-Mazoyer 2002), Broadman areas were 

identified according to the overlapping between AAL areas and Broadman areas as defined in in an 

atlas included in WFU Pickatlas 3.0.4. 
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BRAIN AREAS  
BRODMANN  

AREAS 
VOXELS 

MAX 

INTENSITY 

COORDINATES MAXIMUM 

VOXEL 

x y z 

Angular gyrus L 39, 19, 22 33 2.860074 68 24 51 

Angular gyrus R 39, 19, 22 195 2.970902 25 31 60 

Middle Cingulate L 23, 24, 31, 32 7 2.498789 49 70 54 

Middle Cingulate R 23, 24, 31, 32 3 2.455251 42 46 51 

Posterior Cingulate L 23, 31, 118 4 2.739749 44 45 50 

Posterior Cingulate R 23, 31, 118 23 2.911491 41 44 50 

Middle Frontal L 6, 8, 9, 10 696 3.287124 59 69 64 

Middle Frontal R 6, 8, 9, 10 361 3.309958 25 72 60 

Superior Frontal L 6, 8, 9, 10 413 3.198812 58 81 54 

Superior Frontal R 6, 8, 9, 10 356 3.050314 36 75 64 

Superior Occipital L 18, 19, 7, 31 130 3.037495 57 26 54 

Superior Occipital R 18, 19, 7, 31 39 2.913447 29 26 58 

Superior Parietal L 7, 19 207 2.896308 53 29 63 

Superior Parietal R 7, 19 17 2.772044 31 25 60 

Postcentral gyrus L 2, 3, 40, 43 235 2.863164 72 56 56 

Postcentral gyrus R 2, 3, 40, 43 134 3.112937 13 60 50 

Precentral gyrus L 3, 4, 6 154 2.988253 61 63 64 

Precentral gyrus R 3, 4, 6 264 3.078538 29 59 63 

Precuneus L 7, 31, 23, 29 59 2.95629 49 26 60 

Precuneus R 7, 31, 23, 29 6 2.347032 35 25 59 

SMA L 6 150 3.299979 45 64 64 

SMA R 6 58 3.252035 44 64 64 

 

 

Table 4. List of main brain areas showing a significant variation in connectivity with the left 

precentral gyrus when comparing the ON state versus the OFF state (z-statistic map, from a 2 samples 

paired t-test, p < 0.05, cluster correction).  
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BRAIN  

AREAS  

BRODMANN  

AREAS 
VOXELS 

MAX 

INTENSITY 

COORDINATES MAXIMUM 

VOXEL 

x y z 

Angular gyrus L 39, 19, 22 0 0 0 0 0 

Angular gyrus R 39, 19, 22 0 0 0 0 0 

Middle Cingulate L 23, 24, 31, 32 0 0 0 0 0 

Middle Cingulate R 23, 24, 31, 32 0 0 0 0 0 

Posterior Cingulate L 23, 31, 118 0 0 0 0 0 

Posterior Cingulate R 23, 31, 118 0 0 0 0 0 

Middle Frontal L 6, 8, 9, 10 0 0 0 0 0 

Middle Frontal R 6, 8, 9, 10 363 3.09 25 72 58 

Superior Frontal L 6, 8, 9, 10 0 0 0 0 0 

Superior Frontal R 6, 8, 9, 10 158 2.99 36 77 57 

Superior Occipital L 18, 19, 7, 31 0 0 0 0 0 

Superior Occipital R 18, 19, 7, 31 0 0 0 0 0 

Superior Parietal L 7, 19 0 0 0 0 0 

Superior Parietal R 7, 19 0 0 0 0 0 

Postcentral gyrus L 2, 3, 40, 43 0 0 0 0 0 

Postcentral gyrus R 2, 3, 40, 43 0 0 0 0 0 

Precentral gyrus L 3, 4, 6 0 0 0 0 0 

Precentral gyrus R 3, 4, 6 11 2.61 26 64 61 

Precuneus L 7, 31, 23, 29 0 0 0 0 0 

Precuneus R 7, 31, 23, 29 0 0 0 0 0 

SMA L 6 0 0 0 0 0 

SMA R 6 0 0 0 0 0 

 

