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BIOCHAR IN PERENNIAL CROPS: NUTRITIONAL, 

AGRONOMICAL AND ENVIRONMENTAL IMPLICATIONS 

 ABSTRACT 

Biochar is the solid C-rich matrix obtained by pyrolysis of biomasses, currently promoted as a soil 

amendment with the aim to offset anthropogenic C emissions, while ameliorating soil properties and 

growth conditions. Benefits from biochar seem promising, although scientific understandings are 

beginning to be explored. In this project, I performed a suite of experiments in controlled and in field 

conditions with the aims to investigate the effect of biochar on: a) the interaction with minerals; b) Fe 

nutrition in kiwifruit; c) soil leaching, soil fertility, soil CO2 emissions partitioning, soil bacterial profile 

and key gene expression of soil nitrification-involved bacteria; d) plant growth, nutritional status, 

yield, fruit quality and e) its physical-chemical changes as affected by long-term environmental 

exposure. Biochar released K, P and Mg but retained Fe, Mn, Cu and Zn on its surface which in turn 

hindered Fe nutrition of kiwifruit trees. A redox reaction on the biochar surface exposed to a Fe source 

was elucidated. Biochar reduced the amount of leached NH4
+
-N but increased that of Hg, K, P, Mo, Se 

and Sn. Furthermore, biochar synergistically interacted with compost increasing soil field capacity, 

fertility, leaching of DOC, TDN and RSOC, suggesting a priming effect. However, in field conditions, 

biochar did not affect yield, nutritional status and fruit quality. Actinomadura flavalba, 

Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. were peculiar of the 

soil amended with biochar plus compost which exhibited the highest band richness and promoted 

gene expression levels of Nitrosomonas spp., Nitrobacter spp. and enzymatic-related activity. 

Environmental exposure reduced C, K, pH and water infiltration of biochar which instead resulted in a 

higher O, Si, N, Na, Al, Ca, Mn and Fe at%. Oxidation occurred on the aged biochar surface, it 

decreased progressively with depth and induced the development of O-containing functional groups, 

up to 75nm depth. 
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CHAPTER 1 
 

INTRODUCTION  
 

Anthropogenic carbon dioxide (CO2) emissions, mainly from fossil fuel consumption, have 

increased in the last decade at a rate of over 0.9 Gt y-1, corresponding to 3% of the net global 

emissions (Woolf et al., 2010) and reached the record of 31.6 Gt CO2 eq y-1 in 2012, the 

highest level in history (IEA, 2013), contributing to worsen the “greenhouse effect”, so the 

climate changes (Lehmann, 2007a). Solomon et al. (2009) estimated an increase of about 1 mg 

kg-1 in the atmospheric CO2 content each 4 Gt of fossil carbon (C) burning and worldwide 

scientists point out that the increased CO2 concentration in the atmosphere (which shifted from 

280 ppm measured in the pre-industrial age to the current CO2eq concentration of 430 ppm) 

represents, together with others greenhouse gases (GHGs), such as nitrous oxide (N2O) and 

methane (CH4), the major driver for permanent global climate changes. Estimations indicate 

that if global GHGs emission will be not offset, their concentration in the atmosphere could 

triplicate the pre-industrial level within 2100, causing an overall warming effect up to 6.4°C 

(IEA, 2013). A recent survey confirmed that agriculture represents the largest contributor to 

non-CO2 GHGs emission and that over the past 20 years, GHGs net emission from AFOLU 

(Agriculture, Forestry and Other Land Use) increased by 8%, from an average of 7,497 Mt 

CO2eq in the 1990s to an average of 8,103 Mt CO2 eq in the 2010s (FAO, 2014). 

Concerns due to climate changes may include land degradation, loss of biodiversity, increase 

of coastal areas vulnerability and alterations in land hydrology (Ravishankara et al., 2009; 

Solomon et al., 2009) with serious implications for world food security, human economy, 

biodiversity and potentially affecting the more vulnerable socio-economic segments first (Lal, 

2010a; 2010b; Ericksen et al., 2009). In fact, according to Ernsting (2011), the global warming 

will particularly affect poor societies living in developing Countries first whereas developed 

Countries are still the major drivers.  

Therefore, global GHGs emission must be worldwide urgently cut down through the 

development of effective and sustainable strategies in order to withdraw at least 3.2 Gt of CO2 

eq y-1 from the atmosphere (Sohi, 2012). Other than reducing global energy consumption, 

raising the energetic efficiency, decreasing the emissions of concrete building and replacing 

fossil fuel energy with alternative and renewable GHGs neutral energy, either plant biomass or 

soil organic matter (SOM) are considered valuable strategies to both sequester and store C 

from the atmosphere (Lackner, 2003).  
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Photosintetically fixed C (net primary production, NPP) represents a substantial C flow which 

consists of about 57 Gt y-1 and 50 Gt y-1 in terrestrial and oceanic ecosystems, respectively 

(Behrenfeld et al., 2001). A significant portion of the global NPP could be destined to produce 

renewable energy, thereby contributing to offsets GHGs emission. Similarly, most of the 

agricultural residues and organic wastes that currently are mainly buried in soil, disposed 

and/or open burnt, represent a valuable source to yield renewable energy. However, either 

when biomass naturally decomposes or it is used as a fuel to produce other sources of energy 

(e.g. electricity, gases), fixed C returns into the atmosphere. Likewise, most of the amount of 

organic amendments applied to agricultural soils in order to increase the SOM content is often 

quickly depleted since C is used as substrate by edaphic microorganisms to fulfill their energy 

requirements. 

In this scenario, the C balance of such strategies is neutral (Lehmann, 2007b), hence their long-

term C sequestration potential negligible. 

Conversely, C becomes more steadily fixed when organic materials are charred, so that the 

conversion of biomasses into charcoal and its subsequent use as a soil conditioner (biochar) has 

been recently proposed as a sustainable long-term strategy to sequester atmospheric CO2, 

whilst potentially mitigating the global climate change (Stavi and Lal, 2013; Sohi, 2012; 

Shrestha et al., 2010; Woolf et al., 2010; Lehmann and Joseph, 2009; Gaunt and Cowie 2009; 

Laird, 2008, Lehmann, 2007a). 

Biochar is defined as a black, fine-grained, highly porous and recalcitrant C-rich material 

generated by the pyrolysis of biomasses in oxygen-limited conditions (Lehmann et al., 2006; 

Lehmann, 2007a) (Fig. 1.1). The intended purpose distinguishes biochar from the common 

charcoal which is mainly adopted as a fuel, a filter, a reductant agent in iron-making or a 

coloring agent in industry (Lehmann and Joseph, 2009). More specifically, biochar is produced 

by the thermal decomposition (incomplete combustion) of organic materials (such as wood, 

organic wastes, agro-industrial residues, energetic crops, manures, municipal organic solid 

wastes) under limited supply of oxygen (O2) and at relatively low temperatures (<700°C) 

(Hammes et al., 2008). Ultimately, biochar is the by-product of the pyrolysis process which has 

a high C content and aromatic compounds whit 6 C atom rings linked together either with O 

and/or hydrogen (H), the most abundant atoms in organic matter (OM) (Lehmann and Joseph, 

2009).  
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Figure 1.1. Biochar from hardwood pyrolized at 500 °C 

(Picture: Sorrenti, 2013)  

 

1.1 Biochar: terminology and history   

The term biochar was first adopted in 1998, then widely used from 2006 to indicate the 

manmade charcoal produced for agronomical purposes (Lehmann et al., 2006) and, in 

particular, as a soil amendment since it has been observed that charcoal, other than 

sequestering C, improves physical, chemical and biological properties of amended soils 

(Baronti et al., 2014; Spokas et al., 2012; Verheijen et al., 2010; Laird, 2008; Steiner et al., 

2007; Lehmann et al., 2003). In fact, it has been reported that biochar application to soils 

induces many advantages including enhancement of soil health (Ameloot et al., 2013), 

reduction of heavy metal contamination risks (Namgay et al., 2010), increase of plant growth 

and yield (Jeffery et al., 2011; Major et al., 2010; Chan et al., 2008;) and decrease of GHGs 

emissions from soil (Singh et al., 2010a; Van Zwieten et al., 2009; Yanai et al., 2007). 

However, biochar doesn’t represent a new discover since its potential as a soil conditioner was 

well known centuries ago in the Amazon basin where soils (Oxisols, Anthrosols) are typically 

acid, dark red-colored, rich in aluminum (Al), manganese (Mn) and iron (Fe) and characterized 

by high mineralization rates, that makes fertility poor (Glaser et al., 2002; 2001). In this region, 

only limited spots, called “Terra Preta de Indio” are characterized by alkaline, dark-colored and 
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fertile soils (Fig. 1.2) (Glaser and Birk, 2012; Sombroek et al., 2003). Terra Preta de Indio sites 

are found as small areas of about 200 m in diameter each, usually close to both current and 

historic human settlements throughout Amazonia, covering a total area of about 18,000 km2 

(Sombroek and Carvalho de Souza, 2000) with varying depth (down to 1 m). 

  

Figure 1.2. “Terra Preta” soil profile (Brazil, 2013). The dark color of the first 0.50 m depth is 

due to anthropogenic C.  

(Pictures: Sorrenti, 2013) 

 

Terra Preta de Indio soils were obtained between 2000 and 1500 years ago by the common 

activities of the local Amazon Indians who, for centuries, enriched their fields with charcoal 

mixed with different organic sources (e.g. fish and animal bones, plants, organic wastes, 

potsherds and feces) (Mann, 2002). Terra Preta de Indio soils contain up to 250 Mg ha-1 of soil 

organic carbon (SOC) in the top 0.30 m (compared to 100 Mg ha-1 of surrounding soils) and up 

to 500 Mg ha-1 in the top 1m (Glaser, 2001), is richer in nutrients (e.g. nitrogen (N), sulphur 

(S), calcium (Ca) and phosphorus (P)), retains more water, has a higher microbial activity, 

higher pH and cation exchange capacity (CEC), reduces nutrient leaching and increases 

microbial diversity (Glaser and Birk, 2012; O’Neill et al., 2009; Kim et al., 2007), therefore is 

considered more fertile than surrounding Oxisols (Glaser et al., 2001; Mann, 2002). For these 

reasons, it has been reported that biochar has positive effects on crop yields in Oxisols as well 

as in other tropical soils (Lehmann and Joseph, 2009). 

Soil types comparable with those found in the Amazon basin have been discovered, although in 

smaller scale, in Amazon parts of Peru, Columbia and southern Venezuela and in the Guianas 

(Heckenberger et al., 2003; Kern et al., 2003; Sombroek et al., 2002; Denevan, 1996) in Sierra 

Leone (Africa), Liberia (Africa) and Kalimantan (Indonesia). The fact that black soils are most 

diffused and larger in the Amazon basin seems to be related to the differences in the 
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technology available to the local populations at that time. In fact, only the Indians of South 

America ignored Fe yet (then no machetes or other Fe-made tools were available to cut 

vegetation) hence, in order to exploit the lands, trees (and biomasses) were burned in situ then 

covered with soil while still burning (limiting the O), involuntary originating charcoal.    

These findings have recently attracted the interest of scientists in developing the so called 

“Terra Preta Nova” soils which would mimic the “Terra Preta de Indio” soils by the 

incorporation of pyrolized biomasses in order to improve soil functions while mitigating 

climate change by sequestering C (Ameloot et al., 2013). 

 

1.2 Pyrolysis of biomasses 

Pyrolysis is defined as the thermo-chemical decomposition of any organic material by heating 

in the absence (or limited availability) of O, although a small amount of oxidation will always 

occur (Laird et al., 2009). The term derives from two Greek worlds where “pyro” and “lysis” 

mean fire and decomposition, respectively and the fundamental aim of this process is to 

transform a solid ash-rich feedstock into bio-oil which is an ash-poor liquid product. Compared 

to combustion during which total oxidation of OM occurs, the degree of oxidation observed 

with pyrolysis is much smaller leading to a substantially larger proportion of C in the charred 

material which is not liberate in the atmosphere as CO2. Pyrolysis may occur spontaneously at 

specific temperature varying with material (e.g. 300°C for wood) and in nature it occurs when 

vegetation is exposed to wildfires. 

Pyrolysis degrades feedstock polymers into smaller compounds while larger molecules are also 

produced (including both aromatic and aliphatic compounds) as a consequence of 

polymerization of OM. Nevertheless, with pyrolysis much of the C from the feedstock is 

converted into three different components such as gases, liquids and solids in different 

proportions (Tab 1.1) depending upon both the feedstock and the pyrolysis conditions used 

(Laird et al., 2009).  

Produced syngas include both flammable CH4 and other hydrocarbons which can be condensed 

by cooling, leading to oil and tar residues. Products of pyrolysis, either gas (condensed or in 

gaseous forms) or liquids can be used as a fuel for combustion while biochar represents the 

byproduct. 

The first evidence for charcoal production by pyrolysis comes from Southern Europe and the 

Middle East, more than 5500 years ago. Subsequently, with the coming Bronze Age (4000 

years ago), pyrolysis was widely adopted since it was essential to produce charcoal in order to 

sustain the fire needed to produce bronze by smelting tin (Sn) added with copper (Cu).  
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Although the basic concept of pyrolysis remains unchanged, modern technologies are adopted, 

each one producing different percentage of outputs. Pyrolysis can be manipulated, apart from 

feedstocks, by the temperature (rates and peaks) and residence time of the feedstock in the 

reactor unit. Either temperature or residence times of solid or vapor in the pyrolysis unit, or a 

combination of both, have a large effect on the relative proportions of the end products. 

Because of it, four different types of pyrolysis are generally identified: i) fast, ii) intermediate, 

iii) slow pyrolysis and iv) gasification (due to the high proportion of syngas produced) (Tab. 

1.1). 

 

Table 1.1. Product yield of bio-oil, syngas and biochar under different pyrolysis conditions   

Process T °C Exposure 
time 

Yield (%) 

Liquid 
(Bio-oil) 

Gases 
(Syngas) 

Solid 
(Biochar) 

Fast pyrolysis ~500 < 2 sec. 75 13 12 

Intermediate pyrolysis 350-450 10-20 sec. 50 30 20 

Slow pyrolysis 300-400 10-30 min. 30 35 35 

Gasification >750 2-4 min.  5 85 10 

 Source: modified from IEA, 2007  

 

1.3 The sustainable-biochar concept: a C negative strategy to mitigate climate change  

As mentioned, pyrolysis represents a sustainable strategy for producing renewable energy since 

it thermally transforms biomasses, organic wastes and biorefining residuals into bio-oil, syngas 

and biochar (Laird, 2008). Due to its high recalcitrance, biochar serves as a C sink since it 

persists up to thousands of years when incorporated into the soils (Spokas et al., 2012; 

Verheijen et al., 2010; Lehmann, 2007a): in other words, biochar significantly reduces the rate 

at which photosynthetically fixed C compounds return to the atmosphere with a positive C 

removal from atmosphere (Sohi, 2012; Lal, 2010b; Shackley et al., 2010; Lehmann and Joseph, 

2009). Recently, it has been estimated that an extensive use of this strategy in agriculture can 

offset current global C emissions by a maximum of 1.8 Gt CO2-C eq., corresponding to the 

12% y-1 of anthropogenic CO2-C and reducing net emissions over a century by 130 Gt CO2-C, 

without compromising food security and soil conservation (Woolf et al., 2010). Biochar can be 

conveniently produced by large industrial plants down to small domestic scale level exploiting 

either several commercial or homemade pyrolysis units able to yield different proportions of 

biochar, bio-oil and syngas (Tab. 1.1). Then, syngas is typically intended to generate electricity 
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while the bio-oil may be used for heating applications and, after adequate treatments, 

potentially used as a biodiesel substitute.  

 

 

 

 

Figure 1.3. The sustainable biochar concept. Size of each component is proportional to its 

significance (source-effect).  

Source: Woolf et al., 2010. Nature communications, 1, 56 - (with permission) 

 

The sustainable biochar concept, resumed in Fig. 1.3, starts removing CO2 from the 

atmosphere by plants which convert it, by photosynthesis, into biomass. Biomass undergoes 

the pyrolysis process to yield renewable energy sources (syngas and bio-oil) and, as a by-

product, biochar. The bioenergy produced by pyrolysis can offset fossil C emissions which 

would be inevitable to produce the same amount of energy exploiting non-renewable sources 

(e.g. fossil coal). Besides, if incorporated into the soil, biochar stores C much longer than 

would occur if the biomass would have been left to naturally or artificially degrade. Also, 

avoiding biomass decay, emissions of CH4 and N2O are prevented. Additionally, benefits 

induced by biochar to soil fertility may increase plant NPP with further removal of atmospheric 

CO2 by photosynthesis, thereby achieving a positive feedback.  
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1.4 Biochar stability   

Biochar is considered a recalcitrant C-rich material (Nguyen and Lehmann, 2009) as a 

consequence of its predominantly condensed aromatic structure (Baldock and Smernik, 2002) 

and in comparison to other organic materials, biochar resists to microbial and/or natural 

environmental decomposition (Lehmann et al., 2007a). However, not all biochars have the 

same stability in soil, depending on the biomass used and the pyrolysis conditions. Generally, 

biochars account for both labile and stable forms of C. The latter (highly aromatic) is believed 

to be stable in soils likely for several thousand years whereas the labile C forms (low 

aromacity) can be quickly degraded and released to the atmosphere as CO2 within a couple of 

years after its incorporation. The labile C fraction in biochar ranges from 2 to 12 % whit the 

highest rate obtained when low heating rates (slow pyrolysis) are adopted. In fact, above 475 

°C carbohydrates are almost entirely converted to volatiles then, remaining C compounds are 

highly aromatic and stables, whereas partially unconverted biomass mineralizes quickly once 

in the soil (Yang et al., 2007). 

Several studies report soil residence time of either charcoal or biochars in timescales ranging 

from decades to millennia (Zimmerman, 2010; Kuzyakov et al., 2009; Cheng et al., 2008; 

Hammes et al., 2008; Hamer et al., 2004) even longer than 10,000 years (Swift, 2001), 10-1000 

times longer than other SOM sources (Verheijen et al., 2010) and that it remains intact in deep-

sea environment up to 13,900 years (Masiello and Druffel, 1998). The stability of biochar 

depends by the degree of condensation of the aromatic rings (closely referred to the feedstock) 

and by the biochar particle size, edaphic and climatic conditions under which biochar is 

exposed and oxidized (Nguyen et al., 2010; Singh and Cowie, 2010; Zimmerman, 2010, 

Kuzyakov et al., 2009; Lehmann et al., 2009; Nguyen and Lehmann, 2009) but, in particular, to 

the charring conditions (temperature and exposure time) at which biochar is produced 

(Lehmann and Joseph, 2009). Higher pyrolysis temperatures yield less but more stable biochar 

since the proportion of aryl-C to aliphatic-C increases with increasing in charring temperature 

(Nguyen et al., 2010; McBeath and Smernik 2009; Baldock and Smernik 2002). 

The rate at which biochar may be decomposed varies according to the stability of its oxidizable 

components. Usually, an initial decomposition of the surface labile components of the biochar 

particles (e.g. aliphatic-C) may occur, followed by a much slower decomposition of condensed 

aromatic-C, which dominate the biochar core structure (Waters et al., 2011). 
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1.5 Biochar structural and chemical composition  

1.5.1 Structural composition  

Generally, a biochar fragment consists of 2 main structural fractions: i) stacked crystalline 

graphene sheets and ii) randomly ordered amorphous aromatic structures. During pyrolysis, a 

considerable mass of the initial biomass is lost under volatile forms and a rigid amorphous C 

matrix remains. Over 120 °C organic materials lose moisture and begin to undergo some 

thermal decomposition. Between 200 and 260 °C hemicelluloses are degraded, cellulose starts 

to degrade between 240 and 350 °C and finally, lignin between 280 and 500 °C (Sjöström, 

1993). The proportion of aromatic C in the forming biochar increases as the pyrolysis 

temperature raise due to the relative increases in the loss of volatile matter which occur in the 

following order: water, hydrocarbons, tarry vapors, H2, CO and CO2), and the conversion of 

alkyl and O-alkyl C to aryl C (Baldock and Smernik, 2002; Demirbas, 2004). 

When pyrolysis temperature reaches 330 ºC, polyaromatic graphene sheets start to grow 

laterally at the expense of amorphous C phases and, finally, coalesce. Over 600 ºC, 

carbonization is the dominant process and it is distinguished by the removal of most remaining 

non-C atoms with consequent increases in relative C content that can represent up to 90% of 

the final biochar (Antal and Grönli, 2003; Demirbas, 2004). Pyrolysis of wood-based 

feedstocks yield coarser and more recalcitrant biochars with a C content up to 80% since the 

rigid ligninolytic nature of the original biomass is retained (Winsley, 2007).  

 

1.5.2 Chemical composition and surface chemistry  

Biochar is a highly heterogeneous material and its major constituents are C, ash, volatile 

matter, minerals and moisture (Tab. 1.2) (Sohi et al., 2009; Antal and Grönli, 2003).  

 

Table 1.2. Range of relative composition for biochars obtained from different feedstock and 

different pyrolysis conditions. 

Compound Ranges of relative proportion (w w-1) 

C 50-90 

Moisture 1-15 

Volatile matter 0-40 

Ash 0.5-5 

Source: Brown (2009) and Antal and Grönli (2003)   
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The relative proportion of biochar components affects its chemical and physical behavior 

(Brown, 2009), its suitability for a site specific application, its transport and fate in the 

environment (Downie et al., 2009). The complex and heterogeneous chemical composition of 

biochars is extended to its surface chemistry which basically is the most reactive part of each 

biochar fragment that could explain how biochar interacts with organic and inorganic 

compounds in the environment. Physical structure and chemical bounds in the biomass are 

broken and re-assembled during pyrolysis resulting in the formation of numerous functional 

groups (e.g. hydroxyl -OH, amino-NH2, ketone -OR, ester -(C=O)OR, nitro - NO2, aldehyde -

(C=O)H, carboxyl -(C=O)OH) mainly positioned on the outer surface of the graphene sheets 

(Harris, 1997; Harris and Tsang, 1997) and porous surfaces (Van Zwieten et al., 2009). 

Depending on the feedstock and charring temperature, some of these functional groups can 

take up (acceptor) and release (donor) several hundred micromoles of electrons per gram 

(Klüpfel et al., 2014) resulting on coexisting areas which properties can range from acid to 

basic and from hydrophilic to hydrophobic (Amonette and Joseph, 2009) properties with 

important implications in soil cycles. Results from Kappler et al. (2014) suggest that biochar 

can alter soil biogeochemistry either indirectly by changing the soil structure and chemistry or 

directly by mediating electron transfer processes (i.e., by functioning as an electron shuttle). 

Besides, elements such as H, O, N, P and S are predominantly incorporated within the aromatic 

rings and defined as heteroatoms (Bourke et al., 2007) which are thought to be of great 

contribution to the highly heterogeneous surface chemistry and reactivity of biochar. 

 

1.5.3 Particle and pore size distribution  

Feedstock and charring conditions mainly establish the physical make-up of biochar in terms of 

particle size and pores distribution (Cetin et al., 2004). However, shrinkage and frictions 

occurring not only during processing, but also during transport, storage, manipulation and 

distribution to soils reduce particle sizes of incorporated biochars. 

Generally, wood-based feedstocks originate coarser biochars whereas crop residues and/or 

manures generate finer fragments with a weaker structure (Sohi et al., 2009). The pyrolysis 

technology (e.g. reactor type and shape), conditions (heating rate, max temperature, residence 

time, pressure, flow rate), pre- (e.g. drying, chemical activation) and post- (e.g. sieving, 

activation) treatments greatly affect biochar physical structure (Brown et al., 2009; Cetin et al., 

2004; Lua et al., 2004; Antal and Grönli, 2003). Particle and pore size were found to decrease 

as the pyrolysis temperature increases (Schimmelpfennig and Glaser, 2012; Downie et al., 

2009); for instance, higher heating rates and shorter residence times, resulted in finer biochars 
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(Cetin et al., 2004) while slow pyrolysis (heating rates of 5-30 ºC min-1) can use larger 

feedstock particles, thereby producing coarser biochars (Downie et al., 2009). The latter are 

also nutrient-poor and less susceptible to microbial degradation in the environment (Sohi et al., 

2009). Biochars produced from crop residues (e.g. rice husk), manures and seaweed are 

generally finer and less robust than obtained with wood-based feedstocks (Winsley, 2007). 

Larger biochar particles, as a result of melting followed by fusion, can also be obtained by 

increasing the flow pressure up to 20 bars during pyrolysis (Cetin et al., 2004). 

Biochar has a high porous structure (Fig. 1.4) and, as anticipated, feedstock and charring 

conditions are the main factors determining its pore size distribution, total surface area 

(Downie et al., 2009) and bulk density (0.3 Mg m-3 as compared to the average of soil bulk 

density of 1.3 Mg m-3). 

 

 

Figure 1.4. Cross section of a highly porous biochar fragment from hardwood. Pores 

arrangement reproduces the vascular structure of the original biomass. 

(Picture: Sorrenti, 2014) 

 

An extensive pore network in biochar is originated during the thermal decomposition of 

biomasses as a consequence of voids remaining after volatilization of organic compounds at 

relatively high temperatures. However, the basic porosity and structure of biochar replicate the 

vascular frame of the original biomass since the cell wall structure (mineral and C skeleton) is 

retained during the thermal conversion in the formed-biochar (Downie et al., 2009; Laine et al., 

1991; Wildman and Derbyshire, 1991).  
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Downie et al. (2009) classified biochar pores according to their internal diameters (ID) and 

three categories are typically identified: macropores (ID >50 nm), mesopores (2 nm< ID <50 

nm) and micropores (ID <2 nm). The residual cell wall structures of the biomass contribute to 

the majority of macroporosity in biochar (Wildman and Derbyshire, 1991), while 

microporosity provides the large surface area which characterizes charred biomasses (Brown, 

2009). Particle size distribution and porosity in biochar have implications for both determining 

the suitability for a specific purpose (Downie et al., 2009) and for the choice of the most 

adequate application method. 

 

1.6 The Biochar benefits     

Over the C-sequestration potential, biochar might yields several co-benefits, some of them 

listed below with relative references for widening. However, the implications of biochar in 

agriculture will be discussed in more details in the next chapter:  

� biochar allows to sustainably dispose organic wastes (reduction of social costs and 

environment advantages) (Takolpuckdee, 2014; Xie et al., 2014; Stavi and Lal, 2013; 

Ippolito et al., 2012; Xu et al., 2012; Kwapinski et al., 2010); 

� it can be used as a source of renewable bioenergy (Abdullah et al., 2010;  Kwapinski et 

al., 2010; Shackley et al., 2010; Sohi et al., 2009; Laird, 2008; Mathews, 2008; 

Lehmann, 2007b); 

�  it reduces soil GHGs emissions (Zhang et al., 2012; Feng et al., 2012; Kamman et al., 

2012; Castaldi et al., 2011; Liu et al., 2011; Van Zwieten et al., 2009); 

� it improves soil physical characteristics and fertility (Mukherjee and Lal, 2013; Ventura 

et al., 2012; Atkinson et al., 2010; Van Zwieten et al., 2010; Rondon et al., 2007; Liang 

et al., 2006; Oguntunde et al., 2004; Lehmann et al., 2003; Glaser et al., 2002); 

� it stimulates soil microbial biomass activities and increases biodiversity (Rutigliano et 

al., 2014; Watzinger et al., 2014; Ameloot et al., 2013; Luo et al., 2013; Anderson et 

al., 2011; Castaldi et al., 2011; Khodadad et al., 2011; Lehmann et al., 2011; Solaiman 

et al., 2010; Steinbeiss et al., 2009); 

� it promotes root mycorrhizal colonization (Mau and Utami, 2014; LeCroy et al., 2013; 

Warnock et al., 2007); 

� it reduces the losses of nutrients as well as chemicals run-off (Ventura et al., 2013; 

Major et al., 2012; 2009; Yao et al., 2012; Knowles et al., 2011; Laird et al., 2010); 

� It improves nutrient–use efficiency (Ippolito et al., 2012; Van Zwieten et al., 2010); 



Chapter 1 - Introduction 

 

23 

 

� it reduces the bioavailability and phytotoxicity of heavy metals and pesticides in soils 

(Ogbonnaya and Semple, 2013; Park et al., 2011; Kookana, 2010; Mohan et al., 2012; 

2007; Wang et al., 2008); 

� it improves soil water-holding capacity (Baronti et al., 2014; Yu et al., 2013; Sohi et al., 

2010); 

� it can increase plant growth and crop yields (Kamman et al., 2013; Spokas et al., 2012; 

Jeffery et al., 2011; Sohi et al., 2010; Major et al., 2010; Steiner et al., 2007).  
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CHAPTER 2 
 

BIOCHAR IN AGRICULTURE 
 

2.1 Biochar mechanisms in soil  

Biochar addition has been indicated as a strategy able to influence several soil physical, 

chemical and biological properties (Ippolito et al., 2012) due to its intrinsic properties that 

develop over time through surface oxidation and its interaction with plant–soil–microbial 

components (Spokas et al., 2012; Downie et al., 2009). 

Biochar added to soil acts as a sponge, soaking up different forms of organic matter (OM) as 

well as water and nutrients (Glaser et al., 2002). However, it is still unclear if adsorbed 

compounds may serve as nutrients, if the porous biochar increases nutrient immobilization, if it 

provides niches for plant symbionts such as arbuscular mycorrhiza fungi (MF), which may 

provide nutrients to plants or a combination of all mechanisms occur (Scheifele et al., 2014). 

Literature reports a number of benefits associated with biochar addition to cropping soils, in 

particular where fertility is depleted and productivity declines. The addition of biochar to soils 

increases the size of stable soil carbon (C) pools and may potentially induce multiple functions: 

source of OM, increase of plant-available nutrient, increase of soil water holding capacity 

(WHC), alter physical characteristics (i.e. bulk density), enhance cation exchange capacity 

(CEC), stimulate microbial activity and biodiversity and reduce GHG’s emissions (Spokas et 

al., 2012; 2010; Kookana et al., 2011; Jeffery et al., 2011; Atkinson et al., 2010; Sohi et al., 

2010; 2009; Verheijen et al., 2010). These properties may act simultaneously to create a 

positive feedback loop in soil fertility; more biochar means more water and nutrients in soil, 

which increase the OM input into the soil that can be absorbed onto the biochar surface or 

stored in stable soil C reservoirs (Lehmann et al., 2007). 

To explain how biochar in soil might benefit plant growth and crop yield, generally four 

mechanisms are being proposed (Lehmann and Joseph 2009; Sohi et al., 2010; 2009): 

� alteration of soil chemistry (direct source of nutrients or improvement of nutrient 

efficiency); 

� mitigation and/or removal of soil constraints (e.g. low pH, aluminum (Al) toxicity, 

contaminants) which may limit plant growth;  

� modification of the nutrient dynamics in soil and/or altering soil reactions by providing 

chemically active surfaces; 
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� altering soil physical parameters that benefit root growth and/or nutrient, water 

retention and uptake; 

The first mechanism can occur when biochar provides a significant and plant-available mineral 

content (in particular as ash) or increases the soil CEC, while the second mechanism can 

explain, at least in part, benefits observed in acid or contaminated soils either by heavy metals 

and/or organic pollutants. 

The last two mechanisms depend on the biochar physical persistence (and changes) and 

stability in soil and include the impact on soil WHC, surface area, bulk density, nutrient 

leaching etc.  

Evidently, more than one mentioned mechanisms can occur at the same time. Rate and extent 

of each mechanism are hardly quantifiable and depend on many factors (i.e., feedstock 

characteristics, charring conditions, application rate, initial soil texture and fertility, water 

availability, genetic resources) and, generally, evolve over time as the chemical and physical 

process affecting biochar fragments in soil, result in a gradually increase of the concentration 

of smaller and partially-oxidized particles with implications for functional interactions in the 

soil environment (Cheng et al., 2008; 2006). 

Furthermore, biochar may have the potential to sustain similar crop yield while reducing 

nutrient application rate, with environmental benefits (i.e. reduction of nutrient leaching and 

GHGs emission). The purpose of biochar application might be not only to increase yield, but 

possibly to achieve predictability in yield through a lower susceptibility to climatic events such 

as floods and drought (Sohi et al., 2009). Also, biochar could increase, maintain or at least limit 

gradual decrease in crop yield on lands where soil fertility and productivity is currently in 

decline (Sohi et al., 2009). 

 

2.2 Impact of biochar on soil properties and implication on plant growth  

2.2.1 Key functions of biochar in soil   

2.2.1.1 Soil structure 

When incorporated into the soil, biochar can alter soil physical properties (i.e. texture, pore size 

distribution) with possible implications on soil tensile strength (compaction), aeration, 

permeability, infiltration and soil hydrology (i.e. WHC), thermal properties, microbial activity 

and root growth (Bruun et al., 2014; Chen et al., 2011; Laird et al., 2010a, Atkinson, et al., 

2010; Downie et al., 2009; Oguntunde et al., 2008). These effects may be temporary or last 

longer. Generally biochar reduces the soil bulk density (Laird et al., 2010a) and if 

incorporation of large biochar fragments (e.g. > 0.5 mm) occurs, it increases soil aeration and 
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reduces anoxic microsites, with implications on SOM mineralization rates, nitrification-

denitrification dynamics and GHG’s emissions (Cayuela et al., 2013; Ball et al., 2010; Sohi et 

al., 2010). From an agronomical point of view, application rates of even 1-2% (w w-1) of 

biochar may significantly decrease bulk density in soil, which is considered beneficial for plant 

growth since it is associated with higher SOM content then to a higher soil WHC and to a 

lower soil compaction (Mukherjee and Lal, 2013; Chan et al., 2007).  

 

2.2.1.2 Soil pore size, distribution and surface area 

When biochar is applied to the soil, it may contribute to alter the physical nature of the system. 

Biochar may significantly influence soil texture, structure, porosity and consistency through 

changing the bulk surface area, pore size distribution, density and packing (Downie et al., 

2009), thereby biochar may influence soil properties such as aggregation (and workability), 

response to water, shrink/swell dynamics and permeability (Brady and Weil, 2008). After 

biochar incorporation, soil porosity usually increases, although an alteration of soil hydrology 

(decline of water infiltration rates) has been observed as a response of partial or total blockage 

of soil pores by the smallest particle size fraction of biochar. In fact, biochar has generally a 

poor mechanical strength, hence it may collapse into smaller particles as a consequence of both 

biotic (e.g. microbial degradation) and abiotic (e.g. climate, tillage) stresses. Smaller fragments 

may fill up small soil pore spaces, thus increase in soil bulk density (soil compaction) may 

occur over time. 

Physical soil changes induced by biochar addition may have both direct and indirect 

implications on plant growth since a lower soil compaction facilitate a deeper root penetration 

and a wider radial expansion, while air and water availability within the root zone is promoted 

(Bruun et al., 2014). 

Evidences suggest that biochar addition increases net soil surface area (SA) (Chan et al., 2008) 

up to 4.8 times (Liang et al., 2006). Laird et al. (2010a) reported an increase in specific SA 

from 130 to 150 m2 g−1 when biochar derived from mixed hardwoods was applied to a clayey 

soil at a rate of 20 g kg−1. The increase in SA has positive implications on soil WHC, soil 

aeration and may benefit native microbial communities as well as sorption potential (Van 

Zwieten et al., 2010a; Verheijen et al., 2010). In fact, SA is associated with the formation of 

bonds and complexes with cations and anions, metals and other elements in solution affecting 

the nutrient retention capacity (Atkinson et al., 2010; Hammes et al., 2009; Liang et al., 2006).  
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2.2.1.3 Soil color, albedo and changes in soil temperature 

Solar radiation (as affected by the impacting incidence angle and vegetation cover), specific 

soil heating rate and water content, mainly control the dynamic of soil warm up in spring, whit 

implications on the emergence and growth of seedlings. The main factors controlling specific 

heat are soil color and moisture content. The specific heat of pure water and dry soil is about 

4.18 and 0.8 J g-1 K-1, respectively. Anthrosols profile of Terra Preta de Indio sites shows that 

high concentration of charcoal darken soil color (Fig. 1.2), thus anthropic biochar application 

has been suggested to alter soil albedo which is the diffuse reflectivity or reflecting power of 

the soil surface measured as the ratio between the reflected radiation from the surface and the 

incident radiation upon it. Land surface albedo represents an important component of global 

and regional climate models since it influences climate and drives weather. For instance, soil 

albedo changes due to natural (i.e. snowfall) or anthropogenic activity (i.e. charcoal or compost 

addition) may have a local temperature feedback, thus potentially altering the climate at 

microscale. As snowfall increases local albedo (reflecting sunlight) leading to local cooling, a 

darken soil may led to a local warming.  

The degree of soil darkening due to anthropic biochar addition depends on: 1) native soil color 

before biochar addition, 2) biochar color and application rate, 3) method and depth of soil 

incorporation, 4) soil surface roughness and, 5) changes in water holding retention at the soil 

surface site (Verheijen et al., 2010). The darken soil color in charcoal sites decreased the 

Munsell value (in colorimetry, the Munsell color system is a color space that 

specifies colors based on three color dimensions: hue, value (lightness), and chroma (color 

purity. Value indicates the lightness of a color. The scale of value ranges from 0 for pure black 

to 10 for pure white) compared with adjacent soil from 3.1 (± 0.6) to 2.5 (± 0.4) (Oguntunde et 

al., 2008) and for this reason the soil surface temperature likely increased in a biochar-amended 

soil while no differences were detected at 0.075 m depth in an apple orchard (Ventura et al., 

2013). However, the effect of biochar on soil albedo changes and related warming implications 

should be more pronounced in bare soils well exposed to solar radiation than in orchards, since 

in the former case, the solar radiation reaching the surface is low in winter and it is reduced by 

canopies and cover crops during the vegetative season. 

Although biochar-amended soils are usually darken in color, the higher water content in 

biochar treated soils could offset the extra energy absorption, resulting in a more slowly soil 

warm up (Brady, 1990) compared to unamended soils. This implies that biochar with water 

repellent properties (e.g. low water retention capacity) might induce the greatest increase in 

soil warming potential with a greater impact in light-coloured soils. 
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2.2.1.4 Soil cation exchange capacity (CEC) and pH   

Soil CEC characterizes the ability of a soil to retain nutrients and ions (i.e. NH4
+, Ca2+, Mg2+) 

between charged particles through electrostatic forces. Retained nutrients are then potentially 

exchanged with the soil solution. Soils amended with biochar show an increased CEC (Liang et 

al., 2006). High soil CEC prevents nutrient losses by leaching (reducing groundwater 

contamination), and improves nutrient availability for plant uptake, potentially increasing 

nutrient use efficiency (Downie et al., 2009). 

The increase in CEC in biochar amended soils seems to be related with a higher surface charge 

density (Van Zwieten, et al., 2010a) and to a slow biological oxidation of the aromatic C 

compounds with formation of carboxyl groups on the edges of the condensed aromatic skeleton 

that occurs on the biochar surfaces when applied to soils (Liang et al., 2006; Glaser et al., 

2002). However, feedstock and pyrolysis conditions greatly affect biochar surface charge 

properties (Singh et al., 2010a). Generally, cations in soil might be bounded by ion and 

covalent bindings to negatively charged sites located on clay and OM particles (as well as on 

the reactive surface of biochar). On the other hands, anions (i.e. NO3
- and phosphates) are 

weakly bounded to the positively surface charge of clay. The adsorption of highly oxidized 

OM particles may induce the development of negative charges onto the biochar surface. As a 

result, the original positive exchange sites on biochar surface may decline and negative charge 

sites develop with biochar ages (Cheng et al., 2008). Moreover, fresh biochar is typically 

hydrophobic and contains polar functional groups at the surface which evolve in more 

carboxylic and phenolic groups after exposure to the environment (water and oxygen in the 

soil) (Cheng et al., 2008), becoming more hydrophilic with time. As a result, both above 

mentioned changes contribute to explain the long-term positive effect of biochar in holding 

cations (Cheng et al., 2008; 2006). 

The pH of biochar usually ranges from slightly acidic to alkaline (Chan and Xu, 2009) and this 

is mainly due to the relative high abundance of minerals with alkaline properties such as 

phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and manganese (Mn) which 

require higher temperatures to volatilize (above 700 ° C) compared to the levels at which most 

biochar are produced (<600°C).  

The addition of biochar may increase soil pH resulting in a liming effect providing, therefore, 

some benefits in neutralizing acidic soils. However, this ability depends on both the feedstock 

and charring conditions since, for instance, increasing pyrolysis temperatures generally led to 

biochars with higher pH (Singh et al., 2010a). In acid soils, changes in soil pH influence the 

bioavailability of toxic elements. Van Zwieten et al.  (2010a) measured a reduction in 
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exchangeable Al from 2 to <0.1 cmolc kg-1 in concomitance of an increased soil pH upon two 

different papermill waste biochars application. Likewise, Kloos et al. (2014) observed a pH 

increase in three different soils using biochars made either of wheat straw, mixed woodchip or 

vineyard pruning. Soil-applied biochar increased soil pH by 0.36 and 0.75 units with and 

without fertilizer, respectively, in acid soil (Lehmann et al., 2003). 

Increase the pH in acid soil may also stimulate microbial activity and, with this, a priming 

effect (decomposition of pre-existing OM) may occur as a consequence of biochar application. 

The modification of soil pH may be, at list in part, the explanation of most of the benefits 

observed on plant growth and productivity after biochar addition in weathered soils (Jeffery et 

al., 2011), which in turn can indirectly induce also an increase of the amount of C added to the 

soil through residues and root exudates.  

 

2.2.1.5 Soil water holding capacity (WHC) 

Altering soil hydrology, biochar has the potential to provide a long-term modification in water 

cycling and ecosystem processes mediated by water, thereby changes on soil WHC (measured 

as the amount of water retained by a soil that has been saturated and then allowed to freely 

drain for a specific amount of time) are expected. Direct consequence of biochar amendment 

on soil hydrology may include changes in infiltration and drainage rates, shifts in the amount 

of water stored in soils, including water stored in a plant-available form, and shifts in soil 

hydrophobicity. Overall benefits induced by biochar on the soil WHC seem to be mainly 

attributed to its porous structure (Fig. 2.1), which reflects the cellular arrangement of the 

original feedstock (Sohi et al., 2010). Studies on soil-biochar mixtures have shown an increase 

in soil water-holding capacity up to 30% (Basso et al., 2013; Kinney et al., 2012; Novak et al., 

2012; Lei and Zhang, 2013). Some authors  ascribed the improved moisture retention as the 

key factor for the positive plant response (Kookana et al., 2011; Atkinson et al., 2010; Sohi et 

al., 2010) and for the improved plant water use efficiency (Baronti et al., 2014; Downie et al., 

2009).   
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Figure 2.1. Scanning electron microscopy (SEM) of biochar fragments from Miscanthus (left) 

and pine (right). Differences in pore size are evident, according to the vascular arrangement of 

the original feedstock. (source: courtesy of Carbolea Research Group, www.carbolea.ul.ie (left) and Feltz, 

2010 (right).  

 

Glaser et al. (2001) report that WHC of Terra Preta de Indio soils was 18% higher than in 

adjacent soils in which charcoal was absent and attributed this to the increased surface area and 

porous structure of the char particles. Biochar generally increases soil WHC with as low as 

0.5% (g g-1) biochar application rate sufficient to improve the ability of plants to survive under 

drought conditions (Bruun et al., 2014; Kinney et al., 2012; Kammann et al., 2011; Uzoma et 

al., 2011; Brockhoff et al., 2010; Asai et al., 2009). 

These effects are confirmed by many studies. WHC doubled on a loamy sand soil using a 

woody biochar amendment (yellow pine from pyrolysis at 400°C) at a rate of 9% (Yu et al., 

2013). In a column study, Laird et al. (2010a) measured up to 15% in increasing water content 

in a biochar-amended Clarion soil. Biochar from black locust (Robinia pseudoacacia) 

increased the WHC by 97% and saturated water content by 56%, but reduced hydraulic 

conductivity (Uzoma et al., 2011). However, some experiences have also reported no 

significant changes in WHC for some biochar-soil combinations (Laird et al., 2010a; Kinney et 

al., 2012; Abel et al., 2013). For instance, a decreasing in moisture content in a clayish soil was 

reported after biochar addition by Verheijen et al. (2010). Possible mechanisms to explain the 

latter response could be that biochar replaced clay particles with an higher water retention 

capacity (Verheijen et al., 2010) or that hydrophobic biochar caused preferential leaching flows 

or decreased water infiltration (Major et al., 2010a). 

However, the effect of the biochar addition on the WHC is not always predictable. The 

moisture release curve (referred as the usual measure to characterize soil pore size distribution 
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by showing the kinetic of the soil moisture under increasing tensions) in a biochar-amended 

loamy-sandy soil was unaffected when biochar was added up to 22 t ha-1, while only at the 

highest rate (88 t ha-1) at water potentials in the range of 0.01–0.20 MPa a significant effect 

occurred. In details, only at the highest water potential, the volumetric water content in 

biochar-added soil was double compared to unamended soil (Gaskin et al., 2007). 

The beneficial influence of biochar on soil WHC has been mainly linked to its porous structure 

which can absorb and retain water (Verheijen et al., 2010; Downie et al., 2009). Nevertheless, a 

further explanation could be due to biochar induced changes in the distribution and 

connectivity of pores in the soil environment. The impact of biochar on soil texture at the 

macroscale (macroporosity) is often short-lived as biochar is physically divided rapidly in soil 

into smaller particles, similar to silt size (Brodowski et al., 2007), presumably by abrasion or 

by the shrink-swell, freeze-thaw cycles, etc. (Sohi et al., 2009). Thus, considering that pore size 

of biochar is relatively fixed and that porosity of mineral soil is mainly controlled by texture, it 

may be a longer-term positive effect of biochar-addition on available moisture in sandy soils 

typically dominated by much larger pores than in biochar. The effect is expected to be neutral 

in medium-textured soils and potentially detrimental to moisture retention in clay soils (Tryon, 

1948). This behavior seems related to the hydrophobic nature of biochar and, in particular, to 

the alteration of the soil pore size distribution (Glaser et al., 2002; Tryon, 1948).  

 

2.2.1.6 Microbial biomass 

Mixing biochar with soil often induces stimulation of the microbial biomass, alters the 

community biodiversity and activates dormant soil microorganisms (Hu et al., 2014; Gomez et 

al., 2013; Anderson et al., 2011; Khodadad et al., 2011; Lehmann et al., 2011; Grossman et al., 

2010; Hilscher et al., 2009; Kuzyakov et al., 2009; Steiner et al., 2008a; Knicker, 2007; Hamer 

et al., 2004) resulting frequently in significant increases in microbial respiration rates (Smith et 

al., 2010; Hilscher et al., 2009; Steinbeiss et al., 2009; Hamer et al., 2004). Recent findings 

reveal a pronounced impact of biochar in the short time period on soil microbial community 

composition and an enrichment of key bacterial and fungal taxa, such as Actinobacteria, 

Trichoderma and Paecilomyces (Hu et al., 2014). However, a significant inhibition of the soil 

microbial biomass, along with a slower N mineralization rate, was reported for a coarse 

textured soil after addition of Eucalyptus biochar-derived (Dempster et al., 2012), suggesting 

that interaction biochar-microbes could be site and feedstock specific. 

The improvement of the habitat for microorganisms in soils may also be a consequence of 

indirect benefits induced by biochar on physical and chemical soil properties such as increased 
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soil organic C, increased pH, CEC and WHC, reduced content of exchangeable Al and Mn and 

sorption of toxic compounds harmful for microorganisms (Jeffery et al., 2011; Karhu et al., 

2011; Graber et al., 2011a, 2011b; Verheijen et al., 2010; Van Zwieten et al., 2010b; 

Loganathan et al., 2009; Qiu et al., 2009; Chan et al., 2008; Yamato et al., 2006; Glaser et al., 

2002). After biochar addition, increased CO2 fluxes from soil may outcome from (i) biotic 

consumption of C fractions released by biochar (Bruun et al., 2011; Cross and Sohi, 2011; 

Zimmerman et al., 2011), (ii) abiotic release of biochar-C (Bruun et al., 2008; Cheng et al., 

2006;) and/or (iii) interactions between biochar and native SOM pools (priming) (Keith et al., 

2011; Luo et al., 2011; Zimmerman et al., 2011; Kuzyakov et al., 2009). 

Labile organic C fractions and soluble nutrients supplied by biochar may be beneficial for the 

microbial communities (Ameloot et al., 2013) and upon addition of biochar to soil 

mineralization may be stimulated. This could contribute to explain N retention in soils 

amended with biochar as a consequence of microbial N immobilization and increased nitrates 

recycling due to higher availability of C. However, Thies and Rillig, (2009) suggested that the 

interactions between microbes and biochar include also the attraction of microbes by the 

molecules absorbed on the biochar surface, such as OM fractions, minerals and nutrients as 

well as extracellular enzymes. Pietikäinen et al. (2000) reported that biochar adsorbed up to 

42% of dissolved organic C (DOC) from a litter extract, which consequently attracted a large 

community of micro-organisms. The reduced bioavailability of various soil toxins through the 

adsorption of phytotoxic phenolic compounds by charcoal (Graber et al., 2011a,b) has also 

been suggested as one of possible mechanisms for a promoted nitrifying activity by micro-

organisms in forest soils (MacKenzie and DeLuca 2006; Berglund et al., 2004; Zackrisson et 

al., 1996), for a reduction of organic compounds that could trigger N immobilization (DeLuca 

et al., 2006) and for an indirect stimulation of soil microorganism colonies (Ameloot et al., 

2013). 

Biochar may provide favorable microsites and secure environments for microbial colonies to 

prosper (Fig. 2.2), including bacteria (Pietikäinen et al., 2000) and mycorrhizal fungi (MF) 

(Ezawa et al., 2002; Saito and Marumoto, 2002) as well as shelter against predatory soil fauna 

and desiccation (Lehmann et al., 2011; Steinbeiss et al., 2009; Warnock et al., 2007). 
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Figure 2.2. Microscopic images of a cross section biochar fragment from hardwood recovered 

from the field after 4 years of environmental exposure. Pores may represent potential shelters 

for a large variety of edaphic microorganisms, as suggested by an unknown colony of 

microorganisms (right) retrieved in the pores. (Pictures: Sorrenti, 2014).  

 

Nevertheless, the average pore size of biochar (nm scale) is often much smaller than that of the 

smallest soil organisms (µm scale) (Hassink et al., 1993) and this could explain why Quilliam 

et al. (2013) did not observe a significant colonization of the biochar pores by soil microbes 

after its incorporation, at least until the labile fractions where depleted and larger pores were 

provided (after 3 years). 

Biochar has also been indicated as a promoting agent of the symbiotic associations between 

arbuscular MF and terrestrial plants (Mau et al., 2014; Vanek and Lehmann, 2014; O’Neill et 

al., 2009; Thies and Rillig, 2009; Steiner et al., 2008a; Warnock et al., 2007; Pietikäinen et al., 

2000; Zackrisson et al., 1996) and such interaction might be responsible for increase of soil 

nutrient availability and enhance disease tolerance (Downie et al., 2009), although it has been 

proposed that biochar could potentially supply substances that might inhibit microbial activity 

(De Luca et al., 2006). However, only few studies report negative effects on MF with biochar 

addition (Warnock et al., 2007; Gaur and Adholeya, 2000). Arbuscular MF in soil may have a 

great impact on plant nutrition through improved P and Mg availability via extensive fungal 

hyphae system and by the mineralization of organic N into mineral forms, available either to 

plants or susceptible to volatilization (Major et al., 2009). Makoto et al. (2010) indicated that 

an increased plant P uptake, due to the utilization of phosphate released by the MF and 

seedling root/biochar contact, was the responsible for an increase of both root growth and 

aboveground biomass of Larix gmelinii (Gmelin larch) when biochar was applied along with 
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MF, while an increase in maize root mass and colonization rates of MF was observed by 

Yamato et al. (2006), using acacia bark charcoal in Indonesia. 

Similarly, Rondon et al. (2007) indicated that biological N2 fixation (BNF) in soil seems to be 

promoted after biochar addition, as observed on Phaseolus vulgaris which increased the BNF 

by 49 and 78% with 3 and 6% (w w-1) biochar rates, respectively. However, the same study 

concluded that a greater B and Mo availability supplied with biochar could explain, at least in 

part, the increased BNF.  

In forest soils, increased N mineralization and nitrification rates were attributed to biological 

processes stimulated by charcoal amendment (Ball et al., 2010; MacKenzie et al., 2008; 

Berglund et al., 2004). On the contrary, in cultivated soils, N availability may be reduced after 

biochar addition due to either N immobilization as a consequence of N-poor biochar with high 

C/N ratio and the adsorption of available NH4
+ on the char surface (Lehmann et al., 2006). 

Kolb et al. (2009) described an enhanced microbial biomass and activity and a decreased 

extractable N along with increasing biochar rates in three agricultural soils using a manure-pine 

biochar. Nevertheless, N immobilization in soil is not always a consequence of the biochar 

application, since C in charred biomass is highly recalcitrant thus it is not expected to 

immediately enter the C cycle (Major et al., 2009). 

 

2.2.1.7 Impact of biochar on greenhouse gas emission 

CO2, methane (CH4) and nitrous oxide (N2O) are the main contributors to GHGs in the 

atmosphere (Lal, 2008). The two latter gases are estimated to be 310 and 21 times (over a time 

horizon of 100 years) stronger GHGs than CO2, respectively (Forster et al., 2007), although 

CO2 is still by far the most significant GHG (Verheijen et al., 2010). CH4 and N2O are both 

produced by the soil microbiota communities, but while the first is produced under anaerobic 

conditions through the methanogenesis process, N2O is a partial product of the N cycle 

(nitrification and denitrification processes) (Cayuela et al., 2013; Van Zwieten et al., 2009). 

Various anthropogenic activities, such as fossil fuel combustion and industrial processes as 

well as agronomic practices (drainage of wetlands, plowing, land use conversion, rice (Oryza 

sativa) paddy fields, use of fertilizers, livestock and wetlands) represent important sources of 

GHGs (Yao et al., 2012a). Eighty percent of emitted N2O and 50% of CH4 are originated by 

soil processes in managed ecosystems (Gaunt and Cowie, 2009). 

In soils amended with biochars, no impact or even an increase in the emissions of GHGs fluxes 

under field trials or laboratory incubation studies were observed (Jones et al., 2011; Scheer et 

al., 2011; Wardle et al., 2008). For example, after biochar addition, a short-term increase in the 
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soil CO2 flux has been measured (Bruun et al., 2008; Steiner et al., 2008; Hamer et al., 2004) 

and the effect was related to both biotic (microbial stimulation as a consequence of the labile 

C-fractions supplied with biochar) and abiotic processes (i.e. increased WHC) (Smith et al., 

2010). Up to 23% of the biochar-C content was quickly mineralized, leading to an increase of 

CO2 emission from soil in a column incubation study (Rogovska et al., 2011). Nonetheless, 

such effects did not last more than few months, after which biochar amended soils stabilized 

their CO2 flux to similar rates of those unamended. Besides, an increasing in CO2 emission 

from biochar amended soils could be a consequence of the improved soil WHC which 

promotes decomposition of native SOM (Wardle et al., 2008). However, according to Jones et 

al. (2011), the initial short-term increasing CO2 emission from soil, with consequent fast C 

loss, is comparatively negligible compared to the amount of C stored with the biochar, thus 

should not affect the C sequestration potential of biochar on a long-term basis. 

