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". . .mais de toutes les sciences la plus absurde, à mon avis, et celle qui est la plus capable

d’étouffer toute espèce de génie, c’est la géométrie. Cette science ridicule a pour objet des

surfaces, des lignes, et des points, qui n’existent pas dans la nature. On fait passer en esprit

cent mille lignes courbes entre un cercle et une ligne droite qui le touche, quoique dans la réalité

on n’y puisse pas passer un fétu. La géométrie, en vérité, n’est qu’une mauvaise plaisanterie."

Voltaire
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NLGA based Active Control in Aerospace: fault tolerability, disturbance rejection,

and parameter estimation

by Nicola Mimmo

A new control scheme has been presented in this thesis. Based on the NonLinear Geometric

Approach, the proposed Active Control System represents a new way to see the reconfigurable

controllers for aerospace applications. The presence of the Diagnosis module (providing the

estimation of generic signals which, based on the case, can be faults, disturbances or system

parameters), mean feature of the depicted Active Control System, is a characteristic shared by

three well known control systems: the Active Fault Tolerant Controls, the Indirect Adaptive

Controls and the Active Disturbance Rejection Controls. The standard NonLinear Geometric

Approach (NLGA) has been accurately investigated and than improved to extend its applicability

to more complex models. The standard NLGA procedure has been modified to take account

of feasible and estimable sets of unknown signals. Furthermore the application of the Singular

Perturbations approximation has led to the solution of Detection and Isolation problems in

scenarios too complex to be solved by the standard NLGA. Also the estimation process has

been improved, where multiple redundant measuremtent are available, by the introduction of

a new algorithm, here called “Least Squares - Sliding Mode”. It guarantees optimality, in the

sense of the least squares, and finite estimation time, in the sense of the sliding mode. The

Active Control System concept has been formalized in two controller: a nonlinear backstepping

controller and a nonlinear composite controller. Particularly interesting is the integration, in

the controller design, of the estimations coming from the Diagnosis module. Stability proofs are

provided for both the control schemes. Finally, different applications in aerospace have been

provided to show the applicability and the effectiveness of the proposed NLGA-based Active

Control System.
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Chapter 1

Introduction and Motivations

The unknown and unmeasurable variations of the process parameters or exogenous

unknown signals can degrade the performances of the control systems. Feedback

is basically used in conventional control systems to reject the effect of disturbances

or model uncertainties upon the controlled variables and to bring them back to

their desired values according to the requirements. To achieve this, the controlled variables are

measured, then the measurements are compared with the desired values and the difference is fed

into the controller which generates the appropriate control. Modern technological systems rely

on sophisticated robust controls to meet increased performance requirements. For such systems,

the required robustness can be achieved via advanced control systems, which can be broadly

classified into active and passive.

A Passive Control System can tolerate a predefined set of exogenous unknown signals (such as

disturbances, faults, . . . ) or model mismatching (parameters uncertainties) while accomplishing

its mission satisfactory without the need for control reconfiguration.

An Active Control System, on the other hand, relies on a Diagnosis process to estimate

uncertain model parameters or exogenous unknown functions affecting the system’s performance.

Accordingly, the control law is reconfigured on-line.

In the presence of variations of the dynamic characteristics of a plant to be controlled, passive

robust control design of the conventional feedback control system is a powerful tool for achieving

a satisfactory level of performance for a family of plant models. This family is often defined by

means of a nominal model and a size of the uncertainties. The range of uncertainty domain for

which satisfactory performances can be achieved depends upon the problem. Sometimes, a large

domain of uncertainty can be tolerated, while in other cases, the uncertainty tolerance range

may be very small. If the desired performances cannot be achieved for the full range of possible

parameter variations, active control has to be considered in addition to a passive robust control

1
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design. Furthermore, the tuning of a passive robust design for the true nominal model using an

active control technique will improve the achieved performance of the passive robust controller

design. Therefore, robust control design will benefit from the use of active control in terms of

performance improvements and extension of the range of operation.

This work groups under the same root several Active Control techniques whose main three

representatives are:

Active Fault Tolerant Controls. An Active Fault Tolerant Control System (AFTCS) repre-

sents a strategy for increasing plant reliability and availability and for reducing the risk

of safety hazard [1]. An AFTCS is designed to continue operations, with graceful degra-

dation in performance, by accommodating faults in early stage of their development, such

that minor fault in a subsystem do not develop in a failure at system level [2]. A fault

is defined as an unpermitted deviation of at least one characteristic property

or parameter of the system from the acceptable behavior. Faults may take

place in any system component (actuators, sensors, plant components, or any

combination) [3]. The fault is a state that may lead to a malfunction or a failure in the

system. The main task of AFTCS is on-line reconfiguration of the controller. For this to

be possible, detailed information about fault-induced changes is required. In this context,

a fault Detection and Diagnosis module plays a crucial role in AFTCS: it monitors system

performance, detect the occurrence of faults, and to determine their magnitude, indeed.

Indirect Adaptive Controls. An Adaptive Controller changes itself so that its behavior will

conform to new or changed circumstances. The words “adaptive systems” and “adaptive

control” have been used as early as 1950 [4]. The design of autopilots for high-performance

aircraft was one of the primary motivations for active research on adaptive control in the

early 1950s. Aircraft operate over a wide range of speeds and altitudes, and their dynamics

are nonlinear and conceptually time varying. As aircraft go through different flight condi-

tions, the operating point changes and the output response y(t) carries information about

the state x as well as the parameters. In principle, a sophisticated feedback controller

should be able to learn about parameter changes by processing y(t) and use the appro-

priate gains to accommodate them. This argument led to a feedback control structure on

which adaptive control is based, see [5]. An Adaptive Controller is formed by combining

an on-line parameter estimator (Diagnosis module), which provides estimates of unknown

parameters at each instant, with a control law that is motivated from the known parame-

ter case. In Indirect Adaptive Control, the plant parameters are estimated on-line by the

Diagnosis module and used to calculate the controller parameters. This approach has also

been referred to as explicit adaptive control, because the design is based on an explicit

plant model. The basic idea is that a suitable controller can be designed on-line if a model

of the plant is estimated on-line, by an appropriate Diagnosis module, from the available
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input-output measurements. The scheme is termed indirect because the adaptation of the

controller parameters is done in two stages: on-line estimation of the plant parameters

and on-line computation of the controller parameters based on the current estimated plant

model.

Active Disturbance Rejection Controls. Active Disturbance Rejection Control (ADRC) is

Han’s way out of the robust control paradox [6]. The term was first used in [7] where his

unique ideas were first systematically introduced into the English literature. The central

idea of Active Disturbance Rejection is recalled in [8]: the control of a complex nonlinear,

time-varying, and uncertain process is reduced to a simple problem by a direct and active

estimation, by a Diagnosis module, and rejection (cancellation) of the generalized distur-

bance, interpreted as the vector field representing all the model uncertainties affecting the

system dynamics. Anyway, information about physical disturbance acting on the systems

can be very useful for performance evaluation, so, in this thesis, the model uncertainties

to be estimated, by the Diagnosis module, and rejected are represented by exogenous un-

known signals, such as non-manipulable inputs, rather than their effects on the system

dynamics.

The above mentioned active control techniques share a common feature: the presence the Di-

agnosis module. Literature presents plenty of techniques for the Diagnosis process and, in

general, these approaches can be categorized into signal-based and model based technique [9].

Signal-based methods detect the occurrence of undesired signals by testing specific properties

of measurements. In a model-based method, the Diagnosis module is, in the most general ab-

straction, composed by two parts: the Detection and Isolation block and the Estimation unit.

In turn, the Detection and Isolation module can be formally divided in two subsystems: the

Detection system, which provides a set of residuals indicating the occurrence of a certain signal,

and an Isolation logic, that elaborates these residuals to indicate the location of this signal into

the system. Usually, the analog detection residuals are converted to digital by comparing the

residual with a possibly adaptive threshold [10], [11], [12], [13]. Depending on the case, the

Detection module can be indispensable, when information about the occurrence of a signal is

needed despite the presence of other unknowns, or not necessarily present, when information

about the occurrence of a signal is not required. The existence of a Detection system implies

the presence of a set of residuals and consequently, of an Isolation logic, that can be, depending

on the structure of the residuals, as complicated as required or so obvious to be neglected. As

example, let’s image the possibility to have a set of “dedicated” residuals (each residual in this

set is dedicated to only and only one signal among the set of unknown signals to be estimated, in

a one-to-one correspondence). In this case the isolation logic can be represented by an “identity”

matrix, so, it exists but is straightforward. Usually the Estimation unit is switched on, after the

occurrence of the signal has been detected and the location of the signal has been determined,
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by an activation signal coming from the Detection and Isolation module. In the special case

of dedicated residuals set the estimation can always be kept active if there is the need of a

continuous estimation.

Two major approaches have been used in model-based detection residual generation: qualitative

(heuristic) methods and quantitative (analytic) methods [11], [14]. To design an Active Control,

precise knowledge about the plant dynamics need to be known after the occurrence of a undesired

signals corrupting the nominal system behavior. Hence, more emphasis has been placed upon

quantitative model-based diagnosis approaches.

Three main classes of analytical model-based residual generators exist: observer-based ap-

proaches, parity relations approaches and parameter estimation (or system identification) ap-

proaches. The principle of observer-based approaches is to estimate the system variables with

an observer (Luenberger, Kalman, . . . ) and to use the estimation errors/innovations as residuals

[12], [15], [16], [17], [18], [19]. In the parity relations approaches, the residuals are computed as

difference between the measured outputs and the estimated outputs and their associated deriva-

tives. The method reshapes the primary residual signals using a transformation matrix to make

the residual insensitive to unknown disturbances and to increase signal estimation performances.

The parity relations approach has been developed in time domain [20] and in frequency domain

[21]. The parameter estimation methods, for Detection and Isolation, are particularly suitable

for systems where the undesired signals correspond to an undesired behavior of physical coeffi-

cients of the process. By continuously estimating the parameters of a process model, residuals

are computed as the parameter estimation errors. To successfully isolate the undesired signal,

the mapping from the model coefficients to the process parameters must exist and be known.

Different algorithms for parameter estimation have been proposed: least square estimation, in-

strumental variable approach, output error methods [22], sliding mode estimation [23], neural

network estimation [24], and extended Kalman filters [25].

Furthermore, several interesting approaches have been utilized to design and implement Detec-

tion and Isolation algorithms such as the Geometric Approach for both linear and non linear

cases.

Starting from the theoretical seminal works [26] and [27], the Linear Geometric Approach has

been investigated in [28] and [29], whereas several interesting applications can be found in [30] for

periodic systems and in [31] and [32] for systems whose dynamics has a Markovian description.

Linear systems with time delays have been investigate in [33], [34] and [35], and further particular

applications can be found about Fornasini-Marchesini 2D Systems [36], discrete time systems

[37] and systems with time varying perturbations [38].

On the road toward nonlinear systems, [39] presented remarkable aspects on bilinear systems.
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The NonLinear Geometric Approach came as natural development of its linear counterpart. The

first theoretical works is [40], further developed in [41] and [42], and investigated in [43] and [44].

Interesting applications of the NLGA can be found in [45] for hybrid systems, in [46] and [47] for

parabolic and hyperbolic partial differential equations, in [48] for robotic applications, in [49] for

industrial applications. A tutorial on the NLGA has been provided in [50]. Finally, lots of NLGA

aerospace applications for fault detection and isolation have been published: [51] on a Vertical

Take Off and Landing aircraft, [52] on a network of UAV, [53], [54], [55], [56], [57], [58] and [59]

on aircraft and [60], [61] and [62] for satellites. The NLGA applicability, typically committed

to detect and isolate faults, has be extended for the isolation and the successive estimation of

external disturbances. Interesting works are [63] and [64] for aircraft applications and [65] in the

case of quadrotors.

In this thesis, the NLGA constitutes the base for the design of Active Controls in aerospace.

Model-based Detection and Isolation techniques makes use of mathematical model of the system.

However, a perfectly accurate mathematical model of a physical system is never available. Hence,

there is always a mismatch between the actual process and its mathematical model. The effects

of modeling uncertainties, disturbances and noise are therefore the most crucial point in the

model-based Detection and Isolation concept and the solution of this problem is the key for its

practical applicability [3]. To overcome this problems, a model-based Detection and Isolation

scheme has to be insensitive to model uncertainties. Sometimes, a simple reduction of the

sensitivity to model uncertainties does not solve the problem: the sensitivity reduction may be

also associated to a reduction of the sensitivity to the signals to be detected and isolated [3],

indeed. In this thesis, in order to accommodate the application of the Detection and Isolation

concepts, disturbances and parameter uncertainties of the monitored plans, as well as faults are

modeled in the form of unknown input signals. The application of the NLGA, provided certain

conditions are satisfied, allows the generation of residuals that are perfectly (analytically) de-

coupled from the sources of uncertainty but not trivially dependent on the unknown signal to

be detected and isolated.
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1.1 Thesis contribution

This work presents an Active Control scheme, for aerospace applications, whose main features

are the Diagnosis module and its design technique, i.e. the NonLinear Geometric Approach.

The main contributions of this thesis are:

• Control systems unification: the Active Fault Tolerant Controls, the Indirect Adaptive

Controls and the Active Disturbance Rejection Controls can be regarded as members of

the same family of controllers, characterized by the presence of a Diagnosis module. This

thesis proposes a more general concept of Active Control that, based on the definition of

the unknown undesired signals acting on the plant, covers all these three methodologies,

see Section 2;

• Standard NLGA applicability improvement: the application of the Singular Per-

turbations approximation allows, with a weaker decoupling property, the solution of the

problem of Detection and Isolation where multiple non concurrent faults are affecting both

the inputs and the outputs, see Section 2.1.1.3;

• Standard NLGA procedure improvement: the standard NLGA proposed by [40] and

improved by [41] can be further extended by modifying the algorithm proposed in [41].

This work suggests two algorithm modifications to take account of feasible and estimable

sets of unknown signals, see Section 2.1.1.4;

• A new estimation algorithm: the Detection and Isolation robustness is important

as well as the estimation accuracy. In the context of multiple redundant measurements,

this works proposes a knew estimation algorithm that represents a fusion between two

well known techniques, i.e. the Least Squares (LS) and the Sliding Modes (SM), that

guarantees optimality, in the sense of the least squares, and finite estimation time, in the

sense of the sliding mode. See Section 2.1.4.3;

• Design, with stability proofs, of two Active Control Systems for aerospace

applications: a complete design of a nonlinear backstepping controller and a nonlinear

composite controller is shown in Section 2.2. For these two controllers a proper Diagno-

sis module is associated and the stability proof for the overall Active Control System is

provided. The controllers structure, based on the elementary brick of the Feedback Lin-

earisation, is particularly suitable to exploit the estimations coming from the Diagnosis

module;

• Aerospace applications: the methodology developed in this this work has been applied

to typical aerospace systems such as aircraft, spacecraft, fixed wind UAVs and quadrotors.

The results in Section 3 are encouraging and show the applicability effectiveness of the



Chapter 1. Introduction and Motivations 7

NLGA-based methodology, able to cover different applications in aerospace. The appli-

cation of the improved NLGA to these aerospace systems has led to the design of new

controllers and new Diagnosis schemes able to solve, for the first time, complex problems

such as the detection and the isolation of multiple faults of all actuators and sensors.
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1.2 Thesis Outline

This work is organized in two main Sections: Section 2 describes all the methodological as-

pects related to the proposed NLGA-based Active Control System, whereas Section 3 shows the

application of the hereafter mentioned methodology to aerospace cases.

In particular, Section 2 is divided to detail, step by step, all the components of the NLGA-based

Active Control System: Section 2.1.1 recalls the standard NLGA and presents some method-

ological advances, Section 2.1.2 depicts how to design robust Detection residual sets, Section

2.1.3 presents the residual matrix concept at the base of the Isolation technique, Section 2.1.4

details three kind of estimation algorithms and, finally, Section 2.2 shows, with stability proofs,

how to integrate, in the controller design, the estimation coming from the Diagnosis module.

Section 3 is dedicated to the application of the NLGA-based Active Control System. After a

brief introduction highlighting the model commonalities of all the proposed aerospace plants (see

Section 3), five different scenarios of faults, disturbances and flight parameters are considered

for aircraft in Section 3.1 whereas Sections from 3.2 to 3.4 cover the remaining plants that are

a fixed wing UAV, a spacecraft and a quadrotor.

Final remarks and conclusions are presented in Section 4.



Chapter 2

NLGA based Active Control Scheme

The Active Control schemes considered in this thesis are composed by two main parts:

the Nominal Controller and the Estimation Module. These two modules work

together to achieve the output tracking, that is the control goal, i.e. to make

y(t) following the reference time function, yREF (t), despite the presence of faults,

uncertainties and disturbances. Generically speaking, the control loop can be affected by three

kind of disturbances:

• unknown functions affecting the input, fu;

• unknown functions affecting the plant dynamics, fsys;

• unknown functions affecting the output, fy.

Figure 2.1 schematically depicts the control problem and the unknown functions scenario: the

plant is forced by the controller actions u, linearly corrupted by the unknown fu, while the

dynamics of the plant is influenced by the unknown functions fsys. The state x is measured by

y, through h (x) which is affected by the unknown functions fy. Finally, the nominal controller

receives the estimation f̂s of some of (at most all of) the unknown functions.

The scheme presented in Figure 2.1 is mathematically described by the following Multi Input –

Multi Output (MIMO) system:{
ẋ = n(x) + g(x) [u (t) + fu (x, t)] + l(x) fsys (x, t)

y = h(x) + fy (x, t)
(2.1)

where x ∈ X ⊂ R`n , y ∈ Y ⊂ R`m , u ∈ U ⊂ R`u , fu ∈ Fu ⊂ U , fy ∈ Fy ⊂ Y, fsys ∈ Fsys ⊂ R`sys

and n(x), the columns of g(x) and l(x) are smooth vector fields, and h(x) is a smooth map.

9
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Figure 2.1: Active Control Scheme

Finally fs ⊆ f = {fu ∪ fsys ∪ fy}, fs ∈ Rνs with νs ≤ `f = `u + `sys + `y, represents the set of

unknown functions estimated by f̂s.

As stated in Section 1, Active Control Systems strictly rely on a Diagnosis process to estimate

uncertain model parameters or exogenous unknown functions affecting the system’s performance.

Then, since the Diagnosis module assumes a great relevance for this kind of control schemes

it’s worth understand its mean features. The estimation module can be characterized by the

presence of a detection logic which activate the estimation process only in the case where the

fault is detected affecting the system. This simple, but important, aspect allows to avoid the

continuous noisy feedback, which is typical of adaptive control schemes. Generally speaking, the

estimations are obtained by means of the following three steps:

1. Detection: this initial stage tips off, and indicates by a binary signal, the presence of the

unknown functions (e.g. is the system affected by a fault or not?);

2. Isolation: the second phase identifies, usually by a boolean logics, the location of unknown

functions (where the unknown function is affecting the system);

3. Estimation: the final step provides the estimation of the detected and isolated unknown

function.

The Active Control scheme presented in this work, can assume the features proper of the adaptive

controls: as detailed in Section 2.1.1.1, the definition of fs, and its isolation properties can avoid

the need of an isolation logic, indeed. In this scenario, the three phases of Detection – Isolation

– Estimation are collapsed into one stage, continuously providing unknown functions estimation.
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Before entering in the detail of the NLGA, it is necessary to introduce the concept of the

generalized disturbance. As mentioned in this Section, this work deals with generic unknown

functions which can be interpreted as:

• fu (x, t) faults affecting the actuators;

• fy (x, t) faults corrupting the sensors;

• fsys (x, t) faults, disturbances and unknown parameters directly influencing the plant dy-

namics.

Furthermore, the following classifications are important to get the generality of the proposed

solution. The first division is based on the cardinality of fs:

• cardinality of fs = 1: fs is a scalar, i.e. fs = f . In this scenario, fs is called “single”

unknown function;

• cardinality of fs > 1: fs is a vector. This scenario covers the so called “multiple” unknown

functions.

