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Chapter 1

Introduction

1.1 Motivation

Among all Unmanned Aerial Vehicles (UAVs), multi�rotor aircrafts have

enkindled great interest of research centers in recent times. Their activities

have grown and developed fast in the �rst decade of the XXI century.

In civilian applications multi�rotors have proved to be perfect instruments

for aerial monitoring and photography. Nowadays, indeed, many enter-

prises have been established that do business with these machines and on

every TV channel it is possible to attest their e�ciency, sooner or later

appearing shots recorded with their on�board cameras. Sadly, by the

way, the recent disaster that involved in 2011 the nuclear power plant of

Fukushima, Japan, can be mentioned. Videos that witness the damages

within that facility were shot with quad�rotors.

Ultimately, some of their capabilities make them preferable also to �xed�

wing platforms. Multi�rotor UAVs can perform very easily hovering �ight

and vertical take�o� and landing. These characteristics make them the

optimal machine for indoor �ight, for example, and for accessing dangerous

locations with no harm for the pilot.

Multi�rotor platforms also are more employed than RC helicopters, for

commercial applications. This is due to their overwhelming simplicity of

1



1. Introduction

construction and greater ease of piloting.

In a word, multi�rotor aircrafts proved to be interesting machines and

a�ordable technological solutions.

Figure 1.1: Hexa�copter for Environmental Monitoring

This thesis provides a deep insight in the dominion of multi�rotor UAVs

�ight dynamics. All the treatise is addressed to give the reader an analyt-

ical kit of equations, regarding the entire set of rotorcraft con�gurations,

or at least the most common, for a comprehensive study of their behavior.

Thus this work can certainly be considered as a general reference about

�ight mechanics and dynamics of multi�rotors platforms, but also a valid

collection of theoretic instruments, that can direct some design concerns,

avoiding rough and imprecise approaches in the making of these machines.

1.2 Literature Review and Thesis Objectives

Multi�rotor aircrafts, for their relative ease of construction, reliability, low

dangerousness for humans, low�cost spares and maintenance, are exten-

sively employed in academic institutes worldwide. They are indeed a valid

test bed for control systems development, remote guidance techniques, etc.

with the possibility of indoor or outdoor applications. They are exploited

for the validation of all types of control strategies: from linear SISO control

2



1.2 Literature Review and Thesis Objectives

to more sophisticated techniques, like back�stepping control or non�linear

control through Lyapunov's functions, passing also through MIMO LQ

regulators.

Various academic works can be mentioned. For example, one is the OS�4

helicopter, designed and built within the laboratories of EPFL of Lau-

sanne. This work is documented in [4] where the questions of modeling,

design and control are treated. Another project is that developed by the

Australian National University of Canberra [20]. There a very interesting

con�guration of multi�rotor has been built, with pushing propellers and

mini teetering rotors, the X4�Flyer. Also, other important universities

have been involved in the study on similar �ying vehicles, as Stanford [10]

and the MIT [5].

In all these works a mathematical analysis of the �ying systems has not

been neglected. More or less, for any machine, all the modeling issues have

been faced. Also advanced problems like attitude stabilization, remote

control have been treated.

However, notwithstanding the notable results achieved, what the author of

the present thesis felt missing in all these projects, was a sort of theoretic

foundation in the design of all machines and control systems. All the math

tools provided in published works were only a mean to obtain description

a posteriori, more or less precise, of an already existing aircraft.

For example, in the EPFL activity, all the dynamic modeling of the OS�4

multi�rotor is accomplished in great detail. But, when it is the turn of the

tuning of PID regulators, all that is done is a trial assignment of control

gains. This signi�es that all the analytical e�ort was not totally exploited

to the de�nition of precise and ad hoc control laws.

The work presented in this thesis tries instead to circumvent this obstacle.

The manner this is accomplished starts obviously from the mathemati-

cal study of multi�rotor aircraft dynamics, on the base of the results of

helicopter theory.

This theoretic treatment is approached as usually it is done in the case of

3



1. Introduction

�xed�wing aircrafts dynamics.

After brief hints on vector analysis, the rigid body equations of motion are

introduced. The non�linear and the linear formulations are considered, as

in all the text about airplanes �ight dynamics.

Successively, the description of actions on a generic multi�rotor aircraft is

treated. As before, the loads for non�linear modeling and for the linearized

one are de�ned.

All this analytic tools are employed in di�erent manners to appreciate the

potentialities of a good mathematical description of multi�rotor behavior.

To the non�linear model, various expedients based on the experience of

the author are included to make all the formulae in the text a serviceable

tool for simulation. Infact non�linear models are the e�ective mean of

analysis of complex systems like �ying vehicles. They allow, for example,

control laws validation, tuning of algorithm, pilot training. An interesting

application of the non�linear model of dynamics is shown in this thesis for

the study of an innovative con�guration of quad�rotor.

The linear modeling represents the other great facet of theoretic formu-

lation. The linear analysis has its own advantages. It allows the study

of static and dynamic properties of �ying vehicles and also it gives valid

instruments for the study and design of control laws.

The problem of linear dynamics description for multi�rotor aircraft is here

deeply considered. This has permitted the study of the in�uence of all the

factors concerning multi�rotor dynamics, compared to already published

works, in a very original way.

The results of this analysis are utilized then in various manners. The theo-

retic treatment of dynamic stability, or instability, of multi�rotor aircrafts

is accomplished. The design of control system is addressed only with an

analytical development. A study of controllability of a rotorcraft in case

of actuator failure is tackled.

4



1.3 Outline

1.3 Outline

Chapter 2 starts with the de�nition of the rigid body equations of mo-

tion. Kinematics and dynamics equations are enounced, in the non�linear

di�erential formulation.

Chapter 3 is centered on the de�nition of all the loads acting on a multi�

rotor during �ight. Obviously great care is put in the description of rotors

aerodynamics. This chapter also treats the question of modeling of pilot's

commands.

Chapter 4 provides general considerations to direct the writing of an ef-

fective simulation math model. This discussion faces also the problem of

the resolution of the equations of motion and the problem of trim of the

mathematical system.

Chapter 5 treats the linear modeling of dynamics of a multi�rotor aircraft.

It contains also the de�nition of linearized aerodynamics of rotors and ends

with the de�nition of the stability and control derivatives.

Chapter 6 is based on the result of the previous chapter and develops the

analytic study of dynamic properties of multi�rotor aircrafts.

Chapter 7 addresses the problem of control laws design for multi�rotor on

the source of the linear dynamics description provided in chapter 5.

Chapter 8 is an impressive application of all the instruments de�ned in

the previous chapters. It aims at the analytical study of an innovative

quad�rotor con�guration to assess its enhanced performances with respect

to classical quad�rotor.

All the work is enriched with proper numerical tests.
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Chapter 2

Rigid Body Dynamics

In this chapter the mathematical instruments, utilized in the remainder of

the text for the analytical study of the dynamics of motion of a rigid body

in space, are described.

The chapter focuses on the exposition of the equations of motion for a

rigid body, as they are generally treated for aerospace applications. Two

approaches in the de�nition of the equations can be considered: the non�

linear modeling, for the complete simulation of the motion of an aircraft,

and the linear modeling around an equilibrium �ight condition, for the

study of aero�mechanical properties of a �ying vehicle. Here only the

non�linear modeling is treated. The linear one is the central argument of

a following chapter.

To all this, brief considerations about reference systems are added.

2.1 Reference Axis Systems

To study the motion of a rigid body in space it is suitable a mechanical

description in a reference frame �xed to the body itself. Also it is useful the

knowledge of position and orientation of the body with respect to the Earth

surface. A reference frame, in Mechanics problems, is generally a right�

handed axis system, i.e. a triplet of directions in space with their relative

7



2. Rigid Body Dynamics

orientation de�nite and invariable � precisely any of three orthogonal to

the other two � and whose origin is the intersection of is three axes. To

simulate the motion of a multi�rotor aircraft in space two axis systems

are needed, at least. One is the Earth Axis �xed frame chosen as inertial

system: the �rst and the second axes of this frame are oriented to the

North and to the East with the origin placed on or over the Earth surface.

The second reference frame is the Body Axis reference frame whose origin

is placed in the Centre of Gravity (C.G.) of the multi�rotor.

This choice of the two reference frames has two motivations. One is that

the principles of Newtonian Mechanics must be applied to an inertial sys-

tem, for writing the equations of motion of a rigid body. The second is that

is very easier de�ne all the actions generated by the aircraft components

in a proper Body Axis system.

Moreover, in the following, other reference systems are considered. These

systems are centered in the center of the rotors disks. Their de�nition and

purpose will appear clearly along the discussion. To better understand

the classi�cation, one can refer to [6], where it is spoken about Individ-

ual Element Reference Axis (IERA) and Individual Element Local System

(IELA) systems.

2.2 Transformation Matrices

Because in vector analysis the de�nition of a vector depends upon the

chosen reference frame, the necessity incurs to describe a vector, represen-

tative of a mechanical or spatial quantity, with respect to di�erent axis

systems. This operation is generally called vector resolution.

The fundamental mathematical tool that permits this operation is the

Rotation Matrix (or Transformation Matrix) of a vector between two axis

systems.

In general two reference frames di�er between them because of their un-

equal orientations. To know exactly this relative orientation, it is su�cient

8



2.3 Rigid Body Equations of Motion

to impose three sequential rotations about the three axes of a system, one

after the other, to the starting frame. In Flight Mechanics problems these

three rotations are e�ected in this order: �rst around the z (the third)

axis of an angle α; then around the y axis (the second), as oriented after

the �rst rotation, of an angle β; �nally around the x axis (the �rst) of an

angle γ. The three angles just de�ned are the notorious Euler's Angles.

With these three angles the rotation matrix that can resolve a vector from

an initial reference frame A to a �nal frame B can be written. This kind

of matrix has the following expression.

TBA(γ, β, α) =

[
CβCα CβSα −Sβ

SγSβCα−CγSα SγSβSα+CγCα SγCβ
CγSβCα+SγSα CγSβSα−SγCα CγCβ

]
(2.1)

This operator allows to de�ne a vector with respect to a frame B, when it

is known instead in a frame A and the three Euler's angles are known too.

VB = TBAVA (2.2)

2.3 Rigid Body Equations of Motion

The dynamical behavior of a multi�rotor aicraft can be conveniently repre-

sented by means of a set of rigid�body equations of motion, written in a set

of body axes. The equations presented in this section are the results of the

theory of �ight dynamics already known from notorious specialized text.

Here as primal reference [6] can be cited. First the non�linear equations

of motion are described. After, from these same equations, the linearized

equations of motions are obtained.

2.3.1 The State Vector

The equations permit, once integrated, to know the evolution of the dy-

namic and kinematic quantities of motion of the aircraft. As dynamic

quantities the vector of the C.G. linear velocities VB and the vector of the

9



2. Rigid Body Dynamics

angular rates ωB are considered, in the Body Axis system. As kinematic

quantities, instead, the vector of position with respect to Earth Axis sys-

tem PE and the vector of the orientation angles αE are considered. The

vector αE is the vector of the Euler's angles and, if necessary, it can be

substituted by the vector of quaternion q. Now it can be de�ned the state

vector X of the dynamic system describing the quad�rotor dynamics and

kinematics of motion.

X =


PE

αE

VB

ωB

 (2.3)

In the following chapters other components can be included in the de�ni-

tion of the state vector, depending upon the con�guration of aircraft under

study.

Now the elements of the state vector are:

1. Position: PE = (N,E,D);

2. Attitude: αE = (Φ,Θ,Ψ);

3. Velocity: VB = (U, V,W );

4. Angular rate: ωB = (P,Q,R).

2.3.2 Equations of Dynamics

Now the set of the non�linear equations of motions can be enounced. The

formulation follows reference [6].

In the sequel, the Body axes are assumed to coincide with the principle

axes of inertia of the aircraft. The longitudinal axis xB can be considered

parallel to one of the brackets of a quad�rotor con�guration; the zB axis

is oriented towards the ground when the vehicle is in hovering and yB

completes a right�handed frame.
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2.3 Rigid Body Equations of Motion

The mass of the multi�rotor is assumed constant in quantity and in dis-

tribution. The consequence of this assumption is that mass and inertia

tensor are both constant.

The set of equations of the dynamics of a rigid body is given by
mV̇B + ωB × (mVB) = Fext

Iω̇B + ωB × (IωB) = Mext

. (2.4)

The �rst equation of the system (2.4) de�nes the dynamics of translation

in space of a rigid body, in a Body Axis reference frame. The second

equation de�nes instead the dynamics of rotation in space of a rigid body,

in the same Body Axis reference frame.

The inertial tensor is de�ned in eqn. (2.5).

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.5)

The two vector equations of dynamics of motion are equivalent to the set

of six scalar equations (2.6).

X = m(U̇ +QW −RV )

Y = m(V̇ +RU − PW )

Z = m(Ẇ + PV −QU)

L = IxxṖ + (Izz − Iyy)QR
M = IyyQ̇+ (Ixx − Izz)PR
N = IzzṘ+ (Iyy − Ixx)PQ

(2.6)

In these equations

Fext =


X

Y

Z

 (2.7)
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2. Rigid Body Dynamics

and

Mext =


L

M

N

 . (2.8)

Fext andMext are the vector of the external forces and moments acting on

the aircraft, de�ned in the Body Axis frame. Both vectors will be de�ned

properly in next chapters.

2.3.3 Equations of Kinematics

The velocity in the inertial Earth axis reference frame is calculated from

the velocity in the Body axis frame. The attitude variation is obtained

from the angular rates vector ωB.
ṖE = T−1

BE(Φ,Θ,Ψ)VB

α̇E = E−1(Φ,Θ,Ψ)ωB

(2.9)

The TBE matrix is the rotation matrix that transforms a vector from the

inertial Earth axis frame to the not inertial Body axis frame. The sequence

of rotations is Ψ about z axis, Θ about y axis and then Φ about x axis.

TBE(Φ,Θ,Ψ) =


CΘCΨ CΘSΨ −SΘ

SΦSΘCΨ − CΦSΨ SΦSΘSΨ + CΦCΨ SΦCΘ

CΦSΘCΨ + SΦSΨ CΦSΘSΨ − SΦCΨ CΦCΘ


(2.10)

E−1 is the matrix that transforms the vector ωB in the vector of the time

derivatives of the Euler's angles.

E(Φ,Θ) =


1 0 − sin(Θ)

0 cos(Φ) sin(Φ) cos(Θ)

0 − sin(Φ) cos(Φ) cos(Θ)

 (2.11)
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2.3 Rigid Body Equations of Motion

It is also to remind that E is a matrix di�erent from those de�ned in

section (2.2).

Brie�y, the equations (2.9) show the relation between inertial frame veloc-

ities and Body axis frame velocities and between Body axis frame rotation

rates and rates of Euler's angles.

Attitude Representation

The inverse of E matrix presents a mathematical singularity for a value

of Θ equal to ±π
2 rad. If this orientation in pitch can be reached in

simulation, then, it is necessary to choose, for attitude representation, the

vector of quaternion q. The vector q is a vector of four elements that

describes the rotation around a particular axis, the so called Euler's axis,

and the orientation of this axis with respect to the inertial frame.

q =
1

2


q0

q1

q2

q3

 (2.12)

It is necessary to de�ne the equation of kinematics of the quaternion vector.

q̇ =
1

2

[
−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

]
P

Q

R

 (2.13)

If the quaternion vector is known, then the attitude representation through

Euler's angles can be restored, given the relation between quaternion vector

and attitude angles, passing through the matrix TBE .

TBE =

[
q2
0+q2

1−q2
2−q2

3 2q1q2+2q0q3 2q1q3−2q0q2
2q1q2−2q0q3 q2

0−q2
1+q2

2−q2
3 2q2q3+2q0q1

2q1q3+2q0q2 2q2q3−2q0q1 q2
0−q2

1−q2
2+q2

3

]
(2.14)

Because the case of the singularity, in this text, is not considered, the

attitude description with Euler's angles is maintained in the following.
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2.3.4 Complete Di�erential Set of Equations

The two equations of dynamics and the two equations of kinematics can

be rewritten, in an unique set of equations, isolating the derivatives of the

elements of the state vector.

ṖE = T−1
BE(αE)VB

α̇E = E−1(αE)ωB

V̇B = [Fext − ωB × (mVB)]/m

ω̇B = I−1[Mext − ωB × (IωB)]

(2.15)

This system is the set of non�linear di�erential equations of motion of a

rigid body in space. It is apt to study and simulate operations of a �ying

vehicle in all its �ight envelope, virtual testing of on�board systems of the

aircraft under exam, virtual pilot training, etc.

The system can be written in a more compact form, considering the state

vector X. The vector U is the vector of the deterministic inputs (controls)

of the system.

{
Ẋ = f (X,U)

X0 = X(t0)
(2.16)

The second equation de�nes the initial value of the state vector X0 at

the initial time t0, whose knowledge is necessary to start the integration

of the equations of motion, being di�erential equations with time t as

independent parameter.

2.4 Remarks

This chapter has dealt with the mathematical modeling of the dynamics

and kinematics of motion of a rigid body, applicable also to the study
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and simulation of the motion of multi�rotor vehicles. The problem has

not been discussed in a lengthy manner, because these results are already

available on various and notorious texts about �ight mechanics or �ight

dynamics. Care has been put in the fact that the equations shown here

could be those which can correctly and fully describe the dynamics of a

multi�rotor aircraft in its complete �ight envelope.

In the discussion, with regard to the mathematical aspect of the problem,

the equilibrium point of the system was taken as an already known datum.

However this is not true. The trim condition of the state vector X must

be calculated. This problem is discussed in a dedicated chapter.
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Chapter 3

External Actions Modeling

The motion dynamics of a multi�rotor is in�uenced by the external actions,

due to aerodynamics and also to other e�ects. As it results from the

previous chapter, this fact is witnessed by the presence in the equation

of dynamics (2.15) of the vectors Fext and Mext. Then, to complete the

mathematical description of the mechanical behavior of the multi�rotor, it

is necessary an accurate de�nition of all the forces and moments generated

by the components of the aircraft.

This chapter focuses on this last argument. First it begins with the de-

scription of the atmospheric environment. Then all the components of a

multi�rotor aircraft that can a�ect its dynamics are listed. The mathe-

matical description of the actions imparted by each of these components

are analyzed in detail. Finally the e�ects of the pilot's commands are

considered .

3.1 Atmosphere

As any �ying vehicle, a multi�rotor aircraft is subjected to aerodynamic

loads due to the relative motion between its surfaces and the atmosphere.

Every action of that type, also, is directly a function of some mechanical

property of the air which the �ying vehicle is sunken in.
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3. External Actions Modeling

The principal of this physical characteristics of the atmosphere is the air

density ρ. ρ is a fundamental parameter for the evaluation of all types of

aerodynamic actions, both of drag and of lift.

It is notorious that the value of ρ depends upon many factors. One of

these is the altitude, generally to an increase in height from Earth's surface

corresponding a decrease of ρ. Another is the Mach Number M of the air

and another is the Temperature T .

However, multi�rotor aircrafts are vehicles that, during their operation,

do not �y at velocities that imply high values of Mach Number, so that

e�ects of compressibility do not occur in their �ight envelope. Moreover,

variations of altitude in �ight for these machines are of the order of few

ten meters.

All these considerations bring to assume that air density ρ is a constant

that must be evaluated for the particular operative altitude of the multi-

rotor.

Also in this thesis the problem of modeling of air disturbances, like wind

gusts, is not dealt.

In a word, the only physical quantity of interest of the atmospheric envi-

ronment for aerodynamic loads computation is the air density ρ, assumed

always as a constant.

3.2 Loads on a Multi�rotor Aircraft

A multi�rotor aircraft is a �ying vehicle whose rotors are the prime source

of aerodynamic sustenance, propulsion and control. The lifting force that

they generate has to oppose the gravitational force and drag e�ects. More-

over various other factors must be analyzed: aerodynamic torques of ro-

tors, aerodynamic interferences, torques of the motors that spin the rotors

blades, inertial torques on motors shafts, gyroscopic e�ects on rotors.

Thus, a �rst classi�cation of external forces and moments acting on the

aircraft can be stated. The external forces are due to gravitational e�ects,
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3.2 Loads on a Multi�rotor Aircraft

aerodynamics of rotor and drag e�ects of the airframe. The external mo-

ments are due yet to the aerodynamics of rotors. In this vector gyroscopic

e�ects and inertial torques of motors shafts are included for the sake of

brevity, although they are not external loads.

Fext = F(g) + F(r) + F(af) (3.1)

Mext = M(r) +M(motor) +M(gyroscopic) (3.2)

Other than the analysis of the e�ects of gravity, airframe and motors, the

rest of this chapter is dedicated to the study of aerodynamics of rotors,

that, for the major importance on the dynamics of the aircraft, deserves the

deepest and most detailed analysis. It is necessary to remind that the two

previous vectors are de�ned in a Body Axis reference frame. This signi�es

that all the loads must be de�ned in the same reference axis system. If,

some time in the treatment, this is not done, in those case the loads then

must be resolved in the that frame, before integration of the equations of

dynamics.

3.2.1 Gravity Force

Every body is characterized by its own mass m. A mass, plunged in the

gravitational �eld of the Earth, is accelerated at a rate equal to the accel-

eration of gravity g. Thus the weight the mass is subjected to is equal,

in magnitude, to mg. For the present study, it su�ces to consider g as

a constant, because a multi�rotor aircraft does not operate with signif-

icant variations of altitude, that can involve remarkable changes of the

acceleration of gravity.

In the Body Axis frame the gravity force vector is the following.
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3. External Actions Modeling

F(g) = TBE ·


0

0

mg

 =


−mg sin(Θ)

mg sin(Φ) cos(Θ)

mg cos(Φ) cos(Θ)

 (3.3)

The gravity force is applied at the multi�rotor C.G. and thus it does not

generate any moment.

3.2.2 Forces Acting on the Airframe

Every body, that moves in a �uid or gas, is subjected to a force that op-

poses its motion. A force of this kind is called drag. Drag forces depend,

in incompressible �ows, on the shape of the body immersed in the �uid.

The body shape, for drag assessment, depends, in its turn, on the direc-

tion of motion of the body itself, i.e., for a multi�rotor aircraft in �ight,

on its attitude. Thus, the best way to quantify the drag would be to

have a proper drag coe�cient for any attitude of the multi�rotor. This

knowledge, even though could be feasible, could prove excessive, with re-

spect to approximated, but nevertheless a�ordable, solutions. Indeed an

approximated and practical way is to assign a coe�cient to each one of the

reference axes of the �xed Body Axis frame. Any of this coe�cient can be

experimentally evaluated. In aircraft modeling this is done, assigning to

every coe�cient a value for some di�erent orientations of the aircraft under

exam. More details on this argument can be found in reference [6]. For

multi�rotor modeling this last approach can be further simpli�ed, having

in mind what multi�rotor �ying vehicles are able to do in �ight (hover-

ing, climbing, descending, horizontal �ight with almost null attitude are

their major capabilities). Drag is here de�ned with the assignment, to any

principal axis of inertia of the body �xed Body Axis frame, an unique and

constant aerodynamic coe�cient.