Table 5. List of main brain areas showing a significant variation in connectivity with the right 

supplementary motor area when comparing the ON state versus the OFF state (z-statistic map, from a 

2 samples paired t-test, p < 0.05, cluster correction. 
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BRAIN AREAS  
BRODMANN 

 AREAS 
VOXELS 

MAX 

INTENSITY 

COORDINATES MAXIMUM 

VOXEL 

x y z 

Angular gyrus L 39, 19, 22 0 0 0 0 0 

Angular gyrus R 39, 19, 22 51 2.80 26 34 54 

Middle Cingulate L 23, 24, 31, 32 78 3.19 48 51 60 

Middle Cingulate R 23, 24, 31, 32 31 2.60 38 55 61 

Posterior Cingulate L 23, 31, 118 0 0 0 0 0 

Posterior Cingulate R 23, 31, 118 5 2.63 40 44 50 

Middle Frontal L 6, 8, 9, 10 469 3.36 62 72 60 

Middle Frontal R 6, 8, 9, 10 398 3.32 33 75 57 

Superior Frontal L 6, 8, 9, 10 196 3.12 56 61 63 

Superior Frontal R 6, 8, 9, 10 233 3.24 33 74 57 

Superior Occipital L 18, 19, 7, 31 144 3.07 51 23 47 

Superior Occipital R 18, 19, 7, 31 0 0 0 0 0 

Superior Parietal L 7, 19 162 3.35 60 39 64 

Superior Parietal R 7, 19 191 3.12 31 37 64 

Postcentral gyrus L 2, 3, 40, 43 373 3.23 68 47 63 

Postcentral gyrus R 2, 3, 40, 43 164 3.19 32 38 63 

Precentral gyrus L 3, 4, 6 370 3.38 61 58 61 

Precentral gyrus R 3, 4, 6 250 3.46 29 59 61 

Precuneus L 7, 31, 23, 29 8 2.46 53 35 43 

Precuneus R 7, 31, 23, 29 62 2.81 38 36 54 

SMA L 6 57 2.88 46 62 63 

SMA R 6 97 2.84 39 52 64 

 

 

Table 6. List of main brain areas showing a significant variation in connectivity with the left 

supplementary motor area when comparing the ON state versus the OFF state (z-statistic map, from a 

2 samples paired t-test, p < 0.05, cluster correction).  
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3.2 EEG 

By calculating the connections among the 4 seeds of the motor system (right and left pre-

central gyri; right and left SMA) we did not find any significant difference in PDC in ON vs. 

OFF (p>0.05) for all the studied frequencies (alpha, beta, theta) (figures 2, 3, 4). Although not 

significant, a trend toward a decreased FC in ON vs. OFF among the different structures of 

the motor system can be observed, for each frequency.  

 

Figure 2: connections among right and left pre-central gyri and right and left SMA in the apha band 
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 Figure 3: connections among right and left pre-central gyri and right and left SMA in the beta band 

 

Figure 4: connections among right and left pre-central gyri and right and left SMA in the theta band 
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We calculated if the motor system was augmenting its outflow, in On vs. OFF, toward the rest 

of the brain. We did not find any significant difference (figure 5) for any considered 

frequency (p>0.05). As before, we can observe a tendency toward a decreased summed 

outflow from the motor system, especially concerning the alpha and the theta bands.   

 

Figure 5: summed outflow from the 4 ROIs in ON and in OFF in the alpha, beta and theta band 

 

When we performed the PDC from each ROI of the whole brain, the only structures who 

showed a strong tendency (p<0.06) in changing their summed outflow in ON vs. OFF are 

represented in figures 6, 7, and 8. They belong essentially to the DMN.     
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Figure 6: On the left: outflow for each ROI in the alpha band, in OFF. On the right: same 

representation in ON. Regions showing a strong tendency to change their outflow in ON vs. OFF are:  

posterior cingulates, left amygdala and hippocampus, right anterior cingulate, right lingual gyrus.  

  

 

Figure 7: On the left: outflow for each ROI in the beta band, in OFF. On the right: same 

representation in ON. Regions showing a strong tendency to change their outflow in ON vs. OFF are:  

left amygdale, bilateral hippocampi, and right anterior cingulate.  
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Figure 8: On the left: outflow for each ROI in the theta band, in OFF. On the right: same 

representation in ON. Regions showing a strong tendency to change their outflow in ON vs. OFF are:  

posterior cingulate, left amygdale, bilateral hippocampi, and right anterior cingulate.  