The second grouping is made, only for the multiple unknown functions scenarios, on the con-

temporaneity. The multiple unknown functions are said to be:

• non-concurrent if the system is affected by just one component of fs per time;

• concurrent when the system is corrupted by more than one component of fs at the same

time, i.e. simultaneously.

The Active Control scheme proposed in this work is quite general and, based on the definition

of the Detection and Diagnosis module, allows the representation of three different well known

families of control schemes:

• Active Fault Tolerant Controls: these control systems is based on the Detection and

Isolation module to provide a system’s health monitoring function too. In this context,

the control actively reacts by exploiting the fault estimation only after the faults (seen as

external unknown functions) are detected and isolated. A common aerospace fault scenario

is represented by multiple non-concurrent faults (both on actuators and sensors);

• Indirect Adaptive Controls: the indirect adaptive controls are control systems able

to adapt themselves thanks to the estimation of unknown, possibly time varying, plant

parameters. In this control schemes the estimation is always active (it isn’t switched on by
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any activation signal, and the detection-isolation-estimation functions are collapsed and

indivisible). The set of the unknown varying parameters can be seen as scenario of multiple

concurrent unknown functions.

• Active Disturbance Rejection Controls: this class of controls shares some features

with both the Active Fault Tolerant Controls and the Indirect Adaptive Controls. Active

Disturbance Rejection systems are based on the estimation of external disturbances (such

as faults) that are always present on the system (such as plant parameters). Also this

scenario is characterized by the presence of multiple concurrent unknown functions, but,

the presence of a Detection and Isolation module is not ruled out: image, as example,

an aircraft landing in turbulences and wind shear conditions. The goal is to feedback

only the estimation of the wind shear components that overcome a threshold determined

by the turbulences intensity. In this way the nominal controller is not fed by pure noisy

estimations.

Thanks to the active structure, the Nominal Controller reacts to unknown functions affecting

the system by properly exploiting the estimations coming from the Estimation Module. On

the other hand, the Estimation Module should provide correct estimations as necessary, but not

sufficient condition, to allow a good active reaction (the necessary conditions stay in the nominal

controller). In this context, the NonLinear Geometic Approach (NLGA) constitutes a suitable

tools for constructing robust estimations.

The next Section describes the basics of the NLGA and the improvements that can be introduced

in the case of aerospace systems.
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2.1 NLGA based Detection and Diagnosis Module

The Detection and Diagnosis Module, depicted in Figure (2.2), aims to provide the estimation

of the selected part of the unknown functions, i.e. fs, by using all the available information. In

particular, it can exploit the corrupted output y, the uncorrupted control law u and the plant

model. The Detection and Diagnosis module, designed be the NonLinear Geometric Approach,

represents a solution of the following problem.

Problem 1. fs-DD Problem: Take the plant model 2.1 with the associated unknown functions

sets f and fs. Design, if possible, a Detection and Diagnosis module with inputs y and u, and

output f̂s such that f̂s asymptotically estimates the function fs, i.e. limt→∞ f̂s = fs. �

Figure 2.2: NLGA based Detection and Diagnosis Module

Figure 2.2 contains two fluxes of information: the first one (dotted lines) represents the infor-

mation associated to the knowledge of the mathematical model of the plant whereas the second

(continuous lines) indicates the information related to physical signals.

The NonLinear Geometric Approach, based on the knowledge of the plant model (model based

technique), provides new variables representing a subsystem of system (2.1) on which the esti-

mation filters are designed. The estimation module contains a bank of νs estimation filters, each

of them switched-on by its relative activation signal, i.e. ξi, component of the activation vector

ξ. Finally, the activation vector ξ is the output of the Detection and Identification Module, also

based on the NLGA.
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2.1.1 NLGA based Detection and Isolation Technique

The first part of this Section details the standard NonLinear Geometric Approach whereas the

second and third parts respectively show how to extend the applicability of the standard NLGA

to more interesting scenarios and how to exploit the aerospace model common features to solve

real case problems.

2.1.1.1 The standard NLGA based Detection and Isolation Technique

This subsection recalls the standard NLGA, which was formally developed in [40] and generalized

by [41], on which both the detection residuals and the estimators design methodology are based.

The NLGA procedure for the solution of Detection and Isolation problem starts by defining two

quantities:

• the subsets fs = {f1, ..., fνs} ⊆ f ;

• the complementary subset ds = f \ fs

The subset fs contains all the unknown functions that have to be estimated and, based on the

definition of “faults” in Section 1, it can be seen as a set of generalized faults, whereas ds, here

called generalized disturbances, collects all the remaining unknown functions from which the

residual rs has to be analytically decoupled, as described below.

This method relies on coordinate changes in the state and output spaces thus allowing to de-

termine new descriptive variables, allowing to determine a sub-system affected only by fs. In

other words, the method provides one observable subsystem which, if it exists, is only affected

by fs, but unaffected by the other components of f to be decoupled, i.e. ds. For a comprehen-

sive detailed application of the NLGA, referee to [50]. More precisely, the approach consider a

nonlinear system model in the form:{
ẋ = g0(x) +

∑`u
i=1 gi(x)ui + ls(x) fs + ps(x) ds

y = h(x)
(2.2)

in which x ∈ X ⊂ R`n is the state vector, u(t) ∈ R`u is the control input vector, fs(t) ∈ R`s

is the s-th unknown function set to be estimated, ds(t) ∈ R`d=n−`s the generalized disturbance

vector embedding the remaining unknown function sets to be decoupled, y ∈ R`m the output

vector, n(x), gi(x) for 1 ≤ i ≤ `u, ls(x) = {l1, ..., lνs} and the columns of ps(x) are smooth

vector fields, and h(x) is a smooth map. Equation (2.2) implicitly contains the assumption that

y = h(x), i.e. that fy = 0.
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Therefore, if P represents the distribution spanned by the column of ps(x), the design of the

strategy for the isolation of the generalized faults set fs with de–coupling from the generalized

disturbance ds, by means of the considered NLGA [40], is organised as follows:

• computation of ΣP
∗ , i.e. the minimal conditioned invariant distribution containing P

(where P is the distribution spanned by the columns of ps(x));

• computation of Ω∗, i.e. the maximal observability codistribution contained in (ΣP
∗ )⊥;

• if lk(x) /∈ (Ω∗)⊥ ∀ k ∈ {1, ..., νs}, fs–detectability condition, the generalized faults set is

detectable and a suitable change of coordinate can be determined.

The minimal conditioned invariant distribution ΣP
∗ can be computed by means of the following

recursive algorithm: {
S0 = P̄

Sk+1 = S̄k +
∑`u

i=0

[
gi, S̄k ∩ ker {dh}

] (2.3)

where `u is the number of inputs, S̄ represents the involutive closure of S, [g,∆] is the distribution

spanned by all vector fields [g, τ ], with τ ∈ ∆, and [g, τ ] the Lie bracket of g, τ .

It can be shown that if there exists a k ≥ 0 such that Sk+1 = Sk, the algorithm (2.3) stops and

ΣP
∗ = Sk [40].

Once ΣP
∗ has been determined, Ω∗ can be obtained by exploiting the following algorithm:{

Q0 = (ΣP
∗ )⊥ ∩ span {dh}

Qk+1 = (ΣP
∗ )⊥ ∩

∑`u
i=0 [LgiQk + span {dh}]

(2.4)

where LgΓ denotes the codistribution spanned by all covector fields Lgω, with ω ∈ Γ, and Lgω

the derivative of ω along g.

If there exists an integer k∗ such that Qk∗ = Qk∗+1, Qk∗ is indicated as o.c.a.
(
(ΣP
∗ )⊥

)
, where

the acronym o.c.a. stands for observability codistribution algorithm.

It can be shown that Qk∗ = o.c.a.
(
(ΣP
∗ )⊥

)
represents the maximal observability codistribution

contained in P⊥, i.e. Ω∗ [40]. Therefore, with reference to the model (2.2), when lk(x) /∈ (Ω∗)⊥

∀ k ∈ {1, ..., νs}, the generalized disturbance ds can be decoupled and the generalized faults set

fs is detectable.

All the conditions above depicted are only “necessary” and nothing can be said about the pos-

sibility to create a residual if the following “sufficient” conditions are not verified.

As mentioned above, the application of the NLGA for solving the generalized faults set diagnosis

problem, described in [40], is based on a coordinate change in the state space and in the output
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space, Φ(x) and Ψ(y), respectively. They consist in a surjection Ψ1 and a function Φ1 such that

Ω∗ ∩ span {dh} = span {d (Ψ1 ◦ h)} and Ω∗ = span {dΦ1}, where:

Φ(x) =


x̄1

x̄2

x̄3

 =


Φ1(x)

H2h(x)

Φ3(x)



Ψ(y) =

(
ȳ1

ȳ2

)
=

(
Ψ1(y)

H2y

) (2.5)

are (local) diffeomorphisms, whilst H2 is a selection matrix, i.e. its rows are a subset of the rows

of the identity matrix. If the coordinate changes in (2.5) can be found, the “sufficient” conditions

are verified and, by using the new (local) state and output coordinates (x̄, ȳ), the system (2.2)

is transformed as follows:

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2) u + ls1(x̄) fs

˙̄x2 = n2(x̄) + g2(x̄) u + ls2(x̄) fs + ps2(x̄) ds

˙̄x3 = n3(x̄) + g3(x̄) u + ls3(x̄) fs + ps3(x̄) ds

ȳ1 = h1(x̄1)

ȳ2 = x̄2

(2.6)

with ls1(x̄) not identically zero. As described in [40], the subsystem x̄1 in Equation (2.6) is

locally weakly observable and x̄3 is not directly available for measurements. In particular, the

third subsystem, i.e. the x̄3-subsystem, is not present if the whole state x is measurable.

This transformation can be applied to the system (2.2) if and only if the fs–detectability con-

dition is satisfied. The system (2.2), in the new reference frame, can be decomposed into three

subsystems (2.6) where the first one (the so–called x̄1–subsystem) is always de–coupled from the

disturbance vector ds and affected by the generalized faults set fs as follows:{
˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) u + ls1(x̄1, ȳ2, x̄3) fs

ȳ1 = h1(x̄1)
(2.7)

where, as the state x̄2 in (2.6) is assumed to be measured, the variable x̄2 in (2.7) is consid-

ered as independent input and denoted with ȳ2. Even if the state x̄3 isn’t available for direct

measurements, the detection of fs is always guaranteed by observing that, since ls1(x̄) is not

identically zero, the presence of fs can be always find out by designing a filter for the detection

of ls1fs.
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2.1.1.2 NLGA Applicability Improvement: Output to Input Mapping Technique

The methodology applicability can be extended by removing the hypothesis of the standard

NLGA, i.e. fy = 0 and assuming that the state x is directly available for measurement. In this

scenario, the plant dynamics is expressed by:{
ẋ = n(x) + g(x) (u + fu) + l(x) fsys

y = x + fy
(2.8)

Let’s rewrite the dynamics of (2.8) in terms of the output variables by introducing a simple

coordinate change T : R`n → R`n , z = y = x + fy:{
ż = n(z− fy) + g(z− fy) (u + fu) + l(z− fy) fsys + ḟy

y = z
(2.9)

Even if the (2.9) has been obtained in a straightforward way, the resulting model is not affine

with respect to the faults and, as consequence, the NLGA can not be applicable. To overcome

this problem, [49] proposes a different coordinate change, from the state to the output variables,

which allows to write an unknown functions affine model, thus allowing the application of the

standard NLGA procedure.

The scenario of Equation (2.9), in terms of number of potentially concurrent unknown func-

tions versus the number of available information (i.e. the number of states and outputs), is

really complex and generically not solvable with the standard NLGA. On the other hand, for

aerospace systems, taking into account fu and fy which represent faults and assuming that also

fsys represents only faults, it’s not wrong the assumption that the faults, even if multiple, are non-

concurrent (aerospace systems are such that the probability of multiple concurrent faults is very

low compared to the probability of multiple non-concurrent faults). The scenario, represented

by multiple non-concurrent faults, can not describe disturbances because they are concurrent

functions always affecting the system, despite the presence of faults.

The procedure proposed in [49] exploits the hypothesis of multiple but non-concurrent faults

to associate to the i-th component of fy, i.e. the physical output fault fyi , a number νi of

equivalent mathematical faults that are state dependent functions, generally without physical

interpretation and with a different time behavior respect to the physical fault fyi . Following

the procedure stated in [49] for modeling the sensor faults, it’s possible to introduce νi ≥ 1

always concurrent mathematical faults, f∗yi,k(k = 1, ..., νi), in place of the physical fault fyi ∀i ∈
{1, ..., `n}. Whenever a physical sensor fault occurs, i.e. fyi 6= 0, all associated mathematical

faults f∗yi,k(i = 1, ..., νi) will become nonzero.
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According to this modeling, in order to detect and isolate the single physical fault on the i-th

sensor, it will be sufficient to recognize the occurrence of any (one or more) of its associated

mathematical faults. To isolate a given set of faults from the remaining ones, as formalized in

[42], for the generic i-th sensor fault, [49] proposes the following modeling procedure:

1. Take the i-th element of x, i.e. xi, and look in the system model for all different (and, in

general, nonlinear) expressions φi,k(x,u), involving xi and such that the model is affine in

φi,k(x,u);

2. For each expression φi,k(x,u) found at the step 1, define the fault input f∗yi,k = φi,k(x,u)−
φi,k (x,u)|xi=yi , i.e., the error induced in the computation of φi,k(x,u) by the use of the

measured value yi in place of the real value xi, and compute the corresponding fault

vector field l∗i,k(x). Let us denote the number of faults introduced in this way by νi − 1.

Note that f∗yi,k is, by definition, only affected by a fault of the i-th state sensor (which is

consistent with the assumption of non-concurrency), and is zero whenever fy,i = 0, i.e.,

when xi = yi. As a result of this modeling step, any occurrence of the expression φi,k(x,u)

in the system model can be replaced by φi,k (x,u)|xi=yi + f∗yi,k , and the model is certainly

affine in the fault input f∗yi,k . Note that the right-hand side of Equation (2.8) will now be

only dependent on the variable yi and not on xi;

3. Define the further fault input f∗yi,νi = ẋi−ẏi. The introduction of this additional fault input

in the model allows writing also the left-hand side of the i-th system equation in terms of

the new variable yi (with dynamics ẏi = ẋi − f∗yi,νi ). The fault vector field associated to

f∗yi,νi
is, thus, l∗i,νi = −Ii( Ii is the i-th column of the identity matrix);

4. If, for two indices j, k, we can write for l∗i,j = α(x)l∗i,k some real function α(x), then

set f∗i,k = f∗i,k + α(x)f∗i,j and eliminate f∗i,j (vector field l∗i,k clearly remains the same).

With a slight abuse of notation, the symbol νi is still used to indicate the final number of

mathematical fault inputs corresponding to the i-th state sensor fault.

At this point, when the outputs are taken as new state variables for the system dynamics, the

general structure of Equation (2.2) is recovered. The final model, including the effect of all

(non-concurrent) faults of actuators and state sensors, is:{
ż = g0(z) +

∑`u
i=1 gi(z) (ui + fui) +

∑`n
i=1

∑νi
j=1 l∗i,j(z) f∗yi,j +

∑`sys
i=1 li(z) fsysi

y = z
(2.10)

The set of the equivalent mathematical faults associated to the physical output fault fyi is indi-

cated with f∗yi =
{
f∗yi,j

}
with j ∈ {1, ..., νi} whereas the set of all the the equivalent mathematical

faults associated to all the output physical faults fy is f∗y =
{
f∗yi
}
with i ∈ {1, ..., `n}.
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The multiple non-concurrent fault scenario is represented by f = {fu ∪ fsys ∪ f∗y } and contains

`u + `sys +
∑`n

i=1 νi elements. The definition of the s-th elements, fs, is made by following this

scheme:

• for the i-th input fault fui , fs = fui and ls = gi;

• for the i-th system fault fsysi , fs = fsysi and ls = li;

• for the i-th output fault fyi , fs = f∗yi and ls =
[
l∗yi1

, ..., l∗yiνi

]
.

where, the number of element of ls is defined as µs (that is equal to 1 for input and system faults

and νi for the output faults).

Introducing the additional assumption of non-concurrency of faults, results into much weaker

conditions for fs-DI than those given in [40]. In particular, the necessary and sufficient condition

for non-concurrent fs-DI (under full state availability and absence of disturbances) is, see [42]:

∀s, ∀j 6= s, ∃ k ∈ {1, ..., µs} : span{lsk} 6⊆ P̄j OR ∃h ∈ {1, ..., µj} : span{ljh} 6⊆ P̄s (2.11)

where P̄j = span{lj1 , ..., ljµj } and P̄j denotes the involutive closure of Pj , i.e., the closure of

under the Lie bracket operator. Finally, the elements of ls, the vector field associated to fs, are

indicated by ls1 , ..., lsµs . Note that, the two conditions in the left- and right-hand sides of the

“OR” operator in Equation (2.11) may not hold at the same time. Thus, it may happen that a

residual generator exists, that is affected by fs and not by fj , but that any residual affected by

fj is necessarily also affected by fs.

2.1.1.3 NLGA Applicability Improvement: the Singular Perturbation Approxima-

tion

Aerospace systems such as aircraft, UAV, quadrotors, satellites, ... show interesting common

plant features: their dynamics is describes with a six degrees of freedom model, indeed. Three of

these six degrees of freedom are relative to the rotational dynamics whereas the second group of

three degrees of freedom are representative of the translational dynamics. All of these aerospace

systems also show an inherent separation between rotational and translational dynamics where,

usually, the rotational dynamics is pretty faster than the translational one.
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Systems characterized by dynamics evolving on separated time scales are well represented, by

using the Singular Perturbation (SP) theory, as:

ẋ1 = n1(x1,x2,u, fu, fsys, ε)

εẋ2 = n2(x1,x2,u, fu, fsys, ε)

y1 = x1 + fy1

y2 = x2 + fy2

(2.12)

where ε is the (small) perturbation parameter. As assumed in the previous Section, all the

unknown functions affecting the system are considered as non-concurrent faults.

In order to make clear the final benefit introduced by the Singular Perturbation approximation,

the Output to Input mapping procedure is firstly attempted without any approximation:

ż1 = ñ1(z1, z2, f
∗
y1
, f∗y2

,u, fu, fsys, ε)

εż2 = ñ2(z1, z2, f
∗
y1
, f∗y2

,u, fu, fsys, ε)

y1 = z1

y2 = z2

(2.13)

Equation (2.13) shows that both the equivalent output faults f∗y1
and f∗y2

are influencing both

the dynamics of z1 and z2.

Hypothesis 1. The Tikhonov’s theorem in [66] is valid even in presence of faults, i.e. it’s possible

to approximate the actual dynamics of the system (2.12) by it’s reduced and boundary layer

models.

Assuming that the Hypothesis 1 is verified then it’s possible to approximate the actual dynamics

of the aircraft (2.12) by its reduced and boundary layer models (ε = 0):

˙̃x1 = n1(x̃1,x2M ,u, fu, fsys, 0)

η
′
2 = φ2(x̃1,η2,u, fu, fsys, 0)

y1 = x̃1 + fy1

y2 = x2M + η2 + fy2

(2.14)

where x2M = H (x̃1,u, fu, fsys) is an isolated root x2 such that 0 = n2(x̃1,x2,u, fu, fsys, 0) and

η2 = x2 − x2M . The term η
′
2 represents the derivative respect to the “fast” time scale τ , i.e.