More concisely, it is assumed that the forces acting on the multi�rotor

airframe are the three components of the drag directed along the three

axes of the body �xed reference frame. The distance between C.G. and
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3.2 Loads on a Multi�rotor Aircraft

the aerodynamic center of the airframe is considered null. The drag forces

are assessed with the equivalent �at plate area model [6].

F(af) =



−1
2ρAx|U |U

−1
2ρAy|V |V

−1
2ρAz|W |W


(3.4)

The three equivalent �at plate areas Ax, Ay, Az are constant. The e�ect

of the rotors induced velocities are neglected.

This drag forces in hovering, or near hovering �ight, are practically neg-

ligible. Instead, at high velocities, drag forces act as a sort of damping

e�ect that keeps the multi�rotor from getting out of control, at least in

simulation.

3.2.3 Rotor Aerodynamics

For multi�rotors helicopters, as for any rotary wing machine, rotors are

obviously the most important component in terms of �ight performances.

Indeed their action permit the aircraft to lift, hover, �y, be maneuvered

and, necessarily, in a controlled and safe manner.

Because rotors are the device that produce lift forces, thrust and control

actions, a precise analysis of the loads acting on rotors during �ight is a

necessary task for the understanding of the dynamic behavior both from

a mathematical and from a physical point of view.

Although multi�rotor aircrafts prototypes [12] had been built before heli-

copters in the classical con�guration (with a main rotor and a tail rotor),

scienti�c research about aerodynamics of a rotor regarded principally, in

the past century, the study of helicopter �ight. This can be veri�ed enu-

merating the various and remarkable texts in the specialized literature.

However, since helicopters and multi�rotor UAVs rotors aerodynamics are
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based on the same physical principles, the theoretic results obtained for he-

licopter rotors are liable to be applied to the study of multi�rotor aircrafts

dynamics.

After this assumption, before starting the analytical treatment of the aer-

odynamics of a rotor, it is of obvious interest to describe the rotor as

a "solid" device and the peculiarities of rotors for di�erent rotary wing

machines.

A rotor is a set of blades (two or more) attached to a rotating shaft and

arranged as spokes of a wheel. Blades are wings, that is, beams with

section shaped as an aerodynamic pro�le. They also might be twisted

along their span, might be tapered or have variable chord.

In the case of manned helicopters, rotor blades are not rigidly attached to

the hub of their shaft, but generally they are hinged to it. Then blades

are free to rotate about an axis perpendicular to the shaft and to the

blade span. This is the �apping motion of the blade. Moreover a second

hinge permits the blade to rotate around an axis parallel to the shaft,

to eliminate torques due to blade drag e�ects on their root and on the

hub itself (lagging motion). A third hinge is the feathering hinge that

commands the pitch of the blades (collective and cyclic). Rotors that

possess all these hinges are named articulated rotors. Another type of

rotor is the tethering rotor whose two blades are free to �ap around an

unique central hinge. In some rotors hinges are substituted by �exible

elements (elastomeric bearings). This rotors are called semi�rigid rotors.

All these expedients are necessary for not transmitting moments to the hub

due to asymmetry of aerodynamic loads on the blades and for controlling

the thrust and its direction through the pitch of the blades, by means of the

collective and cyclic pitch controls. Indeed, through these inputs, �apping

allows the �ight control of a helicopter, because to �ap the blades signi�es

to tilt the rotor disk, that is, the direction of the thrust itself. This last

consideration must be united with the fact that helicopters rotors perform

at almost constant rotational speed. A partial view of helicopter main

22



3.2 Loads on a Multi�rotor Aircraft

rotor is given in �gure (3.1).

For details about rotors of helicopters and their working principles one can

refer to classic texts [17, 2, 21, 15].

Figure 3.1: Main Articulated Rotor for a Manned Helicopter

All the considerations listed previously are valid wholly for helicopters

rotors. A rotor for multi�rotor UAVs, although it is yet a device for pro-

ducing thrust exploiting rotating blades, is more similar to a propeller of

an airplane, for the majority of existing machines, as shown in �gure (3.2).

The blades of these propellers are very short ones, with cambered pro�le,

not rectilinear twist and a shape along blade span di�erent from a linear

tapering but instead comparable to that of blades for airplane propellers,

with the maximum of chord about the half of the blade.

Blades for multi�rotor applications are made generally of wood, plastic

material or carbon �ber. Especially if made of carbon �ber, they grant

high sti�ness and resistance against breaking in case of crash. They are

characterized by very low weights, when blades for helicopters, instead,

for hardest design requirements, are made of though metallic or composite

materials.

Multi-rotor aircrafts usually are commanded with combined variations of

their propellers rate and not with the changes of inclination of rotors disks

by means of aerodynamic e�ects (�apping). Flapping e�ects for stabi-

lization and pitch variations as control input have been included only in

sporadic, although interesting, academic activities [5, 20]. Of course, ne-
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glecting �apping and all rotor dynamics, the computation of aerodynamic

loads on rotor is a less intricate problem but not, nevertheless, easy.

Figure 3.2: Multi�Rotor Propeller

At this point a question that should be answered is in what degree the

aerodynamic models applied to helicopters rotors be�t multi�rotor pro-

pellers. Indeed the �rst are, with respect to those of mini UAVs, very

large rotors that during operations can reach velocities on the blades of

the order of transonic speeds. Multi�rotors propellers instead remain far

from this working conditions, as already stated. A comparison could be

made evaluating the Reynolds' numbers for both types of rotor in some

�ight condition. Without proceeding in this analysis, it can be stated

that multi�rotors UAVs propellers work at very lower values of Re, against

higher Re of modern helicopters rotors [12]. This can signi�es that the

aerodynamic �eld around a multi�rotor propeller could be likely more dis-

tant from an ideal condition of rotor in�ow with respect to a helicopter

rotor �ow �eld. This consideration could carry to the conclusion that aer-

odynamic models, that are enounced later, for large rotors could not be

equally adequate for multi�rotor propellers analysis.

However, the aim of the present study is not to describe exactly the aer-

odynamic �ow around the blade section of a propeller. Thus, regarding

the assessment, although approximate, of the forces that are generated on

a rotor globally, some other parameter can be chosen for a comparison.
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The so called Figure of Merit [12] of a rotor is a quantity that relates the

ideal power requited to a rotor to produce thrust divided by the power

absorbed in induced and parasite drag e�ects on rotor blades, in hovering

�ight condition. If values of this parameter are similar for di�erent rotors,

it can be stated that, although the aerodynamic modeling can not give

equally a�ordable results for wake description of rotors, from the point of

view of global performances of rotors, in terms of forces and power ab-

sorption, the di�erences are less marked. For example in [28, 20] values of

F.M. of the order of 70% and more are shown, in real applications. These

values are comparable to those listed in [12, 15] for modern helicopters

rotors. On this base it can be admitted that the mathematical modeling

of aerodynamic loads utilized for helicopters rotors and described in the

following pages is a still a�ordable instrument for multi�rotor analysis.

Hypotheses on Rotor Aerodynamics

After these considerations, some hypotheses have to be stated for the cal-

culation of the aerodynamic loads. The assumptions permit to have an-

alytical results available for dynamic simulations and dynamic stability

characteristics assessment. Some of them regard the type of blades and

these ones are the following:

1. blades are rigid beams;

2. blades are rigidly attached to the rotor shaft;

3. every section of the blades is a pro�le whose shape is the same along

the blades span;

4. blades are not tapered and have linear twist along their span.

From these suppositions the next considerations derive. No �apping and

rotor blades dynamic must be evaluated. Thus the rotor can be thought

of as a rigid rotating disk (the Rotor Disk), whom a �ow of air passes
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through. The lifting characteristics of blades sections are constant along

their span.

Linear aerodynamics of blades section are assumed. In particular:

1. Clα is the lift curve slope of blades section;

2. Cd is the pro�le drag coe�cient of the blades section and represent

a mean value for all blades sections.

Because blades are wings of �nite length, e�ects of induced velocity must

be included in the aerodynamics analysis of the rotor. The induced velocity

computation will be described in a successive section.

Aerodynamic Loads on Rotor

A detailed study of the aerodynamics of a helicopter rotor is available in

texts like [17, 6], including e�ects of �apping, pitch of blades, etc. The

assumptions made previously about rotor geometry, sti�ness, and aerody-

namic characteristics, permit to treat the aerodynamic load calculation in

a way at all similar to that presented in [15], for the case of a rigid rotor

in forward �ight.

For the present case only few components of aerodynamic loads are suf-

�cient to describe the actions on a propeller. Vectors F(r) and M(r) can

be rewritten. These vectors now are de�ned with respect to a reference

frame whose �rst axis is directed along the projection of velocity uR of ro-

tor center on the rotor disk itself. The third axis of this frame is directed

orthogonal to the rotor disk plane, opposed to rotor thrust T , and the

second axis is perpendicular to the other two. The origin of this frame is

placed in the rotor disk center. Such a frame, called Rotor Axis frame, is

indicated with a R subscript and can be oriented di�erently with respect

to the Body Axis frame of the aircraft. In �gure (3.3) a sketch of a rotor

with its relative frame is depicted.

In this frame two components of the forces vector and two components of

the moments vector, acting on the rotor, can be de�ned:

26



3.2 Loads on a Multi�rotor Aircraft
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Figure 3.3: Rotor Axis Reference Frame

1. the thrust T ;

2. the rotor drag H opposed to the velocity component uR;

3. a rolling moment Λ around the direction of uR;

4. a torque Π around the rotor disk axis.

F
(r)
R =


−H
0

−T

 (3.5)

M
(r)
R = sgn(Ω)


Λ

0

−Π

 (3.6)

The sign of the not null two components of M
(r)
R depend on the sense of

rotation of the rotor blades. Ω in this case is exactly the speed rate of the

rotor. The sign of Ω follows the convention for a rotation in a right�handed

frame.
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In rotor aerodynamics it is usual to refer to non�dimensional coe�cients

instead of pure forces and moments. In this case the following coe�cients

can be de�ned.

CT =
T

ρAΩ2R2

CH =
H

ρAΩ2R2

CΛ =
Λ

ρAΩ2R3

CΠ =
Π

ρAΩ2R3

(3.7)

These coe�cients can be referred to as the Thrust coe�cient, the Drag

coe�cient, the Rolling Moment coe�cient and the Torque coe�cient, re-

spectively. A is the rotor disk area and R is the rotor radius.

A = πR2 (3.8)

Induced Velocity on a Rotor

A rotor is a device that generates a force through its aerodynamic in-

teraction with the surrounding air. For the Third Principle of Newtonian

Dynamics, to the rotor lifting force (and also to the other) must correspond

an equal and opposite force acting on the �uid that invests the propeller.

This signi�es that the �ow passing through the rotor is subjected to an

acceleration. This increase of the velocity of the air is the so called induced

velocity vi. From this hint it is clear that for knowing the forces generated

by a rotor the calculation of this induced velocity is mandatory.

The induced velocity is distributed on the whole area swept by the rotor

blades. This distribution cannot exactly been calculated. For details clas-

sic texts as [2, 17] can be referred to. Many simpli�cations must be made

to have an analytical result apt to aerodynamic loads evaluation. Now an
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3.2 Loads on a Multi�rotor Aircraft

induced velocity constant distribution is assumed all over the entire rotor

disk. As shown in [2], this mean component of the induced velocity has

the main in�uence on the rotor thrust. Thus, in this study, the induced

velocity of a rotor in �ight is assumed equal to its mean value on the whole

rotor disk area.

The theory that permits the de�nition of the induced velocity in function

of the rotor thrust is the Momentum Theory (MT). For details one can

refer to [15, 6, 12]. This theory is based on several assumptions:

1. the rotor is modeled as a propeller with in�nite number of blades

(actuator disk);

2. the actuator disk operate on a streamtube that crosses the whole

rotor area;

3. the air�ow is incompressible and the induced velocity vi is normal

to the disk actuator;

4. through the actuator disk a leap in the air�ow pressure, that is con-

stant across any section of the streamtube and across the actuator

disk area, is assumed.

Exploiting the Bernoulli theorem and de�ning the Momentum variation

in the air�ow through the actuator disk, the relation between the thrust

T and the induced velocity vi can be found. For the mathematical details

[15, 6] can be consulted.

T = 2ρAvi

√
U2
R + (WR − vi)2 (3.9)

This equation can be rewritten in the non�dimensional form.

CT = 2λi
√
µ2 + (µz − λi)2 (3.10)

λi is the in�ow ratio, µ is the advance ratio and µz is the climb ratio. All

these quantities are obtained dividing the respective dimensional velocities

by the blade tip velocity |Ω|R.
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3. External Actions Modeling

The components of velocity in the previous expressions are depicted in

�gure (3.4).

z
R

x
R

y
R R

w
R
 - v

iu
R

T

Figure 3.4: Air Velocity on a Rotor

Solving this equation is not a trivial matter. There is no analytical solu-

tion, except for the case of hovering �ight, where the equations bring the

following results.

vi =

√
T

2ρA
(3.11)

λi =

√
CT
2

(3.12)

In a di�erent �ight condition, instead, an iterative approach is requited,

assigning an initial value to the induced velocity or, alternatively, to the

in�ow ratio. The a�ordable and usual mathematical technique for this

problem is the Newton�Raphson method. Now the formulation of the nu-

merical process, as it appears in [6], is enounced. The following equations

are those utilized for the simulations shown in this thesis.
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3.2 Loads on a Multi�rotor Aircraft

v∗i =

√
T

2ρA
=

√
CT (ΩR)2

2

ŵ = vi/v
∗
i

µ̂ = UR/v
∗
i

η̂ = WR/v
∗
i

(3.13)

Equation (3.9) can then be reformulated.

ŵ2[µ̂2 + (ŵ − η̂)2]− 1 = 0 (3.14)

With a truncated Taylor's series expansion the increment of ŵ can be

calculated.

∆ŵ = − f(ŵ)

F (ŵ)

f(ŵ) = ŵ2[µ̂2 + (ŵ − η̂)2]− 1

F (ŵ) =
∂f

∂ŵ
= 2ŵ[µ̂2 + (ŵ − η̂)2] + 2ŵ2(ŵ − η̂)

(3.15)

Once the value of ŵ has been updated, the iteration can go on.

ŵnew = ŵold + ∆ŵ (3.16)

The process continues until the di�erence between two succeeding values

of ŵ becomes equal or inferior to a �xed tolerance (e.g., this constraint

can be chosen equal to 0.01). Thus the induced velocity vi is achieved.

vi = v∗i ŵ (3.17)

Another consideration, to the purpose of simulation, must be pointed out.

The knowledge of thrust is necessary to start the calculation. But, as

explained later, also the thrust must be de�ned in function of the induced

velocity. Thus, to accomplish a numerical �ight simulation through time,
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3. External Actions Modeling

what can be done is to compute the induced velocity at a precise instant,

then to memorize this value of vi and �nally to transmit it at next time

instant of the simulation. This little jump in time must be chosen to avoid

divergence of the iterative process. This can be done with a trial and error

procedure, within for example the SIMULINKr environment.

Other than this, the MT provides a relation that connects thrust of the

rotor and the average induced velocity over the rotor disk. However there

is some �ight condition for whom its validity is no more granted. For this

question the already cited texts can be the optimal reference.

In this work, all ground e�ects are neglected in the evaluation of the in-

duced velocity of a rotor.

Moreover all the aerodynamic interferences that can arise between rotors

wakes and between rotors wakes and airframe of the multi�rotor aircraft

are neglected. This is due to the fact that, in the majority of multi�rotor

platforms, propellers are mounted on their airframe in a way that all the

various wakes substantially do not intercept other parts of the machine.

Calculation of the Rotor Aerodynamic Coe�cients

Once the induced velocity or the in�ow ratio is known, the computation

of the aerodynamic actions de�ned in (3.2.3) is possible. To obtain the

rotor forces and moments, including aerodynamic characteristics, pitch

and geometry of the blades, it is necessary to make use of the so called

Blade Element Theory (BET).

The approach of BET is to assume that every section of the rotor blades

behaves exactly like an aerofoil. The air velocity over the blade section

is the sum of the velocity due to rotation of blades about their shaft, of

the speed of aircraft and of the induced velocity. From this quantities it

is possible to evaluate the incidence of the aerofoil and then the lift and

drag forces for unit length of every blade. After the integration along the

blades span and around the rotor shaft axis, the rotor aerodynamic loads

are computed, as averaged quantities for a 2π rotation of all the blades.
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3.2 Loads on a Multi�rotor Aircraft

All these considerations and the hypotheses previously de�ned in section

(3.2.3) on blades geometry and aerodynamic characteristics, permit to

exploit the de�nitions of rotor aerodynamic coe�cients presented in [15],

as already stated, for the case of a rotor in forward �ight, with also the

e�ect of a linear blade twist and without inserting the cyclic commands.

CT
σClα

= [θc(
1

6
+
µ2

4
)− λi − µz

4
− 1

8
(1 + µ2)θtw]

CH
σClα

= [
(λi − µz)µ

4
(θc −

θtw
2

) +
Cdµ

4Clα
]

CΛ

σClα
= [µ(

θc
6
− θtw

8
− λi − µz

8
)]

CΠ

σClα
= [(λi − µz)(

θc
6
− θtw

8
− λi − µz

4
) +

Cd
8Clα

(1 + µ2)]

(3.18)

For clarity the twist angle of a blade for anyone of its sections, denoted

with the coordinate r, is equal to −θtw
r

R
. With this notation θtw is al-

ways positive, if the blade pitch is maximum at the root of the blade and

minimum at the tip. θc is the collective pitch of the blades. For the case of

multi�rotor rigid propellers θc and θtw are considered as �xed and constant

parameters of the rotor. σ is the solidity of the rotor.

σ =
Nc

πR
(3.19)

N is the number of blades of the rotor, c is the chord of the blades and R

is equal to the span of the blades.

One doubt could arise now about the a�ordability of these coe�cients.

BET is developed for the analysis of the aerodynamics of the rotors of

manned helicopters. These rotors, as already stated, have very di�erent

size, geometry and blade shape with respect to multi�rotor propellers, that

adhere more precisely to the hypotheses under the BET. To brie�y settle

the question, a qualitative consideration can be added. A result of the
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3. External Actions Modeling

BET is that, for example, the total thrust of the rotor [2] is equal to the

thrust generated by a rotor whose blades pitch is an average angle equal

to that of the blade section at the 3/4 of blade span. It can be viewed that

catalogues of propellers, as (http://m-selig.ae.illinois.edu/props/

propDB.html), typically provide, as data, the diameter and the pitch of a

particular section of the propellers blades. This section is generally that

at around the 70% of blade span. This signi�es that a correspondence

betwixt the theoretic results and the real propeller aerodynamic behavior

can be accepted.

Thus, the results of BET can be exploited, for propeller analysis, assum-

ing, on the source of data coming from experimental campaigns, proper

values of the various aerodynamic parameters of interest.

From the rotor coe�cients the aerodynamic loads can be calculated, by

means of equations (3.7). It is worth also remembering that these actions

are calculated in a Rotor Axis frame. What is missing now, are the def-

initions of µ and µz. Aiming at this, some considerations must be added

regarding the position and orientation of the rotor with rspect to the whole

airframe of the multi�rotor vehicle.

Rotation Matrix for Rotor Orientation

For a multi�rotor aircraft any of its rotors possess its own precise displace-

ment in the Body Axis reference frame. Moreover any of them could also

be rotated so that the direction of thrust T could di�er from the zB axis.

If the e�ects of their tilting angles must be accounted for, it is necessary

insert those angles in the de�nition of forces and moments generated by

the rotor. Indeed only when the orientation of a rotor is accurately de�ned,

the velocity of the air that �ows through the rotor is accurately known.

The mathematical tool available to this purpose is the Rotation Ma-

trix. For each rotor, the rotation matrix is computed with three Eu-

ler's angles that describe the three sequential rotations that resolve a vec-

tor from the Body Axis frame to a frame �xed to the rotor disk itself
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3.2 Loads on a Multi�rotor Aircraft

({0R,xR1,yR1, zR1}). The sequence of the rotations follow the same con-

vention chosen for the transformation from Inertial to Moving frame for

the equations of motions, as explained in section (2.2).

The �rst angle, called δ, is the angle that identi�es the angular position of

each rotor arm in the {(xB,yB)} plane (azimuth). This rotation is around

a direction parallel to the axis zB. The second angle, called Γ, is the

angle that tilts the rotor disk so that a component of the rotor thrust T is

directed along the rotor arm toward the C.G. of the rotorcraft. In a word,

this axis of rotation lies on the {(xB,yB)} plane and on the rotor disk.

Γ is called dihedral angle, in analogy to the dihedral angle for a �xed�

wing airplane. The third angle, called ξ, is the rotation around the local

x axis. This rotation lets the thrust vector generate a component that is

orthogonal to the local vertical plane containing the rotor arm. This last

axis lies on the rotor disk plane. ξ is referred to as the tilting angle of the

rotor. In �gure (3.5) the tilting and the dihedral of a rotor are depicted.

Figure 3.5: Rotor Orientation: dihedral and tilting angles

For a rotor the rotation matrix jut described is called T.
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3. External Actions Modeling

T(ξ,Γ, δ) =


CΓCδ CΓSδ −SΓ

SξSΓCδ − CξSδ SξSΓSδ + CξCδ SξCΓ

CξSΓCδ + SξSδ CξSΓSδ − SξCδ CξCΓ

 (3.20)

Other than this matrix, for reasons that are pointed out successively, for

any rotor a rotation matrix independent of the azimuth angle δ can be

de�ned. This matrix is named T̃.

T̃(ξ,Γ, 0) =


CΓ 0 −SΓ

SξSΓ Cξ SξCΓ

CξSΓ Sξ CξCΓ

 (3.21)

These mathematical expressions are very helpful. They permit to pass

from a con�guration with tilted rotors to that without tilted rotors only

changing the numeric value of the dihedral and tilting angles just de�ned.

Also they allow to account for various numbers of rotors and their dis-

placement with the angle δ.

Air Velocity on a Rotor

In equations (3.18) the quantities µ and µz are present. Through them the

air velocity is included in the calculation of aerodynamic actions. Thus for

the rotor the advance ratio and the climb ratio must be properly de�ned.

Indeed, the velocity at which a rotor is moving can be di�erent from the

inertial velocity of the C.G. of the whole �ying vehicle VB. Moreover the

Rotor Axis reference frame utilized for rotor aerodynamics computation

can have a diverse orientation with respect to the Body Axis system.