In summary, CO2 flux from biochar amended soil can be initially stimulated because of: a) 

microbial decomposition of labile soluble C-compounds present on biochar (Smith et al., 

2010); b) microbial respiration of abiotically released inorganic C (Jones et al., 2011; 

Zimmermann et al., 2010) and c) a “priming effect” which is an extra decomposition rate of 

native OM following biochar application (Wardle et al., 2008). 

Mechanisms responsible of N2O emission from soil, including nitrification and denitrification 

(Baggs, 2008), can be altered by biochar (Singh et al., 2010b; Van Zwieten et al., 2010b; 

2009). Emissions of N2O from biochar-amended soils have been shown to decrease both from 

field and incubation studies (Case et al., 2012, Yao et al., 2012a, Zhang et al., 2012a, 2012b ; 

Rogosvka et al., 2011) although there are examples where biochar-amended soils stimulated 

N2O emissions, as observed by Singh et al. (2010b) who measured an initial N2O enhancement 

due to the higher labile N content of biochar which promoted the microbial activity. This 

effect, however, decreased over time. 

Mechanisms responsible for N2O reduction following biochar application are attributed to the 

influence of biochar on soil hydrology (increased soil aeration) (Van Zwieten et al., 2010b; 

2009; Yanai et al., 2007), to the presence of microbial inhibitor compounds such as ethylene 

(Spokas et al., 2010) and to changes in nitrification-denitrification processes (physical or 

biological immobilization of NH4
+ or NO3

−) (Singh et al., 2010b; Van Zwieten et al., 2010b). 

Yanai et al. (2007) reported that biochar-amended soils (100 g kg-1 dw soil) reduced N2O 

emissions by 89% as a consequence of an increased soil aeration, while Van Zwieten et al. 

(2010b) showed reduced N2O emissions using different biochars in an incubation study and 

suggested that such effect was likely due to an increased adsorption of nitrate (N-NO3) by the 
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biochar surfaces. Expressed as CO2 equivalents, biochar addition significantly reduced GHGs 

emissions only in the N-fertilized silt-loamy soil by decreasing N2O flux (Zheng et al., 2012). 

However, relatively high biochar rates are required before N2O emission is limited, as 

suggested by Spokas et al. (2009) who reported a reduction in the N2O emissions by up to 74% 

only when large biochar rates (20, 40 and 60%) were applied to the soil, whereas no 

suppression was observed at smaller rates. 

As a result of biochar addition, a change in the emissions of CH4 from soil has also been 

observed (Spokas et al., 2009; Rondon et al., 2005). In a chinese rice paddy amended with a 

wheat straw biochar-derived at a rate of 10 and 40 Mg ha−1, CH4 emission increased by 31 and 

49%, respectively, while in the same trial N2O emission decreased by 50 and 70%, respectively 

(Zhang et al., 2012a). On the other hand, CH4 and CO2 emissions were reduced by 51 and 91% 

respectively, in a paddy soil amended with biochar obtained from bamboo and rice straw (Liu 

et al., 2011). Similarly, CH4 emission was reduced in a tropical acid soil treated with biochar 

from mango trees (Rondon et al., 2006). Likewise, an incubation study demonstrated reduction 

in the emission of all the three main GHGs from three different soil types amended with most 

of 16 types of biochars (Spokas and Reicosky, 2009). 

Different mechanisms have been suggested to be responsible for the reduction of CH4 emission 

from biochar amended soil: a) the increase in soil aeration and changes in soil hydrology as 

anoxic conditions may increase oxidation of CH4 (Van Zwieten et al., 2010b) b) the higher rate 

of CH4 diffusion and oxidation by methanotrophs microorganism activity in well drained soils 

(Dalal et al., 2008) and c) a stimulatory biochar effects on methanotrophs which assimilate 

methane-C, subsequently utilized by other organisms via microbial food chain (Feng et al., 

2012). 

Nevertheless, explanations behind changes in GHGs fluxes following biochar application are 

often contradictory and seem to be soil/biochar specific. Furthermore, the extent at which 

biochar affects soil CO2 emission, obviously depends on biomass type, pyrolysis conditions 

(temperature and residence time), soil characteristics, climatic conditions and microbial 

community (Van Zwieten et al., 2009), but specific mechanisms governing such effects remain 

still unclear (Case et al., 2012; Castaldi et al., 2011) and apparently linked to properties of both 

biochar and soil conditions before application (Van Zwieten et al., 2010b; Yanai et al., 2007).  
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2.2.2 Impact of biochar on soil mineral content, functions and cycles   

2.2.2.1 Biochar as a source of nutrients to plants  

Biochar may represent a potential source of macro- and micronutrients beneficial for plants and 

soil microbial community (Downie et al., 2009), although nutrient release is often negligible 

(except for some ash-rich biochars; Abdullah et al., 2010) and limited to the first-second year 

following application. However, to measure the direct nutrient value of biochars, the plant-

available fraction is much more important than the total mineral content which is of poor 

interest. For instance, mineral N (N-NO3 and ammonium-N (N-NH4)) in biochar are found in 

low concentrations, although the total N content may be relatively high (Chan and Xu, 2009). 

Biochar produced from sewage sludge was found to contain negligible N-NO3 and N-NH4, 

despite of a high total N content of 6.4% (Bridle and Pritchard, 2004). Similarly, mineral N 

was found to be less than 2 mg kg-1 for a poultry manure and green waste chars with a total N 

of and 20 g kg-1 and 1.7 g kg-1, respectively (Chan et al., 2008). Conversely, available K in 

biochar is often high and available for plant uptake, as frequently reported (Lehmann et al., 

2003; Chan et al., 2007). 

Except for N, most of the nutrients in the feedstocks, potentially toxic, are largely conserved 

during pyrolysis and the characteristic temperature at which each element volatilizes is crucial 

to define the C/N ratio and the nutrient content of the final biochar. Wood-based biochars show 

high C/N and C/P ratios while in biochars obtained from manures, crops and food wastes these 

ratios are lower (Kookana et al., 2011). Certain organic C compounds change their structure 

and start to volatilize at 100 °C (Krull et al., 2009), while most of the N and sulphur (S) 

compounds volatilize above 200 and 375 °C, respectively, whereby biochar obtained from 

pyrolysis above these temperatures tend to be relatively depleted in N and S. However, when 

N-rich feedstocks are pyrolized at relatively low temperature (< 500 °C) biochars may retain 

up to 50% of the original N content (Bridle and Pritchard, 2004). 

Also, biochar ash content increases as retained C from feedstock decreases. Solubilization of 

ash in soil may result in readily-available nutrients to plants, which can also promote 

mineralization of native OM, especially in poor fertile soils. Woody feedstocks generally 

contain low proportions of ash (< 1% weight) whereas biomasses with high mineral content 

generally yield ash-rich biochar (Demirbas, 2004). For instance,  rice husk and rice hulls may 

contain up to 24% or even 41% by weight of ashes (Amonette and Joseph 2009; Antal and 

Grønly, 2003), respectively. 

The proportion of aromatic C in biochar increases with pyrolysis temperature, while N content 

peaks at around 300 °C (Baldock and Smernik, 2002). Low pyrolysis temperatures (<500 °C) 
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promote the relative accumulation of larger proportion of available K, chlorine (Cl) (Yu et al., 

2005), silicon (Si), Mg, P and S (Chan and Xu, 2009, Bourke et al., 2007; Schnitzer et al., 

2007) because during thermal degradation of the biomass, K, Cl and N vaporize at 

temperatures <700 °C, while Ca, Mg, P and S vaporize at considerably higher temperatures 

(Amonette and Joseph 2009) (>1000°C), becoming concentrated as the progressive elimination 

of the more volatiles C, O and H occurs (Singh et al., 2010; DeLuca et al., 2009; Gaskin et al., 

2008). Other relevant minerals can be present in the biomass, such as Si, which is part of the 

cell walls, mostly in the form of silica (SiO2) (Verheijen et al., 2010). To this respect, Houben 

et al. (2013) concluded that biochar could be used as a potential source of bio-available Si for 

Si-accumulator crops (for instance, in highly weathered tropical soils with low content in C, 

nutrients and bio-available Si).  

Biochars greatly differ each other in term of nutrient content, mineral form and chemical 

structure according to the pyrolysis conditions and biomass (Tab. 2.1) (Kookana et al., 2011; 

Singh et al., 2010; Gaskin et al., 2008). During pyrolysis, high temperatures (>800 °C) result in 

biochars with higher pH, electrical conductivity (EC) and extractable N-NO3, while low-

temperature biochars (<350 °C) show greater amount of extractable P, NH4 and phenols 

(DeLuca et al., 2009). 

Feedstocks with high nutrient content, such as manures, yield biochars with greater nutrient 

value compared to vegetal feedstocks (Singh et al., 2010). Biochars obtained from similar 

feedstocks and pyrolized under temperatures of 400 or 500 °C revealed a higher N and a lower 

P content (34.7 and 30.1 mg kg-1, respectively) for the lower compared with the higher 

temperature char (30.9 and 35.9 mg kg-1), respectively (Gaskin et al., 2008). 

Physical characteristics (porosity and surface area) may control the release of soluble nutrients 

from charred biomass and pore connectivity makes progressive nutrient release rather than 

instantaneous as in the case of ash, which quickly release its mineral content. This behavior 

could be also associated with mineralization of condensed tars and oils that may occlude 

biochar pores (Fernandes et al., 2003). 
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Table 2.1. pH and elemental composition of biochars as affected by feedstock and pyrolysis 

conditions (n.d.= not declared) 

 

Feedstock pH C N P K C/N 
Pyrolysis 

conditions 
Source 

  g kg-1    

Wood n.d. 708 10.9 6.8 0.9 65 empiric Lehmann et al., 2003 

Green wastes 9.4 360 1.8 0.2 21 200 450° C Chan et al., 2007a 

Poultry litter 9.9 380 20 25.2 22.1 19 450° C Chan et al., 2008 

Sewage sludge n.d. 470 64 56  7 450° C 
Bridle and Pritchard 

2004 

Broiler litter n.d. 258 7.5 48 30 34 700° C 
Lima and Marshall, 

2005 

Bark of A. mangium 7.4 398 10.4 n.d. n.d. 38 260°-360° C Yamato et al., 2006 

Rice straw n.d. 490 13.2 n.d. n.d. 37 500° C Tsai et al., 2006a 

Sugar cane bagasse n.d. 710 17.7 n.d. n.d. 40 500° C Tsai et al., 2006b 

Coconut shell n.d. 690 9.4 n.d. n.d. 73 500° C Tsai et al., 2006b 

Oil malle tree 
residues 

8.4 340 12 7.0 7.0 28 
Moki 

method 
Blackwell et al., 2007 

Soybean cake n.d. 590 78.2 n.d. n.d. 7.5 550° C Uzun et al., 2006 

Eucaliptus deglupa 7.0 824 5.73 n.d. n.d. 144 350° C Rondon et al., 2007 

Pruned hardwood 9.8 578 9.1 23.3 14.0 63.5 500 ° C Ventura et al., 2013 

 

Macronutrients  

Nitrogen  

Vegetal biomasses account for a range of N molecules (compounds), including amino acids, 

amines, and amino sugars. When pyrolized, these compounds condense, forming heterocyclic 

N aromatic structures (Cao and Harris, 2010; Koutcheiko et al., 2006). N functional groups 

detected in a low temperature biochar top surface were mainly pyrrolic or pyridinic amines as 

measured by X-ray photoelectron spectroscopy (XPS) (Amonette and Joseph, 2009). Nuclear 

magnetic resonance (NMR) spectroscopy has shown that aromatic and heterocyclic N-

containing structures in biochar occur as a result of biomass heating, converting labile 

structures into more recalcitrant forms (Almendros et al., 2003). N left in biochar obtained by 

charring vegetal biomasses is often found in low amount (Chan et al., 2007a) and is largely 

transformed into recalcitrant heterocyclic N compounds not available to plants uptake (Gaskin 

et al., 2010) rather than bio-available amine N (Cao and Harris, 2010; Chan and Xu, 2009; 

Novak et al., 2009).  
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From an agronomical point of view, biochar cannot be considered a considerable source of N, 

as concluded by Novak et al. (2009) who found that biochar had no evident effect either on 

total C or total combustible N (TCN) using pecan shell derived biochar incorporated to the soil 

up to a rate of 2%. However, Scheifele et al. (2014) proved that the labelled-biochar N was, at 

least in part, available to plants as demonstrated by the 15N signature measured in the soybean 

tissues. On the other hand, biochar has the potential to improve the efficiency of exogenous N 

sources derived from fertilizers (Ding et al., 2010; Steiner et al., 2008; Gaskin et al., 2008; 

Chan et al., 2007). 

During pyrolysis N is progressively volatilized resulting in a biochar with a C/N ratio much 

higher (> 30) than in the feedstock (Atkinson et al., 2010). Thereby, when incorporated into the 

soil, the labile C may stimulate the N requirement of bacteria and fungus to build new biomass. 

This will exhaust the N resources in the soil since microbes are more competitive than plant 

roots. The N immobilization in the microbial biomass after biochar addition represents a 

mechanism contributing to improve N retention in the topsoil (Sohi et al., 2010). However, if 

biochar is stable (high temperatures during pyrolysis), available C substrate is negligible, 

limiting microbial demand for external N. Whether significant N immobilization in soil occur 

depends on the rate of biochar addition, the consistence of the C labile fraction added and the N 

availability from either native (i.e. OM mineralization) or external sources (e.g. fertilizers).  

Although mechanisms are not fully understood, literature reports that biochar alters the N 

dynamic in soil (Clough and Condron, 2010; Lehmann, 2007 and literature therein). For 

instance, biochar alone did not increase radish yield even at high rate (100 t ha-1); however, 

increasing biochar application rates (10, 50 and 100 t ha-1) significantly increased yield in 

combination with 100 kg ha-1 of mineral N (Chan et al., 2007a). The biochar used in the former 

study was characterized by a low N content (1.8 g kg-1), a negligible mineral N fractions and a 

high C:N ratio, thereby it was suggested that its application did not contribute to any additional 

available N to the crop, but increased the N use efficiency. It has been proposed that biochar in 

soil has the ability to: (a) retain N by reducing ammonia (NH3
+) production and promoting 

NH4
+ bonding, (b) reduce nitrous oxide (N2O) emission and NO3

- leaching, and (c) enhance 

biological N fixation and benefit soil microbial communities (Clough and Condron, 2010; 

Asada et al., 2006). 

 

Phosphorus  

Biochar-induced increase in available P in soil has been suggested as one of the possible 

explanations for the positive response of plant growth and yield, in particular in tropical soils, 
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which are often acids, highly weathered and rich in sesquioxides (Van Wambeke, 1992) that 

bound phosphate (Turner et al., 2006), resulting in P deficiency for plants (Oberson et al., 

2006). Reported changes on P cycle in soil include the transformation of stable P into more 

plant-available forms (Braker and Conrad, 2011; Glaser et al., 2002) and the addition of 

available biochar-associated P. For instance, Angst and Sohi (2012) concluded that provision 

of soil P by biochar from hardwood might be sustained for several seasons whereas K release 

declined rapidly. In a field study on a ferrosol soil, an increase in plant available P upon a 

manure-based biochar amendment but not upon greenwaste biochar was observed (Slavich et 

al., 2013). On the contrary, a small but statistically significant reduction in plant available P 

resulted following high biochar application rates (4.4% and 11%, w/w) to a sandy soil (Van 

Zwieten et al., 2010c). A mechanism based on the dehydration of phosphate by biochar has 

also been proposed (Beaton et al., 1960) as a possible explanation of an improved P uptake by 

plants upon biochar addition, possibly aided by arbuscular MF (Lehmann and Rondon, 2006). 

 

Potassium  

Biochar is often characterized by high concentration of exchangeable K (Chan et al., 2007a) as 

long as low-medium temperatures are reached through pyrolysis since K volatilizes at around 

750°C, thereby most of the original content in the biomass is retained in the final product. As a 

result, available K content in soils has been observed to quickly increase after biochar 

application (Alling et al., 2014; Chan et al., 2007). 

 

Calcium  

Similarly to K, increase in exchangeable Ca in soil has been found following the application of 

biochar (Chan et al., 2007). An overall increase in available Ca from 101% to 320% was also 

reported in a long-term (4 year) field trial where biochar was applied at rates of 8 and 20 t ha-1, 

respectively. Such increase was partially explained as the reduced Ca leaching induced by 

biochar application (Major et al. 2010a).  

 

Magnesium  

Increasing in soil available Mg upon the addition of biochar is explained by the direct release 

of this element contained in charred biomasses. The addition of 1, 5, and 10% of biochar 

provided 50, 250, and 500 µg of Mg, respectively (Alling et al., 2014). Major et al. (2010a) 

found that available Mg concentration in soil increased up to 217% after 4 years of a sole 20 t 

ha-1 biochar application. 
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Sulphur  

There are not many evidences about the effect of biochar application on S content in soil. 

However, Novak et al. (2009) showed that exchangeable S slightly decreased with an increase 

of biochar addition obtained from pecan shells. 

 

Micronutrients  

During biochar formation, iron (Fe) and Mn are largely retained and associated under a number 

of organic and inorganic forms in the biomass (Amonette and Joseph 2009), thereby 

redistributed into chemical forms less soluble (Wang et al., 2009). However, Novak et al. 

(2009) measured an increased Mn concentration in soil after two months from the 

incorporation of a pecan shell based biochar but a significantly lower concentration of Mn was 

recorded in the leachate. Similarly, hardwood-derived biochar (22.4 t ha−1) increased the 

available soil Mn and total organic C (TOC) by 1.5 and 1.4-fold in a calcareous soil, 

respectively (Lentz and Ippolito, 2011). Gaskin et al. (2008) describe a great variety in Zn 

concentration in biochars, depending on the feedstock used, while extractable Zn marginally 

decreased from 13 to 10 mg kg-1 with an increase in the addition of biochar to soil (Novak et 

al., 2009). Cu availability in soil was not significantly affected by the addition of biochar up to 

a rate of 20 g kg-1 of soil (Novak et al., 2009) but a notable decreases in leaf Cu, Fe, Mn and 

Zn concentration was observed on mustard, barley and red clover grown successively within 

one year after the incorporation of three different biochars in combination with 3 different soils 

(Kloss et al., 2014).  

 

2.2.2.2 Influence of biochar on nutrient leaching in soil 

Mineral leaching from agricultural lands implies agronomical, economic and environmental 

considerations since it depletes soil fertility, increases the amount of required synthetic and/or 

organic fertilizer inputs (< fertilizer use efficiency) and leads to eutrophication of water bodies 

contributing to lower the quality of ground and surface waters (Laird et al., 2010b; Sharpley et 

al., 2001). Furthermore, leaching in soil affects nutrient cycling in agriculture (Brady and Weil, 

2008) and occurs when mobile ions dissolved in soil solution (not retained by colloids) move 

outside the rooting zone where plants cannot uptake them (Major et al., 2009). Water 

percolation depends on the soil infiltration capacity (hydraulic conductivity), water retention on 

the root zone and crop transpiration rate, which is related to the density and the ability of the 

roots to absorb water. In addition, amount, chemical form, timing and placement of synthetic 
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and/or organic fertilizers, greatly affect nutrient leaching patterns (van Es et al., 2002; Cahn et 

al., 1993). 

Although biochar application may result in an initial increased in nutrient leaching (e.g., NO3), 

especially when biochars have high N content (Singh et al., 2010), it has been proved that the 

application of charred biomasses is an effective, long-term tool for reducing the adverse impact 

of mineral leaching on surface and groundwater quality (Laird et al., 2010; Steiner et al., 2008; 

Lehmann et al., 2003). Based on the literature, biochar results effective in reducing the 

leaching of many ions (at least in the short-term) including PO3
-, NH4

+ and NO3
-, which are 

usually the most limiting nutrients to crop growth (Lehmann et al., 2003). Biochar added to a 

manure treated soils reduced the total inorganic N mineral forms (NO3 and NH4) amount in the 

leachate by 11% in comparison with the soil added only with manure (Laird et al., 2010), while 

NO3
-, but not NH4

+ concentration in the leachate, was significantly reduced in an apple orchard 

amended with a biochar from hardwood (Ventura et al., 2013). In agreement with the former 

findings, a recent study suggests a role of biochar in retaining mineral N mostly in the form of 

NO3
- rather than NH4

+. In fact, the application of 15 and 30 t ha-1 of biochar in a sandy soil 

significantly increased NO3
-
 concentration in the top soil (0-0.15 m) while it was decreased in 

the deeper layers (up to 0.90 m) (Kammann et al., 2014). Similarly, biochar at 30 and 60 t ha-1 

reduced NO3
- leaching by roughly 60% in a macrocosm study with Vitis vinifera grown in 

sandy soil (Kammann et al., 2014). The same authors revealed that both fresh and aged 

biochars (2%) sorbed up to 60% of the soil-applied labelled 15N-NO3
-. Depending on the 

biochar type (feedstock and charring T), soil characteristics and contact period, high biochar 

application rates (10 and 20 % biochar:soil w w-1) have been shown to reduce NH4
+ leaching in 

contrasting (Ferralsol and Anthrosol) soils (Lehmann et al., 2003). Leaching of applied NH4
+ 

was reduced by more than 60% compared to unamended soil in cropping rice, whilst leaching 

of Ca and Mg was also reduced, by 20 and 40%, respectively, after 250 mm of applied water, 

but only during the first week (Lehmann et al., 2003). The same author did not report any 

effect on the leaching of K which was not reduced likely because fresh biochar typically 

contains large amounts of this element. The adsorbed N may be subsequently available to 

plants (Taghizadeh-Toosi et al., 2012; 2011), as shown by Chan et al. (2008) who observed an 

increase in the uptake of N at high rates of biochar. 

Pepperwood biochar effectively reduced the amount of NO3
--N, NH4

+-N, and phosphate in the 

leachate of a sandy soil in a column study by 34.0%, 34.7%, and 20.6%, respectively, while a 

peanut hull biochar also reduced the leaching of NO3
--N and NH4

+-N by 34% and 14%, 

respectively, but caused an additional phosphate release from the soil columns (Yao et al., 
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2012b), suggesting that the effect of biochar on the nutrient leaching of agricultural lands 

varies by biochar and nutrient type. In fact, the multiple interactions occurring within the soil-

plant-atmosphere system (e.g. rainfall patterns, agricultural management practices) and the 

range of feedstocks (and their mixtures) potentially employable for biochar production make 

specific effects of biochar, hardly predictable as a generic qualities of biochar.  

Benefits from a reduced leaching in agriculture are both direct (> fertilizer use efficiency) and 

indirect, considering that considerable fossil energy is required to fix N into fertilizers; thereby 

a low ratio of N application to crops and an increase in N uptake impact the overall C balance 

of agricultural activities and lead to a lower fertilizer requirement per unit yield, thus to lower 

N2O emissions. 

Different mechanisms have been associated to the decrease in nutrient leaching (or nutrient 

retention) when biochar is added to soils and these can be mainly ascribed to: 

a) the great surface area of biochar provided with adsorption sites for inorganic nutrients 

(bound by ion and covalent bindings); 

b) the increase in soil WHC which improves nutrient retention residence time in the root 

zone; 

c) the increase of the internal reactive surface area of the soil-biochar matrix; 

d) the decrease of water percolation below the root zone induced by an increased 

evaporative surface (plant water use); 

e) the increase in plant nutrient use through enhanced crop growth; 

f) the attachment of OM with sorbed nutrients onto biochar particles. 

 

Biochar is a high porous material and its bulk density is lower than that of mineral soil, 

suggesting that its application modify soil hydrology because of changes in porosity and, in the 

long term, aggregation. A large percentage of the biochar pores are smaller than  <2 x 10-3 µm 

(Tseng and Tseng, 2006), contributing to reduce the water mobility through the soil since water 

moves better in pores in the order of a few tens of micrometers in size (e.g. 30 µm) (Brady and 

Weil, 2008). Once incorporated, biochar can modify soil pore-size distribution (soil porosity) 

thereby alter percolation and flow patterns (Major et al., 2009). Soil porosity is critical in 

determining the rate at which rain can infiltrate into soil and carry nutrients away from the 

rooting zone. Altering soil porosity and consequently soil water content, biochar may reduce 

nutrient leaching, with a greater effectiveness in coarse-textured (sandy) than in silty or clayey 

soils, since evidences suggest that sandy soils amended with biochar will experience an 

increase in water content while the effect could be opposite in clay soil (Tryon, 1948). 
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Nevertheless, a reduced amount of leachate was recorded from a clayey soil mixed with 

biochar (Lehmann et al., 2003) and this response was attributed to the increased plant biomass 

and evaporative surfaces induced by biochar which indirectly reduced water mobility, while in 

sandy soils this mechanism can be complemented by the direct retention of water by biochar 

(Major et al., 2009). In addition, in sandy soil, where the amount of water held decrease as 

matric potential increases, biochar particles may hold large volumes of immobile water, even at 

elevated matric potentials. Thereby, biochar can contribute to retain minerals by trapping water 

held by capillary forces, as it occurs in soil micropores. Nutrients dissolved in this water would 

thus be retained near the soil surface and plants can access part of these nutrients (Major et al., 

2009). A delay in the N-NH4
+ concentration in the leachate was experienced in the top 0.10 m 

of a multi-layered soil column when soil was mixed with bamboo charcoal (biochar) at a rate 

of 5 g kg-1 and ammonium chloride (NH4Cl) at 400 kg N ha-1 let to percolate (Ding et al. 

2010). Authors attributed such response to the highly porous structure of biochar and its 

adsorptive properties. 

Leaching reduction potential of biochar can be affected by particle size, since larger-sized 

biochar fragments generally sorb fewer nutrients than smaller ones, suggesting an effect of the 

total surface area (Major et al., 2009). 

Compared to larger biochar fragments, the smaller ones, as well as small negatively charged 

soil colloids (Sen and Khilar, 2006), can facilitate the physical transport of the retained 

nutrients through the soil profile, since small particles may travel downwards with water 

percolation and/or horizontally by surface water runoff (Major, et al., 2010b). Soil particles up 

to 10 µm were found to move downward through a sandy loam soil (Jacobsen et al., 1997) 

while particles with a size between 2 and 5 µm moved from topsoil through a sandy loam in the 

field (Laubel et al., 1999) and natural colloids (up to 200 µm) were mobilized through a coarse 

soil (Totsche et al., 2007). Size of biochar fragments dramatically varies upon the same biochar 

batch and very small particles (e.g. <2 µm: the size of clay particles) can represent a large 

proportion of the produced material (after pyrolysis) or created during transport and 

incorporation into the soil. Furthermore, physical (e.g. pounding, tillage, rain, water freezing 

and thawing), chemical weathering and biotic disturbance continuously participate in reducing 

biochar particles size resulting in finer biochar over time, suggesting that the ability of biochar 

to reduce leaching could also decrease over time.   

N fluxes in soil include denitrification and gaseous losses (i.e. N2O), fixation, precipitation, 

immobilization, mineralization and, also, leaching which in turn represent the N cycle. Each of 

these components can be altered whether directly or indirectly by biochar in terms of rate and 
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time course, thus affecting consequently rate and time course of the leachate. For instance, 

affecting N2O emission (see paragraph 2.2.1.7 for details), biochar alters the amount of N in 

soil, which may undergo to different fates. Similarly, biochar application to agricultural lands 

may led to an increased net nitrification rate (Gundale and DeLuca, 2007; Berglund et al., 

2004), mostly due to the sorption of nitrification-inhibiting phenolic compounds which affect 

the availability of the nitric N form, hence the potential amount of the mineral forms leachable. 

Also, the addition of biochar has also been suggested to improve microbial growth (Rondon et 

al., 2007) with possible implications in the nitrification and denitrification processes. Inhibition 

and increase in the nitrification activity in soils upon the addition of biochar has been proposed 

(Clough and Condron, 2010; DeLuca et al., 2006; DeLuca and Sala, 2006). However, 

mechanisms about how nitrifying bacteria can be affected by biochar in soil are not fully 

understood.   

Furthermore, leaching rate is affected by soil texture (clays in particular), soil minerals and OM 

as well as the chemistry of the elements in the soil solution. Whether a nutrient is under 

organic or inorganic form, size and charge properties of the molecules determine how it 

interacts with other particles of the soil matrix. In fact, positively charged ions or molecules 

(e.g. NH4
+, Ca++, Fe++), can be retained by negatively charged clays and soil OM (Brady and 

Weil, 2008) particles. Similarly, negatively charged ions e.g. (NO3
-) can be retained by 

positively charged compounds. These properties are quantified as cation (CEC) and anion 

(AEC) exchange capacity and refer to the ability of a substance to retain positively or 

negatively charged ions, respectively. Biochars produced through slow pyrolysis between 250 

and 900 °C are characterized by negatively charged sites on its surface, a high surface area and 

large internal porosity and by the presence of both polar and nonpolar surface sites (Mukherjee 

et al., 2011; Novak et al., 2009; Baldock and Smernik, 2002; Glaser et al., 2002). For this 

reasons, biochar has often a CEC consistently higher than that of whole soil, clay minerals or 

soil OM, typically ranging between 30 and 150 cmolc kg–1 which makes it able to sorb and 

desorb positively charged nutrients (Liang et al., 2006) through electrostatic forces, while AEC 

of biochar is often very low and, therefore, the adsorption of anions (i.e. NO3
- and PO4

=) is 

quite negligible or absent (Hale et al., 2013; Yao et al., 2012b; Braker and Conrad, 2011). Yao 

et al. (2012b) reported a weak NH4
+ adsorption by the majority of 13 biochars, which adsorbed 

between 1.8 and 15.7% of the added amount of NH4
+. 

Higher nutrient retention and nutrient availability after charcoal addition were observed by 

Glaser et al. (2002) who concluded that charcoal contributed to an increase in ion retention and 

to a decrease in leaching of dissolved OM and organic nutrients in acidic tropical soils. Acidic 
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soils, in fact, often ensure a low CEC due to the abundance of H+ ions which occupy available 

sites, hence a biochar-induced pH increase is beneficial also to increase nutrient retention and it 

has been indicated as one of the likely reasons for observed increase in crop yields upon its 

application (Atkinson et al., 2010).  

 

 

 

Figure 2.3. Proposed biochar effects on nutrient leaching: 1) Upon biochar application, soil 

WHC increases due to water reduced mobility as a consequence of biochar porosity; 2) after 

weathering, as biochar binds to other soil constituents, soil aggregation is improved, and 3) 

preferential water flows occur as well as the smoothed transport of biochar particles; 4) at a 

smaller scale, newly applied biochar sorbs hydrophobic organic forms of nutrients and 5) after 

weathering, the surface charge of biochar increases, thus improving cation exchange capacity, 

and 6) promoting soil biota. 

(Source: Major et al., 2009, with permission) 

Illustration is not strictly to scale and water is not shown in the bottom panels. 
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Furthermore, nutrient adsorption through charge or covalent interaction on biochar is promoted 

by biochar porosity which led to a large surface area to which both hydrophobic and 

hydrophilic molecules can be adsorbed (Major et al., 2009) depending upon the functional 

groups displayed by the biochar. Major et al. (2012) showed that biochar produced at 

temperatures above 500°C (or stem activated), resulted in an increased surface area and thus in 

an increased sorption of nutrients. Functional groups found on biochar surfaces have been 

indicated as the responsible for the interactions with water and solutes. These include hydroxyl 

(-OH), carbonyl (C=O), carboxylate (COOH), hydrogen (H) and ether (R–O–R) (Mao et al., 

2012; Cheng et al., 2008) which influence biochar surface chemistry by Coulombic, dipole and 

H-bonding reactions. Carboxylate groups are primarily responsible for the CEC of biochar due 

to their negative formal charges, while others functional groups on biochar are polar nano-sites 

on a relatively non-polar and hydrophobic surface (Lawrinenko, 2014). This surface structure 

can sorb molecules with both polar and non-polar portions. Besides, O-contained alcohol, 

carbonyl, and carboxylate functional groups are generally believed to contribute to biochar 

CEC because they may carry a negative charge and serve as Lewis bases for the sorption of 

cations. Finally, O and N containing chemical functional groups in biochar contribute to 

surface properties as they are generally polar and provide sites for hydrogen bonding, ion-

dipole, and dipole-dipole interactions (Lawrinenko, 2014). 

 

2.3 Heavy metals supply and remediation associated with biochar application 

The supply of biochar to lands has the potential to contaminate the environment as a 

consequence of heavy metals (Bridle and Pritchard, 2004) and harmful compounds, such as 

polycyclic aromatic hydrocarbons (PAHs), that may be condensed on its surface during 

pyrolysis (Fabbri et al., 2013; Joseph et al., 2010). PAHs refer to fused aromatic rings and are 

generally part of oil, coal, and tar deposits as well as by-products of burning of fossil fuel or 

biomass and these compounds are of main concerns due to their carcinogenic, mutagenic, and 

teratogenic nature (Kookana et al., 2011). The potential contamination risk associated with 

biochar supply is more accentuated when municipal wastes, sewage sludge, industrial wastes, 

chicken litter and compost are used as feedstocks to produce biochar (Verheijen et al., 2010). 

Moreover, due to its high sorption capacity (Laird, 2008), biochar may favor the accumulation 

of persistent organic pollution (POPs) in soil. 

Bridle and Pritchard, (2004) reported a high heavy metal content for biochar obtained from 

different feedstocks and in particular, high concentration of Cu, Zn, Cr and Ni were detected in 
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a biochar produced from sewage sludges. However, biochar obtained from the former biomass 

did not induce heavy metals accumulation in soil after its incorporation (Shinogi et al., 2003) 

On the other hand, it is well known that activated carbon-based products, due to their unique 

properties, especially their highly carbonaceous and aromatic nature and high specific surface 

area, are strong adsorbents of micronutrients, toxic metals (Ogbonnaya and Semple, 2013; 

Huang, 2003; 1978; Budinova et al., 1994) and polar compounds including many 

environmental contaminants (i.e. PAH, dioxin) (Hale et al., 2012; Hilber et al., 2012). Cao et 

al. (2009) concluded that biochar produced from dairy manure is a greater sorbent to remove 

lead (Pb) and atrazine from soil than activated carbon, while increase in the sorption of 

benzene and toluene onto red gum charcoal was reported by Bornemann et al. (2007). The 

former outcome is supported by Chen and Yuan (2011), who noticed a positive 

decontamination result induced by pine needle biochar incorporated to a soil spiked with 

naphthalene, phenanthrene or pyrene. Mohan et al. (2007) studied the adsorption potential for 

arsenic (As), cadmium (Cd) and Pb of oak bark, pine bark, oak wood and pine wood chars 

obtained by fast pyrolysis up to 450 °C and a commercial activated charcoal; oak bark char 

adsorbed maximum Pb, Cd, and As and authors indicated the high CEC as the main 

mechanism for such response. Broiler litter manure char (350 and 700 °C) and their steam-

activated analogues adsorbed heavy metals in the sequence Ni < Cd < Cu < Pb from a mixture 

containing these metals (Uchimiya et al., 2010). As, Cd, and Cu concentration was decreased 

in maize shoots grown in a contaminated soil whereas the effect was inconsistent for Pb and Zn 

(Namgay et al., 2010) and this response was attributed to the sorption of the metal(loid)s by 

biochar. 

Application of biochar significantly reduced soil NH4NO3 extractable Cd (cadmium), Cu and 

Pb concentration with consequent reduced accumulation of these metals by Indian mustard 

(Brassica juncea) tissues. Authors suggested that these metals were immobilized and that 

biochar modified the partitioning of Cd, Cu and Pb from the easily exchangeable phase to less 

bioavailable organic bound fraction (Park et al., 2011). 

Beesley et al. (2010) proved that biochar was effective in reducing the concentration of the 

phytotoxic water soluble Cd and Zn and total and bio-available PAHs in a multi-element 

contaminated soil. In the same study, toxic Cu and Pb concentrations were significantly 

reduced while the effect of biochar on the uptake of As into Miscanthus foliage (Hartley et al., 

2009) was negligible. Other studies proved the capacity of biochar to remove dissolved NO3
- 

(Mizuta et al., 2004) and phosphate (Beaton et al., 1960). More recently, Oleszczuk et al. 

(2012) reported that addition of either biochar or activated C can mitigate the mass transfer of 
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contaminants from PAH-containing sewage sludge matrix into pore-water. Likewise, biochar 

in soil may reduce the bioavailability of pesticides since it has been reported to be >2000 times 

more effective than soil in sorbing these compounds, reducing their plant availability at 

relatively small rate (0.05% by wt) (Kookana, 2010). 

The sorptive capacity of biochar could also be used to remove contaminants during wastewater 

treatment process. For instance, the pine chars was successfully used to treat a fluoride-

contaminated groundwater at pH 2.0. Ion exchange and metal fluoride precipitation were 

addicted as the main mechanisms of adsorption (Mohan et al., 2012). 

Compared to larger biochar particles or to particulate OM, biochar dust has been indicated as a 

better sorbent for a wide range of trace hydrophobic contaminants in soils (e.g. PAHs, 

polychlorinated biphenyls - PCBs, pesticides, polychlorinated dibenzeno-p-dioxins and –furans 

- PCDD/PCDFs) (Hiller et al., 2007; Bucheli and Gustafsson, 2001, 2003) as well as in marine 

system (i.e. dioxin) (Persson et al., 2002). 

 

2.4 Impact of biochar on soil fertility and crop production 

Terra preta de Indio is evidently more fertile than surrounding lands and this was generally 

attributed to its higher proportion of black C (Lehmann and Rondon, 2006; Glaser et al., 2002; 

Haumaier et al., 1995), likely originated from partially-combusted biomass residues derived 

from a range of anthropogenic activities such as kitchen fires and field burning. In these soils, 

differences in crop productivity were strongly associated with soil CEC (Liang et al., 2006; 

Glaser et al., 2002), suggesting that charcoal positively affected nutrient availability in plant-

available form and cations retention, minimizing leaching losses. Other studies report that the 

liming effect of charcoal was the main factor for improved crop yields on acidic soils 

(Verheijen, et al., 2010). However, while water and nutrient retention are expected to continue 

over time upon biochar application, nutrient supply and liming effect are supposed to last 

shorter. Positive responses on crop yield have been also attributed to the direct addition of 

available plant nutrients such as P, K, Ca, Zn and Cu and a consequent increased plant uptake 

in tropical environments (Alburquerque et al., 2013; Lehmann and Rondon, 2006). Moreover, 

charcoal may also contain bioavailable elements (e.g. selenium (Se)) that could potentially 

assist crop growth (Sohi et al., 2009). 

To date, published studies assessing the effect of anthropogenic soil-applied biochar on crop 

yield are generally short-term and limited to small experimental sites, often carried out in pots 

where environmental fluctuation is limited. Nevertheless, evidences suggest that biochar 

application to soil at moderate rates (0.5 t ha-1) are usually beneficial (Glaser, 2002) and in few 
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cases negative, at least for some crops or soils (Gaskin et al., 2010; Van Zwieten, et al., 2010a; 

Sohi et al., 2009) while high rates seem to inhibit plant growth. Higher rates than 0.5 t ha-1, 

along with chemical NPK source, increased crop yield on tropical Amazonian soils (Steiner et 

al., 2007) and semi-arid soils in Australia (Ogawa, 2006). In addition, positive responses of 

crop yields have been documented in pot and field trials (Alburquerque et al., 2013; Huang et 

al., 2013; Spokas et al., 2012; Chen et al., 2010; Major et al., 2010; Van Zwieten, et al., 2010a; 

Asai et al., 2009; Chan et al., 2008; 2007). 

Kammann et al. (2012) observed a significant increase in the biomass of ryegrass (Lolium 

perenne L.)  after the addition of peanut (Arachis hypogaea L.) hull biochar at a rate of 50 t ha-

1 to a German Luvisol soil. Major et al. (2010) attributed the increased yield of maize to a 77-

320% greater availability of Ca and Mg in the biochar amended soil while reduced nutrient 

losses was indicated as the main factor for increased crop yield on infertile sandy soils (Asai et 

al., 2009; Steiner et al., 2008). Chan et al. (2007) concluded that the addition of biochar along 

with fertilizers significantly increased radish yields more than the addition of fertilizer alone, 

indicating the increased N use efficiency as the key factor. 

Plant dry biomass increased by 353 and 572% for shoot and root, respectively after the 

addition of 10 g kg-1 of a chicken manure-derived biochar and this response was attributed to a 

reduced toxicity of metals and increased availability of nutrients such as P and K (Park et al., 

2011). An increase up to 200% is reported in the rice yield (Noguera et al., 2010) using 

charcoal (wood) at rate of 5 g kg-1 (biochar:soil) in a lab experiment. In a cropping trial (Vigna 

unguiculata and O. sativa) carried out in an archaeological Anthrosol soil, a significantly 

increased of P, Ca, Mn and Zn availability was indicated as the responsible for the increase 

(38–45%) in biomass production of the two crops in the biochar amended plots (Lehmann et al. 

2003). In a Zea mays trial carried out in Western Kenya (Kimetu et al., 2008), the application 

of biochar doubled crop yield, although this response was not explained by biochar nutrient 

availability alone. A yield increase of R. sativus was observed after the application of 10, 25 

and 50 t ha-1 of poultry manure biochar alone (Chan et al., 2008). However, crop yield response 

after biochar addition is not always positive (Spokas et al., 2012). In fact, crop yield response 

after biochar addition could be positive, neutral or even detrimental (Mukherjee and Lal, 2014; 

Crane-Droesch et al., 2013; Spokas et al., 2012 and literature therein). For instance, a reduced 

growth in wheat and radish with the addition of a paper mill sludge biochar in a calcarosol soil 

was reported by Van Zwieten et al. (2010a). Similarly, a 30% decrease in the biomass of R. 

sativus grown on an Alfisol soil after the incorporation of 10 t ha-1 green waste biochar was 

observed, although biomass increased at higher biochar rates (Waters et al., 2011). Other 
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studies have reported a decline in soil N availability with wood biochar addition, potentially 

causing reduced yields (Asai et al. 2009). The amendment of biochar alone (8 t ha-1) or biochar 

mixed with compost (8 + 55 t ha-1, respectively) in a 30-year-old vineyard induced 

economically irrelevant and mostly non-significant effects on yield and grapevine quality over 

three years field trial (Schmidt et al., 2014). 

In conclusion, data extracted from Jeffery et al. (2011), who resumed the relationship between 

biochar and crop productivity using the meta-analyses approach, show an overall relatively 

small, but statistically significant, positive effect of biochar application to soils on crop 

production (approximately 10%). In the same study, the greatest responses were seen in 39% of 

included trials when biochar was applied at 100 t ha-1. Positive effects were recorded mainly in 

acid (14%) and neutral pH soils (13%), and in soils with a coarse or medium texture (10 and 

13%, respectively), suggesting that two of the main mechanisms for yield improvement may be 

a liming effect and the influence on the WHC. In agreement with the previous study, a recent 

meta-regression analysis estimated an average crop yield increase of approximately 10% for 3 

Mg ha-1 biochar addition in the first year after application (Crane-Droesch et al., 2013). In the 

latter study, soil properties (low cation exchange capacity and low organic C content) showed 

the best predictability with positive yield response while in contrast with previous findings soil 

pH and soil clay content were not significantly correlated to increased yield response. 

Interestingly, prediction models about potential benefits induced by the addition of biochar to 

agricultural soils implicate positive yield response over much of Sub-Saharan Africa, parts of 

South America, Southeast Asia and southeastern North America (areas of highly weathered 

soils in tropics or subtropics) and the north of Eastern Europe. Yield response is predicted to be 

mostly negative in organic soils such as those of Indonesia, northern Eurasia and North 

America, while yield response  

may be weak or negative in many of the most important grain-producing areas, such as the 

Eurasian chernozems, central North American mollisols, South Asian vertisols soils and in 

large areas of the North American corn belt (Crane-Dresch et al., 2013). 



Chapter 2 - Biochar in Agriculture 

 

60 

 

2.5 REFERENCES 
 
Abdullah H., Mediaswanti K. A., Wu H. 2010. Biochar as a fuel: significant differences in fuel quality and ash 
properties of biochars from various biomass components of Mallee trees. Energy & Fuels, 24(3), 1972-1979. 
 
Abel S., Peters A., Trinks S., Schonsky H., Facklam M., Wessolek G. 2013. Impact of biochar and hydrochar 
addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191. 
 
Alburquerque J. A., Salazar P., Barrón V., Torrent J., del Campillo M.D.C., Gallardo A., Villar R. 2013. 
Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable 
Development, 33(3), 475-484. 
 
Alling V., Hale S.E., Martinsen V., Mulder J., Smebye A., Breedveld G. D., Cornelissen G. 2014. The role of 
biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science 177(5), 671-
680. 
 
Almendros G., Knicker H., Gonzaléz-Vila F.J. 2003. Rearrangement of carbon and nitrogen forms in peat after 
progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Organic 
Geochemistry 34, 1559-1568. 
 
Ameloot N., Graber E.R., Verheijen F.G., De Neve S. 2013. Interactions between biochar stability and soil 
organisms: review and research needs. European Journal of Soil Science, 64(4), 379-390. 
 
Amonette J.E., Joseph S., 2009. Characteristics of biochar: microchemical properties. In: Lehmann J., Joseph S. 
(Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, 33-52.  
 
Anderson C.R., Condron L.M., Clough T.J., Fiers M., Stewart A., Hill R.A., Sherlock R.R. 2011. Biochar induced 
soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and 
phosphorus. Pedobiologia, 54(5), 309-320.  
 
Antal Jr.M.J., Grönli M., 2003. The art, science, and technology of charcoal production. Industrial and 
Engineering Chemistry Research 42(8), 1619-1640. 
 
Angst T.E., Sohi S.P. 2013. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy, 5(2), 
221-226. 
 
Asada T., Ohkubo T., Kawata K., Oikawa K. 2006. Ammonia adsorption on bamboo charcoal with acid treatment. 
Journal of Health Science 52, 585-589.  
 
Asai H., Samson B.K., Stephan H.M., Songyikhangsuthor K., Homma K., Kiyono Y., Inoue Y., Shiraiwa T., 
Horie T. 2009. Biochar amendment techniques for upland rice production in northern Laos 1. Soil physical 
properties, leaf SPAD and grain yield. Field Crops Research 111, 81-84. 
 
Atkinson C.J., Fitzgerald J. D., Hipps N.A., 2010. Potential mechanisms for achieving agricultural benefits from 
biochar application to temperate soils: a review. Plant Soil, 337 (1-2), 1-18. 
 
Baldock J.A., Smernik R.J. 2002. Chemical composition and bioavailability of thermally altered Pinus restnosa 
(red pine) wood. Organic Geochemistry 33, 1093-1109. 
 
Ball P.N., MacKenzie M.D., DeLuca T.H., Holben W.E. 2010. Wildfire and charcoal enhance nitrification and 
ammonium-oxidizing bacterial abundance in dry ontane forest soils. Journal of Environmental Quality,  39, 1243-
1253.  
 
Baggs E.M. 2008. A review of stable isotope techniques for N2O source partitioning in soils: Recent progress, 
remaining challenges and future considerations. Rapid Commun. Mass Spectrom. 22, 1664-1672.  
 
Baronti  S., Vaccari F.P., Miglietta F., Calzolari C., Lugato E., Orlandini S., Genesio L. 2014. Impact of biochar 
application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 53, 38-44. 
 
Basso A. S., Miguez F. E., Laird D. A., Horton R., Westgate M. 2013. Assessing potential of biochar for 
increasing water‐holding capacity of sandy soils. GCB Bioenergy, 5(2), 132-143. 



Chapter 2 - Biochar in Agriculture 

 

61 

 

Beaton J.D., Peterson H.B., Bauer N. 1960. Some aspects of phosphate adsorption by charcoal. Soil Science 
Society of America Journal, 24(5), 340-346. 
 
Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L. 2010. Effects of biochar and greenwaste compost amendments 
on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. 
Environmental Pollution, 158(6), 2282-2287. 
 
Berglund L.M., DeLuca T.H., Zackrisson O. 2004. Activated carbon amendments to soil alters nitrification rates 
in Scots pine forests. Soil Biol Biochem 36, 2067-2073. 
 
Blackwell P.S., Shea S., Storier P., Solaiman Z., Kerkrnans M., Stanley I. 2007. Improving wheat production with 
deep banded oil mallee charcoal in Western Australia. In Proceedings at the Conference of the International 
Agrichar Initiative, 30 April-2 May 2007, Terrigal, NSW, Australia. 
 
Bornemann L.C., Kookana R.S., Welp G. 2007. Differential sorption behavior of aromatic hydrocarbons on 
charcoals prepared at different temperatures from grass and wood. Chemosphere 67, 1033-1042. 
 
Bourke J., Manley-Harris M., Fushimi C., Dowaki K., Nunoura T., Antal M. J.Jr. 2007. Do all carbonised charcols 
have the same structure ? A model of the chemical structrue of carbonized charcoal. Industrial and Engineering 
Chemistry Research 46, 5954-5967. 
 
Brady N.C. 1990. Soil Colloids: Their Nature and Practical Significance. Nature and Properties of Soils, 177-212. 
 
Brady N.C., Weil R.R. 2008. The Nature and Properties of Soils, 14th edition, Prentice Hall, Upper Saddle River, 
NJ. 
 
Braker G., Conrad R. 2011. Diversity, Structure, and Size of N2O. Producing Microbial Communities in Soils—
What Matters for Their Functioning ?, in Laskin, A. I., Sariaslani, S., Gadd, G. M. (eds.): Advances in Applied 
Microbiology, Vol 75. Elsevier, San Diego, CA, USA, 33-70. 
 
Bridle T.R., Pritchard D. 2004. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. 
Technol. 50, 169-175. 
 
Brockhoff S.R., Christians N.E., Killorn R.J., Horton R., Davis D.D. 2010. Physical and mineral-nutrition 
properties of sand-based turfgrass root zones amended with biochar. Agron. J. 102, 1627-1631. 
 
Brodowski S., John B., Flessa H., Amelung W. 2006. Aggregate-occluded black carbon in soil. European Journal 
of Soil Science 57, 539-546. 
 
Brodowski S., Amelung W., Haumaier L., Zech W. 2007. Black carbon contribution to stable humus in German 
arable soils. Geoderma 139, 220-228. 
 
Bruun S., Jensen E., Jensen L. 2008. Microbial mineralization and assimilation of black carbon: Dependency on 
degree of thermal alteration. Organic Geochemistry 39, 839-845. 
 
Bruun E.W., Hauggaard-Nielsen H., Ibrahim N., Egsgaard H., Ambus P., Jensen P.A., Dam-Johansen K., 2011. 
Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. 
Biomass and Bioenergy 35, 1182-1189. 
 
Bruun E.W., Petersen C.T., Hansen E., Holm J.K., Hauggaard-Nielsen H. 2014. Biochar amendment to coarse 
sandy subsoil improves root growth and increases water retention. Soil Use and Management, 30(1), 109-118. 
 
Bucheli T., Gustafsson Ö. 2001. Ubiquitous observations of enhanced solid affinities for aromatic organochlorines 
in field situations: are in situ dissolved exposures overestimated by existing portioning models ? Environmental 
Toxicology and Chemistry 20, 1450-1456.  
 
Bucheli T., Gustafsson Ö. 2003. Soot sorption of non-ortho and ortho substituted PCBs. Chemosphere 53, 515-
522. 
 
Budinova T.K., Gergova K.M., Petrov N.V., Minkova V.N. 1994. Removal of metal ions from aqueous solution 
by activated carbons obtained from different raw materials. J. Chem. Technol. Biotechnol. 60, 177-182. 
 



Chapter 2 - Biochar in Agriculture 

 

62 

 

Cahn M.D., Bouldin D.R., Cravo M.S., Bowen W.T. 1993. Cation and nitrate leaching in an Oxisol of the 
Brazilian Amazon. Agronomy Journal, vol. 85, 334-340. 
 
Cao X., Ma L., Gao B., Harris W. 2009. Dairy-manure derived biochar effectively sorbs lead and atrazine. 
Environmental Science & Technology 43, 3285-3291. 
 
Cao X., Harris W. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. 
Bioresource Technology 101, 5222-5228. 
 
Case S.D.C., McNamara N.P., Reay D.S., Whitaker J. 2012. The effect of biochar addition on N2O and CO2 
emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem 51, 125–134. 
 
Castaldi S., Riondino M., Baronti S., Esposito F.R., Marzaioli, R., Rutigliano F.A., Vaccari F.P., Miglietta F. 
2011. Impact of biochar application to a mediterranean wheat crop on soilmicrobial activity and greenhouse gas 
fluxes. Chemosphere 85, 1464-1471. 
 
Cayuela M.L., Sánchez-Monedero M.A., Roig A., Hanley K., Enders A., Lehmann J. 2013. Biochar and 
denitrification in soils: when, how much and why does biochar reduce N2O emissions ? Scientific reports 3.  
 
Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. 2007a. Agronomic values of greenwaste biochar 
as a soil amendment. Soil Research,45(8), 629-634. 
 
Chan K. Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. 2007b. Assessing the agronomic values of 
contrasting char materials on Australian hardsetting soil. In Proceedings of the Conference of the International 
Agrichar Initiative (Vol. 30). 
 
Chan K.Y., Van Zwieten L., Meszaros I., Downie A., Joseph S. 2008. Using poultry litter biochars as soil 
amendments. Australian Journal of Soil Research 46, 437-444. 
 
Chan K.Y., Xu Z. 2009. Biochar: nutrient properties and their enhancement. In: Lehmann J., Joseph S. (Eds.), 
Biochar for Environmental Management: Science and Technology. Earthscan, London, 67-84.  
 
Chen Y., Shinogi Y., Taira M. 2010. Infl uence of biochar use on sugarcane growth, soil parameters, and 
groundwater quality. Aust. J. Soil Res. 48, 526-530. 
 
Chen H.-X., Du Z.L., Guo W., Zhang Q.Z., 2011. Effects of biochar amendment on cropland soil bulk density, 
cation exchange capacity, and particulate organic matter content in the North China plain. Yingyong Shengtai 
Xuebao 22, 2930-2934. 
 
Chen B., Yuan M. 2011. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J. 
Soils Sediments, 11, 62-71. 
 
Cheng C., Lehmann J., Thies J.E., Burton S.D., Engelhard M.H. 2006. Oxidation of black carbon by biotic and 
abiotic processes. Organic Geochemistry 37, 1477-1488.  
 