η
′
2 = η2

dτ = η2

d(t/ε) .
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Following the same fault mapping procedure exploited in Section 2.1.1.2, it’s possible to rewrite

the approximated dynamics in terms of output variables:

˙̃z1 = ñ1(z̃1, f
∗
y1
,u, fu, fsys, 0)

z
′
2 = ñ2(z̃1, z2, f

∗
y1
, f∗y2

,u, fu, fsys, 0)

y1 = z1

y2 = z2

(2.15)

Comparing the systems (2.13) and (2.15) it’s easy to see how, thanks to the application of the

SP, the equivalent mathematical output faults, f∗y2
are mapped only in the fast dynamics z2 thus

helping to meet the conditions required by the relaxed NLGA for non-concurrent fault isolation,

see Section 2.1.1.2.

Remark 1. Thanks to the Output to Input mapping procedure the systems (2.13) and (2.15) are

affine with respect to the unknown functions to be estimated.

The Detection and Isolation based on the singular perturbation approximation is valid only if

the Hypothesis 1 is verified, see [47]. In turn, this hypothesis relies on the stability of the approx-

imated system that is strictly related to the implemented control law. In conclusion, in order

to make the singular perturbation detection and isolation technique valid, the controller have to

guarantee the stability of the system at any time: in absence of faults, during the detection, isola-

tion and estimation transient and during the fault accommodation phase. Section 2.2.2 proposes

a stability analysis for an Active Fault Tolerant Control based on Singular Perturbations.

2.1.1.4 Formulations and Solutions of Detection and Isolation Problems

Problem 1 on the Detection and Diagnosis of the generalized faults set fs can be solved if all the

active components of fs can be estimated. This requirement is translated in the Detection and

Isolation of the active components of fs. So, one question arises: what is the maximum level

of information about the Detection and the Isolation of (sets of) generalized faults affecting the

system (2.2)?

The answer to this question has been provided in [41] and is based on the Set Detection and

Isolation procedure, in turn exploiting the NLGA detailed in 2.1.1.1. The solution has been

found by the introduction of the so-called “minimal” fsi–Detection ans Isolation sets (Smini ), i.e.

subsets of generalized faults, i.e. fsi ⊂ fs, such that:

• fsi is a Detection and Isolation set (fs–DI–set);

• fsi does not strictly include any other fs–DI–set.
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where an fs–DI–sets is defined as a subset fsi ⊂ fs such that is possible to find a residual rdi
affected by each of the components in fsi and not affected by any other components in generalized

disturbance dsi = ds ∪ (fs \ fsi).

For the computation of the list Slist of all minimal fs-DI-sets Smin1 , ..., SminNr
for system (2.2), a

recursive algorithm, having the structure of a tree exploration, can be devised. The root of the

tree corresponds to the trivial fs-DI-set fs. The children of each node are all subsets obtained

by removing one element from the parent set. The exploration proceeds in depth as far as the

current set/node includes at least one generalized fault that can be isolated from its associated

generalized disturbance set. When this does not hold anymore, the algorithm steps back to the

parent node and explores the other children. When no child allows the prosecution of the search,

then the current node necessarily corresponds to a minimal fs-DI-set.

This thesis introduce a slight modification to the above mentioned algorithm by introducing

a new concept that lead to an “recursive” Detection and Isolation based on Estimation. The

concept is shown by the following didactic example where x = (x1, x2, x3):

ẋ1 = n1(x) + g1(x)u+ l11(x)f1

ẋ2 = n2(x) + g2(x)u+ l21(x)f1 + l22(x)f2 + l23(x)f3

ẋ3 = n3(x) + g3(x)u+ l31(x)f1 + l32(x)f2 + l33(x)f3

y = x

(2.16)

The first minimal f -DI-set, Smin1 , can be intuitively found by observing system (2.16). The first

equation can be directly exploited to design a residual for the detection and the isolation of f1,

So, it is straightforward to define Smin1 = {f1}. On the other hand, the possibility to create a

residual sensitive only to f2 (or f3) have to be checked by applying the NLGA procedure, as

example, by defining fs = {f2} and ds = {f1, f3}. Even if the necessary conditions are satisfied,

this residual may not be found because the sufficiency conditions, listed in Section 2.1.1.1, may

not be verified thus leading to the impossibility of finding the needed coordinate change. So,

even if the procedure in [41] can find two new minimal sets Smin2 = {f2} and Smin3 = {f3}, if the
sufficient conditions are not verified, the second feasible minimal set is Smin2 = {f2, f3}. The

author introduces the concept of Detection and Isolation based on Estimation by observing that,

if f1 can be detected, isolated and also estimated, after the estimation convergence transient, f1

can be considered a known quantity. With this assumption the sufficiency may be verified by

eliminating the quantity f1 from the generalized disturbance ds. As example, for the isolation of

f2, the NLGA procedure is now applied on fs = {f2} and ds = {f3}. At the end, the coordinate
change can be easier to be found. This new Detection and Isolation concept has been inserted

in the algorithm of [41] for the determination of the minimal feasible fsi–DI–sets Detection and

Isolation sets, and highlighted in bold.
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Minimal Feasible fs-DI-sets Algorithm

L = L0 = {l1, ..., ls}
Slist = {0}
k = 0

Flag = X %D&I based onEstimation (0 = OFF, 1 = ON)

[Slist, Nr] = explore (L, Slist, k)

with
function [Slist, k] = explore (L, Slist, k)

kloc = k

P = span{ds, L0 \ L}

if ∃ lσ ∈ L : span{lσ} 6⊆
[
o.c.a.

((
ΣP
∗
)⊥)]⊥

for li ∈ L
[Slist, k] = explore (L \ li, Slist, k)

feastest = feasibiltiy
(
o.c.a.

((
ΣP
∗
)⊥))

if (k == kloc).AND. (feastest == 1)

k = k + 1

Smink = {fj : lj ∈ L}
Slist =

{
Slist, S

min
k

}
if (Smin

k is estimable).AND.(Flag == 1)

L0 = L0 \ Smin
k

L = L \ Smin
k

end

end

end

function [feastest] = feasibiltiy (Ω∗)

if sufficiency conditions in Section 2.1.1.1 are verified for Ω∗

feastest = 1

else

feastest = 0

end

The set of residuals R = {rd1 , ..., rdNr}, with r
d
i designed to detect and isolate the fminsi –DI–set,

provides all the available information about the detection and isolation of (sets of) generalized

faults in fs for the system (2.2). Finally, the “Minimal Feasible fs-DI-sets Algorithm” can be

exploited to solve classical fs-DI problems.
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Problem 2. fs-Detection. Given the system (2.2) with the associated fs and ds. Find, if

possible, a dynamic system whose output rd ∈ {0, 1} is affected by each of the generalized

faults in fs, is not affected by any of the components of ds and asymptotically converges to zero

whenever all generalized faults in fs are zero, no matter what u is. �

Solution. Apply the “Minimal Feasible fs-DI-sets Algorithm”: if ∪Nrk1
Smink = fs the general-

ized faults set fs is detectable. Furthermore the residual, rd can be designed as rd = ∨Nri=1r
d
i

where rdi ∈ {0, 1} is designed to detect and isolate Smini and ∨ represents the logical OR operator.

Problem 3. fs-Generalized Isolation. Given the system (2.2) with the associated fs and ds.

Find, if possible, νs dynamic systems, where νs is the cardinality of fs, whose output rdi ∈ {0, 1}
is affected by each of the generalized faults in fs but one, namely fi, is not affected by any of

the components of ds ∪ fi and asymptotically converges to zero whenever all unknown functions

in fs \ fi are zero, no matter what u is. �

Solution. Apply the “Minimal Feasible fs-DI-sets Algorithm”: if ∀i ∈ {1, ..., n} Si = {fs \ fi}
can be expressed as Si = ∪Nrk=1αkS

min
k with αk ∈ {0, 1}, then a set of n residual rdgeni can be

designed (“generalized” residual set). Furthermore each rdgeni is obtained as rdgeni = ∨Nrk=1αkr
d
k

where rdk ∈ {0, 1} is designed to detect and isolate Smink and ∨ represents the logical OR operator.

Problem 4. fs-Dedicated Isolation (or concurrent fs-Isolation). Given the system (2.2)

with the associated fs and ds. Find, if possible, νs dynamic systems whose output rdi ∈ {0, 1}
is affected only by fi, the i-th component of fs, is affected neither by any other component of fs

nor by the components of ds, and asymptotically converges to zero whenever the function fi is

zero, no matter what u is. �

Solution. Apply the “Minimal Feasible fs-DI-sets Algorithm”: if ∀i ∈ {1, ..., n} Smini = {fi},
then a set of n residual rddedi can be designed (“dedicated” residual set). Furthermore each rddedi
is obtained as rddedi = rdi where rdi ∈ {0, 1} is designed to detect and isolate Smini .

Problem 5. Non-concurrent fs Isolation. Given the system (2.2) with the associated fs and

ds. Find, if possible, a residuals generator that is able to detect and isolate any single function

fi, i = 1, ..., νs, from the other functions fk, k 6= i, and the disturbances ds.

Solution. Apply the “Minimal Feasible fs-DI-sets Algorithm” and if for each couple of unknown

functions fi and fk, there always exists a minimal fs-DI-set, Smini , that includes fi but not fk,

then a set of σ ≤ n residuals rdnc can be designed, where the single rdnci is relative to the minimal

set Smini . This solution is classified, see [52], as “strong” isolation whereas, the counterpart is

called “weak” isolation because the solution if found by selecting also non minimal fs-DI-sets.

The latter isolation solution is said to be weak because in a subset–supersets structure, proper of

the use of non minimal fs-DI-sets, an incorrect detection may occurs when some of the residuals

relative to one unknown function do not exceed the respective thresholds while the others do.
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2.1.2 Detection Residuals

The detection residuals constitute the information base on which the isolation logic creates the

activation signals. As required in Problem 2 the detection residuals must be:

• non trivially dependent on fs;

• trivially dependent on ds;

• convergent to zero whenever fs = 0, no matter the behavior of u.

The first two properties are guaranteed if the detection residuals are obtained by following the

design procedure explained in Section 2.1.1. In particular, thanks to the NLGA procedure of

Section 2.1.1.1, relaxed in Section 2.1.1.2 and approximated in Section 2.1.1.3, it’s possible to find

a subsystem, namely the x̄1-subsystem, that matches the two above mentioned requirements:{
˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) u + ls1(x̄1, ȳ2, x̄3) fs

ȳ1 = h1(x̄1)
(2.17)

The detection residuals are obtained by implementing state observers for the nonlinear, non

autonomous time varying systems expressed by:{
˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) u

ȳ1 = h1(x̄1)
(2.18)

The x̄1-subsystem is generically nonlinear, non autonomous due to the presence of u and also

time varying due to the presence of ȳ2. State observers for this class of nonlinear systems are

hard to design and significant efforts have led to remarkable solutions exploiting coordinates

changes based on observability concepts, see [67], [68] and [69]. On the other hand, simpler, but

only locally applicable, observers can be obtained by copying the structure of Equation (2.18)

and adding a feedback term, K
(
ˆ̄x1, r

)
, properly designed to guarantee the observer stability:

˙̄̂x1 = n1(ˆ̄x1, ȳ2) + g1(ˆ̄x1, ȳ2) u + K
(
ˆ̄x1, r

)
ˆ̄y1 = h1

(
ˆ̄x1

)
r = ȳ1 − ˆ̄y1

(2.19)

where r represents the residual. The feedback term K
(
ˆ̄x1, r

)
can be designed with the Thau’s

method or the Raghavan’s method exploiting the first stability method of Lyapunov, see [70]

and [71]. A special case, very attractive from the practical implementation point of view, is

represented by a directly measurable x̄1, i.e. ȳ1 = x̄1. In this case, it’s possible to design a
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filter, that differs from an observer on the use of the ȳ1 in the differential equation:
˙̄̂x1 = n1(ȳ1, ȳ2) + g1(ȳ1, ȳ2) u + Kr

ˆ̄y1 = ˆ̄x1

r = ȳ1 − ˆ̄y1

(2.20)

For the filter in Equation (2.20) the feedback matrix K can be designed with standard linear

tools by observing that the residual dynamics is:

ṙ = ls1(x̄1, ȳ2, x̄3) fs −Kr (2.21)

where the stability of the residual origin, r = 0, in absence of fs is guaranteed by K > 0.

Anyway, regardless the design technique, the detection observers based on the NLGA have some

interesting commonalities:

• are analytically decoupled from whatever has been considered as a generalized distur-

bance, i.e. ds. This aspect, of huge theoretical importance, guarantee no disturbance

robustness issues;

• have reduced orders. The subsystem’s state x̄1 ∈ X1 ⊆ X ⊂ R`n , indeed. The reduction

of the model order may be associated to a reduction of the number of the involved model

parameters, thus leading to an alleviation of the parameter uncertainty robustness issues;

• have reduced implementability issues: if the cardinality of fs = 1 it’s possible to select

and use just one scalar component of x̄1.

The last step consists in the conversion from analog to digital values of the residual vector r,

i.e. r→ rd. To this purpose several evaluation functions are available in literaute, see [52] and

[72], and some of them are recalled here:

• Instantaneous value of the residual norm

Jr(t) = ||r(t)|| (2.22)

• The average value of the residual vector norm over a time interval [t− T, t]

Jr(t) =
1

T

∫ t

t−T
||r(τ)||dτ (2.23)

• The truncated root-mean-square which measures the average energy over a time interval

[t− T, t]

Jr(t) =
1

T

∫ t

t−T
||r(τ)||2dτ (2.24)
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The threshold value for each of the above residual evaluation functions can be selected as:

Jth = sup
fs=0,ds∈D

Jr (2.25)

where D the set of allowable disturbances. Based on the thresholds and the evaluation functions,

the occurrence fs can be detected and isolated by using the following decision logic:

rd =

{
0 if Jr(t) ≤ Jth
1 if Jr(t) > Jth

(2.26)
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2.1.3 Isolation Logic

The isolation logic constitutes a module, inside the Detection and Isolation system, whose inputs

and outputs respectively are the digital residuals set, R, and the activation (vectorial) signal, ξ.

Before introducing the structure of the Isolation Logic module it’s important to answer to the

following question: when is the Isolation Logic necessary?

Let’s imagine that Problem 4, the fs-Dedicated Isolation problem, can be solved. Than, there

exist a residual set R such that all the residual subsets Ωi have not common elements. In this

scenario, each digital residual rdi is responsible of the activation of the associated estimator and

the isolation logic is not needed (the isolation logic is straightforward). Otherwise, in any other

situation where the detection is possible, an isolation logic is required.

After the application of the “Minimal Feasible fs-DI-sets Algorithm”, the construction of analog

residuals and their conversion to digital values, all the information about the detectabiltiy and the

isolability of (set of) generalized faults in fs is contained in the set of residuals R = {rd1 , ..., rdNr}.
Such information can be completely summarized by a residual matrix, i.e. a binary matrix RM

whose entry RM(i, j) is “1” if the unknown function fi is in the minimal fs-DI-set Sminj , or,

equivalently, if fi affect the corresponding residual rj .

Remark 2. The definition of the residual matrix RM only relies on the knowledge of the system

vector fields, which are sufficient to compute all minimal fs-DI-set, and is therefore independent

of the particular residual basis R. This means that the whole analysis can be performed without

the need of actually designing the specific residual generators.

Consider now the special case of non-concurrent generalized faults in fs and imagine that a

solution to the Problem 5, the non-concurrent fs Isolation Problem, exists. In this case, the

computation of the whole set of residuals R = {rd1 , ..., rdNr}, of cardinality Nr, is not required, in

general, to solve the problem. In fact, it can be shown that a number σ, with d log2 νse ≤ σ ≤ νs,
where νs is the cardinality of fs, of suitably chosen residuals is always sufficient to weakly solve

the Problem 5, see [49].
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2.1.4 Estimation Filters

The last component of the fs-DD module is represented by a bank of Estimation Filters, each

on them dedicated to one, detected and isolated, component of fs, i.e. fi. The inputs of this

bank of filters are: three physical channels, i.e. the inputs u, the outputs y and the activation

signal ξ, and one non-physical channel providing the structure of the estimation filter (NLGA).

It’s convenient to exploit the structure of an x̄1-subsystem, identified by the NLGA procedure,

also to develop the estimation filters and, in particular:

• In case of non-concurrent generalized faults, the estimator can be designed on the x̄1-

subsystem obtained by only decoupling the generalized disturbance ds;

• In case of concurrent generalized faults, the estimator should be designed on the x̄1-

subsystem decoupled from dsi , i.e. exactly the same exploited for the Detection and

the Isolation of the generalized fault fi.

Estimation filters can be designed by adopting several techniques and a rich literature is avail-

able. The need of estimation of diverse kind of generalized faults (parameters variation, faults,

exogenous disturbances, . . . ) has led to the use of different type of estimation algorithms. This

work utilizes the following three methods:

• Least Squares with forgetting factor: it is a very light algorithm, particularly suitable

for the estimation of unknown constants;

• Radial Basis Functions Neural Network: this method has an higher computational

burden but is very useful for the estimation of state–functions;

• Sliding Mode: the last technique is characterized by a low computational burden and is

indicated for the estimation of generic time–functions.

Each of the following three methods relies on the successive hypothesis:

• the x̄1–subsystem is independent from the x̄3 state components;

• ȳ1 = x̄1;

• the following relation holds [54]:

˙̄y1(t) = M1(t) · fi + M2(t) (2.27)
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where M1(t) and M2(t) can be computed for each time instant, since they are functions just of

input and output measurements, in particular:

M1(t) = ls1 (ȳ1, ȳ2)

M2(t) = n1 (ȳ1, ȳ2) + g1 (ȳ1, ȳ2) u
(2.28)

The relation (2.27) describes the general form of the system under diagnosis.

2.1.4.1 Least Squares with forgetting factor

With reference to (2.7), the Least Squares with forgetting factor estimator can be designed if the

condition in [40] are satisfied and the generalized fault fi is a step function of the time, hence if

fi can be seen as a constant parameter to be estimated.

Hypothesis 2. The signal M1(t) has the following two properties:

1. M1(t) ∈ L∞, i.e. there exist a positive finite real M ∈ R such that

M = sup
t≥0
||M1(t)|| (2.29)

2. M1(t) is Persistently Exciting in R with a level of excitation α0 > 0, i.e. ∀t > 0 there

exists constants α1 > 0 and T0 > 0 such that:

α0 ≤
1

T0

∫ t+T0

t
M̆T

1 (τ)M̆1(τ)dτ ≤ α1 (2.30)

Under these conditions, the design of the adaptive filter is achieved, with reference to the system

model (2.27), in order to provide an estimation f̂i(t), which asymptotically converges to the

magnitude of the unknown fi.

The proposed adaptive filter is based on the least–squares algorithm with forgetting factor [5],

and it is described by the following adaptation law:

Ṗ = β P − 1
mP M̆T

1 M̆1 P P (0) = P0 > 0
˙̂
f i = P M̆T

1 ε f̂i (0) = 0
(2.31)

with the following equations representing the output estimation, and the corresponding nor-

malised estimation error:
ˆ̄y1 = M̆2 + M̆1 f̂i + λ ˘̄y1

ε = 1
λm

(
ȳ1 − ˆ̄y1

) (2.32)

where all the involved variables of the adaptive filter are scalar. In particular, λ > 0 is a

parameter related to the bandwidth of the filter, β ≥ 0 is the forgetting factor and m =
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1 + M̆T
1 M̆1 is the normalisation factor of the least–squares algorithm. Moreover, the proposed

adaptive filter adopts the signals M̆1, M̆2, ˘̄y1s which are obtained by means of a low–pass

filtering of the signals M1, M2, ȳ1s as follows:
˙̆

M1 = −λ M̆1 + M1, M̆1(0) = 0
˙̆

M2 = −λ M̆2 + M2, M̆2(0) = 0
˙̄̆y1 = −λ ˘̄y1 + ȳ1, ˘̄y1(0) = 0

(2.33)

Thus, the considered adaptive filter is described by the systems (2.31), (2.32), and (2.33).