The factors that must be included in the air velocity de�nition are the

following:

1. the rotor position in the Body Axis frame;

2. the orientation of the rotor.
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3.2 Loads on a Multi�rotor Aircraft

As velocity of the rotor, that of the rotor disk center is assumed. This

choice has been made in consideration of the fact that rotors for multi�rotor

UAVs are generally of very small dimensions. Other than this, neglecting

blades dynamics, under the hypothesis of linear aerodynamics of blade

sections the e�ects of linear distribution velocities over the rotor disk due

to angular rate ωB are equal to the e�ects of the average velocity of the

rotor disk center. The BET results of equations (3.18), because of the

operation of integration over the rotor disk area, adhere exactly to this

consideration.

Any rotor is hinged to the extremity of its own arm. The position of the

propeller in the Body Axis frame on the plane {(xB,yB)} can be described
with two quantities: the distance b between the C.G. of the aircraft and the

rotor disk center and its angular (azimuth) position, named δ, around the

zB axis. b is always positive de�nite. The distance between the C.G. and

the rotor center along the zB axis is indicated with h and its sign depends

by the rotor displacement. Any j�th rotor of a multi�rotor aircraft is

identi�ed by its δj angle. b and h, in any numerical case, are considered

equal for all the propellers of the same rotorcraft. b, h and δj can be

visualized in �gure (3.6).

At this point for the rotor what can be calculated is the rotor velocity in a

reference frame with axes parallel to those of the Body Axis frame. This

vector can be called V
(r)
B .

V
(r)
B = VB + ωB ×


bCδ

bSδ

h

 (3.22)

Now, by multiplying the matrix T to vector V
(r)
B , what can be obtained

is a velocity vector with two components that lie on the rotor disk plane.

This vector can be called V
(r)
R∗.
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Figure 3.6: Rotor Displacement: b, h and δj angle are shown; P is the

C.G. of the aircraft and O the origin of the Inertial Frame
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3.2 Loads on a Multi�rotor Aircraft

V
(r)
R∗ = TV

(r)
B =


UR∗

VR∗

WR∗

 (3.23)

However this is not yet the vector needed for rotor aerodynamic coe�-

cients calculation. It is necessary another operation of vector resolution

that could transform V
(r)
R∗ in a new vector of the form [uR, 0, wR]T . This

operation can be e�ected with another rotation matrix. This matrix can

be de�ned in the following manner.

Tζ(0, 0, ζ) =


Cζ −Sζ 0

Sζ Cζ 0

0 0 1

 (3.24)

The angle ζ is a function of the �rst two components of V
(r)
R∗.

ζ = arctan

(
vR∗
uR∗

)
(3.25)

Finally the velocity vector of the rotor disk center in the Rotor Axis frame

can be de�ned.

V
(r)
R =


UR

VR

WR

 = TζV
(r)
R∗ (3.26)

The air velocity of the rotor can be obtained summing to this last vector

the induced velocity vi of the rotor itself, that is always directed along the

third axis of the Rotor Axis frame and opposed to the thrust T .

From the vector de�ned by the expression (3.26) the advance and the climb

ratii can be computed. Now there is all to compute the rotor aerodynamic

coe�cients. It is worth noticing that in the hovering �ight condition the

frame {(OR,xR,yR, zR)} and the frame {(OR∗,xR∗,yR∗, zR∗)} coincide.
The aerodynamic actions of the rotor de�ned in this way are referred not to

the Body Axis frame. To have the forces and moments resolved to the axis
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system with respect to which the equations of Dynamics (2.4) are written,

the next passage must be done, reminding that, for the properties of the

rotation matrices, the inversion and the transpose operations coincide.

F(r) = (TζT)−1F
(r)
R = TTTTζ F

(r)
R (3.27)

M(r) = (TζT)−1M
(r)
R = TTTTζM

(r)
R (3.28)

In a complete multi�rotor mathematical model, vectors F(r) and M(r) are

obviously the sum of the contributions given by all the propellers.

The analytical treatment of rotor aerodynamics is thus terminated.

3.2.4 Rotor Gyroscopic E�ects

A rotor is a body rotating about its own shaft axis and moving in space.

The combination of its spinning motion and the rotation of the airframe

of the multi�rotor generate gyroscopic e�ects on it.

The rotor can be considered as a body whose inertia matrix Irotor, de�ned

with respect to a reference frame whose third axis is the spinning axis, is

diagonal, like that of a disk. With this analogy, the moments of inertia

along the axes di�erent from that of spin are equal. So, a rotor can be

adequately viewed as a gyroscopic body.

Like for any rotating body, the gyroscopic torque can be calculated con-

sidering the variation of its angular momentum L. In the case of a rotor

L is the product of the inertia matrix Irotor and the spinning vector Ω.

L = IrotorΩ = Irotor


0

0

Ω

 (3.29)

Calling Irotor the third element of the diagonal of Irotor, the angular mo-

mentum of the rotor is equal to the following vector.
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L =


0

0

IrotorΩ

 (3.30)

Now, the variation of L can be de�ned with its derivative with respect to

time, with the aid of the Coriolis's theorem.

dL

dt
=
∂L

∂t
+ (TωB)× (IrotorΩ) (3.31)

The vector ωB has been multiplied by matrix T to account for rotor ori-

entation.

The second term of the right hand side of this last equation represents the

gyroscopic e�ect on the rotor. VectorM(gyroscopic) for a single rotor can be

de�ned, noting that to the airframe the rotor transmits this torque with

the opposite sign.

M(gyroscopic) = −TT [(TωB)× (IrotorΩ)] (3.32)

3.2.5 Motors and Engine Dynamics

A rotor is a propeller made up of two or more blades that are clutched to

a rotating shaft. The rotor angular rate is another fundamental parameter

to be known for the evaluation of aerodynamic loads generated by the

rotor. The rotation of the shaft is granted by the torque provided by a

motor connected to the shaft or to another shaft that is linked by means

of a mechanical transmission to the rotor shaft. The rotor spin is therefore

enhanced or decreased with a proper command to the motor.

Thus, for completing the calculation of rotor aerodynamics, it is necessary

to describe the dynamics of the rotor shaft and, then, of the motor.

The motors usually applied in multi�rotor applications are electric motors.

Generally one motor is associated to any propeller. However, a chapter of
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this thesis is dedicated to the study of an innovative con�guration of multi�

rotor helicopter, that is featured with a single internal combustion engine.

For this reason, in the present section, the description of the dynamics

both of electric motors and of an I.C.E. to be installed on a mini-UAV

�ying vehicle is discussed. First is presented the case of an electric motor

and then the case of an I.C.E.

Electric Motor Dynamics

The electric motors mounted on multi�rotors frames, generally, are D.C.

brushless electric motors. For details around this electric machines one

can refer to [11].

In the case of electric motors, i.e. of electric machines, it is necessary to

de�ne the corresponding electromagnetic circuit, including all the electric

and magnetic e�ects. Without a deep sinking in the description of the

physical principles concerning the behavior of these motors, in the electric

circuit, represented in �gure (3.7), can be included:

• an electric resistance Ra;

• a magnetic inductance La;

• a counter electromotive force (c.e.m.f.);

• an armature voltage Va (input to the motor) and the armature cur-

rent ia.

For clari�cations, the recommended reference is still [11].

The equation of the electric equivalent circuit is the following.

Va = Ra ia + La
dia
dt

+ c.e.m.f. (3.33)

The c.e.m.f. is proportional to variation of the magnetic �ux Φ that crosses

the motor rotating coils. It can be also demonstrated that it is proportional

to the motor angular speed Ω. Ke is the electric constant of the motor.
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c.e.m.f.

Figure 3.7: Brushless Motor Electric Circuit

c.e.m.f. = K Φ Ω = Ke Ω (3.34)

In the case of small D.C. brushless motors the inductance e�ects are not

so relevant and also to simplify the equation La can be neglected.

From equation 3.33, the armature current can be calculated given a voltage

input Va.

ia =
(Va −KeΩ)

Ra
(3.35)

The knowledge of the armature current ia permits to �nd the torque gen-

erated by the electromagnetic circuit on the motor shaft. This torque is

proportional to the same current ia. Kt is the so called motor torque

constant.

Qmotor = Kt ia (3.36)

Kt is a quantity that is strongly tied to the electromagnetic characteristics
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of the non rotating part (stator) of the motor. For D.C. brushless motors

the following relation between electric and torque constants can be stated

[11].

Kt =
√

3Ke (3.37)

If between propeller and motor shaft there is no gear or any transmission

other than the motor shaft, the propeller speed is the same speed of motor.

If this is not the case, then the load of the propeller must be multiplied to

the gear ratio τ . The dynamics of motor is given by the di�erence between

driving torque of motor and the aerodynamic torque of rotor.

Ishaft Ω̇ = Qmotor −Qrotorτ (3.38)

Qrotor = Π (3.39)

Every part of the multi�rotor aircraft, that is accelerating with respect

to the remainder of the whole vehicle, imparts to the vehicle structure a

torque proportional and opposite to its own acceleration. So in the case

of electric driven propellers, the inertial torques of all the shafts must be

accounted for in the equilibrium of rotational momentum. It is supposed

that all the shafts have the same rotational inertial moment with respect

to their own axis of revolution.

M(motor) =


0

0

−Ishaft
∑Nrot

j=1 Ω̇j

 (3.40)

The rotational inertia that opposes the spin of the motor, if τ is di�erent

from 1, must be calculated.

Ishaft = Irotorτ
2 (3.41)

44



3.2 Loads on a Multi�rotor Aircraft

A brief annotation must be included. The dynamic behavior of an electric

motor is far from be really represented by this equation. Every motor,

truly, does not receive, as input, simply a voltage from the pilot for bring-

ing the propeller to the desired spin rate. There are other phenomena and

principles that must be dug. Still reference [11] remains an optimal sup-

port. The aim of this modeling is to have a mathematical approximated

expression of the transients of the rate of rotors, instead of even more un-

realistic step input responses. Moreover, notably, there is the fact that

every motor, in real applications, is generally driven by a control system

that this dynamic modeling does not include.

Internal Combustion Engine Dynamics

As mentioned before, in this text an innovative mock-up of quad�rotor

with rotors driven by a single I.C.E. is discussed in detail in a following

chapter. So, a mathematical model of the dynamics of this engine must

be de�ned.

The quad�rotor engine is a two stroke combustion engine. The rate of the

shaft Ω is proportional to the velocity of the rotors. The gear ratio is τ .

To determine the dynamics of rotors and the counter�torque applied to

the airframe by the engine itself it is necessary to describe the dynamics

of the shaft of the engine.

The performances of an I.C.E. can be assessed with direct measurement of

the torque absorbed on a test bench and of its angular speed. The results

of this data collections are available by engines constructors in diagrams

known as power curves. From these diagrams one can establish empirical

relations between rotation speed of the shaft, torque and also power, fuel

consumption, etc. in function of other parameter as, for example, the

valve de�ection (throttle position), that is, in general, the input for engine

regulation. An interesting example regarding the modeling of a helicopter

engine is given in [24]. A similar approach is utilized here.

The shaft dynamics of the I.C.E. is described by the following equation.
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The e�ects of ṙ are neglected, for simplicity.

IshaftΩ̇ = Qengine −Qrotors (3.42)

Qrotors is the sum of the aerodynamic torques of the four rotors multiplied

by the gear ratio. Πj is the aerodynamic torque acting on the j-th rotor.

Qrotors =

Nrot∑
j=1

(Πjτ) (3.43)

Qengine is the torque provided by the engine.

It is assumed that the engine works at nearly constant speed. The power

provided by the engine can be considered function only of the throttle

position, that is the fuel �ow. Thus the control variable of the engine is

the throttle valve de�ection (δt). The power of the engine is assumed pro-

portional to the valve de�ection itself. The value of δt must be comprised

between 0 and 1.

Pengine = (Pmaxengine,δt − Pminengine,δt)δt (3.44)

Qengine =
Pengine

Ω
(3.45)

Shaft acceleration or deceleration determine a torque acting on the air-

frame.

M(engine) =


0

0

−IshaftΩ̇

 (3.46)

In the case of I.C.E. driven propellers the de�nition of Mext slightly

changes.

Mext = M(r) +M(engine) +M(gyroscopic) (3.47)

46



3.3 Controls

In the case of a single engine driving all the propellers of the rotorcraft,

the inertia of the shaft must include the inertia of all the rotors and of the

mechanical transmission.

Ishaft = Igear + ΣNrot
j=1 Irotorτ

2 (3.48)

As for the case of electric motors, this engine modeling is conceived with

the purpose of giving to the entire mathematical modeling of dynamics of

a multi�rotor aircraft an approximated description of the transients of the

rotation rate of propellers. This engine dynamics description is far from

covering the whole knowledge of an engine behavior.

3.3 Controls

The actions that permit to control the multi�rotor aircraft during its oper-

ations must be accounted for in the modeling. Indeed, to a mathematical

model it can reasonably be requested the simulation of remote controllers

or human pilot's commands. The subject of this section is the insertion of

the pilot's actions in the mathematical model.

3.3.1 Multi�Rotor Inputs

A multi�rotor in �ight can be maneuvered with simultaneous changes of

the spin rates of their rotors. In the majority of the existing platforms any

rotor is driven directly by its own electric motor. This implies that there is

no actuators action to be modeled, other than the dynamics of the motors

shaft, as described in section (3.2.5).

The action of a remote pilot requires some further considerations. A human

pilot is capable of guiding the aircraft imposing rotors spin variations by

means of a transmitter. The transmitter sends an electromagnetic signal

to the receiver of the multi�rotor. The aircraft on�board computer, on the

source of the information obtained by that signal, through its algorithms,

e�ects a mixing operation to regulate the electric input of each motor. At
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3. External Actions Modeling

this point the rate of the rotors can vary, following the dynamics of their

motors.

From these few words it is clear that the modeling of the control actions

concern �rst the choice of what quantity the pilot really masters.

Obviously the modeling of pilot actions must be suitable to the simulation

purpose. Because the argument of this thesis regards more the dynamic

aspect of multi�rotor behavior, the electric motor voltage input Va or the

spin rate of rotors Ω can be conveniently chosen as the control input of all

the simulation model, for the case of electric driven multi�rotor aircrafts.

To all this appropriate considerations have to be added about the concept

of control mixing and the particular con�guration of multi�rotor vehicle.

3.3.2 Pilot Action Modeling

A multi�rotor aircraft in �ight can be maneuvered with variations of the

spin rates of its rotors. Any control action does not cause the acceleration

or the deceleration of a single rotor. Otherwise unbalanced torques would

be generated that would risk the �ight.

To allow the aircraft to be safely handled, it is necessary to change the

speed of all or some of the rotors together. This fact can be referred to as

control mixing. The combination of rotors for any control action depends

upon:

• the number of rotors;

• the rotors arrangement;

• the type of maneuver.

Any multi-rotor aircraft has its own number of propellers (4, 6 or 8).

These are positioned, generally, with respect to the airframe, giving an

axisymmetric look to the whole machine. Moreover, the orientation of the

"nose" of the aircraft marks also two types of con�guration. The so called
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3.3 Controls

X-shape con�guration is the one in which the reference axis xB is directed

between two rotors arms. The other con�guration is the Cross-shape type,

where the reference axis coincide with one of the rotor arms. The sketches

(3.8) and (3.9) represent the two possibilities, for an hexa�copter.

x
B

y
B

Ω
1

Ω
3

Ω
2

Ω
5

Ω
6

Ω
4

Figure 3.8: X�Shape Con�guration
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Figure 3.9: Cross�Shape Con�guration

Once the mock�up of the multi�rotor is precisely de�ned, for any maneu-

ver, the set of rotors to be driven can be selected. Normally, a multi�rotor
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3. External Actions Modeling

characteristic is to have 4 possibilities of motion in space (4 degrees of

freedom). These are:

• the translation along the zB axis (vertical �ight), analogous to the

response to a collective command for helicopters ucol;

• the rotation about the xB axis (lateral �ight), analogous to a lateral

cyclic command ulon response;

• the rotation about along the yB axis (forward and backward �ight),

analogous to a longitudinal cyclic command ulat response;

• the rotation around the zB yawing axis (heading maneuver), analo-

gous to a rudder command urud response.

Vertical �ight can be e�ected with a simultaneous acceleration or deceler-

ation of all the rotors. This command has an e�ect on the velocity W .

Lateral �ight is imposed with an acceleration of the rotors on the right

of the xB nose axis and an acceleration of the opposite sign of the other

rotors. This command acts on V , W and Φ variables.

Forward �ight is imposed with the decrease of spin rate of the rotors whose

arms point along the positive verse of the xB axis, together with the in-

crease of speed of the other rotors. This command acts on U , W and Θ

variables.

A yawing rate is commanded by means of the variation of the rate of

rotors that spin in one sense of rotation with the contemporary opposite

rate variation of the other rotors. This command acts only on r.

It is worth noticing that horizontal �ight is always coupled to an attitude

variation. This is why electric driven multi�rotor helicopters are classi�ed

as under�actuated systems.

Once that the control action mixing is devised, for any of the 4 commands

of the pilot, a linear relation between the range of stick position on the

pilot's transmitter and the range of motors voltage or spin rate of propellers
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3.3 Controls

can be established. The stick limit positions can be conveniently put equal

to 0 and 1 or to −1 and 1.

For example a collective command ucol can be forced to impose to the

rotor 1 of �gure (3.9) a spin rate as expressed in the next formula [6].

Ω1 = Ω1,min + (Ω1,max − Ω1,min)
ucol − ucol,min

ucol,max − ucol,min
(3.49)

In terms of voltage Va for rotor 1 in the same �gure it can be written an

equivalent relation.

Va1 = Va1,min + (Va1,max − Va1,min)
ucol − ucol,min

ucol,max − ucol,min
(3.50)

Another example is the case of a longitudinal command ulon. The rotors

spin rates for a cross-shape con�guration, considering rotors 1 and 4 of

�gure (3.9), are the following.

Ω1 = Ω1,min − (Ω1,max − Ω1,min)
Ulon − Ulon,min

Ulon,max − Ulon,min
(3.51)

Ω4 = Ω4,min + (Ω4,max − Ω4,min)
Ulon − Ulon,min

Ulon,max − Ulon,min
(3.52)

Similarly the pilot actions on all the rotors for the possible commands can

be easily de�ned.

The in�uence on control actions due to the signal transmission between

pilot transmitter and the aircraft on�board computer are not here con-

sidered. However a very rapid and simple way to consider them could be

that of a lag e�ect. This lag can be modeled with a transfer function with

proper values for gain, damp, overshoot [6].

The Input Vector

Now it is de�ned how the pilot can a�ect the dynamics of the multi�rotor

aircraft. Referring to the state equation expression (2.16) of a dynamic

system, the input vector U can be �nally de�ned.
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3. External Actions Modeling

U = [Ucol Ulon Ulat Urud]
T (3.53)

This is, as always, only a possible choice. The input vector just introduced

is proposed for the con�guration of multi�rotor platform examined above.

For any other con�guration or also for this same one other de�nitions of

the U vector can be elected.

3.4 Remarks

In this chapter a mathematical description of all the actions to whom a

multi�rotor aircraft is subjected during �ight is provided in detail. All

the formulae are useful to complete a non-linear math model of multi�

rotor dynamics of motion. The problem of linear modeling of dynamics

of motion is dealt with in a following chapter, because it requires some

introductory consideration about the trim condition evaluation.

Great care has been put in the de�nition of rotor aerodynamics, for obvious

reasons. All the results are principally collected from the theory of aer-

odynamics of helicopters rotors. Proper assumptions and simpli�cations

has been done to obtain instruments apt to the modeling of multi�rotor

UAVs aerodynamics.

Moreover, various considerations and personal mathematical expedients

are included to render all the equations actually a practical and serviceable

tool for simulation in a proper electronic calculation environment, as it can

be the MATLABr.

This chapter also suggests a method to insert the action of the pilot in

the mathematical modeling of multi�rotor dynamics. It must be pointed

out that the results listed here are not the ultimate possibility. They are

de�ned, as all the rest in this thesis, to be functional to the development

of the arguments in next chapters.
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Chapter 4

Solution of the Equations of

Motion

In the previous chapters all the equations needed to analyze the behavior

of a multi�rotor aircraft in �ight have been provided, after the description

of the various phenomena that must be accounted for.

This chapter contains a periphrasis about the approach in the usage of the

previous results, from a practical point of view. Also the problem of the

integration of the equations of motion and their initialization are treated.

This last argument falls in the study of the trim of a multi�rotor aircraft.

4.1 Modeling Objectives and Issues

Till now only a heap of equations has been shown. These equations are

only the bricks which the house can be built with.

The mathematical model of the dynamics of an aircraft is a way to analyze

a certain behavior of a real physical system. In terms of Systems Theory,

this analysis corresponds to the study of the evolution through time of

certain quantities, the state variables, tied together by a set of equations,

that, in vector form, corresponds to the state equation. These concepts

have already been introduced in sections (2.3.1) and (2.3.4). In those
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4. Solution of the Equations of Motion

sections also the notion of input vector has been included.

A methodology to write the state equation of a dynamic system, as it is

a multi�rotor aircraft, has been addressed. Obviously, the analysis of a

dynamic system could be liable to be e�ected in di�erent manners, admit-

ting di�erent purposes or types of information that have to be reckoned.

Other variables or physical aspects could be introduced, but all the e�orts,

however, must be directed to a precise target.

To clarify, a more practical example can be cited. In the study of a dy-

namic system it is of paramount importance the choice of the components

of the state vector and of the input vector. This choice is directed by the

characteristics of the system that have to be analyzed. The number of

components of the state and input vectors, and so the complexity of the

problem, are strictly dependent upon this consideration. As a paradig-

matic case, the angular speed of rotors is worth mentioning. Indeed, the

rate of the propellers can be taken both as an element of the state vector

or of the input vector. The �rst case can be that of the direct analysis of

the pilot action on the multi�rotor dynamics, where the dynamics of the

rotors are required. The second case can be represented by the study of

the aerodynamic e�ect of propellers on the dynamic stability of the multi�

rotor aircraft. In this problem the rate of rotors can be seen instead as an

input of the system. In following chapters these considerations are applied.

Other than this, the aim of a mathematical model could be also the study

of a quantity that is not part of the state vector, like the induced velocity

of rotors or the power consumption of motors.

These few words to show that the analytical description of a dynamic

system does not have an unique solution. What has been proposed in

previous chapters is the one that has been considered suitable to obtain

the results that are presented in the following.