Cheng C.H., Lehmann J., Engelhard M.H. 2008. Natural oxidation of black carbon in soils: Changes in molecular 
form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72, 1598-1610 
 
Clough T.J., Condron L.M. 2010. Biochar and the nitrogen cycle: Introduction. Journal of Environmental 
Quality 39(4), 1218-1223. 
 
Crane-Droesch A., Abiven S., Jeffery S., Torn M.S. 2013. Heterogeneous global crop yield response to biochar: a 
meta-regression analysis. Environ. Res. Lett. 8, 44-49. 
 
Cross A., Sohi S.P. 2011. The priming potential of biochar products in relation to labile carbon contents and soil 
organic matter status. Soil Biology & Biochemistry, 43, 2127-2134. 
 
Dalal R.C., Allen D.E. 2008. Turner review No. 18. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 
56, 369-407. 
 
DeLuca T. H., Sala A. 2006. Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland 
northwest. Ecology 87, 2511-2522. 



Chapter 2 - Biochar in Agriculture 

 

63 

 

DeLuca T. H., MacKenzie M. D., Gundale M. J., Holben W. E. 2006. Wildfire-produced charcoal directly 
influences nitrogencycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70, 448-453. 
 
DeLuca T.H., MacKenzie M.D., Gundale M.J. 2009. Biochar Effects on Soil Nutrient Transformations. In: 
Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, 
London, 251-270. 
 
Demirbas A. 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural 
residues. Journal of Analytical and Applied Pyrolysis 72(2), 243-248. 
 
Dempster D.N., Gleeson D.B., Solaiman Z.M., Jones D.L., Murphy D.V. 2012. Decreased soil microbial biomass 
and nitrogen mineralization with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311-324.  
 
Ding Y, Liu Y-X, Wu W-X, Shi D-Z, Yang M and Zhong Z-K 2010 Evaluation of Biochar Effects on Nitrogen 
Retention and Leaching in Multi-Layered Soil Columns. Water, Air, & Soil Pollution, 213(1-4), 47-55. 
 
Downie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. In: Lehmann J., Joseph S. (Eds.), 
Biochar for Environmental Management: Science and Technology. Earthscan, London, 13-32. 
 
Fabbri D., Rombolà A.G., Torri C., Spokas K.A. 2013. Determination of polycyclic aromatic hydrocarbons in 
biochar and biochar amended soil. Journal of Analytical and Applied Pyrolysis 103, 60-67.  
 
Ezawa T., Yamamoto K., Yoshida S. 2002. Enhancement of the effectiveness of indigenous arbuscular 
mycorrhizal fungi by inorganic soil amendments. Soil science and plant nutrition, 48(6), 897-900. 
 
Feltz M., 2010. Effects of pyrolysis temperature and time on micropore formation in pine derived biochars. Senior 
Thesis, James Madison University. 
 
Feng Y., Xu Y., Yu Y., Xie Z., Lin X. 2012. Mechanisms of biochar decreasing methane emission from Chinese 
paddy soils. Soil Biology and Biochemistry, 46, 80-88. 
 
Fernandes M.B., Brooks P. 2003. Characterization of carbonaceous combustion residues: II. Nonpolar organic 
compounds. Chemosphere 53, 447-458. 
 
Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Van Dorland R. 2007. Changes in 
atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science 
Basis. 
 
Gaskin J.W., Speir A., Morris L.M., Ogden L., Harris K., Lee D., Das K.C. 2007. Potential for pyrolysis char to 
affect soil moisture and nutrient status of loamy sandsoil. In ‘‘Georgia Water Resources Conference’’, University 
of Georgia. 
 
Gaskin J.W., Steiner C., Harris K., Das K.C., Bibens B. 2008. Effect of low-temperature pyrolysis conditions on 
biochar for agricultural use. Trans ASABE 51, 2061-2069. 
 
Gaskin J.W., Speir R.A., Harris K., Das K.C., Lee R.D., Morris L.A., Fisher D.S. 2010. Effect of peanut hull and 
pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal 102, 623-633. 
 
Gaunt J.L., Cowie A.L. 2009. Biochar, greenhouse gas accounting and emissions trading. In: Lehmann J., Joseph 
S., (eds). Biochar for environmental management: science and technology. Earthscan, London (UK), 317-340. 
 
Gaur A., Adholeya A. 2000. Effects of the particle size of soil-less substrates upon AM fungus inoculum 
production. Mycorrhiza 10, 43-48. 
 
Glaser B., Haumaier L., Guggenberger G., Zech W. 2001. The 'Terra Preta' phenomenon: a model for sustainable 
agriculture in the humid tropics. Naturwissenschaften, 88 (1), 37-41. 
 
Glaser B., Lehmann J., Zech W. 2002. Ameliorating physical and chemical properties of highly weathered soils in 
the tropics with charcoal—a review. Biol. Fert. Soils 35, 219-230. 
 
Gomez J.D., Denef K., Stewart C.E., Zheng J., Cotrufo M.F. 2014. Biochar addition rate influences soil microbial 
abundance and activity in temperate soils. European Journal of Soil Science, 65(1), 28-39. 



Chapter 2 - Biochar in Agriculture 

 

64 

 

Graber E., Tsechansky L., Gerstl Z., Lew B. 2011a. High surface area biochar negatively impacts herbicide 
efficacy. Plant Soil, 353, 95-106. 
 
Graber E.R., Tsechansky L., Khanukov J., Oka Y. 2011b. Sorption, volatilization, and efficacy of the fumigant 
1,3-dichloropropene in a biochar-amended soil. Soil Science Society of America Journal, 75, 1365-1373. 
 
Grossman J.M., O’Neill B.E., Tsai S.M., Liang B., Neves E., Lehmann J., Thies J.E. 2010. Amazonian Anthrosols 
support similar microbial communities that differ distinctly from those extant in adjacent unmodified soils of the 
same mineralogy. Microbial Ecology, 60, 192-205.  
 
Gundale M. J., DeLuca T.H. 2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha 
in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils, 43, 303-311.  
 
Hale S. E., Lehmann J., Rutherford D., Zimmerman A. R., Bachmann R.T., Shitumbanuma V., Cornelissen G. 
2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in 
biochars.Environmental science & technology, 46(5), 2830-2838. 
 
Hale S.E., Alling V., Martinsen V., Mulder J., Breedveld G.D., Cornelissen G. 2013. The sorption and desorption 
of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 91, 1612-1619. 
 
Hamer U., Marschner B., Brodowski S., Amelung W. 2004. Interactive priming of black carbon and glucose 
mineralisation. Organic Geochemistry, 35, 823-830. 
 
Hammes K., Schmidt M. 2009. Changes of biochar in soil. In: Lehmann J., Joseph S. (Eds.), Biochar for 
Environmental Management: Science and Technology. Earthscan, London, 169-181. 
 
Hartley W., Dickinson N.M., Riby P., Lepp N.W. 2009. Arsenic mobility in brownfield soils amended with green 
waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157, 2654-2662. 
 
Hassink J., Bouwman L.A., Zwart K.B., Brussaard L. 1993. Relationships between habitable pore space, soil biota 
and mineralization rates in grassland soils. Soil Biology & Biochemistry, 25, 47–55. 
 
Haumaier L., Zech W. 1995. Black carbon—possible source of highly aromatic components of soil humic 
acids. Organic Geochemistry, 23(3), 191-196. 
 
Hilber I., Blum F., Leifeld J., Schmidt H.P., Bucheli T.D. 2012. Quantitative determination of PAHs in biochar: a 
prerequisite to ensure its quality and safe application. Journal of agricultural and food chemistry, 60(12), 3042-
3050. 
 
Hiller E., Fargasova A., Zemanova L., Bartal M. 2007. Influence of wheat ash on the MCPA immobilization in 
agricultural soils. Bulletin of Environmental Contamination and Toxicology, 78, 345-348.  
 
Hilscher A., Heister K., Siewert C., Knicker H. 2009. Mineralisation and structural changes during the initial 
phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, 40, 332–342. 
 
Houben D., Sonnet P., Cornelis J.T. 2014. Biochar from Miscanthus: a potential silicon fertilizer. Plant 
Soil, 374(1-2), 871-882. 
 
Hu L., Cao L., Zhang R. 2014. Bacterial and fungal taxon changes in soil microbial community composition 
induced by short-term biochar amendment in red oxidized loam soil. World Journal of Microbiology and 
Biotechnology, 30(3), 1085-1092. 
 
Huang C.P. 1978. Chemical interactions between inorganic and activated carbon. In “Carbon Adsorption 
Handbook” (P. N. Cheremisinoff and F. Ellerbursch, Eds.). Ann Arbor Science, New York, 281-330. 
 
Huang W.L., Peng P.A., Yu Z.Q., Fu J.M. 2003. Effects of organic matter heterogeneity on sorption and 
desorption of organic contaminants by soils and sediments. Appl. Geochem. 18, 955-972. 
 
Huang M., Yang L., Qin H., Jiang L., Zou Y. 2013. Quantifying the effect of biochar amendment on soil quality 
and crop productivity in Chinese rice paddies. Field Crops Research, 154, 172-177. 
 



Chapter 2 - Biochar in Agriculture 

 

65 

 

Ippolito J.A., Laird D.A., Busscher, W.J. 2012. Environmental benefits of biochar. Journal of environmental 
quality, 41(4), 967-972. 
 
Jacobsen O.H., Moldrup P., Larsen C., Konnerup L., Petersen L.W. 1997. Particle transport in macropores of 
undisturbed soil columns, Journal of Hydrology, 196, 185-203. 
 
Jeffery S., Verheijen F.G.A., van der Velde M., Bastos A.C. 2011. A quantitative review of the effects of biochar 
application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems &Environment, 144, 175-
187. 
 
Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., DeLuca T.H. 2011. Short-term biochar-
induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem., 43, 1723-
1731. 
 
Joseph S., Camps-Arbestain M., Lin Y., Munroe P., Chia C.H., Hook J., Van Zwieten L., Kimber S., Cowie A., 
Singh B.P., Lehmann J., Foidl N., Smernik R.J., Amonette J.E. 2010. An investigation into reactions of biochar in 
soil. Australian Journal of Soil Research 48, 501-515. 
 
Kammann C., Linsel S., Gößling J.W., Koyro H. W. 2011. Influence of biochar on drought tolerance of 
Chenopodium quinoa Willd and on soil–plant relations. Plant Soil, 345(1-2), 195-210. 
 
Kammann C., Ratering S., Eckhard C., Müller C. 2012. Biochar and hydrochar effects on greenhouse gas (carbon 
dioxide, nitrous oxide, and methane) fluxes from soils. Journal of environmental quality, 41(4), 1052-1066. 
 
Kammann C., Haider G., del Campo B., Mengel J., Schmidt H.P., Marhan S., Steffens D., Clough T., Müller C. 
2014. Nitrate retention by biochar: mechanistic insights by 15N tracing. In Book of ELS2014, The Earth Living 
Skin: Soil, Life and Climate Changes EGU-SSS Conference. Bari, Italy, 22-25 September 2014, ELS2014-152-1.  
 
Karhu K., Mattila T., Bergström I., Regina K. 2011. Biochar addition to agricultural soil increased CH4 uptake 
and water holding capacity-results from a short-term pilot field study. Agriculture, Ecosystems and Environment 
140, 309-313. 
 
Keith A., Singh B., Singh, B.P. 2011. Interactive priming of biochar and labile organic matter mineralization in a 
smectite-rich soil. Environmental Science & Technology, 45, 9611-9618. 
 
Khodadad C.L., Zimmerman A.R., Green S.J., Uthandi S., Foster J.S. 2011. Taxa-specific changes in soil 
microbial community composition induced by pyrogenic carbon amendments. Soil Biology and 
Biochemistry, 43(2), 385-392. 
 
Kimetu J., Lehmann J., Ngoze S., Mugendi D., Kinyangi J., Riha S., Verchot L., Recha J., Pell A. 2008. 
Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. 
Ecosystems 11, 726-739. 
 
Kinney T.J., Masiello C.A., Dugan B., Hockaday W.C., Dean M.R., Zygourakis K., Barnes R.T. 2012. Hydrologic 
properties of biochars produced at different temperatures. Biomass and Bioenergy, 41, 34-43. 
 
Kloss S., Zehetner F., Wimmer B., Buecker J., Rempt F., Soja G. 2014. Biochar application to temperate soils: 
Effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil 
Science,177(1), 3-15. 
 
Knicker H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. 
Biogeochemistry, 85, 91-118. 
 
Kolb S.E., Fermanich K.J., Dornbush M.E. 2009. Effect of charcoal quantity on microbial biomass and activity in 
temperate soils. Soil Science Society of America Journal 73, 1173-1181. 
 
Kookana R.S. 2010. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of 
pesticides in soils: a review. Soil Research, 48(7), 627-637. 
 
Kookana R. S., Sarmah A.K., Van Zwieten L., Krull E., Singh B. 2011. Biochar Application to Soil: Agronomic 
and Environmental Benefits and Unintended Consequences. Advances in agronomy, 112(10). 
 



Chapter 2 - Biochar in Agriculture 

 

66 

 

Koutcheiko S., Monreal C.M., Kodama H., McCracken T., Kotlyar L. 2006. Preparation and characterization of 
activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technology 98, 
2459-2464. 
 
Krull E.S., Baldock J.A., Skjemstad J.O., Smernik R.S. 2009. Characteristics of biochar: Organo-chemical 
properties. In “Biochar for Environmental Management: Science and Technology” (J. Lehmann and S. Joseph 
Eds.), Earthscan, London, 53-65. 
 
Kuzyakov Y., Subbotina I., Chen H., Bogomolova I., Xu X. 2009. Black carbon decomposition and incorporation 
into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry 41, 210-219.  
 
Laird D.A. 2008. The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, 
permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 100(1), 178-181. 
 
Laird D.A., Fleming P., Davis D.D., Horton R., Wang B., Karlen D.L. 2010a. Impact of biochar amendments on 
the quality of a typical Midwestern agricultural soil. Geoderma, 158(3), 443-449. 
 
Laird D., Fleming P., Wang B., Horton R., Karlen D. 2010b. Biochar impact on nutrient leaching from a 
Midwestern agricultural soil. Geoderma, 158(3), 436-442. 
 
Lal R. 2008. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci., 363, 815-830. 
 
Lawrinenko M. 2014. Anion exchange capacity of biochar. Graduate Theses and Dissertations. Paper 13685. 
http://lib.dr.iastate.edu/etd/13685 
 
Laubel A., Jacobsen O.H., Kronvang B., Grant R., Andersen H.E. 1999. Subsurface drainage loss of particles and 
phosphorus from field plot experiments and a tile-drained catchment, Journal of Environmental Quality, 28, 576-
584. 
 
Lehmann J., da Silva J.P., Steiner C., Nehls T., Zech W., Glaser B., 2003. Nutrient availability and leaching in an 
archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal 
amendments. Plant and Soil 249, 343-357. 
 
Lehmann J., Gaunt J., Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems – a review, Mitigation 
and Adaptation Strategies for Global Change, 11, 403-427. 
 
Lehmann J., Rondon M. 2006. Bio-char soil management on highly weathered soils in the humid 
tropics. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, FL, 517-530. 
 
Lehmann J. 2007. Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381-387. 
 
Lehmann J., Kinyangi J., Solomon D. 2007. Organic matter stabilization in soil microaggregates: implications 
from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, 85(1), 45-57. 
 
Lehmann J., Joseph S. 2009. Biochar for environmental management: an introduction. In: Lehmann J., Joseph S. 
(Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, 1-12.  
 
Lehmann J., Rillig M. C., Thies J., Masiello C. A., Hockaday W. C., Crowley D. 2011. Biochar effects on soil 
biota–a review. Soil Biology and Biochemistry, 43(9), 1812-1836.  
 
Lei O., Zhang R. 2013. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil 
physical and hydraulic properties. J Soils Sed, 13(9), 1561-1572.  
 
Lentz R.D., Ippolito J.A. 2012. Biochar and manure affect calcareous soil and corn silage nutrient concentrations 
and uptake. Journal of environmental quality, 41(4), 1033-1043. 
 
Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O'neill, B., Neves E. G. 2006. Black carbon 
increases cation exchange capacity in soils. Soil Science Society of America Journal, 70(5), 1719-1730. 
Lima J. M., Marshall W. E. 2005. Granular activated carbons from broiler manure: Physical, chemical and 
adsorptive properties. Bioresource Technology. 96, 699-706. 
 



Chapter 2 - Biochar in Agriculture 

 

67 

 

Liu Y.X., Yang M., Wu Y.M., Wang H.L., Chen Y.X., Wu W.X. 2011. Reducing CH4 and CO2 emissions from 
waterlogged paddy soil with biochar. J. Soils Sediments, 11, 930–939. 
 
Loganathan V.A., Feng Y.C., Sheng G.D., Clement T.P. 2009. Crop residue-derived char influences sorption, 
desorption and bioavailability of atrazine in soils. Soil Science Society of America Journal, 73, 967-974. 
 
Luo Y., Durenkamp M., De Nobili M., Lin Q., Brookes P.C. 2011. Short term soil priming effects and the 
mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry 43, 
2304-2314.  
 
MacKenzie M.D., DeLuca T. 2006. Charcoal and shrubs modify soil processes in ponderosa pine forests of 
western Montana. Plant Soil 287, 257-266. 
 
MacKenzie M.D., McIntire E.J.B., Quideau S.A., Graham R.C. 2008. Charcoal distribution affects carbon and 
nitrogen contents in forest soils of California. Soil Science Society of America Journal, 72(6), 1774-1785. 
 
Makoto K., Tamai Y., Kim Y.S., Koike T. 2010. Buried charcoal layer and ectomycorrhizae cooperatively 
promote the growth of Larix gmelinii seedlings. Plant Soil 327, 143-152. 
 
Major J., Steiner C., Downie A., Lehmann J. 2009. Biochar effects on nutrient leaching. Biochar for 
environmental management: Science and technology. Earthscan, London, 271-288. 
 
Major J., Lehmann J., Rondon M., Goodale C., 2010b. Fate of soil-applied black carbon: Downward migration, 
leaching and soil respiration. Global Change Biology 16, 1366-1379. 
 
Major J., Rondon M., Molina D., Riha S.J., Lehmann J. 2010a. Maize yield and nutrition during 4 years after 
biochar application to a Colombian savanna oxisol. Plant and Soil, 333(1-2), 117-128. 
 
Major J., Rondon M., Molina D., Riha S.J., Lehmann J. 2012. Nutrient leaching in a Colombian savanna Oxisol 
amended with biochar. Journal of environmental quality, 41(4), 1076-1086. 
 
Mao J.D., Johnson R.L., Lehmann J., Olk D.C., Neves E.G., Thompson M.L., Schmidt-Rohr K. 2012. Abundant 
and stable chat residues in soils: Implications for soil fertility and carbon sequestration. Environmental Science 
and Technology 46, 9571-9576. 
 
Mau A.E., Utami S.R. 2014. Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on 
availability of soil phosphorus and growth of maize. Journal of Degraded and Mining Lands Management, 1(2), 
69-74. 
 
Mizuta K., Matsumoto T., Hatate Y., Nishihara K., Nakanishi T. 2004. Removal of nitrate nitrogen from drinking 
water using bamboo powder charcoal. Bioresource Technol. 95, 255-257. 
 
Mohan D., Pittman C.U.Jr., Brcika M., Smith F., Yancey B., Mohammad J., Steele P.H., Alexandre-Franco M. F., 
Gómez-Serrano V., Gong H. 2007. Sorption of arsenic, cadmium and lead by chars produced from fast pyrolysis 
of wood and bark during bio-oil production. J. Colloid Interface Sci. 310, 57-73. 
 
Mohan D., Sharma R., Singh V. K., Steele P., Pittman Jr.C.U. 2012. Fluoride removal from water using bio-char, 
a green waste, low-cost adsorbent: equilibrium uptake and sorption dynamics modeling. Industrial & Engineering 
Chemistry Research, 51(2), 900-914. 
 
Mukherjee A., Zimmerman A.R., Harris W. 2011. Surface chemistry variations among a series of laboratory-
produced biochars. Geoderma, 163(3), 247-255. 
 
Mukherjee A., Lal R. 2013. Biochar impacts on soil physical properties and greenhouse gas 
emissions. Agronomy, 3(2), 313-339. 
 
Mukherjee A., Lal R. 2014. The biochar dilemma. Soil Res. 52, 217-230. 
 
Namgay T., Singh B., Singh B.P. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, 
Pb, and Zn to maize (Zea mays L.). Aust. J. Soil Res. 48, 638–647. 
 



Chapter 2 - Biochar in Agriculture 

 

68 

 

Noguera D., Rondon M., Laossi K.R., Hoyos V., Lavelle P., de Carvalho M.H.C, Barot S. 2010. Contrasted effect 
of biochar and earthworms on rice growth and resource allocation in diff erent soils. Soil Biol. Biochem. 42, 
1017-1027.  
 
Novak J.M., Busscher W.J., Laird D.L., Ahmedna M., Watts D.W., Niandou M.A. 2009. Impact of biochar 
amendment on fertility of a southeastern coastal plain soil. Soil Science, 174(2), 105-112. 
 
Novak J. M., Busscher W. J., Watts D. W., Amonette J. E., Ippolito J. A., Lima, I. M., Gaskin J., Das K. C., 
Steiner C., Ahmedna M., Rehrah D., Schomberg H. 2012. Biochars impact on soil-moisture storage in an ultisol 
and two aridisols. Soil Science, 177(5), 310-320. 
 
Oberson A., Bünemann E.K., Friesen D.K., Rao I.M., Smithson P.C., Turner B.L., Frossard E. 2006. Improving 
phosphorus fertility in tropical soils through biological interventions. In Biological approaches to sustainable soil 
systems. Eds. N Uphoff, A S Ball, E Fernandes, H Herren, O Husson, M Laing, C Palm, J Pretty, P Sanchez, N 
Sanginga and J Thies. pp 531-546. CRC Press: Taylor & Francis Group. 
 
Oleszczuk P., Hale S.E., Lehmann J., Cornelissen G. 2012. Activated carbon and biochar amendments decrease 
pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour. Technol, 
111, 84-91.  
 
Ogbonnaya U., Semple K.T. 2013. Impact of biochar on organic contaminants in soil: A tool for mitigating risk 
?. Agronomy, 3(2), 349-375. 
 
Oguntunde P.G., Abiodun B.J., Ajayi A.E., van de Giesen N. 2008. Effects of charcoal production on soil physical 
properties in Ghana. Journal of Plant Nutrition and Soil Science 171, 591-596. 
 
Omoti U., Ataga,D.O., Isenmila A.E. 1983. Leaching losses of nutrients in oil palm plantations determined by 
tension lysimeters, Plant and Soil, 73, 365-376. 
 
O’Neill B., Grossman J., Tsai M., Gomes J., Lehmann J., Peterson J., Neves E., Thies J. 2009. Bacterial 
community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular 
identification. Microb Ecol 58, 23-35. 
 
Ogawa M., Okimori Y., Takahashi F. 2006. Carbon sequestration by carbonization of biomass and forestation: 
Three case studies. Mitigat. Adaptat. Strateg. Global Change 11, 429-444. 
 
Park J.H., Choppala G.K., Bolan N.S., Chung J.W., Chuasavathi T. 2011. Biochar reduces the bioavailability and 
phytotoxicity of heavy metals. Plant soil, 348(1-2), 439-451. 
 
Persson N.J., Gustafsson Ö., Bucheli T.D., Ishaq R., Naes K., Broman D. 2002. Soot-carbon influenced 
distribution of PCDD/Fs in the marine environment of the Grenlandsfjords, Norway. Environmental science & 
technology, 36(23), 4968-4974. 
 
Pietikäinen J., Kiikkilä O., Fritze H. 2000. Charcoal as a habitat for microbes and its effect on the microbial 
community of the underlying humus. Oikos 89, 231-24. 
 
Qiu Y.P., Xiao X.Y., Cheng H.Y., Zhou Z.L., Sheng G.D. 2009. Influence of environmental factors on pesticide 
adsorption by black carbon: ph and model dissolved organic matter. Environmental Science & Technology, 43, 
4973-4978. 
 
Quilliam R.S., Glanville H.C., Wade S.C., Jones D.L. 2013. Life in the ‘charosphere’–Does biochar in agricultural 
soil provide a significant habitat for microorganisms?. Soil Biology and Biochemistry, 65, 287-293. 
 
Rondon M., Ramirez J., Lehmann J. 2005. Greenhouse gas emissions decrease with charcoal additions to tropical 
soils. In Proceedings of the 3rd Symposium on Greenhouse Gases and Carbon Sequestration. 21-24 Mar. 2005. 
USDA, Baltimore, MA.  208.  
 
Rondon M., Molina D., Hurtado M., Ramirez J., Lehmann J., Major J., Amezquita E. 2006. Enhancing the 
Productivity of Crops and Grasses While Reducing Greenhouse Gas Emissions through Bio-Char Amendments to 
unfertile tropical soils. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 
July 2006. 
 



Chapter 2 - Biochar in Agriculture 

 

69 

 

Rondon M.A., Lehmann J., Ramirez J., Hurtado M. 2007. Biological nitrogen fixation by common beans 
(Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils 43, 699-708. 
 
Rogovska N., Laird D., Cruse R., Fleming P., Parkin T., Meek D. 2011. Impact of biochar on manure carbon 
stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 75,871-879. 
 
Saito M., Marumoto T. 2002. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and the 
future prospects’, Plant Soil, 244, 273-279. 
 
Scheer C., Grace P.R., Rowlings D.W., Kimber S., Van Zwieten L. 2011. Effect of biochar amendment on the 
soil-atmosphere exchange of greenhouse gases from an intensive subtropicalpasture in northern new south wales, 
Australia. Plant Soil, 345, 47-58. 
 
Scheifele M., Hobi A., Gattinger A., Buegger F., Fliessbach A., Mäder P., Schulin R. 2014. Soybean Nutrient 
Uptake and Plant Symbionts are Influenced by Biochar. In Book of ELS2014, The Earth Living Skin: Soil, Life 
and Climate Changes EGU-SSS Conference. Bari, Italy, 22-25 September 2014, ELS2014-68-1 
 
Schmidt H.P., Kammann C., Niggli C., Evangelou M.W., Mackie K.A., Abiven S. 2014. Biochar and biochar-
compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape 
quality. Agriculture, Ecosystems & Environment, 191, 117-123. 
 
Schnitzer M.I., Monreal C.M., Facey G.A., Fransham P.B. 2007. The conversion of chicken manure to biooil by 
fast pyrolysis I. Analyses of chicken manure, biooils and char by 13C and 1H NMR and FTIR spectrophotometry. 
Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes 42 
(1): 71-77. 
 
Sen T.K., Khilar K.C. 2006. Review on subsurface colloids and colloid-associated contaminant transport in 
saturated porous media. Advances in Colloid and Interface Science, 119, 71-96. 
 
Sharpley A.N., McDowell R.W., Kleinman P.J.A. 2001. Phosphorus loss from land to water: Integrating 
agricultural and environmental management. Plant Soil, 237, 287-307. 
 
Shinogi Y., Yoshida H., Koizumi T., Yamaoka M., Saito T. 2003. Basic characteristics of low-temperature carbon 
products from waste sludge. Advances in Environmental Research 7(3), 661-665. 
 
Singh B., Singh B.P., Cowie A.L. 2010a. Characterisation and evaluation of biochars for their application as a soil 
amendment. Aust J Soil Res 48, 516-525.  
 
Singh B.P., Hatton B.J., Singh B., Cowie A.L., Kathuria A. 2010b. Influence of biochars on nitrous oxide 
emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39(4), 1224-1235. 
 
Slavich P.G., Sinclair K., Morris S.G., Kimber S.W.L., Downie A., Van Zwieten L. 2013. Contrasting effects of 
manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical 
pasture.Plant and soil, 366 (1-2), 213-227. 
 
Smith J.L., Collins H.P., Bailey V.L. 2010. The effect of young biochar on soil respiration. Soil Biol.Biochem. 
2010, 42, 2345-2347. 
 
Sohi S., Lopez-Capel E., Krull E., Bol R. 2009. Biochar, climate change and soil: A review to guide future 
research. CSIRO Land and Water Science Report, 5(09), 17-31. 
 
Sohi S.P., Krull E., Lopez-Capel E., Bol R. 2010. A review of biochar and its use and function in soil. Advances 
in agronomy, 105, 47-82. 
 
Spokas K.A., Koskinen W.C., Baker J.M., Reicosky D.C. 2009a. Impacts of woodchip biochar additions on 
greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77, 574-
581. 
 
Spokas K.A., Reicosky D.C. 2009. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. 
Environ. Sci. 3, 179-193. 
 



Chapter 2 - Biochar in Agriculture 

 

70 

 

Spokas K., Baker J., Reicosky D. 2010. Ethylene: Potential key for biochar amendment impacts. Plant Soil 333, 
443-452. 
 
Spokas K.A., Cantrell K.B., Novak J.M., Archer D.W., Ippolito J.A., Collins H.P., Boateng A.A., Lima I.M,  
Lamb M.C., McAloon A.J., Lentz R.D., Nichols K.A. 2012. Biochar: a synthesis of its agronomic impact beyond 
carbon sequestration. Journal of Environmental Quality, 41(4), 973-989. 
 
Steinbeiss S., Gleixner G., Antonietti M. 2009. Effect of biochar amendment on soil carbon balance and soil 
microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310. 
 
Steiner C., Teixeira W.G., Lehmann J., Nehls T., de Macêdo J.L.V., Blum W.E., Zech W. 2007. Long term effects 
of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central 
Amazonian upland soil. Plant and Soil, 291(1-2), 275-290. 
 
Steiner C., Das K.C., Garcia M., Förster B., Zech W. 2008a. Charcoal and smoke extract stimulate the soil 
microbial community in a highly weathered xanthic Ferralsol. Pedobiologia, 51(5), 359-366. 
 
Steiner C., Glaser B., Teixeira W.G., Lehmann J., Blum W.E.H., Zech W. 2008b. Nitrogen retention and plant 
uptake on a highly weathered central amazonian ferralsol amended with compost and charcoal. Journal of Plant 
Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171, 893-899. 
 
Taghizadeh-Toosi A., Clough T.J., Condron L.M., Sherlock R.R., Anderson C.R., Craigie R.A. 2011. Biochar 
incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. Journal of 
Environmental Quality 40, 468-476.  
 
Taghizadeh-Toosi A., Clough T.J., Sherlock R.R., Condron L.M. 2012. A wood based low-temperature biochar 
captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73-84.  
 
Thies J., Rillig M. 2009. Characteristics of biochar: biological properties. In: Lehmann J., Joseph S. (Eds) Biochar 
for environmental management: science and technology. Earthscan, London, 85-106. 
 
Totsche, K. U., Jann, S. and Kogel–Knabner, I.(2007) ‘Single event-driven export of polycyclic aromatic 
hydrocarbons and suspended matter from coal tar-contaminated soil’, Vadose Zone Journal, 6, 233-243. 
 
Tryon E.H. 1948. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. 
Monogr. 18, 81-115. 
 
Tsai W.T., Lee M. K., Chang Y.M. 2006a. Fast pyrolysis of rice husk: Product yields and compositions, 
Bioresource Technology, 98, 22-28 
 
Tsai W.T, Lee M. K., Chang Y. M. 2006b. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an 
induction-heating reactor., Journal of Analytical and AppIied Pyrolysis, 76, 230-237. 
 
Tseng R. L., Tseng S. K. 2006. Characterization and use of high surface area activated carbons prepared from 
cane pith for liquid-phase adsorption. Journal of Hazardous Materials, B136, 671-680. 
  
Turner B.L, Frossard E., Oberson A, 2006, Enhancing phosphorus availability in low-fertility soils. In Biological 
approaches to sustainable soil systems. Eds. N Uphoff, A S Ball, E Fernandes, H Herren, O Husson, M Laing, C 
Palm, J Pretty, P Sanchez, N Sanginga and J Thies. CRC Press: Taylor & Francis Group, 191-205 
 
Uchimiya M., Lima I.M., Klasson K.T., Chang S., Wartelle L.H., Rodgers J.E. 2010. Immobilization of heavy 
metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 
58, 5538-5544. 
 
Uzoma K.C., Inoue M., Andry H., Zahoor A., Nishihara E. 2011. Influence of biochar application on sandy soil 
hydraulic properties and nutrient retention. J. Food Agric. Environ. 9, 1137-1143. 
 
Uzun B. B., Piitiin A. E., Piitiin E. 2006. Fast pyrolysis of soybean cake: Product yields and compositions. 
Bioresource Technology 97, 569-576. 
Vanek S.J., Lehmann J. 2014. Phosphorus availability to beans via interactions between mycorrhizas and 
biochar. Plant and Soil, 1-19. 
 



Chapter 2 - Biochar in Agriculture 

 

71 

 

van Es H., Czymmek K.J., Ketterings Q.M. 2002. Management effects on nitrogen leaching and guidelines for a 
nitrogen leaching index in New York, Journal of Soil and Water Conservation, 57, 499-504. 
 
Van Wambeke A. 1992. Soils of the Tropics. McGraw-Hill, New York, USA. 
 
Van Zwieten L., Singh B., Joseph S., Kimber S., Cowie A., Yin Chan K. 2009. Biochar and Emissions of Non-
CO2 Greenhouse Gases from Soil. In Biochar for Environmental Management;Lehmann J., Joseph S., Eds.; 
Earthscan: London Sterling, VA, USA, 227-249. 
 
Van Zwieten L., Kimber S., Morris S., Chan K.Y., Downie A., Rust J., Joseph S., Cowie A., 2010a. Effects of 
biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327, 235-
246. 
 
Van Zwieten L., Kimber S., Morris S., Downie A., Berger E., Rust J., Scheer C. 2010b. Influence of biochars on 
flux of N2O and CO2 from ferrosol. Soil Res. 48, 555–568. 
 
Van Zwieten L., Kimber S., Downie A., Morris S., Rust J., Chan K.Y. 2010c. A glasshouse study on the 
interaction of low mineral ash biochar with nitrogen in a sandy soil. Aust. J. Soil Res. 48, 569-576. 
 
Ventura M., Sorrenti G., Panzacchi P., George E., Tonon G. 2013. Biochar reduces short-term nitrate leaching 
from a horizon in an apple orchard. Journal of environmental quality, 42(1), 76-82. 
 
Verheijen F., Jeffery S., Bastos A.C., van der Velde M., Diafas I. 2010. Biochar Application to Soils: A Critical 
Scientific Review of Effects on Soil Properties, Processes and Functions. Joint Research Centre (JRC) Scientific 
and Technical Report No EUR 24099 EN, Office for the Official Publications of the European Communities, 
Luxembourg.  
 
Wang N., Li J. Y., Xu R K. 2009. Use of various agricultural by-products to study the pH effects in an acid tea 
garden soil. Soil Use Management 25, 128-132. 
 
Wardle D.A., Nilsson M.C., Zackrisson O. 2008. Fire-derived charcoal causes loss of forest humus. Science, 320, 
629-629. 
 
Warnock D.D., Lehmann J., Kuyper T.W., Rillig M.C. 2007. Mycorrhizal responses to biochar in soil–concepts 
and mechanisms. Plant and Soil, 300(1-2), 9-20. 
 
Waters D., Van Zwieten L., Singh B.P., Downie A., Cowie A.L., Lehmann J. 2011. Biochar in soil for climate 
change mitigation and adaptation. In Soil Health and Climate Change. Springer Berlin Heidelberg, 345-368. 
 
Yamato M., Okimori Y., Wibowo I.F., Anshori S., Ogawa M. 2006. Effects of the application of charred bark of 
Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, 
Indonesia. Soil Sci Plant Nutr 52:489–495. 
 
Yanai Y., Toyota K., Okazaki M. 2007. Effects of charcoal addition on N2O emissions from soil resulting from 
rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53,181-188. 
 
Yao Y., Gao B., Zhang M., Inyang M., Zimmerman A.R. 2012. Effect of biochar amendment on sorption and 
leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467-1471. 
 
Yao  Z., Zheng X., Dong H., Wang R., Mei B., Zhu J. 2012. A 3-year record of N2O and CH4 emissions from a 
sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 
152, 1-9. 
 
Yu C., Tang Y., Fang M., Luo Z., Ceng K. 2005. Experimental study on alkali emission during rice straw 
Pyrolysis. Journal of Zhejiang University (Engineering Science) 39, 1435-1444. 
 
Yu O.Y., Raichle B., Sink S. 2013. Impact of biochar on the water holding capacity of loamy sand soil. 
International Journal of Energy and Environmental Engineering, 4(1), 1-9. 
Zackrisson O., Nilsson M.C., Wardle D.A. 1996. Key ecological function of charcoal from wildfire in the Boreal 
forest. Oikos, 77, 10-19. 
 



Chapter 2 - Biochar in Agriculture 

 

72 

 

Zhang A.F., Bian R.J., Pan G.X., Cui L.Q., Hussain Q., Li L.Q., Zheng J.W., Zheng J.F., Zhang X.H., Han X.J., 
Yu X. 2012a. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a chinese 
rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153-160. 
 
Zhang A., Liu Y., Pan G., Hussain Q., Li L., Zheng J., Zhang X. 2012b. Effect of biochar amendment on maize 
yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China 
Plain. Plant Soil, 351(1-2), 263-275. 
 
Zheng, J., Stewart, C.E., Cotrufo, M.F. 2012. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and 
greenhouse gas fluxes from two temperate soils. Journal of Environmental Quality 41, 1361-1370.  
 
Zimmerman A.R. 2010. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. 
Sci. Technol. 44, 1295-1301. 
 
Zimmerman A.R., Gao B., Ahn M.Y. 2011. Positive and negative carbon mineralization priming effects among a 
variety of biochar amended soils. Soil Biology & Biochemistry, 43, 1169-1179. 
 
 
 
 
 
 
 
 
 
 



Chapter 3 - Research interests and aims 

 

73 

 

CHAPTER 3 
 

Research interests and aims 

 

Due to its potential to mitigate climate changes and benefit both soil fertility and crop yield, 

biochar has worldwide increasingly attracted, in the last 10 years, the interest of scientists, 

politicians, entrepreneurs, growers, media and public opinion as proven by the steady 

increasing number of peer-reviewed papers, international conferences, granted projects, 

voluntary initiatives as well as enterprises involved in biochar production and/or trading (IBI, 

2014). 

Production and subsequent incorporation of biochar, especially into temperate soils, is a novel 

approach for establishing a long-term sink for atmospheric CO2 storage and achieving 

agronomic benefits (Atkinson et al., 2010). Although promising, this approach involves 

economic, environmental and agronomic implications which are only beginning to be explored, 

thereby it must be scientifically investigated before adopted by growers. 

Even though it is quite accepted that biochar in soil interacts with microbes, plant roots, water 

and minerals, the extent, rates and implications of these interactions are not fully understood. 

Scientific understanding about biochar effects and mechanisms in soils as well as the long-term 

environmental exposure on biochar properties are still lacking (Joseph et al., 2010). 

Furthermore, most of the scientific evidences on biochar as a soil conditioner were obtained in 

tropical and subtropical environments, in acid, weathered and scarcely fertile soils (Jeffery et 

al., 2011), thus proper evidences of the environmental impact and mechanisms of soil-applied 

biochar on perennial crops grown in the Mediterranean basin are required. Evidences are 

frequently limited to few years after biochar application since most of the results are referred to 

annual crops and, often, grown in controlled environment, therefore the long-term effect on 

perennial crops in field conditions has been poorly studied.  

The objective of this project was to evaluate the effect of biochar on perennial crops in terms of 

agronomical, biological and environmental impacts.  

 
Specific objectives were to:  

� Study the interaction between biochar and minerals in solution;  

� Investigate the effect of biochar on Fe nutrition in perennial plants; 

� Estimate the effect of biochar and compost on soil leaching and nutrient losses; 

� Evaluate the effect of biochar and compost on soil CO2 flux partitioning and fertility; 
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� Characterize soil bacterial biodiversity and key gene expression of soil nitrification-

involved bacteria as affected by biochar in combination with or without compost; 

� Compare increasing rates of biochar on plant growth, nutritional status, yield and fruit 

quality of nectarine trees grown in field conditions; 

� Evaluate the long-term environmental exposure on biochar physical-chemical changes. 
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CHAPTER 4 

 

Biochar interferes with kiwifruit Fe-nutrition in calcareous soil 

 

Abstract 

The effect of soil-applied biochar on lime-induced iron (Fe)-deficiency on 

susceptible kiwifruit trees was investigated. Results from a 2-year pot experiment 

demonstrate that biochar significantly reduced soil-extractable micronutrients (Fe, 

manganese (Mn), copper (Cu) and zinc (Zn)) and worsened Fe-chlorosis incidence 

on kiwifruit plants, likely as a consequence of a reduced Fe availability. Then, the 

effectiveness of soil-applied aqueous extract of A. retroflexus (alone and enriched 

with FeSO4) was explored, because of its ability to extract Fe from soil by Fe-

chelating compounds released from its tissues and synthetic siderite (Fe(II) 

carbonate (FeCO3) as sustainable strategies to improve Fe nutrition of kiwifruit 

trees grown in calcareous soil. Furthermore, the potential of biochar to release and 

retain micronutrients in solution was also investigated. In addition, chemical 

surface changes of biochar fragments exposed to a Fe source by X-ray 

photoelectron spectroscopy (XPS) technique was assessed.  

The aqueous extract of A. retroflexus enriched with FeSO4 and siderite were 

effective in alleviating Fe chlorosis symptoms of kiwifruit trees. Biochar had little 

value as a source of micronutrients but retained large amounts of Fe, Mn, Cu and 

Zn dissolved in solution, likely through reactive functional groups on its surface. 

Diffused rusty spots were evident on the biochar surface after its exposure to a Fe 

source and a redox reaction between biochar and the Fe is one possible explanation. 

 

 

Keywords: Micronutrients, soil extractable Fe, redox reaction, siderite, A. 

retroflexus aqueous extract, FeSO4.  
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4.1 INTRODUCTION 

Biochar is produced by pyrolysis of biomass, typically at temperatures below 

700°C (Atkinsons et al., 2010). This C-rich material, used as a soil conditioner, has 

been proposed as a potential strategy to mitigate climate change and benefit both 

soil fertility and crop yield (Laird, 2008; Lehmann, 2007 and references therein). 

Incorporation of biochar, especially into temperate soils, is a novel approach for 

establishing a long-term sink for atmospheric carbon dioxide (CO2) storage and 

agronomic benefits (Atkinson et al., 2010), but while it is widely accepted that 

biochar interacts with microbes, plant roots, water and minerals in soils, extensive 

understanding about mechanisms of such interactions are not fully understood 

(Joseph et al., 2010). For instance, interactions between biochar and specific 

micronutrients in different conditions and their impact on plant nutrition have not 

been investigated yet. 

Recently, it has been suggested that biochar can take up and release several 

hundred micromoles of electrons (Klüpfel et al., 2014) suggesting that biochar 

could potentially affect biogeochemical cycles in soil, not only by changing soil 

physic and chemical properties, but also by mediating electron transfer processes 

(i.e., as an electron shuttle) altering, among others, the iron (Fe) cycle in soils 

(Kappler et al., 2014). 

So far, most of the scientific evidences on the use of biochar as a soil conditioner 

come from tropical and subtropical environments characterized by acidic, 

weathered and scarcely fertile soils (Jeffery et al., 2011). Few observations are 

reported about the effect of biochar addition on perennial crops grown in the 

Mediterranean areas, where soils are often calcareous with high pH, as it 

characterizes approximately 39% of world soils (Çelik and Katkat, 2010). 

Consequently, although promising, the biochar approach involves economic, 

environmental and agronomic implications which must be scientifically 

investigated before widely adopted. 

Lime-induced Fe-chlorosis is a widespread nutritional disorder (Pic. 4.1) occurring 

on both susceptible perennial and annual crops when grown in calcareous and 

alkaline soils (Abadía et al., 2011; Pestana et al., 2003). In these soils, as a 

consequence of the high pH and the active lime fraction, Fe in solution precipitates 
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as scarcely soluble Fe-hydroxides (Röemheld and Nikolic, 2007). In addition, the 

enzymatic activity of the root FeIII-chelate reductase, responsible for the reduction 

of the FeIII  to FeII, is dramatically compromised (Susin et al., 1996), thereby 

limiting the availability of the ionic Fe form absorbable by roots of dicots 

(Röemheld and Marschner, 1986). Fe-deficiency negatively affects leaf chlorophyll 

(Chl) concentration (Abadía and Abadía, 1993) and implies disturbances in leaf 

water relations (Eichert et al., 2010; Fernández et al., 2008). As a consequence, 

light absorption, photosystem II and Rubisco carboxylation efficiencies in chlorotic 

leaves are depressed (Larbi et al., 2006). Limited Fe availability for plant uptake 

might heavily prejudice yield and fruit quality (Sorrenti et al., 2012; Álvarez-

Fernández et al., 2006 and literature therein), decrease tree vigor and shorten 

orchard productive lifetime of several species, including kiwifruit which is 

considered among the most susceptible crops to this disorder (Tagliavini and 

Rombolà, 2001).  

 

  

Picture 4.1. Severe symptoms of Fe-chlorosis on a kiwifruit orchard (left) and 

detail of a leaf    

 

Although effective (Abadía et al., 2011; Lucena, 2006), either soil- or foliar-

applied synthetic Fe-chelates to prevent or curing Fe-chlorosis induce a short-

lasting re-greening effect and pose economic (Tagliavini and Rombolà, 2001) and 

environmental concerns (Grčman et al., 2001; Nörtemann, 1999) since they can be 

easily leached. The development of cost-effective and environmental friendly 

strategies to overcome Fe-chlorosis is of interest (Pestana et al., 2003).   
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Recently, it has been described that the aqueous vegetal extract of Amaranthus 

retroflexus increased significantly the amount of Fe extracted from the soil 

compared to deionized water (d-H2O) and that the supply of the same extract in 

fertigation improved Fe-nutrition of pear trees (Sorrenti et al., 2011). This response 

was attributed to natural Fe chelating compounds released by the Amaranthus spp. 

tissues (Matocha, 1984) according to the concept of “Plant-Complexed-Fe” 

(Matocha and Pennington, 1982). On the other hand, the slow release of Fe from 

soil-applied synthetic minerals such as vivianite (Fe3(PO4)2*8H2O) and siderite (a 

Fe(II) carbonate (FeCO3), achieved a long-lasting prevention of Fe-chlorosis in 

different crops (Cañasveras et al., 2014; Rosado et al., 2002; Sánchez-Alcalá et al., 

2012a, b). Reacting with soil carbonate, these minerals produce poorly crystalline 

Fe oxides (Sánchez-Alcalá et al. 2012a; Roldán et al., 2002), which are considered 

to be the main source of Fe to plants (de Santiago and Delgado, 2006). 

The aims of this study were: i)  investigate the effectiveness of soil-applied 

sustainable strategies (aqueous extract of A. retroflexus and synthetic siderite) and 

their interaction with biochar in preventing Fe-chlorosis of kiwifruit grown in 

calcareous soil, ii) evaluate the ability of biochar to act as a source of 

micronutrients, iii) assess the potential of biochar in retaining micronutrients in 

solution iv) characterize the chemical biochar surface changes after the exposure to 

a Fe source.  

 

4.2 MATERIALS AND METHODS 

4.2.1 Interaction between biochar and Fe nutrition on kiwifruit 

4.2.1.1 Experimental design and growth conditions  

We performed a 2-year experiment (2011-12) outdoors at the experimental station 

of the University of Bologna (in Cadriano, Bologna, 44°55’ N, 11°40’ E, 36 m 

a.s.l.) on 1-year old micropropagated kiwifruit (Actinidia deliciosa cv Hayward) 

grown in 5.2 L pots filled with a heavy alkaline-calcareous soil (Tab. 4.1). Trees 

were trained as in a single shoot, watered daily (in summer) by microirrigation to 

return the evapotranspiration (ETo) rate as estimated by a class A evaporation Pan 

and the specific crop coefficient (Kc) for kiwifruit and covered with a shade netting 

which allowed a light intensity of 73.500 lux (measured in summer at noon on a 
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sunny day). Except for Fe, tree nutrient requirements (nitrogen (N), phosphorus 

(P), potassium (K) and magnesium (Mg)) were satisfied by periodic supply of a 

nutrient solution by fertigation and weeds were manually removed from pots. 

The experiment was arranged in a complete randomized factorial experimental 

design with 6 replicates (single tree) and 2 factors: fertilization (5 levels) and 

biochar (2 levels). We compared the following fertilization treatments:  a) untreated 

control; b) commercial Fe-chelate (1.0 g L-1 of commercial Fe-EDDHA with a Fe 

content of 6% in the ortho-ortho isomer); c) synthetic siderite (1.0 g of suspension 

per kg of soil); d) aqueous extract of A. retroflexus at a rate of 30 g (dw) L-1, and e)  

aqueous extract of A. retroflexus at a rate of 30 g (dw) L-1 mixed with Fe(II) 

sulphate heptahydrate (FeSO4*7H2O) at a rate of 2 g L-1. Treatments were either 

applied to: i) unamended soil or ii) soil amended with biochar at a rate of 50 g fw 

kg-1 (w w-1) equal to 52 t fw ha-1 (considering a treated area of 2 m wide along tree 

row in a commercial kiwifruit orchard with a 3*5 m spacing (667 tree ha-1), soil 

incorporation up to 0.20 m depth and a specific soil weight of 1.3 t m-3). 

The biochar we used in this experiment consisted of small chunks obtained from a 

mixed feedstock of fruit trees pruning wood, with a prevalence of peach (Prunus 

persica L.) and grapevine (Vitis vinifera L.) pyrolized at approximately 500°C at 

atmospheric pressure. Biochar physical and chemical characteristics are 

summarized in table 1. 

The aqueous extract was prepared and characterized as described by Sorrenti et al. 

(2011). Briefly, the dried powder of A. retroflexus was macerated in tap water (pH 

7.4; Fe < 0.08 mg L-1) at least 24 h before its application, maintaining the 

suspension at room temperature and in the dark. Each treatment was applied at 

weekly intervals 4 and 5 times in the first and second season, respectively, starting 

from bud burst and at a rate of 200 mL plant-1.  

Synthetic siderite was prepared by mixing 40 g L-1 of potassium carbonate (K2CO3) 

(Sigma-Aldrich) to a pot containing 80 g L-1 of Fe(II) sulphate-heptahydrate 

(FeSO4*7H2O) which provided a brownish green suspension containing 34 g L-1 of 

siderite. The solution was continuously stirred and the suspension was mixed to the 

soil only once at planting at a rate of 125 mL per pot in order to apply 1 g of 

siderite per kg of soil.  
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At the same time as the aqueous vegetal extract applications, Fe-chelate treated 

plants received 200 mL plant-1 of Fe-chelate solution while untreated and siderite 

treated plants received the same amount of tap water. 

 

4.2.1.2 Fe chlorosis incidence, tree nutritional status and plant biomass 

We estimated the incidence of Fe-chlorosis periodically by the determination of the 

leaf Chl concentration of the first apical completely expanded leaf per shoot 

measured by a hand-held Chl meter (SPAD 502, Minolta Co. LTD, Osaka, Japan). 

Shoot length was also periodically recorded. In July of the second season, we 

collected random fully expanded leaves per tree, petioles were removed then leaf 

laminas were washed in a 0.1 N HCl solution supplemented with a surfactant 

(Tween 20) at a rate of 1 mL L-1, as recommended by Álvarez-Fernàndez et al. 

(2001), rinsed abundantly in d-H2O, oven-dried (65 °C) and milled (0.2 mm mesh). 

We determined leaf macro (N, P, K, calcium (Ca), Mg) and micro (Fe, manganese 

(Mn), zinc (Zn) and copper (Cu)) nutrient concentration. Total N concentration was 

determined by the Kjeldahl method (Schuman et al., 1973) by mineralizing 1.5 g of 

sample with 12 mL of a 95:5 (v v-1) H2SO4:H3PO3 mixture, at 420 °C, for 180 min 

and subsequent distillation with 32% (v v-1) NaOH and titration with 0.2 M HCl. 

Phosphorus was spectrophotometrically quantified at 700 nm, through extract 

mineralization (Saunders and Williams, 1955) of 0.5 g of tissue with 96% (v v-1) 

sulphuric acid and 35% (v v-1) oxygen peroxide, and subsequent neutralization with 

0.1 M NaOH enriched with 0.1 M ascorbic acid, 32 mM ammonium molybdate, 

2.5 M sulphuric acid and 3 mM potassium antimonyl tartrate to develop a phospho-

molybdic blue color. Metal concentrations were determined by atomic absorption 

spectrophotometry (AAS) (Varian AA200, Mulgrave, Victoria, Australia) after wet 

digestion according to US EPA Method 3052 (Kingston, 1988). To this end, 0.5 g 

of dry matter were mineralized in an Ethos TC microwave labstation (Milestone, 

Bergamo, Italy) by adding 8 mL of nitric acid (65%) and 2 mL of hydrogen 

peroxide (30%) at 180 °C. Lanthanum chloride (LaCl3 at 10%) and caesium 

chloride (CsCl at 5%) solutions were added to the samples at ratios of 20% and 

4%, respectively prior to K, Ca and Mg readings. At the end of the second season, 
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trees were harvested and divided into shoots and roots (including stem), oven-dried 

and weighted. 

 

4.2.1.3 Soil pH and soil extractable micronutrients  

At the end of the experiment, a soil sample (1 kg) was collected from each pot, 

oven-dried (105°C), ground (1 mm mesh) and used to determine soil pH and soil 

diethylenetriamine-pentaacetic-acid (DTPA) (Lindsay and Norwell, 1978) 

extractable Fe, Mn, Cu and Zn concentration. We also determined soil extractable 

Fe using d-H2O as eluent. The DTPA solution was obtained by mixing 0.005 M 

DTPA, 0.01 M calcium chloride (CaCl2) 0.1 M and triethanolamine, then the pH 

was adjusted to 7.3 ± 0.05 by 5 M HCl. For both eluents (d-H2O and DTPA), 

eighty mL were added to 40 g (dw) of soil, shaken 2 h, let to decant then filtrated 

(Whatmann, 41). The micronutrient concentration in solution was determined by 

AAS (Varian AA200, Mulgrave, Victoria, Australia). Soil pH was determined in a 

soil:d-H2O solution at a rate of 1:2.5 (w w-1). 10 g of soil were added to 25 mL of 

d-H2O, then solutions were stirred 1 h prior readings under continuous stirring by 

pH meter (Crison, pH- Meter BasiC 20, Barcelona, Spain).  