 

 

Whereas in OFF the strongest connections originate from the posterior regions of the DMN, 

in ON they come from the anterior cingulated region, another region of the DMN. However, 

this difference was not statistically significant (figures 9, 10, 11).  
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Figure 9: On the left: connection between each ROI in the alpha band, in OFF. On the right: same 

representation in ON. In the OFF phase the main driver of connections is the posterior cingulate. In 

ON is the anterior cingulate. Only the strongest 30% connections are shown.     

 

Figure 10: On the left: connection between each ROI in the beta band, in OFF. On the right: same 

representation in ON. In the OFF phase the main driver of connections is the right hippocampus. In 

ON is the anterior cingulate. Only the strongest 30% connections are shown.        
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Figure 11: On the left: connection between each ROI in the theta band, in OFF. On the right: same 

representation in ON. In the OFF phase the main driver of connections is the right hippocampus. In 

ON is the anterior cingulate. Only the strongest 30% connections are shown.        
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4. DISCUSSION  

 

This is to our best knowledge, the first study that aimed to assess the effect of levodopa in a 

population of patients with PD, through resting state functional connectivity measured 

simultaneously with EEG and fMRI.   

FMRI FC 

Concerning fMRI data, an increased connectivity with all four seeds, with different extent and 

within different areas after the intake of L-dopa, can be identified as a general trend.  

Main areas connected with the right precentral gyrus presenting an increased FC in ON vs. 

OFF are: i) the cingulate gyrus (both anterior and posterior) and the precuneus, which are 

areas involved in the default mode network (DMN), ii) the parietal and occipital areas, 

involved in attentional and visuo-spatial activities, iii) the dorsal lateral prefrontal cortex 

(bilateral) and the superior frontal gyrus, related to performance monitoring and executive 

functions, iv) motor and sensorimotor areas, such as the precentral gyrus, the postcentral 

gyrus, and the SMA, involved in motor initiation. 

Left precentral gyrus and L SMA showed the same increased connectivity in ON vs. OFF as 

the right precentral gyrus, although with fewer significant voxels.  

However, when the seed was placed in the R-SMA there was a smaller number of voxels 

showing significant differences between ON and OFF, all belonging to the sensory-motor 

network.  

Brain areas that were more involved (i.e. connected with the seeds in primary and 

supplementary motor cortex) during the ON state rather than the OFF state may be ascribable 

essentially to three brain networks: the sensorimotor itself, the dorsal-attention and the default 

mode. 
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The sensorimotor network deals with the integration of sensitive and motor stimuli, and has 

been shown to have characteristic activation in pre- and post-central gyri extending from the 

superior bank of the Sylvian fissure to the medial wall of the interhemispheric fissure, 

including the SMA (Beckmann, DeLuca et al. 2005). The dorsal attention system, observed 

for the first time during resting state by Fox and colleagues (Fox, Corbetta et al. 2006) is 

involved in voluntary orientation and attention. It is mainly represented by the following 

areas: the Intraparietal sulcus (IPS) and the Frontal Eye Field (FEF), junction of the precentral 

and superior frontal sulcus. The default mode network is described as the collection of brain 

structures that are particularly active during rest and deactivated when specific goal-directed 

behaviour is needed (Damoiseaux, Rombouts et al. 2006). Core regions associated with the 

brain‟s default network are the ventral medial prefrontal cortex, the posterior 

cingulate/retosplenial cortex, the inferior parietal lobule, the lateral temporal cortex, the dorsal 

medial prefrontal cortex, and according to some authors, the hippocampal formation 

(Buckner, Andrews-Hanna et al. 2008). This network is active when retrieving and processing 

past autobiographical events (Greicius, Krasnow et al. 2003). 