Also, the analytical description of the system can not precede the deep ex-

amination of the �ying machine, viewed as a "solid" subject. This knowl-

edge concerns indeed aspects as number of rotors, mass properties, control
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4.2 Integration of the Equations of Motion

systems, motors curves, energy supplies, payloads, etc. For example, the

hypothesis of principle axes of inertia introduced in section (2.3.2) is only

an approximation, due to the more or less axisymmetric mock�up of the

majority of existing multi�rotor aircraft. The same hypothesis of rigid

body could be questioned, thinking about a payload that has some degree

of freedom with respect to the airframe of the aircraft.

Lastly, all phenomena could be considered in the modeling, the degree of

precision that can be attained in the modeling goes side by side with its

complexity and the more great di�culty in the resolution of the equations

of motion. So, before writing all the equations, it is worth considering

whether the depth of the modeling could bring an e�ective bargain in the

results.

Once the state equation of the dynamic system has been completely writ-

ten, it is time to deal with the solution of it. This problem is addressed in

the next sections.

4.2 Integration of the Equations of Motion

In section (2.3.4) it is stated that the mathematical formulation of the

equations of motion provides an expression like that of equation (2.16).

This is a system of di�erential equations. The time t represents the inde-

pendent parameter, with respect to which the derivatives of the state vec-

tor elements are de�ned. Unfortunately, the solving of such a set of equa-

tions does not provide an analytical result available by means of an hand

calculation. What can be done is proceeding with a numerical method of

resolution.

The solution of a di�erential equation corresponds to the integration of it.

Because the integration is made with respect to time t, the �rst step is to

de�ne the value of the state vector X0 at the starting time of integration

t0. This is due to the fact that this mathematical problem corresponds to

a Cauchy problem, or better to an initial value di�erential problem. Once
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4. Solution of the Equations of Motion

the initial condition of the state vector is known, a numerical integration

of the equations can start.

The numerical methods of integration substitute to the analytical solution,

at discrete instants of time, an increment of the function to be integrated

that is an average of the derivative of the same function in some precise

instants of time multiplied by an increment of time ∆t. How that average

of the derivative through time is calculated, de�nes a particular method

of numerical integration. Any of them has its own performance character-

istics, in terms of error in the solution and propagation of the error.

Classical methods of numerical integration are the Runge�Kutta methods.

For the simulation results shown in this text, the fourth order Runge�Kutta

explicit method RK4 has been utilized, because in the MATLABr envi-

ronment it can be easily implemented. The time increment for integration

must be chosen so that the results are a�ordable. This has been done with

various attempts. If not declared, in the following the time increment ∆t

for integration is put equal to 0.01 s, reminding also what stated in section

(3.2.3).

4.3 The Problem of Trim

In the previous section it is stated that to start the integration of the

equations of motion, that is to say a numerical simulation, the knowledge

of the initial value of the state vector is mandatory. In section (5.1) it has

been assumed that in this work the initial value of the state vector will

always coincide with a trim condition, that is a �ight equilibrium point.

Valid motivations for this choice can be cited from [6]. For example, the

trim condition evaluation permits to study the stability and controllability

properties of the aircraft. In this case the value of the state vector is

necessary to de�ne the linear model that includes all the aerodynamic

derivatives. Other reason to �nd the trim condition is that, to simulate a

mission for pilot training, an equilibrium starting point is the preferable
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4.3 The Problem of Trim

way of initialization.

The solution of the trim problem coincides, on the mathematical point of

view, with the de�nition of the state X and input U vectors elements that

yield a state vector derivative Ẋ equal to zero. Thus, what is to do, is to

resolve the equations of the di�erential system (2.15) with all the left hand

sides put equal to zero. In vector form the equation is the following.

0 = f (X,U) (4.1)

The mathematical formulation of the problem shown in the previous chap-

ters is such that the value of the vector of position PE does not a�ect the

trim condition calculation. Thus, the only state variables considered in the

remainder of the chapter are the attitude αE , velocity VB and angular

rate ωB variables.

Moreover, the solution of the trimming problem it is not more the solu-

tion of a di�erential system, but instead the solution of an algebraic one.

However this does not signify that the result can be found easily.

4.3.1 Numerical Trim Solution

The trim equation (4.1) does not in general posses an analytical solution.

To solve it, for a general �ight trim condition, it is necessary to make use

of an numerical (iterative) method.

Some interesting methods of resolution can be listed from literature.

In [17] an iterative process is explained, for the trim of an helicopter, where,

beginning with the imposition of very few variables, the value of the other

state elements are found, trying to satisfy, step after step, some ulterior

constraint. If the iteration does not give acceptable results at some point,

the entire process must newly start from the beginning, with new values

for the initial constraints. This methodology is referred to, elsewhere, as

Sequential Correction [6]. In a word this is a procedure that, at any step,

tempts to �nd the equilibrium for any degree of freedom of the system.
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4. Solution of the Equations of Motion

Another way is the numerical resolution of the trim equation (4.1). For

example, the Jacobian method, shown in [6], is a valid one.

First of all, the value of the state vector must be assigned properly or

at least with some constraints on its components. Also an initial value

to the input vector must be imposed. Then, after a linearization of the

equations of motion around the equilibrium point, a linearized model of

the perturbation of the state vector is obtained. This small perturbation

vector is a linear function of the input small perturbations. If the initial

guess of the input vector does not provide a null value of the state vector

acceleration perturbation, a new value of the control vector is calculated, in

iterative way, until the perturbation of the derivative of state vector is zero

or su�ciently near to zero. This method corresponds to the expansion of

the Newton�Raphson method utilized in section (3.2.3) for vector equation

resolution.

In MATLABr a numerical method for the trim of a dynamic system is

implemented. This method has not the same formulation of the Jacobian

method, but it is an iterative process, too, that exploits the theory of

the Lagrangian multipliers (http://it.mathworks.com/help/simulink/

slref/trim.html). The MATLABr function named trim recalls this

numerical method. This function has been cited because in the following

section it is used for numerical validation of a special trim calculation.

Anyone of the aforementioned methods can be utilized for the calculation

of the trim values of the state vector and of the input vector.

4.3.2 Analytical Trim Solution

In opposition to what has been just asserted, for multi�rotor platforms it

exists an equilibrium �ight condition that allows an analytical result of the

equations of motion.

All rotary wing aircrafts possess, within their �ight envelope, the capability

of hovering �ight. This is a particular �ight condition characterized by null

values of all the components of the velocity vector VB and of the angular
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rate vector ωB. Moreover for a multi�rotor aircraft, due to symmetry of

its airframe, the attitude vector αE can be considered equal to zero in

this same equilibrium �ight condition. In addition, the condition of zero

translational velocity in hovering �ight allows to assume null all the drag

forces acting both on the rotors and on the airframe, too, and also the

rolling moments due to a component in the velocity that could lie on the

rotors disks planes.

All these assumptions permit to eliminate, in the equation of motions, a lot

of terms that cause various coupling e�ects between the diverse degrees of

freedom of the multi�rotor aircraft, granting a relatively ease of resolution.

Before starting the mathematical demonstration, it is necessary to give

some information on the type of aircraft to be trimmed. In this case it

is considered a multi�rotor UAV with Nrot propellers, driven by electric

motors. However the trim calculation will be extended to a di�erent test

case in this text with little e�ort.

Thus the object of the trim calculation is that of �nding the spin of the

rotors Ω0 at the equilibrium point of the �ight envelope and successively

the voltage input Va of all the motors.

Some assumptions can be made. Particularly, it can be thought that all

the rotors, being all immersed in an equal aerodynamic �eld, must rotate

at the same speed and consequently that the motors inputs are the same.

Also it is supposed that, for reasons of equilibrium of forces, it can be

assumed that the thrust in the trim condition T0 of each rotor should be

equal to the weight of the whole aircraft, divided by the total number of

rotors Nrot and by a term due to the tilting angle ξ and to the dihedral

angle Γ of the rotors themselves.

Nrot T0 cos(ξ) cos(Γ) = mg (4.2)

T0 =
mg

Nrot cos(ξ) cos(Γ)
(4.3)
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In this last formula, it is supposed that the rotors possess the same dihedral

angles and that the tilting angles are equal in modulus but di�er in sign

between adjacent rotors. The reason for this choice will be explained in a

following chapter.

The hypothesis of equal rotors spins grants also the equilibrium around

the yaw axis zB.

Having the thrust of any of the rotors, it is also possible, through the

formula (3.11), to obtain the induced velocity of each rotor.

vi0 =

√
T0

2ρA
(4.4)

Considering now the expression of the thrust coe�cient given in equa-

tion (3.7) and that in hovering �ight µ = µz = 0, the following result is

achieved.

T0

ρAΩ2
0R

2
=
σClα

2

(
θc
3
−
√

T0

2ρA

1

2Ω0R
− θtw

4

)
(4.5)

This last equation is obtained given the de�nition of the in�ow ratio at

hover.

λi0 =
vi0

Ω0R
(4.6)

Provided Ω0 is the unknown variable, a quadratic equation can be derived

from equation (4.5).

(
θc
3
− θtw

4

)
Ω2

0 −
1

2R

√
T0

2ρA
Ω0 −

2T0

σClαρAR2
= 0 (4.7)

The positive solution provides the magnitude of the rotor spin rate in

hovering �ight.

Ω0 =
1

4R

√
T0

2ρA


1 +

√
1 +
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σClα

(
θc
3
− θtw

4

)
θc
3
− θtw

4

 (4.8)
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Once that the speed of the rotors is de�ned, it is possible to compute

also the input voltage of the electric motors Va, that, as already stated, is

supposed to be the same for all the motors.

At the equilibrium point, the shafts of the motors must not be subjected

to some acceleration. Thus, from equation (3.38), the identity of torque

furnished by the coils of each motor and of the aerodynamic torque of the

respective rotor must be granted.

Qmotor = Qrotorτ (4.9)

In the hovering �ight condition, from equations (3.7), it can be shown the

following relation between the thrust coe�cient and the torque coe�cient.

CΠ0 = CT0λi0 +
σCd

8
(4.10)

CT0 =
T0

ρA(Ω0R)2
(4.11)

Thus, the aerodynamic torque due to the rotor can be computed.

Qrotor =

(
T0

ρA(Ω0R)2

vi0
Ω0R

+
σCd

8

)
ρA(Ω0R)2R (4.12)

From equation (3.36) the armature current at hover can be found.

ia0 =
Qrotorτ

Kt
=

(
T0

ρA(Ω0R)2

vi0
Ω0R

+
σCd

8

)
ρA(Ω0R)2R τ

Kt
(4.13)

And �nally from equation (3.35) the trim input voltage is achieved.

Va0 = Raia0 +KeΩ0 =

=

(
T0

ρA(Ω0R)2

vi0
Ω0R

+
σCd

8

)
ρA(Ω0R)2R τ

Kt
+KeΩ0

(4.14)
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With this last result all the data necessary to start the simulation of a

mission are obtained.

Numerical Test

Exploiting the MATLABr function mentioned before, it is possible a

numerical validation of the trim calculation method for hovering �ight.

Now it is considered the case of a hexa�copter driven by electric motors.

With the formulae of the previous section and the data contained in table

(4.3), supposing VB = 0 m s−1, ωB = 0 rad s−1 and αE = 0 rad, the

following values for Ω0, vi0 and Va0 can be computed.

Ω0 461.9230 rad s−1

Va0 2.4159 V

vi0 6.1725 m s−1

Table 4.1: Hovering Flight: Trim Analytical Results

Using the numeric resolution method implemented in MATLABr, the

components of the state vector are calculated, for the hovering �ight con-

dition. The input of any motor, the spin rate and the induced velocity for

any of the rotors are also computed.

The numeric results are identical for both the trimming problem solutions.

Through another simulation during a �nite period of time, it can be seen

that this �ight condition is perfectly maintained by the multi�rotor air-

craft.

4.4 Remarks

This chapter has started with a brief discussion about the approach in

the analysis of dynamic systems. This to have an insight in the usage of

the mathematical expressions till now described, in a complex simulation

environment. Attention has been paid also to the identi�cation of the real
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αE [rad] VB [m s−1] ωB [rad s−1]

-0.0000 0.0000 0.0000

-0.0000 0.0000 0.0000

-0.0000 0.0000 0.0000

Ω0 [rad s−1] Va0 [V] vi0 [m s−1]

461.9230 2.4159 6.1725

461.9230 2.4159 6.1725

461.9230 2.4159 6.1725

461.9230 2.4159 6.1725

461.9230 2.4159 6.1725

461.9230 2.4159 6.1725

Table 4.2: Hovering Flight: Trim MATLABr Results

Type Value Unity Type Value Unity

ρ 1.2235 kg m−3 g 9.81 m s−2

m 4 kg Ixx 0.044 kg m2

Iyy 0.044 kg m2 Izz 0.098 kg m2

Nrot 6 R 0.15 m

N 2 θc 15 o

θtw 2 o Clα 5.5 rad−1

Cd 0.003 c 0.04 m

Irotor 10−4 kg m2 b 0.68 m

h −0.3 m Ra 0.01 Ω

Ke 0.005 N m A−1 ξ 5 o

Γ 5 o τ 1

Table 4.3: Hexa�Copter Data for Trim Calculation
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system and on the choice of the behaviors of interest.

After this, some questions around the mathematical aspects of simulation

of dynamic systems has been faced. Hints about the resolution of the

equations of motion have been mentioned. Finally the problem of the

initial condition for the integration of the equations has been discussed

and an analytic solution to the problem of trim of the multi�rotor aircraft

has been described.

The knowledge of the equilibrium �ight condition is not only usable for

direct integration of the equations of motion. All the results just found

are necessary to the de�nition of linearized model of dynamics of motion,

as already discussed in section (5.1). As it is testi�ed in the remainder

of this thesis, the trim point evaluation permits to a�ront the problem

of stability and controllability of the type of air vehicles under study, in

a purely analytic way. From now on, the condition of hovering �ight is

assumed as the trim �or equilibrium� �ight condition.
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Chapter 5

Multi�Rotor Dynamics Linear

Modeling

In chapter (2) only the non�linear modeling of dynamics has been consid-

ered.

This chapter deals instead with the linear modeling of dynamics. It starts

with the de�nition of the linearized equations of motion. Then it pro-

ceeds with the linearization of the rotor aerodynamic loads. After, all the

aerodynamic and control derivatives are computed and the stability and

control matrices are de�ned.

5.1 Linearized Equations of Motion

The other classical approach in the study of the dynamic characteristics of

a system like a �ying vehicle is based on the linear analysis of its behavior in

the proximity of a trim condition of its �ight envelope. The trim condition

represents an equilibrium point of the di�erential equations system (2.16),

that is a value of X for whom its time derivative Ẋ is null.

The linearized equations of dynamics can be written in the following clas-

sical form.
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5. Multi�Rotor Dynamics Linear Modeling

{
ẋ = Ax+Bu, x(t0) = x0

y = Cx+Du
(5.1)

x is still the state vector, but now it represents the small perturbation of

the state variables from the equilibrium point. y is the output vector. u

is the vector of small variations of the inputs of the system. This vector

will assume a proper de�nition for any of the con�gurations of multi�rotor

analyzed in the next chapters. A is called stability matrix or state matrix

and B is the control matrix. C and D are the observability matrices of the

state and of the inputs. In this work only the study of the �rst equation

of the system (5.1) is considered.

As before, x0 is the state vector at the initial time t0 and it represents also

the trim condition. From now on the notations for a trim �ight condition

and the initial condition for a �ight simulation will be the same, because

they will always coincide. In the trim condition, the previous di�erential

system reduces to the following set of algebraic equations.

{
0 = Ax0 +Bu0, x0 = x(t0)

y0 = Cx0 +Du0

(5.2)

The relation between state vector X and state vector x is stated by the

next system of equations.

{
X = X0 + x

Ẋ = Ẋ0 + ẋ = ẋ
(5.3)

In the present work, in the linearized modeling of dynamics of a rigid body,

from the state vector x, the perturbations of the variables of position N , E,

D are excluded, because they are not decisive in the questions of dynamic

stability discussed in following chapters. The state vector can be de�ned

as follows.

x = [φ, θ, ψ, u, v, w, p, q, r]T (5.4)
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The linearized equations of motion are obtained, as the name suggests,

from an operation of linearization of the non�linear equations of motion

around a trim condition. With this consideration the A and B matrices

can be de�ned in terms of Jacobian of the vector function f (eqn. 2.16),

neglecting the equation of kinematics of position.

A =
∂f

∂X
, B =

∂f

∂U
(5.5)

In the equations of system (5.1) the dynamics of the state vector are written

in compact form. The linearized dynamics of the state vector x can be

expressed in a more explicit way, bringing to the writing of a system of

scalar di�erential equations. The 0 subscript indicates the trim condition

and the ∆ indicates the small �nite excursion of the related variable.

mu̇ = ∆X −mqW0 +mrV0 −mg cos(Θ0)∆Θ

mv̇ = ∆Y −mrU0 +mpW0 −mg cos(Φ0)∆Φ

mẇ = ∆Z −mpV0 +mqU0 −mg sin(Θ0)∆Θ

Ixxṗ = ∆L

Iyy q̇ = ∆M

Izz ṙ = ∆N

φ̇ = p

θ̇ = q

ψ̇ = r

(5.6)

These equations are the equations of linearized dynamics of an aircraft with

respect to a Body Axis reference frame. This di�erential system is referred

to an equilibrium point for the state vector of the complete dynamics,

namely, X0.

X0 = [Φ0,Θ0,Ψ0, U0, V0,W0, 0, 0, 0]T (5.7)

X0 can represent a general condition of trimmed horizontal or vertical

�ight for a multi�rotor aircraft.
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5. Multi�Rotor Dynamics Linear Modeling

Noting that ∆Θ = θ and that ∆Φ = φ and isolating the time derivatives,

the linearized system can be rewritten.



u̇ = ∆X/m− qW0 + rV0 − g cos(Θ0)∆Θ

v̇ = ∆Y/m− rU0 + pW0 − g cos(Φ0)∆Φ

ẇ = ∆Z/m− pV0 + qU0 − g sin(Θ0)∆Θ

ṗ = ∆L/Ixx

q̇ = ∆M/Iyy

ṙ = ∆N/Izz

φ̇ = p

θ̇ = q

ψ̇ = r

(5.8)

This formulation of the equations of the linearized dynamics coincide with

the �rst equation of the system (5.1).

The vectors ∆F = [∆X,∆Y,∆Z]T and ∆M = [∆L,∆M,∆N ]T de�ne the

perturbations of the external forces and moments. They are computed as

the sum of the perturbations due to every component of both the state

vector x and the control vector u, by means of the �rst terms of a Taylor's

series expansion. For example, ∆X = Xu∆u+Xv∆v+ ....+Xui∆ui+ ....,

where ui is the i�th element of the vector u. Every term of the sum is the

�rst term of the Taylor's series expansion of X associated to the variable in

subscript. They are generally known as aerodynamic derivatives. All the

aerodynamic derivatives permit to de�ne all the elements of the stability

matrix A and those of the control matrix B. The elements of A are

the stability derivatives and the elements of B are the control derivatives.

Their de�nitions are discussed in following chapters, once all the external

actions on the multi�rotor are de�ned too.
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5.2 Rotor Linearized Aerodynamics

5.2 Rotor Linearized Aerodynamics

To de�ne precisely the aerodynamic derivatives of the linearized model of

dynamics, some considerations about linearization of aerodynamic loads

of rotors must be added.

The linearized model of the dynamics of a system is characterized, as

in expression (5.1), by the Stability matrix A and the Control matrix B.

The components of these matrices represent, for a multi�rotor aircraft, the

perturbations of forces and moments acting on it, due to little variations

of the state variable and of the control inputs. In section (5.1) it has been

stated that these small perturbations can be computed by means of an

operation of di�erentiation of the various loads.

The forces and moments acting on the aircraft depend all on the state

vector variables (attitude, velocity and angular rates) other than the con-

trol inputs. In the 6 D.O.F. math model this relations are included and

de�ned. To obtain the aerodynamic derivatives, all these relations must be

considered in the di�erentiation. In particular great care is necessary for

the de�nition of the derivatives of the aerodynamic actions of the rotors,

described by their relative aerodynamic coe�cients. The coe�cients are

those de�ned in equation (3.7).

In the formulae of the coe�cients quantities as the advance ratio, the climb

ratio, the in�ow ratio and blade pitch are included, besides the aerodyna-

mic and geometric parameters of rotors. All these quantities depend on

the state variables themselves.

Also, a particular attention must be paid to the presence of the induced

velocity, that is itself dependent on rotor thrust and velocities.

In the academic literature about helicopters �ight theory, useful results are

again available. Thus, helicopters aerodynamics is yet the starting point.

The equations shown in this section are extracted directly from [2] or

derived from the results described in the same text.

The next formulae are relative to the hovering �ight condition.
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5. Multi�Rotor Dynamics Linear Modeling

θc0 is the blades pitch of a rotor in the hovering �ight condition.

∂λi
∂µ

= 0 (5.9)

∂(λi − µz)
∂µz

= − 8λi0
16λi0 + CLασ

(5.10)

∂CT
∂µ

= 0 (5.11)

∂CT
∂µz

=
2σCLαλi0

16λi0 + CLασ
(5.12)

∂CT
∂θc

=
8
3σCLαλi0

16λi0 + CLασ
(5.13)

∂λi
∂θc

=
1

2

λi0
CT0

∂CT
∂θc

(5.14)

∂(λi − µz)
∂θc

=
∂λi
∂θc

(5.15)

From these equations it can be de�ned the derivative of the in�ow ratio

with respect to the pitch of the blades.

∂λi
∂θc

=
2

3

(
CLασ

8λi0 + CLασ

)
(5.16)

Now the other derivatives necessary to the de�nition of the linearized ro-

tor aerodynamics can be obtained. The missing derivatives are ∂CΠ/∂µ,

∂CΠ/∂µz, ∂CΠ/∂θc and the derivatives of CH and CΛ coe�cients.

Noting that µz is independent of µ, the next relation stands.

∂(λi − µz)
∂µ

=
∂λi
∂µ

= 0 (5.17)

Thus, it can be shown that ∂CΠ/∂µ = 0.
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∂CΠ

∂µ
= σCLα

[
∂(λi − µz)

∂µ

(
θc
6
− θtw

8
− λi − µz

4

)
−

−(λi − µz)
1

4

∂(λi − µz)
∂µ

+
Cd

8Clα
(2µ)

] (5.18)

In hovering �ight µ, µz = 0.

∂CΠ

∂µ
= σCLα

[
∂λi
∂µ

(
θc
6
− θtw

8
− λi

4

)
− λi

1

4

∂λi
∂µ

+ 0

]
= 0 (5.19)

For the ∂CΠ/∂µz derivative the chain rule must be used in the di�erenti-

ation.