 

4.2.2 Biochar micronutrients release and retention potential 

We used the same biochar batch described in the previous experiment. However, 

biochar was first sieved to remove ash and impurity and to homogenize the size of 

the fragments that ranged between 2 and 7.5 mm. Three replicates of biochar were 

repeatedly washed to reduce ash and tar content by adding 4 L of d-H2O to 200 g of 

biochar and shacking 30 min at 100 rpm by an orbital shaker. At the end of every 

washing, we collected the supernatant that was analysed for electrical conductivity 

(CE) (Crison, Conductivity meter 524, Barcelona, Spain). Washing steps were 

repeated (7 times) until constant CE, which started from 661.3 ± 8.83 µS (avg. ± 

SE n=3) after the first washing and ended at 51.5 ± 1.64 µS (avg. ± SE n=3). The 

washed biochar was then oven-dried at 30°C. After this, 25 mL of d-H2O were 

added to glass flasks containing 4, 10, 20, 30 and 40 g L-1 of biochar, with 5 

replicates. Four series of flasks, with same rates of biochar, were added with 

solutions containing 10 mg L-1 of one of the following cations: Fe, Mn, Zn or Cu. 
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Pure FeCL3*6H2O, MnCl2*4H2O, ZnCl2 and CuSO4 diluted in HCl 0.12 N 

standard solutions were used as a source of micronutrients. The pH of the solutions 

was adjusted by sodium hydroxide (NaOH) at 7.2 ± 0.1, then flasks were shacked 

on an orbital shaker for 120 min at 90 rpm. The supernatant was filtrated 

(Wathmann 42) and analyzed for micronutrients by AAS (Varian AA200, 

Mulgrave, Victoria, Australia). 

 

4.2.3 Biochar surface chemistry change as affected by Fe source exposure 

We added three medium size washed biochar fragments, as above mentioned, to 25 

ml of d-H2O or to a solution made of d-H2O added with 100 mg of Fe file dust (> 

350 µm) obtained from a commercial Fe bar, with 3 replicates. Fragments were 

maintained in solution 1 week then removed and oven-dried at 65°C. One fragment 

per replicate was analyzed by XPS to determine whether or not the char surface 

chemistry was altered as a consequence of the exposure to the Fe source. The top 5 

nm biochar surface was analyzed for relative Fe, O and C atomic concentration 

(at%) using a PHI Quantera XPS with an Al X-ray source at 1486.6 eV and 49.2 

W. The beam diameter was 200.0 µm and the pass energy 26 eV. XPS spectra were 

analyzed using a nonlinear least-squares curve-fitting program with a 

Gaussian−Lorentzian mixed function to optimize the spectra which were analyzed 

using MultiPak data analysis software (MultiPak V7.0.1, 04 Mar 16, Ulvac-Phi, 

Inc., 1994-2004). 
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4.3 STATISTICAL ANALYSES 

Pot experiment data were evaluated by analysis of variance according to a complete 

randomized factorial design with 2 factors: fertilization (5 levels) and biochar (2 

levels) with 6 replicates. When analysis of variance showed a statistical effect (at P 

≤ 0.05), means were separated by Student-Newman-Keuls Test (SNK); when 

interaction between fertilization treatment and biochar was significant, 2 times 

standard error of means (SEM) was used as the minimum difference between two 

statistically different means (Saville and Rowarth, 2008). Coefficient of 

determination (R2) between biochar rate and micronutrients concentration was 

calculated in the lab experiment. Statistical analyses were performed using SAS 

software (SAS Institute Inc., Cary, NC). 
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4.4 RESULTS 

4.4.1 Interaction between biochar and Fe nutrition on kiwifruit 

4.4.1.1 Fe chlorosis incidence, tree nutritional status and plant biomass 

Pronounced leaf Fe chlorosis symptoms appeared both seasons in untreated trees 

(as estimated by the lowest values of leaf Chl content (SPAD units) and, except for 

the aqueous extract of A. retroflexus alone, all strategies were effective in 

significantly increasing leaf SPAD content (Tab. 4.3 and 4.4), without interaction 

between fertilization strategy and biochar.  

Soil-applied Fe-chelate always induced the highest SPAD index (Tab. 4.3 and 4.4). 

Siderite and A. retroflexus enriched with FeSO4 showed SPAD values similar to 

Fe-chelate, particularly in the first season of investigation, whereas A. retroflexus 

alone was ineffective in preventing Fe chlorosis occurrence (Tab. 4.4). Leaf Fe-

deficiency symptoms were significantly evident in plants grown in biochar 

amended soil, but only in the first season, though (Tab. 4.3 and 4.4). 

All control and aqueous extract A. retroflexus-alone treated trees, independently of 

the presence of biochar in soil, died in summer of the second season.   

In 2011, shoot length was significantly increased by the aqueous extract of A. 

retroflexus enriched with FeSO4 compared to siderite in the first measurement and 

to the other treatments in the second assessment (Tab. 4.5). In 2012 shoot growth 

was promoted by Fe-chelate and, to a less extent, by A. retroflexus enriched and 

siderite compared to control plants (Tab. 4.5). However, at the end of the second 

season, no significant differences were observed among the remaining strategies 

(Tab. 4.5). Independently of the fertilization, shoot growth was significantly 

depressed in Sep-2011 and Jun-2012 by the presence of biochar in soil, without 

interaction between factors (Tab. 4.5).    

At the end of the experiment, Fe-chelate and A. retroflexus enriched with FeSO4 

significantly promoted shoot and root (including stem) dry weight, respectively 

compared with siderite (Tab. 4.6). However, no statistical differences were 

recorded between the highest values (Tab. 4.6). As anticipated, the 12 untreated as 

well as the 12 A. retroflexus alone treated plants died in summer of the second 

season, thereby no shoots were sampled at plant harvest. In addition, a poorly 

developed root system (including stem) was recovered from these pots (Tab. 4.6).  
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Picture 4.2. Effect of the fertilization strategy in combination with biochar on plant 

growth at the end of the experiment  

 

Fe-chelate and A. retroflexus + FeSO4 resulted in a higher total plant biomass 

compared to other strategies (Tab. 4.6). The addition of biochar to the soil did not 

affect organs neither total plant biomass, without interaction between factors (Tab. 

4.6).  

Leaf K concentration was decreased in plants treated with Fe-chelate compared to 

other treatments while a significant interaction between treatment and biochar 

occurred for Mg, Fe and Mn (Tab. 4.7 and 4.8). When soil was amended with 

biochar leaf Mg and Fe concentrations were significantly decreased in plants 

treated with Fe-chelate and the aqueous extract enriched with FeSO4, but not by 

siderite (Tab. 4.7 and 4.8). Only in unamended soil leaf Mg concentration was 

significantly increased by Fe-chelate compared to the aqueous extract enriched and 

siderite (Tab. 4.8). The supply of Fe-chelate dramatically increased leaf Fe and 

decreased leaf Mn concentration compared to other treatments, independently of 

the substrate (Tab. 4.8). Similarly, leaf Fe concentration resulted higher in plants 
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fertilized with the suspension of siderite in comparison to those fertigated with the 

aqueous extract enriched (Tab. 4.8). The same trend was observed for leaf Mn, 

although it increased only in the biochar amended soil (Tab. 4.8).   

Independently of the fertilization strategy, biochar induced an increase in leaf K 

and a reduction in leaf Ca concentration (Tab. 4.7 and 4.8), while no effects were 

observed on leaf N, P, Cu and Zn concentration (Tab. 4.7 and 4.8).     

 

4.4.1.2 Soil pH and soil extractable micronutrients  

At the end of the experiment, no interaction between biochar and fertilization 

strategies was observed on soil pH, which resulted significantly higher in soil 

enriched with biochar (Tab. 4.9). Among fertilizers soil pH was decreased by Fe 

chelate, A. retroflexus enriched and siderite (Tab. 4.9).  

When d-H2O was used as eluent, only synthetic Fe treatment significantly 

increased soil extractable Fe (Tab. 4.9), while when DTPA was used, the A. 

retroflexus + FeSO4 induced the highest value of extracted Fe, followed by siderite 

(Tab. 4.9). The latter increased DTPA extractable Fe compared to soils untreated 

and fertigated with the vegetal extract alone, while intermediate values were 

obtained by Fe-chelate (Tab. 4.9). Compared to other strategies, soil DTPA 

extractable Cu was reduced by Fe-chelate application whereas soil DTPA 

extractable Mn and Zn were not affected by fertilization treatments (Tab. 4.10).  

Soil enriched with biochar significantly decreased the amount of Fe extracted by d-

H2O while an opposite trend emerged using DTPA as extractor agent (Tab. 4.9). A 

similar response was also measured for soil DTPA extractable Mn, Cu and Zn 

concentration (Tab. 4.10), without interaction with fertilization strategies (Tab. 

4.10).  
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4.4.2 Biochar micronutrients release and retention potential 

Independently of the rate, the amount of Fe, Mn, Cu and Zn released by biochar in 

d-H2O was negligible (data not shown). Values of these metals in solution were 

lower than 0.015 mg L-1 in average, thus comparable to pure d-H2O. Therefore, no 

significant correlation was obtained between biochar rate and released 

micronutrient concentration (data not shown). 

Conversely, when biochar was dipped in 10 mg L-1 solutions of Fe, Mn, Cu and Zn 

(separately), it significantly reduced the amount of cations in solution as the 

biochar rate increased (Fig. 4.1). The concentration of dissolved Fe after the 

addition of biochar was significantly correlated with biochar rate by a polynomial 

trend and R2 was 0.92 (Fig. 4.1). Similarly, Mn, Cu and Zn concentrations were 

inversely and linearly correlated with biochar rate and R2 values were 0.93, 0.93 

and 0.88, respectively (Fig. 4.1).  

 

4.4.3 Biochar surface chemistry change as affected by Fe source exposure 

After the exposure to the Fe source (Pic. 4.3), biochar fragments showed diffuse 

rusty spots distributed over their surface (Fig. 4.2) and the surface relative atomic 

concentration, as measured by XPS, was 14.9 ± 2.14, 65 ± 5.21 and 22.6 ± 7.36 

(at%, avg. ± SE) for Fe, O and C, respectively, (Fig. 4.3). On the contrary, biochar 

surface dipped 1 week in d-H2O was not visibly altered in colour and its surface Fe 

atomic concentration  resulted in 0.12±0.002, 14.2±1.62 and 86.1±2.60 for Fe, O 

and C, respectively, (Fig. 4.3). 
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Picture 4.3. After the exposure to an Fe source, the biochar fragment was attracted 

by a magnet  
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4.5 DISCUSSION 

4.5.1 Sustainable strategies were effective in preventing Fe-chlorosis  

Typical leaf Fe-chlorosis symptoms (interveinal yellowing starting from youngest 

leaves) appeared in untreated plants beginning in the first growing season, as a 

consequence of a limited plant Fe availability induced by the heavy calcareous soil. 

These symptoms were effectively prevented in both seasons by soil-applied Fe-

chelate, which induced the highest SPAD values. Symptoms were prevented to a 

similar extent by the A. retroflexus aqueous extract (only when enriched with 

FeSO4) and siderite in the first year, while the latter two treatments were slightly 

less effective the following year. Untreated and A. retroflexus aqueous extract 

alone treated plants died as a consequence of the persistent Fe deficiency induced 

by the extremely prohibitive growing conditions, confirming the high susceptibility 

of kiwifruit plants to this disorder and the severe consequences of Fe-chlorosis.   

The beneficial effect on Fe nutrition induced by A. retroflexus aqueous extract is 

likely attributable to the chelating compounds (e.g. organic acids, aminoacids, 

bioregulator-like substances, siderophores) released by the A. retroflexus spp. 

tissues during either maceration or soil-incorporation (Matocha, 1984; Matocha 

and Pennington, 1982; Mostaghimi and Matocha, 1988;  Goos et al., 2001) and, in 

fact, Sorrenti et al. (2011) measured a 100-fold higher concentration of solubilised 

Fe from a similar calcareous soil using the aqueous vegetal extract of A. retroflexus 

as Fe-extractant compared to d-H2O. In our conditions the A. retroflexus aqueous 

extract alone did not improve Fe nutrition likely because the amount of solubilized 

Fe from a soil naturally poor in Fe was insufficient to sustain plant Fe requirements 

while it was enough when the aqueous extract was enriched with an exogenous 

source of Fe which promoted a weak linkage between Fe and the organic 

compounds released by plant tissues. A similar response was observed in field 

conditions (Sorrenti et al., 2011), where Fe nutrition of pear trees was improved by 

the vegetal extract only when enriched with FeSO4, suggesting a beneficial effect 

of the A. retroflexus as a natural chelator since its Fe concentration is negligible. 

We did not provide a treatment based on the addition of soil-applied FeSO4 alone 

because it is already known that the supply of inorganic Fe-salts is inefficient in 

high pH (e.g. alkaline-calcareous) soils in enhancing Fe availability due to the 
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rapid transformation of most of the applied Fe into highly insoluble compounds 

such as Fe(III)-hydroxides (Tagliavini et al., 2000).  

Siderite has been proposed as a long-term slow-release Fe fertilizer able to prevent 

Fe chlorosis symptoms in olive trees (Sánchez-Alcalá et al., 2012a). As for 

synthetic vivianite, the effectiveness of siderite is due to its oxidation in calcareous 

medium resulting into poorly crystalline lepidocrocite and/or goethite (Sánchez-

Alcalá et al., 2012b) that, as with other poorly crystalline of nanometric size Fe 

oxides, represent a significant source of Fe for plants (Sánchez-Alcalá et al., 2012b; 

de Santiago and Delgado, 2006). However, the application of siderite (only once at 

the beginning of the experiment) was more effective in the first than in the second 

season suggesting that its effectiveness may last shorter than in previous studies 

(Sánchez-Alcalá et al., 2012a and literature therein).   

The increased leaf K concentration observed in plant treated with siderite and 

vegetal extract of A. retroflexus could be a consequence of the direct supply of this 

nutrient by siderite (obtained by mixing KCO3 and FeSO4), while the vegetal 

extract may have a possible positive effect also on extracting this macronutrient 

from soil. A similar increase in leaf K concentration was observed in pear trees 

fertigated with A. retroflexus aqueous extract (Sorrenti et al., 2011).    

In agreement with literature, Fe-chelate treatments dramatically decreased leaf Mn 

concentration because of the competitive effect of these synthetic molecules on Mn 

uptake as shown in herbaceous as well as in perennial species (Sorrenti et al. 2011; 

Wallace and Alexander 1973; Ghasemi Fasaei et al. 2003;) and suggesting that, to 

avoid Mn-deficiency, supplementary applications to the canopy of this 

micronutrient should be considered in commercial orchards when Fe-chelates are 

yearly used. 

 

4.5.2 Biochar hinders kiwifruit Fe nutrition  

Independently of the fertilization strategy, leaf Chl values were significantly 

reduced (in the first season) in amended compared with unamended soil; similarly, 

a shoot growth reduction was observed in some cases both seasons, suggesting that 

the presence of biochar in soil reduces Fe uptake. On the other hand, while biochar 

positively affected leaf K concentration as a consequence of the considerable 
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release of this nutrient in solution (data not shown), it significantly reduced leaf Fe 

accumulation in Fe-chelate and A. retroflexus enriched with FeSO4-treated plants. 

In the latter treatment we also recorded a significant reduction of leaf Mn 

concentration induced by biochar. The pH increase (less than 0.1) in amended soil 

in part explains the negative effect of biochar on plant Fe and Mn uptake. 

Nevertheless, a significantly lower Fe concentration in soil solution (-63%) was 

extracted by d-H2O when biochar was present while this concentration was 

enhanced by using a stronger extractant (DTPA). A similar trend was also observed 

for the other micronutrients when using DTPA suggesting that biochar retained Fe 

(as well as other cations) from soil and a week eluent, such as d-H20, was 

ineffective to solubilise it. On the other hand, a reduction of the Mn2+ concentration 

was also measured in 6 out of 8 soils upon the addition of biochar (Alling et al., 

2014). Therefore, we hypothesize that in potted conditions Fe in soil solution was 

attracted and retained by biochar (as observed in the second experiment), thereby 

limiting its availability (in particular in the first season) for plant uptake, 

accentuating Fe-chlorosis symptoms of kiwifruit trees. After the first season, 

symptoms of Fe-chlorosis in biochar amended trees were less evident suggesting 

that the negative effect does not last long. This is probably because the biochar 

surface after the first season was, at least in part, saturated with cations or because 

a sort of cation exchange equilibrium was reached, leading to an increase of Fe 

availability for plant uptake. The fact that Fe was attracted by biochar in soil has 

been reported also by Lin et al. (2012) who, using transmission electron 

microscopy (TEM) equipped with energy dispersive spectroscopy (EDS) for 

elemental analysis, showed that the mineral matter attached to the biochar surfaces 

on fragments recovered after a 3-month soil incubation experiment included higher 

concentration of elements such as O, Al, Si, Fe, Ti and trace amounts of other 

elements such as Mn, Mg, Ca, K, Na, P, and S compared to fresh biochars. 

 

4.5.3 Micronutrient release from biochar is negligible 

 Although it has been suggested that biochar may represent a potential source of 

macro- and micronutrients for plants and the soil microbial community (Downie et 

al., 2009), direct nutrient supply by biochar is often negligible, in particular when 
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vegetal biomass is used as feedstock (Singh et al., 2010; Gaskin et al., 2008). 

Nutrient content and chemical structure differ greatly among biochars and are 

strongly influenced by the pyrolysis conditions and secondarily by feedstock 

(Kookana et al., 2011, Singh et al., 2010; Gaskin et al., 2008). In addition, nutrient 

content and availability frequently decrease with increasing pyrolysis temperature. 

Usually, nutrient release by biochar is related to its ash content which solubilization 

may result in readily-available nutrients to plants. In our conditions, independently 

of the rate, biochar did not affect Fe, Mn, Cu and Zn concentration in solution (data 

not shown). This response was expected and could be ascribed: i) to the pyrolyzed 

feedstock made of hardwood characterized by a poor nutrient content, ii) to the 

absence of ash, since biochar was repeatedly washed prior test and iii) because 

micronutrients (i.e. Fe and Mn) in biochar are considered to be largely retained 

under a number of organic and inorganic forms during biochar formation 

(Amonette and Joseph 2009), thereby redistributed into chemical forms less soluble 

(Wang et al., 2009), confirming the scarce value of biochar as a direct source of 

micronutrients (Novak et al., 2009).  

 

4.5.4 Biochar acts as a retaining additive for micronutrients in soil 

Conversely, biochar showed a high retention potential for micronutrients when 

available in solution. In fact, the addition of increasing rates of biochar, thereby 

total surface area, reduced progressively the amount of the initial content of all 

micronutrients in solution (Fig. 4.1), suggesting that biochar attracted and retained 

cations as demonstrated also by other studies (Novak et al., 2009). The affinity of 

biochar for micronutrients was in the order Fe>Cu>Zn>Mn with a retention of 

100% of the initial Fe and Cu content (10 mg L-1) with a biochar rate between 20 

and 30 and 30 and 40 g L-1, respectively. The retention of Zn and Mn was ~80 and 

~50% of the initial content, respectively with the highest biochar rate (40 g L-1).   

The ability of biochar to sorb and desorb nutrients has been ascribed to its cation 

exchange capacity (CEC) and/or anion exchange capacity (AEC) (Liang et al., 

2006). CEC measures the ability of a substrate to retain positively charged ions 

(e.g. NH4
+, Ca++, Fe++) through electrostatic forces, while AEC refers to the 

retention of negatively charged ions (e.g. NO3
-). Functional groups found on 
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biochar surfaces have been indicated as the responsible for the interactions with 

water and solutes. These include hydroxyl (-OH), carbonyl (C=O), carboxylate 

(COOH), hydrogen (H) and ether (R–O–R) (Cheng et al., 2008; Mao et al., 2012) 

which influence biochar surface chemistry by Coulombic, dipole and H-bonding 

reactions. Carboxylate groups are primarily responsible for the CEC of biochar due 

to their negative formal charges while others functional groups on biochar are polar 

nano-sites on a relatively non-polar and hydrophobic surface (Lawrinenko, 2014). 

This surface structure can sorb molecules with both polar and non-polar portions. 

Besides, O containing alcohol, carbonyl, and carboxylate functional groups are 

generally believed to contribute to biochar CEC because their negative charge as 

they serve as Lewis bases for the sorption of cations. Finally, O and N containing 

chemical functional groups in biochar contribute to surface properties as they are 

generally polar and provide sites for hydrogen bonding, ion-dipole, and dipole-

dipole interactions (Lawrinenko, 2014). 

The ability of our biochar to retain cations could have been accentuated by the fact 

that our biochar was 4-year old. In fact, it has been suggested that the CEC of 

biochar increase with biochar ages as shown by high concentrations of negative 

charges on biochar surface due to surface oxidation induced by abiotic processes 

(Cheng et al, 2006), while AEC is likely to be reduced.  

Therefore, another possible explanation to the observed retention effect could be 

attributed to a physic mechanism due to the high surface area and porosity of 

biochar which increase the contact between biochar particles and solution (Major et 

al., 2009). The amount of water hold by biochar in our test was not taken into 

account, thereby nutrient sorption might partly result from dissolved nutrients 

physically held in the porous structure of biochar before drying and analysis. 

However, water absorption cannot completely explain the observed differences 

since doubtful 100% of Fe and Cu amount in solution was physically trapped into 

biochar pores.  

 



Chapter 4 - Biochar interferes with kiwifruit Fe-nutrition in calcareous soil 

 

94 

 

4.5.5 Fe exposure induces a redox reaction on biochar surface   

Recently, it has been demonstrated that since biochar is redox-active (Klüpfel et al., 

2014), it can be involved in abiotic redox reactions (Oh et al., 2013) and, 

depending on the feedstock and charring temperature, biochar can take up (accept) 

and release (donate) several hundred micromoles of electrons per gram (Klüpfel et 

al., 2014). Moreover, results from Kappler et al. (2014) suggest that biochar in soil 

can alter soil biogeochemistry either indirectly by changing the soil structure and 

chemistry or directly by mediating electron transfer processes, by functioning as an 

electron shuttle. In our experiment biochar clearly showed diffuse rusty spots on its 

surface after the exposure to the Fe source and the relative surface atomic 

concentration significantly changed for Fe, O and C. The relative O and Fe 

concentration of biochar surface was much higher than in control fragments, 

suggesting that Fe was oxidized on biochar surface. Because Fe metal particles 

(used as a source of Fe) were bigger in size than biochar pores, it is unlikely that 

they were physically trapped on biochar surface. Although other reactions cannot 

be excluded, we hypothesize that the Fe source interacted with the biochar surface 

and a redox reaction occurred. The Fe source released Fe2+ in solution that was 

electrostatically attracted to the biochar surface (Kappler et al., 2014) by reactive 

carboxylic and phenolic functional groups (Lin et al., 2012). The same biochar was 

the donor of electrons (other than water) originating the following redox reaction: 

Fe → Fe2+ + 2 e− → Fe3+ + 1 e− (oxidation) 

O2 + 4 e- + 2 H2O → 4 OH-  (reduction); 

the product of such reaction can be summarized as follow: 

4Fe + 3O2 + 6H2O →  4Fe(OH)3 

Then, the ferric hydroxide (Fe(OH)3) precipitated as hydrated ferric oxides, 

originating rust as final product: 

2Fe(OH)3 → Fe2O3·3H2O 
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4.6 CONCLUSIONS 

Biochar showed a high potential to remove Fe, Mn, Cu and Zn dissolved in 

solution, likely through reactive functional groups on its surface. On the other hand 

it showed little value as a source of these micronutrients. The affinity of biochar for 

cations together with the fact that it can accept and donate electrons could trigger 

redox reactions in soil with significant implications for biogeochemical cycles, 

thereby also affecting nutrient forms and availability for plants. In our conditions, 

we speculate that biochar in soil sequestered part of the available micronutrients (in 

particular Fe), limiting their availability for plant uptake. Incorporating biochar in 

Fe-limited growing environments (i.e. alkaline-calcareous soils) hindered plant Fe 

nutrition, worsening the Fe-chlorosis occurrence on kiwifruit trees. This response 

should be taken into consideration in the development of biochar as an agronomic 

technique and adequate countermeasures need to be evaluated. However, future 

studies are needed to confirm this effect in different soils and how aging will affect 

these properties of biochar. 

Finally, our results indicate the potential of innovative and sustainable strategies 

(aqueous extract of A. retroflexus enriched with FeSO4 and siderite) to alleviate 

symptoms of Fe chlorosis, improving Fe nutrition of kiwifruit trees grown in heavy 

calcareous soil.  
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Table 4.1. Selected chemical and physical characteristics of the soil used in the experiment 

Parameter Unit Value Extractant/method 

Texture    

Sand % 24  

Lime % 53  

Clay % 23  

Total carbonate (CaCO3) % 78 HCl / De Astis method 

Active lime (CaCO3) % 19.2 Ammonium oxalate (Drouineau, 1942) 

Organic matter % 0.54 Walkley-Black 1919 (Soltner, 1988) 

Total N ‰ 0.39 Kjeldahl method 

Assimilable phosphorus (P) mg kg-1 3 Olsen (Olsen and Sommers, 1982) 

Exchangeable potassium (K) mg kg-1 195 Barium chloride (Hendershot and Duquette, 1986) 

Exchangeable sodium (Na) mg kg-1 186 Barium chloride (Hendershot and Duquette, 1986) 

Exchangeable calcium (Ca) mg kg-1 2611 Barium chloride (Hendershot and Duquette, 1986) 

Exchangeable magnesium 

(Mg) 

mg kg-1 47 Barium chloride (Hendershot and Duquette, 1986) 

Assimilable iron (Fe) mg kg-1 2.68 DTPA (Soltanpour and Schwab, 1977) 

Assimilable manganese (Mn) mg kg-1 1 DTPA (Soltanpour and Schwab, 1977) 

Assimilable zinc (Zn) mg kg-1 0.51 DTPA (Soltanpour and Schwab, 1977) 

Exchangeable copper (Cu) mg kg-1 2.21 DTPA (Soltanpour and Schwab, 1977) 

Exchangeable Boron (B) mg kg-1 0.29 Calcium chloride (Bingham, 1982) 

C/N ratio  8.03  

Cation Exch. Capacity (CEC) meq 100g-1 14.7 Barium chloride (Hendershot and Duquette, 1986) 

pH  8.39 Water/Potentiometric 
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Table 4.2. Physical and chemical characteristics of the biochar 

Parameters Unit Value 

Physical properties   

Moisture %1 13.8 
Bulk density g cm-3 0.43±0.04 
Hydrophobicity  Slightly hydrophobic 
Total porosity  mm3 g-1 2722 
Transmission pores mm3 g-1 318 
Storage pores mm3 g-1 1997 
Residuals pores mm3 g-1 406 
Max water absorption g g-1 of d.m. 4.53 
Skeletal density (SD)2 g cm-3 1.86±0.04 
Envelope density (ED)3 g cm-3 0.2459±0.0056 
Porosity (ED/SD) % 0.863±0.00574 
Surface area1 (BET Brunauer–Emmett–
Teller method)  

m2 g-1 410±6 

Particle size distribution1 
50-20 
20-10 
10-8 
8-4 
4-2 
2-1 
<1 

mm g-1 
% 
% 
% 
% 
% 
% 
% 

 
4.45 
12.1 
13.1 
10.36 
19.85 
24.2 
15.94 

Chemical properties   

pH - 9.8 
CEC cmolc kg-1 101 
Carbon1 (C) g kg-1 778.0 
Total nitrogen (N) g kg-1 9.1 
C/N - 85.49 
Aluminum (Al) mg kg-1 268 
Arsenic (As) mg kg-1 0.005 
Beryllium (Be) mg kg-1 0.001 
Cadmium (Cd) mg kg-1 0.001 
Calcium (Ca)  g kg-1 25.0 
Chrome (Cr) mg kg-1 0.002 
Cobalt (Co) mg kg-1 0.002 
Copper (Cu)  mg kg-1 97 
Iron (Fe)  mg kg-1 333 
Magnesium (Mg)  g kg-1 28.7 
Manganese (Mn) mg kg-1 84 
Molybdenum (Mo) mg kg-1 2 
Phosphorus (P)  g kg-1 23.3 
Potassium (K)  g kg-1 13.9 
Sodium (Na) g kg-1 11.9 
Sulphur (S)  mg kg-1 481 
Zinc (Zn)  mg kg-1 104 

1data obtained from Baronti et al. (2014) (with permission). 2The skeletal density is the sample mass 
divided by sample volume occupied by a solid sample, including any pores not accessible to the helium 
gas. 3The envelope density is defined as the sample mass divided by the total sample volume that is 
measured if an “envelope” would be placed around each individual particle. 
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Table 4.3. Effect of the fertilization and biochar on leaf chlorophyll content in the first season 

Fertilization Leaf Chlorophyll Content (Spad units) 
 Apr-13 May-20 Jun-24 Jul-25 Aug-26 Set-11 
Control 26.5 22.4 bc 18.9 b 20.2 b 19.6 b 18.3 b 
Fe-chelate 27.4 30.3 a 29.5 a 34.4 a 30.0 a 28.6 a 
Siderite 27.6 26.8 abc 34 a 23.9 a 33.5 a 33.0 a 
A. retroflexus  28 21.2 c 15.5 b 20.7 b 18.2 b 14.7 b 
A. retroflexus + 
FeSO4 

28.7 27.2 ab 28.6 a 30.0 a 29.3 a 28.5 a 

Significance ns * *** ** ** *** 
Biochar (g kg-1)       
0 27.6 29.2 29.3 31.8 30.6 28.7 
50 27.7 21.8 21.0 21.3 20.3 21.8 
Significance ns *** ** *** *** ** 
Fert x Biochar  ns1 ns ns ns ns ns 
1ns, *, ** and *** = effect not significant or significant at P <0.05, P <0.01 and P <0.001, respectively.  
When a significant effect occurred, means in the same column followed by the same letter are not 
statistically different (P <0.05, SNK Test). 
 
 
Table 4.4. Effect of the fertilization and biochar on leaf chlorophyll content in the second 
season 

Fertilization Leaf Chlorophyll Content (Spad units) 
 May-

14 
May-

21 
May-

31 
Jun- 

7 
Jun-
14 

Jun-
27 

Jul-
11 

Aug-
28 

Sep- 
5 

Sep-
13 

Control 10.0 b 9.8 b 10.0 d 10.4 d 9.2 c 8.9 b 11.5 b - - - 
Fe-chelate 23.9 a 28.5 a 31.7 a 37.7 a 33.0 a 31.6 a 28.3 a 25.8 26.7 27.9 a 
Siderite 25.1 a 27.0 a 19.4 c 19.4 c 20.7 b 27.8 a 29.0 a 26.4 24.8 20.3 b 
A. retroflexus  11.8 b 13.7 b 15.3 c 15.8 c 11.1 c 10.8 b 9.65 b - - - 
A. retroflexus + 
FeSO4 

24.6 a 27.5 a 24.6 b 28.4 b 24.1 b 32.0 a 31.7 a 27.3 24.4 20.2 b 

Significance *** *** *** *** *** *** *** ns ns *** 
Biochar (g kg-1)           
0 20.1 21.3 21.9 23.4 19.9 23.2 26.7 26.6 26.9 22.5 
50  20.1 23.8 19.8 23.3 24.4 25.1 28.3 26.5 24.1 23.8 
Significance ns ns ns ns ns ns ns ns ns ns 
Fert x Biochar  ns1 ns ns ns ns ns ns ns ns ns 
1ns and *** = effect not significant or significant at P <0.001, respectively.  
When a significant effect occurred, means in the same column followed by the same letter are not 
statistically different (P <0.05, SNK Test). 
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Table 4.5. Effect of the fertilization and biochar on shoot length  

Fertilization Shoot Length (cm shoot-1) 
 2011 2012 
 Jun-24 Sep-25 May-21 Jun-7 Jun-27 Aug-8 Sep-13 
Control 36.0 ab 38.1 bc 16.0 c 20.5 b 24.7 d - - 
Fe-chelate 37.6 ab 50.2 b 37.7 ab 74.2 a 120.2 a 47.2 61.8 
Siderite 26.7 b 39.2 bc 21.1 bc 52.7 a 69.2 c 48.6 63.5 
A. retroflexus  32.7 ab 31.1 c 18.0 c 31.4 b 33.9 d - - 
A. retroflexus + 
FeSO4 

49.6 a 69.6 a 40.2 a 70.0 a 84.6 b 48 70.4 

Significance * ** * *** *** ns ns 
Biochar (g kg-1)        
0 39.5 51.0 26 48.9 84.6 50.1 68.3 
50  33.5 40.3 25.5 55.9 63.6 45.3 62.2 
Significance ns * ns ns * ns ns 
Fert x Biochar  ns1 ns ns ns ns ns ns 
1ns, *, ** and *** = effect not significant or significant at P <0.05, P <0.01 and P <0.001, respectively.  
When a significant effect occurred, means in the same column followed by the same letter are not 
statistically different (P <0.05, SNK Test). 
 
 
Table 4.6. Effect of the fertilization and biochar on plant biomass at the end of the experiment 

Fertilization Plant biomass at harvest 
 Shoot 

 
Stem+ Root 

 
Total Dry 
Biomass 

 (g dw plant-1) (g dw plant-1) (g dw plant-1) 
Control -1 13.1 c 13.1 c 
Fe-chelate 18.2 a 50.6 ab 68.8 a 
Siderite 12.2 b 42.2 b 54.4 b 
A. retroflexus  - 11.2 c 11.2 c 
A. retroflexus + 
FeSO4 

13.3 ab 51.3 a 64.6 a 

Significance * *** *** 
Biochar (g kg-1)    
0 15.3 34.9 50.2 
50  13.9 31.0 44.9 
Significance ns ns ns 
Fert x Biochar  ns2 ns ns 

1At the end of the experiment, shoots of the control and A. retroflexus treated plants were not present 
because plants had died. 
2ns, * and *** = effect not significant or significant at P <0.05, and P <0.001, respectively. When a 
significant effect occurred, means in the same column followed by the same letter are not statistically 
different (P <0.05, SNK Test). 
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Table 4.7. Effect of the fertilization and biochar on leaf macronutrient concentration in July 
2012  

Fertilization N P K Ca Mg 
 g kg-1 g kg-1 g kg-1 g kg-1 g kg-1

 

     Biochar 0 Biochar 5% 
Fe-chelate 19.93 2.34 15.16 b 20.03 5.48 3.82 
Siderite 22.42 2.44 25.55 a 20.38 3.51 3.80 
A. retroflexus + 
FeSO4 

19.73 2.15 23.29 a 20.64 4.37 3.52 

Significance ns ns *** ns 2SEM = 0.75 
Biochar (g kg-1)       
0 21.32 2.23 18.92 22.87   
50  19.61 2.40 23.74 17.83   
Significance ns ns *** *   
Fert x Biochar  ns1 ns ns ns * 

1ns, * and *** = effect not significant or significant at P <0.05, and P <0.001, respectively.  
When a significant effect occurred, means in the same column followed by the same letter are not 
statistically different (P <0.05, SNK Test). 
*: interaction between fertilization and biochar significant at P <0.05. Values differing by ≥ 2 standard 
error of means (SEM) are statistically different 
 
 
Table 4.8. Effect of the fertilization and biochar on leaf micronutrient concentration in July 
2012 
 
Fertilization Fe Mn Cu Zn 
 mg kg-1 mg kg-1 mg kg-1 mg kg-1 
 Biochar 0 Biochar 5% Biochar 0 Biochar 5%   
Fe-chelate 68.3 62.3 2.41 2.92 9.17 22.10 
Siderite 48.8 49.4 13.33 14.45 8.62 22.31 
A. retroflexus + 
FeSO4 

42.1 39.4 14.12 8.50 8.35 19.96 

Significance 2SEM = 2.59 2SEM = 2.41 ns ns 
Biochar (g kg-1)       
0     9.03 22.24 
50      8.39 20.67 
Significance     ns ns 
Fert x Biochar  * 1 **  ns ns 

1ns, * and **: effect not significant or interaction between fertilization and biochar significant at P 
<0.05 and P <0.01, respectively. Values differing by ≥ 2 standard error of means (SEM) are statistically 
different 
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Table 4.9. Effect of the fertilization and biochar on soil pH and soil deionized water (d-H2O) 
and DTPA extractable Fe at the end of the experiment (September, 2012) 

Fertilization Soil pH Soil d-H2O extractable 
Fe 

Soil DTPA extractable 
Fe 

  mg kg-1 (dw) mg kg-1 (dw) 
Control 7.52 a 0.25 b 1.94 c 
Fe-chelate 7.46 b 0.53 a 2.36 bc 
Siderite 7.48 b 0.26 b 2.90 b 
A. retroflexus  7.59 a 0.32 b 2.02 c 
A. retroflexus + 
FeSO4 

7.45 b 0.20 b 3.84 a 

Significance ** ** *** 
Biochar (g kg-1)    
0 7.45 0.44 2.42 
50  7.56 0.19 2.80 
Significance *** *** * 
Fert x Biochar  ns1 ns ns 

1ns, *, ** and *** = effect not significant or significant at P < 0.05, P < 0.01 and P < 0.001, 
respectively. When a significant effect occurred, means in the same column followed by the same letter 
are not statistically different (P <0.05, SNK Test). 
 
 
Table 4.10. Effect of the fertilization and biochar on soil DTPA extractable Mn, Cu and Zn 
concentration 
 
Fertilization Soil DTPA extractable 

Mn 
Soil DTPA extractable 

Cu 
Soil DTPA extractable 

Zn 
 mg kg-1 (dw) mg kg-1 (dw) mg kg-1 (dw) 
Control 5.20 2.63 a 2.04 
Fe-chelate 6.22 2.23 b 1.79 
Siderite 6.87 2.72 a 2.03 
A. retroflexus  6.45 2.62 a 2.13 
A. retroflexus + 
FeSO4 

5.99 2.43 ab 1.87 

Significance ns * ns 
Biochar (g kg-1)    
0 4.86 1.83 0.98 
50  7.46 3.23 2.97 
Significance *** *** *** 
Fert x Biochar  ns1 ns ns 

1ns, * and *** = effect not significant or significant at P < 0.05, P < 0.01 and P < 0.001, respectively. 
When a significant effect occurred, means in the same column followed by the same letter are not 
statistically different (P <0.05, SNK Test). 
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Figure 4.1. Effect of increasing rates of biochar on micronutrients retention potential 

Fe, Mn, Cu and Zn concentration in deionized water (d-H2O) was 0.022 ± 0.002, 0.016 ± 0.01, 0.0003 ± 0.0001 mg L-1 and < dl (avg. ± SE; n=5), respectively. Fe, Mn, Cu and Zn concentration in 
solution was 9.28 ± 0.036, 10.05 ± 0.0, 9.88 ± 0.0007 and 10.01 ± 0.0002  mg L-1 (avg. ± SE; n=5), respectively. ***: correlation between biochar rate and mineral concentration significant at P≤0.001. 
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Figure 4.2. Magnification (3.2x) of a biochar fragment recovered after 1-week exposure to a source of 

Fe. Likely due to redox reactions, typical rusted spots are clearly evident. The biochar surface (top 5 

nm) was then scanned by X-ray photoelectron spectroscopy (XPS). Magnification was obtained by an 

Olympus SXZ16 microscope coupled with an Olympus digital camera. 
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Figure 4.3. X-ray photoelectron spectroscopy (XPS) spectra of the relative surface atomic (%at) Fe, O and C composition of biochar fragments 

(top 5 nm). On the left, spectra of the biochar surface exposed 1-week to deionized water (d-H2O) and (right) to a Fe source in solution. The 

latter shows a relatively higher concentration of Fe and O, suggesting that biochar interacted with the metal 
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CHAPTER 5 

 

Soil leaching properties as affected by biochar and compost: a 

lysimeter experiment on nectarine trees 
 

Abstract 

The aims of this study were to assess the effect of soil-applied biochar, compost or 

their mixture on the leaching volume and chemical losses. To this end, a 2-year 

experiment on nectarine trees (Big Top/Adesoto 101) grown in lysimeters filled 

with 503 kg each of a sandy soil was carried out. Single 1-year old trees were 

planted in lysimeters and watered by microirrigation. In a complete randomized 

experimental design with 4 replicates the following soil-applied strategies were 

compared: a) unamended control (mineral source of nutrients); b) hardwood 

biochar (at a rate of 20 g fw kg-1 w w-1); c) compost (at a rate of 76.8 g fw kg-1 w 

w-1); d) hardwood biochar+compost (same rates of the previous two strategies). 

Amendments were applied at the beginning of the experiment. From April 2012 to 

March 2013, leachate was daily collected and monthly cumulated. Each month a 

subsample was analyzed for pH, electrical conductivity (EC), dissolved organic 

carbon (DOC), total dissolved nitrogen (TDN), mineral nitrogen (N), as well as for 

macro, micronutrients and heavy metals concentration. Similarly, samples of rain 

and irrigation water were monthly collected and analyzed. The same procedure was 

adopted to collect the leachate in Sep-2013. 

Compost increased leached volumes and soil water holding capacity (WHC) 

compared to unamended and biochar amended soils because of the ability of 

organic matter (OM) in retaining water, suggesting that its application may 

contribute to increase water use efficiency in croplands. Mixing compost with 

biochar reduced leaching volumes compared to compost alone while shifting up 

soil field capacity, proposing synergistic effects. Compost-treated soils 

dramatically increased DOC, TDN, mineral N and chemicals flushed down through 

leaching. A synergist effect between the two amendments was identified in the 

leaching of DOC, although the origin of the extra rate remains unknown. Ag, Be, 
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Cd, Sb, Ti and Tl were never detected in the leachate, while heavy metals (i.e. Ni, 

Pb, Cr and V) were detected in traces, although their concentration remained below 

the limits for drinking water. Independently of the strategy, the most leached 

elements were Ca, S and Na, which were also the most represented elements 

supplied to the soils by the irrigation water. Biochar sporadically reduced the 

leaching volumes compared to unamended soil and its addition increased the 

leaching of Hg, K, P, Mo, Se and Sn. However, unless for K and P, values were in 

the order of few tens of g ha-1 year-1. We provided evidences of the leachate 

composition and estimated nutrient losses which may have agronomical and 

environmental implications.  

 

Keywords: Nutrient leaching, Leachate, DOC, TDN, DON, biocompost 
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5.1 INTRODUCTION  

Leaching in soil greatly affects nutrient cycling in agriculture (Brady and Weil, 

2008) and contributes to deplete fertility of highly permeable soils (Steiner et al., 

2008). Nutrient leaching occurs when mobile ions dissolved in soil solution move 

outside the rooting zone, making them unavailable for plant uptake (Major et al., 

2009) and a potential hazard for groundwater use (Sunitha et al., 2012). Water 

percolation through the soil profile depends mainly on the soil infiltration capacity 

(hydraulic conductivity) which is associated with soil texture, minerals and organic 

matter (OM) content, water retention on the root zone and crop transpiration rate 

that are in turn related to the density and the ability of roots to absorb water. In 

addition, atmospheric precipitations (in terms of intensity, timing and amount), 

irrigation volumes, rate and chemistry of the elements in soil solution, timing and 

placement of synthetic and/or organic fertilizers significantly affect nutrient 

leaching patterns in croplands (van Es et al., 2002; Cahn et al., 1993). For instance, 

whether a nutrient in soil is under organic or inorganic form, its size and charge 

properties determine how it interacts with other particles in the soil matrix. In fact, 

positively charged ions or molecules can be retained by negatively charged clays 

and soil OM (Brady and Weil, 2008) particles. Similarly, negatively charged ions 

(e.g. Nitrate-N (NO3
--N) can be retained by positively charged compounds.  

Biochar is the carbon(C)-rich residue of biomass pyrolysis intentionally applied to 

crop lands with the purpose to sequester photosintetically fixed C, hence 

potentially mitigating climate changes (Woolf et al., 2010), as biochar in the soil 

system is thought to be stable even for thousands of years (Glaser et al., 2002). Due 

to its intrinsic properties that develop over time through surface oxidation and 

interaction with plant–soil–microbial components (Spokas et al., 2012; Downie et 

al., 2009), biochar has been proposed as a strategy to ameliorate soil properties and 

growth conditions (Spokas et al., 2012; Verheijen et al., 2010). Mechanisms that 

have been suggested to explain how biochar in soil might benefit plant growth and 

crop yield include alteration of soil chemistry (direct source of nutrients or 

improvement of nutrient efficiency), modification of the nutrient dynamics in soil 

and/or altering soil reactions by providing chemically active surfaces and shift of 

soil physical parameters that benefit root growth and/or nutrient, water retention 
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and uptake (Ippolito et al., 2012; Sohi et al., 2010; 2009; Lehmann and Joseph 

2009). It has been proved that the application of charred biomasses represents an 

effective, long-term tool for reducing the adverse impact of mineral leaching on 

surface and groundwater quality (Ding et al., 2010; Laird et al., 2010; Steiner et al., 

2008; Lehmann et al., 2003). Biochar in soil, in fact, may act as a sponge, soaking 

up different forms of OM as well as water and nutrients (Glaser et al., 2002) as 

reported by previous experiences which demonstrate the effectiveness of biochar in 

increasing soil WHC (Baronti et al., 2014) and reducing losses of many ions (at 

least in the short-term) through leaching including Ca, magnesium (Mg), phosphate 

(PO3
-), ammonium-N (NH4

+-N) and NO3
--N (Kammann et al., 2014; Ventura et al., 

2013; Laird et al., 2010; Lehmann et al., 2003). Higher nutrient retention after 

charcoal addition was observed by Glaser et al. (2002) who concluded that charcoal 

contributed to an increase in ions retention and to a decrease in the leaching of 

dissolved OM and organic nutrients in acidic tropical soils. The addition of 

biochar, in fact, slows transport of nutrients through the soil profile and therefore, 

keeps them available for uptake by plant roots for a longer period (Sun et al., 

2015). 

However, due to the complex nature and the heterogeneity of biochars, its 

predictive behavior in different soils and how to best optimize the potential useful 

characteristics of biochars are yet to be established. 

Compost is defined as the stabilized organic amendment resulting from the 

biodegradation of a wide range of organic substrates (by-products) through the 

action of various microorganisms under aerobic conditions. Its use in fruit trees 

ecosystems is progressively gaining interest as a mean to enhance and restore soil 

OM (Diacono and Montemurro, 2009) and as a source of plant available nutrients, 

including N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and 

sulphur (S) as well as a range of essential trace elements (Smith and Collins, 2007; 

Haug, 1993). As a consequence, compost can be profitably adopted as a fertilizer in 

agriculture (Baldi et al., 2010; Caballero et al., 2009) and permits to recycle 

municipal solid and agri-food industry related wastes, offering environmental 

advantages and reduction of social costs. Although agronomical benefits have been 

confirmed (Baldi et al., 2010, Hargreaves et al., 2008), concerns about the use of 
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compost in agriculture have been raised since it may increase the availability of soil 

NO3
--N that can be easily leached out from the soil profile. In addition, heavy 

metals such as lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn) as well as organic 

toxins (Giusquiani et al., 1995) can be added to soils upon low quality compost 

addition, thus potentially increasing soil and groundwater pollution through 

leaching. 

However, despite considerable research has been conducted on the fate of nutrients 

in compost-amended agricultural soils (Johnson et al., 2004), there are still 

essential lacks of knowledge in this field since compost amendment includes a high 

variability of materials. 

To date, most of the literature evaluated the effect of either soil-applied compost or 

biochar mainly on PO3
-, NH4

+-N and NO3
--N ions (Ding et al., 2010) or heavy 

metals (Wang et al., 2008), while much less is known about their effects on a wide 

range of chemicals. Fate and estimate of dissolved organic C (DOC), total 

dissolved N (TDN) and nutrients fluxed out through leaching in biochar and 

compost-amended soils is important, as off-site movement has the potential to 

impact adjacent terrestrial or aquatic ecosystems (Jacinthe et al., 2004). However, 

literature reports results often obtained from short-lived experiments (<6 months), 

frequently carried out adopting the soil-column or the suction cup approach and in 

non-temperate soils under leaching conditions in which information are still 

insufficient, with effects expected to differ from tropical soils. Even less is known 

about leaching characteristics when biochar is mixed with organic amendments, 

such as compost.  

This study was undertaken to assess the effect of soil-applied biochar or compost as 

well as their mixture on the volume and chemical properties of the leaching 

solution monthly drained from lysimeters in which a non-bearing nectarine tree 

was grown. Results were then used to estimate the losses of chemicals through 

leaching on a hectare basis.   
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5.2 MATERIALS AND METHODS 

5.2.1 Experimental conditions  

We performed a 2-year experiment (2012-13) outdoors at the experimental station 

of the University of Bologna (in Cadriano, Bologna, 44°54’ N, 11°41’ E, 36 m 

a.s.l.) on 1-year old nectarine trees (Prunus persica (L.), Batsch) of the cv. Big Top 

grafted on Adesoto (formerly Puebla de Soto 101 - Prunus insititia (L.), Bullace) 

grown in lysimeters of a volume of 0.496 m3 ea. Lysimeters were 0.112 x 0.103 x 

0.043 m (Le, L, H), internally lined with a plastic isolating film, provided with a 2-

way outlet located at the bottom (Pic. 5.1 and 5.2) and filled with 503 kg ea. of a 

sandy soil (Tab. 5.1).  

 

 

Picture 5.1. The lysimeters used in the experiment  

 

Lysimeters were arranged in a single row, spaced 50 cm between each other and N-

S oriented. At the end of March 2012, single trees were transplanted in the 

lysimeters, trained as slender spindle, covered (in summer) with a shade netting 

which allowed a max light intensity of 89.500 Lx (measured in summer at noon on 

a sunny day), watered daily (from May to September) by microirrigation (4 
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drippers per plant of 2 L h-1 ea.) to return the evapotranspiration (ETo) rate as 

estimated by a class A evaporation Pan and the specific crop coefficient (Kc) for 

nectarine, whereas weeds were manually removed. 

 

 

 

Picture 5.2. Leached soil solution was collected in tanks at the bottom of the 

lysimeters   

 

Climate of the area is classified as temperate sub-continental with cold winters, 

humid and warm summers. Throughout the experiment, irrigation volumes and 

meteorological data (daily precipitation, air temperature and relative humidity) 

were recorded by an automated weather station available at the experimental farm.  

 

5.2.2 Experimental design and treatments  

In a complete randomized experimental design with 4 replicates (single lysimeter) 

the following soil-applied amendment strategies were compared: a) unamended 

control (mineral source of nutrients); b) biochar (at a rate of 20 g fw kg-1 w w-1) 

equal to 87.4 t fw ha-1 (considering a treated area of 1 ha, soil incorporation up to 
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0.35 m depth and a specific soil weight of 1.248 t m-3); c) compost (at a rate of 76.8 

g fw kg-1 w w-1); d) biochar+compost (named biocompost from now on) (at the 

same rates of the previous two strategies). Amendments were applied once at the 

beginning of the experiment and carefully homogenised with the soil before filling 

the lysimeters. Unamended and biochar-amended soils received 41.7, 9.3 and 6.9 g 

pot-1 of N, P and K, respectively in the first season and 62.4, 12.0 and 22.9 g pot-1 

of nitrogen (N), P and K, respectively. Urea (46% N), ammonium-nitrate 

(NH4NO3) (27% N) and complexed NPK (14-25-5 + SO3 + microelements) 

commercial fertilizers were used as a source of nutrients. Mineral fertilizers were 

applied from growth resumption until the end of the vegetative season, at about 2 

weeks intervals and supplied by fertigation. Compost-based amended soils received 

the same amount of tap water in coincidence with fertigation events.      

Table 5.2 summarize physical-chemical biochar characteristics which was 

produced in a traditional charcoal kiln by a mixed feedstock of chipped hardwood 

(mostly from peach and grapevine), slowly pyrolized at approximately 550°C. 

The compost used in the experiment was obtained by the biological decomposition 

of organic municipal wastes (85%) mixed with pruning material from urban 

ornamental trees and garden management (6.5%) and agro-industrial organic 

residues (8.5%), after a 3-month aerobic stabilization. Main physical and chemical 

characteristics of the compost are summarized in table 5.3.  

 

5.2.3 Leachate recovering and sampling 

From April 2012 to March 2013, when present, leachate was daily collected from 

the tanks located under the lysimeters and the volume was measured. Leached 

solution monthly recovered from the same lysimeter was cumulated and stored at 

4°C. At the end of each month, a subsample of about 500 mL lysimeter-1 was 

collected from the cumulated volume and stored at -20°C to await analysis.     

The same procedure was then adopted for the leaching solution collected in 

September-2013, 17 months after the trial establishment. 
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5.2.4 Rain and irrigation water sampling 

If rain events occurred, three samples per month were collected and similarly, three 

samples per month of irrigation water (tap water) were collected during the 

irrigation season. Unless differently specified, samples were then analyzed as 

described for the leachate.  

 

5.2.5 Chemical Analyses 

5.2.5.1 pH and electrical conductivity 

The pH and electrical conductivity (EC) were measured under continuous stirring 

by a pH-meter (BasiC 20, Crison, Barcelona, Spain) and a conductimeter 

(CDM210 Conductivity Meter, Radiometer Analytical, Copenhagen, DK), 

respectively. Data of CE were adjusted to the temperature of  20° C through the 

conversion factors; 

 

5.2.5.2 Dissolved organic C (DOC) and total dissolved N (TDN) concentration 

DOC and TDN were determined by an elemental analyzer TOC-Vcpn-TNM1, 

(Shimadzu Corp., Kyoto, Japan). The analyzer injected 50 µL of a solution 

acidified with 2M hydrochloric acid (HCl), in order to eliminate inorganic C, into a 

combustion furnace held at 725 °C after which the CO2 produced is detected by an 

infra-red gas analyzer and the mono-nitrogen oxides (NOx) via a 

chemiluminescence detector. The instrumental detection limit (DL) for DOC and 

TDN was 50 µg L-1. 

 

5.2.5.3 Soluble  NO3
--N and NH4

+-N concentration 

NO3
--N and NH4

+-N concentration was determined by an autoanalyser (Auto 

Analyzer AA-3; Bran+Luebbe, Norderstadt, Germany). NH4
+-N was measured 

colorimetrically by the salicylate method. Briefly, the liquid sample reacts with 

salicylate and dichloroisocyanuric acid (with nitroprusside as a catalyst) to produce 

a blue compound measured at 660 nm (ISO/DIS 11372), while NO3
--N was first 

reduced to nitric oxide (NO2) by hydrazine in alkaline solution with Cu catalyst, 

followed by the reaction with sulphanilamide and N-1-napthylethylenediamine 
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dihydrochloride (NEED) to produce a pink compound measured at 550 nm 

(ISO/DIS 13359). 

 

5.2.5.4 Dissolved inorganic N (DIN) and dissolved organic N (DON)  

DIN was calculated as the sum of the N mineral forms (NO3
--N and NH4

+-N) while 

DON represents the difference between TDN and DIN, as described by Christou et 

al., 2005.  

 

5.2.5.5 Elemental concentration 

Ag (Silver), Al (Aluminum), As (Arsenic), B (Boron), Ba (Barium), Be 

(Beryllium), Ca, Cd, Co (Cobalt), Cr (Chromium), Cu, Fe (Iron), Hg (Mercury), K, 

Li (Litium), Mg, Mn (Manganese), Mo (Molibdenum), Na (Sodium), Ni (Nickel), 

P, Pb, S, Sb (Antimony), Se (Selenium), Si (Silicon), Sn (Tin), Sr (Strontium), Ti 

(Titanium), Tl (Tallium), V (Vanadium) and Zn concentrations of liquid samples 

were determined by Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES), sequential and simultaneous (Ametek Spectro Arcos EOP, Kleve, 

Germany). 