DMN 

The increased connection between motor network and DMN areas after the intake of 

L-dopa may be due to the fact that patients were more relaxed, and more ready to prepare and 

perform movements. In a recent Voxel Based Morphometry and fMRI study on cognitively 

unimpaired PD (Tessitore, Esposito et al. 2012) it has been shown that PD patients, compared 

to controls, showed a decreased functional connectivity within the DMN (right medial 

temporal lobe and bilateral inferior parietal cortex). This impairment was not correlated with 

the total levodopa equivalent daily dose. Nevertheless, it has benne demonstrated 

(Krajcovicova, Mikl et al. 2012) that dopaminergic therapy has a specific effect on both the 

DMN integrity and task-related brain activations in cognitively unimpaired PD patients, and 

that these effects seem to be dose-dependent; this may be consistent with the fact that the 
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posterior cingulate cortex appears to be more connected with M1 and supplementary motor 

area after L-dopa intake, as an improvement towards motor preparation and execution. 

Furthermore there were no differences in DMN integrity between PD on dopaminergic 

medication and healthy controls, suggesting therefore that dopaminergic therapy may have 

specific effects on default mode integrity, helping to relatively normalize activation within 

DMN in PD patients.  

Attention network  

A notable aspect of our results is that many structures of attentive and executive 

networks are more connected with primary and supplementary motor areas after the intake of 

L-dopa, suggesting that dopaminergic medication may help PD patients with their executive 

dysfunction, giving them notable improvements in the cognitive, attentional and executive 

steps, essential in the phase of preparation of a movement. Therefore medication with L-dopa 

also seems to have positive effects during rest, and not only during the performance of 

movements. 

In a study by Tessitore et al., (Tessitore, Amboni et al. 2012) attentional network in 

PD patients with and without freezing (typical PD symptom, consisting in a sort of motor 

block due to a visible obstacle, thus related to visual perception) were analysed, founding a 

reduced activity in patients with freezing. Usually this symptom is not present at the early 

stage of the disease and none of our patients presented this problems; later it is typically more 

present when the patients are without medication. From our results we could hypothesize that 

freezing may be related to a dysfunction of the visuo-spatial network (related to the 

attentional areas, involving mainly the posterior parietal cortex and middle/inferior frontal 

gyrus, Table 3 and Table 4), present even before the problem manifests itself. Prospective 

longitudinal studies could confirm our hypothesis.  

One of the first fMRI study on PD (Rowe, Stephan et al. 2002) investigated activations 

and connectivity during the performance of tasks (a paced overlearned motor sequence task, 
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with and without an additional attention task): motor and attentional structures were found to 

be primarily involved. Specifically, only in control subjects, and not in PD patients, an 

attentional modulation of connectivity was observed: the attention to action leads to further 

activations of prefrontal, parietal, para-cingulate cortex and SMA. The engagement of the 

attentional control network in PD was recently investigated (Shine, Halliday et al. 2014): a 

decreased activation of frontal and parietal hubs of the dorsal attention network were found, 

supporting  the hypothesis that visual misperceptions sometimes found in PD, may arise from 

disrupted processing across attentional networks. 

Sensorymotor network  

In our study the intake of L-dopa increases the functional connections of posterior cingulate 

cortex and precuneus with sensorimotor system. This finding is in agreement with what found 

by van Eimeren and colleagues (van Eimeren, Monchi et al. 2009). They investigated 

dysfunctions of the default mode in PD patients and found deficits in executive tasks, which 

include planning and set shifting, observing less deactivation of posterior cingulate cortex and 

precuneus. This suggests an impairment of the DMN during executive task in PD patients. 

Similarly, Esposito and colleaugues (Esposito, Tessitore et al. 2013) studied functional 

connectivity changes within the sensorimotor resting state network in drug-naive PD patients 

after acute levodopa administration. They showed that levodopa enhanced the sensorimotor 

network functional connectivity in the supplementary motor area (where drug-naive patients 

exhibited reduced signal fluctuations) and that, at the spectral frequency level, levodopa 

stimulated these fluctuations in a selective frequency band of the sensorimotor network. They 

did not observe any compensatory effects in other regions of sensorimotor network, assuming 

that maybe the compensatory effects may arise only during motor performance and not in 

resting state. 
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EEG CONNECTIVITY 

EEG-fMRI is a method that explores the complementary strengths of these tools, which are, 

the high temporal resolution of EEG and the high spatial resolution of fMRI. The directed 

connectivity was quantified by calculating the PDC from EEG signals. This study represents 

the first application of PDC analysis in the EEG acquired inside the fMRI for a clinical 

purpose. 