It can be proved that the asymptotic relation between the normalised output estimation error

ε(t) and the estimation error fi − f̂i(t) is the following:

lim
t→∞

ε(t) = lim
t→∞

M̆1(t)

m

(
fi − f̂i(t)

)
(2.34)

Moreover, it can be proved that the adaptive filter described by the relations (2.31), (2.32), and

(2.33) provides an estimation f̂i(t) that asymptotically converges to the magnitude of the step

fault fi. The proofs are similar to those of [54] and have been omitted here.

Particular interest has been posed on the study of this algorithm for the case of scalar ȳ1, namely

ȳ1, because of its reduced computational burden. In the following the stability of this algorithm

is analytically proved.

Let’s start reviewing the filter equation:

˙̄y1(τ) = M1(τ)fi +M2(τ) (2.35)

Add and subtract the quantity λȳ1(τ), with λ > 0, and obtain:

˙̄y1(τ) + λȳ1(τ) = λȳ1(τ) +M1(τ)fi +M2(τ) (2.36)

Apply now the Laplace operator x(s) = L [x(τ)]:

sȳ1(s) + λȳ1(s) = λȳ1(s) +M1(s)fi +M2(s) (2.37)

where the function fi is constant. Define now the filtered state x1(s) as:

x1(s) = 1
s+λ

1
λ

[
λ2ȳ1(s) + λM1(s)fi + λM2(s)

]
=

= 1
λ

[
λ λ
s+λ ȳ1(s) + λ

s+λM1(s)fi + λ
s+λM2(s)

] (2.38)
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Observing the right side of this equation, it is easy to recognize the three terms listed in (2.33).

Finally, by applying the inverse Laplace transform, the model becomes:

x1(τ) =
1

λ

[
λ˘̄y1(τ) + M̆1(τ)fi + M̆2(τ)

]
(2.39)

It is possible to generate an estimated version of x1(τ), i.e. x̂1(τ):

x̂1(τ) =
1

λ

[
λ˘̄y1(τ) + M̆1(τ)f̂i + M̆2(τ)

]
(2.40)

The normalized estimation error is defined as

ε = 1
1+M̆2

1

[x1 − x̂1] = M̆1

1+M̆2
1

1
λ

[
fi − f̂i

]
= − M̆1

1+M̆2
1

1
λefi (2.41)

where efi = f̂i − fi represents the generalized fault estimation error. By assuming fi as a

constant, the time derivative of the estimation error is ėfi =
˙̂
f i− ḟi =

˙̂
f i. Recall now the second

equation of (2.31):
˙̂
f i = P M̆1 ε f̂i (t0) = 0 (2.42)

where t0 is the time instant the estimator is switched-on by the activation signal. Substitute

(2.41) in (2.42) to obtain:
ėfi =

˙̂
fi = −P M̆2

1

1+M̆2
1

1
λefi

efi (t0) = −fi
(2.43)

Let’s introduce a new variable, z = P−1, and rewrite the P dynamic equation (the first of (2.31))

in terms of z:

ż = −βz +
1

λ

M̆2
1

1 + M̆2
1

z (t0) > 0 (2.44)

It can be easily proved that a positive real constant, zMAX , exists such that 0 < z(τ) < zMAX

∀τ ≥ t0: the proof is straightforward because the system is linear and the input is unlimited

bounded.

Remark 3. From the Hypothesis 2 and from the boundedness of z(τ) is straightforward to see

that the continuous signal 1
z(τ)λ

M̆2
1 (τ)

1+M̆2
1 (τ)

: R→ R is Persistently Exciting (PE) in R with a level

of excitation α0 > 0, i.e. there exists a constant T0 > 0 such that:

α0T0 ≤
∫ τ+T0

τ

1

z(ξ)λ

M̆2
1 (ξ)

1 + M̆2
1 (ξ)

dξ (2.45)

The differential equation (2.43) can be formally solved leading to the following expression:

efi (τ) = efi (t0) e
− 1
λ

∫ τ
t0

1
z(ξ)

M̆2
1 (ξ)

1+M̆2
1 (ξ)

dξ
(2.46)
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which, thanks to the PE property stated in Remark 3, give the following inequality:

efi (τ) = efi (t0) e
− 1
λ

∫ τ
t0

1
z(ξ)

M̆2
1 (ξ)

1+M̆2
1 (ξ)

dξ
≤ efi (t0) e−α0(τ−t0) ∀τ ≥ t0 (2.47)

which implies the exponential stability of the estimation error origin.

2.1.4.2 Radial Basis Functions

There are cases where the isolated generalized fault fi can be conveniently represented by a

function of states x and inputs u, such as when fi actually is a input-state–function or when a

generic time behavior can be easily represented in term of simpler (at most constant) input and

state–function. To this aim the Radial Basis Function Neural Network seems to be particularly

suitable, and since it does not require any a priori information on the fi internal model, it posses

universal approximation capabilities [73].

The continuous function, fi, is approximated by the RBF-NN:

fi = W∗ϕ (υ) + e (2.48)

where υ ∈ D ⊆ Z represents a vector in the space Z := {z = (x,u)}, W∗ is an unknown

but constant optimal weight matrix, ϕ = [ϕ1, ..., ϕN ]T is the radial basis function vector of N

components and e is an approximation error of the function fi due to the number and type of

the selected RBFs.

In this paper, the RBFs are assumed to be modeled as Gaussian functions as follows:

ϕk (υ) = exp

(
−||υ − υk||

2

σ2
k

)
(2.49)

where υks and σks respectively are the center and the width of the k–th radial basis function.

The vector W∗ is chosen as the value of W that minimizes the distance between fi and Wϕ

over all υ in some compact learning domain D, subject to the restriction that W∗ belongs to a

compact, convex regionMW ⊂ Rq; i.e.:

W∗ := arg minW |fi(υ)−Wϕ(υ)| (2.50)

As stated in [74], given the continuous function fi, for any ε > 0 there are: a positive integer

N , N real positive constants σk ∈ R and N vectors υk ∈ D, which are independent of fi for

k = 1, ..., N , and 1×N constant matrix W∗, defined as in (2.50), such that:

|fi(υ)−W∗ϕ(υ)| < ε (2.51)
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holds for all υ ∈ D. In the development of the adaptive law, the parameter estimate vector Ŵ is

also restricted withinMW, using a projection algorithm. By doing so, we avoid any numerical

problems that may otherwise arise due to very large parameter values. More importantly, the

projection algorithm prevents parameter drift, a phenomenon that may occur with standard

adaptive laws in the presence of modeling uncertainty [75], [76] and [77]. One of the problems

associated with the projection algorithm is the selection of an appropriate region MW in the

parameter space Rq. In general, MW should be selected such that it contains the “optimal”

parameter vector W∗, which is the reason W∗ is restricted within the region MW in (2.50).

This restriction may, of course, undermine the approximation power of f̂i by increasing the

modeling error e; however, by choosing the “size” ofMW, sufficiently large, the increase will be

negligible. Intuitively, the idea is to restrain the parameter estimation vector W from drifting to

instability, and at the same time, make sure the parameters estimates Ŵ(t) are not restrained

to a level where they are prevented from evolving toward “optimal” subregions of the parameter

space. Starting from (2.27), an estimation filter based on the NLGA and RBF-NN can be

modeled in the following form:

˙̄y1(t) = M1(t)fi + M2(t) =

= M1(t)Wϕ(υ) + M2(t)
(2.52)

The vector W is estimated by the following adaptation law:

˙̄̂y1(t) = M1(t) · f̂i + M2(t) + K
(
ȳ1 − ˆ̄y1

)
˙̂

W = ηD rϕT (υ)

f̂i = Ŵϕ(υ)

(2.53)

where η > 0 is the learning ratio, r = ȳ1 − ˆ̄y1, and the matrix D is designed to guarantee the

stability of the filter when investigated with the first Lyapunov method, see [78].

2.1.4.3 A new algorithm: Least Squares - Sliding Mode

This section presents a new Sliding Mode estimator, based on [79] and [80], which exploits the

x̄1-subsystems designed in the previous section thanks to the NLGA procedure.

This work also implements estimators based on the sliding mode concept because this technique

possess the fascinating theoretical property of convergence in finite time. In other words, after the

finite time transient due to the initialization, the unknown function fi is theoretically estimated

without time delays. This is a fundamental aspect to correctly face variable faults/disturbances.

Anyway, to the best of author’s knowledge, all the estimators based on the sliding mode and

available in literature assume that the number of outputs are equal or less than the number of

the unknown functions to be estimated. The scenario depicted in (2.27) presents an outputs
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ȳ1 ∈ R`n1 with `n1 ≥ 1 whereas fi is just a scalar function. One can be tempted to use just

one component of ȳ1, but, in this way, the effort of the NLGA to isolate fi in the largest x̄1 is

totally lost. So the desire of use of all ȳ1 components has led to a modification of the classical

Sliding Mode estimators by introducing the concept of Least Squares. This new algorithm has

been called Least Squares - Sliding Mode Estimator.

With respect to the generic system (2.27) the following mathematical steps explain the way the

new algorithm has been obtained. Starting with (2.27), here recalled:

˙̄y1(t) = M1(t)fi + M2(t) (2.54)

let’s isolate M1(t)fi:

M1(t)fi = ˙̄y1(t)−M2(t) (2.55)

and multiply the left and right sides of this equation for MT
1 (t):

MT
1 (t)M1(t)fs = MT

1 (t)
[

˙̄y1(t)−M2(t)
]

(2.56)

If the Hypothesis 2 is verified, M1(t) is persistently exciting and MT
1 (t)M1(t) > 0 ∀t > 0. So,

the inverse
[
MT

1 (t)M1(t)
]−1 is well defined and the following hold:

fi(t) =
[
MT

1 (t)M1(t)
]−1 {

MT
1 (t)

[
˙̄y1(t)−M2(t)

]}
(2.57)

The estimation of fi is then determined by substituting the unknown value ȳ1 with its estimation

obtained with an high order sliding mode algorithm.

f̂i(t) =
[
MT

1 (t)M1(t)
]−1

{
MT

1 (t)
[
ˆ̄̇y1(t)−M2(t)

]}
(2.58)

For the i-th component of ȳ1, namely ȳ1i , the first time derivative, ˙̄y1i , is estimated by:

ż0 = v0

ż1 = −λ1sign (z1 − v0)

v0 = −λ0 |z0 − ȳ1i |
1
2 sign (z0 − ȳ1i) + z1

ˆ̄̇y1i = z1

(2.59)

where λ0 and λ1 are design parameters.

The algorithm merges two concepts: the least squares, exploited to minimize the estimation

error, and the sliding mode, exploited to rapidly and in finite time converge to fi by reaching

the sliding surfaces represented by the errors between the actual and the estimated output first

time derivative. After the finite time transient, ˆ̇y1 theoretically converges to ẏ1 (see [80]) and
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the algorithm exactly matches a pure Least Squares method with all its benefits and drawbacks,

see [81] and [82].

The main problem of the estimator feedback application is the so-called separation problem.

The separation principle means that a controller and an observer (estimator) can be separately

designed, so that the combined observer-controller output feedback preserves the main features

of the controller designed on the hypothesis of fully available state. The separation principle is

trivially fulfilled for the proposed estimator. Indeed, the differentiator ˆ̇y1 being exact, the only

requirements for its implementation are the boundedness of some higher-order derivative of its

input and the impossibility of the finite-time escape during the differentiator transient. Hence,

the differentiator may be used in almost any feedback. Furthermore it’s worth nothing that the

differentiator transient may be made arbitrarily short by a proper parameter design, and that

the differentiator does not feature peaking effect (see Proposition 4 and the proof of Theorem 5

in [80]).
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2.1.5 NLGA based Detection and Diagnosis module: Summary

Section 2.1 contains the main theoretical aspects of this thesis and this summary highlights the

most important concepts, benefits and results arising from the use of the NLGA.

The first benefit of the NLGA use is the methodical construction of and fs-DD module that

greatly simplifies the Diagnosis module design process. The NLGA offers the possibility to

systematically understand if a generalized fault (or a set of generalized faults) can be detected

and eventually isolated. Without these two checks any attempt of estimation is meaningless.

Furthermore, the standard NLGA of [40] and extended by [41], has been beyond improved by

introducing a feasibility check and by exploiting the singular perturbation technique. Thanks

to these advances, the NLGA can solve more and more Detection and Diagnosis problems in

aerospace.

The NLGA procedure ends with the determination of two coordinate changes, one in the state-

space and the other one in the output-space, that describe the dynamics of a new subsystem,

indicated by x̄1. This subsystem has some interesting properties:

• is analytically decoupled from whatever has been considered as a disturbance, i.e. ds;

• has a reduced order respect to the full state;

• if the cardinality of fs is equal to 1, it’s possible to select and use just one scalar component

of x̄1.

The first feature is really important because classifies this method as a “robust” detection and

isolation scheme, see [3]. More precisely, the decoupling provided by the application of the

NLGA leads to an “ideal perfect robustness”, i.e. the residual is analytically not influenced by

the disturbance, no matter what the disturbance is.

The second and the third characteristics imply a reduction of observer oder and a possible

decrement of the number of involved parameters. It is an important aspect that makes the

results of the NLGA based method attractive for real case applications.

Furthermore, from the estimation point of view, consider various filters each designed to provide

the estimation of one different component of fs. All these estimators are independent and any

possible implementation error that affect only one filter doesn’t corrupt the remaining estima-

tions. To understand the importance of this feature, try to compare the behavior of this bank

of dedicated filters versus a full-order observer that provides an estimation of the same fs. The

latter provides a non-correct estimation, on all components of fs, when in presence of an error

in one constitutive equation.
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2.2 Nominal Controller

The last module, the nominal controller, completes the structure of the Active Control scheme

proposed in this thesis. The purpose of an active control is the active modification of the

nominal control laws when in off-design working conditions. As stated in Section 2 an active

controller relies on a good estimation module but, at the same time, also the nominal controller

has to properly use the information coming from the estimation module to achieve satisfying

control performance. Model based nominal controllers seem to be very suitable in exploiting the

estimations that, thanks to the controller structure, can be implemented by a straightforward

substitution, indeed.

Aerospace systems share common model features because the nature of the physical plants is the

same: they are flying objects subject to external forces and momentums. It’s always possible to

identify both rotational and translational dynamic and kinematic equations. Furthermore, usual

rotational dynamics is faster than the translational one. This is a well known-concept that led

to the nested controller structure for aerospace systems, such as nested PID and backstepping.

On the other hand the inherent dynamics separation of aerospace plants suggest the design of

a controller based on the singular perturbations method. So, these thesis shows how to design

controllers exploiting two model based methodologies, i.e.:

• Backstepping;

• Singular perturbations.

Finally, each step inside backstepping and composite controller based on singular perturbations

have been designed with a common technique that is the Feedback Linearization. In this way,

both the controllers and the diagnosis module are designed with the same differential geometry

tools.
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2.2.1 Backstepping Controller

Many aerospace systems can be described in a strict feedback form, where the hypothesis of a

fully measurable state has been added:

ẋ1 = n1 (x1) + g1 (x1) x2 + l1 (x1) fsys

ẋ2 = n2 (x1,x2) + g2 (x1,x2) x3 + l2 (x1,x2) fsys

...

ẋn = nn (x) + gn (x) (u + fu) + ln (x) fsys

y1 = x1 + fy1

...

yn = xn + fyn

(2.60)

where x = (x1, ...,xn) ∈ R`n represents the state of the system, u and fu respectively are the

input and the input fault, fsys is the unknown function effecting the system dynamics and,

finally, yi and fyi with 1 ≤ i ≤ n represent the available measurements and sensors faults.

2.2.1.1 Active Backstepping Controller Design Concept

The idea of backstepping is to start with a system which is stabilizable with a known feedback law

for a known Lyapunov function, and then to add to its input an integrator. For the augmented

system a new stabilizing feedback law is explicitly designed and shown to be stabilizing for a

new Lyapunov, and so on ...

Given the system in the strict feedback form (2.60), define a sufficiently smooth reference x1R

and the state error e1 = x1 − x1R . Rewrite the first subsystem in terms of errors:

ė1 = n1 (e1 + x1R) + g1 (e1 + x1R) x2 + l1 (e1 + x1R) fsys − ẋ1R (2.61)

Step 1. The first step of the design of a backstepping controller stays in the use of x2 to stabilize

the origin of system (2.61) with an output-feedback law α1 (e1,x1R , ẋ1R , fsys) so that

∂V1

∂e1
(n1 + g1α1 + l1 fsys − ẋ1R) < 0 (2.62)

where V1 (e1) is a known Lyapunov function. Note that, x2 = α1 (e1,x1R , ẋ1R , fsys) is achieved

only with an error e2 = x2 −α1, then, the first two equations are:

ė1 = n1 (e1 + x1R) + g1 (e1 + x1R) (e2 +α1) + l1 (e1 + x1R) fsys − ẋ1R

ė2 = n2 (e1 + x1R , e2 +α1) + g2 (e1 + x1R , e2 +α1) x3+

+l2 (e1 + x1R , e2 +α1) fsys − α̇1

(2.63)
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Step 2. In the second step, x3 is used to stabilize the origin of (e1, e2) with a feedback law

α2 (e1,x1R , ẋ1R , e2,α1, α̇1, fsys) (2.64)

To design α2 a second Lyapunov function is constructed:

V2 (e1, e2) = V1 (e1) +
1

2
eT2 e2 (2.65)

When x3 = α2 the first time derivative V̇2 is:

V̇2 = ∂V1
∂e1

(n1 + g1α1 + l1 fsys − ẋ1R) +

+eT2

[(
∂V1
∂e1

g1

)T
+ n2 + g2α2 + l2 fsys − α̇1

] (2.66)

Recall that the first term was made negative in the first step, so the expression (2.66) can be

made negative by choosing, for example:

α2 : g2α2 = −K2e2 −

[(
∂V1

∂e1
g1

)T
+ n2 + l2 fsys − α̇1

]
(2.67)

where K2 > 0. However, also α2 is reached with an error e3 = x3−α2, and the actual (2.66) is:

V̇2 = ∂V1
∂e1

(n1 + g1α1 + l1 fsys − ẋ1R)− eT2 K2e2 + eT2 g2 e3 (2.68)

Repeat Step 1 and Step 2 for each subsystem until the last one and obtain:

ė1 = n1 + g1 (e2 +α1) + l1 fsys − ẋ1R

ė2 = n2 + g2 (e3 +α2) + l2 fsys − α̇1

...

ėn = nn + gn (u + fu) + ln fsys − α̇n−1

(2.69)

For the last subsystem the associated Lyapunov function is:

V̇n = ∂V1
∂e1

(n1 + g1α1 + l1 fsys − ẋ1R)−
∑n−1

i=1 eTi Kiei+

+eTn

[(
eTn−1 gn−1

)T
+ nn + gn (u + fu) + ln fsys − α̇n−1

] (2.70)

and the physical control law, u, designed to stabilize at the origin the last subsystem, is:

u : gn u = −Knen −
[(

eTn−1 gn−1

)T
+ nn + gn fu + ln fsys − α̇n−1

]
(2.71)

thus obtaining:

V̇n = ∂V1
∂e1

(n1 + g1α1 + l1 fsys − ẋ1R)−
∑n

i=1 eTi Kiei < 0 (2.72)
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The controller scheme can be implemented by designing each αi, for 1 ≤ i ≤ n (αn = u), with

the Feedback Linearization technique.

This kind of controller relies on the full state availability and on the possibility to stabilize each

state of each subsystem: this implies, for example, that there is no zero dynamics or, at most, the

zero dynamics is stable. Anyway, even if the controller can be correctly designed, it’s interesting

to see how the estimation of fs is exploited to make the controller “active”. For each virtual

control αi with 1 ≤ i ≤ n− 1 and the physical control u the unknown quantities fsys, fy and fu

are substituted by their estimation coming from the Diagnosis Module:

α1 : g1α1 = −K1ê1 −
[
n1 + l1 f̂sys − ẋ1R

]
αi : giαi = −Kiêi −

[(
êTi−1 gi−1

)T
+ ni + li f̂sys − α̇i−1

]
2 ≤ i ≤ n− 1

u : gn u = −Knên −
[(

êTn−1 gn−1

)T
+ nn + gn f̂u + ln f̂sys − α̇n−1

]
(2.73)

where

êi = ei − f̂yi 1 ≤ i ≤ n (2.74)

2.2.1.2 Stability analysis of the Active BackStepping Control

The nominal stability of this controller can be generally easily proved when:

• the Diagnosis Module fulfill the requirement of the separation principle (no singular per-

turbation approximation);

• there are not output faults, i.e. fy = 0;

• the controller can be implemented (no unstable zero dynamics).