∂CΠ

∂µz
=

∂CQ
∂(λi − µz)

∂(λi − µz)
∂µz

(5.20)

∂CΠ

∂(λi − µz)
= σCLα

[(
θc
6
− θtw

8
− λi − µz

4

)
− λi − µz

4

]
(5.21)

Combining this result with the derivative of the downwash ratio (λi−µz),
the derivative can be calculated.

∂CΠ

∂µz
=

−4σCLα
16λi0 + σCLα

(
θc0
3
− θtw

4
− λi0

)
(5.22)

The derivative ∂CΠ/∂θc can be calculated as a sum of derivatives.

∂CΠ

∂θc
= σCLα

[
(λi − µz)

6
+
∂(λi − µz)

∂θc

(
θc
6
− θtw

8

)
− 1

4

∂(λi − µz)2

∂θc
+ 0

]
(5.23)

For the rule of di�erentiation of a composed function it can be obtained

the following expression.

∂(λi − µz)2

∂θc
= 2(λi − µz)

∂(λi − µz)
∂θc

(5.24)

Finally ∂CΠ/∂θc can be calculated.

71



5. Multi�Rotor Dynamics Linear Modeling

∂CΠ

∂θc
= σCLα

[
λi0
6

+
2

3

CLασ

8λi0 + CLασ

(
θc0
6
− θtw

8

)
− λi0

3

CLασ

8λi0 + CLασ

]
(5.25)

The derivatives of CH and CΛ are very easy to compute. Thus the demon-

stration is omitted.

∂CH
∂µ

= σCd/4 (5.26)

∂CH
∂µz

= 0 (5.27)

∂CH
∂θc

= 0 (5.28)

∂CΛ

∂µ
= σCLα

(
θc0
6
− λi0

2
− θtw

8

)
(5.29)

∂CΛ

∂µz
= 0 (5.30)

∂CΛ

∂θc
= 0 (5.31)

Although all the derivatives are calculated in the case of hovering �ight,

for easing the writing, the subscript 0 is not included.

5.2.1 The Rotor Rate Derivatives

The motor or engine speed perturbation can be a component of the state

vector. Then the derivatives with respect to this variable must be com-

puted. In this case the hypothesis of constancy of the rotors aerodynamic

coe�cients during motor or engine acceleration is applied. For example,

with that assumption, the variation of thrust of a rotor can be evaluated

in the following way.

∆T = TΩ∆Ω = CT ρA (τR)2 2Ω0 ∆Ω (5.32)
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5.3 Stability and Control Matrices Computation

In this section the linearized model of dynamics is completed with the

calculation of the elements of the A and B matrices. The results of the

previous sections are the base for the following treatment. Numerical tests

permit to evaluate the goodness of the linear modeling, in association

with the non�linear one. Here it is considered a multi�rotor traditional

con�guration with electric driven propellers, exactly that of section (4.3.2).

5.3.1 Premise

In section (5.1) an implicit formulation of the linear equations of motion is

shown. The so called state equation is characterized by the two matrices

A and B. This equation can be used to describe the dynamics of a multi�

rotor aircraft in the neighborhood of an equilibrium �ight condition, in

terms of small variations of the state variables.

For completing the non�linear modeling of dynamics, the de�nition of vec-

tors of external forces and moments has been executed. Similarly, for the

linear equations of motion (5.8) the perturbations of the external actions

must be computed.

The de�nition of the linearized model of an aircraft can be done either in an

experimental or a mathematical way. The experimental way is the so called

System Identi�cation methodology [26, 14]. The other way is to directly

compute the values of the derivatives, with a numerical di�erentiation or

with the analytical di�erentiation of the non linear equations of motion

[17].

In this thesis the expression of the matrices is found by di�erentiation of

the equations. The calculation can be made in both manners, numerical

and analytical, to compare the two results, as a �rst check for the ana-

lytic di�erentiation. The numerical di�erentiation can be done with the

MATLABr functions. The analytic di�erentiation is explained in detail

in the following, both for the stability matrix and for the control matrix.
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5.3.2 Conventions

When in the following formulae the derivative of CT will appear, there will

be always a negative sign. This is due to the fact that the thrust of a rotor

is oriented along the zR axis with verse opposite to the same axis.

Attention must be paid also when the derivative of CΠ appears because of

the verse of rotation of each rotor.

5.3.3 Derivatives Trim Values

In the computation the following relations must be considered.

CT0j =
mg

Nrot cos(Γj) cos(ξj)ρA(Ω0R)2
(5.33)

CΠ0j =

[
σClα

(
θc
6
− θtw

8
− λi0

4

)
λi0 +

σCd
8

]
(5.34)

Ω0 = |Ω0j | (5.35)

j indicates the j-th rotor. The last equation is based on the assumption

that, in the trim condition, all the rotors spin at the same rate. In the

trim condition, also, the derivatives of the rotor coe�cients are assumed

equal for all the rotors. Also θc is a constant, equal for all the rotors.

In the linear model, the gyroscopic e�ects are neglected. In hovering the

contribute of airframe drag can be ignored. Also, the e�ects both of the

drag coe�cient CH and of the rolling moment coe�cient CΛ are neglected,

because they describe, as it appears clear from their de�nition, second or-

der aerodynamic e�ects with respect to the thrust and torque coe�cients,

especially near the hovering �ight condition where µ = 0.

5.3.4 Stability Derivatives

The stability matrix A is a square matrix with 9 rows and 9 columns. In

the subsequent argumentation it is explained how the elements of A are
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5.3 Stability and Control Matrices Computation

computed.

Attitude kinematics terms

The �rst three rows represent the linearized kinematics of the attitude.

The only non�zero terms in them are the following.

A1,7 = A2,8 = A3,9 = 1 (5.36)

This result descends immediately from the relation between derivatives of

Euler's angles and angular rates in the Body Axis frame, in the hovering

�ight condition.

Xθ and Yφ derivatives

The next three rows describe the dynamics of velocity in Body Axis frame.

A4,2 and A5,1 de�ne the e�ects of attitude variations combined with gravity

acceleration.

A4,2 = Xθ = −g (5.37)

A5,1 = Yφ = g (5.38)

X, Y and Z Derivatives

These derivatives describe the e�ects of the variations of velocities, angular

rates on the velocity dynamics.

Of the X terms, other than Xθ, only Xu and Xq are e�ective and both

derivatives are due to the variation of CT . Xv has no e�ect because the

drag of rotors would not give a component along the xB axis. Xw is null

because the variation of CT is null. The rotors drag e�ects due to yaw rate

variations are nulli�ed by the symmetric displacement of the rotors.

To de�ne the derivative Xu, for each rotor the velocity u must be resolved

to the Rotor Axis frame, to be multiplied by ∂CT
∂µz

: this operation is done
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through a multiplication by the term Tj(3, 1) of the matrix Tj . Then this

perturbation of the rotor thrust must be transposed back to the Body Axis

frame and its component directed along the xB direction must be isolated.

This operation can be done through the multiplication by T−1
j (1, 3). It is

worth reminding that a rotation matrix is an orthonormal one: its inverse

is equal to its transpose. Thus, T−1
j (1, 3) = TTj (1, 3) = Tj(3, 1).

Finally, the derivative Xu is the sum of the contributions of all the rotors.

This utilization of the matrix Tj is the way to insert the tilting angles

of the rotors in the de�nition of the stability derivatives. Indeed, the

modi�cation of an unique or two parameters within the rotation matrix

permits to insert, severed from the others, the contribute due to any rotor

alone. Similar considerations can be applied in the evaluation of all the

other derivatives. Obviously the elements of the rotation matrix selected

for each derivative depend upon the component of the state vector and

upon the direction of the action considered.

A4,4 = Xu = − 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R Tj(3, 1)2

(5.39)

To compute the Xq derivative two e�ects must be considered: one for

the distance of each rotor location from the C.G. along the zB direction

(component of velocity on rotor qh) and another for the component of

velocity due to the rotor arm in the plane {(xB,yB)}. Both the velocity

components generate variations of thrust along the yB direction and along

the zB direction.

A4,8 = Xq = − 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R (−b cos δj) Tj(3, 1) Tj(3, 3)−

− 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R h Tj(3, 1)2

(5.40)
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For the Y terms the same considerations apply. Only Yv and Yp are not

null.

A5,5 = Yv = − 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R Tj(3, 2)2

(5.41)

A5,7 = Yp = − 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R ×

×
[
(b sin(δj)) Tj(3, 2) Tj(3, 3) + (−h) Tj(3, 2)2

] (5.42)

Along the zB axis the perturbations of forces are generated by variations of

climb ratio of the rotors, mostly due to perturbations on w. From equation

(5.11) it is clear why the contributions of u, v, r are zero. For symmetry

in rotors displacement the e�ects of p and q are also null.

A6,6 = Zw = − 1

m

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R Tj(3, 3)2

(5.43)

L, M and N Derivatives

For the roll dynamics the remarkable e�ects are those due to the lateral

velocity v that gives a variation of the thrust of all rotors and those due

to the p rate itself that generates opposite variations of CT on the lateral

rotors. For reasons of symmetry, other e�ects are negligible.

A7,5 = Lv = − 1

Ixx

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R Tj(3, 2)×

× [b sin(δj)Tj(3, 3) + (−h)Tj(3, 2)]

(5.44)

h is the height of rotors from the center of gravity of the aircraft: h < 0

if the rotors are placed above the C.G. itself.
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A7,7 = Lp = − 1

Ixx

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R ×

× [b sin(δj)Tj(3, 3)− hTj(3, 2)]

(5.45)

For the pitch dynamics the results are similar to those for the roll dynamics.

A8,4 = Mu = − 1

Iyy

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R Tj(3, 1)×

× [hTj(3, 1) + (−b cos(δj))Tj(3, 3)]
(5.46)

A8,8 = Mq = − 1

Iyy

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R ×

× [b cos(δj)Tj(3, 3) + (−h)Tj(3, 1)]
(5.47)

On the dynamics of yaw rate r instead the most important derivative is

Nr. The other e�ects can be supposed negligible for symmetry of rotors

displacement and for the alternation of their verses of rotation. Nr is

composed by two factors, for any rotor: one for the variation of torque

and one for the variation of thrust. In the following formula the matrix

T̃j is inserted, because the e�ect of r on all the rotors is independent of

the azimuth position of rotors.

A9,9 = Nr = − 1

Izz

∑Nrot
j=1

∂CT
∂µz

ρA Ω0 R b2T̃j(3, 2)2+

+
1

Izz

∑Nrot
j=1

∂CΠ

∂µz
ρA Ω0 sgn(Ω0,j) R

2 b T̃j(3, 2)T̃j(3, 3)

(5.48)
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5.3.5 The Stability Matrix

Finally the stability matrix can be written in the proper form.

A =



0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 Xθ 0 Xu 0 0 0 0 0

Yφ 0 0 0 Yv 0 0 0 0

0 0 0 0 0 Zw 0 0 0

0 0 0 0 Lv 0 Lp 0 0

0 0 0 Mu 0 0 0 Mq 0

0 0 0 0 0 0 0 0 Nr



(5.49)

5.3.6 Control Derivatives

In section (3.2.5) the dynamics of a rotor have been described by the

equations of angular motion of the shaft of the electric motor associated

to the rotor itself. The speeds of rotors are the quantities that permit to

change the state of the aircraft. As described before, however, they do

not represent the inputs of the system. The inputs are the voltages of the

electromagnetic circuits of motors.

In the non�linear model, the de�nition of dynamics of motors is included

to insert appropriate transients in the rotors speed, eliminating unreal

step variations in the angular rates. But, also, these equations are not

comprehensive of other e�ects, as electric transients, regulation of current

armature, etc. thus maintaining some degree of uncertainty.

Thus, as control inputs, the small variations of rotors velocities are chosen.

The rotors dynamics could be successively inserted, in a more practical

way, as transfer functions of the motors. With this hypothesis the study

can focus more on the aerodynamic e�ects of rotors on the state dynam-

ics. That is a result nevertheless interesting, if not only an experimental

relation between thrust and motor input is considered.
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The components of the control matrix B describe the in�uence of small

variations of control inputs on the kinematics and dynamics of the aircraft.

The matrix B in the present case has 9 rows and 4 columns. The columns

are 4 because the aircraft possesses 4 inputs, as discussed in section (3.3.2).

These inputs can be listed as:

1. simultaneous variation of all rotors spin rates for vertical �ight (col-

lective or throttle command);

2. opposite variations of spin rates of the "back" rotors and on the

"fore" rotors for forward �ight (longitudinal command);

3. opposite variations of spin rates of rotors on the "right" side and on

the "left" side for lateral �ight (lateral command);

4. opposite variations of spin rates of adjacent rotors for heading control

(directional or rudder command).

In case of perturbation of the control variables, the input vector for the

linear model can be de�ned with the next expression.

u = [ucol ulon ulat urud]
T (5.50)

From the 6 D.O.F. model equations it is clear that the inputs do not

directly a�ect the attitude kinematics, in hovering �ight, so that the �rst

three rows of the matrix are rows of zeros.

Collective Command Derivatives

From the hovering condition, for symmetric displacement and orientation

of the rotors, the collective command exerts its in�uence only on the ver-

tical direction. Thus the notable derivative is Zcol. The value of this

derivative can be found making use of equation (5.32). It must be consid-

ered only the projection of the thrust of each rotor along the zB axis.
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Zcol =
1

m

Nrot∑
j=1

Tj(3, 3)

[
− mg

Nrot cos(Γj) cos(ξj)

2

Ω0

]
(5.51)

Longitudinal Command Derivatives

The prime e�ect of longitudinal command is a rotation about the yB axis.

This rotation generates an acceleration along the xB axis. This two e�ects

can be described by the derivatives Mlon and Xlon.

To Mlon one contribution is due to the components of rotors thrusts along

the zB axis and another to those along the xB axis.

Mlon =
1

Iyy

∑Nrot
j=1

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
×

× [−Tj(3, 3)(−b) cos(δj) sgn{− cos(δj)} −Tj(3, 1) h sgn{− cos(δj)}]
(5.52)

Xlon is given by the e�ect of the components of rotors thrusts along the

xB axis.

Xlon =
1

m

∑Nrot
j=1

[
−Tj(3, 1)

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
sgn{− cos(δj)}

]
(5.53)

Other than this derivatives the Nlon derivative must be computed, because

there are unbalanced variations of torque and the tilted thrusts a�ect the

yaw dynamics.

Nlon =
1

Izz
b
∑Nrot

j=1

[
−T̃j(3, 2)

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
sgn{− cos(δj)}

]
+

+
1

Izz

∑Nrot
j=1

[
Tj(3, 3) CΠ0,j ρ A 2Ω0 R

3 sgn{cos(δj)}(−sgn{Ω0,j})
]

(5.54)

81



5. Multi�Rotor Dynamics Linear Modeling

Lateral Command Derivatives

The e�ects of a lateral control are similar to those of the longitudinal

command. Three derivatives must yet be computed. These are Llat, Ylat

and Nlat. Llat is analogous to Mlon, Ylat to Xlon and Nlat to Nlon.

Llat =
1

Ixx

∑Nrot
j=1

[
mg

Nrot cos(Γj) cos(ξj)

2

Ω0

]
×

× [−Tj(3, 3)(−b) sin(δj) sgn{sin(δj)} −Tj(3, 2)h (sgn{sin(δj)})]
(5.55)

Ylat =
1

m

∑Nrot
j=1

[
−Tj(3, 2)

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
sgn{− sin(δj)}

]
(5.56)

Nlat =
1

Izz
b
∑Nrot

j=1

[
−T̃j(3, 2)

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
sgn{− sin(δj)}

]
+

+
1

Izz

∑Nrot
j=1

[
Tj(3, 3) CΠ0,j ρ A 2Ω0 R

3 sgn{− sin(δj)}sgn{−Ω0,j}
]

(5.57)

Directional Command Derivatives

For symmetry of displacement and tilting of rotors the only e�ect of this

control action is on the yaw rate r. The derivative to compute is Nrud.

This derivative is sum of two components. One is due to the inclination

of the rotors thrusts and the other to the variation of aerodynamic torque

of all the rotors. A positive directional command is supposed to give a

positive acceleration of r.
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Nrud =
1

Izz
b
∑Nrot

j=1

[
−T̃j(3, 2)

mg

Nrot cos(Γj) cos(ξj)

2

Ω0
sgn{ξj}

]
+

+
1

Izz

∑Nrot
j=1

[
T̃j(3, 3) CΠ0,j ρ A 2Ω0 R

3
]

(5.58)

5.3.7 The Control Matrix

The control matrix can now be written.

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 Xlon 0 0

0 0 Ylat 0

Zcol 0 0 0

0 0 Llat 0

0 Mlon 0 0

0 Nlon Nlat Nrud



(5.59)

5.4 Numerical Results

The stability matrix and the control matrix for the linear model of the

dynamics of a multi�rotor aircraft have been de�ned in an analytic way.

A numeric test can be done to assess the correctness of the results of

linearization.

Inserting the data of table (4.3), we can compute the value of any element

of the matrix A. This result can be compared with the stability matrix

obtained after a numerical di�erentiation executed with MATLABr.

The numerical calculation brings the same result.
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Aanalytic =
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −9.81 0 −0.0048 0 0 0 0.0200 0

9.81 0 0 0 −0.0048 0 −0.0200 0 0
0 0 0 0 0 −0.6243 0 0 0
0 0 0 0 −1.8190 0 −14.1730 0 0
0 0 0 1.8190 0 0 0 −14.1730 0
0 0 0 0 0 0 0 0 −0.0957

 (5.60)

Anumeric =
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −9.81 0 −0.0048 0 0 0 0.0200 0

9.81 0 0 0 −0.0048 0 −0.0200 0 0
0 0 0 0 0 −0.6243 0 0 0
0 0 0 0 −1.8190 0 −14.1677 0 0
0 0 0 1.8190 0 0 0 −14.1677 0
0 0 0 0 0 0 0 0 −0.0957

 (5.61)

Also for the B matrix, the results of the numeric and analytic di�erentia-

tion can be compared.

Banalytic =
0 0 0 0
0 0 0 0
0 0 0 0
0 0.0025 0 0
0 0 0.0021 0

−0.0425 0 0 0
0 0 1.5745 0
0 −1.8180 0 0
0 0.0426 0 0.1277

 (5.62)

Bnumeric =
0 0 0 0
0 0 0 0
0 0 0 0
0 0.0025 0 0
0 0 0.0021 0

−0.0425 0 0 0
0 0 1.5745 0
0 −1.8149 0 0
0 0.0426 0 0.1278

 (5.63)

There is only a small di�erence in the p and q angular rates dynamics.

However, with proper simulations, it can be veri�ed that the numeric re-

sponses are indistinguishable. Thus the analytic de�nition of B is consid-

ered valid (errors are under 0.2%).
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5.5 Remarks

In this chapter the analytic development to obtain a linear model of a

multi�rotor aircraft dynamics is explained in detail. The aerodynamics

of rotor has been accurately considered so that the analysis of dynamic

stability can be accomplished with great depth. This linear model can

also be utilized properly for control system design.

The problem of linearization of rotors aerodynamic loads is here focused.

Although the question has taken relatively little space, this is a very im-

portant one for the study of dynamic characteristics of multi�rotor �ying

vehicles. It is worth noticing that in the specialized literature about multi�

rotor aircrafts, this question is almost neglected. Thus the arguments in

this and in the following chapters represent a sort of prime attempt in the

analytic study of multi�rotor dynamics.
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Chapter 6

Aeromechanical Stability

Analysis of a Multi�Rotor

Vehicle

In this chapter the question of static and dynamic �ight stability of a

multi�rotor is addressed. All the work is based on the linear modeling

developed in chapter (5). A numerical test case is also considered.

6.1 Introduction

Many o��the�shelf multi�rotor vehicles are often provided with a �xed

geometry non-planar displacement of rotor discs, such that the thrust gen-

erated by the individual rotor is inclined with respect to the local vertical.

It is the case when a dihedral angle is provided to each rotor arm and a

tilt angle deviates the rotor thrust from the vertical plane that contains

the relative rotor arm. It is common knowledge that such design solutions

may provide some kind of passive stability, that allows the vehicle to re-

level at hover after attitude perturbations [7]. Although the behavior of an

isolated rotor has been widely studied in the past years, with results about

its inherent dynamic instability [13], there are very few results about the
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6. Aeromechanical Stability Analysis of a Multi�Rotor Vehicle

interaction of two or more rotors. In [3] it was demonstrated that the sta-

bility of the longitudinal and lateral motions of a tandem�rotor helicopter

largely depends on small di�erences between the thrusts of the front and

rear rotors. In that framework, it was necessary to calculate the rotor

thrust derivatives far more accurately than for the single�rotor helicopter.

In the end it was shown that, in order to eliminate a divergence in longi-

tudinal dynamic stability, a suitable value of swash�plate dihedral angle

was necessary between the two rotors.

In this chapter, the open�loop stability analysis of a �xed�geometry multi�

rotor at hover is addressed. In particular, it is investigated how attitude

and velocity stability properties are in�uenced by design parameters such

as the blade geometry, the position of the vehicle center C.G. and the

rotors displacement and orientation in space. All the demonstration is

based on the stability derivatives expressions as given in chapter (5).

After a detailed study of pure static stability, design solutions are proposed

in order to cope with unstable oscillations a�ecting the longitudinal and

lateral dynamics. Vertical and directional stability properties are analyzed

and, as a further contribution, it is investigated how the combined use of

feedback control systems, proper design of tilt angles, and a positive (in-

ward) dihedral angle may drive the vehicle to dynamically stable hovering

�ight.

The whole argumentation is developed with respect to a quad�rotor con-

�guration.

6.2 Rotors Arrangement

As hinted in section (4.3.2), the values of the dihedral Γj and tilting ξj

angles for all the rotors must be properly assigned. The choice must grant

essentially that in �ight all the loads generated by the rotors are recipro-

cally balanced. In a word, in hovering condition, all the horizontal forces

due to rotors inclination and all the torques need to make ine�ective them-
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selves.

To this purpose the rotors must be arranged in the following way. The

dihedral angles Γj must have the same magnitude and the same sign.

Γj = Γ̄, ∀j = 1, ..., Nrot (6.1)

To have equal dihedral implies that any rotor generates a component of

thrust in {(xB,yB)} plane all directed toward the C.G. or pointing out

from it. These components of thrusts are perfectly balanced, in the case

of regular azimuthal displacement of rotors.

The tilting angles ξj , instead, must possess same magnitude but di�erent

sign between adjacent rotors.


ξj = ξ̄, j = 1, ..., 3, ..., Nrot − 1

ξj = −ξ̄, j = 2, ..., 4, ..., Nrot

(6.2)

Both the possibilities of sign for ξ̄ are acceptable.

With this hypotheses, the assumptions of section (5.3.3) still hold and are

maintained in this chapter.