We were not able to confirm our “a priori hypothesis”, i.e. regions belonging to the motor 

network change their EEG coherence in the ON vs. OFF phase, while the patient is in resting 

state. Nevertheless, our results suggest some interesting trends, although they are not 

statistical significant. The first is that in ON the FC among the 4 seeds in the motor system is 

decreased when compared to the OFF phase. A previous resting state scalp EEG study 

(Silberstein, Pogosyan et al. 2005) showed that the coherence between C3 and C4 over 10–35 

Hz correlated with the severity of parkinsonism, and this cortical coupling was decreased by 

both L-dopa and subthalamic nucleus (STN) stimulation (linked to clinical improvement). 

Our results, although not statistical significant, show the same tendency toward a decreased 

coherence after the intake of levodopa. In the literature the effect of levodopa on coherence is 

still debated: indeed recent studies could not confirm this effect of pharmacological 

intervention on cortical coherence. Litvak and colleagues (Litvak, Jha et al. 2011) used 

magnetoencephalography (MEG) and subthalamic local field potential recordings, to 

investigate resting connectivity in PD patients, the main findings being relative to the 

attentional and execution functions. He observed two major spatio-temporal patterns of 

coupling between the cerebral cortex and subthalamic nuclei: one in the alpha frequency band 

and one in the beta frequency band. The former showed coherence between subthalamic area 

and bilateral temporo-parietal cortex and brainstem, and is therefore likely to have an 

attentional role. The latter involved the subthalamic area and ipsilateral anterior parietal and 
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frontal cortices, and is likely to be involved in setting executive functions. Interestingly, in 

this study dopaminergic medication increased this beta coherence between subthalamic 

regions and the prefrontal cortex. Lalo and colleagues (Lalo, Thobois et al. 2008) investigated 

the direct transfer function between STN and cortex at rest and during movement, with and 

without pharmacological dopaminergic input. The authors simultaneously recorded scalp 

electroencephalographic activity and local field potentials from depth electrodes across 

several frequency bands:  also in this study the coherence in the beta band did not change after 

dopaminergic therapy. Pollok and colleagues (Pollok, Kamp et al. 2013) investigated with 

MEG the coherence among SMA and motor area, during resting state and during isometric 

muscular contraction, before and after levodopa intake. Interestingly, they found an increased 

SMA–M1 coherence in OFF, during isometric contraction, that was remedied by levodopa. 

Nevertheless, coherence strength did not differ after intake of levodopa in resting state, 

suggesting that SMA–M1 coherence is particularly related to movement execution.  

The second interesting trend appearing from our study is that, when considering the 

whole brain outflow, the only regions showing a strong tendency to change their connectivity 

were the ones belonging to the DMN. The importance of this network in patient with PD has 

been discussed above; particularly, it seems that dopaminergic therapy has a specific effect on 

both the DMN integrity and task-related brain activations in cognitively unimpaired PD 

patients, and that these effects seem to be dose-dependent (Krajcovicova, Mikl et al. 2012). 

However we have to consider that patients were acquired while in resting state, and that in 

this condition the DMN is the most active network of the brain. For this reason, the change in 

FC among these structures could represent a statistical bias.  

METHODOLOGICAL CONSIDERATIONS  

Beside the pathophysiological explanation for the absence of significant PDC findings 

in our study, we have to mention the possible role of the method limitations. Recording the 
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EEG in the MRI induces severe artifacts in the EEG. Indeed the quality of the EEG within the 

scanner is reduced compared to the EEG outside, because of the presence of conducting 

electrodes and wires within the static magnetic field itself. Several factors are involved in this 

quality impairment, such as small movements of the electrode wires caused by subtle head 

movements or vibrations of the scanner (Gotman, Kobayashi et al. 2006). The most important 

artifact that affects the EEG inside the scanner is the gradient artifact, whose amplitude is of 

the order of 50 times the background EEG. In order to remove it, the most widely used 

method consists of estimating the artifact and subtracting it from each frame (Allen, Josephs 

et al. 2000). By calculating the frequency removed by the gradient artifact corrections, we 

obtain a frequency inside the beta band, which will be for this reason removed from the 

analysis. Furthermore, by removing the cardioballistic artifact through Independent 

Component Analysis, the risk of removing independent components of signal, which are 

actually coming from the brain, cannot be excluded. To eliminate this hypothesis it will be 

necessary to perform the analyses on the EEG cleaned only for the gradient artifact. The 

influence of the removal of MRI gradient and ECG artifacts on multivariate measures among 

EEG signals, such as PDC (and other brain connectivity measures) is still unknown. Further 

exploration of these effects in different subject groups, using varying acquisition protocols 

and scanning equipment, should be performed to evaluate the sensitivity of the methods to 

these artifacts.   