Let’s define the estimation errors as efu = fu − f̂u and efsys = fsys − f̂sys and rewrite the system

(2.69) controlled by (2.73), in presence of estimation errors:

ė1 = −K1e1 + g1 e2 + l1 efsys

ė2 = −K2e2 + g2 e3 −
(
eT1 g1

)T
+ l2 efsys

...

ėn−1 = −Kn−1en−1 + gn−1 en −
(
eTn−2 gn−2

)T
+ ln−1 efsys

ėn = −Knen −
(
eTn−1 gn−1

)T
+ gn efu + ln efsys

(2.75)
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Stability during the Detection and Isolation process

Take the system (2.75) and rewrite it in the following compact form:

ė = F (e,x1R) + G efu + L efsys

= F (e,x1R) + G∗ef
(2.76)

where e = (e1, ..., en), G∗ = [G L] and ef =
[
efu , efsys

]T .
Hypothesis 3. The function G∗ is piecewise continuous and satisfy a Lipschitz condition and,

furthermore, the fault estimation error ef is bounded during the detection and isolation transient.

||G∗ (e′)−G∗ (e′′) || < L1||e′ − e′′||
||ef || < L2

(2.77)

for all e′, e′′ in some neighborhood U of the origin, e = 0.

Theorem 2.1. Taken the model (2.75), if the Hypothesis 3 is verified, then ∀ d > 0 ∃ δ1 > 0

and δ2 > 0 (both possibly dependent on d) such that if:

||eo|| < δ1

||G∗ (e) ef || < δ2 ∀ ||e|| < d
(2.78)

the solution, e(t), of the differential equation (2.113), satisfying e(0) = eo, is such that

||e(t)|| < d (2.79)

for all t > 0. �

Proof The proof is based on the fundamental result of the so called theorem of global stability

in [83]. Thanks to the controller design procedure, the origin is an equilibrium point for the

unperturbed system

ė = F (e,x1R) (2.80)

Furthermore, the origin of (2.117) is also locally exponentially stable, see Section 2.2.2.3, Remark

6. Then, a Lyapunov function, V (e) : Bd → R, V ∈ C1, exists and, for some some K-class
functions α(·), α(·), ᾱ(·) defined in [0, d), it is such that:

α(||e||) ≤ V (e) ≤ ᾱ(||e||)
∂V
∂e F (e,x1R) ≤ −α(||e||)

∀ ||e|| < d

(2.81)



Chapter 2. NLGA based Active Control Scheme 43

Since the ∂V
∂e is C0, there exists a real number M > 0 such that:

||∂V
∂e
|| ≤M (2.82)

for all e ∈ U . Suppose that d > 0 is such that Bd ⊂ U and let c > 0 be such that c ≤ α(d).

Choose δ2 such that:

− α
(
ᾱ−1(c)

)
+Mδ2 < 0 (2.83)

Let’s define

Ωc = {e ∈ Rn : V (e) ≤ c} (2.84)

By construction, e ∈ Ωc implies

||e|| ≤ d (2.85)

In fact,

α(||e||) ≤ V (e) ≤ c (2.86)

implies

||e|| ≤ α−1(c) ≤ α−1(α(d)) = d (2.87)

Also, at each point e of the boundary of Ωc,

α(||e||) ≥ α(ᾱ−1(V (||e||))) = α(ᾱ−1(c)) (2.88)

As a consequence, at each point e of the boundary of Ωc,

∂V
∂e [F (e,x1R) + G∗ ef ] ≤ −α(||e||) + ||∂V∂e ||δ2 ≤ −α(ᾱ−1(c)) +Mδ2 < 0 (2.89)

From this, it can be concluded that, for any initial condition in the interior of Ωc, the solution e

of (2.113) is defined for all t ≥ 0 and is such that e(t) ∈ Ωc for all t ≥ 0. To complete the proof

it is suffices to choose δ1 < ᾱ−1(c), for this guarantees that eo is in the interior of Ωc. In fact:

ᾱ−1 (V (eo)) ≤ ||eo|| ≤ δ1 < ᾱ−1(c) (2.90)

implies V (eo) < c. �

2.2.1.3 Stability of the Active Control

Once the estimation module has been switched on and the separation principle is hold the esti-

mation error start decrease. So, the system (2.76) can be seen as perturbed by a vanishing signal,

the estimation error, indeed. Take, for instance, the Least Squares - Sliding Mode algorithm

and remember that, this algorithm theoretically assures that the estimation goes to the actual
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value of fs in finite time. In this context the system (2.76) is driven by the exogenous vanishing

signal ef . To prove the stability of the active control the concepts of the “cascade of connected

systems” are exploited, for details see [83]. Before the statement of the stability theorem let’s

introduce the following notation:

ė = F (e,x1R) + G∗ ef

ėf = H (ef )
(2.91)

where the second subsystem represents the dynamics of the Least Squares - Sliding Mode esti-

mation error.

Theorem 2.2. Consider the system (2.91). Let S be a set with the property that, for any ēo ∈ S,
the integral curve ˙̄e(t) = F (ē,x1R) satisfying ē(0) = ēo is defined for all t ≥ 0 and is such that

limt→∞ ē(t) = 0.

Pick any eof and let eof (t) denote the integral curve of ėf = H (ef ) satisfying eof (0) = eof .

Pick any eo ∈ S and let eo(t) denote the integral curve of ė(t) = F (e,x1R) + G∗ eof .

The following hold:

lim
t→∞

eo(t) = 0 (2.92)

Proof The proof start by showing that the for any eo ∈ S, eo(t) is defined for all t ≥ 0, us

bounded and is such that eo(t) ∈ S for all t ≥ 0. Using the theorem of “total stability” (see [83]),

it’s easy to prove that, since the equilibrium e = 0 of ė(t) = F (e,x1R) is locally asymptotically

stable, given any ε, there exist δ1 and δ2 such that, if ||eo|| ≤ δ1 and ||eof || ≤ δ2 for all t ≥ 0, the

solution ē of ė(t) = F (e,x1R) + G∗ ef satisfying ē(0) = ēo is such that ||ē(t)|| ≤ ε for all t ≥ 0.

This has been proved in the demonstration of Theorem 2.1.

Now, the proof exactly continues by following the proof of Theorem 10.3.1 in [83]. �
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2.2.2 Active Composite Controller

This controller has been investigated because the need of fulfill the validity hypothesis at the

base of the Detection and Isolation scheme relying on the singular perturbations approximation.

Here, a brief SP theory sketch is given for input affine models, whereas, for a complete description

see [66]. A singularly perturbed system can be generally expressed in terms of fast and slow

variables in the following way:
ẋ1 = f1(x1,x2, ε) + g1(x1,x2, ε)ua

εẋ2 = f2(x1,x2, ε) + g2(x1,x2, ε)ua

y1 = x1

y2 = x2

(2.93)

where x1 ∈ Rn1 is the vector of slow variables, x2 ∈ Rn2 is the vector of fast variables, and

ua ∈ Rp is the input vector. The term, ε, is the small positive perturbation parameter, called

singular. By assuming ε = 0 the state-space dimension shrinks from n1 + n2 to n1 because the

second relation in (2.93) degenerates to an algebraic equation:{
˙̄x1 = f1(x̄1, x̄2, 0) + g1(x1,x2, 0)ua

0 = f2(x̄1, x̄2, 0) + g1(x1,x2, 0)ua
(2.94)

Equations (2.94) represent the reduced model.

Remark 4. The system in (2.93) is said to be in the standard form if the algebraic equation

0 = f2(x1,x2, 0) + g1(x1,x2, 0)ua admits at least one isolated root. If x2M = h(x̄1,ua) is an

isolated root of 0 = f2(x1,x2, 0) + g1(x1,x2, 0)ua, satisfying conditions in Tikhonov’s theorem,

then it describes an n1 + p dimension invariant manifold for the system (2.94), see [66].

On the other hand, while fast variables are moving, it isn’t wrong to treat slow variables as

parameters. Thanks to a time scale change, made by defining τ = (t− t0) /ε, it’s possible to

define apex derivatives as x′ = dx/dτ . As previously made, by assuming ε = 0, the dynamic

order of the system is reduced from n1 + n2 to n2:{
x′1 = 0

x′2 = f2(x1,x2, 0) + g1(x1,x2, 0)ua
(2.95)

Equations (2.95) represent the boundary–layer model. Finally, if Tikhonov’s theorem is verified,

the actual system dynamics (2.93) can be approximated by:{
˙̄x1 = f1(x̄1,h(x̄1,ua), 0) + g1(x̄1,h(x̄1,ua), 0)ua

x′2 = f2(x̄1,x2, 0) + g1(x̄1,x2, 0)ua
(2.96)
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As will be presented in the following, several advantages can be achieved by adopting the above

described SP strategy both in the design of the controller and in the FDD module synthesis.

2.2.2.1 Generalized Faults Scenario

As introduced in Section 2.1.1.3, fs considers additive non concurrent multiple faults, modeled

by step time functions, affecting both actuators and sensors. The fault scenario is modeled by

the following equations:
y1 = x1 + fy1

y2 = x2 + fy2

ua = u + fu

(2.97)

where y1, y2, ua respectively represent the slow variable output, the fast variable output and

the actual actuator input. The terms fy1 , fy2 and fu represent the vectors of physical faults

acting on output sensors and actuator inputs. Let’s denote with s the number of physical faults

affecting sensors whereas p is the number of actuator faults. Can be useful remembering that,

being the system nonlinear, additive faults can destabilize the system pushing the state out from

the local attraction domain. Furthermore additive faults are very suitable both for the model of

a class of faults more general than the multiplicative ones, and for the Diagnosis module design,

see [84]. Finally, define the fault vector as fs = [f1, ..., fνs ]
T = [fTy1

, fTy2
, fTu ]T .

2.2.2.2 Modeling the faulty plant

Given a sufficiently smooth, bounded, time-varying trajectory, x1R (t), define the state tracking

error as e1 = x1 − x1R and rewrite the system (2.93) in the errors form:

ė1 = ẋ1 − ẋR =

= f1(e1 + x1R , e2 + x2M , ε) + g1(e1 + x1R , e2 + x2M , ε)ua − ẋR =

= F1(e1, e2,x1R ,ua, ε)− ẋR

εė2 = εẋ2 − εẋ2M =

= f2(e1 + x1R , e2 + x2M , ε) + g2(e1 + x1R , e2 + x2M , ε)ua − εẋ2M =

= F2(e1, e2,x1R ,ua, ε)− εẋ2M

(2.98)

where the definition of F1 and F2 is obvious. The state tracking error e2 is defined as e2 =

x2 − x2M . The term

x2M := f2(x1,x2M ,u, 0) = 0 (2.99)

constitutes an isolated solution of the faultless equation f2(x1,x2M ,u, 0) = 0. Let’s define the

manifold of (2.98) as the solution of 0 = F2(e1, e2,x1R ,ua, 0), i.e. e2M = H (e1,ua,x1R). It

is worth nothing that e2M |ua=u = e2|x2=x2M
= 0; it means that in absence of actuator faults
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the boundary layer system lives on the nominal manifold. Finally, the reference state, xR, is

xR =
[
xT1R xT2M

]T .
2.2.2.3 Control problem formulation and solution

Problem 6. Active Composite Control. Given the system (2.98) find a time varying error–

feedback control law

u = u (e1, e2,x1R , ẋ1R , ẍ1R , fu)

such that the origin of the closed-loop system is a locally exponentially stable (LES) equilibrium

point.

Remark 5. Normally, any feedback design will suffer from high dimensions and ill-conditioned

systems resulting from the interaction of slow and fast dynamics. The singular perturbation

state-feedback design technique yields to a composite feedback (sum of two time scaled control

laws) that take advantages from decomposition of the original ill-conditioned system into two

well-conditioned subsystems in separate time scales. Then, a particularly suitable solution to

Problem 6 can be found in a composite error–feedback control law.

Proposition 2.3. The composite error-feedback control law, u = Γ1 + Γ2, obtained by the

following procedure, solves the Problem 6, see Theorem 11.4 in [66].

Procedure 1. - Composite Controller Design

Assume that the fast control law

Γ2 = Γ2 (e1, e2, fu,x1R) (2.100)

is such that:

• the feedback control law, u, when applied to (2.98), still results in a singularly perturbed

system;

• the input Γ2 + fu is inactive for e2 = H (e1,Γ1,x1R) = 0, i.e.

Γ2 (e1,0, fu,x1R) + fu = 0 (2.101)

Then:

1. Design a control law, Γ1 = Γ1 (e1,x1R , ẋR, ẍR) , for the reduced model such that the origin

of this subsystem is LES;
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2. With the knowledge of Γ1 design a control law, Γ2, satisfying the above mentioned as-

sumptions and such that e2 = 0 for the closed–loop system

e′2 = F2(e1, e2,x1R ,Γ1 + Γ2 + fu, 0) (2.102)

is the unique LES equilibrium point uniformly in (e1,x1R).

Remark 6. Theorem 11.4 in [66] demonstrates the existence and determines the value of an ε∗
such that ∀ε < ε∗ the origin of the actual system (2.98) is locally exponentially stable.

Remark 7. If the stability requirements at the procedural steps (1) and (2) regard only asymp-

totic stability these two steps became necessary but not sufficiency conditions to assure the

asymptotic stability required in the Problem 6. In this case a third step, consisting in verifying

interconnection conditions as in [85], is needed to fulfill sufficiency.

Remark 8. Thanks to the condition (2.101) the slow control law, Γ1, can be designed in a fault

scenario without actuator faults.

Remark 9. The controller design procedure has to be completed by taking into account the fact

that the state errors e1 and e2 as well the faults are unknown. Let’s define the measured errors

as ey1 = y1 − x1R and ey2 = y2 − x2M . It’s easy to see that e1 = ey1 − fy1 and e2 = ey2 − fy2 .

Thanks to the previous change of variables it’s possible to rewrite the nominal controller and to

highlighting its dependence on faults:

u = Γ1 (ey1 − fy1 ,x1R , ẋ1R , ẍ1R) +

+Γ2 (ey1 − fy1 , ey2 − fy2 , fu,x1R)
(2.103)

The last step is the substitution of faults fy1 , fy2 and fu with their estimation f̂y1 , f̂y2 and f̂u

respectively. Then, the real controller is described by the following equation:

u = Γ1

(
ey1 − f̂x1 ,x1R , ẋ1R , ẍ1R

)
+

+Γ2

(
ey1 − f̂y1 , ey2 − f̂x2 , f̂u,x1R

) (2.104)

2.2.2.4 Feedback Linearization for the Reduced Errors Model

Starting from the inactivity properties of Γ2 + fu on the manifold, it’s possible to describe the

reduced system of (2.98) as follows:

ė1 = F1(e1,H (e1,Γ1,x1R) ,x1R)− ẋ1R (2.105)
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which is non affine in Γ1. In order to fulfill the requirements at the step (1) of the Procedure 1,

the following controller, obtained by dynamic extension, see [86], can be used:
Γ̇1 = Φ1

Φ1 = A−1
1 (e1,x1R) [−b1 (e1,x1R) +

+v1 (e1,x1R , ẋ1R , ẍ1R)]

(2.106)

where the first term in (2.106), −A−1
1 b1, linearises the system (2.105) and makes the origin

an equilibrium point which is exponentially stabilised, with arbitrary decay rate, by means

of the second term, A−1
1 v1. It’s worth observing that Φ1 can be considered as a new input

respect to which the sum of the relative degree (total relative degree) have to be evaluated: if

it is maximum, it is possible to obtain an exact feedback linearisation such that the controlled

system, (2.105)–(2.106), has not zero dynamics, see [86]. The controller design is completed by

procedures stated in Remark 9.

2.2.2.5 Feedback Linearization for the Boudary–Layer Error Model

The model (2.102) is input affine (see (2.98) indeed) and, if the total relative degree is maximum,

an exact feedback linearisation is obtained by means of the following control law, otherwise a

zero-dynamics occurs:

Γ2 = A−1
2 (e1, e2,x1R) [−b2 (e1, e2,xR) +

+ v2 (e1, e2,x1R)]− fu
(2.107)

where, analogously to (2.106), if the feedback linearization is exact the origin is an exponentially

stable equilibrium point. Let’s use what stated in Remark 9 to implement the controller.

2.2.2.6 Stability analysis of the Active Fault Tolerant Composite Control

As described in Section 2.1.1.3, the main task of the nominal controller is the stabilization of

the system during all working phases, i.e. in nominal conditions, in presence of fault during the

detection and isolation and, finally, during the fault accommodation (including the estimation

transient). If the stability in presence of fault is lost, the detection and isolation scheme is not

more applicable and the entire active control fails.

Whereas the stability of the nominal aircraft (no faults), under the control action, has been

established by design, see previous Sections, in this Section the stability during the fault isolation

and identification process will be proved as well as the stability of the overall AFTC, after the

FDI phase, with the fault estimation feedback.
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Stability during the Fault Detection and Isolation process

In this section the problem of the stability during the (short but methodologically important)

fault detection and isolation time will be analyzed. In particular, the plant, affected by the fault,

fs, is controlled by the non-nominal controller (the fault estimation feedback is not activated

yet), unn = ua|f̂s=0:

unn = Γ1 (ey1 − 0,x1R , ẋ1R , ẍ1R) +

+Γ2 (ey1 − 0, ey2 − 0,0,x1R) =

= Γ1 (e1 + fy1 ,x1R , ẋ1R , ẍ1R) +

+Γ2 (e1 + fy1 , e2 + fy2 ,0,x1R) =

= Γ1n + Γ2n + ∆Γ1 + ∆Γ2 = un + ∆u

(2.108)

where
un = Γ1n + Γ2n

∆u = ∆Γ1 + ∆Γ2

Γ1n = Γ1 (e1,x1R , ẋ1R , ẍ1R)

Γ2n = Γ2 (e1, e2,0,x1R)

∆Γ1 = Γ1 (e1 + fy1 ,x1R , ẋ1R , ẍ1R)− Γ1n

∆Γ2 = Γ2 (e1, e2 + fy2 ,0,x1R)− Γ2n

(2.109)

The overall aircraft model (2.98), under the action of the non nominal controller, unn, and the

fault, F, is represented by the following nonlinear system:

ė1 = F1(e1, e2,x1R ,un, ε)− ẋR + ∆F1

εė2 = F2(e1, e2,x1R ,un, ε)− εẋ2M + ∆F2

(2.110)

where
∆F1 = F1(e1, e2,x1R ,unn, ε)− F1(e1, e2,x1R ,un, ε)

∆F2 = F2(e1, e2,x1R ,unn, ε)− F2(e1, e2,x1R ,un, ε)
(2.111)

Finally, the system (2.110) is rewritten as the sum of a nominal part (without faults) and a

perturbed part (comprehensive of faults):

ė = f (e,x1R , ẋ1R ,un, ε) + ∆f (e,x1R ,un, ε, fs) (2.112)

where

e =

[
e1

εe2

]
∆f =

[
∆F1

∆F2

]

f =

[
F1(e1, e2,x1R ,un)− ẋR

F2(e1, e2,x1R ,un, ε)− εẋ2M

] (2.113)
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Hypothesis 4. The single fault fi with i ∈ {1, ..., νs} is such that the function ∆f |fs=fi is piecewise
continuous and satisfies a Lipschitz condition

||∆f (e′,x1R ,un, ε, fi)−∆f (e′′,x1R ,un, ε, fi) || < L||e′ − e′′|| (2.114)

for all e′, e′′ in some neighborhood U of the origin, e = 0.