6.3 Stability Analysis

In this section, stability analysis is performed without loss of generality

for the multi-rotor con�guration depicted in �gure (3.6). Note that, with

slight modi�cations, the considerations provided below also hold for ve-

hicle arrangements where 6 or more rotors are symmetrically displaced.

Particular attention is dedicated to the rotational stability of the vehicle

about the hovering condition, showing how design solutions related to the

dihedral angles Γj and the tilt angles ξj in�uence the open�loop static

stability of roll, pitch, and yaw dynamics. Moreover, some considerations

are provided about vertical damping. Finally, the dynamic stability of the
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linearized system at hover is addressed, and design solutions are suggested

in order to improve the vehicle open-loop behavior.

In what follows, the main stability derivatives are evaluated as components

of the A stability matrix. For the sake of simplicity it will be assumed

that the rotors spin rate at hover Ω0 and the rotor derivatives of chapter

(5.2) do not depend on Γ̄ and ξ̄ and are calculated for the planar case,

Γ̄ = ξ̄ = 0o.

Table (6.1) shows relevant vehicle data. In order to evaluate the stability

derivatives described in the previous chapter, some additional parameters

need to be calculated. From table (6.1) and equation (3.9), the rotor

induced velocity results to be vi0 = 4.52 m/s. Taking into account equation

(4.8), with the value obtained for vi0, it is also Ω0 = 216.0 rad s−1, while

for the in�ow ratio it is λi0 = 0.084. A more accurate model in which

the rotor derivatives, as section (5.3.3), vary with Γ̄ and ξ̄, does not add

signi�cant contribution to the calculation of the stability derivatives. In a

con�guration where Γ̄ = ξ̄ = 20o, for example, it would be easy to show

that the evaluation of the derivatives according to the approximate model

leads to an error of about 3 % with respect to the exact model. Thus, the

assumption of null dihedral and tilting for rotor derivatives computation

can be retained.

The derivatives of the rotor aerodynamic coe�cients involved in the de�-

nition of the stability derivatives are then calculated, with the result that

∂CT /∂µz = 0.04 and ∂CΠ/∂µz = 4 · 10−4.

In this pages, only the most in�uencing derivatives are investigated. For

the multi�rotor con�guration provided in table (6.1), in fact, terms such

as Xu, Xq, Yv, and Yp actually provide a less signi�cant contribution with

respect to the derivatives presented in what follows.

6.3.1 Lateral and Longitudinal Stability

The e�ect of linear velocities u and v on longitudinal and lateral stability

is mathematically represented by the derivatives Lv and Mu. Taking into
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account the equations (3.20) and (5.44) with the arrangement represented

by δ1 = 0, δ2 = π/2, δ3 = π, and δ4 = (3/2)π, one derives:

Lv(Γ̄, ξ̄) = −2ρAΩ0R

Ixx

∂CT
∂µz

{
cos2(ξ̄) sin(Γ̄)

[
b cos(Γ̄)− h sin(Γ̄)

]
− h sin2(ξ̄)

}
=

(6.3)

= cos2(ξ̄)Lv(Γ̄, 0) + Lv(0, ξ̄) (6.4)

where

Lv(Γ̄, 0) , −2ρAΩ0R

Ixx

∂CT
∂µz

sin(Γ̄)
[
b cos(Γ̄)− h sin(Γ̄)

]
(6.5)

is the contribution provided by dihedral angle only, and

Lv(0, ξ̄) ,
2ρAΩ0R

Ixx

∂CT
∂µz

h sin2(ξ̄) (6.6)

is the contribution provided by tilt angle only. In the same way, from

equations (3.20) and (5.46), it follows:

Mu(Γ̄, ξ̄) = −2ρAΩ0R

Iyy

∂CT
∂µz

{
− cos2(ξ̄) sin(Γ̄)

[
b cos(Γ̄)− h sin(Γ̄)

]
+ h sin2(ξ̄)

}
=

(6.7)

= cos2(ξ̄)Mu(Γ̄, 0) +Mu(0, ξ̄) (6.8)

where

Mu(Γ̄, 0) ,
2ρAΩ0R

Iyy

∂CT
∂µz

sin(Γ̄)
[
b cos(Γ̄)− h sin(Γ̄)

]
(6.9)

is the contribution provided by dihedral angle only, and

Mu(0, ξ̄) , −2ρAΩ0R

Iyy

∂CT
∂µz

h sin2(ξ̄) (6.10)

is the contribution provided by tilt angle only.

The sign of ξj (j = 1, . . . , 4) has no in�uence on the derivatives reported

in the equations (6.4) and (6.4), since ξj only appears in cosine or squared

sine functions. Provided Γ̄ < tan−1(b/ |h|), the sign of the two dihedral

contributions Lv(Γ̄, 0) and Mu(Γ̄, 0) is determined only by the sign of Γ̄.
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In both cases, Γ̄ = 0 leads to null dihedral derivatives. According to

the convention adopted for the Body Axis frame, a positive dihedral an-

gle provides a statically stabilizing e�ect either along the roll axis, where

Lv(Γ̄, 0) < 0, and the pitch axis, where Mu(Γ̄, 0) > 0. On the other hand,

the e�ect of the tilt angle is always statically stabilizing in Lv(0, ξ̄) and

Mu(0, ξ̄) if h < 0, with the C.G. lying below the plane that contains all

the rotor centers.

The stability properties related to Lv and Mu may be clari�ed by the case

when attitude perturbations drive the vehicle to acquire velocity compo-

nents on the {(xB,yB)} plane, owing to the inclination of the total thrust

from the local vertical. The result is the generation of a moment that

would lead the vehicle back to the hovering condition.

In the end, from equations (6.4) and (6.8), it is possible to derive the

equation:

Mu(Γ̄, ξ̄) = −Ixx
Iyy

Lv(Γ̄, ξ̄) (6.11)

The e�ect of the angular velocities p and q on lateral and longitudinal

stability is represented by the derivatives Lp and Mq, respectively. From

equations (3.20) and (5.45), it is:

Lp(Γ̄, ξ̄) = −2ρAΩ0R

Ixx

∂CT
∂µz

{
cos2(ξ̄)

[
b cos(Γ̄)− h sin(Γ̄)

]2
+ h2 sin2(ξ̄)

}
=

= cos2(ξ̄)Lp(Γ̄, 0)− 2ρAΩ0R

Ixx

∂CT
∂µz

h2 sin2(ξ̄) (6.12)

where

Lp(Γ̄, 0) , −2ρAΩ0R

Ixx

∂CT
∂µz

[
b cos(Γ̄)− h sin(Γ̄)

]2
(6.13)

is the damping contribution when ξ̄ = 0. From equations (3.20) and (5.47)

it is also:
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Mq(Γ̄, ξ̄) = −2ρAΩ0R

Iyy

∂CT
∂µz

{
cos2(ξ̄)

[
b cos(Γ̄)− h sin(Γ̄)

]2
+ h2 sin2(ξ̄)

}
=

= cos2(ξ̄)Mq(Γ̄, 0)− 2ρAΩ0R

Iyy

∂CT
∂µz

h2 sin2(ξ̄) (6.14)

provided

Mq(Γ̄, 0) , −2ρAΩ0R

Iyy

∂CT
∂µz

[
b cos(Γ̄)− h sin(Γ̄)

]2
(6.15)

is the damping contribution when ξ̄ = 0. The Lp and Mq derivatives re-

ported in equations (6.12) and (6.15) are always negative de�nite, provid-

ing a damping e�ect. It is interesting to note that, even when Γ̄ = ξ̄ = 0,

the system results to be damped. This e�ect is due to the di�erential thrust

that is generated between the ascending and the descending rotors with

respect to the instantaneous axis of rotation that lies on the {(xB,yB)}
plane. In particular, the damping contribution increases as Γ̄ ranges from

negative to positive values but decreases the more the tilt angle ξ̄ inclines

the thrust perturbation of each rotor from the vertical plane that contains

the rotor arm, as it can be seen in �gure (A.2)).

As a �nal consideration, the derivatives Lp and Mq are related to each

other by the equations (6.12) and (6.14):

Mq(Γ̄, ξ̄) =
Ixx
Iyy

Lp(Γ̄, ξ̄) (6.16)

6.3.2 Directional Stability

Now the stability derivative in equation (5.48) for Nrot = 4 is considered.

It results:
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Nr(Γ̄, ξ̄) = −4ρAΩ0Rb
2

Izz

∂CT
∂µz

sin2
(
ξ̄
)
+

+
ρAΩ0R

2b

Izz

∂CΠ

∂µz
cos
(
ξ̄
)

cos
(
Γ̄
) 4∑
j=1

sin (ξj) sgn (Ω0,j)

(6.17)

Note thatNr is null in the case when no tilt angle is provided. On the other

hand, the term in equation (6.3.2) that is related to the thrust coe�cient

derivative ∂CT /∂µz is always negative de�nite for any choice of ξ̄ 6= 0

(actually providing a damping e�ect about the zB axis). The sign of the

term related to the rotor torque coe�cient ∂CΠ/∂µz instead depends on

the particular con�guration adopted for the rotors spin rates Ω0,j and the

relative tilt angles ξj . Since ∂CΠ/∂µz is positive in the given hovering

condition, the best design solution that maximizes the cost function

JNr = −
4∑
j=1

sin (ξj) sgn (Ω0,j) (6.18)

is represented by the con�guration:

sin (ξj) sgn (Ω0,j) < 0, j = 1, . . . , 4 (6.19)

for every choice of ξ̄ = |ξj |. In this case, the inequality in equation (6.19)

holds if sgn (ξj) = −sgn (Ω0,j), with the result that the cost function in

equations (6.18) becomes:

J∗Nr = −4 sin
(
ξ̄
)

(6.20)

As a matter of fact, it should be noted that the rotor torque variation

related to ∂CΠ/∂µz does not provide a signi�cant contribution if compared

to the e�ect induced by ∂CT /∂µz. In fact, at the considered hovering

condition, it is |∂CΠ/∂µz| << ∂CT /∂µz. Nevertheless, the small damping
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contribution obtained by the con�guration proposed in equation (6.19)

comes at no cost on the vehicle endurance for a given choice of Γ̄ and ξ̄ �

that is, the overall thrust required by the equilibrium of forces in equation

(4.3) is not altered.

In �gure (A.3) the derivative Nr is plotted as a function of ξ̄ with the

arrangement proposed in equation (6.19). In particular, only the curve for

Γ̄ = 0o is reported, because the dihedral angle appears in the term related

to ∂CΠ/∂µz and thus it does not provide a signi�cant contribution.

6.3.3 Vertical Motion Stability

The e�ect of the linear velocity w on the thrust component directed along

the zB axis is represented by the derivative Zw. Taking into account

equations (3.20) and (5.43), it is:

Zw = −4ρAΩ0R

m

∂CT
∂µz

cos(Γ̄)2 cos(ξ̄)2 . (6.21)

The stability derivative in equation (6.21) is always negative de�nite. Ac-

cording to the convention adopted for the Body Axis frame, a negative

contribution of Zw provides static stability along zB. In other words, if

altitude is perturbed from the trim condition, the generation of a velocity

component w induces a force ∆Z that opposes the altitude variation. In

�gure (A.4) the vertical damping Zw is plotted as a function of the dihedral

and the tilt angles.

Note that the inclination of the individual rotor thrust from the zB axis is

always detrimental for the vertical damping. In fact, the maximum value of

|Zw| is obtained when Γ̄ = ξ̄ = 0o, that represents a planar con�guration.

6.3.4 Dynamic Stability

Till now, static stability has been explored for a multi�rotor at hover, with

detailed considerations about the in�uence of dihedral and tilt angles on

the stability derivatives. In particular, the speed stability represented by
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the Lv and Mu derivatives has been analyzed, with the description of the

statically stabilizing momenta induced by perturbations of u and v. If dy-

namic stability of the linearized system in equation (5.1) is addressed, one

should verify whether every real pole of the state matrix A = A(Γ̄, ξ̄), or

every real part of any complex pole, is negative. To this aim, it is conve-

nient to write the stability matrix as a function of the stability derivatives

de�ned in chapter (5). It follows:

A =


0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 Xθ 0 Xu 0 0 0 0 0
Yφ 0 0 0 Yv 0 0 0 0
0 0 0 0 0 Zw 0 0 0
0 0 0 0 Lv 0 Lp 0 0
0 0 0 Mu 0 0 0 Mq 0
0 0 0 0 0 0 0 0 Nr

 (6.22)

Now a planar con�guration C1, where Γ̄ = ξ̄ = 0o, is considered. Taking

into account equation (6.22) and the expressions of the stability derivatives

provided above, it results:

A1 =


0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −9.8066 0 0 0 0 0 0 0

9.8066 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.5194 0 0 0
0 0 0 0 0 0 −10.9171 0 0
0 0 0 0 0 0 0 −10.9171 0
0 0 0 0 0 0 0 0 0

 (6.23)

The eigenvalues of A1 assume the con�guration:

η1 = [0, 0, −0.5194, −10.9171, −10.9171, 0, 0, 0, 0]T

where the three negative real poles are related to the damping e�ect pro-

vided by Zw, Lp, andMq, respectively. In particular, the vertical motion of

the multi�rotor at hover is described by a �rst order di�erential equation,

that is ẇ = ∆Z/m, with a time constant given by τw = −1/Zw (about 2 s

in this case). The time-to-half amplitude is about 1.3 s. No damping is

provided about the yaw axis.
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Now instead it is considered a con�guration C2 where Γ̄ = 20o and ξ̄ = 10o,

with the tilt arrangement suggested in equation (6.19). It follows:

A2 =


0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 −9.8066 0 −0.0373 0 0 0 0 0

9.8066 0 0 0 −0.0373 0 0 0 0
0 0 0 0 0 −0.4448 0 0 0
0 0 0 0 −6.0214 0 −12.6571 0 0
0 0 0 6.0214 0 0 0 −12.6571 0
0 0 0 0 0 0 0 0 −0.3014


(6.24)

with the eigenvalues:

η2 = [0.1709±2.1214i, 0.1709±2.1214i, −0.4448, −13.0362, −13.0362, −0.3014, 0]T

The presence of a tilt angle generates a stable real pole related to the yaw-

damping derivative, namely Nr = −0.3014 s−1, while vertical damping

is still provided by Zw = −0.4448 s−1. In particular, the motion of the

multi-rotor about the yaw axis, that is described by a �rst order di�erential

equation, ṙ = ∆N/Izz, has a time constant given by τr = −1/Nr ≈ 3.3 s.

Both the roll and the pitch dynamics are described by a stable, subsidence

mode (a large negative real root due to damping) and a mildly unstable,

oscillatory mode (due to the speed derivatives Lv and Mu). In this case,

the oscillation associated with the unstable dynamics has a period of about

3 s. Time-to-double amplitude is about 4 s and gets worse if dihedral and

tilt angles are increased. Because of the speed stability of the rotors, the

vehicle is susceptible to gusts whenever it is hovering and, as a result, its

position relative to the ground drifts considerably: this makes the task of

station-keeping, for which multi�rotor are universally employed, particu-

larly taxing for a pilot if manual control is performed. Finally, it is a result

that, if the vehicle is perturbed from trimmed forward �ight, the unstable

oscillatory mode is made even worse with an increase in the trim advance

speed [13].

It can be noticed from �gure (A.1) that it is possible to reduce Lv (and

Mu) to zero by tilting the rotor-hub axes outwards (i.e., the dihedral angle

becomes negative). Let ξ̄∗ be the design value of tilt angle obtained, for ex-
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6. Aeromechanical Stability Analysis of a Multi�Rotor Vehicle

ample, from a requirement on the time constant of the yaw damping mode,

as in �gure (A.3). Provided Γ̄∗ is the angle that satis�es Lv(Γ̄
∗, ξ̄∗) = 0,

it follows from equation (6.4):

cos2(ξ̄∗) sin(Γ̄∗)
[
b cos(Γ̄∗)− h sin(Γ̄∗)

]
− h sin2(ξ̄∗) = 0 (6.25)

that can be rearranged to give:

2h sin2(Γ̄∗)− b sin(2Γ̄∗) + 2h tan2(ξ̄∗) = 0 . (6.26)

Equation (6.26) provides two real negative solutions:

Γ̄∗ = tan−1

b±
√
b2 − 4h2 tan2(ξ̄∗)

[
1 + tan2(ξ̄∗)

]
2h
[
1 + tan2(ξ̄∗)

]
 (6.27)

provided

ξ̄∗ ≤ tan−1


√√√√1

2

(
−1 +

√
1 +

b2

h2

) (6.28)

Between the two solutions of the equation (6.27), the smallest one repre-

sents the suggested design, because it allows to reduce the e�ort demanded

to the motors at hover by the equation (4.3) and to avoid excessive loss of

roll, pitch, and vertical damping, according to �gures (A.2) and (A.4). In

this case, equation (6.27) gives Γ̄∗1 = −65o and Γ̄∗2 = −0.79o for ξ̄∗ = 10o.

If the design parameters Γ̄∗2 and ξ̄∗2 are selected for a third con�guration,

C3, the vector of eigenvalues results to be:

η3 = [−0.0079, −0.0079, −0.5037, −10.5215, −10.5215, −0.3018, 0, 0, 0]T

where no re�hovering moment is actually generated by changes of speed.

In particular, damping is still provided to p, q, r, and w velocities with a

fast dynamics of the �rst�order, as in �gure (A.5) for a sample maneuver

based on the linearized model). On the other hand, a creeping �rst�order

dynamics with no practical interest characterizes the behavior of u and w
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if linear velocity perturbations only are introduced, as �gure (A.6) clearly

shows).

The slow response of the velocity perturbations u and v is due to the small

derivativesXu and Yv. Nevertheless, it must be taken into account that the

e�ect of the airframe drag is not considered in the linear analysis, which

would strongly increase the force contributions that oppose the motion of

the C.G. of the vehicle.

The analysis provided about static and dynamic stability is based on the

open loop modeling of the multi�rotor, where no active stabilization sys-

tem is implemented. The ad hoc con�guration proposed in equation (6.27),

that allows to eliminate the divergent oscillations induced by speed stabil-

ity, however makes the system very slow in compensating any speed per-

turbation, with no possibility to oppose attitude variations. As a matter of

fact, a stable con�guration with positive dihedral is possible if additional

damping is arti�cially provided to longitudinal and later dynamics by a

closed�loop control. In many multi�rotor vehicles, this regulation is per-

formed by means of the feedback of p and q on the rotor spin rates, while

the same result is obtained for longitudinal stability in many single�rotor

helicopters by adding a tailplane [13]. Su�cient extra damping would thus

result in the oscillatory mode being stabilized. In the case when attitude

information also is used as a feedback term, the system would stabilize

at hover after very fast transients and with the capability to avoid the

oscillatory behavior. A compromise should be envisaged between the use

of passively stable con�gurations, with tilt and positive dihedral, and the

e�ort demanded by closed-loop controllers, in order to accomplish the de-

sired requirements in terms of both stability and endurance.

6.4 Quad�Rotor Data

In the following table the data employed in the calculations of the previous

sections are provided.
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Type Value Unity Type Value Unity

ρ 1.2247 kg m−3 g 9.80665 m s−2

m 4 kg Ixx 0.044 kg m2

Iyy 0.044 kg m2 Izz 0.098 kg m2

Nrot 4 R 0.25 m

N 2 θc 15 o

θtw 2 o Clα 5.5 rad−1

Cd 0.003 c 0.03 m

h −0.3 m b 0.68 m

Table 6.1: Quad�Rotor Data

6.5 Remarks

In this chapter, the open�loop dynamics of a multi�rotor aerial vehicle

with �xed geometry has been addressed. In particular, it has been investi-

gated how geometric and aerodynamic parameters in�uence the capability

of the vehicle to passively maintain a stable hovering �ight. A non�planar

con�guration of rotors has been considered, where the thrust of the indi-

vidual rotor is inclined by design with respect to the local vertical. Two

angles de�ne the thrust orientation: a dihedral angle rotates the thrust on

the local vertical plane that contains the rotor arm, and a tilt angle rotates

the thrust in such a way to generate a component that is orthogonal to

that plane. Static stability has been analyzed for a vehicle con�guration

with four rotors, showing how directional stability is closely related to the

tilt angles, while the stability of the longitudinal and lateral axes is mostly

in�uenced by the dihedral angle. As a �nal contribution, dynamic sta-

bility has been tackled and design solutions have been suggested in order

to improve the vehicle open�loop behavior and assist eventual feedback

controllers in the stabilization task. In this direction, the parameterized

linear model has been proven to be a valid instrument for the analysis of

di�erent vehicle con�gurations and a test bench for the design of novel
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control strategies.
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Chapter 7

Control of a Multi�Rotor

Aircraft

In chapter (5) a linear model of a multi�rotor aircraft dynamics has been

obtained. In this chapter control laws for attitude stabilization are de�ned

on the base of this linear system. These control laws are validated with

numerical simulations. With the same simulations it is also shown whether

the speed stability characteristics for a multi�rotor aircraft improve, with

respect to the result of the previous chapter for a multi�rotor without

active stabilization.

Numeric examples are all referred to the same hexa�copter data already

used.

7.1 Control of a Linear System

The dynamic behavior of a multi�rotor around the hovering �ight condition

can be described by an LTI system with the following implicit expression

for state vector equation.

ẋ = Ax+Bu, x(t0) = x0 (7.1)

Once the state equation is de�ned, a control strategy can be chosen. Clas-
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7. Control of a Multi�Rotor Aircraft

sical linear control approaches are PID controllers for SISO systems or

the Optimal Control theory for MIMO systems [16]. Both the control

techniques are discussed in the following, with few theoretic hints, and ap-

plied to the attitude stabilization of the multi�rotor. The control laws are

then tested in numerical simulations of the non�linear model of dynamics

of the aircraft.

In the following treatment all the control laws provide a direct variation of

the spin rate of the rotors, without considering the dynamics of the electric

motors. This only to show that the linear model is an e�ective analytic

tool for an a�ordable control system design.

7.1.1 PID Control

To design a PID controller of a plant, the transfer function of this plant

is needed. Thus, aiming at the stabilization of the attitude in hovering

�ight, the SISO systems to be controlled are the attitude perturbation

variables φ, θ and ψ. Now their transfer functions must be de�ned.

Considering only the φ angle, its state equation can be obtained beginning

from the roll rate p dynamics.

ṗ = Lpp+ Lvv + Llatulat (7.2)

Inserting the Laplace's variable s the time derivative disappears.

p(s− Lpp) = Lvv + Llatulat (7.3)

Now an assumption is made to obtain a SISO system. The contribute of

the velocity v is omitted, supposing less importance of the e�ects of v, near

the hovering �ight condition. With this hypothesis the transfer function

for roll rate dynamics can be written.

p =
Llat

(s− Lpp)
ulat (7.4)
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7.1 Control of a Linear System

The transfer function of the roll angle perturbation derives from the rela-

tion between φ and p.