 

5.3 STATISTICAL ANALYSES 

Values of DOC, TDN, DON, DIN, NO3
--N, NH4

+-N and elemental concentration 

were referred to a weight of 4.368 t of soil which represents the soil volume of 1 ha 

considering 0.35 m of soil depth and a specific weight of 1.248 t m-3. 

Data were analyzed according to repeated measures analysis of variance (ANOVA) 

with 4 replicates using PROC MIXED (Littell et al., 1998) with a compound 

symmetry covariance structure. Effect of the amendments in September 2013 was 

analyzed as in a complete randomized block design with 4 replicates. Homogeneity 

of variance was checked using Levene’s test before analysis. When analysis of 

variance showed a statistical effect, means were separated by using Tukey's HSD 

Test (at P≤0.05). Statistical analyses were performed by using SAS software (SAS 

Institute Inc., Cary, NC, USA). 
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5.4 RESULTS 

5.4.1 Climate and irrigation conditions 

Average temperatures fluctuated from 2.3°C in December 12 to 26.5°C in July 13 

(Fig. 5.1), while atmospheric relative humidity ranged between 55.6 and 78.9 % 

(data not shown). The annual precipitation (April 12/March 13) was 854.8 mm 

(Fig. 5.1), with few days of snow recorded in December 12 and March 13. Unless 

in summer, when scarce precipitations were recorded (20.4 mm from June to 

August), rainy days were uniformly distributed throughout the year with 87 days of 

rain (>1.0 mm) and only in 15% of the events, precipitations were higher than 20 

mm day-1. The most intense precipitation was recorded on February 2nd, 2013 (37 

mm in 24 h) whereas the wettest month was September 12 (135 mm). In September 

13, total precipitations were 30.2 mm (air temperature was in average 20.4 °C) with 

3 rainy (>1.0 mm) events (data not shown).   

Irrigation was provided from April through September 12 with a total volume of 

971 mm, mainly supplied from Jun through August (Fig. 5.1). In September 13, 

58.6 mm were supplied trough irrigation. 

 

5.4.2 Leached volumes 

High volumes of leachate were collected in winter, with almost 90 mm recorded in 

February (Fig. 5.2). The lowest volumes were recovered in summer, particularly in 

August, whit intermediate values in spring and autumn (Fig. 5.2). No leachate was 

collected in October (Fig. 5.1). With the exception of September 12, January, 

February and March, treatments significantly affected the amount of solution 

monthly recovered (Fig. 5.2). The highest volumes were collected from soils 

amended with compost (either alone or mixed with biochar), without significant 

differences induced by biochar (Fig. 5.2). Leaching volumes were significantly 

increased by the incorporation of compost in 3 and 7 months compared to 

unamended and biochar-treated soils, respectively, while only in November a 

significant higher volume was recorded in biocompost in comparison with the 

control (Fig. 5. 2). Unless when treatments did not affect leaching, biochar alone 

always reduced significantly the leached volumes compared to biocompost and, in 

three months (May, June and December), also to untreated control (Fig. 5.2). 
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However, only soil amended with biochar significantly reduced the cumulative 

leached volume collected in 1 year (April 12/March13) compared with compost 

alone by 68.4 mm, while intermediate amounts were recorded for unamended 

control and biocompost (Tab. 5.5). In September 13, after 17 months from trial 

establishment, soils amended with biochar (alone or in combination with compost), 

significantly decreased the leached volumes compared with compost alone (Tab. 

5.5). Nevertheless, amended soils were not significantly different from unamended 

control (Tab. 5.5).   

 

5.4.3 pH and EC  

The pH of the leachate was sporadically affected by the amendments (Tab. 5.6 and 

5.8). Compared to other treatments, biochar significantly increased the pH of the 

leaching solution in March and September 2013 and, in the latter month, a similar 

result was induced by biocompost (Tab. 5.6 and 5.8). However, independently of 

the treatment, pH remained relatively constant and values ranged between 7.28 and 

8.30, comparable with that of the irrigation water (7.59 ± 0.12), but higher than 

rainfall (6.42 ± 0.17).  

Overall, the addition of compost (alone or in combination with biochar) 

significantly increased the EC of the leachate by 3-folds (Tab. 5.6), while similar 

values were observed between biochar and unamended control (Tab. 5.6 and 5.8). 

Compared to compost alone, the EC of the solution was increased by biocompost 

in May, February and March (Tab. 5.6). EC values were meaningfully higher in 

average by 3 times than irrigation and rainfall water. 

 

5.4.4 Dissolved organic C and N forms  

Unlike in August, when no differences were induced by treatments (Tab. 5.7), the 

addition of compost (either alone or mixed with biochar) significantly increased the 

overall amount of DOC and N forms collected during the first year of experiment 

compared to other treatments (Tab. 5.7), whereas values between soil-applied 

biochar and untreated soils were always similar (Tab. 5.7), even after 17 months of 

experiment (Tab. 5.8). When compost and biochar were mixed together, a 

synergism in the amount of leached DOC, TDN and DIN during winter (from 
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January to March) was observed (Tab. 5.7). The amount of NH4
+-N in the leachate 

was increased in the soils fertilized with N mineral sources, but only in September 

12 (Tab. 5.7). 

The cumulative (April 12/March 13) amount of DOC, TDN and DON found in the 

leachate collected from soils amended with compost was significantly increased 

(Fig. 5.3). In particular, biocompost promoted the highest amount of leached TDN 

(Fig. 5.3), while biochar alone did not differ from the untreated control (Fig. 5.3). 

Compost increased the cumulative amount of NH4
+-N compared to biochar (Fig. 

5.3). Values of DOC, TDN and DON were increased in September 13 by the 

application of compost alone compared to other treatments (Tab. 5.8).       

 

5.4.5 Chemicals in leaching solution 

Ag, Be, Cd, Sb, Ti and Tl concentrations in the leachate were always below the 

instrumental DL (Tab. 5.9). In  addition, As, Co, Cr, Hg, Pb, Se, Sn, and V were 

not detected in the leachate of September 13 (data not shown) and Al, As, Co, Hg, 

Pb, Sn and V were occasionally detected in traces (data not shown). Independently 

of the amendment, the most abundant chemicals leached in 1 year, as well as in 

September 13, were Ca (614 kg ha-1 year-1), S (359 kg ha-1 year-1), and Na (224 kg 

ha-1 year-1) (Tab. 5.9), while Sn and Cr accounted for the lowest values, equal to 

less than 2 g ha-1 year-1 (Tab. 5.9). Cumulative leached amount exceeding 0.8 kg ha-

1 year-1 were recorded for Mg, Si, K, Sr, B and P (Tab. 5.9), while values for the 

other elements were less than 0.4 kg ha-1 year-1 (Tab. 5.9). Unlike for Ca, S and Zn, 

the addition of compost significantly increased (mostly without interaction with 

biochar) the leached cumulative amount of Al, B, Ba, Cr, Cu, Fe, K, Li, Mg, Mo, 

Na, Ni and Sr compared with biochar alone and untreated control (Tab. 5.9). A 

synergistic effect between the two amendments was observed for Co, K, Li, P, Pb, 

Se and V (Tab. 5.9). Biochar significantly increased the amount of Hg and Sn in 

the leaching solution (Tab. 5.9) and decreased, only when supplied alone, the 

amount of Co and Fe. When compared to the unamended soil, biochar promoted 

the leaching of K, Mo, P, Se and Sn, whereas statistically comparable results were 

recorded for the other elements (Tab. 5.9). Similar trends were also observed for 

the leachate collected in September 13 (data not shown). 
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5.5 DISCUSSION  

5.5.1 Volume of the leaching solution 

The incorporation of the amendments into the soil significantly affected soil 

leaching properties in terms of volume and chemical characteristics. However, 

treatments did not influence the leaching volume in September 12 and during 

winter (January, February and March), when highest values were recorded (>50 

mm month-1). When leached volumes monthly recovered were higher than this 

value, treatments did not induce differences. This response is likely due to frequent, 

time limited and intense atmospheric events (heavy rain and snow) concentrated in 

few days, associated with low temperatures and high relative humidity (UR%) with 

negligible transpiration rates that could not have reduced water percolation through 

the soil profile with these conditions. Due to these circumstances, the soil was often 

water-saturated, thereby the exceeding volumes were leached down without 

interference of the treatment.  

In the other months, the highest volumes of leachate were constantly recorded from 

the soils treated with compost and biocompost. This seems related to the effect of 

compost on the soil WHC, which in turn affected the soil field capacity (FC). The 

latter is mainly controlled by pore size distribution in soil, since only pores less 

than 50 µm in diameter are able to retain water by capillary force. Many studies 

demonstrate the beneficial impact of the organic amendments (including compost) 

on the soil WHC and FC (Evanylo et al., 2008; Liu et al., 2007; Tejada et al., 2006; 

Carter et al., 2004). OM can take up and firmly retain water up to 20 times its own 

weight (Reicosky, 2005). Hudson (1994) showed an increase equal to 3.7% in the 

available soil WHC per increasing unit of soil OM.  

In our conditions, the water retained in soil amended with compost lasted longer 

than in other treatments and, since the irrigation rate and timing were not different 

among treatments, the additional supply of water through irrigation (or from 

atmospheric precipitations) promoted higher leaching volumes. This means that the 

soil treated with compost was frequently at FC or above it as also confirmed by the 

soil water content (SWC), which resulted always increased in the compost-

amended soil (data not shown), confirming that less irrigation volumes or extended 

intervals between two consecutive irrigations could have been adopted, with no 
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reduction of water availability for crop growth. Based on these observations, the 

incorporation of compost in croplands can be indicated as a valuable strategy to 

save water in agriculture.   

Biochar significantly decreased the volume of the leachate compared to unamended 

soil in three months, although it was not enough to reduce the cumulated (1-year) 

volume. Similar volumes with the unamended soil were then recorded in 

September 13 (after 17 months from biochar incorporation). However, the addition 

of biochar reduced the leached volume by 37.6 mm year-1, equal to near the 10% of 

the total volume leached by the untreated soil. Altering soil hydrology, including 

changes in infiltration and drainage rates, shift in the amount of water stored in 

soils, and shift in soil hydrophobicity, biochar has been suggested to provide a 

long-term modification in water cycling and ecosystem processes mediated by 

water, thereby changes on soil WHC upon biochar addition are expected (Sohi et 

al., 2010). Although results are sometimes conflicting (Abel et al., 2013; Verheijen 

et al. 2010), most of the studies on soil-biochar mixtures have shown an increase in 

soil WHC up to 30% (Lei and Zhang, 2013; Basso et al., 2013; Novak et al., 2012) 

with positive implications in plant response (Kookana et al., 2011; Atkinson et al., 

2010; Sohi et al., 2010) and plant water use efficiency (Baronti et al., 2014; 

Downie et al., 2009). The beneficial influence of biochar on soil WHC has been 

mainly linked to the increased surface area and to its porous structure which can 

absorb and retain water (Verheijen et al., 2010; Downie et al., 2009). Nevertheless, 

a further explanation could be due to biochar induced changes in the distribution 

and connectivity of pores in the soil environment. In fact, a large percentage of the 

biochar pores are smaller than  2 x 10-3 µm (Tseng and Tseng, 2006), contributing 

to reduce the water mobility through the soil since water moves better in pores in 

the order of a few tens of micrometers in size (e.g. 30 µm) (Brady and Weil, 2008). 

Once incorporated, biochar can modify soil porosity, thereby alter percolation and 

flow patterns (Major et al., 2009). 

Biocompost reduced the leached volume recorded in September 13 compared to 

compost alone confirming the trend observed during the first years of investigation, 

suggesting a synergism between the two amendments. Furthermore, the soil 

amended with biocompost showed frequently a higher SWC, even significantly 
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greater than compost-treated soil (data not shown), suggesting an additive effect of 

biochar with compost, while maintaining comparable or reduced leaching volumes. 

We propose that compost and biochar, acting through different mechanisms, led to 

an additive effect in the SWC and, as a result, the soil FC shifted up. This 

synergism suggests that mixing biochar and compost represents a more effective 

agronomical strategy to increase the SWC than applying the two amendments 

separately.   

 

5.5.2 Chemical properties of the leachate  

The pH of the leachate remained unchanged, with few increase induced by the 

presence of biochar possibly related due to the alkaline nature (pH 9.8) of the 

charred biomass used in this experiment. The EC of the leachate was increased by 

compost and biocompost as a response of the high concentration of easily-soluble 

salts supplied with compost and values showed a gradual decline over 4 

consecutive months after its incorporation (April 12), when the highest measures 

were recorded. After the initial 4-month period, EC values fluctuated between 0.55 

and 2.60 mS cm-1. Independently of the treatment, the lowest EC values were 

recorded in winter, likely as a consequence of a reduced soil mineralization rate, a 

lack of inorganic fertilizer inputs (limited to the unamended and biochar treated 

soils) and a dilution effect induced by the highest leached volumes, as mentioned 

above. The addition of biochar to soils has been suggested to increase the EC of 

leachate, because of the loss of salts (e.g. Na and K) from the biochar-soil matrix 

(Lehmann et al., 2003; Novak et al., 2009). However, in our conditions we did not 

observe such effect suggesting that this parameter is soil-biochar dependent. A 

significant increase in the EC of the leachate from biocompost was recorded in 3 

months, compared to compost alone, suggesting a positive interaction between the 

two amendments. Since the EC of the leachate has been indicated as a possible 

index to evaluate the risk of groundwater pollution by dissolved ions (Ding et al., 

2010), the interaction between compost and biochar should be further investigated.  

 
5.5.3 DOC, TDN and N forms 

In our experiment, the amount of chemical losses was estimated considering the 

concentration and the leached volume monthly recovered. Then, data were 



Chapter 5 - Soil leaching properties as affected by biochar and compost: a 

lysimeter experiment on nectarine trees 

 

125 

 

expressed on a hectare basis, thereby results are influenced either by the absolute 

concentration and the volume. Furthermore, it must be mentioned that calculations 

here reported considered a soil volume of 1 ha with 0.35 m depth as like the entire 

surface would have received the amendments distributed uniformly. However, in 

field conditions, the amended area is often limited to a 2-m width strip along the 

tree rows (e.g. in a peach orchard whit a frame of 5 m x 3 m, only 2/5 of the orchard 

surface is amended), thus our values could be overestimated if compared with 

traditional agronomic techniques.  

Nectarine trees were grown in the lysimeters, hence plants may have affected 

leaching properties through uptake and/or releasing of organic compounds (root 

turnover and exudates). However, because plants were non-bearing (1-year old) 

and since at the end of the experiment plant biomass organs were similar among 

treatments (data not shown), we could assume that the influence of the plants was 

of minor importance and uniformly distributed among treatments.   

Since the beginning of the experiment, relatively high amounts of DOC were 

recovered in the leachate. DOC fluctuated throughout the investigation period 

without a regular trend, although values were correlated with leached volumes. 

This response could be partially related to the soil type, since in sandy soil, as it 

was in our experiment (88% sand), mineralization is generally higher than in clay 

soils (Bernal et al., 1999). It is well known that depletion of degradable portion of 

soil C-compounds occurs faster with warmer temperatures while it accumulates 

during winter (Marschner and Kalbitz, 2003). As a consequence, it could be 

reasonable to consider that higher values of DOC flushed down should be observed 

in summer. Furthermore, it is reported that DOC in the leachate is highest in 

summer due to the contribution of root exudates and microbial metabolites 

(Marschner and Kalbitz, 2003; Kalbitz et al., 2000). We observed an opposite 

trend, since despite a lower concentration, the highest leached volumes were 

recorded in winter which in turn led to higher loss of DOC in autumn and winter 

than in spring and summer seasons.  

Compost, either with or without biochar, meaningfully increased the leached 

amount of DOC and TDN monthly recovered in the percolated solution and, to a 

less extent, also the N forms compared to the other treatments. This trend was then 
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reflected on the cumulative amount of leached DOC and TDN, which increased in 

average by 4 and 2-fold, respectively compared to non-compost amended soils. 

However, because volumes and concentration of DOC and TDN of the leachate 

were always significantly increased in soils that received compost (alone or with 

biochar), possible dilution effects cannot change the meaning of the results. 

The effect induced by compost was expected as it contains DOC (as well as 

complex mixture of both N inorganic and organic nature) as solid components in a 

range from labile to resistant to decomposition (Kaplan et al., 1995). Considerable 

increase in soil DOC has been reported after application of composts and/or 

organic amendments (e.g. manure) with immediate effects attributed to the 

dissolved organic matter of composts (Gregorich et al., 1998; Gigliotti et al., 1997). 

An increase in the DOC flux in the leachate was expected from biochar enriched 

soil, since an initial mineralization of pyrolized biomasses immediately after their 

incorporation in soils may occur (Barnes et al., 2014; Major et al., 2009; Cheng et 

al., 2008; 2006). Furthermore, some evidences indicate that biochar might 

stimulate the rates of loss of non-biochar C in soils (Wardle et al., 2008; 

Pietikäinen et al., 2000;) proposing either possible priming effect by decomposition 

of labile soil C (glucose) (Hamer et al., 2004) or sorption by biochar of compounds 

(i.e. phenols) which inhibit microbial growth (Gundale and DeLuca, 2007) as 

possible mechanisms. In our experiment, the DOC flux from biochar treated soil 

did not maintain a specific trend with time, suggesting that the easily leachable 

biochar-C fraction was negligible, and while significant amount of C-containing 

compounds were provided with biochar, we did not observe peaks in the leached 

DOC flux, suggesting that the release of DOC from biochar amended soils depends 

on the interaction between biochar and soil type. This response cannot be explained 

by the slightly reduced leached volumes compared to the unamended soil, since its 

concentration in the recovered solution was always comparable. However, biochar 

is also capable of sorbing soil C (Barnes et al., 2014), hence we cannot exclude that 

part of the DOC recovered in the leachate was biochar-derived. On the other hand, 

it is also supposable that a biochar-C fraction followed different fates (e.g. CO2 

flux, microbial biomass stimulation).  
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Interestingly, we observed a synergic effect between the two amendments in the 

amount of leached DOC and TDN, although limited in winter. The origin of the 

extra rate of DOC remain unclear since it could derive from an higher 

mineralization of compost induced by the presence of biochar or from an higher 

mineralization of biochar induced by compost or from the native soil OM (priming 

effect). A combination, at different rates, of these sources, can also be conceivable. 

Results from this study indicate that the total C concentration of the biochar 

fragments recovered at the end of the experiment from the soil treated with 

biocompost was similar to that of the fragments from biochar alone amended soil 

(data not shown), suggesting that a similar degradation process at the expense of 

the biochar particles occurred. Furthermore, because both DOC and TDN fluxes 

were increased we assume that an additional mineralization of compost may have 

occurred, since soil was N-poor and unlikely N from biochar would have increased 

TDN in the leachate. The significantly reduced amount of leached DOC observed 

after 17 months from biocompost compared with compost alone can be related to 

the reduced leached volume recovered in September 3. 

Most of the TDN recovered in the leachate was inorganic and mainly as a NO3
--N, 

while the NH4
+-N fraction was often negligible. As expected, compost increased 

the amount of the N-forms in the leachate and a synergism with biochar emerged 

on the cumulative amount of TDN lost through leaching, mainly ascribed to the 

amount of NO3
--N compared to the other forms. The concentration of the mineral 

N in the leachate (mainly NO3
--N) collected from compost amended soils, often 

exceeded 50 mg L-1 (data not shown), although only during the first 6 months 

following its distribution, indicating that a rapid release of N from the compost 

used in the experiment occurred. After 17 months, the concentration of mineral N 

forms in the leachate was not affected by treatments, indicating that the effect of 

compost as a source of N was depleted.    

In contrast with others studies, we did not observe any effect induced by biochar on 

the losses of DIN trough leaching. Biochar from bamboo applied at 0.5 % (w w-1) 

showed a reduced NH4
+-N concentration (supplied as ammonium chloride (NH4Cl) 

in the leachate since it was retained in soil for a longer period time, suggesting that 

biochar acted as a nutrient-retaining additive and, therefore, could be used to 
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increase the efficiency of N fertilizers (Ding et al., 2010). Hardwood derived 

biochar was found to effectively reduce NO3
--N leaching losses when applied at 

rates of 5 and 10 g kg-1 using swine manure (5 g kg-1) as a source of N (Laird et al., 

2010). Similarly, Ventura et al. (2013), showed a significant reduction in the 

leaching of NO3
--N in an apple orchard fertilized with mineral N source. Our 

findings show that the effect of biochar on nutrient leaching in soil may vary with 

biochar and nutrient.  

 

5.5.4 Macro and microelements 

Sb and heavy metals were either never detected (i.e. Ag, Be, Cd, Ti and Tl) or 

detected in traces (i.e. Al, As, Co, Hg, Pb, Sn and V) in the leachate, without a 

clear trend or a treatment-induced effect. Nevertheless, the concentration of such 

elements monthly measured in the leachate was below the limits suggested by the 

Maximum Contaminant Level Goal (MCLG) for drinking water (US EPA, 2015).  

Independently of the strategy, the most leached elements (cumulative) were Ca, S 

and Na. The same elements were the most supplied to the soil by the irrigation 

water, accounting for 666, 245 and 177 kg ha-1 year-1, respectively. Similarly, 

significant amounts of Mg (164 kg ha-1 year-1), Si (40 kg ha-1 year-1), K (73 kg ha-1 

year-1) and TDN (23 kg ha-1 year-1) were supplied to the soil, considering the 

contribution from both irrigation and rainwater. According to the water quality and 

mineral concentration, such values should be considered in the definition of the 

fertilization management, since for some elements, the amount supplied with 

irrigation and rain water may fulfill the yearly plant requirements. 

The main effect in the nutrient losses through leaching was induced as a 

consequence of the incorporation of compost into the soil, either with or without 

biochar, which significantly increased the amount of most of the elements 

recovered in the leachate compared to other treatments. This is a response of both 

the increased leached volumes and the concentration in the liquid flushed down 

from soils amended with compost, while less evident were differences between 

biochar and untreated control. In most cases the addition of compost to the soil 

increased the cumulated amount of chemicals from 2 to 5-fold with a peak of 15-

fold in the case of Cr. The relatively high concentration of chemicals in the 
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leachate of compost-treated soils is the results of the mineralization of the compost-

matrix, as it releases elements under soluble forms which can be either uptake by 

plants or easily leached. Furthermore, the increasing in DOC concentration in soil 

due to the application of organic amendments, such as composts, has been 

indicated to influence movement of chemicals (e.g. nutrients and heavy metals) in 

soil (Wright et al., 2005), thus increasing the risk of leaching of metals and 

nutrients (Ashworth and Alloway, 2004), since as ions complexed with dissolved 

organic matter can readily move through soil (Kaschl et al., 2002). 

The cumulated amount of Hg, K, Mo, P, Se and Sn in the leachate was increased 

by biochar compared with control, representing the soluble chemicals most 

released by biochar likely due of the biochar nature. Dissolution first and 

consequent leaching of soluble salts as well as organic compounds of the biochar 

are described among the first reactions occurring once biochar is incorporated into 

the soil, especially in irrigated soils or if a rain event occurs (Shinogi et al. 2003; 

Major et al. 2009). Lehmann et al. (2003) reported a much abundant content other 

than K, also of Ca and Mg in the leachate from biochar while Novak et al. (2009) 

reported an increase of K and Na concentration but a decrease of Ca, P, Mn, and Zn 

in the leachate from biochar indicating that the leachate composition is biochar-

type dependent. Due to the dissolution of soluble salts from biochar, an increase in 

the pH and EC of the leachate was expected as also indicated by Joseph et al. 

(2010) which did not happen in our conditions. A synergic effect between biochar 

and compost led to an increase in the leached amount of K, Li, Se and Sn, while 

biochar alone reduced the losses of Co and Fe, although the latter differences are of 

few grams per hectare per year.     
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5.6 CONCLUSIONS 

Our results suggest that the amendment with compost may significantly contribute 

to increase water use efficiency (either reducing irrigation volumes or delaying the 

interval between two consecutive irrigation events), while assuring adequate SWC 

to plants. Mixing compost with biochar seems even more effective since soil FC 

was shifted up, suggesting synergic effects induced by the combination of the two 

amendments. However, compost-based amended soils increased losses of DOC, 

TDN and mineral N forms through leaching with an additive effect between 

biochar and compost measured for DOC, although its origin remain unknown. This 

may have short-term adverse ecological implications (faster C losses in the 

environment), even though in the long term the potential to sequester C in soil by 

biocompost could even result enhanced compared to the mere addition of the 

amendments. However, measure of the C losses via leaching provided with this 

study may contribute to estimate the C sequestration potential of such strategies. 

Nevertheless, in field conditions, we recommend to reduce the application rates of 

compost compared to this study or to split the yearly amount in 2-3 applications, 

starting few weeks earlier in relation to the highest plant N requirements in order to 

avoid excessive N losses. On the other hand, since no heavy detrimental effects 

were induced by biochar, application rates higher 20 g kg-1 can be supposed.  

Irrigation water supplied significant amount of minerals in particular Ca, S and Na 

which reflected the order of the most abundant elements lost through leaching (666, 

245 and 177 kg ha-1 year-1, respectively). Significant amounts of Mg (164 kg ha-1 

year-1), Si (40 kg ha-1 year-1), K (73 kg ha-1 year-1) and TDN (23 kg ha-1 year-1) 

were supplied to the soil considering the contribution from irrigation and rainwater. 

For some elements, the amount supplied with irrigation and rain water fulfills the 

yearly plant requirements. 

Despite relatively high amount of minerals were lost through leaching when soil 

was amended with compost, we proved that biochar and compost of high quality 

and even their mixture, can be adopted as a sustainable agronomical strategy in 

terms of potential sources of heavy metals implied in groundwater pollution. 

Biochar alone increased leaching of Hg, K, P, Mo, Se and Sn but, unless for K and 

P, values were in the order of few tens of g ha-1 year-1.   
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Table 5.1. Soil physical and chemical characteristics 
 

Parameter Method1 Unit Value 
Sand (2-0.05 mm) Bouyoucos g kg-1 880 
Silt (0.05-0.002 mm)          Bouyoucos g kg-1 90 
Clay (<0.002 mm) Bouyoucos g kg-1 30 
Organic Matter Walkley-Black g kg-1 5.5 
Total C  g kg-1 3.19 
C/N ratio    7.78 
pH (in water)   8.07 
Total carbonate (CaCO3) De Astis g kg-1 190 
Active lime (CaCO3) Drouineau g kg-1 1.1 
Cation Exchange 
Capacity (CEC) 

Barium Chloride meq 100 g-1 10.65 

S.A.R. index   0.26 
Chlorotic power index    71 
Electrical 
conductivity 

 mS cm-1 0.164 

Total N  Kjeldhal g kg-1 0.41 
Chloride water soluble  mg kg-1 14 
P exchangeable2   Olsen mg kg-1 26 
P2O5 exchangeable2  mg kg-1 60 
K exchangeable3   Barium Chloride  mg kg-1 87 
K2O exchangeable3    mg kg-1 104 
K water soluble    mg kg-1 7.4 
Ca exchangeable3  Barium Chloride mg kg-1 1914 
Ca water soluble  mg kg-1 71.9 
Mg exchangeable3 Barium Chloride mg kg-1 79 
Ma water soluble  mg kg-1 4.8 
Na exchangeable3 Barium Chloride mg kg-1 53 
Na water soluble  mg kg-1 8.3 
Fe exchangeable3 DTPA    mg kg-1 12.4 
Mn exchangeable3 DTPA mg kg-1 6.2 
Cu exchangeable3 DTPA mg kg-1 1.49 
Zn exchangeable3   DTPA mg kg-1 0.76 
B exchangeable2 hot water  mg kg-1 0.32 

1Analisys were performed according to National Official Methods (D.M. 13/09/1999 G.U. N, 248 of 
21/10/1999).  
2Determined spectrophotometrically  
3Determined by AAS (Atomic Absorption Spectrophotometry) 
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Table 5.2. Biochar physical and chemical characteristics 

Parameter Unit Value 

Physical properties   

Moisture %1 13.8 
Bulk density g cm-3 0.43±0.04 
Hydrophobicity  Slightly hydrophobic 
Total porosity  mm3 g-1 2722 
Transmission pores mm3 g-1 318 
Storage pores mm3 g-1 1997 
Residuals pores mm3 g-1 406 
Max water absorption g g-1 of d.m. 4.53 
Skeletal density (SD)2 g cm-3 1.86±0.04 
Envelope density (ED)3 g cm-3 0.2459±0.0056 
Porosity (ED/SD) % 0.863±0.00574 
Surface area1 (BET Brunauer–Emmett–
Teller method)  

m2 g-1 410±6 

Particle size distribution1 
50-20 
20-10 
10-8 
8-4 
4-2 
2-1 
<1 

mm g-1 
% 
% 
% 
% 
% 
% 
% 

 
4.45 
12.1 
13.1 
10.36 
19.85 
24.2 
15.94 

Chemical properties   

pH - 9.8 
CEC cmolc kg-1 101 
Carbon1 (C) g kg-1 778.0 
Total nitrogen (N) g kg-1 9.1 
C/N - 85.49 
Aluminum (Al) mg kg-1 268 
Arsenic (As) mg kg-1 0.005 
Beryllium (Be) mg kg-1 0.001 
Cadmium (Cd) mg kg-1 0.001 
Calcium (Ca)  g kg-1 25.0 
Chrome (Cr) mg kg-1 0.002 
Cobalt (Co) mg kg-1 0.002 
Copper (Cu)  mg kg-1 97 
Iron (Fe)  mg kg-1 333 
Magnesium (Mg)  g kg-1 28.7 
Manganese (Mn) mg kg-1 84 
Molybdenum (Mo) mg kg-1 2 
Phosphorus (P)  g kg-1 23.3 
Potassium (K)  g kg-1 13.9 
Sodium (Na) g kg-1 11.9 
Sulphur (S)  mg kg-1 481 
Zinc (Zn)  mg kg-1 104 
1data obtained from Baronti et al. (2014) (with permission). 2The skeletal density is the sample mass divided by 
sample volume occupied by a solid sample, including any pores not accessible to the helium gas. 3The envelope 
density is defined as the sample mass divided by the total sample volume that is measured if an “envelope” would 
be placed around each individual particle. 
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             Table 5.3. Main physical and chemical compost parameters 
 

Parameter  Unit Value 

Humidity % 47.9 

pH (in water)   7.5 

Specific conductivity dS cm-1 3.52 

Salinity meq 100 g-1  84.5 

Plastic materials < 5 mm % d.w. <0.01 

Plastic materials > 5 mm % d.w. <0.01 

Other inerts < 5 mm % d.w. <0.01 

Other inerts > 5 mm % d.w. 0.33 

Salmonella 1MPN g-1 none 

E. coli 2CFU g-1 <25 

Organic matter  g kg-1 (d.w.) 543.1 

Organic Carbon (C) g kg-1(d.w.) 386 

Humic and Fulvic C g kg-1(d.w.) 141 

Total nitrogen (N) g kg-1(d.w.) 22.7 

Organic N % of total N  87.2 

C/N  17.0 

Chrome hexavalent (Cr) mg kg-1 <0.5 

Cadmium (Cd) mg kg-1 <0.5 

Sodium (Na) mg kg-1 3385.3 

Lead (Pb) mg kg-1 31.1 

Copper (Cu) mg kg-1 87.1 

Zinc (Zn) mg kg-1 189.8 

Mercury (Hg) mg kg-1 <0.5 

Nickel (Ni) mg kg-1 15 
                          1most probable number 
                           2colony-forming unit   
                  Source: Nuova Geovis, Bologna, Italy, (2012) – Analyses report N. 11.4235 
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Table  5.4. Chemical elemental concentration (µg L-1) of the rain and irrigation water (mean ±SE) 
 

Rain Al B Ba Ca Cu K Li Mg Mn Na S Si Sr Zn 
Mean 24.7 5.8 4.0 3144.6 21.4 1036.2 3.2 432.4 2.3 4084.0 873.8 77.2 16.0 17.0 
± SE  18.1 4.0 1.4 1305.9 7.4 109.0 0.3 155.7 0.8 1415.3 184.7 25.3 6.8 2.7 

Ag, As, Be, Cd, Co, Cr, Fe, Hg, Mo, Ni, P, Pb, Sb, Se, Sn, Ti, Tl, and V concentration in the rainwater was below the instrumental detection limit (DL) 
1.80 mg C (DOC) L-1 ± 0.19; 0.87 mg N (TDN) L-1 ± 0.19; 1.083 mg NO3

--N  L-1 ± 0.193 and 1.037 mg NH4
+-N  L-1 ± 0.176;  

EC and pH (mean ±SE) was 27.7 ± 3.34 µS cm-1 and 6.42 ± 0.17, respectively; 
 
Irrigation B Ba Ca Cu Fe K Li Mg Mn Na Ni P Pb S Se Si Sr Zn 

Mean 120.3 68.8 79000 3.3 6.8 7600 21.4 18600 2.6 21500 8.3 25 2.8 29000 24.1 4600 642.9 18.8 
± SE  4.1 14.7 12800 0.7 2.3 3000 1.9 3200 0.6 2100 5.2 5.3 2.7 3100 3.2 1900 257.9 5.8 

Ag, Al, As, Be, Cd, Co, Cr, Hg, Mo, Sb, Sn, Ti, Tl, and V concentration in the rainwater was below the instrumental detection limit (DL). 
4.77 mg C (DOC) L-1 ± 2.44; 2.67 mg N (TDN) L-1 ± 0.54; 1.037 mg NO3

--N  L-1 ± 0.262 and 0.160 mg NH4
+-N  L-1 ± 0111. 

EC and pH (mean ±SE) was 482.7 ± 6.06 µS cm-1 and 7.59 ± 0.12, respectively.  
 
 
Table 5.5. Effect of soil-applied Biochar and Compost on the cumulative leached volume recorded in 1 year (April 12  - March 13) and in September 13 
 
Treatment Cumulative leached volume  Leached volume  
 mm lysimiter-1 (April 12/March 13) mm lysimiter-1 (Sep-13) 
Control 392.6ab 13.4ab 
Biochar 355.2b  10.7b 
Compost 421.4a 22.3a 
Biocompost 406.3ab 7.4b 
Significance * * 
*: effect of the treatment significant at P ≤ 0.05. In the same column, means followed by the same letter are not statistically different (P≤0.05, Tukey's HSD Test) 
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Table 5.6. Effect of soil-applied Biochar and Compost on electrical conductivity (EC) (mS cm-1) and pH of the leachate throughout the experiment 
 
Treatment Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Nov-12 Dic-12 Jan-13 Feb-13 Mar-13 
 pH EC pH EC pH EC pH EC pH EC pH EC pH EC pH EC pH EC pH EC pH EC 

Control 7.49 0.82b 7.45 0.84c 7.67 0.81b 7.96 0.80b 7.82 1.44 7.73 2.21 7.94 2.28 7.69 1.93b 7.84 0.87b 8.04 0.40c 7.86b 0.38c 

Biochar 7.28 0.91b 7.77 0.81c 7.38 0.79b 8.17 0.78b 7.65 2.12 7.78 2.26 7.90 2.15 7.80 1.67b 7.80 0.94b 7.98 0.47c 8.01a 0.40c 

Compost 7.41 3.41a 7.79 2.07b 7.85 1.43a 8.06 1.06a 7.97 1.39 7.71 2.14 7.97 2.35 7.61 2.31a 7.61 1.10a 7.93 0.62b 7.85b 0.55b 

Biocompost 7.61 3.73a 7.80 2.37a 7.80 1.60a 8.13 1.22a 7.78 1.77 7.76 2.56 8.11 2.56 7.63 2.60a 7.63 1.53a 7.97 0.78a 7.90b 0.64a 

Significance ns *** ns *** ns ** ns ** ns ns ns ns ns ns ns ** ns *** ns *** * *** 

In October 2012 no leachate was collected due to insufficient rainfalls. 
ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In the same column, means followed by the 
same letter are not statistically different (P≤0.05, Tukey's HSD Test).  
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Table 5.7. Effect of soil-applied Biochar and Compost on the monthly amount of dissolved organic C (DOC), total dissolved N (TDN), total dissolved inorganic 
N (DIN), total dissolved organic N (DON), Nitrate-N (NO3

--N) and Ammonium-N (NH4
+-N) as measured in the leachate 

 
Treatment Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 
 DOC (kg C ha-1) 
Control 2.77b 4.82b 1.05b 1.14b 0.18 8.49b 2.13b 4.50b 11.4c 6.35c 3.64c 
Biochar 1.65b 3.08b 0.81b 0.50b 0.05 8.44b 1.79b 3.15b 11.0c 6.12c 3.71c 
Compost 29.7a 46.5a 9.78a 14.8a 0.83 35.2a 10.1a 22.5a 42.5b 32.5b 17.9b 
Biocompost 40.9a 51.8a 9.39a 8.73a 0.60 39.6a 10.6a 27.0a 58.8a 91.1a 21.3a 
Significance *** *** * * ns *** *** *** *** ** *** 
 TDN (kg N ha-1) 
Control 7.27b 30.7ab 1.31 0.29b 0.42 51.2 0.31b 0.50b 0.73b 0.55b 0.32c 
Biochar 7.34b 17.3b 0.11 0.12b  0.33 39.7 0.19b 0.52b 0.78b 0.51b 0.42c 
Compost 41.6a 49.6a 3.96 3.79a 0.99 21.1 1.21a 2.68a 4.50a 4.15b 2.05b 
Biocompost 45.2a 51.3a 2.71 4.22a 0.85 37.1 1.45a 3.79a 6.64a 13.6a 2.95a 
Significance *** * ns * ns ns ** *** *** *** *** 
 DIN (kg N ha-1) 
Control 7.00b 30.1ab 0.39 0.26 0.42 49.4 0.19ab 0.40 0.56b 0.05b 0.05b 
Biochar 7.21b 16.6b 0.06 0.09 0.25 38.1 0.13b 0.44 0.58b 0.05b 0.05b 
Compost 40.9a 48.2ab 0.72 3.22 0.36 18.4 0.43ab 0.99 2.53ab 0.92b 0.11ab 
Biocompost 41.7a 50.6a 0.79 2.32 0.35 34.2 0.66a 1.63 508a 3.13a 0.35a 
Significance *** * ns ns ns ns * ns * *** * 
 DON (kg N ha-1) 
Control 0.27b 0.63 1.00 0.02 0.14 1.82 0.13b 0.09b 0.17 0.50b 0.28b 
Biochar 0.13b 0.68 0.08 0.18 0.06 1.61 0.05b 0.09b 0.20 0.46b 0.37b 
Compost 1.10a 1.43 1.38 0.65 0.09 2.69 0.78a 1.69a 1.96 3.17a 1.93a 
Biocompost 3.51a 0.68 0.80 1.86 0.50 2.94 0.79a 2.16a 1.56 10.5a 2.60a 
Significance * ns ns ns ns ns *** ** ns ** *** 
  
 continues... 
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Treatment Apr-12 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 
 NO3

--N (kg N ha-1) 
Control 5.66b 27.3ab 0.28ab 0.19 0.35 46.9 0.08 0.16 0.08b 0.01b 0.01b 
Biochar 6.09b 14.6b 0.003b 0.40 0.25 35.9 0.04 0.23 0.09b 0.02b 0.01b 
Compost 38.9a 45.3a 0.62ab 2.56 0.27 17.7 0.16 0.47 1.51ab 0.82a 0.05ab 
Biocompost 40.1a 43.7a 1.58a 1.93 0.33 33.4 0.39 0.72 5.19a 3.01a 0.28a 
Significance *** * * ns ns ns ns ns * *** * 
 NH4

+-N (kg N ha-1) 
Control 1.34 2.78 0.02 0.07 0.01 2.52a 0.10b 0.24b 0.48b 0.04b 0.04bc 
Biochar 1.12 2.01 0.06 0.06 0.01 2.24a 0.09b 0.21b 0.48b 0.03b 0.03c 
Compost 1.59 2.90 0.096 0.66 0.10 0.71b 0.27a 0.52a 1.01a 0.10a 0.06ab 
Biocompost 1.58 2.76 0.072 0.39 0.03 0.84b 0.26a 0.54a 1.06a 0.12a 0.07a 
Significance ns ns ns ns ns *** *** *** *** *** * 
In October 2012 no leached was collected due to insufficient rainfalls; dl: instrument detection limit. 
DIN was calculated as the sum of the mineral N forms (NO3

-- N and NH4
+-N) whereas DON was calculated as the difference between TDN and DIN. 

ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In the same column, means followed by the same 
letter are not statistically different (P≤0.05, Tukey's HSD Test). 
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Table 5.8. Effect of soil-applied Biochar and Compost on the pH, EC, DOC (Dissolved Organic C), TDN (Total Dissolved N), DIN (Dissolved Inorganic N), 
DON (Dissolved Organic N), Nitrate-N (NO3

--N) and Ammonium-N (NH4
+-N) of the soil leached solution after 17 months since amendment incorporation 

(September 13) 
 
Treatment pH EC DOC TDN DIN DON NO3

--N NH4
+-N 

  mS cm-1 kg ha-1 kg ha-1 kg ha-1 kg ha-1 g ha-1 g ha-1 

Control 7.92b 1.56 2.12b 0.21b 0.014 0.20b 7.51 6.26 
Biochar 8.08a 1.70 1.32b 0.13b 0.009 0.12b 7.20 2.01 
Compost 7.94b 1.43 7.06a 0.60a 0.013 0.59a 9.53 3.78 
Biocompost 8.30a 1.23 2.94b 0.18b 0.008 0.17b 7.49 0.74 
Significance *** ns ** * ns ** ns ns 
Tap water (mean ±SE) = pH 7.29 ± 0.15; EC 846.7 ± 26.1 µS cm-1; NO3

--N 1.909 ± 0.45; NH4
+-N <dl. 

Rain water (mean ±SE) = pH 7.48 ± 0.21; EC 29.9 ± 4.11 µS cm-1; NO3
--N 0.273 ± 0.04 mg L-1; NH4

+-N 0.122 ± 0.09 mg L-1. 
ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In the same column, means followed by the same 
letter are not statistically different (P≤0.05, Tukey's HSD Test). 
 
 
Table 5.9. Effect of soil-applied Biochar and Compost on the cumulative amount of chemicals leached in 1 year (April 12-March 13) 
 

TRT  Al As B Ba Ca Co Cr Cu Fe Hg K Li Mg Mn Mo Na Ni P Pb S Se Si Sn Sr V Zn 
 g ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 g ha-1 g ha-1 g ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 kg ha-1 g ha-1 g ha-1 

Control 4.86b 2.24ab 0.386b 239.2b 637.1 7.23b 0.06b 86.8b 19.7b 2.85c 15.7d 59.2c 78.9b 125ab 0.01c 138.5b 13.6b 0.276c 51.3b 378.0 18.5c 21.4ab 0.002b 2.958b 8.39b 62.0 

Biochar 8.64b 1.68b 0.421b 239.3b 539.1 6.29c 0.07b 66.0b 7.02c 31.8a 43.6c 60.2c 79.1b 42.9b 4.90b 130.9b 10.7b 0.786b 44.8b 353.2 32.9b 18.6b 2.96a 2.733b 8.57b 52.3 

Compost 47.4a 8.40a 1.191a 540.7a 658.9 7.96ab 1.17a 146.1a 217.3a 4.81c 143.6b 127.9b 112.4a 647a 19.2a 265.4a 47.0a 
1.302a

b 
97.2ab 331.4 44.0b 38.1a 0.10b 3.650a 19.5ab 66.3 

Biocomp 36.1a 8.04a 1.264a 571.2a 623.8 8.04a 0.90a 149.6a 313.9a 13.7b 259.8a 172.0a 131.6a 565a 34.6a 374.6a 39.1a 2.304a 135.5a 362.0 60.2a 26.4ab 2.65a 3.670a 29.2a 73.2 

Sign. *  * *** *** ns *** ** *** ** *** *** *** *** * *** ** * *** ** ** ns *** * ** ** ** ns 

Ag, Be, Cd, Sb, Ti and Tl concentration in the leachate was always below the instrumental detection limit (DL). 
ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In the same column, means followed by the same 
letter are not statistically different (P≤0.05, Tukey's HSD Test). 
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Table 5.10. Cumulative amount of DOC (Dissolved Organic Carbon), TDN (Total Dissolved Nitrogen) and minerals supplied by irrigation and rainfall water (kg 
ha-1 year-1) 
 

  DOC  TDN Al B Ba Ca Cu Fe K Li Mg Mn Na P S Se Si Sr Zn 
Irrigation 39.6 22.5 - 1.01 0.58 666.3 0.03 0.06 64.1 0.18 159.9 0.02 177.1 0.21 244.6 0.20 38.8 5.14 0.16 

Rain 15.4 0.74 0.21 0.05 0.03 26.8 0.18 - 8.85 0.03 3.7 0.02 34.9 - 7.5 - 0.66 0.14 0.14 

Ag, As, Be, Cd, Co, Cr, Fe, Hg, Mo, Ni, P, Pb, Sb, Se, Sn, Ti, Tl, and V concentrations in the irrigation water and Ag, Al, As, Be, Cd, Co, Cr, Hg, Mo, Sb, Sn, Ti, Tl, and V 
concentrations in the rainwater were below the instrumental detection limit. 
 
 
Detection Limit  (µg L-1) of the ICP-OES unit (Avg ± SE) throughout the experiment (April 12-March 13) 

Element Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Li Mg 
Value 6.2±5.4 8.4±5.3 5.6±1.7 3.0±0.8 11.6±10.9 1.8±1.6 6.7±3.0 1.9±1.1 2.2±1.5 2.6±1.4 3.2±1.9 5.2±3.0 3.4±2.6 2.5±1.1 3.1±3.0 7.7±2.1 

Element Mn Mo Na Ni P Pb S Sb Se Si Sn Sr Ti Tl V Zn 
Value 1.7±1.6 4.1±1.2 3±1.2 3.1±2.0 88.0±84.5 7.0±2.7 14.2±3.9 6.2±1 2.8±0.8 24.0±16.7 19.1±12.6 101.6±96.6 1.4±0.9 9.3±4.3 2.1±1.0 1.3±0.9 
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Figure 5.1. Rainfall, irrigation volumes and air temperature monthly recorded throughout the first year of experiment  
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Figure 5.2. Effect of the amendment on the leached volumes and water supplied (rainfall + irrigation) to the lysimeters from April 2012 to 

March 2013 

 
In October 2012 no leachate was collected due to insufficient rainfalls 
ns, * and **: effect of treatment not significant or significant at P≤0.05 and P≤0.01, respectively. Within the same month, columns followed by the same letter are not 
statistically different (P≤0.05, Tukey's HSD Test) 
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Figure 5.3. Cumulative amount (kg ha-1) of dissolved organic C (DOC), total dissolved N (TDN), total dissolved inorganic N (DIN), total 

dissolved organic N (DON), Nitrate-N (NO3
--N) and Ammonium-N (NH4

+-N) in the leachate in 1 year (April 2012 - March 2013) 

*, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01and P≤0.001, respectively. Within the same variable, columns followed by the same letter 
are not statistically different (P≤0.05, Tukey's HSD Test) 
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CHAPTER 6 

 

CO2 emissions partitioning, bacterial community profile and gene 

expression of Nitrosomonas spp. and Nitrobacter spp. in a sandy soil 

amended with biochar and compost 

 

Abstract 

This study evaluated the effect of soil-applied biochar, compost and their 

combination on soil properties, respiration partitioning, bacterial community 

profile and gene expression of Nitrosomonas spp. and Nitrobacter spp. A 2-year 

experiment was carried out on nectarine trees planted in March 2012 and grown in 

0.496 m3 pots filled with a sandy soil in which, with four replicates, the following 

strategies were compared with an unamended control: a) biochar (20 g fw kg-1); b) 

compost (76.8 g fw kg-1) and c) biocompost (same rates of the previous two 

strategies). Amendments were applied at planting and only unamended and 

biochar-amended soils were fertilized with mineral inputs. Soil pH, mineral N, soil 

temperature and soil water content (SWC) were periodically measured. Total soil 

respiration (RTOT) was separated into soil organic-C derived (RSOC) and rhizosphere 

(RR) respiration by the trenching method. At the end of the experiment total C and 

N concentration of soil and recovered biochar fragments were measured. Total soil 

DNA was extracted from samples collected after 6 and 18 months and bacterial 

community analysis was carried out by PCR amplification and subsequent band 

identification (DGGE). Expression of nitrification key genes of Ammonia 

monooxigenase (AMO) and Nitrite oxidoreductase (NOR) and the relative 

abundance of specific bacterial community (Nitrosomonas spp. and Nitrobacter 

spp.) were determined by Real Time PCR on soil samples collected at 6, 12, 15, 16 

and 18 months since amendments incorporation. Benefits on soil properties (i.e. 

SWC) and fertility (mineral N) were induced by the addition of compost which also 

promoted bacterial biodiversity, increased the relative expression of nitrification 

process related key genes. Furthermore, compost enhanced RSOC likely due to the 
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stimulation of the microbial community by providing labile C sources. Conversely, 

changes due to the mere addition of biochar were negligible. However, biochar had 

no detrimental effects, rather it slightly promoted gene expression involved in the 

nitrification process. A synergistic effect between the two amendments emerged in 

the soil field capacity (FC), total soil C and N concentration and in the RSOC, 

leading to a significantly higher cumulative evolution of CO2. Although the source 

of the additional CO2 rate remains uncertain, a priming effect induced by biochar 

on the labile compost-derived C-fractions is hypothesized. Compost reduced the 

relative richness of Arthrobacter spp. in soil while Actinomadura flavalba, 

Saccharomonospora viridis, Thermosporomyces composti and Enterobacter spp. 

were peculiar of the biocompost profile which increased band richness. 

Biocompost showed the significantly highest relative abundance of Nitrosomonas 

spp. and Nitrobacter spp. and both AMO and NOR key genes expression levels. 

The mixture of biochar and compost seems agronomical effective although 

environmental concerns (e.g. additional CO2 emissions), require further 

investigations.   

 

Keywords: Biocompost, soil respiration, Nitrosomonas spp., Nitrobacter spp., 

Ammonia monooxigenase, Nitrite oxidoreductase 
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6.1 INTRODUCTION  

The incorporation of either pyrolized (biochar) or composted (compost) organic 

biomasses into agricultural or forested soils has raised interest worldwide since it 

has been heralded as a sustainable and cheap strategy to offset anthropogenic 

carbon (C) emissions, thus alleviate climate changes (Woolf et al., 2010; 

Hargreaves et al., 2008; Paustian et al., 1997), while ameliorating soil properties 

and growth conditions (Spokas et al., 2012; Verheijen et al., 2010) with positive 

implications in the reduction of social costs related to the recycling of organic solid 

and agri-food industry wastes, otherwise disposed. For instance, according to 

estimations reported by Woolf et al. (2010), annual net emissions of carbon dioxide 

(CO2), methane (CH4), and nitric oxides (N2O) may decrease by 1.8 Pg CO2-C 

equivalent and total emissions by 130 Pg CO2-C equivalent over a century by 

implementing globally a sustainable biochar program. Biochar is a solid C-rich 

matrix obtained by biomass thermo-chemical decomposition under complete or 

partial exclusion of oxygen (pyrolysis). Once in soil, biochar has the potential to 

long-term increase soil C storage, maintain the balance of soil ecosystems and act 

as a soil nutrient-retaining additive (Spokas et al., 2012; Verheijen et al., 2010). 

Compost is a stabilized amendment resulting from the biodegradation of organic 

wastes operated by various microorganisms under aerobic conditions. The use of 

compost in fruit tree ecosystems is considered environmentally safe and can be 

profitably adopted for its fertilization value (Sorrenti et al., 2012; Caballero et al., 

2009) and as a mean to restore and enhance soil organic matter (OM) (Diacono and 

Montemurro, 2009). However, while agronomic benefits have been largely 

demonstrated, compost-induced long-term soil C sequestration potential is limited 

compared to biochar (Fischer and Glaser, 2012), since biogenic humic substances 

have a short residence times (Stevenson, 1994). The reason is that composted 

biomasses account for a large amount of easily-degradable C-containing substances 

which can be decomposed by soil microorganisms in the short-medium period, 

depending on the soil properties, temperature and compost quality (Thompson and 

Nogales, 1999). CO2 and microbial biomass are the main products of such 

decomposition, together with a more stable humus-like organic matter fraction 

(Zwart et al., 1994) which is exposed to slower decomposition rates. Part of the 
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dissolved organic C (DOC) from compost can even leach to groundwater (Kaplan 

et al., 1995). In terms of soil C sequestration, the beneficial outcome from biochars 

are expected to last longer compared to other forms of soil organic C (SOC) pools 

due to the high aromatic nature of the biochar, which makes it relatively stable 

against whether biotic and abiotic decomposition (Spokas et al., 2012; Swift, 

2001). Although scientific evidences demonstrated an initial increase in CO2 

emission as well as an increase in the leached amount of DOC after biochar 

addition to soils mainly as a consequence of the organic C breakdown and the 

release of biochar-derived inorganic C molecules, this is considered a short living 

effect, thereby negligible for SOC sequestration potential (Jones et al., 2011).  

Combining biochar and compost in soil could offer a number of benefits compared 

to the incorporation of biochar and compost alone. Synergistic effects may include 

an enhancement of the nutrient use efficiency, the biological activation of biochar, 

the creation of humus and nutrient-rich substrates, together with a higher and long-

term C sequestration outcome (Fischer and Glaser, 2012). 

As a consequence of either biochar or compost incorporation in soils, a net 

increasing in soil microbial biomass has been recognized, with significant changes 

observed in the microbial community composition and enzymatic activities (Lorenz 

and Lal, 2014; Hu et al., 2014; Zhen et., al 2014; Ameloot et al., 2013; Biederman 

and Harpole, 2013; Anderson et al., 2011; Lehmann et al., 2011; Ros et al., 2006; 

Garcia-Gill et al., 2000). Mechanisms affecting soil biota upon biochar addition 

involve mainly sorption of allelopathic/inhibiting compounds or releasing of 

biologically active molecules, changes in pH and soil physical properties such as 

porosity, surface area, water holding capacity (WHC) and minerals (Ameloot et al., 

2013; Lehmann et al., 2011). On the other hand, microorganisms can utilize a 

number of labile biochar-derived constituents as energy source (Cross and Sohi, 

2011). With respect to compost, three main mechanisms have been indicated as 

responsible for the promotion of the biological activity in soil: a) the addition of 

easily degradable C-compounds, which represent valuable substrates for 

heterotrophic microorganisms;  b) the provision of habitat and niche properties in 

soil (e.g. water and air balances, increase of specific surfaces) and c) the 

introduction of biota into soil via compost as inoculant (Amlinger et al., 2007; 
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Blume, 1989; Werner et al., 1988). However, compost-induced shift in microbial 

communities are not fully understood and in the case of biochar are only beginning 

to be explored (Lehmann et al., 2011). Furthermore, despite soil microorganisms 

play a central role in nutrient cycling and provide important ecosystem services 

(Costanza et al., 1987), specific effects induced by organic amendments in soils are 

poorly assessed. Most of the scientific evidences were obtained under lab 

conditions since outdoor is more complex and dynamic (due to biotic and abiotic 

interference such as exposure to freezing/thawing and drying/wetting cycles and 

the cultivation of crops).  