Theorem 2.4. Taken the model (2.113), if the Hypothesis 1 and 4 are verified, then ∀ d > 0 ∃
δ1 > 0 and δ2 > 0 (both possibly dependent on d) such that if:

||eo|| < δ1

||∆f (e,x1R ,un, ε, fi) || < δ2 ∀ ||e|| < d
(2.115)

the solution, e(t), of the differential equation (2.113), satisfying e(0) = eo, is such that

||e(t)|| < d (2.116)

for all t > 0. �

Proof The proof is based on the fundamental result of the so called theorem of global stability

in [83]. Thanks to the controller design procedure, the origin is an equilibrium point for the

unperturbed system

ė = f (e,x1R , ẋ1R ,un, ε) (2.117)

Furthermore, the origin of (2.117) is also locally exponentially stable, see Section 2.2.2.3, Remark

6. Then, a Lyapunov function, V (e) : Bd → R, V ∈ C1, exists and, for some some K-class
functions α(·), α(·), ᾱ(·) defined in [0, d), it is such that:

α(||e||) ≤ V (e) ≤ ᾱ(||e||)
∂V
∂e f (e,x1R , ẋ1R ,un, ε) ≤ −α(||e||)

∀||e|| < d

(2.118)

Since the ∂V
∂e is C0, there exists a real number M > 0 such that:

||∂V
∂e
|| ≤M (2.119)

for all e ∈ U . Suppose that d > 0 is such that Bd ⊂ U and let c > 0 be such that c ≤ α(d).

Choose δ2 such that:

− α
(
ᾱ−1(c)

)
+Mδ2 < 0 (2.120)

Let’s define

Ωc = {e ∈ Rn : V (e) ≤ c} (2.121)
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By construction, e ∈ Ωc implies

||e|| ≤ d (2.122)

In fact,

α(||e||) ≤ V (e) ≤ c (2.123)

implies

||e|| ≤ α−1(c) ≤ α−1(α(d)) = d (2.124)

Also, at each point e of the boundary of Ωc,

α(||e||) ≥ α(ᾱ−1(V (||e||))) = α(ᾱ−1(c)) (2.125)

As a consequence, at each point e of the boundary of Ωc,

∂V
∂e [f (e,x1R , ẋ1R ,un, ε) + ∆f (e,x1R ,un, ε, fi)] ≤
−α(||e||) + ||∂V∂e ||δ2 ≤ −α(ᾱ−1(c)) +Mδ2 < 0

(2.126)

From this, it can be concluded that, for any initial condition in the interior of Ωc, the solution e

of (2.113) is defined for all t ≥ 0 and is such that e(t) ∈ Ωc for all t ≥ 0. To complete the proof

it is suffices to choose δ1 < ᾱ−1(c), for this guarantees that eo is in the interior of Ωc. In fact:

ᾱ−1 (V (eo)) ≤ ||eo|| ≤ δ1 < ᾱ−1(c) (2.127)

implies V (eo) < c. �

Stability of the Active Fault Tolerant Control system

In this section the stability proof of the overall Active Fault Tolerant Composite Control based

on Singular Perturbation will be shown. It will be demonstrated that the plant with the nominal

controller and fault estimation feedback has a locally exponentially stable equilibrium point and

that, furthermore, this point coincides with the nominal reference trim point.

Before stating the stability proof can be useful to introduce some definitions. Define as estimated

state errors the terms:
e1EST = ey1 − f̂y1

e2EST = ey2 − f̂y2

(2.128)

where, for # ∈ {1, 2}, ey#
are the actual output error and f̂y#

are the estimation of physical

fault on output sensors. On the other hand, the actual state errors can be written as follow

e1 = ey1 − fy1

e2 = ey2 − fy2

(2.129)
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where, for # ∈ {1, 2}, fy#
are the physical fault acting on output sensors. Then, combining the

last two sets of equations, it is possible to write:

e1EST = e1 +
(
fy1 − f̂y1

)
= e1 − efy1

e2EST = e2 +
(
fy2 − f̂y2

)
= e2 − efy2

(2.130)

where, for # ∈ {1, 2}, efy#
represent the output sensor fault estimation errors. It is possible to

introduce also the actuator fault estimation error, efu , as:

f̂u = fu +
(
f̂u − fu

)
= fu + efu (2.131)

For clarity purpose can be useful recall the expressions of control law, u:

u = Γ1

(
ey1 − f̂y1 ,x1R , ẋ1R , ẍ1R

)
+

+Γ2

(
ey1 − f̂y1 , ey2 − f̂y2 , f̂u,x1R

) (2.132)

Substitute now equations (2.128)-(2.131) in (2.132):

u = Γ1

(
e1 − efy1 ,x1R , ẋ1R , ẍ1R

)
+

+Γ2

(
e1 − efy1 , e2 − efy2 , fu + efu ,x1R

) (2.133)

Remark 10. When no fault estimation errors are present, i.e. efy1 , efy2 and efu are zero, the

control law, u, is the nominal one and the LES of the origin of the state–space error is guaranteed,

thanks to the controller design procedure.

The Detection and Isolation module needs a small amount of time, namely t0, to correctly detect

and isolate faults. After this modest amount of time the fault estimation filter, designed for the

isolated fault, is switched-on.

Making the fault estimator dynamics faster than the fastest plant dynamics, it’s possible to

complete the overall AFTC system with a further equation representing the dynamics of the

estimation filter (2.31)-(2.32)-(2.33):

ϕėfi = ϕ
˙̂
f i − ϕḟi =

= F3(e1, e2,x1R ,u, efi)

efi(t0) = −fi(t0)

(2.134)

where i ∈ {1, ..., νs} and ϕ is a singular parameter such that 0 < ϕ� ε� 1.

On the other hand, for all j 6= i and j ∈ {1, ..., νs} the other filters are not activated and their

relative physical faults are not present then, all efj ≡ 0 for all j 6= i and j ∈ {1, ..., νs}. Let’s
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define ef as the vector of the estimation errors:

eTf =
[
eTfy1

eTfy2
eTfu

]T
(2.135)

Finally, the overall Active Fault Tolerant Control system becomes:

plant

{
ė1 = F1(e1, e2,x1R ,u)− ẋR

εė2 = F2(e1, e2,x1R ,u, ε)− εẋ2M

fault estimator
{
ϕėfi = F3(e1, e2,x1R ,u, efi)

(2.136)

where
u = Γ1

(
e1 − efy1 ,x1R , ẋ1R , ẍ1R

)
+

+Γ2

(
e1 − efy1 , e2 − efy2 , fu + efu ,x1R

)
By approaching the problem in the sense of the Singular Perturbations it is possible to select

ϕ as perturbation parameter of fault estimation subsystem (fast dynamics). In this way the

plant can be considered characterized by a slow dynamics (slower than that relative to the fault

estimator). Consider the boundary-layer subsystem, here defined as:

e′fi = F3(e1, e2,x1R ,u, efi) (2.137)

Theorem 2.5. The origin of the boundary-layer subsystem defined in (2.137) is an exponentially

stable equilibrium point uniformly in (e1, e2,x1R ,u).�

Proof If the Hypothesis 2 is verified then the origin of (2.137) is uniformly LES in (e1, e2,x1R ,u).

In fact, the Hypothesis 2 requires M1(t) having some properties for each time t > 0, but the

term M1(t) is:

M1(t) = M1 (e1(t), e2(t),x1R(t),u(t)) (2.138)

which means that for each time t > 0, the quadruple (e1(t), e2(t),x1R(t),u(t)) is such that

the Hypothesis 2 is verified. In turn, if the Hypothesis 2 is verified the origin is LES for

each time t > 0 independently on the particular value of each variable in the quadruple

(e1(t), e2(t),x1R(t),u(t)), see Section 2.1.4.1. �

Theorem 2.6. Consider the perturbed system described in (2.136). If all the following assump-

tions are verified then, there exists ϕ∗ > 0 such that for all ϕ < ϕ∗, the origin of system (2.136)

is locally exponentially stable.

Assumptions:

1) the origin of system (e1 = 0, e2 = 0, ef = 0) is an isolated equilibrium point and the functions

L1 = F1 − ẋR, L2 = F2 − εẋ2M and L3 = F3 are locally Lipschitz in a domain that contain the
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origin. Hence, 
F1(0,0,x1R ,u, ε)− ẋR = 0

F2(0,0,x1R ,u, ε)− εẋ2M = 0

F3(0,0,x1R ,u, 0) = 0

(2.139)

where
u = Γ1 (0,x1R , ẋ1R , ẍ1R) + Γ2 (0, 0,Fu,x1R) =

= Γ1 (0,x1R , ẋ1R , ẍ1R)− Fu

2) the equation

F3(e1, e2,x1R ,u, efi) = 0 (2.140)

has an isolated root efiM = H3(e1, e2,x1R ,u) such that:

H3(0,0,x1R ,u) = 0; (2.141)

3) the origin the reduced system (aircraft)

ė1 = F1(e1, e2,x1R ,u)− ẋR

εė2 = F2(e1, e2,x1R ,u, ε)− εẋ2M

(2.142)

is exponentially stable;

4) the origin of boundary-layer system (fault estimation)

e′fi = F3(e1, e2,x1R ,u, efi) (2.143)

is exponentially stable, uniformly in (e1, e2,x1R ,u).�

Proof The proof starts by noting that the origin of the reduced system (plant)

ė1 = F1(e1, e2,x1R ,u, ε)− ẋR

εė2 = F2(e1, e2,x1R ,u, ε)− εẋ2M

(2.144)

with u = Γ1 (e1,x1R , ẋ1R , ẍ1R)+Γ2 (e1, e2, fu,x1R) is exponentially stable by design. The control

law is such that, when in absence of fault estimation error, the origin of state-space error of plant

subsystem is exponentially stable, see Section 2.2.2.3, indeed.

Furthermore, as proved in this section, also the origin of the boundary-layer subsystem (fault

estimation) is exponentially stable and the boundary-layer manifold solution is an isolated root

and corresponds to the origin.

Starting from above results, which verify all the assumptions in Theorem 2.6, the proof proceeds

by following the same steps in the proof of Theorem 11.4 in [66]. �
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Case Studies

This Section presents several applications of the proposed Active Control for aerospace

systems. The systems under investigation are aircraft, fixed wind unmanned aerial

vehicles, satellites and quadrotors. Their models share the same basic equations

and this is a fundamental aspect that allows the application of the proposed active

control strategy to all these systems. These examples cover different applications in terms of

active fault tolerant control, active disturbance rejection control and indirect adaptive control.

The motion of all aerospace systems, considered in this work, is described by two fundamental

groups of equations, see [87]. The first group is referred to the translational dynamics whereas

the second one describes the rotational dynamics. The equations describing the dynamics of

aircraft, UAV, satellite and quad-rotors have been written in an opportune body frame, selected

on the case, usually located in the center of gravity. Furthermore, all these systems are considered

rigid bodies, subject to the gravity (due the their mass) and external forces and momentums

generated by actuators (engines, momentum wheels, propellers, . . . ) and by the interaction with

the environment (aerodynamics, solar pressure, . . . ).

This thesis investigates methodologies, based on aerospace plants dynamics model, with a “short”

time horizon: the time windows during which the detection, isolation, estimation and the suc-

cessive control action evolve is short when in caparison with the entire mission of that system.

Thanks to these considerations the mass properties of the considered plants can be assumed as

constants.

The dynamics of a rigid body, in an inertial reference frame, expressed in body axes, is:

mV̇I,B + ΩB ×mVI,B =
∑

FB

IΩ̇B + ΩB × IΩB =
∑

MB

(3.1)

56
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where m and I represent the mass and the inertia matrix respect to the center of gravity, VI,B

is the translational speed respect to the inertial frame and expressed in body axes, ΩB depicts

the rotational speed vector in body axes, and finally, FB and MB respectively are the external

forces and momentums expressed in body axes.

The description of the motion of a rigid body is completed by the kinematic equations, also,

divisible in rotational and translational quantities:

ṖI = RB→IVI,B

ṘB→I = S (ΩB) RB→I
(3.2)

where PI represents the inertial position and RB→I is the rotation matrix from the body frame

to the inertial frame and describes the attitude of the rigid body relative to the inertial frame.

The next Sections describe, for each of the considered aerospace systems, the external forces and

momentums and the interaction with the environment.

Equations (3.1)-(3.2) describe the physical model of the system, particularly suitable for sim-

ulation goal, and for this called “simulation” model. The simulation model is completed by

identifying which are the manipulable inputs, the disturbances and the available outputs lead-

ing, in this way, to the determination of the so called “synthesis” model, i.e. the model used for

design. Often, due to the model high complexity, some simplifications are introduced in order

to make the synthesis model practically exploitable during the design process.
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3.1 Aircraft

The aircraft mathematical model is obtained by completing the equations (3.1)-(3.2) with the

description of the external forces and momentums, FB and MB. This work considers as “inertial”

frame a frame located on the earth surface and oriented along the North-East-Down directions

(NED). The external forces are due to the gravity acceleration, the aerodynamics and engine

thrust, see [88]:
FB = FB,g + FB,a + FB,e

FB,g = RI→B ezmg

FB,a = 1
2 ρS V

2
a


Cx

Cy

Cz


FB,e = FB,e (Va, RPM, ρ, δth)

(3.3)

The force due to the gravity acceleration, g, is represented by FB,g where RI→B is the rotation

matrix from inertial to body axes and ez indicates the unitary vector along the Down axes of

the NED reference frame.

The aerodynamic forces FB,a are function of the True AirSpeed, Va, i.e. the aircraft speed rela-

tive to the air, the air density ρ and the reference wing surface S. Furthermore, the aerodynamic

force components are modulated by three aerodynamic coefficients Cx, Cy and Cz. Usually, they

are functions of the airspeed vector components and their first time derivatives, the air relative

rotational speed and the control surface deflections:

C# = C#

(
Va,B, V̇a,B, Ωa,B, δ

)
(3.4)

with # ∈ {x, y, z},
Va,B = VI,B −WI,B

|Va,B| = Va

Ωa,B = ΩB −ΩWI,B

(3.5)

where Va,B is the airspeed vector, WI,B represents the wind velocity respect to the inertial

frame, Ωa,B indicates the rotational speed relative to the air and, finally, ΩWI,B
depicts the

wind rotational field. The aerodynamic surfaces deflections are represented by δ = [δe, δa, δr]
T

for elevator, aileron and rudder respectively.

The engines provide the thrust force, FB,e that usually is a function of the flight conditions

both in terms of airspeed, Va, and air density ρ. The available thrust also depends on the engine

working condition, here summarized by the engine shaft rotational speed RPM , on lots of engine

parameters (kind of propulsion system, size, ...) and as well as on the throttle valve opening

value δth.
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The external momentums, acting on the center of gravity of an aircraft, are composed by two

contributes:
MB = MB,a + MB,e

MB,a = 1
2 ρS V

2
a c̄


Cl

Cm

Cn


MB,e = MB,T (Va, RPM, ρ, δth)

(3.6)

The momentums induced by the engine, MB,e, is due to the lever arm between the thrust and the

gravity center, and to the propulsion system rotational momentum plus the gyroscopic effects.

The aerodynamic momentums reflect the same structure and the same dependencies of the

aerodynamic forces but with a further dimensional term, c̄, that is the mean aerodynamic chord.

The simulator in Figure 3.1 performs the updating of both the air density, ρ, and the gravity ac-

celeration modulus, g, by implementing the reference [89] and [90] respectively. The aerodynamic

surface deflection and throttle dynamics have been modeled as suggested in [88].

Figure 3.1: Aicraft simulator structure.

The simulator is comprehensive of different wind representations: constant wind, wind shear and

turbulence. As suggested in [91], the wind shear can be modeled in inertial axes as function of

spatial coordinates and then rotated to convenient axes, that in this work are the wind axes. In

particular, the wind model proposed in [91], is relative to microburst and is the most detailed and
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realistic analytical description for microburst presented nowadays in literature. In this work the

microburst is described by its linear components as well as its rotational field. The microburst

components are functions of the position and inertial speed of the aircraft:

W = W (PI)

ΩWI
= ΩWI

(PI)
(3.7)

Finally, also the Dryden turbulence model ([92] and [93]) (translational and rotational) has been

implemented by using the "Dryden Wind Turbulence Model" in the "Aerospace Blockset" of

Matlab–Simulink [94].

The simulator implements a model of the measurement system as follows:

• the command surface deflection angles are acquired by potentiometers whose errors are

modeled as white noises;

• the angular rate measurements are given by 2 gyroscopes of an IMU (Inertial Measurement

Unit). The corresponding errors take into account non unitary scale factor, alignment error

(random), g–sensitivity, additive white noise, gyro drift;

• the attitude angle measurement is given by a digital filtering system of both angular rate

and accelerations provided by the IMU. The corresponding errors are due to a systematic

uncertainty generated by the apparent vertical and a colored noise due to the system

structure and the environment influences;

• the angular rate measurements provided by a gyroscope unit different from gyroscope

device estimating angular rates and characterized by small drift vs larger bandwidths;

• Air Data Computer (ADC):

– Errors affecting the True AirSpeed are due to calibration error of differential pressure

sensor, additive colored noise induced by wind gusts and atmospheric turbulence and

additive white noise;

– Errors affecting the altitude are the calibration error of the static pressure sensor and

an additive white noise;

– Uncertainties affecting the attack angle are calibration errors affecting the wing boom

sensors and additive white noise.

A detailed description of the measurements used by the considered system can be found in [55].
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Synthesis model

The model based on (3.1)-(3.6) is particularly suitable for simulations but, for both the diagnosis

module and controller design, the use of a transformed set of equations expressed in the so called

“wind” reference frame is preferred. In this new reference frame, all the quantities, referred to

aerodynamic variables except for the body angular rates, are organized in a cascade structure

particularly suitable for the application of the backstepping and singular perturbation control

methodologies. 
Ẋ

Ẏ

Ż

 =


Va cosχ cos γ

Va sinχ cos γ

−Va sin γ

+ WI (3.8)


V̇a

χ̇

γ̇

 =


−g sin γ

0

− g
Va

cos γ

+ 1
m


1 0 0

0 − cosµ
Va cos γ − sinµ

Va cos γ

0 sinµ
Va

− cosµ
Va



−D
Y

−L

+ ε−1
I→WẆI+

+ 1
m


1 0 0

0 − sinµ cosβ sec γ cosµ sec γ

0 − cosµ cosβ − sinµ

 ε−1
B→WFB,e

(3.9)


µ̇

α̇

β̇

 =


sin γ + cos γ sinµ tanβ cosµ tanβ

− cos γ sinµ secβ − cosµ secβ

cosµ cos γ − sinµ


[
χ̇

γ̇

]
+

+


cosα secβ 0 sinα secβ

− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα

ΩB

(3.10)

IΩ̇B + ΩB × IΩB = MB,a + MB,e (3.11)

where εI→W and εB→W are defined as follows:

εI→W (Va, χ, γ) =


cosχ cos γ −Va sinχ cos γ −Va cosχ cos γ

sinχ cos γ Va cosχ cos γ −Va sinχ sin γ

− sin γ 0 −Va cos γ

 (3.12)

εB→W (Va, α, β) =


cosβ cosα −Va sinβ cosα −Va cosβ sinα

sinβ Va cosβ 0

sinα cosβ −Va sinβ sinα Va cosβ cosα

 (3.13)
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The aerodynamic forces, expressed in wind axes, are represented by the vector
−D
Y

−L

 =
1

2
ρSV 2

a


−CD (α, β,Ωa, δ)

CY (α, β,Ωa, δ)

−CL (α, β,Ωa, δ)

 (3.14)

The same dependences can be written for the aerodynamic momentums:

MB,a =
1

2
ρS V 2

a c̄


Cl (α, β,Ωa, δ)

Cm (α, β,Ωa, δ)

Cn (α, β,Ωa, δ)

 (3.15)

A common assumption sees the propulsion system producing only a thrust aligned with the

x-body axes. In this scenario the following holds:

FB,e = [T 0 0]T

MB,e = dT × FB,e

(3.16)

where dT represents the lever arm of the thrust respect to the aircraft center of gravity.