φ̇ = p (7.5)

sφ = p (7.6)

Finally the φ transfer function can be expressed.

φ =
Llat

s(s− Lpp)
ulat (7.7)

The transfer function of θ and ψ can be similarly found.

θ =
Mlon

s(s−Mqq)
ulon (7.8)

ψ =
Nrud

s(s−Nrr)
urud (7.9)

For any transfer function a PID controller can be designed. To do this,

the MATLABr function pidtune is utilized. This function for each plant

provides the proportional gain KP , the integral gain KI and the derivative

gain KD. If H(s) is the regulator transfer function, its expression is the

following.

H(s) = KP +
KI

s
+KDs (7.10)

For the present case a PD regulator architecture is chosen (KI = 0). For

the 3 controllers the gains are shown in table (7.1).

The negative sign of the gains of the θ regulator is due to the fact that

a positive longitudinal command ulon gives a positive response of the u

velocity but a negative one of the angle θ and of the pitch rate q.
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φ [rad] θ [rad] ψ [rad]

KP 204.7194 -177.2922 397.8994

KD 4.2596 -3.6889 67.4201

Table 7.1: PID Gains

7.1.2 PID Regulators Simulation

The PID regulators can be tested with a numerical simulation of the non�

linear model of the multi�rotor aircraft. In this simulation the motors

dynamics are not included. The simulation starts with non null values of

the angles Φ, Θ and Ψ. Precisely, Φ(t0) = 15o, Θ(t0) = 15o and Ψ(t0) =

15o. In �gure (B.1) the simulation result is shown. The e�ectiveness of

attitude regulation can be thus witnessed.

Similarly, because, for multi�rotor aircrafts, velocities and attitude are

strictly tied, it can be assessed whether the presence of an attitude stabi-

lization system improve the speed stability characteristics of the rotorcraft

with respect to the case shown at the end of chapter (6). Figures (B.3)

and (B.5) give a positive response.

7.2 Regulation through Optimal Control

Optimal control theory [16, 25] provides a proportional regulator forMIMO

LTI systems. This regulator is also known as linear quadratic regulator

(LQR). This control problem returns a gain matrix K. This matrix is

obtained from the minimization of a scalar cost function J .

J =

∫ ∞
0

(
xTQx+ uTRu

)
dt (7.11)

Q and R are diagonal arbitrary weighting matrices.

The state dynamics with the presence of the LQR and without pilot inputs

can be described by the following equation.
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ẋ = (A−BK)x, x(t0) = x0 (7.12)

It is worth noticing that this regulator acts on all the state variables to-

gether. Thus, with it, the stabilization action does not work only on the

attitude angles but on all the state vector.

The numeric value of K can be obtained directly through MATLABr.

7.2.1 LQR Simulation

With another simulation the performance of the LQR can be viewed in

�gure (B.2). For this numeric example the following values have been

assigned to the weighting matrices.

Q =



100 0 0 0 0 0 0 0 0

0 100 0 0 0 0 0 0 0

0 0 100 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0.001 0 0

0 0 0 0 0 0 0 0.001 0

0 0 0 0 0 0 0 0 0.001



(7.13)

R =


10 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

 (7.14)

Di�erently from PID regulation, the control action of the LQR works

on all the state variables, so that a stabilizing action is delivered to the

velocities and to the angular rates. The speed stability in this case, more
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7. Control of a Multi�Rotor Aircraft

than also in the case of PID regulators, is again enhanced, as it can be

seen in �gures (B.4) and (B.6).

7.3 Remarks

In this chapter the problem of the attitude stabilization of a multi�rotor

aircraft has been dealt with. The results shown here do not represent

obviously the very ultimate solution. The objective of the argumentation

was to prove the a�ordability of the mathematical modeling presented

in the previous chapters for the designing of control systems for multi�

rotor �ying vehicles. In this way simple control laws, even though with

various approximations, have been found only on the base of analytical

computations or with the aid of ad hoc tuning algorithms.
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Chapter 8

The Quad�Tilt�Rotor Aircraft

This chapter deals with the study of a never built con�guration of multi�

rotor aircraft. All the mathematical instruments of the previous chapters

are here utilized to demonstrate whether this innovative machine really

grants enhanced �ight capabilities with respect to classical multi�rotor

platforms.

8.1 Introduction

Recently a patent [1] has been registered in which a new quad�rotor mock�

up is described. This new con�guration is there named as the Quad�Tilt�

Rotor aircraft. The features of this aircraft are: tilting rotors, variable

pitch propellers and an unique internal combustion engine. The tilting

rotors are a mean to increase the number of inputs of the system and, thus,

to augment the maneuverability of the aircraft, with respect to classical

quad�rotors that are a manifest example of under�actuated systems. The

interest in this technology is testi�ed by recent publications [22, 23]. The

internal combustion engine is an expedient chosen to possibly increase the

�ight endurance. More details about this machine are given in following

sections.

Before designing a prototype of such a machine, a study has been at-
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8. The Quad�Tilt�Rotor Aircraft

tempted to understand if actually this machine could grant improvements

in terms of maneuverability. Also control strategies and driving actions

for a human pilot has been de�ned [8].

This analysis has been accomplished by means of the dynamic modeling

equations described in the previous chapters.

In the next sections a brief mention of the non�linear 6 D.O.F. model is

given and, then, the linear model is derived.

The objective of this chapter is the re�nement and prosecution of the

already cited published work [8]. Starting always from the same mathe-

matical model of dynamics of motion, exploiting the so called technique of

Inverse Simulation, complex missions are simulated. This technique per-

mits to show more e�ectively both the performances of this machine and

the necessary pilot control actions for any maneuver.

Finally, a study of the controllability property of the Quad�Til�Rotor as

a linear dynamic system is accomplished. Successively, an approximated

study of residual controllability of the system in case of actuator failure

is developed, to show if the aircraft can overcome this characteristic of

traditional multi�rotor.

8.2 Description of the Aircraft

These pages are focused on the description of a mathematical model of a

quad�rotor with tilting rotors and variable pitch propellers, driven by a

single internal combustion engine. The model is suitable for describing the

dynamics of the vehicle with the purpose of developing feedback control

laws for stability and control augmentation. In this framework, structural

vibrations and unsteady aerodynamic e�ects will be neglected.

The dynamics of a conventional multi�rotor con�guration is relatively sim-

ple: the vehicle is controlled by changing the rate of rotation of the pro-

pellers. Most of the times, an even number of rotors is used. The most

common con�guration, named quad�rotor or quad�copter, features two
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pairs of rotors mounted at the ends of a simple cross�shaped structure,

or at the corners of a square frame. Two rotors rotate in the clockwise

direction and two rotate counter�clockwise, such that at hover each ro-

tor produce a thrust equivalent to one fourth of vehicle weight, with zero

pitch and roll moments and perfectly balanced rotor aerodynamic yawing

torques, as in �gure (8.1).

Yaw control is achieved unbalancing aerodynamic torques acting on the

two pairs of rotors (e.g. increasing the speed of clockwise rotors while de-

creasing the rotation rate of the other two, or viceversa), keeping a constant

total thrust. Roll and pitch control moments are obtained by variation of

lateral and longitudinal rotor thrust, respectively (e.g. increasing the for-

ward rotor rotation rate while decreasing that of the aft�mounted rotor, a

pitch�up moment is obtained). Hexa�copters are also quite popular, where

the vehicles may feature either three couples of counter�rotating propellers

or six independent ones. In both cases, three of the propellers rotate in one

direction, and the remaining three in the opposite one. Note that a con-

ventional quad�rotor is, in terms of control variables, an under�actuated

vehicle, where four control variables are present to control 6 mechanical

degrees of freedom.

As a major di�erence, the novel quad�rotor con�guration features the pos-

sibility of tilting all of the four rotors disks, thus allowing the quad�rotor

to move and maneuver with greater �exibility. As an example, it can �y

along a horizontal trajectory with zero pitch and roll attitude. Moreover,

rotor thrust variation is achieved by varying propeller pitch rather than

rotation rate, which results in a faster and linear response. Control along

the zB Body Axis � that is, control of the normal load factor � is achieved

by changing simultaneously the pitch of all the rotors. Lateral �ight is

controlled by tilting fore and aft rotors, whereas longitudinal speed and

acceleration are controlled by tilting the lateral rotors. Yaw orientation

can be changed by the (indeed little) tilting of a couple of opposite ro-

tors. For each rotor only the tilting around the axis along its own bar is

111



8. The Quad�Tilt�Rotor Aircraft

Figure 8.1: Direction of rotation of the 4 rotors.

considered, as in �gure (8.2). This machine is also intended to work with

constant engine speed, by means of a suitable RPM governor [8].

The advantage of such a con�guration is the capability to maintain the

payload almost always oriented on a �xed plane during the maneuvers of

the quad�rotor. Moreover the tilting of all the rotors increases the number

of inputs of the vehicle, thought as a dynamic system. This feature trans-

forms it into an over�actuated system, where some sort of control blend

needs to be envisaged in order to allow a pilot to �y it as a conventional

helicopter.

In this latter respect, the novel quad�rotor will be manually controlled by

means of four control inputs, like any other standard RC helicopter: one

command for vertical acceleration, corresponding to the collective, one

command for longitudinal control moment, like the longitudinal cyclic,
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Figure 8.2: Tilting of a rotor

one command for roll control moments, like the lateral cyclic, and one

command for heading control, like the tail rotor collective [21]. How to

blend the control over the di�erent control variables available will be a

major issue in the development of the vehicle control system.

8.2.1 Vehicle Dimensions and Characteristics

A preliminary concept of the novel con�guration is presented in �gure

(8.3). Dimensions and other characteristics of the quad�rotor are sized

starting from a survey of available o�-the-shelf components. Obviously

parts the landing gear and a detailed structure layout will be designed

and built according to the actual needs once the con�guration is de�ned

in better detail. Brackets will be built out of aluminum alloy commercial

tubes or carbon �ber after an adequate evaluation of strength, weight,

manufacturing complexity and cost. The engine can be a two stroke engine

as the Graupner OS SPEED 91 Hz-R 3C with a maximum output of about

2.65 kW of power (http://www.graupner.de). The tank will be located

below the engine. The electronic package will be more conveniently located

on the top of airframe, which is a mandatory position, in order to protect
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Figure 8.3: Sketch of the Main Parts of the Quad�Tilt�Rotor

the electronics from possible shocks from collisions with the ground.

Masses and moments of inertia are estimated by 3D CAD model with

discrete mass distribution. In table (8.1), overall geometric characteristics

and split out of total mass are reported. In relation to the estimated

geometry and masses, the moments of inertia are obtained and are listed

in table (8.2).

8.3 Description of Dynamics of Motion

The mathematical modeling of this machine can be made with all the

equations introduced in the previous chapters, both for the non�linear

model and for the linear one.

The non�linear model needs only some clari�cations about rotors dynamics

and control inputs. In this case, the dynamics of the internal combustion
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Type Value Units

Overall dimension 1360 x 1360 x 250 mm

Variable pitch propellers cluster 50 (x 4) g

Electronics 250 g

Engine and Transmission 1900 g

Tank (full) 600 g

Aluminium alloy brackets 225 (x 4) g

Frame 100 g

Overall mass 3950 g

Table 8.1: Quadrotor characteristics

Inertia Value Units

Ixx 0.044 kg m2

Iyy 0.044 kg m2

Izz 0.098 kg m2

Table 8.2: Inertia moments

engine, in terms of its speed Ω, must be considered in the study of the

whole system. Moreover, pitch of blades and tilt of rotors are now inputs

of the system.

The linear model is discussed in detail successively.

8.3.1 Non-Linear Modeling

The non-linear 6 D.O.F. mathematical model can be written with the

expressions of chapters (2) and (3).

The engine equations, as in section (3.2.5), are inserted in place of the

electric motors dynamics, remembering that now there is only one engine

driving all the rotors. The engine speed Ω must be inserted in state vector.

The speed of rotors is then equal to Ωτ .
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The control inputs are di�erent from those of a classical electric driven

multi�rotor. A possible choice for them can be the following. Velocities,

position and attitude of the vehicle can be controlled through:

1. the pitch of rotors blades θc for vertical �ight;

2. the tilting of the fore and the aft rotors for lateral �ight;

3. the tilting of the other two rotors for longitudinal �ight;

4. the tilting of a couple of opposite rotors (or of the two couples), that

rotate in opposite sense, for directional control.

For any rotor a tilting input can be modeled with a proper rotation ma-

trix, to give the correct orientation of the air velocity components on the

propeller and of all the aerodynamic loads.

Also the throttle of the engine δt can be included in the input vector.

Trim

Considering the trim of such an aircraft, in this case all the values for pitch

of blades, rotors tilting and throttle de�ection must be found. However the

method of section (4.3.2) can be still utilized with proper modi�cations.

For hovering �ight, the tilting of rotors can be put equal to 0o. Yet again,

the thrust of every rotor must be equal to the weight of the aircraft divided

by the number of rotors. At this point the engine speed Ω0 can be chosen

arbitrarily. With this value of engine rate the blades pitch can be computed

from the expression of CT . Finally, imposing the equilibrium condition to

the engine dynamics equation (3.42), the throttle valve de�ection can be

obtained.

CT0 =
mg

NrotρA(Ω0τR)2
(8.1)

λi0 =

√
CT0

2
(8.2)
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vi0 = λi0Ω0τR (8.3)

θc0 = 6

(
CT
σClα

+
λi0
4

+
θtw
8

)
(8.4)

CΠ0 = CT0λi0 +
σCd

8
(8.5)

δt = CΠ0NrotρA(Ω0τR)2Rτ
Ω0

(Pmaxeng,δt
− Pmineng,δt

)
(8.6)

The trim values just calculated are those that are inserted in the Inverse

Simulation algorithm as initial condition for the integration, as explained

in the following dedicated section.

8.3.2 Stability Derivatives

Passing to the linear modeling, the development is almost identical to that

of chapter (5). It begins again from the linearized rotor aerodynamics

equations. The e�ects of coe�cients CH and CΛ are yet neglected.

The stability matrix A is now a square matrix with ten rows and ten

columns, because of the presence of Ω in state vector.

Attitude Kinematics Terms

The �rst three rows represent the linearized kinematics of the attitude.

A1,7 = A2,8 = A3,9 = 1 (8.7)

Xθ and Yφ Derivatives

The next three rows describe the dynamics of velocity in Body Axis frame.

A4,2 and A5,1 are de�ned as in chapter (5).

A4,2 = Xθ = −g (8.8)
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A5,1 = Yφ = g (8.9)

X, Y and Z derivatives

These derivatives describe the e�ects of the variations of velocities, angular

rates and engine speed on the velocity dynamics. The gyroscopic e�ects

are neglected and in hovering the contribute of airframe drag can not be

considered.

Xw is null because the variation of CT is null. The p, q and w perturbations

give a variation to µz for every rotor, but this does not a�ect the dynamics

along the xB axis itself. The e�ects of engine speed variations act only on

zB axis.

Along the zB axis the perturbations of forces are generated by variations

of climb ratio of the rotors and by the engine acceleration.

A6,6 = Zw = − 1

m

∂CT
∂µz

ρA ΩτR Nrotor (8.10)

A6,10 = ZΩ = −CTρA (τR)2 2Ω0 Nrotor = − 2g

Ω0
(8.11)

L, M and N Derivatives

For the roll dynamics the remarkable e�ects are those due to the p rate

itself that generates opposite variations of CT on the lateral rotors. The

lateral rotors, e.g., if r changes, create two rolling moments that acts

around the same direction, but the di�erent rotation verses of the same

rotors impose opposite signs to the rolling moments themselves, that cancel

each other.

h is the height of rotors from the center of gravity of the aircraft: h < 0

if the rotors are placed above the C.G. itself.
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A7,7 = Lp = − 1

Ixx

∂CT
∂µz

ρA Ω0τR
Nrot

2
b2

(8.12)

For the pitch dynamics the results are the same as for the roll dynamics.

A8,8 = Mq = − 1

Iyy

∂CT
∂µz

ρA Ω0τR
Nrot

2
b2

(8.13)

On the dynamics of yaw rate r instead more e�ects are considerable. There

is an e�ect due to w velocity that generates a torque through the load that

imparts to the engine. Another e�ect is a consequence of the engine speed

variation itself. p and q variations give a torque for the variation of CQ on

the two rotors that are doing a roll or pitch rotation.

A9,6 = Nw = − 1

Izz

∂CΠ

∂µz
ρA Ω0(τR)2 Nrot

(8.14)

A9,7 = Np =
1

Izz

∂CΠ

∂µz
ρA Ω0τR

2 Nrot

2 (8.15)

A9,8 = Nq = −Np (8.16)

A9,10 = NΩ = − 1

Izz
[−NrotCΠρAR

3τ2(2Ω0)τ +
∂

∂Ω

(Pmaxeng,δt
− Pmineng,δt

)δt

Ω
]

= − 1

Izz
[−Nrot(2λ

3
i0 +

σCd
8

)ρAR3τ2(2Ω0)τ −
(Pmaxeng,δt

− Pmineng,δt
)δt

Ω2
]

(8.17)

Engine Dynamics Derivatives

A perturbation of the state of the engine is caused by the variation of w

and the subsequent variation of CΠ and by a variation of Ω itself.
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A10,10 = QΩ = −NΩ
Izz
Ishaft

(8.18)

A10,6 = Qw = −Nw
Izz
Ishaft

(8.19)

The Stability Matrix

Finally the stability matrix can be written in the proper form.

A =



0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 Xθ 0 0 0 0 0 0 0 0
Yφ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Zw 0 0 0 ZΩ
0 0 0 0 0 0 Lp 0 0 0
0 0 0 0 0 0 0 Mq 0 0
0 0 0 0 0 Nw Np Nq 0 NΩ

0 0 0 0 0 Qw 0 0 0 QΩ

 (8.20)

8.3.3 Control Derivatives

The matrix B in the present case has 10 rows and 9 columns. The columns

are 9 because the aircraft possesses 9 inputs: the blades pitch and the

tilting angle of the 4 rotors and the throttle valve de�ection of the engine.

u = [θc1 θc2 θc3 θc4 ξ1 ξ2 ξ3 ξ4 δt]
T (8.21)

This choice of the input vector allows the analysis of the controllability

of the aircraft in case of actuator failure, as explained in the dedicated

following section.

Here again, the inputs do not directly a�ect the attitude kinematics, in

hovering �ight, so that the �rst three rows of the matrix are rows of zeros.

Blades Pitch Derivatives

The pitch variation of the blades of a rotor induces a variation of CT and

CΠ. This brings to:

• a component of thrust in the zB direction;
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8.3 Description of Dynamics of Motion

• a moment due to the rotor arm around the xB or yB direction;

• an acceleration of the engine;

• a moment around zB axis due to the variation of torque and the

acceleration of engine.

For the fore rotor of the aircraft the non-zero derivatives are listed below.

B6,1 = Zθc1 = − 1

m

∂CT
∂θc

ρA (Ω0τR)2 (8.22)

B8,1 = Mθc1 =
1

Iyy

∂CT
∂θc

ρA (Ω0τR)2 b (8.23)

B10,1 = Qθc1 = − 1

Ishaft

∂CΠ

∂θc
ρA Ω2

0(τR)3 (8.24)

B9,1 = Nθc1 =
1

Izz

∂CΠ

∂θc
ρA (Ω0τ)2R3 −Qθc,1

Ishaft
Izz (8.25)

For the other rotors the results are similar.

B6,2 = B6,1 = Zθc2 (8.26)

B7,2 = −B8,1
Iyy
Ixx

= Lθc2 (8.27)

B10,2 = B10,1 = Qθc2 (8.28)

B9,2 = B9,1 −Qθc2
Ishaft
Izz

= Nθc2 (8.29)

B6,3 = B6,1 = Zθc3 (8.30)

B8,3 = −B8,1 = Mθc3 (8.31)
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8. The Quad�Tilt�Rotor Aircraft

B10,3 = B10,1 = Qθc3 (8.32)

B9,3 = −B9,1 −Qθc3
Ishaft
Izz

= Nθc3 (8.33)

B6,4 = B6,1 = Zθc4 (8.34)

B8,4 = B8,1
Iyy
Ixx

= Lθc4 (8.35)

B10,4 = B10,1 = Qθc4 (8.36)

B9,4 = −B9,1 −Qθc4
Ishaft
Izz

= Nθc4 (8.37)

Rotors Tilting Derivatives

The symbols ξ1, ξ2, ξ3 and ξ4 indicate the four angles of rotors tilting.

They are other four control inputs of the system. Considering only small

values of the rotors tilting, the variation in vertical thrust, in the hovering

�ight condition, can be neglected. The tilting angles do not enter directly

in the de�nition of the aerodynamic coe�cients rotors. Then, the following

hypothesis is applied: the coe�cients are not function of the rotor tilting

itself around the trim condition. The forces generated in the {(xB,yB)}
plane are proportional to the rotor inclination with respect to the vertical

direction. Every horizontal force due to rotor tilting generates also two

moments.

B5,5 =
g

Nrot
= Yξ1 (8.38)

B7,5 = Yξ1
m(−h)

Ixx
= Lξ1 (8.39)
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8.3 Description of Dynamics of Motion

B9,5 = Yξ1
m b

Izz
= Nξ1 (8.40)

B4,6 = − g

Nrot
= Xξ2 (8.41)

B8,6 = Xξ2

m h

Iyy
= Mξ2 (8.42)

B9,6 = −Xξ2

m b

Izz
= Nξ2 (8.43)

B5,7 =
g

Nrot
= Yξ3 (8.44)

B7,7 = Yξ3
m(−h)

Ixx
= Lξ3 (8.45)

B9,7 = −Yξ3
m b

Izz
= Nξ3 (8.46)

B4,8 = − g

Nrot
= Xξ4 (8.47)

B8,8 = Xξ4

m h

Iyy
= Mξ4 (8.48)

B9,8 = Xξ4

m b

Izz
= Nξ4 (8.49)

Engine Speed Derivatives

The input of the engine is the throttle valve de�ection. The throttle valve

de�ection δt is the last input of the entire system. Commanding the engine

driving torque, two e�ects derive: one is the acceleration of the engine itself

and the other is the yaw rate variation caused by the inertial torque due

to the engine acceleration itself. The derivatives to be evaluated are two.
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B9,9 =
(Pmaxeng,δt

− Pmineng,δt
)

Ω0
/Ishaft = Qδt (8.50)

B8,9 = −Qδt
Ishaft
Izz

= Nδt (8.51)

The B Matrix

The control matrix can now be written.