As far as we know, no data are available on the combined effects of soil-applied 

biochar and compost on soil CO2 fluxes, partitioning into root-derived and soil 

organic C-derived components and on microbial diversity and efficiency. Elucidate 

mechanisms that govern how the addition of biochar, compost and their mixture to 

soils may affect ecological and agronomical aspects are therefore of crucial 

importance in the conjecture that these could be widely adopted in the near future. 

In particular, scientific acquisitions about the effect of such amendments on 

specific groups of microorganisms involved in key biochemical cycles in soil (i.e. 

nitrogen-N) appear of primary importance.  

In this context, this study focused on the soil respiration partitioning, bacterial 

community profile, gene expression of Nitrosomonas spp. and Nitrobacter spp. 

abundance and efficiency and soil properties (e.g. pH, WHC, mineral N 

availability) in nectarine trees grown on a sub-alkaline sandy soil amended with 

biochar, compost and their combination. We tested the hypothesis whether or not 

biochar and compost may synergistically act, shifting soil CO2 fluxes partitioning, 

promoting microbial community changes and altering soil related physical and 

biological processes. This research is part of a larger study which included the 

effect of the amendments on the soil leaching, crop growth and root physiology.  
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6.2 MATERIALS AND METHODS 

6.2.1 Experimental conditions  

A 2-year experiment (2012-13) was carried out outdoors at the experimental station 

of the University of Bologna (44°54’ N, 11°41’ E, 36 m a.s.l.) on 1-year old 

nectarine trees (Prunus persica (L.), Batsch) of the cv. Big Top grafted on Adesoto 

(Puebla de Soto 101, Prunus insititia (L.), Bullace) grown in 0.496 m3 pots and 

filled with 503 kg ea. of a sandy soil, which main physical-chemical characteristics 

are summarized in table 6.1.  

In Spring 2012, one tree per pot was planted, trained as slender spindle, covered 

with a shade netting (in summer) which allowed a shadow of 31%  compared to 

full sun (measured in summer at noon on a sunny day), watered from May to 

September by microirrigation (4 drippers per plant of 2 L h-1 ea.) to return the 

evapotranspiration (ETo) rate as estimated by a class A evaporation Pan and the 

specific crop coefficient (Kc) for nectarine, whereas weeds were hand-removed. 

The climate is temperate sub-continental with cold winters and humid and warm 

summers.  

 

 

Picture 6.1. View of the pots that were arranged in a single row, spaced 0.50 m 

between each other and N-S oriented  
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6.2.2 Experimental design and treatments  

We compared the following soil-applied strategies arranged in a complete 

randomized block design (with 4 replicates): a) biochar (20 g fw (fresh weight) kg-

1) equal to 87.4 t fw ha-1 (considering a soil incorporation up to 0.35 m depth and a 

specific soil weight of 1.248 t m-3); b) compost (76.8 g fw kg-1); d) 

biochar+compost (biocompost from now on) (20 and 76.8 g fw kg-1 of biochar and 

compost, respectively). Unamended pots were included in the experimental design 

as control. Amendments were homogenised with the soil and applied only at 

planting. Unamended and biochar-amended soils received 41.7, 9.3 and 6.9 g pot-1 

of N, P and K, respectively in the first season and 62.4, 12.0 and 22.9 g pot-1 of N, 

P and K, respectively, in the second season using commercial urea (46% N), 

ammonium-nitrate (NH4NO3) (27% N) and a mixture of NPK (14-25-5) + 

microelements as a source of nutrients. Fertilizers were applied regularly by 

fertigation from petal fall until the end of the vegetative seasons. Compost-based 

amended soils did not receive chemical sources of fertilizers while the same 

amount of tap water was supplied in coincidence with fertigation events.       

Biochar was obtained in a commercial charcoal kiln by slowly pyrolysing (550°C) 

a mixture of chipped peach and grapevine hardwood (in prevalence), while 

compost is the result of a 3-month stabilization biological decomposition of 

pruning materials from urban ornamental trees and garden management (6.5%) 

mixed with organic municipal wastes (85%) and agro-industrial organic residues 

(8.5%), under aerobic conditions. Main physical and chemical characteristics of 

biochar and compost used in the experiment are summarized in table 6.2 and 6.3, 

respectively.  

 

6.2.3 Soil pH and KCl extractable N mineral forms  

Every 2 months, one sample per pot was obtained by homogenizing 4 soil cores 

collected at 0.05-0.30 m depth. A subsample was oven dried (105°C) and grinded 

(2 mm mesh), then 10 g were added to 25 mL of deionized water (d-H2O) and 

shaken 1 h at 95 rpm by an orbital shaker. The pH was measured on the filtered 

supernatant with a pH-meter (BasiC 20, Crison, Barcelona, Spain) under 

continuous stirring.  
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To evaluate soil N mineral content, 10 g of fresh soil were extracted by a 2 M KCl 

solution at a ratio of 1:10 (w w-1). Samples were shaken 1 h at 95 rpm by an orbital 

shaker, filtered (Whatman 42) and analyzed for nitrate-N (NO3
-- N) and 

ammonium-N (NH4
+-N) concentration by a continuous flow autoanalyser (AA-3, 

Bran+Luebbe, Norderstedt, Germany). Soil moisture content (w w-1) was evaluated 

gravimetrically by oven drying at 105 °C representative subsamples. 

 

6.2.4 Total C and N content of soil and aged biochar fragments  

Subsamples of the soils collected at the end of the experiment (September, 2013) 

and used to extract mineral N forms were oven dried and manually pulverized in a 

mortar, then 13 (±0.5) mg per sample were used for total C and N determination. 

In October 2013 (after 19 month from trial establishment), we randomly recovered 

about 30 biochar fragments per sample from the pots amended with biochar and 

biocompost by forceps, avoiding manual contact and any physical damage to the 

particles. At the same time, biochar fragments never field-applied, hermetically 

stored in plastic bags and maintained in a dry and dark place, were included as 

control (termed here as “fresh”). Particles, including fresh fragments, were first 

dried at 50 °C for few days, gently sieved (1-mm) to remove exceeding soil 

particles and then the surface was gently cleaned with a soft brush and sparingly 

rinsed twice with d-H2O to remove adhering soil from the surface. Fragments were 

oven-dried at 50 °C, manually milled using a mortar and then 3 mg for total N and 

0.1 mg for C determination were weighted. Both soil and biochar samples were 

analyzed via catalytic combustion analysis (ECS 4010, Costech Analytical 

Technologies Inc., Valencia, CA) at 2.33 mV voltage. Retention time was 1.21 and 

1.78 min for N and C, respectively. Data were compared with external calibration 

curves at 9 points (r2 > 0.9995) obtained by a high-purity acetanilide standard 

(Costech Analytical Technologies Inc., Valencia, CA). 

 

6.2.5 Soil respiration partitioning, temperature and water content (SWC)  

Total soil respiration (RTOT) was measured in one partially buried (0.02 m) 

cylinder-shaped PVC collar per pot (Ø of 0.10 m and 0.06 m height) using an 

infrared gas analyzer (EGM 4, PP Systems, Amesbury, MA, USA) equipped with a 
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closed dynamic chamber (SRC 1, PP Systems Amesbury, MA, USA) which allows 

to measure soil CO2 efflux (g CO2 m-2 h-1) from the collars that were never 

disturbed or removed from soil during the entire experiment time course. Air in the 

dynamic chamber was at ambient CO2 concentration, modulated automatically by 

circulating air through a soda lime column between consecutive measurements; 

collars were adapted to tightly fit the chamber. Measures were initiated when CO2 

concentration remained constant, usually between 70 and 80 sec after placing the 

chamber onto soil collars. RTOT was partitioned in soil organic-C derived 

respiration (RSOC) and rhizosphere respiration (RR) by the trenching method 

adapted from Kuzyakov and Larionova (2005). To this end, one trench per pot was 

set up at transplanting by isolating about 16% of the total soil volume (about 80 kg 

pot-1) by a geotextile canvas ensuring free circulation of gases and solutes while 

preventing root ingrowths. One PVC collar per pot, as above described, was placed 

on the surface of the isolated soil volume in order to measure the RSOC without the 

interference of the roots.  

 

 

 

Picture 6.2. Schematic illustration of the soil CO2 respiration partitioning  
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In all pots, trenches and collars were identically oriented and set up at the same 

distance from drippers and trunks. In each pot, RSOC and RTOT were measured 

consecutively in the same day between 10:30 h and noon, at about 20 days interval. 

For each sampling, the RR rate was estimated as the difference between RTOT and 

RSOC, according to the following equation: 

 

RR= RTOT - RSOC 

 

RR represents the autotrophic respiration component while RTOT and RSOC are the 

rates of total and SOC-derived respiration, measured in non-trenched and trenched 

soil volumes, respectively. However, RR rate was estimated from the second 

growing season. After each soil respiration measure, the topsoil temperature inside 

each collar was measured by a portable digital thermometer (TR-50303, Forlì, 

Italy) coupled with a PT-100 probe (TR, Forlì, Italy) which was inserted at 0.03 m 

depth and left until stabilize. Later on, the top-soil water content (SWC) (w w-1) 

was measured gravimetrically by oven drying at 105 °C 4 representative soil cores 

sampled at 0-0.03 m depth and close to the collars.  

For each sampling, RSOC was parameterized to soil temperature using the following 

exponential model, as described by Ventura et al. (2014): 

 

RSOC = R10e
c(T−10) 

 

RSOC represents the heterotrophic soil respiration flux as measured in the collar, T 

is the soil temperature as measured at 0.03 m depth and R10 and c are coefficients 

estimated by a nonlinear regression statistical procedure. 

In addition, we calculated the apparent sensitivity of the RSOC to soil temperature, 

expressed as Q10 (=e10c).  

We also determined, for each sampling date, the influence of the SWC on the RSOC 

deprived of the interference of the soil temperature by estimating a value of R10 

according to the following equation:  

 

R10 = RSOC/e
c(T−10) 
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RSOC is the measured SOC-derived respiration rate and c is a coefficient set at 

0.0693 corresponding to a Q10 of 2.5 as described by (Bååth and Wallander, 2003). 

R10 is an estimate of the soil respiration flux assuming a stable soil T of 10 °C. 

Obtained values were then plotted against SWC. 

 

6.2.6 Total soil DNA extraction 

In September 2012 and after 1 year (September 2013), one soil sample per pot was 

obtained by homogenizing 4 soil cores collected at 0.05-0.20 m depth by a push-in 

hand soil sampler which was cleaned between two consecutive sampling. Root 

from soil samples were carefully removed and then frozen at -80°C to await 

analyses. To this end, total community DNA was extracted from 250 mg of soil 

using the PowerSoil DNA kit (Mo Bio Laboratories, Carlsbad, CA, USA) 

according to the manufacturer's instructions and modified by Gaggìa et al. (2013). 

Briefly, 5 µL of mutanolysin (100 U mL-1, Sigma-Aldrich) and 195 µL of lysozyme 

(50 mg mL-1, Sigma-Aldrich) were added to the soil powder in the bead solution 

supplied with the kit. The soil suspension was then incubated at 37 °C on a rotary 

shaker for two hours, prior to chemical (with SDS-containing solution supplied 

with the kit) and mechanical (bead beating on vortex at maximum speed for 10 

min) cell lyses. DNA was eluted with 70 µL of 10 mM Tris-HCl pH 8.0. The purity 

and quantification of extracted DNA was determined by measuring the ratio of the 

absorbance at 260 and 280 nm (Infinite® 196 200 PRO NanoQuant, Tecan, 

Mannedorf, Switzerland). Extracted DNA was stored at -20 °C. 

 

6.2.7 Polymerase Chain Reaction (PCR) 

PCR amplification was performed on control and amended soil samples using 50 

ng of extracted DNA as a template with the universal bacterial primer pair 968F 

with a 40-bp GC clamp attached to its 5’end (Heuer et al., 1997) (5’- 

cgcccggggcgcgccccgggcggggcgggggcacgggggg-aacgcgaagaaccttac-3’) and 1378R 

(5’-  cggtgtgtacaaggcccgggaacg-3’). The 50 µl PCR reaction contained 1.5 U 

AmpliTaq Gold DNA polymerase (Applied Biosystems), 5 µL of 10X PCR Gold 

Buffer (Applied Biosystems), 200 µM of each deoxynucleotide triphosphate 
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(Fermentas GmbH, St.Leon-Rot, Germany), 1.50 mM MgCl2 (Fermentas), 0.5 µM 

of each primer (Eurofins MWG Operon, Ebersberg, Germany), 0.5 mg mL-1 bovine 

serum albumin (Fermentas), 2 µL DNA template (50 ng uL-1) and sterile MilliQ 

water. A touchdown thermal cycle program was used to prevent non-specific 

amplification, which included an initial denaturation at 95 °C for 2 min followed 

by 9 cycles each of denaturation at 95 °C for 1 min, 60 °C with 0.5 °C decrease per 

cycle for 1 min, and extension at 72 °C for 2 min, and completed with 20 additional 

cycles when annealing temperature reached 55 °C. A final extension at 72 °C for 

10 min was included at the end of the cycles before holding at 4 °C. The size and 

amount of the PCR products were estimated by analysing 2 µL samples by 1.5% 

agarose gel (w v-1) electrophoresis and ethidium bromide staining.  

 

6.2.8 Denaturing gradient gel electrophoresis (DGGE) and band identification 

The bacterial community analysis was carried out by DGGE, according to Muyzer 

et al. (1993), using a DCode System apparatus (Bio-Rad, Richmond, CA, USA), 

employing 7% polyacrylamide gels with a denaturing range of 35–55%  The 

electrophoresis was run at 55 V for 16 hours at 60°C. Gels were stained in a 

solution of 1X SYBR-Green (Sigma–Aldrich) in 1X TAE for 20 min and their 

images captured in UV transillumination with Gel Doc™ XR apparatus (Bio-Rad).  

Selected bands were cut from the gel with a sterile scalpel and DNA was eluted by 

incubating overnight the gel fragments in 50 µl of sterile deionised water at 4 °C. 2 

µl of the solution were then used as template to re-amplify the band fragments with 

the same PCR condition described above. After amplification and repeated DGGE, 

purity and comobility with amplified DNA obtained directly from soil samples was 

assured. After purification, PCR products (obtained by using primers without the 

GC-clamp), representing single bands, were sent for sequencing (Eurofins MWG 

Operon). Sequence chromatograms were edited and analysed using the software 

programs Finch TV version 1.4.0 (Geospiza Inc., Seattle, WA, USA). GenBank 

DNA sequences with the highest similarity to those represented by the DGGE 

bands were identified using the BLAST alignment tool 

(http://www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al., 1997). 
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6.2.9 Expression of key genes of Nitrosomonas spp. and Nitrobacter spp. in soil  

In September-12, March-13, June-13, July-13 and September-13, one soil sample 

per pot was obtained by homogenizing 4 cores collected at 0.05-0.30 m depth, 

sieved using a 2 mm sieve to remove root residues, while biochar particles (< 

2mm) were not excluded through sieving then frozen at -80°. RNA and DNA were 

extracted according to the methodology described by Hurt et al. (2001) using 

nucleic acid binding column from Total soil DNA Extraction Kit (MACHEREY-

NAGEL GmbH & Co, DE) and Total RNA extraction kit (Norgen Biotek, CA, 

USA). DNA and RNA quality and quantity were assayed at 230, 260 and 280 nm 

absorbance (�) by NanoDrop 1000 Spectrophotometer (ThermoScientific, 

Wilmington, USA), and agarose gel staining with ethidium bromide 

(C21H2OBrN3). 

 

6.2.10 Genes expression analysis 

Expression of nitrification key genes Ammonia monooxigenase (AMO) and Nitrite 

oxidoreductase (NOR) and the relative abundance of specific bacterial community 

(Nitrosomonas spp. and Nitrobacter spp.) were determined by Real Time PCR. The 

primers used were: Amo gene, AmoA Forward, and AmoA Reverse for Amo 

(Rotthauwe et al., 1997); NxrA forward and NxrA reverse for Nir (Wertz et al., 

2008); NITISR forward  and NITISR reverse for Nitrobacter spp. quantification 

(Hawkins et al., 2008); 16s forward and reverse 16s for Nitrosomonas spp. 

quantification (Lim et al., 2008). Retrotranscription of purified RNA was 

performed by using the cDNA First-Strand Synthesis kit (Life Technologies, 

Rockville, MD, USA) according to the manufacturer’s recommendations. Gene 

expression was determined using a StepOne Plus Real-Time PCR instrument 

(Applied Biosystems, Foster City, CA, USA) with a SYBR green-based assay. 

Each reaction was performed in 10 µL, containing 5 µL of Power SYBR Green 

Master Mix 2×, 70-100 mM of each primer, 3 µL of a 1:4 dilution of the cDNA and 

PCR-grade water. Reactions were performed in triplicate and incubated 2 min at 50 
°C then 5 min at 95 °C. Samples were then subjected to 40 cycles of 95 °C for 15 

sec and 60 °C for 1 min. Data were collected at each annealing step. Gene 

expression was determined by the 2−∆∆CT method (Livak and Schmittgen, 2001) 
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and expressed as Fold Change (FC) relative to a housekeeping gene, (16s primer 

set for AMO and NITISR primer set for NOR). Relative quantitation of bacterial 

abundance was performed as previously described using as template total soil 

DNA. Data were expressed as population Fold Change (FC) related to the total 

DNA extracted from the unamended soil according to a standard curve (Larionov et 

al., 2005). 
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6.3 STATISTICAL PROCEDURES 

Data of soil pH, soil N mineral forms, trends of soil CO2 emissions, soil 

temperature and SWC were submitted to repeated measures analysis of variance 

(ANOVA) with 4 replicates using PROC MIXED (Littell et al., 1998) with a 

compound symmetry covariance structure, according to a complete randomized 

experimental design.  

Other data were submitted to the analysis of variance according to a complete 

randomized design. When analysis of variance showed a statistical effect, means 

were separated by using Tukey's HSD Test (at P≤0.05). Statistical analyses were 

performed by using SAS software (SAS Institute Inc., Cary, NC, USA). Data 

relative to the Real Time PCR were analyzed by the Stat software (STATISTICA 

version 5.0, Statsoft Inc. 1995, Tulsa, OK, USA) and means were separated by 

using the Student–Newman–Keuls (SNK) test (at P≤0.05). Homogeneity of 

variance was checked using Levene’s test before analysis. Dependence models of 

RSOC with soil temperature and R10 with SWC were estimated with non-linear 

regression analysis, respectively. Pearson correlation coefficient between soil T and 

RSOC was calculated. 

Band richness on the DGGE profiles was analysed with the one-way ANOVA 

with the GLM procedure of SAS to evaluate difference among treatment over time. 

A post-hoc analysis with Duncan Test has been performed to compare the different 

groups using Bonferroni adjusted alpha level (p<0.002). DGGE patterns were 

digitally processed using the GelCompar II software 6.6 (Applied Maths, 

Kortrijk, Belgium). Comparison and cluster of DGGE profiles were carried 

out using the unweigthed pair-group method with the arithmetic average 

(UPGMA) clustering algorithm based on the Pearson product-moment 

correlation coefficient and resulted in a distance matrix. Multidimensional 

scaling (MDS) and principal components analysis (PCA) were carried out by 

the Gel Compare II software. 
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6.4 RESULTS 

6.4.1 Soil pH and N mineral forms 

Soil pH values fluctuated in the sub-alkaline range, between 7.52 and 8.06 (Tab. 

6.4) and, unless in July-12, it was significantly decreased by compost and 

biocompost (Tab. 6.4), while comparable values were measured between 

unamended and biochar-amended soils (Tab. 6.4).  

Treatments did not affect soil inorganic N in June and July-13 (Tab. 6.5) and NH4
+-

N concentration resulted unaffected in September, November 12 and May 13 (Tab. 

6.5). In the other sampling, NH4
+-N concentration was increased in compost-

treated soils, either with or without biochar (Tab. 6.5). A similar trend was also 

observed for soil NO3
--N concentration (Tab. 6.5), with the exception of May-13 

when soils that received mineral fertilizer sources (unamended and biochar-

amended) showed an increased NO3
--N concentration compared to compost-based 

treatments (Tab. 6.5). Only in one sampling (i.e. November 12), soil amended with 

biochar increased the concentration of  NO3
-- N compared to control soil (Tab. 6.5), 

while in January and March 13, independently of the strategy, the NO3
-- N 

concentration in the soil was undetectable (Tab. 6.5.). The NO3
-- N fraction in soil 

was predominant during summer while it appeared either low or even lower than 

the detection limit (dl) during winter (Tab. 6.5).    

 

6.4.2 Total C and N content of soil and aged biochar fragments  

Biocompost significantly increased soil C and N content compared to other 

treatments (Tab. 6.6), while compost alone showed intermediate values of soil N 

content between biocompost and the remaining strategies. C and N content in 

biochar and unamended soils were statistically similar (Tab. 6.6). The 

environmental exposure did not affect C concentration in biochar fragments while 

significantly increased that of N, independently of the presence of compost (Tab. 

6.6).  
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6.4.3 Soil respiration partitioning 

6.4.3.1 Soil Organic C-derived respiration (RSOC) and soil °T dependence 

The RSOC (heterotrophic respiration) flux followed a seasonal pattern following the 

soil T trend. RSOC increased from spring to summer while remained negligible, than 

it was negligible (0.2 g CO2 m
-2 h-1) in winter (Fig. 6.1). Strategies significantly 

changed RSOC (Fig. 6.1) and, unless in winter, CO2 flux was increased by compost 

with values up to 3-fold greater than unamended and biochar treated soils (Fig. 

6.1). In addition, the mixture of the two amendments, statistically promoted RSOC in 

12 out of 29 sampling compared to the mere addition of compost (Fig. 6.1). The 

trend of the biochar and unamended soil CO2 fluxes was often overlapped (Fig. 

6.1), without significant differences.   

Throughout two seasons, the trend of the cumulative RSOC evolution was statistical 

equivalent between biochar and control soils, while values of biocompost and, to a 

less extent of compost, were significantly increased reaching at the end of the 

experiment values greater by 4 and 3-fold, respectively (Fig. 6.2). 

Data of RSOC fitted with soil T according to an exponential model (Fig. 6.4) and R2 

was 0.82, 0.83, 0.77 and 0.81 for control, biochar, compost and biocompost, 

respectively. Treatments did not induce differences in the apparent sensitivity of 

RSOC to soil temperature (Q10) which ranged between 3.14 and 3.74 (Fig. 6.4). Soil 

moisture was not correlated to RSOC, even after data normalization (data not show). 

 

6.4.3.2 Total soil respiration (RTOT) 

Values of RTOT were higher than those of RSOC, and followed a similar trend (data 

not shown). In details, no differences were observed between biochar and control, 

while CO2 fluxes were significantly increased by compost, independently of the 

mixture with biochar (data not shown).   

 

6.4.3.3 Rhizosphere respiration (RR) 

RR represents the autotrophic respiration estimated as the difference between the 

previous components (RTOT - RSOC). The contribution of RR to the RTOT was 

unaffected by soil amendments unless in May and June 13, when values were 
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significantly decreased by compost compared to the other two treatments (data not 

shown). 

 

6.4.4 Soil temperature and water content (SWC) 

Amendments strategies did not affect soil temperature (data not shown) which 

fluctuated between -0.79 (± 0.03) in December 12 and 29.7 °C (±0.04) in July 13.  

Water content in the top soil (0-0.05 m) was increased by biocompost and, to a less 

extent, by compost, while biochar did not differ from untreated control (Fig. 6.3).  

Likewise, this trend was confirmed considering the deeper soil profile (5-0.30 m). 

However, biochar mixed with compost revealed the highest values (Tab. 6.7), 

while the addition of biochar and compost alone induced comparable effects. The 

addition of biochar and compost to the soil increased the SWC in two and four 

sampling (out of 10), respectively (Tab. 6.7).  

 

6.4.5 Microbial community profiles and band identification   

In order to analyze the influence of the amendments on the bacterial community 

structure, PCR–DGGE fingerprints targeting the 16S rDNA fragment were 

performed at two sampling time carried out six months after the amendments 

incorporation (September 2012) and then one year later (after 18 months, in 

September 2013). Band richness was affected by sampling time and treatment (Fig. 

6.5). Without interaction between the two factors, band richness was significantly 

higher in the last sampling, while biocompost significantly promoted band richness 

and, to a less extent, also by biochar compared to the other strategies (Fig. 6.5). 

Compost amended soil revealed the same band richness as the unamended soil 

(Fig. 6.5).The cluster analysis of the 16S rDNA banding profiles generated by 

DGGE showed high similarity (over 80 %) between banding profiles belonging to 

the same treatment and sampling time (Fig. 6.6). However, a first division emerged 

between samples from control and biochar soils sampled in 2013 compared to the 

other treatments at both sampling time, with a similarity lower than 49.8 % (Fig. 

6.6). A second clustering level separated the sampling of 2012 (independently of 

the treatment), from biocompost and compost in 2013 (59.1 % similarity) (Fig. 

6.6). With few exceptions, further divisions within each cluster allowed the 
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discrimination between treatments and therefore the generation of representative 

individual clusters, indicating homogeneity within treatment and/or sampling time. 

The MDS plot (Fig. 6.7) gathered the combination of treatment and sampling in 

three clusters, corresponding to a) biocompost and compost (2013); b) control and 

biochar (2013) and c) all treatments at the first sampling (2012) (all treatments). 

Results of the PCA analyses are shown in Fig. 6.8. The total variance explained by 

the first two axes was 57.6% (20.4% axis 1 and 37.2% axis 2). The PCA did not 

separate completely the different groups, although the clustering was comparable to 

the dendrogram and the MDS. However, PCA divided, along axis 2, samples 

collected in September 2012 from those sampled 12 months later (Fig. 6.8). 

Figure 6.9 shows band excision from DGGE analyses carried out on soil samples at 

the end of the experiment. The similarity of band sequences ranged from 94 to 

100% compared with those available in the GenBank database (Tab. 6.8). The most 

relevant band (# 6) detected in all samples with a higher intensity in unamended 

and biochar-treated soils was identified as Arthobacter spp., Gloeobacter 

kilaueensis (band 3) is particularly evident in biocompost sampled in 2013. 

Remaining bands are peculiar of soil amended with compost profiles, either with or 

without biochar, and ascribed to Planifilum fimeticola (band 1), Actinomadura 

flavalba (band 5), Saccharomonospora viridis (band 7), Thermosporomyces 

composti (band 8) and Enterobacter spp. (band 9 and 10). 

 

6.4.6 Effect of the amendments on Nitrosomonas spp. and Nitrobacter spp. 

abundance and efficiency  

Relative gene expression activity (as measured by gene expression levels of AMO 

and NOR) and relative Nitrosomonas spp. and Nitrobacter spp. abundance (as 

measured by gene expression levels of specific genes) were stimulated, at each 

sampling, by biocompost and, to a less extent by compost, compared to the 

unamended control and biochar (Fig. 6.10). 

On the contrary, the addition of biochar to the soil slightly increased the abundance 

of Nitrobacter spp. only in the sampling of September-13, while no differences 

were observed for Nitrosomonas spp. population. Likewise, AMO and Nir and 
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ammonia gene expression were significantly promoted by biochar in one and 2 

sampling time, compared to the unamended soil (Fig. 6.10). 
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6.5 DISCUSSION 

6.5.1 Effect of biochar and compost on soil properties 

The most remarkable effects on soil properties were induced by the addition of 

compost whereas changes due to the mere addition of biochar were not noticeable 

compared to the unamended control. However, the two amendments synergistically 

interacted in the SWC and total soil C and N content. 

Although a pH increase has been indicated among the first changes on soil 

properties upon biochars addition (Atkinson et al., 2010; Major et al., 2010) and 

despite the alkaline pH of our biochar, pH values of biochar-treated soil did not 

change compared to the unamended soil. The sandy soil we used was naturally 

alkaline (pH=8.08) thus, we believe that biochar-induced changes on this parameter 

would require much higher rates than we adopted in our study. Likewise, Ventura 

et al. (2014) did not observe significant changes in soil pH after few years upon the 

addition of the same biochar (at a rate of 10 t ha-1) used in this study in an apple 

orchard grown in a Haplic Calcisol sub-alkaline soil. Unlikely the biochar-induced 

liming effect will appear after several years from its application because 

weathering processes occurring on the biochar fragments exposed to the 

environment, in particular the development of carboxylic acids functional groups 

will lead to a decrease in the concentration of basic sites on the biochar surface 

(Yao et al., 2010; Cheng and Lehmann, 2009) which may reduce the pH of aged 

biochar. From an agronomical point of view, this observations could result positive 

since one of the unwanted effect in alkaline-calcareous soils would be a further pH 

increase due the alkaline properties of much of the current biochars (Sohi et al., 

2010) because high soil pH hinders the availability of micronutrients (i.e. Fe, Mn, 

Zn) for plant uptake.  

Conversely, compost decreased the soil pH likely due to the humic compounds, 

mainly supplied as humic and fulvic acids with compost which are developed 

during the composting process. These substances are an heterogeneous mixture of 

polyacidic compounds containing free and bound phenolic OH groups, quinone 

structures, N and oxygen (O) as bridge units and carboxylic (-COOH) groups, 

variously placed on aromatic rings. Among the properties of the humic acid 

fraction, there is the considerable buffer capacity in a wide pH range which arises 



Chapter 6 - CO2 emissions partitioning, bacterial community profile and gene 

expression of Nitrosomonas spp. and Nitrobacter spp. in a sandy soil amended 

with biochar and compost 

170 
 

from the dissociation of their acidic functional groups (Ceppi et al., 1999). This 

may contribute to explain why the addition of biochar mixed with compost was 

also inconsequential on soil pH.  

As expected, the addition of compost significantly increased the SWC in the topsoil 

and in the 0.05-0.30 m layer. An even greater SWC is observed in the soil amended 

with biocompost suggesting a positive synergism between the two amendments. 

Literature widely describes an increasing of SWC and field capacity (FC) after 

compost application (Evanylo et al., 2008; Liu et al., 2007; Tejada et al., 2006) and 

mechanism is mainly ascribed to the ability of OM to take up and retain water up to 

20 times its own weight (Reicosky, 2005) since OM in soil increases the number of 

micropores and macropores either by contributing to the stability of soil aggregates 

through the bonding or adhesion properties of organic materials or by creating 

favorable living conditions for soil organisms. 

Interestingly, the combination of biochar and compost further enhanced SWC. We 

suppose that compost and biochar, acting through different mechanisms, led to an 

additive effect and, as a result, the soil FC shifted up. This interaction suggests that 

mixing biochar and compost may represent an effective strategy to save water in 

agricultural soils while assuring adequate SWC for crop growth. Although results 

are sometimes conflicting (Verheijen et al., 2010), changes on SWC upon biochar 

addition were documented (Baronti et al., 2014; Basso et al., 2013). Biochar did 

not evidently enhanced SWC compared to the unamended soil throughout the 

experiment. This indicate that compost is more effective in improving SWC 

compared to biochar in a sandy soil (at our rates) and that likely the rate of biochar 

we tested in this experiment was not enough to induce statistical modifications. 

The two amendments interacted with the total soil C and N concentration at the end 

of the experiment, which were 2 and 5 fold higher than the unamended control, 

respectively. Compared to other strategies, biocompost almost doubled the soil C 

content. Different mechanisms can be proposed as possible explanation of such 

response: a) the interaction between the two amendment promoted a faster 

humification process in soil leading to the formation of higher amount of stable 

humus-like substances within the experiment timescale; b) since biochar is capable 

of sorbing C-containing compounds (Barnes et al., 2014), part of the DOC (likely 
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from compost) was retained within the soil-biochar matrix; c) the two amendments 

promoted soil microbial biomass hence C immobilization; d) all or part of the 

previous mechanisms occurred simultaneously at different rates. This synergistic 

beneficial effect suggests positive implications in the C sequestration potential and 

soil fertility. On the other hand, the mere addition of biochar and compost did not 

significantly contributed to increase the soil C pools 18 months after their 

incorporation. Likely, a longer time could be required for either biochar to be 

fragmented into finer particles as a consequence of physical, chemical and 

biological degradation (Rutigliano et al., 2014) or for compost to originate stable 

humic compounds and enter as a part of stable soil C pool fractions. 

Likewise, a synergistic effect between biochar and compost was observed on the 

soil total N concentration, which resulted significantly increased compared to 

compost alone. On the contrary, the addition of biochar alone did not change total 

N concentration in soil at the end of the experiment. We suppose that, acting as an 

N retaining-additive in soil, biochar held N supplied with compost which 

availability was higher that supplied by mineral sources. This may also indicate an 

increased N availability for plant uptake. Nevertheless, the concentration of the soil 

inorganic N (NO3
--N and NH4

+-N) was increased, with the exception of the 

sampling of May-13, by the addition of compost. On the other hand, it is also 

supposable that the extra N rate was immobilized into the soil under organic forms, 

hence unavailable to plants. However, data obtained from the same experiment 

revealed a significantly higher amount of total N (TDN) recovered in the 1-year 

cumulative leachate from the soil amended with biocompost (data not shown) 

compared to compost alone. This difference was ascribed to the inorganic N (DIN) 

fraction, in particular to the NO3
--N form (data not shown). Based on these 

observations, we speculate that biochar and compost synergistically interacted 

affecting N cycle into the soil. This effect lead to an increase of the TDN in soil, 

likely as a consequence of a promoted nitrification process which was not 

correlated to the indirect effect of the compost-induced changes in soil pH. The 

effect seems to be related to the shift of the nitrifying bacterial community in soil 

(see further discussion).   
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6.5.2 Effect of the amendments on soil respiration partitioning  

6.5.2.1 Biochar did not change soil organic C-derived respiration (RSOC)  

The mere amendment with biochar did not alter RSOC flux. This is in line with the 

total C concentration of the biochar fragments at the end of the experiment that was 

not affected by 18-month of environmental exposure, contributing to strengthen the 

concept of biochar as a potential C-sequestration strategy. Nevertheless, the effect 

of soil-applied biochar on soil respiration remains ambiguous. Incubations studies 

have measured a biochar-derived C lost up to 0.79% of the total C concentration 

within 2 months (Hamer et al., 2004). Previous studies indicated a greater soil 

respiration following addition of low temperature (250°C and 400°C) biochars. 

This response was attributed to both biotic and abiotic processes (Cross and Sohi 

2011; Jones et al., 2011) such as microbial decomposition of the labile biochar 

soluble C fractions (Zhang et al., 2012), desorbable compounds (Borchard et al., 

2014; Bruun et al., 2012; Jones et al., 2011) or an abiotic release of C 

(Zimmerman, 2010). On the contrary, biochars produced from woody materials and 

crop residues pyrolized from 450°C to 1100°C did not report effects on C 

mineralization (Borchard et al., 2014; Zavalloni et al., 2011; Steinbeiss et al., 2009; 

Spokas and Reicosky, 2009). Similarly, the incorporation of a suite of biochars 

produced from spent coffee grounds, wood pellets and horse bedding compost at 

700ºC did not alter soil CO2 emissions (Zhang et al., 2014). This is supported by 

Karhu et al. (2011) and Van Zweiten et al. (2010) who described no net increase in 

CO2 evolution with birch (Betula ssp.) charcoal and 9 different biochars, 

respectively indicating the formation of recalcitrant aromatic structures during 

thermal degradation (Bruun et al., 2012) as possible explanation. Finally, a 

decreased CO2 flux from a soil amended with biochars (>525°C) was attributed to a 

toxic effect induced on microbes and to the adsorption of DOC by biochar 

(Dempster et al., 2012), while Case et al. (2013) indicated that a stabilization of 

SOM might have occurred in the presence of biochar in a field experiment to 

explain the suppression of soil respiration as a consequence of biochar 

incorporation. 
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6.5.2.2 Biochar and compost synergistically promoted RSOC flux  

As expected, the addition of compost alone significantly promoted RSOC, likely as a 

consequence of both microbial growth and stimulation of microbial activity by 

enhanced C-resources availability (Iovieno et al., 2009). Compost contains a large 

fraction of labile DOC that can be easily used as substrate by microorganisms. 

Changes in microbial community composition should also be considered. 

Furthermore, the improvement of soil physical properties (e.g. SWC) could have 

contributed to a more favorable environment for microbes (Tejada et al. 2009). 

Similar responses to our findings were described by many authors, who concluded 

that increases of soil respiration and enzyme activities are a direct consequence of 

organic amendments incorporation in soils (Bastida et al., 2008; García-Gil et al., 

2000; Perucci, 1992). CO2 flux represents a good indicator of the soil OM 

decomposition rate, indicating that the mineralization process of this substrate 

proceeded over the monitored period (18 months). Compost decomposition rate is a 

function of its maturity, soil properties (e.g. C/N ratio) and temperature. Although 

high values of RSOC often coincides with a higher availability of nutrients for plant 

(compost mineralization), it indicates a limited potential of such substrates as a C 

storage strategy. 

Noteworthy, the flux of RSOC was synergistically promoted by the combined 

addition of compost and biochar. The effect was clear since the beginning of the 

experiment and led to a significantly higher cumulative evolution of CO2. It should 

also be mentioned that a significantly greater amount of DOC was often measured 

in the leachate from biocompost treated soil compared to addition of biochar and 

compost alone (data not shown). Our evidences do not allow discriminating among 

C sources emitted both as CO2 and as fluxed DOC (in the leachate), hence the 

origin of this additional rate of C remains uncertain. Possible mechanisms include: 

a) an enhanced biochar-C mineralization or an abiotic release of biochar-C derived 

induced by the presence of compost; b) an enhanced compost-derived C 

mineralization stimulated by biochar; c) an increased native SOM mineralization 

(priming effect) induced by the contemporaneity of the two amendments and, d) all 

previous mentioned mechanisms occurred at different rates. Although biochar is 

more stable in soils relative to other sources of OM, it is demonstrated that the 
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addition of an easily degradable C-rich substrate (i.e. glucose) accelerated its 

mineralization by several times (Kuzyakov et al., 2009; Hamer et al., 2004). This 

suggested the so called “co-metabolic” response due to the enhanced growth of 

microbial biomass and the concurrent increase in enzyme production (Hamer et al., 

2004). Increased biochar decomposition could also have occurred when mixed with 

compost, since the latter acts as an inoculant carrier, providing microorganisms 

able to promote biochar oxidation and degradation. Nonetheless, the unaltered C 

concentration of the biochar fragments (biocompost treatment) recovered at the end 

of the experiment seems to exclude that the additional rate of C is biochar-derived.  

On the other hands, improving O2 availability and providing habitats for microbes 

(Lehmann et al., 2011), biochar in soil may have stimulated microbial growth and 

activity which do not depend on biochar-derived C as a source of energy, thereby a 

further degradation of the compost matrix cannot be excluded. Although the 

addition of a highly decomposable OM source to a biochar amended soil did not 

stimulate RSOC rate, it conversely induced an immobilization of the OM by 

increasing microbial biomass (Steiner et al., 2004).  

Another explanation involves possible positives priming effect induced by biochar 

at the expense of the native soil OM or added easily degradable OM sources (such 

as compost). Evidences suggest that biochar in soil may promote priming effects, 

increasing the decomposition of resident soil OM (Kuzyakov et al., 2009; Wardle 

et al., 2008; Hamer et al., 2004) in particular in sandy soils, as in our case, where 

native organic C is scarcely protected by clay particles (Fang et al., 2015). 

However, since biochar alone did not increase RSOC, we believe that a further 

decomposition of compost could represent the C source of the priming effect.     

 

6.5.2.3 Soil rhizosphere-derived respiration RR  

We were able to estimate rhizosphere-derived respiration (RR) rates from the 

second growing season. This because in the first season, values of RTOT and RSOC 

were always similar, since the contribution of RR remained negligible likely due to 

the fact that tree roots were poorly developed and did not colonize yet the soil 

volume under the RTOT collars. In our conditions and independently of the 

strategies, RSOC represented most of the RTOT, although RR accounted, in average, 



Chapter 6 - CO2 emissions partitioning, bacterial community profile and gene 

expression of Nitrosomonas spp. and Nitrobacter spp. in a sandy soil amended 

with biochar and compost 

175 
 

from 11 to 46% of the RTOT. This indicates that RR has notable importance in the 

soil C cycle dynamic. In addition, although poorly correlated (R2=0.39), the 

relative contribution of RR to RTOT was less pronounced in summer. This was 

mainly attributed to a significantly reduced RSOC flux recorded in winter (soil 

temperature dependence), rather than a promoted RR activity in summer. 

An increased belowground net primary productivity (NPP) after biochar 

application has been also indicated as a possible source for an increased CO2 

emission from soil in the long-term (Major et al., 2010). This did not occur in our 

experiment (data not shown), suggesting that C-related metabolic processes 

involving root respiration were unaffected by the amendments in the first 18 

months growing. Literature reports scarce information about the effect of organic 

amendments on soil respiration partitioning on fruit tree ecosystems, in particular 

from biochar (and similarly for biochar mixed with compost) amended soils. 

Ventura et al. (2014) reported a significantly larger RSOC in biochar-treated soil, 

especially during summers over 2-year monitoring. The same authors estimated 

significantly less rhizosphere-derived respiration rates in biochar-treated soil in a 

mature apple orchard, postulating an effect of biochar on microbial species 

composition or enhancement of metabolic activity. A better understanding of the 

impact of biochar, compost and biocompost on soil C fluxes partitioning in 

cultivated lands may provide evidences to predict the effect of such strategies on 

soil C and nutrient dynamics.  

 

6.5.3 Soil temperature and temperature dependence  

The soil application of either biochar or compost may reduce the surface albedo 

(amount of solar radiation reflected back in space; Genesio et al., 2012; Meyer et 

al., 2012) and as a consequence an increase in soil temperature associated to larger 

soil heat flux may be expected (Ventura et al., 2012; Vaccari et al., 2011). Since 

OM decomposition rates are linked to soil temperature, an increase of the latter 

promotes SOC loss. In our conditions, we assume that the shadow induced by the 

tree canopy and the anti-hail net, as well as irrigations contributed to reduce the 

solar radiation at soil level or mitigate temperature fluctuations, thus effects were 

somehow disturbed. However, RSOC was correlated with soil T, which increased 
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following an exponential shape (Ventura et al., 2014; Reichstein and Beer, 2008). 

R10 was poorly correlated with soil moisture, indicating that soil temperature has a 

major impact on soil RSOC emission. However, since soil moisture was controlled 

(May through September) by irrigations, responses in natural ecosystem could be 

different.  

 

6.5.4 Biocompost induced microbial community shift 

Bacterial community was significantly affected by sampling time and soil 

amendment. Broadly speaking, the cluster analyses showed that the most 

remarkable shifts were ascribed to the addition of compost and occurred from the 

first sampling (6 months after amendments incorporation). This occurred mainly 

since compost is a substrate rich in microbes, containing up to 2x109 colony 

forming units (CFU) of aerobic bacteria per gram dry matter (Postma et al., 2003), 

hence once incorporated, compost is an inoculant agent for soil. Furthermore, its 

simple nature stimulates both the microbial community in the compost substrate 

itself, as well as the soil-born microbiota community. Conversely, bacterial profiles 

between unamended and biochar treated soils showed a high similarity at both 

sampling time. Despite biochar-C derived is considered largely unavailable to 

microbes (Theis and Rillig, 2009), it is known that the porous structure of biochar 

may offer micro-habitats for bacteria (Atkinson et al., 2010) and, as a consequence, 

literature reports significant changes in bacterial soil community upon biochar 

addition (Chen et al., 2013; Kolton et al., 2011; Hu et al., 2014). Likewise, altering 

soil physicochemical properties (e.g. porosity, nutrient availability, cation 

exchange capacity (CEC), WHC and pH), biochar may shift the microbial 

community structure and function (Ameloot et al., 2014; Anderson et al., 2011; 

Lehmann et al., 2011, and literature therein). Nevertheless, in agreement with our 

findings, other studies did not report any effect induced by biochar on bacterial 

community, (Rutigliano et al., 2014; Dempster et al., 2012), suggesting that 

eventual shift depends on the type of biochar and environment-conditions.  

Although bacterial community in biocompost amended soil share more than 50% 

similarity with that of the compost, the combination of the two amendments 

exhibited a unique profile with an increase in band richness. The positive effect of 



Chapter 6 - CO2 emissions partitioning, bacterial community profile and gene 

expression of Nitrosomonas spp. and Nitrobacter spp. in a sandy soil amended 

with biochar and compost 

177 
 

organic amendments on bacterial community diversity and complexity in soil is 

well documented (Chaudhry et al., 2012; Vivas et al., 2009; Fracchia et al., 2006). 

In our study biocompost promoted the bacterial band richness likely as a 

consequence of the interaction between the two amendments. We hypothesize that 

the porous structure and the high surface area of biochar provided an aerated 

habitat in which soil bacteria, inoculated with compost, were able to flourish safer 

than in the amendments separated. Furthermore, compost provided readily 

decomposable C sources for soil-born microbiota which developed faster and were 

physically protected by biochar.  

The identification of the most relevant bands revealed the presence of Arthrobacter 

spp., which is a widespread soilborne bacterial genus (Garbeva et al., 2004). 

However band intensity was clearly higher in unamended and biochar amended 

soils compared to compost-based treatments suggesting a possible reduction due to 

the emergence of new microbial population. Planifilum fimeticola was mainly 

detected in amended soils; it belongs to the Thermoactinomycetaceae family, firstly 

isolated from compost by Hatayama et al. (2005).   

Actinomadura flavalba (band 5), Saccharomonospora viridis (band 7), 

Thermosporomyces composti (band 8) and Enterobacter spp. (band 9 and 10) were 

peculiar of compost and biocompost soil profiles and, except for Enterobacter spp., 

these microbes belong to the compost microbial consortia (Xu et al., 2013); 

nevertheless, the presence of Enterobacter spp. have been found during the later 

stages of composting of sewage solids (Novinscak et al., 2009) and in mature 

manure compost-amended soil (Edrington et al., 2009), indicating that compost 

represents a source of biodiversity in soil. 

 

6.5.5 Biocompost promoted gene expression of Nitrosomonas spp. and 

Nitrobacter spp. bacterial community   

Belonging to the Nitrobacteraceae family, Nitrosomonas spp. and Nitrobacter spp. 

are genus of rod-shaped, gram-negative and chemolithotrophic (requiring O) 

bacteria, able to use inorganic reduced compounds as a source of energy. They both 

are involved in the N cycle in soil by increasing the availability of N to plants. The 

first genus oxidizes ammonia (NH3
+) into nitrite (NO2

−) as a metabolic process, 
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while Nitrobacter spp. uses energy from the oxidation of NO2
− into NO3

-, which is 

then the N mineral form available for plant uptake. Both genus are typical of 

cultivated lands, especially in sub-alkaline and rich of N compounds soils (Prescott 

et al., 2005) in which they prefer to colonize solid and smooth surfaces. Optimum 

pH for Nitrosomonas spp. ranges between 6.0 and 9.0 while Nitrobacter spp. 

prefers between 7.3 and 7.5. Nitrosomonas spp. membranes contain AMO, the key 

enzyme for NH3
+ oxidation leading to the formation of hydroxylamine first and 

then to NO2. The latter will be oxidized by bacteria belonging to the genus 

Nitrobacter spp. through the NOR enzyme. When protein rich OM is incorporated 

into the soil, the nitrification rate is enhanced.    

Amendments significantly promoted expression of key genes (AMO and NOR) 

involved in nitrification cycle and the corresponding Nitrosomonas spp. and 

Nitrobacter spp. relative abundance in soil, supporting the notion that in our study 

amendment strategies affected the N cycle whit the most significant changes 

observed in the soil treated with biocompost. Providing an aerated habitat for 

bacteria and increasing soil CEC and DOC, the mere addition of biochar to soil 

may stimulate the nitrifying community. In addition, biochar may favor the 

adsorption of inhibiting nitrification molecules with positive effect on nitrifying 

bacteria (Ameloot et al., 2013 and literature therein). This was also observed in our 

experiment, although significant differences between unamended and biochar 

treated soils were only sporadically measured. This occurred, at least partially, 

because the soil we used was intentionally sandy and poor of OM, thus available 

protein-rich substrates for nitrifying bacteria were limited. Such response is also in 

agreement with the observed trend in the RSOC, which remained similar between the 

two treatments. On the other hand, soil respiration rates were similar despite a 

higher microbial reproduction rates induced by glucose addition in soils amended 

with biochar (Steiner et al., 2004). However, biochar-induced changes were 

observed mainly in the last soil sampling (Sep-13) for both Nitrobacter spp. 

abundance and Nitrosomonas-induced enzymatic gene expression, suggesting that 

changes were likely at the beginning and that required more time. Furthermore, 

these changes do not seem to be related to a liming effect or an improved WHC in 

the biochar treated soil. 
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Interestingly, the positive effect induced by the addition of compost was enhanced 

by the mixture with biochar. This effect was evident since the first sampling (6 

months after amendment incorporation into the soil) and proceeded throughout the 

experiment timecourse. We measured an increased concentration of mineral N in 

soil in compost-amended soils, suggesting the positive effect induced by this 

amendment on nitrifying bacteria. However, assuming a similar N uptake by plants 

(data not shown), an increased availability of soil mineral N (in particular as NO3
--

N) was expected to emerge in the biocompost amended soil. Such availability was 

not measured, indicating that NO3
--N likely followed a different pattern (e.g. lost 

through leaching). In addition, the significantly higher concentration of N 

recovered on the biochar fragments at the end of the experiment could have 

contributed to effectively retain part of the NO3
-- N in the soil amended with 

biocompost. Recently, in fact, Kammann et al. (2014) suggested a strong role of 

biochar in retaining mineral N, mostly in the form of NO3
- rather than NH4

+. 

Furthermore, we suppose that part of the N (as NO3
-- N) was assimilated by the 

growing microbes in soil, inducing an N immobilization which did not alter N 

mineral availability. 
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6.6 CONCLUSIONS 

Benefits on soil properties and fertility were mainly induced by the addition of 

compost (either with or without biochar) on the sandy sub-alkaline soil, endorsing 

its agronomical value as soil conditioner. Different C sequestration potential 

emerged between compost and biochar, since the latter showed a greater stability in 

soil over the first 18 months following its application at a relatively high rate (87 t 

ha-1), while  the increased release of CO2 from compost was directly linked to the 

stimulation of the microbial community by providing labile C sources. 

However, interacting synergistically, the mixture of the two amendments, 

significantly affected C cycle in soil promoting RSOC and, despite the source of C 

emissions were unclear, a priming effect induced by biochar on the labile C-

fractions supplied with compost is hypothesized. This response reflects immediate 

negative ecological implications because of the faster C losses in the environment. 