3.1.1 Active Fault Tolerant Control - Case 1

The simulated aircraft is a Piper PA-30 for which very detailed NASA and Lycoming technical

data are available. NASA Technical Notes [95], [96] and [97] describing the aircraft and propeller

aerodynamics and the engine manual [98] for engine model have been implemented for simulation

purposes.

Considering only the longitudinal dynamics the scenario, relative to this case, is composed by

two non-concurrent faults, fuδe and futh , respectively on elevator and throttle actuators, whereas

the vertical wind gust Wh represents the disturbance. In this contests the vectors fs and ds are

identified by:

• for the isolation of futh : fs1 = futh ds1 =
[
Wh, fuδe

]T
• for the isolation of fuδe : fs2 = fuδe ds2 = [Wh, futh ]T

The faults are assumed to be step functions of the time and the estimation algorithm selected

for this scenario is the recursive Least Squares with forgetting factor.

All the details on the backstepping controller structure, the x̄1-subsystems obtained by applying

the NLGA procedure, the stability proofs can be found in [58].
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Figure 3.2: Estimate f̂δe of fδe fault.

Simulation results

In this case study the filters are decoupled from both aerodynamic disturbances, i.e. the vertical

wind gust, and the other fault. Figure 3.2 shows a fault on the elevator (dotted line) of size

fδe = 1o and its estimate (black and gray) during an altitude hold flight phase. The fault is

detected, isolated and estimated with a time delay smaller than the characteristic flight dynamics

period and the convergence of the estimate to the actual fault size is observed. The fault

commences at time t = 50s. Figure 3.2 shows that, via the NLGA design, the residual for the

estimation of the throttle fault does not exceed its thresholds even in presence of elevator faults.

The lower picture of Figure 3.2 shows also an elevator fault estimation (gray line) that is not

decoupled from wind disturbances. It is clear how the wind gust (at time 20s) affects the fault

estimate (gray line) making it useless.

Figure 3.3 shows the accurate fault estimate for the case of a fault on the throttle of size

fδth = −10%.

The performance of the controlled aircraft with or without the estimated fault feedback are

compared. In this way, the benefits of adopting the proposed AFTC scheme are highlighted in

terms of state dynamics. The following simulations performed in presence of wind and noise on

both input and output sensors serve to highlight the advantages of the fault recovery procedure

obtained by using the fault estimate feedback. Since the fault is detected, isolated and estimated

with a dynamics faster than the fastest aircraft dynamics, the flight proceed normally without

loss of performance. Figure 3.4 is particularly meaningful because it compares the influence

of a vertical wind gust and the effect of a not recovered elevator fault on the altitude. Similar

considerations hold for Figure 3.5 that depicts the transient after the throttle fault occurrence. It
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Figure 3.3: Estimate f̂δth of fδth fault.
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Figure 3.4: Aircraft state with and without AFTC scheme: case of fault on δe.

is worth observing that the results refer to the same simulations conditions (noises, disturbances,

etc.).

3.1.2 Active Fault Tolerant Control - Case 2

The scenario considered in this case regards an Active Fault Tolerant Control that allows an

aircraft to land, even in presence of multiple and concurrent sinusoidal faults of both elevator
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Figure 3.5: Aircraft state with and without AFTC scheme: case of fault on δth.

and throttle. The isolation module provides two distinct and independent activation signal for

two dedicated estimation filters.

Differently from the kind of faults considered in Section 3.1.1, in this case the faults are char-

acterized by a more general behavior and the recursive Least-Squares with forgetting factor is

not the most appropriate estimation algorithm. In this case, a Radial Basis Functions Neural

Network has been implemented because it allows the estimation of generic functions due to their

approximation capabilities, see [73].

As in Section 3.1.1, only the longitudinal dynamics has been considered as methodologically

representative example. All the details on the backstepping controller and on the Detection,

Isolation and Estimation module are contained in [59].

Simulation results

In order to test the performances brought by the application of the proposed AFTFC scheme,

an RQ-2 Pioneer UAV simulator has been considered. Whereas the simulator structure remain

the same of Figure 3.1, the geometric and aerodynamic characteristics of the aircraft and the

simulation parameters are those considered in [63] and [99]. Also a first order dynamic system

has been introduced to simulate the engine response. The actual fault amplitude are 100N and

5deg with commencing time 100s and 200s for thrust and elevator faults respectively. Hence,

after the time t = 200s the faults are concurrent. The measurement noises are characterized by

3σ equal to 1 for V , γ and α in the proper dimensions m/s and deg, and 0.1 for q in deg/s.
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Figure 3.6: Estimation of sinusoidal concurrent faults on δth and δe.

Figure 3.7: Aircraft state with and without AFTC scheme: case of concurrent faults on δth
and δe.

In this case the backstepping controller, without fault estimates feedback, is not able to com-

pensate the fault neither after a transient, as highlighted in Figures 3.7 and 3.8.

On the other hand, the proposed AFTFC, which exploits the accurate sinusoidal estimates for

fault compensation, see Figure 3.6, yields to a very good aircraft behavior thus restoring a safe

flight envelope. Finally, since in presence of sinusoidal fault, a threshold based on the fault size

estimate cannot be defined, this work uses the mean of the absolute fault estimate on a sliding

window as fault detection signal.
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Figure 3.8: Distance from the glide slope with and without AFTC scheme: case of concurrent
faults on δth and δe.

3.1.3 Active Fault Tolerant Control - Case 3

This case presents the most complex fault scenario of this thesis. Considering only the longitu-

dinal dynamics of an aircraft, this case proposes a fault scenario composed by 8 non concurrent

faults, 4 of them on the state sensors, 2 on the actuators state sensors and, finally, 2 on the

actuators:

• output faults: fy = [fV , fγ , fα, fq, fye , fyT ]T ;

• input faults; fu =
[
fuδe , fuδT

]T
The fault scenario is represented by f = [f1, ..., f8]T =

[
fTy fTu

]T and 8 fs and ds can be identified

with:

fsi = fi dsi = f \ fi ∀ i ∈ {1, ..., 8} (3.17)

The Isolation logic works on the base of the Table 3.1, representing the Residual Matrix, RM .

Table 3.1: Isolation Logic Residual Matrix

Faults r1 r2 r3 r4 r5

fV 1 1 1 0 0
fγ 1 0 0 0 0
fα 0 1 1 0 0
fq 0 0 1 0 0
fyT 0 1 1 1 0
fye 0 1 1 0 1
fuT 1 0 0 1 0
fuδe 1 0 0 0 1
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Figure 3.9: Detection residuals behavior: comparison for isolation.

The longitudinal dynamics of the aircraft is controlled by a “composite” controller, see Section

2.2.2, with the “slow” x1 and the “fast” x2 state variables identified as follows:

x1 = [V, γ]T x2 = [α, q, δe, T ]T (3.18)

where the dynamics of the actuators has been classified as a “fast” dynamics. Finally, the errors

e1 and e2 are defined as in 2.2.2. The details and results relative to this case have been presented

in [56].

Simulation results

This section evaluates the performance of the AFTC in a fault scenario that take account of

the presence of sensor noises. The guide and control performances are investigated by showing

the state errors, e1 and e2, whereas the Diagnosis module performance is shown by the fault

estimation behavior, f̂i. The simulated aircraft is a wide-body jet commercial airliner which

aerodynamics and mass properties, listed in [100], have been implemented in the simulator of

Figure 3.1. The reference trajectory is described by the constant vector x1R = [VR, γR]T =

[67m/s,−3deg]T which corresponds to a faultless manifold described by the constraint:

x2M = [αM, qM, TM, δeM ]T =
[
10.3deg, 0deg/s, 2.67 · 105N, 0deg

]T (3.19)
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Figure 3.10: Fault Estimation: F̂V estimates FV .

The simulations are particularly meaningful since the slow and fast dynamics, for this class of

aircrafts, are significantly coupled.

In Fig. 3.9 the residuals behavior has been showed in the case of airspeed sensor fault, fV . The

first three residuals overstep their threshold identifying, in this way, the configuration of the

first row of Table 3.1. The isolation logic, in less than 1 second, recognizes the faulty sensor

and activates the estimation filter, which is specifically designed to estimate the isolated fault.

Fig. 3.10 shows the estimation of fV with a settling time of about 4 seconds. Furthermore,

in presence of the same fault fV , Fig. 3.11 shows the state error as deviation from reference

trajectory: the red line shows the controller performance when no fault compensation is engaged,

i.e. when the fault estimation is not provided to the controller. The AFTC, that exploits the

fault estimation (blue line), guarantees high performance levels similar to the case of faulty free

scenario. Finally, it is worth nothing that without fault compensation the angle of attack, α,

gets hazardously close to the stall angle.

3.1.4 Active Wind Rejection Control

In this scenario the problem is limited to the longitudinal dynamics of an aircraft that is flying

along the glide path. During the final approach, a wind shear is encountered and the control

goal is to let the aircraft continuing its mission (descent).

Two main wind contributions have been taken into account: the wind shear, modeled by a

deterministic model, and the turbulences, well described by the Dryden statistic wind model.

The wind shear model, suggested in [91], is relative to microburst and it is the most realistic

analytical description for microburst presented till now. Furthermore the rotational wind field

has been taken into account too. When the aircraft dynamics are expressed with respect to the
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Figure 3.11: State error, e = [e1, e2]T : the designed AFTC, when engaged, guarantees
faultless–like performance.

wind axes, the wind time derivatives arise as described in Section 3.1. Equation (3.9) contains

also the first time derivative of the linear wind components. Since the wind shear modeled as in

[91] is a space but time invariant function, its time derivative is formally obtained as:

ẆI = J (WI)


Ẋ

Ẏ

Ż

 (3.20)

where J (WI) represent the Jacobian matrix of WI . Even if the microburst is modeled as fixed

with respect to the ground, aircraft flying through this wind experiment a different shape wind

because of different trajectory in time–space coordinates. This fact has motivated the authors

to find estimation filters for generic winds. The estimation algorithm implemented for this case

is based on the Radial Bases Function Neural Network.

The implemented controller is a backstepping type and its details as well as the description of

the x̄1-subsystems are published in [64].

Simulation results

The adopted simulated aircraft is a wide-body airliner whose parameters are summarised in Table

3.2 of [64]. The nonlinear simulator is detailed with an accurate aerodynamics description and

the implementation of the most advanced microburst model, as specified in [91]. The aircraft is
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Figure 3.12: Comparison of the simulated and estimated horizontal wind component.
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Figure 3.13: Comparison of the simulated and estimated vertical wind component.

assumed to be in an approach configuration during the final segment of an instrumental landing

trajectory.

The following figures show the performances of the designed NLGA RBF-NN adaptive filters

providing the estimates of the wind disturbance components. Figures 3.12, 3.13 and 3.14 report

the comparisons between the simulated wind components Wx, Wh and ωq (gray lines) and their

relative estimations Ŵx, Ŵh and ω̂q (red lines). Figures 3.15 and 3.16 show the estimates

of the wind derivatives Ẇx and Ẇh. In particular, they show the actual values of the overall

wind derivatives (gray lines) comprehensive of Dryden turbulences, the actual values of the wind

shear microburst derivatives only (black lines) and the corresponding estimates (red lines). The
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Figure 3.14: Comparison of the simulated and estimated rotational wind component.
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Figure 3.15: Comparison of the simulated and estimated horizontal wind derivative.

estimation goal is to provide a good and fast estimation of the microburst wind components

only. It can be seen that the designed adaptive filters are able to estimate the evolution of

the microburst wind derivatives by filtering the high frequency components due to the Dryden

turbulence derivatives.

The wind estimates are exploited by the controller in order to compensate the wind effects

and guarantee a safe flight during the glide slope path following. Figure 3.17 shows the dis-

tance (tracking error) from the glide path in presence of wind–shear microburst and Dryden

turbulences, whose components have been described in Section 3.1.4. The benefits of a wind

compensating controller, that allows a substantial reduction of the distance from the glide path,
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Figure 3.16: Comparison of the simulated and estimated vertical wind derivative.
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Figure 3.17: Aircraft trajectory in the case of the controller with and without wind compen-
sation.

are clear. In fact, the maximum tracking error is about 30 meters without wind shear compen-

sation (blue line), while it reduces to about 3 m (red line) with the wind estimation. Figure 3.17

shows, in a clearly way, the trajectories of the controlled aircraft with (red line) and without

(blue line) the wind compensation. Moreover, the profile of the wind–shear microburst is de-

picted through a schematic representation of the wind velocity and direction (magenta arrows).

Finally, Figure 3.18 shows the dynamics of the main state variables (from an aeronautical point

of view) V and α, for the controller without (blue lines) and with wind compensation (red lines).

It is easy to see that, thanks to the wind compensation procedure, the attack angle, α, remains

safely below its stall value. On the other hand, without wind estimation, the angle of attack
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Figure 3.18: State evolutions in the case of the controller with and without wind compensa-
tion.

dangerously approaches the stall angle (15 deg). Therefore, the simulation results highlight

the satisfactory performances achieved via the Active Control strategy relying on the NLGA

RBF-NN wind estimation filters.

3.1.5 Flight Parameter Estimation for Extended Guidance Navigation and
Control

This Section proposes an airspeed virtual sensor to extend the guidance navigation and control

functions of an aircraft. The model exploited in this case is not in common with those depicted

in (3.1)-(3.2) and will be detailed hereafter.

The main idea is to exploit the measurement (direct or indirect) of the aerodynamic forces

applying on a control surface which are clearly related to the aircraft airspeed. Focusing on

those aircraft equipped with a Fly By Wire system, at least one actuator is installed on each

of the control surfaces; the actuators operate the surface by fighting against the aerodynamic

forces. Generally speaking, aircraft are designed with a minimum set of control surfaces (one

elevator, one rudder and two ailerons) but there are lots of examples of aircraft with redundant

control surfaces. The possibility to exploit several measurements for the estimation of one flight

parameter suggested the implementation of the "Least Squares – Sliding Mode" algorithm. This

new virtual sensor, based on the NLGA and exploiting the LS − SM , has been applied to real

aircraft flight data set leading to very encouraging preliminary results.

On each surface, the hinge momentum is constituted by the sum of momentums mainly due to

the surface mass, surface inertia (movements), aerodynamics and frictions as well as actuator
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Table 3.2: List of symbols

Symbol Description Dimensions
J Surface Inertia kg ·m2

δ Surface deflection rad
Ma Aerodynamic hinge momentum Nm
Min Inertial hinge momentum Nm
∆P Hydraulic chambers differential pressure Pa
S Piston reference area m2

F Friction N
l Actuator lever arm m
γ Specific heat ratio −
Ps Static air pressure Pa
M Mach number −
V Surface reference volume m3

Ch Aerodynamic hinge momentum coefficient −
d Distance from the surface hinge to the surface center of gravity m
n Load factor −
m Surface mass kg
g Gravity acceleration m/s2

R Specific air constant J/(kgK)
T0 Temperature @ ISA sea level K
Ps0 Static pressure @ ISA sea level Pa

torques. The aerodynamic momentum varies as the aircraft speed varies, so, the proposed

solution exploits this relation to estimate the aircraft speed.

The following mathematical model represents the link between the hydraulic chambers of the nj
actuators installed to rotate the j-th aircraft control surface. For the description of all symbols,

see Table 3.2:

Jj δ̈j = Maj +
∑nj

i=1

(
∆PijSij + Fij

)
lij +Minj (3.21)

where
Maj = 1

2γPsM
2VjChj

Minj = ||dj × nj ||mjg
(3.22)

The aerodynamic hinge momentum coefficient, Ch, usually identified by flight test, is, in general,

a complex function of the Mach number, aircraft attack angle and sideslip, surface deflection,

aircraft angular rates, aircraft aerodynamic configuration, etc. A simplified expression for Ch is

suggested in [100] and reported here:

Ch = Ch0 + Chαα
∗ + Chδδ (3.23)

where α∗ represents the local angle of attack, δ is the surface deflection. Furthermore, the surface

deflection, δj , and the hydraulic differential pressure, ∆Pij , are assume to be measured. The
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Figure 3.19: Surface – actuator: j-th system

actuators rod surface, Sj , the surface mass center, dj , and the lever arm, lj , are known geomet-

rical properties. Figure 3.19 depicts the system and its associated variables. With particular

attention to the aileron, the local angle of attack is expressed as α∗ = αa/c±p lδa/Va where lδa is

the distance from the aircraft center line to the considered aileron. The Va is the True AirSpeed

that can be expressed as function of the Mach number: Va = M a where a is the (unknown)

speed of sound. The sign ± indicates that, for right ailerons a positive roll rate increments the

local angle of attack and, vice-versa, for left ailerons a positive roll rate decrements the local

angle of attack. The complete model for the j-th right aileron is:

Jj δ̈
right
j = 1

2γPsM
2Vj

{
Ch0j

+ Chαj
[
αa/c + p lδj/ (M a)

]
+ Chδj δ

right
j

}
+

+
∑nj

i=1

(
∆P rightij

Sij + F rightij

)
lrightij

+
∣∣∣∣∣∣dj × nrightj

∣∣∣∣∣∣mjg

yrightj = δrightj

(3.24)

The goal is the estimation of the Mach number, M, even during turns, i.e. for any roll rate, p.

So, for the application of the NLGA, the following two quantities are defined:

fs = M2 ds = p (3.25)

Assuming the presence of k left ailerons and k counterparts (right ailerons) the NLGA procedure

generates k new variables identified by:

δj = δleftj + δrightj ∀ j ∈ {1, ..., k} (3.26)
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leading to the following x̄1-subsystem:

˙̄x11 = M1(t)fs + M2(t)

˙̄x12 = x̄11

ȳ1 = x̄12

(3.27)

where
M1(t) =

[
M11 ... M1k

]T
M2(t) =

[
M21 ... M2k

]T (3.28)

and

M1j = γPsVj

(
Ch0j

+ Chαjαa/c +
1

2
Chδj δj

)
∀ j ∈ {1, ..., k} (3.29)

M2j =
∑nj

i=1

(
∆P rightij

Sij + F rightij

)
lrightij

+
∣∣∣∣∣∣dj × nrightj

∣∣∣∣∣∣mjg+

+
∑nj

i=1

(
∆P leftij

Sij + F leftij

)
lleftij

+
∣∣∣∣∣∣dj × nleftj

∣∣∣∣∣∣mjg ∀ j ∈ {1, ..., k}
(3.30)

It’s with nothing that the system (3.27) is trivially dependent on the roll rate, p, but directly

affected by the Mach number.
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Simulation based on real flight data

The results depicted in this section are relative to the application of the proposed algorithm

to a real aircraft flight data set. Figure 3.20(A) shows the real Mach number as measured by

classical aircraft on board sensors (blue line), and the estimated Mach (in red). Finally the

black line represents a filtered version of M̂ added, only for presentation purposes, to highlight

the behavior of the mean of the estimation. The Mach number can be converted in terms of

Calibrated Air Speed (CAS), Figure 3.20(B), thanks to the classical formula:

CAS =
√

2
γ−1

√
γRT0

√{
Ps
Ps0

[(
1 + γ−1

2 M2
) γ
γ−1 − 1

]
+ 1

} γ
γ−1

− 1 (3.31)

The estimation error is shown, in red, in Figure 3.20(C)-(D): for low CAS (i.e. for low dynamic

pressures), CAS < 300 kts, the error is practically negligible and its mean is close to zero. On

the other hand, at higher CAS, the Mach estimation error is limited, quite constant and less

that 0.05. Error at high CAS, not found during preliminary simulations and discovered by flight

test, is probably due to nonlinear phenomenon, not included in the synthesis model, such as the

aeroelasiticty.