It is worthy to consider that, when comparing the differences in FC in the ON phase 

vs. the OFF phase, we observe a simultaneous increased BOLD-FC and a decreased EEG-FC. 

The electrophysiological substrate of spontaneous BOLD fluctuations constituting the basis of 

FC is still largely unknown. Very few studies come from implanted patients with epilepsy that 

not respond to medical treatment. Bettus et al. (Bettus, Ranjeva et al. 2011) studied the 

electrophysiological correlates of BOLD signal fluctuations in structures exhibiting 
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epileptiform discharges, by measuring in different session, correlations between intracerebral 

EEG and resting-state fMRI in five patients with temporal lobe epilepsy. They found an 

increase in connectivity measured from the intracerebral EEG but a decrease of connectivity 

measured from the BOLD signal in regions with epileptiform abnormalities relative to non-

affected areas. This discrepancy, present also in our study, obtained by measuring 

connectivity of two signals of different nature (electrical and hemodynamic), demonstrates the 

challenge of interpreting connectivity changes. It could also suggest an alteration of 

neurovascular coupling in chronic diseases, such as temporal lobe epilepsy and PD.   

The lack of statistical significance on the EEG-FC analysis could arise from the small 

sample of the studied population; the fact that the significance is present in the BOLD-FC 

analyses and not in the EEG-FC could be linked to the different statistical power of the two 

different analyses methods, as well as to the small number of the recording electrodes.  

Nevertheless this is a pilot study performed by advanced acquisition methods and 

sophisticated analysis in a homogeneous population. Further acquisition with a 128-or 256-

electrodes EEG on largest sample populations should be performed to better explore the real 

limits and / or advantages of this technique on this field.    
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5. APPENDIX  

EEG-fMRI was learned by Dr. Pittau during a fellowship of almost 3 years (2009-2011) at the 

Montreal Neurological Institute (McGill University, Canada), with the supervision of Prof. 

Jean Gotman. The development of EEG-fMRI at UNIBO has been done, starting from 

January 2012, with our own hardware and software and with the continue consultation and 

support with the Montreal Neurological Institute, which is an internationally recognized and 

specialized centre on this technique.  Different steps were necessary:  

1. MRI compatible EEG setting: EEG system that is able to acquire electric signal inside 

the MRI. BrainVision 2.0 (Brain Products, solution for neurophysiological research, 

Germany), software for recording and analyzing this type of signal, was installed. All 

Brain products have a CE certification. They are: a. BrainCap ; b. BrainAmp MR ; c. 

Brainvision Recorder ; d. Brainvision Analyzer. 

a. "BrainCap". EEG electrodes are usually metallic and therefore it is possible that the 

rapidly changing magnetic fields associated with scanning will induce a current which 

could lead to heating and localized burns to the patient‟s scalp. It has been shown that 

using nonferrous electrodes and leads and avoiding current loops involving the patient, 

result in safe recordings. "BrainCap" is a cap where there are 32/64 a-magnetic 

electrodes made with Ag or Ag-Cl. They have circular shape and a "hole" where 

conducting paste is placed. They are placed in plastic supports: this allows a good 

adhesion between the electrode and the scalp. The coils of the electrodes are collected 

in the vertex area of the patient to avoid loops.  

b. “BrainAmp MR” is a compact and screened amplifier, a-magnetic. It is battery 

powered. It has been projected to be placed inside the room with the magnet, behind 

the head of the patient. The short length of the coils used to connect the electrode with 

the amplifier is consistent with the safety requirement for the patient. 
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Neurophysiological signals are amplified at the head of the detector. They are 

converted in digital signals and are connected to a recording computer outside of the 

scanner room via an optic fiber cable. The optic cable ensures the absence of an 

electrically conductive bridge between the outside and the inside of the scanner room, 

which would break the magnetic shielding of the scanner room and deteriorate the 

quality of MR images. 