However, it may account only for a small fraction of the C totally stored with 

biocompost, suggesting that the potential to sequester C in soil can even result 

enhanced compared to the addition of the amendments alone. The synergism 

between the two strategies lead to a further improvement of the agronomical soil 

properties (e.g. higher SWC) and this occurred also in the N cycle, through the 

promotion of bacterial communities involved in the nitrification process 

(Nitrosomonas spp. and Nitrobacter spp.). The bacterial community analysis by 

PCR-DGGE showed that biodiversity was accentuated by compost and, to a greater 

extent, by biocompost which displayed a unique profile with a significant increase 

in band richness and bacterial species derived from the compost inoculum. We 

suggest that the porous structure of biochar provided an aerated habitat for bacteria 

inoculated with compost which provided easily decomposable C sources for soil-

born microbiota. However, the lack of responses in specific bacterial communities 

observed in biochar amended soil suggests that sometimes benefits from biochar 

are overestimated. On the other hand, in the period of investigation, hardwood-

derived biochar in a sandy soil had no detrimental effect on specific bacterial 

diversity, rather promoted the bacterial communities involved in the nitrification 

process. Actinomadura flavalba, Saccharomonospora viridis, Thermosporomyces 

composti and Enterobacter spp. were peculiar of compost and, in particular, of 
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biocompost profile. We conclude that the contemporaneous addition of biochar and 

compost in soil appear effective from an agronomical point of view, providing 

ecosystem services and offering new technology for the sustainable management of 

natural resources (including organic wastes), although environmental concerns (C 

emissions, leaching of DOC and N), require further investigations. 
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Table 6.1. Physical and chemical characteristics of the soil used in the experiment   
 

Parameter Method1 Unit Value 
Sand (2-0.05 mm) Bouyoucos g kg-1 880 
Silt (0.05-0.002 mm)          Bouyoucos g kg-1 90 
Clay (<0.002 mm) Bouyoucos g kg-1 30 
Organic Matter Walkley-Black g kg-1 5.5 
Total C  g kg-1 3.19 
C/N ratio    7.78 
pH (in water)   8.07 
Total carbonate (CaCO3) De Astis g kg-1 190 
Active lime (CaCO3) Drouineau g kg-1 1.1 
Cation Exchange 
Capacity (CEC) 

Barium Chloride meq 100 g-1 10.65 

S.A.R. index   0.26 
Chlorotic power index    71 
Electrical 
conductivity 

 mS cm-1 0.164 

Total N  Kjeldhal g kg-1 0.41 
Chloride water soluble  mg kg-1 14 
P exchangeable2   Olsen mg kg-1 26 
P2O5 exchangeable2  mg kg-1 60 
K exchangeable3   Barium Chloride  mg kg-1 87 
K2O exchangeable3    mg kg-1 104 
K water soluble    mg kg-1 7.4 
Ca exchangeable3  Barium Chloride mg kg-1 1914 
Ca water soluble  mg kg-1 71.9 
Mg exchangeable3 Barium Chloride mg kg-1 79 
Ma water soluble  mg kg-1 4.8 
Na exchangeable3 Barium Chloride mg kg-1 53 
Na water soluble  mg kg-1 8.3 
Fe exchangeable3 DTPA    mg kg-1 12.4 
Mn exchangeable3 DTPA mg kg-1 6.2 
Cu exchangeable3 DTPA mg kg-1 1.49 
Zn exchangeable3   DTPA mg kg-1 0.76 
B exchangeable2 hot water  mg kg-1 0.32 

1Analisys were performed according to National Official Methods (D.M. 13/09/1999 G.U. 
N, 248 of 21/10/1999).  
2Determined spectrophotometrically  
3Determined by AAS (Atomic Absorption Spectrophotometry) 
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 Table 6.2. Physical and chemical characteristics of the biochar 
Parameters Unit Value 

Physical properties   

Moisture %1 13.8 
Bulk density g cm-3 0.43±0.04 
Hydrophobicity  Slightly hydrophobic 
Total porosity  mm3 g-1 2722 
Transmission pores mm3 g-1 318 
Storage pores mm3 g-1 1997 
Residuals pores mm3 g-1 406 
Max water absorption g g-1 of d.m. 4.53 
Skeletal density (SD)2 g cm-3 1.86±0.04 
Envelope density (ED)3 g cm-3 0.2459±0.0056 
Porosity (ED/SD) % 0.863±0.00574 
Surface area1 (BET Brunauer–Emmett–
Teller method)  

m2 g-1 410±6 

Particle size distribution1 
50-20 
20-10 
10-8 
8-4 
4-2 
2-1 
<1 

mm g-1 
% 
% 
% 
% 
% 
% 
% 

 
4.45 
12.1 
13.1 
10.36 
19.85 
24.2 
15.94 

Chemical properties   

pH - 9.8 
CEC cmolc kg-1 101 
Carbon1 (C) g kg-1 778.0 
Total nitrogen (N) g kg-1 9.1 
C/N - 85.49 
Aluminum (Al) mg kg-1 268 
Arsenic (As) mg kg-1 0.005 
Beryllium (Be) mg kg-1 0.001 
Cadmium (Cd) mg kg-1 0.001 
Calcium (Ca)  g kg-1 25.0 
Chrome (Cr) mg kg-1 0.002 
Cobalt (Co) mg kg-1 0.002 
Copper (Cu)  mg kg-1 97 
Iron (Fe)  mg kg-1 333 
Magnesium (Mg)  g kg-1 28.7 
Manganese (Mn) mg kg-1 84 
Molybdenum (Mo) mg kg-1 2 
Phosphorus (P)  g kg-1 23.3 
Potassium (K)  g kg-1 13.9 
Sodium (Na) g kg-1 11.9 
Sulphur (S)  mg kg-1 481 
Zinc (Zn)  mg kg-1 104 
1data obtained from Baronti et al. (2014) (with permission). 2The skeletal density is the sample mass divided 
by sample volume occupied by a solid sample, including any pores not accessible to the helium gas. 3The 
envelope density is defined as the sample mass divided by the total sample volume that is measured if an 
“envelope” would be placed around each individual particle. 
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Table 6.3. Main physical and chemical parameters of the compost 
 

Parameters  Unit Value 

Humidity % 47.9 

pH (in water)   7.5 

Specific conductivity dS cm-1 3.52 

Salinity meq 100 g-1  84.5 

Plastic materials < 5 mm % d.w. <0.01 

Plastic materials > 5 mm % d.w. <0.01 

Other inerts < 5 mm % d.w. <0.01 

Other inerts > 5 mm % d.w. 0.33 

Salmonella 1MPN g-1 none 

E. coli 2CFU g-1 <25 

Organic matter  g kg-1 (d.w.) 543.1 

Organic Carbon (C) g kg-1(d.w.) 386 

Humic and Fulvic C g kg-1(d.w.) 141 

Total nitrogen (N) g kg-1(d.w.) 22.7 

Organic N % of total N  87.2 

C/N  17.0 

Chrome hexavalent (Cr) mg kg-1 <0.5 

Cadmium (Cd) mg kg-1 <0.5 

Sodium (Na) mg kg-1 3385.3 

Lead (Pb) mg kg-1 31.1 

Copper (Cu) mg kg-1 87.1 

Zinc (Zn) mg kg-1 189.8 

Mercury (Hg) mg kg-1 <0.5 

Nickel (Ni) mg kg-1 15 
                       1most probable number 
                       2colony-forming unit   
               Source: Nuova Geovis, Bologna, Italy, (2012) – Analyses report N. 11.4235 
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Table 6.4. Effect of soil-applied Biochar and Compost on soil pH 
 
Treatment Date 
 May-12 Jul-12 Sep-12 Nov-12 Jan-13 Mar-13 May-13 Jul-13 Sep-13 

Control 7.81 ab 7.74 7.72 a 7.89 a 7.83 a 7.80 a 7.98 a 8.00 ab 7.93 a 
Biochar 7.92 a 7.80 7.78 a 7.86 a 7.82 a 7.91 a 8.05 a 8.06 a 7.96 a 
Compost 7.63 b 7.72 7.55 b 7.68 b 7.57 b 7.54 b 7.73 b 7.91 b 7.77 b 
Biocompost 7.61 b 7.66 7.56 b 7.64 b 7.52 b 7.61 b 7.72 b 7.90 b 7.85 b 
Significance *  ns * ** * * *** ** * 

ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In 
the same column, means followed by the same letter are not statistically different (P≤0.05, Tukey's HSD Test) 
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Table 6.5. Effect of soil-applied Biochar and Compost on soil NO3

--N and NH4
+-N concentration (mg kg-1) 

 
Treatment May-12 Jul-12 Sep-12 Nov-12 Jan-13 Mar-13 May-13 Jun-13 Jul-13 Sep-13 

 NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N NO3
--N NH4

+-N 

Control 6.6 b 2.9 b 9.6 b 3.7 b 1.1 b 2.3 0.3 b 2.3 <dl <dl <dl <dl 37.6 a 3.1 27.4 2.9 2.5 2.2 0.73 b 0.72 b 
Biochar 6.7 b 2.7 b 9.8 b 3.2 b 1.8 b 2.1 1.2 a 2.4 <dl <dl <dl <dl 20.3 a 3.3 40.3 6.1 3.6 2.0 0.84 b 0.80 b 
Compost 12.0 a 4.0 a 44.2 a 4.2 a 2.8 a 2.4 0.7 ab 2.7 <dl 0.08 a <dl 0.39 a 1.6 b 3.2 18.1 3.1 4.0 3.1 1.52 a 1.37 a 
Biocompost 12.1 a 4.0 a 50.1 a 4.5 a 3.6 a 2.5 1.8 a 2.8 <dl 0.09 a <dl 0.45 a 2.4 b 2.7 20.4 4.0 2.0 2.3 1.34 a 1.28 a 
Significance ***  ** *** * * ns * ns ns ** ns * * ns ns ns ns ns * ** 

ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In the same column, means followed by the same letter are not 
statistically different (P≤0.05, Tukey's HSD Test). dl= detection limit was 0.1 and 0.6 µg L-1 for NO3

- and NH4
+, respectively.    

 
 
Table 6.6. C and N concentration of the soil and of the biochar fragments at the end of the experiment  
 

Treatment Soil Biochar Fragments 
 C N C N 
 g kg-1 g 100g-1 
Control (Fresh1) 2.29 b 0.55 c 77.6 0.23 b 
Biochar 2.32 b 0.77 c 73.1 0.66 a 
Compost 2.78 b 1.50 b - - 
Biocompost 4.71 a 2.51 a 73.3 0.50 a 
Significance *** ** ns *** 

ns, ** and ***: effect of treatment not significant or significant at P≤0.01 and P≤0.001, respectively. In the same column, means followed by the same letter are not statistically 
different (P≤0.05, Tukey's HSD Test).1 Fresh indicates biochar fragments never applied to the soil.  
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Table 6.7. Effect of soil-applied Biochar and Compost on soil moisture (0.05-0.30 m) 
throughout the experiment 
 

Treatment Soil moisture (g 100 g-1 dw) 
 May-12 Jul-12 Sep-12 Nov-12 Jan-13 Mar-13 May-13 Jun-13 Jul-13 Sep-13 

Control 13.4 b 12.8 b 3.2 b 11.7 b 14.4 c 12.9 c 9.7 5.2 b 6.1 7.8 b 
Biochar 17.4 a 14.5 b 3.4 b 13.3 ab 16.6 bc 14.2 b 10.7 6.4 ab 6.6 8.8 ab 
Compost 17.2 a 15.6 ab 4.0 b 14.2 ab 17.2 ab 15.4 b 11.9 7.5 ab 6.9 10.1 a 
Biocompost 22.5 a 18.8 a 5.3 a 15.5 a 19.4 a 17.4 a 11.9 8.5 a 7.2 10.3 a 
Significance *  ** * ** *** *** ns * ns ** 

ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. In 
the same column, means followed by the same letter are not statistically different (P≤0.05, Tukey's HSD Test) 
 
  
Table 6.8. Phylogenetic identification by BLAST alignment tool 
(http://www.ncbi.nlm.nih.gov/BLAST/) of selected DGGE bands from the bacterial DGGE 
fingerprint as shown in figure 6.9 
 

Band numbera Closest Identity % Identityb 
1 Planifilum fimeticola  99% 
2 ndc  
3 Gloeobacter kilaueensis 94% 
4 nd - 
5 Actinomadura flavalba 100% 
6 Arthrobacter spp.  100% 
7 Saccharomonospora viridis  100% 
8 Thermasporomyces composti 97% 
9 Enterbacter spp.  100% 
10 Enterbacter spp. 100% 

aBands are numbered according to Fig. 9. 
bIdentity represents the % identity shared with the sequences in the GenBank databases assignment of band 
sequences from PCR-DGGE profiles. 
cnot determined 
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Figure 6.1. Effect of soil-applied biochar and compost on soil organic C-derived respiration (RSOC) 

 

*, ** and ***:  effect of treatment significant at P≤0.05, P≤0.01 and P≤0.001, respectively. Within the same date, means followed by the same letter are not statistically different 
(P≤0.05, Tukey's HSD Test). Values represent means of 4 replicates. 
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Figure 6.2. Cumulative evolution of soil organic C-derived (CO2) respiration (RSOC) as affected by soil-applied biochar and compost  

 

***: effect of treatment significant at P≤0.001. Within the same date, means followed by the same letter are not statistically different (P≤0.05, Tukey's HSD Test). Values 
represent means of 4 replicates. 
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Figure 6.3. Effect of soil-applied biochar and compost on soil water content (SWC) at 0-0.05 m depth  

 

ns, *, ** and ***: effect of treatment not significant or significant at P≤0.05, P≤0.01 and P≤0.001, respectively. Within the same date, means followed by the same letter are not 
statistically different (P≤0.05, Tukey's HSD Test). Values represent means of 4 replicates. 
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Figure 6.4. Effect of soil-applied biochar and compost on temperature dependence of soil organic C-derived (CO2) respiration (RSOC) 

  

   
** and ***: correlation between soil temperature and RSOC significant at P≤0.01 and P≤0.001, respectively.  
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Figure 6.5. Genetic richness of the bacterial community in soil unamended and amended with 

biochar, compost and biocompost sampled after 6 (Sep-12) and 18 months (Sep-13) 

amendment application 

 

 

* and ***: effect of sampling time and treatment significant at P≤0.05 and P≤0.001, respectively. Within the same 
factor (sampling time and treatment), means followed by the same letter are not statistically different (P≤0.05, 
Tukey's HSD Test). Interaction between sampling time and treatment not significant.  
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Figure 6.6. Clustering analysis of the DGGE patterns of the rhizospheric soil analyzed at two 

sampling times (Sep-2012 and Sep-2013). CTR, B, C and BC indicate soil samples unamended 

and amended with biochar, compost and biocompost, respectively 
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Figure 6.7. Multidimensional scaling (MDS) analysis of DGGE profiles (16S rRNA gene) 

from rhizobacterial communities analyzed at two sampling times (Sep-2012 and Sep-2013)  
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Figure 6.8. Principal Component Analysis (PCA) applied to bacterial diversity in the soil at 

two sampling times (Sep-2012 and Sep-2013). CTR, B, C and BC indicate soil samples 

unamended and amended with biochar, compost and biocompost, respectively. The axis 1 and 

2 explain the 20.4% and 37.2% of total variance, respectively, 

     Ctr 2012; ♦ Ctr 2013;       B 2012;   ■ B 2013; ◊ C 2012;      C 2013; ◌ BC 2012; ● BC 2013 

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

֠

֠

֠

�

֠�

�

�

�

�

�

�

�

�

�

Axis 1 

A
x
is

 2
 



Chapter 6 - CO2 emissions partitioning, bacterial community profile and gene expression of 

Nitrosomonas spp. and Nitrobacter spp. in a sandy soil amended with biochar and compost 

 

203 

 

Figure 6.9. DGGE patterns of 16S rDNA fragments amplified from rhizospheric soil at the end 

of the experiment (Sep-2013). Arrows indicated the most relevant bands excised 
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Figure 6.10. Effect of soil-applied biochar and compost on gene expression of key genes of nitrification by Nitrosomonas spp. (Ammonia 

monoxygnease) and Nitrobacter spp.  (Nitrite oxidoreductase) species and relative bacterial abundance in soil 

 

 

Data are expressed as time fold changes (FC) expression levels relative to reference genes expression level. For each sampling, different letters indicate statistical difference according to the SNK test (P 
≤ 0.05). Compost and biocompost were always significantly different from unamended soil, whereas c1 indicate a statistical difference between biochar and control.  
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CHAPTER 7 

 

Biochar on nutrient retention and crop performance in temperate 

region: a 3-year field trial in a nectarine orchard 

 

Abstract 

Biochar has the potential to alter soil water holding capacity and macronutrients 

availability (either releasing or retaining minerals), thus benefit plant growth and 

crop yield. Nevertheless, long-term field-trials in temperate regions are limited and 

benefits from biochar might not always be as evident as for highly weathered 

tropical soils. Therefore, the aims of this study were to: i) evaluate the potential of 

biochar as a source of macronutrients and its affinity in retaining these; ii) assess 

the effect of increasing biochar rates on soil properties and mineral N retention 

under natural leaching conditions; iii) investigate the long-term effect of biochar 

rates on nutritional status, yield and fruit quality of nectarine trees grown in 

temperate region. To this end, a set of lab tests showed that biochar released 

sustained amounts of phosphorus (P), magnesium (Mg) and, in particular, 

potassium (K). Biochar released low amounts of ammonium nitrogen (NH4
+-N) 

while that of nitrate-N (NO3
--N) was absent. Moreover, biochar was ineffective in 

removing most of the cations (and NO3
--N) from enriched solutions, while at the 

rate of 40 g L-1, biochar removed almost 52% of the initial NH4
+-N concentration 

(10 mL-1).      

A 3-year field trial was carried out in a mature, irrigated, fertilized, commercial 

nectarine orchard (Big Top grafted on GF677) grown on a sandy-loam soil located 

in the Po Valley, where increasing biochar (from hardwood pyrolyzed at 500°C) 

application rates (0, 5, 15 and 30 t ha-1) were compared. Soil pH, soil moisture, soil 

mineral N availability and leaching, leaf nutritional status, yield and fruit quality 

were evaluated. Results from the field showed that biochar did not affect soil 

quality and plant response over three years of investigation. We hypothesize that, 

unless an evident constraint is identified, in non-limiting conditions in terms of 

water availability and soil fertility, potential benefits from biochar application for 
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plant nutrition and soil fertility are hidden or negligible. It is worth noting that 

biochar was not harmful to either nectarine trees or soil properties, indicating that 

rates can be increased or application repeated. However, independently of the rates, 

biochar reduced the leaching of NH4
+-N, (but not that of NO3

--N), whit both 

environmental and agronomical advantages. 

 

Keywords: Nitrogen, macronutrients, Big Top, soil leaching, ion exchange 

lysimeters 
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7.1 INTRODUCTION 

Biochar is the recalcitrant carbon (C)-rich byproduct of the thermal decomposition 

of biomasses under limited oxygen supply at relatively low temperatures (pyrolysis 

or gasification) (Atkinson et al., 2010). Biochar as a soil conditioner is 

progressively gaining interest as a valuable strategy to increase C sequestration and 

mitigate climate change (Laird, 08), providing at the same time benefits for both 

soil fertility and crop yield (Atkinson et al., 2010). 

An overall increase in crop productivity has been reported following biochar 

application (Genesio et al., 2015; Jeffery et al., 2011). Nevertheless, yield response 

to biochar addition is not always positive, but can be neutral (Schmidt et al., 2014) 

or even negative (Mukherjee and Lal, 2014; Crane-Droesch et al., 2013; Spokas et 

al., 2012; Van Zwieten et al., 2010 and literature therein), suggesting that that crop 

response to biochar application varies with crop species, environmental conditions, 

soil type, biochar characteristics (feedstock and charring conditions) and 

application rate. Most of the scientific evidences on the use of biochar as a soil 

conditioner were obtained in tropical and subtropical environments, where soils are 

highly weathered with low soil organic C (SOC) and cation exchange capacity 

(CEC) (Glaser and Birk, 2012). Moreover, experiments were often short-term and 

carried out in controlled conditions (with limited environmental fluctuations) and 

results are frequently contradictory (Mukherjee and Lal, 2014). Few studies 

focused on the effect of biochar on perennial crops grown in field conditions in 

temperate region (Hammond et al., 2013; Jeffery et al., 2011), likely due to the 

longer time required to produce detectable effects on species with a largely 

developed root system (Genesio et al., 2015). Consequently, performing long-term 

evaluations on the response of different crops in field conditions grown in diverse 

environments has been stressed as a research priority (Lorenz and Lal, 2014; 

Mukherjee and Lal, 2014), as biochar-induced effects on soil properties and crop 

response may also change over time (Lentz and Ippolito, 2012). 

Rates at which biochar should be applied in different conditions to achieve positive 

responses, or at least to avoid detrimental effects, is also still uncertain. Glaser et 

al. (2001) suggest that moderate biochar application rates are usually beneficial 

despite in few cases were negative, at least for some crops or soils (Gaskin et al., 
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2010; Van Zwieten, et al., 2010; Sohi et al., 2009). Identify mechanisms behind 

observed yield responses also in relation to the application rate is therefore of 

crucial importance (Mukherjee and Lal, 2014; Spokas et al., 2012). 

To explain how biochar might benefit plant growth and crop yield, different 

mechanisms have been proposed, including the supply of nutrients, the 

improvement of nutrient use efficiency, and the alteration of soil chemical-physical 

parameters (e.g. pH and bulk density) that affect plant growth, soil water retention 

and plant available water (Baronti et al., 2014; Mukherjee and Lal, 2014; Atkinson 

et al., 2010; Sohi et al., 2010; 2009; Lehmann and Joseph, 2009). Biochar can act 

as a fertilizer or amendment, by either supplying or retaining minerals in soil (Laird 

et al., 2010; Silber et al., 2010; McHenry, 2009; Steiner et al., 2008; 2007; 

Lehmann et al., 2003). Content, form and chemical structure of minerals in biochar 

are strongly influenced by the pyrolysis conditions and biomass. Usually, during 

thermal degradation, potassium (K), chlorine (Cl) and nitrogen (N) vaporize at 

temperatures below 700 °C, while calcium (Ca), magnesium (Mg), phosphorus (P) 

and sulphur (S) vaporize at higher temperatures (>1000°C) (Amonette and Joseph, 

2009). These elements concentrate in the biochar as the progressive elimination of 

the more volatile C, oxygen (O) and hydrogen (H) occurs (Singh et al., 2010; 

DeLuca et al., 2009; Gaskin et al., 2008). From an agronomical point of view, rate 

and extent at which nutrients contained in biochar become available for plant 

uptake and how biochar interacts with minerals dissolved in the soil solution is of 

major importance to guide fertilization. 

Biochar can increase soil nutrient retention because of its ability to absorb ions, due 

to its high surface area and charge density (Lehmann, 2007; Liang et al., 2006). 

Several studies confirm the ability of biochar to retain both nitrate-N (NO3
--N) and 

ammonium-N (NH4
+-N) decreasing N losses through leaching (Kamman et al., 

2014; Ventura et al., 2013; Lehmann et al., 2003). However, evidences about the 

effect of biochar in retaining other nutrients, as well as the rate at which it is more 

effective in adsorbing inorganic N in agricultural soils under leaching conditions 

are still scarce, in particular in intensive cultivated lands (Ding et al., 2010). 

Therefore, the aims of this study were to: i) evaluate the potential of biochar as a 

source of macronutrients and its affinity in retaining these; ii) assess the effect of 
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increasing biochar rates on mineral N retention under natural leaching conditions; 

iii) investigate the long-term effect of biochar rates on yield, nutritional status and 

fruit quality in a perennial crop grown in temperate region;  

Results could provide knowledge to best guide the exploitation of the biochar 

approach. To address these aims, were performed a set of lab tests to evaluate 

macronutrients releasing and retention capacity of biochar. In addition, a 3-year 

field experiment was carried out in a commercial nectarine orchard  

We hypothesized that: i) biochar can represent a source of macronutrients and 

increase nutrient retention in soil; ii) benefits from biochar to soil implies positive 

response on yield, nutritional status and fruit quality and iii) increasing application 

rates can proportionate increasing benefits. 
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7.2 MATERIALS AND METHODS 

7.2.1 Biochar macronutrients release and retention potential 

The biochar used in this experiment was provided by Romagna Carbone 

(Bagnacavallo, RA, Italy) and obtained in a transportable ring kiln where a mixed 

feedstock of mechanically chipped hardwood (mainly from peach and grapevine) 

was slowly pyrolyzed at approximately 500 °C, at atmospheric pressure. A 

complete physicochemical characterization of the biochar has been performed is 

reported in table 7.1. Biochar was sieved at 2 mm mesh (fragment size ranged 

between 2 and 7.5 mm), then repeatedly washed in deionized water (d-H2O) (20:1 

w w-1) by shaking for 30 min at 100 rpm on an orbital shaker to reduce ash and tar 

content. Electrical conductivity (EC) of the solution was determined by a 

conductimeter (Conductivity meter 524, Crison, Barcelona, Spain), and washing 

procedure was repeated (7 times) until EC reached the constant value of 51.5 ± 

1.64 µS (the initial EC was 661 ± 8.83 µS, n=3). Washed biochar was then oven-

dried at 30°C for 48 h and then added to 100 mL glass flasks (Pic. 7.1) containing 

25 mL of d-H2O in order to obtain the final biochar concentration of 4, 10, 20, 30 

and 40 g L-1 with six replicates for each concentration. Additionally, 2 series of 

flasks with same rates of biochar were added with 25 mL solutions containing 10 

mg L-1 of either NO3
--N or NH4

+-N. Pure KNO3 (99.7 % purity, Merck) or 

SO4(NH4)2 (99 % purity, J.T. Baker) salts were used as a source of NO3
--N or 

NH4
+-N, respectively. The pH of each solution was adjusted to 7.2 ± 0.1 with 1 M 

sodium hydroxide (NaOH) or 0.1 M HCl and then flasks were shaken 120 min at 

100 rpm on an orbital shaker. The supernatant was filtered (Wathmann 42) and 

finally analyzed for NO3
--N and NH4

+-N concentration with a continuous flow 

autoanalyser (AA-3; Bran+Luebbe, Norderstadt, Germany). 
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Picture 7.1. Biochar samples were weighted at increasing rates   

   

Additionally, 5 series of flasks, with same rates of biochar as previously indicated 

with 3 replicates, were added with 25 mL of either d-H2O or solutions containing 

10 mg L-1 of one of the following cations: K, P, Mg or Ca. Pure K2O diluted in 

HNO3, P2O5 diluted in d-H2O, MgCl2×6H2O and CaCl×6H2O diluted in HCl 0.12 

N standard solutions (Sigma-Aldrich) were used as a source of macronutrients. The 

pH of all the solutions was adjusted by 1 M NaOH or 0.1 M HCl at 7.2 ± 0.1, and 

then flasks were shaken on an orbital shaker for 120 min at 100 rpm. The 

supernatant was filtrated (Wathmann 42) and analyzed for macronutrients by AAS 

(Varian AA200, Mulgrave, Victoria, Australia). 
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7.2.2 Field trial 

7.2.2.1 Plant material and growth conditions  

A 3-year (2009-12) field trial was carried out on a mature commercial nectarine 

(Prunus persica (L.), Batsch) orchard of the cv. Big Top grafted on the hybrid 

GF677 (P. persica L. x P. amygdalus L.) planted in 1997 with a frame of 3.5 m × 

5.5 m (519 trees ha-1). The orchard was located in the South Eastern Po Valley 

(Tebano, Ravenna, Italy, 44° 29’ N, 11° 78’E, 58 m a.s.l.) on a sandy-loam soil 

classified as Inceptisol (USDA, 2010), which main physical and chemical 

characteristics are summarized in table 7.2. Climate of the area is classified as 

temperate sub-continental with cold winters and humid and warm summers. 

Throughout the experiment, the average air temperature was 13.6 °C, while annual 

precipitation ranged between 650 and 790 mm, mainly concentrated in spring and 

autumn. Trees were trained as in a delayed vase and drip irrigated from May to 

August in order to return the evapotranspiration rate. Orchard alleys were 

maintained with native grass species and tree rows (2 m wide) herbicided with 

glufosinate ammonium (DL-phosphinothricin), twice per year. Trees were yearly 

thinned and managed in terms of pruning, irrigation as well as pest and disease 

control, according to the regional guidelines of Integrated Crop Management (ICM, 

2009). Fertilization was managed by providing 0.25 kg N tree-1 (130 kg N ha-1) as 

Urea (46% N) distributed yearly at petal fall. 

 

7.2.2.2 Experimental design 

The biochar used in this trial was taken from the same batch used for the lab assay. 

Four biochar application rates (0, 5, 15 and 30 Mg ha-1) were compared in a 

complete randomized block design (Pic. 7.2), with 5 replicates arranged in 4 

consecutive tree rows. Each experimental plot consisted of 5 trees, and only the 3 

central trees were used for data collection. Adjacent plots along the row were 

separated by at least 2 unamended trees. In November 2009, biochar was 

distributed on the herbicided strip (2 m wide) along the tree row of each 

experimental plot (35 m2 area) and incorporated into the soil at the depth of 20 cm 

(A horizon) by a disk arrow. The same soil disturbance was applied on unamended 

plots. 
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Picture 7.2. Plot amended with biochar, before its incorporation  

 

7.2.2.3 Leaf chlorophyll content and tree nutritional status 

From July 2010, leaf chlorophyll (Chl) content was estimated in summer on 10 

fully expanded leaves per tree, randomly selected from the annual shoots, using a 

hand-held Chl meter (SPAD 502, Minolta Co. LTD, Osaka, Japan). The same 

leaves were then collected, immediately closed into polyethylene bags and 

transported in a portable refrigerator to the laboratory, where leaf area was 

determined with a LI 3000 leaf area meter (Li-Cor Inc., Lincoln, Nebraska, USA). 

Leaf laminas (without petiole) were washed in a 0.1 N HCl solution with 0.1% 

surfactant (Tween 20, Sigma-Aldrich, Milan, Italy), rinsed 2 times in tap water, 

then in d-H2O, oven dried (65 °C) and milled (0.2 mm mesh). Specific leaf weight 

(SLW) was calculated dividing leaf dry weight by leaf area. Leaf N and P 

concentration was determined by Kjeldahl method (Schuman et al., 1973) and 

spectrophotometric quantification at 700 nm (Saunders and Williams, 1955), 

respectively. Leaf metals (K, Ca, Mg, iron (Fe), manganese (Mn), zinc (Zn) and 

copper (Cu)) were extracted by wet mineralization according to US EPA Method 

3052 (Kingston, 1988) and determined by atomic absorption spectrophotometry 
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(AAS) (Varian AA200, Mulgrave, Victoria, Australia), as described in Sorrenti et 

al. (2012).  

 

7.2.2.4 Tree yield and fruit quality 

At commercial harvest in 2011 and 2012, tree yield was determined and fruit 

weight and quality were evaluated on a subsample of 26 healthy fruits per plot (Pic. 

7.3). 

 

  

Picture 7.3. At commercial harvest, yield and fruit weight were determined  

 

Fruit firmness was measured individually on two opposite faces of peeled fruits by 

a hand pressure tester FT 011, (EffeGi, Ravenna, Italy) fitted with an 8 mm 

diameter plunger. Fruit soluble solids content (SSC) was determined on the fruit 

juice by a digital refractometer (Digital Refractometer PR-1, Atago, Tokio, Japan), 

while 20 mL of juice were added to 20 mL of d-H2O and titrated with 0.1 N NaOH 

to the endpoint of pH 8.1 for titratable acidity (TA) (expressed as malic acid) and 

juice pH determination, using a Compact Tritator I (Crison, Barcelona, Spain). 

Only in 2012, fruit flesh samples were lyophilized, milled and used to determine 

mineral concentration (N, P, K, Ca, Mg, Fe, Mn, Cu, and Zn) following the 

procedures used for leaves as previously described. 
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7.2.2.5 Soil analysis 

Soil pH was determined on soil cores collected (5-30 cm depth) every 6 months. 

Samples were oven dried (105°C) and ground (2 mm mesh), then 10 g were added 

to 25 mL of d-H2O shaken for 1 h at 95 rpm on an orbital shaker. The pH was 

measured on the filtered supernatant with a pH-meter (BasiC 20, Crison, 

Barcelona, Spain) under continuous stirring. 

Soil cores were collected three times (spring, summer and autumn) per year at a 

depth of 5-30 cm. Cores were, ground (2 mm mesh) and extracted by shaking in 2 

M KCl solution (1:10 ww-1) for 1 h at 95 rpm on an orbital shaker. Extracts were 

filtered (Whatman 42) and analyzed for NO3
--N and NH4

+-N concentration with a 

continuous flow autoanalyser (AA-3; Bran+Luebbe, Norderstedt, Germany). Soil 

moisture content (w w-1) was evaluated gravimetrically by oven drying at 105 °C 

representative subsamples of the same cores. 

 

7.2.2.6 Mineral N leaching 

To assess the effect of the biochar rates on the mineral N leaching, ion-exchange 

resin lysimeters were assembled as described by Susfalk and Johnson (2002) and 

adapted by Ventura et al. (2013). Briefly, 20 g of a mixed ion-exchange resin 

(Amberlite® MB-150 Mixed Bed Exchanger, gel form, 16-50 mesh) were trapped 

in polyvinyl chloride pipe (Pic. 7.4) sections (46.4 mm internal diameter) by 2 

nylon 125-µm meshes (Scubla s.n.c., Remanzacco, UD, Italy). Washed sand was 

placed at the two extreme ends of each lysimiter to prevent the contact of the resin 

with soil and nylon mesh occlusion. Four ion-exchange resin lysimeters per 

treatment (1 per plot) were buried at 25 cm depth on May 5, 2011 between two 

adjacent trees, approximately 30 cm aside from the tree row line. Lysimeters were 

placed vertically and the above soil layer was carefully kept undisturbed (Pic. 7.4). 

On June 12, 2012, lysimeters were recovered from the soil and mineral N was 

extracted by washing the resin with a 2 M KCl solution at a ratio of 1:10 (w w-1). 
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Picture 7.4. Schematic representation (left) and positioning (right) of the ion 

exchange resin lysimeters  

 

Samples were shaken for 2 h at 95 rpm on an orbital shaker, the supernatant was 

filtered (Whatman 42) and then analyzed for NO3
--N and NH4

+-N concentration as 

previously described for soils extracts. Background NO3
--N and NH4

+-N content of 

the washed sand used in the lysimeters was measured using the same extraction 

procedure and subtracted from the amounts recovered in the resins. Recovery 

capacity coefficients of 84 % and 88 % for NO3
--N and NH4

+-N, respectively, were 

applied to calculate the total amount of mineral-N leached through the lysimiters 

(Ventura et al., 2013). 
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7.3 STATISTICAL ANALYSES 

Coefficient of determination (R2) between biochar rate and macronutrients 

concentration was calculated for the lab assay using linear regression analysis. Data 

of the field experiment were submitted to analysis of variance (ANOVA) according 

to a complete randomized factorial design with 2 factors: biochar rate (4 levels) and 

year (3 levels) with 5 replicates. Data collected for one season were analyzed as in 

a complete randomized design. When analysis of variance showed statistical effect 

(at P ≤ 0.05), means were separated by Student-Newman-Keuls Test (SNK); when 

interaction between biochar rate and year was significant, 2 times standard error of 

means (SEM) was used as the minimum difference between two statistically 

different means (Saville and Rowarth, 2008). Statistical analyses were performed 

using SAS software (SAS Institute Inc., Cary, NC).  
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7.4 RESULTS 

7.4.1 Biochar macronutrients release and retention potential 

Water-extractable NO3
--N released by biochar was negligible and unaffected by 

rate (Fig. 7.1). Similarly, increasing rates of biochar did not affect the initial NO3
--

N concentration in washing solution (Fig. 7.1). Conversely, a small but significant 

increase of NH4
+-N concentration was observed in d-H2O as a consequence of 

biochar application, linearly related with application rates (Fig. 7.1), indicating a 

small but significant release of NH4
+-N from biochar. However, when biochar was 

added to the 10 mg L-1 NH4
+-N solution, the initial N concentration decreased, 

according to the application rate (Fig. 7.1). At the highest application rate (40 g L-

1), biochar removed 51.7% of the NH4
+-N initially present in the solution. 

The amounts of K, P, and Mg released by biochar in d-H2O linearly increased with 

application rates (Fig. 7.2). Biochar released mainly K, followed by P and Mg (Fig. 

7.2). The relation between biochar rate and Ca release was best described by a 

polynomial function of a 2nd degree (Fig. 7.2) and its concentration in d-H2O 

increased until the biochar rate of 20 g L-1, then decreased at higher rates. 

Once biochar was dipped in 10 mg L-1 solutions of K, P, Ca or Mg (separately) the 

concentration increased for all macronutrients and values where always above 10 

mg L-1 (data not shown). K, P and Mg concentration was linearly correlated with 

biochar rates and R2 were 0.94, 0.92 and 0.37, respectively (data not shown). Ca 

concentration was significantly increased by the presence of biochar in the 10 mg 

L-1 Ca solution, and the trend was described by a polynomial function of a 2nd 

degree (data not shown). 

 

7.4.2 Agronomic performance of nectarine trees and soil parameters  

Unless for Mn, values of leaf Chl and nutrient concentration showed significant 

seasonal variations (Tab. 7.3). Leaf Chl and Zn concentration significantly 

decreased along the three years, while Ca, Mg and Cu showed the lowest values in 

the first season (Tab. 7.3). Leaf K and Mg were higher in 2011, while leaf Fe 

concentration was significantly higher in 2012 than in the previous years (Tab. 

7.3).With the exception of Fe,  no interaction between biochar rates and year was 
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observed on leaf Chl, leaf macronutrient concentration (Tab. 7.3), leaf area and 

SLW (data not shown). 

Among macronutrients, biochar rates affected only leaf Mg concentration, which 

was significantly higher in untreated trees compared with those amended with 15 t 

ha-1 biochar. Leaf Mn, Cu and Zn concentration were not affected by biochar rate 

while leaf Fe concentration was decreased in biochar amended trees in 2011 and 

2012, irrespective of the application rate, except for the 15 t ha-1 in the last year 

(Tab. 7.3). Yield, fruit weight, SSC, titratable acidity, juice pH and fruit flesh 

mineral concentration were unaffected by treatments and season (data not shown). 

On average, productivity was 26.2 kg tree-1 while fruit weight was 128 g fruit-1. 

Only fruit firmness resulted significantly higher when biochar was applied at 5 and 

15 t ha-1 (data not shown). 

Biochar rate and year did not alter soil pH, NO3
--N, NH4

+-N availability and soil 

moisture along investigation (data not shown). 

 

7.4.3 Biochar effect on mineral N losses 

The amount of NH4
+-N leached over the 13 months through ion-exchange 

lysimiters was higher than that of NO3
--N. Biochar significantly reduced the 

cumulative amount of NH4
+-N leached with a similar extent among application 

rates (Fig. 7.1) while no differences were recorded on NO3
--N losses. However, the 

NH4
+-N leaching reduction due to biochar treatments was on average less than 1.5 

kg ha-1. 
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7.5 DISCUSSION 

7.5.1 Biochar as a source of macronutrients  

Biochar may provide conspicuous amount of nutrients to plants (Atkinson et al., 

2010; Silber et al., 2010) and positive responses of crop yield have been associated 

to the direct addition of available plant nutrients such as P, K, Ca, Zn and Cu 

(Alburquerque et al., 2013; Lehmann and Rondon, 2006). However, total mineral 

content in biochars may not necessarily reflect its potential to supply those 

nutrients to plants (Spokas et al., 2012). Our tests revealed that our biochar did not 

release NO3
--N and released low amounts of water soluble NH4

+-N. On the 

contrary, the release of P, Mg and in particular K was considerable, and linearly 

correlated whit rate, whereas a polynomial trend of a 2nd degree was found for Ca. 

This response because N in biochar is bound in the recalcitrant organic molecules 

thus not readily soluble and available for plant uptake (Chan and Zhihong, 2009), 

whilst the other cations are largely converted into inorganic forms and conserved 

into biochar (Angst and Sohi, 2013; Amonette and Joseph 2009). 

In agreement with previous studies (Gaskin et al., 2010; Silber et al., 2010; Yao et 

al., 2010) we found a relatively high releasing of K in solution. This is related to 

the high solubility of K salts contained in biochar which can be rapidly released in 

soil in available form to plants, often within the first year following application 

(Angst and Sohi, 2013). Based on our lab results and assuming the highest biochar 

application rate of our field trial (30 t ha-1), we estimate that 27.5, 2.5 and 1.1 kg 

ha-1 of K, P and Mg, respectively, were potentially supplied to the soil upon 

biochar incorporation. Although these amounts cannot fulfill plant requirements, it 

should be mentioned that the biochar used in our lab tests was repeatedly washed 

prior extraction to reduce ash and tar content, thus we suppose that most of the 

amount of ready-soluble salts were removed, therefore we expect that a much 

larger amount of such minerals would have been released from biochar. However, 

our estimations are in line whit findings of Angst and Sohi (2013) who estimated 

that, assuming an application rate of 20 t ha-1, the amount of K and Mg supplied in 

the topsoil with maple or sycamore biochar ranged between 20 and 50 kg ha-1 and 

between 0.60-3.34 kg ha-1, respectively. Nevertheless, even assuming that larger 
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amounts of available P, K and Mg were supplied from our biochar, we did not 

observe plant responses in field conditions. 

Our data do not show evidence of biochar retention potential for K, P and Mg in 

solution, since when it was dipped in 10 mg L-1 of such ion solutions, the final 

concentration always increased, indicating a net release from biochar. The 

concomitant occurrence of Ca release and retention is likely responsible for the 

polynomial trend observed for this cation, which cannot be excluded also for the 

other cations. 

 

7.5.2 Biochar did not benefit tree responses and soil properties 

Three years of monitoring showed no major significant effects induced by 

increasing rates of biochar on plant nutritional status, yield and fruit quality. Little 

information is available on the effect of soil-applied biochar on temperate fruit 

trees species (Blackwell et al., 2009). Recently, Genesio et al. (2015) reported a 

significant long-term (4 years) increase in grapevine yield following biochar 

application (22 t ha-1), without affecting grape quality. Schmidt et al. (2014) found 

only and mostly non-significant effects of biochar application on soil properties, 

yield and quality of grape upon the application of biochar either alone (8 ton ha-1) 

or in combination with compost. Similar results were found by Ventura et al. 

(2013), who applied the same biochar used in the present study in an apple orchard, 

without observing significant effects, except for Zn, on leaf Chl and nutrients 

concentrations. However, in that study, the applied rate (10 t ha-1) was relatively 

low compared to the rates commonly used in field trials (Biederman and Harpole, 

2013; Jeffery et al., 2011) while in the present study we decided to increase rates 

up to 30 t ha-1. Possible explanations to the lack of responses following biochar 

treatments in our orchard should not be associated with the biochar application rate, 

but may be due to the specific site conditions. It should be considered that, when 

biochar treatments were applied, nectarine trees were mature (12-year old), hence 

their root system was completely developed. Considering the medium-high vigor of 

the adopted rootstock (GF677), we can suppose that most of the roots extended 

below the A horizon where biochar was incorporated, thus limiting the potential 

benefits of the amendment for plants. However, as suggested by Major et al. 
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(2010), positive effects following by biochar addition in the upcoming years cannot 

be excluded, once finer biochar fragments move downwards into deeper soil 

horizons. 

Short-term biochar benefits observed in weathered, acidic soils (even at 

comparable rates than in our experiment) have often been associated with the 

biochar liming effect and the resulting increase in soil pH after application 

(Atkinson et al., 2010; Jeffery et al., 2011). We did not measure change in soil pH, 

despite the high pH of the biochar (pH 9.8) used. This can be attributed to the soil 

of the orchard that was already alkaline (pH 8.1) and likely buffered by carbonates, 

thereby very high biochar application rates would be required to affect significantly 

soil pH. However, the absence of changes in soil pH after three years upon the 

incorporation of an alkaline biochar in our orchard represents a positive fact from 

an agronomical point of view. High soil pH hinders the availability of 

micronutrients (i.e. Fe, Mn, Zn) with negative implications on plant uptake, and a 

further pH increase in alkaline-calcareous soils would be undesired. Unlikely, the 

biochar-induced liming effect will appear after several years from its application 

because the development of carboxylic acids functional groups, as a consequence  

of weathering processes occurring on the exposed biochar fragments, will lead to a 

decrease in the concentration of basic sites on the biochar surface (Yao et al., 2010; 

Cheng and Lehmann, 2009). 

Many authors have observed an increase in soil water content after biochar 

application to soil and this has been addicted for the yield improvement observed 

after biochar application. For instance, Baronti et al. (2014) applied 22 t ha-1 of 

biochar for two consecutive seasons to a non-irrigated vineyard and reported an 

increase in soil water content, a reduction of plant water stress and an increase of 

photosynthetic activity during drought. In the same experimental site, mentioned 

improvements were responsible for the beneficial effects recorded on grape yield 

(Genesio et al., 2015).  

In our orchard, biochar rates did not alter soil water content, in agreement with 

results of Ventura et al. (2012), who applied the same biochar on a clay-loamy soil 

up to 60 t ha-1. In our site, biochar did not affect soil water because annual rainfall 

are mainly concentrated in spring and autumn, while tree water requirements were 
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satisfied in summer by the irrigation system and soil moisture was constantly kept 

close to the field capacity. IN this conditions, photosynthetic activity and 

physiological processed mediated by water in plant were never constrained or 

limited by stomata closure. 

Based on this evidences, we assume that in non-limiting conditions (such as in our 

orchard) in terms of water availability, natural soil fertility and external source of 

minerals (i.e. fertilizers), agronomical benefits from biochar were hidden or 

negligible. The natural fertility of the soil of our orchard in terms of availability of 

exchangeable cations (K+, Ca++ and Mg+) and cation exchange capacity (CEC), 

may have limited the effect of biochar as a source of nutrients or as a nutrient 

retention-additive. N tree requirements, for instance, were yearly fulfilled by 

chemical fertilizer inputs. The external supply of N to the soil could have also 

reduced the impairment of N availability in soil due to N immobilization by the 

microbial biomass which may occur after the incorporation of freshly-produced 

biochar (Sohi et al., 2010). Unlikely, a temporary N deficiency (N immobilization) 

occurred in our experiment as confirmed by the fact that soil NO3
--N and NH4

+-N 

availability was not affected by biochar application and because leaf N 

concentration and crop levels were always sustained and similar to the seasons 

previous the trial establishment. Benefits from biochar in soil could be maximized 

on weathered and degraded soils, with low CEC, low soil organic C, low pH and 

relatively non-reactive clay mineralogy (Crane-Droesch et al., 2013). For these 

reasons, biochar application in temperate regions was frequently found to have 

scarcely pronounced or even negative effects on soil properties and crop response 

(Schmidt et al., 2014; Kloss et al., 2014; Biederman and Harpole, 2013; Jones et 

al., 2012; Jeffery et al., 2011). 

 

7.5.3 Biochar reduced NH4
+-N leaching  

In field conditions, biochar confirmed its ability to reduce NH4
+-N losses by 

retaining this ion in the top soil layer. Similar results have been reported by 

previous studies carried out mainly in controlled environments (soil columns, pots 

or lysimeters) (Yao et al., 2012; Ding et al., 2010; Laird et al., 2010; Novak et al., 

2010; Lehmann et al., 2003), whereas few evidences were obtained in field 
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conditions (Major et al., 2010). Likewise, the ability of biochar to remove 

dissolved NH4
+-N (but not NO3

--N) was confirmed also in the lab assay of this 

study (Fig. 7.1). The effect of biochar in retaining cations has been attributed to its 

high surface area and to the presence of both polar and non-polar surface sites 

(Baldock and Smernik, 2002; Cheng et al., 2008), which makes biochar able to 

sorb (and desorb) cations through electrostatic forces (Alling et al., 2014; Liang et 

al., 2006). The CEC of biochar typically ranges between 30 and 150 cmolc kg-1, 

consistently higher than that of clay minerals or OM in soils and permits to firmly 

bond cations through electrostatic forces. The soil CEC was found to increase over 

time as a result of the abiotically oxidation and the adsorption of organic matter on 

the biochar surfaces (Cheng et al., 2006; Liang et al., 2006) resulting on the 

formation of carboxylic functional groups. As a consequence, the positive charged 

exchange sites on biochar surfaces decline and negative charge sites may develop 

as biochar ages (after few months), increasing its ability to retain cations over time 

(Clough and Crondon, 2010). In our conditions, ion-exchange lysimiters were 

positioned after almost 2 years from trial establishment and removed after 13 

months, thus we suppose that our biochar was highly oxidized and likely it did not 

affect the NO3
--N leaching because its anion exchange capacity (AEC) was very 

low therefore, its potential adsorption for anions was negligible (Hale et al., 2013; 

Yao et al., 2012; Braker and Conrad, 2011). In contrast to our findings, recent 

evidences suggest a stronger capacity of biochar in retaining NO3
--N rather than 

NH4
+-N (Kammann et al., 2014). The application of 15 and 30 t ha-1 of biochar in a 

sandy soil significantly increased NO3
--N concentration in the top soil (0-15 cm) 

while it was decreased in the deeper layers (up to 90 cm) (Kammann et al., 2014). 

Similarly, Ventura et al. (2013) found that NO3
--N leaching was significantly 

reduced in an apple orchard amended with 10 t ha-1 of the same biochar used in the 

present study. Such divergent results, suggest that biochar potential to retard NO3
--

N and NH4
+-N losses is affected by different factors other than biochar 

characteristics and ageing, such as soil properties and ion concentration. 

It has been reported that the weak binding between biochar and cations allows a 

dynamic sorption and release equilibrium, which might increase NH4
+-N 

availability for plant roots (Alling et al., 2014). In our study, the reduced leached 
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amount of NH4
+-N by biochar addition did not lead to an increase in the availability 

of NH4
+-N in soil neither in N plant uptake. This likely because the retained NH4

+-

N amount in amended plots was overall less than 2 kg per hectare saved in more 

than one year, which represent approximately 1% of the yearly N orchard 

requirement. Furthermore, biochar reduced the leaching of NH4
+-N with a similar 

extent among rates. This could be related to the low availability of NH4
+-N in the 

soil or to the fact that increased rates of biochar could have increasingly stimulated 

microbial biomass and activity (Ameloot et al., 2013) immobilizing increasing 

rates of N at higher biochar rates.  
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7.6 CONCLUSIONS 

Results of this study confirm that biochar may represent a direct source of plant 

nutrients (i.e. K, P and Mg) and retain mineral N, mainly under NH4
+-N form. The 

latter response was also confirmed in field conditions, which makes biochar a 

useful strategy to reduce N losses through leaching in agro-ecosystems. However, 

during three years following its application and up to 30 t ha-1, this potential did not 

result beneficial to the tree nutritional status, yield, fruit quality or soil properties. 

The lack of evident benefits may be ascribed to the good soil fertility and water 

availability of the orchard together with the fact that no specific adverse conditions 

were recognized in our experimental site before biochar application. Advantages 

from biochar application are likely to emerge in presence of main constraints for 

plant growth, such as water stress, toxicity, nutrient deficiencies due to excessive 

leaching. Therefore, in fertile agricultural soils, under optimal water and fertilizer 

availability, agronomic benefits from biochar are probably limited. 

Nevertheless, biochar was neither harmful to nectarine trees nor detrimental to soil 

properties during the experimental timecourse, suggesting that application rates can 

be increased or repeated. In addition, the main purpose of using biochar in 

conditions similar to our orchard is to increase C sequestration in soil. 
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Table 7.1. Biochar physical and chemical characteristics 

Parameter Unit Value 

Physical properties   
Moisture % 13.8 
Bulk density g cm-3 0.43±0.04 
Hydrophobicity  Slightly hydrophobic 
Total porosity  mm3 g-1 2722 
Transmission pores mm3 g-1 318 
Storage pores mm3 g-1 1997 
Residuals pores mm3 g-1 406 
Max water absorption g g-1 of d.m. 4.53 
Skeletal density (SD)2 g cm-3 1.86±0.04 
Envelope density (ED)3 g cm-3 0.2459±0.0056 
Porosity (ED/SD) % 0.863±0.006 
Surface area1 (BET Brunauer–Emmett–
Teller method)  

m2 g-1 410±6 

Particle size distribution1 
50-20 
20-10 
10-8 
8-4 
4-2 
2-1 
<1 

mm g-1 
% 
% 
% 
% 
% 
% 
% 

 
4.45 
12.1 
13.1 
10.36 
19.85 
24.2 
15.94 

Chemical properties   

pH - 9.8 
CEC cmolc kg-1 101 
Carbon1 (C) g kg-1 778.0 
Total nitrogen (N) g kg-1 9.1 
C/N - 85.49 
Aluminum (Al) mg kg-1 268 
Arsenic (As) mg kg-1 0.005 
Beryllium (Be) mg kg-1 0.001 
Cadmium (Cd) mg kg-1 0.001 
Calcium (Ca)  g kg-1 25.0 
Chrome (Cr) mg kg-1 0.002 
Cobalt (Co) mg kg-1 0.002 
Copper (Cu)  mg kg-1 97 
Iron (Fe)  mg kg-1 333 
Magnesium (Mg)  g kg-1 28.7 
Manganese (Mn) mg kg-1 84 
Molybdenum (Mo) mg kg-1 2 
Phosphorus (P)  g kg-1 23.3 
Potassium (K)  g kg-1 13.9 
Sodium (Na) g kg-1 11.9 
Sulphur (S)  mg kg-1 481 
Zinc (Zn)  mg kg-1 104 
1data obtained from Baronti et al. (2014) (with permission). 2The skeletal density is the sample mass divided by sample volume 
occupied by a solid sample, including any pores not accessible to the helium gas. 3The envelope density is the sample mass 
divided by the total sample volume that is measured if an “envelope” would be placed around each individual particle. 
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Table 7.2. Chemical and physical properties of the field soil profile (0-50 cm) at the 

beginning of the experiment 

Parameter Unit Value Extractant/method 

Texture    
Sand % 55 Bouyoucos 
Lime % 33 Bouyoucos 
Clay % 12 Bouyoucos 
Total carbonate (CaCO3) % 12 HCl / De Astis method 
Active lime (CaCO3) % 2.5 Ammonium oxalate (Drouineau, 

1942) 
Organic matter % 1.06 Walkley-Black 1919 (Soltner, 

1988) 
Total N ‰ 0.80 Kjeldahl method 
Assimilable phosphorus (P) mg kg-1 8 Olsen (Olsen and Sommers, 1982) 
Exchangeable potassium (K) mg kg-1 97 Barium chloride (Hendershot and 

Duquette, 1986) 
Exchangeable sodium (Na) mg kg-1 37 Barium chloride (Hendershot and 

Duquette, 1986) 
Exchangeable calcium (Ca) mg kg-1 2347 Barium chloride (Hendershot and 

Duquette, 1986) 
Exchangeable magnesium (Mg) mg kg-1 109 Barium chloride (Hendershot and 

Duquette, 1986) 
C/N ratio  7.69  
Cation Exchange capacity 
(CEC) 

meq 100g-1 13.02 Barium chloride (Hendershot and 
Duquette, 1986) 

pH  8.08 Water/Potentiometric 
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Table 7.3. Effect of increasing soil-applied biochar rates on leaf Chl content, macro and micro nutrients concentration during 3 years of experiment 

  

Biochar rate 
(t ha-1) 

 Leaf Chl 
Content 

(Spad Units) 

 Macronutrients 
(g kg-1) 

 Micronutrients 
(mg kg-1) 

    N P K Ca Mg  Fe  Mn Cu Zn 
          2010 2011 2012     
0  37.8  20.5 2.31 21.0 34.8 5.71 a  44.2 47.6 63.7  27.9 6.17 36.0 
5  37.8  19.5 2.26 21.4 30.6 5.53 ab  43.5 43.8 56.4  28.0 6.11 34.9 
15  37.4  20.2 2.34 22.0 31.0 5.42 b  45.4 41.1 62.9  27.2 6.12 36.3 
30  37.5  20.0 2.23 21.8 35.0 5.64 ab  45.8 40.4 58.5  27.3 6.01 33.9 

Significance  ns  ns ns ns ns * 2SEM=3.34  ns ns ns 
Year                 
2010  39.4 a  21.4 a 2.42 a 22.7 b 28.5 b 4.93 c      27.1 5.65 b 42.7 a 
2011  37.5 b  18.4 c 2.16 b 26.7 a 36.3 a 6.32 a      28.7 6.32 a 33.8 b 
2012  36.7 c  20.4 b 2.23 ab 15.2 c 33.8 a 5.34 b      26.9 6.34 a 29.3 c 

Significance  ***  *** * *** *** ***      ns * *** 
Rate x year  ns  ns ns ns ns ns  *  ns ns ns 
ns, *and *** stand for not significant, significant at p<0.05 or significant at < 0.001, respectively. In the same column, means followed by the same letter are not statistically 
different (P <0.05, SNK Test). *: interaction between rate and year significant at p <0.05. Values differing by ≥ 2 standard error of means (SEM) are statistically different 
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Figure 7.1. Effect of increasing rates of biochar on NO3
--N (A) and NH4

+-N (B) release/retention potential 
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Figure 7.2. Effect of increasing rates of biochar on the release of potassium (A), phosphorus (B), calcium (C) and magnesium (D) in d-H2O 
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Figure 7.3. Effect of increasing soil-applied biochar rates on cumulative (kg ha-1) nitrate-N (NO3
--N) and ammonium-N (NH4

+-N) leached in 13 
months (May 2011 - June, 2012) as recovered by ion-exchange resin lysimeters. 

ns and *: effect of rate not significant or significant at p <0.05, respectively. Bars with the same letter are not statistically different (p <0.05, SNK Test). 
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CHAPTER 8 

 

Biochar physico-chemical changes as affected by environmental 

exposure 

 

Abstract 

To best use biochar as a sustainable soil management and carbon sequestration 

technique, we must understand the effect of environmental exposure on its physical 

and chemical properties because these properties play an important role in its 

environmental behavior and are likely to vary with time. Here we report physical 

and chemical changes of biochar fragments recovered from a commercial nectarine 

orchard after 4 years.  We compared fresh biochar with biochar removed from 

experiments conducted at amendment rates of 5, 15 and 30 t ha-1. We combined a 

suite of two pycnometry techniques (skeletal (ρs) and envelope (ρe) density) to 

estimate the total pore volume of biochar particles. We also examined imbibition, 

which can provide information about soil hydraulic conductivity. Finally, we 

investigated the chemical properties, surface, inner layers atomic composition and 

C1s bonding state of biochar fragments through X-ray photoelectron spectroscopy 

(XPS). 