(a) Mach estimation v.s. time in seconds (b) CAS estimation v.s. time in seconds

(c) Mach estimation error (d) CAS estimation error

Figure 3.20: Airspeed Virtual Sensor: performance
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3.2 Fixed Wing UAV

The model for the design of Active Control laws for fixed wing Unmanned Aerial Vehicles is

obtained from the synthesis model of aircraft of Section 3.1, whereas the simulation models are

the same, see Figure 3.1.

The application of the singular perturbation approximation to the model (3.8)-(3.11) is motivated

by the different time scales relative to the rotational and translational dynamics. In particular,

the rotational dynamics is faster than the translational one and, with a properly designed fast

control law, the manifold x2M is stable. With this in mind let’s assume that the fast variables,

such as α, β, µ exactly track their reference values αR, βR, µR, as well as the rotational speeds,

i.e. ΩB = ΩBR . The equilibrium of the angles impose ΩBR = 0 whereas, usually, the reference

sideslip angle is imposed to zero, i.e. βR = 0. So the model representing the reduces system is:
V̇a

χ̇

γ̇

 =


−g sin γ

0

− g
Va

cos γ

+ 1
m


1 0 0

0 − cosµR
Va cos γ − sinµR

Va cos γ

0 sinµR
Va

− cosµR
Va



−D
Y

−L

+ ε−1
I→WẆI+

+ 1
m


1 0 0

0 − sinµR sec γ cosµR sec γ

0 − cosµR − sinµR

 ε−1
B→WFB,e

(3.32)


−D
Y

−L

 =
1

2
ρSV 2

a


−CD (αR, 0,Ωa, δ)

CY (αR, 0,Ωa, δ)

−CL (αR, 0,Ωa, δ)

 (3.33)

Further useful approximation are introduced to reduce the model complexity while saving the

model representativity:

• a common assumption is that the propulsion system provides a thrust mainly described

by its x-body component, i.e. FB,e = [T, 0, 0]T .

• the lift force, L, is n times the aircraft weight, i.e. L = nmg, where n represents the load

factor;

• the aerodynamic drag, D, is approximated by the classical polar curve:

D =
1

2
ρV 2

a S

[
CD0 +K

(nmg)2(
1
2ρV

2
a S
)2
]

(3.34)

• the side force Y evaluated in β = 0 is negligible respect to the other forces.



Chapter 3. Case Studies 80

The final synthesis model is: 
Ẋ

Ẏ

Ż

 =


Va cosχ cos γ

Va sinχ cos γ

−Va sin γ

+ WI (3.35)


V̇a

χ̇

γ̇

 =


−g sin γ − 1

2mρV
2
a SCD0

0

− g
Va

cos γ

+ 1
m


T −K (nmg)2

1
2
ρV 2
a S

nmg sinµR
Va cos γ

nmg cosµR
Va

+ ε−1
I→WẆI (3.36)

3.2.1 Active Fault Tolerant Control

This application is particularly interesting because implements the “recursive” Detection and

Isolation concept proposed in Section 2.1.1.4.

The inputs of model (3.35) - (3.36) are the thrust, T , the load factor, n, and the aerodynamic

bank angle, µ. Two of these three inputs are considered subject to fault and, in particular,

constant step functions are assumed to affect the thrust and the load factor, i.e. fT and fn. The

strong nonlinearities don’t allow the isolation of multiple concurrent faults on the thrust and

the load factor: the standard NLGA procedure, in this case, effectively says that:

• it’s possible to detect and isolate the load factor fault, independently from the thrust fault;

• it’s not possible to detect and isolate thrust faults independently from faults affecting the

load factor.

This conclusions would led to the possibility to detect and isolate only non concurrent faults. By

introducing the concept of the “recursive” detection and isolation based on the estimation, once

the load factor fault is estimated (so it becomes a known function) also the thrust fault can be

estimated. The resulting Fault Detection and Diagnosis Module is depicted in Figure 3.21. The

implemented estimation algorithm is the recursive Least Squares with forgetting factor whereas

the controller has the typical backstepping structure where the mathematical peculiarity is the

use of the dynamic extension to deal with the non input-affine synthesis model (3.35) - (3.36).

The details on the controller and on the Detection and Diagnosis module can be found in [57].

Simulation results

As shown in the following simulation results, the fault decoupling is perfect in steady–state

conditions, and negligible in transient conditions, if the NLGA–AF is designed to provide a
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Figure 3.21: Recursive Detection and Isolation Scheme based on Estimation

(a) Estimation of the load factor fault,
f̂n

(b) Estimation of the thrust fault, f̂T

(c) Euclidean position error with and
without recovery

(d) Euclidean position error with and without
recovery

Figure 3.22: FW-UAV: Estimation and tracking performance

prompt fault reconstruction. Figure 3.22(A) shows the estimate of the signal f̂T (dashed line)

and compares it to the actual simulated fault fT (continuous line). In particular, Figure 3.22(C)

shows the airspeed signal V when the AFTCS recovers the fault (dashed line) and without fault

accommodation (continuous line). Figure 3.22(D) shows the tracking error, one of the most

meaningful aircraft variables that should assess the performances of the and AFTCS strategy,

with (dashed line) and without (continuous line) fault recovery.
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3.3 Satellite

In this thesis only the attitude dynamics of satellites is investigated. The model is represented

by:
ṘB→I = S (ΩB) RB→I

IΩ̇B = −ΩB × IΩB +
∑

MB

(3.37)

where the external momentums are the sum of three main contributions:

∑
MB = MB,g + MB,a + MB,m + MB,e (3.38)

• MB,g is the torque due to the gravitational field:

MB,g =
3µ

R3


(Iz − Iy) c2c3

(Ix − Iz) c1c3

(Iy − Ix) c1c2

 (3.39)

where µ is the gravitational constant, R is the orbital height, Ix, Iy and Iz are the principal

inertia components and c1, c2 and c3 represent the components of the director cosine

describing the attitude with [c1, c2, c3]T = RI→Be1;

• MB,a represents the torque due to the aerodynamic disturbance (if the satellite flies in a

non empty space):

MB,a = −rCP × e2
1

2
ρV 2

a SCD (3.40)

where rCP represents the level arm from the center of pressure to the center of mass of the

satellite, ρ is the air density (where present), Va is the orbital speed, S is spacecraft cross

section and CD indicates the drag coefficient (CD ≈ 2.2);

• MB,m is the torque due to the magnetic field (when present):

MB,m = m×B (3.41)

where m is the residual magnetic induction due to the currents circulating on board and

B is the planet magnetic field;

• MB,e indicates the manipulable inputs such are three reaction wheels aligned with the

body axes:

MB,e = I3×3


M1

M2

M3

 (3.42)
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Figure 3.23: Satellite simulator scheme

Synthesis model

The synthesis model, for the following Active Fault Tolerant Control design, exactly matches

the simulation model but neglects the magnetic torques because they are, when compared to

the rest of phenomenons, negligible.

3.3.1 Active Fault Tolerant Control

If the torque due to the gravitational field can be considered known by data collected in past

missions, the aerodynamic torque is quite unpredictable and constitutes a real disturbance. On

the other hand the scenario considers the presence of non concurrent faults on the reaction

wheels, fMB,e
= [f1, f2, f3]T affecting MB,e = [M1,M2,M3]T . Then, the scenario of disturbance

and fault is represented by f =
[
fMB,e

, MB,a

]T , whereas the fs and ds are defined as follows:

• for the estimation of fault on the first and the second reaction wheel

fs = [f1, f2]T ds = [f3, MB,a]
T

• for the estimation of fault on the first and the third reaction wheel

fs = [f1, f3]T ds = [f2, MB,a]
T

• for the estimation of fault on the second and the third reaction wheel

fs = [f2, f3]T ds = [f1, MB,a]
T
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(a) Estimation of a step fault on the first
reaction wheel

(b) Compensation of a step fault on the
first reaction wheel: roll angle dynamics

Figure 3.24: Satellite: Estimation and tracking performance - case of step faults

The residuals arising from these Identification architecture are called “generalized” and represent

a solution to Problem 3.

Three kind of faults have been simulated such as step, ramp and sinusoidal functions, then, the

selected estimation algorithm is a Radial Basis Function Neural Network. The controller has

the backstepping structure: all the details have been published in [61].

Simulation results

Three types of additive faults are considered, affecting the actuated torque signal M1 and com-

mencing at t = 5s:

1. A step fault f1 = af with size af = −0.06Nm;

2. A ramp fault f1 = art with slope ar = −0.004Nm/s;

3. A sinusoidal f1 = assin(2πt/Tf ) with amplitude as = 0.05Nm and period Tf = 20s.

Figure 3.24(A) shows the fault estimate obtained once the FDD module is activated. The

black signal represents the true occurred fault, whereas the blue signal represents the fault

estimation obtained by means of the designed aerodynamic decoupled NLGA RBF NN adaptive

filters. As shown, the decoupled estimation results to be unbiased. Moreover, the estimation

result is compared with the one obtained by means of not decoupled adaptive filters (red line).

The not decoupled estimate presents a bias of about the 10% of the true fault size due to

the estimation error of the adaptive filters not decoupled from the aerodynamic disturbance.

These not decoupled filters are obtained by exploiting an approach similar to the one proposed

in [60] and [101]. In this case, the adaptive filters are designed by completely neglecting the

aerodynamic disturbance model in the satellite dynamic model (see [62] for further details).

Hence, the use of the NLGA and RBF NN for the design of aerodynamic decoupled adaptive fiters

allows a more accurate fault estimation with respect to a classical not disturbance decoupled
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(a) Estimation of a ramp fault on the
first reaction wheel

(b) Compensation of a ramp fault on the
first reaction wheel: roll angle dynamics

Figure 3.25: Satellite: Estimation and tracking performance - case of ramp faults

(a) Estimation of a sinusoidal fault on
the first reaction wheel

(b) Compensation of a sinusoidal fault
on the first reaction wheel: roll angle dy-

namics

Figure 3.26: Satellite: Estimation and tracking performance - case of sinusoidal faults

estimation approach. Figure 3.24(B) shows the behavior of the roll angle φ. The behaviors

of the pitch angle e and yaw angle are similar and not reported here. Figure 3.24(B) shows

the obtained results by exploiting three different attitude control strategies. The black line

represents the roll angle dynamics without the fault recovery (i.e. a large deviation from the

reference value), whereas the blue and red lines represent the fault accommodation exploiting the

aerodynamic decoupled and not decoupled FDD estimations respectively. The decoupled FDD

estimation allows to return to the reference attitude condition with great accuracy, whereas the

feedback of the not decoupled FDD estimation causes a deviation from the reference value. This

comparison highlights the better attitude control performances obtained by the AFTCS relying

on an aerodynamic decoupled FDD module. Considering the ramp fault, Figure 3.25(A) and

Figure 3.25(B) show the fault estimate and the roll angle behavior respectively. As before, the

not decoupled FDD estimations show a bias with respect to the true fault value. In this case, due

to the ramp fault type, the FDI detection time is longer. Hence, also the activation of the FDD

module takes more time. Considering the sinusoidal fault, Figure 3.26(A) and Figure 3.26(B)

show the fault estimate and the roll angle behavior respectively. Also in this case, a bias is

present in the not decoupled estimate together with a longer detection time with respect to the

step fault case. The fault accommodation obtained by exploiting the decoupled fault estimate

is still good.
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3.4 Quad Rotor

The simulation model for quad-copters share some commonalities with the simulation model

(3.1)-(3.2). In particular, the rotational dynamics it’s the same whereas the translational dy-

namics is expressed in the inertial frame. The model is reported hereafter:

mP̈I = RB→I (Fprop + Fbody) +mge3

ṘB→I = S (ΩB) RB→I

IΩ̇B = −ΩB × IΩB + Mprop + Mload + Mbody

(3.43)

The forces acting on the quadrotor are induced by the propellers Fprop and by the drag due to

the central body Fbody. The propellers forces are expressed in body frame as follows:

Fprop =


Nx

Ny

T

 (3.44)

where the terms Nx and Ny are the side forces whereas the T indicates the thrust. The following

expressions are common model for the propeller induced side forces:[
Nx

Ny

]
= −2ρ

(
2π

60

)
D3

4∑
i=1

niCQ

(
eT3 RI→BVaI + ΩB × li

niD

)[
1 0 0

0 1 0

]
RI→BVaI (3.45)

The termD indicates the propeller diameter, li is the i-th engine arm, ni represents the revolution

per minutes of the i-th propeller, ρ is the air density, and CQ is the propeller torque coefficient.

The overall thrust is modeled as the sum of four single thrusts:

T = −ρ
(

2π

60

)2

D4
4∑
i=1

n2
iCT

(
eT3 RI→BVaI + ΩB × li

niD

)
(3.46)

where CT is the propeller thrust coefficient.

The airspeed expressed in inertial frame is defined as VaI = VI −WI . The quadrotor central

body induces an aerodynamic drag that can be modeled as:

Fbody =
1

2
ρ |VaI |

2 S


Cx (RI→BVaI )

Cy (RI→BVaI )

Cz (RI→BVaI )

 (3.47)

with Cx, Cy and Cz are the central body aerodynamic drag coefficient and S represents the

central body plan surface. The momentum induced by the aerodynamic drag is represented by:

Mbody = lbody × Fbody (3.48)
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Figure 3.27: Quadrotor simulator scheme

The propellers induce torques are the sum of two contributes, i.e. the aerodynamic and the

gyroscopic momentums respectively indicated by Maero, by Mgyr and by Mdamp:

Mprop = Maero + Mgyr + Mdamp (3.49)

Maero =
4∑
i=1

(li × Fprop + e3Qi) (3.50)

where the yaw torques Qi are:

Qi = kiρ

(
2π

60

)2

n2
iD

5CQ

(
eT3 RI→BVaI + ΩB × li

niD

)
(3.51)

with ki ∈ {−1, 1} and
Mgyr = −

∑4
i=1 ΩB × Ipropni (3.52)

Mdamp = (2π)πσ ρ2
(

2π
60

)2 (D
2

)5∑4
i=1 n

2
i


arctan

(
p

( 2π
60 )ni

)
arctan

(
q

( 2π
60 )ni

)
0

 (3.53)

The momentum Mload is due to the payload mass position relative to the center of gravity and

due to the payload movements. Finally, also the actuators model have been implemented into

the simulator:

Iprop

(
2π

60

)
ṅi = Ci − kiρ

(
2π

60

)2

n2
iD

5CQ

(
eT3 RI→BVaI + ΩB × li

niD

)
(3.54)
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Figure 3.28: Exogenous disturbance and its estimation.

where Ci is the commanded torque on the i-th engine shaft and Iprop represents the propeller’s

inertia.

Synthesis model

The simulator model is too complex to be used for controller design purposes. So the following

assumptions reduce the model to the so called “synthesis” model. The propeller thrusts are

assumed as in static working conditions:

T̄ = −ρ
(

2π

60

)2

D4
4∑
i=1

n2
iCT (0) (3.55)

whereas the side forces are considered as negligible, i.e. Nx, Ny ≈ 0. The simplified forces model

is completed by neglecting also the Fbody components.

On the other hand also the torques are approximated, and in particular:

M̄aero = −ρ
(

2π

60

)2

D4
4∑
i=1

(
li × e3T̄ + e3kiρ

(
2π

60

)2

n2
iD

5CQ (0)

)
(3.56)

whereas the momentums induced the gyroscopic effects and the external payload are neglected.

The dynamics of the propellers have been neglected because of the presence of RPM control

systems which assure that the desired value of ni is reached for each i-th engine. Thanks to this

assumption the terms ni are considered as system manipulable inputs.
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Figure 3.29: Inertial position in the case of the controller with and without disturbances
compensation.

Finally, the synthesis model is:

mP̈I = −RB→Ie3T̄ +mge3 + FI,a

ṘB→I = S (ΩB) RB→I

IΩ̇B = −ΩB × IΩB + M̄aero + MI,a

(3.57)

where FI,a = [FI,ax , FI,az , FI,az ]
T and MI,a = [MI,ax ,MI,az ,MI,az ]

T represent equivalent forces

and momentums, induced by model mismatching and real external disturbances such as wind,

not included in the synthesis model.

3.4.1 Active Disturbance Rejection Control

Assuming that the disturbance components are generic functions, always concurrent, the NLGA

procedure has been applied to create three new x̄1-subsystems for the estimation of the elements

of FI,a. The controller structure is that of a backstepping but the implemented control law also

contains improving robustness features. Due to the generality of the signals to be identified the

Radial Basis Function Neural Network has been chosen as estimation algorithm.

The NLGA procedure is applied three times, for the creation of a dedicated estimators set, with

the following definitions:

• for the estimation of the first component of FI,a: fs = FI,ax and ds = [FI,az , FI,az ]
T ;

• for the estimation of the second component of FI,a: fs = FI,ay and ds = [FI,ax , FI,az ]
T ;

• for the estimation of the third component of FI,a: fs = FI,az and ds =
[
FI,ax , FI,ay

]T ;
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Figure 3.30: Inertial speed in the case of the controller with and without disturbances
compensation.

The paper [65] contains all the details relative to this application.

Simulation results

Simulation results highlight the controller performance both with and without the exogenous

disturbance estimation feedback.

The simulator implements the disturbance described in this section and an accurate wind field

model. It is constituted by the following concurrent contributions: a Dryden turbulence (with

zero mean), a wind shear model (to model mountain environments) and a discrete wind gust

(1− cos shape) (to take into account for asymptotically constant wind).

In the following simulation, the control objective is, starting from an erroneous initial position, a

hovering at coordinates PI = [0, 0, 0]′. During the simulated maneuver (in presence of wind) the

quad–rotor is subject to external unmodeled disturbances that can affect the control accuracy

both during the transient and asymptotically.

Figure 3.28 shows the estimation filters performance in terms of both accuracy and readiness.

The benefits arising from the feedback of the estimated exogenous disturbances are highlighted

in Figures 3.29 and 3.30. During the transient flight without the estimation feedback, the z–

inertial axes position time-history in Figure 3.29 shows an error of about 15 meters (red line)

that can be reduced at about 0.50 meter (blue line). Same observations can be done by observing

the figure 3.30.
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The compensation of external disturbances can be also useful to compensate constant wind

induced position error. As can be seen in Figure 3.29, the implemented nominal controller

(without estimation feedback, red line) is not able to compensate constant external disturbances.

The feedback of exogenous signal estimations allows to reach without error the target position.



Chapter 4

Conclusions

A new control scheme has been presented in this thesis. Based on the NonLinear

Geometric Approach, the proposed Active Control System represents a new way

to see the reconfigurable controllers for aerospace applications. The presence of

the Diagnosis module, mean feature of the depicted Active Control System, is a

characteristic shared by three well known control systems: the Active Fault Tolerant Controls,

the Indirect Adaptive Controls and the Active Disturbance Rejection Controls.

The standard NonLinear Geometric Approach has been accurately investigated and than im-

proved to extend its applicability to more complex models. The standard NLGA procedure has

been modified to take account of feasible and estimable sets of unknown signals. Furthermore

the application of the Singular Perturbations approximation has led to the solution of detection

and isolation problems in scenarios too complex to be solved by the standard NLGA.

Also the estimation process has been improved, where multiple redundant measuremtent are

available, by the introduction of a new algorithm, here called “Least Squares - Sliding Mode”. It

guarantees optimality, in the sense of the least squares, and finite estimation time, in the sense

of the sliding mode.

The Active Control System concept has been formalized in two controller: a nonlinear backstep-

ping controller and a nonlinear composite controller. Particularly interesting is the integration,

in the controller design, of the estimations coming from the Diagnosis module. Stability proofs

are provided for both the control schemes.

Finally, different applications in aerospace have been provided to show the applicability and the

effectiveness of the proposed NLGA-based Active Control System.

Future works? ... the research will never ends and further developments are foreseen, probably

to remove the “input-affinity” constraint of the present NLGA.
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