c. "BrainVision Recorder" is multifunctional recording software designed to provide a 

platform for recording setup and execution. It allows settling the parameters necessary 

for the acquisition: the hardware filters on a channel by channel basis, channel by 

channel impedance, sampling rate of recordings, filters. The acquired data can be 

displayed in multiple ways and with different montages (original, bipolar and 

average). Each electrode is placed following the 10-20 system and its impedance value 

is displayed with a fully selectable color coding. The acquisition parameters as well as 

the impedance check are automatically stored and can be consulted anytime during the 

fMRI acquisition.  

d. "Brainvision Analyzer" is a software that includes all necessary pre-processing 

functions, enhanced time-frequency analysis options, ICA, LORETA, MRI correction 

as well as a direct interface to MATLAB.  

We have firstly acquired EEG data in 8 healthy control subjects outside the MRI to verify the 

quality of the EEG recordings: our expert electroencephalographers confirm that the quality 

of this system is as the same level as our standard usual acquisition method.  

2. EEG-fMRI acquisition and pre-processing 

After the approval of the local Ethic Committee, we have started to test the quality of the 

EEG-fMRI acquisition and analysis on a population of healthy control subjects. This step was 
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necessary to verify if the implementation of our method of acquisition and analysis was 

correct. To arrive to this conclusion we studied if the BOLD changes related to alpha rhythm 

triggered by eyes closure, was concordant with the previous data of literature. We decided to 

study the alpha rhythm because it is a physiological well detectable rhythm in healthy control 

subjects. The occipital BOLD de-activations were in agreement with previous studies in 

literature (Tyvaert, Levan et al. 2008). 

 

Appendix figure 1: first subject with an EEG recorded inside MRI at UNIBO 

 

EEG. We settled the parameters of Brain Vision Analyzer to remove the gradient artifacts and 

the cardioballistic artifacts from some EEG acquired inside the scanner during EEG-fMRI 

acquisitions.  

a. Gradient artifact removal 

The idea behind MRI artifact correction is that the gradient artifacts, that shows little or no 

variation, should be easy to detect and eliminate from any other ongoing and variable dataset 

such as the ongoing spontaneous EEG activity. Because it shows little or no variation, it is 
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possible to average all such artifacts and subtract the average from all the traces. The steps are 

the following:  

i) Segmentation: we select the runs we want to analyze; we mark each of them with a "start" 

and "end" through the "Marker edit mode" option. Then we segment each of these runs so that 

we have many single files.    

ii) MRI Artifact Correction: this option allows us to remove the gradient artifact from each 

single file (Appendix figure 2). We have to give the program the TR of the acquisition and the 

number of volumes acquired during one run. The program builds a "template" with the shape 

of the gradient artifact that does not change in time and then subtract it from the dataset.    

 

Appendix figure 2: removal of gradient artifact 

 

 

b. Cardioballistic artifacts removal  

i) Cardioballistic Pulse detection: In order to correct these artifacts, we have to first identify 

our R-Waves or at least some temporally stable and non changing point along our EKG 

episode and then perform the same type of template building and -subtraction that was used to 

correct the gradient data (Appendix figure 3). 
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Appendix figure 3: detection of EKG peaks 

ii) Correction of Pulse Artefacts: after marking, we can subtract the template built from the 

average of the previously marked EKG peaks (Appendix figure 4). 

 

Appendix figure 4: removal of cardioballistic artifact  

fMRI. At UNIBO the MR functional unit has experience with the software FSL which is a 

free, comprehensive library of analysis tools for FMRI, MRI and DTI brain imaging data 

created by the Analysis Group, FMRIB, Oxford, UK. In particular FEAT is part of FSL 

(FMRIB's Software Library) for model-based FMRI data analysis. The data modeling which 

FEAT uses is based on general linear modeling (GLM), otherwise known as multiple 

regression. It allows you to describe the experimental design; then a model is created that 

should fit the data, telling you where the brain has activated in response to the stimuli. In our 

case the model will be the timing of EEG events acquired by Brain Vision EEG.  
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