Ageing increased the overall skeletal and envelope density, while porosity was 

unaffected. However, water absorption by aged fragments was slower than fresh 

particles, likely as a consequence of the reduced water accessibility through pores 

that appeared partially clogged by soil and minerals. Environmental exposure 

reduced biochar pH, EC and total carbon (C) while XPS analyses showed an 

increase in total nitrogen (N) and N mineral forms (NO3-N and NH4-N) up to 40 

nm depth. Ageing resulted in a higher oxygen (O), silicon (Si), N, sodium (Na), 

aluminum (Al), calcium (Ca), manganese (Mn) and iron (Fe) surface (0-5nm) 

atomic concentration (at%) and a reduced C and potassium (K) composition, 

confirming the interactions of biochar with soil inorganic and organic phases. XPS 

analyses indicated that oxidation occurred on biochar fragments mainly in the 

exposed top surface, and progressively decreased down to 75nm. Biochar 
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chemistry changes, as a response of natural oxidation, included the development of 

O-containing (i.e. carbonyl and carboxylate) functional groups, which we observed 

mainly in the exposed top surface. However, changes were noticeable also in 

deeper layers, down to 75 nm while no significant changes were measured in the 

deepest layer (105-110 nm).   

 

Keywords: Skeletal density, Envelope density, Porosity, Imbibition, XPS, Ageing  
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8.1 INTRODUCTION  

Biochar, the solid residue of biomass pyrolysis, is a highly porous material mainly 

composed of amorphous C, graphitic (turbostratic) crystallites of polycondensed 

aromatic sheets and interspersed voids that define its physical structure (Keiluweit 

et al., 2010). Biochar is deliberately added to crop lands with the goal of effectively 

sequestering photosynthetically fixed carbon (C), thus potentially mitigating 

climate changes (Woolf et al., 2010) and ameliorating soil properties (Spokas et al., 

2012).  An additional goal is often achieving positive crop responses (Verheijen et 

al., 2010).  

 

8.1.1 Porosity controls many biochar mechanisms in soil  

Interspersed voids are responsible for biochar’s porosity and are arranged in a 

complex structure involving interconnected networks of pores (Nguyen et al., 

2010; Rouquerol et al., 1994). Biochar pore size range from sub-nanometers 

corresponding to slit-shaped spaces between graphite-like layers of flat aromatic C 

clusters (Sun et al., 2012; Keiluweit et al., 2010), to pores of tens of micrometers, 

reflecting the partially preserved cellular structures (Bird et al., 2008; Wildman and 

Derbyshire, 1991). Porosity is a major control of biochar sorptive capacities (Karhu 

et al., 2011; Knicker et al., 2008) and pore size modulates the interactions of 

biochar particles with microbes, fungal hyphae and plant roots (Warnock et al., 

2010; Downie et al., 2009; Thies and Rilling, 2009; Hockaday et al., 2006; 

Pietikäinen et al., 2000). However, recent findings suggest that the largest pores 

(>50 microns) are responsible for the vast majority of total biochar porosity 

(Brewer et al., 2014). In addition, by interacting with water (Brockhoff et al., 

2010), biochar macropores may significantly affect soil hydraulic conductivity 

(Barnes et al., 2014; Oguntunde et al., 2008) and ecosystem processes mediated by 

water in soils (e.g. infiltration and drainage rates, soil erosiveness, wetting, water 

holding capacity, amount of plant available water, nutrient leaching) (Baronti et al., 

2014; Bruun et al., 2014; Novak et al., 2012; Major et al., 2009). In this sense, 

density and porosity are essential biochar physical properties controlling the 

movements of the fragments through the landscape, thereby its soil residence time 
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(Masiello et al., 2014). Moreover, these properties control habitat for microbes 

(Ogawa, 1994) and shelters for mycorrhizal fungi (Warnock et al., 2007).  

 

8.1.2 The role of environmental exposure   

Given the importance of biochar physical properties (size and porosity) as a 

possible explanation for many of the biochar induced-effects in soils, it is necessary 

to understand how these properties change over time as a consequence of long-term 

environmental exposure. This knowledge can also contribute to our understanding 

of how the environment affects the fate, transport, and ecosystem services of 

naturally-produced charcoal (Brewer et al., 2014). Although combined methods 

can be used to characterize biochar porosity (i.e. gas sorption such as nitrogen (N) 

and carbon dioxide (CO2), mercury porosimetry, stereological measurements, 

BET), every one of these techniques has its limitations (Sun et al., 2012). All the 

previous methods can be expensive, time-consuming, potentially dangerous during 

handling or ineffective in accurately measuring the biochar pore volume because 

biochar pore sizes can range from subnanometer (micropores) (Sun et al., 2012) to 

pores of tens micrometers or larger (Bird et al., 2008). Since no single technique 

can precisely measure these pore size scales, biochar porosity characterization has 

been elusive (Brewer et al., 2014). Similarly, to date no accurate methods have 

been proposed to investigate the change in rate of biochar pore accessibility over 

time, in particular as a consequence of the environmental exposure.   

Although biochar is predicted highly resistant to decay in soil due to: i) its intrinsic 

chemical resistance to biotic degradation derived from its condensed aromatic 

structure, and ii) the tendency of its oxidized surface to form mineral-organic 

matter complexes (Glaser et al., 2000), biochar does not remain unaltered once in 

soil, but it undergoes to a series of physico-chemical changes as a consequence of 

its interaction with the environment (i.e. temperature range, water availability), 

human activities (tillage, fertilization) and interaction with the soil matrix (i.e. 

microbes, minerals, OM, roots) (Joseph et al., 2010). Density and porosity of 

biochar in soil can be significantly altered because its pore network and surface 

reactivity permit the physical/chemical trapping/attraction of different compounds 

(e.g. silt, sand, clay, roots, minerals, organic matter, microbes) (Jaafar et al., 2014; 
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Warnock et al., 2007), with crucial implications for biochar sorption capacity, soil 

hydraulic conductivity, water-holding capacity and plant-available water.  

Changes of biochar properties such as porosity, elemental composition, surface 

chemistry, absorption of organic C molecules rich in functional groups, adsorption 

properties, surface acidity and negative surface charges as a consequence of ageing 

have been reported by many studies (Lecroy et al., 2013; Lin et al., 2012; Jones et 

al., 2012; Joseph et al., 2010; Zimmerman, 2010; Cheng and Lehmann, 2009). 

However, most of these findings come from short-period environmental exposure 

of biochar where often weathering effects were induced through chemical and/or 

physical treatments (Yao et al., 2010). Little is known about how biochar changes 

physically and chemically after environmental exposure. 

We know even less about how biochar chemistry shifts with depth in the particle.  

It is not clear how rapidly environmental oxidation proceeds through biochar 

particles, with some studies suggesting that oxidation is a surface process, and 

others reporting oxidation throughout the entire particle (Cheng et al., 2006) .It 

seems reasonable to assume that initially, chemical changes are limited to the 

surface of the particle, but no information is yet available about changes of distinct 

internal layers as affected by long-term natural environmental conditions.       

In this study we investigated the physical and chemical changes of biochar 

fragments recovered from a commercial nectarine orchard after 4 years.  Our 

experiments used biochar from a range of amendment rates rates. Recovered 

particles were compared with fresh fragments selected within the same batch and 

assessed to evaluate potential shifts in porosity. We combined a suite of two 

pycnometry techniques (skeletal (ρs) and envelope (ρe) density) that can 

successfully and cost-effectively estimate the total pore volume of biochar 

particles, following the procedure set up by Brewer et al. (2014). Briefly, ρs is 

defined as the volume of a known mass of a biochar particle measured by the 

displacement of helium (He) that can enter all the connected pores within a 

particle, leading to the measurement of the solid framework. Envelope density (ρe) 

is the mass of a biochar sample divided by the volume of its non-wetting exterior 

envelope. The percent of the biochar particle volume not filled by solid, as 
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calculated from the difference in densities (1-(ρe/ρs), offers an accurate estimation 

of the total biochar porosity (Brewer et al., 2014).  

We also considered possible implications of biochar ageing on soil hydrologic 

properties by an imbibition assay. Finally, we measured chemical properties, 

surface, inner layers elemental composition and C1s bonding state of aged biochar 

through X-ray photoelectron spectroscopy (XPS).  

 

8.2 MATERIALS AND METHODS 

8.2.1 Environmental conditions of the experimental site  

For this experiment (2009-13) we used a commercial nectarine (Prunus persica L., 

Batsch) orchard of the cv. Big Top grafted on the hybrid GF677 (P. persica L. x 

P. amygdalus L.) planted in 1997 with a density of 519 trees ha-1 (3.5 x 5.5 m) 

located in the South Eastern Italian Po Valley (Tebano, Ravenna, 44° 29’ N, 11° 

78’E, 58 m a.s.l.). The soil of the orchard was sandy-loam, classified as Inceptisol 

(USDA, 2010), characterized by a pH of 8.08, an OM content of 10.6 g kg-1 a 

cation exchange capacity (CEC) of 13.0 meq 100 g-1 and a total N, assimilable P, 

exchangeable K, Na, Ca and Mg of 800, 8, 97, 37, 2347 and 109 mg kg-1, 

respectively.  

The experimental area is characterized by a temperate sub-continental climate with 

cold winters and warm and humid summers. Throughout the experiment, the 

average air temperature was 13.6 °C with the lowest temperature of -4.1°C 

recorded in winter 2011 and the highest value of 40.5°C in summer 2012, while 

annual precipitation ranged between 650 and 910 mm, mainly concentrated in 

spring and autumn. From May to August trees were drip irrigated and the alleys 

maintained with native grass species while tree rows (2 m wide) were herbicided 

with glufosinate ammonium (DL-phosphinothricin), twice per year. Trees were 

managed in terms of pruning, thinning, fertilization, irrigation as well as pest and 

disease control according to the regional guidelines of Integrated Crop 

Management (ICM, 2009). Fertilization was managed by a yearly supply of 0.25 kg 

N tree-1 (130 kg N ha-1) as urea (46% N) at petal fall.  
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8.2.2 Experimental design  

In November 2009 we distributed biochar at the rates of 5, 15 and 30 t fresh weight 

(fw) ha-1 in a complete randomized block design, with 5 replicates of 5 trees each, 

arranged in 4 consecutive tree rows and leaving at least 10 unamended meters 

between consecutive plots. Biochar was distributed on a 35 m2 area per 

experimental plot (2 m wide along the herbicided strip) and mixed into the first 20-

cm soil depth (A horizon) by a disc harrow. Biochar was produced in a traditional 

charcoal kiln with a mixed feedstock of chipped hardwood (mainly from peach and 

grapevine), and was slowly pyrolyzed at approximately 500°C. Table 8.1 

summarizes physical-chemical biochar characteristics.  

  

8.2.3 Biochar fragment recovery and sample preparation 

In November 2013 (4 years after application), we randomly recovered about 50 

biochar fragments of different sizes from each replicate (Pic. 8.1). To accomplish 

this we removed the first 3-5 cm depth soil layer and carefully collected fragments 

from the soil by forceps, using great care to avoid manual contact or any physical 

damage to the particles. We immediately sealed the particles in polyethylene bags 

and transported them to the laboratory in a portable refrigerator. 

Control samples of biochar (never field-applied, termed here “fresh”) were stored 

in hermetically closed plastic bags and maintained in a dry and dark place. A subset 

of these fresh biochar fragments were processed in the same manner as the soil-

recovered biochar fragments (description below).  

Particles were first dried at 50 °C for few days, sieved (1-mm) to remove excess 

soil particles and then the surface of individual fragments was gently cleaned with 

a soft brush and fragments were sparingly rinsed twice with deionized water (d-

H2O) to remove adhering soil from the surface. Fragments were not physically 

damaged during handling, and were transferred in plastic tubes and oven-dried at 

50 °C.  
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Picture 8.1. Recovering of biochar fragments after 4 years of environmental 

exposure   

 

8.2.4 Biochar physical changes as affected by the environmental exposure 

8.2.4.1 Skeletal density (ρs) determination 

Skeletal density (ρs) represents the volume occupied by a solid sample, including 

any pores not accessible to He, which is assumed to penetrate all the open pores 

within the biochar fragment (Brewer et al., 2014). We measured biochar skeletal 

volume of about 0.1 g (dry weight) per replicate (about 5-6 fragments with each 

piece larger than 2 mm and smaller than 1 cm3) using a He pycnometry AccuPyc 

1340 (Micromeritics, Norcross, GA) fitted with a 1 cm3 chamber. The AccuPyc 

determines the skeletal volume of a sample by measuring the change in pressure 

due to the volume of He that is displaced by the solid mass within the pressure-

equilibrated chamber.  
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Picture 8.2. The AccuPyc used to measure the particles skeletal density 

 

8.2.4.2 Envelope density (ρe) determination 

Envelope density (ρe) is the sample mass divided by the total sample volume that is 

measured if an “envelope” were placed around each individual particle. We 

measured biochar envelope volume of about 0.215 g (dry weight) per replicate 

(about 8-9 fragments with each piece larger than 2 mm and smaller than 1 cm3) by 

a Geopyc 1360 Envelope Density Analyzer (Micromeritics, Norcross, GA) (Pic. 

8.3). Briefly, fragments were placed in a bed of DryFlo® granular medium (density 

of ~0.4 g cm-3), gently consolidated around the biochar particles to a force of 22 N 

using a piston sliding on a 12.7 mm diameter chamber. Sample volume was 

determined by subtracting the volume of the consolidated pure DryFlo® from the 

volume of the same consolidated DryFlo® after the sample addition. Consolidation 

was achieved by continuous rotation and vibration of the cylindrical chamber as the 

piston was gradually pushed into the chamber until the stated 22 N force was 

reached. 
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Picture 8.3. The Geopyc allowed the measurement of the particles envelope 

density. On the right, detail of the glass chamber where a sliding piston 

consolidated the pure DryFlo® around the biochar fragments 

 

8.2.4.3 Porosity determination 

Porosity is defined as the percent of the biochar volume not filled by solid 

including pores smaller than the DryFlo® granules and pores that are inaccessible 

from the exterior of the biochar surface. Porosity is a function of skeletal and 

envelope density and was calculated as follow: 

 
 
 
 
 
 
 

 

where: 

φ = porosity 

ve and vs = envelope volume and skeletal volume 

m = mass 

ρe and ρs = envelope density and skeletal density  

 

8.2.5 Imbibition assay  

For this assay, we compared fresh vs. aged biochar fragments from the 30 t ha-1 

plots. Samples were treated as previously mentioned and three pairs of fragments 

were selected, with pairs having similar weight (± 0.04 mg) and shape. Samples 

were gently rinsed with d-H2O and then oven dried at 50 °C. The former step was 

repeated 3 times to reduce hydrophobicity. Fragments were individually transferred 

into glass tubes containing 6 cm (75 mL) of d-H2O. Each couple of fragments was 
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simultaneously and carefully placed on the water surface and let to float. Tubes 

were not hermetically sealed, never shaken or disturbed throughout the test and 

maintained at room temperature (21 °C). Fragments were allowed to naturally 

absorb water and we recorded the sinking dynamics of each fragment at 12 hr 

intervals until particles reached the bottom of the tubes. Thereafter, fragments were 

carefully removed and the amount of absorbed water was measured by massing 

before and after drying at 105 °C. 

 

8.2.6 Biochar chemistry changes following environmental exposure  

8.2.6.1 pH and electrical conductivity  

We determined biochar pH and electrical conductivity (EC) on entire fragments. 

Samples were oven dried (105°C), then 0.5 g were added to 10 mL of d-H2O in 

plastic tubes and shaken 1 h at 120 rpm. pH and EC were measured on the filtrated 

surnatant under continuous stirring by a pH-meter (BasiC 20, Crison, Barcelona, 

Spain) and a conductimeter (CDM210 Conductivity Meter, Radiometer Analytical, 

Copenhagen, DK). 

 

8.2.6.2 Total C, N, H content 

We manually milled and homogenized fifteen biochar fragments per replicate using 

a mortar, then sampled 3 mg for total nitrogen (N) and hydrogen (H) and 0.1 mg 

for C determination via catalytic combustion analysis (ECS 4010, Costech 

Analytical Technologies Inc., Valencia, CA) at 2.33 mV voltage. Retention time 

was 1.21, 1.78 and 5.47 min for N, C and H respectively. Data were compared with 

external calibration curves at 9 points (r2 > 0.9999) obtained by a high-purity 

acetanilide standard (Costech Analytical Technologies Inc., Valencia, CA). 

 

8.2.6.3 KCl extractable NO3
--N and NH4

+-N 

We extracted intact oven-dried biochar fragments using a 2 M KCl solution at a 

ratio of 1:20 (w w-1). Samples were shaken 90 min at 100 rpm by an orbital shaker 

and the filtered (Whatman, 42) supernatant was analyzed for nitrate-N (NO3
--N) 

and ammonium -N (NH4
+-N) concentration by an autoanalyzer (Auto Analyzer 

AA-3; Bran+Luebbe, Norderstadt, Germany). 
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8.2.6.4 Surface atomic composition 

We analyzed three fragments per replicate by X-ray photoelectron spectroscopy 

(XPS) to determine the relative C, oxygen (O), silicon (Si), N, sodium (Na), 

aluminum (Al), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), 

manganese (Mn) and iron (Fe) atomic concentration (at%) in the top 5 nm biochar 

surface (Fig. 8.1), using a PHI Quantera XPS with a focused monochromatic Al Kα 

X-ray source for excitation operated at 1486.6 eV and 49.2 W. We performed high 

resolution and low intensity scans to focus on the C bonding environments with 40 

scans. XPS spectra were analyzed using a nonlinear least-squares curve-fitting 

program with a Gaussian−Lorentzian mixed function to optimize the spectra. We 

analyzed spectra using MultiPak data analysis software (MultiPak V7.0.1, 04 Mar 

16, Ulvac-Phi, Inc., 1994-2004). 

 

 

 

Picture 8.4. The XPS software scanning the surface of the biochar fragments   

 

8.2.6.5 Biochar inner layer atomic composition  

We compared, with four replicates, fragments of fresh and aged biochar (recovered 

from plots treated with 30 t ha-1) by XPS to determine the atomic concentration 

(at%) for relative C, O, Si, N and Al at four depths (S1=0-5nm, L2=5-10nm, 

L3=15-20nm and L4=30-35nm; Fig. 8.1). 
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An additional set of three fragments of fresh and aged biochar (recovered from 

plots treated with 30 t ha-1) were used to determine the atomic composition (at%) 

for relative C, O, Si, N and Al at three supplementary depths in addition to the top 

surface layer (S1=0-5nm, L5=35-40nm, L6=70-75nm and L7=105-110nm; Fig. 

8.1) using the same methodology as described above. For both set of samples we 

analyzed spectra and deconvoluted the C1s region bonding state into their 

component functional groups using MultiPak data analysis software (MultiPak 

V7.0.1, 04 Mar 16, Ulvac-Phi, Inc., 1994-2004). The -C-C/-C-H/-C=C bonds 

exhibit the same binding energy (284.74 eV), thus were considered together, while 

-C-O, -C=O and -COOH were targeted at 285.95, 287.18 and 288.56 eV, 

respectively. 

 

8.3 STATISTICAL ANALYSES 

Data were evaluated by analysis of variance (ANOVA) according to a complete 

randomized design with 5 replicates. Data from XPS analyses were evaluated by 

ANOVA according to a complete randomized factorial design with 2 factors: 

biochar rate (4 levels) and layer (4 levels). When ANOVA showed a statistical 

effect (at P ≤ 0.05), means were separated by Student-Newman-Keuls Test (SNK); 

when interaction between age and layer was significant, 2 times standard error of 

means (SEM) was used as the minimum difference between two statistically 

different means (Saville and Rowarth, 2008). Data of the imbibition assay were 

submitted to repeated measures analysis of variance using PROC MIXED (Littel et 

al., 1998) in SAS software (SAS Institute Inc., Cary, NC, USA), with the fragment 

weight as covariant and a compound symmetry covariance structure.  
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8.4 RESULTS 

8.4.1 Biochar physical changes as affected by environmental exposure 

8.4.1.1 Skeletal, Envelope density and Porosity 

Biochar skeletal density increased only when applied at rates higher than 5 t ha-1, 

reaching values higher than 2 g cm-3 (Fig. 8.2). The lowest application rate (5 t ha-1) 

showed intermediate values between the higher aged rates (15 and 30 t ha-1) and 

fresh biochar (Fig. 8.2). The skeletal density of fresh biochar was 1.86 ± 0.04 g cm-

3 (avg. ± SE). 

Although the environmental exposure overall increased the envelope density of 

biochar fragments, it only resulted in significantly higher values when biochar was 

applied at the rate of 15 t ha-1 compared to fresh fragments (Fig. 8.2). Fresh biochar 

envelope density values were 0.246 ± 0.006 g cm-3 (avg. ± SE).  

Total porosity was unaffected by environmental exposure and values were 86.8 % 

±0.01 (avg. ± SE) (Fig. 8.2).      

 

8.4.1.2 Imbibition assay  

The sinking dynamics of fresh and aged biochar fragments were significantly 

different (Fig. 8.3). Fresh biochar samples started to sink after 156 hrs, then 

steadily continued, reaching the bottom of the tubes between 162 and 168 hrs. (Fig. 

8.3). Aged fragments floated significantly longer (Fig. 8.3), suggesting pore 

blockages had trapped air in macropores.  For the aged samples sinking started 

between 168 and 180 hrs, continuing slowly up to 268 hrs, and then sinking was 

faster and fragments reached the bottom of the tube after 276 hrs. (Fig. 8.3). The 

ratio of water:biochar (w w-1) of the sunken fragments was unaffected by ageing 

and values were 4.98 (±0.30 n=3) and 5.16 (±0.35 n=3) for fresh and aged 

fragments, respectively.        

 

8.4.2 Biochar chemistry changes as affected by the environmental exposure  

8.4.2.1 pH, EC, total elemental C, N, H, extractable NO3
--N and NH4

+-N 

concentration 

Ageing statistically decreased pH and increased EC, and showed no differences 

between biochar application rates (Tab. 8.2). Total C concentration was 
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significantly reduced in aged biochar fragments on average by 14.5 % (±0.0.18 

n=5), with a comparable extent among rates, while no differences were observed 

for H concentration (Tab. 8.2). Conversely, fragments exposed to the environment 

showed a significantly higher total N concentration compared to fresh particles 

(Tab. 8.2), although the intermediate rate (15 t ha-1) showed a lower value in 

comparison with other rates (Tab. 8.2). Independently of the rate, N mineral forms 

(NO3
--N and NH4

+-N) extracted from aged biochar were significantly increased 

(Tab. 8.2) with respect to fresh biochar. 

 

8.4.2.2 Biochar surface atomic composition 

Ageing significantly affected the surface relative atomic composition (Fig. 8.4). 

Biochar surface C and K atomic composition was reduced compared to fresh 

biochar by 30 and 87% on average, respectively, occurring at a similar extent 

among all biochar application rates (Fig. 8.4). Similarly, surface atomic 

composition of Al, Si, Ca, Mn and Fe were higher in aged fragments without any 

effect induced by the application rate (Fig. 8.5). The lowest values of atomic O 

composition were recorded in fresh fragments, while aged particles from the 

highest biochar application rate showed intermediate values (Fig. 8.4). Except 

when biochar was applied at the lowest rate (5 t ha-1), values of surface N atomic 

composition were significantly higher in aged fragments, whereas surface Mg and 

P concentrations were unaltered in all treatments (Fig. 8.4). 
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Picture 8.5. Chromatograms obtained by scanning the biochar surface through XPS 

 

8.4.2.3 Biochar atomic composition up to 35 nm depth 

Without interaction between factors (depth and ageing) values of biochar C, Al, O, 

and Si atomic composition were statistically comparable between surface and inner 

layers (Tab. 8.3). However, values were significantly altered by ageing. Atomic C 

composition was reduced in aged fragments, in contrast with Al, O and Si which 

increased, consistent with the presence of soil minerals (Tab. 8.3). Ageing and 

depth interacted for N atomic composition, which was higher in aged fragments 

only up to the second layer (10 nm depth), while it was similar to values of fresh 

biochar samples in the two deeper layers (<35 nm) (Tab. 8.3). 

No interaction was observed between depth and ageing in Cs1 functional groups 

(data not shown). However, relative atomic percentage of C functional groups -C-

O, -C=O and -COOH increased in weathered samples, while -C-C/-C-H/-C=C 

bonds decreased (data not shown). In addition, depth did not affect the relative 

atomic percentage of -C-C/-C-H/-C=C while C=O and -COOH functional groups 

were significantly higher only in the top surface as compared with inner layers. An 

opposite trend was recorded for the -C-O group, which increased with depth (data 

not shown). 
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Picture 8.6. C1s region bonding state deconvoluted chromatograms. On the left, 

spectra of fresh biochar as compared with an aged (30 t ha-1) biochar fragment 

(right).  

 

8.4.2.4 Biochar atomic composition up to 110 nm depth 

Ageing and depth interacted for biochar atomic C and N composition (Tab. 8.4). 

All four analyzed layers of aged biochar showed a significantly reduced C atomic 

composition independent of depth (Tab. 8.4), while only in the top surface (0-

5nm), atomic C composition of fresh biochar was lower than inner layers. C of 

aged fragments was reduced in the first two layers (up to 40 nm) compared to 

deeper layers (Tab. 8.4). 

Ageing and depth significantly interacted with atomic N composition up to 75 nm 

depth (L6), while no interaction was recorded between the two deepest layers (Tab. 

8.4). Atomic N composition was significantly higher in the first two aged layers 

compared whit the fresh biochar and it was significantly reduced in the aged 

fragment as the depth increased among the top 3 layers (Tab. 8.4). Ageing and 

depth did not interact in atomic O, Al and Si composition (Tab. 8.4). Independently 

of the layer, values resulted always significantly increased in aged biochar by 3, 5 

and 18 fold, respectively (Tab. 8.4). Depth only affected atomic O composition, 

which was reduced as the depth increased (Tab. 8.4).      

The two factors (ageing and depth) always interacted with C functional groups 

(Tab. 8.5). 

The relative atomic percentage of the different C functional groups was always 

increased by ageing in the first 3 analyzed layers (0-75 nm) (Tab. 8.5), except for 

the -C-C/-C-H/-C=C bonds, where only in the top surface an opposite trend was 
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recorded (Tab. 8.5). No differences were measured in the deepest layer (105-100 

nm) between fresh and aged biochars (Tab. 8.5).  

 

8.5 DISCUSSION 

8.5.1 Ageing increased skeletal and envelope densities  

Once incorporated within the soil, biochar physical-chemical properties are 

expected to change with time and a reduced porosity of biochar fragments has been 

indicated among possible outcome of ageing in soil (Barnes et al., 2014). This is 

because biochar in soil undergoes to a range of biogeochemical interactions, 

including a series of physical processes (e.g. tillage, freeze-thaw, rain and wind, 

etc.) that may alter particle size, pore connectivity, chemical composition and 

sorption capacity (Spokas et al., 2014; Hammes and Schmidt, 2009). As 

mentioned, the skeletal density is the volume measured by the displacement of 

helium (He) that can penetrate virtually all the connected pores within a known 

mass of a biochar particle while the envelope density represents the volume of a 

solid material displaced by biochar. 

In our experiment, 4 years of environmental ageing increased both biochar skeletal 

and envelope densities (although not always statistically significantly) without a 

clear trend induced by the rate of application. Compared to fresh particles, the most 

significant change induced by ageing was observed for skeletal density, which 

increased on average by 120 mg cm-3, while the envelope density increased by 20 

mg cm-3. This response may be due to either structural cracking that occurred in 

biochar particles over time as a consequence of mechanical stresses that led to 

alteration of the original pore connectivity, and/or to the interactions of biochar 

with the soil mineral and organic phases. Surface cracks and externally connected 

pore opening represent points of entry for solid particles (soil minerals, organic 

compounds, biochar ash or residues) dispersed in the soil solution, allowing access 

from the biochar surface into its core. Once inside, these particles may flow in the 

internal pore network flushed by water movements. Soil particles in pores <20 µm 

of a biochar recovered from a 2-month incubation (Jaafar et al., 2014) and clay and 

silt were distinctly identifiable in the macropores of an aged sectioned greenwaste 

biochar through SEM images (Joseph et al., 2010). Our microscopic images 

revealed that minerals partially filled biochar fractures starting from its outer faces. 
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Biochar fragments appear wrapped by soil particles that either adhered to the rough 

surface or were chemically retained on our recovered biochar. Images show that 

despite our effort to remove and separate uncharred particles from biochar 

fragments, a small amount of soil was observed on surface and within pores that 

potentially affected also biochar chemical analyses.           

Although biochar pore sizes occur over many orders of magnitude (Brewer et al., 

2014), plant-derived biochars typically have a high concentration of macropores 

with a diameter >1 µm (Downie et al., 2009).  This size fraction includes pores 

larger than a water molecule (0.28 nm). Capillary forces may also drive the soil 

solution into biochar pores, carrying small mineral and organic particles in 

suspension (including small C-sheets resulting from biochar physical cracks) into 

biochar microvoids that may accumulate (and/or clog) in the pore channels (Joseph 

et al., 2010). Charred and non-charred compounds can then remain physically 

blocked or chemically attracted in the internal biochar voids, altering its original 

framework, hence pore connectivity. We observed minerals and organic residues in 

internal pore channels of aged sectioned fragments. Some particles were physically 

trapped in pores, totally or partially clogging their access. Brodowski et al. (2006) 

and Liang et al. (2006) suggested a close interaction between biochar particles and 

clay mineral surfaces which may lead to the occlusion of biochar pores, limiting 

the accessibility to inner voids (Warnock et al., 2007). If any particle would clog 

the only access of a “dead-end” pore, this would cause a large decrease in the 

skeletal density, since He cannot invade the isolated volume. In the environment 

these newly-inaccessible volumes may be occupied by a combination of trapped 

water and/or air, leading to porosities that vary with water exposure history.  

Biochar densities and porosities measured here after drying at 105°C should 

therefore be considered upper limit values.  

The extent at which particles enter the biochar pores depends to a first order on 

pore size, and then on the macropore diameter, connectivity, length and tortuosity. 

As a consequence of environmental exposure, oxidized biochar particles may be 

bound with clay and silt-sized minerals and this association can increase the ability 

of the soil-biochar complex to sorb organic compounds in soil (Browdowski et al. 

2006). Direct sorption of organic matter onto biochar surfaces in soil was also 
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indicated by Uchimiya et al. (2010). The attachment of organic compounds on the 

biochar surface was considered to be among the factors responsible for the decline 

in the sorption capacity of aged biochar, since micropores appeared clogged 

(Pignatello et al., 2006).  

Biochar physical properties can be also altered by its interaction with 

microorganisms in soils (Hockaday et al., 2006). In a 56-day incubation 

experiment, biochar retrieved from soil exhibited larger pores distinctly colonized 

by fungal hyphae which were observed across the entire biochar particles 

(externally) and within pore spaces (Jaafar et al., 2014). Microbes may clog 

internal pores over time and appear in pycnometric measurements as solids 

inaccessible to He displacement, thus contributing to a decrease biochar density.      

 

8.5.2 Agronomical and ecological implications  

Even though both biochar skeletal and envelope densities increased as a 

consequence of environmental exposure, porosity, defined as the ratio of these, was 

unaffected, suggesting that both fresh and aged particles may show similar 

porosity-driven hydrologic behavior. Nevertheless, the imbibition assay showed 

that water absorption kinetics of aged biochar were significantly slower than those 

of fresh fragments. The slower water infiltration experienced by aged particles is 

likely due to the reduced water accessibility of pores and fractures, suggesting that 

the effect of biochar on soil hydrology may change with time. However, this 

response raises a number of questions. For example, it seems reasonable to assume 

that different soil textures and mineralogies will interact differently with various 

biochars and thus biochar and ecosystem-specific patterns of sealing exterior pores 

may be expected.  

Recently, two hydrologic pathways were proposed to be potential drivers for 

hydraulic conductivity in the soil-biochar mixture (Barnes et al., 2014): the first 

includes the interstitial space between biochar and soil (interparticle spaces) and 

the second is represented by the voids within the biochar grains themselves 

(intraparticle spaces). In our experiment, the total amount of water absorbed by 

each particle (intraparticle) once sunk was unaffected by environmental exposure, 

suggesting that after 4 years in soil the potential of biochar to retain water remain 
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unchanged, while the speed at which water penetrated within particles was much 

slower. This shift has several implications for soil processes, both in processes 

mediated by water in soils as well as in the erosive fate of aged particles in the 

environment.  

Porosity is a major control on biochar sorptive capacities and that the ability to 

adsorb water and nutrients is thought to be one of its most environmentally 

valuable properties (Brockhoff et al., 2010; Downie et al., 2009).  Our water 

imbibition kinetics show a lag in aged biochar, suggesting that older biochar may 

take longer to sorb water and may retain water longer, potentially at higher water 

potential values. A shifting in soil water infiltration and drainage rates may be then 

hypothesized after few years upon biochar addition. For this reason, soil leaching 

may result different in aged biochar-mixed soils compared to the immediate 

response of biochar addition under continuous irrigation or heavy rain events.  

Furthermore, the influence of biochar on water holding capacity and amount of 

plant available water may change as biochar ages, in particular in easily drained 

soils (e.g. coarse sand) and especially if a dramatic reduction occurs in the number 

the pores between 0.1 and 50 µm. This pore size range in biochar is fundamental to 

increased plant available water since larger pores weakly retain water under gravity 

(Jury et al., 1991) and nanometer-scale pores do not provide water in a plant-

accessible form (Masiello et al., 2015).  

Water infiltration shifts the envelope density of biochar as water fills internal pores 

previously occupied by air. Once water-filled, the envelope density of biochar 

particles is higher than that of water, leading to sinking. The time dynamics of this 

sinking process seem to be altered by field aging, with mineral blockages of pore 

throats slowing the rate of water infiltration. This lag in particle infill time has 

implications for the erosion rate of biochar particles. We hypothesize a threshold 

effect, with aged biochar particles taking longer to dry out, leading to slower 

erosion rates. However, once biochar particles have become completely dried, they 

may take longer to refill, leading to more rapid erosion. This process likely has a 

pedogenic endpoint that occurs when biochar particles become deeply enough 

embedded within the soil matrix that their dry envelope density exceeds 1 g cm-3.  
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Our experiments suggest that this endpoint was not reached after 4 years for the 

particular biochars and soils used in this experiment. 

The porous structure of biochar provides suitable habitat for a range of microbial 

communities (Downie et al. 2009; Thies and Rilling, 2009; Warnock et al., 2007; 

Hockaday et al., 2006), and fungi can grow from within the pores out into the soil 

Ogawa (1994). As biochar interacts and ages in soil, microbes can enter and inhabit 

biochar pores. Attachment of soil particles to biochar surfaces may also alter 

habitat suitability and microbial activity (Thies and Rilling 2009; Lehmann et al. 

2011). 

Pore connectivity has been suggested to modulate the availability of biochar-

associated labile organic compounds to microbial enzymes (Barnes et al., 2014). 

Easier access to these sites in recently added biochar could partially explain the 

initial high mineralization rates observed after biochar addition (Cross and Sohi, 

2011).  

Minerals covering the external surface of biochar fragments interfere with its 

reactive surface, limiting the sorption capacity (i.e. for organic compounds; Joseph 

et al., 2010) but at the same time the greater reactivity of the surface due to 

oxidation may promote physical protection of biochars and, thus, its long-term 

stability (Brodowski et al., 2006). Our results document the timescale of mineral 

adsorption to biochar surfaces in this sandy-loam Inceptisol. 

 

8.5.3 Biochar chemical changes as affected by ageing   

Although chemically-induced biochar degradation starts before its incorporation in 

soil as a result of the oxidation of exposed C rings with a high density of π-

electrons (Contescu et al., 1998) and free radicals (Montes-Morán et al., 2004), 

only once in soil does biochar experience significant weathering. Persistent 

residence in soil alters the chemistry of biochar and thus changes in soil properties 

induced by biochar application are likely to evolve with time. The main chemical 

changes found to occur during biochar aging are shifts in elemental composition, 

surface chemistry, and adsorption properties (Cheng and Lehmann, 2009). 

Different processes (dissolution, hydrolysis, carbonation, decarbonation, hydration, 

redox reactions) and several mechanisms (H-bonding, cation-bridging, covalent 
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bonding and hydrophobic types of interactions) are involved in biochar weathering 

processes as a consequence of its interactions with OM, water, adsorption of 

dissolved organic (e.g. root exudates) and inorganic compounds and oxidation 

(Joseph et al., 2010). 

Except for C and K, the relative atomic surface (0-5 nm) composition of aged 

biochar increased for most of the investigated elements, while only P and Mg were 

unaltered. This response can be ascribed either to physical or chemical 

mechanisms. In fact, the surface of the weathered biochar particles was finely 

coated with soil and organic residues which appeared adhering and/or trapped in 

pores and fractures, partially explaining the higher concentration for most of the 

elements found on the biochar surface. Chemical mechanisms involve the high 

reactive charge density of the biochar surface (Van Zwieten, et al., 2010) which has 

adsorption sites where cations, clay and organic matter may be bound by ion and 

covalent bindings, confirming the interaction of biochar with minerals and organic 

compounds in soils. The potential of biochar to retain minerals directly on its 

surface (Glaser et al., 2002) increases the ability of biochar to retain nutrients in 

soils. Various combinations of Al, Si, C, Fe, and Ti, and trace amounts of Ca, Mg, 

Mn, K, Na, P, and S, were found at the external surfaces of aged greenwaste 

biochar particles (Joseph et al., 2010). However, the lack of change in the P and 

Mg atomic surface composition found in this study indicates that this process is 

biochar-type and soil dependent.  

The decline of total C concentration in aged biochar is due in part to the 

mineralization of the labile C-fraction associated with biochar (Norwood et al., 

2013). In fact, the biochar C-phase exhibits a high concentration of both aromatic 

and aliphatic regions (Joseph et al. 2010). The first is relatively stable, whereas the 

aliphatic C regions (volatile organic compounds originated during pyrolysis and 

condensed during cooling; Rajkovich et al., 2012) are more reactive (Joseph et al. 

2010). This fraction leads to an initial evolution of biochar-derived CO2 in soils 

after its application (few months), partly attributed to biochar surface oxidation 

(Bruun et al., 2008; Steiner et al., 2008). However, the increase in aromaticity of 

the dissolved organic C (DOC) measured in the leachate upon biochar addition 

suggests that a portion of the labile biochar-derived C can be lost through 
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percolation (Barnes et al., 2014). Compared to deeper layers (up to 100 nm), we 

saw a relative C loss in fresh biochar only in the top 5 nm layer, as a response of 

the natural oxidation occurred on the surface. However, the relative atomic C 

composition of aged biochar was reduced up to the layer between 40 and 70 nm, 

indicating that exposure in croplands strongly alters biochar C surface composition. 

In our experiment after 4 years biochar lost about 15% of its initial total C content. 

However, although higher and faster C-losses have been documented (Rogovska et 

al., 2011) the amount of labile C lost compared to stable C stored in soils with 

biochar is still considered comparatively negligible and should not affect the C 

sequestration potential of biochar on a long-term basis (Joseph et al., 2010). 

We found total N on recovered biochar particles to be 4-fold higher than fresh 

fragments, independent of the application rate. The most significant contribution to 

the total N increase was due to the organic N forms, which were 56% of the total 

N, on average. Similarly, Joseph et al. (2010) reported a general increase in the N 

content of two different biochars.  This was shown to be mainly associated with 

proteins, amino acids, NH4
+ and N–C compounds.  

Mineral N released by biochar was mainly in the form of NH4
+. However, the 

extractable NO3
--N and NH4

+-N concentration was 14 and 2 times higher in aged 

than in fresh biochar, respectively, indicating the potential of biochar to retain both 

mineral N forms. This confirms the potential effect of biochar on N retention and in 

reducing the emissions of N-containing GHGs in soils (Spokas et al., 2012). N 

atomic composition was found to significantly decrease as depth increased up to 75 

nm, suggesting that mechanisms for N retention are not limited to the top surface. 

We observed that K atomic concentration was significantly reduced in aged biochar 

surfaces by 87% on average compared to the initial composition. In fact, 

dissolution of soluble salts and organic compounds (i.e. biopolymers and low 

molecular weight compounds) associated with charred particles is among the first 

reactions upon biochar addition to soil (Joseph et al., 2010; Shinogi et al. 2003). 

This is also confirmed by the reduced CE that we observed in aged particles. The 

dissolution process may induce a rapid increase in the availability of water soluble 

cations in the soil layer, where biochar is incorporated, thus when high rates are 

applied, biochar may represent a consistent source of K, enough to fulfill plant 
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requirement for the first 2-3 seasons after its incorporation. However, results from 

a column experiment showed that weathering reduced not only the content of K but 

also S, Ca, and P (Yao et al., 2010), suggesting that mineral release from charred 

materials is controlled by biochar characteristics and the environment.  

As expected, extensive oxidation occurred on the aged biochar surface. Although 

not statistically significant, oxidation was more evident mostly on the exposed top 

surface, and was progressively less pronounced as depth increased down to 35 nm. 

On the other hand, independently of the environmental exposure, atomic O 

composition in aged biochar significantly decreased down to 75 nm depth. 

Results showed that the O:C ratio of our biochar surface shifted from <0.074 to 

>0.58 after 4 years in field conditions as a consequence of the depletion of C and 

increase of O content. This may have consequences for biochar stability in soil, 

since the increase of the O:C ratio has been cited as a fundamental attribute in 

controlling the resistance to microbial mineralization (Spokas et al., 2010; Harvey 

et al., 2012), although it may also simply reflect the increased O present in soil 

minerals which have attached to the biochar surface. 

 
8.5.4 Ageing promotes surface C functional groups  

Biochar chemistry changes induced by environmental exposure include the 

development of carbonyl, carboxylate, ether, and hydroxyl C functional groups, 

which are also responsible for the increase in CEC as biochar ages (Cheng et al., 

2008; Mao et al., 2012). In our study, an overall development of C functional 

groups (-C=O, -C-O, -COOH) on the aged biochar surface was observed as a 

consequence of the natural oxidation which involves the increase in O and H 

composition (Qian and Chen, 2014; LeCroy et al., 2013; Lin et al., 2012; Jones et 

al., 2012; Yao et al., 2010; Cheng et al., 2008). This oxidation is attributed to both 

biotic and abiotic processes, although some data suggest that biotic processes 

dominate (Zimmerman, 2010; Cheng et al., 2006). The increased oxidation of C in 

the uppermost surface layers of the aged biochar confirms that oxidation and/or 

adsorption of soil OM occurred (Joseph et al., 2010). Nevertheless, different 

functional groups can be formed on aged biochar through oxidation such as, 

lactonic, o-quinone-like structures and ether-type oxygen (Boehm, 2001). In our 

case, the -C-C/-C-H/C=C bonding state was always the major component of both 
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fresh and aged biochar, although after 4 years the relative composition of these C 

bonds significantly decreased only in the top surface.  

The most significant changes in the C1s bonding state were evident on the top 

surface (0-5 nm), where the relative concentration of -C=O, -C-O and, although to 

a lesser extent of -COOH, was significantly higher in aged biochar. It is possible 

that carboxyl functional groups were less developed relative to other oxidized 

carbon forms because carboxyl groups may be partially decarboxylated through 

hydrolysis reactions occurring in solution (Yan et al., 1996). 

The development of O-containing C functional groups increases the reactivity of 

the biochar surface, leading to an enhancement of chemical sites able to retain 

nutrients and other organic compounds on this surface. This process is also 

responsible for the evolution of negative charges, raising the biochar CEC over 

time (Zimmerman, 2010).  

Oxidized biochar particles may then be bound to soil minerals. Mineral attachment 

has been indicated as one of the possible mechanisms for the slowing of biochar 

decomposition and oxidation (Nguyen et al., 2008; Browdowski et al., 2006), 

acting as a control on the stabilization process of charred particles. 

Weathering processes, and in particular the development of carboxylic acids 

functional groups, lead to a decrease in the concentration of basic sites on the 

biochar surface (Yao et al., 2010; Cheng and Lehmann 2009; Cheng et al., 2008) 

which can explain the observed significant reduction of pH (~2 units) in aged 

biochar. This suggests that the liming potential of biochar may be limited over 

time. Hence, biochar-induced benefits in nutrient availability in acid soils may be 

more pronounced in the first seasons following application. For the same reason, 

the undesirable further pH increase in alkaline soils due to biochar application may 

be transient. 
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8.6 CONCLUSIONS 

Our results showed that 4 years of exposure in field conditions increased both 

biochar skeletal and envelope density and, although total porosity was unaffected, 

water infiltration within aged particles was significantly slower, likely due to the 

reduced accessibility of water in pores and fractures. This has implications for soil 

hydraulic conductivity, biochar movement in the environment and in other 

processes mediated by water in soil, including soil water-holding capacity and 

plant-available water. Biochar porosity itself does not seem enough to predict the 

long-term effect of biochar on the hydraulic response of the soil-biochar mixture. 

Measures of pore accessibility may also be needed. Ageing decreased biochar C 

and K content but increased the overall relative mineral composition for Si, Al, Ca, 

Mn and Fe in the topmost layers of the biochar surface (0-5 nm), confirming the 

interactions of biochar with soil inorganic and organic phases. Similarly, both 

organic and mineral N content increased in aged biochar up to 40 nm depth. 

Biochar chemistry changes, as a response of natural oxidation, included the 

development of O-containing (i.e. carbonyl and carboxyl) functional groups, which 

were observed mainly in the exposed top surface. However, changes were 

noticeable also in deeper layers, down to 75 nm while no significant changes were 

measured in the deepest layer (105-110 nm).   
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            Table 8.1. Physico-chemical properties of the biochar used in the experiment 

Parameter  Unit Value 

Physical properties   

Moisture g 100 g-1 13.8 
Bulk density g cm-3 0.43±0.04 
Hydrophobicity  Slightly hydrophobic 
Total porosity  mm3 g-1 2722 
Transmission pores mm3 g-1 318 
Storage pores mm3 g-1 1997 
Residuals pores mm3 g-1 406 
Max water absorption g g-1 of dm 4.53 
Skeletal density (SD) g cm-3 1.86±0.04 
Envelope density (ED) g cm-3 0.2459±0.0056 
Porosity (ED/SD) % 0.863±0.006 
Surface area1 (BET Brunauer–Emmett–
Teller method)  

m2 g-1 410±6 

Particle size distribution1 
50-20 
20-10 
10-8 
8-4 
4-2 
2-1 
<1 

mm g-1 
% 
% 
% 
% 
% 
% 
% 

 
4.45 
12.1 
13.1 
10.36 
19.85 
24.2 
15.94 

Chemical properties   

pH - 9.8 
CEC cmolc kg-1 101 
Carbon1 (C) g kg-1 778.0 
Total nitrogen (N) g kg-1 9.1 
C/N - 85.5 
Aluminum (Al) mg kg-1 268 
Arsenic (As) mg kg-1 0.005 
Beryllium (Be) mg kg-1 0.001 
Cadmium (Cd) mg kg-1 0.001 
Calcium (Ca)  g kg-1 25.0 
Chrome (Cr) mg kg-1 0.002 
Cobalt (Co) mg kg-1 0.002 
Copper (Cu)  mg kg-1 97 
Iron (Fe)  mg kg-1 333 
Magnesium (Mg)  g kg-1 28.7 
Manganese (Mn) mg kg-1 84 
Molybdenum (Mo) mg kg-1 2 
Phosphorus (P)  g kg-1 23.3 
Potassium (K)  g kg-1 13.9 
Sodium (Na) g kg-1 11.9 
Sulphur (S)  mg kg-1 481 
Zinc (Zn)  mg kg-1 104 

                 1Source: data from Baronti et al., 2014 (with permission) 
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Table 8.2. pH, electrical conductivity (EC), total C, H, N concentration and KCl extractable 
NO3

--N and NH4
+-N of different rates of aged as compared with fresh biochar fragments 

Biochar pH EC C H N NO3
--N NH4

+-N 
  µS g 100 g-1 g 100 g-1 g 100 g-1 mg kg-1 mg kg-1 

Fresh 9.97a 903.5a 77.6a 1.41 0.23c 5.51b 132.3b 
Aged 5 t ha-1 7.81b 129.8b 66.7b 1.48 0.92a 82.5a 248.8a 
Aged 15 t ha-1 8.09b 144.8b 66.3b 1.40 0.73b 69.2a 230.9a 
Aged 30 t ha-1 8.08b 158.2b 66.1b 1.21 0.97a 83.4a 342.7a 
Significance *** *** * ns *** *** ** 

ns, *, ** and *** = effect not significant or significant at P <0.05,  P <0.01 and P <0.001, respectively. In the 
same column, means followed by the same letter are not statistically different (P <0.05, SNK Test) 

 
Table 8.3. Elemental composition (atomic concentration - at%) of aged (4-year in field 
conditions at 30t ha-1) biochar surface (S1) and 3 depth (L2, L3 and L4) compared with fresh 
biochar as determined by XPS 

 C N O Al Si 
AGEING  S1 L2 L3 L4    
Fresh 91.6 1.2 0.89 0.85 0.76 6.7 0.29 0.47 
Aged 55.3 3.15 1.40 1.15 1.13 32.7 3.73 6.50 
Significance *** 2SEM=0.50 *** *** *** 
DEPTH         
S1 68.74     24.1 1.53 3.47 
L2  74.03     19.0 2.15 3.69 
L3  75.01     18.2 2.25 3.49 
L4  76     17.6 2.12 3.31 
Significance ns  ns ns ns 
Ageing *Depth ns **  ns ns ns 
ns,  ** and *** = effect not significant or significant at P <0.01 and P <0.001, respectively. Interaction between 
biochar and layer significant at P <0.01. Values differing by > 2 SEM are statistically different. 
Estimated depth layers: S1 (0-5 nm), L2 (5-10nm), L3 (15-20nm), L4 (30-35nm) 
 
Table 8.4. Atomic concentration  (at%) of aged (4-year in field conditions at 30t ha-1) biochar 
surface (S1) and 3 depth (L5, L6 and L7) compared with fresh biochar as determined by XPS 

 C N O Al Si 
AGEING S1 

(0-5 nm) 
L5 

(35-40 nm) 
L6 

(70-75 nm) 
L7 

(105-110 
nm) 

S1 
(0-5 nm) 

L5 
(35-40 nm) 

L6 
(70-75 nm) 

L7 
(105-110 

nm) 

   

Fresh 79.0 90.2 91.0 91.2 1.02 0.82 0.76 0.80 10.3 0.64 0.33 
Aged 50.4 52.8 65.5 69.2 3.81 2.14 1.18 1.13 30.1 3.51 5.93 
Significance 2SEM=4.82 2SEM=0.81 *** *** *** 
DEPTH      
S1   28.0a 1.69 3.16 
L5    21.2b 2.33 3.51 
L6    16.4c 2.03 2.89 
L7    15. c 2.23 2.98 
Significance   *** ns ns 
Ageing*Depth *  *  ns ns ns 
ns,  * and *** = effect not significant or significant at P <0.05 and P <0.001, respectively. In the same column, 
means followed by the same letter are not statistically different (P <0.05, SNK Test). Interaction between biochar 
and depth significant at P <0.05. Values differing by > 2 SEM are statistically different. 
Estimated depth layers: S1 (0-5 nm), L5 (35-40nm), L6 (70-75nm), L7 (105-110nm) 
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Table 8.5. C1s bonding state and relative atomic percentage of aged (4-year in field conditions at 30t ha-1) biochar surface (S1) and 3 depth (L5, L3 
and L7) compared with the fresh biochar as determined by XPS 

 Binding Energy (eV) (avg ± std dev) 
 -C-C/-CH/-C=C -C-O -C=O -COOH 
 284.79±0.05 284.76±0.06 284.75±0.04 284.75±0.05 286.14±0.46 285.96±0.29 285.91±0.21 285.85±0.12 287.53±0.5 286.91±1.28 287.16±0.61 287.19±0.22 288.76±0.39 288.87±0.32 288.61±0.45 288.73±0.35 

AGEING S1 L5 L6 L7 S1 L5 L6 L7 S1 L5 L6 L7 S1 L5 L6 L7 
Fresh 75.5 67.2 65.8 65.2 13.2 23.9 24.7 25.2 5.1 5.1 5.6 5.6 6.1 3.8 3.9 4.0 
Aged 51.9 79.8 78.9 73.7 27.4 15.4 16.4 18.8 12.5 3.0 3.1 4.7 8.15 1.7 1.5 2.8 
Significance 2SEM=8.79 2SEM=7.35 2SEM=1.77 2SEM=1.29 
Ageing*Depth ** * *** * 
*, ** and *** = Interaction between ageing and depth significant at P <0.05,  P <0,01 and P <0.001, respectively. Values differing by > 2 SEM are statistically different. 
Estimated depth layers: S1 (0-5 nm), L5 (35-40nm), L6 (70-75nm), L7 (105-110nm) 
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Illustration is not strictly to scale 

 

 

 

 

Figure 8.1. Example of biochar profiles scanned by X-ray photoelectron spectroscopy (XPS). 

Magnification was obtained by a Zeiss SteREO Discovery.V20 microscope 

*Depths are not strictly to scale 

S1= 0-5nm
*
 

L3=15-20nm 

L4= 30-35nm 
 

L6=70-75nm 

L7=105-110nm 

L2= 5-10nm 

L5= 35-40nm 
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Figure 8.2. Effect of environmental exposure (4 years in field conditions) on density 

(skeletal and envelope) and porosity of biochar fragments (avg. ± SE n=5) applied at 

different rates as compared with fresh biochar 

ns and * = effect of biochar ageing and rate not significant or significant at P < 0.05. Bars with the same 
letter are not statistically different (P <0.05) according to the Student-Neuman-Keuls (SNK) test.  
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Figure 8.3. Sinking dynamics of fresh vs. aged (4 years in field conditions at the rate of 30 t ha-1) biochar fragments (n=3) 

ns, * and *** = effect not significant or significant at P < 0.05 and 0.001, respectively.  
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Figure 8.4. Atomic percentage surface elemental composition (XPS) of aged (4-year) biochar applied at different rates as compared with fresh 

biochar 

ns, *, ** and *** = effect of biochar ageing and rate not significant and significant at P < 0.05, 0.01 and 0.001, respectively. Within each element, bars with the same letter are 
not statistically different (P <0.05), according to the Student-Neuman-Keuls (SNK) test. 
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Figure 8.5. Magnification of biochar fragments recovered from a nectarine orchard after 4 years of environmental exposure. Minerals and soil 
particles are adhering and/or are physically trapped over the entire particle surface. Pores appear partially or totally blocked by soil particles, likely 
reducing accessibility. Color magnification were obtained by an Olympus SXZ16 microscope coupled with an Olympus digital camera whereas 
others were obtained by a Zeiss SteREO Discovery.V20 microscope 
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