B =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 Xξ2 0 Xξ4 0

0 0 0 0 Yξ1 0 Yξ3 0 0

Zθc1 Zθc2 Zθc3 Zθc4 0 0 0 0 0

0 Lθc2 0 Lθc4 Lξ1 0 Lξ3 0 0

Mθc1
0 Mθc3

0 0 Mξ2
0 Mξ3

0

Nθc1 Nθc2 Nθc3 Nθc4 Nξ1 Nξ2 Nξ3 Nξ4 Nδt
Qθc1 Qθc2 Qθc3 Qθc4 0 0 0 0 Qδt


(8.52)

8.3.4 Numerical Results

Inserting the data of table (8.4), we can compute the value of any element

of the matrix A. This result can be compared with the stability matrix

obtained after a numerical di�erentiation executed with MATLABr.

The numerical calculation brings almost the same result.

Aanalytic =
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 −9.81 0 0 0 0 0 0 0 0

9.81 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.9478 0 0 0 −0.0491
0 0 0 0 0 0 −19.9219 0 0 0
0 0 0 0 0 0 0 −19.9219 0 0
0 0 0 0 0 0.1550 −0.0527 0.0527 0 0.0409
0 0 0 0 0 −1.4609 0 0 0 −0.3858


(8.53)

Anumeric =
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 −9.81 0 0 0 0 0 0 0 0

9.81 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.9478 0 0 0 −0.0490
0 0 0 0 0 0 −19.9219 0 0 0
0 0 0 0 0 0 0 −19.9219 0 0
0 0 0 0 0 0.1550 −0.0527 0.0527 0 0.0409
0 0 0 0 0 −1.4609 0 0 0 −0.3858


(8.54)
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8.4 Inverse Simulation

Also for the B matrix, the results of the numeric and analytic di�erentia-

tion can be compared.

Banalytic =

103 ·


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.0025 0 −0.0025 0
0 0 0 0 0.0025 0 0.0025 0 0

−0.0316 −0.0316 −0.0316 −0.0316 0 0 0 0 0
0 −1.9531 0 1.9531 0.0669 0 0.0669 0 0

1.9531 0 −1.9531 0 0 0.0669 0 0.0669 0
0 0 0.0437 0.0437 0.0681 0.0681 −0.0681 −0.0681 −0.0375

−0.2059 −0.2059 −0.2059 −0.2059 0 0 0 0 0.3535


(8.55)

Bnumeric =

103 ·


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.0025 0 −0.0025 0
0 0 0 0 0.0025 0 0.0025 0 0

−0.0316 −0.0316 −0.0316 −0.0316 0 0 0 0 0
0 −1.9531 0 1.9531 0.0669 −0.0030 0.0669 0.0030 0

1.9531 0 −1.9531 0 0.0030 0.0669 −0.0030 0.0669 0
0 0 0.0437 0.0437 0.0681 0.0681 −0.0681 −0.0681 −0.0375

−0.2059 −0.2059 −0.2059 −0.2059 0 0 0 0 0.3535


(8.56)

There is only a small di�erence in the e�ects of tilting on the p and q

angular rates dynamics. However, with proper simulations, it can be ver-

i�ed that the numeric responses are indistinguishable. Thus the analytic

de�nition of B is considered valid.

8.4 Inverse Simulation

Inverse Simulation is a well known and abundantly used technique in the

study of �ight dynamics. Many articles by now show various applications

of this technique to the assessing of handling qualities, control design,

model validation, etc. [27].

What Inverse Simulation precisely does, it is to compute the control actions

for a system to exhibit a prescribed behavior. For a �ying machine this

is equal to calculate the control actions a pilot must exert to make the

aircraft follow a precise trajectory. In this work Inverse Simulation is

125



8. The Quad�Tilt�Rotor Aircraft

applied to the Quad�Tilt�Rotor non�linear model to verify if this aircraft

can perform maneuvers not feasible for a classical quad�rotor.

Inverse Simulation Algorithm

The theoretical treatment of Inverse Simulation is exhaustively described

in [9].

An application of Inverse Simulation similar is documented in a parallel

work [19]. The algorithm there outlined is the same utilized here. Brie�y

the Inverse Simulation algorithm and some hints about its implementation

in MATLABr are now described.

In general, there are two types of Inverse Simulation algorithms. One is

the Integration Method. The other is the Di�erentiation Method. The

algorithm used here belongs to the �rst type. The Inverse Simulation

problem starts from the declaration of the state vector equation.

Ẋ = f (X,U) (8.57)

To this equation it is associated the output equation.

y(t) = g(X(t)) (8.58)

y(t) is the analytic de�nition of the trajectory that the aircraft must follow.

It is a function g of some element of the state vector X(t).

The mission time ∆T is divided in small intervals equal to ∆t. The �rst

step now is to �nd a constant input vector U∗ that satis�es the following

condition.

y∗(∆t) = g(X(∆t)) (8.59)

This input vector U∗ allows the evolution of the state vector during the

interval ∆t to reach the desired output of the previous equation, from the

initial condition X(0).
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8.4 Inverse Simulation

The equation (8.59) can be solved only with a numerical method. In

MATLABr this is done through a sequential quadratic programming

(SQP) algorithm.

The components of U for the Inverse Simulation problem di�er from those

utilized till now in the modeling, as in equation (8.21). In place of the

blades pitches θcj , with j = 1, ..., Nrot, the parameters Σj are inserted. Σj

is a non�dimensional parameter that identi�es the thrust of the j-th rotor

through the following expression.

Tj = Σj
mg

Nrot
(8.60)

The SQP algorithm computes through the Σj parameters the thrusts of all

the rotors. Then, from all the thrusts, the pitch of all the rotors θcj can be

computed. Expression (8.60) allows to have an initial value of parameters

Σj . In hovering �ight, Σj = 1.

Once the input vector U∗ is de�ned, the integration of the state equation

is e�ected on a time interval equal or inferior to ∆t, again with a Runge�

Kutta method of numerical integration.

X(∆t) = X(0) +

∫ ∆t

0
f (X,U)dt (8.61)

This last value of the state vectorX(∆t) is chosen as the new starting point

for the successive step of Inverse Simulation along another time interval

∆t. All the process is repeated till the end of the prede�ned maneuver.

Very shortly, this is how Inverse Simulation works.

The implementation in MATLABr allows some useful expedient in the

algorithm.

The usage of the SQP algorithm permits to �x some constraint on the

state element or on someone of the inputs that do not appear in the output

vector y(t).
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For example, in the next simulations, it is imposed that the engine rate Ω

can not depart from its trim value Ω0.

Another important aspect of the entire process is the de�nition of the

output function y(t), that is to say the �ight path of the aircraft. This

function must satisfy some conditions in terms of continuity [9, 27] in the

time domain. To this purpose, often the output functions were de�ned

by means of polynomial functions of time t. This is done also in [19].

Instead in this work all the output functions are de�ned with trigonometric

functions, as explained in the following.

Five maneuvers are here considered for the Inverse Simulation problem.

All these missions can not be performed by a traditional electric driven

multi�rotor. Because all these maneuvers develop in few seconds, it is

neglected the mass variation of the aircraft due to fuel consumption.

The initial condition of all the maneuvers is that of hovering �ight with

null attitude (Φ0,Θ0,Ψ0 = 0o). The time of the mission is indicated with

∆T .

8.4.1 U�Turn Maneuver

After the hovering initial condition, the aircraft accelerates along the xB

axis until it reaches a velocity equal to Vmax, always with null attitude.

Then, maintaining the same total velocity and the angle Φ equal to zero,

turns to its right. The turn ends when an heading angle Ψ of 180o is

achieved and the aircraft continues its reversed forward �ight.

The output function for this maneuver is de�ned in terms of the three

components of inertial velocity ṖE .

ṖE = [N E D]T = [Vx Vy Vz]
T (8.62)

For this simulation ∆T is put equal to 20 s.

It is introduced now the non�dimensional time t̃.
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t̃ = 2
t− 1

∆T − 2
(8.63)

At time t1 = 1 s, the acceleration begins and then it ends at t2 = ∆T/4.

The relative non�dimensional times t̃1 and t̃2 can be easily computed. In

this non�dimensional time interval, the following auxiliary variable can be

de�ned.

ε1 =

[
1− cos2

(
(t̃− t̃1)

(t̃2 − t̃1)

π

2

)]
π (8.64)

In the same time interval Vx and Vy can be de�ned.


Vx =

[
1−

√
1

1 + tan2(ε1)

]
Vmax

2
, ε1 <= π

2

Vx =

[
1 +

√
1

1 + tan2(ε1)

]
Vmax

2
, ε1 >

π
2

(8.65)

Vy = 0 m s−1 (8.66)

The second phase of the maneuver starts from t = ∆T/4 and ends in

t = ∆T . This phase is characterized by the increase of the heading angle

Ψ from 0o to 180o. For this phase another auxiliary ε2 variable can be

computed between t̃3 and t̃2.

t̃3 = 2
∆T − 1

∆T − 2
(8.67)

The trend of the heading angle is de�ned in the following manner.


Ψ =

[
1−

√
1

1 + tan2(ε2)

]
π

2
, ε2 <=

π

2

Ψ =

[
1 +

√
1

1 + tan2(ε2)

]
π

2
, ε2 >

π

2

(8.68)
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Remembering that the angles Φ and Θ are always null, the velocities Vx

and Vy can be easily obtained.


Vx = Vmax cos(Ψ)

Vy = Vmax sin(Ψ)

(8.69)

For the whole maneuver it is imposed that Vz = 0 m s−1. The SQP algo-

rithm implementation permits moreover to �x a constraint on the angles

Φ and Θ, so that they could remain near the null value.

U�Turn Simulation Results The results of the Inverse Simulation are

shown in appendix. Vmax is put equal to 0.5 m s−1. In the graphs of

�gure (C.1) the Vx and Vy velocities and angle Ψ are plotted as given by

the previous formulae. In �gure (C.2) the same quantities as tracked by the

Quad�Tilt�Rotor are depicted. All the trends adhere perfectly. Finally in

�gures (C.3) and (C.4) the pitch of propellers and the tilting of the rotors

are shown.

8.4.2 Straight Flight with 360o Yaw�Turn

The desired output of this maneuver is de�ned in terms of inertial velocities

Vx, Vy, Vz and of the heading angle Ψ. The other attitude angles are put

equal to zero.

Vy, Vz are always equal to zero, too.

The velocity Vx, in a �rst phase, is brought to its maximum value Vmax

and in a second phase returns to the initial zero value. The �rst phase

starts for at time t1 = 1 s and ends at time t2 = ∆T/2.

Utilizing again the non�dimensional time t̃ and the auxiliary variables ε

and χ, the inertial velocity Vx can be de�ned.
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χ1 =

[
1−

√
1

1 + tan2(ε1)

]
π

2
, ε1 <=

π

2

χ1 =

[
1 +

√
1

1 + tan2(ε1)

]
π

2
, ε1 >

π

2

Vx = Vmax cos
(χ1

2
− π

2

)
(8.70)

In a second phase of the maneuver, between t2 = ∆T/2 and t3 = ∆T − 1,

the velocity Vx is decreased to zero in a specular fashion.



χ2 =

[
1−

√
1

1 + tan2(ε2)

]
π

2
, ε2 <=

π

2

χ2 =

[
1 +

√
1

1 + tan2(ε2)

]
π

2
, ε2 >

π

2

Vx = Vmax

[
1− cos

(χ2

2
− π

2

)]
(8.71)

The function that describes the desired trend of Ψ is obtained in a similar

way. This angle passes from 0o to 360o in a time interval between t1 =

∆T/3 and t2 = 3∆T/2.


Ψ =

[
1−

√
1

1 + tan2(ε1)

]
π, ε1 <=

π

2

Ψ = −
[
1−

√
1

1 + tan2(ε1)

]
π, ε1 >

π

2

(8.72)

Straight Flight with 360o Yaw�Turn Simulation Results In ap-

pendix (D) the results of simulation are shown.

In this case, Vmax = 0.5 m s−1 and ∆T = 15 s.

The maneuver is perfectly e�ected.
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8.4.3 360o Yaw�Turn

This maneuver is identical to the preceding, with Vx equal to zero during

the whole time interval ∆T . This maneuver has been simulated to the

purpose of comparing its result with a similar maneuver obtained through

direct simulation, as shown in [8]. There the yaw�turn has been accom-

plished only approximately, without a perfect control on velocities and the

attitude angles. With Inverse Simulation, instead, it is possible to assess

what is the proper control action to impart to the aircraft. The results are

shown in appendix (E) and are also in this case satisfactory.

8.4.4 Straight Flight with Rolling Tilt

In this maneuver the aircraft reaches a condition of forward �ight. Then

it e�ects a rotation around the roll axis xB till a value of Φ equal to 90o,

prosecuting the forward �ight.

The acceleration is accomplished in a time interval between t1 = 1 s and

t2 = ∆T/2.


Vx =

[
1−

√
1

1 + tan2(ε1)

]
Vmax

2
, ε1 <=

π

2

Vx =

[
1 +

√
1

1 + tan2(ε1)

]
Vmax

2
, ε1 >

π

2

(8.73)

For t between t2 and t3 = ∆T the rolling motion occurs.



χ =

[
1−

√
1

1 + tan2(ε2)

]
π

2
, ε2 <=

π

2

χ =

[
1 +

√
1

1 + tan2(ε2)

]
π

2
, ε2 >

π

2

Φ = Φmax cos(χ)

(8.74)
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Straight Flight with 90o Rolling Tilt Simulation Results For this

maneuver ∆T is put equal to 10 s and Vmax = 1 m s−1. Φmax is equal

90o. In appendix (F) the relative diagrams are presented. This maneuver,

too, is exactly performed.

Hovering with Not Null Attitude

The de�nition of the output function y for this maneuver derives from that

of the previous one, with Vx equal to zero during the whole time interval

∆T . This simulation responds to the question whether the Quad�Tilt�

Rotor could hover with an attitude di�erent from one with null Φ and

Θ.

The variation of attitude begins at time t1 = 1 s and ends at t2 = ∆T .


Φ =

[
1−

√
1

1 + tan2(ε)

]
Φmax

2
, ε <=

π

2

Φ =

[
1 +

√
1

1 + tan2(ε)

]
Φmax

2
, ε >

π

2

(8.75)

In appendix (G) the graphical results are inserted. Here Φmax is put equal

to 30o and ∆T = 10 s. The hovering �ight condition with a not null

attitude can be reached.

Final Considerations on Inverse Simulation

The Inverse Simulation has proven to be an excellent instrument to the

analysis of �ight dynamics of multi�rotor platforms. In this section, with

this technique, the enhanced performance capabilities of the Quad�Tilt�

Rotor have been assessed, with respect to classical quad�rotor normal

operations.

This section does not address a theoretical discussion about mathematical

or numerical concerns of Inverse Simulation. For similar questions the

references cited in the previous pages can be consulted.
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8.5 Complete State Controllability Analysis

For a dynamic system one important property, that is related to the design

of the control systems in the state space, is the complete state controllabil-

ity of the system itself. For the de�nition of complete state controllability

of a system several texts are available in literature [16, 18]. If the property

is veri�ed, then the system, with an apt control action, can be brought

from any initial condition in the state space to any other point in the state

space in a �nite time.

In the case of a LTI system, as one described by equations (5.1), a math-

ematical de�nition can be derived for the complete controllability. It can

be stated that the so called controllability matrix P must have rank equal

to the dimension of the state vector. The matrix P is de�ned in the next

expression.

P = [B | AB | · · · | An−1B] (8.76)

The condition for the complete controllability is, in formula, ρ(P) = n,

where n is the number of component of the vector x.

Because for the system under study the A and B matrices have been

de�ned, the complete state controllability can be checked. Computing the

matrix and its rank with MATLABr, the result is that ρ(P) = 10 =

dim(x). This means that the aircraft is completely controllable in terms

of attitude, velocity, angular rate and engine speed, by the chosen 9 control

inputs.

Now, being the Quad�Til�Rotor not more an under�actuated system as

a classical quad-rotor, it is interesting to investigate the residual control-

lability of the aircraft in case of an actuator failure. As a failure it is

considered the inaccessibility to one command, so that the related control

input is maintained equal to that in the trim condition. In a word, to

the system linearized mathematical description, a component of the con-

trol vector u and, consequently, a column of the B matrix are eliminated.
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With the new matrix B the matrix P can be newly computed and its rank.

8.5.1 Results

In table (8.3) the results of the Controllability analysis previously described

are listed for various cases of virtual block of one or more actuators.

Blocked Inputs ρ(P)

ξ4 10

θc4 10

ξ4, θc4 10

θc3, θc4 10

θc2, θc3, θc4 9

ξ3, ξ4 10

ξ2, ξ3, ξ4 10

ξ1, ξ2, ξ3, ξ4 9

Table 8.3: Residual Controllability Test

The case with all tilting actuators blocked is interesting, because the sys-

tem results not completely controllable. This is due probably for the pres-

ence of the engine speed in the state vector, though this quantity may not

have signi�cance from the point of view of the control and guidance of the

aircraft.

8.6 Data for Simulations

In table (8.4) the data utilized for the simulations are shown.

8.7 Remarks

An innovative con�guration of quad�rotor, the Quad�Tilt�Rotor aircraft,

has been presented in this chapter.
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Type Value Units Type Value Units

R 0.25 m θtw 0 rad

Irotor 10−4 kg m2 Clα 5.5 rad−1

Cd 0.003 τ 1

m 4 kg Ixx 0.044 kg m2

Iyy 0.044 kg m2 Izz 0.098 kg m2

Igear 0.01 kg m2 Ax 0.5 m2

Ay 0.5 m2 Az 0.8 m2

ρ 1.2235 kg m−3 Ω0 400 rad s−1

Pmineng,δt
0 kW Pmaxeng,δt

1.47 kW

b 0.68 m h -0.3 m

N 2 Nrot 4

g 9.81 m s−2 ∆t 0.01 s

Table 8.4: Quad�Tilt�Rotor Simulations Data

Of this aircraft an accurate mathematical modeling of dynamics has been

de�ned.

This model, by means of Inverse Simulation technique, has been exploited

to simulate some maneuvers that clearly highlighted the increased maneu-

vering capabilities of this aircraft with respect to a traditional quad�rotor.

Also a linearized model of dynamics has been obtained by an analytic

di�erentiation of the equations of motion.

Through the linearized model an analysis of controllability of the machine

in case of actuator failure is accomplished, that showed in what damage

situations the aircraft is still controllable.

All the development of this chapter represents a paradigmatic example of

how a mathematical model of dynamics is a really e�ective tool for the

study of complex systems like multi�rotor platforms.
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Appendix A

Aeromechanical Stability

Analysis Results
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A. Aeromechanical Stability Analysis Results

0 2 4 6 8 10 12 14 16 18 20
−12.5

−12

−11.5

−11

−10.5

−10

−9.5

−9

−8.5

−8

ξ̄ [deg]

L
p
(Γ̄
,ξ̄
)
[1
/
s]

Γ̄ = −10 deg

Γ̄ = −5 deg

Γ̄ = 0 deg

Γ̄ = 5 deg

Γ̄ = 10 deg

Figure A.2: Lp Derivative

0 2 4 6 8 10 12 14 16 18 20
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

ξ̄ [deg]

N
r
(Γ̄

, ξ̄
)
[1
/
s]

Figure A.3: Nr Derivative

142



0 2 4 6 8 10 12 14 16 18 20
−0.53

−0.52

−0.51

−0.5

−0.49

−0.48

−0.47

−0.46

−0.45

−0.44

ξ̄ [deg]

Z
w
(Γ̄
,ξ̄
)
[1
/
s]

Γ̄ = ± 10 deg

Γ̄ = 0 deg

Γ̄ = ± 5 deg

Figure A.4: Zw Derivative

0 1 2 3 4 5 6 7 8 9 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

a
n
g
u
la
r
ra
te
s
[r
a
d
/
s]

 

 

p

q

r

x0 = [0, 0, 0, 0.5, −0.7, 0.1, 0, 0, 0]T

Figure A.5: Vehicle Angular Rates (C3 con�guration)

143



A. Aeromechanical Stability Analysis Results

0 50 100 150 200 250 300 350 400 450 500

−0.02

−0.01

0

0.01

0.02

0.03

time [s]

li
n
ea
r
ve
lo
ci
ti
es

[m
/
s]

 

 

u

v

w

x0 = [0.03, −0.02, 0.01, 0, 0, 0, 0, 0, 0]T

Figure A.6: Vehicle Translational Velocities (C3 con�guration)

144



Appendix B

Control Systems Simulation
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B. Control Systems Simulation
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Appendix C

U�Turn Maneuver
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Figure C.1: U�Turn Maneuver: Desired Trajectory

149
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Figure C.2: U�Turn Maneuver: Tracked Trajectory
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Appendix D

Straight Flight with 360o

Yaw�Turn
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Figure D.1: Straight Flight with 360o Yaw�Turn: Desired Trajectory
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D. Straight Flight with 360o Yaw�Turn
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Figure D.2: Straight Flight with 360o Yaw�Turn: Tracked Trajectory
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tle
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Appendix E

360o Yaw�Turn

0 5 10 15
−0.1

−0.05

0

0.05

0.1

time [s]

V
x [m

 s
−

1 ]

0 5 10 15
−0.1

−0.05

0

0.05

0.1

time [s]

V
y [m

 s
−

1 ]

0 5 10 15

−100

0

100

time [s]

ψ
 [°

]

Figure E.1: 360o Yaw�Turn: Desired Trajectory
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Figure E.2: 360o Yaw�Turn: Tracked Trajectory
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Figure E.3: 360o Yaw�Turn: Rotors Pitch and Throttle
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Appendix F

Straight Flight with Rolling

Tilt
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Figure F.1: Straight Flight with Rolling Tilt: Desired Trajectory
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F. Straight Flight with Rolling Tilt
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Figure F.2: Straight Flight with Rolling Tilt: Tracked Trajectory
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Figure F.3: Straight Flight with Rolling Tilt: Rotors Pitch and Throttle
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Figure F.4: Straight Flight with Rolling Tilt: Rotors Tilting
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Appendix G

Hovering with Not Null

Attitude
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Figure G.1: Hovering with Not Null Attitude: Desired Trajectory
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Figure G.2: Hovering with Not Null Attitude: Tracked Trajectory
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Figure G.3: Hovering with Not Null Attitude: Rotors Pitch and Throttle

166



0 1 2 3 4 5 6 7 8 9 10
−100

0

100

ξ 1 [°
]

time [s]

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

ξ 2 [°
]

time [s]

0 1 2 3 4 5 6 7 8 9 10
−100

0

100

ξ 3 [°
]

time [s]

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

ξ 4 [°
]

time [s]

Figure G.4: Hovering with Not Null Attitude: Rotors Tilting
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